

Report: Greenhills Operations Local Aquatic Effects Monitoring Program 2017 Report

Overview: This report presents the 2017 results of the local aquatic effects monitoring program developed for Teck's Greenhills Operations. The purpose of this program in the first year was to develop a better understanding of a side channel that lies between Greenhills Operations and the Elk River. This is the first report for this program.

This report was prepared for Teck by Minnow Environmental Inc. and Lotic Environmental Ltd.

For More Information

If you have questions regarding this report, please:

- Phone toll-free to 1.855.806.6854
- Email feedbackteckcoal@teck.com

Future studies will be made available at teck.com/elkvalley

2017 Greenhills Operation Local Aquatic Effects Monitoring Program (LAEMP) Report

Prepared for: **Teck Coal Limited** Sparwood, British Columbia

Prepared by: **Minnow Environmental Inc.** Georgetown, Ontario

and

LOTIC ENVIRONMENTAL SPECIALISTS IN FRESHWATER ECOSYSTEMS

environmental inc.

Lotic Environmental Cranbrook, British Columbia

May 2018

2017 Greenhills Operation Local Aquatic Effects Monitoring Program (LAEMP) Report

Jess Tester, B.Sc. (ent Project Manager Sharl A Weech Shari Weech, Ph.D., R.P. Bio. CA. Senior Project Advisor R.P. Blo 8

Mike Robinson, M.Sc., R.P. Bio. Lotic, Senior Aquatic Biologist

Lee In Lee Wilm, B.Sc. Teck, Regional Monitoring Lead

000

EXECUTIVE SUMMARY

This first year of the Greenhills Operations (GHO) Local Aquatic Effects Monitoring Program (LAEMP) focused on three key questions designed to address localized concerns in a side channel of the Elk River and its adjacent floodplain complex on the west side of GHO. The GHO LAEMP key questions focused on characterization and understanding of the Elk River side channel hydrology, biology, and environmental quality. The three key questions were:

- 1. What are the seasonal and spatial patterns of flow in the Elk River side channel? During what months, and where, does the side channel have flow?
- 2. What is the influence of GHO discharges from the west-side tributaries on water quality in the Elk River and Elk River side channel?
- 3. What are the effects of GHO discharges from the west-side tributaries on biota (i.e., fish, amphibians, aquatic-feeding birds) in the Elk River and the Elk River side channel?

The Elk River side channel receives flows, either via surface water or groundwater, from the most southerly, mine-influenced, west-side tributaries (e.g., Thompson Creek, Wolfram Creek, Leask Creek, and likely also Mickelson Creek). The side channel was observed to have highly variable flow throughout the year. Portions of the side channel flow went sub-surface during low flow periods, resulting in isolated surface pools with different water quality and biological characteristics than in flowing portions. The side channel flow appeared to be predominantly influenced by the Elk River itself, rather than the tributaries, with the exception of the side channel wetland at the mouth of Thompson Creek.

Within the side channel and its floodplain complex, surveys were completed to identify and document habitat and occurrences of aquatic-dependent biota. Fish spawning habitat was limited downstream of the side channel wetland, but was abundant in parts of the side channel upstream of the wetland. Overwintering habitat was present only in the side channel wetland and potentially one isolated pool. Habitat surveys indicated that limited lentic habitat was available for amphibians during the spring, as much of the side channel and floodplain complex were flooded and flowing. During summer and fall, lentic amphibian habitat was provided by the side channel wetland, with additional limited habitat provided by ephemeral isolated pools that typically persisted for less than a month. Habitat was available for aquatic-dependent biota determined that the side channel was being used by a variety of fish, amphibian, and bird species.

Water quality and sediment quality were compared between main stem Elk River, Elk River side channel, and isolated pools. Discharges from the west-side tributaries contributed to higher

concentrations of Order constituents (i.e., dissolved cadmium, nitrate, total selenium, and sulphate) and nickel in water in the downstream main stem Elk River; however, concentrations measured in the main stem downstream of the side channel were well below EVWQP Level 1 benchmarks (cadmium, nitrate, selenium, and sulphate) and preliminary IC₂₅ values (nickel). Water quality at the two most-downstream side channel stations was influenced by Wolfram and Thompson creeks. Water quality in pools was highly dependent on location, with the highest concentrations of Order constituents and nickel occurring in pools in the eastern-most channel downstream of the wetland. The highest concentrations of Order constituents in water occurred in the side channel wetland, which receives flow directly from Thompson Creek. Sediment quality data suggested limited influence of mine-related discharges on sediment chemistry in the side channel and the main stem location downstream of the side channel.

Potential aquatic effects in the side channel and discharges from the west-side tributaries were assessed using benthic invertebrate and fish tissue chemistry (selenium), and benthic invertebrate community structure and biomass endpoints. Some benthic invertebrate tissue selenium samples were above the EVWQP Level 1 benchmarks for either benthic invertebrates, dietary effects to juvenile fish, and/or dietary effects to birds, with highest concentrations measured in the samples collected in the side channel wetland, which is directly influenced by Thompson Creek. Concentrations of selenium in benthic invertebrate tissues were similar at the Elk River main stem station downstream of the side channel and the main stem Elk River reference station. This suggests no influence of the side channel on benthic invertebrate tissue selenium concentrations downstream of the side channel. Selenium was only measured in a single fish tissue sample, with concentrations well below effect thresholds. Results for the benthic invertebrate community structure, biomass, and abundance data were similar in the side channel and the main stem location downstream of the side channel, and were within normal range, indicating that communities were not adversely affected by mine-related discharges.

Overall, the results indicated that the west-side tributaries had no effect on biota in the main stem Elk River, and minimal effects on biota within the Elk River side channel, side channel wetland, and isolated pools. The key questions associated with the GHO LAEMP will be updated in the 2018 to 2020 study design, and the program will continue to assess relevant site specific issues, as required, until sufficient data have been collected, concerns no longer exist, or monitoring can be incorporated into the RAEMP.

TABLE OF CONTENTS

0

€

EXECUTIVE SUMMARY	i
ACRONYMS AND ABBREVIATIONS	vii
1 INTRODUCTION	1
1.1 Background	
1.2 Key Questions	
1.3 Linkages to the Adaptive Management Plan for Teck Coal in the Elk Valley	5
2 METHODS	
2.1 Overview	
2.2 Hydrology	
2.2.1 Overview	
2.2.2 Monthly Hydrology Surveys (Question #1.a)2.2.3 Hydrometric and Water Temperature Monitoring (Question #1.b)	
2.2.3 Water Quality	
2.3.1 Overview	
2.3.2 Sample and Data Collection	
2.3.3 Laboratory Analysis	
2.3.4 Data Analysis	
2.4 Substrate Quality (Question #3.b)	19
2.4.1 Overview	
2.4.2 Calcite	
2.4.3 Sediment Quality	
2.5 Monthly Aquatic Habitat Surveys (Question #3.a)	
2.5.1 Overview	
2.5.2 Reach Identification	
2.5.3 Level 1 Fish Habitat Assessment Procedure (FHAP)	
2.5.4 Monthly Habitat Assessment 2.5.5 Overwintering Habitat	
2.5.5 Overwintering Habitat2.6 Aquatic Vertebrate Inventories (Question #3.a)	
2.6 Aquatic ventebrate inventiones (Question #5.a)	
2.6.2 Amphibian Inventory (Presence/Absence)	
2.6.3 Bird Surveys	
2.6.4 Fish Inventory (Presence/Absence)	
2.6.5 Fish Community (Density)	
2.6.6 Fish Spawning Surveys	31
2.7 Benthic Invertebrate Tissue Selenium (Question #3.c)	31
2.7.1 Overview	
2.7.2 Sample Collection	
2.7.3 Laboratory Analysis	
2.7.4 Data Analysis	
2.8 Fish Tissue Selenium (Question #3.c)	
2.8.1 Overview 2.8.2 Sample Collection	
2.8.2 Sample Collection2.8.3 Laboratory Analysis	
2.8.4 Data Analysis	
2.9 Benthic Invertebrate Community and Biomass (Question #3.d)	
2.9 Dentitie invertebrate community and biomass (Question #0.0)	
2.9.2 Sample Collection	

0.

- >-

2.9.3 Laboratory Analysis2.9.4 Data Analysis	
3 HYDROLOGY	36
3.1 Overview	
3.2 Monthly Hydrology Survey	
3.2.1 Percentage wetted channel	
3.2.2 Tributary Connectivity	
3.3 Hydrometric and Water Temperature Monitoring	
4 WATER QUALITY	
4.1 Overview	
4.2 West-side Tributaries	
4.3 Side Channel Monitoring Stations4.4 Isolated Pools	
4.5 Wetland	
4.6 Main Stem Elk River Downstream versus Upstream of the West-Side Tributaries	
4.7 Side Channel versus Main Stem Elk River	
4.8 Summary	
5 SUBSTRATE QUALITY	
5.1 Overview	
5.2 Calcite	
5.3 Sediment Quality	
5.4 Summary	
6 HABITAT	
6.1 Overview	
6.2 Reach Identification	
6.3 Level 1 Fish Habitat Assessment Procedure (FHAP)	
6.3.1 Reach 1 – East Channel	
6.3.2 Reach 1 – West Channel	66
6.3.3 Reach 3	
6.4 Monthly Habitat Assessment	
6.4.1 May and June 2017 (Spring Season)	
6.4.2 July and August 2017 (Summer Season)	
6.4.3 September and October 2017 (Fall Season)	
6.4.4 November 2017 to April 2018 (Winter Season)6.5 Overwintering Habitat	
5	
7 DISTRIBUTION OF BIOTA	
7.1 Overview7.2 Distribution of Biota	
7.2 Distribution of Biola	
7.4 Fish Community	
8 SELENIUM IN TISSUE	
8.2 Benthic Tissue Selenium	
8.3 Fish Tissue Selenium	
9 BENTHIC INVERTEBRATE COMMUNITY AND BIOMASS	
9.1 Overview9.2 Community	
0.2 Community	07

9.3	Biomass and Density	
10 IN	TEGRATED SUMMARY AND RECOMMENDATIONS	91

- APPENDIX A HYDROLOGY
- APPENDIX B WATER QUALITY
- APPENDIX C SUBSTRATE QUALITY
- APPENDIX D DISTRIBUTION OF BIOTA
- APPENDIX E SELENIUM IN TISSUE

APPENDIX F BENTHIC INVERTEBRATE COMMUNITY AND BIOMASS

LIST OF FIGURES

Figure 1.1:	Teck's Coal Mine Operations within the Elk River Watershed, Southeast British Columbia	2
Figure 1.2:	Teck's Greenhills Operation	
Figure 2.1:	Hydrology, Sediment Quality, Benthic Invertebrate Tissue Selenium, Benthic Invertebrate Biomass and Community, and Fish Tissue Sampling Stations	11
Figure 2.2:	Surface Water Quality Monitoring Stations	
Figure 2.3:	Fish Inventory and Fish Community Monitoring Locations	28
Figure 4.1:	Water Quality Temporal Plots of Monthly Means for Order Constituents and Total Aqueous Nickel, Compared to EVWQP Benchmarks and Preliminary IC25 Values for the West-side Tributaries Branch F Creek, Wolf Creek, and	
	,	45
Figure 4.2:	Water Quality Temporal Plots of Monthly Means for Order Constituents and Total Aqueous Nickel, Compared to EVWQP Benchmarks Preliminary IC25 Values for the West-side Tributaries Wade Creek, Cougar Creek, No Name	
	Creek, and Mickelson Creek, 2016 to 2017	46
Figure 4.3:	Water Quality Temporal Plots of Monthly Means for Order Constituents and Total Aqueous Nickel, Compared to EVWQP Benchmarks Preliminary IC25 Values for the West-side Tributaries Leask Creek (GH_LC1 and GH_LC2), Wolfram Creek (GH_WC1 and GH_WC2), and Thompson Creek (GH_TC1	
		48
Figure 4.4:	Water Quality Temporal Plots of Monthly Means for Order Constituents and Total Aqueous Nickel at Side Channel Monitoring Stations Compared to EVWQP Benchmarks and Preliminary IC25 Values, Elk River Side Channel, 2016 to 2017	49
Figure 4 5:	Water Quality Temporal Plots of Monthly Means for Order Constituents and	49
Figure 4.5:	Total Aqueous Nickel at Isolated Pool And Wetland Stations Compared to EVWQP Benchmarks and Preliminary IC25 Values, 2017 to 2018	51
Figure 4.6:	Water Quality Temporal Plots of Monthly Means for Order Constituents and Total Aqueous Nickel at Main Stem Elk River Areas Upstream (GH_ER2) and	

	Downstream (GH_ERC) of Mine Activities Compared to EVWQP Benchmarks, Preliminary IC25 Values, and Permit Limits, 2016 to 2017	53
Figure 5.1:	Mean Particle Size (%) and Total Organic Carbon Content (%) in Sediments, September 2017	58
Figure 5.2:	Sediment Metal and Polycyclic Aromatic Hydrocarbons Concentrations Relative to BC Sediment Quality Guidelines (SQG) and Normal Ranges, 2017	59
Figure 6.1:	Habitat of the Elk River Side Channel	65
Figure 6.2:	Fish Spawning Habitat	
Figure 6.3:	Fish Overwintering Habitat	
Figure 7.1:	Amphibian Observations	78
Figure 8.1:	Selenium Concentrations in Benthic Invertebrate Samples, 2017	83
Figure 8.2:	Selenium Concentrations in Benthic Invertebrate Samples, 2017	84
Figure 8.3:	Observed and Modelleda Selenium Concentrations in Benthic Invertebrate Composite Samples Relative to Aqueous Selenium Concentrations At Stations Upstream and Downstream of Greenhills Operations, September 2017	86
Figure 9.1:	Key Benthic Invertebrate Community Endpoints for Reference and Mine- exposed Areas Collected by the CABIN Kick and Sweep Method, Relative to the Normal Range, 2017	88
Figure 9.2:	Percent Composition of Major Benthic Invertebrate Taxonomic Groups among Reference and Mine-exposed Areas using the CABIN Kick and Sweep Method, September 2017	89
Figure 9.3:	Percent Composition of Major Benthic Invertebrate Taxonomic Groups among Reference and Mine-exposed Areas using Hess Sampling, September 2017	89
Figure 9.4:	Total Biomass and Density of Benthic Invertebrates for Reference and Mine- exposed Areas Collected by Hess Sampling, 2017	90

LIST OF PHOTOS

	Downstream View of Thompson Creek Water Entering the Wetland in January 2018.	37
Photo 3.2:	Backchannel (Red Circle) May Connect to Wolfram Creek during High Flows, July 2017	
Photo 3.3:	Backchannel (Red Circle) was Dry in 2017, but May Connect to Wolfram Creek during High Flows, September 2017	
	Potential Redd in Reach 3	

LIST OF TABLES

0.

->-

Table 2.1: Table 2.2:	GHO LAEMP Sampling at Flowing Stations, May 2017 to March 2018 GHO LAEMP Sampling at Pool and Wetland Stations, May 2017 to March	8
	2018	9
Table 2.3:	Water Sample Analyses	.16
Table 2.4:	Analytical Methods for Water Samples	.16
Table 2.5:	Analytical Methods for Sediment Samples	
Table 2.6:	Stream Substrate Size Classification Based on Johnston and Slaney (1996)	.23
Table 2.7:	Percent and Rating of Total Available Fish Cover Presented in Johnston and	
	Slaney (1996)	.23

0

->-

Table 2.8:	Amphibian Species Potentially Found near the Elk River (Golder 2014; Minnow 2003, 2014; BCMOE 2018a,d,e; Isaac 2018a,b, pers. comm.)								
Table 2.9:	Piscivorous Bird Species Potentially Found near the Elk River (BCMOE 2018f)								
Table 2.10:	Fish Species Potentially Found in the Study Area (BC MOE 2018b)	.27							
Table 2.11:	Westslope Cutthroat Trout Average Fork Length at Age Capture (Robinson 2014)								
Table 2.12:	2014) Bull Trout Fork Length Categories by Life Stage (Smithson and Robinson 2017)	.29							
Table 2.13:	Brook Trout Fork Length Categories by Life Stage for Mid-evaluation Streams (Kennedy et al. 2003)	.29							
Table 3.1:	Monthly Wetted Channel Length Percentage for Reach 1	.37							
Table 3.2:	Monthly Wetted Channel Length Percentage for Reach 3								
Table 4.1:	Statistical Comparisons of the Differences in Monthly Mean Concentrations Between Side Channel Stations (GH_ERSC4, GH_ER1A, GH_ERSC2) and the Main Stem Elk River Station Located Downstream of Mine Activities (GH_ERC), for Aqueous Cadmium, Total Nickel, Nitrate, Total Selenium, and								
	Sulphate, 2016 to 2017	.54							
Table 4.2:	Statistical Comparisons of the Differences in Monthly Mean Concentrations Between Side Channel Stations (GH_ERSC4, GH_ER1A, GH_ERSC2) and the Main Stem Elk River Reference Station (GH_ER2) for Aqueous								
	Cadmium, Total Nickel, Nitrate, Total Selenium, and Sulphate, 2016 to 2017								
Table 6.1:	Level 1 - FHAP Summary Table for the Reach 1 East Channel								
Table 6.2:	Habitat Quality Metrics for the Reach 1 East Channel								
Table 6.3: Table 6.4:	Level 1 - FHAP Summary Table for the Reach 1 West Channel Habitat Quality Metrics for the Reach 1 West Channel								
Table 6.5:	Level 1 - FHAP Summary Table for Reach 3								
Table 6.6:	Habitat Quality Metrics for Reach 3								
Table 7.1:	Monthly Biota Observations, May 2017 to April 2018								
Table 7.2:	Fish Inventory Minnow Trapping Summary, June, July, September, and								
	October 2017	.79							
Table 7.3:	Fish Inventory Electrofishing at Side Channel Stations in July, September, and October 2017.								
Table 7.4:	Fish Inventory Electrofishing in Isolated Pools in September 2017								
Table 7.5:	Fish Community Electrofishing Sampling Summary								

ACRONYMS AND ABBREVIATIONS

- AMP Adaptive Management Plan
- ANOVA Analysis of Variance
- ANCOVA Analysis of Covariance
- BCWQG British Columbia Water Quality Guidelines
- **CABIN** Canadian Aquatic Biomonitoring Network
- CI Calcite Index
- CMO Coal Mountain Operation
- **CPUE** Catch-per-unit-effort
- CRC ICP-MS Collision Reaction Cell Inductively Coupled Plasma-Mass Spectrophotometry
- DELT Deformities, Erosions, Lesions, or Tumors
- DO Dissolved Oxygen
- DW Dry Weight
- DOC Dissolved Organic Carbon
- **EMC** Environmental Monitoring Committee
- **ENV** British Columbia Ministry of Environment and Climate Change Strategy (formerly BCMOE)
- **EPT** Ephemeroptera (mayflies), Plecoptera (stoneflies), Trichoptera (caddisflies)
- **EVO** Elkview Operation
- EVWQP Elk Valley Water Quality Plan
- FHAP Fish Habitat Assessment Procedure
- FRO Fording River Operation
- GC/MS Gas Chromatography with Mass Spectrometric Detection
- GHO Greenhills Operation
- **GPS** Global Positioning System
- ICP-MS Inductively Coupled Plasma Mass Spectrometry
- ISQG Interim Sediment Quality Guideline

€.

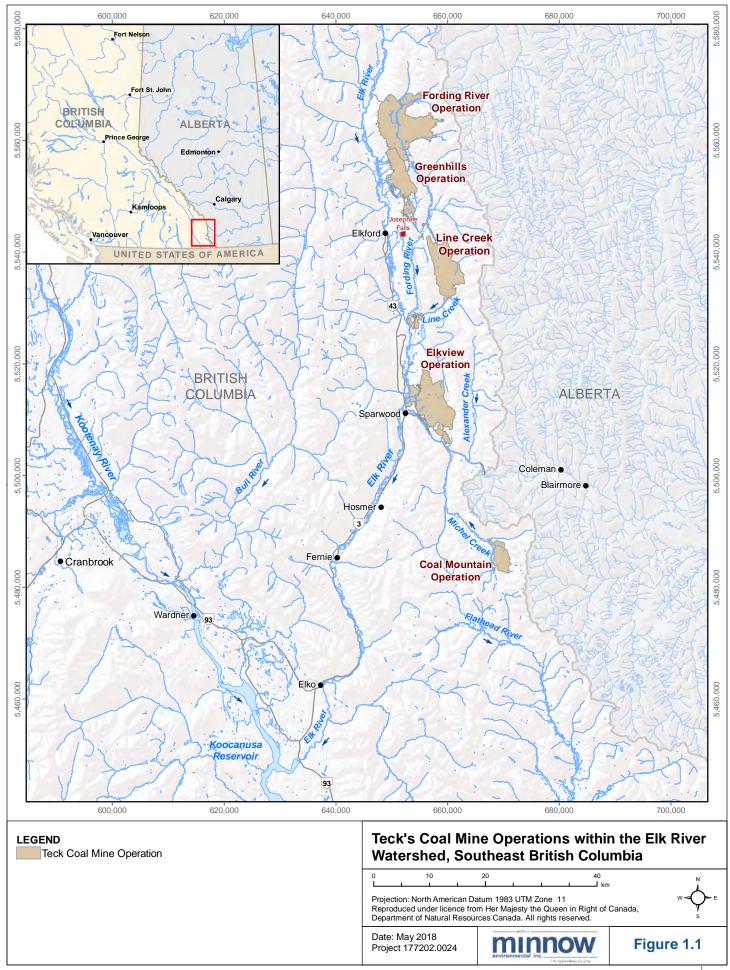
KNC – Ktunaxa Nation Council

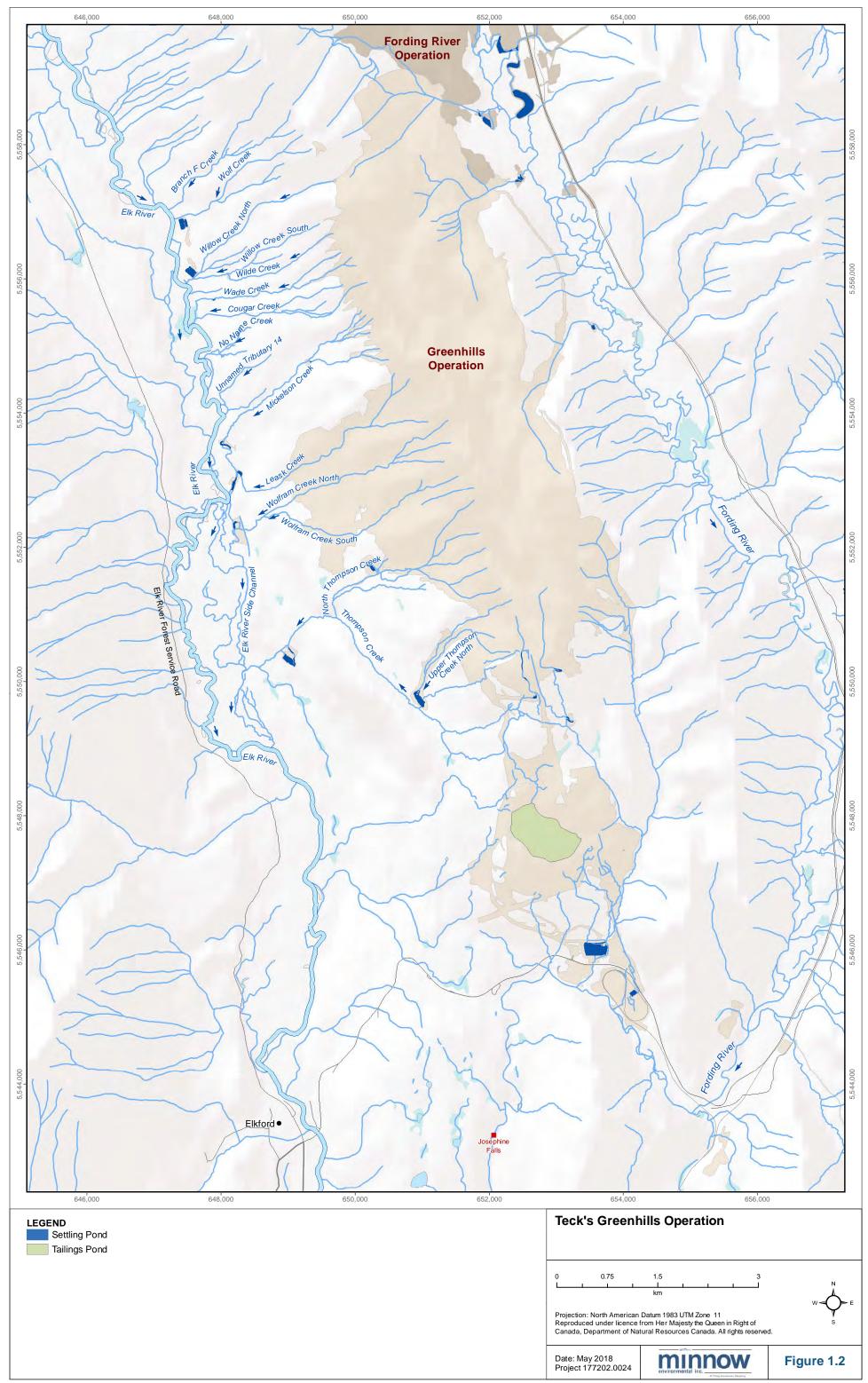
0

LAEMP – Local Aquatic Effects Monitoring Program

- LCO Line Creek Operation
- LEL- Lowest Effect Level
- LPL Lowest Practical Level, referring to taxonomic identification of benthic invertebrates
- LSU Longnose Sucker
- LWD Large Woody Debris
- **MOD** Magnitude of Difference
- NAD North American Datum
- PAH Polycyclic Aromatic Hydrocarbon
- PEL Probable Effect Level
- QA/QC Quality Assurance / Quality Control
- **RAEMP** Regional Aquatic Effects Monitoring Program
- **RISC** Resource Information Standards Committee
- SEL Severe Effect Level
- SQG Sediment Quality Guideline
- TIE Toxicity Identification Evaluation
- UTM Universal Transverse Mercator System
- WSRT Wilcoxon Signed Rank Test
- YOY Young of the Year

1 INTRODUCTION


1.1 Background


Teck Resources Limited (Teck) operates five steelmaking coal mines in the Elk River watershed, which are the Fording River Operation (FRO), Greenhills Operation (GHO), Line Creek Operation (LCO), Elkview Operation (EVO), and Coal Mountain Operation (CMO; Figure 1.1). Discharges from the mines to the Elk River watershed are authorized by the British Columbia Ministry of Environment and Climate Change Strategy (ENV) through permits that are issued under provisions of the *Environmental Management Act*. Permit 107517 was issued November 19, 2014, and is periodically amended in response to new learnings, projects, or extensions. The Permit specifies the terms and conditions associated with discharges from the five mine operations.

Teck's Regional Aquatic Effects Monitoring Program (RAEMP) is a requirement under Permit 107517, and provides comprehensive routine monitoring and assessment of potential mine-related effects on the aquatic environment downstream from Teck's mines in the Elk Valley (i.e., every three years, with the most recent cycle of reporting completed January 2018). Teck conducts a variety of additional programs to monitor, evaluate, and/or manage the aquatic effects of mining operations within the Elk Valley at local and regional scales (e.g., site-specific groundwater programs, regional groundwater programs, Water Quality Monitoring Program, Regional Flow Monitoring Plan, Calcite Monitoring Program, Chronic Toxicity Testing Program, Regional Fish and Fish Habitat Management Program, and Tributary Evaluation and Management Plan).

Permit 107517 also requires that Teck develop a local aquatic effects monitoring program (LAEMP) related to GHO (Figure 1.2). Section 9.3.3 of Permit 107517 outlines the LAEMP requirements as follows:

The Permittee must complete to the satisfaction of MOE a study design for an LAEMP which will focus on the upper Elk River and the Elk River side channel and tributaries located on the west side of GHO between sites 0200389 [GH_ER2] and E3000090 [GH_ERC] for 2017-2020 by June 1, 2017. The study design must be reviewed by the

Document Path: S:\Projects\177202\177202.0024 - Teck 2017 GHO LAEMP Implementation\6 - GIS\Report\17-24 Fig 1.2 Teck GHO.mxd

EMC¹ and be designed to an appropriate temporal scale to capture short term, local effects to the immediate receiving environment.

Following EMC consultation, a phased approach to the GHO LAEMP study design was approved by ENV. A study design (Minnow and Lotic 2017) was submitted May 31st, 2017 that outlined preliminary reconnaissance work to be conducted from May 2017 to April 2018, and a commitment to submitting an updated study design May 31st, 2018 to cover the 2018 to 2020 period. The 2017 GHO LAEMP was designed to address localized concerns about potential aquatic effects associated with the west spoil development at GHO and to inform an updated study design for 2018 to 2020. Previous evaluations and reports have shown that the majority of the west-side tributaries are high gradient and ephemeral and, with the exception of Thompson Creek, are not fish bearing (Minnow 2016a). Therefore, monitoring of the west-side tributaries has focused on water quality. A side channel of the Elk River and its adjacent floodplain complex were identified as key areas of potential localized concern because they receive flows, either via surface water or groundwater, from the most southerly, mine-influenced, west-side tributaries (e.g., Thompson Creek, Wolfram Creek, Leask Creek, and likely also Mickelson Creek; Figure 1.2). The Elk River side channel has been observed to undergo substantial seasonal flooding and braiding, with highly variable flow throughout the year. Portions of the side channel flow go sub-surface during low flow periods, which results in isolated surface pools with different water quality and biological characteristics than in flowing portions. The first year of the GHO LAEMP was designed to develop a better understanding of the Elk River side channel hydrology, biology, and environmental quality. The results will be used to refine monitoring locations, sampling design, and measurement endpoints that will be most useful for quantifying and tracking short term mine-related local effects to the immediate receiving environment over time in future LAEMP monitoring (specifically for an updated study design for 2018 to 2020).

1.2 Key Questions

0

-)-

In order to focus the scope of the first year of the GHO LAEMP and to provide the reconnaissance data required to inform the 2018 to 2020 study design, key questions were developed in consultation with the Environmental Monitoring Committee (EMC). The key questions, and associated sub-questions, are as follows:

¹ EMC refers to the Environmental Monitoring Committee, which Teck was required to form as per Permit 107517. The EMC consists of representatives from Teck, ENV, the Ministry of Energy and Mines, the Ktunaxa Nation Council (KNC), Interior Health Authority, and an Independent Scientist. Environment Canada has also agreed to provide its perspectives on matters related to Permit 107517 and the Committee's activities, on a case-by-case basis when requested by the Committee. To date, the Committee has not called on Environment Canada to participate. The EMC reviews submissions and provides technical advice to Teck and the ENV Director regarding monitoring programs as stipulated in Section 12.2 of Permit 107517.

- 1. What are the seasonal and spatial patterns of flow in the Elk River side channel? During what months, and where, does the side channel have flow?
 - a. What percentage of channel length is wet each month? (Map wet/dry locations.)
 - b. Is there a relationship between % wet channel length (or the onset of portions going to ground) versus flows in the main stem Elk River and/or tributary inputs?
- 2. What is the influence of GHO discharges from the west-side tributaries on water quality in the Elk River and Elk River side channel?
 - a. What is the water quality at monitoring stations in the Elk River downstream versus upstream of the west-side tributaries?
 - b. What is the water quality at monitoring stations in the Elk River side channel?
 - c. What is the water quality in isolated pools in the Elk River side channel that provide potential aquatic habitat for aquatic and/or aquatic-dependent vertebrates (i.e., fish, amphibians, and aquatic-feeding birds)?
- 3. What are the effects of GHO discharges from the west-side tributaries on biota (i.e., fish, amphibians, aquatic-feeding birds) in the Elk River and the Elk River side channel?
 - a. How does the distribution of biota change seasonally? Which isolated pools contain biota?
 - b. What is the substrate quality?

-

- c. What are the fish and benthic invertebrate tissue selenium concentrations?
- d. What are benthic invertebrate biomass and community compositions along the side channel? How do benthic invertebrate community compositions compare between perennially wetted and seasonally isolated wet areas?

This report describes the approach, methods, and results produced from the key questions during this first year of the GHO LAEMP. The key questions associated with the GHO LAEMP will be updated in the 2018 to 2020 study design to reflect findings in 2017, and the program will continue to assess relevant site-specific issues, as required, until sufficient data have been collected, concerns no longer exist, or monitoring can be incorporated into the RAEMP.

1.3 Linkages to the Adaptive Management Plan for Teck Coal in the Elk Valley

As required in Permit 107517 Section 11, Teck has developed an Adaptive Management Plan (AMP) to support implementation of the Elk Valley Water Quality Plan (EVWQP) to achieve water quality and calcite targets, ensure that human health and the environment are protected, and where necessary, restored, and to facilitate continual improvement of water quality management

in the Elk Valley (Teck 2016). Through EMC review of the 2016 AMP, it was determined that an update to the AMP was required to advance several elements that were in development at the time of the 2016 AMP submission. Teck is currently working in collaboration with the EMC to update AMP content and will submit an updated AMP for acceptance by the director by Dec 21st, 2018. Data from the various LAEMPs (including the present monitoring program) and the RAEMP (Minnow 2018a) will feed into the adaptive management process to address a set of six overarching environmental Management Questions that collectively address the environmental management objectives of the AMP and the EVWQP (Teck 2014a). In addition, the AMP identifies Key Uncertainties under each Management Question, which if reduced, either help confirm that Teck's current management actions are appropriate or lead to adjustments that would better satisfy EVWQP objectives.

As with the RAEMP, monitoring data and evaluations conducted within GHO LAEMP are designed primarily to provide supportive information to help answer AMP Management Question #5 (currently worded as "Does monitoring for mine-related effects indicate that the aquatic ecosystem is healthy?"), and Key Uncertainty 5.1 (currently worded as "How will monitoring data be used to identify potentially important mine-related effects on aquatic ecosystem health at a management unit scale?"). Data and analysis conducted under the LAEMP will also contribute to answering AMP Management Question #2 (currently worded as "Will aquatic ecosystem health be protected by meeting the long-term site performance objectives?") by assessing the aquatic ecosystem under a range of current conditions and identifying areas where biological effects may be occurring due to one or more mine-related constituents.

Data collected as part of the GHO LAEMP have followed and will continue to follow an adaptive management framework, and evaluation of data collected in 2017 for the GHO LAEMP has been used to inform amendments to the 2018 to 2020 GHO study design. Following an adaptive management framework, data collected in 2017 and early 2018 were used to inform the GHO LAEMP study design for 2018 to 2020, and if findings suggest that additional responses are necessary, further investigations or adjustments may be initiated.

2 METHODS

2.1 Overview

The GHO LAEMP key questions were addressed through the collection and analysis of field data as summarized in Tables 2.1 and 2.2. As per Permit 107517 and Permit 6428 requirements, water quality and flow data were monitored weekly/monthly² by Teck for the Elk River (water quality only), Elk River side channel, and west-side tributaries (Section 2.3). Monthly inspections from May 2017 to March 2018 of the side channel and floodplain complex allowed for the characterization of seasonal hydrology, habitat, biological communities (i.e., fish, amphibians, and aquatic-feeding birds), and the collection of supporting data (Sections 2.2, 2.5, and 2.6). Additional sampling was conducted in September 2017 pertaining to sediment chemistry, benthic invertebrate and fish tissue chemistry (selenium), and benthic invertebrate community structure and biomass (Sections 2.4, 2.7, 2.8, and 2.9).

2.2 Hydrology

2.2.1 Overview

Hydrology data were primarily collected to address to key question #1: "What are the seasonal and spatial patterns of flow in the Elk River side channel? During what months, and where, does the side channel have flow?". Pertinent data collected in from May 2017 to March 2018 included water levels in the side channel and main stem Elk River, flow in the side channel, and characterization of side channel hydrology features (dry sections, braids, isolated pools, and tributary surface connectivity).

2.2.2 Monthly Hydrology Surveys (Question #1.a)

Monthly surveys were completed by a crew that walked the entire Elk River side channel from the downstream outlet at the Elk River to the side channel inlet near Leask Creek. Monthly surveys were used to evaluate the surface flow conditions within the side channel and to delineate wet/dry areas. Wet/dry areas were marked with a handheld Global Positioning System (GPS) unit (in Universal Transverse Mercator [UTM] coordinates, using North American Datum [NAD] 83) to facilitate mapping. Characteristics of primary interest included:

• dry sections,

0

• braided or flooded sections,

€.

² Sampling is done on a monthly basis (August – March) and/or weekly/monthly basis (March 15 – July 15), as required by Permit 107517 and Permit 6428.

Table 2.1: GHO LAEMP Sampling at Flowing Stations, May 2017 to March 2018

		Stream Name	Water Station Code											Hydrology	Habitat and Biota	Surface Water	Sub	strate	Benthic Invertebrates				ish
Exposure Type	Stream Type ^a			ENV EMS Number	Area Description	UTM for Biological Area Code (NAD83, 11U)		Biological Area Code		Water Level, Flow, and Temperature Monitoring	Monthly Habitat and Biota Inventory Survey	Chemistry	Calcite Index	Sediment Physical-chemical Attributes	Community Endpoints	Biomass and Desnisuty	Tissue Chemistry (Composite taxa)	Fish Inventory	Fish Community				
						Easting	Northing	monthly/ continuous	monthly	monthly/ concurrently ^b	July and September 2017	September 2017	September 2017	September 2017	September 2017	2018	2019						
	М	Elk River	GH_ER2	200389	u/s Branch Cr. and GHO	646561	5557474	-	-	monthly, concurrently	September 2017	3	1	5	1 composite, 5 taxon-specific	-	-						
	М	Elk River	ERUS	200389	u/s side channel			monthly/ continuous	-	monthly, concurrently	-	-	-	-	-	-	-						
	S	Elk River Side Channel	GH_ERSC4	E305878	Elk River side channel u/s of Wolfram Creek	648092	5552589	monthly/ continuous		monthly, concurrently	July and September 2017 July and	3	1	5	3 composite, 5 taxon-specific	yes	yes						
	S	Elk River Side Channel	GH_ER1A	E305876	Elk River side channel d/s of Wolfram Creek, u/s of wetland	648382	5551534	monthly/ continuous	side channel survey	monthly, concurrently	July and September 2017	3	1	5	3 composite, 5 taxon-specific	yes	yes						
	S	Elk River Side Channel	RG_ERSC5	-	Elk River side channel d/s of Wolfram Creek, u/s of wetland	648275	5550608	-		concurrently	September 2017	3	3	5	3 composite, 5 taxon-specific	-	-						
sed	т	Mickelson Creek	GH_MC1	0200388	Mickelson Creek at LRP Road	648208.6	5553862	-	-	monthly	-	-	-	-	-	-	-						
Mine-exposed	т	Leask Creek	GH_LC1	E257796	Leask Creek Sed. Pond Decant	648152.8	5552859	-	-	monthly	-	-	-	-	-	-	-						
Min	т	Wolfram Creek	GH_WC1	E257795	Wolfram Creek Sed. Pond Decant	648222.3	5552086	-	-	monthly	-	-	-	-	-	-	-						
	т	Thompson Creek	GH_TC2	E207436	lower creek	648596	5550237	-	-	monthly, concurrently	-	-	-	-	-	-	-						
	S	Elk River Side Channel	GH_ERSC2	-	Elk River side channel d/s of Thompson Creek	648275	5550608	monthly/ continuous	side channel survey	monthly, concurrently	July 2017 ^c	_c	_c	_c	_c	yes	yes						
	М	Elk River	GH_ERC (Compliance)	E300090	d/s Thompson Cr. and GHO	649146	5548514	monthly/ continuous	-	monthly, concurrently	September 2017	1	1	5	1 composite, 2 taxon-specific	-	-						

^a M-main stem; S-side channel; T-tributary.

^b Concurrently - water chemistry sampling will be conducted concurrent with sediment and biological sampling. Weekly/monthly - water chemistry sampling and flow monitoring are conducted weekly or monthly through Permit 107517 and Permit 6428.

Table 2.2: GHO LAEMP Sampling at Pool and Wetland Stations, May 2017 to March 2018

						UTM for Biological Area Code (NAD83, 11U)		Hydrology	Habitat and Biota	Surface Water	Sub	strate	В	ebrates	Fi	ish	
Exposure Type	Stream Type ^a	Stream Name	Water Station Code	ENV EMS Number	Area Description			Water Level, Flow, and Temperature Monitoring	Monthly Habitat and Biota Inventory Survey	Chemistry	Calcite Index	Sediment Physical-chemical Attributes	Community Endpoints	Biomass and Desnisuty	Tissue Chemistry (Composite taxa)	Fish Inventory	Fish Community
						Easting	Northing	monthly/	monthly	monthly/ concurrently ^b	July and September 2017	September 2017	September 2017	September 2017	September 2017	2018	2019
	Ρ	side channel pool	Pool-U-1	-		647843	5552016	-	monthly	monthly/ concurrently	_c	_c	_c	_c	_c	_c	_c
	Ρ	side channel pool	Pool-U-2	-		647833	5551900	-	monthly	monthly/ concurrently	-c	_c	_c	_c	_c	- ^c	-c
	Ρ	side channel pool	Pool-U-3	-	Side channel upstream of GH_ER1A	647873	5551838	-	monthly	monthly/ concurrently	-c	- ^c	_c	_c	_c	°.	-c
	Ρ	side channel pool	Pool-U-4	-		647906	5551710	-	monthly	monthly/ concurrently	-c	- ^c	_c	_c	_c	°.	-c
	Ρ	side channel pool	Pool-U-5	-		648214	5551721	-	monthly	monthly/ concurrently	-c	_ ^c	_c	_c	_c	°-	-c
	Ρ	side channel pool	Pool-M-1	-	Side channel downstream of GH_ER1A, upstream of	648299	5550743	-	monthly	monthly/ concurrently	- ^c	_ c	_ ^c	_ ^c	_ c	с -	_c
	Ρ	side channel pool	Pool-M-2	-	Thompson wetland	648255	5550781	-	monthly	monthly/ concurrently	- ^c	_c	_ ^c	_c	_c	_ ^c	_ ^c
	S	Elk River Side Channel Wetland	RG_GH-SCW1	-	inlet of side channel wetland, upstream of Thompson Creek	648253	5549846	-	monthly	concurrently	-	1	-	-	3 composite		
sed	S	Elk River Side Channel Wetland	RG_GH-SCW2	-	side channel wetland downstream of Thompson Creek	648380	5549321	-	monthly	concurrently	-	1	-	-	3 composite	yes	yes
Mine-exposed	S	Elk River Side Channel Wetland	RG_GH-SCW3	-	side channel wetland downstream of Thompson Creek	648332	5550166	-	monthly	monthly/ concurrently	-	-	-	-	-		
Mine	Ρ	side channel pool	Pool-W-1	-	Western channel downstream of	648253	5549846	-	monthly	monthly/ concurrently	September		-	-	3 composite	-	-
	Ρ	side channel pool	Pool-W-2		Thompson wetland	648380	5549321	-	monthly	monthly/ concurrently	September		-	-	3 composite, 3 taxon-specific	-	-
	Ρ	side channel pool	Pool-E-1	-		648492	5549728	-	monthly	monthly/ concurrently	-	-	-	-	-	-	-
	Ρ	side channel pool	Pool-E-2	-		648561	5549475	-	monthly	monthly/ concurrently	September	1	-	-	3 composite	-	-
	Ρ	side channel pool	Pool-E-3	-	-	648592	5549424	-	monthly	monthly/ concurrently	-	-	-	-	-	-	-
	Ρ	side channel pool	Pool-E-4	-	Eastern channel downstream of Thompson wetland	648634	5549336	-	monthly	monthly/ concurrently	-	-	-	-	-	yes	-
	Ρ	side channel pool	Pool-E-5	-		648656	5549303	-	monthly	monthly/	-	-	-	-	-	yes	-
	Ρ	side channel pool	Pool-E-6	-		648675	5549296	-	monthly	monthly/ concurrently	September	2	-	-	3 composite	yes	-
	Ρ	side channel pool	Pool-E-7	-		648782	5549097	-	monthly	monthly/ concurrently	September	1	-	-	3 composite, 3 taxon-specific	yes	-

^a M-main stem; S-side channel; T-tributary.

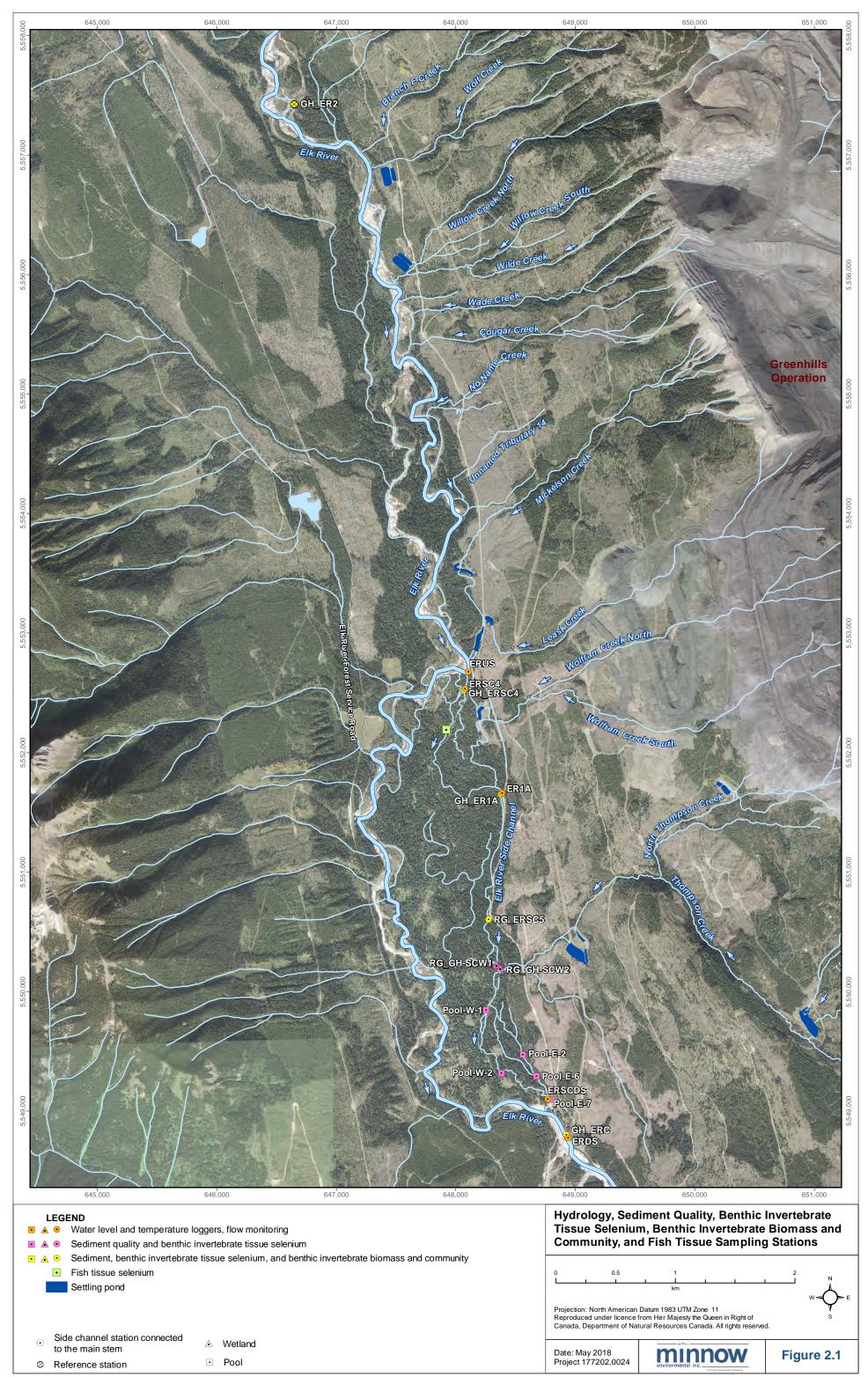
^b Concurrently - water chemistry sampling will be conducted concurrent with sediment and biological sampling. monthly - water chemistry sampling conducted as part of monthly sureveys.

^c Station was flowing during Septemebr 2017 sampling.

- isolated pools, and
- surface connectivity between tributaries (Mickelson Creek, Leask Creek, Wolfram Creek, and Thompson Creek), the Elk River, and the Elk River side channel.

Maps were created to display monthly conditions in terms of wet/dry sections of the side channel, flooded areas, the surface connectivity of tributaries to the side channel, and between the side channel and main stem Elk River. The percentage of the side channel length (not area) that was wetted was calculated monthly.

2.2.3 Hydrometric and Water Temperature Monitoring (Question #1.b)


2.2.3.1 Field Monitoring

Water level loggers were installed on May 19, 2017 at ERSCDS³ and GH_ERSC4, and on June 20, 2017 at ERDS, GH_ER1A, and ERUS (Table 2.1). A barometric logger was installed on May 19, 2017 at GH_ER1A.

Water levels (i.e., stream stage) and temperature were recorded at 15-minute intervals at the three stations within the Elk River side channel (ERSCDS, GH_ER1A, and GH_ERSC4) and at the two stations within the main stem Elk River (ERDS and ERUS; Figure 2.1) using Onset Hobo U 20 Level loggers. The loggers were installed in locations to describe the total surface flow passing by (e.g., no channel braiding) and were set in the deepest part of a channel cross-section, while maintaining some protection to the logger by the bank shape. Loggers were housed in a stilling well attached to angle iron, to which a staff gauge was also attached. The staff gauge was installed to verify pressure transducer readings, and to support the future development of a stage-discharge relationship for each site. One barometric logger was installed on land at GH_ER1A to correct for changes in atmospheric pressure. Benchmark surveys were completed as quality control to assess whether the logger and stilling wells had shifted overtime. Benchmark surveys were completed throughout the sampling period to comply with Resources Information Standards Committee (RISC) standards (RISC 2009). Data was downloaded routinely from the loggers to avoid data loss. During the winter, the loggers were winterized to prevent freezing and damage.

Where feasible, flow measurements were completed at all water level logger stations on the side channel (ERSCDS, GH_ER1A, GH_ERSC4; Figure 2.1) during monthly visits. Streamflow measurements followed the Manual of British Columbia Hydrometric Standards (RISC 2009). Stream depth (m) and velocity (m/s) were measured using a Hach FH950 flow meter. Velocity

³GH_ERSC2 (downstream of the confluence of Thompson Creek) was listed in the study design for the installation of a data logger, however in order to get a better understanding of the level/flow near the outlet of the Elk River side channel this location was substituted with ERSCDS (near the outflow of the side channel). GH_ERSC2 was also on a braid and would have missed some of the flow, unlike ERSCDS, which is in a singles channel.

Document Path: S:\Projects\177202\177202.0024 - Teck 2017 GHO LAEMP Implementation\6 - GIS\Report\17-24 Fig 2.1 Sampling Stations.mxd

measurements were collected at 60% of the total depth from the water surface. These flow measurements, combined with staff gauge readings, will be used to build stage-discharge measurements once the required number of flow measurements have been conducted (minimum of ten flow measurements over a range of flow conditions.) Flow measurements were not collected at the Elk River main stem sites due to deep water and high flow conditions.

2.2.3.2 Data Analysis

Water level data were collected and then corrected for barometric pressure using Onset Hoboware Pro (version 3.7.13) and a reference water stage relative to the staff gauge. Since loggers were installed during high flows, the crews could not safely access deeper areas of the channel. As a result, some loggers were later relocated when they became dewatered while flow remained in the channel. The water stage record collected before the relocation was corrected using the difference between the water stage immediately pre- and post-relocation as measured by the staff gauge and benchmark surveys. A continuous record of water stage in metres was produced by correcting the data for atmospheric pressure and for the relocation. Stage cannot be directly used to compare water quantity between sites, as stage was determined using a locally referenced point relative to the staff gauge at each site.

Water stage time series were plotted for each site and qualitatively assessed for similarities between side channel locations and Elk River main stem locations (Figure 2.1). Similar patterns would suggest that side channel flows were influenced by the Elk River hydrograph. A matrix plot was also generated to show each possible pair of locations as linear relationships. Linear regression was run on the site pairings to test for significant relationships between the two hydrographs, and also how strongly the two site records were correlated. R² values closer to 1 would suggest more strongly correlated sites, which would also suggest that they were more strongly hydrologically connected. The hydrograph from the Water Survey of Canada station on the Elk River near Natal (station 08NK016) was compared to provide context of the hydrologic conditions experienced in the Elk River in 2017.

Water temperature graphs were also plotted. Temperature graphs provide data to corroborate when loggers were suspected as dewatering and provide data for fish habitat conditions.

Flow (spot measurements) data were assessed to better characterize the surface water/groundwater relationship in the side channel and to identify gaining and losing portions of

the channel⁴. Stream discharge (m³/s) was calculated using stream depth and velocity measurements, and was used for spatial comparisons. A relative decrease in discharge from upstream to downstream would suggest losses to subsurface flows, while a relative discharge increase without major overland contributions would suggest that groundwater likely surfaces and contributes to surface discharge.

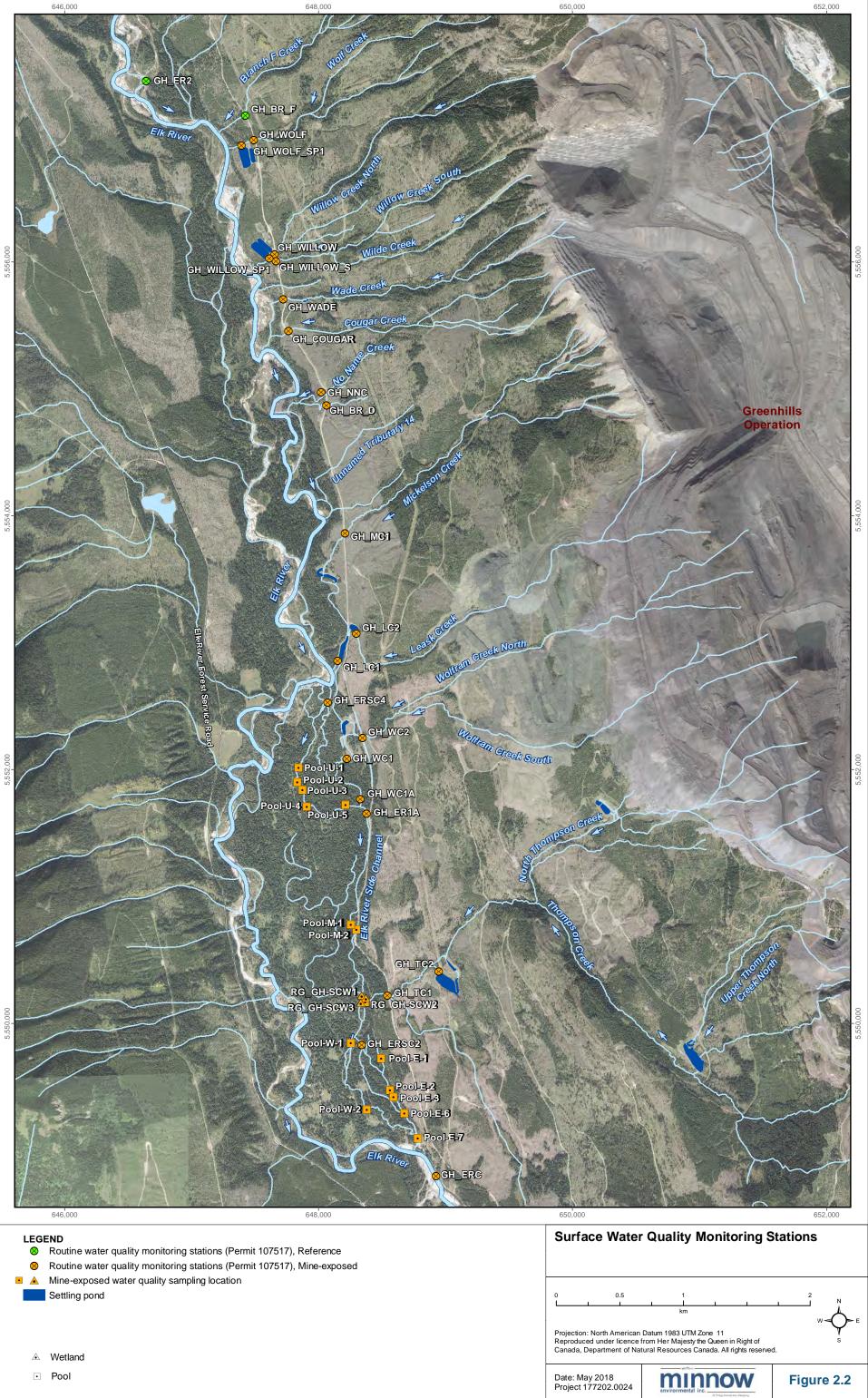
2.3 Water Quality

2.3.1 Overview

Water quality analyses were conducted to address key question #2: "What is the influence of GHO discharges from the west-side tributaries on water quality in the Elk River and Elk River side channel?" (Section 1.2). Data were evaluated from Teck's routine water quality monitoring, as well as from supplementary sampling conducted during GHO LAEMP field work.

2.3.2 Sample and Data Collection

0


Routine water quality monitoring samples collected weekly/monthly⁵ by Teck were analyzed by ALS Environmental in Calgary, AB or Burnaby, B.C., and data were stored in Teck's EQuIS[™] database. Monitoring data, along with quality assurance and quality control (QA/QC) associated with water sampling, were presented in Teck's quarterly and annual water quality reports for Permit 107517 and Permit 6428. Water quality monitoring data collected by Teck were downloaded from the database for the water quality stations in the west-side tributaries, the upper Elk River, and the Elk River side channel (Figure 2.2) and were evaluated relative to site-specific benchmarks⁶.

Additional water quality samples were collected specifically for the GHO LAEMP from isolated pools along the Elk River side channel from August 2017 to March 2018 (Appendix Table B.1).

⁴ The 2017 GHO LAEMP Study Design intended flow measurements to be used to generate stage-discharge relationships and then use discharge to identify gaining and loosing reaches in the side channel. Stage-discharge relationships would have allowed for the continuous water stage record to be converted to continuous discharge, which could be compared between locations. A stage-discharge relationship requires 10-15 measurements; however, this many measurements could not be obtained in 2017 due to high flows in spring and dewatering in the fall. A stage-discharge relationship will be established in the next year of monitoring for the GHO LAEMP.

⁵ Sampling is conducted on a monthly basis (August to March) and/or weekly/monthly basis (March 15 to July 15), as required by Permit 107517 and Permit 6428.

⁶ In addition to site-specific benchmarks, the 2017 GHO LAEMP study design proposed that water quality be compared to predictions; however, side channel water quality predictions do not exist, and therefore this comparison could not be included in the 2017 GHO LAEMP. Water quality was predicted for the Cougar Pit Extension Permit Amendment Application (Teck 2015) for locations on the west side of GHO, but did not include the side channel, as it was determined to have the same water quality as the main stem Elk River at the time of sampling. However, side channel water quality was only evaluated upstream of Thompson Creek, as sampling was conducted under low flow conditions when the side channel downstream of Thompson Creek was dewatered. Teck will work in collaboration with the EMC to determine how water quality predictions can be incorporated into future monitoring.

Document Path: S:\Projects\177202\177202.0024 - Teck 2017 GHO LAEMP Implementation\6 - GIS\Report\17-24 Fig 2.2 Routine WQ Monitoring.mxd

Grab water samples were collected from fourteen isolated pools. Samples were collected monthly following initial identification of isolated pools, until such time the pools became dry or froze to the bottom. Photographs were taken of each pool when samples were collected, and notes on fish presence, pool size, and depth were recorded during ice-free conditions. The location of each pool was marked in UTMs using handheld GPS. Water quality samples were also collected concurrent with benthic invertebrate tissue and community samples in September 2017 (Section 2.7 and 2.9). Water sampling was added to the wetland late in 2017 to support the assessment of water quality in the side channel (key question #2.b). Wetland stations RG_GH-SCW1 and RG_GH-SCW2 (Figure 2.2) were sampled only in September, concurrent with benthic invertebrate tissue and community samples. Wetland station RG_GH-SCW3 (Figure 2.2) was sampled monthly from December to March 2018. RG_GH-SCW1 was located near the side channel inlet of the wetland, RG_GH-SCW2 was located near the Thompson Creek inlet to the wetland, and RG_GH-SCW3 was located near the wetland outlet. RG_GH-SCW3 was sampled with greater frequency instead of RG_GH-SCW2 because it was expected to be an area of greater mixing.

Water samples collected specifically for the GHO LAEMP were collected in clean, pre-labelled containers provided by ALS Environmental Laboratories. Water samples collected in September (concurrent with benthic invertebrate sampling, Section 2.9) to be analyzed for dissolved organic carbon (DOC) and dissolved metals were filtered in the field using a clean syringe affixed with a 0.45 µm membrane. Water samples collected during monthly surveys were filtered in the laboratory. Samples were preserved immediately as required, and once re-capped, bottles were inverted two or three times to mix the preservative with the water sample. Water samples were kept cold and shipped to ALS Environmental Laboratory within 48 hours of collection.

Concurrent with water quality sampling, *in situ* measurements of temperature, dissolved oxygen (DO), pH, and specific conductance were collected using a YSI Pro Plus. The YSI was checked daily and calibrated as needed.

2.3.3 Laboratory Analysis

All water samples were analyzed by ALS Environmental for parameters consistent with Permit 107517 (i.e. conventional parameters, major ions, nutrients, and total and dissolved metals, Table 2.3) using standard methods (Table 2.4). Quality assurance and quality control (QA/QC) associated with water sampling are reported by Teck in the annual reports for Permits 107517 and 6248.

Category Parameters (as per Permit 107517, Appendix 2, Table 25)						
Field Parameters	temperature, specific conductance, dissolved oxygen (DO), pH					
Conventional Parameters	specific conductance, total dissolved solids, total suspended solids, hardness, alkalinity, dissolved organic carbon, total organic carbon, turbidity					
Major Ions	bromide, fluoride, calcium, chloride, magnesium, potassium, sodium, sulphate					
Nutrients	ammonia, nitrate, nitrite, Total Kjeldahl Nitrogen (TKN), orthophosphate, total phosphorus					
Total and Dissolved Metals	aluminum, antimony, arsenic, barium, beryllium, bismuth, boron, cadmium, chromium, cobalt, copper, iron, lead, lithium, manganese, mercury, molybdenum, nickel, selenium, silver, strontium, thallium, tin, titanium, uranium, vanadium, zinc					

Table 2.3: Water Sample Analyses

Table 2.4: Analytical Methods for Water Samples

Analyte	Units	Method	Reference			
Turbidity	NTU	Nephelometric	APHA 2130 Turbidity			
Hardness (as CaCO ₃)	mg/L	Calculation	APHA 2340B			
Total Suspended Solids	mg/L	Gravimetric	APHA 2540 D			
Total Dissolved Solids	mg/L	Gravimetric	APHA 2540 C			
Alkalinity	mg/L	Potentiometric Titration	APHA 2320			
Ammonia (as N)	mg/L	Fluorescence	J. ENVIRON. MONIT., 2005, 7, 37-42, RSC			
Bromide (Br)	mg/L	Ion Chromatography	APHA 4110 B			
Chloride (Cl)	mg/L	Ion Chromatography	APHA 4110 B			
Fluoride (F)	mg/L	Ion Chromatography	APHA 4110 B			
Total Kjeldahl Nitrogen	mg/L	Fluorescence	APHA 4500-NORG D.			
Nitrate (as N)	mg/L	Ion Chromatography	EPA 300.0			
Nitrite (as N)	mg/L	Ion Chromatography	EPA 300.0			
Phosphorus (P)-Total	mg/L	Colourimetrically	APHA 4500-P Phosphorous			
Orthophosphate	mg/L	Colourimetrically	APHA 4500-P Phosphorous (Filter through			
Orthophosphate	mg/L	Colour metrically	0.45 um filter)			
Sulphate (SO ₄)	mg/L	Ion Chromatography	APHA 4110 B			
			APHA 5310 TOTAL ORGANIC CARBON			
Dissolved Organic Carbon	mg/L	Combustion	(TOC)			
			(Filter through 0.45 um membrane filter)			
Total Organic Carbon	mg/L	Combustion	APHA 5310 TOC			
		CRC ICPMS (collision cell				
			APHA 3030 B&E / EPA SW-846 6020A			
		- mass spectrometry)	AFTIA 3030 BAE / EFA 3W-040 0020A			
		- mass spectrometry)	EPA 3005A/6010B			
Total & Dissolved Metals	mg/L	ICPOES (inductively				
		coupled plasma - optical	Dissolved metals filtered through a 0.45 um			
		emission	filter			
		spectrophotometry)				

2.3.4 Data Analysis

2.3.4.1 Screening of Water Quality Parameters

To narrow the scope of the 2017 GHO LAEMP, water quality analyses were conducted on a reduced parameter suite: the Order constituents (i.e., dissolved cadmium, nitrate, total selenium, and sulphate) and total nickel. The Order constituents were included because they are named in the EVWQP. Total nickel was included in the 2017 GHO LAEMP water quality analyses based on the results of 2017 quarterly chronic toxicity sampling conducted by Teck (Golder 2018a) which showed adverse effects in invertebrates at nickel concentrations below the BCWQG. Preliminary screening values (IC₂₅) for nickel toxicity were determined through Toxicity Identification Evaluations (TIEs) completed by Nautilus in 2018; the preliminary nickel IC₂₅ values developed based on the results of the TIEs were 22.4 and 10.8 μ g/L for *Hyalella* and *Ceriodaphnia*, respectively. Ongoing work to evaluate potential nickel toxicity is being completed, including the development of additional screening values based on species sensitivity distribution curves developed by Golder in 2018. As these investigations are refined, the results will be incorporated into future evaluations.

No other parameters were considered noteworthy for 2017, after screening Teck's routine water quality monitoring stations pertinent to the GHO LAEMP (Figure 2.2) against British Columbia Water Quality Guidelines (BCWQG; BCMOE 2018) for the Permit 107517 Annual Water Quality Monitoring Report (Teck 2018). Parameters having concentrations above BCWQG were presented in the Permit 107517 Annual Water Quality Monitoring Report (Teck 2018). In 2017, GH_ER1A exceeded the total iron guideline once and total mercury guideline twice. In 2017, GH_ERSC4 exceeded the total iron guideline once and total mercury guideline once. GH_ERSC2 exceeded the dissolved aluminum guideline three times, and the total mercury guideline six times. Water quality at the main stem Elk River station downstream of the side channel (GH_ERC) did not exceed BCWQG.

2.3.4.2 West-Side Tributaries

Water quality data for monitoring stations located in the west-side tributaries (Figure 2.2) collected from January 2016 to December 2017 were compared to site-specific benchmarks from the EVWQP (Order constituents) and preliminary IC₂₅ values (nickel), as applicable.

2.3.4.3 Side Channel Monitoring Stations (Question #2.b)

Water quality of the Elk River side channel was assessed by analyzing data from Teck's three routine water quality monitoring stations (GH_ERSC4, GH_ER1A, and GH_ERSC2; Figure 2.2). Data from these stations were compared to site-specific benchmarks from the EVWQP (Order

constituents) and preliminary IC_{25} values (nickel), as applicable. Data were plotted to investigate seasonal and spatial patterns among stations.

2.3.4.4 Isolated Pools and Wetland Stations (Question #2.c)

Water quality data from the isolated pools and wetland were plotted to show seasonal and temporal patterns of Order constituents and total nickel. Water quality was compared to the water quality observed at routine monitoring stations in the side channel and west-side tributaries, as well as to site specific benchmarks from the EVWQP.

2.3.4.5 Downstream versus Upstream of the West-Side Tributaries (Question #2.a)

Water quality data for the monitoring station in the main stem Elk River downstream of the west-side tributaries (GH_ERC) was compared to the Elk River station upstream of all mine influence (GH_ER2) to assess the overall influence of GHO on water quality in the upper Elk River (Figure 2.2). Data for Order constituents and total nickel from these stations were compared to site-specific benchmarks from the EVWQP, a preliminary IC₂₅ value (nickel only), and/or permit limits (GH_ERC only), as applicable. Data were plotted to show seasonal and temporal patterns. Concentrations at the downstream station were compared to upstream using the difference in monthly mean concentrations between stations in a one sample t-test (i.e., paired t-test). If assumptions were not met (i.e., normality of the differences) then the Wilcoxon signed rank test (WSRT) was used, which is a non-parametric equivalent to the paired t-test. Potential changes over time at the downstream station compared to upstream were tested using Analysis of Covariance (ANCOVA) on the differences in monthly mean concentrations, with covariate Year and factor *Month*. Lack of interaction would indicate that the slopes for each month were similar, in which case, the slope was tested for year (comparable to the non-parametric seasonal-Kendall test).

2.3.4.6 Main Stem Elk River versus the Side Channel

0

Water quality data for the monitoring stations in the main stem Elk River downstream of the west side tributaries (GH_ERC) and upstream of all mine influence (GH_ER2) were compared to Teck's three routine water quality monitoring stations in the side channel (GH_ERSC4, GH_ER1A, and GH_ERSC2; Figure 2.2).

Statistical analysis of water quality data focused on monthly mean concentrations for Order constituents and total nickel. Statistical comparisons of concentrations between the side channel stations and the upstream (GH_ER2) and downstream (GH_ERC) stations were conducted to assess differences between years (2016 and 2017) and among stations. The statistical comparisons were conducted on the mathematical differences (side channel – downstream, and side channel – upstream) in monthly mean concentrations to remove the influence of season.

The differences in monthly mean concentrations between areas were tested using a two-way Analysis of Variance (ANOVA) with factors Year, Area (the three side channel stations) and the Area x Year interaction. When the assumption of normality (Shapiro-Wilks' test with significance level [α] = 0.05) was not met for the monthly means or after transformation (log₁₀, square-root, fourth-root), a rank-transformation was applied prior to analysis.

The side channel versus upstream, and side channel versus downstream comparisons were conducted by testing whether differences in monthly mean concentrations between stations were different from zero using a one-sample t-test (or WSRT when assumptions of normality were not met) by testing the hypothesis:

H_{01} : $\mu d = 0$

where μ d represents the difference in monthly means between side channel stations and upstream or downstream concentrations. The tests for H₀₁ were conducted by (1) pooling both years of data and stations when the Area x Year interaction (P-value > 0.1) and Area (P-value > 0.1) factors were not significant, (2) pooling both years of data, but separately by side channel when the Area x Year interaction (P-value > 0.1) was not significant, but Area was significant (P-value < 0.1), or (3) separately by station and year when the Area x Year interaction (P-value < 0.1) term was significant.

When the differences in monthly mean concentrations between the side channel and upstream or downstream stations was significant, the magnitude of difference (MOD) was calculated as:

$$MOD = \frac{(MCT_{SC} - MCT_{US})}{MCT_{US}} \times 100\%$$

or

$$MOD = \frac{(MCT_{SC} - MCT_{DS})}{MCT_{DS}} \times 100\%$$

where MCT_{SC} , MCT_{US} and MCT_{DS} are the measure of central tendency for the side channel, downstream, and upstream stations, respectfully (i.e., mean or median depending on whether the statistical comparison was conducted using a parametric (t-test) or non-parametric (WSRT). The statistical analyses were conducted using R statistical software (R Core Team 2015).

2.4 Substrate Quality (Question #3.b)

2.4.1 Overview

Substrate data were collected and analyzed to answer key question #3.b (Section 1.2): "What is the substrate quality?".

2.4.2 Calcite

2.4.2.1 Data Collection

Calcite coverage was assessed at three locations within the side channel (GH_ERSC4, GH_ER1A, and GH_ERSC2) in July and September 2017⁷. Field measurements were consistent with calcite monitoring conducted for the RAEMP (Minnow 2018a), and followed a modified 100-particle pebble count method developed for Teck's Calcite Monitoring Program (Robinson and Atherton 2016, Teck 2016b), and all field technicians received Teck's calcite monitoring consistency training. For this modified approach, calcite was measured only in riffle habitats on undisturbed substrate in the immediate vicinity of where benthic invertebrate community samples were collected (e.g., roughly 10 m distance). One hundred streambed particles were randomly selected over the study area and were measured for calcite presence/absence and concretion. The presence (score = 1) or absence (score = 0) of calcite was recorded for each of the 100 particles. The degree of concretion was also assessed by determining if the particle was removed with negligible resistance (not concreted; score = 0), noticeable resistance but removable (partially concreted; score = 1), or immovable (fully concreted; score = 2).

The results for the 100 particles surveyed for calcite were expressed as a Calcite Index (CI) based on the following equation:

$$CI = CI_p + CI_c$$

Where:

CI = Calcite Index

$CI_p = Calcite \ Presence \ Score =$	Number of particles with calcite
	Number of particles counted
$CI_c = Calcite Concretion Score$	_ Sum of particle concretion scores
	Number of particles counted

Calcite was not observed during the study period (Section 5.2), therefore no additional analyses were conducted.

2.4.3 Sediment Quality

2.4.3.1 Sample Collection

Sediment quality samples were collected concurrent with, and at the same locations as, benthic invertebrate samples (Sections 2.7 and 2.9; Figure 2.1). Sediment samples were collected using a stainless steel spoon and were transferred into glass jars for analysis of polycyclic aromatic

⁷ The GHO LAEMP Study Design 2017 planned for measuring calcite in spring, summer, and fall. However, no calcite surveys were completed in the spring (May and June) due to deep, turbid waters in the Elk River side channel.

hydrocarbons (PAHs), and into polyethylene bags for all other analyses (see Section 2.4.3.2). Samplers took care to only remove the top 1 to 2 cm of sediment, and continued to collect sediment until sufficient sample volume was retrieved. For QA/QC purposes, duplicate (split) samples were collected at a frequency of approximately 10% of the total number of samples to assess field precision (i.e., two sets of field duplicate samples). Following collection, samples were placed in a refrigerator at approximately 4°C until submission to the analytical laboratory.

2.4.3.2 Laboratory Analysis

Samples for chemical analysis were sent to ALS Environmental (Calgary, AB). The laboratory was instructed to thoroughly homogenize each sediment sample (according to standard laboratory protocols), to ensure the aliquots taken for analysis were representative and comparable.

Sediment samples were analyzed for metals, mercury, total organic carbon (TOC), polycyclic aromatic hydrocarbons (PAHs), particle size distribution, and moisture content using standard methods (Table 2.5).

Analyte	Units	Method	Reference
Metals	mg/kg	Collision Reaction Cell Inductively Coupled Plasma-Mass Spectrophotometry (CRC ICP-MS)	EPA 200.2/6020A
Mercury	mg/kg	Cold Vapor-Atomic Absorption (CVAAS)	EPA 200.2/1631E (mod)
Total Organic Carbon (TOC)	%	TOC is calculated by the difference between total carbon (TC) and total inorganic carbon (TIC)	CSSS (2008) 21.2
Polycyclic Aromatic Hydrocarbons (PAHs)	mg/kg %	Rotary extraction using hexane/acetone followed by capillary column gas chromatography with mass spectrometric detection (GC/MS)	EPA 3570/8270
Particle Size Distribution	%	Dry sieving (coarse particles), wet sieving (sand), and the pipette sedimentation method (fine particles)	SSIR-51 METHOD 3.2.1
Moisture Content	%	Determined gravimetrically by drying the sample at 105 °C	CWS for PHC in Soil - Tier 1

Table 2.5: Analytical Methods for Sediment Samples

2.4.3.3 Data Analysis

QA/QC for sediment samples included the collection of two field duplicates, and assessment of laboratory duplicates, spike recoveries, and certified reference materials. Based on the results provided for QA/QC samples, the sediment data collected for the GHO LAEMP were judged to be of acceptable quality (Appendix C). The sediment quality data were evaluated relative to applicable BC sediment quality guidelines (SQG) and, where applicable, the reference area normal range⁸.

2.5 Monthly Aquatic Habitat Surveys (Question #3.a)

2.5.1 Overview

Habitat data were collected to help address key question #3.a (Section 1.2):

What are the effects of GHO discharges from the west-side tributaries on biota (i.e., fish, amphibians, aquatic-feeding birds) in the Elk River and the Elk River side channel?

a. How does the distribution of biota change seasonally? Which isolated pools contain biota?

These data provide information about seasonal habitat availability for different biota, which gives context for understanding the relative risk of potential exposure pathways.

2.5.2 Reach Identification

For the purposes of the habitat assessment, a stream reach was defined as a relatively homogenous length of stream based on uniform discharge, morphology, and riparian habitat (Johnston and Slaney 1996). Reach identification was conducted in the side channel following Reconnaissance Inventory Standards (RISC 2001) in late July 2017 (post-freshet). Identified Reaches were subsequently used as spatial units to describe biota use and habitat suitability within the side channel.

2.5.3 Level 1 Fish Habitat Assessment Procedure (FHAP)

2.5.3.1 Field Data Collection

-

-C -

Habitat was assessed throughout the side channel using the Fish Habitat Assessment Procedures (FHAP; Johnston and Slaney 1996). The FHAP survey was completed from July 26 to 27, 2017, and began with a delineation survey over each reach of the side channel to determine individual habitat units. The side channel had some highly braided sections; therefore, the

⁸ The reference area normal range for sediment is defined as the 2.5th and 97.5th percentiles of 2013 and 2015 reference area data reported in the RAEMP for lentic stations (Minnow 2018a).

delineation survey only covered the side channel sections where the majority of the flow occurred. The survey used a systematic stratified subsampling system to sample every 4th habitat unit of each habitat type (e.g., pool, riffle, glide, and cascade), or 25% of each habitat type. The starting habitat unit was randomly selected for each type and was between the 1st and 4th unit identified. After that, every 4th unit of each type was sampled. Each subsampled habitat unit was marked using a GPS, photographed, and marked in the field with labelled flagging tape to facilitate accurate location identification should subsequent surveys be required. The Level 1-FHAP was completed on the full lengths of both the east and west channels of Reach 1, Reach 2, and Reach 3. Braided sections, primarily in Reach 1, were noted and photographed during monthly surveys (Section 2.5.4). Delineation of habitat type and length provides an absolute estimate of linear proportions of each habitat type. Measurements taken at a habitat unit scale were as follows:

- channel (bankfull) width and depth,
- wetted width and depth,
- residual pool depth,
- qualitative substrate size (Table 2.6),
- spawning habitat potential,
- instream large woody debris (LWD),
- cover elements (Table 2.7), and
- disturbance indicators.

Table 2.6: Stream Substrate Size Classification Based on Johnston and Slaney (1996)

Substrate Type	Substrate Size (mm)
Fines ¹	<2
Gravels	2 - 64
Cobbles	64 - 256
Boulders	256 - 4,000
Bedrock	>4,000

¹ Includes sand, silt and organics.

Table 2.7:Percent and Rating of Total Available Fish Cover Presented in Johnston and
Slaney (1996)

Cover %	Rating	
<2	Trace	
2 - 10	Poor	
10 - 20	Fair	
>20	Good	

Potential spawning habitat was noted during the FHAP survey based on: cover availability, proximity to holding water, adequate flows, and suitable gravel size. Adequate flows were based on depth-velocity ranges reported in McKay and Robinson (2014), and Schmetterling (2000). McKay and Robinson (2014) reported that the average water depth selected by spawning Westslope Cutthroat Trout for redd site location was 0.24 m \pm 0.08 and average water velocity was 0.41 m/s \pm 0.2 m/s. Similarly, Schmetterling (2000) reported suitable Westslope Cutthroat Trout spawning habitat to have depths ranging from 4.2 to 22.9 cm and velocities ranging from 0.25 to 0.78 m/s. Following the definitions within standard FHAP, suitable salmonid spawning habitat is water depths >0.15 m, water velocity 0.3-1.0 m/s, and spawning gravel for resident salmonids is considered to be 10 to 75 mm in size (Johnston and Slaney 1996).

2.5.3.2 Data Analysis and Interpretation

Data collected during the FHAP survey were first used to describe the types of habitat present (i.e., habitat unit types pool, riffle, glide, cascade) and the spatial distribution of each habitat unit. Habitat proportions were reported as percentages by linear extent. Data were also used to calculate seven channel morphology metrics, which were used to describe habitat quality (Johnston and Slaney 1996):

- bankfull width-to-depth ratio,
- sinuosity,
- channel complexity,
- percent pool (by area),
- pool frequency (mean pool spacing),
- holding pools (adult migration), and
- LWD pieces per channel.

Bankfull width-to-depth ratio and sinuosity help describe channel morphology and can support suspicions of habitat degradation, but do not have ranking in Johnston and Slaney (1996), as do the other five metrics.

2.5.4 Monthly Habitat Assessment

Habitat was assessed as a component of monthly surveys. A crew walked the entire channel from the downstream outlet to the Elk River to the inlet near Leask Creek and documented general habitat conditions (e.g., presence of vegetation, bank condition, substrate type), including morphology/hydrology, as well as any updates of information gathered in the FHAP survey (Section 2.5.3). Channel morphology was described and photographed. Potential fish spawning

and overwintering habitat were documented, as well as habitat suitable for other aquatic and aquatic-dependent vertebrates (amphibians and birds).

2.5.5 Overwintering Habitat

Monthly surveys (Sections 2.2.2 and 2.5.4) focused on evaluating overwintering habitat potential in months after freeze-up. The study did not attempt to confirm overwintering by fish capture and observation, but rather by presence of unfrozen, oxygenated pools during ice-over months. Observations of potential overwintering habitat were made during monthly habitat overview surveys (Section 2.5.4). Isolated pools being monitored for water quality (Section 2.3.2) were augured once to determine snow depth, ice thickness, airspace (distance between bottom of ice and water or substrate surface), and water depth (where water existed). *In situ* water quality data was collected using an YSI Pro Plus multi-probe water quality meter to obtain temperature, DO, pH, and specific conductance. The DO values were compared to the BC Water Quality Guidelines (BCMOE 2018a), which states that a DO value of less than 5 mg/L is an acutely toxic level and can only sustain embryo/alevin life for a minimum of 24 hours. Yau and Taylor (2014) reported that juvenile westslope cutthroat trout acclimatized to 15°C had a critical thermal minimum of 1°C (±0.8). Therefore, 1°C was set as the lower threshold of a "good" thermal habitat range.

2.6 Aquatic Vertebrate Inventories (Question #3.a)

2.6.1 Overview

Aquatic vertebrate inventories addressed key question #3.a (Section 1.2):

What are the effects of GHO discharges from the west-side tributaries on biota (i.e., fish, amphibians, aquatic-feeding birds) in the Elk River and the Elk River side channel?

a. How does the distribution of biota change seasonally? Which isolated pools contain biota?

The seasonal use of the side channel and adjacent floodplain complex by aquatic and aquatic-dependent vertebrates were evaluated during the monthly visits (Sections 2.2.2 and 2.5.4) in which observations of fish, amphibians, and piscivorous birds were documented. Detailed site-specific inventories were also completed, including fish inventories, fish density sampling, and fish spawning surveys.

2.6.2 Amphibian Inventory (Presence/Absence)

Common amphibian species that may use the Elk River side channel are presented in Table 2.8. Amphibian presence/absence was assessed through auditory surveys, visual inspection of the understory for amphibians, and visual inspections along the shore of the wetland for eggs and tadpoles when flows and visibility permitted during the monthly surveys. Amphibian surveys were conducted from May 2017 to the start of winter conditions (November). When amphibians were observed, their life stage and location were recorded, they were identified to species, and a photo was taken (when possible). The locations of observed amphibians were mapped.

Table 2.8:Amphibian Species Potentially Found near the Elk River (Golder 2014;Minnow 2003, 2014; BCMOE 2018a,d,e; Isaac 2018a,b, pers. comm.)

Species Name	Scientific Name	
Columbia spotted frog	Rana luteiventris	
long-toed salamander	Ambystoma macrodactylum	
Pacific chorus frog	Pseudacris regilla	
western toad	Bufo boreas	
wood frog	Lithobates sylvaticus	

2.6.3 Bird Surveys

Common piscivorous bird species or families that may use the Elk River or Elk River side channel are presented in Table 2.9 (BCMOE 2018f). During monthly surveys of the side channel, all visual and auditory detections of aquatic-dependent birds (including nests, eggs, chicks, adults) were documented. Bird surveys were conducted from May 2017 to the start of winter conditions and ice coverage (November). When birds were observed their location were recorded and they were identified to species.

Table 2.9:Piscivorous Bird Species Potentially Found near the Elk River (BCMOE2018f)

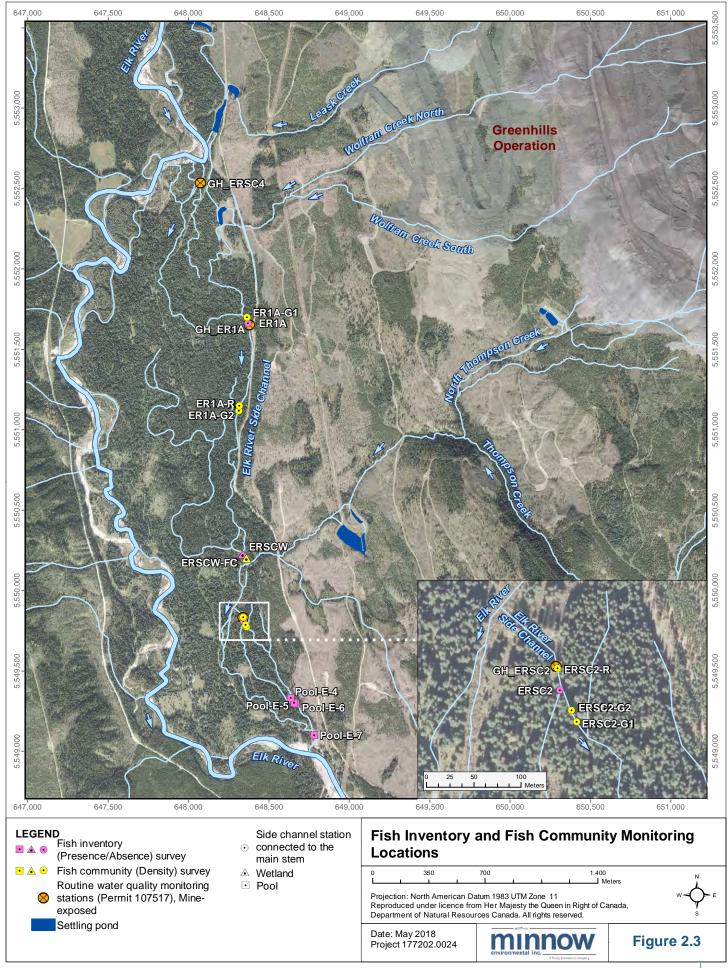
Species Name	Scientific Name/Family	
American dipper	Cinclus mexicanus	
bald eagle	Haliaeetus leucocephalus	
common merganser	Mergus merganser	
common loon	Gavia immer	
cormorant sp.	Phalacrocoracidae	
great blue heron	Ardea herodias	
grebe sp.	Podicipediformes	
kingfisher	Megaceryle alcyon	
osprey	Pandion haliaetus	

2.6.4 Fish Inventory (Presence/Absence)

Common fish species that are likely to be found in the Elk River (and possibly the Elk River side channel) according to the Provincial database are listed in Table 2.10 (BCMOE 2018b).

0

Species Name	Scientific Name	Species Code
westslope cutthroat trout	Oncorhynchus clarkii lewisi	WCT
bull trout	Salvelinus confluentus	BT
eastern brook trout	Salvelinus fontinalis	EB
mountain whitefish	Prosopium williamsoni	MW
rainbow trout	Oncorhynchus mykiss	RB
longnose dace	Rhinichthys cataractae	LNC
longnose sucker	Catostomus catostomus	LSU
redside shiner	Richardsonius balteatus	RSC


Table 2.10: Fish Species Potentially Found in the Study Area (BC MOE 2018b)

Fish inventory assessments were completed in each reach of the side channel following RISC (2001). Sampling occurred in areas near GH_ERSC2, the side channel wetland, and GH_ER1A (Figure 2.3) in June, July, September, and October 2017. Fish inventory sampling was also conducted on four isolated pools in Reach 1 in September 2017. Fish presence/absence was also visually assessed during all of the ice-free monthly surveys. Inventory surveys had two objectives; 1) to assess fish presence, and if found, to describe the general fish community structure, and 2) to obtain and document general habitat information.

A two-person backpack electrofishing crew completed the fish inventory assessment sampling for lotic sites. Electrofishing was completed as a single, open pass over a site length of 100 m or 10-times the bankfull width (whichever was greater). Two to five baited minnow traps were also set and left overnight at each electrofishing location. For the lentic site in the wetland, only baited minnow traps were set as water depths were too deep to allow for electrofishing. Fish captured were identified to species, measured for fork length (nearest millimetre), weighed (nearest 0.1 g for fish less than 100 mm and nearest 1 g for fish greater than 100 mm), and photographed. Fishing effort and habitat data were collected on the Reconnaissance 1:20,000 fish and site cards, respectively.

Fish inventory assessments were used to document temporal variation of fish distribution, community composition, and habitat characteristics within the side channel. Catch-per-unit-effort (CPUE) was calculated for each sampling event as an index of fish use. Fish presence was described by species and life-stage. Fry, or young-of-the-year (YOY), are fish in their first year (0+) (McPhail 2007), juvenile is commonly used to describe fish from one year of age to the age of maturity, and adult refers to fish that have reached maturity.

Westslope cutthroat trout life stages of fry, juvenile, and adult were assigned based on the length frequency analysis results provided in Robinson (2014) (Table 2.11). Age of maturation for

Table 2.11:	Westslope Cutthroat Trout Average Fork Length at Age Capture (Robinson
2014)	

Stage	Age-class	Fork Length Range (mm)
fry	0+	29 – 67
iuvenile	1+	68 – 130
juvenile	2+	131 – 170
mature (sub-adult and adult)	3+ and greater	>171

westslope cutthroat trout can vary during years 2-5 by individual, and by gender (Downs et al. 1997). However, this study considered adults to begin at 3+ years of age based on observed similarities in habitat preference of fish 3+ or older, regardless of state of maturation.

Bull trout life stages of fry, juvenile, and adult were assigned based on the length-frequency reported for Line Creek in Smithson and Robinson (2017) (Table 2.12). Line Creek is located approximately 22 km south of the side channel and serves as a spawning stream for this species.

Table 2.12:Bull Trout Fork Length Categories by Life Stage (Smithson and
Robinson 2017)

Stage	Age-class	Fork Length Range (mm)
fry	0+	53 – 71
innepile	1+	128 – 136
juvenile	2+	228
sub-adult / adult	>2+	>228

Regional size-at-age data are not known for brook trout. Brook trout life stages of fry, juvenile, and adult were assigned based on the length-frequency reported for the mid elevation stream in Kennedy et al. (2003) (Table 2.13). The mid elevation stream in Kennedy et al. (2003) had an elevation of 2,683 m, which is higher than the side channel (1,319 m); however, the annual mean

Table 2.13: Brook Trout Fork Length Categories by Life Stage for Mid-evaluation Streams (Kennedy et al. 2003)

Stage	Age-class	Fork Length Range (mm)
fry	0+	60 – 75
juvenile	1+	99 – 134
mature (sub adult and adult)	2+	>138

daily water temperatures were similar between the two studies, so the life stages determined in Kennedy et al. (2003) were considered appropriate for the side channel brook trout.

2.6.5 Fish Community (Density)

Fish community (density) assessments were completed from August 14 to 17, 2017 at one area per reach. These areas corresponded with the three fish inventory areas (Section 2.6.4, Figure 2.3). Three individual habitat units (e.g., cascade, glide, pool, or riffle) were identified and sampled at each lotic area (i.e., Reaches 1 and 3). Attempts were made to select habitat units that covered an area of approximately 100 m², however, the small size of the side channel limited what was available. Sampling in Reach 2 (lentic habitat) involved blocking off a portion of the available habitat using stop nets.

For lotic sites, fish community (density) assessments were completed using three-pass, depletion removal electrofishing over closed site conditions. Fish density and corresponding fish habitat data were collected at a habitat unit scale. A three-person crew, with one electrofisher, one netter, and one onshore observer, completed fish density assessments. The onshore observer noted the locations where fish were captured within the stream (e.g., stream margins, middle, third) and recorded species and size-class on a sketch. Observations of species, fork length (mm), and weight (g) were made for all fish captured. Any external deformities, erosions (fin and gill), lesions, or tumors observed during processing (i.e., DELT survey; Sanders et al. 1999) were recorded. Photographs of representative fish were also taken, and any mortalities were retained for aging via otoliths.

Fish density estimates in the lentic habitat of Reach 2 required different sampling techniques, as this habitat and fine sediment precluded effective wading or electrofishing without stirring up sediment resulting in reduced visibility. Therefore, a mark-recapture location was set up using methods described by Robinson and Arnett (2014) involving two capture events that spanned 48 hours. Fish were captured using minnow traps and marked with a fin clip during the initial 24 hour sampling event. A second sampling event occurred over the next 24 hours to capture both marked and unmarked fish. With the exception of marking, fish were processed as described above for fish community assessments.

Detailed habitat information was collected for each site using the BC Level 1 FHAP form (Johnson and Slaney 1996; Section 2.5.3). Streambed substrate was described by visual estimates of percent fines, gravel, cobble, boulder, and bedrock, and an estimate of average embeddedness. In lotic areas, depth-velocity profiles were conducted using a Hach FH950 flow meter to measure the depth and velocity at the horizontal mid-point of 10 to 20 evenly spaced intervals across the stream channel. Velocity measurements were collected at 60% of total water column depth measured.

2.6.6 Fish Spawning Surveys

Monthly surveys of spawning habitat were conducted during spring (May/June) and fall (September/October) when spawning fish species are potentially using the side channel. Typical spring spawning fish include westslope cutthroat trout and longnose sucker, while eastern brook trout, bull trout, and mountain whitefish are all fall spawning species. All redds, spawning fish, and other notable features were photographed and described, with coordinates recorded with a hand-held GPS. Redd locations were also described by habitat type, water depth, velocity, and association with cover.

2.7 Benthic Invertebrate Tissue Selenium (Question #3.c)

2.7.1 Overview

Benthic invertebrate tissue was collected to address key question #3.c (Section 1.2): "What are the fish and benthic invertebrate tissue selenium concentrations?".

2.7.2 Sample Collection

Benthic invertebrate tissue samples were collected in September 2017 from three areas in the side channel that were connected to the main stem Elk River (GH_ERSC4, GH_ER1A, RG_ERSC5⁹), the main stem Elk River stations (GH_ERC and GH_ER2), the side channel wetland (RG_GH-SCW1 and RG_GH-SCW2), and five isolated pools (Pool-W-1, Pool-W-2, Pool-E-2, Pool-E-6, and Pool-E-7; Figure 2.1).

Benthic invertebrates were sampled for tissue selenium analysis using the kick and sweep method. Two types of benthic invertebrate samples were collected composite-taxa samples and representative-taxa samples (Ephemeroptera, Perlidae, and Rhyacophila, determined based on availability in the field). Composite-taxa and Perlidae samples were collected in triplicate. Representative-taxa samples were not collected for most wetland and pool stations, as densities of these taxa were low. Benthic invertebrates were picked free of debris in the field, placed into a sterile labelled cryovial, and stored in a cooler with ice packs until transferred to a freezer later in the day.

2.7.3 Laboratory Analysis

00

The benthic invertebrate tissue samples were kept in a freezer until they were shipped in coolers to SRC Environmental Analytical Laboratories (SRC) in Saskatoon, SK. At the laboratory, the samples were freeze-dried and then analyzed for selenium using Inductively Coupled Plasma-

⁹ The study design proposed benthic invertebrate tissue selenium sampling locations at GH_ERSC4, GH_ER1A, and GH_ERSC2; however, GH_ERSC2 was dry at the time of sampling, and therefore a new station, GH_ERSC5, was sampled.

Mass Spectrophotometry (ICP-MS). Results were reported on a dry weight (dw) basis, along with moisture content (based on the difference between wet and freeze-dried sample weights).

2.7.4 Data Analysis

Quality Assurance/Quality Control (QA/QC) for benthic invertebrate tissue samples included the assessment of quality control reference materials. Based on the results provided for QA/QC samples, the benthic invertebrate tissue data collected for the GHO LAEMP were judged to be of acceptable quality (Appendix E).

Tissue selenium concentrations were compared to EVWQP Level 1 and Level 2 benchmarks as well as normal ranges¹⁰ for tissue selenium concentrations defined in the RAEMP. Tissue selenium concentrations were also plotted and spatially compared within and among areas. Additionally, tissue selenium concentrations were compared to the EVWQP selenium bioaccumulation model (Golder 2018b)¹¹.

2.8 Fish Tissue Selenium (Question #3.c)

2.8.1 Overview

Fish tissue was collected to address key question #3.c (Section 1.2): "What are the fish and benthic invertebrate tissue selenium concentrations?".

2.8.2 Sample Collection

0

-C -

Non-lethal sampling of muscle plugs from adult non-forage species was planned for fish captured during fish inventory and fish community sampling (Section 2.6.4 and 2.6.5, Minnow 2017). However, only one bull trout of sufficient size was captured (Figure 2.1). After capture, the fish was anaesthetized using a solution of clove oil dissolved in ethanol mixed in ambient water. Body weight was measured using a digital scale. Total and fork length were measured with a measuring board equipped with a metre stick (± 1 mm). External fish condition, including a DELT survey, were documented. A biopsy punch (4 mm acu-punch) was used to collect the tissue sample. Skin was removed from the sample with a scalpel and the remaining muscle sample was placed into a sterile microcentrifuge tube. Once the fish recovered from the anesthetic in a recovery bin, it was released back into the water body. The muscle biopsy sample was stored on ice until transferred to a freezer later in the day.

¹⁰ The reference area normal range for composite benthic invertebrate tissues samples is defined as the 2.5th and 97.5th percentiles of the distribution of reference area (pooled 1996 to 2015 data) reported in the RAEMP (Minnow 2018a).

¹¹ Due to a reporting error, the equation used herein for the one-step water-to-invertebrate selenium bioaccumulation model differs from that reported by Golder (2018b). This error will be resolved in an updated version of the Golder 2018 report. The equation used for calculation in the present report is consistent with that reported in Teck (2014a).

2.8.3 Laboratory Analysis

The muscle tissue sample was kept in a freezer until they were shipped in coolers to SRC Environmental Analytical Laboratories (SRC) in Saskatoon, SK. At the laboratory, the sample was freeze-dried and then analyzed for selenium using ICP-MS. Results were reported on a dw basis.

2.8.4 Data Analysis

QA/QC for the fish tissue sample included the assessment of quality control reference materials. Based on the results provided for QA/QC samples, the fish tissue data collected for the GHO LAEMP were judged to be of acceptable quality (Appendix E).

The selenium concentration was compared to the benchmarks for effects to aquatic biota developed as part of the EVWQP (Teck 2014a). No effects would be expected at areas where individual tissue selenium concentrations are less than the effect benchmark, whereas effects could potentially occur in areas where concentrations are greater than the effect benchmark.

2.9 Benthic Invertebrate Community and Biomass (Question #3.d)

2.9.1 Overview

Benthic invertebrate community and biomass data were collected to address key question #3.d: "What are benthic invertebrate community compositions and biomass along the side channel? How do benthic invertebrate community compositions compare between perennially wetted and seasonally isolated wet areas?".

2.9.2 Sample Collection

-

Benthic invertebrate community and biomass samples were collected in September from three areas in the side channel that had flowing water (GH_ERSC4, GH_ER1A, RG_ERSC5¹²; Figure 2.1). Samples were also collected from two stations in the main stem Elk River: downstream of the west-side tributaries (GH_ERC) and upstream of all mine influence (GH_ER2; Figure 2.1). Community structure was sampled using the CABIN kick and sweep method (n = 1 per area, except for RG_ERSC5, where triplicate sampling was conducted), and biomass was sampled using a Hess (n=5 per area).

Kick and sweep benthic invertebrate community samples were collected using the Canadian Aquatic Biomonitoring Network (CABIN) protocol (Environment Canada 2012a, 2014). For the

¹² The study design proposed benthic invertebrate community and biomass sampling locations at GH_ERSC4, GH_ER1A, and GH_ERSC2; however, GH_ERSC2 was dry at the time of sampling, and therefore a new station, GH_ERSC5, was sampled.

CABIN protocol, the field technician conducted a 3-minute travelling kick into a net with a triangular aperture measuring 36 cm per side and mesh having 400 µm openings (Environment Canada 2012a). During sampling, the technician moved across the stream channel (from bank to bank, depending on stream depth and width) in an upstream direction. With the net being held immediately downstream of the technician's feet, the detritus and invertebrates disturbed from the substrate were passively collected in the kick-net by the stream current. After three minutes of sampling time, the sampler returned to the stream bank with the sample.

Each Hess sample was collected by carefully inserting the base of the 500-µm mesh Hess sampler into the substrate to a depth of approximately 5 to 10 cm, after which gravel and cobble contained within the sampler were carefully scrubbed to dislodge organisms while allowing the current to carry the organisms into the mesh collection net.

All organisms collected into the kick net or Hess sampler were carefully rinsed into a labelled wide-mouth plastic jar. Internal labels were used to ensure the correct identity of each sample. Samples were preserved to a level of 10% buffered formalin in ambient water within approximately six hours of collection to ensure that organisms were not lost through predation or decomposition of tissues.

Supporting information was collected concurrent with, and at the same locations as, benthic invertebrate community and biomass sampling, including habitat characteristics, calcite index (Section 2.4.2), sediment sampling (Section 2.4.3), and water sampling (Section 2.3).

2.9.3 Laboratory Analysis

0

€.

Biomass samples were shipped to ZEAS Inc. (Nobleton, ON). At the laboratory, all preserved organisms in each sample were sorted from the sample debris into groups separated at the family-level of taxonomy for weighing. Each family group of organisms was gently placed onto a fine cloth or paper towel to drain excess surface moisture (preservative) before being weighed to the nearest 0.1 g. Total and family-level biomass, as well as the density of each family of organisms were reported for each sample.

Kick and sweep samples were shipped to Cordillera Consulting Inc. (Summerland, BC) for sorting and taxonomic identification. Organisms were identified to the lowest practical level (LPL) (typically genus or species) using up-to-date taxonomic keys. Following identification, representative specimens of each taxon were placed in separate vials to create a reference collection for the project. At the beginning of the sorting process, each sample was examined and evaluated for an estimation of total invertebrate numbers. If the total number was estimated to be greater than 600, then the sub-sampling protocol was followed. In cases where samples could be analyzed in their entirety, CABIN (Environment Canada 2014) requires that a sufficient number of sub samples be analyzed to result in the sorting of at least 300 organisms (Environment Canada 2012b). Federal monitoring programs conducted under the *Fisheries Act* also require that sorting efficiency and sub-sampling accuracy and precision be quantified (Environment Canada 2014). Although this study was not being conducted under *Fisheries Act* requirements, the laboratory completed the associated QA/QC procedures. Benthic invertebrate community and biomass samples met required laboratory QA/QC for sorting efficiency and sub-sampling error (Appendix F).

2.9.4 Data Analysis

For Hess samples, total biomass, density, and relative abundance of major taxonomic groups were determined and compared within and among areas. For kick and sweep samples, total abundance, richness (LPL), Ephemeroptera Plecoptera Trichoptera (EPT) proportion (% EPT), % Ephemeroptera, and relative abundance of major taxonomic groups were determined and compared within and among areas. Kick and sweep endpoints were compared to normal ranges¹³ defined in the RAEMP based on samples collected from reference areas in 2012 and 2015 (Minnow 2018a). Benthic invertebrate community compositions were compared between perennially wetted and seasonally isolated wet areas.

€.

¹³ The reference area normal range was defined as the 2.5th and 97.5th percentiles of the distribution of reference area (pooled 2012 and 2015 data) reported in the RAEMP (Minnow 2018a).

3 HYDROLOGY

3.1 Overview

Data evaluated in this section pertain to key question #1 (Section 1.2):

What are the seasonal and spatial patterns of flow in the Elk River side channel? During what months, and where, does the side channel have flow?

- a. What percentage of channel length is wet each month? (Map wet/dry locations.)
- b. Is there a relationship between % wet channel length (or the onset of portions going to ground) versus flows in the main stem Elk River and/or tributary inputs?

Hydrology data included water levels in the side channel and main stem Elk River, flow in the side channel, and side channel hydrology features (dry sections, braids, isolated pools, and tributary surface connectivity).

Over the year the Elk River side channel displayed flooding of the floodplain complex during freshet, then receded throughout the summer, and was confined to the channel during summer and fall. The most downstream section of the side channel (Reach 1) had three larger channels with minor braiding, the middle section (Reach 2) was a wetland from summer to winter, and the most upstream section (Reach 3) was confined to a single channel at the upstream end of the side channel. From April to May 2017 the whole side channel complex was flooded. In early September all of Reach 1 was dewatered. In October, Reach 3 was dewatering and the wetland was isolated. Throughout the winter, Reach 1 had periodic pooling of water but no flow. The wetland remained wetted all year, and Reach 3 remained dewatered for most of the winter.

3.2 Monthly Hydrology Survey

3.2.1 Percentage wetted channel

-

- -

Monthly surveys of the side channel were used to document wetted areas, dry areas, and isolated pools, and provide monthly estimates of wetted lengths. Based on FHAP delineation data, the length of available habitat in Reach 1 was 2,540 m. This was the total of the east (1,354.5 m) and west (1,185.9 m) channels. Isolated pool locations and lengths were documented during monthly surveys to provide an estimate of wetted lengths. From May to August Reach 1 was 100% wetted. Dewatering began in September. In September, only 3.1% (or 80 m) was wetted, and from October 2017 to March 2018, less than 0.6% of Reach 1 was wetted (Table 3.1, Appendix Figures A.1 to A.8).

Reach 2 remained wetted throughout the year. Due to the deep depths of the wetland and large irregular shape, it was not possible to obtain an accurate area. In September, the outflow of the

Year	Month	Total Reach Length	Total Wetted Length	Total Dry Length	Total Wetted Percent	Total Dry Percent
		(m)	(m)	(m)	(%)	(%)
	May	2,540	2,540	0	100	0
	June	2,540	2,540	0	100	0
	July	2,540	2,540	0	100	0
2017	August	2,540	2,540	0	100	0
2017	September	2,540	80	2,460	3.1	96.9
	October	2,540	3	2,537	<0.1	99.9
	November	2,540	3	2,537	<0.1	99.9
	December	2,540	14	2,526	0.6	99.4
2018	January	2,540	15	2,525	0.6	99.4
	February	2,540	3	2,537	<0.1	99.9
	March	2,540	3	2,537	<0.1	99.9

Table 3.1:	Monthly Wetted Channel Length Percentage for Reach 1
------------	--

wetland was dry, with inflow remaining from the side channel and Thompson Creek. In October, the inflow to the wetland from the side channel was dry but continued from Thompson Creek Thompson Creek flowed into the wetland year round as identified in Photo 3.1. In July, there were two wetted channels located on the west side of the wetland. There were standing water areas with no flow (i.e. backwatered areas). The downstream area was approximately 180 m in length and the upstream channel was approximately 380 m, in July. Both areas were reported dry in October.

Photo 3.1: Downstream View of Thompson Creek Water Entering the Wetland in January 2018

Reach 3 was measured in the field to be 3,395.5 m long. Reach 3 was 100% wetted from May to September. Dewatering was first observed in October 2017. The wetted percent decreased in October to 79.9% (or 2,713.5 m), to 16.5% in November, and increased slightly again in December to 27.4%. The increase in wetted percentage from November to December was caused by an increase in daily air temperatures. From January to March, the wetted percent by length was 0% (Table 3.2; Appendix Figures A.1 to A.8).

Year	Month	Total Reach Length (m)	Total Wetted Length (m)	Total Dry Length (m)	Total Wetted Percent (%)	Total Dry Percent (%)
	May	3,396	3,396	0	100	0
	June	3,396	3,396	0	100	0
	July	3,396	3,396	0	100	0
2017	August	3,396	3,396	0	100	0
2017	September	3,396	3,396	0	100	0
	October	3,396	2,714	682	79.9	20.1
	November	3,396	560	2,836	16.5	83.5
	December	3,396	932	2,464	27.4	72.6
2018	January	3,396	0	3,396	0	100
	February	3,396	0	3,396	0	100
	March	3,396	0	3,396	0	100

Table 3.2:	Monthly Wetted Channel Length Percentage for Reach 3
------------	--

3.2.2 Tributary Connectivity

Leask Creek and Wolfram Creek were not observed to connect to the side channel via surface flow at any time in 2017 (Appendix Figures A.1 to A.8). There was no overflow channel from the Leask Creek sedimentation pond; however, a slightly more defined channel near the outlet of the Wolfram Creek sediment ponds was observed, which can provide an overland connection to the side channel during extreme flows. A potential flow path would guide flow from Wolfram Creek to a backchannel near GH_ER1A, but was dry from May 2017 to March 2018 (Photo 3.2 and Photo 3.3).

3.3 Hydrometric and Water Temperature Monitoring

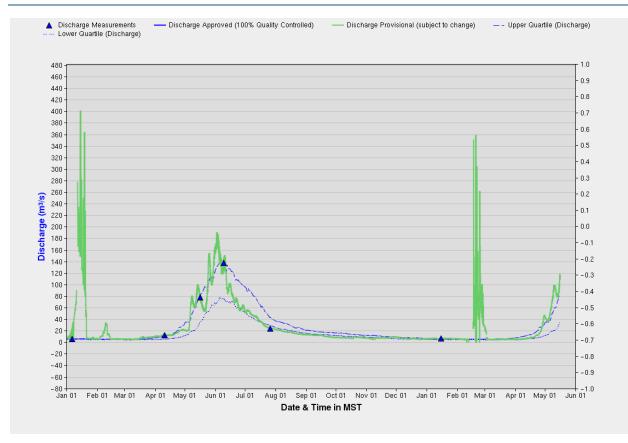

Water stage plots were generated for all five loggers over the period of record (June 2017 to April 2018; Appendix Figures A.9 to A.14). The plots for stations installed in May indicate that the period of record began just as flows peaked, with the June installed sites showing a consistent descending limb following peak discharge for 2017. The Elk River near Natal station recorded peak daily flow on June 2, 2017 at that location (Figure 3.1), which is comparable to data records from the side channel (e.g., ERSCDS water level peaked June 1-2, 2017).

Photo 3.2: Backchannel (Red Circle) May Connect to Wolfram Creek during High Flows, July 2017

Photo 3.3: Backchannel (Red Circle) was Dry in 2017, but May Connect to Wolfram Creek during High Flows, September 2017

Figure 3.1: Hydrograph for January 2017 to May 2018 from the Water Survey of Canada Elk River near Natal (08NK016)

Water stage plots showed highly similar temporal patterns both within the side channel and comparatively between the Elk River and side channel. Linear regression results showed high correlation between all sites with R^2 values ranging from 0.93 – 0.99 (Figure 3.2). This suggests the flows in the side channel are likely largely controlled by the Elk River and its aquifer.

As discussed in Section 3.2.1, Reach 1 began to dewater between the August and September 2017 monthly surveys, and was essentially fully dewatered when visited in September 2017. The water stage records show more accurately that Reach 1 likely dewatered on August 21, 2017 (Figure 3.3). Reach 3 was first observed to begin dewatering in October in the downstream end near the Reach 2 wetland. It was reported as fully dewatered during the January 2018 survey. The site was reported to have anchor ice forming and water flowing on and in between ice layers for a period preceding January 2018, making for a noisy water stage record. Through a combination of the water stage and temperature logger, it is estimated that Reach 3 dewatered on approximately December 9, 2017 (Figure 3.4 and 3.5).

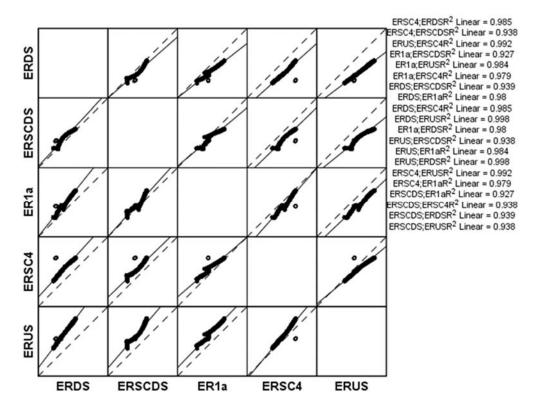


Figure 3.2: Linear Regression Matrix Plot of Water Stage from all Five Hydrometric **Stations**

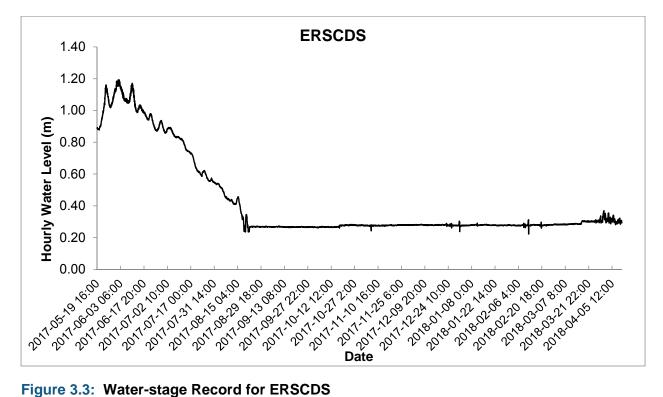


Figure 3.3: Water-stage Record for ERSCDS

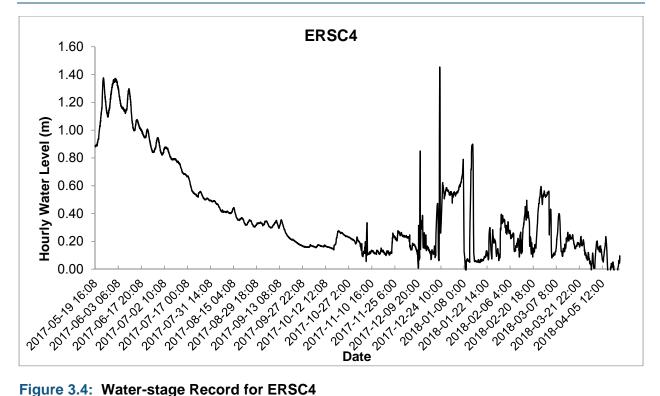


Figure 3.4: Water-stage Record for ERSC4

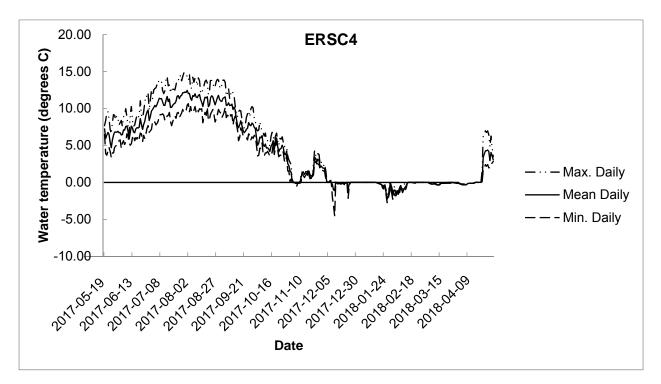


Figure 3.5: Water Temperature Record for ERSC4

The ERSCDS logger was frozen into the stilling well under approximately 0.6 m of ice and was unable to be downloaded until May 2, 2018. However, the barometric logger was downloaded on April 17th. As such, the water stage record is limited to April 17th and does not include the date when flows are suspected to have begun flowing in Reach 3. Water temperature data were recorded up to May 2. Based solely on the water temperature record, it appears that ERSC4 was flowing again on April 23, 2018. All other loggers in the side channel were downloaded during the April 12 survey and remained dewatered at that time. Continued monitoring in 2018 will include downloading the barometric pressure data covering the suspected rewatering period and allowing a more accurate estimate of when flows returned.

As indicated above, Reach 1 was the first area to dewater, and this is suspected to have occurred near August 21, 2017. Provisional data from Water Survey of Canada shows that discharge at the Elk River near Natal (station 08NK016) ranged from 15.0-15.8 m³/s. Reach 3 was the last to dewater and this is suspected to have occurred on December 9, 2017. Flows returned on April 23, 2018. On these dates, the provisional discharge data from the Elk River at Natal ranged from 6.35 to 6.94 m³/s and 12.2 to 13.3 m³/s, respectively.

The hydrograph from the Elk River near Natal provides some context of the hydrologic conditions experienced in the Elk River in 2017 (Figure 3.1). Peak discharge in June were greater than the upper quartile, peaking near 190 m³/s. Flows receded quickly with a lack of precipitation in June and approached the lower quartile by July. A hot dry summer is suspected to have continued to affect flow with discharge slightly below the lower quartile by mid-August. Flows remained below the lower quartile into November. However, it is worth noting the minor difference between even the upper and lower quartiles during baseflow.

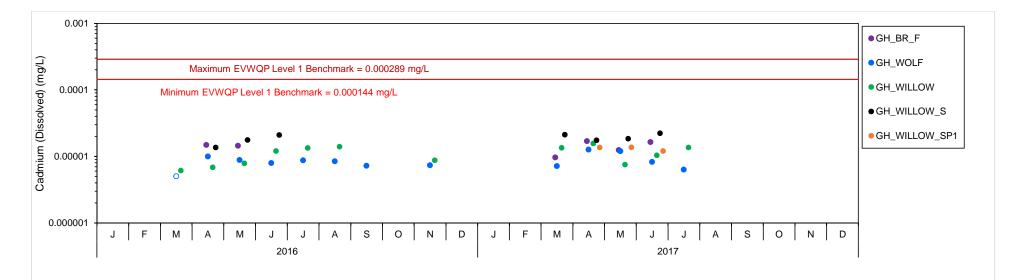
4 WATER QUALITY

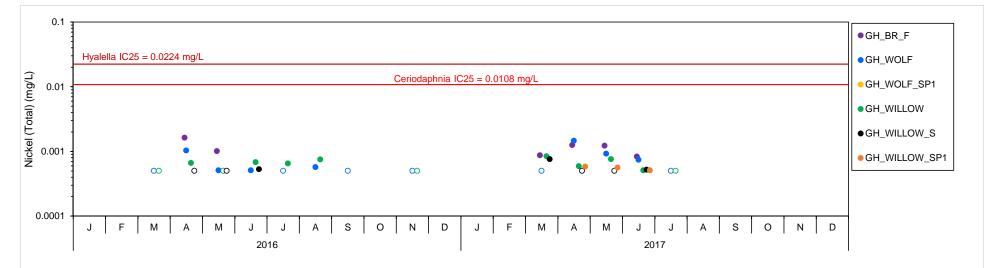
4.1 Overview

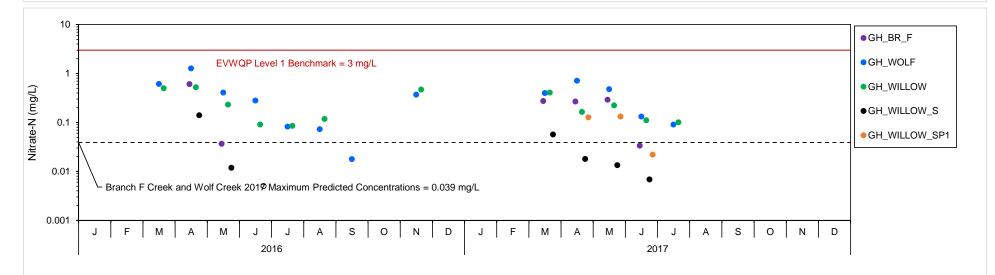
Data evaluated in this section are related to addressing key question #2 (Section 1.2):

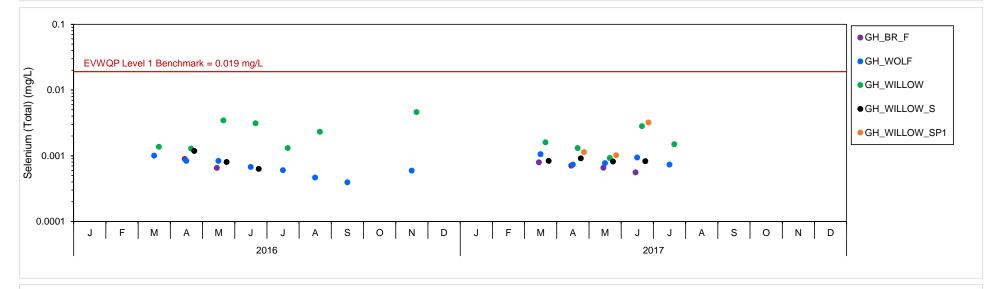
What is the influence of GHO discharges from the west-side tributaries on water quality in the Elk River and Elk River side channel?

- a. What is the water quality at monitoring stations in the Elk River downstream versus upstream of the west-side tributaries?
- b. What is the water quality at monitoring stations in the Elk River side channel?
- c. What is the water quality in isolated pools in the Elk River side channel that provide potential aquatic habitat for aquatic and/or aquatic-dependent vertebrates (i.e., fish, amphibians, and aquatic-feeding birds)?

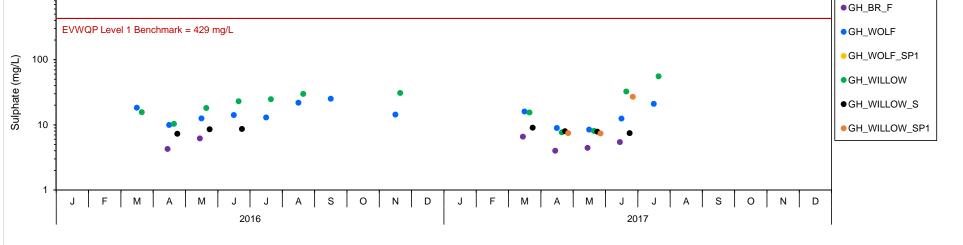

Water quality was assessed for concentrations of Order constituents (i.e., dissolved cadmium, nitrate, total selenium, and sulphate) and total nickel and compared to EVWQP benchmarks and preliminary IC₂₅ values developed for *Ceriodaphnia* and *Hyalella* (nickel), for the west-side tributaries, the Elk River side channel flowing stations, side channel isolated pools, the side channel wetland, and the main stem Elk River.

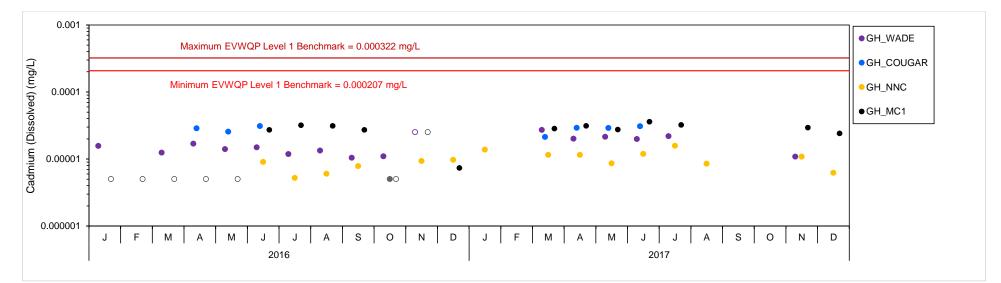

4.2 West-side Tributaries

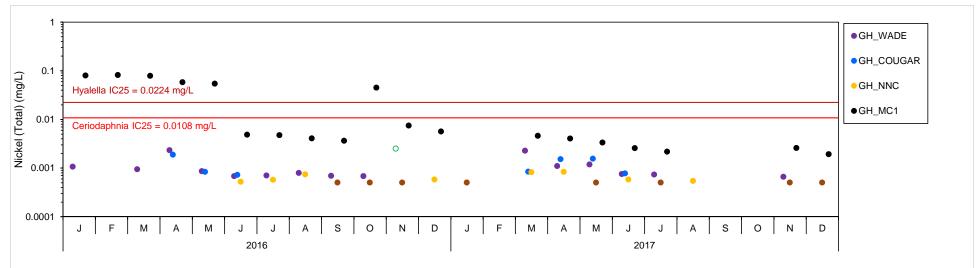

0

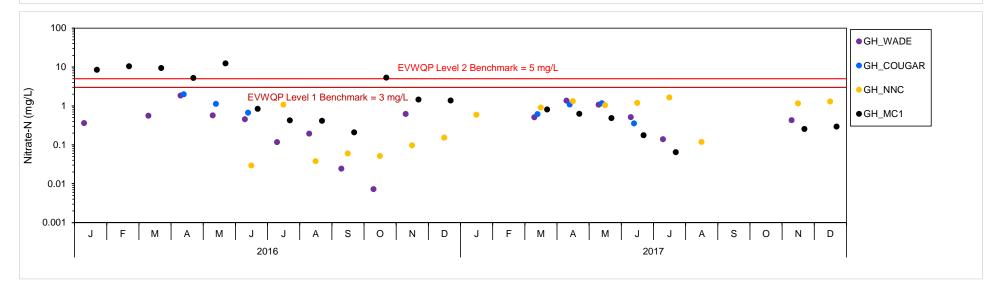

Water quality data from the west-side tributaries were assessed to support the interpretation of all key question #2 sub-questions. When flowing, Branch F, Wolf, Willow, Wade, Cougar, and No Name creeks flow into the Elk River upstream from the Elk River side channel (Figure 2.2). The downstream ends of Mickelson, Leask, and Wolfram creeks are settling ponds that did not connect overland to the Elk River or Elk River side channel from May 2017 to April 2018 (Figure 2.2, Appendix Figures A.1 to A.8); instead, they likely infiltrated via groundwater in the overburden (SNC-Lavalin 2018). Thompson Creek flows into the Elk River side channel all year at the side channel wetland, located downstream of GH_ER1A and upstream of GH_ERSC2 (Figure 2.2).

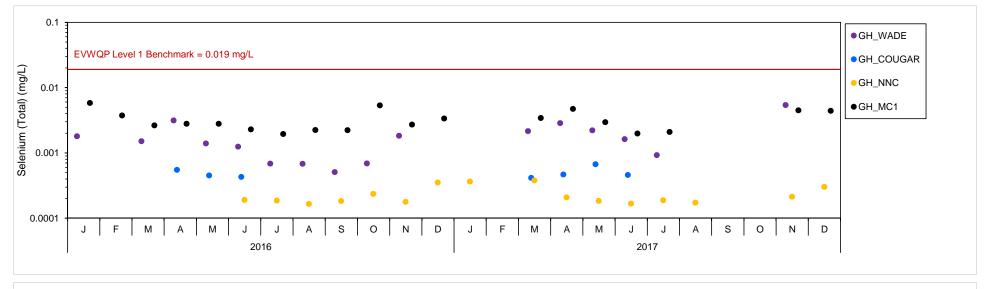
Water quality data from the west-side tributaries (Figure 2.2) were assessed for January 2016 to December 2017. Water quality data for Branch F Creek (GH_BR_F), Wolf Creek (GH_WOLF and GH_WOLF_SP1), Willow Creek (GH_WILLOW, GH_WILLOW_S, GH_WILLOW_SP1), Wade Creek (GH_WADE), Cougar Creek (GH_COUGAR), and No Name Creek (GH_NNC, GH_BR_D) were always below EVWQP Level 1 benchmarks for dissolved cadmium, nitrate, total selenium, and sulphate as well as preliminary IC₂₅ values for nickel (Figures 4.1 and 4.2).






1,000 J




Figure 4.1: Water Quality Temporal Plots of Monthly Means for Order Constituents and Total Aqueous Nickel, Compared to EVWQP Benchmarks and Preliminary IC₂₅ Values for the West-side Tributaries Branch F Creek, Wolf Creek, and Willow Creek, 2016 to 2017

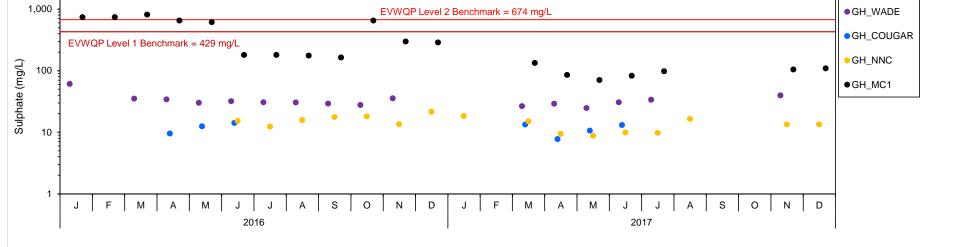

Notes: open symbols indicate samples below the laboratory reporting limit (LRL), and were reported as 1×LRL. Data points are horizontally staggered within each month to allow overlapping points to be differentiated. For dissolved cadmium, minimum and maximum EVWQP benchmarks represent the range of benchmark values based on hardness for all monthly means.

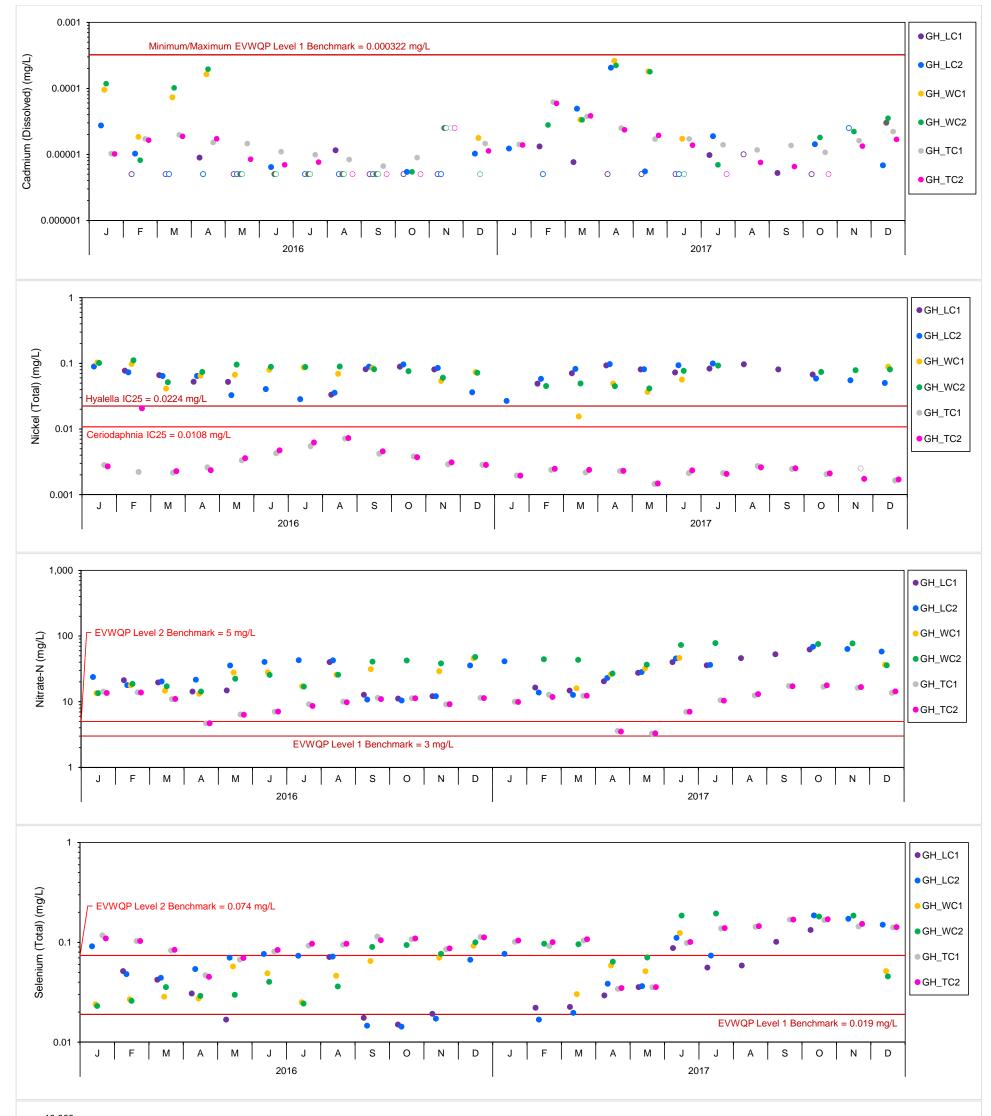
Figure 4.2: Water Quality Temporal Plots of Monthly Means for Order Constituents and Total Aqueous Nickel, Compared to EVWQP Benchmarks Preliminary IC₂₅ Values for the West-side Tributaries Wade Creek, Cougar Creek, No Name Creek, and Mickelson Creek, 2016 to 2017

Note: open symbols indicate samples below the laboratory reporting limit (LRL), and were reported as 1×LRL. Data points are horizontally staggered within each month to allow overlapping points to be differentiated. For dissolved cadmium, minimum and maximum EVWQP benchmarks represent the range of benchmark values based on hardness for all monthly means.

Water quality in Mickelson (GH_MC1), Leask (GH_LC1, GH_LC2), Wolfram (GH_WC1, GH_WC2, GH_WC1A), and Thompson (GH_TC1, GH_TC2) creeks showed evidence of minerelated influence based on concentrations of nitrate, selenium, and/or sulphate that were often greater than EVWQP benchmarks (Figures 4.2 and 4.3). With the exception of Thompson Creek, concentrations of nickel in water from each of these tributaries also tended to be above the preliminary IC₂₅ values (2016 only in Mickelson). In contrast, dissolved cadmium concentrations were consistently below the EVWQP Level 1 benchmark (Figures 4.2 and 4.3).

4.3 Side Channel Monitoring Stations

Water quality in the Elk River side channel was assessed to address key questions #2.b: "What is the water quality at monitoring stations in the Elk River side channel?". Data from Teck's three routine water quality monitoring stations (GH_ERSC4, GH_ER1A, and GH_ERSC2; Figure 4.4) were analyzed. Concentrations of Order constituents and total nickel generally increased from GH_ERSC4 to GH_ER1A to GH_ERSC2 (i.e., from upstream to downstream; Figure 4.4) due to the influence of the west-side tributaries (Figure 4.3, Section 4.2). All cadmium concentrations were below the EVWQP Level 1 benchmark, and sulphate was greater than the EVWQP Level 1 benchmark once in a single GH_ER1A sample from April 2016. Selenium concentrations were above the EVWQP Level 1 benchmark twice (April and May 2017) at GH_ERSC2, the furthest downstream location. Nitrate concentrations were above the EVWQP Level 1 benchmark at GH_ER1A in three samples (April 2016, and April and May 2017).

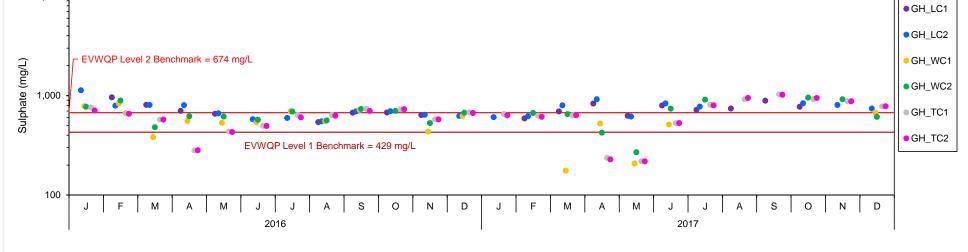
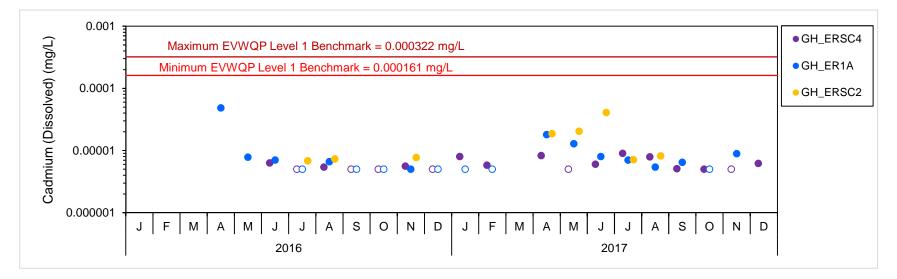
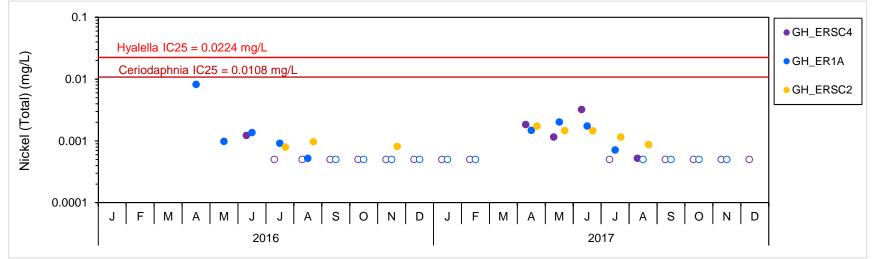
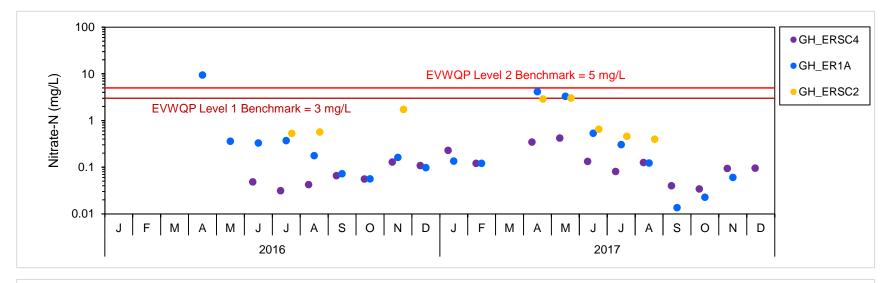

4.4 Isolated Pools

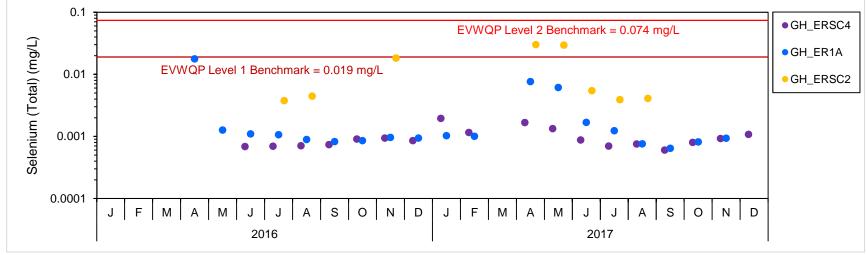
0

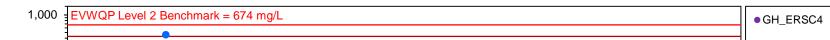
-0

Water quality in the isolated pools was assessed to address key questions #2.c: "What is the water quality in isolated pools in the Elk River side channel that provide potential aquatic habitat for aquatic and/or aquatic-dependent vertebrates (i.e., fish, amphibians, and aquatic-feeding birds)?". Flow in the Elk River side channel was observed to vary dramatically on a seasonal basis. In spring, portions of the channel overflow and flood the adjacent forest, and both the upstream and downstream ends have surface connectivity to the main stem Elk River. Conversely, by fall, water levels were much lower and there was no longer surface flow connecting to the main stem Elk River. Sections of the side channel became isolated from the main flow, creating pools. Pools occurred in three main areas: (1) upstream of the wetland, (2) in the western-most channel downstream of the wetland, and (3) in the eastern-most channel downstream of the wetland, and (3) in the eastern-most channel downstream of the wetland, and (5) in the eastern-most channel downstream of the wetland, (7).

Most pools only existed for less than a month and thus were only sampled once. Pool-E-7, which is located at the downstream end of the side channel, just upstream from the confluence with the main stem Elk River (Figure 2.2) persisted from September 2017 through March 2018. At


Figure 4.3: Water Quality Temporal Plots of Monthly Means for Order Constituents and Total Aqueous Nickel, Compared to EVWQP Benchmarks Preliminary IC₂₅ Values for the West-side Tributaries Leask Creek (GH_LC1 and GH_LC2), Wolfram Creek (GH_WC1 and GH_WC2), and Thompson Creek (GH_TC1 and GH_TC2), 2016 to 2017


Note: open symbols indicate samples below the laboratory reporting limit (LRL), and were reported as 1×LRL. Data points are horizontally staggered within each month to allow overlapping points to be differentiated. For dissolved cadmium, minimum and maximum EVWQP benchmarks represent the range of benchmark values based on hardness for all monthly means.

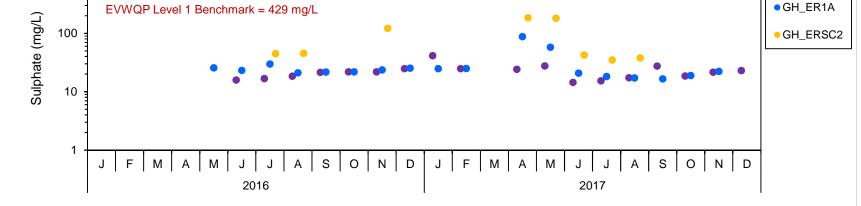
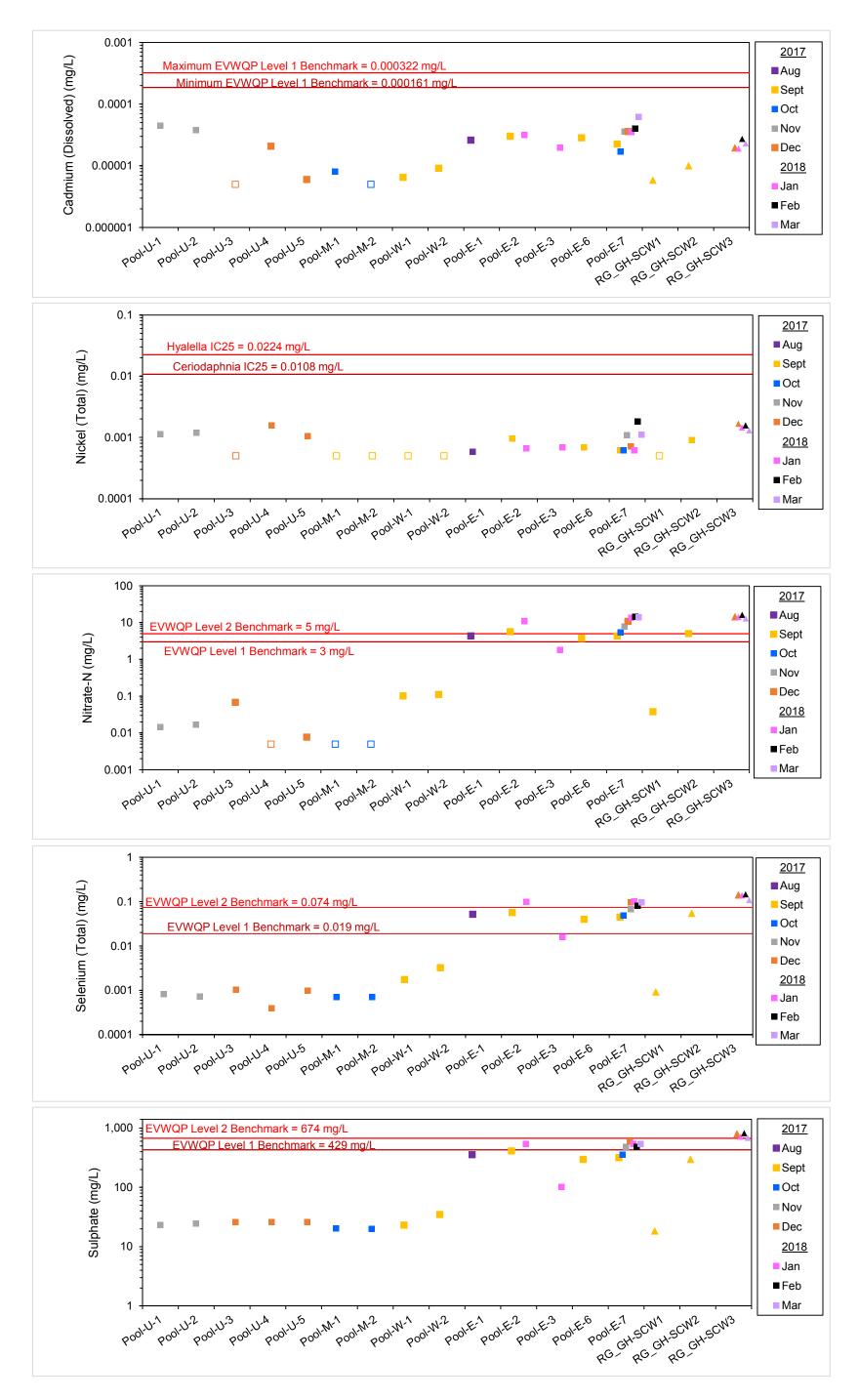


Figure 4.4: Water Quality Temporal Plots of Monthly Means for Order Constituents and Total Aqueous Nickel at Side Channel Monitoring Stations Compared to EVWQP Benchmarks and Preliminary IC₂₅ Values, Elk River Side Channel, 2016 to 2017

Note: Open symbols indicate samples below the laboratory reporting limit (LRL), and were reported as 1×LRL. Minimum and maximum EVWQP benchmarks represent the range of benchmark values based on hardness for all monthly means. Data points are horizontally staggered within each month to allow overlapping points to be differentiated.

Pool-E-7, concentrations of total nickel, nitrate, total selenium, and sulphate generally increased from September 2017 to January/February/March 2018 likely due to evaporation (Figure 4.5).

Dissolved cadmium and total nickel concentrations were below the EVWQP Level 1 benchmark and preliminary IC₂₅ values, respectively, for all isolated pool samples (Figure 4.5). Selenium and nitrate concentrations were greater than the EVWQP Level 1 benchmark and frequently was greater than the Level 2 benchmark for samples collected from pools located in the most eastern channel downstream of the mouth of Thompson Creek (Figure 4.5). At these locations, sulphate concentrations also approaching the EVWQP Level 1 benchmark, with the Pool-E-7 samples collected between October 2017 and March 2018 above the benchmark (Figure 4.5). Overall, pools in the eastern-most channel downstream of the wetland had higher concentrations of total nickel, nitrate, total selenium, and sulphate relative to pools in the western-most channel downstream of the wetland as well as the pools located upstream of the wetland (Figure 4.5).


Pools located upstream of the wetland had water quality generally comparable to GH_ERSC4 and GH_ER1A. Pools in the eastern-most channel downstream of the wetland are influenced by Thompson Creek (Figure 4.3) and the side channel wetland (Figure 4.5), whereas the western channel may receive relatively greater contribution of flow from upstream or from the main stem Elk River (Figure 4.1). Overall, most of the isolated pools persisted for less than a month, and therefore offer limited habitat to aquatic-dependent biota.

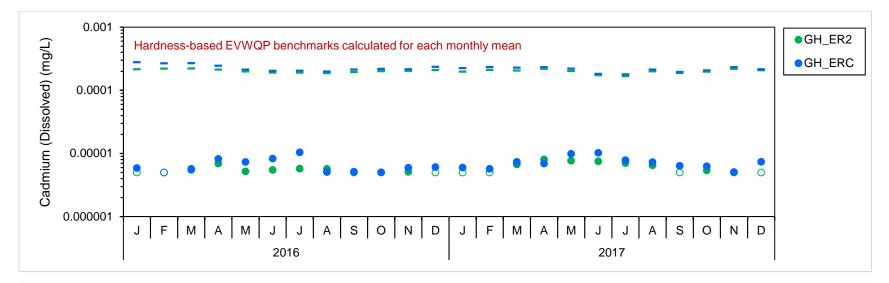
4.5 Wetland

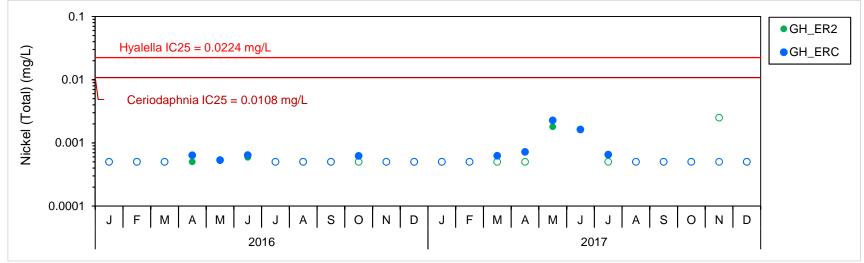
Water sampling was added to the wetland late in 2017 to support the assessment of water quality in the side channel (key question #2.b). Water samples were collected in the side channel wetland from three stations. RG_GH-SCW1 was located near the side channel inlet of the wetland, RG_GH-SCW2 was located near the Thompson Creek inlet to the wetland, and RG_GH-SCW3 was located near the wetland outlet. RG_GH-SCW2 and RG_GH-SCW3 were influenced by Thompson Creek, with higher concentrations of dissolved cadmium, nickel, nitrate, total selenium, and sulphate compared to RG_GH-SCW1, and concentrations very similar to Thompson Creek (Figure 4.5). Dissolved cadmium and nickel concentrations were below the EVWQP Level 1 benchmark and preliminary IC₂₅ values, respectively, for the three stations, whereas samples collected from September through March at one or more of stations had concentrations of nitrate, selenium, and/or sulphate above EVWQP benchmarks (Figure 4.5). The concentrations at RG_GH-SCW1 were consistently lower than at RG_GH-SCW2 and RG_GH-SCW3.

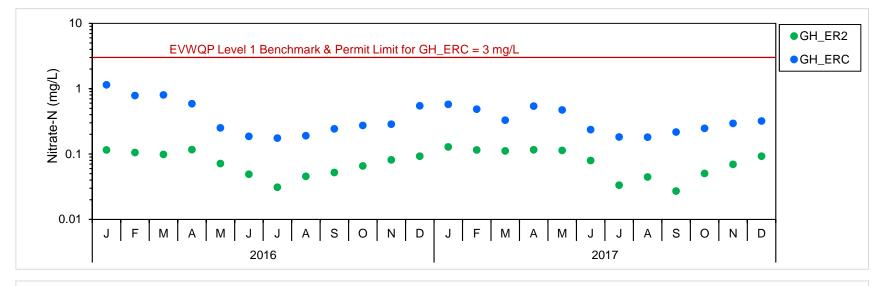
4.6 Main Stem Elk River Downstream versus Upstream of the West-Side Tributaries

Water quality in the main stem Elk River was assessed to address key question #2.a: "What is the water quality at monitoring stations in the Elk River downstream versus upstream of the

Figure 4.5: Water Quality Temporal Plots of Monthly Means for Order Constituents and Total Aqueous Nickel at Isolated Pool And Wetland Stations Compared to EVWQP Benchmarks and Preliminary IC₂₅ Values, 2017 to 2018


Notes: Symbols differentiate station site locations, with squares (\Box) representing stations in pools and triangles (Δ) representing stations in wetlands. Open symbols indicate samples below the laboratory reporting limit (LRL), and were reported as 1×LRL. Minimum and maximum EVWQP benchmarks for cadmium represent the range of benchmark values based on hardness for all monthly means. Data points are horizontally staggered within each month to allow overlapping points to be differentiated.


west-side tributaries?". Data for the monitoring station in the main stem Elk River downstream of the west side tributaries (GH_ERC) was compared to the Elk River station upstream of all mine influence (GH_ER2) to assess the overall influence of GHO on water quality in the upper Elk River (Figure 4.6). Concentrations of dissolved cadmium, nitrate, total selenium, and sulphate from these stations were all below EVWQP Level 1 benchmarks and Permit Limits (Figure 4.6). Concentrations at GH_ERC were consistently and significantly greater than at GH_ER2 (Figure 4.6) due to the influence of the west-side tributaries (Figure 4.3 and Appendix Table B.3). Concentrations of Order constituents at both locations showed the same seasonal cycling from 2016 to 2018, with the lowest concentrations of nitrate, total selenium, and sulphate occurring annually in July.


4.7 Side Channel versus Main Stem Elk River


Water quality was compared between the side channel and the main stem Elk River following consultation with the EMC and to support key question #2.a: "What is the water quality at monitoring stations in the Elk River downstream versus upstream of the west side tributaries?". Concentrations of Order constituents and total nickel at the side channel stations (GH_ERSC4, GH_ER1A, and GH_ERSC2) were compared to the upstream reference Elk River station, GH_ER2 (Table 4.1, Appendix Figure B.1). At the most upstream side channel station, GH_ERSC4, dissolved cadmium, total nickel, and total selenium were not significantly different from GH_ER2; however, nitrate and sulphate were significantly greater. At GH_ER1A, dissolved cadmium, total nickel, and sulphate were significantly higher than reference. At the most downstream side channel station (GH_ERSC2), Order constituents and total nickel were significantly greater than at reference, except for total nickel, which was not significantly different.

The three side channel stations were also compared to the downstream Elk River station, GH_ERC (Table 4.2, Appendix Figure B.2). At the most upstream side channel station, GH_ERSC4, dissolved cadmium, and total nickel were not significantly different from downstream GH_ERC, and nitrate, total selenium, and sulphate were significantly less than concentrations at GH_ERC. Station GH_ER1A was not significantly different from GH_ERC for all key mine related parameters. At the most downstream side channel station (GH_ERSC2), nitrate, total selenium, and sulphate were significantly greater than downstream GH_ERC, while dissolved cadmium and total nickel were not significantly different. This indicates that GH_ERSC2 is influenced by Thompson Creek, but the influence is diluted in the downstream main stem station GH_ERC.

EVWQP Lev	/el 1 Bench	nmark = 4	29 mo

1,000

•GH_ER2

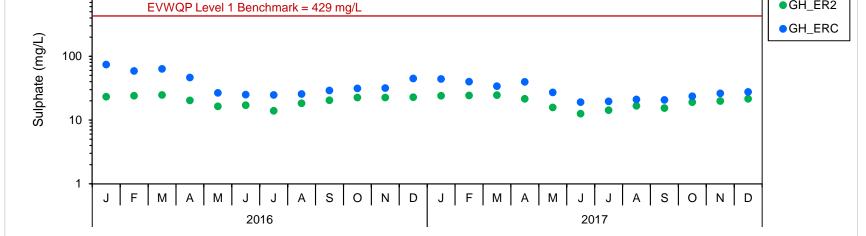


Figure 4.6: Water Quality Temporal Plots of Monthly Means for Order Constituents and Total Aqueous Nickel at Main Stem Elk River Areas Upstream (GH_ER2) and Downstream (GH_ERC) of Mine Activities Compared to EVWQP Benchmarks, Preliminary $\rm IC_{25}$ Values, and Permit Limits, 2016 to 2017

Note: open symbols indicate samples below the laboratory reporting limit (LRL), and were reported as 1×LRL. Dashes denote hardness-based EVWQP benchmarks calculated for each monthly mean.

Table 4.1: Statistical Comparisons of the Differences in Monthly Mean Concentrations Between Side Channel Stations (GH_ERSC4, GH_ER1A, GH_ERSC2) and the Main Stem Elk River Reference Station (GH_ER2) for Aqueous Cadmium, Total Nickel, Nitrate, Total Selenium, and Sulphate, 2016 to 2017

Model							Post-hoc Test and Magnitude of Difference (MOD) for Difference Between Side Channel and Main Stem Elk River Refence Station (GH_ER2)														
							GH_ERSC4						GH_ER1A		GH_ERSC2						
Parameter	Units	Transform- ation	Term	DF	F	P-value	GH_ERSC4 Median ^ª	Test	P-value	GH_ER2 Median ^ª	MOD (%) ^b	GH_ER1A Median ^a	Test	P-value	GH_ER2 Median ^a	MOD (%) ^b	GH_ERSC2 Median ^ª	Test	P-value	GH_ER2 Median ^a	MOD (%) ^b
Cadmium (Dissolved)		rank	Year	1	0.28	0.601		WSRT	0.358	0.00000526	4.6	0.00000700	WSRT	0.030	0.00000540	30	0.00000795	WSRT	0.008	0.00000678	
	mg/L		Station	2	4.1	0.027	0.00000550														17
			Year x Station	2	0.25	0.779															
			Error	30	-	-															
Nickel (Total)	mg/L	rank		_c			<0.0005	WSRT	0.281	<0.0005	_d	<0.0005	WSRT	0.009	<0.0005	_d	0.00106	WSRT	0.08	<0.0005	>112
			Year	1	0.14	0.713	0.0947	WSRT	0.004	0.0675		0.1610	WSRT		0.0694		0.608	WSRT	0.008	0.0624	
Nitrate-N	mg/L	rank	Station	2	11	<0.001					40			0.002		132					874
		Idiik	Year x Station	2	1.3	0.276					40										
			Error	39	-	-															
	mg/L	rank	Year	1	3.0	0.089	0.000861	WSRT	0.0539	0.000834	3.3	0.00100	WSRT	0.003	0.000829	21	0.00493	WSRT	0.008	0.000687	618
Selenium			Station	2	15	<0.001															
(Total)	<u>g</u> , _		Year x Station	2	1.2	0.299															
			Error	39	-	-															
		rank	Year	1	0.53	0.470	21.7	WSRT	0.009	19.5	11	20.7	WSRT	SRT <0.001	19.1	8		WSRT	0.008	16.3	176
Sulphate	mg/L		Station	2	14	<0.001											44.8				
3 to			Year x Station	2	1.5	0.233															
			Error	39	-	-															

P-value < 0.01.

^a Medians reported because all tests were non-parametric; WSRT = Wilcoxon Signed Rank Test.

^b Magnitude of Difference (MOD) expressed as (Median – GH_ER2 Median) / GH_ER2 Median × 100%.

^c ANOVA was no conducted for Nickel because of a high percentage of values at the Laboratory Reporting Limit (LRL) and missing data from some months.

^d MOD could not be caclucated because both median value were less than the LRL.

Table 4.2: Statistical Comparisons of the Differences in Monthly Mean Concentrations Between Side Channel Stations (GH_ERSC4, GH_ER1A, GH_ERSC2) and the Main Stem Elk River Station Located Downstream of Mine Activities (GH_ERC), for Aqueous Cadmium, Total Nickel, Nitrate, Total Selenium, and Sulphate, 2016 to 2017

Model							Post-hoc Test and Magnitude of Difference (MOD) for Difference Between Side Channel and the Main Stem Elk River Station Located Downstream of Mine Activities (GH_ERC)														
							GH_ERSC4						GH_ER1A	١	GH_ERSC2						
Parameter	Units	Transform- ation	Term	DF	F	P-value	GH_ERSC4 Median ^a	Test	P-value	GH_ERC Median ^a	MOD (%) ^b	GH_ER1A Median ^ª	Test	P-value	GH_ERC Median ^a	MOD (%) ^b	GH_ERSC2 Median ^a	Test	P-value	GH_ERC Median ^a	MOD (%) ^b
	mg/L	rank	Year	1	0.67	0.418		WSRT	0.130	0.00000634	-13	0.00000645	WSRT		0.00000640	0.78	0.00000795	WSRT	0.109	0.00000757	
Cadmium			Station	2	2.8	0.073	0.00000550							0.738							5.1
(Dissolved)			Year x Station	2	0.34	0.712															0.1
			Error	39	-	-															
Nickel (Total)	mg/L	rank		_c			<0.0005	WSRT	0.673	<0.0005	0.0	<0.0005	WSRT	0.067	<0.0005	_d	0.00106	WSRT	0.183	0.00058	84
			Year	1	0.12	0.733	0.0947	WSRT	<0.001	0.260	-64	0.161	WSRT		0.251	-36	0.608	WSRT	0.008	0.213	185
Nitrate-N	mg/L	rank	Station	2	11	<0.001								0.798							
INITIALE-IN	mg/L	Idlik	Year x Station	2	0.1	0.877															
			Error	39	-	-															
	mg/L	rank	Year	1	0.23	0.6364	0.000861	WSRT	<0.001	0.00133	-35	0.00100	WSRT	0.182	0.00135	-26	0.00493	WSRT	0.008	0.00128	286
Selenium			Station	2	16	<0.001															
(Total)	<u>g</u> , _	- Carine	Year x Station	2	0.12	0.888			0.001	0.00100									0.000	0.00120	200
			Error	39	-	-															<u> </u>
			Year	1	3.08	0.087	21.7	WSRT	<0.001	26.7	-19		WSRT	0.241	26.8	-23		WSRT	0.008	25.2	'
Sulphate	mg/L	rank	Station	2	14	<0.001						20.7					44.8				78
			Year x Station	2	1.0	0.387															
			Error	39	-	-															

P-value < 0.01

^a Medians reported because all tests were non-parametric; WSRT = Wilcoxon Signed Rank Test.

^b Magnitude of Difference (MOD) expressed as (Median – GH_ERC Median) / GH_ERC Median × 100%.

^c ANOVA was no conducted for Nickel because of a high percentage of values at the Laboratory Reporting Limit (LRL) and missing data from some months.

^d MOD could not be caclucated because both median value were less than the LRL.

4.8 Summary

Discharges from the west-side tributaries contribute to higher concentrations of Order constituents and total nickel in the downstream main stem Elk River (GH_ERC); however, concentrations measured at GH_ERC remain well below EVWQP Level 1 benchmarks and preliminary IC₂₅ values. Water quality at side channel stations GH_ER1A and GH_ERSC2 was influenced by Wolfram and Thompson creeks, showing occasional concentrations of nitrate, total selenium, and sulphate that were greater than EVWQP Level 1 benchmarks. The Elk River side channel has been observed to have highly variable flow throughout the year, with the creation of isolated pools during drier months. Water quality in these pools was highly dependent on location. Pools located upstream of the side channel wetland had water quality comparable to GH_ERSC4 and GH_ER1A. Pools in the eastern-most channel downstream of the wetland are influenced by Thompson Creek, whereas the western channel may receive relatively greater flow from upstream, or from the main stem Elk River. The highest concentrations of mine-relative parameters occurred in the side channel wetland.

5 SUBSTRATE QUALITY

5.1 Overview

Data evaluated in this section pertain to key question #3.b (Section 1.2):

What are the effects of GHO discharges from the west-side tributaries on biota (i.e., fish, amphibians, aquatic-feeding birds) in the Elk River and the Elk River side channel?

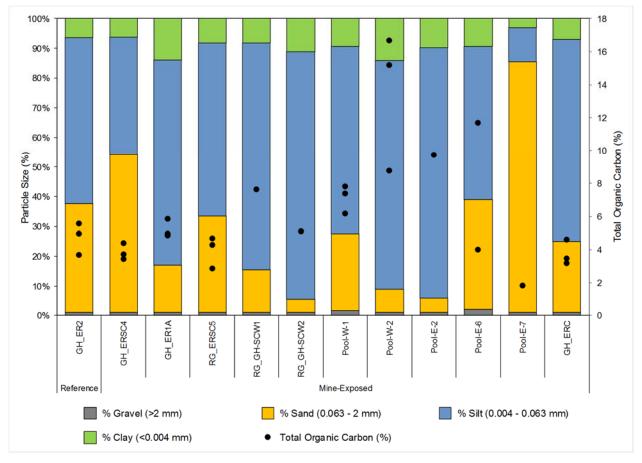
b. What is the substrate quality?

5.2 Calcite

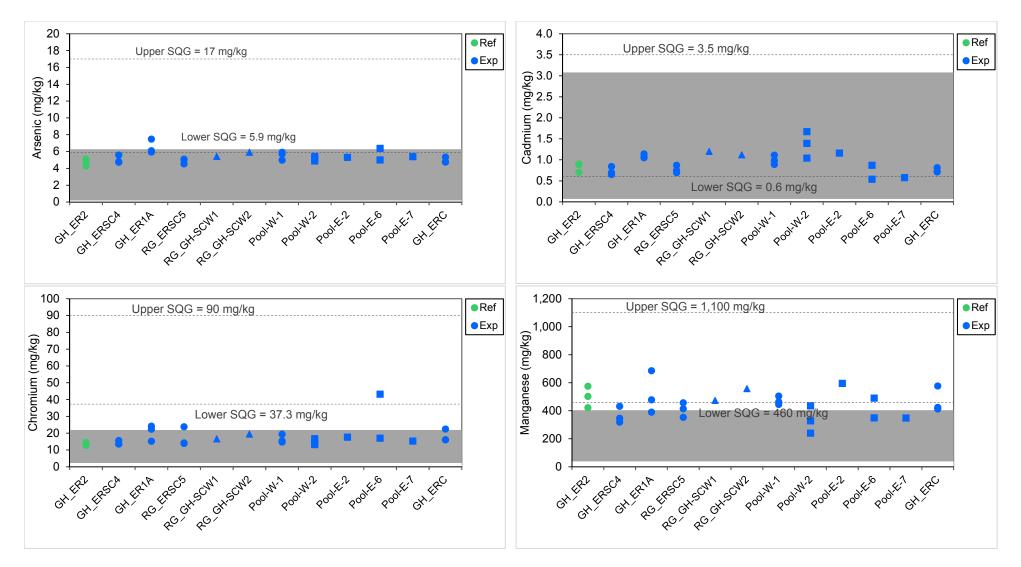
Calcite was not observed at the main stem Elk River stations (GH_ERC and GH_ER2) during surveys conducted in September 2017 or at the Elk River side channel stations (GH_ERSC4, GH_ER1A, and GH_ERSC2) during surveys conducted in July and September 2017, nor was it observed in the side channel during monthly channel surveys (Sections 2.2.2 and 2.5.4).

5.3 Sediment Quality

0


€.

Sediment TOC and particle size varied among areas, particularly the proportion of sand versus silt, with no obvious pattern observed for pool versus side channel or main stem locations (Figure 5.1).


Sediment metal and PAH concentrations were compared to BC Sediment Quality Guidelines (SQG) and normal ranges¹⁴ (Figure 5.2, Appendix Tables C.1 and C.2). Two levels of guideline are typically defined: a lower interim sediment quality guideline (ISQG) or lowest effect level (LEL), and a higher probable effect level (PEL) or severe effect level (SEL). The lower SQGs (i.e., ISQG/LEL) represent concentrations below which adverse biological effects would not be expected to occur. In contrast, the upper SQGs (i.e., PEL or SEL) represent concentrations above which effects may be frequently observed. The SQGs are not based on cause-effect studies, but rather on levels of toxic substances found in the sediment where biological effects have been measured (BCMOE 2015); such that the exceedance of individual SQGs cannot be interpreted as strong evidence for biological response. Concentrations of all parameters were typically less than the upper SQG, except selenium (four samples at four stations), fluorene (one sample), 2-methylnaphthalene (nine samples from five stations), naphthalene (one sample), and phenanthrene (two samples from one station). Sediment quality was typically within the normal range at all sampling locations, expect for arsenic (two samples at two stations), chromium (four samples at three stations), manganese (in at least one sample at all but one station), chrysene

¹⁴ The reference area normal range for sediment is defined as the 2.5th and 97.5th percentiles of 2013 and 2015 reference area data reported in the RAEMP for lentic stations (Minnow 2018a).

<.

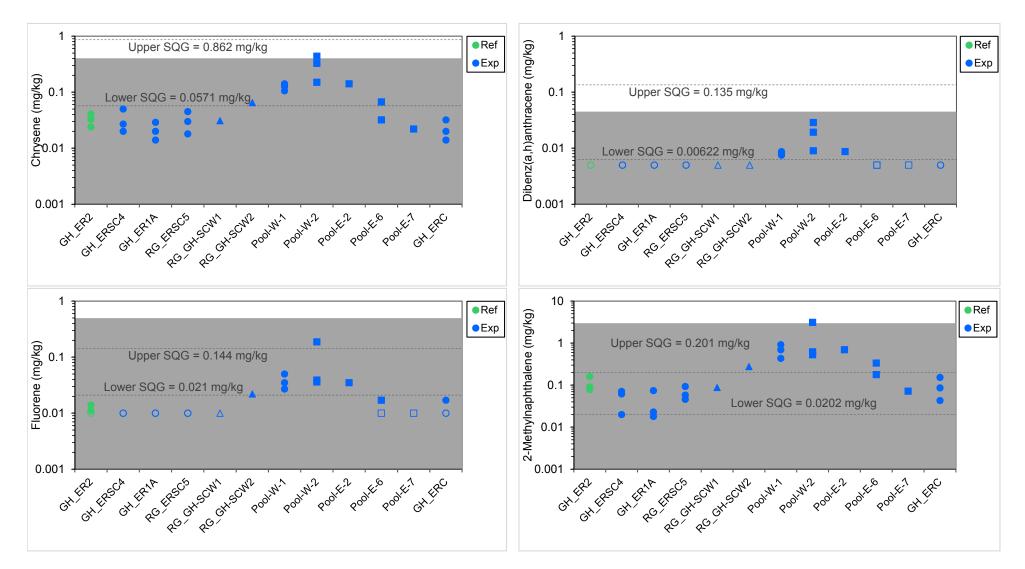
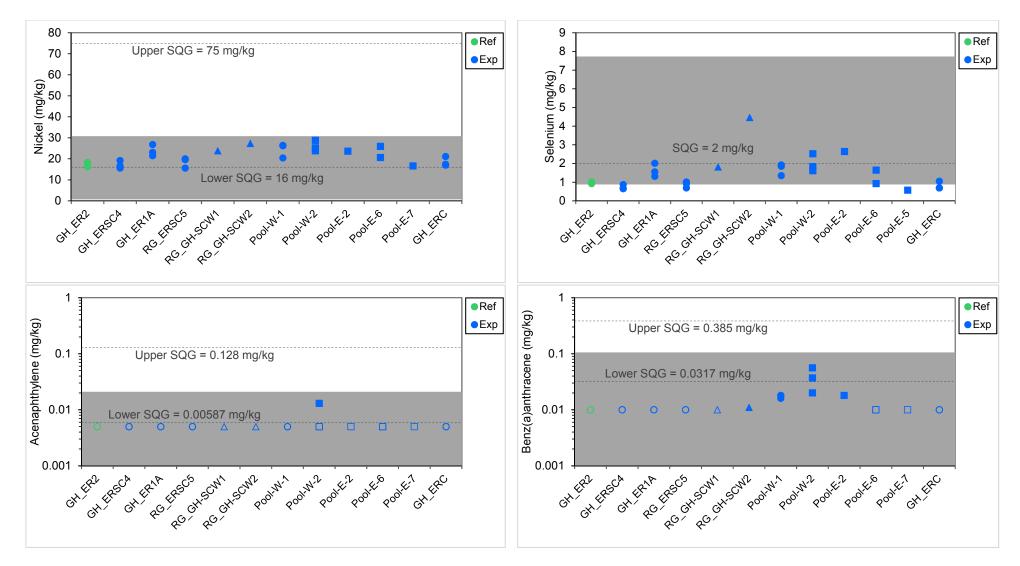
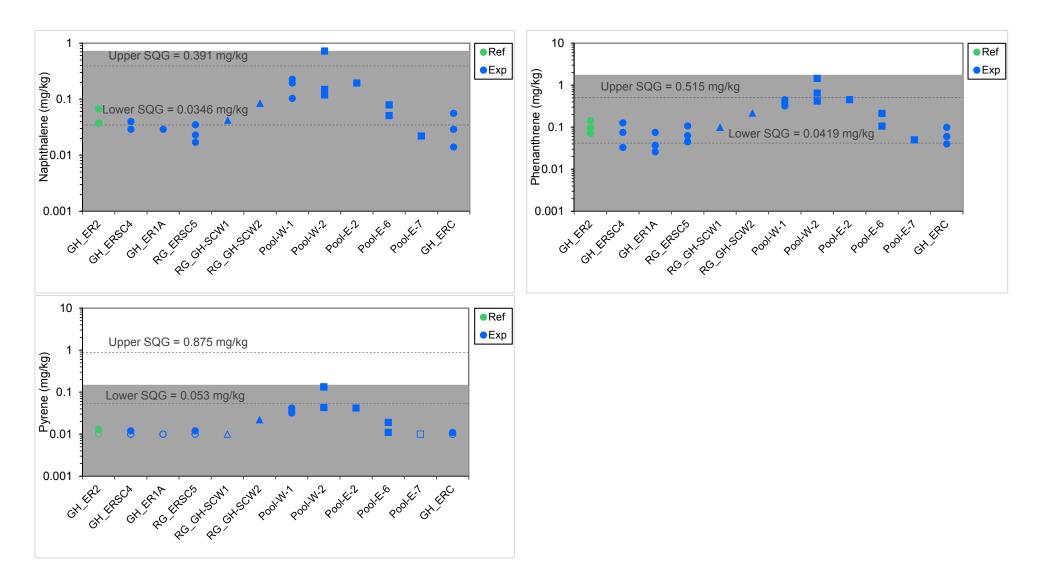


Figure 5.1: Mean Particle Size (%) and Total Organic Carbon Content (%) in Sediments, September 2017


Figure 5.2: Sediment Metal and Polycyclic Aromatic Hydrocarbons Concentrations Relative to BC Sediment Quality Guidelines (SQG) and Normal Ranges, 2017

Notes: Symbols differentiate station site locations with circles (\circ) representing stations in lotic areas, triangles (Δ) representing stations in wetlands, and squares (\Box) representing pools. Concentrations below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL value. Shading represents the normal range (2.5th and 97.5th percentiles of 2013 and 2015 reference area data collected in the RAEMP, Minnow 2018).


Figure 5.2: Sediment Metal and Polycyclic Aromatic Hydrocarbons Concentrations Relative to BC Sediment Quality Guidelines (SQG) and Normal Ranges, 2017

Notes: Symbols differentiate station site locations with circles (\circ) representing stations in lotic areas, triangles (Δ) representing stations in wetlands, and squares (\Box) representing pools. Concentrations below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL value. Shading represents the normal range (2.5th and 97.5th percentiles of 2013 and 2015 reference area data collected in the RAEMP, Minnow 2018).

Figure 5.2: Sediment Metal and Polycyclic Aromatic Hydrocarbons Concentrations Relative to BC Sediment Quality Guidelines (SQG) and Normal Ranges, 2017

Notes: Symbols differentiate station site locations with circles (\circ) representing stations in lotic areas, triangles (Δ) representing stations in wetlands, and squares (\Box) representing pools. Concentrations below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL value. Shading represents the normal range (2.5th and 97.5th percentiles of 2013 and 2015 reference area data collected in the RAEMP, Minnow 2018).

Figure 5.2: Sediment Metal and Polycyclic Aromatic Hydrocarbons Concentrations Relative to BC Sediment Quality Guidelines (SQG) and Normal Ranges, 2017

Notes: Symbols differentiate station site locations with circles ($_{O}$) representing stations in lotic areas, triangles ($_{\Delta}$) representing stations in wetlands, and squares ($_{\Box}$) representing pools. Concentrations below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL value. Shading represents the normal range (2.5th and 97.5th percentiles of 2013 and 2015 reference area data collected in the RAEMP, Minnow 2018).

(one sample), and 2-methylnaphthalene (one sample). Although manganese was frequently greater than the normal range, mine-exposed stations were within range of reference station GH_ER2.

Sediment quality in the main stem Elk River upstream (GH_ER2) and downstream of the west side tributaries (GH_ERC) was generally similar (Figure 5.2). Concentrations of PAHs at flowing side channel stations (GH_ERSC4, GH_ER1A, and RG_ERSC5) were also similar to or less than the concentrations at the upstream reference station GH_ER2 (Figure 5.2). Concentrations of arsenic, cadmium, chromium, manganese, nickel, and selenium were all slightly higher at GH_ER1A relative to downstream RG_ERSC5 and upstream reference station GH_ER2 (Figure 5.2). No overland tributary inputs exist between GH_ER1A and RG_ERSC5, so this difference may be due to the higher proportion of fines (silt and clay) in the samples from GH_ER1A relative to RG_ERSC5 (Figure 5.1).

Sediment metal and PAH concentrations were generally higher in pools associated with the most western channel downstream of the wetland (Pool-W-1 and Pool-W-2) relative to pools associated with the most eastern channel (contrary to water quality; Figure 4.6). Pool-W-2 generally had the highest PAH concentrations, likely associated with high TOC concentrations (Figures 5.1 and 5.2). Within the side channel wetland, concentrations of several parameters (selenium included) were higher at RG_GH-SCW2 than RG_GH-SCW1 (Figure 5.2), consistent with its proximity to the mouth of Thompson Creek.

5.4 Summary

Overall, the data suggest sediment quality in the Elk River side channel and in the main stem location downstream of the side channel (GH_ERC) are not adversely affected by mine-related discharges.

6 HABITAT

6.1 Overview

Data are evaluated to address key question #3.a (Section 1.2):

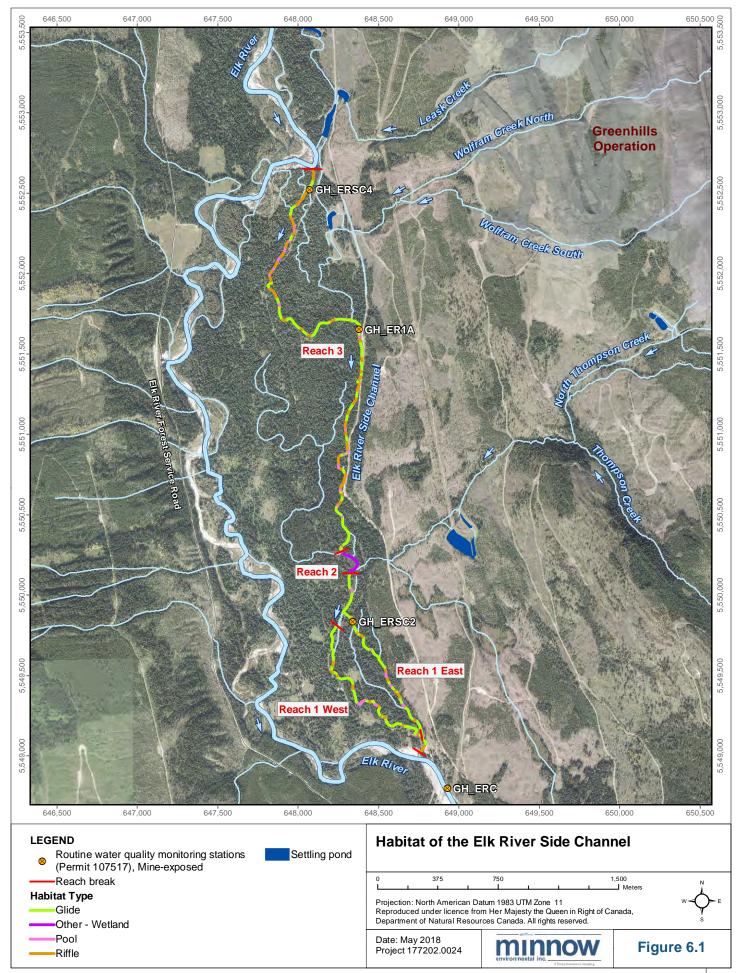
What are the effects of GHO discharges from the west-side tributaries on biota (i.e., fish, amphibians, aquatic-feeding birds) in the Elk River and the Elk River side channel?

a. How does the distribution of biota change seasonally? Which isolated pools contain biota?

These data provide information about seasonal habitat availability for different biota, which gives context for understanding the relative risk of potential exposure pathways. Habitat data were collected during monthly surveys from May 2017 to April 2018, with reach identification and the FHAP survey occurring in July.

6.2 Reach Identification

There were three reaches identified along the side channel. Reach 1 began at the downstream confluence with the Elk River and ended where the side channel transitioned into wetland habitat. Reach 1 was the downstream-most reach and was classified as having a riffle-pool morphology. There was extensive braiding in Reach 1 where there were three larger "main" channels identified (east channel, west channel, and middle channel, Figure 6.1). Reach 1 was the first to dewater in September 2017 (Section 3.2). Reach 2 was classified as wetland habitat and had inflow from both the side channel and Thompson Creek from the east from May to October 2017 (Figure 6.1). However, from October 2017 to the end of April 2018 only Thompson Creek was flowing into the wetland. Reach 3 began at the wetland inflow and ended at the upstream Elk River confluence (Figure 6.1). Reach 3 was the upstream-most reach and was classified as having a riffle-pool morphology that remained confined to one channel. Wolfram Creek was a tributary that approached Reach 3 near the GH_ER1A site; however, at no point in the 2017 surveys was it connected to the side channel via surface flow.


6.3 Level 1 Fish Habitat Assessment Procedure (FHAP)

FHAP surveys were completed for lotic Reaches 1 and 3, as FHAP surveys are not applicable to lentic habitat (Reach 2).

6.3.1 Reach 1 – East Channel

0

The habitat composition for the 1,354.5 m long Reach 1 east channel was: 72% glide, 19% riffle, 8% pool and 0% cascade (Table 6.1). Average gradient was 1%. These results are consistent with the Reach 1 classification of riffle-pool morphology. The average bankfull width was 6.91 m

Distance Surveyed (m)	Bankfull Width (m)	Bankfull Depth (m)	Wetted Width (m)	Wetted Depth (m)	% Cascade	% Glide	% Pool	% Riffle
1,355	6.91	0.95	4.69	0.39	0	72	8	19

Table 6.1: Level 1 - FHAP Summary Table for the Reach 1 East Chann
--

and the average wetted width was 4.69 m (range of 2.64 to 7.48 m). The bankfull width-to-depth ratio of 6.8 was considered low for a riffle-pool morphology, suggesting that the channel was likely incised. However, this may also be typical morphology for a side channel to a large river. The side channel had (prior to recent logging, which was not conducted by Teck) mature riparian forest that could have provided bank stability and allowed for a low width-to-depth ratio to develop by promoting more bed scour than bank erosion. The width-to-depth ratio may increase in the future as a result of the recent logging. Few areas of suitable salmonid spawning habitat were noted in Reach 1 as suitable spawning gravel was limited throughout the reach, because the interstitial substrate was predominantly fines.

Metrics describing habitat quality ranged from poor to fair (Table 6.2), with overall habitat quality generally considered to be fair-poor. As noted above, the low width-to-depth ratio suggests the channel is likely incised. This means that connectivity to the floodplain may be compromised, resulting in higher than expected flows within the channel, which could potentially increase bank erosion and therefore degrade habitat. Channel complexity, % area by pool, and pool frequency were all poor, indicating a disturbed state. Channel complexity was low with 1.4 mesohabitat units/10x bankfull length. The number of holding pools for adult fish was the only metric that was ranked as good. Four pools were identified in the east channel. All four pools had depths greater than 1 m. There were 0.5 pieces of LWD per bankfull width, which was considered poor (Table 6.2).

6.3.2 Reach 1 – West Channel

The habitat composition for the Reach 1 west channel was: 73% glide, 18% riffle, 9% pool, and 0% cascade (Table 6.3). Mean channel gradient was 1.2%. This channel was classified as riffle-pool morphology. The average bankfull width was 5.24 m (range to 4.05 to 6.10 m) and the average wetted width was 4.04 m (range of 3.12 to 6.05 m). There were only a few areas of suitable salmonid spawning habitat as suitable spawning gravel was limited throughout the reach and the interstitial substrate was predominantly fines.

Metrics describing habitat quality were either poor or good within the Reach 1 west channel (Table 6.4). Overall habitat quality was considered to be poor and degraded. The low

width-to-depth ratio (4.5) suggests the channel is likely incised. Similar to the Reach 1 east channel (Section 6.3.1), this has the potential to increase bank erosion and therefore degrade habitat. The poor channel complexity, % area by pool, and pool frequency also suggest that this channel is in a disturbed state. The number of holding pools for adult fish was the only metric that was ranked as good. Three pools were identified in the west channel, all of which had depths greater than 1 m. There were 0.1 pieces of LWD per bankfull width, which was considered poor.

Metric	Value	Quality Rating	
Bankfull width:depth	6.8	n/a	
Sinuosity	1.2	n/a	
Channel complexity (# habitat units/10x bankfull width)	1.4	Poor	
% Pool (by area)	7%	Poor	
Pool frequency (mean pool spacing) (channel widths/pool)	36.2	Poor	
Holding pools (adult migration) (pools/km >1 m deep)	14.8	Good	
LWD pieces per bankfull width	0.5	Poor	
% wood cover in pools	5	Fair	

Table 6.2: Habitat Quality Metrics for the Reach 1 East Channel

Distance Surveyed (m)	Bankfull Width (m)	Bankfull Depth (m)	Wetted Width (m)	Wetted Depth (m)	% Cascade	% Glide	% Pool	% Riffle
1,186	5.24	1.15	4.04	0.26	0	73	9	18

Metric	Value	Quality Rating
Bankfull width:depth	4.5	n/a
Sinuosity	1.5	n/a
Channel complexity (# habitat units/10x bankfull width)	1.1	Poor
% Pool (by area)	0%	Poor
Pool frequency (mean pool spacing) (channel widths/pool)	0	Poor
Holding pools (adult migration) (pools/km >1 m deep)	2.5	Good
LWD pieces per bankfull width	0.1	Poor
% wood cover in pools	0	Poor

6.3.3 Reach 3

The habitat composition for the 3,399.5 m long Reach 3 was: 48% glide, 44% riffle, 8% pool and 0% cascade (Table 6.5). The average bankfull width was 7.66 m (range of 4.60 to 11.85 m) and the average wetted width was 6.33 m (range of 3.78 to 10.78 m). Mean channel gradient was 1.0%. Reach 3 also had a riffle-pool morphology, and areas of suitable salmonid spawning habitat reported in both abundant and low amounts of spawning gravel as described by habitat unit during the FHAP survey. Reach 3 provided the highest quality spawning habitat out of all three reaches.

 Table 6.5:
 Level 1 - FHAP Summary Table for Reach 3

Distance Surveyed (m)	Bankfull Width (m)	Bankfull Depth (m)	Wetted Width (m)	Wetted Depth (m)	% Cascade	% Glide	% Pool	% Riffle
3,400	7.66	1.3	6.33	0.53	0	48	8	44

Metrics describing habitat quality were either poor or good (Table 6.6). Overall habitat quality was considered to be poor-fair. The low width-to-depth ratio (5.9) suggests the channel may be incised, as with Reach 1 east and west channels (Sections 6.3.1 and 6.3.2). As noted in Reach 1,

this may also be typical for a side channel with a mature riparian forest that may provide the bank stability necessary to allow for a low width-to-depth ratio to develop. Channel complexity was poor with 1.7 mesohabitat units/10x bankfull length. Both % area by pool, and pool frequency were also poor, suggesting that this channel is in a disturbed state. There were 0.2 pieces of LWD per bankfull width, which was considered poor. However, the amount of LWD that acted as cover in pools was considered fair. There were 17 pools identified, 16 of which had depths greater than 1 m. The percentage of pools by area was 9%.

Metric	Value	Quality Rating
Bankfull width:depth	5.9	Good
Sinuosity	1.4	Good
Channel complexity (# habitat units/10x bankfull width)	1.7	Poor
% Pool (by area)	9%	Poor
Pool frequency (mean pool spacing) (channel widths/pool)	21.9	Poor
Holding pools (adult migration) (pools/km >1 m deep)	10.6	Good
LWD pieces per bankfull width	0.2	Poor
% wood cover in pools	5.5	Fair

6.4 Monthly Habitat Assessment

Habitat was assessed as a component of monthly surveys to document general habitat conditions, channel morphology, potential fish spawning and overwintering habitat, and habitat suitable for other aquatic and aquatic-dependent vertebrates (amphibians and piscivorous birds). *In situ* water quality parameters were collected during monthly habitat assessments (Appendix Tables D.1 and D.2).

6.4.1 May and June 2017 (Spring Season)

May and June were dominated by very high flows with the channel bankfull width exceeded and water flowing into the surrounding vegetation above the banks. The water was exceptionally

0

€.

turbid, which limited the effectiveness of spawning surveys since the majority of the substrate could not be viewed. The substrate for all reaches appeared to be dominated by fines. However, potential fish-spawning habitat was noted for Reaches 1 and 3, with Reach 1 being more likely to be used for spawning due to slower velocities at the time. Reach 1 was highly braided, while Reach 3 had vegetated islands. Reach 2 was classified as wetland habitat due to a very low gradient, slower velocities, and a lack of channelization with terrestrial shrubs spread throughout. Reach 2 had the highest likelihood of amphibian use based on habitat. Thompson Creek was flowing into the wetland. Leask Creek and Wolfram Creek had no overland connection.

6.4.2 July and August 2017 (Summer Season)

Flows had receded by July and August, and the east, west, and middle channels of Reach 1 were more defined. Some of the braids in Reach 1 had dried up, especially in August. In July, two wetted channels with no flow were discovered west of the wetland (Section 3.2). Reach 1 had wetted widths ranging from 2.64 to 7.48 m and depths greater than 1 m reported in pools. Reach 3 had wetted widths ranging from 3.78 to 10.78 m. Areas where the water depth was greater than 1 m still remained. At the time of the summer surveys, Thompson Creek was flowing into the wetland. Logging (not conducted by Teck) on the side channel began in July.

Reach 1 substrate was mainly fines and gravel, Reach 2 substrate was predominantly fines, and Reach 3 was predominantly gravel with some cobble. Channel banks were mainly composed of fines for all reaches. Moderate amounts of fish cover were noted for Reaches 1 and 3. In-stream cover was primarily provided by large and small woody debris, and overhanging vegetation. There were suitable sections of salmonid spawning habitat noted in Reach 3, along with two deep (e.g., 1 to 2 m depth) pools (Pool-U-2 and Pool-U-3) that were connected to the main stem Elk River during the summer surveys. These pools went dry from January to April 2018, but would possibly stay wetted in wetter years.

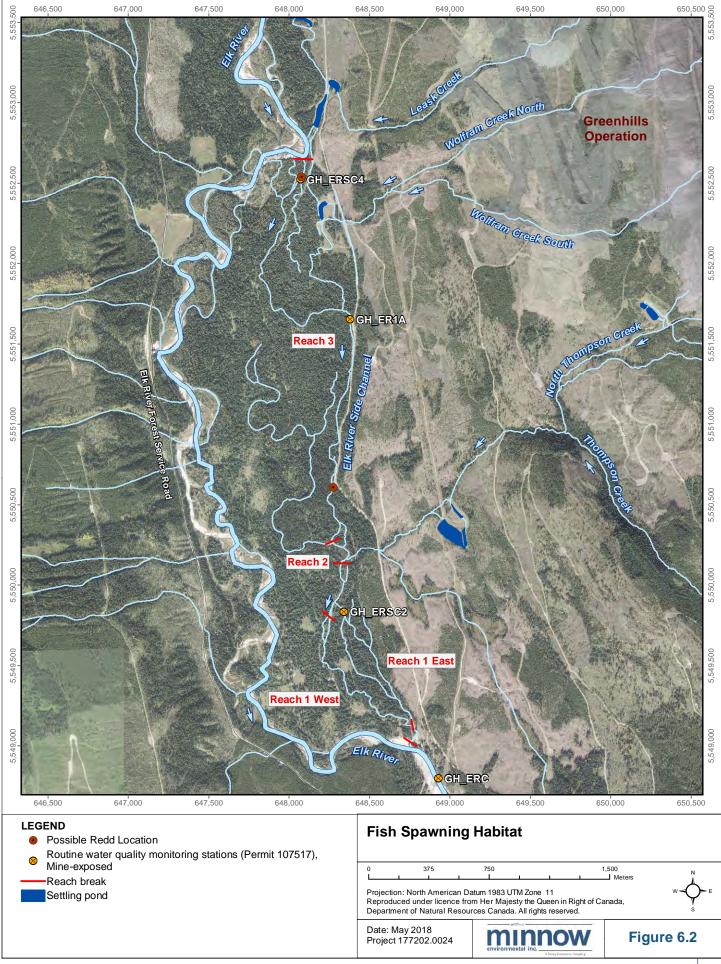
In August, the first isolated pool (Pool-E-1) was located in Reach 1, and was sampled for water quality (Section 4.4). The DO value for the pool was 4.65 mg/L, which is low compared to the BC Water Quality Guideline value of 5 mg/L (Appendix Table D.2), therefore, this pool was not expected to provide long-term habitat for aquatic life.

In August, an additional survey was completed over the floodplain area west of the side channel to the Elk River, as this could not be accessed during high flows in June and July. The area was a complex floodplain with multiple channels and isolated pools. Several wetted and dry braids were documented to split off from the main stem Elk River. None of the braids reconnected with the side channel during the survey. Five isolated pools within the floodplain were found to have stranded fish. One unidentified amphibian (frog or toad) was observed along the Elk River. The floodplain complex was identified as suitable amphibian habitat during the summer.

6.4.3 September and October 2017 (Fall Season)

Flows continued to recede in the fall, and all three channels of Reach 1 were dewatered in September. A survey was conducted in early September as part of benthic invertebrate and sediment sampling (Sections 5, 8.2, and 9), which identified eight pools in the west channel and five pools in the east channel of Reach 1. When the formal monthly habitat assessment was conducted later in September, conditions were drier and there was only one pool on the west channel (Pool-W-2) and seven pools on the east channel (Pool-E-2 to 7, and one unnamed pool that was not sampled for water). Some of these pools included overhead cover for fish provided by small woody debris. The pools were all fairly shallow and likely would not provide overwintering potential. Dissolved oxygen in the east channel pools ranged from 3.51 to 5.29 mg/L, which was at or below the 5 mg/L reported in BC Water Quality Guidelines for embryo/alevin survival. Pool-W-2 had a DO of 11.94 mg/L (Appendix Table D.2), which is suitable for embryo/alevin survival. The outflow of the wetland (i.e., flow from Reach 2 to Reach 1) was also dry in September. The inlet to the wetland still received flow from Reach 3. Reach 3 had a wetted width of 5.73 m near GH_ER1A, and there was moderate fish cover provided by LWD.

A lack of flow prevented identifying any suitable spawning habitat in Reach 1. Reach 3 had suitable spawning habitat, and a potential redd (Figure 6.2), likely from a brook trout, in September (Photo 6.1), though the redd was dry by the October survey.


Thompson Creek was observed to flow into the wetland (Reach 2) throughout September and October surveys.

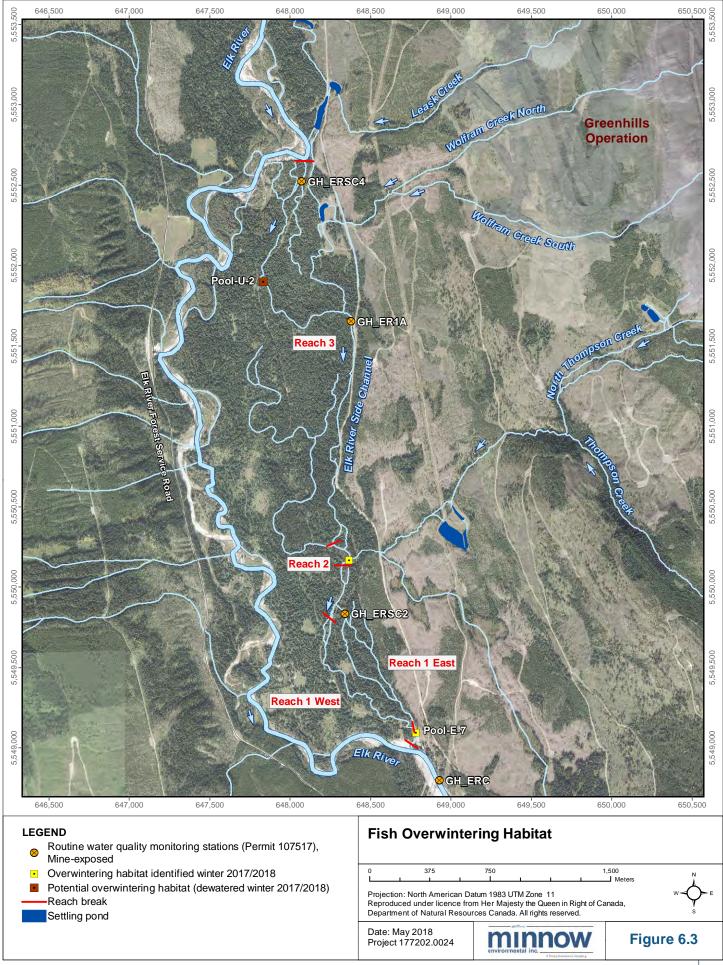
In October, Reach 1 had one isolated pool (Pool-E-7), and there were five isolated pools observed in Reach 3 (Pool-M-1, Pool-M-2, and three non-sampled). Pool-E-7, Pool-M-1, and Pool-M-2 had DO levels ranging from 6.23 to 9.09 mg/L (Appendix Table D.2). The inflow to the wetland was dry, however, Thompson Creek was still flowing into the wetland. The two wetted channels on the wetland identified in July were dry. The wetted width in Reach 3 at GH_ER1A had reduced to 5.6 m. The deep pools (Pool-U-2 and Pool-U-3) in Reach 3 were still present. With Reach 3 dewatering there was less spawning opportunities for fish.

Thompson Creek was observed to flow into the wetland (Reach 2) throughout October surveys.

6.4.4 November 2017 to April 2018 (Winter Season)

Reach 1 had a single pool (Pool-E-7) for the months of November, February, and March. In December, warmer air temperatures lead to the creation of five pools in Reach 1, and four pools in January.

Document Path: S:\Projects\177202\177202.0024 - Teck 2017 GHO LAEMP Implementation\6 - GIS\Report\17-24 Fig 6.2 Fish Spawning.mxd


Photo 6.1: Potential Redd in Reach 3

Reach 2 remained consistent in November to April. Inflow from Reach 3 had stopped, but flow from Thompson Creek persisted. Westslope cutthroat trout were the only vertebrate observed in this reach throughout this period (see Section 6.4).

Dewatering within Reach 3 was first noted in November and first occurred at the downstream end of that reach. Isolated pools were formed and water quality was sampled (Section 2.3.2). With each successive month larger sections of Reach 3 were becoming dewatered. Again, with warmer weather in December 2017, 21 pools were identified in Reach 3. From January to March, Reach 3 had no isolated pools and was dry the entire distance to the Elk River inlet. Snow and ice covered the entire stream.

6.5 Overwintering Habitat

Suitable overwintering habitat was determined based on areas that remained wetted all year (Figure 6.3), with moderate to high DO concentrations (i.e., ideally greater than 5 mg/L). Every isolated pool dewatered at least once from August 2017 to March 2018, with the exception of Pool-E-7 in Reach 1 (downstream of where the east and west channels join Pool-E-7 had low DO values (i.e., 4.14 to 4.81 mg/L) in September, November, and December 2017; however still had open water (approximately 1 m²) and had a DO of 9.31 mg/L in January 2018. In January the water depth was 0.2 m, which would support overwintering for smaller bodied fish. Fish were observed Pool-E-7 in the fall, but winter observations were prevented by snow.

The overwintering potential of the side channel wetland was assessed, and confirmed by observations of three westslope cutthroat trout juveniles during December 2017. In January 2018, the water temperature was 0.3° C, which was low, however other parameters were: DO was 12.50 mg/L, the pH was 7.71, and the specific conductance was 1,709 µs/cm (Appendix Table D.1). The ice thickness was 0.30 m and there was no air space. During the winter, the only water entering the wetland was from Thompson Creek.

Reach 3 was found to be fully dewatered during the January habitat survey and therefore provided no overwintering potential. Pool-U-2 was deeper than 1 m in the summer and fall, and therefore could possibly provide overwintering habitat in wetter years.

7 DISTRIBUTION OF BIOTA

7.1 Overview

Data evaluated in this section are related to addressing key question #3.a (Section 1.2):

What are the effects of GHO discharges from the west-side tributaries on biota (i.e., fish, amphibians, aquatic-feeding birds) in the Elk River and the Elk River side channel?

b. How does the distribution of biota change seasonally? Which isolated pools contain biota?

These data provide information about seasonal habitat use by different biota, which gives context for understanding the relative risk of potential exposure pathways.

7.2 Distribution of Biota

From May 2017 to April 2018, monthly observations were made for biota residing in and along the Elk River, and the Elk River side channel (Table 7.1). The majority of amphibians (Figure 7.1) and birds were observed in Reach 1 and Reach 3. Fish were observed in all three reaches. Isolated pools in Reach 1 and Reach 3 in the fall season (September and October) were found to contain stranded fish. Snow and ice covering the stream prevented biota observations from November 2017 to April 2018, however, in December three juvenile westslope cutthroat trout were observed in the wetland.

7.3 Fish Inventory

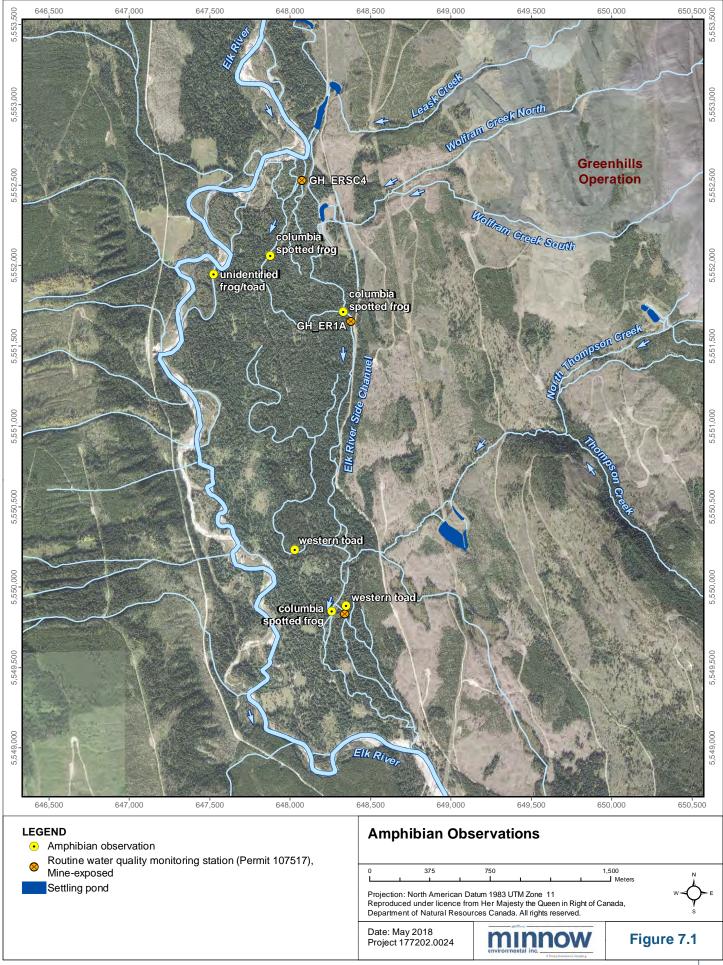
0

€.

Fish inventory sampling was completed in June, July, September, and October (Appendix Tables D.3 to D.5, Appendix D Photo Group 1) at stations ERSC2, ERSCW, and ER1A (Figure 2.3).

Electrofishing could not be conducted in June due to high flows, so only minnow traps were used. No fish were captured in June (Table 7.2 and 7.3). In July, no fish were caught at ERSCW or ER1A, but three species (westslope cutthroat trout, bull trout, and mountain whitefish) were caught at ERSC2 (Table 7.3).

In September, Reach 1 was dewatered with the exception of isolated pools, therefore ERSC2 could not be fished. ERSCW had a minnow trapping CPUE for September with 0.129 fish/hr with all fish being mountain whitefish fry (Table 7.2). The highest monthly electrofishing CPUE for ER1A was also in September at 0.027 fish/s using electrofishing. In Reach 1, four isolated pools were sampled. The CPUE for the four pools ranged from 0.00 to 0.40 fish/s using electrofishing and there were westslope cutthroat trout, brook trout, and mountain whitefish captured (Table 7.4). Mountain whitefish were the dominate species captured.


001

€.

	Observation	2017						
		June	July	August	September	October		
Reach 1								
	unidentified fry	-	25	30	multiple	-		
Fish	unidentified juvenile	-	-	-	multiple	-		
	unidentified adult	-	1	-	-	-		
Amphibian	Columbia spotted frog	-	1	1	-	-		
Amphibian	western toad	1	-	-	-	-		
Birds	mallard	-	-	multiple	-	-		
Reach 2								
Fish	unidentified fry	-	25	-	-	-		
Amphibian	western toad	-	1	-	-	-		
Reach 3								
	mountain whitefish	-	-	-	-	80		
Fish	westslope cutthroat trout	-	1	2	-	-		
	unidentified adult	-	-	3	-	-		
Amphibian	Columbia spotted frog	-	-	1	-	1		
Birds	American dipper	-	-	multiple	-	_		
Elk River								
Amphibian	unidentified	-	-	1	-	-		

Table 7.1:Monthly Biota Observations, May 2017 to April 2018

Note: No biota were observed in May 2017, or throughout the winter season (November 2017 to April 2018) due to snow and ice cover.

Site	# of Traps	Set Date	Pull Date	Species	Total Number Caught	Min. Length (mm)	Max Length (mm)	CPUE (fish/hr)
ERSC2	5	19-Jun-17	21-Jun-17	NFC	0	-	-	-
EROUZ	4	24-Jul-17	25-Jul-17	NFC	0	-	-	-
	5	19-Jun-17	21-Jun-17	NFC	0	-	-	-
	4	24-Jul-17	25-Jul-17	NFC	0	-	-	-
ERSCW	10	26-Sep-17	27-Sep-17	MW	32	50	60	0.129
	5 16-O	16-Oct-17	17-Oct-17	MW	3	57	65	0.029
	5	10-00E-17		LSU	4	46	51	0.039
	5	19-Jun-17	21-Jun-17	NFC	0	-	-	-
ER1A	4	24-Jul-17	25-Jul-17	NFC	0	-	-	-
	5	26-Sep-17	27-Sep-17	MW	10	51	65	0.082
	5	16-Oct-17	17-Oct-17	MW	1	63	63	0.01

Table 7.2:	Fish Inventory	Minnow	Trapping	Summary,	June,	July,	September,	and
October 2017	7			-		-	-	

CPUE - catch-per-unit-effort.

NFC - no fish caught.

MW - mountain whitefish.

LSU - longnose sucker.

Table 7.3:Fish Inventory Electrofishing at Side Channel Stations in July, September,
and October 2017

Site	Date	Distance (m)	Electrofishing Effort (s)	Species	Total Number Caught	Min. Length (mm)	Max Length (mm)	CPUE each species (fish/s)	CPUE all species (fish/s)
ERSC2	24-Jul-17	100	420	WCT	1	100	100	0.002	0.017
				BT	2	135	148	0.005	
				MW	4	40	41	0.01	
	24-Jul-17	100	470	NFC	0	-	-	-	-
ER1A	26-Sep-17	100	476	EB	5	67	85	0.01	0.027
				MW	8	50	60	0.02	
	16 Oct 17	100	581	EB	4	69	80	0.007	
	16-Oct-17			MW	3	54	62	0.005	

CPUE - catch-per-unit-effort.

WCT - westslope cutthroat trout.

BT - bull trout.

MW - mountain whitefish.

EB - brook trout.

NFC - no fish caught.

Site	Date	Distance (m)	Electrofishing Effort (s)	Species	Total Number Caught	Min. Length (mm)	Max Length (mm)	CPUE each species (fish/s)	CPUE all species (fish/s)
Pool-E-7	26-Sep-17	8	100	NFC	0	-	-	-	-
	26-Sep-17	5	80	WCT	4	95	119	0.05	0.13
Pool-E-6				EB	3	121	164	0.04	
				MW	3	51	60	0.04	
Pool-E-5	26-Sep-17	4	82	WCT	1	43	43	0.01	
				MW	18	45	65	0.22	0.25
Pool-E-4	26-Sep-17	2	30	WCT	7	37	110	0.23	
				EB	3	79	144	0.10	0.40
				MW	2	46	58	0.07	

Table 7.4: Fish Inventory Electrofishing in Isolated Pools in September 2017

CPUE - catch-per-unit-effort.

WCT - westslope cutthroat trout. BT - bull trout. MW - mountain whitefish.

EB - brook trout.

NFC - no fish caught.

In October, The first longnose suckers were captured. ERSCW had the highest CPUE of 0.029 MW/hr and 0.39 LSU/hr using minnow trapping. ER1A had a CPUE of 0.012 fish/s and both brook trout and mountain whitefish were captured using electrofishing.

As water levels receded in reaches 1 and 3, the CPUE of ERSCW was the highest. This may suggest that Reach 2 provides important late season fish habitat.

7.4 Fish Community

Additional biota distribution data were collected using fish community (density) surveys in two main areas: ERSC2 and ER1A (Figure 2.3, Appendix Tables D.6 and D.7). Within ERSC2, three habitat units were sampled: two glides and one riffle. Mountain whitefish fry were most abundant in this area, but a single adult brook trout was also captured (Table 7.5). Fish density was greatest at the second glide (ERSC2-G2; Table 7.5). At ERSCW, the fish density survey was conducted using a mark and recapture method (Appendix Table D.8); however, density could not be calculated, as none of the fish were recaptured. Twenty-one mountain whitefish fry were captured in the area (Appendix Tables D.6 and D.7). Within the ER1A area, the fish community survey was completed on two glides and one riffle (Table 7.5). In total, seven whitefish fry were captured (Table 7.5, Appendix Tables D.6 and D.7). Fish were found throughout the side channel, with mountain whitefish fry most abundant, and density much higher at area ERSC2 compared to ERA1 (Table 7.5).

Reach	Habitat Type	Site Code	Sample Length (m)	Total EF Seconds	Species	Total Caught	Min (mm)	Max (mm)	Density (fish/100m²)
1	G	ERSC2-G1	28.8	1,032	MW	3	46	55	2.99
1	R	ERSC2-R	28.9	1,619	EB	1	157	157	0.53
1	R	ERSC2-R	28.9	1,619	MW	9	46	54	4.8
1	G	ERSC2-G2	14.52	926	MW	35	45	55	54.1
3	G	ER1A-G1	15.67	1,054	MW	1	45	45	0.85
3	G	ER1A-G2	24.7	1,291	MW	3	48	53	3.03
3	R	ER1A-R	23.2	1,007	MW	3	54	57	1.87

Table 7.5: Fish Community Electrofishing Sampling Summary

EF - electrofishing.

G - glide.

R - riffle.

MW - mountain whitefish.

€

EB - brook trout.

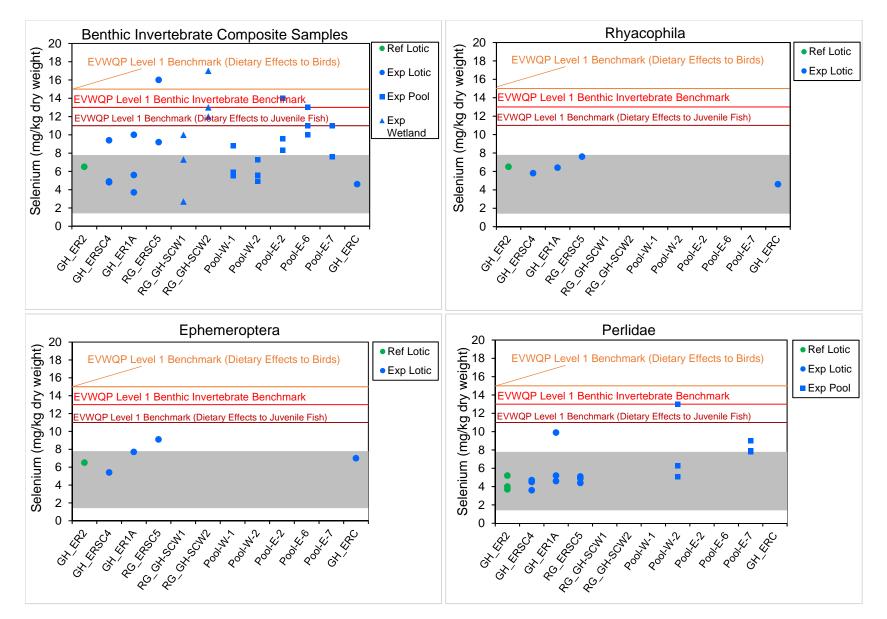
8 SELENIUM IN TISSUE

8.1 Overview

Data evaluated in this section pertain to key question #3.c (Section 1.2):

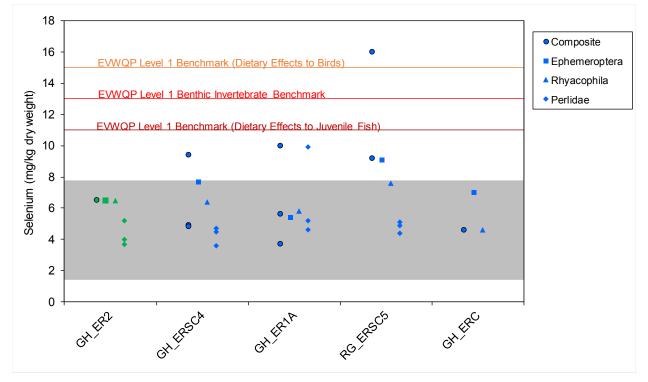
What are the effects of GHO discharges from the west-side tributaries on biota (i.e., fish, amphibians, aquatic-feeding birds) in the Elk River and the Elk River side channel?

c. What are the fish and benthic invertebrate tissue selenium concentrations?


8.2 Benthic Tissue Selenium

Benthic invertebrate tissue samples were collected in September for analysis of selenium concentrations from main stem Elk River stations, side channel stations, isolated pools, and the side channel wetland (Figure 2.1). At the time of sampling, isolated pools were only located in Reach 1 West and Reach 1 East (Appendix Figure A.3), and Reaches 1 and 2 were entirely wetted. Selenium concentrations in benthic invertebrate composite tissue samples were compared to EVWQP Level 1 benchmarks and the normal range (Figure 8.1, Appendix Tables E.1 to E.6). Although the EVWQP Level 1 benchmarks and the normal range were calculated based on community composites, and are therefore not directly applicable to taxa-specific samples, the benchmarks and normal range were also provided for comparison to taxa-specific samples (Figure 8.1).

Selenium concentrations of some of samples collected from RG_ERSC5, RG_GH-SCW2, Pool-E-2, and Pool-E-6 were greater than the EVWQP Level 1 benchmarks for either benthic invertebrates, dietary effects to juvenile fish, and/or dietary effects to birds, with highest concentrations measured in the samples collected at RG_GH-SCW2, which is directly influenced by Thompson Creek on the side channel wetland (Figure 8.1). The elevated concentrations measured at RG_ERSC5 were likely due to a higher proportion of annelids (segmented worms) in the samples relative to other areas. Annelids have previously been shown to exhibit higher concentrations of selenium compared to other benthic organisms, even at reference areas (Minnow 2016b, 2018).


Concentrations of selenium in tissues were variable within stations, but were generally similar between community composite samples and single taxon samples (Figure 8.2). Triplicate individual Perlidae samples showed similar variability within stations as composites, indicating that single taxon samples would not provide greater resolution for tracking changes over time (Figures 8.1 and 8.2; Minnow 2018a).

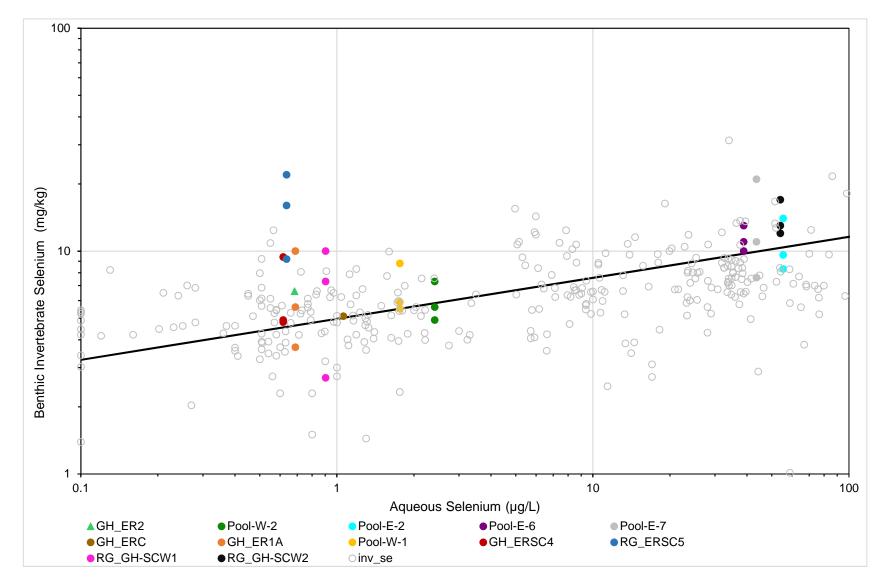
Within isolated pools, composite tissue selenium concentrations were higher in samples from the most eastern channel relative to samples from the western channel (Figure 8.1), which

Figure 8.1: Selenium Concentrations in Benthic Invertebrate Samples, 2017

Note: Gray shading represents the reference area normal range defined as the 2.5th and 97.5th percentiles of the distribution of reference area (pooled 1996 to 2015 data) reported in the RAEMP (Minnow 2018). Benchmarks and the reference area normal range were calculated for community composite samples, but are provided on taxa-specific samples for comparison.

Figure 8.2: Selenium Concentrations in Benthic Invertebrate Samples, 2017

Note: Gray shading represents the reference area normal range defined as the 2.5th and 97.5th percentiles of the distribution of reference area (pooled 1996 to 2015 data) reported in the RAEMP (Minnow 2018). Benchmarks and the reference area normal range were calculated for community composite samples. Reference sites are shown in green.


corresponds with the patterns observed in water quality (Figure 4.5), but not sediment quality (Figure 5.2).

Concentrations of selenium in tissues were similar at the downstream main stem station (GH_ERC) and the mainstem reference station (GH_ER2), suggesting no influence on benthic invertebrates downstream of the side channel, despite relatively higher concentrations occurring in benthic invertebrates within the side channel (Figure 8.1 and 8.2).

Benthic invertebrate tissue selenium data collected for the 2017 GHO LAEMP were evaluated relative to the EVWQP selenium bioaccumulation model (Golder 2018b). Generally, the 2017 GHO LAEMP data were within the scatter of data used to create the model (Figure 8.3).

8.3 Fish Tissue Selenium

Extensive effort was given to fishing the side channel (Sections 7.3 and 7.4), but only a single fish was caught that was the correct size and species to sample for tissue. The single bull trout muscle sample had a selenium concentration of 5.9 mg/kg dw, which was well below the EVWQP Level 1 effect benchmark (Teck 2014a).

Figure 8.3: Observed and Modelled^a Selenium Concentrations in Benthic Invertebrate Composite Samples Relative to Aqueous Selenium Concentrations At Stations Upstream and Downstream of Greenhills Operations, September 2017

Modelled Benthic Invertebrate Selenium Concentration

^a Benthic invertebrate selenium concentrations were estimated using a one-step water to benthic invertebrate selenium accumulation model: log₁₀[Se]_{benthicinvertebrate}=0.696+0.184xlog₁₀[Se]_{aq} (Golder 2018).

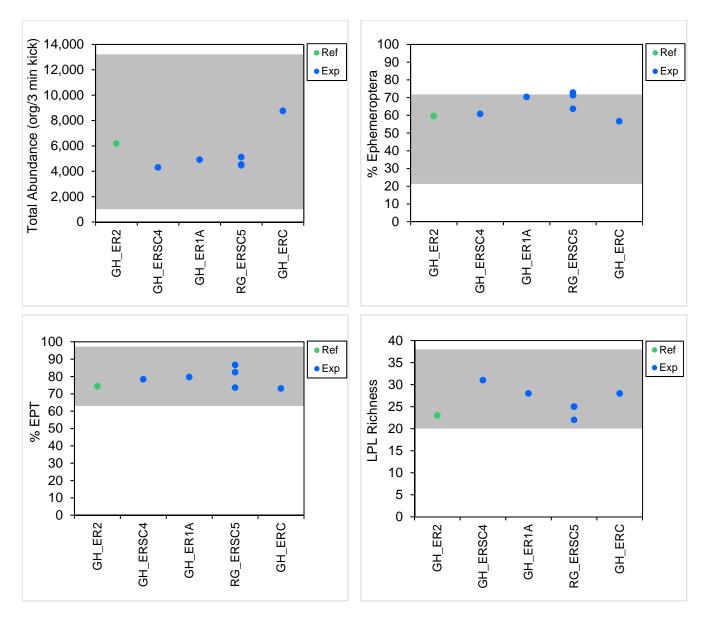
Note: Triangles indicate reference stations and circles indicate mine-exposed stations.

9 BENTHIC INVERTEBRATE COMMUNITY AND BIOMASS

9.1 Overview

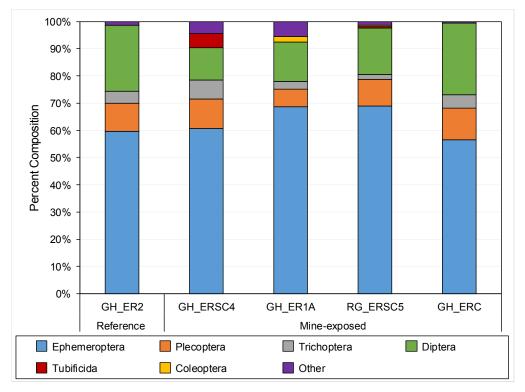
Data evaluated in this section pertain to key question #3.d (Section 1.2):

What are the effects of GHO discharges from the west-side tributaries on biota (i.e., fish, amphibians, aquatic-feeding birds) in the Elk River and the Elk River side channel?


d. What are benthic invertebrate community compositions and biomass along the side channel? How do benthic invertebrate community compositions compare between perennially wetted and seasonally isolated wet areas?

Benthic invertebrate community samples were collected using kick and sweep (Appendix Table F.3) as well as Hess (Appendix Table F.4) methods for perennially wetted main stem stations GH_ER2 and GH_ERC, and for side channel stations GH_ERSC4, GH_ER1A, and RG_ERSC5.

9.2 Community


Benthic invertebrate community endpoints determined from kick and sweep samples were compared to the normal range (Figure 9.1). Total abundance, richness, % EPT and % Ephemeroptera (% E) were within or above the normal range at all stations/areas. Community endpoints also did not differ greatly between perennially-wetted main stem stations GH_ER2 and GH_ERC, and seasonally-isolated side channel stations GH_ERSC4, GH_ER1A, and RG_ERSC5. % E and % EPT were the same upstream (GH_ER2) and downstream (GH_ERC) of the side channel, while total abundance and richness were slightly higher downstream (Figure 9.1), suggesting minimal (if any) influence of the west side tributaries/side channel on main stem benthic invertebrate communities.

Comparison of the composition of major benthic invertebrate taxonomic groups among mine-exposed and reference areas indicated that proportions were generally consistent between areas (Figure 9.2 and 9.3). Proportions were also generally consistent among perennially wetted stations (GH_ER2 and GH_ERC) and seasonally wetted stations (GH_ERSC4, GHER1A, and GH_ERSC5), except for a greater proportion of Coleoptera in samples from the seasonally wetted stations (Figure 9.2 and 9.3). Proportions were also similar between sample methods (Figures 9.2 and 9.3). Overall, the data suggest that the benthic invertebrate communities in the side channel and at the main stem location downstream of the side channel are not adversely affected by mine-related discharges.

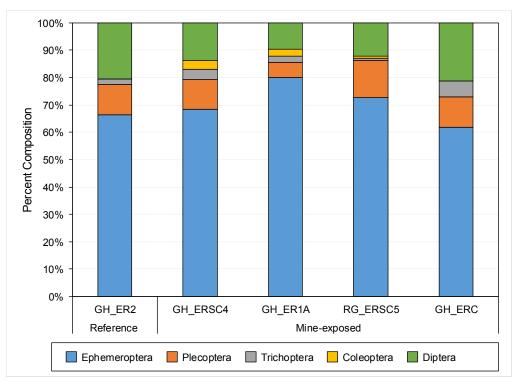


Figure 9.1: Key Benthic Invertebrate Community Endpoints for Reference and Mine-exposed Areas Collected by the CABIN Kick and Sweep Method, Relative to the Normal Range, 2017

Note: Gray shading represents the reference area normal range defined as the 2.5th and 97.5th percentiles of the distribution of reference area (pooled 2012 and 2015 data) reported in the RAEMP (Minnow 2018).

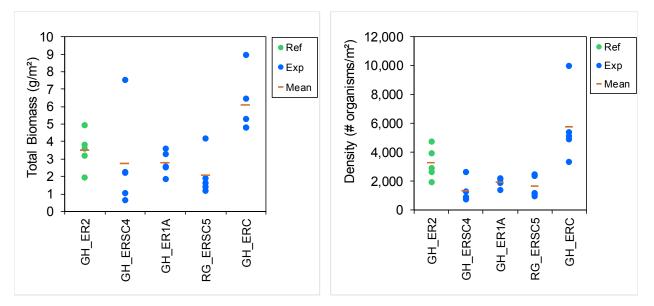

Figure 9.2: Percent Composition of Major Benthic Invertebrate Taxonomic Groups among Reference and Mine-exposed Areas using the CABIN Kick and Sweep Method, September 2017

Figure 9.3: Percent Composition of Major Benthic Invertebrate Taxonomic Groups among Reference and Mine-exposed Areas using Hess Sampling, September 2017

9.3 Biomass and Density

Benthic invertebrate total biomass and density were determined for Hess samples (Figure 9.4). Side channel biomass and density means were lower than the mean for the upstream main stem reference station GH_ER2, while the downstream main stem station GH_ERC means were greater than reference. The ranges of biomass values generally overlapped for all stations. The ranges of density values were smaller for side channel stations compared to the main stem stations. The ranges of density values at the three side channel station overlapped with the GH_ER2 range, but were lower than the GH_ERC range. Biomass and density at the side channel stations are likely lower due to the seasonality of the side channel, with these three stations becoming dry for several months of the year (Section 3.2, Appendix Figures A.1 to A.8). Overall, the data suggest that benthic invertebrate biomass and density in the side channel and at GH_ERC are not adversely affected by mine-related discharges.

Figure 9.4: Total Biomass and Density of Benthic Invertebrates for Reference and Mineexposed Areas Collected by Hess Sampling, 2017

- -

-C -

10 INTEGRATED SUMMARY AND RECOMMENDATIONS

The Elk River side channel was observed to undergo substantial seasonal flooding and braiding, with highly variable flow throughout the year. Portions of the side channel flow went sub-surface during low flow periods, resulting in isolated surface pools with different water quality and biological characteristics than in flowing portions. Hydrology surveys and water quality assessments suggested that the side channel flow was predominantly influenced by the Elk River itself, rather than the tributaries, with the exception of the side channel wetland at the mouth of Thompson Creek.

Within the side channel and its floodplain complex, surveys were completed to identify and document habitat and occurrences of aquatic-dependent biota. Fish spawning habitat was limited downstream of the side channel wetland, but was abundant in parts of the side channel upstream of the wetland. Overwintering habitat was present only in the side channel wetland and potentially one isolated pool (Pool-E-7). Habitat surveys indicated that limited lentic habitat was available for amphibians during the spring, as much of the side channel and floodplain complex were flooded and flowing. During summer and fall, and lentic amphibian habitat was provided by the side channel wetland, with additional limited habitat provided by ephemeral isolated pools that typically persisted for less than a month. During this time, the side channel complex was dry. Habitat was available for aquatic-feeding birds in the side channel and floodplain complex from spring to fall. Surveys for aquatic-dependent biota determined that the side channel was being used by a variety of fish (bull trout, eastern brook trout, longnose sucker, mountain whitefish, and westslope cutthroat trout), amphibians (Columbia spotted frog, western toad), and birds (American dipper, mallard).

Water quality and sediment quality were compared between main stem Elk River, Elk River side channel, and isolated pools. Discharges from the west-side tributaries contributed to higher concentrations of Order constituents (i.e., dissolved cadmium, nitrate, total selenium, and sulphate) and total nickel in water in the downstream main stem Elk River (GH_ERC); however, concentrations measured at GH_ERC were well below EVWQP Level 1 benchmarks (cadmium, nitrate, selenium, and sulphate) and preliminary IC₂₅ values for nickel. Water quality at side channel stations GH_ER1A and GH_ERSC2 was influenced by Wolfram and Thompson creeks. Water quality in pools was highly dependent on location, with the highest concentrations of Order constituents occurred in the side channel wetland. The highest concentrations of Order constituents occurred in the side channel wetland (receives flow directly from Thompson Creek). Sediment quality data suggested limited influence of mine-related discharges on sediment chemistry in the side channel and the main stem location downstream of the side channel.

Effects of the side channel and discharges from the west-side tributaries on aquatic health were assessed using benthic invertebrate and fish tissue chemistry (selenium), and benthic invertebrate community structure and biomass endpoints. Some benthic invertebrate tissue selenium samples collected from RG ERSC5, RG GH-SCW2, Pool-E-2, and Pool-E-6 were above the EVWQP Level 1 benchmarks for either benthic invertebrates, dietary effects to juvenile fish, and/or dietary effects to birds, with highest concentrations measured in the samples collected at RG GH-SCW2. RG GH-SCW2 is in the side channel wetland and is directly influenced by Thompson Creek. Concentrations of selenium in benthic invertebrate tissues were similar at the downstream main stem station and the main stem reference station, suggesting no influence of the side channel on benthic invertebrate tissue selenium downstream of the side channel, despite higher concentrations observed in benthic invertebrates within the side channel. Selenium was only measured in a single fish (bull trout) tissue sample collected in the side channel, with concentrations well below effect thresholds. Results for the benthic invertebrate community structure, biomass, and abundance data were similar in the side channel and the main stem location downstream of the side channel, and were within normal range, indicating that communities were not adversely affected by mine-related discharges.

Overall, the results indicated that the west-side tributaries had no effect on biota in the main stem Elk River, and minimal effects on biota within the Elk River side channel, side channel wetland, and isolated pools. The key questions associated with the GHO LAEMP will be updated in the 2018 to 2020 study design, and the program will continue to assess relevant site-specific issues, as required, until sufficient data have been collected, concerns no longer exist, or monitoring can be incorporated into the RAEMP.

The following recommendations are made for the 2018 to 2020 GHO LAEMP study design:

- Design the program to address AMP Management Questions #2 (currently worded as "Will aquatic ecosystem health be protected by meeting the long-term site performance objectives?") and #5 (currently worded as "Does monitoring for mine-related effects indicate that the aquatic ecosystem is healthy?").
- Conduct an additional year of surface water hydrology monitoring to better understand the connection between the west-side tributaries, Elk River side channel, and main stem Elk River;
- Conduct an additional year of vertebrate surveys throughout the side channel to characterize use by biota;
- Continue to assess surface water quality;

- Assess the interaction between surface water and groundwater in the Elk River side channel using data from the GHO Annual Groundwater Study. Update the GHO Groundwater monitoring program to address any data gaps relating to the GHO LAEMP.
- Monitor benthic invertebrate community structure and tissue chemistry in the side channel and main stem Elk River over time.
- Complete an in-depth assessment of the side channel wetland (to be conducted as part of the Lentic Area Supporting Study; Minnow 2018b).

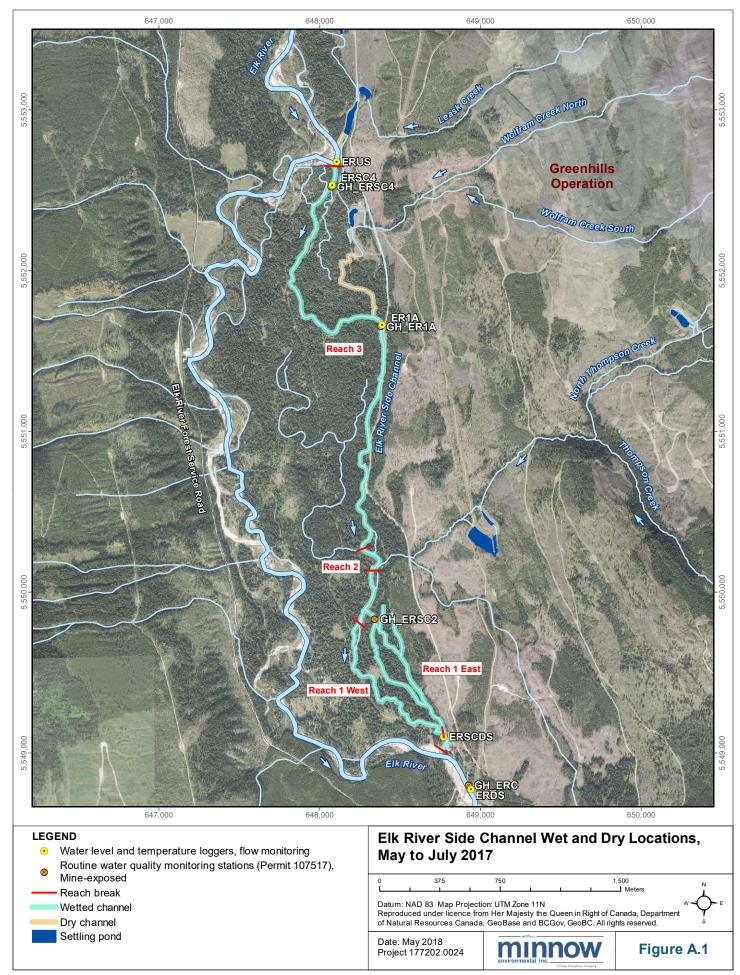
11 REFERENCES

0

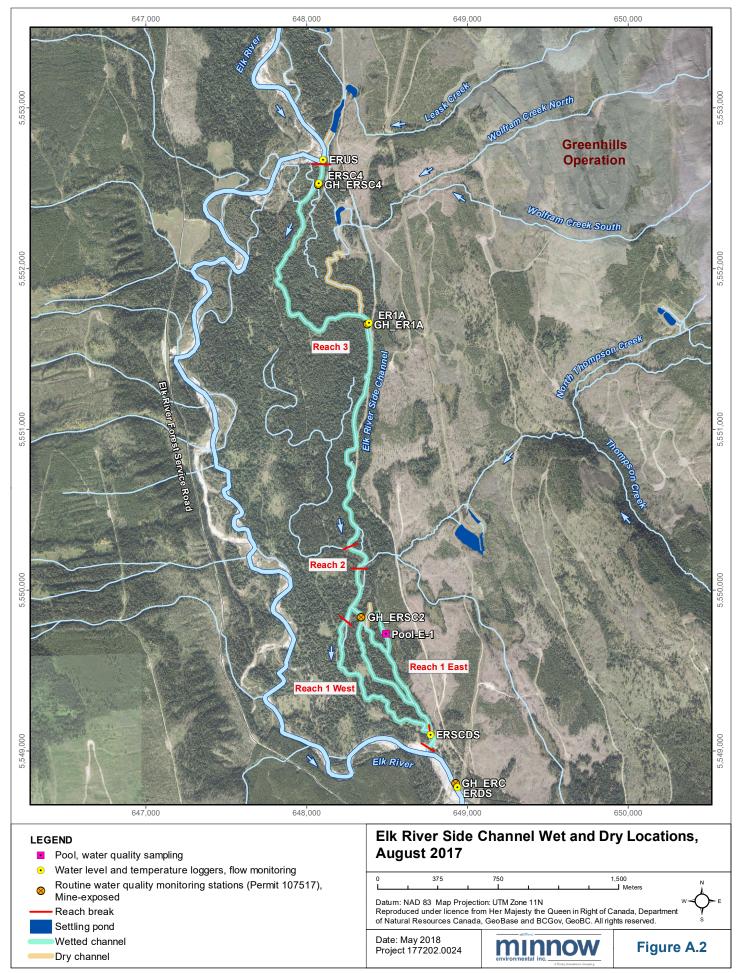
- Bartels, J.M., and D.L. Sparks. 2009. Methods of Soil Analysis: Chemical Methods, Part 3. Soil Science Society of America. 1390 pp.
- BCMOE (British Columbia Ministry of Environment). 2015. Working Water Quality Guidelines for British Columbia. Available at: http://www2.gov.bc.ca/assets/gov/environment/ air land water/water/waterquality/waterqualityguidesobjs/final_2015_wwqgs_26_nov_2015.pdf.
- BCMOE (British Columbia Ministry of Environment). 2018a. Amphibians in BC. Available at: https://www2.gov.bc.ca/gov/content/environment/plants-animalsecosystems/wildlife/wildlife-conservation/amphibians-reptiles/amphibians-in-b-c. Accessed March 2018.
- BCMOE. 2018b. British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture. Summary Report. 37 pp.
- BCMOE. 2018c. Habitat Wizard Fish and Fish Habitat Database. Available at: http://www.env.gov.bc.ca/habwiz/. Accessed March 2018.
- BCMOE. 2018d. iMapBC [online]. Available from http://maps.gov.bc.ca/ess/sv/imapbc/ [accessed February 23, 2018].
- BCMOE. 2018e. Species Inventory Web Explorer (SIWE) [online]. Available from http://www.env.gov.bc.ca/wildlife/wsi/siwe.htm [accessed February 23, 2018].
- BCMOE. 2018f. BC Species and Ecosystem Explorer [online]. Available from http://a100.gov.bc.ca/pub/eswp/ [accessed March 2018].
- Downs, C.C., White, W.G. and B.B. Shepard. 1997. Age at sexual maturity, sex ratio, fecundity, and longevity of isolated headwater populations of Westslope Cutthroat Trout. North American Journal of Fisheries Management. 17(1): 85-92.
- Environment Canada. 2012a. Field Manual: Wadeable Streams. Canadian Aquatic Biomonitoring Network (CABIN).
- Environment Canada. 2012b. Metal Mining Technical Guidance for Environmental Effects Monitoring. ISBN 978-1-100-20496-3.
- Environment Canada. 2014. Laboratory Methods: Processing, Taxonomy, and Quality Control of Benthic Macroinvertebrate Samples. Canadian Aquatic Biomonitoring Network (CABIN). May.
- Golder (Golder Associates Ltd.). 2014. Benchmark Derivation Report for Selenium. Annex E of the Elk Valley Water Quality Plan. Prepared for Teck Coal Ltd., Sparwood, BC.
- Golder. 2018a. 2017 Chronic Toxicity Program Elk Valley Testing to Satisfy Permit Requirements. Prepared for Teck Coal Ltd., Sparwood, BC. April.
- Golder. 2018b. Elk Valley Selenium Bioaccumulation Model Update. Prepared for Teck Coal Ltd., Sparwood, BC. January. Project 1523293/1321.
- Isaac, L.-A. 2018a. Senior Wildlife Biologist, VAST Resource Solutions. Telephone conversation with Amy Wiebe (Minnow Environmental Inc.). March 27, 2018.
- Isaac, L.-A. 2018b. Senior Wildlife Biologist, VAST Resource Solutions. Email correspondence with Amy Wiebe (Minnow Environmental Inc.). March 15, 2018.

- Johnston, N.T. and P.A. Slaney. 1996. Fish habitat assessment procedures. Watershed Restoration Tech. Circ. No. 8. Ministry of Environment, Lands and Parks and Ministry of Forests, Vancouver, BC.
- Kennedy, B.M., Peterson, D.P. and K.D. Fausch. 2003. Different life histories of Brook Trout populations invading mid-elevation and high-elevation Cutthroat Trout streams in Colorado. Western North American Naturalist. 63(2): 215-223.
- McKay, A. and M.D. Robinson. 2014. Westslope Cutthroat Trout HSI model validation 2014 spawning survey summary results. Prepared by Lotic Environmental Ltd for Teck Coal Ltd. 4 pp + appendices.
- McPhail, J.D. 2007. The Freshwater Fishes of British Columbia. University of Alberta Press. Edmonton, AB. ISBN: 978-0-88864-467-1: p.126-132; 162-168.
- Minnow (Minnow Environmental Ltd.). 2003. Selenium study of lentic areas in the Elk Valley (draft). Prepared for Elk Valley Selenium Task Force, Mississauga, ON.
- Minnow. 2014. 2012 Aquatic Monitoring Program Report. Prepared for Teck Coal Limited, Sparwood, BC. Project 2456.
- Minnow. 2016a. Data Report for the Tributary Evaluation Program (DRAFT). Report Prepared for Teck Coal Limited, Sparwood, BC. June. Project 157202.0080.
- Minnow. 2016b. Evaluation of Selenium Sensitivity of Spotted Sandpipers Breeding in the Elk River Watershed of Southeastern British Columbia. Prepared For: Teck Resources Limited, Sparwood, BC. February. Project 2488.
- Minnow. 2017. Study Design (2017) for Local Aquatic Effects Monitoring Program (LAEMP) at Teck's Greenhills Operation. Prepared for Teck Coal Limited, Sparwood, BC. May. Project 16-92.
- Minnow. 2018a. Elk River Watershed Regional Aquatic Effects Monitoring Program (RAEMP) Report, 2015-2016. Prepared for Teck Coal Limited, Sparwood, BC. January. Project 2561.
- Minnow. 2018b. Study Design for the Lentic Area Supporting Study, 2018 to 2020. Prepared for Teck Coal Limited, Sparwood, British Columbia. March. Project 177202.0053
- Minnow and Lotic (Minnow Environmental Inc. and Lotic Environmental). 2017. Study Design (2017) for Local Aquatic Effects Monitoring Program (LAEMP) at Teck's Greenhills Operation. Report Prepared for Teck Coal Limited, Sparwood, BC. May. Project 167202.0092.
- R Core Team. 2017. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.
- RISC (Resource Inventory Standards Committee). 2001. Reconnaissance (1:20,000) Fish and Fish Habitat Inventory: Standards and Procedures. The Province of British Columbia. 170 pp.
- RISC. 2009. Manual of British Columbia Hydrometric Standards. 137 pp.

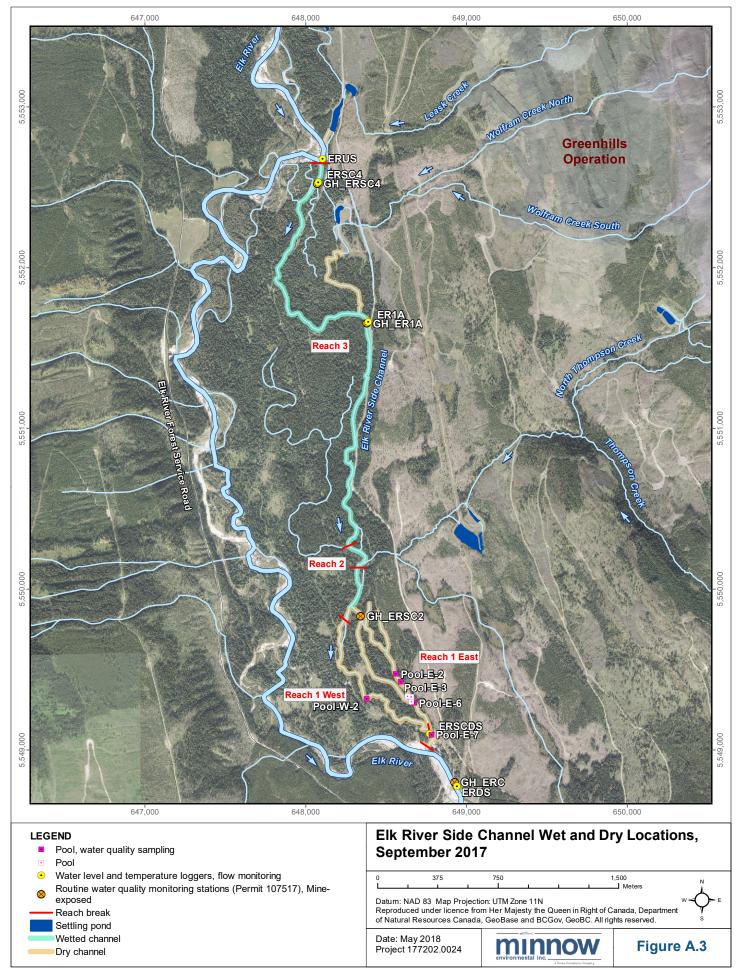
0

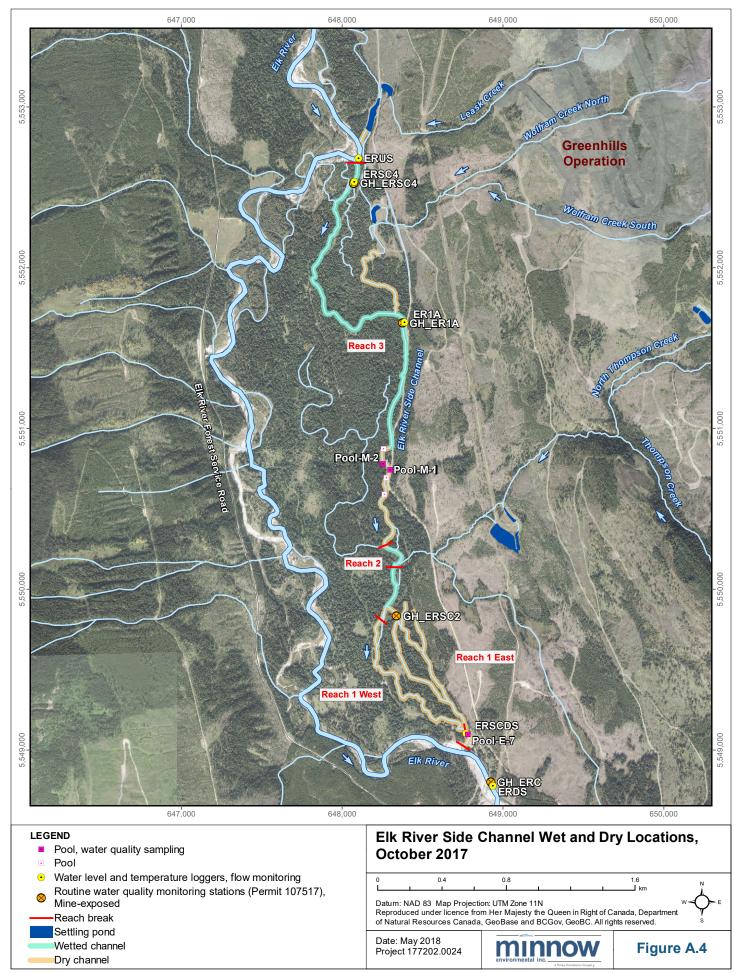

- Robinson, M.D. 2014. Elk River Juvenile Westslope Cutthroat Trout (*Oncorhynchus clarkii lewisi*) Population Assessment. Prepared by Lotic Environmental Ltd for Teck Coal Ltd. 30 pp.
- Robinson, M.D. and K. Atherton. 2016. Teck Coal Ltd 2016-2018 Calcite Monitoring Program. Prepared by Lotic Environmental Ltd. and Teck Coal Ltd. 10 pp + appendices.

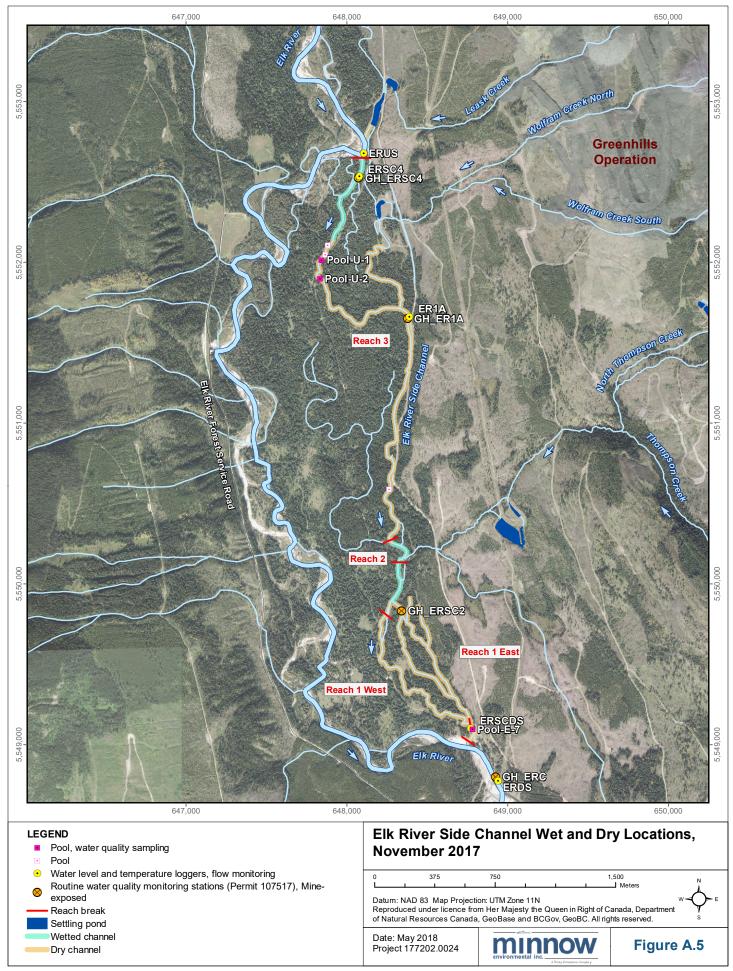
- Robinson, M.D. and T. Arnett. 2014. Elk River Watershed Longnose Sucker (*Catostomus*) *catostomus*) Population Assessment. Prepared by Lotic Environmental Ltd for Teck Coal Ltd. 13 pp.
- Sanders, R.E., R.J. Miltner, C.O. Yoder, and E.T. Rankin. 1999. The use of external deformities, erosion, lesions, and tumors (DELT anomalies) in fish assemblages for characterizing aquatic resources: A case study of seven Ohio streams. In: T.P. Simon (Ed.), pp: 225-246, Assessing the sustainability and biological integrity of water resources using fish communities. CRC Press, Boca Raton, FL.
- Schmetterling, D.A. 2000. Management Briefs: Redd characteristics of fluvial Westslope Cutthroat Trout in four tributaries to the Blackfoot River, Montana. North American Journal of Fisheries Management. 20: 776-783.
- Smithson, J. and M.D. Robinson 2017. Line Creek Aquatic Monitoring Program (2016). Prepared for Teck Coal Ltd. Line Creek Operations. Prepared by Lotic Environmental Ltd. 24 pp. and 6 appds.
- Teck. 2014a. Elk Valley Water Quality Plan. Prepared for the British Columbia Minister of Environment. July.
- Teck. 2014b. Greenhills Operations West Spoil Expansion Phase 1. Permit Amendment Application. Prepared for the Ministry of Energy and Mines. May.

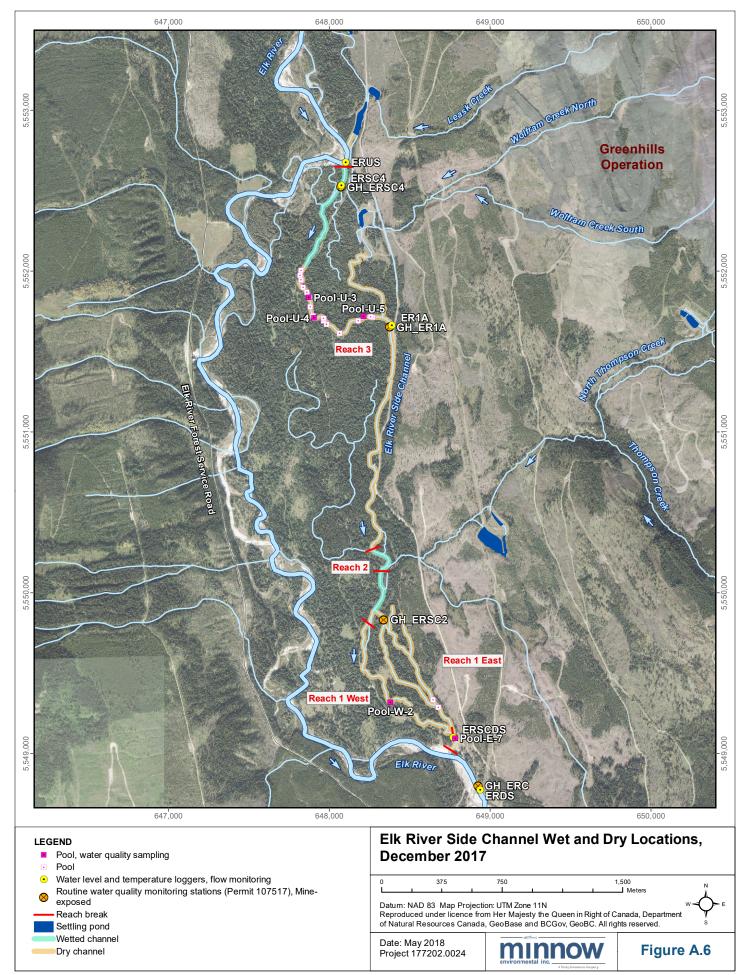

Teck. 2015. Greenhills Operations Cougar Pit Extension. Permit Amendment Application. Prepared for the Ministry of Energy and Mines.

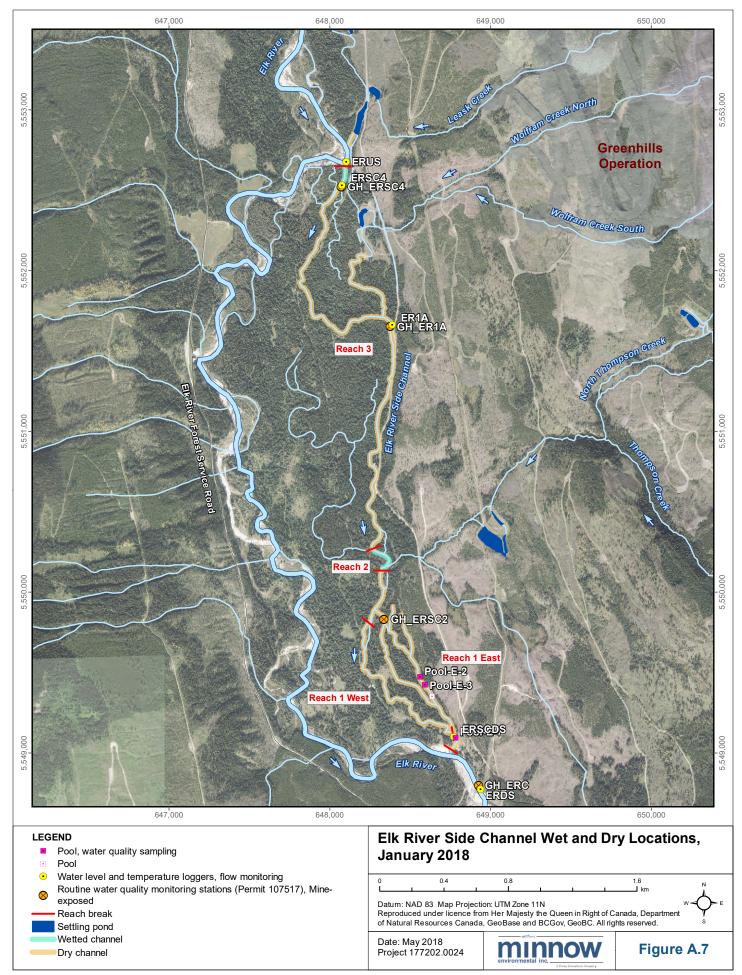
- Teck. 2016a. Water Quality Adaptive Management Plan for Teck Coal Operations in the Elk Valley. July.
- Teck. 2016b. Measurement of the Calcite Index. Standard Practices and Procedures TC-CI-01.
- Teck. 2018. Permit 107517 Annual Water Quality Monitoring Report. Submitted to BCMOE on March 31, 2018.
- Yau, M.M. and E.B. Taylor. 2014. Cold tolerance of Westslope Cutthroat Trout (*Oncorhynchus clarkii lewisi*) and rainbow trout (*Oncorhynchus mykiss*) and its potential role in influencing interspecific hybridization. Can. J. Zool. 92: 777-784.

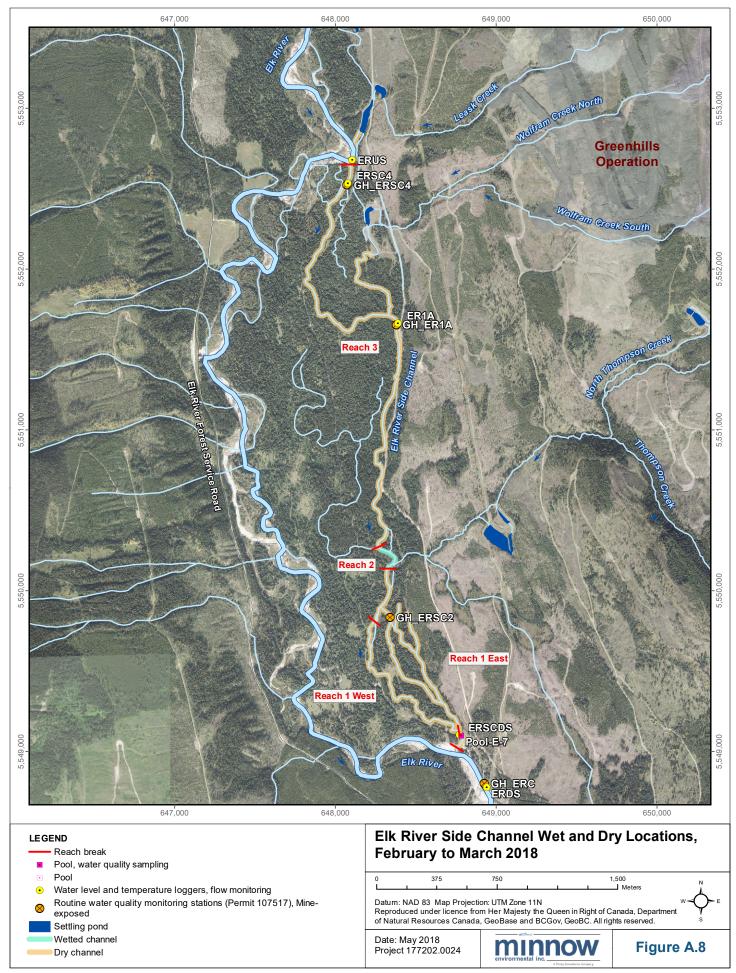

APPENDIX A HYDROLOGY


Document Path: S:\Projects\177202\177202.0024 - Teck 2017 GHO LAEMP Implementation\6 - GIS\Report\17-24 Fig A.1 Elk Side Channel Wet and Dry.mxd


Document Path: S:\Projects\177202\177202.0024 - Teck 2017 GHO LAEMP Implementation\6 - GIS\Report\17-24 Fig A.2 Elk Side Channel Wet and Dry.mxd


Document Path: S:\Projects\177202\177202.0024 - Teck 2017 GHO LAEMP Implementation\6 - GIS\Report\17-24 Fig A.3 Elk Side Channel Wet and Dry.mxd


Document Path: S:\Projects\177202\177202.0024 - Teck 2017 GHO LAEMP Implementation\6 - GIS\Report\17-24 Fig A.4 Elk Side Channel Wet and Dry.mxd


Document Path: S:\Projects\177202\177202.0024 - Teck 2017 GHO LAEMP Implementation\6 - GIS\Report\17-24 Fig A.5 Elk Side Channel Wet and Dry.mxd

Document Path: S:\Projects\177202\177202.0024 - Teck 2017 GHO LAEMP Implementation\6 - GIS\Report\17-24 Fig A.6 Elk Side Channel Wet and Dry.mxd

Document Path: S:\Projects\177202\177202.0024 - Teck 2017 GHO LAEMP Implementation\6 - GIS\Report\17-24 Fig A.7 Elk Side Channel Wet and Dry.mxd

Document Path: S:\Projects\177202\177202.0024 - Teck 2017 GHO LAEMP Implementation\6 - GIS\Report\17-24 Fig A.8 Elk Side Channel Wet and Dry.mxd

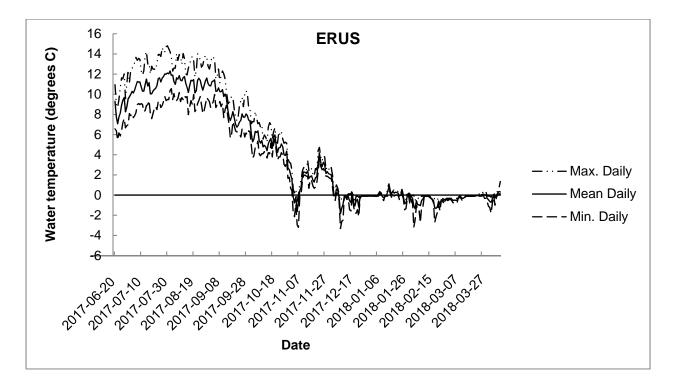


Figure A.9: Water Temperature Record for ERUS

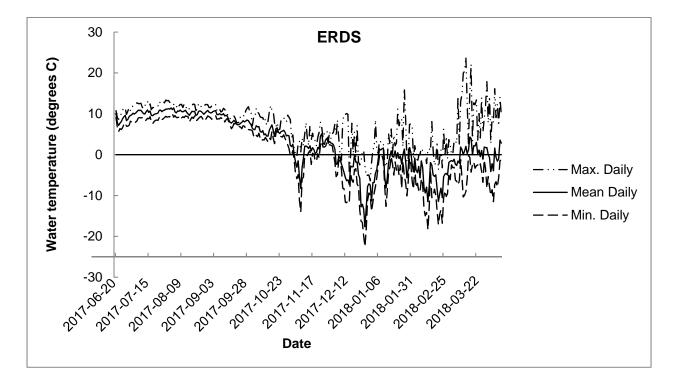


Figure A.10: Water Temperature Record for ERDS

Figure A.11: Water Temperature Record for ER1A

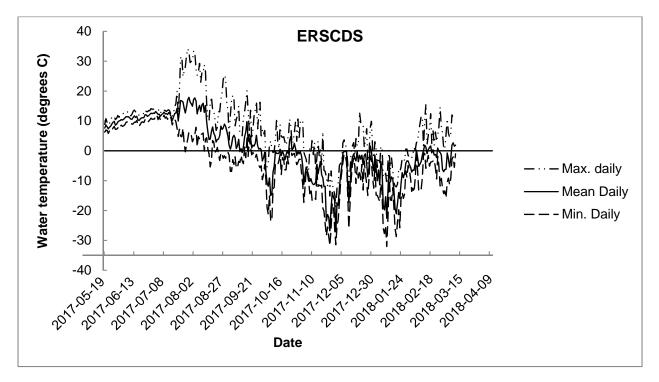


Figure A.12: Water Temperature Record for ERSCDS

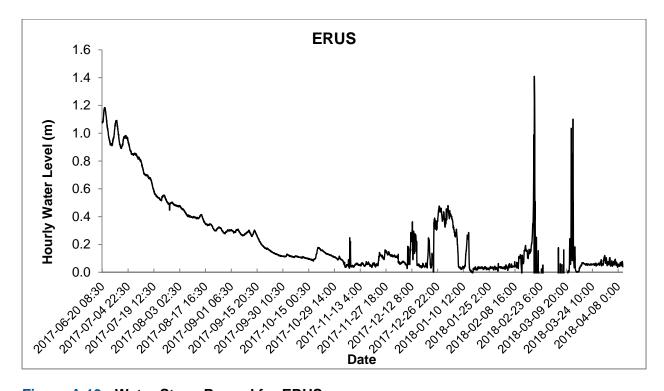
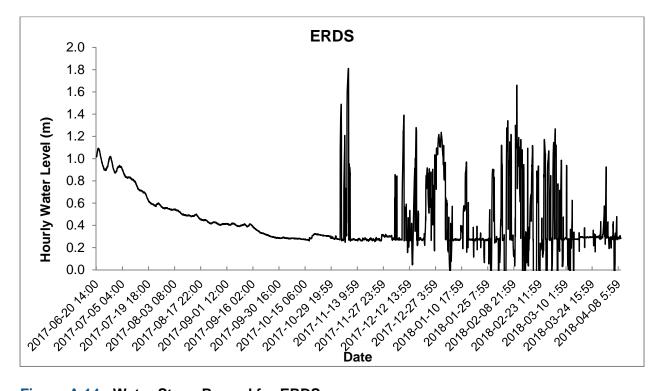
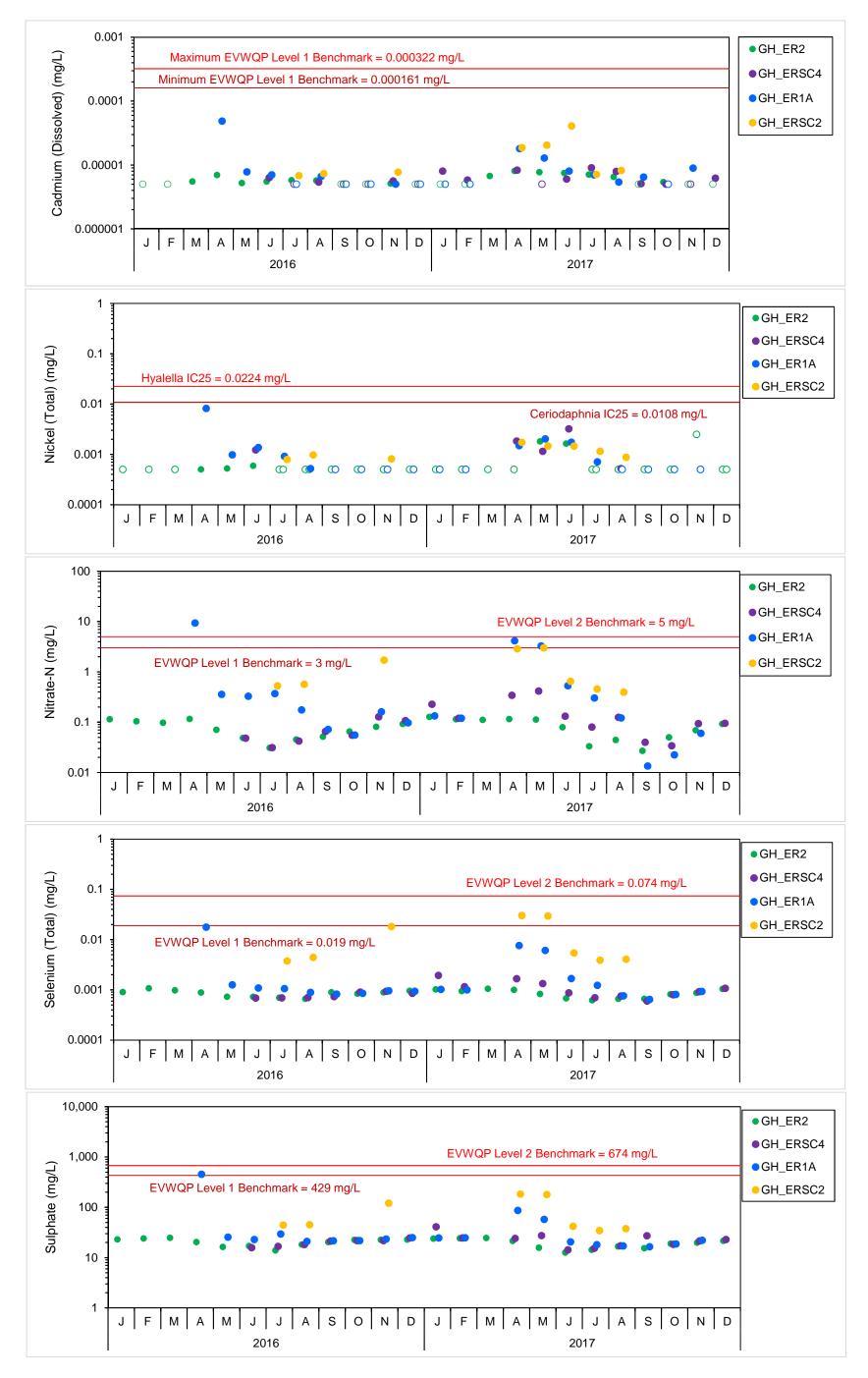
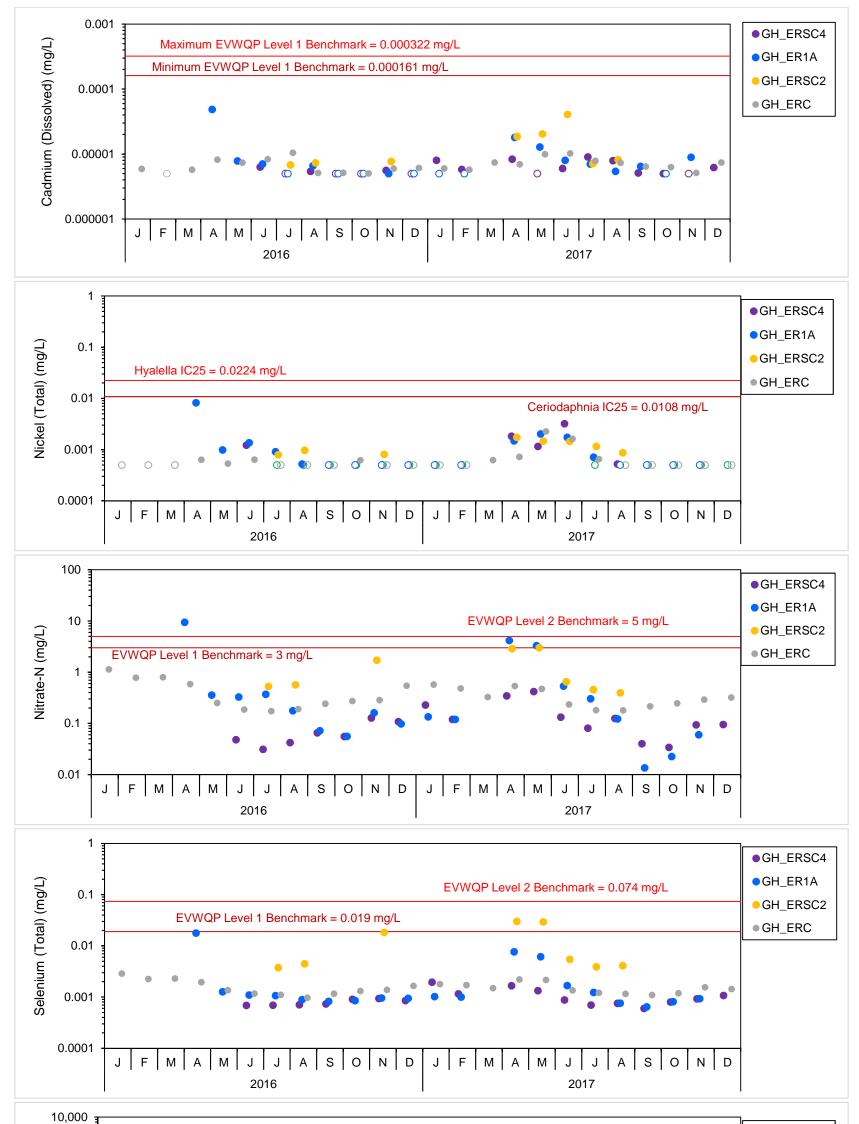
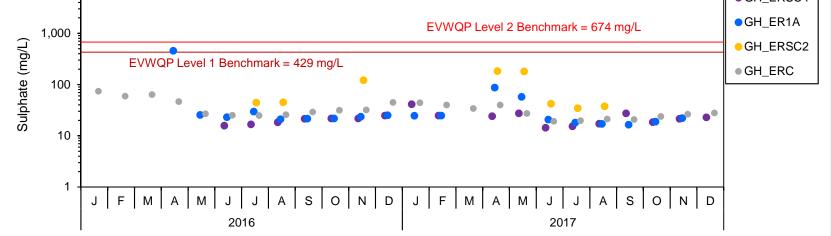


Figure A.13: Water Stage Record for ERUS


Figure A.14: Water Stage Record for ERDS

APPENDIX B WATER QUALITY


Figure B.1: Temporal Plots of Monthly Mean Concentrations at Side Channel Monitoring Stations (GH_ERSC4, GH_ER1SA, GH_ERSC2) and the Main Stem Elk River Reference Station (GH_ER2), 2016 to 2017

Note: Concentrations below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Minimum and maximum EVWQP benchmarks represent the range of benchmark values based on hardness for all monthly means. Data points are horizontally staggered within each month to allow overlapping points to be differentiated.

GH FRSC4

3

Figure B.2: Temporal Plots of Monthly Mean Concentrations at Side Channel Monitoring Stations(GH_ERSC4, GH_ER1SA, GH_ERSC2) and the Downstream Main Stem Elk River Station (GH_ERC), 2016 to 2017

Note: Concentrations below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Minimum and maximum EVWQP benchmarks represent the range of benchmark values based on hardness for all monthly means. Data points are horizontally staggered within each month to allow overlapping points to be differentiated.

	Water	GHO LAEMP	UTM	(11U)
Location Description	Station ID ¹	Report ID ²	Easting	Northing
	RG_GH-SC3-P7	Pool-U-1	647843	5552016
	RG_GH-SC3-P6	Pool-U-2	647833	5551900
Side channel upstream of GH ER1A	RG_GH-SC3-P10	Pool-U-3	647873	5551838
_	RG_GH-SC3-P9	Pool-U-4	647906	5551710
	RG_GH-SC3-P8	Pool-U-5	648214	5551721
Side channel downstream of	RG_GH-SC3-P3	Pool-M-1	648299	5550743
GH_ER1A, upstream of Thompson wetland	RG_GH-SC3-P4	Pool-M-2	648255	5550781
Western channel downstream	RG_GH-SC1-P2	Pool-W-1	648253	5549846
of Thompson wetland	RG_GH-SC1-P1	Pool-W-2	648380	5549321
	RG_GH-SC2-P4	Pool-E-1	648492	5549728
	RG_GH-SC2-P1	Pool-E-2	648561	5549475
Eastern channel downstream of Thompson wetland	RG_GH-SC2-P5	Pool-E-3	648592	5549424
. ,	RG_GH-SC2-P2	Pool-E-6	648675	5549296
	RG_GH-SC2-P3	Pool-E-7	648782	5549097

Table B.1: Identification used for GHO Pool Sampling Locations

¹ Identification used in Teck's EQuIS[™] database.
 ² Identification used throughout this report.

Table B.2: In Situ Water Quality Measurements at Elk River and Side Channel Stations, GHO LAEMP, September 2017

Characteristics	Reference		Mine-Ex	oosed	
Gildideleristics	GH_ER2	GH_ERSC4	GH_ER1A	GH_ERSC5	GH_ERC
Date	10-Sep-17	08-Sep-17	09-Sep-17	09-Sep-17	10-Sep-17
Station Type	main stem	side channel	side channel	side channel	main stem
Temperature (°C)	6.68	8.21	8.46	7.89	5.84
Specific Conductivity (uS/cm)	273	285	284	285	310
Conductivity (uS/cm)	177	193	194	192	196
рН	7.89	7.46	7.79	7.74	7.71
Dissolved Oxygen (mg/L)	9.71	10.51	10.35	9.58	12.9
Dissolved Oxygen (%)	80.0	89.2	88.4	80.8	103.3

Table B.3: In Situ Water Quality Measurements at Wetladn Stations and Isolated Pools,

Characteristics			Min	e-Exposed			
Characteristics	RG_GH-SCW1	RG_GH-SCW2	Pool-W-1	Pool-W-2	Pool-E-2	Pool-E-6	Pool-E-7
Date	16-Sep-17	16-Sep-17	11-Sep-17	11-Sep-17	11-Sep-17	12-Sep-17	12-Sep-17
Station Type	wetland	wetland	side channel	pool	pool	pool	pool
Temperature (°C)	2.90	3.48	6.56	7.23	6.92	9.12	8.32
Specific Conductivity (uS/cm)	290	1,856	298	310	1,049	912	893
Conductivity (uS/cm)	168	1,111	193	205	687	599	608
рН	7.90	8.07	7.58	7.62	7.30	7.28	7.19
Dissolved Oxygen (mg/L)	14.61	13.52	12.53	13.6	8.4	8.93	7.58
Dissolved Oxygen (%)	108.7	102.8	103.0	112.0	69.3	73.5	64.5

 Table B.4:
 Statistical Comparisons of Aqueous Cadmium, Nitrate, Total Selenium, and Sulphate Concentrations between Stations

 Located Upstream (GH_ER2) and Downstream (GH_ERC) of Mine Activities, Elk River, 2016 to 2017

Parameter	Units		Mean or	Median ^a		H₀₁: Is the c between the c concentrat upstream con equal in al	downstream tions and ncentrations	concentratio	the downst n equal to th ncentration	ne upstream	Differ (Downs Upstream	ence tream - /Downst
		20	16	201	17	Test for F Difference bet (Downstream Rive	tween Areas - Upstream er)	Test for Rela (Downstrear	Areas		ream) (n medi	an ^a)
						Between Years		Test	P-va	alue ^b	%	b
		EH_ERC	GH_ER2	EH_ERC	GH_ER2	Test	P-value		2016	2017	2016	2017
Cadmium (Dissolved)	mg/L	0.00000593	0.00000593 0.00000516		0.00000595	2 sample t	0.743	1 sample t	<0.	001	19	9
Nitrate-N	mg/L	0.280	0.07623	0.07623 0.307 0.0861			0.671	WSRT	<0.	001	260	
Selenium (Total)	mg/L	0.00137	0.0008836	0.00146	0.000849	MW	0.977	WSRT	<0.	001	6	1
Sulphate	mg/L	31.58	21.57	26.72	19.49	MW	0.026	WSRT	<0.001	0.002	46	34

P-value < 0.05.

^a Means reported when t-test was conducted and medians when MW test was conducted; t = t-test; MW = Mann Whitney test.

 $^{\rm b}$ Results reported separately by year when the test for $\rm H_{01}$ was significant.

APPENDIX C SUBSTRATE QUALITY

				BC Sedime	-				Reference				
	Analista	Unite	MDL	Guide	lines ^a				GH_ER2				
	Analyte	Units	MDL	Lower SQG	Upper SQG	GH_ER2-1 10-Sep-17	GH_ER2-2 10-Sep-17	GH_ER2-3 10-Sep-17	Minimum	Median	Maximum	Mean	Standard Deviation
Physical Tests	Moisture	%	0.25	-	-	56.5	46.9	51.7	46.9	51.7	56.5	51.7	4.8
16313	% Gravel (>2 mm)	%	1.0	-	-	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
	% Sand (2.00 mm - 1.00 mm)	%	1.0	-	-	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
e	% Sand (1.00 mm - 0.50 mm)	%	1.0	-	-	2.9	6.7	<1.0	<1.0	2.9	6.7	3.53	2.53
size	% Sand (0.50 mm - 0.25 mm) % Sand (0.25 mm - 0.125 mm)	% %	1.0 1.0	-	-	2.9 6.1	22.2 8.6	10.3 18.3	2.9 6.1	10.3 8.6	22.2 18.3	<u>11.8</u> 11	9.74 6.44
Particle	% Sand (0.25 mm - 0.125 mm)	%	1.0	-	-	13.1	7.9	8.7	7.9	8.7	13.1	9.9	2.8
art	% Silt (0.063 mm - 0.0312 mm)	%	1.0	-	-	30.2	21.3	25.1	21.3	25.1	30.2	25.5	4.47
	% Silt (0.0312 mm - 0.004 mm)	%	1.0	-	-	36.4	27.1	30.4	27.1	30.4	36.4	31.3	4.71
	% Clay (<4 μm) Texture	%	1.0	-	-	7.5 Silt Ioam	6.0 Sandy loam	6.4 Silt loam	6.0	6.4	7.5	6.63	0.777
Organic	Total Organic Carbon	%	0.050	-	-	4.96	3.7	5.57	3.7	4.96	5.57	4.74	0.954
Carbon	Aluminum (Al)	mg/kg	50	-	-	5,100	4,360	4,490	4,360	4,490	5,100	4,650	395
	Antimony (Sb)	mg/kg	0.10	-	-	0.35	0.5	0.48	0.35	0.48	0.5	0.443	0.0814
	Arsenic (As)	mg/kg	0.10	5.9	17	4.28	5.09	4.79	4.28	4.79	5.09	4.72	0.41
	Barium (Ba)	mg/kg	0.50	-	-	114	98.2	111	98.2	111	114	108	8.39
	Beryllium (Be) Bismuth (Bi)	mg/kg mg/kg	0.10	-	-	0.43	0.44 <0.20	0.45 <0.20	0.43	0.44	0.45 <0.20	0.44	0.01
	Boron (B)	mg/kg	5.0	-	-	6.9	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20 5.7	1.13
	Cadmium (Cd)	mg/kg	0.020	0.6	3.5	0.889	0.702	0.899	0.702	0.889	0.899	0.83	0.111
	Calcium (Ca)	mg/kg	50	-	-	63,600	78,600	59,800	59,800	63,600	78,600	67,300	9,940
	Chromium (Cr)	mg/kg	0.50	37.3	90	14.6	12.7	13.6	12.7	13.6	14.6	13.6	0.95
	Cobalt (Co) Copper (Cu)	mg/kg mg/kg	0.10 0.50	- 35.7	- 197	4.19 10.5	3.57 8.74	4.25 11	3.57 8.74	4.19 10.5	4.25 11	4 10.1	0.376
	Iron (Fe)	mg/kg	50	21,200	43,766	10,700	10,400	11,200	10,400	10,700	11,200	10,800	404
	Lead (Pb)	mg/kg	0.50	35	91.3	7.00	5.88	7.17	5.88	7.00	7.17	6.68	0.701
	Lithium (Li)	mg/kg	2.0	-	-	9.1	7.7	8.2	7.7	8.2	9.1	8.33	0.709
<i>(</i> 0	Magnesium (Mg)	mg/kg	20 1.0	- 460	- 1,100	12,700 575	12,000 422	11,500 503	11,500	12,000 503	12,700	12,100 500	603 76.5
Metals	Manganese (Mn) Mercury (Hg)	mg/kg mg/kg	0.0050	460 0.17	0.486	0.0399	0.0258	0.0365	422 0.0258	0.0365	575 0.0399	0.0341	0.00736
Me	Molybdenum (Mo)	mg/kg	0.10	-	-	1.15	1.35	1.21	1.15	1.21	1.35	1.24	0.103
	Nickel (Ni)	mg/kg	0.50	16	75	17.7	16.2	18.3	16.2	17.7	18.3	17.4	1.08
	Phosphorus (P)	mg/kg	50	-	-	1,190	1,240	1,200	1,190	1,200	1,240	1,210	27
	Potassium (K) Selenium (Se)	mg/kg mg/kg	100 0.20	- 2	- 2	1,200 1.01	1,030 0.96	970 0.92	970 0.92	1,030 0.96	1,200 1.01	1,070 0.963	119 0.0451
	Silver (Ag)	mg/kg	0.20	0.5	-	0.16	0.98	0.92	0.92	0.96	0.17	0.963	0.0451
	Sodium (Na)	mg/kg	50	-	-	83	79	73	73	79	83	78.3	5.03
	Strontium (Sr)	mg/kg	0.50	-	-	103	116	98.2	98.2	103	116	106	9.21
	Sulfur (S)	mg/kg	1,000	-	-	<1000	<1000	<1000	<1000	<1000	<1000	<1000	-
	Thallium (TI) Tin (Sn)	mg/kg mg/kg	0.050 2.0	-	-	0.166 <2.0	0.15 <2.0	0.162 <2.0	0.15 <2.0	0.162 <2.0	0.166 <2.0	0.159 <2.0	0.00833
	Titanium (Ti)	mg/kg	1.0	-	-	13.8	9.5	7.1	7.1	9.5	13.8	10.1	3.39
	Tungsten (Ŵ)	mg/kg	0.50	-	-	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	-
	Uranium (U)	mg/kg	0.050	-	-	1.02	0.992	1.1	0.992	1.02	1.1	1.04	0.056
	Vanadium (V) Zinc (Zn)	mg/kg mg/kg	0.20 2.0	- 123	- 315	22.6 78.9	23.8 71.5	22.5 80.1	22.5 71.5	22.6 78.9	23.8 80.1	23 76.8	0.723 4.66
	Zirconium (Zr)	mg/kg	1.0	-	-	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	- 4.00
	Acenaphthene	mg/kg	0.0050	0.00671	0.0889	<0.0060	<0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0060	<0.0060	-
	Acenaphthylene	mg/kg	0.0050	0.00587	0.128	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	-
	Acridine	mg/kg	0.010	0.0460	0.045	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	-
	Anthracene Benz(a)anthracene	mg/kg mg/kg	0.0040	0.0469 0.0317	0.245 0.385	<0.0040 <0.010	<0.0040 <0.010	<0.0040 <0.010	<0.0040 <0.010	<0.0040 <0.010	<0.0040 <0.010	<0.0040 <0.010	-
	Benzo(a)pyrene	mg/kg	0.010	0.0319	0.782	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	-
	Benzo(b&j)fluoranthene	mg/kg	0.010	-	-	0.018	0.014	0.011	0.011	0.014	0.018	0.0143	0.00351
S	Benzo(e)pyrene	mg/kg	0.010	-	-	<0.020	< 0.020	<0.010	< 0.010	< 0.020	< 0.020	< 0.020	-
bor	Benzo(g,h,i)perylene Benzo(k)fluoranthene	mg/kg mg/kg	0.010	0.17 0.24	3.2 13.4	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	-
car	Chrysene	mg/kg	0.010	0.0571	0.862	0.041	0.033	0.024	0.024	0.033	0.041	0.0327	0.0085
/drc	Dibenz(a,h)anthracene	mg/kg	0.0050	0.00622	0.135	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	-
Н,	Fluoranthene	mg/kg	0.010	0.111	2.355	0.011	< 0.010	<0.010	< 0.010	< 0.010	0.011	0.0103	-
latic	Fluorene Indeno(1,2,3-c,d)pyrene	mg/kg	0.010	0.021	0.144 3.2	0.014 <0.010	<0.010 <0.010	0.011 <0.010	<0.010 <0.010	0.011 <0.010	0.014 <0.010	0.0117	0.002
rom	1-Methylnaphthalene	mg/kg mg/kg	0.010	- 0.2	3.2 -	0.107	0.065	0.053	0.053	0.065	0.107	0.075	0.0284
сA	2-Methylnaphthalene	mg/kg	0.010	0.0202	0.201	0.16	0.091	0.078	0.078	0.091	0.16	0.11	0.0441
Polycyclic Aromatic Hydrocarbons	Naphthalene	mg/kg	0.010	0.0346	0.391	0.067	0.037	0.038	0.037	0.038	0.067	0.0473	0.017
lyc	Perylene	mg/kg	0.010	-	-	0.023	< 0.020	0.025	< 0.020	0.023	0.025	0.0227	0.00133
д	Phenanthrene Pyrene	mg/kg mg/kg	0.010	0.0419 0.053	0.515 0.875	0.143 0.013	0.096	0.071 <0.010	0.071	0.096	0.143 0.013	0.103	0.0366
	Quinoline	mg/kg	0.010	-	-	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	-
	d10-Acenaphthene	%	-	-	-	78.7	75.7	81.7	75.7	78.7	81.7	78.7	3.0
	d12-Chrysene	%	-	-	-	82.1	82.9	91.7	82.1	82.9	91.7	85.6	5.33
	d8-Naphthalene d10-Phenanthrene	% %	-	-	-	74.2 82.8	71.3 84.5	81.4 92.2	71.3 82.8	74.2 84.5	81.4 92.2	75.6 86.5	5.2 5.01
	B(a)P Total Potency Equivalent	™g/kg	0.020	-	-	<0.020	<0.020	<0.020	<0.020	<0.020	92.2 <0.020	<0.020	5.01

^a Working sediment quality guidelines (BC MOE 2015).
" - " = no data or standard deviation not estimated.

concentration exceeds lower SQG.

Page 1 of 5

				BC Sedim	ent Quality				Mine-expose	d	-		
				Guide	•				GH_ERSC4				
	Analyte	Units	MDL	Lower SQG	Upper SQG	GH_ERSC4-1 08-Sep-17	GH_ERSC4-2 08-Sep-17	GH_ERSC4-3 08-Sep-17	Minimum	Median	Maximum	Mean	Standard Deviation
Physical Tests	Moisture	%	0.25	-	-	38.2	40.4	37.5	37.5	38.2	40.4	38.7	1.51
16212	% Gravel (>2 mm)	%	1.0	-	-	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
	% Sand (2.00 mm - 1.00 mm)	%	1.0	-	-	<1.0	<1.0	1.7	<1.0	<1.0	1.7	1.23	-
e	% Sand (1.00 mm - 0.50 mm)	%	1.0	-	-	3.8	1.6	3.6	1.6	3.6	3.8	3	1.22
Size	% Sand (0.50 mm - 0.25 mm)	%	1.0	-	-	11.7	8.4	7.1	7.1	8.4	11.7	9.07	2.37
Particle	% Sand (0.25 mm - 0.125 mm)	%	1.0	-	-	19.1	16.3	30.2	16.3	19.1	30.2	21.9	7.35
artic	% Sand (0.125 mm - 0.063 mm) % Silt (0.063 mm - 0.0312 mm)	% %	1.0 1.0	-	-	18 18.8	17.3 21.8	21.1 14.1	17.3 14.1	18 18.8	21.1 21.8	18.8 18.2	2.02 3.88
å	% Silt (0.0312 mm - 0.004 mm)	%	1.0	-	-	21.8	26.7	16.8	16.8	21.8	26.7	21.8	4.95
	% Clay (<4 μm)	%	1.0	-	-	6.3	7.3	5.3	5.3	6.3	7.3	6.3	1.0
Organic	Texture Total Organic Carbon	- %	0.050	-	-	Sandy loam 4.42	Sandy loam 3.74	Sandy loam 3.46	- 3.46	- 3.74	- 4.42	- 3.87	- 0.494
Carbon	Aluminum (Al)	mg/kg	50	-	-	5,210	5,730	5,430	5,210	5,430	5,730	5,460	261
	Antimony (Sb)	mg/kg	0.10	-	-	0.43	0.49	0.41	0.41	0.43	0.49	0.443	0.0416
	Arsenic (As)	mg/kg	0.10	5.9	17	4.79	5.57	4.73	4.73	4.79	5.57	5.03	0.469
	Barium (Ba)	mg/kg	0.50	-	-	105	115	109	105	109	115	110	5.03
	Beryllium (Be)	mg/kg	0.10	-	-	0.46	0.57	0.41	0.41	0.46	0.57	0.48	0.0819
	Bismuth (Bi) Boron (B)	mg/kg	0.20	-	-	<0.20	<0.20 6	<0.20	<0.20	<0.20 6	<0.20 6.2	<0.20 5.73	- 0.133
	Boron (B) Cadmium (Cd)	mg/kg mg/kg	5.0 0.020	- 0.6	- 3.5	<5.0 0.695	0.842	6.2 0.65	<5.0 0.65	0.695	0.842	0.729	0.133
	Calcium (Ca)	mg/kg	50	- 0.0	-	61,300	62,000	60,200	60,200	61,300	62,000	61,200	907
	Chromium (Cr)	mg/kg	0.50	37.3	90	13.6	15.6	13.6	13.6	13.6	15.6	14.3	1.15
	Cobalt (Co)	mg/kg	0.10	-	-	3.92	4.39	3.72	3.72	3.92	4.39	4.01	0.344
	Copper (Cu)	mg/kg	0.50	35.7	197	9.81	10.7	8.9	8.9	9.81	10.7	9.8	0.9
	Iron (Fe)	mg/kg	50	21,200	43,766	11,200	12,200	10,600	10,600	11,200	12,200	11,300	808
	Lead (Pb)	mg/kg	0.50	35	91.3	6.56	7.52	6.24	6.24	6.56	7.52	6.77	0.666
	Lithium (Li)	mg/kg	2.0	-	-	8.6	10	9.2	8.6	9.2	10	9.27	0.702
	Magnesium (Mg)	mg/kg	20 1.0	- 460	- 1,100	11,900 346	14,300 432	11,600 319	11,600 319	<u>11,900</u> 346	14,300	12,600 366	1,480 59
Metals	Manganese (Mn) Mercury (Hg)	mg/kg mg/kg	0.0050	0.17	0.486	0.0257	0.0307	0.0271	0.0257	0.0271	432 0.0307	0.0278	0.00258
Me	Molybdenum (Mo)	mg/kg	0.0050	-	-	1.18	1.36	1.14	1.14	1.18	1.36	1.23	0.00258
_	Nickel (Ni)	mg/kg	0.50	16	75	16.6	19.2	15.6	15.6	16.6	19.2	17.1	1.86
	Phosphorus (P)	mg/kg	50	-	-	1,220	1,350	1,350	1,220	1,350	1,350	1,310	75
	Potassium (K)	mg/kg	100	-	-	1,110	1,220	1,220	1,110	1,220	1,220	1,180	64
	Selenium (Se)	mg/kg	0.20	2	2	0.65	0.87	0.67	0.65	0.67	0.87	0.73	0.122
	Silver (Ag)	mg/kg	0.10	0.5	-	0.14	0.16	0.12	0.12	0.14	0.16	0.14	0.02
	Sodium (Na)	mg/kg	50	-	-	75	79	75	75	75	79	76.3	2.31
	Strontium (Sr)	mg/kg	0.50	-	-	89.3	94.1	86.6	86.6	89.3	94.1	90	3.8
	Sulfur (S) Thallium (TI)	mg/kg	1,000	-	-	<1000 0.167	<1000 0.201	<1000 0.166	<1000 0.166	<1000 0.167	<1000 0.201	<1000 0.178	0.0199
	Tin (Sn)	mg/kg mg/kg	2.0	-	-	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	0.0199
	Titanium (Ti)	mg/kg	1.0	_	-	10.8	11.6	11.4	10.8	11.4	11.6	11.3	0.416
	Tungsten (W)	mg/kg	0.50	-	-	<0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	<0.50	-
	Uranium (Ù)	mg/kg	0.050	-	-	1.03	1.11	0.954	0.954	1.03	1.11	1.03	0.078
	Vanadium (V)	mg/kg	0.20	-	-	23.3	26.7	23.8	23.3	23.8	26.7	24.6	1.84
	Zinc (Zn)	mg/kg	2.0	123	315	71	82.6	69.5	69.5	71	82.6	74.4	7.17
	Zirconium (Zr)	mg/kg	1.0	-	-	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
	Acenaphthene	mg/kg	0.0050	0.00671	0.0889	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	-
	Acenaphthylene Acridine	mg/kg	0.0050	0.00587	0.128	< 0.0050	< 0.0050	< 0.0050	<0.0050	<0.0050	<0.0050	<0.0050	-
	Acridine	mg/kg mg/kg	0.010	0.0469	0.245	<0.010 <0.0040	<0.010 <0.0040	<0.010 <0.0040	<0.010 <0.0040	<0.010 <0.0040	<0.010 <0.0040	<0.010 <0.0040	-
	Benz(a)anthracene	mg/kg	0.010	0.0403	0.385	<0.010	<0.0040	<0.0040	<0.0040	<0.0040	<0.010	<0.010	-
	Benzo(a)pyrene	mg/kg	0.010	0.0319	0.782	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	-
	Benzo(b&j)fluoranthene	mg/kg	0.010	-	-	0.012	<0.010	0.022	<0.010	0.012	0.022	0.0147	0.00667
6	Benzo(e)pyrene	mg/kg	0.010	-	-	<0.010	<0.010	<0.020	<0.010	<0.010	<0.020	<0.020	-
Polycyclic Aromatic Hydrocarbons	Benzo(g,h,i)perylene	mg/kg	0.010	0.17	3.2	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	-
arb	Benzo(k)fluoranthene	mg/kg	0.010	0.24	13.4	< 0.010	<0.010	<0.010	< 0.010	< 0.010	< 0.010	< 0.010	-
roc	Chrysene	mg/kg	0.010	0.0571	0.862	0.027	0.02	0.05	0.02	0.027	0.05	0.0323	0.0157
łyd	Dibenz(a,h)anthracene Fluoranthene	mg/kg mg/kg	0.0050	0.00622	0.135	<0.0050 <0.010	<0.0050 <0.010	<0.0050 <0.010	<0.0050 <0.010	<0.0050 <0.010	<0.0050 <0.010	<0.0050 <0.010	-
ic F	Fluorene	mg/kg	0.010	0.021	0.144	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	-
nat	Indeno(1,2,3-c,d)pyrene	mg/kg	0.010	0.021	3.2	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	-
ror	1-Methylnaphthalene	mg/kg	0.010	-	-	0.049	0.017	0.062	0.017	0.049	0.062	0.0427	0.0232
сA	2-Methylnaphthalene	mg/kg	0.010	0.0202	0.201	0.062	0.02	0.071	0.02	0.062	0.071	0.051	0.0272
ycli	Naphthalene	mg/kg	0.010	0.0346	0.391	0.029	<0.010	0.04	<0.010	0.029	0.04	0.0263	0.00733
J.	Perylene	mg/kg	0.010	-	-	< 0.020	<0.020	0.022	< 0.020	< 0.020	0.022	0.0207	0.00133
Ъо	Phenanthrene	mg/kg	0.010	0.0419	0.515	0.075	0.033	0.127	0.033	0.075	0.127	0.0783	0.0471
	Pyrene Quinoline	mg/kg mg/kg	0.010	0.053	0.875	<0.010 <0.010	<0.010 <0.010	0.012	<0.010 <0.010	<0.010 <0.010	0.012	0.0107	-
	d10-Acenaphthene	mg/kg %	-	-	-	76.9	76.8	89.6	76.8	76.9	<0.010 89.6	<0.010 81.1	7.36
	d12-Chrysene	%	-	-	-	85.5	82.8	113.3	82.8	85.5	113	93.9	16.9
	d8-Naphthalene	%	-	-	-	73.6	73.3	81.3	73.3	73.6	81.3	76.1	4.53
	d10-Phenanthrene	%	-	-	-	81.7	81.2	98.9	81.2	81.7	98.9	87.3	10.1
	B(a)P Total Potency Equivalent	mg/kg	0.020	-	-	<0.020	<0.020	<0.020	<0.020	<0.020	< 0.020	<0.020	-
	IACR (CCME)	mg/kg	0.15			0.16	<0.15	0.23	<0.15	0.16	0.23	0.18	0.0467

^a Working sediment quality guidelines (BC MOE 2015).
" - " = no data or standard deviation not estimated.

concentration exceeds lower SQG.

Page 2 of 5

				BC Sedim	ent Quality				Mine-expose	d			
				Guide	lines ^a				GH_ER1A				
	Analyte	Units	MDL	Lower SQG	Upper SQG	GH_ER1A-1	GH_ER1A-2	GH_ER1A-3	Minimum	Median	Maximum	Mean	Standard Deviation
Physical	Moisture	%	0.25	-	-	09-Sep-17 46.8	09-Sep-17 42.7	09-Sep-17 46.0	42.7	46	46.8	45.2	2.17
Tests	% Gravel (>2 mm)	%	1.0	-	-	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
	% Sand (2.00 mm - 1.00 mm)	%	1.0	-	-	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
۵	% Sand (1.00 mm - 0.50 mm)	%	1.0	-	-	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Size	% Sand (0.50 mm - 0.25 mm)	%	1.0	-	-	<1.0	3.7	<1.0	<1.0	<1.0	3.7	1.9	9.74
<u>e</u>	% Sand (0.25 mm - 0.125 mm)	%	1.0	-	-	2.6	13.6	<1.0	<1.0	2.6	13.6	5.73	7.33
Particle	% Sand (0.125 mm - 0.063 mm)	%	1.0	-	-	6.7	12.8	1.3	1.3	6.7	12.8	6.93	5.75
Б	% Silt (0.063 mm - 0.0312 mm) % Silt (0.0312 mm - 0.004 mm)	% %	1.0 1.0	-	-	27.3 47	22.2 35.6	26 56	22.2 35.6	26 47	27.3 56	25.2 46.2	2.65 10.2
	% Clay (<4 μm)	%	1.0	-	-	15.4	11.8	15.8	11.8	15.4	15.8	14.3	2.2
	Texture	-		-	-	Silt loam	Silt loam	Silt	-	-	-	-	-
Organic Carbon	Total Organic Carbon	%	0.050	-	-	5.85	4.99	4.88	4.88	4.99	5.85	5.24	0.531
	Aluminum (Al)	mg/kg	50	-	-	8,130	6,620	9,550	6,620	8,130	9,550	8,100	1,470
	Antimony (Sb)	mg/kg	0.10	-	-	0.61	0.57	0.69	0.57	0.61	0.69	0.623	0.0611
	Arsenic (As) Barium (Ba)	mg/kg mg/kg	0.10	5.9 -	- 17	<u>6.1</u> 151	5.94 159	7.48	5.94 151	6.1 159	7.48	6.51 162	0.847 13.3
	Beryllium (Be)	mg/kg	0.10	-	-	0.58	0.58	0.66	0.58	0.58	0.66	0.607	0.0462
	Bismuth (Bi)	mg/kg	0.20	-	-	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	-
	Boron (B)	mg/kg	5.0	-	-	8.7	6	10.1	6	8.7	10.1	8.27	2.08
	Cadmium (Cd)	mg/kg	0.020	0.6	3.5	1.06	1.05	1.14	1.05	1.06	1.14	1.08	0.0493
	Calcium (Ca)	mg/kg	50	-	-	47,800	48,600	51,600	47,800	48,600	51,600	49,300	2,000
	Chromium (Cr) Cobalt (Co)	mg/kg mg/kg	0.50	37.3	90	22.4 5.42	15.2 5.6	24.2 6.39	15.2 5.42	22.4 5.6	24.2 6.39	20.6 5.8	4.76 0.516
	Copper (Cu)	mg/kg	0.50	35.7	197	15.4	14.6	17	14.6	15.4	17	15.7	1.22
	Iron (Fe)	mg/kg	50	21,200	43,766	14,400	14,400	16,700	14,400	14,400	16,700	15,200	1,330
	Lead (Pb)	mg/kg	0.50	35	91.3	9.38	8.83	10.1	8.83	9.38	10.1	9.44	0.637
	Lithium (Li)	mg/kg	2.0	-	-	14.4	11.1	17.1	11.1	14.4	17.1	14.2	3.0
<i>(</i>)	Magnesium (Mg) Manganese (Mn)	mg/kg mg/kg	20 1.0	- 460	- 1,100	15,300 478	12,600 390	16,900 686	12,600 390	15,300 478	16,900 686	14,900 518	2,170 152
Metals	Mercury (Hg)	mg/kg	0.0050	0.17	0.486	0.0681	0.0534	0.0812	0.0534	0.0681	0.0812	0.0676	0.0139
Me	Molybdenum (Mo)	mg/kg	0.10	-	-	1.56	1.36	1.85	1.36	1.56	1.85	1.59	0.246
	Nickel (Ni)	mg/kg	0.50	16	75	23.1	21.5	26.8	21.5	23.1	26.8	23.8	2.72
	Phosphorus (P)	mg/kg	50	-	-	1,440	1,240	1,410	1,240	1,410	1,440	1,360	108
	Potassium (K) Selenium (Se)	mg/kg	100 0.20	- 2	- 2	1,890 2.01	1,360 1.31	2,240 1.55	1,360 1.31	1,890 1.55	2,240 2.01	1,830 1.62	443 0.356
	Silver (Ag)	mg/kg mg/kg	0.20	0.5	-	0.25	0.24	0.3	0.24	0.25	0.3	0.263	0.0321
	Sodium (Na)	mg/kg	50	-	-	83	72	92	72	83	92	82.3	10
	Strontium (Sr)	mg/kg	0.50	-	-	82.7	85.9	86.1	82.7	85.9	86.1	84.9	1.91
	Sulfur (S)	mg/kg	1,000	-	-	<1000	<1000	<1000	<1000	<1000	<1000	<1000	-
	Thallium (TI) Tin (Sn)	mg/kg mg/kg	0.050 2.0	-	-	0.27 <2.0	0.218 <2.0	0.307 <2.0	0.218 <2.0	0.27 <2.0	0.307 <2.0	0.265 <2.0	0.0447
	Titanium (Ti)	mg/kg	1.0	-	-	14.7	10.8	15.6	10.8	14.7	15.6	13.7	2.55
	Tungsten (W)	mg/kg	0.50	-	-	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	-
	Uranium (U)	mg/kg	0.050	-	-	1.36	1.11	1.29	1.11	1.29	1.36	1.25	0.129
	Vanadium (V)	mg/kg	0.20	-	-	35.3	28.2	40.9	28.2	35.3	40.9	34.8	6.36
	Zinc (Zn) Zirconium (Zr)	mg/kg mg/kg	2.0 1.0	123	315	105 1.1	95.3 <1.0	119 1.1	95.3 <1.0	105 1.1	119 1.1	106 1.07	11.9 -
	Acenaphthene	mg/kg	0.0050	0.00671	0.0889	< 0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	-
	Acenaphthylene	mg/kg	0.0050	0.00587	0.128	<0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	-
	Acridine	mg/kg	0.010			<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	-
	Anthracene	mg/kg	0.0040	0.0469	0.245	<0.0040	<0.0040	<0.0040	< 0.0040	< 0.0040	<0.0040	<0.0040	-
	Benz(a)anthracene Benzo(a)pyrene	mg/kg mg/kg	0.010	0.0317 0.0319	0.385 0.782	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	-
	Benzo(a)pyrene Benzo(b&j)fluoranthene	mg/kg	0.010	- 0.0319	-	<0.010	0.010	<0.010	<0.010	<0.010	0.010	0.0107	0.00351
	Benzo(e)pyrene	mg/kg	0.010	-	-	<0.010	0.011	< 0.010	< 0.010	<0.010	0.011	0.0103	-
Polycyclic Aromatic Hydrocarbons	Benzo(g,h,i)perylene	mg/kg	0.010	0.17	3.2	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	-
ärb	Benzo(k)fluoranthene	mg/kg	0.010	0.24	13.4	<0.010	< 0.010	<0.010	< 0.010	< 0.010	< 0.010	<0.010	-
lroc	Chrysene Dibenz(a,h)anthracene	mg/kg mg/kg	0.010	0.0571 0.00622	0.862	0.014 <0.0050	0.029 <0.0050	0.02	0.014 <0.0050	0.02	0.029	0.021	0.00755
Hyc	Fluoranthene	mg/kg	0.0050	0.00622	2.355	<0.0030	<0.0030	<0.0050	<0.0050	<0.0030	< 0.0050	<0.0050	
tic	Fluorene	mg/kg	0.010	0.021	0.144	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	< 0.010	-
ma	Indeno(1,2,3-c,d)pyrene	mg/kg	0.010	0.2	3.2	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	-
Arc	1-Methylnaphthalene	mg/kg	0.010	-	-	0.015	0.047	0.02	0.015	0.02	0.047	0.0273	0.0172
Slic	2-Methylnaphthalene Naphthalene	mg/kg mg/kg	0.010	0.0202	0.201 0.391	0.018	0.074 0.029	0.023	0.018 <0.010	0.023	0.074 0.029	0.0383	0.031 0.017
усу	Perylene	mg/kg	0.010	-	-	<0.010	0.023	<0.010	<0.010	<0.010	0.023	0.0105	0.00133
Poly	Phenanthrene	mg/kg	0.010	0.0419	0.515	0.026	0.075	0.037	0.026	0.037	0.075	0.046	0.0257
_	Pyrene	mg/kg	0.010	0.053	0.875	<0.010	<0.010	<0.010	< 0.010	< 0.010	<0.010	< 0.010	-
	Quinoline	mg/kg	0.010	-	-	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	-
	d10-Acenaphthene d12-Chrysene	% %	-	-	-	81.4 94.9	80.7 93.6	79.8 89.9	79.8 89.9	80.7 93.6	81.4 94.9	80.6 92.8	0.802 2.59
	d8-Naphthalene	%	-	-	-	83.7	82.4	81.5	81.5	82.4	94.9 83.7	82.5	1.11
	d10-Phenanthrene	%	-	-	-	91.2	89.8	89.6	89.6	89.8	91.2	90.2	0.872
	B(a)P Total Potency Equivalent	mg/kg	0.020	-	-	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	-
	IACR (CCME)	mg/kg	0.15	-	-	<0.15	0.16	<0.15	<0.15	<0.15	0.16	0.153	0.0252

^a Working sediment quality guidelines (BC MOE 2015).
" - " = no data or standard deviation not estimated.

concentration exceeds lower SQG.

Page 3 of 5

				BC Sedime	ent Quality				Mine-expose	d			
	A I .:			Guide	lines ^a				RG_ERSC5				
	Analyte	Units	MDL	Lower SQG	Upper SQG	RG_ERSC5-1	RG_ERSC5-2	RG_ERSC5-3	Minimum	Median	Maximum	Mean	Standard Deviation
Physical	Moisture	%	0.25	-	-	09-Sep-17 43.5	09-Sep-17 37.3	09-Sep-17 45.5	37.3	43.5	45.5	42.1	4.28
Tests	% Gravel (>2 mm)	%	1.0	_	-	1.1	<1.0	<1.0	<1.0	<1.0	1.1	1.03	-
	% Sand (2.00 mm - 1.00 mm)	%	1.0	-	-	1.8	<1.0	<1.0	<1.0	<1.0	1.8	1.27	-
۵	% Sand (1.00 mm - 0.50 mm)	%	1.0	-	-	1.7	<1.0	<1.0	<1.0	<1.0	1.7	1.23	1.22
Size	% Sand (0.50 mm - 0.25 mm)	%	1.0	-	-	3.8	8.9	1.8	1.8	3.8	8.9	4.83	3.66
<u>e</u>	% Sand (0.25 mm - 0.125 mm)	%	1.0	-	-	9.8	23.9	7.8	7.8	9.8	23.9	13.8	8.78
Particle	% Sand (0.125 mm - 0.063 mm)	%	1.0	-	-	10.6	14.7	9.8	9.8	10.6	14.7	11.7	2.63
Ра	% Silt (0.063 mm - 0.0312 mm)	% %	1.0 1.0	-	-	24.7	19.1	30.8 40.7	19.1 25.5	24.7	30.8 40.7	24.9 34.4	5.85
	% Silt (0.0312 mm - 0.004 mm) % Clay (<4 μm)	%	1.0	-	-	36.9 9.6	25.5 7.1	8.6	25.5 7.1	36.9 8.6	9.6	8.43	7.91
<u> </u>	Texture	-	1.0	-	-	Silt loam	Sandy loam	Silt loam	-	-	-	-	-
Organic Carbon	Total Organic Carbon	%	0.050	-	-	4.7	2.89	4.29	2.89	4.29	4.7	3.96	0.949
	Aluminum (Al) Antimony (Sb)	mg/kg mg/kg	50 0.10	-	-	6,910 0.44	5,930 0.42	5,780 0.48	5,780 0.42	5,930 0.44	6,910 0.48	6,210 0.447	614 0.0306
	Arsenic (As)	mg/kg	0.10	5.9	17	5.02	4.53	5.09	4.53	5.02	5.09	4.88	0.305
	Barium (Ba)	mg/kg	0.50	-	-	115	111	119	111	115	119	115	4
	Beryllium (Be)	mg/kg	0.10	-	-	0.48	0.46	0.52	0.46	0.48	0.52	0.487	0.0306
	Bismuth (Bi)	mg/kg	0.20	-	-	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	-
	Boron (B)	mg/kg	5.0	-	-	8.7	7	6.2	6.2	7	8.7	7.3	1.28
	Cadmium (Cd)	mg/kg	0.020	0.6	3.5	0.747	0.696	0.871	0.696	0.747	0.871	0.771	0.09
	Calcium (Ca) Chromium (Cr)	mg/kg mg/kg	50 0.50	- 37.3	- 90	57,400 23.8	61,600 13.9	52,500 14.2	52,500 13.9	57,400 14.2	61,600 23.8	57,200 17.3	4,550 5.63
	Cobalt (Co)	mg/kg	0.50	- 37.3	- 90	4.3	3.8	4.59	3.8	4.3	4.59	4.23	0.4
	Copper (Cu)	mg/kg	0.10	35.7	197	10.1	8.5	11.6	8.5	10.1	11.6	10.1	1.55
	Iron (Fe)	mg/kg	50	21,200	43,766	11,200	10,300	11,700	10,300	11,200	11,700	11,100	709
	Lead (Pb)	mg/kg	0.50	35	91.3	6.54	6.31	7.64	6.31	6.54	7.64	6.83	0.711
	Lithium (Li)	mg/kg	2.0	-	-	11.2	9.3	10.5	9.3	10.5	11.2	10.3	0.961
	Magnesium (Mg)	mg/kg	20	-	-	13,500	12,900	13,500	12,900	13,500	13,500	13,300	346
Metals	Manganese (Mn)	mg/kg	1.0	460	1,100	414	353	457	353	414	457	408	52.3
/leta	Mercury (Hg)	mg/kg	0.0050	0.17	0.486	0.0372	0.0303	0.0488	0.0303	0.0372	0.0488	0.0388	0.00935
2	Molybdenum (Mo)	mg/kg	0.10	-	-	1.46	1.16	1.31	1.16	1.31	1.46	1.31	0.15
	Nickel (Ni) Phosphorus (P)	mg/kg mg/kg	0.50 50	16 -	75	20 1,250	15.6 1,340	19.6 1,320	15.6 1,250	<u>19.6</u> 1,320	20 1,340	<u>18.4</u> 1,300	2.43 47
	Potassium (K)	mg/kg	100	-	-	1,230	1,420	1,200	1,200	1,320	1,670	1,300	235
	Selenium (Se)	mg/kg	0.20	2	2	0.92	0.69	1.01	0.69	0.92	1.01	0.873	0.165
	Silver (Ag)	mg/kg	0.10	0.5		0.16	0.12	0.19	0.12	0.16	0.19	0.157	0.0351
	Sodium (Na)	mg/kg	50	-	-	79	77	70	70	77	79	75.3	4.73
	Strontium (Sr)	mg/kg	0.50	-	-	84.3	85.6	79.1	79.1	84.3	85.6	83	3.44
	Sulfur (S)	mg/kg	1,000	-	-	<1000	<1000	<1000	<1000	<1000	<1000	<1000	-
	Thallium (TI)	mg/kg	0.050	-	-	0.2	0.181	0.205	0.181	0.2	0.205	0.195	0.0127
	Tin (Sn)	mg/kg	2.0	-	-	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	-
	Titanium (Ti)	mg/kg	1.0 0.50	-	-	13.2	10.8	11	10.8 <0.50	11	13.2	11.7	1.33
	Tungsten (W) Uranium (U)	mg/kg mg/kg	0.50	-	-	<0.50 1.05	<0.50 0.992	<0.50 1.09	<0.50	<0.50 1.05	<0.50 1.09	<0.50 1.04	0.0493
	Vanadium (V)	mg/kg	0.030	-	-	29	26	24.9	24.9	26	29	26.6	2.12
	Zinc (Zn)	mg/kg	2.0	123	315	72.1	67.5	80.5	67.5	72.1	80.5	73.4	6.59
	Zirconium (Zr)	mg/kg	1.0	-	-	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
	Acenaphthene	mg/kg	0.0050	0.00671	0.0889	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	-
	Acenaphthylene	mg/kg	0.0050	0.00587	0.128	< 0.0050	< 0.0050	< 0.0050	<0.0050	< 0.0050	< 0.0050	<0.0050	-
	Acridine	mg/kg	0.010			<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	-
	Anthracene	mg/kg	0.0040	0.0469	0.245	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	-
	Benz(a)anthracene	mg/kg	0.010	0.0317	0.385	< 0.010	< 0.010	<0.010	< 0.010	< 0.010	<0.010	<0.010	-
	Benzo(a)pyrene	mg/kg	0.010	0.0319	0.782	< 0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	-
	Benzo(b&j)fluoranthene Benzo(e)pyrene	mg/kg	0.010	-	-	0.022	<0.010 <0.010	0.015	<0.010 <0.010	0.015	0.022	0.0157	0.00467
ns	Benzo(g,h,i)perylene	mg/kg mg/kg	0.010	0.17	3.2	<0.020	<0.010	<0.020	<0.010	<0.020	<0.020	<0.020	-
pq.	Benzo(k)fluoranthene	mg/kg	0.010	0.17	13.4	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	-
ca	Chrysene	mg/kg	0.010	0.0571	0.862	0.045	0.018	0.03	0.018	0.03	0.045	0.031	0.0135
drc	Dibenz(a,h)anthracene	mg/kg	0.0050	0.00622	0.135	< 0.0050	<0.0050	<0.0050	< 0.0050	< 0.0050	< 0.0050	<0.0050	-
Polycyclic Aromatic Hydrocarbons	Fluoranthene	mg/kg	0.010	0.111	2.355	0.01	<0.010	<0.010	<0.010	<0.010	0.01	0.01	-
atic	Fluorene	mg/kg	0.010	0.021	0.144	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	-
ŝmć	Indeno(1,2,3-c,d)pyrene	mg/kg	0.010	0.2	3.2	< 0.010	<0.010	<0.010	< 0.010	< 0.010	<0.010	< 0.010	-
Arc	1-Methylnaphthalene	mg/kg	0.010	-	-	0.064	0.032	0.042	0.032	0.042	0.064	0.046	0.0164
;ii:	2-Methylnaphthalene	mg/kg	0.010	0.0202	0.201	0.093 0.035	0.046	0.058	0.046 0.017	0.058	0.093 0.035	0.0657	0.0244 0.00917
cyc	Perylene	mg/kg mg/kg	0.010	0.0346	0.391	<0.020	<0.017	<0.023	<0.017	<0.023	<0.035	0.025	0.00917
oly	Phenanthrene	mg/kg	0.010	0.0419	0.515	0.107	0.045	0.063	0.045	0.063	0.107	0.020	0.0319
۵.	Pyrene	mg/kg	0.010	0.0419	0.875	0.012	<0.043	< 0.003	<0.043	<0.003	0.012	0.0107	- 0.0319
	Quinoline	mg/kg	0.010	-	-	< 0.012	<0.010	<0.010	<0.010	<0.010	< 0.012	<0.010	-
	d10-Acenaphthene	%	-	-	-	77.3	72.7	83.9	72.7	77.3	83.9	78	5.63
	d12-Chrysene	%	-	-	-	90.1	86	93.3	86	90.1	93.3	89.8	3.66
	d8-Naphthalene	%	-	-	-	71.8	70.7	81.4	70.7	71.8	81.4	74.6	5.89
	d10-Phenanthrene	%	-	-	-	86.4	78.9	89.4	78.9	86.4	89.4	84.9	5.41
	B(a)P Total Potency Equivalent	mg/kg	0.020	-	-	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	-
	IACR (CCME)	mg/kg	0.15	- 1	-	0.23	<0.15	0.18	<0.15	0.18	0.23	0.187	0.0333

^a Working sediment quality guidelines (BC MOE 2015).
" - " = no data or standard deviation not estimated.

concentration exceeds lower SQG.

Page 4 of 5

				BC Sedim	ent Quality				Mine-expose	d			
				Guide	-				GH_ERC				
	Analyte	Units	MDL	Lower SQG	Upper SQG	GH_ERC-1	GH_ERC-2	GH_ERC-3	Minimum	Median	Maximum	Mean	Standard Deviation
Physical	Moisture	%	0.25	-	-	10-Sep-17 65.1	10-Sep-17 41.3	10-Sep-17 38.2	38.2	41.3	65.1	48.2	14.7
Tests	% Gravel (>2 mm)	%	1.0	-	-	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
	% Sand (2.00 mm - 1.00 mm)	%	1.0	-	-	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
0	% Sand (1.00 mm - 0.50 mm)	%	1.0	-	-	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Size	% Sand (0.50 mm - 0.25 mm)	%	1.0	-	-	<1.0	3.2	1.4	<1.0	1.4	3.2	1.87	1.2
<u>e</u>	% Sand (0.25 mm - 0.125 mm)	%	1.0	-	-	3.4	10.4	4	3.4	4	10.4	5.93	3.88
Particle	% Sand (0.125 mm - 0.063 mm)	%	1.0	-	-	8.7	19.2	16.6	8.7	16.6	19.2	14.8	5.47
Ра	% Silt (0.063 mm - 0.0312 mm)	%	1.0	-	-	35.2	28	32.7	28	32.7	35.2	32	3.66
	% Silt (0.0312 mm - 0.004 mm) % Clay (<4 μm)	% %	1.0 1.0	-	-	43.8 8.2	32.2 6.7	38.3 6.6	32.2 6.6	38.3 6.7	43.8 8.2	<u>38.1</u> 7.17	5.8 0.896
	Texture	-	1.0	-	-	Silt	Silt loam	Silt loam	-	-	-	-	-
Organic Carbon	Total Organic Carbon	%	0.050	-	-	4.62	3.48	3.21	3.21	3.48	4.62	3.77	0.748
	Aluminum (Al) Antimony (Sb)	mg/kg	50 0.10	-	-	6,860 0.43	6,540 0.44	6,530 0.39	6,530 0.39	6,540 0.43	6,860 0.44	6,640 0.42	188 0.0265
	Arsenic (As)	mg/kg mg/kg	0.10	5.9	- 17	5.34	4.76	4.75	4.75	4.76	5.34	4.95	0.0205
	Barium (Ba)	mg/kg	0.50	-	-	133	124	117	117	124	133	125	8.02
	Beryllium (Be)	mg/kg	0.10	-	-	0.54	0.53	0.47	0.47	0.53	0.54	0.513	0.0379
	Bismuth (Bi)	mg/kg	0.20	-	-	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	-
	Boron (B)	mg/kg	5.0	-	-	9.1	7.4	8	7.4	8	9.1	8.17	0.862
	Cadmium (Cd)	mg/kg	0.020	0.6	3.5	0.814	0.72	0.713	0.713	0.72	0.814	0.749	0.0564
	Calcium (Ca)	mg/kg	50	-	-	63,500	54,400	55,000	54,400	55,000	63,500	57,600	5,090
	Chromium (Cr)	mg/kg	0.50	37.3	90	22.5 4.56	16.1	16.1 3.99	16.1 3.99	16.1	22.5 4.56	18.2 4.25	3.7 0.287
	Cobalt (Co) Copper (Cu)	mg/kg mg/kg	0.10	- 35.7	- 197	4.56	4.21 10.1	9.35	9.35	4.21 10.1	4.56	4.25	0.287
	Iron (Fe)	mg/kg	50	21,200	43,766	12,200	11,100	10,700	10,700	11,100	12,200	11,300	777
	Lead (Pb)	mg/kg	0.50	35	91.3	7.5	6.66	6.14	6.14	6.66	7.5	6.77	0.686
	Lithium (Li)	mg/kg	2.0	-	-	11.7	10.7	10.5	10.5	10.7	11.7	11	0.643
	Magnesium (Mg)	mg/kg	20	-	-	14,900	13,100	14,400	13,100	14,400	14,900	14,100	929
als	Manganese (Mn)	mg/kg	1.0	460	1,100	577	424	413	413	424	577	471	91.7
	Mercury (Hg)	mg/kg	0.0050	0.17	0.486	0.0377	0.036	0.0283	0.0283	0.036	0.0377	0.034	0.00501
Σ	Molybdenum (Mo)	mg/kg	0.10	-	-	1.47	1.22	1.23	1.22	1.23	1.47	1.31	0.142
	Nickel (Ni)	mg/kg	0.50	16	75	21.1	17.4	17	17	17.4	21.1	18.5	2.26
	Phosphorus (P)	mg/kg	50	-	-	1,380	1,200	1,210	1,200	1,210	1,380	1,260	101 30
	Potassium (K) Selenium (Se)	mg/kg mg/kg	100 0.20	- 2	- 2	1,630 1.05	1,570 0.69	1,600 0.69	1,570 0.69	1,600 0.69	1,630 1.05	1,600 0.81	0.208
	Silver (Ag)	mg/kg	0.20	0.5	-	0.17	0.09	0.09	0.09	0.09	0.17	0.153	0.208
	Sodium (Na)	mg/kg	50	-	-	90	82	80	80	82	90	84	5.29
	Strontium (Sr)	mg/kg	0.50	-	-	98.8	80.2	80.3	80.2	80.3	98.8	86.4	10.7
	Sulfur (S)	mg/kg	1,000	-	-	<1000	<1000	<1000	<1000	<1000	<1000	<1000	-
	Thallium (TI)	mg/kg	0.050	-	-	0.221	0.208	0.198	0.198	0.208	0.221	0.209	0.0115
	Tin (Sn)	mg/kg	2.0	-	-	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	-
	Titanium (Ti)	mg/kg	1.0	-	-	14.2	12.4	15.7	12.4	14.2	15.7	14.1	1.65
	Tungsten (W)	mg/kg	0.50	-	-	< 0.50	<0.50	< 0.50	< 0.50	< 0.50	<0.50	<0.50	-
	Uranium (U)	mg/kg	0.050	-	-	1.12	0.944	0.943	0.943	0.944	1.12	1	0.102
	Vanadium (V)	mg/kg	0.20 2.0	-	-	28.6 81	28 73.9	27.5	27.5 69.6	28	28.6 81	28 74.8	0.551
	Zinc (Zn) Zirconium (Zr)	mg/kg mg/kg	1.0	123	315 -	<1.0	<1.0	69.6 <1.0	<1.0	73.9 <1.0	<1.0	<1.0	5.76
	Acenaphthene	mg/kg mg/kg	0.0050	0.00671	- 0.0889	<0.0070	<0.0050	<0.0050	<0.0050	<0.0050	<0.0070	<0.0070	-
	Acenaphthylene	mg/kg	0.0050	0.00587	0.0009	<0.0070	<0.0050	< 0.0050	<0.0050	<0.0050	<0.0070	<0.0070	-
	Acridine	mg/kg	0.0000		0	<0.000	<0.000	<0.000	<0.0000	<0.0000	<0.010	<0.0000	-
	Anthracene	mg/kg	0.0040	0.0469	0.245	<0.0040	<0.0040	<0.0040	<0.0040	< 0.0040	<0.0040	<0.0040	-
	Benz(a)anthracene	mg/kg	0.010	0.0317	0.385	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	-
	Benzo(a)pyrene	mg/kg	0.010	0.0319	0.782	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	-
	Benzo(b&j)fluoranthene	mg/kg	0.010	-	-	0.015	<0.010	<0.010	<0.010	<0.010	0.015	0.0117	0.00667
S	Benzo(e)pyrene	mg/kg	0.010	-	-	0.013	< 0.010	<0.010	< 0.010	< 0.010	0.013	0.011	-
Polycyclic Aromatic Hydrocarbons	Benzo(g,h,i)perylene	mg/kg	0.010	0.17	3.2	< 0.010	<0.010	<0.010	<0.010	< 0.010	<0.010	<0.010	-
ant	Benzo(k)fluoranthene	mg/kg	0.010	0.24	13.4 0.862	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010 0.022	-
łroć	Chrysene Dibenz(a,h)anthracene	mg/kg mg/kg	0.010	0.0571 0.00622	0.862	0.032	0.02	0.014 <0.0050	0.014	0.02	0.032	<0.022	0.00917
٦ ۲	Fluoranthene	mg/kg	0.0050	0.00622	2.355	<0.0050	<0.0050	<0.0050	<0.0050	<0.0030	<0.0030	<0.0050	-
lic F	Fluorene	mg/kg	0.010	0.021	0.144	0.017	<0.010	<0.010	<0.010	<0.010	0.017	0.0123	-
nai	Indeno(1,2,3-c,d)pyrene	mg/kg	0.010	0.2	3.2	<0.010	<0.010	< 0.010	<0.010	<0.010	<0.010	<0.010	-
Vror	1-Methylnaphthalene	mg/kg	0.010	-	-	0.09	0.053	0.028	0.028	0.053	0.09	0.057	0.0312
ic A	2-Methylnaphthalene	mg/kg	0.010	0.0202	0.201	0.153	0.086	0.043	0.043	0.086	0.153	0.094	0.0554
ycl	Naphthalene	mg/kg	0.010	0.0346	0.391	0.056	0.029	0.014	0.014	0.029	0.056	0.033	0.0213
lyc	Perylene	mg/kg	0.010	-	-	0.013	< 0.010	<0.010	<0.010	< 0.010	0.013	0.011	-
Ъ	Phenanthrene	mg/kg	0.010	0.0419	0.515	0.099	0.06	0.04	0.04	0.06	0.099	0.0663	0.03
	Pyrene Quinoline	mg/kg mg/kg	0.010	0.053	0.875	0.011 <0.010	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	0.011 <0.010	0.0103	-
	d10-Acenaphthene	mg/kg %	-	-	-	76.4	83.3	77.8	76.4	<0.010 77.8	83.3	<0.010 79.2	3.65
	d12-Chrysene	%	-	-	-	87.3	96.4	97	87.3	96.4	97	93.6	5.44
	d8-Naphthalene	%	-	-	-	77.2	84.2	73.8	73.8	77.2	84.2	78.4	5.3
	d10-Phenanthrene	%	-	-	-	87	93.4	95.3	87	93.4	95.3	91.9	4.35
	B(a)P Total Potency Equivalent	mg/kg	0.020	-	-	<0.020	<0.020	< 0.020	<0.020	<0.020	< 0.020	<0.020	-
	IACR (CCME)					-	<0.15	<0.15	<0.15	-	-		

^a Working sediment quality guidelines (BC MOE 2015).
" - " = no data or standard deviation not estimated.

concentration exceeds lower SQG.

Page 5 of 5

Mine-exposed Wetland Mine-exposed BC Sediment Quality Guidelines ^a RG_GH-SCW Pool-W-1 Analyte Units MDL RG_GH-SCW1 RG_GH-SCW2 16-Sep-17 RG_GH-SC1-P2-2 RG_GH-SC1-P2-1 RG_GH-SC1-P2-3 Lower SQG Upper SQG Standard Deviation Standard Deviation Minimum Maximum Mean Median Maximum Mean Median Minimum 6-Sep-17 1-Sep-17 11-Sep-17 11-Sep-17 Physical Tests Moisture 3.5 6.94 % 0.25 53.7 58.6 53.7 56.15 58.6 56.15 47.2 35.6 48.0 35.6 47.2 48 43.6 % Gravel (-2 mm) % Gravel (-2 mm) % Sand (2.00 mm - 1.00 mm) % Sand (1.00 mm - 0.50 mm) % Sand (0.55 mm - 0.25 mm) % Sand (0.25 mm - 0.125 mm) % Sand (0.25 mm - 0.031 mm) % Sitt (0.083 mm - 0.031 mm) % Sitt (0.081 mm - 0.004 mm) % Clay (<4 µm)</td> Texture Total Quargie Cathon <1.0 <1.0 <1.0 <1.0 2.55 4.45 <1.0 <1.0 <1.0 1.5 4.8 11.8 31.5 43 7.3 Silt loam 2.8 10.1 15.4 6.8 5.7 11.8 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 33.4 44 8.5 <1.0 <1.0 <1.0 <1.0 4.1 7.9 35.1 54.4 11.9 <1.0 <1.0 <1.0 2.55 4.45 34.25 49.2 10.2 <1.0 <1.0 <1.0 1.5 2 <1.0 2.2 2.5 1.8 4.8 7.2 27.6 1.6 4.43 6.3 3.37 4.17 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 33.4 54.4 11.9 Silt 2.8 10.1 15.4 6.8 5.7 7.2 18.4 % % % % % % 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 <1.0 <1.0 <1.0 <1.0 4.1 7.9 35.1 44 8.5 Silt <1.0 2.2 2.5 1.8 2 5 5.27 8.6 2.98 1.93 3.47 6.73 10.5 3.55 Size Particle 8 25.8 38.1 9.5 34.25 49.2 10.2 1.20 7.35 2.40 27.6 45.2 13.6 Silt Ioam 31.5 45.2 13.6 18.4 26 7.6 Sandy loar 26 7.3 43 7.6 Organic Carbon Total Organic Carbon % 0.050 7.63 5.1 5.1 6.365 7.63 6.365 1.79 6.18 7.38 7.82 6.18 7.38 7.82 7.13 0.849 1,230 0.01 0.36 0.71 0.07 Aluminum (Al) Antimony (Sb) Arsenic (As) 50 0.10 0.10 8,080 0.64 5.41 9,820 0.63 5.92 8,950 0.635 5.665 9,820 0.64 5.92 152 0.63 <0.20 13 1.2 71,300 8,950 0.635 5.665 152 0.58 <0.20 12 1.16 62,300 18.05 5.71 15.75 13,050 7.89 14.3 15,450 7,760 0.62 5.91 7,210 0.45 4.98 7,760 0.6 5.72 9,800 0.62 5.91 8,260 0.557 5.54 1,360 0.0929 0.491 8,080 0.63 5.41 151 0.53 <0.20 11 7,210 0.45 4.98 140 0.58 <0.20 8.2 0.89 54,000 15.4 4.84 12.7 11,600 7.77 11.8 13,300 445 9,800 0.6 5.72 183 0.71 <0.20 11.3 1.11 38,100 19.4 6.45 16.7 14,700 10.2 14 10,900 mg/kg -5.9 17 Arsenic (As) Barium (Ba) Beryllium (Be) Bismuth (Bi) Boron (B) Cadmium (Cd) Calcium (Ca) 3.41 152 0.53 <0.20 11 1.2 53,300 3.31 194 0.73 <0.20 11.3 1.11 54,000 194 0.73 <0.20 6.3 0.985 172 0.673 <0.20 8.6 0.50 0.10 0.20 5.0 0.020 50 0.50 0.50 0.50 50 0.50 2.0 20 1.0 151 0.63 <0.20 13 1.12 71,300 19.5 5.96 15.6 13,400 152 0.58 <0.20 12 1.16 62,300 18.05 5.71 15.75 13,050 7.89 14.3 15,450 140 0.58 <0.20 6.3 31,400 14.7 4.84 12.7 11,600 7.77 11.8 8,390 445 0.0463 1.37 183 0.71 <0.20 8.2 0.985 38,100 15.4 6.45 16.2 14,700 10.2 12.1 10,900 28.5 0.0814 -2.52 0.11 11,600 2.54 1.17 1.41 0.06 12,728 2.05 0.35 0.21 495 0.16 2.40 4,455 59.40 0.6 3.5 1.12 53,300 16.6 5.46 15.6 12,700 7.78 12.6 12,300 0.995 41,200 16.5 6.14 15.2 14,200 9.49 12.6 10,900 0.985 31,400 14.7 7.12 16.2 16,400 10.5 12.1 8,390 53,300 16.6 5.46 15.9 12,700 7.78 12.6 12,300 19.5 5.96 15.9 13,400 19.4 7.12 16.7 16,400 10.5 14 13,300 37.3 90 Chromium (Cr) Cobalt (Co) Cobalt (Co) Copper (Cu) liron (Fe) Lead (Pb) Lithium (Li) Magnesium (Mg) Manganese (Mn) Mercury (Hg) Molybdenum (Mo) Nickel (Ni) 35.7 21,200 35 197 43,766 91.3 2.18 2,430 1.5 1.19 2,460 30.7 8 16 18,600 。 16 18,600 15,450 516 0.0526 1.625 8,390 464 0.0463 1.49 474 0.0525 1.49 558 0.0527 1.76 474 0.0525 1.49 516 0.0526 1.625 558 0.0527 1.76 505 0.0772 1.77 464 0.0567 1.49 505 0.0772 1.77 471 0.0601 1.54 460 0.17 1,100 0.486 Metals 0.0050 0.10 0.50 0.0567 0.00014 0.0157 0.19 2.47 99.0 396 1.87 0.01 27.58 4.38 0.205 3.41 1.025 25.55 1,250 2,300 3.135 0.245 107 103 1.625 25.55 1,250 2,300 3.135 0.245 107 103 1.54 24.3 1,260 1,800 1.71 0.203 77.7 80 16 75 1.49 23.8 1,180 2,020 1.81 0.25 87 100 27.3 1,320 2,580 4.46 0.24 126 106 27.3 1,320 2,580 4.46 0.25 126 106 Nickel (Ni) 23.8 1,180 20.4 1,230 1,630 1.35 0.18 78 85.4 <1000 0.223 26.2 1,330 1,550 1.92 0.19 71 77.8 <1000 0.205 26.4 1,220 2,210 1.85 0.24 84 76.8 <1000 0.296 20.4 1,220 1,550 1.35 0.18 71 76.8 <1000 0.205 26.2 1,230 1,630 1.85 0.19 78 77.8 <1000 0.223 26.4 1,330 2,210 1.92 0.24 84 85.4 <1000 0.296 Nickel (Ni) Phosphorus (P) Potassium (K) Selenium (Se) Silver (Ag) Sodium (Na) Strontium (Sr) 61 360 0.311 0.0321 6.51 4.7 50 100 0.20 0.10 50 0.50 1,000 0.050 2,020 1.81 0.24 87 100 2 0.5 2 <1000 0.241 Sulfur (S) Thallium (TI) <1,000 0.255 <1,000 0.274 <1,000 0.255 <1,000 0.2645 <1,000 0.274 <1,000 0.2645 0.01 0.0482 <2.0 14.5 <0.50 1.29 33.2 92.2 <2.0 17.2 <0.50 1.3 39.3 108</pre> <2.0 15.85 <0.50 1.295 36.25 100 <2.0 15.85 <0.50 1.295 36.25 100 <2.0 12.3 <0.50 0.999 28.8 83.6</pre> <2.0 10.4 <0.50 0.942 30.4 113</pre> <2.0 15.2 <0.50 1.11 36.7 97.6 <2.0 10.4 <0.50 0.942 28.8 83.6</pre> <2.0 12.3 <0.50 0.999 30.4 97.6</pre> <2.0 15.2 <0.50 1.11 36.7 113 2.0 1.0 0.50 0.050 0.20 2.0 <2.0 14.5 <0.50 1.29 33.2 92.2 <2.0 17.2 <0.50 1.3 39.3 108 Tin (Sn) Titanium (Ti) <2.0 12.6 <0.50 1.02 32 98.1 <1.0 <0.035 1.91 2.42 Tungsten (W) Uranium (U) Vanadium (V) Zinc (Zn) 0.01 4.31 11.17 0.0854 4.18 14.7 123 315 irconium (Zr) 1.05 1.05 <1.0 <0.035 <1.0 <0.014 <1.0 <0.028 <1.0 <0.022 <1.0 <0.022 <1.0 <0.0050 0.00671 0.00587 0.0050 0.0889 0.128 <0.0050 <0.014 <0.028 < 0.035 Acenaphthene Acenaphthylene Acridine Anthracene Benz(a)anthracene Benzo(b&i)fluoranthene 0.0050 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 <0.0030 <0.0050 <0.010 <0.0040 <0.010 <0.010 0.014 <0.0050 <0.0050 <0.010 <0.0040 <0.010 <0.010 0.014 0.012 <0.010 <0.010 <0.014 <0.0050 <0.010 <0.0040 0.011 <0.010 0.029 0.025 <0.028 <0.0050 <0.010 <0.0040 0.018 <0.010 0.051 0.044 0.013 -0.010 <0.035 <0.0050 <0.010 <0.0040 0.018 <0.010 0.039 0.035 0.011 <0.010 <0.022 <0.0050 <0.010 <0.0040 0.016 <0.010 0.054 0.045 0.014 <0.010 <0.022 <0.0050 <0.010 <0.0040 0.016 <0.010 0.039 0.035 0.011 <0.010 <0.035 <0.0050 <0.010 <0.0040 0.018 <0.010 0.054 0.045 0.014 <0.010 <0.035 <0.0050 <0.010 <0.0040 0.0173 <0.010 0.048 0.0413 0.0127 <0.010 <0.0050 <0.010 <0.0040 0.011 <0.010 0.025 <0.010 <0.010 0.065 <0.0050 0.014 0.022 <0.010 0.159 <0.0050 <0.010 <0.0040 0.011 <0.010 0.0215 <0.0185 <0.010 <0.010 0.048 <0.0050 0.012 0.022 <0.010 0.012 <0.0050 <0.010 <0.0040 0.011 <0.010 0.0215 0.0185 <0.010 <0.010 <0.010 0.048 <0.0050 0.012 0.022 < 0.0050 <0.0000 <0.010 <0.0040 0.018 <0.010 0.051 0.044 0.013 0.0469 0.0317 0.0319 0.245 0.385 0.782 0.00115 0.00794 0.011 0.009 Benzo(bk))nuorantner Benzo(e)pyrene Benzo(g,h,i)perylene Benzo(k)fluoranthene 0.012 <0.010 0.00551 0.00153 0.17 0.24 0.0571 0.00622 0.111 0.021 0.2 3.2 13.4 0.862 0.135 2.355 0.144 3.2 <0.010 0.010 0.010 0.0050 0.010 0.010 0.010 0.010 <0.010 <0.010 0.031 <0.0050 <0.010 <0.010 0.065 <0.010 <0.010 0.031 <0.0050 <0.010 <0.010 <0.010 0.065 0.010 < 0.010 <0.010 0.141 0.0087 0.024 0.035 < 0.010 0.010 <0.010 < 0.010 Benzo(k)fluoranthene Chrysene Pibenz(a,h)anthracene Fluoranthene Indeno(1,2,3-c,d)pyrene 1-Methylnaphthalene 2-Methylnaphthalene Naphthalene Pervlene <0.010 0.127 0.0081 0.02 0.035 <0.010 0.378</pre> 0.0176 0.0006 0.00265 0.0117 0.010 0.141 0.0087 0.024 0.05 <0.010 0.478 0.024 0.127 0.0081 0.02 0.027 <0.010 0.244 0.125 0.0081 0.021 0.0373 <0.010 0.367 0.065 <0.0050 0.014 0.022 0.106 0.0075 0.019 0.106 0.0075 0.019 0.027 0.019 0.05 <0.010 0.478 <0.010 0.112 0.182 0.063 <0.010 <0.010 0.159 0.066 0.133 0.030 <0.010 0.378 0.117 0.243 0.0638 0.010 0.010 0.0202 0.0346 0.201 0.391 0.088 0.042 0.276 0.08 0.276 0.084 0.696 0.919 0.433 0.103 0.433 0.696 0.919 0.226 0.683 0.174 Polycyclic 0.063 0.042 0.103 0.194 0.084 0.018 0.216 0.022 <0.010 88 96 84 93 0.063 0.018 0.1575 0.016 <0.010 83.85 92.85 80.55 89.25 0.010 0.010 0.010 0.010 0.010 0.00267 Perylene Phenanthrene 0.018 0.015 0.451 0.042 <0.010 84.9 91.6 79 89.9 0.015 0.012 0.0419 0.053 0.515 0.875 0.018 0.1575 0.016 <0.010 83.85 92.85 80.55 89.25 0.011 0.322 0.034 <0.010 79.7 90.5 75 87.9 0.023 0.52 0.451 0.042 <0.010 84.9 91.6 79 89.9 0.216 0.022 <0.010 88 96 84 93 0.083 0.09 0.372 0.09 0.322 0.372 0.382 Quinoline Quinoline d10-Acenaphthene d12-Chrysene d8-Naphthalene d10-Phenanthrene <0.010 <0.010 79.7 89.7 77.1 85.5 0.032 <0.010 76.2 88 71.4 80.8 0.02 0.032 <0.010 76.2 88 71.4 80.8 0.02 0.036 <0.010 80.3 90 75.1 86.2 0.022 <0.010 <0.010 79.7 89.7 77.1 85.5 0.034 <0.010 79.7 90.5 4.38 1.84 3.8 4.78 5.87 4.45 4.88 5.30 75 87.9 0.020 B(a)P Total Potency Equivalent 0.00173 mg/kg <0.020 < 0.020 < 0.020 < 0.020 < 0.020 <0.020 0.023 0.023 0.023 0.08 IACR (CCME) 0.15 0.18 0.3 0.18 0.24 0.3 0.24 0.53 0.43 0.53 0.43 0.53 0.53 0.497 0.0577

Table C.2: Sediment Quality in Lentic Areas and Associated Summary Statistics

^a Working sediment quality guidelines (BC MOE 2015).

- " = no data or standard deviation not estimated concentration exceeds lower SQG.

concentration exceeds upper SQG.

Page 1 of 3

						Mine-expo	sed Pool			
	Analyte	Units				Pool-	-W-2			
	Апануте	Units	RG_GH- SC1-P1-1 11-Sep-17	RG_GH- SC1-P1-2 11-Sep-17	RG_GH- SC1-P1-3 11-Sep-17	Minimum	Median	Maximum	Mean	Standar Deviatio
Physical Tests	Moisture	%	49.6	47.2	46.4	46.4	47.2	49.6	47.7	1.67
10313	% Gravel (>2 mm)	%	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
	% Sand (2.00 mm - 1.00 mm)	%	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
	% Sand (1.00 mm - 0.50 mm)	%	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Size	% Sand (0.50 mm - 0.25 mm)	%	1.7	<1.0	<1.0	<1.0	<1.0	1.7	1.23	-
0	% Sand (0.25 mm - 0.125 mm)	%	1.9	2.5	<1.0	<1.0	1.9	2.5	1.8	0.4
Particle	% Sand (0.125 mm - 0.063 mm)	%	2.7	6.1	<1.0	<1.0	2.7	6.1	3.27	2.27
art	% Silt (0.063 mm - 0.0312 mm)	%	26.3	33.5	30.6	26.3	30.6	33.5	30.1	3.62
ш.	% Silt (0.0312 mm - 0.004 mm)	%	49.7	47.3	51.5	47.3	49.7	51.5	49.5	2.11
	% Clay (<4 µm)	%	16.8	10.1	17.2	10.1	16.8	17.2	14.7	3.99
Organic	Texture	-	Silt	Silt	Silt loam	-	-	-	-	-
Carbon	Total Organic Carbon	%	16.7	8.77	15.2	8.77	15.2	16.7	13.6	4.21
	Aluminum (Al)	mg/kg	6,800	8,700	7,580	6,800	7,580	8,700	7,690	955
	Antimony (Sb)	mg/kg	0.65	0.56	0.76	0.56	0.65	0.76	0.657	0.1
	Arsenic (As)	mg/kg	4.87	5.4	5.14	4.87	5.14	5.4	5.14	0.265
	Barium (Ba)	mg/kg	190	175	211	175	190	211	192	18.1
	Beryllium (Be)	mg/kg	0.77	0.66	0.83	0.66	0.77	0.83	0.753	0.0862
	Bismuth (Bi)	mg/kg	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	- 1.91
	Boron (B)	mg/kg						8.8	6.6	
	Cadmium (Cd)	mg/kg	1.39	1.04	1.67 20.900	1.04 20,900	1.39	1.67	1.37	0.316
	Calcium (Ca)	mg/kg	30,700	44,700	20,900		30,700	44,700	32,100 14.7	12,00
	Chromium (Cr) Cobalt (Co)	mg/kg	13.2 6.96	16.7 5.88	14.3 8.09	13.2 5.88	14.3 6.96	16.7 8.09	14.7 6.98	1.79
	Copper (Cu)	mg/kg mg/kg	20.3	15.9	26.2	15.9	20.3	26.2	20.8	5.17
	Iron (Fe)	mg/kg	12,000	13.800	14,100	12.000	13,800	14,100	13,300	1.140
	Lead (Pb)	mg/kg	12,000	9.33	14,100	9.33	11.7	14,100	11.3	1,140
	Lithium (Li)	mg/kg	10.3	9.33	10	9.33	10.3	13.2	11.3	1.00
	Magnesium (Mg)	mg/kg	7,250	12,100	4,470	4,470	7,250	12,100	7,940	3,860
10	Magnese (Mn)	mg/kg	328	435	240	240	328	435	334	97.7
Metals	Mercury (Hg)	mg/kg	0.0897	0.07	0.12	0.07	0.0897	0.12	0.0932	0.025
Me	Molybdenum (Mo)	mg/kg	1.39	1.51	1.3	1.3	1.39	1.51	1.4	0.105
-	Nickel (Ni)	mg/kg	25.2	23.8	28.8	23.8	25.2	28.8	25.9	2.58
	Phosphorus (P)	mg/kg	1,100	1,390	1,000	1,000	1,100	1,390	1,160	2.30
	Potassium (K)	mg/kg	1,370	1,870	1,550	1,370	1,550	1,870	1,600	253
	Selenium (Se)	mg/kg	2.52	1.61	1.83	1.61	1.83	2.52	1.99	0.475
	Silver (Ag)	mg/kg	0.28	0.2	0.35	0.2	0.28	0.35	0.277	0.075
	Sodium (Na)	mg/kg	58	79	<50	<50	58	79	62.3	14
	Strontium (Sr)	mg/kg	81.9	84.6	84.4	81.9	84.4	84.6	83.6	1.5
	Sulfur (S)	mg/kg	<1,000	<1,000	<1,000	-	-	-	-	-
	Thallium (TI)	mg/kg	0.166	0.23	0.153	0.153	0.166	0.23	0.183	0.0412
	Tin (Sn)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	-
	Titanium (Ti)	mg/kg	6.3	15.3	18.6	6.3	15.3	18.6	13.4	6.37
	Tungsten (W)	mg/kg	<0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	<0.50	-
	Uranium (U)	mg/kg	1.03	1.05	0.899	0.899	1.03	1.05	0.993	0.082
	Vanadium (V)	mg/kg	26.9	32.7	29.6	26.9	29.6	32.7	29.7	2.9
	Zinc (Zn)	mg/kg	98.5	96	106	96	98.5	106	100	5.2
	Zirconium (Zr)	mg/kg	1.1	<1.0	1.2	<1.0	1.1	1.2	1.1	0.066
	Acenaphthene	mg/kg	< 0.14	< 0.030	< 0.039	< 0.030	< 0.039	< 0.14	-	-
	Acenaphthylene	mg/kg	0.013	<0.0050	<0.0050	< 0.0050	<0.0050	0.013	0.00767	-
	Acridine	mg/kg	< 0.010	<0.010	<0.010	<0.010	<0.010	< 0.010	<0.010	-
	Anthracene	mg/kg	0.0094	<0.0040	0.0057	< 0.0040	0.0057	0.0094	0.00637	0.0024
	Benz(a)anthracene	mg/kg	0.056	0.02	0.037	0.02	0.037	0.056	0.0377	0.018
	Benzo(a)pyrene	mg/kg	0.023	<0.010	<0.010	<0.010	<0.010	0.023	0.0143	-
	Benzo(b&j)fluoranthene	mg/kg	0.165	0.057	0.14	0.057	0.14	0.165	0.121	0.056
s	Benzo(e)pyrene	mg/kg	0.141	0.049	0.101	0.049	0.101	0.141	0.097	0.046
Polycyclic Aromatic Hydrocarbons	Benzo(g,h,i)perylene	mg/kg	0.038	0.014	0.023	0.014	0.023	0.038	0.025	0.012
art	Benzo(k)fluoranthene	mg/kg	0.011	<0.010	< 0.010	<0.010	< 0.010	0.011	0.0103	-
20	Chrysene	mg/kg	0.438	0.15	0.327	0.15	0.327	0.438	0.305	0.145
ydı	Dibenz(a,h)anthracene	mg/kg	0.0287	0.009	0.0193	0.009	0.0193	0.0287	0.019	0.0098
T	Fluoranthene	mg/kg	0.079	0.027	0.085	0.027	0.079	0.085	0.0637	0.031
ati	Fluorene	mg/kg	0.187	0.036	0.039	0.036	0.039	0.187	0.0873	0.086
Ē	Indeno(1,2,3-c,d)pyrene	mg/kg	0.012	<0.010	< 0.010	< 0.010	<0.010	0.012	0.0107	-
Arc	1-Methylnaphthalene	mg/kg	1.67	0.344	0.327	0.327	0.344	1.67	0.78	0.771
<u>o</u>	2-Methylnaphthalene	mg/kg	3.12	0.621	0.529	0.529	0.621	3.12	1.42	1.47
ycl	Naphthalene	mg/kg	0.722	0.149	0.119	0.119	0.149	0.722	0.33	0.34
lyc	Perylene	mg/kg	<0.010	<0.020	<0.010	< 0.010	< 0.010	<0.020	< 0.020	0.542
Ъ	Phenanthrene	mg/kg	1.45	0.419	0.647	0.419	0.647	1.45	0.839	
	Pyrene	mg/kg	0.133	0.043	0.134 <0.010	0.043 <0.010	0.133	0.134 <0.010	0.103 <0.010	0.052
	Quinoline	mg/kg %	<0.010 87.1	<0.010 79.1	<0.010 71.8	<0.010 71.8	<0.010 79.1	<0.010 87.1	<0.010 79.3	7.65
	d10-Acenaphthene	%	87.1 83.6	79.1 86.2	71.8	71.8	79.1 83.6	87.1 86.2	79.3	6.48
	d12-Chrysene					73.9 68	83.6 73.2	86.2		6.48
	dQ Manhthalana									
	d8-Naphthalene	%	74.6	73.2	68				71.9	
	d8-Naphthalene d10-Phenanthrene B(a)P Total Potency Equivalent	% % mg/kg	74.6 85.2 0.081	85 0.024	73.2	73.2 0.024	85 0.046	85.2 0.081	81.1 0.0503	6.87

Working sediment quality guidelines (BC MOE 2015).
 * - * = no data or standard deviation not estimated.
 concentration exceeds lower SQG.
 concentration exceeds upper SQG.

Page 2 of 3

						Mine	-exposed P	ool			
		Units	Pool-E-2				Pool-E-6				Pool-E-7
	Analyte	Units	RG_GH-SC2- P1-1 11-Sep-17	RG_GH-SC2 P2-1 11-Sep-17	RG_GH-SC2 P2-2 11-Sep-17	Minimum	Median	Maximum	Mean	Standard Deviation	RG_GH-SC P3-1 11-Sep-17
Physical Tests	Moisture	%	57.9	38	43.8	38	40.9	43.8	40.9	4.10	21.1
16313	% Gravel (>2 mm)	%	<1.0	1.2	2.7	1.2	1.95	2.7	1.95	1.06	<1.0
	% Sand (2.00 mm - 1.00 mm)	%	<1.0	4	10.3	4	7.15	10.3	7.15	4.45	13.6
	% Sand (1.00 mm - 0.50 mm)	%	<1.0	7.5	7.4	7.4	7.45	7.5	7.45	0.07	32.5
Size	% Sand (0.50 mm - 0.25 mm)	%	<1.0	8.7	4.2	4.2	6.45	8.7	6.45	3.18	31.6
0	% Sand (0.25 mm - 0.125 mm)	%	<1.0	6.2	11.1	6.2	8.65	11.1	8.65	3.46	5.2
Particle	% Sand (0.125 mm - 0.063 mm)	%	1.2	3.9	10.8	3.9	7.35	10.8	7.35	4.88	2.4
art	% Silt (0.063 mm - 0.0312 mm)	%	35.4	20.3	18.5	18.5	19.4	20.3	19.4	1.27	4.1
Δ.	% Silt (0.0312 mm - 0.004 mm)	%	52.9	36.4	28.2	28.2	32.3	36.4	32.3	5.8	7.6
	% Clay (<4 µm)	%	10.3	11.8	7	7	9.4	11.8	9.4	3.4	3
Ormania	Texture	-	Silt	Silt loam	Sandy loam	-	-	-	-	-	Loamy san
Organic Carbon	Total Organic Carbon	%	9.76	11.7	4.01	4.01	7.855	11.7	7.855	5.44	1.86
	Aluminum (Al)	mg/kg	8,180	8,080	6,470	6,470	7,275	8,080	7,275	1,138	5,980
	Antimony (Sb)	mg/kg	0.52	0.55	0.36	0.36	0.455	0.55	0.455	0.13	0.41
	Arsenic (As)	mg/kg	5.3	6.37	4.99	4.99	5.68	6.37	5.68	0.98	5.38
	Barium (Ba)	mg/kg	153	142	96.2	96.2	119	142	119	32.4	97.2
	Beryllium (Be)	mg/kg	0.63	0.59	0.48	0.48	0.535	0.59	0.535	0.08	0.47
	Bismuth (Bi)	mg/kg	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	-	<0.20
	Boron (B)	mg/kg	10.5	9.2	6.3	6.3	7.75	9.2	7.75	2.05	5.8
	Cadmium (Cd)	mg/kg	1.16	0.869	0.538	0.538	0.7035	0.869	0.7035	0.23	0.576
	Calcium (Ca)	mg/kg	48,300	47,500	57,600	47,500	52,550	57,600	52,550	7,142	68,200
	Chromium (Cr)	mg/kg	17.6	17	43.2	17	30.1	43.2	30.1	18.53	15.3
	Cobalt (Co)	mg/kg	5.42	5.58	4.28	4.28	4.93	5.58	4.93	0.92	4.18
	Copper (Cu)	mg/kg	15.1	12.2	10.7	10.7	11.45	12.2	11.45	1.06	9.14
	Iron (Fe)	mg/kg	12,300	13,700	12,400	12,400	13,050	13,700	13,050	919	12,900
	Lead (Pb)	mg/kg	8.27	8.24	6.62	6.62	7.43	8.24	7.43	1.15	6.36
	Lithium (Li)	mg/kg	12.8	11.7	11.1	11.1	11.4	11.7	11.4	0.42	9.6
	Magnesium (Mg)	mg/kg	11,900	10,500	12,700	10,500	11,600	12,700	11,600	1,556	11,300
ŝ	Manganese (Mn)	mg/kg	595	490	349	349	420	490	420	100	348
Metals		mg/kg	0.0696	0.0502	0.0286	0.0286	0.0394	0.0502	0.0394	0.02	0.016
Je.	Mercury (Hg) Molybdenum (Mo)	mg/kg	1.48	1.53	1.82	1.53	1.675	1.82	1.675	0.02	1.35
~			23.6	20.6	25.9	20.6	23.25	25.9	23.25	3.7	1.55
	Nickel (Ni)	mg/kg	23.0							226	
	Phosphorus (P)	mg/kg	1,220	1,370	1,050	1,050 1,340	1,210	1,370	1,210	368	1,130
	Potassium (K)	mg/kg	1,910	1,860	1,340		1,600	1,860	1,600		1,240
	Selenium (Se)	mg/kg	2.64	1.64	0.92	0.92	1.28	1.64	1.28	0.51	0.57
	Silver (Ag)	mg/kg	0.21	0.17	0.1	0.1	0.135	0.17	0.135	0.05	<0.10
	Sodium (Na)	mg/kg	84	79	77	77	78	79	78	1.41	83
	Strontium (Sr)	mg/kg	82.3	80.9	70.4	70.4	75.65	80.9	75.65	7.42	95.2
	Sulfur (S)	mg/kg	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	-	<1,000
	Thallium (TI)	mg/kg	0.25	0.218	0.158	0.158	0.188	0.218	0.188	0.04	0.145
	Tin (Sn)	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	-	<2.0
	Titanium (Ti)	mg/kg	13.5	13	13.2	13	13.1	13.2	13.1	0.14	11.6
	Tungsten (W)	mg/kg	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	-	< 0.50
	Uranium (U)	mg/kg	1.32	1.11	0.879	0.879	0.9945	1.11	0.9945	0.16	0.889
	Vanadium (V)	mg/kg	31.9	32.5	23	23	27.75	32.5	27.75	6.72	22.7
	Zinc (Zn)	mg/kg	89.1	83.5	57.6	57.6	70.55	83.5	70.55	18.31	61.4
	Zirconium (Zr)	mg/kg	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	<1.0
	Acenaphthene	mg/kg	<0.028	<0.016	<0.0080	<0.0080		<0.016			< 0.0050
	Acenaphthylene	mg/kg	< 0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	-	< 0.0050
	Acridine	mg/kg	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	-	<0.010
	Anthracene	mg/kg	< 0.0040	<0.0040	<0.0040	<0.0040	-	<0.0040	-	-	< 0.0040
	Benz(a)anthracene	mg/kg	0.018	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	-	<0.010
	Benzo(a)pyrene	mg/kg	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	-	<0.010
	Benzo(b&j)fluoranthene	mg/kg	0.051	0.027	0.013	0.013	0.02	0.027	0.02	0.010	0.01
s	Benzo(e)pyrene	mg/kg	0.044	0.023	0.011	0.011	0.017	0.023	0.017	0.008	<0.010
Polycyclic Aromatic Hydrocarbons	Benzo(g,h,i)perylene	mg/kg	0.013	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	-	<0.010
arb	Benzo(k)fluoranthene	mg/kg	< 0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	-	<0.010
ö	Chrysene	mg/kg	0.141	0.067	0.032	0.032	0.0495	0.067	0.0495	0.0247	0.022
-ip	Dibenz(a,h)anthracene	mg/kg	0.0087	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	-	<0.0050
f	Fluoranthene	mg/kg	0.024	0.012	<0.010	<0.010	0.012	0.012	0.012	-	<0.010
tic	Fluorene	mg/kg	0.035	0.017	<0.010	<0.010	0.017	0.017	0.017	-	<0.010
ma	Indeno(1,2,3-c,d)pyrene	mg/kg	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	-	<0.010
ē	1-Methylnaphthalene	mg/kg	0.378	0.181	0.105	0.105	0.143	0.181	0.143	0.0537	0.041
ح ⊳	2-Methylnaphthalene	mg/kg	0.696	0.335	0.178	0.178	0.2565	0.335	0.2565	0.1110	0.072
Ğ	Naphthalene	mg/kg	0.194	0.079	0.051	0.051	0.065	0.079	0.065	0.0198	0.022
cy	Perylene	mg/kg	0.015	0.026	0.03	0.026	0.028	0.03	0.028	0.0028	< 0.010
e)	Phenanthrene	mg/kg	0.451	0.212	0.106	0.106	0.159	0.212	0.159	0.0750	0.05
۵.	Pyrene	mg/kg	0.042	0.019	0.011	0.011	0.015	0.019	0.015	0.0057	< 0.010
	Quinoline	mg/kg	<0.010	<0.010	<0.010	<0.010	< 0.010	<0.010	<0.010	-	< 0.010
	d10-Acenaphthene	%	84.9	80.9	83.1	80.9	82	83.1	82	1.56	73
	d12-Chrysene	%	91.6	89.9	94.5	89.9	92.2	94.5	92.2	3.25	80.8
	d8-Naphthalene	%	79	75.5	78.7	75.5	77.1	94.5 78.7	92.2	2.26	70.2
			89.9		78.7 88.5	75.5			87.7		70.2
	d10-Phenanthrene	%		86.9			87.7	88.5		1.13	
	B(a)P Total Potency Equivalent	mg/kg	0.023	< 0.020	<0.020	<0.020	<0.020	< 0.020	< 0.020	-	< 0.020
	IACR (CCME)	mg/kg	0.53	0.27	0.17	0.17	0.22	0.27	0.22	0.071	<0.15

Working sediment quality guidelines (BC MOE 2015).
 * - * = no data or standard deviation not estimated.
 concentration exceeds lower SQG.
 concentration exceeds upper SQG.

Page 3 of 3

Table C.3: Field Duplicate (Split Sample) Results for Sediment Chemistry Samples

				GH_ERSC2		(GH_ERSC4	
	Analyte	Units		L1992278			L1992278	
			GH_ERSC2-3 11-Sep-17	GH_ERSC2-X 11-Sep-17	RPD -	GH_ERSC4-3 08-Sep-17	GH_ERSC4-X 08-Sep-17	RPD -
Physical Tests	Moisture	%	48.0	47.5	1%	37.5	36.4	3%
	% Gravel (>2 mm)	%	<1.0	<1.0	0%	<1.0	<1.0	0%
	% Sand (2.00 mm - 1.00 mm)	%	2.2	1.1	67%	1.7	<1.0	41%
	% Sand (1.00 mm - 0.50 mm)	%	2.5	1.8	33%	3.6	2.0	57%
	% Sand (0.50 mm - 0.25 mm)	%	1.8	1.5	18%	7.1	5.6	24%
Particle Size	% Sand (0.25 mm - 0.125 mm)	%	2.0	2.0	0%	30.2	29.3	3%
	% Sand (0.125 mm - 0.063 mm)	% %	5.0 27.6	4.3 28.1	15% 2%	21.1	18.9 16.8	11% 17%
	% Silt (0.063 mm - 0.0312 mm) % Silt (0.0312 mm - 0.004 mm)	%	45.2	47.1	2% 4%	14.1 16.8	20.6	20%
	% Clay (<4 µm)	%	13.6	14.0	3%	5.3	6.2	16%
	Texture	-	Silt loam	Silt loam / Silt	-	Sandy loam	Sandy loam	-
Organic Carbon	Total Organic Carbon	%	7.82	7.62	3%	3.46	3.64	5%
	Aluminum (Al)	mg/kg	9,800	12,300	23%	5,430	5,150	5%
	Antimony (Sb)	mg/kg	0.60	0.96	46%	0.41	0.40	2%
	Arsenic (As)	mg/kg	5.72	7.72	30%	4.73	4.63	2%
	Barium (Ba)	mg/kg	183	249	31%	109	107	2%
	Beryllium (Be)	mg/kg	0.71	1.04	38%	0.41	0.45	9%
	Bismuth (Bi)	mg/kg	<0.20	0.23	13%	<0.20	<0.20	0%
	Boron (B)	mg/kg	11.3	16.1	35%	6.2	5.0	21%
	Cadmium (Cd)	mg/kg	1.11	1.40	23% 38%	0.650	0.711	9% 1%
	Calcium (Ca) Chromium (Cr)	mg/kg	38,100 19.4	55,800 22.5	38% 15%	60,200	59,600	1% 9%
	Cobalt (Co)	mg/kg mg/kg	19.4 6.45	22.5 8.62	15% 29%	13.6 3.72	12.4 3.85	9% 3%
	Copper (Cu)	mg/kg mg/kg	16.7	22.2	29%	8.90	3.85 9.06	3% 2%
	Iron (Fe)	mg/kg	14,700	19,900	30%	10,600	10,700	1%
	Lead (Pb)	mg/kg	10.2	15.6	42%	6.24	6.38	2%
	Lithium (Li)	mg/kg	14.0	22.1	45%	9.2	8.8	4%
	Magnesium (Mg)	mg/kg	10,900	13,800	23%	11,600	11,600	0%
	Manganese (Mn)	mg/kg	505	678	29%	319	340	6%
Total Metals	Mercury (Hg)	mg/kg	0.0772	0.0877	13%	0.0271	0.0270	0%
	Molybdenum (Mo)	mg/kg	1.77	2.66	40%	1.14	1.08	5%
	Nickel (Ni)	mg/kg	26.4	34.9	28%	15.6	16.1	3%
	Phosphorus (P)	mg/kg	1,220	1,580	26%	1,350	1,200	12%
	Potassium (K)	mg/kg	2,210	2,580	15%	1,220	1,070	13%
	Selenium (Se)	mg/kg	1.85	2.35	24%	0.67	0.60	11%
	Silver (Ag)	mg/kg	0.24	0.34	34%	0.12	0.12	0%
	Sodium (Na)	mg/kg	84	94	11%	75	72	4%
	Strontium (Sr) Sulfur (S)	mg/kg mg/kg	76.8 <1000	117 <1000	41% 0%	86.6 <1000	85.2 <1000	2% 0%
	Thallium (TI)	mg/kg	0.296	0.435	38%	0.166	0.161	3%
	Tin (Sn)	mg/kg	<2.0	<2.0	0%	<2.0	<2.0	0%
	Titanium (Ti)	mg/kg	15.2	16.8	10%	11.4	11.2	2%
	Tungsten (W)	mg/kg	<0.50	<0.50	0%	<0.50	<0.50	0%
	Uranium (U)	mg/kg	1.11	1.62	37%	0.954	0.985	3%
	Vanadium (V)	mg/kg	36.7	45.7	22%	23.8	22.6	5%
	Zinc (Zn)	mg/kg	97.6	137	34%	69.5	70.1	1%
	Zirconium (Zr)	mg/kg	<1.0	1.6	38%	<1.0	<1.0	0%
	Acenaphthene	mg/kg	<0.022	<0.025	0%	<0.0050	<0.0050	0%
	Acenaphthylene	mg/kg	<0.0050	<0.0050	0%	<0.0050	<0.0050	0%
	Acridine	mg/kg	<0.010	< 0.010	0%	<0.010	<0.010	0%
	Anthracene	mg/kg	<0.0040	<0.0040	0%	<0.0040	<0.0040	0%
	Benz(a)anthracene	mg/kg	0.016	0.018	12%	<0.010	<0.010	0%
	Benzo(a)pyrene	mg/kg	<0.010 0.054	<0.010 0.054	0% 0%	<0.010 0.022	<0.010	0% 55%
	Benzo(b&j)fluoranthene Benzo(e)pyrene	mg/kg mg/kg	0.054	0.054 <0.050	0% 11%	<0.022	<0.010 <0.010	55% 0%
	Benzo(g,h,i)perylene	mg/kg mg/kg	0.045	<0.050 0.014	0%	<0.020	<0.010	0%
	Benzo(g,n,i)perylene Benzo(k)fluoranthene	mg/kg mg/kg	<0.014	<0.014	0%	<0.010	<0.010	0%
	Chrysene	mg/kg	0.127	0.130	2%	0.050	0.010	128%
	Dibenz(a,h)anthracene	mg/kg	0.0081	0.0081	0%	< 0.0050	< 0.0050	0%
D /	Fluoranthene	mg/kg	0.020	0.021	5%	<0.010	<0.000	0%
Polycyclic	Fluorene	mg/kg	0.027	0.030	11%	<0.010	<0.010	0%
Aromatic Hydrocarbons	Indeno(1,2,3-c,d)pyrene	mg/kg	<0.010	<0.010	0%	<0.010	<0.010	0%
riyurucarbons	1-Methylnaphthalene	mg/kg	0.244	0.271	10%	0.062	0.025	85%
	2-Methylnaphthalene	mg/kg	0.433	0.480	10%	0.071	0.033	73%
	Naphthalene	mg/kg	0.103	0.117	13%	0.040	0.015	91%
	Perylene	mg/kg	0.011	<0.020	82%	0.022	<0.010	55%
	Phenanthrene	mg/kg	0.322	0.347	7%	0.127	0.031	122%
	Pyrene	mg/kg	0.034	0.035	3%	0.012	<0.010	17%
	Quinoline	mg/kg	<0.010	< 0.010	0%	<0.010	<0.010	0%
	d10-Acenaphthene	%	79.7	83.5	5%	89.6	73.5	20%
	Idd: J (bm/oono	%	90.5	93.4	3%	113.3	82.5	31%
	d12-Chrysene			70.0	EQ.	~ ~ ~	00 t	4
	d8-Naphthalene	%	75.0	78.9	5%	81.3	68.4	17%
				78.9 92.0 0.023	5% 5% 0%	81.3 98.9 <0.020	68.4 72.9 <0.020	17% 30% 0%

Relative Percent Difference greater than 40%. Note: For calculation of the RPD, method detection limit (MDL) values were used in cases where the reported value was below the MDL.

SUBSTRATE QUALITY

Laboratory Reports

MINNOW ENVIRONMENTAL INC. ATTN: Jess Tester 2 Lamb Street Georgetown ON L7G 3M9 Date Received: 15-SEP-17 Report Date: 02-OCT-17 15:01 (MT) Version: FINAL

Client Phone: 905-873-3371

Certificate of Analysis

Lab Work Order #: L1992278 Project P.O. #: NOT SUBMITTED Job Reference: 17-24 C of C Numbers: Legal Site Desc:

Comments: ADDITIONAL 29-SEP-17 16:11

Lyudmyla Shvets, B.Sc. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 2559 29 Street NE, Calgary, AB T1Y 7B5 Canada | Phone: +1 403 291 9897 | Fax: +1 403 291 0298 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 💭

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L1992278 CONTD.... PAGE 2 of 21 02-OCT-17 15:01 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1992278-1 SEDIMENT 11-SEP-17 GH_ERSC2-1	L1992278-2 SEDIMENT 11-SEP-17 GH_ERSC2-2	L1992278-3 SEDIMENT 11-SEP-17 GH_ERSC2-X	L1992278-4 SEDIMENT 11-SEP-17 GH_ERSC2-3	L1992278-5 SEDIMENT 11-SEP-17 GH_SC2-P1-1
Grouping	Analyte					
SOIL	-					
Physical Tests	Moisture (%)	47.2	35.6	47.5	48.0	57.9
Particle Size	% Gravel (>2mm) (%)	<1.0	2.8	<1.0	<1.0	<1.0
	% Sand (2.00mm - 1.00mm) (%)	<1.0	10.1	1.1	2.2	<1.0
	% Sand (1.00mm - 0.50mm) (%)	<1.0	15.4	1.8	2.5	<1.0
	% Sand (0.50mm - 0.25mm) (%)	1.5	6.8	1.5	1.8	<1.0
	% Sand (0.25mm - 0.125mm) (%)	4.8	5.7	2.0	2.0	<1.0
	% Sand (0.125mm - 0.063mm) (%)	11.8	7.2	4.3	5.0	1.2
	% Silt (0.063mm - 0.0312mm) (%)	31.5	18.4	28.1	27.6	35.4
	% Silt (0.0312mm - 0.004mm) (%)	43.0	26.0	47.1	45.2	52.9
	% Clay (<4um) (%)	7.3	7.6	14.0	13.6	10.3
	Texture	Silt Ioam	Sandy loam	Silt Ioam / Silt	Silt loam	Silt
Organic / Inorganic Carbon	Total Organic Carbon (%)	6.18	7.38	7.62	7.82	9.76
Metals	Aluminum (Al) (mg/kg)	7210	7760	12300	9800	8180
	Antimony (Sb) (mg/kg)	0.45	0.62	0.96	0.60	0.52
	Arsenic (As) (mg/kg)	4.98	5.91	7.72	5.72	5.30
	Barium (Ba) (mg/kg)	140	194	249	183	153
	Beryllium (Be) (mg/kg)	0.58	0.73	1.04	0.71	0.63
	Bismuth (Bi) (mg/kg)	<0.20	<0.20	0.23	<0.20	<0.20
	Boron (B) (mg/kg)	8.2	6.3	16.1	11.3	10.5
	Cadmium (Cd) (mg/kg)	0.890	0.985	1.40	1.11	1.16
	Calcium (Ca) (mg/kg)	54000	31400	55800	38100	48300
	Chromium (Cr) (mg/kg)	15.4	14.7	22.5	19.4	17.6
	Cobalt (Co) (mg/kg)	4.84	7.12	8.62	6.45	5.42
	Copper (Cu) (mg/kg)	12.7	16.2	22.2	16.7	15.1
	Iron (Fe) (mg/kg)	11600	16400	19900	14700	12300
	Lead (Pb) (mg/kg)	7.77	10.5	15.6	10.2	8.27
	Lithium (Li) (mg/kg)	11.8	12.1	22.1	14.0	12.8
	Magnesium (Mg) (mg/kg)	13300	8390	13800	10900	11900
	Manganese (Mn) (mg/kg)	445	464	678	505	595
	Mercury (Hg) (mg/kg)	0.0567	0.0463	0.0877	0.0772	0.0696
	Molybdenum (Mo) (mg/kg)	1.37	1.49	2.66	1.77	1.48
	Nickel (Ni) (mg/kg)	20.4	26.2	34.9	26.4	23.6
	Phosphorus (P) (mg/kg)	1230	1330	1580	1220	1220
	Potassium (K) (mg/kg)	1630	1550	2580	2210	1910
	Selenium (Se) (mg/kg)	1.35	1.92	2.35	1.85	2.64
	Silver (Ag) (mg/kg)	0.18	0.19	0.34	0.24	0.21
	Sodium (Na) (mg/kg)	78	71	94	84	84

L1992278 CONTD.... PAGE 3 of 21 02-OCT-17 15:01 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1992278-6 SEDIMENT 11-SEP-17 GH_SC2-P2-1	L1992278-7 SEDIMENT 11-SEP-17 GH_SC2-P2-2	L1992278-8 SEDIMENT 11-SEP-17 GH_SC2-P3-1	L1992278-9 SEDIMENT 11-SEP-17 GH_SC1-P1-1	L1992278-10 SEDIMENT 11-SEP-17 GH_SC1-P1-2
Grouping	Analyte					
SOIL	-					
Physical Tests	Moisture (%)	38.0	43.8	21.1	49.6	47.2
Particle Size	% Gravel (>2mm) (%)	1.2	2.7	<1.0	<1.0	<1.0
	% Sand (2.00mm - 1.00mm) (%)	4.0	10.3	13.6	<1.0	<1.0
	% Sand (1.00mm - 0.50mm) (%)	7.5	7.4	32.5	<1.0	<1.0
	% Sand (0.50mm - 0.25mm) (%)	8.7	4.2	31.6	1.7	<1.0
	% Sand (0.25mm - 0.125mm) (%)	6.2	11.1	5.2	1.7	2.5
	% Sand (0.125mm - 0.063mm) (%)	3.9	10.8	2.4	2.7	6.1
	% Silt (0.063mm - 0.0312mm) (%)	20.3	18.5	4.1	26.3	33.5
	% Silt (0.0312mm - 0.004mm) (%)	20.3 36.4	28.2	7.6	49.7	47.3
	% Clay (<4um) (%)	30.4 11.8	7.0	3.0	49.7 16.8	10.1
	Texture	Silt loam			Silt	Silt
Organic / Inorganic Carbon	Total Organic Carbon (%)	11.7	Sandy loam 4.01	Loamy sand 1.86	16.7	8.77
Metals	Aluminum (Al) (mg/kg)	8080	6470	5980	6800	8700
	Antimony (Sb) (mg/kg)	0.55	0.36	0.41	0.65	0.56
	Arsenic (As) (mg/kg)	6.37	4.99	5.38	4.87	5.40
	Barium (Ba) (mg/kg)	142	96.2	97.2	190	175
	Beryllium (Be) (mg/kg)	0.59	0.48	0.47	0.77	0.66
	Bismuth (Bi) (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	Boron (B) (mg/kg)	9.2	6.3	5.8	5.4	8.8
	Cadmium (Cd) (mg/kg)	0.869	0.538	0.576	1.39	1.04
	Calcium (Ca) (mg/kg)	47500	57600	68200	30700	44700
	Chromium (Cr) (mg/kg)	17.0	43.2	15.3	13.2	16.7
	Cobalt (Co) (mg/kg)	5.58	4.28	4.18	6.96	5.88
	Copper (Cu) (mg/kg)	12.2	10.7	9.14	20.3	15.9
	Iron (Fe) (mg/kg)	13700	12400	12900	12000	13800
	Lead (Pb) (mg/kg)	8.24	6.62	6.36	11.7	9.33
	Lithium (Li) (mg/kg)	11.7	11.1	9.6	10.3	13.2
	Magnesium (Mg) (mg/kg)	10500	12700	11300	7250	12100
	Manganese (Mn) (mg/kg)	490	349	348	328	435
	Mercury (Hg) (mg/kg)	0.0502	0.0286	0.0160	0.0897	0.0700
	Molybdenum (Mo) (mg/kg)	1.53	1.82	1.35	1.39	1.51
	Nickel (Ni) (mg/kg)	20.6	25.9	16.6	25.2	23.8
	Phosphorus (P) (mg/kg)	1370	1050	1130	1100	1390
	Potassium (K) (mg/kg)	1860	1340	1240	1370	1870
	Selenium (Se) (mg/kg)	1.64	0.92	0.57	2.52	1.61
	Silver (Ag) (mg/kg)	0.17	0.10	<0.10	0.28	0.20
	Sodium (Na) (mg/kg)	79	77	83	58	79

L1992278 CONTD.... PAGE 4 of 21 02-OCT-17 15:01 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1992278-11 SEDIMENT 11-SEP-17 GH_SC1-P1-3	L1992278-12 SEDIMENT 09-SEP-17 GH_ERSC5-1	L1992278-13 SEDIMENT 09-SEP-17 GH_ERSC5-2	L1992278-14 SEDIMENT 09-SEP-17 GH_ERSC5-3	L1992278-15 SEDIMENT 08-SEP-17 GH_ERSC4-X
Grouping	Analyte					
SOIL						
Physical Tests	Moisture (%)	46.4	43.5	37.3	45.5	36.4
Particle Size	% Gravel (>2mm) (%)	<1.0	1.1	<1.0	<1.0	<1.0
	% Sand (2.00mm - 1.00mm) (%)	<1.0	1.8	<1.0	<1.0	<1.0
	% Sand (1.00mm - 0.50mm) (%)	<1.0	1.7	<1.0	<1.0	2.0
	% Sand (0.50mm - 0.25mm) (%)	<1.0	3.8	8.9	1.8	5.6
	% Sand (0.25mm - 0.125mm) (%)	<1.0	9.8	23.9	7.8	29.3
	% Sand (0.125mm - 0.063mm) (%)	<1.0	10.6	14.7	9.8	18.9
	% Silt (0.063mm - 0.0312mm) (%)	30.6	24.7	19.1	30.8	16.8
	% Silt (0.0312mm - 0.004mm) (%)	51.5	36.9	25.5	40.7	20.6
	% Clay (<4um) (%)	17.2	9.6	7.1	8.6	6.2
	Texture	Silt loam	Silt loam	Sandy loam	Silt loam	Sandy loam
Organic / Inorganic Carbon	Total Organic Carbon (%)	15.2	4.70	2.89	4.29	3.64
Metals	Aluminum (Al) (mg/kg)	7580	6910	5930	5780	5150
	Antimony (Sb) (mg/kg)	0.76	0.44	0.42	0.48	0.40
	Arsenic (As) (mg/kg)	5.14	5.02	4.53	5.09	4.63
	Barium (Ba) (mg/kg)	211	115	111	119	107
	Beryllium (Be) (mg/kg)	0.83	0.48	0.46	0.52	0.45
	Bismuth (Bi) (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	Boron (B) (mg/kg)	5.6	8.7	7.0	6.2	5.0
	Cadmium (Cd) (mg/kg)	1.67	0.747	0.696	0.871	0.711
	Calcium (Ca) (mg/kg)	20900	57400	61600	52500	59600
	Chromium (Cr) (mg/kg)	14.3	23.8	13.9	14.2	12.4
	Cobalt (Co) (mg/kg)	8.09	4.30	3.80	4.59	3.85
	Copper (Cu) (mg/kg)	26.2	10.1	8.50	11.6	9.06
	Iron (Fe) (mg/kg)	14100	11200	10300	11700	10700
	Lead (Pb) (mg/kg)	13.0	6.54	6.31	7.64	6.38
	Lithium (Li) (mg/kg)	10.0	11.2	9.3	10.5	8.8
	Magnesium (Mg) (mg/kg)	4470	13500	12900	13500	11600
	Manganese (Mn) (mg/kg)	240	414	353	457	340
	Mercury (Hg) (mg/kg)	0.120	0.0372	0.0303	0.0488	0.0270
	Molybdenum (Mo) (mg/kg)	1.30	1.46	1.16	1.31	1.08
	Nickel (Ni) (mg/kg)	28.8	20.0	15.6	19.6	16.1
	Phosphorus (P) (mg/kg)	1000	1250	1340	1320	1200
	Potassium (K) (mg/kg)	1550	1670	1420	1200	1070
	Selenium (Se) (mg/kg)	1.83	0.92	0.69	1.01	0.60
	Silver (Ag) (mg/kg)	0.35	0.16	0.12	0.19	0.12
	Sodium (Na) (mg/kg)	<50	79	77	70	72

L1992278 CONTD.... PAGE 5 of 21 02-OCT-17 15:01 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1992278-16 SEDIMENT 08-SEP-17 GH_ERSC4-1	L1992278-17 SEDIMENT 08-SEP-17 GH_ERSC4-2	L1992278-18 SEDIMENT 08-SEP-17 GH_ERSC4-3	L1992278-19 SEDIMENT 10-SEP-17 GH_ER2-1	L1992278-20 SEDIMENT 10-SEP-17 GH_ER2-2
Grouping	Analyte					
SOIL						
Physical Tests	Moisture (%)	38.2	40.4	37.5	56.5	46.9
Particle Size	% Gravel (>2mm) (%)	<1.0	<1.0	<1.0	<1.0	<1.0
	% Sand (2.00mm - 1.00mm) (%)	<1.0	<1.0	1.7	<1.0	<1.0
	% Sand (1.00mm - 0.50mm) (%)	3.8	1.6	3.6	2.9	6.7
	% Sand (0.50mm - 0.25mm) (%)	11.7	8.4	7.1	2.9	22.2
	% Sand (0.25mm - 0.125mm) (%)	19.1	16.3	30.2	6.1	8.6
	% Sand (0.125mm - 0.063mm) (%)	18.0	17.3	21.1	13.1	7.9
	% Silt (0.063mm - 0.0312mm) (%)	18.8	21.8	14.1	30.2	21.3
	% Silt (0.0312mm - 0.004mm) (%)	21.8	26.7	16.8	36.4	27.1
	% Clay (<4um) (%)	6.3	7.3	5.3	7.5	6.0
	Texture	Sandy loam	Sandy loam	Sandy loam	Silt loam	Sandy loam
Organic / Inorganic Carbon	Total Organic Carbon (%)	4.42	3.74	3.46	4.96	3.7
Metals	Aluminum (Al) (mg/kg)	5210	5730	5430	5100	4360
	Antimony (Sb) (mg/kg)	0.43	0.49	0.41	0.35	0.50
	Arsenic (As) (mg/kg)	4.79	5.57	4.73	4.28	5.09
	Barium (Ba) (mg/kg)	105	115	109	114	98.2
	Beryllium (Be) (mg/kg)	0.46	0.57	0.41	0.43	0.44
	Bismuth (Bi) (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	Boron (B) (mg/kg)	<5.0	6.0	6.2	6.9	5.2
	Cadmium (Cd) (mg/kg)	0.695	0.842	0.650	0.889	0.702
	Calcium (Ca) (mg/kg)	61300	62000	60200	63600	78600
	Chromium (Cr) (mg/kg)	13.6	15.6	13.6	14.6	12.7
	Cobalt (Co) (mg/kg)	3.92	4.39	3.72	4.19	3.57
	Copper (Cu) (mg/kg)	9.81	10.7	8.90	10.5	8.74
	Iron (Fe) (mg/kg)	11200	12200	10600	10700	10400
	Lead (Pb) (mg/kg)	6.56	7.52	6.24	7.00	5.88
	Lithium (Li) (mg/kg)	8.6	10.0	9.2	9.1	7.7
	Magnesium (Mg) (mg/kg)	11900	14300	11600	12700	12000
	Manganese (Mn) (mg/kg)	346	432	319	575	422
	Mercury (Hg) (mg/kg)	0.0257	0.0307	0.0271	0.0399	0.0258
	Molybdenum (Mo) (mg/kg)	1.18	1.36	1.14	1.15	1.35
	Nickel (Ni) (mg/kg)	16.6	19.2	15.6	17.7	16.2
	Phosphorus (P) (mg/kg)	1220	1350	1350	1190	1240
	Potassium (K) (mg/kg)	1110	1220	1220	1200	1030
	Selenium (Se) (mg/kg)	0.65	0.87	0.67	1.01	0.96
	Silver (Ag) (mg/kg)	0.14	0.16	0.12	0.16	0.14
	Sodium (Na) (mg/kg)	75	79	75	83	79

L1992278 CONTD.... PAGE 6 of 21 02-OCT-17 15:01 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1992278-21 SEDIMENT 10-SEP-17 GH_ER2-3	L1992278-25 SEDIMENT 09-SEP-17 GH_ER1A-1	L1992278-26 SEDIMENT 09-SEP-17 GH_ER1A-2	L1992278-27 SEDIMENT 09-SEP-17 GH_ER1A-3	L1992278-28 SEDIMENT 10-SEP-17 GH_ERC-1
Grouping	Analyte					
SOIL						
Physical Tests	Moisture (%)	51.7	46.8	42.7	46.0	65.1
Particle Size	% Gravel (>2mm) (%)	<1.0	<1.0	<1.0	<1.0	<1.0
	% Sand (2.00mm - 1.00mm) (%)	<1.0	<1.0	<1.0	<1.0	<1.0
	% Sand (1.00mm - 0.50mm) (%)	<1.0	<1.0	<1.0	<1.0	<1.0
	% Sand (0.50mm - 0.25mm) (%)	10.3	<1.0	3.7	<1.0	<1.0
	% Sand (0.25mm - 0.125mm) (%)	18.3	2.6	13.6	<1.0	3.4
	% Sand (0.125mm - 0.063mm) (%)	8.7	6.7	12.8	1.3	8.7
	% Silt (0.063mm - 0.0312mm) (%)	25.1	27.3	22.2	26.0	35.2
	% Silt (0.0312mm - 0.004mm) (%)	30.4	47.0	35.6	56.0	43.8
	% Clay (<4um) (%)	6.4	15.4	11.8	15.8	8.2
	Texture	Silt loam	Silt loam	Silt loam	Silt	Silt
Organic / Inorganic Carbon	Total Organic Carbon (%)	5.57	5.85	4.99	4.88	4.62
Metals	Aluminum (Al) (mg/kg)	4490	8130	6620	9550	6860
	Antimony (Sb) (mg/kg)	0.48	0.61	0.57	0.69	0.43
	Arsenic (As) (mg/kg)	4.79	6.10	5.94	7.48	5.34
	Barium (Ba) (mg/kg)	111	151	159	177	133
	Beryllium (Be) (mg/kg)	0.45	0.58	0.58	0.66	0.54
	Bismuth (Bi) (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	Boron (B) (mg/kg)	<5.0	8.7	6.0	10.1	9.1
	Cadmium (Cd) (mg/kg)	0.899	1.06	1.05	1.14	0.814
	Calcium (Ca) (mg/kg)	59800	47800	48600	51600	63500
	Chromium (Cr) (mg/kg)	13.6	22.4	15.2	24.2	22.5
	Cobalt (Co) (mg/kg)	4.25	5.42	5.60	6.39	4.56
	Copper (Cu) (mg/kg)	11.0	15.4	14.6	17.0	11.4
	Iron (Fe) (mg/kg)	11200	14400	14400	16700	12200
	Lead (Pb) (mg/kg)	7.17	9.38	8.83	10.1	7.50
	Lithium (Li) (mg/kg)	8.2	14.4	11.1	17.1	11.7
	Magnesium (Mg) (mg/kg)	11500	15300	12600	16900	14900
	Manganese (Mn) (mg/kg)	503	478	390	686	577
	Mercury (Hg) (mg/kg)	0.0365	0.0681	0.0534	0.0812	0.0377
	Molybdenum (Mo) (mg/kg)	1.21	1.56	1.36	1.85	1.47
	Nickel (Ni) (mg/kg)	18.3	23.1	21.5	26.8	21.1
	Phosphorus (P) (mg/kg)	1200	1440	1240	1410	1380
	Potassium (K) (mg/kg)	970	1890	1360	2240	1630
	Selenium (Se) (mg/kg)	0.92	2.01	1.31	1.55	1.05
	Silver (Ag) (mg/kg)	0.17	0.25	0.24	0.30	0.17
	Sodium (Na) (mg/kg)	73	83	72	92	90

L1992278 CONTD.... PAGE 7 of 21 02-OCT-17 15:01 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1992278-29 SEDIMENT 10-SEP-17 GH_ERC-2	L1992278-30 SEDIMENT 10-SEP-17 GH_ERC-3	
Grouping	Analyte			
SOIL				
Physical Tests	Moisture (%)	41.3	38.2	
Particle Size	% Gravel (>2mm) (%)	<1.0	<1.0	
	% Sand (2.00mm - 1.00mm) (%)	<1.0	<1.0	
	% Sand (1.00mm - 0.50mm) (%)	<1.0	<1.0	
	% Sand (0.50mm - 0.25mm) (%)	3.2	1.4	
	% Sand (0.25mm - 0.125mm) (%)	10.4	4.0	
	% Sand (0.125mm - 0.063mm) (%)	19.2	16.6	
	% Silt (0.063mm - 0.0312mm) (%)	28.0	32.7	
	% Silt (0.0312mm - 0.004mm) (%)	32.2	38.3	
	% Clay (<4um) (%)	6.7	6.6	
	Texture	Silt Ioam	Silt loam	
Organic / Inorganic Carbon	Total Organic Carbon (%)	3.48	3.21	
Metals	Aluminum (Al) (mg/kg)	6540	6530	
	Antimony (Sb) (mg/kg)	0.44	0.39	
	Arsenic (As) (mg/kg)	4.76	4.75	
	Barium (Ba) (mg/kg)	124	117	
	Beryllium (Be) (mg/kg)	0.53	0.47	
	Bismuth (Bi) (mg/kg)	<0.20	<0.20	
	Boron (B) (mg/kg)	7.4	8.0	
	Cadmium (Cd) (mg/kg)	0.720	0.713	
	Calcium (Ca) (mg/kg)	54400	55000	
	Chromium (Cr) (mg/kg)	16.1	16.1	
	Cobalt (Co) (mg/kg)	4.21	3.99	
	Copper (Cu) (mg/kg)	10.1	9.35	
	Iron (Fe) (mg/kg)	11100	10700	
	Lead (Pb) (mg/kg)	6.66	6.14	
	Lithium (Li) (mg/kg)	10.7	10.5	
	Magnesium (Mg) (mg/kg)	13100	14400	
	Manganese (Mn) (mg/kg)	424	413	
	Mercury (Hg) (mg/kg)	0.0360	0.0283	
	Molybdenum (Mo) (mg/kg)	1.22	1.23	
	Nickel (Ni) (mg/kg)	17.4	17.0	
	Phosphorus (P) (mg/kg)	1200	1210	
	Potassium (K) (mg/kg)	1570	1600	
	Selenium (Se) (mg/kg)	0.69	0.69	
	Silver (Ag) (mg/kg)	0.15	0.14	
	Sodium (Na) (mg/kg)	82	80	

L1992278 CONTD.... PAGE 8 of 21 02-OCT-17 15:01 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time	L1992278-1 SEDIMENT 11-SEP-17	L1992278-2 SEDIMENT 11-SEP-17	L1992278-3 SEDIMENT 11-SEP-17	L1992278-4 SEDIMENT 11-SEP-17	L1992278-5 SEDIMENT 11-SEP-17
	Client ID	GH_ERSC2-1	GH_ERSC2-2	GH_ERSC2-X	GH_ERSC2-3	GH_SC2-P1-1
Grouping	Analyte					
SOIL						
Metals	Strontium (Sr) (mg/kg)	85.4	77.8	117	76.8	82.3
	Sulfur (S) (mg/kg)	<1000	<1000	<1000	<1000	<1000
	Thallium (TI) (mg/kg)	0.223	0.205	0.435	0.296	0.250
	Tin (Sn) (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
	Titanium (Ti) (mg/kg)	12.3	10.4	16.8	15.2	13.5
	Tungsten (W) (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Uranium (U) (mg/kg)	0.999	0.942	1.62	1.11	1.32
	Vanadium (V) (mg/kg)	28.8	30.4	45.7	36.7	31.9
	Zinc (Zn) (mg/kg)	83.6	113	137	97.6	89.1
	Zirconium (Zr) (mg/kg)	<1.0	<1.0	1.6	<1.0	1.0
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/kg)	<0.028	ol.035	ol.025	ol.022	olo <0.013
	Acenaphthylene (mg/kg)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Acridine (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Anthracene (mg/kg)	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040
	Benz(a)anthracene (mg/kg)	0.018	0.018	0.018	0.016	0.011
	Benzo(a)pyrene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Benzo(b&j)fluoranthene (mg/kg)	0.051	0.039	0.054	0.054	0.034
	Benzo(e)pyrene (mg/kg)	0.044	0.035	DLCI <0.050	0.045	0.027
	Benzo(g,h,i)perylene (mg/kg)	0.013	0.011	0.014	0.014	<0.010
	Benzo(k)fluoranthene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Chrysene (mg/kg)	0.141	0.106	0.130	0.127	0.080
	Dibenz(a,h)anthracene (mg/kg)	0.0087	0.0075	0.0081	0.0081	0.0053
	Fluoranthene (mg/kg)	0.024	0.019	0.021	0.020	0.013
	Fluorene (mg/kg)	0.035	0.050	0.030	0.027	0.016
	Indeno(1,2,3-c,d)pyrene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	1-Methylnaphthalene (mg/kg)	0.378	0.478	0.271	0.244	0.186
	2-Methylnaphthalene (mg/kg)	0.696	0.919	0.480	0.433	0.324
	Naphthalene (mg/kg)	0.194	0.226	0.117	0.103	0.087
	Perylene (mg/kg)	0.015	<0.010	DLCI <0.020	0.011	ollo <0.020
	Phenanthrene (mg/kg)	0.451	0.372	0.347	0.322	0.215
	Pyrene (mg/kg)	0.042	0.032	0.035	0.034	0.020
	Quinoline (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Surrogate: d10-Acenaphthene (%)	84.9	76.2	83.5	79.7	77.5
	Surrogate: d12-Chrysene (%)	91.6	88.0	93.4	90.5	83.0
	Surrogate: d8-Naphthalene (%)	79.0	71.4	78.9	75.0	74.0
	Surrogate: d10-Phenanthrene (%)	89.9	80.8	92.0	87.9	81.5

L1992278 CONTD.... PAGE 9 of 21 02-OCT-17 15:01 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1992278-6 SEDIMENT 11-SEP-17 GH_SC2-P2-1	L1992278-7 SEDIMENT 11-SEP-17 GH_SC2-P2-2	L1992278-8 SEDIMENT 11-SEP-17 GH_SC2-P3-1	L1992278-9 SEDIMENT 11-SEP-17 GH_SC1-P1-1	L1992278-10 SEDIMENT 11-SEP-17 GH_SC1-P1-2
Grouping	Analyte					
SOIL						
Metals	Strontium (Sr) (mg/kg)	80.9	70.4	95.2	81.9	84.6
	Sulfur (S) (mg/kg)	<1000	<1000	<1000	<1000	<1000
	Thallium (TI) (mg/kg)	0.218	0.158	0.145	0.166	0.230
	Tin (Sn) (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
	Titanium (Ti) (mg/kg)	13.0	13.2	11.6	6.3	15.3
	Tungsten (W) (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Uranium (U) (mg/kg)	1.11	0.879	0.889	1.03	1.05
	Vanadium (V) (mg/kg)	32.5	23.0	22.7	26.9	32.7
	Zinc (Zn) (mg/kg)	83.5	57.6	61.4	98.5	96.0
	Zirconium (Zr) (mg/kg)	<1.0	<1.0	<1.0	1.1	<1.0
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/kg)	ol.016	<0.0080	<0.0050	<0.14	<0.030
	Acenaphthylene (mg/kg)	<0.0050	<0.0050	<0.0050	0.0130	<0.0050
	Acridine (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Anthracene (mg/kg)	<0.0040	<0.0040	<0.0040	0.0094	<0.0040
	Benz(a)anthracene (mg/kg)	<0.010	<0.010	<0.010	0.056	0.020
	Benzo(a)pyrene (mg/kg)	<0.010	<0.010	<0.010	0.023	<0.010
	Benzo(b&j)fluoranthene (mg/kg)	0.027	0.013	0.010	0.165	0.057
	Benzo(e)pyrene (mg/kg)	0.023	0.011	<0.010	0.141	0.049
	Benzo(g,h,i)perylene (mg/kg)	<0.010	<0.010	<0.010	0.038	0.014
	Benzo(k)fluoranthene (mg/kg)	<0.010	<0.010	<0.010	0.011	<0.010
	Chrysene (mg/kg)	0.067	0.032	0.022	0.438	0.150
	Dibenz(a,h)anthracene (mg/kg)	<0.0050	<0.0050	<0.0050	0.0287	0.0090
	Fluoranthene (mg/kg)	0.012	<0.010	<0.010	0.079	0.027
	Fluorene (mg/kg)	0.017	<0.010	<0.010	0.187	0.036
	Indeno(1,2,3-c,d)pyrene (mg/kg)	<0.010	<0.010	<0.010	0.012	<0.010
	1-Methylnaphthalene (mg/kg)	0.181	0.105	0.041	1.67	0.344
	2-Methylnaphthalene (mg/kg)	0.335	0.178	0.072	3.12	0.621
	Naphthalene (mg/kg)	0.079	0.051	0.022	0.722	0.149
	Perylene (mg/kg)	0.026	0.030	<0.010	<0.010	DLCI <0.020
	Phenanthrene (mg/kg)	0.212	0.106	0.050	1.45	0.419
	Pyrene (mg/kg)	0.019	0.011	<0.010	0.133	0.043
	Quinoline (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Surrogate: d10-Acenaphthene (%)	80.9	83.1	73.0	87.1	79.1
	Surrogate: d12-Chrysene (%)	89.9	94.5	80.8	83.6	86.2
	Surrogate: d8-Naphthalene (%)	75.5	78.7	70.2	74.6	73.2
	Surrogate: d10-Phenanthrene (%)	86.9	88.5	75.0	85.2	85.0

L1992278 CONTD.... PAGE 10 of 21 02-OCT-17 15:01 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time	L1992278-11 SEDIMENT 11-SEP-17	L1992278-12 SEDIMENT 09-SEP-17	L1992278-13 SEDIMENT 09-SEP-17	L1992278-14 SEDIMENT 09-SEP-17	L1992278-15 SEDIMENT 08-SEP-17
	Client ID	GH_SC1-P1-3	GH_ERSC5-1	GH_ERSC5-2	GH_ERSC5-3	GH_ERSC4-X
Grouping	Analyte					
SOIL						
Metals	Strontium (Sr) (mg/kg)	84.4	84.3	85.6	79.1	85.2
	Sulfur (S) (mg/kg)	<1000	<1000	<1000	<1000	<1000
	Thallium (TI) (mg/kg)	0.153	0.200	0.181	0.205	0.161
	Tin (Sn) (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
	Titanium (Ti) (mg/kg)	18.6	13.2	10.8	11.0	11.2
	Tungsten (W) (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Uranium (U) (mg/kg)	0.899	1.05	0.992	1.09	0.985
	Vanadium (V) (mg/kg)	29.6	29.0	26.0	24.9	22.6
	Zinc (Zn) (mg/kg)	106	72.1	67.5	80.5	70.1
	Zirconium (Zr) (mg/kg)	1.2	<1.0	<1.0	<1.0	<1.0
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/kg)	DLQ <0.039	<0.0050	<0.0050	<0.0050	<0.0050
2	Acenaphthylene (mg/kg)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Acridine (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Anthracene (mg/kg)	0.0057	<0.0040	<0.0040	<0.0040	<0.0040
	Benz(a)anthracene (mg/kg)	0.037	<0.010	<0.010	<0.010	<0.010
	Benzo(a)pyrene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Benzo(b&j)fluoranthene (mg/kg)	0.140	0.022	<0.010	0.015	<0.010
	Benzo(e)pyrene (mg/kg)	0.101	DLCI <0.020	<0.010	DLCI <0.020	<0.010
	Benzo(g,h,i)perylene (mg/kg)	0.023	<0.010	<0.010	<0.010	<0.010
	Benzo(k)fluoranthene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Chrysene (mg/kg)	0.327	0.045	0.018	0.030	0.011
	Dibenz(a,h)anthracene (mg/kg)	0.0193	<0.0050	<0.0050	<0.0050	<0.0050
	Fluoranthene (mg/kg)	0.085	0.010	<0.010	<0.010	<0.010
	Fluorene (mg/kg)	0.039	<0.010	<0.010	<0.010	<0.010
	Indeno(1,2,3-c,d)pyrene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	1-Methylnaphthalene (mg/kg)	0.327	0.064	0.032	0.042	0.025
	2-Methylnaphthalene (mg/kg)	0.529	0.093	0.046	0.058	0.033
	Naphthalene (mg/kg)	0.119	0.035	0.017	0.023	0.015
	Perylene (mg/kg)	<0.010	OLCI	<0.010	DLCI <0.020	<0.010
	Phenanthrene (mg/kg)	0.647	0.107	0.045	0.063	0.031
	Pyrene (mg/kg)	0.134	0.012	<0.010	<0.010	<0.010
	Quinoline (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Surrogate: d10-Acenaphthene (%)	71.8	77.3	72.7	83.9	73.5
	Surrogate: d12-Chrysene (%)	73.9	90.1	86.0	93.3	82.5
	Surrogate: d8-Naphthalene (%)	68.0	71.8	70.7	81.4	68.4
	Surrogate: d10-Phenanthrene (%)	73.2	86.4	78.9	89.4	72.9

L1992278 CONTD.... PAGE 11 of 21 02-OCT-17 15:01 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1992278-16 SEDIMENT 08-SEP-17 GH_ERSC4-1	L1992278-17 SEDIMENT 08-SEP-17 GH_ERSC4-2	L1992278-18 SEDIMENT 08-SEP-17 GH_ERSC4-3	L1992278-19 SEDIMENT 10-SEP-17 GH_ER2-1	L1992278-20 SEDIMENT 10-SEP-17 GH_ER2-2
Grouping	Analyte					
SOIL						
Metals	Strontium (Sr) (mg/kg)	89.3	94.1	86.6	103	116
	Sulfur (S) (mg/kg)	<1000	<1000	<1000	<1000	<1000
	Thallium (TI) (mg/kg)	0.167	0.201	0.166	0.166	0.150
	Tin (Sn) (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
	Titanium (Ti) (mg/kg)	10.8	11.6	11.4	13.8	9.5
	Tungsten (W) (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Uranium (U) (mg/kg)	1.03	1.11	0.954	1.02	0.992
	Vanadium (V) (mg/kg)	23.3	26.7	23.8	22.6	23.8
	Zinc (Zn) (mg/kg)	71.0	82.6	69.5	78.9	71.5
	Zirconium (Zr) (mg/kg)	<1.0	<1.0	<1.0	<1.0	<1.0
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/kg)	<0.0050	<0.0050	<0.0050	<0.0060	<0.0050
,	Acenaphthylene (mg/kg)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Acridine (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Anthracene (mg/kg)	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040
	Benz(a)anthracene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Benzo(a)pyrene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Benzo(b&j)fluoranthene (mg/kg)	0.012	<0.010	0.022	0.018	0.014
	Benzo(e)pyrene (mg/kg)	<0.010	<0.010	<0.020	<0.020	<0.020
	Benzo(g,h,i)perylene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Benzo(k)fluoranthene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Chrysene (mg/kg)	0.027	0.020	0.050	0.041	0.033
	Dibenz(a,h)anthracene (mg/kg)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Fluoranthene (mg/kg)	<0.010	<0.010	<0.010	0.011	<0.010
	Fluorene (mg/kg)	<0.010	<0.010	<0.010	0.014	<0.010
	Indeno(1,2,3-c,d)pyrene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	1-Methylnaphthalene (mg/kg)	0.049	0.017	0.062	0.107	0.065
	2-Methylnaphthalene (mg/kg)	0.062	0.020	0.071	0.160	0.091
	Naphthalene (mg/kg)	0.029	<0.010	0.040	0.067	0.037
	Perylene (mg/kg)	<0.020	<0.010 DLCI <0.020	0.022	0.023	<0.020
	Phenanthrene (mg/kg)	0.075	0.033	0.022	0.143	0.096
	Pyrene (mg/kg)	<0.010	<0.010	0.012	0.013	<0.030
	Quinoline (mg/kg)	<0.010	<0.010	<0.012	< 0.010	<0.010
	Surrogate: d10-Acenaphthene (%)	76.9	76.8	89.6	78.7	75.7
	Surrogate: d12-Chrysene (%)	85.5	82.8	113.3	82.1	82.9
	Surrogate: d8-Naphthalene (%)	73.6	73.3	81.3	74.2	71.3
	Surrogate: d10-Phenanthrene (%)	81.7	81.2	98.9	82.8	84.5

L1992278 CONTD.... PAGE 12 of 21 02-OCT-17 15:01 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1992278-21 SEDIMENT 10-SEP-17 GH_ER2-3	L1992278-25 SEDIMENT 09-SEP-17 GH_ER1A-1	L1992278-26 SEDIMENT 09-SEP-17 GH_ER1A-2	L1992278-27 SEDIMENT 09-SEP-17 GH_ER1A-3	L1992278-28 SEDIMENT 10-SEP-17 GH_ERC-1
Grouping	Analyte					
SOIL						
Metals	Strontium (Sr) (mg/kg)	98.2	82.7	85.9	86.1	98.8
	Sulfur (S) (mg/kg)	<1000	<1000	<1000	<1000	<1000
	Thallium (TI) (mg/kg)	0.162	0.270	0.218	0.307	0.221
	Tin (Sn) (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
	Titanium (Ti) (mg/kg)	7.1	14.7	10.8	15.6	14.2
	Tungsten (W) (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Uranium (U) (mg/kg)	1.10	1.36	1.11	1.29	1.12
	Vanadium (V) (mg/kg)	22.5	35.3	28.2	40.9	28.6
	Zinc (Zn) (mg/kg)	80.1	105	95.3	119	81.0
	Zirconium (Zr) (mg/kg)	<1.0	1.1	<1.0	1.1	<1.0
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/kg)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0070
-	Acenaphthylene (mg/kg)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Acridine (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Anthracene (mg/kg)	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040
	Benz(a)anthracene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Benzo(a)pyrene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Benzo(b&j)fluoranthene (mg/kg)	0.011	<0.010	0.012	<0.010	0.015
	Benzo(e)pyrene (mg/kg)	<0.010	<0.010	0.011	<0.010	0.013
	Benzo(g,h,i)perylene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Benzo(k)fluoranthene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Chrysene (mg/kg)	0.024	0.014	0.029	0.020	0.032
	Dibenz(a,h)anthracene (mg/kg)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Fluoranthene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Fluorene (mg/kg)	0.011	<0.010	<0.010	<0.010	0.017
	Indeno(1,2,3-c,d)pyrene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	1-Methylnaphthalene (mg/kg)	0.053	0.015	0.047	0.020	0.090
	2-Methylnaphthalene (mg/kg)	0.078	0.018	0.074	0.023	0.153
	Naphthalene (mg/kg)	0.038	<0.010	0.029	<0.010	0.056
	Perylene (mg/kg)	0.025	<0.010	0.010	<0.010	0.013
	Phenanthrene (mg/kg)	0.071	0.026	0.075	0.037	0.099
	Pyrene (mg/kg)	<0.010	<0.010	<0.010	<0.010	0.011
	Quinoline (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Surrogate: d10-Acenaphthene (%)	81.7	81.4	80.7	79.8	76.4
	Surrogate: d12-Chrysene (%)	91.7	94.9	93.6	89.9	87.3
	Surrogate: d8-Naphthalene (%)	81.4	83.7	82.4	81.5	77.2
	Surrogate: d10-Phenanthrene (%)	92.2	91.2	89.8	89.6	87.0

L1992278 CONTD.... PAGE 13 of 21 02-OCT-17 15:01 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1992278-29 SEDIMENT 10-SEP-17 GH_ERC-2	L1992278-30 SEDIMENT 10-SEP-17 GH_ERC-3		
Grouping	Analyte				
SOIL					
Metals	Strontium (Sr) (mg/kg)	80.2	80.3		
	Sulfur (S) (mg/kg)	<1000	<1000		
	Thallium (TI) (mg/kg)	0.208	0.198		
	Tin (Sn) (mg/kg)	<2.0	<2.0		
	Titanium (Ti) (mg/kg)	12.4	15.7		
	Tungsten (W) (mg/kg)	<0.50	<0.50		
	Uranium (U) (mg/kg)	0.944	0.943		
	Vanadium (V) (mg/kg)	28.0	27.5		
	Zinc (Zn) (mg/kg)	73.9	69.6		
	Zirconium (Zr) (mg/kg)	<1.0	<1.0		
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/kg)	<0.0050	<0.0050		
	Acenaphthylene (mg/kg)	<0.0050	<0.0050		
	Acridine (mg/kg)	<0.010	<0.010		
	Anthracene (mg/kg)	<0.0040	<0.0040		
	Benz(a)anthracene (mg/kg)	<0.010	<0.010		
	Benzo(a)pyrene (mg/kg)	<0.010	<0.010		
	Benzo(b&j)fluoranthene (mg/kg)	<0.010	<0.010		
	Benzo(e)pyrene (mg/kg)	<0.010	<0.010		
	Benzo(g,h,i)perylene (mg/kg)	<0.010	<0.010		
	Benzo(k)fluoranthene (mg/kg)	<0.010	<0.010		
	Chrysene (mg/kg)	0.020	0.014		
	Dibenz(a,h)anthracene (mg/kg)	<0.0050	<0.0050		
	Fluoranthene (mg/kg)	<0.010	<0.010		
	Fluorene (mg/kg)	<0.010	<0.010		
	Indeno(1,2,3-c,d)pyrene (mg/kg)	<0.010	<0.010		
	1-Methylnaphthalene (mg/kg)	0.053	0.028		
	2-Methylnaphthalene (mg/kg)	0.086	0.043		
	Naphthalene (mg/kg)	0.029	0.014		
	Perylene (mg/kg)	<0.010	<0.010		
	Phenanthrene (mg/kg)	0.060	0.040		
	Pyrene (mg/kg)	<0.010	<0.010		
	Quinoline (mg/kg)	<0.010	<0.010		
	Surrogate: d10-Acenaphthene (%)	83.3	77.8		
	Surrogate: d12-Chrysene (%)	96.4	97.0		
	Surrogate: d8-Naphthalene (%)	84.2	73.8		
	Surrogate: d10-Phenanthrene (%)	93.4	95.3		

L1992278 CONTD.... PAGE 14 of 21 02-OCT-17 15:01 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1992278-1 SEDIMENT 11-SEP-17 GH_ERSC2-1	L1992278-2 SEDIMENT 11-SEP-17 GH_ERSC2-2	L1992278-3 SEDIMENT 11-SEP-17 GH_ERSC2-X	L1992278-4 SEDIMENT 11-SEP-17 GH_ERSC2-3	L1992278-5 SEDIMENT 11-SEP-17 GH_SC2-P1-1
Grouping	Analyte					
SOIL	Analyte					
Polycyclic Aromatic	B(a)P Total Potency Equivalent (mg/kg)	0.023	0.020	0.023	0.023	<0.020
Hydrocarbons	IACR (CCME) (mg/kg)	0.53	0.43	0.54	0.53	0.35

L1992278 CONTD.... PAGE 15 of 21 02-OCT-17 15:01 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1992278-6 SEDIMENT 11-SEP-17 GH_SC2-P2-1	L1992278-7 SEDIMENT 11-SEP-17 GH_SC2-P2-2	L1992278-8 SEDIMENT 11-SEP-17 GH_SC2-P3-1	L1992278-9 SEDIMENT 11-SEP-17 GH_SC1-P1-1	L1992278-10 SEDIMENT 11-SEP-17 GH_SC1-P1-2	
Grouping	Analyte						
SOIL							
Polycyclic Aromatic Hydrocarbons	B(a)P Total Potency Equivalent (mg/kg)	<0.020	<0.020	<0.020	0.081	0.024	
	IACR (CCME) (mg/kg)	0.27	0.17	<0.15	1.67	0.58	

L1992278 CONTD.... PAGE 16 of 21 02-OCT-17 15:01 (MT) Version: FINAL

	1	1			
Sample ID Description Sampled Date Sampled Time Client ID	L1992278-11 SEDIMENT 11-SEP-17 GH_SC1-P1-3	L1992278-12 SEDIMENT 09-SEP-17 GH_ERSC5-1	L1992278-13 SEDIMENT 09-SEP-17 GH_ERSC5-2	L1992278-14 SEDIMENT 09-SEP-17 GH_ERSC5-3	L1992278-18 SEDIMENT 08-SEP-17 GH_ERSC4-X
Analyte					
	0.046	<0.020	<0.020	<0.020	<0.020
IACR (CCME) (mg/kg)	1.27	0.23	<0.15	0.18	<0.15
	Description Sampled Date	Description Sampled Date Sampled Time Client ID SEDIMENT 11-SEP-17 GH_SC1-P1-3 B(a)P Total Potency Equivalent (mg/kg) 0.046	Description Sampled Date Sampled Time Client ID SEDIMENT 11-SEP-17 SEDIMENT 09-SEP-17 GH_SC1-P1-3 GH_ERSC5-1 B(a)P Total Potency Equivalent (mg/kg) 0.046 <0.020	Description Sampled Date Sampled Time Client ID SEDIMENT 11-SEP-17 SEDIMENT 09-SEP-17 SEDIMENT 09-SEP-17 GH_SC1-P1-3 GH_ERSC5-1 GH_ERSC5-2	Description Sampled Date Sampled Time Client ID SEDIMENT 11-SEP-17 SEDIMENT 09-SEP-17 SEDIMENT 09-SEP-17 SEDIMENT 09-SEP-17 Analyte GH_SC1-P1-3 GH_ERSC5-1 GH_ERSC5-2 GH_ERSC5-3 B(a)P Total Potency Equivalent (mg/kg) 0.046 <0.020

L1992278 CONTD.... PAGE 17 of 21 02-OCT-17 15:01 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1992278-16 SEDIMENT 08-SEP-17 GH_ERSC4-1	L1992278-17 SEDIMENT 08-SEP-17 GH_ERSC4-2	L1992278-18 SEDIMENT 08-SEP-17 GH_ERSC4-3	L1992278-19 SEDIMENT 10-SEP-17 GH_ER2-1	L1992278-24 SEDIMENT 10-SEP-17 GH_ER2-2	
Grouping	Analyte						
SOIL							
Polycyclic Aromatic Hydrocarbons	B(a)P Total Potency Equivalent (mg/kg)	<0.020	<0.020	<0.020	<0.020	<0.020	
	IACR (CCME) (mg/kg)	0.16	<0.15	0.23	0.20	0.18	

L1992278 CONTD.... PAGE 18 of 21 02-OCT-17 15:01 (MT) Version: FINAL

						1
	Sample ID Description Sampled Date Sampled Time Client ID	L1992278-21 SEDIMENT 10-SEP-17 GH_ER2-3	L1992278-25 SEDIMENT 09-SEP-17 GH_ER1A-1	L1992278-26 SEDIMENT 09-SEP-17 GH_ER1A-2	L1992278-27 SEDIMENT 09-SEP-17 GH_ER1A-3	L1992278-28 SEDIMENT 10-SEP-17 GH_ERC-1
Grouping	Analyte					
SOIL	Allalyte					
Polycyclic Aromatic Hydrocarbons	B(a)P Total Potency Equivalent (mg/kg)	<0.020	<0.020	<0.020	<0.020	<0.020
	IACR (CCME) (mg/kg)	0.15	<0.15	0.16	<0.15	0.18
	- () (3 3)	0.15	<0.15	0.16	<0.15	0.16

L1992278 CONTD.... PAGE 19 of 21 02-OCT-17 15:01 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1992278-29 SEDIMENT 10-SEP-17 GH_ERC-2	L1992278-30 SEDIMENT 10-SEP-17 GH_ERC-3		
Grouping	Analyte				
SOIL					
Polycyclic Aromatic Hydrocarbons	B(a)P Total Potency Equivalent (mg/kg)	<0.020	<0.020		
	IACR (CCME) (mg/kg)	<0.15	<0.15		

Reference Information

L1992278 CONTD.... PAGE 20 of 21 02-OCT-17 15:01 (MT) Version: FINAL

Qualifiers for Individual Samples Listed:

Qualifiers for In		•		Description	
Sample Number		pie ID	Qualifier	Description	
L1992278-19	GH_ER2-1		PSAL	Uncertainty for PSA results	
L1992278-28	GH_ERC-1		PSAL	Limited sample was availat Uncertainty for PSA results	ble for PSA (100g minimum is standard). Measurement may be higher than usual.
L1992278-29	GH_ERC-2		PSAL	Limited sample was availab Uncertainty for PSA results	ble for PSA (100g minimum is standard). Measurement may be higher than usual.
L1992278-30	GH_ERC-3		PSAL		ble for PSA (100g minimum is standard). Measurement
Qualifiers for In	dividual Par	ameters L	isted:		
Qualifier	Description				
DLCI	Detection Li	mit Raised:	Chromatographic Int	erference due to co-elution.	
DLQ	Detection Li	mit raised c	lue to co-eluting interf	ference. GCMS qualifier ion ra	atio did not meet acceptance criteria.
est Method Re	ferences:				
LS Test Code		Matrix	Test Description		Method Reference**
C-TIC-PCT-SK	S	Soil	Total Inorganic Carb	oon in Soil	CSSS (2008) P216-217
			med by reaction with veight of carbonate.	carbonates in the soil. The pH	of the resulting solution is measured and compared
-TOC-CALC-SK		Soil	Total Organic Carbo	n Calculation	CSSS (2008) 21.2
Total Organic Ca	arbon (TOC)	s calculate	d by the difference be	etween total carbon (TC) and to	otal inorganic carbon. (TIC)
-TOT-LECO-SK	S	Soil	Total Carbon by con	nbustion method	CSSS (2008) 21.2
The sample is ig	nited in a cor	nbustion a	nalyzer where carbon	in the reduced CO2 gas is det	termined using a thermal conductivity detector.
IG-200.2-CVAA-		Soil	Mercury in Soil by C	VAAS	EPA 200.2/1631E (mod)
				ollowed by analysis by CVAAS	
	-				
C-CACO3-CALC		Soil	Inorganic Carbon as		
AET-200.2-CCMS	-	Soil ha aitai a a a d	Metals in Soil by CR		EPA 200.2/6020A (mod)
Soli samples are	e algestea wit	n nitric and	nyurochione acius, ie	ollowed by analysis by CRC IC	PMS.
be environmenta	ally available.	This metho	od does not dissolve a		gestion that is intended to dissolve those metals that may esult in a partial extraction. depending on the sample
IOISTURE-CL		Soil	% Moisture	-, -, -, -, -, -, -, -	CWS for PHC in Soil - Tier 1
This analysis is	carried out gr	avimetrical	ly by drying the samp	le at 105 C	
PAH-TMB-D/A-M	S-CI 9	Soil		traction (DCM/Acetone)	EPA 3570/8270
Polycyclic Aroma			,		EFA 3570/6270
This analysis is of the United State sediment/soil with column gas chro	carried out us s Environmer th a 1:1 mixtu omatography ix prevent ac	ing proced ntal Protect re of DCM with mass curate quar	ures adapted from "T ion Agency (EPA). T and acetone. The ex spectrometric detection titation. Because the	he procedure uses a mechanic tract is then solvent exchange on (GC/MS). Surrogate recover	lid Waste" SW-846, Methods 3570 & 8270, published by cal shaking technique to extract a subsample of the d to toluene. The final extract is analysed by capillary ries may not be reported in cases where interferences fro v chromatographically separated, benzo(j)fluoranthene is
SA-PIPET-DET	AIL-SK S	Soil	Particle size - Sieve	and Pipette	SSIR-51 METHOD 3.2.1
Particle size dist the pipette sedin				chniques. Dry sieving is perforr	ned for coarse particles, wet sieving for sand particles an
Reference:					

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Reference Information

Laboratory Definition Code	Laboratory Location
SK	ALS ENVIRONMENTAL - SASKATOON, SASKATCHEWAN, CANADA

ALS ENVIRONMENTAL - CALGARY, ALBERTA, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample. mg/L - milligrams per litre.

CL

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

		Workorder:	1 100227	8	Report Date: 02	2-OCT-17	Pa	ao 1 of 19
Client:	MINNOW ENVIRONME 2 Lamb Street Georgetown ON L7G	ENTAL INC.	L199227	0	Report Date. 02	2-001-17	Fa	ge 1 of 18
Contact:	Jess Tester			0 117				
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
C-TIC-PCT-SK	Soil							
Batch WG2619933- Inorganic Ca	-	L1992278-7 1.35	1.32		%	1.9	20	21-SEP-17
WG2619933- Inorganic Ca			99.1		%		80-120	21-SEP-17
WG2619933- Inorganic Ca			<0.050		%		0.05	21-SEP-17
Batch	R3836083							
WG2619935- Inorganic Ca	arbon		108.4		%		80-120	22-SEP-17
WG2619935- Inorganic Ca			<0.050		%		0.05	22-SEP-17
C-TOT-LECO-S	K Soil							
Batch WG2619835- Total Carbor	R3835239 1 DUP by Combustion	L1992278-10 9.91	9.89		%	0.2	20	21-SEP-17
WG2619835-		08-109 SOIL	96.7		%	0.2	80-120	21-SEP-17
WG2619835-			<0.05		%		0.05	21-SEP-17
Batch	R3836726							
WG2619864- Total Carbor	1 DUP by Combustion	L1992278-25 7.10	6.82		%	4.1	20	21-SEP-17
WG2619864- Total Carbor	2 IRM h by Combustion	08-109 SOIL	100.0		%		80-120	21-SEP-17
WG2619864- Total Carbor	3 MB n by Combustion		<0.05		%		0.05	21-SEP-17
HG-200.2-CVAA	-CL Soil							
	R3835117							
WG2621450- Mercury (Hg		TILL-1	100.1		%		70-130	21-SEP-17
WG2621450- Mercury (Hg		TILL-1	109.1		%		70-130	21-SEP-17
WG2621450- Mercury (Hg		TILL-1	110.9		%		70-130	21-SEP-17
WG2621450- Mercury (Hg		L1992278-8 0.0160	0.0183		mg/kg	13	40	21-SEP-17
WG2621450- Mercury (Hg		L1992278-25 0.0681	0.0683		mg/kg	0.4	40	21-SEP-17

				-	-			
		Workorder	: L199227	8	Report Date: 02	2-OCT-17	Pa	age 2 of 1
ſest	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
HG-200.2-CVAA-CL	Soil							
Batch R38351	17							
WG2621450-14 LCS Mercury (Hg)	5		101.0		%		80-120	21-SEP-17
WG2621450-19 LCS Mercury (Hg)	6		110.0		%		80-120	21-SEP-17
WG2621450-9 LCS Mercury (Hg)	6		108.0		%		80-120	21-SEP-17
WG2621450-11 MB Mercury (Hg)			<0.0050		mg/kg		0.005	21-SEP-17
WG2621450-16 MB Mercury (Hg)			<0.0050		mg/kg		0.005	21-SEP-17
WG2621450-6 MB Mercury (Hg)			<0.0050		mg/kg		0.005	21-SEP-17
MET-200.2-CCMS-CL	Soil							
Batch R38375	93							
WG2621450-13 CRI Aluminum (Al)	м	TILL-1	112.7		%		70-130	25-SEP-17
Antimony (Sb)			105.3		%		70-130	25-SEP-17
Arsenic (As)			107.7		%		70-130	25-SEP-17
Barium (Ba)			102.0		%		70-130	25-SEP-17
Beryllium (Be)			110.8		%		70-130	25-SEP-17
Bismuth (Bi)			107.8		%		70-130	25-SEP-17
Boron (B)			2.6		mg/kg		0-8.2	25-SEP-17
Cadmium (Cd)			110.1		%		70-130	25-SEP-17
Calcium (Ca)			105.8		%		70-130	25-SEP-17
Chromium (Cr)			113.8		%		70-130	25-SEP-17
Cobalt (Co)			113.3		%		70-130	25-SEP-17
Copper (Cu)			113.1		%		70-130	25-SEP-17
Iron (Fe)			111.3		%		70-130	25-SEP-17
Lead (Pb)			111.9		%		70-130	25-SEP-17
Lithium (Li)			113.8		%		70-130	25-SEP-17
Magnesium (Mg)			113.8		%		70-130	25-SEP-17
Manganese (Mn)			117.6		%		70-130	25-SEP-17
Molybdenum (Mo)			107.7		%		70-130	25-SEP-17
Nickel (Ni)			111.8		%		70-130	25-SEP-17
Phosphorus (P)			111.5		%		70-130	25-SEP-17
					70		10-100	20 000 17

		Workorder	: L199227	78	- Report Date: 0	2-0CT-17	Pag	je 3 of
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-CL	Soil							
Batch R3837593								
WG2621450-13 CRM		TILL-1						
Selenium (Se)			0.32		mg/kg		0.11-0.51	25-SEP-17
Silver (Ag)			0.23		mg/kg		0.13-0.33	25-SEP-17
Sodium (Na)			98.3		%		70-130	25-SEP-17
Strontium (Sr)			105.6		%		70-130	25-SEP-17
Thallium (TI)			0.135		mg/kg		0.077-0.18	25-SEP-17
Tin (Sn)			1.1		mg/kg		0-3.1	25-SEP-17
Titanium (Ti)			102.2		%		70-130	25-SEP-17
Tungsten (W)			0.15		mg/kg		0-0.66	25-SEP-17
Uranium (U)			107.1		%		70-130	25-SEP-17
Vanadium (V)			108.3		%		70-130	25-SEP-17
Zinc (Zn)			110.9		%		70-130	25-SEP-17
Zirconium (Zr)			0.8		mg/kg		0-1.8	25-SEP-17
WG2621450-18 CRM		TILL-1						
Aluminum (Al)			110.2		%		70-130	25-SEP-17
Antimony (Sb)			100.8		%		70-130	25-SEP-17
Arsenic (As)			107.5		%		70-130	25-SEP-17
Barium (Ba)			101.0		%		70-130	25-SEP-17
Beryllium (Be)			92.1		%		70-130	25-SEP-17
Bismuth (Bi)			103.3		%		70-130	25-SEP-17
Boron (B)			3.0		mg/kg		0-8.2	25-SEP-17
Cadmium (Cd)			108.6		%		70-130	25-SEP-17
Calcium (Ca)			109.7		%		70-130	25-SEP-17
Chromium (Cr)			110.4		%		70-130	25-SEP-17
Cobalt (Co)			109.2		%		70-130	25-SEP-17
Copper (Cu)			107.5		%		70-130	25-SEP-17
Iron (Fe)			107.6		%		70-130	25-SEP-17
Lead (Pb)			108.3		%		70-130	25-SEP-17
Lithium (Li)			110.7		%		70-130	25-SEP-17
Magnesium (Mg)			112.4		%		70-130	25-SEP-17
Manganese (Mn)			110.8		%		70-130	25-SEP-17
Molybdenum (Mo)			101.3		%		70-130	25-SEP-17
Nickel (Ni)			108.3		%		70-130	25-SEP-17
Phosphorus (P)			121.3		%		70-130	25-SEP-17
Potassium (K)			104.7		%		70-130	25-SEP

Test Matrix Reference Result Qualifier Units RPD Limit Analyzed MET-200.2-CCMS-CL Soil Batch R3837593 Units RPD Limit Analyzed Batch R3837593 TLL-1 Sclenium (Sch O.29 mg/kg O.11-0.51 25-SEP-17 Silver (Ag) O.23 mg/kg O.13-0.33 25-SEP-17 Stontium (Sch) 100.4 % 70-130 25-SEP-17 Thallium (Th) 0.129 mg/kg O.077-0.19 25-SEP-17 Tin (Sn) 1.1 mg/kg O.071-0.12 25-SEP-17 Tin (Sn) 1.1 mg/kg O.066 25-SEP-17 Uranium (Th) 0.16 mg/kg O.068 25-SEP-17 Uranium (U) 107.6 % 70-130 25-SEP-17 Vanadum (V) 0.16 mg/kg O.130 25-SEP-17 Zinc (Zn) 0.5 % 70-130 25-SEP-17 Auminum (K) 95.9 %			Workorder	: L199227	78	- Report Date: 0	2-0CT-17	Pag	e 4 of																																																																																																																																																																																																																		
Batch R337593 WG224450-1 CM TLL-1 Selenium (Se) 0.23 mg/kg 0.110.61 25.8EP.47 Silver (Ag) 0.23 mg/kg 0.130.33 25.8EP.47 Solum (Na) 103.4 % 70.430 25.8EP.47 Strontium (Sr) 110.0 % 70.430 25.8EP.47 Thallum (Th) 0.129 mg/kg 0.31 25.8EP.47 Tungsten (W) 110.6 % 70.430 25.8EP.47 Uranium (Th) 118.8 % 70.430 25.8EP.47 Uranium (U) 107.6 % 70.430 25.8EP.47 Vanadum (V) 108.7 % 70.430 25.8EP.47 Zincolum (Z) 0.7 mg/kg 0.63 25.8EP.47 Auminum (A) 66.9 % 70.430 25.8EP.47 Auminum (A) 66.9 % 70.430 25.8EP.47 Auminum (A) 66.9 % 70.430 25.8EP.47 Arsenic (As) <th>Fest</th> <th>Matrix</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Fest	Matrix																																																																																																																																																																																																																									
Weigestides TILL-1 Selection (Se) 0.29 mg/kg 0.13.0.33 25.8EP-17. Sodium (Na) 103.4 % 70-130 25.8EP-17. Storotium (Sr) 103.4 % 70-130 25.8EP-17. Tontium (Sr) 110.0 % 70-130 25.8EP-17. Thallum (Ti) 0.129 mg/kg 0.017-0.18 25.8EP-17. Tint (Sr) 1.1 mg/kg 0.16 25.8EP-17. Tugsten (W) 0.16 mg/kg 0.66 25.8EP-17. Vanadum (V) 107.6 % 0.130.0 25.8EP-17. Vanadum (V) 108.7 % 0.130.0 25.8EP-17. Vanadum (V) 108.7 % 0.130.0 25.8EP-17. Zinc (Zn) 0.16 mg/kg 0.86 25.8EP-17. Autoinum (V) 108.7 % 0.130.0 25.8EP-17. Autoinum (A) 108.7 % 0.130.0 25.8EP-17. Autoinum (A) 96.9 % 0.130.0	MET-200.2-CCMS-CL	Soil																																																																																																																																																																																																																									
Selenium (Se) 0.29 mg/kg 0.11-0.51 25.8EP-17. Silver (Ag) 0.23 mg/kg 0.13-0.32 25.8EP-17. Sodium (Na) 100.4 % 70-130 25.8EP-17. Strontium (Sr) 110.0 % 70-130 25.8EP-17. Thallum (T) 0.129 mg/kg 0.077-0.18 25.8EP-17. Tin (Sn) 1.1 mg/kg 0.03.1 25.8EP-17. Turgsten (W) 0.16 mg/kg 0.66. 25.8EP-17. Uranium (U) 107.6 % 70-130 25.8EP-17. Zinco (Zn) 108.7 % 70-130 25.8EP-17. Zinco (Zn) 0.7 mg/kg 0.130 25.8EP-17. Audium (V) 108.7 % 70-130 25.8EP-17. Zinco (Imu (Zr) 0.7 mg/kg 0.130 25.8EP-17. Antimory (Sb) 95.9 % 70-130 25.8EP-17. Artimory (Sb) 93.4 % 70-130 25.8EP-17. Bar	Batch R3837593																																																																																																																																																																																																																										
Silver (Ag) 0.23 mg/kg 0.13.0.33 25.SEP-17 Sodium (Na) 103.4 % 70-130 25.SEP-17 Strotlum (Sr) 110.0 % 70-130 25.SEP-17 Thallum (Ti) 0.129 mg/kg 0.077-0.18 25.SEP-17 Tin (Sn) 1.1 mg/kg 0.31 25.SEP-17 Turgsten (W) 0.16 mg/kg 0.66 25.SEP-17 Vanadum (V) 107.6 % 70-130 25.SEP-17 Vanadum (V) 106.7 % 70-130 25.SEP-17 Zinc (Zn) 105.4 % 70-130 25.SEP-17 Zinc (Zn) 105.4 % 70-130 25.SEP-17 Zinc (Zn) 105.4 % 70-130 25.SEP-17 Autimum (A) 96.9 % 70-130 25.SEP-17 Autimum (A) 96.9 % 70-130 25.SEP-17 Autimum (A) 96.9 % 70-130 25.SEP-17 Autimum (Ba) 93.8			TILL-1																																																																																																																																																																																																																								
Sodium (Na) 103.4 % 70-130 25-SEP-17 Stronium (Sr) 110.0 % 70-130 25-SEP-17 Thallum (TI) 0.129 mg/kg 0.077-0.18 25-SEP-17 Tin (Sn) 1.1 mg/kg 0.31 25-SEP-17 Tinn (Sn) 11.6.8 % 70-130 25-SEP-17 Tungsten (W) 0.16 mg/kg 0.066 25-SEP-17 Vanadum (V) 106.7 % 70-130 25-SEP-17 Zinc (Zn) 105.4 % 70-130 25-SEP-17 Zinc (Zn) 0.7 mg/kg 0.18 25-SEP-17 Automom (A) 96.9 % 70-130 25-SEP-17 Automom (Sb) 95.9 % 70-130 25-SEP-17 Barum (Ba) 93.8								0.11-0.51	25-SEP-17																																																																																																																																																																																																																		
Strontum (Sr) 110.0 % 70.130 25.SEP-17 Thallium (T) 0.129 mg/kg 0.077-0.18 25.SEP-17 Tin (Sr) 1.1 mg/kg 0.3.1 25.SEP-17 Tinanium (T) 116.8 % 70.130 25.SEP-17 Tungsten (W) 0.16 mg/kg 0.06 25.SEP-17 Uranium (U) 107.6 % 70.130 25.SEP-17 Vanadium (V) 108.7 % 70.130 25.SEP-17 Zinconium (Z) 0.7 mg/kg 0.8 25.SEP-17 Zinconium (Z) 0.7 mg/kg 0.8 25.SEP-17 Autminum (A) 96.9 % 70.130 25.SEP-17 Autminum (A) 96.9 % 70.130 25.SEP-17 Astenic (As) 93.4 % 70.130 25.SEP-17 Barium (Ba) 93.4 % 70.130 25.SEP-17 Barium (Ba) 92.2 % 70.130 25.SEP-17 Barium (Ba) 92.4 <td>Silver (Ag)</td> <td></td> <td></td> <td>0.23</td> <td></td> <td></td> <td></td> <td>0.13-0.33</td> <td>25-SEP-17</td>	Silver (Ag)			0.23				0.13-0.33	25-SEP-17																																																																																																																																																																																																																		
Thallium (TI) 0.129 mg/kg 0.077-0.18 25-SEP-47 Tin (Sn) 1.1 mg/kg 0-3.1 25-SEP-47 Tin (Sn) 116.8 % 70-130 25-SEP-47 Tungsten (W) 0.16 mg/kg 0-0.66 25-SEP-47 Vanadium (V) 107.6 % 70-130 25-SEP-47 Zinc (Zn) 105.4 % 70-130 25-SEP-47 Zinc (Zn) 105.4 % 70-130 25-SEP-47 Zinc (Zn) 0.7 mg/kg 0.130 25-SEP-47 Zinc (Zn) 0.66 S SES-SEP-47 25-SEP-47 Zinc (Zn) 0.67 % 70-130 25-SEP-47 Auminum (Al) 96.9 % 70-130 25-SEP-47 Ausinum (Al) 96.9 % 70-130 25-SEP-47 Assen: (As) 93.4 % 70-130 25-SEP-47 Barium (Bi) 92.2 % 70-130 25-SEP-47 Boron (B 2.7 m	Sodium (Na)			103.4				70-130	25-SEP-17																																																																																																																																																																																																																		
Tin (Sh) 1.1 mg/kg 0.3.1 25-SEP-17 Titanium (Ti) 116.8 % 70-130 25-SEP-17 Tungsten (W) 0.16 mg/kg 0.066 25-SEP-17 Uranium (U) 107.6 % 70-130 25-SEP-17 Zino (Zh) 108.7 % 70-130 25-SEP-17 Zino (Zh) 105.4 % 70-130 25-SEP-17 Zirconium (Zr) 0.7 mg/kg 0-1.8 25-SEP-17 Autimony (Sb) 96.9 % 70-130 25-SEP-17 Antimony (Sb) 96.9 % 70-130 25-SEP-17 Antimony (Sb) 96.9 % 70-130 25-SEP-17 Barium (Ba) 93.4 % 70-130 25-SEP-17 Barium (Ba) 92.2 % 70-130 25-SEP-17 Boron (B) 2.7 mg/kg 0-310 25-SEP-17 Cadmium (Cd) 100.2 % 70-130 25-SEP-17 Cadmium (Cd) 92.2	Strontium (Sr)			110.0		%		70-130	25-SEP-17																																																																																																																																																																																																																		
Titanium (Ti) 116.8 % 70.130 25.SEP.17 Tungsten (W) 0.16 mg/kg 0.0.66 25.SEP.17 Uranium (U) 107.6 % 70.130 25.SEP.17 Vanadium (V) 108.7 % 70.130 25.SEP.17 Zinconium (Zr) 0.7 mg/kg 0.18 25.SEP.17 MG2621450-8 CRM TILL-1 25.SEP.17 Auminum (Al) 96.9 % 70.130 25.SEP.17 Muser (Sh) 95.9 % 70.130 25.SEP.17 Antimony (Sb) 95.9 % 70.130 25.SEP.17 Barium (Ba) 93.4 % 70.130 25.SEP.17 Barium (Ba) 92.2 % 70.130 25.SEP.17 Boron (B) 2.7 mg/kg 0.8.2 25.SEP.17 Cadmium (Ca) 100.2 % 70.130 25.SEP.17 Cadmium (Ca) 98.2 % 70.130 25.SEP.17 Codmium (Ca) 99.2	Thallium (Tl)			0.129		mg/kg		0.077-0.18	25-SEP-17																																																																																																																																																																																																																		
Tungsten (W) 0.16 mg/kg 0.0.66 2.5.5.2.7.1 Uranium (U) 107.6 % 70-130 2.5.52.7.1 Vanadium (V) 108.7 % 70-130 2.5.52.7.1 Zinc (Zn) 105.4 % 70-130 2.5.52.7.1 Zinconium (Zr) 0.7 mg/kg 0.1.8 2.5.52.7.1 MG2621450-8 CRM TLL-1 3.4 % 70-130 2.5.52.7.1 Antimony (Sb) 95.9 % 70-130 2.5.52.7.1 3.4 % 70-130 2.5.52.7.1 Barium (Ba) 93.4 % 70-130 2.5.52.7.1 3.5.52.7.1 Barylium (Be) 100.5 % 70-130 2.5.52.7.1 Barylium (Ba) 92.2 % 70-130 2.5.52.7.1 Bismuth (Bi) 92.2 % 70-130 2.5.52.7.1 Cadmium (Cd) 100.2 % 70-130 2.5.52.7.1 Coloum (Ca) 94.7 % 70-130 2.5.52.7.1	Tin (Sn)			1.1		mg/kg		0-3.1	25-SEP-17																																																																																																																																																																																																																		
Uranium (U) 107.6 % 70.130 25.5EP-17 Vanadium (V) 108.7 % 70.130 25.5EP-17 Zinc (Zn) 105.4 % 70.130 25.5EP-17 Zirconium (Zr) 0.7 mg/kg 0-1.8 25.5EP-17 WC2621450-8 CRM TILL-1 70.130 25.5EP-17 Attimony (Sb) 95.9 % 70.130 25.5EP-17 Assenic (As) 93.4 % 70.130 25.5EP-17 Barium (Ba) 93.8 % 70.130 25.5EP-17 Barium (Ba) 93.8 % 70.130 25.5EP-17 Barium (Ba) 92.2 % 70.130 25.5EP-17 Boron (B) 2.7 mg/kg 0-8.2 25.5EP-17 Cadmium (Cd) 100.2 % 70.130 25.5EP-17 Cadmium (Cd) 100.2 % 70.130 25.5EP-17 Cadmium (Cd) 90.2 % 70.130 25.5EP-17 Cobat (Co) <t< td=""><td>Titanium (Ti)</td><td></td><td></td><td>116.8</td><td></td><td>%</td><td></td><td>70-130</td><td>25-SEP-17</td></t<>	Titanium (Ti)			116.8		%		70-130	25-SEP-17																																																																																																																																																																																																																		
Vanadium (V) 108.7 % 70.130 25.5EP.17 Zinc (Zn) 105.4 % 70.130 25.5EP.17 Zirconium (Zr) 0.7 mg/kg 0-1.8 25.5EP.17 WG2621450-8 CRM TILL-1 Antimony (Sb) 96.9 % 70.130 25.5EP.17 Arsenic (As) 93.4 % 70.130 25.5EP.17 Barium (Ba) 93.8 % 70.130 25.5EP.17 Beryllium (Be) 100.5 % 70.130 25.5EP.17 Boron (B 2.7 mg/kg 0.8.2 25.5EP.17 Calmium (Cd) 100.2 % 70.130 25.5EP.17 Calcium (Ca) 98.2 % 70.130 25.5EP.17 Calcium (Ca) 97.2 % 70.130 25.5EP.17 Cobart (Ca) 97.2 % 70.130 25.5EP.17 Cobart (Ca) 97.2 % 70.130 25.5EP.17 Copper (Cu) 97.2	Tungsten (W)			0.16		mg/kg		0-0.66	25-SEP-17																																																																																																																																																																																																																		
Zinc (Zn) 105.4 % 70-130 25-SEP-47 Zirconium (Zr) 0.7 mg/kg 0-1.8 25-SEP-47 MG2621450-8 CRM TILL-1 Aluminum (Al) 96.9 % 70-130 25-SEP-47 Antmony (Sb) 95.9 % 70-130 25-SEP-47 Arsenic (As) 93.4 % 70-130 25-SEP-47 Barium (Ba) 93.8 % 70-130 25-SEP-47 Beryllium (Be) 100.5 % 70-130 25-SEP-47 Boron (B) 2.7 mg/kg 0.8.2 25-SEP-47 Cadmium (Cd) 100.2 % 70-130 25-SEP-47 Cadmium (Cd) 100.2 % 70-130 25-SEP-47 Cadmium (Cd) 98.2 % 70-130 25-SEP-47 Cobalt (Ca) 97.2 % 70-130 25-SEP-47 Cobalt (Ca) 97.2 % 70-130 25-SEP-47 Lead (Pb) 96.4 %	Uranium (U)			107.6		%		70-130	25-SEP-17																																																																																																																																																																																																																		
Zirconium (Zr) 0.7 mg/kg 0.1.8 25-SEP-17 Aluminum (Al) 96.9 % 70-130 25-SEP-17 Antimony (Sb) 95.9 % 70-130 25-SEP-17 Arsenic (As) 93.4 % 70-130 25-SEP-17 Barium (Ba) 93.8 % 70-130 25-SEP-17 Beryllium (Be) 100.5 % 70-130 25-SEP-17 Bismuth (Bi) 92.2 % 70-130 25-SEP-17 Boron (B 2.7 mg/kg 0-8.2 25-SEP-17 Cadmium (Cd) 100.2 % 70-130 25-SEP-17 Cadmium (Cd) 98.2 % 70-130 25-SEP-17 Cobart (Ca) 97.2 % 70-130 25-SEP-17 Cobart (Ca) 97.2 % 70-130 25-SEP-17 Cobart (Ca) 97.2 % 70-130 25-SEP-17 Icon (Fe) 90.2 % 70-130 25-SEP-17 Icon (Fe) 90.2 <td< td=""><td>Vanadium (V)</td><td></td><td></td><td>108.7</td><td></td><td>%</td><td></td><td>70-130</td><td>25-SEP-17</td></td<>	Vanadium (V)			108.7		%		70-130	25-SEP-17																																																																																																																																																																																																																		
WG2621450-8 CRM TILL-1 Aluminum (Al) 96.9 % 70-130 25-SEP-17 Antimony (Sb) 95.9 % 70-130 25-SEP-17 Arsenic (As) 93.4 % 70-130 25-SEP-17 Barium (Ba) 93.8 % 70-130 25-SEP-17 Beryllium (Be) 100.5 % 70-130 25-SEP-17 Bismuth (Bi) 92.2 % 70-130 25-SEP-17 Boron (B 2.7 mg/kg 0-8.2 25-SEP-17 Cadmium (Cd) 100.2 % 70-130 25-SEP-17 Calcium (Ca) 98.2 % 70-130 25-SEP-17 Cabrium (Cr) 94.7 % 70-130 25-SEP-17 Cobalt (Co) 97.2 % 70-130 25-SEP-17 Cobalt (Co) 97.2 % 70-130 25-SEP-17 Lead (Pb) 96.4 % 70-130 25-SEP-17 Lead (Pb) 96.4 % 70-130 25-SEP-	Zinc (Zn)			105.4		%		70-130	25-SEP-17																																																																																																																																																																																																																		
Aluminum (Al) 96.9 % 70.130 25-SEP.17 Antimony (Sb) 95.9 % 70.130 25-SEP.17 Arsenic (As) 93.4 % 70.130 25-SEP.17 Barium (Ba) 93.8 % 70.130 25-SEP.17 Beryllium (Be) 100.5 % 70.130 25-SEP.17 Bismuth (Bi) 92.2 % 70.130 25-SEP.17 Boron (B) 2.7 mg/kg 0.8.2 25-SEP.17 Cadmium (Cd) 100.2 % 70.130 25-SEP.17 Cadmium (Cd) 98.2 % 70.130 25-SEP.17 Cobart (Co) 97.2 % 70.130 25-SEP.17 Cobart (Co) 97.2 % 70.130 25-SEP.17 Iron (Fe) 90.2 % 70.130 25-SEP.17 Lead (Pb) 96.4 % 70.130 25-SEP.17 Magnesium (Mg) 97.6 % 70.130 25-SEP.17 Magnesium (Mg) 96.3 % 70.130 25-SEP.17 Molybdenum (Mo) 96.3 <td< td=""><td>Zirconium (Zr)</td><td></td><td></td><td>0.7</td><td></td><td>mg/kg</td><td></td><td>0-1.8</td><td>25-SEP-17</td></td<>	Zirconium (Zr)			0.7		mg/kg		0-1.8	25-SEP-17																																																																																																																																																																																																																		
Antimony (Sb)95.9%70.13025.SEP-17Arsenic (As)93.4%70.13025.SEP-17Barium (Ba)93.8%70.13025.SEP-17Beryllium (Be)100.5%70.13025.SEP-17Bismuth (Bi)92.2%70.13025.SEP-17Boron (B)2.7mg/kg0.8.225.SEP-17Cadmium (Cd)100.2%70.13025.SEP-17Cadmium (Cd)98.2%70.13025.SEP-17Calcium (Ca)94.7%70.13025.SEP-17Cobalt (Co)97.2%70.13025.SEP-17Copper (Cu)97.2%70.13025.SEP-17Iron (Fe)90.2%70.13025.SEP-17Lead (Pb)96.4%70.13025.SEP-17Magnesium (Mg)97.6%70.13025.SEP-17Molybdenum (Mo)96.3%70.13025.SEP-17Nickel (Ni)95.3%70.13025.SEP-17Phosphorus (P)98.0%70.13025.SEP-17Phosphorus (P)98.0%70.13025.SEP-17Phosphorus (P)98.0%70.13025.SEP-17Phosphorus (P)98.0%70.13025.SEP-17Phosphorus (P)98.0%70.13025.SEP-17Phosphorus (P)98.0%70.13025.SEP-17Phosphorus (P)98.0%70.13025.SEP-17 <tr <tr="">Phosphorus (P)98.0<td></td><td></td><td>TILL-1</td><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>Arsenic (As)93.4%70-13025-SEP-17Barium (Ba)93.8%70-13025-SEP-17Beryllium (Be)100.5%70-13025-SEP-17Bismuth (Bi)92.2%70-13025-SEP-17Boron (B)2.7mg/kg0-8.225-SEP-17Cadmium (Cd)100.2%70-13025-SEP-17Calcium (Ca)98.2%70-13025-SEP-17Calcium (Ca)94.7%70-13025-SEP-17Cobalt (Co)97.2%70-13025-SEP-17Copper (Cu)97.2%70-13025-SEP-17Iron (Fe)90.2%70-13025-SEP-17Lead (Pb)96.4%70-13025-SEP-17Magnesium (Mg)97.6%70-13025-SEP-17Molybdenum (Mo)96.3%70-13025-SEP-17Nickel (Ni)95.3%70-13025-SEP-17Phosphorus (P)98.0%70-13025-SEP-17</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>70-130</td><td>25-SEP-17</td></tr> <tr><td>Barium (Ba)93.8%70-13025-SEP-17Beryllium (Be)100.5%70-13025-SEP-17Bismuth (Bi)92.2%70-13025-SEP-17Boron (B)2.7mg/kg0-8.225-SEP-17Cadmium (Cd)100.2%70-13025-SEP-17Calcium (Ca)98.2%70-13025-SEP-17Chromium (Cr)94.7%70-13025-SEP-17Cobalt (Co)97.2%70-13025-SEP-17Copper (Cu)97.2%70-13025-SEP-17Iron (Fe)90.2%70-13025-SEP-17Lead (Pb)96.4%70-13025-SEP-17Lithium (Li)97.3%70-13025-SEP-17Magnesium (Mg)97.6%70-13025-SEP-17Molybdenum (Mo)96.3%70-13025-SEP-17Nickel (Ni)95.3%70-13025-SEP-17Phosphorus (P)98.0%70-13025-SEP-17Phosphorus (P)98.0%70-13025-SEP-17</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>70-130</td><td>25-SEP-17</td></tr> <tr><td>Beryllium (Be)100.5%70-13025-SEP-17Bismuth (Bi)92.2%70-13025-SEP-17Boron (B)2.7mg/kg0-8.225-SEP-17Cadmium (Cd)100.2%70-13025-SEP-17Calcium (Ca)98.2%70-13025-SEP-17Calcium (Ca)94.7%70-13025-SEP-17Cobalt (Co)97.2%70-13025-SEP-17Cobalt (Co)97.2%70-13025-SEP-17Copper (Cu)97.2%70-13025-SEP-17Iron (Fe)90.2%70-13025-SEP-17Lead (Pb)96.4%70-13025-SEP-17Magnesium (Mg)97.6%70-13025-SEP-17Molybdenum (Mo)96.3%70-13025-SEP-17Nickel (Ni)95.3%70-13025-SEP-17Phosphorus (P)98.0%70-13025-SEP-17</td><td>Arsenic (As)</td><td></td><td></td><td>93.4</td><td></td><td>%</td><td></td><td>70-130</td><td>25-SEP-17</td></tr> <tr><td>Bismuth (Bi) 92.2 % 70-130 25-SEP-17 Boron (B) 2.7 mg/kg 0-8.2 25-SEP-17 Cadmium (Cd) 100.2 % 70-130 25-SEP-17 Calcium (Ca) 98.2 % 70-130 25-SEP-17 Chromium (Cr) 94.7 % 70-130 25-SEP-17 Cobalt (Co) 97.2 % 70-130 25-SEP-17 Copper (Cu) 97.2 % 70-130 25-SEP-17 Iron (Fe) 90.2 % 70-130 25-SEP-17 Lead (Pb) 96.4 % 70-130 25-SEP-17 Lithium (Li) 97.3 % 70-130 25-SEP-17 Magnesium (Mg) 97.6 % 70-130 25-SEP-17 Molybdenum (Mo) 96.3 % 70-130 25-SEP-17 Nickel (Ni) 95.3 % 70-130 25-SEP-17 Phosphorus (P) 98.0 % 70-130 25-SEP-17 </td><td></td><td></td><td></td><td>93.8</td><td></td><td>%</td><td></td><td>70-130</td><td>25-SEP-17</td></tr> <tr><td>Boron (B)2.7mg/kg0-8.225-SEP-17Cadmium (Cd)100.2%70-13025-SEP-17Calcium (Ca)98.2%70-13025-SEP-17Chromium (Cr)94.7%70-13025-SEP-17Cobalt (Co)97.2%70-13025-SEP-17Copper (Cu)97.2%70-13025-SEP-17Iron (Fe)90.2%70-13025-SEP-17Lead (Pb)96.4%70-13025-SEP-17Lithium (Li)97.3%70-13025-SEP-17Magnesium (Mg)96.3%70-13025-SEP-17Molybdenum (Mo)96.3%70-13025-SEP-17Nickel (Ni)95.3%70-13025-SEP-17Phosphorus (P)98.0%70-13025-SEP-17</td><td>Beryllium (Be)</td><td></td><td></td><td>100.5</td><td></td><td></td><td></td><td>70-130</td><td>25-SEP-17</td></tr> <tr><td>Cadmium (Cd)100.2%70-13025-SEP-17Calcium (Ca)98.2%70-13025-SEP-17Chromium (Cr)94.7%70-13025-SEP-17Cobalt (Co)97.2%70-13025-SEP-17Copper (Cu)97.2%70-13025-SEP-17Iron (Fe)90.2%70-13025-SEP-17Lead (Pb)96.4%70-13025-SEP-17Lithium (Li)97.3%70-13025-SEP-17Magnesium (Mg)97.6%70-13025-SEP-17Molybdenum (Mo)96.3%70-13025-SEP-17Nickel (Ni)95.3%70-13025-SEP-17Phosphorus (P)98.0%70-13025-SEP-17</td><td>Bismuth (Bi)</td><td></td><td></td><td>92.2</td><td></td><td>%</td><td></td><td>70-130</td><td>25-SEP-17</td></tr> <tr><td>Calcium (Ca)98.2%70-13025-SEP-17Chromium (Cr)94.7%70-13025-SEP-17Cobalt (Co)97.2%70-13025-SEP-17Copper (Cu)97.2%70-13025-SEP-17Iron (Fe)90.2%70-13025-SEP-17Lead (Pb)96.4%70-13025-SEP-17Lithium (Li)97.3%70-13025-SEP-17Magnesium (Mg)97.6%70-13025-SEP-17Magnese (Mn)98.5%70-13025-SEP-17Nickel (Ni)95.3%70-13025-SEP-17Phosphorus (P)98.0%70-13025-SEP-17</td><td>Boron (B)</td><td></td><td></td><td>2.7</td><td></td><td>mg/kg</td><td></td><td>0-8.2</td><td>25-SEP-17</td></tr> <tr><td>Chromium (Cr)94.7%70-13025-SEP-17Cobalt (Co)97.2%70-13025-SEP-17Copper (Cu)97.2%70-13025-SEP-17Iron (Fe)90.2%70-13025-SEP-17Lead (Pb)96.4%70-13025-SEP-17Lithium (Li)97.3%70-13025-SEP-17Magnesium (Mg)97.6%70-13025-SEP-17Magnese (Mn)98.5%70-13025-SEP-17Nickel (Ni)95.3%70-13025-SEP-17Phosphorus (P)98.0%70-13025-SEP-17</td><td>Cadmium (Cd)</td><td></td><td></td><td>100.2</td><td></td><td>%</td><td></td><td>70-130</td><td>25-SEP-17</td></tr> <tr><td>Cobalt (Co)97.2%70-13025-SEP-17Copper (Cu)97.2%70-13025-SEP-17Iron (Fe)90.2%70-13025-SEP-17Lead (Pb)96.4%70-13025-SEP-17Lithium (Li)97.3%70-13025-SEP-17Magnesium (Mg)97.6%70-13025-SEP-17Maganese (Mn)98.5%70-13025-SEP-17Nickel (Ni)95.3%70-13025-SEP-17Phosphorus (P)98.0%70-13025-SEP-17</td><td>Calcium (Ca)</td><td></td><td></td><td>98.2</td><td></td><td>%</td><td></td><td>70-130</td><td>25-SEP-17</td></tr> <tr><td>Copper (Cu)97.2%70-13025-SEP-17Iron (Fe)90.2%70-13025-SEP-17Lead (Pb)96.4%70-13025-SEP-17Lithium (Li)97.3%70-13025-SEP-17Magnesium (Mg)97.6%70-13025-SEP-17Manganese (Mn)98.5%70-13025-SEP-17Molybdenum (Mo)96.3%70-13025-SEP-17Nickel (Ni)95.3%70-13025-SEP-17Phosphorus (P)98.0%70-13025-SEP-17</td><td>Chromium (Cr)</td><td></td><td></td><td>94.7</td><td></td><td>%</td><td></td><td>70-130</td><td>25-SEP-17</td></tr> <tr><td>Iron (Fe)90.2%70-13025-SEP-17Lead (Pb)96.4%70-13025-SEP-17Lithium (Li)97.3%70-13025-SEP-17Magnesium (Mg)97.6%70-13025-SEP-17Manganese (Mn)98.5%70-13025-SEP-17Molybdenum (Mo)96.3%70-13025-SEP-17Nickel (Ni)95.3%70-13025-SEP-17Phosphorus (P)98.0%70-13025-SEP-17</td><td>Cobalt (Co)</td><td></td><td></td><td>97.2</td><td></td><td>%</td><td></td><td>70-130</td><td>25-SEP-17</td></tr> <tr><td>Lead (Pb)96.4%70-13025-SEP-17Lithium (Li)97.3%70-13025-SEP-17Magnesium (Mg)97.6%70-13025-SEP-17Manganese (Mn)98.5%70-13025-SEP-17Molybdenum (Mo)96.3%70-13025-SEP-17Nickel (Ni)95.3%70-13025-SEP-17Phosphorus (P)98.0%70-13025-SEP-17</td><td>Copper (Cu)</td><td></td><td></td><td>97.2</td><td></td><td>%</td><td></td><td>70-130</td><td>25-SEP-17</td></tr> <tr><td>Lithium (Li)97.3%70-13025-SEP-17Magnesium (Mg)97.6%70-13025-SEP-17Manganese (Mn)98.5%70-13025-SEP-17Molybdenum (Mo)96.3%70-13025-SEP-17Nickel (Ni)95.3%70-13025-SEP-17Phosphorus (P)98.0%70-13025-SEP-17</td><td>Iron (Fe)</td><td></td><td></td><td>90.2</td><td></td><td>%</td><td></td><td>70-130</td><td>25-SEP-17</td></tr> <tr><td>Magnesium (Mg)97.6%70-13025-SEP-17Manganese (Mn)98.5%70-13025-SEP-17Molybdenum (Mo)96.3%70-13025-SEP-17Nickel (Ni)95.3%70-13025-SEP-17Phosphorus (P)98.0%70-13025-SEP-17</td><td>Lead (Pb)</td><td></td><td></td><td>96.4</td><td></td><td>%</td><td></td><td>70-130</td><td>25-SEP-17</td></tr> <tr><td>Manganese (Mn)98.5%70-13025-SEP-17Molybdenum (Mo)96.3%70-13025-SEP-17Nickel (Ni)95.3%70-13025-SEP-17Phosphorus (P)98.0%70-13025-SEP-17</td><td>Lithium (Li)</td><td></td><td></td><td>97.3</td><td></td><td>%</td><td></td><td>70-130</td><td>25-SEP-17</td></tr> <tr><td>Manganese (Mn)98.5%70-13025-SEP-17Molybdenum (Mo)96.3%70-13025-SEP-17Nickel (Ni)95.3%70-13025-SEP-17Phosphorus (P)98.0%70-13025-SEP-17</td><td>Magnesium (Mg)</td><td></td><td></td><td>97.6</td><td></td><td>%</td><td></td><td>70-130</td><td>25-SEP-17</td></tr> <tr><td>Molybdenum (Mo)96.3%70-13025-SEP-17Nickel (Ni)95.3%70-13025-SEP-17Phosphorus (P)98.0%70-13025-SEP-17</td><td>Manganese (Mn)</td><td></td><td></td><td>98.5</td><td></td><td>%</td><td></td><td>70-130</td><td>25-SEP-17</td></tr> <tr><td>Nickel (Ni) 95.3 % 70-130 25-SEP-17 Phosphorus (P) 98.0 % 70-130 25-SEP-17</td><td>Molybdenum (Mo)</td><td></td><td></td><td>96.3</td><td></td><td>%</td><td></td><td>70-130</td><td>25-SEP-17</td></tr> <tr><td>Phosphorus (P) 98.0 % 70-130 25-SEP-17</td><td>Nickel (Ni)</td><td></td><td></td><td>95.3</td><td></td><td>%</td><td></td><td></td><td></td></tr> <tr><td></td><td>Phosphorus (P)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>25-SEP-17</td></tr>			TILL-1							Arsenic (As)93.4%70-13025-SEP-17Barium (Ba)93.8%70-13025-SEP-17Beryllium (Be)100.5%70-13025-SEP-17Bismuth (Bi)92.2%70-13025-SEP-17Boron (B)2.7mg/kg0-8.225-SEP-17Cadmium (Cd)100.2%70-13025-SEP-17Calcium (Ca)98.2%70-13025-SEP-17Calcium (Ca)94.7%70-13025-SEP-17Cobalt (Co)97.2%70-13025-SEP-17Copper (Cu)97.2%70-13025-SEP-17Iron (Fe)90.2%70-13025-SEP-17Lead (Pb)96.4%70-13025-SEP-17Magnesium (Mg)97.6%70-13025-SEP-17Molybdenum (Mo)96.3%70-13025-SEP-17Nickel (Ni)95.3%70-13025-SEP-17Phosphorus (P)98.0%70-13025-SEP-17								70-130	25-SEP-17	Barium (Ba)93.8%70-13025-SEP-17Beryllium (Be)100.5%70-13025-SEP-17Bismuth (Bi)92.2%70-13025-SEP-17Boron (B)2.7mg/kg0-8.225-SEP-17Cadmium (Cd)100.2%70-13025-SEP-17Calcium (Ca)98.2%70-13025-SEP-17Chromium (Cr)94.7%70-13025-SEP-17Cobalt (Co)97.2%70-13025-SEP-17Copper (Cu)97.2%70-13025-SEP-17Iron (Fe)90.2%70-13025-SEP-17Lead (Pb)96.4%70-13025-SEP-17Lithium (Li)97.3%70-13025-SEP-17Magnesium (Mg)97.6%70-13025-SEP-17Molybdenum (Mo)96.3%70-13025-SEP-17Nickel (Ni)95.3%70-13025-SEP-17Phosphorus (P)98.0%70-13025-SEP-17Phosphorus (P)98.0%70-13025-SEP-17								70-130	25-SEP-17	Beryllium (Be)100.5%70-13025-SEP-17Bismuth (Bi)92.2%70-13025-SEP-17Boron (B)2.7mg/kg0-8.225-SEP-17Cadmium (Cd)100.2%70-13025-SEP-17Calcium (Ca)98.2%70-13025-SEP-17Calcium (Ca)94.7%70-13025-SEP-17Cobalt (Co)97.2%70-13025-SEP-17Cobalt (Co)97.2%70-13025-SEP-17Copper (Cu)97.2%70-13025-SEP-17Iron (Fe)90.2%70-13025-SEP-17Lead (Pb)96.4%70-13025-SEP-17Magnesium (Mg)97.6%70-13025-SEP-17Molybdenum (Mo)96.3%70-13025-SEP-17Nickel (Ni)95.3%70-13025-SEP-17Phosphorus (P)98.0%70-13025-SEP-17	Arsenic (As)			93.4		%		70-130	25-SEP-17	Bismuth (Bi) 92.2 % 70-130 25-SEP-17 Boron (B) 2.7 mg/kg 0-8.2 25-SEP-17 Cadmium (Cd) 100.2 % 70-130 25-SEP-17 Calcium (Ca) 98.2 % 70-130 25-SEP-17 Chromium (Cr) 94.7 % 70-130 25-SEP-17 Cobalt (Co) 97.2 % 70-130 25-SEP-17 Copper (Cu) 97.2 % 70-130 25-SEP-17 Iron (Fe) 90.2 % 70-130 25-SEP-17 Lead (Pb) 96.4 % 70-130 25-SEP-17 Lithium (Li) 97.3 % 70-130 25-SEP-17 Magnesium (Mg) 97.6 % 70-130 25-SEP-17 Molybdenum (Mo) 96.3 % 70-130 25-SEP-17 Nickel (Ni) 95.3 % 70-130 25-SEP-17 Phosphorus (P) 98.0 % 70-130 25-SEP-17				93.8		%		70-130	25-SEP-17	Boron (B)2.7mg/kg0-8.225-SEP-17Cadmium (Cd)100.2%70-13025-SEP-17Calcium (Ca)98.2%70-13025-SEP-17Chromium (Cr)94.7%70-13025-SEP-17Cobalt (Co)97.2%70-13025-SEP-17Copper (Cu)97.2%70-13025-SEP-17Iron (Fe)90.2%70-13025-SEP-17Lead (Pb)96.4%70-13025-SEP-17Lithium (Li)97.3%70-13025-SEP-17Magnesium (Mg)96.3%70-13025-SEP-17Molybdenum (Mo)96.3%70-13025-SEP-17Nickel (Ni)95.3%70-13025-SEP-17Phosphorus (P)98.0%70-13025-SEP-17	Beryllium (Be)			100.5				70-130	25-SEP-17	Cadmium (Cd)100.2%70-13025-SEP-17Calcium (Ca)98.2%70-13025-SEP-17Chromium (Cr)94.7%70-13025-SEP-17Cobalt (Co)97.2%70-13025-SEP-17Copper (Cu)97.2%70-13025-SEP-17Iron (Fe)90.2%70-13025-SEP-17Lead (Pb)96.4%70-13025-SEP-17Lithium (Li)97.3%70-13025-SEP-17Magnesium (Mg)97.6%70-13025-SEP-17Molybdenum (Mo)96.3%70-13025-SEP-17Nickel (Ni)95.3%70-13025-SEP-17Phosphorus (P)98.0%70-13025-SEP-17	Bismuth (Bi)			92.2		%		70-130	25-SEP-17	Calcium (Ca)98.2%70-13025-SEP-17Chromium (Cr)94.7%70-13025-SEP-17Cobalt (Co)97.2%70-13025-SEP-17Copper (Cu)97.2%70-13025-SEP-17Iron (Fe)90.2%70-13025-SEP-17Lead (Pb)96.4%70-13025-SEP-17Lithium (Li)97.3%70-13025-SEP-17Magnesium (Mg)97.6%70-13025-SEP-17Magnese (Mn)98.5%70-13025-SEP-17Nickel (Ni)95.3%70-13025-SEP-17Phosphorus (P)98.0%70-13025-SEP-17	Boron (B)			2.7		mg/kg		0-8.2	25-SEP-17	Chromium (Cr)94.7%70-13025-SEP-17Cobalt (Co)97.2%70-13025-SEP-17Copper (Cu)97.2%70-13025-SEP-17Iron (Fe)90.2%70-13025-SEP-17Lead (Pb)96.4%70-13025-SEP-17Lithium (Li)97.3%70-13025-SEP-17Magnesium (Mg)97.6%70-13025-SEP-17Magnese (Mn)98.5%70-13025-SEP-17Nickel (Ni)95.3%70-13025-SEP-17Phosphorus (P)98.0%70-13025-SEP-17	Cadmium (Cd)			100.2		%		70-130	25-SEP-17	Cobalt (Co)97.2%70-13025-SEP-17Copper (Cu)97.2%70-13025-SEP-17Iron (Fe)90.2%70-13025-SEP-17Lead (Pb)96.4%70-13025-SEP-17Lithium (Li)97.3%70-13025-SEP-17Magnesium (Mg)97.6%70-13025-SEP-17Maganese (Mn)98.5%70-13025-SEP-17Nickel (Ni)95.3%70-13025-SEP-17Phosphorus (P)98.0%70-13025-SEP-17	Calcium (Ca)			98.2		%		70-130	25-SEP-17	Copper (Cu)97.2%70-13025-SEP-17Iron (Fe)90.2%70-13025-SEP-17Lead (Pb)96.4%70-13025-SEP-17Lithium (Li)97.3%70-13025-SEP-17Magnesium (Mg)97.6%70-13025-SEP-17Manganese (Mn)98.5%70-13025-SEP-17Molybdenum (Mo)96.3%70-13025-SEP-17Nickel (Ni)95.3%70-13025-SEP-17Phosphorus (P)98.0%70-13025-SEP-17	Chromium (Cr)			94.7		%		70-130	25-SEP-17	Iron (Fe)90.2%70-13025-SEP-17Lead (Pb)96.4%70-13025-SEP-17Lithium (Li)97.3%70-13025-SEP-17Magnesium (Mg)97.6%70-13025-SEP-17Manganese (Mn)98.5%70-13025-SEP-17Molybdenum (Mo)96.3%70-13025-SEP-17Nickel (Ni)95.3%70-13025-SEP-17Phosphorus (P)98.0%70-13025-SEP-17	Cobalt (Co)			97.2		%		70-130	25-SEP-17	Lead (Pb)96.4%70-13025-SEP-17Lithium (Li)97.3%70-13025-SEP-17Magnesium (Mg)97.6%70-13025-SEP-17Manganese (Mn)98.5%70-13025-SEP-17Molybdenum (Mo)96.3%70-13025-SEP-17Nickel (Ni)95.3%70-13025-SEP-17Phosphorus (P)98.0%70-13025-SEP-17	Copper (Cu)			97.2		%		70-130	25-SEP-17	Lithium (Li)97.3%70-13025-SEP-17Magnesium (Mg)97.6%70-13025-SEP-17Manganese (Mn)98.5%70-13025-SEP-17Molybdenum (Mo)96.3%70-13025-SEP-17Nickel (Ni)95.3%70-13025-SEP-17Phosphorus (P)98.0%70-13025-SEP-17	Iron (Fe)			90.2		%		70-130	25-SEP-17	Magnesium (Mg)97.6%70-13025-SEP-17Manganese (Mn)98.5%70-13025-SEP-17Molybdenum (Mo)96.3%70-13025-SEP-17Nickel (Ni)95.3%70-13025-SEP-17Phosphorus (P)98.0%70-13025-SEP-17	Lead (Pb)			96.4		%		70-130	25-SEP-17	Manganese (Mn)98.5%70-13025-SEP-17Molybdenum (Mo)96.3%70-13025-SEP-17Nickel (Ni)95.3%70-13025-SEP-17Phosphorus (P)98.0%70-13025-SEP-17	Lithium (Li)			97.3		%		70-130	25-SEP-17	Manganese (Mn)98.5%70-13025-SEP-17Molybdenum (Mo)96.3%70-13025-SEP-17Nickel (Ni)95.3%70-13025-SEP-17Phosphorus (P)98.0%70-13025-SEP-17	Magnesium (Mg)			97.6		%		70-130	25-SEP-17	Molybdenum (Mo)96.3%70-13025-SEP-17Nickel (Ni)95.3%70-13025-SEP-17Phosphorus (P)98.0%70-13025-SEP-17	Manganese (Mn)			98.5		%		70-130	25-SEP-17	Nickel (Ni) 95.3 % 70-130 25-SEP-17 Phosphorus (P) 98.0 % 70-130 25-SEP-17	Molybdenum (Mo)			96.3		%		70-130	25-SEP-17	Phosphorus (P) 98.0 % 70-130 25-SEP-17	Nickel (Ni)			95.3		%					Phosphorus (P)																		25-SEP-17
		TILL-1																																																																																																																																																																																																																									
Arsenic (As)93.4%70-13025-SEP-17Barium (Ba)93.8%70-13025-SEP-17Beryllium (Be)100.5%70-13025-SEP-17Bismuth (Bi)92.2%70-13025-SEP-17Boron (B)2.7mg/kg0-8.225-SEP-17Cadmium (Cd)100.2%70-13025-SEP-17Calcium (Ca)98.2%70-13025-SEP-17Calcium (Ca)94.7%70-13025-SEP-17Cobalt (Co)97.2%70-13025-SEP-17Copper (Cu)97.2%70-13025-SEP-17Iron (Fe)90.2%70-13025-SEP-17Lead (Pb)96.4%70-13025-SEP-17Magnesium (Mg)97.6%70-13025-SEP-17Molybdenum (Mo)96.3%70-13025-SEP-17Nickel (Ni)95.3%70-13025-SEP-17Phosphorus (P)98.0%70-13025-SEP-17								70-130	25-SEP-17																																																																																																																																																																																																																		
Barium (Ba)93.8%70-13025-SEP-17Beryllium (Be)100.5%70-13025-SEP-17Bismuth (Bi)92.2%70-13025-SEP-17Boron (B)2.7mg/kg0-8.225-SEP-17Cadmium (Cd)100.2%70-13025-SEP-17Calcium (Ca)98.2%70-13025-SEP-17Chromium (Cr)94.7%70-13025-SEP-17Cobalt (Co)97.2%70-13025-SEP-17Copper (Cu)97.2%70-13025-SEP-17Iron (Fe)90.2%70-13025-SEP-17Lead (Pb)96.4%70-13025-SEP-17Lithium (Li)97.3%70-13025-SEP-17Magnesium (Mg)97.6%70-13025-SEP-17Molybdenum (Mo)96.3%70-13025-SEP-17Nickel (Ni)95.3%70-13025-SEP-17Phosphorus (P)98.0%70-13025-SEP-17Phosphorus (P)98.0%70-13025-SEP-17								70-130	25-SEP-17																																																																																																																																																																																																																		
Beryllium (Be)100.5%70-13025-SEP-17Bismuth (Bi)92.2%70-13025-SEP-17Boron (B)2.7mg/kg0-8.225-SEP-17Cadmium (Cd)100.2%70-13025-SEP-17Calcium (Ca)98.2%70-13025-SEP-17Calcium (Ca)94.7%70-13025-SEP-17Cobalt (Co)97.2%70-13025-SEP-17Cobalt (Co)97.2%70-13025-SEP-17Copper (Cu)97.2%70-13025-SEP-17Iron (Fe)90.2%70-13025-SEP-17Lead (Pb)96.4%70-13025-SEP-17Magnesium (Mg)97.6%70-13025-SEP-17Molybdenum (Mo)96.3%70-13025-SEP-17Nickel (Ni)95.3%70-13025-SEP-17Phosphorus (P)98.0%70-13025-SEP-17	Arsenic (As)			93.4		%		70-130	25-SEP-17																																																																																																																																																																																																																		
Bismuth (Bi) 92.2 % 70-130 25-SEP-17 Boron (B) 2.7 mg/kg 0-8.2 25-SEP-17 Cadmium (Cd) 100.2 % 70-130 25-SEP-17 Calcium (Ca) 98.2 % 70-130 25-SEP-17 Chromium (Cr) 94.7 % 70-130 25-SEP-17 Cobalt (Co) 97.2 % 70-130 25-SEP-17 Copper (Cu) 97.2 % 70-130 25-SEP-17 Iron (Fe) 90.2 % 70-130 25-SEP-17 Lead (Pb) 96.4 % 70-130 25-SEP-17 Lithium (Li) 97.3 % 70-130 25-SEP-17 Magnesium (Mg) 97.6 % 70-130 25-SEP-17 Molybdenum (Mo) 96.3 % 70-130 25-SEP-17 Nickel (Ni) 95.3 % 70-130 25-SEP-17 Phosphorus (P) 98.0 % 70-130 25-SEP-17				93.8		%		70-130	25-SEP-17																																																																																																																																																																																																																		
Boron (B)2.7mg/kg0-8.225-SEP-17Cadmium (Cd)100.2%70-13025-SEP-17Calcium (Ca)98.2%70-13025-SEP-17Chromium (Cr)94.7%70-13025-SEP-17Cobalt (Co)97.2%70-13025-SEP-17Copper (Cu)97.2%70-13025-SEP-17Iron (Fe)90.2%70-13025-SEP-17Lead (Pb)96.4%70-13025-SEP-17Lithium (Li)97.3%70-13025-SEP-17Magnesium (Mg)96.3%70-13025-SEP-17Molybdenum (Mo)96.3%70-13025-SEP-17Nickel (Ni)95.3%70-13025-SEP-17Phosphorus (P)98.0%70-13025-SEP-17	Beryllium (Be)			100.5				70-130	25-SEP-17																																																																																																																																																																																																																		
Cadmium (Cd)100.2%70-13025-SEP-17Calcium (Ca)98.2%70-13025-SEP-17Chromium (Cr)94.7%70-13025-SEP-17Cobalt (Co)97.2%70-13025-SEP-17Copper (Cu)97.2%70-13025-SEP-17Iron (Fe)90.2%70-13025-SEP-17Lead (Pb)96.4%70-13025-SEP-17Lithium (Li)97.3%70-13025-SEP-17Magnesium (Mg)97.6%70-13025-SEP-17Molybdenum (Mo)96.3%70-13025-SEP-17Nickel (Ni)95.3%70-13025-SEP-17Phosphorus (P)98.0%70-13025-SEP-17	Bismuth (Bi)			92.2		%		70-130	25-SEP-17																																																																																																																																																																																																																		
Calcium (Ca)98.2%70-13025-SEP-17Chromium (Cr)94.7%70-13025-SEP-17Cobalt (Co)97.2%70-13025-SEP-17Copper (Cu)97.2%70-13025-SEP-17Iron (Fe)90.2%70-13025-SEP-17Lead (Pb)96.4%70-13025-SEP-17Lithium (Li)97.3%70-13025-SEP-17Magnesium (Mg)97.6%70-13025-SEP-17Magnese (Mn)98.5%70-13025-SEP-17Nickel (Ni)95.3%70-13025-SEP-17Phosphorus (P)98.0%70-13025-SEP-17	Boron (B)			2.7		mg/kg		0-8.2	25-SEP-17																																																																																																																																																																																																																		
Chromium (Cr)94.7%70-13025-SEP-17Cobalt (Co)97.2%70-13025-SEP-17Copper (Cu)97.2%70-13025-SEP-17Iron (Fe)90.2%70-13025-SEP-17Lead (Pb)96.4%70-13025-SEP-17Lithium (Li)97.3%70-13025-SEP-17Magnesium (Mg)97.6%70-13025-SEP-17Magnese (Mn)98.5%70-13025-SEP-17Nickel (Ni)95.3%70-13025-SEP-17Phosphorus (P)98.0%70-13025-SEP-17	Cadmium (Cd)			100.2		%		70-130	25-SEP-17																																																																																																																																																																																																																		
Cobalt (Co)97.2%70-13025-SEP-17Copper (Cu)97.2%70-13025-SEP-17Iron (Fe)90.2%70-13025-SEP-17Lead (Pb)96.4%70-13025-SEP-17Lithium (Li)97.3%70-13025-SEP-17Magnesium (Mg)97.6%70-13025-SEP-17Maganese (Mn)98.5%70-13025-SEP-17Nickel (Ni)95.3%70-13025-SEP-17Phosphorus (P)98.0%70-13025-SEP-17	Calcium (Ca)			98.2		%		70-130	25-SEP-17																																																																																																																																																																																																																		
Copper (Cu)97.2%70-13025-SEP-17Iron (Fe)90.2%70-13025-SEP-17Lead (Pb)96.4%70-13025-SEP-17Lithium (Li)97.3%70-13025-SEP-17Magnesium (Mg)97.6%70-13025-SEP-17Manganese (Mn)98.5%70-13025-SEP-17Molybdenum (Mo)96.3%70-13025-SEP-17Nickel (Ni)95.3%70-13025-SEP-17Phosphorus (P)98.0%70-13025-SEP-17	Chromium (Cr)			94.7		%		70-130	25-SEP-17																																																																																																																																																																																																																		
Iron (Fe)90.2%70-13025-SEP-17Lead (Pb)96.4%70-13025-SEP-17Lithium (Li)97.3%70-13025-SEP-17Magnesium (Mg)97.6%70-13025-SEP-17Manganese (Mn)98.5%70-13025-SEP-17Molybdenum (Mo)96.3%70-13025-SEP-17Nickel (Ni)95.3%70-13025-SEP-17Phosphorus (P)98.0%70-13025-SEP-17	Cobalt (Co)			97.2		%		70-130	25-SEP-17																																																																																																																																																																																																																		
Lead (Pb)96.4%70-13025-SEP-17Lithium (Li)97.3%70-13025-SEP-17Magnesium (Mg)97.6%70-13025-SEP-17Manganese (Mn)98.5%70-13025-SEP-17Molybdenum (Mo)96.3%70-13025-SEP-17Nickel (Ni)95.3%70-13025-SEP-17Phosphorus (P)98.0%70-13025-SEP-17	Copper (Cu)			97.2		%		70-130	25-SEP-17																																																																																																																																																																																																																		
Lithium (Li)97.3%70-13025-SEP-17Magnesium (Mg)97.6%70-13025-SEP-17Manganese (Mn)98.5%70-13025-SEP-17Molybdenum (Mo)96.3%70-13025-SEP-17Nickel (Ni)95.3%70-13025-SEP-17Phosphorus (P)98.0%70-13025-SEP-17	Iron (Fe)			90.2		%		70-130	25-SEP-17																																																																																																																																																																																																																		
Magnesium (Mg)97.6%70-13025-SEP-17Manganese (Mn)98.5%70-13025-SEP-17Molybdenum (Mo)96.3%70-13025-SEP-17Nickel (Ni)95.3%70-13025-SEP-17Phosphorus (P)98.0%70-13025-SEP-17	Lead (Pb)			96.4		%		70-130	25-SEP-17																																																																																																																																																																																																																		
Manganese (Mn)98.5%70-13025-SEP-17Molybdenum (Mo)96.3%70-13025-SEP-17Nickel (Ni)95.3%70-13025-SEP-17Phosphorus (P)98.0%70-13025-SEP-17	Lithium (Li)			97.3		%		70-130	25-SEP-17																																																																																																																																																																																																																		
Manganese (Mn)98.5%70-13025-SEP-17Molybdenum (Mo)96.3%70-13025-SEP-17Nickel (Ni)95.3%70-13025-SEP-17Phosphorus (P)98.0%70-13025-SEP-17	Magnesium (Mg)			97.6		%		70-130	25-SEP-17																																																																																																																																																																																																																		
Molybdenum (Mo)96.3%70-13025-SEP-17Nickel (Ni)95.3%70-13025-SEP-17Phosphorus (P)98.0%70-13025-SEP-17	Manganese (Mn)			98.5		%		70-130	25-SEP-17																																																																																																																																																																																																																		
Nickel (Ni) 95.3 % 70-130 25-SEP-17 Phosphorus (P) 98.0 % 70-130 25-SEP-17	Molybdenum (Mo)			96.3		%		70-130	25-SEP-17																																																																																																																																																																																																																		
Phosphorus (P) 98.0 % 70-130 25-SEP-17	Nickel (Ni)			95.3		%																																																																																																																																																																																																																					
	Phosphorus (P)																																																																																																																																																																																																																										
									25-SEP-17																																																																																																																																																																																																																		

		Workorder:	L199227	'8 Re	port Date: 0	2-OCT-17	Pag	e 5 of 1
ſest	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-CL	Soil							
Batch R3837593								
WG2621450-8 CRM		TILL-1	0.04					
Selenium (Se)			0.31		mg/kg		0.11-0.51	25-SEP-17
Silver (Ag)			0.22		mg/kg		0.13-0.33	25-SEP-17
Sodium (Na)			85.3		%		70-130	25-SEP-17
Strontium (Sr)			92.8		%		70-130	25-SEP-17
Thallium (Tl)			0.112		mg/kg		0.077-0.18	25-SEP-17
Tin (Sn)			1.0		mg/kg		0-3.1	25-SEP-17
Titanium (Ti)			87.2		%		70-130	25-SEP-17
Tungsten (W)			0.13		mg/kg		0-0.66	25-SEP-17
Uranium (U)			96.6		%		70-130	25-SEP-17
Vanadium (V)			95.3		%		70-130	25-SEP-17
Zinc (Zn)			90.7		%		70-130	25-SEP-17
Zirconium (Zr)			0.7		mg/kg		0-1.8	25-SEP-17
WG2621450-15 DUP		L1992278-8						
Aluminum (Al)		5980	5310		mg/kg	12	40	25-SEP-17
Antimony (Sb)		0.41	0.41		mg/kg	1.1	30	25-SEP-17
Arsenic (As)		5.38	5.25		mg/kg	2.5	30	25-SEP-17
Barium (Ba)		97.2	96.7		mg/kg	0.5	40	25-SEP-17
Beryllium (Be)		0.47	0.44		mg/kg	6.0	30	25-SEP-17
Bismuth (Bi)		<0.20	<0.20	RPD-NA	mg/kg	N/A	30	25-SEP-17
Boron (B)		5.8	<5.0	RPD-NA	mg/kg	N/A	30	25-SEP-17
Cadmium (Cd)		0.576	0.594		mg/kg	2.9	30	25-SEP-17
Calcium (Ca)		68200	62900		mg/kg	8.0	30	25-SEP-17
Chromium (Cr)		15.3	14.1		mg/kg	8.3	30	25-SEP-17
Cobalt (Co)		4.18	4.68		mg/kg	11	30	25-SEP-17
Copper (Cu)		9.14	8.96		mg/kg	1.9	30	25-SEP-17
Iron (Fe)		12900	12700		mg/kg	1.8	30	25-SEP-17
Lead (Pb)		6.36	6.42		mg/kg	0.9	40	25-SEP-17
Lithium (Li)		9.6	9.4		mg/kg	1.9	30	25-SEP-17
Magnesium (Mg)		11300	11200		mg/kg	1.1	30	25-SEP-17
Manganese (Mn)		348	386		mg/kg	10	30	25-SEP-17
Molybdenum (Mo)		1.35	1.35		mg/kg	0.2	40	25-SEP-17
Nickel (Ni)		16.6	16.7		mg/kg	0.2	30	25-SEP-17
Phosphorus (P)		1130	1180		mg/kg	4.3	30	25-SEP-17
Potassium (K)		1240	1000		mg/kg	21	40	25-SEP-17

Test Matrix MET-200.2-CCMS-CL Soil Batch R3837593 WG2621450-15 DUP Selenium (Se) Silver (Ag) Sodium (Na) Strontium (Sr) Sulfur (S) Thallium (TI) Tin (Sn) Titanium (Ti) Tungsten (W) Urapium (U)	Reference L1992278-8 0.57 <0.10 83 95.2 <1000	Result 0.55 <0.10 76	Qualifier RPD-NA	Units mg/kg	RPD 2.9	Limit	Analyzed
BatchR3837593WG2621450-15DUPSelenium (Se)Silver (Ag)Sodium (Na)Strontium (Sr)Sulfur (S)Sulfur (S)Thallium (TI)Tin (Sn)Titanium (Ti)Titanium (Ti)Tungsten (W)Strontium (W)	0.57 <0.10 83 95.2	<0.10	RPD-NA	mg/kg	29		
WG2621450-15 DUP Selenium (Se) Silver (Ag) Sodium (Na) Strontium (Sr) Sulfur (S) Thallium (Tl) Tin (Sn) Titanium (Ti) Tungsten (W)	0.57 <0.10 83 95.2	<0.10	RPD-NA	mg/kg	29		
Selenium (Se) Silver (Ag) Sodium (Na) Strontium (Sr) Sulfur (S) Thallium (Tl) Tin (Sn) Titanium (Ti) Tungsten (W)	0.57 <0.10 83 95.2	<0.10	RPD-NA	mg/kg	29		
Silver (Ag) Sodium (Na) Strontium (Sr) Sulfur (S) Thallium (TI) Tin (Sn) Titanium (Ti) Tungsten (W)	<0.10 83 95.2	<0.10	RPD-NA	mg/kg	29		
Sodium (Na) Strontium (Sr) Sulfur (S) Thallium (TI) Tin (Sn) Titanium (Ti) Tungsten (W)	83 95.2		RPD-NA			30	25-SEP-17
Strontium (Sr) Sulfur (S) Thallium (Tl) Tin (Sn) Titanium (Ti) Tungsten (W)	95.2	76		mg/kg	N/A	40	25-SEP-17
Sulfur (S) Thallium (TI) Tin (Sn) Titanium (Ti) Tungsten (W)				mg/kg	9.1	40	25-SEP-17
Thallium (TI) Tin (Sn) Titanium (Ti) Tungsten (W)	-1000	87.5		mg/kg	8.4	40	25-SEP-17
Tin (Sn) Titanium (Ti) Tungsten (W)	<1000	<1000	RPD-NA	mg/kg	N/A	30	25-SEP-17
Titanium (Ti) Tungsten (W)	0.145	0.142		mg/kg	2.2	30	25-SEP-17
Tungsten (W)	<2.0	<2.0	RPD-NA	mg/kg	N/A	40	25-SEP-17
	11.6	8.8		mg/kg	28	40	25-SEP-17
Uropium (U)	<0.50	<0.50	RPD-NA	mg/kg	N/A	30	25-SEP-17
Uranium (U)	0.889	0.885		mg/kg	0.4	30	25-SEP-17
Vanadium (V)	22.7	21.4		mg/kg	5.7	30	25-SEP-17
Zinc (Zn)	61.4	63.8		mg/kg	3.9	30	25-SEP-17
Zirconium (Zr)	<1.0	<1.0	RPD-NA	mg/kg	N/A	30	25-SEP-17
WG2621450-20 DUP	L1992278-25						
Aluminum (Al)	8130	6620		mg/kg	20	40	25-SEP-17
Antimony (Sb)	0.61	0.58		mg/kg	4.1	30	25-SEP-17
Arsenic (As)	6.10	6.16		mg/kg	1.0	30	25-SEP-17
Barium (Ba)	151	140		mg/kg	7.9	40	25-SEP-17
Beryllium (Be)	0.58	0.60		mg/kg	2.8	30	25-SEP-17
Bismuth (Bi)	<0.20	<0.20	RPD-NA	mg/kg	N/A	30	25-SEP-17
Boron (B)	8.7	6.3	J	mg/kg	2.4	10	25-SEP-17
Cadmium (Cd)	1.06	1.05		mg/kg	1.0	30	25-SEP-17
Calcium (Ca)	47800	48700		mg/kg	1.7	30	25-SEP-17
Chromium (Cr)	22.4	18.9		mg/kg	17	30	25-SEP-17
Cobalt (Co)	5.42	5.40		mg/kg	0.3	30	25-SEP-17
Copper (Cu)	15.4	15.3		mg/kg	0.6	30	25-SEP-17
Iron (Fe)	14400	14300		mg/kg	0.6	30	25-SEP-17
Lead (Pb)	9.38	9.04		mg/kg	3.6	40	25-SEP-17
Lithium (Li)	14.4	12.9		mg/kg	11	30	25-SEP-17
Magnesium (Mg)	15300	15600		mg/kg	1.9	30	25-SEP-17
Manganese (Mn)	478	471		mg/kg	1.5	30 30	25-SEP-17 25-SEP-17
Molybdenum (Mo)	1.56	1.58		mg/kg	1.5	30 40	25-SEP-17 25-SEP-17
Nickel (Ni)	23.1	22.5		mg/kg	2.7		
Phosphorus (P)	1440	22.5 1330		mg/kg mg/kg	2.7 8.0	30 30	25-SEP-17 25-SEP-17

MET-200.2-CCMS-CL Soil Batch R3837593 WG2621450-20 DUP Potassim 1890 Selenium (Se) 2.01 Batch mg/kg Selenium (Se) 0.25 Solum (Na) 83 Solum (Na) 83 Solum (Na) 83 Solum (Na) 83 Subtr (S) 42.7 Subtr (S) 42.0 Subtr (S) 42.0 Subtr (S) 42.0 RDD-NA mg/kg Subtr (S) 42.0 RDD-NA mg/kg Subtr (S) 4.0 Subtr (S) 4.0 <t< th=""><th></th><th></th><th>Workorder:</th><th>L199227</th><th>78 Re</th><th>port Date: 0</th><th>2-OCT-17</th><th>Pa</th><th>age 7 of 1</th></t<>			Workorder:	L199227	78 Re	port Date: 0	2-OCT-17	Pa	age 7 of 1
Bath R3337933 WG21450-20 DUP L1992726.2 Potassim (K) 1340 mg/kg 34 40 255 EF Selenium (Se) 2.01 1.84 mg/kg 9.0 30.0 255 EF Silver (Ag) 0.25 0.24 mg/kg 1.8 40.0 255 EF Silver (Ag) 0.25 0.24 mg/kg 1.8 40.0 255 EF Silver (Ag) 0.26 mg/kg 1.8 40.0 255 EF Silver (Ag) 78.4 mg/kg 1.3 40.0 255 EF Sullur (S) 0.270 0.26 mg/kg 1.3 40.0 255 EF Tilahilum (T) 0.20 RD-NA mg/kg NA 30.0 255 EF Tilansium (T) 0.50 RD-NA mg/kg 1.4 30.0 255 EF Tilansium (T) 0.53 2.9.7 mg/kg 1.7 30.0 255 EF Zirconi	Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
WG2621460-20 DUP L1992278-25 Potassium (K) 1830 1340 mg/kg 3.4 4.0 25-SEF Selenium (Se) 0.21 1.84 mg/kg 6.2 4.0 25-SEF Silver (Ag) 0.25 0.24 mg/kg 6.2 4.0 25-SEF Silver (Ag) 82.7 78.4 mg/kg 5.3 4.0 25-SEF Sulfur (S) 6100 <1000	MET-200.2-CCMS-CL	Soil							
Potassium (K) 1880 1340 mg/kg 3.4 4.0 2.5 setsets Selenium (Se) 2.01 1.84 mg/kg 9.0 30 25 setset Silver (Ag) 0.25 0.24 mg/kg 6.2 40 25 setset Sutum (Na) 83 78 mg/kg 6.2 40 25 setset Sutum (Na) 82.7 78.4 mg/kg N/A 30 25 setset Sutum (Sr) <20.0	Batch R383759	3							
Selenium (Se) 2.01 1.84 mg/kg 9.0 30 25.55 Silver (Ag) 0.25 0.24 mg/kg 6.2 40 25.55F Stontium (Sr) 82.7 78.4 mg/kg 5.3 40 25.55F Stontium (Sr) 82.7 78.4 mg/kg N/A 30 25.55F Thallium (TI) 0.270 0.236 mg/kg N/A 40 25.55F Tin (Sn) <2.0)							
Silver (Ag) 0.25 0.24 mg/kg 1.8 40 255 EF Sodium (Na) 83 78 mg/kg 6.2 40 25 SEF Strontum (Sr) 82.7 78.4 mg/kg 5.3 40 25 SEF Suffur (S) <1000									25-SEP-17
Sodium (Na) 83 78 mg/kg 6.2 40 25-SEF Strontium (Sr) 82.7 78.4 mg/kg 5.3 40 25-SEF Sulfur (S) <1000						• •	9.0	30	25-SEP-17
Strontium (Sr) 82.7 78.4 mg/kg 5.3 4.0 25.8EF Sulfur (S) <1000						mg/kg	1.8	40	25-SEP-17
Sulfur (S) <1000 <1000 RPD-NA mg/kg N/A 30 25-SEF Thallium (T) 0.270 0.236 mg/kg 13 30 25-SEF Tin (Sn) <2.0	Sodium (Na)					mg/kg	6.2	40	25-SEP-17
Thallium (TI) 0.270 0.236 mg/kg 13 30 25-SEF Tin (Sn) <2.0	Strontium (Sr)		82.7	78.4		mg/kg	5.3	40	25-SEP-17
Tin (Sh) <2.0 <2.0 RPD-NA mg/kg N/A 4.0 25.55 F Titanium (Ti) 14.7 16.8 mg/kg 13 4.0 25.55 F Tungsten (W) <0.50	Sulfur (S)		<1000	<1000	RPD-NA	mg/kg	N/A	30	25-SEP-17
Titanium (Ti) 14.7 16.8 mg/kg 13 40 25.85 F Tungsten (W) <0.50	Thallium (TI)		0.270	0.236		mg/kg	13	30	25-SEP-17
Tungsten (W) <0.50 <0.50 RPD-NA mg/kg N/A 30 25-SEF Uranium (U) 1.36 1.29 mg/kg 5.7 30 25-SEF Vanadium (V) 35.3 29.7 mg/kg 17 30 25-SEF Zinc (Zn) 105 102 mg/kg 3.1 30 25-SEF Zirconium (Zr) 1.1 1.3 mg/kg 18 30 25-SEF Aluminum (Al) 96.2 % 80-120 25-SEF Antimony (Sb) 97.5 % 80-120 25-SEF Barium (Ba) 94.2 % 80-120 25-SEF Beryllium (Be) 97.3 % 80-120 25-SEF Boron (B) 96.5 % 80-120 25-SEF Cadmium (Cd) 96.5 % 80-120 25-SEF Cobat (Co 97.0 % 80-120 25-SEF Cobat (Co) 95.8 % 80-120 25-SEF C	Tin (Sn)		<2.0	<2.0	RPD-NA	mg/kg	N/A	40	25-SEP-17
Uranium (U) 1.36 1.29 mg/kg 5.7 30 25.85 F Vanadium (V) 35.3 29.7 mg/kg 17 30 25.85 F Zinc (Zn) 105 102 mg/kg 3.1 30 25.85 F Zirconium (Zr) 1.1 1.3 mg/kg 18 30 25.85 F WG2621450-14 LCS K K K K K Aluminum (Al) 96.2 % 80-120 25.85 F Antimony (Sb) 97.5 % 80-120 25.85 F Arsenic (As) 99.5 % 80-120 25.85 F Barium (Ba) 94.2 % 80-120 25.85 F Boron (B) 97.3 % 80-120 25.85 F Cadmium (Cd) 96.5 % 80-120 25.85 F Cadmium (Cd) 95.9 % 80-120 25.85 F Cobat (Co) 97.0 % 80-120 25.85 F Cobat (Co) 97	Titanium (Ti)		14.7	16.8		mg/kg	13	40	25-SEP-17
Vanadium (V) 35.3 29.7 mg/kg 17 30 25.85 Zinc (Zn) 105 102 mg/kg 3.1 30 25.85 Zinconium (Zr) 1.1 1.3 mg/kg 18 30 25.85 Aluminum (Al) 96.2 % 80-120 25.85 Antimony (Sb) 97.5 % 80-120 25.85 Arsenic (As) 99.5 % 80-120 25.85 Barium (Ba) 94.2 % 80-120 25.85 Beryllium (Be) 98.6 % 80-120 25.85 Boron (B) 97.3 % 80-120 25.85 Boron (B) 96.5 % 80-120 25.85 Calcium (Cd) 95.9 % 80-120 25.85 Calcium (Cd) 95.9 % 80-120 25.85 Calcium (Cd) 97.0 % 80-120 25.85 Cobalt (Co) 97.0 % 80-120 25.85	Tungsten (W)		<0.50	<0.50	RPD-NA	mg/kg	N/A	30	25-SEP-17
Zinc (Zn) 105 102 mg/kg 3.1 30 25.58 Zirconium (Zr) 1.1 1.3 mg/kg 18 30 25.58 Mc2621450-14 LCS 96.2 % 80-120 25.58 Aluminum (A) 96.2 % 80-120 25.58 Arsenic (As) 99.5 % 80-120 25.58 Barium (Ba) 99.5 % 80-120 25.58 Boron (B) 99.6 % 80-120 25.58 Bismuth (Bi) 97.3 % 80-120 25.58 Cadmium (Cd) 96.5 % 80-120 25.58 Cadmium (Cd) 95.9 % 80-120 25.58 Cobalt (Co) 97.0 % 80-120 25.58 Lead (Pb	Uranium (U)		1.36	1.29		mg/kg	5.7	30	25-SEP-17
Zirconium (Zr) 1.1 1.3 mg/kg 18 30 25-SEF Aluminum (Al) 96.2 % 80-120 25-SEF Antimony (Sb) 97.5 % 80-120 25-SEF Arsenic (As) 99.5 % 80-120 25-SEF Barium (Ba) 94.2 % 80-120 25-SEF Beryllium (Be) 98.6 % 80-120 25-SEF Bismuth (Bi) 97.3 % 80-120 25-SEF Boron (B) 94.6 % 80-120 25-SEF Cadmium (Cd) 96.5 % 80-120 25-SEF Cadmium (Cd) 95.9 % 80-120 25-SEF Cobalt (Co) 97.0 % 80-120 25-SEF Cobalt (Co) 97.0 % 80-120 25-SEF Iron (Fe) 109.9 % 80-120 25-SEF Lead (Pb) 99.8 % 80-120 25-SEF Lead (Pb) 99.8 %	Vanadium (V)		35.3	29.7		mg/kg	17	30	25-SEP-17
WG2621450-14 LCS Aluminum (Al) 96.2 % 80-120 25-SEF Antimony (Sb) 97.5 % 80-120 25-SEF Arsenic (As) 99.5 % 80-120 25-SEF Barium (Ba) 94.2 % 80-120 25-SEF Beryllium (Be) 98.6 % 80-120 25-SEF Bismuth (Bi) 97.3 % 80-120 25-SEF Boron (B) 94.6 % 80-120 25-SEF Cadmium (Cd) 96.5 % 80-120 25-SEF Calcium (Ca) 95.9 % 80-120 25-SEF Cobalt (Co) 97.0 % 80-120 25-SEF Cobalt (Co) 97.0 % 80-120 25-SEF Iron (Fe) 109.9 % 80-120 25-SEF Lead (Pb) 99.8 % 80-120 25-SEF Lead (Pb) 99.8 % 80-120 25-SEF Magnesium (Mg) <td< td=""><td>Zinc (Zn)</td><td></td><td>105</td><td>102</td><td></td><td>mg/kg</td><td>3.1</td><td>30</td><td>25-SEP-17</td></td<>	Zinc (Zn)		105	102		mg/kg	3.1	30	25-SEP-17
Aluminum (Al) 96.2 % 80-120 25-SEF Antimony (Sb) 97.5 % 80-120 25-SEF Arsenic (As) 99.5 % 80-120 25-SEF Barium (Ba) 94.2 % 80-120 25-SEF Beryllium (Be) 98.6 % 80-120 25-SEF Bismuth (Bi) 97.3 % 80-120 25-SEF Boron (B) 94.6 % 80-120 25-SEF Cadmium (Cd) 96.5 % 80-120 25-SEF Calcium (Ca) 95.9 % 80-120 25-SEF Cobalt (Co) 97.0 % 80-120 25-SEF Cobalt (Co) 97.0 % 80-120 25-SEF Iron (Fe) 109.9 % 80-120 25-SEF Iron (Fe) 109.9 % 80-120 25-SEF Lead (Pb) 99.8 % 80-120 25-SEF Magnesium (Mg) 88.0 % 80-120 25-SEF Magnese (Mn) 99.8 % 80-120 25-SEF	Zirconium (Zr)		1.1	1.3		mg/kg	18	30	25-SEP-17
Antimony (Sb) 97.5 % 80.120 25.5EF Arsenic (As) 99.5 % 80.120 25.5EF Barium (Ba) 94.2 % 80.120 25.5EF Beryllium (Be) 98.6 % 80.120 25.5EF Bismuth (Bi) 97.3 % 80.120 25.5EF Bismuth (Bi) 97.3 % 80.120 25.5EF Boron (B) 94.6 % 80.120 25.5EF Cadmium (Cd) 96.5 % 80.120 25.5EF Calcium (Ca) 95.9 % 80.120 25.5EF Cobalt (Co) 97.0 % 80.120 25.5EF Cobalt (Co) 97.0 % 80.120 25.5EF Iron (Fe) 109.9 % 80.120 25.5EF Lead (Pb) 99.8 % 80.120 25.5EF Magnesium (Mg) 98.0 % 80.120 25.5EF Manganese (Mn) 99.8 % 80.120 25.5EF Molybdenum (Mo) 88.1 % 80.120 25.5EF <td>WG2621450-14 LCS</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	WG2621450-14 LCS								
Arsenic (As) 99.5 % 80-120 25-SEF Barium (Ba) 94.2 % 80-120 25-SEF Beryllium (Be) 98.6 % 80-120 25-SEF Bismuth (Bi) 97.3 % 80-120 25-SEF Boron (B) 94.6 % 80-120 25-SEF Cadmium (Cd) 96.5 % 80-120 25-SEF Calcium (Ca) 95.9 % 80-120 25-SEF Cobalt (Co) 97.0 % 80-120 25-SEF Cobalt (Co) 97.0 % 80-120 25-SEF Copper (Cu) 95.8 % 80-120 25-SEF Iron (Fe) 109.9 % 80-120 25-SEF Lead (Pb) 99.8 % 80-120 25-SEF Lithium (Li) 97.6 % 80-120 25-SEF Magnessue (Mn) 99.8 % 80-120 25-SEF Molybdenum (Mo) 88.1 % 80-120 25-SEF	Aluminum (Al)			96.2		%		80-120	25-SEP-17
Barium (Ba) 94.2 % 80-120 25-SEF Beryllium (Be) 98.6 % 80-120 25-SEF Bismuth (Bi) 97.3 % 80-120 25-SEF Boron (B) 94.6 % 80-120 25-SEF Cadmium (Cd) 96.5 % 80-120 25-SEF Calcium (Ca) 95.9 % 80-120 25-SEF Calcium (Ca) 97.0 % 80-120 25-SEF Cobalt (Co) 97.0 % 80-120 25-SEF Cobper (Cu) 95.8 % 80-120 25-SEF Iron (Fe) 109.9 % 80-120 25-SEF Lead (Pb) 99.8 % 80-120 25-SEF Lead (Pb) 99.8 % 80-120 25-SEF Magnesium (Mg) 98.0 % 80-120 25-SEF Manganese (Mn) 99.8 % 80-120 25-SEF Molybdenum (Mo) 98.1 % 80-120 2	Antimony (Sb)			97.5		%		80-120	25-SEP-17
Beryllium (Be) 98.6 % 80-120 25-SEF Bismuth (Bi) 97.3 % 80-120 25-SEF Boron (B) 94.6 % 80-120 25-SEF Cadmium (Cd) 96.5 % 80-120 25-SEF Calcium (Ca) 95.9 % 80-120 25-SEF Chromium (Cr) 97.0 % 80-120 25-SEF Cobalt (Co) 97.0 % 80-120 25-SEF Cobalt (Co) 97.0 % 80-120 25-SEF Iron (Fe) 109.9 % 80-120 25-SEF Lead (Pb) 99.8 % 80-120 25-SEF Lithium (Li) 97.6 % 80-120 25-SEF Magnesium (Mg) 98.0 % 80-120 25-SEF Manganese (Mn) 99.8 % 80-120 25-SEF Molybdenum (Mo) 98.1 % 80-120 25-SEF	Arsenic (As)			99.5		%		80-120	25-SEP-17
Bismuth (Bi) 97.3 % 80-120 25-SEF Boron (B) 94.6 % 80-120 25-SEF Cadmium (Cd) 96.5 % 80-120 25-SEF Calcium (Ca) 95.9 % 80-120 25-SEF Chromium (Cr) 97.0 % 80-120 25-SEF Cobalt (Co) 97.0 % 80-120 25-SEF Copper (Cu) 97.0 % 80-120 25-SEF Iron (Fe) 109.9 % 80-120 25-SEF Lead (Pb) 99.8 % 80-120 25-SEF Lithium (Li) 97.6 % 80-120 25-SEF Magnesium (Mg) 98.0 % 80-120 25-SEF Molybdenum (Mo) 98.1 % 80-120 25-SEF	Barium (Ba)			94.2		%		80-120	25-SEP-17
Boron (B) 94.6 % 80-120 25-SEF Cadmium (Cd) 96.5 % 80-120 25-SEF Calcium (Ca) 95.9 % 80-120 25-SEF Chromium (Cr) 97.0 % 80-120 25-SEF Cobalt (Co) 97.0 % 80-120 25-SEF Cobalt (Co) 97.0 % 80-120 25-SEF Copper (Cu) 95.8 % 80-120 25-SEF Iron (Fe) 109.9 % 80-120 25-SEF Lead (Pb) 99.8 % 80-120 25-SEF Lithium (Li) 97.6 % 80-120 25-SEF Magnesium (Mg) 98.0 % 80-120 25-SEF Manganese (Mn) 99.8 % 80-120 25-SEF Molybdenum (Mo) 98.1 % 80-120 25-SEF	Beryllium (Be)			98.6		%		80-120	25-SEP-17
Cadmium (Cd) 96.5 % 80-120 25-SEF Calcium (Ca) 95.9 % 80-120 25-SEF Chromium (Cr) 97.0 % 80-120 25-SEF Cobalt (Co) 97.0 % 80-120 25-SEF Copper (Cu) 95.8 % 80-120 25-SEF Iron (Fe) 109.9 % 80-120 25-SEF Lead (Pb) 99.8 % 80-120 25-SEF Lithium (Li) 97.6 % 80-120 25-SEF Magnesium (Mg) 98.0 % 80-120 25-SEF Manganese (Mn) 99.8 % 80-120 25-SEF Molybdenum (Mo) 98.1 % 80-120 25-SEF	Bismuth (Bi)			97.3		%		80-120	25-SEP-17
Calcium (Ca) 95.9 % 80-120 25-SEF Chromium (Cr) 97.0 % 80-120 25-SEF Cobalt (Co) 97.0 % 80-120 25-SEF Copper (Cu) 95.8 % 80-120 25-SEF Iron (Fe) 109.9 % 80-120 25-SEF Lead (Pb) 99.8 % 80-120 25-SEF Magnesium (Mg) 98.0 % 80-120 25-SEF Manganese (Mn) 99.8 % 80-120 25-SEF Molybdenum (Mo) 98.1 % 80-120 25-SEF	Boron (B)			94.6		%		80-120	25-SEP-17
Calcium (Ca) 95.9 % 80-120 25-SEP Chromium (Cr) 97.0 % 80-120 25-SEP Cobalt (Co) 97.0 % 80-120 25-SEP Copper (Cu) 95.8 % 80-120 25-SEP Iron (Fe) 109.9 % 80-120 25-SEP Lead (Pb) 99.8 % 80-120 25-SEP Magnesium (Mg) 98.0 % 80-120 25-SEP Manganese (Mn) 99.8 % 80-120 25-SEP Molybdenum (Mo) 98.1 % 80-120 25-SEP	Cadmium (Cd)			96.5		%		80-120	25-SEP-17
Cobalt (Co) 97.0 % 80-120 25-SEF Copper (Cu) 95.8 % 80-120 25-SEF Iron (Fe) 109.9 % 80-120 25-SEF Lead (Pb) 99.8 % 80-120 25-SEF Lithium (Li) 97.6 % 80-120 25-SEF Magnesium (Mg) 98.0 % 80-120 25-SEF Manganese (Mn) 99.8 % 80-120 25-SEF Molybdenum (Mo) 98.1 % 80-120 25-SEF	Calcium (Ca)			95.9		%		80-120	25-SEP-17
Cobalt (Co) 97.0 % 80-120 25-SEP Copper (Cu) 95.8 % 80-120 25-SEP Iron (Fe) 109.9 % 80-120 25-SEP Lead (Pb) 99.8 % 80-120 25-SEP Lithium (Li) 97.6 % 80-120 25-SEP Magnesium (Mg) 98.0 % 80-120 25-SEP Manganese (Mn) 99.8 % 80-120 25-SEP Molybdenum (Mo) 98.1 % 80-120 25-SEP	Chromium (Cr)			97.0		%		80-120	25-SEP-17
Copper (Cu) 95.8 % 80-120 25-SEF Iron (Fe) 109.9 % 80-120 25-SEF Lead (Pb) 99.8 % 80-120 25-SEF Lithium (Li) 97.6 % 80-120 25-SEF Magnesium (Mg) 98.0 % 80-120 25-SEF Manganese (Mn) 99.8 % 80-120 25-SEF Molybdenum (Mo) 98.1 % 80-120 25-SEF	Cobalt (Co)			97.0		%		80-120	25-SEP-17
Iron (Fe) 109.9 % 80-120 25-SEF Lead (Pb) 99.8 % 80-120 25-SEF Lithium (Li) 97.6 % 80-120 25-SEF Magnesium (Mg) 98.0 % 80-120 25-SEF Manganese (Mn) 99.8 % 80-120 25-SEF Molybdenum (Mo) 98.1 % 80-120 25-SEF				95.8		%			25-SEP-17
Lead (Pb)99.8%80-12025-SEFLithium (Li)97.6%80-12025-SEFMagnesium (Mg)98.0%80-12025-SEFManganese (Mn)99.8%80-12025-SEFMolybdenum (Mo)98.1%80-12025-SEF									25-SEP-17
Lithium (Li) 97.6 % 80-120 25-SEF Magnesium (Mg) 98.0 % 80-120 25-SEF Manganese (Mn) 99.8 % 80-120 25-SEF Molybdenum (Mo) 98.1 % 80-120 25-SEF									25-SEP-17
Magnesium (Mg) 98.0 % 80-120 25-SEF Manganese (Mn) 99.8 % 80-120 25-SEF Molybdenum (Mo) 98.1 % 80-120 25-SEF									25-SEP-17
Manganese (Mn) 99.8 % 80-120 25-SEF Molybdenum (Mo) 98.1 % 80-120 25-SEF									25-SEP-17
Molybdenum (Mo) 98.1 % 80-120 25-SEF									25-SEP-17
Nickel (Ni) 95.2 % 80-120 25-SEF									25-SEP-17 25-SEP-17

				-				
		Workorder	: L199227	78	Report Date: 0	2-OCT-17	Pa	age 8 of
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-CL	Soil							
Batch R383759	3							
WG2621450-14 LCS	i		05.0		0/			
Potassium (K)			95.0 95.1		%		80-120	25-SEP-17
Selenium (Se)					%		80-120	25-SEP-17
Silver (Ag)			93.7 93.8				80-120	25-SEP-1
Sodium (Na)					%		80-120	25-SEP-1
Strontium (Sr)			96.5 84.9		%		80-120	25-SEP-1
Sulfur (S)					%		80-120	25-SEP-1
Thallium (TI)			95.8		%		80-120	25-SEP-1
Tin (Sn)			95.9		%		80-120	25-SEP-1
Titanium (Ti)			90.4		%		80-120	25-SEP-1
Tungsten (W)			96.9		%		80-120	25-SEP-1
Uranium (U)			94.4		%		80-120	25-SEP-1
Vanadium (V)			95.5		%		80-120	25-SEP-1
Zinc (Zn)			91.9		%		80-120	25-SEP-1
Zirconium (Zr)			98.5		%		80-120	25-SEP-1
WG2621450-19 LCS Aluminum (Al)			105.1		%		80-120	26-SEP-1
Antimony (Sb)			100.3		%		80-120	26-SEP-1
Arsenic (As)			98.3		%		80-120	26-SEP-1
Barium (Ba)			93.7		%		80-120	26-SEP-1
Beryllium (Be)			88.4		%		80-120	26-SEP-1
Bismuth (Bi)			92.5		%		80-120	26-SEP-1
Boron (B)			94.3		%		80-120	26-SEP-1
Cadmium (Cd)			95.0		%		80-120	26-SEP-1
Calcium (Ca)			94.7		%		80-120	26-SEP-1
Chromium (Cr)			98.5		%		80-120	26-SEP-1 26-SEP-1
Cobalt (Co)			95.6		%		80-120	26-SEP-1
Copper (Cu)			92.4		%		80-120	26-SEP-1 26-SEP-1
Lead (Pb)			95.1		%		80-120	26-SEP-1
Lithium (Li)			93.8		%		80-120 80-120	26-SEP-1
Magnesium (Mg)			102.3		%		80-120	26-SEP-1 26-SEP-1
Magnesian (Mg) Manganese (Mn)			99.8		%		80-120 80-120	26-SEP-1 26-SEP-1
Molybdenum (Mo)			90.8		%		80-120 80-120	
Nickel (Ni)			90.0 95.3		%		80-120	26-SEP-1 26-SEP-1
Potassium (K)			95.5 97.9		%			
			51.5		/0		80-120	26-SEP-17

ET-200.2-CCMS-CL Soil Batch R3837933 WG2621450-19 LCS Solientim (Se) 90.7 % 80-120 26-SEP- Silver (Ag) 84.1 % 80-120 26-SEP- Silver (Ag) 84.1 % 80-120 26-SEP- Suffur (S) 88.6 % 80-120 26-SEP- Suffur (S) 88.6 % 80-120 26-SEP- Thalium (TI) 91.8 % 80-120 26-SEP- Tin (Sn) 95.9 % 80-120 26-SEP- Tungsten (W) 101.4 % 80-120 26-SEP- Yanadum (V) 91.7 % 80-120 26-SEP- Zirco (Zn) 89.9 % 80-120 26-SEP- Zirco (Zn) 91.9 % 80-120 26-SEP- Zirco (Mur (A) 95.8 % 80-120 25-SEP- Zirco (Mur (A) 95.3 % 80-120 25-SEP- Aumimur (A)			Workorder:	L199227	78	Report Date: 0	2-OCT-17	Pa	age 9 of 1
Batch R3837593 WC221450-19 LC Sclenium (Sc) 60,7 % 60,20 26,5EP Silver (Ag) 84,1 % 80,120 26,5EP Silver (Ma) 106,0 % 80,120 26,5EP Silver (Ma) 89,2 % 80,120 26,5EP Silver (Ma) 88,6 % 80,120 26,5EP Thallium (Tr) 91,8 % 80,120 26,5EP Tinanium (Tr) 91,8 % 80,120 26,5EP Uranium (Tr) 91,7 % 80,120 26,5EP Uranium (W) 91,7 % 80,120 26,5EP Uranium (V) 91,7 % 80,120 26,5EP Zirochum (Zr) 91,9 % 80,120 26,5EP Zirochum (Sr) 91,9 % 80,120 25,5EP Anternor (Sr) 95,0 % 80,120 25,5EP Anternor (Sr) 94,1 % 80,120 <	Fest	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
W2821450-19 LCS Selenum (Se) 90.7 % 80-120 26-SEP. Solum (Na) 106.0 % 80-120 26-SEP. Solum (Na) 106.0 % 80-120 26-SEP. Sultur (S) 89.2 % 80-120 26-SEP. Sultur (S) 88.6 % 80-120 26-SEP. Thallum (Th) 91.8 % 80-120 26-SEP. Tin (Sn) 95.9 % 80-120 26-SEP. Tungsten (W) 91.4 % 80-120 26-SEP. Vanadum (V) 91.7 % 80-120 26-SEP. Vanadum (V) 91.9 % 80-120 26-SEP. Zinc (Zr) 89.9 % 80-120 26-SEP. Zinconum (Zr) 99.9 % 80-120 25-SEP. Antimom (A) 96.8 % 80-120 25-SEP. Antimom (Sb) 99.2 % 80-120 25-SEP. Bartum (Ba)	MET-200.2-CCMS-CL	Soil							
Selenium (Se) 90.7 % 80.720 26.5EP. Silver (Ag) 84.1 % 80-120 26.5EP. Sodum (Na) 106.0 % 80-120 26.5EP. Sultur (S) 89.2 % 80-120 26.5EP. Sultur (S) 88.6 % 80-120 26.5EP. Tin (Sn) 91.8 % 80-120 26.5EP. Tinn (Sn) 95.9 % 80-120 26.5EP. Tungsten (W) 101.4 % 80-120 26.5EP. Vanadium (V) 91.7 % 80-120 26.5EP. Zinc (Zn) 99.9 % 80-120 26.5EP. Zinc (Zn) 99.9 % 80-120 26.5EP. Zinc (Zn) 99.9 % 80-120 25.5EP. Autimum (I) 91.9 80-120 25.5EP. Zinc (Zn) 89.3 80-120 25.5EP. Autimum (Sh) 94.5 80-120 25.5EP. Bairum (Ba)	Batch R383759	3							
Silver (Ag) 84.1 % 80-120 26-SEP- Sodium (Na) 106.0 % 80-120 26-SEP- Stronium (Sr) 89.2 % 80-120 26-SEP- Sulfur (S) 88.6 % 80-120 26-SEP- Thailum (T) 91.8 % 80-120 26-SEP- Tinsium (T) 95.9 % 80-120 26-SEP- Tungsten (W) 101.4 % 80-120 26-SEP- Vanadium (V) 99.9 % 80-120 26-SEP- Zinc (Zn) 89.9 % 80-120 25-SEP- Zinc (Zn) 89.9 % 80-120 25-SEP- Auminum (A) 95.8 % 80-120 25-SEP- Barium (Ba) 89.4 % 80-120 25				~~ -					
Sodium (Na) 106.0 % 80-120 26-SEP- Strontium (Sr) 89.2 % 80-120 26-SEP- Strontium (Sr) 88.6 % 80-120 26-SEP- Tin (Sn) 91.8 % 80-120 26-SEP- Tin (Sn) 95.9 % 80-120 26-SEP- Tungstn (W) 101.4 % 80-120 26-SEP- Vanadium (V) 91.7 % 80-120 26-SEP- Vanadium (V) 91.7 % 80-120 26-SEP- Vanadium (V) 99.9 % 80-120 26-SEP- Zinc (Zn) 89.9 % 80-120 26-SEP- Zinc (Zn) 99.9 % 80-120 26-SEP- Auminon (A) 99.9 % 80-120 26-SEP- Auminon (A) 90.2 % 80-120 25-SEP- Auminon (A) 90.2 % 80-120 25-SEP- Barium (Ba) 94.5 % 80-120									26-SEP-17
Stontium (Sr) 89.2 % 80.120 26.SEP- Sulfur (S) 88.6 % 80.120 26.SEP- Thallum (TI) 91.8 % 80.120 26.SEP- Tin (Sn) 95.9 % 80.120 26.SEP- Tungsten (W) 101.4 % 80.120 26.SEP- Uranium (U) 91.7 % 80.120 26.SEP- Uranium (U) 91.7 % 80.120 26.SEP- Zincolum (Z) 99.9 % 80.120 26.SEP- Zincolum (Z) 91.9 % 80.120 26.SEP- Zincolum (Z) 91.9 % 80.120 26.SEP- Autimony (Sb) 92.2 % 80.120 25.SEP- Antimony (Sb) 95.0 % 80.120 25.SEP- Barium (Ba) 94.5 % 80.120 25.SEP- Barium (Ba) 94.1 % 80.120 25.SEP- Barium (Ba) 94.1 % 80.120									26-SEP-17
Sulfur (S) 88.6 % 80.120 26.SEP- Thallium (TI) 91.8 % 80.120 26.SEP- Tin (Sn) 96.9 % 80.120 26.SEP- Tungsten (W) 101.4 % 80.120 26.SEP- Vanatium (Ti) 91.7 % 80.120 26.SEP- Vanatium (U) 91.7 % 80.120 26.SEP- Vanatium (V) 99.9 % 80.120 26.SEP- Zinc (Zn) 89.9 % 80.120 26.SEP- Zinc (Zn) 89.9 % 80.120 26.SEP- Zinc (Xn) 95.8 % 80.120 25.SEP- Autimum (A) 95.8 % 80.120 25.SEP- Autimum (Ba) 94.5 % 80.120 25.SEP- Barium (Ba) 94.1 % 80.120 25.SEP- Barium (Ba) 94.1 % 80.120 25.SEP- Barou (B) 99.2 % 80.120									26-SEP-17
Thallum (TI) 91.8 % 80.120 26.5EP- Tin (Sn) 95.9 % 80.120 26.5EP- Tungsten (W) 101.4 % 80.120 26.5EP- Vanadium (U) 91.7 % 80.120 26.5EP- Vanadium (V) 99.9 % 80.120 26.5EP- Zinc (Zn) 89.9 % 80.120 26.5EP- Zinconium (Zr) 91.9 % 80.120 26.5EP- Zinconium (A) 89.9 % 80.120 26.5EP- Aluminum (A) 95.8 % 80.120 25.5EP- Antimory (Sb 99.2 % 80.120 25.5EP- Barium (Ba) 94.5 % 80.120 25.5EP- Barium (Ba) 94.1 % 80.120 25.5EP- Barium (Ba) 94.1 % 80.120 25.5EP- Cadmium (Cd) 93.9 % 80.120 25.5EP- Cadium (Cd) 93.9 % 80.120 25.5EP- Corbati (Ca) 94.0 % 80.120								80-120	26-SEP-17
Tin (Sh) 95.9 % 80.120 26.5EP Titanium (Ti) 96.1 % 80.120 26.5EP Tungsten (W) 101.4 % 80.120 26.5EP Vanadium (V) 91.7 % 80.120 26.5EP Vanadium (V) 99.9 % 80.120 26.5EP Zincorium (Zr) 91.9 % 80.120 26.5EP WG2621450-9 LCS 89.9 80.120 26.5EP Aluminum (A) 95.8 % 80.120 25.5EP Assenic (As) 95.0 % 80.120 25.5EP Barium (Ba) 94.5 % 80.120 25.5EP Barium (Ba) 94.41 % 80.120 25.5EP Barium (Bi) 89.4 % 80.120 25.5EP Cadhuim (Cd) 93.9 % 80.120 25.5EP Copper (Cu) 91.8 % 80.120 25.5EP Cobalt (Co) 94.0 % 80.120 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>80-120</td><td>26-SEP-17</td></td<>								80-120	26-SEP-17
Titanium (Ti) 96.1 % 80-120 26-SEP- Tungsten (W) 101.4 % 80-120 26-SEP- Uranium (U) 91.7 % 80-120 26-SEP- Vanadium (V) 99.9 % 80-120 26-SEP- Zinc (Zn) 89.9 % 80-120 26-SEP- Zirconium (Zr) 91.9 % 80-120 26-SEP- Murinum (A) 95.8 % 80-120 25-SEP- Antennory (Sb) 99.2 % 80-120 25-SEP- Barium (Ba) 95.50 % 80-120 25-SEP- Barium (Ba) 94.5 % 80-120 25-SEP- Barium (Ba) 99.2 % 80-120 25-SEP- Boron (B) 99.2 % 80-120 25-SEP- Boron (B) 99.2 % 80-120 25-SEP- Cadrium (Cd) 93.9 % 80-120 25-SEP- Coper (Cb) 91.8 % 80-120				91.8				80-120	26-SEP-17
Tungsten (W) 101.4 % 80.120 26.SEP- Uranium (U) 91.7 % 80.120 26.SEP- Vanadium (V) 99.9 % 80.120 26.SEP- Zinc (Zn) 89.9 % 80.120 26.SEP- Zinc (Zn) 89.9 % 80.120 26.SEP- Zinc (Zn) 89.9 % 80.120 26.SEP- Zinc (Zn) 99.9 % 80.120 26.SEP- Zinc (Zn) 95.8 % 80.120 25.SEP- Auminum (A) 95.8 % 80.120 25.SEP- Arsenic (As) 96.0 % 80.120 25.SEP- Barium (Ba) 94.5 % 80.120 25.SEP- Beryllium (Be) 99.4 % 80.120 25.SEP- Boron (B) 99.2 % 80.120 25.SEP- Cadmium (Cd) 95.8 % 80.120 25.SEP- Cobert (Co) 94.0 % 80.120 2	Tin (Sn)			95.9		%		80-120	26-SEP-17
Unanium (U) 91.7 % 80-120 26-SEP- Vanadium (V) 99.9 % 80-120 26-SEP- Zinc (Zn) 89.9 % 80-120 26-SEP- Zinconium (Zr) 91.9 % 80-120 26-SEP- WC6221450-9 LCS 80-120 25-SEP- Aluminum (Al) 95.8 % 80-120 25-SEP- Antimony (Sb) 99.2 % 80-120 25-SEP- Barium (Ba) 95.0 % 80-120 25-SEP- Barium (Ba) 94.5 % 80-120 25-SEP- Boron (B) 99.2 % 80-120 25-SEP- Cadmium (Cd) 33.9 % 80-120 25-SEP- Cadroum (Cf) 85.1 % 80-120 25-SEP- Cadroum (Cf) 85.1 % 80-120 25-SEP- Cadroum (Cf) 91.8 % 80-120 25-SEP- Copper (Cu) 91.8 % 80-120	Titanium (Ti)			96.1		%		80-120	26-SEP-17
Vanadium (V) 99.9 % 80.120 26-SEP- Zinc (Zn) 89.9 % 80.120 26-SEP- Zirconium (Zr) 91.9 % 80.120 26-SEP- WG2621450-9 LCS Auminum (Al) 95.8 % 80.120 25-SEP- Arsenic (As) 99.2 % 80.120 25-SEP- Barium (Ba) 94.5 % 80.120 25-SEP- Barium (Ba) 94.5 % 80.120 25-SEP- Barium (Ba) 94.1 % 80.120 25-SEP- Barium (Ba) 99.2 % 80.120 25-SEP- Barium (Ba) 99.4 % 80.120 25-SEP- Boron (B 99.2 % 80.120 25-SEP- Cadmium (Cd) 93.9 % 80.120 25-SEP- Cobalt (Co) 94.0 % 80-120 25-SEP- Cobalt (Co) 91.8 % 80-120	Tungsten (W)			101.4		%		80-120	26-SEP-17
Zinc (Zn) 89.9 % 80-120 26-SEP- Zirconium (Zr) 91.9 % 80-120 26-SEP- WC2621450-9 LCS 80-120 25-SEP- Aluminum (Al) 95.8 % 80-120 25-SEP- Antimony (Sb) 99.2 % 80-120 25-SEP- Arsenic (As) 95.0 % 80-120 25-SEP- Barium (Ba) 94.5 % 80-120 25-SEP- Beryllium (Be) 94.1 % 80-120 25-SEP- Boron (B) 99.2 % 80-120 25-SEP- Cadmium (Cd) 93.9 % 80-120 25-SEP- Cadrium (Cd) 93.9 % 80-120 25-SEP- Cadrium (Cd) 93.9 % 80-120 25-SEP- Cobronium (Cr) 55.1 % 80-120 25-SEP- Cobronium (Cr) 91.8 % 80-120 25-SEP- Lobronium (Cr) 91.5 % 80-1	Uranium (U)			91.7		%		80-120	26-SEP-17
Zirconium (Zr) 91.9 % 80.120 25.8EP Aluminum (Al) 95.8 % 80.120 25.8EP Antimony (Sb) 99.2 % 80.120 25.8EP Arsenic (As) 95.0 % 80.120 25.8EP Barium (Ba) 94.5 % 80.120 25.8EP Barium (Ba) 94.1 % 80.120 25.8EP Birsmth (Bi) 94.1 % 80.120 25.8EP Boron (B) 94.1 % 80.120 25.8EP Boron (B) 99.2 % 80.120 25.8EP Cadmium (Cd) 93.9 % 80.120 25.8EP Calcium (Ca) 95.8 % 80.120 25.8EP Chromium (Cr) 85.1 % 80.120 25.8EP Cobart (Co) 91.8 % 80.120 25.8EP Iron (Fe) 100.5 % 80.120 25.8EP Lead (Pb) 91.5 % 80.120 25.8E	Vanadium (V)			99.9		%		80-120	26-SEP-17
WG2621450-9 LCS Aluminum (Al) 95.8 % 80-120 25-SEP- Antimony (Sb) 99.2 % 80-120 25-SEP- Arsenic (As) 95.0 % 80-120 25-SEP- Barium (Ba) 94.5 % 80-120 25-SEP- Beryllium (Be) 94.1 % 80-120 25-SEP- Bismuth (Bi) 89.4 % 80-120 25-SEP- Boron (B) 99.2 % 80-120 25-SEP- Cadmium (Cd) 93.9 % 80-120 25-SEP- Calcium (Ca) 95.8 % 80-120 25-SEP- Cobat (Co) 94.0 % 80-120 25-SEP- Copper (Cu) 91.8 % 80-120 25-SEP- Lead (Pb) 91.5 % 80-120 25-SEP- Lead (Pb) 91.5 % 80-120 25-SEP- Magnesium (Mg) 94.0 % 80-120 25-SEP- Manganese (Mn)<	Zinc (Zn)			89.9		%		80-120	26-SEP-17
Aluminum (Al) 95.8 % 80-120 25-SEP- Antimony (Sb) 99.2 % 80-120 25-SEP- Arsenic (As) 95.0 % 80-120 25-SEP- Barium (Ba) 94.5 % 80-120 25-SEP- Beryllium (Be) 94.1 % 80-120 25-SEP- Bismuth (Bi) 89.4 % 80-120 25-SEP- Boron (B) 99.2 % 80-120 25-SEP- Cadmium (Cd) 93.9 % 80-120 25-SEP- Calcium (Ca) 95.8 % 80-120 25-SEP- Cobart (Co) 94.0 % 80-120 25-SEP- Cobart (Co) 94.0 % 80-120 25-SEP- Cobart (Co) 94.0 % 80-120 25-SEP- Lead (Pb) 91.8 % 80-120 25-SEP- Lead (Pb) 91.5 % 80-120 25-SEP- Magnesium (Mg) 94.0 % 80-120 25-SEP- Manganese (Mn) 95.7 % 80-120 <t< td=""><td>Zirconium (Zr)</td><td></td><td></td><td>91.9</td><td></td><td>%</td><td></td><td>80-120</td><td>26-SEP-17</td></t<>	Zirconium (Zr)			91.9		%		80-120	26-SEP-17
Antimore (Sb)99.2%80-12025-SEP-Arsenic (As)95.0%80-12025-SEP-Barium (Ba)94.5%80-12025-SEP-Beryllium (Be)94.1%80-12025-SEP-Bismuth (Bi)89.4%80-12025-SEP-Boron (B)99.2%80-12025-SEP-Cadmium (Cd)93.9%80-12025-SEP-Calcium (Ca)95.8%80-12025-SEP-Chromium (Cr)85.1%80-12025-SEP-Cobalt (Co)94.0%80-12025-SEP-Copper (Cu)91.8%80-12025-SEP-Iron (Fe)100.5%80-12025-SEP-Lead (Pb)91.5%80-12025-SEP-Lithium (Li)94.6%80-12025-SEP-Magnesium (Mg)97.1%80-12025-SEP-Molybdenum (Mo)97.1%80-12025-SEP-Nickel (Ni)92.1%80-12025-SEP-									
Arsenic (As)95.0%80-12025-SEP-Barium (Ba)94.5%80-12025-SEP-Beryllium (Be)94.1%80-12025-SEP-Bismuth (Bi)89.4%80-12025-SEP-Boron (B)99.2%80-12025-SEP-Cadmium (Cd)93.9%80-12025-SEP-Calcium (Ca)95.8%80-12025-SEP-Cobalt (Co)94.0%80-12025-SEP-Cobalt (Co)91.8%80-12025-SEP-Copper (Cu)91.8%80-12025-SEP-Lead (Pb)91.5%80-12025-SEP-Lithium (Li)94.6%80-12025-SEP-Magnessum (Mg)94.0%80-12025-SEP-Molybdenum (Mo)97.1%80-12025-SEP-Nickel (Ni)92.1%80-12025-SEP-								80-120	25-SEP-17
Barium (Ba)94.5%80-12025-SEP-Beryllium (Be)94.1%80-12025-SEP-Bismuth (Bi)89.4%80-12025-SEP-Boron (B)99.2%80-12025-SEP-Cadmium (Cd)93.9%80-12025-SEP-Calcium (Ca)95.8%80-12025-SEP-Chromium (Cr)85.1%80-12025-SEP-Cobalt (Co)94.0%80-12025-SEP-Copper (Cu)91.8%80-12025-SEP-Iron (Fe)100.5%80-12025-SEP-Lead (Pb)91.5%80-12025-SEP-Magnesium (Mg)94.0%80-12025-SEP-Magnese (Mn)95.7%80-12025-SEP-Molybdenum (Mo)97.1%80-12025-SEP-Nickel (Ni)92.1%80-12025-SEP-	Antimony (Sb)							80-120	25-SEP-17
Beryllium (Be) 94.1 % 80-120 25-SEP- Bismuth (Bi) 89.4 % 80-120 25-SEP- Boron (B) 99.2 % 80-120 25-SEP- Cadmium (Cd) 93.9 % 80-120 25-SEP- Cadmium (Cd) 93.9 % 80-120 25-SEP- Calcium (Ca) 95.8 % 80-120 25-SEP- Cobatt (Co) 94.0 % 80-120 25-SEP- Cobatt (Co) 94.0 % 80-120 25-SEP- Copper (Cu) 91.8 % 80-120 25-SEP- Iron (Fe) 100.5 % 80-120 25-SEP- Lead (Pb) 91.5 % 80-120 25-SEP- Magnesium (Mg) 94.0 % 80-120 25-SEP- Magnese (Mn) 95.7 % 80-120 25-SEP- Molybdenum (Mo) 97.1 % 80-120 25-SEP- Nickel (Ni) 92.1 % 80-120	Arsenic (As)					%		80-120	25-SEP-17
Bismuth (Bi)89.4%80-12025-SEP-Boron (B)99.2%80-12025-SEP-Cadmium (Cd)93.9%80-12025-SEP-Calcium (Ca)95.8%80-12025-SEP-Chromium (Cr)85.1%80-12025-SEP-Cobalt (Co)94.0%80-12025-SEP-Copper (Cu)91.8%80-12025-SEP-Iron (Fe)100.5%80-12025-SEP-Lead (Pb)91.5%80-12025-SEP-Lithium (Li)94.6%80-12025-SEP-Magnesium (Mg)95.7%80-12025-SEP-Molybdenum (Mo)97.1%80-12025-SEP-Nickel (Ni)92.1%80-12025-SEP-	Barium (Ba)			94.5				80-120	25-SEP-17
Boron (B) 99.2 % 80-120 25-SEP- Cadmium (Cd) 93.9 % 80-120 25-SEP- Calcium (Ca) 95.8 % 80-120 25-SEP- Chromium (Cr) 85.1 % 80-120 25-SEP- Cobalt (Co) 94.0 % 80-120 25-SEP- Copper (Cu) 91.8 % 80-120 25-SEP- Iron (Fe) 100.5 % 80-120 25-SEP- Lead (Pb) 91.8 % 80-120 25-SEP- Lithium (Li) 94.6 % 80-120 25-SEP- Magnesium (Mg) 94.0 % 80-120 25-SEP- Molybdenum (Mo) 95.7 % 80-120 25-SEP- Molybdenum (Mo) 97.1 % 80-120 25-SEP- Nickel (Ni) 92.1 % 80-120 25-SEP-	Beryllium (Be)			94.1		%		80-120	25-SEP-17
Cadmium (Cd)93.9%80-12025-SEP-Calcium (Ca)95.8%80-12025-SEP-Chromium (Cr)85.1%80-12025-SEP-Cobalt (Co)94.0%80-12025-SEP-Copper (Cu)91.8%80-12025-SEP-Iron (Fe)100.5%80-12025-SEP-Lead (Pb)91.5%80-12025-SEP-Lithium (Li)94.6%80-12025-SEP-Magnesium (Mg)94.0%80-12025-SEP-Molybdenum (Mo)97.1%80-12025-SEP-Nickel (Ni)92.1%80-12025-SEP-	Bismuth (Bi)			89.4		%		80-120	25-SEP-17
Calcium (Ca)95.8%80-12025-SEP-Chromium (Cr)85.1%80-12025-SEP-Cobalt (Co)94.0%80-12025-SEP-Copper (Cu)91.8%80-12025-SEP-Iron (Fe)100.5%80-12025-SEP-Lead (Pb)91.5%80-12025-SEP-Lithium (Li)94.6%80-12025-SEP-Magnesium (Mg)95.7%80-12025-SEP-Molybdenum (Mo)97.1%80-12025-SEP-Nickel (Ni)92.1%80-12025-SEP-	Boron (B)			99.2		%		80-120	25-SEP-17
Chromium (Cr)85.1%80-12025-SEP-Cobalt (Co)94.0%80-12025-SEP-Copper (Cu)91.8%80-12025-SEP-Iron (Fe)100.5%80-12025-SEP-Lead (Pb)91.5%80-12025-SEP-Lithium (Li)94.6%80-12025-SEP-Magnesium (Mg)94.0%80-12025-SEP-Manganese (Mn)95.7%80-12025-SEP-Molybdenum (Mo)97.1%80-12025-SEP-Nickel (Ni)92.1%80-12025-SEP-	Cadmium (Cd)			93.9		%		80-120	25-SEP-17
Cobalt (Co)94.0%80-12025-SEP-Copper (Cu)91.8%80-12025-SEP-Iron (Fe)100.5%80-12025-SEP-Lead (Pb)91.5%80-12025-SEP-Lithium (Li)94.6%80-12025-SEP-Magnesium (Mg)94.0%80-12025-SEP-Magnese (Mn)95.7%80-12025-SEP-Molybdenum (Mo)97.1%80-12025-SEP-Nickel (Ni)92.1%80-12025-SEP-	Calcium (Ca)			95.8		%		80-120	25-SEP-17
Copper (Cu) 91.8 % 80-120 25-SEP- Iron (Fe) 100.5 % 80-120 25-SEP- Lead (Pb) 91.5 % 80-120 25-SEP- Lithium (Li) 94.6 % 80-120 25-SEP- Magnesium (Mg) 94.0 % 80-120 25-SEP- Manganese (Mn) 95.7 % 80-120 25-SEP- Molybdenum (Mo) 97.1 % 80-120 25-SEP- Nickel (Ni) 92.1 % 80-120 25-SEP-	Chromium (Cr)			85.1		%		80-120	25-SEP-17
Iron (Fe)100.5%80-12025-SEP-Lead (Pb)91.5%80-12025-SEP-Lithium (Li)94.6%80-12025-SEP-Magnesium (Mg)94.0%80-12025-SEP-Manganese (Mn)95.7%80-12025-SEP-Molybdenum (Mo)97.1%80-12025-SEP-Nickel (Ni)92.1%80-12025-SEP-	Cobalt (Co)			94.0		%		80-120	25-SEP-17
Lead (Pb) 91.5 % 80-120 25-SEP- Lithium (Li) 94.6 % 80-120 25-SEP- Magnesium (Mg) 94.0 % 80-120 25-SEP- Manganese (Mn) 95.7 % 80-120 25-SEP- Molybdenum (Mo) 97.1 % 80-120 25-SEP- Nickel (Ni) 92.1 % 80-120 25-SEP-	Copper (Cu)			91.8		%		80-120	25-SEP-17
Lithium (Li)94.6%80-12025-SEP-Magnesium (Mg)94.0%80-12025-SEP-Manganese (Mn)95.7%80-12025-SEP-Molybdenum (Mo)97.1%80-12025-SEP-Nickel (Ni)92.1%80-12025-SEP-	Iron (Fe)			100.5		%		80-120	25-SEP-17
Magnesium (Mg) 94.0 % 80-120 25-SEP- Manganese (Mn) 95.7 % 80-120 25-SEP- Molybdenum (Mo) 97.1 % 80-120 25-SEP- Nickel (Ni) 92.1 % 80-120 25-SEP-	Lead (Pb)			91.5		%		80-120	25-SEP-17
Magnesium (Mg) 94.0 % 80-120 25-SEP- Manganese (Mn) 95.7 % 80-120 25-SEP- Molybdenum (Mo) 97.1 % 80-120 25-SEP- Nickel (Ni) 92.1 % 80-120 25-SEP-	Lithium (Li)			94.6		%		80-120	25-SEP-17
Manganese (Mn) 95.7 % 80-120 25-SEP- Molybdenum (Mo) 97.1 % 80-120 25-SEP- Nickel (Ni) 92.1 % 80-120 25-SEP-	Magnesium (Mg)			94.0		%		80-120	25-SEP-17
Molybdenum (Mo) 97.1 % 80-120 25-SEP- Nickel (Ni) 92.1 % 80-120 25-SEP-	Manganese (Mn)			95.7		%			25-SEP-17
Nickel (Ni) 92.1 % 80-120 25-SEP-	Molybdenum (Mo)			97.1		%			25-SEP-17
	Nickel (Ni)			92.1					25-SEP-17
	Potassium (K)			90.2		%		80-120	25-SEP-17

		Workorder	L199227	8	Report Date: 0	2-OCT-17	Pa	ige 10 of
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-CL	Soil							
Batch R3837593	3							
WG2621450-9 LCS								
Selenium (Se)			90.7		%		80-120	25-SEP-17
Silver (Ag)			84.3		%		80-120	25-SEP-17
Sodium (Na)			89.9		%		80-120	25-SEP-17
Strontium (Sr)			93.2		%		80-120	25-SEP-17
Sulfur (S)			90.3		%		80-120	25-SEP-17
Thallium (TI)			92.8		%		80-120	25-SEP-17
Tin (Sn)			96.4		%		80-120	25-SEP-17
Titanium (Ti)			88.4		%		80-120	25-SEP-17
Tungsten (W)			94.1		%		80-120	25-SEP-17
Uranium (U)			89.7		%		80-120	25-SEP-17
Vanadium (V)			93.5		%		80-120	25-SEP-1
Zinc (Zn)			85.1		%		80-120	25-SEP-17
Zirconium (Zr)			97.2		%		80-120	25-SEP-1
WG2621450-11 MB								
Aluminum (Al)			<50		mg/kg		50	25-SEP-17
Antimony (Sb)			<0.10		mg/kg		0.1	25-SEP-1
Arsenic (As)			<0.10		mg/kg		0.1	25-SEP-17
Barium (Ba)			<0.50		mg/kg		0.5	25-SEP-17
Beryllium (Be)			<0.10		mg/kg		0.1	25-SEP-17
Bismuth (Bi)			<0.20		mg/kg		0.2	25-SEP-1
Boron (B)			<5.0		mg/kg		5	25-SEP-1
Cadmium (Cd)			<0.020		mg/kg		0.02	25-SEP-1
Calcium (Ca)			<50		mg/kg		50	25-SEP-17
Chromium (Cr)			<0.50		mg/kg		0.5	25-SEP-17
Cobalt (Co)			<0.10		mg/kg		0.1	25-SEP-17
Copper (Cu)			<0.50		mg/kg		0.5	25-SEP-17
Iron (Fe)			<50		mg/kg		50	25-SEP-17
Lead (Pb)			<0.50		mg/kg		0.5	25-SEP-1
Lithium (Li)			<2.0		mg/kg		2	25-SEP-1
Magnesium (Mg)			<20		mg/kg		20	25-SEP-17
Manganese (Mn)			<1.0		mg/kg		1	25-SEP-17
Molybdenum (Mo)			<0.10		mg/kg		0.1	25-SEP-17
Nickel (Ni)			<0.50		mg/kg		0.5	25-SEP-17
Phosphorus (P)			<50		mg/kg		50	25-SEP-17

		Workorder	: L199227	'8	Report Date: 02	2-OCT-17	Р	age 11 of 1
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-CL	Soil							
Batch R383759	3							
WG2621450-11 MB			100					
Potassium (K)			<100		mg/kg		100	25-SEP-17
Selenium (Se)			<0.20		mg/kg		0.2	25-SEP-17
Silver (Ag)			<0.10		mg/kg		0.1	25-SEP-17
Sodium (Na)			<50		mg/kg		50	25-SEP-17
Strontium (Sr)			<0.50		mg/kg		0.5	25-SEP-17
Sulfur (S)			<1000		mg/kg		1000	25-SEP-17
Thallium (TI)			<0.050		mg/kg		0.05	25-SEP-17
Tin (Sn)			<2.0		mg/kg		2	25-SEP-17
Titanium (Ti)			<1.0		mg/kg		1	25-SEP-17
Tungsten (W)			<0.50		mg/kg		0.5	25-SEP-17
Uranium (U)			<0.050		mg/kg		0.05	25-SEP-17
Vanadium (V)			<0.20		mg/kg		0.2	25-SEP-17
Zinc (Zn)			<2.0		mg/kg		2	25-SEP-17
Zirconium (Zr)			<1.0		mg/kg		1	25-SEP-17
WG2621450-16 MB								
Aluminum (Al)			<50		mg/kg		50	25-SEP-17
Antimony (Sb)			<0.10		mg/kg		0.1	25-SEP-17
Arsenic (As)			<0.10		mg/kg		0.1	25-SEP-17
Barium (Ba)			<0.50		mg/kg		0.5	25-SEP-17
Beryllium (Be)			<0.10		mg/kg		0.1	25-SEP-17
Bismuth (Bi)			<0.20		mg/kg		0.2	25-SEP-17
Boron (B)			<5.0		mg/kg		5	25-SEP-17
Cadmium (Cd)			<0.020		mg/kg		0.02	25-SEP-17
Calcium (Ca)			<50		mg/kg		50	25-SEP-17
Chromium (Cr)			<0.50		mg/kg		0.5	25-SEP-17
Cobalt (Co)			<0.10		mg/kg		0.1	25-SEP-17
Copper (Cu)			<0.50		mg/kg		0.5	25-SEP-17
Iron (Fe)			<50		mg/kg		50	25-SEP-17
Lead (Pb)			<0.50		mg/kg		0.5	25-SEP-17
Lithium (Li)			<2.0		mg/kg		2	25-SEP-17
Magnesium (Mg)			<20		mg/kg		20	25-SEP-17
Manganese (Mn)			<1.0		mg/kg		1	25-SEP-17
Molybdenum (Mo)			<0.10		mg/kg		0.1	25-SEP-17
Nickel (Ni)			<0.50		mg/kg		0.5	25-SEP-17

		Workorder	L199227	'8	Report Date: 02	2-OCT-17	Р	age 12 of 1
fest	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-CL	Soil							
Batch R3837593	;							
WG2621450-16 MB Phosphorus (P)			<50		mg/kg		50	25-SEP-17
Potassium (K)			<100		mg/kg		100	25-SEP-17
Selenium (Se)			<0.20		mg/kg		0.2	25-SEP-17
Silver (Ag)			<0.10		mg/kg		0.1	25-SEP-17
Sodium (Na)			<50		mg/kg		50	25-SEP-17
Strontium (Sr)			<0.50		mg/kg		0.5	25-SEP-17
Sulfur (S)			<1000		mg/kg		1000	25-SEP-17
Thallium (TI)			<0.050		mg/kg		0.05	25-SEP-17
Tin (Sn)			<2.0		mg/kg		2	25-SEP-17
Titanium (Ti)			<1.0		mg/kg		1	25-SEP-17
Tungsten (W)			<0.50		mg/kg		0.5	25-SEP-17
Uranium (U)			<0.050		mg/kg		0.05	25-SEP-17
Vanadium (V)			<0.20		mg/kg		0.2	25-SEP-17
Zinc (Zn)			<2.0		mg/kg		2	25-SEP-17
Zirconium (Zr)			<1.0		mg/kg		1	25-SEP-17
WG2621450-6 MB								
Aluminum (Al)			<50		mg/kg		50	25-SEP-17
Antimony (Sb)			<0.10		mg/kg		0.1	25-SEP-17
Arsenic (As)			<0.10		mg/kg		0.1	25-SEP-17
Barium (Ba)			<0.50		mg/kg		0.5	25-SEP-17
Beryllium (Be)			<0.10		mg/kg		0.1	25-SEP-17
Bismuth (Bi)			<0.20		mg/kg		0.2	25-SEP-17
Boron (B)			<5.0		mg/kg		5	25-SEP-17
Cadmium (Cd)			<0.020		mg/kg		0.02	25-SEP-17
Calcium (Ca)			<50		mg/kg		50	25-SEP-17
Chromium (Cr)			<0.50		mg/kg		0.5	25-SEP-17
Cobalt (Co)			<0.10		mg/kg		0.1	25-SEP-17
Copper (Cu)			<0.50		mg/kg		0.5	25-SEP-17
Iron (Fe)			<50		mg/kg		50	25-SEP-17
Lead (Pb)			<0.50		mg/kg		0.5	25-SEP-17
Lithium (Li)			<2.0		mg/kg		2	25-SEP-17
Magnesium (Mg)			<20		mg/kg		20	25-SEP-17
Manganese (Mn)			<1.0		mg/kg		1	25-SEP-17
Molybdenum (Mo)			<0.10		mg/kg		0.1	25-SEP-17

		Workorder:	L199227	8	Report Date: 0	2-OCT-17	Pa	age 13 of 18
lest	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-CL	Soil							
Batch R3837593	5							
WG2621450-6 MB Nickel (Ni)			<0.50		mg/kg		0.5	25-SEP-17
Phosphorus (P)			<50		mg/kg		50	25-SEP-17
Potassium (K)			<100		mg/kg		100	25-SEP-17
Selenium (Se)			<0.20		mg/kg		0.2	25-SEP-17
Silver (Ag)			<0.10		mg/kg		0.1	25-SEP-17
Sodium (Na)			<50		mg/kg		50	25-SEP-17
Strontium (Sr)			<0.50		mg/kg		0.5	25-SEP-17
Sulfur (S)			<1000		mg/kg		1000	25-SEP-17
Thallium (TI)			<0.050		mg/kg		0.05	25-SEP-17
Tin (Sn)			<2.0		mg/kg		2	25-SEP-17
Titanium (Ti)			<1.0		mg/kg		1	25-SEP-17
Tungsten (W)			<0.50		mg/kg		0.5	25-SEP-17
Uranium (U)			<0.050		mg/kg		0.05	25-SEP-17
Vanadium (V)			<0.20		mg/kg		0.2	25-SEP-17
Zinc (Zn)			<2.0		mg/kg		2	25-SEP-17
Zirconium (Zr)			<1.0		mg/kg		1	25-SEP-17
MOISTURE-CL	Soil							
Batch R3834706 WG2620584-2 LCS	ì							
Moisture			100.1		%		90-110	21-SEP-17
WG2620584-1 MB Moisture			<0.25		%		0.25	21-SEP-17
Batch R3835851								
WG2618959-3 DUP Moisture		L1992278-1 47.2	44.0		%	7.1	20	22-SEP-17
WG2618959-2 LCS Moisture			104.1		%		90-110	22-SEP-17
WG2618959-1 MB Moisture			<0.25		%		0.25	22-SEP-17
PAH-TMB-D/A-MS-CL	Soil							
Batch R3843369)							
WG2630049-3 DUP Acenaphthene		L1992278-1 <0.028	<0.028	RPD-N	A mg/kg	N/A	50	20-SEP-17
Acenaphthylene		<0.0050	<0.0050	RPD-N	A mg/kg	N/A	50	20-SEP-17
Acridine		<0.010	<0.010	RPD-N	A mg/kg	N/A	50	20-SEP-17

		Workorder:	L1992278	8 Re	port Date: 0	2-OCT-17	Pa	age 14 of 18
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-D/A-MS-CL	Soil							
Batch R3843369								
WG2630049-3 DUP Anthracene		L1992278-1 <0.0040	<0.0040	RPD-NA	mg/kg	N/A	50	20-SEP-17
Benz(a)anthracene		0.018	0.018		mg/kg	5.0	50	20-SEP-17
Benzo(a)pyrene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	20-SEP-17
Benzo(b&j)fluoranthene		0.051	0.047		mg/kg	8.7	50	20-SEP-17
Benzo(g,h,i)perylene		0.013	0.012		mg/kg	9.5	50	20-SEP-17
Benzo(k)fluoranthene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	20-SEP-17
Benzo(e)pyrene		0.044	0.040		mg/kg	10	50	20-SEP-17
Chrysene		0.141	0.120		mg/kg	16	50	20-SEP-17
Dibenz(a,h)anthracene		0.0087	0.0072		mg/kg	19	50	20-SEP-17
Fluoranthene		0.024	0.021		mg/kg	15	50	20-SEP-17
Fluorene		0.035	0.031		mg/kg	13	50	20-SEP-17
Indeno(1,2,3-c,d)pyrene	1	<0.010	<0.010	RPD-NA	mg/kg	N/A	50	20-SEP-17
1-Methylnaphthalene		0.378	0.321		mg/kg	16	50	20-SEP-17
2-Methylnaphthalene		0.696	0.584		mg/kg	18	50	20-SEP-17
Naphthalene		0.194	0.155		mg/kg	22	50	20-SEP-17
Perylene		0.015	0.013		mg/kg	12	50	20-SEP-17
Phenanthrene		0.451	0.364		mg/kg	21	50	20-SEP-17
Pyrene		0.042	0.034		mg/kg	21	50	20-SEP-17
Quinoline		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	20-SEP-17
WG2630049-2 LCS Acenaphthene			87.0		%		60-130	20-SEP-17
Acenaphthylene			89.9		%		60-130	20-SEP-17
Acridine			96.0		%		50-150	20-SEP-17
Anthracene			92.7		%		60-130	20-SEP-17
Benz(a)anthracene			99.2		%		60-130	20-SEP-17
Benzo(a)pyrene			99.8		%		60-130	20-SEP-17
Benzo(b&j)fluoranthene			98.8		%		60-130	20-SEP-17
Benzo(g,h,i)perylene			103.5		%		60-130	20-SEP-17
Benzo(k)fluoranthene			99.3		%		60-130	20-SEP-17
Benzo(e)pyrene			101.4		%		50-150	20-SEP-17
Chrysene			103.9		%		60-130	20-SEP-17
Dibenz(a,h)anthracene			105.4		%		60-130	20-SEP-17
Fluoranthene			96.1		%		60-130	20-SEP-17
Fluorene			90.4		%		60-130	20-SEP-17

		Workorder	: L199227	8	Report Date: 02	2-OCT-17	Pa	age 15 of 18
Test M	latrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-D/A-MS-CL	Soil							
Batch R3843369								
WG2630049-2 LCS Indeno(1,2,3-c,d)pyrene			99.6		%		60-130	20-SEP-17
1-Methylnaphthalene			93.0		%		50-150	20 SEP-17
2-Methylnaphthalene			95.7		%		60-130	20 SEP-17
Naphthalene			92.1		%		50-130	20 SEP-17
Perylene			106.6		%		50-150	20-SEP-17
Phenanthrene			91.0		%		60-130	20-SEP-17
Pyrene			96.2		%		60-130	20-SEP-17
Quinoline			94.5		%		50-150	20-SEP-17
WG2630049-1 MB								
Acenaphthene			<0.0050		mg/kg		0.005	20-SEP-17
Acenaphthylene			<0.0050		mg/kg		0.005	20-SEP-17
Acridine			<0.010		mg/kg		0.01	20-SEP-17
Anthracene			<0.0040		mg/kg		0.004	20-SEP-17
Benz(a)anthracene			<0.010		mg/kg		0.01	20-SEP-17
Benzo(a)pyrene			<0.010		mg/kg		0.01	20-SEP-17
Benzo(b&j)fluoranthene			<0.010		mg/kg		0.01	20-SEP-17
Benzo(g,h,i)perylene			<0.010		mg/kg		0.01	20-SEP-17
Benzo(k)fluoranthene			<0.010		mg/kg		0.01	20-SEP-17
Benzo(e)pyrene			<0.010		mg/kg		0.01	20-SEP-17
Chrysene			<0.010		mg/kg		0.01	20-SEP-17
Dibenz(a,h)anthracene			<0.0050		mg/kg		0.005	20-SEP-17
Fluoranthene			<0.010		mg/kg		0.01	20-SEP-17
Fluorene			<0.010		mg/kg		0.01	20-SEP-17
Indeno(1,2,3-c,d)pyrene			<0.010		mg/kg		0.01	20-SEP-17
1-Methylnaphthalene			<0.010		mg/kg		0.01	20-SEP-17
2-Methylnaphthalene			<0.010		mg/kg		0.01	20-SEP-17
Naphthalene			<0.010		mg/kg		0.01	20-SEP-17
Perylene			<0.010		mg/kg		0.01	20-SEP-17
Phenanthrene			<0.010		mg/kg		0.01	20-SEP-17
Pyrene			<0.010		mg/kg		0.01	20-SEP-17
Quinoline			<0.010		mg/kg		0.01	20-SEP-17
Surrogate: d8-Naphthalene	9		101.9		%		50-130	20-SEP-17
Surrogate: d10-Acenaphthe	ene		102.1		%		50-150	20-SEP-17
Surrogate: d10-Phenanthre	ene		98.4		%		60-130	20-SEP-17

		Workorder:	L199227	8	Report Date: 0	2-OCT-17	Pa	age 16 of 18
Test N	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-D/A-MS-CL	Soil							
Batch R3843369								
WG2630049-1 MB Surrogate: d12-Chrysene			105.4		%		50-150	20-SEP-17
WG2630049-4 MS Acenaphthene		L1992278-2	81.1		%		50-150	20-SEP-17
Acenaphthylene			84.1		%		50-150	20-SEP-17
Acridine			102.2		%		50-150	20-SEP-17
Anthracene			90.8		%		50-150	20-SEP-17
Benz(a)anthracene			99.1		%		50-150	20-SEP-17
Benzo(a)pyrene			93.2		%		50-150	20-SEP-17
Benzo(b&j)fluoranthene			98.9		%		50-150	20-SEP-17
Benzo(g,h,i)perylene			84.7		%		50-150	20-SEP-17
Benzo(k)fluoranthene			93.2		%		50-150	20-SEP-17
Benzo(e)pyrene			97.8		%		50-150	20-SEP-17
Chrysene			108.2		%		50-150	20-SEP-17
Dibenz(a,h)anthracene			94.1		%		50-150	20-SEP-17
Fluoranthene			94.6		%		50-150	20-SEP-17
Fluorene			85.0		%		50-150	20-SEP-17
Indeno(1,2,3-c,d)pyrene			85.6		%		50-150	20-SEP-17
1-Methylnaphthalene			98.2		%		50-150	20-SEP-17
2-Methylnaphthalene			87.8		%		50-150	20-SEP-17
Naphthalene			83.6		%		50-150	20-SEP-17
Perylene			98.0		%		50-150	20-SEP-17
Phenanthrene			120.8		%		50-150	20-SEP-17
Pyrene			97.1		%		50-150	20-SEP-17
Quinoline			75.7		%		50-150	20-SEP-17
PSA-PIPET-DETAIL-SK	Soil							
Batch R3835249								
WG2619925-3 DUP % Gravel (>2mm)		L1992278-2 2.8	2.8		%	0.0	25	21-SEP-17
% Sand (2.00mm - 1.00mr	m)	10.1	10.2	J	%	0.1	5	21-SEP-17
% Sand (1.00mm - 0.50mr	m)	15.4	15.9	J	%	0.5	5	21-SEP-17
% Sand (0.50mm - 0.25mr	m)	6.8	7.2	J	%	0.3	5	21-SEP-17
% Sand (0.25mm - 0.125m	nm)	5.7	5.8	J	%	0.1	5	21-SEP-17
% Sand (0.125mm - 0.063	mm)	7.2	7.4	J	%	0.2	5	21-SEP-17
% Silt (0.063mm - 0.0312n	nm)	18.4	16.6	J	%	1.8	5	21-SEP-17

	Workorder:	L199227	78 Re	port Date: (2-OCT-17	Paç	ge 17 of 1
est Mat	rix Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PSA-PIPET-DETAIL-SK Soi	I						
Batch R3835249							
WG2619925-3 DUP	L1992278-2	07.0		0/	4.0	_	
% Silt (0.0312mm - 0.004mm)		27.0	J	%	1.0	5	21-SEP-17
% Clay (<4um)	7.6	7.2	J	%	0.5	5	21-SEP-17
WG2619925-4 IRM % Sand (2.00mm - 1.00mm)	2017-PSA	3.1		%		0-7.6	21-SEP-17
% Sand (1.00mm - 0.50mm)		3.7		%		0-8.9	21-SEP-17
% Sand (0.50mm - 0.25mm)		10.6		%		5.3-15.3	21-SEP-17
% Sand (0.25mm - 0.125mm)		16.0		%		10-20	21-SEP-17
% Sand (0.125mm - 0.063mm	ו)	13.4		%		7.3-17.3	21-SEP-17
% Silt (0.063mm - 0.0312mm)	13.1		%		9.9-19.9	21-SEP-17
% Silt (0.0312mm - 0.004mm))	20.6		%		17.6-27.6	21-SEP-17
% Clay (<4um)		19.6		%		13.4-23.4	21-SEP-17
Batch R3837216							
WG2619927-1 DUP	L1992278-16	;					
% Gravel (>2mm)	<1.0	<1.0	RPD-NA	%	N/A	25	22-SEP-17
% Sand (2.00mm - 1.00mm)	<1.0	<1.0	RPD-NA	%	N/A	5	22-SEP-17
% Sand (1.00mm - 0.50mm)	3.8	3.4	J	%	0.4	5	22-SEP-17
% Sand (0.50mm - 0.25mm)	11.7	11.8	J	%	0.0	5	22-SEP-17
% Sand (0.25mm - 0.125mm)	19.1	19.1	J	%	0.0	5	22-SEP-17
% Sand (0.125mm - 0.063mm	n) 18.0	16.9	J	%	1.1	5	22-SEP-17
% Silt (0.063mm - 0.0312mm) 18.8	19.0	J	%	0.1	5	22-SEP-17
% Silt (0.0312mm - 0.004mm) 21.8	22.9	J	%	1.1	5	22-SEP-17
% Clay (<4um)	6.3	6.2	J	%	0.1	5	22-SEP-17
WG2619927-2 IRM	2017-PSA						
% Sand (2.00mm - 1.00mm)		3.1		%		0-7.6	22-SEP-17
% Sand (1.00mm - 0.50mm)		3.9		%		0-8.9	22-SEP-17
% Sand (0.50mm - 0.25mm)		10.3		%		5.3-15.3	22-SEP-17
% Sand (0.25mm - 0.125mm)		14.7		%		10-20	22-SEP-17
% Sand (0.125mm - 0.063mm	1)	12.8		%		7.3-17.3	22-SEP-17
% Silt (0.063mm - 0.0312mm))	13.9		%		9.9-19.9	22-SEP-17
% Silt (0.0312mm - 0.004mm))	22.6		%		17.6-27.6	22-SEP-17
% Clay (<4um)		18.8		%		13.4-23.4	22-SEP-17

Workorder: L1992278

Report Date: 02-OCT-17

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Chain of Custody (COC) / Analytical Request Form

OC Number: 15 -

```
Page | of 3
```

Canada Toll Free: 1 800 668 9878

	www.alsglobal.com				<u>`````````````````````````````````````</u>		-						_						
Report To	Contact and company name below will app	pear on the final report		Report Format			Select								·		arges wil		
Company:	Minnow Environmental Inc.		- ·	format: 🔽 PDF			L		gular			dard T/	AT If rea	_				rs - nó surch	-
Contact:	Jess Tester			(QC) Report with R		_	2 4		day (i	-			NCT	1	Bush	ness c	day [E1	1]	
Phone:	(905) 873-3371 ext. 227			s to Criteria on Report -			PRICRUTY Business Days)		day (I	_			ERGE	-			Neeke		
	Company address below will appear on the final) report	Select Distribut	ion: 🔽 Email		AX	ā j		day (l				2		Statu	tory h	oliday	[E0]	<u> </u>
Street:	2 Lamb Street		Email 1 or Fax					Date a	nd Tim	e Requi	red for a	III E&P	TATs;		L				
City/Province:	Georgetown, Ontario		Email 2				For les	ts that c	an not b	e perlon	med acco	nding to	the ser	rice lev	vel selec	ted, you	will be c	contacted.	
Postal Code:	L7G 3M9		Email 3	jtester@minnow.c								_			leque				
Invoice To	Same as Report To VES			Invoice Dis				Ind	icate Fi	ttered (F), Prese	rved (P)	or Filte	ared an	nd Pres	erved (F	P) belo	/w	
	Copy of Invoice with Report		Select Invoice (Distribution: 🖸 EMA		FAX													
Company:			Email 1 or Fax		JTEST					ļ.									
Contact:			Email 2	and the second se		JW, (A	1]									ę
	Project Information		01	and Gas Required	· · · · · · · · · · · · · · · · · · ·	150)						/	1	'		ľ			aine
ALS Account #	# / Quote #: Q51889		AFE/Cost Center:		PO#			ļ		1		1. 1	1						out
Job #: 17_7	24		Major/Minor Code:	-	Routing Code:							N					1		of C
PO / AFE:			Requisitioner:										1			NI			Der
LSD:			Location:									Б		Airs.		•			Number of Containers
ALS Lab Wor	rk Order # (lab use only)		ALS Contact:	Lyuda Shvets	Sampler: J	F/SW		ł				lotal organic carbor		Helen -		ize	1		z
ALS Sample #	Sample Identification	n and/or Coordinates		Date	Time		1_			sture	als.	orgi		100		cles	į		
(lab use only)	(This description will	appear on the report)		(dd-mmm-yy)	(hh:mm)	Sample Type	PAH		E	moisture	metals	total				particle	1		
	GH_EBSC2-1			11-Sep-17		Sediment	~		— —		17	1			\square	V			2_
12	GH_ERSC2-2			11-5ep-17		Sediment	J		<u> </u>		-	1			\square	~	+		2
3	GH_ERSC2-X			1-Sep-17		Sediment	Ť			17	17	-		\vdash	\vdash				2
	GH_ERS(2-3			11-Sep-17		Sediment	1./			1	1	1			\vdash		+	+	2
	GH_5C2-P1-1			11-Sep-17		Sediment	V.			۲Ť	17	17		\vdash	+		+	<u> </u>	2
6	5H_ SC2-P2-1					Sediment	1				1			\vdash	\vdash	<i>y</i>			2
4	5H- 5C2 - P2-2			11-Sep- 17		Sediment	7		-	1	°			-		7			2
				11-50p-17		Sediment	J		<u> </u>	1 v		17	-	<u> </u>	+	J.		+	2
<u> </u>				11-Sep-17					-	ŀĴ	<u> </u>	17					<u> </u>		
6	GH_ SC1 - P1 - 1			11-Sep-17		Sediment	V.	<u> </u>				1×	-		┟───┤	\checkmark			2
	5H_5C1-P1-2			11-Spa-17		Sediment	1.	 		14	1				\vdash	~	\rightarrow		2
и	5H-5C1-P1-3			11-5ep-17		Sediment		ļ		<u> </u>	V.	V			\square	/			2
n	6H-ERSC 5-1			9-Sep-17		Sediment	\checkmark			<u> </u>	1	V							2 434
Drinking	Water (DW) Samples ¹ (client use)	Special Instructions /		add on report by clic tronic COC only)	king on the drop-	lown list below				-	PLEC	ONDI			rvation		_	e only)	
Are samples tak	en from a Regulated DW System?		10100	a onic coc only)			Froze				Cuboo								
								acks ng Ini			Cubes	Ц	Cust	ody s	ieal in	tact	Yes	No No	
I –	human drinking water use?	Samples previously free	aza driad				000	-			EMPER	ATURE	S *C			FINAL	COOLE	ER TEMPER	ATURES *C
		Complete provideby life						6					-				T		1
	SHIPMENT RELEASE (client use	2) 	<u> </u>	INITIAL SHIPMEN	T RECEPTION (lab use only)		\cup			FI	NAL S	HIPM	ENT	RECE	PTIO	N (lab	use onły)	L
Released by:		Time:	Received by:	h	Date: 0	P	Time	1	Rec	eived I				-141	Date		- (100	200 0119)	Time:
Jess	Tester 14-SEP	-17 8AV	1	Der	7/	\mathcal{D}	899	55											
REFER TO BAC	K PAGE FOR ALS LOCATIONS AND SAMPLIN		· · · · · · · · · · · · · · · · · · ·	WHI	TE LABORATOR	Y COPY YEL			T COP	Y	_			_	_				OCTOBER 2015 FROM

Fellure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the while - report copy.

1, If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form,

Chain of Custody (COC) / Analytical Request Form

C Number: 15 -

Page Z of 3

Canada Toll Free: 1 800 668 9878

	www.atsglobal.com				<u>````</u> ````								_						
Report To	Contact and company name below will ap	pear on the final report		Report Format	/ Distribution		Select	Service	Lever	····			(A)	's with	your AM	- surcharge	s will appi	ly	
Company:	Minnow Environmental Inc.		Select Report F	Format: 🖸 PDF	EXCEL ED	D (DIGITAL)		R	egula	r (R)	🗸 Star	dard T/	AT if re	ceived	by 3 pn	n - busines	s days - ni	o surcha	rges apply
Contact:	JESS-TES	TER	Quality Control	(QC) Report with F	Report 🖸 YES	🗂 NO	∑ si	4	day (P4]			¢,	1	Busin	ness day	[E1]		
Phone:	(905) 873-3371 ext.		Compare Result	ts to Criteria on Report -			PRIORITY (Business Days)	3	day [P3]			RGE	1	Same	Day, We	ekend (ər	
	Company address below will appear on the final	l report	Select Distribut	tion: 🗹 EMAIL		FAX	9 P	2	day [P2]			EN E		Statu	tory hol	day (E0	1	
Street:	2 Lamb Street		Email 1 or Fax	C				Date a	and Tim	ne Requi	red for	il E&P	TATs:						
City/Province:	Georgetown, Ontario		Email 2				For tes	sts that c	an not b	e perion	med acco	rđing to	the ser	vice lev	colea fev	ted, you will	be contac	rted.	
Postal Code:	L7G 3M9		Email 3	jtester@minnow.c	ca								Analy	sis R	leque	st			
Invoice To	Same as Report To 🛛 🗹 YES			Invoice Di	stribution			Ind	licate Fi	iltered (F), Prese	rved (P)) or Filte	ered ar	nd Pres	erved (F/P)	below		
	Copy of Invoice with Report YES	Ом 🗌	Select Invoice	Distribution: 🔽 EM		-													
Company:			Email 1 or Fax			TERC										1			
Contact:			Email 2		MINN	DOW, CA													ŕ
	Project Information		Oil	l and Gas Require		use)							/			X			aine
ALS Account #	# / Quote #: Q51889		AFE/Cost Center:		PO#								X						onts
Job #: 7-1	24		Major/Minor Code:		Routing Code:]					1./	1						L C
PO/AFE:			Requisitioner:]					V							
LSD:			Location:				1					S							Number of Containers
ALS Lab Wo	rk Order # (lab use only)		ALS Contact:	Lyuda Shvets	Sampler:		1					otal organic carbon		free		8			Ź
		dia - Canadia - da -		0		1	1			Ð		ngan		2		particle size			
ALS Sample # (lab use only)		n and/or Coordinates		Date	Time	Sample Type	PAH			moisture	metals	talo	# (E H			
		appear on the report)		(dd-mmm-yy)	(hh:mm)	0	l a⊂ I √	" '		<u>Ε</u>	E	9					<u>}</u> ⊢−	\vdash	
13	GH_ERS(5-2			09-Sep-17	ļ	Sediment				Ľ	Ľ	Ľ				<u> </u>	'	\square	2
	6H_ER 565-3			09-Sep-17		Sediment	<u></u>	<u> </u>		<u> </u>	ļ,	<u> </u>	<u> </u>			<u> </u>	\perp		3
	GH_ERSC 4-X			28-Sep-17	ļ	Sediment	11		Ļ	1	1	<u> </u>				1			2
	SH_ERSC 4-1			08-Sep-17		Sediment	V			1						\checkmark			2
	SH_ERSCH-Z			08-5ep-17		Sediment	15			1	1								ユ
	GH-ERSC4 -3			08-Sep-17		Sediment	∇				J	17				$\overline{\nabla}$			2
	GH_ERZ-1			10-Sep-17		Sediment	1		1	V	1	1				1			2
	SH ER2 2 0			10-Sep-17		Sediment	V			V	1	V	1			1	1		2
	5H_ERZ.3 / .	· .		10-Sep-17		Sediment	V		1	J	J	V				J	\top		2
	5H-ER2-1			10-Sep-17		Sediment	J			V	1					1			2
		Fitter Twice	, ,	10-Sep-17		Sediment	17			17	J	V				J	-1		3
24	GH_ER2.3	n 09	115	10-Sep-17	<u> </u>	Sediment	17		1	J	1.1	17	<u>† </u>					\square	2
	/	Special Instructions / Special	pecify Criteria to a		king on the drop	down list below	†			SAM	PLEC	ONDIT	TION	AS R	ECEI	/ED (lab	use on	ily)	
Drinking	Water (DW) Samples ¹ (client use)	[ctronic COC only)			Froz	en					SIF (Obse	rvatior	ns Ye	s 📑	No	
Are samples tak	en from a Regulated DW System?						Ice F	acks		lce (Cubes		Cust	ody s	seal in	lact Ye	s 🗖	No	
	es 📋 no						Cool	ing Ini	tiated			_		-			_		_
Are samples for	human drinking water use?	Samples previously free	eze dried					IBAU	TIAL CO	OLER 1	FEMPER	ATURE	s •c			FINAL CO	OLER TE	MPERA	TURES C
Ш Y	es 🗋 NO																		
	SHIPMENT RELEASE (client use			INITIAL SHIPMEN	IT RECEPTION						FI	NAL S	HIPM	ENT	RECE	PTION (lab use	only)	
Released by: 1		Time:	Received by:	m	Date:	15 11.21	Time 127	e:	Rec	eived					Date				Time:
Jess To	K PAGE FOR ALS LOCATIONS AND SAMPLI	-17- BAN	1	5	//				17.67	31.4					1				
REFER TO BAC	K PAGE FOR ALS LOCATIONS AND SAMPLI	NG INFORMATION		WH	ITE A LABORATOR	KT CUPY YEL	LUW -	SLIEN	LE COF	Y									OCTORED Sons (Serie)

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.

1. If any water samples are taken from a Regulated Drinking Water (DW). System, please submit using an Authorized DW COC form,

Chain of Custody (COC) / Analytical **Request Form**

COC Number: **15** -

Canada Toll Free: 1 800 668 9878

	www,alsglobal.com																		
Report To	Contact and company name below will appear on the final report	Report Format / Distribution					STRACT ON TWO COTTO COTT												
Company:	Minnow Environmental Inc.	Select Report F	format: 🔽 PDF	EXCEL EDD	(DIGITAL)		Reg	gular	[R] [√ Stan	dard T/	AT if re	ceived	by 3 p	m + busi	ness da	ys - no s	urcharg	es apply
Contact:	JESSTESTER	Quality Control	(QC) Report with F	leport 🗹 YES		7 Jeyes	4 0	day [P	¹ 4]			۲,	1	Busi	ness	day (E	1]		
Phone:	(905) 873-3371 ext. 227	Compare Result	s to Criteria on Report -	provide details below	if box checked	DORUT	3 0	day [P	3]			UERGENCY	1	Same	Day, '	Week	end or		
	Company address below will appear on the final report	Select Distribut	ion: 🗹 Email	🗌 MAIL 🔛 FA	AX	2 day [P2]									I				
Street:	2 Lamb Street	Email 1 or Fax					Date an	d Time	Requir	ed for a	II E&P	TATs:							
City/Province:	Georgetown, Ontario	Email 2	Construction of the local division of the lo			For tes	ts that ce	n not be	perform	ved acco	rding to	the ser	vice ler	vel sole	ated, you	ı will be	contacted	I.	
Postal Code:	L7G 3M9	Email 3	jtester@minnow.c	a							1	Analy	sis R	leque	st				
Invoice To	Same as Report To 🛛 YES 🗌 NO		Invoice Di	stribution			Indic	ate Filt	ered (F)	, Preser	ved (P)) or Filt	ared er	nd Pres	erved (F/P) bel	ow	T	
	Copy of Invoice with Report I YES INO	Select Invoice [Distribution: 🔽 EM/		FAX									1					
Company:		Email 1 or Fax		DTES	TER							 	<u> </u>	<u> </u>		-	-	-	
Contact:		Email 2			UNIOWICA	1						1	1						ŝ
	Project Information	Oil	and Gas Require	d Fields (client u	ise)	1						X		İ.		1	1		inen
ALS Account #	# / Quote #: Q51889	AFE/Cost Center;	de a colora arror	PO#		1					/				/				nta
Job #: 17-21	1	Major/Minor Code:		Routing Code:	-	1									/				Number of Containers
PO/AFE:		Requisitioner:				1					4-				$ \mathcal{J} $				er o
L\$D:		Location:				1					5				×				q
						1					carbor								ž
ALS Lab Wor	rk Order # (lab use only)	ALS Contact:	Lyuda Shvets	Sampler:							aric				ize				
ALS Sample #	Sample Identification and/or Coordinates		Date	Time		1_			moisture	S.	total organic				particle size				
(lab use only)	(This description will appear on the report)		(dd-mmm-yy)	(hh:mm)	Sample Type	PAH			mois	metals	otal				Dart.	Ч			
W	GHER1A-1		09-520-17		Sediment	V			\checkmark	$\overline{\mathbf{v}}$	7	1						+	2
(SH_ER1A-2		09-500-17		Sediment	J			7		7	†—			5	-+	-+-		2
1	GH-ERIA-3		09-5ep-17		Sediment	J			J	7		<u> </u>			5				_
et			· · · · · · · · · · · · · · · · · · ·						- V		5			1	./	+		+	2
<u> </u>	<u>GH. ERC-1</u>		10-Sep-17		Sediment	-					Ŭ		├		۲-			_+-	2
<u> </u>	GH_ ERC-2		10-5-p-17		Sediment	1			~	-/	Ľ,	<u> </u>	\vdash	1	4				2
32	SH_ERC-3		10-Sep-17		Sediment	1			1	~					\checkmark				2
0-					Sediment														1
					Sediment									1					1
					Sediment	<u> </u>	†									\rightarrow		-+-	1
					Sediment							<u> </u>	\vdash	-	┢──┤			-+-	- 1
													\vdash	-	\vdash			-+-	
		_			Sediment	<u> </u>						ļ		<u> </u>	<u> </u>			\rightarrow	1
				L	Sediment														1
Drinking	Water (DW) Samples ¹ (client use) Special Instructions / S			king on the drop-	down list below	Ļ			_	LECO	ONDI						e only)		
		(elec	tronic COC only)			Froze					_				กร				
	en from a Regulated DW System?					lçe P				ubes	Ц	Cus	ody s	seal ir	tact	Yes		No	
	-					Cooli	ng Initi									0001			
	human drinking water use? Samples previously fre	eze dried					INIITI	AL COC	JLER T	EMPER/	ATURE	5 °C			FINAL	. COOL	ERTEM	PERATL	URES °C
			INTEN CONTRACTOR	* DEOESTICIT									100.000	0.5.5					
Delegend but	SHIPMENT RELEASE (client use)	Received by:	INITIAL SHIPMEN		lap use only)	Time		Dec	hund b		NAL S	HIPM	ENT			N (lab	use or		
Released by:	ester 14-SEP-17 BAM	Received by:	10	Date:	15m	Se .	36	, 14909	eived b	y:				Date	31				ime:
CICJ I	PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION	<u> </u>		TE - LABORATOR	V COBY VEL		CLIENT	COPY				_							OCTORER 7015 FRO

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form,

MINNOW ENVIRONMENTAL INC. ATTN: Shari Weech 2 Lamb Street Georgetown ON L7G 3M9 Date Received: 18-SEP-17 Report Date: 29-SEP-17 15:41 (MT) Version: FINAL

Client Phone: 905-873-3371

Certificate of Analysis

Lab Work Order #: L1993047 Project P.O. #: NOT SUBMITTED Job Reference: 17-24 C of C Numbers: Legal Site Desc:

Comments:

Lyudmyla Shvets, B.Sc. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 2559 29 Street NE, Calgary, AB T1Y 7B5 Canada | Phone: +1 403 291 9897 | Fax: +1 403 291 0298 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 💭

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

ALS ENVIRONMENTAL ANALYTICAL REPORT

L1993047 CONTD.... PAGE 2 of 6 29-SEP-17 15:41 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1993047-1 SEDIMENT 16-SEP-17 GH-SCW1	L1993047-2 SEDIMENT 16-SEP-17 GH-SCW2		
Grouping	Analyte				
SOIL					
Physical Tests	Moisture (%)	53.7	58.6		
Particle Size	% Gravel (>2mm) (%)	<1.0	<1.0		
	% Sand (2.00mm - 1.00mm) (%)	<1.0	<1.0		
	% Sand (1.00mm - 0.50mm) (%)	<1.0	<1.0		
	% Sand (0.50mm - 0.25mm) (%)	<1.0	<1.0		
	% Sand (0.25mm - 0.125mm) (%)	4.1	<1.0		
	% Sand (0.125mm - 0.063mm) (%)	7.9	<1.0		
	% Silt (0.063mm - 0.0312mm) (%)	35.1	33.4		
	% Silt (0.0312mm - 0.004mm) (%)	44.0	54.4		
	% Clay (<4um) (%)	8.5	11.9		
	Texture	Silt	Silt		
Organic / Inorganic Carbor	Total Organic Carbon (%)	7.63	5.10		
Metals	Aluminum (Al) (mg/kg)	8080	9820		
	Antimony (Sb) (mg/kg)	0.64	0.63		
	Arsenic (As) (mg/kg)	5.41	5.92		
	Barium (Ba) (mg/kg)	152	151		
	Beryllium (Be) (mg/kg)	0.53	0.63		
	Bismuth (Bi) (mg/kg)	<0.20	<0.20		
	Boron (B) (mg/kg)	11.0	13.0		
	Cadmium (Cd) (mg/kg)	1.20	1.12		
	Calcium (Ca) (mg/kg)	53300	71300		
	Chromium (Cr) (mg/kg)	16.6	19.5		
	Cobalt (Co) (mg/kg)	5.46	5.96		
	Copper (Cu) (mg/kg)	15.9	15.6		
	Iron (Fe) (mg/kg)	12700	13400		
	Lead (Pb) (mg/kg)	7.78	8.00		
	Lithium (Li) (mg/kg)	12.6	16.0		
	Magnesium (Mg) (mg/kg)	12300	18600		
	Manganese (Mn) (mg/kg)	474	558		
	Mercury (Hg) (mg/kg)	0.0525	0.0527		
	Molybdenum (Mo) (mg/kg)	1.49	1.76		
	Nickel (Ni) (mg/kg)	23.8	27.3		
	Phosphorus (P) (mg/kg)	1180	1320		
	Potassium (K) (mg/kg)	2020	2580		
	Selenium (Se) (mg/kg)	1.81	4.46		
	Silver (Ag) (mg/kg)	0.25	0.24		
	Sodium (Na) (mg/kg)	87	126		

* Please refer to the Reference Information section for an explanation of any qualifiers detected.

ALS ENVIRONMENTAL ANALYTICAL REPORT

L1993047 CONTD.... PAGE 3 of 6 29-SEP-17 15:41 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1993047-1 SEDIMENT 16-SEP-17 GH-SCW1	L1993047-2 SEDIMENT 16-SEP-17 GH-SCW2
Grouping	Analyte		
SOIL			
Metals	Strontium (Sr) (mg/kg)	99.8	106
	Sulfur (S) (mg/kg)	<1000	<1000
	Thallium (TI) (mg/kg)	0.255	0.274
	Tin (Sn) (mg/kg)	<2.0	<2.0
	Titanium (Ti) (mg/kg)	14.5	17.2
	Tungsten (W) (mg/kg)	<0.50	<0.50
	Uranium (U) (mg/kg)	1.29	1.30
	Vanadium (V) (mg/kg)	33.2	39.3
	Zinc (Zn) (mg/kg)	92.2	108
	Zirconium (Zr) (mg/kg)	1.1	<1.0
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/kg)	<0.0050	<0.014
	Acenaphthylene (mg/kg)	<0.0050	<0.0050
	Acridine (mg/kg)	<0.010	<0.010
	Anthracene (mg/kg)	<0.0040	<0.0040
	Benz(a)anthracene (mg/kg)	<0.010	0.011
	Benzo(a)pyrene (mg/kg)	<0.010	<0.010
	Benzo(b&j)fluoranthene (mg/kg)	0.014	0.029
	Benzo(e)pyrene (mg/kg)	0.012	0.025
	Benzo(g,h,i)perylene (mg/kg)	<0.010	<0.010
	Benzo(k)fluoranthene (mg/kg)	<0.010	<0.010
	Chrysene (mg/kg)	0.031	0.065
	Dibenz(a,h)anthracene (mg/kg)	<0.0050	<0.0050
	Fluoranthene (mg/kg)	<0.010	0.014
	Fluorene (mg/kg)	<0.010	0.022
	Indeno(1,2,3-c,d)pyrene (mg/kg)	<0.010	<0.010
	1-Methylnaphthalene (mg/kg)	0.065	0.159
	2-Methylnaphthalene (mg/kg)	0.088	0.276
	Naphthalene (mg/kg)	0.042	0.084
	Perylene (mg/kg)	0.018	0.018
	Phenanthrene (mg/kg)	0.099	0.216
	Pyrene (mg/kg)	<0.010	0.022
	Quinoline (mg/kg)	<0.010	<0.010
	Surrogate: d10-Acenaphthene (%)	79.7	88.0
	Surrogate: d12-Chrysene (%)	89.7	96.0
	Surrogate: d8-Naphthalene (%)	77.1	84.0
	Surrogate: d10-Phenanthrene (%)	85.5	93.0

* Please refer to the Reference Information section for an explanation of any qualifiers detected.

ALS ENVIRONMENTAL ANALYTICAL REPORT

L1993047 CONTD.... PAGE 4 of 6 29-SEP-17 15:41 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L1993047-1 SEDIMENT 16-SEP-17 GH-SCW1	L1993047-2 SEDIMENT 16-SEP-17 GH-SCW2		
Grouping	Analyte				
SOIL					
Polycyclic Aromatic Hydrocarbons	B(a)P Total Potency Equivalent (mg/kg)	<0.020	<0.020		
	IACR (CCME) (mg/kg)	0.18	0.30		

* Please refer to the Reference Information section for an explanation of any qualifiers detected.

Reference Information

Qualifiers for	Individual	Samples	Listed:
----------------	------------	---------	---------

Sample Numbe	e Client Sample ID	Qualifier	Description
L1993047-1	GH-SCW1	PSAL	Limited sample was available for PSA (100g minimum is standard). Measurement Uncertainty for PSA results may be higher than usual.
L1993047-2	GH-SCW2	PSAL	Limited sample was available for PSA (100g minimum is standard). Measurement Uncertainty for PSA results may be higher than usual.

QC Samples with Qualifiers & Comments:

QC Type Description Duplicate		Parameter	Qualifier	Applies to Sample Number(s)						
		Phosphorus (P)	MES	L1993047-1, -2						
Qualifiers for	or Individual Paramet	ers Listed:								
Qualifier	Description									
DLQ	Detection Limit ra	ised due to co-eluting interference	GCMS qualifier ion ratio	did not meet acceptance criteria						

DLQ Detection Limit raised due to co-eluting interference. GCMS qualifier ion ratio did not meet acceptance criteria.

Data Quality Objective was marginally exceeded (by < 10% absolute) for < 10% of analytes in a Multi-Element Scan / Multi-Parameter MES Scan (considered acceptable as per OMOE & CCME).

st Method References.

ALS Test Code	Matrix	Test Description	Method Reference**
C-TIC-PCT-SK	Soil	Total Inorganic Carbon in Soil	CSSS (2008) P216-217
A known quantity of acet against a standard curve			H of the resulting solution is measured and compared
C-TOC-CALC-SK	Soil	Total Organic Carbon Calculation	CSSS (2008) 21.2
Total Organic Carbon (T	OC) is calcula	ted by the difference between total carbon (TC) and	total inorganic carbon. (TIC)
C-TOT-LECO-SK	Soil	Total Carbon by combustion method	CSSS (2008) 21.2
The sample is ignited in	a combustion	analyzer where carbon in the reduced CO2 gas is de	etermined using a thermal conductivity detector.
HG-200.2-CVAA-CL	Soil	Mercury in Soil by CVAAS	EPA 200.2/1631E (mod)
Soil samples are digeste	ed with nitric ar	nd hydrochloric acids, followed by analysis by CVAA	S.
C-CACO3-CALC-SK	Soil	Inorganic Carbon as CaCO3 Equivalent	Calculation
MET-200.2-CCMS-CL	Soil	Metals in Soil by CRC ICPMS	EPA 200.2/6020A (mod)
Soil samples are digeste	d with nitric ar	nd hydrochloric acids, followed by analysis by CRC I	CPMS.
be environmentally availa	able. This met		digestion that is intended to dissolve those metals that may result in a partial extraction. depending on the sample
MOISTURE-CL	Soil	% Moisture	CWS for PHC in Soil - Tier 1
This analysis is carried o	out gravimetric	ally by drying the sample at 105 C	
PAH-TMB-D/A-MS-CL	Soil	PAH by Tumbler Extraction (DCM/Acetone)	EPA 3570/8270
the United States Enviro sediment/soil with a 1:1 i column gas chromatogra	out using proce nmental Prote mixture of DCI aphy with mase nt accurate qu	edures adapted from "Test Methods for Evaluating S ction Agency (EPA). The procedure uses a mechan M and acetone. The extract is then solvent exchang s spectrometric detection (GC/MS). Surrogate recover antitation. Because the two isomers cannot be readi	olid Waste" SW-846, Methods 3570 & 8270, published by ical shaking technique to extract a subsample of the ed to toluene. The final extract is analysed by capillary eries may not be reported in cases where interferences fro ly chromatographically separated, benzo(j)fluoranthene is

PSA-PIPET-DETAIL-SK Soil Particle size - Sieve and Pipette SSIR-51 METHOD 3.2.1

Particle size distribution is determined by a combination of techniques. Dry sieving is performed for coarse particles, wet sieving for sand particles and the pipette sedimentation method for clay particles.

Reference:

Burt, R. (2009). Soil Survey Field and Laboratory Methods Manual. Soil Survey Investigations Report No. 5. Method 3.2.1.2.2. United States Department of Agriculture Natural Resources Conservation Service.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

Reference Information

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
SK	ALS ENVIRONMENTAL - SASKATOON, SASKATCHEWAN, CANADA
CL	ALS ENVIRONMENTAL - CALGARY, ALBERTA, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

		Workorder:	L199304	7	Report Date: 29	-SEP-17	Pa	ige 1 of 6
2 L Ge	NNOW ENVIRONM .amb Street orgetown ON L7G	-						
Oomaol.	ari Weech							
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
C-TIC-PCT-SK	Soil							
Batch R383	36087							
WG2620966-2 Inorganic Carbon	LCS		104.2		%		80-120	22-SEP-17
WG2620966-3 Inorganic Carbon	МВ		<0.050		%		0.05	22-SEP-17
C-TOT-LECO-SK	Soil							
Batch R383	36726							
WG2619864-2 Total Carbon by C	I RM Combustion	08-109 SOIL	100.0		%		80-120	21-SEP-17
WG2619864-3	MB							
Total Carbon by C	Combustion		<0.05		%		0.05	21-SEP-17
HG-200.2-CVAA-CL	Soil							
Batch R383	37366							
WG2623528-4 Mercury (Hg)	CRM	TILL-1	93.8		%		70-130	25-SEP-17
WG2623528-3 Mercury (Hg)	LCS		105.0		%		80-120	25-SEP-17
WG2623528-1 Mercury (Hg)	МВ		<0.0050		mg/kg		0.005	25-SEP-17
MET-200.2-CCMS-CI	Soil							
Batch R383	38457							
	CRM	TILL-1						
Aluminum (Al)			122.7		%		70-130	26-SEP-17
Antimony (Sb)			114.8		%		70-130	26-SEP-17
Arsenic (As)			108.8		%		70-130	26-SEP-17
Barium (Ba)			106.7		%		70-130	26-SEP-17
Beryllium (Be)			108.5		%		70-130	26-SEP-17
Bismuth (Bi)			101.6		%		70-130	26-SEP-17
Boron (B)			7.6		mg/kg		0-8.2	26-SEP-17
Cadmium (Cd)			112.5		%		70-130	26-SEP-17
Calcium (Ca)			122.3		%		70-130	26-SEP-17
Chromium (Cr)			110.2		%		70-130	26-SEP-17
Cobalt (Co)			117.8		%		70-130	26-SEP-17
Copper (Cu)			117.4		%		70-130	26-SEP-17
Iron (Fe)			113.2		%		70-130	26-SEP-17
Lead (Pb)			107.1		%		70-130	26-SEP-17
Lithium (Li)			123.8		%		70-130	26-SEP-17

		Workorder	: L199304	7	Report Date: 29	-SEP-17	Pag	e 2 of
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-CL	Soil							
Batch R3838457								
WG2623528-4 CRM Magnesium (Mg)		TILL-1	122.8		%		70-130	26 SED 45
Manganese (Mn)			117.2		%			26-SEP-17
Molybdenum (Mo)			117.2		%		70-130 70-130	26-SEP-17
Nickel (Ni)			116.4		%		70-130	26-SEP-17
Phosphorus (P)			121.5		%		70-130	26-SEP-17 26-SEP-17
Potassium (K)			125.2		%		70-130	26-SEP-17 26-SEP-17
Selenium (Se)			0.38		mg/kg		0.11-0.51	
Silver (Ag)			0.38		mg/kg		0.11-0.51	26-SEP-17 26-SEP-17
Sodium (Na)			127.4		%		0.13-0.33 70-130	26-SEP-17 26-SEP-17
Strontium (Sr)			127.4		%		70-130	26-SEP-17
Thallium (TI)			0.139		mg/kg		0.077-0.18	26-SEP-17
Tin (Sn)			1.3		mg/kg		0-3.1	26-SEP-17
Titanium (Ti)			129.4		%		70-130	26-SEP-1
Tungsten (W)			0.16		mg/kg		0-0.66	26-SEP-1
Uranium (U)			109.5		%		70-130	26-SEP-1
Vanadium (V)			121.1		%		70-130	26-SEP-1
Zinc (Zn)			118.7		%		70-130	26-SEP-1
Zirconium (Zr)			1.0		mg/kg		0-1.8	26-SEP-1
WG2623528-3 LCS			1.0				0-1.0	20-021-1
Aluminum (Al)			116.6		%		80-120	26-SEP-1
Antimony (Sb)			102.5		%		80-120	26-SEP-1
Arsenic (As)			98.8		%		80-120	26-SEP-1
Barium (Ba)			97.1		%		80-120	26-SEP-1
Beryllium (Be)			100.7		%		80-120	26-SEP-1
Bismuth (Bi)			95.0		%		80-120	26-SEP-17
Boron (B)			107.2		%		80-120	26-SEP-1
Cadmium (Cd)			95.1		%		80-120	26-SEP-17
Calcium (Ca)			102.7		%		80-120	26-SEP-17
Chromium (Cr)			90.9		%		80-120	26-SEP-1
Cobalt (Co)			100.3		%		80-120	26-SEP-17
Copper (Cu)			98.1		%		80-120	26-SEP-1
Iron (Fe)			110.9		%		80-120	26-SEP-17
Lead (Pb)			96.0		%		80-120	26-SEP-17
Lithium (Li)			101.2		%		80-120	26-SEP-17

		Workorder	L199304	7	Report Date: 2	9-SEP-17	Pa	age 3 of
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-CL	Soil							
Batch R3838457	,							
WG2623528-3 LCS Magnesium (Mg)			101.6		%		80-120	26-SEP-17
Manganese (Mn)			99.7		%		80-120	26-SEP-17
Molybdenum (Mo)			101.4		%		80-120	26-SEP-17
Nickel (Ni)			97.8		%		80-120	26-SEP-17
Potassium (K)			101.6		%		80-120	26-SEP-17
Selenium (Se)			95.9		%		80-120	26-SEP-17
Silver (Ag)			100.0		%		80-120	26-SEP-17
Sodium (Na)			101.2		%		80-120	26-SEP-17
Strontium (Sr)			105.0		%		80-120	26-SEP-17
Sulfur (S)			101.3		%		80-120	26-SEP-17
Thallium (TI)			91.0		%		80-120	26-SEP-17
Tin (Sn)			97.8		%		80-120	26-SEP-17
Titanium (Ti)			91.7		%		80-120	26-SEP-17
Tungsten (W)			99.3		%		80-120	26-SEP-17
Uranium (U)			90.4		%		80-120	26-SEP-17
Vanadium (V)			101.8		%		80-120	26-SEP-17
Zinc (Zn)			97.4		%		80-120	26-SEP-17
Zirconium (Zr)			99.0		%		80-120	26-SEP-17
WG2623528-1 MB								
Aluminum (Al)			<50		mg/kg		50	26-SEP-17
Antimony (Sb)			<0.10		mg/kg		0.1	26-SEP-17
Arsenic (As)			<0.10		mg/kg		0.1	26-SEP-17
Barium (Ba)			<0.50		mg/kg		0.5	26-SEP-17
Beryllium (Be)			<0.10		mg/kg		0.1	26-SEP-17
Bismuth (Bi)			<0.20		mg/kg		0.2	26-SEP-17
Boron (B)			<5.0		mg/kg		5	26-SEP-17
Cadmium (Cd)			<0.020		mg/kg		0.02	26-SEP-17
Calcium (Ca)			<50		mg/kg		50	26-SEP-17
Chromium (Cr)			<0.50		mg/kg		0.5	26-SEP-17
Cobalt (Co)			<0.10		mg/kg		0.1	26-SEP-17
Copper (Cu)			<0.50		mg/kg		0.5	26-SEP-17
Iron (Fe)			<50		mg/kg		50	26-SEP-17
Lead (Pb)			<0.50		mg/kg		0.5	26-SEP-17
Lithium (Li)			<2.0		mg/kg		2	26-SEP-17

		Workorder:	L199304	7	Report Date: 2	9-SEP-17	Pa	age 4 of (
ſest	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-CL	Soil							
Batch R3838457								
WG2623528-1 MB Magnesium (Mg)			<20		mg/kg		20	26-SEP-17
Manganese (Mn)			<1.0		mg/kg		1	26-SEP-17
Molybdenum (Mo)			<0.10		mg/kg		0.1	26-SEP-17
Nickel (Ni)			<0.50		mg/kg		0.5	26-SEP-17
Phosphorus (P)			<50		mg/kg		50	26-SEP-17
Potassium (K)			<100		mg/kg		100	26-SEP-17
Selenium (Se)			<0.20		mg/kg		0.2	26-SEP-17
Silver (Ag)			<0.10		mg/kg		0.1	26-SEP-17
Sodium (Na)			<50		mg/kg		50	26-SEP-17
Strontium (Sr)			<0.50		mg/kg		0.5	26-SEP-17
Sulfur (S)			<1000		mg/kg		1000	26-SEP-17
Thallium (TI)			<0.050		mg/kg		0.05	26-SEP-17
Tin (Sn)			<2.0		mg/kg		2	26-SEP-17
Titanium (Ti)			<1.0		mg/kg		1	26-SEP-17
Tungsten (W)			<0.50		mg/kg		0.5	26-SEP-17
Uranium (U)			<0.050		mg/kg		0.05	26-SEP-17
Vanadium (V)			<0.20		mg/kg		0.2	26-SEP-17
Zinc (Zn)			<2.0		mg/kg		2	26-SEP-17
Zirconium (Zr)			<1.0		mg/kg		1	26-SEP-17
MOISTURE-CL	Soil							
Batch R3836537								
WG2622365-2 LCS Moisture			103.8		%		90-110	23-SEP-17
WG2622365-1 MB			100.0		70		90-110	23-3EF-17
Moisture			<0.25		%		0.25	23-SEP-17
PAH-TMB-D/A-MS-CL	Soil							
Batch R3839079								
WG2626356-1 MB Acenaphthene			<0.0050		mg/kg		0.005	24-SEP-17
Acenaphthylene			<0.0050		mg/kg		0.005	24-SEP-17
Acridine			<0.010		mg/kg		0.01	24-SEP-17
Anthracene			<0.0040		mg/kg		0.004	24-SEP-17
Benz(a)anthracene			<0.010		mg/kg		0.01	24-SEP-17
Benzo(a)pyrene			<0.010		mg/kg		0.01	24-SEP-17
Benzo(b&j)fluoranthene			<0.010		mg/kg			

		Workorder:			Report Date: 29		1 4	ge 5 of
est N	Vatrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-D/A-MS-CL	Soil							
Batch R3839079								
WG2626356-1 MB			0.040					
Benzo(g,h,i)perylene			<0.010		mg/kg		0.01	24-SEP-17
Benzo(k)fluoranthene			<0.010		mg/kg		0.01	24-SEP-17
Benzo(e)pyrene			<0.010		mg/kg		0.01	24-SEP-17
Chrysene			<0.010		mg/kg		0.01	24-SEP-17
Dibenz(a,h)anthracene			<0.0050		mg/kg		0.005	24-SEP-17
Fluoranthene			<0.010		mg/kg		0.01	24-SEP-17
Fluorene			<0.010		mg/kg		0.01	24-SEP-17
Indeno(1,2,3-c,d)pyrene			<0.010		mg/kg		0.01	24-SEP-17
1-Methylnaphthalene			<0.010		mg/kg		0.01	24-SEP-17
2-Methylnaphthalene			<0.010		mg/kg		0.01	24-SEP-17
Naphthalene			<0.010		mg/kg		0.01	24-SEP-17
Perylene			<0.010		mg/kg		0.01	24-SEP-17
Phenanthrene			<0.010		mg/kg		0.01	24-SEP-17
Pyrene			<0.010		mg/kg		0.01	24-SEP-17
Quinoline			<0.010		mg/kg		0.01	24-SEP-17
Surrogate: d8-Naphthalene	е		80.4		%		50-130	24-SEP-17
Surrogate: d10-Acenaphth	iene		79.7		%		50-150	24-SEP-17
Surrogate: d10-Phenanthre	ene		74.4		%		60-130	24-SEP-17
Surrogate: d12-Chrysene			88.6		%		50-150	24-SEP-17
SA-PIPET-DETAIL-SK	Soil							
Batch R3837770								
WG2620961-2 IRM		2017-PSA						
% Sand (2.00mm - 1.00mr	,		2.9		%		0-7.6	25-SEP-17
% Sand (1.00mm - 0.50mr	m)		3.8		%		0-8.9	25-SEP-17
% Sand (0.50mm - 0.25mr	m)		9.9		%		5.3-15.3	25-SEP-17
% Sand (0.25mm - 0.125m	nm)		14.1		%		10-20	25-SEP-17
% Sand (0.125mm - 0.063	smm)		12.9		%		7.3-17.3	25-SEP-17
% Silt (0.063mm - 0.0312n	nm)		14.4		%		9.9-19.9	25-SEP-17
% Silt (0.0312mm - 0.004n	nm)		22.5		%		17.6-27.6	25-SEP-17
% Clay (<4um)			19.6		%		13.4-23.4	25-SEP-17

Workorder: L1993047

Report Date: 29-SEP-17

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Chain of Custody (COC) / Analytical

Request Form

Canada Toll Free: 1 800 668 9878

i COC Number: 15 -

Page of

	www.alsglobal.com											_	1								
Report To	Contact and company na	ame below will app	ear on the final report		Report Format	/ Distribution		Select	Service I	Level Be	low - Ple	ease cont	irm all E	AP TAT	s with	your Al	ฟ - รมระ	harges	will appl	y	
Company:	Minnow Environmental Inc			Select Report F	ormat: ☑ PDF	EXCEL EDI	(DIGITAL)		Re	gular	[R]	🗸 Star	idard TA	T if re	ceived	by 3 p	m - bu	siness d	Jays - no	o surcha	irges apply
Contact:	Tyrell Worrall JESS	TESTE	=R_	Quality Control	(QC) Report with F	leport 🗹 YES	🗋 NO	7	4	day [/	P4]			۲.	1	Busi	ness	day [E1]		
Phone:	(905) 873-3371 ext.234	227		Compare Result	s to Criteria on Report -	provide details below	if box checked	PRIORITY Laineas Day	3	day [l	P3]			EMERGENCY	1 1	Same	Day,	Weel	kend o	or	-
	Company address below will a	appear on the final	report	Select Distribut		MAIL F	AX	R P	2	day (l	P2]			EME					ay [E0		
Street:	2 Lamb Street			Email 1 or Fax	worrall@minnow.	ਦਰ			Date a	nd Tim	e Requi	red for a	II E&P	TATs:							
City/Province:	Georgetown, Ontario			Email 2	sweech@minnow	.ca		For tes	ts that c	ân nót b	e perfor	ned acco	erding to	tha ser	vice le	vul sele	cted, yr	a will b	e contac	rted.	
Postal Code:	L7G 3M9			Email 3	jtester@minnow.c	a								Analy	sis R	Seque	st				
Invoice To	Same as Report To	YES [ON [Involce Di	stribution			Ind	icate Fi	tered (F), Prese	rved (P)	or Filt	ered ar	nd Pres	served	(F/P) b	elow		
	Copy of Involce with Report	rt 🗌 YES [NO	Select Invoice (Distribution: 🗹 EMV] FAX														
Company:				Email 1 or Fax	-tworrall@minnow;	ea jtester	Q									Γ				\square	
Contact:				Email 2	sweech@minnow	.ca minne	wica	I													٤
	Project Info	rmation		Oil	and Gas Require	d Fields (client	rse)						ŀ								aine
ALS Account #	I Quote #: Q5	1889		AFE/Cost Center:		PO#		1												1	onta
Job #: 1	7-24			Major/Minor Code:		Routing Code:		1					ļ								Ŭ N
PO / AFE:				Requisitioner:				1			-										er c
LSD:	D:							1					5								Number of Containers
ALS Lab Wor	rk Order # (lab use only)			ALS Contact:	Lyuda Shvets	Sampler: JT	/sw.	1	T				otal organic carbor				size	1			Ź
ALS Sample #	Sample	dentification	n and/or Coordinates		Date	Time	Commis Turns	1 -			moisture	als	6 o				particle				
(lab use only)	(This d	appear on the report)		(dd-mmm-yy)	(hh:mm)	Sample Type	PAH			möi	metals	tota				part					
	GH-SCWI				16-SEP-17		Sediment	∇			1										2
	GH-SUNZ				16-SEP-17		Sediment				1	1				1					2
				Sediment								1	1			1	\square				1
							Sediment						1			\square	\vdash				1
							Sediment					1				\top	\square				1
							Sediment									1					1
							Sediment														1
							Sediment			-											1
							Sediment														1
							Sediment														1
							SedIment														1
							Sediment														1
Delaking	Water (DW) Samplas ¹ (cli	onturol	Special Instructions / S			king on the drop-	town list below				SAM	PLE C	ONDIT	ION	AS R	ECEI	VED	(lab u	ise on	ly}	
Drinking Water (DW) Samples' (client use)				(elec	tronic COC only)			Froze	n					ŞIF (Obse	rvatio	ns	Yes		No	
· ·	en from a Regulated DW Syst	tem?						Ice P	acks		Ice (Cubes		Cust	ody s	seal ir	itact	Yes		No	
	es 🔲 No							Cooli	ng Init												
Are samples for	human drinking water use?	eze dried					TIINI	IAL CO	OLER T		ATURE	s •c			FİNA	I. COO	LER TE	MPERA	TURES °C		
TES NO									y) FINAL SHIPMENT RECEPTION (lab use only)												
SHIPMENT RELEASE (client use)					INITIAL SHIPMEN	TRECEPTION (lab use only)						NAL S	HIPM	ENT	REC	EPTIC)N (la	b use	only)	
Beleesed by: Tree Berle Date: Det 25, 2016 Time:				Received by:	Ke	Date: 9/18/2 TE - LABORATOR	017	Time S	30	Rece	eived t	by:				Date	e:				Time:
REFER TO BACK	K PAGE FOR ALS LOCATIONS	S AND SAMPLIN	IG INFORMATION		. WHI	TE - LABORATOR	Y COPY YELL	- WO.	CLIEN	T COP	Y									~	OUTUBER 2015 FRONT

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY, By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

APPENDIX D HABITAT AND DISTRIBUTION OF BIOTA

Photo Group 1: Fish Inventory Photo Documentation

Photo #	Date	Site	Photo Description
DSCN3120	Jul 24, 2017	ERSC2	Downstream view of site in Reach 1
DSCN2525	Sep 27, 2017	ERSC2	Upstream view of dry site in Reach 1
DSCN2504	Sep 27, 2017	Pool 4	Isolated pool sampled in Reach 1
DSCN3114	Jul 24, 2017	ERSC2	Bull trout juvenile (135 mm)
DSCN3116	Jul 24, 2017	ERSC2	Mountain whitefish fry (40 mm)
DSCN2544	Sep 27, 2017	ERSC2	Westslope cutthroat trout juvenile (95 mm)
DSCN3196	Jul 24, 2017	ERSCW	Across view of wetland site Reach 2
DSCN1061	Oct 17, 2017	ERSCW	Upstream view of wetland site Reach 2
DSCN1068	Oct 17, 2017	ERSCW	Longnose sucker (47 mm)
DSCN1070	Oct 17, 2017	ERSCW	Mountain whitefish fry (61 mm)
DSCN3112	Jul 24, 2017	ER1A	Across view of site in Reach 3
DSCN1055	Oct 17, 2017	ER1A	Downstream view of site in Reach 3
DSCN1078	Oct 17, 2017	ER1A	Mountain whitefish fry (54 mm)
DSCN1081	Oct 17, 2017	ER1A	Eastern brook trout fry (69 mm)

Fish Inventory Reach 1

DSCN3120

DSCN2525

DSCN2504

DSCN3114

DSCN3116

DSCN2544

Fish Inventory Reach 2

DSCN3196

DSCN1061

DSCN1068

Fish Inventory Reach 3

DSCN3112

DSCN1055

DSCN1078

Photo Group 2: Fish Community Photo Documentation

Photo #	Date	Site	Photo Description
DSCN0364	Aug 15, 2017	ERSC2-G1	Upstream view of glide 1 in Reach 1
DSCN0374	Aug 15, 2017	ERSC2-R	Upstream view of riffle in Reach 1
DSCN0369	Aug 15, 2017	ERSC2-G2	Upstream view of glide 2 in Reach 1
DSCN0378	Aug 15, 2017	ERSC2-R	Eastern brook trout adult (157 mm)
DSCN0368	Aug 15, 2017	ERSC2-G1	Mountain whitefish fry (50 mm)
DSCN0385	Aug 16, 2017	ERSCW	Upstream view of wetland site in Reach 2
DSCN0386	Aug 16, 2017	ERSCW	Downstream view of wetland site in Reach 2
DSCN0418	Aug 17, 2017	ERSCW	Mountain whitefish fry (57 mm)
DSCN0358	Aug 14, 2017	ER1A-G1	Upstream view of glide 1 in Reach 3
DSCN0335	Aug 14, 2017	ER1A-R	Upstream view of riffle in Reach 3
DSCN0380	Aug 15, 2017	ER1A-G2	Upstream view of glide 2 in Reach 3
DSCN0341	Aug 14, 2017	ER1A-R	Mountain whitefish fry (57 mm)

Fish Community Reach 1

DSCN0364

DSCN0374

DSCN0369

Fish Community Reach 2

DSCN0385

DSCN0386

Fish Community Reach 3

DSCN0358

DSCN0335

DSCN0380

Table D.1: In SituWater Quality Measurements at Elk River and Side Channel Stations,2017 and 2018

Site Lo	cation	Date	Temperat	Dissolve	d Oxygen	Specific Conductivity	pН	Redox
Sile Lo	cation	Date	ure (°C)	(%)	(mg/L)	(µS/cm)	рп	(mV)
		28-Jul-17	10.3	90.2	10.1	491	8.02	-113
Elk River	ERUS	18-Aug-17	9.2	87.7	10.1	286	7.43	177
	LINUS	17-Oct-17	4.5	86.9	11.1	283	7.96	64
		23-Jan-18	1.2	101	14.2	314	7.85	140
		28-Jul-17	10.4	93.0	10.3	488	8.14	-107
	ER1A	18-Aug-17	9.2	90.3	10.4	283	8.19	177
		18-Oct-17	2.9	78.7	10.7	284	7.48	79
		28-Jul-17	10.2	93.5	10.5	488	8.09	-110
	ERSC4	18-Aug-17	9.1	86.2	9.87	284	7.62	200
Side		18-Oct-17	3.8	77.3	10.2	289	8.00	35
Channel		7-Dec-17	0.0	80.9	11.7	1,740	6.86	272
	Wetland	24-Jan-18	0.3	86.8	12.5	1,709	7.71	163
	Wellanu	15-Feb-18	-0.1	78.9	11.4	1,912	8.09	145
		15-Mar-18	0.4	61.9	8.75	1,637	8.32	143
	ERSCDS	28-Jul-17	13.5	90.7	9.45	598	8.09	-192
	LINGCOG	18-Aug-17	10.2	67.3	7.63	389	7.53	202
		28-Jul-17	13.6	88.8	9.14	513	7.94	-199
Elk Divor	Elk River ERDS	18-Aug-17	9.1	82.4	9.54	305	7.91	198
	ERDO	17-Oct-17	6.3	73.0	8.99	302	7.88	49
		23-Jan-18	3.0	93.6	12.6	336	7.11	134

Pool	Data	Temperature	Dissolve	d Oxygen	Specific	nU	Redox	Observed	Length	Midth (m)	Donth (m)
Name	Date	(°C)	(%)	(mg/L)	Conductivity (µS/cm)	рН	(mV)	Fish Presence (yes/no)	(m)	wiath (m)	Depth (m)
Pool-E-1	17-Aug-17	11.8	43.1	4.65	990	7.45	173	Yes	60.1	1.5	0.20
Pool-E-2	26-Sep-17	4.0	40.3	5.29	1,097	6.53	176	Yes	-	-	-
Pool-E-6	26-Sep-17	5.2	27.9	3.51	892	6.31	181	Yes	-	-	-
Pool-E-7	26-Sep-17	6.0	33.3	4.14	922	6.99	171	No	-	-	-
Pool-W-2	26-Sep-17	4.6	92.6	11.9	316	7.00	155	Yes	-	-	-
Pool-E-7	18-Oct-17	5.7	49.8	6.23	901	6.87	114	Yes	3.0	2.0	0.20
Pool-M-1	18-Oct-17	4.3	70.2	9.09	344	6.63	153	Yes	8.0	2.5	0.35
Pool-M-2	18-Oct-17	2.5	60.7	8.25	312	6.98	128	Yes	15.0	2.0	0.35
Pool-E-7	20-Nov-17	0.7	32.2	4.60	1,143	7.09	183	- ^a	3.0	2.0	0.2
Pool-U-1	20-Nov-17	2.1	33.0	4.52	393	7.21	173	- ^a	-	-	-
Pool-U-2	20-Nov-17	0.3	25.1	4.60	1,143	7.09	183	- ^a	-	-	-
Pool-E-7	7-Dec-17	2.3	35.6	4.81	1,399	6.64	245	_ a	3.0	2.0	0.18
Pool-U-3	7-Dec-17	0.3	76.7	11.0	396	6.75	264	_ a	7.0	2.0	0.15
Pool-U-4	7-Dec-17	0.2	28.7	4.11	468	6.58	265	_ a	12.0	2.0	0.40
Pool-U-5	7-Dec-17	0.3	50.6	7.27	487	5.78	277	- ^a	20.0	2.0	0.50
Pool-E-2	24-Jan-18	1.0	66.7	9.38	1,350	7.06	160	_ a	3.0	2.0	0.20
Pool-E-3	24-Jan-18	1.1	53.3	7.63	677	7.20	142	_ a	7.0	1.5	0.30
Pool-E-7	24-Jan-18	3.2	70.3	9.31	1,445	7.08	134	- ^a	3.0	2.0	0.20
Pool-E-7	14-Feb-18	-0.1	50.9	6.98	1,374	6.80	201	_ a	-	-	0.08
Pool-E-7	15-Mar-18	0.3	40.8	5.66	1,341	7.09	172	- ^a	-	-	0.08

 Table D.2: In Situ Water Quality Measurements, Fish Presence, and Pool Dimensions Taken at Pools in 2017 and 2018

^a The pool was ice covered, so an effective assessment of fish presence could not be completed.

						Morph	ology						Co	over					Sub	strate
Sampling Month	Reach	Site	Avg. Channel Width (m)	Avg. Wetted Width (m)	Average Residual Pool Depth (m)	Average Bankfull Depth (m)	Average Gradient (%)	Morphology	Total Cover	Small Woody Debris	Large Woody Debris	Boulders	Undercut Banks	Deep Pools	Overhanging Vegetation	Instream Vegetation	Crown Closure	Functional LWD	Bed Material Dominant	Bed Material Subdominant
June	1	ERSC2	-	-	-	-	1.50%	riffle-pool	moderate	5%	5%	0%	0%	0%	5%	5%	21-40%	few	fines	gravels
June	2	ERSCW	-	-	-	-	1.00%	riffle-pool	moderate	5%	5%	0%	0%	2%	5%	15%	1-20%	few	fines	gravels
June	3	ER1A	9.75	-	-	-	1.00%	riffle-pool	moderate	5%	20%	0%	5%	0%	0%	0%	21-40%	few	fines	cobbles
July	1	ERSC2	5.65	4.12	-	0.60	1.50%	riffle-pool	moderate	20%	5%	0%	0%	0%	0%	0%	21-40%	few	fines	gravels
July	3	ER1A	9.02	7.09	-	1.50	1.00%	riffle-pool	moderate	5%	30%	0%	0%	0%	0%	0%	21-40%	few	fines	cobbles
September	3	ER1A	7.90	5.73	-	1.50	1.00%	riffle-pool	moderate	5%	30%	0%	0%	0%	0%	0%	21-40%	few	fines	cobbles

Table D.3: Habitat Summary at Fish Sampling Sites for Fish Inventory Sampling, GHO LAEMP 2017

Table D.4: Sampling Summary for Electrofishing and Minnow Trapping Efforts for Fish Inventory Sampling, GHO LAEMP, June to October, 2017

Reach Number	Site ID	Sampling Month	Method	Trap #	Trap Depth	Date In	Time In	Date Out	Time Out	EF Seconds	Length (m)	Width (m)	Voltage	Frequency	Pulse	Make	Model	Species	Stage	# Fish Caught	Min Length (mm)	Max Length (mm)
1	ERSC2	June	MT	1	0.2	19-Jun-17	14:50	21-Jun-17	8:07	-	-	-	-	-	-	-	-	NFC	-	0	-	-
1	ERSC2	June	MT	2	0.3	19-Jun-17	14:45	21-Jun-17	8:06	-	-	-	-	-	-	-	-	NFC	-	0	-	-
1	ERSC2 ERSC2	June June	MT MT	3	0.3	19-Jun-17 19-Jun-17	14:40 14:37	21-Jun-17 21-Jun-17	8:05 8:02	-	-	-	-	-	-	-	-	NFC NFC	-	0	-	-
1	ERSC2	June	MT	5	0.5	19-Jun-17	14:29	21-Jun-17 21-Jun-17	8:00	-	-	-	-	-	-	-	-	NFC	-	0	-	-
1	ERSC2	July	EF	-	-	-	-	-	-	420	100.0	4.0	250	60	15	SR	LR24	WCT	Juvenile	1	100	100
1	ERSC2	July	EF	-	-	-	-	-	-	420	100.0	4.0	250	60	15	SR	LR24	BT	Juvenile	2	135	148
1	ERSC2	July	EF	-	-	-	-	-	-	420	100.0	4.0	250	60	15	SR	LR24	MW	Fry	4	40	41
1	ERSC2 ERSC2	July July	MT MT	1	0.3	24-Jul-17 24-Jul-17	14:01 13:56	25-Jul-17 25-Jul-17	14:46 14:45	-	-	-	-	-	-	-	-	NFC NFC	-	0	-	-
1	ERSC2	July	MT	3	0.3	24-Jul-17	13:50	25-Jul-17	14:50	-	-	-	-	-	-	-	-	NFC	-	0	-	-
1	ERSC2	July	MT	4	0.4	24-Jul-17	13:40	25-Jul-17	14:53	-	-	-	-	-	-	-	-	NFC	-	0	-	-
1	Pool-E-7	September	EF	-	-	-	-	-	-	100	8.0	4.0	230	50	15	SR	LR24	NFC	-	0	-	-
1	Pool-E-6 Pool-E-6	September September	EF EF	-	-	-	-	-	-	80 80	5.0 5.0	4.0	230 230	50 50	15 15	SR SR	LR24 LR24	WCT EB	Juvenile Adult	4	95 143	119 164
1	Pool-E-6	September	EF	-	-	-	-	-	-	80	5.0	4.0	230	50	15	SR	LR24	EB	Juvenile	1	121	121
1	Pool-E-6	September	EF	-	-	-	-	-	-	80	5.0	4.0	230	50	15	SR	LR24	MW	Fry	3	51	60
1	Pool-E-5	September	EF	-	-	-	-	-	-	82	4.0	1.0	180	50	15	SR	LR24	MW	Fry	18	45-65	-
1	Pool-E-5	September	EF EF	-	-	-	-	-	-	82	4.0	1.0	180	50	15	SR	LR24	WCT	Fry	1	43	43
1	Pool-E-4 Pool-E-4	September September	EF	-	-	-	-	-	-	30 30	2.0 2.0	1.0 1.0	180 180	50 50	15 15	SR SR	LR24 LR24	EB EB	Adult Fry	1	144 79	144 84
1	Pool-E-4	September	EF	-	-	-	-	-	-	30	2.0	1.0	180	50	15	SR	LR24	WCT	Juvenile	5	100	110
1	Pool-E-4	September	EF	-	-	-	-	-	-	30	2.0	1.0	180	50	15	SR	LR24	WCT	Fry	2	37	43
1	Pool-E-4	September	EF	-	-	-	-	-	-	30	2.0	1.0	180	50	15	SR	LR24	MW	Fry	2	46	58
2	ERSCW ERSCW	June	MT MT	1	0.5	19-Jun-17	13:18 13:20	21-Jun-17	8:24 8:25	-	-	-	-	-	-	-	-	NFC NFC	-	0	-	-
2	ERSCW	June June	MT	3	0.3	19-Jun-17 19-Jun-17	13:20	21-Jun-17 21-Jun-17	8:25	-	-	-	-	-	-	-	-	NFC	-	0	-	-
2	ERSCW	June	MT	4	0.6	19-Jun-17	13:26	21-Jun-17	8:29	-	-	-	-	-	-	-	-	NFC	-	0	-	-
2	ERSCW	June	MT	5	0.3	19-Jun-17	13:28	21-Jun-17	8:34	-	-	-	-	-	-	-	-	NFC	-	0	-	-
2	ERSCW	July	MT	1	0.5	24-Jul-17	13:11	25-Jul-17	16:18	-	-	-	-	-	-	-	-	NFC	-	0	-	-
22	ERSCW ERSCW	July July	MT MT	2	0.4	24-Jul-17 24-Jul-17	13:09 13:07	25-Jul-17 25-Jul-17	16:13 16:14	-	-	-	-	-	-	-	-	NFC NFC	-	0	-	-
2	ERSCW	July	MT	4	0.3	24-Jul-17 24-Jul-17	12:58	25-Jul-17 25-Jul-17	16:22	-	-	-	-	-	-	-	-	NFC	-	0	-	-
2	ERSCW	September	MT	1	0.7	26-Sep-17	13:16	27-Sep-17	14:09	-	-	-	-	-	-	-	-	MW	fry	4	50-60	-
2	ERSCW	September	MT	2	0.6	26-Sep-17	13:18	27-Sep-17	14:08	-	-	-	-	-	-	-	-	MW	fry	1	50-60	-
2	ERSCW	September	MT	3	0.4	26-Sep-17	13:22	27-Sep-17	14:12	-	-	-	-	-	-	-	-	MW	fry	1	50-60	-
2	ERSCW ERSCW	September September	MT MT	4 5	0.3	26-Sep-17 26-Sep-17	13:31 13:37	27-Sep-17 27-Sep-17	14:24 14:18	-	-	-	-	-	-	-	-	MW MW	fry fry	3 11	50-60 50-60	-
2	ERSCW	September	MT	6	0.4	26-Sep-17	13:41	27-Sep-17	14:16	-	-	-	-	-	-	-	-	MW	fry	2	50-60	-
2	ERSCW	September	MT	7	0.6	26-Sep-17	13:45	27-Sep-17	14:21	-	-	-	-	-	-	-	-	MW	fry	5	50-60	-
2	ERSCW	September	MT	8	0.7	26-Sep-17	13:48	27-Sep-17	14:27	-	-	-	-	-	-	-	-	MW	fry	4	50-60	-
2 2	ERSCW ERSCW	September	MT	9	0.4	26-Sep-17	13:55	27-Sep-17	14:34	-	-	-	-	-	-	-	-	MW	fry	1	50-60	-
2	ERSCW	September October	MT MT	10 1	0.4	26-Sep-17 16-Oct-17	13:57 13:05	27-Sep-17 17-Oct-17	14:30 9:26	-	-	-	-	-	-	-	-	NFC MW	- frv	2	- 57	- 65
2	ERSCW	October	MT	1	0.6	16-Oct-17	13:05	17-Oct-17	9:26	-	-	-	-	-	-	-	-	LSU	-	1	46	46
2	ERSCW	October	MT	2	0.5	16-Oct-17	13:07	17-Oct-17	9:31	-	-	-	-	-	-	-	-	LSU	-	1	47	47
2	ERSCW	October	MT	3	0.4	16-Oct-17	13:09	17-Oct-17	9:35	-	-	-	-	-	-	-	-	LSU	-	1	47	47
2 2	ERSCW ERSCW	October October	MT MT	4 5	0.5 0.6	16-Oct-17 16-Oct-17	13:10 13:12	17-Oct-17 17-Oct-17	9:37 9:40	-	-	-	-	-	-	-	-	LSU MW	- fry	1	51 61	51 61
3	ER3CW ER1A	June	MT	5 1	0.6	16-Oct-17 19-Jun-17	13:12	21-Jun-17	7:32	-	-	-	-	-	-	-	-	NFC		0	-	-
3	ER1A	June	MT	2	0.7	19-Jun-17	11:27	21-Jun-17	7:32	-	-	-	-	-	-	-	-	NFC	-	0	-	-
3	ER1A	June	MT	3	0.7	19-Jun-17	11:31	21-Jun-17	7:34	-	-	-	-	-	-	-	-	NFC	-	0	-	-
3	ER1A	June	MT	4	0.2	19-Jun-17	11:45	21-Jun-17	7:35	-	-	-	-	-	-	-	-	NFC NFC	-	0	-	-
3	ER1A ER1A	June July	MT EF	5	0.5	19-Jun-17 -	11:45 -	21-Jun-17 -	7:37	- 470	- 100.0	- 5.0	- 250	- 40	- 15	- SR	- LR24	NFC	-	0	-	-
3	ER1A	July	MT	1	0.4	24-Jul-17	9:10	25-Jul-17	12:53	-	-	-	-	-	-	-	-	NFC	-	0	-	-
3	ER1A	July	MT	2	0.6	24-Jul-17	9:13	25-Jul-17	12:54	-	-	-	-	-	-	-	-	NFC	-	0	-	-
3	ER1A	July	MT	3	0.6	24-Jul-17	9:15	25-Jul-17	12:56	-	-	-	-	-	-	-	-	NFC	-	0	-	-
3	ER1A ER1A	July September	MT EF	4	0.4	24-Jul-17 -	9:19 -	25-Jul-17 -	12:58	- 476	- 100.0	- 6.0	- 250	- 50	- 15	- SR	- LR24	NFC EB	- fry	0 5	- 67	- 85
3	ER1A ER1A	September	EF	-	-	-	-	-	-	476	100.0	6.0	250	50	15	SR	LR24 LR24	MW	fry	5 8	50-60	-
3	ER1A	September	MT	1	0.4	26-Sep-17	11:36	27-Sep-17	12:08	-	-	-	-	-	-	-	-	MW	fry	7	51	65
3	ER1A	September	MT	2	0.4	26-Sep-17	11:42	27-Sep-17	12:11	-	-	-	-	-	-	-	-	NFC	-	0	-	-
3	ER1A	September	MT	3	0.5	26-Sep-17	11:45	27-Sep-17	12:13	-	-	-	-	-	-	-	-	NFC	-	0	-	-
3	ER1A ER1A	September September	MT MT	4 5	0.3	26-Sep-17 26-Sep-17	11:52 11:52	27-Sep-17 27-Sep-17	12:16 12:17	-	-	-	-	-	-	-	-	NFC MW	- fry	0	- 50-60	-
3	ER1A ER1A	October	EF	-	- 0.5	- 20-Sep-17	-	- 27-Sep-17	-	- 581	- 100.0	3.0	300	50	- 15	- SR	- LR24	MW	fry	3	50-60	62
3	ER1A	October	EF	-	-	-	-	-	-	581	100.0	3.0	300	50	15	SR	LR24	EB	fry	4	69	80
3	ER1A	October	MT	1	0.3	16-Oct-17	14:47	17-Oct-17	11:19	-	-	-	-	-	-	-	-	NFC	-	0	-	-
3	ER1A	October	MT	2	0.3	16-Oct-17	14:51	17-Oct-17	11:21	-	-	-	-	-	-	-	-	NFC	-	0	-	-
	ER1A	October	MT MT	3	0.4	16-Oct-17 16-Oct-17	14:56 14:57	17-Oct-17 17-Oct-17	11:23 11:24	-	-	-	-	-	-	-	-	NFC MW	- fry	0	- 63	- 63
3	ER1A	October	1/11	4	0.5											-					n.1	

Notes: BT = Bull Trout; EF = electrofishing; EB = Brook Trout; I = immature; LSU = Longnose Sucker; M = mature; MW = Mountian Whitefish; NFC = xxxx; U = undetermined; WCT = Westlope Cutthroat.

Reach Number	Site ID	Sampling Month	Method	Method Number	Species	Length (mm)	Width (g)	Sex	Maturity
1	ERSC2	July	EF	-	WCT	100	42.7	U	I
1	ERSC2	July	EF	-	BT	135	32.3	U	I
1	ERSC2	July	EF	-	BT	148	48.6	U	I
1	ERSC2	July	EF	-	MW	40	-	U	1
1	ERSC2	July	EF	-	MW	41	-	U	I
1	ERSC2	July	EF	-	MW	40	-	U	I
1	ERSC2	July	EF	-	MW	40	-	U	l
1	Pool 2	September	EF	-	WCT	119	13.0	U	
1	Pool 2	September	EF	-	EB	164	47.0	U	M
1	Pool 2	September	EF	-	MW	57	2.0	U	
1	Pool 2	September	EF	-	WCT	116	16.0	U	I
1	Pool 2	September	EF EF	-	WCT	115	16.0	UU	
•	Pool 2	September	EF EF	-	EB EB	143	32.0		M
1	Pool 2 Pool 2	September	EF EF	-	WCT	121 95	21.0 9.0	UU	
1	Pool 2 Pool 2	September September	EF	-	MW	<u>95</u> 51	9.0	U U	1
1	Pool 2	September	EF	-	MW	60	2.0	U	1
1	Pool 2 Pool 3	September	EF	-	WCT	43	1.0	U	
1	Pool 3	September	EF	-	MW	45-65	-	U U	
1	Pool 3	September	EF	-	MW	45-65	_	U	
1	Pool 3	September	EF	-	MW	45-65	-	U	
1	Pool 3	September	EF	-	MW	45-65	-	U	1
1	Pool 3	September	EF	-	MW	45-65	-	U	1
1	Pool 3	September	EF	-	MW	45-65	-	U	1
1	Pool 3	September	EF	-	MW	45-65	_	U	
1	Pool 3	September	EF	-	MW	45-65	-	U	
1	Pool 3	September	EF	-	MW	45-65	-	Ŭ	I
1	Pool 3	September	EF	-	MW	45-65	-	U	I
1	Pool 3	September	EF	-	MW	45-65	-	U	I
1	Pool 3	September	EF	-	MW	45-65	-	U	I
1	Pool 3	September	EF	-	MW	45-65	-	U	I
1	Pool 3	September	EF	-	MW	45-65	-	U	I
1	Pool 3	September	EF	-	MW	45-65	-	U	I
1	Pool 3	September	EF	-	MW	45-65	-	U	I
1	Pool 3	September	EF	-	MW	45-65	-	U	I
1	Pool 3	September	EF	-	MW	45-65	-	U	I
1	Pool 4	September	EF	-	EB	144	33	U	М
1	Pool 4	September	EF	-	WCT	110	16	U	I
1	Pool 4	September	EF	-	WCT	110	16	U	I
1	Pool 4	September	EF	-	WCT	105	13	U	I
1	Pool 4	September	EF	-	EB	84	6	U	
1	Pool 4	September	EF	-	WCT	101	10	U	
1	Pool 4	September	EF	-	WCT	100	11	U	<u> </u>
1	Pool 4	September	EF	-	EB	79	5	U	
1	Pool 4	September	EF	-	MW	58	2	U	
1	Pool 4	September	EF	-	MW	46	-	U	
1	Pool 4	September	EF	-	WCT	43	-	U	
1	Pool 4	September	EF MT	-	WCT	37 50	-	U	
2	Wetland	September	MT	1	MW	50	-	UU	
2	Wetland Wetland	September September	MT MT	1	MW	50-60	-		
2	Wetland	September	MT	1	MW MW	50-60 50-60	-	UU	
2	Wetland	September	MT	1	MW	50-60	-	U	
2	Wetland	September	MT	2	MW	50-60	-	U	
2	Wetland	September	MT	3	MW	50-60	-	U	
2	Wetland	September	MT	4	MW	50-60	-	U	
2	Wetland	September	MT	4	MW	50-60	-	U	
2	Wetland	September	MT	4	MW	50-60	-	U	
2	Wetland	September	MT	4 5	MW	50-60	-	U	
2	Wetland	September	MT	5	MW	50-60	_	U	
2	Wetland	September	MT	5	MW	50-60	-	U	· ·
2	Wetland	September	MT	5	MW	50-60	-	U	

Table D.5: Physical Measurements and Sex Determination for Individual Fish Collected by Electrofishing for FishInventory Sampling, GHO LAEMP, July and September, 2017

2	Wetland	September	MT	5	MW	50-60	-	U	I
2	Wetland	September	MT	5	MW	50-60	-	U	I
2	Wetland	September	MT	5	MW	50-60	-	U	I
2	Wetland	September	MT	5	MW	50-60	-	U	I
2	Wetland	September	MT	5	MW	50-60	-	U	I
2	Wetland	September	MT	5	MW	50-60	-	U	I
2	Wetland	September	MT	5	MW	50-60	-	U	I
2	Wetland	September	MT	5	MW	50-60	-	U	I
2	Wetland	September	MT	5	MW	50-60	-	U	I
2	Wetland	September	MT	6	MW	50-60	-	U	I
2	Wetland	September	MT	6	MW	50-60	-	U	I
2	Wetland	September	MT	7	MW	50-60	-	U	I
2	Wetland	September	MT	7	MW	50-60	-	U	I
2	Wetland	September	MT	7	MW	50-60	-	U	I
2	Wetland	September	MT	7	MW	50-60	-	U	I
2	Wetland	September	MT	7	MW	50-60	-	U	I
2	Wetland	September	MT	8	MW	50-60	-	U	I
2	Wetland	September	MT	8	MW	50-60	-	U	I
2	Wetland	September	MT	8	MW	50-60	-	U	I
2	Wetland	September	MT	8	MW	50-60	-	U	I
2	Wetland	September	MT	9	MW	50-60	-	U	I

Reach Number	Site ID	Sampling Month	Method	Method Number	Species	Length (mm)	Width (g)	Sex	Maturity
2	Wetland	October	MT	1	MW	65	2.1	U	I
2	Wetland	October	MT	1	MW	57	1.4	U	I
2	Wetland	October	MT	1	LSU	46	0.9	U	I
2	Wetland	October	MT	2	LSU	47	1.0	U	I
2	Wetland	October	MT	3	LSU	47	1.0	U	I
2	Wetland	October	MT	4	LSU	51	1.1	U	I
2	Wetland	October	MT	5	MW	61	1.2	U	I
3	ERSC1A	September	EF	-	EB	70	4.0	U	I
3	ERSC1A	September	EF	-	EB	85	6.0	U	I
3	ERSC1A	September	EF	-	EB	73	5.0	U	I
3	ERSC1A	September	EF	-	EB	67	4.0	U	I
3	ERSC1A	September	EF	-	EB	79	5.0	U	I
3	ERSC1A	September	EF	-	MW	50-60	-	U	I
3	ERSC1A	September	EF	-	MW	50-60	-	U	I
3	ERSC1A	September	EF	-	MW	50-60	-	U	I
3	ERSC1A	September	EF	-	MW	50-60	-	U	I
3	ERSC1A	September	EF	-	MW	50-60	-	U	I
3	ERSC1A	September	EF	-	MW	50-60	-	U	I
3	ERSC1A	September	EF	-	MW	50-60	-	U	I
3	ERSC1A	September	EF	-	MW	50-60	-	U	I
3	ERSC1A	September	MT	1	MW	51	1	U	I
3	ERSC1A	September	MT	1	MW	54	1	U	I
3	ERSC1A	September	MT	1	MW	65	2	U	I
3	ERSC1A	September	MT	1	MW	64	2	U	I
3	ERSC1A	September	MT	1	MW	56	1	U	I
3	ERSC1A	September	MT	1	MW	64	2	U	I
3	ERSC1A	September	MT	1	MW	58	2	U	I
3	ERSC1A	September	MT	5	MW	50-60	-	U	I
3	ERSC1A	September	MT	5	MW	50-60	-	U	I
3	ERSC1A	September	MT	5	MW	50-60	-	U	I
3	ERSC1A	Öctober	EF	-	MW	54	1.5	U	I
3	ERSC1A	October	EF	-	EB	71	3.4	U	I
3	ERSC1A	October	EF	-	EB	80	5.3	U	I
3	ERSC1A	October	EF	-	EB	69	3.3	U	I
3	ERSC1A	October	EF	-	MW	57	-	U	I
3	ERSC1A	October	EF	-	MW	62	-	U	I
3	ERSC1A	October	EF	-	EB	78	-	U	I
3	ERSC1A	October	MT	4	MW	63	-	U	I

 Table D.5: Physical Measurements and Sex Determination for Individual Fish Collected by Electrofishing for Fish

 Inventory Sampling, GHO LAEMP, July and September, 2017

Notes:

BT = Bull Trout; EF = electrofishing; EB = Brook Trout; I = immature; LSU = Longnose Sucker; M = mature; MW = Mountian Whitefish; U = undetermined; WCT = Westlope Cutthroat.

Page 2 of 2

Reach Number	Site ID	Sample Date	Method	Haul Number	Trap #	Trap Depth (m)	Date In	Time In	Date Out	Time Out	Number of Passes	EF Seconds	Length (m)	Width (m)	Voltage	Frequency	Pulse	Make	Model	Species	Stage	# Fish Caught	Min Length (mm)	Max Length (mm)
1	ERSC2-G1	15-Aug-17	EF	-	-	-	-	-	-	-	3	1,032	28.80	3.48	250	40	15	SR	LR-24	MW	Fry	3	46	55
1	ERSC2-R	15-Aug-17	EF	-	-	-	-	-	-	-	3	1,619	28.90	6.49	250	60	15	SR	LR-24	EB	Adult	1	157	157
1	ERSC2-R	15-Aug-17	EF	-	-	-	-	-	-	-	3	1,619	28.90	6.49	250	60	15	SR	LR-24	MW	Fry	9	46	54
1	ERSC2-G2	15-Aug-17	EF	-	-	-	-	-	-	-	3	926	14.52	5.47	250	60	15	SR	LR-24	MW	Fry	35	45	55
2	ERSCW-FC	16-Aug-17	MT	1	1	0.6	16-Aug-17	10:49	17-Aug-17	10:52	-	-	-	-	-	-	-	-	-	MW	Fry	4	48	51
2	ERSCW-FC	16-Aug-17	MT	1	2	0.6	16-Aug-17	10:50	17-Aug-17	11:02	-	-	-	-	-	-	-	-	-	MW	Fry	1	49	49
2	ERSCW-FC	16-Aug-17	MT	1	3	1.0	16-Aug-17	10:52	17-Aug-17	11:07	-	-	-	-	-	-	-	-	-	NFC	-	0	-	-
2	ERSCW-FC	16-Aug-17	MT	1	4	1.0	16-Aug-17	10:53	17-Aug-17	11:10	-	-	-	-	-	-	-	-	-	MW	Fry	2	47	54
2	ERSCW-FC	16-Aug-17	MT	1	5	1.2	16-Aug-17	10:55	17-Aug-17	11:15	-	-	-	-	-	-	-	-	-	NFC	-	0	-	-
2	ERSCW-FC	16-Aug-17	MT	1	6	1.0	16-Aug-17	10:58	17-Aug-17	11:18	-	-	-	-	-	-	-	-	-	MW	Fry	1	51	51
2	ERSCW-FC	16-Aug-17	MT	1	7	1.2	16-Aug-17	11:00	17-Aug-17	11:19	-	-	-	-	-	-	-	-	-	NFC	-	0	-	-
2	ERSCW-FC	16-Aug-17	MT	1	8	0.8	16-Aug-17	11:20	17-Aug-17	11:50	-	-	-	-	-	-	-	-	-	MW	Fry	2	48	51
2	ERSCW-FC	16-Aug-17	MT	1	9	0.4	16-Aug-17	11:18	17-Aug-17	11:49	-	-	-	-	-	-	-	-	-	NFC	-	0	-	-
2	ERSCW-FC	16-Aug-17	MT	1	10	0.8	16-Aug-17	11:17	17-Aug-17	11:49	-	-	-	-	-	-	-	-	-	NFC	-	0	-	-
2	ERSCW-FC	16-Aug-17	MT	1	11	0.6	16-Aug-17	11:14	17-Aug-17	11:46	-	-	-	-	-	-	-	-	-	MW	Fry	1	53	53
2	ERSCW-FC	16-Aug-17	MT	1	12	1.0	16-Aug-17		17-Aug-17	11:45	-	-	-	-	-	-	-	-	-	MW	Fry	1	52	52
2	ERSCW-FC	16-Aug-17	MT	1	13	0.6	16-Aug-17	11:10	17-Aug-17	11:44	-	-	-	-	-	-	-	-	-	MW	Fry	1	47	47
2	ERSCW-FC	16-Aug-17	MT	1	14	0.6	16-Aug-17	11:09	17-Aug-17	11:35	-	-	-	-	-	-	-	-	-	MW	Fry	4	44	57
2	ERSCW-FC	16-Aug-17	MT	1	15	0.5	16-Aug-17	11:09	17-Aug-17	11:25	-	-	-	-	-	-	-	-	-	MW	Fry	4	43	48
2	ERSCW-FC	17-Aug-17	MT	2	1	0.6	17-Aug-17	11:12	18-Aug-17	11:04	-	-	-	-	-	-	-	-	-	NFC	-	0	-	-
2	ERSCW-FC	17-Aug-17	MT	2	2	0.6	17-Aug-17	11:04	18-Aug-17	11:06	-	-	-	-	-	-	-	-	-	NFC	-	0	-	-
2	ERSCW-FC	17-Aug-17	MT	2	3	1.0	17-Aug-17	11:07	18-Aug-17	11:06	-	-	-	-	-	-	-	-	-	NFC	-	0	-	-
2	ERSCW-FC	17-Aug-17	MT	2	4	1.0	17-Aug-17	11:11	18-Aug-17	11:07	-	-	-	-	-	-	-	-	-	NFC	-	0	-	-
2	ERSCW-FC	17-Aug-17	MT	2	5	1.2	17-Aug-17	11:16	18-Aug-17	11:09	-	-	-	-	-	-	-	-	-	NFC	-	0	-	-
2	ERSCW-FC	17-Aug-17	MT	2	6	1.0	17-Aug-17	11:19	18-Aug-17	11:11	-	-	-	-	-	-	-	-	-	NFC	-	0	-	-
2	ERSCW-FC	17-Aug-17	MT	2	7	1.2	17-Aug-17	11:20	18-Aug-17	11:12	-	-	-	-	-	-	-	-	-	NFC	-	0	-	-
2	ERSCW-FC	17-Aug-17	MT	2	8	0.8	17-Aug-17		18-Aug-17	11:14	-	-	-	-	-	-	-	-	-	MW	Fry	1	50	50
2	ERSCW-FC	17-Aug-17	MT	2	9	0.4	17-Aug-17	11:49	18-Aug-17	11:15	-	-	-	-	-	-	-	-	-	NFC	-	0	-	-
2	ERSCW-FC	17-Aug-17	MT	2	10	0.8	17-Aug-17	11:49	18-Aug-17	11:16	-	-	-	-	-	-	-	-	-	NFC	-	0	-	-
2	ERSCW-FC	17-Aug-17	MT	2	11	0.6	17-Aug-17	11:47	18-Aug-17	11:17	-	-	-	-	-	-	-	-	-	MW	Fry	1	49	50
2	ERSCW-FC	17-Aug-17	MT	2	12	1.0	17-Aug-17	11:46	18-Aug-17	11:19	-	-	-	-	-	-	-	-	-	NFC	-	0	-	-
2	ERSCW-FC	17-Aug-17	MT	2	13	0.6	17-Aug-17	11:45	18-Aug-17	11:20	-	-	-	-	-	-	-	-	-	MW	Fry	2	51	54
2	ERSCW-FC	17-Aug-17	MT	2	14	0.6	17-Aug-17	11:36	18-Aug-17	11:22	-	-	-	-	-	-	-	-	-	MW	Fry	1	46	46
2	ERSCW-FC	17-Aug-17	MT	2	15	0.5	17-Aug-17	11:26	18-Aug-17	11:22	-	-	-	-	-	-	-	-	-	MW	Fry	1	51	51
3	ER1A-G1	14-Aug-17	EF	-	-	-	-	-	-	-	3	1,054	15.67	5.69	280	40	15	SR	LR-24	MW	Fry	1	45	45
3	ER1A-G2	15-Aug-17	EF	-	-	-	-	-	-	-	3	1,291	24.70	6.48	413	60	15	SR	LR-24	MW	Fry	3	48	53
3	ER1A-R	14-Aug-17	EF	-	-	-	-	-	-	-	3	1,007	23.20	5.69	300	40	15	SR	LR-24	MW	Fry	3	54	57

 Table D.6:
 Sampling Summary for Fish Collected by Electrofishing and Minnow Trapping for Fish Community (Density) Sampling, GHO LAEMP, August 2017

Notes: EB = brook trout; EF = electrofishing; MT = minnow trap; MW = mountain whitefish; NFC = no fish caught.

Reach Number	Site ID	Sample Date	Method	Trap Number	Species	Length (mm)	Weight (g)	Sex	Maturity
1	ERSC2-G1	15-Aug-17	EF	-	MW	50	1.3	U	
1	ERSC2-G1	15-Aug-17	EF	-	MW	55	1.5	<u> </u>	
1	ERSC2-G1 ERSC2-R	15-Aug-17	EF EF	-	MW EB	46 157	1.1 54	U U	I M
1	ERSC2-R	15-Aug-17 15-Aug-17	EF	-	MW	50	1.1	U	
1	ERSC2-R	15-Aug-17	EF	-	MW	54	1.4	U	1
1	ERSC2-R	15-Aug-17	EF	-	MW	46	0.8	U	· ·
1	ERSC2-R	15-Aug-17	EF	-	MW	52	1.1	U	I
1	ERSC2-R	15-Aug-17	EF	-	MW	54	1.2	U	I
1	ERSC2-R	15-Aug-17	EF	-	MW	50	1.1	U	I
1	ERSC2-R	15-Aug-17	EF	-	MW	50	-	U	I
1	ERSC2-R	15-Aug-17	EF	-	MW	52	-	U	I
1	ERSC2-R	15-Aug-17	EF	-	MW	51	-	U	I
1	ERSC2-G2	15-Aug-17	EF	-	MW	53	1.4	U	I
1	ERSC2-G2	15-Aug-17	EF	-	MW	51	1.3	U	I
1	ERSC2-G2	15-Aug-17	EF	-	MW	45	0.8	U	I
1	ERSC2-G2	15-Aug-17	EF	-	MW	46	1.1	U	<u> </u>
1	ERSC2-G2	15-Aug-17	EF	-	MW	53	1.5	U	
1	ERSC2-G2	15-Aug-17	EF	-	MW	54	1.3	U	
1	ERSC2-G2	15-Aug-17	EF	-	MW	48	1.2	<u> </u>	
1	ERSC2-G2	15-Aug-17	EF	-	MW	49	0.8	<u> </u>	
1	ERSC2-G2 ERSC2-G2	15-Aug-17 15-Aug-17	EF EF	-	MW MW	55 50	1.8 1.1	U U	
1	ERSC2-G2 ERSC2-G2	15-Aug-17 15-Aug-17	EF EF	-	MW	50	1.1	U	
1	ERSC2-G2 ERSC2-G2	15-Aug-17 15-Aug-17	EF EF	-	MW	-		U	
1	ERSC2-G2 ERSC2-G2	15-Aug-17 15-Aug-17	EF	-	MW	-		U	
1	ERSC2-G2 ERSC2-G2	15-Aug-17 15-Aug-17	EF	-	MW	-		U	
1	ERSC2-G2	15-Aug-17 15-Aug-17	EF	-	MW			U	
1	ERSC2-G2	15-Aug-17	EF	-	MW	-	<u> </u>	U	
1	ERSC2-G2	15-Aug-17	EF	-	MW	-	<u> </u>	U	1
1	ERSC2-G2	15-Aug-17	EF	-	MW	-	<u> </u>	U	· ·
1	ERSC2-G2	15-Aug-17	EF	-	MW	-	-	U	
1	ERSC2-G2	15-Aug-17	EF	-	MW	-	-	U	
1	ERSC2-G2	15-Aug-17	EF	-	MW	-	-	U	
1	ERSC2-G2	15-Aug-17	EF	-	MW	-	-	U	I
1	ERSC2-G2	15-Aug-17	EF	-	MW	-	-	U	I
1	ERSC2-G2	15-Aug-17	EF	-	MW	-	-	U	I
1	ERSC2-G2	15-Aug-17	EF	-	MW	-	-	U	I
1	ERSC2-G2	15-Aug-17	EF	-	MW	-	-	U	I
1	ERSC2-G2	15-Aug-17	EF	-	MW	-	-	U	I
1	ERSC2-G2	15-Aug-17	EF	-	MW	-	-	U	I
1	ERSC2-G2	15-Aug-17	EF	-	MW	-	-	U	I
1	ERSC2-G2	15-Aug-17	EF	-	MW	-	-	U	I
1	ERSC2-G2	15-Aug-17	EF	-	MW	-	-	U	I
1	ERSC2-G2	15-Aug-17	EF	-	MW	-	-	U	I
1	ERSC2-G2	15-Aug-17	EF	-	MW	-	-	U	l
1	ERSC2-G2	15-Aug-17	EF	-	MW	-	-	U	
1	ERSC2-G2	15-Aug-17	EF	-	MW	-	-	U	
2	ERSCW-FC	16-Aug-17	MT	1	MW	51	0.9	<u> </u>	
2	ERSCW-FC	16-Aug-17	MT	1	MW	50	1.1	U U	
2	ERSCW-FC	16-Aug-17	MT MT	1	MW MW	48 50	1.0 1.2	U	
	ERSCW-FC	16-Aug-17	MT	1	MW	49		U	
2	ERSCW-FC ERSCW-FC	16-Aug-17 16-Aug-17	MT	2 4	MW	49 54	1.1 1.2	U U	
2	ERSCW-FC	16-Aug-17 16-Aug-17	MT	4	MW	54 47	1.2	U	
2	ERSCW-FC	16-Aug-17 16-Aug-17	MT	6	MW	51	1.0	U	
2	ERSCW-FC	16-Aug-17	MT	8	MW	48	1.1	U	
2	ERSCW-FC	16-Aug-17	MT	8	MW	51	1.0	U	
2	ERSCW-FC	16-Aug-17	MT	11	MW	53	1.4	U	
2	ERSCW-FC	16-Aug-17	MT	12	MW	52	1.2	U	
2	ERSCW-FC	16-Aug-17	MT	13	MW	47	0.9	U	· ·
2	ERSCW-FC	16-Aug-17	MT	14	MW	46	0.9	U	I
2	ERSCW-FC	16-Aug-17	MT	14	MW	57	2.0	U	I
2	ERSCW-FC	16-Aug-17	MT	14	MW	49	1.0	U	
2	ERSCW-FC	16-Aug-17	MT	14	MW	44	0.9	U	I
2	ERSCW-FC	16-Aug-17	MT	15	MW	48	1.1	U	I
2	ERSCW-FC	16-Aug-17	MT	15	MW	48	1.0	U	I
2	ERSCW-FC	16-Aug-17	MT	15	MW	43	0.8	U	
2	ERSCW-FC	16-Aug-17	MT	15	MW	48	1.0	U	
2	ERSCW-FC	17-Aug-17	MT	8	MW	50	-	U	
2	ERSCW-FC	17-Aug-17	MT	11	MW	49	-	U	
2	ERSCW-FC	17-Aug-17	MT	11	MW	50	-	U	
2	ERSCW-FC	17-Aug-17	MT	13	MW	54	-	U	
2	ERSCW-FC	17-Aug-17	MT	13	MW	51	-	U	
2	ERSCW-FC	17-Aug-17	MT	14	MW	46	-	U	
2	ERSCW-FC	17-Aug-17	MT	15	MW	51	-	U	
3	ER1A-G1	14-Aug-17	EF	-	MW	45	1.0	<u> </u>	
3	ER1A-G2	15-Aug-17	EF	-	MW	48	0.8	<u> </u>	
3	ER1A-G2	15-Aug-17	EF	-	MW	53	1.1	<u> </u>	
3	ER1A-G2	15-Aug-17	EF	-	MW	50	-	<u> </u>	
3 3	ER1A-R	14-Aug-17	EF	-	MW	57	1.7	<u> </u>	
3	ER1A-R	14-Aug-17	EF	-	MW	54 50	1.5 1.4	U U	

 Table D.7: Physical Measurements and Sex Determination for Individual Fish Collected by Electrofishing for Fish

 Community (Density) Sampling, GHO LAEMP, August 2017

Notes: I = immature; M = mature; U = unknown.

 Table D.8:
 Sampling Summary for Fish Collected by Minnow Trapping for Fish

 Community (Density) Sampling in the Side Channel Wetland, GHO LAEMP, 2017

Site	Set Date	Pull Date	Area (m²)	Trapping Event Number	Trap Hours	Species	Number of Fish	CPUE (fish/hr)
ERSCW	16-Aug-17	17-Aug-17	716	1	365.7	MW	21	0.057
ERSCW	17-Aug-17	18-Aug-17	716	2	356.0	MW	7	0.020

Note: MW - Mountain Whitefish; CPUE - Catch-per-unit-effort.

APPENDIX E SELENIUM IN TISSUE

 Table E.1:
 Selenium Concentrations in Composite Benthic Invertebrate Tissue Samples

 from Lotic Areas
 Invertebrate Tissue Samples

Exposure Type	Station ID	Sample ID	Date Sampled	% Moisture	Selenium (mg/kg dry weight)
Reference	GH_ER2	ELUGH-BIT	10-Sep-17	84.33	6.6
		GH-ERSC4-BIT-01	08-Sep-17	85.25	9.4
	GH_ERSC4	GH-ERSC4-BIT-02	08-Sep-17	80.04	4.9
		GH-ERSC4-BIT-03	08-Sep-17	84.29	4.8
	GH_ER1A	GH-ER1A-BIT-01	09-Sep-17	88.10	3.7
Mine-		GH-ER1A-BIT-02	09-Sep-17	86.16	5.6
exposed		GH-ER1A-BIT-03	09-Sep-17	84.73	10
		GH-ERSC5-BIT-01	09-Sep-17	75.52	22
	RG_ERSC5	GH-ERSC5-BIT-02	09-Sep-17	84.93	9.2
		GH-ERSC5-BIT-03	09-Sep-17	84.64	16
	GH_ERC	EL20-BIT	10-Sep-17	84.03	5.1

Value > EVWQP level 1 benchmark of 11 mg/kg dw for dietary effects to fish (Teck 2014a).

(Level 1 benchmark for effects to invertebrates is 13 mg/kg dw.)

Value > upper limit of normal range of (7.79 mg/kg dw; Minnow 2018a).

Table E.3: Selenium Concentrations in Perlidae Benthic Invertebrate Tissue Samples	
from Lotic Areas	

Exposure Type	Station ID	Sample ID	Date Sampled	% Moisture	Selenium (mg/kg dry weight)
		ELUGH-PERL-1	10-Sep-17	72.44	4.0
Reference	GH_ER2	ELUGH-PERL-2	10-Sep-17	72.90	5.2
		ELUGH-PERL-3	10-Sep-17	65.32	3.7
		GH-ERSC4-PERL-01	08-Sep-17	71.63	4.5
	GH_ERSC4	GH-ERSC4-PERL-02	08-Sep-17	77.30	3.6
		GH-ERSC4-PERL-03	08-Sep-17	72.39	4.7
Mine-		GH-ER1A-PERL-01	09-Sep-17	77.73	4.6
exposed	GH_ER1A	GH-ER1A-PERL-02	09-Sep-17	69.65	5.2
cxposed		GH-ER1A-PERL-03	09-Sep-17	70.63	9.9
		GH-ERSC5-PERL-01	09-Sep-17	70.00	4.9
	RG_ERSC5	GH-ERSC5-PERL-02	09-Sep-17	80.40	5.1
		GH-ERSC5-PERL-03	09-Sep-17	74.02	4.4

Table E.4: Selenium Concentrations in Perlidae Benthic Invertebrate Tissue Samples from Lentic Areas Invertebrate Tissue Samples

Exposure Status	Station ID	Sample ID	Date Sampled	% Moisture	Selenium (mg/kg dry weight)	
		GH-SC1-P1-PERL-01	11-Sep-17	81.50	13	
	Pool-W-2	GH-SC1-P1-PERL-02	11-Sep-17	82.68	5.1	
Mine-		GH-SC1-P1-PERL-03	11-Sep-17	74.03	6.3	
exposed		GH-SC2-P3-PERL-01	12-Sep-17	76.87	7.9	
	Pool-E-7	GH-SC2-P3-PERL-02	12-Sep-17	76.22	9.0	
		GH-SC2-P3-PERL-03	12-Sep-17	80.78	7.8	

Table E.5: Selenium Concentrations in *Rhyacophila* Benthic Invertebrate Tissue Samples from Lotic Areas

Exposure Type	Station ID	Sample ID	Date Sampled	% Moisture	Selenium (mg/kg dry weight)	
Reference	GH_ER2	ELUGH-RHYAC	10-Sep-17	79.73	4.6	
	GH_ERSC4	GH-ERSC4-RHYAC	08-Sep-17	75.76	5.8	
Mine-	GH_ER1A	GH-ER1A-RHYAC	09-Sep-17	62.24	6.4	
exposed	RG_ERSC5	GH-ERSC5-RHYAC	09-Sep-17	73.03	7.6	
	GH_ERC	EL20-RHYAC	10-Sep-17	74.24	4.6	

Table E.6: Selenium Concentrations in Ephemeroptera Benthic Invertebrate Tissue Samples from Lotic Areas Samples from Lotic Areas

Exposure Type	Station ID	Sample ID	Date Sampled	% Moisture	Selenium (mg/kg dry weight)	
Reference	GH_ER2	ELUGH-MF	10-Sep-17	81.97	6.0	
	GH_ERSC4	GH-ERSC4-MF	08-Sep-17	85.38	5.4	
Mine-	GH_ER1A	GH-ER1A-MF	09-Sep-17	84.44	7.7	
exposed	RG_ERSC5	GH-ERSC5-MF	09-Sep-17	83.48	9.1	
	GH_ERC	EL20-MF	10-Sep-17	82.86	7.0	

Table E.7: Selenium Concentrations in Fish Tissue Samples from Lotic Areas

Exposure Type	Location	Species	Sample ID	Date Sampled	% Moisture	Selenium (mg/kg dry weight)
Mine- exposed	Elk River Side Channel	Bull trout	GH-GHSC-2017-BT01	27-Sep-17	84.75	5.9

Value > EVWQP level 1 effect benchmark of 9 mg/kg dw for muscle, developed for "other fish" species (Teck 2014). Note that the sex of this fish was indeterminable, and that the benchmark is based on a conversion from ovary concentration to muscle concentration

SELENIUM IN TISSUE

Laboratory Reports

T: 306-933-6932 F: 306-933-7922 Toll-free: 1-800-240-8808 E: analytical@src.sk.ca

www.src.sk.ca/analytical

SRC Group # 2017-10993

Oct 18, 2017

Minnow Environmental Inc. 2 Lamb Street Georgetown, ON L7G 3M9 Attn: Jess Tester

Date Samples Received: Sep-19-2017

Client P.O.: 17-24

All results have been reviewed and approved by a Qualified Person in accordance with the Saskatchewan Environmental Code, Corrective Action Plan Chapter, for the purposes of certifying a laboratory analysis

Results from Lab Sections 1 and 2 have been authorized by Keith Gipman, Supervisor Results from Lab Section 3 have been authorized by Pat Moser, Supervisor Results from Lab Sections 4 and 5 have been authorized by Vicky Snook, Supervisor Results from Lab Section 6 have been authorized by Marion McConnell, Supervisor

* Test methods and data are validated by the laboratory's Quality Assurance Program.

* Routine methods follow recognized procedures from sources such as

* Standard Methods for the Examination of Water and Wastewater APHA AWWA WEF

* Environment Canada

* US EPA

* CANMET

* The results reported relate only to the test samples as provided by the client.

* Samples will be kept for 30 days after the final report is sent. Please contact the lab if you have any special requirements.

* Additional information is available upon request.

This is a final report.

T: 306-933-6932 F: 306-933-7922 Toll-free: 1-800-240-8808 E: analytical@src.sk.ca

www.src.sk.ca/analytical

SRC Group # 2017-10993 Oct 18, 2017

Minnow Environmental Inc.

2 Lamb Street Georgetown, ON L7G 3M9 Attn: Jess Tester

Date Samples Received: Sep-19-2017

Client P.O.: 17-24

37997 37998 37999	09/16/2017 0	GH-SCW1-BIT-01 *TISSUE* GH-SCW1-BIT-02 *TISSUE* GH-SCW1-BIT-03 *TISSUE*			
Analyte	e	Units	37997	37998	37999
Lab Section	n 2 (ICP)				
Selenium	า	ug/g	2.7	7.3	10
Lab Section	n 6 (Misc.)				
Moisture		%	82.50	85.43	85.84
Results are re	ported on a dry b	pasis.			

SRC Group # 2017-10993

Oct 18, 2017

38000 38001 38002	09/16/2017 GH-SCW2-BIT-01 *TISSUE* 09/16/2017 GH-SCW2-BIT-02 *TISSUE* 09/16/2017 GH-SCW2-BIT-03 *TISSUE*			
Analyte	Units	38000	38001	38002
Lab Section	2 (ICP)			
Selenium	ug/g	17	12	13
Lab Section	6 (Misc.)			
Moisture	%	83.10	88.37	87.17
lesults are rep	oorted on a dry basis.			

Oct 18, 2017

This report was generated for samples included in SRC Group # 2017-10993

Quality Control Report

Jess Tester Minnow Environmental Inc. 2 Lamb Street Georgetown, ON L7G 3M9

Reference Materials and Standards:

A reference material of known concentration is used whenever possible as either a control sample or control standard and analyzed with each batch of samples. These "QC" results are used to assess the performance of the method and must be within clearly defined limits; otherwise corrective action is required.

QC Analysis	Units	Target Value	Obtained Value
Selenium	ug/g	3.45	3.76

Please note, duplicates could not be analyzed due to insufficient sample available.

All quality control results were within the specified limits and considered acceptable.

Roxane Ortmann - Quality Assurance Supervisor

T: 306-933-6932 F: 306-933-7922 Toll-free: 1-800-240-8808 E: analytical@src.sk.ca

www.src.sk.ca/analytical

SRC Group # 2017-10863

Oct 30, 2017

Minnow Environmental Inc. 2 Lamb Street Georgetown, ON L7G 3M9 Attn: Jess Tester

Date Samples Received: Sep-14-2017

Client P.O.: 17-24

All results have been reviewed and approved by a Qualified Person in accordance with the Saskatchewan Environmental Code, Corrective Action Plan Chapter, for the purposes of certifying a laboratory analysis

Results from Lab Sections 1 and 2 have been authorized by Keith Gipman, Supervisor Results from Lab Section 3 have been authorized by Pat Moser, Supervisor Results from Lab Sections 4 and 5 have been authorized by Vicky Snook, Supervisor Results from Lab Section 6 have been authorized by Marion McConnell, Supervisor

* Test methods and data are validated by the laboratory's Quality Assurance Program.

* Routine methods follow recognized procedures from sources such as

* Standard Methods for the Examination of Water and Wastewater APHA AWWA WEF

* Environment Canada

* US EPA

* CANMET

* The results reported relate only to the test samples as provided by the client.

* Samples will be kept for 30 days after the final report is sent. Please contact the lab if you have any special requirements.

* Additional information is available upon request.

This is a final report.

T: 306-933-6932 F: 306-933-7922 Toll-free: 1-800-240-8808 E: analytical@src.sk.ca

www.src.sk.ca/analytical

SRC Group # 2017-10863 Oct 30, 2017

Minnow Environmental Inc.

2 Lamb Street Georgetown, ON L7G 3M9 Attn: Jess Tester

Date Samples Received: Sep-14-2017

Client P.O.: 17-24

37322 37323 37324	09/09/2017 G	H - ER1A - BIT - 01 *TISSUE* H - ER1A - BIT - 02 *TISSUE* H - ER1A - BIT - 03 *TISSUE*			
Analyte	9	Units	37322	37323	37324
Lab Sectior	n 2 (ICP)				
Selenium	I	ug/g	3.7	5.6	10
Lab Sectior	n 6 (Misc.)				
Moisture		%	88.10	86.16	84.73
esults are rep	ported on a dry ba	isis.			

SRC Group # 2017-10863

Oct 30, 2017

37325 37326 37327	09/09/2017 GH - ER1A - PERL - 01 *TISSUE* 09/09/2017 GH - ER1A - PERL - 02 *TISSUE* 09/09/2017 GH - ER1A - PERL - 03 *TISSUE*			
Analyte	Units	37325	37326	37327
Lab Section 2	2 (ICP)			
Selenium	ug/g	4.6	5.2	9.9
Lab Section	6 (Misc.)			
Moisture	%	77.73	69.65	70.63
Results are repo	orted on a dry basis.			

SRC Group # 2017-10863

Oct 30, 2017

37328 37329 37330	09/09/2017 GH - ER1A - RHYAC *TISSUE* 09/09/2017 GH - ER1A - MF *TISSUE* 09/11/2017 GH - ERSC2 - BIT - 01 *TISSUE*			
Analyte	e Units	37328	37329	37330
Lab Section	n 2 (ICP)			
Selenium	n ug/g	6.4	7.7	5.5
Lab Section	n 6 (Misc.)			
Moisture	%	62.24	84.44	84.97
Results are re	ported on a dry basis.			

SRC Group # 2017-10863

Oct 30, 2017

37331 37332 37333	09/11/2017 GH - ERSC2 - BIT - 02 *TISSUE* 09/11/2017 GH - ERSC2 - BIT - 03 *TISSUE* 09/08/2017 GH - ERSC4 - BIT - 01 *TISSUE*			
Analyte	e Units	37331	37332	37333
Lab Section	n 2 (ICP)			
Selenium	n ug/g	5.9	8.8	9.4
Lab Section	n 6 (Misc.)			
Moisture	%	86.79	91.00	85.25
esults are re	ported on a dry basis.			

SRC Group # 2017-10863

Oct 30, 2017

37334 37335 37336	09/08/2017 GH - ERSC4 - BIT - 02 *TISSUE* 09/08/2017 GH - ERSC4 - BIT - 03 *TISSUE* 09/08/2017 GH - ERSC4 - PERL - 01 *TISSUE*			
Analyte	Units	37334	37335	37336
Lab Section	2 (ICP)			
Selenium	ug/g	4.9	4.8	4.5
Lab Section	6 (Misc.)			
Moisture	%	80.04	84.29	71.63
esults are repo	orted on a dry basis.			

SRC Group # 2017-10863

Oct 30, 2017

37337 37338 37339	09/08/2017 GH - ERSC4 - PERL - 02 *TISSUE* 09/08/2017 GH - ERSC4 - PERL - 03 *TISSUE* 09/08/2017 GH - ERSC4 - RHYAC *TISSUE*			
Analyte	Units	37337	37338	37339
Lab Section 2	2 (ICP)			
Selenium	ug/g	3.6	4.7	5.8
Lab Section 6	6 (Misc.)			
Moisture	%	77.30	72.39	75.76
esults are repo	rted on a dry basis.			

SRC Group # 2017-10863

Oct 30, 2017

37340 37341 37342	09/08/2017 GH - ERSC4 - MF *TISSUE* 09/09/2017 GH - ERSC5 - RHYAC *TISSUE* 09/09/2017 GH - ERSC5 - MF *TISSUE*				
Analyte		Units	37340	37341	37342
Lab Section 2	? (ICP)				
Selenium		ug/g	5.4	7.6	9.1
Lab Section 6	6 (Misc.)				
Moisture		%	85.38	73.03	83.48
esults are repo	rted on a dry basis.				

SRC Group # 2017-10863

Oct 30, 2017

37343 37344 37345	09/09/2017 GH - ERSC5 - PERL - 01 *TISSUE* 09/09/2017 GH - ERSC5 - PERL - 02 *TISSUE* 09/09/2017 GH - ERSC5 - PERL - 03 *TISSUE*			
Analyte	Units	37343	37344	37345
Lab Section 2	2 (ICP)			
Selenium	ug/g	4.9	5.1	4.4
Lab Section 6	ð (Misc.)			
Moisture	%	70.00	80.40	74.02
esults are repo	rted on a dry basis.			

SRC Group # 2017-10863

Oct 30, 2017

37346 37347 37348	09/09/2017 GH - ERSC5 - BIT - 01 *TISSUE* 09/09/2017 GH - ERSC5 - BIT - 02 *TISSUE* 09/09/2017 GH - ERSC5 - BIT - 03 *TISSUE*			
Analyte	Units	37346	37347	37348
Lab Section 2	2 (ICP)			
Selenium	ug/g	22	9.2	16
Lab Section	6 (Misc.)			
Moisture	%	75.52	84.93	84.64
esults are repo	rted on a dry basis.			

SRC Group # 2017-10863

Oct 30, 2017

37349 37350 37351	09/11/2017 GH - SC1 - P1 - BIT - 01 *TISSUE* 09/11/2017 GH - SC1 - P1 - BIT - 02 *TISSUE* 09/11/2017 GH - SC1 - P1 - BIT - 03 *TISSUE*						
Analyte	Units	37349	37350	37351			
Lab Section 2 (ICP)							
Selenium	ug/g	7.3	4.9	5.6			
Lab Section	6 (Misc.)						
Moisture	%	81.02	78.37	76.69			
Results are rep	orted on a dry basis.						

SRC Group # 2017-10863

Oct 30, 2017

37352 37353 37354	09/11/2017 GH - SC1 - P1 - PERL - 01 *TISSUE* 09/11/2017 GH - SC1 - P1 - PERL - 02 *TISSUE* 09/11/2017 GH - SC1 - P1 - PERL - 03 *TISSUE*						
Analyte	Units	37352	37353	37354			
Lab Section 2	2 (ICP)						
Selenium	ug/g	13	5.1	6.3			
Lab Section	6 (Misc.)						
Moisture	%	81.50	82.68	74.03			
esults are repo	rted on a dry basis.						

SRC Group # 2017-10863

Oct 30, 2017

37355 37356 37357	09/11/2017 GH - SC2 - P1 - BIT - 01 *TISSUE* 09/11/2017 GH - SC2 - P1 - BIT - 02 *TISSUE* 09/11/2017 GH - SC2 - P1 - BIT - 03 *TISSUE*						
Analyte	unit:	s 3	7355	37356	37357		
Lab Section	n 2 (ICP)						
Selenium	ug/g	9.6	6 8	8.3	14		
Lab Sectior	n 6 (Misc.)						
Moisture	%	83	3.71	86.08	80.68		
Results are rep	ported on a dry basis.						

SRC Group # 2017-10863

Oct 30, 2017

37358 37359 37360	09/12/2017 GH - SC2 - P2 - BIT - 01 *TISSUE* 09/12/2017 GH - SC2 - P2 - BIT - 02 *TISSUE* 09/12/2017 GH - SC2 - P2 - BIT - 03 *TISSUE*						
Analyte	Units	37358	37359	37360			
Lab Section	2 (ICP)						
Selenium	ug/g	13	10	11			
Lab Section	6 (Misc.)						
Moisture	%	86.23	87.14	84.02			
Results are reported on a dry basis.							

SRC Group # 2017-10863

Oct 30, 2017

37361 37362 37363	09/12/2017 GH - SC2 - P3 - BIT - 01 *TISSUE* 09/12/2017 GH - SC2 - P3 - BIT - 02 *TISSUE* 09/12/2017 GH - SC2 - P3 - BIT - 03 *TISSUE*					
Analyte	Units	37361	37362	37363		
Lab Section	2 (ICP)					
Selenium	ug/g	7.6	11	21		
Lab Section	6 (Misc.)					
Moisture	%	82.59	83.72	82.15		
Results are repo	orted on a dry basis.					

T: 306-933-6932 F: 306-933-7922 Toll-free: 1-800-240-8808 E: analytical@src.sk.ca

www.src.sk.ca/analytical

SRC Group # 2017-10863 Oct 30, 2017

37364 37365 37366	09/12/2017 GH - SC2 - P3 - PERL - 01 *TISSUE* 09/12/2017 GH - SC2 - P3 - PERL - 02 *TISSUE* 09/12/2017 GH - SC2 - P3 - PERL - 03 *TISSUE*						
Analyte	Units	37364	37365	37366			
Lab Section 2	2 (ICP)						
Selenium	ug/g	7.9	9.0	7.8			
Lab Section	6 (Misc.)						
Moisture	%	76.87	76.22	80.78			
esults are repo	orted on a dry basis.						

Oct 30, 2017

This report was generated for samples included in SRC Group # 2017-10863

Quality Control Report

Jess Tester Minnow Environmental Inc. 2 Lamb Street Georgetown, ON L7G 3M9

Reference Materials and Standards:

A reference material of known concentration is used whenever possible as either a control sample or control standard and analyzed with each batch of samples. These "QC" results are used to assess the performance of the method and must be within clearly defined limits; otherwise corrective action is required.

QC Analysis	Units	Target Value	Obtained Value
Selenium	ug/g	3.45	3.39
Selenium	ug/g	3.45	3.07

Please note, duplicates could not be analyzed due to insufficient sample available.

All quality control results were within the specified limits and considered acceptable.

Roxane Ortmann - Quality Assurance Supervisor

T: 306-933-6932 F: 306-933-7922 Toll-free: 1-800-240-8808 E: analytical@src.sk.ca

www.src.sk.ca/analytical

SRC Group # 2017-14712

Dec 22, 2017

Minnow Environmental Inc. 2 Lamb Street Georgetown, ON L7G 3M9 Attn: Jess Tester

Date Samples Received: Dec-12-2017

Client P.O.: 17-24

All results have been reviewed and approved by a Qualified Person in accordance with the Saskatchewan Environmental Code, Corrective Action Plan Chapter, for the purposes of certifying a laboratory analysis

Results from Lab Sections 1 and 2 have been authorized by Keith Gipman, Supervisor Results from Lab Section 3 have been authorized by Pat Moser, Supervisor Results from Lab Sections 4 and 5 have been authorized by Vicky Snook, Supervisor Results from Lab Section 6 have been authorized by Marion McConnell, Supervisor

* Test methods and data are validated by the laboratory's Quality Assurance Program.

* Routine methods follow recognized procedures from sources such as

* Standard Methods for the Examination of Water and Wastewater APHA AWWA WEF

* Environment Canada

* US EPA

* CANMET

* The results reported relate only to the test samples as provided by the client.

* Samples will be kept for 30 days after the final report is sent. Please contact the lab if you have any special requirements.

* Additional information is available upon request.

This is a final report.

T: 306-933-6932 F: 306-933-7922 Toll-free: 1-800-240-8808 E: analytical@src.sk.ca

www.src.sk.ca/analytical

SRC Group # 2017-14712

Dec 22, 2017

Minnow Environmental Inc.

2 Lamb Street Georgetown, ON L7G 3M9 Attn: Jess Tester

Date Samples Received: Dec-12-2017

Client P.O.: 17-24

51122 09/27/2017 GH-GHSC-2017-BT01 *Freeze Dried Tissue 0.005g to 50mL*

Analyte	Units	51122	
Lab Section 2 (ICP)			
Selenium	ug/g	5.9	
Lab Section 6 (Misc.)			
Moisture	%	84.75	
Results are reported on a dry b	basis.		

Dec 22, 2017

This report was generated for samples included in SRC Group # 2017-14712

Quality Control Report

Jess Tester Minnow Environmental Inc. 2 Lamb Street Georgetown, ON L7G 3M9

Reference Materials and Standards:

A reference material of known concentration is used whenever possible as either a control sample or control standard and analyzed with each batch of samples. These "QC" results are used to assess the performance of the method and must be within clearly defined limits; otherwise corrective action is required.

QC Analysis	Units	Target Value	Obtained Value
Selenium	ug/g	3.45	3.74

All quality control results were within the specified limits and considered acceptable.

Roxane Ortmann - Quality Assurance Supervisor

APPENDIX F BENTHIC INVERTEBRATE COMMUNITY AND BIOMASS

Table F.1: Habitat Information Associated with Lotic Areas Sampled during the Benthic Invertebrate Survey, September 2017

	Station ID	Reference	Reference Mine-exposed					
Station ID		GH_ER2	GH_ERSC4	GH_ER1A	RG_ERSC5	GH_ERC		
Wat	erbody	Elk River	Elk River Side Channel	Elk River Side Channel	Elk River Side Channel	Elk River		
Date	Sampled	10-Sep-17	8-Sep-17	8-Sep-17	9-Sep-17	16-Sep-17		
Zone	e 11 UTMs - E	646739	648111	648378	648275	648926		
Zone	e 11 UTMs - N	5557609	5552523	5551654	5550608	5548802		
Sam	plers' Initials	JT/SW	JT/SW	JT/SW	JT/SW	JT/SW		
Hab	itat Characteristics							
Surr	ounding Land Use	forest, livestock, logging	forest, livestock, logging, mining					
Lenç	gth of Reach Assessed (m)	100	30	150	100	100		
	% Riffle	50	30	30	40	45		
itat	% Run	35	60	60	45	50		
Habitat	% Rapids	-	-	-	-	-		
-	% Pool/Back Eddy	15	10	10	15	5		
	% Bedrock	-	-	-	-	-		
	% Boulder	5	-	-	-	5		
ate	% Cobble	60	10	15	35	50		
Substrate	% Pebble	15	25	20	35	30		
Sub	% Gravel	10	25	15	20	10		
•,	% Sand/Finer	5	40	50	5	5		
	% Organic	5	-	-	5	-		
Can	opy Coverage (%)	0	79	44	66	0		
	amside Vegetation st dominant first)	shrubs, ferns/grass, deciduous trees, coniferous trees	coniferous trees, ferns/grass, shrubs, deciduous trees					
Mac	rophyte Coverage (%)	0	0	0	0	0		
	phyton Coverage	1	2	3	2	2		
Ban	k Stability	moderate	moderate	moderate	moderate	moderate		
	er Colour & Clarity	colourless, clear	colourless, clear	colourless, clear	colourless, clear	colourless, clear		
Cha	nnel Measurements				· · · · · · · · · · · · · · · · · · ·			
Ban	kfull Width (m)	50	12.9	8	8.3	46		
Wet	ted Width (m)	17	5.6	5.5	6.8	28		
Ban	kfull-Wetted Depth (cm)	2	0.80	0.73	1	150		
Grad	dient (%)	1	1	1	1	1.5		
CAE	BIN							
Sam	plers' Initials	JT	JT	JT	JT	JT		
Sam	Ipling Time (min)	3	3	3	3	3		
	I Kick Distance (m)	12	14	15	14	11		
	ber of Replicates	1	1	1	3	1		
	ber of Jars	1	1	1	1	1		
Num	ber of transects	0.75	3	3	2	incomplete transects		
Dist	ance from shore (m)	10	-	-	-	10		

Station ID					Mine-exposed			
		RG_GH-SCW1	RG_GH-SCW2	Pool-W-1	Pool-W-2	Pool-E-2	Pool-E-6	Pool-E-7
Wate	erbody	Elk River Side Channel Wetland	Elk River Side Channel Wetland	Elk River Side Channel Pool	Elk River Side Channel Pool	Elk River Side Channel Pool	Elk River Side Channel Pool	Elk River Side Channel Pool
Date	Sampled	16-Sep-17	16-Sep-17	12-Sep-17	12-Sep-17	12-Sep-17	12-Sep-17	12-Sep-17
Zone 11 UTMs - E		648340	648375	648253	648380	648561	648675	648782
Zone 11 UTMs - N		5550224	5550200	5549846	5549321	5549475	5549296	5549097
Samplers' Initials		JT/SW	JT/SW	JT/SW	JT/SW	JT/SW	JT/SW	JT/SW
Habi	tat Characteristics							
	ounding Land Use	forest, livestock, logging, mining	forest, livestock, logging, mining	forest, livestock, logging, mining	forest, livestock, logging, mining	forest, livestock, logging, mining	forest, livestock, logging, mining	forest, livestock, logging, mining
Leng	th of Reach Assessed (m)	50	50	50	30	30	30	30
÷	% Riffle	-	-	-	-	-	-	-
oitai	% Run	-	-	-	-	-	-	-
Habitat	% Rapids	-	-	-	-	-	-	-
	% Pool/Back Eddy	100	100	100	100	100	100	100
	% Bedrock	-	-	-	-	-	0	-
	% Boulder	-	-	-	-	-	0	-
ate	% Cobble	5	5	5	5	45	35	40
Substrate	% Pebble	5	5	10	25	30	25	30
Sub	% Gravel	5	5	10	25	10	20	20
	% Sand/Finer	80	80	65	40	10	10	5
	% Organic	8	8	10	5	5	5	5
Cano	opy Coverage (%)	60	60	31.75	70.25	61	75	77
(mos	amside Vegetation at dominant first)	coniferous trees, ferns/grass, shrubs, deciduous trees	coniferous trees, ferns/grass, shrubs, deciduous trees	coniferous trees, ferns/grass, shrubs, deciduous trees	coniferous trees, ferns/grass, shrubs, deciduous trees	coniferous trees, ferns/grass, shrubs	coniferous trees, ferns/grass, shrubs, deciduous trees	coniferous trees, ferns/grass, shrubs
Mac	rophyte Coverage (%)	0	0	0	0	1 - 25	0	0
Perip	ohyton Coverage	1	1	1	1	1	1	1
Banl	< Stability	stable, no erosion	stable, no erosion	moderate	moderate	stable, no erosion	stable, no erosion	stable, no erosion
Wate	er Colour & Clarity	colourless, clear	colourless, clear	colourless, clear	colourless, cloudy	colourless, clear	colourless, clear	colourless, clear

Table F.2: Habitat Information Associated with Mine-exposed Lentic Areas Sampled during the Benthic Invertebrate Survey, September 2017

Table F.3: Total Benthic Invertabrate Abundance in 3-Minute Travelling Kick Samples Collected at Lotic Stations, Based on Lowest Practical Level of Taxonomy

Organism Identification	Reference			-	xposed		
Phylum: Arthropoda	GH_ER2 0	GH_ER1A 0	GH_ERSC4 0	RG_ERSC5-1 0	RG_ERSC5-2 0	RG_ERSC5-3 0	GH_ERC 0
Subphylum: Hexapoda	0	0	0	0	0	0	0
Order: Ephemeroptera	0	0	0	0	0	0	0
Family: Ameletidae	0	0 14	0 50	0	0 57	0 14	0
Family: Baetidae	0	0	138	33	29	71	1,080
Acentrella Baetis	0 420	14 714	0 500	0 633	0 314	0 343	0 1,420
Baetis rhodani group	180	143	113	67	43	114	640
Family: Ephemerellidae	120 0	71 29	250 13	100	114	143 29	160 60
Drunella doddsii	660	100	175	0 150	29 114	114	240
Drunella spinifera Ephemerella excrucians complex	0	0	13 13	0	0	0	0
Family: Heptageniidae	1,900	1,686	1,125	2,467	1,929	2,029	1,180
Cinygmula	0 80	29 57	50 0	0 17	0	14 29	0 60
Epeorus Rhithrogena	320	600	175	183	257	357	120
Order: Plecoptera	60	0	0	0	0	0	20
Family: Capniidae Family: Chloroperlidae	60 120	0 57	50 0	133 33	57 0	43 29	200 40
Neaviperla	0	0	0	0	14	0	0
Sweltsa Family: Leuctridae	0	0	0	67 0	29 0	43 0	40 20
Family: Nemouridae	140	0	13	50	0	29	20
Zapada Zapada cinctipes	0	0 43	88 138	117 67	0 86	0 114	0 100
Zapada columbiana	0	0	13	0	0	0	0
Family: Perlidae Hesperoperla	0 80	57 14	38 13	67 50	0 57	43 29	200
Family: Perlodidae	0	0	50	33	43	14	200
Kogotus	0 20	14 0	13 0	0	14 0	0	0
Megarcys Family: Taeniopterygidae	0	0	0	0	29	0	40
Taenionema	160	129	50	33 0	57	57	140
Order: Trichoptera Family: Brachycentridae	0 120	0 29	0 150	50	29 14	0 14	<u>80</u> 100
Micrasema	0	0	0	0	0	14	0
Family: Glossosomatidae	0	0	0	17 0	0	0	0
Family: Hydropsychidae	0	0	13	17	0	0	20
Arctopsyche Family: Polycentropodidae	120 0	0	38 0	0	14 0	0	<u>40</u> 0
Neureclipsis	0	14	0	0	0	0	0
Family: Rhyacophilidae Rhyacophila	0	0	0 13	0 33	0	0	0 140
Rhyacophila betteni group	0	0	13	0	0	0	0
Rhyacophila brunnea/vemna group Order: Coleoptera	40	0	63 0	17 0	14 0	0	<u>40</u> 0
Family: Curculionidae	0	0	0	0	14	0	0
Family: Elmidae Heterlimnius	0	86 29	0	17 0	29 14	0	0
Order: Diptera	0	0	0	0	0	0	0
Family: Chironomidae	20 0	0	50 0	0	43 0	29 0	240 0
Subfamily: Chironominae Tribe: Tanytarsini	0	0	0	0	0	0	0
Constempellina sp. C	60 60	0 14	0 25	0 67	14 43	0 43	0 180
Micropsectra Stempellinella	0	0	13	0	43	43	0
Subfamily: Diamesinae	0	0	0	0	0	0	0
Tribe: Diamesini Diamesa	0	0	0	0	0	0	0 40
Pagastia	60	14	0	0	0	0	60
Pseudodiamesa Subfamily: Orthocladiinae	0	0	0	0	14 0	0	0
Brillia	0	14	0	0	14	0	0
Corynoneura Eukiefferiella	0 20	0 14	0 25	0 33	14 0	0 14	0 340
Hydrobaenus	0	0	13	17	57	0	0
Limnophyes Orthocladius complex	0 120	14 0	0 38	17 0	0	0 14	0 940
Orthocladius lignicola	0	14	0	0	0	0	0
Rheocricotopus Tvetenia	0	14 0	0 25	83 0	14 0	43 0	0 120
Monodiamesa	0	0	0	0	0	0	0
Subfamily: Tanypodinae Tribe: Pentaneurini	0	0	0	0	0	0	0
Thienemannimyia group	0	0	13	0	0	14	0
Family: Empididae Neoplasta	20 20	29 43	13 38	0 33	0	0 29	0 20
Wiedemannia	0	0	0	0	0	0	20
Glutops Family: Psychodidae	0	0	0	0	0	0 0	0
Pericoma/Telmatoscopus	1,100	543	238	367	857	514	280
Family: Simuliidae	0	0	0	17	0	0	20
<i>Tabanus</i> Family: Tipulidae	0	0 14	0	0	0	0	0
Antocha	0	0	25	0	0	0	0
Dicranota Hexatoma	0 20	0	0	0	0	0	<u>40</u> 0
Subphylum: Chelicerata	0	0	0	0	0	0	0
Class: Arachnida Order: Trombidiformes	0	0	0 13	0	0	0	0
Aturus	0	0	0	0	0	0	0
Family: Hygrobatidae	0	0 14	0 13	0	0	0 0	0
Atractides Family: Lebertiidae	0	0	0	0	0	0	0
Lebertia	60	143	100	17	71	29	20

Table F.3: Total Benthic Invertabrate Abundance in 3-Minute Travelling Kick Samples Collected at Lotic Stations, Based on Lowest Practical Level of Taxonomy

Organism Identification	Reference			Mine-e	xposed		
Organism Identification	GH_ER2	GH_ER1A	GH_ERSC4	RG_ERSC5-1	RG_ERSC5-2	RG_ERSC5-3	GH_ERC
Family: Sperchontidae	0	0	0	0	0	0	0
Sperchon	0	0	0	17	0	0	20
Sperchonopsis	0	0	0	0	0	0	0
Family: Torrenticolidae	0	0	0	0	0	0	0
Testudacarus	0	0	63	0	0	0	20
Order: Sarcoptiformes	0	0	0	0	0	0	0
Order: Oribatida	20	0	0	0	0	0	0
Phylum: Annelida	0	0	0	0	0	0	0
Subphylum: Clitellata	0	0	0	0	0	0	0
Class: Oligochaeta	0	0	0	0	0	0	0
Order: Tubificida	0	0	0	0	0	0	0
Family: Enchytraeidae	0	0	0	0	0	0	0
Enchytraeus	0	0	225	0	0	57	0
Totals:	6,180	4,913	4,301	5,119	4,541	4,472	8,760
Taxa present but not included:							
Phylum: Arthropoda	0	0	0	0	0	0	0
Subphylum: Crustacea	0	0	0	0	0	0	0
Class: Ostracoda	20	14	13	17	14	0	0
Phylum: Annelida	0	0	0	0	0	0	0
Subphylum: Clitellata	0	0	0	0	0	0	0
Class: Oligochaeta	0	0	0	0	0	0	0
Order: Tubificida	0	0	0	0	0	0	0
Family: Lumbricidae	20	0	0	0	14	0	0
Phylum: Nemata	20	14	13	17	14	14	20
Phylum: Platyhelminthes	0	0	0	0	0	0	0
Class: Turbellaria	0	14	13	0	14	14	0
Totals:	60	42	39	34	56	28	20

			•		GH_	ER2	•		•	
Таха	1		2		3		4		5	
ROUNDWORMS	Organisms	Biomass	Organisms	Biomass	Organisms	Biomass	Organisms	Biomass	Organisms	Biomass
P. Nemata	40	0.0007	40	0.0013	70	0.0009	10	0.0010	100	0.0021
FLATWORMS	40	0.0007	40	0.0013	70	0.0009	10	0.0010	100	0.0021
P. Platyhelminthes										
Cl. Turbellaria										
F. Planariidae	_		_	-	-	_	_	-	-	
ANNELIDS	_	-	_	-	_	-	_	-	_	-
P. Annelida										
WORMS										
CI. Oligochaeta										
F. Enchytraeidae	-	-	-	-	-	-	-	-	-	-
F. Lumbricidae	-	-	-	-	-	-	10	0.0019	-	-
F. Sparganophilidae	-	-	-	-	-	-	-	-	-	
ARTHROPODS										
MITES										
Cl. Arachnida									1	
Subcl. Acari	20	0.0006	180	0.0042	70	0.0013	60	0.0014	30	0.0008
SEED SHRIMPS		0.0000		0.0012		0.0010		0.0011		0.0000
Cl. Ostracoda	-	-	10	0.0005	-	-	-	-	10	0.0007
INSECTS				0.0000						0.0001
Cl. Insecta										
BEETLES										
O. Coleoptera										
F. Elmidae	-	-	10	0.0002	-	-	-	-	-	-
MAYFLIES			10	0.0002						
O. Ephemeroptera										
F. Ameletidae	-	-	20	0.0024	10	0.0002	40	0.0529	20	0.0346
F. Baetidae	120	0.0184	340	0.0381	170	0.0002	90	0.0045	220	0.0229
F. Ephemerellidae	400	0.0665	750	0.1121	690	0.0832	350	0.0497	670	0.1050
F. Heptageniidae	1000	0.1395	1310	0.1121	2620	0.2341	590	0.0365	1170	0.0784
STONEFLIES	1000	0.1000	1010	0.1101	2020	0.2011	000	0.0000	1110	0.0701
O. Plecoptera										
F. Capniidae	40	0.0014	60	0.0043	160	0.0068	50	0.0012	60	0.0023
F. Chloroperlidae	40	0.0049	30	0.0051	100	0.0003	20	0.0012	10	0.0020
F. Leuctridae	10	0.0014	-	-	10	0.0004	10	0.00012	-	-
F. Nemouridae	10	0.0005	90	0.0044	10	0.0003	20	0.0001	20	0.0005
F. Perlidae	20	0.0383	40	0.0238	10	0.0724	10	0.0002	30	0.0240
F. Perlodidae	40	0.0116	20	0.00200	60	0.0306	-	-	20	0.00240
F. Taeniopterygidae	180	0.0059	200	0.0089	270	0.0076	70	0.0019	120	0.0064
CADDISFLIES	100	0.0000	200	0.0000	210	0.0010	10	0.0010	120	0.0001
O. Trichoptera										
F. Apataniidae	-	-	-	-	-	-	-	-	-	-
F. Brachycentridae	10	0.0004	-	-	10	0.0001	10	0.0004	20	0.0001
F. Glossosomatidae	20	0.0022	10	0.0012	-	-	-	-	10	0.0002
F. Hydropsychidae	40	0.0037	30	0.0036	20	0.0012	10	0.0006	10	0.0010
F. Lepidostomatidae	-	-	-	-	-	-	-	-	-	-
F. Limnephilidae	10	0.0005	-	-	-	-	-	-	-	-
F. Rhyacophilidae	20	0.0299	20	0.0174	20	0.0068	10	0.0240	10	0.0021
TRUE FLIES			İ		İ		İ	-	İ	
O. Diptera									İ	
F. Ceratopogonidae	-	-	10	0.0008	-	-	10	0.0002	-	-
F. Chironomidae	170	0.0100	400	0.0190	200	0.0156	290	0.0058	290	0.0244
F. Empididae	10	0.0004	-	-	10	0.0012	50	0.0046	10	0.0004
F. Pelecorhyncidae	-	-	-	-	-	-	-	-	-	-
F. Psychodidae	430	0.0206	360	0.0132	330	0.0095	210	0.0065	100	0.0031
F. Simuliidae	-	-	-	-	-	-	-	-	-	-
F. Tipulidae	10	0.0007	10	0.0003	-	-	10	0.0004	-	-
Total Number of Organisms	2640		3940		4750		1930		2930	
Total Number of Taxa ^b	21		21		19		21		20	
Total Biomass (g)		0.3581		0.3811	-	0.4939		0.1951	-	0.3176

^a Densities expressed per m².

			_		GH_E	R1A	-		_	
Таха	1		2		3		4		5	
ROUNDWORMS	Organisms	Biomass	Organisms	Biomass	Organisms	Biomass	Organisms	Biomass	Organisms	Biomass
P. Nemata	20	0.0006	80	0.0128	70	0.0013	20	0.0015	50	0.0006
FLATWORMS	20	0.0006	60	0.0126	70	0.0013	20	0.0015	50	0.0006
P. Platyhelminthes										
Cl. Turbellaria	-			-	-			-	-	
F. Planariidae ANNELIDS	-	-	-	-	-	-	-	-	-	-
P. Annelida										
WORMS										
CI. Oligochaeta			10	0.0000						
F. Enchytraeidae	-	-	10	0.0006	-	-	-	-	-	-
F. Lumbricidae	-	-	-	-	-	-	-	-	-	-
F. Sparganophilidae	-	-	-	-	-	-	-	-	-	-
ARTHROPODS				-						
MITES										
Cl. Arachnida		0.00				0.00		0.00		0.000
Subcl. Acari	10	0.0005	-	-	30	0.0006	110	0.0020	30	0.0007
SEED SHRIMPS										
CI. Ostracoda	-	-	-	-	10	0.0003	-	-	-	-
INSECTS										
Cl. Insecta										
BEETLES										
O. Coleoptera										
F. Elmidae	120	0.0054	10	0.0006	10	0.0002	50	0.0026	10	0.0002
MAYFLIES										
O. Ephemeroptera										
F. Ameletidae	50	0.0462	10	0.0206	150	0.1711	100	0.1227	10	0.0060
F. Baetidae	50	0.0075	510	0.0501	140	0.0162	170	0.0180	120	0.0203
F. Ephemerellidae	50	0.0045	70	0.0055	250	0.0220	120	0.0109	140	0.0105
F. Heptageniidae	860	0.0368	910	0.1348	1300	0.0876	1220	0.1564	1120	0.0872
STONEFLIES										
O. Plecoptera										
F. Capniidae	-	-	-	-	10	0.0001	-	-	10	0.0002
F. Chloroperlidae	30	0.0006	30	0.0017	-	-	10	0.0010	20	0.0014
F. Leuctridae	-	-	-	-	-	-	-	-	10	0.0007
F. Nemouridae	10	0.0006	-	-	20	0.0010	20	0.0013	50	0.0015
F. Perlidae	20	0.1344	20	0.0065	40	0.0147	30	0.0314	80	0.0287
F. Perlodidae	-	-	-	-	-	-	20	0.0007	10	0.0006
F. Taeniopterygidae	-	-	60	0.0017	-	-	-	-	-	-
CADDISFLIES										
O. Trichoptera										
F. Apataniidae	-	-	-	-	-	-	-	-	-	-
F. Brachycentridae	-	-	10	0.0102	-	-	-	-	80	0.0114
F. Glossosomatidae	-	-	10	0.0006	-	-	10	0.0002	-	-
F. Hydropsychidae	-	-	-	-	-	-	-	-	-	-
F. Lepidostomatidae	-	-	-	-	-	-	-	-	-	-
F. Limnephilidae	-	-	10	0.0006	-	-	-	-	-	-
F. Rhyacophilidae	30	0.0124	10	0.0005	30	0.0088	10	0.0001	20	0.0061
TRUE FLIES		0.0124	10	0.0000		0.0000	10	0.0001	20	0.0001
O. Diptera										
F. Ceratopogonidae	-	_	_	_	-	_	_	_	-	_
F. Chironomidae	- 30	0.0009	- 10	0.0007	30	0.0012	- 80	- 0.0024	60	0.0012
F. Empididae	30	0.0009	10	0.0007	20	0.0012	80 50	0.0024	50	0.0012
										0.0030
F. Pelecorhyncidae	-	-	-	-	-	-	10	0.0006	-	-
F. Psychodidae	80	0.0018	50	0.0022	80	0.0022	120	0.0023	80	0.0012
F. Simuliidae	-	-	40	0.0059	10	0.0010	-	-	10	0.0018
F. Tipulidae	-	-	10	0.0012	-	-	10	0.0001	-	-
Total Number of Organisms	1390		1870		2200		2160		1960	
Total Number of Taxa ^b	14		19		16		18		19	
Total Biomass (g)		0.2531		0.2579		0.3302		0.3583		0.1833

^a Densities expressed per m².

					GH_EI	RSC4				
Таха	1		2		3		4		5	6
	Organisms	Biomass	Organisms	Biomass	Organisms	Biomass	Organisms	Biomass	Organisms	Biomass
ROUNDWORMS										
P. Nemata	40	0.0005	10	0.0004	120	0.0074	10	0.0001	20	0.0001
FLATWORMS										
P. Platyhelminthes										
Cl. Turbellaria										
F. Planariidae	-	-	20	0.0067	-	-	30	0.0037	10	0.0006
ANNELIDS										
P. Annelida										
WORMS										
CI. Oligochaeta										
F. Enchytraeidae	30	0.0002	80	0.0010	20	0.0002	50	0.0002	90	0.0009
F. Lumbricidae	-	-	-	-	-	-	-	-	-	-
F. Sparganophilidae	10	0.0442	-	-	-	-	-	-	-	-
ARTHROPODS										
MITES										
Cl. Arachnida										
Subcl. Acari	60	0.0007	-	-	20	0.0012	60	0.0009	50	0.0009
SEED SHRIMPS										
CI. Ostracoda	-	-	-	-	-	-	10	0.0001	10	0.0002
INSECTS										
Cl. Insecta										
BEETLES										
O. Coleoptera										
F. Elmidae	-	-	-	-	20	0.0060	30	0.0020	70	0.0058
MAYFLIES										
O. Ephemeroptera										
F. Ameletidae	30	0.0065	-	-	20	0.0452	90	0.0354	-	-
F. Baetidae	100	0.0219	50	0.0074	20	0.0068	140	0.0214	30	0.0082
F. Ephemerellidae	140	0.0105	170	0.0254	320	0.0430	150	0.0103	150	0.0106
F. Heptageniidae	170	0.0053	370	0.0262	1600	0.1178	510	0.0148	110	0.0100
STONEFLIES	170	0.0000	0/0	0.0202	1000	0.1170	010	0.0140	110	0.0022
O. Plecoptera										
F. Capniidae	10	0.0004	-		_	_	_		_	_
F. Chloroperlidae	20	0.0025	-	_	220	0.0356	20	0.0024	40	0.0046
F. Leuctridae	-	0.0023	_		220	0.0030	- 20	0.0024	40	0.0040
F. Nemouridae	40	0.0013	20	0.0016	40	0.0020	40	0.0033	30	0.0011
F. Perlidae	40	-	20		40 50	0.0080	40 30			-
	- 30		- 20	0.1253	50	0.4140	- 30	0.0834	-	-
F. Perlodidae		0.0011		-		-		-		
F. Taeniopterygidae CADDISFLIES	20	0.0004	-	-	-	-	-	-	-	-
O. Trichoptera									10	0.0055
F. Apataniidae	-	-	-	-	-	-	-	-	10	0.0055
F. Brachycentridae	10	0.0001	-	-	10	0.0004	-	-	10	0.0001
F. Glossosomatidae	10	0.0008	-	-	-	-	-	-	10	0.0017
F. Hydropsychidae	10	0.0003	10	0.0012	-	-	-	-	-	-
F. Lepidostomatidae	-	-	-	-	-	-	-	-	-	-
F. Limnephilidae	-	-	-	-	-	-	-	-	-	-
F. Rhyacophilidae	10	0.0038	30	0.0192	20	0.0606	10	0.0277	10	0.0197
O. Diptera										
F. Ceratopogonidae	-	-	-	-	-	-	-	-	-	-
F. Chironomidae	90	0.0012	10	0.0006	80	0.0038	-	-	40	0.0017
F. Empididae	30	0.0004	20	0.0017	-	-	50	0.0023	10	0.0003
F. Pelecorhyncidae	-	-	-	-	-	-	-	-	-	-
F. Psychodidae	10	0.0002	40	0.0008	60	0.0014	60	0.0016	60	0.0015
F. Simuliidae	-	-	-	-	-	-	-	-	-	-
F. Tipulidae	50	0.0009	10	0.0047	-	-	10	0.0137	-	-
Total Number of Organisms	920		860		2640		1300		760	
Total Number of Taxa ^b	21		14		16		17		18	
Total Biomass (g)		0.1032		0.2222		0.7546		0.2233		0.0657

^a Densities expressed per m².

			•		RG_E	RSC5				
Таха	1		2		3		4		5	
ROUNDWORMS	Organisms	Biomass	Organisms	Biomass	Organisms	Biomass	Organisms	Biomass	Organisms	Biomass
	-		40	0.0000		0.001.4	50	0.0000	-	
P. Nemata FLATWORMS	-	-	40	0.0009	20	0.0014	50	0.0003	-	-
P. Platyhelminthes Cl. Turbellaria										
F. Planariidae	_		_	-	-		10	0.0012	-	_
ANNELIDS	-	-	-	-	-	-	10	0.0012	-	-
P. Annelida										
WORMS										
Cl. Oligochaeta										
F. Enchytraeidae	-	-	10	0.0001	20	0.0004	60	0.0006	-	
F. Lumbricidae	-	-	10	0.0001	20	0.0004	00	0.0000	20	0.0130
F. Sparganophilidae	-	-	-	-	-	-	-	-	- 20	-
ARTHROPODS	-	-	-	-	-	-	-	-	-	-
MITES										
Cl. Arachnida Subcl. Acari	-	-		-		-	30	0.0004	10	0.0002
SUDCI. ACATI		-	-	-	-	-	30	0.0004	10	0.0002
			10	0.0005					80	0.0038
CI. Ostracoda	-	-	10	0.0005	-	-	-	-	80	0.0038
Cl. Insecta										
BEETLES										
-										
O. Coleoptera	20	0.0003	-	-	20	0.0008	10	0.0001	-	
F. Elmidae MAYFLIES	20	0.0003	-	-	20	0.0006	10	0.0001	-	-
O. Ephemeroptera					00	0.0050			40	0.0500
F. Ameletidae	-	-	-	-	20	0.0352	-	-	40	0.0536
F. Baetidae	180	0.0142	140	0.0084	40	0.0106	190	0.0158	100	
F. Ephemerellidae	150	0.0149	110	0.0099	100	0.0070	90	0.0077	260	0.0266
F. Heptageniidae STONEFLIES	1310	0.0945	610	0.0679	420	0.0402	540	0.0372	1340	0.1532
O. Plecoptera	<u> </u>	0.0000			40	0.0000	10	0.0004	20	0.0000
F. Capniidae	60	0.0023	-	-	40	0.0066	- 10	0.0004	20	0.0032
F. Chloroperlidae F. Leuctridae	40	0.0022	20	0.0014	-	-	-	-	20	0.0040
F. Leuctridae F. Nemouridae	10	0.0013		-					20	0.0034
	150	0.0063	100	0.0051	40	0.0032	20	0.0005	60	0.0054
F. Perlidae	60 -	0.0162	50	0.0133	100	0.0540	70	0.0738	50	0.1126
F. Perlodidae			-	-	-	-				-
F. Taeniopterygidae CADDISFLIES	20	0.0004	10	0.0002	-	-	20	0.0004	-	-
O. Trichoptera	-									
F. Apataniidae	- 10	- 0.0176	-	-	-	-	-	-	-	-
F. Brachycentridae										
F. Glossosomatidae F. Hydropsychidae	-	-	-	-	-	-	-	-	-	-
, , ,	-	-	-	-	-	-	-	-	- 20	- 0.0002
F. Lepidostomatidae										0.0002
F. Limnephilidae	-	-	- 10	-	-	-	-	-	-	-
F. Rhyacophilidae	10	0.0077	10	0.0052	-	-	-	-	20	0.0122
TRUE FLIES										
O. Diptera	<u> </u>						10	0.0004		
F. Ceratopogonidae	-	-	-	-	-	-	10	0.0004	-	-
F. Chironomidae	120	0.0025	20	0.0014	100	0.0038	30	0.0007	200	0.0070
F. Empididae	10	0.0007	10	0.0013	-	-	-	-	-	-
F. Pelecorhyncidae	-	-	-	-	-	-	-	-	-	-
F. Psychodidae	230	0.0064	50	0.0015	60	0.0012	-	-	200	0.0050
F. Simuliidae	-	-	-	-	-	-	-	-	-	-
F. Tipulidae	10	0.0006	-	-	-	-	-	-	-	-
Total Number of Organisms	2390		1190		980		1140		2460	
Total Number of Taxa ^b	16		14		12		14		16	
Total Biomass (g)		0.1881		0.1171		0.1644		0.1395		0.4198

^a Densities expressed per m².

			1		GH_I	ERC	1			
Таха	1 Organisms	Biomass	2 Organisms	Biomass	3 Organisms	Biomass	4 Organisms	Biomass	5 Organisms	
ROUNDWORMS	Organisms	DIOIIIASS	Organisins	DIOINASS	Organisins	DIOIIIASS	Organishis	DIOIIIASS	Organisms	DIOIIIASS
P. Nemata	60	0.0010	80	0.0008	20	0.0012	60	0.0007	20	0.0022
FLATWORMS	00	0.0010	00	0.0000	20	0.0012	00	0.0007	20	0.0022
P. Platyhelminthes										
Cl. Turbellaria										
F. Planariidae	-	-	-	-	-	-	-	-	-	-
ANNELIDS										
P. Annelida										
WORMS										
CI. Oligochaeta										
F. Enchytraeidae	-	-	-	-	-	-	10	0.0003	-	-
F. Lumbricidae	-	-	-	-	-	-	-	-	-	-
F. Sparganophilidae	-	-	-	-	-	-	-	-	-	-
ARTHROPODS										
MITES										
CI. Arachnida										
Subcl. Acari	-	-	240	0.0072	40	0.0010	-	-	-	-
SEED SHRIMPS										
CI. Ostracoda	-	-	20	0.0002	-	-	10	0.0001	-	-
INSECTS										
Cl. Insecta										
BEETLES										
O. Coleoptera										
F. Elmidae	-	-	-	-	-	-	-	-	-	-
MAYFLIES										
O. Ephemeroptera										
F. Ameletidae	20	0.0012	20	0.0002	-	-	10	0.0001	-	-
F. Baetidae	860	0.0682	2120	0.1948	860	0.0862	1100	0.1098	640	0.0686
F. Ephemerellidae	220	0.0174	440	0.0350	520	0.0622	440	0.0368	240	0.0326
F. Heptageniidae	2560	0.2088	900	0.1456	2100	0.2262	1720	0.3040	1380	0.2308
STONEFLIES	2000	0.2000	500	0.1400	2100	0.2202	1720	0.0040	1000	0.2000
O. Plecoptera										
F. Capniidae	360	0.0142	200	0.0082	80	0.0108	120	0.0071	120	0.0102
F. Chloroperlidae	40	0.0072	200	0.0036	60	0.0100	40	0.0027	20	0.0038
F. Leuctridae	-	-	-	-	-	-	20	0.0012	-	-
F. Nemouridae	20	0.0004	120	0.0058	100	0.0120	40	0.0012	120	0.0068
F. Perlidae	60	0.0278	180	0.0458	120	0.0232	150	0.0692	100	0.0326
F. Perlodidae	100	0.0178	310	0.0584	40	0.0374	20	0.0032	-	-
F. Taeniopterygidae	180	0.0044	140	0.0034	100	0.0062	100	0.0036	40	0.0034
CADDISFLIES	100	0.0011	110	0.0001	100	0.0002	100	0.0000	10	0.0001
O. Trichoptera										
F. Apataniidae	-	-	-	-	-	-	-	-	-	-
F. Brachycentridae	60	0.0008	440	0.0044	220	0.0020	190	0.0076	20	0.0004
F. Glossosomatidae	60	0.0062	20	0.0006	220	0.00020	100	0.0001	20	0.0004
F. Hydropsychidae	20	0.0032	20	0.0006	20	0.0008	160	0.0311	100	0.0656
F. Lepidostomatidae	-	-	-	-	20	0.0004	-	-	-	-
F. Limnephilidae	-	-	-	-	-	-	-	-	-	-
F. Rhyacophilidae	80	0.0712	180	0.0708	-	-	20	0.0310	20	0.0004
TRUE FLIES	~~							2.0010		2.0001
O. Diptera										
F. Ceratopogonidae	-	-	-	-	20	0.0008	-	-	-	-
F. Chironomidae	520	0.0246	4460	0.3050	440	0.0288	490	0.0283	320	0.0162
F. Empididae	-	-	20	0.0060	40	0.0052	40	0.0042	20	0.0012
F. Pelecorhyncidae	-	-	-	-	-	-	-	-	-	-
F. Psychodidae	180	0.0042	60	0.0012	320	0.0102	160	0.0042	160	0.0068
F. Simuliidae	-	-	-	-	-	-	-	-	-	-
F. Tipulidae	-	-	-	-	-	-	-	-	-	-
Total Number of Organisms	5400		9990	_	5140	-	4910	-	3340	-
Total Number of Taxa ^b	17		20		19		21		16	
Total Biomass (g)	.,	0.4786	20	0.8976	13	0.5278	~'	0.6458		0.4824

^a Densities expressed per m².

BENTHIC INVERTEBRATE COMMUNITY AND BIOMASS

Laboratory Report

Methods and QC Report 2017

Project ID: Teck

Client: Minnow Environmental

Cordillera Consulting

Prepared by: Cordillera Consulting Inc. Summerland, BC © 2016

Unit 1, 13216 Henry Ave B1202 Summerland, BC, V0H 1Z0 www.cordilleraconsulting.ca P:250.494.7553 F: 250.494.7562

Table of Contents

Sample Reception	2
Sample Sorting	4
Sorting Quality Control - Sorting Efficiency	7
Sorting Quality Control - Sub-Sampling QC	8
Taxonomic Effort	
Error Summary	
Error Rationale	
Taxonomy Changes	
Reference Collection	
References	
Taxonomic Keys	

Sample Reception

On September 22, 2017, Cordillera Consulting received 58 samples from Minnow Environmental. These samples were divided into 4 sections: Teck Line Creek, Teck Greenhills, Teck Fording Swift LAEMP and Teck RAEMP. When samples arrived to Cordillera Consulting, exterior packaging was initially inspected for damage or wet spots that would have indicated damage to the interior containers.

Samples were logged into a proprietary software database (INSTAR1) where the clients assigned sample name was recorded along with a Cordillera Consulting (CC) number for cross-reference. Each sample was checked to ensure that all sites and replicates recorded on field sheets or packing lists were delivered intact and with adequate preservative. Any missing, mislabelled or extra samples were reported to the client immediately to confirm the total numbers and correct names on the sample jars. The client representative was notified of the arrival of the shipment and provided a sample inventory once intake was completed.

See table below for sample inventory:

	Teck Line Creek LAEMP											
Sampla	Sample Site Code CC# Date Size # of Jars											
Sample	Site Code	CC#	Dale	Size	# UI Jais							
LI8-BIC	LI8-BIC	CC181023	9/8/2017	400µM	1							
LISP24-BIC	LISP24-BIC	CC181024	9/11/2017	400µM	1							
LIDCOM-BIC	LIDCOM-BIC	CC181025	9/10/2017	400µM	1							
FO23-BIC	FO23-BIC	CC181026	9/13/2017	400µM	1							
SLINE-BIC	SLINE-BIC	CC181027	9/9/2017	400µM	1							

Table 1: Summary of sample information including Cordillera Consulting (CC) number

FODPO-BIC Sample ELUFE-BIC MIDCO-BIC	Site Code ELUFE-BIC MIDCO-BIC	CC181062 CC181063	Date 9/15/2017 9/14/2017	Size 400µM 400µM	# of Jars 1 1
Sample	Site Code	CC#			
			Date	Size	# of .lars
FODPO-BIC	leck				
FODPO-BIC	•	RAEMP	0/10/2017	τουμίνι	I I
	FODPO-BIC	CC181061	9/13/2017	400µM	1
FOUNGD-BIC	FOUNGD-BIC	CC181060	9/16/2017	400µM	1
FOUSH-BIC	FOUSH-BIC	CC181059	9/12/2017	400µM	1
FO26-BIC	FO26-BIC	CC181058	9/12/2017	400µM	1
HENUP-BIC	HENUP-BIC	CC181057	9/15/2017	400µM	1
FOUKI-BIC-3	FOUKI-BIC	CC181056	9/12/2017	400µM	1
FOUKI-BIC-2	FOUKI-BIC	CC181055	9/12/2017	400µM	1
FOUKI-BIC-1	FOUKI-BIC	CC181054	9/12/2017	400µM	1
FOUEW-BIC	FOUEW-BIC	CC181053	9/13/2017	400µM	1
FRUPO-BIC	FRUPO-BIC	CC181052	9/15/2017	400µM	1
FOBKS-BIC-3	FOBKS-BIC	CC181051	9/13/2017	400µM	1
FOBKS-BIC-2	FOBKS-BIC	CC181050	9/13/2017	400µM	1
FOBKS-BIC-1	FOBKS-BIC	CC181049	9/13/2017	400µM	1
FO22-BIC	FO22-BIC	CC181048	9/14/2017	400µM	2
FRCP1SW-BIC	FRCP1SW-BIC	CC181047	9/14/2017	400µM	1
FOBSC-BIC	FOBSC-BIC	CC181046	9/15/2017	400µM	1
FODHE-BIC	FODHE-BIC	CC181045	9/15/2017	400µM	1
FODNGD-BIC	FODNGD-BIC	CC181044	9/16/2017	400µM	1
MP1-BIC	MP1-BIC	CC181043	9/12/2017	400µM	1
FOBCP-BIC	FOBCP-BIC	CC181042	9/14/2017	400µM	1
Sample	Site Code	CC#	Date	Size	# of Jar
	Teck Fo	ording Swift			
GH_ERSC5-BIC-3	GH_ERSC5-BIC	CC181041	9/9/2017	400µM	1
GH_ERSC5-BIC-2	GH_ERSC5-BIC	CC181040	9/9/2017	400µM	1
GH_ERSC5-BIC-1	GH_ERSC5-BIC	CC181039	9/9/2017	400µM	1
GH_ERSC4-BIC	GH_ERSC4-BIC	CC181038	9/8/2017	400µM	1
GH_ER1A-BIC	GH_ER1A-BIC	CC181037	9/8/2017	400µM	1
GH_ER2-BIC	GH_ER2-BIC	CC181036	9/10/2017	400µM	1
Sample	Site Code	CC#	Date	Size	# of Jar
	Teck (Greenhills			
FRUL-BIC	FRUL-BIC	CC181035	9/13/2017	400µM	1
LCUT-BIC	LCUT-BIC	CC181033	9/10/2017	400µM	1
LILC3-BIC LI24-BIC	LILC3-BIC LI24-BIC	CC181032 CC181033	9/9/2017 9/11/2017	400μM 400μM	1
LISP23-BIC	LISP23-BIC	CC181031	9/11/2017	400µM	1
LIDSL-BIC-03	LIDSL-BIC	CC181030	9/10/2017	400µM	1
LIDSL-BIC-02	LIDSL-BIC	CC181029	9/10/2017	400µM	1

MIUCO-BIC	MIUCO-BIC	CC181065	9/14/2017	400µM	1
MI2-MIC	MI2-MIC	CC181066	9/13/2017	400µM	1
ELELKO-BIC	ELELKO-BIC	CC181067	9/15/2017	400µM	1
EL19-BIC	EL19-BIC	CC181068	9/13/2017	400µM	1
CORCK-BIC	CORCK-BIC	CC181069	9/14/2017	400µM	2
MI25-BIC	MI25-BIC	CC181070	9/14/2017	400µM	1
EL20-BIC	EL20-BIC	CC181071	9/10/2017	400µM	1
MI3-BIC	MI3-BIC	CC181072	9/16/2017	400µM	1
FO29-BIC	FO29-BIC	CC181073	9/16/2017	400µM	1
HACKDS-BIC	HACKDS-BIC	CC181074	9/16/2017	400µM	1
ELH93-BIC	ELH93-BIC	CC181075	9/15/2017	400µM	1
FODGH-BIC	FODGH-BIC	CC181076	9/12/2017	400µM	1
EL1-BIC	EL1-BIC	CC181077	9/17/2017	400µM	1
LC_DCDS-BIC	LC_DCDS-BIC	CC181078	9/17/2017	400µM	1
LC_DC1-BIC	LC_DC1-BIC	CC181079	9/17/2017	400µM	1
LC_FRUS-BIC	LC_FRUS-BIC	CC181080	9/17/2017	400µM	1

Sample Sorting

- Using a gridded Petri dish, fine forceps and a low power stereo-microscope (Olympus, Nikon, Leica) the sorting technicians removed the invertebrates and sorted them into family/orders.
- The sorting technician kept a running tally of total numbers excluding organisms from Porifera, Nemata, Platyhelminthes, Ostracoda, Copepoda, Cladocera and terrestrial drop-ins such as aphids. These organisms were marked for their presence (given a value of 1) only and left in the sample. They were not included towards the 300-organism subsample count.
- Where specimens are broken or damaged, only heads were counted.
- Subsampling was conducted with the use of a Marchant Box.
- When using the Marchant box, cells were extracted at the same time in the order indicated by a random number table. If the 300th organism was found part way into sorting a cell then the balance of that cell was sorted. If the organism count had not reached 300 by the 50th cell then the entire sample was sorted.
- The total number of cells sorted and the number of organisms removed were recorded manually on a bench sheet and then recorded into INSTAR1
- Organisms were stored in vials containing 80% ethanol and an interior label indicating the site names, date of sampling, site code numbers and portion subsampled. This information was also recorded on the laboratory bench sheet and on INSTAR1.
- The sorted portion of the debris was preserved and labeled separately from the unsorted portion and was tested for sorting efficiency (Sorting Quality Control Sorting Efficiency). The unsorted portion was also labeled and preserved in separate jars.

Percent sub-sampled and total countable invertebrates pulled from the samples were summarized in the table below.

Teck Line Creek LAEMP					
Sample	Date	CC#	400 micron fraction		
•			% Sampled	# Invertebrates	
LI8-BIC	08-Sep- 17	CC181023	5%	589	
LISP24-BIC	11-Sep- 17	CC181024	5%	575	
LIDCOM-BIC	10-Sep- 17	CC181025	5%	1000	
FO23-BIC	13-Sep- 17	CC181026	10%	417	
SLINE-BIC	09-Sep- 17	CC181027	5%	328	
LIDSL-BIC-01	10-Sep- 17 10-Sep-	CC181028	5%	638	
LIDSL-BIC-02	10-Sep- 17 10-Sep-	CC181029	5%	806	
LIDSL-BIC-03	10-Sep- 17 11-Sep-	CC181030	5%	378	
LISP23-BIC	17-Sep- 17 09-Sep-	CC181031	5%	579	
LILC3-BIC	17 11-Sep-	CC181032	5%	649	
LI24-BIC	17 10-Sep-	CC181033	5%	310	
LCUT-BIC	17 13-Sep-	CC181034	5%	512	
FRUL-BIC	17	CC181035	5%	300	
Teck Greenhills					
Sample	Date	CC#	400 micron fraction		
			% Sampled	# Invertebrates	
GH_ER2-BIC	10-Sep- 17	CC181036	5%	309	
GH_ER1A-BIC	08-Sep- 17	CC181037	7%	344	
GH_ERSC4-BIC	08-Sep- 17	CC181038	8%	343	
GH_ERSC5-BIC-1	09-Sep- 17 09-Sep-	CC181039	6%	308	
GH_ERSC5-BIC-2	17	CC181040	7%	317	
GH_ERSC5-BIC-3	09-Sep- 17	CC181041	7%	313	
Teck Fording Swift LAEMP					
Sample	Date	CC#	400 micron fraction		
			% Sampled	# Invertebrates	
FOBCP-BIC	14-Sep- 17	CC181042	7%	364	
MP1-BIC	12-Sep- 17	CC181043	5%	624	
FODNGD-BIC	16-Sep- 17	CC181044	5%	388	
FODHE-BIC	15-Sep-	CC181045	5%	627	

Table 2: Percent sub-sample and invertebrate count for each sample

	17			
FOBSC-BIC	15-Sep- 17	CC181046	10%	388
FRCP1SW-BIC	14-Sep- 17	CC181047	20%	460
FO22-BIC	14-Sep- 17	CC181048	5%	1170
FOBKS-BIC-1	13-Sep- 17	CC181049	15%	502
FOBKS-BIC-2	13-Sep- 17 13-Sep-	CC181050	10%	303
FOBKS-BIC-3	13-Sep- 17 15-Sep-	CC181051	7%	342
FRUPO-BIC	13-Sep- 17 13-Sep-	CC181052	5%	326
FOUEW-BIC	13-3ep- 17 12-Sep-	CC181053	5%	416
FOUKI-BIC-1	12-Sep- 17 12-Sep-	CC181054	5%	306
FOUKI-BIC-2	12-Sep- 17 12-Sep-	CC181055	100%	57
FOUKI-BIC-3	12-Sep- 17 15-Sep-	CC181056	11%	441
HENUP-BIC	13-3ep- 17 12-Sep-	CC181057	5%	562
FO26-BIC	12-Sep- 17 14-Sep-	CC181058	5%	771
FOUSH-BIC	17 16-Sep-	CC181059	8%	343
FOUNGD-BIC	17 13-Sep-	CC181060	5%	361
FODPO-BIC	13-3ep- 17	CC181061	5%	779
	Γ	Teck RAEN	1P	
Sample	Date	Teck RAEM CC#	IP 400 micron fraction	
Sample				# Invertebrates
Sample ELUFE-BIC	15-Sep- 17		400 micron fraction	# Invertebrates
	15-Sep- 17 14-Sep- 17	CC#	400 micron fraction % Sampled	
ELUFE-BIC	15-Sep- 17 14-Sep- 17 16-Sep- 17	CC#	400 micron fraction % Sampled 5%	1231
ELUFE-BIC MIDCO-BIC	15-Sep- 17 14-Sep- 17 16-Sep- 17 14-Sep- 17	CC181062 CC181063	400 micron fraction % Sampled 5% 5%	1231 879
ELUFE-BIC MIDCO-BIC ALUSM-BIC	15-Sep- 17 14-Sep- 17 16-Sep- 17 14-Sep- 17 13-Sep- 17	CC181062 CC181063 CC181064	400 micron fraction % Sampled 5% 5% 6%	1231 879 348
ELUFE-BIC MIDCO-BIC ALUSM-BIC MIUCO-BIC	15-Sep- 17 14-Sep- 17 16-Sep- 17 14-Sep- 17 13-Sep- 17 15-Sep- 17	CC181062 CC181063 CC181064 CC181065	400 micron fraction % Sampled 5% 5% 6% 5%	1231 879 348 356
ELUFE-BIC MIDCO-BIC ALUSM-BIC MIUCO-BIC MI2-MIC	15-Sep- 17 14-Sep- 17 16-Sep- 17 14-Sep- 17 13-Sep- 17 15-Sep- 17 13-Sep- 17	CC181062 CC181063 CC181064 CC181065 CC181066	400 micron fraction % Sampled 5% 5% 6% 5% 5% 10%	1231 879 348 356 429
ELUFE-BIC MIDCO-BIC ALUSM-BIC MIUCO-BIC MI2-MIC ELELKO-BIC	15-Sep- 17 14-Sep- 17 16-Sep- 17 14-Sep- 17 13-Sep- 17 13-Sep- 17 13-Sep- 17 13-Sep- 17	CC181062 CC181063 CC181064 CC181065 CC181066 CC181067	400 micron fraction % Sampled 5% 5% 6% 5% 10% 5%	1231 879 348 356 429 373
ELUFE-BIC MIDCO-BIC ALUSM-BIC MIUCO-BIC MI2-MIC ELELKO-BIC EL19-BIC	15-Sep- 17 14-Sep- 17 16-Sep- 17 14-Sep- 17 13-Sep- 17 13-Sep- 17 13-Sep- 17 14-Sep- 17 14-Sep- 17	CC181062 CC181063 CC181064 CC181065 CC181066 CC181067 CC181068	400 micron fraction % Sampled 5% 5% 6% 5% 10% 5% 5%	1231 879 348 356 429 373 319
ELUFE-BIC MIDCO-BIC ALUSM-BIC MIUCO-BIC MI2-MIC ELELKO-BIC EL19-BIC CORCK-BIC	15-Sep- 17 14-Sep- 17 16-Sep- 17 14-Sep- 17 13-Sep- 17 13-Sep- 17 14-Sep- 17 14-Sep- 17 14-Sep- 17	CC181062 CC181063 CC181064 CC181065 CC181066 CC181067 CC181068 CC181069	400 micron fraction % Sampled 5% 5% 6% 5% 10% 5% 5% 5%	1231 879 348 356 429 373 319 500
ELUFE-BIC MIDCO-BIC ALUSM-BIC MIUCO-BIC MI2-MIC ELELKO-BIC EL19-BIC CORCK-BIC MI25-BIC	15-Sep- 17 14-Sep- 17 16-Sep- 17 14-Sep- 17 13-Sep- 17 13-Sep- 17 13-Sep- 17 14-Sep- 17 14-Sep- 17 14-Sep- 17 16-Sep- 17	CC181062 CC181063 CC181064 CC181065 CC181066 CC181067 CC181067 CC181069 CC181070	400 micron fraction % Sampled 5% 5% 6% 5% 10% 5% 5% 5% 5%	1231 879 348 356 429 373 319 500 1260
ELUFE-BIC MIDCO-BIC ALUSM-BIC MIUCO-BIC MI2-MIC ELELKO-BIC EL19-BIC CORCK-BIC MI25-BIC EL20-BIC	15-Sep- 17 14-Sep- 17 16-Sep- 17 14-Sep- 17 13-Sep- 17 13-Sep- 17 13-Sep- 17 14-Sep- 17 14-Sep- 17 14-Sep- 17 10-Sep- 17 16-Sep- 17	CC181062 CC181063 CC181064 CC181065 CC181065 CC181066 CC181067 CC181069 CC181070 CC181071	400 micron fraction % Sampled 5% 5% 6% 5% 10% 5% 5% 5% 5% 5% 5%	1231 879 348 356 429 373 319 500 1260 438
ELUFE-BIC MIDCO-BIC ALUSM-BIC MIUCO-BIC MI2-MIC ELELKO-BIC EL19-BIC CORCK-BIC MI25-BIC EL20-BIC MI3-BIC	15-Sep- 17 14-Sep- 17 16-Sep- 17 14-Sep- 17 13-Sep- 17 13-Sep- 17 13-Sep- 17 14-Sep- 17 14-Sep- 17 14-Sep- 17 16-Sep- 17 16-Sep- 17 16-Sep- 17	CC181062 CC181063 CC181064 CC181065 CC181066 CC181067 CC181069 CC181070 CC181071 CC181072	400 micron fraction % Sampled 5% 5% 6% 5% 10% 5% 5% 5% 5% 5% 5% 5%	1231 879 348 356 429 373 319 500 1260 438 482
ELUFE-BIC MIDCO-BIC ALUSM-BIC MIUCO-BIC MI2-MIC ELELKO-BIC EL19-BIC CORCK-BIC MI25-BIC EL20-BIC MI3-BIC FO29-BIC	15-Sep- 17 14-Sep- 17 16-Sep- 17 14-Sep- 17 13-Sep- 17 13-Sep- 17 14-Sep- 17 14-Sep- 17 14-Sep- 17 10-Sep- 17 16-Sep- 17 16-Sep- 17	CC181062 CC181063 CC181064 CC181065 CC181066 CC181067 CC181067 CC181069 CC181070 CC181071 CC181072 CC181073	400 micron fraction % Sampled 5% 5% 6% 5% 10% 5% 5% 5% 5% 5% 5% 5% 5% 5%	1231 879 348 356 429 373 319 500 1260 438 482 470

	17-Sep-			
EL1-BIC	17	CC181077	5%	387
	17-Sep-			
LC_DCDS-BIC	17	CC181078	5%	894
	17-Sep-			
LC_DC1-BIC	17	CC181079	5%	726
	17-Sep-			
LC_FRUS-BIC	17	CC181080	5%	323

Sorting Quality Control - Sorting Efficiency

As a part of Cordillera's laboratory policy, all projects undergo sorting efficiency checks.

- As sorting progresses, 10% of samples were randomly chosen from the group of four Teck projects by senior members of the sorting team for resorting.
- All sorters working on a project had at least 1 sample resorted by another sorter.
- An efficiency of 90 % was expected.
- If 90/95% efficiency was not met, samples from that sorter were resorted.
- To calculated sorting efficiency the following formula was used:

#OrganismsMissed TotalOrganismsFound *100 = %OM

Table 3: Summary of sorting efficiency

CC #	Number of Organisms Recovered (initial sort)	Number of Organisms in Re-sort	Percent Recovery
CC181052	326	3	99%
CC181061	779	4	99%
CC181040	318	2	99%
CC181023	589	26	96%
CC181067	373	1	100%
CC181072	482	3	99%
	99%		

Sorting Quality Control - Sub-Sampling QC

Certain Provincial and Mining projects require additional sorting checks in the form of sub-sampling QC, (Environmental Effects Monitoring (EEM) protocol). This ensured that any fraction of the total sample that was examined was actually an accurate representation of the number of total organisms. Organisms from the additional sub-samples were not identified; rather total organism count only was compared.

Sub-Sampling efficiency was measured on 10% of the number of sub-sampled samples in the group of 4 Teck projects. Ex. In a project where 50 of 100 total samples were processed through subsampling using a Marchant box, then 10% of 50; or 5 samples were used for sub sampling efficiency. There was one sample in this group which had not been subsampled. Therefore in this group of 58 samples, 6 samples were chosen to measure sub-sample QC. The 6 samples chosen represent the variation of subsample sizes in the project.

Sub-Sampling efficiency was performed by fractioning the entire sample into sub-sample percentages. On each sub-sampled portion, a total organism count was recorded and compared to the rest of the sub-samples. In order to pass, all fractions were required to be within 20% of total organism count.

Example: If 300 organisms are found in 10% of the sample, the sorter will continue to sample in 10% fractions until the entire sample is separated. They will then count the total number of organisms in each of the 10 fractions of 10% and compare the organism count.

When divergence is >20% the sorting manager examines for the source of the problem and takes steps to correct it. With the Marchant box, the problem typically rested with how the box is flipped back to the upright position. For this reason subsampling was performed by experienced employees only. Another common source of area would be the type of debris in the sample. Samples with algae or heavy with periphyton have a higher incident of failure due to clumping than clear samples.