Teck Coal Limited
Water Quality Management
P.O. Box 1777
421 Pine Avenue +1 250 425 808
Sparwood, B.C. Canada V0B 2G0 www.teck.com

+1 250 425 8086 Tel Technical Report Overview

Report: Elkview Operations (EVO) Local Aquatic Effects Monitoring Program (LAEMP), 2021

Overview: This report presents the 2021 results of the local aquatic effects monitoring program (LAEMP) developed for Teck's Elkview Operations (EVO). The report presents data and evaluation of current conditions and baseline data to support future evaluation of changes related to commissioning of a SRF that will be treating water from Natal West Pit and Erickson Creek.

This report was prepared for Teck by Minnow Environmental Inc.

For More Information

If you have questions regarding this report, please:

- Phone toll-free to 1.855.806.6854
- Email feedbackteckcoal@teck.com

Future studies will be made available at teck.com/elkvalley.

Elkview Operations (EVO) Local Aquatic Effects Monitoring Program (LAEMP), 2021

Prepared for: **Teck Coal Limited** Sparwood, British Columbia

Prepared by: **Minnow Environmental Inc.**Victoria, British Columbia

June 2022

Elkview Operations (EVO) Local Aquatic Effects Monitoring Program (LAEMP), 2021

W. Tyler Mehler, Ph.D., R.P. Bio. Project Manager

Jennifer Ings, Ph.D., R.P. Bio.

Senior Project Advisor

EXECUTIVE SUMMARY

The Elkview Operations Local Aquatic Effects Monitoring Program (EVO LAEMP) was designed to evaluate changes related to the commissioning of the Saturated Rock Fill (SRF). As per section 8.3.5 in permit 107517 the EVO LAEMP is focused on the immediate receiving environment downstream of the EVO SRF including Gate, Bodie, Erickson and Michel creeks. The EVO LAEMP is intended to monitor for changes in water quality, calcite, and temperature in the receiving environment and how these changes may have potential effects to the biota. After the EVO SRF trials (EVO SRF Phase 1), the EVO SRF started treating Erickson Creek water as part of Phase 2 (referred to as EVO SRF P2) on February 15, 2021. During EVO SRF P2 in 2021, water was discharged from the SRF back into Erickson Creek, with limited discharge from the SRF to Bodie and Gate creeks. Although the primary focus of the first EVO LAEMP report is related to the influence of the EVO SRF on Erickson and Michel creeks in 2021, aquatic conditions (water quality, calcite, and selenium concentrations in biota) in Gate and Bodie are also discussed.

Based on the above, the objectives for the EVO LAEMP were expressed as the following study questions (which were determined with Environmental Monitoring Committee (EMC) engagement and detailed in the approved 2021 - 2023 EVO LAEMP study design): (1) Has temperature changed in the receiving environment of Erickson Creek as the result of SRF water treatment? (2) Has calcite in the receiving environment (Erickson, Bodie, Gate, and Michel creeks) been influenced by SRF water treatment and/or calcite prevention (e.g. antiscalant) efforts? (3) Has SRF water treatment and/or calcite prevention (e.g. antiscalant) (a) decreased agueous concentrations of selenium and nitrate and/or (b) changed other mine-related constituents in effluent and receiving environment (Erickson, Bodie, Gate, and Michel creeks)? (4) Have benthic invertebrate tissue selenium concentrations changed as a result of the SRF in Erickson, Bodie, Gate, and Michel creeks? (5) Are there changes in the benthic invertebrate community in Erickson, Bodie, Gate, and Michel creeks associated with SRF treatment (including calcite prevention)? (6) Is SRF water treatment affecting indicators of productivity (e.g. phosphorus) in the receiving environment? Many areas monitored under the EVO LAEMP have been routinely monitored under the Regional Aquatic Effects Monitoring Program (RAEMP), with additional areas around the SRF outfall (both upstream and downstream) added for additional spatial resolution in Erickson Creek. This LAEMP report details 2021 sampling in September as well as additional confirmatory sampling that occurred in December in Erickson Creek. It should also be noted that results detailed herein take into consideration the lack of fish access in Gate, Bodie, and upper portions of Erickson Creek (due to fish barriers in all three systems).

Water temperature in Erickson Creek downstream of the SRF outfall increased in 2021 in comparison to pre-EVO SRF P2 and were higher than temperatures upstream of the SRF in Erickson Creek throughout the year (~5°C). Water temperatures at the confluence of Erickson and Michel Creek, with few exceptions, met the Site Performance Objective (SPO; which went into effect on August 13, 2021) and this area, as well as those in Michel Creek, were largely within or below guidelines for critical life stages of WCT and bull trout. Calcite in the receiving environment of Gate, Bodie, Erickson and Michel creeks in 2021 was largely similar to, or lower than, previous years (pre-EVO SRF P2) based on observations from this LAEMP as well as the annual Regional Calcite Monitoring Program. The commissioning of the EVO SRF P2 has decreased concentrations of nitrate and total selenium in monitoring areas in Erickson, Gate, Bodie and Michel creeks as expected, but decreases were also noted in Erickson Creek for phosphorus, orthophosphate, and total barium. Although total selenium concentrations decreased in multiple areas of the receiving environment with the commissioning of the EVO SRF P2, both selenite and organoselenium species concentrations increased in Erickson Creek (although not in Gate, Bodie or Michel creeks). A number of other mine-related constituents also increased, with total nickel and total uranium above the interim screening value and the BCWQG, respectively, in the receiving environment of Erickson Creek (and to a lesser degree in Michel Creek below the confluence with Erickson Creek for total nickel). Acute toxicity in areas of Erickson, Gate, Bodie, and Michel creeks, and chronic toxicity testing at the compliance point in Michel Creek, showed no adverse responses to either invertebrate and fish species after exposure to site water in 2021.

Mean benthic invertebrate tissue (BIT) selenium concentrations in Gate and Bodie creeks and the upper portion of Erickson Creek that is below the SRF outfall were above the Level 1 benchmark for effects to benthic invertebrates in 2021. Furthermore, mean BIT selenium concentrations in Gate and the upper portion of Erickson Creek which is below the SRF outfall increased in relation to pre-EVO SRF P2. Selenium concentrations in benthic invertebrates in these areas were not well predicted using the regional one-step water-to-invertebrate lotic selenium accumulation model or the selenium speciation bioaccumulation tool (B-tool). This suggests that evaluations of aqueous total selenium and/or selenium speciation using these models is not sufficient in explaining the elevated BIT selenium concentrations in these areas. Additional investigations to better understand the cause of the elevated selenium concentrations in BIT in Erickson Creek (which received the majority of SRF discharge in 2021) are currently underway as part of an Adaptive Management Plan (AMP) response framework. Mean BIT selenium concentrations in Michel Creek were below the Level 1 benchmark, within the normal range, and similar to reference areas suggesting that elevated BIT selenium concentrations related to SRF discharge are localized to a small area of Erickson Creek.

Although a subset of benthic invertebrate community endpoints (including taxa richness and % EPT [Ephemeroptera, Plecoptera, and Trichoptera]) were lower than reference and below regional and/or habitat-adjusted normal ranges at areas in Erickson Creek (which was not the case for Michel Creek), spatial and temporal trends (both up- and downstream of the SRF outfall) as well as multivariate analyses of BIC composition suggest that these responses are unrelated to commissioning of the SRF. Although periphyton did not show any changes associated with the commissioning of the SRF in 2021, increases in benthic invertebrate productivity (as evident in increases in overall and taxa-specific density and, to a lesser degree, increases in biomass) were observed downstream of the SRF outfall in Erickson Creek. These increases are unlikely due to increased nutrients in the receiving environment (as decreased concentrations of nitrate, phosphorus, and orthophosphate were noted below the outfall of the SRF in Erickson Creek).

Results of the 2021 EVO LAEMP provide information that supports Teck's AMP and inform future monitoring and management efforts. Teck continues to operate the EVO SRF with adjustments to water source treated and discharge location consistent with the designed operating flexibility of the facility. The additional investigations underway to evaluate the cause of elevated selenium concentrations in BIT in Erickson Creek will be included in next year's report.

TABLE OF CONTENTS

1 INTRODUCTION	1
1.1 Background	1
1.2 SRF Operational Timeline	4
1.3 Study Questions	
1.4 Linkages to the Adaptive Management Plan for Teck Coal in the Elk Valley	9
2 METHODS	13
2.1 Overview	
2.2 Physical Habitat and Supporting Measures	
2.2.1 Temperature and Dissolved Oxygen	
2.2.1.1 Sampling Overview	
2.2.1.2 Data Analysis	19
2.2.2 Sediment Quality	20
2.2.2.1 Sampling Overview	20
2.2.2.2 Laboratory Analysis	21
2.2.2.3 Data Analysis	
2.2.3 Calcite and CABIN Measures	
2.2.3.1 Sampling Overview	
2.2.3.2 Data Analysis	
2.3 Water Quality and Toxicity	
2.3.1 Water Quality	
2.3.1.1 Sampling Overview	
2.3.1.2 Laboratory Analysis	
2.3.1.3 Data Analysis	
2.3.2 Acute Toxicity	
2.3.3 Chronic Toxicity	
2.4.1 Sampling Overview	
2.4.2 Data Analysis	
2.5 Benthic Invertebrates	
2.5.1 Tissue Selenium	
2.5.1.1 Sampling Overview	
2.5.1.2 Laboratory Analysis	
2.5.1.3 Data Analysis	
2.5.2 Hess Sampling (Density, Biomass, and Community)	
2.5.2.1 Sample Overview	
2.5.2.2 Laboratory Analysis	
2.5.2.3 Data Analysis	31
2.5.3 CABIN Sampling (Community)	
2.5.3.1 Sampling Overview	
2.5.3.2 Laboratory Analysis	32
2.5.3.3 Data Analysis	33
3 PHYSICAL HABITAT AND SUPPORTING MEASURES	34
3.1 Temperature and Dissolved Oxygen	
3.2 Sediment Quality	
3.3 Calcite and other CABIN Supporting Measures	
3.4 Summary	
4 WATER QUALITY	
+ VVAILN QUALIT	ວວ

4.1 Nutrients		55
4.2 Selenium a	nd Selenium Speciation	57
4.3 Nickel and	Other Water Quality Constituents	72
4.4 Toxicity Res	sults	81
4.4.1 Acute To	oxicity Results	81
	Toxicity Results	
4.5 Summary		84
5 PERIPHYTON.		86
	phyton Coverage	
•	ERTEBRATES	
	enium Concentrations	
	and Temporal Trends	
	mulation	
	ensity, and Community Structure	
	s and Density	
	nity Structure	
	······································	
7 SUMMARY		112
7.1 Study Ques	stion #1	118
7.1 Study Ques	stion #2	118
•	stion #3	
, - ,	stion #4	
-	stion #5	
	stion #6	
7.7 AMP and B	iological Triggers	122
8 UPDATES TO	2021 TO 2023 EVO LAEMP STUDY DESIGN	124
9 REFERENCES)	127
3 KLI LIKLINOLO	······································	
APPENDIX A	DATA ANALYSIS	
AFFENDIA A	DATA ANALYSIS	
APPENDIX B	DATA QUALITY REVIEW	
APPENDIX C	PHYSICAL HABITAT	
APPENDIX D	WATER QUALITY	
APPENDIX E	PERIPHYTON	
APPENDIX F	BENTHIC INVERTEBRATES	

BIOLOGICAL TRIGGERS

LABORATORY REPORTS

RELOCATION OF EV_ECOUT (MEMO)

PAIRING OF F2_ECIN AND RG_ERCKUT STATIONS (MEMO)

APPENDIX G

APPENDIX H

APPENDIX I

APPENDIX J

LIST OF FIGURES

Figure 1.1:	Teck's Coal Mine Operations within the Elk River Watershed, Southeast British Columbia
Figure 1.2:	Overview of Completed Benthic Invertebrate Tissue Selenium Sampling Events in Relation to Phases of SRF Operation, 2014 to 2021
Figure 1.3:	EVO LAEMP SRF P2 Biological Monitoring Areas and Teck Water Quality Stations, 2021
Figure 1.4:	Temperature Logger Stations, Erickson Creek
Figure 1.5:	Conceptual Site Model for Potential Mine-Related Effects on the Aquatic Ecosystem
Figure 3.1:	Water Temperature Recorded by Temperature Loggers, EVO LAEMP, 202135
Figure 3.2:	Water Temperatures at Fish Bearing Monitoring Areas for the EVO LAEMP in 2021 Relative to BCMOE (2001b) Guidelines for Maximum (Solid Lines) and Minimum (Dotted Lines) Temperatures for Protection of Westslope Cutthroat Trout and Bull Trout
Figure 3.3:	Dissolved Oxygen Concentrations at Fish-Bearing Monitoring Areas for the EVO LAEMP in 2021, Relative to the BCMOE (1997) Criteria for the Protection of Fish Life Stages
Figure 3.4:	Selected Sediment Metal and Polycyclic Aromatic Hydrocarbon (PAH) Concentrations, EVO LAEMP, 2018 to 202141
Figure 3.5:	Calcite Proportion and Concretion Score, EVO LAEMP, 2015 to 202150
Figure 4.1:	Time Series Plots for Total Selenium from EVO LAEMP Areas, 2012 to 2021
J	58
Figure 4.2:	Total Selenium Concentrations Compared to SRF Operational Status, EVO LAEMP, 2021
Figure 4.3:	Monthly Mean Selenium Species and Benthic Invertebrate Tissue Selenium at Mine-Exposed and Reference Stations, EVO LAEMP, 2018 to 202164
Figure 4.4:	Time Series Plots for Total Nickel from EVO LAEMP Areas, 2012 to 202173
Figure 4.5:	Time Series Plots for Total Uranium from EVO LAEMP Areas, 2012 to 202177
Figure 6.1:	Selenium Concentrations in Composite-Taxa Benthic Invertebrate Samples Collected at Reference (Green) and Mine-Exposed (Blue) Areas of Bodie,
	Erickson, Gate, and Michel Creeks, EVO LAEMP, 202189
Figure 6.2:	Benthic Invertebrate Tissue Selenium Concentrations in Bodie, Erickson, Gate, and Michel Creeks, 2012 to 202290
Figure 6.3:	Observed and Modelled Selenium Concentrations in Benthic Invertebrate Composite Samples Relative to Aqueous Selenium Concentrations, 2012 to 2021
Figure 6.4:	Observed and Predicted Selenium Concentrations in Benthic Invertebrate Composite Samples for the One-Step Bioaccumulation Model (Top) and B-tool Model (Bottom)
Figure 6.5:	Benthic Invertebrate Density and Biomass Metrics from Hess Sampling for Upstream (RG_ERCKUT) andDownstream (RG_ERCKDT) Areas, EVO
Figure 6.6:	LAEMP, September 2021
Figure 6.7:	Percent Ephemeroptera, Plectoptera, Trichoptera (%EPT) and Abundance, EVO LAEMP, September 2021
Figure 6.8:	Percent (%) Ephemeroptera and Abundance, EVO LAEMP, September 2021
Figure 6.9:	Percent (%) Plecoptera and Abundance, EVO LAEMP, September 2021108

Figure 6.10: Figure 6.11: Figure 6.12:	Percent (%) Trichoptera and Abundance, EVO LAEMP, September 2021 Percent (%) Chironomidae and Abundance, EVO LAEMP, September 2021 Correspondence Analysis of Benthic Invertebrate Communities in	
J	September, EVO LAEMP, 2012 to 2021	112
Figure 6.13:	Canonical Correspondence Analysis of Benthic Invertebrate Communities in September Constrained by Water Chemistry and Calcite Variables, EVO LAEMP, 2018 to 2021	
Figure 6.14:	Canonical Correspondence Analysis of Benthic Invertebrate Communities in September Constrained by Habitat Variables, EVO LAEMP, 2018 to 2021	
LIST OF TAB	BLES	
Table 2.1:	Approach for the EVO LAEMP, 2021 to 2023	.14
Table 2.2:	Sampling Design for EVO SRF P2 LAEMP Monitoring in 2021	
Table 2.3:	Summary of Water Quality Monitoring for EVO LAEMP SRF per Permit 107517	
Table 2.4:	Temperature Data Logger Locations in Erickson Creek, 2021	.17
Table 2.5:	Water and Sediment Quality Parameters Associated with the EVO LAEMP, 2021	
Table 4.1:	Temporal Trends and Guideline Assessment of Key Constituents, EVO LAEMP, 2021	.56
Table 4.2:	Summary of Acute Toxicity Test Results for EVO LAEMP Monitoring Stations, 2021 (Teck 2022b)	.82
Table 4.3:	Results of Quarterly and Semi-Annual Chronic Toxicity Testing at EV_MC2, 2015 to 2021a (Golder 2016, 2017a, 2018, 2019, 2020a, 2021, 2022)	.83
Table 5.1:	Visual Periphyton Coverage Scores, EVO LAEMP, September 2021	
Table 7.1:	Summary of Findings, Responses, and Adjustments Related to the EVO LAEMP, 2021	
Table 7.2:	Summary of Biological Trigger Analysis for Percent EPT and Selenium Benthic Invertebrate Tissue, EVO LAEMP, 2021	123

ACRONYMS AND ABBREVIATIONS

AMP – Adaptive Management Plan

ANOVA – Analysis of Variance

BCWQG – British Columbia Water Quality Guidelines

BIC – Benthic Invertebrate Community

BIT – Benthic Invertebrate Tissue

CA – Correspondence Analysis

CCA – Canonical Correspondence Analysis

CABIN – Canadian Aquatic Biomonitoring Network

Cc – Calcite concretion

CI – Calcite Index (utilizing Cp)

Cl' – Calcite Index (utilizing Cp')

CMm – Coal Mountain Mine

Cp – Calcite Presence (binary assessment)

Cp'– Calcite Presence (percent-based assessment)

CSM – Conceptual Site Model

CRC ICP-MS - Collision Reaction Cell Inductively Coupled Plasma-Mass Spectrometry

CVAFS – Cold Vapour Atomic Fluorescence Spectroscopy

DQR – Data Quality Review

EFN – Environmental Flow Needs

EMC – Environmental Monitoring Committee

ENV – British Columbia Ministry of Environment and Climate Change Strategy (formerly BCMOE)

EPT - Ephemeroptera, Plecoptera, and Trichoptera

EVO – Elkview Operation

EVWQP – Elk Valley Water Quality Plan

FRO – Fording River Operation

GC/MS – Gas Chromatography with Mass Spectrometric Detection

GHO – Greenhills Operation

GLM – Generalized Linear Model

HR-ICP-MS – High Resolution Inductively Coupled Plasma Mass Spectrometry

ICP-MS – Laser Ablation Inductively Coupled Plasma Mass Spectrometry

LAEMP – Local Aquatic Effects Monitoring Program

LCO – Line Creek Operation

LPL – Lowest Practical Level, referring to taxonomic identification of benthic invertebrates

LRL – Laboratory Reporting Limit

MOD – Magnitude of Difference

P1 – Phase 1

P2 – Phase 2

PAH – Polycyclic Aromatic Hydrocarbons

PDF – Portable Document Format

QA/QC – Quality Assurance / Quality Control

RAEMP – Regional Aquatic Effects Monitoring Program

R.P. Bio. – Registered Professional Biologist

SME – Subject Matter Expert

SPO – Site Performance Objective

SRF - Saturated Rock Fill

TOC – Total Organic Carbon

WCT – Westslope Cutthroat Trout

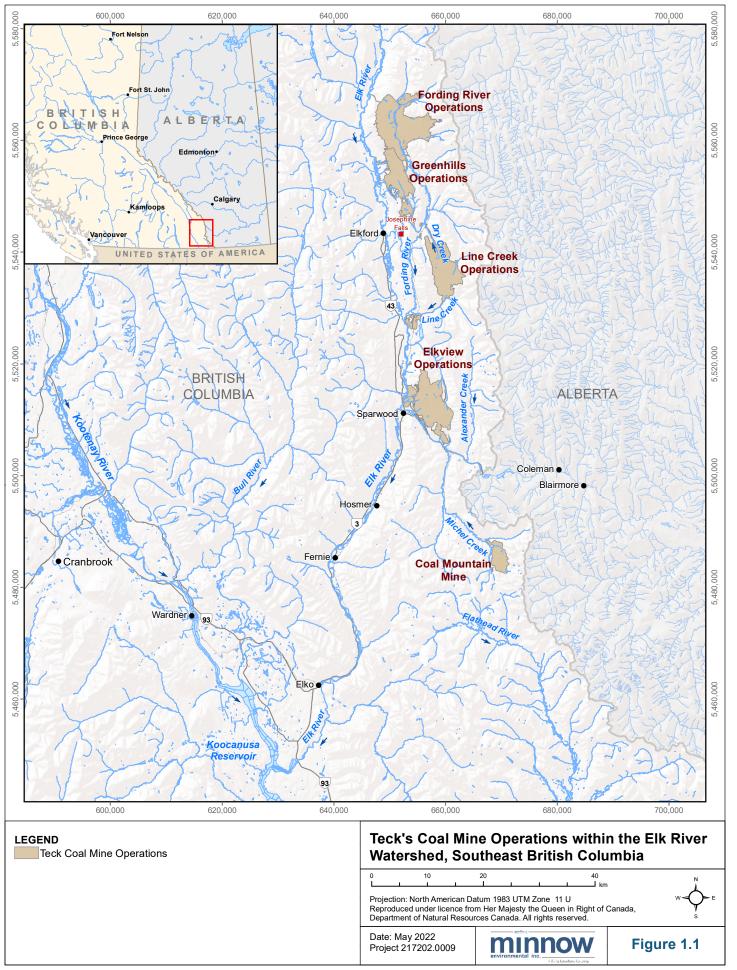
1 INTRODUCTION

1.1 Background

Teck Coal Limited (Teck) operates four mines in the Elk River watershed to extract steel-making coal. The four mines are the Fording River Operation (FRO), Greenhills Operation (GHO), Line Creek Operation (LCO), and Elkview Operation (EVO; Figure 1.1). A fifth mine, Coal Mountain Mine (CMm), is also owned by Teck and located in the Elk River watershed; however, it is no longer in operation and has been moved into the care and maintenance designation. Discharges from the mines to the Elk River watershed are authorized by the British Columbia Ministry of Environment and Climate Change Strategy (ENV) through permits that are periodically issued under provisions of the *Environmental Management Act*. Permit 107517¹ specifies the terms and conditions associated with discharges from Teck's five Elk Valley mine operations.

Section 8.3.5 of Permit 107517 outlines the requirements for the EVO Local Aquatic Effects Monitoring Program (LAEMP) as follows:

"The permittee must develop and implement a LAEMP to determine the magnitude and extent of influence from EVO SRF (Saturated Rock Fill) discharge on water quality (including temperature), calcite and benthic invertebrate communities to assess what factors are contributing to the observed effects. The study design must be reviewed by the EMC² and submitted to the director for approval by June 30, 2021. The LAEMP must be designed to an appropriate temporal scale to capture short term, local effects to the immediate receiving environment, and must consider the possibility of impacts resulting from potential selenium speciation."


The study design was approved on October 15, 2021, and then amended on March 4, 2022³. Section 9.5 of Permit 107517 states:

³ The amended study design required sediment quality data from RG_MI3 be included in the EVO LAEMP Annual report, monthly water quality monitoring for EV_MC3a and EV_MC3, selenium bioaccumulation by benthic invertebrates for all areas included in the annual EVO LAEMP report. Additionally, monthly sampling at RG_ERCKUT was required from January to June 2022 with a statistical comparison of water quality to F2 ECIN.

¹ Permit 107517 was initially issued on November 19, 2014 but has been amended on numerous occasions with the most recent revisions occurring on December 1, 2021.

² EMC refers to the Environmental Monitoring Committee, which Teck was required to form under Permit 107517. The EMC consists of representatives from Teck, ENV, the Ministry of Energy and Mines, Environment Canada, the Ktunaxa Nation Council, Interior Health Authority, and an independent scientist. Environment Canada has agreed to provide input on a case-by-case basis when requested by the other members of the EMC but has not yet been called upon to participate. The EMC reviews submissions and provides technical advice to Teck and the ENV Director regarding monitoring programs.

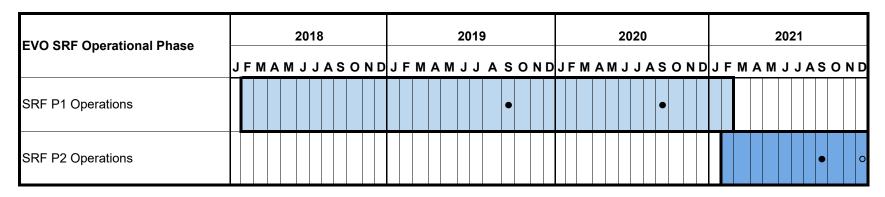
The LAEMP Annual Reports must be reported on in accordance with generally accepted standards of good scientific practice in a written report and submitted to the Director by June 30 of each year following the data collection calendar year.

In addition to local monitoring under the LAEMP, Teck's Regional Aquatic Effects Monitoring Program (RAEMP) is a requirement under Permit 107517 and provides comprehensive routine monitoring and assessment of potential mine-related effects on the aquatic environment downstream from Teck's mines in the Elk Valley (i.e., annual sampling and more comprehensive monitoring every three years). Data collected under the EVO LAEMP is incorporated into RAEMP reporting.

Teck conducts a variety of additional programs to monitor, evaluate, and/or manage the aquatic effects of mining operations, within the EVO area those include:

- Water Quality Monitoring
- Calcite Management Plan (Calcite Monitoring Program)
- Fish and Fish Habitat Management
- Chronic Toxicity Testing Program
- Tributary Management Plan
- Adaptive Management Plan
- Regional and Site-Specific Groundwater Monitoring Programs
- Environmental Flow Needs (EFN)
- Flow Accretion Studies
- Elkview Operational and Treatment Facilities Report

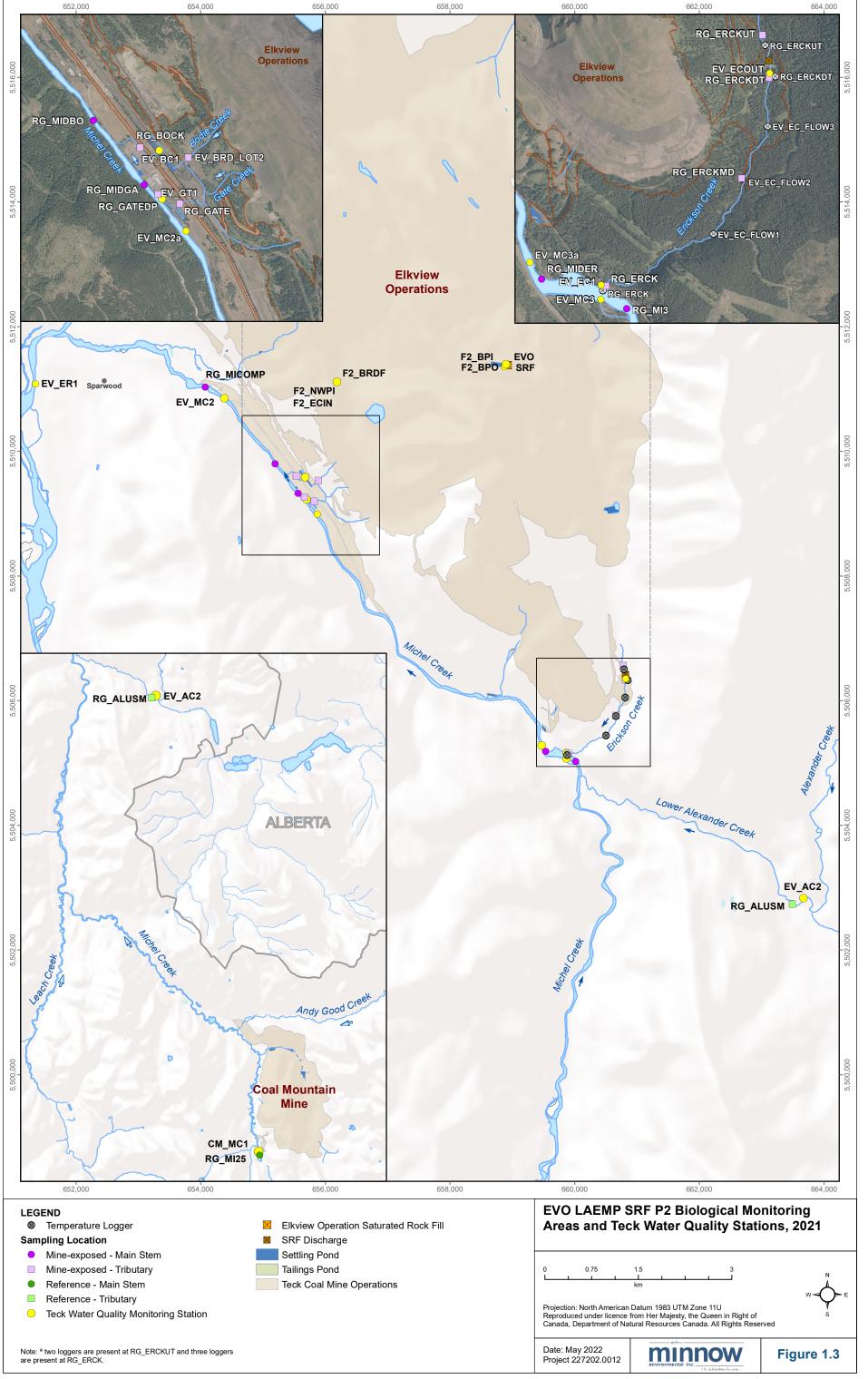
The EVO LAEMP assesses site-specific conditions as it relates to Saturated Rock Fill (SRF) operation on a more frequent and localized basis than the RAEMP and is spatially restricted to Erickson (upstream and downstream of the SRF Outfall), Gate (upstream and downstream of settling pond), Bodie, and Michel creeks (upstream and downstream of the confluence with Erickson Creek), as well as two upstream reference areas (located on Lower Alexander Creek and upper Michel Creek). The LAEMP will continue as required until sufficient data have been collected to evaluate the study questions and/or relevant ongoing monitoring requirements can be incorporated into the RAEMP.

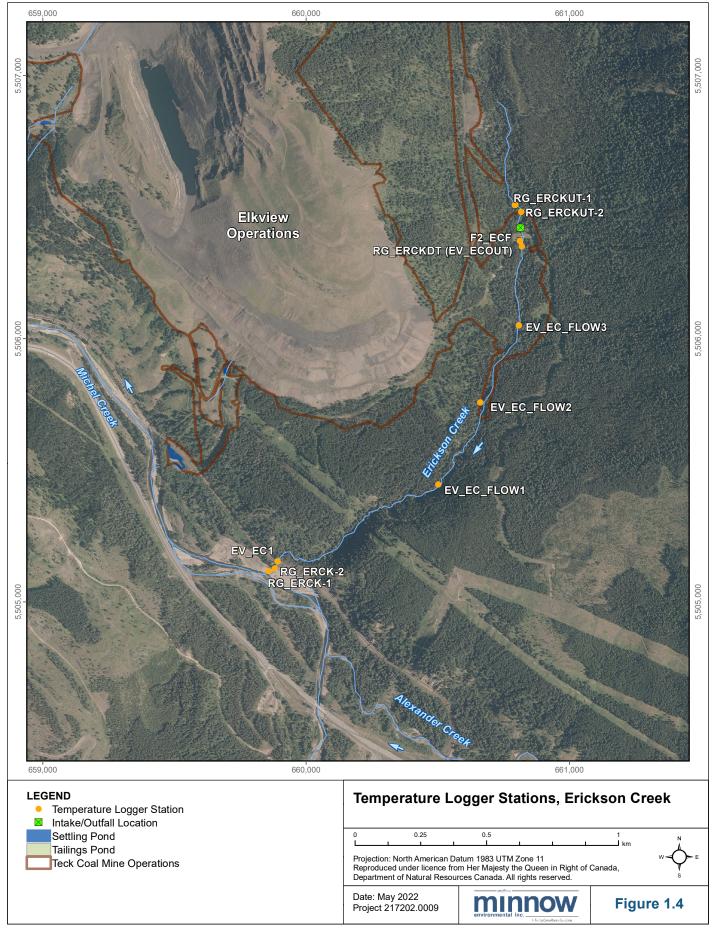

1.2 SRF Operational Timeline

A key component of Permit 107517 is the incorporation of an adaptive management approach for the advancement of research on treatment technologies to both reduce contaminant loadings in the environment as well as reduce the reliance on long term active water treatment (as noted in Section 7.2 of the Permit). In accordance with this approach, Teck, in January of 2018, commenced a full-scale trial of the EVO SRF (SRF P1) for the removal of aqueous nitrate and selenium from water sourced from Natal Pit, and reported >90% removal of selenium and nitrate from influent waters with a treatment capacity of up to 10,000 m³/d (Teck 2020a, Figure 1.2). On February 22, 2018 SRF effluent discharge commenced through the Bodie Creek Rock Drain, which then flows to either Bodie or Gate creeks (Teck 2020a). Teck initiated wettesting of Erickson Creek intake/outfall structure on December 10, 2020, prior to the commissioning phase of EVO SRF P2, and during this time EVO SRF remained in recirculation as the facility continued the biomass growth stage in advance of moving into Erickson Creek forward flow (i.e. treating and discharging back to Erickson Creek) on February 15, 2021 (EVO SRF P2; Teck 2022a). The commissioning phase of the EVP SRF P2 was completed on August 13, 2021, and the facility transitioned to the operations phase on August 14, 2021. Natal pit was brought online as a supplemental influent source for Erickson Creek on November 9, 2021 (Teck 2022a).

The maximum treatment capacity of EVO SRF P2 is 20,000 m³/d (Teck 2020a), which can be achieved during low flow when water from Erickson Creek is combined with water from Natal Pit for treatment (Figure 1.3) For the majority of 2021⁴, treated effluent from the SRF was returned through the intake/outfall structure into the non-fish bearing reach of Erickson Creek (Figure 1.3), with limited discharge in Gate Creek and Bodie Creek through the Bodie Rock Drain. Both the Bodie and Gate Creek catchments have been considerably altered as a result of historical mining, and the original channels of significant portions of these catchments are composed of rock spoils and reclaimed slopes and are acting as rock drains (Teck 2020b). Overall, the effect of the EVO SRF P2 on the receiving environment is expected to be positive (via decreases of selenium and nitrate), however a subset of constituents (nickel, phosphorus, selenite, and organo-selenium species) as well as temperature (Figure 1.4; Erickson Creek only) could increase in the receiving environment as a result of SRF treatment (Golder 2020a, Teck 2020a).

⁴ In 2021, the average throughput of the EVO SRF P2 was 12,604 m³/day and treated a total volume of 4,033,353m³ in 2021. EVO SRF P2 experienced 53 downtime events in 2021, with five of these events being greater than 24 hours in duration (Teck 2022a).




• _ Tissue selenium analysis sampling event included in LAEMP Study Design (Minnow 2021b) or Baseline Study (Minnow 2020a, 2021a).

= Additional tissue selenium analysis sampling event.
 SRF Non-Operational
 SRF P1 Operations

Figure 1.2: Overview of Completed Benthic Invertebrate Tissue Selenium Sampling Events in Relation to Phases of SRF Operation, 2014 to 2021

Notes: EVO = Elkview Operations; SRF = Saturated Rock Fill; P1 = Phase 1 Operations (Natal Pit to Gate and Bodie creeks); P2 Operations = Phase 2 (Erickson Creek and Natal Pit to Erickson Creek).

Prior to commissioning of the SRF, studies were conducted to investigate fish habitat and usage (Robinson 2009, Wilkinson 2009, Lotic 2015, and Ecofish 2020) in Gate, Bodie, Erickson, and Michel creeks. In short, results from these studies demonstrated a lack of usage and suitable habitat for fish in these areas, as Bodie and Gate creeks have established and maintained fish barriers and thus are considered non-fish bearing)5, while upper portions of Erickson Creek (referred to as Reach 2) have a natural fish barrier (i.e., 2 m waterfall) present approximately 290 m upstream of the confluence of Michel Creek. Although fish (specifically Westslope Cutthroat (WCT) and Bull Trout) have been documented in lower portions of Erickson Creek (i.e. below the natural barrier, referred to as Reach 1), this area contains poor fish habitat and likely only provides summer foraging habitat for fish from Michel Creek (Ecofish 2020). Additional existing condition studies evaluating water and sediment quality, benthic invertebrate community, benthic invertebrate tissue (BIT) selenium concentrations, and calcite and periphyton coverage (Minnow 2020a⁶, 2021a) demonstrated that these areas (Gate, Bodie, and Erickson Creek) had elevated concentrations of aqueous selenium, nitrate, and other water quality constituents greater than Elk Valley Water Quality Plan (EVWQP) benchmarks and/or British Columbia Water **Quality Guidelines** (BCWQGs), high calcification, and low benthic invertebrate community abundance (in Gate Creek) and richness upstream (RG ERCKUT) and downstream (RG_ERCKDT) of the SRF outfall in Erickson Creek), as well as elevated concentrations of selenium in benthic invertebrate tissue in Gate and Bodie creeks. In Michel Creek, most water quality constituents were below relevant Elk Valley Water Quality Plan (EVWQP) benchmarks/BCWQGs and benthic invertebrate community (BIC) metrics were within regional reference normal ranges.

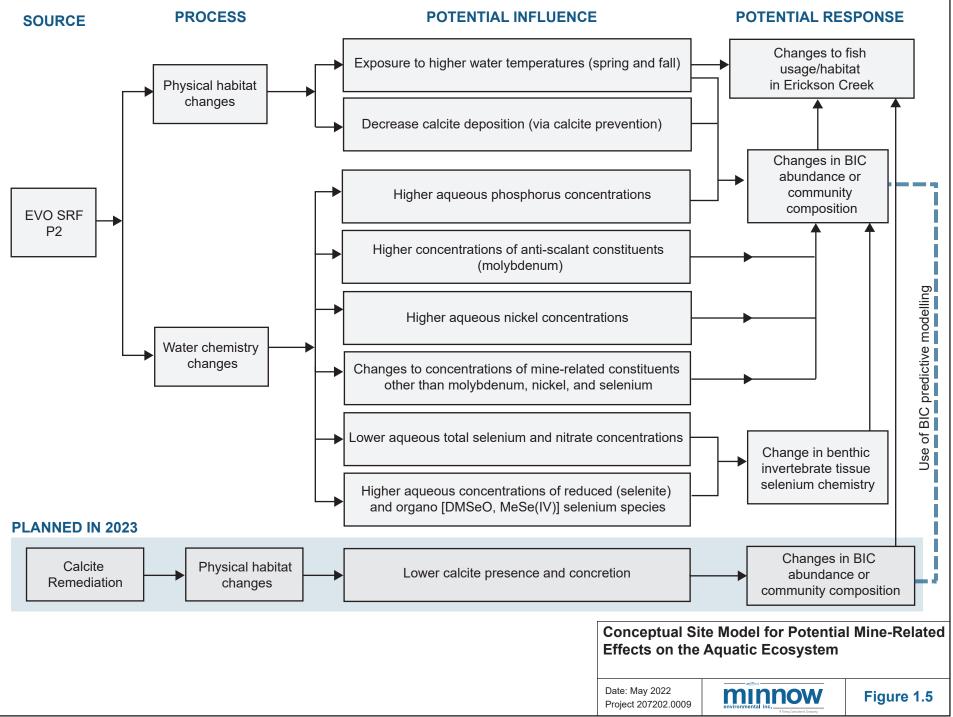
Sampling completed in September 2021 showed that mean tissue selenium concentrations in benthic invertebrates were elevated above Level 1 benchmarks for benthic invertebrates (for growth, reproduction, and survival) at RG ERCKDT7. Confirmation sampling was conducted in December of 2021 in multiple sampling areas in Erickson Creek including RG ERCKUT, RG ERCKDT, and RG ERCK. Additionally, for spatial resolution of selenium concentration in

⁵ Teck also routinely conducts fish salvage efforts in Bodie and Gate creeks (which are constructed discharge channels) to manage fish exclusion from these areas (Teck 2020a)

⁷ Benthic invertebrate tissue selenium concentrations were also elevated above benchmark values for benthic invertebrates (for growth, reproduction and survival) in Gate Creek (RG GATE > Level 2 benchmark and RG GATEDP >Level 1 benchmark) and Bodie Creek (RG BOCK >Level 3 benchmark). However, discharge of the SRF was limited in Bodie or Gate Creek in 2021, and thus elevated selenium concentrations in BIT at these areas is not believed to be caused by SRF treatment. Furthermore, concentrations in Bodie Creek (at RG BOCK) are similar to those Pre-SRF (2015 and 2016).

⁶ The term "baseline" was previously used when evaluating the existing conditions of the EVO area (Minnow 2020a). As mining was already established in this area, the term "baseline" has been updated to "existing conditions" to more accurately describe the nature of the data collected.

BIT an additional sampling area, RG_ERCKMD (located midway between RG_ERCKDT and RG ERCK), was also sampled in December of 2021 (Figure 1.3).


1.3 Study Questions

As illustrated by the conceptual site model (CSM; Figure 1.5), the EVO LAEMP was primarily designed to assess the magnitude and extent of influence from the EVO SRF in receiving environment (Erickson, Bodie, Gate, and Michel creeks; Figure 1.3) on water quality (including temperature (Figure 1.5), calcite, benthic invertebrate communities, and BIT selenium chemistry. The objective of the EVO LAEMP, together with the results from SRF Trial, the existing conditions studies, and EMC engagement (Minnow 2020a, Minnow 2021a) led to the development of the following study questions:

- 1. Has temperature changed in the receiving environment of Erickson Creek as the result of SRF water treatment?
- 2. Has calcite in the receiving environment (Erickson, Bodie, Gate, and Michel creeks) been influenced by SRF water treatment and/or calcite prevention (e.g. antiscalant) efforts?
- 3. Has SRF water treatment and/or calcite prevention (e.g. antiscalant) (a) decreased aqueous concentrations of selenium and nitrate and/or (b) changed other mine-related constituents in effluent and receiving environment (Erickson, Bodie, Gate, and Michel creeks)?
- 4. Have benthic invertebrate tissue selenium concentrations changed as a result of the SRF in Erickson, Bodie, Gate, and Michel creeks?
- 5. Are there changes in the benthic invertebrate community in Erickson, Bodie, Gate, and Michel creeks associated with SRF treatment (including calcite prevention)?
- 6. Is SRF water treatment affecting indicators of productivity (e.g. phosphorus) in the receiving environment?

1.4 Linkages to the Adaptive Management Plan for Teck Coal in the Elk Valley

Teck has developed an Adaptive Management Plan (AMP) to support implementation of the EVWQP to achieve water quality and calcite targets, to be protective of human health and the environment, and where necessary, restorative, and to facilitate continuous improvement of water quality in the Elk Valley (Teck 2018). Following an adaptive management framework, the AMP identified six Management Questions that are re-evaluated at regular intervals as part of AMP updates throughout EVWQP implementation. Data from the RAEMP (Minnow 2020b) and the

various LAEMPs (including the EVO LAEMP) feed into the adaptive management process to address these Management Questions that collectively address the environmental management objectives of the AMP (Teck 2018) and the EVWQP (Teck 2014). The AMP also identifies key uncertainties that need to be reduced to fill gaps in current understanding and support achievement of the EVWQP objectives.

Although the EVO LAEMP was primarily designed to monitor conditions associated with the SRF operation and to answer site-specific questions on an annual basis (Section 1.3). Management actions as part of an AMP response framework may be triggered at any time during the course of each annual LAEMP cycle (results are reported on June 30th of each year for the preceding calendar year) depending on the answers to site-specific LAEMP questions and on available data. For example, the EVO LAEMP Question #4 is: "Have benthic invertebrate tissue selenium concentrations changed as a result of the SRF in Erickson, Bodie, Gate, and Michel creeks?". Monitoring in September 2021 identified that despite decreased total selenium concentrations below the SRF outfall (as well as other areas downstream in Erickson Creek), tissue selenium concentrations in benthic invertebrates were elevated in the nearest sampling areas downstream of the SRF outfall, RG ERCKDT, (as reported in Section 4 and 6, respectively). This prompted Teck to initiate further investigations in Erickson Creek as part of adaptive management, which confirmed that elevated BIT selenium concentrations were present. Teck is currently conducting additional investigations to better understand the cause of the elevated selenium concentrations in BIT in Erickson Creek using the AMP response framework with the assistance of subject matter experts (SMEs) and regulators. Finally, additional BIT sampling events have also been implemented, as part of the AMP response framework, to allow for a more detailed understanding of SRF performance and stabilization (starting in March 2022). Investigation monitoring plans and schedules will continue to adapt to findings in the field and operational needs. Teck continues to operate the EVO SRF with adjustments to water source treated and discharge location consistent with the designed operating flexibility of the facility. The additional investigations underway to evaluate the cause of elevated selenium concentrations in BIT in Erickson Creek will be included in next years report.

In addition to addressing questions specific to the EVO LAEMP on an annual basis, monitoring data from the LAEMP will contribute to the broader data set assessed every three years within the RAEMP. The RAEMP is primarily designed to evaluate Management Question #5 of the AMP (i.e., "Does monitoring indicate that mine-related changes in aquatic ecosystem conditions are consistent with expectations?"). Data from the RAEMP is also used in the evaluation of Management Question #2, (i.e., "Will aquatic ecosystem health be protected by meeting the long-term site performance objectives?) and for each Management Question, a Key Uncertainty framework has also been developed to identify data gaps and direct future work (as described in

annual AMP Reports, e.g., Teck 2020c). Information acquired from the EVO LAEMP will be used in conjunction with other studies in the Elk Valley area (including other LAEMPs and the RAEMP) to reduce these uncertainties and provide additional context to the ecological conditions of the Elk Valley area as a whole. Furthermore, monitoring as part of the EVO LAEMP will follow an adaptive approach under the AMP response framework, to inform whether further investigations or adjustments are required in future EVO LAEMP study designs.

The evaluation of biological triggers is incorporated into the current report as part of Management Question #5 of the AMP (Teck 2021a). Biological triggers were developed in consultation with the EMC for a subset of the biological monitoring endpoints that are effective indicators of changes at the ecosystem level. The purpose of the biological triggers is to quickly identify biological monitoring areas where unexpected biological conditions may be occurring that may require management action. In this LAEMP report, percent EPT (Ephemeroptera [mayflies], Plecoptera [stoneflies], and Trichoptera [caddisflies]) and composite-taxa BIT tissue selenium concentration in 2021 were assessed against their respective biological triggers (additional information and methods pertaining to this analysis can be found in Appendix G).

The third annual AMP report was submitted on July 31, 2021 and included monitoring data collected in 2020 (Teck 2021b). In 2020, concentrations of aqueous total selenium, nitrate, sulfate, and cadmium met the SPO (monthly average) at both the EVO Michel Creek Compliance Point (EV_MC2) and the Elk River Compliance Point (EV_ER1; Teck 2021b), which is similar to past years (Teck 2019a, 2020c). For more information on the adaptive management framework, the Management Questions, the Key Uncertainties, the Response Framework, Continuous Improvement, linkages between the AMP and other EVWQP programs, and AMP reporting, refer to the AMP (Teck 2021a) and the 2020 Annual AMP report (Teck 2021b).

2 METHODS

2.1 Overview

The general approach for the EVO LAEMP (Table 2.1) includes a description of the collected data and data evaluation in relation to each of the study questions. This report includes data up to the end of the 2021 calendar year for all endpoints. Historical data are also presented where appropriate.

Water quality and biological samples were collected from established monitoring areas in Erickson, Bodie, Gate, and Michel creeks (Figure 1.3; Tables 2.2 and 2.3). Biological monitoring areas are the same locations utilized as part of previous existing conditions evaluations to support the EVO SRF P2 (Minnow 2020a, 2021a). Biological monitoring areas include those potentially influenced by the SRF, including areas above (RG ERCKUT) and below (RG ERCKDT) the SRF intake/outfall structure in the non-fish bearing reach of Erickson Creek as well as above the sediment pond in Gate Creek (RG GATE) and below the sedimentation pond in Bodie Creek (RG BOCK), consistent with established RAEMP locations (Minnow 2021c). Four areas in Michel Creek, the receiving environment for the three potential SRF P2-influenced creeks, were also sampled. Specifically, sampling locations in Michel Creek included areas directly above (RG MI3) and below the Erickson Creek confluence (RG MIDER), areas further downstream below the Gate Creek (RG MIDGA) and Bodie Creek (RG MIDBO) confluences, and an area downstream of all EVO influence into Michel Creek (RG MICOMP; EVO Compliance point). Two reference areas were included in Alexander Creek (RG ALUSM) and upper Michel Creek (RG MI25). Per request from the EMC, an additional sampling area was also added downstream of the Gate Creek sedimentation ponds (i.e. RG GATEDP). Although concurrent water samples are taken during sampling at each of these areas, biological areas are also paired with Teck routine water quality stations (when applicable) to provide additional temporal information regarding water quality. In December 2021, an additional area was sampled for BIT and water quality to add spatial resolution of BIT selenium concentrations in Erickson Creek (RG ERCKMD; Figure 1.3). Additional monitoring under the selenium speciation program (Golder 2021a), including selenium speciation and BIT sampling at EV GT1 (RG GATEDP) and EV BC1 (RG BOCK) from August 2021 was evaluated and is included in the current report where applicable. Continuous water temperature was also monitored at several locations in Erickson Creek, including RG ERCKUT, RG ERCKDT, EV EC FLOW3, EV EC FLOW2, and EV EC FLOW1 (Figure 1.4; Table 2.4).

To address the study questions described in Section 1.3, the 2021 EVO LAEMP included evaluation of the following components:

Table 2.1: Approach for the EVO LAEMP, 2021 to 2023

			Water				Biological		
Study Questions	Measurement Endpoint	Indicator Type	Areas ^a	Evaluation Criteria ^b	Measurement Endpoint	Indicator Type	Areas	Evaluation Criteria ^b	
Study Question #1: Has temperature changed in the receiving environment of Erickson Creek as the result of SRF water treatment?	Temperature	Indirect	RG_ERCKUT, RG_ERCKDT, EV_EC_FLOW3, EV_EC_FLOW2, EV_EC_FLOW1, RG_ERCK (via data loggers)	Comparison to water quality guidelines and SPO criteria.	Benthic invertebrate community structure (abundance, richness, %EPT, %Ephemeroptera, %Chironomidae)		RG_ERCKUT, RG_ERCKDT, RG_ERCK	Comparison to results from past observations, reference areas, and reference normal ranges.	
Study Question #2: Has calcite in the receiving environment (Erickson, Bodie, Gate, and Michel creeks) been influenced by SRF water treatment and/or calcite prevention (e.g. antiscalant) efforts?	Calcite	Indirect	RG_ALUSM, RG_MI25, RG_ERCKUT, RG_ERCKDT, RG_ERCK, RG_GATE ^e , RG_BOCK ^e , RG_MI3, RG_MIDER, RG_MIDGA, RG_MIDBO, RG_MICOMP	Comparison to results for past observations, reference areas, and to future SPO criteria. Comparison between SRF downstream and upstream areas.	Benthic invertebrate community structure (abundance, richness, %EPT, %Ephemeroptera, %Chironomidae)	Direct	RG_ALUSM, RG_MI25, RG_ERCKUT, RG_ERCKDT, RG_ERCK, RG_GATE ^e , RG_BOCK ^e , RG_MI3, RG_MIDER, RG_MIDGA, RG_MIDBO, RG_MICOMP	Comparison to results from past observations, reference areas, and reference normal ranges.	
Study Question #3: Has SRF water treatment and/or calcite prevention (e.g. antiscalant) (a) decreased aqueous concentrations of selenium	Water Quality	Indirect	RG_ALUSM, RG_MI25, RG_ERCKUT, RG_ERCKDT, RG_ERCK, RG_GATE, RG_GATEDP, RG_BOCK, RG_MI3, RG_MIDER, RG_MIDGA, RG_MIDBO, RG_MICOMP	benchmarks. Comparison between	Benthic invertebrate community	Direct	RG_ALUSM, RG_MI25, RG_ERCKUT,	Comparison to results from past	
and nitrate and/or (b) changed other mine-related constituents in effluent and receiving	Sediment Quality	Indirect	RG_ALUSM, RG_MI25, RG_ERCKUT, RG_ERCKDT, RG_MICOMP	SRF downstream and upstream areas.	structure (abundance, richness, %EPT, %Ephemeroptera, %Chironomidae)		RG_ERCKDT, RG_ERCK, RG_GATE ^e , RG_BOCK ^e , RG_MI3, RG_MIDER, RG_MIDGA, RG_MIDBO, RG_MICOMP	observations, reference areas, and reference normal ranges.	
environment (Erickson, Bodie, Gate, and Michel creeks)?	Aqueous Toxicity ^c	Semi-direct	Acute: F2_BPO, EV_ECOUT, EV_EC1, EV_GT1, and EV_BC1 Chronic: EV_MC2	Comparison to reference areas and expectations based on aqueous concentrations of mine-related chemicals.					
Study Question #4: Have benthic invertebrate tissue selenium concentrations changed as a	Total and dissolved selenium concentrations	Indirect	RG_ALUSM, RG_MI25, RG_ERCKUT, RG_ERCKDT, RG_ERCK, RG_GATE, RG_GATEDP, RG_BOCK, RG_MI3, RG_MIDER, RG_MIDGA, RG_MIDBO, RG_MICOMP	Comparison to results for past observations and reference areas.	Benthic invertebrate tissue selenium (composite taxa samples)	Indirect	RG_ALUSM, RG_MI25, RG_ERCKUT, RG_ERCKMD ^f , RG_ERCKDT, RG_ERCK, RG_GATE, RG_GATEDP, RG_BOCK, RG_MI3, RG_MIDER, RG_MIDGA, RG_MIDBO, RG_MICOMP	Concentrations relative to effect benchmarks, past observations, and reference area results. Comparison to lotic bioaccumulation models.	
result of the SRF in Erickson, Bodie, Gate, and Michel creeks?	Selenium speciation	Indirect	RG_ALUSM, RG_MI25, RG_ERCKUT, RG_ERCKDT, RG_ERCK, RG_GATE, RG_GATEDP, RG_BOCK, RG_MI3, RG_MIDER, RG_MIDGA, RG_MIDBO, RG_MICOMP	Comparison between SRF downstream and upstream areas.	Benthic invertebrate community structure (abundance, richness, %EPT, %Ephemeroptera, %Chironomidae)	Direct	RG_ALUSM, RG_MI25, RG_ERCKUT, RG_ERCKDT, RG_ERCK, RG_GATE°, RG_BOCK°, RG_MI3, RG_MIDER, RG_MIDGA, RG_MIDBO, RG_MICOMP	Comparison to results from past observations, reference areas, and reference normal ranges.	
Study Question #5: Are there changes in the	Temperature	Indirect	See Study Quest	tion #1	Benthic invertebrate community		RG_ALUSM, RG_MI25, RG_ERCKUT,	Commonican to account forms	
benthic invertebrate community in Erickson, Bodie. Gate. and Michel creeks associated with	Calcite	Indirect	See Study Quest	tion #2	structure (abundance, richness, %EPT, %Ephemeroptera,	Direct	RG_ERCKDT, RG_ERCK, RG_GATE ^e , RG_BOCK ^e , RG_MI3, RG_MIDER,	Comparison to results from past observations, reference areas, and	
SRF treatment (including calcite prevention)?	Water Quality and Supporting Evidence ^d	Indirect	See Study Quest	tion #3	%Chironomidae)		RG_MIDGA, RG_MIDBO, RG_MICOMP	reference normal ranges.	
Study Question #6: Is SRF water treatment affecting indicators of productivity (e.g. phosphorus) in the receiving environment?			PG ALLISM PG MI25 PG EPCKLIT		Visual Periphyton Coverage	Direct	RG_ALUSM, RG_MI25, RG_ERCKUT, RG_ERCKDT, RG_ERCK, RG_GATE, RG_GATEDP, RG_BOCK, RG_MI3, RG_MIDER, RG_MIDGA, RG_MIDBO, RG_MICOMP	Comparison to results from past observations	
	Phosphorus and other nutrient concentrations		RG_ALUSM, RG_MI25, RG_ERCKUT, RG_ERCKDT, RG_ERCK, RG_GATE, RG_GATEDP, RG_BOCK, RG_MI3, RG_MIDER, RG_MIDGA, RG_MIDBO, RG_MICOMP	Comparison to results from past observations, reference areas, and to available water quality guidelines.	Benthic invertebrate density, biomass, and community	Direct	RG_ERCKUT, RG_ERCKDT	Comparison to results from past observations and reference areas.	
					Benthic invertebrate community structure (abundance, richness, %EPT, %Ephemeroptera, %Chironomidae)	Direct	RG_ALUSM, RG_MI25, RG_ERCKUT, RG_ERCKDT, RG_ERCK, RG_GATE ⁶ , RG_BOCK ⁶ , RG_MI3, RG_MIDER, RG_MIDGA, RG_MIDBO, RG_MICOMP	Comparison to results from past observations, reference areas, and reference normal ranges.	

Notes: SPO = Site Performance Objective. EPT = Ephemeroptera, Plecoptera, and Trichoptera. SRF = Saturated Rock Fill.

^a Areas listed under "Water' include only those taken for the purposes of the EVO LAEMP (i.e. sampling conducted concurrently with biological sampling). Additional information regarding Teck's routine water quality monitoring is shown in Table 2.3.

^b Comparison to past observations refers to comparison of results during SRF operation to results prior to SRF operation.

^c Aqueous acute and chronic toxicity are evaluated as part of permit 107517 through the Annual Water Quality Monitoring Program and Annual Chronic Toxicity Testing Program, respectively. Results from these studies are used to support the water quality results collected for the EVO LAEMP.

^d Supporting evidence includes sediment quality and aqueous acute and chronic toxicity.

e Benthic invertebrate community structure and calcite were not evaluated at RG_GATE or RG_BODIE in 2021 as suitable riffle habitat was not identified, which is consistent with CABIN protocols.

^fRG_ERCKMD was added in December 2021 to add spatial resolution to selenium concentrations in benthic invertebrate tissue in Erickson Creek.

Table 2.2: Sampling Design for EVO SRF P2 LAEMP Monitoring in 2021

			. .	September 2021							Additional	Sampling - Dec	ember 2021	
		UT	MS	Wa	Water ^a			В	enthic Invertebrate	es	Water			
Area	Biological Area Code	Easting	Northing	Selenium Speciation	Water Quality	Sediment Quality Calcite Inde	Calcite Index ^b	Periphyton Visual Coverage Score	Kick Sampling (Community)	Hess Sampling (Density, Biomass, Community)	BIC Tissue Selenium Sampling	Selenium Speciation	Water Quality	BIC Tissue Selenium Sampling
Reference	RG_ALUSM	663516	5502707	n=1 (√)	n=1 (✓)	n=3 (✓)	n=3 (✓)	n=5 (√)	n=3 (✓)	-	n=3 (✓)	-	-	-
Kelerence	RG_MI25	668195	5482814	n=1 (√)	n=1 (√)	n=3 (√)	n=3 (√)	n=5 (√)	n=3 (√)	-	n=3 (✓)	-	-	-
	RG_ERCKUT	660791	5506595	n=1 (√)	n=1 (√)	n=5 (√)	n=3 (√)	n=5 (√)	n=3 (√)	n=10 (√)	n=5 (√)	n=1	n=1	n=5
	RG_ERCKDT	660816	5506325	n=1 (√)	n=1 (√)	n=5 (√)	n=3 (√)	n=5 (√)	n=3 (√)	n=10 (√)	n=5 (✓)	n=1	n=1	n=5
	RG_ERCKMD	660662	5505759	-	-	-	-	-	-	-	-	n=1	n=1	n=5
	RG_ERCK	659748	5505095	n=1 (√)	n=1 (√)	n=5 ^e	n=1 (√)	n=5 (√)	n=1 (√)	-	n=1 (✓)	n=1	n=1	n=3
	RG_GATE	655845	5509206	n=1 (√)	n=1 (✓)	-	n=0 ^d	n=5 (√) ^f	n=0 ^d	-	n=3 (√)	-	-	-
Mine expected	RG_GATEDP°	655654	5509261	n=1 (√)	n=1 (✓)	-	-	n=1 (√) ^f	-	-	n=3 (✓)	-	-	-
Mine-exposed	RG_BOCK°	655417	5509642	n=1 (√)	n=1 (√)	-	n=0 ^d	n=1 ^f	n=0 ^d	-	n=3 (√)	-	-	-
	RG_MI3	660022	550524	n=1 (√)	n=1 (√)	n=4 ^e	n=3 (√)	n=5 (√)	n=3 (√)	-	n=3 (√)	-	-	-
	RG_MIDER	659591	5505157	n=1 (√)	n=1 (√)	n=5 ^e	n=3 (√)	n=5 (√)	n=3 (√)	-	n=3 (✓)	-	-	-
	RG_MIDGA	660022	5505024	n=1 (√)	n=1 (√)	1	n=3 (✓)	n=5 (√)	n=3 (√)	-	n=3 (√)	-	-	-
	RG_MIDBO	655225	5509758	n=1 (√)	n=1 (√)	1	n=3 (√)	n=5 (√)	n=3 (√)	-	n=3 (√)	-	-	-
	RG_MICOMP	654308	5510897	n=1 (√)	n=1 (√)	n=5 (√)	n=5 (✓)	n=5 (√)	n=5 (√)	-	n=5 (√)	-	-	-

Notes: (<) = target sample size met, "-" = no sampling expected, BIC = Benthic Invertebrate Composite-Taxa, LAEMP = local aquatic environmental monitoring program, TBD = to be determined (new sampling). Target sample size is shown. RG_ERCKMD was added in December 2021 for additional spatial resolution of benthic invertebrate tissue selenium concentrations in Erickson Creek.

^a Water sampling does not include sampling conducted by Teck.

b In the initial study design, calcite index was to be evaluated once at each area. To be consistent with CABIN protocols (and other LAEMP projects and the RAEMP), calcite was evaluated at each riffle that kick sampling (community) was evaluated.

^c Benthic invertebrate tissue and selenium speciation sampling at RG_GATEDP and RG_BOCK also occurred in August 2022 as part of the Selenium Speciation program.

d RG_GATE and RG_BOCK were not evaluated using kick and sweep sampling for benthic invertebrate community monitoring or calcite index as the sampling reach did not have a "well-established riffle or straight run" present (which is a requirement for CABIN sampling [Environment] Canada 2012a]).

^e Sediment sampling was conducted as part of the RAEMP at RG_ERCK, RG_MI3, and RG_MIDER.

f Visual periphyton monitoring is part of the CABIN protocol and thus only expected to occur if benthic invertebrate community evaluations and other CABIN protocols are conducted. Although CABIN protocols did not occur at RG_GATEDP, and RG_BOCK, periphyton visual scores were still utilized. In the study design, RG_BOCK was to be evaluated at five areas, but to the limited habitat and area of study only one visual inspection was conducted.

Table 2.3: Summary of Water Quality Monitoring for EVO LAEMP SRF per Permit 107517

				UTM (NAD83, 11U)		Water Quality Samples						
Stream (Location Description)	Biological Station	Teck Water Station Code	EMS Number	OTW (14)	1003, 110)	Ama Tuma	Field Parameters ^a	All Other Parameters Required Under Mine	0.1	Tox	city ^c	
	Code			Easting	Northing	Area Type		Permits ^b	Selenium Speciation	Acute ^d	Chronic ^e	
Alexander Creek	RG_ALUSM	EV_AC2	-	663482	5502718	Reference	S	S	-	-	-	
Michel Creek (upstream of Coal Mountain Operations)	RG_MI25	CM_MC1	E258175	668209	5482832	Reference	W/M	W/M	-	-	-	
Natal West Pit Intake	-	F2_NWPI	E321791	656193	5511083	Influent	D	М	W	-	-	
Erickson Creek Intake	-	F2_ECIN ^f	E321811	656195	5511082	Influent	D	М	W	-	-	
Effluent Retention Pond Outlet	-	F2_BPO	E321812	658874	5511362	Effluent	D	М	W	Q	-	
Erickson Creek Outfall	-	F2_ECF	E321813	660812	5506372	Effluent	С	-	-	-	-	
Bodie Rock Drain	-	F2_BRDF	E321815	656185	5511108	Effluent	-	-	-	-	-	
Erickson Creek upstream of SRF Outfall	RG_ERCKUT ^f	-	-	660811	5506509	Mine-exposed	S	S	S	-	-	
Erickson Creek downstream of SRF Outfall	RG_ERCKDT	EV_ECOUT	E321814	660816	5506325	Mine-exposed	W/M	М	S	Q	-	
Midpoint in Erickson Creek	RG_ERCKMD ^g			660659	5505736	Mine-exposed	S	S	S	-	-	
Erickson Creek at Mouth (discharge to Michel Creek)	RG_ERCK	EV_EC1	0200097	659909	5505172	Mine-exposed	W/M	М	S	Q	-	
Gate Creek (upstream of settling pond)	RG_GATE			655824	5509196	Mine-exposed	S	S	S	-	-	
Gate Creek Sedimentation Pond Decant	RG_GATEDP	EV_GT1	E206231	655654	5509261	Mine-exposed	W/M	W/M	S	Q	-	
Bodie Creek Sedimentation Pond Decant	RG_BOCK	EV_BC1	E102685	655536	5509605	Mine-exposed	W/M	W/M	S	Q	-	
Michel Creek upstream of Erickson Creek	RG_MI3	EV_MC3 ^h	200203	660032	5505022	Mine-exposed	W/M	W/M	М	-	-	
Michel Creek downstream of Erickson Creek	RG_MIDER	EV_MC3a ⁱ	E327471	659482	5505234	Mine-exposed	М	М	М	-	-	
Michel Creek upstream of Gate Creek	-	EV_MC2a	E310168	655871	5508994	Mine-exposed	W/M	М	М	-	-	
Michel Creek downstream of Gate Creek	RG_MIDGA	-	-	655565	5509332	Mine-exposed	S	S	S	-	-	
Michel Creek downstream of Bodie Creek	RG_MIDBO	-	-	655194	5509803	Mine-exposed	S	S	S	-	-	
Michel Creek downstream of Hwy #3 Bridge (Compliance Point)	RG_MICOMP	EV_MC2 ^j	E300091	654367	5510857	Mine-exposed	W/M	W/M	М	-	Q/SA	
Elk River downstream of Michel Creek at C.P.R. Roadhouse	-	EV_ER1	200393	651354	5511080	Mine-exposed	W/M	W/M	-	-	-	

Notes: "-" = sampling will not be completed at this area, UTM = Universal Transverse Mercator, EVO = Elkview Operations, SRF = Saturated Rock Fill, C = Continuous Monitoring (Temperature Only), D = daily, M = monthly, W = weekly, W/M = weekly during freshet (March 15 to July 15), monthly otherwise, Q = quarterly, S = September (once), SA = semi-annual. Sampling frequency is currently managed through the permit.

^a Dissolved oxygen, water temperature, specific conductance, pH.

^b Parameters consistent with Permit 107517 (see Table 2.5 for details).

c Aqueous acute and chronic toxicity are evaluated as part of permit 107517 through the Annual Water Quality Monitoring Program and Annual Chronic Toxicity Testing Program, respectively. Results from these studies are used to support the water quality results collected for the EVO LAEMP.

^d Q = Quarterly 96-hr rainbow trout LT₅₀; 48-hr *Daphnia* spp. LT₅₀.

e Q = Quarterly 7-day C. dubia growth and survival, 72-hr P. subcapitata growth tests; SA = Semi-annual 28-day H. azteca growth and survival tests in spring and fall, 30-day early life stage rainbow trout tests in spring and fall, 30-day early life stage fathead minnow tests in summer and winter. fRoutine water quality from Erickson Creek Intake (i.e. Influent) will be paired with the biological sampling area, RG_ERCKUT.

g RG ERCKMD was added in December 2022 to add additional spatial resolution to selenium concentrations in benthic invertebrate tissue in Erickson Creek.

^h The location of the Teck Compliance station, EV_MC3, is different than the biological sampling area (RG_MI3). The UTMs for EV_MC3 are 659833E and 5505234N.

Monthly sampling at EV_MC3a was added to the EVO LAEMP study design on March 4, 2022 and will be paired with RG_MIDER.

¹The location of the Teck Compliance station, EV_MC2, is different than the biological sampling area (RG_MICOMP). The UTMs for EV_MC2 are 655871E and 5508994N.

Table 2.4: Temperature Data Logger Locations in Erickson Creek, 2021

		UTM (NAD83, 11U)		
Logger ID	Location Description	Easting	Northing	
RG_ERCKUT ^a	Temperature upstream of Intake/ Outfall	660794	5506508	
RG_ERCKDT	Temperature downstream of Intake/ Outfall	660851	5506333	
EV_EC_FLOW3	Temperature ~450 m downstream of Intake/ Outfall	660809	5506052	
EV_EC_FLOW2	Temperature ~800 m downstream of Intake/ Outfall	660662	5505759	
EV_EC_FLOW1	Temperature ~1,250 m downstream of Intake/ Outfall	660502	5505446	
RG_ERCK ^b	Temperature ~50 m upstream of Erickson Creek confluence with Michel Creek	659866	5505130	

Note: UTM = Universal Transverse Mercator.

^a The UTMs shown are those for the temperature logger furthest upstream and the logger that was part of the initial study design. The other logger location is roughly 35 m downstream of this location (UTM: 660817E, 5506482N).

^b The UTMs shown are those for the temperature logger at RG_ERCK that was part of the initial study design. An additional temperature logger, which is within ~25 m of the initial logger (UTM: 659872, 5505089) was utilized for contingency purposes. EV_EC1 temperature logger (UTM: 659867, 5505170) is in a similar vicinity but upstream of both of the RG_ERCK temperature loggers.

- Water temperature in Erickson Creek recorded continuously with data loggers:
- Concentration of total selenium and other constituents (i.e. those listed in Section 2.2.2) in sediment;
- Calcite presence and concretion in receiving environment;
- Concentrations of nutrients, total selenium, selenium species, and other constituents (i.e. those listed in Section 2.3.1) in water, based on concurrent and routine water quality monitoring;
- Acute toxicity of SRF retention pond outlet effluent (F2 BPO) and four surface water locations from Erickson (EV ECOUT [RG ERCKDT] and EV EC1 [RG ERCK]), Bodie (EV BC1 [RG BOCK]), and Gate (EV GT1 [RG GATEDP]), as well as chronic toxicity of surface water from the compliance point EV MC2 (RG MICOMP);
- · Periphyton visual coverage scores; and
- Benthic invertebrate density, biomass, community, and composite-taxa tissue selenium concentrations.

Water quality monitoring and acute and chronic water toxicity testing results presented in this report include requirements specified under Permit 107517. Biological sampling in 2021 was completed in September in accordance with the 2021 to 2023 EVO LAEMP study design (Minnow 2021b), with confirmatory sampling of water quality and BIT selenium concentrations conducted in Erickson Creek in December 2021. As noted in Section 1.2, no fish habitat and usage is present in upstream portions of Erickson Creek as well as Gate and Bodie creeks8 and thus, fish tissue monitoring was not conducted as part of the 2021 EVO LAEMP9.

⁹ Fish sampling was conducted at the compliance point in Michel Creek (EV MC2 [RG MICOMP]), results for this work (and corresponding biological trigger analysis) will be discussed as part of the RAEMP.

⁸ Westslope cutthroat trout, bull trout, eastern brook trout, mountain whitefish, longnose sucker, and longnose dace are present in Michel Creek and may access the lowermost portion of Erickson Creek (Ecofish 2020). Although fish (specifically Westslope Cutthroat and Bull Trout) have been documented in Reach 1 of Erickson Creek (i.e. below the natural barrier), this area contains poor fish habitat and likely only provides summer foraging habitat for fish from Michel Creek. Both Bodie and Gate Creeks have established and maintained fish barriers and thus are considered non-fish bearing. In Erickson Creek, a natural fish barrier (i.e., 2 m waterfall) is present approximately 290 m upstream of the confluence of Michel Creek. The area upstream of this barrier (referred to as Reach 2) in Erickson Creek is non-fish bearing.

2.2 Physical Habitat and Supporting Measures

2.2.1 Temperature and Dissolved Oxygen

2.2.1.1 Sampling Overview

To evaluate potential temperature-related effects associated with the SRF discharge, instream continuous data loggers (TidbiT v2 Temp [UtBI-001]) were deployed at six locations (RG ERCKUT, RG ERCKDT, EV EC FLOW3, EV EC FLOW2, EV EC FLOW1, and RG ERCK) in Erickson Creek in December 2020 (Figure 1.4; Table 2.4). Temperature data from these loggers was downloaded three times in 2021 (April, June, and October/November). Loggers were deployed in sets of two¹⁰ to confirm logger accuracy and for contingency purposes. Two additional temperature loggers were installed at RG ERCKUT and RG ERCK on June 29th, 2021. The additional logger at RG ERCKUT was installed to better understand temperature gradient upstream of the SRF, while the additional logger at RG ERCK was added for contingency purposes due to the high calcification in the area, a lack of structures to anchor temperature loggers, as well as substantial flows in the area during freshet. Data from previously monitored by Teck at F2 ECF established temperature loggers (SRF EV ECOUT (RG ERCKDT), and EV EC1 (RG ERCK) also included. were Temperature loggers were downloaded onto a base station and uploaded to a computer Following download, the loggers were placed back at the same depth for Temperature and dissolved oxygen for fish-bearing areas continued monitoring. (EV EC1 [RG ERCK]), Michel Creek (EV MC3 [RG MI3]), EV MC2a [RG MIDER], EV MC2 [RG MICOMP]), were collected per Permit 107517. This information was downloaded from Teck's EQuIS database and included both routine monitoring results collected by Teck and samples collected concurrently with biological sampling.

2.2.1.2 Data Analysis

Temperature and dissolved oxygen data from Teck routine water monitoring in fish-bearing areas of Erickson Creek (EV_EC1 [RG_ERCK]), Michel Creek (EV_MC3 [RG_MI3]), EV_MC2a [RG_MIDER], EV_MC2 [RG_MICOMP]), and the Elk River (EV_ER1) were evaluated relative to British Columbia water quality guidelines¹¹. British Columbia water temperature guidelines for bull trout and westslope cutthroat trout specify a maximum ± 1 °C change from the optimum temperature range for different life stages of these species (spawning, incubation, and rearing; BCMOE 2001). Dissolved oxygen guidelines are also specific to life stage

¹¹ Air temperature at these areas was also considered in the interpretation of water temperature results.

¹⁰ The replicate logger at RG ERCK was lost during collection on June 3rd, 2021.

(buried embryo/alevin and all other life stages; BCMOE 1997). Guidelines for both these parameters were applied to periods of the year relevant to the specific life stage of each of the two species, with the time periods approximated from available literature (McPhail and Baxter 1996; McPhail 2007; COSEWIC 2016).

Maximum daily temperature from temperature loggers at EV_EC1 (RG_ERCK) were compared directly to the SPO (which is based largely on the optimum temperatures for fish noted above) per Permit 107517¹². Tabulated maximum daily temperature values via routine Teck monitoring in relation to the SPO was performed in Microsoft Excel and plots of temperature logger data were generated using R (R Core Team 2022).

2.2.2 Sediment Quality

2.2.2.1 Sampling Overview

Sediment quality samples were collected using collection procedures consistent with those outlined in the British Columbia Field Sampling Manual (BCMOECCS 2020a). Three replicate sediment samples from both reference areas (RG ALUSM and RG MI25) were collected, while five replicate sediment samples were collected immediately upstream (RG ERCKUT) and downstream of the SRF outfall (RG ERCKDT) in Erickson Creek as well as at the compliance point in Michel Creek (RG MICOMP; Figure 1.3; Table 2.2). Additional sediment samples were also collected at RG MI3 (n=4), RG ERCK (n=5), and RG MIDER (n=5) as part of the 2021 to 2023 RAEMP study design (Minnow 2021c). Sediment samples were collected using a stainless-steel spoon and transferred into glass jars for analysis of polycyclic aromatic hydrocarbons (PAHs), and into polyethylene bags for all other analyses (i.e., metals, moisture content, total organic carbon, and particle size distribution). Surficial sediment was collected by slowly and carefully placing the spoon on the sediment surface in a manner that minimized disturbance and inserting the spoon into the sediment to capture sediment to a depth of 1 to 2 cm, where possible. The spoon was slowly lifted to the surface to avoid sample washout. The content of each spoonful was inspected to confirm that it is predominantly fine sediment (i.e., no pieces of vegetation, woody debris, or rocks), and, if acceptable, was placed into a clean plastic tub. It is important to note that these sediments and associated grain size did not reflect the general substrate in areas (riffles) where biological (benthic invertebrate) samples were collected. Substrates in riffles consisted primarily of cobble with some sand, gravel, and boulders, while the sediment collected consisted of smaller particles. This procedure was repeated to form a composite sample with sufficient material for analysis, and the stainless-steel

¹² The SPOs for temperature per Permit 107517 went into effect on August 13, 2021. The SPO at EV_EC1 (RG_ERCK) from January 1 to April 30 and November 1 to December 31 is <7°C, while from May 1 to August 31 it is <13°C, and September 1 to October 31 it is <10°C.

spoon was used to homogenize the sediment. Sampling equipment was rinsed with site water between stations. Details pertaining to the samples (e.g., depth, substrate characteristics, colour, texture, presence of aquatic vegetation) were recorded on field sheets to support the sediment results.

2.2.2.2 Laboratory Analysis

Sediment samples were analyzed by ALS Environmental in Calgary, Alberta. The laboratory thoroughly homogenized each sample prior to analysis. Methods used were consistent with the British Columbia Environmental Laboratory Manual (BCMOECCS 2020b), where applicable, and include analyses of physical parameters (e.g., moisture content, particle size, total organic carbon [TOC], metals and metalloids, and polycyclic aromatic hydrocarbons (PAHs; Table 2.5).

Sediment samples were analyzed using the following methods:

- metals by Collision Reaction Cell Inductively Coupled Plasma-Mass Spectrometry (CRC ICP-MS; EPA 200.2/6020A);
- mercury by Cold Vapour Atomic Fluorescence Spectroscopy (CVAFS; EPA 200.2/245.7);
- TOC by combustion method (Carter and Gregorich 2008); and
- PAHs by rotary extraction using hexane/acetone (EPA 3570/8270) followed by capillary column gas chromatography with mass spectrometric detection (GC/MS).

Particle size distribution was determined by dry sieving (coarse particles), wet sieving (sand), and the pipette sedimentation method (fine particles). Moisture content was determined gravimetrically by drying the sample at 105°C. Upon completion of the laboratory analyses, data reports were provided to Minnow and Teck electronically as Adobe Acrobat Portable Document Format (PDF) and Microsoft Excel files (Appendix H).

2.2.2.3 Data Analysis

Upon receipt of the analytical data, a data quality review (DQR) was completed, which included a review of data completeness, achieved laboratory report limits (LRLs), laboratory precision and accuracy, and field precision. Following the completion of the DQR, results for each constituent were summarized by area by calculating mean, median, standard deviation, minimum and maximum concentrations. Sediment concentrations from each area in 2021 (as well as previous years) were then evaluated, tabulated, and plotted relative to (1) the regional reference normal range as determined in the RAEMP report (Minnow 2020b), and (2) the British Columbia Working Sediment Quality Guidelines (BCWSQGs; BCMOECSS 2021a,b). Constituents in sediment from mine-exposed areas that exceeded both the BCWSQG and the regional reference normal range (when available) for 2021 were the focus of data interpretation. Tabulated sediment

Table 2.5: Water and Sediment Quality Parameters Associated with the EVO LAEMP, 2021

Category	Water Quality Parameters (as required under Permit 107517 ^a)
Field Parameters	water temperature, specific conductance, dissolved oxygen, pH
Conventional Parameters	specific conductance, total dissolved solids, total suspended solids, hardness, alkalinity, dissolved organic carbon, total organic carbon, and turbidity
Major Ions	bromide, fluoride, calcium, chloride, magnesium, potassium, sodium, sulphate
Nutrients	ammonia, nitrate, nitrite, total Kjeldahl nitrogen, orthophosphate, total phosphorus
Total and Dissolved Metals	total and dissolved concentrations of: aluminum, antimony, arsenic, barium, beryllium, bismuth, boron, cadmium, chromium, cobalt, copper, iron, lead, lithium, manganese, mercury, molybdenum, nickel, selenium, silver, strontium, thallium, tin, titanium, uranium, vanadium, and zinc
Category	Sediment Quality Parameters
Physical Tests	moisture, pH, particle size, texture, total organic carbon (TOC)
Total Metals	aluminum, antimony, arsenic, barium, beryllium, bismuth, boron, cadmium, calcium, chromium, cobalt, copper, iron, lead, lithium, magnesium, manganese, mercury, molybdenum, phosphorus, potassium, nickel, sodium, selenium, silver, strontium, sulfur, thallium, tin, titanium, tungsten, uranium, vanadium, zinc, zirconium
Polycyclic Aromatic Hydrocarbons (PAHs)	acenaphthene, acenaphthylene, acridine, anthracene, benz(a)anthracene, benzo(a)pyrene, benzo(b,j)fluoranthene, benzo(b,j)k,)fluoranthene, benzo(e)pyrene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3-c,d)pyrene, 1-methylnaphthalene, 2-methylnaphthalene, naphthalene, perylene, phenanthrene, pyrene, quinoline

Notes: EVO = Elkview Operations. LAEMP = Local Aquatic Environmental Monitoring Program.

^a Parameters are consistent with those outlined in Table 18 of Permit 107517.

quality screening against BCWSQG was performed in Microsoft Excel and plots were generated using R (R Core Team 2022). Quality assurance and control results (e.g. duplicate samples, etc.) associated with sediment samples collected concurrently with biological samples are discussed in greater detail in the DQR in Appendix B (see Appendix H for applicable laboratory reports).

2.2.3 Calcite and CABIN Measures

2.2.3.1 Sampling Overview

Consistent with the requirements of the Canadian Aquatic Biomonitoring Network (CABIN) sampling protocol, supporting habitat information (e.g., water velocity and depth, *in situ* water quality [temperature, dissolved oxygen, specific conductivity, pH], canopy cover, and substrate characteristics [100 pebble count]) was documented concurrent with benthic invertebrate community samples (Environment Canada 2012a)¹³. Visual scores of periphyton coverage were recorded in accordance with the CABIN method (and are discussed in greater detail in Section 2.4).

In addition to the CABIN requirements, measurements of calcite presence and concretion were conducted on 100 particles (pebbles) at each biological sampling location concurrent with (and using the same particles as) the 100-pebble count. Calcite presence (Cp) has historically been a binary assessment (i.e., presence [score = 1] or absence [score = 0]; Teck 2016, Lotic 2021). In 2021, an additional method for assessing calcite presence in lotic environments was included (Cp, Lotic 2021, Zathey et al. 2021) that scored the proportion of the particle surface area covered by calcite as a decimal to the nearest 10th percentile (0.1, 0.2, 0.3, etc.)¹⁴. The degree of concretion (Cc) was assessed by determining if the particle was removed with negligible resistance (not concreted; score = 0), noticeable resistance but removable (partially concreted; score = 1), or immovable (fully concreted; score = 2). If distinct particles were not visible due to heavy calcification, values of 1 (for presence) and 2 (for concretion) were recorded. If fines were encountered and calcite presence could not be visually confirmed, values of 0 (for presence) and 0 (for concretion) were recorded. If rocks were visible under fine material, the rock was selected for calcite measurements.

¹⁴ The new calcite assessment method was developed under the Regional Calcite Monitoring Program as a means to better describe the degree, extent, and trends of calcite deposition (Zathey et al. 2021).

¹³ As benthic invertebrate community sampling was not conducted at RG_GATE and RG_BOCK (as discussed in more detail in Section 2.5.4 and Section 7.6), the 100-pebble count was also not conducted. As such calcite for these areas is based on information provided by the 2021 Regional Calcite Monitoring Program (Robinson et al. 2022).

The results for the 100 particles were expressed as a Calcite Index (CI and CI') based on the following equations (Lotic 2021, Zathey et al. 2021):

$$CI = Cp + Cc \text{ or } CI' = Cp' + Cc$$

Where:

$$CI \ or \ CI' = Calcite \ Index^{15}$$

$$Cp = Calcite \ Presence \ Score = \frac{Number \ of \ particles \ with \ calcite}{100 \ (binary \ score)}$$

$$Cp' = Calcite \ Presence \ Score = \frac{Number \ of \ particles \ with \ calcite}{100 \ (proportional \ score)}$$

$$Cc = Calcite \ Concretion \ Score = \frac{Sum \ of \ particle \ concretion \ scores}{100}$$

2.2.3.2 Data Analysis

Calcite measurements made among 40 reference areas sampled in 2015 were used to characterize the regional reference normal range as part of the 2015 to 2016 RAEMP report (Minnow 2018a), and the upper limit of the normal range (97.5th percentile) is defined as a calcite index of 1.0. Calcite index calculated for stations within the EVO LAEMP study area were tabulated, plotted, and compared to the upper limit of the normal range and the future site performance objective (SPO; by December 31, 2024: Cc ≤ 0.5). Tabulation of calcite index measurements was performed in Microsoft Excel and plots were generated using R (R Core Team 2022).

2.3 Water Quality and Toxicity

2.3.1 Water Quality

2.3.1.1 Sampling Overview

Water quality data assessed as part of the EVO LAEMP included data for routine monitoring managed by Teck and single surficial water samples collected at the biological monitoring stations concurrently with biological sampling in September and December (Figure 1.3; Table 2.3). Water samples included analysis of constituents stipulated in Permit 107517 as well as selenium speciation (Table 2.5). Sample collection procedures were consistent with those outlined in the British Columbia Field Sampling Manual (BCMOE 2013). Dissolved metals, dissolved organic carbon, and dissolved mercury were field filtered using a 0.45 µm filter. After concurrent sample collection, samples were kept on ice in the field, then stored in a

¹⁵ CI refers to the binary assessment of Cp and CI' refers to the proportional assessment of Cp'.

refrigerator at approximately 4°C until they were transported overnight in coolers with ice packs to the analytical laboratory.

2.3.1.2 Laboratory Analysis

Water quality samples were analyzed by ALS Environmental in Calgary, AB for the analytes listed in Permit 107517 except for selenium species (Table 2.5). Analysis of selenium species was performed by Brooks Applied Labs in Bothell, WA. Methods used were consistent with the British Columbia Environmental Laboratory Manual (BCMOECCS 2020b) where applicable. Upon completion of the laboratory analyses, data reports were provided to Minnow and Teck electronically as Adobe Acrobat PDF and Microsoft Excel files (Appendix H) and were uploaded to Teck's EQuIS database.

2.3.1.3 Data Analysis

Upon receipt of the analytical data, a DQR was completed, which included a review of data completeness, achieved LRLs, laboratory precision and accuracy, and field precision. Water quality data collected routinely (by Teck) and concurrently with biological sampling were stored in Teck's EQuISTM database, and relevant data was downloaded from the database in Excel format for analysis. Analyses of water quality data were completed using the following approaches (see Appendix A for detailed methodology):

- Tabular and graphical comparison to applicable benchmarks, SPOs, interim screening values, and BCWQGs (Appendix Table A.1);
- Evaluation of temporal changes between SRF2 (or 2021) compared to the early phase (or the earlier year) of selected water concentrations at all areas¹⁶ were conducted using 2 two approaches: (i) temporal differences relative to reference (Relative change model) where the percentage of data below the laboratory reporting limit was less than 80% for both the mine-exposed and reference area, and (ii) temporal changes at the mine-exposed area alone (Temporal change model) where the reference area % LRL was greater than 80%, but the mine-exposed was not. In both cases, temporal differences were tested using a censored regression ANOVA (Analyses of Variance) with α = 0.05. *Post hoc* comparisons were corrected for the number of tests using a Tukey's Honestly Significant Difference Test. If both the exposed and reference area were above 80 % LRL no tests were conducted.

¹⁶ Due to limited data pre-SRF P2 as well as increased variability in constituent concentrations in 2021 associated with the SRF frequently non-operational at EV_ECOUT (RG_ERCKDT), visual observations in combination with the aforementioned statistical analysis were conducted at this area.

Quality assurance and control results (e.g. field blanks, duplicate samples, etc.) associated with water samples collected concurrently with biological samples are discussed in greater detail in the DQR in Appendix B (see Appendix H for applicable laboratory reports).

2.3.2 Acute Toxicity

Acute toxicity tests were conducted on a quarterly basis at five stations in the EVO LAEMP as discussed in the Annual Water Quality Report (Table 2.3; Teck 2022b):

- Effluent retention pond outlet (F2_BPO);
- Downstream of outfall in Erickson Creek (EV_ECOUT);
- Erickson Creek at confluence of Michel Creek (EV EC1);
- Gate Creek discharge monitoring location (EV GT1); and
- Bodie Creek discharge monitoring location (EV BC1).

Acute toxicity consisted of two bioassays as per Permit 107517:

- Single concentration acute toxicity test (96-hour LT₅₀) using rainbow trout (Oncorhynchus mykiss); universal method: EPS 1/RM/9 (Environment Canada 2007a); and
- Single concentration acute toxicity test (48-hour LT₅₀) using *Daphnia* spp.; universal method: EPS 1/RM/11 (Environment Canada 1996).

2.3.3 Chronic Toxicity

Aqueous chronic toxicity was monitored, analyzed, and interpreted under the Regional Chronic Toxicity Testing Program (Golder 2022), details of the methods and analysis employed as part of that program are described in short below. Chronic toxicity tests were completed on water samples collected quarterly and semi-annually at compliance point EV_MC2 (RG_MICOMP) as per the Permit 107517 (Table 2.3). The quarterly and semi-annual tests which were evaluated under the Regional Chronic Toxicity Testing Program include:

Quarterly tests:

- 72-hour growth/inhibition test using the freshwater alga, *Pseudokirchneriella subcapitata*, conducted using method: EPS1/RM/25 (Environment Canada 2007b); and
- 7-day test of reproduction and survival using a cladoceran, *Ceriodaphnia dubia*, conducted using method: EPS1/RM/21 (Environment Canada 2007c).

Semi-annual tests - Q2 and Q4:

- 28-day water-only test of growth and survival using the amphipod, Hyalella azteca, using methods adapted from US EPA (2000); and
- 30-day early life stage toxicity tests using rainbow trout, *Oncorhynchus mykiss,* using method: EPS 1/RM/28- 1E (Environment Canada 1998).

Semi-annual tests – Q1 and Q3:

• 30-day early life stage toxicity test using fathead minnow, *Pimephales promelas*, conducted semi-annually (i.e., in summer and winter) using methods: EPA-712-C-96-121; US EPA 1996; and E1241-05; ASTM 2013.

Chronic toxicity results for each individual endpoint for each species were then categorized into one of the three categories: 'no adverse response', 'possible adverse response', and 'likely adverse response'. Toxicity tests and associated quality assurance and quality control (QA/QC) measures were completed by an accredited third-party laboratory. Water quality samples were collected during toxicity testing to support evaluation of toxicity results. The results were summarized in annual reports completed in accordance with Permit 107517 (Teck 2022b, Golder 2022). Applicable results (i.e., for monitoring stations associated with the EVO LAEMP) are summarized in this report.

2.4 Periphyton

2.4.1 Sampling Overview

Periphyton sampling for the purpose of assessing productivity involved visual scoring as specified in the CABIN method for benthic invertebrate sampling (Environment Canada 2012a).

The assessment of periphyton was completed prior to initiation of other sampling activities to avoid disturbance of the periphyton cover within the sampling area, and was based on the categories stipulated by the CABIN protocol (Environment Canada 2012a)¹⁸:

1. Rocks not slippery, no obvious colour (<0.5 mm thick);

¹⁸ Visual periphyton monitoring is part of the CABIN protocol and thus only expected to occur if benthic invertebrate community evaluations and other CABIN protocols are conducted. Although benthic invertebrate community and calcite monitoring did not occur at RG_GATE, RG_GATEDP, and RG_BOCK periphyton visual scores were still completed.

¹⁷ No adverse response: response not significantly lower than one or more references or response is below the regional normal range with an effect size of <20% relative to the mean of batch-specific references. Possible adverse response: response significantly lower than one or more references in the batch and not below the local normal range with an effect size of 20-50% relative to the mean of batch specific references or response is significantly lower than references and the local normal range, but not below the regional normal range. Likely adverse response: response significantly lower than one or more references in the batch and below the local and regional normal range or response is significantly lower than references but not below the local normal range with an effect size >50% relative to the mean of batch-specific references.

- 2. Rocks slightly slippery, yellow-brown to light green colour (0.5 to 1 mm thick);
- 3. Rocks have noticeable slippery feel, patches of thicker green to brown algae (1 to 5 mm thick);
- 4. Rocks are very slippery, numerous clumps (5 to 20 mm thick); and
- 5. Rocks mostly obscured by algae mat, may have long strands (>20 mm thick).

Although only a single score is required per area under the CABIN protocol, scores were recorded for five stations (a minimum of 5 metres apart) in each area as part of the EVO LAEMP, except for RG_BOCK and RG_GATEDP which had limited sampling area and thus only one score for the area was recorded. The collection of periphyton coverage data from a larger area allowed for a more representative evaluation of periphyton in the area sampled for benthic invertebrate productivity and community and allowed for comparisons among areas and over time. Photos were also taken to document current conditions of not only periphyton conditions but also bryophytes, which are prominent in the Erickson Creek area.

2.4.2 Data Analysis

Periphyton coverage was evaluated spatially and temporally in conjunction with other measures of productivity, including temporal/spatial trends of phosphorus and other nutrients (Section 4.1), as well as measurements of density and biomass of benthic invertebrates upstream and downstream of the SRF intake/outfall structure in Erickson Creek (Section 6.2.1) to better understand the influence of the SRF on productivity. Tabulated periphyton scores was performed in Microsoft Excel.

2.5 Benthic Invertebrates

Benthic invertebrate samples were collected to address study questions related to benthic invertebrate tissue (BIT) selenium bioaccumulation (Section 2.5.1), productivity (as determined via Hess sampling; Section 2.5.2), and community structure (as determined via CABIN sampling; Section 2.5.3). Consistent with other LAEMPs and the RAEMP (Minnow 2021c,d, Minnow and Lotic 2021), benthic invertebrate sampling was completed in September. As noted in Section 2.3.1, individual water samples for routine water quality analysis (Tables 2.5) and selenium speciation analysis were collected from each monitoring area during the sampling event, concurrently with the collection of biological samples.

2.5.1 Tissue Selenium

2.5.1.1 Sampling Overview

Benthic invertebrate tissue (BIT) samples for selenium analysis were collected using the kick and sweep sampling method (which is described in greater detail in Section 2.5.4), except that sampling was not timed. Three replicate samples were collected in September from each reference area (RG_ALUSM and RG_MI25) and each mine-exposed area (Table 2.2), with the exception of five replicate samples collected per area at RG_ERCKUT, RG_ERCKDT, and RG_MICOMP¹⁹, and one replicate sample collected at RG_ERCK. In December 2021 (as part of confirmation sampling), five replicate samples were taken from three areas in Erickson Creek, RG_ERCKUT, RG_ERCKDT, and RG_ERCKMD²⁰, while three replicate samples were taken from RG_ERCK²¹.

Upon collection of the sample using the kick and sweep sampling method at each replicate station, organisms were carefully removed from sample debris using tweezers until approximately 0.5 g of wet tissue was obtained. Field crews paid particular attention to proportions of annelids in kick and sweep collections, as these organisms are known to hyperaccumulate some metals resulting in potentially biased composite results (Golder 2021b). If annelids occurred at a proportion greater than 5% of the total sample biomass at a given replicate station, then these organisms were included in the composite sample (at that same proportion). Additionally in this scenario, a separate 'annelid only' sample was collected for analysis from the replicate station. If the proportion of annelids represented less than 5% of the sample biomass for a given station, these organisms were not included in the composite-taxa sample.

Each BIT sample was photographed to document taxa composition, placed into a labelled vial, and stored in a cooler with ice packs until transfer to a freezer later in the day.

²¹ Although the location of replicates did not conform to CABIN protocols as locations were not 50 meters apart (Environment Canada 2012a), three replicates were taken at RG_ERCK to better understand the variability of selenium concentrations in BIT at this area.

¹⁹ As noted in the 2021 to 2023 EVO Study Design (Minnow 2021b), additional replication at RG_ERCKUT and RG_ERCKDT, located upstream and downstream of the SRF intake/outfall structure, respectively, allowed for more robust statistical power (Minnow 2015) to detect changes between upstream and downstream related to the SRF, while the five replicates at RG_MICOMP are a requirement of the RAEMP (Minnow 2021c). Furthermore, the limited sample collection at RG_ERCK was a function of the limited suitable habitat for sampling (e.g. one riffle area).

²⁰ Sampling completed in September 2021 showed that mean tissue selenium concentrations in benthic invertebrates was elevated above Level 1 benchmarks for benthic invertebrates (for growth, reproduction, and survival) at RG_ERCKDT, RG_GATEDP, and RG_GATE. Confirmation sampling was conducted in December of 2021 in multiple sampling areas in Erickson Creek including RG_ERCKUT, RG_ERCKDT, and RG_ERCK. Additionally, for spatial resolution of selenium concentration in benthic invertebrate tissue an additional sampling area, RG_ERCKMD (located midway between RG_ERCKDT and RG_ERCK), was also evaluated in December of 2021 (Figure 1.3).

2.5.1.2 Laboratory Analysis

Tissue samples were kept in a freezer until they were transported by courier in coolers with ice packs to TrichAnalytics Inc. in Saanichton, BC. Samples were dehydrated (<60°C) upon receipt by the laboratory and analyzed using Laser Ablation Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Quality assurance/quality control measures associated with the tissue chemistry analyses included evaluation of laboratory duplicates and certified refence materials, discussed in greater detail in the Data Quality Review (DQR) in Appendix B (see Appendix H for applicable laboratory reports). Results are reported on a dry weight basis along with moisture content.

2.5.1.3 Data Analysis

Analyses of composite-taxa BIT selenium data were completed using the following approaches (see Appendix A for detailed methodology):

- Graphical comparison of tissue selenium concentrations relative to applicable benchmarks (Appendix Table A.2) and the regional reference normal range;
- Evaluation of spatial differences among areas in tissue selenium concentrations for each sampling event in 2021, using a one-way ANOVA.
- Evaluation of the potential effects of SRF operational phases on tissue selenium concentrations from mine-exposed areas relative to reference using a Before-After-Control-Impact ANOVA;
- Comparison of observed tissue selenium concentrations to those predicted using selenium bioaccumulation tools (one-step water-to-invertebrate selenium bioaccumulation model and selenium speciation bioaccumulation tool [B-tool; de Bruyn, A. and S.N. Luoma. 2021]); and
- Comparison of the relationship between observed and predicted selenium concentrations
 using bioaccumulation models (one-step water-to-invertebrate selenium bioaccumulation
 model and B-tool model) to other areas in the Elk Valley using a linear
 mixed-model approach.

2.5.2 Hess Sampling (Density, Biomass, and Community)

2.5.2.1 Sample Overview

Benthic invertebrate community samples were collected using a Hess sampler with 500 µm mesh, which allowed for evaluation of density, biomass, and community structure of the area sampled. Ten single-Hess samples were collected at each of two mine-exposed areas, one

immediately upstream (RG_ERCKUT) and one downstream of the SRF outfall (RG_ERCKDT), with the replicate sampling locations a minimum of 5 m apart (Figure 1.3; Table 2.2).

Each sample was collected by carefully inserting the base of the Hess sampler into the substrate to a depth of approximately 5 to 10 cm, after which the gravel and cobble contained within the sampler was carefully rubbed, allowing the current to carry dislodged organisms into the mesh collection net. Organisms collected into the net were carefully rinsed into a labelled wide-mouth plastic jar. Samples were preserved to a nominal concentration of 10% buffered formalin in ambient water so that biomass was not lost through predation or decomposition of tissues before sample sorting at the laboratory. Water depth and velocity measurements were also collected at each Hess sampling station.

2.5.2.2 Laboratory Analysis

Hess samples for benthic invertebrate analysis were shipped to ZEAS Inc. (lead taxonomist Danuta Zaranko) in Nobleton, Ontario, for analysis. At the laboratory, preserved organisms in each sample were sorted from the debris and identified and weighed at the family-level of taxonomy. Each family group of organisms was gently placed onto a fine cloth or paper towel to drain excess preservative before being weighed to the nearest 0.1 mg. Total and family-level density and biomass of organisms were reported for each sample.

2.5.2.3 Data Analysis

To understand the influence of the SRF on productivity measures of biomass and density of benthic invertebrates were evaluated (as well as evaluations of periphyton coverage and water quality as discussed in earlier sections). Overall biomass and density of benthic invertebrates as well as taxa-specific measures (specifically EPT, Ephemeroptera alone, Plectoptera alone, Trichoptera alone, and Chironomidae alone) of these endpoints, determined via Hess sampling, were converted to number of organisms per square metre based on the area sampled. A spatial comparison between areas upstream (RG_ERCKUT) and downstream (RG_ERCKDT) of SRF water treatment were conducted and further information for these analyses can be found in Appendix A.

2.5.3 CABIN Sampling (Community)

2.5.3.1 Sampling Overview

Benthic invertebrate samples were collected using a kick and sweep method to allow evaluation of community structure. Similar to the RAEMP (Minnow 2020b), three replicate samples were collected from each reference area (RG_ALUSM and RG_MI25) and each mine-exposed area (Table 2.2), with the exception of RG MICOMP where five replicate samples were collected to

support the RAEMP study design requirements (Minnow 2021c). Replicate samples were collected at locations that were established in 2019 (Minnow 2020c) and were spaced a minimum of 50 m apart (where habitat allows, and where sampling could be completed safely) or in separate riffles. As noted in the 2021 to 2023 EVO Study Design (Minnow 2021b), one sample was taken from RG_ERCK (replication not possible due to the presence of a single riffle habitat), while no samples were taken at RG_GATEDP due to lack of riffle habitat²². Similar conditions (i.e. a lack of suitable sampling habitat [riffles]) were noted at RG_GATE and RG_BOCK during the September sampling event, and thus benthic invertebrate community were not evaluated in these areas in 2021 (further information regarding the lack of suitable sampling habitat is discussed in Section 7.6).

Benthic invertebrate community sampling followed the CABIN protocol, which involved a 3-minute travelling kick to dislodge benthic invertebrates from the substrate (Environment Canada 2012a). During sampling, the field technician moved across the stream channel (from bank to bank, depending on stream depth and width) in an upstream direction. The net (consisting of a triangular aperture measuring 36 cm per side and equipped with 400 µm mesh) was held immediately downstream of the technician's feet, the detritus and invertebrates disturbed from the substrate were passively collected in the kick-net by the stream current. After three minutes of sampling time, the sampler returned to the stream bank with the sample, and the kick-net was subsequently rinsed with water to move debris and invertebrates into the collection cup at the bottom of the net. The collection cup was then removed, and the contents poured into a labelled plastic jar and preserved to a concentration of 10% buffered formalin solution in ambient water.

2.5.3.2 Laboratory Analysis

Benthic invertebrate community samples were sent to Cordillera Consulting²³ (lead taxonomist Scott Finlayson), in Summerland BC, for sorting and taxonomic identification. Organisms were identified to the lowest practical level (LPL; typically genus or species).

At the beginning of the sorting process, each sample was examined and evaluated to estimate total invertebrate numbers. If the total number was estimated to be greater than 300, then samples were sub-sampled for sorting and enumeration. A minimum of 5% of each sample was

²³ Similar to other LAEMPs and the RAEMP (Minnow 2021c,d, Minnow and Lotic 2021), two different laboratories are utilized to measure benthic invertebrate community samples (Cordillera Consulting) and Hess samples (Zeas Inc). These samples are evaluated by different laboratories for two reasons (1) methodology differences (subsampling is utilized for benthic community analysis using the CABIN protocols, while Hess sampling requires the analysis of the complete sample) and (2) lab capacity and timeframe for analysis.

²² As specified in the CABIN protocol – "The habitat type where invertebrate samples are collected in CABIN is the erosional zone (riffle, straight run, or rapid). A reach that does not have a well-established riffle or straight run should not be used for CABIN sampling." (Environment Canada 2012a).

sorted, consistent with requirements specified by Environment Canada (2012b, 2014). Sorting efficiency and sub-sampling accuracy and precision was also quantified using methods outlined by Environment Canada (2012b, 2014) and can be found in the DQR (Appendix B).

2.5.3.3 Data Analysis

Benthic invertebrate community endpoints were evaluated via kick and sweep sampling, and included total abundance, LPL richness, and the total and relative abundances of major taxonomic groups (e.g., Ephemeroptera [mayflies], Plecoptera [stoneflies], Trichoptera [caddisflies], EPT [Ephemeroptera, Plecoptera, Trichoptera] and and Chironomidae [midges]). Community data for kick and sweep samples were plotted to show changes over time, changes relative to regional reference normal ranges²⁴ and changes relative to habitat-adjusted normal ranges²⁵ as defined in the RAEMP (Minnow 2020b) using R In previous existing condition evaluations of benthic invertebrate (R Core Team 2022). community structure (Minnow 2020a, 2021a), single replicates were evaluated for some of the areas studied: RG ERCK, RG GATE, RG BOCK, RG MIDGA, and RG MIDBO, consistent with the requirements under the 2018 to 2020 RAEMP study design (Minnow 2018b). The limited replication in these previous evaluations was treated with caution when interpreting temporal and spatial trends. Benthic invertebrate community structure was also assessed using multivariate ordination techniques including correspondence analysis (CA) and correspondence analysis (CCA) to further understand community structure as part of the EVO LAEMP, further information regarding these analyses can be found in Appendix A.

²⁵ Habitat-adjusted normal ranges represent the 2.5th and 97.5th percentile for a given area as determined by habitat predictors for that area in relation to the complete set of RAEMP reference monitoring areas. The habitat-adjusted normal ranges were estimated using regression modelling as presented in the RAEMP (Minnow 2020b).

²⁴ The reference normal range as presented in the RAEMP represents the 2.5th and 97.5th percentiles of the 2012 to 2019 (Minnow 2020b).

3 PHYSICAL HABITAT AND SUPPORTING MEASURES

3.1 Temperature and Dissolved Oxygen

Although the SRF does not utilize heating or cooling, the effluent (or treated water) being discharged from the effluent retention pond was expected to be influenced by seasonally elevated air temperatures when compared to water upstream of the SRF outfall which is consistently between 5°C and 6°C (Golder 2020c, Teck 2020a). As such, water temperatures were measured by continuous data loggers in Erickson Creek upstream of the SRF (RG ERCKUT) were consistent throughout 2021 at approximately 5°C, while water temperatures downstream of the SRF (RG ERCKDT) showed more seasonality, with minimum temperatures in winter months (December to February) typically ranging from 4 to 6 °C and in summer having a maximum temperature of 15.1°C (observed in July), with temperatures being similar or lower downstream (EV EC FLOW3, EV EC FLOW2, EV EC FLOW1). Annual range of temperatures at RG ERCKDT as well as lower downstream were also in close alignment with effluent temperature when the SRF was operating (F2 ECF; Figure 3.1). As the SRF was non-operational on multiple events in 2021, temperature variability downstream of the SRF outfall at RG ERCKDT (specifically during summer) was more pronounced. On several occasions, temperatures at EV EC1 (RG ERCK) were higher than upstream areas, likely due to the lack of canopy cover and shallower water in that area. Starting August 13, 2021 (when the permit SPO came into effect), maximum daily temperature from loggers at EV EC1 (as well as the RG ERCK temperature loggers) were compared to the SPO and the total number of daily temperature exceedances was measured (Figure 3.1; Appendix Table C.1). The SPO was only exceeded at EV EC1 in September for 15 days, with no other exceedances throughout 2021. The exceedances at EV EC1 have been investigated and subsequent information regarding those exceedances can be found in the 2021 Annual Water Treatment Performance Report (Teck 2022a). The two temperature loggers installed at RG ERCK (Logger 1 and Logger 2) for the EVO LAEMP (i.e., not utilized for compliance purposes), showed similar findings as the EV EC1 temperature logger as the maximum daily temperature was greater than the SPO temperature on 18 and 16 days in September, respectively (as well as three and one days in August, respectively; Figure 3.1, Appendix Table C.1). The two RG ERCK temperature loggers were deployed slightly further downstream from EV EC1 (Figure 1.4) and represent a different microhabitat (decreased canopy cover, differences in flow rate, and/or lower water depth) when compared to habitat where the EV EC1 logger is located, which likely explains the slightly higher temperatures observed with the RG ERCK loggers in comparison to the EV EC logger. Increased management and engineering measures are currently under consideration by Teck to

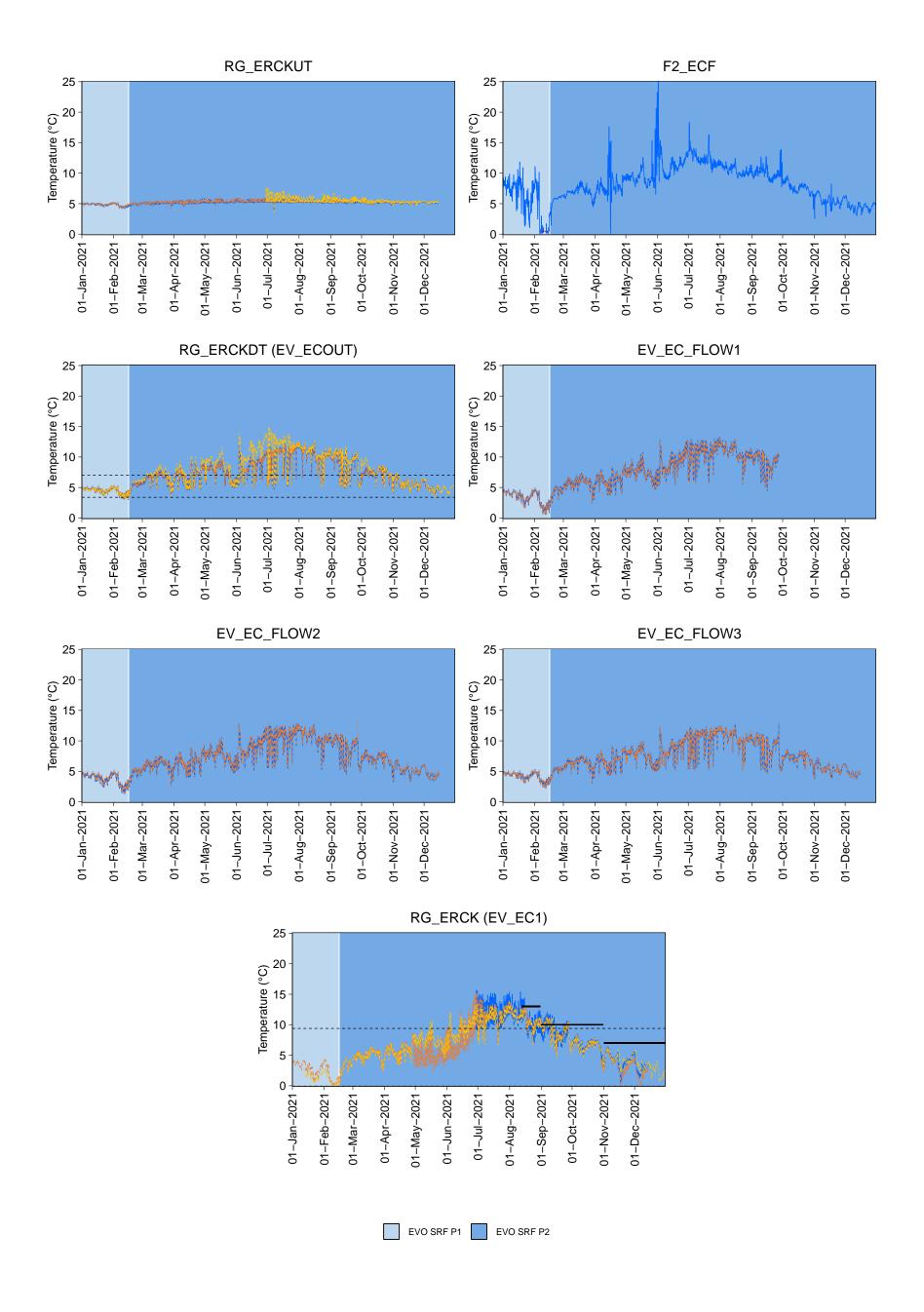


Figure 3.1: Water Temperature Recorded by Temperature Loggers, EVO LAEMP, 2021

Note: Solid black horizontal lines indicate the maximum daily temperature as specified in Permit 107517, which came into effect August 13, 2021. Dashed horizontal lines indicate the minimum and maximum average hourly temperature from 2018 to 2020. Temperatures outside of the range (0 to 25°C) were considered to be erroneous data for F2_ECF, so were removed as indicated by a red line. Different colours indicate replicate loggers. Temperature data from the loggers at RG_ERCKUT, RG_ERCKDT, EV_EV_FLOW1, EV_EC_FLOW2, EV_EV_FLOW3, and RG_ERCK is reported up until the last date when data was retrieved.

better understand and manage the influence of the SRF on the water temperature of Erickson Creek (Teck 2022a).

In situ water temperature measurements at fish-bearing areas of Erickson and Michel Creek were also compared to British Columbia guidelines²⁶, which are defined as a maximum ± 1° C change from the optimum temperature range for spawning, incubation, and alevin / rearing temperature guidelines for both WCT and bull trout (BCMOE 2001). Temperatures in Erickson Creek (EV EC1 [RG ERCK]) were within or below the optimum temperature ranges specified for both species, throughout the year, with the exception of one event in September which was above the optimum threshold (Figure 3.2). Temperatures were largely comparable between Erickson Creek and those further downstream in Michel Creek (EV MC3 [RG MI3], EV MC2a, EV MC2 [RG MICOMP]) and the Elk River (EV ER1). Michel Creek and the Elk River generally had lower temperatures than Erickson Creek in the spring, fall and winter, but higher temperatures in the summer (Figure 3.2). Although temperatures were elevated above the WCT threshold for incubation in a few events between July and August in areas of Michel Creek and the Elk River. similar temperatures were apparent at EV MC3 (RG MI3; Figure 3.2), which is upstream of the confluence of the Erickson and Michel Creek, suggesting that elevated temperatures in Michel Creek and the Elk River during this time was not related to SRF discharge. Decreased canopy cover and increased distance from groundwater or melt water sources is known to be a natural cause of increased temperatures as water moves from lower order streams (such as Erickson Creek) to high order streams (such as Michel Creek and the Elk River; Vannote and Sweeney 1980). Overall, these results suggest that the SRF has little effect on temperature in fish-bearing areas of Erickson Creek, Michel Creek, or the Elk River.

In situ dissolved oxygen measurements in fish-bearing areas of Erickson and Michel Creek were compared to provincial dissolved oxygen guidelines, which are based on the minimum concentration of dissolved oxygen required to protect aquatic life, specifically for the protection of WCT and bull trout during spawning, incubation, and alevin rearing stages (BCMOE 1997). In situ measures of dissolved oxygen concentrations in Erickson Creek (EV_EC1 [RG_ERCK]) showed similar patterns to temperature, as dissolved oxygen remained within or above the optimum dissolved oxygen ranges specified for both fish species, throughout the year, with the exception of one event in September (Figure 3.3). Concentrations of dissolved oxygen were within or above respective guidelines in spring, early fall, and winter in Michel Creek and the Elk River, with the exception of a few events at EV_MC2 (RG_MICOMP) between July and October, as noted with temperature this is unlikely related to SRF discharge, as dissolved oxygen

²⁶ As noted in Section 1.2, upper portions of Erickson Creek and both Bodie and Gate Creek have been confirmed to be non-fish bearing.

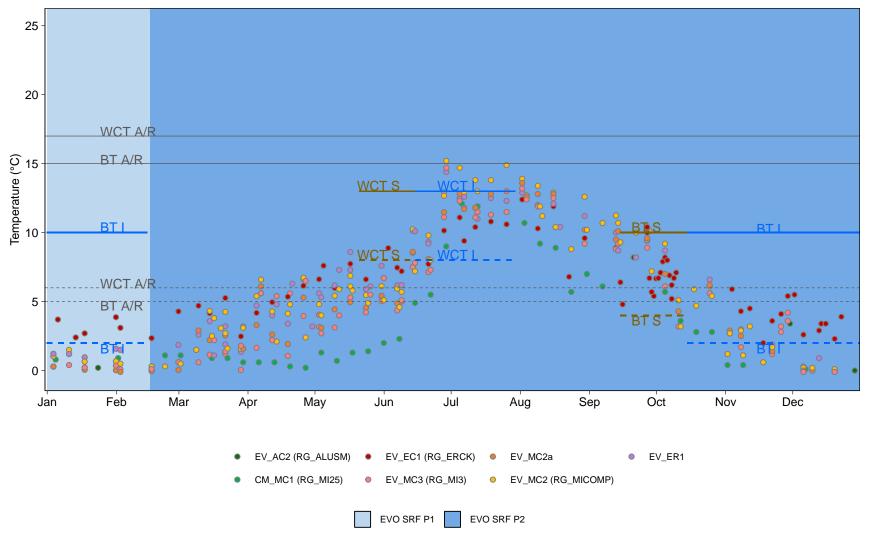


Figure 3.2: Water Temperatures at Fish Bearing Monitoring Areas for the EVO LAEMP in 2021 Relative to BCMOE (2001b) Guidelines for Maximum (Solid Lines) and Minimum (Dotted Lines) Temperatures for Protection of Westslope Cutthroat Trout and Bull Trout

Notes: BT = bull trout; WCT = westslope cutthroat trout; S = spawning; I = incubation; A/R = alevin/rearing. The timing of fish life history stages was approximated from COSEWIC (2016), McPhail and Baxter (1996), and McPhail (2007). Green symbols represent reference areas.

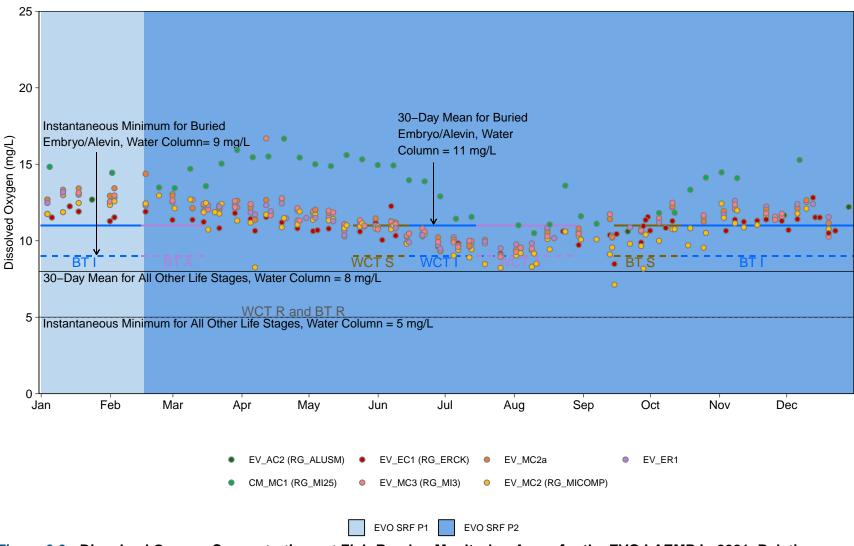


Figure 3.3: Dissolved Oxygen Concentrations at Fish-Bearing Monitoring Areas for the EVO LAEMP in 2021, Relative to the BCMOE (1997) Criteria for the Protection of Fish Life Stages

Notes: BT = bull trout; WCT = westslope cutthroat trout; S = spawning; I = incubation; A/R = alevin/rearing. The timing of fish life history stages was approximated from COSEWIC (2016), McPhail and Baxter (1996), and McPhail (2007). Spawning, incubation, and alevin stages were included in application of buried embryo/alevin guideline values. Green symbols represent reference areas.

concentrations further upstream were above or within guidelines in Erickson Creek (EV_EC1 [RG_ERCK]) as well as an upstream area of Michel Creek (EV_MC2a). Similar to temperature, the results suggest that the SRF has little influence on dissolved oxygen concentrations on fish-bearing areas of Erickson Creek, Michel Creek, or the Elk River.

3.2 Sediment Quality

In September 2021, both RG ERCKUT and RG ERCKDT (upstream and downstream of the SRF outfall, respectively) had similar mean TOC values (8.57% and 9.42%, respectively), which were higher than those from the next downstream area, RG ERCK (2.72%). The higher TOC in upper Erickson Creek (RG ERCKUT and RG ERCKDT) t could be a result of additional detritus from decaying bryophytes that are not as abundant at RG ERCK. The mean particle size of sediment collected from RG ERCKDT, had a higher composition of silt-sized particles (66.4%) when compared to the upstream area, RG ERCKUT (33.1%) or the next downstream area, RG ERCK (24.7%), which both had a higher composition of sand-size particles (59.7% and 70.9%, respectively; Appendix Table C.2). Sediments from RG MIDER and RG MICOMP (both below the Erickson and Michel Creek confluence) were also predominately silt-size particle based (48.8% and 53.9% silt, respectively) and had correspondingly higher TOC values (4.49 and 5.13%, respectively), when compared to RG MI3 (which is upstream of the Erickson Creek confluence) where a higher proportion of sand-size particles (63.5%) and lower TOC (2.30%) was observed. Slight differences in silt-sized particle ratios and TOC contents were also noted between the reference areas, as RG ALUSM had a higher silt-sized particle ratio and organic content (mean silt: 52.1%, mean TOC: 5.21%) when compared to RG MI25 (mean silt: 41.9%, mean TOC: 1.91%) highlighting the natural variability in the Elk Valley.

The mean concentrations of seven metals (arsenic, cadmium, iron, manganese, nickel, selenium, and zinc) and eleven PAHs (acenaphthene²⁷, acenaphthylene, benz(a)anthracene, benzo(a)pyrene, chrysene, dibenz(a,h)anthracene, fluorene, 2-methylnaphthalene, naphthalene, phenanthrene, and pyrene) in sediment were above the lower BCWSQG at RG_ERCKDT, with six of those constituents (cadmium, manganese, nickel, fluorene, 2-methylnapthalene, and phenanthrene) also above the upper BCWSQG (Appendix Figure C.1; Appendix Table C.2). For nearly of all of these constituents (excluding benzo(a)anthracene), mean concentrations in sediment were highest at RG_ERCKDT when compared to the other mine-exposed areas evaluated (RG_ERCKUT, RG_ERCK, RG_MI3, RG_MIDER, and RG_MICOMP; Appendix Figure C.1; Appendix Table C.2). Furthermore, a majority of these constituents

²⁷ Although acenaphthene was not detected in any replicate at RG_ERCKDT (and was not detected in a majority of EVO areas samples (~88%), due to the high detection limit associated with this compound uncertainty remains regarding the presence as well the possible concentration of this compound.

at RG_ERCKDT (with the exceptions of iron, manganese, and acenaphthylene) had mean concentrations above the regional reference normal range (Appendix Figure C.1). Mean concentrations in sediment for arsenic, cadmium, nickel, zinc, benz(a)anthracene, benzo(a)pyrene, chrysene, fluorene, 2-methylnaphthalene, naphthalene, phenanthrene, and pyrene were more than two-fold higher at RG_ERCKDT in 2021 when compared to 2020 (Figure 3.4).

At RG_ERCKUT (which is upstream of the SRF outfall), only selenium and dibenz(a,h)anthracene exceeded sediment quality guidelines (BCWQG or EVWQP benchmarks) and the regional reference normal range of Elk Valley and even then both were similar to pre-EVO SRF P2 concentrations (Figure 3.4; Appendix Table C.2). Similar results were observed for RG_ERCK, as only nickel and selenium exceeded these criteria (Figure 3.4; Appendix Table C.2). At both RG_ERCKUT and RG_ERCK, a majority of sediment constituent concentrations have been stable or decreasing when comparing concentrations of 2021 to past results (2019 and 2020), with exception of benz(a)anthracene at RG_ERCKUT and nickel at RG_ERCK which showed slight increases in 2021 (Figure 3.4).

Mean sediment constituent concentrations in the area upstream of the Erickson Creek confluence with Michel Creek, RG_MI3, and both areas downstream of the confluence, RG_MIDER and RG_MICOMP, were either below the BCWSQG or the regional reference normal range of the Elk Valley, and/or similar to results pre-EVO SRF P2 (Figure 3.4; Appendix Table C.2). Metal concentrations that exceeded the BCWSQG in these areas (such as arsenic, cadmium, nickel, and a few PAHs) also commonly exceeded guidelines in a reference area (RG_MI25 and/or RG_ALUSM) suggesting that these constituents are naturally elevated in the Elk Valley (Figure 3.4). Overall, sediment metal and PAH concentrations in lower Erickson and Michel Creek were largely similar pre- and post-EVO SRF P2 suggesting a minimal influence of the SRF on these constituents.

In summary, although a number of constituents at RG_ERCKDT had concentrations in sediment that exceeded the BCWSQG and the regional reference normal range of the Elk Valley, the elevated sediment metal and PAH concentrations appeared localized to directly below the SRF outfall. The cause of the elevated sediment constituent concentrations at RG_ERCKDT (when comparing results from 2019 and 2020 to 2021) is currently being evaluated as part of the AMP response framework (in conjunction with the investigation into the cause of elevated BIT selenium concentrations downstream of the SRF outfall [see Section 6.1]), it should be noted that a spill event occurred earlier in 2021. On May 26, 2021, Teck completed scheduled maintenance work on the Erickson Creek effluent line. Upon restarting the treatment of Erickson Creek water, it was noted that the effluent being discharged (directly upstream of RG ERCKDT)

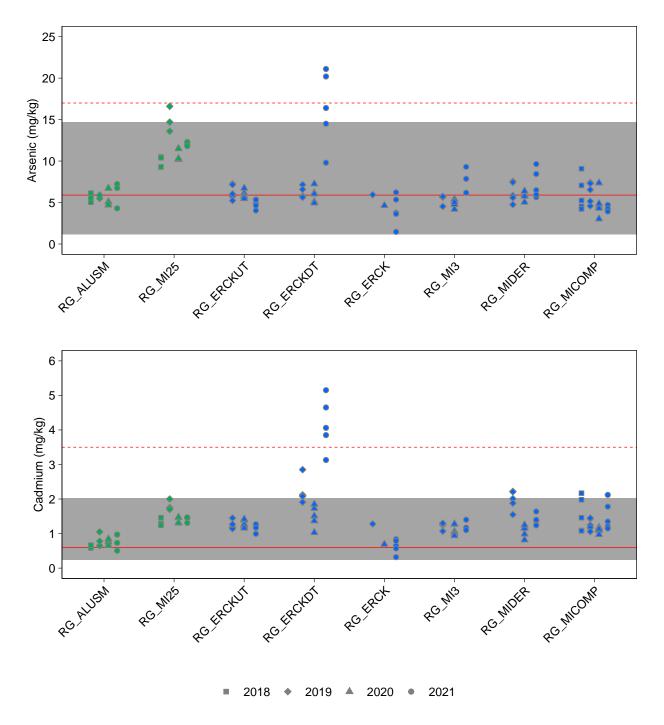


Figure 3.4: Selected Sediment Metal and Polycyclic Aromatic Hydrocarbon (PAH) Concentrations, EVO LAEMP, 2018 to 2021

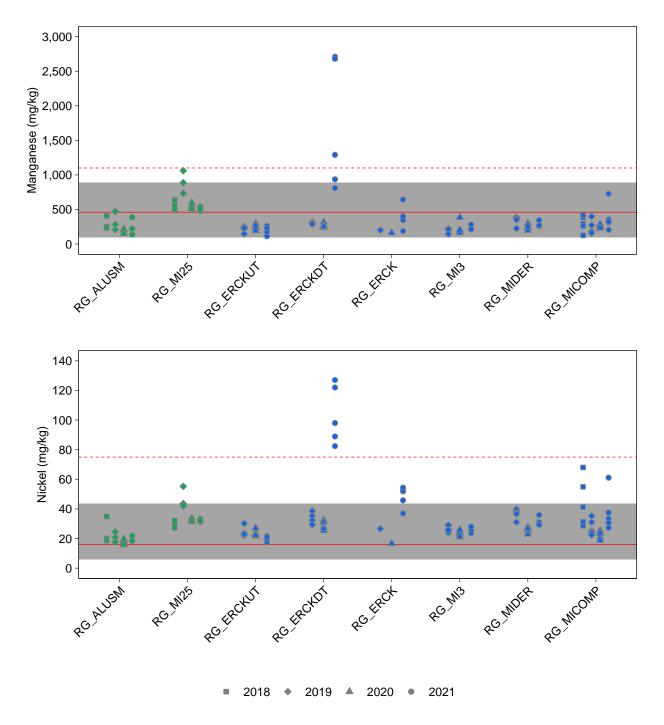


Figure 3.4: Selected Sediment Metal and Polycyclic Aromatic Hydrocarbon (PAH) Concentrations, EVO LAEMP, 2018 to 2021

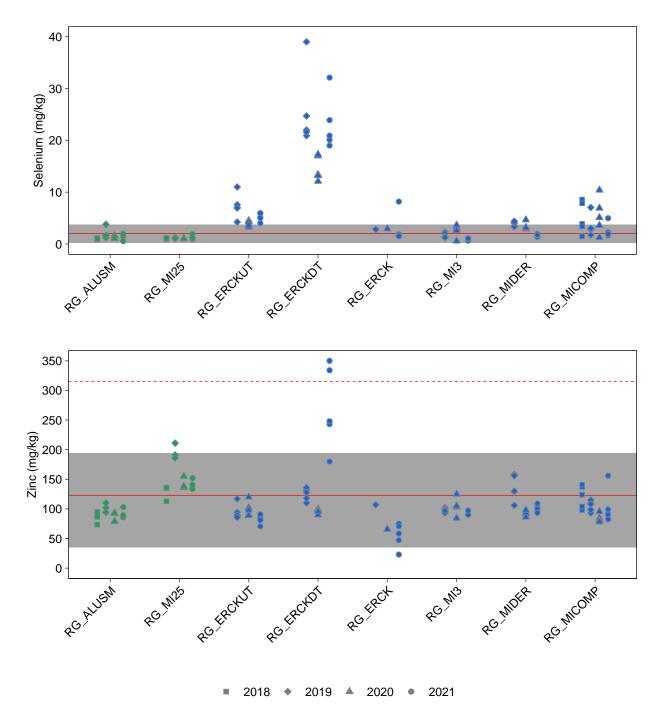


Figure 3.4: Selected Sediment Metal and Polycyclic Aromatic Hydrocarbon (PAH) Concentrations, EVO LAEMP, 2018 to 2021

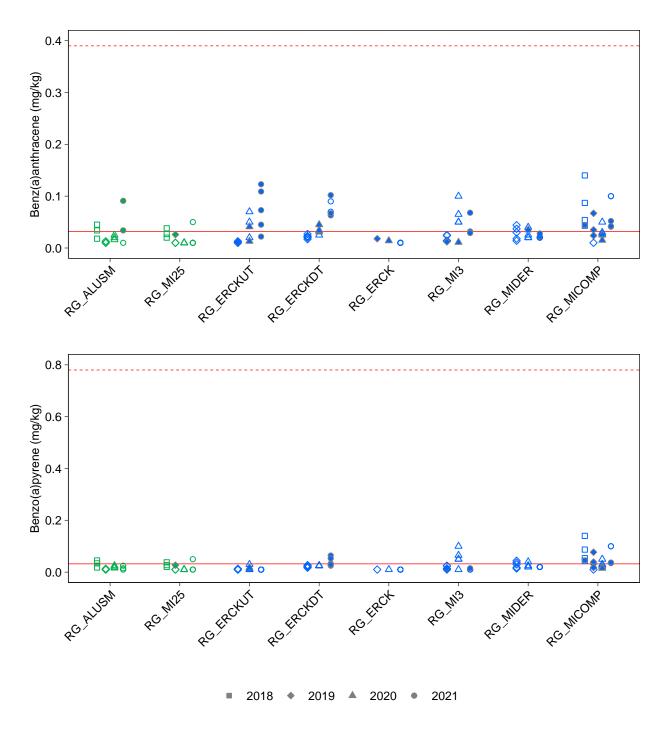


Figure 3.4: Selected Sediment Metal and Polycyclic Aromatic Hydrocarbon (PAH) Concentrations, EVO LAEMP, 2018 to 2021

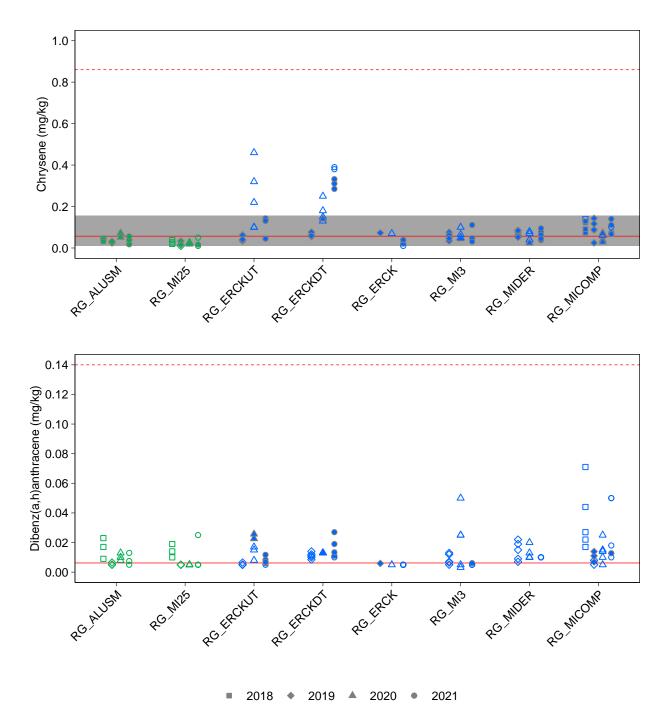


Figure 3.4: Selected Sediment Metal and Polycyclic Aromatic Hydrocarbon (PAH) Concentrations, EVO LAEMP, 2018 to 2021

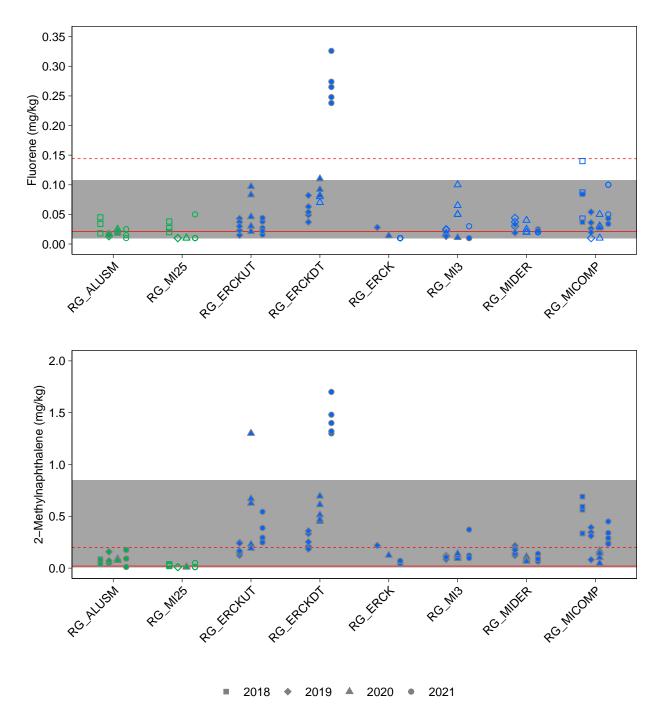


Figure 3.4: Selected Sediment Metal and Polycyclic Aromatic Hydrocarbon (PAH) Concentrations, EVO LAEMP, 2018 to 2021

46

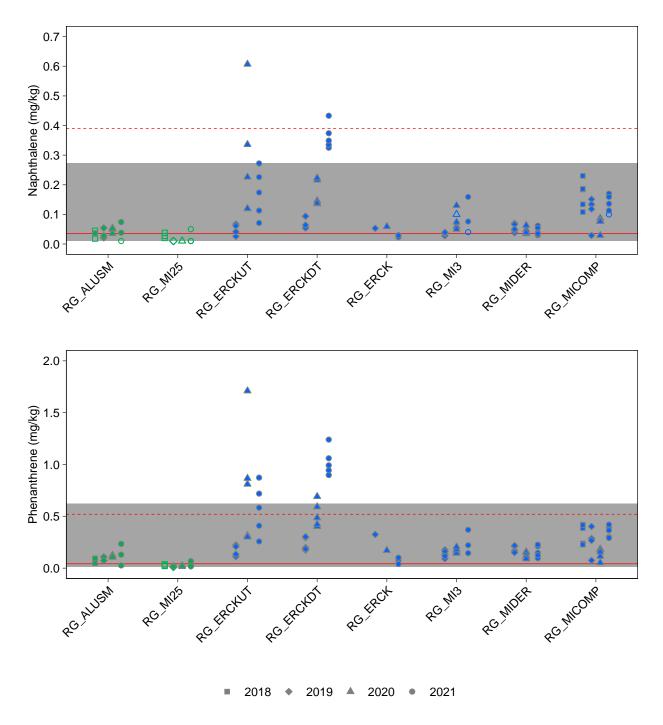


Figure 3.4: Selected Sediment Metal and Polycyclic Aromatic Hydrocarbon (PAH) Concentrations, EVO LAEMP, 2018 to 2021

47

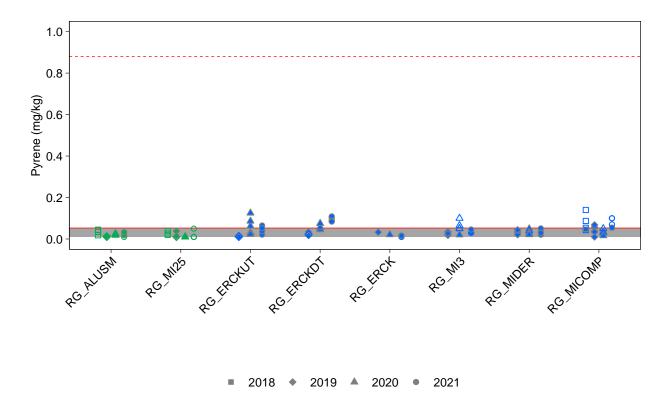


Figure 3.4: Selected Sediment Metal and Polycyclic Aromatic Hydrocarbon (PAH) Concentrations, EVO LAEMP, 2018 to 2021

was abnormal in colour and the system was immediately shut down (within seven minutes of discharge commencing). It was determined that iron precipitate in the effluent line was disturbed during startup and this event resulted in a release of 24,000 L of treated effluent into Erickson Creek which was turbid and orange in color (Teck 2022a). The influence of this release on constituent concentrations in sediment downstream is currently unknown. Concentrations of metals and PAHs at the mouth of Erickson Creek (RG_ERCK) and in Michel Creek (RG_MIDER and RG_MICOMP) that were above BCWQG were within the regional reference normal range, and/or similar to past years suggesting elevated sediment concentrations were localized to immediately downstream of the SRF outfall (ERCKDT) and that the SRF had minimal influence on sediment concentrations in lower Erickson and Michel Creek.

3.3 Calcite and other CABIN Supporting Measures

Calcite accumulation has the potential to negatively affect aquatic habitat through changes to stream substrate characteristics (Barrett et al. 2016; Hocking et al. 2020). Calcite concretion can adversely affect fish via reduced suitability of habitat for spawning, egg incubation, and overwintering, or via effects to benthic invertebrates that are important prey for adult and juvenile fish (Robinson 2010; Barrett et al. 2016; Wright et al. 2018; Hocking et al. 2020; Minnow 2022). As many of the areas assessed in the EVO LAEMP are non-fish bearing (Gate, Bodie, and upper portions of Erickson Creek), the potential effects of calcite on fish is limited to lower portions of Erickson (specifically RG_ERCK) and in Michel Creek. Regardless, direct effects to benthic invertebrates in all of the study areas were considered.

Benthic invertebrate sampling targeted riffle habitat during September sampling and calcite measurements and other CABIN supporting information were collected concurrently (Figure 3.5; Appendix Tables C.3 to C.9). Mean CI values²⁸ in 2021 for both reference areas (RG_ALUSM [0.29 to 0.63] and RG_MI25 [0]) were either similar or lower than previous years (2015 to 2020; Figure 3.5; Appendix Tables C.3). While the reference areas showed consistent CI temporal trends, mean CI values at RG_ERCKUT (above the SRF outfall; ranging from 0.17 to 0.25) and RG_ERCKDT (below the SRF outfall; ranging from 0.54 to 0.88) were notably lower than previous years (2019 to 2020; RG_ERCKUT: ranging from 0.96 to 1.56, RG_ERCKDT: ranging from 1.14 to 1.90). The area further downstream, RG_ERCK, had a mean CI value of 2.20 in 2021, which was slightly higher than previous years (2018 to 2020; ranging from 1.58 to 1.89). Calcite index values at each of these Erickson Creek areas were lower than those reported in the 2021 Regional Calcite Monitoring Program (which were evaluated between August and October;

²⁸ CI values discussed are those which used a binary evaluation for calcite presence as all data pre-EVO SRF P2 used this method. CI' values in 2021 (which uses a proportion rather than a binary evaluation for calcite presence) were as expected lower than CI values.

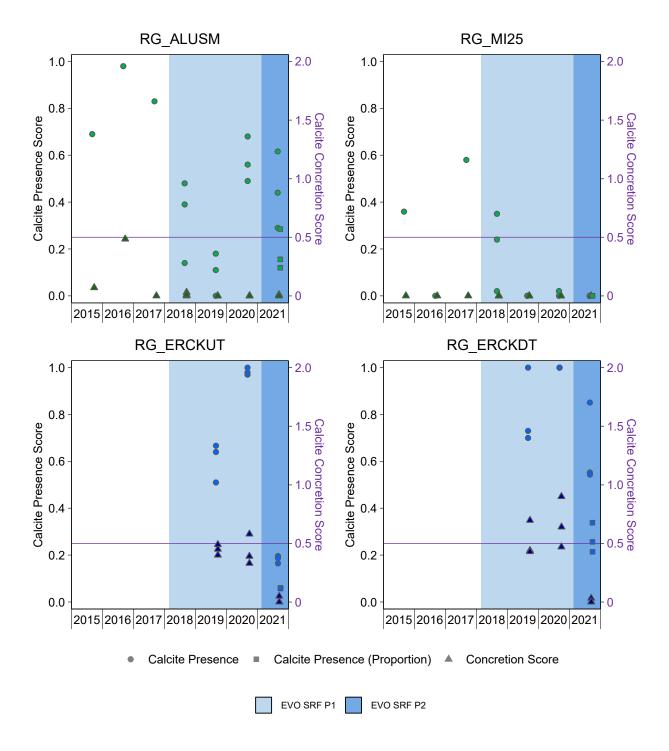


Figure 3.5: Calcite Proportion and Concretion Score, EVO LAEMP, 2015 to 2021

Notes: Green symbols represent reference areas and blue symbols represent exposed areas. The horizontal purple line represents the future SPO (i.e., by December 31st, 2024 Calcite Concretion Score = 0.5). In 2021 Calcite Presence was measured using both a presence absence and proportional method. RG_GATE and RG_BOCK were not evaluated for calcite index as the sampling reach did not have a "well-established riffle or straight run" present (which is a requirement for CABIN sampling [Environment Canada 2012a]).

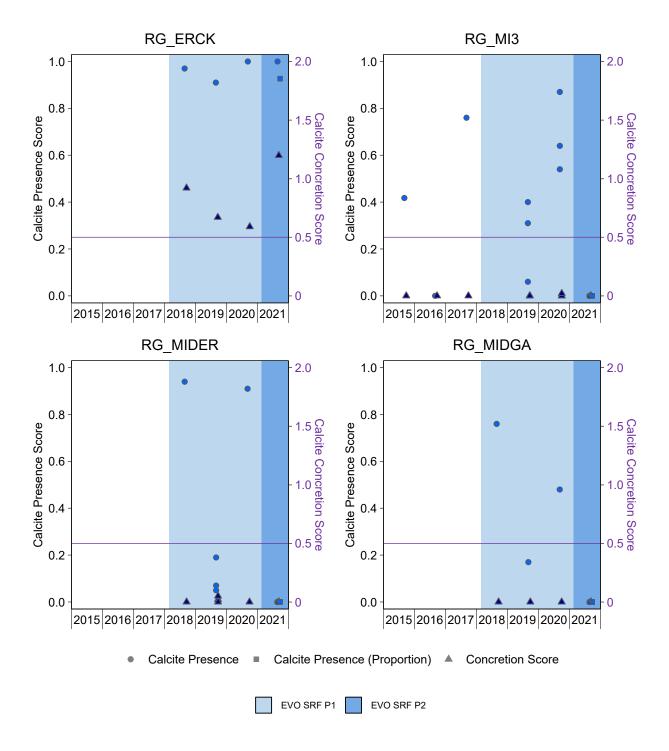


Figure 3.5: Calcite Proportion and Concretion Score, EVO LAEMP, 2015 to 2021

Notes: Green symbols represent reference areas and blue symbols represent exposed areas. The horizontal purple line represents the future SPO (i.e., by December 31st, 2024 Calcite Concretion Score = 0.5). In 2021 Calcite Presence was measured using both a presence absence and proportional method. RG_GATE and RG_BOCK were not evaluated for calcite index as the sampling reach did not have a "well-established riffle or straight run" present (which is a requirement for CABIN sampling [Environment Canada 2012a]).

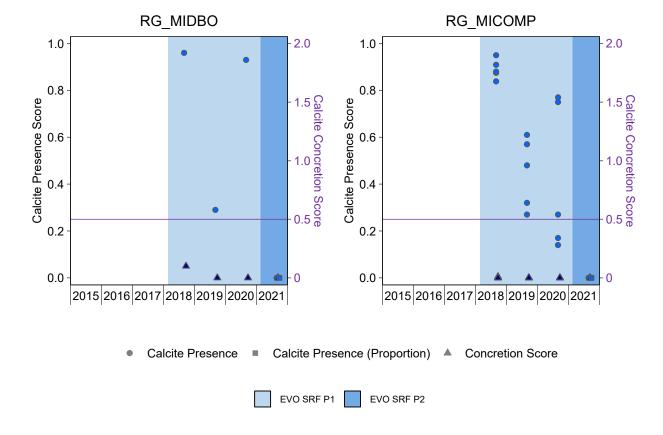


Figure 3.5: Calcite Proportion and Concretion Score, EVO LAEMP, 2015 to 2021

Notes: Green symbols represent reference areas and blue symbols represent exposed areas. The horizontal purple line represents the future SPO (i.e., by December 31st, 2024 Calcite Concretion Score = 0.5). In 2021 Calcite Presence was measured using both a presence absence and proportional method. RG_GATE and RG_BOCK were not evaluated for calcite index as the sampling reach did not have a "well-established riffle or straight run" present (which is a requirement for CABIN sampling [Environment Canada 2012a]).

Robinson et al., 2022); the mean 2021 CI score for the Erickson Creek area above the SRF outfall was 1.42 and below the outfall and further downstream in Erickson Creek ranged from 2.71 to 2.94. Results from the 2021 Regional Calcite Monitoring Program report suggest that pre-EVO SRF P2 calcite presence and concretion in the Erickson Creek area above (CI values: 1.68 to 1.73) and below the outfall (CI values: 2.46 to 2.96) were largely similar to or lower than 2021. Although the cause for the differences between the Erickson Creek calcite scores is currently unknown it is likely due to the high presence of bryophytes in the area (which is a unique habitat characteristic in the Elk Valley as well as a different sampling method between the programs²⁹, see supporting CABIN measurements for further details Appendix Tables C.4 to C.9) which makes assessment of calcite difficult.

Although CI was not evaluated in Bodie and Gate Creek at part of this study (see Section 2.2.3), the CI for these areas was evaluated as part of the 2021 Regional Calcite Monitoring Program (Robinson et al., 2022). The mean CI in Bodie (1.22 [below the settling pond] and 2.55 [above the settling pond]) and Gate Creek (1.46 [above the settling pond]) were in alignment with observations from previous years (Robinson et al., 2022). As noted in the 2021 Regional Calcite Monitoring Program, areas in Bodie and Gate Creek (as well as Erickson Creek [including the above the SRF outfall] currently have Cc scores that are greater than the future SPO (December 31, 2024: Cc ≤ 0.5). All four Michel Creek areas downstream of the Erickson Creek and Michel Creek confluence (RG_MIDER, RG_MIDGA, RG_MIDBO, and RG_MICOMP) and the area above the confluence (RG_MI3) had no reportable calcite presence or concretion in the current study (resulting in a CI of 0; Figure 3.5; Appendix Table C.3) and were overall lower than results from 2020 (as well as below the future SPO). Similar low CI values in Michel Creek study areas (and decreases in comparison to 2020 data) were also reported in the 2021 Regional Calcite Monitoring Program, as the mean CI ranged from 0.02 to 0.29 in area of Michel Creek (Robinson et al., 2022).

3.4 Summary

Results pertaining to physical habitat and CABIN supporting measurements included analysis of temperature, dissolved oxygen, sediment quality, and calcite and other CABIN supporting measures. Overall, this information was directly used to address Study Questions #1 (SRF influence on temperature) and #2 (SRF influence on calcite), and indirectly used in addressing Study Questions #4 (SRF influence on selenium BIT concentrations), #5 (SRF influence on benthic community structure), and #6 (SRF influence on productivity).

²⁹ The 2021 Regional Calcite Monitoring Program (Robinson et al., 2022) assesses calcite for a given reach, while calcite as part of the EVO LAEMP was evaluated in the riffles where benthic invertebrate community monitoring was conducted per CABIN protocols (Environment Canada 2012a).

Further information regarding the indirect influence of changes to the physical habitat and CABIN supporting measurements (as influenced by the operation of the SRF) on selenium BIT concentrations, benthic community structure, and productivity is discussed in greater detail in Section 6 (Benthic Invertebrates).

As water temperature above the SRF outfall (RG_ERCKUT) is consistently ~5°C, the increase in water temperature downstream of the outfall (at RG_ERCKDT) was expected, as the process of treating Erickson Creek water requires the source water from Erickson Creek to be drawn into the treatment system from the watershed and instantaneously replaced with treated effluent. Although water temperature was higher in areas below the SRF outfall compared to pre-EVO SRF P2 (or upstream), water temperatures at the confluence of Erickson Creek and Michel Creek (EV_EC1 [RG_ERCK]) largely met the SPO in 2021. Additional evaluations of temperature at routine water quality stations at fish-bearing areas of the EVO LAEMP confirmed that water temperatures were within or below guidelines for critical life stages of WCT and bull trout and that the influence of the SRF on water temperature in the receiving environment is minimal.

The calcite index in Gate and Bodie creeks (which both received limited discharge from the SRF in 2021), as well as Erickson Creek in 2021 was either similar to or lower than previous years (pre-EVO SRF P2), with the exception of RG_ERCK which showed a slight increase. The decreases in calcite upstream (RG_ERCKUT) and downstream (RG_ERCKDT) of the SRF outfall in 2021 compared to previous years conflicts with findings from the annual Regional Calcite Monitoring Program which suggested similar calcite levels in 2021 when compared to past evaluations. The small increase in CI noted at RG_ERCK (which is area at the confluence of Erickson Creek and Michel Creek in the current study) was not observed in the Regional Calcite Monitoring Program (i.e., showed no change over time). Understanding calcite deposition in Erickson is complex because its unique habitat characteristics (i.e., high bryophyte presence in the area) and the potential high spatial variability of calcite in the creek. Calcite presence and concretion in areas of Michel Creek (which receives water from Gate, Bodie, and Erickson creeks) had scores in 2021 of zero, which was similar to findings in the annual Regional Calcite Monitoring Program. Overall, the SRF does not appear to have increased the overall calcite presence and concretion in the receiving environment of Gate, Bodie, Erickson or Michel creeks.

4 WATER QUALITY

4.1 Nutrients

The EVO SRF was effective in decreasing the aqueous concentrations of phosphorus and orthophosphate (Table 4.1, Appendix Table D.1 and D.2; Appendix Figures D.1, D.2, and D.3), as concentrations were lower at EV ECOUT (RG ERCKDT) when compared to pre-EVO SRF P2 concentrations or concentrations upstream of the SRF outfall (RG ERCKUT). Decreased concentrations further downstream in Erickson Creek, at the confluence with Michel Creek (EV EC1 [RG ERCK]) were also observed in 2021 when compared to pre-EVO SRF P2 concentrations. Concentrations of these constituents in Gate Creek (EV GT1 [RG GATEDP]) and RG GATE), Bodie Creek (EV BC1 [RG BOCK]), and Michel Creek (downstream of the Erickson and Michel Creek confluence: EV MC2a, RG MIDER, RG MIDGA, RG MIDBO, and EV MC2 [RG MICOMP]) had similar or lower concentrations in 2021 when compared to pre-EVO SRF P2 (Table 4.1, Appendix Figures D.1, D.2, and D.3). The only area where an increase in orthophosphate concentrations was observed relative to pre-EVO SRF P2 was at EV MC3 (RG MI3), located in Michel Creek upstream of the confluence with Erickson Creek (Table 4.1, Appendix Figure D.3), and not influenced by the SRF.

One function of the EVO SRF P2 is to decrease nitrate loads in the receiving environment. In 2021, the EVO SRF P2 removed 55,574 kg of nitrate (Teck 2022a), and in doing so decreased the concentration in the receiving environment of Erickson Creek (EV ECOUT and EV EC1 [which are associated with biological stations RG ERCKDT and RG ERCK, respectively]) when compared to upstream concentrations at F2 ECIN (which is associated with biological station RG ERCKUT) and is analogous to pre-EVO SRF P2 conditions (Table 4.1, Appendix Table D.1 and D.2; Appendix Figures D.1 and D.4). Nitrate concentrations in Gate and Bodie creeks were either similar (RG GATE) or lower (EV GT1 [RG GATEDP] and EV BC1 [RG BOCK]) than pre-EVO SRF P2 concentrations. Although concentrations decreased in a majority of areas in Erickson, Gate, and Bodie creeks, concentrations were still higher than the long-term BCWQG (which is equivalent to the EVWQP Level 1 Benchmark for this operational unit) at these areas (with the exception of a few sampling events at EV ECOUT [RG ERCKDT] and EV EC1 [RG ERCK]; Table 4.1, Appendix Table D.2). Further downstream in Michel Creek, nitrate concentrations were either similar (RG MIDGA) or lower (EV MC2a, RG MIDER, RG MIDBO, and EV MC2 [RG MICOMP]) during EVO SRF P2 operation when compared to pre-EVO SRF P2 concentrations, while concentrations of nitrate at EV MC3 (RG MI3), which is above the confluence of Erickson Creek with Michel Creek, in 2021 was similar to previous years (2018 to 2020; Appendix Figures D.1 and D.4).

Table 4.1: Temporal Trends and Guideline Assessment of Key Constituents, EVO LAEMP, 2021

Constituent	Did constituent concentration increase with initiation of SRF P2? ^a																	
	Erickson Creek						Gate Creek		Bodie Creek		Michel Creek							
	n>BCL or BM1	F2_ECIN ^b (RG_ERCKUT)	n>BCL or BM1	EV_ECOUT ^c (RG_ERCKDT)	n>BCL or BM1	EV_EC1 (RG_ERCK)	n>BCL or BM1	EV_GT1 (RG_GATEDP)	n>BCL or BM1	EV_BC1 (EV_BOCK)	n>BCL or BM1	EV_MC3 (RG_MI3)	n>BCL or BM1	EV_MC2a	n>BCL or BM1	EV_MC2 (RG_MICOMP)	n>BCL or BM1	EV_ER1
Nitrate (as N)	99%	ns	87%	decrease*	84%	decrease	100%	decrease	100%	ns	0%	ns	0%	decrease	1%	decrease	19%	ns
Nitrite (as N)	0%	nt	0%	ns	0%	nt	2%	ns	8%	ns	0%	ns	0%	ns	0%	ns	2%	increase
Phosphorus (P)-Total	-	ns	-	decrease	-	decrease	-	ns	-	ns	-	ns	-	ns	-	ns	-	ns
Orthophosphate	-	increase	-	decrease*	-	decrease	-	ns	-	ns	-	increase	-	ns	-	ns	-	ns
Sulphate	100%	increase	100%	increase	100%	ns	100%	ns	100%	ns	0%	ns	0%	ns	0%	ns	0%	ns
Total Dissolved Solids	99%	increase	100%	increase	100%	increase	98%	decrease	96%	ns	0%	ns	0%	ns	0%	ns	0%	ns
Antimony (Sb)-Total	0%	increase	0%	increase	0%	increase	0%	decrease	0%	decrease	0%	ns	0%	ns	0%	ns	0%	ns
Barium (Ba)-Total	0%	increase	0%	decrease*	0%	decrease	0%	ns	0%	ns	0%	ns	0%	ns	0%	ns	0%	ns
Boron (B)-Total	0%	increase	0%	increase	0%	increase	0%	decrease	0%	ns	0%	ns	0%	ns	0%	ns	0%	nt
Iron (Fe)-Total	0%	ns	0%	increase*	0%	nt	0%	increase	0%	ns	2%	ns	2%	ns	3%	ns	3%	ns
Lithium (Li)-Total	-	increase	-	increase	-	increase	-	decrease	-	decrease	-	ns	-	ns	-	ns	-	ns
Manganese (Mn)-Total	0%	ns	0%	increase	0%	increase	0%	ns	0%	increase	0%	ns	0%	increase	0%	increase	0%	ns
Molybdenum (Mo)-Total	0%	ns	0%	increase	0%	increase	0%	decrease	0%	decrease	0%	ns	0%	increase	0%	increase	0%	ns
Nickel (Ni)-Total	0%	ns	73%	increase	88%	increase	100%	decrease	100%	decrease	2%	ns	0%	increase	1%	increase	0%	ns
Selenium (Se)-Total	100%	ns	93%	decrease	97%	decrease	100%	ns	100%	ns	0%	ns	0%	decrease	1%	ns	0%	ns
Uranium (U)-Total	65%	increase	90%	increase	88%	increase	55%	decrease	90%	decrease	0%	ns	0%	increase	0%	ns	0%	ns
Zinc (Zn)-Total	0%	nt	0%	increase*	0%	nt	0%	ns	0%	increase	2%	ns	0%	nt	1%	ns	0%	ns
Cadmium (Cd)-Dissolved	0%	increase	0%	increase	0%	increase	0%	ns	0%	ns	0%	increase	0%	ns	0%	ns	0%	ns
Cobalt (Co)-Dissolved	-	nt	-	increase*	-	increase	-	decrease	-	decrease	-	nt	-	nt	-	nt	-	nt
Selenium (Se)-Dissolved	0%	ns	0%	decrease	0%	decrease	0%	ns	0%	ns	0%	ns	0%	decrease	0%	ns	0%	ns

Notes: BCL = Long-term average BCQWG for the Protection of Aquatic Life; BM1 = EVWQP Level 1 Benchmark; ns = no significance, nt = not tested (due to low detection limit in sample); "-" = no data; " * " = trends determined not significant via BACI analysis, but were confirmed to be either decreasing/increasing via visual confirmation.

^a For each key constituent (i.e. primarily those with early warning triggers), concentrations for each area during SRF P2 were compared relative to pre-SRF P2 conditions using a Relative change model (BACI) or Temporal change model at exposed area alone when the reference area % LRL was greater than 80%. A trend (increase or decrease) was identified based on the magnitude of difference between SRF P2 and pre-SRF P2 (when year interaction was not significant) or between 2021 vs 2020 or between 2021 vs all historical years (when year interaction was significant).

^b Due to a lack of pre-SRF P2 data the strength of the BACI analysis is reduced.

^c Due to a lack of pre-SRF P2 data as well as the variability of the SRF operating in 2021, determination of increases and/or decreases were based on visual comparison as well as the BACI analysis.

Aqueous concentrations of nitrite downstream of the outfall (F2_ECIN [RG_ERCKUT]) were similar to concentrations upstream of the outfall (EV_ECOUT [RG_ERCKDT]; Appendix Figure D.5), while total ammonia showed subtle increases downstream of the outfall (Appendix Figure D.6). Regardless, concentrations of nitrite and ammonia in Erickson and Michel Creek as well as the reference areas (RG_MI25 and RG_ALUSM) were below the lower BCWQG throughout all of 2021 and were largely similar to pre-EVO SRF P2 concentrations (Appendix Table D.2; Appendix Figures D.5 and D.6). Concentrations of nitrite and ammonia were also below the long-term BCWQG in Bodie Creek and Gate creeks as well in most samples (<10% of samples exceeded the respective BCWQG; Appendix Tables D.2).

4.2 Selenium and Selenium Speciation

In 2021, EVO SRF P2 removed 548 kg of selenium (Teck 2022a). The removal of total selenium was evident as decreased concentrations in the receiving environment of Erickson Creek (EV ECOUT [RG ERCKDT] and EV EC1 [RG ERCK]) as well the upper portion of Michel Creek (EV MC2a); Figure 4.1; Table 4.1; Appendix Figure D.7) when compared to upstream concentrations at RG ERCKUT. The SRF, however, was not operational during multiple sampling events in 2021,30 which led to variability in measured aqueous selenium concentrations (as well as other constituents) throughout the year (Figure 4.2; Appendix Figure D.8 [using SRF flow as a proxy for operational status]). Aqueous total selenium concentrations above the SRF outfall (F2 ECIN [RG ERCKUT]) were above the EVWQP Level 2 benchmark during all sampling events in 2021 (Figure 4.1; Appendix Table D.2), while only 66% of samples directly below the SRF outfall (EV ECOUT [RG ERCKDT]) exceeded this threshold (with 7% being lower than the EVWQP Level 1 benchmark). Concentrations further downstream at EV EC1 (RG ERCK) had fewer selenium EVWQP Level 2 benchmark exceedances (39%) than those upstream in Erickson Creek. Aqueous total selenium concentrations at Gate and Bodie Creek study areas (RG GATE, EV GT1 [RG GATEDP], and EV BC1 [RG BOCK]), which were increasing prior to EVO SRF P2³¹, decreased with the commissioning of EVO SRF P2 (Figure 4.1) but remained above the EVWQP Level 2 benchmark throughout 2021 (Appendix Table D.2). These decreases in selenium at Gate and Bodie, however, were unlikely related to the SRF as limited discharge from the SRF occurred in these areas in 2021. Aqueous total selenium concentrations at all study areas in Michel Creek and the Elk River, (with the exception of 1% of

³¹ Increases in constituent concentrations (namely selenium and sulfate) in Gate (EV_GT1) and Bodie creeks (EV_BC1) from 2018 to 2020 (which have stabilized or declined in 2021) are likely related to a change in pit dewatering in the area (Teck 2022b).

³⁰ In 2021, the EVO SRF P2 experienced 53 downtime events, with five of these events being greater than 24 hours in duration (Teck 2022a).

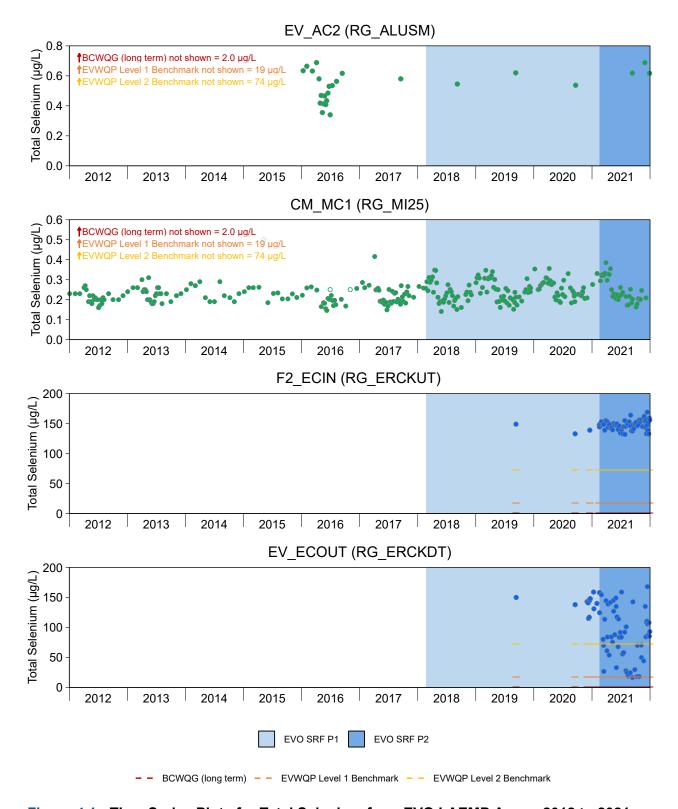


Figure 4.1: Time Series Plots for Total Selenium from EVO LAEMP Areas, 2012 to 2021

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Constituent was plotted because it was identified as a mine-related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

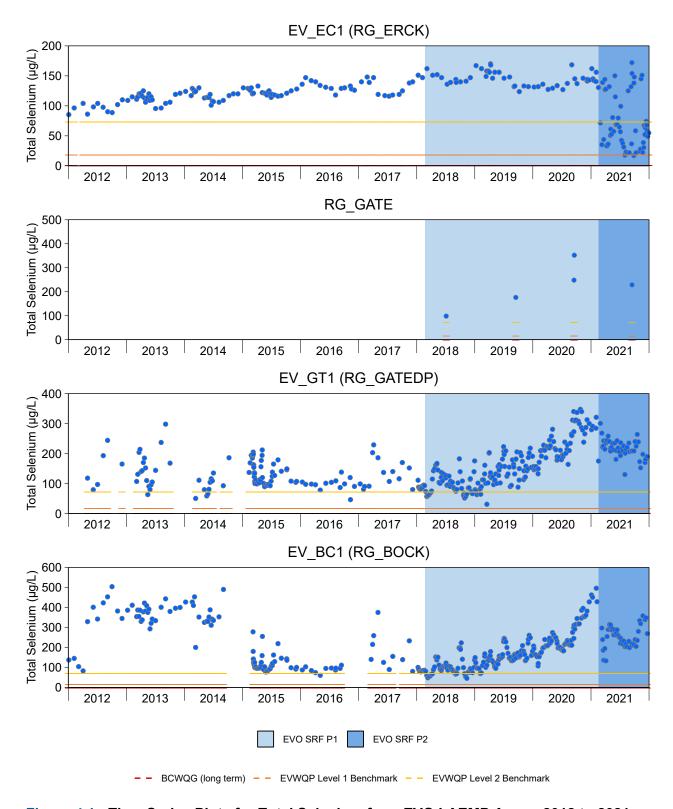


Figure 4.1: Time Series Plots for Total Selenium from EVO LAEMP Areas, 2012 to 2021

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Constituent was plotted because it was identified as a mine-related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

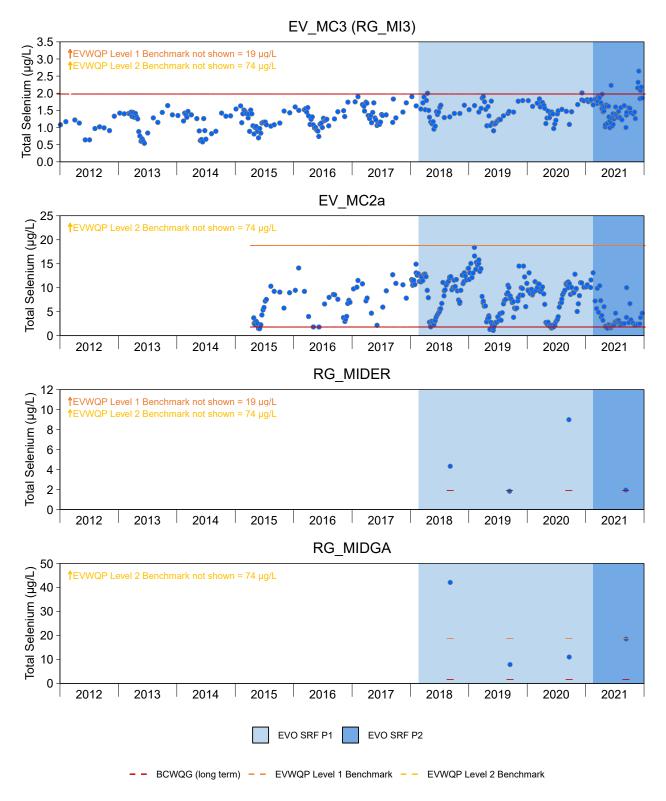


Figure 4.1: Time Series Plots for Total Selenium from EVO LAEMP Areas, 2012 to 2021

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Constituent was plotted because it was identified as a mine-related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

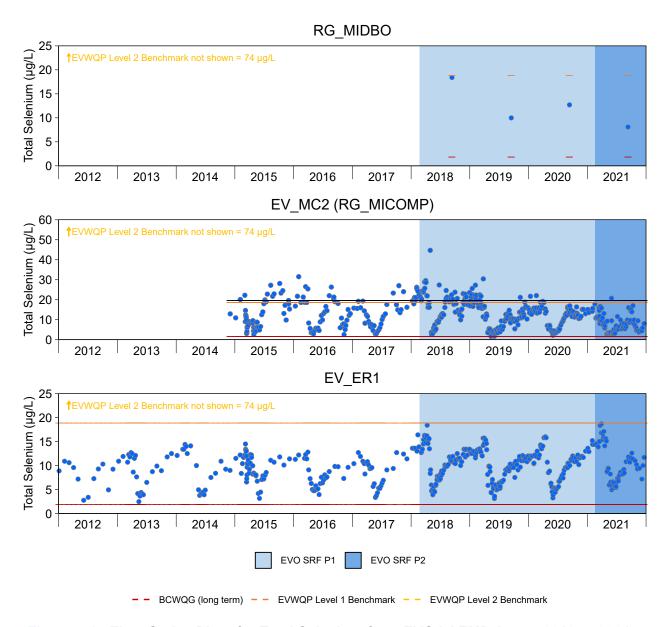


Figure 4.1: Time Series Plots for Total Selenium from EVO LAEMP Areas, 2012 to 2021

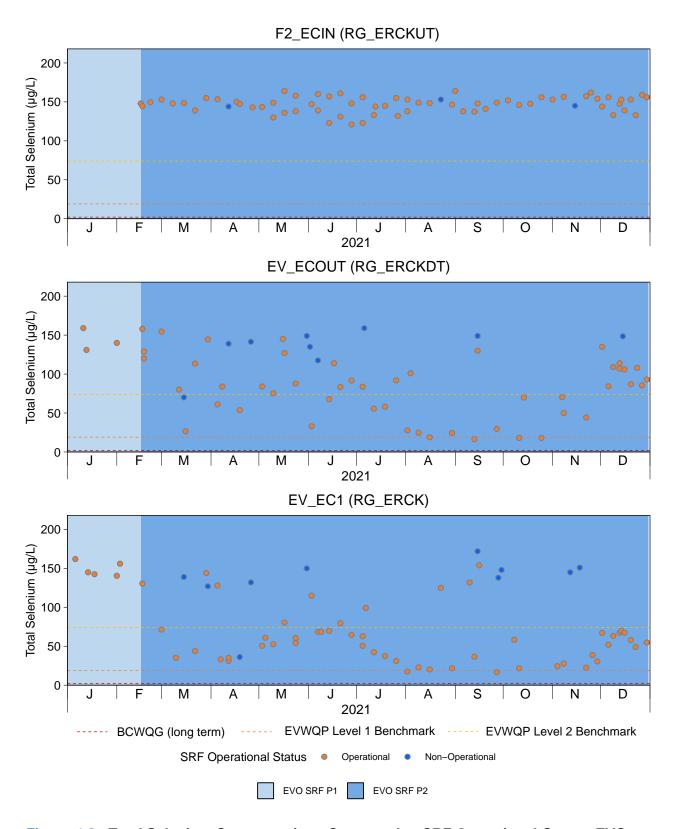


Figure 4.2: Total Selenium Concentrations Compared to SRF Operational Status, EVO LAEMP, 2021

Note: SRF = Saturated Rock Fill.

samples at EV_MC2) were below the EVWQP Level 1 benchmark (Appendix Table D.2) and were similar or lower than previous years (pre-EVO SRF P2) at all Michel Creek study areas (Figure 4.1; Table 4.1).

Although total and dissolved selenium concentrations (including selenate, the predominant selenium species, Appendix Figure D.9) decreased in the receiving environment after the commissioning of the SRF in Erickson Creek, the concentrations of selenite and some organoselenium species increased (Figure 4.3; Appendix Figures D.10 to D.17). While the maximum aqueous concentration of selenite at F2 ECIN (RG ERCKUT) in 2021 was 0.29 µg/L, the maximum aqueous concentrations of selenite at areas below the SRF outfall in Erickson Creek, specifically EV ECOUT (RG ERCKDT) and EV EC1 (RG ERCK), was 1.9 and 1.4 µg/L, respectively (Appendix Table D.3). Similarly, while organoselenium species were largely undetected prior to EVO SRF P2 and upstream of the SRF (F2 ECIN [RG ERCKUT]) in 2021 (with the exception of a few detectable concentrations of selenosulfate and unknown selenium species), dimethylselenoxide (DMSeO), methylselenoinic acid (MeSe(IV)), and selenocyanate (SeCN) were observed on multiple occasions in Erickson Creek areas downstream of the SRF outfall in 2021 (Figure 4.3; Appendix Figure D.11 to D.17). Although limited discharge from the EVO SRF occurred in these areas in 2021, a similar increase in aqueous selenite and organoselenium species was not observed in Gate and Bodie Creek as these constituents had either similar or lower concentrations in 2021 when compared to pre-EVO SRF P2 concentrations (Figure 4.3; Appendix Figure D.11 to D.17). Selenite concentrations in Michel Creek in 2021 were consistent with previous years (pre-EVO SRF P2), and organoselenium species generally detected were not these Aqueous concentrations in in Gate (RG GATE and EV GT1 [RG GATEDP]) and Bodie creeks (EV BC1 [RG BOCK]) were above the draft screening value for a subset of organoselenium species³² (i.e. 0.025 µg/L expressed as the sum of DMSeO and MeSe(IV); ADEPT 2022) for all samples collected. Meanwhile, concentrations of these organoselenium frequently above this draft screening value in Erickson were less (EV ECOUT [RG ERCKDT]: 14% of samples and EV EC1 [RG ERCK]: 47% of samples) and were below this screening value in all evaluated areas of Michel Creek (EV MC3 (RG MI3), EV MC2a, RG MIDER, RG MIDGA, RG MIDBO, EV MC2 (RG MICOMP) or the Elk River (EV ER1; Figure 4.3; Appendix Figure D.11 and D.13).

 $^{^{32}}$ As noted in the 2021 Selenium Speciation Monitoring Program (ADEPT, 2021), "Patterns of bioaccumulation support a draft screening value of 0.025 μ g/L (expressed as the sum of DMSeO and MeSe(IV)) to indicate conditions that might cause an incremental increase in bioaccumulation relative to the normal range of variation in monitoring data." The sum of DMSeO and MeSe(IV) in each water sample was calculated by substituting zero for organoselenium results that were below detection (i.e., <LRL = 0).

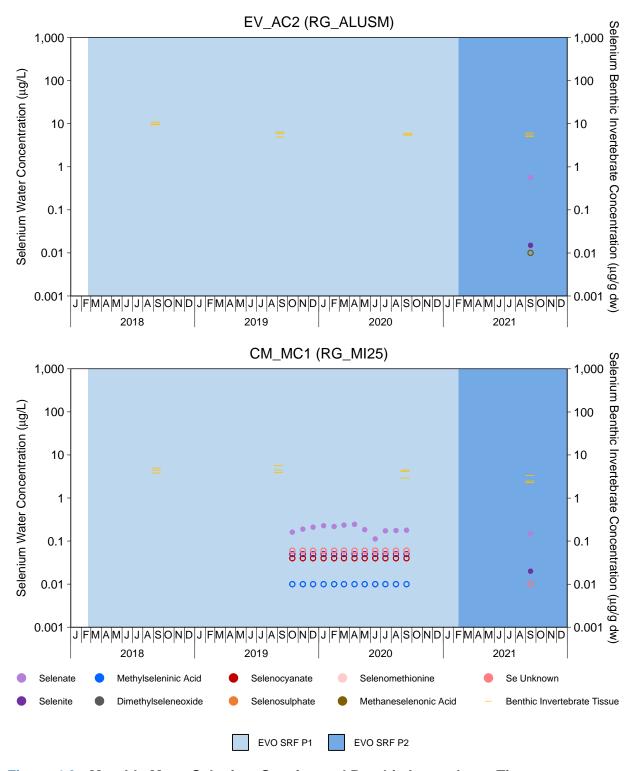


Figure 4.3: Monthly Mean Selenium Species and Benthic Invertebrate Tissue Selenium at Mine-Exposed and Reference Stations, EVO LAEMP, 2018 to 2021

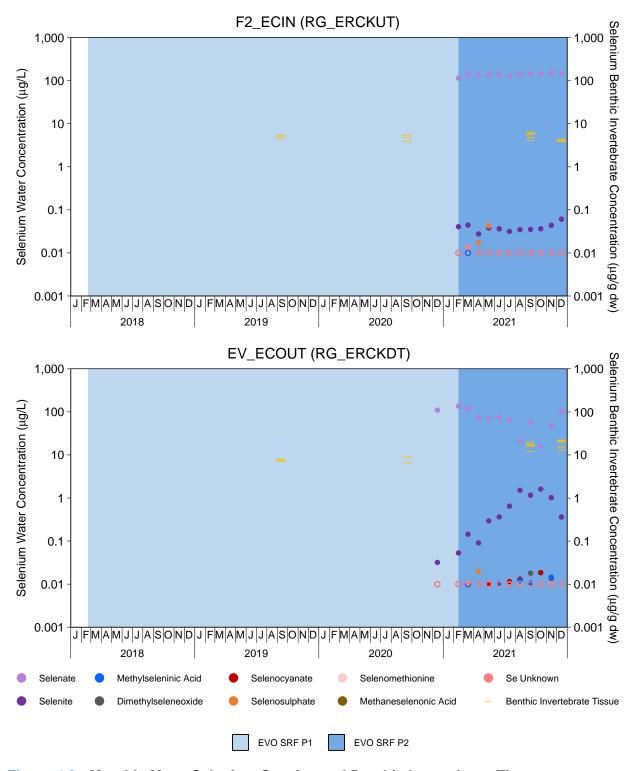


Figure 4.3: Monthly Mean Selenium Species and Benthic Invertebrate Tissue Selenium at Mine-Exposed and Reference Stations, EVO LAEMP, 2018 to 2021

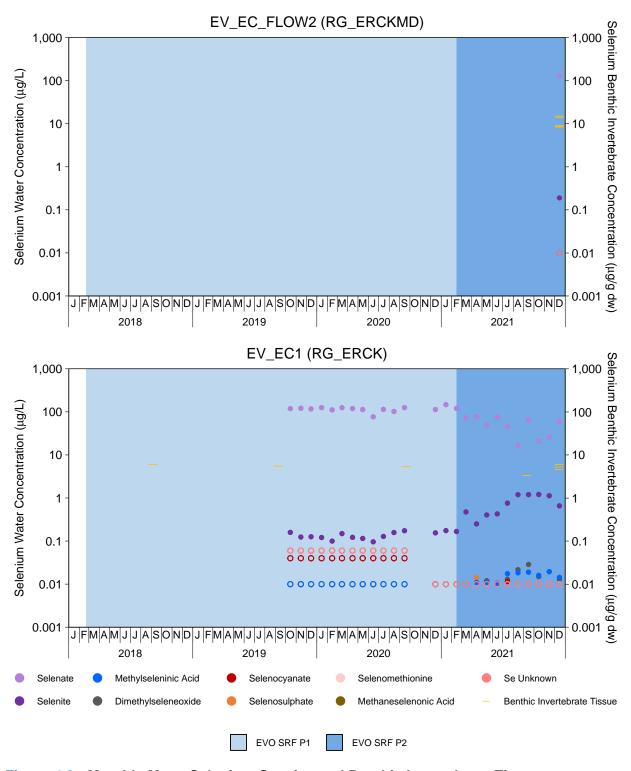


Figure 4.3: Monthly Mean Selenium Species and Benthic Invertebrate Tissue Selenium at Mine-Exposed and Reference Stations, EVO LAEMP, 2018 to 2021

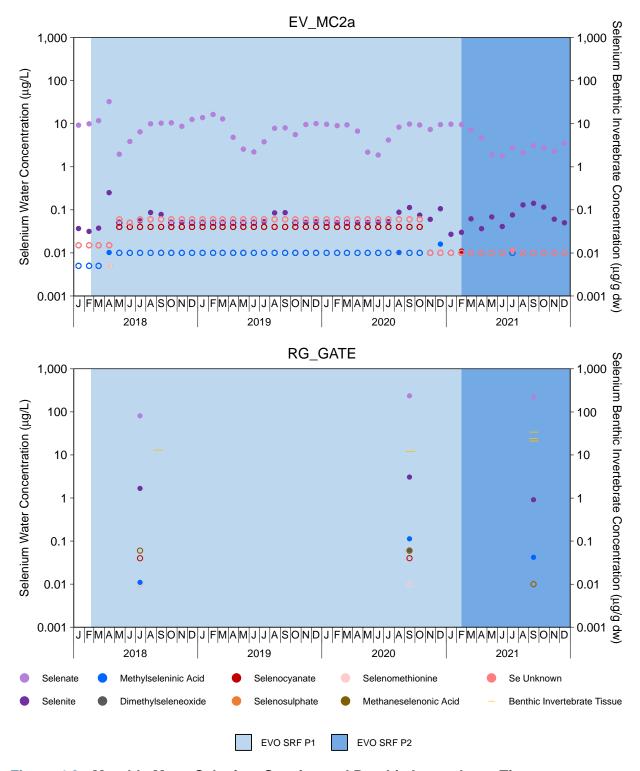


Figure 4.3: Monthly Mean Selenium Species and Benthic Invertebrate Tissue Selenium at Mine-Exposed and Reference Stations, EVO LAEMP, 2018 to 2021

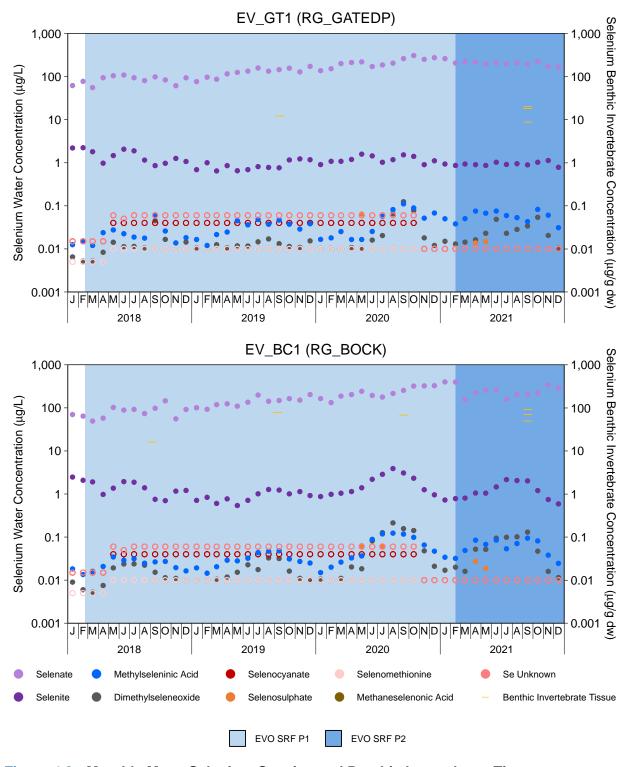


Figure 4.3: Monthly Mean Selenium Species and Benthic Invertebrate Tissue Selenium at Mine-Exposed and Reference Stations, EVO LAEMP, 2018 to 2021

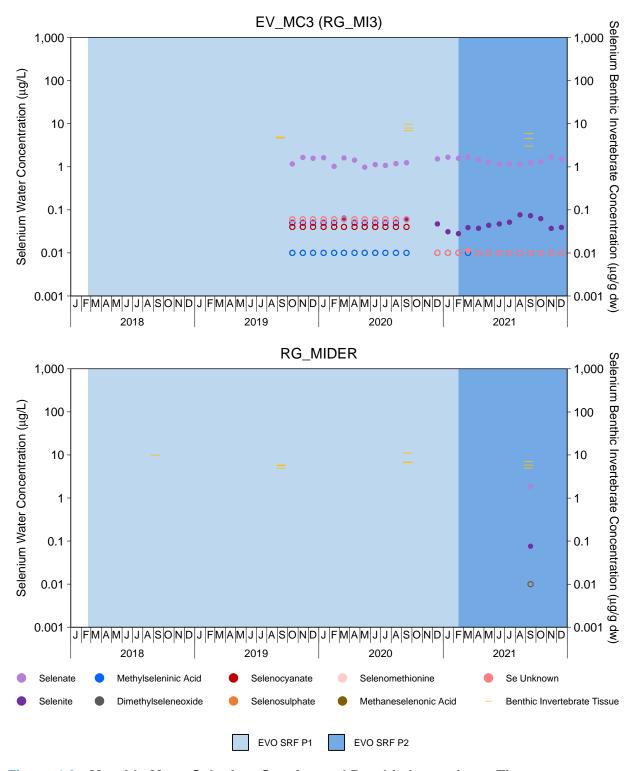


Figure 4.3: Monthly Mean Selenium Species and Benthic Invertebrate Tissue Selenium at Mine-Exposed and Reference Stations, EVO LAEMP, 2018 to 2021

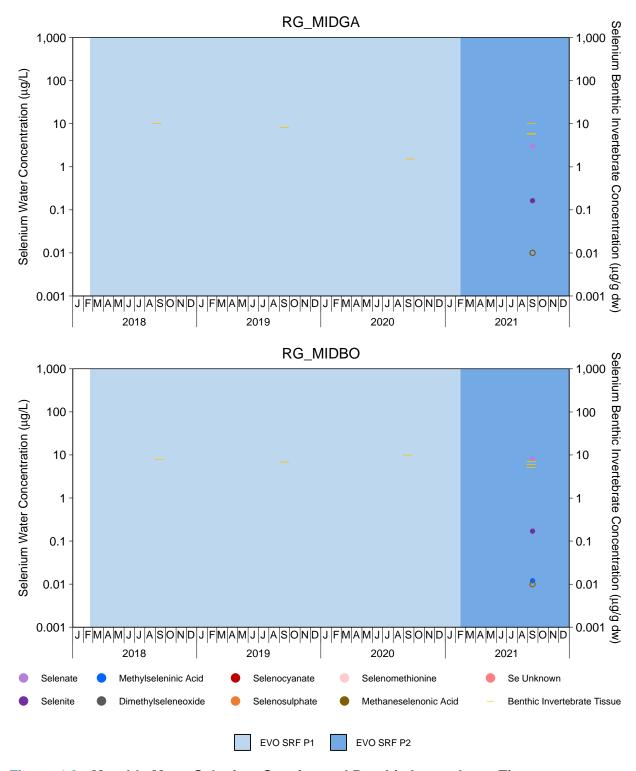


Figure 4.3: Monthly Mean Selenium Species and Benthic Invertebrate Tissue Selenium at Mine-Exposed and Reference Stations, EVO LAEMP, 2018 to 2021

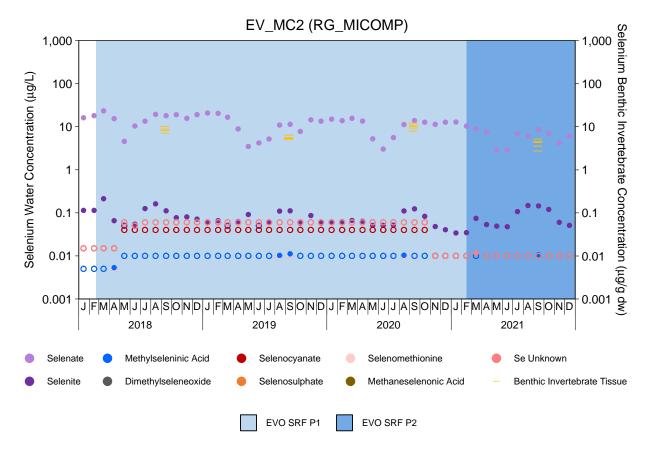


Figure 4.3: Monthly Mean Selenium Species and Benthic Invertebrate Tissue Selenium at Mine–Exposed and Reference Stations, EVO LAEMP, 2018 to 2021

4.3 Nickel and Other Water Quality Constituents

SRF operational activities that maximize removal of nitrate and selenium also have the greatest potential to increase nickel concentrations in Erickson Creek (Teck 2022a). Concentrations of a number of mine-related constituents with EWTs increased directly downstream of the SRF outfall (EV EC1 [RG ERCKDT]) in 2021 when compared to aqueous concentrations prior to the commissioning of EVO SRF P2, albeit most were still below available water quality criteria, such as BCWQGs (Table 4.1; Appendix Table D.1 and D.2; Appendix Figure D.1, D.18 to D.29). These included: total antimony, total boron, dissolved cadmium, dissolved cobalt, total iron³³, total lithium, total manganese, total molybdenum, total nickel, sulphate, total dissolved solids, total uranium, and total zinc (Table 4.1). Although many of these constituents also increased upstream of the SRF outfall (F2 ECIN [RG ERCKUT]; Table 4.1) in 2021 compared to previous years, the increase was more pronounced immediately downstream of the SRF outfall except for sulphate and total dissolved solids which showed similar increases between the areas (Appendix Figure and D.24, respectively). Some increases, such as total molybdenum, (Appendix Figure D.27) can be attributed to antiscalant addition to the SRF effluent (19,993 L of antiscalant was used for EVO operations in 2021; Teck 2022a). Although increased concentrations in 2021 were noted for a number of constituents downstream of the SRF outfall, a majority of these constituents had concentrations below available water quality criteria (BCWQGs, EVWQP benchmarks, etc.; Table 4.1, Appendix Table D.1 and D.2), with the exception of total nickel and total uranium (Figures 4.4 and 4.5). Concentrations of total nickel downstream of the SRF outfall at EV ECOUT (RG ERCKDT) and EV EC1 (RG ERCK) were above the Level 3 interim screening value in 67% and 75% of samples, respectively, while total uranium was above the BCWQG in 90% and 88% of samples, respectively (Appendix Table D.2). Dissolved cobalt and total lithium also increased downstream of the outfall in comparison to concentrations upstream of the SRF outfall or pre-EVO SRF P2, but guidelines for these constituents are currently not available (Appendix Figure D.19 and D.25, respectively). Total barium concentrations decreased at RG ERCKDT in 2021 when compared to concentrations pre- EVO SRF P2 (Table 4.1; Appendix Figure D.22). Similar temporal trends noted for EV ECOUT (RG ERCKDT) were also noted at EV EC1 (RG ERCK; Table 4.1).

The majority of mine-related constituent concentrations were either similar or lower than concentrations pre-EVO SRF P2 in Gate Creek and Bodie Creek in 2021 (Table 4.1). Specifically, aqueous concentrations of total antimony, dissolved cobalt, total molybdenum, total nickel, and total uranium were lower in 2021 in Gate and Bodie relative to pre-SRF P2 (Table 4.1).

³³ Although total iron is not a constituent with an EWT, it is included in the analysis for WQ as is it has been identified as a by-product of the SRF and was elevated in sediment downstream of the SRF outfall compared to upstream.

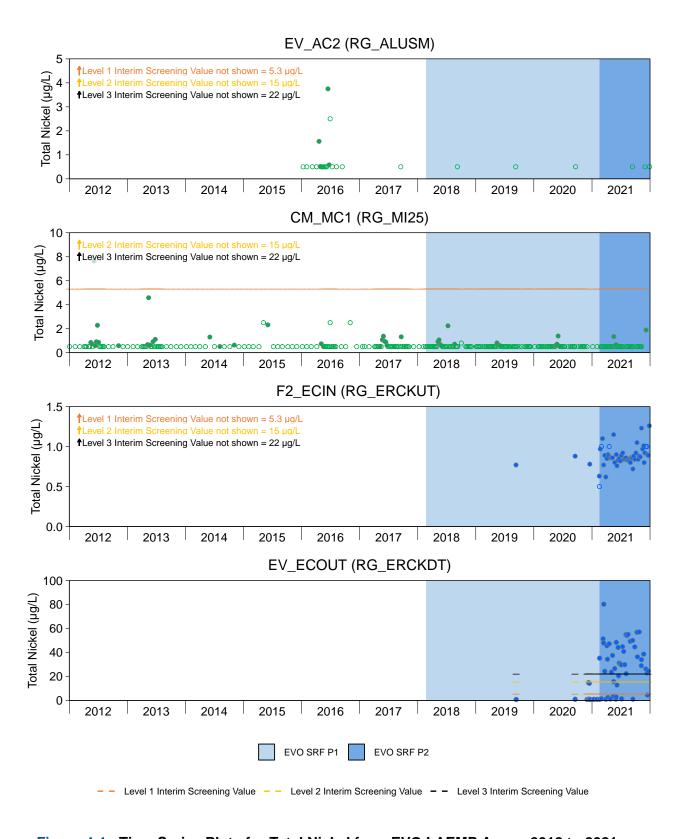


Figure 4.4: Time Series Plots for Total Nickel from EVO LAEMP Areas, 2012 to 2021

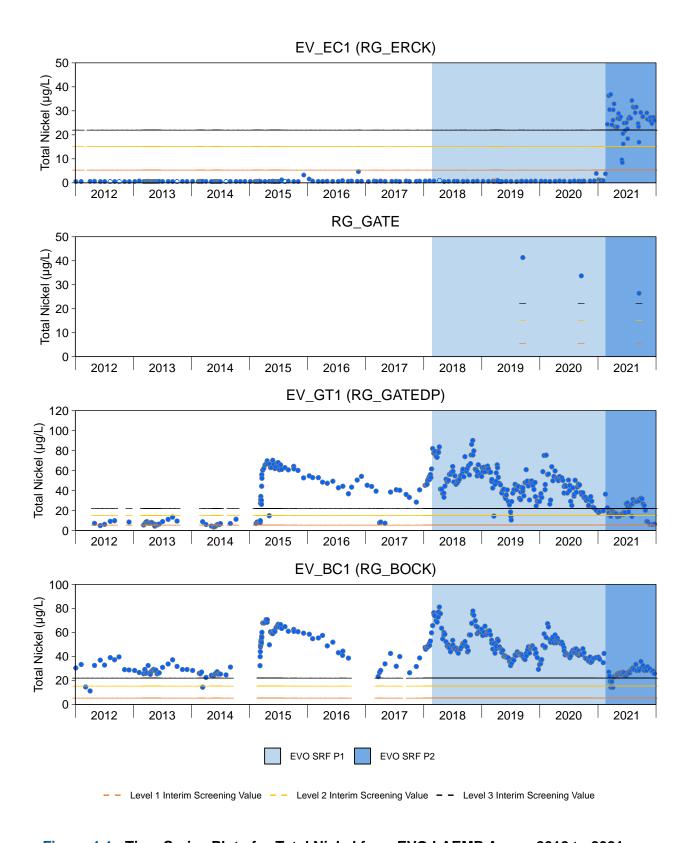


Figure 4.4: Time Series Plots for Total Nickel from EVO LAEMP Areas, 2012 to 2021

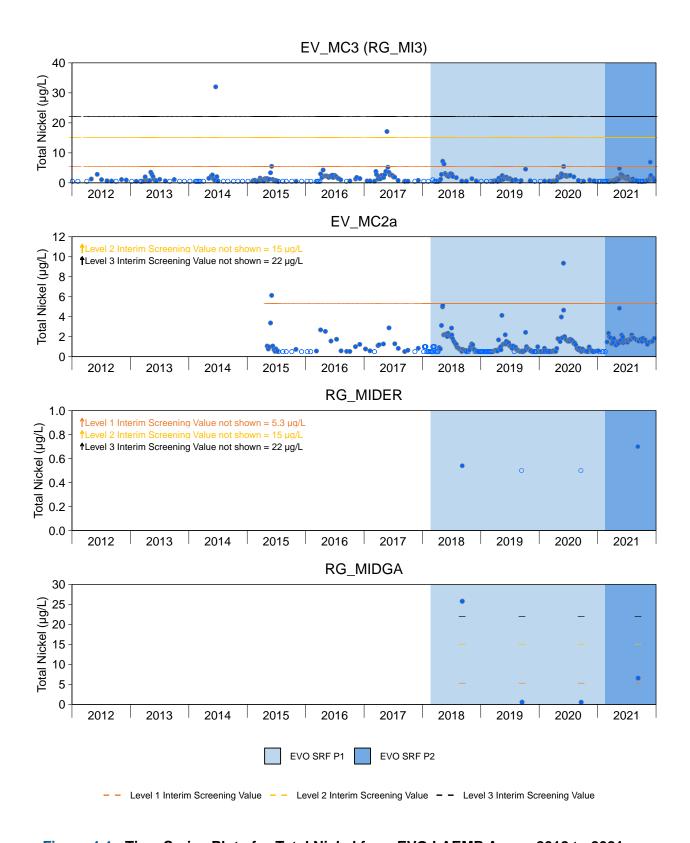


Figure 4.4: Time Series Plots for Total Nickel from EVO LAEMP Areas, 2012 to 2021

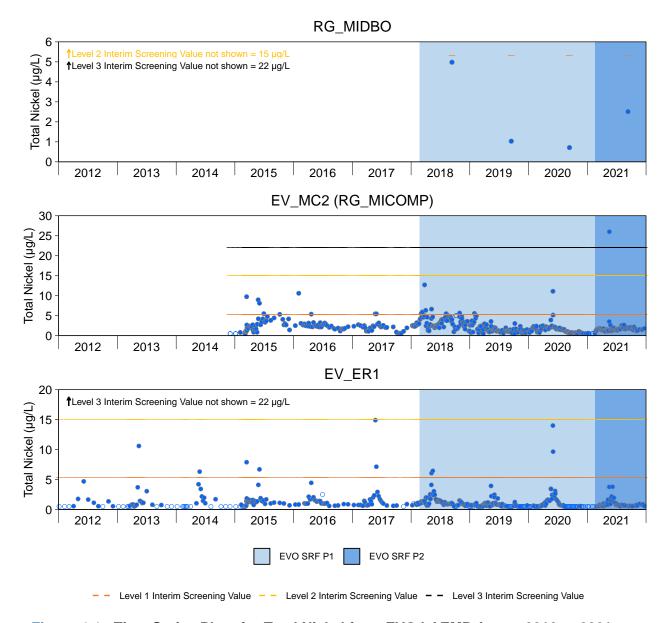


Figure 4.4: Time Series Plots for Total Nickel from EVO LAEMP Areas, 2012 to 2021

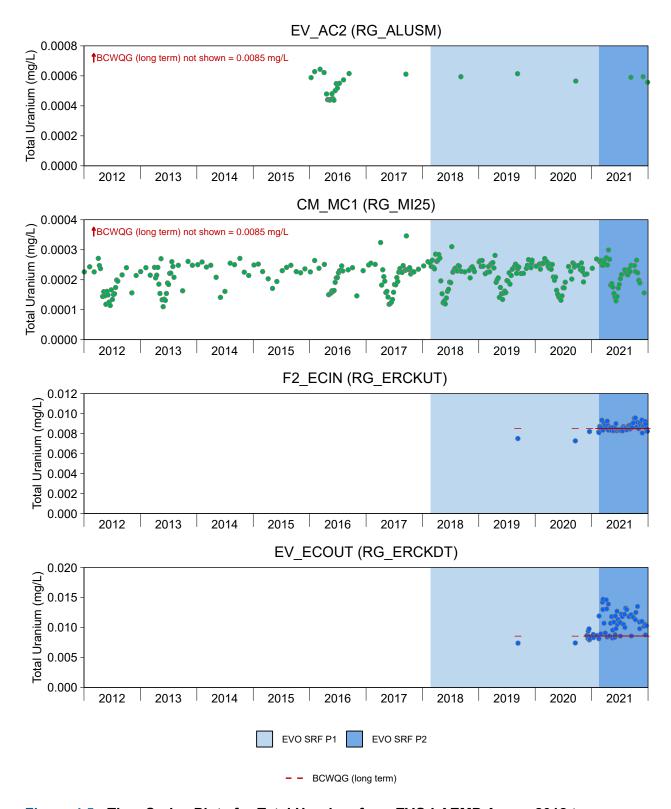


Figure 4.5: Time Series Plots for Total Uranium from EVO LAEMP Areas, 2012 to 2021

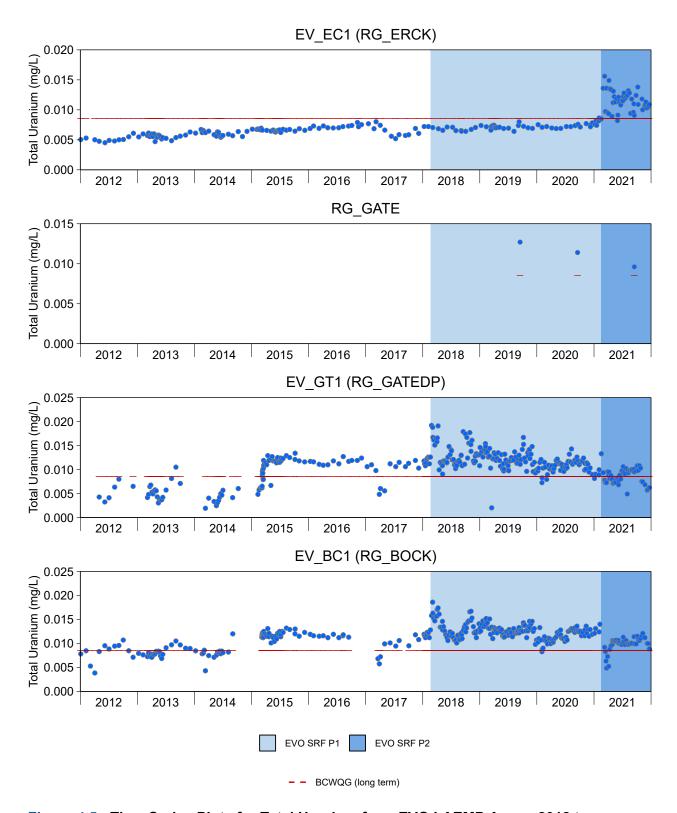


Figure 4.5: Time Series Plots for Total Uranium from EVO LAEMP Areas, 2012 to 2021

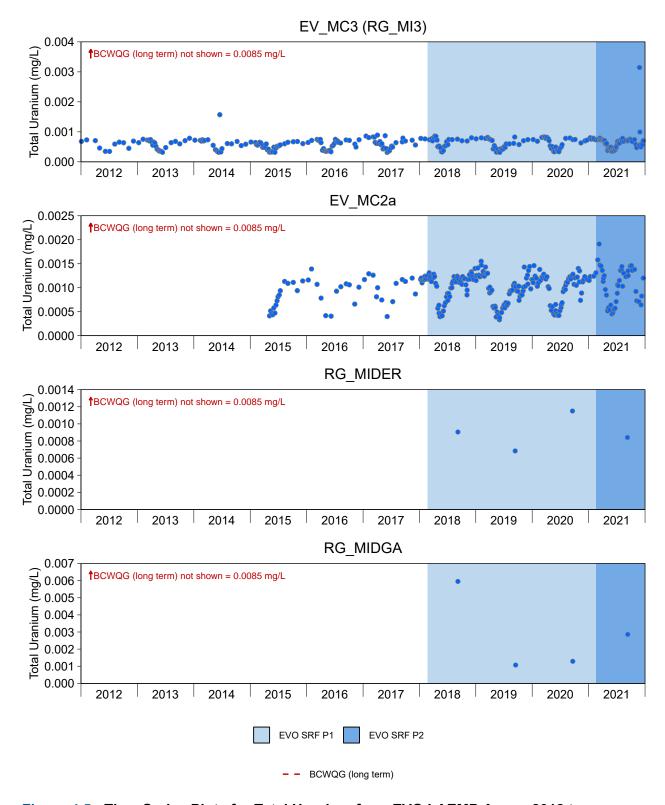


Figure 4.5: Time Series Plots for Total Uranium from EVO LAEMP Areas, 2012 to 2021

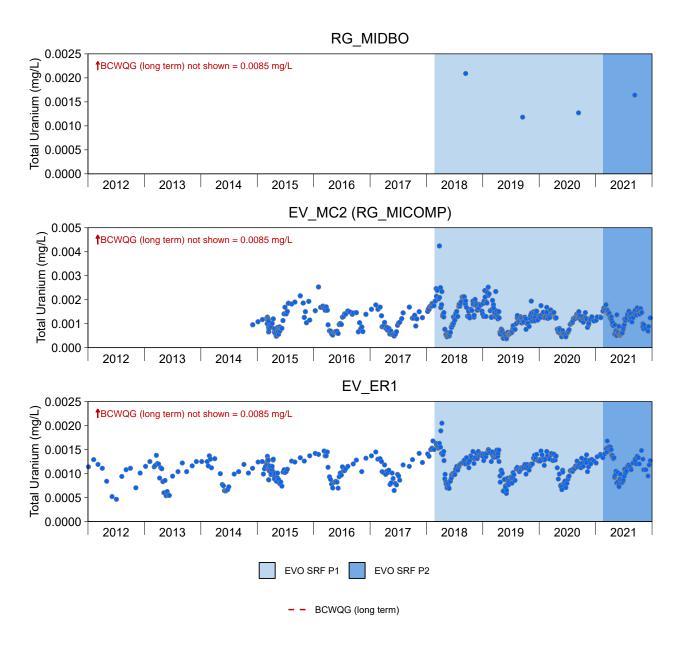


Figure 4.5: Time Series Plots for Total Uranium from EVO LAEMP Areas, 2012 to 2021

80

Total manganese and total zinc increased in 2021 in Gate and Bodie creeks (in comparison to previous years), but concentrations in in both areas remained below the BCWQGs. In both routine water quality stations evaluated in Michel Creek downstream of the Erickson Creek confluence (EV_MC2a and EV_MC2 [RG_MICOMP]), most of the mine-related constituent concentrations were similar in 2021 to previous years (pre-EVO SRF P2), with increases observed in only a few constituents, namely total manganese, total molybdenum, and total nickel, while total uranium only increased at EV_MC2a. Regardless, concentrations typically remained below available water quality criteria (<1% of samples exceeded the respective criteria; Table 4.1, Appendix Table D.2). Other constituents were all below available BCWQG guidelines (where available) and/or similar to reference areas in Erickson, Gate, Bodie, and Michel creeks.

4.4 Toxicity Results

4.4.1 Acute Toxicity Results

Acute toxicity testing (using the water flea [*D. magna*] and rainbow trout) was conducted with water collected from four EVO LAEMP mine-exposed areas in 2021, EV_ECOUT (RG_ERCKDT; n=29), EV_EC1 (RG_ERCK; n=29), EV_GT1 (RG_GATEDP; n=31), and EV_BC1 (RG_BOCK; n=26; Table 4.2, Appendix Table D.4). Toxicity testing occurred at least monthly at each area, with a maximum of five events in a given month (e.g. EV_ECOUT in June). Additionally, testing was conducted with effluent from the SRF retention pond (F2_BPO; n=3). No water samples collected from these areas in 2021 failed the test criteria for acute toxicity (i.e., did not cause > 50% mortality with either organism; Table 4.2). A few individual water samples did show acute toxicity to rainbow trout (EV_ECOUT and EV_GT1 [n=1]; EV_EC1 [n=3]) or the water flea (EV_EC1 [n=2]) but in all cases toxicity was less than 10% (Appendix Table D.4). Effluent collected at F2_BPO and water collected from EV_BC1 did not cause mortality to either test species in toxicity tests throughout 2021. Further information regarding acute toxicity test can be found in the Annual Water Quality Monitoring Program (Teck 2022b).

4.4.2 Chronic Toxicity Results

Chronic toxicity testing at the Compliance Point, EV_MC2 (RG_MICOMP), started in 2015 and has been performed quarterly with the water flea (*C. dubia*) and algae, while semi-annual tests have been conducted with fathead minnow and rainbow trout (Table 4.3). In 2018, chronic toxicity testing with the amphipod, *H. azteca*, was initiated and has occurred one to three times per year thereafter. Chronic toxicity results with water collected for EV_MC2 (RG_MICOMP) is discussed on a species-specific basis below (Golder 2022).

Table 4.2: Summary of Acute Toxicity Test Results for EVO LAEMP Monitoring Stations, 2021 (Teck 2022b)

	Water Station		Wateı (Daphnia		Rainbow Trout (Oncorhynchus mykiss)			
Teck Code	Description	Year	# Tests > 50% mortality	Total # Tests	# Tests > 50% mortality	Total # Tests		
F2_BPO	Effluent Retention Pond Outlet	2021	0	3	0	3		
EV_ECOUT	Erickson Creek d/s of SRF Outfall (RG_ERCKDT)	2021	0	29	0	29		
EV_EC1	Erickson Creek at Mouth (discharge to Michel Creek; RG_ERCK)	2021	0	29	0	29		
EV_GT1	Gate Creek Sedimentation Pond Decant (RG_GATEDP)	2021	0	31	0	31		
EV_BC1	Bodie Creek Sedimentation Pond Decant (RG_BOCK)	2021	0	27	0	27		

Acute toxicity test failure(s) (> 50% test mortality).

Notes: d/s = downstream, SRF = saturated rock fill.

Table 4.3: Results of Quarterly and Semi-Annual Chronic Toxicity Testing at EV_MC2, 2015 to 2021^a (Golder 2016, 2017a, 2018, 2019, 2020a, 2021, 2022)

Area	Quarter ^b		Water Flea (Ceriodaphnia dubia) ^b			Amphipod (<i>Hyalella azteca</i>) ^c		Green Alga (Pseudokirchneriella subcapitata)	Rainbow Trout (Oncorhynchus mykiss)			Fathead Minnow (<i>Pimephales promelas</i>)					
			Survival (% control- normalized)	Reproduction (% control- normalized; Protocol- specified)	Reproduction (% control- normalized; 8-day)	Survival (% control- normalized)	Dry Weight (% control- normalized)	Cell Yield (x10 ⁴ cells/ml)	Survival (% control- normalized)	Viability (% control- normalized)	Length (% control- normalized)	Wet Weight (% control- normalized)	Hatch (% control- normalized)	Survival (% control- normalized)	Biomass (% control- normalized)	Length (% control- normalized)	Normal Development (% control- normalized)
		Q1	100	109±14	-	1	-	130.3± 12.4	-	-	-	-	-	-	-	-	-
	2016	Q2	100	77±17	-	1	-	111.5± 8.1	<u>68±5</u>	<u>66±4</u>	105±3	113±13	-	-	-	-	-
		Q3	100	96±9	-	1	-	120.0± 5.7	-	-	-	-	-	-	-	-	-
		Q4	100	<u>66±24</u>		-	-	166.3± 2.2	87±9	88±7	102±1	110±4	-	-	-	-	-
		Q1	100	94±20	-	-	-	216.3±13.3	-	-	-	-	-	-	-	-	-
	2017	Q2	90±32	80±20	-	-	-	139.5±9.3	102±22	108±22	110±5	119±10	-	-	-	-	-
		Q3	100	<u>96±11</u>	-	-	-	157±12.1	-	-	-	-	-	-	-	-	-
		Q4	100	126±14	-	-	-	107.8±7	24±46 ^M	23±46 ^M	91±7	102±6	-	-	-	-	-
	2018	Q1	100	56±22	62±22	-	-	167.3±3.3	-	-	-	-	-	-	-	-	-
		Q2	90±32	94±17	87±17	-	-	155.5±5.3	106±2	109±5	105±3	111±22	-	-	-	-	-
		Q3	100	89±26	97±15	-	-	106.5±4.2	-	-	-	-	-	-	-	-	-
EV_MC2		Q4	111	92±31	100±11	98±14	51±6	<u>90.5±5.3</u>	91.5±15	96±16	105±1	106±3	-	-	-	-	-
_ ^E		Q1	100	96±16	96±16	-	-	81.5± 2.9					100	98	88±8	<u>88±3</u>	96±7
	2019	Q2	100	83±7	83±7	-	-	105.2± 9.7	92±17	94±20	105±1	108±10	-	-	-	-	-
	2010	Q3	100	96±16	81±14	104	143±11	39.2± 5.4	-	-	-	-	98± 3	78±24	86±13	103±8	100
		Q4	80±42	102±9	99±8	98±9	84±40	106.8± 3.5	<u>80±11</u>	<u>75±8</u>	100±2	101±6	-	-	-	-	-
	2020	Q1	111	100±27	100±27	-	-	<u>73.0± 5.0</u>	-	-	-	-	95±6 ^M	84±25 ^M	<u>84±10^M</u>	97±5 ^M	95±6 ^M
		Q2	100	109±10	109±10	100±9	92±12	124.5± 5.4	97±27 ^M	99±30 ^M	98±8 ^M	108±18 ^M	-	-	-	-	-
		Q3	100	100±9	100±9	-	-	82.0±7.2	-	-	-	-	98.3±3.3	94±11	88±12	95±6	100±0
		Q4	100	98±9	98±9	86±23	55±27	130±2.4	97±5	97±5	105±2	109±4	-	-	-	-	-
	2021	Q1	100	107±8	-	-	-	<u>82.5±6.8</u>	-	-	-	-	98±10	97±9	84±8	96±5	98±5
		Q2	100	86±32	-	102±6	_d	70.0±6.1	100±9 ^M	98±14 ^M	104±2 ^M	122±16 ^M	-	-	-	-	-
		Q3	100	113±25	-	98±9	71±11	94.8±8.1	-	-	-	-	102±4	112±12	99±8	83±8	98±7
		Q4	100	110±8	-	104±6	98±14	<u>65.3±8.5</u>	94±13	91±12	99±3	101±11	-	-	-	-	-

Notes: Q_x = Calendar year quarters; "-" = no data available. Possible and likely symbols are annotated with constituent identified as potentially contributing to observed response: H_RV = high inter-replicate variability; NO3 = nitrate; Ni = Nickel UN = unknown, no water quality constituent identified.

^a Results presented as percent survival or mean ± standard deviation.

^b Toxicity work in 2015 was not normalized to % control and thus is not shown

^c *H. azteca* testing began in Q4 2018.

d H. azteca testing was conducted in Q2 and Q4, per Permit 107517. Tests in Q2 were successfully conducted and survival was measured; however, test organisms were disposed prior to measuring dry weight due to a lab technician error.

Water flea survival and reproduction when exposed to water from EV_MC2 showed "no adverse response" in 2021. Toxicity testing with amphipods (*H. azteca*) showed similar results as "no adverse response" was noted in each of the three sampling events in 2021. Similar results were also encountered for both fish species as fathead minnows (Q1 and Q3; via evaluation of hatch, survival, biomass, length, and normal development) and rainbow trout (Q2 and Q4; survival, viability, length, and wet weight) were either not significantly different from reference or were categorized as "no adverse response" (Golder 2022).

Algae chronic toxicity testing in Q1 and Q4 of 2021 with water collected from EV MC2 showed "possible adverse effects" to cell yield (as cell yield was significantly less at this area when compared to each of the four reference locations in both quarters; Table 4.3). However, water quality screening did not reveal any constituent as a potential cause of response (all constituent concentrations in these toxicity tests were below **BCWQG** or **EVWQP** benchmarks; Appendix Table A.1). However, it should be noted that mean cell yields in both Q1 and Q4 were systematically depressed across all treatments (i.e. all test areas for that quarter) despite variability in water chemistry, which adds a level of uncertainty associated with toxicity testing observed effects EV MC2 (RG MICOMP) surface waters in both guarters (Golder 2022).

Temporal comparisons of chronic toxicity results for EV_MC2 indicated that observed organism responses (or lack thereof) for chronic toxicity testing in 2021 were similar to or lower than previous years. In addition, few adverse responses have been observed since initiation of testing in 2015, there is no apparent consistent pattern of responses, and there is no clear evidence of casual factors (Golder 2022), suggesting a lack of influence of the SRF (in either EVO SRF P1 or P2).

4.5 Summary

Water quality and toxicity results were used to address Study Questions #3 (SRF influence on water quality) and indirectly used in addressing changes in Study Questions #4 (SRF influence on selenium BIT concentrations), #5 (SRF influence on benthic community structure), and #6 (SRF influence on productivity). Further information regarding the indirect influence of changes to water quality (as influenced by the operation of the SRF) on selenium BIT concentrations, benthic community structure, and productivity is discussed in greater detail in Section 6 (Benthic Invertebrates).

Overall, water quality results suggest a number of constituents have decreased in the receiving environment of Erickson Creek with the commissioning of the EVO SRF P2, including nitrate, phosphorus, orthophosphate, and barium. Although total selenium concentration (as well as selenate and dissolved selenium) in the receiving environment of Erickson and upper portions of Michel Creek have decreased, selenite and some organoselenium species concentrations

increased in Erickson Creek with the commissioning of the EVO SRF P2. In aquatic receiving environments, some reduced selenium species are accumulated into the base of the food web more readily than selenate (Ogle et al. 1988; Riedel et al. 1996; Stewart et al. 2010; Golder 2021c), leading to increases in tissue selenium concentrations in benthic invertebrates, fish and/or other aquatic and aquatic dependent biota via dietary exposure. While the concentrations of a number of constituents decreased in Erickson Creek, several constituent concentrations increased (including total antimony, total boron, dissolved cadmium, dissolved cobalt, total iron, total manganese, total molybdenum, total nickel, total uranium, and total zinc). All of these constituents, with the exception of nickel and uranium, were below available water quality criteria. Increases in nickel (as well as cobalt and possibly other constituents) in 2021 were largely limited to Erickson Creek and likely related to in situ water entrained in the SRF³⁴. however as modelled in the application for EVO SRF P2, nickel (and cobalt) concentrations (at EV EC1) are expected to decrease in roughly one year of treatment at designed throughput as entrained water is displaced by Erickson Creek water (Teck 2022b). concentrations of nickel expected to decrease in the next year, a review of expected nickel concentrations in this area completed in January 2022 (to support the EVO SRF nickel trigger response plan) suggested that elevated concentrations of nickel will not cause additional impacts to the current benthic community (Teck 2022a). Teck continues to work with EMC on nickel management, including the derivation of a nickel benchmark for the Elk Valley.

Concentrations of nutrients (namely nitrate, phosphorus, and orthophosphate) and total selenium in Gate and Bodie (which received limited discharge from the SRF in 2021) as well as Michel Creek were either similar or lower in 2021 than pre-EVO SRF P2 concentrations. While an increase in the concentrations of aqueous selenite and organoselenium species was observed downstream of the SRF outfall in Erickson Creek, similar trends were not observed in Gate, Bodie, and Michel Creek.

Areas evaluated in Erickson, Gate, Bodie, and Michel creeks showed no acute toxicity testing failures during 2021 to either the water flea or rainbow trout. With the exception of algae chronic toxicity results (which have an associated degree of uncertainty due to suppressed cell yield throughout the study), chronic toxicity results with water flea, amphipods, fathead minnows, and rainbow trout showed no adverse effects when exposed to water from the compliance point at Michel Creek (EV_MC2 [RG_MICOMP]).

³⁴ By December 2021, the EVO SRF P2 effluent was estimated to be approximately 92% treated Erickson Creek water and more representative of EVO SRF P2 effluent, while earlier conditions more representing *in situ* water (i.e. water that was present in the SRF at the time the new influent source [Erickson Creek] was introduced; Teck 2022a).

5 PERIPHYTON

5.1 Visual Periphyton Coverage

In September 2021, mean periphyton coverage was moderate at the reference study areas (RG_ALUSM and RG_MI25) and at nine of eleven mine-exposed study areas evaluated (Table 5.1; Appendix Figure E.1). Mean visual periphyton coverage scores ranged between 2.0 and 3.2 of a possible range from one (rocks not slippery and no obvious colour) to five (rocks mostly obscured by algae mats; Environment Canada 2012a). Moderate coverage in Gate, Bodie, Erickson (upstream of the SRF), and Michel creeks were similar to previous years (Minnow 2020a, 2021a). Periphyton scores at RG_ERCKDT, located directly downstream of the SRF outfall, were lower than other areas (mean visual score of 1.6) and compared to previous years (periphyton scores in 2019 and 2020 were 4 and 5, respectively). Erickson Creek near the confluence with Michel Creek which was slightly higher than the score of three in 2019 (Minnow 2020a, 2021a).

Visual periphyton coverage was sampled as an indicator of primary productivity. However, the method of scoring periphyton coverage (Environment Canada 2012a) does not fully consider the presence of other primary producers, such as bryophytes. Although RG_ERCKDT had the lowest visual coverage score for periphyton, bryophytes were abundant (Appendix Figure E.1), representing 76 to 100% coverage on substrates (Appendix Table C.5). Similarly, bryophyte coverage was also observed at other areas in Erickson Creek including RG_ERCKUT and RG_ERCK (Appendix Table C.5; Appendix Figure E.1) despite high variability among the areas for visual periphyton coverage. Bryophyte coverage in Erickson Creek will be evaluated as part of the EVO LAEMP study design moving forward to be understand the influence of the SRF on primary productivity. Regardless, no consistent changes associated with SRF discharge were apparent in 2021.

Table 5.1: Visual Periphyton Coverage Scores, EVO LAEMP, September 2021

Aroa Typa	Biological Area			Station	Mean	Standard			
Area Type	Code	1	2	3	4	5	Weari	Deviation	
Reference	RG_ALUSM	4	4	2	2	3	3.0	1.00	
Reference	RG_MI25	2	2	2	2	3	2.2	0.447	
	RG_ERCKUT	4	3	3	4	2	3.2	0.837	
	RG_ERCKDT	1	1	1	1	4	1.6	1.34	
	RG_ERCK	5	5	4	5	4	4.6	0.548	
	RG_GATE	2	2	3	2	1	2.0	0.707	
	RG_GATEDP	3	-	-	-	-	3.0	-	
Mine-Exposed	RG_BOCK	2	-	-	-	-	2.0	-	
	RG_MI3	3	2	3	2	2	2.4	0.548	
	RG_MIDER	3	2	3	1	2	2.2	0.837	
	RG_MIDGA	2	2	2	2	2	2.0	0	
	RG_MIDBO	3	2	2	2	2	2.2	0.447	
	RG_MICOMP	2	4	3	3	4	3.2	0.837	

Notes: "-" = not sampled. Periphyton Coverage Scores (Environment Canada, 2012b):

^{1 =} Rocks not slippery, no obvious colour (<0.5mm thick)

^{2 =} Rocks slightly slippery, yellow-brown to light green colour (0.5-1mm thick)

^{3 =} Rocks have noticeable slippery feel, patches of thicker green to brown algae (1-5mm thick)

^{4 =} Rocks are very slippery, numerous clumps (5-20mm thick)

^{5 =} Rocks mostly obscured by algae mat, may have long strands (>20mm thick)

6 BENTHIC INVERTEBRATES

6.1 Tissue Selenium Concentrations

6.1.1 Spatial and Temporal Trends

Mean composite-taxa benthic invertebrate tissue (BIT) selenium concentrations at four mineexposed areas in September 2021, RG ERCKDT (directly below the SRF outfall in Erickson Creek), RG BOCK (directly below the settling pond Bodie Creek), in RG GATE (above the settling pond in Gate Creek), and RG GATEDP (directly below the settling pond in Gate Creek), exceeded the Level 1 benchmark for effects to benthic invertebrates (as well as the Level 2 and Level 3 benchmark for RG GATE and RG BOCK, respectively), were above the regional reference normal range, and were significantly higher than the reference areas (RG ALUSM and RG MI25; Figure 6.1; Appendix Table F.1). Mean BIT selenium concentrations in the other areas evaluated as part of the EVO LAEMP, including the area above the SRF outfall (RG ERCKUT), the area at the confluence of Erickson and Michel Creek (RG ERCK), as well as the entire study area of Michel Creek (which is the receiving water body for Erickson Creek, Gate Creek, and Bodie Creek), which included five study areas: (RG MI3 [which is above the Erickson and Michel Creek confluence], RG MIDER, RG MIDGA, RG MIDBO, and RG MICOMP, which were all below the Level 1 benchmark. These areas had BIT selenium concentrations that were also within the regional reference normal range and not significantly different from reference, suggesting that elevated BIT selenium concentrations were localized to a small area with the EVO LAEMP study area. Confirmation sampling in December 2021 confirmed the localized nature of elevated tissue selenium concentrations in Erickson Creek as mean tissue selenium concentrations (18.2 mg/kg dw) at RG ERCKDT were similar to observed concentrations in September (16.2 mg/kg; Figure 6.1, Appendix Table F.1), while further downstream at RG ERCKMD (added to evaluate spatial extent of the elevated BIT selenium concentrations in December) and RG ERCK, mean BIT selenium concentrations were below the Level 1 benchmark (Figure 6.1, Appendix Table F.1).

Of the four areas where mean BIT selenium concentrations exceeded the Level 1 benchmark, RG_ERCKDT and RG_GATE, also had BIT selenium concentrations that significantly increased in 2021 when compared to pre-EVO SRF P2 (when compared to changes at both reference areas over the same time frame; Figure 6.2; Appendix Figure F.1, Appendix Table F.2). In contrast, selenium concentrations in BIT was similar in 2021 compared to recent years at both RG_BOCK and RG_GATEDP (Appendix Figure F.1; Appendix Tables F.1 and F.2). Selenium concentrations in BIT in Michel Creek in 2021, both upstream (RG_MI3) and downstream of the confluence with Erickson Creek (RG_MIDER), Gate Creek (RG_MIDGA), and Bodie Creek (RG_MIDBO), as well

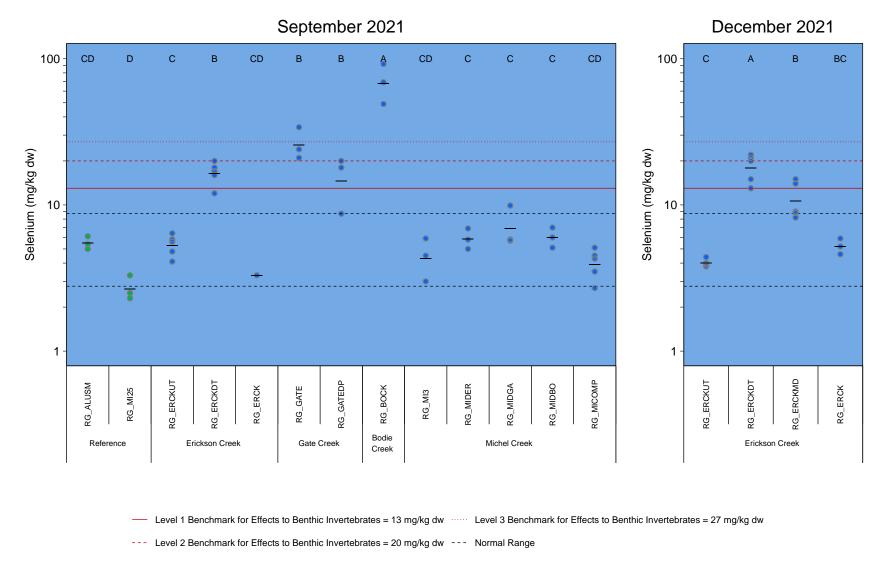


Figure 6.1: Selenium Concentrations in Composite—Taxa Benthic Invertebrate Samples Collected at Reference (Green) and Mine—Exposed (Blue) Areas of Bodie, Erickson, Gate, and Michel Creeks, EVO LAEMP, 2021

Notes: SRF Operational (blue shading) only applies to mine–exposed areas. Dashed black lines represent the normal range defined as the 2.5th and 97.5th percentiles of the 2012 to 2019 reference area data from the Regional Aquatic Environmental Monitoring Program (RAEMP). Black horizonal lines represent geometric means. Areas that do not share a letter (e.g. a,b,c) are significantly different (a = 0.05) in a Tukey's HSD test following a one–way ANOVA by area with selenium log₁₀-transformed. Selenium concentrations in composite-taxa benthic invertebrates collected from EV_GT1 (near RG_GATEDP) and EV_BC1 (near RG_BOCK) in August are not shown in the above plots (as sampling was conducted as part of the Selenium Speciation program), but are shown in the temporal plots (Figure 6.2).

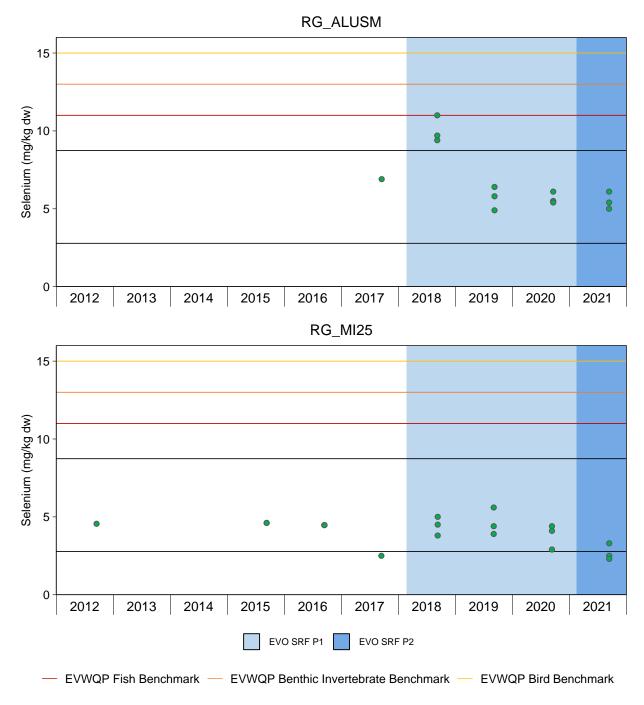


Figure 6.2: Benthic Invertebrate Tissue Selenium Concentrations in Bodie, Erickson, Gate, and Michel Creeks, 2012 to 2022

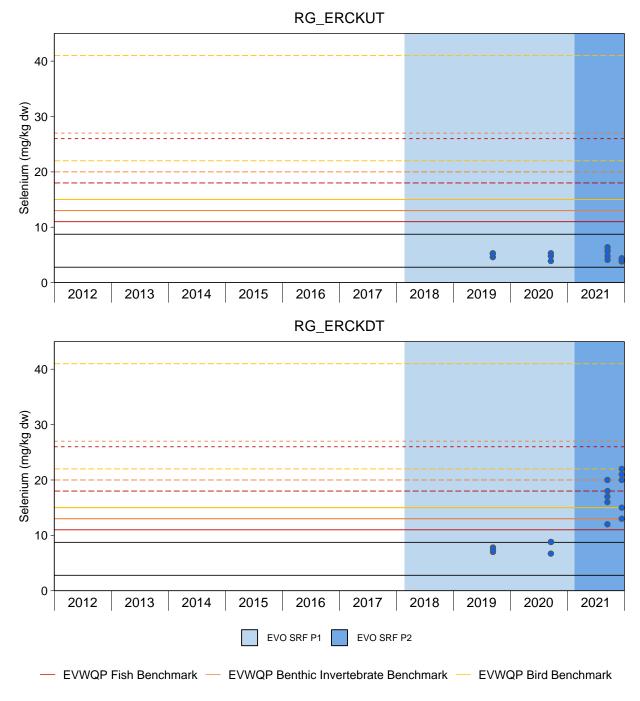


Figure 6.2: Benthic Invertebrate Tissue Selenium Concentrations, Bodie, Erickson, Gate, and Michel Creeks, 2012 to 2022

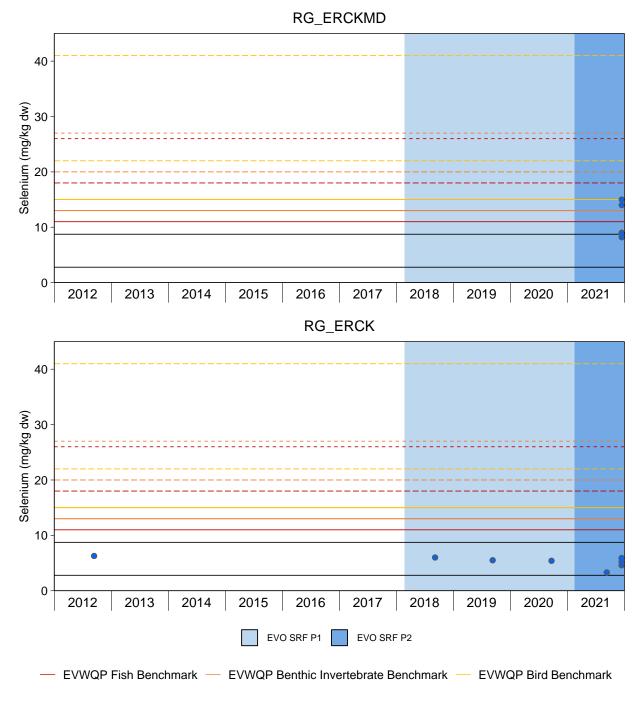


Figure 6.2: Benthic Invertebrate Tissue Selenium Concentrations, Bodie, Erickson, Gate, and Michel Creeks, 2012 to 2022

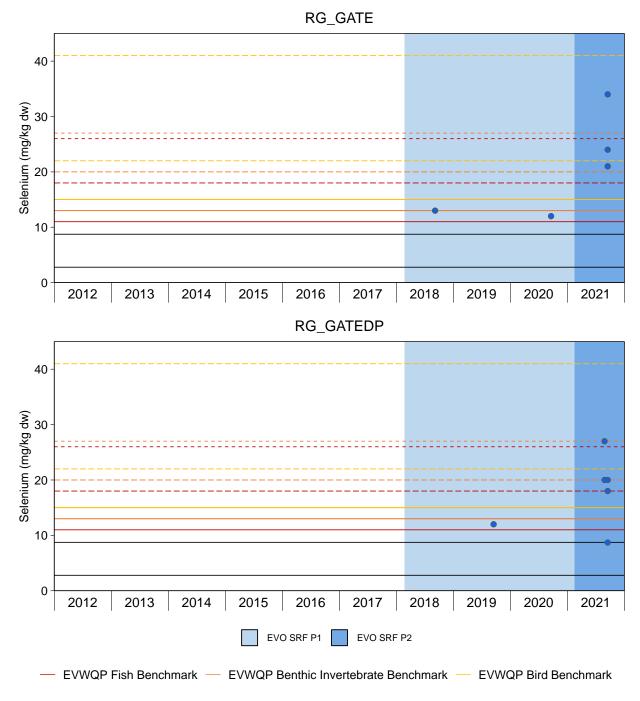


Figure 6.2: Benthic Invertebrate Tissue Selenium Concentrations, Bodie, Erickson, Gate, and Michel Creeks, 2012 to 2022

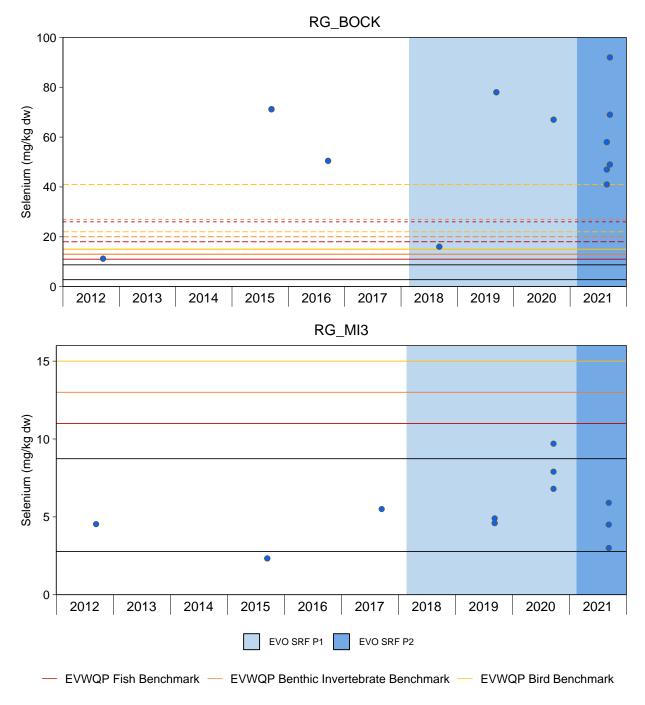


Figure 6.2: Benthic Invertebrate Tissue Selenium Concentrations, Bodie, Erickson, Gate, and Michel Creeks, 2012 to 2022

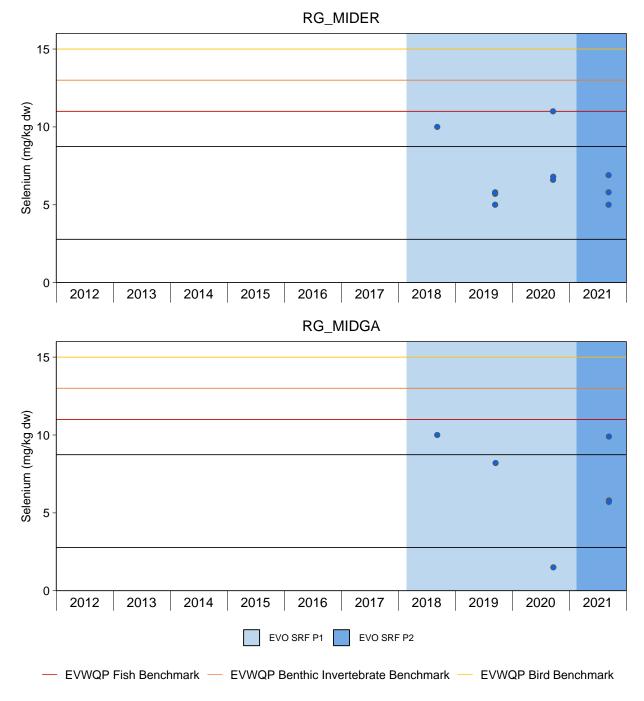


Figure 6.2: Benthic Invertebrate Tissue Selenium Concentrations, Bodie, Erickson, Gate, and Michel Creeks, 2012 to 2022

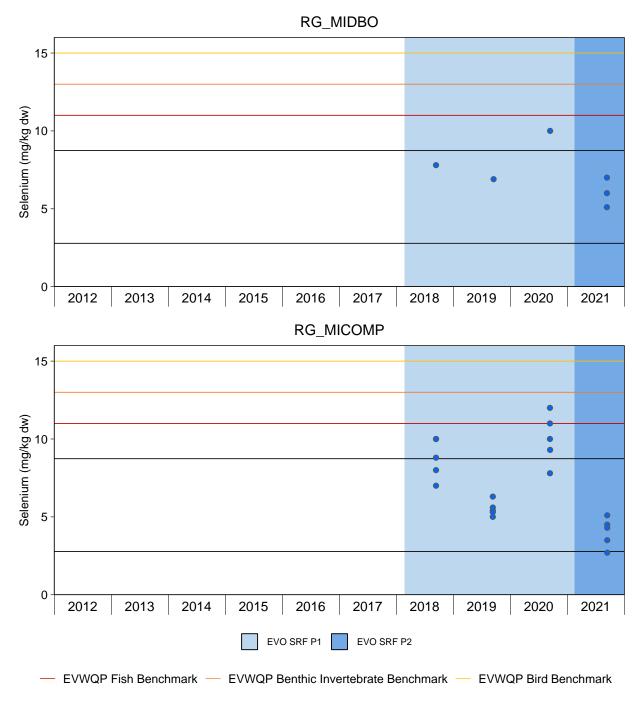


Figure 6.2: Benthic Invertebrate Tissue Selenium Concentrations, Bodie, Erickson, Gate, and Michel Creeks, 2012 to 2022

as the compliance point (RG_MICOMP) were either similar or lower than previous years except for one sample at RG_MIDGA in 2020 and one sample at RG_MI3 in 2015 that were lower.

Two areas sampled in September 2021, RG_BOCK (n=1) and RG_GATEDP (n=1), had a proportion of annelids that met the criteria to evaluate annelids separately³⁵. The 'annelid only' tissue replicates for both areas were substantially higher than the composite sample (RG_BOCK: annelid only sample: 240 mg/kg dw; composite sample: 92 mg/kg dw; RG_GATEDP: annelid only sample: 138 mg/kg dw; composite sample: 18 mg/kg dw; Appendix Table F.1). Overall, the presence of annelids in these two samples (of the 53 samples taken throughout the EVO LAEMP in September) are not expected to greatly affect the results of the study and the analysis will focus on composite-taxa benthic invertebrate results.

Selenium concentrations in BIT was also assessed against the biological trigger (see Appendix G for details). This was completed for each replicate from EVO LAEMP monitoring areas where water quality projections are available for each sampling event (i.e., (evaluated in August [RG_BOCK], September [RG_ERCK, RG_GATE, RG_BOCK, RG_MI3, RG_MICOMP]), and December [RG_ERCK]). The biological trigger for BIT selenium concentrations was exceeded in all replicates from both RG_BOCK and RG_GATE (during the August and September sampling events). The BIT selenium concentration at RG_ERCK in Erickson Creek and the two areas evaluated in Michel Creek, were below the biological trigger threshold.

6.1.2 Bioaccumulation

Observed selenium results in BIT from 2012 to 2021 were plotted relative to the regional one-step water-to-invertebrate lotic selenium accumulation model (Golder 2020b) and the selenium speciation bioaccumulation tool (B-tool; de Bruyn and Luoma 2021) to better understand the relationships between aqueous selenium (with the models using total selenium and selenium speciation, respectively) and BIT selenium concentrations. These models provide insight into selenium bioaccumulation mechanisms in relation to samples collected previously in the Elk River watershed (Golder 2020b). A majority of values directly downstream of the SRF outfall (RG_ERCKDT, one replicate at RG_ERCKMD, and most BIT values from Bodie and Gate Creek (RG_BOCK, RG_GATE, and RG_GATEDP) were above the 95% prediction limits of the regional one-step water-to-invertebrate lotic selenium accumulation model in 2021 (Figure 6.3). Benthic invertebrates tissue samples at Bodie Creek (RG_BOCK), however, were higher than

³⁵ As noted in the methods, annelids were only included in the composite-taxa tissue sample if the proportion of annelids was >5% of the total biomass sample, and if so, an additional 'annelids only' sample was also evaluated. This process started in September 2021 as previous assessments have suggested that the presence of annelids in composite-taxa BIT samples may bias the results high (Golder 2021b). Annelids were not found at a high enough proportion in December sampling for any area to be evaluated separately.

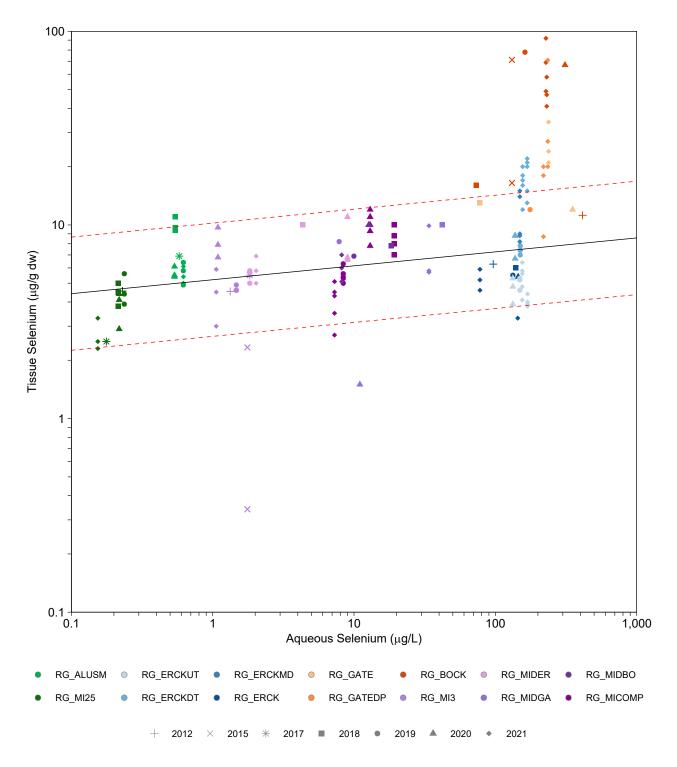


Figure 6.3: Observed and Modelled Selenium Concentrations in Benthic Invertebrate Composite Samples Relative to Aqueous Selenium Concentrations, 2012 to 2021

Notes: Mean benthic invertebrate selenium concentrations (solid black line) were estimated using a one-step water to benthic invertebrate selenium accumulation model: log10[Se]benthic invertebrate=0.717+0.0.072 x log10[Se]aq (Golder 2020). The 95% prediction limits for a single value from the one-step water to benthic invertebrate selenium accumulation model are plotted as dashed red lines. Reference areas are shown in green, Erickson Creek is shown in blue, Bodie and Gate Creeks are shown in orange and Michel Creek is shown in purple.

prediction limits in previous years as well (2015, 2018, 2019, and 2020). To better contextualize values that fell above the 95% prediction limits of the regional one-step water-to-invertebrate lotic selenium accumulation model at RG_ERCK, RG_BOCK, RG_GATE, and RG_GATEDP, the observed to predicted tissue selenium relationship of each EVO LAEMP area was compared to the 95% prediction interval based on the same relationship for all Elk Valley samples (Figure 6.4). Overall, the relationship between the predicted and observed tissue selenium concentrations for these three areas fell outside the 95% prediction interval of the Elk Valley. This suggests that these areas are not within the typical range for the observed-to-predicted relationship for tissue concentrations. Thus, the use of the regional one-step water-to-invertebrate lotic selenium accumulation model (and hence the use of aqueous total selenium to evaluate bioaccumulation) may not evaluate the potential factors contributing to the elevated selenium concentrations in these samples.

Similar findings were observed when evaluating these results using the selenium speciation B-tool Appendix Table F.3), as sampling areas in Bodie (RG BOCK), Gate (RG GATE and RG GATEDP), and upper portions of Erickson Creek below the SRF outfall (RG ERCKDT and RG ERCKMD) had observed selenium concentrations in benthic invertebrate selenium that were up to 3.5 fold-higher than the predicted selenium concentration (Appendix Table F.3). This model was also used to compare BIT selenium concentrations downstream of the outfall (RG ERCKDT) with concurrent concentrations from the effluent retention pond of the SRF (F2 BPO) to better understand the influence of selenium and selenium speciation of the effluent on the receiving environment (i.e. most conservative scenario), in this scenario the model still under predicted selenium bioaccumulation (observed BIT Se: 16.6 to 18.2 μg/g dw; predicted BIT Se: 6.4 to 8.1 μg/g dw). Taking this one step further, B-tool BIT Se predictions from F2 BPO based on all available data from 2021 (n=157) were all below 9 mg/kg dw, with the exception of two sampling events in April which were 10.6 Similar to the regional one-step water-to-invertebrate lotic selenium and 11.4 mg/kg dw. accumulation model, the observed to predicted tissue selenium relationship of each of the EVO LAEMP areas was compared to other areas in the Elk Valley (via 95% prediction intervals; The results from this analysis (similar to those with the regional one-step water-to-invertebrate lotic selenium accumulation model) suggested that samples fall outside the typical range in the Elk Valley and the use of the B-tool may not evaluate the potential factors contributing to the elevated selenium concentrations in these samples. Interestingly, RG ERCK, which is at the confluence of Michel Creek was generally over-predicted based on the total selenium and selenium species present in the water of that area. In contrast to Erickson, Gate, and Bodie Creek areas, both models (the one-step model and the B-tool model) were able to

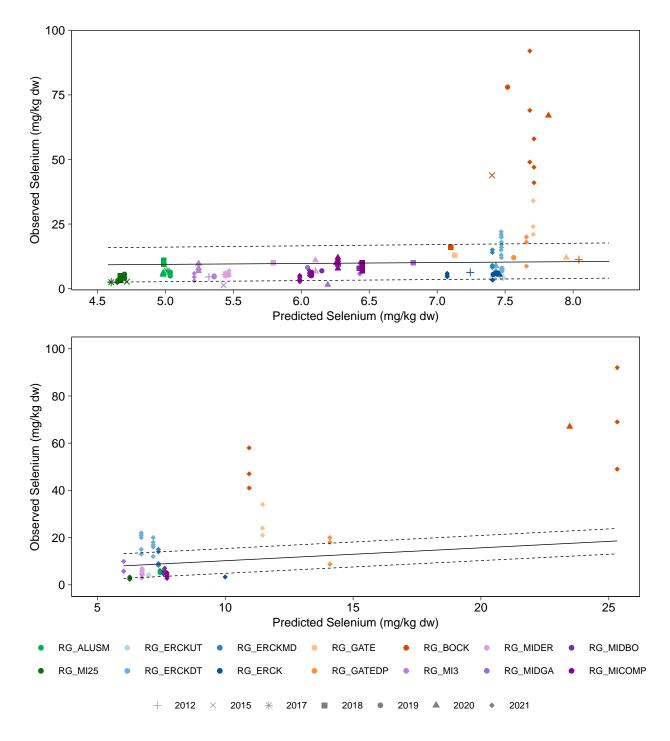


Figure 6.4: Observed and Predicted Selenium Concentrations in Benthic Invertebrate Composite Samples for the One-Step Bioaccumulation Model (Top) and B-tool Model (Bottom)

Notes: mg/kg dw = milligrams per kilogram dry weight. Predicted benthic invertebrate selenium concentrations were estimated using a one–step water to benthic invertebrate selenium accumulation model (Golder 2020b) in the top plot and using the speciation bioaccumulation tool (B-tool) to predict bioaccumulation in areas with detectable organoselenium species (deBruyn and Luoma 2021) in the bottom plot. Mean (solid line) and 95% prediction intervals (dashed lines) are shown for a linear mixed–model of observed to predicted concentrations for Elk Valley samples (2012 to 2021) for each respective relationship. Only water data collected with ± 5 days with tissue samples at each biological area were included in the plots and analysis. Selenium speciation was not evaluated any area (excluding RG_BOCK in 2020) in the 2019 or 2020 EVO Existing Conditions Study (Minnow 2020a, 2021a).

accurately predict BIT selenium concentrations for areas in Michel Creek (Figures 6.3 and 6.4; Appendix Table F.3).

6.2 Biomass, Density, and Community Structure

6.2.1 Biomass and Density

The total density of benthic invertebrates determined by Hess sampling in Erickson Creek in September 2021 was significantly higher at RG ERCKDT, downstream of the SRF water treatment outfall, than at RG ERCKUT, upstream of the SRF water treatment outfall (Figure 6.5; Appendix Tables F.4 and F.5). This difference was driven by significantly higher densities of most major taxa at RG ERCKDT, including Ephemeroptera, Plecoptera, and Chironomidae, as well as combined EPT density (Figure 6.5; Appendix Tables F.4 and F.5). Trichoptera density was also higher at RG ERCKDT than RG ERCKUT and, although the difference was not statistically significant, the magnitude of difference between the areas was similar to the difference in areas for other taxa (Figure 6.5; Appendix Tables F.4 and F.5). Greater organism densities at RG ERCKDT compared to RG ERCKUT suggests higher benthic invertebrate productivity immediately downstream of the SRF outfall in Erickson Creek. Based on water quality results in 2021, there was no indication of an increase in nutrient concentrations resulting from the commissioning of EVO SRF P2 (Section 4.1) and variable results for periphyton coverage (Section 5.1), suggests that water quality and primary productivity are unlikely to be contributing factors. Water temperatures at RG_ERCKDT, downstream of the SRF outfall, were higher than at RG ERCKUT and pre-EVO SRF P2 (Section 3.1), which may have contributed to higher benthic invertebrate productivity at RG ERCKDT in 2021.

The total biomass of benthic invertebrates in Hess samples did not differ significantly between the two areas, although the mean biomass was slightly higher at RG_ERCKDT than RG_ERCKUT (57.5 and 37.9 g/m² ww, respectively; Figure 6.5; Appendix Table F.4). Similarity in total biomass despite relatively large differences in organism density between the two areas could be due to the relatively greater density contribution of smaller taxa (e.g., Chironomidae, Nadidae) at RG_ERCKDT than at RG_ERCKUT (Appendix H).

6.2.2 Community Structure

Temporal changes in endpoints related to benthic invertebrate community (BIC) structure as determined by kick and sweep (i.e., CABIN) sampling in Erickson and Michel creeks downstream of SRF discharge were evaluated relative to reference areas in Alexander and Michel creeks, other mine-exposed areas in Michel Creek, and regional and habitat-adjusted normal ranges defined in the RAEMP (Appendix Table F.6; Minnow 2020b). Richness (# of taxa at Lowest Practical Level [LPL]) was within or above the regional and habitat-adjusted normal ranges at

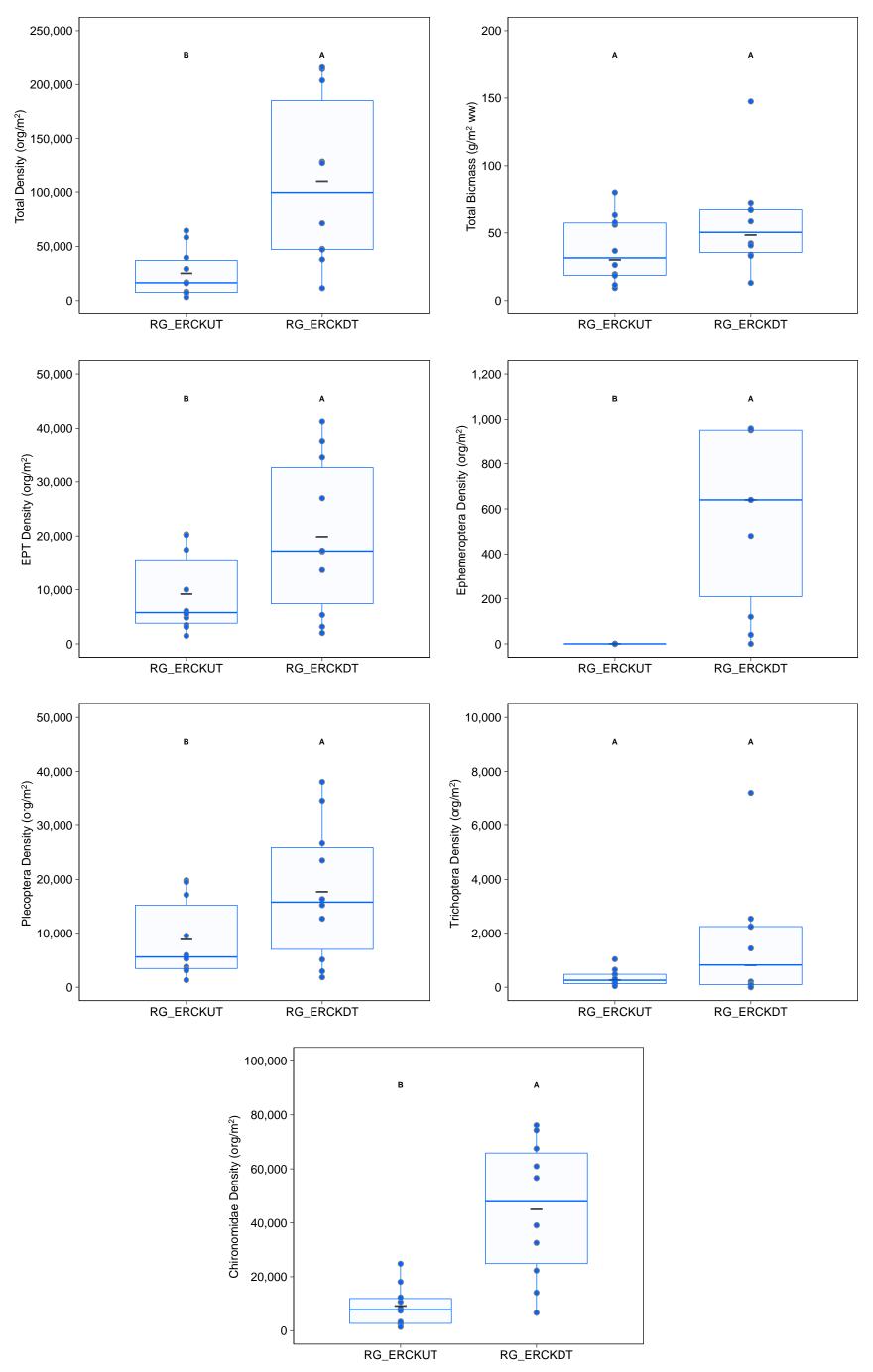


Figure 6.5: Benthic Invertebrate Density and Biomass Metrics from Hess Sampling for Upstream (RG_ERCKUT) and Downstream (RG_ERCKDT) Areas, EVO LAEMP, September 2021

Notes: $org/m^2 = organisms$ per metre squared. g/m^2 ww = grams per metre squared wet weight. EPT = Ephemeroptera, Plecoptera, Trichoptera. Areas that share a letter are not significantly different (p-value=0.1).

mine-exposed sites in Michel Creek and reference sites in Michel and Alexander creeks in sampled years between 2012 and 2021 (Figure 6.6; Appendix Figure F.2). Downstream of the SRF outfall at RG_ERCKDT, taxa richness was largely within the normal range and the habitat-adjusted range, and greater than upstream of the SRF outfall at RG_ERCKUT where richness was below the habitat-adjusted and normal range in both 2020 and 2021 (Appendix Figure F.2). Further downstream at RG_ERCK, taxa richness in 2021 was within the normal range and habitat-adjusted range and similar to all pre-EVO SRF P2 years except 2012 (Appendix Figure F.2). Data from Erickson Creek suggest that taxa richness at RG_ERCKUT and RG_ERCKDT may be at the lower limit of the regional reference normal range and, and although this may be related to mine influence in general, no effects associated with the SRF outfall is apparent.

Total organism abundance and EPT Abundance (i.e., # of organisms/ 3-min kick) were within regional reference normal ranges and within or above habitat-adjusted normal ranges in all sampled years at all areas (mine-exposed and reference; Figures 6.6 and 6.7; Appendix Figures F.3 and F.4), except the reference area RG MI25 where interannual variability resulted in abundance and EPT abundance lower than the habitat-adjusted normal range in multiple years (i.e., 2012, 2019, and 2020; Appendix Figures F.3 and F.4). An increase in total organism abundance was observed at RG ERCKDT (downstream of the SRF outfall) and to a lesser extent at RG MIDBO (downstream of SRF inputs to Bodie, Gate, and Erickson Creek) in 2021 when compared to previous years, while a small decrease was noted at RG MIDER when the same comparison was made (Appendix Figure F.3). In combination with higher organism density at RG ERCKDT compared to RG ERCKUT in Hess sampling in 2021 (Section 6.2.1), higher organism abundance at RG ERCKDT may indicate greater benthic invertebrate productivity downstream of the SRF outfall in Erickson Creek, which as noted in Section 6.2.1 could be the result of increased temperature directly downstream of the SRF outfall. However, given only a single year of monitoring during EVO SRF P2, and that increases in organism abundance are similar in magnitude to variability observed at reference areas over time, it is unclear if changes are associated with SRF discharge.

Despite EPT abundance within regional reference normal ranges, % EPT in 2021 fell below the regional and habitat-adjusted normal ranges at areas downstream of the SRF outfall in Erickson Creek (RG_ERCKDT and RG_ERCK). Additionally, % EPT at RG_ERCKDT in 2021 was lower than in either 2019 or 2020. A similar pattern was also noted, to a lesser degree, upstream of the SRF outfall at RG_ERCKUT where % EPT was lower in 2021 compared to 2020 and 2019, and one replicate fell below the regional and habitat-adjusted normal ranges (Figure 6.7; Appendix Figure F.5). Further downstream at RG_ERCK, % EPT was similar or increased in 2021 when compared to recent years (2019 and 2020) but was lower than in 2012 or 2018 (Appendix Figure F.5). At other mine-exposed areas in Michel Creek and reference areas

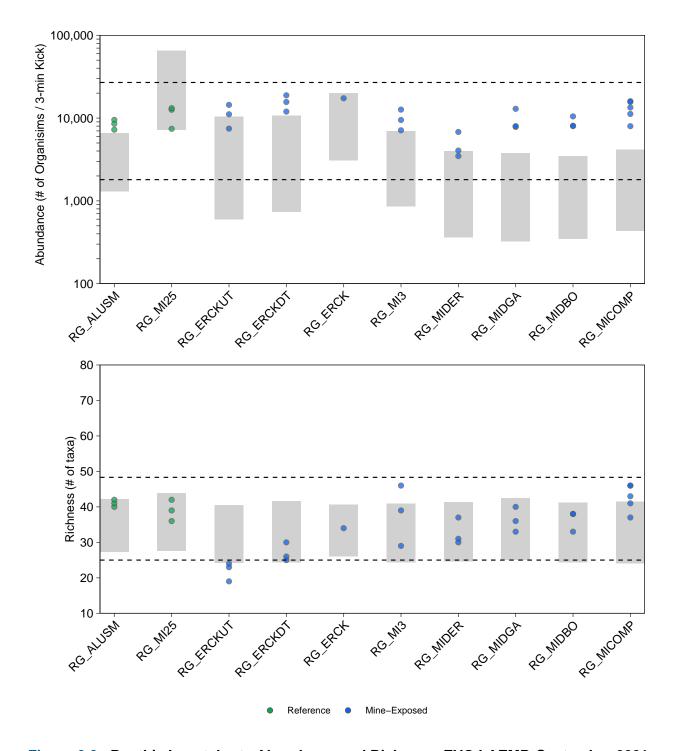


Figure 6.6: Benthic Invertebrate Abundance and Richness, EVO LAEMP, September 2021

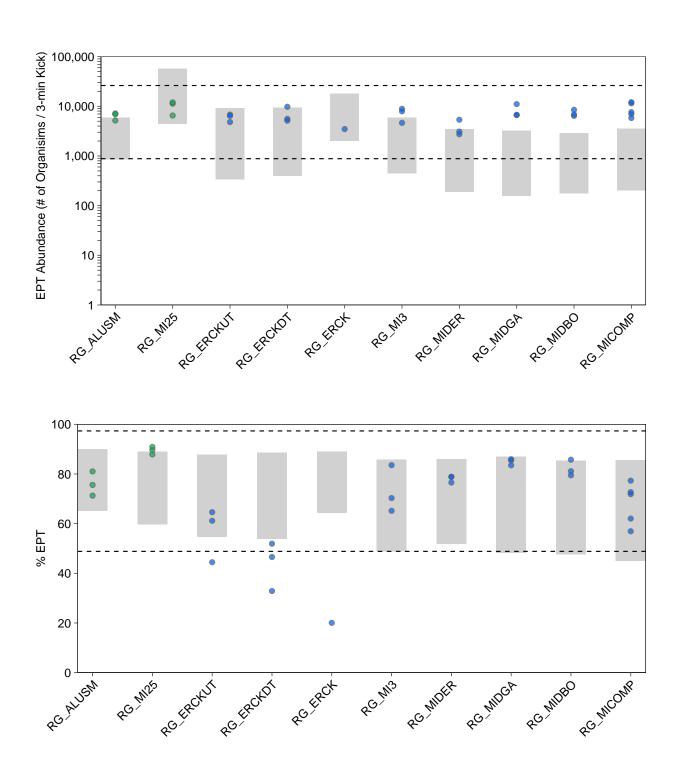


Figure 6.7: Percent Ephemeroptera, Plectoptera, Trichoptera (%EPT) and Abundance, EVO LAEMP, September 2021

Mine-Exposed

Reference

in Michel and Alexander creeks, % EPT was within or above the regional and habitat-adjusted normal ranges in all sampled years, except at RG_MICOMP in 2019 where some replicates were below one or both ranges (Appendix Figure F.5).

Lower % EPT at RG ERCKDT in 2021 and RG ERCK from 2018 to 2021 appears to be driven by low total and relative abundance of Ephemeroptera and high total and relative abundance of Chironomidae at all sampling areas in Erickson Creek, including those upstream of the SRF outfall (RG ERCKUT). Total Ephemeroptera and % Ephemeroptera were below the regional and habitat-adjusted normal ranges at all three areas in Erickson (RG ERCKUT, RG ERCKDT, and RG ERCK) in all samples collected since 2018, with Ephemeroptera abundance <100 individuals for each replicate at RG ERCKUT in 2021 (Figure 6.8; Appendix Figures F.6 and F.7; Appendix Table F.6). Conversely, the total and relative abundance of Plecoptera was within or above the regional normal range at all sampled areas and was highest at RG ERCKUT and RG ERCKDT when compared to the other study areas, though relative abundance at these two areas declined in 2021 compared to 2019 and 2020 (Figure 6.9; Appendix Figures F.8 and F.9). Trichoptera total and relative abundance, although generally lower at areas in Erickson Creek than at reference areas and areas in Michel Creek, were also within the regional normal range between 2018 and 2021 (Figure 6.10; Appendix Figures F.10 and F.11).

The total abundance of Chironomidae has been high at RG_ERCK since 2018, sometimes exceeding the regional normal range, and increased at RG_ERCKUT and RG_ERCKDT in 2021 relative to earlier sampled years (Figure 6.11; Appendix Figure F.12). These observed high abundances of Chironomidae translated to higher % Chironomidae, which were above the regional normal range at RG_ERCK from 2018 to 2021 and at RG_ERCKUT and RG_ERCKDT in 2021 (Figure 6.11; Appendix Figure F.13). The shift in community composition at RG_ERCKDT (increase in % Chironomidae and decrease in % Plecoptera), although coinciding with commissioning of EVO SRF P2 in early 2021, occurred at areas both upstream and downstream of the SRF outfall and therefore does not appear to be directly related to SRF discharge.

Relative abundance of EPT was also assessed against the biological trigger established for this endpoint (see Appendix G for details). This was completed for each replicate from EVO LAEMP monitoring areas where water quality projections were available for each sampling event in 2021 (i.e., September sampling at RG_ERCK, RG_MI3, RG_MICOMP; see Appendix G for details). Biological trigger results indicated that of the three mine-exposed areas evaluated only RG_ERCK had % EPT that reached the biological trigger criteria (i.e., % EPT was below the biological trigger).

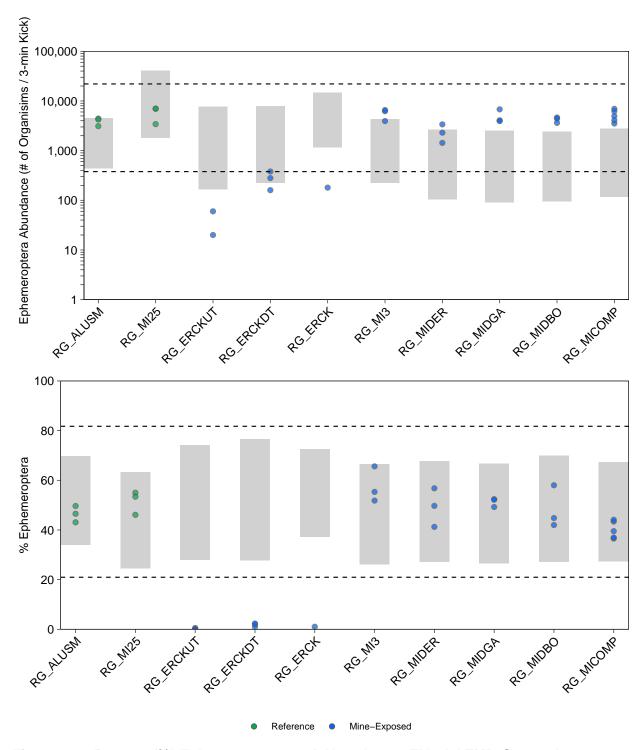


Figure 6.8: Percent (%) Ephemeroptera and Abundance, EVO LAEMP, September 2021

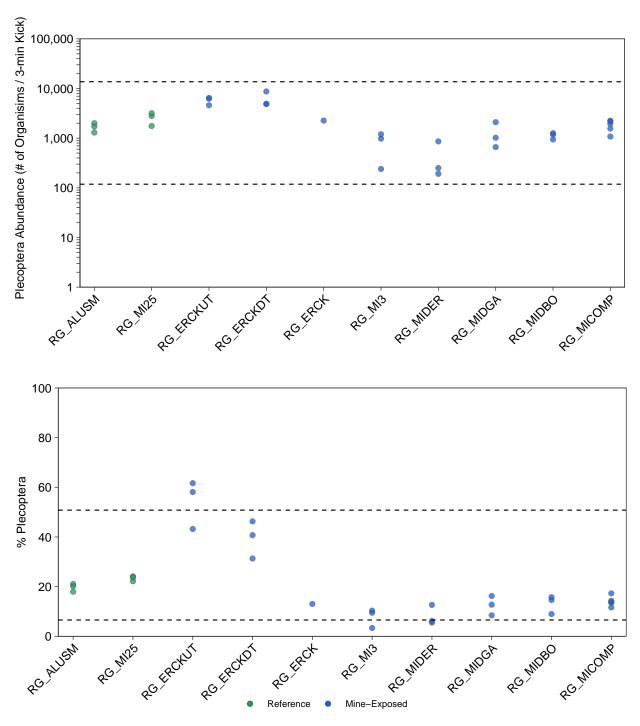


Figure 6.9: Percent (%) Plecoptera and Abundance, EVO LAEMP, September 2021

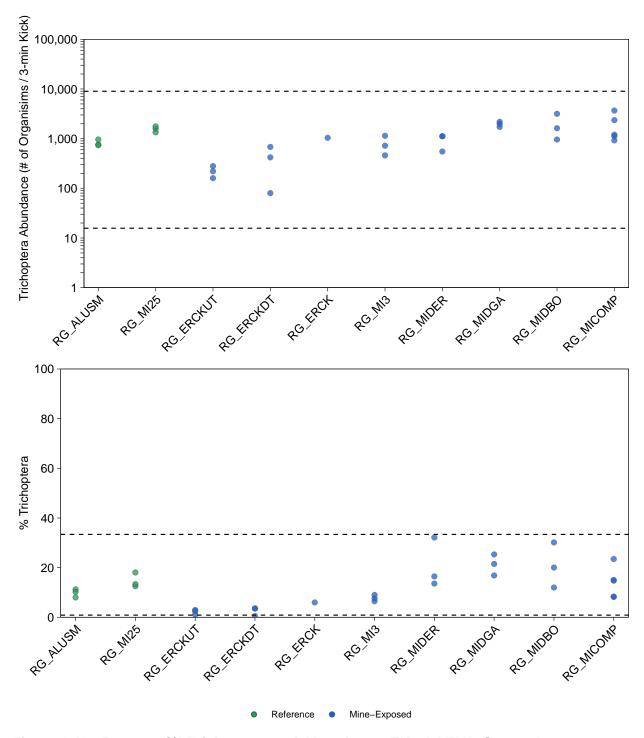


Figure 6.10: Percent (%) Trichoptera and Abundance, EVO LAEMP, September 2021

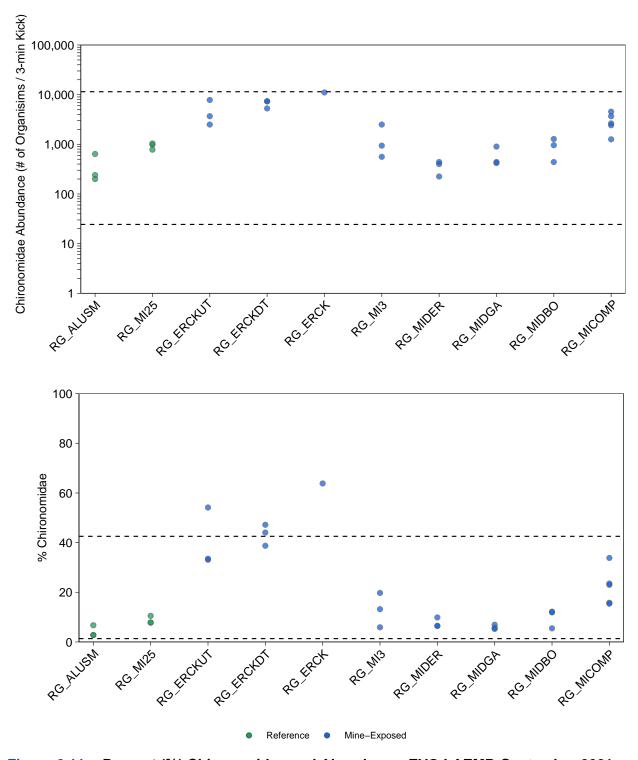


Figure 6.11: Percent (%) Chironomidae and Abundance, EVO LAEMP, September 2021

Correspondence analysis was conducted on September LPL benthic invertebrate abundance data for all study years (2012 to 2021), with CA axis 1 (CA1) and CA axis 2 (CA2) accounting for 33.0% and 14.5% of the variability in the community, respectively (Figure 6.12). Sampling areas were separated in ordination space into three groups: Erickson Creek areas, mine-exposed Michel Creek areas, and reference areas, with Erickson Creek areas being the most divergent group (Figure 6.12). Erickson Creek areas were primarily separated from Michel Creek areas along CA1, but separated from reference areas along both CA1 and CA2.

The taxa driving separation among the groups of areas included: Peltoperlidae and Zapada (Plecoptera) which were associated with Erickson Creek areas, Megarcys (Plecoptera) which was associated with reference and Erickson Creek areas, Taeniopterygidae (Plecoptera) and Rhyacophila taxa (Trichoptera) which were associated with reference areas, and Polypedilum (Chironomidae), Nais (Nadidae), and Torrenticola (Arachnidae) which were associated with mine-exposed Michel Creek areas (Figure 6.12). There were also multiple Ephemeroptera taxa (e.g., Heptageniidae, Baetis, Ephemerellidae, Ephemerella, and Rhithrogena) and some Trichoptera taxa (e.g., Hydropsychidae, Glossosomatidae and Brahycentrus) with low to moderate positive scores on CA1 and CA2, suggesting a general association of these species with both the mine-exposed areas in Michel Creek and reference areas (Figure 6.12). Chironomidae taxa including Eukiefferiella and Tventenia had positive scores on CA2, and therefore were mainly associated with Erickson Creek and mine-exposed Michel Creek areas (Figure 6.12). Overall, the CA analysis indicates that the benthic invertebrate communities in mine-exposed Erickson and Michel creeks differ from each other and from reference areas, and that Erickson Creek areas are characterized by higher abundances of certain Plecoptera and Chironomidae taxa and lower overall abundances of most Ephemeroptera and Trichoptera taxa. Correspondence analysis also indicated that the difference in Erickson Creek BIC composition compared to other sampled areas has been consistent over the time and not a result of SRF discharge (Figure 6.12).

Detailed examination of CA results for Erickson Creek identified a BIC shift at Erickson Creek areas in 2021, relative to earlier sampling years. Erickson Creek areas generally had higher scores on CA1 (i.e., less negative) in 2021, potentially suggesting lower abundance of Plecoptera taxa with negative scores on CA1 (Peltoperlidae, *Zapada columbiana*, and Megarcys) and greater abundance of Chironomidae taxa that scored higher on CA1 (Figure 6.12). This shift is observed at all three Erickson Creek areas (RG_ERCKUT, RG_ERCKDT, and RG_ERCK), and suggests that observed differences in 2021 are unrelated to SRF discharge.

Canonical Correspondence Analysis (CCA) were used to explain variation in BIC using habitat, calcite and water chemistry variables. Canonical correspondence analysis was conducted on

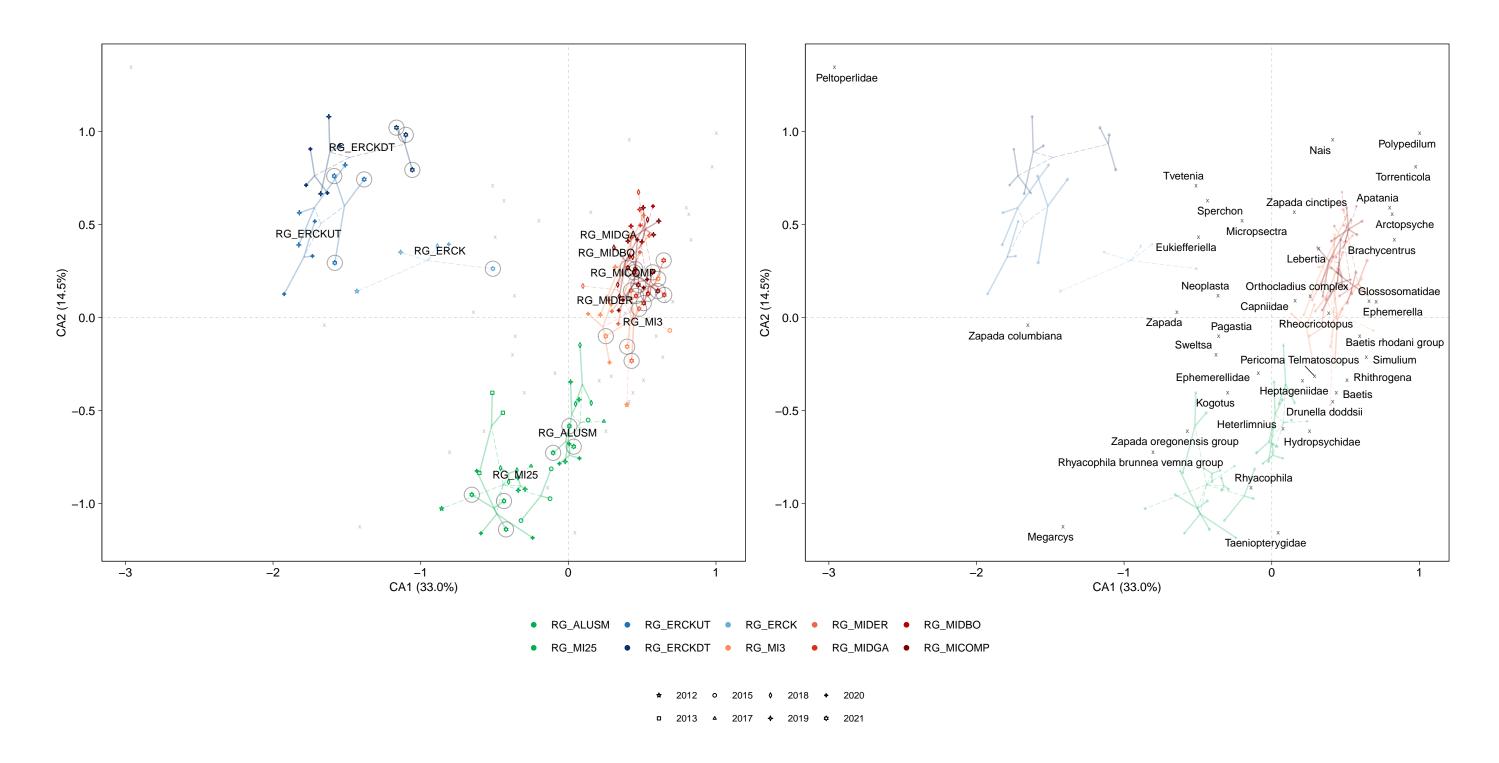


Figure 6.12: Correspondence Analysis of Benthic Invertebrate Communities in September, EVO LAEMP, 2012 to 2021

Notes: Green symbols represent reference stations and other colours represents mine-exposed stations. Lowest Practical Level taxon abundances were $ln_{(x+1)}$ -transformed prior to analysis. Taxa that made up less than 1% of total abundance (on the $ln_{(x+1)}$ scale) and occurred in fewer than 10% of samples were excluded from analysis. Samples from 2021 are circled in grey.

September LPL benthic invertebrate abundance data for all study years for which environmental variable data were available (i.e., 2018 to 2021; Figures 6.13 and 6.14). This subset of the temporal dataset is considered appropriate for the CCA analysis as CA analysis on this subset resulted in equivalent results to CA analysis on the full dataset (i.e., 2012 to 2021; Figure 6.12 and Appendix Figure F.14). The separation among Erickson Creek, mine-exposed Michel Creek, and reference areas observed in the CA was maintained when the dataset was constrained by both stressors (water chemistry and calcite) and habitat variables and the taxa responsible for area separation were also consistent with the CA analysis results (Figures 6.13 and 6.14).

When the BIC data were constrained by water chemistry and calcite variables, the first and second CCA axes (CCA1 and CCA2) explained 38.7% and 14.7% of variability, respectively (Figure 6.13). The first axis strongly separated Erickson Creek from both mine-exposed Michel Creek areas and reference areas, with Erickson Creek separating in the negative direction and associating with most mine-related water quality constituents (except total barium and total molybdenum) and calcite. The second axis separated the mine-exposed areas (both Erickson Creek and Michel Creek) from the reference areas in the positive direction and was driven by higher concentrations of all water quality constituents and calcite variables (Figure 6.13). Results suggest that mine-related effects on BIC follow a stressor gradient, with the most impacts on BIC associated with elevated mine-influenced water quality in Erickson Creek, followed by Michel Creek where BIC structure is more similar to reference areas.

When BIC data were constrained by habitat, the first and second CCA axes (CCA1 and CCA2) explained 36.4% and 11.9% of variability, respectively (Figure 6.14). The first axis separated Erickson Creek from mine-exposed areas in Michel Creek and the reference areas in the negative primarily by station gradient and high watershed slope. In the positive direction on CCA1, mine-exposed Michel Creek areas were associated with larger watershed area, larger bankfull width, and larger substrate size. The second axis separated the mine-exposed areas from the reference areas, similar to the CA and the CCA constrained by water quality and stressors. The reference areas were generally defined by their small watershed area and low watershed slope (Figure 6.14). While strong associations with mine-related stressors were apparent, habitat features are likely also contributing significantly to variations in BIC among areas.

6.3 Summary

Results pertaining to the evaluation of benthic invertebrates are directly used to address Study Questions #4 (SRF influence on selenium BIT concentrations), #5 (SRF influence on benthic community structure), and #6 (SRF influence on productivity). A summary of the direct

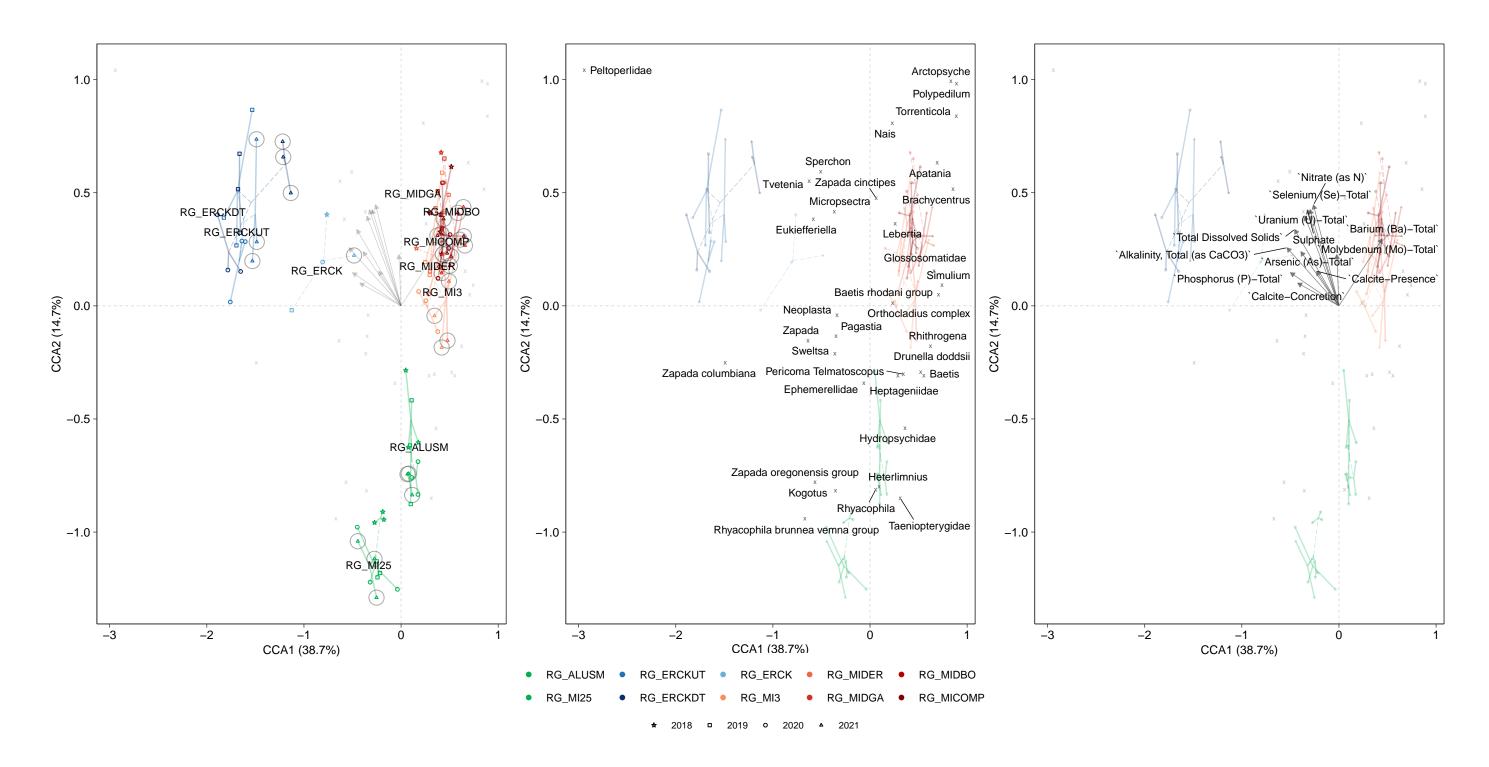


Figure 6.13: Canonical Correspondence Analysis of Benthic Invertebrate Communities in September Constrained by Water Chemistry and Calcite Variables, EVO LAEMP, 2018 to 2021

Notes: Green symbols represent reference stations and other colours represents mine-exposed stations. Lowest Practical Level taxon abundances were ln(x+1)-transformed prior to analysis. Taxa that made up less than 1% of total abundance (on the ln(x+1) scale) and occurred in fewer than 10% of samples were excluded from analysis. Samples from 2021 are circled in grey.

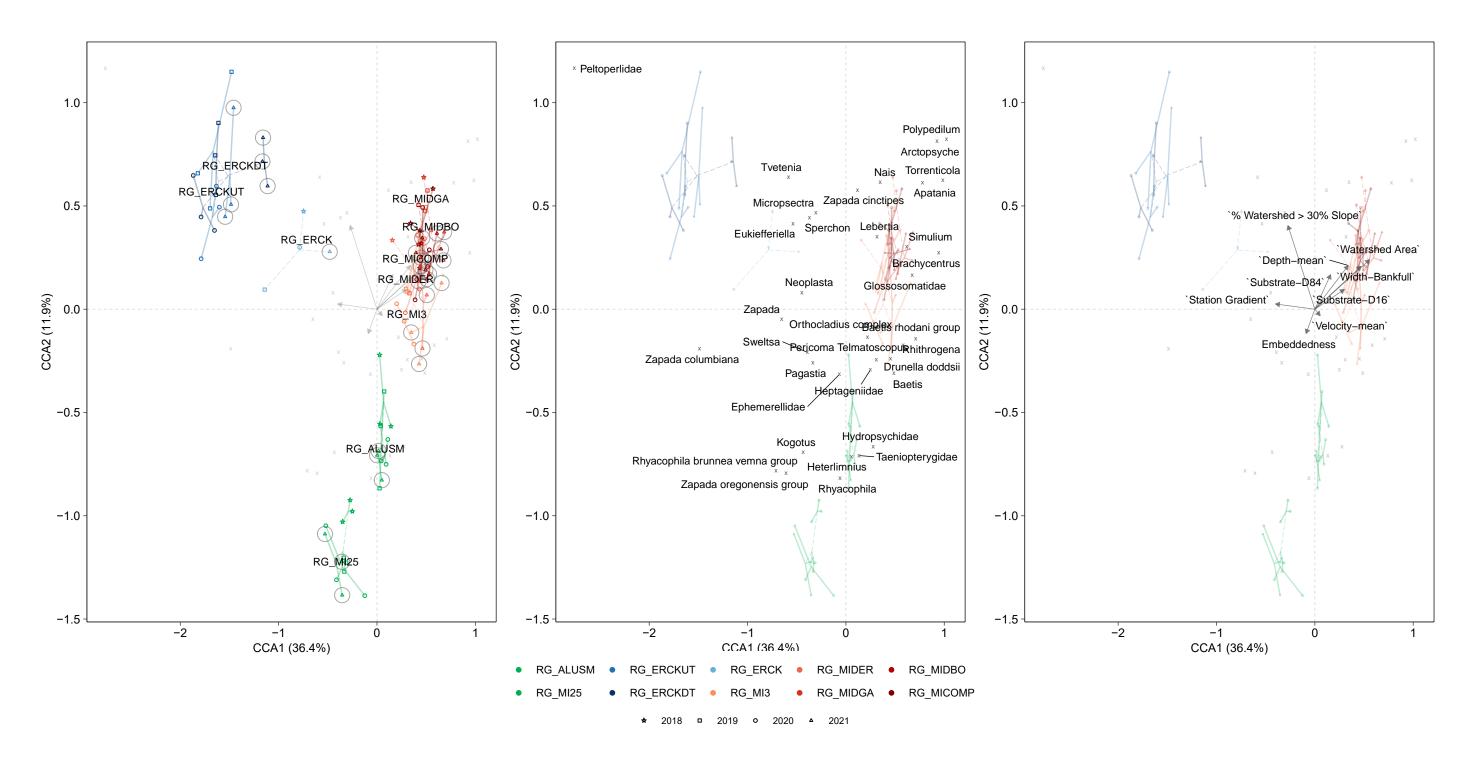


Figure 6.14: Canonical Correspondence Analysis of Benthic Invertebrate Communities in September Constrained by Habitat Variables, EVO LAEMP, 2018 to 2021

Notes: Green symbols represent reference stations and other colours represents mine-exposed stations. Lowest Practical Level taxon abundances were $\ln_{(x+1)}$ -transformed prior to analysis. Taxa that made up less than 1% of total abundance (on the $\ln_{(x+1)}$ scale) and occurred in fewer than 10% of samples were excluded from analysis. Samples from 2021 are circled in grey.

influence of the SRF on selenium BIT concentrations, benthic community structure, and productivity are detailed below.

Mean BIT selenium concentrations in areas of upper portions of Erickson (below the SRF outfall), Gate, and Bodie Creek exceeded the Level 1 benchmark for effects to benthic invertebrates, were above the regional reference normal range, and were significantly higher than the reference areas evaluated in the EVO LAEMP. As noted previously, elevated BIT selenium concentrations in Bodie and Gate creeks were not likely related to the SRF as limited discharge occurred in these areas in 2021. This is supported by elevated BIT selenium concentrations pre-EVO SRF P2, suggesting that the elevated concentrations in 2021 at these areas are not related to pre-EVO SRF P2 commissioning. Mean BIT selenium concentrations in the other areas evaluated as part of the EVO LAEMP, including the area above the SRF outfall in Erickson Creek, lower portions of Erickson Creek, and all areas in Michel Creek were below the Level 1 benchmark for benthic invertebrates, within the normal range, and not significantly different from reference areas, suggesting that elevated BIT selenium concentrations were localized to downstream of EVO SRF P2 discharges. Both bioaccumulation models (the regional one-step water-to-invertebrate lotic selenium accumulation model and the B-tool) were unable to accurately predict BIT selenium concentrations for those areas where elevated tissue concentrations were noted suggesting that aqueous total selenium and selenium speciation is not the sole cause of the elevated concentrations in these areas. Additional investigations to better understand the cause of the elevated selenium concentrations in BIT are currently underway as part of an AMP response framework.

In 2021, the total density, but not the total biomass, of benthic invertebrates was greater in the area directly downstream of the SRF outfall in Erickson Creek when compared to the area above the SRF outfall. The density of individual taxa was also higher downstream, in particular Chironomidae, Plecoptera, and Ephemeroptera, and total abundance measured by kick and sweep sampling was higher in 2021 at RG_ERCKDT compared to 2019 and 2021. Taken together, benthic invertebrate productivity appears to be elevated downstream of the SRF outfall in 2021 (i.e., following the initiation of EVO SRF P2). An observed increase in water temperature at RG_ERCKDT compared to pre-EVO SRF P2 was identified as a potential factor for the increased productivity.

Effects on BIC endpoints (i.e., values lower than regional reference normal ranges or lower than other areas evaluated under the EVO LAEMP) were generally limited to areas in Erickson Creek. A few individual BIC replicates had % EPT values in 2021 which were lower than regional and/or habitat-adjusted normal ranges at areas both upstream (RG_ERCKUT) and downstream (RG_ERCKDT and RG_ERCK) of the SRF outfall in Erickson Creek. Ephemeroptera abundance

and relative abundance have been consistently low both upstream (RG_ERCKUT) and downstream of the SRF (RG_ERCKDT and RG_ERCK) in all years evaluated pre-EVO SRF P2. Increases in total and relative abundance of Chironomidae and decreases in relative abundance of Plecoptera in 2021 at both RG_ERCKUT and RG_ERCKDT suggest that a shift in BIC structure may be occurring, but as it has occurred both upstream and downstream of the SRF outfall, it is likely unrelated to treatment.

Multivariate ordinations of BIC composition identified unique BIC among Erickson Creek areas, mine-exposed Michel Creek areas, and reference areas. When BIC data were constrained by mine-related stressors (water quality and calcite) and habitat, the separations were maintained. When constrained by water quality and calcite, areas were separated based on a stressor gradient, with Erickson Creek being associated with the highest concentrations of mine-related water quality constituents and calcite along CCA1, but all mine-exposed areas separating from the reference areas based on water quality along CCA2. When BIC data were constrained by habitat, Erickson Creek separated out based on watershed slope and station gradient, while the mine-exposed areas separated from other areas primarily based on larger watershed area and bankfull width. As both constrained ordinations delineated the same three groupings of monitoring areas, it is likely that both mine-related stressors and habitat variables are important contributors to variations in BIC structure among areas, which is consistent with findings in other areas of the Elk River watershed (Minnow 2020b).

7 SUMMARY

Potential effects to the aquatic environment related to the commissioning of the EVO SRF P2 in Erickson and Michel creeks (Gate and Bodie creeks received limited discharge from the SRF in 2021) were evaluated by addressing six study questions, a summary of the results for each study question are discussed below (as well as in Table 7.1).

7.1 Study Question #1

The first study question in the EVO LAEMP Study Design is "Has temperature changed in the receiving environment of Erickson Creek as the result of SRF water treatment?" Water temperature downstream of the SRF outfall in Erickson Creek increased in 2021 compared to temperatures upstream of the outfall (i.e., consistently ~5°C) and also compared to temperatures downstream of the outfall prior to operation of the EVO SRF P2. These increases were expected as the treatment process involves water retention and ponding (i.e. use of buffer pond) to manage effluent quality, increasing the likelihood of temperature increases during periods of seasonally elevated ambient air temperature (i.e., summer). The increase in water temperature downstream of the outfall (RG ERCKDT, which is non-fish bearing) compared to pre-SRF conditions and upstream temperatures was related to higher effluent temperatures. The potential influence of increased temperatures from the SRF on fish in lower Erickson Creek, specifically at the confluence of Erickson Creek with Michel Creek is expected to be minimal as water temperatures at this area met the SPO that came into effect August 13, 2021, and were also largely within or below guidelines for critical life stages of WCT and bull trout. Temperatures in Michel Creek were also within or below guidelines for critical life stages of these fish. Overall, the influence of the SRF on water temperature is localized and is expected to have minimal impact on the fish-bearing portions of the receiving environment.

7.2 Study Question #2

The second study question of the EVO LAEMP Study Design is "Has calcite in the receiving environment (Erickson, Bodie, Gate, and Michel creeks) been influenced by SRF water treatment and/or calcite prevention (e.g. antiscalant) efforts?" In 2021, calcite in the receiving environment (Gate, Bodie, Erickson and Michel creeks) was largely similar to or lower than previous years (pre-EVO SRF P2) based on observations from the present study as well as the annual Regional Calcite Monitoring Program. Although calcite presence and concretion scores were high in Gate, Bodie, and Erickson Creek, calcite was low (CI <0.3) or not present in areas of Michel Creek. Based on monitoring results collected under the EVO LAEMP and under the Regional Calcite Monitoring Program, the SRF did not appear to influence calcite in the receiving environment of Gate, Bodie, Erickson or Michel creeks in 2021.

Table 7.1: Summary of Findings, Responses, and Adjustments Related to the EVO LAEMP, 2021

Key Question(s)	Data Evaluation Process	Outcome(s)	Responses & Adjustments in 2021	EMC Engagement	
Study Question #1: Has temperature changed in the receiving environment of Erickson Creek as the result of SRF water treatment?	Comparison of temperature to pre-EVO SRF P2 results, guidelines, and/or literature (such as the optimal temperature for different WCT life stages).	Water temperatures increased below the EVO SRF outfall at RG_ERCKDT when compared to upstream temperatures at RG_ERCKUT, due to the heavy influence of groundwater in upstream areas of Erickson Creek (upstream temperatures are consistently 5°C). Regardless, maximum daily water temperatures at the confluence of Erickson Creek and Michel Creek, RG_ERCK, was largely within limits for WCT rearing and survival in 2021. Maximum daily temperature at RG_ERCK, with the exception of some results in September, met the SPO (which was initiated on August 13, 2021).	Ongoing monitoring of temperature at RG_ERCK in 2022 will provide information regarding whether mitigation efforts during parts of the year are required.		
Study Question #2: Has calcite in the receiving environment (Erickson, Bodie, Gate, and Michel creeks) been influenced by SRF water treatment and/or calcite prevention (e.g. antiscalant) efforts?	Comparison of calcite index to regional normal range and future SPO, visual evaluation of temporal and spatial trends relative to reference and conditions pre-EVO SRF P2. Summarized in relationship to ongoing calcite work under the annual Regional Calcite Monitoring Program.	Calcite in Gate, Bodie, Erickson and Michel Creeks in 2021 were largely similar to or lower than pre-EVO SRF P2 based on observations from the present study and/or the annual Regional Calcite Monitoring Program. Although calcite presence and concretion scores were high in Gate, Bodie, and Erickson Creek (as based on the annual Regional Calcite Monitoring Program), calcite was low or not present in Michel Creek.	Further work with the annual calcite monitoring team to be understand differences in calcite scores for Erickson Creek in 2021 will take place in 2022.		
Study Question #3: Has SRF water treatment and/or calcite prevention (e.g. antiscalant) (a) decreased aqueous concentrations of selenium and nitrate and/or (b) changed other mine-related constituents in effluent and receiving environments (Erickson, Bodie, Gate, and Michel creeks)?	Comparison of water quality data to reference areas, regional and site-specific normal ranges, comparison to BCWQGs and EVWQP benchmarks (and interim screening values for total nickel). Statistical analysis of temporal trends over time and among years. Quarterly acute toxicity test at EV_ECOUT (RG_ERCKDT), EV_EC1 (RG_ERCK), EV_GT1 (RG_GATE), and EV_BC1 (RG_BOCK). Evaluation of chronic toxicity test results from EV_MC2 (RG_MICOMP) in comparison to pooled regional references and pre-EVO SRF P2 results.	Statistical analyses were completed for Order Constituents, constituents with early warning triggers under the AMP, and constituents with benchmarks and/or available guidelines (listed in Section 2.3.1). Aqueous concentrations of nutrients, (such as nitrate, phosphorus, and orthophosphate) and total selenium showed decreases below the SRF outfall (as well as other areas evaluated). Increases in selenite and organoselenium species, however, were observed below the SRF outfall as well, although these trends were largely localized to Erickson Creek. Concentrations of other mine-related constituents, namely nickel and uranium, also increased and above available water quality guidelines in Erickson Creek, but did not show the same trend in Gate, Bodie, or Michel Creeks. Areas evaluated in Erickson, Gate, Bodie, and Michel creeks showed no acute toxicity testing failures during 2021, and with the exception of a few algae chronic toxicity results (which have an associated degree of uncertainty due to suppressed cell yield throughout the study), chronic toxicity results suggested no adverse effects to test species at Michel Creek (RG MICOMP).	Further investigation to understand the influence of the SRF (and water quality) and elevated benthic invertebrate tissue selenium concentrations through the AMP process (triggered by Sept 2021 results) and consideration of additional mitigation options is ongoing.	EMC and other external stakeholders notified via email of localized elevated benthic invertebrate tissue selenium concentrations on March 25, 2022. Additional benthic invertebrate tissue sampling results from April provided to EMC on May 12, 2022. Preliminary 2021 data sent to EMC on May 13, 2022. Presentation with preliminary 2021 EVO LAEMP data discussed with EMC on May 17, 2022. Written input from ENV and KNC was May 31st and June 17th, respectively. 2021 EVO LAEMP report delivered to EMC by June 30, 2022. Updates to 2021-2023 EVO LAEMP study design by July 1st, 2022.	
Study Question #4: Have benthic invertebrate tissue selenium concentrations changed as a result of the SRF in Erickson, Bodie, Gate, and Michel creeks?	Comparison of benthic invertebrate tissue selenium concentrations to regional normal range and EVWQP benchmarks, statistical evaluation of temporal and spatial trends relative to reference.	Mean benthic invertebrate tissue selenium concentrations in Gate, Bodie, and upper portions of Erickson Creek (all of which are non-fish bearing) were above the Level 1 benchmark for effects to benthic invertebrates in 2021. These elevated concentrations represent increases in comparison pre-EVO SRF P2 for Gate and upper portions of Erickson Creek, but are similar to pre-EVO SRF P2 concentrations in Bodie Creek. Selenium concentrations in benthic invertebrates in each of these areas was not well predicted using the one-step model or the selenium speciation bioaccumulation tool suggesting that total selenium and/or selenium speciation is not the sole cause of elevated benthic invertebrate tissue selenium concentrations. Mean benthic invertebrate tissue selenium concentrations in Michel Creek were below benchmark, within the normal range, and similar to reference areas suggesting that effects are largely localized.	Further investigation to understand the influence of the SRF and elevated benthic invertebrate tissue selenium concentrations through the AMP process (triggered by Sept 2021 results) and consideration of additional mitigation options is ongoing.		
Study Question #5: Are there changes in the benthic invertebrate community in Erickson, Bodie, Gate, and Michel creeks associated with SRF treatment (including calcite prevention)?	Comparison of benthic invertebrate community endpoints to regional and site-specific normal ranges, visual evaluation of spatial and temporal trends relative to reference, and multivariate analyses. Comparison of biomass and density (as well as taxa-specific evaluation of these parameters) upstream and downstream of the SRF outfall in Erickson Creek (RG_ERCKUT and RG_ERCKDT) via Hess sampling.	BIC endpoints including taxa richness and % EPT were lower than reference and below regional and/or site-specific normal ranges at sites in Erickson Creek in 2021. Investigation of spatial and temporal trends indicated that these differences were either observed both up- and downstream of the SRF outfall and/or were observed prior to commissioning for EVO SRF P2. Multivariate analyses of BIC composition indicated that Erickson and mine-exposed Michel creek benthic invertebrate taxa occurrences were positively correlated with indicators of mine-related effects but relative BIC composition at all sites was consistent over the 2018 to 2021 sampling period as well as up- and downstream of SRF outfall locations. Overall, analyses suggest that observed changes in BIC in 2021 are unrelated to commissioning of the SRF. Increases in density (overall and taxa-specific) and to a lesser degree biomass were observed downstream of the SRF outfall in Erickson Creek when compared to above the SRF outfall. These increases are believed to be due to temperature increases below the outfall as nutrient concentrations have decreased with the commissioning of the SRF.	monitoring in 2022 will provide additional		
Study Question #6: Is SRF water treatment affecting indicators of productivity (e.g. phosphorus) in the receiving environment?	Collective evaluation of indicators that have the potential to affect productivity such as temperature (Study Question #1) and water quality (specifically nitrate, phosphorus, and orthophosphate; Study Question #2) were investigated and evaluated in relation to primary productivity (periphyton visual scores), and biomass and density of benthic invertebrates (via Hess sampling which is also part of Study Question #5).	Visual periphyton coverage as an indicator of changes in primary productivity did not show any trends associated with the SRF in 2021. Increases in benthic invertebrate productivity as evident in increases in density (overall and taxa-specific) and to a lesser degree biomass were observed downstream of the SRF outfall in Erickson Creek. These increases are unlikely due to increased nutrients in the receiving environment as decreased concentrations of nitrate, phosphorus, and orthophosphate were noted below the outfall of the SRF in Erickson Creek (as well as other evaluated study areas). Increases in temperature in comparison to pre-EVO SRF P2 were observed and are believed to be the cause of the elevated benthic invertebrate productivity in the area.			

7.3 Study Question #3

The third study question of the EVO LAEMP Study Design is "Has SRF water treatment and/or calcite prevention (e.g. antiscalant) (a) decreased aqueous concentrations of selenium and nitrate and/or (b) changed other mine-related constituents in effluent and the receiving environment (Erickson, Bodie, Gate, and Michel creeks)?" The commissioning of the EVO SRF P2 has decreased concentrations of nitrate and selenium in the receiving environment of Erickson and Michel Creek as expected, and decreases in other constituents (phosphorus, orthophosphate, and barium) were also observed in Erickson Creek. Although decreases in concentrations of nitrate and selenium were also noted in Gate and Bodie creeks in 2021 when compared to previous years, this is more likely related to water management and not SRF operation (as limited discharge occurred in these areas in 2021). Although total selenium concentrations decreased in Erickson following the commissioning of the EVO SRF P2, both selenite and organoselenium species concentrations increased. A number of other minerelated constituents increased in the receiving environment downstream of the SRF outfall following commissioning of the EVO SRF P2, including total antimony, total boron, dissolved cadmium, dissolved cobalt, total iron, total manganese, total molybdenum, total nickel, total uranium, and total zinc. All of these constituents, with the exception of nickel and uranium in Erickson Creek, were below available water quality criteria in Erickson Creek. Increases in some of these constituents (such as total nickel) is likely due to higher concentrations present in the in situ water entrained in the SRF, which is expected to decrease over time. acute toxicity (in areas of Erickson, Gate, Bodie, and Michel) and chronic toxicity testing (at the compliance point in Michel Creek) showed no adverse responses to either invertebrate and fish species after exposure to site water.

7.4 Study Question #4

The fourth study question of the EVO LAEMP Study Design is "Have benthic invertebrate tissue selenium concentrations changed as a result of the SRF in Erickson, Bodie, Gate, and Michel creeks?" Mean benthic invertebrate tissue (BIT) selenium concentrations in Gate, Bodie, and upper portions of Erickson Creek (below the SRF outfall) were above the Level 1 benchmark for effects to benthic invertebrates in 2021 and increased in comparison to pre-EVO SRF P2 for areas directly downstream of the outfall in Erickson Creek (as well as upstream of the settling pond in Gate Creek). In contrast, mean BIT selenium concentrations at the confluence of Erickson Creek and Michel Creek (RG_ERCK) and the study areas in Michel Creek were all below EVWQP benchmarks, within the normal range, and similar to reference areas. As discharge from the SRF was limited in Gate and Bodie Creek in 2021, the influence of the SRF on elevated BIT selenium concentrations is isolated to a small area directly below the SRF outfall in Erickson Creek.

Selenium concentrations in benthic invertebrates in these areas were not well predicted using the regional one-step water-to-invertebrate lotic selenium accumulation model or the selenium speciation bioaccumulation tool suggesting that aqueous total selenium and/or selenium speciation cannot fully explain the elevated BIT selenium concentrations in these areas. Additional investigations to better understand the cause of the elevated selenium concentrations in BIT are currently underway as part of an AMP response framework.

7.5 Study Question #5

The fifth study question of the EVO LAEMP Study Design is "Are there changes in the benthic invertebrate community in Erickson, Bodie, Gate, and Michel creeks associated with SRF treatment (including calcite prevention)?" BIC endpoints including taxa richness and % EPT were lower than reference and below regional and/or habitat-adjusted normal ranges at areas in Erickson Creek in 2021. Investigation of spatial and temporal trends indicated that these differences were either observed both up- and downstream of the SRF outfall (e.g., lower taxa richness and % EPT at both RG ERCKUT and RG ERCKDT) and/or were observed prior to commissioning for EVO SRF P2 (e.g., lower taxa richness at RG ERCKUT; lower % EPT Multivariate ordinations of BIC structure indicated that Erickson and at RG ERCK). mine-exposed Michel creek benthic invertebrate taxa occurrences were associated with higher concentrations of mine-related water quality constituents and calcite, but relative BIC composition at all areas was consistent over the 2018 to 2021 sampling period as well as up- and downstream of SRF outfall locations. Overall, while BIC effects were apparent in Erickson Creek, they were present prior to SRF commissioning and have not changed substantially over time, indicating minimal effects of the SRF.

7.6 Study Question #6

The last study question of the EVO LAEMP Study Design is "Is SRF water treatment affecting indicators of productivity (e.g. phosphorus) in the receiving environment?" Visual periphyton coverage as an indicator of changes in primary productivity did not show any patterns that could be attributed to the SRF in 2021. Higher benthic organism density (overall and taxa-specific) downstream of the SRF outfall compared to upstream in Erickson Creek suggested an increase in benthic invertebrate productivity associated with SRF operation but were not due to increased nutrients in the receiving environment as decreased concentrations of nitrate, phosphorus, and orthophosphate were noted below the outfall of the SRF in Erickson Creek (as well as other evaluated study areas). Increases in temperature in comparison to pre-EVO SRF P2 were observed and are believed to be the cause of the elevated benthic invertebrate productivity in the area.

7.7 AMP and Biological Triggers

The results from the EVO LAEMP provide information that supports Teck's Adaptive Management Plan (AMP; Teck 2021a) and Table 7.1 summarizes material presented in this report that is relevant to the AMP.

The results from this study also supported the evaluation of biological triggers which are intended to identify unexpected monitoring results that may lead to responses under the AMP response framework. Biological trigger results indicated that of the three mine-exposed areas evaluated (RG ERCK, RG MI3, and RG MICOMP), only RG ERCK had % EPT which corresponded to a biological trigger (i.e., % EPT was below the biological trigger; Table 7.2). However, low % EPT (i.e., below regional and habitat-adjusted normal ranges) has been observed at RG ERCK since 2018 suggesting the trigger result is unrelated to EVO SRF P2. The cause of % EPT lower than the biological trigger has been assessed as part of Study Question #5 in the current report, and this area will continue to be assessed for biological triggers as part of the EVO LAEMP as well as the RAEMP. Other efforts are also currently underway, namely BIC predictive modeling, to resolve uncertainty around effects of mine-related stressors on benthic invertebrate community endpoints. Replicate BIT selenium samples from mineexposed areas in Michel Creek had selenium concentrations that did not exceed the biological trigger, and results were consistent with observations in the EVO LAEMP report where mean concentrations were below benchmarks and within the normal range). Investigations under the AMP are currently underway to investigate the elevated BIT concentrations in Gate and Bodie Creek, as well as in Erickson Creek downstream of the SRF outfall. Further information regarding percent EPT and BIT selenium concentration biological triggers as it pertains to the EVO LAEMP can be found in Appendix G. Given that current biological triggers were sufficient to identify monitoring areas where biological responses are occurring, no additional triggers are recommended at this time. Additional work conducted in 2022, to better understand biological responses to SRF effluent, will be included in the AMP annual report (2023) and the 2023 annual EVO LAEMP report as well through ongoing external engagements.

Table 7.2: Summary of Biological Trigger Analysis for Percent EPT and Selenium Benthic Invertebrate Tissue, EVOLAEMP, 2021

	Area		% EPT ^a		Selenium BIT ^b	
Waterbody			Number Replicates Evaluated	Number of Replicates Reaching Biological Trigger ^c	Number Replicates Evaluated	Number of Replicates Reaching Biological Trigger ^d
Erickson Creek	RG_ERCK	Reference	1	100	4	0
Gate Creek	RG_GATE	Mine-exposed	-	-	3	100
Bodie Creek	RG_BOCK		-	-	6	100
Michel Creek	RG_MI3		3	0	3	0
	RG_MICOMP		5	0	5	0

Notes: % EPT = percent Ephemeroptera ([mayflies], Plecoptera [stoneflies], and Trichoptera [caddisflies]); Selenium BIT = Selenium concentrations in benthic invertebrate tissue (mg/kg dw).

^a Biological Trigger analysis for %EPT was for the September sampling event.

^b Biological Trigger analysis for Selenium BIT was for the August (RG_BOCK), September (RG_ERCK, RG_BOCK, RG_MI3, RG_MICOMP), and December sampling events (RG_ERCK).

^c Number of Replicates Reaching Biological Trigger for % EPT refers to those replicates which were below both triggering steps (i.e., below the lower 2.5th percentile of the habitat-adjusted normal range and expectations [as based on predicted ADIT Scores]. See Appendix G for further details.

^d Number of Replicates Reaching Biological Trigger for Selenium BIT refers to those replicates which were above both triggering steps (i.e., above the upper 97.5th percentile prediction limit of the regional normal range and expectations [as based on the predicted 95% percentile from the water to benthic invertebrate selenium bioaccumulation model]). See Appendix G for further details.

8 UPDATES TO 2021 TO 2023 EVO LAEMP STUDY DESIGN

Section 8.3.5 of Permit 107517 outlines the LAEMP requirements for any changes to the approved 2021 to 2023 study design as follows:

The permittee must notify the director at 15 days prior to implementing any proposed changes to the approved LAEMP. Any changes to the approved study design must be reported in the annual LAEMP report.

Several adjustments to the approved EVO LAEMP 2021 to 2023 study design are proposed below based on learnings from the 2021 LAEMP monitoring and reporting cycle, input from the EMC, and monitoring needs associated with the EVO SRF P2:

- 1. Adjustment: Relocation of EV_ECOUT Station. Field observations indicated incomplete mixing of EVO SRF P2 effluent and non-treated Erickson Creek water at the current EV ECOUT location (which is 10 meters below the EVO SRF outfall). Additional investigations using nitrate as a surrogate was conducted during high flow conditions to measure mixing conditions of water being discharged from the SRF outfall and overflow Erickson Creek water bypassing treatment. This investigation confirmed field observations as nitrate was substantially lower on the right side of the downstream bank (i.e. which is on the same side as the SRF outfall and thus receives a higher proportion of flow from the SRF) than the left side of the downstream bank. Investigations were also conducted further downstream to determine the closest area downstream of the outfall which had more homogenous water conditions throughout the These investigations suggested that conditions approximately 60 meters downstream of the outfall provide a more representative water sample for the area which is imperative for accurately addressing exposure to potential effect to biota. Per discussion with the EMC, a technical memo regarding these findings as well as additional supporting information is provided as part of the EVO LAEMP report (see Appendix I).
- 2. Adjustment: Discontinue BIC Sampling in Gate and Bodie Creek. As per the 2021-2023 EVO LAEMP study design (and agreed upon with the EMC; Minnow 2021b), benthic invertebrate community and calcite index (which is conducted as part of CABIN protocols) were not evaluated in 2021 at RG_GATEDP, as this area lacked riffle habitat. During September sampling, similar conditions were noted at RG_BOCK and RG_GATE. As noted in the CABIN protocol (Environment Canada 2012a):

"The habitat type where invertebrate samples are collected in CABIN is the erosional zone (riffle, straight run, or rapid). A reach that does not have a well-established riffle or straight run should not be used for CABIN sampling."

The purposes of the benthic invertebrate community sampling for the EVO LAEMP is to (1) understand the influence of the SRF on these communities, and (2) understand how these communities relate to other areas in the Elk Valley (either reference areas or other mine-exposed areas). Overall, the evaluation of benthic invertebrate communities in these areas to answer these questions is confounded for a number of reasons: (1) discharge in these areas did not occur in 2021 in comparison to the past (change in habitat and flow); (2) systems are anthropogenic in nature and lack riffle-run-pool characteristics (more comparable to drainage ditches or constructed discharge channels than creeks); and (3) a limited area for effective sampling with replication. While selenium concentrations in benthic invertebrate tissue will continue to be monitored at RG_GATE, RG_BOCK, and RG_GATEDP, we propose that benthic invertebrate community is not evaluated at these areas moving forward. Photos of these areas in 2021 can be found in Appendix Figure E.1.

3. Adjustment: Pairing of Water Quality Stations: F2_ECIN and RG_ERCKUT. On December 7th, 2022, Teck Coal Limited (Teck) submitted a request to ENV to revise the approval for the study design on the basis that the routine water quality station F2 ECIN (water collected from the Erickson Creek intake) is representative of RG ERCKUT water quality. Following a review of advice from the Environmental Monitoring Committee (EMC), the Ktunaxa Nation Council (KNC), and Teck's responses to the EMC, the revised Study Design approval was issued by ENV on March 4th, 2022, but required, as one of its conditions, a statistical comparison of water quality between RG ERCKUT and F2 ECIN to determine if F2 ECIN is a suitable surrogate for monthly water quality monitoring at RG ERCKUT (BCMOECC 2022). Overall, results of the statistical analysis comparing water quality at RG ERCKUT and F2 ECIN revealed very few significant differences in water quality constituents between these areas using two different data analysis approaches. For constituents that differed, where concentration at F2 ECIN was higher, this could provide a conservative representation of conditions at RG ERCKUT. Where the concentration was lower at F2 ECIN, the difference in nearly all cases was relatively small. Collectively, this suggests that the F2 ECIN routine water quality sampling location is reflective of water quality conditions at RG ERCKUT and would act as a suitable surrogate for water quality sampling at RG ERCKUT for the 2021 to 2023 EVO LAEMP. Per discussion with EMC a technical memo regarding these results is provided as part of the EVO LAEMP report (see Appendix J).

4. Adjustment: Additional Erickson Creek Bryophyte Coverage Monitoring. As noted in Section 5, the current EVO LAEMP study design evaluates changes in periphyton coverage as a means to understand changes in productivity to primary producers. While visual periphyton coverage maybe appropriate in Gate Creek, Bodie Creek, and Michel Creek, the high prevalence of bryophytes in Erickson Creek (and the corresponding low presence of periphyton in these areas) suggests that additional investigations of bryophyte coverage in subsequent sampling events is warranted to better understand the influence of the SRF on primary productivity. Bryophytes coverage has been evaluated in past monitoring programs in the Elk Valley and similar protocols will be utilized as part of the 2022 monitoring efforts (Minnow 2018c).

The above updates to the 2021-2023 EVO LAEMP study design reflect discussions between the study team and the EMC during the May 17th, 2022, EMC meeting and the subsequent advice table provided to the study team from the EMC.

9 REFERENCES

- ADEPT (ADEPT Environmental Sciences Ltd.). 2022. Elk Valley Selenium Speciation Monitoring Program: 2021 Annual Report. Prepared for Teck Coal Limited, Sparwood, BC. April 2022.
- ASTM (American Society for Testing and Materials). 2013. Standard Guide for Conducting Early Life-Stage Toxicity Tests with Fishes. E1241-05, 29 p.
- Azimuth (Azimuth Consulting Group Partnership). 2018. Proposed Water Quality Triggers for the Elk Valley Adaptive Management Plan. Prepared for Teck Resources Limited, Vancouver, BC. June 2018.
- Barrett, T., S. Weech, and P. Orr. 2016. Evaluation of Calcite Effects on Aquatic Biota in the Elk Valley (2014 and 2015). Report prepared for Teck Coal Limited, Sparwood, BC. Report prepared by Minnow Environmental, Inc.
- BCMOE (British Columbia Ministry of Environment). 1997. Ambient Water Quality Criteria for Dissolved Oxygen. February 1997.
- BCMOE. 2001. Water Quality Guidelines for Temperature. August 2001.
- BCMOE. 2013. British Columbia Field Sampling Manual for Continuous Monitoring and the Collection of Air, Air-Emission, Water, Wastewater, Soil, Sediment, and Biological Samples. 2013 Edition.
- BCMOECCS (British Columbia Ministry of Environment and Climate Change Strategy). 2020a. British Columbia Field Sampling Manual Part D: Solids. 2020 Edition.
- BCMOECCS. 2020b. British Columbia Environmental Laboratory Manual. Prepared by Analysis, Reporting & Knowledge Services Knowledge Management Branch. Updated April 2020.
- BCMOECCS. 2021a. British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture Guideline Summary. Water Quality Guideline Series, WQG-20. Prov. B.C., Victoria B.C.
- BCMOECCS. 2021b. Working Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture. Water Quality Guideline Series, WQG-08. Prov. B.C., Victoria B.C
- BCMOECC. 2022. Re: Approval of the EVO LAEMP 2021-2023 Study Design. October 15th, 2022.
- Carter, M.R., Gergorich, E.G., 2008. Soil Sampling and Methods of Analysis, 2nd Edition. Canada Society of Soil Science.
- COSEWIC (Committee on the Status of Endangered Wildlife in Canada). 2016. COSEWIC Assessment and Update Status Report on the Westslope Cutthroat Trout *Oncorhynchus clarkii lewisii* (British Columbia Population and Alberta Population) in Canada. COSEWIC, Ottawa. Available: www.cosewic.gc.ca/. March 2018).
- de Bruyn, A. and S.N. Luoma. 2021. Selenium Species Bioaccumulation Tool Draft Version 2.0. Prepared for Mariah Arnold, Teck Coal Limited, Sparwood, BC. February. Project 19133414/MQ2 Task 4.
- Ecofish (Ecofish Research Ltd.). 2020. Elkview Operations Saturated Rock Fill Phase 2 Project Ramping Assessment Report. Prepared for Teck Coal Limited. 6 March 2020.

- Environment Canada. 1996. Biological Test Method: Acute Lethality Test Using *Daphnia* spp. Environmental Protections Series. Method Development and Applications Section. Environmental Technology Centre. May 1996.
- Environment Canada. 1998. Biological Test Method: Toxicity Tests Using Early Life Stages of Salmonid Fish (Rainbow Trout). Environmental Technology Centre, Ottawa, Ontario. Environmental Protection Series. Report 1/RM/28. July 1998.
- Environment Canada. 2007a. Biological Test Method: Acute Lethality Test Using Rainbow Trout. Environmental Protections Series. Method Development and Applications Section. Environmental Technology Centre. May 2007.
- Environment Canada. 2007b. Biological Test Method: Growth Inhibition Test Using a Freshwater Alga. Environmental Technology Centre, Ottawa, Ontario. Environmental Protection Series. Report 1/RM/25. Second Edition. March 2007.
- Environment Canada. 2007c. Biological Test Method: Test of Reproduction and Survival Using the Cladoceran *Ceriodaphnia dubia*. Environmental Technology Centre, Ottawa, Ontario. Environmental Protection Series. Report EPS 1/RM/21. Second Edition. February 2007.
- Environment Canada. 2012a. Field Manual: Wadeable Streams. Canadian Aquatic Biomonitoring Network (CABIN).
- Environment Canada. 2012b. Metal Mining Technical Guidance for Environmental Effects Monitoring.
- Environment Canada. 2014. Laboratory Methods: Processing, Taxonomy, and Quality Control of Benthic Macroinvertebrate Samples. Canadian Aquatic Biomonitoring Network (CABIN). May.
- Golder (Golder Associates). 2020a. Water Temperature Modelling of Discharge from the Elkview Operations Saturate Rock Fill Phase 2 Project Memorandum. Prepared for Teck Coal Limited. September 21, 2020.
- Golder. 2020b. Updates to the Lotic and Lentic Statistical Bioaccumulation Models for Selenium in the Elk Valley. Prepared for Teck Coal Limited. November 2020.
- Golder 2021a. Elk Valley Selenium Speciation Program: 2021 Field Sampling Plan. Prepared for Teck Coal Limited. 29 July 2021.
- Golder. 2021b. Preliminary Annelid Bioaccumulation Analysis. Prepared for Teck Coal Limited. June 2021.
- Golder. 2021c. Selenium Species Bioaccumulation Tool Draft Version 2.0. Prepared for Teck Coal Limited. February 2021.
- Golder. 2022. 2021 Chronic Toxicity Program Elk Valley Testing to Satisfy Permit Requirements; Interpretive Report. Submitted to Teck Coal Ltd. April 2022.
- Hocking, M., K. Akaoka, A. Buren, E. Vogt, J. MacAdams, and T. Hatfield. 2020. 2019 Calcite Effects to Spawning Habitat Suitability of Westslope Cutthroat Trout. Consultant's report prepared for Teck Coal Ltd. by Ecofish Research Ltd. May 8, 2020.
- Lotic (Lotic Environmental). 2015. Elkview Operations Baldy Ridge Extension Project. Fish and Fish Habitat Baseline Report. Final Report. September 2015.
- Lotic. 2021. Regional Calcite Monitoring Plan: Field Manual. Prepared for Teck Coal Limited by Lotic Environmental Ltd. May 2021.

- McPhail, J.D. 2007. The Freshwater Fishes of British Columbia, University of Alberta Press, Edmonton, AB.
- McPhail, J. D., and J. S. Baxter. 1996. A Review of Bull Trout (*Salvelinus confluentus*) Life-History and Habitat Use in Relation to Compensation and Improvement Opportunities. Fisheries Management Report No. 104, 35 p.
- Minnow (Minnow Environmental Inc.). 2015. Line Creek Local Aquatic Effects Monitoring Program (LAEMP), 2014. Prepared for Teck Coal Limited, Sparwood, British Columbia. May. Project #2516.
- Minnow. 2018a. Elk River Watershed Regional Aquatic Effects Monitoring Program (RAEMP) Final Report, 2015-2016. Prepared for Teck Coal Limited, Sparwood, British Columbia. January. Project #2561.
- Minnow. 2018b. Study Design for the Regional Aquatic Effects Monitoring Program, 2018 to 2020. Prepared for Teck Coal Limited, Sparwood, BC. March. Project #: 187202.0020.
- Minnow. 2018c. Line Creek Local Aquatic Effects Monitoring Program (LAEMP) Report, 2016. Prepared for Teck Coal Limited, Sparwood, BC. June 2018. Project #: 167202.0074
- Minnow. 2020a. Technical Memo for the Elkview Operation Saturated Rock Fill Phase 2 Baseline Aquatic Monitoring Study, September 2019. Prepared for Teck Coal Limited, Sparwood, British Columbia. March 10, 2021. Project #197202.0058.
- Minnow. 2020b. Elk River Water Regional Aquatic Effects Monitoring Program (RAEMP) Final Report, 2017 2019. Prepared for Teck Coal Limited, Sparwood, British Columbia. March. Project #187202.0011.
- Minnow. 2021a. Technical Memo for the Elkview Operation Saturated Rock Fill Phase 2 Aquatic Monitoring Study of Existing Conditions, September 2020. Prepared for Teck Coal Limited, Sparwood, British Columbia. April 16, 2021. Project #197202.0058.
- Minnow. 2021b. Study Design for the 2021 to 2023 Elkview Operations (EVO) Local Aquatic Effects Monitoring Program (LAEMP). Prepared for Teck Coal Limited, Sparwood, British Columbia. June 2021. Project #217202.0009.
- Minnow. 2021c. Study Design for the Regional Aquatic Effects Monitoring Program, 2021 to 2023. Prepared for Teck Coal Limited, Sparwood, BC. February. Project 207202.0006.
- Minnow. 2021d. Study Design for Line Creek Local Aquatic Effects Monitoring Program (LAEMP), 2021. Prepared for Teck Coal Limited, Sparwood, BC. May. Project 207202.0015.
- Minnow. 2022. Subject Matter Expert Report: Food Availability. Evaluation of Cause Reduced Recruitment in the Harmer Creek Westslope Cutthroat Trout Population. Report prepared for Teck Coal Limited. Prepared by Minnow Environmental Inc.
- Minnow and Lotic. 2021. Study Design for Fording River Local Aquatic Effects Monitoring Program (LAEMP), 2021 to 2023. Prepared for Teck Coal Limited, Sparwood, BC. April. Project 217202.0011.
- Ogle, R.S., Maier, K.J., Kiffney, P., Williams, M.J., Brasher, A., Melton, L.A., Knight, A.W. 1988. Bioaccumulation of Selenium in Aquatic Ecosystems. Lake Reservoir Manage. 4,165-173.
- R Core Team. 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org

- Robinson, M.D. 2009. Erickson Creek Fish Presence/Abundance Survey. Consultant report prepared by Interior Reforestation Co. Ltd. Prepared for Elk Valley Coal Corporation. December 2009.
- Robinson, M.D. 2010. Effects of calcite deposition on benthic macroinvertebrate communities throughout the Elk River Watershed. Prepared for Teck Coal Ltd. Prepared by Interior Reforestation Co. Ltd.
- Robinson, M.D., Gordon, S., Otto, M. 2022. 2021 Calcite Monitoring Program Annual Report. Prepared for by Teck Coal Ltd. by Lotic Environmental. April 2022.
- Riedel, G.F., Sanders, J.G., Gilmour, C.C. 1996. Uptake, Transformation, and Impact of Selenium in Freshwater Phytoplankton and Bacterioplankton Communities. Aquat. Microbial Ecol. 11, 43-51.
- Stewart, R., M. Grosell, D. Buchwalter, N. Fisher, S. Luoma, T. Mathews, P. Orr, W. Wang, X. 2010. Bioaccumulation and Trophic Transfer of Selenium. Pp. 93-139. In: P. Chapman et al. (Eds.), Ecological Assessment of Selenium in the Aquatic Environment. CRC Press, Boca Raton, London, New York.
- Teck (Teck Coal Limited). 2014. Elk Valley Water Quality Plan. Submitted to the British Columbia Minister of Environment for approval on July 22, 2014.
- Teck. 2016. Measurement of the Calcite Index. Standard Practices and Procedures TC-CI-01. Teck Coal Limited.
- Teck. 2018. Water Quality Adaptive Management Plan for Teck Coal Operations in the Elk Valley. December.
- Teck. 2019a. Water Quality Adaptive Management Plan for Teck Coal Operations in the Elk Valley 2018 Annual Report. Prepared by Teck Coal Limited. July 31, 2019.
- Teck. 2020a. Elkview Operations Saturate Rock Fill Phase 2 Project Summary. Submitted to Ministry of Energy, Mines, and Petroleum Resources. May 5, 2020.
- Teck. 2020b. Mine Water Management Plan Elkview Operations. Submitted to Ministry of Energy, Mines, and Petroleum Resources. June 30, 2020.
- Teck. 2020c. Water Quality Adaptive Management Plan for Teck Coal Operations in the Elk Valley 2019 Annual Report. Prepared by Teck Coal Limited. July 31, 2020.
- Teck. 2021a. Water Quality Adaptive Management Plan for Teck Coal Operations in the Elk Valley 2021 Update. Prepared by Teck Coal Limited. December 15, 2021.
- Teck. 2021b. Water Quality Adaptive Management Plan for Teck Coal Operations in the Elk Valley 2020 Annual Report. Prepared by Teck Coal Limited. July 31, 2021.
- Teck 2022a. Annual Water Treatment Performance Report 2021. Prepared by Teck Coal Limited. March 31, 2022.
- Teck. 2022b. Annual Water Quality Report 2021. Prepared by Teck Coal Limited. March 31, 2022
- US EPA (United States Environmental Protection Agency). 1996. Ecological Effects Test Guidelines. OPPTS 850.1400 Fish Early-Life Stage Toxicity Test. EPA-712-C-96-121, Public Draft.
- US EPA. 2000. Methods for Measuring the Toxicity and Bioaccumulation of Sediment-Associated Contaminants with Freshwater Invertebrates. 2nd Edition. EPA/600/R-99/064. Office of Water, Washington, DC, USA.

- Vannote, R.L, Sweeney, B.W. 1980. Geographic Analysis of Thermal Equilibria: A Conceptual Model for Evaluating The Effect of Natural and Modified Thermal Regimes on Aquatic Insect Communities. The American Naturalist. 115:5, 667-695.
- Wilkinson, C. 2009. Sportfish population dynamics in an intensively managed river system. MSc Thesis. University of British Columbia.
- Wright, N., T. Jensma, H. Wright, K. Akaoka, M. Hocking, and T. Hatfield. 2018. 2017 Calcite Effects to Fish Spawning and Incubation. Prepared for Teck Coal Limited by Ecofish Research Ltd. February 19, 2018.
- Zathey, N., Mitchell, S., and Robinson, M.D. 2021. Teck Coal Ltd. 2020 Calcite Monitoring Program Annual Report. Prepared for Teck Coal Ltd. By Lotic Environmental Ltd.

APPENDIX A DATA ANALYSIS

A1 DATA ANALYSIS

A1.1 Water Quality

Water quality data were downloaded from Teck's EQuIS database and included both routine monitoring results collected by Teck and samples collected concurrently with biological sampling. Data extracted from Teck's EQuIS database were screened for text values and converted to a common unit (all metal concentrations were converted to mg/L, except for total and dissolved cadmium, dissolved cobalt, total nickel, total selenium which were stored as $\mu g/L$).

Water quality data for select constituents reported was screened against BCWQG (BCMOECSS 2021a,b), interim screening values (Golder 2017), and EVWQP Water Quality Benchmarks (Teck 2014; Table A.1). These select constituents included Order constituents (i.e., nitrate, sulphate, total selenium, and dissolved cadmium), nutrients (i.e., nitrate, nitrite, ammonia, total phosphorus, and orthophosphate), and analytes with early warning triggers under the AMP ([i.e., total dissolved solids, sulphate, total concentrations of antimony, barium, boron, lithium, manganese, molybdenum, nickel, selenium, uranium, and zinc, and dissolved concentrations of cadmium and cobalt]). Constituent concentrations relative to BCWQG, EVWQP Water Quality Benchmarks (where applicable), or interim screening values (total nickel only) were plotted over time (when historical data was available) for each water quality station, or biological monitoring area if a water quality station was not available, to aid in visual assessment of the data.

Constituents that were expected to decrease (i.e., nitrate and selenium) or increase (i.e., nickel) with SRF treatment and those that showed increases/decreases based upon on the visual analysis noted above were further analyzed to determine if the trend was significant.

Specifically, a censored regression ANOVA was conducted to determine temporal changes in constituent concentrations between pre- (2021) and post- EVO SRF P2 commissioning for the years of 2012 to 2021. The censored regression ANOVA models assumed a log-normal distribution of the response variable and were fit using maximum likelihood estimation. The significance of each term in the model was assessed using likelihood-ratio tests to determine if there was a significant change in log-likelihood with the addition of each term in the model, utilizing an α = 0.05 for all tests. Constituent results for each monitoring area were also plotted as monthly mean concentrations and compared visually to support the temporal evaluations of water quality.

Table A.1: British Columbia Water Quality Guidelines (BCWQG), Site-Specific Elk Valley Water Quality Plan (EVWQP) Benchmarks, and Interim Screening Values for Parameters Assessed in EVO LAEMP, 2021

1			Daitich Columbi	a Water Quality Guidelines ^a			
	Variable	Units	Long-term Average	Short-term Maximum	Year	Status	Site-Specific Benchmark ^b
	Total Alkalinity	mg/L	For dissolved calcium = < 4mg/L, BCWQG = <10 For dissolved calcium = 4 to 8 mg/L, BCWQG = 10 to 20 For dissolved calcium = > 8 mg/L, BCWQG = > 20	-		Working	-
	Unionized Ammonia ^c	mg/L	pH and Temperature dependent (tabular)	pH and Temperature dependent (tabular)	2009	Approved	-
	Chloride	mg/L	150	600	2003	Approved	-
	Fluoride	mg/L	-	For hardness ≤ 10 mg/L, BCWQG = 0.4 For hardness > 10 mg/L, BCWQG = [-51.73 + 92.57 × log10(hardness)]×0.01 Maximum applicable hardness = 385 mg/L		Approved	-
Non-Metals	Nitrate as N	mg/L	3	33	2009	Approved	Level 1 EVWQP benchmark= 10 ^{1.0003[log(hardness)]-1.52} Maximum applicable hardness = 500 mg/L Level 2 EVWQP benchmark= 10 ^{1.0003[log(hardness)]-1.38} Maximum applicable hardness = 500 mg/L
	Nitrite as N ^d Dissolved Oxygen ^e	mg/L	0.02 to 0.20 For buried embryo/alevin life stages, BCWQG (water column) = 11 BCWQG (interstitial) = 8; for other life stages,	0.06 to 0.60 For buried embryo/alevin life stages, BCWQG (water column) = 9 BCWQG (interstitial) = 6 For other life stages,		Approved Approved	-
	- uf	рН	BCWQG (water column) = 8	BCWQG (water column) = 5	4004	A	
	pH ^f Sulphate ^g	units mg/L	128 to 429	6.5 - 9.0		Approved Approved	Level 1 EVWQP
	Total	IIIg/L	Maximum applicable hardness = 250 mg/L	-	2013	Approved	Benchmark = BCWQG = 429
	Dissolved Solids	mg/L	-	-	-	-	Screening Level 1 Benchmark = 1,000
	Antimony(III)	mg/L	0.009	-		Working	-
	Arsenic Barium	mg/L mg/L	<u>-</u> 1	0.005	2002	Approved Working	-
	Beryllium	mg/L	0.00013	-	2015	Working	-
	Boron	mg/L	1.2	-	2003	Approved	-
	Chromium ^h	mg/L	For Cr(VI), BCWQG = 0.001 For Cr(III), BCWQG = 0.0089	-	2015	Working	-
	Cobalt	μg/L	4	110		Approved	-
	Iron	mg/L	-	1	2008	Approved	-
	Lead ^g	mg/L	For hardness ≤ 8 mg/L, none proposed For hardness 8 to 360 mg/L, BCWQG = 0.001×{3.31+ exp[1.273 × In(hardness) - 4.704]} No more than 20% of samples in a 30-d period should be >1.5X the guideline. Maximum applicable hardness = 360 mg/L	For hardness ≤ 8 mg/L, BCWQG ≤ 0.003 For hardness 8 to 360 mg/L, BCWQG = 0.001×{exp[1.273 × ln(hardness) - 1.460]} Maximum applicable hardness = 360 mg/L	1987	Approved	-
	Manganese ^g	mg/L	For hardness 37 to 450 mg/L, BCWQG ≤ 0.004 × hardness + 0.605 Maximum applicable hardness = 450 mg/L	For hardness 25 to 259 mg/L, BCWQG ≤ 0.01102 × hardness + 0.54 Maximum applicable hardness = 259 mg/L	2001	Approved	-
etalloids	Mercury ⁱ	mg/L	MeHg ≤ 0.5% of THg, BCWQG = 0.00002 Else, BCWQG = [0.0001/(MeHg/THg)] OR When MeHg = 0.5% of THg, BCWQG= 0.00002 When MeHg = 1.0% of THg, BCWQG = 0.00001 When MeHg = 8.0% of THg, BCWQG= 0.00000125	-	2001	Approved	-
Ď	Molybdenum	mg/L	7.6	46	2021	Approved	-
Metals and Metalloids	Nickel	μg/L	<u>-</u>	-	-	-	Level 1 Interim Screening Value = 5.3 Level 2 Interim Screening Value = 15 Level 3 Interim Screening Value = 22
	Selenium	μg/L	2	-	2014	Approved	Level 1 EVWQP Benchmark = 19 Level 2 EVWQP Benchmark = 74
	Silver ^f	mg/L	For hardness ≤ 100 mg/L, BCWQG = 0.00005 For hardness > 100 mg/L, BCWQG = 0.0015	For hardness ≤ 100 mg/L, BCWQG = 0.0001 For hardness > 100 mg/L, BCWQG = 0.003	1996	Approved	-
	Thallium Uranium	mg/L mg/L	0.0008 0.0085	-	1997 2011	Working Working	-
	Zinc ^g	mg/L	Maximum applicable hardness = 330 mg/L	For hardness ≤ 90 mg/L, BCWQG = 0.033 For hardness 90 to 500 mg/L, BCWQG = [33 + 0.75 (hardness - 90)]×0.001; Maximum applicable hardness = 500 mg/L	1999	Approved	-
3	Aluminum	mg/L	When pH ≥ 6.5, BCWQG = 0.05 When pH < 6.5, BCWQG = exp[1.6 - 3.327(median pH)+ 0.402(median pH)2]	When pH ≥ 6.5, BCWQG = 0.1 When pH < 6.5, BCWQG = exp[1.209 - 2.426(pH)+ 0.286 (pH)2]	2001	Approved	-
		μg/L	For hardness = 3.4 to 285 mg/L, BCWQG = {exp[0.736×ln(hardness) - 4.943]}	For hardness = 7 to 455 mg/L, BCWQG = {exp[1.03×ln(hardness)-5.274]}	2015	Approved	Level 1 EVWQP Benchmark = 10 ^{0.83(log(hardness))-2.53}
1000	Cadmium ⁹		Maximum applicable hardness = 285 mg/L	Maximum applicable hardness = 455 mg/L			Maximum applicable hardness = 285 mg/L
, looid	Copper Iron	mg/L	Maximum applicable hardness = 285 mg/L Biotic Ligand Model	Maximum applicable hardness = 455 mg/L Biotic Ligand Model BCWQG = 0.35 mg/L	2019	Approved Approved	hardness = 285 mg/L

Notes: "-" = no data available. The EVWQP Level 1 Benchmark for Nitrate is consistent with the longer term BCWQG.

^a British Columbia Working (BCMOECCS 2021a) or Accepted (BCMOECCS 2021b) Water Quality Guidelines for the Protection of Aquatic Life. For guidelines dependent on other analytes (e.g., hardness), guidelines were screened using concurrent values.

b When appropriate, site-specific Elk Valley Water Quality Plan Benchmarks (EVWQP; Teck 2014) or interim screening values were applied in addition to or instead of BC water quality guidelines. Interim screening values are displayed for nickel (Golder 2017b).

^c Temperature and pH dependent; range of minimum and maximum values.

 $^{^{\}rm d}$ Dependent on concurrent chloride, range of values reported (BCMOECCS 2021b).

^e Dissolved oxygen guidelines represent a minimum value, and so exceedances were quantified below this guideline.

^f Unrestricted change permitted within this pH range.

⁹ For hardness-based guidelines, concurrent hardness values were used for calculating guidelines. If hardness values exceeding the maximum applicable hardness, then guidelines were determined using the maximum applicable hardness. If hardness values is lower than the minimum hardness, then guidelines were determined using the minimum hardness.

^h Chromium(VI) is the dominant oxidation state in oxygenated environments, and so its guideline was applied.

¹ The most conservative guideline (0.00000125 mg/L) was applied.

The percentage of data below the laboratory reporting limit (LRL) in both the mine-exposed and reference areas determined the specific approach of the ANOVA model: (i) a relative change model was used when the percent LRL was less than 80% for both the exposed and reference area, or (ii) a temporal change model was used when the reference area % LRL was greater than 80%, but the mine-exposed was not. If both the exposed and reference area were above 80 % LRL no tests were conducted. Post-hoc comparisons for both approaches were corrected for the number of comparisons using Tukey's Honestly Significant Differences (HSD) method. January and February data were excluded from the analyses because there were no EVO SFR P2 data for these months.

The relative change model was used to quantify temporal changes at the mine-exposed area relative to concentrations at the reference area (CM_MC1 [RG_MI25]) and included terms for month (Month), before and after EVO SRF P2 (BA), exposed or reference areas (CI), year nested in BA (Year[BA]), and the interaction terms BA x CI, and Year(BA) x CI.

The analysis proceeded by first assessing the significance of the Year(BA) x CI interaction term. A significant interaction with year suggested a before-after affect that was dependent on the years being compared and a post-hoc test comparing the relative differences in 2021 to the differences in all pre EVO SRF P2 years was conducted. A magnitude of difference for significant post-hoc comparisons was calculated as:

$$MOD = \frac{\left(Observed_{Exposed\ 2021} - Predicted_{Exposed\ 2021}\right)}{Predicted_{Exposed\ 2021}} \times 100\%$$

where the predicted concentration was calculated as:

$$Predicted_{Exposed\ 2021} = \left(Observed_{Reference\ 2021} + \ Observed_{Exposed\ yeari} - Observed_{Reference\ yeari} \right)$$

and year_i was the earlier year before SFR2 commissioning. All concentrations used in the calculation were estimated marginal means from the ANOVA model. If the Year(BA) x CI was not significant the BA x CI term was assessed with a significant term suggesting an overall before-after effect and a magnitude of difference (MOD) was calculated as:

$$MOD = \frac{\left(Observed_{Exposed\ SRF2} - Predicted_{Exposed\ Pre}\right)}{Predicted_{Exposed\ Pre}} \times 100\%$$

where the predicted concentration was calculated as:

$$Observed_{Exposed\ SRF2} = \left(Observed_{Reference\ SRF2} +\ Observed_{Exposed\ Pre} - Observed_{Reference\ Pre}\right)$$

All concentrations were estimated marginal means from the ANOVA model. If neither of the BA interaction terms were significant it suggested that there have not been any changes in concentrations relative to the reference area since the EVO SRF P2 commissioning.

When the censoring at the reference area did not allow for use of the relative change model, a simplified temporal change model was used for the mine exposed area and included terms for month (Month), before and after EVO SRF P2 (BA), and year nested in BA (Year[BA]). A significant Year(BA) term suggested differences in concentrations in years proceeding EVO SRF P2 and post-hoc tests comparing concentrations in 2021 to the concentrations in all pre-EVO SRF P2 years were conducted. A magnitude of difference for significant post-hoc comparisons

Was calculated as:

$$MOD = \frac{\left(MCT_{2021} - MCT_{yeari}\right)}{MCT_{2021}} \times 100\%$$

, where the measure of central tendency (MCT) were estimated marginal means from the ANOVA model. When the Year(BA) was not significant, the BA term was assessed and an MOD was calculated for EVO SRF P2 relative to the combined pre-EVO SRF P2 years when significant.

A1.2 Benthic Invertebrate Tissue (BIT) Selenium

Selenium concentrations measured in benthic invertebrate tissue were plotted over time (including those prior to commissioning the SRF; Minnow 2020a, 2021a) relative to corresponding EVWQP effect benchmarks (Teck 2014; Table A.2) as well as the regional normal ranges¹ for tissue selenium concentrations defined in the RAEMP (Minnow 2020b).

Potential changes in benthic invertebrate composite-taxa selenium concentrations pre- and post- initiation of the SRF were assessed using an ANOVA model with post-hoc contrasts. A *p*-value of 0.05 was used to test for statistical significance. Similarly, spatial differences in benthic invertebrate composite-taxa selenium concentrations were tested among areas using a before-after-control-impact ANOVA with post hoc contrasts. Models compared each mine-exposed area each reference area (RG_ALUSM and RG_MI25) using the same approach as for the relative change model described in section A1.1. Single replicates were present in past evaluations, including sampling in areas: RG_ERCK, RG_GATE, RG_BOCK, RG_MIDGA, and RG_MIDBO (Minnow 2020a, 2021a). Similar to the RAEMP (Minnow 2020b), variability for results in these circumstances were estimated based on monitoring areas and years where

¹ The regional reference normal range (i.e., 1.41 mg/kg dw to 7.79 mg/kg dw) as presented in the RAEMP represents the 2.5th and 97.5th percentiles of reference area data from 1996 to 2019 (Minnow 2020b).

Table A.2: Selenium Benchmarks for Benthic Invertebrate Tissues in the Elk Valley

			Benchmark		
Tissue Type	Value (µg/g dw)	Туре	Description	Source	
Whole body	4 ^a	BC guideline	Interim guideline for aquatic dietary tissue based on weight of evidence of lowest published toxicity thresholds and no uncertainty factor applied	BCMOE (2014)	
Whole body	13	Site-specific benchmark	Level 1 (~10% effect) benchmark for growth, reproduction and survival of invertebrates	Teck (2014)	
Whole body	20	Site-specific benchmark	Level 2 (~20% effect) benchmark for growth, reproduction and survival of invertebrates	Teck (2014)	
Whole body	27	Site-specific benchmark	Level 3 (~50% effect) benchmark for growth, reproduction and survival of invertebrates	Golder (2014)	
Whole body	11	Site-specific benchmark	Level 1 (~10% effect) benchmark for dietary effects to juvenile fish (growth)	Teck (2014)	
Whole body	18	Site-specific benchmark	Level 2 (~20% effect) benchmark for dietary effects to juvenile fish (growth)	Teck (2014)	
Whole body	26	Site-specific benchmark	Level 3 (~50% effect) benchmark for dietary effects to juvenile fish (growth)	Golder (2014)	
Whole body	15	Site-specific benchmark	Level 1 (~10% effect) benchmark for dietary effects to juvenile birds	Teck (2014)	
Whole body	22	Site-specific benchmark	Level 2 (~20% effect) benchmark for dietary effects to juvenile birds	Teck (2014)	
Whole body	41	Site-specific benchmark	Level 3 (~50% effect) benchmark for dietary effects to juvenile birds	Golder (2014)	

Note: μ g/g dw = micrograms per gram dry weight.

^a British Columbia (BC) guidelines were not used in assessment of benthic invertebrate selenium tissue concentrations. Assessment was completed relative to site-specific benchmarks only.

replicates were collected, with the result of that area (i.e., the value of the single replicate) assumed to represent the mean.

Composite-taxa benthic invertebrate tissue selenium results from September 2012 to December 2021 were plotted relative to total selenium concentrations measured in water samples collected at or near the same time (within approximately three days) and location as the tissue samples. A line representing the regional one-step water-to-invertebrate selenium bioaccumulation model was also presented on the plot (Golder 2020b, 2021c). Prediction intervals (95% percentile) for the model were calculated using the formula below (as described in Whitmore 1986):

$$\hat{Y} \pm t_{\frac{\alpha}{2},n-2} S_r \sqrt{(1+\frac{1}{n}+\frac{(x-\bar{x})^2}{(n-1)S_x^2})}$$

where:

- \hat{Y} = the fitted regression value at X
- S_r = the root mean square deviation of the fitted regression model (= 0.148; \log_{10} transformed)
- n = sample size (= 530)
- \bar{X} = mean of the sample X_i values (= 0.817)
- S_x^2 = variance of the sample X_i values (= 0.866).

Teck has also developed a selenium speciation bioaccumulation tool (B-tool) to help predict and interpret bioaccumulation in areas with detectable organoselenium species (deBruyn and Luoma 2021). For every 2021 biological sampling event, predicted benthic invertebrate tissue selenium concentrations were generated from water quality data (specifically, selenium speciation data and sulphate concentrations) using this bioaccumulation tool and presented alongside field-measured tissue concentrations.

For both the bioaccumulation model and the b-tool a typical range for the relationship between the observed and predicted values was developed for the Elk Valley using a linear mixed-model approach. Specifically, all tissue samples collected in the Elk Valley (Appendix Figure A.1) were matched with a water sample collected at the same station within a five-day buffer. Using this dataset the relationship between the observed-to-predicted concentrations were modelled using a mixed-model with a random intercept term for area and a 95% prediction interval was estimated using the *predictInterval* function in R (R Core Team 2022). Values outside this range can be view as being outside the typical range for this relationship.

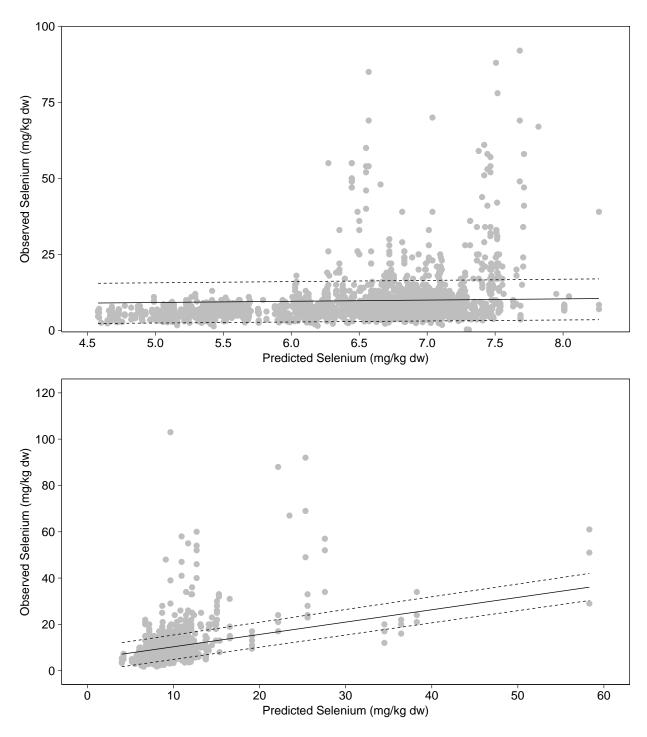


Figure A.1: Observed and Predicted Selenium Concentrations in Benthic Invertebrate Composite Samples for the One Step Bioaccumulation Model (Top) and B-tool Model (Bottom)

Notes: Predicted benthic invertebrate selenium concentrations were estimated using a one–step water to benthic invertebrate selenium accumulation model (Golder 2020c) in the top plot and using the speciation bioaccumulation tool to predict bioaccumulation in areas with detectable organoselenium species (deBruyn and Luoma 2021) in the bottom plot. Mean (solid line) and 95% prediction intervals (dashed lines) are shown for a linear mixed–model of observed to predicted concentrations for Elk Valley samples (2012 to 2021) for each respective relationship. Only water data collected with ± 5 days with tissue samples at each biological area were included in the plots and analysis.

A1.3 Hess Sampling (Density, Biomass, and Community)

To understand the influence of the SRF on productivity measures of biomass and density of benthic invertebrates were evaluated (as well as evaluations of periphyton coverage and water quality as discussed in earlier sections). Overall biomass and density of benthic invertebrates as well as taxa-specific measures (specifically EPT, Ephemeroptera alone, Plectoptera alone, Trichoptera alone, and Chironomidae alone) of these endpoints, determined via Hess sampling, were converted to number of organisms per square metre based on the area sampled. A spatial comparison between areas upstream (RG_ERCKUT) and downstream (RG_ERCKDT) of SRF water treatment were conducted using a Student's t-test, with α = 0.1. When the assumption of normality was met, but homogeneity of variance was not, a t-test with unequal variance was used (Ruxton 2006). In instances where normality could not be achieved through data transformation, the non-parametric Mann-Whitney U-test was used. Statistical comparisons were conducted using R (R Core Team 2022). A magnitude of difference (MOD) was calculated for each endpoint as:

$$MOD = \frac{\left(MCT_{Downstream} - MCT_{Upstream}\right)}{SD_{Upstream}} \times 100\%$$

, where the measures of central tendency (MCT) were means (untransformed) or geometric means (\log_{10} transformed) and the SD was standard deviation. The MOD calculations were conducted on the transformed scale when the data were transformed for analysis. When the Mann-Whitney test was used, the MOD was estimated using median values instead of means, and the Median Absolute Deviations (MAD) instead of SD.

A1.4 CABIN Sampling (Community)

Benthic invertebrate community structure was assessed using multivariate ordination techniques including correspondence analysis (CA) and canonical correspondence analysis (CCA). These techniques create synthetic species abundance axes extracted in a sequential manner. In CA, each score (number) on a CA axis is the sum of a weighted vector of species abundances. Species with correlated abundances vary together and have similar weights and scores on a CA axis. When depicted in two-dimensional plots, taxa that tend to co-occur plot together, while those that rarely co-occur plot farther apart. Similarly, areas sharing many taxa plot closest to one another, while those with little in common plot furthest apart. The greatest variation among either taxa or areas is explained by the first axis, with other axes accounting for progressively less variation. Therefore, this type of multivariate analysis describes not only which areas have distinct benthic communities, but also how these benthic communities differ among areas (i.e., which particular taxa differ in abundance).

In CCA, the analysis is taken a step further to look at relationships between the assemblages of species and their environment. The CCA constrained CA axes by a suite of predictor variables by applying a multivariate multiple regression to the CA axis. This resulted in a set of new CCA axes that were linear combinations of predictor variables that explained a subset of variation of the original CA. The scores for environmental variables on each CCA represent the relationship of the variable with the axis such that the position of species and site scores in the ordination plot indicate their association with environmental variables. Two separate CCA analyses were completed for sampling years with available environmental data (i.e., 2018 to 2021), using different suites of constraining environmental variables: one using water chemistry and calcite variables (i.e., nutrients, metals, TDS, alkalinity, and calcite presence and concretion) and another using habitat variables (i.e., watershed and station gradient, watershed area, stream depth, width, and velocity, and substrate size and embeddedness). Habitat variables used in the development of the BIC predictive models (and their transformation; Minnow 2020b) were selected for inclusion in the CCA model with some redundant variables removed through best professional judgement. Key constituents of concern were considered for inclusion from concurrent water data, and only constituents with fewer than 15% of observations below the detection limit were considered. The Variance Inflation Factor (VIF) of the final variables were all below 20 indicating the variable coefficients were not strongly inflated by the presence of correlation among explanatory variables (i.e., no multicollinearity).

Prior to CA and CCA, the BIC data were $ln_{(x+1)}$ transformed and screened for rare taxa, as these can distort results. Taxa occurring in fewer than 10% of samples and constituting less than 1% of the total organism abundance, were excluded from the analysis. Water quality variables were log10 transformed, and values below reporting limits were substituted at the reporting limit. Scores for both taxa and areas were calculated using the vegan package (Oksanen et al. 2022) in R (R Core Team 2022) to evaluate the associations of organisms and stations.

A2 REFERENCES

- BCMOECCS. 2021a. British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture Guideline Summary. Water Quality Guideline Series, WQG-20. Prov. B.C., Victoria B.C.
- BCMOECCS. 2021b. Working Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture. Water Quality Guideline Series, WQG-08. Prov. B.C., Victoria B.C
- de Bruyn, A. and S.N. Luoma. 2021. Selenium Species Bioaccumulation Tool Draft Version 2.0. Prepared for Mariah Arnold, Teck Coal Limited, Sparwood, BC. February. Project 19133414/MQ2 Task 4.
- Golder. 2014. Benchmark Derivation Report for Selenium. Annex E of the Elk Valley Water Quality Plan. Prepared for Teck Coal Limited. July.
- Golder. 2020b. Updates to the Lotic and Lentic Statistical Bioaccumulation Models for Selenium in the Elk Valley. Prepared for Teck Coal Limited. November 2020.
- Golder. 2021c. Selenium Species Bioaccumulation Tool Draft Version 2.0. Prepared for Teck Coal Limited. February 2021.
- Minnow. 2020a. Technical Memo for the Elkview Operation Saturated Rock Fill Phase 2 Baseline Aquatic Monitoring Study, September 2019. Prepared for Teck Coal Limited, Sparwood, British Columbia. March 10, 2021. Project #197202.0058.
- Minnow. 2020b. Elk River Water Regional Aquatic Effects Monitoring Program (RAEMP) Final Report, 2017 2019. Prepared for Teck Coal Limited, Sparwood, British Columbia. March. Project #187202.0011.
- Minnow. 2021a. Technical Memo for the Elkview Operation Saturated Rock Fill Phase 2 Aquatic Monitoring Study of Existing Conditions, September 2020. Prepared for Teck Coal Limited, Sparwood, British Columbia. April 16, 2021. Project #197202.0058.
- Oksanen, J., F.G. Blachet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P.R. Minchin, and R.B. O'Hare. 2022. Package "vegan" for R. Community Ecology Package. https://cran.r-project.org/web/packages/vegan/vegan.pdf
- R Core Team. 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org
- Ruxton, G.D. 2006. The unequal variance t-test is an underused alternative to Student's t-test and the Mann–Whitney U test. Behavioral Ecology. 17: 668-690.
- Teck (Teck Coal Limited). 2014. Elk Valley Water Quality Plan. Submitted to the British Columbia Minister of Environment for approval on July 22, 2014.
- Whitmore, G.A. 1986. Prediction Limits for a Univariate Normal Observation. The American Statistician, 40: 141-143.

APPENDIX B DATA QUALITY REVIEW

DATA QUALITY REVIEW APPENDIX B

B1	INTRODUCTION	1
B1.1		
B1.2	Quality Control Samples	1
B2	WATER CHEMISTRY	4
	Laboratory Reporting Limits	4
	Laboratory and Field Blanks	
B2.3	Data Precision	5
	Data Accuracy	
	Hold Times	
	Other Concerns	
B2.7	Data Quality Statement	7
B3	SEDIMENT CHEMISTRY	8
B3.1	Laboratory Reporting Limits	8
	Laboratory Blanks	
	Data Precision	
	Data Accuracy	
	Hold Times	
B3.6	Data Quality Statement	9
B4	BENTHIC INVERTEBRATE COMMUNITY	10
B4.1		
	Subsampling Accuracy and Accuracy	
	Taxonomic Identification Accuracy	
B4.4	Data Quality Statement	10
B5	BENTHIC INVERTEBRATE TISSUE CHEMISTRY	12
B5.1	Laboratory Reporting Limits	12
	Data Accuracy and Precision	
B5.3	Data Quality Statement	12
В6	DATA QUALITY REVIEW SUMMARY	13
B7		14
D/	REFERENCES	. 14

B1 INTRODUCTION

B1.1 Background

A variety of factors can influence the physical, chemical, and biological measurements made in an environmental study and thus affect the accuracy and/or precision of the data. Depending on their magnitude, inaccuracy or imprecision have the potential to affect the reliability of conclusions made from data. Therefore, it is important to ensure that programs incorporate appropriate steps to control non-natural sources of data variability (i.e., minimize variability that does not reflect authentic spatial and temporal variability in the environment) and thus assure the quality of the data. Data quality as a concept is meaningful only when it relates to the intended use of the data. That is, one must know the context in which the data will be interpreted in order to establish a relevant basis for judging whether or not the data set is adequate. A Data Quality Review (DQR) involves the comparison of field and laboratory measurement performance to Data Quality Objectives (DQOs) established for a particular study, such as evaluation of Laboratory Reporting Limits (LRLs), blank sample data, data precision (based on field and laboratory duplicate samples), and data accuracy (based on matrix spike recoveries and/or analysis of standards or certified reference materials). Trusted analytical laboratories certified by Canadian Association for Laboratory Accreditation (CALA) or the National Environmental Laboratory Accreditation Program (NELAP) with a rigorous internal quality assurance program were selected to ensure the highest possible data quality. Data Quality Objectives were established a priori to reflect reasonable and achievable performance expectations (Table B.1). Programs involving many samples and analytes usually yield some results that exceed DQOs. This is particularly so for multi-element scans, as the analytical conditions are not necessarily optimal for every element included in the scan. Generally, scan results may be considered acceptable if no more than 20% of the parameters fail to meet DQOs. Overall, the intent of a DQR is not to reject any measurement that did not meet a DQO, but to ensure that any questionable data received more scrutiny to determine what effect, if any, this had on interpretation of results within the context of the project.

B1.2 Quality Control Samples

A DQR was conducted on all laboratory data collected as part of the 2021 Elkview Operations (EVO) Local Aquatic Effects Monitoring Program (LAEMP). The objective of a DQR is to define the overall quality of the data presented in the report, and, by extension, the confidence with which the data can be used to derive conclusions. A DQR involves the examination of analytical results associated with several types of Quality Control (QC) samples collected or

DRAFT June 2022 B-1

Table B.1: Laboratory Data Quality Objectives for the EVO LAEMP, 2021

				Study Component		
Quality Control Measure	Quality Control Sample Type	Water Chemistry	Selenium Speciation	Sediment Chemistry	Benthic Invertebrate Community	Benthic Invertebrate Tissue Chemistry
Wedsare		ALS Environmental	Brooks Applied Labs	ALS	Cordillera Consulting	TrichAnalytics
Analytical Laboratory LRLs	Comparison of actual LRL versus target LRL	LRL for each parameter should be at least as low as applicable guidelines, benchmarks, and screening values	LRL for each parameter should be at least as low as applicable guidelines, benchmarks, and screening values	LRL for each parameter should be at least as low as applicable guidelines and benchmarks	-	LRL for each parameter should be at least as low as applicable guidelines and benchmarks
Blank Analysis	Field, Trip, or Laboratory Blank	Concentrations measured in blank samples should be < LRL	Concentrations measured in blank samples should be < LRL	Concentrations measured in blank samples should be < LRL	-	-
Laboratory Precision	<4% (pH) <10% (conductivity) ≤15% RPD or <2x LRL (ORP, turbidity) ≤20% RPD or <2x LRL (all remaining analytes)		≤25% RPD (selenium species) ≤20% RPD (total selenium)	0.2 (pH) ≤5% to 25% RPD (particle size) ≤20% RPD (inorganic and total carbon, moisture) ≤30% RPD (all remaining analytes) ≤40% RPD (aluminum, barium, lead, mercury, molybdenum, potassium, silver, sodium, strontium, tin, titanium) ≤50% RPD (PAHs)	-	≤60% RPD (calcium and strontium) ≤40% RPD (all remaining analytes)
	Organism Sorting Efficiency	-	-	-	≥ 95%	-
	Organism Sub-Sampling Precision and Accuracy	-	-	-	<20% between subsamples	-
	Recovery of Blank Spike	-	75% to 125% (methylseleninic acid, selenate, selenite, selenocyanate, selenomethionine, total selenium)	-	-	-
	Recovery of Matrix Spike	70% to 130% (TKN, orthophosphate, phosphorus, TOC, DOC, total and dissolved metals) 75% to 125% (ammonia, bromide, chloride, fluoride, nitrate, nitrite, sulphate)	75% to 125% (selenate, selenite, selenocyanate, selenomethionine, total selenium)	-	-	-
	Matrix Spike Duplicate	-	75% to 125% (selenate, selenite, selenocyanate, selenomethionine, total selenium)		-	-
Accuracy	Recovery of Certified Reference Material	-	75% to 125% (total selenium)	0.15 mg/kg to 0.55 mg/kg (Se) 0.16 mg/kg to 0.36 mg/kg (Ag) 0.2 mg/kg to 4.2 mg/kg (Sn) 1 mg/kg to 2 mg/kg (W) 70% to 130% (all other metals) 7.7 to 8.3 pH units (pH) 50% to 130% (Naphthalene) 80% to 120% (Inorganic Carbon, Total Carbon) 60% to 130% (all other PAHs) 0% to 26.5% (particle size)	-	60% to 140% (antimony, barium, boron, silver, tin, titanium) 90% to 110% (selenium) 70% to 130% (all remaining analytes)
	Recovery of Surrogate	-	-	60% to 130% (d10-acenaphthene, d12-chrysene, d8-naphthalene, d10-phenanthrene)	-	-
	Laboratory Control Sample	6.9 to 7.1 (pH) 75% to 125% (TKN) 80% to 120% (orthophosphate, phosphorus, DOC, TOC, total and dissolved metals) 85% to 115% (acidity, alkalinity, ammonia, bromide, TDS, TSS, turbidity) 90% to 110% (conductivity, chloride, fluoride, nitrate, nitrite, sulphate) 95.4% to 104% (ORP)	-	0 to 26.5 (particle size) 60% to 130% (PAHs) 80% to 120% (inorganic carbon, total carbon) 7.4 to 8 (pH 1:2 soil:water)	-	-
	Taxonomic Accuracy	-	-	-	<5% TIR	-

Notes: LRL = Laboratory Reporting Limit; "-" = not applicable; < = less than; < = less than or equal to; % = percent; RPD = Relative Percent Difference; ORP = oxidation-reduction potential; TKN = Total Kjeldahl Nitrogen; TOC = total organic carbon; DOC = dissolved organic carbon; TSS = total suspended solids; TDS = total dissolved solids; mg/kg dw = milligrams per kilogram dry weight; TIR = total identification error rate.

prepared in the field and laboratory. General QC samples collected for this project include the following:

- Blanks are samples of de-ionized water and/or appropriate reagent(s) that are handled and analyzed in the same way as regular samples. These samples will reflect any contamination of samples occurring in the field (in the case of field or travel blanks) or in the laboratory (in the case of laboratory or method blanks). Analyte concentrations should be below detection.
- Laboratory Duplicates are replicate sub-samples created in the laboratory from randomly selected field samples which are sub-sampled and then analyzed independently using identical analytical methods. The laboratory duplicate sample results reflect any variability introduced during laboratory sample handling and analysis and thus provide a measure of laboratory precision.
- **Field Duplicates** are samples collected from a randomly selected field station that are homogenized to the extent possible, split and analyzed separately in the laboratory. The duplicate samples are handled and analyzed in an identical manner in the laboratory.
- Spike Recovery Samples are created in the laboratory by adding a known amount/concentration of a given analyte (or mixture of analytes) to a randomly selected test sample previously divided to create two sub-samples. The spiked and regular sub-samples are then analyzed in an identical manner. The spike recovery represents the difference between the measured spike amount (total amount in the spiked sample minus the amount in the original sample) relative to the known spike amount (as a percentage). Two types of spike recovery samples are commonly analyzed: spiked blanks (or blank spikes) are created using laboratory control materials whereas matrix spikes (MS) are created using field-collected samples. The analysis of spiked samples provides an indication of the accuracy of analytical results.
- Certified Reference Materials (CRM) or Reference Materials (RM) are commercially
 prepared (or commercially homogenized) samples containing known chemical
 concentrations that are processed and analyzed along with batches of
 environmental samples. The sample results are then compared to the known
 concentrations to provide a measure of analytical accuracy. The results are reported
 as the percent of the known concentration that was recovered in the analysis.
- Laboratory Control Samples are created in the laboratory to have a known analyte concentration in a matrix free of interferences, such as deionized water or reference sand. The sample results are compared to the target results to confirm that

DRAFT June 2022 B-2

the analytical method is accurate in a purified reference sample. The results are reported as the percent of the known concentration that was recovered in the analysis.

- Laboratory Sorting Duplicates are randomly selected grabs of the initially sorted community material. These samples are recounted and the number of invertebrates that were not recovered during the initial sort was determined. In order to reduce bias, recounting is conducted by an analyst uninvolved in the initial sample processing. This check is performed on 10% of samples and determines the accuracy through assessment of recovery (sorting) efficiency and quantifies any under-estimation of organism enumeration.
- Taxonomic Quality Control Samples are a randomly selected portion of a benthic invertebrate community field sample to be assessed by the laboratory using an internal quality control audit. A blind re-enumeration and re-identification of random samples is performed by an analyst uninvolved in the original sample processing. This assessment quantifies taxonomic misidentification among laboratory analysts and ensures accurate organism identities are reported.
- Laboratory Subsamples are community samples prepared by the laboratory to
 ensure that the fraction of the total sample examined was an accurate representation
 of the total number of organisms. By comparing the amount recovered between at
 least two sub-samples, one can assess the analytical precision. In addition,
 comparisons of the sub-samples from the whole community sample allows for an
 evaluation of sub-sampling accuracy.

DRAFT June 2022 | B-3

B2 WATER CHEMISTRY

B2.1 Laboratory Reporting Limits

The analytical reports for water chemistry from ALS Environmental (ALS; Appendix H) and Brooks Applied Labs (BAL; Appendix H) were examined to assess LRLs relative to analyte concentrations and applicable guidelines (Tables B.2 and B.3). Water quality data from 2021 were entered directly into Teck's EQuIS database and thus were assessed as part of Teck's annual water quality reporting for 2021. The LRLs for water quality analytes were assessed relative to British Columbia Water Quality Guidelines (BC WQG; BCMOECCS 2021a, BCMOECCS 2021b) for the protection of freshwater aquatic life, Elk Valley Water Quality Plan (EVWQP) benchmarks, screening values for water quality (Teck 2014), and relevant site-specific benchmarks. Several analytes were reported at concentrations below the LRL in 100% of samples (Tables B.2 and B.3). For those analytes with one or more result(s) below the LRL, achieved LRLs were consistently lower than the BC WQG, EVWQP benchmarks, and screening values for water quality, if relevant guidelines exist. Therefore, the achieved LRLs were appropriate for this study.

B2.2 Laboratory and Field Blanks

A total of 133 method blank (MB) samples were analyzed in the ALS laboratory reports for water chemistry (Appendix H). Of the 693 reported method blank results, only one result did not meet the laboratory DQO (total arsenic, see laboratory report CG210419). The above MB result for total arsenic caused the LRL to be adjusted in total arsenic samples in laboratory report CG2104194 that were below five-times the MB result concentration. Total arsenic concentrations in the two water samples analyzed in the above laboratory report were below detection, possibly due to the adjusted LRL. Overall, as only 0.14% of MB samples did not meet the laboratory DQO and all MB results for analytes of concern met the laboratory DQO, these results do not suggest significant laboratory contamination.

A total of 41 MB samples were analyzed in the BAL laboratory reports (Appendix H). Of the 177 reported method blank results, seven had detectable concentrations: total selenium in four blank samples and selenite in three blank samples (see laboratory reports 2109233 and 2109308 in Appendix H). For all 12 of the above results, concentrations were below the LRL despite exceeding the method detection limit, and so met the DQO. Therefore, all BAL MB samples met the laboratory DQO.

DRAFT June 2022 | B-4

Table B.2: Laboratory Reporting Limit (LRL) Evaluation for Water Chemistry Analyses, EVO LAEMP, 2021

Parameter	Units	BC WQG ^a		EVWQP Level 1 Benchmarks/ Relevant	Range of LRLs	No. LRLs >	No. Sample Results
. u.uetc.	5 1t5	Long-term	Short-term	Screening Values ^b		Guideline ^c	<lrl< th=""></lrl<>
Physical Tests							
Total Suspended Solids	mg/L	-	-	-	1	-	6 (30.0%)
Turbidity	NTU	-	-	-	0.1	-	1 (5.00%)
Anions and Nutrients							, , ,
Acidity (as CaCO ₃)	mg/L	-	-	-	2	-	15 (75.0%)
Alkalinity, Carbonate (as CO ₃)	mg/L	-	-	-	1	-	8 (40.0%)
Alkalinity, Carbonate (as CaCO ₃)	mg/L	-	-	-	1	-	8 (40.0%)
Alkalinity, Hydroxide (as CaCO ₃)	mg/L	-	-	-	1	-	20 (100%)
Alkalinity, Hydroxide (as OH)	mg/L	-	-	-	1	-	20 (100%)
Bromide	mg/L	-	-		0.25	-	20 (100%)
Fluoride	mg/L	-	1.52	-	0.1	0	1 (5.00%)
Ammonia, Total (as N) ^d	mg/L	0.102	0.752	-	0.005	0	5 (25.0%)
Nitrite (as N)	mg/L	0.02	0.06	-	0.005	0	11 (55.0%)
Total Kjeldahl Nitrogen	mg/L	-	-	-	0.05	-	8 (40.0%)
Orthophosphate	mg/L	-	-	-	0.001	-	6 (30.0%)
Phosphorus - Total	mg/L	-	-	<u>-</u>	0.002 to 0.01	-	1 (5.00%)
Total Metals							
Aluminum	mg/L	-	-	-	0.003	-	7 (35.0%)
Antimony	mg/L	0.009	-	-	0.0001	0	6 (30.0%)
Arsenic	mg/L	-	0.005	-	0.0001 to 0.0004	0	2 (10.0%)
Beryllium	μg/L	0.13	-	-	0.02	0	20 (100%)
Bismuth	mg/L	-	-	-	0.00005	-	20 (100%)
Boron	mg/L	1.2	-	-	0.01	0	4 (20.0%)
Chromium ^e	mg/L	0.001	-	-	0.0001	0	4 (20.0%)
Cobalt	μg/L	4	110	-	0.1	0	12 (60.0%)
Copper	mg/L	-	-	-	0.0005	-	20 (100%)
Iron	mg/L	-	1	-	0.01	0	10 (50.0%)
Lead ^g	mg/L	0.0091	0.149	-	0.00005	0	18 (90.0%)
Manganese ^f	mg/L	1.31	2.3	-	0.0001	0	3 (15.0%)
Mercury ^g	μg/L	0.00125	-	-	0.0005 to 0.5	0	16 (80.0%)
Nickel ^f	mg/L	0.137	-	0.0053	0.0005	0	3 (15.0%)
Silver ^f	mg/L	0.0015	0.003	-	0.00001 0.00001	0	20 (100%)
Thallium Tin	mg/L	0.0008	-	-		0	12 (60.0%)
Titanium	mg/L	-	-	-	0.0001 0.0003	-	20 (100%)
Vanadium	mg/L	-	-	-	0.0005	-	17 (85.0%) 19 (95.0%)
Zinc ^f	mg/L	0.06	0.0855	-	0.003	0	` ,
Dissolved Metals	mg/L	0.00	0.0655	-	0.003	U	15 (75.0%)
Aluminum ^h	mg/L	0.05	0.1		0.001	0	16 (80.0%)
		0.05	0.1	-	0.001	U	5 (25.0%)
Antimony Beryllium	mg/L μg/L	<u>-</u>	_	- -	0.0001		20 (100%)
Bismuth	μg/L mg/L	-	-	-	0.02	-	14 (100%)
Boron	mg/L	-	_	<u>-</u>	0.0003	-	2 (14.3%)
Cadmium ^f	μg/L	0.299	0.954	0.199	0.005	0	1 (5.00%)
Chromium	mg/L	-	-	0.199	0.0001	-	4 (20.0%)
Cobalt	μg/L	-	_	<u>-</u>	0.0001		10 (71.4%)
Copper	mg/L	-	_		0.0002	<u>-</u>	17 (85.0%)
Iron	mg/L	-	0.35	<u>-</u>	0.0002	0	19 (95.0%)
Lead	mg/L	-	-	-	0.00005	-	14 (100%)
Manganese	mg/L	-	-	-	0.0001	-	3 (15.0%)
Mercury	μg/L	-	-	-	0.000005	-	20 (100%)
Nickel	mg/L	-	-	-	0.0005	-	2 (10.0%)
Silver	mg/L	-	-	-	0.00001	-	20 (100%)
Thallium	mg/L	-	-	-	0.00001	-	11 (55.0%)
Tin	mg/L	-	-	-	0.0001	-	14 (100%)
Titanium	mg/L	-	-	-	0.0003	-	19 (95.0%)
Vanadium	mg/L	-	-	-	0.0005	-	20 (100%)
Zinc	mg/L	-	_	-	0.001	_	6 (30.0%)

Notes: Only analytes with at least one result < Laboratory Reporting Limit (LRL) were displayed. The total number of samples in 2021 (n) was 19, which included three field duplicate samples. EVWQP = Elk Valley Water Quality Plan; "-" = no applicable guideline exists.

^a British Columbia Water Quality Guidelines for the protection of Aquatic Life (BCMOECCS 2021a, BCMOECCS 2021b).

b Where more than one EVWQP Level 1 Benchmark or screening value was applicable, the most conservative (lowest) value was used.

^c The LRLs for all analytes were consistently less than the applicable EVWQP Level 1 benchmarks (Teck 2014) or screening values (Golder 2014; Teck 2020).

^d Guideline is the most conservative (lowest), based on estimates of a maximum temperature of 20°C and a minimum pH of 8.04.

^e Guideline for Chromium VI (0.001 mg/L) was selected, as this is the principal species found in surface waters.

f Hardness-based guidelines calculated using the minimum hardness observed for all samples (402 mg/L).

 $^{^{\}rm g}$ The most conservative guideline (0.125 $\mu g/L)$ was applied.

 $^{^{\}rm h}$ Guideline based on minimum field pH (8.04).

Table B.3: Laboratory Reporting Limit (LRL) Evaluation for Selenium Speciation Analyses, EVO LAEMP, 2021

		BC V	VQG ^a				
Parameter	Units	Long- term	Short- term	EVWQP Level 1 Benchmarks/ Relevant Screening Values ^b	Range of LRLs	No. LRLs > Guideline	No. Sample Results < LRL
DMSeO - Dimethylselenoxide	mg/L	-	-	-	0.01	-	18 (85.7%)
DMSe - Dimethyl Selenide	mg/L	-	-	-	0.022	-	5 (100%)
DMDSe- Dimethyl Diselenide	mg/L	-	-	-	0.022	-	5 (100%)
MeSe(IV) - Methylseleninic Acid	mg/L	-	-	-	0.01	-	13 (61.9%)
MeSe(VI) - Methaneselenonic Acid	mg/L	-	-	-	0.01	-	21 (100%)
Se(IV) - Selenite	mg/L	-	-	-	0.01	-	0
Se(VI) - Selenate	mg/L	-	-	-	0.01	-	0
SeCN - Selenocyanate	mg/L	-	-	-	0.01	-	21 (100%)
SeMe - Selenomethionine	mg/L	-	-	-	0.01	-	21 (100%)
Selenosulfate	mg/L	-	-	-	0.01	-	21 (100%)
Selenium Unknown	mg/L	-	-	-	0.01	-	21 (100%)

Notes: Only analytes with at least one result < LRL or an LRL above guidelines were displayed. The total number of samples in 2021 (n) was 19 including three field duplicate samples. EVWQP = Elk Valley Water Quality Plan; LRL = Laboratory Reporting Limit, "-" = no applicable guideline exists.

^a British Columbia Water Quality Guidelines for the protection of Aquatic Life (BCMOECCS 2021a, BCMOECCS 2021b).

^b Where more than one EVWQP Level 1 Benchmark or screening value was applicable, the most conservative (lowest) value was used.

As the overall number of DQO exceedances was low (ALS: 0.14%; BAL: 0%), the impacted results were considered to have a negligible impact on data interpretability and laboratory precision was considered excellent.

Three field blank samples and three trip blank samples were submitted to ALS for water chemistry analyses to assess the potential for field sampling contamination (Table B.4). Of the 291 field blank individual analyte results, 98.2% were below detection and so met the DQO (Table B.1). Of the 226 trip blank individual analyte results, 98.6% were below detection and so met the DQO (Table B.1). Analyte results in field blank samples that did not meet the laboratory DQO included one result for dissolved molybdenum and two results for acidity and total ammonia. Analyte results in trip blank samples that did not meet the laboratory DQO included one result for total ammonia and two results for acidity. Overall, the low frequency of detectable concentrations in both field and trip blanks does not suggest significant field contamination.

One field blank sample was submitted to BAL to assess the potential for field sampling contamination associated with selenium speciation samples (Table B.5). Of the 13 analyte results, two (15.4%) did not meet the laboratory DQO. These consisted of one result for selenate and one result for total selenium. The relatively high number of DQO exceedances for samples submitted to BAL (15.4%) indicates potential field sampling contamination, and this will be taken into account during data interpretation. However, the high percentage of DQO exceedances associated with BAL field blank samples is in part due to the small sample size, and in future studies more field blanks will be submitted to BAL to gain a better understanding of potential field sampling contamination. Trip blank samples were not collected for selenium speciation.

B2.3 Data Precision

A total of 19 laboratory duplicate samples were used to evaluate precision within the ALS laboratory reports (Appendix H). Out of 695 individual analyte results, only three did not meet the laboratory DQO. These three TKN results were biased low due to interference from high nitrate in the parent sample that was used, which causes a negative bias in TKN (see laboratory reports CG2104194, CG2104005, and CG2106846 in Appendix H). As these three DQO exceedances only represent 0.43% of laboratory duplicate results, ALS laboratory analytical precision was overall considered excellent.

A total of five laboratory duplicate samples were used to evaluate precision within the BAL laboratory reports (Appendix H). Out of the 32 individual analyte results, all met the laboratory DQO. Therefore, BAL laboratory analytical precision was considered excellent.

DRAFT June 2022 | B-5

Table B.4: Field Blank and Trip Blank Evaluation for Water Chemistry Analyses, EVO LAEMP, 2021

Parameter	Units	Range of LRLs	No. Field Blank Results > LRL	No. Trip Blank Results > LRL
Anions and Nutrients				
Acidity (as CaCO ₃)	mg/L	2	2 (66.7%)	2 (66.7%)
Ammonia, Total (as N)	mg/L	0.005	2 (66.7%)	1 (33.3%)
Dissolved Metals				
Molybdenum	mg/L	0.00005	1 (33.3%)	0 (0%)

Notes: LRL = Laboratory Reporting Limit. Three field blank samples and three trip blank sample were collected in 2021. Only analytes with at least one blank results > LRL were displayed. Calcium, magnesium, potassium, and sodium are the only dissolved metals measured in trip blank samples.

Table B.5: Field Blank Evaluation for Selenium Speciation Analyses, EVO LAEMP, 2021

Parameter	Parameter Units		No. LRLs > Guideline	No. Field Blank Results > LRL
Se(VI) - Selenate	mg/L	0.01	-	1 (100%)
Selenium (Se) - Total	μg/L	0.01	0	1 (100%)

Notes: LRL = Laboratory Reporting Limit. One field blank sample was collected in 2021. Only analytes with at least one blank results > LRL were displayed.

Three sets of field duplicate samples were collected to assess field sampling precision for water chemistry analyzed by ALS (Table B.6). Several relative percent differences (RPDs) could not be calculated as analyte concentrations in both samples were below the LRL. Of the 194 RPDs that could be calculated, 18 analyte sets had RPDs greater than 30% (9.3% of all pairs; Table B.6). Of the comparisons with RPDs greater than 30%, five RPDs resulted from analyte concentrations near and below the LRL, where greater variability is expected. RPDs for analytes of primary concern that exceeded the DQO included one RPD for total phosphorus, dissolved organic carbon (DOC), total boron, total mercury, and total and dissolved aluminum, and two RPDs for total suspended solids (TSS), turbidity, Total Kjeldahl Nitrogen (TKN), and total ammonia. RPDs for analytes that are not of primary concern that exceeded the DQO included three RPDs for cation-anion difference. Overall, as only 9.3% of calculable RPDs exceeded the DQO, water chemistry samples submitted to ALS were considered to have adequate field precision and reproducibility.

Three sets of field duplicate samples were collected to assess field sampling precision for water chemistry analyzed by BAL (Table B.7). Several relative percent differences (RPDs) could not be calculated as analyte concentrations in both samples were below the LRL. Of the 14 RPDs that could be calculated, two analyte sets had RPDs greater than 30% (14.3% of all pairs; Table B.7). Both of the RPDs greater than 30% were for methaneselenonic acid. Overall, as 14.3% of calculable RPDs exceeded the DQO, water chemistry samples submitted to BAL were considered to have adequate field precision and reproducibility.

B2.4 Data Accuracy

Data accuracy within the ALS water chemistry reports was evaluated based on the results of 152 laboratory control samples (LCS) and 21 matrix spike (MS) samples (Appendix H). All 684 LCS results and 612 MS results met the laboratory DQO. Recovery could not be calculated in numerous MS samples as background levels were greater than or equal to one-times spike levels. However, as several other QC tests were successful and do not imply uncertainties as to ALS data accuracy, MS recovery not being calculable in several MS samples does not present a great concern as to the reliability of the data. Overall, all results met the laboratory DQO, ALS laboratory analytical precision was considered excellent.

Data accuracy within the BAL laboratory reports was evaluated based on results of 21 LCS, six MS samples, six Matrix Spike Duplicate (MSD) samples, and 14 Reference Material (RM) samples (Appendix H). All 39 LCS results, 13 MS results, 12 MSD results, and 14 RM results met the laboratory DQO. Therefore, BAL laboratory analytical accuracy was considered excellent.

DRAFT June 2022 B-6

Table B.6: Field Duplicate Results for Water Chemistry Analyses, EVO LAEMP, 2021

Page	Parameter	Units	RG_ERCKUT _WS_LAEMP_ EVO_2021-12- 14_1330	RG_RIVER_ WS_LAEMP_ EVO_2021- 09_1330	RPD (%)	RG_MIDER_ WS_LAEMP_ EVO_2021-09- 09_1435	RG_RIVER_ WS_2021-09- 09_1435	RPD (%)	RG_MICOMP_ WS_LAEMP_ EVO_2021-09- 13_1600	RG_RIVER_ WS_2021-09- 13_1600	RPD (%)
Haddones (in CaCQs)	Physical Tests		_			_			_		
PH	Conductivity	μS/cm	1,960	1,990	1.52	398	402	1.00	529	536	1.31
CAPP	Hardness (as CaCO₃)	mg/L	1,390	1,420	2.14	214	210	1.89	271	284	4.68
Total Suspended Solicies	•	рН	7.76	8.22	5.76	8.42	8.42	0	8.51	8.51	0
Trast Dissolved Solids	ORP	mV	439	421	4.19	488	449	8.32	491	453	8.05
Turbasiny NTU -0.10 2.08 182 0.350 0.260 18.8 0.180 0.260 32.6	Total Suspended Solids	mg/L	1,670	1,720	2.95	261	251	3.91	348	337	3.21
Abadimy Abad	Total Dissolved Solids	mg/L	2.60	7.60	98.0	<1.0	<1.0	-	2.50	1.60	43.9
Acadety (aca CaCo)	Turbidity	NTU	<0.10	2.08	182	0.350	0.290	18.8	0.180	0.250	32.6
Akademiry, Bierarbonetic (ase ECQ-), mg/L 484 478 1.25 149 147 1.35 160 164 2.47	Anions and Nutrients										
Akalainty, Elarabonate (as HCO_s) mgl_s 590 983 1.19 182 1779 1.96 990 196 200 2.00	Acidity (as CaCO ₃)	mg/L	8.40	10.5	22.2	<2.0	<2.0	-	<2.0	<2.0	-
Akalainty, Carbonate (as CaCo ₂) mgL <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	Alkalinity, Bicarbonate (as CaCO ₃)	mg/L	484	478	1.25	149	147	1.35	160	164	2.47
Abadinity, Carbonate (as CD2) mgl, <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <	Alkalinity, Bicarbonate (as HCO ₃)	mg/L	590	583	1.19	182	179	1.66	196	200	2.02
Akasimity, Carbonate (as COQ) mg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.	Alkalinity, Carbonate (as CaCO ₃)	mg/L	<1.0	<1.0	-	11.8	12.4	4.96	9.00	12.0	28.6
Alkalinty, Hydroxide (as CaCO ₂) mg/L 41.0	Alkalinity, Carbonate (as CO ₃)	mg/L	<1.0	<1.0	-	7.10	7.40		5.40	7.20	28.6
Akadalinly, Tydroxide (as OH) mg/L 41.0	Alkalinity, Hydroxide (as CaCO ₃)	_	<1.0	<1.0	_	<1.0	<1.0	_	<1.0	<1.0	_
Akalaliny, Total (as CaCO ₂) mg/L 494 478 1,26 161 100 0,052 175 176 0,570	J. J. (0)				_			_			_
Bonnide	· · · · · · · · · · · · · · · · · · ·	_			1 25			0.623			0.570
Chloride	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							0.020			-
Fluoride		_						0.897			1.35
Ammonia, Total (as N)		_									
Nitrale (as N) mg/L 17.5 17.6 0.570 0.153 0.131 15.5 0.704 0.703 0.142 Nitrale (as N) mg/L 40.0050 40.0050 - 40.0050 40.0050 0.0050 1 0.00501 - 0.00330 0.00480 0.00440 0.00320 3.65 0.00480 0		_						_			
Ninfe (as N)		_									
Total Kijeklash Nitrogen mg/L	` '	_			-			-			
Orthophosphete mg/L 0.02222 0.0215 3.20 0.00300 0.00270 10.5 <0.0010 0.00120 83 0.00440 0.00329 31.6 Sulphate mg/L 802 807 0.822 62.4 62.0 0.643 116 117 0.838 Aution Sum meg/L 27.8 27.8 0.456 4.54 4.94 1.58 5.80 5.88 4.88 Cation Sum meg/L 28.1 28.6 1.76 4.47 4.40 1.58 5.80 5.88 4.88 Cation Amin Difference % 0.537 1.42 90.2 0.997 1.58 44.0 3.70 1.67 7.87 4.88 Cation Amin Ratio % 101 103 1.36 98.0 96.9 1.33 3.0 0.86 1.20 3.30 Organic Carbon mg/L 0.670 0.680 1.74 1.75 1.81 3.37 0.860 1.20 33.0 <th< td=""><td>, ,</td><td>_</td><td></td><td></td><td>153</td><td></td><td></td><td>19.6</td><td></td><td></td><td></td></th<>	, ,	_			153			19.6			
Phosphorus, Total		_									
Sulphate		_									
Anion Sum meq/L 27.8 27.8 27.8 0 4.56 4.54 4.04 6.03 6.08 0.826 Cation Sum meq/L 28.1 28.6 1.76 4.47 4.40 1.58 5.60 5.88 4.88 Cation - Anion Ratio % 0.537 1.42 90.2 0.997 1.56 44.0 3.70 1.67 75.6 Cation - Anion Ratio % 101 103 1.96 98.0 96.9 1.13 92.9 96.7 4.01 Organic Increation mg/L 0.680 0.810 1.74 1.75 1.81 3.37 0.860 1.20 33.0 Total Organic Carbon mg/L 0.670 0.680 1.48 1.80 1.80 0.0980 1.00 2.02 Autimium mg/L 0.00020 0.00020 0.000550 0.00750 30.8 0.00360 1.00 2.2 Assenic mg/L 0.00020 0.00020 0.000190 0.	•	_		807		62.4	62.0			117	
Cation - Anion Difference % 0.537 1.42 99.2 0.997 1.56 44.0 3.70 1.67 7.56 Cation - Anion Ratio % 101 103 1.96 98.0 96.9 1.13 92.9 96.7 4.01 Oissolved Organic Carbon mg/L 0.680 0.810 17.4 1.75 1.81 3.37 0.860 1.20 33.0 Total Organic Carbon mg/L 0.670 0.680 1.48 1.80 1.80 0 0.980 1.00 2.02 7.00 2.00 0.0050 0.00750 30.8 0.0080 1.00 2.0 2.0 0.0018 4.0 0.0030 18.2 4.0	Anion Sum	_	27.8	27.8	0	4.56	4.54		6.03		
Cation - Anion Ratio % 101 103 1.96 98.0 96.9 1.13 92.9 96.7 4.01 Organic / Inorganic Carbon mg/L 0.680 0.810 17.4 1.75 1.81 3.37 0.860 1.20 33.0 Total Organic Carbon mg/L 0.680 1.80 1.80 1.00 0.980 1.00 2.02 Total Metals Total Metals Total Metals Total Metals 4.00 1.80 0.0030 1.00 2.00 Aurinium mg/L 0.000200 0.00060 - 0.00550 0.00070 0.00010 - 0.000120 0.00010 - 0.000120 - 0.00010 - 0.00010 - 0.00010 - 0.00020 0.00010 - 0.00010 - 0.00020 0.00010 - 0.00020 0.00010 - 0.00020 - 0.00020 0.00010 - 0.00020 - 0.00020 0.00020 0.00020 0.00020 0.00020 <td>Cation Sum</td> <td>meq/L</td> <td>28.1</td> <td>28.6</td> <td>1.76</td> <td>4.47</td> <td>4.40</td> <td>1.58</td> <td>5.60</td> <td>5.88</td> <td>4.88</td>	Cation Sum	meq/L	28.1	28.6	1.76	4.47	4.40	1.58	5.60	5.88	4.88
Organic Linorganic Carbon mg/L 0.680 0.810 1.7.4 1.7.5 1.81 3.37 0.860 1.20 33.0 Total Organic Carbon mg/L 0.670 0.680 1.48 1.80 1.80 0 0.980 1.20 33.0 Total Organic Carbon mg/L 0.0030 <0.0060	Cation - Anion Difference	%	0.537	1.42	90.2	0.997	1.56	44.0	3.70	1.67	75.6
Dissolved Organic Carbon mg/L 0.680 0.810 17.4 1.75 1.81 3.37 0.860 1.20 33.0 Total Organic Carbon mg/L 0.670 0.680 1.48 1.80 1.80 0 0.980 1.00 2.02 Total Mullimum mg/L 0.0030 0.0060 0.00550 0.00750 30.8 0.00360 0.00030 18.2 Altiminum mg/L 0.000200 0.000200 0.00010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.0000010 0.0000010 0.0000010 0.0000010 0.0000010 0.0000010 0.0000010 0.0000010 0.0000010 0.0000010 0.00000010 0.0000010 0.0000010 0.0000010 0.0000010 0.0000010 0.0000010 0.0000010 0.0000010 0.0000010 0.0000010 0.0000010 0.0000010 0.0000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.000010 0.00010 0.0000	Cation - Anion Ratio	%	101	103	1.96	98.0	96.9	1.13	92.9	96.7	4.01
Total Organic Carbon mg/L 0.670 0.680 1.48 1.80 1.80 0 0.980 1.00 2.02	Organic / Inorganic Carbon										
Name		mg/L	0.680	0.810	17.4	1.75	1.81	3.37	0.860	1.20	33.0
Aluminium mg/L <0.0030 <0.0060 - 0.00550 0.00750 30.8 0.00360 <0.0030 18.2 Antimony mg/L 0.000220 0 <0.00010	Total Organic Carbon	mg/L	0.670	0.680	1.48	1.80	1.80	0	0.980	1.00	2.02
Antimony	Total Metals										
Arsenic mg/L 0.000250 0.000270 7.69 0.000190 0.00180 5.41 0.00020 0.000170 16.2 Barium mg/L 0.0652 0.0664 1.82 0.113 0.114 0.881 0.116 0.115 0.068 Bismuth μg/L <0.020	Aluminum	_						30.8			18.2
Barlum	,	_			_						
Beryllium		_									
Bismuth		_			1.82			0.881			0.866
Boron	-				-			-			-
Cadmium μg/L 0.0819 0.104 23.8 0.0227 0.0192 16.7 0.0263 0.0247 6.27 Calcium mg/L 263 267 1.51 53.7 55.0 2.39 69.2 68.4 1.16 Chromium mg/L 0.000200 0.000120 0.000120 0.000140 0.000140 0.000120 15.4 Cobalt μg/L <0.10		_			-			-			-
Calcium mg/L 263 267 1.51 53.7 55.0 2.39 69.2 68.4 1.16 Chromium mg/L 0.000200 <0.000120											
Chromium mg/L 0.000200 <0.00020 0 0.000120 0 0.000140 0.000140 0.000120 15.4 Cobalt μg/L <0.10 <0.20 - <0.10 <0.10 - <0.10 <0.010 - Copper mg/L <0.00050 <0.00100 - <0.00050 <0.00050 - <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 </td <td></td>											
Cobalt μg/L < 0.10 < 0.20 - < 0.10 < 0.10 - < 0.10 < 0.000 - < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.000050 < 0.000050 < 0.000050 < 0.000050 < 0.000050 < 0.000050 < 0.000050 < 0.000050 < 0.000050 < 0.000050 < 0.000050 < 0.000050 < 0.000050 < 0.000050 < 0.000050 < 0.000050 < 0.000050 < 0.000050 < 0.000050 < 0.000050 < 0.000050 < 0.00114 0.01											
Copper mg/L < 0.00050 < 0.00100 - < 0.00050 - < 0.00050 < 0.00050 - Iron mg/L < 0.010		_			_						
Iron											
Lead mg/L <0.000050 <0.000100 - <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000114 0.00114 0.0114 0.0114 0.0114 0.0114 0.0114 0.0114 0.0114 0.0114 0.0114 0.0114 0.0114 0.0114 0.00144 2.11 0.00322 0.00288 11.1 Mercury µg/L 0.850 <0.50		_									
Lithium mg/L 0.0281 0.0288 2.46 0.00660 0.00670 1.50 0.0114 0.0114 0 Magnesium mg/L 156 157 0.639 16.3 16.6 1.82 26.8 26.7 0.374 Manganese mg/L <0.00010		_						-			20.1
Magnesium mg/L 156 157 0.639 16.3 16.6 1.82 26.8 26.7 0.374 Manganese mg/L <0.00010		_						1 50			-
Manganese mg/L <0.00010 <0.00020 - 0.00141 0.00144 2.11 0.00322 0.00288 11.1 Mercury μg/L 0.850 <0.50		_									
Mercury μg/L 0.850 <0.50 51.9 0.000530 0.000530 0 <0.00050 <0.00050 - Molybdenum mg/L 0.00104 0.00108 3.77 0.000858 0.000877 2.19 0.00173 0.00179 3.41 Nickel mg/L 0.000900 <0.00100		_									
Molybdenum mg/L 0.00104 0.00108 3.77 0.000858 0.000877 2.19 0.00173 0.00179 3.41 Nickel mg/L 0.000900 <0.00100		_									
Nickel mg/L 0.000900 <0.00100 10.5 0.000700 0.000710 1.42 0.00191 0.00188 1.58 Potassium mg/L 2.73 2.72 0.367 0.680 0.684 0.587 1.06 1.07 0.939 Selenium μg/L 169 161 4.85 2.03 1.90 6.62 7.28 7.14 1.94 Silicon mg/L 3.98 3.97 0.252 2.15 2.25 4.55 2.34 2.32 0.858 Silver mg/L <0.000010	-										
Potassium mg/L 2.73 2.72 0.367 0.680 0.684 0.587 1.06 1.07 0.939 Selenium μg/L 169 161 4.85 2.03 1.90 6.62 7.28 7.14 1.94 Silicon mg/L 3.98 3.97 0.252 2.15 2.25 4.55 2.34 2.32 0.858 Silver mg/L <0.000010		_									
Selenium µg/L 169 161 4.85 2.03 1.90 6.62 7.28 7.14 1.94 Silicon mg/L 3.98 3.97 0.252 2.15 2.25 4.55 2.34 2.32 0.858 Silver mg/L <0.000010		_									
Silicon mg/L 3.98 3.97 0.252 2.15 2.25 4.55 2.34 2.32 0.858 Silver mg/L <0.000010		_									
Silver mg/L <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000 <0.000 <0.000 <0.000 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010 <0.000010											
Sodium mg/L 3.48 3.45 0.866 3.58 3.59 0.279 3.92 3.94 0.509 Strontium mg/L 0.245 0.240 2.06 0.159 0.164 3.10 0.178 0.180 1.12 Sulphur mg/L 312 303 2.93 21.0 21.6 2.82 39.3 39.0 0.766 Thallium mg/L <0.000010		_						-			-
Strontium mg/L 0.245 0.240 2.06 0.159 0.164 3.10 0.178 0.180 1.12 Sulphur mg/L 312 303 2.93 21.0 21.6 2.82 39.3 39.0 0.766 Thallium mg/L <0.000010								0.279			0.509
Sulphur mg/L 312 303 2.93 21.0 21.6 2.82 39.3 39.0 0.766 Thallium mg/L <0.000010											
Thallium mg/L <0.000010 <0.000010 <0.000010 - <0.000010 - <0.000010 - <0.000010 - <0.000010 - <0.000010 - <0.000010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00030 - <0.00030 - <0.00030 - <0.00030 - <0.00030 - <0.00030 - <0.00030 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
Tin mg/L <0.00010 <0.00020 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00010 - <0.00030 - <0.00030 - <0.00030 - <0.00030 - <0.00030 - <0.00030 - <0.00030 - <0.00030 - <0.00030 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050 - <0.00050		_									
Titanium mg/L <0.00030 <0.00060 - <0.00030 <0.00030 - <0.00030 <0.00030 - <0.00030 <0.00030 - <0.00030 - <0.00030 - <0.00030 - <0.00030 - <0.00030 - <0.00157 0.639 Vanadium mg/L <0.00050		_									
Uranium mg/L 0.00895 0.00822 8.50 0.000841 0.000863 2.58 0.00156 0.00157 0.639 Vanadium mg/L <0.00050		_									_
Vanadium mg/L <0.00050 <0.00100 - <0.00050 - <0.00050 - <0.00050 -		_									0.639
	Uranium					J. J J J J J J					J.UUJ
MANUAL TOTAL PROGRAM I STERRED I I STERRED I - I STERRED I - STERRED I -		_						_			_

Indicates RPD exceeded 30%.

Notes: RPD = relative percent difference; "-"= no data/not calculated; LRL = Laboratory Reporting Limit. The RPD was calculated using < LRL results at the LRL if one result in a duplicate pair was below the LRL. The RPD was not calculated if both results were < LRL. Turbidity was not analyzed in duplicate samples.

Table B.6: Field Duplicate Results for Water Chemistry Analyses, EVO LAEMP, 2021

Parameter	Units	RG_ERCKUT _WS_LAEMP_ EVO_2021-12- 14_1330	RG_RIVER_ WS_LAEMP_ EVO_2021- 09_1330	RPD (%)	RG_MIDER_ WS_LAEMP_ EVO_2021-09- 09_1435	RG_RIVER_ WS_2021-09- 09_1435	RPD (%)	RG_MICOMP_ WS_LAEMP_ EVO_2021-09- 13_1600	RG_RIVER_ WS_2021-09- 13_1600	RPD (%)
Dissolved Metals										
Aluminum	mg/L	<0.0010	0.00730	152	<0.0010	<0.0010	-	<0.0010	<0.0010	-
Antimony	mg/L	0.000180	0.000170	5.71	<0.00010	<0.00010	-	0.000110	0.000110	0
Arsenic	mg/L	0.000250	0.000290	14.8	0.000170	0.000170	0	0.000190	0.000180	5.41
Barium	mg/L	0.0672	0.0682	1.48	0.108	0.110	1.83	0.112	0.117	4.37
Beryllium	μg/L	<0.020	<0.020	-	<0.020	<0.020	-	<0.020	<0.020	-
Bismuth	mg/L	-	-	-	<0.000050	<0.000050	-	<0.000050	<0.000050	-
Boron	mg/L	-	-	-	0.0100	0.0100	0	0.0120	0.0130	8.00
Cadmium	μg/L	0.0884	0.101	13.3	0.0190	0.0173	9.37	0.0191	0.0183	4.28
Calcium	mg/L	291	294	1.03	54.9	53.8	2.02	65.0	68.7	5.53
Chromium	mg/L	0.000200	0.000230	14.0	0.000120	0.000150	22.2	0.000120	0.000110	8.70
Cobalt	μg/L	-	-	-	<0.10	<0.10	-	<0.10	<0.10	-
Copper	mg/L	<0.00020	<0.00020	-	<0.00020	0.000220	-	<0.00020	<0.00020	-
Iron	mg/L	<0.010	<0.010	-	<0.010	<0.010	-	<0.010	<0.010	-
Lead	mg/L	-	-	-	<0.000050	<0.000050	-	<0.000050	<0.000050	-
Lithium	mg/L	0.0292	0.0288	1.38	0.00660	0.00650	1.53	0.0111	0.0117	5.26
Magnesium	mg/L	162	166	2.44	18.7	18.5	1.08	26.3	27.3	3.73
Manganese	mg/L	<0.00010	<0.00010	-	0.000940	0.000940	0	0.00172	0.00170	1.17
Mercury	μg/L	<0.000050	<0.000050	-	<0.000050	<0.000050	-	<0.0000050	<0.000050	-
Molybdenum	mg/L	0.00110	0.00105	4.65	0.000895	0.000909	1.55	0.00169	0.00174	2.92
Nickel	mg/L	0.000920	0.000940	2.15	0.000960	0.000930	3.17	0.00178	0.00179	0.560
Potassium	mg/L	2.93	3.07	4.67	0.701	0.714	1.84	0.997	1.08	7.99
Selenium	μg/L	204	199	2.48	2.10	1.75	18.2	7.52	7.61	1.19
Silicon	mg/L	4.04	4.04	0	2.23	2.21	0.901	2.19	2.20	0.456
Silver	mg/L	<0.000010	<0.000010	-	<0.000010	<0.000010	-	<0.000010	<0.000010	-
Sodium	mg/L	3.60	3.72	3.28	3.96	3.97	0.252	3.84	4.00	4.08
Strontium	mg/L	0.242	0.241	0.414	0.160	0.163	1.86	0.172	0.177	2.87
Sulphur	mg/L	306	297	2.99	22.0	20.9	5.13	36.9	35.8	3.03
Thallium	mg/L	<0.000010	<0.000010	-	<0.000010	<0.000010	-	0.0000130	<0.000010	26.1
Tin	mg/L	-	-	-	<0.00010	<0.00010	-	<0.00010	<0.00010	-
Titanium	mg/L	<0.00030	<0.00030	-	<0.00030	<0.00030	-	<0.00030	<0.00030	-
Uranium	mg/L	0.00874	0.00873	0.114	0.000786	0.000785	0.127	0.00144	0.00146	1.38
Vanadium	mg/L	<0.00050	<0.00050	-	<0.00050	<0.00050	-	<0.00050	<0.00050	-
Zinc	mg/L	0.00180	0.00370	69.1	<0.0010	<0.0010	ı	<0.0010	<0.0010	-

Indicates RPD exceeded 30%.

Notes: RPD = relative percent difference; "-"= no data/not calculated; LRL = Laboratory Reporting Limit. The RPD was calculated using < LRL results at the LRL if one result in a duplicate pair was below the LRL. The RPD was not calculated if both results were < LRL. Turbidity was not analyzed in duplicate samples.

B2.5 Hold Times

The recommended hold times for pH and ORP analyses (0.25 to 0.34 hrs) were exceeded in all samples collected. As *in situ* pH and ORP were used for data interpretation, these hold time exceedances had no impact on data interpretability. The hold time for turbidity was exceeded by less than one day in two samples (see laboratory report CG2104005 in Appendix H) and by one day in two additional samples (see laboratory report CG2104077). Hold times for nitrite and nitrate were exceeded by one day in two samples (see laboratory report CG2104077) and by three days in three samples (see laboratory reports CG2104114). The hold time for nitrate was exceeded in one additional sample by two days (see laboratory report CG2104214). For three of the above nitrite hold time exceedances and four of the above nitrate hold time exceedances, nitrite and nitrate initially did not exceed hold times but exceeded hold times when re-analyzed or during dilution. The hold time for dissolved orthophosphate was exceeded by one day in six samples (see laboratory reports CG2104077 and CG2104214). The only analytes of primary concern for which hold times were exceeded were nitrate and nitrite, and these hold time exceedances will be taken into consideration during data interpretation. All hold times were met for selenium speciation samples.

B2.6 Other Concerns

Five results for TKN were flagged by ALS as possibly being biased low due to interference from high nitrate concentrations (see laboratory reports CG2104214 and CG2104194 in Appendix H). One result for selenosulfate was flagged as an estimate by BAL (see laboratory report 2100308 in Appendix H). This result was affected by chromatic interference, as indicated by elevated baselines or co-eluting peaks. The volatile selenium sample from RG_ERCKUT in December, 2021, was not submitted to BAL; therefore, volatile selenium data is not available for this sample.

B2.7 Data Quality Statement

Water chemistry data collected for the 2021 EVO LAEMP were of acceptable quality as characterized by appropriate LRLs, negligible analyte concentrations in method blanks, excellent laboratory precision and accuracy, adequate field precision and reproducibility, and few hold time exceedances. Field duplicates submitted to BAL indicated potential issues with field sampling accuracy that will be taken into consideration during data interpretation. Overall, the associated data can be used with a high level of confidence in the derivation of conclusions.

DRAFT June 2022 | B-7

B3 SEDIMENT CHEMISTRY

B3.1 Laboratory Reporting Limits

The analytical reports for sediment chemistry from ALS (Appendix H) were examined to assess LRLs relative to analyte concentrations and applicable guidelines (Table B.8). The LRLs for these analytes were assessed relative to existing British Columbia Working Sediment Quality Guidelines (BC WSQG; BCMOECCS 2021b). Bismuth, tungsten, and quinoline were reported at concentrations below the LRL in 100% of samples (Table B.8); however, no relevant guidelines exist for these analytes. All LRLs for metals were above relevant quidelines, several LRLs for polycyclic aromatic hydrocarbons but (PAHs) including acenaphthene, acenaphthylene, benzo(a)pyrene, chrysene, dibenz(a,h)anthracene, fluorene, naphthalene, and pyrene exceeded the lower BC WSQG (i.e., Interim Sediment Quality Guideline) in 16.0 to 80.0% of samples. The LRLs for acenaphthene also exceeded the upper BC WSQG (i.e., Probable Effect Limit) in 6.67% of samples. The reason for these high LRLs was due to a combination of chromatographic interference due to PAH co-elution effects and high moisture content (resulting in low sample volume) in specific sediment samples. Sediment LRLs were overall considered appropriate for this study, and relatively high LRLs for PAHs will be considered during data interpretation.

B3.2 Laboratory Blanks

A total of 27 MB samples were analyzed in the ALS laboratory reports (Appendix H). All 463 individual analyte results met the laboratory DQO, indicating no inadvertent contamination of sediment samples during analysis. Therefore, laboratory precision as determined by laboratory blanks was considered excellent.

B3.3 Data Precision

Ten laboratory duplicate samples were used to evaluate precision within the ALS laboratory reports (Appendix H). All 102 individual analyte results met the laboratory DQO (Table B.1). Therefore, ALS laboratory analytical precision was considered excellent.

Three sets of field duplicate samples were collected to assess field sampling precision for sediment chemistry (Table B.9). Samples were collected as split samples (i.e., a larger sample was homogenized and then split into two duplicate sub-samples), and some variability was expected based on the inherent heterogeneity of sediments. Several relative percent differences (RPDs) could not be calculated as both analyte concentrations in the pair were below the LRL. Of the 191 RPDs that could be calculated, 38 RPDs were greater than 30% (19.9% of comparisons; Table B.9). Of the RPDs greater than 30%, 10 were from

DRAFT June 2022 B-8

Table B.7: Field Duplicate Results for Selenium Speciation Analyses, EVO, 2021

Parameter	Units	RG_ERCKUT _WS_LAEMP _EVO_2021- 12-14_1330	RG_RIVER_ WS_LAEMP_ EVO_2021-12- 14_1330	RPD (%)	RG_MIDGA_ WS_LAEMP_ EVO_2021-09- 11_1530	RG_RIVER_ WS_2021-09- 11_1530	RPD (%)	RG_MICOMP _WS_LAEMP _EVO_2021- 09-13_1600	RG_RIVER_ WS_2021-09- 13_1600	RPD (%)
Dimethylselenoxide	mg/L	<0.010	<0.010	-	<0.010	<0.010	-	<0.010	<0.010	-
MeSe(IV) - Methylseleninic Acid	mg/L	<0.010	<0.010	-	0.008	0.011	31.6	0.014	0.009	43.5
Methaneselenonic Acid	mg/L	<0.010	<0.010	-	<0.010	<0.010	-	<0.010	<0.010	-
Se(IV) - Selenite	mg/L	0.03	0.024	22.2	0.163	0.149	9.0	0.174	0.194	10.9
Se(VI) - Selenate	mg/L	139	134	3.7	3.01	3	0.3	6.97	6.94	0.4
SeCN - Selenocyanate	mg/L	<0.010	<0.010	-	<0.010	<0.010	-	<0.010	<0.010	-
SeMe - Selenomethionine	mg/L	<0.010	<0.010	-	<0.010	<0.010	-	<0.010	<0.010	-
Selenosulfate	mg/L	<0.010	<0.010	-	<0.010	<0.010	-	<0.010	<0.010	-
Unknown Selenium Species	mg/L	<0.010	<0.010	-	<0.010	<0.010	-	<0.010	<0.010	-
Total Selenium	μg/L	137	138	0.7	3.12	2.98	4.6	6.33	6.61	4.3
Dissolved Selenium	μg/L	129	135	4.5	2.96	2.81	5.2	6.47	6.83	5.4

Indicates RPD exceeded 30%.

Notes: RPD = relative percent difference; LRL = Laboratory Reporting Limit; "-" = no data/not calculated. The RPD was calculated using < LRL results at the LRL if one result in a duplicate pair was below the LRL. The RPD was not calculated if both results were < LRL.

Table B.8: Laboratory Reporting Limit (LRL) Evaluation for Sediment Chemistry Analyses, EVO LAEMP, 2021

		BC W	SQGs		No. LRLs >	No. LRLs >	No. Sample				
Parameter	Units	ISQG	PEL	Range of LRLs	ISQG	PEL PEL	Results < LRL				
Particle Size											
% Gravel (>2 mm)	%	-	-	1	-	-	16 (47.1%)				
% Sand (2.00 mm - 1.00 mm)	%	-	-	1	-	-	9 (26.5%)				
Metals											
Bismuth	mg/kg	-	-	0.2	-	-	34 (100%)				
Boron	mg/kg	-	-	5	-	-	9 (26.5%)				
Mercury	mg/kg	0.17	0.486	0.005	0	0	1 (2.94%)				
Silver	mg/kg	0.5	-	0.1	0	-	4 (11.8%)				
Sulphur	mg/kg	-	-	1000	-	-	24 (70.6%)				
Tin	mg/kg	-	-	2	-	-	33 (97.1%)				
Tungsten	mg/kg	-	-	0.5	-	-	34 (100%)				
Zirconium	mg/kg	-	-	1	-	-	25 (73.5%)				
Polycyclic Aromatic Hydrocart	Polycyclic Aromatic Hydrocarbons										
Acenaphthene	mg/kg	0.00671	0.0889	0.005 to 0.095	24 (80.0%)	2 (6.67%)	30 (88.2%)				
Acenaphthylene	mg/kg	0.00587	0.128	0.005 to 0.05	13 (54.2%)	0	24 (70.6%)				
Acridine	mg/kg	-	-	0.01 to 0.22	-	-	31 (91.2%)				
Anthracene	mg/kg	0.0469	0.245	0.004 to 0.04	0	0	30 (88.2%)				
Benzo(a)anthracene	mg/kg	-	-	0.01	-	-	13 (38.2%)				
Benzo(a)pyrene	mg/kg	0.0319	0.782	0.01 to 0.1	4 (16.0%)	0	25 (73.5%)				
Benzo(b&j)fluoranthene	mg/kg	-	-	0.01 to 0.1	-	-	4 (11.8%)				
Benzo(b+j+k)fluoranthene	mg/kg	-	-	0.015 to 0.14	-	-	7 (20.6%)				
Benzo(g,h,i)perylene	mg/kg	0.17	0.32	0.01 to 0.1	0	0	19 (55.9%)				
Benzo(k)fluoranthene	mg/kg	0.24	13.4	0.01 to 0.1	0	0	33 (97.1%)				
Benzo(e)pyrene	mg/kg	-	-	0.01 to 0.1	-	-	5 (14.7%)				
Chrysene	mg/kg	0.0571	0.862	0.01 to 0.39	3 (75.0%)	0	4 (11.8%)				
Dibenz(a,h)anthracene	mg/kg	0.00622	0.135	0.005 to 0.05	14 (58.3%)	0	24 (70.6%)				
Fluoranthene	mg/kg	0.111	2.36	0.01 to 0.1	0	0	11 (32.4%)				
Fluorene	mg/kg	0.0212	0.144	0.01 to 0.1	5 (29.4%)	0	17 (50.0%)				
Indeno(1,2,3-c,d)pyrene	mg/kg	0.2	3.2	0.01 to 0.1	0	0	32 (94.1%)				
Perylene	mg/kg	-	-	0.01 to 0.1	-	-	29 (85.3%)				
Pyrene	mg/kg	0.053	0.875	0.01 to 0.1	3 (37.5%)	0	8 (23.5%)				
Quinoline	mg/kg	-	-	0.015 to 0.1	-	-	34 (100%)				
B(a)P Total Potency Equivalent	mg/kg	-		0.02 to 0.096	-	-	11 (32.4%)				

Notes: "-" = no applicable guideline exists, BC WSQGs = British Columbia Sediment Quality Guidelines (BCMOECCS 2021b); ISQG = Interim Sediment Quality Guideline; PEL = Probable Effects Limit. Only analytes with at least one result < Laboratory Reporting Limit (LRL) or LRL were above guidelines were displayed. The total number of samples in 2021 (n) was 34, which included three field duplicate samples.

 Table B.9: Field Duplicate Results for Sediment Chemistry Analyses, EVO LAEMP, 2021

	1		T	1		-T						
Parameter	Units	RG_ERCKDT_SE 1_2021-09- 14_1100	RG_RIVER_SE_2 021-09-14_1100	RPD (%)	RG_MICOMP_SE 2_2021-09- 13_1045	RG_RIVER_SE_2 021-09-13_1045	RPD (%)	RG_MI3_SE- 3_2021-09- 12_1440	RG_RIVER_SE- 4_2021-09- 12_1440	RPD (%)		
Physical Tests		_								ı		
Moisture	%	86.4	85.8	0.697	75.3	72.1	4.34	44.5	45.2	1.56		
pH (1:2 soil:water)	pН	8.01	8.03	0.249	8.17	8.18	0.122	7.33	7.32	0.137		
Particle Size												
% Gravel (>2 mm)	%	<1.0	<1.0	-	<1.0	<1.0	-	4.30	1.90	77.4		
% Sand (2.00 mm - 1.00 mm)	%	<1.0	<1.0	-	2.40	<1.0	82.4	3.30	2.00	49.1		
% Sand (1.00 mm - 0.50 mm)	%	<1.0	<1.0	-	6.50	1.50	125	7.30	3.40	72.9		
% Sand (0.50 mm - 0.25 mm)	%	<1.0	<1.0	-	19.0	3.00	145	8.30	5.90	33.8		
% Sand (0.25 mm - 0.125 mm)	%	3.20	2.80	13.3	15.3	3.80	120	16.6	17.7	6.41		
% Sand (0.125 mm - 0.063 mm)	%	4.70	5.00	6.19	9.60	5.60	52.6	23.2	26.2	12.1		
% Silt (0.063 mm - 0.0312 mm)	%	24.7	27.7	11.5	20.1	37.4	60.2	18.4	21.3	14.6		
% Silt (0.0312 mm - 0.004 mm)	%	50.8	50.4	0.791	22.1	40.5	58.8	16.2	18.8	14.9		
% Clay (<4 μm)	%	15.5	13.6	13.1	5.00	7.90	45.0	2.40	2.80	15.4		
Organic / Inorganic Carbon	1	T	T	I I					T			
Total Organic Carbon	%	11.8	11.1	6.11	4.40	7.17	47.9	3.22	5.81	57.4		
Metals		0.040	4.440	100	F 700	4.000	04.5	7.000	7.000	1 0 050		
Aluminum	mg/kg	3,610	4,110	13.0	5,780	4,660	21.5	7,920	7,900	0.253		
Antimony	mg/kg	0.950	1.08	12.8	0.590	0.630	6.56	0.840	0.860	2.35		
Arsenic	mg/kg	14.5	14.6	0.687	4.71	4.79	1.68	6.18	6.03	2.46		
Barium	mg/kg	178	173	2.85	216	202	6.70	219	247	12.0		
Beryllium Biomuth	mg/kg	0.460	0.480 <0.20	4.26	0.450 <0.20	0.420	6.90	0.580 <0.20	0.570	1.74		
Bismuth	mg/kg	<0.20		20.4		<0.20	10.0		<0.20	1.55		
Boron Cadmium	mg/kg	8.50 3.85	10.4 3.60	20.1	6.00 1.21	<5.0 1.20	18.2 0.830	6.50 1.40	6.40 1.46	1.55		
Calcium	mg/kg	3.85 67,400	3.60 64,000	6.71 5.18	39,300	1.20 42,400	7.59	1.40 29,100	1.46 29,000	4.20 0.344		
Calcium Chromium	mg/kg mg/kg	67,400 8.58	9.97	5.18 15.0	39,300 10.7	42,400 8.99	7.59 17.4	29,100 15.7	29,000 16.2	3.13		
Cobalt	mg/kg mg/kg	63.6	9.97 57.7	9.73	7.57	7.12	6.13	6.82	6.55	4.04		
Copper	mg/кg mg/kg	15.4	14.5	6.02	12.0	11.8	1.68	12.7	13.1	3.10		
Iron		25,700	24,300	5.60	12,800	12,400	3.17	14,300	14,200	0.702		
Lead	mg/kg	7.56	7.04	7.12	9.41	8.76	7.15	10.3	9.07	12.7		
Lithium	mg/kg mg/kg	5.50	5.70	3.57	7.10	6.40	10.4	8.60	7.60	12.7		
Magnesium	mg/kg	8,620	8,020	7.21	5,190	5,120	1.36	5,400	5,210	3.58		
Manganese	mg/kg	1,290	1,140	12.3	313	309	1.29	215	233	8.04		
Mercury	mg/kg	0.0366	0.0314	15.3	0.0417	0.0443	6.05	0.0385	0.0640	49.8		
Molybdenum	mg/kg	1.72	1.83	6.20	1.03	1.07	3.81	1.39	1.51	8.28		
Nickel	mg/kg	98.0	91.9	6.42	33.4	32.1	3.97	28.0	27.4	2.17		
Phosphorus	mg/kg	1,170	1,160	0.858	981	1,040	5.84	1,150	1,260	9.13		
Potassium	mg/kg	1,100	1,290	15.9	1,260	900	33.3	1,670	1,720	2.95		
Selenium	mg/kg	32.1	32.9	2.46	1.66	1.57	5.57	1.08	1.18	8.85		
Silver	mg/kg	0.190	0.180	5.41	0.160	0.160	0	0.180	0.180	0		
Sodium	mg/kg	84.0	75.0	11.3	72.0	67.0	7.19	88.0	89.0	1.13		
Strontium	mg/kg	71.4	68.9	3.56	67.6	69.8	3.20	61.7	71.8	15.1		
Sulfur	mg/kg	2,100	1,800	15.4	<1,000	<1,000	-	<1,000	<1,000	-		
Thallium	mg/kg	0.355	0.394	10.4	0.193	0.173	10.9	0.233	0.271	15.1		
Tin	mg/kg	<2.0	15.8	155	<2.0	<2.0	-	<2.0	<2.0	-		
Titanium	mg/kg	5.60	9.70	53.6	16.3	9.10	56.7	40.3	37.9	6.14		
Tungsten	mg/kg	<0.50	<0.50	-	<0.50	<0.50	-	<0.50	<0.50	-		
Uranium	mg/kg	1.55	1.55	0	0.875	0.892	1.92	1.11	1.31	16.5		
Vanadium	mg/kg	18.9	21.3	11.9	27.2	23.0	16.7	41.3	41.9	1.44		
Zinc	mg/kg	243	227	6.81	90.1	87.5	2.93	96.9	96.4	0.517		
Zirconium	mg/kg	<1.0	<1.0	-	<1.0	<1.0	-	1.10	1.10	0		
Polycyclic Aromatic Hydrocarbo	ons											
Acenaphthene	mg/kg	<0.085	<0.085	-	<0.025	<0.015	-	0.0173	<0.020	14.5		
Acenaphthylene	mg/kg	<0.018	<0.018	-	0.0110	<0.0085	25.6	0.00520	0.00530	1.90		
Acridine	mg/kg	<0.22	<0.22	-	<0.030	0.0190	44.9	<0.020	<0.020	-		
Anthracene	mg/kg	<0.020	<0.014	-	0.0119	<0.0068	54.5	<0.0040	0.00440	9.52		
Benz(a)anthracene	mg/kg	0.102	0.272	90.9	0.0420	0.0260	47.1	0.0290	0.0240	18.9		
Benzo(a)pyrene	mg/kg	0.0640	<0.035	58.6	0.0360	0.0200	57.1	0.0150	<0.010	40.0		
Benzo(b&j)fluoranthene	mg/kg	0.162	0.152	6.37	0.0900	0.0560	46.6	0.0520	0.0400	26.1		
Benzo(b+j+k)fluoranthene	mg/kg	0.162	0.152	6.37	0.0900	0.0560	46.6	0.0520	0.0400	26.1		
Benzo(e)pyrene	mg/kg	0.156	0.147	5.94	0.0740	0.0540	31.3	0.0570	0.0480	17.1		
Benzo(g,h,i)perylene	mg/kg	0.0730	0.0560	26.4	0.0320	<0.017	61.2	0.0170	0.0130	26.7		
Benzo(k)fluoranthene	mg/kg	<0.035	<0.035	-	<0.020	<0.017	-	<0.010	<0.010			
Chrysene	mg/kg	<0.39	0.212	59.1	0.0670	0.0500	29.1	0.111	0.0850	26.5		
Dibenz(a,h)anthracene	mg/kg	0.0190	<0.018	5.41	<0.010	<0.0085	- 07.0	<0.0050	<0.0050	4.00		
Fluoranthene	mg/kg	0.0810	0.0600	29.8	<0.050	0.0380	27.3	0.0420	<0.040	4.88		
Fluorene	mg/kg	0.274	0.302	9.72	<0.050	0.0350	35.3	<0.030	<0.020	-		
Indeno(1,2,3-c,d)pyrene	mg/kg	< 0.035	<0.035	40.7	<0.020	<0.017	-	<0.010	<0.010	- 21.0		
1-Methylnaphthalene	mg/kg	0.751	0.836	10.7	0.166	0.131	23.6	0.294	0.215	31.0		
2-Methylnaphthalene	mg/kg	1.48	1.55	4.62	0.234	0.201	15.2	0.372 0.159	0.257	36.6		
Naphthalene Penylene	mg/kg	0.374 <0.035	0.380 <0.035	1.59	0.113 <0.020	0.0990 <0.017	13.2	<0.010	0.127 <0.010	22.4		
Perylene Phenanthrene	mg/kg			- 5.50			22.4					
Phenanthrene Pyrene	mg/kg	1.06 0.101	1.12 0.112	5.50 10.3	0.291	0.233 <0.050	22.1 9.52	0.370 0.0460	0.330 <0.040	11.4		
Pyrene Quinoline	mg/kg			10.3	0.0550		9.02			14.0		
Quinoline	mg/kg	<0.035	<0.035		<0.020	<0.017	1 70	<0.050	<0.050	5 00		
d10-Acenaphthene d12-Chrysene	%	123 119	122 N/A	0.570	99.3	101 110	1.70 1.18	81.7 103	86.6 107	5.82 3.89		
•	ļ											
d8-Naphthalene	%	115	115 N/A	0.0870	92.4	94.6	2.35	83.6	84.5	1.07		
d10-Phenanthrene	% mg/kg	0.116	N/A 0.0750	42.9	108 0.0570	105 0.0350	2.73 47.8	95.0 0.0280	100 <0.020	5.23 33.3		
B(a)P Total Potency Equivalent					11.115.711		/1 / X	UUZXU				

Indicates RPD exceeded 30%.

Notes: RPD = relative percent difference; "-"= no data/not calculated; LRL = Laboratory Reporting Limit. The RPD was calculated using < LRL results at the LRL if one result in a duplicate pair was below the LRL. The RPD was not calculated if both results were < LRL.

pairs where one analyte concentration was below the LRL, where greater variability is expected. Additionally, of the RPDs greater than 30%, 22 were from one set of field duplicate samples, indicating poor homogenization of this pair of samples. Polycyclic aromatic hydrocarbons (PAHs) overall had more RPDs greater than 30% than did metals. The greater variability observed for PAHs is likely attributed to residual heterogeneity in the samples. Subtle differences in the distribution of fine particulate matter and associated PAHs amongst split samples may exist even after homogenization in the field. As 19.9%% of calculable RPDs exceeded the DQO, the data were considered to have adequate field precision and reproducibility.

B3.4 Data Accuracy

Data accuracy for sediment chemistry analyses completed by ALS was evaluated based on the analysis of 29 LCS, four CRM samples, and 24 Internal Reference Material (IRM) samples. All 395 LCS, 132 CRM, and 256 IRM individual analyte results met the laboratory DQO (Table B.1). Therefore, the accuracy achieved by the laboratory was considered excellent.

B3.5 Hold Times

All recommended hold times were met for all samples.

B3.6 Data Quality Statement

Sediment chemistry data collected for the 2021 EVO LAEMP were of acceptable quality as characterized by appropriate LRLs, excellent laboratory precision and accuracy, adequate field precision and reproducibility, and no hold time exceedances. Overall, the associated data were considered acceptable for this study.

DRAFT June 2022 | B-9

B4 BENTHIC INVERTEBRATE COMMUNITY

B4.1 Organism Sorting Efficiency

The analytical from Cordillera reports Consulting Inc. (benthic invertebrate community structure; see Appendix H for laboratory reports) were examined to assess subsampling accuracy. Canadian Aquatic Biomonitoring Network (CABIN) protocols were followed for sub-sampling (i.e., identification of a minimum 300 invertebrates), with a minimum of 5% of a sample being assessed. The proportion of subsampled material ranged from 5% to 12% of the total sample material (Table B.10). Both the precision and accuracy of the subsamples randomly chosen for subsample assessment (approximately 10% of samples that were subsampled; n = 3) met the DQO in all subsamples (<20%; Table B.11). Thus, the precision and accuracy for sub-sampling of the benthic invertebrate community samples was considered excellent.

B4.2 Subsampling Accuracy and Accuracy

To measure the effectiveness of the sorters, at least 10% of samples (n = 3) were selected at random for resorting analysis by a different sorter. As average sorting efficiency of benthic invertebrate samples (96.7%, Table B.12) was above the laboratory DQO (95%), organism sorting efficiency was considered excellent.

B4.3 Taxonomic Identification Accuracy

Cordillera Consulting Inc. performed an internal audit of taxonomic identification for approximately 10% of all community structure samples (n = 3; Table B.13). The analysts reported a total identification error rate (TIR) of 0% for all relevant samples, a percent difference in enumeration (PDE) of 0% to 0.128%, a percent taxonomic disagreement (PTD) of 0.415% to 1.02%, and a Bray Curtis Dissimilarity Index (BCDI, a measure of the differences in identifications between different analysts) of 0.003 to 0.009 (Table B.13). The laboratory DQO was based on TIR as per CABIN laboratory methods (<5% TIR; Environment Canada 2014). As the TIR was below 5% for all samples examined, the taxonomic accuracy of the analysis was considered excellent.

B4.4 Data Quality Statement

Benthic community data collected for the 2021 EVO LAEMP and analyzed by Cordillera Consulting Inc. were of good quality as characterized by excellent sorting efficiency, subsampling precision and accuracy, and taxonomic identification accuracy. Therefore, the associated data can be used with a high level of confidence in the derivation of conclusions.

DRAFT June 2022 | **B-10**

Table B.10: Percent of Sample Sorted and the Total Number of Invertebrates Recovered from the Sampled Fraction, EVO LAEMP, 2021

Sample ID	Laboratory ID	Proportion Sampled (%)	Number of Invertebrates Sampled
RG_ERCKUT_BIC-1_2021-09-15	CC221287	5	556
RG_ERCKUT_BIC-2_2021-09-15	CC221288	5	722
RG_ERCKUT_BIC-3_2021-09-15	CC221289	5	373
RG_MIDBO_BIC-1_2021-09-11	CC221290	5	524
RG_MIDBO_BIC-2_2021-09-11	CC221291	5	404
RG_MIDBO_BIC-3_2021-09-11	CC221292	5	400
RG_ERCKDT_BIC-1_2021-09-15	CC221293	5	942
RG_ERCKDT_BIC-2_2021-09-15	CC221294	5	599
RG_ERCKDT_BIC-3_2021-09-15	CC221295	5	782
RG_MIDER_BIC-1_2021-09-09	CC221296	12	417
RG_MIDER_BIC-2_2021-09-09	CC221297	8	324
RG_MIDER_BIC-3_2021-09-09	CC221298	5	340
RG_ERCK_BIC-1_2021-09-10	CC221299	5	868
RG_ALUSM_BIC-1_2021-09-12	CC221300	5	475
RG_ALUSM_BIC-2_2021-09-12	CC221301	5	427
RG_ALUSM_BIC-3_2021-09-12	CC221302	5	362
RG_MIDGA_BIC-1_2021-09-11	CC221303	5	647
RG_MIDGA_BIC-2_2021-09-11	CC221304	5	391
RG_MIDGA_BIC-3_2021-09-11	CC221305	5	400
RG_MI3_BIC-1_2021-09-11	CC221306	5	356
RG_MI3_BIC-2_2021-09-11	CC221307	5	633
RG_MI3_BIC-3_2021-09-11	CC221308	5	474
RG_MICOMP_BIC-1_2021-09-13	CC221309	5	800
RG_MICOMP_BIC-2_2021-09-13	CC221310	5	399
RG_MICOMP_BIC-3_2021-09-13	CC221311	5	561
RG_MICOMP_BIC-4_2021-09-13	CC221312	5	671
RG_MICOMP_BIC-5_2021-09-13	CC221313	5	784

Table B.11: Benthic Invertebrate Community Sub-sampling Precision and Accuracy, EVO LAEMP, 2021

Station ID										Orgai	nisms in	Subsam	ple (n)									Total	Precision	on Error	Accura	acy Error
Sample ID	Laboratory ID	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	Total	Min (%)	Max (%)	M in (%)	Max (%)
RG_MIDBO_BIC-2_2021-09-11	CC221291	384	369	370	413	369	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1,905	0	10.7	0.79	8.4
RG_MI3_BIC-3_2021-09-11	CC221308	437	447	446	435	433	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2,198	0.22	3.1	0.59	1.68
RG_ALUSM_BIC-2_2021-09-12	CC221301	414	410	392	380	415	408	418	425	426	373	378	377	414	400	440	364	409	384	385	410	8,022	0.00	17.3	0.27	9.70
		•	1	1	1	1		1		1	<u>'</u>	1	1		1	1			1	1	1		0.07	10.4	0.55	6.59

Note: "-" indicates subsample was not analyzed.

Table B.12: Benthic Invertebrate Community Sorting Efficiency, EVO LAEMP, 2021

Sample ID	Laboratory ID	Number of Organisms Recovered (Initial Sort)	Number of Organisms in Re-sort	Sorting Efficiency (%)
RG_ALUSM_BIC-1_2021-09-12	CC221300	18	475	96.0
RG_MIDGA_BIC-1_2021-09-11	CC221303	30	647	95.0
RG_MI3_BIC-1_2021-09-11	CC221306	5	356	99.0
				96.7

Table B.13: Percent Benthic Invertebrate Community Organism Recovery^a, EVO LAEMP, 2021

Sample ID	Laboratory ID	Percent Sampled (%)	Taxa Identified (n)	TIR (%)	PDE (%)	PTD (%)	BCDI
RG_ERCKUT_BIC- 2_2021-09-15	CC221288	5	723	0	0	0.415	0.003
RG_ERCKDT_BIC- 2_2021-09-15	CC221294	5	599	0	0	0.501	0.005
RG_MIDGA_BIC- 2_2021-09-11	CC221304	5	392	0	0.128	1.02	0.009

Notes: TIR = Total Identification Error Rate, PDE = Percent Difference in Enumeration, PTD = Percent Taxonomic Disagreement, BCDI = Bray Curtis Dissimilarity Index to quantify differences in identifications.

^a For error rationale and calculations, refer to Cordillera Consulting laboratory report (Appendix H).

Quality control procedures were not conducted on benthic invertebrate community structure and density data analyzed by Zeas.

DRAFT June 2022 B-11

B5 BENTHIC INVERTEBRATE TISSUE CHEMISTRY

B5.1 Laboratory Reporting Limits

Analytical reports of benthic invertebrate tissue metal concentrations from TrichAnalytics (see laboratory reports in Appendix H) were examined to provide an inventory of analyte results below the LRL and to compare the LRLs for these analytes to available benchmarks (Table B.14). Arsenic and mercury were the only analytes that had at least one result below the LRL (Table B.14). However, the sole focus of interpretation of benthic invertebrate tissue chemistry results for the EVO LAEMP was selenium. Selenium was detectable (i.e., above the LRL) in all benthic invertebrate samples, therefore comparison of the selenium LRL to the applicable guidelines was not necessary to assess whether adequate detectability was achieved. Overall, the detectability of selenium in all samples (i.e., below the LRL) indicates that the achieved LRLs were suitable for the study.

B5.2 Data Accuracy and Precision

Data accuracy and precision were evaluated based on the analysis of six CRM samples (see laboratory reports in Appendix H). As all 180 CRM results met the laboratory DQO, laboratory accuracy and precision as determined by CRM analyses were considered excellent. Laboratory precision was also evaluated by duplicate analysis of seven benthic invertebrate tissue samples see laboratory reports in Appendix H). As all 210 duplicate results met the laboratory DQO, laboratory accuracy and precision as determined by duplicate analyses were considered excellent.

B5.3 Data Quality Statement

Benthic invertebrate tissue data collected for the 2021 EVO LAEMP were of good quality as characterized by appropriate LRLs and excellent laboratory precision and accuracy. Therefore, the associated data can be used with a good level of confidence in the derivation of conclusions for this study.

DRAFT June 2022 | **B-12**

Table B.14: Laboratory Reporting Limit (LRL) Evaluation for Benthic Invertebrate Tissue Chemistry Analyses, FRO LAEMP, 2021

Parameter	Units	Range of LRLs	No. Sample Results < LRL
Arsenic	mg/kg dw	0.441 to 0.451	17 (28.8%)
Mercury	mg/kg dw	0.023 to 0.025	4 (6.78%)

Notes: "-" = no applicable guideline exists; LRL = Laboratory Reporting Limit; dw = dry weight. Only analytes with at least one sample results < LRL are displayed. Total number of samples was 59. The only guidelines that exist for benthic invertebrate tissue are for selenium, and LRLs for selenium were below the applicable guidelines.

B6 DATA QUALITY REVIEW SUMMARY

Overall, the quality of the data collected for this project was considered acceptable for the derivation of conclusions associated with the objectives of the 2021 EVO LAEMP. Field sampling precision was relatively low in water chemistry samples submitted to BAL, suggesting potential field contamination. However, the number of QA/QC samples submitted to BAL was low, which may be contributing to a false perception that samples submitted to BAL were of a lower quality. In future studies, more QC samples will be submitted to BAL to gain a clearer understanding of field contamination or inaccuracies associated with these samples. Additionally, some water chemistry samples exceeded hold times for nitrite and nitrate. Sediment LRLs for PAHs were relatively high, and RPDs for sediment were also relatively high, largely contributed to by one field duplicate set. All of the above will be taken into consideration during data interpretation.

DRAFT June 2022 | **B-13**

B7 REFERENCES

- BCMOECCS (British Columbia Ministry of Environment and Climate Change Strategy). 2021a. British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife and Agriculture Guideline Summary. Water Quality Guideline Series, WQG-20. Water Protection and Sustainability Branch, Province of British Columbia, Victoria, B.C.
- BCMOECCS. 2021b. British Columbia Working Water Quality Guidelines: Aquatic Life, Wildlife and Agriculture. Water Quality Guideline Series, WQG-08. Water Protection and Sustainability Branch, Province of British Columbia, Victoria, B.C.
- Environment Canada. 2014. CABIN (Canadian Aquatic Biomonitoring Network) Laboratory Methods: Processing, Taxonomy, and Quality Control of Benthic Macroinvertebrate Samples. Environment Canada. May 2014.
- Golder. 2014. Benchmark Derivation Report for Selenium. Annex E of the Elk Valley Water Quality Plan. Prepared for Teck Coal Limited. July 2014.
- Teck (Teck Coal Limited). 2014. Elk Valley Water Quality Plan. Submitted to the British Columbia Minister of Environment for approval on July 22, 2014.
- Teck. 2020. Water Quality Adaptive Management Plan for Teck Coal Operations in the Elk Valley 2019 Annual Report. Prepared by Teck Coal Limited. July 31, 2020.

DRAFT June 2022 B-14

APPENDIX C PHYSICAL HABITAT

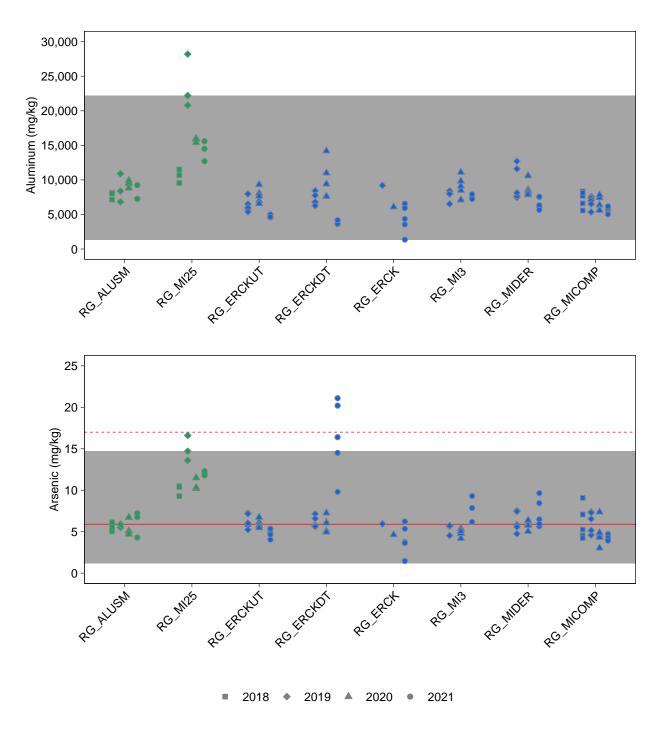


Figure C.1: Sediment Metal and Polycyclic Aromatic Hydrocarbon (PAH) Concentrations, EVO LAEMP, 2018 to 2021

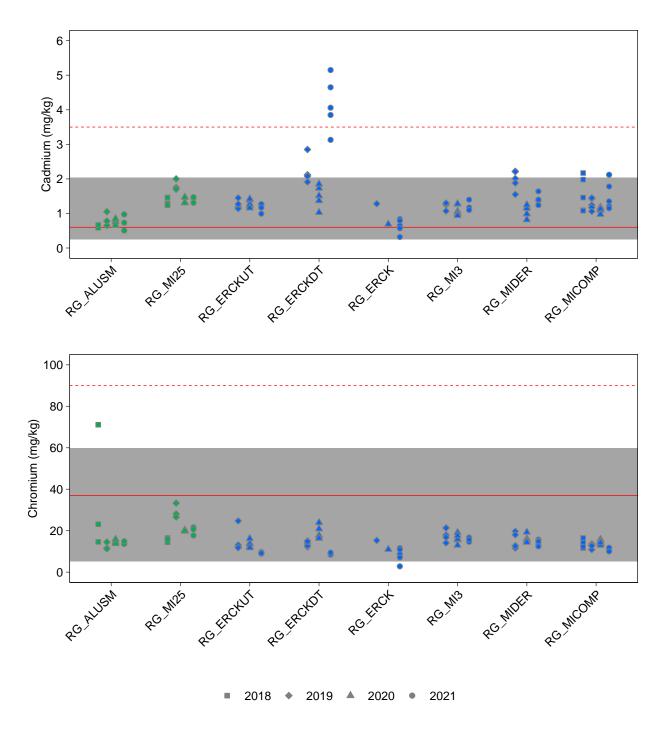


Figure C.1: Sediment Metal and Polycyclic Aromatic Hydrocarbon (PAH) Concentrations, EVO LAEMP, 2018 to 2021

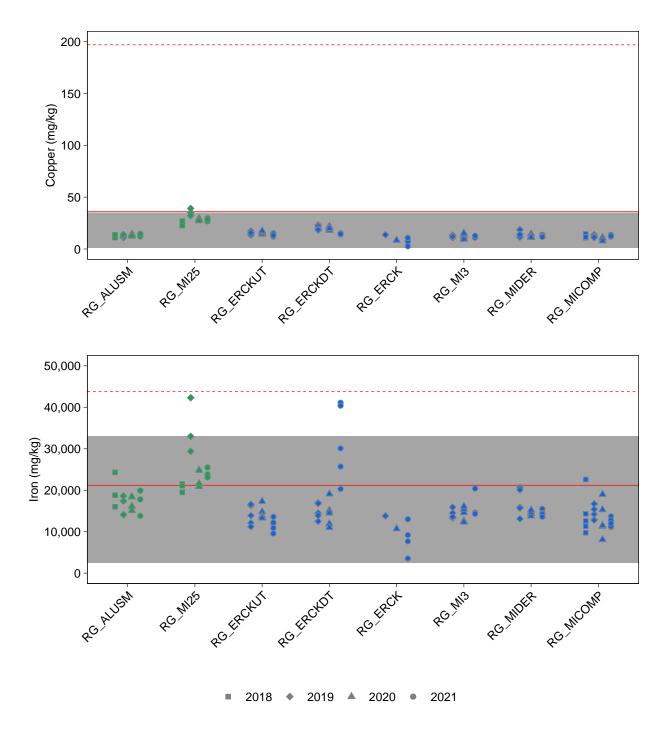


Figure C.1: Sediment Metal and Polycyclic Aromatic Hydrocarbon (PAH) Concentrations, EVO LAEMP, 2018 to 2021

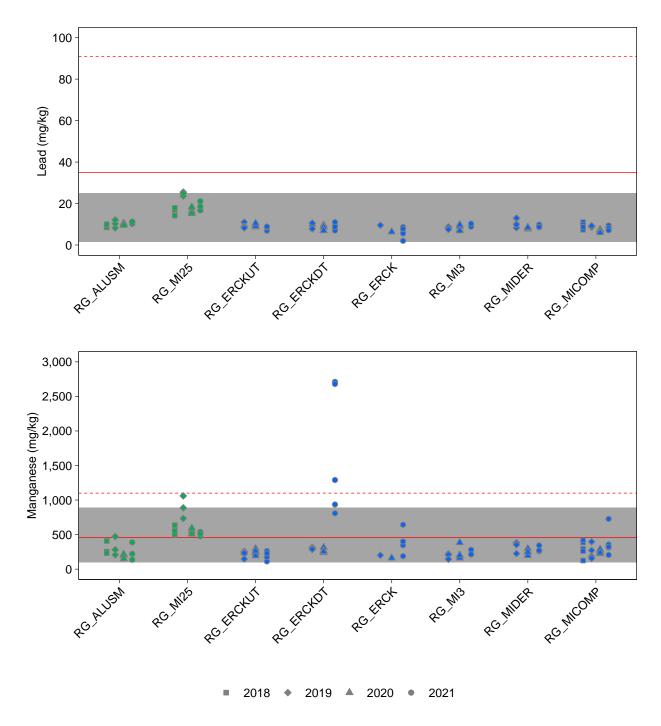


Figure C.1: Sediment Metal and Polycyclic Aromatic Hydrocarbon (PAH) Concentrations, EVO LAEMP, 2018 to 2021

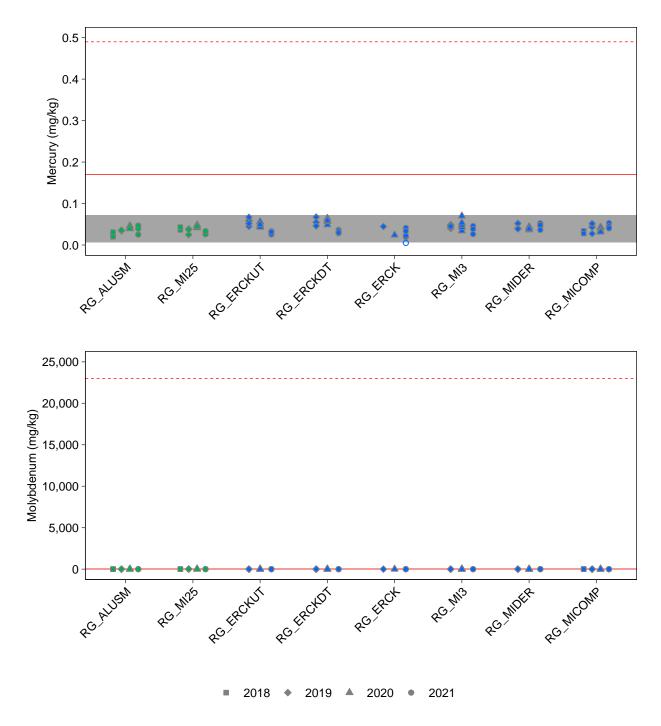


Figure C.1: Sediment Metal and Polycyclic Aromatic Hydrocarbon (PAH) Concentrations, EVO LAEMP, 2018 to 2021

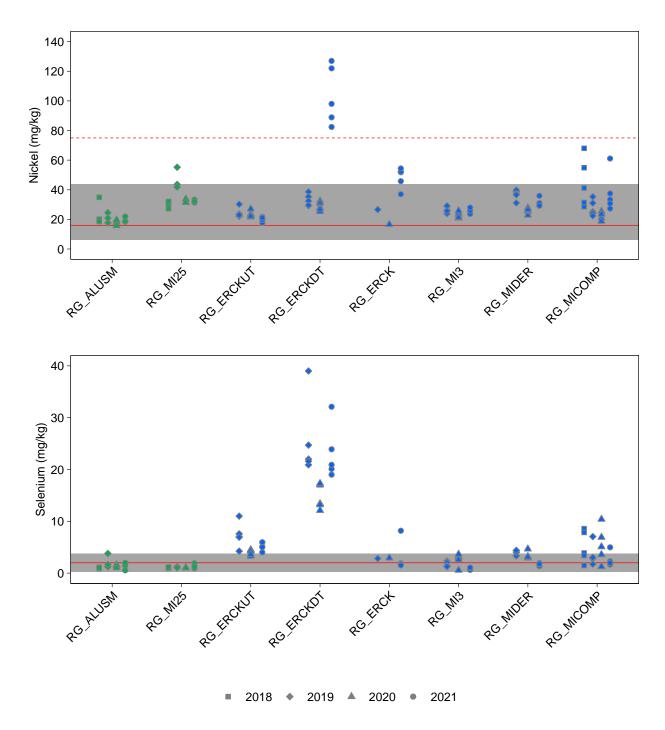


Figure C.1: Sediment Metal and Polycyclic Aromatic Hydrocarbon (PAH) Concentrations, EVO LAEMP, 2018 to 2021

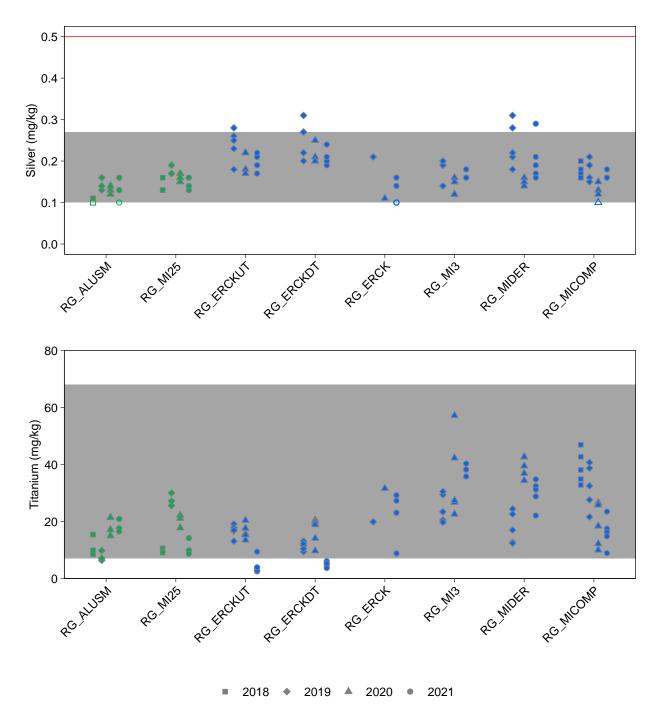


Figure C.1: Sediment Metal and Polycyclic Aromatic Hydrocarbon (PAH) Concentrations, EVO LAEMP, 2018 to 2021

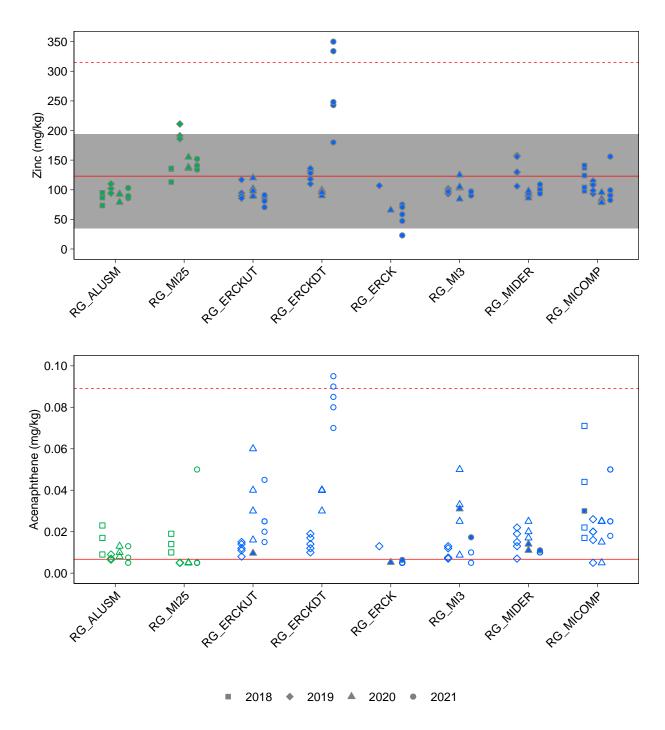


Figure C.1: Sediment Metal and Polycyclic Aromatic Hydrocarbon (PAH) Concentrations, EVO LAEMP, 2018 to 2021

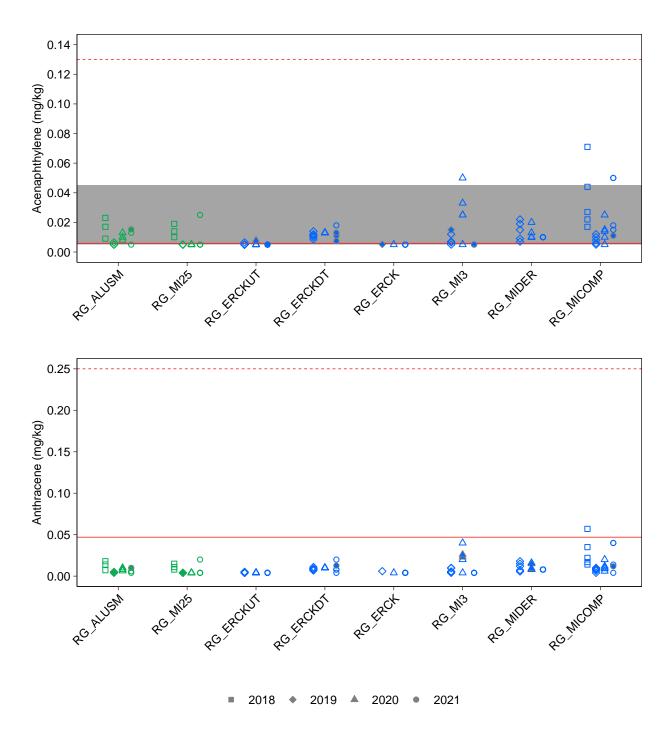


Figure C.1: Sediment Metal and Polycyclic Aromatic Hydrocarbon (PAH) Concentrations, EVO LAEMP, 2018 to 2021

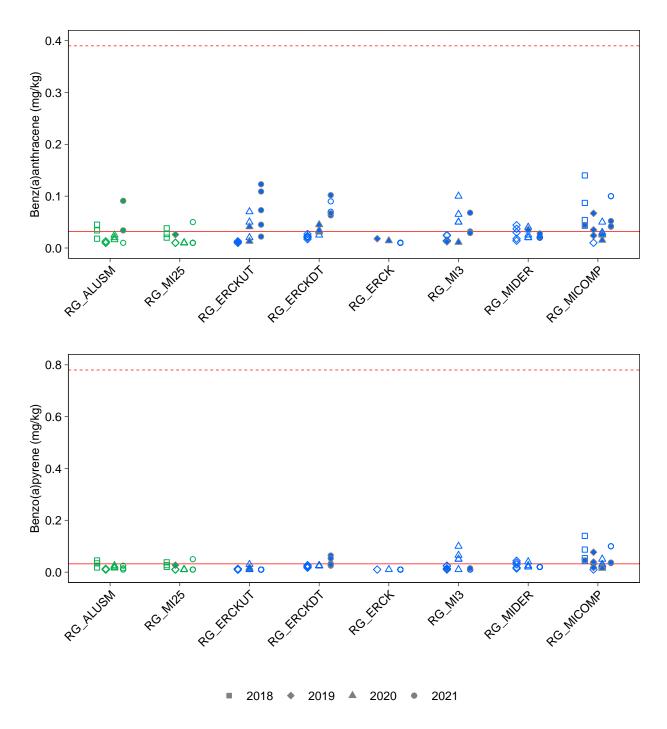


Figure C.1: Sediment Metal and Polycyclic Aromatic Hydrocarbon (PAH) Concentrations, EVO LAEMP, 2018 to 2021

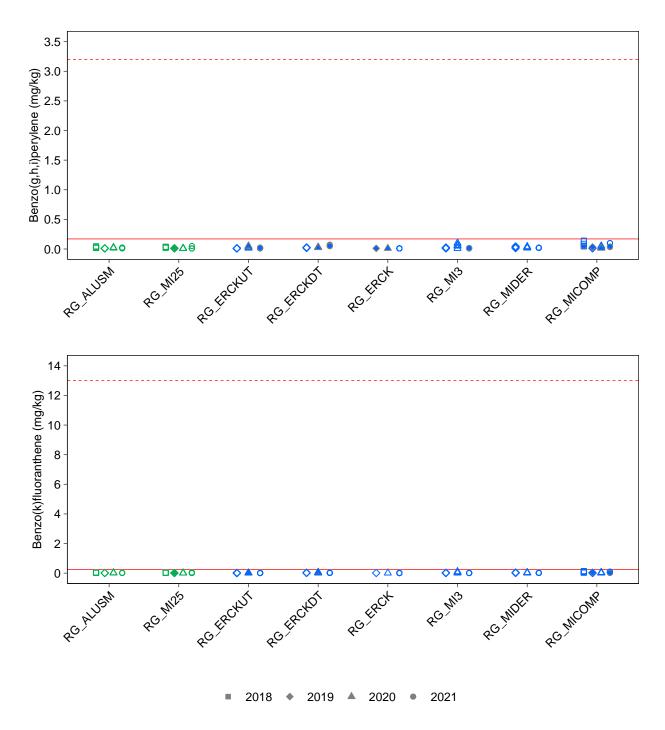


Figure C.1: Sediment Metal and Polycyclic Aromatic Hydrocarbon (PAH) Concentrations, EVO LAEMP, 2018 to 2021

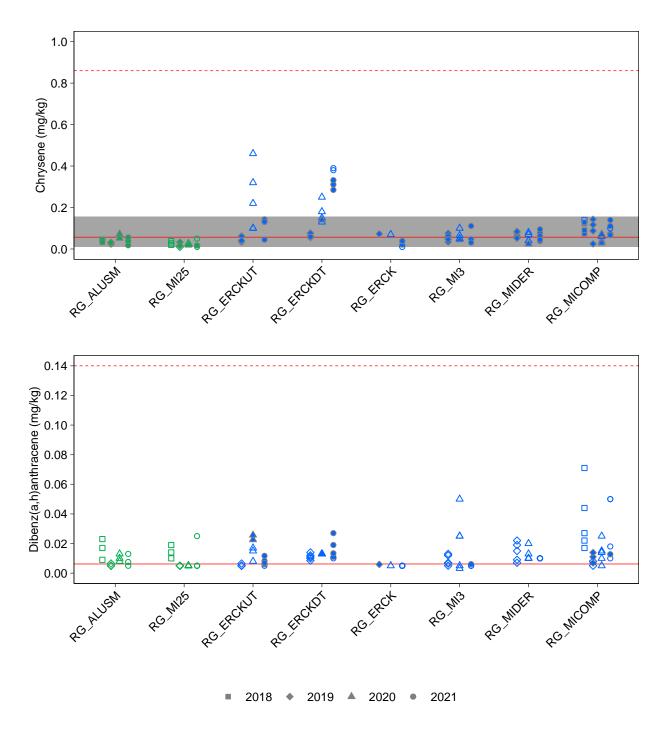


Figure C.1: Sediment Metal and Polycyclic Aromatic Hydrocarbon (PAH) Concentrations, EVO LAEMP, 2018 to 2021

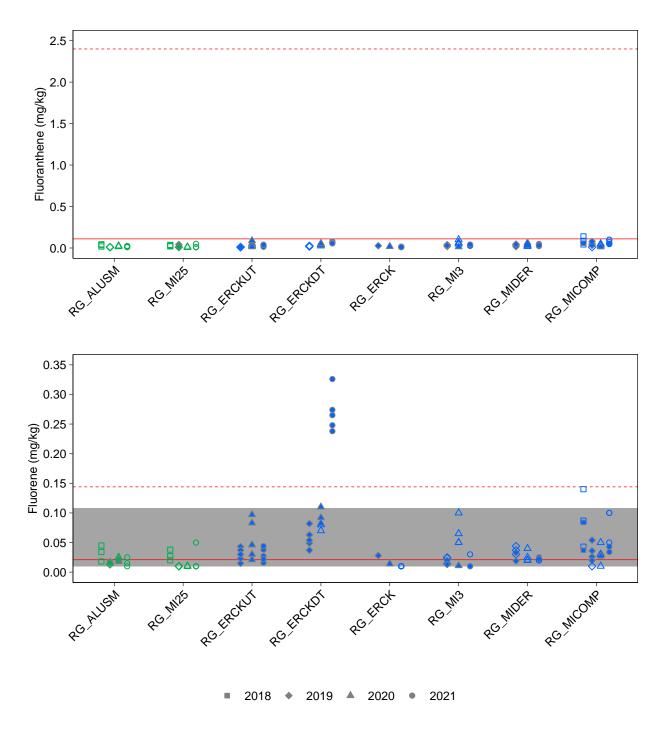


Figure C.1: Sediment Metal and Polycyclic Aromatic Hydrocarbon (PAH) Concentrations, EVO LAEMP, 2018 to 2021

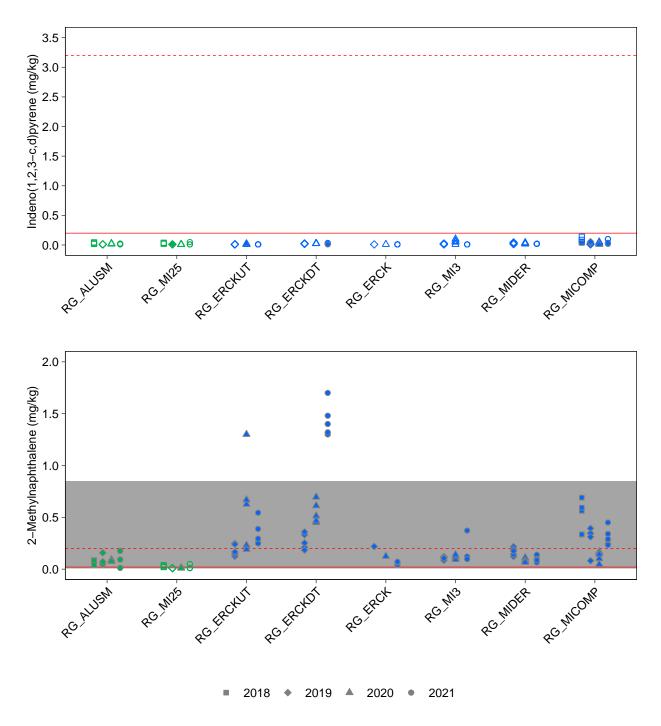


Figure C.1: Sediment Metal and Polycyclic Aromatic Hydrocarbon (PAH) Concentrations, EVO LAEMP, 2018 to 2021

Figure C.1: Sediment Metal and Polycyclic Aromatic Hydrocarbon (PAH) Concentrations, EVO LAEMP, 2018 to 2021

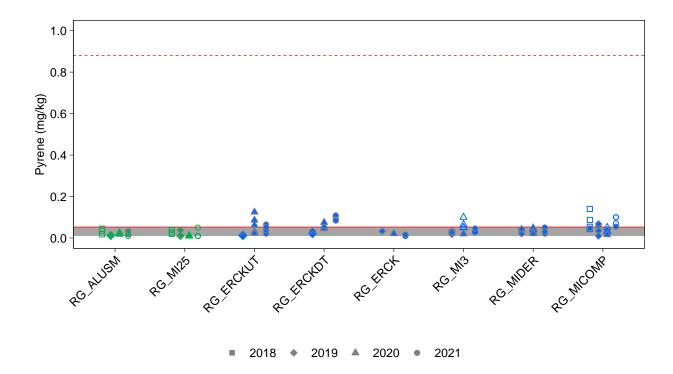


Figure C.1: Sediment Metal and Polycyclic Aromatic Hydrocarbon (PAH) Concentrations, EVO LAEMP, 2018 to 2021

Table C.1: Summary of Maximum Daily Temperature Exceedances in Erickson Creek, EVO LAEMP, 2021

			RG_ERCK (Log	ger 1)		RG_ERCK (Log	gger 2)		EV_EC1 Log	ger
Month	Threshold	number	Number of Days Exceeding Threshold	Number of Days Exceeding Threshold (%)	Number of Days	Number of Days Exceeding Threshold	Eveneding I breshold	Number of Days	Number of Days Exceeding Threshold	Number of Days Exceeding Threshold (%)
August	13	19	3	15.8	19	1	5.26	19	0	0
September	10	27	18	66.7	30	16	53.3	30	15	50
October	10	31	0	0	31	0	0	31	0	0
November	7	30	0	0	30	0	0	30	0	0
December	7	14	0	0	14	0	0	31	0	0

Notes: "-" = no data available. Exceedances were only assessed after the SPO came into effect on August 13, 2021.

Table C.2: Sediment Physical and Chemical Data and Summary Statistics for EVO LAEMP, 2021

1				BC S	edimen	t									Refe	rence								
					uality delines					RG_AI	LUSM								RG_I	MI25				
	Analyte	Units	LRL	Lowe	r Uppe		SM_1 R	RG_ALUSM_2	RG_ALUSM_3	Minimum	Median	Maximum	Mean	Standard	95th	RG_MI25_1	RG_MI25_2	RG_MI25_3	Minimum	Median	Maximum	Mean	Standard	95th
				WSQ	g wsq	12-S	ep	12-Sep	12-Sep		moulan	Maximum	Moun	Deviation	Percentile	15-Sep	15-Sep	15-Sep		Modium	maximam	moun	Deviation	Percentile
cal	% Moisture	%	0.25	_	_	34.		65.0	82.7	34.1	65.0	82.7	60.6	24.6	82.7	38.0	48.2	90.3	38.0	48.2	90.3	58.8	27.7	90.3
Physical Tests	pH (1:2 soil:water)	рН	0.1	-	_	7.6		7.26	7.32	7.26	7.32	7.63	7.40	0.199	7.63	8.13	8.15	7.64	7.64	8.13	8.15	7.97	0.289	8.15
	% Gravel (>2mm)	%	1	_	_	1.7	1	19.4	8.50	1.70	8.50	19.4	9.87	8.93	19.4	4.00	5.70	6.20	4.00	5.70	6.20	5.30	1.15	6.20
	% Sand (2.00mm - 1.00mm)	%	1	_	_	4.5		3.20	<1	<1	3.20	4.50	2.90	0.867	4.50	5.10	7.50	1.40	1.40	5.10	7.50	4.67	3.07	7.50
	% Sand (1.00mm - 0.50mm)	%	1	_	_	10.		<1	<1	<1	<1	10.9	4.30	-	10.9	5.80	9.90	1.80	1.80	5.80	9.90	5.83	4.05	9.90
Size	% Sand (0.50mm - 0.25mm)	%	1	_	_	19.		1.30	1.30	1.30	1.30	19.1	7.23	10.3	19.1	11.7	14.4	6.20	6.20	11.7	14.4	10.8	4.18	14.4
<u>e</u>	% Sand (0.25mm - 0.125mm)	%	1	_	_	16.		5.70	4.00	4.00	5.70	16.9	8.87	7.01	16.9	17.6	13.8	13.4	13.4	13.8	17.6	14.9	2.32	17.6
artio	% Sand (0.125mm - 0.063mm)	%	1	_	_	11.		11.5	7.70	7.70	11.5	11.5	10.2	2.19	11.5	12.9	10.8	8.80	8.80	10.8	12.9	10.8	2.05	12.9
Par	% Silt (0.063mm - 0.0312mm)	%	1	_	_	15.		25.7	32.2	15.1	25.7	32.2	24.3	8.63	32.2	15.9	14.2	27.9	14.2	15.9	27.9	19.3	7.47	27.9
	% Silt (0.0312mm - 0.004mm)	%	1	_	_	16.4		28.0	39.1	16.4	28.0	39.1	27.8	11.4	39.1	20.6	18.3	29.0	18.3	20.6	29.0	22.6	5.63	29.0
	% Clay (<4um)	%	1	_	_	3.8		4.30	6.60	3.80	4.30	6.60	4.90	1.49	6.60	6.40	5.40	5.20	5.20	5.40	6.40	5.67	0.643	6.40
Organic Carbon	Total Organic Carbon	%	0.05	-	-	-		-	-	2.23	5.89	7.50	5.21	2.70	7.50	-	-	-	1.64	1.96	2.12	1.91	0.244	2.12
00	Aluminum	mg/kg	50	-	-	9,24)	7,250	7,260	7,250	7,260	9,240	7,917	1,146	9,240	12,700	15,600	14,500	12,700	14,500	15,600	14,267	1,464	15,600
	Antimony	mg/kg	0.1	-	-	0.40)	0.360	0.600	0.360	0.400	0.600	0.453	0.129	0.600	0.640	0.660	0.670	0.640	0.660	0.670	0.657	0.0153	0.670
	Arsenic	mg/kg	0.1	5.9	17	7.2		4.30	6.75	4.30	6.75	7.23	6.09	1.57	7.23	12.0	12.3	11.8	11.8	12.0	12.3	12.0	0.252	12.3
	Barium	mg/kg	0.5	-	-	149		149	177	149	149	177	158	16.2	177	151	165	171	151	165	171	162	10.3	171
	Beryllium	mg/kg	0.1	-	-	0.60)	0.500	0.540	0.500	0.540	0.600	0.547	0.0503	0.600	0.830	1.00	0.910	0.830	0.910	1.00	0.913	0.0850	1.00
	Bismuth	mg/kg	0.2	-	-	<0.	!	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	-	<0.2	0.220	0.240	0.220	0.220	0.220	0.240	0.227	0.0115	0.240
	Boron	mg/kg	5	-	-	8.5	1	7.20	7.40	7.20	7.40	8.50	7.70	0.700	8.50	8.60	13.0	11.2	8.60	11.2	13.0	10.9	2.21	13.0
	Cadmium	mg/kg	0.02	0.6	3.5	0.50	5	0.731	0.972	0.505	0.731	0.972	0.736	0.234	0.972	1.31	1.45	1.47	1.31	1.45	1.47	1.41	0.0872	1.47
	Calcium	mg/kg	50	-	-	28,8	0	34,000	41,000	28,800	34,000	41,000	34,600	6,122	41,000	15,000	14,700	15,200	14,700	15,000	15,200	14,967	252	15,200
	Chromium	mg/kg	0.5	37.3	90	13.	1	13.6	14.9	13.6	13.8	14.9	14.1	0.700	14.9	17.7	21.6	20.7	17.7	20.7	21.6	20.0	2.04	21.6
	Cobalt	mg/kg	0.1	-	-	5.6		5.12	6.18	5.12	5.61	6.18	5.64	0.531	6.18	8.65	8.92	8.79	8.65	8.79	8.92	8.79	0.135	8.92
	Copper	mg/kg	0.5	35.7	197	12.	1	12.0	14.6	12.0	12.8	14.6	13.1	1.33	14.6	26.7	29.8	28.4	26.7	28.4	29.8	28.3	1.55	29.8
	Iron	mg/kg	50	2120	0 4376	19,9	0	13,800	17,800	13,800	17,800	19,900	17,167	3,099	19,900	23,800	25,500	23,100	23,100	23,800	25,500	24,133	1,234	25,500
	Lead	mg/kg	0.5	35	91.3	10.	1	10.2	11.3	10.2	10.9	11.3	10.8	0.557	11.3	16.7	18.6	21.1	16.7	18.6	21.1	18.8	2.21	21.1
	Lithium	mg/kg	2	-	-	14.3		10.8	10.9	10.8	10.9	14.3	12.0	1.99	14.3	21.7	23.6	22.5	21.7	22.5	23.6	22.6	0.954	23.6
	Magnesium	mg/kg	20	-	-	8,45)	9,590	9,250	8,450	9,250	9,590	9,097	585	9,590	6,530	6,390	5,910	5,910	6,390	6,530	6,277	325	6,530
ø	Manganese	mg/kg	1	460	1100	137		222	388	137	222	388	249	128	388	476	541	512	476	512	541	510	32.6	541
Meta	Mercury	mg/kg	0.005	0.17	0.48	0.02	2	0.0393	0.0467	0.0252	0.0393	0.0467	0.0371	0.0109	0.0467	0.0270	0.0260	0.0335	0.0260	0.0270	0.0335	0.0288	0.00407	0.0335
Σ	Molybdenum	mg/kg	0.1	25	2300	1.7		1.01	1.58	1.01	1.58	1.71	1.43	0.372	1.71	5.74	5.94	5.28	5.28	5.74	5.94	5.65	0.338	5.94
	Nickel	mg/kg	0.5	16	75	18.		18.7	21.9	18.4	18.7	21.9	19.7	1.94	21.9	31.3	33.3	32.1	31.3	32.1	33.3	32.2	1.01	33.3
	Phosphorus	mg/kg	50	-	-	1,02)	1,040	1,200	1,020	1,040	1,200	1,087	98.7	1,200	1,500	1,450	1,460	1,450	1,460	1,500	1,470	26.5	1,500
	Potassium	mg/kg	100	-	-	2,09)	1,520	1,460	1,460	1,520	2,090	1,690	348	2,090	2,270	3,380	3,030	2,270	3,030	3,380	2,893	567	3,380
	Selenium	mg/kg	0.2	2	-	0.55)	1.51	1.98	0.550	1.51	1.98	1.35	0.729	1.98	0.940	1.90	1.24	0.940	1.24	1.90	1.36	0.491	1.90
	Silver	mg/kg	0.1	0.5	-	<0.		0.130	0.160	<0.1	0.130	0.160	0.130	0.0200	0.160	0.130	0.140	0.160	0.130	0.140	0.160	0.143	0.0153	0.160
	Sodium	mg/kg	50	-	-	177		100	100	100	100	177	126	44.5	177	86.0	98.0	92.0	86.0	92.0	98.0	92.0	6.00	98.0
	Strontium	mg/kg	0.5	-	-	66.		45.7	59.5	45.7	59.5	66.4	57.2	10.5	66.4	46.2	43.6	46.7	43.6	46.2	46.7	45.5	1.66	46.7
	Sulphur	mg/kg	1,000	-	-	<1,0	0	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	-	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	-	<1,000
	Thallium	mg/kg	0.05	-	-	0.21	3	0.224	0.228	0.216	0.224	0.228	0.223	0.00611	0.228	0.645	0.747	0.715	0.645	0.715	0.747	0.702	0.0522	0.747
	Tin	mg/kg	2	-	-	<2		<2	<2	<2	<2	<2	<2	-	<2	<2	<2	<2	<2	<2	<2	<2	-	<2
	Titanium	mg/kg	1	-	-	17.		16.5	20.9	16.5	17.6	20.9	18.3	2.29	20.9	9.90	14.2	8.70	8.70	9.90	14.2	10.9	2.89	14.2
	Tungsten	mg/kg			-	<0.	i	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	<0.5
	Uranium	mg/kg	0.05	-	-	0.66	1	0.754	0.996	0.661	0.754	0.996	0.804	0.173	0.996	0.860	0.878	0.914	0.860	0.878	0.914	0.884	0.0275	0.914
	Vanadium	mg/kg	0.2	-	-	23.		18.5	23.7	18.5	23.3	23.7	21.8	2.89	23.7	32.0	38.8	36.6	32.0	36.6	38.8	35.8	3.47	38.8
	Zinc	mg/kg	2	123	315	85.		89.4	103	85.9	89.4	103	92.8	9.03	103	134	152	141	134	141	152	142	9.07	152
	Zirconium	mg/kg	1	-	-	1.2		1.10	1.30	1.10	1.20	1.30	1.20	0.100	1.30	<1	<1	<1	<1	<1	<1	<1	-	<1

Indicates values is greater than the lower British Columbia Working Sediment Quality Guidelines.

Indicates values is greater than the upper British Columbia Working Sediment Quality Guidelines.

Notes: "-" indicates data not available. LRL = laboratory reporting limit. BC WSQG = British Columbia Working Sediment Quality Guidelines (BCMOECCS 2021b) and approved BC Sediment Quality Guideline for Selenium (BCMOECCS 2021a). All data and summary statistics are displayed to three significant digits.

Table C.2: Sediment Physical and Chemical Data and Summary Statistics for EVO LAEMP, 2021

				BC Se										Refe	rence								
				Qua Guide	ality elines				RG_A	LUSM								RG_	MI25				
	Analyte	Units	LRL	Lower WSQG	Upper	RG_ALUSM_1	RG_ALUSM_2	RG_ALUSM_3	Minimum	Median	Maximum	Mean	Standard Deviation	95th Percentile	RG_MI25_1	RG_MI25_2	RG_MI25_3	Minimum	Median	Maximum	Mean	Standard Deviation	95th Percentile
						12-Sep	12-Sep	12-Sep					Deviation	rercentile	15-Sep	15-Sep	15-Sep					Deviation	rercentile
	Acenaphthene	mg/kg	0.005	0.0067	0.0889	<0.005	<0.0075	<0.013	<0.005	<0.0075	<0.013	<0.005	-	<0.013	<0.005	<0.005	<0.05	<0.005	<0.005	<0.05	<0.005	-	<0.05
	Acenaphthylene	mg/kg	0.005	0.0059	0.128	<0.005	0.0153	<0.013	<0.005	<0.013	0.0153	0.00843	-	0.0153	<0.005	<0.005	<0.025	<0.005	<0.005	<0.025	<0.005	-	<0.025
	Acridine	mg/kg	0.01	-	-	<0.01	<0.015	<0.025	<0.01	<0.015	<0.025	<0.01	-	<0.025	<0.01	<0.01	<0.05	<0.01	<0.01	<0.05	<0.01	-	<0.05
	Anthracene	mg/kg	0.004	0.0469	0.245	<0.004	<0.006	0.0100	<0.004	<0.006	0.0100	0.00600	-	0.0100	<0.004	<0.004	<0.02	<0.004	<0.004	<0.02	<0.004	-	<0.02
	Benzo(a)anthracene	mg/kg	0.01	0.0317	0.385	<0.01	0.0340	0.0910	<0.01	0.0340	0.0910	0.0450	0.0380	0.0910	<0.01	<0.01	<0.05	<0.01	<0.01	<0.05	<0.01	-	<0.05
	Benzo(a)pyrene	mg/kg	0.01	0.0319	0.782	<0.01	<0.015	<0.025	<0.01	<0.015	<0.025	<0.01	-	<0.025	<0.01	<0.01	<0.05	<0.01	<0.01	<0.05	<0.01	-	<0.05
	Benzo(b&j)fluoranthene	mg/kg	0.01	-	-	<0.01	0.0330	0.0670	<0.01	0.0330	0.0670	0.0367	0.0227	0.0670	<0.01	<0.01	<0.05	<0.01	<0.01	<0.05	<0.01	-	<0.05
	Benzo(b+j+k)fluoranthene	mg/kg	0.015	-	-	<0.015	0.0330	0.0670	<0.015	0.0330	0.0670	0.0383	0.0227	0.0670	<0.015	<0.015	<0.075	<0.015	<0.015	< 0.075	<0.015	-	<0.075
	Benzo(e)pyrene	mg/kg	0.01	-	-	<0.01	0.0310	0.0520	<0.01	0.0310	0.0520	0.0310	0.0140	0.0520	<0.01	0.0110	<0.05	<0.01	0.0105	<0.05	0.0105	-	0.0110
suc	Benzo(g,h,i)perylene	mg/kg	0.01	0.17	3.2	<0.01	<0.015	<0.025	<0.01	<0.015	<0.025	<0.01	-	<0.025	<0.01	<0.01	<0.05	<0.01	<0.01	<0.05	<0.01	-	<0.05
arbo	Benzo(k)fluoranthene	mg/kg	0.01	0.24	13.4	<0.01	<0.015	<0.025	<0.01	<0.015	<0.025	<0.01	-	<0.025	<0.01	<0.01	<0.05	<0.01	<0.01	<0.05	<0.01	-	<0.05
roc	Chrysene	mg/kg	0.01	0.0571	0.862	0.0180	0.0390	0.0560	0.0180	0.0390	0.0560	0.0377	0.0190	0.0560	<0.01	0.0170	<0.05	<0.01	0.0135	<0.05	0.0135	-	0.0170
-Jyd	Dibenz(a,h)anthracene	mg/kg	0.005	0.0062	0.135	<0.005	<0.0075	<0.013	<0.005	<0.0075	<0.013	<0.005	-	<0.013	<0.005	<0.005	<0.025	<0.005	<0.005	<0.025	<0.005	-	<0.025
tic I	Fluoranthene	mg/kg	0.01	0.111	2.355	<0.01	<0.015	<0.025	<0.01	<0.015	<0.025	<0.01	-	<0.025	<0.01	<0.01	<0.05	<0.01	<0.01	<0.05	<0.01	-	<0.05
ma	Fluorene	mg/kg	0.01	0.021	0.144	<0.01	<0.015	<0.025	<0.01	<0.015	<0.025	<0.01	-	<0.025	<0.01	<0.01	<0.05	<0.01	<0.01	<0.05	<0.01	-	<0.05
Arc	Indeno(1,2,3-c,d)pyrene	mg/kg	0.01	0.2	3.2	<0.01	<0.015	<0.025	<0.01	<0.015	<0.025	<0.01	-	<0.025	<0.01	<0.01	<0.05	<0.01	<0.01	<0.05	<0.01	-	<0.05
olic	1-Methylnaphthalene	mg/kg	0.01	-	-	< 0.05	0.0480	0.0940	0.0480	0.0480	0.0940	0.0633	0.0307	0.0940	<0.05	< 0.05	0.0250	0.0250	0.0250	<0.05	0.0250	-	0.0250
ycy	2-Methylnaphthalene	mg/kg	0.01	0.0202	0.201	0.0120	0.0920	0.176	0.0120	0.0920	0.176	0.0933	0.0820	0.176	<0.01	<0.01	<0.05	<0.01	<0.01	<0.05	<0.01	-	<0.05
Ро	Naphthalene	mg/kg	0.01	0.0346	0.391	<0.01	0.0380	0.0740	<0.01	0.0380	0.0740	0.0407	0.0240	0.0740	<0.01	<0.01	<0.05	<0.01	<0.01	<0.05	<0.01	-	<0.05
	Perylene	mg/kg	0.01	-	-	<0.01	0.0340	0.0610	<0.01	0.0340	0.0610	0.0350	0.0180	0.0610	<0.01	<0.01	<0.05	<0.01	<0.01	<0.05	<0.01	-	<0.05
	Phenanthrene	mg/kg	0.01	0.0419	0.515	0.0260	0.130	0.234	0.0260	0.130	0.234	0.130	0.104	0.234	<0.02	0.0170	0.0670	0.0170	0.0170	0.0670	0.0337	0.0333	0.0670
	Pyrene	mg/kg	0.01	0.053	0.875	<0.01	0.0180	0.0330	<0.01	0.0180	0.0330	0.0203	0.0100	0.0330	<0.01	<0.01	<0.05	<0.01	<0.01	<0.05	<0.01	-	<0.05
	Quinoline	mg/kg	0.01	-	-	<0.05	<0.015	<0.025	<0.015	<0.025	<0.05	<0.015	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	<0.05
	d10-Acenaphthene	%	-	-	-	79.5	110	105	79.5	105	110	98.3	16.5	110	78.6	75.9	67.0	67.0	75.9	78.6	73.8	6.07	78.6
	d12-Chrysene	%	-	-	-	86.0	-	-	86.0	86.0	86.0	86.0	-	86.0	97.0	92.6	80.1	80.1	92.6	97.0	89.9	8.77	97.0
	d8-Naphthalene	%	-	-	-	74.3	106	98.0	74.3	98.0	106	92.7	16.4	106	79.6	76.3	74.6	74.6	76.3	79.6	76.8	2.54	79.6
	d10-Phenanthrene	%	-	-	-	82.6	122	119	82.6	119	122	108	21.9	122	90.5	88.4	78.3	78.3	88.4	90.5	85.7	6.52	90.5
	B(a)P Total Potency Equivalent	mg/kg	0.02	-	-	<0.02	<0.02	0.0380	<0.02	<0.02	0.0380	0.0260	-	0.0380	<0.02	<0.02	<0.048	<0.02	<0.02	<0.048	<0.02	-	<0.048

Indicates values is greater than the lower British Columbia Working Sediment Quality Guidelines.

Indicates values is greater than the upper British Columbia Working Sediment Quality Guidelines.

Notes: "-" indicates data not available. LRL = laboratory reporting limit. BC WSQG = British Columbia Working Sediment Quality Guidelines (BCMOECCS 2021b) and approved BC Sediment Quality Guideline for Selenium (BCMOECCS 2021a). All data and summary statistics are displayed to three significant digits.

Table C.2: Sediment Physical and Chemical Data and Summary Statistics for EVO LAEMP, 2021

				ВС	Sedimen	nt										Mine-e	exposed									
					Quality uidelines	,				RG_E	RCKUT									RG_ER	CKDT					
	Analyte	Units	LRL		ver Uppe		G_ERCKUT_1	RG_ERCKUT_2	RG_ERCKUT_3	RG_ERCKUT_	4 RG_ERCKUT_	5 Minimum	Median	Maximum	Mean	Standard		RG_ERCKDT_2	RG_ERCKDT_	3 RG_ERCKDT_4	RG_ERCKDT_	Minimum	Median	Maximum	Mean	Standard
				WS	QG WSQ	(G	15-Sep	15-Sep	15-Sep	15-Sep	15-Sep					Deviation	14-Sep	14-Sep	14-Sep	14-Sep	14-Sep					Deviation
sical sts	% Moisture	%	0.25	-	-		56.4	58.1	58.5	56.5	48.9	48.9	56.5	58.5	55.7	3.90	86.4	78.9	83.9	80.3	73.8	73.8	80.3	86.4	80.7	4.84
Physica Tests	pH (1:2 soil:water)	рН	0.1	-	-		8.13	7.72	7.51	7.53	7.63	7.51	7.63	8.13	7.70	0.253	8.01	7.91	8.05	7.82	8.04	7.82	8.01	8.05	7.97	0.0986
	% Gravel (>2mm)	%	1	-	-		8.30	6.00	<1	4.10	<1	<1	4.10	8.30	4.08	2.04	<1	2.10	2.20	<1	<1	<1	<1	2.20	1.46	0.0566
	% Sand (2.00mm - 1.00mm)	%	1	-	-		2.20	2.80	1.50	3.50	2.10	1.50	2.20	3.50	2.42	0.760	<1	1.60	6.40	<1	<1	<1	<1	6.40	2.20	2.72
	% Sand (1.00mm - 0.50mm)	%	1	-	-		4.10	5.40	5.50	8.00	5.50	4.10	5.50	8.00	5.70	1.42	<1	3.10	5.90	<1	<1	<1	<1	5.90	2.40	1.58
Size	% Sand (0.50mm - 0.25mm)	%	1	-	-		9.30	18.7	16.7	14.9	17.8	9.30	16.7	18.7	15.5	3.73	<1	7.70	4.30	1.30	2.00	<1	2.00	7.70	3.26	2.83
<u>e</u>	% Sand (0.25mm - 0.125mm)	%	1	-	-		14.9	23.3	27.3	18.8	28.3	14.9	23.3	28.3	22.5	5.67	3.20	10.5	4.10	4.30	6.50	3.20	4.30	10.5	5.72	2.93
artic	% Sand (0.125mm - 0.063mm)	%	1	-	-		13.8	11.4	14.8	13.1	15.0	11.4	13.8	15.0	13.6	1.46	4.70	7.80	5.00	7.10	8.00	4.70	7.10	8.00	6.52	1.56
۵	% Silt (0.063mm - 0.0312mm)	%	1	-	-		21.5	14.2	15.9	15.1	14.9	14.2	15.1	21.5	16.3	2.96	24.7	18.3	21.5	24.5	23.1	18.3	23.1	24.7	22.4	2.64
	% Silt (0.0312mm - 0.004mm)	%	1	-	-		22.1	15.3	15.5	17.3	13.9	13.9	15.5	22.1	16.8	3.19	50.8	35.0	39.2	48.9	45.9	35.0	45.9	50.8	44.0	6.67
	% Clay (<4um)	%	1	-	-		3.70	2.90	2.80	5.30	2.50	2.50	2.90	5.30	3.44	1.13	15.5	13.9	11.5	13.2	12.9	11.5	13.2	15.5	13.4	1.46
Organic Carbon	Total Organic Carbon	%	0.05	-	-		-	-	-	-	-	6.34	7.99	10.4	8.57	1.71	-	-	-	-	-	7.66	8.97	11.8	9.42	1.57
<u> </u>	Aluminum	mg/kg	50	-	_		4,580	5,000	4,560	4,980	4,630	4,560	4,630	5,000	4,750	221	3,610	3,700	3,950	3,660	4,180	3,610	3,700	4,180	3,820	240
	Antimony	mg/kg	0.1	-	-		0.340	0.930	0.900	0.610	0.860	0.340	0.860	0.930	0.728	0.251	0.950	0.800	0.660	0.820	0.730	0.660	0.800	0.950	0.792	0.108
	Arsenic	mg/kg	0.1	5.9	9 17		4.04	4.90	5.37	4.64	5.34	4.04	4.90	5.37	4.86	0.551	14.5	21.1	20.2	9.80	16.4	9.80	16.4	21.1	16.4	4.57
	Barium	mg/kg	0.5	-	-		133	174	167	179	154	133	167	179	161	18.4	178	197	199	193	207	178	197	207	195	10.7
	Beryllium	mg/kg	0.1	-	-		0.510	0.580	0.550	0.610	0.560	0.510	0.560	0.610	0.562	0.0370	0.460	0.560	0.590	0.470	0.520	0.460	0.520	0.590	0.520	0.0561
	Bismuth	mg/kg	0.2	-	_		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	_	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	_
	Boron	mg/kg	5	-	-		<5	5.40	<5	<5	<5	<5	<5	5.40	5.08	-	8.50	<5	<5	6.10	6.00	<5	6.00	8.50	6.12	1.21
	Cadmium	mg/kg	0.02	0.0	6 3.5	,	0.992	1.23	1.26	1.27	1.17	0.992	1.23	1.27	1.18	0.114	3.85	4.65	5.15	3.13	4.06	3.13	4.06	5.15	4.17	0.772
	Calcium	mg/kg	50	_			22,400	42,800	22,700	18,800	30,400	18,800	22,700	42,800	27,420		67,400	75,800	71,900	79,500	81,300	67,400	75,800	81,300	75,180	
	Chromium	mg/kg	0.5	37.	.3 90		8.87	9.73	9.25	9.18	9.16	8.87	9.18	9.73	9.24	0.311	8.58	8.76	8.46	8.51	9.42	8.46	8.58	9.42	8.75	0.394
	Cobalt	mg/kg	0.1	-	-		4.48	4.98	6.25	5.70	5.55	4.48	5.55	6.25	5.39	0.681	63.6	123	121	45.7	55.3	45.7	63.6	123	81.7	37.3
	Copper	mg/kg	0.5	35.	.7 197	7	12.0	13.4	15.2	15.0	13.2	12.0	13.4	15.2	13.8	1.34	15.4	14.0	15.1	14.9	14.5	14.0	14.9	15.4	14.8	0.545
	Iron	mg/kg	50	212	00 4376	66	9,560	12,000	12,200	10,900	13,600	9,560	12,000	13,600	11,652	1,513	25,700	41,100	40,400	20,300	30,100	20,300	30,100	41,100	31,520	9,116
	Lead	mg/kg	0.5	35	5 91.3	3	6.88	8.60	8.75	8.44	8.89	6.88	8.60	8.89	8.31	0.818	7.56	9.52	11.0	6.97	8.79	6.97	8.79	11.0	8.77	1.60
	Lithium	mg/kg	2	-			5.70	6.40	5.80	6.30	6.00	5.70	6.00	6.40	6.04	0.305	5.50	6.20	6.50	5.90	6.10	5.50	6.10	6.50	6.04	0.371
	Magnesium	mg/kg	20	-	-		3,720	3,560	3,380	2,840	3,480	2,840	3,480	3,720	3,396	335	8,620	9,890	8,830	9,720	9,360	8,620	9,360	9,890	9,284	550
m	Manganese	mg/kg	1	46	0 1100	0	113	186	263	174	229	113	186	263	193	57.0	1,290	2,710	2,680	808	936	808	1,290	2,710	1,685	939
etals	Mercury	mg/kg	0.005	0.1	7 0.48	6	0.0333	0.0298	0.0255	0.0258	0.0313	0.0255	0.0298	0.0333	0.0291	0.00342	0.0366	0.0340	0.0345	0.0282	0.0298	0.0282	0.0340	0.0366	0.0326	0.00349
Š	Molybdenum	mg/kg	0.1	25			0.850	1.16	1.17	0.980	1.09	0.850	1.09	1.17	1.05	0.135	1.72	2.49	2.31	1.65	1.97	1.65	1.97	2.49	2.03	0.365
	Nickel	mg/kg	0.5	16		_	17.7	20.5	21.7	19.7	21.1	17.7	20.5	21.7	20.1	1.55	98.0	122	127	82.4	88.9	82.4	98.0	127	104	19.9
	Phosphorus	mg/kg	50	-			865	1,040	1,090	971	1,050	865	1,040	1,090	1,003	88.3	1,170	1,200	1,160	1,270	1,340	1,160	1,200	1,340	1,228	76.0
	Potassium	mg/kg		-	-		1,170	1,360	1,200	1,250	1,250	1,170	1,250	1,360	1,246	72.3	1,100	1,160	1,280	1,150	1,330	1,100	1,160	1,330	1,204	96.6
	Selenium	mg/kg		2			5.14	5.93	5.96	5.02	4.02	4.02	5.14	5.96	5.21	0.797	32.1	20.1	23.9	20.9	19.0	19.0	20.9	32.1	23.2	
	Silver	mg/kg		0.9			0.190	0.190	0.210	0.220	0.170	0.170	0.190	0.220		0.0195	0.190	0.200	0.240	0.200	0.210	0.190	0.200	0.240	0.208	
	Sodium	mg/kg		-			<50.0	54.0	55.0	53.0	51.0	<50	53.0	55.0	52.6	1.85	84.0	82.0	89.0	82.0	90.0	82.0	84.0	90.0	85.4	3.85
	Strontium	mg/kg		-	-		37.4	51.0	46.1	39.0	45.7	37.4	45.7	51.0	43.8	5.58	71.4	89.5	88.3	80.4	86.2	71.4	86.2	89.5	83.2	7.45
	Sulphur	mg/kg		-	-		<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000		2,100	1,200	1,800	1,700	1,500	1,200	1,700	2,100	1,660	
	Thallium	mg/kg		-			0.151	0.183	0.174	0.160	0.171	0.151	0.171	0.183		0.0125	0.355	0.297	0.302	0.249	0.281	0.249	0.297	0.355	0.297	
	Tin	mg/kg		-	-		<2	<2	<2	<2	<2	<2	<2	<2	<2	-	<2	<2	<2	<2	<2	<2	<2	<2	<2	-
	Titanium	mg/kg		-	-		2.50	9.40	3.90	2.80	3.90	2.50	3.90	9.40	4.50	2.81	5.60	4.60	3.70	6.10	5.30	3.70	5.30	6.10	5.06	0.934
	Tungsten	mg/kg		-	-		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-
	Uranium	mg/kg		-	-	f	1.26	1.49	1.43	1.24	1.13	1.13	1.26	1.49	1.31	0.147	1.55	2.06	2.10	1.57	1.73	1.55	1.73	2.10	1.80	0.264
	Vanadium	mg/kg		-	-		20.5	25.3	24.1	23.2	23.8	20.5	23.8	25.3	23.4	1.78	18.9	19.2	20.2	18.6	21.6	18.6	19.2	21.6	19.7	1.22
	Zinc	mg/kg		12		5	70.5	82.5	86.8	81.0	90.9	70.5	82.5	90.9	82.3	7.67	243	334	350	180	248	180	248	350	271	70.4
	Zirconium	mg/kg		-			<1	<1	<1	<1	<1	<1	<1	<1	<1	-	<1	<1	<1	<1	<1	<1	<1	<1	<1	-

Indicates values is greater than the lower British Columbia Working Sediment Quality Guidelines.

Indicates values is greater than the upper British Columbia Working Sediment Quality Guidelines.

Notes: "-" indicates data not available. LRL = laboratory reporting limit. BC WSQG = British Columbia Working Sediment Quality Guidelines (BCMOECCS 2021b) and approved BC Sediment Quality Guideline for Selenium (BCMOECCS 2021a). All data and summary statistics are displayed to three significant digits.

Table C.2: Sediment Physical and Chemical Data and Summary Statistics for EVO LAEMP, 2021

				BC Sec											Mine-e	xposed									
	Analida	Units	LRL	Qua Guide	.,				RG_E	RCKUT									RG_EF	RCKDT					
	Analyte	Units		Lower		RG_ERCKUT_1	RG_ERCKUT_2	RG_ERCKUT_3	RG_ERCKUT_	4 RG_ERCKUT_5	Minimum	Median	Maximum	Mean	Standard	RG_ERCKDT_	1 RG_ERCKDT_2	RG_ERCKDT_3	RG_ERCKDT_4	RG_ERCKDT_5	Minimun	Median	Maximum	Mean	Standard
				WSQG	WSQG	15-Sep	15-Sep	15-Sep	15-Sep	15-Sep					Deviation	14-Sep	14-Sep	14-Sep	14-Sep	14-Sep					Deviation
	Acenaphthene	mg/kg	0.005	0.0067	0.0889	<0.025	<0.015	<0.02	<0.045	<0.025	<0.015	<0.025	<0.045	<0.015	-	<0.085	<0.07	<0.09	<0.095	<0.08	<0.07	<0.085	<0.095	<0.07	-
	Acenaphthylene	mg/kg	0.005	0.0059	0.128	<0.005	<0.005	<0.005	0.00520	< 0.005	<0.005	<0.005	0.00520	0.00504	4 -	<0.018	0.0130	0.0110	0.0130	0.00740	0.00740	0.0120	<0.018	0.0111	0.00295
	Acridine	mg/kg	0.01	-	-	<0.02	<0.04	<0.03	< 0.05	< 0.03	<0.02	<0.03	< 0.05	<0.02	-	<0.22	<0.19	<0.2	<0.2	<0.18	<0.18	<0.2	<0.22	<0.18	-
	Anthracene	mg/kg	0.004	0.0469	0.245	<0.004	<0.004	<0.004	< 0.004	<0.004	<0.004	<0.004	<0.004	<0.004	-	<0.02	<0.008	<0.008	0.0127	<0.004	<0.004	<0.008	< 0.02	0.00618	-
	Benzo(a)anthracene	mg/kg	0.01	0.0317	0.385	0.0730	0.0450	0.0220	0.109	0.123	0.0220	0.0730	0.123	0.0744	0.0423	0.102	0.0630	<0.09	<0.07	0.0670	0.0630	0.0670	0.102	0.0724	0.0184
	Benzo(a)pyrene	mg/kg	0.01	0.0319	0.782	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	0.0640	0.0330	0.0530	0.0250	0.0290	0.0250	0.0330	0.0640	0.0408	0.0169
	Benzo(b&j)fluoranthene	mg/kg	0.01	-	-	0.0810	0.0370	0.0640	0.112	0.0960	0.0370	0.0810	0.112	0.0780	0.0290	0.162	0.112	0.160	0.125	0.125	0.112	0.125	0.162	0.137	0.0227
	Benzo(b+j+k)fluoranthene	mg/kg	0.015	-	-	0.0810	0.0370	0.0640	0.112	0.0960	0.0370	0.0810	0.112	0.0780	0.0290	0.162	0.112	0.160	0.125	0.125	0.112	0.125	0.162	0.137	0.0227
	Benzo(e)pyrene	mg/kg	0.01	-	-	0.0690	0.0330	0.0590	0.0990	0.0810	0.0330	0.0690	0.0990	0.0682	0.0247	0.156	0.123	0.163	0.130	0.127	0.123	0.130	0.163	0.140	0.0183
SUS	Benzo(g,h,i)perylene	mg/kg	0.01	0.17	3.2	0.0140	<0.01	0.0180	0.0240	0.0190	<0.01	0.0180	0.0240	0.0170	0.00428	0.0730	0.0480	0.0670	0.0490	0.0510	0.0480	0.0510	0.0730	0.0576	0.0116
arbo	Benzo(k)fluoranthene	mg/kg	0.01	0.24	13.4	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	<0.035	<0.02	<0.02	<0.02	<0.01	<0.01	<0.02	<0.035	<0.01	-
200	Chrysene	mg/kg	0.01	0.0571	0.862	0.130	0.0450	0.140	0.143	0.132	0.0450	0.132	0.143	0.118	0.0412	<0.39	0.285	<0.38	0.311	0.332	0.285	0.311	<0.39	0.309	0.0304
ξ	Dibenz(a,h)anthracene	mg/kg (0.005	0.0062	0.135	0.00830	<0.005	0.00600	0.0117	0.00680	<0.005	0.00680	0.0117	0.00756	0.00247	0.0190	0.0110	0.0270	<0.01	0.0134	<0.01	0.0134	0.0270	0.0161	0.00705
tic F	Fluoranthene	mg/kg	0.01	0.111	2.355	0.0350	0.0140	<0.03	0.0400	0.0370	0.0140	0.0350	0.0400	0.0280	0.0133	0.0810	0.0620	0.0680	0.0550	0.0570	0.0550	0.0620	0.0810	0.0646	0.0105
ma	Fluorene	mg/kg	0.01	0.021	0.144	0.0160	0.0270	0.0380	0.0440	0.0220	0.0160	0.0270	0.0440	0.0294	0.0115	0.274	0.248	0.326	0.238	0.265	0.238	0.265	0.326	0.270	0.0342
Arc	Indeno(1,2,3-c,d)pyrene	mg/kg	0.01	0.2	3.2	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	< 0.035	<0.02	<0.02	<0.02	0.0100	0.0100	0.0100	<0.035	0.0100	-
clic	1-Methylnaphthalene	mg/kg	0.01	-	-	0.177	0.156	0.190	0.329	0.250	0.156	0.190	0.329	0.220	0.0700	0.751	0.655	0.873	0.718	0.698	0.655	0.718	0.873	0.739	0.0826
уcу	2-Methylnaphthalene	mg/kg	0.01	0.0202	0.201	0.259	0.248	0.294	0.544	0.388	0.248	0.294	0.544	0.347	0.123	1.48	1.30	1.70	1.32	1.40	1.30	1.40	1.70	1.44	0.162
Ро	Naphthalene	mg/kg	0.01	0.0346	0.391	0.174	0.0710	0.113	0.272	0.226	0.0710	0.174	0.272	0.171	0.0815	0.374	0.325	0.433	0.335	0.349	0.325	0.349	0.433	0.363	0.0431
	Perylene	mg/kg	0.01	-	-	0.0220	<0.01	<0.01	0.0500	<0.01	<0.01	<0.01	0.0500	0.0204	0.0158	<0.035	<0.02	<0.02	<0.02	<0.01	<0.01	<0.02	<0.035	<0.01	-
	Phenanthrene	mg/kg	0.01	0.0419	0.515	0.583	0.258	0.409	0.873	0.719	0.258	0.583	0.873	0.568	0.244	1.06	0.898	1.24	0.944	0.992	0.898	0.992	1.24	1.03	0.133
	Pyrene	mg/kg	0.01	0.053	0.875	0.0430	0.0210	0.0370	0.0650	0.0530	0.0210	0.0430	0.0650	0.0438	0.0166	0.101	0.0850	0.109	0.0890	0.0840	0.0840	0.0890	0.109	0.0936	0.0109
	Quinoline	mg/kg	0.01	-	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	<0.035	<0.02	<0.02	<0.02	<0.05	<0.02	<0.02	<0.05	<0.02	-
	d10-Acenaphthene	%	-	-	-	92.2	83.5	86.9	84.0	89.5	83.5	86.9	92.2	87.2	3.68	123	97.0	114	124	100	97.0	114	124	112	12.5
	d12-Chrysene	%	-	-	-	116	102	108	102	107	102	107	116	107	5.72	119	117	-	126	122	117	121	126	121	4.04
	d8-Naphthalene	%	-	-	-	90.1	83.3	86.6	87.0	87.4	83.3	87.0	90.1	86.9	2.43	115	95.1	111	119	95.7	95.1	111	119	107	11.0
	d10-Phenanthrene	%	-	-	-	107	96.2	101	96.9	99.5	96.2	99.5	107	100	4.33	110	109	129	88.6	113	88.6	110	129	110	14.5
	B(a)P Total Potency Equivalent	mg/kg	0.02	-	-	0.0310	<0.02	0.0220	0.0410	0.0360	<0.02	0.0310	0.0410	0.0300	0.00872	0.116	0.0670	0.104	0.0510	0.0670	0.0510	0.0670	0.116	0.0810	0.0276

Indicates values is greater than the lower British Columbia Working Sediment Quality Guidelines.

Indicates values is greater than the upper British Columbia Working Sediment Quality Guidelines.

Notes: "-" indicates data not available. LRL = laboratory reporting limit. BC WSQG = British Columbia Working Sediment Quality Guidelines (BCMOECCS 2021b) and approved BC Sediment Quality Guideline for Selenium (BCMOECCS 2021a). All data and summary statistics are displayed to three significant digits.

Table C.2: Sediment Physical and Chemical Data and Summary Statistics for EVO LAEMP, 2021

				BC Se	diment				Mi	ne-exposed					
				Qua	ality					<u> </u>					
	Analyte	Units	LRL	Guide	elines		<u> </u>	T	<u> </u>	RG_ERCK					
					Upper WSQG	RG_ERCK_1	RG_ERCK_2	RG_ERCK_3	RG_ERCK_4	RG_ERCK_5	Minimum	Median	Maximum	Mean	Standard Deviation
	1			11040	WOQ0	10-Sep	10-Sep	10-Sep	10-Sep	10-Sep					
sical	% Moisture	%	0.25	-	-	61.3	44.8	55.4	40.8	47.1	40.8	47.1	61.3	49.9	8.32
Physical Tests	pH (1:2 soil:water)	рН	0.1	-	-	6.95	7.44	7.12	7.55	7.42	6.95	7.42	7.55	7.30	0.251
	% Gravel (>2mm)	%	1	-	-	4.70	2.00	3.30	<1	<1	<1	2.00	4.70	2.40	1.32
	% Sand (2.00mm - 1.00mm)	%	1	-	-	7.40	2.90	5.60	<1	1.10	<1	2.90	7.40	3.60	2.89
Φ	% Sand (1.00mm - 0.50mm)	%	1	-	-	8.20	5.90	7.30	1.30	5.00	1.30	5.90	8.20	5.54	2.67
Size	% Sand (0.50mm - 0.25mm)	%	1	-	-	15.6	19.4	21.8	20.8	20.2	15.6	20.2	21.8	19.6	2.38
<u>ic</u>	% Sand (0.25mm - 0.125mm)	%	1	-	-	27.3	30.6	30.4	36.5	19.5	19.5	30.4	36.5	28.9	6.20
Particle (% Sand (0.125mm - 0.063mm)	%	1	-	-	13.9	13.8	11.1	15.4	12.4	11.1	13.8	15.4	13.3	1.63
ш.	% Silt (0.063mm - 0.0312mm)	%	1	-	-	11.1	11.7	9.40	12.0	17.8	9.40	11.7	17.8	12.4	3.18
	% Silt (0.0312mm - 0.004mm)	%	1	-	-	10.0	11.4	9.20	11.1	19.6	9.20	11.1	19.6	12.3	4.20
	% Clay (<4um)	%	1	-	-	1.70	2.20	1.90	2.30	3.50	1.70	2.20	3.50	2.32	0.701
Organic Carbon	Total Organic Carbon	%	0.05	-	-	-	-	-	-	-	2.10	2.33	4.58	2.72	1.05
	Aluminum	mg/kg	50	-	-	4,360	3,550	1,360	6,550	5,920	1,360	4,360	6,550	4,348	2,055
	Antimony	mg/kg	0.1	-	-	0.490	0.420	0.190	0.760	0.560	0.190	0.490	0.760	0.484	0.208
	Arsenic	mg/kg	0.1	5.9	17	3.77	3.63	1.47	6.23	5.35	1.47	3.77	6.23	4.09	1.83
	Barium	mg/kg	0.5	-	-	127	109	81.2	129	126	81.2	126	129	114	20.2
	Beryllium	mg/kg	0.1	-	-	0.320	0.300	0.120	0.540	0.430	0.120	0.320	0.540	0.342	0.157
	Bismuth	mg/kg	0.2	-	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	-
	Boron	mg/kg	5	-	-	5.50	<5	<5	6.10	5.90	<5	5.50	6.10	5.50	0.310
	Cadmium	mg/kg	0.02	0.6	3.5	0.651	0.571	0.320	0.839	0.791	0.320	0.651	0.839	0.634	0.206
	Calcium	mg/kg	50	-	-	123,000	103,000	149,000	48,000	59,200	48,000	103,000	149,000	96,440	42,557
	Chromium	mg/kg	0.5	37.3	90	8.66	7.11	2.81	11.6	10.9	2.81	8.66	11.6	8.22	3.51
	Cobalt	mg/kg	0.1	-	-	11.0	18.2	28.3	12.8	17.3	11.0	17.3	28.3	17.5	6.74
	Copper	mg/kg	0.5	35.7	197	7.37	7.02	2.67	10.8	10.7	2.67	7.37	10.8	7.71	3.33
	Iron	mg/kg	50	21200	43766	9,180	7,680	3,540	13,000	13,000	3,540	9,180	13,000	9,280	3,975
	Lead	mg/kg	0.5	35	91.3	5.96	5.54	2.03	8.68	7.77	2.03	5.96	8.68	6.00	2.56
	Lithium	mg/kg	2	-	-	6.20	5.20	2.50	8.90	7.50	2.50	6.20	8.90	6.06	2.43
	Magnesium	mg/kg	20	-	-	5,760	4,910	3,600	6,160	7,020	3,600	5,760	7,020	5,490	1,301
S	Manganese	mg/kg	1	460	1100	188	401	643	346	399	188	399	643	395	163
Metals	Mercury	mg/kg	0.005	0.17	0.486	0.0191	0.0225	<0.005	0.0412	0.0335	<0.005	0.0225	0.0412	0.0243	0.0102
Σ	Molybdenum	mg/kg	0.1	25	23000	1.35	1.00	0.620	1.72	1.58	0.620	1.35	1.72	1.25	0.447
	Nickel	mg/kg	0.5	16	75	37.0	51.8	52.2	45.8	54.4	37.0	51.8	54.4	48.2	7.05
	Phosphorus	mg/kg	50	-	-	869	782	337	1,030	942	337	869	1,030	792	270
	Potassium	mg/kg	100	-	-	1,160	890	400	1,430	1,300	400	1,160	1,430	1,036	408
	Selenium	mg/kg	0.2	2	-	8.18	1.90	1.58	1.72	1.51	1.51	1.72	8.18	2.98	2.91
	Silver	mg/kg	0.1	0.5	-	<0.1	<0.1	<0.1	0.160	0.140	<0.1	<0.1	0.160	0.120	0.0113
	Sodium	mg/kg	50	-	-	94.0	71.0	72.0	80.0	84.0	71.0	80.0	94.0	80.2	9.44
	Strontium	mg/kg	0.5	-	-	84.1	72.2	86.0	66.5	76.1	66.5	76.1	86.0	77.0	8.15
	Sulphur	mg/kg	1,000	-	-	3,100	1,900	2,900	<1,000	1,000	<1,000	1,900	3,100	1,980	1,036
	Thallium	mg/kg	0.05	-	-	0.162	0.216	0.102	0.252	0.230	0.102	0.216	0.252	0.192	0.0605
	Tin	mg/kg	2	-	-	<2	<2	<2	<2	<2	<2	<2	<2	<2	-
	Titanium	mg/kg	1	-	-	27.3	23.0	8.80	29.2	23.1	8.80	23.1	29.2	22.3	8.00
	Tungsten	mg/kg	0.5	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-
	Uranium	mg/kg	0.05	-	-	1.68	1.27	1.20	1.19	1.03	1.03	1.20	1.68	1.27	0.243
	Vanadium	mg/kg	0.2	-	-	21.6	17.3	6.73	29.9	25.4	6.73	21.6	29.9	20.2	8.85
	Zinc	mg/kg	2	123	315	58.4	47.3	23.0	75.0	70.7	23.0	58.4	75.0	54.9	20.9
	Zirconium	mg/kg	1	-	-	<1	1.10	<1	1.20	1.10	<1	1.10	1.20	1.08	0.0490

Indicates values is greater than the lower British Columbia Working Sediment Quality Guidelines.

Indicates values is greater than the upper British Columbia Working Sediment Quality Guidelines.

Notes: "-" indicates data not available. LRL = laboratory reporting limit. BC WSQG = British Columbia Working Sediment Quality Guidelines (BCMOECCS 2021b) and approved BC Sediment Quality Guideline for Selenium (BCMOECCS 2021a). All data and summary statistics are displayed to three significant digits.

Table C.2: Sediment Physical and Chemical Data and Summary Statistics for EVO LAEMP, 2021

					diment				Mi	ne-exposed					
	Amaluta	Linita	LRL	Qua Guide	ality elines				i	RG_ERCK					
	Analyte	Units	LKL		Upper WSQG	RG_ERCK_1	RG_ERCK_2	RG_ERCK_3	RG_ERCK_4	RG_ERCK_5	Minimum	Median	Maximum	Mean	Standard Deviation
				WSQG	WSQG	10-Sep	10-Sep	10-Sep	10-Sep	10-Sep					Deviation
	Acenaphthene	mg/kg	0.005	0.0067	0.0889	0.00640	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.00640	0.00528	-
	Acenaphthylene	mg/kg	0.005	0.0059	0.128	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	-
	Acridine	mg/kg	0.01	-	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
	Anthracene	mg/kg	0.004	0.0469	0.245	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	-
	Benzo(a)anthracene	mg/kg	0.01	0.0317	0.385	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
	Benzo(a)pyrene	mg/kg	0.01	0.0319	0.782	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
	Benzo(b&j)fluoranthene	mg/kg	0.01	-	-	0.0230	0.0120	<0.01	0.0170	0.0180	<0.01	0.0170	0.0230	0.0160	0.00477
	Benzo(b+j+k)fluoranthene	mg/kg	0.015	-	-	0.0230	<0.015	<0.015	0.0170	0.0180	<0.015	0.0170	0.0230	0.0176	0.00286
	Benzo(e)pyrene	mg/kg	0.01	-	-	0.0210	0.0130	<0.01	0.0180	0.0180	<0.01	0.0180	0.0210	0.0160	0.00362
SL	Benzo(g,h,i)perylene	mg/kg	0.01	0.17	3.2	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
grb	Benzo(k)fluoranthene	mg/kg	0.01	0.24	13.4	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
ő	Chrysene	mg/kg	0.01	0.0571	0.862	0.0360	0.0210	<0.01	0.0380	0.0390	<0.01	0.0360	0.0390	0.0288	0.00949
þ	Dibenz(a,h)anthracene	mg/kg	0.005	0.0062	0.135	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	-
tic F	Fluoranthene	mg/kg	0.01	0.111	2.355	0.0170	0.0110	<0.01	0.0130	0.0110	<0.01	0.0110	0.0170	0.0124	0.00269
Polycyclic Aromatic Hydrocarbons	Fluorene	mg/kg	0.01	0.021	0.144	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
Arc	Indeno(1,2,3-c,d)pyrene	mg/kg	0.01	0.2	3.2	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
양	1-Methylnaphthalene	mg/kg	0.01	-	-	<0.05	<0.05	<0.05	0.0520	0.0530	<0.05	<0.05	0.0530	0.0510	0.000566
ycy	2-Methylnaphthalene	mg/kg	0.01	0.0202	0.201	0.0460	0.0500	0.0420	0.0650	0.0710	0.0420	0.0500	0.0710	0.0548	0.0126
Po	Naphthalene	mg/kg	0.01	0.0346	0.391	0.0280	0.0240	0.0230	0.0300	0.0290	0.0230	0.0280	0.0300	0.0268	0.00311
	Perylene	mg/kg	0.01	-	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
	Phenanthrene	mg/kg	0.01	0.0419	0.515	0.0980	0.0760	0.0400	0.101	0.100	0.0400	0.0980	0.101	0.0830	0.0262
	Pyrene	mg/kg	0.01	0.053	0.875	0.0160	0.0120	<0.01	0.0160	0.0160	<0.01	0.0160	0.0160	0.0140	0.00226
	Quinoline	mg/kg	0.01	-	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-
	d10-Acenaphthene	%	-	-	-	100	79.4	85.9	84.0	83.0	79.4	84.0	100	86.5	8.10
	d12-Chrysene	%	-	-	-	110	90.3	97.4	94.4	94.5	90.3	94.5	110	97.4	7.61
	d8-Naphthalene	%	-	-	-	94.7	75.5	79.4	78.8	79.4	75.5	79.4	94.7	81.6	7.52
	d10-Phenanthrene	%	-	-	-	108	86.1	92.7	88.6	88.7	86.1	88.7	108	92.7	8.59
	B(a)P Total Potency Equivalent	t mg/kg	0.02	-	-	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	-

Indicates values is greater than the lower British Columbia Working Sediment Quality Guidelines. Indicates values is greater than the upper British Columbia Working Sediment Quality Guidelines.

Notes: "-" indicates data not available. LRL = laboratory reporting limit. BC WSQG = British Columbia Working Sediment Quality Guidelines (BCMOECCS 2021b) and approved BC Sediment Quality Guideline for Selenium (BCMOECCS 2021a). All data and summary statistics are displayed to three significant digits.

Table C.2: Sediment Physical and Chemical Data and Summary Statistics for EVO LAEMP, 2021

					ediment									Mine-ex	posed								
					uality delines				RG_MI3									RG_MIDER					
	Analyte	Units	LRL	Lower	r Upper	RG_MI3_1	RG_MI3_2	RG_MI3_3	Minimum	Median	Maximum	Mean	Standard	RG_MIDER_1	RG_MIDER_2	RG_MIDER_3	RG_MIDER_4	RG_MIDER_5	Minimum	Median	Maximum	Mean	Standard
				WSQG	WSQG	14-Sep	14-Sep	14-Sep					Deviation	9-Sep	9-Sep	9-Sep	9-Sep	9-Sep					Deviation
ical ts	% Moisture	%	0.25	-	-	31.8	53.3	44.5	31.8	44.5	53.3	43.2	10.8	74.1	64.0	75.9	68.9	73.5	64.0	73.5	75.9	71.3	4.82
Physi Test	pH (1:2 soil:water)	рН	0.1	-	-	7.56	7.30	7.33	7.30	7.33	7.56	7.40	0.142	7.15	7.21	7.30	7.52	7.53	7.15	7.30	7.53	7.34	0.175
	% Gravel (>2mm)	%	1	-	-	6.80	8.40	4.30	4.30	6.80	8.40	6.50	2.07	15.2	<1	3.80	<1	1.20	<1	1.20	15.2	4.44	6.66
	% Sand (2.00mm - 1.00mm)	%	1	-	-	4.80	4.00	3.30	3.30	4.00	4.80	4.03	0.751	15.6	1.70	2.90	3.70	5.40	1.70	3.70	15.6	5.86	5.61
Φ	% Sand (1.00mm - 0.50mm)	%	1	-	-	20.2	7.50	7.30	7.30	7.50	20.2	11.7	7.39	15.2	3.20	3.90	13.4	12.1	3.20	12.1	15.2	9.56	5.60
Siz	% Sand (0.50mm - 0.25mm)	%	1	-	-	37.7	16.0	8.30	8.30	16.0	37.7	20.7	15.2	9.90	9.40	11.4	13.0	9.30	9.30	9.90	13.0	10.6	1.58
<u>:0</u>	% Sand (0.25mm - 0.125mm)	%	1	-	-	17.4	19.1	16.6	16.6	17.4	19.1	17.7	1.28	7.60	6.40	10.0	6.80	5.30	5.30	6.80	10.0	7.22	1.76
Part	% Sand (0.125mm - 0.063mm)	%	1	-	-	4.40	12.5	23.2	4.40	12.5	23.2	13.4	9.43	7.40	8.50	11.7	8.50	6.10	6.10	8.50	11.7	8.44	2.07
1 -	% Silt (0.063mm - 0.0312mm)	%	1	-	-	3.70	14.9	18.4	3.70	14.9	18.4	12.3	7.68	12.3	29.1	23.9	22.0	25.5	12.3	23.9	29.1	22.6	6.30
	% Silt (0.0312mm - 0.004mm)	%	1	-	-	3.90	15.0	16.2	3.90	15.0	16.2	11.7	6.78	14.0	34.0	27.2	26.5	29.5	14.0	27.2	34.0	26.2	7.44
	% Clay (<4um)	%	1	-	-	1.10	2.60	2.40	1.10	2.40	2.60	2.03	0.814	2.90	7.70	5.30	5.50	5.50	2.90	5.50	7.70	5.38	1.70
Organic Carbon	Total Organic Carbon	%	0.05	-	-	-	-	-	1.13	2.56	3.22	2.30	1.07	-	-	-	-	-	3.14	3.94	6.68	4.49	1.39
	Aluminum	mg/kg	50	-	-	7,460	7,230	7,920	7,230	7,460	7,920	7,537	351	6,100	6,350	7,510	7,580	5,650	5,650	6,350	7,580	6,638	865
	Antimony	mg/kg	0.1	-	-	1.05	0.890	0.840	0.840	0.890	1.05	0.927	0.110	0.880	1.07	0.740	0.760	0.810	0.740	0.810	1.07	0.852	0.133
	Arsenic	mg/kg	0.1	5.9	17	9.30	7.86	6.18	6.18	7.86	9.30	7.78	1.56	6.49	8.44	9.64	5.65	5.95	5.65	6.49	9.64	7.23	1.73
	Barium	mg/kg	0.5	-	-	205	220	219	205	219	220	215	8.39	193	207	262	225	183	183	207	262	214	31.1
	Beryllium	mg/kg	0.1	-	-	0.600	0.510	0.580	0.510	0.580	0.600	0.563	0.0473	0.490	0.520	0.560	0.560	0.520	0.490	0.520	0.560	0.530	0.0300
	Bismuth	mg/kg	0.2	-	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	-
	Boron	mg/kg	5	-	-	6.20	6.30	6.50	6.20	6.30	6.50	6.33	0.153	6.30	6.00	8.80	8.60	6.40	6.00	6.40	8.80	7.22	1.36
	Cadmium	mg/kg	0.02	0.6	3.5	1.17	1.10	1.40	1.10	1.17	1.40	1.22	0.157	1.37	1.38	1.64	1.40	1.24	1.24	1.38	1.64	1.41	0.145
	Calcium	mg/kg	50	-	-	38,300	28,500	29,100	28,500	29,100	38,300	31,967	5,493	39,400	38,500	47,200	36,900	41,200	36,900	39,400	47,200	40,640	3,983
	Chromium	mg/kg	0.5	37.3	90	14.6	16.7	15.7	14.6	15.7	16.7	15.7	1.05	13.5	15.7	15.0	14.8	12.4	12.4	14.8	15.7	14.3	1.32
	Cobalt	mg/kg	0.1	-	- 407	5.83	5.85	6.82	5.83	5.85	6.82	6.17	0.566	6.72	7.18	8.84	7.32	7.11	6.72	7.18	8.84	7.43	0.817
	Copper	mg/kg	0.5 50	35.7 21200	197) 43766	12.8 20,400	10.9 14,600	12.7 14,300	10.9 14,300	12.7 14,600	12.8 20,400	12.1 16,433	1.07 3,439	12.4 15,500	12.9 14,500	13.7 14,400	12.4 14,300	11.6 13,600	11.6 13,600	12.4 14,400	13.7 15,500	12.6 14,460	0.771 680
	Iron Lead	mg/kg mg/kg	0.5	35	91.3	9.13	8.82	10.3	8.82	9.13	10.3	9.42	0.781	8.54	8.87	9.36	9.85	8.72	8.54	8.87	9.85	9.07	0.533
	Lithium	mg/kg	2	-	-	8.40	7.50	8.60	7.50	8.40	8.60	8.17	0.781	7.30	7.30	8.70	9.00	8.00	7.30	8.00	9.00	8.06	0.783
	Magnesium	mg/kg	20		-	6,810	4,920	5,400	4,920	5,400	6,810	5,710	982.4	5,880	6,440	6,510	5,870	5,410	5,410	5,880	6,510	6,022	456
	Manganese	mg/kg	1	460	1100	280	213	215	213	215	280	236	38.1	258	267	344	272	271	258	271	344	282	34.9
tals	Mercury	mg/kg	0.005	0.17	0.486	0.0262	0.0458	0.0385	0.0262	0.0385	0.0458	0.0368	0.00991	0.0502	0.0455	0.0525	0.0480	0.0363	0.0363	0.0480	0.0525	0.0465	0.00626
Š.	Molybdenum	mg/kg	0.1	25	23000	2.02	1.73	1.39	1.39	1.73	2.02	1.71	0.315	1.61	2.61	1.44	1.40	1.55	1.40	1.55	2.61	1.72	0.503
	Nickel	mg/kg	0.5	16	75	23.7	25.9	28.0	23.7	25.9	28.0	25.9	2.15	29.2	30.9	35.9	30.9	29.3	29.2	30.9	35.9	31.2	2.73
	Phosphorus	mg/kg	50	-	-	1,360	1,130	1,150	1,130	1,150	1,360	1,213	127	1,230	1,160	1,180	1,210	1,100	1,100	1,180	1,230	1,176	50.3
	Potassium		100	-	-	1,670	1,600	1,670	1,600	1,670	1,670	1,647	40.4	1,220	1,280	1,560	1,660	1,120	1,120	1,280	1,660	1,368	231
	Selenium		0.2	2	-	0.640	1.00	1.08	0.640	1.00	1.08	0.907	0.234	1.43	1.36	1.95	1.70	1.78	1.36	1.70	1.95	1.64	0.246
	Silver	1 - 1	0.1	0.5	-	0.160	0.160	0.180	0.160	0.160	0.180	0.167	0.0115	0.170	0.290	0.210	0.190	0.160	0.160	0.190	0.290	0.204	0.0518
	Sodium	mg/kg	50	-	-	80.0	73.0	88.0	73.0	80.0	88.0	80.3	7.51	82.0	82.0	117	93.0	92.0	82.0	92.0	117	93.2	14.3
	Strontium	mg/kg	0.5	-	-	71.1	62.9	61.7	61.7	62.9	71.1	65.2	5.12	66.5	64.0	76.9	68.3	66.3	64.0	66.5	76.9	68.4	4.99
	Sulphur	mg/kg	1,000	-	-	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	-	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	-
	Thallium	mg/kg		-	-	0.215	0.231	0.233	0.215	0.231	0.233	0.226	0.00987	0.222	0.212	0.271	0.263	0.216	0.212	0.222	0.271	0.237	0.0279
	Tin	mg/kg	2	-	-	<2	<2	<2	<2	<2	<2	<2	-	<2	<2	<2	<2	<2	<2	<2	<2	<2	-
	Titanium	mg/kg	1	-	-	35.8	38.2	40.3	35.8	38.2	40.3	38.1	2.25	28.8	32.4	31.2	34.8	22.1	22.1	31.2	34.8	29.9	4.85
	Tungsten		0.5	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-
	Uranium	mg/kg		-	-	1.13	1.05	1.11	1.05	1.11	1.13	1.10	0.0416	0.983	1.00	0.997	1.04	1.00	0.983	1.00	1.04	1.00	0.0213
	Vanadium	mg/kg	0.2	-	-	41.3	38.9	41.3	38.9	41.3	41.3	40.5	1.39	31.6	33.6	33.2	34.6	27.9	27.9	33.2	34.6	32.2	2.63
	Zinc	mg/kg	2	123	315	97.5	90.2	96.9	90.2	96.9	97.5	94.9	4.05	94.7	103	109	99.9	93.4	93.4	99.9	109	100	6.36
	Zirconium	mg/kg	1	-	-	1.50	<1	1.10	<1	1.10	1.50	1.20	0.267	<1	<1	<1	<1	<1	<1	<1	<1	<1	-

Indicates values is greater than the lower British Columbia Working Sediment Quality Guidelines.

Indicates values is greater than the upper British Columbia Working Sediment Quality Guidelines.

Notes: "-" indicates data not available. LRL = laboratory reporting limit. BC WSQG = British Columbia Working Sediment Quality Guidelines (BCMOECCS 2021b) and approved BC Sediment Quality Guideline for Selenium (BCMOECCS 2021a). All data and summary statistics are displayed to three significant digits.

Table C.2: Sediment Physical and Chemical Data and Summary Statistics for EVO LAEMP, 2021

			BC Sediment									Mine-ex	posed								
	Amalida	Units LRL	Quality Guidelines				RG_MI3									RG_MIDER					
	Analyte	Onits	Lower Upper WSQG WSQG	RG_MI3_1	RG_MI3_2	RG_MI3_3	Minimum	Median	Maximum	Mean	Standard Deviation	RG_MIDER_1	RG_MIDER_2	RG_MIDER_3	RG_MIDER_4	RG_MIDER_5	Minimum	Median	Maximum	Mean	Standard Deviation
			WSQG WSQG	14-Sep	14-Sep	14-Sep					Deviation	9-Sep	9-Sep	9-Sep	9-Sep	9-Sep					Deviation
	Acenaphthene	mg/kg 0.005	0.0067 0.0889	<0.01	<0.005	0.0173	<0.005	<0.01	0.0173	0.00910	-	<0.01	<0.01	0.0110	0.0110	<0.01	<0.01	<0.01	0.0110	0.0104	-
	Acenaphthylene	mg/kg 0.005	0.0059 0.128	0.00510	<0.005	0.00520	<0.005	0.00510	0.00520	0.00510	0.0000667	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
	Acridine	mg/kg 0.01		<0.01	0.0120	<0.02	<0.01	0.0110	<0.02	0.0110	-	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	-
	Anthracene	mg/kg 0.004	0.0469 0.245	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	-	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	-
	Benzo(a)anthracene	mg/kg 0.01	0.0317 0.385	0.0680	0.0320	0.0290	0.0290	0.0320	0.0680	0.0430	0.0217	0.0220	<0.02	0.0280	<0.02	<0.02	<0.02	<0.02	0.0280	0.0220	0.00339
	Benzo(a)pyrene	mg/kg 0.01	0.0319 0.782	<0.01	<0.01	0.0150	<0.01	<0.01	0.0150	0.0117	-	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	-
	Benzo(b&j)fluoranthene	mg/kg 0.01		0.0390	0.0260	0.0520	0.0260	0.0390	0.0520	0.0390	0.0130	0.0390	0.0220	0.0490	0.0290	0.0260	0.0220	0.0290	0.0490	0.0330	0.0109
	Benzo(b+j+k)fluoranthene	mg/kg 0.015		0.0390	0.0260	0.0520	0.0260	0.0390	0.0520	0.0390	0.0130	0.0390	<0.028	0.0490	0.0290	<0.028	<0.028	0.0290	0.0490	0.0346	0.00980
	Benzo(e)pyrene	mg/kg 0.01		0.0450	0.0290	0.0570	0.0290	0.0450	0.0570	0.0437	0.0140	0.0410	<0.02	0.0430	0.0290	0.0250	<0.02	0.0290	0.0430	0.0316	0.00905
SUS	Benzo(g,h,i)perylene	mg/kg 0.01	0.17 3.2	0.0160	<0.01	0.0170	<0.01	0.0160	0.0170	0.0143	0.000667	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	-
arb.	Benzo(k)fluoranthene	mg/kg 0.01	0.24 13.4	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	-
õ	Chrysene	mg/kg 0.01	0.0571 0.862	0.0470	0.0310	0.111	0.0310	0.0470	0.111	0.0630	0.0423	0.0780	0.0380	0.0950	0.0630	0.0450	0.0380	0.0630	0.0950	0.0638	0.0234
ξ	Dibenz(a,h)anthracene	mg/kg 0.005	0.0062 0.135	0.00610	<0.005	<0.005	<0.005	<0.005	0.00610	0.00537	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-
tic F	Fluoranthene	mg/kg 0.01	0.111 2.355	0.0240	<0.03	0.0420	0.0240	0.0240	0.0420	0.0300	0.0120	0.0410	0.0220	0.0490	0.0340	0.0300	0.0220	0.0340	0.0490	0.0352	0.0103
Па	Fluorene	mg/kg 0.01	0.021 0.144	<0.01	0.0100	<0.03	<0.01	0.0100	< 0.03	0.0100	-	0.0250	<0.02	0.0220	<0.02	<0.02	<0.02	<0.02	0.0250	0.0214	0.00170
Aro	Indeno(1,2,3-c,d)pyrene	mg/kg 0.01	0.2 3.2	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	-
clic	1-Methylnaphthalene	mg/kg 0.01		0.100	0.0760	0.294	0.0760	0.100	0.294	0.157	0.120	0.107	0.0480	0.115	0.0740	0.0520	0.0480	0.0740	0.115	0.0792	0.0308
ycy	2-Methylnaphthalene	mg/kg 0.01	0.0202 0.201	0.122	0.0970	0.372	0.0970	0.122	0.372	0.197	0.152	0.132	0.0650	0.139	0.0980	0.0870	0.0650	0.0980	0.139	0.104	0.0310
Pol	Naphthalene	mg/kg 0.01	0.0346 0.391	0.0760	<0.04	0.159	<0.04	0.0760	0.159	0.0917	0.0553	0.0620	0.0300	0.0540	0.0390	0.0350	0.0300	0.0390	0.0620	0.0440	0.0135
	Perylene	mg/kg 0.01		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	-
	Phenanthrene	mg/kg 0.01	0.0419 0.515	0.221	0.145	0.370	0.145	0.221	0.370	0.245	0.114	0.211	0.0960	0.227	0.148	0.125	0.0960	0.148	0.227	0.161	0.0560
	Pyrene	mg/kg 0.01	0.053 0.875	0.0290	< 0.03	0.0460	0.0290	0.0290	0.0460	0.0347	0.0113	0.0450	0.0210	0.0510	0.0310	0.0300	0.0210	0.0310	0.0510	0.0356	0.0122
	Quinoline	mg/kg 0.01		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	-
	d10-Acenaphthene	% -		78.0	87.0	81.7	78.0	81.7	87.0	82.2	4.52	87.4	79.2	81.3	82.2	84.7	79.2	82.2	87.4	83.0	3.17
	d12-Chrysene	% -		-	110	103	103	107	110	107	4.74	101	90.4	96.2	95.1	97.9	90.4	96.2	101	96.1	3.80
	d8-Naphthalene	% -		120	84.6	83.6	83.6	84.6	120	96.2	21.0	83.3	70.8	78.7	78.1	79.1	70.8	78.7	83.3	78.0	4.52
	d10-Phenanthrene	% -		72.0	101	95.0	72.0	95.0	101	89.4	15.3	94.9	88.6	90.0	91.3	91.0	88.6	91.0	94.9	91.2	2.34
	B(a)P Total Potency Equivale	nt mg/kg 0.02		0.0230	<0.02	0.0280	<0.02	0.0230	0.0280	0.0237	0.00333	0.0240	0.0210	0.0260	0.0220	0.0210	0.0210	0.0220	0.0260	0.0228	0.00217

Indicates values is greater than the lower British Columbia Working Sediment Quality Guidelines.

Indicates values is greater than the upper British Columbia Working Sediment Quality Guidelines.

Notes: "-" indicates data not available. LRL = laboratory reporting limit. BC WSQG = British Columbia Working Sediment Quality Guidelines (BCMOECCS 2021b) and approved BC Sediment Quality Guideline for Selenium (BCMOECCS 2021a). All data and summary statistics are displayed to three significant digits.

Table C.2: Sediment Physical and Chemical Data and Summary Statistics for EVO LAEMP, 2021

				BC Se	diment					Mine-ex	posed				
					ality					RG_MIC	COMP				
	Analyte	Units	LRL	Guia	elines					_					
					Upper WSQG	RG_MICOMP_1	RG_MICOMP_2	RG_MICOMP_3	RG_MICOMP_4	RG_MICOMP_5	Minimum	Median	Maximum	Mean	Standard Deviation
	Tev. 1					13-Sep	13-Sep	13-Sep	13-Sep	13-Sep					
Physical Tests	% Moisture	%	0.25	-	-	86.2	75.3	95.1	66.7	96.1	66.7	86.2	96.1	83.9	12.7
Phy Te	pH (1:2 soil:water)	рН	0.1	-	-	8.24	8.17	7.80	8.25	7.88	7.80	8.17	8.25	8.07	0.212
	% Gravel (>2mm)	%	1	-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1	-
	% Sand (2.00mm - 1.00mm)	%	1	-	-	3.50	2.40	<1	<1	4.50	<1	2.40	4.50	2.48	1.04
ø	% Sand (1.00mm - 0.50mm)	%	1	-	-	8.40	6.50	6.00	<1	5.20	<1	6.00	8.40	5.42	1.36
Size	% Sand (0.50mm - 0.25mm)	%	1	-	-	11.0	19.0	23.5	3.40	3.70	3.40	11.0	23.5	12.1	9.01
Particle	% Sand (0.25mm - 0.125mm)	%	1	-	-	7.60	15.3	15.2	14.8	3.60	3.60	14.8	15.3	11.3	5.40
Рап	% Sand (0.125mm - 0.063mm)	%	1	-	-	7.10	9.60	7.70	18.5	5.60	5.60	7.70	18.5	9.70	5.12
_	% Silt (0.063mm - 0.0312mm)	%	1	-	-	25.7	20.1	19.5	29.6	33.1	19.5	25.7	33.1	25.6	5.91
	% Silt (0.0312mm - 0.004mm)	%	1	-	-	30.1	22.1	22.6	29.9	36.9	22.1	29.9	36.9	28.3	6.14
	% Clay (<4um)	%	1	-	-	6.70	5.00	4.50	3.50	7.30	3.50	5.00	7.30	5.40	1.57
Organic Carbon	Total Organic Carbon	%	0.05	-	-	-	-	-	-	-	4.36	4.98	6.17	5.13	0.807
	Aluminum	mg/kg	50	-	-	5,600	5,780	5,940	6,180	5,020	5,020	5,780	6,180	5,704	438
	Antimony	mg/kg	0.1	-	-	0.640	0.590	0.560	0.640	0.530	0.530	0.590	0.640	0.592	0.0487
	Arsenic	mg/kg	0.1	5.9	17	4.72	4.71	4.17	4.27	3.92	3.92	4.27	4.72	4.36	0.350
	Barium	mg/kg	0.5	-	-	228	216	267	202	170	170	216	267	217	35.5
	Beryllium	mg/kg	0.1	-	-	0.470	0.450	0.420	0.450	0.460	0.420	0.450	0.470	0.450	0.0187
	Bismuth	mg/kg	0.2	-	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	-
	Boron	mg/kg	5	-	-	7.00	6.00	7.20	5.30	5.50	5.30	6.00	7.20	6.20	0.863
	Cadmium	mg/kg	0.02	0.6	3.5	1.35	1.21	1.78	1.15	2.12	1.15	1.35	2.12	1.52	0.415
	Calcium	mg/kg	50	-	-	43,300	39,300	64,800	34,200	52,200	34,200	43,300	64,800	46,760	12,046
	Chromium	mg/kg	0.5	37.3	90	10.4	10.7	11.1	11.8	9.99	9.99	10.7	11.8	10.8	0.692
	Cobalt	mg/kg	0.1	-	-	8.26	7.57	7.86	6.03	9.17	6.03	7.86	9.17	7.78	1.15
	Copper	mg/kg	0.5	35.7	197	12.0	12.0	13.7	11.9	12.5	11.9	12.0	13.7	12.4	0.753
	Iron	mg/kg	50	21200	43766	13,700	12,800	11,100	11,300	12,000	11,100	12,000	13,700	12,180	1,080
	Lead	mg/kg	0.5	35	91.3	8.40	9.41	7.77	8.19	7.08	7.08	8.19	9.41	8.17	0.857
	Lithium	mg/kg	2	-		7.50	7.10	7.20	7.50	7.60	7.10	7.50	7.60	7.38	0.217
	Magnesium	mg/kg	20	-	-	5,280	5,190	5,460	5,260	9,570	5,190	5,280	9,570	6,152	1,913
<u>.s</u>	Manganese	mg/kg	1	460	1100	357	313	324	206	727	206	324	727	385	199
Metals	Mercury	mg/kg	0.005	0.17	0.486	0.0399	0.0417	0.0531	0.0453	0.0406	0.0399	0.0417	0.0531	0.0441	0.00543
Σ	Molybdenum	mg/kg	0.1	25	23000	1.19	1.03	1.20	0.950	1.24	0.950	1.19	1.24	1.12	0.125
	Nickel	mg/kg	0.5	16	75	37.5	33.4	30.7	27.3	61.1	27.3	33.4	61.1	38.0	13.4
	Phosphorus	mg/kg	50	-	-	1,000	981	1,020	946	1,060	946	1,000	1,060	1,001	42.6
	Potassium	mg/kg	100	-	-	1,220	1,260	1,480	1,370	1,320	1,220	1,320	1,480	1,330	101
	Selenium	mg/kg		2	-	2.28	1.66	4.98	2.00	1.97	1.66	2.00	4.98	2.58	1.36
	Silver	mg/kg		0.5	-	0.180	0.160	0.160	0.180	0.160	0.160	0.160	0.180	0.168	0.0110
	Sodium	mg/kg		-	-	82.0	72.0	103	67.0	67.0	67.0	72.0	103	78.2	15.2
	Strontium	mg/kg		-	-	74.7	67.6	89.7	58.8	60.2	58.8	67.6	89.7	70.2	12.6
	Sulphur	mg/kg		-	-	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	-
	Thallium	mg/kg		-	-	0.195	0.193	0.193	0.204	0.177	0.177	0.193	0.204	0.192	0.00974
	Tin	mg/kg		-	-	<2	<2	<2	<2	<2	<2	<2	<2	<2	-
	Titanium	mg/kg		-	-	17.5	16.3	14.8	23.5	8.90	8.90	16.3	23.5	16.2	5.25
	Tungsten	mg/kg		-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-
	Uranium	mg/kg		-	-	0.967	0.875	1.34	0.825	0.901	0.825	0.901	1.34	0.982	0.207
	Vanadium	mg/kg		-	-	25.8	27.2	26.3	29.4	23.8	23.8	26.3	29.4	26.5	2.04
	Zinc	mg/kg		123	315	91.9	90.1	99.2	82.5	156	82.5	91.9	156	104	29.7
	Zirconium	mg/kg		-	-	<1	<1	<1	<1	<1	<1	<1	<1	<1	-

Indicates values is greater than the lower British Columbia Working Sediment Quality Guidelines.

Indicates values is greater than the upper British Columbia Working Sediment Quality Guidelines.

Notes: "-" indicates data not available. LRL = laboratory reporting limit. BC WSQG = British Columbia Working Sediment Quality Guidelines (BCMOECCS 2021b) and approved BC Sediment Quality Guideline for Selenium (BCMOECCS 2021a). All data and summary statistics are displayed to three significant digits.

Table C.2: Sediment Physical and Chemical Data and Summary Statistics for EVO LAEMP, 2021

				diment					Mine-ex	posed				
Analysis	Unite	LRL		ality elines					RG_MI	СОМР				
Analyte	Units	LKL		Upper	RG_MICOMP_1	RG_MICOMP_2	RG_MICOMP_3	RG_MICOMP_4	RG_MICOMP_5	Minimum	Median	Maximum	Mean	Standard Deviation
				WSQG	13-Sep	13-Sep	13-Sep	13-Sep	13-Sep					Deviation
Acenaphthene	mg/kg	0.005	0.0067	0.0889	<0.018	<0.025	<0.05	<0.025	<0.05	<0.018	<0.025	<0.05	<0.018	-
Acenaphthylene	mg/kg	0.005	0.0059	0.128	<0.018	0.0110	<0.05	<0.015	<0.05	0.0110	0.0110	<0.05	0.0110	-
Acridine	mg/kg	0.01	-	-	0.0370	<0.03	<0.1	<0.03	<0.1	<0.03	<0.03	<0.1	0.0323	-
Anthracene	mg/kg	0.004	0.0469	0.245	<0.014	0.0119	<0.04	<0.004	<0.04	<0.004	0.00795	<0.04	0.00795	-
Benzo(a)anthracene	mg/kg	0.01	0.0317	0.385	0.0410	0.0420	<0.1	0.0520	<0.1	0.0410	0.0420	<0.1	0.0450	0.00785
Benzo(a)pyrene	mg/kg	0.01	0.0319	0.782	<0.035	0.0360	<0.1	0.0370	<0.1	<0.035	0.0360	<0.1	0.0360	0.000861
Benzo(b&j)fluoranthene	mg/kg	0.01	-	-	0.0860	0.0900	<0.1	0.102	<0.1	0.0860	0.0900	0.102	0.0908	0.00753
Benzo(b+j+k)fluoranthene	mg/kg	0.015	-	-	0.0860	0.0900	<0.14	0.121	<0.14	0.0860	0.0900	<0.14	0.0990	0.0247
Benzo(e)pyrene	mg/kg	0.01	-	-	0.0770	0.0740	<0.1	0.0820	<0.1	0.0740	0.0770	<0.1	0.0777	0.00522
Benzo(g,h,i)perylene	mg/kg	0.01	0.17	3.2	<0.035	0.0320	<0.1	0.0410	<0.1	0.0320	0.0320	<0.1	0.0350	0.00775
Benzo(k)fluoranthene Chrysene	mg/kg	0.01	0.24	13.4	< 0.035	<0.02	<0.1	0.0190	<0.1	0.0190	0.0190	<0.1	0.0190	-
Chrysene	mg/kg	0.01	0.0571	0.862	0.0740	0.0670	0.140	0.111	<0.1	0.0670	0.0740	0.140	0.0925	0.0331
Dibenz(a,h)anthracene	mg/kg	0.005	0.0062	0.135	<0.018	<0.01	<0.05	0.0128	<0.05	<0.01	0.0114	<0.05	0.0114	-
	mg/kg	0.01	0.111	2.355	0.0460	<0.05	<0.1	<0.07	<0.1	0.0460	0.0460	<0.1	0.0460	-
Fluoranthene Fluorene Indeno(1,2,3-c,d)pyrene	mg/kg	0.01	0.021	0.144	0.0430	<0.05	<0.1	0.0340	<0.1	0.0340	0.0385	<0.1	0.0385	0.0101
Indeno(1,2,3-c,d)pyrene	mg/kg	0.01	0.2	3.2	<0.035	<0.02	<0.1	0.0230	<0.1	<0.02	0.0215	<0.1	0.0215	-
1-Methylnaphthalene	mg/kg	0.01	-	-	0.166	0.166	<0.3	0.208	0.280	0.166	0.187	<0.3	0.205	0.0601
1-Methylnaphthalene 2-Methylnaphthalene Naphthalene	mg/kg	0.01	0.0202	0.201	0.247	0.234	0.450	0.290	0.340	0.234	0.290	0.450	0.312	0.0875
Naphthalene	mg/kg	0.01	0.0346	0.391	0.136	0.113	0.170	0.159	<0.1	<0.1	0.136	0.170	0.136	0.0269
Perylene	mg/kg	0.01	-	-	<0.035	<0.02	<0.1	0.0180	<0.1	0.0180	0.0180	<0.1	0.0180	-
Phenanthrene			0.0419	0.515	0.300	0.291	0.390	0.365	0.420	0.291	0.365	0.420	0.353	0.0562
Pyrene	mg/kg	0.01	0.053	0.875	0.0540	0.0550	<0.1	<0.07	<0.1	0.0540	0.0545	<0.1	0.0545	0.00112
Quinoline	mg/kg	0.01	-	-	<0.035	<0.02	<0.1	<0.05	<0.1	<0.02	<0.05	<0.1	<0.02	-
d10-Acenaphthene	%	-	-	-	98.6	99.3	98.1	98.5	104	98.1	98.6	104	99.8	2.66
d12-Chrysene	%	-	-	-	111	111	108	107	112	107	111	112	110	2.11
d8-Naphthalene	%	-	-	-	81.3	92.4	87.3	90.7	90.2	81.3	90.2	92.4	88.4	4.36
d10-Phenanthrene	%	-	-	-	105	108	103	105	107	103	105	108	106	2.07
B(a)P Total Potency Equivale	nt ma/ka	0.02	-	-	0.0430	0.0570	0.0970	0.0710	<0.096	0.0430	0.0570	0.0970	0.0650	0.0230

Indicates values is greater than the lower British Columbia Working Sediment Quality Guidelines.

Indicates values is greater than the upper British Columbia Working Sediment Quality Guidelines.

Notes: "-" indicates data not available. LRL = laboratory reporting limit. BC WSQG = British Columbia Working Sediment Quality Guidelines (BCMOECCS 2021b) and approved BC Sediment Quality Guideline for Selenium (BCMOECCS 2021a). All data and summary statistics are displayed to three significant digits.

Table C.3: Calcite Index Values, EVO LAEMP, September 2015 to 2021

	Station	2015			2016		2017		2018			2019		2020		2021									
Waterbody		Ср	Сс	CI	Ср	Сс	CI	Ср	Сс	CI	Ср	Сс	CI	Ср	Сс	CI	Ср	Сс	CI	Ср	Сс	CI	Cp' ^a	Сс	Cl' ^a
Lower Alexander	r										0.140	0	0.140	0.110	0	0.110	0.680	0	0.680	0.616	0.0100	0.626	0.285	0.0100	0.295
Creek	RG_ALUSM	0.690	0.0700	0.760	0.980	0.485	1.46	0.830	0	0.830	0.480	0.0300	0.510	0	0	0	0.560	0	0.560	0.440	0	0.440	0.156	0	0.156
(Reference)											0.390	0.0100	0.400	0.180	0	0.180	0.490	0	0.490	0.290	0	0.290	0.120	0	0.120
Michel Creek											0.350	0	0.350	0	0	0	0.0200	0	0.0200	0	0	0	0	0	0
(Reference)	RG_MI25	0.359	0	0.359	0	0	0	0.580	0	0.580	0.240	0	0.240	0	0	0	0	0	0	0	0	0	0	0	0
(**************************************											0.0200	0	0.0200	0	0	0	0.0200	0	0.0200	0	0	0	0	0	0
									-					0.640	0.400	1.04	0.970	0.390	1.36	0.196	0.0495	0.246	0.0588	0.0495	0.108
	RG_ERCKUT	-	-	-	-	-	-	-		-		-	-	0.510	0.450	0.960	0.980	0.580	1.56	0.187	0	0.187	0.0604	0	0.0604
														0.667	0.490	1.16	1.00	0.330	1.33	0.165	0	0.165	0.0571	0	0.0571
	RG_ERCKDT	т -				-	-	-	-	-			-	0.700	0.440	1.14	1.00	0.900	1.90	0.851	0.0319	0.883	0.338	0.0319	0.370
Erickson Creek			-	-	-						-	-		0.730	0.430	1.16	1.00	0.470	1.47	0.553	0	0.553	0.257	0	0.257
														1.00	0.697	1.70	1.00	0.640	1.64	0.543	0	0.543	0.214	0	0.214
	RG_ERCK	-	-	-	-	-	-	-	-	-	0.970	0.920	1.89	0.910	0.670	1.58	1.00	0.590	1.59	1.00	1.20	2.20	0.927	1.20	2.12
	RG_MI3							0.760	0	0.760				0.400	0	0.400	0.540	0	0.540	0	0	0	0	0	0
		0.417	0	0.417	0	0	0				-	-	-	0.310	0	0.310	0.640	0.0200	0.660	0	0	0	0	0	0
														0.0600	0	0.0600	0.870	0	0.870	0	0	0	0	0	0
	RG_MIDER	-				-	-	-	-	-	0.940	0	0.940	0.0700	0.0200	0.0900				0	0	0	0	0	0
			-	-	-									0.0500	0	0.0500	0.910	0	0.910	0	0	0	0	0	0
					<u> </u>									0.190	0.0500	0.240				0	0	0	0	0	0
	RG_MIDGA	GA -	-				-		-	-	0.760	0	0.760			0.170	0.480 0			0	0	0	0	0	0
				-	-	-		-						0.170	0			0	0.480	0	0	0	0	0	0
Michel Creek																				0	0	0	0	0	0
					-				-			0.100	1.06						0.930	0	0	0	0	0	0
	RG_MIDBO	-	-	-		-	-	-		-	0.960			0.290	0	0.290	0.930	0		0	0	0	0	0	0
																				0	0	0	0	0	0
											0.909	0	0.909	0.480	0	0.480	0.170	0	0.170	0	0	0	0	0	0
							-		-	-	0.875	0	0.875	0.610	0	0.610	0.270	0	0.270	0	0	0	0	0	0
	RG_MICOMP	-	-	-	-	-		-			0.838	0.0101	0.848	0.320	0	0.320	0.140	0	0.140	0	0	0	0	0	0
											0.880	0	0.880	0.570	0	0.570	0.750	0	0.750	0	0	0	0	0	0
											0.950	0	0.950	0.270	0	0.270	0.770	0	0.770	0	0	0	0	0	0

Shaded cells indicate Calcite Index (CI) values at or above the upper limit of the regional normal range (1.0; Minnow 2018a).

Shaded cells indicate Calcite Concretion (Cc) values that are above the future SPO (December 31, 2024: Cc≤ 0.5) as directed by Permit 107517.

Notes: "-" indicates calcite data not recorded. Cp = calcite presence. Cc = concreted status. Cl = calcite index.

^a Calcite index (Cl') was calculated using calcite proportion rather than calcite presence and therefore cannot be compared with previous years.

Table C.4: Pebble Counts and Calcite Measurements at Benthic Invertebrate Sampling Locations, September 2021

		RG_AL							.USM-2		
Pebble	Concreted Status	12-Se Calcite Proportion	ep-21 Calcite Presence	Intermediate Axis (cm)	Embeddedness (%)	Pebble	Concreted Status	12-Se Calcite Proportion	Calcite	Intermediate Axis (cm)	Embeddedness (%)
2	0	0.8	1	15.4 7.5	-	2	0	0.1	1	5.1 7.2	-
3	0	0.5	1	13.4	-	3	0	0	0	9.5	-
4 5	0	0.8	0	15.5 4.6	-	4 5	0	0	0	6.8 7.1	-
6	0	0.4	1	18.5	-	6	0	0	0	11.6	=
7	0	0.4	1	23	-	7	0	0	0	9.5	-
8 9	0	0.2	1	7.2 5.5	-	8 9	0	0.1	0	7.3 14.1	-
10	0	0.2	1	16.5	0.25	10	0	0	0	6.4	0.25
11	0	0.1	1	9.3	-	11	0	0.2	1	22.4	=
12 13	0	0.2	1	13.4 14.4	-	12 13	0	0	0	9.8	-
14	0	0	0	9.1	-	14	0	0	0	7.9	-
15	0	0	0	7.6	-	15	0	0.1	1	15	-
16 17	0	0	0	7.6 4.4	-	16 17	0	0.1	0	7.6 12.4	-
18	0	0	0	4.8	-	18	0	0	0	5.1	-
19	0	0	0	9.9	-	19	0	0	0	9.3	-
20 21	0	0.1	0	11.3 9	0.5	20 21	0	0.1	0	6.5 15.4	<u> </u>
22	0	0	0	9.2	-	22	0	0	0	7.3	-
23	0	0	0	4.3	-	23	0	0.2	1	15.4	-
24 25	0	0	0	4.9 4.2	-	24 25	0	0.4	0	6.3 19.6	-
26	0	0.2	1	7.7	-	26	0	0	0	5	-
27	0	0	0	9.3	-	27	0	0.3	1	14	-
28 29	0	0	0	10.4 8.4	-	28 29	0	0.8	1	29 7.2	-
30	0	0.2	1	10.7	0.5	30	0	0	0	8.5	0
31	0	0	0	3.5	-	31	0	0	0	14.2	=
32 33	0	0	0	13.5 4.6	-	32 33	0	0	0	7.6 6.9	-
34	0	0	0	8.2	-	34	0	0	0	14.2	-
35	0	0.7	1	19.8	-	35	0	0	0	5.1	-
36 37	0	0.3	0	3.9 10.4	-	36 37	0	0.5	0	8.8 21.5	-
38	0	0.2	1	9	-	38	0	0.0	0	6.6	-
39	0	0	0	10.4	-	39	0	0	0	9.8	-
40 41	0	0	0	<u>4</u> 5	0.25	40 41	0	0.1	0	6.2 9.8	0.25
42	0	0.5	1	11.2	-	42	0	0	0	6.1	-
43	0	0	0	15.3	-	43	0	0	0	7.1	-
44 45	0	0.4	1	14 12.6	-	44 45	0	0.1	0	7.5 8.2	-
46	0	0	0	4.3	-	46	0	0.1	1	3.4	-
47	0	0.3	1	12.2	-	47	0	0	0	9.5	-
48 49	0	0.6 0.7	1	11.7 46	-	48 49	0	0.1	0	4.3 6.5	-
50	0	0.8	1	48	0.75	50	0	0	0	4.8	0
51	0	0.4	1	7.5	-	51	0	0	0	6.9	-
52 53	0	0.3	1	12 22.5	-	52 53	0	0.2	1	5.4 13.2	-
54	0	-	-	0.2	-	54	0	0.9	1	32	-
55	0	1	1	9.4	-	55	0	0	0	2.9	-
56 57	0	0.8	1	14.5 9.6	-	56 57	0	0.5 0.9	1	12.6 9.3	-
58	1	1	1	8.3	-	58	0	0.7	1	8.1	-
59	0	0.7	1	7.3	-	59	0	0	0	5.2	- 0.75
60 61	0	0.6	1	9.2 6.9	0.5	60 61	0	0.5	1	16.4 8	0.75
62	0	0.8	1	16.5	-	62	0	1	1	12.4	-
63	0	0.5	1	8.6	-	63	0	0.1	1	6.5	-
64 65	0	0.3	1	18.1 20.6	-	64 65	0	0.9	1	10.6 9.5	-
66	0	1	1	40.5	-	66	0	0.6	1	7.2	-
67	0	0.6	1	14.9	-	67	0	0.5	1	8.4	-
68 69	0	0.5 0.5	1	17.6 8	-	68 69	0	0.2 0.5	1	10.6 16	-
70	0	0.4	1	10.3	0.5	70	0	0	0	9.2	0.5
71	0	0	0	7.7	-	71 72	0	0	0	5.8	-
72 73	0	0	0	6.7 7.9	-	72 73	0	0	0	6.3 8.5	-
74	0	0.3	1	20.3	-	74	0	0.2	1	15.3	-
75 76	0	0	0	5.8 5.8	-	75 76	0	0.1	1	6.5 15.2	-
76 77	0	0.3	1	5.8 10	-	76 77	0	0.4	1	9.6	-
78	0	0.1	1	12.5	-	78	0	0	0	4.8	-
79 80	0	0.5	0	13.4 7.1	0.25	79 80	0	0	0	6.3 7.2	0.25
81	0	0.5	1	10.3	0.25	81	0	0	0	4.2	- 0.25
82	0	0.5	1	7.4	-	82	0	0.4	1	7.6	-
83 84	0	0.1	0	7.5 6.2	-	83 84	0	0	0	7.5 9.7	-
84 85	0	0	0	8.3	-	84 85	0	0	0	12.6	-
86	0	0.2	1	11.7	-	86	0	0.1	1	5.8	-
87 88	0	0.3	0	11.2	-	87	0	0	0	6.2	-
88	0	0.1	1	13.3 6.2	-	88 89	0	0.2	0	14.6 6.2	-
90	0	0	0	9.8	0.5	90	0	0	0	3.9	0.25
91	0	0.4	1	14.1 7	-	91	0	0	0	4.7	-
92 93	0	0.1	0	7 8.1	-	92 93	0	0.2	0	14.2 3.7	-
94	0	0.1	1	8.8	-	94	0	0	0	5.9	-
95 06	0	0	0	8.5	-	95 06	0	0.2	1	8.3	-
96 97	0	0 0.4	0	16.5 13.2	-	96 97	0	0	0	7.4 5.6	-
98	0	0.4	1	14.9	-	98	0	0	0	8.6	-
99	0	1	1	44.5	-	99	0	0.1	1	6.5	-
100 Average	0	0.3	1	12.2	0.25	100 Average	0	0.1	1	8.5	0
Cc, Cp and	0.01	0.28	0.62	11.6	0.43	Cc, Cp and	0	0.16	0.44	9.34	0.23
Embed. =				0.00		Embed. =				0.44	
	ite Index (CI) =			0.63 0.29			ite Index (CI) =			0.44 0.16	
new Calci	ite Index (CI') =			ひ.とり		New Calc	ite Index (CI') =			V. 10	

Notes: "-" indicates no data. Intermediate axis is the measurement across the intermediate access of the pebble and presented in cm.

Table C.4: Pebble Counts and Calcite Measurements at Benthic Invertebrate Sampling Locations, September 2021

			LUSM-3						MI25-1		
Pebble	Concreted Status	12-S Calcite Proportion	Calcite Presence	Intermediate Axis (cm)	Embeddedness (%)	Pebble	Concreted Status	13-S Calcite Proportion	ep-21 Calcite Presence	Intermediate Axis (cm)	Embeddedness
1 2	0	0	0	5.6 5.9	-	1 2	0	0	0	0.2	-
3	0	0	0	8.4	-	3	0	0	0	5.4	-
4	0	0	0	8.5	-	4 5	0	0	0	7.4	-
5 6	0	0	0	8.1 14.2	-	6	0	0	0	2.2 0.2	-
7	0	0	0	16.9	-	7	0	0	0	4.7	-
9	0	0	0	9 12	-	8 9	0	0	0	5.5 7.7	-
10	0	0	0	9.1	0.25	10	0	0	0	11.2	0.75
11 12	0	0.2	1	11.3 12.3	-	11 12	0	0	0	0.2 6	-
13	0	0.4	1	10.1	-	13	0	0	0	10.9	-
14 15	0	0.5	1	10.2	-	14 15	0	0	0	3.6	-
16	0	0.3	0	7.3 5.5	-	16	0	0	0	6.4 4.6	-
17	0	0.7	1	23.5	-	17	0	0	0	18.7	-
18 19	0	0.8	1	16.5 9.5	-	18 19	0	0	0	17.1 5.6	-
20	0	0.3	1	13.8	0.5	20	0	0	0	2.4	0.25
21 22	0	0.5 0.5	1	17.2 14.8	-	21 22	0	0	0	2.1 7	-
23	0	0.9	1	12.5	-	23	0	0	0	10.2	-
24	0	0.5	1	8.5	-	24	0	0	0	2.1	-
25 26	0	0.8	1	21.5 7.5	-	25 26	0	0	0	6.2	-
27	0	0.1	1	5.4	-	27	0	0	0	6.9	-
28	0	0	0	4.9	-	28	0	0	0	8	-
29 30	0	0	0	6.6 6.8	- 0	29 30	0	0	0	0.9 6.1	0.75
31	0	0	0	11.7	-	31	0	0	0	-	-
32 33	0	0	0	3.7 5.9	-	32 33	0	0	0	7.7 1.8	=
34	0	0	0	7.5	-	34	0	0	0	7.5	=
35 36	0	0	0	19.9 5.3	-	35 36	0	0	0	15.9 7.5	-
36	0	0.2	1	13.4	-	36	0	0	0	7.5	-
38	0	0	0	7.6	-	38	0	0	0	14.2	=
39 40	0	0	0	8.9 5.9	0.5	39 40	0	0	0	8.5 7.5	0.5
41	0	0	0	9	-	41	0	0	0	7.1	-
42	0	0	0	6.2	-	42	0	0	0	7	-
43 44	0	0	0	5.8 4.2	-	43 44	0	0	0	3.2 4.8	-
45	0	0	0	5.3	-	45	0	0	0	2.9	-
46 47	0	0	0	6.6 7.5	-	46 47	0	0	0	0.2	-
48	0	0	0	11.2	-	48	0	0	0	5	-
49	0	0	0	8.2	-	49	0	0	0	4.3	-
50 51	0	0	0	11.5 18.6	0.5	50 51	0	0	0	11.8 3.7	0.25
52	0	0	0	7.7	-	52	0	0	0	8.5	-
53 54	0	0	0	14.4 14.2	-	53 54	0	0	0	2.6 9.8	-
55	0	0.1	1	21.1	-	55	0	0	0	10.1	-
56	0	0.6	1	15.3	-	56	0	0	0	16	-
57 58	0	0	0	8.3 9	-	57 58	0	0	0	3 3.9	-
59	0	0.5	1	13.6	-	59	0	0	0	1.3	-
60 61	0	0	0	8.2 8.6	0.25	60 61	0	0	0	4.9 5.5	0.5
62	0	0	0	6.3	-	62	0	0	0	0.2	-
63	0	0.4	1	4.7	-	63	0	0	0	5.1	-
64 65	0	0.3	0	13.3 9.4	-	64 65	0	0	0	8.7 7	-
66	0	0	0	6.7	-	66	0	0	0	2.9	-
67 68	0	0	0	7 6.1	-	67 68	0	0	0	6.9 5.8	-
69	0	0	0	4.4	-	69	0	0	0	11.6	-
70	0	0	0	6.2	0.5	70	0	0	0	11.5	0.75
71 72	0	0.3	0	15.7 10.3	-	71 72	0	0	0	0.2 11	-
73	0	0.3	1	18.4	-	73	0	0	0	2.2	-
74 75	0	0	0	7.5 3.9	-	74 75	0	0	0	5.4 10.6	-
76	0	0	0	6	-	76	0	0	0	20	-
77	0	0	0	7.2	-	77	0	0	0	10.5	-
78 79	0	0	0	9.1 11.8	-	78 79	0	0	0	4.4 6.5	-
80	0	0	0	4.2	0.5	80	0	0	0	1.9	0
81 82	0	0.7	0	11.3 19.8	-	81 82	0	0	0	6 0.2	-
83	0	0.3	1	11.2	-	83	0	0	0	6	-
84 85	0	0.4	1	18.8	-	84 85	0	0	0	1.8 8.3	-
85 86	0	0	0	8.4 8.5	-	85 86	0	0	0	8.3 12.2	-
87	0	0	0	6.2	-	87	0	0	0	4.4	-
88 89	0	0	0	7.1 9.8	-	88 89	0	0	0	4.5 6.5	-
90	0	0	0	7.3	0.75	90	0	0	0	5.3	0.25
91	0	0	0	2.9	-	91	0	0	0	8.6	-
92 93	0	0	0	11 5.1	-	92 93	0	0	0	2 13.4	-
94	0	0	0	9.1	-	94	0	0	0	5.1	-
95 96	0	0	0	4.5	-	95 96	0	0	0	2.9	-
96 97	0	0	0	10.5 5.2	-	96 97	0	0	0	0.2 2.4	-
98	0	0.6	1	32.5	-	98	0	0	0	9.9	-
99 100	0	0.1	0	10.4 7.3	0.5	99 100	0	0	0	7.6 6.6	0.25
Average						Average					
c, Cp and	0	0.12	0.29	9.93	0.43	Cc, Cp and	0	0	0	6.19	0.43
Embed. =				0.29		Embed. =	ite Index (CI) =	-			<u> </u>
Old Calc	ite Index (CI) =			0.23	· ·	Old Caic	ite index (Ci) =			0	

Notes: "-" indicates no data. Intermediate axis is the measurement across the intermediate access of the pebble and presented in cm.

Table C.4: Pebble Counts and Calcite Measurements at Benthic Invertebrate Sampling Locations, September 2021

			VII25-2						/II25-3		
	Concreted	13-S Calcite	ep-21 Calcite	Intermediate	Embeddedness		Concreted	13-S Calcite	ep-21 Calcite	Intermediate	Embeddedness
Pebble	Status	Proportion	Presence	Axis (cm)	(%)	Pebble	Status	Proportion	Presence	Axis (cm)	(%)
2	0	0	0	2.9	-	1 2	0	0	0	22.7 4.9	-
3	0	0	0	24.1	-	3	0	0	0	15.5	-
4 5	0	0	0	0.9 0.7	-	4 5	0	0	0	11.7 8	-
6	0	0	0	12.6	-	6	0	0	0	6.9	-
7 8	0	0	0	4 16.7	-	7 8	0	0	0	7.5 11.4	-
9	0	0	0	6.1	-	9	0	0	0	9.2	-
10 11	0	0	0	7.3 0.2	0.25	10 11	0	0	0	7.8 0.2	0.25
12	0	0	0	11.5	-	12	0	0	0	6.4	-
13 14	0	0	0	5.1 3	-	13 14	0	0	0	1.9 10.3	-
15	0	0	0	6	-	15	0	0	0	14.7	-
16	0	0	0	12.4	-	16	0	0	0	24.6	-
17 18	0	0	0	9.7 7.7	-	17 18	0	0	0	4.8 7	-
19	0	0	0	7.3	-	19	0	0	0	2.9	-
20 21	0	0	0	1.8 10.2	0	20 21	0	0	0	8.9 7.4	0.25
22	0	0	0	3.9	-	22	0	0	0	0.2	
23	0	0	0	1.1	-	23	0	0	0	7.1	-
24 25	0	0	0	9.3 4.4	-	24 25	0	0	0	6.5 2	-
26	0	0	0	2.2	-	26	0	0	0	2.7	-
27 28	0	0	0	1.4 0.2	-	27 28	0	0	0	7.5 5.6	-
28 29	0	0	0	5.1	-	29	0	0	0	7.2	-
30	0	0	0	7.2	0.25	30	0	0	0	9.8	0.75
31 32	0	0	0	6.5 0.8	-	31 32	0	0	0	14.7 14	<u>-</u>
33	0	0	0	17.7	-	33	0	0	0	21	-
34	0	0	0	1.9	-	34	0	0	0	4.2	-
35 36	0	0	0	9.2 3.8	-	35 36	0	0	0	6.1 1.3	-
37	0	0	0	6.7	-	37	0	0	0	12.3	-
38 39	0	0	0	4.5 8.6	-	38 39	0	0	0	15.5 13.7	-
40	0	0	0	5.4	0.25	40	0	0	0	21.5	0.25
41 42	0	0	0	4.8 1.9	-	41 42	0	0	0	4.7 5.8	<u> </u>
43	0	0	0	7.5	-	43	0	0	0	9.9	
44	0	0	0	1.8	-	44	0	0	0	5.5	-
45 46	0	0	0	2.7 10.7	-	45 46	0	0	0	14.4 8.5	-
47	0	0	0	8.5	-	47	0	0	0	7.6	-
48 49	0	0	0	6 6.4	-	48 49	0	0	0	10.2 11.6	<u>-</u> -
50	0	0	0	3.5	0.25	50	0	0	0	11	0.25
51 52	0	0	0	0.2	-	51 52	0	0	0	10.1	-
52 53	0	0	0	6.1 3.5	-	52 53	0	0	0	6.5 4.7	-
54	0	0	0	3.4	-	54	0	0	0	0.2	-
55 56	0	0	0	22.9 6.5	-	55 56	0	0	0	3.9 13.8	-
57	0	0	0	10	-	57	0	0	0	9.1	-
58 59	0	0	0	10.5 0.2	-	58 59	0	0	0	3.8 10.2	-
60	0	0	0	1.9	0	60	0	0	0	12.1	0.75
61	0	0	0	7.3	-	61	0	0	0	8.3	-
62 63	0	0	0	15.7 16.8	-	62 63	0	0	0	0.2 12.3	-
64	0	0	0	4.8	-	64	0	0	0	10.5	-
65 66	0	0	0	7.5 2.4	-	65 66	0	0	0	15 5.8	<u>-</u>
67	0	0	0	2.5	-	67	0	0	0	2.1	-
68	0	0	0	17.6	-	68	0	0	0	2.5	-
69 70	0	0	0	3.4 10.9	0.25	69 70	0	0	0	12.5 6	0.25
71	0	0	0	2.8	-	71	0	0	0	9	-
72 73	0	0	0	8.5 7.8	-	72 73	0	0	0	0.8 6.7	-
74	0	0	0	2	-	74	0	0	0	7.7	-
75 76	0	0	0	1.1	-	75	0	0	0	16.8 6.8	-
76	0	0	0	5.9 4.2	-	76 77	0	0	0	8.3	<u>-</u>
78	0	0	0	14.4	-	78	0	0	0	6	-
79 80	0	0	0	2.7 5.2	- 0	79 80	0	0	0	9.5 4	0.25
81	0	0	0	18.8	-	81	0	0	0	24.8	-
82	0	0	0	9.4	-	82	0	0	0	7.2 7	-
83 84	0	0	0	2.7 5.9	-	83 84	0	0	0	9.2	-
85	0	0	0	6.9	-	85	0	0	0	4.2	-
86 87	0	0	0	2.7 4.9	-	86 87	0	0	0	7.7 3.2	-
88	0	0	0	9.9	-	88	0	0	0	0.2	= =
89	0	0	0	4.6	- 0.75	89	0	0	0	4.3	-
90 91	0	0	0	6.2 0.2	0.75	90 91	0	0	0	4.7 18	0.5
92	0	0	0	4.9	-	92	0	0	0	7.1	-
93 94	0	0	0	4.5 3	-	93 94	0	0	0	9.1 9.8	-
95	0	0	0	9.7	-	94	0	0	0	9.8	<u>-</u>
96	0	0	0	9	-	96	0	0	0	6	-
97 98	0	0	0	10.2 0.2	-	97 98	0	0	0	18.9 0.2	-
99	0	0	0	7.6	-	99	0	0	0	2.6	-
100 Average	0	0	0	2.5	0	100 Average	0	0	0	20	0.75
	0	0	0	6.37	0.20	Cc, Cp and	0	0	0	8.56	0.43
c, Cp and			in the state of th	l .	i .			1		II.	
Cc, Cp and Embed. =	ite Index (CI) =			0		Embed. =	ite Index (CI) =			0	

Table C.4: Pebble Counts and Calcite Measurements at Benthic Invertebrate Sampling Locations, September 2021

			CKUT-1 ep-21						CKUT-2 ep-21		
Pebble	Concreted Status	Calcite Proportion	Calcite	Intermediate Axis (cm)	Embeddedness (%)	Pebble	Concreted Status	Calcite Proportion	Calcite	Intermediate Axis (cm)	Embeddedn (%)
1	0	0.4	1	13.5	-	1	0	1	1	2.5	-
2	0	0	0	4.1 8.3	-	2	0	0.8	<u>1</u> 1	7.6 7.2	-
3 4	0	1	0 1	6.2	-	3 4	0	0.1	0	3.1	-
5	0	0	0	5.6	-	5	0	0	0	9.6	-
6	0	0	0	8.9	-	6	0	0	0	1.9	-
7	0	0	0	3.5	-	7	0	0	0	1.8	-
9	0	0	0	10.6 13.4	-	9	0	0	0	15.2 10.3	-
10	0	0	0	4.8	0	10	0	0	0	5.5	0.25
11	0	0	0	8.2	-	11	0	0.5	1	10.6	-
12	0	0	0	6.9	-	12	0	0	0	8.3	•
13	0	0	0	8.6	-	13	0	0	0	21.5	-
14 15	0	0.2	1	12.4 5.5	-	14 15	<u> </u>	0 -	0 -	16.2 0.2	-
16	0	0.1	1	13.6	-	16	0	0	0	4	-
17	0	0	0	18.5		17	-	-	-	0.2	-
18	0	0	0	3.8	-	18	0	0	0	8	-
19	0	0	0	4.5	-	19	0	0.1	1	6.9	·
20	0	0.1	1	4.6	0.25	20	0	0	0	10.3	0.25
21	0	0.2	0	4.8 17.9	-	21 22	0	0	0	6.4 14.8	-
23	0	0	0	18.5	-	23	0	0	0	21.5	-
24	0	0	0	12.3	-	24	0	0.1	1	11.6	-
25	0	0	0	7.2	-	25	0	0.1	1	5.8	-
26	0	0.1	1	10.5	-	26	0	0.1	1	3.7	-
27	0	0.2	1	13	-	27	0	0.2	1	9.6	
28	0	0	0	9.5	-	28	0	0	0	17.7	-
29	0	0.2	1	9	-	29	0	0.8	1	9.1	- 0.05
30 31	0	0	0	8.2 6	0.5	30 31	0 -	0 -	0	22.4 0.2	0.25
31	0	0	0	12	-	31	0	0	0	9.1	-
33	0	0	0	7	-	33	0	0	0	7.5	-
34	0	0	0	4	-	34	0	0	0	12.4	-
35	0	0.3	1	6.5	-	35	0	0	0	9.2	•
36	0	0	0	12	-	36	0	0	0	5.1	-
37	0	0	0	3.3	-	37	0	0	0	14.5	-
38 39	0	0	0	<u>4</u> 5	-	38 39	0	0	0	11.3 4.1	-
40	0	0	0	1.5	0.25	39 40	0	0	0	12.3	0.25
41	0	0	0	2	- 0.25	41	0	0	0	21.5	-
42	0	0	0	0.2	-	42	0	0	0	8.4	
43	0	0	0	14	-	43	0	0	0	21.2	ı
44	2	0.7	1	17	-	44	0	0.5	1	18.3	-
45 46	0	0.3	1	9 1.5	-	45	0	0	0	16.6	-
46 47	0	0 0.2	0	1.5 11.5	-	46 47	0	0	0	4.1 8.5	-
48	0	0.2	0	2.6	-	48	0	0	0	6.7	-
49	0	0	0	2	-	49	0	0	0	5.7	-
50	0	0.3	1	12	0.75	50	0	0	0	15.8	0.5
51	0	0	0	4	-	51	-	-	-	0.2	-
52	0	0	0	6	-	52	0	0	0	20.8	-
53 54	0	0.2	0	14 6	-	53 54	0	0	0	5.6 5.6	÷
54 55	0	0	0	5	-	54 55	0	0	0	5.6	-
56	0	0	0	3	-	56	0	0	0	3.6	-
57	0	0	0	6	-	57	0	0	0	10.1	-
58	0	0	0	7.5	-	58	0	0	0	17.7	-
59	0	0	0	4.5	-	59	0	0	0	7.6	- 0.5
60 61	0	0	0	6.3 5	0.5	60 61	0	0.5	<u> </u>	9.8 17.8	0.5
62	0	0	0	3.5	-	62	0	0.5	0	17.8	-
63	0	0	0	4.5	-	63	0	0.2	1	20	-
64	0	0	0	5.5	-	64	0	0.2	1	9.3	-
65	0	0	0	3	-	65	0	0	0	22.5	1
66	0	0	0	9	-	66	0	0	0	7.1	-
67	0	0	0	10	-	67	0	0.1	1	5.2	-
68 69	0	0.1	0	8 11	-	68 69	0	0.1	<u> </u>	7.4 12.4	-
70	0	0.1	0	7.5	0.5	69 70	0	0.1	0	12.4 18.5	0.25
71	0	0	0	2.5	-	71	0	0	0	10.5	-
72	0	0	0	4	-	72	-	-	-	0.2	ı
73	0	0	0	3.5	-	73	-	-	-	0.2	1
74	0	0	0	6	-	74	0	0	0	2.8	-
75 76	0	0	0	17	-	75 76	0	0	0	8.6	-
76 77	0	0	0	7 6.7	-	76 77	0	0	0	1.6 6.5	-
78	0	0	0	6.5	-	78	0	0	0	2.1	-
79	0	0	0	10	-	79	0	0	0	13.9	-
80	0	0	0	7.3	0.5	80	0	0	0	3.1	0.5
81	0	0	0	5.2	-	81	0	0	0	10.9	-
82	0	0	0	6.5	-	82	0	0	0	19	-
83	0	0	0	13	-	83	-	-	- 0	0.2	-
84 85	0	0	0	11 7	-	84 85	0	0	0	6.4 14.3	-
86	0	0	0	5.5	-	86	0	0	0	5.2	-
87	0	0	0	18	-	87	0	0	0	2	-
88	0	0	0	19	-	88	0	0	0	4.1	-
89	0	0	0	6.5	-	89	0	0	0	10.9	-
90	0	0	0	5.3	0.25	90	0	0	0	14	0.75
91	0	0	0	3	-	91	-	-	-	0.2	-
92 93	0	0	0	4 17.5	-	92 93	0	0	0	3.1 2.9	-
93	-	0	0	0.2	-	93	0	0	0	7.7	-
95	0	0	0	13	-	95	0	0	0	11.5	-
96	0	0	0	4.6	-	96	0	0	0	6.3	-
97	0	0	0	7.2	-	97	0	0	0	8.4	-
98	0	0	0	5.4	-	98	-	-	-	0.2	-
99	0	0.1	1	15	-	99	0	0	0	15.2	- 0.75
100	0	0	0	8	0.5	100 Average	0	0	0	18.5	0.75
verage Cp and	0.02	0.06	0.18	7.84	0.40	Average Cc, Cp and	0	0.06	0.19	9.13	0.43
	J.J2	3.30	51.10		31-13	Embed. =	•	3.30	2.10	3	3.40
nbed. =	ite Index (CI) =					Ellibou.					

Table C.4: Pebble Counts and Calcite Measurements at Benthic Invertebrate Sampling Locations, September 2021

			CKUT-3 ep-21						CKDT-1 ep-21		
Pebble	Concreted Status	Calcite Proportion	Calcite Presence	Intermediate Axis (cm)	Embeddedness (%)	Pebble	Concreted Status	Calcite Proportion	Calcite Presence	Intermediate Axis (cm)	Embeddedness (%)
2	0 -	0.5	1 -	10 0.2	-	2	0	0	0	1.5 2.2	-
3	0	0.2	1	3.5	-	3	-	=	-	101	-
5	0	0	0	4.3 16.2	-	<u>4</u> 5	- 0	- 0	- 0	101 3.8	-
6	-	-	-	0.2	-	6	0	0	0	6.5	-
7 8	0	0.2	1 -	5.4 0.2	-	7 8	<u> </u>	0.2	1 -	3.8 101	-
9	0	0	0	2.9	-	9	1	0.8	1	6.1	-
10 11	0	0.2 0.1	1	6.2 4	0.25	10 11	0	0.1	0	3.2 22.5	- 0
12	0	0	0	5.7	-	12	0	0.1	1	8.5	-
13 14	0	0	0	3.5 3	-	13 14	- 0	0.7	- 1	101 14	-
15	0	0.1	1	12	-	15	-	-	-	0.2	-
16 17	0	0	0	11 8.5	-	16 17	0	0.1	1 0	14.2 25.5	-
18	0	0.1	1	14	-	18	0	0.5	1	9.5	-
19	0	0	0	8.9	- 0.25	19	0	0.1	1	3.3	-
20 21	0	0	0	2.5 3.2	0.25	20 21	0	0.5 0.3	1	13.5 3.9	0.5
22	-	-	-	0.2	-	22	0	0.4	1	5.1	-
23 24	0	0	0	<u>6</u> 2	-	23 24	0	0.2	1	8.5 22.5	-
25	0	0	0	28.5	-	25	0	0.2	1	15.3	-
26 27	0	0	0	13.5 2	-	26 27	0	0.2	1	6.6 4.8	-
28	0	1	1	30	-	28	0	0.3	1	2.2	-
29 30	0	0	0	6.5 17	0.5	29 30	0	0.5 0.3	1	8.1 9.7	- 0.25
31	0	0	0	7.5	0.5	31	0	0.3	1	4.5	0.25
32	0	0.1	1	1.5	-	32	0	0	0	4.9	-
33 34	0	0	0	5.5 7	-	33 34	0	0.2 0.5	1	5.7 2.3	-
35	0	0	0	7.3	-	35	0	0.2	1	13.2	-
36 37	0	0	0	3.7 10.9	-	36 37	0	0.3	1	12.2 8.5	-
38	-	-	-	0.2	-	38	0	0.3	1	11.4	-
39 40	0	0	0	8.7 16.5	0.25	39 40	0	0.4	1	13.9 10.3	0.25
41	0	0	0	8.6	-	41	0	0.2	0	11.2	-
42 43	0	0	0	3.4 13.2	-	42 43	0	0.4	1	10.9 7.4	-
44	0	0	0	13.2	-	43	0	0.2	1	8.8	-
45	-	-	-	0.2	-	45	0	0.6	1	2.9	-
46 47	0	0	0	1.5 11.4	-	46 47	0	0.2	1	3.2 24.5	-
48	0	0	0	16	-	48	0	0.4	1	9.6	-
49 50	0	0 0.1	0	2 7	0.5	49 50	0	0 0.4	0	3.2 8.2	0.75
51	0	0	0	2.9	-	51	-	-	-	0.2	-
52 53	0	0	0	10.1	-	52	0	0.2 0.3	1	18.9 10.7	-
54	0	0	0	3.6 4.2	-	53 54	0	0.3	1	8.3	-
55	0	0	0	15.1	-	55	0	0.3	1	14.6	-
56 57	0	0.1	0	13.4 4.6	-	56 57	0	0.5 0.1	1	23 3.4	-
58	0	0	0	8.5	-	58	0	0.6	1	16.2	=
59 60	0	0	0	7.6 23.5	0.75	59 60	0	0.3	0	10.2 2.5	- 0
61	0	0	0	4.1	-	61	0	0	0	4.6	-
62 63	0	0	0	7.6 9.5	-	62 63	0	0.2	1	14.9 19.3	-
64	0	0	0	20	-	64	0	0.6	1	4.5	-
65 66	0	0	0	13.1	-	65 66	0	0.3	1	12.3	-
66 67	0	0.5	1	17.3 11.8	-	66 67	0	0.2 0.4	1	3.4 4.3	-
68	0	1	1	15.2	-	68	0	0	0	6.4	-
69 70	0	0	0	10.2 27	0.75	69 70	0	0.2 0.8	1	7.6 6.3	0.25
71	0	0	0	14.6	-	71	0	0.8	1	5.9	-
72 73	0	0	0	17.8 19.5	-	72 73	0	0 5	0	2.9 12	-
74	0	0.5	1	18.2	-	74	0	0	0	3.5	-
75 76	- 0	- 0	- 0	0.2 12.8	-	75 76	0	0.2 0.5	1	7.3 11.1	-
77	0	0	0	2.5	-	77	0	0.5	1	10.4	-
78 79	0	0	0	3.8	-	78	-	-	- 1	101	-
79 80	0	0	0	14.2 11.5	0.5	79 80	0	0.8 0.4	1	16.4 11.6	0.25
81	-	-	-	0.2	-	81	0	0.2	1	9.3	-
82 83	- 0	- 0	- 0	0.2 9.8	-	82 83	0	0.5 0.7	1	22.4 8.4	-
84	0	0	0	18.2	-	84	0	0.5	1	19.6	-
85 86	0	0	0	11.5 7.6	-	85 86	0	0.3	1 1	3.5 6.1	-
87	0	0	0	5.8	-	87	0	0.1	1	5.1	=
88 89	0	0	0	2.9 17.1	-	88 89	0	0.6 0.3	1	12.2 7.2	-
90	0	0	0	17.1 7.5	0.5	89 90	2	0.3	1	7.2 14.5	0.25
91	0	0	0	8.4	-	91	0	0.5	1	5.6	-
92 93	0	0	0	4.4 2.9	-	92 93	0	0.4	1	6.3 7.4	-
94	0	0	0	8.7	-	94	0	0.2	1	2.4	-
95 96	0	0	0	4.5 5.6	-	95 96	0	0.5 0.6	1	24.2 21.5	-
96	0	0	0	3.8	-	96	-	-	-	0.2	-
98	0	0.5	1	8.2	-	98	0	0.4	1	8.3	-
99 100	0	0	0	3.7 2.9	0.25	99 100	0 -	0.6	1 -	7.6 0.2	- 0
Average			-			Average					-
c, Cp and	0	0.06	0.16	8.56	0.45	Cc, Cp and Embed. =	0.03	0.38	0.85	13.7	0.25
Embed. =					l l	Embed =					

Table C.4: Pebble Counts and Calcite Measurements at Benthic Invertebrate Sampling Locations, September 2021

4		14-S	CKDT-2 ep-21					15-S	ep-21		
Pebble	Concreted Status	Calcite Proportion	Calcite Presence	Intermediate Axis (cm)	Embeddedness (%)	Pebble	Concreted Status	Calcite Proportion	Calcite Presence	Intermediate Axis (cm)	Embeddedn (%)
1	0	0.3	1	16.5	-	1	0	0.1	1	3.5	-
3	0	0.8	1	9.2 13.6	-	3	0 -	0.3	1 -	5.5 0.2	-
4	0	0.6	1	11	-	4	0	0	0	1.5	-
5	0	0.2	1	16.2	-	5	0	0	0	4.3	-
7	0	0.2	1	5.2 11.1	-	6 7	0	0.2	1	9	-
8	0	0.2	1	7.3	-	8	0	0	0	3	ı
9	0	0.2	1	7.1	-	9	0	0	0	2	- 0.75
10 11	<u> </u>	0.3	1 -	5.2 0.2	0.5	10 11	0	0.1	1	10.8 5.5	0.75
12	-	-	-	0.2	-	12	0	0.5	1	5	-
13 14	-	-	-	0.2	-	13 14	0	0	0	8	-
15	- 0	0.8	1	0.2 3.8	-	14 15	0	0.7	0	4.3 9.5	-
16	0	0.4	1	15.5	-	16	0	0.5	1	5	-
17 18	0	0	0	17 2.7	-	17 18	0	0.1	<u>-</u> 1	0.2 1.5	-
19	0	0	0	2.1	-	19	0	0.1	0	0.7	-
20	0	0.3	1	3.5	0.5	20	0	0	0	1.5	0.5
21	0	0.4	1	10.3 17.5	-	21 22	0	0.2	0	1.3 4	-
23	0	0	0	2.6	-	23	0	0.2	1	7	-
24	0	0	0	2.8	-	24	0	0.4	1	5.5	-
25	-	-	-	101	-	25	0	0	0	4.5	-
26 27	0	0.2	1	15.2 9.2	-	26 27	- 0	- 0	- 0	0.2 1.5	-
28	0	0.2	1	10.8	-	28	0	0.6	1	8.6	-
29 30	0	0	0	3.8	- 0.5	29 30	0	0.3 0.6	1	9.5	- 0.75
30	-	0.2	1 -	7.2 0.2	0.5	30 31	0	0.6	1	10 13	0.75
32	-	-	-	0.2	-	32	0	0.1	1	9.5	-
33	0	0.1	1	3.3	-	33	0	0.4	1	10	-
34 35	0	- 0	- 0	0.2 4.8	-	34 35	0	0.6	1	13 6	-
36	0	0.3	1	4.2	-	36	0	0.5	0	2	-
37	0	0	0	21.5	-	37	0	-	-	0.2	-
38 39	0	0.2	0	3.6 10.6	-	38 39	0	0.2	0	2.3 11	-
40	0	0.7	1	22.5	0.25	40	0	-	-	8	0.75
41	0	0.4	1	5.6	-	41	0	0	0	10	-
42	0	0.3	0 1	2.2 11.1	-	42 43	0	0.1	1	10 6	-
44	0	0	0	5.4	-	44	0	0	0	5	-
45	0	0	0	13.6	-	45 46	0	0.3	1	8	-
46 47	0	- 0	- 0	0.2 3.2	-	46 47	0	0.1	0	4.5 3	-
48	0	0	0	2.6	-	48	0	0	0	3.5	=
49 50	0	0	0	4.5 2.6	- 0.25	49 50	0	0.4	1	8.5	- 0.5
51	0	0	0	3	0.25	50 51	0	0.1	0	6 5	0.5
52	0	0	0	19.1	-	52	0	0	0	2	-
53	0	1	1	22	-	53	0	0	0	8	-
54 55	0	0	0	5.1 9.2	-	54 55	0	0	0	6.3	-
56	0	0	0	2.2	-	56	0	0	0	1.5	=
57 58	<u> </u>	0	0	2.3	-	57 58	0	0	0	1.5	-
59	-	-	-	0.2	-	58 59	0	0.4	0	4.3 5	-
60	0	0.5	1	19.5	0.5	60	0	0	0	8	0.5
61 62	-	- 0	-	0.2 4.1	-	61	0	0	0	5 10	-
62	0	0.1	0 1	4.1 10.8	-	62 63	0	0	0	10	-
64	-	-	-	0.2	-	64	0	0.3	1	8	-
65	0	0.5	1	15.2	-	65 66	0	0	0	1	-
66 67	<u> </u>	0.8	1 -	20.3 0.2	-	66 67	0	0.5	0	3.5 6.5	-
68	0	0.5	1	6.4	-	68	0	0.3	1	6.5	-
69	-	- 0	-	0.2	- 0.25	69	0	0	0	3	- 0.5
70 71	<u> </u>	0 -	0 -	3.8 0.2	0.25	70 71	0	0.6 0.5	1	7	0.5
72	-	=	-	0.2	-	72	0	0.3	1	4.2	=
73	-	=	-	0.2	-	73	0	0	0	6.5	=
74 75	-	-		0.2 0.2	-	74 75	0	0.3 0.3	1	21.5 11.8	-
76	-	-	-	0.2	-	76	0	0.5	1	10.5	-
77	0	1	1	15.1	-	77 70	0	0	0	9.2	-
78 79	0	0 0.4	0	7.2 10.1	-	78 79	0	0.3	0	9.8 2.7	0
80	0	0.3	1	11.2	0.5	80	0	0	0	15.4	-
81	0	0	0	4.2	-	81	0	0	0	8.1	=
82 83	0	0	0	16.7 15	-	82 83	0	0.5	0	3.8 5.7	-
84	0	1	1	15.8	-	84	0	0.8	1	8.2	-
85	0	0	0	2.8	-	85	-	-	-	0.2	=
86 87	<u> </u>	0.4	0	10.1 0.2	-	86 87	0	0.8	0	7.4 3.4	-
88	0	0.4	1	21.3	-	88	0	0.5	1	5.6	-
89	0	0	0	3	-	89	0	0.3	1	5.8	-
90 91	0	0.5	1	17.2 17	0.25	90 91	0	0.5 0.8	1	7.6 14.5	0.25
92	-	-	-	0.2	-	92	0	0.5	1	3	-
93	0	0	0	5.5	-	93	0	0.5	1	10.3	1
94 95	0	0.5	1	16.4 0.2	-	94 95	0	0.5	1	5.8 0.2	-
95	-	-	-	0.2	-	95 96	- 0	0.5	- 1	0.2 14.5	= =
97	0	0	0	3.4	-	97	=	-	-	0.2	-
98	0	0.4	1	15.5	-	98	0	0.3	1	30.8	-
99 100	0	0	0	3.5 14.7	0.5	99 100	0	0	0	13.4 11.4	0.25
verage						Average	-	-			
Cp and	0	0.26	0.55	8.22	0.40	Cc, Cp and Embed. =	0	0.21	0.54	6.32	0.48
nbed. =											

Table C.4: Pebble Counts and Calcite Measurements at Benthic Invertebrate Sampling Locations, September 2021

			ERCK-1 Sep-21					RG_ 10-S	ep-21		
	Concreted	Calcite	Calcite	Intermediate	Embeddedness		Concreted	Calcite	Calcite	Intermediate	Embeddedr
Pebble	Status	Proportion	Presence	Axis (cm)	(%)	Pebble	Status	Proportion		Axis (cm)	(%)
1	1	0.9	1	13.5	-	1	0	0	0	7.5	-
3	1 2	0.8	1	14.2 10.1	-	3	0	0	0	4.5 15.5	-
4	0	1	1	14.6	-	4	0	0	0	10.8	-
5	1	1	1	15.2	-	5	0	0	0	21.2	-
6	1	1 1	1	9.5	-	6	0	0	0	14.6	-
7 8	2 1	1	1	8.5 12.4	-	7 8	0	0	0	26.3 5.9	-
9	2	1	1	10.1	-	9	0	0	0	16.5	-
10	1	0.8	1	5.5	0.25	10	0	0	0	11.3	0.25
11	0	0.5	1	4.6	-	11	0	0	0	14.2	-
12 13	2 1	1 1	1	11 7.1	-	12 13	0	0	0	16.1 3.1	-
14	2	1	1	5.5	-	14	0	0	0	7.8	-
15	2	1	1	6.6	-	15	0	0	0	3.5	-
16	2	1	1	20.5	-	16	0	0	0	14.5	-
17 18	0	0.5	1	17.6 4.3	-	17 18	0	0	0	8.5 20.2	-
19	2	1	1	10.9	_	19	0	0	0	6.9	
20	2	1	1	13.4	0.5	20	0	0	0	8.4	0.5
21	0	0.4	1	10.3	-	21	0	0	0	9.8	-
22	1	1	1	7.6	-	22	0	0	0	25.3	-
23 24	1 2	0.9	1	13.2 25	-	23 24	0	0	0	18.6 6.8	<u>-</u>
25	2	1	1	16	-	25	0	0	0	8.8	
26	2	1	1	23.5	-	26	0	0	0	19.4	-
27	2	1	1	20.4	-	27	0	0	0	9.3	-
28 29	2 1	1	1	29.5 7.7	-	28 29	0	0	0	14.6 6.4	-
30	2	1	1	11.3	0.5	30	0	0	0	18.7	0.5
31	1	1	1	7.2	-	31	0	0	0	6.5	-
32	0	1	1	7.2	-	32	0	0	0	19.3	-
33	2	1	1	10.5	-	33	0	0	0	2.3	-
34 35	0	1 1	1	12.4 7.4	-	34 35	0	0	0	8.6 8.6	<u>-</u>
36	2	1	1	10.2	-	36	0	0	0	15.4	-
37	1	0.8	1	14.4	-	37	0	0	0	12.2	-
38	0	0.8	1	14.4	-	38	0	0	0	12	-
39 40	2 2	1	1	5.9 7	0.25	39 40	0	0	0	13.6 7.8	- 0
41	0	0.8	1	6.2	-	41	0	0	0	11.6	-
42	0	0.8	1	8.2	-	42	0	0	0	4.1	-
43	2	1	1	9.7	-	43	0	0	0	17.4	-
44	0	0.7	1	9.4	-	44	0	0	0	4.7	-
45 46	0	0.7	1	9.4 7.1	-	45 46	0	0	0	16.8 3.9	-
47	1	0.6	1	13.2	-	47	0	0	0	10.6	-
48	0	0.9	1	6.6	-	48	0	0	0	6.3	-
49	0	0.4	1	14.4	-	49	0	0	0	6.3	-
50 51	0	1	1	10.2	0.25	50 51	0	0	0	8.9	0
51 52	2 2	1	1	13 8.3	-	51 52	0	0	0	27.2 10.5	<u> </u>
53	0	1	1	8.2	-	53	0	0	0	4.8	-
54	2	1	1	4.6	-	54	0	0	0	17.9	-
55	0	1	1	13.4	-	55	0	0	0	12.2	-
56 57	0	0.8	1	11.2 6.7	-	56 57	0	0	0	9.5 5.5	<u>-</u>
58	2	1	1	10	-	58	0	0	0	5.6	-
59	2	1	1	15.8	-	59	0	0	0	4.5	-
60	2	1	1	8.9	0.25	60	0	0	0	21.5	0.5
61 62	2 2	1	1	7.1 20.4	-	61 62	0	0	0	11.2 13.2	-
63	-	-	-	101	-	63	0	0	0	7.9	-
64	2	1	1	10.5	-	64	0	0	0	23.4	-
65	2	1	1	11.6	-	65	0	0	0	19.8	-
66	2	1 1	1	16.5	-	66 67	0	0	0	10.9 3	-
67 68	2	1	1	15 21.6	-	67 68	0	0	0	22.2	-
69	-	-	-	101	-	69	0	0	0	15.5	-
70	2	1	1	7.6	0.25	70	0	0	0	8.4	0
71	-	-	-	101	-	71	0	0	0	9.6	-
72 73	2 2	1	1	17.1 8.5	-	72 73	0	0	0	11.7 6.4	<u>-</u>
74	2	1	1	12.5	-	73	0	0	0	18.7	-
75	2	1	1	12.2	-	75	0	0	0	7.7	-
76	-	-	-	101	-	76	0	0	0	8.3	-
77 78	<u>-</u> 1	1	- 1	101 10.2	-	77 78	0	0	0	15.2 6.1	-
78	<u>1</u>	1	1	16.5	-	78 79	0	0	0	7.8	-
80	0	1	1	7.4	0.25	80	0	0	0	15.2	0.5
81	11	1	1	12.6	-	81	0	0	0	8.5	-
82	1	1	1	16.6	-	82	0	0	0	30	-
83 84	<u>1</u>	1	1	12 15.5	-	83 84	0	0	0	3.6 5.1	-
85	1	1	1	8.6	-	85	0	0	0	16.3	-
86	1	1	1	7.2	-	86	0	0	0	25.2	-
87	0	1	1	13.4	-	87	0	0	0	6.3	-
88 89	0	1 1	1	11.5 12.6	-	88 89	0	0	0	8.5 7.4	-
90	0	0.8	1	5.8	0.25	90	0	0	0	35	0.75
91	2	1	1	13.3	-	91	0	0	0	17	-
92	0	0.5	1	8.4	-	92	0	0	0	3.6	-
93	1	0.9	1	11.2	-	93	0	0	0	10.8	-
94 95	0 1	1	1	8.4 12.9	-	94 95	0	0	0	18.2 4	-
96	0	0.5	1	12.9	-	96	0	0	0	13.3	-
97	0	1	1	9	-	97	0	0	0	5.1	-
98	-	-	-	101	-	98	0	0	0	10.9	-
99 100	0	1 1	1	42 10.1	- 0.25	99 100	0	0	0	9.3	- 0.5
verage	U	1	I	10.1	0.25	100 Average	U	U	U	16.2	0.5
Cp and	1.20	0.93	1.00	17.2	0.30	Cc, Cp and	0	0	0	11.9	0.35
mbed. =						Embed. =					
	te Index (CI) =	1		2.20			ite Index (CI) =			0	

Table C.4: Pebble Counts and Calcite Measurements at Benthic Invertebrate Sampling Locations, September 2021

			MI3-2 ep-21						MI3-3 ep-21		
D-1-1-	Concreted	Calcite	Calcite	Intermediate	Embeddedness	D-LL-	Concreted	Calcite	Calcite	Intermediate	Embeddednes
Pebble	Status	Proportion		Axis (cm)	(%)	Pebble	Status	Proportion		Axis (cm)	(%)
1	0	0	0	12.3	-	1	0	0	0	11.2	-
3	0	0	0	14.4 10.3	-	3	0	0	0	10.1 9.7	-
4	0	0	0	14.5	-	4	0	0	0	12.5	=
5 6	0	0	0	2.2 12.4	-	5 6	0	0	0	11.1 20.4	-
7	0	0	0	14.6	-	7	0	0	0	10.3	=
8	0	0	0	18.1	-	8	0	0	0	30	-
9 10	0	0	0	9 10.2	0.75	9 10	0	0	0	12.88 12.2	0.5
11	0	0	0	5.3	-	11	0	0	0	7.1	-
12	0	0	0	15.9	-	12	0	0	0	14	-
13 14	0	0	0	11.1 7.5	-	13 14	0	0	0	52 16.1	-
15	0	0	0	6.5	-	15	-	-	-	0.2	-
16	0	0	0	26	-	16	0	0	0	10.2	-
17 18	0	0	0	8.4 4.8	-	17 18	0	0	0	16.2 3.9	-
19	0	0	0	15.1	-	19	0	0	0	22.5	-
20 21	0	0	0	4.3 10.1	0.5	20 21	0	0	0	8.3 4.3	0.5
22	0	0	0	5.1	-	22	0	0	0	10.6	-
23	0	0	0	13.2	-	23	0	0	0	7.1	ı
24 25	0	0	0	7.4 13.6	-	24 25	0	0	0	7.1 6.2	-
26	0	0	0	13.6	-	26	0	0	0	10.8	P -
27	0	0	0	12.2	-	27	0	0	0	3.2	-
28 29	0	0	0	10.4 17.9	-	28 29	0	0	0	4.1 16.6	-
30	0	0	0	12.5	0	30	0	0	0	30	0.25
31	0	0	0	12.5	-	31	0	0	0	15.5	=
32 33	- 0	- 0	- 0	9.6	-	32 33	0	0	0	5.8 8	-
34	0	0	0	5.5	-	34	0	0	0	6.2	-
35 36	0	0	0	8.2 24.7	-	35 36	0	0	0	5.4 18.3	-
36	0	0	0	24.7	-	36	0	0	0	18.3	-
38	0	0	0	13.6	-	38	0	0	0	15.2	-
39 40	0	0	0	15 7.1	0.5	39 40	0	0	0	18.3 11	0.5
41	0	0	0	9.3	-	41	0	0	0	6.4	-
42	0	0	0	10.9	-	42	0	0	0	22.5	-
43 44	0	0	0	6.5 12.6	-	43 44	0	0	0	8.3 11.3	-
45	0	0	0	8.6	-	45	0	0	0	25.6	-
46	0	0	0	7	-	46	0	0	0	21	-
47 48	0	0	0	21.5 14.5	-	47 48	0	0	0	9.9	-
49	0	0	0	9	-	49	0	0	0	6.2	=
50	0	0	0	15.5	0.25	50	0	0	0	11.5	0.25
51 52	0	0	0	4.5 5.5	-	51 52	- 0	- 0	- 0	0.2 8.6	-
53	0	0	0	9.8	-	53	0	0	0	7.2	-
54 55	0	0	0	8.4 7.9	-	54 55	0	0	0	14.1 5.3	=
56	0	0	0	5.6	-	56	0	0	0	7.2	-
57	0	0	0	22.5	-	57	0	0	0	10.8	-
58 59	0	0	0	5.8 17.9	-	58 59	0	0	0	7 10.3	-
60	0	0	0	7.8	0.5	60	0	0	0	14.5	0.25
61	0	0	0	15.9	-	61	0	0	0	9.4	-
62 63	0	0	0	18.2 13.6	-	62 63	0	0	0	4.8 3.7	-
64	0	0	0	14.7	-	64	0	0	0	10	-
65 66	0	0	0	21.2 13.1	-	65 66	0	0	0	10 7.2	-
67	0	0	0	12.9	-	67	0	0	0	45	-
68	0	0	0	12.9	-	68	0	0	0	10.6	-
69 70	0	0	0	3.8 18.5	0.5	69 70	0	0	0	4.9 7.2	0.25
71	0	0	0	5.9	-	70	0	0	0	3.9	- 0.25
72	0	0	0	20.9	-	72	0	0	0	14.8	-
73 74	0	0	0	3.8	-	73 74	0	0	0	27.6 12.1	-
75	0	0	0	8.6	-	75	0	0	0	30	-
76	0	0	0	6.9	-	76	0	0	0	22.6	-
77 78	0	0	0	11.7 12.2	-	77 78	0	0	0	22.5 3.9	-
79	0	0	0	8.6	-	79	0	0	0	8.2	-
80 81	0	0	0	22.5 6.4	0.75	80 81	0	0	0	35 8	0.25
81 82	0	0	0	19.5	-	81 82	- -	-	-	0.2	-
83	0	0	0	14.2	-	83	0	0	0	5.2	-
84 85	0	0	0	13.1 7.1	-	84 85	0	0	0	18.5 8	-
86	0	0	0	5.3	-	86	0	0	0	8	-
87	0	0	0	6.7	-	87	0	0	0	24.5	-
88 89	0	0	0	3.8 6.8	-	88 89	0	0	0	38 9.1	-
90	0	0	0	9	0.5	90	0	0	0	22.5	0
91	0	0	0	15.2	-	91	0	0	0	6.4	-
92 93	0	0	0	12.9 22	-	92 93	0	0	0	5.5 10.3	-
94	0	0	0	45	-	94	0	0	0	4.2	-
95	0	0	0	13.5	-	95	0	0	0	10.5	-
96 97	0	0	0	20.2 14.1	-	96 97	0	0	0	9.5 14.4	-
98	0	0	0	15.3	-	98	0	0	0	16	-
99	0	0	0	6.2	- 0.75	99	0	0	0	9	-
100 Average	0	0	0	18.3	0.75	100 Average	0	0	0	28	0.5
Cc, Cp and	0	0	0	11.8	0.50	Cc, Cp and	0	0	0	13.6	0.33
Embed. =	ite Index (CI) =			^		Embed. =	de la de con			0	
	το ιπαον (Cl) =	1		0		Old Calc	ite Index (CI) =	1		U	

Table C.4: Pebble Counts and Calcite Measurements at Benthic Invertebrate Sampling Locations, September 2021

			IDER-1 ep-21						IDER-2 ep-21		
Pebble	Concreted Status	Calcite Proportion	Calcite	Intermediate Axis (cm)	Embeddedness (%)	Pebble	Concreted Status	Calcite Proportion	Calcite	Intermediate Axis (cm)	Embeddednes
1	0	0	0	2.8	-	1	0	0	0	10.5	-
3	0	0	0	12.3 12.5	-	3	0	0	0	12.2 12.4	-
4	0	0	0	7.2	-	4	0	0	0	9.8	
5 6	0	0	0	11.1 13.8	-	5 6	0	0	0	13.2 3.8	-
7	0	0	0	10.2	-	7	0	0	0	6.5	-
8	0	0	0	17.6	-	8	0	0	0	17.8	-
9 10	0	0	0	5.7 7.2	0.25	9 10	0	0	0	12.3 23.5	0.5
11	0	0	0	3.4	-	11	0	0	0	7.6	-
12 13	0	0	0	19.4 13.2	-	12 13	0	0	0	19.4 13.8	-
14	0	0	0	7.5	-	14	0	0	0	24.5	-
15	0	0	0	5.3	-	15	0	0	0	7.3	-
16 17	0	0	0	8.1 12.2	-	16 17	<u> </u>	0 -	0 -	11.4 15	-
18	0	0	0	9.6	-	18	0	0	0	12.4	
19 20	0	0	0	9.1 20.5	0.25	19 20	0	0	0	15.8 16.8	0.5
21	0	0	0	4.3	-	21	0	0	0	16.2	-
22	0	0	0	6.8 16.4	-	22 23	0	0	0	7.1 14.3	-
24	0	0	0	11.5	-	24	0	0	0	6.2	=
25	0	0	0	11.8	-	25	0	0	0	13.5	-
26 27	0	0	0	7.3 13.4	-	26 27	0	0	0	10 17	-
28	0	0	0	20.2	-	28	0	0	0	3.3	-
29	0	0	0	4.4	- 0.5	29	0	0	0	9.6	- 0.25
30 31	0	0	0	9.3 25.2	0.5	30 31	0	0	0	12.4 8.5	0.25
32	0	0	0	16.5	-	32	0	0	0	9.9	-
33 34	0	0	0	18.4 6.6	-	33 34	0	0	0	11.6 5.1	-
35	0	0	0	14.2	-	35	0	0	0	8.2	-
36 37	0	0	0	10.4 8.3	-	36 37	0	0	0	12.3 15.5	-
38	0	0	0	27.2	-	38	0	0	0	8.5	-
39	0	0	0	5.3	-	39	0	0	0	10.2	-
40 41	0	0	0	14.3 21.7	0.5	40 41	0	0	0	8.1 12.4	0.5
42	0	0	0	26.5	-	42	0	0	0	11	-
43 44	0	0	0	9.3 26.3	-	43 44	0	0	0	19.3 4.6	-
45	0	0	0	17.4	-	45	0	0	0	8	=
46	0	0	0	5.1	-	46	0	0	0	14.5	-
47 48	0	0	0	18.2 23.4	-	47 48	0	0	0	25.5 9.1	-
49	0	0	0	8.6	-	49	0	0	0	11.6	-
50	0	0	0	20.4	0.5	50	0	0	0	13.8	0.5
51 52	0	0	0	13.5 7.6	-	51 52	0	0	0	5.9 43	-
53	0	0	0	13.8	-	53	0	0	0	10.2	-
54 55	0	0	0	16.4 6.9	-	54 55	0	0	0	11.9 14.3	
56	0	0	0	24.2	-	56	0	0	0	15.5	-
57 58	0	0	0	14 8.3	-	57 58	0	0	0	11.6 12.1	-
59	0	0	0	4.6	-	59	0	0	0	10.8	-
60 61	0	0	0	16.1	0.25	60 61	0	0	0	17.5 11	0.25
62	0	0	0	6.5 7.8	-	62	0	0	0	15.5	-
63	0	0	0	7.2	-	63	0	0	0	37	-
64 65	0	0	0	23.4 9.3	-	64 65	0	0	0	5.8 7.5	-
66	0	0	0	11	-	66	0	0	0	10.9	-
67 68	0	0	0	21.4 8.3	-	67 68	0	0	0	23.5 5.4	-
69	0	0	0	7.2	-	69	0	0	0	4.4	-
70	0	0	0	15.7	0.5	70	0	0	0	11.6	0.5
71 72	0	0	0	19.2 24.8	-	71 72	0	0	0	7.8 7.5	-
73	0	0	0	9.7	-	73	0	0	0	12.9	=
74 75	0	0	0	7.3 7.4	-	74 75	0	0	0	6.2 10.8	-
76	0	0	0	26.3	-	76	0	0	0	11.3	-
77 78	0	0	0	6.8	-	77	0	0	0	8	-
79	0	0	0	9.9 40.5	-	78 79	0	0	0	19.5 13.2	-
80	0	0	0	16.3	0.25	80	0	0	0	20.1	0.25
81 82	0	0	0	14.5 18.3	-	81 82	0	0	0	12.8 19.3	-
83	0	0	0	9.6	-	83	0	0	0	11.2	-
84 85	0	0	0	24.5 30.4	-	84 85	0	0	0	5.5 19	-
85	0	0	0	30.4 14.7	-	85 86	0	0	0	6.8	-
87	0	0	0	2.8	-	87	0	0	0	6.8	-
88 89	0	0	0	15.3 13.1	-	88 89	0	0	0	12.3 17.1	-
90	0	0	0	17.2	0.25	90	0	0	0	12.2	0
91	0	0	0	8.6	-	91	0	0	0	8.1	-
92 93	0	0	0	21.6 5.8	-	92 93	0	0	0	10.1 22.5	-
94	0	0	0	5.8	-	94	0	0	0	9.5	-
95 96	0	0	0	10.3 22	-	95 96	0	0	0	3.8 11.7	-
96	0	0	0	8.4	-	96	0	0	0	11.7	-
98	0	0	0	10	-	98	0	0	0	17.4	-
99 100	0	0	0	17.8 11.5	0.25	99 100	0	0	0	10.2 4.8	0.5
Average			-			Average	-		-		
Cc, Cp and	0	0	0	13.3	0.35	Cc, Cp and Embed. =	0	0	0	12.4	0.38
Embed. =		1			1	⊑mbea. =		1	ĺ	İ.	1

Table C.4: Pebble Counts and Calcite Measurements at Benthic Invertebrate Sampling Locations, September 2021

			IDER-3 ep-21						IDGA-1 ep-21		
Pebble	Concreted Status	Calcite Proportion	Calcite Presence	Intermediate Axis (cm)	Embeddedness (%)	Pebble	Concreted Status	Calcite Proportion	Calcite Presence	Intermediate Axis (cm)	Embeddedn (%)
1	0	0	0	5.8	-	1	0	0	0	11.6	-
2	0	0	0	7.2	-	2	0	0	0	7	-
3	0	0	0	15.5 21.2	-	3 4	0	0	0	8.2 20.4	-
5	0	0	0	9.4	-	5	0	0	0	10.2	-
6	0	0	0	12.7	-	6	0	0	0	13.4	-
7 8	0	0	0	10.8 6.8	-	7 8	0	0	0	5 2.8	-
9	0	0	0	7.3	-	9	0	0	0	6.4	-
10	0	0	0	6.4	0.25	10	0	0	0	14.5	0.5
11	0	0	0	13.2	-	11	0	0	0	5.5	-
12 13	0	0	0	5.8 18.2	-	12 13	0	0	0	7.8 2.8	-
14	0	0	0	12.4	-	14	0	0	0	3.2	-
15	0	0	0	3	-	15	0	0	0	10.4	-
16 17	0	0	0	8.5 13.9	-	16 17	0	0	0	10 5.5	-
18	0	0	0	8.7	-	18	0	0	0	21.5	-
19	0	0	0	11.3	-	19	0	0	0	4.8	-
20	0	0	0	11.6	0	20	0	0	0	6.4	0.25
21	0	0	0	8.7 9.2	-	21 22	0	0	0	3.1 11.6	-
23	0	0	0	16.5	-	23	0	0	0	8.1	-
24	-	-	-	14.8	-	24	0	0	0	5.2	-
25	0	0	0	8.4	-	25	0	0	0	12.3	-
26 27	0	0	0	11.3 19.6	-	26 27	0	0	0	6.4 6.3	-
28	0	0	0	19.6	-	28	0	0	0	3.6	-
29	0	0	0	12.5	-	29	0	0	0	6.5	-
30	0	0	0	6	0	30	0	0	0	14.1	0.5
31 32	0	0	0	9.1 14.5	-	31 32	0	0	0	5.3 3.4	-
33	0	0	0	14.5	-	33	0	0	0	18.6	-
34	0	0	0	5.8	-	34	0	0	0	5.9	-
35	0	0	0	12.3	-	35	0	0	0	6.8	-
36 37	0	0	0	10.6 14.1	-	36 37	0	0	0	4.2 12	-
38	0	0	0	13.2	-	38	0	0	0	13.1	-
39	0	0	0	15	-	39	0	0	0	5.2	-
40	0	0	0	20.5	0.5	40	0	0	0	6.4	0.25
41 42	0	0	0	12.2 7.6	-	41 42	0	0	0	5.6 5.5	-
43	0	0	0	7.0	-	43	0	0	0	11.5	-
44	0	0	0	14.2	-	44	0	0	0	21.5	-
45 46	0	0	0	9.9 7.5	-	45 46	0	0	0	10 2.8	-
46	0	0	0	24.2	-	46 47	0	0	0	7.1	-
48	0	0	0	6.5	-	48	0	0	0	13.1	-
49	0	0	0	11.2	-	49	0	0	0	3.6	-
50 51	0	0	0	3.5 9.5	0.25	50 51	0	0	0	13.2 9.1	0.25
52	0	0	0	9.5 5	-	52	0	0	0	4.8	-
53	0	0	0	10.2	-	53	0	0	0	6.9	-
54	0	0	0	26.1	-	54	0	0	0	10.5	-
55 56	0	0	0	24.3 17.4	-	55 56	0	0	0	11.2 7.1	-
57	0	0	0	7.5	-	57	0	0	0	15.5	-
58	0	0	0	12.2	-	58	0	0	0	7.4	=
59	0	0	0	10.6	-	59	0	0	0	20.1	-
60 61	0	0	0	5.8 8.7	0 -	60 61	0	0	0	16.5 4.1	0.5
62	0	0	0	7.9	-	62	0	0	0	10.3	-
63	0	0	0	14.1	-	63	0	0	0	7.3	-
64	0	0	0	9.6	-	64	0	0	0	10.8	-
65 66	0	0	0	11.4 4.8	-	65 66	0	0	0	7.4 12.5	-
67	0	0	0	14.8	-	67	0	0	0	4.1	-
68	0	0	0	14.9	-	68	0	0	0	3.6	-
69 70	0	0	0	15.7 9.7	- 0	69 70	0	0	0	5.1 17.6	0.5
71	0	0	0	22.9	-	70	0	0	0	7.8	0.5
72	0	0	0	6.4	-	72	0	0	0	5.4	-
73	0	0	0	18.7	-	73	0	0	0	8.9	·
74 75	0	0	0	7.4 8	-	74 75	0	0	0	13.2 5.1	-
76	0	0	0	7.5	-	76	0	0	0	5.1	=
77	0	0	0	15	-	77	0	0	0	6.8	e
78	0	0	0	20.3	-	78	0	0	0	21.3	-
79 80	0	0	0	6.3 19.1	0.25	79 80	0	0	0	7.5 8.3	0.25
81	0	0	0	8.3	-	81	0	0	0	4.9	-
82	0	0	0	18.4	-	82	0	0	0	6.8	-
83	0	0	0	13.6	-	83	0	0	0	10.3	-
84 85	0	0	0	<u>4</u> 12.7	-	84 85	0	0	0	8.7 8	-
86	0	0	0	13.7	-	86	0	0	0	14.2	-
87	0	0	0	5.5	-	87	0	0	0	3.1	-
88 89	0	0	0	16.8 4.5	-	88 89	0	0	0	5.2 16.4	-
90	0	0	0	4.5 6.7	0.5	90	0	0	0	16.4	0.5
91	0	0	0	10.1	-	91	0	0	0	7.5	-
92	0	0	0	7.5	-	92	0	0	0	6.5	-
93 94	0	0	0	6.3 18.5	-	93 94	0	0	0	6.5 5.9	-
95	0	0	0	18.5 14.7	-	95	0	0	0	5.9 8.2	-
96	0	0	0	13.5	-	96	0	0	0	19.7	-
97	0	0	0	11.2	-	97	0	0	0	6.5	-
98 99	0	0	0	8.6 16.4	-	98 99	0	0	0	12.4 6.5	-
100	0	0	0	16.4 7.3	- 0	100	0	0	0	6.5 16.2	0.75
verage			-			Average	-	-			
Cp and	0	0	0	11.5	0.18	Cc, Cp and Embed. =	0	0	0	8.98	0.43
nbed. =											

Table C.4: Pebble Counts and Calcite Measurements at Benthic Invertebrate Sampling Locations, September 2021

		11-S	IDGA-2 ep-21					11-S	IDGA-3 ep-21		
Pebble	Concreted Status	Calcite Proportion	Calcite Presence	Intermediate Axis (cm)	Embeddedness (%)	Pebble	Concreted Status	Calcite Proportion	Calcite Presence	Intermediate Axis (cm)	Embeddedne (%)
1	0	0	0	9.1	-	1	0	0	0	9.5	-
2	0	0	0	18.2	-	2	0	0	0	6.1	-
3	0	0	0	4.5 8.7	-	3 4	0	0	0	10.4 8.2	-
5	0	0	0	6.2	-	5	0	0	0	8.4	-
7	0	0	0	21.6 12.4	-	7	0	0	0	5 3.5	-
8	0	0	0	8.9	-	8	0	0	0	15.2	-
9	0	0	0	10.9 18.2	0.25	9 10	0	0	0	9.6	0.25
10	0	0	0	5.6	0.25	11	0	0	0	24.5 9.2	0.25
12	0	0	0	22.5	-	12	0	0	0	7.3	-
13 14	0	0	0	28.5 22.6	-	13 14	0	0	0	4.8 4.7	-
15	0	0	0	5.9	-	15	0	0	0	7.2	-
16	0	0	0	16.3	-	16	0	0	0	20.3	
17 18	0	0	0	9.6 14.3	-	17 18	0	0	0	5.1 14.3	-
19	0	0	0	6.2	-	19	0	0	0	5	-
20	0	0	0	6.5	0.25	20	0	0	0	13.6	0.5
21	0	0	0	23.5 19	-	21 22	0	0	0	11.8 18	-
23	0	0	0	7.6	-	23	0	0	0	11.1	ı
24	0	0	0	21.2	-	24	-	-	- 0	4.6	•
25 26	0	0	0	9.3 5.5	-	25 26	0	0	0	13.8 18.2	-
27	0	0	0	6.9	-	27	0	0	0	13.4	-
28	0	0	0	14.5	-	28	0	0	0	9.3	=
29 30	0	0	0	4.1 18.2	0.25	29 30	0	0	0	4.4 5	0.25
31	0	0	0	5.1	-	31	0	0	0	4.9	-
32	0	0	0	6.5	-	32	0	0	0	15.5	=
33 34	0	0	0	11.1 25.8	-	33 34	0	0	0	4.6 4.9	-
35	0	0	0	13.3	-	35	0	0	0	6.8	-
36	0	0	0	22.9	-	36	0	0	0	11.2	-
37 38	0	0	0	4.4 19.6	-	37 38	0	0	0	7.6 6.6	-
39	0	0	0	7.2	-	39	0	0	0	18.2	-
40 41	0	0	0	13.6 12.4	0.25	40 41	0	0	0	13.5 9.4	0.75
41	0	0	0	12.4 6.3	-	41 42	0	0	0	9.4 8.2	-
43	0	0	0	5.4	-	43	0	0	0	5.6	-
44 45	0	0	0	12.6 23.1	-	44 45	0	0	0	15.6 4.2	-
46	0	0	0	11	-	46	0	0	0	4.2	-
47	0	0	0	19.5	-	47	0	0	0	16.6	ė
48 49	0	0	0	10.5 8.4	-	48 49	0	0	0	16.6 12.4	-
50	0	0	0	6.9	0	50	0	0	0	4.9	0.5
51	0	0	0	17.3	-	51	0	0	0	5.8	-
52 53	0	0	0	21.6 4.6	-	52 53	0	0	0	5 10.2	-
54	0	0	0	7.7	-	54	0	0	0	5.1	-
55	0	0	0	16.3	-	55	0	0	0	3.6	=
56 57	0	0	0	7.4 12.2	-	56 57	0	0	0	3.6 10.5	-
58	0	0	0	28.4	-	58	0	0	0	11.2	-
59 60	0	0	0	6.8	- 0.25	59	0	0	0	5.2	-
60	0	0	0	6.6 13.5	0.25	60 61	0	0	0	6.9 4.4	0.5
62	0	0	0	5.3	-	62	0	0	0	3.6	-
63	0	0	0	4.6	-	63	0	0	0	3.3	-
64 65	0	0	0	6.3 5.8	-	64 65	0	0	0	5.9 4.1	-
66	0	0	0	13.9	-	66	0	0	0	6.5	-
67 68	0	0	0	22.4	-	67 68	0	0	0	10.5	-
69	0	0	0	14.6 15.8	-	69	0	0	0	5.9 5.1	=
70	0	0	0	16.2	0.5	70	0	0	0	9.1	0.5
71 72	0	0	0	22.8 8.9	-	71 72	0	0	0	7.3 15.2	-
73	0	0	0	13.1	-	73	0	0	0	3.6	-
74	0	0	0	4.9	-	74	0	0	0	9.1	-
75 76	0	0	0	5.4 12.6	-	75 76	0	0	0	11.6 2.5	-
77	0	0	0	9.1	-	77	0	0	0	7.3	=
78	0	0	0	6.8	-	78	0	0	0	4.9	=
79 80	0	0	0	20.2 6.3	0.5	79 80	0	0	0	5.8 5.8	0.5
81	0	0	0	8.9	-	81	0	0	0	5.5	-
82	0	0	0	6.3	-	82	0	0	0	4.5	=
83 84	0	0	0	11.6 5.1	-	83 84	0	0	0	4.3 5.6	-
85	0	0	0	4.7	-	85	0	0	0	21.5	-
86	0	0	0	22.4	-	86	0	0	0	4.6	-
87 88	0	0	0	16.3 6.5	-	87 88	0	0	0	5 5.5	-
89	0	0	0	7.6	-	89	0	0	0	5.1	-
90	0	0	0	9.8	0.75	90	0	0	0	18.6	0.75
91 92	0	0	0	14.5 5.7	-	91 92	0	0	0	8.7 13.8	-
93	0	0	0	10.1	-	93	0	0	0	4.2	-
94	0	0	0	13.1	-	94	0	0	0	3.8	-
95 96	0	0	0	8.8 6.2	-	95 96	0	0	0	9.7 6	-
97	0	0	0	21.3	-	97	0	0	0	3.5	=
98	0	0	0	11.4	-	98	0	0	0	5.5	-
99 100	0	0	0	9.4 26.5	0.5	99 100	0	0	0	3.6 7.2	0.25
verage			-	20.0		Average	-	J			
Cp and	0	0	0	12.2	0.35	Cc, Cp and Embed. =	0	0	0	8.38	0.48
nbed. =											

Table C.4: Pebble Counts and Calcite Measurements at Benthic Invertebrate Sampling Locations, September 2021

			IDBO-1 ep-21						IDBO-2 ep-21		
Pebble	Concreted Status	Calcite Proportion	Calcite	Intermediate Axis (cm)	Embeddedness (%)	Pebble	Concreted Status	Calcite Proportion	Calcite	Intermediate Axis (cm)	Embeddednes
1	0	0	0	6.7	-	1	0	0	0	10.6	-
2	0	0	0	14.5 24.5	-	2	0	0	0	11.1 5.8	-
3 4	0	0	0	7.6	-	3 4	0	0	0	11.6	=
5	0	0	0	18.9	-	5	0	0	0	9.2	-
7	0	0	0	14.2 11.1	-	6 7	0	0	0	12.1 9.3	-
8	0	0	0	5.6	-	8	0	0	0	3.3	-
9 10	0	0	0	3.4	0.5	9 10	0	0	0	6.1	- 0.25
11	0	0	0	12.5 28.2	0.5	10 11	0	0	0	3.8 11.2	0.25 -
12	0	0	0	15.2	-	12	0	0	0	7.5	-
13 14	0	0	0	7.8 9.1	-	13 14	0	0	0	19.1 8.5	-
15	0	0	0	9.1	-	15	0	0	0	10.2	-
16	0	0	0	17.1	-	16	0	0	0	22.5	•
17 18	0	0	0	5 14.6	-	17 18	- 0	- 0	- 0	0.2 7	-
19	0	0	0	8.9	-	19	0	0	0	7.4	-
20	0	0	0	19.5	0.25	20	0	0	0	10.4	0.25
21	0	0	0	32.5 12.6	-	21 22	0	0	0	14.2 16.5	-
23	0	0	0	15.4	-	23	0	0	0	17.5	-
24	0	0	0	24.3	-	24	0	0	0	25	-
25 26	0	0	0	6.8 15.2	-	25 26	0	0	0	17.2 6.8	-
27	0	0	0	9.3	-	27	0	0	0	8.6	-
28 29	0	0	0	20.6 13.4	-	28 29	0	0	0	6 7.5	-
30	0	0	0	4	0	30	0	0	0	7.3	0.25
31	0	0	0	7.9	-	31	0	0	0	9.2	-
32 33	0	0	0	9.8 11.3	-	32 33	0	0	0	13.3 19.8	-
34	0	0	0	5.2	-	34	0	0	0	21.1	-
35	0	0	0	24.5	-	35 36	0	0	0	17.4	-
36 37	0	0	0	8.9 6.8	-	36 37	0	0	0	7.5 11.3	-
38	0	0	0	7.2	-	38	0	0	0	4.4	-
39	0	0	0	18.3	- 0.25	39	0	0	0	17	-
40 41	0	0	0	10.2 18.6	0.25	40 41	0	0	0	9.1 10.3	0
42	0	0	0	7.2	-	42	0	0	0	7.5	-
43 44	0	0	0	5.8 17.6	-	43 44	0	0	0	14.2 7.1	-
45	0	0	0	6.8	-	45	0	0	0	11.3	-
46	0	0	0	24.3	-	46	0	0	0	10.1	•
47 48	0	0	0	7.9 12.1	-	47 48	0	0	0	11.7 22.1	-
49	0	0	0	6.4	-	49	0	0	0	6	-
50	0	0	0	10.2	0	50	0	0	0	9.5	0.75
51 52	0	0	0	7.9 7.8	-	51 52	0	0	0	11.5 12.8	-
53	0	0	0	21.6	-	53	0	0	0	4.9	-
54	0	0	0	6.4	-	54	0	0	0	3.8	-
55 56	0	0	0	17.5 9.2	-	55 56	0	0	0	14.2 4.7	-
57	=	-	-	101	-	57	0	0	0	4.3	-
58 59	0	0	0	26.2 5.8	-	58 59	0	0	0	2.9 10.3	-
60	0	0	0	35	0.75	60	0	0	0	6.4	0.25
61	0	0	0	7.3	-	61	0	0	0	13.9	-
62 63	0	0	0	3.6 5.2	-	62 63	0	0	0	6 9.3	-
64	0	0	0	9.8	-	64	0	0	0	7.4	-
65	0	0	0	17.2	-	65	0	0	0	8.2	-
66 67	0	0	0	6.1 32.6	-	66 67	0	0	0	10.5 10.1	-
68	0	0	0	13.4	-	68	0	0	0	9.1	-
69 70	0	0	0	10.2 7.5	0.5	69 70	0	0	0	3.5 10.1	0.5
70	0	0	0	7.5 15.6	0.5	70 71	0	0	0	10.1 8.2	0.5
72	0	0	0	7.6	-	72	0	0	0	6.6	=
73 74	0	0	0	6.5 8.1	-	73 74	0	0	0	17.9 5.4	-
75	0	0	0	25.5	-	75	0	0	0	8.3	-
76	0	0	0	10.3	-	76	0	0	0	8.3	-
77 78	0	0	0	27.5 11.4	-	77 78	0	0	0	18.6 11.4	-
79	0	0	0	9.3	-	79	0	0	0	5.9	-
80	0	0	0	10.4	0.25	80	0	0	0	18	0.75
81 82	0	0	0	3.6 9.8	-	81 82	0	0	0	5.2 15.4	-
83	0	0	0	9.6	-	83	0	0	0	6.5	-
84 85	0	0	0	20.1 31	-	84 85	0	0	0	16.1 9.4	1
86	0	0	0	5.2	-	86	0	0	0	16.6	-
87	0	0	0	13.6	-	87	0	0	0	10.8	-
88 89	0	0	0	7.9 3.8	-	88 89	0	0	0	7.1 14.2	-
90	0	0	0	7.6	0	90	0	0	0	12.4	0.25
91	0	0	0	8.3	-	91	0	0	0	25.5	-
92 93	0	0	0	4.5 25.6	-	92 93	0	0	0	6.4 12.5	-
94	0	0	0	9.8	-	94	0	0	0	8.3	-
95	0	0	0	8.7	-	95	0	0	0	4.3	ì
96 97	0	0	0	7.2 21.6	-	96 97	0	0	0	6.9 6.3	-
98	0	0	0	15.4	-	98	0	0	0	7.4	-
99	0	0	0	8.9	-	99	0	0	0	38	-
100 Average	0	0	0	29.1	0.25	100 Average	0	0	0	20.5	0.5
Cc, Cp and	0	0	0	13.7	0.28	Cc, Cp and	0	0	0	10.8	0.38
Embed. =						Embed. =					
	te Index (CI) =			0		Old Calc	ite Index (CI) =	1		0	

Table C.4: Pebble Counts and Calcite Measurements at Benthic Invertebrate Sampling Locations, September 2021

			IDBO-3						COMP-1		
Pebble	Concreted	Calcite	ep-21 Calcite	Intermediate	Embeddedness	Pebble	Concreted	Calcite	ep-21 Calcite	Intermediate	Embeddedness
1	Status 0	Proportion 0	Presence 0	Axis (cm) 9.1	(%) -	1	Status 0	Proportion 0	Presence 0	Axis (cm)	(%) -
2	0	0	0	13.2 6.5	-	2 3	0	0	0	8.9 8.3	-
4	0	0	0	14.9	-	4	0	0	0	11.6	-
5 6	0	0	0	17.8 16.2	-	5 6	0	0	0	15.2 10.1	-
7	0	0	0	32	-	7	0	0	0	8.1	-
8	0	0	0	4.9 7.6	-	8 9	0	0	0	18.5	-
10	0	0	0	19.3	0.25	10	0	0	0	6.8	0.25
11	0	0	0	11.6	-	11	0	0	0	6.6	-
12 13	0	0	0	5.9 7.8	-	12 13	0	0	0	6.1 8.4	-
14	0	0	0	8.2	-	14	0	0	0	16.6	-
15 16	0	0	0	12.6 12.1	-	15 16	0	0	0	6.3 8	-
17	0	0	0	4.3	-	17	0	0	0	8.3	-
18 19	0	0	0	18.2 6.5	-	18 19	0	0	0	7.2 4.2	-
20	0	0	0	16.2	0.5	20	0	0	0	10.6	0.5
21	0	0	0	14.6	-	21	0	0	0	5.8	-
22 23	0	0	0	6.5 4.5	-	22 23	0	0	0	6 3.3	-
24	-	-	-	101	-	24	0	0	0	7.4	-
25 26	0	0	0	7.6 10.2	-	25 26	0	0	0	4.9 6.2	-
27	0	0	0	5.1	-	27	0	0	0	10	-
28 29	0	0	0	7.6 13.2	-	28 29	0	0	0	19.1 6.6	-
30	0	0	0	8.5	0.75	30	0	0	0	11.4	0.5
31 32	0	0	0	21.4 33	-	31 32	0	0	0	35.5 6.4	-
33	0	0	0	4	-	32	0	0	0	13.6	-
34	0	0	0	5.1	-	34	0	0	0	10.4	-
35 36	0	0	0	17.2 6.2	-	35 36	0	0	0	7.1 5.9	-
37	0	0	0	8.1	-	37	0	0	0	17.2	-
38 39	0	0	0	12.2 11.6	-	38 39	0	0	0	5.5 7.8	-
40	0	0	0	21.2	0.5	40	0	0	0	38.5	0.25
41 42	0	0	0	15.6 5.6	-	41 42	0	0	0	2.9 9.5	-
43	0	0	0	8.9	-	43	0	0	0	9.5	-
44	0	0	0	7.6	-	44	0	0	0	19.2	-
45 46	0	0	0	14.3 10.8	-	45 46	0	0	0	16.8 7.7	-
47	0	0	0	10.6	-	47	0	0	0	9	-
48 49	0	0	0	5.6 12.3	-	48 49	0	0	0	8.9 8.3	-
50	0	0	0	19.2	0.5	50	0	0	0	12.6	0.5
51 52	0	0	0	16.4 22.6	-	51 52	0	0	0	10.9 10.3	-
53	0	0	0	5.9	-	53	0	0	0	9.2	-
54	0	0	0	7.3	-	54	0	0	0	7.6	-
55 56	0	0	0	24.6 13.4	-	55 56	0	0	0	12.5 7.3	-
57	0	0	0	4.6	-	57	0	0	0	7.9	-
58 59	0	0	0	9.5 7.2	-	58 59	0	0	0	13.6 5.8	-
60	0	0	0	25.6	0.75	60	0	0	0	17.4	0.25
61 62	0	0	0	14.2	-	61 62	0	0	0	15.5	-
62 63	0	0	0	4.8 26.1	-	62 63	0	0	0	9.1 7.5	-
64	0	0	0	6.5	-	64	0	0	0	13.2	-
65 66	0	0	0	23.2 18.6	-	65 66	0	0	0	7.4 15.8	-
67	0	0	0	21.6	-	67	0	0	0	4.3	-
68 69	0	0	0	8.9 7.4	-	68 69	0	0	0	12.6 21.2	-
70	0	0	0	18.2	0.5	70	0	0	0	6.8	0.25
71	0	0	0	9.1	-	71	0	0	0	9.7	-
72 73	0	0	0	17.3 6.5	-	72 73	0	0	0	9.2 12.6	-
74	0	0	0	7.6	-	74	0	0	0	13.1	-
75 76	0	0	0	10.5 12.7	-	75 76	0	0	0	15.2 9	-
77	0	0	0	4.6	-	77	0	0	0	4.3	-
78 79	0	0	0	5.2 22.1	-	78 79	0	0	0	11.2 8.7	-
80	0	0	0	11.3	0.25	80	0	0	0	6.1	0.5
81 82	0	0	0	18.2 19.4	-	81 82	0	0	0	5.4 21.6	-
83	0	0	0	8.6	-	82	0	0	0	12.3	-
84	0	0	0	13.6	-	84	0	0	0	5.8	-
85 86	0	0	0	3.9 8.7	-	85 86	0	0	0	8.8 11.5	-
87	0	0	0	11.3	-	87	0	0	0	11.8	-
88 89	0	0	0	10.5 8.7	-	88 89	0	0	0	5.7 4.5	-
90	0	0	0	5.5	0	90	0	0	0	6.4	0.25
91 92	0	0	0	12.6 13.4	-	91 92	0	0	0	8.7 7.1	-
93	0	0	0	7.1	-	93	0	0	0	4.2	-
94	0	0	0	26.5	-	94	0	0	0	15.6	-
95 96	0	0	0	11.2 5.8	-	95 96	0	0	0	13.7 14.6	-
97	0	0	0	10.1	-	97	0	0	0	6.4	-
98 99	0	0	0	13.6 4.7	-	98 99	0	0	0	19.3 10.1	-
100	0	0	0	7.9	0.5	100	0	0	0	10.1 27.2	0.25
Average						Average					
c, Cp and Embed. =	0	0	0	12.9	0.45	Cc, Cp and Embed. =	0	0	0	10.8	0.35
Old Calc	ite Index (CI) =		<u> </u>	0		Old Calc	ite Index (CI) =			0	
	ite Index (CI') =			0		New Calci	te Index (CI') =			0	

Table C.4: Pebble Counts and Calcite Measurements at Benthic Invertebrate Sampling Locations, September 2021

		13-S	COMP-2 ep-21					RG_MIC 13-Sc			
Pebble	Concreted	Calcite	Calcite	Intermediate	Embeddedness	Pebble	Concreted	Calcite	Calcite	Intermediate	Embeddedne
	Status	Proportion		Axis (cm)	(%)		Status	Proportion		Axis (cm)	(%)
2	0	0	0	4.5 8.7	-	2	0	0	0	14.6 4.2	-
3	0	0	0	21.4	-	3	0	0	0	13.5	-
4	0	0	0	12.2	-	4	0	0	0	12.2	=
5 6	0	0	0	25.3 10.6	-	5 6	0	0	0	8 10.1	-
7	0	0	0	5.6	-	7	0	0	0	9.1	-
8	0	0	0	6.5	-	8	0	0	0	3.8	-
9 10	0	0	0	4.7 13.2	0.5	9 10	0	0	0	4.2 6.7	0.25
11	0	0	0	15.6	-	11	0	0	0	18.2	- 0.25
12	0	0	0	10.9	-	12	0	0	0	15	-
13	0	0	0	3.8	-	13	0	0	0	21.5	-
14 15	0	0	0	6.4 10.8	-	14 15	0	0	0	12.2 6.3	-
16	0	0	0	19.5	-	16	0	0	0	4.2	-
17	0	0	0	12.6	-	17	0	0	0	8.7	-
18 19	0	0	0	8.3 10.1	-	18 19	0	0	0	9.1 6.3	-
20	0	0	0	4.3	0	20	0	0	0	7.7	0.25
21	0	0	0	7.2	-	21	0	0	0	10.8	ı
22	0	0	0	18.6	-	22	0	0	0	9.3	-
23 24	0	0	0	7.9 15.4	-	23 24	0	0	0	9.2 17.3	-
25	0	0	0	13.6	-	25	0	0	0	11	-
26	0	0	0	19.4	-	26	0	0	0	7.4	-
27 28	0	0	0	6.9 12.2	-	27 28	0	0	0	5.2 6.6	-
29	0	0	0	21.6	-	28	0	0	0	12.9	-
30	0	0	0	21.9	0.25	30	0	0	0	17	0.5
31	0	0	0	11.4	-	31	0	0	0	13.1	=
32 33	0	0	0	8.3 33	-	32 33	0	0	0	12.6 8.4	-
34	0	0	0	5.7	-	34	0	0	0	7.9	
35	0	0	0	9.6	-	35	0	0	0	10	-
36 37	0	0	0	12.2 11.4	-	36 37	0	0	0	6.5 2.2	-
38	0	0	0	6.3	-	38	0	0	0	3.6	-
39	0	0	0	26.4	-	39	0	0	0	9.9	-
40	0	0	0	16.3	0.5	40	0	0	0	10.9	0.25
41 42	0	0	0	5.5 17.2	-	41 42	0	0	0	6.5	-
43	0	0	0	7.6	-	43	0	0	0	-	-
44	0	0	0	12.2	-	44	0	0	0	-	-
45 46	0	0	0	17.9 12.6	-	45 46	0	0	0	-	-
46	0	0	0	21.3	-	47	0	0	0	-	-
48	0	0	0	18.3	-	48	0	0	0	-	-
49	0	0	0	6.4	- 0.25	49	0	0	0	-	-
50 51	0	0	0	7.6 14.5	0.25	50 51	0	0	0	4.3	-
52	0	0	0	23.1	-	52	0	0	0	6.3	-
53	0	0	0	15.4	-	53	0	0	0	14.5	-
54 55	0	0	0	8.2 13.7	-	54 55	0	0	0	2.9 17.8	-
56	0	0	0	25.4	-	56	0	0	0	3.8	-
57	0	0	0	6.3	-	57	0	0	0	4.8	-
58 50	0	0	0	5.5	-	58	0	0	0	30.3	ı
59 60	0	0	0	8.2 16.2	0.5	59 60	0	0	0	16.4 8.2	0.25
61	0	0	0	9.1	-	61	0	0	0	8.1	-
62	0	0	0	19.2	-	62	0	0	0	19.3	-
63 64	0	0	0	8.5 3.5	-	63 64	0	0	0	12.2 5.6	-
65	0	0	0	26.5	-	65	0	0	0	6.8	-
66	0	0	0	11.6	-	66	0	0	0	10.8	-
67 69	0	0	0	15.3	-	67	0	0	0	5.5 5.9	-
68 69	0	0	0	12.9 15.3	-	68 69	0	0	0	14.4	-
70	0	0	0	11.2	0.25	70	0	0	0	18.5	0
71	0	0	0	6.8	-	71	0	0	0	35	-
72 73	0	0	0	10.1 20	-	72 73	0	0	0	18.5 5.7	-
74	0	0	0	9.4	-	74	0	0	0	6.2	-
75	0	0	0	5.1	-	75	0	0	0	22	-
76 77	0	0	0	13.6 11.3	-	76 77	0	0	0	16.7 6.1	-
78	0	0	0	2.2	-	78	0	0	0	19.4	-
79	0	0	0	15.4	-	79	0	0	0	8.3	-
80	0	0	0	5	0.25	80	0	0	0	2.2	0.5
81 82	0	0	0	9.2 3.6	-	81 82	0	0	0	6.8 6.9	-
83	0	0	0	15.2	-	83	0	0	0	5.9	-
84	0	0	0	10.4	-	84	0	0	0	13.4	-
85 86	0	0	0	12.6 15.9	-	85 86	0	0	0	5.5 8.2	-
87	0	0	0	11.4	-	87	0	0	0	7.3	-
88	0	0	0	17.6	-	88	0	0	0	19.5	
89 90	0	0	0	16.3 6.3	- 0	89 90	0	0	0	23.5	0.25
90	0	0	0	17.5	-	90	0	0	0	12.5 6.2	0.25
92	0	0	0	7.9	-	92	0	0	0	7.4	-
93	0	0	0	24.9	-	93	0	0	0	10.4	-
94 95	0	0	0	4.7 8.3	-	94 95	0	0	0	8.3 12	-
96	0	0	0	6.4	-	96	0	0	0	19.1	-
97	0	0	0	18.2	-	97	0	0	0	9.5	-
98 99	0	0	0	21.3	-	98 99	0	0	0	9.9	-
100	0	0	0	6.6 6.7	- 0	100	0	0	0	9.3 7.2	0.25
verage					-	Average	-		-		
Cnand	0	0	0	12.4	0.25	Cc, Cp and Embed. =	0	0	0	10.5	0.28
Cp and nbed. =			,			C					

Table C.4: Pebble Counts and Calcite Measurements at Benthic Invertebrate Sampling Locations, September 2021

		RG_MIC 13-Se					RG_MICOMP-5 13-Sep-21								
Pebble	Concreted	Calcite	Calcite	Intermediate	Embeddedness	Pebble	Concreted	Calcite	Calcite	Intermediate	Embeddedn				
	Status	Proportion	Presence	Axis (cm)	(%)		Status	Proportion		Axis (cm)	(%)				
2	0	0	0	11.5 13.2	-	2	0	0	0	10.2 2.5	-				
3	0	0	0	18.9	-	3	0	0	0	8.6	-				
4	0	0	0	14.6	-	4	0	0	0	8.4	1				
5 6	0	0	0	24.5 26.2	-	5 6	0	0	0	7.3 4.6	-				
7	0	0	0	7.1	-	7	0	0	0	21.6	-				
8	0	0	0	13.4	-	8	0	0	0	6.3	•				
9	0	0	0	26.7	-	9	0	0	0	17.4	- 0.05				
10 11	0	0	0	16.9 7.3	0.5	10 11	0	0	0	5.9 12.3	0.25				
12	0	0	0	16.9	-	12	0	0	0	5.5	-				
13	0	0	0	4.6	-	13	0	0	0	7.2	-				
14	0	0	0	17.3	-	14	0	0	0	4.8	-				
15 16	0	0	0	8.7 22.2	-	15 16	0	0	0	10.4 3.5	-				
17	0	0	0	15.5	-	17	0	0	0	6.9	-				
18	0	0	0	7.8	-	18	0	0	0	9.7	•				
19	0	0	0	17.9	- 0.25	19	0	0	0	2.5	- 0.05				
20 21	0	0	0	19.3 6.3	0.25 -	20 21	0	0	0	4.3 18.5	0.25				
22	0	0	0	6.6	-	22	0	0	0	22.3	-				
23	0	0	0	7.5	-	23	0	0	0	5.1	-				
24	0	0	0	18.2	-	24	0	0	0	9.2	-				
25 26	0	0	0	5.8 26.3	-	25 26	0	0	0	14.2 6.1	-				
27	0	0	0	13.4	-	27	0	0	0	4.3	, ,				
28	0	0	0	27.2	-	28	0	0	0	4.6	-				
29 30	0	0	0	13.5	-	29 30	0	0	0	4 2.5	- 0.25				
31	0	0	0	4.6 24	0 -	30 31	0	0	0	3.5 5	0.25				
32	0	0	0	7.5	-	32	0	0	0	3.1	-				
33	0	0	0	16.3	-	33	0	0	0	10.6	-				
34 35	0	0	0	18.2 21.4	-	34 35	0	0	0	16 7	-				
36	0	0	0	11.3	-	36	0	0	0	19.9	-				
37	0	0	0	6.9	-	37	0	0	0	7.3	-				
38	0	0	0	23.2	-	38	0	0	0	10	-				
39 40	0	0	0	10.8 24.5	- 0.75	39 40	0	0	0	18.2 7	0.5				
41	0	0	0	7.9	-	41	0	0	0	7.3	-				
42	0	0	0	21.6	-	42	0	0	0	4.1	-				
43	0	0	0	5.1	-	43	0	0	0	5.4	=				
44 45	0	0	0	13.4 14.2	-	44 45	0	0	0	5.2 5.5	-				
46	0	0	0	12.9	-	46	0	0	0	16.4	-				
47	0	0	0	9	-	47	0	0	0	4.1	-				
48 49	0	0	0	9.5 4.6	-	48 49	0	0	0	9.2 4.6	-				
50	0	0	0	23.2	0.5	50	0	0	0	20.5	0.5				
51	0	0	0	9.1	-	51	0	0	0	7.2	-				
52	0	0	0	15.2	-	52	0	0	0	8.4	-				
53 54	0	0	0	10.9 10.1	-	53 54	0	0	0	17.6 6.3	-				
55	0	0	0	24.5	-	55	0	0	0	3.9	-				
56	0	0	0	15.5	-	56	0	0	0	5.4	-				
57 58	0	0	0	7.8 9	-	57 58	0	0	0	15.2 5.6	-				
58 59	0	0	0	45.5	-	58 59	0	0	0	17.4	-				
60	0	0	0	7.6	0.25	60	0	0	0	6.3	0.25				
61	0	0	0	7.2	-	61	0	0	0	7.1	-				
62 63	0	0	0	23.8 4.6	-	62 63	0	0	0	12.2 21.3	-				
64	0	0	0	36	-	64	0	0	0	10.1	-				
65	0	0	0	12.5	-	65	0	0	0	6.5	-				
66 67	0	0	0	12.5	-	66 67	0	0	0	11.6	-				
67 68	0	0	0	19.9 10.7	-	67 68	0	0	0	20.5 17.6	-				
69	0	0	0	8.8	-	69	0	0	0	4.7	-				
70	0	0	0	9.7	0.5	70	0	0	0	21.2	0.75				
71 72	0	0	0	10	-	71 72	0	0	0	5.3 3.3	- -				
73	0	0	0	15.6 4.8	-	72 73	0	0	0	6.1	-				
74	0	0	0	10.4	-	74	0	0	0	17.2	-				
75	0	0	0	2.3	-	75	0	0	0	4.3	-				
76 77	0	0	0	12.6 6.7	-	76 77	0	0	0	5.6 13.5	-				
78	0	0	0	10.7	-	77	0	0	0	4.4	-				
79	0	0	0	19.3	-	79	0	0	0	23.4	-				
80	0	0	0	18.2	0.25	80	0	0	0	4.4	0				
81 82	0	0	0	7.5 24.8	-	81 82	0	0	0	4.4 3.7	-				
83	0	0	0	14.1	-	83	0	0	0	9.6	-				
84	0	0	0	8.2	-	84	0	0	0	5.2	-				
85 86	0	0	0	23 5.5	-	85 86	0	0	0	18.6 7.1	-				
86	0	0	0	5.5	-	86 87	0	0	0	19.4	-				
88	0	0	0	10.1	-	88	0	0	0	6.2	-				
89	0	0	0	10.2	-	89	0	0	0	3.1	-				
90 91	0	0	0	12.8 11.4	0	90 91	0	0	0	4.9 7.5	0.25				
91	0	0	0	3.6	-	91	0	0	0	6.2	-				
93	0	0	0	12.2	-	93	0	0	0	6.5	-				
94	0	0	0	12.5	-	94	0	0	0	15.6					
95 96	0	0	0	13.3 4.4	-	95 96	0	0	0	9.3 3.4	-				
96	0	0	0	13.6	-	96	0	0	0	4.7	-				
98	0	0	0	12	-	98	0	0	0	13.2	-				
99	0	0	0	22.5	-	99	0	0	0	4.8	-				
100 verage	0	0	0	4.9	0.25	100 Average	0	0	0	19.4	0.5				
Cp and	0	0	0	13.7	0.33	Cc, Cp and	0	0	0	9.25	0.35				
nbed. =			-			Embed. =									
	ite Index (CI) =		_	0			ite Index (CI) =			0	_				

Table C.5: Habitat Information Associated with Mine-Exposed and Reference Areas Sampled during the Benthic Invertebrate Survey, EVO LAEMP, September 2021

Statio	ın ID	Ref	erence					Mir	ne-Exposed					
Statio	טו ווט	RG_ALUSM	RG_MI25	RG_ERCKUT	RG_ERCKDT	RG_ERCK	RG_GATE	RG_GATEDP	RG_BOCK	RG_MI3	RG_MIDER	RG_MIDGA	RG_MIDBO	RG_MICOMP
Waterbody		Alexander Creek	Alexander Creek	Erickson Creek	Erickson Creek	Erickson Creek	Gate Creek	Gate Creek	Bodie Creek	Michel Creek	Michel Creek	Michel Creek	Michel Creek	Michel Creek
Date Sampled	t	12-Sep-21	12-Sep-21	15-Sep-21	14-Sep-21	10-Sep-21	16-Sep-21	16-Sep-21	12-Sep-21	10-Sep-21	9-Sep-21	11-Sep-21	11-Sep-21	13-Sep-21
Weather		Overcast	Clear, partially cloudy	Partially cloudy	Sun and cloud	Sunny	Windy and sunny	Sunny	Sunny	Cloudy	Sunny and local smoke	Cloudy	Overcast	Overcast
Air Temperatu	ıre (°C)	15	15	18	15	15	15	8	0	15	15	18	15	15
Habitat Char	acteristics													
Surrounding L	and Use	Other	Other	Mining	Mining	Mining, Other	Mining, Other	Mining	Mining, Other	Mining, Other	Mining, Other	Mining, Other	Mining	Mining
Length of Rea Assessed (m)		100	100	100	100	50	30	10	-	100	100	100	100	100
	% Bedrock	0	0	0	0	0	0	0	0	0	0	0	0	0
	% Boulder	10	5	0	5	40	5	5	0	5	5	5	5	10
Substrate	% Cobble	80	80	65	70	55	5	80	10	80	85	90	85	85
Substrate	% Gravel	10	5	15	10	5	5	10	5	10	10	5	10	5
	% Sand	0	5	15	10	0	10	0	5	5	0	0	0	0
	% Fines	0	5	5	5	0	5	5	80	0	0	0	0	0
Water Clarity		Clear	Clear	Clear	Clear	Clear	Clear	Clear	Clear	Clear	Clear	Clear	Clear	Clear
Water Colour		Colourless	Brown	Colourless	Colourless	Colourless	Colourless	Colourless	Colourless	Colourless	Colourless	Colourless	Colourless	Colourless
Vegetation														
Canopy Cove	rage (%)	1-25	1-25	76-100	76-100	0	0	0	0	1-25	1-25	1-25	1-25	1-25
Streamside V	egetation	Ferns/Grasses, Shrubs, Deciduous trees, Coniferous trees	Coniferous trees, Ferns/Grasses, Shrubs	Coniferous trees, Deciduous trees, Ferns/Grasses, Shrubs	-	Ferns/Grasses, Shrubs	Ferns/Grasses	Ferns/Grasses	Ferns/Grasses	Coniferous trees, Deciduous trees, Ferns/Grasses, Shrubs	Coniferous trees, Deciduous trees, Ferns/Grasses, Shrubs	Coniferous trees, Deciduous trees, Ferns/Grasses, Shrubs	Coniferous trees, Deciduous trees, Ferns/Grasses, Shrubs	Deciduous trees, Ferns/Grasses, Shrubs
Dominant Ve	getation	Ferns/grasses	Ferns/grasses	Coniferous trees	-	Shrubs	Ferns/grasses	Ferns/grasses	Ferns/grasses	Shrubs	Deciduous trees	Deciduous trees	Deciduous trees	Ferns/grasses
Periphyton Co	over (1-5)	4, 4, 2, 2, 3	2, 2, 2, 2, 3	4, 3, 3, 4, 2 (76-100% bryophytes)	1, 1, 1, 1, 4 (76-100% bryophytes)	5 (76-100% bryophytes)	3	3	2	3, 2, 3, 2, 2	3, 2, 3, 1, 2	2, 2, 2, 2, 2	3, 2, 2, 2, 2	2, 4, 3, 3, 4

Notes: "-" = not sampled. Periphyton Coverage Scores (Environment Canada, 2012b):

^{1 =} Rocks not slippery, no obvious colour (<0.5mm thick)

^{2 =} Rocks slightly slippery, yellow-brown to light green colour (0.5-1mm thick)

^{3 =} Rocks have noticeable slippery feel, patches of thicker green to brown algae (1-5mm thick)

^{4 =} Rocks are very slippery, numerous clumps (5-20mm thick)

^{5 =} Rocks mostly obscured by algae mat, may have long strands (>20mm thick)

Table C.6: Supporting Measures Associated with 3-Minute Kick and Sweep Benthic Invertebrate Community Sampling at Areas, EVO LAEMP, September 2021

	Station Parameters	Refer	ence	Mine-Exposed										
	Station Parameters	RG_ALUSM	RG_MI25	RG_ERCKUT	RG_ERCKDT	RG_ERCK	RG_MI3	RG_MIDER	RG_MIDGA	RG_MIDBO	RG_MICOMP			
	Easting	663503	668195	660809	660806	659850	659917	659503	655483	655175	653958			
	Northing	5502787	5482814	5506542	5506260	5505118	5505061	5505215	5509418	5509859	5511038			
1	Date	12-Sep-21	13-Sep-21	15-Sep-21	14-Sep-21	10-Sep-21	10-Sep-21	09-Sep-21	11-Sep-21	13-Sep-21	13-Sep-21			
Station	Number of Jars	1	1	3	2	2	1	1	1	1	1			
Sta	Total Kick Distance (m)	13	20	24	40	9	15.5	7	10	18	15			
	Full Transect (Yes / No)	Yes	Yes	Yes	Yes	Yes	Yes	No	No	No	No			
	Number of Transects	1.5	1.5	8	10	2	1	0.5	0.5	0.9	0.5			
	Easting	663493	668187	660800	660833	-	660014	659534	655553	655205	653962			
	Northing	5502739	5482834	5506564	5506316	-	5505028	5505192	5509358	5509815	5511050			
n 2	Date	12-Sep-21	13-Sep-21	15-Sep-21	14-Sep-21	-	10-Sep-21	09-Sep-21	11-Sep-21	13-Sep-21	13-Sep-21			
Station 2	Number of Jars	1	1	5	2	-	1	1	1	1	1			
Ste	Total Kick Distance (m)	16	22	25	25	-	16	10	16	19	20			
	Full Transect (Yes / No)	Yes	Yes	Yes	Yes	-	No	No	No	Yes	Yes			
	Number of Transects	1.5	4	5.5	6	-	0.75	0.75	0.33	1.7	1			
	Easting	663516	668173	660791	660820	-	660022	659591	655594	655225	654074			
	Northing	5502707	5482859	5506595	5506358	-	5505024	5505157	5509311	5509758	5511023			
n 3	Date	12-Sep-21	13-Sep-21	15-Sep-21	15-Sep-21	-	10-Sep-21	09-Sep-21	11-Sep-21	13-Sep-21	13-Sep-21			
Station	Number of Jars	1	1	3	4	-	1	1	1	1	1			
Ste	Total Kick Distance (m)	15	20	22	24	-	11	12	22	17	10			
	Full Transect (Yes / No)	Yes	Yes	Yes	Yes	-	No	No	No	Yes	No			
	Number of Transects	1.75	4	7	6	-	-	0.75	0.8	1	0.5			
	Easting	-	-	-	-	-	-	-	-	-	654150			
	Northing	-	-	-	-	-	-	-	-	-	5511018			
n 4	Date	-	-	-	-	-	-	-	-	-	13-Sep-21			
Station	Number of Jars	-	-	-	-	-	-	-	-	-	1			
Sts	Total Kick Distance (m)	-	-	-	-	-	-	-	-	-	15			
	Full Transect (Yes / No)	-	-	-	-	-	-	-	-	-	No			
	Number of Transects	-	-	-	-	-	-	-	-	-	0.5			
	Easting	-	-	-	-	-	-	-	-	-	654356			
	Northing	-	-	-	-	-	-	-	-	-	5510884			
n 5	Date	-	-	-	-	-	-	-	-	-	13-Sep-21			
Station	Number of Jars	-	-	-	-	-	-	-	-	-	1			
Ste	Total Kick Distance (m)	-	-	-	-	-	-	-	-	-	25			
	Full Transect (Yes / No)			-	-	-	-	-	-	-	Yes			
	Number of Transects	-		-	-	-	-	-	-	-	1			

Notes: "-" = not sampled. 3-minute kick and sweep sampling was not conducted at RG_BOCK, RG_GATE, or RG_GATEDP.

Table C.7: Depth and Velocity Associated with 3-Minute Kick and Sweep Benthic Invertebrate Community Sampling Areas, EVO LAEMP, September 2021

		Replicate	1	2	3	4	5	Mean
		RG_ALUSM	T	T				T
		Depth (cm)	32.5	37	29.5	26.5	24	29.9
	1	Velocity (m/s) Bankfull Width (m)	0.914	0.86	0.817 11.8	0.623	0.724	0.788
		Wetted Width (m)			8.6			-
		Bankfull-Wetted Depth (cm)			70			-
		Depth (cm)	25	46.5	42.5	44	31	37.8
		Velocity (m/s)	0.694	1.032	0.838	0.945	1.277	0.957
	2	Bankfull Width (m) Wetted Width (m)			11.9 10			-
		Bankfull-Wetted Depth (cm)			-			-
		Depth (cm)	23	33	40.5	32	28	31.3
		Velocity (m/s)	0.733	0.712	0.788	0.684	0.71	0.725
	3	Bankfull Width (m)			11.2			-
Se		Wetted Width (m)			9.6			-
erer		Bankfull-Wetted Depth (cm) RG MI25			-			-
Reference		Depth (cm)	11.5	3	7.5	8	10.5	8.1
		Velocity (m/s)	0.815	0.148	0.09	0.156	0.126	0.267
	1	Bankfull Width (m)			6.2		51125	-
		Wetted Width (m)			5.8			-
		Bankfull-Wetted Depth (cm)			-		1	-
		Depth (cm)	7	11.5	10	4	4.5	7.4
	2	Velocity (m/s) Bankfull Width (m)	0.294	0.314	0.413 5	0.437	0.222	0.336
		Wetted Width (m)	+		3.9			-
		Bankfull-Wetted Depth (cm)			-			-
		Depth (cm)	8.5	10	7.5	10	5	8.2
		Velocity (m/s)	0.224	0.17	0.221	0.453	0.154	0.244
	3	Bankfull Width (m)			5.5			-
		Wetted Width (m) Bankfull-Wetted Depth (cm)			3.9 15			-
		RG_ERCKUT	1		10			<u> </u>
		Depth (cm)	18.5	25.5	24	23.5	27	23.7
		Velocity (m/s)	0.9	0.763	0.956	0.617	0.839	0.815
	1	Bankfull Width (m)			4.4			-
		Wetted Width (m)			3.2			-
		Bankfull-Wetted Depth (cm)	21.5	21	8 18	47 E	16.5	10.0
		Depth (cm) Velocity (m/s)	0.287	0.841	18 0.124	17.5 0.855	16.5 0.712	18.9 0.564
	2	Bankfull Width (m)	0.201	0.041	5.6	0.000	0.712	-
		Wetted Width (m)			4.7			-
		Bankfull-Wetted Depth (cm)			-			-
		Depth (cm)	19.5	27	25.5	26.5	28.5	25.4
	2	Velocity (m/s)	0.274	0.644	0.193 4.5	0.616	0.41	0.427
	3	Bankfull Width (m) Wetted Width (m)	+		3.2			-
		Bankfull-Wetted Depth (cm)			-			-
		RG_ERCKDT						•
		Depth (cm)	27.5	31	34.5	26	24.5	28.7
		Velocity (m/s)	0.518	0.286	0.49	0.445	0.265	0.401
	1	Bankfull Width (m) Wetted Width (m)			5.5 5			-
		Bankfull-Wetted Depth (cm)	+		30			-
		Depth (cm)	25.5	23.5	28	31	33.5	28.3
		Velocity (m/s)	0.719	1.314	0.881	0.654	0.116	0.737
ਰੂ	2	Bankfull Width (m)			4.2			-
OSE		Wetted Width (m)			3.8			-
Mine-Exposed		Bankfull-Wetted Depth (cm)	0F F	23	- 04 F	10	24 5	24.4
ne-		Depth (cm) Velocity (m/s)	25.5 0.625	0.684	21.5 0.834	19 0.448	31.5 0.816	24.1 0.681
≅	3	Bankfull Width (m)	0.020	0.004	5.5	U. 11 U	0.010	-
		Wetted Width (m)			4			-
		Bankfull-Wetted Depth (cm)			-			-
		RG_ERCK						
		Depth (cm)	23	22	24.5	24	23.5	23.4
	1	Velocity (m/s) Bankfull Width (m)	0.219	0.946	0.599 8.4	0.736	0.436	0.587
	'	Wetted Width (m)	1		4			-
		Bankfull-Wetted Depth (cm)			90			-
		RG_MI3						
		Depth (cm)	49.5	48.5	44.5	46	52.5	48.2
	4	Velocity (m/s)	0.428	0.686	0.482	0.57	0.469	0.527
	1	Bankfull Width (m) Wetted Width (m)			23 15.5			-
		Bankfull-Wetted Depth (cm)	+		-			-
		Depth (cm)	22.5	24	19	32	34	26.3
		Velocity (m/s)	0.209	0.336	0.216	0.584	0.521	0.373
	2	Bankfull Width (m)			18.6			-
		Wetted Width (m)			18.3			-
		Bankfull-Wetted Depth (cm)	24.5	04 5	-	20 F	22	- 20.0
		Depth (cm) Velocity (m/s)	24.5 0.679	24.5 0.7	29 0.509	38.5 0.514	33 0.497	29.9 0.580
	3	Bankfull Width (m)	0.078	0.7	32.5	0.014	0.487	0.560
		Wetted Width (m)			56.6			-
		Bankfull-Wetted Depth (cm)			-			
	i	= -F (*)	•					•

Notes: "-" = data not available / not collected. Parameters were not assessed at RG_GATEDP, RG_BOCK, as areas were not suitable for CABIN sampling.

Table C.7: Depth and Velocity Associated with 3-Minute Kick and Sweep Benthic Invertebrate Community Sampling Areas, EVO LAEMP, September 2021

		Replicate	1 1	2	3	4	5	Mean					
		RG MIDER					<u> </u>	Mean					
		Depth (cm)	30.5	42	46.5	47	65.5	46.3					
		Velocity (m/s)	0.399	0.363	0.333	0.306	0.341	0.348					
	1	Bankfull Width (m)			20.9	1		-					
		Wetted Width (m)			13.6			-					
		Bankfull-Wetted Depth (cm)			70		T.	-					
		Depth (cm)	22.5	29	24.5	29.5	41	29.3					
		Velocity (m/s)	0.271	0.506	0.336	0.36	0.371	0.369					
	2	Bankfull Width (m)			27			-					
		Wetted Width (m) Bankfull-Wetted Depth (cm)			13.9			-					
		Depth (cm)	31.5	29.5	34	33.5	36.5	33					
		Velocity (m/s)	0.721	0.539	0.483	0.66	0.415	0.564					
	3	Bankfull Width (m)	0.721	0.000	29.7	0.00	0.110	-					
		Wetted Width (m)			47.2			-					
		Bankfull-Wetted Depth (cm)			-			-					
		Depth (cm)	-	-	-	-	-	-					
		Velocity (m/s)	0.690	-	-	-	-	0.690					
	4	Bankfull Width (m)			-			-					
		Wetted Width (m)			-			-					
		Bankfull-Wetted Depth (cm) - RG_MIDGA											
		Depth (cm)	25	20.5	22	22.5	22	26.4					
		Velocity (m/s)	35 0.812	28.5 0.592	0.525	23.5 0.332	23 0.615	26.4 0.575					
	1	Bankfull Width (m)	0.012	0.032	36.8	0.002	0.013	0.575					
		Wetted Width (m)	+		24.6			_					
		Bankfull-Wetted Depth (cm)	1		40			-					
		Depth (cm)	56.5	46.5	51	42.5	32	45.7					
		Velocity (m/s)	0.644	0.83	0.87	0.8	0.567	0.742					
	2	Bankfull Width (m)			30.9			-					
		Wetted Width (m)			29.9			-					
		Bankfull-Wetted Depth (cm)			-			-					
		Depth (cm)	45.5	38	33	34.5	28	35.8					
	2	Velocity (m/s)	0.423	0.523	0.394 30.8	0.348	0.526	0.443					
	3	Bankfull Width (m)						-					
		Wetted Width (m) 28.2 Bankfull-Wetted Depth (cm) -											
p		RG_MIDBO											
Mine-Expose		Depth (cm)	31	43.5	44	47	32.5	39.6					
άxΞ		Velocity (m/s)	0.742	0.723	0.713	0.574	0.561	0.663					
l-ər	1	Bankfull Width (m)			25.6	-		-					
Ē		Wetted Width (m)			20.4			-					
		Bankfull-Wetted Depth (cm)			100			-					
		Depth (cm)	31	40.5	45	46.5	49	42.4					
		Velocity (m/s)	0.443	0.715	0.634	0.670	0.738	0.640					
	2	Bankfull Width (m) 18.7 Wetted Width (m) 16.8											
		Bankfull-Wetted Depth (cm)											
		Depth (cm)	31	39.5	46.5	39	31.5	37.5					
		Velocity (m/s)	0.636	0.617	0.785	0.885	0.7	0.725					
	3	Bankfull Width (m)			23.9		0	-					
		Wetted Width (m)			18.8			-					
		Bankfull-Wetted Depth (cm)	<u></u>		-			-					
		RG_MICOMP											
		Depth (cm)	22	38.5	36	25	41	32.5					
		Velocity (m/s)	0.834	0.736	0.51	0.963	0.739	0.756					
	1	Bankfull Width (m) Wetted Width (m)	 		34.7 32			 					
		Bankfull-Wetted Depth (cm)	+		100			-					
		Depth (cm)	36.5	39	36.5	44	46.5	40.5					
		Velocity (m/s)	0.587	0.353	0.585	0.471	0.789	0.557					
	2	Bankfull Width (m)	1		21.4			-					
		Wetted Width (m)			20.9			-					
		Bankfull-Wetted Depth (cm)			-			-					
		Depth (cm)	22.5	23	32.5	29	33	28					
		Velocity (m/s)	0.589	1.091	0.848	0.364	0.716	0.722					
	3	Bankfull Width (m)			22.9			-					
		Wetted Width (m)	 		19.3			-					
		Bankfull-Wetted Depth (cm) Depth (cm)	33.5	32	45	39	45	38.9					
		Velocity (m/s)	0.9	1.029	1.044	0.923	0.678	0.915					
	4	Bankfull Width (m)	0.9	1.028	32.5	0.320	0.070	- 0.915					
	1	Wetted Width (m)	+		29.5			-					
		Bankfull-Wetted Depth (cm)	1		-			-					
		Depth (cm)	32	36.5	42	35	38.5	36.8					
		Velocity (m/s)	0.754	1.135	1.16	1.17	0.934	1.031					
	5	Bankfull Width (m)			39.5			-					
					24.0	-		1					
		Wetted Width (m) Bankfull-Wetted Depth (cm)	_		31.9 -			-					

Notes: "-" = data not available / not collected. Parameters were not assessed at RG_GATEDP, RG_BOCK, as areas were not suitable for CABIN sampling.

Table C.8: Hess Sample Depth and Flow Information, EVO LAEMP, September 2021

Area	Replicate	Date	Associated K&S Sample	Easting	Northing	Depth (cm)	Flow (m/s)
	1	15-Sep-21	1	660804	5506553	31.0	0.678
	2	15-Sep-21	1	660802	5506547	22.0	0.646
	3	15-Sep-21	1	660804	5506564	19.5	0.653
	4	15-Sep-21	2	660799	5506569	25.0	0.607
DC EDCKLIT	5	15-Sep-21	2	660796	5506566	21.5	0.479
RG_ERCKUT	6	15-Sep-21	2	660795	5506575	22.0	0.757
	7	15-Sep-21	2	660788	5506568	23.5	0.911
	8	15-Sep-21	3	660795	5506597	23.0	0.513
	9	15-Sep-21	3	660798	5506601	16.0	0.442
	10	15-Sep-21	3	660786	5506607	30.0	0.121
	1	14-Sep-21	1	660801	5506258	34.5	0.290
	2	14-Sep-21	1	660806	5506261	27.0	0.167
	3	14-Sep-21	1	660806	5506270	32.0	0.810
	4	14-Sep-21	2	660840	5506327	24.0	0.257
DC EDCKDT	5	14-Sep-21	2	660835	5506330	40.0	0.682
RG_ERCKDT	6	14-Sep-21	2	668838	5506335	36.5	0.385
	7	15-Sep-21	3	660809	5506379	14.5	0.578
	8	15-Sep-21	3	660812	5506376	21.0	0.926
	9	15-Sep-21	3	660817	5506365	25.5	0.289
	10	15-Sep-21	3	660820	5506370	28.5	0.490

Note: K&S = kick and sweep.

Table C.9: In Situ Water Quality Taken at Biological Monitoring Areas, EVO LAEMP, September 2021

Field Parameters		Reference		Mine-Exposed											
		RG_ALUSM	RG_MI25	RG_ERCKUT	RG_ERCKDT	RG_ERCKMD	RG_ERCK	RG_GATE	RG_GATEDP	RG_BOCK	RG_MI3	RG_MIDER	RG_MIDGA	RG_MIDBO	RG_MICOMP
	Date	12-Sep-21	13-Sep-21	15-Sep-21	14-Sep-21	-	10-Sep-21	16-Sep-21	16-Sep-21	16-Sep-21	10-Sep-21	09-Sep-21	11-Sep-21	13-Sep-21	13-Sep-21
	Temperature (°C)	7.4	9	5.3	5	-	6.4	8.7	9.3	8.7	9.9	9.1	10.9	10.1	8.7
1	Dissolved Oxygen (mg/L)	10.37	11.66	10.81	10.81	-	10.68	10.21	10.2	8.56	9.94	9.56	9.69	9.36	10.19
Station	Dissolved Oxygen (%)	100.7	121.1	101.4	99.2	-	100.3	101.2	102.8	84.6	101.7	95.6	100.5	95.4	99.5
Sta	Conductivity (µS/cm)	198.3	225.6	1175	1104	-	1160	1172	1284	1258	241.6	274.8	430.6	363.2	361.4
	Specific Conductivity (µS/cm)	298.2	325.3	1881	1786	-	1801	1701	1834	1830	339.3	393.9	589.2	507.8	527.9
	рН	8.13	8.74	7.65	7.78	-	8.29	8.46	8.37	8.22	8.4	7.47	8.37	8.16	8.18
	Date	12-Sep-21	13-Sep-21	15-Sep-21	14-Sep-21	-	-	-	-	-	10-Sep-21	09-Sep-21	11-Sep-21	13-Sep-21	13-Sep-21
	Temperature (°C)	7.6	7.7	5.4	6.1	-	-	-	-	-	10	12.3	11.7	10.1	9.1
n 2	Dissolved Oxygen (mg/L)	10.4	15.46	11.31	11.17	-	-	-	-	-	9.91	9.1	9.66	9.5	10.27
Station	Dissolved Oxygen (%)	101.2	155.9	106.7	105.8	-	-	-	-	-	101.6	98.4	102.2	96.7	101.8
Sta	Conductivity (µS/cm)	198	217.4	1177	1198	-	-	-	-	-	239.6	291	476.5	372.9	367
	Specific Conductivity (µS/cm)	297	324.8	1882	1872	-	-	-	-	-	336	384.4	633.9	521.6	527
	рН	8.16	8.13	7.66	7.74	-	-	-	-	-	8.26	8	8.38	8.27	8.25
	Date	12-Sep-21	13-Sep-21	15-Sep-21	15-Sep-21	-	-	-	-	-	10-Sep-21	09-Sep-21	11-Sep-21	13-Sep-21	13-Sep-21
	Temperature (°C)	8.2	7.1	5.3	5.3	-	-	-	-	-	9.9	13	12.4	10.1	9.8
n 3	Dissolved Oxygen (mg/L)	10.61	12.66	10.54	11.03	-	-	-	-	-	9.63	8.96	9.06	9.45	10.14
ţi	Dissolved Oxygen (%)	105.1	127.9	99	103.3	-	-	-	-	-	98.5	98.7	97.4	96.1	102.3
Station	Conductivity (µS/cm)	200.4	325.4	1173	1172	-	-	-	-	-	241.2	296	446	372.4	372.9
"	Specific Conductivity (µS/cm)	295.1	214.3	1882	1877	-	-	-	-	-	338.6	383.8	586.2	520.9	525
	рН	8.18	8.05	7.58	7.76	-	-	-	-	-	8.22	8.32	8.44	8.36	8.29
	Date	-	-	-	-	-	-	-	-	-	-	-	-	-	13-Sep-21
	Temperature (°C)	-	-	-	-	-	-	-	-	-	-	-	-	-	12
4	Dissolved Oxygen (mg/L)	-	-	-	-	-	-	-	-	-	-	-	-	-	9.27
ţį	Dissolved Oxygen (%)	-	-	-	-	-	-	-	-	-	-	-	-	-	98.6
Station	Conductivity (µS/cm)	-	-	-	-	-	-	-	-	-	-	-	-	-	395.4
"	Specific Conductivity (µS/cm)	-	-	-	-	-	-	-	-	-	-	-	-	-	525.5
	рН	-	-	-	-	-	-	-	-	-	-	-	-	-	8.24
	Date	-	-	-	-	-	-	-	-	-	-	_	-	-	13-Sep-21
	Temperature (°C)	-	-	-	-	-	-	-	-	-	-	-	-	-	12.3
n 5	Dissolved Oxygen (mg/L)	-	-	-	-	-	-	-	-	-	-	-	-	-	9.28
ation	Dissolved Oxygen (%)	-	-	-	-	-	-	-	-	-	-	-	-	-	99.3
Sta	Conductivity (µS/cm)	-	-	-	-	-	-	-	-	-	-	-	-	-	381.9
"	Specific Conductivity (µS/cm)	-	-	-	-	-	-	-	-	-	-	-	-	-	504.3
	pH	-	-	-	-	-	-	-	-	-	-	-	-	-	8.29
	Date	-	-	15-Dec-21	15-Dec-21	15-Dec-21	14-Dec-21	27-Aug-21	-	27-Aug-21	-	-	-	-	-
=	Temperature (°C)	-	-	5.2	4.9	4.2	3.4	9.3	-	13.6	-	-	-	-	-
1 L	Dissolved Oxygen (mg/L)	-	-	10.3	10.97	11.15	11.43	10.12	-	8.84	-	-	-	-	-
tio E	Dissolved Oxygen (%)	-	-	81.8	86.4	87	86.4	88.9	-	84.8	-	-	-	-	-
Sta	Conductivity (µS/cm)	-	-	1427	1397	1364	1270	1489	-	1694	-	-	-	-	-
Station 1	Specific Conductivity (µS/cm)	-	-	2296	2266	2245	2165	2124	-	2190	-	-	-	-	-
<i>'</i>	pH	-	-	7.43	7.64	8.05	8.05	8.24	-	7.87	-	-	-	-	-

Note: "-" = data not collected.

APPENDIX D WATER QUALITY

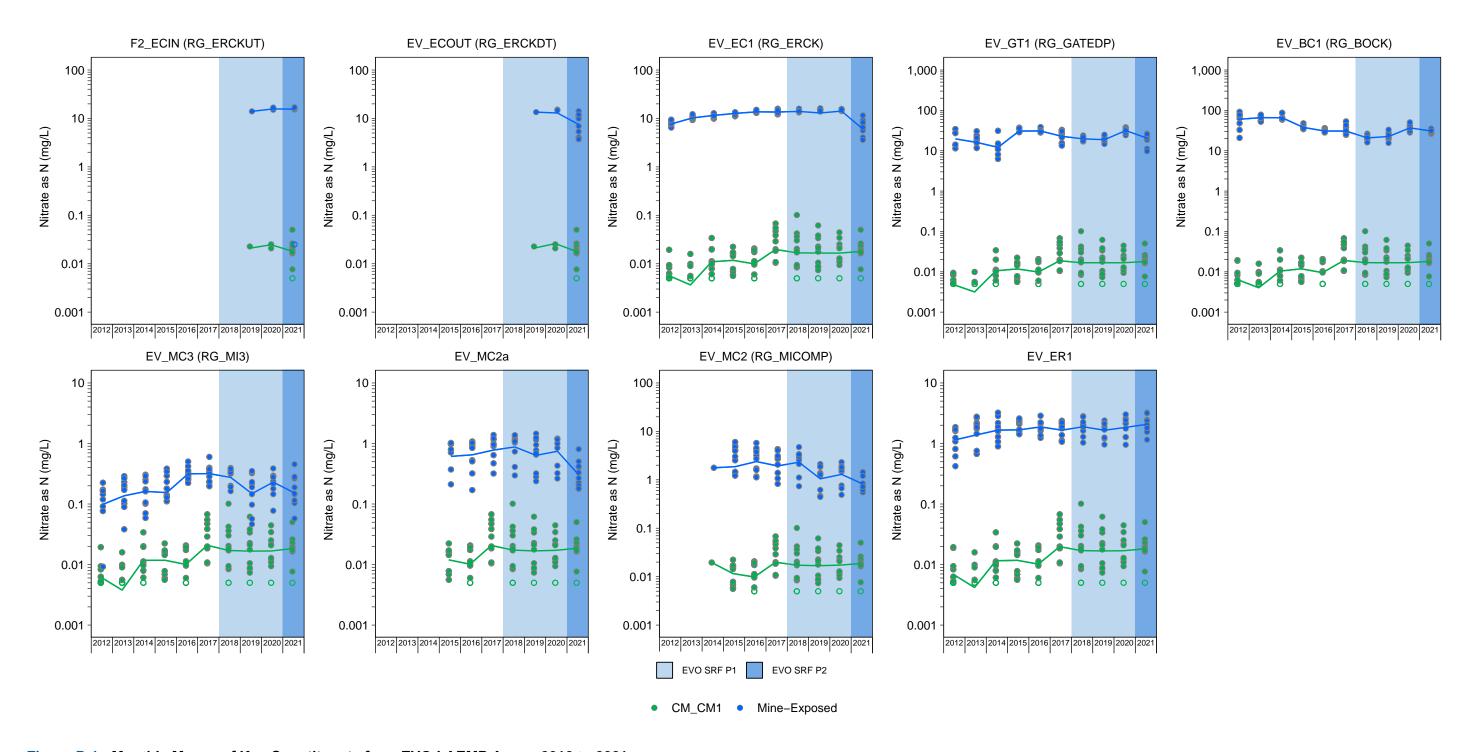


Figure D.1: Monthly Means of Key Constituents from EVO LAEMP Areas, 2012 to 2021

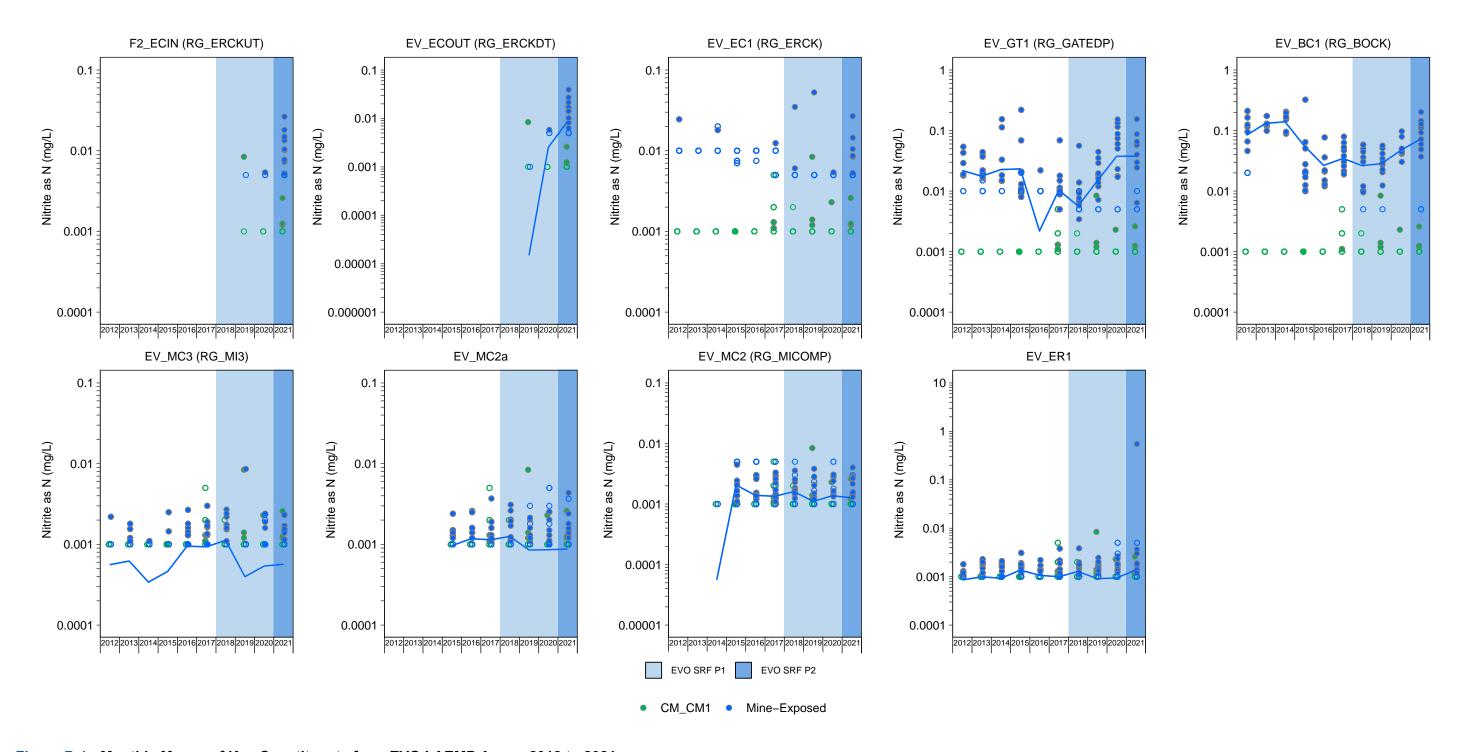


Figure D.1: Monthly Means of Key Constituents from EVO LAEMP Areas, 2012 to 2021

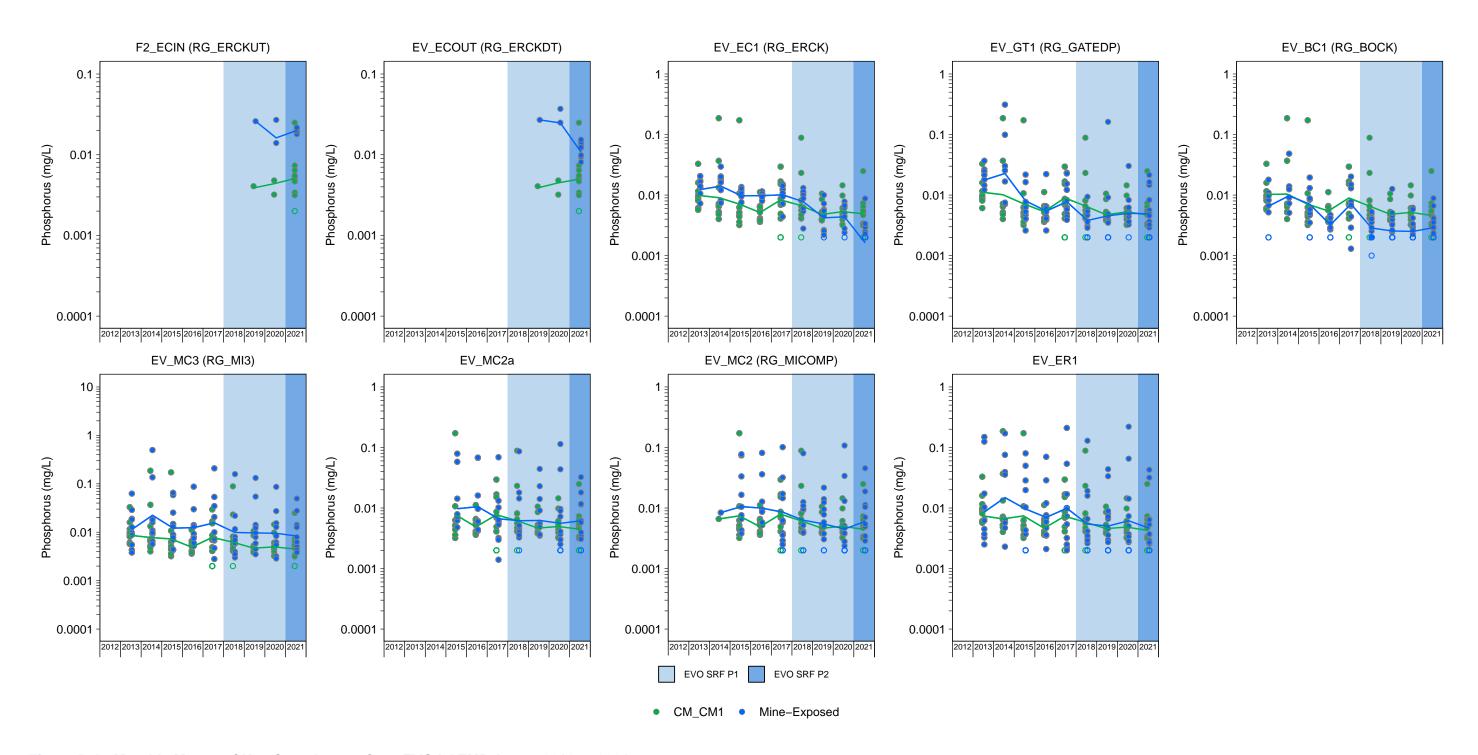


Figure D.1: Monthly Means of Key Constituents from EVO LAEMP Areas, 2012 to 2021

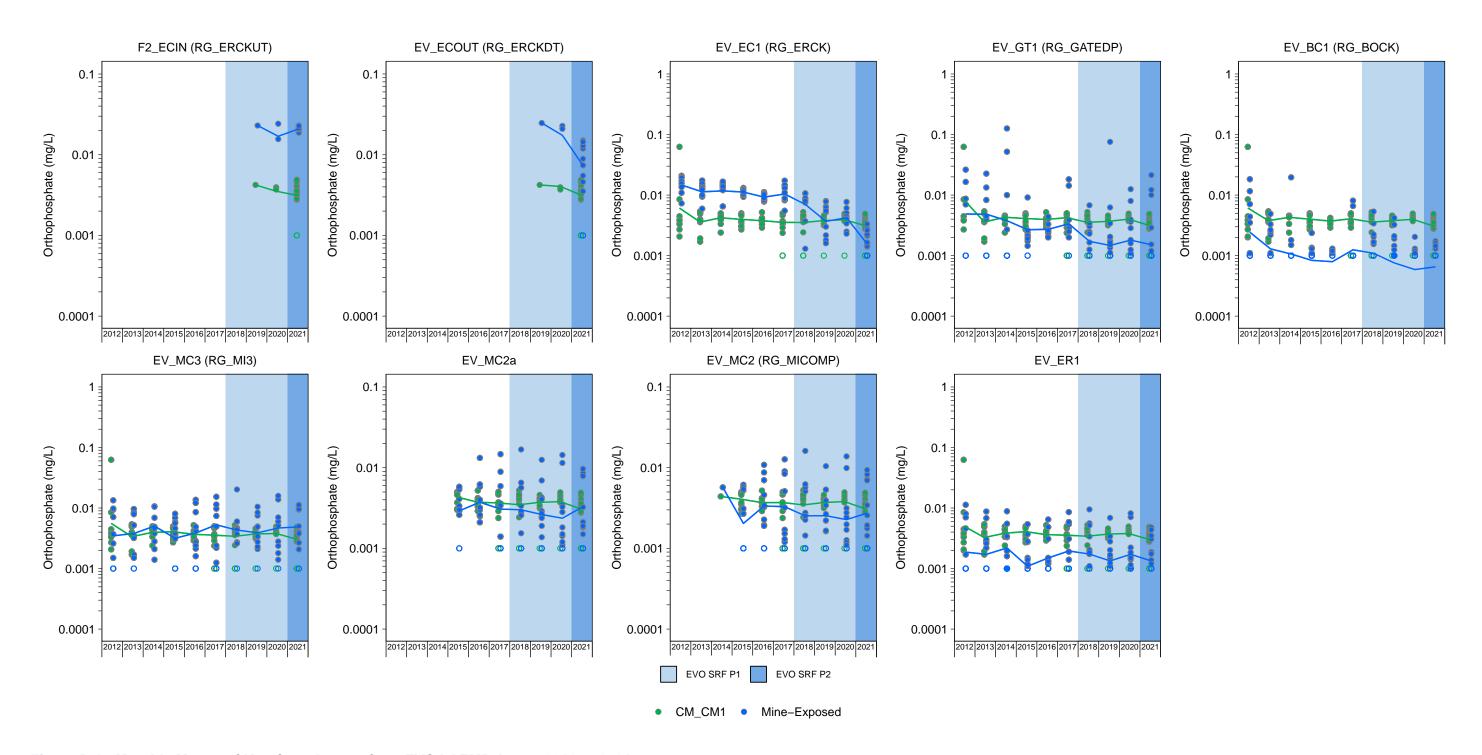


Figure D.1: Monthly Means of Key Constituents from EVO LAEMP Areas, 2012 to 2021

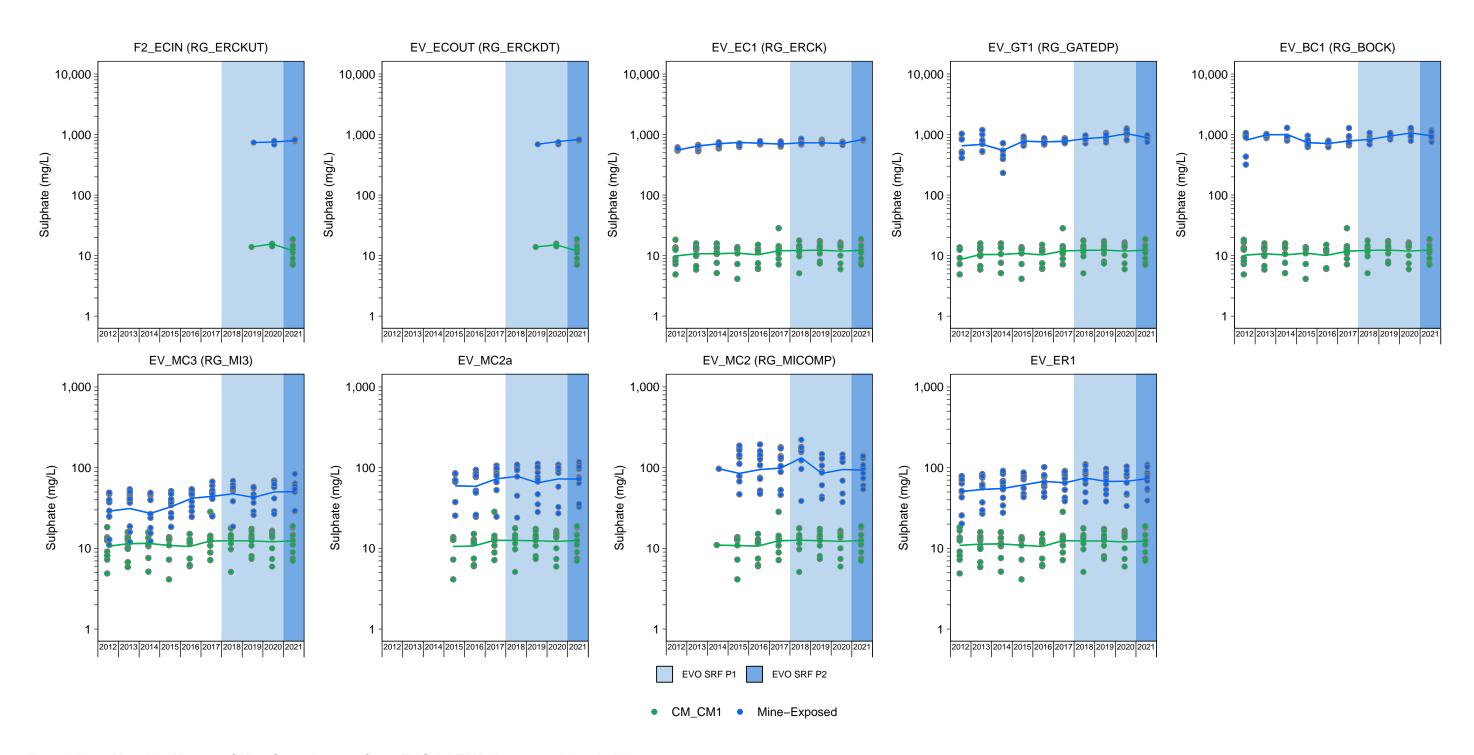


Figure D.1: Monthly Means of Key Constituents from EVO LAEMP Areas, 2012 to 2021

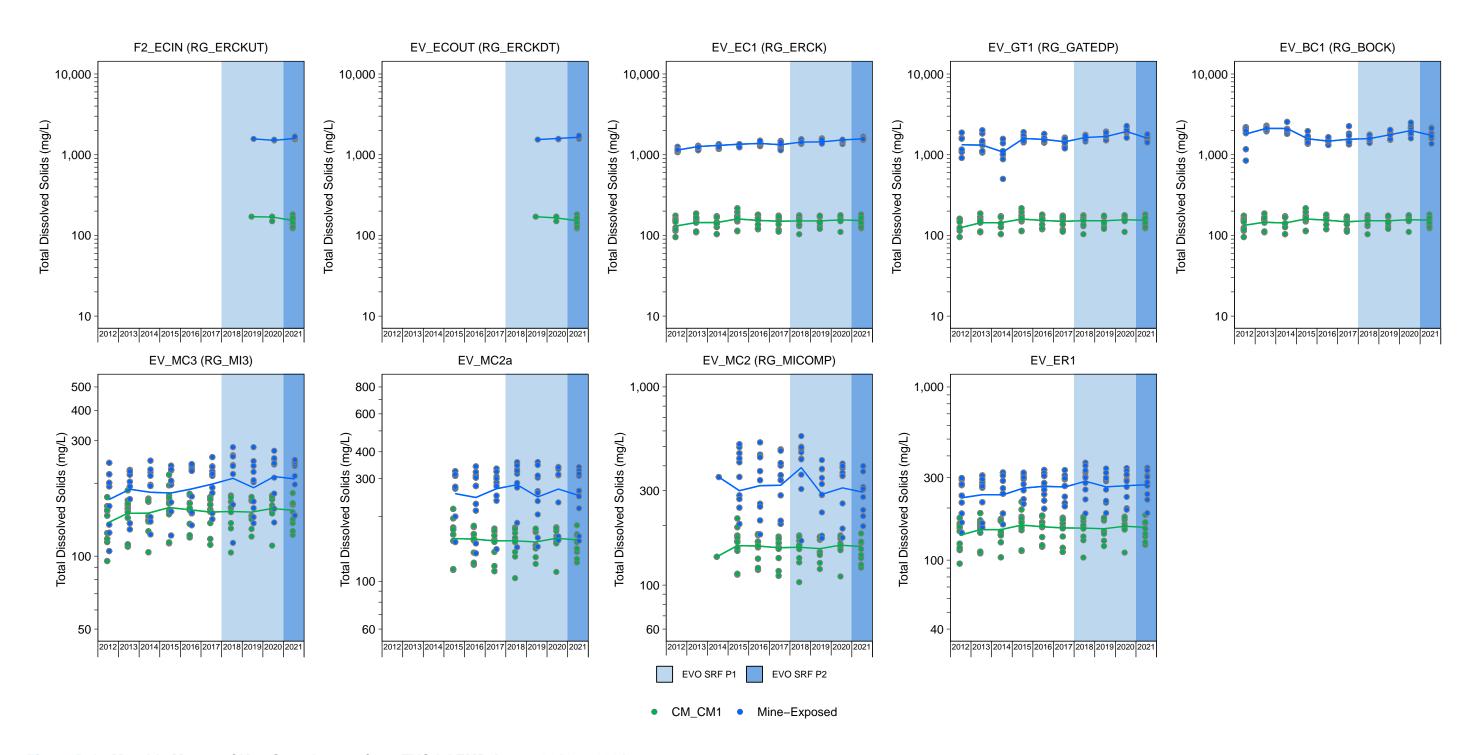


Figure D.1: Monthly Means of Key Constituents from EVO LAEMP Areas, 2012 to 2021

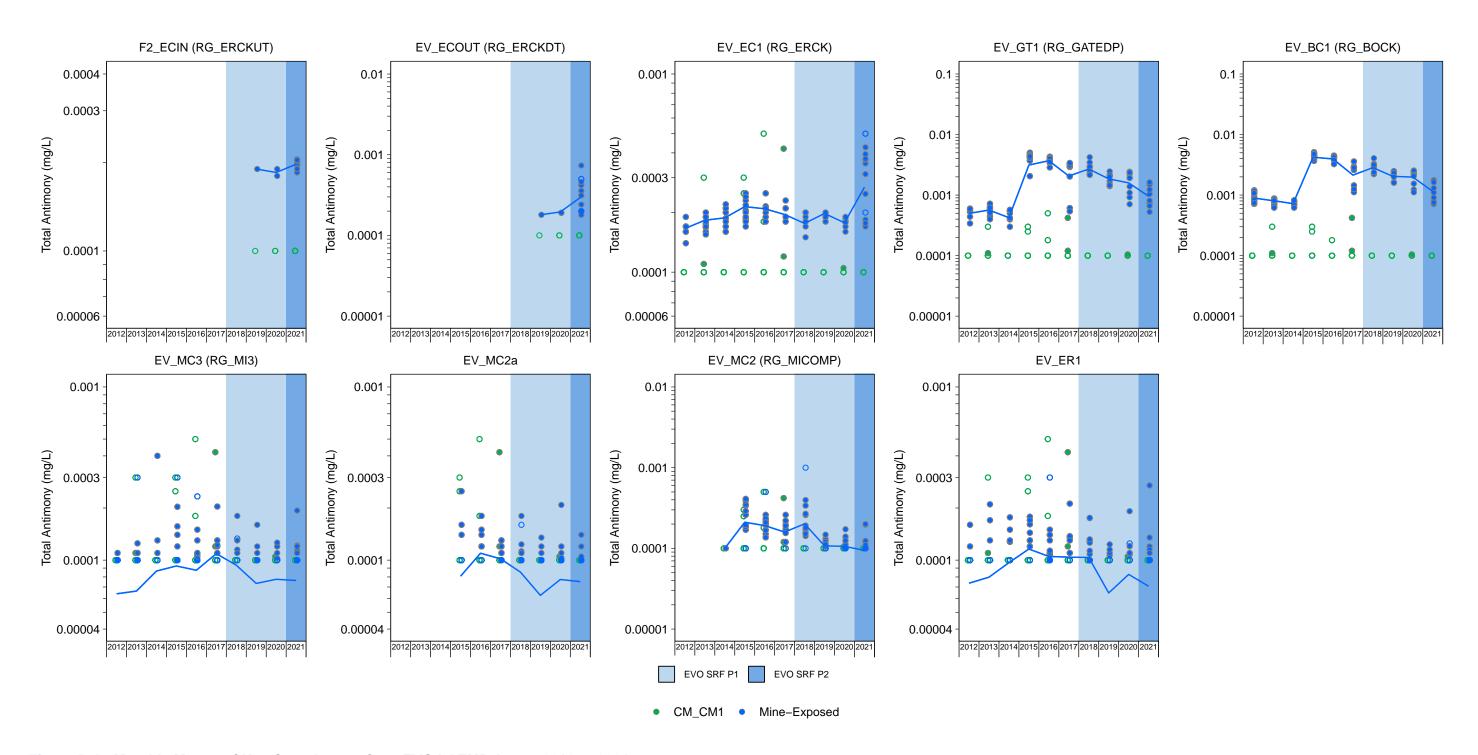


Figure D.1: Monthly Means of Key Constituents from EVO LAEMP Areas, 2012 to 2021

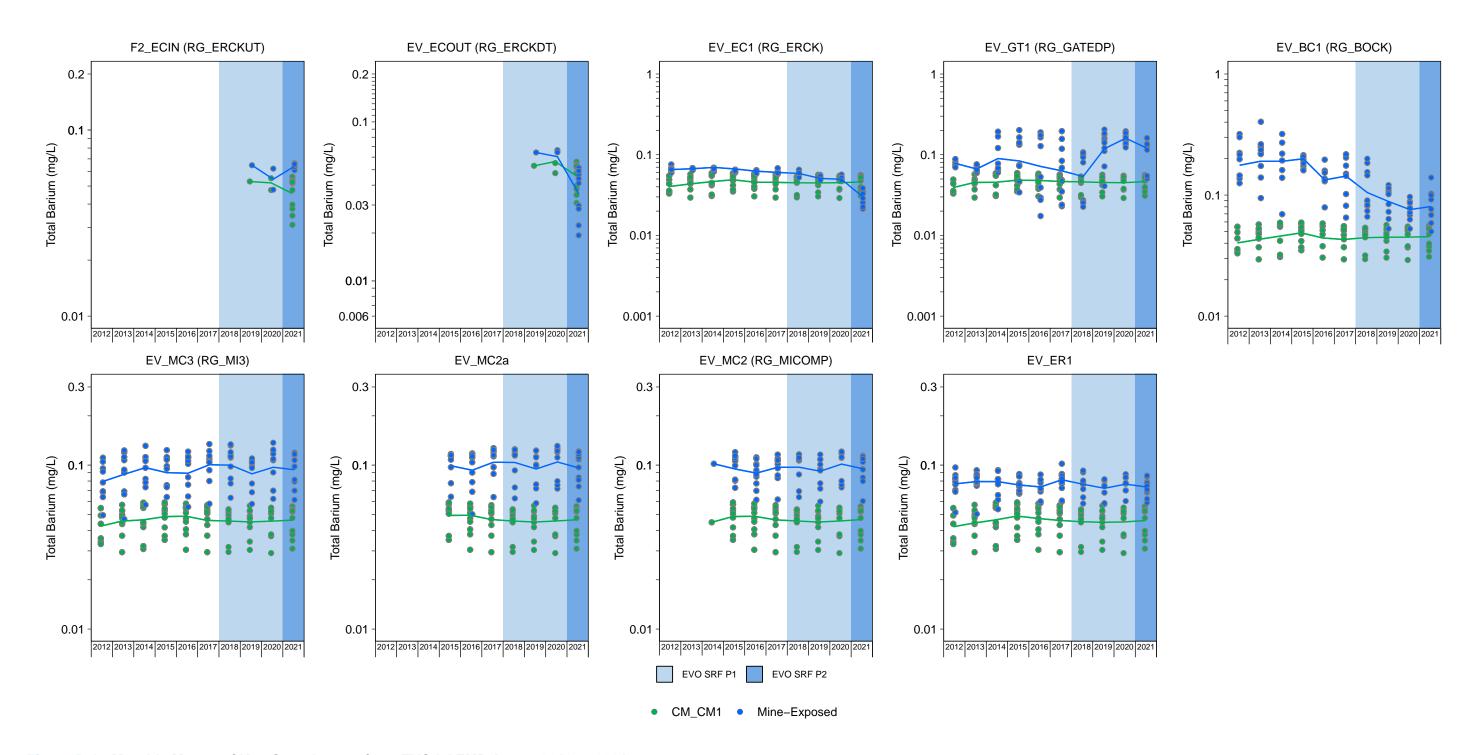


Figure D.1: Monthly Means of Key Constituents from EVO LAEMP Areas, 2012 to 2021

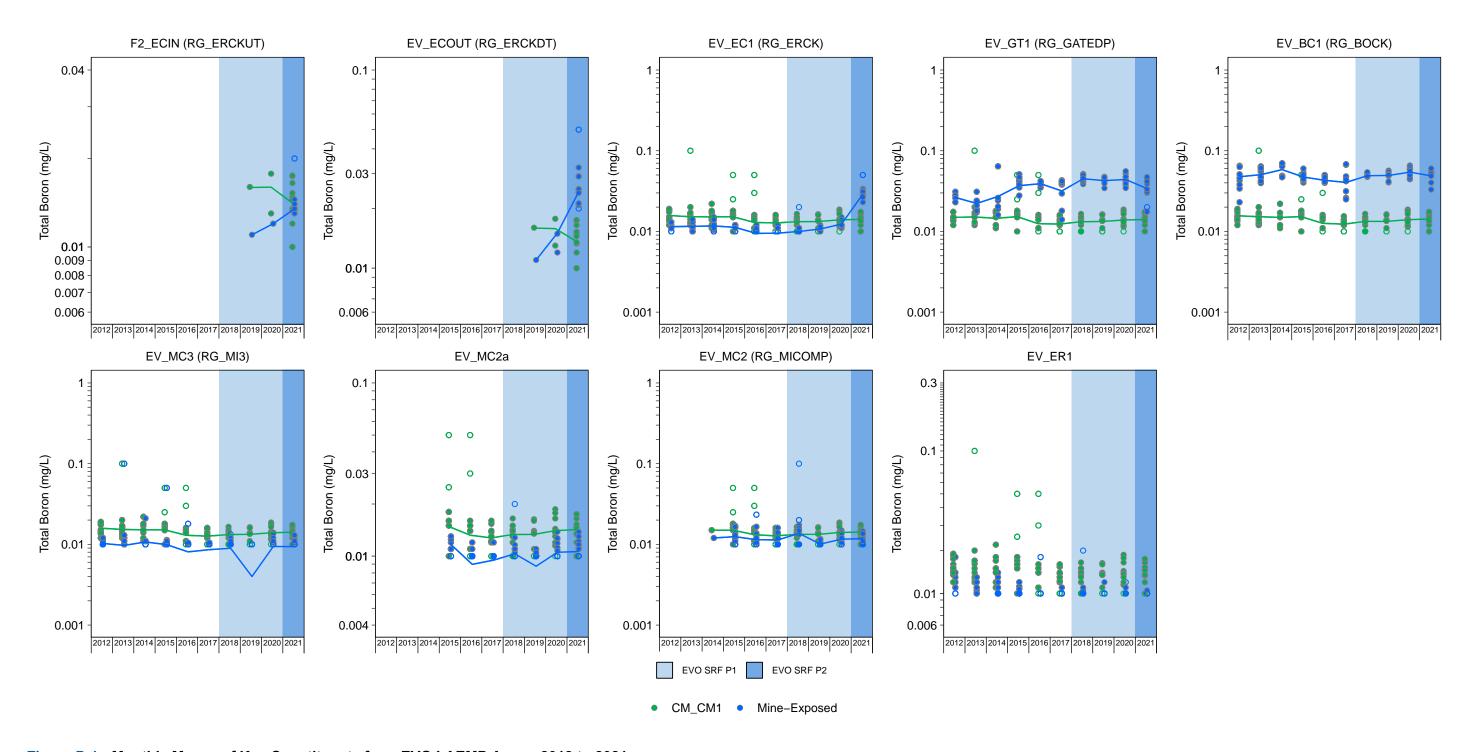


Figure D.1: Monthly Means of Key Constituents from EVO LAEMP Areas, 2012 to 2021

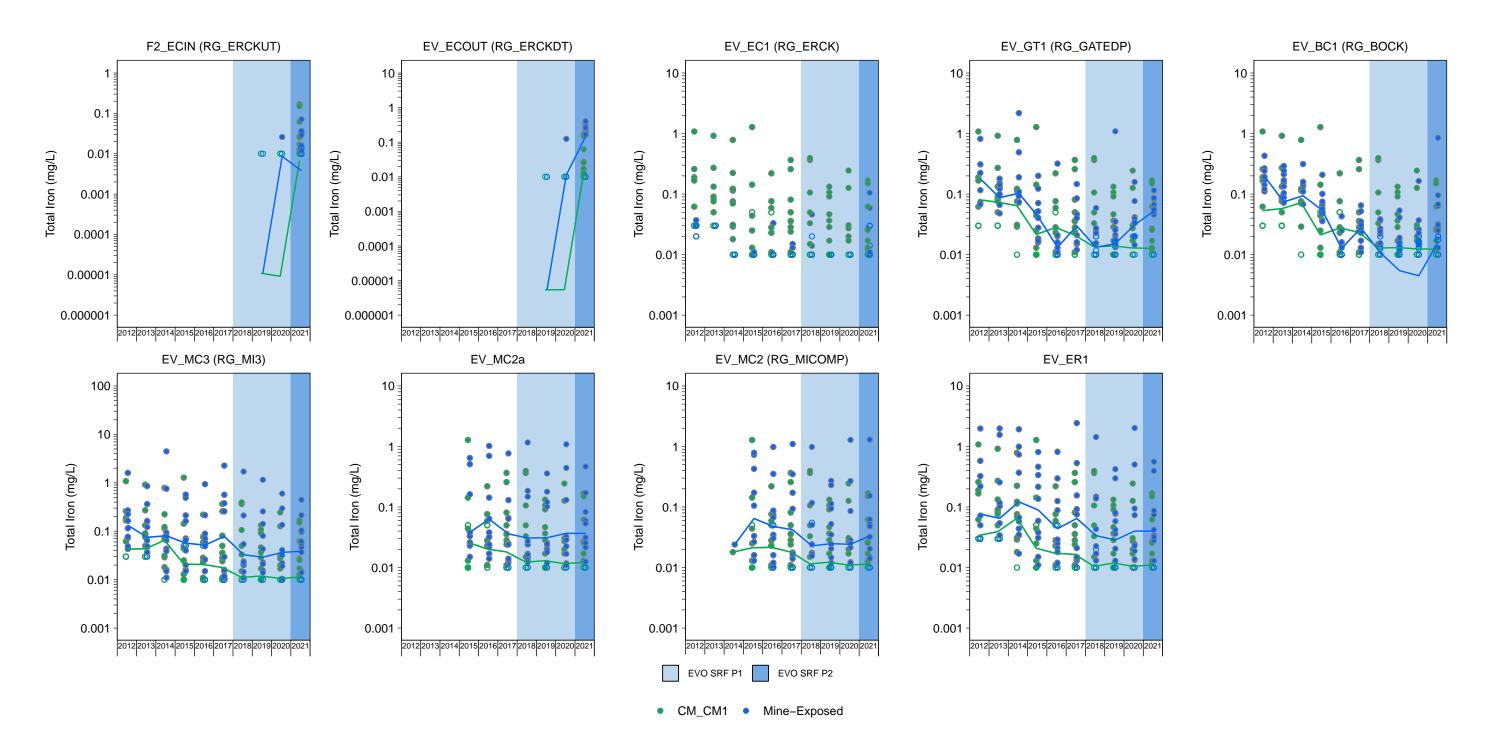


Figure D.1: Monthly Means of Key Constituents from EVO LAEMP Areas, 2012 to 2021

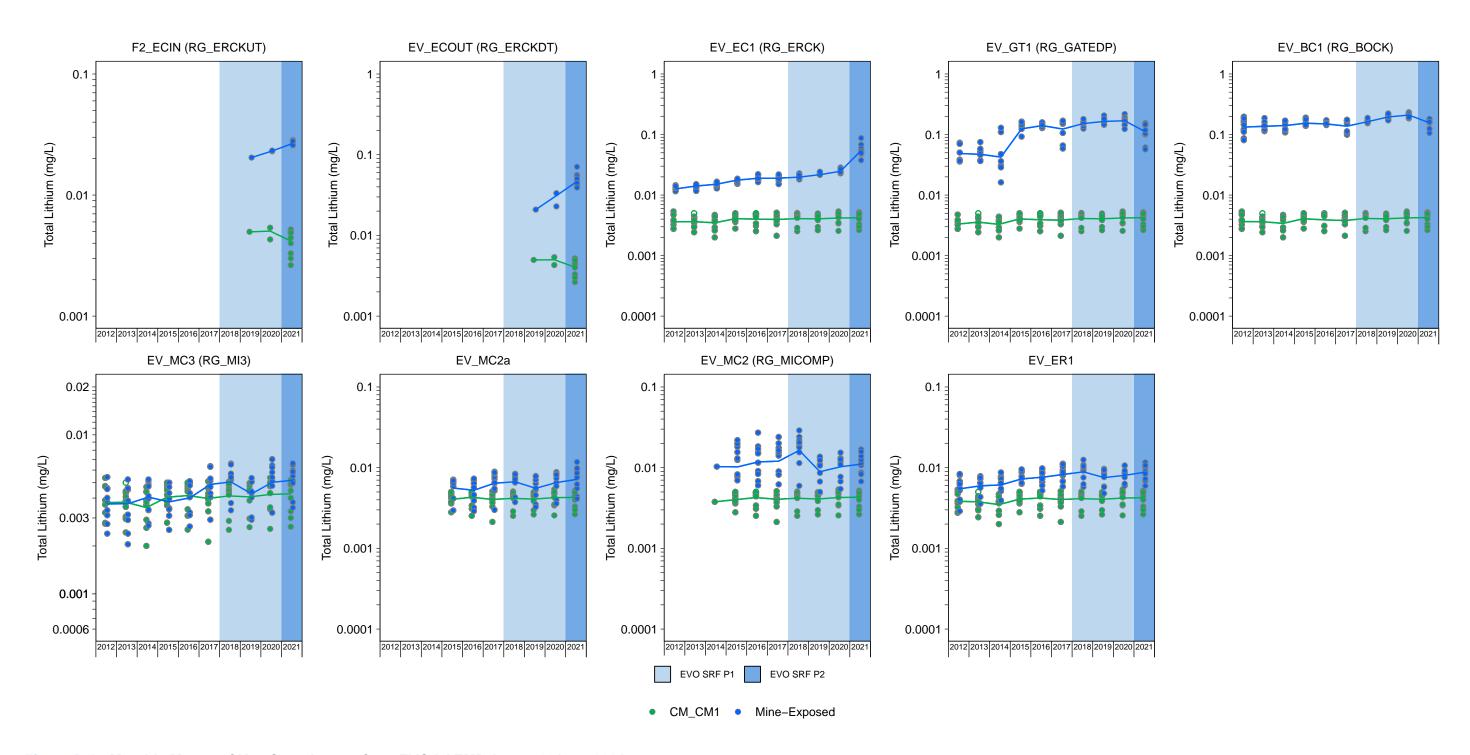


Figure D.1: Monthly Means of Key Constituents from EVO LAEMP Areas, 2012 to 2021

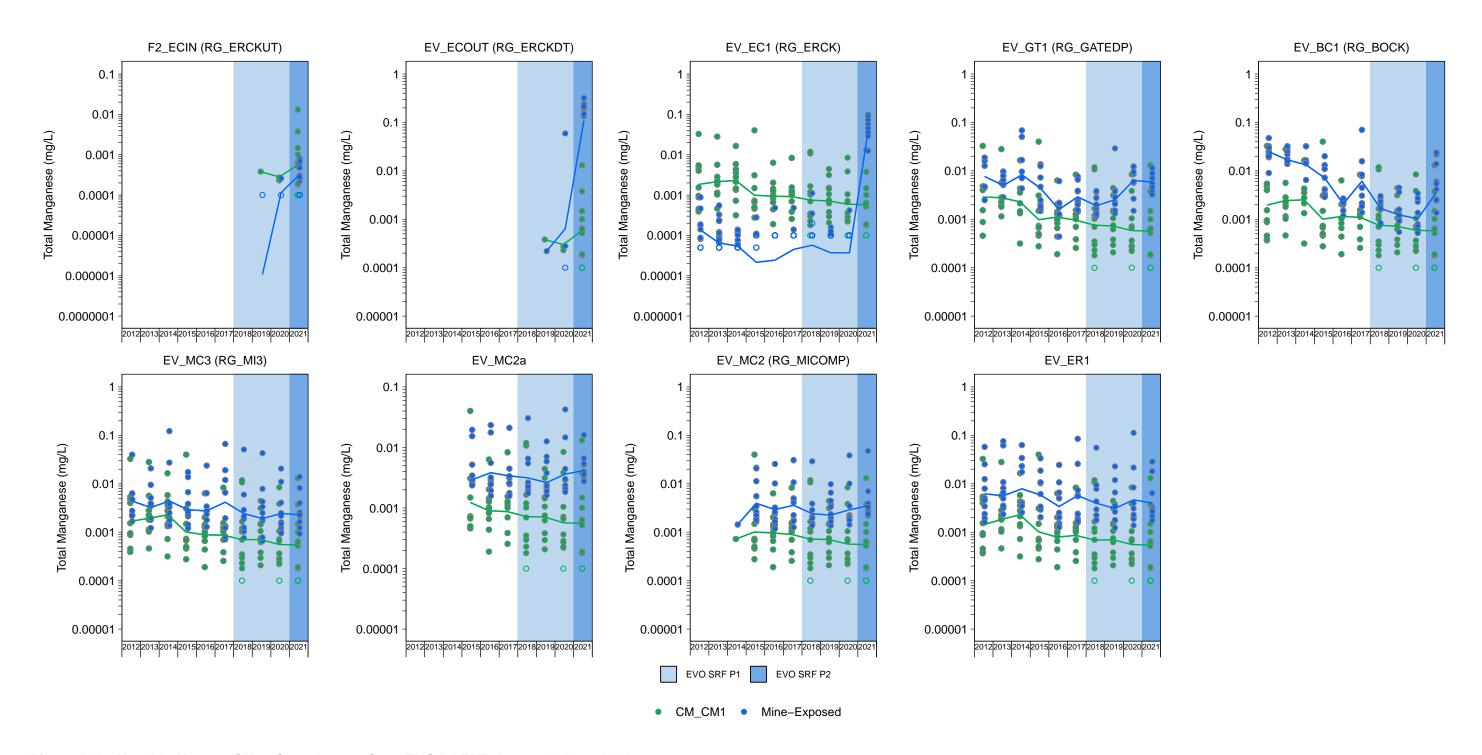


Figure D.1: Monthly Means of Key Constituents from EVO LAEMP Areas, 2012 to 2021

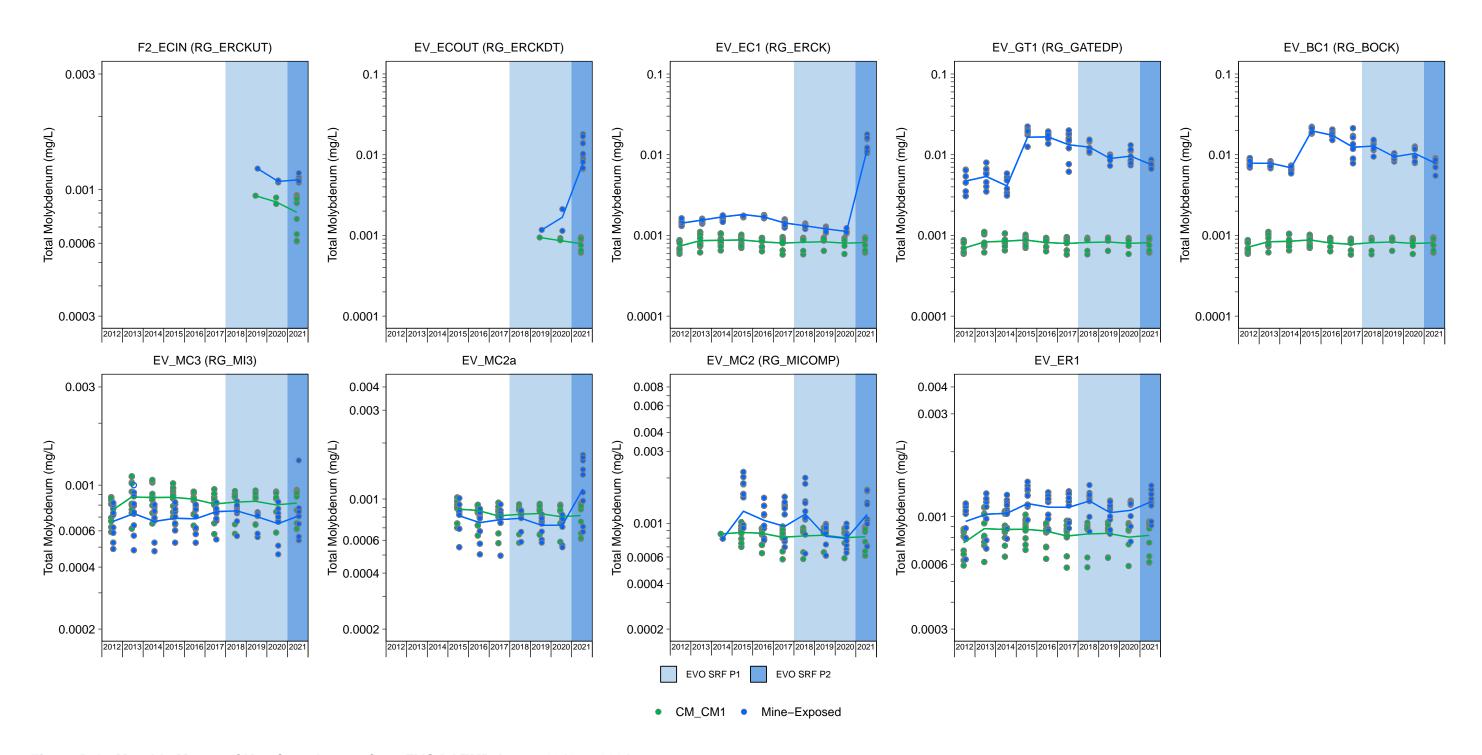


Figure D.1: Monthly Means of Key Constituents from EVO LAEMP Areas, 2012 to 2021

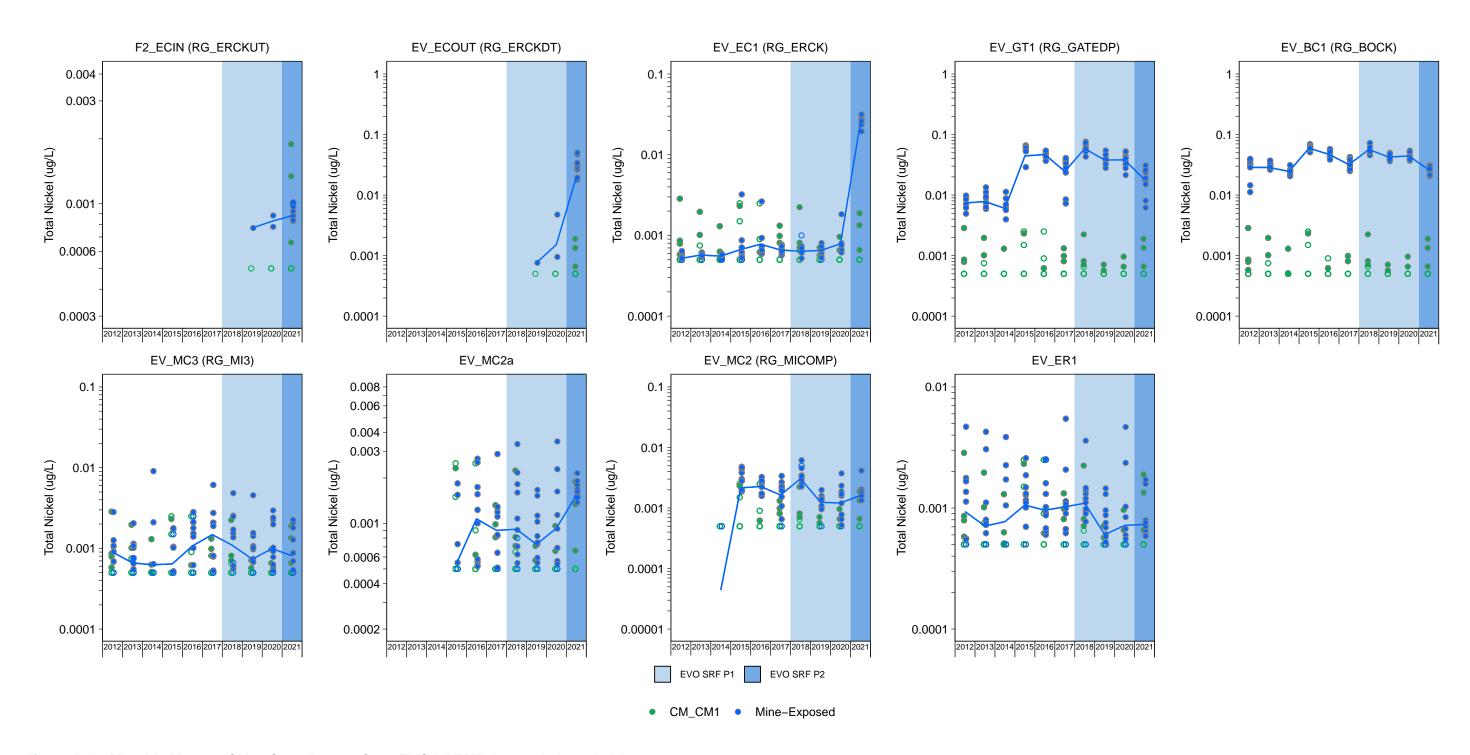


Figure D.1: Monthly Means of Key Constituents from EVO LAEMP Areas, 2012 to 2021

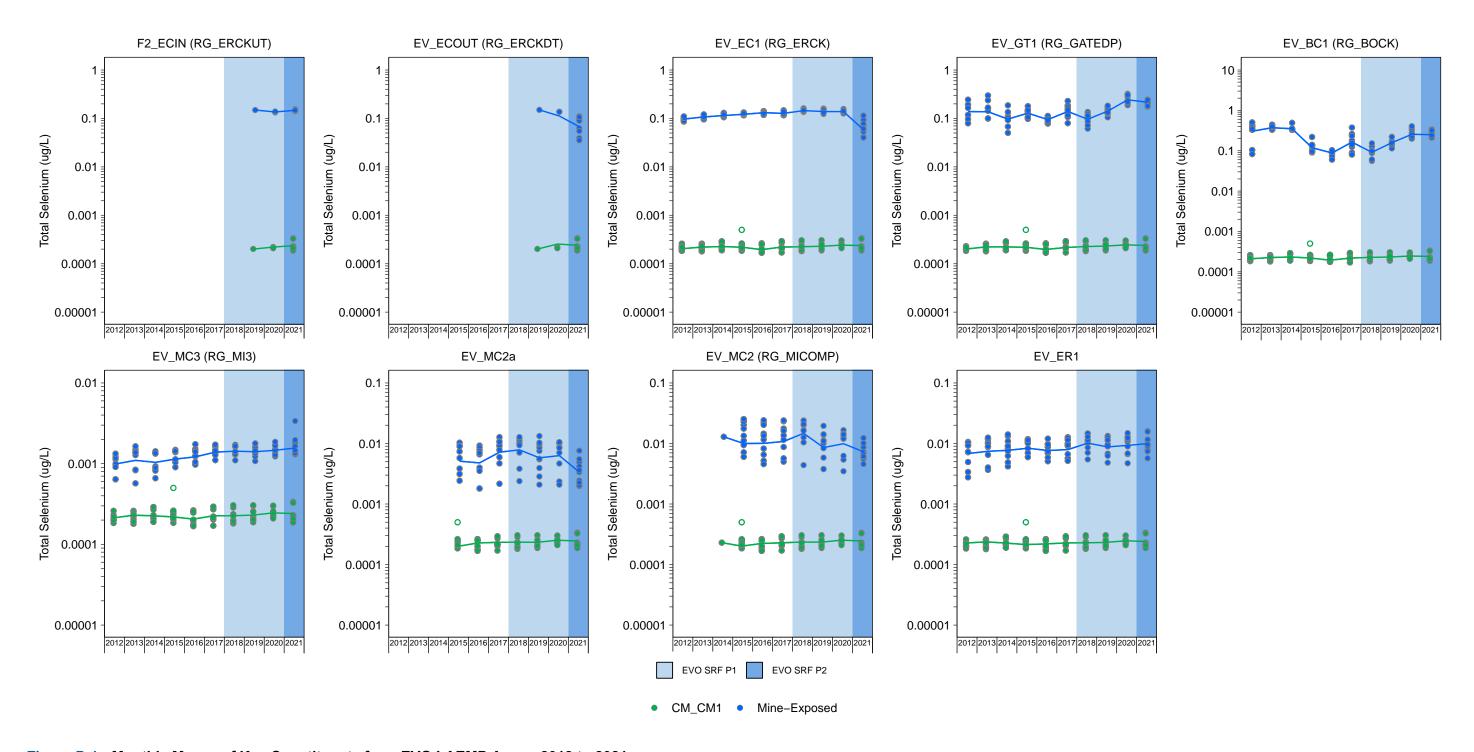


Figure D.1: Monthly Means of Key Constituents from EVO LAEMP Areas, 2012 to 2021

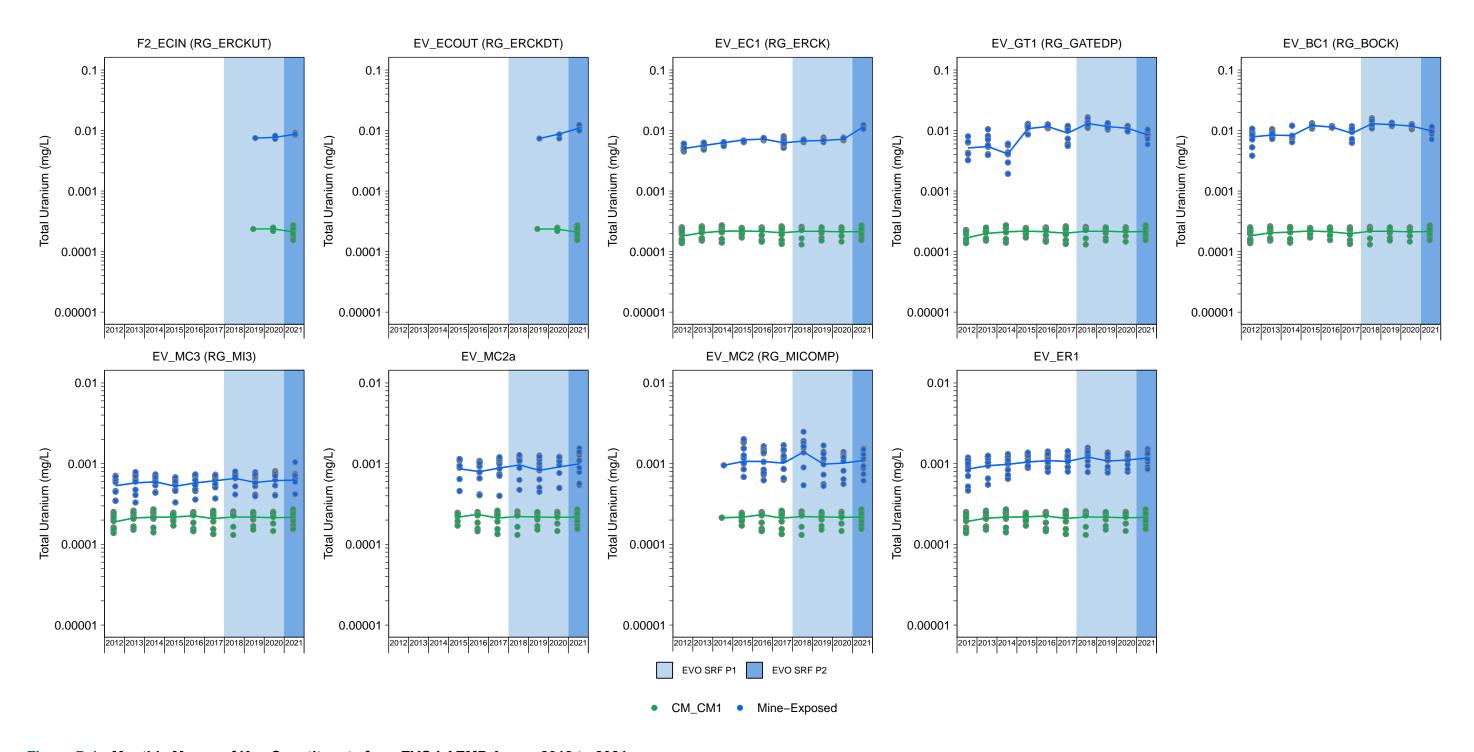


Figure D.1: Monthly Means of Key Constituents from EVO LAEMP Areas, 2012 to 2021

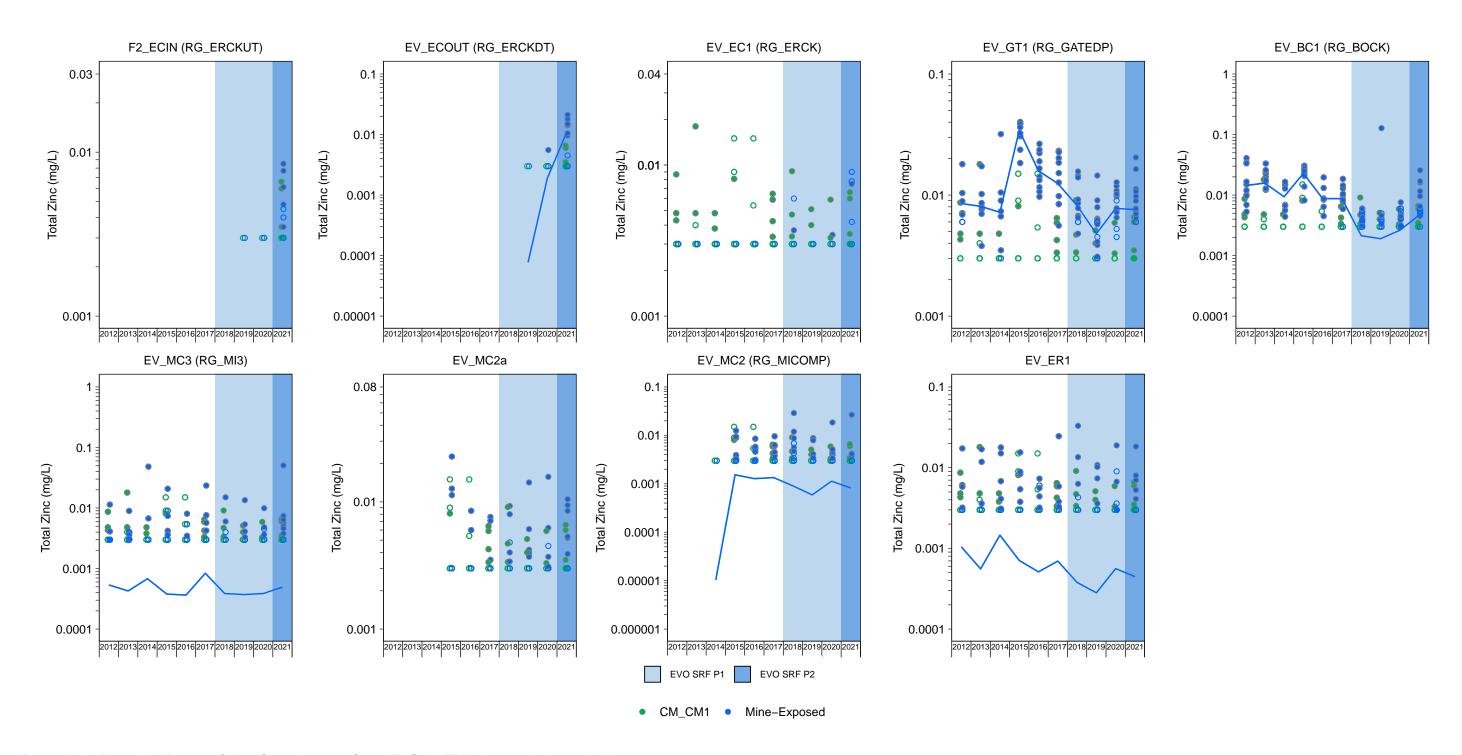


Figure D.1: Monthly Means of Key Constituents from EVO LAEMP Areas, 2012 to 2021

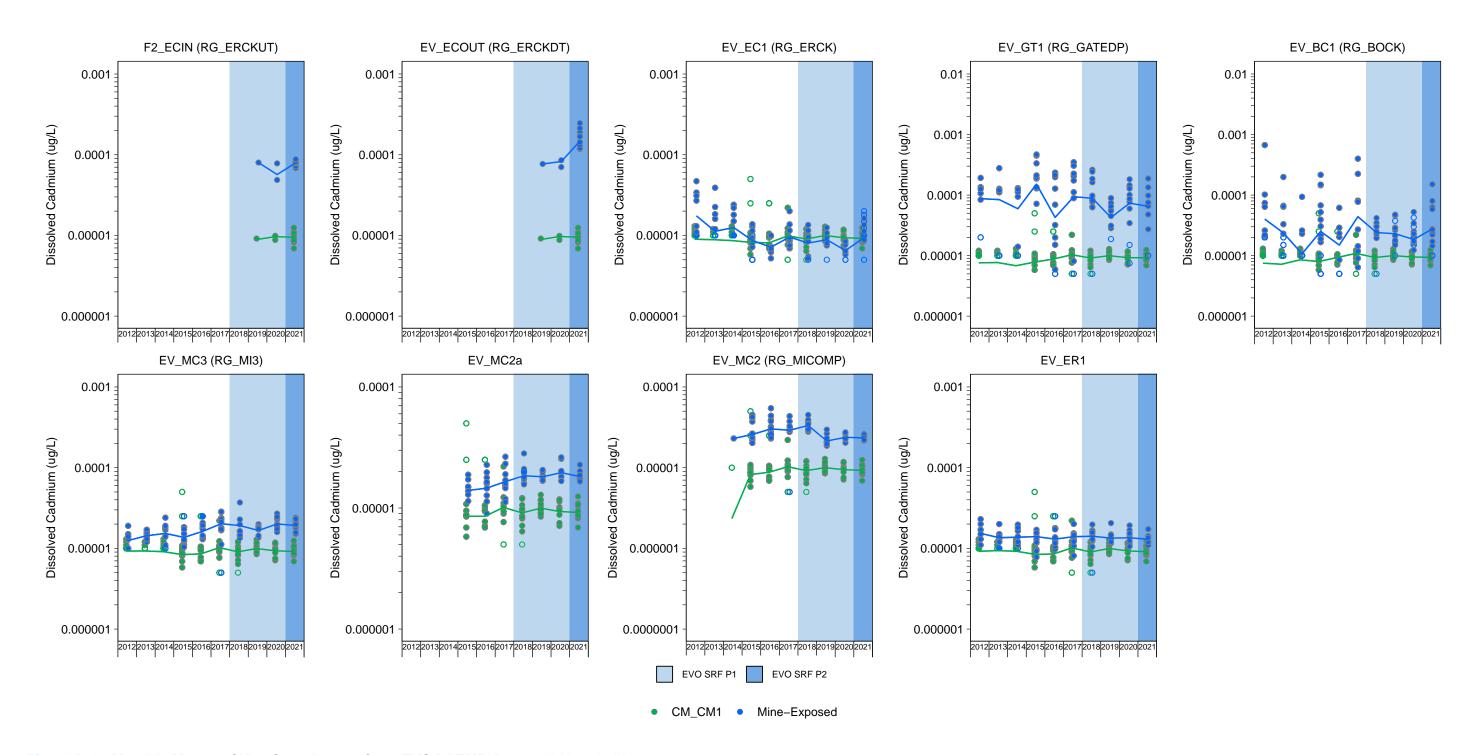


Figure D.1: Monthly Means of Key Constituents from EVO LAEMP Areas, 2012 to 2021

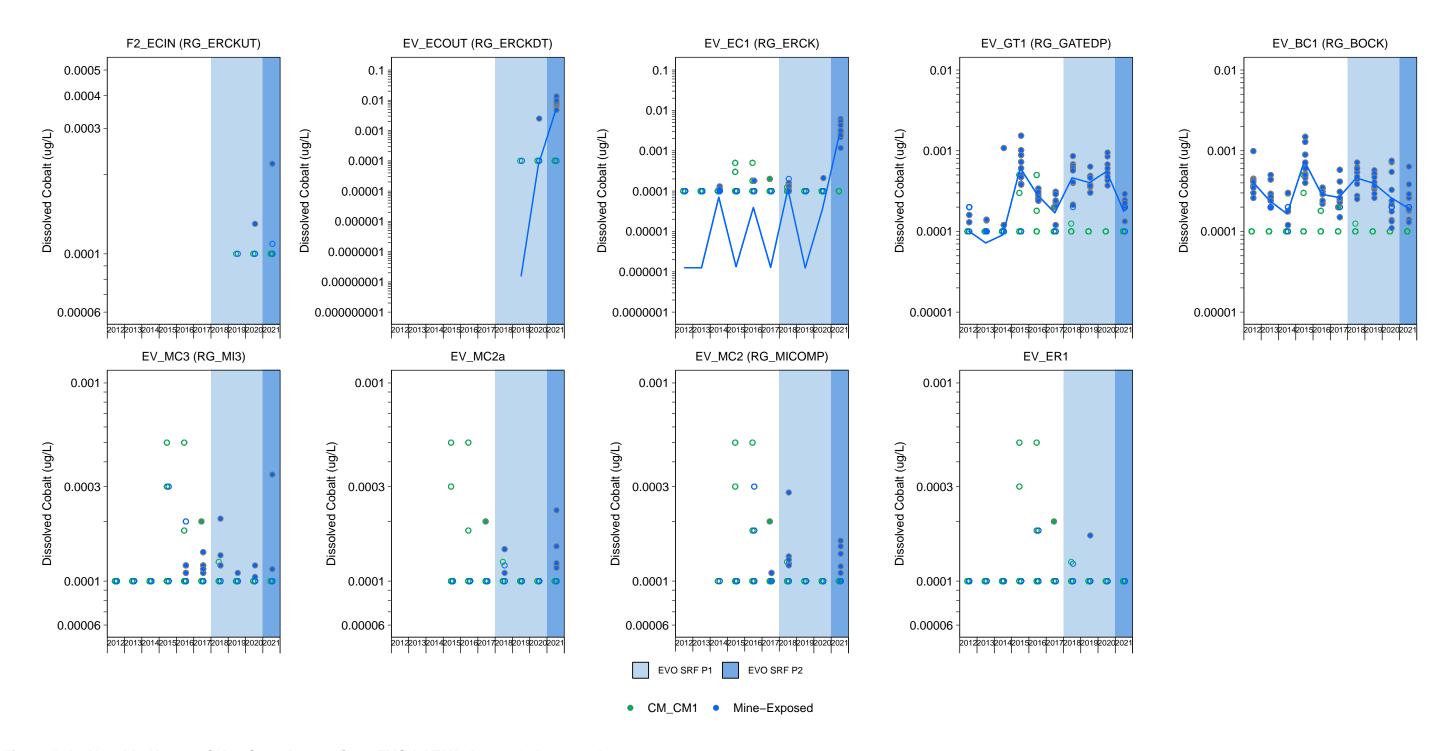


Figure D.1: Monthly Means of Key Constituents from EVO LAEMP Areas, 2012 to 2021

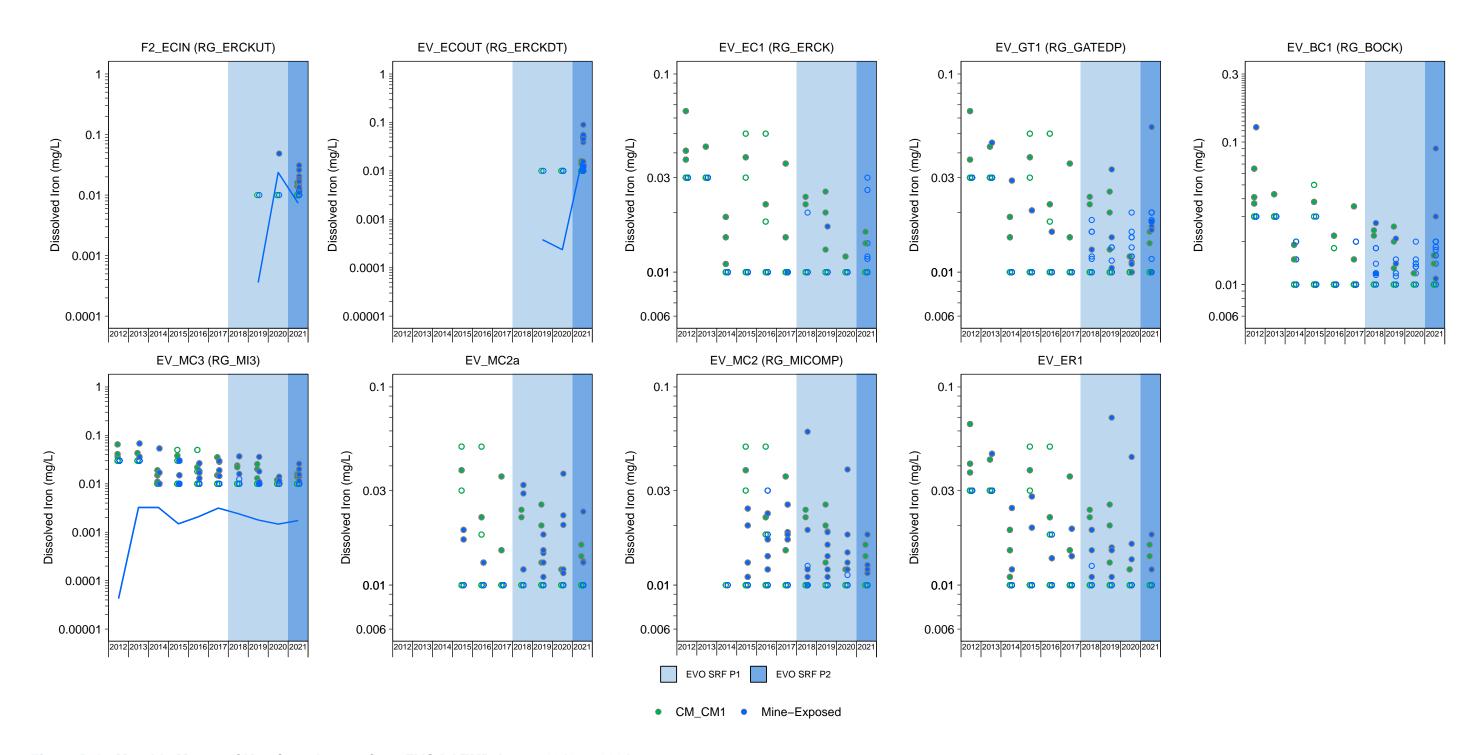


Figure D.1: Monthly Means of Key Constituents from EVO LAEMP Areas, 2012 to 2021

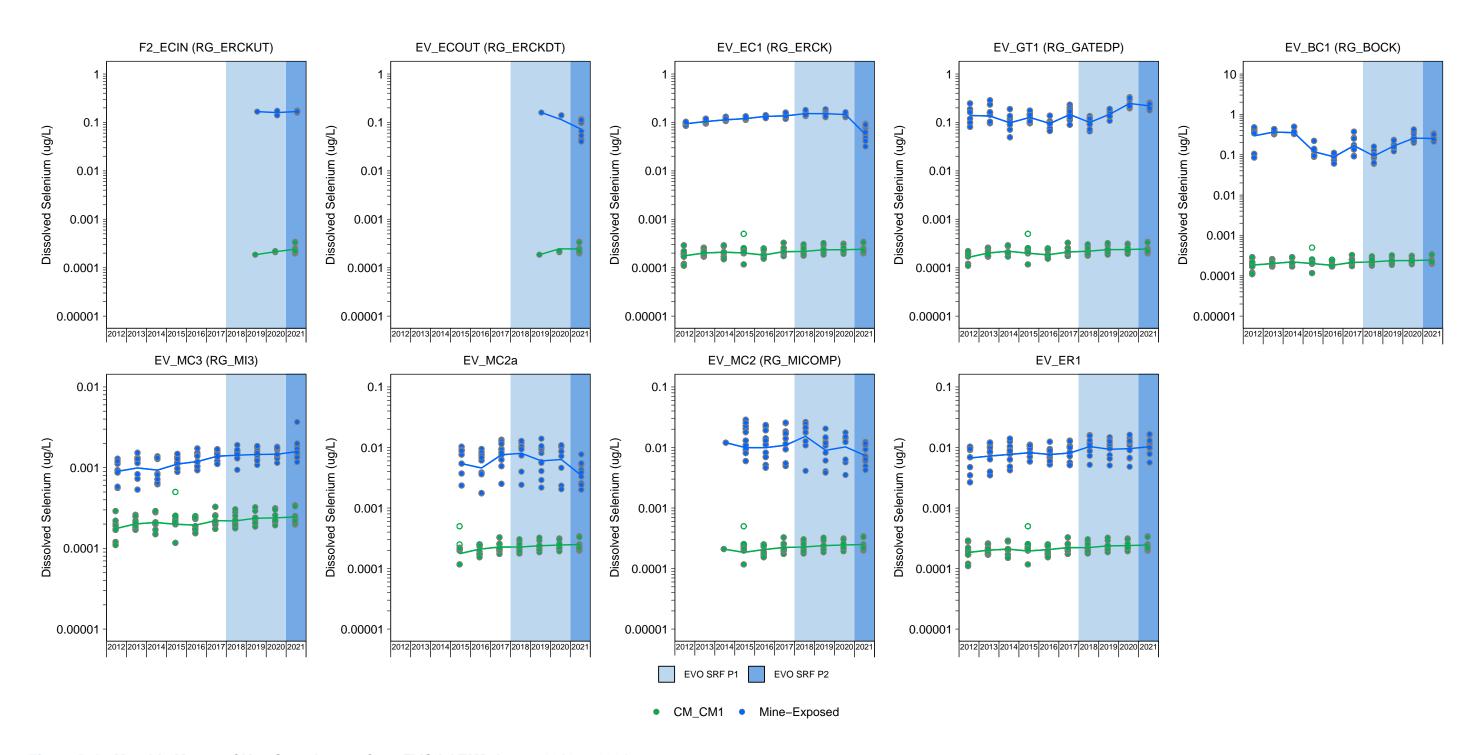


Figure D.1: Monthly Means of Key Constituents from EVO LAEMP Areas, 2012 to 2021

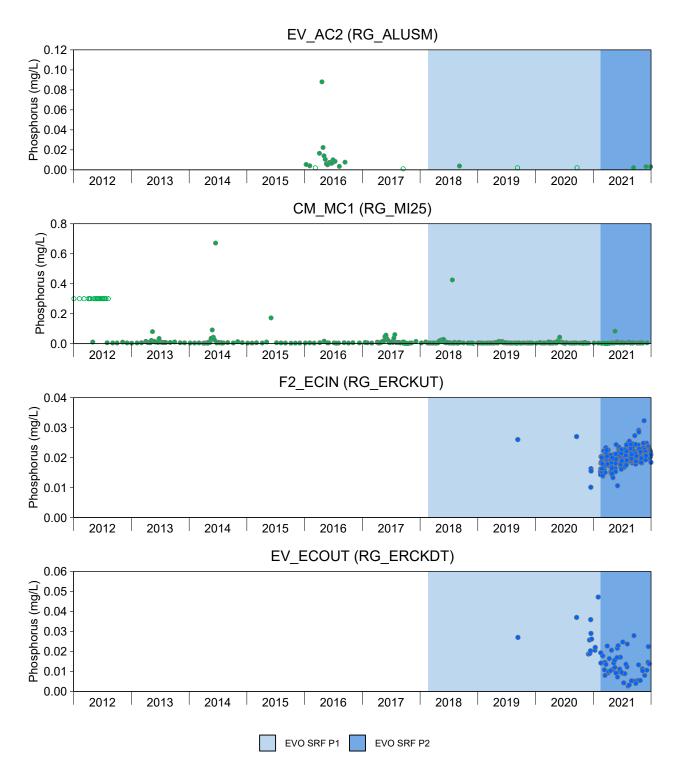


Figure D.2: Time Series Plots for Phosphorus from EVO LAEMP Areas, 2012 to 2021

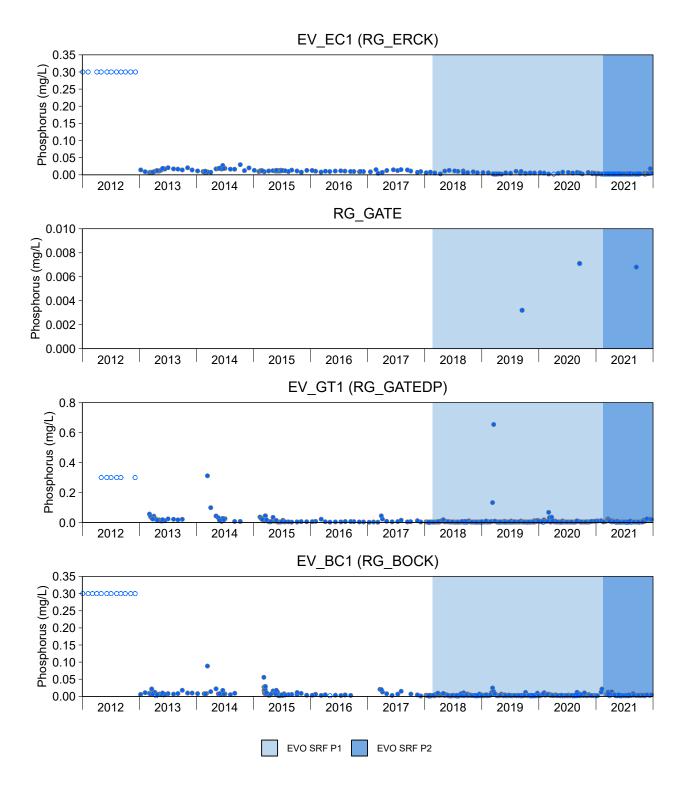


Figure D.2: Time Series Plots for Phosphorus from EVO LAEMP Areas, 2012 to 2021

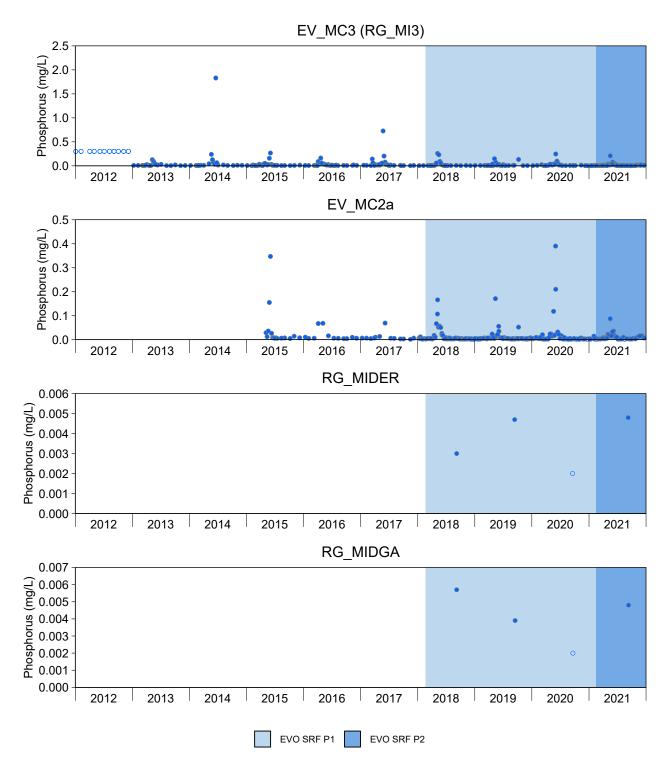


Figure D.2: Time Series Plots for Phosphorus from EVO LAEMP Areas, 2012 to 2021

Figure D.2: Time Series Plots for Phosphorus from EVO LAEMP Areas, 2012 to 2021

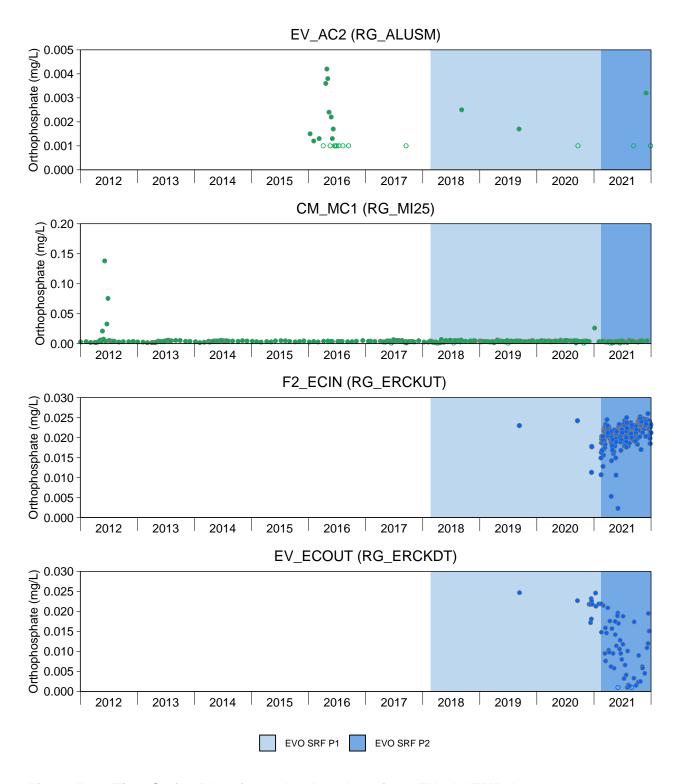


Figure D.3: Time Series Plots for Orthophosphate from EVO LAEMP Areas, 2012 to 2021

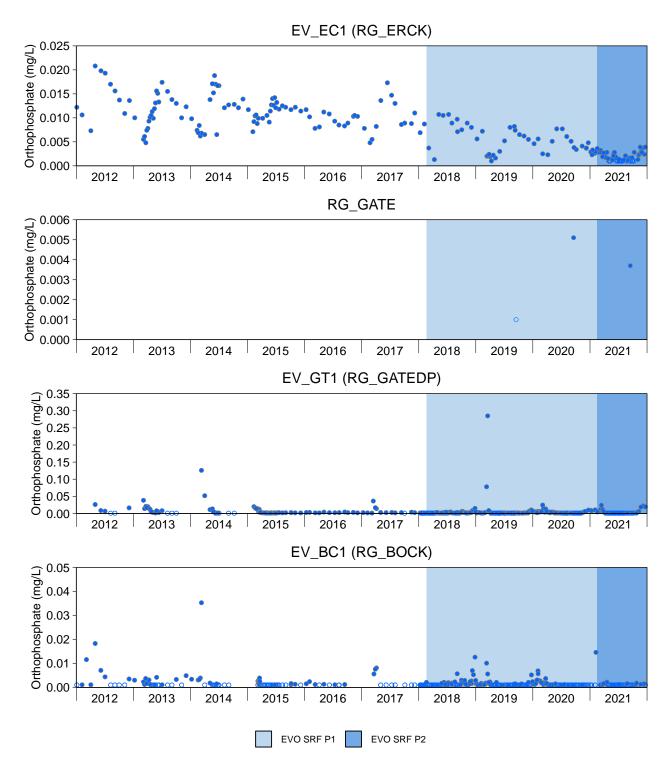


Figure D.3: Time Series Plots for Orthophosphate from EVO LAEMP Areas, 2012 to 2021

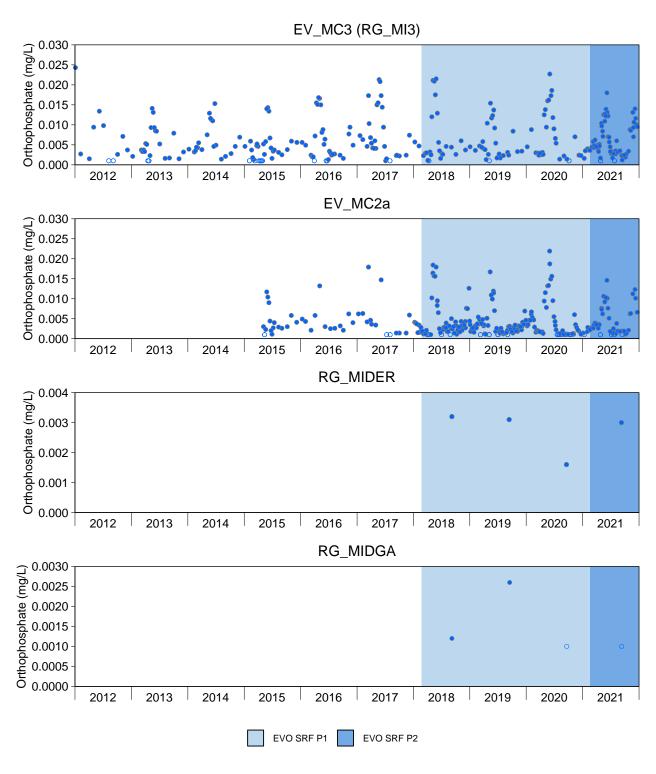


Figure D.3: Time Series Plots for Orthophosphate from EVO LAEMP Areas, 2012 to 2021

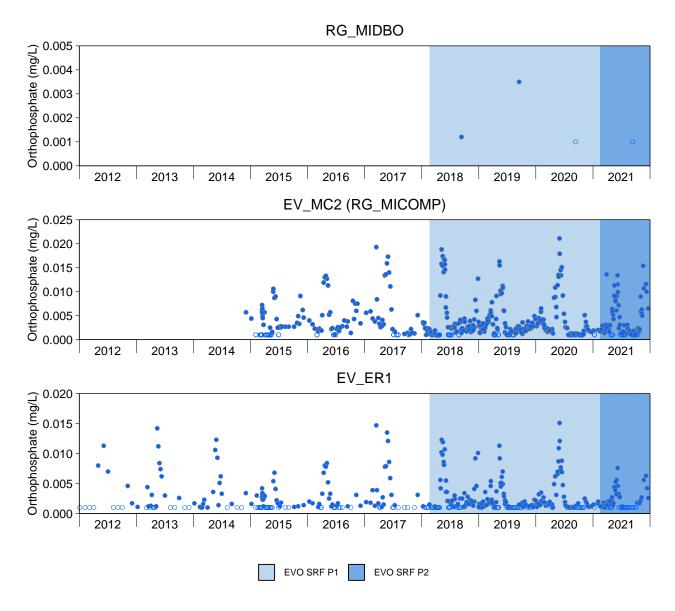


Figure D.3: Time Series Plots for Orthophosphate from EVO LAEMP Areas, 2012 to 2021

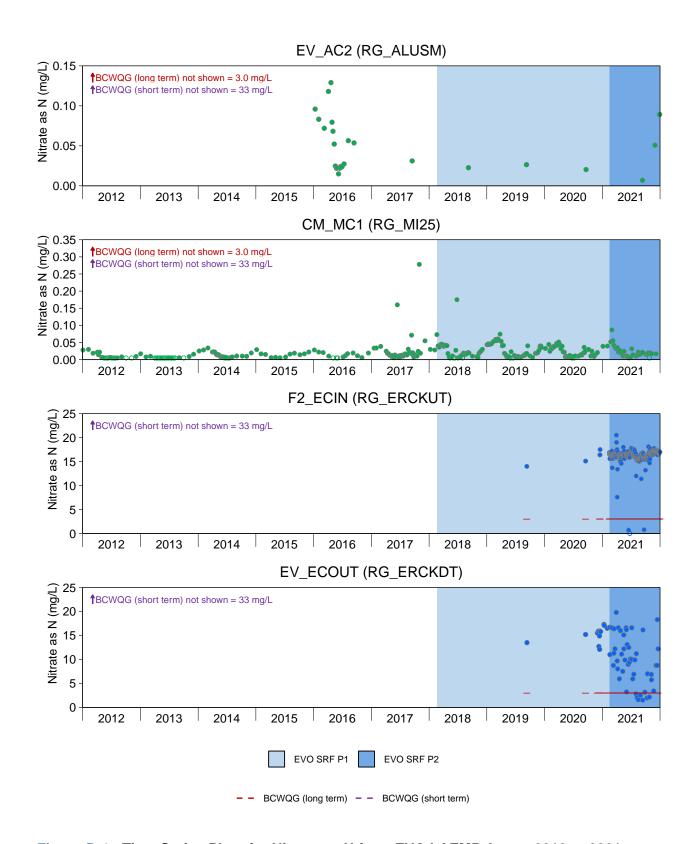


Figure D.4: Time Series Plots for Nitrate as N from EVO LAEMP Areas, 2012 to 2021

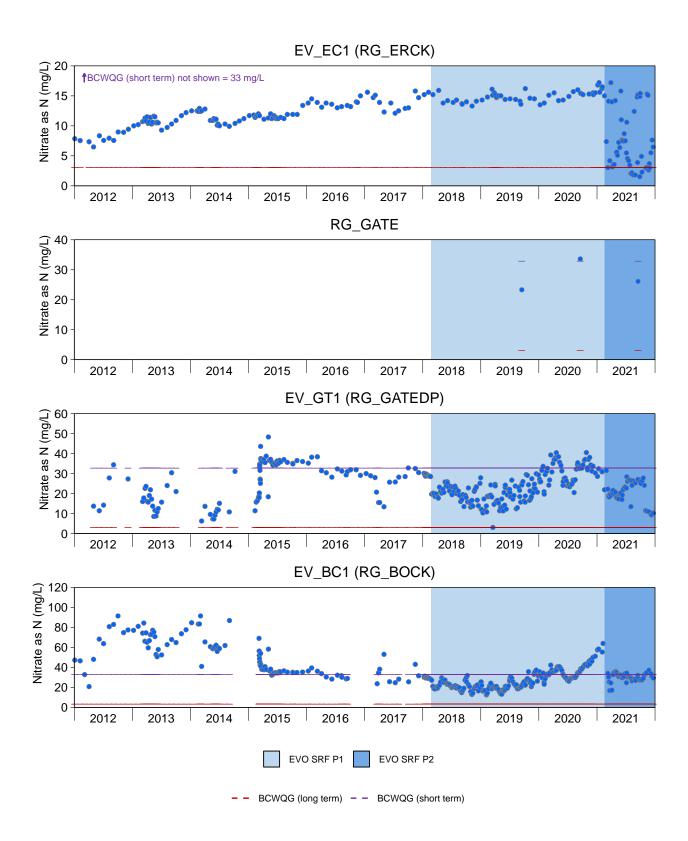


Figure D.4: Time Series Plots for Nitrate as N from EVO LAEMP Areas, 2012 to 2021

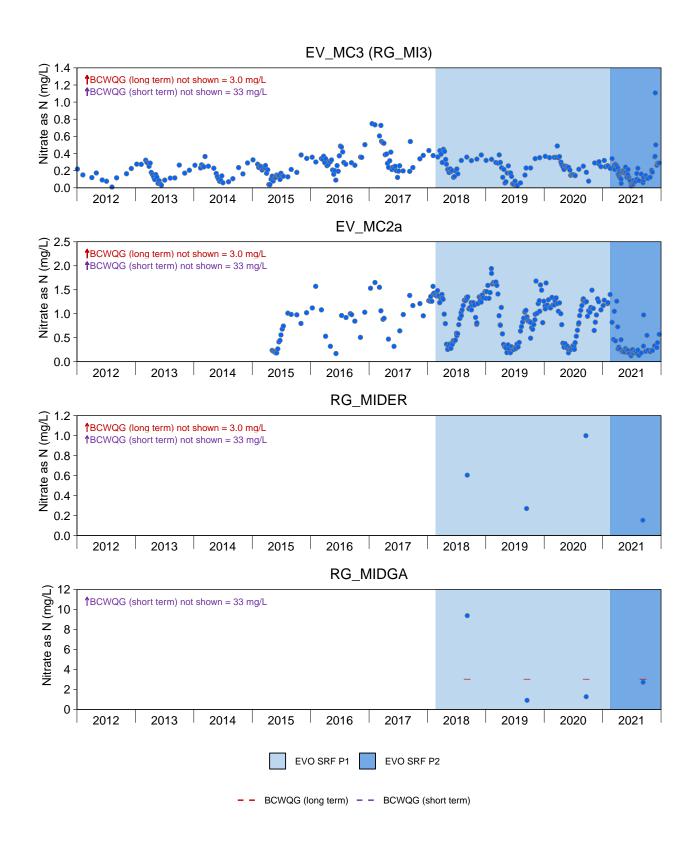


Figure D.4: Time Series Plots for Nitrate as N from EVO LAEMP Areas, 2012 to 2021

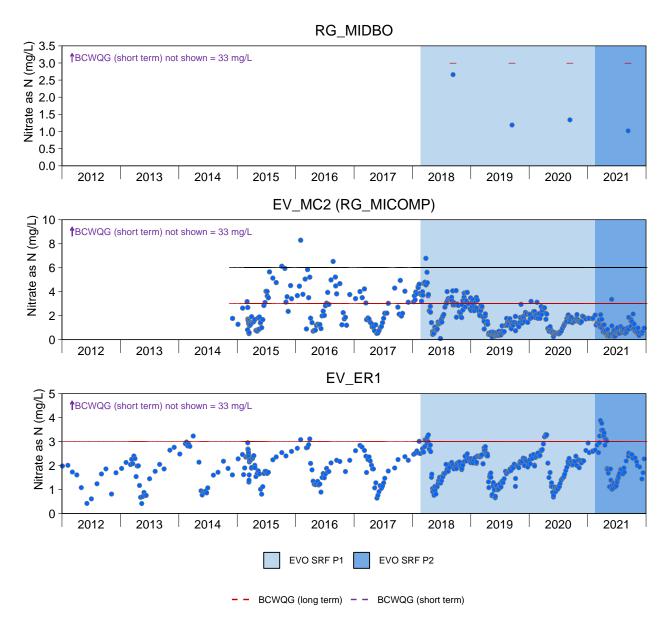


Figure D.4: Time Series Plots for Nitrate as N from EVO LAEMP Areas, 2012 to 2021

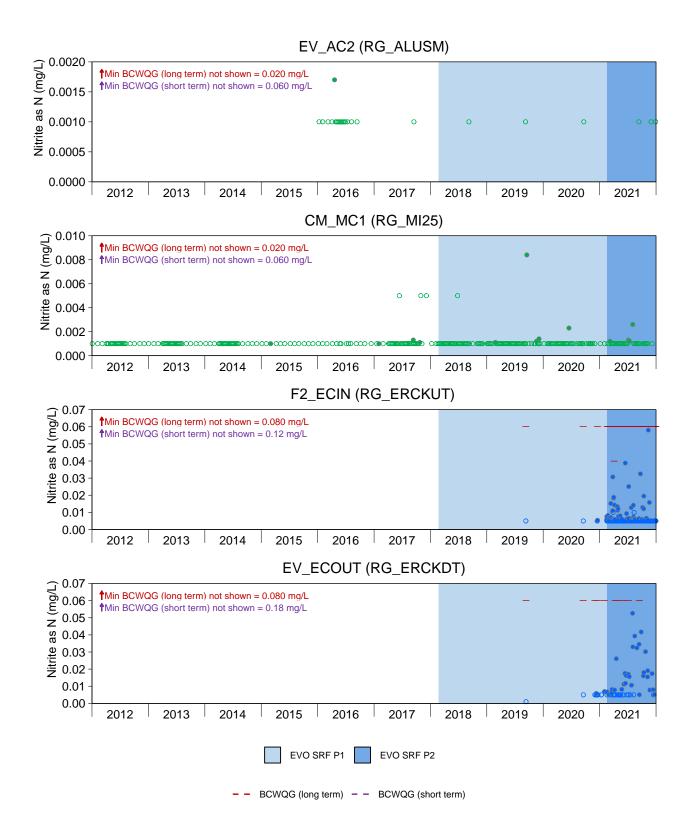


Figure D.5: Time Series Plots for Nitrite as N from EVO LAEMP Areas, 2012 to 2021

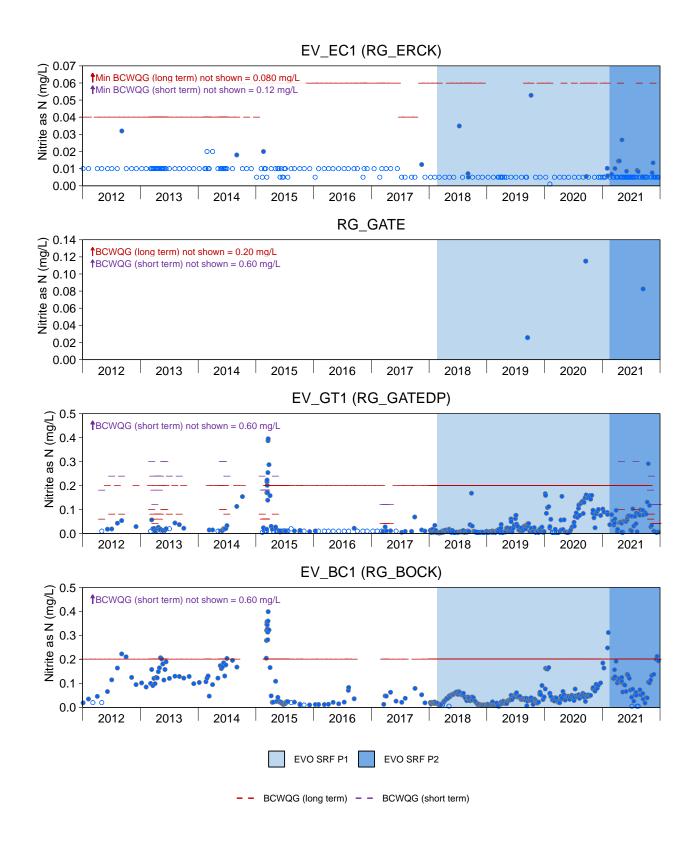


Figure D.5: Time Series Plots for Nitrite as N from EVO LAEMP Areas, 2012 to 2021

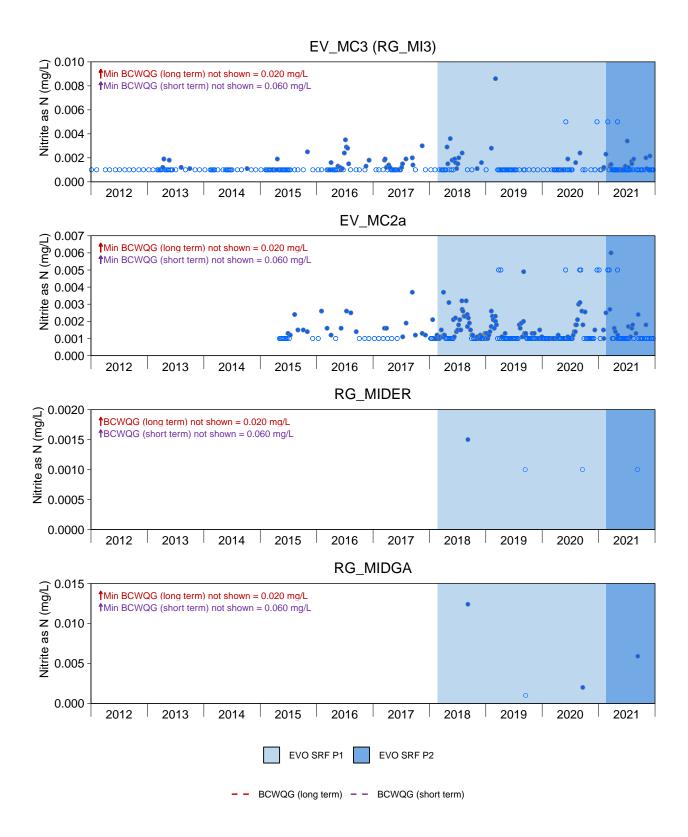


Figure D.5: Time Series Plots for Nitrite as N from EVO LAEMP Areas, 2012 to 2021

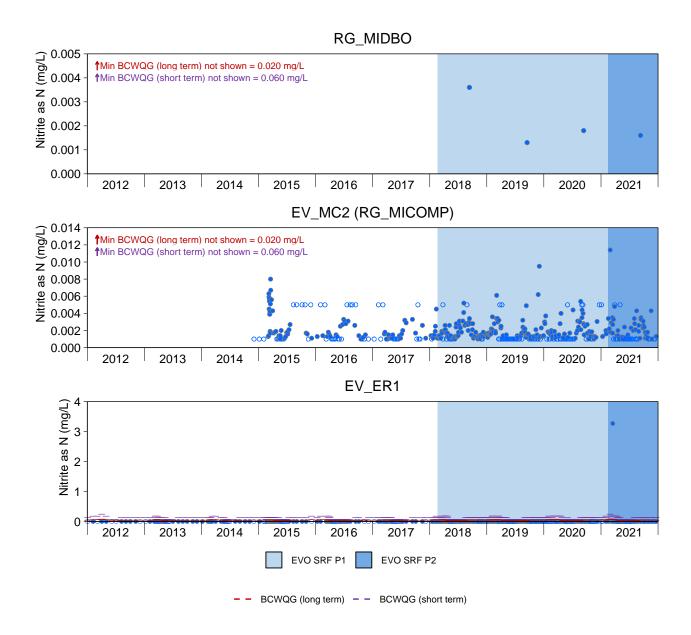


Figure D.5: Time Series Plots for Nitrite as N from EVO LAEMP Areas, 2012 to 2021

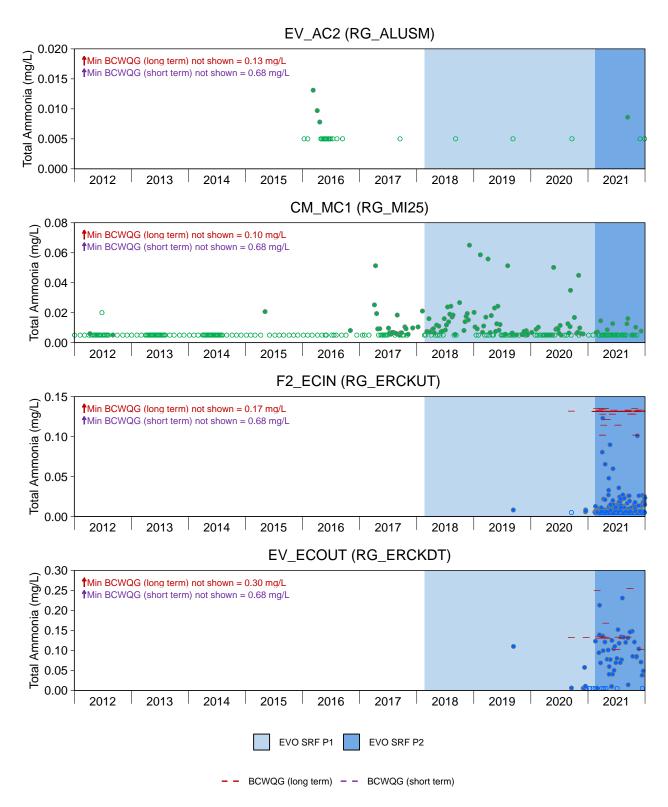


Figure D.6: Time Series Plots for Total Ammonia from EVO LAEMP Areas, 2012 to 2021

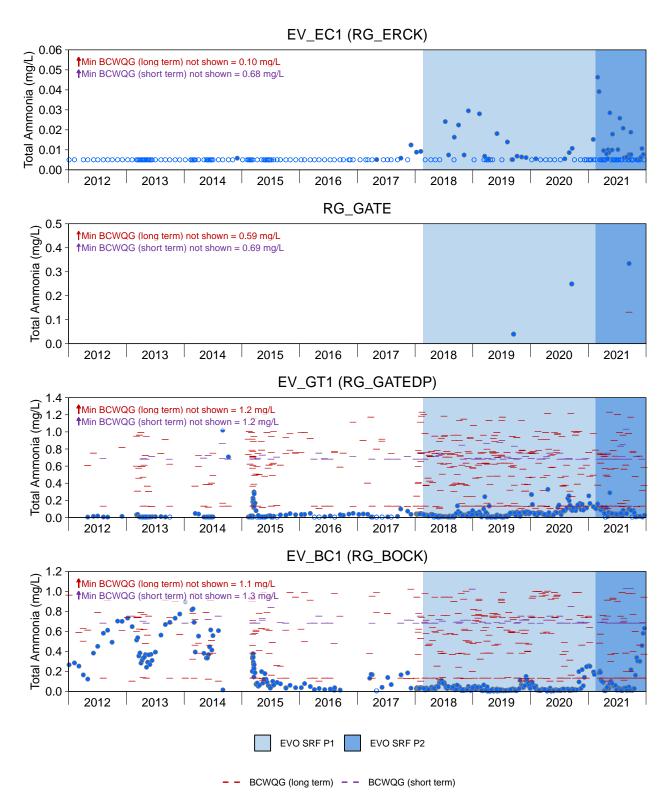


Figure D.6: Time Series Plots for Total Ammonia from EVO LAEMP Areas, 2012 to 2021

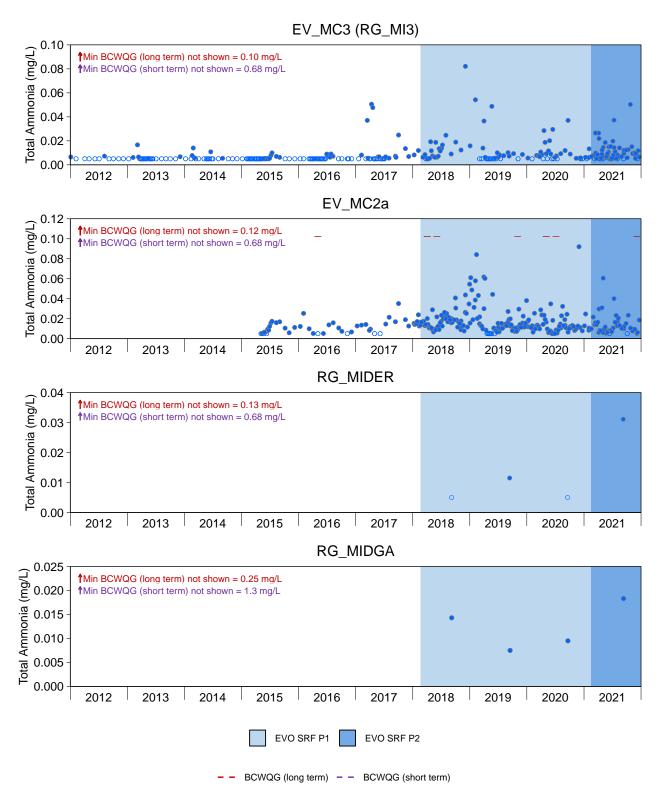


Figure D.6: Time Series Plots for Total Ammonia from EVO LAEMP Areas, 2012 to 2021

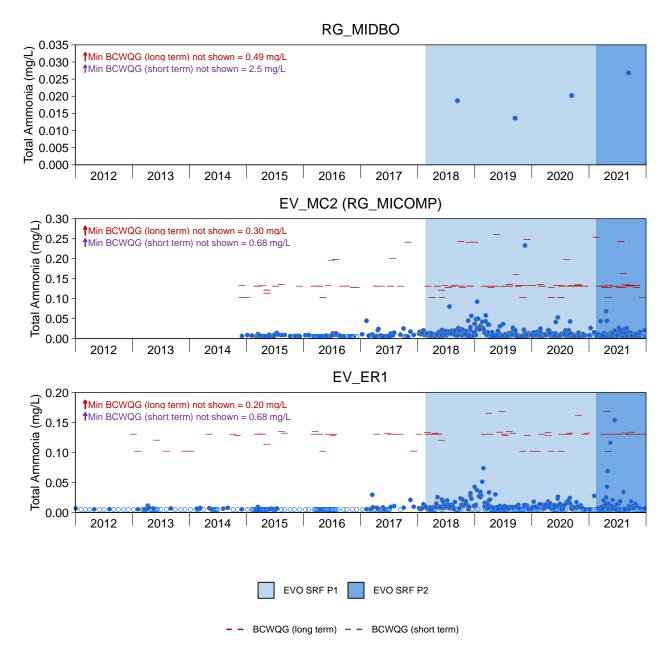


Figure D.6: Time Series Plots for Total Ammonia from EVO LAEMP Areas, 2012 to 2021

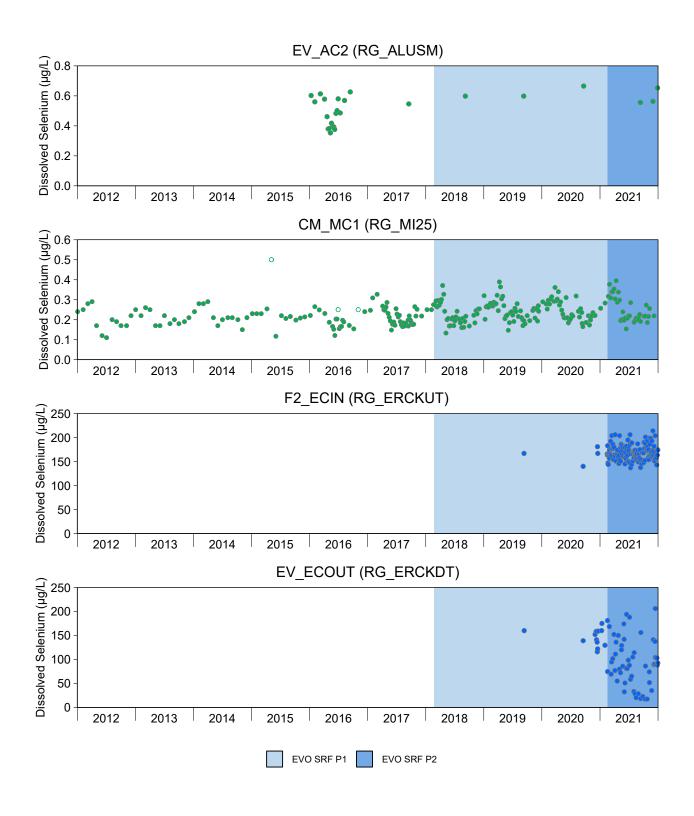


Figure D.7: Time Series Plots for Dissolved Selenium from EVO LAEMP Areas, 2012 to 2021

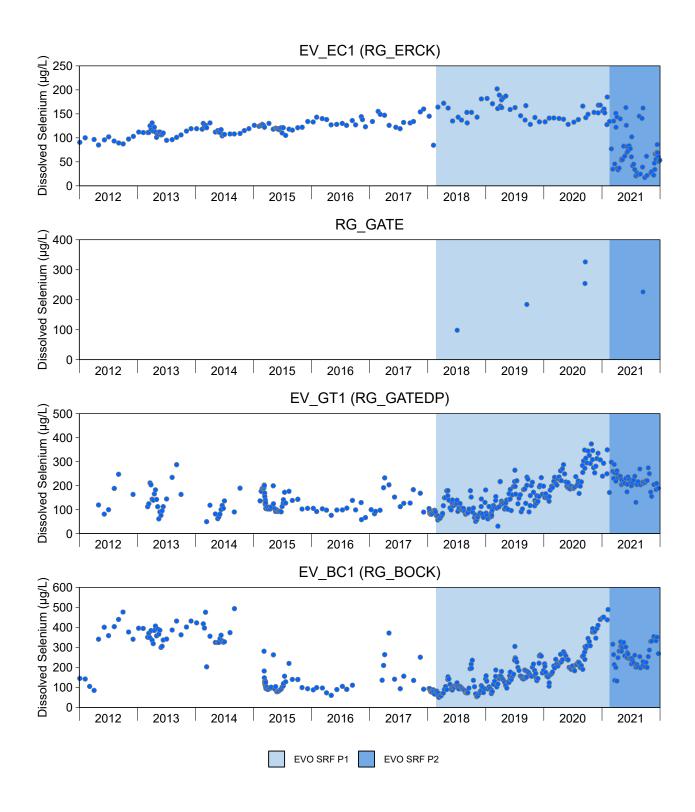


Figure D.7: Time Series Plots for Dissolved Selenium from EVO LAEMP Areas, 2012 to 2021

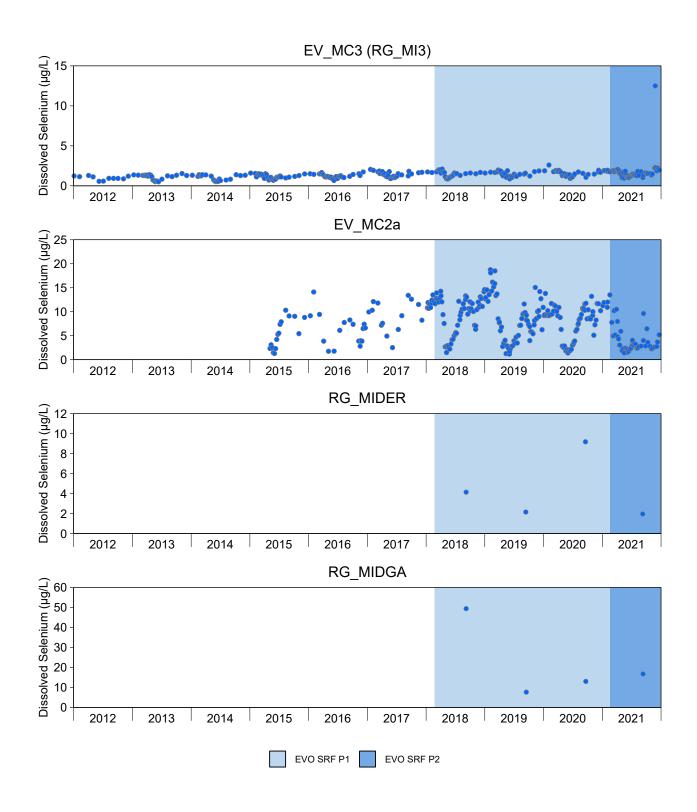


Figure D.7: Time Series Plots for Dissolved Selenium from EVO LAEMP Areas, 2012 to 2021

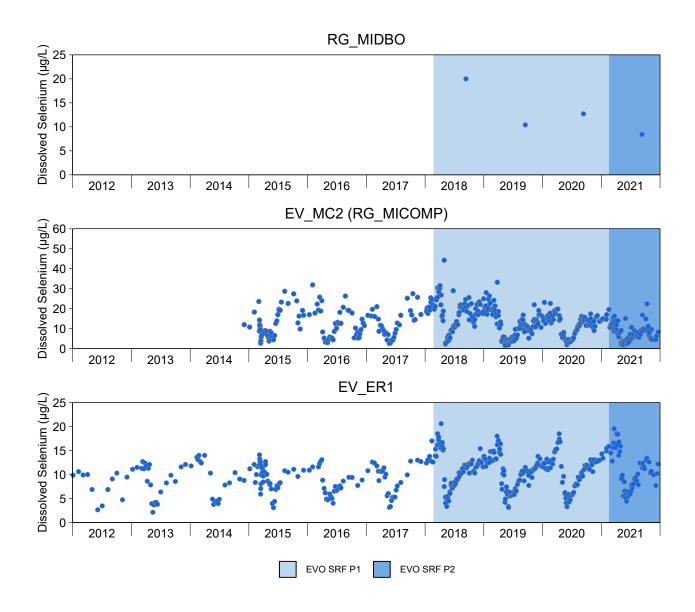


Figure D.7: Time Series Plots for Dissolved Selenium from EVO LAEMP Areas, 2012 to 2021

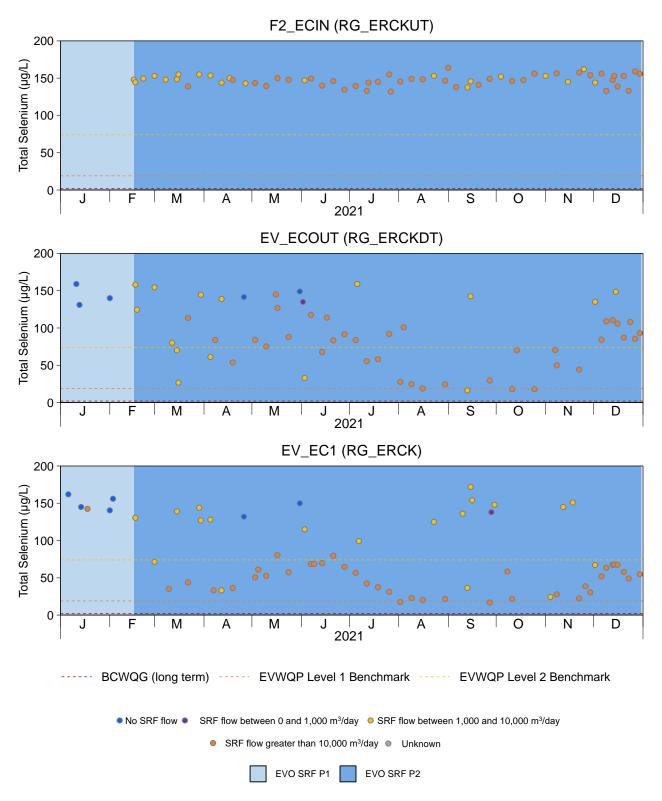


Figure D.8: Total Selenium Concentration EVO LAEMP Compared to Flow, 2021

Note: SRF = Saturated Rock Fill.

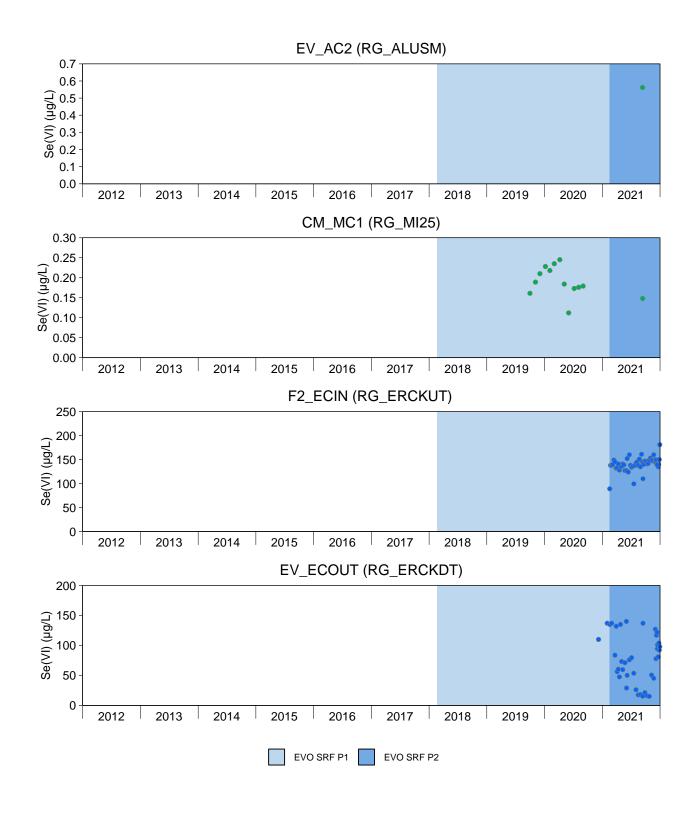


Figure D.9: Time Series Plots for Selenate from EVO LAEMP Areas, 2012 to 2021

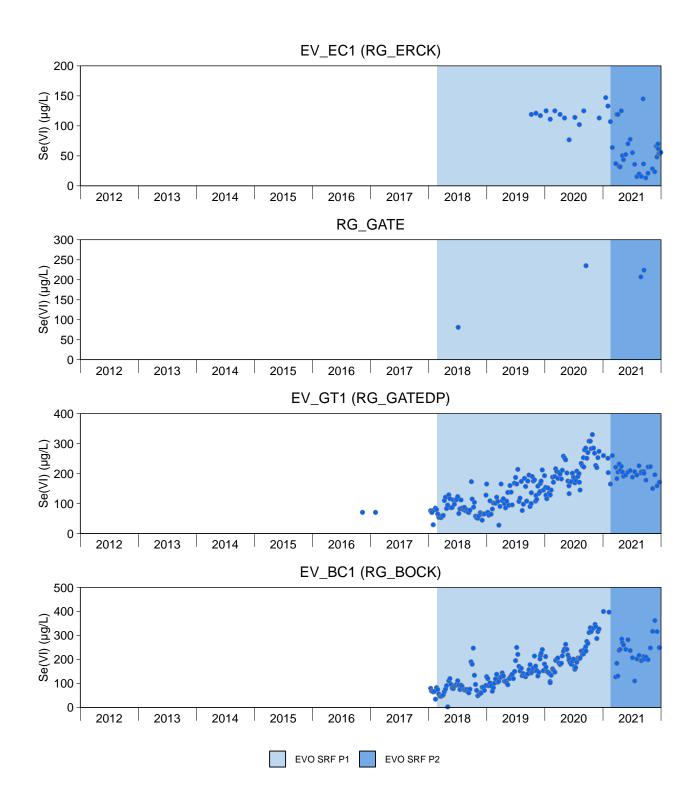


Figure D.9: Time Series Plots for Selenate from EVO LAEMP Areas, 2012 to 2021

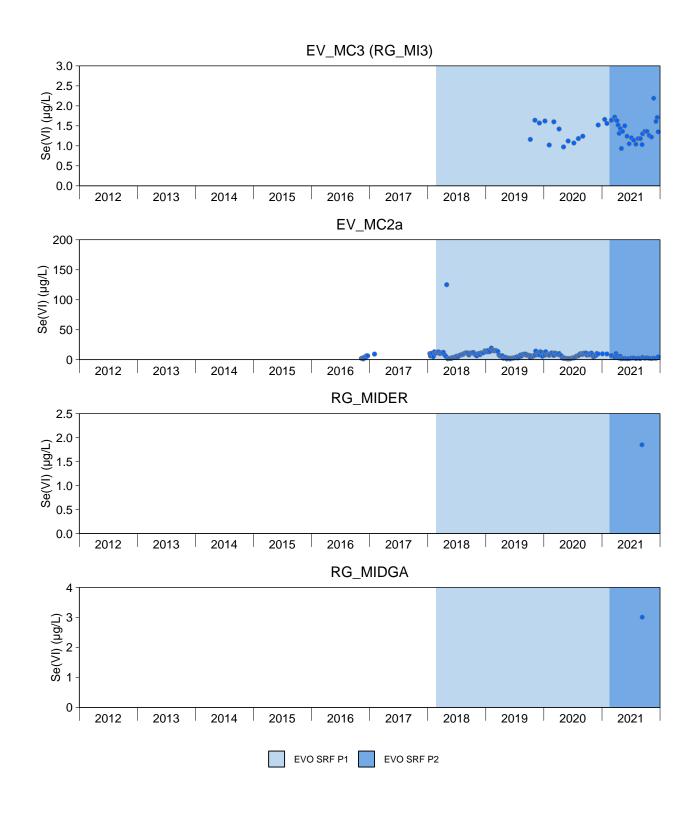


Figure D.9: Time Series Plots for Selenate from EVO LAEMP Areas, 2012 to 2021

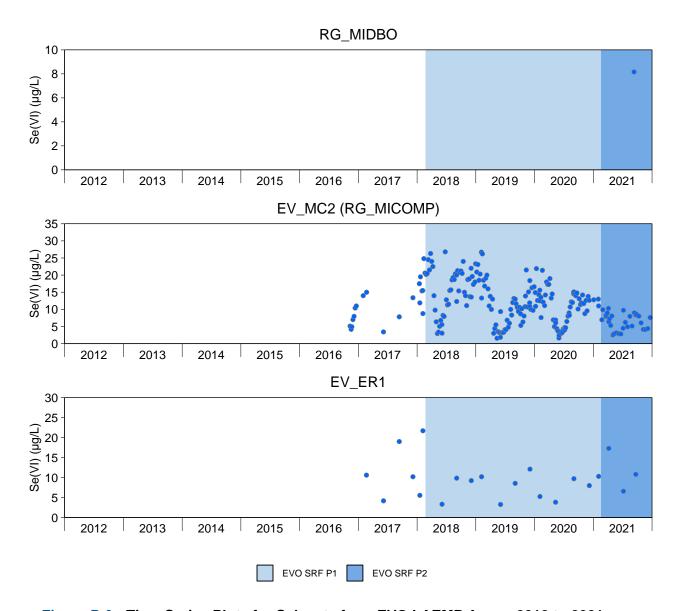


Figure D.9: Time Series Plots for Selenate from EVO LAEMP Areas, 2012 to 2021

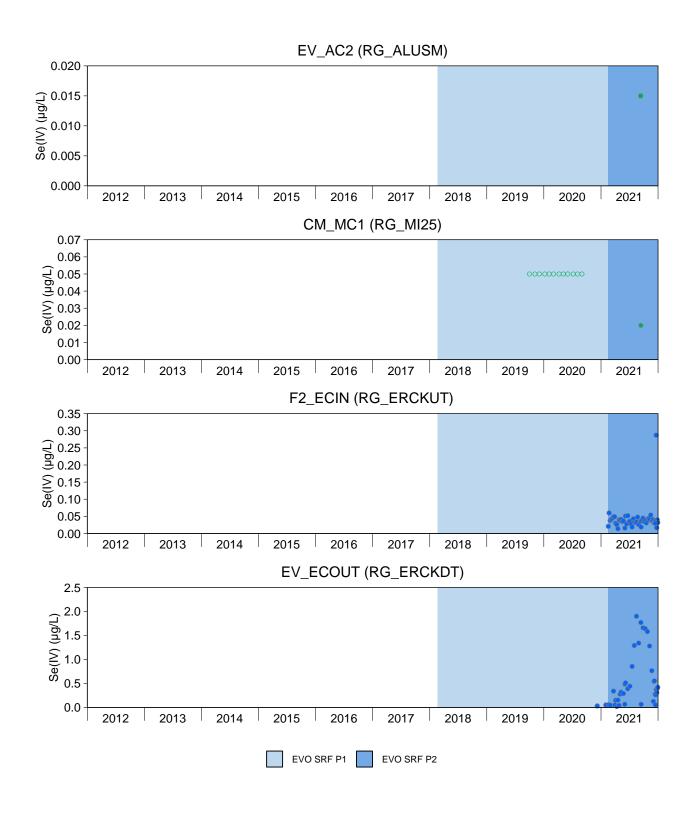


Figure D.10: Time Series Plots for Selenite from EVO LAEMP Areas, 2012 to 2021

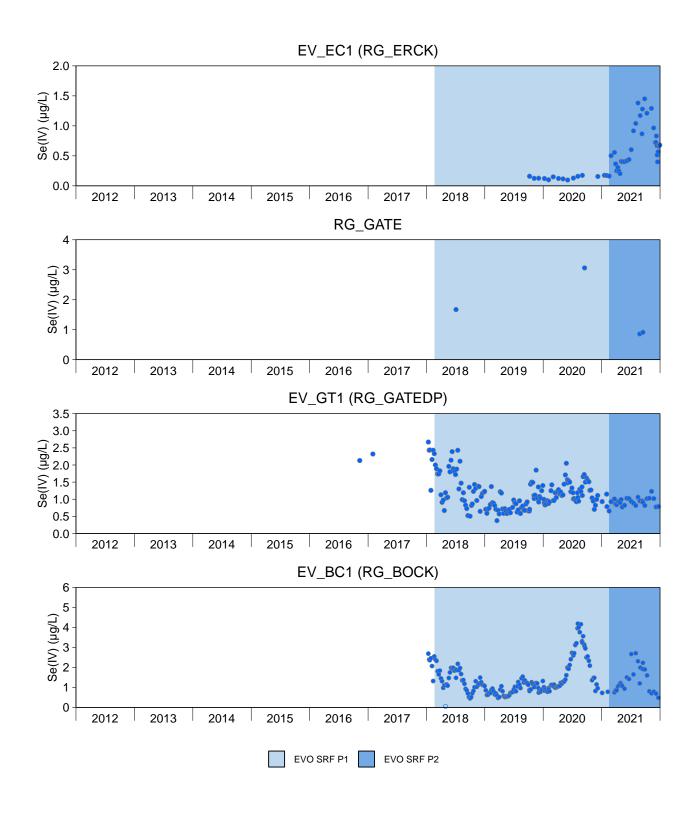


Figure D.10: Time Series Plots for Selenite from EVO LAEMP Areas, 2012 to 2021

Figure D.10: Time Series Plots for Selenite from EVO LAEMP Areas, 2012 to 2021

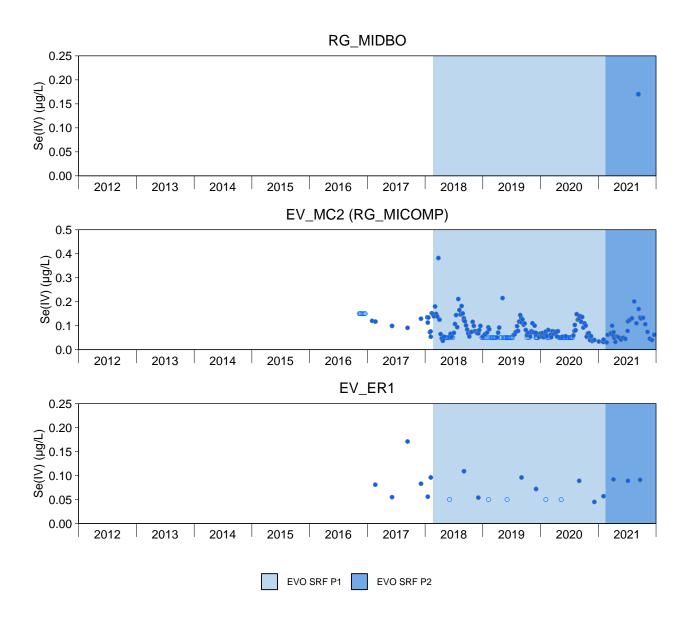


Figure D.10: Time Series Plots for Selenite from EVO LAEMP Areas, 2012 to 2021

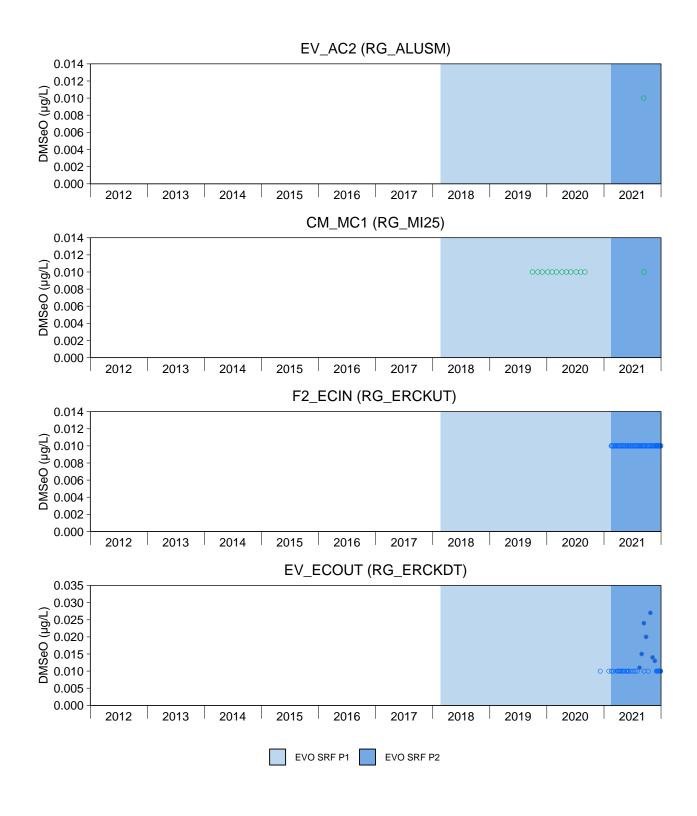


Figure D.11: Time Series Plots for Dimethylselenoxide from EVO LAEMP Areas, 2012 to 2021

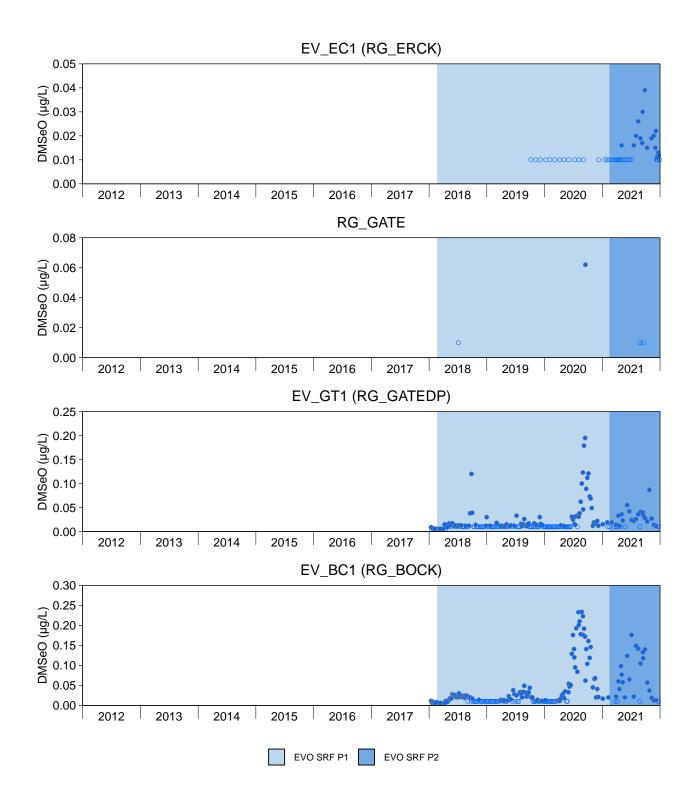


Figure D.11: Time Series Plots for Dimethylselenoxide from EVO LAEMP Areas, 2012 to 2021

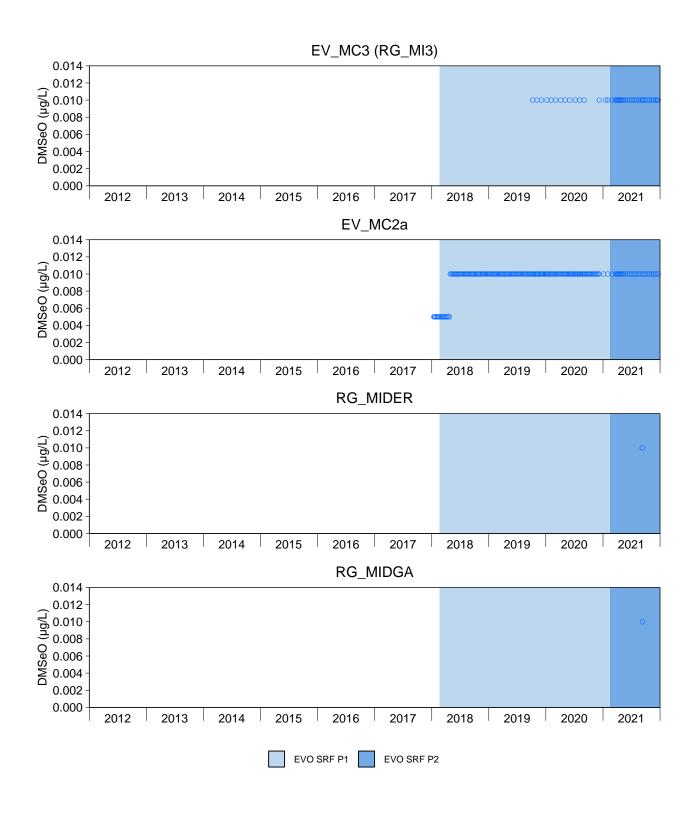


Figure D.11: Time Series Plots for Dimethylselenoxide from EVO LAEMP Areas, 2012 to 2021

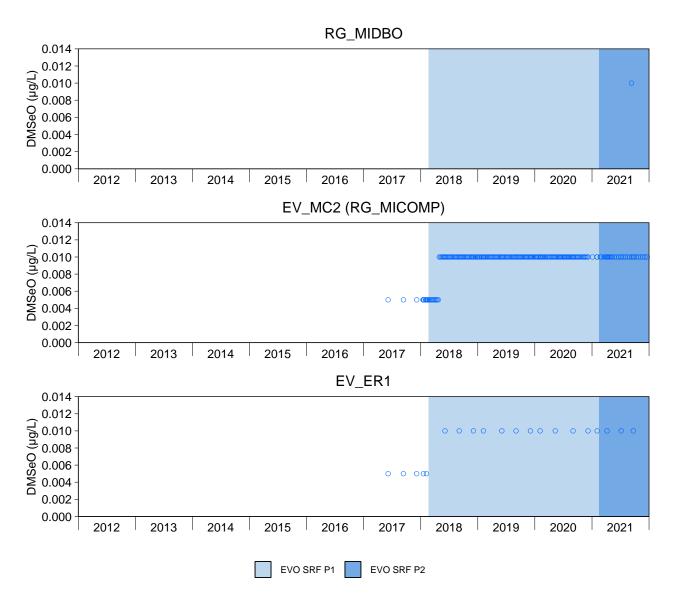


Figure D.11: Time Series Plots for Dimethylselenoxide from EVO LAEMP Areas, 2012 to 2021

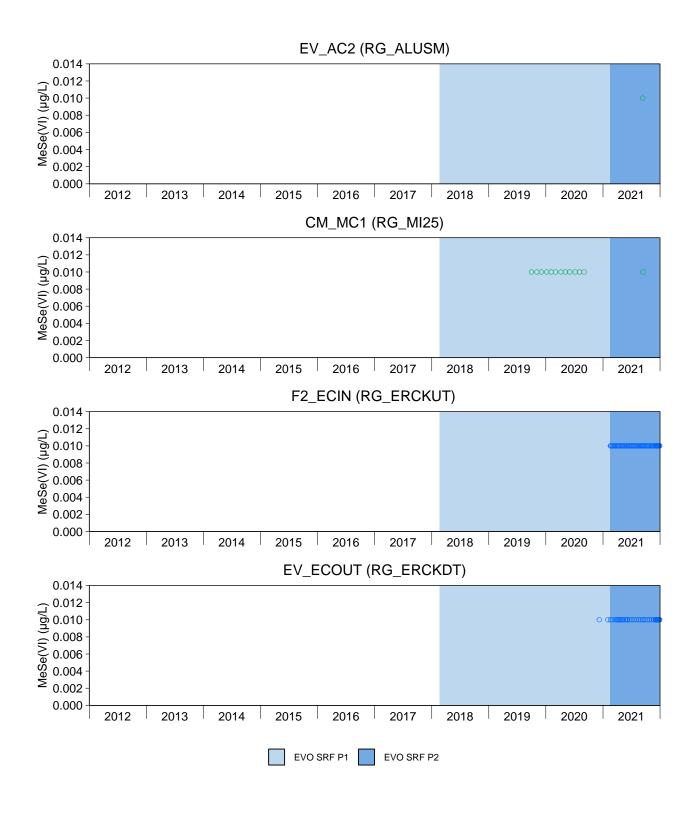


Figure D.12: Time Series Plots for Methaneselenonic Acid from EVO LAEMP Areas, 2012 to 2021

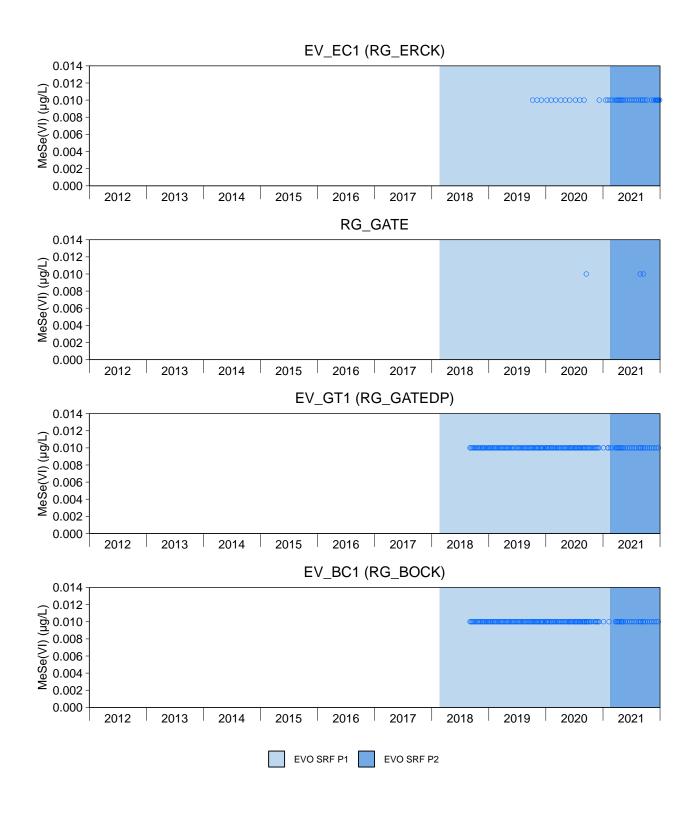


Figure D.12: Time Series Plots for Methaneselenonic Acid from EVO LAEMP Areas, 2012 to 2021

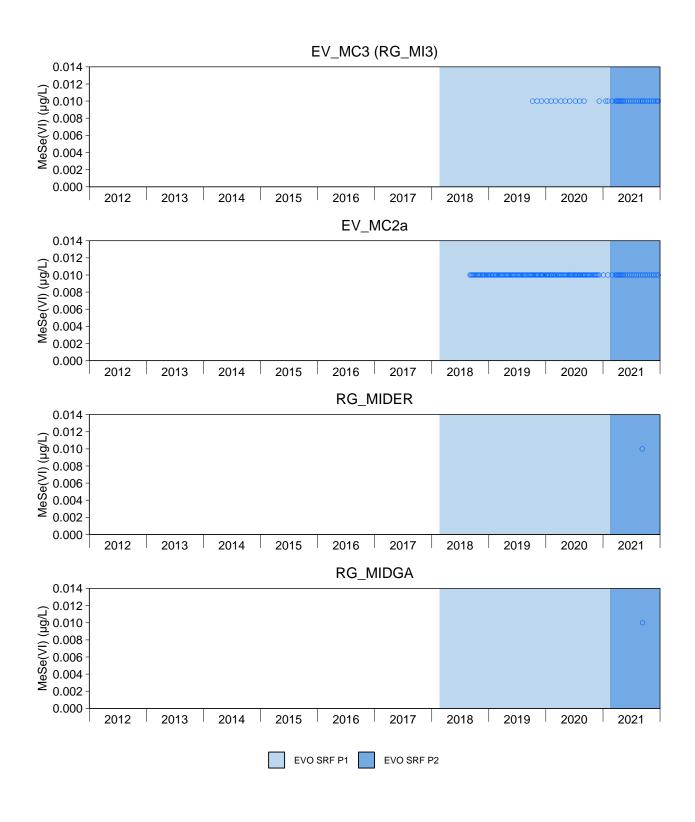


Figure D.12: Time Series Plots for Methaneselenonic Acid from EVO LAEMP Areas, 2012 to 2021

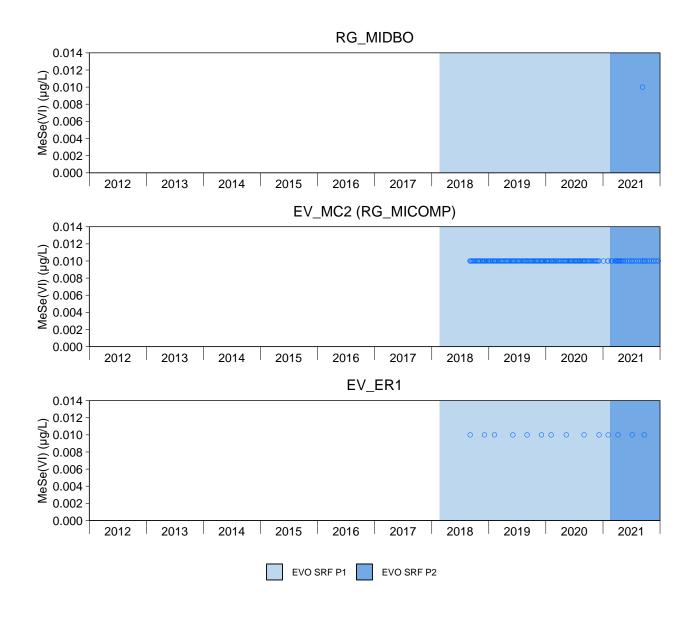


Figure D.12: Time Series Plots for Methaneselenonic Acid from EVO LAEMP Areas, 2012 to 2021

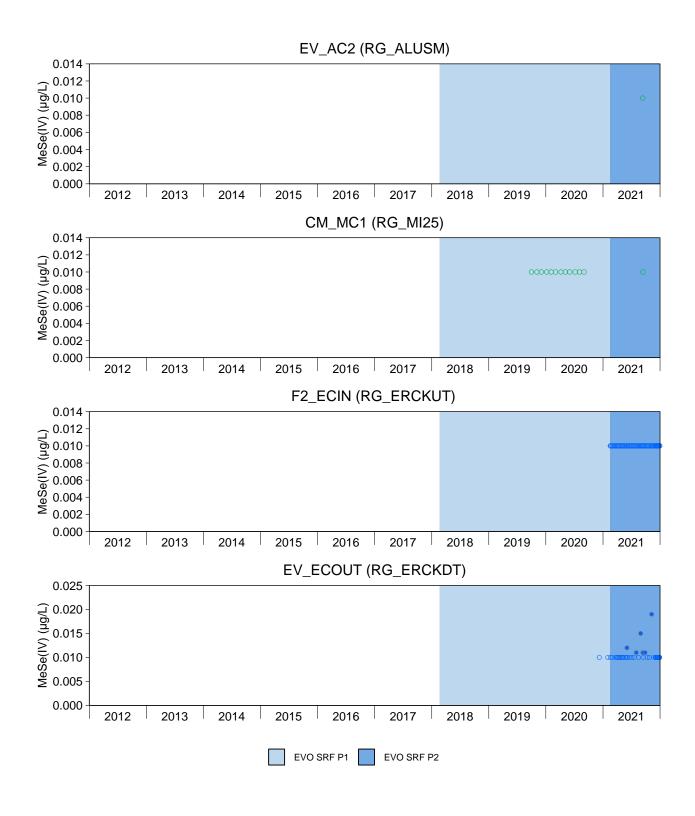


Figure D.13: Time Series Plots for Methylseleninic Acid from EVO LAEMP Areas, 2012 to 2021

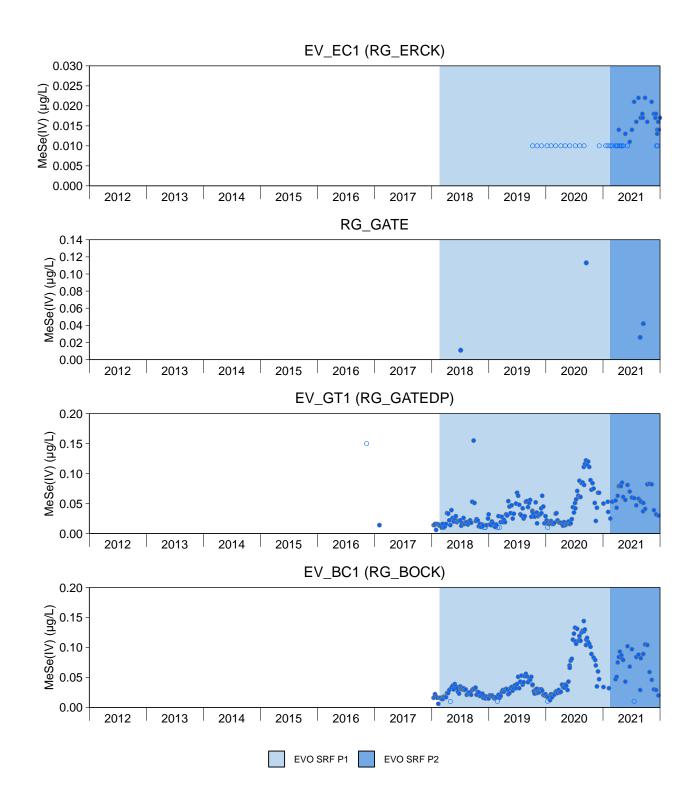


Figure D.13: Time Series Plots for Methylseleninic Acid from EVO LAEMP Areas, 2012 to 2021

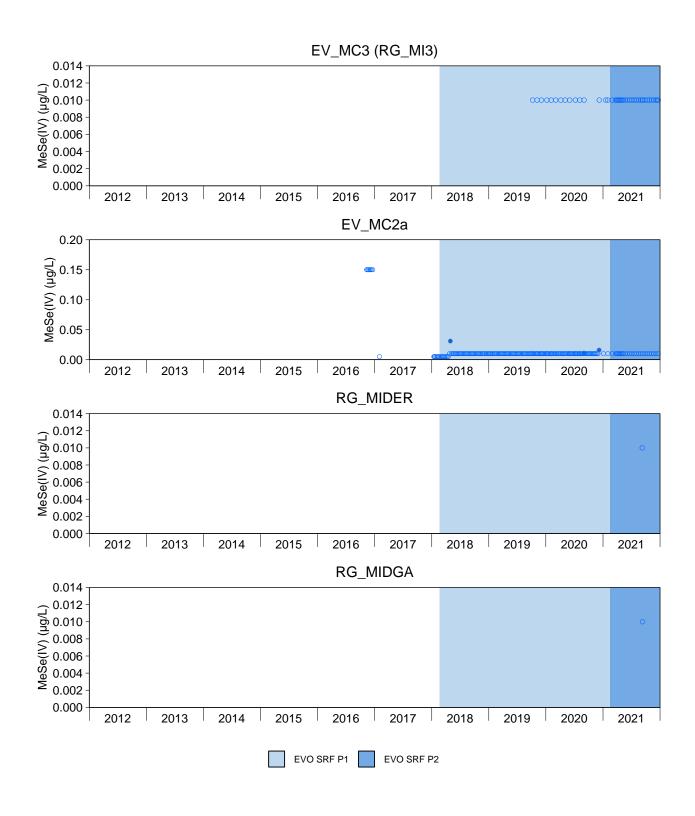


Figure D.13: Time Series Plots for Methylseleninic Acid from EVO LAEMP Areas, 2012 to 2021

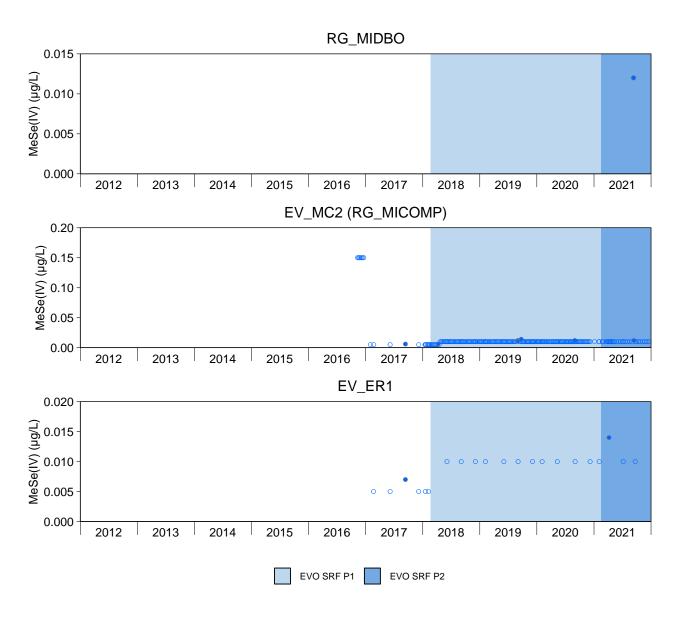


Figure D.13: Time Series Plots for Methylseleninic Acid from EVO LAEMP Areas, 2012 to 2021

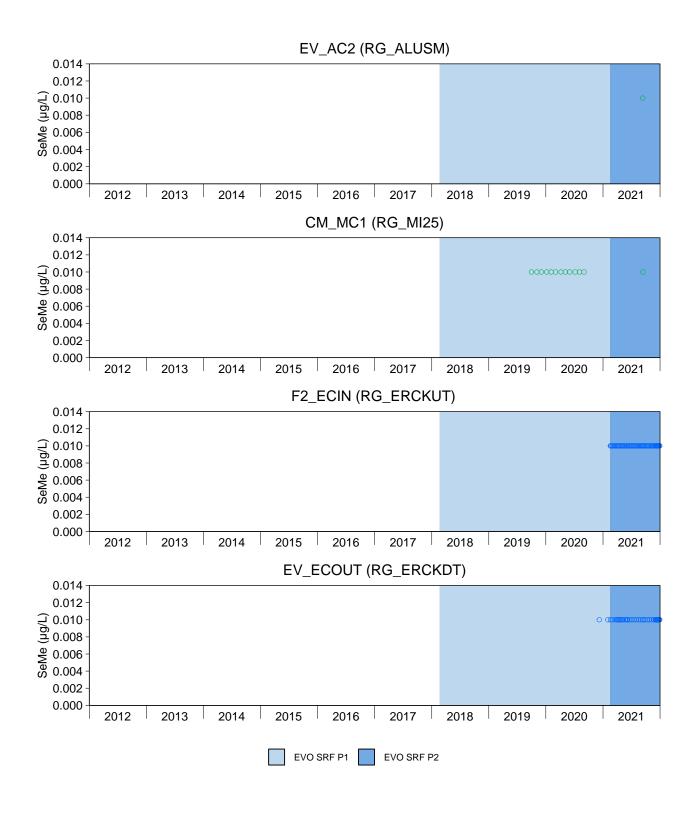


Figure D.14: Time Series Plots for Selenomethionine from EVO LAEMP Areas, 2012 to 2021

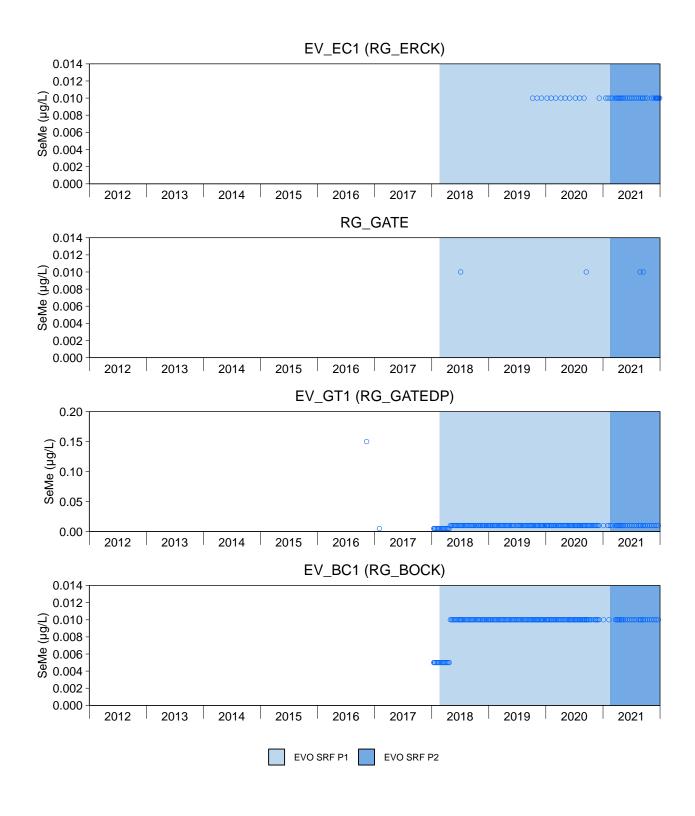


Figure D.14: Time Series Plots for Selenomethionine from EVO LAEMP Areas, 2012 to 2021

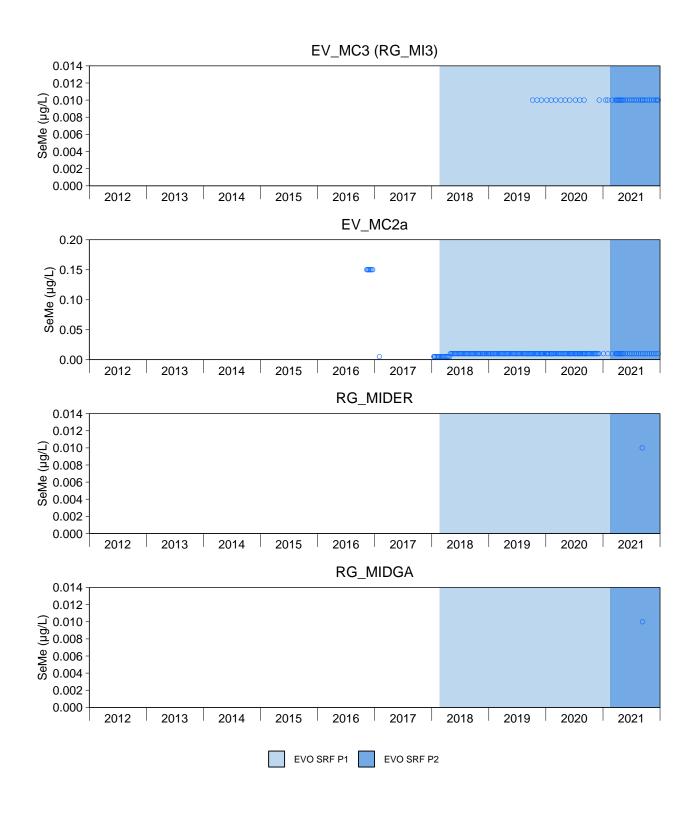


Figure D.14: Time Series Plots for Selenomethionine from EVO LAEMP Areas, 2012 to 2021

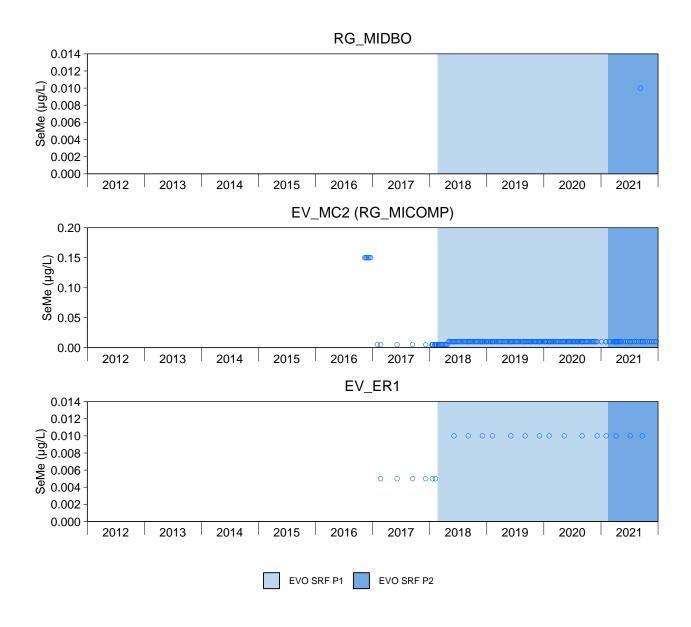


Figure D.14: Time Series Plots for Selenomethionine from EVO LAEMP Areas, 2012 to 2021

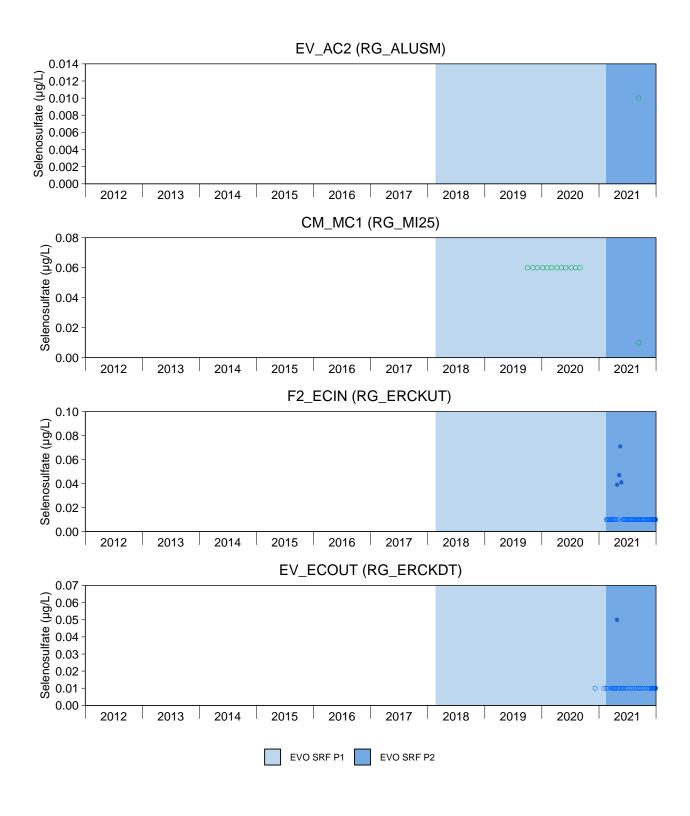


Figure D.15: Time Series Plots for Selenosulfate from EVO LAEMP Areas, 2012 to 2021

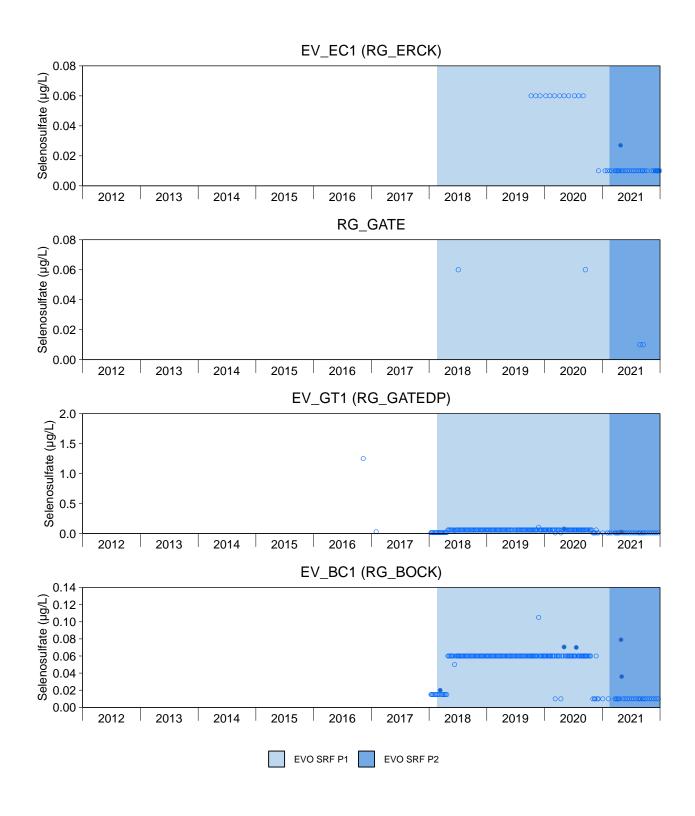


Figure D.15: Time Series Plots for Selenosulfate from EVO LAEMP Areas, 2012 to 2021

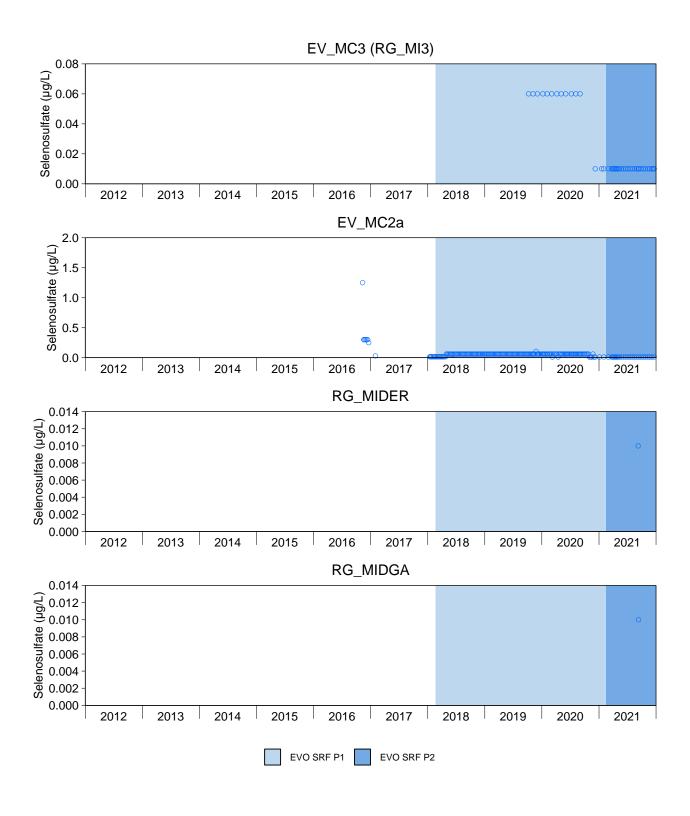


Figure D.15: Time Series Plots for Selenosulfate from EVO LAEMP Areas, 2012 to 2021

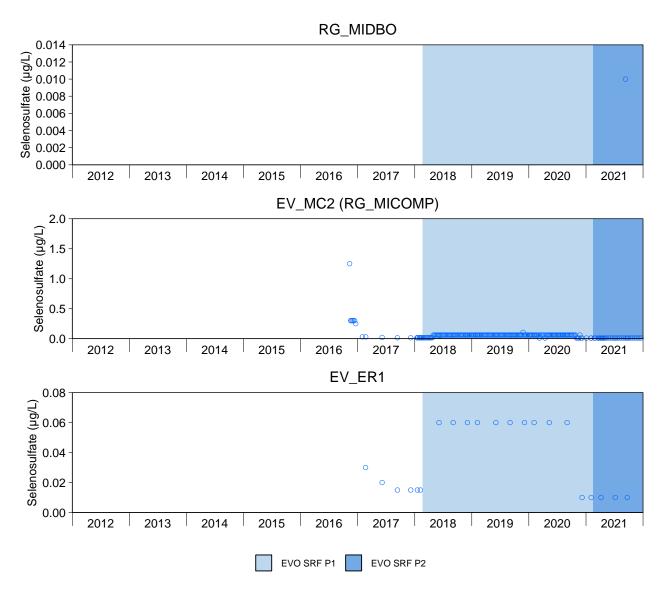


Figure D.15: Time Series Plots for Selenosulfate from EVO LAEMP Areas, 2012 to 2021

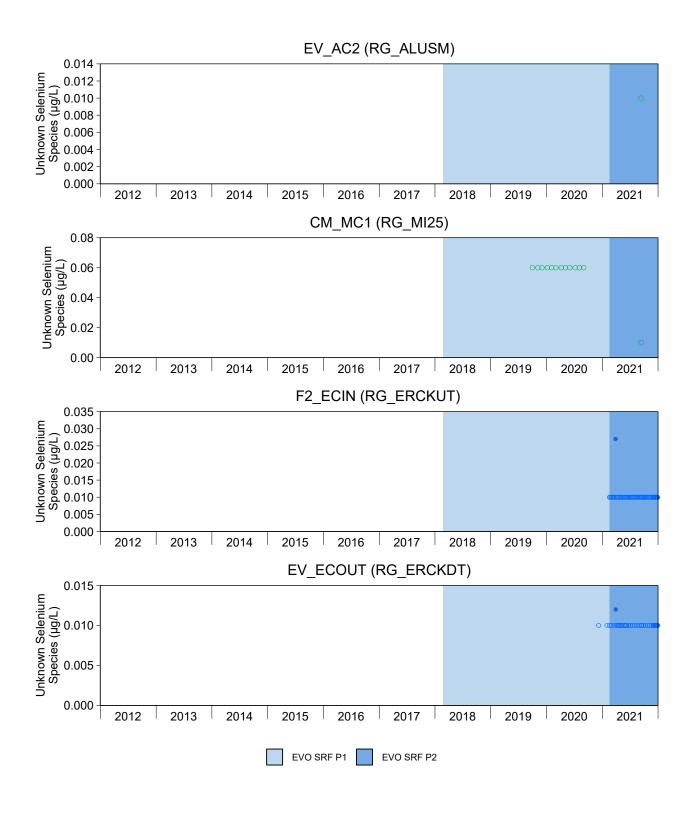


Figure D.16: Time Series Plots for Unknown Selenium Species from EVO LAEMP Areas, 2012 to 2021

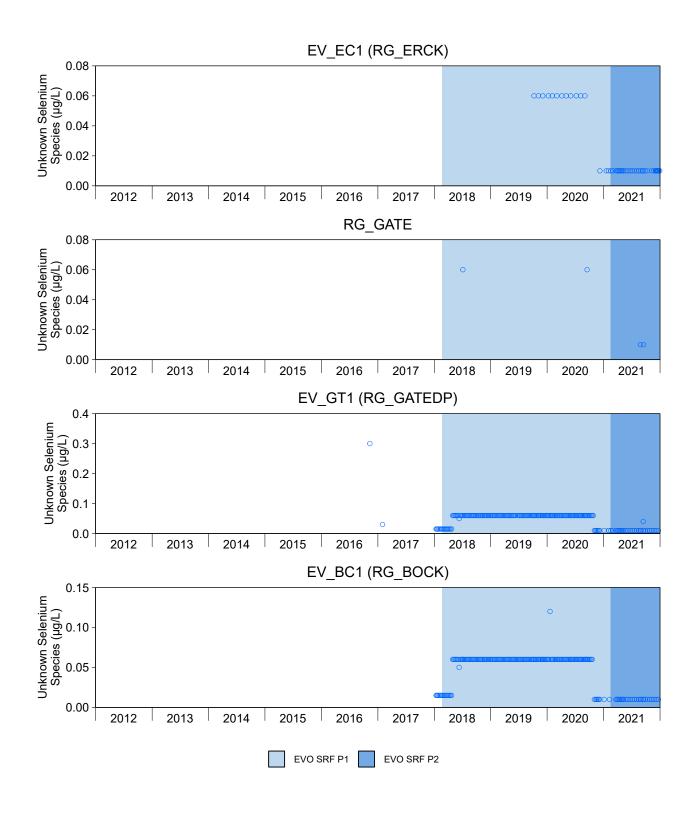


Figure D.16: Time Series Plots for Unknown Selenium Species from EVO LAEMP Areas, 2012 to 2021

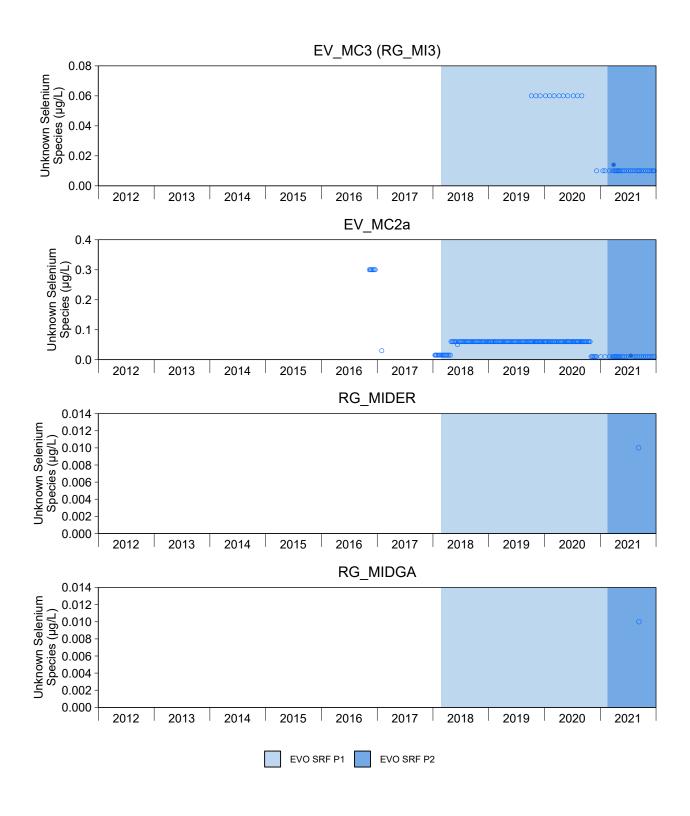


Figure D.16: Time Series Plots for Unknown Selenium Species from EVO LAEMP Areas, 2012 to 2021

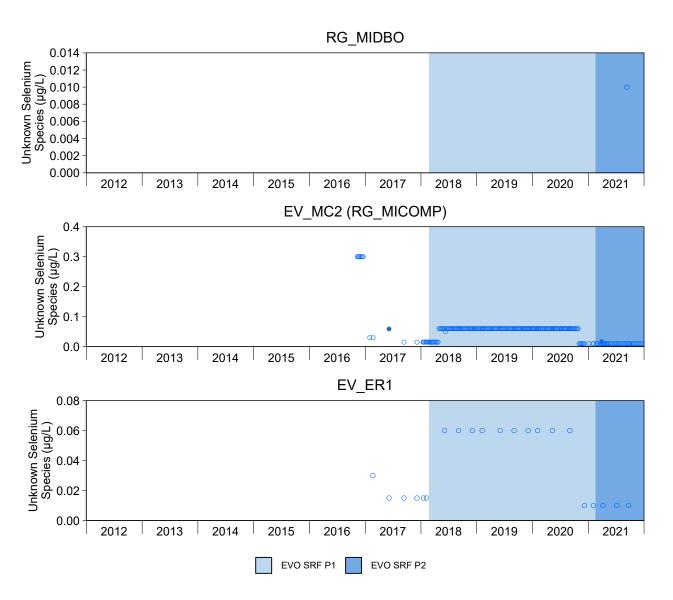


Figure D.16: Time Series Plots for Unknown Selenium Species from EVO LAEMP Areas, 2012 to 2021

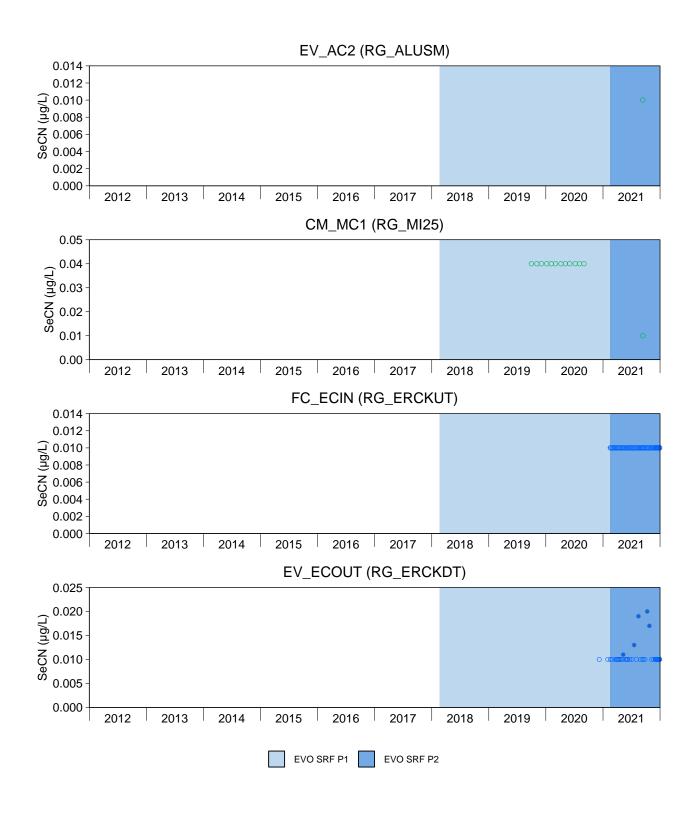


Figure D.17: Time Series Plots for Selenocyanate from EVO LAEMP Areas, 2012 to 2021

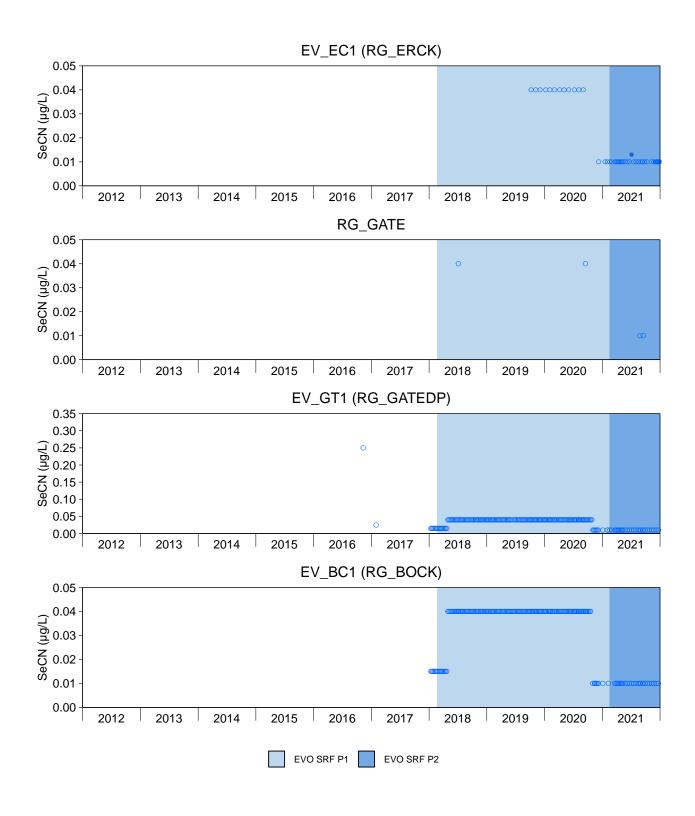


Figure D.17: Time Series Plots for Selenocyanate from EVO LAEMP Areas, 2012 to 2021

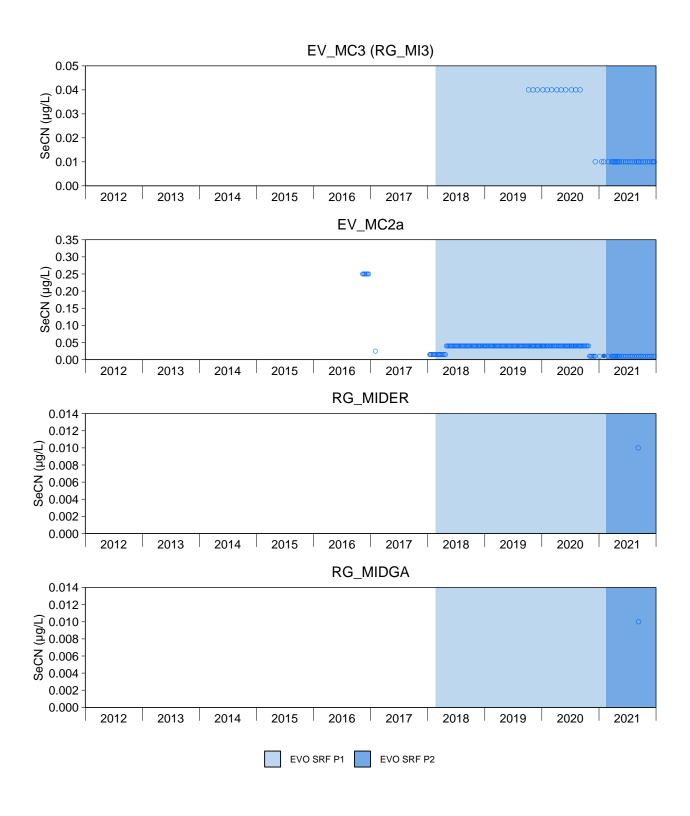


Figure D.17: Time Series Plots for Selenocyanate from EVO LAEMP Areas, 2012 to 2021

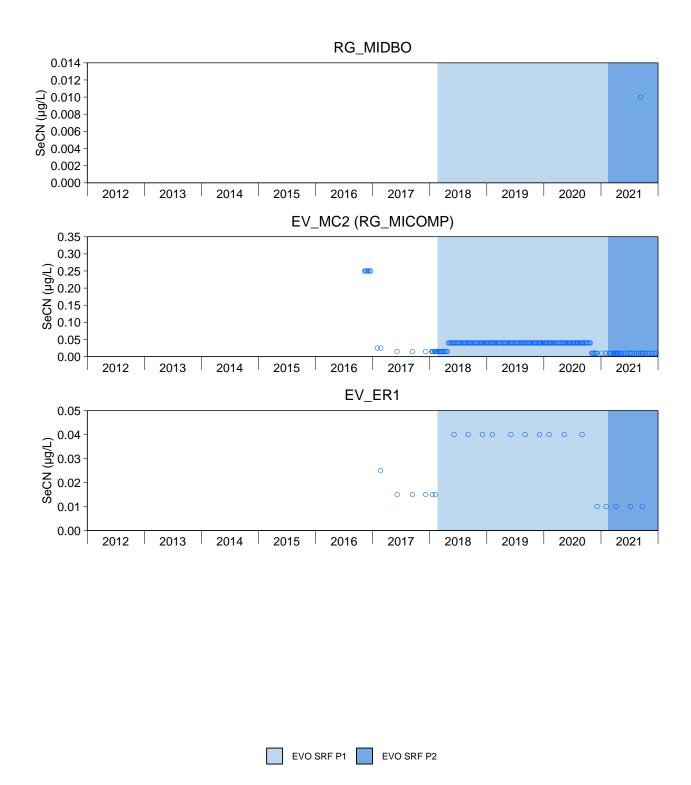


Figure D.17: Time Series Plots for Selenocyanate from EVO LAEMP Areas, 2012 to 2021

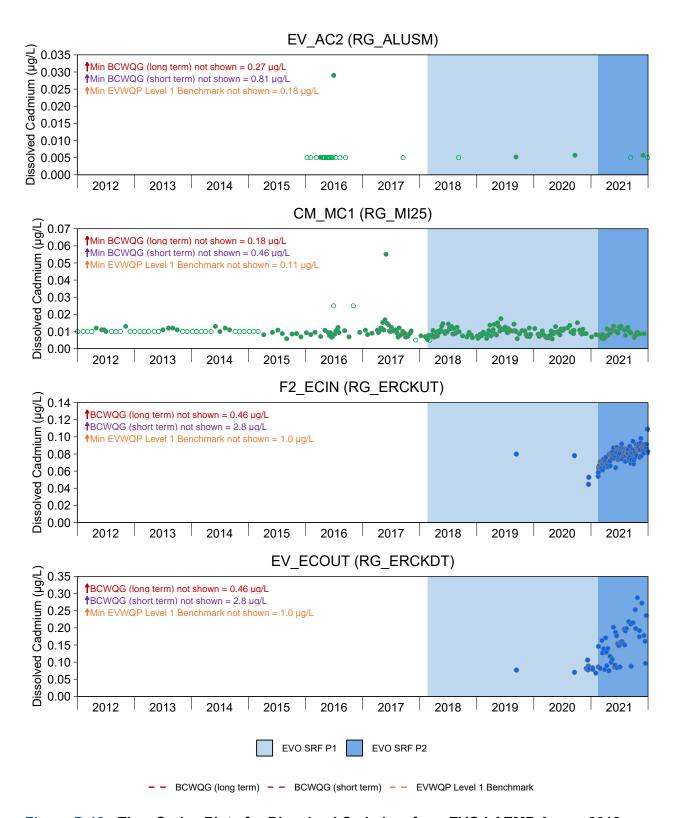


Figure D.18: Time Series Plots for Dissolved Cadmium from EVO LAEMP Areas, 2012 to 2021

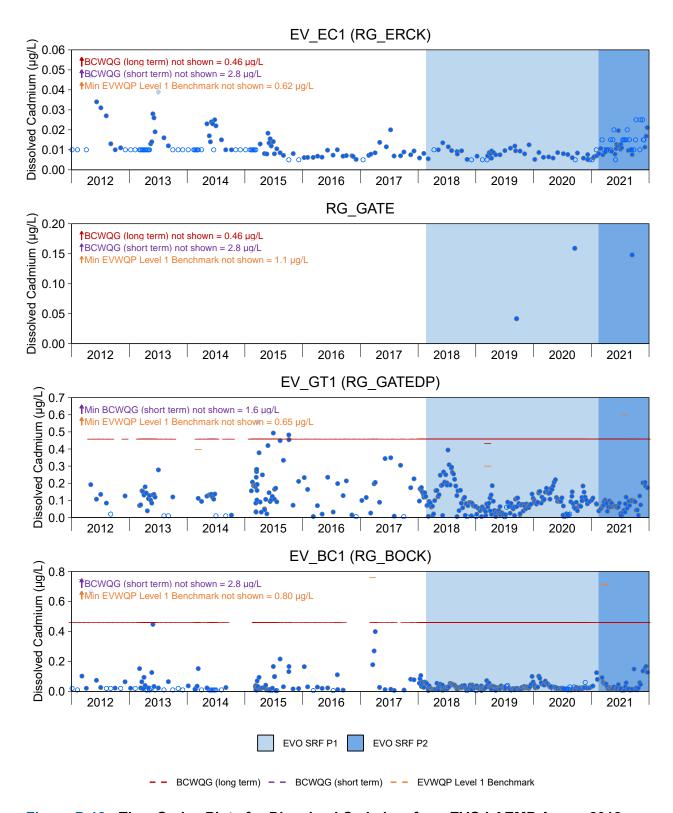


Figure D.18: Time Series Plots for Dissolved Cadmium from EVO LAEMP Areas, 2012 to 2021

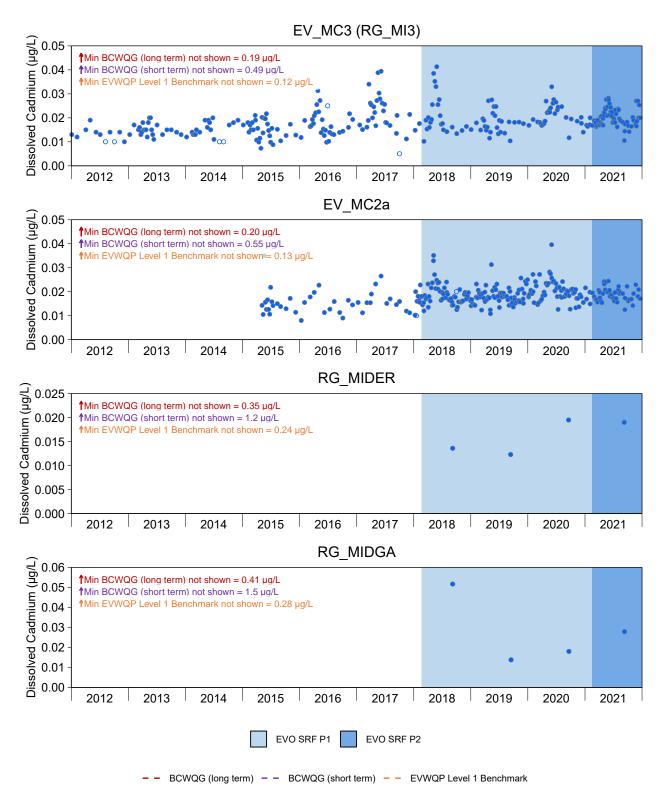


Figure D.18: Time Series Plots for Dissolved Cadmium from EVO LAEMP Areas, 2012 to 2021

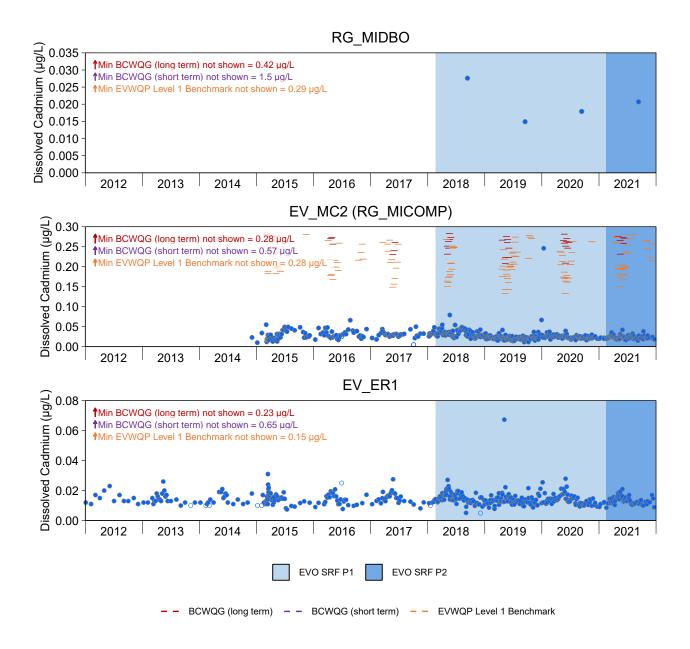


Figure D.18: Time Series Plots for Dissolved Cadmium from EVO LAEMP Areas, 2012 to 2021

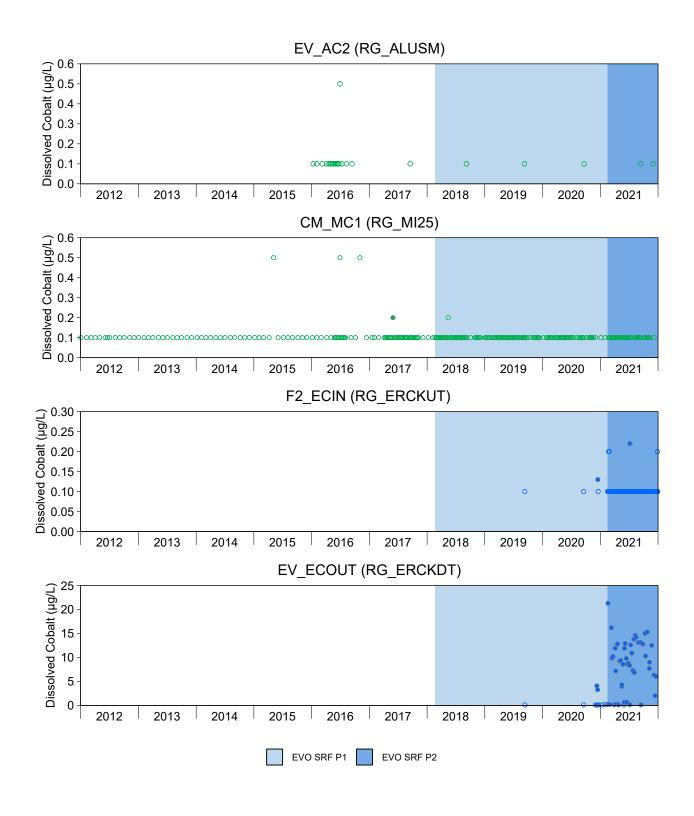


Figure D.19: Time Series Plots for Dissolved Cobalt from EVO LAEMP Areas, 2012 to 2021

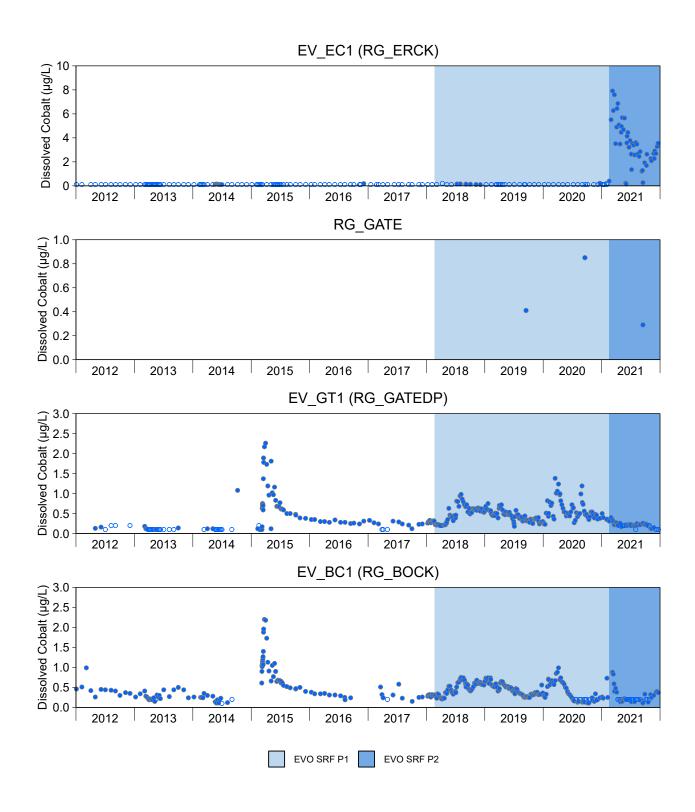


Figure D.19: Time Series Plots for Dissolved Cobalt from EVO LAEMP Areas, 2012 to 2021

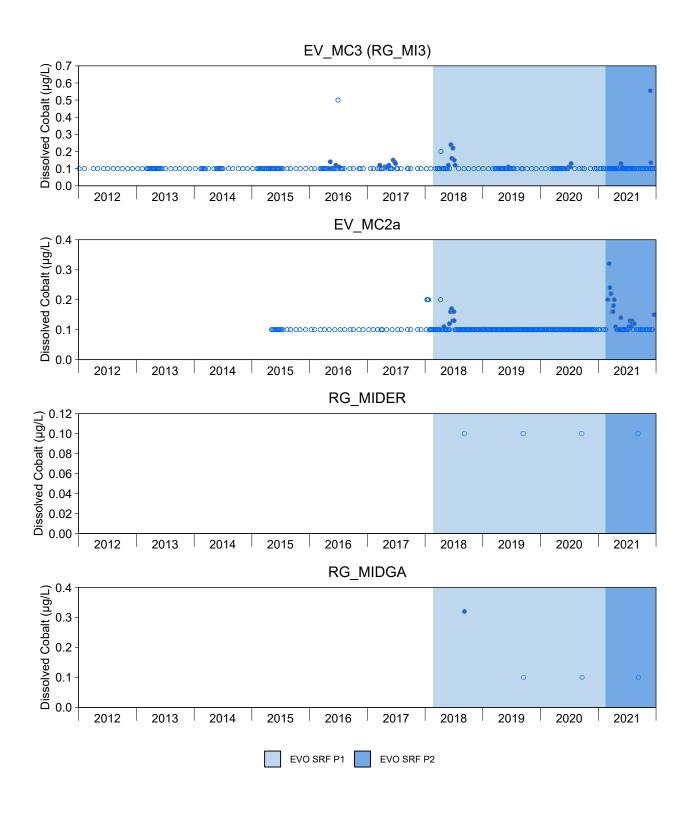


Figure D.19: Time Series Plots for Dissolved Cobalt from EVO LAEMP Areas, 2012 to 2021

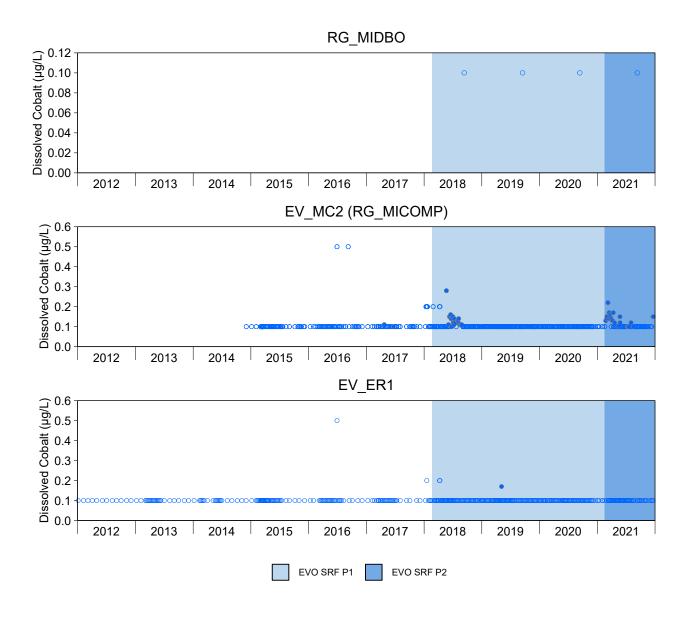


Figure D.19: Time Series Plots for Dissolved Cobalt from EVO LAEMP Areas, 2012 to 2021

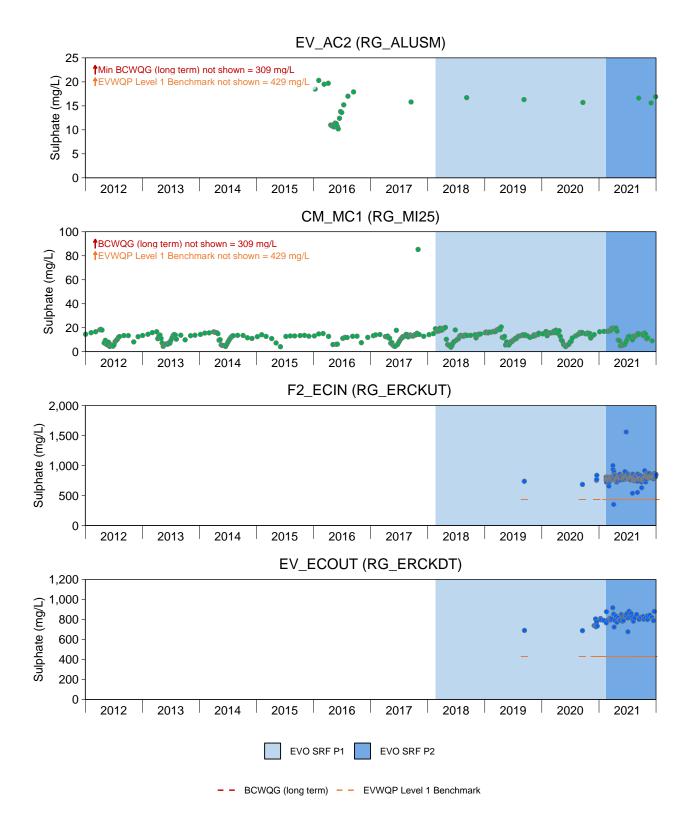


Figure D.20: Time Series Plots for Sulphate from EVO LAEMP Areas, 2012 to 2021

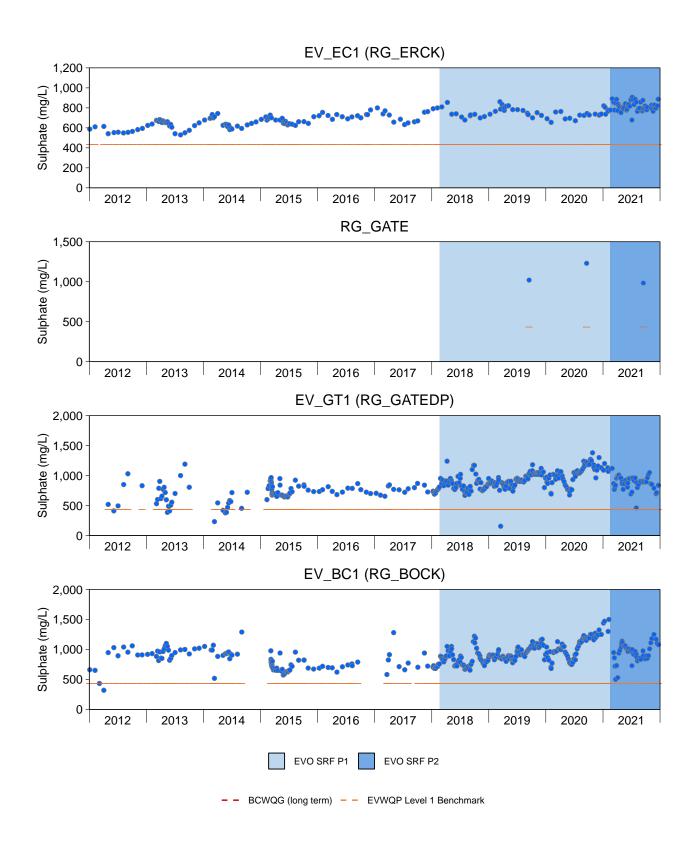


Figure D.20: Time Series Plots for Sulphate from EVO LAEMP Areas, 2012 to 2021

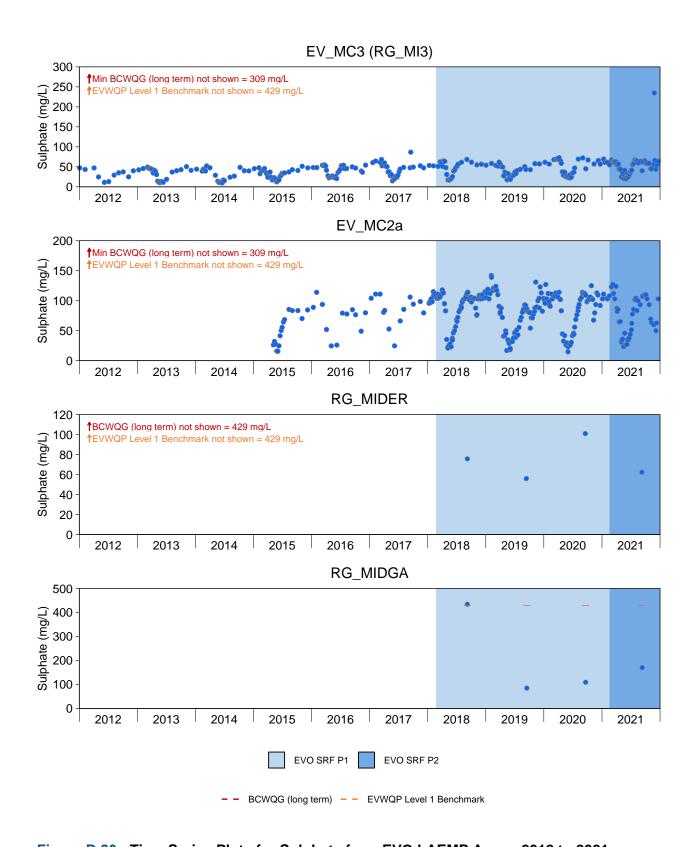


Figure D.20: Time Series Plots for Sulphate from EVO LAEMP Areas, 2012 to 2021

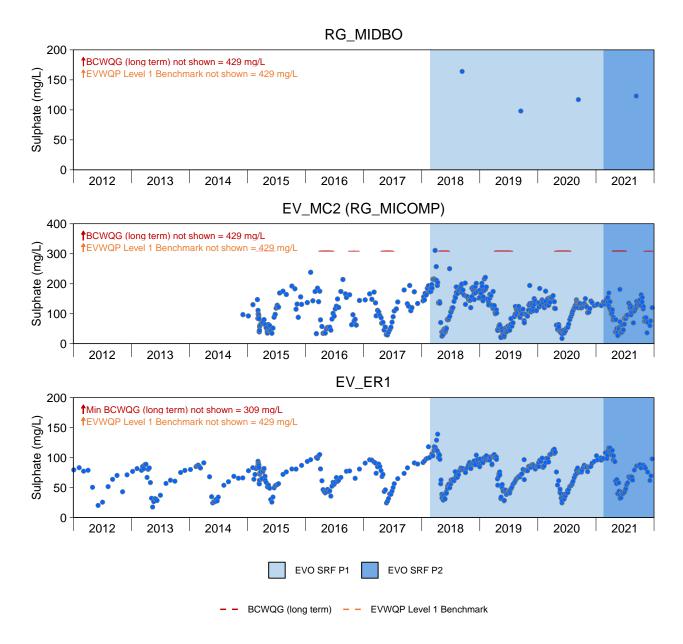


Figure D.20: Time Series Plots for Sulphate from EVO LAEMP Areas, 2012 to 2021

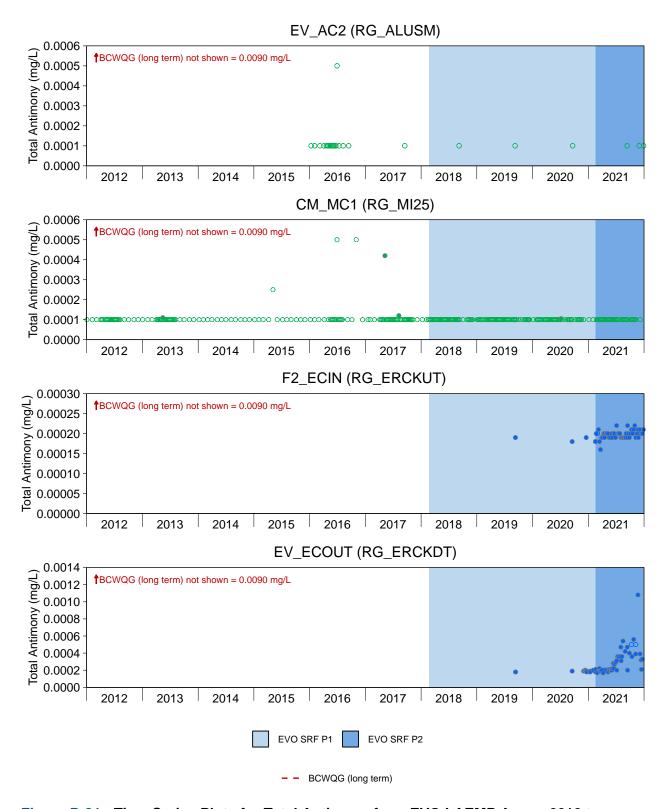


Figure D.21: Time Series Plots for Total Antimony from EVO LAEMP Areas, 2012 to 2021

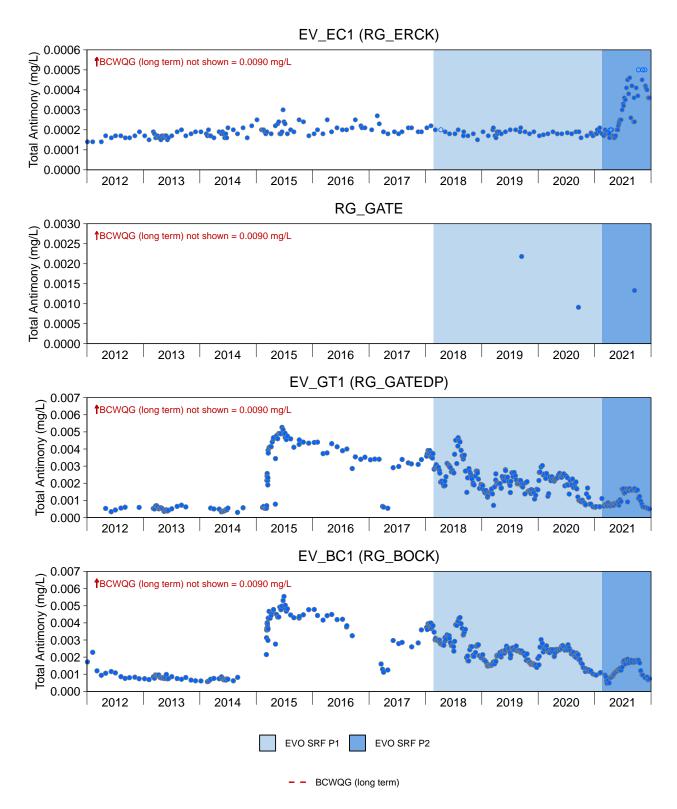


Figure D.21: Time Series Plots for Total Antimony from EVO LAEMP Areas, 2012 to 2021

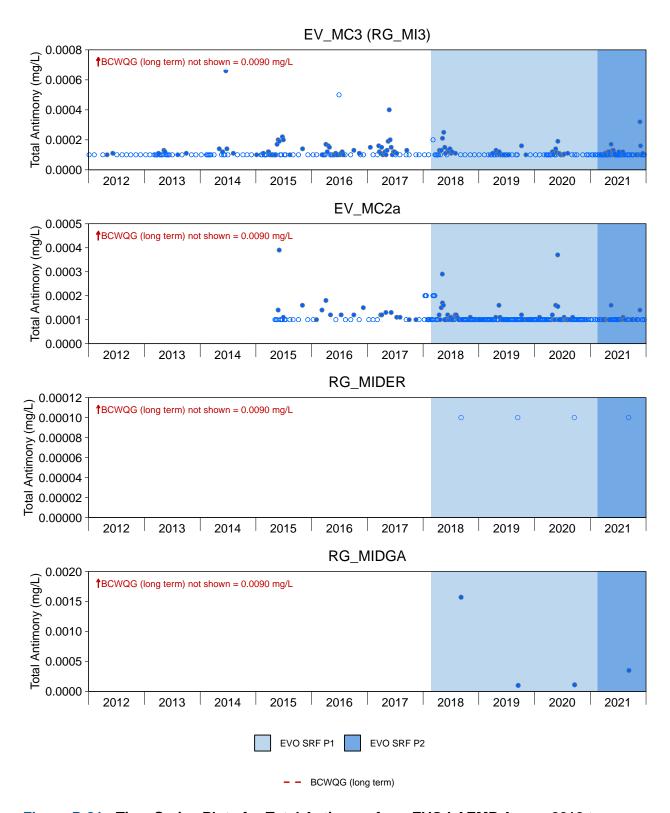


Figure D.21: Time Series Plots for Total Antimony from EVO LAEMP Areas, 2012 to 2021

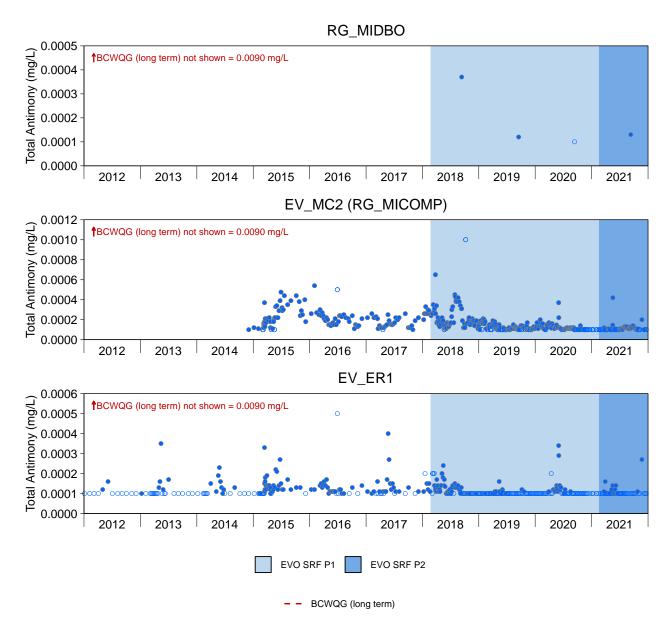


Figure D.21: Time Series Plots for Total Antimony from EVO LAEMP Areas, 2012 to 2021

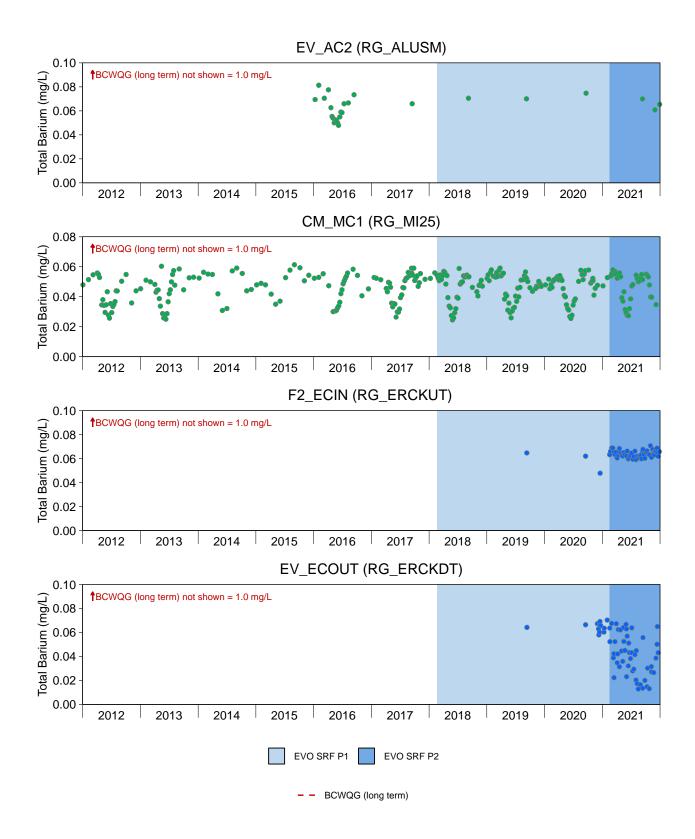


Figure D.22: Time Series Plots for Total Barium from EVO LAEMP Areas, 2012 to 2021

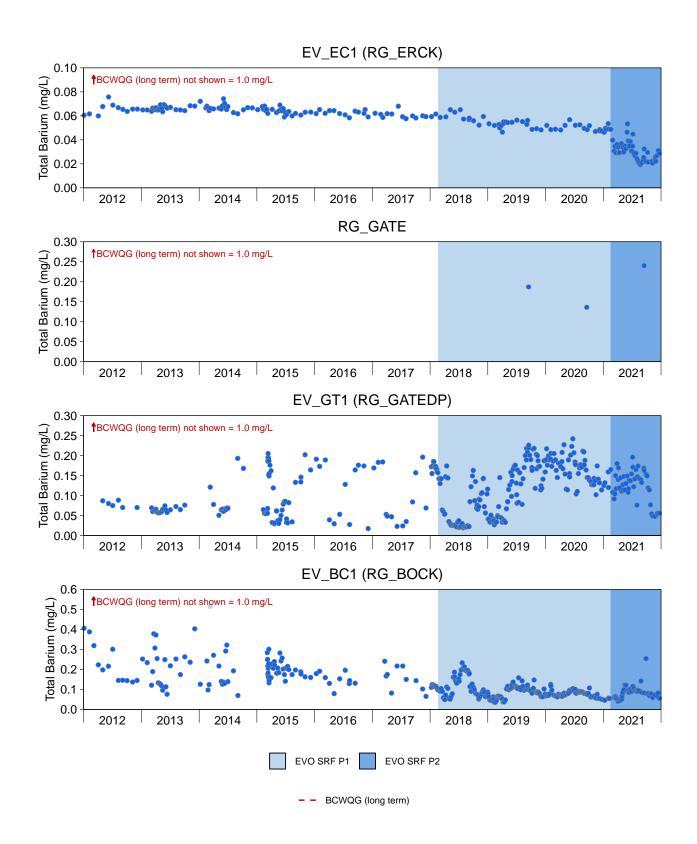


Figure D.22: Time Series Plots for Total Barium from EVO LAEMP Areas, 2012 to 2021

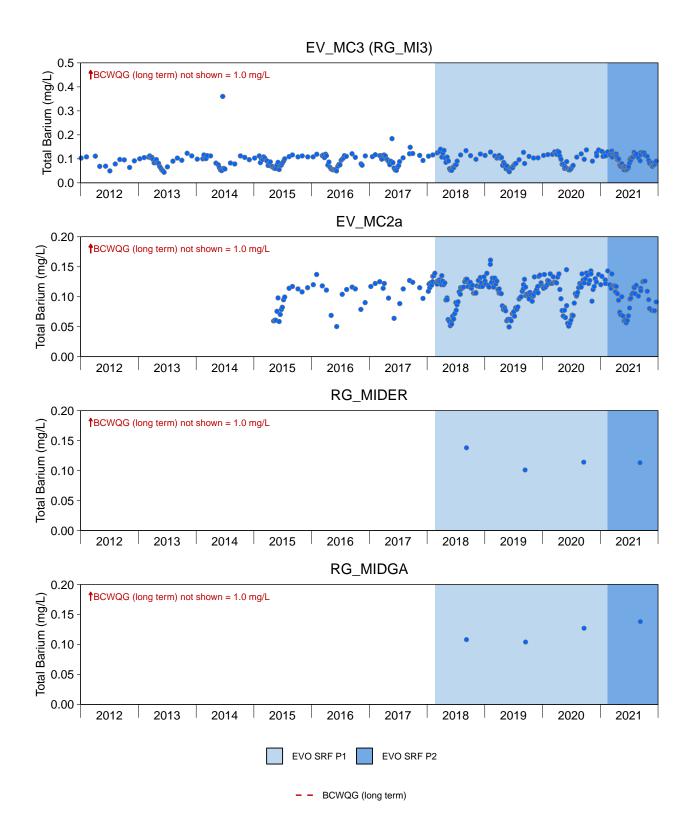


Figure D.22: Time Series Plots for Total Barium from EVO LAEMP Areas, 2012 to 2021

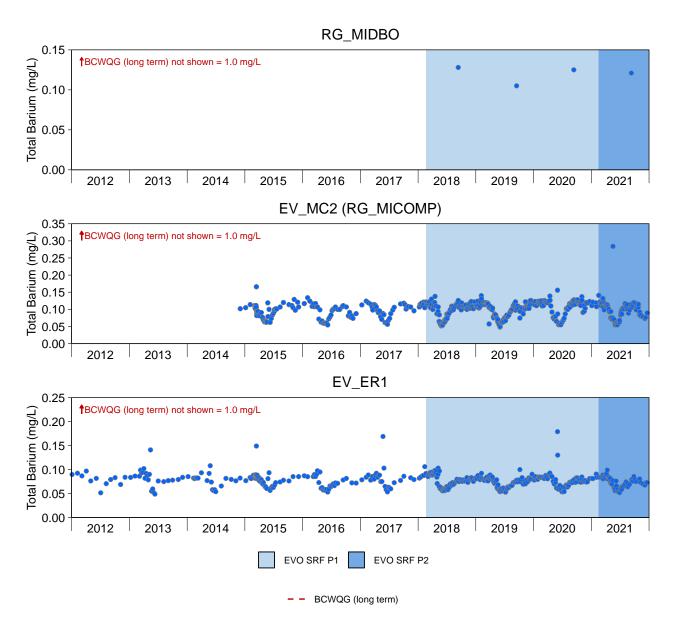


Figure D.22: Time Series Plots for Total Barium from EVO LAEMP Areas, 2012 to 2021

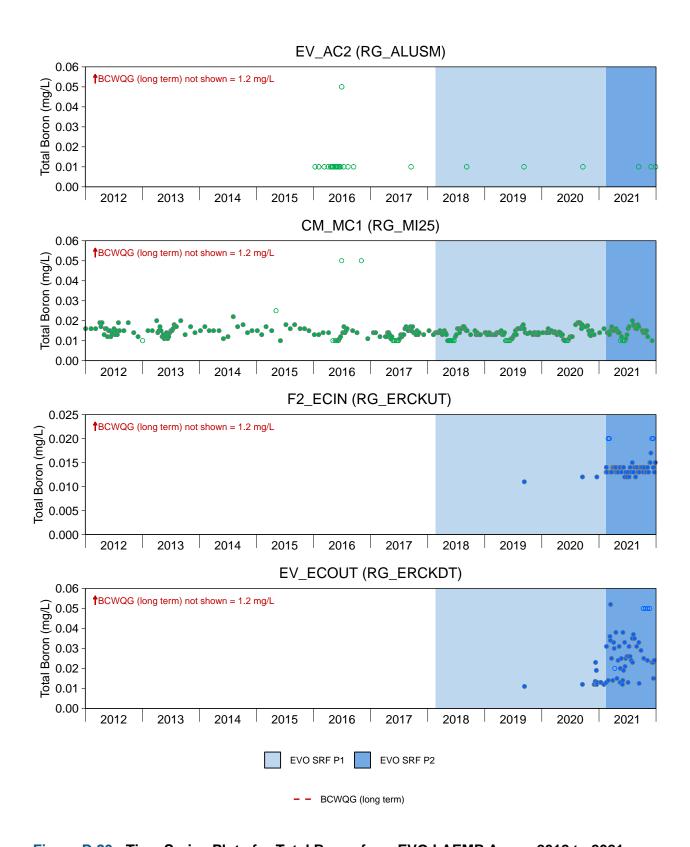


Figure D.23: Time Series Plots for Total Boron from EVO LAEMP Areas, 2012 to 2021

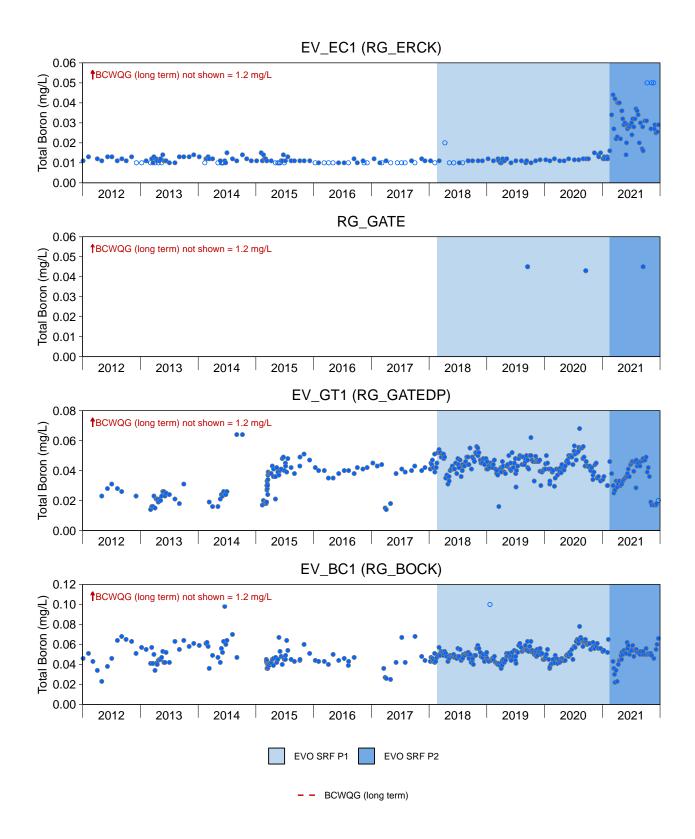


Figure D.23: Time Series Plots for Total Boron from EVO LAEMP Areas, 2012 to 2021

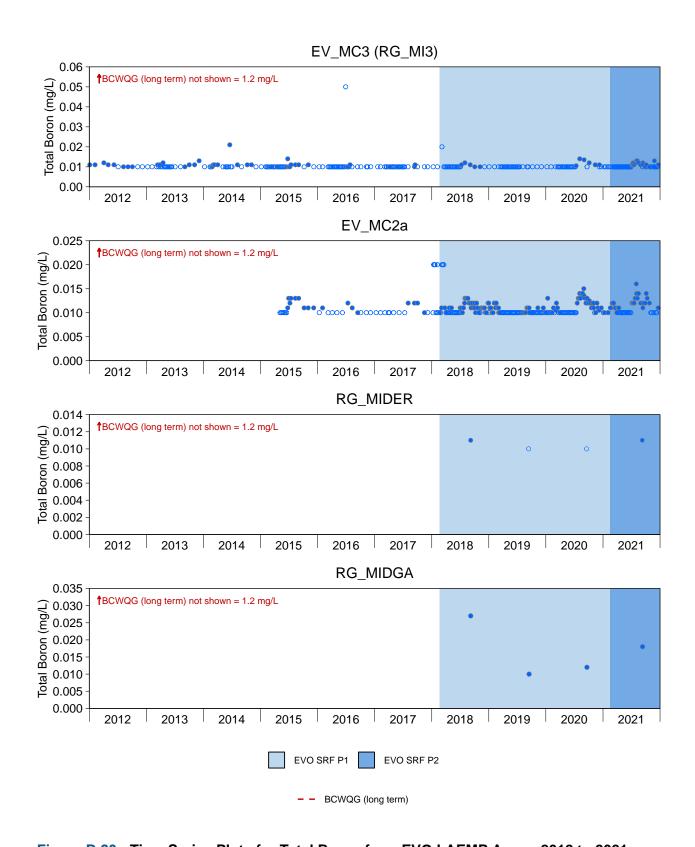


Figure D.23: Time Series Plots for Total Boron from EVO LAEMP Areas, 2012 to 2021

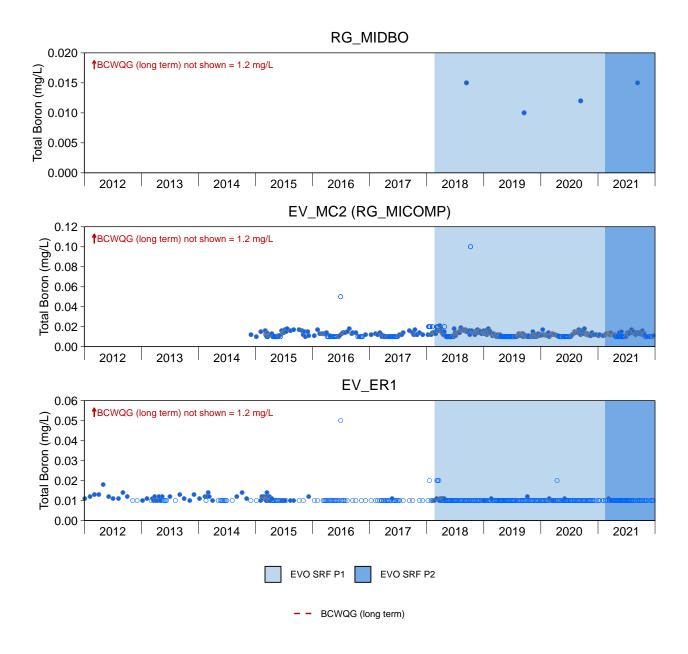


Figure D.23: Time Series Plots for Total Boron from EVO LAEMP Areas, 2012 to 2021

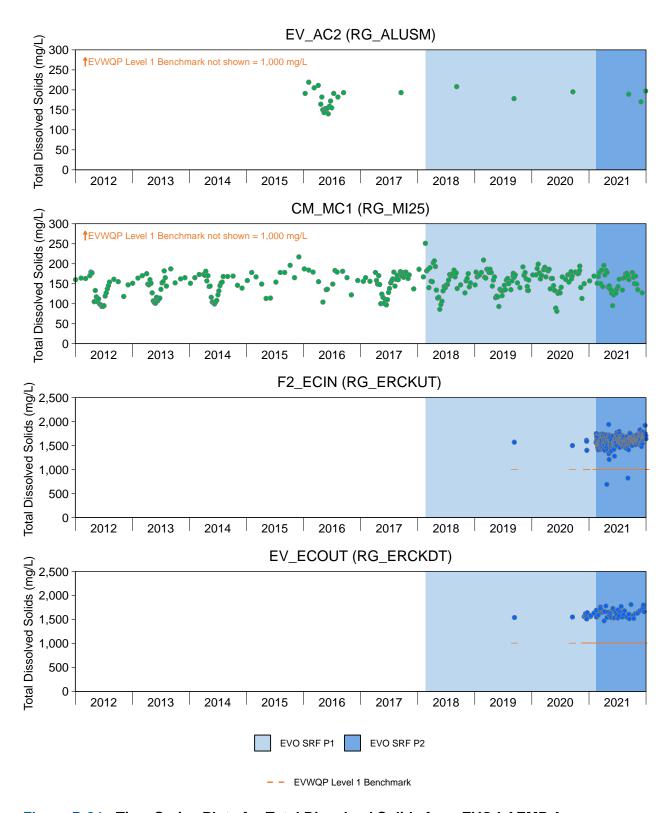


Figure D.24: Time Series Plots for Total Dissolved Solids from EVO LAEMP Areas, 2012 to 2021

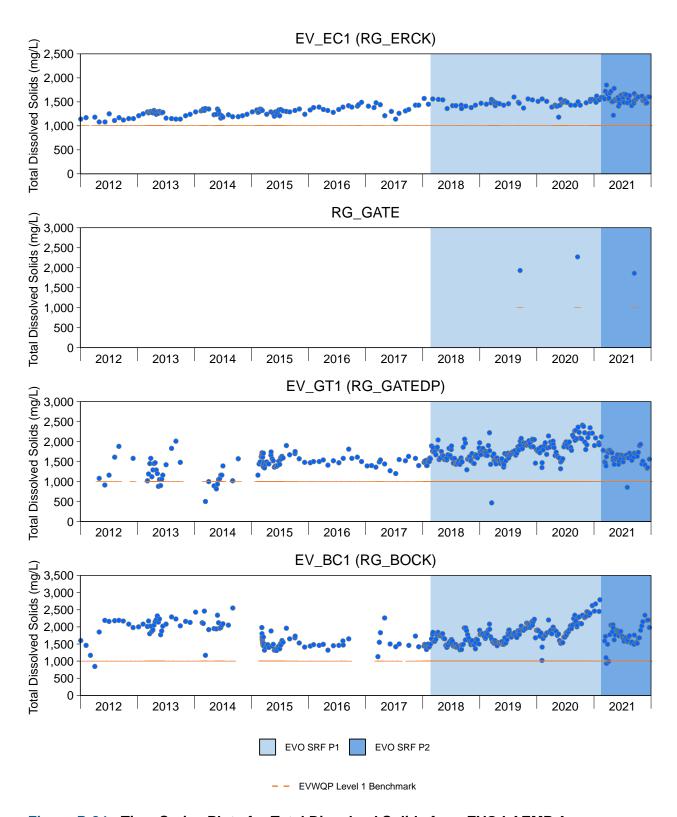


Figure D.24: Time Series Plots for Total Dissolved Solids from EVO LAEMP Areas, 2012 to 2021

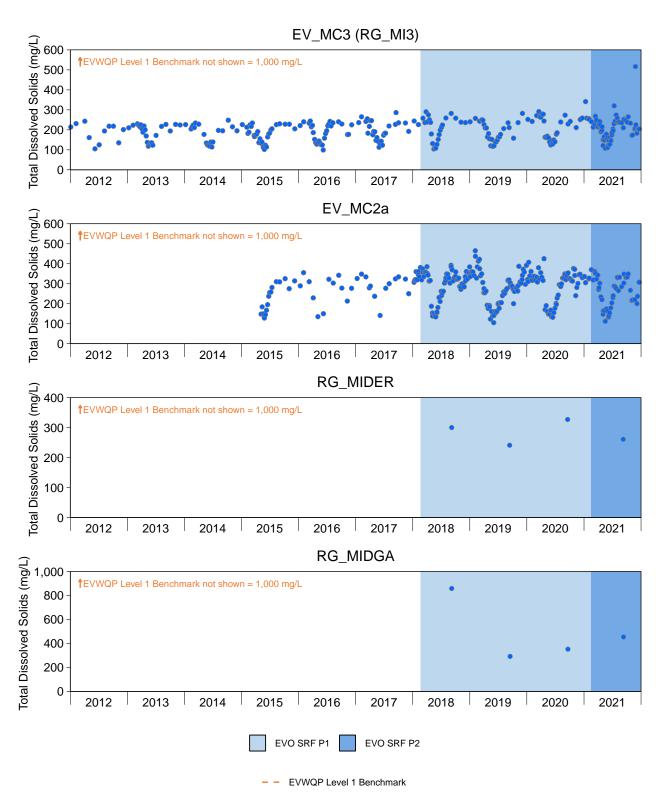


Figure D.24: Time Series Plots for Total Dissolved Solids from EVO LAEMP Areas, 2012 to 2021

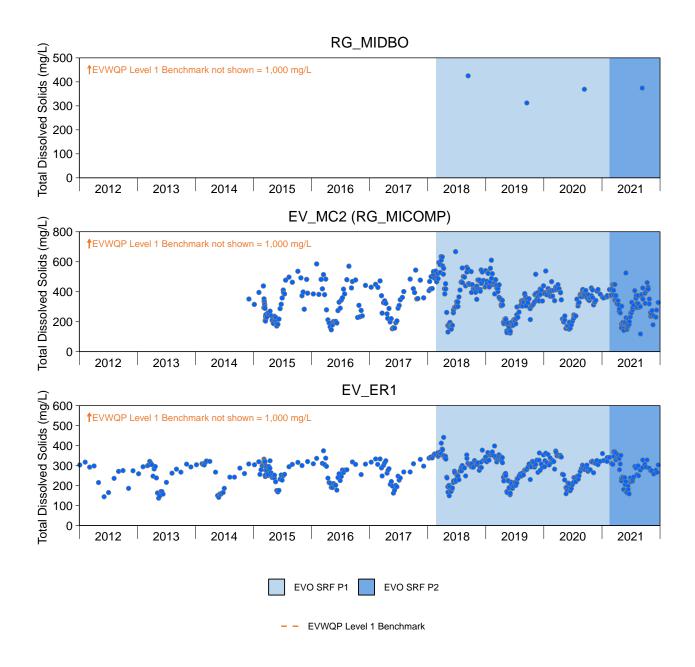


Figure D.24: Time Series Plots for Total Dissolved Solids from EVO LAEMP Areas, 2012 to 2021

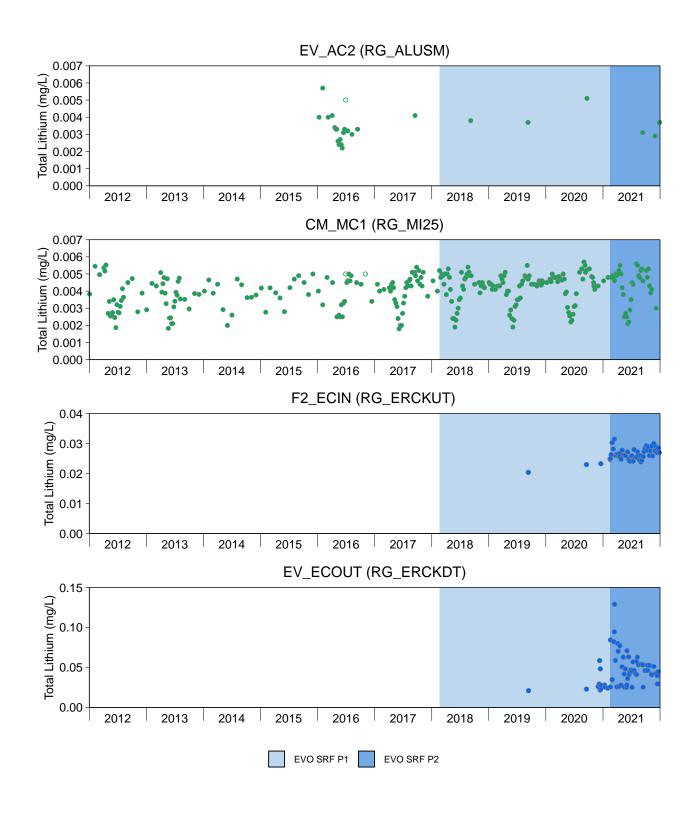


Figure D.25: Time Series Plots for Total Lithium from EVO LAEMP Areas, 2012 to 2021

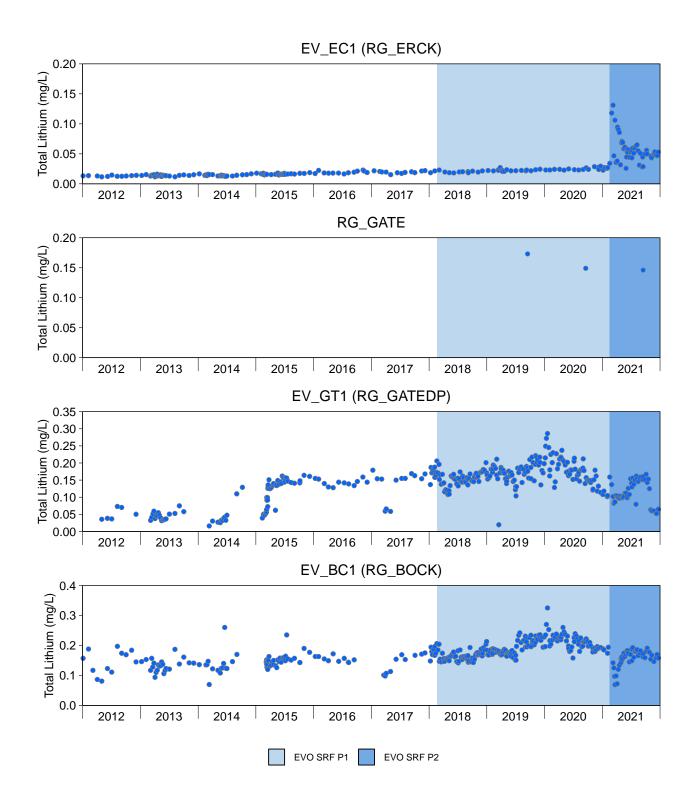


Figure D.25: Time Series Plots for Total Lithium from EVO LAEMP Areas, 2012 to 2021

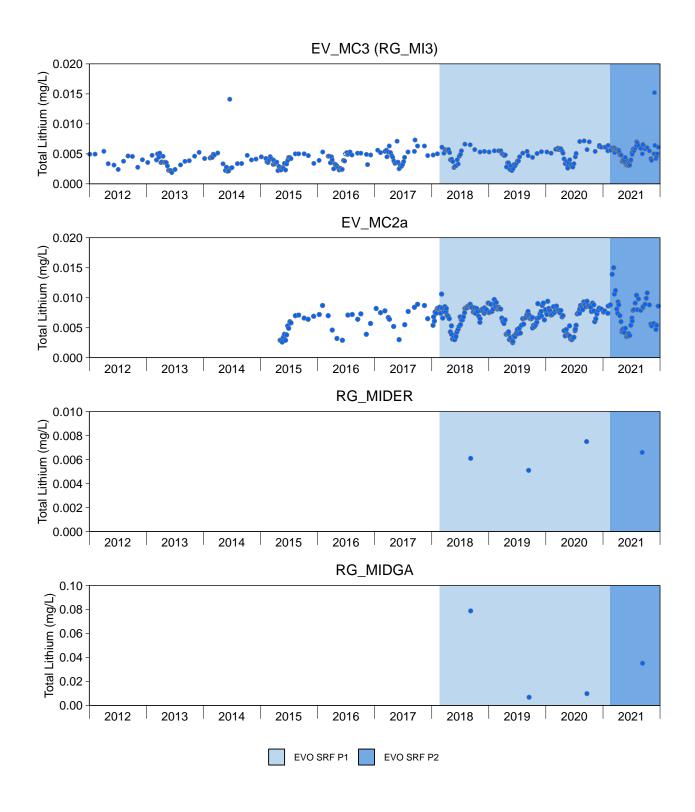


Figure D.25: Time Series Plots for Total Lithium from EVO LAEMP Areas, 2012 to 2021

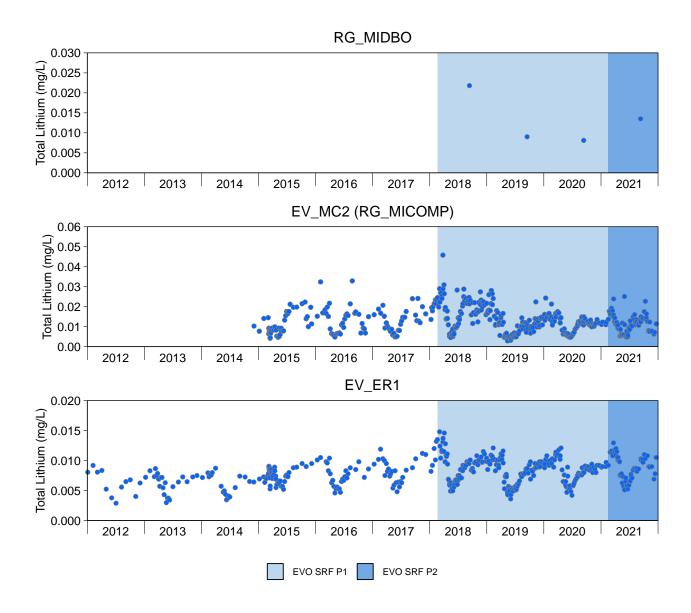


Figure D.25: Time Series Plots for Total Lithium from EVO LAEMP Areas, 2012 to 2021

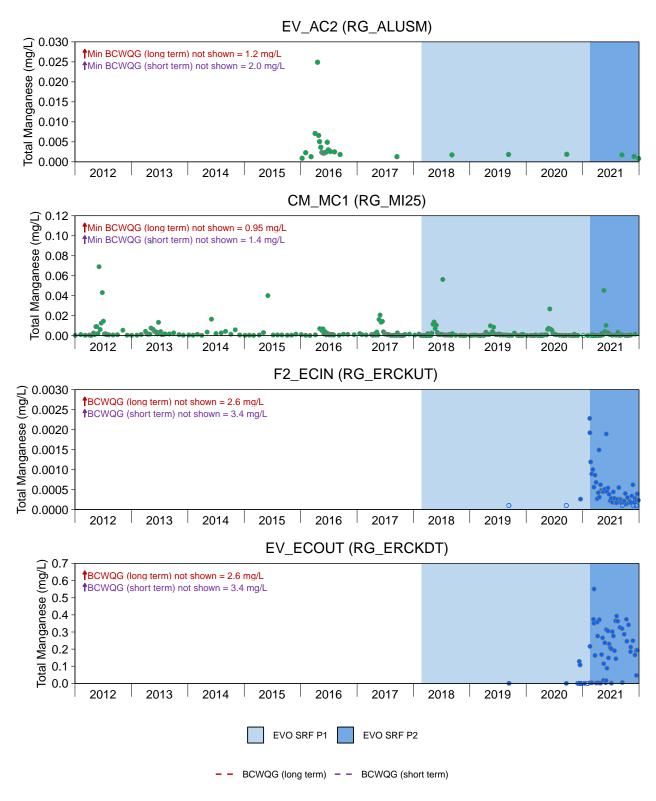


Figure D.26: Time Series Plots for Total Manganese from EVO LAEMP Areas, 2012 to 2021

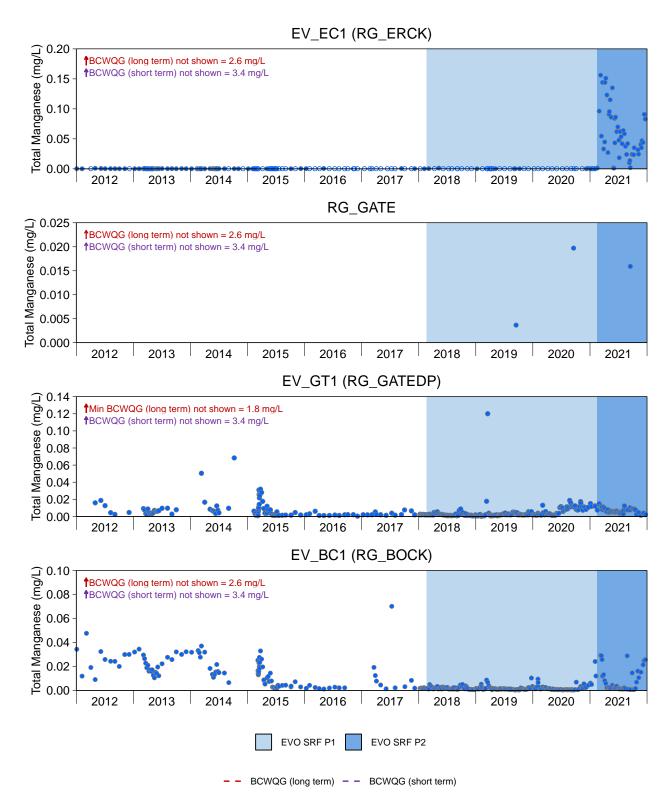


Figure D.26: Time Series Plots for Total Manganese from EVO LAEMP Areas, 2012 to 2021

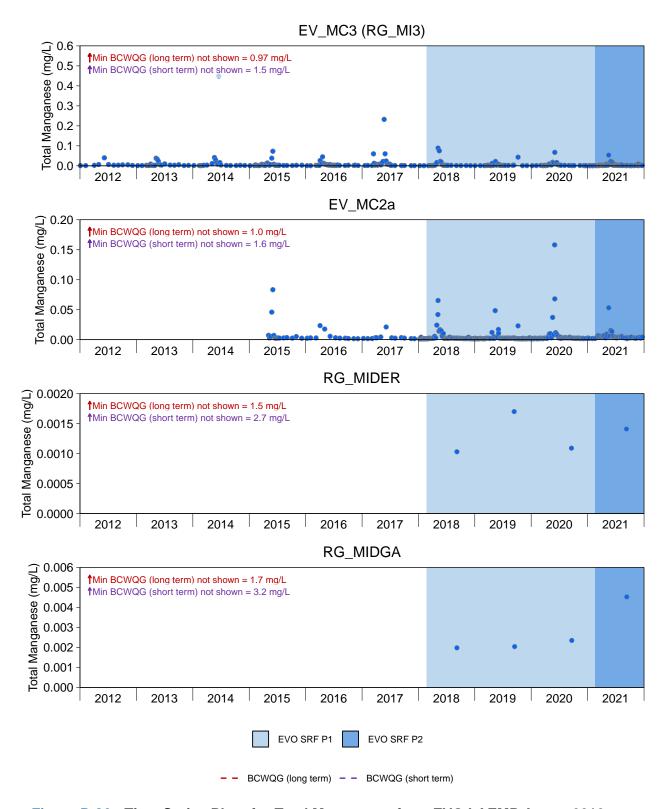


Figure D.26: Time Series Plots for Total Manganese from EVO LAEMP Areas, 2012 to 2021

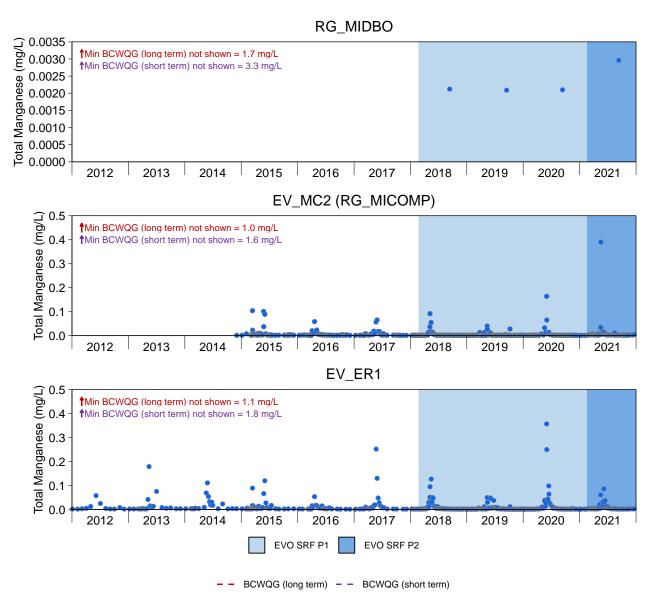


Figure D.26: Time Series Plots for Total Manganese from EVO LAEMP Areas, 2012 to 2021

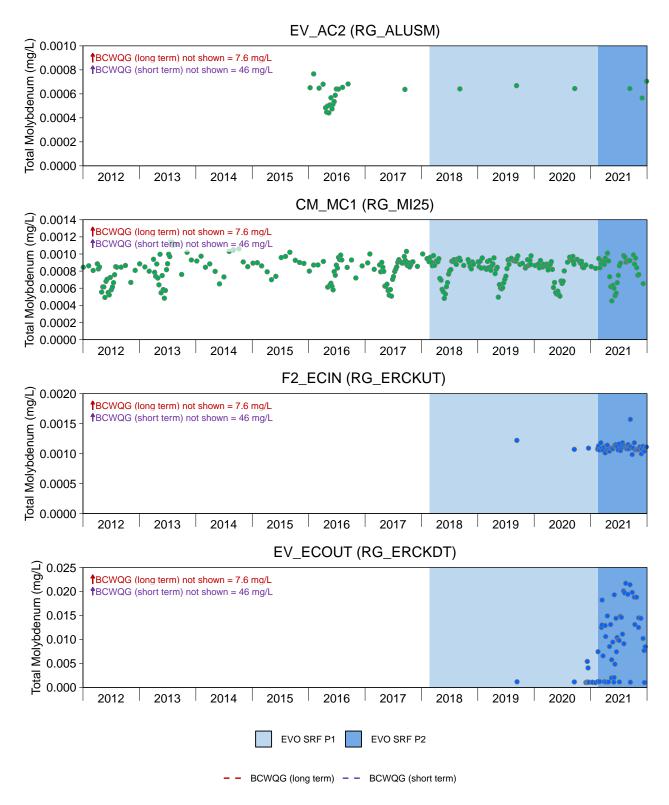


Figure D.27: Time Series Plots for Total Molybdenum from EVO LAEMP Areas, 2012 to 2021

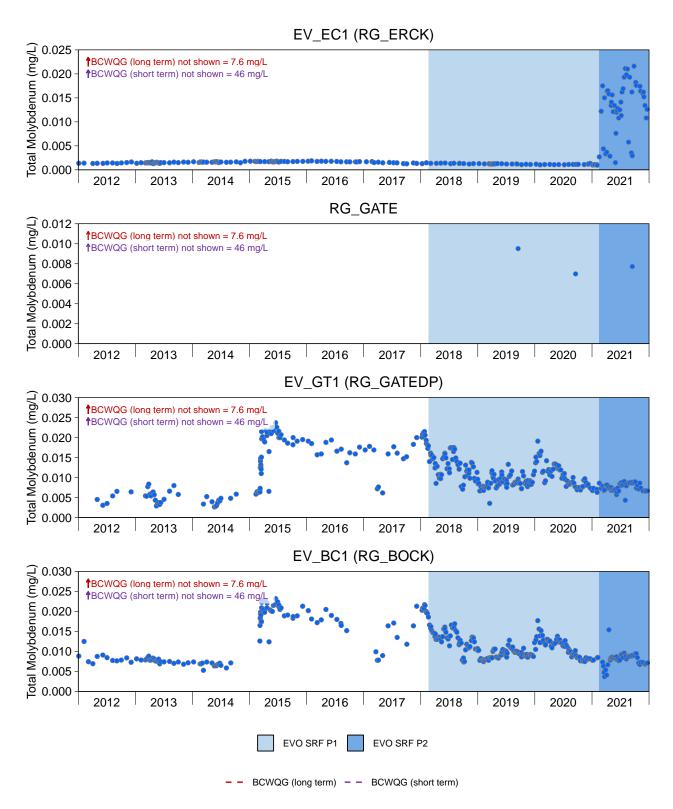


Figure D.27: Time Series Plots for Total Molybdenum from EVO LAEMP Areas, 2012 to 2021

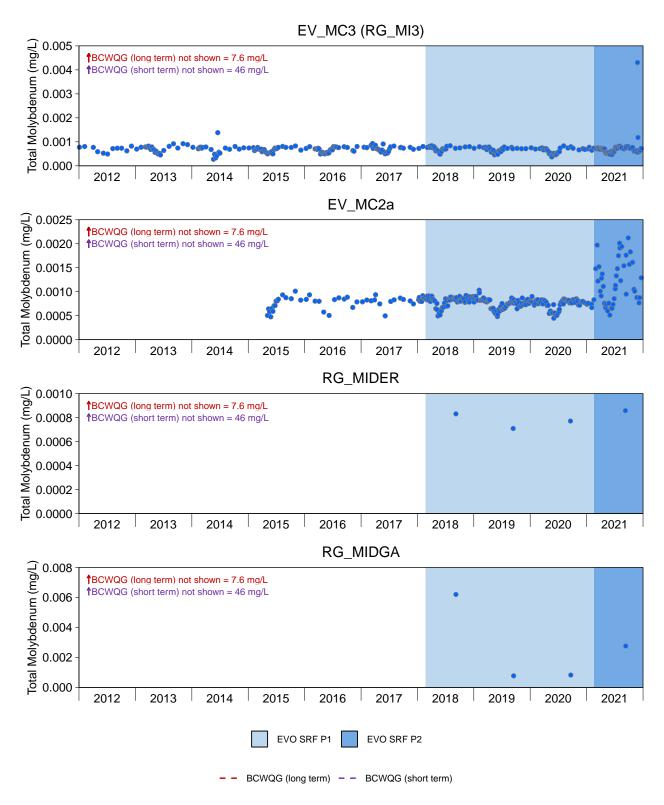


Figure D.27: Time Series Plots for Total Molybdenum from EVO LAEMP Areas, 2012 to 2021

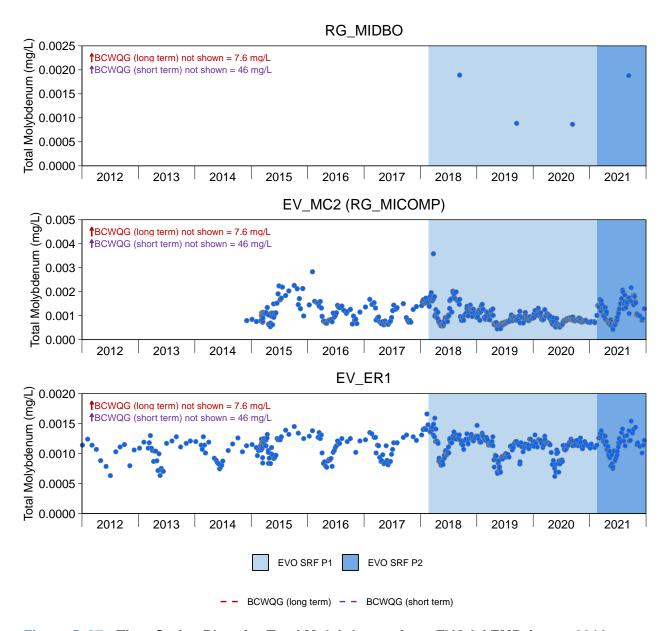


Figure D.27: Time Series Plots for Total Molybdenum from EVO LAEMP Areas, 2012 to 2021

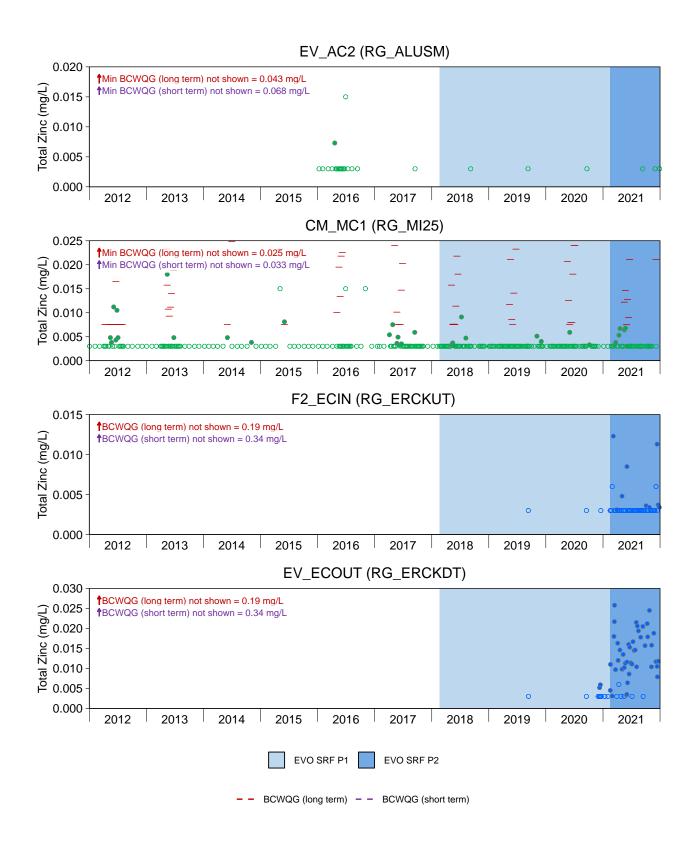


Figure D.28: Time Series Plots for Total Zinc from EVO LAEMP Areas, 2012 to 2021

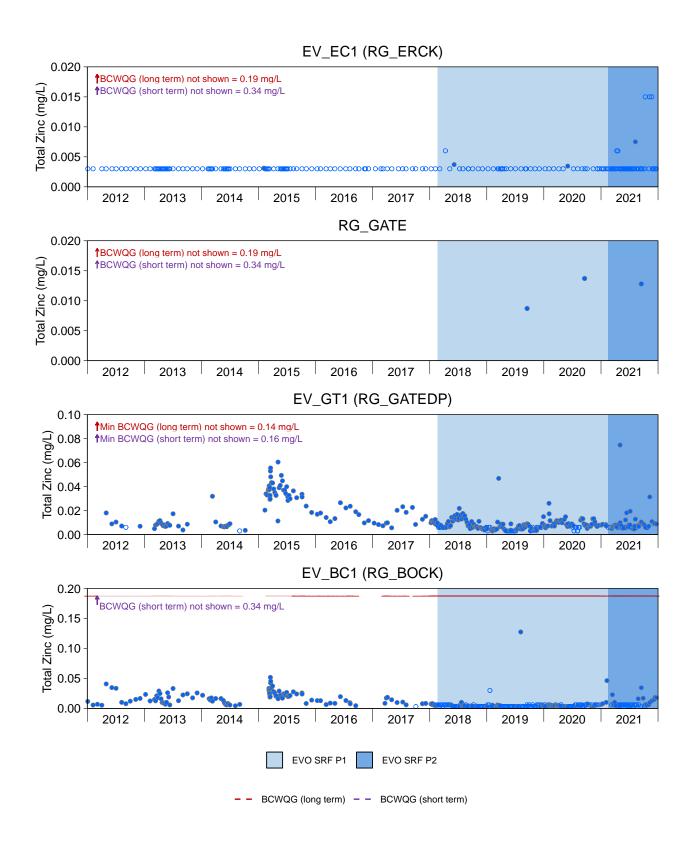


Figure D.28: Time Series Plots for Total Zinc from EVO LAEMP Areas, 2012 to 2021

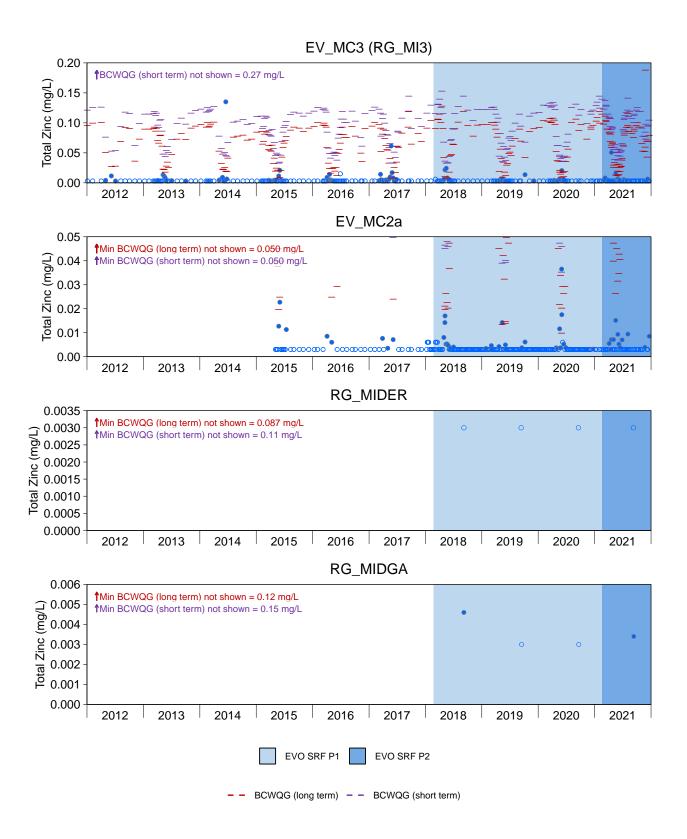


Figure D.28: Time Series Plots for Total Zinc from EVO LAEMP Areas, 2012 to 2021

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Guidelines are dependent on water hardness. Constituent was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

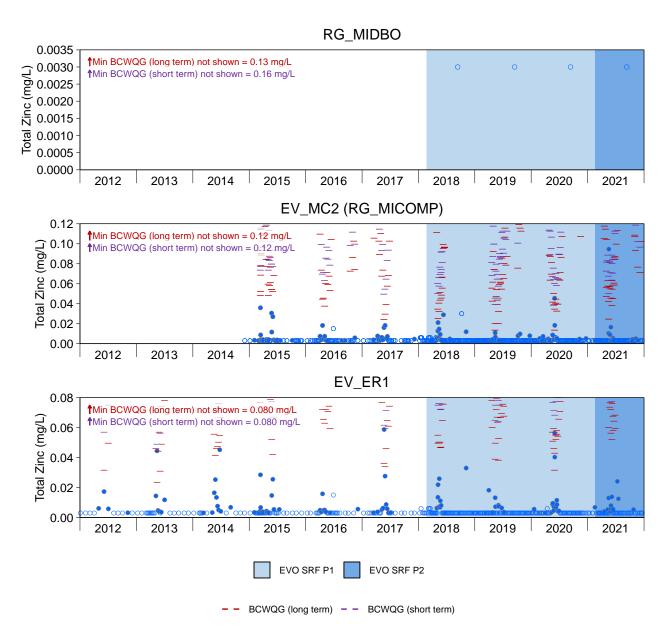


Figure D.28: Time Series Plots for Total Zinc from EVO LAEMP Areas, 2012 to 2021

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Guidelines are dependent on water hardness. Constituent was plotted because it was identified as a mine-related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

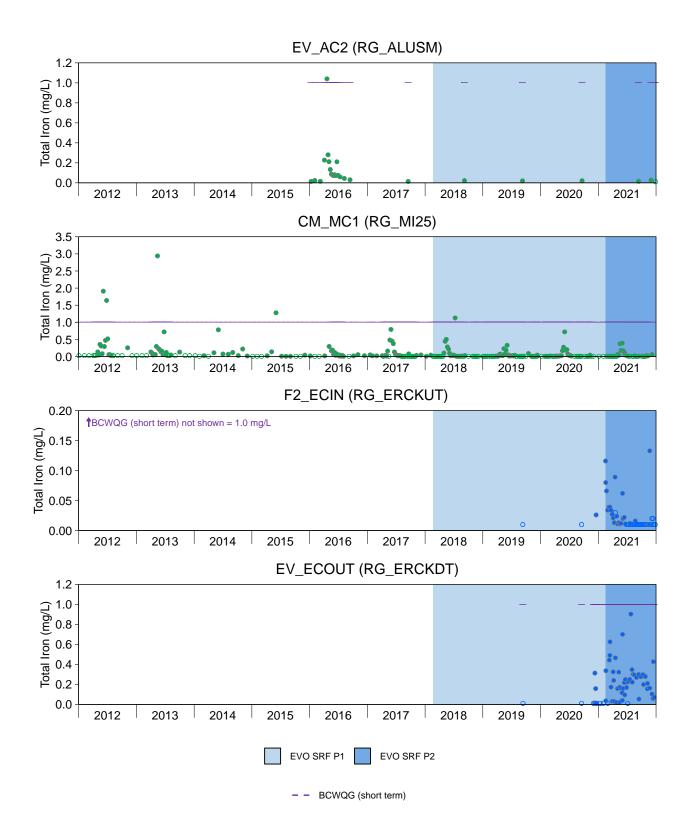


Figure D.29: Time Series Plots for Total Iron from EVO LAEMP Areas, 2012 to 2021

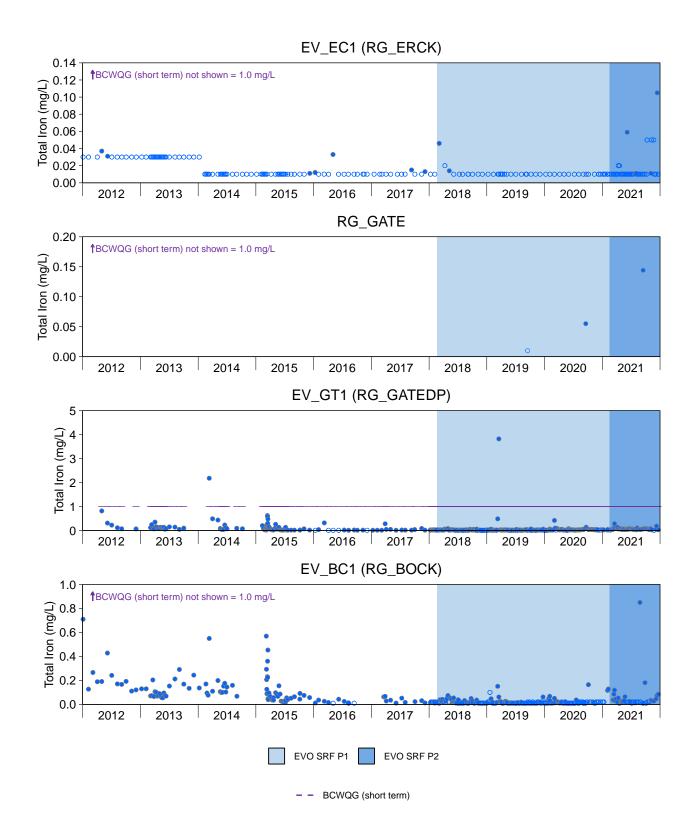


Figure D.29: Time Series Plots for Total Iron from EVO LAEMP Areas, 2012 to 2021

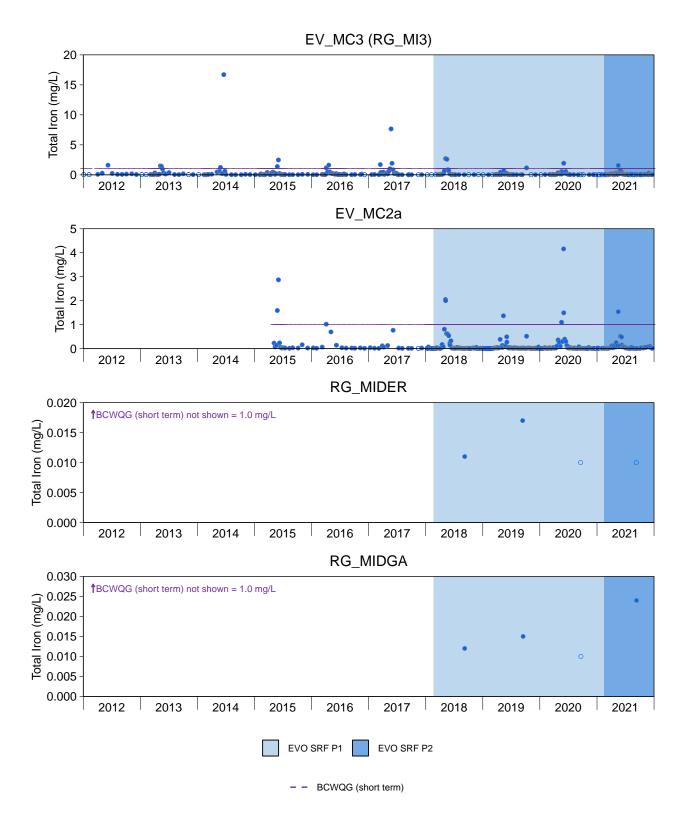


Figure D.29: Time Series Plots for Total Iron from EVO LAEMP Areas, 2012 to 2021

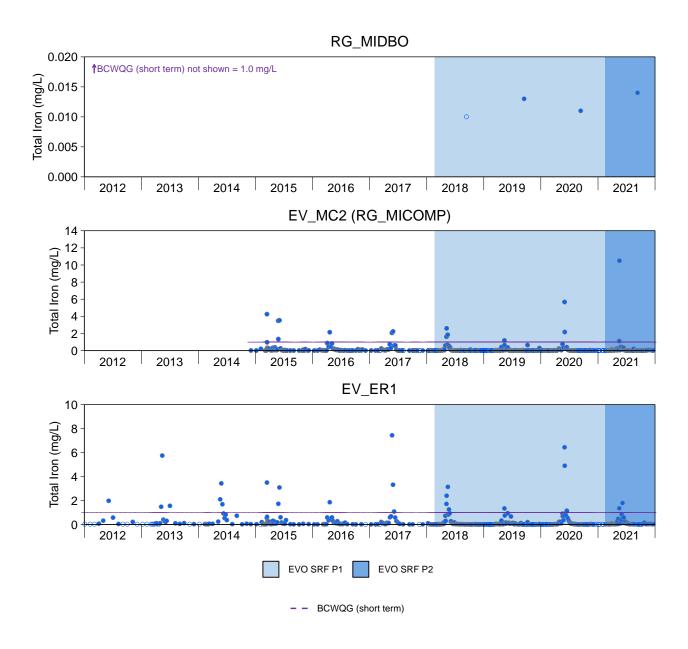


Figure D.29: Time Series Plots for Total Iron from EVO LAEMP Areas, 2012 to 2021

Table D.1: ANOVA Table Comparing the Change in Water Quality Concentrations for Michel, Gate and Bodie Creeks Mine Exposed Areas Relative to Reference Areas (CM_MC1) between Pre- (2013 to 2018), EVO SRF P1 (2018 to 2020) and EVO SRF P2 (2021)

									BAxCI Effects				Year	(BA)xCl Ef	fects					Trend Analyse	es
Analyte	Exposed Area		ANOV	A Terms (P-v	alue) ^a		% of San	nples <lrl< th=""><th>Period Magnitude of Difference (MOD)^b</th><th></th><th>Ye</th><th>ear Magnit</th><th>ude of Dif</th><th>ference (N</th><th>IOD^c) for 2</th><th>2021 versu</th><th>ıs:</th><th></th><th>Period Effect</th><th>Year</th><th>Effect</th></lrl<>	Period Magnitude of Difference (MOD) ^b		Ye	ear Magnit	ude of Dif	ference (N	IOD ^c) for 2	2021 versu	ıs:		Period Effect	Year	Effect
		ВА	CI	Year(BA)	BAxCI	Year(BA)x CI	Reference (CM_MC1)	Exposed Area	Pre vs SRF P2	2012	2013	2014	2015	2016	2017	2018	2019	2020	T CHOU EHOU	2021 vs 2020	2021 vs Historical Years
	F2_ECIN	0.300	<0.001	1.000	0.318	1.000	2.33	0.342	ns	-	-	-	-	-	-	-	ns	ns	ns	ns	ns
	EV_ECOUT	0.022	<0.001	1.000	0.441	0.997	2.33	0	ns	-	-	-	-	-	-	-	ns	ns	ns	ns	ns
	EV_EC1	0.006	<0.001	<0.001	<0.001	<0.001	18.1	0	nc	-75	-88	-68	-69	-75	ns	-59	-57	-61	nt	↓	ns
	EV_GT1	0.214	<0.001	<0.001	0.003	<0.001	18.0	0	nc	-72	-78	ns	-56	-64	ns	ns	ns	-40	nt	↓	ns
Nitrate (as N)	EV_BC1	0.075	<0.001	<0.001	0.004	<0.001	18.7	0	nc	-82	-90	-73	-47	ns	ns	ns	ns	ns	nt	ns	ns
	EV_MC3	0.542	<0.001	<0.001	<0.001	<0.001	17.8	0	nc	ns	-77	ns	ns	-74	-46	-49	ns	ns	nt	ns	ns
	EV_MC2a	<0.001	<0.001	0.063	<0.001	0.673	7.11	0	-65	-	-	-	nc	nc	nc	nc	nc	nc	↓	nt	nt
	EV_MC2	<0.001	<0.001	<0.001	<0.001	<0.001	7.00	0	nc	=	-	ns	-73	-82	-55	-67	ns	-42	nt	↓	ns
	EV_ER1	<0.001	<0.001	<0.001	0.381	<0.001	18.0	0	nc	ns	-66	ns	ns	ns	ns	ns	ns	ns	nt	ns	ns
	F2_ECIN	nt	nt	nt	nt	nt	88.4	83.6	nt	-	-	-	-	-	-	-	nt	nt	nt	nt	ns
	EV_ECOUT	<0.001	nt	0.402	nt	nt	88.4	46.4	ns	-	-	-	-	-	-	-	nc	nc	ns	nt	nt
	EV_EC1	nt	nt	nt	nt	nt	95.9	88.8	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	ns
	EV_GT1	<0.001	nt	<0.001	nt	nt	95.8	22.9	nc	ns	ns	ns	ns	94	72	85	61	ns	nt	ns	ns
Nitrite (as N)	EV_BC1	<0.001	nt	<0.001	nt	nt	96.2	3.25	nc	ns	ns	ns	ns	63	ns	63	60	ns	nt	ns	ns
	EV_MC3	0.193	nt	0.025	nt	nt	95.9	74.3	nc	ns	ns	ns	ns	ns	ns	ns	ns	ns	nt	ns	ns
	EV_MC2a	0.137	nt	0.090	nt	nt	94.9	54.7	ns	-	-	-	ns	ns	ns	ns	ns	ns	ns	ns	ns
	EV_MC2	0.126	nt	0.003	nt	nt	94.5	37.5	nc	-	-	ns	-63	ns	ns	ns	ns	ns	nt	ns	ns
	EV_ER1	0.036	nt	0.777	nt	nt	96.0	39.5	26	nc	nc	nc	nc	nc	nc	nc	nc	nc	↑	nt	nt
	F2_ECIN	0.004	<0.001	1.000	0.496	0.442	6.98	0	ns	-	-	-	-	-	-	-	ns	ns	ns	ns	ns
	EV_ECOUT	0.127	<0.001	0.981	0.002	0.998	6.98	0	-64	-	-	-	-	-	-	-	ns	ns	↓	nt	nt
	EV_EC1	<0.001	0.032	<0.001	<0.001	0.777	2.82	20.4	-73	ns	ns	ns	ns	ns	ns	ns	ns	ns		nt	nt
	EV_GT1	0.006	0.145	<0.001	0.754	0.104	2.88	6.02	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
Phosphorus (P)-Total	EV_BC1	0.002	<0.001	<0.001	0.684	0.523	2.52	19.2	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
	EV_MC3	<0.001	<0.001	0.030	0.851	0.966	2.82	0	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
	EV_MC2a	0.148	0.037	0.211	0.405	0.851	3.55	5.11	ns	-	-	-	nc	nc	nc	nc	nc	nc	ns	ns	ns
	EV_MC2	0.095	0.029	<0.001	0.345	0.909	3.50	6.75	ns	-	-	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
	EV_ER1	<0.001	0.081	0.002	0.557	0.958	2.82	11.6	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
	F2_ECIN	0.927	<0.001	0.247	0.028	0.995	4.65	0	33	-	-	-	-	-	-	-	nc	nc	↑	nt	nt
	EV_ECOUT	0.060	<0.001	0.981	0.078	0.998	4.65	3.57	ns	-	-	-	-	-	-	-	ns	ns	ns	ns	ns
	EV_EC1	<0.001	<0.001	<0.001	<0.001	<0.001	2.97	9.09	nc	-79	-84	-82	-82	-80	-83	-75	-49	-54	nt	1	1
	EV_GT1	0.002	<0.001	<0.001	0.391	0.269	3.09	31.7	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
Orthophosphate	EV_BC1	<0.001	<0.001	0.009	0.464	0.327	3.08	64.8	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
	EV_MC3	0.814	0.008	0.900	0.019	0.840	2.97	6.98	50	nc	nc	nc	nc	nc	nc	nc	nc	nc	1	nt	nt
	EV_MC2a	0.838	<0.001	0.996	0.029	0.973	4.06	11.9	ns	-	-	-	nc	nc	nc	nc	nc	nc	ns	nt	nt
	EV MC2	0.957	<0.001	0.858	0.173	0.964	4.00	18.2	ns	-	-	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
	EV_ER1	0.034	<0.001	0.633	0.989	0.915	2.96	36.6	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
-	_								1		l					-			1	I	

P-value for Relevant BACI Term < 0.05.

Significantly Increased Relative to Reference (or overall) in 2021 or SRF2

Significantly Decreased Relative to Reference (or overall) in 2021 or SRF2

Notes: "-" indicates no data. "nc" indicates no data. "nc" indicates no comparisons. "nt" = not tested because there are more than 95% censored data. Shaded magnitudes of difference (MOD) were significant in the post-hoc analysis (α = 0.05) corrected for the number of tests using a Tukey's Honestly Significant Difference Test. January and February data were excluded from the analyses because there are no SFR2 data from these months.

^a ANOVA model conducted to test for temporal differences relative to reference (Relative change model) when the reference area % LRL was greater than 80%. If both the exposed and reference area were above 80 % LRL no tests were conducted.

b MOD for relative change model calculated as (Observed Exposed Pre. - Predicted Exposed Pre. - Predicted Exposed Pre. - Observed Reference Pre. - O

^c MOD calculated as (Observed_{Exposed 2021} - Predicted_{Exposed 2021})/Predicted_{Exposed 2021}, where the predicted concentration was calculated as: Observed_{Reference yeari} and year, is the earlier year (or the early phase) in the comparison. This MOD represents how much the difference in 2021 has changed from the difference observed in the earlier year (or the early phase). For temporal model, MOD was calculated as (2021-earlier year)/2021.

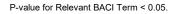
Table D.1: ANOVA Table Comparing the Change in Water Quality Concentrations for Michel, Gate and Bodie Creeks Mine Exposed Areas Relative to Reference Areas (CM_MC1) between Pre- (2013 to 2018), EVO SRF P1 (2018 to 2020) and EVO SRF P2 (2021)

									BAxCI Effects				Year	(BA)xCl Ef	fects					Trend Analyse	es
Analyte	Exposed Area		ANOV	A Terms (P-v	alue) ^a		% of San	nples <lrl< th=""><th>Period Magnitude of Difference (MOD)^b</th><th></th><th>Ye</th><th>ear Magnit</th><th>ude of Dif</th><th>ference (M</th><th>IOD^c) for 2</th><th>2021 versu</th><th>ıs:</th><th></th><th>Period Effect</th><th>Year</th><th>Effect</th></lrl<>	Period Magnitude of Difference (MOD) ^b		Ye	ear Magnit	ude of Dif	ference (M	IOD ^c) for 2	2021 versu	ıs:		Period Effect	Year	Effect
		ВА	CI	Year(BA)	BAxCI	Year(BA)x CI	Reference (CM_MC1)	Exposed Area	Pre vs SRF P2	2012	2013	2014	2015	2016	2017	2018	2019	2020	T criou Elicot	2021 vs 2020	2021 vs Historical Years
	F2_ECIN	0.047	<0.001	0.999	0.001	0.994	0	0	32	=	-	-	-	-	-	-	nc	nc	↑	nt	nt
	EV_ECOUT	0.740	<0.001	0.980	0.008	1.000	0	0	37	-	-	-	-	-	-	-	nc	nc	↑	nt	nt
	EV_EC1	<0.001	<0.001	0.074	0.066	0.998	0	0	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
	EV_GT1	0.062	<0.001	<0.001	0.917	0.079	0	0	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
Sulphate	EV_BC1	0.043	<0.001	<0.001	0.948	0.037	0	0	nc	ns	ns	ns	ns	ns	ns	ns	ns	ns	nt	ns	ns
	EV_MC3	<0.001	<0.001	<0.001	0.002	<0.001	0	0	nc	48	49	73	ns	ns	ns	ns	ns	ns	nt	ns	ns
	EV_MC2a	0.479	<0.001	0.036	0.940	0.911	0	0	ns	-	-	-	ns	ns	ns	ns	ns	ns	ns	ns	ns
	EV_MC2	0.483	<0.001	<0.001	0.209	0.033	0	0	nc	-	-	ns	ns	ns	ns	-29	ns	ns	nt	ns	ns
	EV_ER1	0.001	<0.001	<0.001	0.106	0.220	0	0	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
	F2_ECIN	0.345	<0.001	0.787	0.011	0.999	0	0	15	-	-	-	-	-	-	-	nc	nc	<u></u>	nt	nt
	EV_ECOUT	0.966	<0.001	0.997	0.013	0.982	0	0	14	-	-	-	-	-	-	-	nc	nc	1	nt	nt
	EV_EC1	<0.001	<0.001	<0.001	<0.001	0.771	0	0	13	nc	nc	nc	nc	nc	nc	nc	nc	nc	↑	nt	nt
	EV_GT1	0.689	<0.001	<0.001	0.691	<0.001	0	0	nc	ns	ns	38	ns	ns	ns	ns	ns	-17	nt	↓	ns
Total Dissolved Solids	EV_BC1	0.838	<0.001	<0.001	0.140	<0.001	0	0	nc	ns	-23	-25	ns	ns	ns	ns	ns	ns	nt	ns	ns
	EV_MC3	0.004	<0.001	0.036	0.132	0.826	0	0	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
	EV_MC2a	0.173	<0.001	0.269	0.190	0.746	0	0	ns	-	-	-	ns	ns	ns	ns	ns	ns	ns	ns	ns
	EV_MC2	0.020	<0.001	<0.001	0.057	0.011	0	0	nc	-	-	ns	ns	ns	ns	-25	ns	ns	nt	ns	ns
	EV_ER1	0.102	<0.001	<0.001	0.381	0.340	0	0	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
	F2_ECIN	0.016	nt	0.956	nt	nt	100	1.92	5.4	-	-	-	-	-	-	-	nc	nc	1	nt	nt
	EV_ECOUT	<0.001	nt	0.994	nt	nt	100	8.93	36	-	-	-	-	-	-	-	nc	nc	1	nt	nt
	EV_EC1	<0.001	nt	0.155	nt	nt	98.5	3.49	30	nc	nc	nc	nc	nc	nc	nc	nc	nc	1	nt	nt
	EV_GT1	<0.001	nt	<0.001	nt	nt	98.4	0	nc	48	41	56	-230	-290	-120	-180	-94	-66	nt		ns
Antimony (Sb)-Total	EV_BC1	<0.001	nt	<0.001	nt	nt	98.4	0	nc	22	30	37	-270	-240	-86	-150	-78	-73	nt		ns
	EV_MC3	0.113	nt	0.143	nt	nt	98.5	58.6	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
	EV_MC2a	0.379	nt	0.022	nt	nt	98.5	69.8	nc	-	-	-	ns	ns	ns	ns	ns	ns	nt	ns	ns
	EV_MC2	<0.001	nt	<0.001	nt	nt	98.5	20.6	nc	-	-	ns	-120	-100	-69	-110	ns	ns	nt	ns	ns
	EV_ER1	<0.001	nt	<0.001	nt	nt	98.5	55.5	nc	ns	ns	ns	-64	-49	-47	-47	ns	ns	nt	ns	ns
	F2_ECIN	0.407	<0.001	0.999	0.003	0.896	0	0	27	-	-	-	-	-	-	-	nc	nc	1	nt	nt
	EV_ECOUT	0.004	0.003	1.000	0.072	0.999	0	0	ns	-	-	-	-	-	-	-	ns	ns	ns	ns	ns
	EV_EC1	<0.001	<0.001	0.031	<0.001	0.001	0	0	nc	-60	-58	-56	-52	-52	-51	-50	-42	-41	nt	↓	↓
	EV_GT1	0.003	<0.001	<0.001	0.006	<0.001	0	0	nc	ns	76	ns	ns	ns	91	123	ns	ns	nt	ns	ns
Barium (Ba)-Total	EV_BC1	<0.001	<0.001	<0.001	<0.001	<0.001	0	0	nc	-59	-60	-57	-57	-41	-47	-25	ns	ns	nt	ns	ns
	EV_MC3	0.614	<0.001	0.588	0.911	0.528	0	0	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
	EV_MC2a	0.146	<0.001	0.128	0.133	0.115	0	0	ns	-	-	-	ns	ns	ns	ns	ns	ns	ns	ns	ns
	EV_MC2	0.979	<0.001	0.432	0.682	0.272	0	0	ns	-	-	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
	EV_ER1	0.403	<0.001	0.645	0.167	0.724	0	0	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns

Significantly Increased Relative to Reference (or overall) in 2021 or SRF2

Significantly Decreased Relative to Reference (or overall) in 2021 or SRF2

Notes: "-" indicates no data. "nc" indicates no data. "nc" indicates no comparisons. "nt" = not tested because there are more than 95% censored data. Shaded magnitudes of difference (MOD) were significant in the post-hoc analysis (α = 0.05) corrected for the number of tests using a Tukey's Honestly Significant Difference Test. January and February data were excluded from the analyses because there are no SFR2 data from these months.


^a ANOVA model conducted to test for temporal differences relative to reference (Relative change model) when the reference area % LRL was greater than 80%. If both the exposed and reference area were above 80 % LRL no tests were conducted.

b MOD for relative change model calculated as (Observed_{ExposedPre}, Predicted_{ExposedPre})/Predicted_{ExposedPre}, where the predicted concentration was calculated as: Observed_{ReferenceSRF2} + Observed_{ExposedPre}. This MOD represents how much the difference in SRF2 has changed from the difference observed in the early phase. For temporal model, MOD was calculated as (SRF2 -Pre)/SRF2.

c MOD calculated as (Observed Exposed 2021 - Predicted Exposed 2021) (Predicted Exposed 2021) (P

Table D.1: ANOVA Table Comparing the Change in Water Quality Concentrations for Michel, Gate and Bodie Creeks Mine Exposed Areas Relative to Reference Areas (CM_MC1) between Pre- (2013 to 2018), EVO SRF P1 (2018 to 2020) and EVO SRF P2 (2021)

									BAxCI Effects				Year	(BA)xCl Ef	fects					Trend Analyse	S
Analyte	Exposed Area		ANOV	/A Terms (P-v	alue) ^a		% of San	ples <lrl< th=""><th>Period Magnitude of Difference (MOD)^b</th><th></th><th>Y</th><th>ear Magnit</th><th>tude of Dif</th><th>fference (N</th><th>IOD^c) for 2</th><th>2021 versu</th><th>ıs:</th><th></th><th>Period Effect</th><th>Year</th><th>Effect</th></lrl<>	Period Magnitude of Difference (MOD) ^b		Y	ear Magnit	tude of Dif	fference (N	IOD ^c) for 2	2021 versu	ıs:		Period Effect	Year	Effect
		ВА	CI	Year(BA)	BAxCI	Year(BA)x CI	Reference (CM_MC1)	Exposed Area	Pre vs SRF P2	2012	2013	2014	2015	2016	2017	2018	2019	2020		2021 vs 2020	2021 vs Historical Years
	F2_ECIN	0.715	0.004	0.884	<0.001	0.990	9.30	7.69	31	-	-	-	-	-	-	-	nc	nc	1	nt	nt
	EV_ECOUT	0.130	<0.001	1.000	<0.001	0.926	9.30	8.93	108	-	-	-	-	-	-	-	nc	nc	1	nt	nt
	EV_EC1	<0.001	0.515	0.138	<0.001	0.849	12.5	19.2	166	nc	nc	nc	nc	nc	nc	nc	nc	nc	1	nt	nt
	EV_GT1	0.066	<0.001	<0.001	0.017	<0.001	13.0	0.328	nc	ns	64	ns	ns	ns	ns	-29	-25	-24	nt	\downarrow	ns
Boron (B)-Total	EV_BC1	0.880	<0.001	<0.001	0.302	0.042	12.6	0.325	nc	ns	ns	ns	ns	ns	ns	ns	ns	ns	nt	ns	ns
	EV_MC3	0.432	<0.001	<0.001	0.684	0.723	12.5	74.7	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
	EV_MC2a	<0.001	<0.001	<0.001	0.412	0.003	15.7	49.8	nc	-	-	-	ns	ns	ns	ns	14	ns	nt	ns	ns
	EV_MC2	0.251	<0.001	<0.001	0.205	<0.001	15.5	31.4	nc	-	-	ns	ns	ns	ns	-19	ns	ns	nt	ns	ns
	EV_ER1	nt	nt	nt	nt	nt	12.4	82.5	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	ns
	F2_ECIN	0.628	0.153	0.971	0.067	nt	60.5	57.7	ns	-	-	-	-	-	-	-	ns	ns	ns	ns	ns
	EV_ECOUT	<0.001	<0.001	0.916	0.607	1.000	60.5	12.5	ns	-	-	-	-	-	1	-	ns	ns	ns	ns	ns
	EV_EC1	nt	nt	nt	nt	nt	41.3	92.4	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	ns
	EV_GT1	0.264	<0.001	<0.001	<0.001	0.768	40.5	15.4	214	nc	nc	nc	nc	nc	nc	nc	nc	nc	↑	nt	nt
Iron (Fe)-Total	EV_BC1	0.102	0.474	<0.001	0.214	0.018	42.0	40.6	nc	ns	ns	ns	ns	ns	ns	ns	ns	ns	nt	ns	ns
	EV_MC3	0.012	<0.001	<0.001	0.434	0.986	41.3	8.05	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
	EV_MC2a	0.795	<0.001	0.609	0.509	0.995	45.1	5.96	ns	-	-	-	ns	ns	ns	ns	ns	ns	ns	ns	ns
	EV_MC2	0.839	<0.001	<0.001	0.297	1.000	44.9	13.1	ns	-	-	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
	EV_ER1	0.065	<0.001	<0.001	0.392	0.984	41.5	12.6	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
	F2_ECIN	0.370	<0.001	0.988	<0.001	0.987	0	0	45	-	-	-	-	-	-	-	nc	nc	1	nt	nt
	EV_ECOUT	0.691	<0.001	1.000	<0.001	0.889	0	0	111	-	-	-	-	-	-	-	nc	nc	1	nt	nt
	EV_EC1	<0.001	<0.001	<0.001	<0.001	<0.001	1.52	0	nc	269	234	198	198	174	170	166	141	119	nt	1	1
	EV_GT1	0.376	<0.001	<0.001	0.019	<0.001	1.57	0	nc	80	99	103	ns	ns	ns	-29	-35	-35	nt	↓	ns
Lithium (Li)-Total	EV_BC1	0.588	<0.001	<0.001	0.003	<0.001	1.18	0	nc	ns	ns	ns	ns	ns	ns	ns	-24	-26	nt	↓	ns
	EV_MC3	<0.001	<0.001	<0.001	0.016	0.029	1.52	0.766	nc	ns	25	ns	30	26	ns	ns	ns	ns	nt	ns	ns
	EV_MC2a	<0.001	<0.001	0.002	0.003	0.026	1.47	0	nc	-	-	-	ns	37	ns	ns	23	ns	nt	ns	ns
	EV_MC2	0.951	<0.001	<0.001	0.343	<0.001	1.45	0	nc	-	-	ns	ns	ns	ns	-34	ns	ns	nt	ns	ns
	EV_ER1	<0.001	<0.001	<0.001	0.006	<0.001	1.51	0	nc	46	31	ns	ns	ns	ns	ns	ns	ns	nt	ns	ns
	F2_ECIN	0.273	0.003	0.994	0.213	0.820	6.98	9.62	ns	-	-	-	-	-	-	-	ns	ns	ns	ns	ns
	EV_ECOUT	<0.001	<0.001	0.932	<0.001	0.984	6.98	5.36	13,565	-	-	-	-	-	1	-	nc	nc	1	nt	nt
	EV_EC1	<0.001	<0.001	0.588	<0.001	0.947	2.27	46.2	161,068	nc	nc	nc	nc	nc	nc	nc	nc	nc	1	nt	nt
	EV_GT1	0.625	<0.001	<0.001	<0.001	0.002	2.36	0	nc	ns	475	ns	ns	616	ns	311	194	ns	nt	ns	ns
Manganese (Mn)-Total	EV_BC1	0.475	<0.001	<0.001	0.005	<0.001	2.35	0.325	nc	ns	ns	ns	ns	ns	ns	178	257	259	nt	↑	ns
	EV_MC3	0.002	<0.001	<0.001	0.167	0.814	2.27	0	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
	EV_MC2a	0.753	<0.001	0.895	0.008	0.729	2.94	0	84	-	-	-	nc	nc	nc	nc	nc	nc	1	nt	nt
	EV_MC2	0.580	<0.001	0.094	0.005	0.975	2.90	0	73	-	-	nc	nc	nc	nc	nc	nc	nc	1	nt	nt
	EV_ER1	0.010	<0.001	<0.001	0.091	0.585	2.26	0	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns

Significantly Increased Relative to Reference (or overall) in 2021 or SRF2

Significantly Decreased Relative to Reference (or overall) in 2021 or SRF2

Notes: "-" indicates no data. "nc" indicates no data. "nc" indicates no comparisons. "nt" = not tested because there are more than 95% censored data. Shaded magnitudes of difference (MOD) were significant in the post-hoc analysis (α = 0.05) corrected for the number of tests using a Tukey's Honestly Significant Difference Test. January and February data were excluded from the analyses because there are no SFR2 data from these months.

^a ANOVA model conducted to test for temporal differences relative to reference (Relative change model) when the reference area % LRL was greater than 80%. If both the exposed and reference area were above 80 % LRL no tests were conducted.

b MOD for relative change model calculated as (Observed_Exposed_Fre_- Predicted_Exposed_Fre_-) Predicted_Exposed_Fre_- Note the predicted concentration was calculated as: Observed_ReferenceSRF2 + Observed_Exposed_Fre_- Observed_Reference_Fre_- This MOD represents how much the difference in SRF2 has changed from the difference observed in the early phase. For temporal model, MOD was calculated as (SRF2 -Pre)/SRF2.

^c MOD calculated as (Observed_{Exposed 2021} - Predicted_{Exposed 2021})/Predicted_{Exposed 2021}, where the predicted concentration was calculated as: Observed_{Reference yeari} and year, is the earlier year (or the early phase) in the comparison. This MOD represents how much the difference in 2021 has changed from the difference observed in the earlier year (or the early phase). For temporal model, MOD was calculated as (2021-earlier year)/2021.

Table D.1: ANOVA Table Comparing the Change in Water Quality Concentrations for Michel, Gate and Bodie Creeks Mine Exposed Areas Relative to Reference Areas (CM_MC1) between Pre- (2013 to 2018), EVO SRF P1 (2018 to 2020) and EVO SRF P2 (2021)

									BAxCI Effects				Year	(BA)xCl Ef	fects					Trend Analyse	es
Analyte	Exposed Area		ANOV	A Terms (P-v	/alue) ^a		% of San	nples <lrl< th=""><th>Period Magnitude of Difference (MOD)^b</th><th></th><th>Ye</th><th>ear Magnit</th><th>ude of Dif</th><th>ference (N</th><th>IOD^c) for 2</th><th>2021 versu</th><th>ıs:</th><th></th><th>Period Effect</th><th>Year</th><th>Effect</th></lrl<>	Period Magnitude of Difference (MOD) ^b		Ye	ear Magnit	ude of Dif	ference (N	IOD ^c) for 2	2021 versu	ıs:		Period Effect	Year	Effect
		ВА	CI	Year(BA)	BAxCI	Year(BA)x CI	Reference (CM_MC1)	Exposed Area	Pre vs SRF P2	2012	2013	2014	2015	2016	2017	2018	2019	2020	T CHOU EHOU	2021 vs 2020	2021 vs Historical Years
	F2_ECIN	0.211	<0.001	0.994	0.220	0.996	0	0	ns	-	-	-	-	-	-	-	ns	ns	ns	ns	ns
	EV_ECOUT	0.024	<0.001	0.997	<0.001	0.992	0	0	497	-	-	-	-	-	-	-	nc	nc	1	nt	nt
	EV_EC1	<0.001	<0.001	1.000	<0.001	0.095	0	0	712	nc	nc	nc	nc	nc	nc	nc	nc	nc	1	nt	nt
	EV_GT1	<0.001	<0.001	<0.001	<0.001	<0.001	0	0	nc	ns	43	91	-51	-54	-44	-39	ns	-23	nt	1	ns
Molybdenum (Mo)-Tota	I EV_BC1	<0.001	<0.001	<0.001	<0.001	<0.001	0	0	nc	ns	ns	ns	-57	-55	-39	-38	-15	-25	nt	↓	ns
	EV_MC3	0.747	<0.001	0.171	0.446	0.610	0	0.383	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
	EV_MC2a	<0.001	0.262	0.087	<0.001	0.649	0	0	53	-	-	-	nc	nc	nc	nc	nc	nc	1	nt	nt
	EV_MC2	<0.001	<0.001	<0.001	<0.001	<0.001	0	0	nc	-	-	ns	ns	ns	ns	ns	43	43	nt	1	ns
	EV_ER1	0.005	<0.001	<0.001	<0.001	0.006	0	0	nc	ns	23	21	ns	ns	ns	ns	15	ns	nt	ns	ns
	F2_ECIN	0.248	nt	1.000	nt	nt	93.0	7.69	ns	-	-	-	-	-	-	-	ns	ns	ns	ns	ns
	EV_ECOUT	<0.001	nt	0.998	nt	nt	93.0	0	94	-	-	-	-	-	-	-	nc	nc	1	nt	nt
	EV_EC1	<0.001	nt	0.160	nt	nt	84.1	5.23	97	nc	nc	nc	nc	nc	nc	nc	nc	nc	1	nt	nt
	EV_GT1	<0.001	nt	<0.001	nt	nt	84.7	0	nc	59	56	66	-150	-160	ns	-230	-110	-110	nt	↓	ns
Nickel (Ni)-Total	EV_BC1	<0.001	nt	<0.001	nt	nt	84.3	0	nc	ns	ns	ns	-130	-80	-22	-120	-62	-70	nt	\	ns
	EV_MC3	0.287	nt	0.003	nt	nt	84.1	21.5	nc	ns	ns	ns	ns	ns	-83	ns	ns	ns	nt	ns	ns
	EV_MC2a	<0.001	nt	0.010	nt	nt	87.2	16.2	nc	=	-	-	65	ns	41	40	53	39	nt	1	ns
	EV_MC2	0.210	nt	<0.001	nt	nt	87.4	1.26	nc	-	-	ns	-33	-40	ns	-89	23	25	nt	1	ns
	EV_ER1	0.071	nt	<0.001	nt	nt	84.2	16.5	nc	ns	ns	ns	-44	ns	ns	-49	ns	ns	nt	ns	ns
	F2_ECIN	0.307	<0.001	0.986	0.491	0.846	0	0	ns	-	-	-	-	-	-	-	ns	ns	ns	ns	ns
	EV_ECOUT	0.029	<0.001	1.000	0.012	0.891	0	0	-47	-	-	-	-	-	-	-	nc	nc	\	nt	nt
	EV_EC1	<0.001	<0.001	0.862	<0.001	0.727	1.52	0	-56	nc	nc	nc	nc	nc	nc	nc	nc	nc	\	nt	nt
	EV_GT1	<0.001	<0.001	<0.001	<0.001	<0.001	1.58	0	nc	ns	46	108	54	88	41	112	48	ns	nt	ns	ns
Selenium (Se)-Total	EV_BC1	<0.001	<0.001	<0.001	<0.001	<0.001	1.18	0	nc	-29	-37	ns	92	128	ns	158	52	ns	nt	ns	ns
	EV_MC3	<0.001	<0.001	<0.001	0.002	0.003	1.52	0	nc	39	36	41	ns	ns	ns	ns	ns	ns	nt	ns	ns
	EV_MC2a	<0.001	<0.001	0.023	<0.001	0.179	1.95	0	-48	-	-	-	nc	nc	nc	nc	nc	nc	↓	nt	nt
	EV_MC2	<0.001	<0.001	<0.001	<0.001	0.028	1.93	0	nc	-	-	ns	-40	ns	-37	-52	ns	ns	nt	ns	ns
	EV_ER1	<0.001	<0.001	<0.001	0.032	0.018	1.52	0	nc	38	32	ns	ns	ns	ns	ns	ns	ns	nt	ns	ns
	F2_ECIN	0.511	<0.001	0.992	<0.001	1.000	0	0	27	-	-	-	-	-	-	-	nc	nc	1	nt	nt
	EV_ECOUT	0.536	<0.001	0.999	<0.001	0.907	0	0	50	-	-	-	-	-	-	-	nc	nc	1	nt	nt
	EV_EC1	<0.001	<0.001	<0.001	<0.001	0.421	0	0	76	nc	nc	nc	nc	nc	nc	nc	nc	nc	1	nt	nt
	EV_GT1	0.009	<0.001	<0.001	0.002	<0.001	0	0	nc	ns	44	104	ns	-28	ns	-35	-26	-23	nt	\downarrow	ns
Uranium (U)-Total	EV_BC1	0.003	<0.001	<0.001	<0.001	<0.001	0	0	nc	ns	ns	ns	ns	ns	ns	-24	-21	-18	nt	↓	ns
	EV_MC3	0.048	<0.001	0.153	0.324	0.789	0	0	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
	EV_MC2a	0.012	<0.001	0.261	0.006	0.221	0	0	15	-	-	-	nc	nc	nc	nc	nc	nc	1	nt	nt
	EV_MC2	0.954	<0.001	<0.001	0.894	0.002	0	0	nc	-	-	ns	ns	ns	ns	-21	ns	ns	nt	ns	ns
	EV_ER1	<0.001	<0.001	<0.001	0.006	0.025	0	0	nc	22	22	ns	ns	ns	ns	ns	ns	ns	nt	ns	ns
	_		U.	II.	1			1	1		1	1	1	1		1			1	ı	1

P-value for Relevant BACI Term < 0.05.

Significantly Increased Relative to Reference (or overall) in 2021 or SRF2

Significantly Decreased Relative to Reference (or overall) in 2021 or SRF2

Notes: "-" indicates no data. "nc" indicates no data. "nc" indicates no data. Shaded magnitudes of difference (MOD) were significant in the post-hoc analysis ($\alpha = 0.05$) corrected for the number of tests using a Tukey's Honestly Significant Difference Test. January and February data were excluded from the analyses because there are no SFR2 data from these months.

^a ANOVA model conducted to test for temporal differences relative to reference (Relative change model) where the percentage of data below the laboratory reporting limit was less than 80% for both the exposed and reference area or temporal changes at the exposed area alone (Temporal change model) when the reference area % LRL was greater than 80%. If both the exposed and reference area were above 80 % LRL no tests were conducted.

b MOD for relative change model calculated as (Observed_{ExposedPre}, Predicted_{ExposedPre})/Predicted_{ExposedPre}, where the predicted concentration was calculated as: Observed_{ReferenceSRF2} + Observed_{ExposedPre}. This MOD represents how much the difference in SRF2 has changed from the difference observed in the early phase. For temporal model, MOD was calculated as (SRF2 -Pre)/SRF2.

^c MOD calculated as (Observed_{Exposed 2021} - Predicted_{Exposed 2021})/Predicted_{Exposed 2021}, where the predicted concentration was calculated as: Observed_{Reference yeari} and year, is the earlier year (or the early phase) in the comparison. This MOD represents how much the difference in 2021 has changed from the difference observed in the earlier year (or the early phase). This MOD represents how much the difference in 2021 has changed from the difference observed in the earlier year (or the early phase). For temporal model, MOD was calculated as (2021-earlier year)/2021.

Table D.1: ANOVA Table Comparing the Change in Water Quality Concentrations for Michel, Gate and Bodie Creeks Mine Exposed Areas Relative to Reference Areas (CM_MC1) between Pre- (2013 to 2018), EVO SRF P1 (2018 to 2020) and EVO SRF P2 (2021)

									BAxCI Effects				Year	(BA)xCl Ef	fects					Trend Analyse	es
Analyte	Exposed Area		ANOV	A Terms (P-v	alue) ^a		% of Sam	ples <lrl< th=""><th>Period Magnitude of Difference (MOD)^b</th><th></th><th>Ye</th><th>ear Magnit</th><th>ude of Dif</th><th>ference (M</th><th>OD°) for 2</th><th>2021 versı</th><th>ıs:</th><th></th><th>Period Effect</th><th>Year</th><th>r Effect</th></lrl<>	Period Magnitude of Difference (MOD) ^b		Ye	ear Magnit	ude of Dif	ference (M	OD°) for 2	2021 versı	ıs:		Period Effect	Year	r Effect
		ВА	CI	Year(BA)	BAxCI	Year(BA)x Cl	Reference (CM_MC1)	Exposed Area	Pre vs SRF P2	2012	2013	2014	2015	2016	2017	2018	2019	2020	Period Ellect	2021 vs 2020	2021 vs Historical Years
	F2_ECIN	nt	nt	nt	nt	nt	83.7	82.7	nt	-	-	-	-	-	-	-	nt	nt	nt	nt	ns
	EV_ECOUT	<0.001	nt	0.986	nt	nt	83.7	23.2	ns	-	-	-	-	-	-	-	nc	nc	ns	nt	nt
	EV_EC1	nt	nt	nt	nt	nt	87.1	98.3	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	ns
	EV_GT1	0.066	nt	<0.001	nt	nt	87.0	14.1	nc	ns	ns	ns	-350	-110	ns	ns	37	ns	nt	ns	ns
Zinc (Zn)-Total	EV_BC1	0.198	nt	<0.001	nt	nt	87.5	49.4	nc	-210	-240	-100	-390	ns	ns	54	59	44	nt	↑	ns
	EV_MC3	0.773	nt	0.930	nt	nt	87.1	69.7	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
	EV_MC2a	nt	nt	nt	nt	nt	88.2	80.4	nt	-	-	-	nt	nt	nt	nt	nt	nt	nt	nt	ns
	EV_MC2	0.234	nt	0.441	nt	nt	88.4	77.4	ns	-	-	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
	EV_ER1	0.448	nt	0.246	nt	nt	87.2	75.1	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
	F2_ECIN	<0.001	<0.001	0.958	0.003	0.106	0	0	24	-	-	-	-	-	-	-	nc	nc	↑	nt	nt
	EV_ECOUT	<0.001	<0.001	1.000	<0.001	1.000	0	0	81	-	-	-	-	-	-	-	nc	nc	↑	nt	nt
	EV_EC1	0.831	0.801	0.001	0.756	<0.001	10.2	32.2	nc	-47	ns	ns	ns	ns	ns	ns	ns	48	nt	↑	ns
0 (0 - 1)	EV_GT1	0.374	<0.001	<0.001	0.635	0.025	7.93	5.92	nc	ns	ns	ns	ns	ns	ns	ns	ns	ns	nt	ns	ns
Cadmium (Cd)- Dissolved	EV_BC1	0.203	<0.001	0.295	0.313	0.312	9.29	17.6	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
Dissolved	EV_MC3	0.012	<0.001	<0.001	0.049	0.124	10.2	2.70	19	nc	nc	nc	nc	nc	nc	nc	nc	nc	1	nt	nt
	EV_MC2a	0.934	<0.001	<0.001	0.395	0.197	2.96	0.426	ns	-	-	-	ns	ns	ns	ns	ns	ns	ns	ns	ns
	EV_MC2	0.004	<0.001	<0.001	0.100	<0.001	3.88	0.505	nc	-	-	ns	ns	-27	ns	-30	ns	ns	nt	ns	ns
	EV_ER1	0.062	<0.001	0.973	0.601	0.912	10.6	1.05	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
	F2_ECIN	nt	nt	nt	nt	nt	100	98.5	nt	-	-	-	-	-	-	-	nt	nt	nt	nt	ns
	EV_ECOUT	<0.001	nt	0.961	nt	nt	100	13.0	ns	-	-	-	-	-	-	-	nc	nc	ns	nt	nt
	EV_EC1	<0.001	nt	<0.001	nt	nt	99.6	63.7	nc	ns	ns	97	ns	99	ns	96	ns	99	nt	↑	ns
	EV_GT1	<0.001	nt	<0.001	nt	nt	99.6	16.1	nc	ns	59	48	-250	ns	ns	-170	-130	-220	nt		ns
Cobalt (Co)-Dissolved	EV_BC1	<0.001	nt	<0.001	nt	nt	99.6	11.1	nc	-110	ns	ns	-280	ns	ns	-140	-100	-35	nt		ns
	EV_MC3	nt	nt	nt	nt	nt	99.6	88.8	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	ns
	EV_MC2a	nt	nt	nt	nt	nt	99.5	88.9	nt	-	-	-	nt	nt	nt	nt	nt	nt	nt	nt	ns
	EV_MC2	nt	nt	nt	nt	nt	99.5	88.9	nt	-	-	nt	nt	nt	nt	nt	nt	nt	nt	nt	ns
	EV_ER1	nt	nt	nt	nt	nt	99.6	99.7	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	nt	ns
	F2_ECIN	0.128	<0.001	0.902	0.116	0.859	0	0	ns	-	-	-	-	-	-	-	ns	ns	ns	ns	ns
	EV_ECOUT	0.045	<0.001	1.000	0.012	0.837	0	0	-48	-	-	-	-	-	-	-	nc	nc	1	nt	nt
	EV_EC1	<0.001	<0.001	0.275	<0.001	0.817	1.71	0	-61	nc	nc	nc	nc	nc	nc	nc	nc	nc	\	nt	nt
0.1.1.70.5	EV_GT1	<0.001	<0.001	<0.001	<0.001	<0.001	1.77	0	nc	ns	ns	101	41	75	ns	97	44	ns	nt	ns	ns
Selenium (Se)- Dissolved	EV_BC1	<0.001	<0.001	<0.001	<0.001	<0.001	1.33	0	nc	-36	-43	-35	74	110	ns	143	48	ns	nt	ns	ns
Dissolved	EV_MC3	<0.001	<0.001	<0.001	0.061	0.051	1.71	0	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
	EV_MC2a	<0.001	<0.001	0.022	<0.001	0.095	1.97	0	-51	-	-	-	nc	nc	nc	nc	nc	nc	\	nt	nt
	EV_MC2	<0.001	<0.001	<0.001	<0.001	0.009	1.94	0	nc	-	-	ns	-45	-39	-40	-57	ns	ns	nt	ns	ns
	EV_ER1	<0.001	<0.001	<0.001	0.358	0.450	1.70	0	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns

P-value for Relevant BACI Term < 0.05.

Significantly Increased Relative to Reference (or overall) in 2021 or SRF2

Significantly Decreased Relative to Reference (or overall) in 2021 or SRF2

Notes: "-" indicates no data. "nc" indicates no data. "nc" indicates no data. Shaded magnitudes of difference (MOD) were significant in the post-hoc analysis ($\alpha = 0.05$) corrected for the number of tests using a Tukey's Honestly Significant Difference Test. January and February data were excluded from the analyses because there are no SFR2 data from these months.

^a ANOVA model conducted to test for temporal differences relative to reference (Relative change model) when the reference area % LRL was greater than 80%. If both the exposed and reference area were above 80 % LRL no tests were conducted.

^b MOD for relative change model calculated as (Observed_{Exposed SRF2} - Predicted_{ExposedPre}/Predicted_{ExposedPre}/Predicted_{ExposedPre}, where the predicted concentration was calculated as: Observed_{ReferenceSRF2} + Observed_{ExposedPre}. This MOD represents how much the difference in SRF2 has changed from the difference observed in the early phase. For temporal model, MOD was calculated as (SRF2 -Pre)/SRF2.

c MOD calculated as (Observed Exposed 2021 - Predicted Exposed 2021) (Predicted Exposed 2021) (P

Table D.2: Summary of Water Chemistry Data for Key Constituents at Monitoring Stations, EVO LAEMP, 2021

Station	Summary Statistic	Total Dissolved Solids (mg/L) ^c	Lab pH	Field pH	Dissolved Oxygen (mg/L)	Total Organic Carbon (mg/L)	Dissolved Organic Carbon (mg/L)	Alkalinity (mg/L)	Nitrate-N (mg/L)	Nitrite-N (mg/L)	Ammonia (mg/L)	Sulphate (mg/L)	Total Chloride (mg/L)	Total Fluoride (mg/L)
	n	3	3	4	4	3	3	3	3	3	3	3	3	3
	Annual Minimum	170	8.10	8.16	10.6	0.990	0.770	151	0.00690	<0.001	<0.005	15.6	0.530	0.111
	Annual Maximum	197	8.38	8.49	12.7	1.43	1.52	184	0.0892	<0.001	0.00860	16.9	1.14	0.163
	Annual Mean	185	8.25	8.32	11.8	1.16	1.06	162	0.0489	<0.001	0.00620	16.4	0.820	0.140
	Annual Median	189	8.26	8.32	11.9	1.05	0.890	152	0.0507	<0.001	<0.005	16.6	0.790	0.146
EV_AC2 (RG_ALUSM)	% < LRL	0%	0%	0%	0%	0%	0%	0%	0%	100%	67%	0%	0%	0%
	% > BCWQG ^a	-	-	0%	0%	-	-	0%	0%	0%	0%	0%	0%	-
	% > BCWQG ^b	-	-	0%	0%	-	-	-	0%	0%	0%	-	0%	0%
	% > Level 1 Benchmark	0%	-	-	-	-	-	-	-	-	-	0%	-	-
	% > Level 2 Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-
	n	37	37	36	36	37	37	37	37	37	37	37	37	37
	Annual Minimum	95.0	7.48	6.34	10.5	<0.5	<0.5	88.0	<0.005	<0.001	<0.005	4.92	0.110	0.0410
	Annual Maximum	196	8.37	8.63	16.7	9.07	6.00	177	0.0868	0.00260	0.0161	19.7	0.750	0.0840
	Annual Mean	154	8.13	7.82	13.8	2.09	1.83	139	0.0236	0.00106	0.00641	13.2	0.401	0.0604
	Annual Median	157	8.17	7.90	14.1	1.36	1.38	150	0.0197	<0.001	<0.005	13.4	0.360	0.0580
CM_MC1 (RG_MI25)	% < LRL	0%	0%	0%	0%	5%	5%	0%	3%	89%	70%	0%	0%	0%
	% > BCWQG ^a	-	-	3%	0%	-	-	0%	0%	0%	0%	0%	0%	-
	% > BCWQG ^b	_	_	3%	0%	_	_	-	0%	0%	0%	-	0%	0%
	% > Level 1 Benchmark	0%	_	-	-	_	_	_	-	-	-	0%	-	-
	% > Level 2 Benchmark	-	-	_	-	_	_	-	_	_	_	-	_	-
	% > Level 3 Benchmark	_	_	_	_	_	_	_	_	_	_	_	_	_
	n	295	295	297	297	51	295	295	298	298	295	298	298	298
	Annual Minimum	690	7.69	7.04	6.76	<0.5	<0.5	276	<0.025	<0.005	<0.005	352	2.79	<0.1
	Annual Maximum	1,940	8.28	8.78	22.4	8.96	83.8	513	20.5	0.0580	0.123	1,560	17.2	0.238
	Annual Mean	1,601	8.05	7.43	11.1	1.09	1.21	430	16.1	0.00612	0.00967	796	6.08	0.108
	Annual Median	1,610	8.06	7.41	10.4	0.800	0.750	434	16.4	<0.005	0.00500	798	6.07	<0.1
F2_ECIN (RG_ERCKUT)	% < LRL	0%	0%	0%	0%	18%	22%	0%	0.3%	83%	50%	0%	0%	66%
12_LOW (NO_LNONOT)	% > BCWQG ^a	-		0%	1%	-	-	0%	99%	0%	0%	100%	0%	00 70
	% > BCWQG ^b	_	-	0%	0%				0%	0%	0%	-	0%	0%
	% > Level 1 Benchmark	99%	-			-	-	-	U 70			100%		
	% > Level 2 Benchmark	99%	-	-	-	-	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark	-	<u>-</u>	-	-	-	-	<u> </u>	-	-	-	-	-	-
	/0 - Level 3 Delicilliaik	52	<u>-</u> 52	- 55	53	51	51	<u>-</u> 54	52	52	52	52	52	52
	Annual Minimum	1,470	7.79	7.10	8.95	<0.5	<0.5	367	1.52	<0.005	<0.005	677	5.12	<0.1
	Annual Maximum	1,810	8.49	8.21	92.3	7,090	4.07	540	19.8	0.0526	0.231	917	12.4	0.266
	Annual Mean	1,635	8.15	7.65	12.3	140	1.27	464	19.6	0.0526	0.231	814	7.57	0.266
		1,635	8.15	7.64	10.7	1.05		464	9.94	0.00680	0.0790	814		0.146
EV_ECOUT (RG_ERCKDT)	Annual Median % < LRL	0%					1.10						7.10	
LV_LCCOT (NG_ENCKDT)	% < LRL % > BCWQG ^a		0%	0%	0%	10%	12%	0%	0.0% 87%	40%	17%	0%	0%	23%
		-	-	0%	0%	-	-	0%		0%	0%	100%	0%	- 00/
	% > BCWQG ^b	1000/	-	0%	0%	-	-	-	0%	0%	0%	-	0%	0%
	% > Level 1 Benchmark	100%	-	-	-	-	-	-	-	-	-	100%	-	-
	% > Level 2 Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-

> 50% of samples exceed the guideline or benchmark.

> 95% of samples exceed the guideline or benchmark.

^a Long-term average BCQWG for the Protection of Aquatic Life.

^b Short-term maximum BCQWG for the Protection of Aquatic Life. For guidelines dependent on other analytes (e.g., hardness or chloride), guidelines were screened using concurrent concentrations. When concurrent hardness or chloride concentrations were not measured, the most conservative concentration observed for that station was used to estimate the guidelines or benchmark. All summary statistics are reported to 3 significant figures.

^c Total Dissolved Solids and Nickel were screened against the Level 1 Screening Value instead of EVWQP Level 1 Benchmark.

^d Level 3 Benchmark for EV_MC2 reflect the SPO for selenium and nitrate.

Table D.2: Summary of Water Chemistry Data for Key Constituents at Monitoring Stations, EVO LAEMP, 2021

Station	Summary Statistic	Total Dissolved Solids (mg/L) ^c	Lab pH	Field pH	Dissolved Oxygen (mg/L)	Total Organic Carbon (mg/L)	Dissolved Organic Carbon (mg/L)	Alkalinity (mg/L)	Nitrate-N (mg/L)	Nitrite-N (mg/L)	Ammonia (mg/L)	Sulphate (mg/L)	Total Chloride (mg/L)	Total Fluoride (mg/L)
	n	58	57	62	62	52	52	57	57	57	57	57	57	57
	Annual Minimum	1,220	7.96	7.35	8.48	<0.5	<0.5	301	1.52	<0.005	<0.005	678	4.12	<0.1
	Annual Maximum	1,850	8.39	9.40	12.8	2.53	2.85	456	17.2	0.0268	0.0463	907	15.7	0.291
	Annual Mean	1,567	8.24	8.09	10.8	1.02	1.02	398	8.40	0.00633	0.00881	812	7.81	0.152
	Annual Median	1,560	8.24	8.05	10.8	0.980	1.00	402	7.23	<0.005	< 0.005	806	7.40	0.148
EV_EC1 (RG_ERCK)	% < LRL	0%	0%	0%	0%	12%	13%	0%	0%	77%	58%	0%	0%	21%
	% > BCWQG ^a	-	-	2%	0%	-	-	0%	84%	0%	0%	100%	0%	-
	% > BCWQG ^b	-	-	2%	0%	-	-	-	0%	0%	0%	-	0%	0%
	% > Level 1 Benchmark	100%	-	-	-	-	-	-	-	-	-	100%	-	-
	% > Level 2 Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-
	n	1	1	0	0	1	1	1	1	1	1	1	1	1
	Annual Minimum	1,860	8.32	-	-	2.39	1.69	256	26.1	0.0825	0.334	983	15.6	0.229
	Annual Maximum	1,860	8.32	-	-	2.39	1.69	256	26.1	0.0825	0.334	983	15.6	0.229
	Annual Mean	1,860	8.32	-	-	2.39	1.69	256	26.1	0.0825	0.334	983	15.6	0.229
	Annual Median	1,860	8.32	-	-	2.39	1.69	256	26.1	0.0825	0.334	983	15.6	0.229
RG_GATE	% < LRL	0%	0%	-	-	0%	0%	0%	0.0%	0%	0%	0%	0%	0%
	% > BCWQG ^a	-	-	-	-	-	-	0%	100%	0%	100%	100%	0%	-
	% > BCWQG ^b	-	-	-	-	-	-	-	0%	0%	0%	-	0%	0%
	% > Level 1 Benchmark	100%	-	-	-	-	-	-	-	-	-	100%	-	-
	% > Level 2 Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-
	n	51	51	51	51	51	51	52	51	51	51	51	51	51
	Annual Minimum	855	6.99	7.65	5.63	1.31	1.34	162	9.38	<0.005	<0.005	461	2.36	<0.1
	Annual Maximum	2,120	8.47	9.14	15.3	4.50	3.97	308	32.4	0.291	0.289	1,200	24.2	0.349
	Annual Mean	1,632	8.23	8.19	11.8	2.30	2.19	247	21.8	0.0595	0.0683	902.1	13.4	0.217
	Annual Median	1,630	8.26	8.19	11.6	2.24	2.08	246	21.9	0.0535	0.0479	894	14.4	0.217
EV_GT1 (RG_GATEDP)	% < LRL	0%	0%	0%	0%	0%	0%	0%	0.0%	6%	4%	0%	0%	4%
	% > BCWQG ^a	-	-	2%	4%	-	-	0%	100%	2%	0%	100%	0%	-
	% > BCWQG ^b	-	-	2%	0%	-	-	-	0%	0%	0%	-	0%	0%
	% > Level 1 Benchmark	98%	-	-	-	-	-	-	-	-	-	100%	-	-
	% > Level 2 Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark	-		-	-	-	-	<u>-</u>	-	-	-	-	-	-
	n	49	49	50	50	49	49	50	49	49	49	49	49	49
	Annual Minimum	932	7.86	7.38	6.18	0.790	0.770	143	16.9	<0.005	0.00660	500	18.1	<0.1
	Annual Maximum	2,790	8.39	8.41	17.7	11.0	9.63	326	64.0	0.312	0.631	1,500	59.6	0.346
	Annual Mean	1,808	8.17	7.91	9.44	2.15	1.96	237	32.7	0.106	0.118	987.8	35.9	0.228
EV BOA (BO BOOK)	Annual Median	1,740	8.16	7.92	9.64	1.59	1.53	236	30.9	0.105	0.0543	976	34.7	0.226
EV_BC1 (RG_BOCK)	% < LRL	0%	0%	0%	0%	0%	0%	0%	0.0%	6%	0%	0%	0%	12%
	% > BCWQG ^a	-	-	0%	20%	-	-	0%	100%	8%	2%	100%	0%	-
	% > BCWQG ^b	- 060/	-	0%	0%	-	-	-	33%	0%	0%	4000/	0%	0%
	% > Level 1 Benchmark	96%	-	-	-	-	-	-	-	-	-	100%	-	-
	% > Level 2 Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-

> 50% of samples exceed the guideline or benchmark.

> 95% of samples exceed the guideline or benchmark.

^a Long-term average BCQWG for the Protection of Aquatic Life.

^b Short-term maximum BCQWG for the Protection of Aquatic Life. For guidelines dependent on other analytes (e.g., hardness or chloride), guidelines were screened using concurrent concentrations. When concurrent hardness or chloride concentrations were not measured, the most conservative concentration observed for that station was used to estimate the guidelines or benchmark. All summary statistics are reported to 3 significant figures.

^c Total Dissolved Solids and Nickel were screened against the Level 1 Screening Value instead of EVWQP Level 1 Benchmark.

^d Level 3 Benchmark for EV_MC2 reflect the SPO for selenium and nitrate.

Table D.2: Summary of Water Chemistry Data for Key Constituents at Monitoring Stations, EVO LAEMP, 2021

Station	Summary Statistic	Total Dissolved Solids (mg/L) ^c	Lab pH	Field pH	Dissolved Oxygen (mg/L)	Total Organic Carbon (mg/L)	Dissolved Organic Carbon (mg/L)	Alkalinity (mg/L)	Nitrate-N (mg/L)	Nitrite-N (mg/L)	Ammonia (mg/L)	Sulphate (mg/L)	Total Chloride (mg/L)	Total Fluoride (mg/L)
	n	64	64	61	61	64	64	64	64	64	64	64	64	64
ļ	Annual Minimum	108	7.69	7.48	8.95	<0.5	<0.5	73.5	0.0221	<0.001	<0.005	19.7	0.270	0.0260
ļ	Annual Maximum	516	8.45	9.44	208	5.20	4.40	208	1.11	<0.005	0.0503	235	2.98	0.161
ļ	Annual Mean	213	8.22	8.28	14.6	2.32	2.12	132	0.191	0.00116	0.0104	52.2	1.24	0.108
ļ	Annual Median	214	8.25	8.25	11.5	2.22	2.04	134	0.174	<0.001	0.00800	54.9	0.980	0.107
EV_MC3 (RG_MI3)	% < LRL	0%	0%	0%	0%	5%	5%	0%	0.0%	73%	17%	0%	0%	2%
ļ	% > BCWQG ^a	-	-	3%	0%	-	-	0%	0%	0%	0%	0%	0%	-
ļ	% > BCWQG ^b	-	-	3%	0%	-	-	-	0%	0%	0%	-	0%	0%
,	% > Level 1 Benchmark	0%	-	-	-	-	-	-	-	-	-	0%	-	-
,	% > Level 2 Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-
,	% > Level 3 Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-
	n	48	48	48	48	48	48	48	48	48	48	48	48	48
	Annual Minimum	112	7.90	7.75	9.05	<0.5	<0.5	89.5	0.121	<0.001	<0.005	23.5	0.400	0.0610
•	Annual Maximum	370	8.51	8.88	14.4	4.34	4.58	200	1.40	0.00600	0.0605	127	4.88	0.192
,	Annual Mean	262	8.29	8.27	11.5	1.89	1.79	152	0.439	0.00134	0.0141	78.7	1.91	0.112
,	Annual Median	278	8.32	8.27	11.4	1.81	1.40	162	0.248	<0.001	0.0106	85.2	1.68	0.109
EV_MC2a	% < LRL	0%	0%	0%	0%	6%	8%	0%	0.0%	65%	4%	0%	0%	2%
_	% > BCWQG ^a	-	-	0%	0%	-	-	0%	0%	0%	0%	0%	0%	-
,	% > BCWQG ^b	-	-	0%	0%	-	-	-	0%	0%	0%	-	0%	0%
,	% > Level 1 Benchmark ^c	0%	-	-	-	-	-	-	-	-	-	0%	-	-
,	% > Level 2 Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-
,	% > Level 3 Benchmark	-	-	-	-	-	_	-	_	-	-	_	_	-
	n	1	1	0	0	1	1	1	1	1	1	1	1	1
,	Annual Minimum	261	8.42	-	-	1.80	1.75	161	0.153	<0.001	0.0311	62.4	1.11	0.127
,	Annual Maximum	261	8.42	-	-	1.80	1.75	161	0.153	<0.001	0.0311	62.4	1.11	0.127
,	Annual Mean	261	8.42	-	-	1.80	1.75	161	0.153	<0.001	0.0311	62.4	1.11	0.127
,	Annual Median	261	8.42	-	-	1.80	1.75	161	0.153	<0.001	0.0311	62.4	1.11	0.127
RG_MIDER	% < LRL	0%	0%	-	-	0%	0%	0%	0.0%	100%	0%	0%	0%	0%
	% > BCWQG ^a	-	-	-	-	-	-	0%	0%	0%	0%	0%	0%	-
,	% > BCWQG ^b	-	-	-	-	-	_	-	0%	0%	0%	_	0%	0%
	% > Level 1 Benchmark	0%	-	-	-	-	-	-	-	-	-	0%	-	-
	% > Level 2 Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-
	n	1	1	0	0	1	1	1	1	1	1	1	1	1
	Annual Minimum	454	8.43	-	-	1.87	1.70	182	2.72	0.00590	0.0183	170	3.26	0.168
	Annual Maximum	454	8.43	-	-	1.87	1.70	182	2.72	0.00590	0.0183	170	3.26	0.168
	Annual Mean	454	8.43	-	-	1.87	1.70	182	2.72	0.00590	0.0183	170	3.26	0.168
	Annual Median	454	8.43	-	-	1.87	1.70	182	2.72	0.00590	0.0183	170	3.26	0.168
RG_MIDGA	% < LRL	0%	0%	-	-	0%	0%	0%	0.0%	0%	0%	0%	0%	0%
-	% > BCWQG ^a	-	-	-	-	-	-	0%	0%	0%	0%	0%	0%	-
	% > BCWQG ^b	-	-	-	-	-	_	-	0%	0%	0%	-	0%	0%
ļ	% > Level 1 Benchmark ^c	0%	-	-	_	-	_	-	-	-	-	0%	-	-
	% > Level 2 Benchmark	-	-	_	-	_	_	-	_	-	-	-	_	-
	% > Level 3 Benchmark	_	-	-	-	-	-	-	-	-	-	-	-	-

> 50% of samples exceed the guideline or benchmark.

> 95% of samples exceed the guideline or benchmark.

^a Long-term average BCQWG for the Protection of Aquatic Life.

^b Short-term maximum BCQWG for the Protection of Aquatic Life. For guidelines dependent on other analytes (e.g., hardness or chloride), guidelines were screened using concurrent concentrations. When concurrent hardness or chloride concentrations were not measured, the most conservative concentration observed for that station was used to estimate the guidelines or benchmark. All summary statistics are reported to 3 significant figures.

^c Total Dissolved Solids and Nickel were screened against the Level 1 Screening Value instead of EVWQP Level 1 Benchmark.

^d Level 3 Benchmark for EV_MC2 reflect the SPO for selenium and nitrate.

Table D.2: Summary of Water Chemistry Data for Key Constituents at Monitoring Stations, EVO LAEMP, 2021

Station	Summary Statistic	Total Dissolved Solids (mg/L) ^c	Lab pH	Field pH	Dissolved Oxygen (mg/L)	Total Organic Carbon (mg/L)	Dissolved Organic Carbon (mg/L)	Alkalinity (mg/L)	Nitrate-N (mg/L)	Nitrite-N (mg/L)	Ammonia (mg/L)	Sulphate (mg/L)	Total Chloride (mg/L)	Total Fluoride (mg/L)
	n	1	1	0	0	1	1	1	1	1	1	1	1	1
	Annual Minimum	374	8.38	-	-	1.63	1.78	182	1.02	0.00160	0.0268	123	2.42	0.160
	Annual Maximum	374	8.38	-	-	1.63	1.78	182	1.02	0.00160	0.0268	123	2.42	0.160
	Annual Mean	374	8.38	-	-	1.63	1.78	182	1.02	0.00160	0.0268	123	2.42	0.160
	Annual Median	374	8.38	-	-	1.63	1.78	182	1.02	0.00160	0.0268	123	2.42	0.160
RG_MIDBO	% < LRL	0%	0%	-	-	0%	0%	0%	0.0%	0%	0%	0%	0%	0%
	% > BCWQG ^a	-	-	-	-	-	-	0%	0%	0%	0%	0%	0%	-
	% > BCWQG ^b	-	-	-	-	-	-	-	0%	0%	0%	-	0%	0%
	% > Level 1 Benchmark ^c	0%	-	-	-	-	-	-	-	-	-	0%	-	-
	% > Level 2 Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-
	n	82	82	86	86	77	77	82	82	82	82	82	82	82
	Annual Minimum	118	7.80	5.08	7.13	<0.5	<0.5	98.1	0.271	<0.001	< 0.005	26.8	0.860	0.0480
	Annual Maximum	525	8.51	8.67	13.0	7.59	4.40	216	3.36	0.0114	0.0682	181	19.0	0.180
	Annual Mean	306	8.24	8.08	10.7	1.86	1.72	161	0.962	0.00184	0.0116	100	3.83	0.119
	Annual Median	319	8.25	8.16	10.8	1.54	1.55	166	0.845	0.00120	0.00820	106	3.58	0.118
EV_MC2 (RG_MICOMP)	% < LRL	0%	0%	0%	0%	6%	8%	0%	0.0%	43%	20%	0%	0%	2%
	% > BCWQG ^a	-	-	1%	1%	-	-	0%	1%	0%	0%	0%	0%	-
	% > BCWQG ^b	-	-	1%	0%	-	-	-	0%	0%	0%	-	0%	0%
	% > Level 1 Benchmark ^c	0%	-	-	-	-	-	-	-	-	-	0%	-	-
	% > Level 2 Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark ^d	-	-	-	-	-	-	-	0%	-	-	-	-	-
	n	59	59	61	61	59	59	59	59	59	59	59	59	59
	Annual Minimum	158	7.86	7.63	9.48	<0.5	<0.5	115	1.01	<0.001	<0.005	32.0	0.670	0.0795
	Annual Maximum	369	8.49	9.06	13.2	3.90	4.06	202	3.88	3.27	0.154	116	6.10	0.212
	Annual Mean	276	8.28	8.23	11.3	1.44	1.34	158	2.17	0.0573	0.0152	75.8	2.56	0.151
	Annual Median	279	8.30	8.20	11.4	1.19	1.11	165	2.00	0.00120	0.00660	79.1	2.24	0.153
EV_ER1	% < LRL	0%	0%	0%	0%	15%	17%	0%	0.0%	46%	32%	0%	0%	0%
	% > BCWQG ^a	-	-	2%	0%	-	-	0%	19%	2%	0%	0%	0%	-
	% > BCWQG ^b	-	-	2%	0%	-	-	-	0%	2%	0%	-	0%	0%
	% > Level 1 Benchmark ^c	0%	-	-	-	-	-	-	-	-	-	0%	-	-
	% > Level 2 Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-

> 5% of samples exceed the guideline or benchmark.

> 50% of samples exceed the guideline or benchmark.

> 95% of samples exceed the guideline or benchmark.

^a Long-term average BCQWG for the Protection of Aquatic Life.

b Short-term maximum BCQWG for the Protection of Aquatic Life. For guidelines dependent on other analytes (e.g., hardness or chloride), guidelines were screened using concurrent concentrations. When concurrent hardness or chloride concentrations were not measured, the most conservative concentration observed for that station was used to estimate the guidelines or benchmark. All summary statistics are reported to 3 significant figures.

^c Total Dissolved Solids and Nickel were screened against the Level 1 Screening Value instead of EVWQP Level 1 Benchmark.

^d Level 3 Benchmark for EV_MC2 reflect the SPO for selenium and nitrate.

Table D.2: Summary of Water Chemistry Data for Key Constituents at Monitoring Stations, EVO LAEMP, 2021

Station	Summary Statistic	Total Antimony (mg/L)	Total Arsenic (mg/L)	Total Barium (mg/L)	Total Beryllium (mg/L)	Total Boron (mg/L)	Total Chromium (mg/L)	Total Cobalt (mg/L)	Total Iron (mg/L)	Total Lead (mg/L)	Total Lithium (mg/L)	Total Manganese (mg/L)	Total Mercury (mg/L)	Total Molybdenum (mg/L)
	n	3	3	3	3	3	3	3	3	3	3	3	3	3
	Annual Minimum	<0.0001	0.000120	0.0608	<0.00002	<0.01	0.000190	<0.0001	<0.01	<0.00005	0.00290	0.000810	<0.000005	0.000565
	Annual Maximum	<0.0001	0.000150	0.0699	<0.00002	<0.01	0.000240	<0.0001	0.0270	<0.00005	0.00370	0.00171	<0.000005	0.000705
	Annual Mean	<0.0001	0.000133	0.0654	<0.00002	<0.01	0.000207	<0.0001	0.0173	<0.00005	0.00323	0.00129	<0.000005	0.000638
	Annual Median	<0.0001	0.000130	0.0654	<0.00002	<0.01	0.000190	<0.0001	0.0150	<0.00005	0.00310	0.00134	<0.000005	0.000644
EV_AC2 (RG_ALUSM)	% < LRL	100%	0%	0%	100%	100%	0%	100%	33%	100%	0%	0%	100%	0%
_	% > BCWQG ^a	0%	-	0%	0%	0%	0%	0%	-	0%	-	0%	67%	0%
	% > BCWQG ^b	-	0%	-	-	-	-	0%	0%	0%	-	0%	-	0%
	% > Level 1 Benchmark	_	-	-	_	_	-	-	-	-	_	-	_	-
	% > Level 2 Benchmark	_	-	-	_	_	-	-	-	-	_	-	_	-
	% > Level 3 Benchmark	_	-	-	_	_	-	-	_	-	_	-	_	-
	n	37	37	37	37	37	37	37	37	37	37	37	37	37
	Annual Minimum	<0.0001	0.000150	0.0273	<0.00002	<0.01	0.000160	<0.0001	<0.01	<0.00005	0.00210	<0.0001	<0.000005	0.000452
	Annual Maximum	<0.0001	0.000470	0.0579	0.0000540	0.0200	0.00338	0.000430	0.395	0.00152	0.00560	0.0453	0.00000513	0.00101
	Annual Mean	<0.0001	0.000470	0.0471	0.0000340	0.0144	0.000360	0.000430	0.0492	0.0000984	0.00335	0.00230	0.000000313	0.000824
	Annual Median	<0.0001	0.000210	0.0514	<0.00002	0.0150	0.000200	<0.0001	<0.01	<0.00005	0.00480	0.000490	<0.0000005	0.000882
CM_MC1 (RG_MI25)	% < LRL	100%	0%	0%	97%	11%	0%	95%	54%	81%	0%	14%	54%	0%
	% > BCWQG ^a	0%	-	0%	0%	0%	3%	0%	-	0%	-	0%	22%	0%
	% > BCWQG ^b	-	0%	-	-	-	-	0%	0%	0%	_	0%	-	0%
	% > Level 1 Benchmark	_	-	-	_	-	_	-	-	-	_	-	_	-
	% > Level 2 Benchmark	_	_	_	_	_	-	-	_	_	_	-	_	_
	% > Level 3 Benchmark	_		_	_	_	_	_	_	_	_	_	_	_
	n	52	52	52	52	52	52	52	52	52	52	52	135	52
	Annual Minimum	0.000160	0.000200	0.0591	<0.00002	0.0120	0.000120	<0.0001	<0.01	<0.00005	0.0239	<0.0001	<0.0000005	0.000983
	Annual Maximum	0.000100	<0.0004	0.0707	<0.00002	<0.02	0.000120	<0.0001	0.133	<0.0001	0.0235	0.00228	0.0000005	0.00157
	Annual Mean	0.000220	0.000264	0.0640	<0.00004	0.0136	0.000310	0.000100	0.0230	0.00001	0.0267	0.000489	0.00000923	0.00137
	Annual Median	0.000107	0.000260	0.0633	<0.00002	0.0135	0.000213	<0.0001	<0.01	<0.00005	0.0264	0.000305	<0.0000005	0.00110
F2_ECIN (RG_ERCKUT)	% < LRL	2%	2%	0%	100%	8%	8%	98%	54%	92%	0%	6%	96%	0%
: <u></u> (% > BCWQG ^a	0%	-	0%	0%	0%	0%	0%	-	0%	-	0%	1%	0%
	% > BCWQG ^b	-	0%	-	-	-	-	0%	0%	0%	_	0%	-	0%
	% > Level 1 Benchmark	-	-	-	-	<u> </u>	-	-	-	-	-	-	-	-
	% > Level 2 Benchmark	-	-	-	-		-	-	-	-	-	-	-	
	% > Level 3 Benchmark	_	-	-					-		_		_	
	n	52	52	52	52	52	52	52	52	52	52	52	51	52
	Annual Minimum	0.000170	0.000220	0.0128	<0.00002	0.0120	<0.0001	<0.0001	<0.01	<0.00005	0.0241	<0.0001	<0.0000005	0.00100
	Annual Maximum	0.00176	0.000220	0.0703	0.000110	0.0520	<0.0001	0.0230	0.903	<0.0005	0.129	0.551	0.0000003	0.00100
	Annual Mean	0.00108	0.00113	0.0703	0.000110	0.0520	0.0005	0.0230	0.903	0.00025	0.129	0.551	0.00000159	0.0217
	Annual Median	0.000283	0.000314	0.0422	<0.0000217	0.0245	0.000163	0.00800	0.221	0.0000500	0.0458	0.196	<0.0000005	0.0100
EV_ECOUT (RG_ERCKDT)	% < LRL	10%	4%	0.0426	98%	10%	33%	6%	10%	56%	0.0458	2%	×0.0000005 86%	0.0100
LV_LOOD! (NG_LNCKD!)	% > BCWQG ^a	0%	4 70	0%	0%	0%	0%	71%	10%	0%		0%	2%	0%
	% > BCWQG ^b		0%					0%		0%	-			
		-		-	-	-	-	U%	0%		-	0%	-	0%
	% > Level 1 Benchmark ^c % > Level 2 Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-
	/0 / Level 3 Deficilifiark	-	-	-	-	-	-	-	-	-	-	-	-	-

> 50% of samples exceed the guideline or benchmark.

> 95% of samples exceed the guideline or benchmark.

^a Long-term average BCQWG for the Protection of Aquatic Life.

^b Short-term maximum BCQWG for the Protection of Aquatic Life. For guidelines dependent on other analytes (e.g., hardness or chloride), guidelines were screened using concurrent concentrations. When concurrent hardness or chloride concentrations were not measured, the most conservative concentration observed for that station was used to estimate the guidelines or benchmark. All summary statistics are reported to 3 significant figures.

^c Total Dissolved Solids and Nickel were screened against the Level 1 Screening Value instead of EVWQP Level 1 Benchmark.

^d Level 3 Benchmark for EV_MC2 reflect the SPO for selenium and nitrate.

Table D.2: Summary of Water Chemistry Data for Key Constituents at Monitoring Stations, EVO LAEMP, 2021

Station	Summary Statistic	Total Antimony (mg/L)	Total Arsenic (mg/L)	Total Barium (mg/L)	Total Beryllium (mg/L)	Total Boron (mg/L)	Total Chromium (mg/L)	Total Cobalt (mg/L)	Total Iron (mg/L)	Total Lead (mg/L)	Total Lithium (mg/L)	Total Manganese (mg/L)	Total Mercury (mg/L)	Total Molybdenum (mg/L)
	n	52	52	52	52	52	52	52	52	52	52	52	52	52
	Annual Minimum	0.000160	0.000200	0.0193	<0.00002	0.0120	<0.0001	<0.0001	<0.01	<0.00005	0.0227	<0.0001	<0.000005	0.000956
	Annual Maximum	<0.0005	0.000600	0.0535	<0.0001	<0.05	<0.0005	0.00874	0.105	<0.00025	0.131	0.156	0.00000630	0.0216
	Annual Mean	0.000270	0.000374	0.0326	<0.00002	0.0273	0.000133	0.00319	0.0128	0.0000553	0.0534	0.0538	0.000000502	0.0119
	Annual Median	0.000240	0.000360	0.0308	<0.00002	0.0280	<0.0001	0.00290	<0.01	<0.0001	0.0502	0.0436	<0.0000005	0.0134
EV_EC1 (RG_ERCK)	% < LRL	10%	6%	0%	100%	6%	56%	10%	90%	96%	0%	6%	98%	0%
	% > BCWQG ^a	0%	-	0%	0%	0%	0%	27%	-	0%	-	0%	0%	0%
	% > BCWQG ^b	-	0%	-	-	-	-	0%	0%	0%	-	0%	-	0%
	% > Level 1 Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-
	% > Level 2 Benchmark	-	-	-	-	-	-	-	-	_	-	-	-	-
	% > Level 3 Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-
	n	1	1	1	1	1	1	1	1	1	1	1	1	1
	Annual Minimum	0.00133	0.000340	0.240	<0.00002	0.0450	<0.0001	0.000310	0.144	<0.00005	0.146	0.0159	<0.0000005	0.00772
	Annual Maximum	0.00133	0.000340	0.240	<0.00002	0.0450	<0.0001	0.000310	0.144	<0.00005	0.146	0.0159	<0.000005	0.00772
	Annual Mean	0.00133	0.000340	0.240	<0.00002	0.0450	<0.0001	0.000310	0.144	<0.00005	0.146	0.0159	<0.000005	0.00772
	Annual Median	0.00133	0.000340	0.240	<0.00002	0.0450	<0.0001	0.000310	0.144	<0.00005	0.146	0.0159	<0.000005	0.00772
RG_GATE	% < LRL	0%	0%	0%	100%	0%	100%	0%	0%	100%	0%	0%	100%	0%
	% > BCWQG ^a	0%	-	0%	0%	0%	0%	0%	-	0%	-	0%	0%	0%
	% > BCWQG ^b	-	0%	-	-	-	-	0%	0%	0%	-	0%	-	0%
	% > Level 1 Benchmark	-	-	-	-	-	-	-	-	_	-	-	-	-
	% > Level 2 Benchmark	-	-	-	-	-	-	-	-	_	-	-	-	-
	% > Level 3 Benchmark	-	-	-	-	-	-		-	-	-	-	-	-
	n	51	51	51	51	51	51	51	51	51	51	51	51	51
	Annual Minimum	0.000500	0.000195	0.0478	<0.00002	0.0170	<0.0001	<0.0001	<0.01	<0.00005	0.0524	0.00153	<0.000005	0.00432
	Annual Maximum	0.00169	0.00102	0.196	<0.00004	0.0490	0.000600	0.000480	0.284	0.000179	0.167	0.0151	0.00000203	0.00904
	Annual Mean	0.00102	0.000385	0.126	<0.00002	0.0352	0.000153	0.000246	0.0627	0.0000663	0.115	0.00725	0.000000767	0.00752
	Annual Median	0.000830	0.000360	0.132	<0.00002	0.0360	0.000110	0.000230	0.0510	<0.00005	0.108	0.00647	0.00000540	0.00738
EV_GT1 (RG_GATEDP)	% < LRL	0%	0%	0%	100%	2%	63%	16%	4%	78%	0%	0%	45%	0%
	% > BCWQG ^a	0%	-	0%	0%	0%	0%	0%	-	0%	-	0%	14%	0%
	% > BCWQG ^b	-	0%	-	-	-	-	0%	0%	0%	-	0%	-	0%
	% > Level 1 Benchmark	-	-	-	-	-	-		-	-	-	-	-	-
	% > Level 2 Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-
	n	49	49	49	49	49	49	49	49	49	49	49	49	49
	Annual Minimum	0.000480	<0.0002	0.0404	<0.00002	0.0220	<0.0001	0.000110	<0.01	<0.00005	0.0692	0.000650	<0.000005	0.00369
	Annual Maximum	0.00188	0.000820	0.254	<0.00004	0.0660	0.000820	0.00119	0.850	0.00112	0.194	0.0292	0.00000175	0.0154
	Annual Mean	0.00124	0.000309	0.0828	0.0000211	0.0500	0.000138	0.000298	0.0505	0.0000927	0.160	0.00790	0.000000617	0.00804
	Annual Median	0.00118	0.000280	0.0820	<0.00002	0.0520	<0.0001	0.000190	0.0190	<0.00005	0.168	0.00250	<0.0000005	0.00824
EV_BC1 (RG_BOCK)	% < LRL	0%	4%	0%	98%	0%	88%	37%	45%	84%	0%	0%	71%	0%
	% > BCWQG ^a	0%	-	0%	0%	0%	0%	0%	-	0%	-	0%	4%	0%
	% > BCWQG ^b	-	0%	-	-	-	-	0%	0%	0%	-	0%	-	0%
	% > Level 1 Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-
	% > Level 2 Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-

> 5% of samples exceed the guideline or benchmark.

> 50% of samples exceed the guideline or benchmark.

> 95% of samples exceed the guideline or benchmark.

Notes: "LRL" = laboratory reporting limit. "BCWQG" = British Columbia Working or Accepted Water Quality Guideline. The EVWQP Level 1 Benchmark for Nitrate is consistent with the long term BCWQG.

^a Long-term average BCQWG for the Protection of Aquatic Life.

^b Short-term maximum BCQWG for the Protection of Aquatic Life. For guidelines dependent on other analytes (e.g., hardness or chloride), guidelines were screened using concurrent concentrations. When concurrent hardness or chloride concentrations were not measured, the most conservative concentration observed for that station was used to estimate the guidelines or benchmark. All summary statistics are reported to 3 significant figures.

^c Total Dissolved Solids and Nickel were screened against the Level 1 Screening Value instead of EVWQP Level 1 Benchmark.

^d Level 3 Benchmark for EV_MC2 reflect the SPO for selenium and nitrate.

Table D.2: Summary of Water Chemistry Data for Key Constituents at Monitoring Stations, EVO LAEMP, 2021

Station	Summary Statistic	Total Antimony (mg/L)	Total Arsenic (mg/L)	Total Barium (mg/L)	Total Beryllium (mg/L)	Total Boron (mg/L)	Total Chromium (mg/L)	Total Cobalt (mg/L)	Total Iron (mg/L)	Total Lead (mg/L)	Total Lithium (mg/L)	Total Manganese (mg/L)	Total Mercury (mg/L)	Total Molybdenum (mg/L)
	n	64	64	64	64	64	64	64	64	64	64	64	64	64
	Annual Minimum	<0.0001	0.000140	0.0534	<0.00002	<0.01	<0.0001	<0.0001	<0.01	<0.00005	0.00300	0.000540	<0.000005	0.000467
	Annual Maximum	0.000320	0.000935	0.132	0.000102	0.0130	0.00178	0.00120	1.55	0.00138	0.0152	0.0533	0.00000790	0.00430
	Annual Mean	0.000108	0.000244	0.0949	0.0000221	0.0104	0.000296	0.000161	0.122	0.000121	0.00521	0.00444	0.00000159	0.000734
	Annual Median	<0.0001	0.000210	0.0970	<0.00002	<0.01	0.000200	<0.0001	0.0475	<0.00005	0.00525	0.00202	0.00000106	0.000705
EV_MC3 (RG_MI3)	% < LRL	69%	0%	0%	94%	72%	2%	69%	17%	55%	0%	0%	31%	0%
_	% > BCWQG ^a	0%	-	0%	0%	0%	2%	0%	-	0%	-	0%	42%	0%
	% > BCWQG ^b	-	0%	-	-	-	-	0%	2%	0%	-	0%	-	0%
	% > Level 1 Benchmark	-	-	-	-	-	-	•	-	-	-	-	-	-
	% > Level 2 Benchmark	-	-	-	-	-	-	•	-	-	-	-	-	-
	% > Level 3 Benchmark	-	-	-	-	-	-	•	-	-	-	-	-	-
	n	48	48	48	48	48	48	48	48	48	48	48	48	48
	Annual Minimum	<0.0001	0.000140	0.0563	<0.00002	<0.01	<0.0001	<0.0001	<0.01	<0.00005	0.00350	0.00168	<0.000005	0.000512
	Annual Maximum	0.000160	0.000930	0.143	0.0000940	0.0160	0.00202	0.00125	1.54	0.00131	0.0150	0.0532	0.00000576	0.00212
	Annual Mean	0.000102	0.000235	0.0999	0.0000217	0.0111	0.000271	0.000183	0.103	0.000107	0.00748	0.00561	0.00000121	0.00115
	Annual Median	<0.0001	0.000210	0.105	<0.00002	0.0105	0.000180	0.000135	0.0340	<0.00005	0.00785	0.00411	0.000000620	0.00103
EV_MC2a	% < LRL	71%	0%	0%	94%	44%	4%	27%	8%	67%	0%	0%	48%	0%
	% > BCWQG ^a	0%	-	0%	0%	0%	2%	0%	-	0%	-	0%	29%	0%
	% > BCWQG ^b	-	0%	-	-	-	-	0%	2%	0%	-	0%	-	0%
	% > Level 1 Benchmark ^c	-	-	-	-	-	-	-	-	-	-	-	-	-
	% > Level 2 Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-
	n	1	1	1	1	1	1	1	1	1	1	1	1	1
	Annual Minimum	<0.0001	0.000190	0.113	<0.00002	0.0110	0.000120	<0.0001	<0.01	<0.00005	0.00660	0.00141	0.000000530	0.000858
	Annual Maximum	<0.0001	0.000190	0.113	<0.00002	0.0110	0.000120	<0.0001	<0.01	<0.00005	0.00660	0.00141	0.00000530	0.000858
	Annual Mean	<0.0001	0.000190	0.113	<0.00002	0.0110	0.000120	<0.0001	<0.01	<0.00005	0.00660	0.00141	0.000000530	0.000858
	Annual Median	<0.0001	0.000190	0.113	<0.00002	0.0110	0.000120	<0.0001	<0.01	<0.00005	0.00660	0.00141	0.00000530	0.000858
RG_MIDER	% < LRL	100%	0%	0%	100%	0%	0%	100%	100%	100%	0%	0%	0%	0%
	% > BCWQG ^a	0%	-	0%	0%	0%	0%	0%	-	0%	-	0%	0%	0%
	% > BCWQG ^b	-	0%	-	-	-	-	0%	0%	0%	-	0%	-	0%
	% > Level 1 Benchmark	-	-	-	-	-	-	•	-	-	-		-	-
	% > Level 2 Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-
	n	1	1	1	1	1	1	1	1	1	1	1	1	1
	Annual Minimum	0.000350	0.000230	0.138	<0.00002	0.0180	0.000140	0.000140	0.0240	<0.00005	0.0351	0.00453	<0.000005	0.00276
	Annual Maximum	0.000350	0.000230	0.138	<0.00002	0.0180	0.000140	0.000140	0.0240	<0.00005	0.0351	0.00453	<0.0000005	0.00276
	Annual Mean	0.000350	0.000230	0.138	<0.00002	0.0180	0.000140	0.000140	0.0240	<0.00005	0.0351	0.00453	<0.0000005	0.00276
	Annual Median	0.000350	0.000230	0.138	<0.00002	0.0180	0.000140	0.000140	0.0240	<0.00005	0.0351	0.00453	<0.0000005	0.00276
RG_MIDGA	% < LRL	0%	0%	0%	100%	0%	0%	0%	0%	100%	0%	0%	100%	0%
	% > BCWQG ^a	0%	-	0%	0%	0%	0%	0%	-	0%	-	0%	0%	0%
	% > BCWQG ^b	-	0%	-	-	-	-	0%	0%	0%	-	0%	-	0%
	% > Level 1 Benchmark ^c	-	-	-	-	-	-	-	-	-	-	-	-	-
	% > Level 2 Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark	<u>- </u>	-	-	-	-	-	-	-	-	-	-	-	

> 50% of samples exceed the guideline or benchmark.

> 95% of samples exceed the guideline or benchmark.

^a Long-term average BCQWG for the Protection of Aquatic Life.

^b Short-term maximum BCQWG for the Protection of Aquatic Life. For guidelines dependent on other analytes (e.g., hardness or chloride), guidelines were screened using concurrent concentrations. When concurrent hardness or chloride concentrations were not measured, the most conservative concentration observed for that station was used to estimate the guidelines or benchmark. All summary statistics are reported to 3 significant figures.

^c Total Dissolved Solids and Nickel were screened against the Level 1 Screening Value instead of EVWQP Level 1 Benchmark.

^d Level 3 Benchmark for EV_MC2 reflect the SPO for selenium and nitrate.

Table D.2: Summary of Water Chemistry Data for Key Constituents at Monitoring Stations, EVO LAEMP, 2021

Station	Summary Statistic	Total Antimony (mg/L)	Total Arsenic (mg/L)	Total Barium (mg/L)	Total Beryllium (mg/L)	Total Boron (mg/L)	Total Chromium (mg/L)	Total Cobalt (mg/L)	Total Iron (mg/L)	Total Lead (mg/L)	Total Lithium (mg/L)	Total Manganese (mg/L)	Total Mercury (mg/L)	Total Molybdenum (mg/L)
	n	1	1	1	1	1	1	1	1	1	1	1	1	1
	Annual Minimum	0.000130	0.000210	0.121	<0.00002	0.0150	0.000130	<0.0001	0.0140	<0.00005	0.0135	0.00296	<0.000005	0.00188
	Annual Maximum	0.000130	0.000210	0.121	<0.00002	0.0150	0.000130	<0.0001	0.0140	<0.00005	0.0135	0.00296	<0.000005	0.00188
	Annual Mean	0.000130	0.000210	0.121	<0.00002	0.0150	0.000130	<0.0001	0.0140	<0.00005	0.0135	0.00296	<0.000005	0.00188
	Annual Median	0.000130	0.000210	0.121	<0.00002	0.0150	0.000130	<0.0001	0.0140	<0.00005	0.0135	0.00296	<0.0000005	0.00188
RG_MIDBO	% < LRL	0%	0%	0%	100%	0%	0%	100%	0%	100%	0%	0%	100%	0%
	% > BCWQG ^a	0%	-	0%	0%	0%	0%	0%	-	0%	-	0%	0%	0%
	% > BCWQG ^b	-	0%	-	-	-	-	0%	0%	0%	-	0%	-	0%
	% > Level 1 Benchmark ^c	-	-	-	-	-	-	-	-	-	-	-	-	-
	% > Level 2 Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-
	n	78	78	78	78	78	78	78	78	78	78	78	77	78
	Annual Minimum	<0.0001	0.000130	0.0548	<0.00002	<0.01	0.000100	<0.0001	<0.01	<0.00003	0.00480	0.00108	<0.0000005	0.000424
	Annual Maximum	0.000420	0.00437	0.284	0.000560	0.0170	0.00932	0.00782	10.5	0.00923	0.0251	0.390	0.0000149	0.00217
	Annual Mean	0.000112	0.000271	0.0980	0.0000278	0.0121	0.000352	0.000252	0.210	0.000189	0.0116	0.00930	0.00000125	0.00117
	Annual Median	<0.0001	0.000200	0.101	<0.00002	0.0120	0.000180	0.000120	0.0290	<0.00005	0.0116	0.00305	0.000000630	0.00112
EV_MC2 (RG_MICOMP)	% < LRL	51%	0%	0%	95%	29%	1%	37%	13%	68%	0%	0%	44%	0%
	% > BCWQG ^a	0%	-	0%	1%	0%	3%	1%	-	1%	-	0%	27%	0%
	% > BCWQG ^b	-	0%	-	-	-	-	0%	3%	0%	-	0%	-	0%
	% > Level 1 Benchmark ^c	-	-	-	-	-	-	-	-	-	-	-	-	-
	% > Level 2 Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark ^d	-	-	-	-	-	-	-	-	-	-	-	-	-
	n	60	60	60	60	60	60	60	60	60	60	60	59	60
	Annual Minimum	<0.0001	0.000170	0.0518	<0.00002	<0.01	0.000180	<0.0001	<0.01	<0.00005	0.00510	0.00142	<0.0000005	0.000749
	Annual Maximum	0.000270	0.00109	0.0990	0.0000900	0.0110	0.00245	0.000860	1.79	0.00114	0.0130	0.0862	0.00000612	0.00154
	Annual Mean	0.000106	0.000261	0.0739	0.0000230	0.0100	0.000438	0.000149	0.154	0.000146	0.00877	0.00854	0.00000107	0.00115
	Annual Median	<0.0001	0.000210	0.0746	<0.00002	<0.01	0.000280	<0.0001	0.0375	<0.00005	0.00890	0.00320	<0.0000005	0.00116
EV_ER1	% < LRL	80%	0%	0%	88%	97%	0%	77%	13%	58%	0%	0%	54%	0%
	% > BCWQG ^a	0%	-	0%	0%	0%	8%	0%	-	0%	-	0%	22%	0%
	% > BCWQG ^b	-	0%	-	-	-	-	0%	3%	0%	-	0%	-	0%
	% > Level 1 Benchmark ^c	-	-	-	-	-	-	-	-	-	-	-	-	-
	% > Level 2 Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	

>

> 5% of samples exceed the guideline or benchmark.

> 50% of samples exceed the guideline or benchmark.

> 95% of samples exceed the guideline or benchmark.

^a Long-term average BCQWG for the Protection of Aquatic Life.

b Short-term maximum BCQWG for the Protection of Aquatic Life. For guidelines dependent on other analytes (e.g., hardness or chloride), guidelines were screened using concurrent concentrations. When concurrent hardness or chloride concentrations were not measured, the most conservative concentration observed for that station was used to estimate the guidelines or benchmark. All summary statistics are reported to 3 significant figures.

^c Total Dissolved Solids and Nickel were screened against the Level 1 Screening Value instead of EVWQP Level 1 Benchmark.

^d Level 3 Benchmark for EV_MC2 reflect the SPO for selenium and nitrate.

Table D.2: Summary of Water Chemistry Data for Key Constituents at Monitoring Stations, EVO LAEMP, 2021

Station	Summary Statistic	Total Nickel (ug/L) ^c	Total Selenium (ug/L)	Total Silver (mg/L)	Total Thallium (mg/L)	Total Uranium (mg/L)	Total Zinc (mg/L)	Dissolved Aluminum (mg/L)	Dissolved Cadmium (ug/L)	Dissolved Copper (mg/L)	Dissolved Iron (mg/L)
	n	3	3	3	3	3	3	3	3	3	3
	Annual Minimum	<0.5	0.617	<0.00001	<0.00001	0.000557	<0.003	<0.001	<0.005	<0.0002	<0.01
	Annual Maximum	<0.5	0.688	<0.00001	<0.00001	0.000594	<0.003	0.00190	0.00570	<0.0002	<0.01
	Annual Mean	<0.5	0.641	<0.00001	<0.00001	0.000580	<0.003	0.00130	0.00523	<0.0002	<0.01
	Annual Median	<0.5	0.618	<0.00001	<0.00001	0.000590	<0.003	<0.001	<0.005	<0.0002	<0.01
EV_AC2 (RG_ALUSM)	% < LRL	100%	0%	100%	100%	0%	100%	67%	67%	100%	100%
	% > BCWQG ^a	-	0%	0%	0%	0%	0%	0%	0%	0%	-
	% > BCWQG ^b	-	-	0%	-	-	0%	0%	0%	0%	0%
	% > Level 1 Benchmark	0%	0%	-	-	-	-	-	0%	-	-
	% > Level 2 Benchmark	0%	0%	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark	0%	-	-	-	-	-	-	-	-	-
	n	37	37	37	37	37	37	37	37	37	37
	Annual Minimum	<0.5	0.163	<0.00001	<0.00001	0.000129	<0.003	<0.001	0.00570	<0.0002	<0.01
	Annual Maximum	1.89	0.385	<0.00001	0.0000280	0.000299	0.00680	0.0162	0.0132	0.000600	0.0190
	Annual Mean	0.565	0.248	<0.00001	0.0000111	0.000220	0.00338	0.00351	0.00935	0.000251	0.0104
	Annual Median	<0.5	0.226	<0.00001	<0.00001	0.000227	<0.003	0.00190	0.00910	<0.0002	<0.01
CM_MC1 (RG_MI25)	% < LRL	92%	0%	100%	86%	0%	81%	11%	0%	51%	92%
_	% > BCWQG ^a	-	0%	0%	0%	0%	0%	0%	0%	5%	-
	% > BCWQG ^b	-	-	0%	-	-	0%	0%	0%	0%	0%
	% > Level 1 Benchmark	0%	0%	-	-	-	-	-	0%	-	-
	% > Level 2 Benchmark	0%	0%	-	-	_	-	_	-	_	-
	% > Level 3 Benchmark	0%	-	_	-	-	-	_	-	_	-
	n	52	59	52	52	52	52	135	135	135	135
	Annual Minimum	<0.5	132	<0.00001	<0.00001	0.00806	<0.003	<0.001	0.0539	<0.0002	<0.01
	Annual Maximum	1.26	169	<0.00002	<0.00002	0.00957	0.0123	0.198	0.109	0.00127	0.0770
	Annual Mean	0.872	148	<0.00001	<0.00001	0.00868	0.00352	0.00378	0.0789	0.000253	0.0142
	Annual Median	0.860	148	<0.00001	<0.00001	0.00863	<0.003	<0.001	0.0798	<0.0002	<0.01
F2_ECIN (RG_ERCKUT)	% < LRL	10%	0%	100%	100%	0%	83%	64%	0%	75%	61%
_ (= ,	% > BCWQG ^a	-	100%	0%	0%	65%	0%	1%	0%	9%	-
	% > BCWQG ^b	-	-	0%	-	-	0%	1%	0%	1%	0%
	% > Level 1 Benchmark	0%	100%	-	-	_	-	-	0%	-	-
	% > Level 2 Benchmark	0%	100%	_	_	_	_	_		_	_
	% > Level 3 Benchmark	0%	-	_		_		_	_	_	<u>-</u>
	n	52	58	52	52	52	52	51	51	51	51
	Annual Minimum	0.820	16.4	<0.00001	<0.00001	0.00812	<0.003	<0.001	0.0680	<0.0002	<0.01
	Annual Maximum	80.2	168	0.000289	0.000113	0.0147	0.0258	<0.005	0.288	0.00110	0.136
	Annual Mean	28.5	91.1	0.000289	0.000113	0.0147	0.0238	0.00121	0.148	0.000110	0.0243
	Annual Median	29.7	87.4	<0.0000134	0.0000450	0.0108	0.0115	0.00121	0.150	<0.0002	0.0243
EV_ECOUT (RG_ERCKDT)	% < LRL	0%	0%	98%	25%	0.0108	17%	57%	0.130	94%	49%
	% > BCWQG ^a	-	100%	0%	0%	90%	0%	0%	0%	6%	43 /0
	% > BCWQG % > BCWQG ^b		100%	0%		9070	0%	0%	0%	0%	 0%
		720/	020/		-	-			0%		U%
	% > Level 1 Benchmark	73%	93%	-	-	-	-	-	U%	-	-
	% > Level 2 Benchmark	71% 67%	66%	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark	01%	-	-	-	-	-	-	-	-	=

> 50% of samples exceed the guideline or benchmark.

> 95% of samples exceed the guideline or benchmark.

^a Long-term average BCQWG for the Protection of Aquatic Life.

^b Short-term maximum BCQWG for the Protection of Aquatic Life. For guidelines dependent on other analytes (e.g., hardness or chloride), guidelines were screened using concurrent concentrations. When concurrent hardness or chloride concentrations were not measured, the most conservative concentration observed for that station was used to estimate the guidelines or benchmark. All summary statistics are reported to 3 significant figures.

^c Total Dissolved Solids and Nickel were screened against the Level 1 Screening Value instead of EVWQP Level 1 Benchmark.

 $^{^{\}rm d}\,\text{Level}$ 3 Benchmark for EV_MC2 reflect the SPO for selenium and nitrate.

Table D.2: Summary of Water Chemistry Data for Key Constituents at Monitoring Stations, EVO LAEMP, 2021

T	Summary Statistic	Total Nickel (ug/L) ^c	Total Selenium (ug/L)	Total Silver (mg/L)	Total Thallium (mg/L)	Total Uranium (mg/L)	Total Zinc (mg/L)	Dissolved Aluminum (mg/L)	Dissolved Cadmium (ug/L)	Dissolved Copper (mg/L)	Dissolved Iron (mg/L)
	n	52	64	52	52	52	52	52	52	52	52
	Annual Minimum	0.920	16.8	<0.00001	<0.00001	0.00742	<0.003	<0.001	<0.005	<0.0002	<0.01
	Annual Maximum	36.8	172	<0.00005	0.0000550	0.0156	<0.015	<0.005	<0.025	0.00265	<0.05
	Annual Mean	23.1	79.1	<0.00001	0.0000346	0.0111	0.00309	0.00113	0.00942	0.000266	<0.01
	Annual Median	26.0	65.9	<0.00001	0.0000360	0.0113	<0.006	<0.001	0.00920	<0.0002	<0.01
EV_EC1 (RG_ERCK)	% < LRL	0%	0%	100%	15%	0%	98%	88%	52%	90%	100%
	% > BCWQG ^a	-	100%	0%	0%	88%	0%	0%	0%	8%	-
	% > BCWQG ^b	-	-	0%	-	-	0%	0%	0%	0%	0%
	% > Level 1 Benchmark	88%	97%	-	-	-	-	-	0%	-	-
	% > Level 2 Benchmark	85%	39%	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark	75%	-	-	-	-	-	-	-	-	-
	n	1	1	1	1	1	1	1	1	1	1
ļ	Annual Minimum	26.4	228	<0.00001	0.0000380	0.00961	0.0128	<0.002	0.148	<0.0004	<0.02
	Annual Maximum	26.4	228	<0.00001	0.0000380	0.00961	0.0128	<0.002	0.148	<0.0004	<0.02
	Annual Mean	26.4	228	<0.00001	0.0000380	0.00961	0.0128	<0.002	0.148	<0.0004	<0.02
	Annual Median	26.4	228	<0.00001	0.0000380	0.00961	0.0128	<0.002	0.148	<0.0004	<0.02
RG_GATE	% < LRL	0%	0%	100%	0%	0%	0%	100%	0%	100%	100%
_	% > BCWQG ^a	-	100%	0%	0%	100%	0%	0%	0%	0%	-
Ī	% > BCWQG ^b	-	-	0%	-	-	0%	0%	0%	0%	0%
	% > Level 1 Benchmark	100%	100%	-	-	-	-	-	0%	-	-
	% > Level 2 Benchmark	100%	100%	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark	100%	-	-	-	-	-	-	-	-	-
	n	51	51	51	51	51	51	51	51	51	51
	Annual Minimum	6.00	130	<0.00001	0.0000250	0.00490	0.00470	<0.001	<0.01	<0.0002	<0.01
	Annual Maximum	36.4	321	0.000139	0.0000520	0.0133	0.0746	0.0886	0.205	0.000650	0.0540
	Annual Mean	19.8	223	0.0000128	0.0000379	0.00864	0.00943	0.00489	0.0786	0.000356	0.0128
	Annual Median	18.5	220	<0.00001	0.0000380	0.00882	0.00720	0.00210	0.0721	0.000380	<0.01
EV_GT1 (RG_GATEDP)	% < LRL	0%	0%	94%	0%	0%	20%	33%	2%	45%	80%
_ `	% > BCWQG ^a	-	100%	0%	0%	55%	0%	2%	0%	0%	-
	% > BCWQG ^b	-	-	0%	-	-	0%	0%	0%	0%	0%
	% > Level 1 Benchmark	100%	100%	-	-	-	-	-	0%	-	_
	% > Level 2 Benchmark	76%	100%	-	-	-	-	-	-	-	_
	% > Level 3 Benchmark	35%	-	-	-	-	_	-	-	-	-
	n	49	49	49	49	49	49	49	49	49	49
	Annual Minimum	14.2	133	<0.00001	0.0000230	0.00485	<0.003	<0.001	0.00990	<0.0002	<0.01
	Annual Maximum	42.5	496	0.0000330	0.0000780	0.0140	0.0463	0.0440	0.167	0.00162	0.0900
	Annual Mean	27.5	270	0.0000105	0.0000454	0.0101	0.00773	0.00441	0.0433	0.000368	0.0121
}	Annual Median	27.0	260	<0.00001	0.0000420	0.0101	0.00440	0.00280	0.0235	0.000340	<0.01
EV_BC1 (RG_BOCK)	% < LRL	0%	0%	96%	0%	0%	59%	16%	8%	51%	94%
_ (% > BCWQG ^a	-	100%	0%	0%	90%	0%	0%	0%	2%	-
	% > BCWQG ^b	<u>-</u>	-	0%	-	-	0%	0%	0%	0%	0%
-	% > Level 1 Benchmark	100%	100%	-	-	_	-	-	0%	-	-
	% > Level 2 Benchmark	96%	100%	-	<u> </u>	_	-	_	-	_	
-	% > Level 3 Benchmark	92%	-	-	<u> </u>	-	-	-	-	<u>-</u>	

> 50% of samples exceed the guideline or benchmark.

> 95% of samples exceed the guideline or benchmark.

^a Long-term average BCQWG for the Protection of Aquatic Life.

b Short-term maximum BCQWG for the Protection of Aquatic Life. For guidelines dependent on other analytes (e.g., hardness or chloride), guidelines were screened using concurrent concentrations. When concurrent hardness or chloride concentrations were not measured, the most conservative concentration observed for that station was used to estimate the guidelines or benchmark. All summary statistics are reported to 3 significant figures.

^c Total Dissolved Solids and Nickel were screened against the Level 1 Screening Value instead of EVWQP Level 1 Benchmark.

^d Level 3 Benchmark for EV_MC2 reflect the SPO for selenium and nitrate.

Table D.2: Summary of Water Chemistry Data for Key Constituents at Monitoring Stations, EVO LAEMP, 2021

Station	Summary Statistic	Total Nickel (ug/L) ^c	Total Selenium (ug/L)	Total Silver (mg/L)	Total Thallium (mg/L)	Total Uranium (mg/L)	Total Zinc (mg/L)	Dissolved Aluminum (mg/L)	Dissolved Cadmium (ug/L)	Dissolved Copper (mg/L)	Dissolved Iron (mg/L)
	n	64	64	64	64	64	64	64	64	64	64
	Annual Minimum	<0.5	0.993	<0.00001	<0.00001	0.000349	<0.003	<0.001	0.0105	<0.0002	<0.01
	Annual Maximum	6.89	10.4	0.000118	0.0000620	0.00314	0.0506	0.0651	0.0282	0.000570	0.0400
	Annual Mean	1.22	1.70	0.0000130	0.0000123	0.000655	0.00438	0.00640	0.0199	0.000284	0.0114
	Annual Median	0.905	1.57	<0.00001	<0.00001	0.000665	< 0.003	0.00285	0.0190	0.000242	<0.01
EV_MC3 (RG_MI3)	% < LRL	27%	0%	86%	77%	0%	75%	20%	0%	36%	80%
	% > BCWQG ^a	-	11%	0%	0%	0%	2%	2%	0%	0%	-
	% > BCWQG ^b	-	-	0%	-	-	0%	2%	0%	0%	0%
	% > Level 1 Benchmark	2%	0%	-	_	-	-	-	0%	-	-
	% > Level 2 Benchmark	0%	0%	-	_	-	_	-	_	-	-
	% > Level 3 Benchmark	0%	_	-	_	-	_	-	_	-	-
	n	48	48	48	48	48	48	48	48	48	48
	Annual Minimum	<0.5	1.52	<0.00001	<0.0001	0.000451	<0.003	<0.001	0.0125	<0.0002	<0.01
	Annual Maximum	4.84	13.1	0.0000760	0.0000630	0.00191	0.0151	0.0200	0.0244	0.00245	0.0360
	Annual Mean	1.59	4.50	0.0000119	0.0000118	0.00105	0.00402	0.00503	0.0187	0.000309	0.0110
	Annual Median	1.58	3.03	<0.00001	<0.00001	0.00115	<0.003	0.00280	0.0186	0.000230	<0.01
EV_MC2a	% < LRL	10%	0%	88%	85%	0%	75%	35%	0%	35%	79%
	% > BCWQG ^a	-	90%	0%	0%	0%	0%	0%	0%	2%	-
	% > BCWQG ^b		-	0%	-	-	0%	0%	0%	0%	0%
	% > Level 1 Benchmark ^c	0%	0%	-	_	_	-	-	0%	-	-
	% > Level 2 Benchmark	0%	0%	_	_	_		_	-	_	
	% > Level 3 Benchmark	0%	-	_	_	_	_	_	_	_	_
	n	1	1	1	1	1	1	1	1	1	1
	Annual Minimum	0.700	1.95	<0.00001	<0.0001	0.000841	<0.003	<0.001	0.0190	<0.0002	<0.01
	Annual Maximum	0.700	1.95	<0.00001	<0.00001	0.000841	<0.003	<0.001	0.0190	<0.0002	<0.01
	Annual Mean	0.700	1.95	<0.00001	<0.00001	0.000841	<0.003	<0.001	0.0190	<0.0002	<0.01
	Annual Median	0.700	1.95	<0.00001	<0.00001	0.000841	<0.003	<0.001	0.0190	<0.0002	<0.01
RG_MIDER	% < LRL	0%	0%	100%	100%	0%	100%	100%	0.0190	100%	100%
KO_IIIIDEK	% > BCWQG ^a	-	0%	0%	0%	0%	0%	0%	0%	0%	-
	% > BCWQG ^b		070	0%	-	-	0%	0%	0%	0%	0%
	% > Level 1 Benchmark	0%	0%	-	-	_	-	-	0%		-
	% > Level 2 Benchmark	0%	0%			-			0 70	-	
	% > Level 2 Benchmark	0%	U 70 -	-	-	-	<u>-</u>	-	-	-	-
	n	0% 1	1	<u>-</u> 1	<u>-</u> 1	- 1	- 1	1	- 1	1	
	Annual Minimum	6.57	18.5	<0.00001	0.0000100	0.00286	0.00340	<0.001	0.0279	<0.0002	<0.01
	Annual Maximum	6.57	18.5	<0.00001	0.0000100	0.00286	0.00340	<0.001	0.0279	<0.0002	<0.01
	Annual Maximum Annual Mean					0.00286					
		6.57	18.5	<0.00001	0.0000100		0.00340	<0.001	0.0279	<0.0002	<0.01
DC MIDCA	Annual Median	6.57	18.5	<0.00001	0.0000100	0.00286	0.00340	<0.001	0.0279	<0.0002	<0.01
RG_MIDGA	% < LRL	0%	0%	100%	0%	0%	0%	100%	0%	100%	100%
	% > BCWQG ^a	-	100%	0%	0%	0%	0%	0%	0%	0%	- 00/
	% > BCWQG ^b	-	-	0%	-	-	0%	0%	0%	0%	0%
	% > Level 1 Benchmark ^c	100%	0%	-	-	-	-	-	0%	-	-
	% > Level 2 Benchmark	0%	0%	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark	0%	-	-	-	-	-	-	-	-	-

> 50% of samples exceed the guideline or benchmark.

> 95% of samples exceed the guideline or benchmark.

^a Long-term average BCQWG for the Protection of Aquatic Life.

^b Short-term maximum BCQWG for the Protection of Aquatic Life. For guidelines dependent on other analytes (e.g., hardness or chloride), guidelines were screened using concurrent concentrations. When concurrent hardness or chloride concentrations were not measured, the most conservative concentration observed for that station was used to estimate the guidelines or benchmark. All summary statistics are reported to 3 significant figures.

^c Total Dissolved Solids and Nickel were screened against the Level 1 Screening Value instead of EVWQP Level 1 Benchmark.

 $^{^{\}rm d}\,\text{Level}$ 3 Benchmark for EV_MC2 reflect the SPO for selenium and nitrate.

Table D.2: Summary of Water Chemistry Data for Key Constituents at Monitoring Stations, EVO LAEMP, 2021

Station	Summary Statistic	Total Nickel (ug/L) ^c	Total Selenium (ug/L)	Total Silver (mg/L)	Total Thallium (mg/L)	Total Uranium (mg/L)	Total Zinc (mg/L)	Dissolved Aluminum (mg/L)	Dissolved Cadmium (ug/L)	Dissolved Copper (mg/L)	Dissolved Iron (mg/L)
	n	1	1	1	1	1	1	1	1	1	1
	Annual Minimum	2.51	8.09	<0.00001	<0.00001	0.00164	<0.003	0.00140	0.0207	<0.0002	<0.01
	Annual Maximum	2.51	8.09	<0.00001	<0.00001	0.00164	<0.003	0.00140	0.0207	<0.0002	<0.01
	Annual Mean	2.51	8.09	<0.00001	<0.00001	0.00164	<0.003	0.00140	0.0207	<0.0002	<0.01
	Annual Median	2.51	8.09	<0.00001	<0.00001	0.00164	<0.003	0.00140	0.0207	<0.0002	<0.01
RG_MIDBO	% < LRL	0%	0%	100%	100%	0%	100%	0%	0%	100%	100%
	% > BCWQG ^a	-	100%	0%	0%	0%	0%	0%	0%	0%	-
	% > BCWQG ^b	-	-	0%	-	-	0%	0%	0%	0%	0%
	% > Level 1 Benchmark ^c	0%	0%	-	-	i	1	-	0%	-	-
	% > Level 2 Benchmark	0%	0%	-	-	i	1	-	•	-	-
	% > Level 3 Benchmark	0%	-	-	-	-	•	-	-	-	-
	n	78	84	78	78	78	78	78	78	78	78
	Annual Minimum	<0.5	2.58	<0.00001	<0.00001	0.000504	<0.003	<0.001	0.0152	<0.0002	<0.01
	Annual Maximum	26.0	20.7	0.000294	0.000316	0.00179	0.0946	0.0226	0.0421	0.000700	0.0180
	Annual Mean	1.90	8.55	0.0000147	0.0000150	0.00114	0.00464	0.00436	0.0237	0.000275	0.0103
	Annual Median	1.59	7.82	<0.00001	<0.00001	0.00124	<0.003	0.00200	0.0228	0.000235	<0.01
EV_MC2 (RG_MICOMP)	% < LRL	4%	0%	92%	79%	0%	82%	28%	0%	33%	87%
	% > BCWQG ^a	-	100%	0%	0%	0%	1%	0%	0%	0%	-
	% > BCWQG ^b	-	-	0%	-	•	1%	0%	0%	0%	0%
	% > Level 1 Benchmark ^c	1%	1%	-	-	•	-	-	0%	-	-
	% > Level 2 Benchmark	1%	0%	-	-	•	-	-		-	-
	% > Level 3 Benchmark ^d	1%	1%	-	-	-	-	-	-	-	-
	n	60	60	60	60	60	60	60	60	60	60
	Annual Minimum	<0.5	4.95	<0.00001	<0.00001	0.000726	<0.003	<0.001	0.00860	<0.0002	<0.01
	Annual Maximum	3.79	18.7	0.0000520	0.0000560	0.00168	0.0241	0.0111	0.0210	0.000450	0.0180
	Annual Mean	0.929	10.7	0.0000116	0.0000126	0.00118	0.00423	0.00278	0.0134	0.000223	0.0102
	Annual Median	0.750	10.1	<0.00001	<0.00001	0.00119	<0.003	0.00185	0.0130	<0.0002	<0.01
EV_ER1	% < LRL	8%	0%	88%	80%	0%	78%	25%	0%	70%	95%
	% > BCWQG ^a	-	100%	0%	0%	0%	0%	0%	0%	0%	-
	% > BCWQG ^b	-	-	0%	-	•	0%	0%	0%	0%	0%
	% > Level 1 Benchmark ^c	0%	0%	-	-	•	-	-	0%	-	-
	% > Level 2 Benchmark	0%	0%	-	-	•	-	-	•	-	-
	% > Level 3 Benchmark	0%	-	-	-	-	-	-	-	-	-

> 5% of samples exceed the guideline or benchmark.
> 50% of samples exceed the guideline or benchmark.

> 95% of samples exceed the guideline or benchmark.

^a Long-term average BCQWG for the Protection of Aquatic Life.

b Short-term maximum BCQWG for the Protection of Aquatic Life. For guidelines dependent on other analytes (e.g., hardness or chloride), guidelines were screened using concurrent concentrations. When concurrent hardness or chloride concentrations were not measured, the most conservative concentration observed for that station was used to estimate the guidelines or benchmark. All summary statistics are reported to 3 significant figures.

^c Total Dissolved Solids and Nickel were screened against the Level 1 Screening Value instead of EVWQP Level 1 Benchmark.

^d Level 3 Benchmark for EV_MC2 reflect the SPO for selenium and nitrate.

Table D.3: Raw Selenium Speciation Data from Biological Monitoring Areas, EVO LAEMP, 2021

Water Bo	dy	Biological Monitoring Area	Sample Date	Selenate (µg/L)	Selenite (µg/L)	Dimethylselenoxide (µg/L)	Methylseleninic Acid (µg/L)	Selenocyanate (µg/L)	Selenomethionine (µg/L)	Selenosulphate (µg/L)	Methaneselenonic Acid (µg/L)	Unknown Species (µg/L)	Sum of Species (µg/L)
Lower Alexander Creek	Reference	RG_ALUSM	12-Sep-21	0.56	0.015	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.58
Michel Creek		RG_MI25	13-Sep-21	0.15	0.020	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.17
			17-Feb-21	89	0.021	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	89
			22-Feb-21	138	0.060	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	138
			1-Mar-21 8-Mar-21	138 140	0.038	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	138 140
			15-Mar-21	149	0.044	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	149
			22-Mar-21	145	0.049	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	145
			29-Mar-21	132	0.049	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.027	132
			5-Apr-21	133	0.030	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	133
			12-Apr-21	141	0.026	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	141
			19-Apr-21	128	0.014	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	128
			27-Apr-21 3-May-21	134 136	0.040	<0.01	<0.01	<0.01	<0.01	0.039 <0.01	<0.01	<0.01	134 136
			10-May-21	141	0.036	<0.01	<0.01	<0.01	<0.01	0.047	<0.01	<0.01	141
			17-May-21	139	0.035	<0.01	<0.01	<0.01	<0.01	0.071	<0.01	<0.01	139
			24-May-21	127	0.037	<0.01	<0.01	<0.01	<0.01	0.041	<0.01	<0.01	127
			3-Jun-21	127	0.016	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	127
			7-Jun-21	152	0.051	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	152
			14-Jun-21	124	0.028	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	124
			21-Jun-21	160	0.052	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	160
			28-Jun-21 5-Jul-21	138 134	0.034	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	138 134
			13-Jul-21	136	0.030	<0.01	<0.01	<0.01	<0.01		<0.01	<0.01	136
			19-Jul-21	99	0.019	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	99
			27-Jul-21	138	0.043	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	138
			2-Aug-21	143	0.033	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	143
	Mine-		9-Aug-21	145	0.032	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	145
Erickson Creek	Exposed	RG_ERCKUT	16-Aug-21	138	0.034	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	138
			23-Aug-21 30-Aug-21	151 135	0.048	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	151 135
			6-Sep-21	161	0.026	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	161
			12-Sep-21	145	0.036	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	145
			15-Sep-21	110	0.019	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	110
			20-Sep-21	140	0.039	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	140
			27-Sep-21	147	0.045	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	147
			4-Oct-21	146	0.035	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	146
			11-Oct-21 18-Oct-21	141 142	0.039	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	141 142
			25-Oct-21	149	0.031	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	142
			1-Nov-21	153	0.044	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	153
			8-Nov-21	150	0.042	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	150
			15-Nov-21	147	0.054	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	147
			22-Nov-21	160	0.037	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	160
			29-Nov-21	146	0.041	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	146
			2-Dec-21	150	0.037	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	150
			6-Dec-21 9-Dec-21	143 149	0.032	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	143 149
			13-Dec-21	149	0.030	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	149
			14-Dec-21	139	0.030	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	139
			16-Dec-21	139	0.036	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	139
			20-Dec-21	135	0.29	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	135
			23-Dec-21	140	0.017	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	140
			27-Dec-21	150	0.040	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	150
			30-Dec-21	181	0.032	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	181

Table D.3: Raw Selenium Speciation Data from Biological Monitoring Areas, EVO LAEMP, 2021

Water Bo	dy	Biological Monitoring Area	Sample Date	Selenate (µg/L)	Selenite (µg/L)	Dimethylselenoxide (µg/L)	Methylseleninic Acid (µg/L)	Selenocyanate (µg/L)	Selenomethionine (µg/L)	Selenosulphate (µg/L)	Methaneselenonic Acid (µg/L)	Unknown Species (µg/L)	Sum of Species (µg/L)
			1-Feb-21	137	0.051	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	137
			18-Feb-21	135	0.055	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	135
			1-Mar-21 22-Mar-21	137 84	0.047	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	137 84
			30-Mar-21	132	0.048	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.012	132
			5-Apr-21	56	0.15	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	56
			12-Apr-21	60	0.020	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	60
			19-Apr-21	48	0.15	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	48
			26-Apr-21 3-May-21	135 73	0.042	<0.01	<0.01	<0.01	<0.01	0.050 <0.01	<0.01	<0.01	135 73
			10-May-21	60	0.32	<0.01	<0.01	0.011	<0.01	<0.01	<0.01	<0.01	60
			24-May-21	71	0.29	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	71
			2-Jun-21	140	0.066	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	140
			3-Jun-21 7-Jun-21	29 50	0.49	<0.01	0.012 <0.01	<0.01	<0.01	<0.01	<0.01	<0.01	29 51
			21-Jun-21	76	0.39	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	76
			5-Jul-21	80	0.44	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	80
			19-Jul-21	54	0.85	<0.01	<0.01	0.013	<0.01	<0.01	<0.01	<0.01	54
		RG_ERCKDT	2-Aug-21	26 18	1.3 1.9	<0.01	0.011	<0.01	<0.01	<0.01	<0.01	<0.01	27
			16-Aug-21 30-Aug-21	18	1.9	0.011	<0.01 0.015	0.019 <0.01	<0.01	<0.01	<0.01	<0.01	20 19
			13-Sep-21	15	1.8	0.024	0.011	<0.01	<0.01	<0.01	<0.01	<0.01	17
			15-Sep-21	137	0.064	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	137
			27-Sep-21	21	1.7	0.020	0.011	<0.01	<0.01	<0.01	<0.01	<0.01	23
			11-Oct-21 25-Oct-21	16 15	1.6 1.6	<0.01 0.027	<0.01	0.020	<0.01	<0.01	<0.01	<0.01	18 17
			8-Nov-21	51		0.027	0.019	<0.017	<0.01	<0.01	<0.01	<0.01	52
			22-Nov-21	45	0.76	0.013	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	46
			2-Dec-21	127	0.12	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	127
			6-Dec-21	78	0.54	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	78
			9-Dec-21 13-Dec-21	117 122	0.55 0.28	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	118 122
			15-Dec-21	94	0.054	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	94
			16-Dec-21	101	0.26	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	101
			20-Dec-21	81	0.37	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	81
Erickson Creek	Mine-		24-Dec-21 27-Dec-21	104 92	0.31	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	104 93
Elicksoll Cleek	Exposed		30-Dec-21	98	0.40	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	98
			18-Jan-21	147	0.18	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	147
			1-Feb-21	133	0.17	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	133
			17-Feb-21	107	0.16	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	107
			1-Mar-21 22-Mar-21	64 37	0.50 0.56	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	64 37
			29-Mar-21	119	0.36	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	119
			5-Apr-21	119	0.25	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	119
			12-Apr-21	32	0.31	<0.01	0.014	<0.01	<0.01	<0.01	<0.01	<0.01	33
			19-Apr-21	31 125	0.24	<0.01	<0.01	<0.01	<0.01	<0.01 0.027	<0.01	<0.01	32 125
			26-Apr-21 3-May-21	50	0.20	0.016	<0.01	<0.01	<0.01	<0.027	<0.01	<0.01	51
			10-May-21	44	0.40	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	44
			24-May-21	52	0.40	<0.01	0.013	<0.01	<0.01	<0.01	<0.01	<0.01	53
			7-Jun-21	70 78	0.42	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	71 79
			21-Jun-21 5-Jul-21	78 55	0.44	<0.01	0.011	<0.01	<0.01	<0.01	<0.01	<0.01	78 56
			19-Jul-21	36	0.00	0.016	0.014	<0.013	<0.01	<0.01	<0.01	<0.01	37
		RG_ERCK	2-Aug-21	15	1.0	0.020	0.016	<0.01	<0.01	<0.01	<0.01	<0.01	16
			16-Aug-21	20	1.4	0.026	0.022	<0.01	<0.01	<0.01	<0.01	<0.01	21
			30-Aug-21 10-Sep-21	16 145	1.2 0.87	0.019	0.017	<0.01	<0.01	<0.01	<0.01	<0.01	17 146
			10-Sep-21 13-Sep-21	36	1.3	0.017	0.018	<0.01	<0.01	<0.01	<0.01	<0.01	38
			27-Sep-21	13	1.4	0.039	0.022	<0.01	<0.01	<0.01	<0.01	<0.01	15
			11-Oct-21	21	1.2	0.015	0.016	<0.01	<0.01	<0.01	<0.01	<0.01	22
			8-Nov-21	28	1.3	0.019	0.021	<0.01	<0.01	<0.01	<0.01	<0.01	30
			22-Nov-21 2-Dec-21	23 66	0.96 0.72	0.020	0.018	<0.01	<0.01	<0.01	<0.01	<0.01	24 67
			6-Dec-21	48	0.72	0.013	0.017	<0.01	<0.01	<0.01	<0.01	<0.01	49
			9-Dec-21	69	0.83	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	70
			13-Dec-21	70	0.67	0.011	0.013	<0.01	<0.01	<0.01	<0.01	<0.01	70
			14-Dec-21	62	0.51	<0.01	0.014	<0.01	<0.01	<0.01	<0.01	<0.01	62
			16-Dec-21 20-Dec-21	54 54	0.40	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	54 55
			23-Dec-21	54	0.66	0.013	0.014	<0.01	<0.01	<0.01	<0.01	<0.01	55
Ī			30-Dec-21	56	0.68	<0.01	0.017	<0.01	<0.01	<0.01	<0.01	<0.01	56

Table D.3: Raw Selenium Speciation Data from Biological Monitoring Areas, EVO LAEMP, 2021

Water Bo	dy	Biological Monitoring Area	Sample Date	Selenate (µg/L)	Selenite (µg/L)	Dimethylselenoxide (µg/L)	Methylseleninic Acid (µg/L)	Selenocyanate (µg/L)	Selenomethionine (µg/L)	Selenosulphate (µg/L)	Methaneselenonic Acid (µg/L)	Unknown Species (µg/L)	Sum of Species (µg/L)
		RG_GATE	27-Aug-21	207	0.86	<0.01	0.026	<0.01	<0.01	<0.01	<0.01	<0.01	208
			16-Sep-21	224	0.91	<0.01	0.042	<0.01	<0.01	<0.01	<0.01	<0.01	225
			4-Jan-21	260	0.93	0.015	0.050	<0.01	<0.01	<0.01	<0.01	<0.01	261
			1-Feb-21	251	1.2	0.019	0.053	<0.01	<0.01	<0.01	<0.01	<0.01	252
			3-Feb-21 17-Feb-21	203 165	0.78 0.66	<0.01	0.036	<0.01	<0.01	<0.01	<0.01	<0.01	204 166
			17-Feb-21 1-Mar-21	260	0.00	0.019	0.023	<0.01	<0.01	<0.01	<0.01	<0.01	261
			22-Mar-21	221	1.0	<0.01	0.055	<0.01	<0.01	<0.01	<0.01	<0.01	222
			29-Mar-21	183	0.86	0.014	0.043	<0.01	<0.01	<0.01	<0.01	<0.01	184
			5-Apr-21	205	0.84	<0.01	0.063	<0.01	<0.01	<0.01	<0.01	<0.01	206
			12-Apr-21	232	0.93	0.033	0.079	<0.01	<0.01	<0.01	<0.01	<0.01	233
			19-Apr-21	210	0.93	0.012	0.080	<0.01	<0.01	<0.01	<0.01	<0.01	211
			26-Apr-21	224	0.90	<0.01	0.079	<0.01	<0.01	0.025	<0.01	<0.01	225
			3-May-21	205	0.99	0.036	0.085	<0.01	<0.01	0.025	<0.01	<0.01	206
			10-May-21	191	0.78	0.023	0.061	<0.01	<0.01	<0.01	<0.01	<0.01	192
Gate Creek			24-May-21	195	0.82	<0.01	0.056	<0.01	<0.01	<0.01	<0.01	<0.01	196
Gate Creek		RG_GATEDP	7-Jun-21 21-Jun-21	205 210	1.0	0.055	0.081	<0.01	<0.01	<0.01	<0.01	<0.01	206 211
		NO_OATEDI	5-Jul-21	188	0.94	0.042	0.060	<0.01	<0.01	<0.01	<0.01	<0.01	189
			19-Jul-21	206	0.89	0.022	0.059	<0.01	<0.01	<0.01	<0.01	<0.01	207
			2-Aug-21	195	0.82	0.026	0.047	<0.01	<0.01	<0.01	<0.01	<0.01	196
			16-Aug-21	226	1.1	0.036	0.058	<0.01	<0.01	<0.01	<0.01	<0.01	227
			27-Aug-21	202	0.95	<0.01	0.055	<0.01	<0.01	<0.01	<0.01	<0.01	203
			31-Aug-21	206	0.96	0.041	0.053	<0.01	<0.01	<0.01	<0.01	<0.01	207
			14-Sep-21	207	0.95	0.040	0.037	<0.01	<0.01	<0.01	<0.01	<0.04	208
			16-Sep-21	201	0.91	0.034	0.051	<0.01	<0.01	<0.01	<0.01	<0.01	202
			28-Sep-21	178	0.82	0.028	0.041	<0.01	<0.01	<0.01	<0.01	<0.01	179
			12-Oct-21 26-Oct-21	222 223	1.0 1.0	0.021	0.082	<0.01	<0.01	<0.01	<0.01	<0.01	223 224
			9-Nov-21	150	1.0	0.007	0.083	<0.01	<0.01	<0.01	<0.01	<0.01	151
	_Mine-		23-Nov-21	196	1.0	0.014	0.039	<0.01	<0.01	<0.01	<0.01	<0.01	197
	Exposed		7-Dec-21	159	0.78	0.011	0.032	<0.01	<0.01	<0.01	<0.01	<0.01	160
			21-Dec-21	171	0.79	<0.01	0.030	<0.01	<0.01	<0.01	<0.01	<0.01	172
			4-Jan-21	400	0.72	0.017	0.034	<0.01	<0.01	<0.01	<0.01	<0.01	401
			8-Feb-21	397	0.78	0.020	0.032	<0.01	<0.01	<0.01	<0.01	<0.01	398
			22-Mar-21	127	0.75	<0.01	0.047	<0.01	<0.01	<0.01	<0.01	<0.01	128
			29-Mar-21	184	0.86	0.022	0.051	<0.01	<0.01	<0.01	<0.01	<0.01	185
			5-Apr-21	131	0.85	<0.01	0.075	<0.01	<0.01	<0.01	<0.01	<0.01	132
			12-Apr-21	238	1.0	0.060	0.084	<0.01	<0.01	<0.01	<0.01	<0.01	239
			19-Apr-21 29-Apr-21	242 285	1.1 1.2	0.041	0.093	<0.01	<0.01	<0.01	<0.01	<0.01	243 286
			3-May-21	269	1.1	0.030	0.081	<0.01	<0.01	0.079	<0.01	<0.01	270
			10-May-21	260	1.1	0.058	0.079	<0.01	<0.01	<0.01	<0.01	<0.01	261
			24-May-21	242	0.93	0.020	0.043	<0.01	<0.01	<0.01	<0.01	<0.01	243
			7-Jun-21	282	1.5	0.12	0.10	<0.01	<0.01	<0.01	<0.01	<0.01	284
			21-Jun-21	237	1.4	0.065	0.068	<0.01	<0.01	<0.01	<0.01	<0.01	239
Bodie Creek		RG_BOCK	5-Jul-21	207	2.7	0.18	0.097	<0.01	<0.01	<0.01	<0.01	<0.01	210
			19-Jul-21	110	1.6	0.022	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	112
			2-Aug-21	202	2.7	0.15	0.084	<0.01	<0.01	<0.01	<0.01	<0.01	205
			16-Aug-21 27-Aug-21	217 195	2.3 1.2	0.14 <0.01	0.088	<0.01	<0.01	<0.01	<0.01	<0.01	220 196
			31-Aug-21	195	2.0	0.10	0.029	<0.01	<0.01	<0.01	<0.01	<0.01	196
			14-Sep-21	212	1.9	0.10	0.082	<0.01	<0.01	<0.01	<0.01	<0.01	214
			16-Sep-21	201	2.2	0.13	0.089	<0.01	<0.01	<0.01	<0.01	<0.01	203
			28-Sep-21	210	1.9	0.14	0.10	<0.01	<0.01	<0.01	<0.01	<0.01	212
			12-Oct-21	199	1.6	0.057	0.10	<0.01	<0.01	<0.01	<0.01	<0.01	201
			26-Oct-21	248	0.80	0.037	0.059	<0.01	<0.01	<0.01	<0.01	<0.01	249
			9-Nov-21	317	0.70	0.019	0.046	<0.01	<0.01	<0.01	<0.01	<0.01	318
			23-Nov-21	362	0.79	0.013	0.030	<0.01	<0.01	<0.01	<0.01	<0.01	363
			7-Dec-21	316	0.69	0.013	0.029	<0.01	<0.01	<0.01	<0.01	<0.01	317
			21-Dec-21	249	0.48	<0.01	0.020	<0.01	<0.01	<0.01	<0.01	<0.01	250

Table D.3: Raw Selenium Speciation Data from Biological Monitoring Areas, EVO LAEMP, 2021

Water Bo	dy	Biological Monitoring Area	Sample Date	Selenate (µg/L)	Selenite (µg/L)	Dimethylselenoxide (µg/L)	Methylseleninic Acid (µg/L)	Selenocyanate (µg/L)	Selenomethionine (µg/L)	Selenosulphate (µg/L)	Methaneselenonic Acid (µg/L)	Unknown Species (µg/L)	Sum of Species (µg/L)
			18-Jan-21	1.7	0.031	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.7
			1-Feb-21	1.6 1.6	0.028	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.6
			1-Mar-21 22-Mar-21	1.7	0.034	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.7 1.8
			29-Mar-21	1.6	0.052	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.014	1.7
			5-Apr-21	1.6	0.037	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.7
			12-Apr-21	1.5	0.034	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.6
			19-Apr-21	1.3	0.022	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.3
			26-Apr-21 3-May-21	1.4 0.93	0.056 0.051	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.5 0.98
			10-May-21	1.4	0.041	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.4
			24-May-21	1.5	0.039	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.5
			7-Jun-21	1.2	0.049	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.3
		DC MI2	21-Jun-21	1.0	0.045	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.1
		RG_MI3	5-Jul-21 19-Jul-21	1.2 1.1	0.046	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.2 1.2
			2-Aug-21	1.0	0.061	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.1
			16-Aug-21	1.2	0.12	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.3
			30-Aug-21	1.2	0.051	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.2
			10-Sep-21	1.0	0.045	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.1
			13-Sep-21 27-Sep-21	1.3 1.4	0.062	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.4 1.5
			11-Oct-21	1.4	0.051	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.4
			25-Oct-21	1.3	0.074	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.3
			8-Nov-21	1.2	0.035	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.3
			22-Nov-21	2.2	0.039	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	2.2
			6-Dec-21 14-Dec-21	1.6 1.7	0.039	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.6 1.7
			20-Dec-21	1.4	0.027	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.4
Michel Creek	Mine- Exposed		4-Jan-21	9.7	0.027	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	9.7
	Lxposed		1-Feb-21	9.5	0.030	<0.01	<0.01	0.011	<0.01	<0.01	<0.01	<0.01	9.5
			1-Mar-21	6.9	0.060	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	7.0
			22-Mar-21 30-Mar-21	4.4 10	0.058	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	4.4 10
			5-Apr-21	6.8	0.007	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	6.9
			12-Apr-21	3.7	0.039	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	3.7
			19-Apr-21	2.6	0.022	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	2.7
			26-Apr-21	5.6	0.043	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	5.6
			3-May-21	1.6 1.9	0.056 0.044	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.7 2.0
			10-May-21 24-May-21	2.1	0.044	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	2.0
			7-Jun-21	1.6	0.043	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.7
		EV_MC2a	21-Jun-21	1.9	0.039	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.9
			5-Jul-21	2.7	0.067	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	2.7
			19-Jul-21	2.8	0.085	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.013	2.9
			2-Aug-21 16-Aug-21	2.0 2.4	0.12 0.16	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	2.1 2.6
			30-Aug-21	2.0	0.11	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	2.1
			13-Sep-21	3.8	0.14	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	4.0
			27-Sep-21	2.4	0.14	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	2.6
			11-Oct-21	3.1 2.4	0.12	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	3.3 2.5
			25-Oct-21 8-Nov-21	2.4	0.11	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	2.5
			22-Nov-21	2.5	0.048	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	2.6
			6-Dec-21	2.4	0.048	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	2.4
			20-Dec-21	4.6	0.052	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	4.7
		RG_MIDER	9-Sep-21	1.8	0.076	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1.9
		RG_MIDGA RG MIDBO	11-Sep-21 11-Sep-21	3.0 8.2	0.16 0.17	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	3.2 8.3
		KP_INIIDRO	11-5ep-21	ō.∠	0.17	\U.U1	0.012	\U.U1	\U.U1	\U.UT	\U.UT	\U.UT	ი.ა

Table D.3: Raw Selenium Speciation Data from Biological Monitoring Areas, EVO LAEMP, 2021

Water Bo	dy	Biological Monitoring Area	Sample Date	Selenate (µg/L)	Selenite (µg/L)	Dimethylselenoxide (µg/L)	Methylseleninic Acid (µg/L)	Selenocyanate (µg/L)	Selenomethionine (µg/L)	Selenosulphate (µg/L)	Methaneselenonic Acid (µg/L)	Unknown Species (µg/L)	Sum of Species (µg/L)
			4-Jan-21	13	0.034	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	13
			1-Feb-21	13	0.032	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	13
			3-Feb-21	11	0.042	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	11
			23-Feb-21	7.0	0.030	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	7.0
			1-Mar-21	9.9	0.062	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	10
			20-Mar-21	8.0	0.069	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	8.0
			22-Mar-21	8.4	0.066	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	8.4
			29-Mar-21	9.0	0.10	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.017	9.1
			5-Apr-21	10	0.058	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	10
			7-Apr-21	6.4	0.073	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	6.5
			12-Apr-21	7.2	0.049	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	7.3
			19-Apr-21	5.3	0.032	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	5.3
			26-Apr-21	8.1	0.055	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	8.1
			3-May-21	2.5	0.054	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	2.6
			10-May-21	2.9	0.051	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	2.9
			24-May-21	3.2	0.042	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	3.2
		RG_MICOMP	7-Jun-21	2.9	0.050	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	3.0
	Mina		21-Jun-21	2.8	0.045	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	2.9
Michel Creek	Mine- Exposed		5-Jul-21	4.5	0.078	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	4.6
	Lxposed		7-Jul-21	9.8	0.12	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	9.9
			19-Jul-21	6.2	0.12	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	6.3
			2-Aug-21	4.9	0.13	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	5.1
			16-Aug-21	8.0	0.20	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	8.2
			30-Aug-21	5.1	0.11	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	5.2
			13-Sep-21	9.0	0.17	<0.01	0.012	<0.01	<0.01	<0.01	<0.01	<0.01	9.2
			22-Sep-21	8.3	0.13	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	8.5
			27-Sep-21	8.6	0.13	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	8.7
			11-Oct-21	8.0	0.13	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	8.2
			25-Oct-21	6.1	0.11	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	6.2
			8-Nov-21	4.2	0.074	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	4.2
			22-Nov-21	4.2	0.046	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	4.2
			6-Dec-21	4.4	0.040	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	4.4
			20-Dec-21	7.6	0.062	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	7.7
			3-Feb-21	10	0.057	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	10
		EV_ER1	7-Apr-21	17	0.092	<0.01	0.014	<0.01	<0.01	<0.01	<0.01	<0.01	17
		LV_ENI	7-Jul-21	6.6	0.089	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	6.7
			22-Sep-21	11	0.091	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	11

Table D.4: Acute Toxicity Results from EVO LAEMP, 2021

								Percent Moi	rtality						
Month		F2_BPO			EV_ECOL	JT		EV_EC1	1		EV_GT1			EV_BC	1
WIOTILIT	Date	Daphnia magna	Oncorhynchus mykiss												
lan	-	-	-	11-Jan-21	0%	0%	14-Jan-21	0%	0%	11-Jan-21	0%	0%	11-Jan-21	0%	0%
Jan	-	-	-	-	-	-	18-Jan-21	0%	0%	-	-	-	-	-	-
Feb	17-Feb-21	0%	0%	1-Feb-21	0%	0%	1-Feb-21	0%	0%	1-Feb-21	0%	0%	-	-	-
ren	-	-	-	17-Feb-21	0%	0%	17-Feb-21	0%	0%	17-Feb-21	0%	0%	-	-	-
	1-Mar-21	0%	0%	1-Mar-21	0%	0%	1-Mar-21	0%	10%	1-Mar-21	0%	0%	15-Mar-21	0%	0%
Man	15-Mar-21	0%	0%	19-Mar-21	0%	0%									
Mar	-	-	-	30-Mar-21	0%	0%	30-Mar-21	0%	0%	19-Mar-21	0%	0%	29-Mar-21	0%	0%
	-	-	-	-	-	-	-	-	-	29-Mar-21	0%	0%	-	-	-
	-	-	-	12-Apr-21	0%	0%	7-Apr-21	0%	0%	7-Apr-21	0%	0%	12-Apr-21	0%	0%
Apr	-	-	-	26-Apr-21	0%	0%	12-Apr-21	0%	0%	12-Apr-21	0%	0%	28-Apr-21	0%	0%
•				-	-	-	26-Apr-21	0%	0%	26-Apr-21	0%	0%	29-Apr-21	0%	0%
	_	-	-	10-May-21	0%	0%									
May	-	-	-	24-May-21	0%	0%	24-May-21	3%	0%	24-May-21	0%	0%	24-May-21	0%	0%
	-	-	-	26-May-21	0%	0%		-	-	-	-	-	-	-	-
	-	-	-	2-Jun-21	0%	0%	3-Jun-21	0%	0%	7-Jun-21	0%	0%	7-Jun-21	0%	0%
	-	-	-	3-Jun-21	0%	0%	7-Jun-21	0%	0%	21-Jun-21	0%	0%	21-Jun-21	0%	0%
Jun	-	-	-	3-Jun-21	0%	0%	21-Jun-21	0%	0%	-	=	-		-	-
	-	-	-	7-Jun-21	0%	0%	-	-	-	-	-	-		-	-
	-	-	-	21-Jun-21	0%	0%	-	-	-	-	=	-		-	-
	_	-	-	5-Jul-21	0%	0%									
Jul	-	-	-	19-Jul-21	0%	0%	7-Jul-21	0%	10%	7-Jul-21	0%	0%	7-Jul-21	0%	0%
	-	-	-	-	-	-	19-Jul-21	3%	0%	19-Jul-21	0%	0%	19-Jul-21	0%	0%
	-	-	-	2-Aug-21	0%	0%									
Aug	-	-	-	16-Aug-21	0%	10%	16-Aug-21	0%	0%	16-Aug-21	0%	0%	16-Aug-21	0%	0%
_	-	-	-	30-Aug-21	0%	0%	30-Aug-21	0%	0%	31-Aug-21	0%	0%	31-Aug-21	0%	0%
	-	-	-	13-Sep-21	0%	0%	13-Sep-21	0%	0%	14-Sep-21	0%	0%	14-Sep-21	0%	0%
Sep	-	-	-	27-Sep-21	0%	0%	27-Sep-21	0%	0%	28-Sep-21	0%	0%	28-Sep-21	0%	0%
-				-	-	-	-	-	-	28-Sep-21	0%	0%	12-Oct-21	-	-
	_	_	-	11-Oct-21	0%	0%	11-Oct-21	0%	0%	12-Oct-21	0%	0%	19-Oct-21	0%	0%
Oct	-	-	-	25-Oct-21	0%	0%	-	-	-	19-Oct-21	0%	0%	26-Oct-21	0%	0%
				-	<u>-</u>	_	-	-	-	26-Oct-21	0%	10%	3-Nov-21	0%	0%
	-	-	-	8-Nov-21	0%	0%	4-Nov-21	0%	0%	3-Nov-21	0%	0%	9-Nov-21	0%	0%
Nov	-	-	-	22-Nov-21	0%	0%	8-Nov-21	0%	0%	9-Nov-21	0%	0%	23-Nov-21	0%	0%
	-	-	-	-	-	-	22-Nov-21	0%	0%	23-Nov-21	0%	0%		0%	0%
_	-	-	-	6-Dec-21	0%	0%	6-Dec-21	0%	0%	7-Dec-21	0%	0%	7-Dec-21	0%	0%
Dec	_		_	20-Dec-21	0%	0%	20-Dec-21	0%	0%	21-Dec-21	0%	0%	21-Dec-21	0%	0%

APPENDIX E PERIPHYTON

Figure E.1: Site and Substrate Coverage Photograph at Reference Station RG_ALUSM, September 2021

Figure E.1: Site and Substrate Coverage Photograph at Reference Station RG_MI25, September 2021

Figure E.1: Site and Substrate Coverage Photograph at RG_ERCKUT, September 2021

Figure E.1: Site and Substrate Coverage Photograph at RG_ERCKDT, September 2021

Figure E.1: Site and Substrate Coverage Photograph at RG_ERCK, September 2021

Figure E.1: Site and Substrate Coverage Photograph at RG_BOCK, September 2021

Figure E.1: Site and Substrate Coverage Photograph at Station RG_GATEDP, September 2021

Note: Site photo was taken looking upstream.

Figure E.1: Site and Substrate Coverage Photograph at RG_GATE, September 2021

Note: Site photo was taken looking upstream.

Figure E.1: Site and Substrate Coverage Photograph at RG_MI3, September 2021

Note: Site photo was taken looking upstream. Photos for the other areas in Michel Creek (RG_MIDER, RG_MIDGA, RG_MIDBO, and RG_MICOMP) are unavailable for 2021.

APPENDIX F BENTHIC INVERTEBRATES

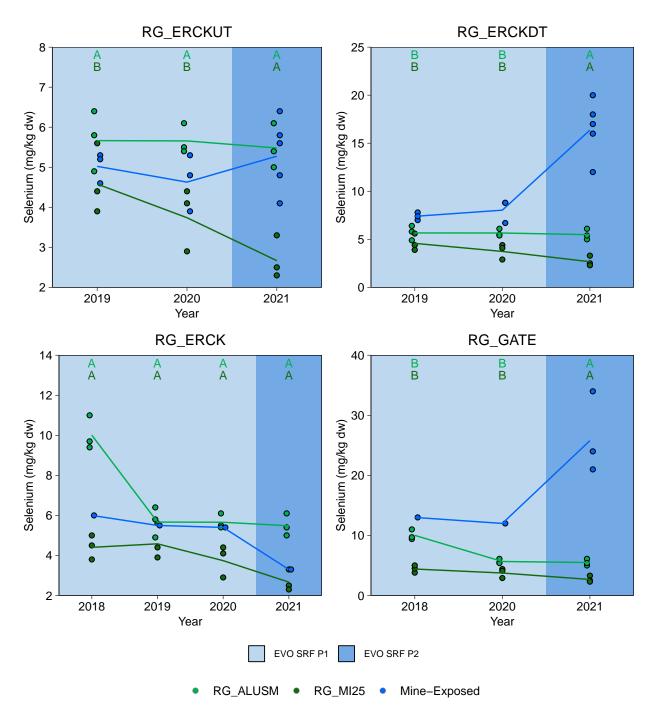


Figure F.1: Benthic Invertebrate Tissue Selenium Concentrations in Bodie, Erickson, Gate, and Michel Creeks, EVO LAEMP, 2018 to 2021

Notes: Individual samples are plotted and lines join the estimated marginal mean values for each year. Statistical analyses were conducted using an ANOVA comparison to each reference area. The models were fit using Maximum Likelihood Estimation with an assumed log–normal distribution. Years that share a letter (e.g., A,B,C) have ratios of concentrations (Exposed:Reference) that do not differ significantly (p–value < 0.05) among years when compared to the corresponding reference area. Letter A was assigned to the year with the highest ratio of concentrations (Exposed:Reference).

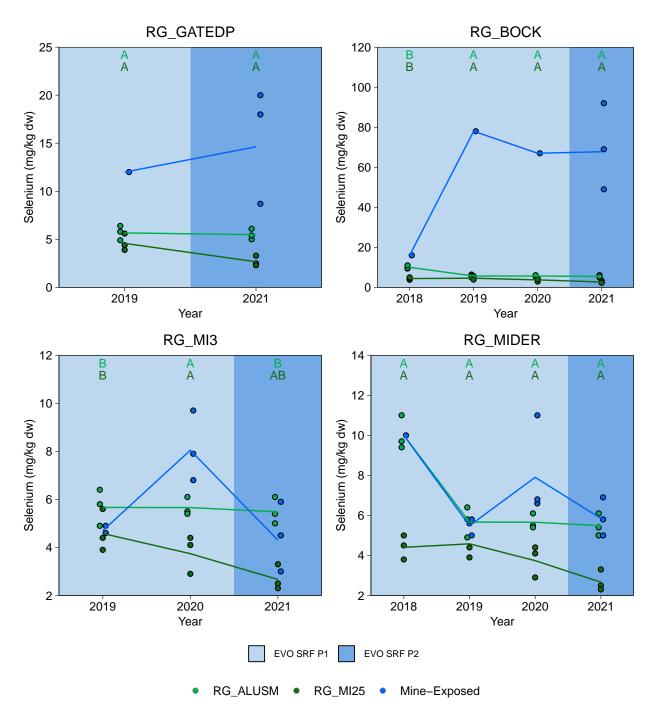


Figure F.1: Benthic Invertebrate Tissue Selenium Concentrations in Bodie, Erickson, Gate, and Michel Creeks, EVO LAEMP, 2018 to 2021

Notes: Individual samples are plotted and lines join the estimated marginal mean values for each year. Statistical analyses were conducted using an ANOVA comparison to each reference area. The models were fit using Maximum Likelihood Estimation with an assumed log–normal distribution. Years that share a letter (e.g., A,B,C) have ratios of concentrations (Exposed:Reference) that do not differ significantly (p–value < 0.05) among years when compared to the corresponding reference area. Letter A was assigned to the year with the highest ratio of concentrations (Exposed:Reference).

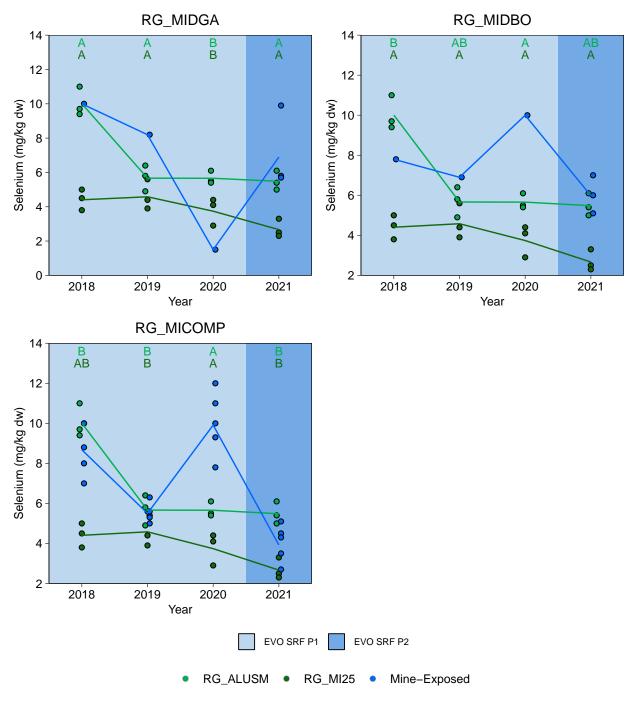


Figure F.1: Benthic Invertebrate Tissue Selenium Concentrations in Bodie, Erickson, Gate, and Michel Creeks, EVO LAEMP, 2018 to 2021

Notes: Individual samples are plotted and lines join the estimated marginal mean values for each year. Statistical analyses were conducted using an ANOVA comparison to each reference area. The models were fit using Maximum Likelihood Estimation with an assumed log–normal distribution. Years that share a letter (e.g., A,B,C) have ratios of concentrations (Exposed:Reference) that do not differ significantly (p–value < 0.05) among years when compared to the corresponding reference area. Letter A was assigned to the year with the highest ratio of concentrations (Exposed:Reference).

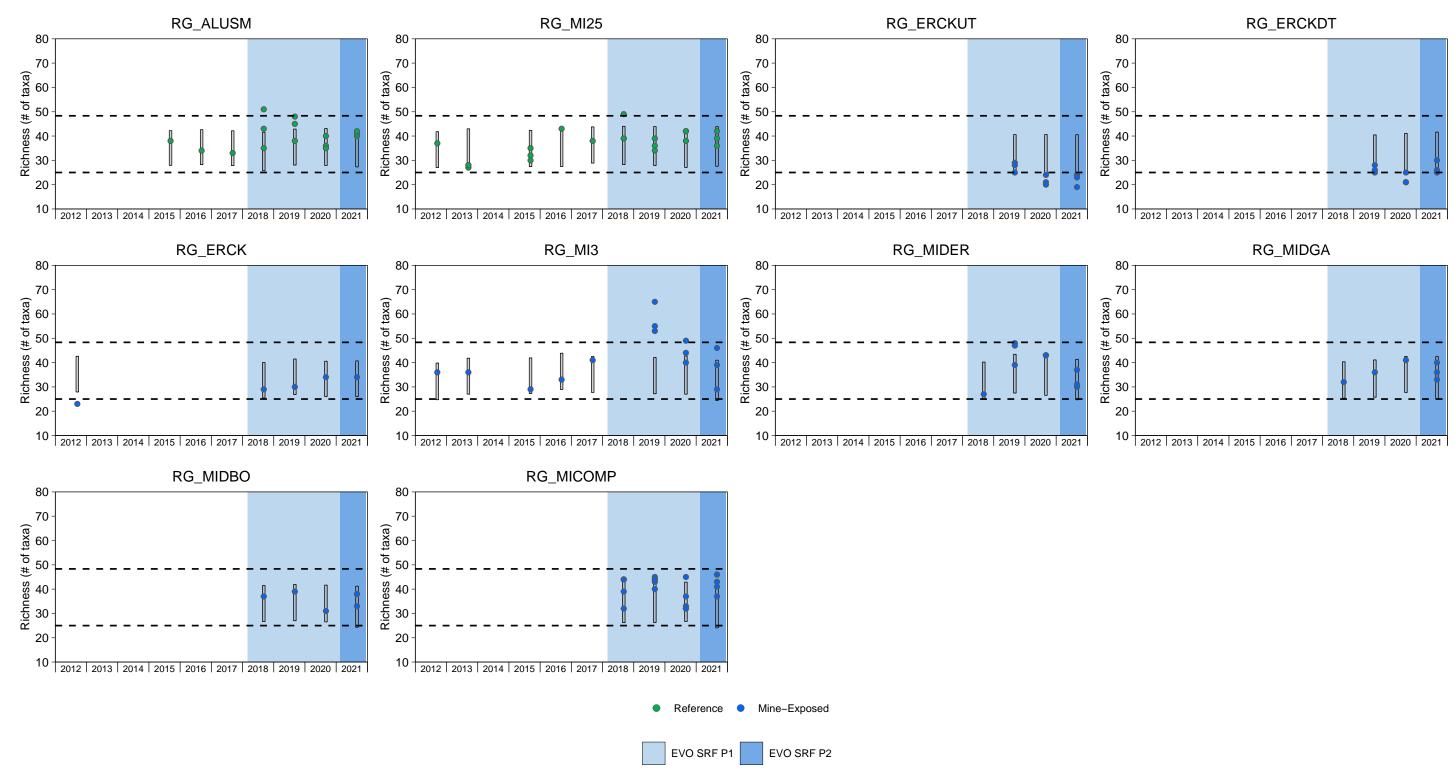


Figure F.2: Benthic Invertebrate Richness (Lowest Practical Level; 3-Minute Kick and Sweep Sampling) from EVO LAEMP Sampling Areas, September 2012 to 2021

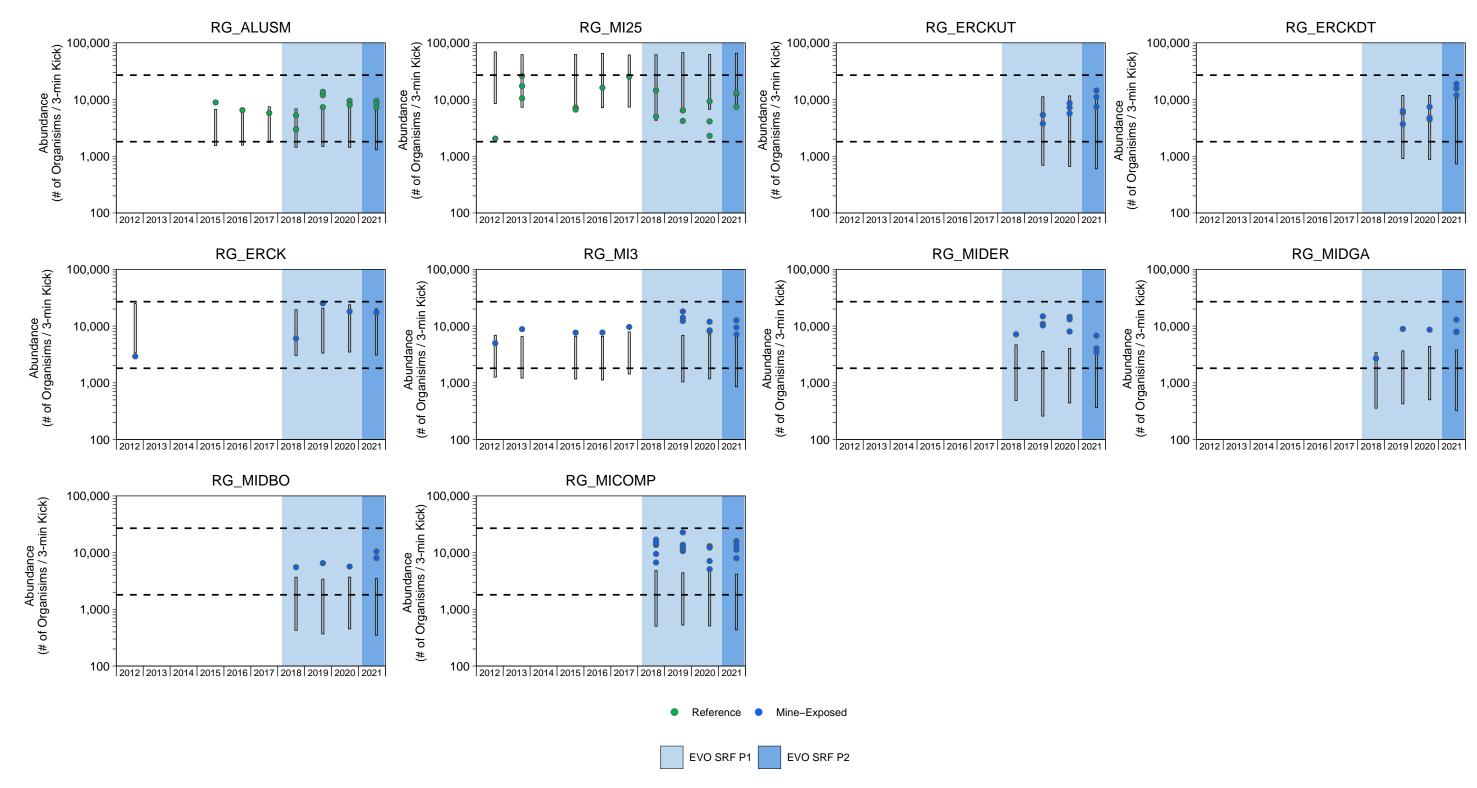


Figure F.3: Benthic Invertebrate Community Abundance (# Organisms / 3-minute Kick and Sweep Sampling) from EVO LAEMP Sampling Areas, September 2012 to 2021

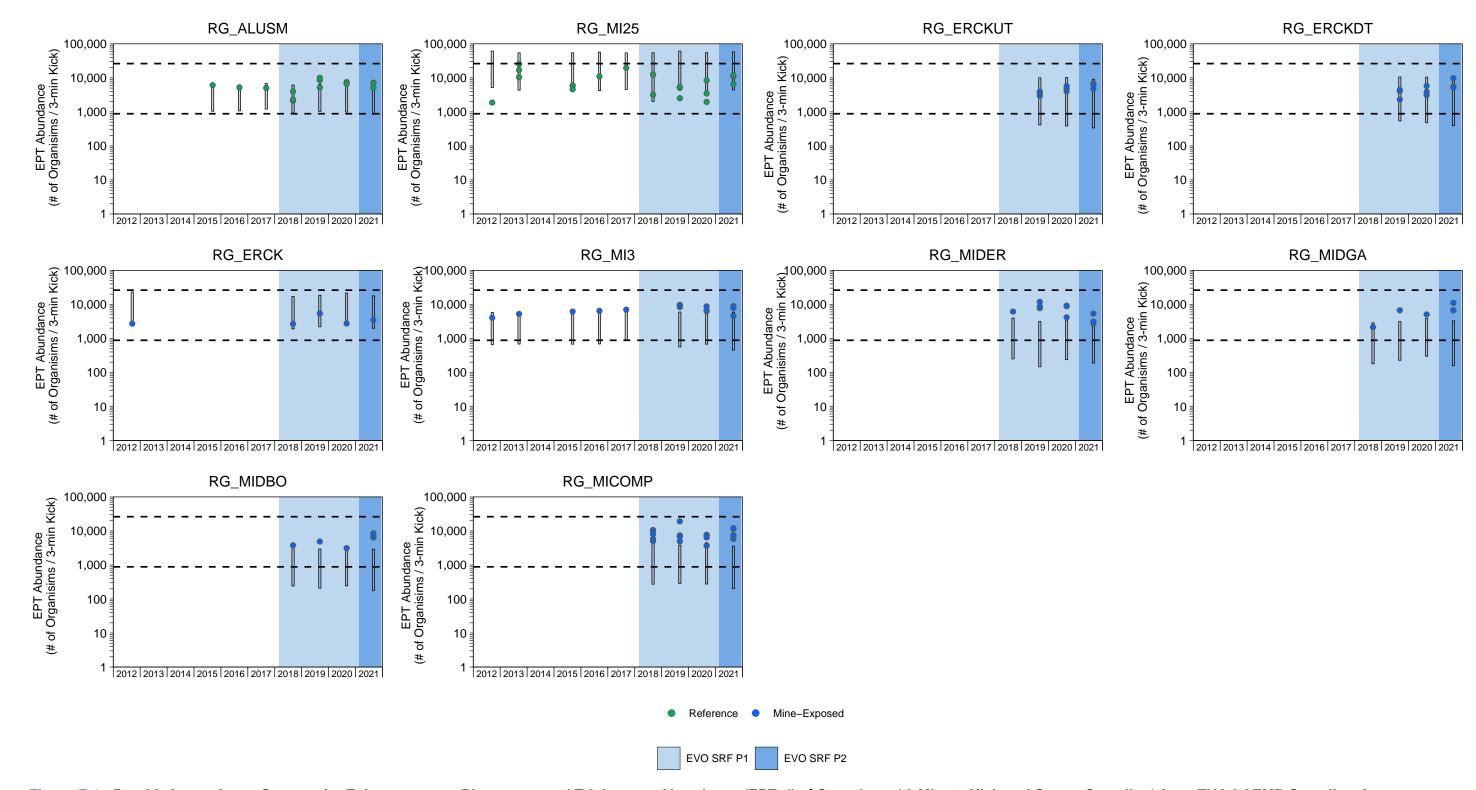


Figure F.4: Benthic Invertebrate Community Ephemeroptera, Plecoptera, and Trichoptera Abundance (EPT; # of Organisms / 3-Minute Kick and Sweep Sampling) from EVO LAEMP Sampling Areas, September 2012 to 2021

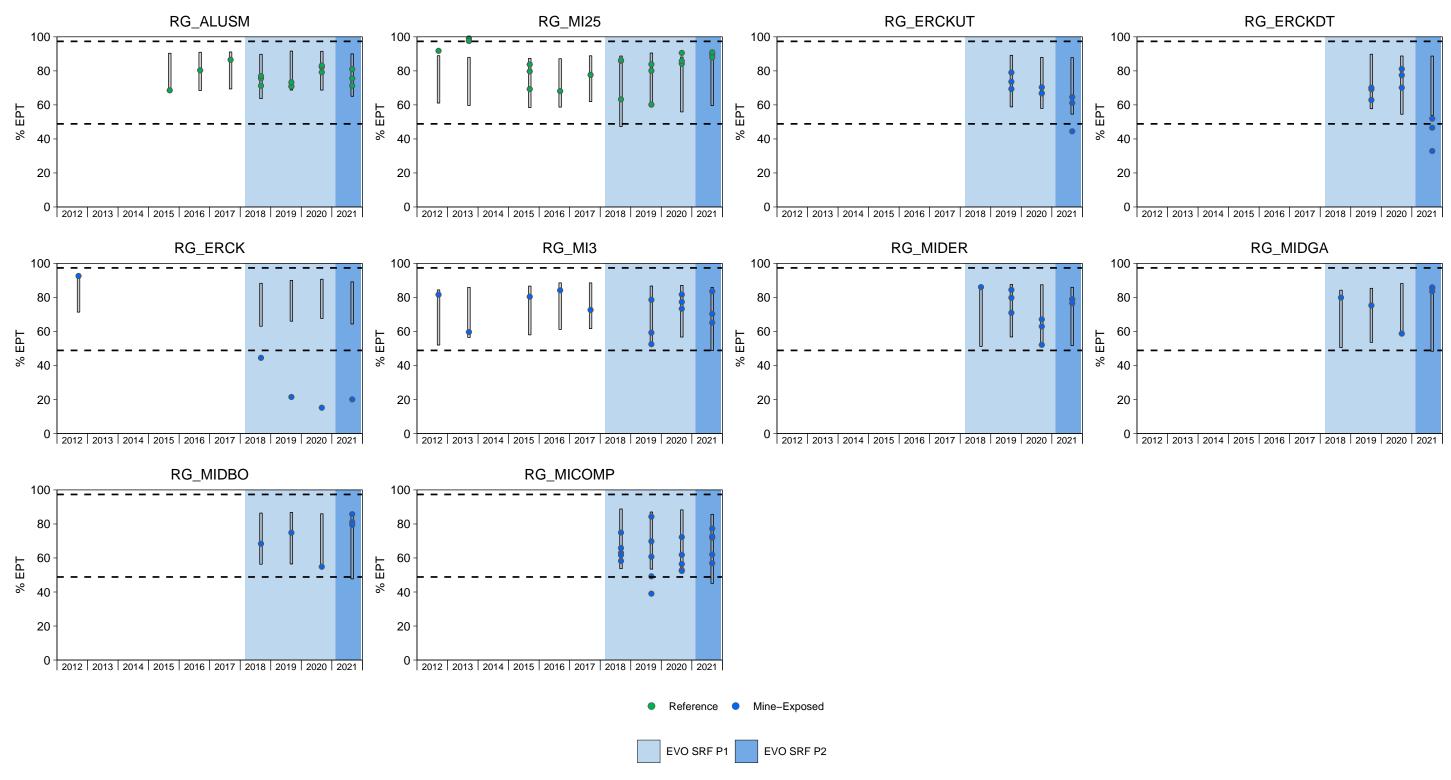


Figure F.5: Benthic Invertebrate Community Relative Ephemeroptera, Plecoptera, Trichoptera Abundance (%EPT; 3-Minute Kick and Sweep Sampling) from EVO LAEMP Sampling Areas, September 2012 to 2021

Notes: EPT = Ephemeroptera, Plecoptera, Trichoptera. Site specific normal ranges using regression models shown with grey shading and black rectangle (when available). Normal ranges using percentiles of reference areas from 2012 to 2019 shown as dashed horizontal lines. Dashed horizontal lines represent the normal range defined as the 2.5th and 97.5 percentiles of the 2012 to 2019 reference area data from the Regional Aquatic Environmental Monitoring Program (RAEMP).

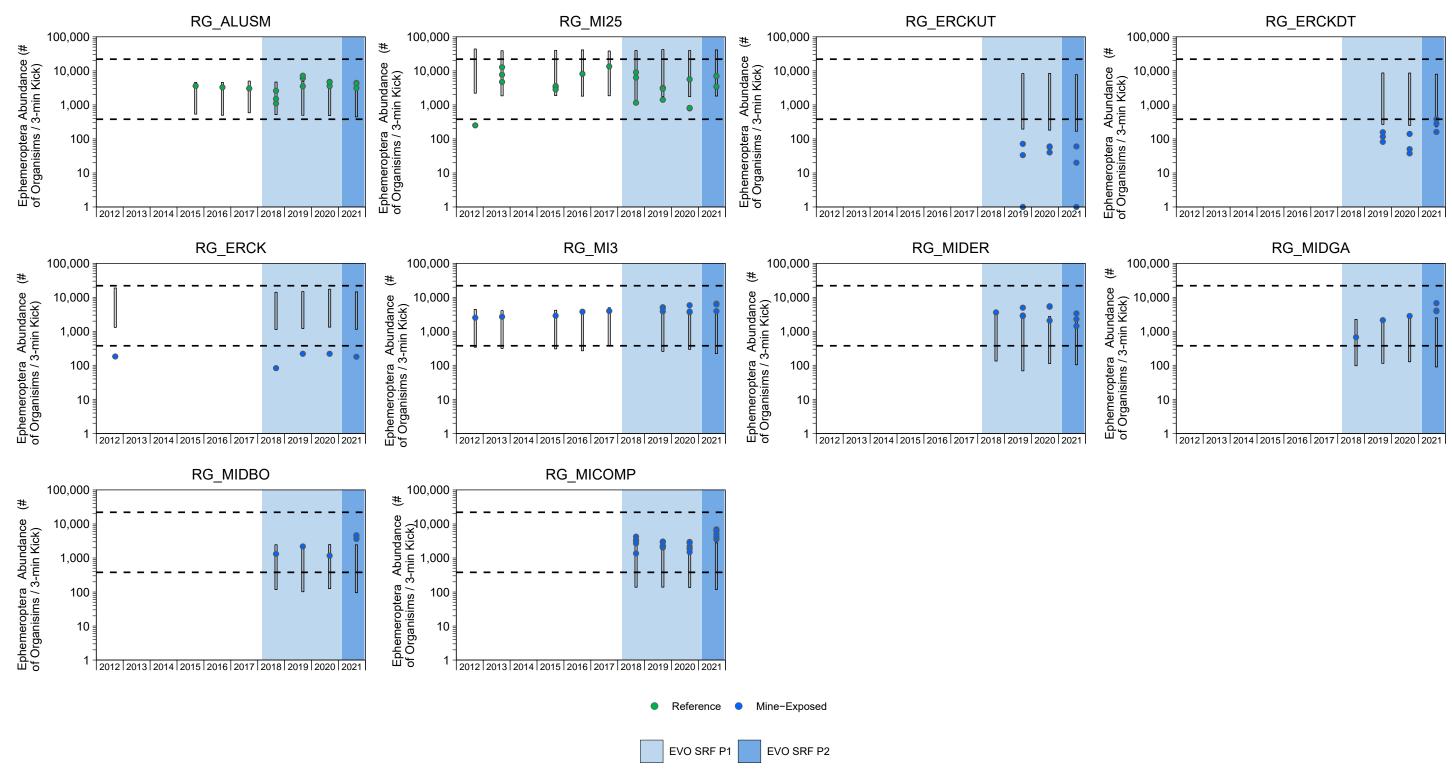


Figure F.6: Benthic Invertebrate Community Ephemeroptera Abundance (# of Organisms / 3-Minute Kick and Sweep Sampling) from EVO LAEMP Sampling Areas, September 2012 to 2021

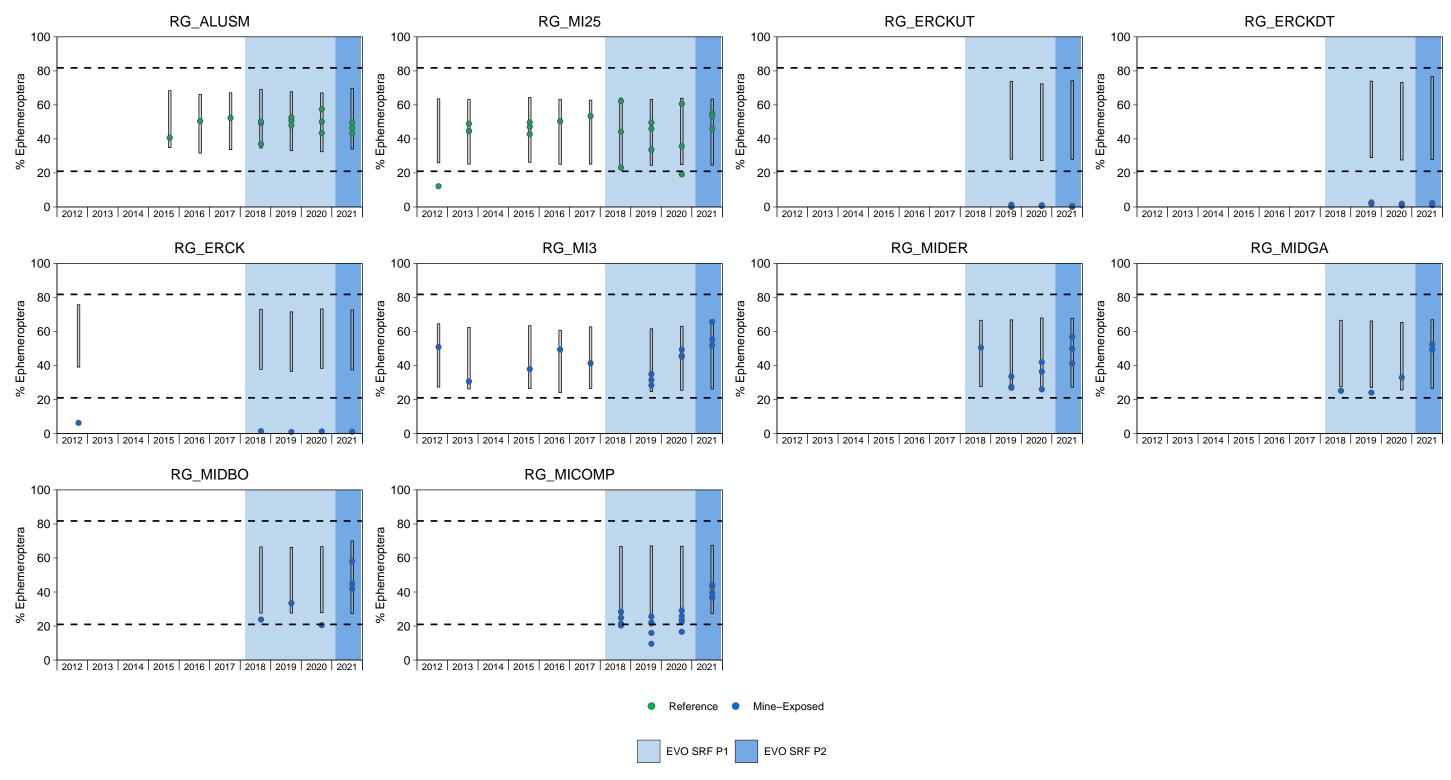


Figure F.7: Benthic Invertebrate Community Relative Ephemeroptera Abundance (%Ephemeroptera; 3-Minute Kick and Sweep Sampling) from EVO LAEMP Sampling Areas, September 2012 to 2021

Notes: Site specific normal ranges using regression models shown with grey shading and black rectangle (when available). Normal ranges using percentiles of reference areas from 2012 to 2019 shown as dashed horizontal lines. Dashed horizontal lines represent the normal range defined as the 2.5th and 97.5 percentiles of the 2012 to 2019 reference area data from the Regional Aquatic Environmental Monitoring Program (RAEMP).

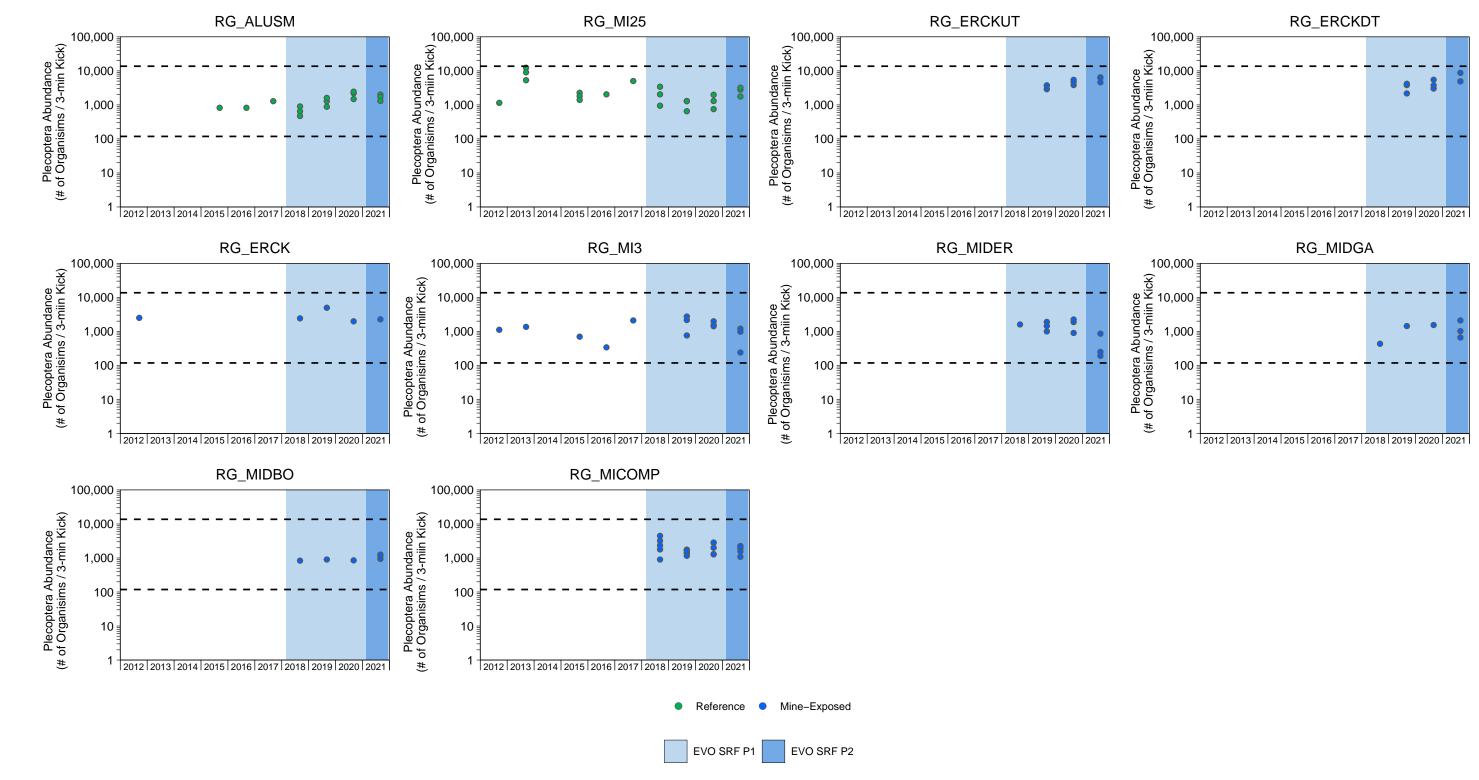


Figure F.8: Benthic Invertebrate Community Plecoptera Abundance (# of Organisms / 3-Minute Kick and Sweep Sampling) from EVO LAEMP Sampling Areas, September 2012 to 2021

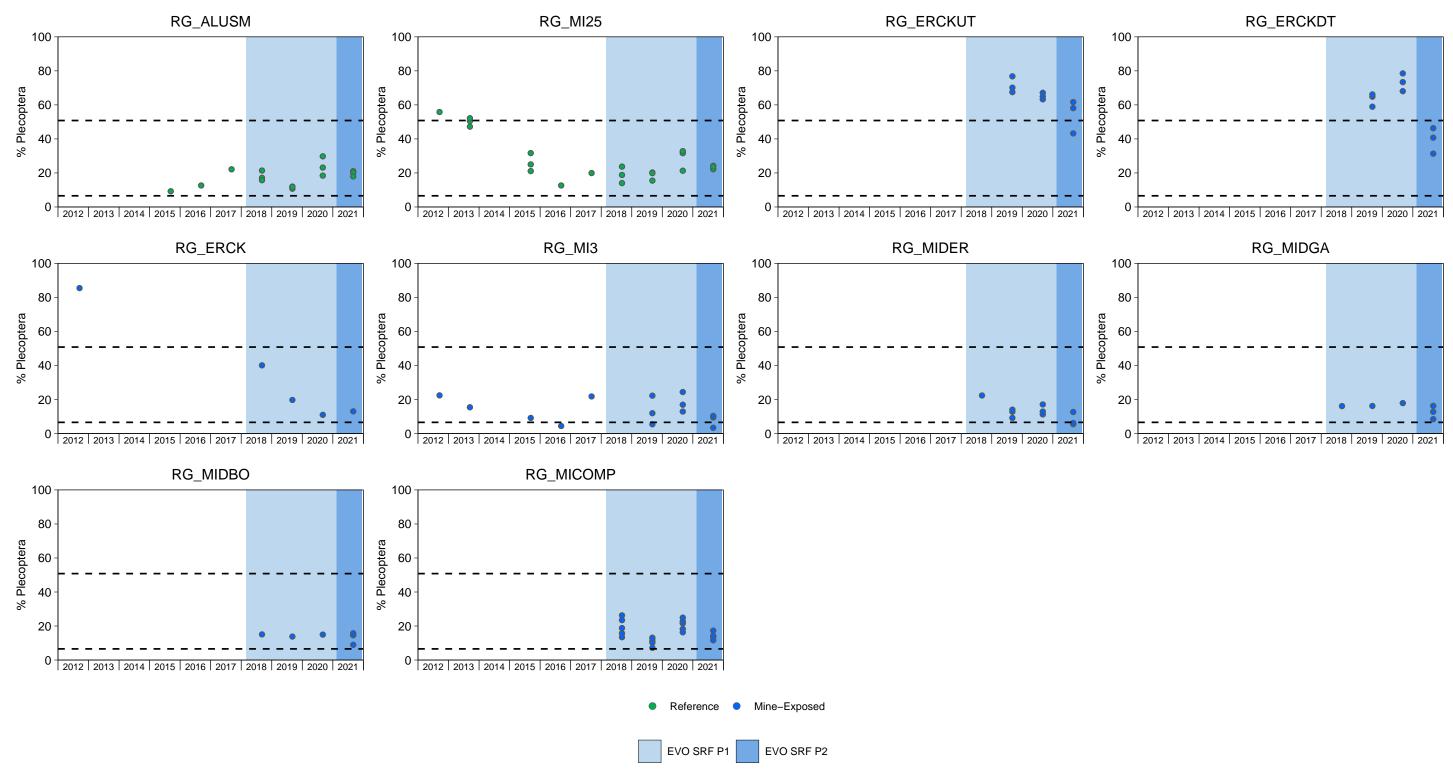


Figure F.9: Benthic Invertebrate Community Relative Plecoptera Abundance (%Plecoptera; 3-Minute Kick and Sweep Sampling) from EVO LAEMP Sampling Areas, September 2012 to 2021

Notes: Site specific normal ranges using regression models shown with grey shading and black rectangle (when available). Normal ranges using percentiles of reference areas from 2012 to 2019 shown as dashed horizontal lines. Dashed horizontal lines represent the normal range defined as the 2.5th and 97.5 percentiles of the 2012 to 2019 reference area data from the Regional Aquatic Environmental Monitoring Program (RAEMP).

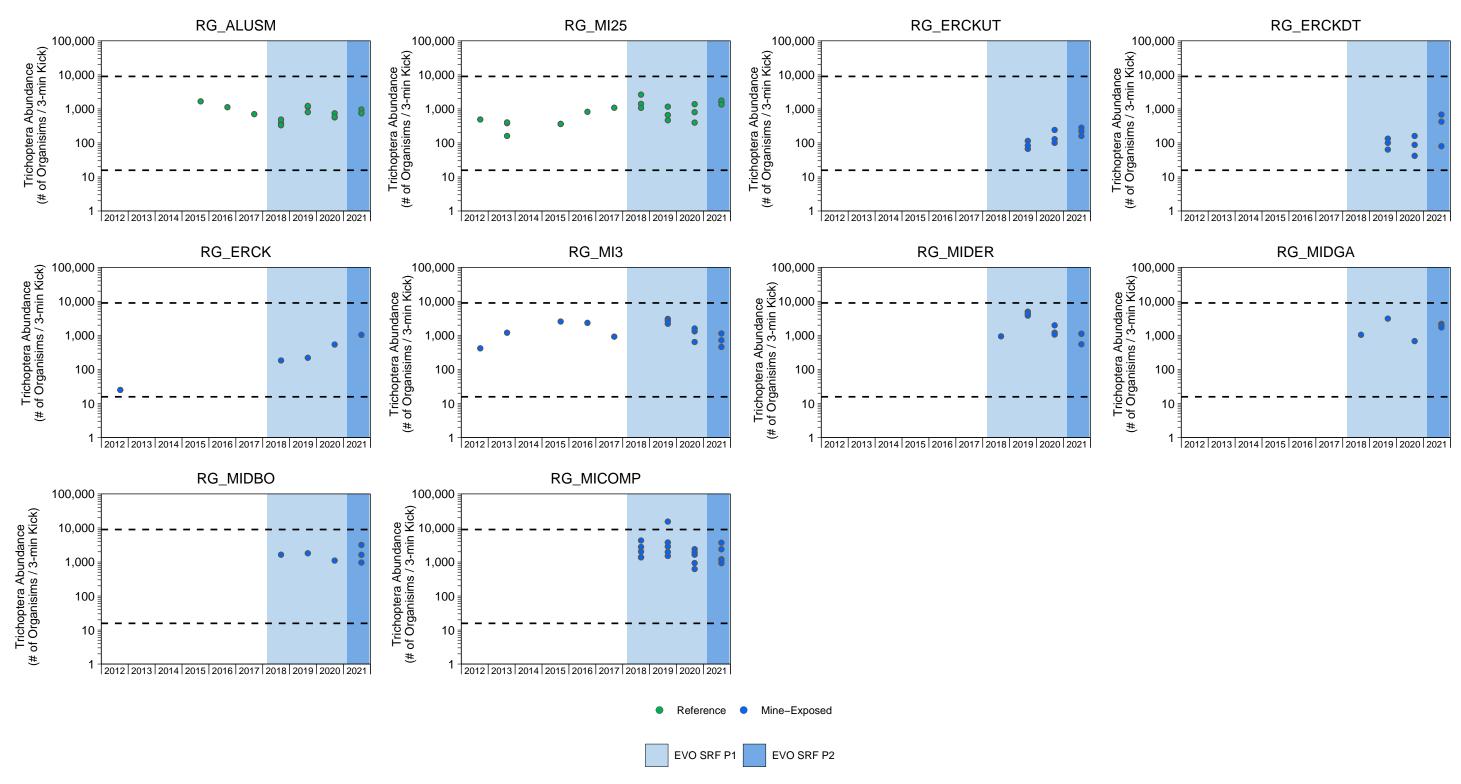


Figure F.10: Benthic Invertebrate Community Trichoptera Abundance (# of Organisms / 3-Minute Kick and Sweep Sampling) from EVO LAEMP Sampling Areas, September 201, September 2012 to 2021

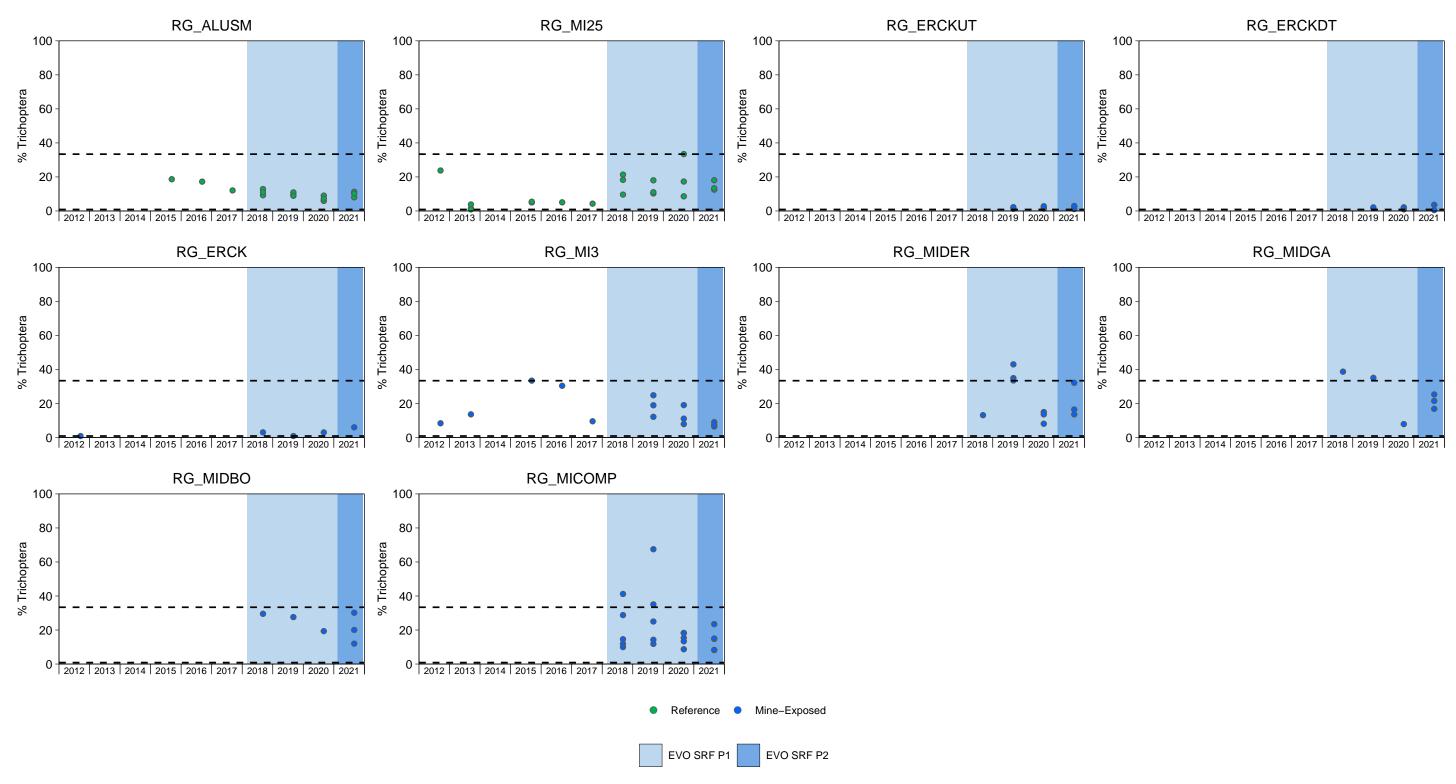


Figure F.11: Benthic Invertebrate Community Relative Trichoptera Abundance (%Trichoptera; 3-Minute Kick and Sweep Sampling) from EVO LAEMP Sampling Areas, September 2012 to 2021

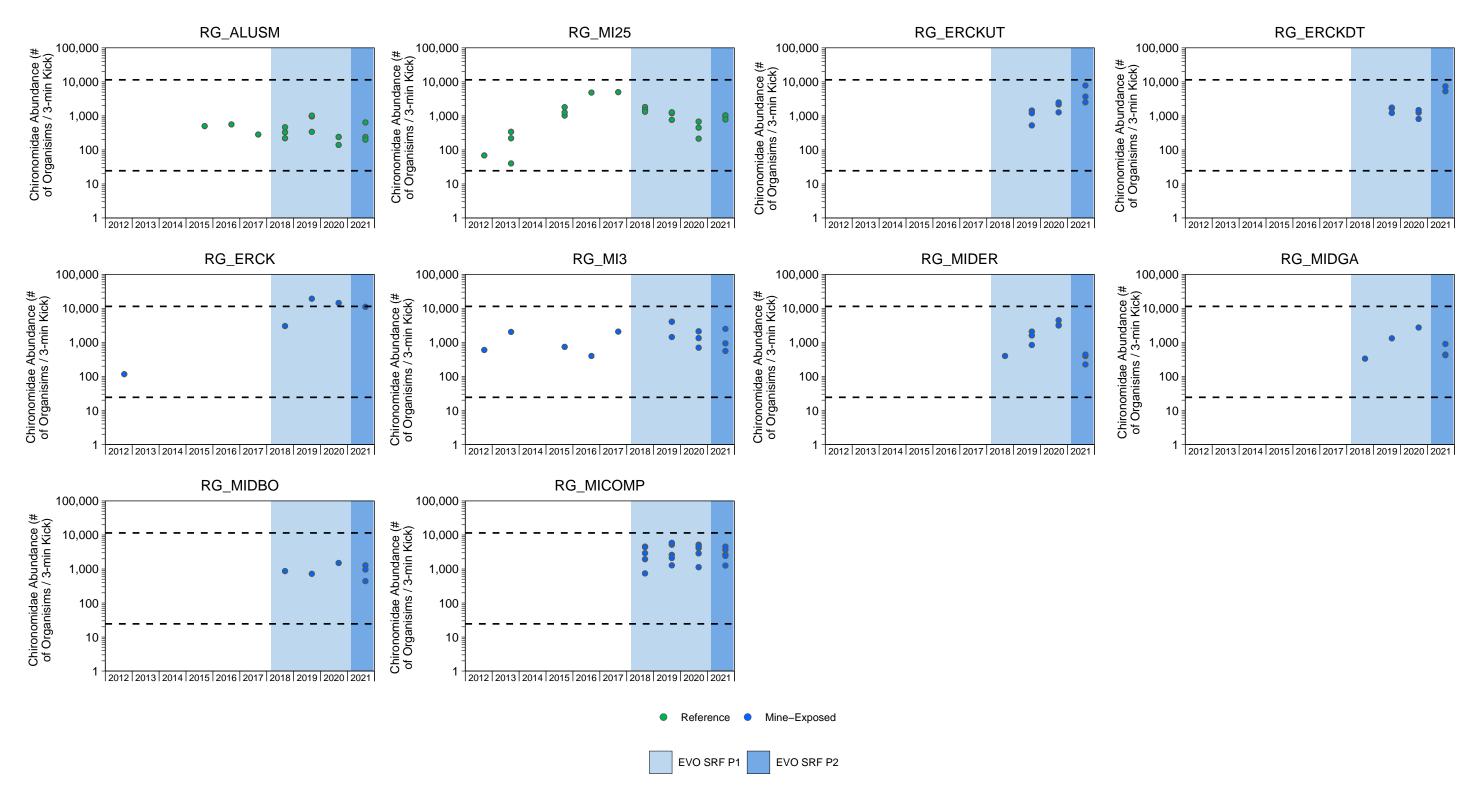


Figure F.12: Benthic Invertebrate Community Chironomidae Abundance (# of Organisms / 3-Minute Kick and Sweep Sampling) from EVO LAEMP Sampling Areas, September 2012 to 2021

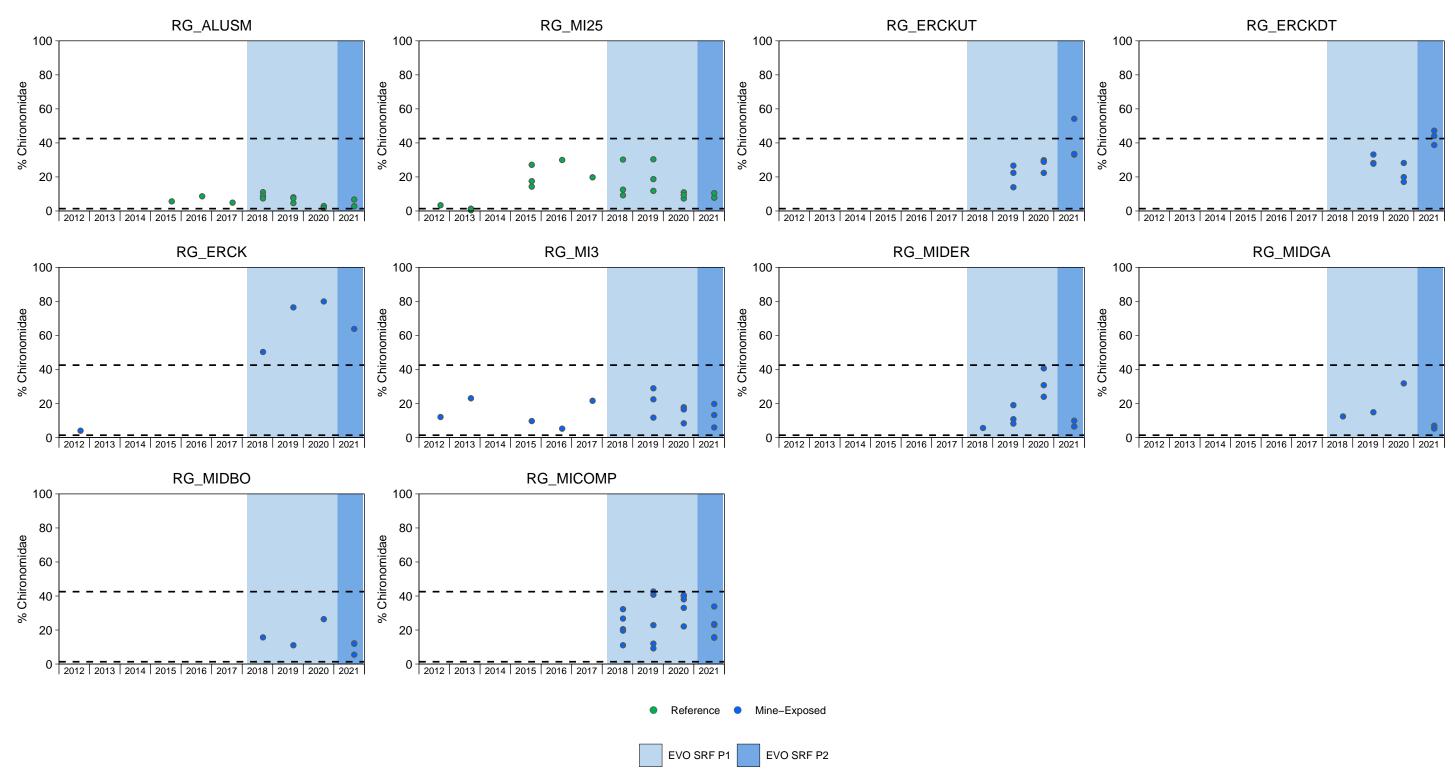


Figure F.13: Benthic Invertebrate Community Relative Chironomidae Abundance (%Chironomidae; 3-Minute Kick and Sweep Sampling) from EVO LAEMP Sampling Areas, September 2012 to 2021

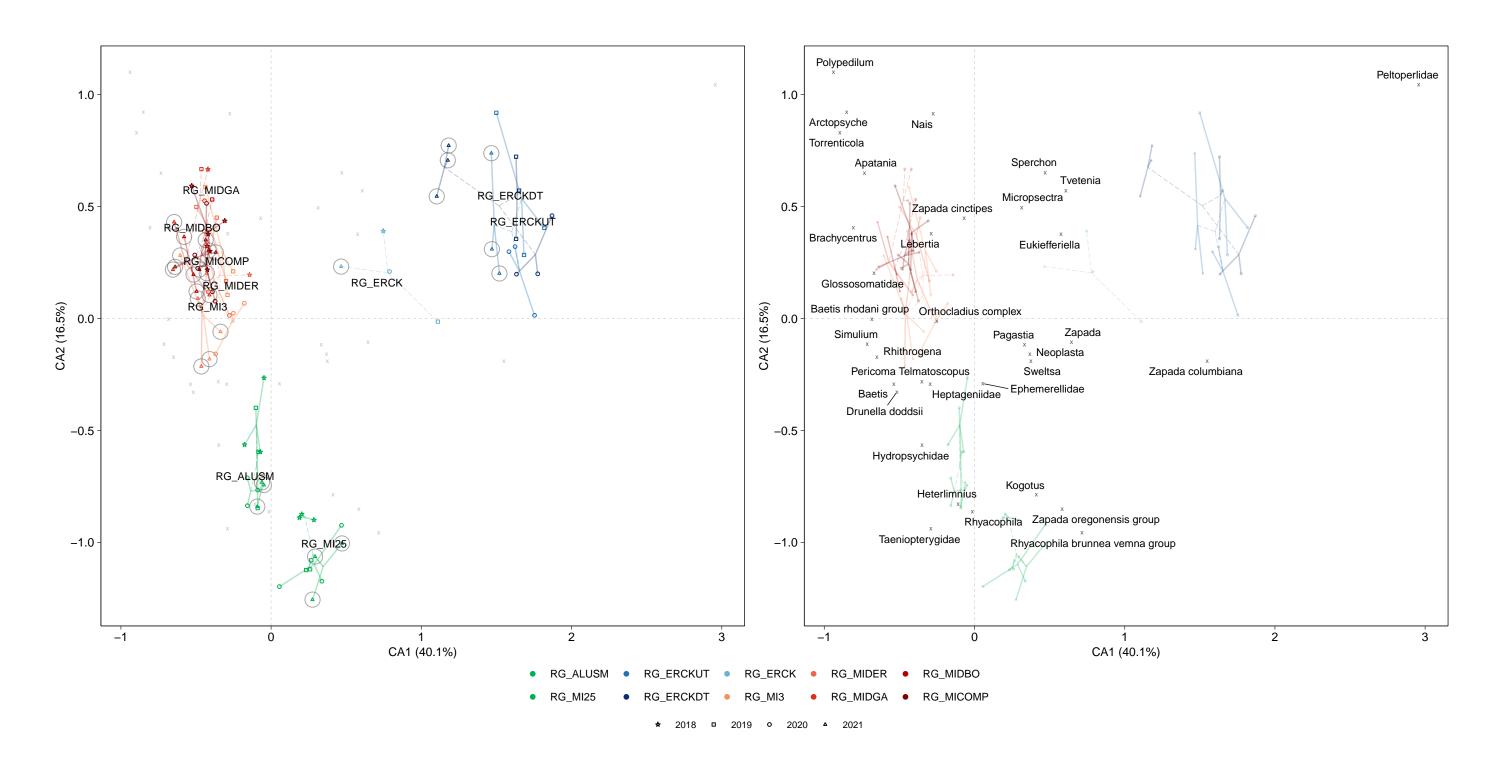


Figure F.14: Correspondence Analysis of Benthic Invertebrate Communities in September, EVO LAEMP, 2018 to 2021

Notes: Green symbols represent reference stations and other colours represents mine-exposed stations. Lowest Practical Level taxon abundances were $\ln_{(x+1)}$ -transformed prior to analysis. Taxa that made up less than 1% of total abundance (on the $\ln_{(x+1)}$ scale) and occurred in fewer than 10% of samples were excluded from analysis. Samples from 2021 are circled in grey.

Table F.1: Selenium Tissue Concentration Summary Table, EVO LAEMP, 2019 to 2021

				BIT	BIT Selenium Concentration (mg/kg dw)					
Biological Station	Description	Teck Water Station	Replicate			2021				
Code	, , ,	Code	Replicate 1 6.4 5.5 2 5.8 5.4 6 3 4.9 6.1 5 2 4.4 4.4 2 3 3.9 4.1 2 1 4.6 4.8 5 2 5.3 3.9 4 4 - - 6 5 - - 6 5 - - 6 5 - - 5 1 7.8 8.8 1 2 7.0 6.7 1 3 7.4 8.8 1 4 - - 2 5 - - 2 3 - - 2 3 - - 2 4 - - - 1 5.5 5.4 3 2 - -<	September	December					
			1	6.4	5.5	5	-			
RG_ALUSM	Alexander Creek	EV_AC2	2	5.8		6.1	-			
_		_		6.4 5.5 5 - 5.8 5.4 6.1 - 4.9 6.1 5.4 - 5.6 2.9 3.3 - 4.4 4.4 2.5 - 3.9 4.1 2.3 - 4.6 4.8 5.8 3.9 5.3 3.9 4.1 3.8 5.2 5.3 4.8 4.4 - - 6.4 4.0 - - 6.4 4.0 - - 6.4 4.0 - - 6.7 17 15 7.8 8.8 12 13 7.0 6.7 17 15 7.4 8.8 16 21 - - - - - - - - - - - - - - - - - - - - - - - -	-					
							-			
RG_MI25	Michel Creek	CM_MC1	2	4.4	4.4	2.5	-			
	(u/s of Coal Mountain Operations)	_	3	3.9	4.1	2.3	-			
			1	4.6	5.8 5.4 6.1 5.4 5.6 2.9 3.3 4.4 4.4 2.5 3.9 4.1 2.3 4.6 4.8 5.8 3 5.3 3.9 4.1 3 5.2 5.3 4.8 4 - - 6.4 4 - - 6.4 4 - - 6.6 4 7.0 6.7 17 17 7.4 8.8 16 2 - - 20 2 2 18 2 - - - 8 - - - 9 - - - 9 - - - 1 - - - - - - - - - - - - - - - - - - - - - -<	3.9				
			2	5.3	3.9	4.1	3.8			
RG_ERCKUT	Erickson Creek	FC_ECIN	3	5.2	5.3	4.8	4.4			
RG_ERCKDT RG_ERCKMD	(u/s of outfall)		4	-	-	6.4	4.0			
			5	-	-	September December 5 - 6.1 - 5.4 - 3.3 - 2.5 - 2.3 - 5.8 3.9 4.1 3.8 4.8 4.4 6.4 4.0 5.6 - 12 13 17 15 16 21 20 20 18 22 - - - 8.2 9.0 - 8.8 - - 15 - 14 3.3 4.6 - 5.2 - 5.9 34 - 21 - 24 - 18 ^a - 8.7 - 20 - 92 ^a - 4.5 -				
			1	7.8	8.8		13			
			2							
			3							
RG_ERCKDT	Erickson Creek d/s of SRF Outfall	EV_ECOUT		2019 2020 September December 6.4 5.5 5 - 5.8 5.4 6.1 - 4.9 6.1 5.4 - 5.6 2.9 3.3 - 4.4 4.4 2.5 - 3.9 4.1 2.3 - 4.6 4.8 5.8 3.9 5.3 3.9 4.1 3.8 5.2 5.3 4.8 4.4 - - 6.4 4.0 - - 6.4 4.0 - - 6.4 4.0 - - 6.4 4.0 - - 6.4 4.0 - - 6.4 4.0 - - 6.4 4.0 - - 6.4 4.0 - - 17 17 15 7.4 8.8 12 13 13<						
							2021 December 3.9 3.8 4.4 4.0 - 13 15 21 20 22 - 8.2 9.0 8.8 15 14 4.6 5.2 5.9			
				-	-					
				+		1				
	Midway between RG_ERCKDT and	-		-	-					
(EV_EC_FLOW2) (also	RG_ERCK									
	(also location of temperature logger)				_	_				
	, , ,			_	_	_				
	Erickson Creek at Mouth (discharge to Michel Creek)			5.5	5.4					
RG_ERCK		FV FC1		+						
	(discharge to Michel Creek)	LV_L01								
	(discharge to Michel Creek) 3 Gate Creek (u/s of settling pond) - 2		 							
RG_GATE		-		_	12.0					
				-	-					
					-		-			
				12.0	-		-			
RG_GATEDP	Gate Creek Sedimentation Pond Decant	EV_GT1	2	-	-	8.7	-			
			1 5.5 5.4 3.3 2 3 1 - 12.0 34 2 21 3 24 1 12.0 - 18 ^a 1 2 8.7 3 20 1 78 67 92 ^a	-						
			1	78	67	92 ^a	5.4 - 3.3 - 2.5 - 2.3 - 5.8 3.9 4.1 3.8 4.8 4.4 6.4 4.0 5.6 - 12 13 17 15 16 21 20 20 18 22 - - - 8.2 - 9.0 - 8.8 - 15 - 14 3.3 4.6 - 5.2 - 5.9 34 - 21 - 24 - 18 ^a - 8.7 - 20 - 92 ^a - 4.5 - 5.9 - 3 - 5.8 - 5.7 - 9.9 - 7.0 - <			
RG BOCK	Bodie Creek Sedimentation Pond Decant	EV BC1	C2	-						
		_	3	1	-					
				4 Q	6.8		_			
RG MI3	Michel Creek u/s of Erickson Creek	EV MC3								
I.O_IVIIO	WHOLE OLCOW A/S OF EHORSOFF OFFICE	A								
						_	-			
RG_MIDER	Michel Creek d/s of Erickson Creek	-					-			
			3	5.0	6.8	5	-			
			1	8.2	1.5	5.8	-			
RG_MIDGA	Michel Creek d/s of Gate Creek	-	2	-	-	5.7	-			
				-	-		-			
RG MIDRO	Michel Creek d/s of Bodie Creek	_								
NO_MIDDO	Midici Greek 4/3 of Bodic Greek	-								
DC MICOMP	Michel Creek d/s of Hwy #3 Bridge	EV 1400								
KG_MICOMP	(Compliance Point)	EV_MC2								
RG_ERCKMD (EV_EC_FLOW2) RG_ERCK RG_GATE RG_GATEDP RG_BOCK RG_MI3 RG_MIDER										
			5	5.6	9.3	3.5	-			

Tissue concentrations in Benthic Invertebrates exceed the level 1 benchmark for growth, reproduction, and survival of benthic invertebrates (13 mg/kg dw).

Notes: " - " indicates no sample collected or not applicable. BIT = benthic invertebrate tissue. d/s = downstream. u/s = upstream. SRF = saturated rock fill. mg/kg dw = milligrams per kilogram dry weight.

Tissue concentrations in Benthic Invertebrates exceed the level 2 benchmark for growth, reproduction, and survival of benthic invertebrates (20 mg/kg dw).

Tissue concentrations in Benthic Invertebrates exceed the level 3 benchmark for growth, reproduction, and survival of benthic invertebrates (27 mg/kg dw).

^a Annelids were found at a proportion of greater than 5% of the sample in a replicate for both RG_GATE and RG_BOCK. The annelid only samples tissue selenium concentration was 138 and 240 mg/kg dw for these two samples, respectively.

Table F.2: Changes in Selenium Concentrations in Benthic Invertebrate Composite-Taxa Tissue Samples for Mine Exposed Areas Relative to Reference Areas (RG_ALUSM and RG_MI25) between SRF P1 (2018 to 2020) and SRF P2 (2021)

Exposed Area	Reference		ANOV	'A Terms (P	Magnitude of Difference ^a						
Area	Area BA RCKUT RG_ALUSM RG_MI25 0.543 0.116 RCKDT RG_ALUSM RG_MI25 <0.001 0.009 RCK RG_ALUSM RG_MI25 <0.002 0.002 ATE RG_ALUSM RG_MI25 0.937 0.937 ATEDP RG_MI25 RG_ALUSM 0.638 RG_MI25 0.195 0.195 OCK RG_ALUSM RG_MI25 0.031 0.045 0.003 IIS RG_ALUSM RG_MI25 0.003 0.003 IIDER RG_MI25 RG_ALUSM 0.974 RG_MI25 0.974 0.024 IIDBO RG_ALUSM RG_MI25 0.002 0.002 IICOMP RG_ALUSM RG_ALUSM 0.001 <0.001	ВА	CI	Year(BA)	BAxCI	Year(BA)xCI	2018 vs 2021	2019 vs 2021	2020 vs 2021		
DC EDCKLIT	RG_ALUSM	0.543	0.081	0.598	0.340	0.609	-		ns		
KG_EKCKUT	RG_MI25	0.116	<0.001	0.178	0.006	0.556	-	7	0		
DC EDCKDT	RG_ALUSM	<0.001	<0.001	0.616	<0.001	0.604	-	1	19		
NG_ENCKD1	RG_MI25	0.009	<0.001	0.570	<0.001	0.185	-	2:	30		
DC EDCK	RG_ALUSM	<0.001	0.001	<0.001	0.047	0.029	0.44	21 2019 vs 2021 2020 vs 2021 ns ns 70 119 230 -38 -37 ns ns - 183 - 214 ns - 214 ns - 214 ns 10 4.4 49 42 -5.3 -45 57 -25 ns 83 3.8 -13 374 44 544 -10 -38 ns ns -26 -59			
KG_EKCK	RG_MI25	0.002	0.037	0.444	0.775	0.829	ns	ns	ns		
RG_ERCKUT - RG_ERCKDT - RG_ERCK RG_ERCK - RG_GATE - RG_GATEDP - RG_BOCK - RG_MI3 - RG_MIDER - RG_MI	RG_ALUSM	0.388	<0.001	0.002	<0.001	0.071	183	-	183		
	RG_MI25	0.937	<0.001	0.351	0.001	0.808	214	-	214		
	RG_ALUSM	0.821	0.003	-	0.579	-	-	ns	-		
	RG_MI25	0.195	<0.001	-	0.135	-	-	ns	-		
DC BOCK	RG_ALUSM	0.638	<0.001	0.841	0.004	<0.001	673	-10	4.4		
Area RG_ERCKUT R RG_ERCKDT R RG_ERCKDT R RG_ERCK R RG_GATE R RG_GATEDP R RG_BOCK R RG_MI3 R RG_MIDER R	RG_MI25	0.391	<0.001	0.059	0.003	0.002	599	49	42		
DC MI2	RG_ALUSM	0.045	0.759	0.020	0.087	0.020	-	-5.3	-45		
RG_ERCKUT R R RG_ERCKDT R R RG_ERCK R R R R R R R R R R R R R R R R R R	RG_MI25	0.003	0.001	0.195	0.704	0.010	-	57	-25		
DC MIDED	RG_ALUSM	0.013	CI Year 0.081 0.5 <0.001 0.1 <0.001 0.6 <0.001 0.0 0.037 0.4 <0.001 0.3 0.001 0.3 0.001 0.0 <0.001 0.0 <0.001 0.0 <0.001 0.0 <0.001 0.0 <0.001 0.0 0.759 0.0 0.001 0.1 0.128 <0.0 <0.001 0.2 0.270 <0.0 0.040 <0.0 <0.001 0.8 <0.001 0.8 <0.001 0.2 0.86 <0.0 0.806 <0.0	<0.001	0.703	0.110		ns			
RG_ERCKUT RI RG_ERCKDT RI RG_ERCKDT RI RG_ERCK RI RG_GATE RI RG_GATEDP RI RG_BOCK RI RG_MI3 RI RG_MIDER RI RG_MIDER RI RG_MIDER RI RG_MIDBO RI RG_MIDBO RI RG_MICOMP	RG_MI25	0.003	<0.001	0.279	0.196	0.033	-3.4	83	3.8		
DC MIDCA	RG_ALUSM	0.974	0.270	<0.001	0.011	<0.001	26	-13	374		
RG_WIDGA	RG_MI25	0.224	0.002	0.005	0.006	0.001	14	44	544		
RG_BOCK RG_MI3 RG_MIDER RG_MIDGA RG_MIDBO	RG_ALUSM	0.001	0.040	<0.001	0.496	0.004	40	-10	-38		
	RG_MI25	0.002	<0.001	0.866	0.441	0.185	ns	ns	ns		
RG_MIDBO	RG_ALUSM	<0.001	0.806	<0.001	0.001	<0.001	-17	-26	-59		
	RG_MI25	<0.001	<0.001	0.005	0.145	<0.001	-25	23	-44		

P-value for Relevant BACI Term < 0.05.
Significantly Increased Relative to Reference in 2021.
Significantly Decreased Relative to Reference in 2021.

Notes: "-" indicates no data. Unshaded magnitudes of difference (MOD) were not significant in the post-hoc analysis (α= 0.05) corrected for the number of tests using a Tukey's Honestly Significant Difference Test. ANOVA = analysis of variance.

^a Magnitude of difference (MOD) calculated as Observed_{Exposed 2021} Predicted_{Exposed 2021} Predicted_{Exposed 2021}, where the predicted concentration was calculated as: Observed_{Reference 2021} + Observed_{Exposed year} - Observed_{Reference year} and year, is the earlier year in the comparison. This MOD represents how much the difference in 2021 has changed from the difference observed in the earlier year.

Table F.3: Selenium Species Bioaccumulation Tool^a Predicted Benthic Invertebrate Tissue Selenium Concentrations Compared with Field Measurements, EVO LAEMP, 2021

	В	-tool Prediction	Field Measurements				
Area	Date	Predicted Benthic Invertebrate Tissue Selenium Concentration µg/g dw	Date	Mean Benthic Invertebrate Tissue Selenium Concentration μg/g dw			
RG_ALUSM	12-Sep-21	5.87	12-Sep-21	5.50			
RG_MI25	13-Sep-21	4.69	13-Sep-21	2.70			
RG_ERCKUT	15-Sep-21	5.20	15-Sep-21	5.34			
RG_ERCKUT	14-Dec-21	5.44	15-Dec-21	4.03			
RG_ERCKDT	15-Sep-21	5.61	14-Sep-21	16.6			
RG_ERCKDT	15-Dec-21	5.15	15-Dec-21	18.2			
RG_ERCKMD	15-Dec-21	5.82	15-Dec-21	11.0			
RG_ERCK	10-Sep-21	9.99	10-Sep-21	3.30			
RG_ERCK	14-Dec-21	6.80	14-Dec-21	5.23			
RG_GATE	16-Sep-21	10.7	16-Sep-21	26.3			
RG_GATEDP	27-Aug-21	11.8	27-Aug-21	39.3			
RG_GATEDP	16-Sep-21	14.1	16-Sep-21	15.6			
RG_BOCK	16-Sep-21	25.3	16-Sep-21	70.0			
RG_BOCK	27-Aug-21	10.2	27-Aug-21	48.7			
RG_MI3	10-Sep-21	5.17	10-Sep-21	4.47			
RG_MIDER	9-Sep-21	5.17	9-Sep-21	5.90			
RG_MIDGA	11-Sep-21	4.46	11-Sep-21	7.13			
RG_MIDBO	11-Sep-21	6.84	11-Sep-21	6.03			
RG_MICOMP	13-Sep-21	6.93	13-Sep-21	4.02			
F2_BPO	20-Sep-21	8.10	14-Sep-21	16.6			
F2_BPO	16-Dec-21	6.37	15-Dec-21	18.2			

Notes: B-tool = bioaccumulation tool, μ g/g dw = micrograms per gram dry weight.

^a Values derived from Bruyn and Luoma (2021) using selenium speciation data and sulphate concentrations for each area on each date to predict benthic invertebrate tissue selenium concentrations.

Table F.4: Spatial Comparisons for Benthic Invertebrate Endpoints Collected by Hess Sampling Upstream (RG_ERCKUT) and Downstream (RG_ERCKDT) of the SRF Discharge, EVO LAEMP, September 2021

		Statistical		Magnitude of	Statistical Summary						
Metrics	Transformed	Test ^b	P-value	Different	Areas	Mean	ean Standard Deviation Minimum Maximum ,065 22,270 3,140 64,650 0,625 78,752 11,480 216,000 7.9 24.7 9.25 79.6 7.5 36.7 13.1 147 245 7,335 1,480 20,320 ,883 14,513 2,000 41,280 - - - - 338 363 40.0 960 884 7,226 1,320 19,840 ,699 12,799 1,840 38,080 361 309 40.0 1,040 012 2,338 90.0 7,210 082 7,653 1,360 24,800				
Total Density (org/m²) ^a	none	tunequal	0.008	3.8	RG_ERCKUT	25,065	22,270	3,140	64,650		
Total Density (org/m)	log10 none sity (org/m²) rank org/m²) rank org/m²) rank	turiequai	0.000	3.0	RG_ERCKDT	110,625	78,752	11,480	216,000		
Biomass (g/m² ww) ^a	log10	tequal	0.146	0.63	RG_ERCKUT	CKUT 37.9 24.7 9.25 7 CKDT 57.5 36.7 13.1 36.7 CKUT 9,245 7,335 1,480 20 CKDT 19,883 14,513 2,000 41		79.6			
Biomass (g/m ww)	109 10	tequal	0.140	0.03	RG_ERCKDT	57.5	36.7 13.1 147 7,335 1,480 20,320				
EPT Density (org/m²)	none	tegual	0.053	1.5	RG_ERCKUT	9,245	7,335	1,480	20,320		
	Hone	tequal			RG_ERCKDT	19,883	14,513	2,000	41,280		
Enhamarantara Danaiti (ara/m²)	rank	M-W	<0.001		RG_ERCKUT	-	-	-	-		
Ephemeroptera Density (org/m²)	Talik	101-00	\0.001	-	RG_ERCKDT	638	363	40.0	960		
Discontors Donoity (org/m²)	nono	togual	0.074	1.2	RG_ERCKUT		19,840				
Plecoptera Density (org/m²)	none	tequal	-vv <0.001 - RG_ERCKDT 638 qual 0.074 1.2 RG_ERCKUT 8,884 RG_ERCKDT 17,699	12,799	1,840	38,080					
Trick enters Density (erg/m²)	ronk	M-W	0.570	2.1	RG_ERCKUT	361	309	40.0	1,040		
Trichoptera Density (org/m²)	Talik	101-00	0.570	2.1	RG_ERCKDT	2,012	2,338	90.0	7,210		
Chiranamidaa Danaity (ara/m²)	none	tunequal	0.001	4.7	RG_ERCKUT	9,082	7,653	1,360	24,800		
Chironomidae Density (org/m²)	Hone	turiequal	0.001	4.7	RG_ERCKDT	45,013	25,523	6,600	76,160		

Indicates a statistically significant difference for respective comparison (p-value ≤ 0.1).

Blue shaded values indicate significant difference (ANOVA p-value \leq 0.10) that was also outside of a Critical Effect Size of ±2 SD _{Upstream}, indicating that the difference between the downstream area and upstream area was ecologically meaningful.

Notes: "-" = no data available; org = organism; ww = wet weight; EPT = Ephemeroptera, Plecoptera, Trichoptera.

^a Total density and biomass are reported for all organisms in the sample.

^b Statistical tests include t-test for equal variables (tequal) or unequal variables (tunequal)

^c Magnitude of Difference = (MCT_{Downstream} - MCT_{Upstream})/SD_{Upstream}. MCT = Measure of Central Tendency; MCT reported as geometric mean for log10-transformed data, median for rank-transformed data, means for untransformed data.

Table F.5: Summary of Benthic Invertebrate Community Endpoints from Hess Sampling, EVO LAEMP, September 2021

Biological Area Code	Sample Code	Total Density (org/m²)	Biomass (g/m² ww)	EPT Density (org/m²)	Ephemeroptera Density (org/m²)	Plecoptera Density (org/m²)	Trichoptera Density (org/m²)	Chironomidae Density (org/m²)
	RG_ERCKUT_HESS-1	8,320	63	4,840	0	3,800	1,040	Density
	RG_ERCKUT_HESS-2	16,920	26	6,080	0	Density (org/m²) Density (org/m²) Density (org/m²) Density (org/m²) 0 3,800 1,040 2,320 0 5,960 120 8,160 0 3,360 120 2,480 0 19,840 480 24,800 0 19,840 480 24,800 0 1,320 160 1,360 0 5,280 200 7,360 0 3,100 40 3,300 0 17,120 320 18,080 0 19,520 650 12,320 0 9,540 480 10,640 952 12,698 0 39,048 952 23,492 2,540 74,286 480 15,200 1,440 14,080 640 26,670 7,210 60,960 640 34,590 2,250 67,520 960 38,080 2,240 56,640 40 1,840 <t< td=""></t<>		
	RG_ERCKUT_HESS-3	6,920	20	3,480	0			
	RG_ERCKUT_HESS-4	58,400	56	20,320	0 0 19,840 480 24,800 0 1,320 160 1,360 0 5,280 200 7,360 0 3,100 40 3,300			
DC EDCKUT	RG_ERCKUT_HESS-5	3,140	9.2	1,480	0	1,320 160 1,360 5,280 200 7,360		
RG_ERCKUT	RG_ERCKUT_HESS-6	16,000	18	5,480	0	5,280	200	(org/m²) 2,320 8,160 2,480 24,800 1,360 7,360 3,300 18,080 12,320 10,640 39,048 74,286 14,080 60,960 67,520 56,640
	RG_ERCKUT_HESS-7	7,320	12	3,140	0	3,100	40	3,300
	RG_ERCKUT_HESS-8	39,680	58	17,440	0	17,120	320	18,080
	RG_ERCKUT_HESS-9	64,650	80	20,170	0	19,520	650	12,320
	RG_ERCKUT_HESS-10	29,300	37	10,020	0	9,540	480	1,360 7,360 3,300 18,080 12,320 10,640 39,048 0 74,286 0 14,080 0 60,960
	RG_ERCKDT_HESS-1	71,429	42	13,651	952	12,698	0	Density (org/m²) 2,320 8,160 2,480 24,800 1,360 7,360 3,300 18,080 12,320 10,640 39,048 74,286 14,080 60,960 67,520 56,640 6,600 22,280 76,160
	RG_ERCKDT_HESS-2	128,889	59	26,984	952	23,492	2,540	74,286
	RG_ERCKDT_HESS-3	47,040	34	17,120	480	15,200	1,440	Pensity (org/m²) (1,040 2,320 120 8,160 120 2,480 160 1360 160 1,360 160 1300 320 18,080 1650 12,320 1480 10,640 0 39,048 12,540 74,286 1,440 14,080 12,250 67,520 12,240 56,640 120 6,600 120 6,600 12,280 0 76,160
	RG_ERCKDT_HESS-4	127,550	41	34,520	640	26,670	7,210	
DO EDOKOT	RG_ERCKDT_HESS-5	214,340	67	37,480	640	34,590	2,250	67,520
RG_ERCKDT	RG_ERCKDT_HESS-6	203,840	67	41,280	960	38,080	2,240	56,640
	RG_ERCKDT_HESS-7	11,480	13	2,000	40	1,840	120	6,600
	RG_ERCKDT_HESS-8	37,950	33	5,350	120	5,140	90	22,280
	RG_ERCKDT_HESS-9	216,000	147	17,280	960	16,320	0	76,160
	RG_ERCKDT_HESS-10	47,730	72	3,170	0	2,960	210	32,560

Notes: $org/m^2 = organisms$ per metre squared. g/m^2 ww = grams per metre squared wet weight. EPT = Ephemeroptera, Plecoptera, Trichoptera.

Table F.6: Summary of Benthic Invertebrate Endpoints from 3-Minute Kick and Sweep Sampling, EVO LAEMP, September 2021

Reference	Biological Area	a Sample Code	Sample Code	Abundance	LPL Richness	Family	EPT		Ephemero	optera	Plecopt	era	Trichopt	era	Chironon	nidae
	Code	•	(# org/ 3-min kick)	(# of taxa)	Richness	Abundance (# org/ 3-min kick)	Relative Abundance (%)									
		RG_ALUSM_01	9,500	40	22	7,180	76	4,420	46	2,000	21	760	8	Abundance Abundance		
Reference	RG_ALUSM	RG_ALUSM_02	8,540	41	22	6,920	81	4,240	50	1,720	20	960	11	240	2.8	
Peference		RG_ALUSM_03	7,240	42	23	5,160	71	3,120	43	1,300	18	740	10	200	2.8	
releterice		RG_MI25_01	12,620	42	20	11,320	90	6,940	55	2,800	22	1,580	12	980	7.8	
	RG_MI25	RG_MI25_02	13,180	39	20	11,980	91	7,040	53	3,180	24	1,760	13	1,040	7.9	
		RG_MI25_03	7,420	36	17	6,520	88	3,420	46	1,760	24	1,340	18	780	10	
		RG_ERCKUT_01	11,120	24	16	6,800	61	60	0.54	6,460	58	280	2.5	3,680	Relative Abundance (%) 6.7 2.8 2.8 7.8 7.9 10 33 54 34 39 44 47 64 13 20 5.9 6.5 9.9 6.5 7 5.6 5.2 12 12 12 5.5 23 16 24 34	
Reference — Mine- Exposed —	RG_ERCKUT	RG_ERCKUT_02	14,440	23	14	6,420	44	20	0.14	6,240	43	160	1.1	7,820	54	
		RG_ERCKUT_03	7,460	19	12	4,820	65	0	0	4,600	62	220	2.9	2,500	34	
	RG_ERCKDT	RG_ERCKDT_01	18,840	30	17	9,780	52	380	2	8,720	46	680	3.6	7,300	39	
		RG_ERCKDT_02	11,980	26	15	5,580	47	280	2.3	4,880	41	420	3.5	5,280	44	
		RG_ERCKDT_03	15,640	25	13	5,140	33	160	1	4,900	31	80	0.51	7,380	47	
	RG_ERCK	RG_ERCK_01	17,360	34	23	3,480	20	180	1	2,260	13	1,040	6	11,080	64	
	RG_MI3	RG_MI3_01	7,120	29	20	4,640	65	3940	55	240	3.4	460	6.5	940	13	
		RG_MI3_02	12,660	46	26	8,900	70	6560	52	1,200	9.5	1140	9	2,500	20	
		RG_MI3_03	9,480	39	24	7,920	84	6220	66	980	10	720	7.6	560	5.9	
		RG_MIDER_01	3,475	30	23	2,742	79	1433	41	192	5.5	1117	32	225	6.5	
Mine-	RG_MIDER	RG_MIDER_02	4,050	31	21	3,100	76	2300	57	250	6.2	550	14	400	9.9	
Exposed		RG_MIDER_03	6,800	37	23	5,360	79	3380	50	860	13	1120	16	440	6.5	
		RG_MIDGA_01	12,940	40	27	11,060	86	6780	52	2,100	16	2180	17	900	(%) 6.7 2.8 2.8 7.8 7.9 10 33 54 34 39 44 47 64 13 20 5.9 6.5 9.9 6.5 7 5.6 5.2 12 12 12 12 5.5 23 16 24 34	
	RG_MIDGA	RG_MIDGA_02	7,820	33	24	6,720	86	4080	52	660	8.4	1980	25	440	5.6	
		RG_MIDGA_03	8,000	36	24	6,680	84	3940	49	1,020	13	1720	22	420	5.2	
		RG_MIDBO_01	10,480	38	24	8,500	81	4400	42	940	9	3160	30	1,280	12	
	RG_MIDBO	RG_MIDBO_02	8,080	38	28	6,420	80	3620	45	1,180	15	1620	20	960	12	
		RG_MIDBO_03	8,000	33	22	6,860	86	4640	58	1,260	16	960	12	440	5.5	
		RG_MICOMP_01	16,000	46	26	11,500	72	6,940	43	2,200	14	2,360	15	3,680	23	
		RG_MICOMP_02	7,980	43	28	5,800	73	3,520	44	1,080	14	1,200	15	1,260	16	
	RG_MICOMP	RG_MICOMP_03	11,220	37	25	6,960	62	4,100	36	1,940	17	920	8.2	2,640	24	
		RG_MICOMP_04	13,420	46	28	7,640	57	4,960	37	1,560	12	1,120	8.3	4,540	34	
		RG_MICOMP_05	15,680	41	25	12,120	77	6,200	40	2,240	14	3,680	24	2,420	15	

Notes: LPL= Lowest Practical Level. EPT= Ephemeroptera, Plecoptera, and Trichoptera.

^a Total density and biomass are reported for all organism in the sample.

APPENDIX G BIOLOGICAL TRIGGERS

BIOLOGICAL TRIGGERS APPENDIX G

G1	INTRODUCTION	1
G1.1	Background	1
	METHODS	
	Percent EPT	
G2.3	Benthic Invertebrate Tissue Selenium (BIT Se)	4
G3	RESULTS	6
	Percent EPT	
	Benthic Invertebrate Tissue Selenium (BIT Se)	
G4	SUMMARY	7
G5	REFERENCES	8

G1 INTRODUCTION

G1.1 Background

Biological triggers were developed and implemented to assist with identifying and communicating unexpected and potentially important changes in aquatic ecosystem conditions and are required as part of Teck's Adaptive Management Plan (AMP; Teck 2018). Biological triggers were developed in consultation with the EMC for a subset of the biological monitoring endpoints that are effective indicators of changes at the ecosystem level. The purpose of the biological triggers is to quickly identify biological monitoring areas where unexpected biological conditions may be occurring that may require management action. Additionally, information provided from the analysis of biological triggers may lead to responses under the AMP response framework.

Draft biological triggers were developed in the 2018 AMP (Teck 2018) under Management Question 5, with these initially reported on in 2021 in the 2020 LAEMP reports and RAEMP data package, and summarized in the 2020 Annual AMP Report (Teck 2021a). When the 2018 AMP was approved, there was an expectation that the 2018 AMP draft/interim biological triggers would be finalized, through engagement with the EMC, prior to December 15, 2021 AMP Update. The biological triggers were finalized in 2021 (Teck 2021b) and the methods applied in this report reflect the finalized biological triggers (Teck 2021b). It is important to note that the process and/or biological triggers may adjust over time as the purpose of the biological triggers is to be reflective of not only changes in the Elk Valley, but also the current state of knowledge in the area.

The finalized biological triggers (Teck 2021b) include three measurement endpoints:

- Percent EPT (% EPT; Ephemeroptera, Plecoptera, and Trichoptera) based on travelling kick samples (CABIN protocol), generally three replicates per location per sampling event.
- Benthic invertebrate tissue selenium (BIT Se) generally several replicates collected per location per sampling event, where each replicate is a composite sample of invertebrates (i.e., composite-taxa sample).
- Westslope cutthroat trout muscle tissue selenium (WCT Se) generally 8 replicates collected per location per sampling event, where each replicate corresponds to a sample from a single fish.

Evaluation of these three biological trigger endpoints is complementary to the fulsome evaluation of biological endpoints that is integrated into the Local Aquatic Effects

DRAFT June 2022 G-1

Monitoring Program (LAEMP) and the Regional Aquatic Effects Monitoring Program (RAEMP) data evaluations. The more fulsome evaluation of biological endpoints is used to support answering the specific LAEMP and RAEMP study questions through the consideration of not only the endpoints used in the biological trigger evaluation, but also a full suite of additional biological, chemical, and physical endpoints. Biological triggers do not provide information on cause and effect, report on trends, or feed directly into decision-making processes. Instead, the biological triggers act to flag areas for further evaluation, which would then take place under existing monitoring programs, through the development of supporting studies or through the response framework, as necessary.

Biological monitoring data are compared to triggers annually, and summaries of the LAEMP and RAEMP trigger evaluations and responses are summarized within annual AMP reports.

DRAFT June 2022 | G-2

G2 METHODS

G2.1 Overview

As outlined in Section G1.1, analyses for biological triggers are meant to be complementary to other analyses conducted in the LAEMPs and RAEMP. Biological trigger analyses included two of three trigger endpoints (%EPT and BIT Se [collected under the 2021 EVO LAEMP], as WCT were not sampled as part of the EVO LAEMP.

For the purpose of application of the biological triggers, expectations for the endpoints evaluated (%EPT and BIT Se) were based on projected water quality, not on measured water quality. Thus, the triggers should detect biological results that were unexpected, regardless of whether those results are due to unexpected water quality or due to unexpected relationships between water quality and biological endpoints. Biological triggers were therefore only applied at locations where water quality projections were available. Specifically, five of the mine-exposed areas (RG ERCK, RG GATE, RG BOCK, RG MI3, and RG MICOMP) included in the EVO LAEMP were evaluated for benthic invertebrate tissue mine-exposed selenium trigger events and three areas (RG ERCK, and RG MICOMP) were evaluated for the percent EPT biological trigger. Data for other areas studied under the EVO LAEMP were not evaluated relative to biological triggers but were assessed elsewhere as part of the main EVO LAEMP report.

Methodological details are discussed for each of the biological trigger metrics below.

G2.2 Percent EPT

Data for percent EPT were compared to:

- Normal range: The lower limit of habitat-adjusted normal range (2.5th percentile).
 Up-to-date limits of normal ranges¹ are provided in the RAEMP and LAEMPs, where they are recalculated as needed as new data become available (Teck 2019).
 The derivation of habitat-adjusted normal ranges is described in Appendix J of the 2020 RAEMP, and was based on consideration of more than 30 habitat, substrate, GIS, and land cover variables (Minnow 2020).
- <u>Expectations:</u> The lower limit of the range of %EPT corresponds to the predicted aquatic data integration tool (ADIT) score. The predicted ADIT scores correspond to potential effects on benthic invertebrate community (BIC) endpoints, based on

DRAFT June 2022 G-3

¹ The normal range will be updated as part of the three-year reporting cycle of the RAEMP (Minnow 2021b).

relationships between water quality projections (for nitrate, sulphate and cadmium)² and invertebrate toxicity endpoints originally developed for the EVWQP (Teck 2014; Golder 2020a). A predicted ADIT score of 3 corresponds to 50% or greater effects to reproduction of the water flea Ceriodaphnia dubia, 2 corresponds to 20 to 50% effects, 1 corresponds to 10 to 20% effects, and 0 corresponds to effect levels of 10% or less. Once %EPT is actually measured, the measured results are converted to a measured ADIT score in relation to the habitat adjusted normal range as follows: An ADIT score of 0 corresponds to expected %EPT ≥ the 10th percentile of the habitat-adjusted normal range; an ADIT score of 1 corresponds to expected %EPT between the 10th percentile and the 2.5th percentile of the habitat-adjusted normal range (and is therefore identical in application to the lower limit of normal range); an ADIT score of 2 corresponds to expected %EPT between the 2.5th percentile and half of the 2.5th percentile of the habitat-adjusted normal range; finally, an ADIT score of 3 corresponds to expected %EPT ≤ half of the 2.5th percentile and ≥ 0. Individual replicate habitat-adjusted normal ranges were used at each location for establishing the %EPT limits associated with each ADIT score. In summary, this component of the biological trigger for %EPT asks whether the measured ADIT score - calculated based on measured %EPT relative to normal ranges - is greater than the ADIT score that was predicted based on water quality projections.

Benthic invertebrate community data for %EPT collected in the fall (September) for the 2021 EVO LAEMP were included in the biological trigger analysis.

G2.3 Benthic Invertebrate Tissue Selenium (BIT Se)

Data for BIT Se were compared to:

- <u>Normal range:</u> The upper limit of regional normal range (97.5th percentile) for individual replicates. Up-to-date limits of normal ranges³ are provided in the RAEMP and LAEMPs, where they are recalculated as needed as new data become available (Teck 2019).
- Expectations: The upper limit of the 95% prediction interval based on the water to BIT bioaccumulation model for lotic environments. The model originally developed in the EVWQP (Golder 2014) was updated (Golder 2020b) and the updated data set was used to calculate prediction intervals for individual replicates. Methodology for estimating the upper limit of the 95% prediction for BIT Se (given any projected value)

DRAFT June 2022 G-4

² Selenium was not included because selenium effects on BIC endpoints are not expected. Projections were based on the highest maximum monthly mean across all flow scenarios (low, average, and high).

³ The normal range will be updated as part of the three-year reporting cycle of the RAEMP (Minnow 2021b).

of aqueous selenium) is discussed further in the Biological Trigger Development for the Elk Valley Adaptive Management Plan (Azimuth 2021 [In Preparation]).

Benthic invertebrate tissue selenium data from sampling events completed throughout 2021 for the EVO LAEMP (August [RG_BOCK], September [RG_ERCK, RG_GATE, RG_BOCK, RG_MI3, RG_MICOMP]), and December [RG_ERCK] were included in the biological trigger analysis although normal range information is based on fall (September) information.

Although effects benchmarks are not part of the trigger, they are relevant for interpreting potential significance and responses. Consequently, the level 1, 2 and 3 benchmarks for the most sensitive receptor (juvenile fish via dietary exposure) are included in plots (11, 18, and 26 mg/kg, respectively).

DRAFT June 2022 | G-5

G3 RESULTS

G3.1 Percent EPT

Individual replicates for the %EPT endpoint for each of the three mine-exposed areas (RG_ERCK, RG_MI3, and RG_MICOMP) were each assessed against their respective biological triggers for the September sampling period (Appendix Table G.1 and Appendix Figure G.1). The mine-exposed area, RG_ERCK, had a % EPT of 20.1%, which was lower than the biological trigger value of 66.2%. However, only one replicate was measured at this location. RG_ERCK is located just upstream of the confluence of Erickson Creek and Michel Creek and downstream from the saturated rock fille (SRF). The two other mine-exposed areas in Michel Creek, RG_MI3 (which is above the confluence of Erickson and Michel Creek) and RG_MICOMP (which is downstream of the confluences of Erickson, Gate, and Bodie Creeks with Michel Creek) had results above their biological trigger value in all replicates and the lower 2.5th percentile of habitat-adjusted normal range.

G3.2 Benthic Invertebrate Tissue Selenium (BIT Se)

Benthic invertebrate tissue selenium concentrations for each mine-exposed area was assessed against their respective biological trigger for individual replicate samples from each of the three sampling events in 2021 (August, September, and December; Appendix Table G.2. and Appendix Figure G.2). At RG GATE, benthic invertebrate tissue selenium concentrations for all three replicates in September exceeded the biological trigger value, ranging from 21 to 34 mg/kg. These values were higher than both the upper 95% prediction limit of 15.2 mg/kg (as based on predicted water quality) and the upper 97.5th percentile of normal range, which was 8.7 mg/kg. At RG BOCK, all replicates had benthic invertebrate tissue selenium concentrations which exceeded the biological trigger values in August (reported concentrations of 41 to 58 mg/kg) and September (reported concentrations of 49 to 92 mg/kg). Benthic invertebrate tissue selenium concentrations, however, did not exceed the biological trigger value at RG ERCK (the confluence of Erickson Creek and Michel Creek) in either sampling event (September or December), as concentrations of benthic invertebrate tissue selenium ranged from 3.3 to 5.9 mg/kg in 2021. Benthic invertebrate tissue selenium concentrations in Michel Creek, specifically RG MI3 (3.0 to 5.9 mg/kg) RG MICOMP (2.7 to 5.1 mg/kg), were also all below their respective biological trigger value.

DRAFT June 2022 G-6

Teck Coal Limited

2021 EVO LAEMP

G4 SUMMARY

A single replicate from RG_ERCK exceeded the %EPT biological trigger by 42.1%. The %EPT results for these mine-exposed areas was consistent with results classified as 'unexpected' in the most recent RAEMP (Minnow 2020). Additionally, the biological trigger for benthic invertebrate tissue selenium concentrations was exceeded in all replicates from both RG_BOCK and RG_GATE (during the August and September sampling events). The BIT selenium concentration at RG_ERCK in Erickson Creek (in both September and December) and the two areas evaluated in Michel Creek (in September), RG_MI3 and RG_MICOMP, were below the biological trigger threshold.

The results from the biological triggers evaluation are consistent with the findings of the EVO LAEMP. Current biological triggers were sufficient to identify monitoring areas where biological responses are occurring, based on the integrated assessment conducted in the LAEMP, and no additional triggers are recommended at this time. In an effort to resolve uncertainty around the combined and individual effects of water quality, habitat, and other mine-related stressors on benthic invertebrate communities in lotic areas in the Elk River watershed, Minnow is developing a predictive model for benthic invertebrate community endpoints. Uncertainties are expected to be reduced through these efforts, and additional monitoring or potential management responses will continue to be assessed through Teck's adaptive management framework.

DRAFT June 2022 | G-7

G5 REFERENCES

- Azimuth (Azimuth Consulting Group Inc). 2021 (In Prep). Development of biological triggers for the Elk Valley Adaptive Management Plan. Prepared for Teck Coal Limited. December.
- Golder (Golder Associates). 2014. Benchmark Derivation Report for Selenium. Annex E of the Elk Valley Water Quality Plan. Prepared for Teck Coal Limited. July.
- Golder. 2020a. User's Manual Aquatic Data Integration Tool (ADIT) for the Elk Valley. Prepared for Teck Coal Ltd. 15 September 2020.
- Golder. 2020b. Updates to the lotic and lentic statistical bioaccumulation models for selenium in the Elk Valley. Technical memorandum to Teck Coal Limited. 27 November 2020.
- Minnow (Minnow Environmental Inc). 2020. Regional Aquatic Effects Monitoring Program (RAEMP) Report, 2017 to 2019. Prepared for Teck Coal Ltd. November 2020.
- Minnow. 2021b. Study Design for the Regional Aquatic Effects Monitoring Program, 2021 to 2023. Prepared for Teck Coal Limited, Sparwood, BC. March. Project 207202.0006.
- Teck (Teck Coal Limited). 2014. Elk Valley Water Quality Plan. Submitted to the British Columbia Minister of Environment for approval on July 22, 2014.
- Teck. 2018. Water Quality Adaptive Management Plan for Teck Coal Operations in the Elk Valley. December 21, 2018.
- Teck. 2019. Elk Valley Water Quality Plan 2019 Implementation Plan Adjustment. July 2019.
- Teck. 2021a. Water Quality Adaptive Management Plan for Teck Coal Operations in the Elk Valley 2020 Annual Report. Prepared by Teck Coal Limited. July 31, 2021.
- Teck. 2021b. Water Quality Adaptive Management Plan for Teck Coal Operations in the Elk Valley 2021 Update. Prepared by Teck Coal Limited. December 15, 2021.

DRAFT June 2022 | G-8

Table G.1: Biological Trigger Analysis for %EPT in EVO LAEMP, September 2021

Exposure	Area	Туре	Replicate	Reported Value	ADIT Value ^a	Lower 2.5th Percentile of the Habitat Adjusted Normal Range
	RG_ERCK	Т	1	20.1	66.2	66.2
	RG_MI3	М	1	65.2	62.6	56.2
	RG_MI3	M	2	70.3	64.4	58.3
	RG_MI3	М	3	83.5	58.6	51.8
Mine-exposed	RG_MICOMP	М	1	71.9	63.1	56.6
	RG_MICOMP	М	2	72.7	61.5	54.9
	RG_MICOMP	М	3	62.0	62.1	55.5
	RG_MICOMP	М	4	56.9	56.6	49.5
	RG_MICOMP	M	5	77.3	60.2	53.9

Shaded cells signify those individual replicates that were associated with a biological trigger (i.e., lower than both the Aquatic Data Integration Tool (ADIT) value [as based on predicted water quality] and the lower 2.5th percentile of habitat-adjusted normal range).

Notes: M= Mainstem and T = Tributary. %EPT = percent Ephemeroptera, Plecoptera, Trichoptera.

^a Information pertaining to the calculation of the ADIT value is shown in Section E3.1. In short, all EVO areas (excluding RG_ERCK) evaluated had an ADIT score of 0, which corresponds to the 80% lower limit of the expected %EPT (as based on water quality projections).

Table G.2: Summary of Biotriggers in Benthic Invertebrate Tissue, EVO LAEMP, 2021

				Predicted	Benthic	Invertebrate Selenium Tissu	е
Waterbody	Stream Type	Area	Date	Selenium Water Concentration (mg/L)	Upper 95% Prediction Limit (mg/kg dw)	Upper 97.5th Percentile of Normal Range (mg/kg dw)	Reported Concentration (mg/kg dw)
	Т	RG_ERCK (T)	10-Sep-21	155	15.2	8.7	3.3
	T	RG_ERCK (T)	14-Dec-21	155	15.2	8.7	4.6
	Т	RG_ERCK (T)	14-Dec-21	155	15.2	8.7	5.2
	T	RG_ERCK (T)	14-Dec-21	155	15.2	8.7	5.9
	Т	RG_GATE (T)	16-Sep-21	211	15.5	8.7	34
	T	RG_GATE (T)	16-Sep-21	211	15.5	8.7	21
	Т	RG_GATE (T)	16-Sep-21	211	15.5	8.7	24
	Т	RG_BOCK (T)	27-Aug-21	351	16.1	8.7	58
	T	RG_BOCK (T)	27-Aug-21	351	16.1	8.7	47
Michel Mine-	Т	RG_BOCK (T)	27-Aug-21	351	16.1	8.7	41
Creek Exposed	Т	RG_BOCK (T)	16-Sep-21	351	16.1	8.7	92
Drook Exposod	Т	RG_BOCK (T)	16-Sep-21	351	16.1	8.7	49
	Т	RG_BOCK (T)	16-Sep-21	351	16.1	8.7	69
	М	RG_MI3 (M)	10-Sep-21	2.24	11.2	8.7	4.5
	М	RG_MI3 (M)	10-Sep-21	2.24	11.2	8.7	5.9
	М	RG_MI3 (M)	10-Sep-21	2.24	11.2	8.7	3.0
	М	RG_MICOMP (M)	13-Sep-21	23	13.2	8.7	4.5
	М	RG_MICOMP (M)	13-Sep-21	23	13.2	8.7	5.1
	М	RG_MICOMP (M)	13-Sep-21	23	13.2	8.7	2.7
	М	RG_MICOMP (M)	13-Sep-21	23	13.2	8.7	4.3
	М	RG_MICOMP (M)	13-Sep-21	23	13.2	8.7	3.5

Shaded cells signify those individual replicates that were associated with a biological trigger (i.e., higher than both the upper 95% prediction limit [as based on predicted water quality] and the upper 97.5th percentile of normal range).

Notes: M= Mainstem and T = Tributary. mg/kg dw = milligrams per kilogram dry weight.

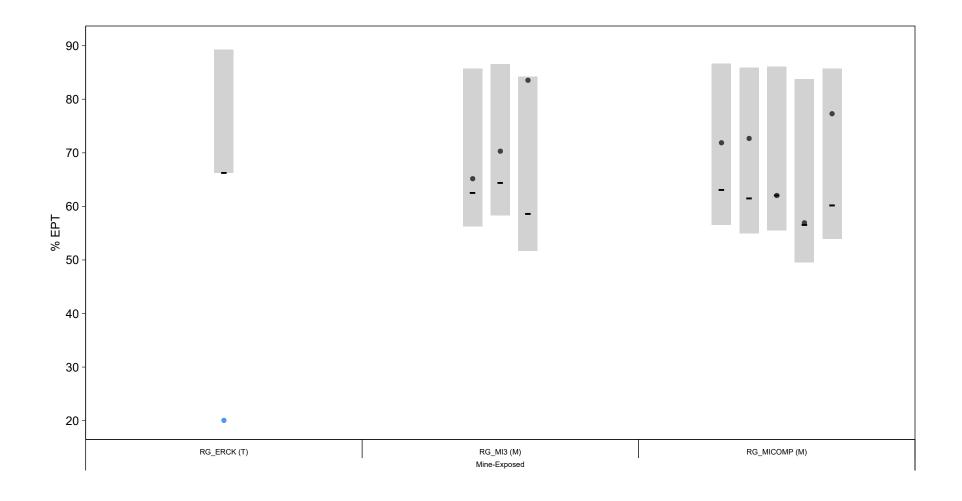


Figure G.1: Percent EPT (%EPT) Compared to Predicted Values, EVO LAEMP, 2021

Notes: Black bars indicate the lower limit of the predicted Aquatic Data Integration Tool (ADIT) score for the location. Blue dots represent values exceeding the trigger (below 2.5th percentile of NR and below lower limit of predicted ADIT score). Gray shading represents the habitat-adjusted normal range for each replicate. Black dots represent values that did not reach the biological trigger (i.e., were higher than the trigger value). T = Tributary, M = Mainstem.

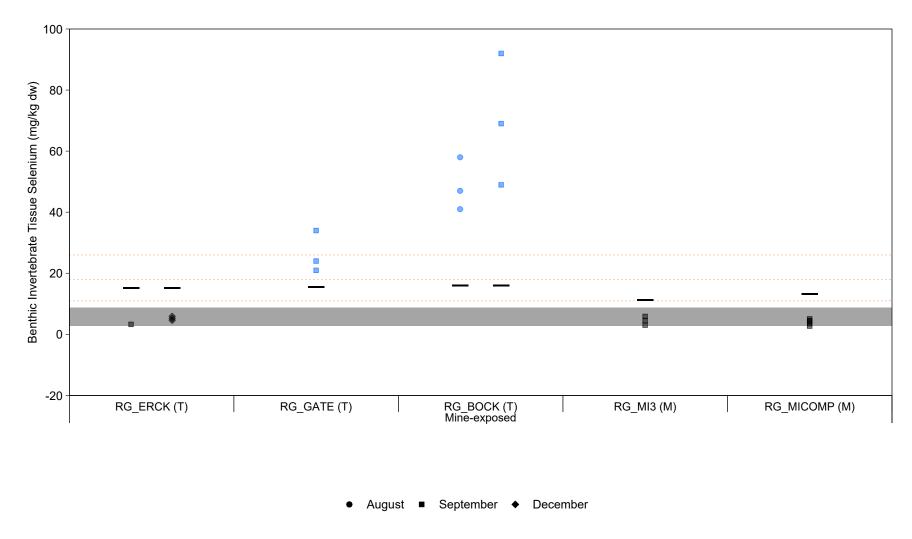


Figure G.2: Selenium Concentrations in Benthic Invertebrate Composite-Taxa Samples Compared to Predicted Values, EVO LAEMP, 2021

Notes: Black bars indicate the upper 95th prediction interval of the bioaccumulation model. Blue dots represent values exceeding the trigger (above the 97.5th percentile of normal range and above upper 95% prediction interval). Dotted lines indicate EVWQP benchmarks (11, 18, and 26 mg/kg respectively) for juvenile fish. Gray shading represents the reference area normal range defined as the 2.5th and 97.5th percentiles of the distribution of reference area data (pooled 1996 to 2019 data) reported in the RAEMP.

APPENDIX H

LABORATORY REPORTS

WATER CHEMISTRY

ALS Laboratory Report CG2104077 (Finalized September 30, 2021)

: Allie Ferguson

CERTIFICATE OF ANALYSIS

Work Order : CG2104077

Client : Teck Coal Limited

Address : 421 Pine Avenue

Sparwood BC Canada V0B 2G0

Telephone

Contact

Project : REGIONAL EFFECTS PROGRAM

: VPO00750546

C-O-C number : September EVO LAEMP 2021

Sampler : JI Site

Quote number : Teck Coal Master Quote

No. of samples received : 3 No. of samples analysed : 3

Page : 1 of 7

Laboratory : Calgary - Environmental

Account Manager : Lyudmyla Shvets Address

: 2559 29th Street NE

Calgary AB Canada T1Y 7B5

Telephone : +1 403 407 1800 **Date Samples Received** : 14-Sep-2021 10:30

Date Analysis Commenced : 15-Sep-2021

Issue Date : 30-Sep-2021 12:55

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department	
Anthony Calero	Team Leader - Inorganics	Inorganics, Calgary, Alberta	
Caleb Deroche	Lab Analyst	Metals, Burnaby, British Columbia	
Dion Chan	Lab Assistant	Metals, Burnaby, British Columbia	
Erin Sanchez		Inorganics, Calgary, Alberta	
Hannah Phung	Lab Assistant	Inorganics, Calgary, Alberta	
Harpreet Chawla	Team Leader - Inorganics	Inorganics, Calgary, Alberta	
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia	
Kim Jensen	Department Manager - Metals	Metals, Burnaby, British Columbia	
Maria Tuguinay	Lab Assistant	Inorganics, Calgary, Alberta	
Monica Ko	Lab Assistant	Metals, Burnaby, British Columbia	
Owen Cheng		Metals, Burnaby, British Columbia	
Parker Sgarbossa	Laboratory Analyst	Inorganics, Calgary, Alberta	
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta	
Tracy Harley	Supervisor - Water Quality Instrumentation	Inorganics, Burnaby, British Columbia	
Vladka Stamenova	Analyst	Inorganics, Calgary, Alberta	

Page : 3 of 7

Work Order : CG2104077

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
%	percent
μg/L	micrograms per litre
μS/cm	Microsiemens per centimetre
meq/L	milliequivalents per litre
mg/L	milligrams per litre
mV	millivolts
NTU	nephelometric turbidity units
pH units	pH units

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Page : 4 of 7
Work Order : CG2104077
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water (Matrix: Water)			Ci	lient sample ID	RG_MIDBO_WS _LAEMP_EVO_ 2021-09-11_NP	RG_MIDGA_WS _LAEMP_EVO_ 2021-09-11_NP	RG_ALUSM_W S_LAEMP_EVO _2021-09-12_N P	
			Client samp	oling date / time	11-Sep-2021 11:30	11-Sep-2021 15:30	12-Sep-2021 13:00	
Analyte	CAS Number	Method	LOR	Unit	CG2104077-001	CG2104077-002	CG2104077-003	
					Result	Result	Result	
Physical Tests								
acidity (as CaCO3)		E283	2.0	mg/L	<2.0	<2.0	<2.0	
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	171	169	143	
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	10.8	13.4	8.0	
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	<1.0	
alkalinity, total (as CaCO3)		E290	1.0	mg/L	182	182	151	
conductivity		E100	2.0	μS/cm	546	646	308	
hardness (as CaCO3), dissolved		EC100	0.50	mg/L	274	377	160	
oxidation-reduction potential [ORP]		E125	0.10	mV	508	467	468	
рН		E108	0.10	pH units	8.38	8.43	8.38	
solids, total dissolved [TDS]		E162	10	mg/L	374	454	189	
solids, total suspended [TSS]		E160-L	1.0	mg/L	1.2	2.1	<1.0	
turbidity		E121	0.10	NTU	0.51	1.17	0.20	
alkalinity, bicarbonate (as HCO3)	71-52-3	E290	1.0	mg/L	208	206	174	
alkalinity, carbonate (as CO3)	3812-32-6	E290	1.0	mg/L	6.5	8.0	4.8	
alkalinity, hydroxide (as OH)	14280-30-9	E290	1.0	mg/L	<1.0	<1.0	<1.0	
Anions and Nutrients								
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0268	0.0183	0.0086	
bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	<0.050	
chloride	16887-00-6	E235.CI-L	0.10	mg/L	2.42	3.26	0.79	
fluoride	16984-48-8	E235.F	0.020	mg/L	0.160	0.168	0.163	
Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	0.144	0.280	<0.050	
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	1.02	2.72	0.0069	
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	0.0016	0.0059	<0.0010	
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	<0.0010	<0.0010	<0.0010	
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0051	0.0048	0.0022	
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	123	170	16.6	
Organic / Inorganic Carbon								
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	1.78	1.70	1.52	

Page : 5 of 7
Work Order : CG2104077
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water (Matrix: Water)			Cli	ient sample ID	RG_MIDBO_WS _LAEMP_EVO_ 2021-09-11_NP	RG_MIDGA_WS _LAEMP_EVO_ 2021-09-11_NP	RG_ALUSM_W S_LAEMP_EVO _2021-09-12_N P	
			Client samp	ling date / time	11-Sep-2021 11:30	11-Sep-2021 15:30	12-Sep-2021 13:00	
Analyte	CAS Number	Method	LOR	Unit	CG2104077-001	CG2104077-002	CG2104077-003	
					Result	Result	Result	
Organic / Inorganic Carbon carbon, total organic [TOC]		E355-L	0.50	mg/L	1.63	1.87	1.43	
		L333-L	0.50	IIIg/L	1.03	1.07	1.45	
Ion Balance anion sum		EC101	0.10	mea/l	6.35	7.47	3.39	
cation sum		EC101	0.10	meq/L	5.69	7.47	3.28	
ion balance (cations/anions ratio)		EC101	0.10	meq/L %	89.6	104	96.8	
,		EC101	0.010	% %	5.48	1.97	1.65	
ion balance (cation-anion difference)		LOTOT	0.010	/0	J. 4 0	1.97	1.00	
Total Metals aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0052	0.0083	0.0084	
antimony, total	7429-90-3	E420	0.00010	mg/L	0.00013	0.00035	<0.0004	
arsenic, total		E420	0.00010	mg/L	0.00013	0.00033	0.00015	
barium, total	7440-38-2 7440-39-3	E420	0.00010	mg/L	0.121	0.138	0.0699	
beryllium, total		E420	0.00010	-	<0.020	<0.020	<0.020	
bismuth, total	7440-41-7	E420	0.00050	μg/L mg/L	<0.00050	<0.00050	<0.00050	
boron, total	7440-69-9 7440-42-8	E420	0.000	-	0.015	0.018	<0.010	
cadmium, total		E420	0.0050	mg/L	0.0257	0.0416	0.0083	
calcium, total	7440-43-9	E420	0.050	μg/L mg/l	67.4	87.0	44.2	
chromium, total	7440-70-2 7440-47-3	E420.Cr-L	0.00010	mg/L	0.00013	0.00014	0.00019	
cobalt, total		E420.CI-L	0.00010	mg/L	<0.10	0.00014	<0.10	
,	7440-48-4	E420	0.00050	μg/L mg/l	<0.00050	<0.00050	<0.0050	
copper, total iron, total	7440-50-8 7439-89-6	E420	0.000	mg/L	0.014	0.024	0.015	
lead, total		E420	0.00050	mg/L mg/L	<0.00050	<0.00050	<0.00050	
lithium, total	7439-92-1 7439-93-2	E420	0.000030	mg/L	0.0135	0.0351	0.0031	
magnesium, total	7439-93-2 7439-95-4	E420	0.0010	"	26.6	42.6	12.0	
manganese, total		E420	0.0030	mg/L	0.00296	0.00453	0.00171	
manganese, total	7439-96-5 7439-97-6	E508-L	0.00010	mg/L	<0.00298	<0.00453	<0.00171	
molybdenum, total		E420	0.00050	μg/L mg/l	0.00188	0.00276	0.000644	
· ·	7439-98-7	E420 E420	0.00050	mg/L	0.00188	0.00276	<0.00050	
nickel, total	7440-02-0	E420 E420	0.0050	mg/L	1.12	1.83	0.435	
potassium, total	7440-09-7			mg/L			0.435	
selenium, total	7782-49-2	E420	0.050	μg/L	8.18	33.9	0.021	

Page : 6 of 7
Work Order : CG2104077
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water			Cli	ient sample ID	RG_MIDBO_WS	RG_MIDGA_WS	RG_ALUSM_W	
(Matrix: Water)					_LAEMP_EVO_ 2021-09-11_NP	_LAEMP_EVO_ 2021-09-11_NP	S_LAEMP_EVO _2021-09-12_N	
							Р	
			Client samp	ling date / time	11-Sep-2021 11:30	11-Sep-2021 15:30	12-Sep-2021 13:00	
Analyte	CAS Number	Method	LOR	Unit	CG2104077-001	CG2104077-002	CG2104077-003	
					Result	Result	Result	
Total Metals								
silicon, total	7440-21-3	E420	0.10	mg/L	2.27	2.29	2.14	
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	
sodium, total	17341-25-2	E420	0.050	mg/L	4.03	4.60	1.49	
strontium, total	7440-24-6	E420	0.00020	mg/L	0.181	0.284	0.111	
sulfur, total	7704-34-9	E420	0.50	mg/L	38.5	71.3	5.29	
thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	0.000010	<0.000010	
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	
titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	<0.00030	
uranium, total	7440-61-1	E420	0.000010	mg/L	0.00164	0.00286	0.000590	
vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	
zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	0.0034	<0.0030	
Dissolved Metals								
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0014	<0.0010	<0.0010	
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00013	0.00029	<0.00010	
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00015	0.00017	0.00011	
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.115	0.122	0.0670	
beryllium, dissolved	7440-41-7	E421	0.020	μg/L	<0.020	<0.020	<0.020	
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	
boron, dissolved	7440-42-8	E421	0.010	mg/L	0.013	0.016	<0.010	
cadmium, dissolved	7440-43-9	E421	0.0050	μg/L	0.0207	0.0279	<0.0050	
calcium, dissolved	7440-70-2	E421	0.050	mg/L	64.6	81.7	43.8	
chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00012	0.00011	0.00019	
cobalt, dissolved	7440-48-4	E421	0.10	μg/L	<0.10	<0.10	<0.10	
copper, dissolved	7440-50-8	E421	0.00020	mg/L	<0.00020	<0.00020	<0.00020	
iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	<0.010	
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0123	0.0292	0.0034	
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	27.5	42.0	12.3	
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00166	0.00280	0.00106	
1 5 111,1111111	7 100 00-0		1	J. –				

Page : 7 of 7
Work Order : CG2104077
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water (Matrix: Water)			Cl	ient sample ID	RG_MIDBO_WS _LAEMP_EVO_ 2021-09-11_NP	RG_MIDGA_WS _LAEMP_EVO_ 2021-09-11_NP	RG_ALUSM_W S_LAEMP_EVO _2021-09-12_N P	
				ling date / time	11-Sep-2021 11:30	11-Sep-2021 15:30	12-Sep-2021 13:00	
Analyte	CAS Number	Method	LOR	Unit	CG2104077-001	CG2104077-002	CG2104077-003	
					Result	Result	Result	
Dissolved Metals		5500	0.0000050		-0.0000050	-0.000050	-0.000050	
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.000050	<0.000050	<0.000050	
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00189	0.00272	0.000630	
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00235	0.00540	<0.00050	
potassium, dissolved	7440-09-7	E421	0.050	mg/L	1.04	1.60	0.380	
selenium, dissolved	7782-49-2	E421	0.050	μg/L	8.55	30.5	0.551	
silicon, dissolved	7440-21-3	E421	0.050	mg/L	2.27	2.34	2.15	
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	
sodium, dissolved	17341-25-2	E421	0.050	mg/L	4.05	4.60	1.59	
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.181	0.264	0.113	
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	40.5	67.1	5.42	
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	0.000011	<0.000010	
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	<0.00030	
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00144	0.00226	0.000512	
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050	
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0012	0.0021	<0.0010	
dissolved mercury filtration location		EP509	-	-	Field	Field	Field	
dissolved metals filtration location		EP421	-	-	Field	Field	Field	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : **CG2104077** Page : 1 of 17

: 421 Pine Avenue Address : 2559 29th Street NE
Sparwood BC Canada V0B 2G0 Calgary, Alberta Can

Calgary, Alberta Canada T1Y 7B5
Telephone :+1 403 407 1800

 Project
 : REGIONAL EFFECTS PROGRAM
 Date Samples Received
 : 14-Sep-2021 10:30

 PO
 : VPO00750546
 Issue Date
 : 30-Sep-2021 12:56

C-O-C number : September EVO LAEMP 2021

Sampler : JI
Site : ----

Quote number : Teck Coal Master Quote

No. of samples received : 3
No. of samples analysed : 3

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Telephone

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Summary of Outliers

Outliers: Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers: Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

Page : 2 of 17 Work Order : CG2104077

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

 Matrix: Water
 Evaluation: x = Holding time exceedance; √ = Within Holding Time

 Analyte Group
 Method
 Sampling Date
 Extraction / Preparation
 Analysis

Analyte Group	Method	Sampling Date	Ex	traction / Pr	eparation		Analysis			
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
RG_ALUSM_WS_LAEMP_EVO_2021-09-12_NP	E298	12-Sep-2021	24-Sep-2021				24-Sep-2021	28 days	12 days	✓
Anima and Municipals a Anima via bu Floring										
Anions and Nutrients : Ammonia by Fluorescence								T		
Amber glass total (sulfuric acid) RG MIDBO WS LAEMP EVO 2021-09-11 NP	E298	11-Sep-2021	24-Sep-2021				24-Sep-2021	28 days	13 days	✓
NO_MIDDO_WO_LITEMI _EVO_2021*00*11_N	2200	11 330 2321	21 GGP 2021				21 300 2021	20 dayo	10 days	·
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
RG_MIDGA_WS_LAEMP_EVO_2021-09-11_NP	E298	11-Sep-2021	24-Sep-2021				24-Sep-2021	28 days	13 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE										
RG_ALUSM_WS_LAEMP_EVO_2021-09-12_NP	E235.Br-L	12-Sep-2021					15-Sep-2021	28 days	3 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE										
RG MIDBO WS LAEMP EVO 2021-09-11 NP	E235.Br-L	11-Sep-2021					15-Sep-2021	28 days	4 days	✓
							·		-	
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE										
RG_MIDGA_WS_LAEMP_EVO_2021-09-11_NP	E235.Br-L	11-Sep-2021					15-Sep-2021	28 days	4 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)							1			
HDPE	E235.CI-L	12-Sep-2021					15-Sep-2021	28 days	2 days	√
RG_ALUSM_WS_LAEMP_EVO_2021-09-12_NP	E235.UI-L	12-Sep-2021					15-Sep-2021	∠o days	o days	*

Page : 3 of 17 Work Order : CG2104077

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: **Water** Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

Analyte Group	Method	Sampling Date	Date Extraction / Preparation				Analysis			
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE RG_MIDBO_WS_LAEMP_EVO_2021-09-11_NP	E235.CI-L	11-Sep-2021					15-Sep-2021	28 days	4 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE RG_MIDGA_WS_LAEMP_EVO_2021-09-11_NP	E235.CI-L	11-Sep-2021					15-Sep-2021	28 days	4 days	✓
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Le	vel)								'	
HDPE RG_ALUSM_WS_LAEMP_EVO_2021-09-12_NP	E378-U	12-Sep-2021					15-Sep-2021	3 days	3 days	✓
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Le	vel)								1	
HDPE RG_MIDBO_WS_LAEMP_EVO_2021-09-11_NP	E378-U	11-Sep-2021					15-Sep-2021	3 days	4 days	* EHTL
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Le	vel)									
HDPE RG_MIDGA_WS_LAEMP_EVO_2021-09-11_NP	E378-U	11-Sep-2021					15-Sep-2021	3 days	4 days	* EHTL
Anions and Nutrients : Fluoride in Water by IC									'	
HDPE RG_ALUSM_WS_LAEMP_EVO_2021-09-12_NP	E235.F	12-Sep-2021					15-Sep-2021	28 days	3 days	✓
Anions and Nutrients : Fluoride in Water by IC										
HDPE RG_MIDBO_WS_LAEMP_EVO_2021-09-11_NP	E235.F	11-Sep-2021					15-Sep-2021	28 days	4 days	✓
Anions and Nutrients : Fluoride in Water by IC										
HDPE RG_MIDGA_WS_LAEMP_EVO_2021-09-11_NP	E235.F	11-Sep-2021					15-Sep-2021	28 days	4 days	√
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE RG_ALUSM_WS_LAEMP_EVO_2021-09-12_NP	E235.NO3-L	12-Sep-2021					15-Sep-2021	3 days	3 days	✓

Page : 4 of 17 Work Order : CG2104077

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: **Water** Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

iduix. Water						raidation. • -	Tiolding time exce	cuarice, .	_ vviciiiii	riolaling i
Analyte Group	Method	Sampling Date	Ext	traction / P	reparation			Analysis		
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE										
RG_MIDBO_WS_LAEMP_EVO_2021-09-11_NP	E235.NO3-L	11-Sep-2021					15-Sep-2021	3 days	4 days	*
										EHTL
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE										
RG_MIDGA_WS_LAEMP_EVO_2021-09-11_NP	E235.NO3-L	11-Sep-2021					15-Sep-2021	3 days	4 days	se
		, ,						,-	,-	EHTL
nions and Nutrients : Nitrite in Water by IC (Low Level) HDPE			l							
	E235.NO2-L	12-Sep-2021					15-Sep-2021	3 days	3 days	1
RG_ALUSM_WS_LAEMP_EVO_2021-09-12_NP	E235.NO2-L	12-3ep-2021					15-3ep-2021	3 days	3 uays	•
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE										
RG_MIDBO_WS_LAEMP_EVO_2021-09-11_NP	E235.NO2-L	11-Sep-2021					15-Sep-2021	3 days	4 days	×
										EHTL
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE										
RG_MIDGA_WS_LAEMP_EVO_2021-09-11_NP	E235.NO2-L	11-Sep-2021					15-Sep-2021	3 days	4 days	æ
										EHTL
Anions and Nutrients : Sulfate in Water by IC										
HDPE										
RG_ALUSM_WS_LAEMP_EVO_2021-09-12_NP	E235.SO4	12-Sep-2021					15-Sep-2021	28 days	3 days	1
		,					' '			
nions and Nutrients : Sulfate in Water by IC										
HDPE										
RG_MIDBO_WS_LAEMP_EVO_2021-09-11_NP	E235.SO4	11-Sep-2021					15-Sep-2021	28 days	4 days	1
NO_MIDBO_WO_EALMI _EVO_2021-09-11_NI	2200.001	11 000 2021					10-00p-2021	20 days	+ days	
nions and Nutrients : Sulfate in Water by IC				I				T		
HDPE	F005 004	44.0					45.0 0004	00.4	4 4	,
RG_MIDGA_WS_LAEMP_EVO_2021-09-11_NP	E235.SO4	11-Sep-2021					15-Sep-2021	28 days	4 days	✓
nions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid)										
RG_MIDBO_WS_LAEMP_EVO_2021-09-11_NP	E318	11-Sep-2021	20-Sep-2021				21-Sep-2021	28 days	10 days	✓
		1					1	1		

Page : 5 of 17 Work Order : CG2104077

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: **Water**Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

watrix: water						alaation.	Holding time exce	oddiioo ,	***************************************	riolaling riiii
Analyte Group	Method	Sampling Date	Ext	traction / P	reparation		Analysis			
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid)										
RG_MIDGA_WS_LAEMP_EVO_2021-09-11_NP	E318	11-Sep-2021	20-Sep-2021				21-Sep-2021	28 days	10 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid)										
RG_ALUSM_WS_LAEMP_EVO_2021-09-12_NP	E318	12-Sep-2021	20-Sep-2021				21-Sep-2021	28 days	9 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)									'	
Amber glass total (sulfuric acid)										
RG_ALUSM_WS_LAEMP_EVO_2021-09-12_NP	E372-U	12-Sep-2021	17-Sep-2021				17-Sep-2021	28 days	5 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)										
Amber glass total (sulfuric acid)										
RG_MIDBO_WS_LAEMP_EVO_2021-09-11_NP	E372-U	11-Sep-2021	17-Sep-2021				17-Sep-2021	28 days	6 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)									'	
Amber glass total (sulfuric acid)										
RG_MIDGA_WS_LAEMP_EVO_2021-09-11_NP	E372-U	11-Sep-2021	17-Sep-2021				17-Sep-2021	28 days	6 days	✓
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE dissolved (nitric acid)										
RG_ALUSM_WS_LAEMP_EVO_2021-09-12_NP	E421.Cr-L	12-Sep-2021	20-Sep-2021				20-Sep-2021	180	8 days	✓
								days		
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE dissolved (nitric acid)										
RG_MIDBO_WS_LAEMP_EVO_2021-09-11_NP	E421.Cr-L	11-Sep-2021	20-Sep-2021				20-Sep-2021	180	9 days	✓
								days		
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE dissolved (nitric acid)										
RG_MIDGA_WS_LAEMP_EVO_2021-09-11_NP	E421.Cr-L	11-Sep-2021	20-Sep-2021				20-Sep-2021	180	9 days	✓
								days		
Dissolved Metals : Dissolved Mercury in Water by CVAAS									'	
Glass vial dissolved (hydrochloric acid)										
RG_ALUSM_WS_LAEMP_EVO_2021-09-12_NP	E509	12-Sep-2021	20-Sep-2021				20-Sep-2021	28 days	8 days	✓

Page : 6 of 17
Work Order : CG2104077

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Water Evaluation: × = Holding time exceedance; ✓ = Within Holding Time

Matrix: Water					E۱	/aluation: 🗴 =	Holding time exce	edance ; 🕦	= Within	Holding Tin
Analyte Group	Method	Sampling Date	Ex	traction / Pi	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation		g Times	Eval	Analysis Date		Times	Eval
			Date	Rec	Actual			Rec	Actual	
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid) RG_MIDBO_WS_LAEMP_EVO_2021-09-11_NP	E509	11-Sep-2021	20-Sep-2021				20-Sep-2021	28 days	9 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
RG_MIDGA_WS_LAEMP_EVO_2021-09-11_NP	E509	11-Sep-2021	20-Sep-2021				20-Sep-2021	28 days	9 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid) RG_ALUSM_WS_LAEMP_EVO_2021-09-12_NP	E421	12-Sep-2021	20-Sep-2021				20-Sep-2021	180 days	8 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid) RG_MIDBO_WS_LAEMP_EVO_2021-09-11_NP	E421	11-Sep-2021	20-Sep-2021				20-Sep-2021	180 days	9 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid) RG_MIDGA_WS_LAEMP_EVO_2021-09-11_NP	E421	11-Sep-2021	20-Sep-2021				20-Sep-2021	180 days	9 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion	ı (Low Level)									
Amber glass dissolved (sulfuric acid) RG_ALUSM_WS_LAEMP_EVO_2021-09-12_NP	E358-L	12-Sep-2021	21-Sep-2021				24-Sep-2021	28 days	12 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion	ı (Low Level)									
Amber glass dissolved (sulfuric acid) RG_MIDBO_WS_LAEMP_EVO_2021-09-11_NP	E358-L	11-Sep-2021	21-Sep-2021				24-Sep-2021	28 days	13 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion	ı (Low Level)									
Amber glass dissolved (sulfuric acid) RG_MIDGA_WS_LAEMP_EVO_2021-09-11_NP	E358-L	11-Sep-2021	21-Sep-2021				24-Sep-2021	28 days	13 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by	Combustion (Low Level)						I			
Amber glass total (sulfuric acid) RG_ALUSM_WS_LAEMP_EVO_2021-09-12_NP	E355-L	12-Sep-2021	21-Sep-2021				24-Sep-2021	28 days	12 days	✓

Page : 7 of 17 Work Order : CG2104077

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: **Water**Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

viatrix: vvater							noiding time exce			
Analyte Group	Method	Sampling Date	Ex	traction / Pr	eparation		Analysis			
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combus	ion (Low Level)									
Amber glass total (sulfuric acid)										
RG_MIDBO_WS_LAEMP_EVO_2021-09-11_NP	E355-L	11-Sep-2021	21-Sep-2021				24-Sep-2021	28 days	13 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combus	ion (Low Level)									
Amber glass total (sulfuric acid)										
RG MIDGA WS LAEMP EVO 2021-09-11 NP	E355-L	11-Sep-2021	21-Sep-2021				24-Sep-2021	28 days	13 days	✓
							·	-	_	
Physical Tests : Acidity by Titration										
HDPE										
RG_MIDBO_WS_LAEMP_EVO_2021-09-11_NP	E283	11-Sep-2021					21-Sep-2021	14 days	10 days	✓
		,					·		1	
Physical Tests : Acidity by Titration										
HDPE										
RG MIDGA WS LAEMP EVO 2021-09-11 NP	E283	11-Sep-2021					21-Sep-2021	14 days	10 days	✓
1.0_MID-07_VV0_E7.E.MI	2200	11 Cop 2021					21 000 2021	i i dayo	10 dayo	•
Physical Tests : Acidity by Titration HDPE										
	E283	12-Sep-2021					21-Sep-2021	14 days	0 days	✓
RG_ALUSM_WS_LAEMP_EVO_2021-09-12_NP	E203	12-3ep-2021					21-Sep-2021	14 days	9 days	•
Physical Tests : Alkalinity Species by Titration							1			
HDPE	5000	40.0					00.0		40.1	,
RG_ALUSM_WS_LAEMP_EVO_2021-09-12_NP	E290	12-Sep-2021					22-Sep-2021	14 days	10 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE										
RG_MIDBO_WS_LAEMP_EVO_2021-09-11_NP	E290	11-Sep-2021					22-Sep-2021	14 days	11 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE										
RG_MIDGA_WS_LAEMP_EVO_2021-09-11_NP	E290	11-Sep-2021					22-Sep-2021	14 days	11 days	✓
Physical Tests : Conductivity in Water								1		
HDPE										
RG_ALUSM_WS_LAEMP_EVO_2021-09-12_NP	E100	12-Sep-2021					22-Sep-2021	28 days	10 days	✓
									•	

Page : 8 of 17 Work Order : CG2104077

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: **Water** Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

watrix: water			_			diddion. • =	Tolding time exce	Analys		Tiolding Til
Analyte Group	Method	Sampling Date	Ex	traction / Pr	eparation					
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Conductivity in Water										
HDPE										
RG_MIDBO_WS_LAEMP_EVO_2021-09-11_NP	E100	11-Sep-2021					22-Sep-2021	28 days	11 days	✓
Physical Tests : Conductivity in Water										
HDPE							1			
RG MIDGA WS LAEMP EVO 2021-09-11 NP	E100	11-Sep-2021					22-Sep-2021	28 days	11 days	1
RG_INIDGA_WS_LAEINF_EVO_2021-09-11_NF	L100	11-0ep-2021					22-3ep-2021	20 days	11 days	•
Physical Tests : ORP by Electrode										
HDPE										
RG_ALUSM_WS_LAEMP_EVO_2021-09-12_NP	E125	12-Sep-2021					21-Sep-2021	0.34	219 hrs	*
								hrs		EHTR-FM
Physical Tests : ORP by Electrode										
HDPE										
RG_MIDGA_WS_LAEMP_EVO_2021-09-11_NP	E125	11-Sep-2021					21-Sep-2021	0.34	240 hrs	3c
								hrs		EHTR-FN
Physical Tests : ORP by Electrode										
HDPE							1			
RG_MIDBO_WS_LAEMP_EVO_2021-09-11_NP	E125	11-Sep-2021					21-Sep-2021	0.24	244 hrs	×
RG_WIDBO_WS_LAEWF_EVO_2021-09-11_NP	L123	11-0ep-2021					21-3ep-2021	0.34	244 1115	EHTR-FN
								hrs		LIIIIX-IIV
Physical Tests : pH by Meter										
HDPE										
RG_ALUSM_WS_LAEMP_EVO_2021-09-12_NP	E108	12-Sep-2021					22-Sep-2021	0.25	238 hrs	*
								hrs		EHTR-FN
Physical Tests : pH by Meter										
HDPE										
RG_MIDGA_WS_LAEMP_EVO_2021-09-11_NP	E108	11-Sep-2021					22-Sep-2021	0.25	260 hrs	×
								hrs		EHTR-FM
Physical Tests : pH by Meter										
HDPE							I			
RG_MIDBO_WS_LAEMP_EVO_2021-09-11_NP	E108	11-Sep-2021					22-Sep-2021	0.25	264 hrs	×
NO_WIDDO_WO_EALWII _EVO_2021-09-11_NI	2100	11-00p-2021					22-00p-2021	hrs	2041113	EHTR-FM
								1118		□
Physical Tests : TDS by Gravimetry									I	
HDPE										
RG_ALUSM_WS_LAEMP_EVO_2021-09-12_NP	E162	12-Sep-2021					17-Sep-2021	7 days	5 days	✓

Page : 9 of 17 Work Order : CG2104077

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: **Water** Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

Analyte Group	Method	Sampling Date	Ext	traction / Pr	eparation		Analysis			
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : TDS by Gravimetry										
HDPE RG_MIDBO_WS_LAEMP_EVO_2021-09-11_NP	E162	11-Sep-2021					17-Sep-2021	7 days	6 days	✓
Physical Tests : TDS by Gravimetry							1			
HDPE RG_MIDGA_WS_LAEMP_EVO_2021-09-11_NP	E162	11-Sep-2021					17-Sep-2021	7 days	6 days	✓
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE RG_ALUSM_WS_LAEMP_EVO_2021-09-12_NP	E160-L	12-Sep-2021					16-Sep-2021	7 days	4 days	✓
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE RG_MIDBO_WS_LAEMP_EVO_2021-09-11_NP	E160-L	11-Sep-2021					16-Sep-2021	7 days	5 days	✓
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE RG_MIDGA_WS_LAEMP_EVO_2021-09-11_NP	E160-L	11-Sep-2021					16-Sep-2021	7 days	5 days	✓
Physical Tests : Turbidity by Nephelometry										
HDPE RG_ALUSM_WS_LAEMP_EVO_2021-09-12_NP	E121	12-Sep-2021					15-Sep-2021	3 days	3 days	✓
Physical Tests : Turbidity by Nephelometry										
HDPE RG_MIDBO_WS_LAEMP_EVO_2021-09-11_NP	E121	11-Sep-2021					15-Sep-2021	3 days	4 days	* EHTL
Physical Tests : Turbidity by Nephelometry										
HDPE RG_MIDGA_WS_LAEMP_EVO_2021-09-11_NP	E121	11-Sep-2021					15-Sep-2021	3 days	4 days	# EHTL
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE total (nitric acid) RG_ALUSM_WS_LAEMP_EVO_2021-09-12_NP	E420.Cr-L	12-Sep-2021					18-Sep-2021	180 days	6 days	✓

Page : 10 of 17 Work Order : CG2104077

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: **Water**Evaluation: **×** = Holding time exceedance; **√** = Within Holding Time

							Trotaing time exec			
Analyte Group	Method	Sampling Date	Ex	traction / Pr	eparation			Analysis		
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual		1	Rec	Actual	
otal Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE total (nitric acid)										
RG MIDBO WS LAEMP EVO 2021-09-11 NP	E420.Cr-L	11-Sep-2021					18-Sep-2021	180	7 days	1
		' I					'	days	1	
								days		
otal Metals : Total Chromium in Water by CRC ICPMS (Low Level) HDPE total (nitric acid)										
RG MIDGA WS LAEMP EVO 2021-09-11 NP	E420.Cr-L	11-Sep-2021					18-Sep-2021	180	7 days	1
RG_MIDGA_WS_LAEMP_EVO_2021-09-11_NP	E420.GI-L	11-3ep-2021					16-Sep-2021		7 days	•
								days		
otal Metals : Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)										
Pre-cleaned amber glass - total (lab preserved)										
RG_MIDBO_WS_LAEMP_EVO_2021-09-11_NP	E508-L	11-Sep-2021					21-Sep-2021	28 days	10 days	✓
otal Metals : Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)										
Pre-cleaned amber glass - total (lab preserved)										
RG_MIDGA_WS_LAEMP_EVO_2021-09-11_NP	E508-L	11-Sep-2021					21-Sep-2021	28 days	10 days	✓
otal Metals : Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)										
Pre-cleaned amber glass - total (lab preserved)										
RG ALUSM WS LAEMP EVO 2021-09-12 NP	E508-L	12-Sep-2021					21-Sep-2021	28 days	9 days	✓
otal Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)										
RG ALUSM WS LAEMP EVO 2021-09-12 NP	E420	12-Sep-2021					18-Sep-2021	180	6 days	✓
							,	days	1	
otal Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)							I			
RG MIDBO WS LAEMP EVO 2021-09-11 NP	E420	11-Sep-2021					18-Sep-2021	180	7 days	1
NG_MIDBO_WS_EALMF_EVO_2021-09-11_NF	L420	11-0cp-2021					10-0ер-2021		/ days	•
								days		
otal Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)										
RG_MIDGA_WS_LAEMP_EVO_2021-09-11_NP	E420	11-Sep-2021					18-Sep-2021	180	7 days	✓
								days		

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

EHTL: Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.

Rec. HT: ALS recommended hold time (see units).

Page : 11 of 17 Work Order : CG2104077

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Quality Control Sample Type			Co	ount	Frequency (%)		
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Acidity by Titration	E283	298054	1	13	7.6	5.0	1
Alkalinity Species by Titration	E290	299359	1	19	5.2	5.0	1
Ammonia by Fluorescence	E298	301690	1	20	5.0	5.0	√
Bromide in Water by IC (Low Level)	E235.Br-L	292676	1	20	5.0	5.0	1
Chloride in Water by IC (Low Level)	E235.CI-L	292677	1	20	5.0	5.0	✓
Conductivity in Water	E100	299361	1	19	5.2	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	297293	1	20	5.0	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	297273	2	40	5.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	297294	2	20	10.0	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	298734	1	17	5.8	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	292600	1	10	10.0	5.0	✓
Fluoride in Water by IC	E235.F	292674	1	20	5.0	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	292678	1	20	5.0	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	292679	1	20	5.0	5.0	✓
ORP by Electrode	E125	297941	1	15	6.6	5.0	✓
pH by Meter	E108	299360	1	19	5.2	5.0	✓
Sulfate in Water by IC	E235.SO4	292675	1	20	5.0	5.0	✓
TDS by Gravimetry	E162	294151	1	20	5.0	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	295737	1	20	5.0	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	296970	1	17	5.8	5.0	✓
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	298052	1	19	5.2	5.0	✓
Total Metals in Water by CRC ICPMS	E420	295738	1	20	5.0	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	298742	1	7	14.2	5.0	✓
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	293779	1	18	5.5	5.0	✓
Turbidity by Nephelometry	E121	292635	1	10	10.0	5.0	✓
Laboratory Control Samples (LCS)							
Acidity by Titration	E283	298054	1	13	7.6	5.0	✓
Alkalinity Species by Titration	E290	299359	1	19	5.2	5.0	✓
Ammonia by Fluorescence	E298	301690	1	20	5.0	5.0	✓
Bromide in Water by IC (Low Level)	E235.Br-L	292676	1	20	5.0	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	292677	1	20	5.0	5.0	✓
Conductivity in Water	E100	299361	1	19	5.2	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	297293	1	20	5.0	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	297273	2	40	5.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	297294	1	20	5.0	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	298734	1	17	5.8	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	292600	1	10	10.0	5.0	1

Page : 12 of 17 Work Order : CG2104077

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: **Water**Evaluation: **×** = *QC frequency outside specification*; ✓ = *QC frequency within specification*.

Quality Control Sample Type		·	Co	unt	,	Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Control Samples (LCS) - Continued							
Fluoride in Water by IC	E235.F	292674	1	20	5.0	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	292678	1	20	5.0	5.0	<u>√</u>
Nitrite in Water by IC (Low Level)	E235.NO2-L	292679	1	20	5.0	5.0	√
ORP by Electrode	E125	297941	1	15	6.6	5.0	√
pH by Meter	E108	299360	1	19	5.2	5.0	✓
Sulfate in Water by IC	E235.SO4	292675	1	20	5.0	5.0	√
TDS by Gravimetry	E162	294151	1	20	5.0	5.0	√
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	295737	1	20	5.0	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	296970	1	17	5.8	5.0	√
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	298052	1	19	5.2	5.0	✓
Total Metals in Water by CRC ICPMS	E420	295738	1	20	5.0	5.0	√
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	298742	1	7	14.2	5.0	√
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	293779	1	18	5.5	5.0	✓
TSS by Gravimetry (Low Level)	E160-L	292790	1	17	5.8	5.0	√
Turbidity by Nephelometry	E121	292635	1	10	10.0	5.0	✓
Method Blanks (MB)							
Acidity by Titration	E283	298054	1	13	7.6	5.0	✓
Alkalinity Species by Titration	E290	299359	1	19	5.2	5.0	√
Ammonia by Fluorescence	E298	301690	1	20	5.0	5.0	√
Bromide in Water by IC (Low Level)	E235.Br-L	292676	1	20	5.0	5.0	√
Chloride in Water by IC (Low Level)	E235.CI-L	292677	1	20	5.0	5.0	√
Conductivity in Water	E100	299361	1	19	5.2	5.0	√
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	297293	1	20	5.0	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	297273	2	40	5.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	297294	1	20	5.0	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	298734	1	17	5.8	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	292600	1	10	10.0	5.0	√
Fluoride in Water by IC	E235.F	292674	1	20	5.0	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	292678	1	20	5.0	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	292679	1	20	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	292675	1	20	5.0	5.0	✓
TDS by Gravimetry	E162	294151	1	20	5.0	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	295737	1	20	5.0	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	296970	1	17	5.8	5.0	✓
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	298052	1	19	5.2	5.0	✓
Total Metals in Water by CRC ICPMS	E420	295738	1	20	5.0	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	298742	1	7	14.2	5.0	✓
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	293779	1	18	5.5	5.0	✓
TSS by Gravimetry (Low Level)	E160-L	292790	1	17	5.8	5.0	✓
Turbidity by Nephelometry	E121	292635	1	10	10.0	5.0	✓

Page : 13 of 17 Work Order : CG2104077

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Water Evaluation: × = QC frequency outside specification, ✓ = QC frequency within specification.

Width. Water		Lvaladii	on Qo nega	citey outside spe	cincultori, -	QO nequency wit	imi opoomodii
Quality Control Sample Type		Co	ount	Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Matrix Spikes (MS)							
Ammonia by Fluorescence	E298	301690	1	20	5.0	5.0	✓
Bromide in Water by IC (Low Level)	E235.Br-L	292676	1	20	5.0	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	292677	1	20	5.0	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	297293	1	20	5.0	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	297273	2	40	5.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	297294	1	20	5.0	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	298734	1	17	5.8	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	292600	1	10	10.0	5.0	✓
Fluoride in Water by IC	E235.F	292674	1	20	5.0	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	292678	1	20	5.0	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	292679	1	20	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	292675	1	20	5.0	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	295737	1	20	5.0	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	296970	1	17	5.8	5.0	✓
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	298052	1	19	5.2	5.0	✓
Total Metals in Water by CRC ICPMS	E420	295738	1	20	5.0	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	298742	1	7	14.2	5.0	✓
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	293779	1	18	5.5	5.0	✓

Page : 14 of 17 Work Order : CG2104077

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water
	Calgary - Environmental			sample. Conductivity measurements are temperature-compensated to 25°C.
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally 20 ± 5°C). For high accuracy test results,
	Calgary - Environmental			pH should be measured in the field within the recommended 15 minute hold time.
Turbidity by Nephelometry	E121	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light scatter under defined conditions.
	Calgary - Environmental			
ORP by Electrode	E125 Calgary - Environmental	Water	ASTM D1498 (mod)	Oxidation redution potential is reported as the oxidation-reduction potential of the platinum metal-reference electrode employed, measured in mV. For high accuracy test
TSS by Gravimetry (Low Level)	0 7	Water	APHA 2540 D (mod)	results, it is recommended that this analysis be conducted in the field.
133 by Gravimenty (Low Level)	E160-L	vvalci	AFTIA 2540 D (IIIod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at 104 ± 1°C, with gravimetric measurement of the
	Calgary - Environmental			filtered solids. Samples containing very high dissolved solid content (i.e. seawaters,
				brackish waters) may produce a positive bias by this method. Alternate analysis
				methods are available for these types of samples.
TDS by Gravimetry	E162	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, with evaporation of the filtrate at 180 ± 2°C for 16 hours or to constant weight,
	Calgary - Environmental			with gravimetric measurement of the residue.
Bromide in Water by IC (Low Level)	E235.Br-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Calgary - Environmental			
Chloride in Water by IC (Low Level)	E235.CI-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Calgary - Environmental			
Fluoride in Water by IC	E235.F	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Calgary - Environmental			
Nitrite in Water by IC (Low Level)	E235.NO2-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Calgary - Environmental			
Nitrate in Water by IC (Low Level)	E235.NO3-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Calgary - Environmental			
Sulfate in Water by IC	E235.SO4	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Calgary - Environmental			
Acidity by Titration	E283	Water	APHA 2310 B (mod)	Acidity is determined by potentiometric titration to pH 8.3
	Calgary - Environmental			

Page : 15 of 17 Work Order : CG2104077

Client : Teck Coal Limited

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Alkalinity Species by Titration	E290 Calgary - Environmental	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.
Ammonia by Fluorescence	E298 Calgary - Environmental	Water	J. Environ. Monit., 2005, 7, 37-42 (mod)	Ammonia in water is analyzed by flow-injection analysis with fluorescence detection after reaction with orthophthaldialdehyde (OPA).
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318 Vancouver - Environmental	Water	APHA 4500-Norg D (mod)	Total Kjeldahl Nitrogen is determined using block digestion followed by flow-injection analysis with fluorescence detection.
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L Calgary - Environmental	Water	APHA 5310 B (mod)	Total Organic Carbon (Non-Purgeable), also known as NPOC (total), is a direct measurement of TOC after an acidified sample has been purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of total carbon (TC) is comprised of IC (which is common), this method is more accurate and more reliable than the TOC by subtraction method (i.e. TC minus TIC).
Dissolved Organic Carbon by Combustion (Low Level)	E358-L Calgary - Environmental	Water	APHA 5310 B (mod)	Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of DC (dissolved carbon) is comprised of IC (which is common), this method is more accurate and more reliable than the DOC by subtraction method (i.e. DC minus DIC).
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U Calgary - Environmental	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U Calgary - Environmental	Water	APHA 4500-P E (mod)	Dissolved Orthophosphate is determined colourimetrically on a water sample that has been lab or field filtered through a 0.45 micron membrane filter. Field filtration is recommended to ensure test results represent conditions at time of sampling.
Total Metals in Water by CRC ICPMS	E420 Vancouver - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L Vancouver - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS.
Dissolved Metals in Water by CRC ICPMS	E421 Vancouver - Environmental	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

Page : 16 of 17 Work Order : CG2104077

Client : Teck Coal Limited

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L Vancouver - Environmental	Water	APHA 3030 B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L Vancouver - Environmental	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAFS.
Dissolved Mercury in Water by CVAAS	E509 Vancouver - Environmental	Water	APHA 3030B/EPA 1631E (mod)	Water samples are filtered (0.45 um), preserved with HCl, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.
Dissolved Hardness (Calculated)	EC100 Vancouver - Environmental	Water	APHA 2340B	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations.
Ion Balance using Dissolved Metals	EC101 Calgary - Environmental	Water	APHA 1030E	Cation Sum, Anion Sum, and Ion Balance are calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis). Dissolved species are used where available. Minor ions are included where data is present. Ion Balance cannot be calculated accurately for waters with very low electrical conductivity (EC).
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298 Calgary - Environmental	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
Digestion for TKN in water	EP318 Vancouver - Environmental	Water	APHA 4500-Norg D (mod)	Samples are digested using block digestion with Copper Sulfate Digestion Reagent.
Preparation for Total Organic Carbon by Combustion	EP355 Calgary - Environmental	Water		Preparation for Total Organic Carbon by Combustion
Preparation for Dissolved Organic Carbon for Combustion	EP358 Calgary - Environmental	Water	APHA 5310 B (mod)	Preparation for Dissolved Organic Carbon
Digestion for Total Phosphorus in water	EP372 Calgary - Environmental	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
Dissolved Metals Water Filtration	EP421 Vancouver - Environmental	Water	АРНА 3030В	Water samples are filtered (0.45 um), and preserved with HNO3.

Page : 17 of 17 Work Order : CG2104077

Client : Teck Coal Limited

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Mercury Water Filtration	EP509	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HCl.
	Vancouver -			
	Environmental			

QUALITY CONTROL REPORT

Work Order Page CG2104077 : 1 of 18

Client : Teck Coal Limited Laboratory : Calgary - Environmental Contact **Account Manager** : Lyudmyla Shvets : Allie Ferguson

> Address :421 Pine Avenue : 2559 29th Street NE

Sparwood BC Canada V0B 2G0 Calgary, Alberta Canada T1Y 7B5 Telephone :+1 403 407 1800

Project : REGIONAL EFFECTS PROGRAM **Date Samples Received** : 14-Sep-2021 10:30

PO **Date Analysis Commenced** : 15-Sep-2021 : VPO00750546

C-O-C number :30-Sep-2021 12:56 : September EVO LAEMP 2021 Issue Date

Sampler : JI Site

Quote number : Teck Coal Master Quote No. of samples received : 3

Position

No. of samples analysed : 3 This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

: ----

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits
- Reference Material (RM) Report; Recovery and Acceptance Limits
- Method Blank (MB) Report; Recovery and Acceptance Limits
- Laboratory Control Sample (LCS) Report; Recovery and Acceptance Limits

Signatories

Signatories

Address

Telephone

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Anthony Calero	Team Leader - Inorganics	Inorganics, Calgary, Alberta	
Caleb Deroche	Lab Analyst	Metals, Burnaby, British Columbia	
Dion Chan	Lab Assistant	Metals, Burnaby, British Columbia	
Erin Sanchez		Inorganics, Calgary, Alberta	
Hannah Phung	Lab Assistant	Inorganics, Calgary, Alberta	
Harpreet Chawla	Team Leader - Inorganics	Inorganics, Calgary, Alberta	
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia	
Kim Jensen	Department Manager - Metals	Metals, Burnaby, British Columbia	
Maria Tuguinay	Lab Assistant	Inorganics, Calgary, Alberta	
Monica Ko	Lab Assistant	Metals, Burnaby, British Columbia	
Owen Cheng		Metals, Burnaby, British Columbia	
Parker Sgarbossa	Laboratory Analyst	Inorganics, Calgary, Alberta	
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta	
Tracy Harley	Supervisor - Water Quality Instrumentation	Inorganics, Burnaby, British Columbia	
Vladka Stamenova	Analyst	Inorganics, Calgary, Alberta	

Laboratory Department

 Page
 : 2 of 18

 Work Order
 : CG2104077

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percentage Difference

= Indicates a QC result that did not meet the ALS DQO.

 Page
 : 3 of 18

 Work Order
 : CG2104077

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test specific).

Sub-Matrix: Water					Laboratory Duplicate (DUP) Report							
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie	
hysical Tests (QC	Lot: 292635)											
CG2104076-001	Anonymous	turbidity		E121	0.10	NTU	<0.10	<0.10	0	Diff <2x LOR		
Physical Tests (QC	Lot: 294151)											
CG2104062-008	Anonymous	solids, total dissolved [TDS]		E162	10	mg/L	<10	<10	0	Diff <2x LOR		
Physical Tests (QC	Lot: 297941)											
CG2104065-002	Anonymous	oxidation-reduction potential [ORP]		E125	0.10	mV	451	442	1.88%	15%		
Physical Tests (QC	Lot: 298054)							1				
CG2104076-003	Anonymous	acidity (as CaCO3)		E283	2.0	mg/L	<2.0	<2.0	0	Diff <2x LOR		
Physical Tests (QC	Lot: 299359)											
CG2104069-018	Anonymous	alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	223	237	5.83%	20%		
		alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	10.4	8.6	1.8	Diff <2x LOR		
		alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR		
		alkalinity, total (as CaCO3)		E290	1.0	mg/L	234	245	4.84%	20%		
Physical Tests (QC	Lot: 299360)											
CG2104069-018	Anonymous	рН		E108	0.10	pH units	8.38	8.37	0.119%	4%		
Physical Tests (QC	Lot: 299361)											
CG2104069-018	Anonymous	conductivity		E100	1.0	μS/cm	2640	2600	1.53%	10%		
Anions and Nutrien	ts (QC Lot: 292600)											
CG2104077-001	RG_MIDBO_WS_LAEMP_ EVO_2021-09-11_NP	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR		
Anions and Nutrien	ts (QC Lot: 292674)											
CG2104067-001	Anonymous	fluoride	16984-48-8	E235.F	0.020	mg/L	0.173	0.170	0.004	Diff <2x LOR		
Anions and Nutrien	ts (QC Lot: 292675)											
CG2104067-001	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	335	335	0.0609%	20%		
Anions and Nutrien	ts (QC Lot: 292676)											
CG2104067-001	Anonymous	bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR		
Anions and Nutrien	ts (QC Lot: 292677)											
CG2104067-001	Anonymous	chloride	16887-00-6	E235.CI-L	0.10	mg/L	1.63	1.60	1.75%	20%		
Anions and Nutrien	ts (QC Lot: 292678)											
CG2104067-001	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	20.9	20.9	0.198%	20%		
Anions and Nutrien	ts (QC Lot: 292679)											
CG2104067-001	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	0.0092	0.0104	0.0012	Diff <2x LOR		
100.00	ts (QC Lot: 293779)											

Page : 4 of 18
Work Order : CG2104077
Client : Teck Coal Limited

Sub-Matrix: Water	/latrix: Water						Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier			
Anions and Nutrier	nts (QC Lot: 293779) - c	ontinued												
CG2104076-001	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	<0.0020	<0.0020	0	Diff <2x LOR				
Anions and Nutrier	nts (QC Lot: 296970)													
CG2104048-009	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	0.292	0.270	0.022	Diff <2x LOR				
Anions and Nutrier	nts (QC Lot: 301690)													
CG2104066-001	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0096	0.0097	0.0001	Diff <2x LOR				
Organic / Inorganic	Carbon (QC Lot: 29873	34)												
CG2104064-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	1.45	1.72	0.27	Diff <2x LOR				
Organic / Inorganic	: Carbon (QC Lot: 29874	(2)												
CG2104077-001	RG_MIDBO_WS_LAEMP_ EVO_2021-09-11_NP	carbon, total organic [TOC]		E355-L	0.50	mg/L	1.63	1.53	0.10	Diff <2x LOR				
Total Metals (QC L	ot: 295737)													
CG2104064-001	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR				
Total Metals (QC L	ot: 295738)													
CG2104064-001	Anonymous	aluminum, total	7429-90-5	E420	0.0060	mg/L	<0.0060	<0.0060	0	Diff <2x LOR				
		antimony, total	7440-36-0	E420	0.00020	mg/L	0.00208	0.00212	1.81%	20%				
		arsenic, total	7440-38-2	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR				
		barium, total	7440-39-3	E420	0.00020	mg/L	0.0169	0.0176	4.09%	20%				
		beryllium, total	7440-41-7	E420	0.040	mg/L	<0.040 µg/L	<0.000040	0	Diff <2x LOR				
		bismuth, total	7440-69-9	E420	0.000100	mg/L	<0.000100	<0.000100	0	Diff <2x LOR				
		boron, total	7440-42-8	E420	0.020	mg/L	0.102	0.104	0.002	Diff <2x LOR				
		cadmium, total	7440-43-9	E420	0.0100	mg/L	2.77 μg/L	0.00288	3.69%	20%				
		calcium, total	7440-70-2	E420	0.100	mg/L	589	606	2.89%	20%				
		cobalt, total	7440-48-4	E420	0.20	mg/L	88.4 µg/L	0.0889	0.519%	20%				
		copper, total	7440-50-8	E420	0.00100	mg/L	<0.00100	<0.00100	0	Diff <2x LOR				
		iron, total	7439-89-6	E420	0.020	mg/L	0.221	0.226	2.14%	20%				
		lead, total	7439-92-1	E420	0.000100	mg/L	<0.000100	<0.000100	0	Diff <2x LOR				
		lithium, total	7439-93-2	E420	0.0020	mg/L	0.941	0.933	0.806%	20%				
		magnesium, total	7439-95-4	E420	0.0100	mg/L	263	267	1.41%	20%				
		manganese, total	7439-96-5	E420	0.00020	mg/L	0.719	0.735	2.15%	20%				
		molybdenum, total	7439-98-7	E420	0.000100	mg/L	0.00425	0.00442	3.73%	20%				
		nickel, total	7440-02-0	E420	0.00100	mg/L	0.456	0.466	2.26%	20%				
		potassium, total	7440-09-7	E420	0.100	mg/L	17.4	17.0	2.03%	20%				
		selenium, total	7782-49-2	E420	0.100	mg/L	89.1 µg/L	0.0908	1.93%	20%				
		silicon, total	7440-21-3	E420	0.20	mg/L	2.84	2.93	3.30%	20%				
		silver, total	7440-22-4	E420	0.000020	mg/L	<0.000020	<0.000020	0	Diff <2x LOR				
		sodium, total	17341-25-2	E420	0.100	mg/L	16.3	16.4	0.592%	20%				

Page : 5 of 18
Work Order : CG2104077
Client : Teck Coal Limited

Sub-Matrix: Water					Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier	
Total Metals (QC Lo	ot: 295738) - continued											
CG2104064-001	Anonymous	strontium, total	7440-24-6	E420	0.00040	mg/L	1.03	1.04	0.806%	20%		
		sulfur, total	7704-34-9	E420	1.00	mg/L	409	420	2.82%	20%		
		thallium, total	7440-28-0	E420	0.000020	mg/L	0.000372	0.000371	0.188%	20%		
		tin, total	7440-31-5	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR		
		titanium, total	7440-32-6	E420	0.00060	mg/L	<0.00060	<0.00060	0	Diff <2x LOR		
		uranium, total	7440-61-1	E420	0.000020	mg/L	0.0411	0.0430	4.46%	20%		
		vanadium, total	7440-62-2	E420	0.00100	mg/L	<0.00100	<0.00100	0	Diff <2x LOR		
		zinc, total	7440-66-6	E420	0.0060	mg/L	0.185	0.189	2.08%	20%		
Total Metals (QC Lo	ot: 298052)											
CG2104048-008	Anonymous	mercury, total	7439-97-6	E508-L	0.00050	ng/L	<0.00050 µg/L	<0.50	0	Diff <2x LOR		
Dissolved Metals (C	QC Lot: 297273)											
CG2104048-008	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR		
Dissolved Metals (C	QC Lot: 297274)											
CG2104077-002	RG_MIDGA_WS_LAEMP_ EVO_2021-09-11_NP	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR		
Dissolved Metals (C	QC Lot: 297293)											
CG2104064-001	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR		
Dissolved Metals (C	QC Lot: 297294)											
CG2104064-001	Anonymous	aluminum, dissolved	7429-90-5	E421	0.0020	mg/L	<0.0020	<0.0020	0	Diff <2x LOR		
CG2104064-001	Anonymous	antimony, dissolved	7440-36-0	E421	0.00020	mg/L	0.00205	0.00211	3.18%	20%		
		arsenic, dissolved	7440-38-2	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR		
		barium, dissolved	7440-39-3	E421	0.00020	mg/L	0.0166	0.0169	1.53%	20%		
		beryllium, dissolved	7440-41-7	E421	0.040	mg/L	<0.040 µg/L	<0.000040	0	Diff <2x LOR		
		bismuth, dissolved	7440-69-9	E421	0.000100	mg/L	<0.000100	<0.000100	0	Diff <2x LOR		
		boron, dissolved	7440-42-8	E421	0.020	mg/L	0.096	0.097	0.001	Diff <2x LOR		
		cadmium, dissolved	7440-43-9	E421	0.0100	mg/L	2.69 µg/L	0.00273	1.47%	20%		
		calcium, dissolved	7440-70-2	E421	0.100	mg/L	580	598	3.06%	20%		
		cobalt, dissolved	7440-48-4	E421	0.20	mg/L	83.8 µg/L	0.0838	0.0551%	20%		
		copper, dissolved	7440-50-8	E421	0.00040	mg/L	<0.00040	<0.00040	0	Diff <2x LOR		
		iron, dissolved	7439-89-6	E421	0.020	mg/L	0.216	0.213	1.21%	20%		
		lead, dissolved	7439-92-1	E421	0.000100	mg/L	<0.000100	<0.000100	0	Diff <2x LOR		
		lithium, dissolved	7439-93-2	E421	0.0020	mg/L	0.868	0.884	1.88%	20%		
		magnesium, dissolved	7439-95-4	E421	0.0100	mg/L	273	271	0.672%	20%		
		manganese, dissolved	7439-96-5	E421	0.00020	mg/L	0.710	0.705	0.742%	20%		
		molybdenum, dissolved	7439-98-7	E421	0.000100	mg/L	0.00425	0.00425	0.0486%	20%		
		nickel, dissolved	7440-02-0	E421	0.00100	mg/L	0.432	0.432	0.225%	20%		
		illokoi, dissolved	7 440-02-0	L-72 1	0.00100	mg/L	0.702	0.702	0.22070	2070		

Page : 6 of 18
Work Order : CG2104077
Client : Teck Coal Limited

Sub-Matrix: Water				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Dissolved Metals (QC Lot: 297294) - cor	ntinued									
CG2104064-001	Anonymous	potassium, dissolved	7440-09-7	E421	0.100	mg/L	16.8	16.5	1.91%	20%	
		selenium, dissolved	7782-49-2	E421	0.100	mg/L	92.3 μg/L	0.0899	2.63%	20%	
		silicon, dissolved	7440-21-3	E421	0.100	mg/L	2.86	2.77	3.19%	20%	
		silver, dissolved	7440-22-4	E421	0.000020	mg/L	<0.000020	<0.000020	0	Diff <2x LOR	
		sodium, dissolved	17341-25-2	E421	0.100	mg/L	16.7	16.7	0.151%	20%	
		strontium, dissolved	7440-24-6	E421	0.00040	mg/L	1.02	1.05	2.90%	20%	
		sulfur, dissolved	7704-34-9	E421	1.00	mg/L	445	430	3.51%	20%	
		thallium, dissolved	7440-28-0	E421	0.000020	mg/L	0.000377	0.000372	1.23%	20%	
		tin, dissolved	7440-31-5	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		titanium, dissolved	7440-32-6	E421	0.00060	mg/L	<0.00060	<0.00060	0	Diff <2x LOR	
		uranium, dissolved	7440-61-1	E421	0.000020	mg/L	0.0378	0.0378	0.0967%	20%	
		vanadium, dissolved	7440-62-2	E421	0.00100	mg/L	<0.00100	<0.00100	0	Diff <2x LOR	
		zinc, dissolved	7440-66-6	E421	0.0020	mg/L	0.182	0.178	1.88%	20%	
						-					(

 Page
 : 7 of 18

 Work Order
 : CG2104077

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 292635)					
turbidity	E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 292790)					
solids, total suspended [TSS]	E160-L	1	mg/L	<1.0	
Physical Tests (QCLot: 294151)					
solids, total dissolved [TDS]	E162	10	mg/L	<10	
Physical Tests (QCLot: 298054)					
acidity (as CaCO3)	E283	2	mg/L	<2.0	
Physical Tests (QCLot: 299359)					
alkalinity, bicarbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, carbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, hydroxide (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
Physical Tests (QCLot: 299361)					
conductivity	E100	1	μS/cm	<1.0	
Anions and Nutrients (QCLot: 292600)					
phosphate, ortho-, dissolved (as P)	14265-44-2 E378-U	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 292674)					
fluoride	16984-48-8 E235.F	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 292675)					
sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 292676)					
promide	24959-67-9 E235.Br-L	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 292677)					
chloride	16887-00-6 E235.CI-L	0.1	mg/L	<0.10	
Anions and Nutrients (QCLot: 292678)					
nitrate (as N)	14797-55-8 E235.NO3-L	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 292679)					
nitrite (as N)	14797-65-0 E235.NO2-L	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 293779)					
phosphorus, total	7723-14-0 E372-U	0.002	mg/L	<0.0020	
Anions and Nutrients (QCLot: 296970)					
Kjeldahl nitrogen, total [TKN]	E318	0.05	mg/L	<0.050	

 Page
 : 8 of 18

 Work Order
 : CG2104077

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Anions and Nutrients (QCLot: 301690						
ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	<0.0050	
Organic / Inorganic Carbon (QCLot: 2	98734)					
carbon, dissolved organic [DOC]		E358-L	0.5	mg/L	<0.50	
Organic / Inorganic Carbon (QCLot: 2	•					
carbon, total organic [TOC]		E355-L	0.5	mg/L	<0.50	
Total Metals (QCLot: 295737)						
chromium, total	7440-47-3	E420.Cr-L	0.0001	mg/L	<0.00010	
Total Metals (QCLot: 295738)						
aluminum, total	7429-90-5		0.003	mg/L	<0.0030	
antimony, total	7440-36-0		0.0001	mg/L	<0.00010	
arsenic, total	7440-38-2		0.0001	mg/L	<0.00010	
barium, total	7440-39-3		0.0001	mg/L	<0.00010	
peryllium, total	7440-41-7		0.00002	mg/L	<0.000020	
oismuth, total	7440-69-9		0.00005	mg/L	<0.000050	
poron, total	7440-42-8	E420	0.01	mg/L	<0.010	
cadmium, total	7440-43-9	E420	0.000005	mg/L	<0.000050	
calcium, total	7440-70-2	E420	0.05	mg/L	<0.050	
cobalt, total	7440-48-4	E420	0.0001	mg/L	<0.00010	
copper, total	7440-50-8	E420	0.0005	mg/L	<0.00050	
ron, total	7439-89-6	E420	0.01	mg/L	<0.010	
ead, total	7439-92-1	E420	0.00005	mg/L	<0.000050	
ithium, total	7439-93-2	E420	0.001	mg/L	<0.0010	
nagnesium, total	7439-95-4	E420	0.005	mg/L	<0.0050	
manganese, total	7439-96-5	E420	0.0001	mg/L	<0.00010	
nolybdenum, total	7439-98-7	E420	0.00005	mg/L	<0.000050	
nickel, total	7440-02-0	E420	0.0005	mg/L	<0.00050	
ootassium, total	7440-09-7	E420	0.05	mg/L	<0.050	
selenium, total	7782-49-2	E420	0.00005	mg/L	<0.000050	
silicon, total	7440-21-3	E420	0.1	mg/L	<0.10	
silver, total	7440-22-4	E420	0.00001	mg/L	<0.000010	
sodium, total	17341-25-2	E420	0.05	mg/L	<0.050	
strontium, total	7440-24-6	E420	0.0002	mg/L	<0.00020	
sulfur, total	7704-34-9	E420	0.5	mg/L	<0.50	
hallium, total	7440-28-0	E420	0.00001	mg/L	<0.000010	
tin, total	7440-31-5	E420	0.0001	mg/L	<0.00010	
titanium, total	7440-32-6	E420	0.0003	mg/L	<0.00030	

 Page
 : 9 of 18

 Work Order
 : CG2104077

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 295738) - cont	tinued				
uranium, total	7440-61-1 E420	0.00001	mg/L	<0.000010	
vanadium, total	7440-62-2 E420	0.0005	mg/L	<0.00050	
zinc, total	7440-66-6 E420	0.003	mg/L	<0.0030	
Total Metals (QCLot: 298052)					
mercury, total	7439-97-6 E508-L	0.5	ng/L	<0.50	
Dissolved Metals (QCLot: 297273)					
mercury, dissolved	7439-97-6 E509	0.000005	mg/L	<0.0000050	
Dissolved Metals (QCLot: 297274)					
mercury, dissolved	7439-97-6 E509	0.000005	mg/L	<0.0000050	
Dissolved Metals (QCLot: 297293)					
chromium, dissolved	7440-47-3 E421.Cr-L	0.0001	mg/L	<0.00010	
Dissolved Metals (QCLot: 297294)					
aluminum, dissolved	7429-90-5 E421	0.001	mg/L	<0.0010	
antimony, dissolved	7440-36-0 E421	0.0001	mg/L	<0.00010	
arsenic, dissolved	7440-38-2 E421	0.0001	mg/L	<0.00010	
barium, dissolved	7440-39-3 E421	0.0001	mg/L	<0.00010	
beryllium, dissolved	7440-41-7 E421	0.00002	mg/L	<0.000020	
bismuth, dissolved	7440-69-9 E421	0.00005	mg/L	<0.000050	
boron, dissolved	7440-42-8 E421	0.01	mg/L	<0.010	
cadmium, dissolved	7440-43-9 E421	0.000005	mg/L	<0.000050	
calcium, dissolved	7440-70-2 E421	0.05	mg/L	<0.050	
cobalt, dissolved	7440-48-4 E421	0.0001	mg/L	<0.00010	
copper, dissolved	7440-50-8 E421	0.0002	mg/L	<0.00020	
iron, dissolved	7439-89-6 E421	0.01	mg/L	<0.010	
lead, dissolved	7439-92-1 E421	0.00005	mg/L	<0.000050	
lithium, dissolved	7439-93-2 E421	0.001	mg/L	<0.0010	
magnesium, dissolved	7439-95-4 E421	0.005	mg/L	<0.0050	
manganese, dissolved	7439-96-5 E421	0.0001	mg/L	<0.00010	
molybdenum, dissolved	7439-98-7 E421	0.00005	mg/L	<0.000050	
nickel, dissolved	7440-02-0 E421	0.0005	mg/L	<0.00050	
potassium, dissolved	7440-09-7 E421	0.05	mg/L	<0.050	
selenium, dissolved	7782-49-2 E421	0.00005	mg/L	<0.000050	
silicon, dissolved	7440-21-3 E421	0.05	mg/L	<0.050	
silver, dissolved	7440-22-4 E421	0.00001	mg/L	<0.000010	
sodium, dissolved	17341-25-2 E421	0.05	mg/L	<0.050	
strontium, dissolved	7440-24-6 E421	0.0002	mg/L	<0.00020	

 Page
 : 10 of 18

 Work Order
 : CG2104077

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

ALS

Analyte	CAS Number Method	L	LOR	Unit	Result	Qualifier
Dissolved Metals (QCLot: 297294) - c	ontinued					
sulfur, dissolved	7704-34-9 E421		0.5	mg/L	<0.50	
thallium, dissolved	7440-28-0 E421	0.0	00001	mg/L	<0.000010	
tin, dissolved	7440-31-5 E421	0.	.0001	mg/L	<0.00010	
titanium, dissolved	7440-32-6 E421	0.	.0003	mg/L	<0.00030	
uranium, dissolved	7440-61-1 E421	0.0	00001	mg/L	<0.000010	
vanadium, dissolved	7440-62-2 E421	0.	.0005	mg/L	<0.00050	
zinc, dissolved	7440-66-6 E421	0	0.001	mg/L	<0.0010	

Page : 11 of 18

Work Order : CG2104077

Client : Took Coal I in

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Marked 1971 1972	Sub-Matrix: Water					Laboratory Control Sample (LCS) Report							
Physical Tests (OCLot: 292635)						Spike	Recovery (%)	Recovery	Limits (%)				
Marked 1971 1972	Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier			
Physical Tests (OCLot: 292790) soles, load sespended [TSS]	Physical Tests (QCLot: 292635)												
Physical Tests (OCLot: 294518) E102 10 mg/L 150 mg/L 100	turbidity		E121	0.1	NTU	200 NTU	99.4	85.0	115				
Physical Tests (OCLot: 294151) solids, foun diseasewed (TDS)	Physical Tests (QCLot: 292790)												
Seales, Includes Sealer [TISS] File Fi	solids, total suspended [TSS]		E160-L	1	mg/L	150 mg/L	100	85.0	115				
Physical Tests (OCLot: 297841)	Physical Tests (QCLot: 294151)												
Physical Tests (QCLot: 299369) Physical Tests (QCLot: 299369) Physical Tests (QCLot: 299369) Academic Market Mar	solids, total dissolved [TDS]		E162	10	mg/L	1000 mg/L	100	85.0	115				
Physical Tests (OCLot: 298054) acidity (ac ICCO3) — E283 2 mg/L 50 mg/L 106 85.0 115 — Physical Tests (OCLot: 299359) acidity (ac ICCO3) — E280 1 mg/L 500 mg/L 101 85.0 115 — Physical Tests (OCLot: 299360) pH — E108 — pH units 7 pH units 100 96.6 101 — Physical Tests (OCLot: 299361) Condicativity four field of the physical Tests (OCLot: 299360) pH — E108 — PH units 7 pH units 100 96.6 101 — Physical Tests (OCLot: 299361) Condicativity — E100 1 pB/cm 148.9 pB/cm 99.3 90.0 110 — Anions and Nutrients (OCLot: 292600) Phosphate, orthor, dissolved (as P) 14265442 E378-U 0.001 mg/L 0.02 mg/L 97.1 80.0 120 — Anions and Nutrients (OCLot: 292674) Rucoride 18984-8-8 E235.F 0.02 mg/L 1 mg/L 101 90.0 110 — Anions and Nutrients (OCLot: 292675) Eurolace (as SO4) 1408-79-8 E235.SO4 0.3 mg/L 100 mg/L 103 90.0 110 — Anions and Nutrients (OCLot: 292676) Exemplate (as SO4) 1408-79-8 E235.SP-L 0.05 mg/L 0.5 mg/L 99.2 85.0 115 — Anions and Nutrients (OCLot: 292677) Chichicle 16887-QO-8 E235.CHL 0.1 mg/L 100 mg/L 104 90.0 110 — Anions and Nutrients (OCLot: 292678) Chichicle 16887-QO-8 E235.NO3-L 0.005 mg/L 2.5 mg/L 104 90.0 110 — Anions and Nutrients (OCLot: 292679) Chichicle 1797-85-8 E235.NO3-L 0.005 mg/L 2.5 mg/L 104 90.0 110 — Anions and Nutrients (OCLot: 292679) Chichicle 1797-85-8 E235.NO3-L 0.005 mg/L 0.5 mg/L 0.5 mg/L 104 90.0 110 — Anions and Nutrients (OCLot: 292679) Chichicle 1772-14-0 E372-U 0.005 mg/L 0.5 mg/L 0.5 mg/L 104 90.0 110 — Anions and Nutrients (OCLot: 292679) Chichicle 1772-14-0 E35.NO3-L 0.005 mg/L 0.5 mg/L 0.5 mg/L 104 90.0 110 — Anions and Nutrients (OCLot: 292679) Chichicle 1772-14-0 E35.NO3-L 0.005 mg/L 0.5 mg/L 0.5 mg/L 104 90.0 110 — Anions and Nutrients (OCLot: 292679) Chichicle 1772-14-0 E35.NO3-L 0.005 mg/L 0.5 mg/	Physical Tests (QCLot: 297941)												
Property	oxidation-reduction potential [ORP]		E125		mV	220 mV	100	95.4	104				
Physical Tosts (QCLot: 29359)	Physical Tests (QCLot: 298054)												
Alcalimity, total (as CaCO3) E290 1 mg/L S00 mg/L 101 85.0 115 Membrase	acidity (as CaCO3)		E283	2	mg/L	50 mg/L	106	85.0	115				
Physical Tests (QCLot: 299360) pH	Physical Tests (QCLot: 299359)												
Physical Tests (QCLot: 29361) Conductivity	alkalinity, total (as CaCO3)		E290	1	mg/L	500 mg/L	101	85.0	115				
Physical Tests (QCLot: 299361) conductivity — E100 1 µS/cm 146.9 µS/cm 99.3 90.0 110 — Anions and Nutrients (QCLot: 292600) phosphate, orthor, dissolved (as P) 14265-44-2 E378-U 0.001 mg/L 0.02 mg/L 97.1 80.0 120 — Anions and Nutrients (QCLot: 292674) (fluoride 16984-48-8 E295.F 0.02 mg/L 1 mg/L 101 90.0 110 — Anions and Nutrients (QCLot: 292675) susfate (as SO4) 14808-79-8 E295.SO4 0.3 mg/L 100 mg/L 99.2 85.0 115 — Anions and Nutrients (QCLot: 292676) bromide 24959-67-9 E295.Br-L 0.05 mg/L 0.5 mg/L 99.2 85.0 115 — Anions and Nutrients (QCLot: 292677) chloride 16887-06 E295.Cl-L 0.1 mg/L 100 mg/L 104 90.0 110 — Anions and Nutrients (QCLot: 292677) chloride 16887-07-8 E295.NO3-L 0.005 mg/L 2.5 mg/L 104 90.0 110 — Anions and Nutrients (QCLot: 292678) mitrale (as N) 14797-55-8 E295.NO3-L 0.005 mg/L 0.5 mg/L 104 90.0 110 — Anions and Nutrients (QCLot: 292679) mitrale (as N) 14797-55-8 E295.NO3-L 0.001 mg/L 0.5 mg/L 104 90.0 110 — Anions and Nutrients (QCLot: 292679) mitrale (as N) 14797-55-8 E295.NO3-L 0.001 mg/L 0.5 mg/L 104 90.0 110 — Anions and Nutrients (QCLot: 292679) mitrale (as N) 14797-65-9 E295.NO3-L 0.001 mg/L 0.5 mg/L 104 90.0 110 — Anions and Nutrients (QCLot: 292679) mitrale (as N) 14797-65-9 E295.NO3-L 0.001 mg/L 0.5 mg/L 104 90.0 110 — Anions and Nutrients (QCLot: 292679) mitrale (as N) 14797-65-9 E295.NO3-L 0.001 mg/L 0.5 mg/L 104 90.0 110 — Anions and Nutrients (QCLot: 292679) mitrale (as N) 14797-65-9 E295.NO3-L 0.001 mg/L 0.5 mg/L 104 90.0 110 — Anions and Nutrients (QCLot: 292679)	Physical Tests (QCLot: 299360)												
Conductivity Cond	рН		E108		pH units	7 pH units	100	98.6	101				
Anions and Nutrients (QCLot: 292670) phosphate, ortho-, dissolved (as P) 14265-44-2 E378-U 0.001 mg/L 0.02 mg/L 97.1 80.0 120 Anions and Nutrients (QCLot: 292674) fluoride 1698-48-8 E235.F 0.02 mg/L 1 mg/L 101 90.0 110 Anions and Nutrients (QCLot: 292675) sulfate (as SC4) 14808-79-8 E235.SC4 0.3 mg/L 100 mg/L 103 90.0 110 Anions and Nutrients (QCLot: 292676) bromide 24959-67-9 E235.Br-L 0.05 mg/L 0.5 mg/L 99.2 85.0 115 Anions and Nutrients (QCLot: 292677) chloride 16887-00-8 E235.Cl-L 0.1 mg/L 100 mg/L 104 90.0 110 Anions and Nutrients (QCLot: 292678) mitrie (as N) 14797-55-8 E235.NO3-L 0.001 mg/L 0.5 mg/L 104 90.0 110 Anions and Nutrients (QCLot: 292679) mitrie (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 104 90.0 110 Anions and Nutrients (QCLot: 292679) mitrie (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 104 90.0 110 Anions and Nutrients (QCLot: 292679) mitrie (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 104 90.0 110 Anions and Nutrients (QCLot: 292679) mitrie (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 0.5 mg/L 104 90.0 110 Anions and Nutrients (QCLot: 293779) phosphorus, total 7723-14-0 E372-U 0.002 mg/L 8.32 mg/L 97.6 80.0 120	Physical Tests (QCLot: 299361)												
Phosphate, ortho-, dissolved (as P) 14265-44-2 E378-U 0.001 mg/L 0.02 mg/L 97.1 80.0 120	conductivity		E100	1	μS/cm	146.9 μS/cm	99.3	90.0	110				
Phosphate, ortho-, dissolved (as P) 14265-44-2 E378-U 0.001 mg/L 0.02 mg/L 97.1 80.0 120													
Anions and Nutrients (QCLot: 292674) fluoride 16984-48-8 E235.F 0.02 mg/L 1 mg/L 101 90.0 110 Anions and Nutrients (QCLot: 292675) sulfate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L 100 mg/L 103 90.0 110 Anions and Nutrients (QCLot: 292676) bromide 24959-67-9 E235.Br-L 0.05 mg/L 0.5 mg/L 99.2 85.0 115 Anions and Nutrients (QCLot: 292677) chloride 16887-00-6 E235.Cl-L 0.1 mg/L 100 mg/L 104 90.0 110 Anions and Nutrients (QCLot: 292678) nitrate (as N) 14797-55-8 E235.NO3-L 0.005 mg/L 2.5 mg/L 104 90.0 110 Anions and Nutrients (QCLot: 292679) mitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 104 90.0 110 Anions and Nutrients (QCLot: 292679) mitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 104 90.0 110 Anions and Nutrients (QCLot: 292679) mitrite (as N) 14797-85-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 104 90.0 110 Anions and Nutrients (QCLot: 293779) phosphorus, total 7723-14-0 E372-U 0.002 mg/L 8.32 mg/L 97.6 80.0 120	Anions and Nutrients (QCLot: 292600)												
## State Sta	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.001	mg/L	0.02 mg/L	97.1	80.0	120				
Anions and Nutrients (QCLot: 292675) sulfate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L 100 mg/L 103 90.0 110 Anions and Nutrients (QCLot: 292676) bromide 24959-67-9 E235.Br-L 0.05 mg/L 0.5 mg/L 99.2 85.0 115 Anions and Nutrients (QCLot: 292677) chloride 16887-00-6 E235.Cl-L 0.1 mg/L 100 mg/L 104 90.0 110 Anions and Nutrients (QCLot: 292678) nitrate (as N) 14797-55-8 E235.NO3-L 0.005 mg/L 2.5 mg/L 104 90.0 110 Anions and Nutrients (QCLot: 292679) nitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 104 90.0 110 Anions and Nutrients (QCLot: 292679) nitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 90.5 mg/L 90.0 110 Anions and Nutrients (QCLot: 292679) nitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 97.6 80.0 120	Anions and Nutrients (QCLot: 292674)												
Sulfate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L 100 mg/L 103 90.0 110 Anions and Nutrients (QCLot: 292676) E235.Br-L 0.05 mg/L 0.5 mg/L 99.2 85.0 115 Anions and Nutrients (QCLot: 292677) Coloride E35.CI-L 0.1 mg/L 100 mg/L 104 90.0 110 Anions and Nutrients (QCLot: 292678) mitrate (as N) 14797-55-8 E235.NO3-L 0.005 mg/L 2.5 mg/L 104 90.0 110 Anions and Nutrients (QCLot: 292679) mitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 104 90.0 110 Anions and Nutrients (QCLot: 292679) mitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 104 90.0 110 Anions and Nutrients (QCLot: 293779) phosphorus, total 7723-14-0 E372-U 0.002 mg/L 8.32 mg/L 97.6 80.0 120	fluoride	16984-48-8	E235.F	0.02	mg/L	1 mg/L	101	90.0	110				
Anions and Nutrients (QCLot: 292676) bromide 24959-67-9 E235.Br-L 0.05 mg/L 0.5 mg/L 99.2 85.0 115 Anions and Nutrients (QCLot: 292677) chloride 16887-00-6 E235.Cl-L 0.1 mg/L 100 mg/L 104 90.0 110 Anions and Nutrients (QCLot: 292678) nitrate (as N) 14797-55-8 E235.NO3-L 0.005 mg/L 2.5 mg/L 104 90.0 110 Anions and Nutrients (QCLot: 292679) nitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 104 90.0 110 Anions and Nutrients (QCLot: 292679) nitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 104 90.0 110 Anions and Nutrients (QCLot: 293779) phosphorus, total 7723-14-0 E372-U 0.002 mg/L 8.32 mg/L 97.6 80.0 120	Anions and Nutrients (QCLot: 292675)												
bromide 24959-67-9 E235.Br-L 0.05 mg/L 0.5 mg/L 99.2 85.0 115 Anions and Nutrients (QCLot: 292677) chloride 16887-00-6 E235.Cl-L 0.1 mg/L 100 mg/L 104 90.0 110 Anions and Nutrients (QCLot: 292678) nitrate (as N) 14797-55-8 E235.NO3-L 0.005 mg/L 2.5 mg/L 104 90.0 110 Anions and Nutrients (QCLot: 292679) nitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 104 90.0 110 Anions and Nutrients (QCLot: 292679) nitrite (as N) 14797-65-0 E35.NO2-L 0.001 mg/L 0.5 mg/L 104 90.0 110 Anions and Nutrients (QCLot: 293779) phosphorus, total 7723-14-0 E372-U 0.002 mg/L 8.32 mg/L 97.6 80.0 120	sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	100 mg/L	103	90.0	110				
Anions and Nutrients (QCLot: 292677) chloride 16887-00-6 E235.Cl-L 0.1 mg/L 100 mg/L 104 90.0 110 Anions and Nutrients (QCLot: 292678) nitrate (as N) 14797-55-8 E235.NO3-L 0.005 mg/L 2.5 mg/L 104 90.0 110 Anions and Nutrients (QCLot: 292679) nitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 104 90.0 110 Anions and Nutrients (QCLot: 293779) phosphorus, total 7723-14-0 E372-U 0.002 mg/L 8.32 mg/L 97.6 80.0 120	Anions and Nutrients (QCLot: 292676)												
chloride 16887-00-6 E235.Cl-L 0.1 mg/L 100 mg/L 104 90.0 110 Anions and Nutrients (QCLot: 292678) nitrate (as N) 14797-55-8 E235.NO3-L 0.005 mg/L 2.5 mg/L 104 90.0 110 Anions and Nutrients (QCLot: 292679) nitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 104 90.0 110 Anions and Nutrients (QCLot: 293779) phosphorus, total 7723-14-0 E372-U 0.002 mg/L 8.32 mg/L 97.6 80.0 120	bromide	24959-67-9	E235.Br-L	0.05	mg/L	0.5 mg/L	99.2	85.0	115				
Anions and Nutrients (QCLot: 292678) nitrate (as N) 14797-55-8 E235.NO3-L 0.005 mg/L 2.5 mg/L 104 90.0 110 Anions and Nutrients (QCLot: 292679) nitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 104 90.0 110 Anions and Nutrients (QCLot: 293779) phosphorus, total 7723-14-0 E372-U 0.002 mg/L 8.32 mg/L 97.6 80.0 120	Anions and Nutrients (QCLot: 292677)												
Anions and Nutrients (QCLot: 292679) nitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 104 90.0 110 Anions and Nutrients (QCLot: 293779) phosphorus, total 7723-14-0 E372-U 0.002 mg/L 8.32 mg/L 97.6 80.0 120	chloride	16887-00-6	E235.CI-L	0.1	mg/L	100 mg/L	104	90.0	110				
Anions and Nutrients (QCLot: 292679) nitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 104 90.0 110 Anions and Nutrients (QCLot: 293779) phosphorus, total 7723-14-0 E372-U 0.002 mg/L 8.32 mg/L 97.6 80.0 120	Anions and Nutrients (QCLot: 292678)												
Anions and Nutrients (QCLot: 293779) E372-U 0.001 mg/L 0.5 mg/L 104 90.0 110 Aphosphorus, total 7723-14-0 E372-U 0.002 mg/L 8.32 mg/L 97.6 80.0 120	nitrate (as N)	14797-55-8	E235.NO3-L	0.005	mg/L	2.5 mg/L	104	90.0	110				
Anions and Nutrients (QCLot: 293779) phosphorus, total 7723-14-0 E372-U 0.002 mg/L 8.32 mg/L 97.6 80.0 120	Anions and Nutrients (QCLot: 292679)												
phosphorus, total 7723-14-0 E372-U 0.002 mg/L 8.32 mg/L 97.6 80.0 120	nitrite (as N)	14797-65-0	E235.NO2-L	0.001	mg/L	0.5 mg/L	104	90.0	110				
	Anions and Nutrients (QCLot: 293779)												
Anions and Nutrients (QCLot: 296970)	phosphorus, total	7723-14-0	E372-U	0.002	mg/L	8.32 mg/L	97.6	80.0	120				
	Anions and Nutrients (QCLot: 296970)												

 Page
 : 12 of 18

 Work Order
 : CG2104077

 Client
 : Teck Coal Limited

Sub-Matrix: Water	ub-Matrix: Water						ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Anions and Nutrients (QCLot: 296970) - continued									
Kjeldahl nitrogen, total [TKN]		E318	0.05	mg/L	4 mg/L	94.7	75.0	125	
Anions and Nutrients (QCLot: 301690)						·			
ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	0.2 mg/L	101	85.0	115	
Organic / Inorganic Carbon (QCLot: 298734)									
carbon, dissolved organic [DOC]		E358-L	0.5	mg/L	10 mg/L	99.6	80.0	120	
Organic / Inorganic Carbon (QCLot: 298742)									
carbon, total organic [TOC]		E355-L	0.5	mg/L	10 mg/L	109	80.0	120	
Total Metals (QCLot: 295737)									
chromium, total	7440-47-3	E420.Cr-L	0.0001	mg/L	0.25 mg/L	99.4	80.0	120	
Total Metals (QCLot: 295738)									
aluminum, total	7429-90-5	E420	0.003	mg/L	2 mg/L	99.4	80.0	120	
antimony, total	7440-36-0	E420	0.0001	mg/L	1 mg/L	101	80.0	120	
arsenic, total	7440-38-2	E420	0.0001	mg/L	1 mg/L	100	80.0	120	
barium, total	7440-39-3	E420	0.0001	mg/L	0.25 mg/L	99.7	80.0	120	
beryllium, total	7440-41-7	E420	0.00002	mg/L	0.1 mg/L	99.4	80.0	120	
bismuth, total	7440-69-9	E420	0.00005	mg/L	1 mg/L	100	80.0	120	
boron, total	7440-42-8	E420	0.01	mg/L	1 mg/L	95.8	80.0	120	
cadmium, total	7440-43-9	E420	0.000005	mg/L	0.1 mg/L	96.1	80.0	120	
calcium, total	7440-70-2	E420	0.05	mg/L	50 mg/L	101	80.0	120	
cobalt, total	7440-48-4	E420	0.0001	mg/L	0.25 mg/L	101	80.0	120	
copper, total	7440-50-8	E420	0.0005	mg/L	0.25 mg/L	99.1	80.0	120	
iron, total	7439-89-6	E420	0.01	mg/L	1 mg/L	91.4	80.0	120	
lead, total	7439-92-1	E420	0.00005	mg/L	0.5 mg/L	99.0	80.0	120	
lithium, total	7439-93-2	E420	0.001	mg/L	0.25 mg/L	97.7	80.0	120	
magnesium, total	7439-95-4	E420	0.005	mg/L	50 mg/L	97.0	80.0	120	
manganese, total	7439-96-5	E420	0.0001	mg/L	0.25 mg/L	99.9	80.0	120	
molybdenum, total	7439-98-7	E420	0.00005	mg/L	0.25 mg/L	99.0	80.0	120	
nickel, total	7440-02-0	E420	0.0005	mg/L	0.5 mg/L	98.8	80.0	120	
potassium, total	7440-09-7	E420	0.05	mg/L	50 mg/L	104	80.0	120	
selenium, total	7782-49-2	E420	0.00005	mg/L	1 mg/L	92.9	80.0	120	
silicon, total	7440-21-3	E420	0.1	mg/L	10 mg/L	98.8	80.0	120	
silver, total			0.00004	ma er /1	_	95.8	80.0	120	
sodium, total	7440-22-4	E420	0.00001	mg/L	0.1 mg/L	93.0	80.0	120	
	7440-22-4 17341-25-2		0.00001	mg/L	50 mg/L	102	80.0	120	
strontium, total		E420			_				

 Page
 : 13 of 18

 Work Order
 : CG2104077

 Client
 : Teck Coal Limited

Sub-Matrix: Water	Laboratory Control Sample (LCS) Report									
					Spike Recovery (%) Recovery Limits (%)					
Analyte	CAS Number M	lethod	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Total Metals (QCLot: 295738) - continued										
thallium, total	7440-28-0 E4	420	0.00001	mg/L	1 mg/L	102	80.0	120		
tin, total	7440-31-5 E4	420	0.0001	mg/L	0.5 mg/L	97.5	80.0	120		
titanium, total	7440-32-6 E4	420	0.0003	mg/L	0.25 mg/L	105	80.0	120		
uranium, total	7440-61-1 E4	420	0.00001	mg/L	0.005 mg/L	107	80.0	120		
vanadium, total	7440-62-2 E4	420	0.0005	mg/L	0.5 mg/L	102	80.0	120		
zinc, total	7440-66-6 E4	420	0.003	mg/L	0.5 mg/L	101	80.0	120		
Total Metals (QCLot: 298052)										
mercury, total	7439-97-6 E5	508-L	0.5	ng/L	5 ng/L	94.4	80.0	120		
mercury, dissolved	7439-97-6 E		0.000005	mg/L	0.0001 mg/L	99.0	80.0	120		
mercury, dissolved	7439-97-6 E	509	0.000005	mg/L	0.0001 mg/L	118	80.0	120		
Dissolved Metals (QCLot: 297293)										
chromium, dissolved	7440-47-3 E4	421.Cr-L	0.0001	mg/L	0.25 mg/L	97.5	80.0	120		
Dissolved Metals (QCLot: 297294)										
aluminum, dissolved	7429-90-5 E4	421	0.001	mg/L	2 mg/L	100	80.0	120		
antimony, dissolved	7440-36-0 E4	421	0.0001	mg/L	1 mg/L	102	80.0	120		
arsenic, dissolved	7440-38-2 E4	421	0.0001	mg/L	1 mg/L	99.4	80.0	120		
barium, dissolved	7440-39-3 E4	421	0.0001	mg/L	0.25 mg/L	99.8	80.0	120		
beryllium, dissolved	7440-41-7 E4	421	0.00002	mg/L	0.1 mg/L	95.4	80.0	120		
bismuth, dissolved	7440-69-9 E4	421	0.00005	mg/L	1 mg/L	100	80.0	120		
boron, dissolved	7440-42-8 E4	421	0.01	mg/L	1 mg/L	91.3	80.0	120		
cadmium, dissolved	7440-43-9 E4	421	0.000005	mg/L	0.1 mg/L	94.8	80.0	120		
calcium, dissolved	7440-70-2 E4	421	0.05	mg/L	50 mg/L	94.5	80.0	120		
cobalt, dissolved	7440-48-4 E4	421	0.0001	mg/L	0.25 mg/L	98.9	80.0	120		
copper, dissolved	7440-50-8 E4	421	0.0002	mg/L	0.25 mg/L	95.6	80.0	120		
iron, dissolved	7439-89-6 E4	421	0.01	mg/L	1 mg/L	95.6	80.0	120		
lead, dissolved	7439-92-1 E4	421	0.00005	mg/L	0.5 mg/L	100	80.0	120		
lithium, dissolved	7439-93-2 E4	421	0.001	mg/L	0.25 mg/L	92.6	80.0	120		
magnesium, dissolved	7439-95-4 E4	421	0.005	mg/L	50 mg/L	99.2	80.0	120		
manganese, dissolved	7439-96-5 E4	421	0.0001	mg/L	0.25 mg/L	97.8	80.0	120		
molybdenum, dissolved	7439-98-7 E4	421	0.00005	mg/L	0.25 mg/L	100	80.0	120		
nickel, dissolved	7440-02-0 E4	421	0.0005	mg/L	0.5 mg/L	95.3	80.0	120		
potassium, dissolved	7440-09-7 E4	421	0.05	mg/L	50 mg/L	101	80.0	120		
selenium, dissolved	7782-49-2 E4	421	0.00005	mg/L	1 mg/L	98.8	80.0	120		
silicon, dissolved	7440-21-3 E4	421	0.05	mg/L	10 mg/L	99.9	80.0	120		
silver, dissolved	7440-22-4 E4	421	0.00001	mg/L	0.1 mg/L	91.9	80.0	120		
sodium, dissolved	17341-25-2 E4	421	0.05	mg/L	50 mg/L	105	80.0	120		

 Page
 : 14 of 18

 Work Order
 : CG2104077

 Client
 : Teck Coal Limited

Sub-Matrix: Water	ub-Matrix: Water						ntrol Sample (LCS)	Report	
						Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Dissolved Metals (QCLot: 297294) - co	ntinued								
strontium, dissolved	7440-24-6	E421	0.0002	mg/L	0.25 mg/L	103	80.0	120	
sulfur, dissolved	7704-34-9	E421	0.5	mg/L	50 mg/L	104	80.0	120	
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	1 mg/L	101	80.0	120	
tin, dissolved	7440-31-5	E421	0.0001	mg/L	0.5 mg/L	94.5	80.0	120	
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	0.25 mg/L	93.4	80.0	120	
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	0.005 mg/L	98.3	80.0	120	
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	0.5 mg/L	99.3	80.0	120	
zinc, dissolved	7440-66-6	E421	0.001	mg/L	0.5 mg/L	95.6	80.0	120	

 Page
 : 15 of 18

 Work Order
 : CG2104077

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

ub-Matrix: water	p-Matrix: Water						Matrix Spik	e (MS) Report			
					Spi	ike	Recovery (%)	Recovery	Limits (%)		
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie	
	ents (QCLot: 292600)										
CG2104077-002	RG_MIDGA_WS_LAEMP_E VO_2021-09-11_NP	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0587 mg/L	0.05 mg/L	117	70.0	130		
nions and Nutri	ents (QCLot: 292674)										
CG2104067-002	Anonymous	fluoride	16984-48-8	E235.F	0.902 mg/L	1 mg/L	90.2	75.0	125		
nions and Nutri	ents (QCLot: 292675)										
CG2104067-002	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	ND mg/L	100 mg/L	ND	75.0	125		
nions and Nutri	ents (QCLot: 292676)										
CG2104067-002	Anonymous	bromide	24959-67-9	E235.Br-L	0.470 mg/L	0.5 mg/L	93.9	75.0	125		
nions and Nutri	ents (QCLot: 292677)										
CG2104067-002	Anonymous	chloride	16887-00-6	E235.CI-L	108 mg/L	100 mg/L	108	75.0	125		
nions and Nutri	ents (QCLot: 292678)									1	
CG2104067-002	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	ND mg/L	2.5 mg/L	ND	75.0	125		
Anions and Nutri	ents (QCLot: 292679)									1	
CG2104067-002	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.541 mg/L	0.5 mg/L	108	75.0	125		
Anions and Nutri	ents (QCLot: 293779)										
CG2104076-002	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0535 mg/L	0.0676 mg/L	79.1	70.0	130		
Anions and Nutri	ents (QCLot: 296970)										
CG2104048-011	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	2.51 mg/L	2.5 mg/L	100	70.0	130		
Anions and Nutri	ents (QCLot: 301690)									1	
CG2104067-001	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0988 mg/L	0.1 mg/L	98.8	75.0	125		
Organic / Inorgar	nic Carbon (QCLot: 2987	734)									
CG2104064-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	24.8 mg/L	23.9 mg/L	104	70.0	130		
Organic / Inorgan	nic Carbon (QCLot: 2987	742)								1	
CG2104077-001	RG_MIDBO_WS_LAEMP_E VO_2021-09-11_NP	carbon, total organic [TOC]		E355-L	23.5 mg/L	23.9 mg/L	98.2	70.0	130		
Total Metals (QC											
CG2104077-001	RG_MIDBO_WS_LAEMP_E VO 2021-09-11 NP	chromium, total	7440-47-3	E420.Cr-L	0.0376 mg/L	0.04 mg/L	94.1	70.0	130		

 Page
 : 16 of 18

 Work Order
 : CG2104077

 Client
 : Teck Coal Lir

Client : Teck Coal Limited
Project : REGIONAL EFFECTS PROGRAM

ub-Matrix: Water					Matrix Spike (MS) Report							
					Spi		Recovery (%)		Limits (%)			
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie		
otal Metals (QC	Lot: 295738) - continue	d										
G2104077-001	RG_MIDBO_WS_LAEMP_E	aluminum, total	7429-90-5	E420	0.189 mg/L	0.2 mg/L	94.3	70.0	130			
	VO_2021-09-11_NP	antimony, total	7440-36-0	E420	0.0194 mg/L	0.02 mg/L	97.0	70.0	130			
		arsenic, total	7440-38-2	E420	0.0198 mg/L	0.02 mg/L	98.8	70.0	130			
		barium, total	7440-39-3	E420	ND mg/L	0.02 mg/L	ND	70.0	130			
		beryllium, total	7440-41-7	E420	0.0382 mg/L	0.04 mg/L	95.4	70.0	130			
		bismuth, total	7440-69-9	E420	0.00946 mg/L	0.01 mg/L	94.6	70.0	130			
		boron, total	7440-42-8	E420	0.095 mg/L	0.1 mg/L	95.4	70.0	130			
		cadmium, total	7440-43-9	E420	0.00386 mg/L	0.004 mg/L	96.5	70.0	130			
		calcium, total	7440-70-2	E420	ND mg/L	4 mg/L	ND	70.0	130			
		cobalt, total	7440-48-4	E420	0.0189 mg/L	0.02 mg/L	94.7	70.0	130			
		copper, total	7440-50-8	E420	0.0185 mg/L	0.02 mg/L	92.3	70.0	130			
		iron, total	7439-89-6	E420	1.78 mg/L	2 mg/L	88.8	70.0	130			
		lead, total	7439-92-1	E420	0.0187 mg/L	0.02 mg/L	93.5	70.0	130			
		lithium, total	7439-93-2	E420	0.1000 mg/L	0.1 mg/L	100.0	70.0	130			
		magnesium, total	7439-95-4	E420	ND mg/L	1 mg/L	ND	70.0	130			
		manganese, total	7439-96-5	E420	0.0194 mg/L	0.02 mg/L	97.2	70.0	130			
		molybdenum, total	7439-98-7	E420	0.0195 mg/L	0.02 mg/L	97.4	70.0	130			
		nickel, total	7440-02-0	E420	0.0376 mg/L	0.04 mg/L	94.0	70.0	130			
		potassium, total	7440-09-7	E420	3.92 mg/L	4 mg/L	98.1	70.0	130			
		selenium, total	7782-49-2	E420	0.0374 mg/L	0.04 mg/L	93.6	70.0	130			
		silicon, total	7440-21-3	E420	8.62 mg/L	10 mg/L	86.2	70.0	130			
		silver, total	7440-22-4	E420	0.00376 mg/L	0.004 mg/L	94.0	70.0	130			
		sodium, total	17341-25-2	E420	ND mg/L	2 mg/L	ND	70.0	130			
		strontium, total	7440-24-6	E420	ND mg/L	0.02 mg/L	ND	70.0	130			
		sulfur, total	7704-34-9	E420	ND mg/L	20 mg/L	ND	70.0	130			
		thallium, total	7440-28-0	E420	0.00381 mg/L	0.004 mg/L	95.3	70.0	130			
		tin, total	7440-31-5	E420	0.0194 mg/L	0.02 mg/L	97.1	70.0	130			
		titanium, total	7440-32-6	E420	0.0402 mg/L	0.04 mg/L	101	70.0	130			
		uranium, total	7440-61-1	E420	0.00431 mg/L	0.004 mg/L	108	70.0	130			
		vanadium, total	7440-62-2	E420	0.0997 mg/L	0.1 mg/L	99.7	70.0	130			
		zinc, total	7440-66-6	E420	0.395 mg/L	0.4 mg/L	98.7	70.0	130			
tal Metals (QC	Lot: 298052)											
G2104048-009	Anonymous	mercury, total	7439-97-6	E508-L	4.29 ng/L	5 ng/L	85.8	70.0	130			
ssolved Metals	(QCLot: 297273)											
G2104058-001	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000975 mg/L	0.0001 mg/L	97.5	70.0	130			

 Page
 : 17 of 18

 Work Order
 : CG2104077

 Client
 : Teck Coal Limited

Cas Number Method Concentration Target Ms Low High	Qualifier
Dissolved Metals (QCLot: 297274) - continued CG2104077-003 RG_ALUSM_WS_LAEMP_E mercury, dissolved 7439-97-6 E509 0.0000978 mg/L 0.0001 mg/L 97.8 70.0 130	
CG2104077-003 RG_ALUSM_WS_LAEMP_E mercury, dissolved 7439-97-6 E509 0.0000978 mg/L 0.0001 mg/L 97.8 70.0 130 Dissolved Metals (QCLot: 297293) CG2104067-001 Anonymous chromium, dissolved 7440-47-3 E421.Cr-L 0.0390 mg/L 0.04 mg/L 97.4 70.0 130 Dissolved Metals (QCLot: 297294) CG2104067-001 Anonymous aluminum, dissolved 7429-90-5 E421 0.198 mg/L 0.2 mg/L 99.1 70.0 130	
VO_2021-09-12_NP Dissolved Metals (QCLot: 297293) CG2104067-001 Anonymous chromium, dissolved 7440-47-3 E421.Cr-L 0.0390 mg/L 0.04 mg/L 97.4 70.0 130 Dissolved Metals (QCLot: 297294) CG2104067-001 Anonymous aluminum, dissolved 7429-90-5 E421 0.198 mg/L 0.2 mg/L 99.1 70.0 130	
CG2104067-001 Anonymous chromium, dissolved 7440-47-3 E421.Cr-L 0.0390 mg/L 0.04 mg/L 97.4 70.0 130 Dissolved Metals (QCLot: 297294) CG2104067-001 Anonymous aluminum, dissolved 7429-90-5 E421 0.198 mg/L 0.2 mg/L 99.1 70.0 130	
Dissolved Metals (QCLot: 297294) CG2104067-001 Anonymous aluminum, dissolved 7429-90-5 E421 0.198 mg/L 0.2 mg/L 99.1 70.0 130	
CG2104067-001 Anonymous aluminum, dissolved 7429-90-5 E421 0.198 mg/L 0.2 mg/L 99.1 70.0 130	
1 2 3 3 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
antimony, dissolved 7440-36-0 E421 0.0197 mg/L 0.02 mg/L 98.6 70.0 130	
arsenic, dissolved 7440-38-2 E421 0.0202 mg/L 0.02 mg/L 101 70.0 130	
barium, dissolved 7440-39-3 E421 ND mg/L 0.02 mg/L ND 70.0 130	
beryllium, dissolved 7440-41-7 E421 0.0372 mg/L 0.04 mg/L 93.0 70.0 130	
bismuth, dissolved 7440-69-9 E421 0.00882 mg/L 0.01 mg/L 88.2 70.0 130	
boron, dissolved 7440-42-8 E421 0.097 mg/L 0.1 mg/L 96.8 70.0 130	
cadmium, dissolved 7440-43-9 E421 0.00381 mg/L 0.004 mg/L 95.3 70.0 130	
calcium, dissolved 7440-70-2 E421 ND mg/L 4 mg/L ND 70.0 130	
cobalt, dissolved 7440-48-4 E421 0.0182 mg/L 0.02 mg/L 91.2 70.0 130	
copper, dissolved 7440-50-8 E421 0.0180 mg/L 0.02 mg/L 90.3 70.0 130	
iron, dissolved 7439-89-6 E421 1.84 mg/L 2 mg/L 91.8 70.0 130	
lead, dissolved 7439-92-1 E421 0.0190 mg/L 0.02 mg/L 95.2 70.0 130	
lithium, dissolved 7439-93-2 E421 0.0890 mg/L 0.1 mg/L 89.0 70.0 130	
magnesium, dissolved 7439-95-4 E421 ND mg/L 1 mg/L ND 70.0 130	
manganese, dissolved 7439-96-5 E421 0.0193 mg/L 0.02 mg/L 96.3 70.0 130	
molybdenum, dissolved 7439-98-7 E421 0.0200 mg/L 0.02 mg/L 100 70.0 130	
nickel, dissolved 7440-02-0 E421 0.0354 mg/L 0.04 mg/L 88.6 70.0 130	
potassium, dissolved 7440-09-7 E421 3.91 mg/L 4 mg/L 97.7 70.0 130	
selenium, dissolved 7782-49-2 E421 ND mg/L 0.04 mg/L ND 70.0 130	
silicon, dissolved 7440-21-3 E421 9.06 mg/L 10 mg/L 90.6 70.0 130	
silver, dissolved 7440-22-4 E421 0.00365 mg/L 0.004 mg/L 91.3 70.0 130	
sodium, dissolved 17341-25-2 E421 ND mg/L 2 mg/L ND 70.0 130	
strontium, dissolved 7440-24-6 E421 ND mg/L 0.02 mg/L ND 70.0 130	
sulfur, dissolved 7704-34-9 E421 ND mg/L 20 mg/L ND 70.0 130	
thallium, dissolved 7440-28-0 E421 0.00371 mg/L 0.004 mg/L 92.7 70.0 130	
tin, dissolved 7440-31-5 E421 0.0194 mg/L 0.02 mg/L 96.8 70.0 130	
titanium, dissolved 7440-32-6 E421 0.0390 mg/L 0.04 mg/L 97.4 70.0 130	
uranium, dissolved 7440-61-1 E421 0.00385 mg/L 0.004 mg/L 96.2 70.0 130	
vanadium, dissolved 7440-62-2 E421 0.0995 mg/L 0.1 mg/L 99.5 70.0 130	
zinc, dissolved 7440-66-6 E421 0.372 mg/L 0.4 mg/L 93.1 70.0 130	

 Page
 : 18 of 18

 Work Order
 : CG2104077

 Client
 : Teck Coal Limited

																			
Teck	_						Pag	_{pe} 1cfI						•					• .
	COC ID:	Septemb	er EVO	LAEN	IP 2021	-			ND TIME:							T			
Facility Name / Job#	PROJECTAL	TENTINFO LONG TO THE STATE OF	1121			1 1 1		ah Nam	LABOR e ALS Calgar	atory ~				2.3	1.4		Excel	PDF	EDD
							Lab Contact Lyudmyla Shvets						—	100000000000000000000000000000000000000	No. of the W	LADUI	LDL.	שטט	
Project Manager			-									<u> </u>	<u>.</u>	A VINCES	dure .	ř		*	
Email	·						Email lyudmyla.shvets@alsglobal.com Address 2559 29 Street NE				<u>'</u>	<u> </u>	:		ранжівні сал			ž	
Address	421 Pine Avenue						+	Addres	S 2559 29 Str	eet NE					barrage man			<u> </u>	-
City		Sparwood			Province	BC	+		y Calgary	_	Province	AB			der Landigue des	-			
Postal Code		V0B 2G0			Country	Canada	Po	stal Cod	e TIY 7B5		Country	Canada							Section 1
Phone Number	250-425-8202						Phone	e Numbe	1 403 407 1	794									
		AMPLE DETAILS									ALYSIS RE	OUESTE	D.	100		Filtered F.	Feld, la Lab.)) _ f\ \ d a	Lab, N. Mai
															F				
								1	-						L M				لنسلط
					•				ě.			1,00	7.4		100		3.4.5		1
									3	H2504	H2904		HCL	HNO	HNO3				
· ·		7	1	9	ĺ				- F							1	8 7 6		(SPa)
				-5				1	<u>.</u>		Ú								1
				Material (Yes				1	-ROUTINE		1 2		ľ	l [©] L	4				1
$I \cup I \cup I$				<u> </u>					M E	2	Z	≤	1	1 5	15				1
, -			İ	을		Į			8 8	ĮĄ	Ę	i.	! ₹	ĮΞ	Σ			- 1	i
						ł		i	18968	\$	38	· 🖇	j 🖫 .	∌.	Ė			ĺ	ĺ
1	-		1	sno		i		1	i c	1 3	놡] ~	😤	ìò	È				į.
·				P		1	0.0		Z Z	ا متر	= -	1 7	4	₹	×		·	!	i
Sample ID	i s	ample Location	Field Matrix	Hazardous	Date	Time (24hr)			TECKCOA VA	ALS_Package-DOC	ALS_Puckage-TKN/FOC	HG-T-U-CVAF-VA	HG-D-CVAF-VA	TECKCOAL-MET-T- VA	FECKCOAL-MET-D- VA			.	ĺ.
RG MIDBO WS LAEMP EVO 2021-09-11_NP	Control of the Contro	RG MIDBO	ws	No	9/11/2021		G	7	x	x	X	x	x	X	x				
RG_MIDGA_WS_LAEMP_EVO_2021-09-11_NP	THE RESERVE TO SHARE	RG MIDGA	ws	No	9/11/2021	1530	G	7	X	X	X	Х	Х	x	х	 		+	ĺ
RG ALUSM WS LAEMP EVO 2021-09-12 NP		RC ALUSM	ws	No	9/12/2021	1300	G	7	X	х	х	х	х	×	x	<u>``</u>			·
110_11200.12_110_11111				***			1-					1.		\vdash					
			1				+	 				1		-		i	-		r
				h		-	-	 		 			 						·
L		Harris Salar Salar Salar Salar Salar Salar Salar Salar Salar Salar Salar Salar Salar Salar Salar Salar Salar S					+	 					<u> </u>	 					-
·	255			N. 75				 -		+	1			 		1			
			1				+	 		 		 		 		 			
			1				J	 		 	 	-		<u> </u>	<u> </u>	 			
			1		REIANOUE		PER EATERAL		DATESTIM	L		EPTY	DE JATPE	111177	N.				
ADDITIONAL COMMENTS	especial insula	LIIUNS			KLIANOPI	MED BEAR	DIA SIA ESCA		25.11	4 4	7.4	AND ARCES		-	Samuel Con-	ACCEPTED 1	7		AND DECEMBER
									·		 		M	_`		- 1	116	7.0	
ALS PO 750546					Jenn	ifer Ings/Min	now		*************	<i>*************************************</i>	<u> </u>		-40	- Silver		_ U	11	1 1/1	1-2-
,									<u> </u>				$\mu \nabla$		<u>~</u>	 	<u> 1. lv</u>	<u>'''</u>	(1)
4									l				V						
NO OFFILES RET	ANUD/DESCRIPT	ion .	5.315			1.0			11:11		1.1	r e			1 14 C			10	
		Regular	(default) x		Sampler's N	ame			Jennifer In	2S		Mob	ile#			519-500	3-3444		
	Pr	ionity (2-3 business days) - 50% s	urcharge	├ ——				manistrativas stosis J. Lit						1000 pg 2 7540	Sternisch	Book Brook abadra	Dr. Charles Green	eueugevoe si	A.J.A.
		rgency (1 Business Day) - 100% s		1 1	Sampler's Sig	nature	- Lon-	19 6				Date/	Time	Lata i		September	13, 2021		
	For Emergency <	1 Day, ASAP or Weekend - Con	act ALM	L					530	300000000000000000000000000000000000000	STATE OF STREET	1			2060 P. S.	enthy kalifi	STATE OF STA	er and a second	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Environmental Division
Calgary
Work Order Reference
CG2104077

Telephone: ±1 403 407 1800

WATER CHEMISTRY

ALS Laboratory Report CG2104194 (Finalized October 7, 2021)

CERTIFICATE OF ANALYSIS

Work Order : CG2104194

Client : Teck Coal Limited

: Allie Ferguson Address

: 421 Pine Avenue

Sparwood BC Canada V0B 2G0

Telephone

Contact

Project : REGIONAL EFFECTS PROGRAM

: VPO00750546

C-O-C number : September EVO LAEMP 2021

Sampler : Jennifer Ings

Site

Quote number : Teck Coal Master Quote

No. of samples received : 2 : 2 No. of samples analysed

Page : 1 of 6

Laboratory : Calgary - Environmental

Account Manager : Lyudmyla Shvets

Address : 2559 29th Street NE

Calgary AB Canada T1Y 7B5

Telephone : +1 403 407 1800 **Date Samples Received** : 17-Sep-2021 10:00

Date Analysis Commenced : 18-Sep-2021

Issue Date : 07-Oct-2021 17:25

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department	
Anthony Calero	Team Leader - Inorganics	Inorganics, Calgary, Alberta	
Caleb Deroche	Lab Analyst	Metals, Burnaby, British Columbia	
Dee Lee	Analyst	Metals, Burnaby, British Columbia	
Erin Sanchez		Inorganics, Calgary, Alberta	
Hannah Phung	Lab Assistant	Inorganics, Calgary, Alberta	
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia	
Monica Ko	Lab Assistant	Metals, Burnaby, British Columbia	
Owen Cheng		Metals, Burnaby, British Columbia	
Parker Sgarbossa	Laboratory Analyst	Inorganics, Calgary, Alberta	
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta	
Sara Niroomand		Inorganics, Calgary, Alberta	
Tracy Harley	Supervisor - Water Quality Instrumentation	Inorganics, Burnaby, British Columbia	

 Page
 : 2 of 6

 Work Order
 : CG2104194

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
%	percent
μg/L	micrograms per litre
μS/cm	Microsiemens per centimetre
meq/L	milliequivalents per litre
mg/L	milligrams per litre
mV	millivolts
NTU	nephelometric turbidity units
pH units	pH units

<: less than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
DLB	Detection Limit Raised. Analyte detected at comparable level in Method Blank.
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical Conductivity.
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour. turbidity).
TKNI	TKN result may be biased low due to Nitrate interference. Nitrate-N is > 10x TKN.

>: greater than.

Page : 3 of 6
Work Order : CG2104194
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water (Matrix: Water)			Ci	lient sample ID	RG_ERCKDT_W S_LAEMP_EVO _2021-09-15_N P	RG_ERCKUT_W S_LAEMP_EVO _2021-09-15_N P	 	
			Client samp	oling date / time	15-Sep-2021 09:09	15-Sep-2021 15:30	 	
Analyte	CAS Number	Method	LOR	Unit	CG2104194-001	CG2104194-002	 	
					Result	Result	 	
Physical Tests		E202	2.0	ma/l	11.7	7.5		
acidity (as CaCO3)		E283		mg/L			 	
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	408	431	 	
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	 	
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	 	
alkalinity, total (as CaCO3)		E290	1.0	mg/L	408	431	 	
conductivity		E100	2.0	μS/cm	1920	1940	 	
hardness (as CaCO3), dissolved		EC100	0.50	mg/L	1180	1140	 	
oxidation-reduction potential [ORP]		E125	0.10	mV	472	467	 	
pH		E108	0.10	pH units	8.18	8.25	 	
solids, total dissolved [TDS]		E162	10	mg/L	1540	1580	 	
solids, total suspended [TSS]		E160-L	1.0	mg/L	<1.0	<1.0	 	
turbidity		E121	0.10	NTU	0.19	0.17	 	
alkalinity, bicarbonate (as HCO3)	71-52-3	E290	1.0	mg/L	498	526	 	
alkalinity, carbonate (as CO3)	3812-32-6	E290	1.0	mg/L	<1.0	<1.0	 	
alkalinity, hydroxide (as OH)	14280-30-9	E290	1.0	mg/L	<1.0	<1.0	 	
Anions and Nutrients								
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0229	<0.0050	 	
bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.250 DLDS	<0.250 DLDS	 	
chloride	16887-00-6	E235.CI-L	0.10	mg/L	6.20	6.15	 	
fluoride	16984-48-8	E235.F	0.020	mg/L	0.129	0.118	 	
Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	0.349 TKNI	<0.050 TKNI	 	
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	15.9	16.0	 	
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0050 DLDS	<0.0050 DLDS	 	
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	0.0165	0.0209	 	
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0147	0.0216 DLM	 	
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	772	774	 	
Organic / Inorganic Carbon								
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	1.93	2.19	 	

Page : 4 of 6
Work Order : CG2104194
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water (Matrix: Water)			Cl	ient sample ID	RG_ERCKDT_W S_LAEMP_EVO _2021-09-15_N P	RG_ERCKUT_W S_LAEMP_EVO _2021-09-15_N P	 	
			Client samp	ling date / time	15-Sep-2021 09:09	15-Sep-2021 15:30	 	
Analyte	CAS Number	Method	LOR	Unit	CG2104194-001	CG2104194-002	 	
					Result	Result	 	
Organic / Inorganic Carbon carbon, total organic [TOC]		E355-L	0.50	mg/L	2.08	2.18	 	
		L333-L	0.50	IIIg/L	2.00	2.10	 	
Ion Balance anion sum		EC101	0.10	meq/L	25.5	26.0	 	
cation sum		EC101	0.10	meq/L	23.9	22.9	 	
ion balance (cations/anions ratio)		EC101	0.010	%	93.7	88.1	 	
ion balance (cation-anion difference)		EC101	0.010	%	3.24	6.34	 	
		20101	0.010	70	0.24	0.04		
Total Metals aluminum, total	7429-90-5	E420	0.0030	mg/L	<0.0030	<0.0030	 	
antimony, total	7440-36-0	E420	0.00010	mg/L	0.00020	0.00022	 	
arsenic, total	7440-38-2	E420	0.00010	mg/L	<0.00040 DLB	<0.00040 DLB	 	
barium, total	7440-39-3	E420	0.00010	mg/L	0.0638	0.0677	 	
beryllium, total	7440-41-7	E420	0.020	μg/L	<0.020	<0.020	 	
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	 	
boron, total	7440-42-8	E420	0.010	mg/L	0.012	0.013	 	
cadmium, total	7440-43-9	E420	0.0050	μg/L	0.0950	0.0969	 	
calcium, total	7440-70-2	E420	0.050	mg/L	255	268	 	
chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00022	0.00019	 	
cobalt, total	7440-48-4	E420	0.10	μg/L	<0.10	<0.10	 	
copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	 	
iron, total	7439-89-6	E420	0.010	mg/L	<0.010	<0.010	 	
lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	 	
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0250	0.0257	 	
magnesium, total	7439-95-4	E420	0.0050	mg/L	159	159	 	
manganese, total	7439-96-5	E420	0.00010	mg/L	0.00017	<0.00010	 	
mercury, total	7439-97-6	E508-L	0.00050	μg/L	<0.00050	<0.00050	 	
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00116	0.00157	 	
nickel, total	7440-02-0	E420	0.00050	mg/L	0.00074	0.00072	 	
potassium, total	7440-09-7	E420	0.050	mg/L	2.54	2.60	 	
selenium, total	7782-49-2	E420	0.050	μg/L	156	155	 	

Page : 5 of 6
Work Order : CG2104194
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water			Cli	ient sample ID	RG_ERCKDT_W	RG_ERCKUT_W	 	
(Matrix: Water)					S_LAEMP_EVO	S_LAEMP_EVO		
					_2021-09-15_N P	_2021-09-15_N P		
					Г	Г		
			Client samp	ling date / time	15-Sep-2021	15-Sep-2021	 	
					09:09	15:30		
Analyte	CAS Number	Method	LOR	Unit	CG2104194-001	CG2104194-002	 	
					Result	Result	 	
Total Metals		E400	0.40		0.00	0.04		
silicon, total	7440-21-3	E420	0.10	mg/L	3.93	3.91	 	
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	 	
sodium, total	17341-25-2	E420	0.050	mg/L	3.36	3.39	 	
strontium, total	7440-24-6	E420	0.00020	mg/L	0.224	0.234	 	
sulfur, total	7704-34-9	E420	0.50	mg/L	274	266	 	
thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	 	
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	 	
titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	 	
uranium, total	7440-61-1	E420	0.000010	mg/L	0.00825	0.00890	 	
vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	 	
zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	<0.0030	 	
Dissolved Metals								
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	<0.0010	<0.0010	 	
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00019	0.00018	 	
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00024	0.00021	 	
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0642	0.0607	 	
beryllium, dissolved	7440-41-7	E421	0.020	μg/L	<0.020	<0.020	 	
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	 	
boron, dissolved	7440-42-8	E421	0.010	mg/L	0.012	0.011	 	
cadmium, dissolved	7440-43-9	E421	0.0050	μg/L	0.0855	0.0834	 	
calcium, dissolved	7440-70-2	E421	0.050	mg/L	240	231	 	
chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00020	0.00018	 	
cobalt, dissolved	7440-48-4	E421	0.10	μg/L	<0.10	<0.10	 	
copper, dissolved	7440-50-8	E421	0.00020	mg/L	<0.00020	<0.00020	 	
iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	 	
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	 	
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0242	0.0227	 	
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	142	136	 	
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00012	<0.00010	 	
			I	ı				

Page : 6 of 6
Work Order : CG2104194
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water (Matrix: Water)			Cl	ient sample ID	RG_ERCKDT_W S_LAEMP_EVO _2021-09-15_N P	RG_ERCKUT_W S_LAEMP_EVO _2021-09-15_N P	 	
			Client samp	ling date / time	15-Sep-2021 09:09	15-Sep-2021 15:30	 	
Analyte	CAS Number	Method	LOR	Unit	CG2104194-001	CG2104194-002	 	
					Result	Result	 	
Dissolved Metals								
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.000050	 	
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00103	0.00112	 	
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00089	0.00081	 	
potassium, dissolved	7440-09-7	E421	0.050	mg/L	2.61	2.53	 	
selenium, dissolved	7782-49-2	E421	0.050	μg/L	164	156	 	
silicon, dissolved	7440-21-3	E421	0.050	mg/L	3.61	3.44	 	
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	 	
sodium, dissolved	17341-25-2	E421	0.050	mg/L	3.40	3.33	 	
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.236	0.226	 	
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	258	238	 	
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	 	
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	 	
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	 	
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00937	0.00870	 	
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	 	
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0022	0.0022	 	
dissolved mercury filtration location		EP509	-	-	Field	Field	 	
dissolved metals filtration location		EP421	-	-	Field	Field	 	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : **CG2104194** Page : 1 of 16

 Client
 : Teck Coal Limited
 Laboratory
 : Calgary - Environmental

 Contact
 : Allie Ferguson
 Account Manager
 : Lyudmyla Shvets

: 421 Pine Avenue Address : 2559 29th Street NE

Calgary, Alberta Canada T1Y 7B5

 Telephone
 : -- Telephone
 : +1 403 407 1800

 Project
 : REGIONAL EFFECTS PROGRAM
 Date Samples Received
 : 17-Sep-2021 10:00

 PO
 : VPO00750546
 Issue Date
 : 07-Oct-2021 17:26

C-O-C number : September EVO LAEMP 2021

Sparwood BC Canada V0B 2G0

Sampler : Jennifer Ings

Site : ----

Quote number : Teck Coal Master Quote

No. of samples received : 2
No. of samples analysed : 2

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Address

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Summary of Outliers

Outliers: Quality Control Samples

- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- Method Blank value outliers occur please see following pages for full details.
- Duplicate outliers occur please see following pages for full details.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers: Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

Page : 2 of 16 Work Order : CG2104194

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: Water

L	Analyte Group	Laboratory sample ID	Client/Ref Sample ID	Analyte	CAS Number	Method	Result	Limits	Comment
	Method Blank (MB) Values								
	Total Metals	QC-MRG2-2989030		arsenic, total	7440-38-2	E420	0.00010 MB-LOR	0.0001 mg/L	Blank result exceeds
		01					mg/L		permitted value

Result Qualifiers

Qualifier Description

MB-LOR Method Blank exceeds ALS DQO. Limits of Reporting have been adjusted for samples with positive hits

below 5x blank level.

Duplicate (DUP) RPDs							
Anions and Nutrients	CG2104194-001	RG_ERCKDT_WS_L	Kjeldahl nitrogen, total	 E318	0.299 % TKND	Diff <2x LOR	Low Level DUP DQO
		AEMP_EVO_2021-09	[TKN]				exceeded (difference > 2
		-15_NP					LOR).

Result Qualifiers

Qualifier	Description
TKND	TKN duplication was poor due to interference from high nitrate, which causes negative bias on TKN.

Page : 3 of 16 Work Order : CG2104194

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					Ev	/aluation: × =	Holding time exce	edance ; •	= Within	Holding Tim
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
RG_ERCKDT_WS_LAEMP_EVO_2021-09-15_NP	E298	15-Sep-2021	29-Sep-2021				29-Sep-2021	28 days	14 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
RG_ERCKUT_WS_LAEMP_EVO_2021-09-15_NP	E298	15-Sep-2021	29-Sep-2021				29-Sep-2021	28 days	14 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE										
RG_ERCKDT_WS_LAEMP_EVO_2021-09-15_NP	E235.Br-L	15-Sep-2021					18-Sep-2021	28 days	3 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE										,
RG_ERCKUT_WS_LAEMP_EVO_2021-09-15_NP	E235.Br-L	15-Sep-2021					18-Sep-2021	28 days	3 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE	E235.CI-L	45.0 0004					40.0 0004	00.1	0.1	1
RG_ERCKDT_WS_LAEMP_EVO_2021-09-15_NP	E235.CI-L	15-Sep-2021					18-Sep-2021	28 days	3 days	•
Anions and Nutrients : Chloride in Water by IC (Low Level)								I		
HDPE	E235.CI-L	15-Sep-2021					18-Sep-2021	28 days	2 days	1
RG_ERCKUT_WS_LAEMP_EVO_2021-09-15_NP	E233.CI-L	15-Sep-2021					16-Sep-2021	20 days	3 days	•
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace L	_evel)									
HDPE RG ERCKDT WS LAEMP EVO 2021-09-15 NP	E378-U	15-Sep-2021					18-Sep-2021	3 days	3 days	√
NO_LINGND1_VVO_LALIWIF_LVO_2021=09=13_IVF	2570-0	10-06p-2021					10-06p-2021	Juays	Juays	•

Page : 4 of 16 Work Order : CG2104194

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: **Water** Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

viatrix. Water					L V	aluation. • –	riolaling time excel	cuarice, .	- *************************************	Tioluling Ti
Analyte Group	Method	Sampling Date	Ex	traction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ulti	ra Trace Level)									
HDPE										
RG_ERCKUT_WS_LAEMP_EVO_2021-09-15_NP	E378-U	15-Sep-2021					18-Sep-2021	3 days	3 days	✓
Anions and Nutrients : Fluoride in Water by IC										
HDPE RG_ERCKDT_WS_LAEMP_EVO_2021-09-15_NP	E235.F	15-Sep-2021					18-Sep-2021	28 days	3 days	1
NO_ENOND1_WO_EAEWII _EVO_2021-09-10_IVI	2200.1	10 Cop 2021					10-00p-2021	20 days	o days	·
Anions and Nutrients : Fluoride in Water by IC										
HDPE										
RG_ERCKUT_WS_LAEMP_EVO_2021-09-15_NP	E235.F	15-Sep-2021					18-Sep-2021	28 days	3 days	✓
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE										
RG_ERCKDT_WS_LAEMP_EVO_2021-09-15_NP	E235.NO3-L	15-Sep-2021					18-Sep-2021	3 days	3 days	1
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
RG ERCKUT WS LAEMP EVO 2021-09-15 NP	E235.NO3-L	15-Sep-2021					18-Sep-2021	3 days	3 davs	1
110_E1101101_110_E11E1111							.0 000 202.	o days	o unjo	
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE										
RG_ERCKDT_WS_LAEMP_EVO_2021-09-15_NP	E235.NO2-L	15-Sep-2021					18-Sep-2021	3 days	3 days	✓
nions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE	5005 NOO I	45.0 0004					40.0 0004			
RG_ERCKUT_WS_LAEMP_EVO_2021-09-15_NP	E235.NO2-L	15-Sep-2021					18-Sep-2021	3 days	3 days	✓
unions and Nutrients : Sulfate in Water by IC								I		
RG ERCKDT WS LAEMP EVO 2021-09-15 NP	E235.SO4	15-Sep-2021					18-Sep-2021	28 days	3 days	1
									,	
Anions and Nutrients : Sulfate in Water by IC										
HDPE										
RG_ERCKUT_WS_LAEMP_EVO_2021-09-15_NP	E235.SO4	15-Sep-2021					18-Sep-2021	28 days	3 days	✓
	•			-			-	-		

Page : 5 of 16 Work Order : CG2104194

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Water Evaluation: × = Holding time exceedance; ✓ = Within Holding Time

Matrix: Water					L\	/aiuation. ^ =	Holding time exce	euance, •	– vvitriiri	Holding Tim	
Analyte Group	Method	Sampling Date	Ext	traction / P	reparation			Analysis			
Container / Client Sample ID(s)			Preparation Date	Holdin Rec	g Times Actual	Eval	Analysis Date	Holding Rec	7 Times Actual	Eval	
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)											
Amber glass total (sulfuric acid) RG_ERCKDT_WS_LAEMP_EVO_2021-09-15_NP	E318	15-Sep-2021	24-Sep-2021				26-Sep-2021	28 days	11 days	✓	
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)											
Amber glass total (sulfuric acid) RG_ERCKUT_WS_LAEMP_EVO_2021-09-15_NP	E318	15-Sep-2021	24-Sep-2021				26-Sep-2021	28 days	11 days	✓	
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)											
Amber glass total (sulfuric acid) RG_ERCKDT_WS_LAEMP_EVO_2021-09-15_NP	E372-U	15-Sep-2021	22-Sep-2021				22-Sep-2021	28 days	7 days	✓	
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)											
Amber glass total (sulfuric acid) RG_ERCKUT_WS_LAEMP_EVO_2021-09-15_NP	E372-U	15-Sep-2021	22-Sep-2021				22-Sep-2021	28 days	7 days	✓	
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)											
HDPE dissolved (nitric acid) RG_ERCKDT_WS_LAEMP_EVO_2021-09-15_NP	E421.Cr-L	15-Sep-2021	23-Sep-2021				23-Sep-2021	180 days	8 days	✓	
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)											
HDPE dissolved (nitric acid) RG_ERCKUT_WS_LAEMP_EVO_2021-09-15_NP	E421.Cr-L	15-Sep-2021	23-Sep-2021				23-Sep-2021	180 days	8 days	✓	
Dissolved Metals : Dissolved Mercury in Water by CVAAS											
Glass vial dissolved (hydrochloric acid) RG_ERCKUT_WS_LAEMP_EVO_2021-09-15_NP	E509	15-Sep-2021	23-Sep-2021				23-Sep-2021	28 days	7 days	✓	
Dissolved Metals : Dissolved Mercury in Water by CVAAS											
Glass vial dissolved (hydrochloric acid) RG_ERCKDT_WS_LAEMP_EVO_2021-09-15_NP	E509	15-Sep-2021	23-Sep-2021				23-Sep-2021	28 days	8 days	✓	
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS											
HDPE dissolved (nitric acid) RG_ERCKDT_WS_LAEMP_EVO_2021-09-15_NP	E421	15-Sep-2021	23-Sep-2021				23-Sep-2021	180 days	8 days	✓	

Page : 6 of 16 Work Order : CG2104194

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: **Water** Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

Matrix: water						diddion.	noiding time exce	oddiioo ,	- VVICIIII	riolaling riiii
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
RG_ERCKUT_WS_LAEMP_EVO_2021-09-15_NP	E421	15-Sep-2021	23-Sep-2021				23-Sep-2021	180	8 days	✓
								days		
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low	Level)									
Amber glass dissolved (sulfuric acid)										
RG_ERCKDT_WS_LAEMP_EVO_2021-09-15_NP	E358-L	15-Sep-2021	27-Sep-2021				29-Sep-2021	28 days	14 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low	Level)									
Amber glass dissolved (sulfuric acid)										
RG_ERCKUT_WS_LAEMP_EVO_2021-09-15_NP	E358-L	15-Sep-2021	27-Sep-2021				29-Sep-2021	28 days	14 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Comb	ustion (Low Level)									
Amber glass total (sulfuric acid)										
RG_ERCKDT_WS_LAEMP_EVO_2021-09-15_NP	E355-L	15-Sep-2021	27-Sep-2021				29-Sep-2021	28 days	14 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Comb	ustion (Low Level)								1	
Amber glass total (sulfuric acid)										
RG_ERCKUT_WS_LAEMP_EVO_2021-09-15_NP	E355-L	15-Sep-2021	27-Sep-2021				29-Sep-2021	28 days	14 days	✓
Physical Tests : Acidity by Titration										
HDPE										
RG_ERCKDT_WS_LAEMP_EVO_2021-09-15_NP	E283	15-Sep-2021					28-Sep-2021	14 days	13 days	✓
Physical Tests : Acidity by Titration										
HDPE										
RG_ERCKUT_WS_LAEMP_EVO_2021-09-15_NP	E283	15-Sep-2021					28-Sep-2021	14 days	13 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE										
RG_ERCKDT_WS_LAEMP_EVO_2021-09-15_NP	E290	15-Sep-2021					28-Sep-2021	14 days	13 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE										
RG_ERCKUT_WS_LAEMP_EVO_2021-09-15_NP	E290	15-Sep-2021					28-Sep-2021	14 days	13 days	✓

Page : 7 of 16 Work Order : CG2104194

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: **Water**Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

Analyte Group	Method Sampling Date Extraction / Preparation								Analysis				
Container / Client Sample ID(s)	Woulda	Camping Bate	Preparation		g Times	Eval	Analysis Date		Times	Eval			
• • • • • • • • • • • • • • • • • • • •			Date	Rec	Actual			Rec	Actual				
Physical Tests : Conductivity in Water													
HDPE RG_ERCKDT_WS_LAEMP_EVO_2021-09-15_NP	E100	15-Sep-2021					28-Sep-2021	28 days	13 days	✓			
Physical Tests : Conductivity in Water													
HDPE RG_ERCKUT_WS_LAEMP_EVO_2021-09-15_NP	E100	15-Sep-2021					28-Sep-2021	28 days	13 days	4			
Physical Tests : ORP by Electrode													
HDPE RG_ERCKUT_WS_LAEMP_EVO_2021-09-15_NP	E125	15-Sep-2021					25-Sep-2021	0.34 hrs	239 hrs	* EHTR-FM			
Physical Tests : ORP by Electrode													
HDPE RG_ERCKDT_WS_LAEMP_EVO_2021-09-15_NP	E125	15-Sep-2021					25-Sep-2021	0.34 hrs	246 hrs	* EHTR-FM			
Physical Tests : pH by Meter													
HDPE RG_ERCKUT_WS_LAEMP_EVO_2021-09-15_NP	E108	15-Sep-2021					28-Sep-2021	0.25 hrs	307 hrs	* EHTR-FM			
Physical Tests : pH by Meter													
HDPE RG_ERCKDT_WS_LAEMP_EVO_2021-09-15_NP	E108	15-Sep-2021					28-Sep-2021	0.25 hrs	314 hrs	* EHTR-FM			
Physical Tests : TDS by Gravimetry													
HDPE RG_ERCKDT_WS_LAEMP_EVO_2021-09-15_NP	E162	15-Sep-2021					22-Sep-2021	7 days	7 days	✓			
Physical Tests : TDS by Gravimetry													
HDPE RG_ERCKUT_WS_LAEMP_EVO_2021-09-15_NP	E162	15-Sep-2021					22-Sep-2021	7 days	7 days	✓			
Physical Tests : TSS by Gravimetry (Low Level)													
HDPE [TSS-WB] RG_ERCKDT_WS_LAEMP_EVO_2021-09-15_NP	E160-L	15-Sep-2021					22-Sep-2021	7 days	7 days	√			

Page : 8 of 16 Work Order : CG2104194

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Matrix: Water					E۱	/aluation: 🗴 =	Holding time exce	edance ; 🕦	/ = Within	Holding
Analyte Group	Method	Sampling Date	Extraction / Preparation				Analysis			
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE [TSS-WB]										
RG_ERCKUT_WS_LAEMP_EVO_2021-09-15_NP	E160-L	15-Sep-2021					22-Sep-2021	7 days	7 days	✓
Physical Tests : Turbidity by Nephelometry										
HDPE										
RG_ERCKDT_WS_LAEMP_EVO_2021-09-15_NP	E121	15-Sep-2021					18-Sep-2021	3 days	3 days	✓
Physical Tests : Turbidity by Nephelometry										
HDPE	E121	15-Sep-2021					18-Sep-2021	3 days	3 days	✓
RG_ERCKUT_WS_LAEMP_EVO_2021-09-15_NP	EIZI	15-3ep-2021					16-Sep-2021	3 uays	3 uays	•
TO MAKE THE PROPERTY OF THE PR										
otal Metals : Total Chromium in Water by CRC ICPMS (Low Level) HDPE total (nitric acid)							I			
RG_ERCKDT_WS_LAEMP_EVO_2021-09-15_NP	E420.Cr-L	15-Sep-2021					22-Sep-2021	180	7 days	1
1.0_1.101.0 1_1.0_1.1.1.1.1.1		13 3 4 232						days	, -	
Fotal Metals : Total Chromium in Water by CRC ICPMS (Low Level)								,		
HDPE total (nitric acid)										
RG_ERCKUT_WS_LAEMP_EVO_2021-09-15_NP	E420.Cr-L	15-Sep-2021					22-Sep-2021	180	7 days	✓
								days		
Fotal Metals : Total Mercury in Water by CVAFS (Low Level, LOR = 0.5	ppt)								'	
Pre-cleaned amber glass - total (lab preserved)										
RG_ERCKDT_WS_LAEMP_EVO_2021-09-15_NP	E508-L	15-Sep-2021					24-Sep-2021	28 days	9 days	✓
otal Metals : Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 p	ppt)									
Pre-cleaned amber glass - total (lab preserved)	F500 I	45.0 0004					0.4.0	00.1		,
RG_ERCKUT_WS_LAEMP_EVO_2021-09-15_NP	E508-L	15-Sep-2021					24-Sep-2021	28 days	9 days	✓
Total Metals : Total Metals in Water by CRC ICPMS HDPE total (nitric acid)							I			
RG ERCKDT WS LAEMP EVO 2021-09-15 NP	E420	15-Sep-2021					22-Sep-2021	180	7 days	1
1.0_1.101.0 1_1.0_1.1.1.1.1.1		13 3 4 232						days	, -	
otal Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)										
RG_ERCKUT_WS_LAEMP_EVO_2021-09-15_NP	E420	15-Sep-2021					22-Sep-2021	180	7 days	✓
								days		
								-		

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

Page : 9 of 16 Work Order : CG2104194

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Rec. HT: ALS recommended hold time (see units).

Page : 10 of 16 Work Order : CG2104194

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Quality Control Sample Type			С	ount	Frequency (%)		
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Acidity by Titration	E283	304859	1	20	5.0	5.0	1
Alkalinity Species by Titration	E290	304723	1	15	6.6	5.0	✓
Ammonia by Fluorescence	E298	305707	1	20	5.0	5.0	1
Bromide in Water by IC (Low Level)	E235.Br-L	296270	1	16	6.2	5.0	1
Chloride in Water by IC (Low Level)	E235.CI-L	296271	1	16	6.2	5.0	√
Conductivity in Water	E100	304722	1	15	6.6	5.0	1
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	300277	1	2	50.0	5.0	1
Dissolved Mercury in Water by CVAAS	E509	300043	1	10	10.0	5.0	1
Dissolved Metals in Water by CRC ICPMS	E421	300278	1	2	50.0	5.0	1
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	303820	1	19	5.2	5.0	√
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	296209	1	14	7.1	5.0	1
Fluoride in Water by IC	E235.F	296268	1	16	6.2	5.0	1
Nitrate in Water by IC (Low Level)	E235.NO3-L	296272	1	16	6.2	5.0	1
Nitrite in Water by IC (Low Level)	E235.NO2-L	296273	1	16	6.2	5.0	1
ORP by Electrode	E125	302476	1	20	5.0	5.0	1
pH by Meter	E108	304721	1	18	5.5	5.0	✓
Sulfate in Water by IC	E235.SO4	296269	1	16	6.2	5.0	1
TDS by Gravimetry	E162	298977	1	20	5.0	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	298903	1	11	9.0	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	302102	1	3	33.3	5.0	✓
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	301411	1	19	5.2	5.0	✓
Total Metals in Water by CRC ICPMS	E420	298904	1	18	5.5	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	303828	1	19	5.2	5.0	✓
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	297810	1	20	5.0	5.0	✓
Turbidity by Nephelometry	E121	296171	1	2	50.0	5.0	✓
Laboratory Control Samples (LCS)							
Acidity by Titration	E283	304859	1	20	5.0	5.0	1
Alkalinity Species by Titration	E290	304723	1	15	6.6	5.0	1
Ammonia by Fluorescence	E298	305707	1	20	5.0	5.0	√
Bromide in Water by IC (Low Level)	E235.Br-L	296270	1	16	6.2	5.0	1
Chloride in Water by IC (Low Level)	E235.CI-L	296271	1	16	6.2	5.0	√
Conductivity in Water	E100	304722	1	15	6.6	5.0	√
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	300277	1	2	50.0	5.0	√
Dissolved Mercury in Water by CVAAS	E509	300043	1	10	10.0	5.0	√
Dissolved Metals in Water by CRC ICPMS	E421	300278	1	2	50.0	5.0	√
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	303820	1	19	5.2	5.0	√
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	296209	1	14	7.1	5.0	1

Page : 11 of 16 : CG2104194 Work Order

Client : Teck Coal Limited

: REGIONAL EFFECTS PROGRAM Project

Matrix: Water		Evaluati	on: × = QC frequ		ecincation; ✓ =	. , ,	
Quality Control Sample Type		001.11		ount		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Control Samples (LCS) - Continued							
Fluoride in Water by IC	E235.F	296268	1	16	6.2	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	296272	1	16	6.2	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	296273	1	16	6.2	5.0	✓
ORP by Electrode	E125	302476	1	20	5.0	5.0	✓
pH by Meter	E108	304721	1	18	5.5	5.0	✓
Sulfate in Water by IC	E235.SO4	296269	1	16	6.2	5.0	✓
TDS by Gravimetry	E162	298977	1	20	5.0	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	298903	1	11	9.0	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	302102	1	3	33.3	5.0	✓
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	301411	1	19	5.2	5.0	✓
Total Metals in Water by CRC ICPMS	E420	298904	1	18	5.5	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	303828	1	19	5.2	5.0	✓
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	297810	1	20	5.0	5.0	✓
TSS by Gravimetry (Low Level)	E160-L	298276	1	13	7.6	5.0	✓
Turbidity by Nephelometry	E121	296171	1	2	50.0	5.0	✓
Method Blanks (MB)							
Acidity by Titration	E283	304859	1	20	5.0	5.0	1
Alkalinity Species by Titration	E290	304723	1	15	6.6	5.0	✓
Ammonia by Fluorescence	E298	305707	1	20	5.0	5.0	1
Bromide in Water by IC (Low Level)	E235.Br-L	296270	1	16	6.2	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	296271	1	16	6.2	5.0	1
Conductivity in Water	E100	304722	1	15	6.6	5.0	1
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	300277	1	2	50.0	5.0	1
Dissolved Mercury in Water by CVAAS	E509	300043	1	10	10.0	5.0	1
Dissolved Metals in Water by CRC ICPMS	E421	300278	1	2	50.0	5.0	1
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	303820	1	19	5.2	5.0	1
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	296209	1	14	7.1	5.0	1
Fluoride in Water by IC	E235.F	296268	1	16	6.2	5.0	1
Nitrate in Water by IC (Low Level)	E235.NO3-L	296272	1	16	6.2	5.0	1
Nitrite in Water by IC (Low Level)	E235.NO2-L	296273	1	16	6.2	5.0	1
Sulfate in Water by IC	E235.SO4	296269	1	16	6.2	5.0	1
TDS by Gravimetry	E162	298977	1	20	5.0	5.0	_
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	298903	1	11	9.0	5.0	<i>'</i>
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	302102	1	3	33.3	5.0	<u> </u>
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	301411	1	19	5.2	5.0	√
Total Metals in Water by CRC ICPMS	E420	298904	1	18	5.5	5.0	√
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	303828	1	19	5.2	5.0	√
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	297810	1	20	5.0	5.0	✓
TSS by Gravimetry (Low Level)	E160-L	298276	1	13	7.6	5.0	✓
Turbidity by Nephelometry	E121	296171	1	2	50.0	5.0	√

Page : 12 of 16 Work Order : CG2104194

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: **Water**Evaluation: **×** = *QC frequency outside specification*; ✓ = *QC frequency within specification*.

		40090.	one of the		a o moquement mil	mir op comount	
Quality Control Sample Type			Co	ount	Frequency (%)		
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Matrix Spikes (MS)							
Ammonia by Fluorescence	E298	305707	1	20	5.0	5.0	✓
Bromide in Water by IC (Low Level)	E235.Br-L	296270	1	16	6.2	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	296271	1	16	6.2	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	300277	1	2	50.0	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	300043	1	10	10.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	300278	1	2	50.0	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	303820	1	19	5.2	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	296209	1	14	7.1	5.0	✓
Fluoride in Water by IC	E235.F	296268	1	16	6.2	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	296272	1	16	6.2	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	296273	1	16	6.2	5.0	✓
Sulfate in Water by IC	E235.SO4	296269	1	16	6.2	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	298903	1	11	9.0	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	302102	1	3	33.3	5.0	✓
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	301411	1	19	5.2	5.0	✓
Total Metals in Water by CRC ICPMS	E420	298904	1	18	5.5	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	303828	1	19	5.2	5.0	✓
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	297810	1	20	5.0	5.0	✓

Page : 13 of 16 Work Order : CG2104194

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water
	Calgary - Environmental			sample. Conductivity measurements are temperature-compensated to 25°C.
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted
	Calgary - Environmental			at ambient laboratory temperature (normally 20 ± 5°C). For high accuracy test results,
Trushidika bu Nombolomotan	0 ,	10/-4	ADIIA 0400 D (pH should be measured in the field within the recommended 15 minute hold time.
Turbidity by Nephelometry	E121	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light scatter under defined conditions.
	Calgary - Environmental			Scatter under defined conditions.
ORP by Electrode	E125	Water	ASTM D1498 (mod)	Oxidation redution potential is reported as the oxidation-reduction potential of the
				platinum metal-reference electrode employed, measured in mV. For high accuracy test
	Calgary - Environmental			results, it is recommended that this analysis be conducted in the field.
TSS by Gravimetry (Low Level)	E160-L	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre
	Calmania Fassinananantal			filter, following by drying of the filter at $104 \pm 1^{\circ}$ C, with gravimetric measurement of the
	Calgary - Environmental			filtered solids. Samples containing very high dissolved solid content (i.e. seawaters,
				brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.
TDS by Gravimetry	E162	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre
, ,	2.02		,	filter, with evaporation of the filtrate at 180 ± 2°C for 16 hours or to constant weight,
	Calgary - Environmental			with gravimetric measurement of the residue.
Bromide in Water by IC (Low Level)	E235.Br-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
	0.1			detection.
Chlorida in Water by IC (Levy Leval)	Calgary - Environmental	Water	EDA 200 1 (mod)	
Chloride in Water by IC (Low Level)	E235.CI-L	water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Calgary - Environmental			detection.
Fluoride in Water by IC	E235.F	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
				detection.
	Calgary - Environmental			
Nitrite in Water by IC (Low Level)	E235.NO2-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
	Calgary - Environmental			detection.
Nitrate in Water by IC (Low Level)	E235.NO3-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
in water by to (Low Level)	E235.NO3-L	vvator	Li A 300.1 (mod)	detection.
	Calgary - Environmental			
Sulfate in Water by IC	E235.SO4	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
				detection.
A 1 19 A 20 A 20	Calgary - Environmental	147 :	A DULA 0045 T ("	
Acidity by Titration	E283	Water	APHA 2310 B (mod)	Acidity is determined by potentiometric titration to pH 8.3
	Calgary - Environmental			
	Calgary - Environmental			

Page : 14 of 16 Work Order : CG2104194

Client : Teck Coal Limited

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Alkalinity Species by Titration	E290 Calgary - Environmental	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.
Ammonia by Fluorescence	E298 Calgary - Environmental	Water	J. Environ. Monit., 2005, 7, 37-42 (mod)	Ammonia in water is analyzed by flow-injection analysis with fluorescence detection after reaction with orthophthaldialdehyde (OPA).
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318 Vancouver - Environmental	Water	APHA 4500-Norg D (mod)	Total Kjeldahl Nitrogen is determined using block digestion followed by flow-injection analysis with fluorescence detection.
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L Calgary - Environmental	Water	APHA 5310 B (mod)	Total Organic Carbon (Non-Purgeable), also known as NPOC (total), is a direct measurement of TOC after an acidified sample has been purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of total carbon (TC) is comprised of IC (which is common), this method is more accurate and more reliable than the TOC by subtraction method (i.e. TC minus TIC).
Dissolved Organic Carbon by Combustion (Low Level)	E358-L Calgary - Environmental	Water	APHA 5310 B (mod)	Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of DC (dissolved carbon) is comprised of IC (which is common), this method is more accurate and more reliable than the DOC by subtraction method (i.e. DC minus DIC).
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U Calgary - Environmental	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U Calgary - Environmental	Water	APHA 4500-P E (mod)	Dissolved Orthophosphate is determined colourimetrically on a water sample that has been lab or field filtered through a 0.45 micron membrane filter. Field filtration is recommended to ensure test results represent conditions at time of sampling.
Total Metals in Water by CRC ICPMS	E420 Vancouver - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L Vancouver - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS.
Dissolved Metals in Water by CRC ICPMS	E421 Vancouver - Environmental	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

Page : 15 of 16 Work Order : CG2104194

Client : Teck Coal Limited

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L Vancouver - Environmental	Water	APHA 3030 B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L Vancouver - Environmental	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAFS.
Dissolved Mercury in Water by CVAAS	E509 Vancouver - Environmental	Water	APHA 3030B/EPA 1631E (mod)	Water samples are filtered (0.45 um), preserved with HCl, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.
Dissolved Hardness (Calculated)	EC100 Vancouver - Environmental	Water	APHA 2340B	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations.
Ion Balance using Dissolved Metals	EC101 Calgary - Environmental	Water	APHA 1030E	Cation Sum, Anion Sum, and Ion Balance are calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis). Dissolved species are used where available. Minor ions are included where data is present. Ion Balance cannot be calculated accurately for waters with very low electrical conductivity (EC).
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298 Calgary - Environmental	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
Digestion for TKN in water	EP318 Vancouver - Environmental	Water	APHA 4500-Norg D (mod)	Samples are digested using block digestion with Copper Sulfate Digestion Reagent.
Preparation for Total Organic Carbon by Combustion	EP355 Calgary - Environmental	Water		Preparation for Total Organic Carbon by Combustion
Preparation for Dissolved Organic Carbon for Combustion	EP358 Calgary - Environmental	Water	APHA 5310 B (mod)	Preparation for Dissolved Organic Carbon
Digestion for Total Phosphorus in water	EP372 Calgary - Environmental	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
Dissolved Metals Water Filtration	EP421 Vancouver - Environmental	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HNO3.

Page : 16 of 16 Work Order : CG2104194

Client : Teck Coal Limited

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Mercury Water Filtration	EP509	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HCl.
	Vancouver -			
	Environmental			

QUALITY CONTROL REPORT

Work Order : CG2104194 Page : 1 of 18

 Client
 : Teck Coal Limited
 Laboratory
 : Calgary - Environmental

 Contact
 : Allie Ferguson
 Account Manager
 : Lyudmyla Shvets

:421 Pine Avenue Address :2559 29th Street NE

Sparwood BC Canada V0B 2G0

Calgary, Alberta Canada T1Y 7B5

Telephone

1 403 407 1800

Telephone :---- Telephone :+1 403 407 1800

Project :REGIONAL EFFECTS PROGRAM Date Samples Received :17-Sep-2021 10:00

PO :VPO00750546 Date Analysis Commenced :18-Sep-2021

C-O-C number : September EVO LAEMP 2021 Issue Date :07-Oct-2021 17:25

Sampler : Jennifer Ings

Site ----

Quote number : Teck Coal Master Quote

No. of samples analysed : 2

: 2

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

- Matrix Spike (MS) Report; Recovery and Acceptance Limits
- Reference Material (RM) Report; Recovery and Acceptance Limits
- Method Blank (MB) Report; Recovery and Acceptance Limits
- Laboratory Control Sample (LCS) Report; Recovery and Acceptance Limits

Signatories

No. of samples received

Address

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department	
Anthony Calero	Team Leader - Inorganics	Inorganics, Calgary, Alberta	
Caleb Deroche	Lab Analyst	Metals, Burnaby, British Columbia	
Dee Lee	Analyst	Metals, Burnaby, British Columbia	
Erin Sanchez		Inorganics, Calgary, Alberta	
Hannah Phung	Lab Assistant	Inorganics, Calgary, Alberta	
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia	
Monica Ko	Lab Assistant	Metals, Burnaby, British Columbia	
Owen Cheng		Metals, Burnaby, British Columbia	
Parker Sgarbossa	Laboratory Analyst	Inorganics, Calgary, Alberta	
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta	
Sara Niroomand		Inorganics, Calgary, Alberta	
Tracy Harley	Supervisor - Water Quality Instrumentation	Inorganics, Burnaby, British Columbia	

 Page
 : 2 of 18

 Work Order
 : CG2104194

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percentage Difference

= Indicates a QC result that did not meet the ALS DQO.

 Page
 : 3 of 18

 Work Order
 : CG2104194

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test specific).

Sub-Matrix: Water							Labora	ntory Duplicate (D	иг) кероп		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Physical Tests (QC	C Lot: 296171)										
CG2104194-001	RG_ERCKDT_WS_LAEMP _EVO_2021-09-15_NP	turbidity		E121	0.10	NTU	0.19	0.18	0.01	Diff <2x LOR	
Physical Tests (Q0	C Lot: 298977)										
CG2104186-002	Anonymous	solids, total dissolved [TDS]		E162	20	mg/L	248	252	1.80%	20%	
Physical Tests (Q0	C Lot: 302476)										
CG2104192-001	Anonymous	oxidation-reduction potential [ORP]		E125	0.10	mV	465	471	1.28%	15%	
Physical Tests (Q0	C Lot: 304721)										
CG2104186-002	Anonymous	pH		E108	0.10	pH units	8.48	8.53	0.588%	4%	
Physical Tests (Q0	C Lot: 304722)										
CG2104186-005	Anonymous	conductivity		E100	2.0	μS/cm	454	457	0.659%	10%	
Physical Tests (Q0	C Lot: 304723)										
CG2104186-005	Anonymous	alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	136	136	0.0737%	20%	
		alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	7.8	7.4	0.4	Diff <2x LOR	
		alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, total (as CaCO3)		E290	1.0	mg/L	144	143	0.349%	20%	
Physical Tests (Q0	C L at: 204959)	7.									
CG2104186-005	Anonymous	acidity (as CaCO3)		E283	2.0	mg/L	<2.0	<2.0	0	Diff <2x LOR	
Aminum and Nestwine	nts (QC Lot: 296209)	, , , , , , , , , , , , , , , , , , , ,				J					
CG2104188-018	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	0.0019	0.0024	0.0005	Diff <2x LOR	
	,	priospriato, eraito , alecentea (ae :)				9.=					
Anions and Nutrier CG2104186-007	Anonymous	fluoride	16984-48-8	E235.F	0.020	mg/L	<0.020	<0.020	0	Diff <2x LOR	
	,	lidoride	10904-40-0	L233.1	0.020	IIIg/L	~0.020	~0.020	0	DIII VZX LOIX	
	nts (QC Lot: 296269)		44000 70 0	E005 004	0.00	//	.0.00	-0.00		D.W. 10 LOD	
CG2104186-007	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	<0.30	<0.30	0	Diff <2x LOR	
	nts (QC Lot: 296270)										
CG2104186-007	Anonymous	bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
	nts (QC Lot: 296271)										
CG2104186-007	Anonymous	chloride	16887-00-6	E235.CI-L	0.10	mg/L	<0.10	<0.10	0	Diff <2x LOR	
Anions and Nutrier	nts (QC Lot: 296272)										
CG2104186-007	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	<0.0050	0.0061	0.0011	Diff <2x LOR	
Anions and Nutrier	nts (QC Lot: 296273)										
CG2104186-007	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	

 Page
 : 4 of 18

 Work Order
 : CG2104194

 Client
 : Teck Coal Limited

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Anions and Nutrien	its (QC Lot: 297810) - co	ontinued									
CG2104189-003	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	<0.0020	<0.0020	0	Diff <2x LOR	
Anions and Nutrien	its (QC Lot: 302102)										
CG2104194-001	RG_ERCKDT_WS_LAEMP _EVO_2021-09-15_NP	Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	0.349	# <0.050	0.299	Diff <2x LOR	TKND
Anions and Nutrien	its (QC Lot: 305707)										
CG2104194-001	RG_ERCKDT_WS_LAEMP _EVO_2021-09-15_NP	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0229	0.0237	0.0008	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 303820	0)									
CG2104186-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	1.23	1.35	0.12	Diff <2x LOR	
rganic / Inorganic	Carbon (QC Lot: 303828	3)									
CG2104186-001	Anonymous	carbon, total organic [TOC]		E355-L	0.50	mg/L	1.45	1.30	0.14	Diff <2x LOR	
otal Metals (QC L	ot: 298903)										
CG2104189-001	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00012	<0.00010	0.00002	Diff <2x LOR	
otal Metals (QC L	ot: 298904)										
G2104189-001	Anonymous	aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0052	0.0076	0.0024	Diff <2x LOR	
		antimony, total	7440-36-0	E420	0.00010	mg/L	0.00037	0.00038	0.0000006	Diff <2x LOR	
		arsenic, total	7440-38-2	E420	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		barium, total	7440-39-3	E420	0.00010	mg/L	0.0839	0.0832	0.849%	20%	
		beryllium, total	7440-41-7	E420	0.020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR	
		bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, total	7440-42-8	E420	0.010	mg/L	0.011	0.011	0.0003	Diff <2x LOR	
		cadmium, total	7440-43-9	E420	0.0050	mg/L	0.0310 µg/L	0.0000299	0.0000011	Diff <2x LOR	
		calcium, total	7440-70-2	E420	0.050	mg/L	112	111	1.27%	20%	
		cobalt, total	7440-48-4	E420	0.10	mg/L	0.12 µg/L	0.00012	0.000006	Diff <2x LOR	
		copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		iron, total	7439-89-6	E420	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		lithium, total	7439-93-2	E420	0.0010	mg/L	0.0482	0.0462	4.32%	20%	
		magnesium, total	7439-95-4	E420	0.0050	mg/L	49.4	47.5	3.74%	20%	
		manganese, total	7439-96-5	E420	0.00010	mg/L	0.00210	0.00201	4.55%	20%	
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00192	0.00198	2.96%	20%	
		nickel, total	7440-02-0	E420	0.00050	mg/L	0.00628	0.00603	4.00%	20%	
		potassium, total	7440-09-7	E420	0.050	mg/L	1.85	1.79	3.13%	20%	
		selenium, total	7782-49-2	E420	0.050	mg/L	54.6 µg/L	0.0526	3.80%	20%	
		silicon, total	7440-21-3	E420	0.10	mg/L	2.01	1.99	0.889%	20%	
		· ·				•	<0.000010		0.86976		
		silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	U	Diff <2x LOR	

 Page
 : 5 of 18

 Work Order
 : CG2104194

 Client
 : Teck Coal Limited

Sub-Matrix: Water							Laborat	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Total Metals (QC Lo	ot: 298904) - continued										
CG2104189-001	Anonymous	sodium, total	17341-25-2	E420	0.050	mg/L	1.88	1.81	3.95%	20%	
		strontium, total	7440-24-6	E420	0.00020	mg/L	0.163	0.164	0.509%	20%	
		sulfur, total	7704-34-9	E420	0.50	mg/L	76.2	76.5	0.364%	20%	
		thallium, total	7440-28-0	E420	0.000010	mg/L	0.000010	<0.000010	0.0000002	Diff <2x LOR	
		tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		uranium, total	7440-61-1	E420	0.000010	mg/L	0.00302	0.00305	1.02%	20%	
		vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, total	7440-66-6	E420	0.0030	mg/L	0.0032	<0.0030	0.0002	Diff <2x LOR	
otal Metals (QC Lo	ot: 301411)										
CG2104186-001	Anonymous	mercury, total	7439-97-6	E508-L	0.00050	ng/L	<0.00050 µg/L	<0.50	0	Diff <2x LOR	
Dissolved Metals (QC Lot: 300043)										
CG2104189-001	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.000050	<0.0000050	0	Diff <2x LOR	
issolved Metals (QC Lot: 300277)										
CG2104194-001	RG_ERCKDT_WS_LAEMP EVO 2021-09-15 NP	chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00020	0.00020	0.0000009	Diff <2x LOR	
Dissolved Metals (QC Lot: 300278)										
CG2104194-001	RG_ERCKDT_WS_LAEMP _EVO_2021-09-15_NP	aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
		antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00019	0.00019	0.000005	Diff <2x LOR	
		arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00024	0.00025	0.000009	Diff <2x LOR	
		barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0642	0.0647	0.801%	20%	
		beryllium, dissolved	7440-41-7	E421	0.020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR	
		bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, dissolved	7440-42-8	E421	0.010	mg/L	0.012	0.012	0.00006	Diff <2x LOR	
		cadmium, dissolved	7440-43-9	E421	0.0050	mg/L	0.0855 μg/L	0.0000857	0.188%	20%	
		calcium, dissolved	7440-70-2	E421	0.050	mg/L	240	244	1.78%	20%	
		cobalt, dissolved	7440-48-4	E421	0.10	mg/L	<0.10 µg/L	<0.00010	0	Diff <2x LOR	
		copper, dissolved	7440-50-8	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0242	0.0237	1.85%	20%	
		magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	142	139	2.50%	20%	
		manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00012	0.00011	0.00002	Diff <2x LOR	
		molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00103	0.00110	6.35%	20%	
		nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00089	0.00084	0.00005	Diff <2x LOR	
		monor, dissolved	. 440 02 0		3.00000	9/ -	0.0000	0.0000-	0.0000	Jan -ZA LOIK	1

 Page
 : 6 of 18

 Work Order
 : CG2104194

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Dissolved Metals (C	QC Lot: 300278) - contin	ued									
CG2104194-001	RG_ERCKDT_WS_LAEMP _EVO_2021-09-15_NP	potassium, dissolved	7440-09-7	E421	0.050	mg/L	2.61	2.57	1.38%	20%	
		selenium, dissolved	7782-49-2	E421	0.050	mg/L	164 µg/L	0.165	0.551%	20%	
		silicon, dissolved	7440-21-3	E421	0.050	mg/L	3.61	3.66	1.35%	20%	
		silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, dissolved	17341-25-2	E421	0.050	mg/L	3.40	3.47	1.90%	20%	
		strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.236	0.241	2.24%	20%	
		sulfur, dissolved	7704-34-9	E421	0.50	mg/L	258	257	0.377%	20%	
		thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00937	0.00949	1.25%	20%	
		vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0022	0.0018	0.0004	Diff <2x LOR	

Qualifiers

 Qualifier
 Description

 TKND
 TKN duplication was poor due to interference from high nitrate, which causes negative bias on TKN.

 Page
 : 7 of 18

 Work Order
 : CG2104194

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 296171)					
turbidity	E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 298276)					
solids, total suspended [TSS]	E160-L	1	mg/L	<1.0	
Physical Tests (QCLot: 298977)					
solids, total dissolved [TDS]	E162	10	mg/L	<10	
Physical Tests (QCLot: 304722)					
conductivity	E100	1	μS/cm	<1.0	
Physical Tests (QCLot: 304723)					
alkalinity, bicarbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, carbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, hydroxide (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
Physical Tests (QCLot: 304859)					
acidity (as CaCO3)	E283	2	mg/L	<2.0	
Anions and Nutrients (QCLot: 296209)					
phosphate, ortho-, dissolved (as P)	14265-44-2 E378-U	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 296268)					
fluoride	16984-48-8 E235.F	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 296269)					
sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 296270)					
promide	24959-67-9 E235.Br-L	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 296271)					
chloride	16887-00-6 E235.CI-L	0.1	mg/L	<0.10	
Anions and Nutrients (QCLot: 296272)					
nitrate (as N)	14797-55-8 E235.NO3-L	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 296273)					
nitrite (as N)	14797-65-0 E235.NO2-L	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 297810)					
phosphorus, total	7723-14-0 E372-U	0.002	mg/L	<0.0020	
Anions and Nutrients (QCLot: 302102)					
Kjeldahl nitrogen, total [TKN]	E318	0.05	mg/L	<0.050	

 Page
 : 8 of 18

 Work Order
 : CG2104194

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Anions and Nutrients (QCLot: 305707) - continued				
ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	<0.0050	
Organic / Inorganic Carbon (QCLot: 3	303820)				
carbon, dissolved organic [DOC]	E358-L	0.5	mg/L	<0.50	
Organic / Inorganic Carbon (QCLot: 3	03828)				
carbon, total organic [TOC]	E355-L	0.5	mg/L	<0.50	
Total Metals (QCLot: 298903)					
chromium, total	7440-47-3 E420.Cr-L	0.0001	mg/L	<0.00010	
Total Metals (QCLot: 298904)					
aluminum, total	7429-90-5 E420	0.003	mg/L	<0.0030	
antimony, total	7440-36-0 E420	0.0001	mg/L	<0.00010	
arsenic, total	7440-38-2 E420	0.0001	mg/L	# 0.00010	MB-LOR
parium, total	7440-39-3 E420	0.0001	mg/L	<0.00010	
peryllium, total	7440-41-7 E420	0.00002	mg/L	<0.000020	
pismuth, total	7440-69-9 E420	0.00005	mg/L	<0.000050	
poron, total	7440-42-8 E420	0.01	mg/L	<0.010	
cadmium, total	7440-43-9 E420	0.000005	mg/L	<0.000050	
calcium, total	7440-70-2 E420	0.05	mg/L	<0.050	
cobalt, total	7440-48-4 E420	0.0001	mg/L	<0.00010	
copper, total	7440-50-8 E420	0.0005	mg/L	<0.00050	
ron, total	7439-89-6 E420	0.01	mg/L	<0.010	
ead, total	7439-92-1 E420	0.00005	mg/L	<0.000050	
ithium, total	7439-93-2 E420	0.001	mg/L	<0.0010	
nagnesium, total	7439-95-4 E420	0.005	mg/L	<0.0050	
nanganese, total	7439-96-5 E420	0.0001	mg/L	<0.00010	
molybdenum, total	7439-98-7 E420	0.00005	mg/L	<0.000050	
nickel, total	7440-02-0 E420	0.0005	mg/L	<0.00050	
ootassium, total	7440-09-7 E420	0.05	mg/L	<0.050	
elenium, total	7782-49-2 E420	0.00005	mg/L	<0.000050	
silicon, total	7440-21-3 E420	0.1	mg/L	<0.10	
silver, total	7440-22-4 E420	0.00001	mg/L	<0.000010	
sodium, total	17341-25-2 E420	0.05	mg/L	<0.050	
strontium, total	7440-24-6 E420	0.0002	mg/L	<0.00020	
sulfur, total	7704-34-9 E420	0.5	mg/L	<0.50	
thallium, total	7440-28-0 E420	0.00001	mg/L	<0.000010	
tin, total	7440-31-5 E420	0.0001	mg/L	<0.00010	
titanium, total	7440-32-6 E420	0.0003	mg/L	<0.00030	

 Page
 : 9 of 18

 Work Order
 : CG2104194

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 298904) - co	ontinued					
uranium, total	7440-61-1	E420	0.00001	mg/L	<0.000010	
vanadium, total	7440-62-2	E420	0.0005	mg/L	<0.00050	
zinc, total	7440-66-6	E420	0.003	mg/L	<0.0030	
Fotal Metals (QCLot: 301411)						
mercury, total	7439-97-6	E508-L	0.5	ng/L	<0.50	
Dissolved Metals (QCLot: 300043)						
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	<0.000050	
Dissolved Metals (QCLot: 300277)						
chromium, dissolved	7440-47-3	E421.Cr-L	0.0001	mg/L	<0.00010	
Dissolved Metals (QCLot: 300278)						
aluminum, dissolved	7429-90-5	E421	0.001	mg/L	<0.0010	
antimony, dissolved	7440-36-0	E421	0.0001	mg/L	<0.00010	
arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	<0.00010	
parium, dissolved	7440-39-3	E421	0.0001	mg/L	<0.00010	
peryllium, dissolved	7440-41-7	E421	0.00002	mg/L	<0.000020	
pismuth, dissolved	7440-69-9	E421	0.00005	mg/L	<0.000050	
poron, dissolved	7440-42-8	E421	0.01	mg/L	<0.010	
cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	<0.0000050	
calcium, dissolved	7440-70-2	E421	0.05	mg/L	<0.050	
cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	<0.00010	
copper, dissolved	7440-50-8	E421	0.0002	mg/L	<0.00020	
ron, dissolved	7439-89-6	E421	0.01	mg/L	<0.010	
ead, dissolved	7439-92-1	E421	0.00005	mg/L	<0.000050	
ithium, dissolved	7439-93-2	E421	0.001	mg/L	<0.0010	
magnesium, dissolved	7439-95-4	E421	0.005	mg/L	<0.0050	
manganese, dissolved	7439-96-5	E421	0.0001	mg/L	<0.00010	
molybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	<0.000050	
nickel, dissolved	7440-02-0	E421	0.0005	mg/L	<0.00050	
ootassium, dissolved	7440-09-7	E421	0.05	mg/L	<0.050	
selenium, dissolved	7782-49-2	E421	0.00005	mg/L	<0.000050	
silicon, dissolved	7440-21-3	E421	0.05	mg/L	<0.050	
silver, dissolved	7440-22-4	E421	0.00001	mg/L	<0.000010	
sodium, dissolved	17341-25-2	E421	0.05	mg/L	<0.050	
strontium, dissolved	7440-24-6	E421	0.0002	mg/L	<0.00020	
sulfur, dissolved	7704-34-9	E421	0.5	mg/L	<0.50	
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	<0.00010	

 Page
 : 10 of 18

 Work Order
 : CG2104194

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water

Analyte	CAS Number N	Method	LOR	Unit	Result	Qualifier
Dissolved Metals (QCLot: 300278) - co	ontinued					
tin, dissolved	7440-31-5 E	E421	0.0001	mg/L	<0.00010	
titanium, dissolved	7440-32-6 E	E421	0.0003	mg/L	<0.00030	
uranium, dissolved	7440-61-1 E	E421	0.00001	mg/L	<0.000010	
vanadium, dissolved	7440-62-2 E	E421	0.0005	mg/L	<0.00050	
zinc, dissolved	7440-66-6 E	E421	0.001	mg/L	<0.0010	

Qualifiers

Qualifier Description

MB-LOR Method Blank exceeds ALS DQO. Limits of Reporting have been adjusted for samples with positive

hits below 5x blank level.

 Page
 : 11 of 18

 Work Order
 : CG2104194

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Physical Tosts (QCLot: 296276)	Sub-Matrix: Water						Laboratory Cor	ntrol Sample (LCS)	Report	
Physical Tests (OCLot: 298171)						Spike	Recovery (%)	Recovery	Limits (%)	
Part	Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (OCLot: 298276)	Physical Tests (QCLot: 296171)									
Polysical Tosts (QCLot: 399877) Polysical Tosts (QCLot: 399878) Polysical Tosts (QCLot: 304721) Polysical Tosts (QCLot: 304721) Polysical Tosts (QCLot: 304722) Polysical Tosts (QCLot: 304722) Polysical Tosts (QCLot: 304723) Polysical Tosts (QCLot: 304889) Poly	turbidity		E121	0.1	NTU	200 NTU	99.6	85.0	115	
Physical Tests (OCLot: 298977) E192	Physical Tests (QCLot: 298276)									
Fire Fire	solids, total suspended [TSS]		E160-L	1	mg/L	150 mg/L	93.8	85.0	115	
Physical Tosts (QCLot: 302476) addition-reduction potential (QPP) — E125 — mV 220 mV 101 95.4 104 — PAPPS potential Tosts (QCLot: 304721) Physical Tosts (QCLot: 304722) **Commondativity — E108 — pH units 7 pH units 100 98.6 101 — Physical Tosts (QCLot: 304722) **Commondativity — E100 1 ps/cm 148.8 ps/cm 101 90.0 110 — Physical Tosts (QCLot: 304723) **Commondativity — E290 1 mg/L 500 mg/L 98.6 85.0 115 — Physical Tosts (QCLot: 304723) **Commondativity — E290 1 mg/L 500 mg/L 98.6 85.0 115 — Physical Tosts (QCLot: 304723) **Commondativity — E283 2 mg/L 50 mg/L 100 85.0 115 — Physical Tosts (QCLot: 304859) **Commondativity (as Carcos) — E283 2 mg/L 50 mg/L 100 85.0 115 — Physical Tosts (QCLot: 304859) **Anions and Nutrients (QCLot: 298209) **Anions and Nutrients (QCLot: 298208) **Loop Sand Nutrients (QCLot: 298268) **Loop Sand Nutrients (QCLot: 298268) **Loop Sand Nutrients (QCLot: 298269) **Loop Sand Nutrients (QCLot: 298269) **Loop Sand Nutrients (QCLot: 298270) **Anions and Nutrients (QCLot: 298270) **Anions and Nutrients (QCLot: 298271) **Anions and Nutrients (QCLot: 298271) **Anions and Nutrients (QCLot: 298273) **Anions and Nu	Physical Tests (QCLot: 298977)									
Physical Tosts (OCLot: 304721) Physical Tosts (OCLot: 304722) Physical Tosts (OCLot: 304722) Physical Tosts (OCLot: 304722) Physical Tosts (OCLot: 304722) Physical Tosts (OCLot: 304723) Physical Tosts (OCLot: 304723) Physical Tosts (OCLot: 304723) Physical Tosts (OCLot: 304723) Physical Tosts (OCLot: 304859) Physical Tosts (OCLot: 296209) Physical Tosts (OCLot: 296268) Physical Tosts (OCLot: 296269) Physical Tosts (OCLot: 296269) Physical Tosts (OCLot: 296269) Physical Tosts (OCLot: 296270) Physical Tosts (OCLot: 296270) Physical Tosts (OCLot: 296271) Physical Tosts (OCLot: 296272) Physical Tosts (OCLot: 296273)	solids, total dissolved [TDS]		E162	10	mg/L	1000 mg/L	99.4	85.0	115	
Physical Tests (QCLot: 304721) 3H — E108 — PH units 7 pH units 100 98.6 101 — Physical Tests (QCLot: 304722) 3Physical Tests (QCLot: 304723) 4Radinity, Italian (ac CCO3) — E200 1 mg/L 500 mg/L 99.6 85.0 115 — Physical Tests (QCLot: 304723) 4Radinity, Italian (ac CCO3) — E283 2 mg/L 50 mg/L 100 85.0 115 — Physical Tests (QCLot: 304889) 4Radinity (ac CaCO3) — E283 2 mg/L 50 mg/L 98.6 80.0 115 — Physical Tests (QCLot: 296209) 4Radinity and Nutrients (QCLot: 296209) 4Radinity and Nutrients (QCLot: 296268) 4Radinity and Nutrients (QCLot: 296268) 4Radinity and Nutrients (QCLot: 296269) 4Radinity and Nutrients (QCLot: 296269) 4Radinity and Nutrients (QCLot: 296269) 4Radinity and Nutrients (QCLot: 296270) 4Radinity and Nutrients (QCLot: 296271) 4Radinity and Nutrients (QCLot: 296272) 4Radinity and Nutrients (QCLot: 296272) 4Radinity and Nutrients (QCLot: 296273) 4Radinity and Nutrients (QCLot: 297210) 4Radinity and	Physical Tests (QCLot: 302476)									
Physical Tests (QCLot: 304722) Physical Tests (QCLot: 304723) Physical Tests (QCLot: 304723) Physical Tests (QCLot: 304723) Physical Tests (QCLot: 304858)	oxidation-reduction potential [ORP]		E125		mV	220 mV	101	95.4	104	
Physical Tests (QCLot: 304722) Physical Tests (QCLot: 304723) Physical Tests (QCLot: 304723) Physical Tests (QCLot: 304723) Physical Tests (QCLot: 304858)	Physical Tests (QCLot: 304721)									
Physical Tests (QCLot: 304723)	рН		E108		pH units	7 pH units	100	98.6	101	
Physical Tests (QCLot: 304723)	Physical Tests (QCLot: 304722)									
E289	conductivity		E100	1	μS/cm	146.9 μS/cm	101	90.0	110	
Physical Tests (QCLot: 304859) E283 2 mg/L 50 mg/L 100 85.0 115	Physical Tests (QCLot: 304723)									
E283 2 mg/L 50 mg/L 100 85.0 115	alkalinity, total (as CaCO3)		E290	1	mg/L	500 mg/L	99.6	85.0	115	
Anions and Nutrients (QCLot: 296209) shosphate, orthor, dissolved (as P) 14265-44-2 E378-U 0.001 mg/L 0.02 mg/L 98.6 80.0 120 Anions and Nutrients (QCLot: 296268) lucride 16984-48-8 E235.F 0.02 mg/L 1 mg/L 106 90.0 110 Anions and Nutrients (QCLot: 296269) sulfate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L 100 mg/L 103 90.0 110 Anions and Nutrients (QCLot: 296270) sormide 24959-67-9 E235.Br-L 0.05 mg/L 0.5 mg/L 107 85.0 115 Anions and Nutrients (QCLot: 296271) shicride 16887-00-6 E235.Cl-L 0.1 mg/L 100 mg/L 104 90.0 110 Anions and Nutrients (QCLot: 296272) shifted (as N) 14797-65-8 E235.NO2-L 0.005 mg/L 0.5 mg/L 105 90.0 110 Anions and Nutrients (QCLot: 296273) shifte (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 106 90.0 110 Anions and Nutrients (QCLot: 297810) shosphorus, total 7723-14-0 E372-U 0.002 mg/L 8.32 mg/L 98.8 80.0 120	Physical Tests (QCLot: 304859)									
Anions and Nutrients (QCLot: 296268) Nurried	acidity (as CaCO3)		E283	2	mg/L	50 mg/L	100	85.0	115	
Anions and Nutrients (QCLot: 296268) Nurried										
Anions and Nutrients (QCLot: 296269) Anions and Nutrients (QCLot: 296269) Sulfate (as SO4)	Anions and Nutrients (QCLot: 296209)									
Anions and Nutrients (QCLot: 296269) Sulfate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L 100 mg/L 103 90.0 110 Anions and Nutrients (QCLot: 296270) Dromide 24959-67-9 E235.Br-L 0.05 mg/L 0.5 mg/L 107 85.0 115 Anions and Nutrients (QCLot: 296271) Schloride 16887-00-6 E235.Cl-L 0.1 mg/L 100 mg/L 104 90.0 110 Anions and Nutrients (QCLot: 296272) Anions and Nutrients (QCLot: 296272) Anitate (as N) 14797-55-8 E235.NO3-L 0.005 mg/L 2.5 mg/L 105 90.0 110 Anions and Nutrients (QCLot: 296273) Anions and Nutrients (QCLot: 296273) Anions and Nutrients (QCLot: 297810)	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.001	mg/L	0.02 mg/L	98.6	80.0	120	
Anions and Nutrients (QCLot: 296269) sulfate (as SO4) 14808-79-8 E235.SO4 0.3 mg/L 100 mg/L 100 mg/L 103 90.0 110 Anions and Nutrients (QCLot: 296270) soronide 24959-67-9 E235.Br-L 0.05 mg/L 0.5 mg/L 100 mg/L 1	Anions and Nutrients (QCLot: 296268)									
Anions and Nutrients (QCLot: 296271) Anions and Nutrients (QCLot: 296271) Anions and Nutrients (QCLot: 296272) Anitrate (as N)	fluoride	16984-48-8	E235.F	0.02	mg/L	1 mg/L	106	90.0	110	
Anions and Nutrients (QCLot: 296270) Anions and Nutrients (QCLot: 296271) Anions and Nutrients (QCLot: 296271) Anions and Nutrients (QCLot: 296272) Anions and Nutrients (QCLot: 296272) Anions and Nutrients (QCLot: 296272) Anions and Nutrients (QCLot: 296273) Anions and Nutrients (QCLot: 296273) Anions and Nutrients (QCLot: 296273) Anions and Nutrients (QCLot: 297810)	Anions and Nutrients (QCLot: 296269)									
Anions and Nutrients (QCLot: 296271) Anions and Nutrients (QCLot: 296272) Anions and Nutrients (QCLot: 296272) Anions and Nutrients (QCLot: 296272) Italiare (as N)	sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	100 mg/L	103	90.0	110	
Anions and Nutrients (QCLot: 296271) Chloride 16887-00-6 E235.Cl-L 0.1 mg/L 100 mg/L 104 90.0 110 Anions and Nutrients (QCLot: 296272) Chitrate (as N) 14797-55-8 E235.NO3-L 0.005 mg/L 2.5 mg/L 105 90.0 110 Anions and Nutrients (QCLot: 296273) Chitrite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 106 90.0 110 Anions and Nutrients (QCLot: 297810) Chosphorus, total 7723-14-0 E372-U 0.002 mg/L 8.32 mg/L 98.8 80.0 120	Anions and Nutrients (QCLot: 296270)									
Anions and Nutrients (QCLot: 296272) Anions and Nutrients (QCLot: 296272) Anions and Nutrients (QCLot: 296273) Anions and Nutrients (QCLot: 296273) Anions and Nutrients (QCLot: 297810)	bromide	24959-67-9	E235.Br-L	0.05	mg/L	0.5 mg/L	107	85.0	115	
Anions and Nutrients (QCLot: 296272) Initrate (as N) 14797-55-8 E235.NO3-L 0.005 mg/L 2.5 mg/L 105 90.0 110 Anions and Nutrients (QCLot: 296273) Initrate (as N) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 106 90.0 110 Anions and Nutrients (QCLot: 297810) Initrate (as N) 7723-14-0 E372-U 0.002 mg/L 8.32 mg/L 98.8 80.0 120	Anions and Nutrients (QCLot: 296271)									
Anions and Nutrients (QCLot: 296273) Anions and Nutrients (QCLot: 297810) Anions and Nutrients (QCLot: 297810) Anions and Nutrients (QCLot: 297810) T723-14-0 E372-U 0.002 mg/L 8.32 mg/L 98.8 80.0 120	chloride	16887-00-6	E235.CI-L	0.1	mg/L	100 mg/L	104	90.0	110	
Anions and Nutrients (QCLot: 296273) 14797-65-0 E235.NO2-L 0.001 mg/L 0.5 mg/L 106 90.0 110 Anions and Nutrients (QCLot: 297810) 20hosphorus, total 7723-14-0 E372-U 0.002 mg/L 8.32 mg/L 98.8 80.0 120	Anions and Nutrients (QCLot: 296272)									
Anions and Nutrients (QCLot: 297810) 7723-14-0 E372-U 0.001 mg/L 0.5 mg/L 106 90.0 110 8.32 mg/L 98.8 80.0 120	nitrate (as N)	14797-55-8	E235.NO3-L	0.005	mg/L	2.5 mg/L	105	90.0	110	
Anions and Nutrients (QCLot: 297810) chosphorus, total 7723-14-0 E372-U 0.002 mg/L 8.32 mg/L 98.8 80.0 120	Anions and Nutrients (QCLot: 296273)									
phosphorus, total 7723-14-0 E372-U 0.002 mg/L 8.32 mg/L 98.8 80.0 120	nitrite (as N)	14797-65-0	E235.NO2-L	0.001	mg/L	0.5 mg/L	106	90.0	110	
	Anions and Nutrients (QCLot: 297810)									
Anions and Nutrients (QCLot: 302102)	phosphorus, total	7723-14-0	E372-U	0.002	mg/L	8.32 mg/L	98.8	80.0	120	
	Anions and Nutrients (QCLot: 302102)									

 Page
 : 12 of 18

 Work Order
 : CG2104194

 Client
 : Teck Coal Limited

Sub-Matrix: Water					Laboratory Co	entrol Sample (LCS)	Report	
				Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Anions and Nutrients (QCLot: 302102)	- continued							
Kjeldahl nitrogen, total [TKN]	E318	0.05	mg/L	4 mg/L	89.8	75.0	125	
Anions and Nutrients (QCLot: 305707)								
ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	0.2 mg/L	110	85.0	115	
Organic / Inorganic Carbon (QCLot: 303	820)							
carbon, dissolved organic [DOC]	E358-L	0.5	mg/L	10 mg/L	102	80.0	120	
Organic / Inorganic Carbon (QCLot: 303	828)							
carbon, total organic [TOC]	E355-L	0.5	mg/L	10 mg/L	106	80.0	120	
Total Metals (QCLot: 298903)								
chromium, total	7440-47-3 E420.Cr-L	0.0001	mg/L	0.25 mg/L	97.8	80.0	120	
Total Metals (QCLot: 298904)								1
aluminum, total	7429-90-5 E420	0.003	mg/L	2 mg/L	97.9	80.0	120	
antimony, total	7440-36-0 E420	0.0001	mg/L	1 mg/L	105	80.0	120	
arsenic, total	7440-38-2 E420	0.0001	mg/L	1 mg/L	101	80.0	120	
barium, total	7440-39-3 E420	0.0001	mg/L	0.25 mg/L	102	80.0	120	
beryllium, total	7440-41-7 E420	0.00002	mg/L	0.1 mg/L	101	80.0	120	
bismuth, total	7440-69-9 E420	0.00005	mg/L	1 mg/L	98.5	80.0	120	
boron, total	7440-42-8 E420	0.01	mg/L	1 mg/L	90.8	80.0	120	
cadmium, total	7440-43-9 E420	0.000005	mg/L	0.1 mg/L	96.4	80.0	120	
calcium, total	7440-70-2 E420	0.05	mg/L	50 mg/L	102	80.0	120	
cobalt, total	7440-48-4 E420	0.0001	mg/L	0.25 mg/L	102	80.0	120	
copper, total	7440-50-8 E420	0.0005	mg/L	0.25 mg/L	97.7	80.0	120	
iron, total	7439-89-6 E420	0.01	mg/L	1 mg/L	98.6	80.0	120	
lead, total	7439-92-1 E420	0.00005	mg/L	0.5 mg/L	95.1	80.0	120	
lithium, total	7439-93-2 E420	0.001	mg/L	0.25 mg/L	96.0	80.0	120	
magnesium, total	7439-95-4 E420	0.005	mg/L	50 mg/L	101	80.0	120	
manganese, total	7439-96-5 E420	0.0001	mg/L	0.25 mg/L	99.6	80.0	120	
molybdenum, total	7439-98-7 E420	0.00005	mg/L	0.25 mg/L	105	80.0	120	
nickel, total	7440-02-0 E420	0.0005	mg/L	0.5 mg/L	99.4	80.0	120	
potassium, total	7440-09-7 E420	0.05	mg/L	50 mg/L	100	80.0	120	
selenium, total	7782-49-2 E420	0.00005	mg/L	1 mg/L	97.3	80.0	120	
silicon, total	7440-21-3 E420	0.1	mg/L	10 mg/L	99.3	80.0	120	
silver, total	7440-22-4 E420	0.00001	mg/L	0.1 mg/L	102	80.0	120	
sodium, total	17341-25-2 E420	0.05	mg/L	50 mg/L	103	80.0	120	
strontium, total	7440-24-6 E420	0.0002	mg/L	0.25 mg/L	97.4	80.0	120	
sulfur, total	7704-34-9 E420	0.5	mg/L	50 mg/L	100	80.0	120	

 Page
 : 13 of 18

 Work Order
 : CG2104194

 Client
 : Teck Coal Limited

Sub-Matrix: Water						Laboratory Con	trol Sample (LCS)	Report		
					Spike	Recovery (%)	(%) Recovery Limits (%)			
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifie	
Total Metals (QCLot: 298904) - con										
hallium, total	7440-28-0	E420	0.00001	mg/L	1 mg/L	97.3	80.0	120		
in, total	7440-31-5	E420	0.0001	mg/L	0.5 mg/L	99.0	80.0	120		
itanium, total	7440-32-6	E420	0.0003	mg/L	0.25 mg/L	95.1	80.0	120		
uranium, total	7440-61-1	E420	0.00001	mg/L	0.005 mg/L	96.6	80.0	120		
vanadium, total	7440-62-2	E420	0.0005	mg/L	0.5 mg/L	99.6	80.0	120		
zinc, total	7440-66-6	E420	0.003	mg/L	0.5 mg/L	96.6	80.0	120		
Total Metals (QCLot: 301411)										
mercury, total	7439-97-6	E508-L	0.5	ng/L	5 ng/L	97.6	80.0	120		
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	0.0001 mg/L	92.2	80.0	120		
Dissolved Metals (QCLot: 300277)										
chromium, dissolved	7440-47-3	E421.Cr-L	0.0001	mg/L	0.25 mg/L	97.8	80.0	120		
Dissolved Metals (QCLot: 300278)										
aluminum, dissolved	7429-90-5	E421	0.001	mg/L	2 mg/L	102	80.0	120		
antimony, dissolved	7440-36-0	E421	0.0001	mg/L	1 mg/L	102	80.0	120		
arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	1 mg/L	98.6	80.0	120		
parium, dissolved	7440-39-3	E421	0.0001	mg/L	0.25 mg/L	98.9	80.0	120		
peryllium, dissolved	7440-41-7	E421	0.00002	mg/L	0.1 mg/L	91.4	80.0	120		
pismuth, dissolved	7440-69-9	E421	0.00005	mg/L	1 mg/L	107	80.0	120		
poron, dissolved	7440-42-8	E421	0.01	mg/L	1 mg/L	88.9	80.0	120		
cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	0.1 mg/L	98.5	80.0	120		
calcium, dissolved	7440-70-2	E421	0.05	mg/L	50 mg/L	92.0	80.0	120		
cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	0.25 mg/L	99.6	80.0	120		
copper, dissolved	7440-50-8	E421	0.0002	mg/L	0.25 mg/L	98.0	80.0	120		
ron, dissolved	7439-89-6	E421	0.01	mg/L	1 mg/L	98.2	80.0	120		
ead, dissolved	7439-92-1	E421	0.00005	mg/L	0.5 mg/L	103	80.0	120		
ithium, dissolved	7439-93-2	E421	0.001	mg/L	0.25 mg/L	91.6	80.0	120		
nagnesium, dissolved	7439-95-4	E421	0.005	mg/L	50 mg/L	93.0	80.0	120		
nanganese, dissolved	7439-96-5	E421	0.0001	mg/L	0.25 mg/L	97.5	80.0	120		
nolybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	0.25 mg/L	100	80.0	120		
nickel, dissolved	7440-02-0	E421	0.0005	mg/L	0.5 mg/L	98.4	80.0	120		
ootassium, dissolved	7440-09-7	E421	0.05	mg/L	50 mg/L	97.3	80.0	120		
selenium, dissolved	7782-49-2		0.00005	mg/L	1 mg/L	101	80.0	120		
silicon, dissolved	7440-21-3		0.05	mg/L	10 mg/L	94.6	80.0	120		
silver, dissolved	7440-22-4		0.00001	mg/L	0.1 mg/L	96.2	80.0	120		
sodium, dissolved	17341-25-2		0.05	mg/L	50 mg/L	101	80.0	120		
strontium, dissolved	7440-24-6		0.0002	mg/L	0.25 mg/L	98.4	80.0	120		

 Page
 : 14 of 18

 Work Order
 : CG2104194

 Client
 : Teck Coal Limited

Sub-Matrix: Water	b-Matrix: Water							Report	
					Spike	Recovery (%)	Recovery Limits (%)		
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Dissolved Metals (QCLot: 300278) - con	tinued								
sulfur, dissolved	7704-34-9	E421	0.5	mg/L	50 mg/L	86.1	80.0	120	
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	1 mg/L	107	80.0	120	
tin, dissolved	7440-31-5	E421	0.0001	mg/L	0.5 mg/L	96.5	80.0	120	
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	0.25 mg/L	92.1	80.0	120	
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	0.005 mg/L	111	80.0	120	
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	0.5 mg/L	99.3	80.0	120	
zinc, dissolved	7440-66-6	E421	0.001	mg/L	0.5 mg/L	98.4	80.0	120	

 Page
 : 15 of 18

 Work Order
 : CG2104194

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water					Matrix Spike (MS) Report							
					Spi	ike	Recovery (%)	Recovery	Limits (%)			
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier		
	ents (QCLot: 296209)											
CG2104188-019	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0557 mg/L	0.05 mg/L	111	70.0	130			
Anions and Nutri	ents (QCLot: 296268)											
CG2104186-007	Anonymous	fluoride	16984-48-8	E235.F	1.07 mg/L	1 mg/L	107	75.0	125			
Anions and Nutri	ents (QCLot: 296269)											
CG2104186-007	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	104 mg/L	100 mg/L	104	75.0	125			
Anions and Nutri	ents (QCLot: 296270)											
CG2104186-007	Anonymous	bromide	24959-67-9	E235.Br-L	0.544 mg/L	0.5 mg/L	109	75.0	125			
Anions and Nutri	ents (QCLot: 296271)											
CG2104186-007	Anonymous	chloride	16887-00-6	E235.CI-L	105 mg/L	100 mg/L	105	75.0	125			
Anions and Nutri	ents (QCLot: 296272)											
CG2104186-007	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	2.63 mg/L	2.5 mg/L	105	75.0	125			
Anions and Nutri	ents (QCLot: 296273)											
CG2104186-007	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.538 mg/L	0.5 mg/L	108	75.0	125			
Anions and Nutri	ents (QCLot: 297810)											
CG2104189-004	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0520 mg/L	0.0676 mg/L	76.9	70.0	130			
Anions and Nutri	ents (QCLot: 302102)											
CG2104194-002	RG_ERCKUT_WS_LAEMP_ EVO_2021-09-15_NP	Kjeldahl nitrogen, total [TKN]		E318	2.54 mg/L	2.5 mg/L	102	70.0	130			
Anions and Nutri	ents (QCLot: 305707)											
CG2104196-003	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.105 mg/L	0.1 mg/L	105	75.0	125			
Organic / Inorgar	ic Carbon (QCLot: 303	820)										
CG2104186-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	28.4 mg/L	23.9 mg/L	119	70.0	130			
Organic / Inorgar	ic Carbon (QCLot: 303	828)										
CG2104186-001	Anonymous	carbon, total organic [TOC]		E355-L	27.8 mg/L	23.9 mg/L	116	70.0	130			
Fotal Metals (QC	Lot: 298903)						,					
CG2104189-002	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.0376 mg/L	0.04 mg/L	94.0	70.0	130			
Total Metals (QC	Lot: 298904)											
CG2104189-002	Anonymous	aluminum, total	7429-90-5	E420	0.190 mg/L	0.2 mg/L	95.2	70.0	130			

 Page
 : 16 of 18

 Work Order
 : CG2104194

 Client
 : Teck Coal Limited

ub-Matrix: Water						Matrix Spike (MS) Report							
					Spi	ke	Recovery (%)	Recovery	Limits (%)				
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie			
otal Metals (QC	Lot: 298904) - contir	nued											
CG2104189-002	Anonymous	antimony, total	7440-36-0	E420	0.0212 mg/L	0.02 mg/L	106	70.0	130				
		arsenic, total	7440-38-2	E420	0.0195 mg/L	0.02 mg/L	97.6	70.0	130				
		barium, total	7440-39-3	E420	ND mg/L	0.02 mg/L	ND	70.0	130				
		beryllium, total	7440-41-7	E420	0.0371 mg/L	0.04 mg/L	92.7	70.0	130				
		bismuth, total	7440-69-9	E420	0.00898 mg/L	0.01 mg/L	89.8	70.0	130				
		boron, total	7440-42-8	E420	0.086 mg/L	0.1 mg/L	86.5	70.0	130				
		cadmium, total	7440-43-9	E420	0.00389 mg/L	0.004 mg/L	97.3	70.0	130				
		calcium, total	7440-70-2	E420	ND mg/L	4 mg/L	ND	70.0	130				
		cobalt, total	7440-48-4	E420	0.0191 mg/L	0.02 mg/L	95.3	70.0	130				
		copper, total	7440-50-8	E420	0.0184 mg/L	0.02 mg/L	91.8	70.0	130				
		iron, total	7439-89-6	E420	1.90 mg/L	2 mg/L	95.2	70.0	130				
		lead, total	7439-92-1	E420	0.0186 mg/L	0.02 mg/L	93.2	70.0	130				
		lithium, total	7439-93-2	E420	0.0908 mg/L	0.1 mg/L	90.8	70.0	130				
		magnesium, total	7439-95-4	E420	ND mg/L	1 mg/L	ND	70.0	130				
		manganese, total	7439-96-5	E420	0.0186 mg/L	0.02 mg/L	93.2	70.0	130				
		molybdenum, total	7439-98-7	E420	0.0214 mg/L	0.02 mg/L	107	70.0	130				
		nickel, total	7440-02-0	E420	0.0371 mg/L	0.04 mg/L	92.8	70.0	130				
		potassium, total	7440-09-7	E420	3.49 mg/L	4 mg/L	87.2	70.0	130				
		selenium, total	7782-49-2	E420	ND mg/L	0.04 mg/L	ND	70.0	130				
		silicon, total	7440-21-3	E420	8.78 mg/L	10 mg/L	87.8	70.0	130				
		silver, total	7440-22-4	E420	0.00401 mg/L	0.004 mg/L	100	70.0	130				
		sodium, total	17341-25-2	E420	ND mg/L	2 mg/L	ND	70.0	130				
		strontium, total	7440-24-6	E420	ND mg/L	0.02 mg/L	ND	70.0	130				
		sulfur, total	7704-34-9	E420	ND mg/L	20 mg/L	ND	70.0	130				
		thallium, total	7440-28-0	E420	0.00370 mg/L	0.004 mg/L	92.4	70.0	130				
		tin, total	7440-31-5	E420	0.0204 mg/L	0.02 mg/L	102	70.0	130				
		titanium, total	7440-32-6	E420	0.0388 mg/L	0.04 mg/L	96.9	70.0	130				
		uranium, total	7440-61-1	E420	ND mg/L	0.004 mg/L	ND	70.0	130				
		vanadium, total	7440-62-2	E420	0.0986 mg/L	0.1 mg/L	98.6	70.0	130				
		zinc, total	7440-66-6	E420	0.371 mg/L	0.4 mg/L	92.7	70.0	130				
otal Metals (QC	Lot: 301411)												
CG2104186-002	Anonymous	mercury, total	7439-97-6	E508-L	4.83 ng/L	5 ng/L	96.6	70.0	130				
issolved Metals	(QCLot: 300043)												
CG2104189-002	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000971 mg/L	0.0001 mg/L	97.1	70.0	130				

 Page
 : 17 of 18

 Work Order
 : CG2104194

 Client
 : Teck Coal Limited

Sub-Matrix: Water						Matrix Spil	ke (MS) Report			
					Sp	ike	Recovery (%)	Recovery	y Limits (%)	
Laboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
	(QCLot: 300277) - con	tinued								
CG2104194-002	RG_ERCKUT_WS_LAEMP_ EVO_2021-09-15_NP	chromium, dissolved	7440-47-3	E421.Cr-L	0.0386 mg/L	0.04 mg/L	96.5	70.0	130	
Dissolved Metals	(QCLot: 300278)									
CG2104194-002	RG_ERCKUT_WS_LAEMP_	aluminum, dissolved	7429-90-5	E421	0.193 mg/L	0.2 mg/L	96.6	70.0	130	
	EVO_2021-09-15_NP	antimony, dissolved	7440-36-0	E421	0.0201 mg/L	0.02 mg/L	101	70.0	130	
		arsenic, dissolved	7440-38-2	E421	0.0201 mg/L	0.02 mg/L	101	70.0	130	
		barium, dissolved	7440-39-3	E421	ND mg/L	0.02 mg/L	ND	70.0	130	
		beryllium, dissolved	7440-41-7	E421	0.0345 mg/L	0.04 mg/L	86.2	70.0	130	
		bismuth, dissolved	7440-69-9	E421	0.00890 mg/L	0.01 mg/L	89.0	70.0	130	
		boron, dissolved	7440-42-8	E421	0.088 mg/L	0.1 mg/L	87.7	70.0	130	
		cadmium, dissolved	7440-43-9	E421	0.00386 mg/L	0.004 mg/L	96.5	70.0	130	
		calcium, dissolved	7440-70-2	E421	ND mg/L	4 mg/L	ND	70.0	130	
		cobalt, dissolved	7440-48-4	E421	0.0184 mg/L	0.02 mg/L	92.1	70.0	130	
		copper, dissolved	7440-50-8	E421	0.0183 mg/L	0.02 mg/L	91.5	70.0	130	
		iron, dissolved	7439-89-6	E421	1.89 mg/L	2 mg/L	94.5	70.0	130	
		lead, dissolved	7439-92-1	E421	0.0187 mg/L	0.02 mg/L	93.7	70.0	130	
		lithium, dissolved	7439-93-2	E421	0.0884 mg/L	0.1 mg/L	88.4	70.0	130	
		magnesium, dissolved	7439-95-4	E421	ND mg/L	1 mg/L	ND	70.0	130	
		manganese, dissolved	7439-96-5	E421	0.0186 mg/L	0.02 mg/L	93.3	70.0	130	
		molybdenum, dissolved	7439-98-7	E421	0.0209 mg/L	0.02 mg/L	104	70.0	130	
		nickel, dissolved	7440-02-0	E421	0.0362 mg/L	0.04 mg/L	90.5	70.0	130	
		potassium, dissolved	7440-09-7	E421	3.65 mg/L	4 mg/L	91.2	70.0	130	
		selenium, dissolved	7782-49-2	E421	ND mg/L	0.04 mg/L	ND	70.0	130	
		silicon, dissolved	7440-21-3	E421	9.15 mg/L	10 mg/L	91.5	70.0	130	
		silver, dissolved	7440-22-4	E421	0.00375 mg/L	0.004 mg/L	93.9	70.0	130	
		sodium, dissolved	17341-25-2	E421	ND mg/L	2 mg/L	ND	70.0	130	
		strontium, dissolved	7440-24-6	E421	ND mg/L	0.02 mg/L	ND	70.0	130	
		sulfur, dissolved	7704-34-9	E421	ND mg/L	20 mg/L	ND	70.0	130	
		thallium, dissolved	7440-28-0	E421	0.00383 mg/L	0.004 mg/L	95.7	70.0	130	
		tin, dissolved	7440-31-5	E421	0.0195 mg/L	0.02 mg/L	97.7	70.0	130	
		titanium, dissolved	7440-32-6	E421	0.0385 mg/L	0.04 mg/L	96.3	70.0	130	
		uranium, dissolved	7440-61-1	E421	ND mg/L	0.004 mg/L	ND	70.0	130	
		vanadium, dissolved	7440-62-2	E421	0.101 mg/L	0.1 mg/L	101	70.0	130	
		zinc, dissolved	7440-66-6	E421	0.360 mg/L	0.4 mg/L	90.1	70.0	130	

 Page
 : 18 of 18

 Work Order
 : CG2104194

 Client
 : Teck Coal Limited

Teck								Pag	e foft											
·	COC ID:		Septembe					TURN	AROUN	D TIME:	T						T			
Facility Name / Job#	PROJECTACLIE REP	NEJNEÐ	*				•	L	ab Name	ABOR ALS Calgar								Excel	PDF	EDD
Project Manager	Allie Ferguson							Lat	Contact	Lyudmyla S	hvets					pite terrorresismo	a me			
	elis Argusos @sadurom						,					isglobal.com	1			ukoha Military	historia e e tituli		3	,
Address Address	421 Pine Avenue							L	Address	2559 29 Str	cet NE							r .	L 19	*
	 					I , Im		<u> </u>									41	<u> </u>		4.00
City		Sparwo					c			Calgary		Province	AB	: .		an way to	mose de	r i	F.	la la
Postal Code		V0B 20	G0			Country C	anada			T1Y 7B5 1 403 407 1	704	Country	Canada							
Phone Number		APLE DETAILS			<u> </u>			Phone	Number	1 403 407 1		ALVSIS RE	A. L. A.		4.0					
	54.0	IPLE DETAILS	22	1	المستعار		· · · · · · · · · · · · · · · · · · ·		12.2	, .2		ALPSIS RE	(JURNER)				Patternet - Po	Pior Le Lab	Platend &	Tati, Nº 1900
										# N	" F	N .	N	F	, N	F				
									[-			-11		 					
					ļ				1	1	EXPLOSE.	10504		HCL	HNOJ	HNO3				
]				3							112.51.94		nue	BNOS	Tries				
					Material (Yes/No)							()				+				+
					Ĕ	ĺ				Ξ		Į Ž			1 4	1 1				
				ļ.	i <u>ā</u>			ļ		AROUTINE	၂ ဥ	ackage-TKN/TOC	- ₹		ΙĒ	15 /	1			l.
	ĺ			ľ	ate	-				¥ Si	ΙĂ	🛱	£	AF-VA	Σ	N N		'		
					Σ						- 20 20	B	Y.	4	1	🙀		'	1	
	1				l ag		1	l.*		9	ack	g	3	Č	18	18		/	1 '	
				Field	Hazardous		Time	G=Grab	# Of	reckcoa va	ALS_Package-DOC	2	HG-T-U-CVAF-VA	HG-D-CV	TECKCOAL-MET-T- VA	TECKCOAL_MET-D- VA	ĺ		1	1
Sample ID	Sam	ple Location		Matrix		Date	(24hr)	C=Comp	Cont.	TE, VA	AL.	ALS	HG	HG	Z Z	ĂĂ	1		1 . 1	1
RG_ERCKDT_WS_LAEMP_EVO_2021-09-15_NP	RG	ERCKDT		ws	No	9/15/2021	909	G	7	х	x	х	х	x	x	x				
RG_ERCKUT_WS_LAEMP_EVO_2021-09-15_NP	RG	ERCKUI.		WS	No	9/15/2021	1530	G	7	X	X	X	x	х	х	$+$ \times			ļ. — !	
	(- 1							<u> </u>				 -:						 		
	200							† 						_~~~	 -					
	141		les in										f			t		i — I	<u>_</u>	
					W															
		111			14.								i i							
	8.00	O-MORE STATE OF THE PARTY OF			W.		.													
ADDITIONAL COMMENTS	SPECIAL INSTRUCT	TONS	* .			RELINQUIS	IEO BY AFF	ilia'i ion		DATE/TIM	la. 11	ACI	EPTEDI	RY/APFI	LIATIO	<u> </u>		100		
	•				<u> </u>							<u> </u>		<i>F</i> -				_7		
ALS PG Environmental Division					<u> </u>	Jen n il	er Ings/Mint	10W		***************************************	***************************************				<u> </u>			1/1/	<u> 2—</u> 7	100
Calgary												<u> </u>	. 0					<u>///</u>		11/1/
Work Order Reference												. ,								4
	NED DESCRIPTION	4	D	1-6-10	12					100										
CG2104194	Priori	ity (2-3 business of		default) x	ł	Sampler's Na	ıme		Ŋ.	lennifer la	gs		Mob	ile#	ĺ		519-500)-3 444		
		ncy (1 Business D			 			Jan	A.B.	/ D			<u> </u>		\$.8 \$ X Z Z	¥51000311	SECURE SIX	3/2 C V 360	1000	19920
	For Emergency <1 D	Day, ASAP or We	ekend - Conta	ict ALS]	Sampler's Sign	ature	σ	σ.		3/17		Date/	Гіте	(Mari	. i S	eptemb e r	16, 2021		

Telephone: +1 403 407 1800

WATER CHEMISTRY

ALS Laboratory Report CG2104005 (Finalized September 30, 2021)

: Allie Ferguson

CERTIFICATE OF ANALYSIS

Work Order : CG2104005

Client : Teck Coal Limited

Address : 421 Pine Avenue

Sparwood BC Canada V0B 2G0

Telephone

Contact

Project : REGIONAL EFFECTS PROGRAM

: VPO00750546

C-O-C number : September EVO LAEMP 2021

Sampler : Jennifer Ings

Site

Quote number : Teck Coal Master Quote

No. of samples received : 6 No. of samples analysed : 6 Page : 1 of 11

Laboratory : Calgary - Environmental

Account Manager : Lyudmyla Shvets Address : 2559 29th Street NE

Calgary AB Canada T1Y 7B5 Telephone : +1 403 407 1800

Date Samples Received : 11-Sep-2021 10:15

Date Analysis Commenced : 12-Sep-2021

Issue Date : 30-Sep-2021 12:39

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Dan Gebert	Laboratory Analyst	Metals, Burnaby, British Columbia
Dee Lee	Analyst	Metals, Burnaby, British Columbia
Erin Sanchez		Inorganics, Calgary, Alberta
Hannah Phung	Lab Assistant	Inorganics, Calgary, Alberta
Harpreet Chawla	Team Leader - Inorganics	Inorganics, Calgary, Alberta
Jay Jang	Lab Assistant	Metals, Burnaby, British Columbia
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia
Lindsay Gung	Supervisor - Water Chemistry	Inorganics, Burnaby, British Columbia
Millicent Brentnall	Laboratory Analyst	Metals, Calgary, Alberta
Owen Cheng		Metals, Burnaby, British Columbia
Parker Sgarbossa	Laboratory Analyst	Inorganics, Calgary, Alberta
Ruby Pham	Lab Assistant	Metals, Burnaby, British Columbia
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta
Sara Niroomand		Inorganics, Calgary, Alberta
Shirley Li		Metals, Calgary, Alberta
Vladka Stamenova	Analyst	Inorganics, Calgary, Alberta

Page : 3 of 11 Work Order : CG2104005 Client

: Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
%	percent
μg/L	micrograms per litre
μS/cm	Microsiemens per centimetre
meq/L	milliequivalents per litre
mg/L	milligrams per litre
mV	millivolts
NTU	nephelometric turbidity units
pH units	pH units

<: less than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical
	Conductivity.
HTD	Hold time exceeded for re-analysis or dilution, but initial testing was conducted within
	hold time.
RRV	Reported result verified by repeat analysis.
TKNI	TKN result may be biased low due to Nitrate interference. Nitrate-N is > 10x TKN.

>: greater than.

Page : 4 of 11
Work Order : CG2104005
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water (Matrix: Water)	ient sample ID	RG_MIDER_WS _LAEMP_EVO_	RG_RIVER_WS _2021-09-09_N P	RG_ERCK_WS_ LAEMP_EVO_2	RG_FBLANK_W S_2021-09-10_ NP	RG_TRIP_WS_2 021-09-10_NP			
			Client samp	ling date / time	09-Sep-2021 14:35	09-Sep-2021 14:35	021-09-10_NP 10-Sep-2021 11:30	10-Sep-2021 11:30	10-Sep-2021 11:30
Analyte	CAS Number	Method	LOR	Unit	CG2104005-001	CG2104005-002	CG2104005-003	CG2104005-004	CG2104005-005
					Result	Result	Result	Result	Result
Physical Tests									
acidity (as CaCO3)		E283	2.0	mg/L	<2.0	<2.0	<2.0	2.0	2.3
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	149	147	385	<1.0	<1.0
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	11.8	12.4	9.8	<1.0	<1.0
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
alkalinity, total (as CaCO3)		E290	1.0	mg/L	161	160	394	<1.0	<1.0
conductivity		E100	2.0	μS/cm	398	402	1850	<2.0	<2.0
hardness (as CaCO3), dissolved		EC100	0.50	mg/L	214	210	1220	<0.50	<0.50
oxidation-reduction potential [ORP]		E125	0.10	mV	488	449	490	455	472
рН		E108	0.10	pH units	8.42	8.42	8.30	4.88	4.96
solids, total dissolved [TDS]		E162	10	mg/L	261	251	1490	<10	<10
solids, total suspended [TSS]		E160-L	1.0	mg/L	<1.0	<1.0	1.5	<1.0	<1.0
turbidity		E121	0.10	NTU	0.35	0.29	0.41	<0.10	<0.10
alkalinity, bicarbonate (as HCO3)	71-52-3	E290	1.0	mg/L	182	179	469	<1.0	<1.0
alkalinity, carbonate (as CO3)	3812-32-6	E290	1.0	mg/L	7.1	7.4	5.9	<1.0	<1.0
alkalinity, hydroxide (as OH)	14280-30-9	E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Anions and Nutrients									
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0311	0.0162	<0.0050	0.0078 RRV	<0.0050
bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	<0.250 DLDS	<0.050	<0.050
chloride	16887-00-6	E235.CI-L	0.10	mg/L	1.11	1.12	6.19	<0.10	<0.10
fluoride	16984-48-8	E235.F	0.020	mg/L	0.127	0.127	0.116	<0.020	<0.020
Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	0.112	0.092	<0.050 TKNI	<0.050	<0.050
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	0.153	0.131	14.8 HTD	<0.0050	<0.0050
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0010	<0.0010	0.0053 HTD	<0.0010	<0.0010
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	0.0030	0.0027	0.0016	<0.0010	<0.0010
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0048	0.0058	<0.0020	<0.0020	<0.0020
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	62.4	62.0	768	<0.30	<0.30
Organic / Inorganic Carbon				-					
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	1.75	1.81	1.77	<0.50	
carbon, total organic [TOC]		E355-L	0.50	mg/L	1.80	1.80	1.76	<0.50	<0.50

Page : 5 of 11
Work Order : CG2104005
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water (Matrix: Water)			Cli	ient sample ID	RG_MIDER_WS _LAEMP_EVO_ 2021-09-09_NP	RG_RIVER_WS _2021-09-09_N P	RG_ERCK_WS_ LAEMP_EVO_2 021-09-10_NP	RG_FBLANK_W S_2021-09-10_ NP	RG_TRIP_WS_2 021-09-10_NP
			Client samp	ling date / time	09-Sep-2021 14:35	09-Sep-2021 14:35	10-Sep-2021 11:30	10-Sep-2021 11:30	10-Sep-2021 11:30
Analyte	CAS Number	Method	LOR	Unit	CG2104005-001	CG2104005-002	CG2104005-003	CG2104005-004	CG2104005-005
					Result	Result	Result	Result	Result
Ion Balance		50404	0.40		4.50	4.54	05.4	0.40	0.40
anion sum		EC101	0.10	meq/L	4.56	4.54	25.1	<0.10	<0.10
cation sum		EC101	0.10	meq/L	4.47	4.40	24.7	<0.10	<0.10
ion balance (cations/anions ratio)		EC101	0.010	%	98.0	96.9	98.4	100 RRV	100
ion balance (cation-anion difference)		EC101	0.010	%	0.997	1.56	0.803	<0.010	<0.010
Total Metals									
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0055	0.0075	<0.0030	<0.0030	<0.0030
antimony, total	7440-36-0	E420	0.00010	mg/L	<0.00010	<0.00010	0.00024	<0.00010	<0.00010
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00019	0.00018	0.00027	<0.00010	<0.00010
barium, total	7440-39-3	E420	0.00010	mg/L	0.113	0.114	0.0228	<0.00010	<0.00010
beryllium, total	7440-41-7	E420	0.020	μg/L	<0.020	<0.020	<0.020	<0.020	<0.020
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
boron, total	7440-42-8	E420	0.010	mg/L	0.011	0.011	0.017	<0.010	<0.010
cadmium, total	7440-43-9	E420	0.0050	μg/L	0.0227	0.0192	0.0078	<0.0050	<0.0050
calcium, total	7440-70-2	E420	0.050	mg/L	53.7	55.0	233	<0.050	<0.050
chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00012	0.00012	0.00014	<0.00010	<0.00010
cobalt, total	7440-48-4	E420	0.10	μg/L	<0.10	<0.10	1.22	<0.10	<0.10
copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
iron, total	7439-89-6	E420	0.010	mg/L	<0.010	<0.010	<0.010	<0.010	<0.010
lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0066	0.0067	0.0281	<0.0010	<0.0010
magnesium, total	7439-95-4	E420	0.0050	mg/L	16.3	16.6	143	<0.0050	<0.0050
manganese, total	7439-96-5	E420	0.00010	mg/L	0.00141	0.00144	0.0101	<0.00010	<0.00010
mercury, total	7439-97-6	E508-L	0.00050	μg/L	0.00053	0.00053	<0.00050	<0.00050	<0.00050
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.000858	0.000877	0.00351	<0.000050	<0.000050
nickel, total	7440-02-0	E420	0.00050	mg/L	0.00070	0.00071	0.0247	<0.00050	<0.00050
potassium, total	7440-02-0	E420	0.050	mg/L	0.680	0.684	2.91	<0.050	<0.050
selenium, total	7782-49-2	E420	0.050	μg/L	2.03	1.90	144	<0.050	<0.050
silicon, total	7440-21-3	E420	0.10	mg/L	2.15	2.25	3.61	<0.10	<0.10
silver, total	7440-21-3	E420	0.000010	mg/L	<0.000010	<0.00010	<0.000010	<0.00010	<0.00010
,			0.050	-				<0.050	<0.050
sodium, total	17341-25-2	E420	0.050	mg/L	3.58	3.59	3.53	\U.U5U	<u>~0.050</u>

Page : 6 of 11
Work Order : CG2104005
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water (Matrix: Water)			Cli	ient sample ID	RG_MIDER_WS _LAEMP_EVO_ 2021-09-09_NP	RG_RIVER_WS _2021-09-09_N P	RG_ERCK_WS_ LAEMP_EVO_2 021-09-10_NP	RG_FBLANK_W S_2021-09-10_ NP	RG_TRIP_WS_2 021-09-10_NP
			Client samp	ling date / time	09-Sep-2021 14:35	09-Sep-2021 14:35	10-Sep-2021 11:30	10-Sep-2021 11:30	10-Sep-2021 11:30
Analyte	CAS Number	Method	LOR	Unit	CG2104005-001	CG2104005-002	CG2104005-003	CG2104005-004	CG2104005-005
					Result	Result	Result	Result	Result
Total Metals		F400	0.00000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.450	0.404	0.004	-0.00000	-0.0000
strontium, total	7440-24-6	E420	0.00020	mg/L	0.159	0.164	0.261	<0.00020	<0.00020
sulfur, total	7704-34-9	E420	0.50	mg/L	21.0	21.6	269	<0.50	<0.50
thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	0.000030	<0.00010	<0.000010
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
uranium, total	7440-61-1	E420	0.000010	mg/L	0.000841	0.000863	0.00958	<0.000010	<0.000010
vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030
Dissolved Metals									
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	<0.00010	<0.00010	0.00022	<0.00010	
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00017	0.00017	0.00026	<0.00010	
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.108	0.110	0.0213	<0.00010	
beryllium, dissolved	7440-41-7	E421	0.020	μg/L	<0.020	<0.020	<0.020	<0.020	
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
boron, dissolved	7440-42-8	E421	0.010	mg/L	0.010	0.010	0.017	<0.010	
cadmium, dissolved	7440-43-9	E421	0.0050	μg/L	0.0190	0.0173	0.0101	<0.0050	
calcium, dissolved	7440-70-2	E421	0.050	mg/L	54.9	53.8	229	<0.050	<0.050
chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00012	0.00015	0.00016	<0.00010	
cobalt, dissolved	7440-48-4	E421	0.10	μg/L	<0.10	<0.10	1.21	<0.10	
copper, dissolved	7440-50-8	E421	0.00020	mg/L	<0.00020	0.00022	<0.00020	<0.00020	
iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	<0.010	<0.010	
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0066	0.0065	0.0302	<0.0010	
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	18.7	18.5	158	<0.0050	<0.0050
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00094	0.00094	0.0106	<0.00010	
mercury, dissolved	7439-90-6	E509	0.0000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.000895	0.000909	0.00339	<0.000050	
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00096	0.00093	0.0255	<0.00050	
potassium, dissolved		E421	0.050	_	0.701	0.714	2.88	<0.050	<0.050
potassium, dissolved	7440-09-7	E421	0.050	mg/L	0.701	0.7 14	2.00	\0.050	\0.030

Page : 7 of 11
Work Order : CG2104005
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water	ient sample ID	RG_MIDER_WS	RG_RIVER_WS	RG_ERCK_WS_	RG_FBLANK_W	RG_TRIP_WS_2			
(Matrix: Water)					_LAEMP_EVO_ 2021-09-09_NP	_2021-09-09_N P	LAEMP_EVO_2 021-09-10_NP	S_2021-09-10_ NP	021-09-10_NP
			Client samp	ling date / time	09-Sep-2021 14:35	09-Sep-2021 14:35	10-Sep-2021 11:30	10-Sep-2021 11:30	10-Sep-2021 11:30
Analyte	CAS Number	Method	LOR	Unit	CG2104005-001	CG2104005-002	CG2104005-003	CG2104005-004	CG2104005-005
					Result	Result	Result	Result	Result
Dissolved Metals									
selenium, dissolved	7782-49-2	E421	0.050	μg/L	2.10	1.75	158	<0.050	
silicon, dissolved	7440-21-3	E421	0.050	mg/L	2.23	2.21	3.57	<0.050	
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	
sodium, dissolved	17341-25-2	E421	0.050	mg/L	3.96	3.97	3.84	<0.050	<0.050
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.160	0.163	0.244	<0.00020	
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	22.0	20.9	270	<0.50	
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	0.000032	<0.000010	
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	<0.00030	<0.00030	
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.000786	0.000785	0.00888	<0.000010	
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	<0.0010	<0.0010	0.0010	<0.0010	
dissolved mercury filtration location		EP509	-	_	Field	Field	Field	Field	
dissolved metals filtration location		EP421	-	-	Field	Field	Field	Field	Laboratory

Please refer to the General Comments section for an explanation of any qualifiers detected.

Page : 8 of 11
Work Order : CG2104005
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water (Matrix: Water)			C	lient sample ID	RG_MI3_LAEMP _EVO_2021-09- 10_NP	 	
			Client samp	oling date / time	10-Sep-2021 16:00	 	
Analyte	CAS Number	Method	LOR	Unit	CG2104005-006	 	
					Result	 	
Physical Tests							
acidity (as CaCO3)		E283	2.0	mg/L	<2.0	 	
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	147	 	
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	12.2	 	
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	 	
alkalinity, total (as CaCO3)		E290	1.0	mg/L	160	 	
conductivity		E100	2.0	μS/cm	354	 	
hardness (as CaCO3), dissolved		EC100	0.50	mg/L	180	 	
oxidation-reduction potential [ORP]		E125	0.10	mV	483	 	
pH		E108	0.10	pH units	8.41	 	
solids, total dissolved [TDS]		E162	10	mg/L	210	 	
solids, total suspended [TSS]		E160-L	1.0	mg/L	<1.0	 	
turbidity		E121	0.10	NTU	0.24	 	
alkalinity, bicarbonate (as HCO3)	71-52-3	E290	1.0	mg/L	180	 	
alkalinity, carbonate (as CO3)	3812-32-6	E290	1.0	mg/L	7.3	 	
alkalinity, hydroxide (as OH)	14280-30-9	E290	1.0	mg/L	<1.0	 	
Anions and Nutrients							
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	 	
bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	 	
chloride	16887-00-6	E235.CI-L	0.10	mg/L	1.17	 	
fluoride	16984-48-8	E235.F	0.020	mg/L	0.152	 	
Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	0.056	 	
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	0.0594	 	
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0010	 	
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	0.0024	 	
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0029	 	
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	40.0	 	
Organic / Inorganic Carbon							1
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	1.46	 	
carbon, total organic [TOC]		E355-L	0.50	mg/L	1.54	 	
Ion Balance				-			1

Page : 9 of 11
Work Order : CG2104005
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water Client sample ID (Matrix: Water)					RG_MI3_LAEMP _EVO_2021-09- 10_NP	 	
Analysis	CAC Number	Method	Client samp	ling date / time Unit	10-Sep-2021 16:00	 	
Analyte	CAS Number	Metriod	LUR	OTIIL	CG2104005-006 Result	 	
Ion Balance					resuit	 	
anion sum		EC101	0.10	meq/L	4.08	 	
cation sum		EC101	0.10	meq/L	3.74	 	
ion balance (cations/anions ratio)		EC101	0.010	%	91.7	 	
ion balance (cation-anion difference)		EC101	0.010	%	4.35	 	
Total Metals							
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0036	 	
antimony, total	7440-36-0	E420	0.00010	mg/L	<0.00010	 	
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00015	 	
barium, total	7440-39-3	E420	0.00010	mg/L	0.0918	 	
beryllium, total	7440-41-7	E420	0.020	μg/L	<0.020	 	
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	 	
boron, total	7440-42-8	E420	0.010	mg/L	<0.010	 	
cadmium, total	7440-43-9	E420	0.0050	μg/L	0.0157	 	
calcium, total	7440-70-2	E420	0.050	mg/L	49.1	 	
chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00018	 	
cobalt, total	7440-48-4	E420	0.10	μg/L	<0.10	 	
copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	 	
iron, total	7439-89-6	E420	0.010	mg/L	<0.010	 	
lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	 	
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0050	 	
magnesium, total	7439-95-4	E420	0.0050	mg/L	13.9	 	
manganese, total	7439-96-5	E420	0.00010	mg/L	0.00086	 	
mercury, total	7439-97-6	E508-L	0.00050	μg/L	<0.00050	 	
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.000737	 	
nickel, total	7440-02-0	E420	0.00050	mg/L	<0.00050	 	
potassium, total	7440-09-7	E420	0.050	mg/L	0.537	 	
selenium, total	7782-49-2	E420	0.050	μg/L	1.06	 	
silicon, total	7440-21-3	E420	0.10	mg/L	2.20	 	
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	 	
sodium, total	17341-25-2	E420	0.050	mg/L	2.56	 	

Page : 10 of 11
Work Order : CG2104005
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water (Matrix: Water)			Cli	ient sample ID	RG_MI3_LAEMP _EVO_2021-09- 10_NP	 		
			·	ling date / time	10-Sep-2021 16:00	 		
Analyte	CAS Number	Method	LOR	Unit	CG2104005-006 Result	 		
Total Metals					Result	 		
strontium, total	7440-24-6	E420	0.00020	mg/L	0.140	 		
sulfur, total	7704-34-9	E420	0.50	mg/L	13.0	 		
thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	 		
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	 		
titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	 		
uranium, total	7440-61-1	E420	0.000010	mg/L	0.000700	 		
vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	 		
zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	 		
Dissolved Metals								
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	<0.0010	 		
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	<0.00010	 		
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00014	 		
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0906	 		
beryllium, dissolved	7440-41-7	E421	0.020	μg/L	<0.020	 		
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	 		
boron, dissolved	7440-42-8	E421	0.010	mg/L	<0.010	 		
cadmium, dissolved	7440-43-9	E421	0.0050	μg/L	0.0105	 		
calcium, dissolved	7440-70-2	E421	0.050	mg/L	47.4	 		
chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00015	 		
cobalt, dissolved	7440-48-4	E421	0.10	μg/L	<0.10	 		
copper, dissolved	7440-50-8	E421	0.00020	mg/L	<0.00020	 		
iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	 		
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	 		
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0048	 		
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	15.1	 		
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00056	 		
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	 		
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.000726	 		
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	<0.00050	 		
potassium, dissolved	7440-09-7	E421	0.050	mg/L	0.541	 		

Page : 11 of 11 : CG2104005 Work Order Client

: Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water			Cli	ient sample ID	RG_MI3_LAEMP	 	
(Matrix: Water)					_EVO_2021-09-		
					10_NP		
			Client samp	ling date / time	10-Sep-2021	 	
			,	3	16:00		
Analyte	CAS Number	Method	LOR	Unit	CG2104005-006	 	
					Result	 	
Dissolved Metals							
selenium, dissolved	7782-49-2	E421	0.050	μg/L	1.06	 	
silicon, dissolved	7440-21-3	E421	0.050	mg/L	2.19	 	
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	 	
sodium, dissolved	17341-25-2	E421	0.050	mg/L	2.82	 	
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.138	 	
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	13.1	 	
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	 	
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	 	
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	 	
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.000621	 	
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	 	
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0011	 	
dissolved mercury filtration location		EP509	-	-	Field	 	
dissolved metals filtration location		EP421	-	-	Field	 	

Please refer to the General Comments section for an explanation of any qualifiers detected.

WATER CHEMISTRY

ALS Laboratory Report CG2104214 (Finalized October 13, 2021)

CERTIFICATE OF ANALYSIS

Work Order : CG2104214

Client : Teck Coal Limited

: Allie Ferguson Address : 421 Pine Avenue

Sparwood BC Canada V0B 2G0

Telephone

Contact

Project : REGIONAL EFFECTS PROGRAM

: VPO00750546

C-O-C number : SEPTEMBER EVO LAEMP 2021

Sampler : JI Site

Quote number : Teck Coal Master Quote

No. of samples received : 4 No. of samples analysed : 4

Page : 1 of 8

Laboratory : Calgary - Environmental

Account Manager : Lyudmyla Shvets Address : 2559 29th Street NE

Calgary AB Canada T1Y 7B5

Telephone : +1 403 407 1800 Date Samples Received : 18-Sep-2021 09:05

Date Analysis Commenced : 19-Sep-2021

Issue Date : 13-Oct-2021 16:07

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Aaron Yu	Laboratory Analyst	Inorganics, Burnaby, British Columbia
Anthony Calero	Team Leader - Inorganics	Inorganics, Calgary, Alberta
Anthony Calero	Team Leader - Inorganics	Metals, Calgary, Alberta
Caleb Deroche	Lab Analyst	Metals, Burnaby, British Columbia
Dion Chan	Lab Assistant	Metals, Burnaby, British Columbia
Erin Sanchez		Inorganics, Calgary, Alberta
Hannah Phung	Lab Assistant	Inorganics, Calgary, Alberta
Harpreet Chawla	Team Leader - Inorganics	Inorganics, Calgary, Alberta
Ilnaz Badbezanchi	Team Leader - Metals preparation	Metals, Burnaby, British Columbia
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia
Lindsay Gung	Supervisor - Water Chemistry	Inorganics, Burnaby, British Columbia
Millicent Brentnall	Laboratory Analyst	Metals, Calgary, Alberta
Oscar Ruiz	Lab Assistant	Inorganics, Calgary, Alberta
Owen Cheng		Metals, Burnaby, British Columbia
Parker Sgarbossa	Laboratory Analyst	Inorganics, Calgary, Alberta
Robin Weeks	Team Leader - Metals	Metals, Burnaby, British Columbia
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta
Sara Niroomand		Inorganics, Calgary, Alberta

 Page
 : 3 of 8

 Work Order
 : CG2104214

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
%	percent
μg/L	micrograms per litre
μS/cm	Microsiemens per centimetre
meq/L	milliequivalents per litre
mg/L	milligrams per litre
mV	millivolts
NTU	nephelometric turbidity units
pH units	pH units

<: less than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Sample Comments

Sample	Client Id	Comment
CG2104214-001	RG_TRIP_WS_2021-09-16_N P	DID NOT RECEIVE D-METALS BOTTLE, D-Hg VIAL, OR DOC BOTTLE

Qualifiers

Qualifier	Description
DLA	Detection Limit adjusted for required dilution.
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical
	Conductivity.
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference,
	colour, turbidity).

>: greater than.

Page : 4 of 8 Work Order : CG2104214

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

HTD Hold time exceeded for re-analysis or dilution, but initial testing was conducted within

hold time.

RRV Reported result verified by repeat analysis.

TKNI TKN result may be biased low due to Nitrate interference. Nitrate-N is > 10x TKN.

Page : 5 of 8
Work Order : CG2104214
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water (Matrix: Water)			Ci	lient sample ID	RG_TRIP_WS_2 021-09-16_NP	RG_BOCK_WS_ LAEMP_EVO_2 021-09-16_NP	RG_GATE_WS_ LAEMP_EVO_2 021-09-16_NP	RG_GATEDP_W S_LAEMP_EVO _2021-09-16_N P	
			Client samp	oling date / time	16-Sep-2021 13:30	16-Sep-2021 09:20	16-Sep-2021 13:30	16-Sep-2021 11:00	
Analyte	CAS Number	Method	LOR	Unit	CG2104214-001	CG2104214-002	CG2104214-003	CG2104214-004	
					Result	Result	Result	Result	
Physical Tests		F202	2.0		2.0	40.0	40.0	40.0	
acidity (as CaCO3)		E283	2.0	mg/L	2.0	<2.0	<2.0	<2.0	
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	<1.0	214	248	232	
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	12.6	8.2	7.6	
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	
alkalinity, total (as CaCO3)		E290	1.0	mg/L	<1.0	227	256	240	
conductivity		E100	2.0	μS/cm	<2.0	1950	2010	1920	
hardness (as CaCO3), dissolved		EC100	0.50	mg/L	<0.50	1210	1290	1200	
oxidation-reduction potential [ORP]		E125	0.10	mV	499	450	463	465	
pH		E108	0.10	pH units	4.95	8.37	8.32	8.32	
solids, total dissolved [TDS]		E162	10	mg/L	<10	1830	1860	1710	
solids, total suspended [TSS]		E160-L	1.0	mg/L	<1.0	1.1	2.8	2.4	
turbidity		E121	0.10	NTU	<0.10	0.54	1.59	1.15	
alkalinity, bicarbonate (as HCO3)	71-52-3	E290	1.0	mg/L	<1.0	262	302	283	
alkalinity, carbonate (as CO3)	3812-32-6	E290	1.0	mg/L	<1.0	7.6	4.9	4.6	
alkalinity, hydroxide (as OH)	14280-30-9	E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	
Anions and Nutrients									
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0082 RRV	0.0112	0.334 TKNI	0.0968 TKNI	
bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.250 DLDS	<0.250 DLDS	<0.250 DLDS	
chloride	16887-00-6	E235.CI-L	0.10	mg/L	<0.10	28.2	15.6	16.0	
fluoride	16984-48-8	E235.F	0.020	mg/L	<0.020	0.230	0.229	0.242	
Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	<0.050	<0.050 TKNI	<0.050 TKNI	<0.050 TKNI	
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	<0.0050 HTD	29.8	26.1	27.1	
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0010	0.0154	0.0825	0.0772	
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	<0.0010	<0.0010	0.0037	<0.0010	
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	<0.0020	0.0028	0.0068	0.0029	
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	<0.30	898	983	891	
Organic / Inorganic Carbon									
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L		1.43	1.69	1.95	

Page : 6 of 8
Work Order : CG2104214
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water (Matrix: Water)			Cli	ient sample ID	RG_TRIP_WS_2 021-09-16_NP	RG_BOCK_WS_ LAEMP_EVO_2 021-09-16_NP	RG_GATE_WS_ LAEMP_EVO_2 021-09-16_NP	RG_GATEDP_W S_LAEMP_EVO _2021-09-16_N P	
			Client samp	ling date / time	16-Sep-2021 13:30	16-Sep-2021 09:20	16-Sep-2021 13:30	16-Sep-2021 11:00	
Analyte	CAS Number	Method	LOR	Unit	CG2104214-001	CG2104214-002	CG2104214-003	CG2104214-004	
					Result	Result	Result	Result	
Organic / Inorganic Carbon		E355-L	0.50	m a /l	<0.50	1.48	2.39	2.06	
carbon, total organic [TOC]		E355-L	0.50	mg/L	<0.50	1.40	2.39	2.06	
Ion Balance		FC101	0.10	mo a/l	-0.10	26.2	27.0	25.0	
anion sum		EC101	0.10	meq/L	<0.10	26.2	27.9	25.8	
cation sum		EC101	0.10	meq/L	<0.10	24.7	26.2	24.6	
ion balance (cations/anions ratio)		EC101	0.010	%	100	94.3	93.9	95.3	
ion balance (cation-anion difference)		EC101	0.010	%	<0.010	2.95	3.14	2.38	
Total Metals	- 100 00 -	F400	0.0000	,,	-0.0000	0.0000	0.0050	0.0057	
aluminum, total	7429-90-5	E420	0.0030	mg/L	<0.0030	0.0036	0.0250	0.0057	
antimony, total	7440-36-0	E420	0.00010	mg/L	<0.00010	0.00176	0.00133	0.00169	
arsenic, total	7440-38-2	E420	0.00010	mg/L	<0.00010	0.00024	0.00034	0.00028	
barium, total	7440-39-3	E420	0.00010	mg/L	<0.00010	0.0786	0.240	0.163	
beryllium, total	7440-41-7	E420	0.020	μg/L	<0.020	<0.020	<0.020	<0.020	
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
boron, total	7440-42-8	E420	0.010	mg/L	<0.010	0.054	0.045	0.048	
cadmium, total	7440-43-9	E420	0.0050	μg/L	<0.0050	0.0132	0.187	0.104	
calcium, total	7440-70-2	E420	0.050	mg/L	<0.050	215	225	210	
chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
cobalt, total	7440-48-4	E420	0.10	μg/L	<0.10	0.11	0.31	0.25	
copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	
iron, total	7439-89-6	E420	0.010	mg/L	<0.010	<0.010	0.144	0.058	
lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
lithium, total	7439-93-2	E420	0.0010	mg/L	<0.0010	0.178	0.146	0.160	
magnesium, total	7439-95-4	E420	0.0050	mg/L	<0.0050	157	165	149	
manganese, total	7439-96-5	E420	0.00010	mg/L	<0.00010	0.00034	0.0159	0.00771	
mercury, total	7439-97-6	E508-L	0.00050	μg/L	<0.00050	<0.00050	<0.00050	<0.00050	
molybdenum, total	7439-98-7	E420	0.000050	mg/L	<0.000050	0.00902	0.00772	0.00885	
nickel, total	7440-02-0	E420	0.00050	mg/L	<0.00050	0.0276	0.0264	0.0297	
potassium, total	7440-09-7	E420	0.050	mg/L	<0.050	6.76	5.56	6.02	
selenium, total	7782-49-2	E420	0.050	μg/L	<0.050	228	238	219	

Page : 7 of 8
Work Order : CG2104214
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water (Matrix: Water)			Cli	ent sample ID	RG_TRIP_WS_2 021-09-16_NP	RG_BOCK_WS_ LAEMP_EVO_2 021-09-16_NP	RG_GATE_WS_ LAEMP_EVO_2 021-09-16_NP	RG_GATEDP_W S_LAEMP_EVO _2021-09-16_N P	
			Client samp	ling date / time	16-Sep-2021 13:30	16-Sep-2021 09:20	16-Sep-2021 13:30	16-Sep-2021 11:00	
Analyte	CAS Number	Method	LOR	Unit	CG2104214-001	CG2104214-002	CG2104214-003	CG2104214-004	
					Result	Result	Result	Result	
Total Metals silicon, total	7440-21-3	E420	0.10	mg/L	<0.10	2.04	2.66	2.40	
silver, total	7440-21-3	E420	0.000010	mg/L	<0.00010	<0.000010	<0.000010	<0.000010	
sodium, total	17341-25-2	E420	0.050	mg/L	<0.050	9.29	7.08	8.27	
strontium, total	7440-24-6	E420	0.00020	mg/L	<0.00020	1.10	0.940	0.945	
sulfur, total	7704-34-9	E420	0.50	mg/L	<0.50	307	330	309	
thallium, total	7440-28-0	E420	0.000010	mg/L	<0.00010	0.000043	0.000038	0.000037	
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
titanium, total	7440-31-5	E420	0.00030	mg/L	<0.00030	<0.00030	0.00041	<0.00060 DLM	
uranium, total	7440-61-1	E420	0.000010	mg/L	<0.000010	0.00987	0.00961	0.00951	
vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	
zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	<0.0030	0.0128	0.0104	
Dissolved Metals	7 1 10 00 0			9					
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L		<0.0010	<0.0020 DLA	<0.0010	
antimony, dissolved	7440-36-0	E421	0.00010	mg/L		0.00171	0.00126	0.00168	
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L		0.00020	0.00024	0.00024	
barium, dissolved	7440-39-3	E421	0.00010	mg/L		0.0832	0.256	0.167	
beryllium, dissolved	7440-41-7	E421	0.020	μg/L		<0.020	<0.040 DLA	<0.020	
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L		<0.000050	<0.000100 DLA	<0.000050	
boron, dissolved	7440-42-8	E421	0.010	mg/L		0.048	0.044	0.046	
cadmium, dissolved	7440-43-9	E421	0.0050	μg/L		0.0153	0.148	0.0964	
calcium, dissolved	7440-70-2	E421	0.050	mg/L	<0.050	208	224	208	
chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L		<0.00010	<0.00020 DLA	<0.00010	
cobalt, dissolved	7440-48-4	E421	0.10	μg/L		0.11	0.29	0.26	
copper, dissolved	7440-50-8	E421	0.00020	mg/L		<0.00020	<0.00040 DLA	0.00024	
iron, dissolved	7439-89-6	E421	0.010	mg/L		<0.010	<0.020 DLA	0.018	
lead, dissolved	7439-92-1	E421	0.000050	mg/L		<0.000050	<0.000100 DLA	<0.000050	
lithium, dissolved	7439-93-2	E421	0.0010	mg/L		0.164	0.139	0.156	
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	<0.0050	167	177	166	
manganese, dissolved	7439-96-5	E421	0.00010	mg/L		0.00026	0.0147	0.00824	

Page : 8 of 8
Work Order : CG2104214
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water (Matrix: Water)			Cli	ient sample ID	RG_TRIP_WS_2 021-09-16_NP	RG_BOCK_WS_ LAEMP_EVO_2 021-09-16_NP	RG_GATE_WS_ LAEMP_EVO_2 021-09-16_NP	RG_GATEDP_W S_LAEMP_EVO _2021-09-16_N P	
				ling date / time	16-Sep-2021 13:30	16-Sep-2021 09:20	16-Sep-2021 13:30	16-Sep-2021 11:00	
Analyte	CAS Number	Method	LOR	Unit	CG2104214-001	CG2104214-002	CG2104214-003	CG2104214-004	
					Result	Result	Result	Result	
Dissolved Metals	7400 07 0	E509	0.0000050	ma/l		<0.000050	<0.000050	<0.000050	
mercury, dissolved	7439-97-6		0.000050	mg/L		0.00877	0.00761	0.00872	
molybdenum, dissolved	7439-98-7	E421		mg/L					
nickel, dissolved	7440-02-0	E421	0.00050	mg/L		0.0292	0.0279	0.0321	
potassium, dissolved	7440-09-7	E421	0.050	mg/L	<0.050	7.16	5.88	6.68	
selenium, dissolved	7782-49-2	E421	0.050	μg/L		230	230	230	
silicon, dissolved	7440-21-3	E421	0.050	mg/L		1.98	2.67	2.37	
silver, dissolved	7440-22-4	E421	0.000010	mg/L		<0.000010	<0.000020 DLA	<0.000010	
sodium, dissolved	17341-25-2	E421	0.050	mg/L	<0.050	9.94	7.33	8.79	
strontium, dissolved	7440-24-6	E421	0.00020	mg/L		1.10	0.912	0.932	
sulfur, dissolved	7704-34-9	E421	0.50	mg/L		294	339	309	
thallium, dissolved	7440-28-0	E421	0.000010	mg/L		0.000042	0.000041	0.000041	
tin, dissolved	7440-31-5	E421	0.00010	mg/L		<0.00010	<0.00020 DLA	<0.00010	
titanium, dissolved	7440-32-6	E421	0.00030	mg/L		<0.00030	<0.00060 DLA	<0.00030	
uranium, dissolved	7440-61-1	E421	0.000010	mg/L		0.0103	0.0100	0.0100	
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L		<0.00050	<0.00100 DLA	<0.00050	
zinc, dissolved	7440-66-6	E421	0.0010	mg/L		0.0024	0.0109	0.0079	
dissolved mercury filtration location		EP509	_	-		Field	Field	Field	
dissolved metals filtration location		EP421	_	-	Laboratory	Field	Field	Field	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : **CG2104214** Page : 1 of 20

Client : Teck Coal Limited : Aboratory : Calgary - Environmental Contact : Allie Ferguson : Lyudmyla Shvets

: 421 Pine Avenue Address : 2559 29th Street NE Sparwood BC Canada V0B 2G0 Calgary, Alberta Can

Calgary, Alberta Canada T1Y 7B5

 Telephone
 : -- Telephone
 : +1 403 407 1800

 Project
 : REGIONAL EFFECTS PROGRAM
 Date Samples Received
 : 18-Sep-2021 09:05

 PO
 : VPO00750546
 Issue Date
 : 13-Oct-2021 16:07

C-O-C number : SEPTEMBER EVO LAEMP 2021

Sampler : JI
Site : ----

Quote number : Teck Coal Master Quote

No. of samples received : 4
No. of samples analysed : 4

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Address

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Summary of Outliers

Outliers: Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers: Frequency of Quality Control Samples

Quality Control Sample Frequency Outliers occur - please see following pages for full details.

 Page
 : 2 of 20

 Work Order
 : CG2104214

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time Matrix: Water Analyte Group Extraction / Preparation Analysis Method Sampling Date Container / Client Sample ID(s) **Holding Times** Eval Analysis Date Holding Times Eval Preparation Rec Actual Date Rec Actual Anions and Nutrients: Ammonia by Fluorescence Amber glass total (sulfuric acid) F298 16-Sep-2021 1 RG BOCK WS LAEMP EVO 2021-09-16 NP 29-Sep-2021 29-Sep-2021 28 days 13 days Anions and Nutrients: Ammonia by Fluorescence Amber glass total (sulfuric acid) E298 16-Sep-2021 29-Sep-2021 29-Sep-2021 28 days 13 days ✓ RG GATE WS LAEMP EVO 2021-09-16 NP ----Anions and Nutrients : Ammonia by Fluorescence Amber glass total (sulfuric acid) RG GATEDP WS LAEMP EVO 2021-09-16 NP E298 16-Sep-2021 29-Sep-2021 29-Sep-2021 28 days 13 days Anions and Nutrients: Ammonia by Fluorescence Amber glass total (sulfuric acid) RG_TRIP_WS_2021-09-16_NP E298 16-Sep-2021 29-Sep-2021 29-Sep-2021 28 days 13 days Anions and Nutrients: Bromide in Water by IC (Low Level) HDPE RG BOCK WS LAEMP EVO 2021-09-16 NP E235.Br-L 16-Sep-2021 19-Sep-2021 28 days 3 days Anions and Nutrients : Bromide in Water by IC (Low Level) **HDPE** 19-Sep-2021 E235.Br-L 16-Sep-2021 RG GATE WS LAEMP EVO 2021-09-16 NP 28 days 3 days --------Anions and Nutrients: Bromide in Water by IC (Low Level) **HDPE** E235.Br-L 16-Sep-2021 19-Sep-2021 ✓ RG GATEDP WS LAEMP EVO 2021-09-16 NP 28 days 3 days

Page : 3 of 20 Work Order : CG2104214

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

EHT

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Method Sampling Date Extraction / Preparation Analysis Container / Client Sample ID(s) Preparation Holding Times Eval Analysis Date Holding Times Eval Actual Rec Actual Date Anions and Nutrients : Bromide in Water by IC (Low Level) HDPE RG_TRIP_WS_2021-09-16_NP E235.Br-L 16-Sep-2021 19-Sep-2021 28 days 3 days ✓ Anions and Nutrients : Chloride in Water by IC (Low Level) HDPE RG_BOCK_WS_LAEMP_EVO_2021-09-16_NP E235.CI-L 16-Sep-2021 19-Sep-2021 28 days 3 days ✓ ----Anions and Nutrients : Chloride in Water by IC (Low Level) **HDPE** E235.CI-L 16-Sep-2021 19-Sep-2021 ✓ RG GATE WS LAEMP EVO 2021-09-16 NP 28 days 3 days Anions and Nutrients : Chloride in Water by IC (Low Level) RG GATEDP WS LAEMP EVO 2021-09-16 NP E235.CI-L 16-Sep-2021 19-Sep-2021 28 days 3 days Anions and Nutrients : Chloride in Water by IC (Low Level) HDPE E235.CI-L 16-Sep-2021 ✓ RG TRIP WS 2021-09-16 NP 19-Sep-2021 28 days 3 days **Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)** HDPE E378-U RG_BOCK_WS_LAEMP_EVO_2021-09-16_NP 16-Sep-2021 20-Sep-2021 3 days 4 days æ EHT Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Level) HDPE RG GATE WS LAEMP EVO 2021-09-16 NP E378-U 16-Sep-2021 20-Sep-2021 3 days 4 days * EHT Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Level) **HDPE** E378-U RG_GATEDP_WS_LAEMP_EVO_2021-09-16_NP 16-Sep-2021 20-Sep-2021 3 days 4 days EHT **Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)** HDPE 3 days E378-U 16-Sep-2021 20-Sep-2021 RG TRIP WS 2021-09-16 NP 4 days 30

Page : 4 of 20 Work Order : CG2104214

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Water							noiding time exce	,	**********	
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Fluoride in Water by IC										
HDPE										
RG_BOCK_WS_LAEMP_EVO_2021-09-16_NP	E235.F	16-Sep-2021					19-Sep-2021	28 days	3 days	✓
Anions and Nutrients : Fluoride in Water by IC										
HDPE										
RG GATE WS LAEMP EVO 2021-09-16 NP	E235.F	16-Sep-2021					19-Sep-2021	28 days	3 days	✓
							·		-	
Anions and Nutrients : Fluoride in Water by IC										
HDPE										
RG_GATEDP_WS_LAEMP_EVO_2021-09-16_NP	E235.F	16-Sep-2021					19-Sep-2021	28 days	3 days	✓
		·					·		-	
Anions and Nutrients : Fluoride in Water by IC										
HDPE										
RG TRIP WS 2021-09-16 NP	E235.F	16-Sep-2021					19-Sep-2021	28 days	3 days	✓
· · · · · · · · · · · · · · · ·		· ·					·	,		
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE										
RG_BOCK_WS_LAEMP_EVO_2021-09-16_NP	E235.NO3-L	16-Sep-2021					19-Sep-2021	3 days	3 days	✓
		· ·						,	'	
Anions and Nutrients : Nitrate in Water by IC (Low Level)							<u> </u>			
HDPE										
RG_GATE_WS_LAEMP_EVO_2021-09-16_NP	E235.NO3-L	16-Sep-2021					19-Sep-2021	3 days	3 days	✓
								,	'	
Anions and Nutrients : Nitrate in Water by IC (Low Level)							<u> </u>			
HDPE										
RG_GATEDP_WS_LAEMP_EVO_2021-09-16_NP	E235.NO3-L	16-Sep-2021					19-Sep-2021	3 days	3 days	✓
110_0/11251_110_5/121111 _E170_2021 00 10_111							10 000 2021	o aayo	o days	
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE										
RG TRIP WS 2021-09-16 NP	E235.NO3-L	16-Sep-2021					21-Sep-2021	3 days	5 days	3 2
NO_1NI _WO_2021-09-10_NI	L200.1100-L	10-00p-2021					21-00p-2021	o days	o days	EHT
Anima and Nutricuta - Nitrita in Water had 0 (1 and 1 and 1)										
Anions and Nutrients : Nitrite in Water by IC (Low Level) HDPE							I			
RG BOCK WS LAEMP EVO 2021-09-16 NP	E235.NO2-L	16-Sep-2021					19-Sep-2021	3 days	3 days	✓
INT DUAL WOLLDING EVU ZUZI-UM-ID INF	LZJJ.INUZ-L	10-060-2021					13-0 c p-202	Juays	Judys	•

Page : 5 of 20 Work Order : CG2104214

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

viatrix. **ater					L.	aluation	riolaling time exce	cuarice,	- vviti iii i	Holding Til
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual		_	Rec	Actual	
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE										
RG_GATE_WS_LAEMP_EVO_2021-09-16_NP	E235.NO2-L	16-Sep-2021					19-Sep-2021	3 days	3 days	✓
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE										
RG_GATEDP_WS_LAEMP_EVO_2021-09-16_NP	E235.NO2-L	16-Sep-2021					19-Sep-2021	3 days	3 days	✓
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE										,
RG_TRIP_WS_2021-09-16_NP	E235.NO2-L	16-Sep-2021					19-Sep-2021	3 days	3 days	✓
Anions and Nutrients : Sulfate in Water by IC	_	_						1		
HDPE	E005 004	40.0 2004					40.0 2004	20 -1	0 4	
RG_BOCK_WS_LAEMP_EVO_2021-09-16_NP	E235.SO4	16-Sep-2021					19-Sep-2021	28 days	3 days	✓
Anions and Nutrients : Sulfate in Water by IC							1	T		
HDPE RG_GATE_WS_LAEMP_EVO_2021-09-16_NP	E235.SO4	16-Sep-2021					19-Sep-2021	28 days	3 days	1
RG_GATE_WS_LAEMP_EVO_2021-09-10_NP	L233.304	10-Зер-2021					19-3ep-2021	20 uays	3 uays	•
Anions and Nutrients : Sulfate in Water by IC										
HDPE										
RG_GATEDP_WS_LAEMP_EVO_2021-09-16_NP	E235.SO4	16-Sep-2021					19-Sep-2021	28 days	3 davs	1
							' '	,	,	
Anions and Nutrients : Sulfate in Water by IC										
HDPE										
RG_TRIP_WS_2021-09-16_NP	E235.SO4	16-Sep-2021					19-Sep-2021	28 days	3 days	✓
								_		
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid)										
RG_BOCK_WS_LAEMP_EVO_2021-09-16_NP	E318	16-Sep-2021	24-Sep-2021				28-Sep-2021	28 days	12 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid)										
RG_GATE_WS_LAEMP_EVO_2021-09-16_NP	E318	16-Sep-2021	24-Sep-2021				28-Sep-2021	28 days	12 days	✓
	1			-				1		

Page : 6 of 20 Work Order : CG2104214

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: water						aldation. • -	noiding time exce	cuarioc ,	- VVICIIII	riolaling rilli
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid)										
RG_GATEDP_WS_LAEMP_EVO_2021-09-16_NP	E318	16-Sep-2021	24-Sep-2021				28-Sep-2021	28 days	12 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid)										
RG_TRIP_WS_2021-09-16_NP	E318	16-Sep-2021	24-Sep-2021				28-Sep-2021	28 days	12 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)										
Amber glass total (sulfuric acid)										
RG_BOCK_WS_LAEMP_EVO_2021-09-16_NP	E372-U	16-Sep-2021	23-Sep-2021				23-Sep-2021	28 days	7 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)								1		
Amber glass total (sulfuric acid)	F070 II	40.0 0004	00.00004				00.0 0004	00.1	7.1	
RG_GATE_WS_LAEMP_EVO_2021-09-16_NP	E372-U	16-Sep-2021	23-Sep-2021				23-Sep-2021	28 days	7 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)										
Amber glass total (sulfuric acid)	E372-U	16-Sep-2021	23-Sep-2021				23-Sep-2021	28 days	7 days	√
RG_GATEDP_WS_LAEMP_EVO_2021-09-16_NP	E372-0	10-3ep-2021	23-3ep-2021				23-Sep-2021	20 days	7 days	•
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace) Amber glass total (sulfuric acid)							I	1		
RG_TRIP_WS_2021-09-16_NP	E372-U	16-Sep-2021	23-Sep-2021				23-Sep-2021	28 days	7 days	✓
NO_1NII _WO_2021-03-10_NI	2072-0	10-00p-2021	20-00p-2021				20-00p-2021	20 days	1 days	·
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE dissolved (nitric acid)										
RG_BOCK_WS_LAEMP_EVO_2021-09-16_NP	E421.Cr-L	16-Sep-2021	23-Sep-2021				24-Sep-2021	180	7 days	✓
			·				·	days		
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE dissolved (nitric acid)										
RG_GATE_WS_LAEMP_EVO_2021-09-16_NP	E421.Cr-L	16-Sep-2021	23-Sep-2021				24-Sep-2021	180	7 days	✓
								days		
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE dissolved (nitric acid)										
RG_GATEDP_WS_LAEMP_EVO_2021-09-16_NP	E421.Cr-L	16-Sep-2021	23-Sep-2021				24-Sep-2021	180	7 days	✓
								days		

Page : 7 of 20 Work Order : CG2104214

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: water						uluulloll.	noiding time exce	oddiioo ,	***************************************	riolaling rill
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
RG_BOCK_WS_LAEMP_EVO_2021-09-16_NP	E509	16-Sep-2021	23-Sep-2021				23-Sep-2021	28 days	7 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
RG_GATE_WS_LAEMP_EVO_2021-09-16_NP	E509	16-Sep-2021	23-Sep-2021				23-Sep-2021	28 days	7 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
RG_GATEDP_WS_LAEMP_EVO_2021-09-16_NP	E509	16-Sep-2021	23-Sep-2021				23-Sep-2021	28 days	7 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
RG_TRIP_WS_2021-09-16_NP	E421	16-Sep-2021	27-Sep-2021				27-Sep-2021	180 days	11 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
RG_BOCK_WS_LAEMP_EVO_2021-09-16_NP	E421	16-Sep-2021	23-Sep-2021				24-Sep-2021	180 days	7 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
RG_GATE_WS_LAEMP_EVO_2021-09-16_NP	E421	16-Sep-2021	23-Sep-2021				24-Sep-2021	180 days	7 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										,
RG_GATEDP_WS_LAEMP_EVO_2021-09-16_NP	E421	16-Sep-2021	23-Sep-2021				24-Sep-2021	180 days	7 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Lev	/el)									
Amber glass dissolved (sulfuric acid)										
RG_BOCK_WS_LAEMP_EVO_2021-09-16_NP	E358-L	16-Sep-2021	27-Sep-2021				30-Sep-2021	28 days	14 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Lev	/el)									
Amber glass dissolved (sulfuric acid)										,
RG_GATE_WS_LAEMP_EVO_2021-09-16_NP	E358-L	16-Sep-2021	27-Sep-2021				30-Sep-2021	28 days	14 days	✓

Page : 8 of 20 Work Order : CG2104214

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Water						raidation. • -	noiding time exce	cuarioc ,	_ vviti iii i	riolaling riini
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Lo	evel)									
Amber glass dissolved (sulfuric acid)										
RG_GATEDP_WS_LAEMP_EVO_2021-09-16_NP	E358-L	16-Sep-2021	27-Sep-2021				30-Sep-2021	28 days	14 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combus	tion (Low Level)									
Amber glass total (sulfuric acid)										
RG_BOCK_WS_LAEMP_EVO_2021-09-16_NP	E355-L	16-Sep-2021	27-Sep-2021				30-Sep-2021	28 days	14 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combus	tion (Low Level)			I						
Amber glass total (sulfuric acid) RG_GATE_WS_LAEMP_EVO_2021-09-16_NP	E355-L	16-Sep-2021	27-Sep-2021				30-Sep-2021	28 days	14 days	√
RG_GATE_W3_LAEWIF_EVO_2021-09-10_NF	L333-L	10-Зер-2021	27-3ep-2021				30-3ер-2021	20 days	14 days	•
Outside / Income is Contact Table Outside Contact (No. 19 Proceeds) by Contact	diam (Laurellaurella									
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combus Amber glass total (sulfuric acid)	tion (Low Level)									
RG_GATEDP_WS_LAEMP_EVO_2021-09-16_NP	E355-L	16-Sep-2021	27-Sep-2021				30-Sep-2021	28 days	14 days	✓
		·	·				·	,		
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combus	stion (Low Level)									
Amber glass total (sulfuric acid)										
RG_TRIP_WS_2021-09-16_NP	E355-L	16-Sep-2021	27-Sep-2021				30-Sep-2021	28 days	14 days	✓
Physical Tests : Acidity by Titration										
HDPE										
RG_BOCK_WS_LAEMP_EVO_2021-09-16_NP	E283	16-Sep-2021					29-Sep-2021	14 days	13 days	✓
Physical Tests : Acidity by Titration							ı			
HDPE	E283	16-Sep-2021					29-Sep-2021	14 dove	13 days	√
RG_GATE_WS_LAEMP_EVO_2021-09-16_NP	E203	10-Зер-2021					29-Sep-2021	14 days	13 days	•
Dhouled Total Addition to Titudian										
Physical Tests : Acidity by Titration HDPE										
RG GATEDP WS LAEMP EVO 2021-09-16 NP	E283	16-Sep-2021					29-Sep-2021	14 days	13 days	✓
Physical Tests : Acidity by Titration								1		
HDPE										
RG_TRIP_WS_2021-09-16_NP	E283	16-Sep-2021					29-Sep-2021	14 days	13 days	✓

Page : 9 of 20 Work Order : CG2104214

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

ivialitx: vvaler						uluulloll.	Holding time excee	oudinoo ,	***************************************	i i ioidii ig i iii
Analyte Group	Method	Sampling Date	Ex	traction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Alkalinity Species by Titration										
HDPE										
RG_BOCK_WS_LAEMP_EVO_2021-09-16_NP	E290	16-Sep-2021					28-Sep-2021	14 days	12 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE										
RG_GATE_WS_LAEMP_EVO_2021-09-16_NP	E290	16-Sep-2021					28-Sep-2021	14 days	12 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE										
RG_GATEDP_WS_LAEMP_EVO_2021-09-16_NP	E290	16-Sep-2021					28-Sep-2021	14 days	12 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE										
RG_TRIP_WS_2021-09-16_NP	E290	16-Sep-2021					28-Sep-2021	14 days	12 days	✓
Physical Tests : Conductivity in Water										
HDPE										
RG_BOCK_WS_LAEMP_EVO_2021-09-16_NP	E100	16-Sep-2021					28-Sep-2021	28 days	12 days	✓
Physical Tests : Conductivity in Water										
HDPE										
RG_GATE_WS_LAEMP_EVO_2021-09-16_NP	E100	16-Sep-2021					28-Sep-2021	28 days	12 days	✓
Physical Tests : Conductivity in Water										
HDPE										
RG_GATEDP_WS_LAEMP_EVO_2021-09-16_NP	E100	16-Sep-2021					28-Sep-2021	28 days	12 days	✓
		·					·		_	
Physical Tests : Conductivity in Water										
HDPE										
RG TRIP WS 2021-09-16 NP	E100	16-Sep-2021					28-Sep-2021	28 days	12 days	✓
		,					į			
Physical Tests : ORP by Electrode										
HDPE										
RG_GATE_WS_LAEMP_EVO_2021-09-16_NP	E125	16-Sep-2021					27-Sep-2021	0.25	264 hrs	.
								hrs		EHTR-FM

Page : 10 of 20 Work Order : CG2104214

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analyte Group	Method	Sampling Date	Ex	traction / Pr			Holding lime excee	Analy		
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holdin	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : ORP by Electrode										
HDPE RG_TRIP_WS_2021-09-16_NP	E125	16-Sep-2021					27-Sep-2021	0.25 hrs	264 hrs	* EHTR-FM
Physical Tests : ORP by Electrode										
HDPE RG_GATEDP_WS_LAEMP_EVO_2021-09-16_NP	E125	16-Sep-2021					27-Sep-2021	0.25 hrs	267 hrs	* EHTR-FM
Physical Tests : ORP by Electrode										
HDPE RG_BOCK_WS_LAEMP_EVO_2021-09-16_NP	E125	16-Sep-2021					27-Sep-2021	0.25 hrs	268 hrs	≭ EHTR-FM
Physical Tests : pH by Meter										
HDPE RG_GATE_WS_LAEMP_EVO_2021-09-16_NP	E108	16-Sep-2021					28-Sep-2021	0.25 hrs	286 hrs	# EHTR-FM
Physical Tests : pH by Meter										
HDPE RG_TRIP_WS_2021-09-16_NP	E108	16-Sep-2021					28-Sep-2021	0.25 hrs	286 hrs	≭ EHTR-FM
Physical Tests : pH by Meter								•		
HDPE RG_GATEDP_WS_LAEMP_EVO_2021-09-16_NP	E108	16-Sep-2021					28-Sep-2021	0.25 hrs	289 hrs	* EHTR-FM
Physical Tests : pH by Meter										
HDPE RG_BOCK_WS_LAEMP_EVO_2021-09-16_NP	E108	16-Sep-2021					28-Sep-2021	0.25 hrs	291 hrs	* EHTR-FM
Physical Tests : TDS by Gravimetry										
HDPE RG_BOCK_WS_LAEMP_EVO_2021-09-16_NP	E162	16-Sep-2021					23-Sep-2021	7 days	7 days	✓
Physical Tests : TDS by Gravimetry										
HDPE RG_GATE_WS_LAEMP_EVO_2021-09-16_NP	E162	16-Sep-2021					23-Sep-2021	7 days	7 days	✓

Page : 11 of 20 Work Order : CG2104214

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: water						aldation. • -	noiding time excee	Judinoo ,	***************************************	riolanig riii
Analyte Group	Method	Sampling Date	Ext	raction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual		-	Rec	Actual	
Physical Tests : TDS by Gravimetry										
HDPE										
RG_GATEDP_WS_LAEMP_EVO_2021-09-16_NP	E162	16-Sep-2021					23-Sep-2021	7 days	7 days	✓
Physical Tests : TDS by Gravimetry										
HDPE										
RG_TRIP_WS_2021-09-16_NP	E162	16-Sep-2021					23-Sep-2021	7 days	7 days	✓
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE [TSS-WB]										
RG_BOCK_WS_LAEMP_EVO_2021-09-16_NP	E160-L	16-Sep-2021					23-Sep-2021	7 days	7 days	✓
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE [TSS-WB]										,
RG_GATE_WS_LAEMP_EVO_2021-09-16_NP	E160-L	16-Sep-2021					23-Sep-2021	7 days	7 days	✓
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE [TSS-WB]	F460 I	40.0 2004					00.00004	7	7.1	
RG_GATEDP_WS_LAEMP_EVO_2021-09-16_NP	E160-L	16-Sep-2021					23-Sep-2021	7 days	7 days	✓
Physical Tests : TSS by Gravimetry (Low Level)				I	l I			I		
HDPE [TSS-WB] RG_TRIP_WS_2021-09-16_NP	E160-L	16-Sep-2021					23-Sep-2021	7 days	7 days	✓
KG_1KIP_W3_2021-09-10_NP	E100-L	10-3ep-2021					23-3ep-2021	7 uays	1 uays	•
Physical Tests : Turbidity by Nephelometry HDPE							I	I		
RG_BOCK_WS_LAEMP_EVO_2021-09-16_NP	E121	16-Sep-2021					19-Sep-2021	3 days	3 days	1
NG_BOOK_WG_EALWIF_EVO_2021-09-10_NF		10-0ср-2021					19-0ep-2021	Juays	Juays	•
Dhousing I Taylor - Tombidity has Nambal and due.										
Physical Tests : Turbidity by Nephelometry HDPE										
RG GATE WS LAEMP EVO 2021-09-16 NP	E121	16-Sep-2021					19-Sep-2021	3 days	3 days	✓
		10 000 2021					3 3 3 5 5 2 3 2 1	3 22,0	3,3	
Physical Tests : Turbidity by Nephelometry										
HDPE										
··=· =		1					40.0 0004	0.1		✓
RG_GATEDP_WS_LAEMP_EVO_2021-09-16_NP	E121	16-Sep-2021					19-Sep-2021	3 days	J days ∣	~

Page : 12 of 20 Work Order : CG2104214

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

wainx: water						aldation. • -	nolding time exce	cuarioc ,	- vvicinii	riolaling rii
Analyte Group	Method	Sampling Date	Ex	traction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Turbidity by Nephelometry										
HDPE										
RG_TRIP_WS_2021-09-16_NP	E121	16-Sep-2021					19-Sep-2021	3 days	3 days	✓
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE total (nitric acid)										
RG_BOCK_WS_LAEMP_EVO_2021-09-16_NP	E420.Cr-L	16-Sep-2021					23-Sep-2021	180	7 days	✓
								days		
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)									'	
HDPE total (nitric acid)										
RG_GATE_WS_LAEMP_EVO_2021-09-16_NP	E420.Cr-L	16-Sep-2021					23-Sep-2021	180	7 days	✓
								days		
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE total (nitric acid)										
RG_GATEDP_WS_LAEMP_EVO_2021-09-16_NP	E420.Cr-L	16-Sep-2021					23-Sep-2021	180	7 days	✓
								days		
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE total (nitric acid)										
RG_TRIP_WS_2021-09-16_NP	E420.Cr-L	16-Sep-2021					23-Sep-2021	180	7 days	✓
								days		
Total Metals : Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 pp	t)									
Pre-cleaned amber glass - total (lab preserved)										
RG_BOCK_WS_LAEMP_EVO_2021-09-16_NP	E508-L	16-Sep-2021					27-Sep-2021	28 days	11 days	✓
Total Metals : Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 pp	t)									
Pre-cleaned amber glass - total (lab preserved)										
RG_GATE_WS_LAEMP_EVO_2021-09-16_NP	E508-L	16-Sep-2021					27-Sep-2021	28 days	11 days	✓
Total Metals : Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 pp	t)									
Pre-cleaned amber glass - total (lab preserved)										
RG_GATEDP_WS_LAEMP_EVO_2021-09-16_NP	E508-L	16-Sep-2021					27-Sep-2021	28 days	11 days	✓
Total Metals : Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 pp	t)									
Pre-cleaned amber glass - total (lab preserved)										
RG_TRIP_WS_2021-09-16_NP	E508-L	16-Sep-2021					27-Sep-2021	28 days	11 days	✓

Page : 13 of 20 Work Order : CG2104214

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

							Tronumny units skiese			
Analyte Group	Method	Sampling Date	Ext	traction / Prep	paration			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid) RG_BOCK_WS_LAEMP_EVO_2021-09-16_NP	E420	16-Sep-2021					23-Sep-2021	180 days	7 days	✓
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid) RG_GATE_WS_LAEMP_EVO_2021-09-16_NP	E420	16-Sep-2021					23-Sep-2021	180 days	7 days	✓
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid) RG_GATEDP_WS_LAEMP_EVO_2021-09-16_NP	E420	16-Sep-2021					23-Sep-2021	180 days	7 days	✓
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid) RG_TRIP_WS_2021-09-16_NP	E420	16-Sep-2021					23-Sep-2021	180 days	7 days	✓

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Page : 14 of 20 Work Order : CG2104214

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Quality Control Sample Type			C	ount		Frequency (%))
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Acidity by Titration	E283	306148	1	11	9.0	5.0	1
Alkalinity Species by Titration	E290	304822	1	11	9.0	5.0	✓
Ammonia by Fluorescence	E298	306152	1	20	5.0	5.0	✓
Bromide in Water by IC (Low Level)	E235.Br-L	296854	1	16	6.2	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	296855	1	16	6.2	5.0	✓
Conductivity in Water	E100	304820	1	11	9.0	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	300105	1	20	5.0	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	300938	1	20	5.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	300106	1	20	5.0	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	303951	1	20	5.0	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	297211	2	38	5.2	5.0	✓
Fluoride in Water by IC	E235.F	296858	1	20	5.0	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	296856	1	16	6.2	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	296857	1	16	6.2	5.0	✓
ORP by Electrode	E125	303225	1	20	5.0	5.0	✓
pH by Meter	E108	304821	1	11	9.0	5.0	✓
Sulfate in Water by IC	E235.SO4	296853	1	20	5.0	5.0	✓
TDS by Gravimetry	E162	300154	1	20	5.0	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	300529	1	20	5.0	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	302188	0	16	0.0	5.0	£
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	303406	1	20	5.0	5.0	✓
Total Metals in Water by CRC ICPMS	E420	300530	1	20	5.0	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	303958	1	20	5.0	5.0	✓
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	299081	1	20	5.0	5.0	✓
Turbidity by Nephelometry	E121	296848	1	13	7.6	5.0	✓
Laboratory Control Samples (LCS)							
Acidity by Titration	E283	306148	1	11	9.0	5.0	✓
Alkalinity Species by Titration	E290	304822	1	11	9.0	5.0	1
Ammonia by Fluorescence	E298	306152	1	20	5.0	5.0	√
Bromide in Water by IC (Low Level)	E235.Br-L	296854	1	16	6.2	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	296855	1	16	6.2	5.0	√
Conductivity in Water	E100	304820	1	11	9.0	5.0	√
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	300105	1	20	5.0	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	300938	1	20	5.0	5.0	√
Dissolved Metals in Water by CRC ICPMS	E421	300106	1	20	5.0	5.0	√
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	303951	1	20	5.0	5.0	√
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	297211	2	38	5.2	5.0	1

Page : 15 of 20 Work Order : CG2104214

Turbidity by Nephelometry

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Quality Control Sample Type			Co	ount		Frequency (%))
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Control Samples (LCS) - Continued							
Fluoride in Water by IC	E235.F	296858	1	20	5.0	5.0	1
Nitrate in Water by IC (Low Level)	E235.NO3-L	296856	1	16	6.2	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	296857	1	16	6.2	5.0	√
ORP by Electrode	E125	303225	1	20	5.0	5.0	✓
pH by Meter	E108	304821	1	11	9.0	5.0	✓
Sulfate in Water by IC	E235.SO4	296853	1	20	5.0	5.0	✓
TDS by Gravimetry	E162	300154	1	20	5.0	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	300529	1	20	5.0	5.0	1
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	302188	1	16	6.2	5.0	√
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	303406	1	20	5.0	5.0	√
Total Metals in Water by CRC ICPMS	E420	300530	1	20	5.0	5.0	<u>√</u>
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	303958	1	20	5.0	5.0	_
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	299081	1	20	5.0	5.0	√
TSS by Gravimetry (Low Level)	E160-L	300146	2	40	5.0	5.0	✓
Turbidity by Nephelometry	E121	296848	1	13	7.6	5.0	<u> </u>
Method Blanks (MB)							_
Acidity by Titration	E283	306148	1	11	9.0	5.0	1
Alkalinity Species by Titration	E290	304822	1	11	9.0	5.0	√
Ammonia by Fluorescence	E298	306152	1	20	5.0	5.0	1
Bromide in Water by IC (Low Level)	E235.Br-L	296854	1	16	6.2	5.0	√
Chloride in Water by IC (Low Level)	E235.CI-L	296855	1	16	6.2	5.0	√
Conductivity in Water	E100	304820	1	11	9.0	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	300105	1	20	5.0	5.0	√
Dissolved Mercury in Water by CVAAS	E509	300938	1	20	5.0	5.0	
Dissolved Metals in Water by CRC ICPMS	E421	300106	1	20	5.0	5.0	√
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	303951	1	20	5.0	5.0	√
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	297211	2	38	5.2	5.0	<u>√</u>
Fluoride in Water by IC	E235.F	296858	1	20	5.0	5.0	√
Nitrate in Water by IC (Low Level)	E235.NO3-L	296856	1	16	6.2	5.0	<u> </u>
Nitrite in Water by IC (Low Level)	E235.NO2-L	296857	1	16	6.2	5.0	√
Sulfate in Water by IC	E235.SO4	296853	1	20	5.0	5.0	<u> </u>
TDS by Gravimetry	E162	300154	1	20	5.0	5.0	<u> </u>
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	300529	1	20	5.0	5.0	√
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	302188	1	16	6.2	5.0	√
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	303406	1	20	5.0	5.0	✓
Total Metals in Water by CRC ICPMS	E420	300530	1	20	5.0	5.0	<u> </u>
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	303958	1	20	5.0	5.0	✓
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	299081	1	20	5.0	5.0	√
TSS by Gravimetry (Low Level)	E160-L	300146	2	40	5.0	5.0	√
Total States New Later Advantage	L 100-L	200140	-	10	7.0	5.0	

E121

296848

13

7.6

5.0

Page : 16 of 20 Work Order : CG2104214

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: **Water**Evaluation: **×** = *QC frequency outside specification*; ✓ = *QC frequency within specification*.

Quality Control Sample Type			Co	ount		Frequency (%)
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Matrix Spikes (MS)							
Ammonia by Fluorescence	E298	306152	1	20	5.0	5.0	✓
Bromide in Water by IC (Low Level)	E235.Br-L	296854	1	16	6.2	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	296855	1	16	6.2	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	300105	1	20	5.0	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	300938	1	20	5.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	300106	1	20	5.0	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	303951	1	20	5.0	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	297211	2	38	5.2	5.0	✓
Fluoride in Water by IC	E235.F	296858	1	20	5.0	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	296856	1	16	6.2	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	296857	1	16	6.2	5.0	✓
Sulfate in Water by IC	E235.SO4	296853	1	20	5.0	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	300529	1	20	5.0	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	302188	1	16	6.2	5.0	✓
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	303406	1	20	5.0	5.0	✓
Total Metals in Water by CRC ICPMS	E420	300530	1	20	5.0	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	303958	1	20	5.0	5.0	✓
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	299081	1	20	5.0	5.0	1

Page : 17 of 20 Work Order : CG2104214

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100 Calgary - Environmental	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water sample. Conductivity measurements are temperature-compensated to 25°C.
pH by Meter	E108 Calgary - Environmental	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally 20 ± 5°C). For high accuracy test results, pH should be measured in the field within the recommended 15 minute hold time.
Turbidity by Nephelometry	E121 Calgary - Environmental	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light scatter under defined conditions.
ORP by Electrode	E125 Calgary - Environmental	Water	ASTM D1498 (mod)	Oxidation redution potential is reported as the oxidation-reduction potential of the platinum metal-reference electrode employed, measured in mV. For high accuracy test results, it is recommended that this analysis be conducted in the field.
TSS by Gravimetry (Low Level)	E160-L Calgary - Environmental	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at 104 ± 1°C, with gravimetric measurement of the filtered solids. Samples containing very high dissolved solid content (i.e. seawaters, brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.
TDS by Gravimetry	E162 Calgary - Environmental	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, with evaporation of the filtrate at 180 ± 2°C for 16 hours or to constant weight, with gravimetric measurement of the residue.
Bromide in Water by IC (Low Level)	E235.Br-L Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Chloride in Water by IC (Low Level)	E235.CI-L Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Fluoride in Water by IC	E235.F Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Nitrite in Water by IC (Low Level)	E235.NO2-L Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
Nitrate in Water by IC (Low Level)	E235.NO3-L Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
Sulfate in Water by IC	E235.SO4 Calgary - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Acidity by Titration	E283 Calgary - Environmental	Water	APHA 2310 B (mod)	Acidity is determined by potentiometric titration to pH 8.3

Page : 18 of 20 Work Order : CG2104214

Client : Teck Coal Limited

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Alkalinity Species by Titration	E290 Calgary - Environmental	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.
Ammonia by Fluorescence	E298 Calgary - Environmental	Water	J. Environ. Monit., 2005, 7, 37-42 (mod)	Ammonia in water is analyzed by flow-injection analysis with fluorescence detection after reaction with orthophthaldialdehyde (OPA).
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318 Vancouver - Environmental	Water	APHA 4500-Norg D (mod)	Total Kjeldahl Nitrogen is determined using block digestion followed by flow-injection analysis with fluorescence detection.
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L Calgary - Environmental	Water	APHA 5310 B (mod)	Total Organic Carbon (Non-Purgeable), also known as NPOC (total), is a direct measurement of TOC after an acidified sample has been purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of total carbon (TC) is comprised of IC (which is common), this method is more accurate and more reliable than the TOC by subtraction method (i.e. TC minus TIC).
Dissolved Organic Carbon by Combustion (Low Level)	E358-L Calgary - Environmental	Water	APHA 5310 B (mod)	Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of DC (dissolved carbon) is comprised of IC (which is common), this method is more accurate and more reliable than the DOC by subtraction method (i.e. DC minus DIC).
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U Calgary - Environmental	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U Calgary - Environmental	Water	APHA 4500-P E (mod)	Dissolved Orthophosphate is determined colourimetrically on a water sample that has been lab or field filtered through a 0.45 micron membrane filter. Field filtration is recommended to ensure test results represent conditions at time of sampling.
Total Metals in Water by CRC ICPMS	E420 Vancouver - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L Vancouver - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS.
Dissolved Metals in Water by CRC ICPMS	E421 Vancouver - Environmental	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

Page : 19 of 20 Work Order : CG2104214

Client : Teck Coal Limited

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L Vancouver - Environmental	Water	APHA 3030 B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L Vancouver - Environmental	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAFS.
Dissolved Mercury in Water by CVAAS	E509 Vancouver - Environmental	Water	APHA 3030B/EPA 1631E (mod)	Water samples are filtered (0.45 um), preserved with HCl, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.
Dissolved Hardness (Calculated)	EC100 Vancouver - Environmental	Water	APHA 2340B	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations.
Ion Balance using Dissolved Metals	EC101 Calgary - Environmental	Water	APHA 1030E	Cation Sum, Anion Sum, and Ion Balance are calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis). Dissolved species are used where available. Minor ions are included where data is present. Ion Balance cannot be calculated accurately for waters with very low electrical conductivity (EC).
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298 Calgary - Environmental	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
Digestion for TKN in water	EP318 Vancouver - Environmental	Water	APHA 4500-Norg D (mod)	Samples are digested using block digestion with Copper Sulfate Digestion Reagent.
Preparation for Total Organic Carbon by Combustion	EP355 Calgary - Environmental	Water		Preparation for Total Organic Carbon by Combustion
Preparation for Dissolved Organic Carbon for Combustion	EP358 Calgary - Environmental	Water	APHA 5310 B (mod)	Preparation for Dissolved Organic Carbon
Digestion for Total Phosphorus in water	EP372 Calgary - Environmental	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
Dissolved Metals Water Filtration	EP421 Vancouver - Environmental	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HNO3.

Page : 20 of 20 Work Order : CG2104214

Client : Teck Coal Limited

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Mercury Water Filtration	EP509	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HCl.
	Vancouver -			
	Environmental			

QUALITY CONTROL REPORT

Work Order Page :CG2104214 : 1 of 22

Client : Teck Coal Limited Laboratory : Calgary - Environmental Contact **Account Manager** : Lyudmyla Shvets : Allie Ferguson

> Address :421 Pine Avenue : 2559 29th Street NE

Sparwood BC Canada V0B 2G0 Calgary, Alberta Canada T1Y 7B5 Telephone :+1 403 407 1800

Laboratory Department

Project : REGIONAL EFFECTS PROGRAM **Date Samples Received** : 18-Sep-2021 09:05

Date Analysis Commenced : 19-Sep-2021 : VPO00750546

C-O-C number : 13-Oct-2021 16:07 : SEPTEMBER EVO LAEMP 2021 Issue Date

Sampler :JI

Site Quote number : Teck Coal Master Quote

Position

No. of samples received : 4 No. of samples analysed : 4

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

Matrix Spike (MS) Report; Recovery and Acceptance Limits

:----

- Reference Material (RM) Report; Recovery and Acceptance Limits
- Method Blank (MB) Report; Recovery and Acceptance Limits
- Laboratory Control Sample (LCS) Report; Recovery and Acceptance Limits

Signatories

Signatories

Address

Telephone

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Aaron Yu	Laboratory Analyst	Inorganics, Burnaby, British Columbia
Anthony Calero	Team Leader - Inorganics	Inorganics, Calgary, Alberta
Anthony Calero	Team Leader - Inorganics	Metals, Calgary, Alberta
Caleb Deroche	Lab Analyst	Metals, Burnaby, British Columbia
Dion Chan	Lab Assistant	Metals, Burnaby, British Columbia
Erin Sanchez		Inorganics, Calgary, Alberta
Hannah Phung	Lab Assistant	Inorganics, Calgary, Alberta
Harpreet Chawla	Team Leader - Inorganics	Inorganics, Calgary, Alberta
Ilnaz Badbezanchi	Team Leader - Metals preparation	Metals, Burnaby, British Columbia
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia
Lindsay Gung	Supervisor - Water Chemistry	Inorganics, Burnaby, British Columbia
Millicent Brentnall	Laboratory Analyst	Metals, Calgary, Alberta
Oscar Ruiz	Lab Assistant	Inorganics, Calgary, Alberta
Owen Cheng		Metals, Burnaby, British Columbia
Parker Sgarbossa	Laboratory Analyst	Inorganics, Calgary, Alberta

Robin Weeks
Ruifang Zheng
Sara Niroomand

Team Leader - Metals Analyst Metals, Burnaby, British Columbia Inorganics, Calgary, Alberta Inorganics, Calgary, Alberta

 Page
 : 3 of 22

 Work Order
 : CG2104214

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percentage Difference

= Indicates a QC result that did not meet the ALS DQO.

 Page
 : 4 of 22

 Work Order
 : CG2104214

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test specific).

ub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
hysical Tests (QC	Lot: 296848)										
CG2104213-001	Anonymous	turbidity		E121	0.10	NTU	<0.10	<0.10	0	Diff <2x LOR	
Physical Tests (QC	C Lot: 300154)										
CG2104211-001	Anonymous	solids, total dissolved [TDS]		E162	20	mg/L	616	619	0.486%	20%	
Physical Tests (QC	Lot: 303225)										
CG2104213-001	Anonymous	oxidation-reduction potential [ORP]		E125	0.10	mV	506	510	0.945%	15%	
Physical Tests (QC	C Lot: 304820)										
G2104213-007	Anonymous	conductivity		E100	2.0	μS/cm	715	716	0.140%	10%	
hysical Tests (QC	C Lot: 304821)										
CG2104213-007	Anonymous	рН		E108	0.10	pH units	8.37	8.39	0.239%	4%	
Physical Tests (QC	Lot: 304822)										
CG2104213-007	Anonymous	alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	162	161	0.619%	20%	
		alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	8.8	7.2	1.6	Diff <2x LOR	
		alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, total (as CaCO3)		E290	1.0	mg/L	171	168	1.53%	20%	
Physical Tests (QC	: Lot: 306148)										
CG2104213-007	Anonymous	acidity (as CaCO3)		E283	2.0	mg/L	<2.0	<2.0	0	Diff <2x LOR	
Anions and Nutrion	its (QC Lot: 296853)										
CG2104213-001	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	<0.30	<0.30	0	Diff <2x LOR	
Anions and Nutrion	its (QC Lot: 296854)					-					
CG2104213-001	Anonymous	bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
Anions and Nutrion	its (QC Lot: 296855)										
CG2104213-001	Anonymous	chloride	16887-00-6	E235.CI-L	0.10	mg/L	<0.10	<0.10	0	Diff <2x LOR	
Anions and Nutrion	its (QC Lot: 296856)										
CG2104213-001	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	<0.0050	0.0063	0.0013	Diff <2x LOR	
Valence and Nutrica	·	made (as it)				J				_	
CG2104213-001	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
	,	muite (as iv)	14707 00 0	2200.1102 E	0.0010	mg/L	-0.0010	-0.0010		DIII -EX EOIX	
Anions and Nutrien CG2104213-001	Anonymous	fluoride	16984-48-8	E235.F	0.020	mg/l	<0.020	<0.020	0	Diff <2x LOR	
	·	iluoride	10904-40-0	L233.F	0.020	mg/L	~0.020	~0.020	0	Dill \ZX LUR	
Anions and Nutrien CG2104209-001	its (QC Lot: 297211)		44005 44.0	E270 II	0.0040	/I	-0.0040	10.0040		D:# +0 I OD	I
JGZ 104Z09-007	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	

Page : 5 of 22
Work Order : CG2104214
Client : Teck Coal Limited

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Anions and Nutrien	ts (QC Lot: 297212) - c	ontinued									
CG2104214-003	RG_GATE_WS_LAEMP_E VO_2021-09-16_NP	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	0.0037	0.0035	0.0002	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 299081)										
CG2104213-006	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	<0.0020	0.0021	0.0001	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 306152)										
CG2104213-005	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0163	0.0179	0.0016	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 30395	31)									
CG2104213-008	Anonymous	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	<0.50	<0.50	0	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 30395	8)									
CG2104213-006	Anonymous	carbon, total organic [TOC]		E355-L	0.50	mg/L	1.55	1.18	0.37	Diff <2x LOR	
Total Metals (QC Lo	ot: 300529)										
CG2104211-001	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	<0.00010	0.00012	0.00002	Diff <2x LOR	
Fotal Metals (QC Lo	ot: 300530)										
CG2104211-001	Anonymous	aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0031	0.0039	0.0008	Diff <2x LOR	
		antimony, total	7440-36-0	E420	0.00010	mg/L	0.00036	0.00035	0.000002	Diff <2x LOR	
		arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00013	0.00013	0.000006	Diff <2x LOR	
		barium, total	7440-39-3	E420	0.00010	mg/L	0.0666	0.0668	0.250%	20%	
		beryllium, total	7440-41-7	E420	0.020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR	
		bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, total	7440-42-8	E420	0.010	mg/L	0.019	0.020	0.0009	Diff <2x LOR	
		cadmium, total	7440-43-9	E420	0.0050	mg/L	0.308 µg/L	0.000293	4.79%	20%	
		calcium, total	7440-70-2	E420	0.050	mg/L	101	103	2.45%	20%	
		cobalt, total	7440-48-4	E420	0.10	mg/L	<0.10 µg/L	<0.00010	0	Diff <2x LOR	
		copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		iron, total	7439-89-6	E420	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		lithium, total	7439-93-2	E420	0.0010	mg/L	0.0566	0.0582	2.70%	20%	
		magnesium, total	7439-95-4	E420	0.0050	mg/L	43.9	43.8	0.260%	20%	
		manganese, total	7439-96-5	E420	0.00010	mg/L	0.00013	0.00013	0.00000010	Diff <2x LOR	
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00172	0.00169	1.70%	20%	
		nickel, total	7440-02-0	E420	0.00050	mg/L	0.00904	0.00903	0.0545%	20%	
		potassium, total	7440-09-7	E420	0.050	mg/L	1.61	1.63	0.920%	20%	
		selenium, total	7782-49-2	E420	0.050	mg/L	40.7 μg/L	0.0388	4.76%	20%	
		silicon, total	7440-21-3	E420	0.10	mg/L	2.18	2.09	4.33%	20%	
		silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
			1		1		1		1		

 Page
 : 6 of 22

 Work Order
 : CG2104214

 Client
 : Teck Coal Limited

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Total Metals (QC Lo	ot: 300530) - continue	ed									
CG2104211-001	Anonymous	strontium, total	7440-24-6	E420	0.00020	mg/L	0.213	0.212	0.550%	20%	
		sulfur, total	7704-34-9	E420	0.50	mg/L	76.1	73.7	3.27%	20%	
		thallium, total	7440-28-0	E420	0.000010	mg/L	0.000016	0.000014	0.000002	Diff <2x LOR	
		tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		uranium, total	7440-61-1	E420	0.000010	mg/L	0.00332	0.00338	1.64%	20%	
		vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, total	7440-66-6	E420	0.0030	mg/L	0.0149	0.0154	0.0005	Diff <2x LOR	
Total Metals (QC Lo	ot: 303406)										
CG2104208-001	Anonymous	mercury, total	7439-97-6	E508-L	0.00050	ng/L	<0.00050 µg/L	<0.50	0	Diff <2x LOR	
Dissolved Metals (C	QC Lot: 300105)										
CG2104202-001	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00012	0.00012	0.000006	Diff <2x LOR	
Dissolved Metals (C	QC Lot: 300106)										
CG2104202-001	Anonymous	aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0013	0.0011	0.0002	Diff <2x LOR	
		antimony, dissolved	7440-36-0	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0152	0.0152	0.550%	20%	
		beryllium, dissolved	7440-41-7	E421	0.020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR	
		bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, dissolved	7440-42-8	E421	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		cadmium, dissolved	7440-43-9	E421	0.0050	mg/L	0.0129 μg/L	0.0000110	0.0000019	Diff <2x LOR	
		calcium, dissolved	7440-70-2	E421	0.050	mg/L	43.9	44.2	0.799%	20%	
		cobalt, dissolved	7440-48-4	E421	0.10	mg/L	<0.10 µg/L	<0.00010	0	Diff <2x LOR	
		copper, dissolved	7440-50-8	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0021	0.0021	0.00002	Diff <2x LOR	
		magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	12.4	12.6	1.38%	20%	
		manganese, dissolved	7439-96-5	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00102	0.000970	5.22%	20%	
		nickel, dissolved	7440-02-0	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		potassium, dissolved	7440-09-7	E421	0.050	mg/L	0.266	0.273	0.007	Diff <2x LOR	
		selenium, dissolved	7782-49-2	E421	0.050	mg/L	1.32 μg/L	0.00134	1.93%	20%	
		silicon, dissolved	7440-21-3	E421	0.050	mg/L	1.57	1.56	0.623%	20%	
		silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.00010	<0.000010	0	Diff <2x LOR	

 Page
 : 7 of 22

 Work Order
 : CG2104214

 Client
 : Teck Coal Limited

Case Case		Qualific
Anonymous Sodium, dissolved 17341-28-2 E421 0.050 mg/L 0.478 0.482 0.004 strottlum, dissolved 77440-24-6 E421 0.00020 mg/L 0.123 0.120 2.51% sulfur, dissolved 77440-24-6 E421 0.500 mg/L 4.000010 4.000010 0 tin, dissolved 7440-32-6 E421 0.000010 mg/L 4.000010 4.000010 0 tin, dissolved 7440-32-6 E421 0.00010 mg/L 4.000030 4.00030 4.00030 0 translum, dissolved 7440-32-6 E421 0.000010 mg/L 4.000030 4.00030 0 translum, dissolved 7440-81-1 E421 0.000010 mg/L 4.000030 4.00030 0 4.00030 0 4.00030 0 4.00030 4.00030 0	20% 20% Diff <2x LOR Diff <2x LOR Diff <2x LOR 20% Diff <2x LOR	
Strontium, dissolved 7440-24-6 E421 0.00020 mg/L 0.123 0.120 2.51%	20% 20% Diff <2x LOR Diff <2x LOR Diff <2x LOR 20% Diff <2x LOR	
Sulfur, dissolved 7704-34-9 E421 0.50 mg/L 17.8 18.1 1.97% 17.8 19.000030 1.000030 1.000030 1.000030 1.000030 1.000030 1.000030 1.000030 1.000030 1.000030 1.000050 1.0	20% Diff <2x LOR Diff <2x LOR Diff <2x LOR 20% Diff <2x LOR	
thalilum, dissolved tin, dissolved titahium, d	Diff <2x LOR Diff <2x LOR Diff <2x LOR 20% Diff <2x LOR	
tin, dissolved ttanium, dissolved 7440-31-5 E421 0.00010 mg/L <0.00010 <0.00010 0 ttanium, dissolved ttanium, dissolved vanadium, dissolved vanadium, dissolved 7440-61-1 E421 0.00000 mg/L 0.00010 0.00149 0.00147 1.75% vanadium, dissolved 7440-66-6 E421 0.00050 mg/L 0.00050 <0.00050 0 ctanium, dissolved vanadium, dissolved 7440-66-6 E421 0.0010 mg/L 0.00034 0.00038 0.0004	Diff <2x LOR Diff <2x LOR 20% Diff <2x LOR	
titanium, dissolved	Diff <2x LOR 20% Diff <2x LOR	
uranium, dissolved vanadium, dissolved vanadiu	20% Diff <2x LOR	
vanadium, dissolved 7440-62-2 E421 0.00050 mg/L <0.00050 <0.00050 0.00050 0.00050 0.00050 0.00050 0.00050 0.00050 0.00050 0.00050 0.00050 0.00050 0.00050 0.00050 0.00050 0.00050 0.00050 0.00050 0.00050 0.00050 0.	Diff <2x LOR	
zinc, dissolved 7440-66-6 E421 0.0010 mg/L 0.0034 0.0038 0.0004 Dissolved Metals (QC Lot: 300938) G2104188-014 Anonymous mercury, dissolved 7439-97-6 E509 0.000050 mg/L <0.000050 <0.0000050 0 Dissolved Metals (QC Lot: 303332) Anonymous aluminum, dissolved 7440-36-0 E421 0.0010 mg/L <0.0010 <0.0010 0 arsenic, dissolved 7440-38-2 E421 0.00010 mg/L <0.00010 <0.00010 0 barium, dissolved 7440-39-3 E421 0.00010 mg/L <0.00010 <0.00010 0 beryllium, dissolved 7440-41-7 E421 0.00010 mg/L <0.00010 <0.00010 0 boron, dissolved 7440-49-9 E421 0.00050 mg/L <0.00050 <0.000050 0 boron, dissolved 7440-42-8 E421 0.00050 mg/L <0.00050 <0.000050 0 cadmium, dissolved 7440-43-9 E421 0.00050 mg/L <0.00050 <0.000050 0 cadmium, dissolved 7440-43-9 E421 0.00050 mg/L <0.00050 <0.000050 0 cadmium, dissolved 7440-43-9 E421 0.000050 mg/L <0.00050 <0.000050 0 cadmium, dissolved 7440-43-9 E421 0.000050 mg/L <0.000050 <0.000050 0 cadmium, dissolved 7440-48-4 E421 0.0000 mg/L <0.0000 <0.000050 0 cadmium, dissolved 7440-48-4 E421 0.0000 mg/L <0.00010 <0.00010 0 cadmium, dissolved 7440-48-4 E421 0.0000 mg/L <0.00010 <0.00010 0 cobalt, dissolved 7440-48-4 E421 0.00010 mg/L <0.00010 <0.00010 0 copper, dissolved 7440-50-8 E421 0.0000 mg/L <0.0000 <0.00000 0 iron, dissolved 7440-50-8 E421 0.0000 mg/L <0.0000 <0.00000 0 copper, dissolved 7440-50-8 E421 0.0000 mg/L <0.0000 <0.00000 0 iron, dissolved 7440-50-8 E421 0.0000 mg/L <0.0000 <0.00000 0 copper, dissolved 7440-50-8 E421 0.0000 mg/L <0.0000 <0.00000 0 copper, dissolved 7440-50-8 E421 0.0000 mg/L <0.0000 0 copper, dissolved 7440-50-8 E421 0.000 mg/L <0.0000 0 copper, dissolved 7440-50-8 E421 0.0000 mg/L <0.0000 0 copper, dissolved 7440-50-8 E421 0.0000 mg/L <0.0000 0 copper, dissolved 7440-50-8 E421 0.0000 mg/L <0.0000 0 copper, dissolved 7440-50-8 E4		
Dissolved Metals (QC Lot: 300938) C22104188-014 Anonymous mercury, dissolved 7439-97-6 E509 0.000050 mg/L <0.000050 <0.000050 0	Diff <2x LOR	
Anonymous Mercury, dissolved 7439-97-6 E509 0.000050 mg/L <0.000050 <0.000050 0		
Dissolved Metals (QC Lot: 303332) Anonymous aluminum, dissolved 7429-90-5 E421 0.00010 mg/L <0.00010 <0.00010 0 antimony, dissolved 7440-36-0 E421 0.00010 mg/L <0.00010 <0.00010 0 arsenic, dissolved 7440-38-2 E421 0.00010 mg/L <0.00010 <0.00010 0 barium, dissolved 7440-39-3 E421 0.00010 mg/L <0.00010 <0.00010 0 beryllium, dissolved 7440-41-7 E421 0.000020 mg/L <0.000020 <0.000020 0 bismuth, dissolved 7440-69-9 E421 0.000050 mg/L <0.000050 <0.000050 0 boron, dissolved 7440-42-8 E421 0.000 mg/L <0.000050 <0.000050 0 cadmium, dissolved 7440-43-9 E421 0.000050 mg/L <0.000050 <0.000050 0 cadmium, dissolved 7440-43-9 E421 0.000050 mg/L <0.000050 <0.000050 0 calcium, dissolved 7440-70-2 E421 0.000050 mg/L <0.000050 <0.000050 0 cobalt, dissolved 7440-48-4 E421 0.000 mg/L <0.00010 <0.00010 0 cobalt, dissolved 7440-88-6 E421 0.00010 mg/L <0.00010 <0.00010 0 copper, dissolved 7440-50-8 E421 0.00000 mg/L <0.00020 <0.000020 0 column, dissolved 7440-50-8 E421 0.00000 mg/L <0.000020 <0.000020 0 column, dissolved 7439-89-6 E421 0.00000 mg/L <0.00000 <0.000000 0 column, dissolved 7439-89-6 E421 0.00000 mg/L <0.00000 <0.000000 0 column, dissolved 7439-89-6 E421 0.00000 mg/L <0.00000 column, dissolved 0.000000 0 column, dissolved 0.000000 0 column, dissolved 0.0000000 0 column, dissolved 0.000000 0 column, dissolved 0.00000000 0 column, dissolved 0.0000000 0 column, dissolved 0.000000000 0 column, dissolved 0.0000000000 0 column, dissolved 0.00000000000000000000000000000000000	D:# -0 1 0D	
Anonymous aluminum, dissolved 7429-90-5 E421 0.0010 mg/L <0.0010 <0.0010 0 antimony, dissolved 7440-36-0 E421 0.00010 mg/L <0.00010 <0.00010 0 arsenic, dissolved 7440-38-2 E421 0.00010 mg/L <0.00010 <0.00010 0 barium, dissolved 7440-39-3 E421 0.00010 mg/L <0.00010 <0.00010 0 barium, dissolved 7440-40-39-3 E421 0.00010 mg/L <0.00010 <0.00010 0 beryllium, dissolved 7440-41-7 E421 0.000020 mg/L <0.000020 <0.000020 0 bismuth, dissolved 7440-69-9 E421 0.00050 mg/L <0.000050 <0.000050 0 boron, dissolved 7440-42-8 E421 0.010 mg/L <0.0010 <0.010 0 cadmium, dissolved 7440-43-9 E421 0.000050 mg/L <0.000050 <0.000050 0 calcium, dissolved 7440-40-9 E421 0.000050 mg/L <0.000050 <0.000050 0 calcium, dissolved 7440-70-2 E421 0.050 mg/L <0.000050 <0.000050 0 cobalt, dissolved 7440-70-2 E421 0.050 mg/L <0.0000 <0.000050 0 cobalt, dissolved 7440-50-8 E421 0.00010 mg/L <0.00010 <0.00010 0 copper, dissolved 7440-50-8 E421 0.00020 mg/L <0.00020 <0.000020 0 ciron, dissolved 7439-89-6 E421 0.00020 mg/L <0.00020 <0.00020 0 column, dissolved 7439-89-6 E421 0.00020 mg/L <0.00020 <0.00020 0 column, dissolved 7439-89-6 E421 0.00020 mg/L <0.00020 <0.00020 0 column, dissolved 7439-89-6 E421 0.00020 mg/L <0.00020 <0.00020 0 column, dissolved 7439-89-6 E421 0.00020 mg/L <0.00020 <0.00020 0 column, dissolved 7439-89-6 E421 0.00020 mg/L <0.00020 <0.00020 0 column, dissolved 7439-89-6 E421 0.00020 mg/L <0.00020 <0.00020 0 column, dissolved 7439-89-6 E421 0.00020 mg/L <0.00020 <0.00020 0 column, dissolved 7439-89-6 E421 0.00020 mg/L <0.00020 <0.00020 0 column, dissolved 7439-89-6 E421 0.00020 mg/L <0.00020 0 column, dissolved 7439-89-6 E421 0.00020 mg/L <0.00020 0 column, dissolved 7439-89-6 E421 0.00020 mg/L <0.00020 0 column, dissolved 7439-89-6 E421 0.00020 mg/L <0.00020 0 column, dissolved 7439-89-6 E421 0.00020 mg/L <0.00020 0 column, dissolved 0.00020 0 column, dissolved 0.00	Diff <2x LOR	
antimony, dissolved 7440-36-0 E421 0.00010 mg/L <0.00010 <0.00010 0 0 arsenic, dissolved 7440-38-2 E421 0.00010 mg/L <0.00010 <0.00010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
arsenic, dissolved 7440-38-2 E421 0.00010 mg/L <0.00010 <0.00010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Diff <2x LOR	
barium, dissolved 7440-39-3 E421 0.00010 mg/L <0.00010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Diff <2x LOR	
beryllium, dissolved 7440-41-7 E421 0.00020 mg/L <0.00020 <0.000020 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Diff <2x LOR	
bismuth, dissolved 7440-69-9 E421 0.000050 mg/L <0.000050 <0.000050 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Diff <2x LOR	
boron, dissolved 7440-42-8 E421 0.010 mg/L <0.010 <0.010 0 cadmium, dissolved 7440-43-9 E421 0.0000050 mg/L <0.0000050 <0.0000050 0 calcium, dissolved 7440-70-2 E421 0.050 mg/L <0.050 <0.050 0 cobalt, dissolved 7440-48-4 E421 0.00010 mg/L <0.00010 <0.00010 0 copper, dissolved 7440-50-8 E421 0.00020 mg/L <0.00020 <0.00020 0 iron, dissolved 7439-89-6 E421 0.010 mg/L <0.010 <0.010 0 copper, dissolved 7439-89-6 E421 0.00020 mg/L <0.010 <0.010 0 copper, dissolved 7439-89-6 E421 0.00020 mg/L <0.010 <0.010 0 copper, dissolved 0.010 0 copper, dissolved 0.010 0 copper, dissolved 0.010 0.010 0 copper, dissolved 0.010 0.010 0 copper, dissolved 0.010 0.010 0 copper, dissolved 0.010 0.010 0 copper, dissolved 0.010 0.010 0 copper, dissolved 0.010 0.010 0 copper, dissolved 0.010 0.010 0 copper, dissolved 0.010 0.010 0 copper, dissolved 0.010 0.010 0 copper, dissolved 0.010 0.010 0 copper, dissolved 0.010 0.010 0 copper, dissolved 0.010 0.010 0 copper, dissolved 0.010 0.010 0 copper, dissolved 0.010 0.010 0 copper, dissolved 0.010 0	Diff <2x LOR	
cadmium, dissolved 7440-43-9 E421 0.0000050 mg/L <0.0000050	Diff <2x LOR	
calcium, dissolved 7440-70-2 E421 0.050 mg/L <0.050 <0.050 0 cobalt, dissolved 7440-48-4 E421 0.00010 mg/L <0.00010	Diff <2x LOR	
cobalt, dissolved 7440-48-4 E421 0.00010 mg/L <0.00010	Diff <2x LOR	
copper, dissolved 7440-50-8 E421 0.00020 mg/L <0.00020 0 consolved 7439-89-6 E421 0.010 mg/L <0.010 <0.010 0	Diff <2x LOR	
iron, dissolved 7439-89-6 E421 0.010 mg/L <0.010 <0.010 0	Diff <2x LOR	
	Diff <2x LOR	
lead, dissolved 7439-92-1 E421 0.000050 mg/L <0.000050 <0.000050 0	Diff <2x LOR	
	Diff <2x LOR	
lithium, dissolved 7439-93-2 E421 0.0010 mg/L <0.0010 0	Diff <2x LOR	
magnesium, dissolved 7439-95-4 E421 0.0050 mg/L <0.0050 0	Diff <2x LOR	
manganese, dissolved 7439-96-5 E421 0.00010 mg/L <0.00010 0	Diff <2x LOR	
molybdenum, dissolved 7439-98-7 E421 0.000050 mg/L <0.000050 <0.000050 0	Diff <2x LOR	
nickel, dissolved 7440-02-0 E421 0.00050 mg/L <0.00050 <0.00050 0	Diff <2x LOR	
potassium, dissolved 7440-09-7 E421 0.050 mg/L <0.050 <0.050 0	Diff <2x LOR	
selenium, dissolved 7782-49-2 E421 0.000050 mg/L <0.000050 <0.000050 0	Diff <2x LOR	
silicon, dissolved 7440-21-3 E421 0.050 mg/L <0.050 <0.050 0	Diff <2x LOR	
silver, dissolved 7440-22-4 E421 0.000010 mg/L <0.000010 0	Diff <2x LOR	
sodium, dissolved 17341-25-2 E421 0.050 mg/L <0.050 <0.050 0		

Page : 8 of 22
Work Order : CG2104214
Client : Teck Coal Limited

Sub-Matrix: Water					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Dissolved Metals (QC Lot: 303332) - continued											
CG2104212-002	Anonymous	strontium, dissolved	7440-24-6	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		sulfur, dissolved	7704-34-9	E421	0.50	mg/L	<0.50	<0.50	0	Diff <2x LOR	
		thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		uranium, dissolved	7440-61-1	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, dissolved	7440-66-6	E421	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	

 Page
 : 9 of 22

 Work Order
 : CG2104214

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Physical Tests (OCLot: 296848)						
Physical Tests (QLCt: 300146)	Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 300146) Physical Tests (QCLot: 300147)						
Polysical Tests (OCLot: 300147)	,	E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 300147) colids, fold suspended [TSS]	Physical Tests (QCLot: 300146)					
Fig. Fig.	solids, total suspended [TSS]	E160-L	1	mg/L	<1.0	
Physical Tests (OCLot: 300154) Physical Tests (OCLot: 304820)	Physical Tests (QCLot: 300147)					
Physical Tests (OCLot: 304820)	solids, total suspended [TSS]	E160-L	1	mg/L	<1.0	
Physical Tests (OCLot: 304820)	Physical Tests (QCLot: 300154)					
Physical Tests (QCLot: 304822)	solids, total dissolved [TDS]	E162	10	mg/L	<10	
Physical Tests (QCLot: 304822) ##################################	Physical Tests (QCLot: 304820)					
	conductivity	E100	1	μS/cm	<1.0	
Alicalinity, carbonate (as CaCO3)	Physical Tests (QCLot: 304822)				,	
1 mg/L 1.0	alkalinity, bicarbonate (as CaCO3)	E290	1	mg/L	<1.0	
Anions and Nutrients (QCLot: 296856) Hargo-Code E235.NO2-L Code	alkalinity, carbonate (as CaCO3)	E290	1	mg/L	<1.0	
Physical Tests (QCLot: 306148) **Eoldity (as CaCO3)** **Eoldity (as CaCO3)** **Anions and Nutrients (QCLot: 296853) **Utilate (as SO4)** **Indianal Nutrients (QCLot: 296854) **Anions and Nutrients (QCLot: 296854) **Anions and Nutrients (QCLot: 296855) **Anions and Nutrients (QCLot: 296856) **Indianal Nutrients (QCLot: 296856) **Indianal Nutrients (QCLot: 296856) **Indianal Nutrients (QCLot: 296857) **Anions and Nutrients (QCLot: 296857) **Indianal Nutrients (QCLot: 296858) **Indianal Nutrients (QCLot: 297211) **Indianal Nutrients (QCLot: 297211) **Indianal Nutrients (QCLot: 297212) **Indianal Nutrients (QCLot: 29721	alkalinity, hydroxide (as CaCO3)	E290	1	mg/L	<1.0	
E283 2 mg/L	alkalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
E283 2 mg/L	Physical Tests (QCLot: 306148)					
Anions and Nutrients (QCLot: 296854) Anions and Nutrients (QCLot: 296855) Anions and Nutrients (QCLot: 296855) Anions and Nutrients (QCLot: 296856) Anions and Nutrients (QCLot: 296856) Anions and Nutrients (QCLot: 296856) Anions and Nutrients (QCLot: 296857) Anions and Nutrients (QCLot: 296858) Anions and Nutrients (QCLot: 297211) Anions and Nutrients (QCLot: 297211) Anions and Nutrients (QCLot: 297212)	acidity (as CaCO3)	E283	2	mg/L	<2.0	
Anions and Nutrients (QCLot: 296854) Anions and Nutrients (QCLot: 296855) Anions and Nutrients (QCLot: 296855) Anions and Nutrients (QCLot: 296856) Anions and Nutrients (QCLot: 296856) Anions and Nutrients (QCLot: 296857) Anions and Nutrients (QCLot: 296857) Anions and Nutrients (QCLot: 296858) Anions and Nutrients (QCLot: 296858) Anions and Nutrients (QCLot: 296858) Anions and Nutrients (QCLot: 297211) Anions and Nutrients (QCLot: 297211) Anions and Nutrients (QCLot: 297212)	Anions and Nutrients (QCLot: 296853)					
Anions and Nutrients (QCLot: 296855) Anions and Nutrients (QCLot: 296856) Anions and Nutrients (QCLot: 296856) Anions and Nutrients (QCLot: 296856) Anions and Nutrients (QCLot: 296857) Anions and Nutrients (QCLot: 296857) Anions and Nutrients (QCLot: 296858) Anions and Nutrients (QCLot: 296858) Anions and Nutrients (QCLot: 296858) Anions and Nutrients (QCLot: 297211) Anions and Nutrients (QCLot: 297211) Anions and Nutrients (QCLot: 297212)	sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 296855) Anions and Nutrients (QCLot: 296856) Anions and Nutrients (QCLot: 296856) Anions and Nutrients (QCLot: 296856) Anions and Nutrients (QCLot: 296857) Anions and Nutrients (QCLot: 296857) Anions and Nutrients (QCLot: 296858) Anions and Nutrients (QCLot: 296858) Anions and Nutrients (QCLot: 296858) Anions and Nutrients (QCLot: 297211) Anions and Nutrients (QCLot: 297211) Anions and Nutrients (QCLot: 297212)	Anions and Nutrients (QCLot: 296854)					
Anions and Nutrients (QCLot: 296856) Anions and Nutrients (QCLot: 296856) Anions and Nutrients (QCLot: 296857) Anions and Nutrients (QCLot: 296857) Anions and Nutrients (QCLot: 296858) Anions and Nutrients (QCLot: 296858) Anions and Nutrients (QCLot: 296858) Anions and Nutrients (QCLot: 297211) Anions and Nutrients (QCLot: 297211) Anions and Nutrients (QCLot: 297212)	bromide	24959-67-9 E235.Br-L	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 296856) Anions and Nutrients (QCLot: 296857) Anions and Nutrients (QCLot: 296857) Anions and Nutrients (QCLot: 296858) Anions and Nutrients (QCLot: 296858) Anions and Nutrients (QCLot: 297211) Onosphate, ortho-, dissolved (as P) 14265-44-2 E378-U 0.001 mg/L <0.0010 Anions and Nutrients (QCLot: 297212)	Anions and Nutrients (QCLot: 296855)					
Anions and Nutrients (QCLot: 296857) Anions and Nutrients (QCLot: 296857) Anions and Nutrients (QCLot: 296858) Authority (QCLot: 296858) Anions and Nutrients (QCLot: 297211) Anions and Nutrients (QCLot: 297211) Anions and Nutrients (QCLot: 297212)	chloride	16887-00-6 E235.CI-L	0.1	mg/L	<0.10	
Anions and Nutrients (QCLot: 296857) Anions and Nutrients (QCLot: 296858) Anions and Nutrients (QCLot: 296858) Anions and Nutrients (QCLot: 297211) Ohosphate, ortho-, dissolved (as P) 14265-44-2 E378-U Onoon mg/L	Anions and Nutrients (QCLot: 296856)					
Anions and Nutrients (QCLot: 296858) Anions and Nutrients (QCLot: 297211) Anions and Nutrients (QCLot: 297212)	nitrate (as N)	14797-55-8 E235.NO3-L	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 296858) Anions and Nutrients (QCLot: 297211) Anions and Nutrients (QCLot: 297212)	Anions and Nutrients (QCLot: 296857)					
Anions and Nutrients (QCLot: 297211) Shosphate, ortho-, dissolved (as P) 14265-44-2 E378-U 0.001 mg/L <0.0010 Anions and Nutrients (QCLot: 297212) Shosphate, ortho-, dissolved (as P) 14265-44-2 E378-U 0.001 mg/L <0.0010	nitrite (as N)	14797-65-0 E235.NO2-L	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 297211) Shosphate, ortho-, dissolved (as P) 14265-44-2 E378-U 0.001 mg/L <0.0010 Anions and Nutrients (QCLot: 297212) Shosphate, ortho-, dissolved (as P) 14265-44-2 E378-U 0.001 mg/L <0.0010	Anions and Nutrients (QCLot: 296858)					
Anions and Nutrients (QCLot: 297212) Shosphate, ortho-, dissolved (as P) 14265-44-2 E378-U 0.001 mg/L <0.0010 mg/L <0.0010	fluoride	16984-48-8 E235.F	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 297212) Shosphate, ortho-, dissolved (as P) 14265-44-2 E378-U 0.001 mg/L <0.0010 mg/L <0.0010	Anions and Nutrients (QCLot: 297211)					
phosphate, ortho-, dissolved (as P) 14265-44-2 E378-U 0.001 mg/L <0.0010	phosphate, ortho-, dissolved (as P)	14265-44-2 E378-U	0.001	mg/L	<0.0010	
phosphate, ortho-, dissolved (as P) 14265-44-2 E378-U 0.001 mg/L <0.0010	Anions and Nutrients (QCLot: 297212)					
Anions and Nutrients (QCL of: 299081)	phosphate, ortho-, dissolved (as P)	14265-44-2 E378-U	0.001	mg/L	<0.0010	
	Anions and Nutrients (OCL of: 299081)					

 Page
 : 10 of 22

 Work Order
 : CG2104214

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

	1					
Analyte	CAS Number Met	thod	LOR	Unit	Result	Qualifier
Anions and Nutrients (QCLot: 299081)						
phosphorus, total	7723-14-0 E37	72-U	0.002	mg/L	<0.0020	
Anions and Nutrients (QCLot: 302188)						
Kjeldahl nitrogen, total [TKN]	E31	18	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 306152)					,	
ammonia, total (as N)	7664-41-7 E29	98	0.005	mg/L	<0.0050	
Organic / Inorganic Carbon (QCLot: 30						
carbon, dissolved organic [DOC]	E35	58-L	0.5	mg/L	<0.50	
Organic / Inorganic Carbon (QCLot: 30						
carbon, total organic [TOC]	E35	55-L	0.5	mg/L	<0.50	
Total Metals (QCLot: 300529)						
chromium, total	7440-47-3 E42	20.Cr-L	0.0001	mg/L	<0.00010	
Total Metals (QCLot: 300530)						
aluminum, total	7429-90-5 E42		0.003	mg/L	<0.0030	
antimony, total	7440-36-0 E42		0.0001	mg/L	<0.00010	
arsenic, total	7440-38-2 E42	20	0.0001	mg/L	<0.00010	
barium, total	7440-39-3 E42	20	0.0001	mg/L	<0.00010	
beryllium, total	7440-41-7 E42	20	0.00002	mg/L	<0.000020	
bismuth, total	7440-69-9 E42	20	0.00005	mg/L	<0.000050	
boron, total	7440-42-8 E42	20	0.01	mg/L	<0.010	
cadmium, total	7440-43-9 E42	20	0.000005	mg/L	<0.000050	
calcium, total	7440-70-2 E42	20	0.05	mg/L	<0.050	
cobalt, total	7440-48-4 E42	20	0.0001	mg/L	<0.00010	
copper, total	7440-50-8 E42	20	0.0005	mg/L	<0.00050	
iron, total	7439-89-6 E42	20	0.01	mg/L	<0.010	
lead, total	7439-92-1 E42	20	0.00005	mg/L	<0.000050	
lithium, total	7439-93-2 E42	20	0.001	mg/L	<0.0010	
magnesium, total	7439-95-4 E42	20	0.005	mg/L	<0.0050	
manganese, total	7439-96-5 E42	20	0.0001	mg/L	<0.00010	
molybdenum, total	7439-98-7 E42	20	0.00005	mg/L	<0.000050	
nickel, total	7440-02-0 E42	20	0.0005	mg/L	<0.00050	
potassium, total	7440-09-7 E42	20	0.05	mg/L	<0.050	
selenium, total	7782-49-2 E42	20	0.00005	mg/L	<0.000050	
silicon, total	7440-21-3 E42	20	0.1	mg/L	<0.10	
silver, total	7440-22-4 E42	20	0.00001	mg/L	<0.000010	
sodium, total	17341-25-2 E42	20	0.05	mg/L	<0.050	
strontium, total	7440-24-6 E42	20	0.0002	mg/L	<0.00020	

Page : 11 of 22
Work Order : CG2104214
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: water						i
Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 300530) - con						
sulfur, total	7704-34-9	E420	0.5	mg/L	<0.50	
thallium, total	7440-28-0	E420	0.00001	mg/L	<0.000010	
tin, total	7440-31-5	E420	0.0001	mg/L	<0.00010	
titanium, total	7440-32-6	E420	0.0003	mg/L	<0.00030	
uranium, total	7440-61-1	E420	0.00001	mg/L	<0.000010	
vanadium, total	7440-62-2	E420	0.0005	mg/L	<0.00050	
zinc, total	7440-66-6	E420	0.003	mg/L	<0.0030	
Total Metals (QCLot: 303406)						
mercury, total	7439-97-6	E508-L	0.5	ng/L	<0.50	
Dissolved Metals (QCLot: 300105)						
chromium, dissolved	7440-47-3	E421.Cr-L	0.0001	mg/L	<0.00010	
Dissolved Metals (QCLot: 300106)						
aluminum, dissolved	7429-90-5	E421	0.001	mg/L	<0.0010	
antimony, dissolved	7440-36-0	E421	0.0001	mg/L	<0.00010	
arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	<0.00010	
parium, dissolved	7440-39-3	E421	0.0001	mg/L	<0.00010	
peryllium, dissolved	7440-41-7	E421	0.00002	mg/L	<0.000020	
bismuth, dissolved	7440-69-9	E421	0.00005	mg/L	<0.000050	
boron, dissolved	7440-42-8	E421	0.01	mg/L	<0.010	
cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	<0.0000050	
calcium, dissolved	7440-70-2	E421	0.05	mg/L	<0.050	
cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	<0.00010	
copper, dissolved	7440-50-8	E421	0.0002	mg/L	<0.00020	
iron, dissolved	7439-89-6	E421	0.01	mg/L	<0.010	
lead, dissolved	7439-92-1	E421	0.00005	mg/L	<0.000050	
lithium, dissolved	7439-93-2	E421	0.001	mg/L	<0.0010	
magnesium, dissolved	7439-95-4	E421	0.005	mg/L	<0.0050	
manganese, dissolved	7439-96-5	E421	0.0001	mg/L	<0.00010	
molybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	<0.000050	
nickel, dissolved	7440-02-0	E421	0.0005	mg/L	<0.00050	
ootassium, dissolved	7440-09-7	E421	0.05	mg/L	<0.050	
selenium, dissolved	7782-49-2	E421	0.00005	mg/L	<0.000050	
silicon, dissolved	7440-21-3	E421	0.05	mg/L	<0.050	
silver, dissolved	7440-22-4	E421	0.00001	mg/L	<0.000010	
sodium, dissolved	17341-25-2	E421	0.05	mg/L	<0.050	
strontium, dissolved	7440-24-6	E421	0.0002	mg/L	<0.00020	

 Page
 : 12 of 22

 Work Order
 : CG2104214

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Dissolved Metals (QCLot: 300106) - c					
sulfur, dissolved	7704-34-9 E421	0.5	mg/L	<0.50	
thallium, dissolved	7440-28-0 E421	0.00001	mg/L	<0.000010	
tin, dissolved	7440-31-5 E421	0.0001	mg/L	<0.00010	
titanium, dissolved	7440-32-6 E421	0.0003	mg/L	<0.00030	
uranium, dissolved	7440-61-1 E421	0.00001	mg/L	<0.000010	
vanadium, dissolved	7440-62-2 E421	0.0005	mg/L	<0.00050	
zinc, dissolved	7440-66-6 E421	0.001	mg/L	<0.0010	
Dissolved Metals (QCLot: 300938)					
mercury, dissolved	7439-97-6 E509	0.000005	mg/L	<0.000050	
Dissolved Metals (QCLot: 303332)					
aluminum, dissolved	7429-90-5 E421	0.001	mg/L	<0.0010	
antimony, dissolved	7440-36-0 E421	0.0001	mg/L	<0.00010	
arsenic, dissolved	7440-38-2 E421	0.0001	mg/L	<0.00010	
barium, dissolved	7440-39-3 E421	0.0001	mg/L	<0.00010	
beryllium, dissolved	7440-41-7 E421	0.00002	mg/L	<0.000020	
bismuth, dissolved	7440-69-9 E421	0.00005	mg/L	<0.000050	
boron, dissolved	7440-42-8 E421	0.01	mg/L	<0.010	
cadmium, dissolved	7440-43-9 E421	0.000005	mg/L	<0.0000050	
calcium, dissolved	7440-70-2 E421	0.05	mg/L	<0.050	
cobalt, dissolved	7440-48-4 E421	0.0001	mg/L	<0.00010	
copper, dissolved	7440-50-8 E421	0.0002	mg/L	<0.00020	
iron, dissolved	7439-89-6 E421	0.01	mg/L	<0.010	
lead, dissolved	7439-92-1 E421	0.00005	mg/L	<0.000050	
lithium, dissolved	7439-93-2 E421	0.001	mg/L	<0.0010	
magnesium, dissolved	7439-95-4 E421	0.005	mg/L	<0.0050	
manganese, dissolved	7439-96-5 E421	0.0001	mg/L	<0.00010	
molybdenum, dissolved	7439-98-7 E421	0.00005	mg/L	<0.000050	
nickel, dissolved	7440-02-0 E421	0.0005	mg/L	<0.00050	
potassium, dissolved	7440-09-7 E421	0.05	mg/L	<0.050	
selenium, dissolved	7782-49-2 E421	0.00005	mg/L	<0.000050	
silicon, dissolved	7440-21-3 E421	0.05	mg/L	<0.050	
silver, dissolved	7440-22-4 E421	0.0001	mg/L	<0.000010	
sodium, dissolved	17341-25-2 E421	0.05	mg/L	<0.050	
strontium, dissolved	7440-24-6 E421	0.0002	mg/L	<0.00020	
sulfur, dissolved	7704-34-9 E421	0.5	mg/L	<0.50	
thallium, dissolved	7440-28-0 E421	0.00001	mg/L	<0.00010	
uralium, dissolved	7440-20-0	0.00001	mg/L	40.000010	

 Page
 : 13 of 22

 Work Order
 : CG2104214

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

ALS

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Dissolved Metals (QCLot: 303332) -	continued					
tin, dissolved	7440-31-5	E421	0.0001	mg/L	<0.00010	
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	<0.00030	
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	<0.000010	
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	<0.00050	
zinc, dissolved	7440-66-6	E421	0.001	mg/L	<0.0010	

 Page
 : 14 of 22

 Work Order
 : CG2104214

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water					Laboratory Co.	ntrol Sample (LCS)	Report	
				Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 296848)								
turbidity	E121	0.1	NTU	200 NTU	98.7	85.0	115	
Physical Tests (QCLot: 300146)								
solids, total suspended [TSS]	E160-L	1	mg/L	150 mg/L	93.8	85.0	115	
Physical Tests (QCLot: 300147)								
solids, total suspended [TSS]	E160-L	1	mg/L	150 mg/L	94.6	85.0	115	
Physical Tests (QCLot: 300154)								
solids, total dissolved [TDS]	E162	10	mg/L	1000 mg/L	98.1	85.0	115	
Physical Tests (QCLot: 303225)								
oxidation-reduction potential [ORP]	E125		mV	220 mV	101	95.4	104	
Physical Tests (QCLot: 304820)								
conductivity	E100	1	μS/cm	146.9 μS/cm	100	90.0	110	
Physical Tests (QCLot: 304821)								
рН	E108		pH units	7 pH units	100	98.6	101	
Physical Tests (QCLot: 304822)								
alkalinity, total (as CaCO3)	E290	1	mg/L	500 mg/L	100.0	85.0	115	
Physical Tests (QCLot: 306148)								
acidity (as CaCO3)	E283	2	mg/L	50 mg/L	101	85.0	115	
Anions and Nutrients (QCLot: 296853)	14808-79-8 E235.SO4	0.3		400 #	100			
sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	100 mg/L	106	90.0	110	
Anions and Nutrients (QCLot: 296854)	24959-67-9 E235.Br-L	0.05	m a/l	0.5 //	405	05.0	145	I
bromide	24959-07-9 E235.BI-L	0.05	mg/L	0.5 mg/L	105	85.0	115	
Anions and Nutrients (QCLot: 296855)	16887-00-6 E235.CI-L	0.1	mg/L	400 #	400	00.0	140	
	10007-00-0 E233.CI-L	0.1	IIIg/L	100 mg/L	106	90.0	110	
Anions and Nutrients (QCLot: 296856) nitrate (as N)	14797-55-8 E235.NO3-L	0.005	mg/L	0.5	440	90.0	440	
	14797-33-6 E235.NO3-L	0.003	IIIg/L	2.5 mg/L	110	90.0	110	
Anions and Nutrients (QCLot: 296857) nitrite (as N)	14797-65-0 E235.NO2-L	0.001	mg/L	0.5	404	00.0	440	1
	14/9/-00-0 E230.INOZ-L	0.001	IIIg/L	0.5 mg/L	104	90.0	110	
Anions and Nutrients (QCLot: 296858)	16984-48-8 E235.F	0.02	mg/L	1 mg/l	95.1	90.0	110	
	10304-40-0 EZ33.F	0.02	mg/L	1 mg/L	95.1	90.0	110	
Anions and Nutrients (QCLot: 297211) phosphate, ortho-, dissolved (as P)	14265-44-2 E378-U	0.001	mg/L	0.02	100	90.0	120	
	14205-44-2	0.001	mg/L	0.02 mg/L	100	80.0	120	
Anions and Nutrients (QCLot: 297212)								

 Page
 : 15 of 22

 Work Order
 : CG2104214

 Client
 : Teck Coal Limited

Sub-Matrix: Water	Laboratory Control Sample (LCS) Report									
				Spike Recovery (%) Recovery Limits (%)						
Analyte	CAS Number Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier		
Anions and Nutrients (QCLot: 297212) - co	ontinued									
phosphate, ortho-, dissolved (as P)	14265-44-2 E378-U	0.001	mg/L	0.02 mg/L	100	80.0	120			
Anions and Nutrients (QCLot: 299081)										
phosphorus, total	7723-14-0 E372-U	0.002	mg/L	8.32 mg/L	97.0	80.0	120			
Anions and Nutrients (QCLot: 302188)										
Kjeldahl nitrogen, total [TKN]	E318	0.05	mg/L	4 mg/L	90.6	75.0	125			
Anions and Nutrients (QCLot: 306152)								'		
ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	0.2 mg/L	106	85.0	115			
Organic / Inorganic Carbon (QCLot: 30395	1)									
carbon, dissolved organic [DOC]	E358-L	0.5	mg/L	10 mg/L	105	80.0	120			
Organic / Inorganic Carbon (QCLot: 30395	8)									
carbon, total organic [TOC]	E355-L	0.5	mg/L	10 mg/L	104	80.0	120			
Total Metals (QCLot: 300529)										
chromium, total	7440-47-3 E420.Cr-L	0.0001	mg/L	0.25 mg/L	101	80.0	120			
Total Metals (QCLot: 300530)								'		
aluminum, total	7429-90-5 E420	0.003	mg/L	2 mg/L	104	80.0	120			
antimony, total	7440-36-0 E420	0.0001	mg/L	1 mg/L	114	80.0	120			
arsenic, total	7440-38-2 E420	0.0001	mg/L	1 mg/L	101	80.0	120			
barium, total	7440-39-3 E420	0.0001	mg/L	0.25 mg/L	108	80.0	120			
beryllium, total	7440-41-7 E420	0.00002	mg/L	0.1 mg/L	105	80.0	120			
bismuth, total	7440-69-9 E420	0.00005	mg/L	1 mg/L	103	80.0	120			
boron, total	7440-42-8 E420	0.01	mg/L	1 mg/L	100	80.0	120			
cadmium, total	7440-43-9 E420	0.000005	mg/L	0.1 mg/L	95.6	80.0	120			
calcium, total	7440-70-2 E420	0.05	mg/L	50 mg/L	108	80.0	120			
cobalt, total	7440-48-4 E420	0.0001	mg/L	0.25 mg/L	101	80.0	120			
copper, total	7440-50-8 E420	0.0005	mg/L	0.25 mg/L	99.0	80.0	120			
iron, total	7439-89-6 E420	0.01	mg/L	1 mg/L	107	80.0	120			
lead, total	7439-92-1 E420	0.00005	mg/L	0.5 mg/L	104	80.0	120			
lithium, total	7439-93-2 E420	0.001	mg/L	0.25 mg/L	103	80.0	120			
magnesium, total	7439-95-4 E420	0.005	mg/L	50 mg/L	100	80.0	120			
manganese, total	7439-96-5 E420	0.0001	mg/L	0.25 mg/L	100	80.0	120			
molybdenum, total	7439-98-7 E420	0.00005	mg/L	0.25 mg/L	108	80.0	120			
nickel, total	7440-02-0 E420	0.0005	mg/L	0.5 mg/L	100	80.0	120			
potassium, total	7440-09-7 E420	0.05	mg/L	50 mg/L	104	80.0	120			
selenium, total	7782-49-2 E420	0.00005	mg/L	1 mg/L	106	80.0	120			
silicon, total	7440-21-3 E420	0.1	mg/L	10 mg/L	106	80.0	120			

 Page
 : 16 of 22

 Work Order
 : CG2104214

 Client
 : Teck Coal Limited

Online Column C	Sub-Matrix: Water	Laboratory Control Sample (LCS) Report							
Column C					Spike	Recovery (%)	Recovery	Limits (%)	
New, Island	Analyte	CAS Number Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Column, total 1781-152 E400	Total Metals (QCLot: 300530) - continued	1							
	silver, total		0.00001	mg/L	0.1 mg/L	105	80.0	120	
ulfur, total 7763-84-9 [E420 0.5 mg.t 104 80.0 120	sodium, total	17341-25-2 E420	0.05	mg/L	50 mg/L	105	80.0	120	
Table 1	strontium, total	7440-24-6 E420	0.0002	mg/L	0.25 mg/L	105	80.0	120	
Institution in the image of the	sulfur, total	7704-34-9 E420	0.5	mg/L	50 mg/L	104	80.0	120	
Tanium, total 740-324 E420 0.0003 mgl. 0.25 mgl. 99.5 80.0 120 — Tanium, total 740-61-1 E420 0.00001 mgl. 0.005 mgl. 107 80.0 120 — Tanium, total 744-06-2 E420 0.0005 mgl. 0.5 mgl. 107 80.0 120 — Tanium, total 744-06-2 E420 0.0005 mgl. 0.5 mgl. 10.5 mgl. 103 80.0 120 — Total Metals (QCLot: 303406) Total	thallium, total	7440-28-0 E420	0.00001	mg/L	1 mg/L	104	80.0	120	
rantum, total 7440-61-1	tin, total	7440-31-5 E420	0.0001	mg/L	0.5 mg/L	97.7	80.0	120	
anadium, total 7440-62 E420 0.0005 mg/L 0.5 mg/L 102 80.0 120 inc., total 7440-66 E420 0.003 mg/L 0.5 mg/L 103 80.0 120 inc., total Metals (QCLot: 303406) ***Total Metals (QCLot: 303406) ***Total Metals (QCLot: 303406) ***Total Metals (QCLot: 300105) ***Total Metals (QCLot: 300105) ***Total Metals (QCLot: 300105) ***Total Metals (QCLot: 300106) ***Total Metals (QCLot: 30010	titanium, total	7440-32-6 E420	0.0003	mg/L	0.25 mg/L	99.5	80.0	120	
Inc., total T440-86-8 E420 D.0.03 mg/L D.5 mg/L 103 80.0 120	uranium, total	7440-61-1 E420	0.00001	mg/L	0.005 mg/L	107	80.0	120	
New York Metals COLOt: 303406 Section Color Color Section Color	vanadium, total	7440-62-2 E420	0.0005	mg/L	0.5 mg/L	102	80.0	120	
	zinc, total	7440-66-6 E420	0.003	mg/L	0.5 mg/L	103	80.0	120	
	Total Metals (QCI of: 303406)								
Section Sect	mercury, total	7439-97-6 E508-L	0.5	ng/L	5 ng/L	93.2	80.0	120	
Section Sect									
Section Sect	Dissolved Metals (OCI of: 300105)								
Luminum, dissolved 7429-90.5 E421 0.001 mg/L 2 mg/L 102 80.0 120	chromium, dissolved	7440-47-3 E421.Cı	r-L 0.0001	mg/L	0.25 mg/L	99.0	80.0	120	
Luminum, dissolved 7429-90.5 E421 0.001 mg/L 2 mg/L 102 80.0 120	Dissolved Metals (OCI of: 300106)								
rsenic, dissolved 7440-38-2 E421 0.0001 mg/L 1 mg/L 99.0 80.0 120	aluminum, dissolved	7429-90-5 E421	0.001	mg/L	2 mg/L	102	80.0	120	
rsenic, dissolved 7440-38-2 E421 0.0001 mg/L 1 mg/L 99.0 80.0 120	antimony, dissolved	7440-36-0 E421	0.0001	mg/L	1 mg/L	103	80.0	120	
eryllium, dissolved 7440-41-7	arsenic, dissolved	7440-38-2 E421	0.0001	mg/L	1 mg/L	99.0	80.0	120	
ismuth, dissolved 7440-69-9 E421 0.00005 mg/L 1 mg/L 95.4 80.0 120 admium, dissolved 7440-42-8 E421 0.001 mg/L 1 mg/L 93.2 80.0 120 admium, dissolved 7440-43-9 E421 0.00005 mg/L 0.1 mg/L 103 80.0 120 alcium, dissolved 7440-60-8 E421 0.005 mg/L 50 mg/L 97.6 80.0 120 obalt, dissolved 7440-44-4 E421 0.0001 mg/L 0.25 mg/L 98.7 80.0 120 oper, dissolved 7440-60-8 E421 0.0002 mg/L 0.25 mg/L 97.4 80.0 120 on, dissolved 7439-94-1 E421 0.000 mg/L 0.25 mg/L 97.4 80.0 120 on, dissolved 7439-93-2 E421 0.000 mg/L 0.5 mg/L 102 80.0 120 on, dissolved 7439-94-1 E421 0.0005 mg/L 0.5 mg/L 95.5 80.0 120 on, dissolved 7439-94-1 E421 0.0005 mg/L 0.5 mg/L 95.8 80.0 120 on, dissolved 7439-95-4 E421 0.0005 mg/L 0.25 mg/L 95.8 80.0 120 on, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 95.8 80.0 120 on, dissolved 7439-96-5 E421 0.0005 mg/L 0.25 mg/L 96.8 80.0 120 on, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 96.8 80.0 120 on, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 96.7 80.0 120 on, dissolved 7439-96-5 E421 0.0005 mg/L 0.25 mg/L 96.2 80.0 120 on, dissolved 7439-96-5 E421 0.0005 mg/L 0.25 mg/L 96.2 80.0 120 on, dissolved 7439-96-5 E421 0.0005 mg/L 0.5 mg/L 0.5 mg/L 96.2 80.0 120 on, dissolved 7440-02-0 E421 0.0005 mg/L 0.5 mg/L 0.5 mg/L 96.2 80.0 120 olybdenum, dissolved 7440-02-0 E421 0.0005 mg/L 0.5 mg/L 0.5 mg/L 96.2 80.0 120 olybdenum, dissolved 7440-02-0 E421 0.0005 mg/L 0.5 mg/L 101 80.0 120 olybdenum, dissolved 7440-02-0 E421 0.0005 mg/L 0.5 mg/L 101 80.0 120 olybdenum, dissolved 7440-02-0 E421 0.0005 mg/L 10.5 mg/L 10.5 mg/L 10.5 mg/L 10.5 80.0 120 olybdenum, dissolved 7440-02-0 E421 0.0005 mg/L 10.0005 mg/L 10.5 mg/L 10.5 mg/L 10.5 80.0 120 olybdenum, dissolved 7440-02-0 E421 0.0005 mg/L 10.0005 mg/L 10.5 mg/L 10.5 80.0 120 olybdenum, dissolved 7440-02-0 E421 0.0005 mg/L 10.0005 mg/L 10.5 mg/L 10.5 80.0 120 olybdenum, dissolved 7440-02-0 E421 0.00005 mg/L 10.0005 mg/L 10.5 mg/L 10.5 80.0 120 olybdenum dissolved	barium, dissolved	7440-39-3 E421	0.0001	mg/L	0.25 mg/L	100	80.0	120	
roron, dissolved 7440-42-8 E421 0.01 mg/L 1 mg/L 93.2 80.0 120	beryllium, dissolved	7440-41-7 E421	0.00002	mg/L	0.1 mg/L	95.5	80.0	120	
admium, dissolved 7440-43-9 E421 0.000005 mg/L 0.1 mg/L 103 80.0 120 alcium, dissolved 7440-70-2 E421 0.05 mg/L 50 mg/L 97.6 80.0 120 alcium, dissolved 7440-48-4 E421 0.001 mg/L 0.25 mg/L 98.7 80.0 120 apper, dissolved 7440-50-8 E421 0.0002 mg/L 0.25 mg/L 97.4 80.0 120 and, dissolved 7439-89-6 E421 0.01 mg/L 1 mg/L 102 80.0 120 and, dissolved 7439-92-1 E421 0.0005 mg/L 0.5 mg/L 95.5 80.0 120 and, dissolved 7439-93-2 E421 0.001 mg/L 0.25 mg/L 95.5 80.0 120 and, dissolved 7439-93-6 E421 0.001 mg/L 0.25 mg/L 95.8 80.0 120 and, dissolved 7439-93-6 E421 0.001 mg/L 0.25 mg/L 95.8 80.0 120 and, dissolved 7439-93-6 E421 0.001 mg/L 0.25 mg/L 96.7 80.0 120 and, dissolved 7439-93-7 E421 0.0005 mg/L 0.25 mg/L 96.7 80.0 120 and, dissolved 7439-93-7 E421 0.0005 mg/L 0.25 mg/L 96.7 80.0 120 and, dissolved 7440-02-0 E421 0.0005 mg/L 0.25 mg/L 96.2 80.0 120 and, dissolved 7440-02-0 E421 0.0005 mg/L 0.5 mg/L 96.2 80.0 120 and, dissolved 7440-02-0 E421 0.0005 mg/L 0.5 mg/L 96.2 80.0 120 and, dissolved 7440-02-0 E421 0.0005 mg/L 0.5 mg/L 96.2 80.0 120 and, dissolved 7440-02-0 E421 0.0005 mg/L 0.5 mg/L 96.2 80.0 120 and, dissolved 7440-02-0 E421 0.0005 mg/L 0.5 mg/L 96.2 80.0 120 and, dissolved 7440-02-0 E421 0.0005 mg/L 0.5 mg/L 96.2 80.0 120 and, dissolved 7440-02-0 E421 0.0005 mg/L 1.05 mg/L 101 80.0 120 and, dissolved 7440-02-0 E421 0.0005 mg/L 1.05 mg/L 101 80.0 120	bismuth, dissolved	7440-69-9 E421	0.00005	mg/L	1 mg/L	96.4	80.0	120	
admium, dissolved 7440-43-9 E421 0.00005 mg/L 0.1 mg/L 103 80.0 120	boron, dissolved	7440-42-8 E421	0.01	mg/L	1 mg/L	93.2	80.0	120	
alcium, dissolved 7440-70-2 E421 0.05 mg/L 50 mg/L 97.6 80.0 120 obalt, dissolved 7440-48-4 E421 0.0001 mg/L 0.25 mg/L 98.7 80.0 120 opper, dissolved 7440-50-8 E421 0.0002 mg/L 0.25 mg/L 97.4 80.0 120 on, dissolved 7439-89-6 E421 0.01 mg/L 1 mg/L 102 80.0 120 on, dissolved 7439-92-1 E421 0.0005 mg/L 0.5 mg/L 95.5 80.0 120 on, dissolved 7439-93-2 E421 0.001 mg/L 0.25 mg/L 95.8 80.0 120 onagenesium, dissolved 7439-95-4 E421 0.005 mg/L 50 mg/L 50 mg/L 104 80.0 120 onagenesium, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 96.7 80.0 120 onagenesium, dissolved 7439-96-7 E421 0.0005 mg/L 0.25 mg/L 0.25 mg/L 96.7 80.0 120 onagenesium, dissolved 7439-96-7 E421 0.0005 mg/L 0.25 mg/L 0.25 mg/L 96.2 80.0 120 onagenesium, dissolved 7440-02-0 E421 0.0005 mg/L 0.5 mg/L 0.5 mg/L 101 80.0 120 olybdenum, dissolved 7440-03-7 E421 0.0005 mg/L 0.5 mg/L 0.5 mg/L 101 80.0 120 olybdenum, dissolved 7440-03-7 E421 0.0005 mg/L 0.5 mg/L 105 80.0 120	cadmium, dissolved	7440-43-9 E421	0.000005	mg/L	_				
obalt, dissolved 7440-48-4 E421 0.0001 mg/L 0.25 mg/L 98.7 80.0 120	calcium, dissolved	7440-70-2 E421	0.05	mg/L	_	97.6	80.0	120	
Tool, dissolved 7439-89-6 F421 0.01 mg/L 1 mg/L 102 80.0 120 and, dissolved 7439-92-1 F421 0.0005 mg/L 0.5 mg/L 95.5 80.0 120 thium, dissolved 7439-93-2 F421 0.001 mg/L 0.25 mg/L 95.8 80.0 120 thium, dissolved 7439-93-2 F421 0.005 mg/L 50 mg/L 104 80.0 120 thium, dissolved 7439-96-5 F421 0.005 mg/L 0.25 mg/L 96.7 80.0 120 thium, dissolved 7439-98-7 F421 0.0001 mg/L 0.25 mg/L 96.7 80.0 120 thium, dissolved 7439-98-7 F421 0.0005 mg/L 0.25 mg/L 102 80.0 120 thium, dissolved 7440-02-0 F421 0.0005 mg/L 0.5 mg/L 96.2 80.0 120 thium, dissolved 7440-09-7 F421 0.05 mg/L 0.5 mg/L 101 80.0 120 thium, dissolved 7440-09-7 F421 0.05 mg/L 105 80.0 120 thium, dissolved 7482-49-2 F421 0.0005 mg/L 105 80.0 120 thium, dissolved 120 0.0005 mg/L 105 80.0 120 thium, dissolved 120 0.0005 mg/L 105 80.0 120 thium, dissolved 120 0.0005 mg/L 100 80.0 120 thium, dissolved 120 0.0005 mg/L 100 80.0 120 thium, dissolved 120 0.0005 mg/L 100 80.0 120 thium, dissolved 120 0.0005 mg/L 100 80.0 120 thium, dissolved 120 0.0005 mg/L 100 80.0 120 thium, dissolved 120 0.0005 mg/L 100 80.0 120 thium, dissolved 120 0.0005 mg/L 100 80.0 120 thium, dissolved 120 0.0005 mg/L 100 80.0 120 thium, dissolved 120 80.0 120 80	cobalt, dissolved	7440-48-4 E421	0.0001		-	98.7	80.0	120	
ron, dissolved 7439-89-6 E421 0.01 mg/L 1 mg/L 102 80.0 120	copper, dissolved	7440-50-8 E421	0.0002	mg/L	0.25 mg/L	97.4	80.0	120	
thium, dissolved 7439-93-2 E421 0.001 mg/L 0.25 mg/L 95.8 80.0 120 nagnesium, dissolved 7439-95-4 E421 0.005 mg/L 50 mg/L 104 80.0 120 nagnesium, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 96.7 80.0 120 nolybdenum, dissolved 7439-98-7 E421 0.0005 mg/L 0.25 mg/L 102 80.0 120 nolybdenum, dissolved 7440-02-0 E421 0.0005 mg/L 0.5 mg/L 96.2 80.0 120 nolybdenum, dissolved 7440-09-7 E421 0.005 mg/L 0.5 mg/L 101 80.0 120 nolybdenum, dissolved 7440-09-7 E421 0.005 mg/L 105 mg/L 101 80.0 120 nolybdenum, dissolved 7440-09-7 E421 0.005 mg/L 101 80.0 120 nolybdenum, dissolved 7440-09-7 E421 0.005 mg/L 105 80.0 120 nolybdenum, dissolved 7440-09-7 E421 0.0005 mg/L 105 80.0 120 nolybdenum, dissolved 7440-09-7 E421 0.0005 mg/L 1 mg/L 105 80.0 120 nolybdenum, dissolved 7440-09-7 E421 0.0005 mg/L 1 mg/L 105 80.0 120 nolybdenum, dissolved 7440-09-7 E421 0.0005 mg/L 1 mg/L 105 80.0 120 nolybdenum, dissolved 7440-09-7 E421 0.0005 mg/L 1 mg/L 105 80.0 120 nolybdenum, dissolved 7440-09-7 E421 0.0005 mg/L 1 mg/L 105 80.0 120	iron, dissolved	7439-89-6 E421	0.01	mg/L	_	102	80.0	120	
nagnesium, dissolved 7439-95-4 E421 0.005 mg/L 50 mg/L 104 80.0 120 nanganese, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 96.7 80.0 120 nolybdenum, dissolved 7439-98-7 E421 0.00005 mg/L 0.25 mg/L 102 80.0 120 nolybdenum, dissolved 7440-02-0 E421 0.0005 mg/L 0.5 mg/L 96.2 80.0 120 nolybdenum, dissolved 7440-09-7 E421 0.005 mg/L 50 mg/L 101 80.0 120 nolybdenum, dissolved 7440-09-7 E421 0.005 mg/L 101 80.0 120 nolybdenum, dissolved 7440-09-7 E421 0.005 mg/L 101 80.0 120 nolybdenum, dissolved 7440-09-7 E421 0.005 mg/L 101 80.0 120 nolybdenum, dissolved 7440-09-7 E421 0.0005 mg/L 101 80.0 120 nolybdenum, dissolved 7440-09-7 E421 0.0005 mg/L 101 80.0 120	lead, dissolved	7439-92-1 E421	0.00005	mg/L	0.5 mg/L	95.5	80.0	120	
nagnesium, dissolved 7439-95-4 E421 0.005 mg/L 50 mg/L 104 80.0 120 nanganese, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 96.7 80.0 120 nolybdenum, dissolved 7439-98-7 E421 0.00005 mg/L 0.25 mg/L 102 80.0 120 nolybdenum, dissolved 7440-02-0 E421 0.0005 mg/L 0.5 mg/L 96.2 80.0 120 nolybdenum, dissolved 7440-09-7 E421 0.005 mg/L 50 mg/L 101 80.0 120 nolybdenum, dissolved 7440-09-7 E421 0.005 mg/L 101 80.0 120 nolybdenum, dissolved 7440-09-7 E421 0.005 mg/L 101 80.0 120 nolybdenum, dissolved 7440-09-7 E421 0.005 mg/L 101 80.0 120 nolybdenum, dissolved 7440-09-7 E421 0.0005 mg/L 101 80.0 120 nolybdenum, dissolved 7440-09-7 E421 0.0005 mg/L 101 mg/L 105 80.0 120	lithium, dissolved	7439-93-2 E421	0.001	Ī.					
nanganese, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 96.7 80.0 120 nolybdenum, dissolved 7439-98-7 E421 0.00005 mg/L 0.25 mg/L 102 80.0 120 cickel, dissolved 7440-02-0 E421 0.0005 mg/L 0.5 mg/L 96.2 80.0 120 cotassium, dissolved 7440-09-7 E421 0.05 mg/L 50 mg/L 101 80.0 120 cleenium, dissolved 7782-49-2 E421 0.0005 mg/L 1 mg/L 105 80.0 120	magnesium, dissolved	7439-95-4 E421	0.005						
nolybdenum, dissolved 7439-98-7 E421 0.00005 mg/L 0.25 mg/L 102 80.0 120 ickel, dissolved 7440-02-0 E421 0.0005 mg/L 0.5 mg/L 96.2 80.0 120 otassium, dissolved 7440-09-7 E421 0.05 mg/L 50 mg/L 101 80.0 120 elenium, dissolved 7782-49-2 E421 0.0005 mg/L 1 mg/L 105 80.0 120	manganese, dissolved	7439-96-5 E421	0.0001	mg/L	_				
ickel, dissolved 7440-02-0 E421 0.0005 mg/L 0.5 mg/L 96.2 80.0 120 otassium, dissolved 7440-09-7 E421 0.05 mg/L 50 mg/L 101 80.0 120 elenium, dissolved 7782-49-2 E421 0.0005 mg/L 1 mg/L 105 80.0 120	molybdenum, dissolved				_				
otassium, dissolved 7440-09-7 E421 0.05 mg/L 50 mg/L 101 80.0 120 elenium, dissolved 7782-49-2 E421 0.00005 mg/L 1 mg/L 105 80.0 120	nickel, dissolved				,				
elenium, dissolved 7782-49-2 E421 0.00005 mg/L 1 mg/L 105 80.0 120	potassium, dissolved								
	selenium, dissolved				_				
	silicon, dissolved				_				

 Page
 : 17 of 22

 Work Order
 : CG2104214

 Client
 : Teck Coal Limited

Sub-Matrix: Water		Laboratory Control Sample (LCS) Report						
				Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Dissolved Metals (QCLot: 300106) - continued								
silver, dissolved	7440-22-4 E421	0.00001	mg/L	0.1 mg/L	97.2	80.0	120	
sodium, dissolved	17341-25-2 E421	0.05	mg/L	50 mg/L	99.2	80.0	120	
strontium, dissolved	7440-24-6 E421	0.0002	mg/L	0.25 mg/L	97.2	80.0	120	
sulfur, dissolved	7704-34-9 E421	0.5	mg/L	50 mg/L	104	80.0	120	
thallium, dissolved	7440-28-0 E421	0.00001	mg/L	1 mg/L	97.0	80.0	120	
tin, dissolved	7440-31-5 E421	0.0001	mg/L	0.5 mg/L	101	80.0	120	
titanium, dissolved	7440-32-6 E421	0.0003	mg/L	0.25 mg/L	93.8	80.0	120	
uranium, dissolved	7440-61-1 E421	0.00001	mg/L	0.005 mg/L	98.4	80.0	120	
vanadium, dissolved	7440-62-2 E421	0.0005	mg/L	0.5 mg/L	99.1	80.0	120	
zinc, dissolved	7440-66-6 E421	0.001	mg/L	0.5 mg/L	98.0	80.0	120	
mercury, dissolved	7439-97-6 E509	0.000005	mg/L	0.0001 mg/L	93.1	80.0	120	
Dissolved Metals (QCLot: 303332)								
aluminum, dissolved	7429-90-5 E421	0.001	mg/L	2 mg/L	92.0	80.0	120	
antimony, dissolved	7440-36-0 E421	0.0001	mg/L	1 mg/L	103	80.0	120	
arsenic, dissolved	7440-38-2 E421	0.0001	mg/L	1 mg/L	95.2	80.0	120	
parium, dissolved	7440-39-3 E421	0.0001	mg/L	0.25 mg/L	97.1	80.0	120	
peryllium, dissolved	7440-41-7 E421	0.00002	mg/L	0.1 mg/L	103	80.0	120	
pismuth, dissolved	7440-69-9 E421	0.00005	mg/L	1 mg/L	96.0	80.0	120	
poron, dissolved	7440-42-8 E421	0.01	mg/L	1 mg/L	97.2	80.0	120	
cadmium, dissolved	7440-43-9 E421	0.000005	mg/L	0.1 mg/L	96.1	80.0	120	
calcium, dissolved	7440-70-2 E421	0.05	mg/L	50 mg/L	96.7	80.0	120	
cobalt, dissolved	7440-48-4 E421	0.0001	mg/L	0.25 mg/L	96.5	80.0	120	
copper, dissolved	7440-50-8 E421	0.0002	mg/L	0.25 mg/L	92.9	80.0	120	
iron, dissolved	7439-89-6 E421	0.01	mg/L	1 mg/L	102	80.0	120	
lead, dissolved	7439-92-1 E421	0.00005	mg/L	0.5 mg/L	96.1	80.0	120	
ithium, dissolved	7439-93-2 E421	0.001	mg/L	0.25 mg/L	103	80.0	120	
magnesium, dissolved	7439-95-4 E421	0.005	mg/L	50 mg/L	93.4	80.0	120	
manganese, dissolved	7439-96-5 E421	0.0001	mg/L	0.25 mg/L	94.0	80.0	120	
molybdenum, dissolved	7439-98-7 E421	0.00005	mg/L	0.25 mg/L	95.7	80.0	120	
nickel, dissolved	7440-02-0 E421	0.0005	mg/L	0.5 mg/L	95.2	80.0	120	
potassium, dissolved	7440-09-7 E421	0.05	mg/L	50 mg/L	96.9	80.0	120	
selenium, dissolved	7782-49-2 E421	0.00005	mg/L	1 mg/L	97.2	80.0	120	
silicon, dissolved	7440-21-3 E421	0.05	mg/L	10 mg/L	95.6	60.0	140	
silver, dissolved	7440-22-4 E421	0.00001	mg/L	0.1 mg/L	105	80.0	120	
sodium, dissolved	17341-25-2 E421	0.05	mg/L	50 mg/L	99.4	80.0	120	
strontium, dissolved	7440-24-6 E421	0.0002	mg/L	0.25 mg/L	95.6	80.0	120	
sulfur, dissolved	7704-34-9 E421	0.5	mg/L	50 mg/L	95.0	80.0	120	

Page : 18 of 22
Work Order : CG2104214
Client : Teck Coal Limited

Sub-Matrix: Water	-Matrix: Water						Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery	Limits (%)				
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier			
Dissolved Metals (QCLot: 303332) - co	ontinued											
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	1 mg/L	94.8	80.0	120				
tin, dissolved	7440-31-5	E421	0.0001	mg/L	0.5 mg/L	98.6	80.0	120				
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	0.25 mg/L	101	80.0	120				
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	0.005 mg/L	99.6	80.0	120				
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	0.5 mg/L	95.1	80.0	120				
zinc, dissolved	7440-66-6	E421	0.001	mg/L	0.5 mg/L	92.8	80.0	120				

Page : 19 of 22 Work Order : CG2104214 Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND - Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water					Matrix Spike (MS) Report							
					Spi	ike	Recovery (%)	Recovery	Limits (%)			
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier		
Anions and Nut	rients (QCLot: 296853)											
CG2104213-001	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	91.5 mg/L	100 mg/L	91.5	75.0	125			
Anions and Nut	rients (QCLot: 296854)											
CG2104213-001	Anonymous	bromide	24959-67-9	E235.Br-L	0.486 mg/L	0.5 mg/L	97.2	75.0	125			
Anions and Nut	rients (QCLot: 296855)											
CG2104213-001	Anonymous	chloride	16887-00-6	E235.CI-L	94.0 mg/L	100 mg/L	94.0	75.0	125			
Anions and Nut	rients (QCLot: 296856)											
CG2104213-001	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	2.39 mg/L	2.5 mg/L	95.7	75.0	125			
Anions and Nut	rients (QCLot: 296857)											
CG2104213-001	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.467 mg/L	0.5 mg/L	93.5	75.0	125			
Anions and Nut	rients (QCLot: 296858)											
CG2104213-001	Anonymous	fluoride	16984-48-8	E235.F	0.854 mg/L	1 mg/L	85.4	75.0	125			
Anions and Nut	rients (QCLot: 297211)											
CG2104210-001	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0582 mg/L	0.05 mg/L	116	70.0	130			
Anions and Nut	rients (QCLot: 297212)											
CG2104214-004	RG_GATEDP_WS_LAEMP_ EVO_2021-09-16_NP	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0565 mg/L	0.05 mg/L	113	70.0	130			
Anions and Nut	rients (QCLot: 299081)											
CG2104213-007	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0623 mg/L	0.0676 mg/L	92.2	70.0	130			
Anions and Nut	rients (QCLot: 302188)											
CG2104214-002	RG_BOCK_WS_LAEMP_EV O_2021-09-16_NP	Kjeldahl nitrogen, total [TKN]		E318	2.41 mg/L	2.5 mg/L	96.4	70.0	130			
Anions and Nut	rients (QCLot: 306152)											
CG2104213-008	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.106 mg/L	0.1 mg/L	106	75.0	125			
Organic / Inorga	nic Carbon (QCLot: 3039	951)										
CG2104213-008	Anonymous	carbon, dissolved organic [DOC]		E358-L	26.3 mg/L	23.9 mg/L	110	70.0	130			
Organic / Inorga	nic Carbon (QCLot: 3039	958)										
CG2104213-006	Anonymous	carbon, total organic [TOC]		E355-L	24.0 mg/L	23.9 mg/L	100	70.0	130			
Total Metals (Q	CLot: 300529)											
CG2104212-001	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.0388 mg/L	0.04 mg/L	96.9	70.0	130			

 Page
 : 20 of 22

 Work Order
 : CG2104214

 Client
 : Teck Coal Limited

ub-Matrix: Water				Matrix Spike (MS) Report						
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
boratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie
tal Metals (QC	Lot: 300530)									
G2104212-001	Anonymous	aluminum, total	7429-90-5	E420	0.194 mg/L	0.2 mg/L	96.9	70.0	130	
		antimony, total	7440-36-0	E420	0.0203 mg/L	0.02 mg/L	101	70.0	130	
		arsenic, total	7440-38-2	E420	0.0195 mg/L	0.02 mg/L	97.5	70.0	130	
		barium, total	7440-39-3	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
		beryllium, total	7440-41-7	E420	0.0408 mg/L	0.04 mg/L	102	70.0	130	
		bismuth, total	7440-69-9	E420	0.00944 mg/L	0.01 mg/L	94.4	70.0	130	
		boron, total	7440-42-8	E420	0.106 mg/L	0.1 mg/L	106	70.0	130	
		cadmium, total	7440-43-9	E420	0.00390 mg/L	0.004 mg/L	97.4	70.0	130	
		calcium, total	7440-70-2	E420	ND mg/L	4 mg/L	ND	70.0	130	
		cobalt, total	7440-48-4	E420	0.0188 mg/L	0.02 mg/L	93.9	70.0	130	
		copper, total	7440-50-8	E420	0.0182 mg/L	0.02 mg/L	91.2	70.0	130	
		iron, total	7439-89-6	E420	1.98 mg/L	2 mg/L	99.0	70.0	130	
		lead, total	7439-92-1	E420	0.0189 mg/L	0.02 mg/L	94.7	70.0	130	
		lithium, total	7439-93-2	E420	0.100 mg/L	0.1 mg/L	100	70.0	130	
		magnesium, total	7439-95-4	E420	ND mg/L	1 mg/L	ND	70.0	130	
		manganese, total	7439-96-5	E420	0.0189 mg/L	0.02 mg/L	94.3	70.0	130	
		molybdenum, total	7439-98-7	E420	0.0206 mg/L	0.02 mg/L	103	70.0	130	
		nickel, total	7440-02-0	E420	0.0368 mg/L	0.04 mg/L	91.9	70.0	130	
		potassium, total	7440-09-7	E420	3.76 mg/L	4 mg/L	94.0	70.0	130	
		selenium, total	7782-49-2	E420	ND mg/L	0.04 mg/L	ND	70.0	130	
		silicon, total	7440-21-3	E420	9.79 mg/L	10 mg/L	97.9	70.0	130	
		silver, total	7440-22-4	E420	0.00396 mg/L	0.004 mg/L	98.9	70.0	130	
		sodium, total	17341-25-2	E420	1.95 mg/L	2 mg/L	97.6	70.0	130	
		strontium, total	7440-24-6	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
		sulfur, total	7704-34-9	E420	ND mg/L	20 mg/L	ND	70.0	130	
		thallium, total	7440-28-0	E420	0.00372 mg/L	0.004 mg/L	92.9	70.0	130	
		tin, total	7440-31-5	E420	0.0202 mg/L	0.02 mg/L	101	70.0	130	
		titanium, total	7440-32-6	E420	0.0394 mg/L	0.04 mg/L	98.6	70.0	130	
		uranium, total	7440-61-1	E420	0.00383 mg/L	0.004 mg/L	95.7	70.0	130	
		vanadium, total	7440-62-2	E420	0.100 mg/L	0.1 mg/L	100	70.0	130	
		zinc, total	7440-66-6	E420	0.380 mg/L	0.4 mg/L	95.0	70.0	130	
tal Metals (QC	Lot: 303406)									1
G2104209-001	Anonymous	mercury, total	7439-97-6	E508-L	4.51 ng/L	5 ng/L	90.1	70.0	130	
ssolved Metals	(QCLot: 300105)									
G2104202-002	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.0392 mg/L	0.04 mg/L	98.0	70.0	130	

 Page
 : 21 of 22

 Work Order
 : CG2104214

 Client
 : Teck Coal Limited

	p-Matrix: Water						Matrix Spike (MS) Report					
					Spi	ike	Recovery (%)	Recovery	Limits (%)			
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier		
Dissolved Metals	s (QCLot: 300106) - c	continued										
CG2104202-002	Anonymous	aluminum, dissolved	7429-90-5	E421	0.199 mg/L	0.2 mg/L	99.5	70.0	130			
		antimony, dissolved	7440-36-0	E421	0.0198 mg/L	0.02 mg/L	99.0	70.0	130			
		arsenic, dissolved	7440-38-2	E421	0.0196 mg/L	0.02 mg/L	98.0	70.0	130			
		barium, dissolved	7440-39-3	E421	ND mg/L	0.02 mg/L	ND	70.0	130			
		beryllium, dissolved	7440-41-7	E421	0.0366 mg/L	0.04 mg/L	91.6	70.0	130			
		bismuth, dissolved	7440-69-9	E421	0.00831 mg/L	0.01 mg/L	83.1	70.0	130			
		boron, dissolved	7440-42-8	E421	0.093 mg/L	0.1 mg/L	93.3	70.0	130			
		cadmium, dissolved	7440-43-9	E421	0.00399 mg/L	0.004 mg/L	99.7	70.0	130			
		calcium, dissolved	7440-70-2	E421	ND mg/L	4 mg/L	ND	70.0	130			
		cobalt, dissolved	7440-48-4	E421	0.0183 mg/L	0.02 mg/L	91.7	70.0	130			
		copper, dissolved	7440-50-8	E421	0.0178 mg/L	0.02 mg/L	89.2	70.0	130			
		iron, dissolved	7439-89-6	E421	1.88 mg/L	2 mg/L	94.1	70.0	130			
		lead, dissolved	7439-92-1	E421	0.0177 mg/L	0.02 mg/L	88.7	70.0	130			
		lithium, dissolved	7439-93-2	E421	ND mg/L	0.1 mg/L	ND	70.0	130			
		magnesium, dissolved	7439-95-4	E421	ND mg/L	1 mg/L	ND	70.0	130			
		manganese, dissolved	7439-96-5	E421	0.0188 mg/L	0.02 mg/L	94.2	70.0	130			
		molybdenum, dissolved	7439-98-7	E421	0.0202 mg/L	0.02 mg/L	101	70.0	130			
		nickel, dissolved	7440-02-0	E421	0.0345 mg/L	0.04 mg/L	86.3	70.0	130			
		potassium, dissolved	7440-09-7	E421	ND mg/L	4 mg/L	ND	70.0	130			
		selenium, dissolved	7782-49-2	E421	ND mg/L	0.04 mg/L	ND	70.0	130			
		silicon, dissolved	7440-21-3	E421	9.71 mg/L	10 mg/L	97.1	70.0	130			
		silver, dissolved	7440-22-4	E421	0.00370 mg/L	0.004 mg/L	92.6	70.0	130			
		sodium, dissolved	17341-25-2	E421	ND mg/L	2 mg/L	ND	70.0	130			
		strontium, dissolved	7440-24-6	E421	ND mg/L	0.02 mg/L	ND	70.0	130			
		sulfur, dissolved	7704-34-9	E421	ND mg/L	20 mg/L	ND	70.0	130			
		thallium, dissolved	7440-28-0	E421	0.00354 mg/L	0.004 mg/L	88.5	70.0	130			
		tin, dissolved	7440-31-5	E421	0.0202 mg/L	0.02 mg/L	101	70.0	130			
		titanium, dissolved	7440-32-6	E421	0.0373 mg/L	0.04 mg/L	93.3	70.0	130			
		uranium, dissolved	7440-61-1	E421	ND mg/L	0.004 mg/L	ND	70.0	130			
		vanadium, dissolved	7440-62-2	E421	0.0996 mg/L	0.1 mg/L	99.6	70.0	130			
		zinc, dissolved	7440-66-6	E421	0.355 mg/L	0.4 mg/L	88.6	70.0	130			
Dissolved Metals	s (QCLot: 300938)											
CG2104188-015	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000993 mg/L	0.0001 mg/L	99.3	70.0	130			
Dissolved Metals	(QCLot: 303332)											
CG2104213-001	Anonymous	aluminum, dissolved	7429-90-5	E421	1.74 mg/L	2 mg/L	87.2	70.0	130			
		antimony, dissolved	7440-36-0	E421	0.196 mg/L	0.2 mg/L	98.1	70.0	130			

 Page
 : 22 of 22

 Work Order
 : CG2104214

 Client
 : Teck Coal Limited

Sub-Matrix: Water	er					Matrix Spike (MS) Report						
					Spi	ke	Recovery (%)	Recovery	Limits (%)			
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier		
Dissolved Metals	(QCLot: 303332) -	continued										
CG2104213-001	Anonymous	arsenic, dissolved	7440-38-2	E421	0.178 mg/L	0.2 mg/L	89.0	70.0	130			
		barium, dissolved	7440-39-3	E421	0.186 mg/L	0.2 mg/L	93.2	70.0	130			
		beryllium, dissolved	7440-41-7	E421	0.358 mg/L	0.4 mg/L	89.4	70.0	130			
		bismuth, dissolved	7440-69-9	E421	0.0937 mg/L	0.1 mg/L	93.7	70.0	130			
		boron, dissolved	7440-42-8	E421	0.903 mg/L	1 mg/L	90.3	70.0	130			
		cadmium, dissolved	7440-43-9	E421	0.0375 mg/L	0.04 mg/L	93.8	70.0	130			
		calcium, dissolved	7440-70-2	E421	36.8 mg/L	40 mg/L	92.1	70.0	130			
		cobalt, dissolved	7440-48-4	E421	0.185 mg/L	0.2 mg/L	92.7	70.0	130			
		copper, dissolved	7440-50-8	E421	0.185 mg/L	0.2 mg/L	92.6	70.0	130			
		iron, dissolved	7439-89-6	E421	18.5 mg/L	20 mg/L	92.3	70.0	130			
		lead, dissolved	7439-92-1	E421	0.189 mg/L	0.2 mg/L	94.7	70.0	130			
		lithium, dissolved	7439-93-2	E421	0.943 mg/L	1 mg/L	94.3	70.0	130			
		magnesium, dissolved	7439-95-4	E421	8.80 mg/L	10 mg/L	88.0	70.0	130			
		manganese, dissolved	7439-96-5	E421	0.182 mg/L	0.2 mg/L	90.9	70.0	130			
		molybdenum, dissolved	7439-98-7	E421	0.182 mg/L	0.2 mg/L	90.9	70.0	130			
		nickel, dissolved	7440-02-0	E421	0.372 mg/L	0.4 mg/L	92.9	70.0	130			
		potassium, dissolved	7440-09-7	E421	38.7 mg/L	40 mg/L	96.8	70.0	130			
		selenium, dissolved	7782-49-2	E421	0.382 mg/L	0.4 mg/L	95.6	70.0	130			
		silicon, dissolved	7440-21-3	E421	88.9 mg/L	100 mg/L	88.9	70.0	130			
		silver, dissolved	7440-22-4	E421	0.0400 mg/L	0.04 mg/L	100	70.0	130			
		sodium, dissolved	17341-25-2	E421	18.9 mg/L	20 mg/L	94.3	70.0	130			
		strontium, dissolved	7440-24-6	E421	0.188 mg/L	0.2 mg/L	93.8	70.0	130			
		sulfur, dissolved	7704-34-9	E421	185 mg/L	200 mg/L	92.7	70.0	130			
		thallium, dissolved	7440-28-0	E421	0.0381 mg/L	0.04 mg/L	95.3	70.0	130			
		tin, dissolved	7440-31-5	E421	0.185 mg/L	0.2 mg/L	92.5	70.0	130			
		titanium, dissolved	7440-32-6	E421	0.380 mg/L	0.4 mg/L	95.1	70.0	130			
		uranium, dissolved	7440-61-1	E421	0.0381 mg/L	0.04 mg/L	95.2	70.0	130			
		vanadium, dissolved	7440-62-2	E421	0.911 mg/L	1 mg/L	91.1	70.0	130			
		zinc, dissolved	7440-66-6	E421	3.68 mg/L	4 mg/L	92.1	70.0	130			

Teck September EVO LAEMP 2021 TURNAROUND TIME: COC ID: A. LABORATORY Excel PDF Facility Name / Job# REP Lab Name ALS Calgary Project Manager Allie Ferguson Lab Contact Lyudmyla Shvets Email lyudmyla.shvets@alsglobal.com Email Mary Company Address 421 Pine Avenue Address 2559 29 Street NE City Calgary BC Province AB City Sparwood Postal Code TIY 7B5 Postal Code V0B 2G0 Canada Canada Phone Number | 1 403 407 1794 Phone Number 250-425-8202 **41 ANALYSIS REQUESTED** Hazardous Material (Yes/No) FECKCOAL-MET-D Field Time G=Grab #Of (24hr) Sample LD Sample Location Matrix Date RG TRIP ws No 9/16/2021 1330 G х Х х х х X RG_TRIP_WS_2021-09-16_NP WS Х X RG BOCK WS LAEMP EVO 2021-09-16 NP RG BOCK 9/16/2021 920 G X × RG_GATE ws No. 9/16/2021 1330 x X X X X X RG_GATE_WS_LAEMP_EVO_2021-09-16_NP G х Nő. RG GATEDP WS LAEMP EVO 2021-09-16_NP RG GATEDP 9/16/2021 1100 G Х X Jennifer Ings/Minnow ALS PO 750546 519-500-3444 Sampler's Name Mobîle# Priority (2-3 business days) - 50% surcharge **Environmental Division** Emergency (1 Business Day) - 100% surcharge September 17, 2021 Sampler's Signature Date/Time hergency <1 Day, ASAP or Weekend - Contact ALS O

Calgary
Work Order Reference
CG2104214

Telephone: + 1 403 407 1800

WATER CHEMISTRY

ALS Laboratory Report CG2104114 (Finalized October 13, 2021)

CERTIFICATE OF ANALYSIS

Calgary AB Canada T1Y 7B5

Work Order : **CG2104114** Page : 1 of 7

Amendment : 2

Client : **Teck Coal Limited** : Allie Ferguson : Address : 421 Pine Avenue : Address : 2559 29th Street NE

Sparwood BC Canada V0B 2G0

 Telephone
 : -- Telephone
 : +1 403 407 1800

 Project
 : REGIONAL EFFECTS PROGRAM
 Date Samples Received
 : 15-Sep-2021 08:50

Project : REGIONAL EFFECTS PROGRAM Date Samples Received : 15-Sep-2021 08:5

PO : VPO00750546 Date Analysis Commenced : 16-Sep-2021

Sampler : ----Site : ----

Quote number : Teck Coal Master Quote

No. of samples received : 3 No. of samples analysed : 3

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Angela Ren	Team Leader - Metals	Metals, Burnaby, British Columbia
Anthony Calero	Team Leader - Inorganics	Inorganics, Calgary, Alberta
Caleb Deroche	Lab Analyst	Metals, Burnaby, British Columbia
Erin Sanchez		Inorganics, Calgary, Alberta
Hannah Phung	Lab Assistant	Inorganics, Calgary, Alberta
Harpreet Chawla	Team Leader - Inorganics	Inorganics, Calgary, Alberta
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia
Owen Cheng		Metals, Burnaby, British Columbia
Parker Sgarbossa	Laboratory Analyst	Inorganics, Calgary, Alberta
Robin Weeks	Team Leader - Metals	Metals, Burnaby, British Columbia
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta
Sara Niroomand		Inorganics, Calgary, Alberta
Saron Kim	Analyst	Metals, Burnaby, British Columbia
Shaneel Dayal	Analyst	Metals, Burnaby, British Columbia
Tracy Harley	Supervisor - Water Quality Instrumentation	Inorganics, Burnaby, British Columbia

Page : 3 of 7

Work Order : CG2104114 Amendment 2

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
%	percent
μg/L	micrograms per litre
μS/cm	Microsiemens per centimetre
meq/L	milliequivalents per litre
mg/L	milligrams per litre
mV	millivolts
NTU	nephelometric turbidity units
pH units	pH units

<: less than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
DTC	Dissolved concentration exceeds total. Results were confirmed by re-analysis.
HTD	Hold time exceeded for re-analysis or dilution, but initial testing was conducted within
	hold time.
RRV	Reported result verified by repeat analysis.

>: greater than.

Page : 4 of 7

Work Order : CG2104114 Amendment 2

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water (Matrix: Water)			Ci	ient sample ID	RG_MICOMP_W S_LAEMP_EVO _2021-09-13_N P	RG_RIVER_WS _2021-09-13_N P	RG_FBLANK_W S_2021-09-13_ NP	
			Client samp	ling date / time	13-Sep-2021 16:00	13-Sep-2021 16:00	13-Sep-2021 16:00	
Analyte	CAS Number	Method	LOR	Unit	CG2104114-001	CG2104114-002	CG2104114-003	
					Result	Result	Result	
Physical Tests acidity (as CaCO3)		E283	2.0	ma/l	<2.0	<2.0	2.2 RRV	
		E290	1.0	mg/L	160	164	<1.0	
alkalinity, bicarbonate (as CaCO3)				mg/L				
alkalinity, carbonate (as CaCO3)		E290 E290	1.0 1.0	mg/L	9.0	12.0 <1.0	<1.0	
alkalinity, hydroxide (as CaCO3)				mg/L	<1.0		<1.0	
alkalinity, total (as CaCO3)		E290	1.0	mg/L	175	176	<1.0	
conductivity		E100	2.0	μS/cm	529	536	<2.0	
hardness (as CaCO3), dissolved		EC100	0.50	mg/L	271	284	<0.50	
oxidation-reduction potential [ORP]		E125	0.10	mV	491	453	442	
pH		E108	0.10	pH units	8.51	8.51	5.48	
solids, total dissolved [TDS]		E162	10	mg/L	348	337	<10	
solids, total suspended [TSS]		E160-L	1.0	mg/L	2.5	1.6	<1.0	
turbidity		E121	0.10	NTU	0.18	0.25	<0.10	
alkalinity, bicarbonate (as HCO3)	71-52-3	E290	1.0	mg/L	196	200	<1.0	
alkalinity, carbonate (as CO3)	3812-32-6	E290	1.0	mg/L	5.4	7.2	<1.0	
alkalinity, hydroxide (as OH)	14280-30-9	E290	1.0	mg/L	<1.0	<1.0	<1.0	
Anions and Nutrients								
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0172	0.0222	0.244 RRV	
bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	<0.050	
chloride	16887-00-6	E235.CI-L	0.10	mg/L	2.21	2.24	<0.10	
fluoride	16984-48-8	E235.F	0.020	mg/L	0.172	0.175	<0.020	
Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	0.156	0.291	<0.050	
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	0.704 HTD	0.703 HTD	<0.0050 HTD	
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	0.0038 HTD	0.0048 HTD	<0.0010 HTD	
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	<0.0010	0.0012	<0.0010	
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0044	0.0032	<0.0020	
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	116	117	<0.30	
Organic / Inorganic Carbon								
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	0.86	1.20	<0.50	

Page Work Order : 5 of 7

: CG2104114 Amendment 2

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water (Matrix: Water)			Cli	ient sample ID	RG_MICOMP_W S_LAEMP_EVO _2021-09-13_N P	RG_RIVER_WS _2021-09-13_N P	RG_FBLANK_W S_2021-09-13_ NP	
			Client samp	ling date / time	13-Sep-2021 16:00	13-Sep-2021 16:00	13-Sep-2021 16:00	
Analyte	CAS Number	Method	LOR	Unit	CG2104114-001	CG2104114-002	CG2104114-003	
					Result	Result	Result	
Organic / Inorganic Carbon		F255 1	0.50		0.00	4.00	40.50	
carbon, total organic [TOC]		E355-L	0.50	mg/L	0.98	1.00	<0.50	
Ion Balance		F0404	0.40		0.00	0.00	.0.40	
anion sum		EC101	0.10	meq/L	6.03	6.08	<0.10	
cation sum		EC101	0.10	meq/L	5.60	5.88	<0.10	
ion balance (cations/anions ratio)		EC101	0.010	%	92.9	96.7	100	
ion balance (cation-anion difference)		EC101	0.010	%	3.70	1.67	<0.010	
Total Metals		5400	0.0000		0.000	0.000	0.000	
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0036	<0.0030	<0.0030	
antimony, total	7440-36-0	E420	0.00010	mg/L	0.00012	0.00012	<0.00010	
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00020	0.00017	<0.00010	
barium, total	7440-39-3	E420	0.00010	mg/L	0.116	0.115	<0.00010	
beryllium, total	7440-41-7	E420	0.020	μg/L	<0.020	<0.020	<0.020	
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	
boron, total	7440-42-8	E420	0.010	mg/L	0.014	0.014	<0.010	
cadmium, total	7440-43-9	E420	0.0050	μg/L	0.0263	0.0247	<0.0050	
calcium, total	7440-70-2	E420	0.050	mg/L	69.2	68.4	<0.050	
chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00014	0.00012	<0.00010	
cobalt, total	7440-48-4	E420	0.10	μg/L	<0.10	<0.10	<0.10	
copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	
iron, total	7439-89-6	E420	0.010	mg/L	0.013	<0.010	<0.010	
lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0114	0.0114	<0.0010	
magnesium, total	7439-95-4	E420	0.0050	mg/L	26.8	26.7	<0.0050	
manganese, total	7439-96-5	E420	0.00010	mg/L	0.00322	0.00288	<0.00010	
mercury, total	7439-97-6	E508-L	0.00050	μg/L	<0.00050	<0.00050	<0.00050	
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00173	0.00179	<0.000050	
nickel, total	7440-02-0	E420	0.00050	mg/L	0.00191	0.00188	<0.00050	
potassium, total	7440-09-7	E420	0.050	mg/L	1.06	1.07	<0.050	
selenium, total	7782-49-2	E420	0.050	μg/L	7.28	7.14	<0.050	

Page Work Order : 6 of 7

: CG2104114 Amendment 2

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water (Matrix: Water)			Cli	ient sample ID	RG_MICOMP_W S_LAEMP_EVO _2021-09-13_N P	RG_RIVER_WS _2021-09-13_N P	RG_FBLANK_W S_2021-09-13_ NP	
			Client samp	ling date / time	13-Sep-2021 16:00	13-Sep-2021 16:00	13-Sep-2021 16:00	
Analyte	CAS Number	Method	LOR	Unit	CG2104114-001	CG2104114-002	CG2104114-003	
					Result	Result	Result	
Total Metals								
silicon, total	7440-21-3	E420	0.10	mg/L	2.34	2.32	<0.10	
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	
sodium, total	17341-25-2	E420	0.050	mg/L	3.92	3.94	<0.050	
strontium, total	7440-24-6	E420	0.00020	mg/L	0.178	0.180	<0.00020	
sulfur, total	7704-34-9	E420	0.50	mg/L	39.3	39.0	<0.50	
thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	
titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	<0.00030	
uranium, total	7440-61-1	E420	0.000010	mg/L	0.00156	0.00157	<0.000010	
vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	
zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	<0.0030	<0.0030	
Dissolved Metals								
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	<0.0010	<0.0010	<0.0010	
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00011	0.00011	<0.00010	
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00019	0.00018	<0.00010	
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.112	0.117	<0.00010	
beryllium, dissolved	7440-41-7	E421	0.020	μg/L	<0.020	<0.020	<0.020	
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	
boron, dissolved	7440-42-8	E421	0.010	mg/L	0.012	0.013	<0.010	
cadmium, dissolved	7440-43-9	E421	0.0050	μg/L	0.0191	0.0183	<0.0050	
calcium, dissolved	7440-70-2	E421	0.050	mg/L	65.0	68.7	<0.050	
chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00012	0.00011	<0.00010	
cobalt, dissolved	7440-48-4	E421	0.10	μg/L	<0.10	<0.10	<0.10	
copper, dissolved	7440-50-8	E421	0.00020	mg/L	<0.00020	<0.00020	<0.00020	
iron, dissolved	7439-89-6	E421	0.00020	mg/L	<0.010	<0.010	<0.010	
lead, dissolved		E421	0.000050		<0.00050	<0.00050	<0.00050	
· ·	7439-92-1		0.0000	mg/L	0.0111	0.0117	<0.0010	
lithium, dissolved	7439-93-2	E421		mg/L				
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	26.3	27.3	<0.0050	
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00172	0.00170	<0.00010	

Page : 7 of 7

Work Order : CG2104114 Amendment 2

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water (Matrix: Water)			CI	lient sample ID	RG_MICOMP_W S_LAEMP_EVO _2021-09-13_N P	RG_RIVER_WS _2021-09-13_N P	RG_FBLANK_W S_2021-09-13_ NP	
			Client samp	oling date / time	13-Sep-2021 16:00	13-Sep-2021 16:00	13-Sep-2021 16:00	
Analyte	CAS Number	Method	LOR	Unit	CG2104114-001	CG2104114-002	CG2104114-003	
					Result	Result	Result	
Dissolved Metals								
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.000050	<0.0000050	<0.000050	
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00169	0.00174	0.000145 RRV	
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00178	0.00179	<0.00050	
potassium, dissolved	7440-09-7	E421	0.050	mg/L	0.997	1.08	<0.050	
selenium, dissolved	7782-49-2	E421	0.050	μg/L	7.52	7.61	<0.050	
silicon, dissolved	7440-21-3	E421	0.050	mg/L	2.19	2.20	<0.050	
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	
sodium, dissolved	17341-25-2	E421	0.050	mg/L	3.84	4.00	<0.050	
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.172	0.177	<0.00020	
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	36.9	35.8	<0.50	
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	0.000013	<0.000010	<0.000010	
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	<0.00030	
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00144	0.00146	<0.000010	
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050	
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	<0.0010	<0.0010	<0.0010	
dissolved mercury filtration location	<u></u>	EP509	-	-	Field	Field	Field	
dissolved metals filtration location		EP421	_	_	Field	Field	Field	
			1					

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL REPORT

Work Order Page :CG2104114

Amendment : 2

Client : Teck Coal Limited Laboratory : Calgary - Environmental Contact : Allie Ferguson **Account Manager** : Lyudmyla Shvets

Address Address : 2559 29th Street NE :421 Pine Avenue

Calgary, Alberta Canada T1Y 7B5

Laboratory Department

: 1 of 19

Sparwood BC Canada V0B 2G0 Telephone :+1 403 407 1800 :----

Date Samples Received Project · REGIONAL EFFECTS PROGRAM :15-Sep-2021 08:50

Date Analysis Commenced : 16-Sep-2021 PO : VPO00750546 : 13-Oct-2021 17:27

C-O-C number Issue Date ----Sampler Site

Quote number : Teck Coal Master Quote

Position

No. of samples received : 3 No. of samples analysed : 3

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits
- Reference Material (RM) Report; Recovery and Acceptance Limits
- Method Blank (MB) Report; Recovery and Acceptance Limits
- Laboratory Control Sample (LCS) Report; Recovery and Acceptance Limits

Signatories

Signatories

Telephone

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

		• •
Angela Ren	Team Leader - Metals	Metals, Burnaby, British Columbia
Anthony Calero	Team Leader - Inorganics	Inorganics, Calgary, Alberta
Caleb Deroche	Lab Analyst	Metals, Burnaby, British Columbia
Erin Sanchez		Inorganics, Calgary, Alberta
Hannah Phung	Lab Assistant	Inorganics, Calgary, Alberta
Harpreet Chawla	Team Leader - Inorganics	Inorganics, Calgary, Alberta
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia
Owen Cheng		Metals, Burnaby, British Columbia
Parker Sgarbossa	Laboratory Analyst	Inorganics, Calgary, Alberta
Robin Weeks	Team Leader - Metals	Metals, Burnaby, British Columbia
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta
Sara Niroomand		Inorganics, Calgary, Alberta
Saron Kim	Analyst	Metals, Burnaby, British Columbia
Shaneel Dayal	Analyst	Metals, Burnaby, British Columbia

Page : 3 of 19

Work Order : CG2104114 Amendment 2

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percentage Difference

= Indicates a QC result that did not meet the ALS DQO.

Page : 4 of 19

Work Order : CG2104114 Amendment 2

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test specific).

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC	C Lot: 293634)										
CG2104114-001	RG_MICOMP_WS_LAEMP _EVO_2021-09-13_NP	turbidity		E121	0.10	NTU	0.18	0.19	0.007	Diff <2x LOR	
Physical Tests (QC	C Lot: 294409)										
CG2104110-001	Anonymous	acidity (as CaCO3)		E283	2.0	mg/L	<2.0	<2.0	0	Diff <2x LOR	
Physical Tests (QC	Lot: 296875)										
CG2104111-004	Anonymous	solids, total dissolved [TDS]		E162	10	mg/L	<10	<10	0	Diff <2x LOR	
Physical Tests (QC	Lot: 299553)										
CG2104111-001	Anonymous	oxidation-reduction potential [ORP]		E125	0.10	mV	461	458	0.544%	15%	
Physical Tests (QC	Lot: 301626)										
CG2104110-003	Anonymous	pH		E108	0.10	pH units	8.39	8.39	0.00%	4%	
Physical Tests (QC	CL of: 301627)										
CG2104114-001	RG_MICOMP_WS_LAEMP EVO 2021-09-13 NP	conductivity		E100	2.0	μS/cm	529	536	1.31%	10%	
Physical Tests (QC	Lot: 301628)										
CG2104114-001	RG_MICOMP_WS_LAEMP EVO 2021-09-13 NP	alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	160	166	3.67%	20%	
		alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	9.0	10.6	1.6	Diff <2x LOR	
		alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, total (as CaCO3)		E290	1.0	mg/L	175	178	1.81%	20%	
Anions and Nutrien	its (QC Lot: 293811)										
CG2104110-001	Anonymous	fluoride	16984-48-8	E235.F	0.100	mg/L	0.221	0.218	0.003	Diff <2x LOR	
Anions and Nutrien	its (QC Lot: 293812)										
CG2104110-001	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	1.50	mg/L	376	373	0.636%	20%	
Anions and Nutrien	its (QC Lot: 293813)										
CG2104110-001	Anonymous	bromide	24959-67-9	E235.Br-L	0.250	mg/L	<0.250	<0.250	0	Diff <2x LOR	
Anions and Nutrien	its (QC Lot: 293814)										
CG2104110-001	Anonymous	chloride	16887-00-6	E235.CI-L	0.50	mg/L	1.87	1.82	0.05	Diff <2x LOR	
Anions and Nutrien	its (QC Lot: 293815)										
CG2104110-001	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	0.0250	mg/L	15.4	15.3	0.398%	20%	
Anions and Nutries	its (QC Lot: 293816)										
CG2104110-001	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.0050	mg/L	0.0311	0.0304	0.0007	Diff <2x LOR	
Anions and Nutrien	its (QC Lot: 293964)										
CG2104110-004	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
	1	,, , (401)				Ŭ					

Page : 5 of 19

Work Order : CG2104114 Amendment 2

Client : Teck Coal Limited

Sub-Matrix: Water			Laboratory Duplicate (DUP) Report								
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
nions and Nutrien	ts (QC Lot: 298289)										
CG2104108-003	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
nions and Nutrien	ts (QC Lot: 298650)										
CG2104110-001	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	<0.0020	<0.0020	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 302671)										
CG2104088-001	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0447	0.0541	0.0094	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 29965	51)									
CG2104113-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	1.06	1.07	0.004	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 29965	59)									
CG2104108-001	Anonymous	carbon, total organic [TOC]		E355-L	0.50	mg/L	0.60	0.58	0.02	Diff <2x LOR	
otal Metals (QC Lo	ot: 295656)										
CG2104071-001	Anonymous	aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0162	0.0157	0.0004	Diff <2x LOR	
		antimony, total	7440-36-0	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00018	0.00019	0.00001	Diff <2x LOR	
		barium, total	7440-39-3	E420	0.00010	mg/L	0.0583	0.0586	0.375%	20%	
		beryllium, total	7440-41-7	E420	0.020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR	
		bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, total	7440-42-8	E420	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		cadmium, total	7440-43-9	E420	0.0050	mg/L	0.0178 μg/L	0.0000173	0.0000005	Diff <2x LOR	
		calcium, total	7440-70-2	E420	0.050	mg/L	78.7	80.8	2.54%	20%	
		cobalt, total	7440-48-4	E420	0.10	mg/L	<0.10 µg/L	<0.00010	0	Diff <2x LOR	
		copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		iron, total	7439-89-6	E420	0.010	mg/L	0.020	0.021	0.0006	Diff <2x LOR	
		lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		lithium, total	7439-93-2	E420	0.0010	mg/L	0.0067	0.0068	0.00009	Diff <2x LOR	
		magnesium, total	7439-95-4	E420	0.0050	mg/L	43.9	44.8	2.00%	20%	
		manganese, total	7439-96-5	E420	0.00010	mg/L	0.00159	0.00148	7.50%	20%	
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.000831	0.000902	8.22%	20%	
		nickel, total	7440-02-0	E420	0.00050	mg/L	0.00073	0.00074	0.000009	Diff <2x LOR	
		potassium, total	7440-09-7	E420	0.050	mg/L	0.935	0.944	0.930%	20%	
		selenium, total	7782-49-2	E420	0.050	mg/L	35.1 μg/L	0.0353	0.658%	20%	
		silicon, total	7440-21-3	E420	0.10	mg/L	2.12	2.15	1.42%	20%	
		silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, total	17341-25-2	E420	0.050	mg/L	1.48	1.49	0.956%	20%	
		strontium, total	7440-24-6	E420	0.00020	mg/L	0.118	0.122	3.12%	20%	
		sulfur, total	7704-34-9	E420	0.50	mg/L	68.1	67.3	1.11%	20%	

Page : 6 of 19

Work Order : CG2104114 Amendment 2

Client : Teck Coal Limited

Sub-Matrix: Water				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifi
Total Metals (QC Lo	ot: 295656) - continued										
CG2104071-001	Anonymous	thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		uranium, total	7440-61-1	E420	0.000010	mg/L	0.00242	0.00254	4.43%	20%	
		vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	<0.0030	0	Diff <2x LOR	
Total Metals (QC Lo	ot: 295657)										
CG2104071-001	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00017	0.00017	0.000005	Diff <2x LOR	
Total Metals (QC Lo	ot: 299637)										
CG2104111-001	Anonymous	mercury, total	7439-97-6	E508-L	0.00050	ng/L	<0.00050 µg/L	<0.50	0	Diff <2x LOR	
Dissolved Metals (QC Lot: 295658)										
CG2104110-001	Anonymous	aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
		antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00035	0.00035	0.000003	Diff <2x LOR	
		arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00014	0.00014	0.000005	Diff <2x LOR	
		barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0655	0.0671	2.48%	20%	
		beryllium, dissolved	7440-41-7	E421	0.020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR	
		bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, dissolved	7440-42-8	E421	0.010	mg/L	0.017	0.017	0.0003	Diff <2x LOR	
		cadmium, dissolved	7440-43-9	E421	0.0050	mg/L	0.132 µg/L	0.000117	12.5%	20%	
		calcium, dissolved	7440-70-2	E421	0.050	mg/L	139	140	0.733%	20%	
		cobalt, dissolved	7440-48-4	E421	0.10	mg/L	0.60 µg/L	0.00063	0.00002	Diff <2x LOR	
		copper, dissolved	7440-50-8	E421	0.00020	mg/L	<0.00020	0.00021	0.00001	Diff <2x LOR	
		iron, dissolved	7439-89-6	E421	0.010	mg/L	0.012	0.012	0.0001	Diff <2x LOR	
		lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0654	0.0648	0.970%	20%	
		magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	74.2	76.9	3.53%	20%	
		manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.0215	0.0217	1.22%	20%	
		molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00216	0.00277	6.22%	20%	
		nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.0116	0.0119	3.02%	20%	
		potassium, dissolved	7440-02-0	E421	0.050	mg/L	2.70	2.78	2.86%	20%	
		selenium, dissolved	7782-49-2	E421	0.050	mg/L	2.70 81.5 μg/L	0.0816	0.0936%	20%	
		,		E421	0.050	•	· -		2.03%		
		silicon, dissolved	7440-21-3			mg/L	2.06	2.02		20%	
		silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, dissolved	17341-25-2	E421	0.050	mg/L	2.32	2.31	0.241%	20%	
		strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.195	0.191	2.40%	20%	

Page : 7 of 19

Work Order : CG2104114 Amendment 2

Client : Teck Coal Limited

Sub-Matrix: Water							Labora	tory Duplicate (D	JP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Dissolved Metals (C	QC Lot: 295658) - contin	ued									
CG2104110-001	Anonymous	sulfur, dissolved	7704-34-9	E421	0.50	mg/L	120	114	4.86%	20%	
		thallium, dissolved	7440-28-0	E421	0.000010	mg/L	0.000015	0.000014	0.000001	Diff <2x LOR	
		tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00431	0.00441	2.28%	20%	
		vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0068	0.0068	0.00003	Diff <2x LOR	
Dissolved Metals (C	QC Lot: 295659)										
CG2104110-001	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
Dissolved Metals (C	QC Lot: 295812)										
CG2104086-001	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	

Page : 8 of 19

Work Order : CG2104114 Amendment 2

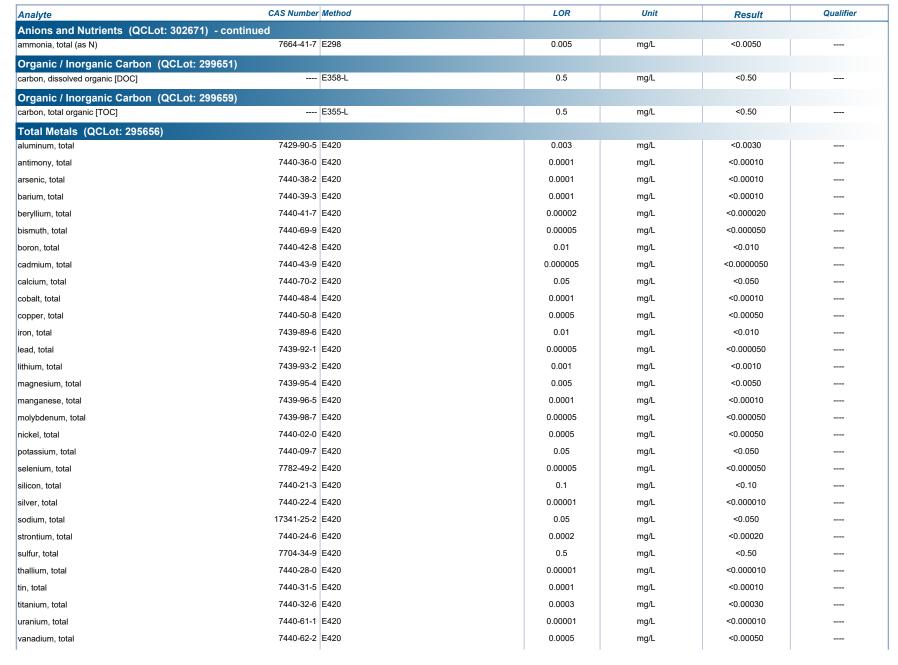
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

		ater


Physical Tests (QCLot: 293634)					-	
tribuly	Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Page Company	Physical Tests (QCLot: 293634)					
E883 2 mg/L <2.0	turbidity	E121	0.1	NTU	<0.10	
Preside Total (QCLot: 296870)	Physical Tests (QCLot: 294409)					
	acidity (as CaCO3)	E283	2	mg/L	<2.0	
Procession Color 196875 Color	Physical Tests (QCLot: 296870)					
Part Part	solids, total suspended [TSS]	E160-L	1	mg/L	<1.0	
Physical Tests (QCLot: 301627)	Physical Tests (QCLot: 296875)					
Part	solids, total dissolved [TDS]	E162	10	mg/L	<10	
Provided Tests QCLot: 301628	Physical Tests (QCLot: 301627)					
Realinity, bicarbonate (as CaCO3)	conductivity	E100	1	μS/cm	<1.0	
Realinity, carbonate (as CaCO3)	Physical Tests (QCLot: 301628)					
Realinity, hydroxide (as CaCO3)	alkalinity, bicarbonate (as CaCO3)	E290	1	mg/L	<1.0	
Realinity, total (as CaCO3)	alkalinity, carbonate (as CaCO3)	E290	1	mg/L	<1.0	
Inions and Nutrients (QCLot: 293811) Inions and Nutrients (QCLot: 293812) Inions and Nutrients (QCLot: 293813) Inions and Nutrients (QCLot: 293813) Inions and Nutrients (QCLot: 293813) Inions and Nutrients (QCLot: 293814) Inions and Nutrients (QCLot: 293814) Inions and Nutrients (QCLot: 293815) Inions and Nutrients (QCLot: 293815) Inions and Nutrients (QCLot: 293816) Inions and Nutrients (QCLot: 293818) Inions and Nutrients (QCLot: 293888) Inions and Nutrients (QCLot: 293888) Inions and Nutrients (QCLot: 298888) Inions and Nutrients (QCLot: 2988880) Inions a	alkalinity, hydroxide (as CaCO3)	E290	1	mg/L	<1.0	
16984-48-8 E235.F 0.02 mg/L <0.020	alkalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
Anions and Nutrients (QCLot: 293812) Anions and Nutrients (QCLot: 293813) Anions and Nutrients (QCLot: 293814) Anions and Nutrients (QCLot: 293814) Anions and Nutrients (QCLot: 293815) Anions and Nutrients (QCLot: 293815) Anions and Nutrients (QCLot: 293815) Anions and Nutrients (QCLot: 293816) Anions ani	Anions and Nutrients (QCLot: 293811)					
Marie Mari	fluoride	16984-48-8 E235.F	0.02	mg/L	<0.020	
Section Color Co	Anions and Nutrients (QCLot: 293812)				,	
Committee Comm	sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
Committee Comm	Anions and Nutrients (QCLot: 293813)					
Section Sect	bromide	24959-67-9 E235.Br-L	0.05	mg/L	<0.050	
Strate (as N) 14797-55-8 E235.NO3-L 0.005 mg/L <0.0050	Anions and Nutrients (QCLot: 293814)					
Trace (as N)	chloride	16887-00-6 E235.CI-L	0.1	mg/L	<0.10	
Anions and Nutrients (QCLot: 293816) Itirite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L <0.0010 Inions and Nutrients (QCLot: 293964) Incorphate, ortho-, dissolved (as P) 14265-44-2 E378-U 0.001 mg/L <0.0010 Inions and Nutrients (QCLot: 298289) Ipeldahl nitrogen, total [TKN] E318 0.05 mg/L <0.050 Inions and Nutrients (QCLot: 298650) Incorphorus, total TXN	Anions and Nutrients (QCLot: 293815)				,	
titite (as N) 14797-65-0 E235.NO2-L 0.001 mg/L <0.0010 Inions and Nutrients (QCLot: 293964) Incosphate, ortho-, dissolved (as P) 14265-44-2 E378-U 0.001 mg/L <0.0010 Inions and Nutrients (QCLot: 298289) Idelahl nitrogen, total [TKN] E318 0.05 mg/L <0.050 Inions and Nutrients (QCLot: 298650) Incosphorus, total TYN3-14-0 E372-U 0.002 mg/L <0.0020 Inions and Nutrients (QCLot: 298650) Incosphorus, total TYN3-14-0 E372-U 0.002 mg/L <0.0020 Inions and Nutrients (QCLot: 298650)	nitrate (as N)	14797-55-8 E235.NO3-L	0.005	mg/L	<0.0050	
Inions and Nutrients (QCLot: 293964)	Anions and Nutrients (QCLot: 293816)				,	
hosphate, ortho-, dissolved (as P) 14265-44-2 E378-U 0.001 mg/L <0.0010 Inions and Nutrients (QCLot: 298289) jeldahl nitrogen, total [TKN] E318 0.05 mg/L <0.050 Inions and Nutrients (QCLot: 298650) hosphorus, total	nitrite (as N)	14797-65-0 E235.NO2-L	0.001	mg/L	<0.0010	
Inions and Nutrients (QCLot: 298289) ipidahl nitrogen, total [TKN]	Anions and Nutrients (QCLot: 293964)					
E318 0.05 mg/L <0.050 color	phosphate, ortho-, dissolved (as P)	14265-44-2 E378-U	0.001	mg/L	<0.0010	
E318 0.05 mg/L <0.050 color	Anions and Nutrients (QCLot: 298289)					
hosphorus, total 7723-14-0 E372-U 0.002 mg/L <0.0020	Kjeldahl nitrogen, total [TKN]	E318	0.05	mg/L	<0.050	
hosphorus, total 7723-14-0 E372-U 0.002 mg/L <0.0020	Anions and Nutrients (QCLot: 298650)					
unions and Nutrients (QCLot: 302671)	phosphorus, total	7723-14-0 E372-U	0.002	mg/L	<0.0020	
	Anions and Nutrients (QCLot: 302671)					

Page : 9 of 19

Work Order : CG2104114 Amendment 2

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM



Page : 10 of 19

Work Order : CG2104114 Amendment 2

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Page : 11 of 19

Work Order : CG2104114 Amendment 2

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

ALS

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier			
Dissolved Metals (QCLot: 295658) - continued									
zinc, dissolved	7440-66-6	E421	0.001	mg/L	<0.0010				
Dissolved Metals (QCLot: 295659)									
chromium, dissolved	7440-47-3	E421.Cr-L	0.0001	mg/L	<0.00010				
Dissolved Metals (QCLot: 295812)									
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	<0.000050				

Page : 12 of 19

Work Order : CG2104114 Amendment 2

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water						Laboratory Con	trol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 293634)									
turbidity		E121	0.1	NTU	200 NTU	99.6	85.0	115	
Physical Tests (QCLot: 294409)									
acidity (as CaCO3)		E283	2	mg/L	50 mg/L	98.0	85.0	115	
Physical Tests (QCLot: 296870)									
solids, total suspended [TSS]		E160-L	1	mg/L	150 mg/L	95.8	85.0	115	
Physical Tests (QCLot: 296875)									
solids, total dissolved [TDS]		E162	10	mg/L	1000 mg/L	94.2	85.0	115	
Physical Tests (QCLot: 299553)									
oxidation-reduction potential [ORP]		E125		mV	220 mV	100	95.4	104	
Physical Tests (QCLot: 301626)									
pH		E108		pH units	7 pH units	100	98.6	101	
Physical Tests (QCLot: 301627)									
conductivity		E100	1	μS/cm	146.9 μS/cm	99.7	90.0	110	
Physical Tests (QCLot: 301628)									
alkalinity, total (as CaCO3)		E290	1	mg/L	500 mg/L	99.2	85.0	115	
Anions and Nutrients (QCLot: 293811)									
fluoride	16984-48-8	E235.F	0.02	mg/L	1 mg/L	108	90.0	110	
Anions and Nutrients (QCLot: 293812)									
sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	100 mg/L	103	90.0	110	
Anions and Nutrients (QCLot: 293813)									
bromide	24959-67-9	E235.Br-L	0.05	mg/L	0.5 mg/L	109	85.0	115	
Anions and Nutrients (QCLot: 293814)									
chloride	16887-00-6	E235.CI-L	0.1	mg/L	100 mg/L	102	90.0	110	
Anions and Nutrients (QCLot: 293815)									
nitrate (as N)	14797-55-8	E235.NO3-L	0.005	mg/L	2.5 mg/L	102	90.0	110	
Anions and Nutrients (QCLot: 293816)									
nitrite (as N)	14797-65-0	E235.NO2-L	0.001	mg/L	0.5 mg/L	104	90.0	110	
Anions and Nutrients (QCLot: 293964)									
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.001	mg/L	0.02 mg/L	103	80.0	120	
Anions and Nutrients (QCLot: 298289)									
Kjeldahl nitrogen, total [TKN]		E318	0.05	mg/L	4 mg/L	103	75.0	125	
Anions and Nutrients (QCLot: 298650)									

Page : 13 of 19

Work Order : CG2104114 Amendment 2

Client : Teck Coal Limited

Sub-Matrix: Water						Laboratory Co	ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Anions and Nutrients (QCLot: 298650) - contin	ued								
phosphorus, total	7723-14-0 I	E372-U	0.002	mg/L	8.32 mg/L	100	80.0	120	
Anions and Nutrients (QCLot: 302671)									
ammonia, total (as N)	7664-41-7 I	E298	0.005	mg/L	0.2 mg/L	109	85.0	115	
Organic / Inorganic Carbon (QCLot: 299651)									
carbon, dissolved organic [DOC]	E	E358-L	0.5	mg/L	10 mg/L	98.0	80.0	120	
Organic / Inorganic Carbon (QCLot: 299659)									'
carbon, total organic [TOC]	[E355-L	0.5	mg/L	10 mg/L	93.7	80.0	120	
Total Metals (QCLot: 295656)									•
aluminum, total	7429-90-5	E420	0.003	mg/L	2 mg/L	102	80.0	120	
antimony, total	7440-36-0 I	E420	0.0001	mg/L	1 mg/L	102	80.0	120	
arsenic, total	7440-38-2 I	E420	0.0001	mg/L	1 mg/L	101	80.0	120	
barium, total	7440-39-3 I	E420	0.0001	mg/L	0.25 mg/L	100	80.0	120	
beryllium, total	7440-41-7 E	E420	0.00002	mg/L	0.1 mg/L	97.6	80.0	120	
bismuth, total	7440-69-9 I	E420	0.00005	mg/L	1 mg/L	99.7	80.0	120	
boron, total	7440-42-8 I	E420	0.01	mg/L	1 mg/L	95.4	80.0	120	
cadmium, total	7440-43-9 I	E420	0.000005	mg/L	0.1 mg/L	99.2	80.0	120	
calcium, total	7440-70-2 E	E420	0.05	mg/L	50 mg/L	102	80.0	120	
cobalt, total	7440-48-4 I	E420	0.0001	mg/L	0.25 mg/L	104	80.0	120	
copper, total	7440-50-8 E	E420	0.0005	mg/L	0.25 mg/L	102	80.0	120	
iron, total	7439-89-6 I	E420	0.01	mg/L	1 mg/L	99.1	80.0	120	
lead, total	7439-92-1 I	E420	0.00005	mg/L	0.5 mg/L	97.2	80.0	120	
lithium, total	7439-93-2 I	E420	0.001	mg/L	0.25 mg/L	93.3	80.0	120	
magnesium, total	7439-95-4 E	E420	0.005	mg/L	50 mg/L	102	80.0	120	
manganese, total	7439-96-5 I	E420	0.0001	mg/L	0.25 mg/L	102	80.0	120	
molybdenum, total	7439-98-7 E	E420	0.00005	mg/L	0.25 mg/L	102	80.0	120	
nickel, total	7440-02-0 E	E420	0.0005	mg/L	0.5 mg/L	102	80.0	120	
potassium, total	7440-09-7 E	E420	0.05	mg/L	50 mg/L	106	80.0	120	
selenium, total	7782-49-2	E420	0.00005	mg/L	1 mg/L	97.6	80.0	120	
silicon, total	7440-21-3 E	E420	0.1	mg/L	10 mg/L	98.0	80.0	120	
silver, total	7440-22-4 E	E420	0.00001	mg/L	0.1 mg/L	97.0	80.0	120	
sodium, total	17341-25-2 E	E420	0.05	mg/L	50 mg/L	103	80.0	120	
strontium, total	7440-24-6 I	E420	0.0002	mg/L	0.25 mg/L	98.1	80.0	120	
sulfur, total	7704-34-9	E420	0.5	mg/L	50 mg/L	91.5	80.0	120	
thallium, total									
trialitatri, total	7440-28-0 I	E420	0.00001	mg/L	1 mg/L	100	80.0	120	

Page : 14 of 19

Work Order : CG2104114 Amendment 2

Client : Teck Coal Limited

Total Metals (QCLot: 295656) - continued T440-32-6 E420 0.0003 mgl. 0.25 mgl. 100 80.0 120	Qualifier
Total Metals (QCLot: 295656) - continued T440-32-6 E420 0.0003 mgl. 0.25 mgl. 100 80.0 120	
Unarium, total 7440-32-6 E420 0.0003 mg/L 0.25 mg/L 100 80.0 120	
uranium, total 7440-81-1 E420 0.00011 mg/L 0.005 mg/L 105 80.0 120 vanadium, total 7440-82-2 E420 0.0005 mg/L 0.5 mg/L 104 80.0 120 zinc, total 7440-86-6 E420 0.0001 mg/L 0.5 mg/L 106 80.0 120 Total Metals (QCLot: 295657) Total Metals (QCLot: 299637) mercury, total 7439-97-6 E509-L 0.5 ng/L 5 ng/L 92.2 80.0 120 Dissolved Metals (QCLot: 299637) mercury, total 7439-97-6 E509-L 0.5 ng/L 5 ng/L 92.2 80.0 120 Dissolved Metals (QCLot: 299658) Juminum, dissolved 7440-38-0 E421 0.0001 mg/L 1 mg/L 98.5 80.0 120 Dissolved Metals (QCLot: 299658) Juminum, dissolved 7440-38-0 E421 0.0001 mg/L 1 mg/L 98.5 <td></td>	
vanadium, total 7440-62-2 bit (20 mode) 440-66-2 bit (20 mode) 420 mode) 0.5 mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	
Total Metals (QCLot: 295657) Total Metals (QCLot: 295657) Total Metals (QCLot: 295657) Total Metals (QCLot: 295657) Total Metals (QCLot: 295657) Total Metals (QCLot: 295637) Total Metals (QCLot: 295658)	
Total Metals (QCLot: 295657) chromium, total 7440-47-3 E420 Cr-L 0.0001 mg/L 0.26 mg/L 102 80.0 120 Total Metals (QCLot: 299637) mercury, total 7439-97-6 E508-L 0.5 ng/L 5 ng/L 92.2 80.0 120 Dissolved Metals (QCLot: 295658) alumium, dissolved 7440-38-0 E421 0.001 mg/L 1 mg/L 98.5 80.0 120 arsenic, dissolved 7440-39-3 E421 0.0001 mg/L 1 mg/L 99.3 80.0 120 barium, dissolved 7440-39-3 E421 0.0001 mg/L 1 mg/L 99.3 80.0 120 barium, dissolved 7440-39-3 E421 0.0001 mg/L 1 mg/L 99.3 80.0 120 barium, dissolved 7440-39-3 E421 0.0001 mg/L 0.25 mg/L 97.4 80.0 120 beryllium, dissolved 7440-43-9 E421 0.00005 mg/L 1 mg/L 99.2 80.0 120 boron, dissolved 7440-43-9 E421 0.00005 mg/L 1 mg/L 99.2 80.0 120 boron, dissolved 7440-43-9 E421 0.00005 mg/L 1 mg/L 99.2 80.0 120 cadmium, dissolved 7440-43-9 E421 0.00005 mg/L 1 mg/L 98.6 80.0 120 cadmium, dissolved 7440-43-9 E421 0.00005 mg/L 0.1 mg/L 99.2 80.0 120 cadmium, dissolved 7440-43-9 E421 0.00005 mg/L 0.1 mg/L 99.2 80.0 120 cadmium, dissolved 7440-43-9 E421 0.00005 mg/L 0.1 mg/L 99.2 80.0 120 cadmium, dissolved 7440-43-9 E421 0.00005 mg/L 0.1 mg/L 99.7 80.0 120 calcium, dissolved 7440-43-9 E421 0.000 mg/L 0.25 mg/L 99.2 80.0 120 calcium, dissolved 7440-43-9 E421 0.000 mg/L 0.25 mg/L 99.7 80.0 120 calcium, dissolved 7440-84-8 E421 0.0001 mg/L 0.25 mg/L 99.7 80.0 120 copper, dissolved 7440-83-9 E421 0.0001 mg/L 0.25 mg/L 99.0 80.0 120 copper, dissolved 7449-85-6 E421 0.000 mg/L 0.25 mg/L 99.0 80.0 120 copper, dissolved 7439-89-6 E421 0.0005 mg/L 0.5 mg/L 97.0 80.0 120 lead, dissolved 7439-89-6 E421 0.0005 mg/L 0.5 mg/L 99.2 80.0 120 magnesium, dissolved 7439-96-5 E421 0.0005 mg/L 0.5 mg/L 99.7 80.0 120 magnesium, dissolved 7439-96-5 E421 0.0005 mg/L 0.5 mg/L 99.7 80.0 120 magnesium, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 98.7 80.0 120 magnesium, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 98.7 80.0 120 magnesium, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 98.7 80.0 120	
Part	
Carbonium, total Carbonium,	
Dissolved Metals (QCLot: 295658)	
Dissolved Metals (QCLot: 295658)	
aluminum, dissolved 7429-90-5 E421 0.001 mg/L 2 mg/L 98.5 80.0 120 antimony, dissolved 7440-36-0 E421 0.0001 mg/L 1 mg/L 98.1 80.0 120 arsenic, dissolved 7440-38-2 E421 0.0001 mg/L 1 mg/L 99.3 80.0 120 barium, dissolved 7440-39-3 E421 0.0001 mg/L 0.25 mg/L 97.4 80.0 120 berlium, dissolved 7440-41-7 E421 0.00002 mg/L 0.1 mg/L 99.2 80.0 120 bismuth, dissolved 7440-42-8 E421 0.00005 mg/L 1 mg/L 99.2 80.0 120 boron, dissolved 7440-43-9 E421 0.00005 mg/L 1 mg/L 99.6 80.0 120 calcium, dissolved 7440-43-9 E421 0.00005 mg/L 0.1 mg/L 99.6 80.0 120 calcium, dissolved 7440-43-9 E421 0.00005 mg/L 0.1 mg/L 99.7 80.0 120 calcium, dissolved 7440-84-8 E421 0.00005 mg/L 0.1 mg/L 99.7 80.0 120 cobalt, dissolved 7440-84-8 E421 0.00005 mg/L 0.25 mg/L 98.2 80.0 120 cobalt, dissolved 7440-84-8 E421 0.000 mg/L 0.25 mg/L 98.1 80.0 120 coper, dissolved 7440-85-8 E421 0.0001 mg/L 0.25 mg/L 98.1 80.0 120 cobalt, dissolved 7440-86-8 E421 0.0001 mg/L 0.25 mg/L 98.1 80.0 120 coper, dissolved 7439-86-6 E421 0.0002 mg/L 0.25 mg/L 99.7 80.0 120 lead, dissolved 7439-89-6 E421 0.0005 mg/L 0.25 mg/L 99.7 80.0 120 lead, dissolved 7439-89-6 E421 0.0005 mg/L 0.5 mg/L 99.7 80.0 120 lead, dissolved 7439-89-6 E421 0.0005 mg/L 0.5 mg/L 99.7 80.0 120 lead, dissolved 7439-89-6 E421 0.0005 mg/L 0.5 mg/L 99.7 80.0 120 lead, dissolved 7439-89-6 E421 0.0005 mg/L 0.5 mg/L 99.7 80.0 120 lead, dissolved 7439-98-6 E421 0.0005 mg/L 0.5 mg/L 99.7 80.0 120 lead, dissolved 7439-98-6 E421 0.0005 mg/L 0.5 mg/L 99.7 80.0 120 lead, dissolved 7439-98-6 E421 0.0005 mg/L 0.5 mg/L 99.7 80.0 120 lead, dissolved 7439-98-6 E421 0.0005 mg/L 0.5 mg/L 99.7 80.0 120 lead, dissolved 7439-98-6 E421 0.0005 mg/L 0.5 mg/L 99.7 80.0 120 lead, dissolved 7439-98-6 E421 0.0005 mg/L 0.5 mg/L 99.7 80.0 120 lead, dissolved 7439-98-6 E421 0.0005 mg/L 0.5 mg/L 99.7 80.0 120 lead, dissolved 7439-98-6 E421 0.0005 mg/L 0.5 mg/L 99.7 80.0 120 lead, dissolved 7439-98-6 E421 0.0005 mg/L 0.5 mg/L 99.7 80.0 120 lead, dissolved 7439-98-6 E421 0.0005 mg/L 0.5 mg/L 99.7 80.0 120 lead, dissolved 7439-98-6 l	
aluminum, dissolved 7429-90-5 E421 0.001 mg/L 2 mg/L 98.5 80.0 120 antimony, dissolved 7440-36-0 E421 0.0001 mg/L 1 mg/L 98.1 80.0 120 arsenic, dissolved 7440-38-2 E421 0.0001 mg/L 1 mg/L 99.3 80.0 120 barium, dissolved 7440-39-3 E421 0.0001 mg/L 0.25 mg/L 97.4 80.0 120 berlium, dissolved 7440-41-7 E421 0.00002 mg/L 0.1 mg/L 99.2 80.0 120 bismuth, dissolved 7440-42-8 E421 0.00005 mg/L 1 mg/L 99.2 80.0 120 boron, dissolved 7440-43-9 E421 0.00005 mg/L 1 mg/L 99.6 80.0 120 calcium, dissolved 7440-43-9 E421 0.00005 mg/L 0.1 mg/L 99.6 80.0 120 calcium, dissolved 7440-43-9 E421 0.00005 mg/L 0.1 mg/L 99.7 80.0 120 calcium, dissolved 7440-84-8 E421 0.00005 mg/L 0.1 mg/L 99.7 80.0 120 cobalt, dissolved 7440-84-8 E421 0.00005 mg/L 0.25 mg/L 98.2 80.0 120 cobalt, dissolved 7440-84-8 E421 0.000 mg/L 0.25 mg/L 98.1 80.0 120 coper, dissolved 7440-85-8 E421 0.0001 mg/L 0.25 mg/L 98.1 80.0 120 cobalt, dissolved 7440-86-8 E421 0.0001 mg/L 0.25 mg/L 98.1 80.0 120 coper, dissolved 7439-86-6 E421 0.0002 mg/L 0.25 mg/L 99.7 80.0 120 lead, dissolved 7439-89-6 E421 0.0005 mg/L 0.25 mg/L 99.7 80.0 120 lead, dissolved 7439-89-6 E421 0.0005 mg/L 0.5 mg/L 99.7 80.0 120 lead, dissolved 7439-89-6 E421 0.0005 mg/L 0.5 mg/L 99.7 80.0 120 lead, dissolved 7439-89-6 E421 0.0005 mg/L 0.5 mg/L 99.7 80.0 120 lead, dissolved 7439-89-6 E421 0.0005 mg/L 0.5 mg/L 99.7 80.0 120 lead, dissolved 7439-98-6 E421 0.0005 mg/L 0.5 mg/L 99.7 80.0 120 lead, dissolved 7439-98-6 E421 0.0005 mg/L 0.5 mg/L 99.7 80.0 120 lead, dissolved 7439-98-6 E421 0.0005 mg/L 0.5 mg/L 99.7 80.0 120 lead, dissolved 7439-98-6 E421 0.0005 mg/L 0.5 mg/L 99.7 80.0 120 lead, dissolved 7439-98-6 E421 0.0005 mg/L 0.5 mg/L 99.7 80.0 120 lead, dissolved 7439-98-6 E421 0.0005 mg/L 0.5 mg/L 99.7 80.0 120 lead, dissolved 7439-98-6 E421 0.0005 mg/L 0.5 mg/L 99.7 80.0 120 lead, dissolved 7439-98-6 E421 0.0005 mg/L 0.5 mg/L 99.7 80.0 120 lead, dissolved 7439-98-6 E421 0.0005 mg/L 0.5 mg/L 99.7 80.0 120 lead, dissolved 7439-98-6 E421 0.0005 mg/L 0.5 mg/L 99.7 80.0 120 lead, dissolved 7439-98-6 l	
antimony, dissolved 7440-36-0 respectively. The second respectively of the second respectively. The second respectively of the second respectively. The second respectively	
arsenic, dissolved 7440-38-2 E421 0.0001 mg/L 1 mg/L 99.3 80.0 120 barium, dissolved 7440-39-3 E421 0.0001 mg/L 0.25 mg/L 97.4 80.0 120 beryllium, dissolved 7440-41-7 E421 0.00002 mg/L 0.1 mg/L 99.9 80.0 120 bismuth, dissolved 7440-69-9 E421 0.00005 mg/L 1 mg/L 99.2 80.0 120 boron, dissolved 7440-42-8 E421 0.01 mg/L 1 mg/L 95.6 80.0 120 cadmium, dissolved 7440-49-9 E421 0.00005 mg/L 0.1 mg/L 94.7 80.0 120 cadmium, dissolved 7440-70-2 E421 0.00005 mg/L 0.1 mg/L 94.7 80.0 120 calcium, dissolved 7440-80-8 E421 0.005 mg/L 50 mg/L 98.2 80.0 120 cabalt, dissolved 7440-80-8 E421 0.0001 mg/L 0.25 mg/L 98.2 80.0 120 cobalt, dissolved 7440-80-8 E421 0.0001 mg/L 0.25 mg/L 98.1 80.0 120 ciron, dissolved 7440-80-8 E421 0.0002 mg/L 0.25 mg/L 98.1 80.0 120 ciron, dissolved 7439-89-6 E421 0.01 mg/L 0.25 mg/L 97.0 80.0 120 ciron, dissolved 7439-89-6 E421 0.01 mg/L 0.5 mg/L 97.0 80.0 120 ciron, dissolved 7439-93-2 E421 0.0005 mg/L 0.5 mg/L 95.7 80.0 120 ciron, dissolved 7439-93-2 E421 0.0005 mg/L 0.5 mg/L 95.7 80.0 120 ciron, dissolved 7439-93-2 E421 0.001 mg/L 0.25 mg/L 95.7 80.0 120 ciron, dissolved 7439-93-2 E421 0.001 mg/L 0.25 mg/L 95.7 80.0 120 ciron, dissolved 7439-93-2 E421 0.001 mg/L 0.25 mg/L 95.7 80.0 120 ciron, dissolved 7439-93-4 E421 0.001 mg/L 0.25 mg/L 95.7 80.0 120 ciron, dissolved 7439-93-5 E421 0.001 mg/L 0.25 mg/L 95.7 80.0 120 ciron, dissolved 7439-93-5 E421 0.001 mg/L 0.25 mg/L 95.7 80.0 120 ciron, dissolved 7439-93-5 E421 0.001 mg/L 0.25 mg/L 97.4 80.0 120 ciron, dissolved 7439-93-5 E421 0.001 mg/L 0.25 mg/L 97.4 80.0 120 ciron, dissolved 7439-93-5 E421 0.001 mg/L 0.25 mg/L 97.4 80.0 120 ciron, dissolved 7439-93-5 E421 0.001 mg/L 0.25 mg/L 97.4 80.0 120 ciron, dissolved 7439-93-5 E421 0.001 mg/L 0.25 mg/L 97.4 80.0 120 ciron, dissolved 7439-93-5 E421 0.001 mg/L 0.25 mg/L 97.4 80.0 120 ciron, dissolved 7439-93-5 E421 0.001 mg/L 0.25 mg/L 97.4 80.0 120 ciron, dissolved 7439-93-5 E421 0.001 mg/L 0.25 mg/L 97.4 80.0 120 ciron, dissolved 7439-93-5 E421 0.001 mg/L 0.25 mg/L 97.4 80.0 120 ciron, dissolved 7439-93	
barium, dissolved 7440-39-3 E421 0.0001 mg/L 0.25 mg/L 97.4 80.0 120 beryllium, dissolved 7440-41-7 E421 0.00002 mg/L 0.1 mg/L 96.9 80.0 120 bismuth, dissolved 7440-69-9 E421 0.00005 mg/L 1 mg/L 99.2 80.0 120 boron, dissolved 7440-42-8 E421 0.01 mg/L 1 mg/L 95.6 80.0 120 cadmium, dissolved 7440-43-9 E421 0.00005 mg/L 0.1 mg/L 94.7 80.0 120 calcium, dissolved 7440-43-9 E421 0.00005 mg/L 0.1 mg/L 98.2 80.0 120 calcium, dissolved 7440-48-4 E421 0.05 mg/L 50 mg/L 98.2 80.0 120 cobalt, dissolved 7440-48-4 E421 0.001 mg/L 0.25 mg/L 98.2 80.0 120 copper, dissolved 7440-50-8 E421 0.0001 mg/L 0.25 mg/L 98.1 80.0 120 copper, dissolved 7440-50-8 E421 0.0002 mg/L 0.25 mg/L 96.0 80.0 120 iron, dissolved 7439-89-6 E421 0.01 mg/L 1 mg/L 97.0 80.0 120 lead, dissolved 7439-92-1 E421 0.0005 mg/L 0.5 mg/L 95.7 80.0 120 lead, dissolved 7439-93-2 E421 0.0005 mg/L 0.5 mg/L 95.7 80.0 120 magnesium, dissolved 7439-96-5 E421 0.001 mg/L 0.25 mg/L 93.2 80.0 120 magnesium, dissolved 7439-96-5 E421 0.001 mg/L 0.25 mg/L 93.2 80.0 120 magnesium, dissolved 7439-96-5 E421 0.001 mg/L 0.25 mg/L 93.2 80.0 120 magnesium, dissolved 7439-96-5 E421 0.001 mg/L 0.25 mg/L 93.2 80.0 120 magnesium, dissolved 7439-96-5 E421 0.001 mg/L 0.25 mg/L 93.2 80.0 120 magnesium, dissolved 7439-96-5 E421 0.001 mg/L 0.25 mg/L 93.2 80.0 120 magnesium, dissolved 7439-96-5 E421 0.001 mg/L 0.25 mg/L 93.2 80.0 120 magnesium, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 93.7 80.0 120 magnesium, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 93.7 80.0 120	
beryllium, dissolved 7440-41-7 E421 0.00002 mg/L 0.1 mg/L 96.9 80.0 120 bismuth, dissolved 7440-69-9 E421 0.00005 mg/L 1 mg/L 99.2 80.0 120 boron, dissolved 7440-42-8 E421 0.01 mg/L 1 mg/L 95.6 80.0 120 cadmium, dissolved 7440-43-9 E421 0.00005 mg/L 0.1 mg/L 95.6 80.0 120 cadmium, dissolved 7440-43-9 E421 0.000005 mg/L 0.1 mg/L 94.7 80.0 120 calcium, dissolved 7440-44-8 E421 0.005 mg/L 50 mg/L 98.2 80.0 120 cobalt, dissolved 7440-44-8 E421 0.0001 mg/L 0.25 mg/L 98.2 80.0 120 coper, dissolved 7440-50-8 E421 0.0001 mg/L 0.25 mg/L 98.1 80.0 120 coper, dissolved 7440-50-8 E421 0.0002 mg/L 0.25 mg/L 96.0 80.0 120 coper, dissolved 7439-89-6 E421 0.01 mg/L 1 mg/L 97.0 80.0 120 coper, dissolved 7439-89-6 E421 0.001 mg/L 0.5 mg/L 95.7 80.0 120 coper, dissolved 7439-92-1 E421 0.00005 mg/L 0.5 mg/L 95.7 80.0 120 coper, dissolved 7439-93-2 E421 0.0001 mg/L 0.25 mg/L 93.2 80.0 120 coper, dissolved 7439-93-2 E421 0.001 mg/L 0.25 mg/L 93.2 80.0 120 coper, dissolved 7439-94-4 E421 0.001 mg/L 0.25 mg/L 93.2 80.0 120 coper, dissolved 7439-95-4 E421 0.001 mg/L 0.25 mg/L 93.2 80.0 120 coper, dissolved 7439-95-4 E421 0.001 mg/L 0.25 mg/L 93.2 80.0 120 coper, dissolved 7439-96-5 E421 0.001 mg/L 0.25 mg/L 93.2 80.0 120 coper, dissolved 7439-96-5 E421 0.001 mg/L 0.25 mg/L 93.2 80.0 120 coper, dissolved 7439-96-5 E421 0.001 mg/L 0.25 mg/L 93.2 80.0 120 coper, dissolved 7439-96-5 E421 0.001 mg/L 0.25 mg/L 93.2 80.0 120 coper, dissolved 7439-96-5 E421 0.001 mg/L 0.25 mg/L 93.2 80.0 120 coper, dissolved 7439-96-5 E421 0.001 mg/L 0.25 mg/L 93.2 80.0 120 coper, dissolved 7439-96-5 E421 0.001 mg/L 0.25 mg/L 93.2 80.0 120 coper, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 93.2 80.0 120 coper, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 93.2 80.0 120 coper, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 93.2 80.0 120 coper, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 93.2 80.0 120 coper, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 93.2 80.0 120 coper, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 93.2 80.0 120 coper, dissolved 743	
bismuth, dissolved 7440-69-9 E421 0.00005 mg/L 1 mg/L 99.2 80.0 120 boron, dissolved 7440-42-8 E421 0.01 mg/L 1 mg/L 95.6 80.0 120 cadmium, dissolved 7440-43-9 E421 0.00005 mg/L 0.1 mg/L 94.7 80.0 120 calcium, dissolved 7440-70-2 E421 0.05 mg/L 50 mg/L 98.2 80.0 120 cobalt, dissolved 7440-48-4 E421 0.0001 mg/L 0.25 mg/L 98.1 80.0 120 copper, dissolved 7440-50-8 E421 0.0002 mg/L 0.25 mg/L 96.0 80.0 120 iron, dissolved 7439-89-6 E421 0.000 mg/L 0.0005 mg/L 97.0 80.0 120 lead, dissolved 7439-92-1 E421 0.0005 mg/L 0.5 mg/L 97.0 80.0 120 lithium, dissolved 7439-93-2 E421 0.0005 mg/L 0.5 mg/L 95.7 80.0 120 lithium, dissolved 7439-93-2 E421 0.001 mg/L 0.25 mg/L 93.2 80.0 120 magnesium, dissolved 7439-95-4 E421 0.005 mg/L 0.25 mg/L 93.2 80.0 120 magnesium, dissolved 7439-95-5 E421 0.005 mg/L 50 mg/L 97.4 80.0 120 magnesium, dissolved 7439-96-5 E421 0.0005 mg/L 50 mg/L 97.4 80.0 120 magnesium, dissolved 7439-96-5 E421 0.0005 mg/L 50 mg/L 97.4 80.0 120 magnese, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 98.7 80.0 120 magnese, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 98.7 80.0 120 magnese, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 98.7 80.0 120 magnese, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 98.7 80.0 120 magnese, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 98.7 80.0 120 magnese, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 98.7 80.0 120 magnese, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 98.7 80.0 120 magnese, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 98.7 80.0 120 magnese, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 98.7 80.0 120 magnese, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 98.7 80.0 120 magnese, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 98.7 80.0 120 magnese, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 98.7 80.0 120 magnese, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 98.7 80.0 120 mg/L 98.7 80.0 120 mg/L 98.7 80.0 120 mg/L 98.7 80.0 120 mg/L 98.7 80.0 120 mg/L 98.7 80.0 120 mg/L 98.7 80.0 120 mg/L 98.7 80.0 120 mg/L 98.7 80.0 120 mg/L 98.7 80.0 120 mg/L 98.	
boron, dissolved 7440-42-8 cadmium, dissolved 7440-43-9 cadmium, dissolved 7440-43-9 calcium, dissolved 7440-48-4 calcium, dissolved 7440-48-4 calcium, dissolved 7440-48-4 calcium, dissolved 7440-50-8 calcium, dissolved 7440-48-4 calcium, dissolved 7440-48-4 calcium, dissolved 7440-48-4 calcium, dissolved 7440-48-4 calcium, dissolved 7440-48-4 calcium, dissolved 7440-50-8 calcium, dissolved 7440-48-4 calcium, dissolved 7440-50-8 calcium, dissolved 7440-48-4 calcium, dissolved 7440-48-4 calcium, dissolved 7440-48-4 calcium, dissolved 7440-48-4 calcium, dissolved 7440-48-4 calcium, dissolved 7440-48-4 calcium, dissolved 7440-48-4 calcium, dissolved 7440-48-4 calcium, dissolved	
cadmium, dissolved 7440-43-9 E421 0.00005 mg/L 0.1 mg/L 94.7 80.0 120 calcium, dissolved 7440-70-2 E421 0.05 mg/L 50 mg/L 98.2 80.0 120 cobalt, dissolved 7440-48-4 E421 0.0001 mg/L 0.25 mg/L 98.1 80.0 120 copper, dissolved 7440-50-8 E421 0.0002 mg/L 0.25 mg/L 96.0 80.0 120 iron, dissolved 7439-89-6 E421 0.01 mg/L 1 mg/L 97.0 80.0 120 lead, dissolved 7439-92-1 E421 0.0005 mg/L 0.5 mg/L 95.7 80.0 120 lithium, dissolved 7439-93-2 E421 0.001 mg/L 0.5 mg/L 95.7 80.0 120 lithium, dissolved 7439-93-2 E421 0.001 mg/L 0.25 mg/L 93.2 80.0 120 magnesium, dissolved 7439-95-4 E421 0.005 mg/L 0.25 mg/L 93.2 80.0 120 magnesium, dissolved 7439-95-5 E421 0.005 mg/L 0.05 mg/L 97.4 80.0 120 magnesium, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 97.4 80.0 120 magnesium, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 98.7 80.0 120 magnesium, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 98.7 80.0 120 magnesium, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 98.7 80.0 120 magnesium, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 98.7 80.0 120 magnesium, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 98.7 80.0 120 magnesium, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 98.7 80.0 120 magnesium, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 98.7 80.0 120 magnesium, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 98.7 80.0 120 magnesium, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 98.7 80.0 120 magnesium, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 98.7 80.0 120 magnesium, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 98.7 80.0 120 magnesium, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 98.7 80.0 120 magnesium, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 98.7 80.0 120 magnesium, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 98.7 80.0 120 magnesium, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 98.7 80.0 120 mg/L 98.7 80.0 120 mg/L 98.7 80.0 120 mg/L 98.7 80.0 120 mg/L 98.7 80.0 120 mg/L 98.7 80.0 120 mg/L 98.7 80.0 120 mg/L 98.7 80.0 120 mg/L 98.7 80.0 120 mg/L 98.7 80.0 120 mg/L 98.7 80.0 120 mg/L 98.7 80.0 120 mg/L	
calcium, dissolved 7440-70-2 E421 0.05 mg/L 50 mg/L 98.2 80.0 120 cobalt, dissolved 7440-48-4 E421 0.0001 mg/L 0.25 mg/L 98.1 80.0 120 copper, dissolved 7440-50-8 E421 0.0002 mg/L 0.25 mg/L 96.0 80.0 120 iron, dissolved 7439-89-6 E421 0.01 mg/L 1 mg/L 97.0 80.0 120 lead, dissolved 7439-92-1 E421 0.0005 mg/L 0.5 mg/L 95.7 80.0 120 ithium, dissolved 7439-93-2 E421 0.001 mg/L 0.25 mg/L 93.2 80.0 120 magnesium, dissolved 7439-95-4 E421 0.005 mg/L 50 mg/L 97.4 80.0 120 manganese, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 98.7 80.0 120	
cobalt, dissolved 7440-48-4 E421 0.0001 mg/L 0.25 mg/L 98.1 80.0 120 copper, dissolved 7440-50-8 E421 0.0002 mg/L 0.25 mg/L 96.0 80.0 120 iron, dissolved 7439-89-6 E421 0.01 mg/L 1 mg/L 97.0 80.0 120 lead, dissolved 7439-92-1 E421 0.00005 mg/L 0.5 mg/L 95.7 80.0 120 ilthium, dissolved 7439-93-2 E421 0.001 mg/L 0.25 mg/L 93.2 80.0 120 magnesium, dissolved 7439-95-4 E421 0.005 mg/L 50 mg/L 97.4 80.0 120 manganese, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 98.7 80.0 120	
copper, dissolved 7440-50-8 E421 0.0002 mg/L 0.25 mg/L 96.0 80.0 120 iron, dissolved 7439-89-6 E421 0.01 mg/L 1 mg/L 97.0 80.0 120 lead, dissolved 7439-92-1 E421 0.00005 mg/L 0.5 mg/L 95.7 80.0 120 lithium, dissolved 7439-93-2 E421 0.001 mg/L 0.25 mg/L 93.2 80.0 120 magnesium, dissolved 7439-95-4 E421 0.005 mg/L 50 mg/L 97.4 80.0 120 manganese, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 98.7 80.0 120	
iron, dissolved 7439-89-6 E421 0.01 mg/L 1 mg/L 97.0 80.0 120 lead, dissolved 95.7 80.0 120 lead, dissolved 7439-92-1 E421 0.0005 mg/L 0.5 mg/L 95.7 80.0 120 lithium, dissolved 7439-93-2 E421 0.001 mg/L 0.25 mg/L 93.2 80.0 120 magnesium, dissolved 7439-95-4 E421 0.005 mg/L 50 mg/L 97.4 80.0 120 magnese, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 98.7 80.0 120	
lead, dissolved 7439-92-1 E421 0.00005 mg/L 0.5 mg/L 95.7 80.0 120 lithium, dissolved 7439-93-2 E421 0.001 mg/L 0.25 mg/L 93.2 80.0 120 magnesium, dissolved 7439-95-4 E421 0.005 mg/L 50 mg/L 97.4 80.0 120 manganese, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 98.7 80.0 120	
lithium, dissolved 7439-93-2 E421 0.001 mg/L 0.25 mg/L 93.2 80.0 120 magnesium, dissolved 7439-95-4 E421 0.005 mg/L 50 mg/L 97.4 80.0 120 manganese, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 98.7 80.0 120	
magnesium, dissolved 7439-95-4 E421 0.005 mg/L 50 mg/L 97.4 80.0 120 manganese, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 98.7 80.0 120	
manganese, dissolved 7439-96-5 E421 0.0001 mg/L 0.25 mg/L 98.7 80.0 120	
7/30 98 7 F/21 0 00005 mg/l 0.35 mg/	
molybdenum, dissolved 7439-98-7 E421 0.00005 mg/L 0.25 mg/L 96.9 80.0 120	
nickel, dissolved 7440-02-0 E421 0.0005 mg/L 0.5 mg/L 97.7 80.0 120	
potassium, dissolved 7440-09-7 E421 0.05 mg/L 50 mg/L 101 80.0 120	
selenium, dissolved 7782-49-2 E421 0.00005 mg/L 1 mg/L 95.0 80.0 120	
silicon, dissolved 7440-21-3 E421 0.05 mg/L 10 mg/L 95.6 80.0 120	
silver, dissolved 7440-22-4 E421 0.00001 mg/L 0.1 mg/L 93.0 80.0 120	
sodium, dissolved 17341-25-2 E421 0.05 mg/L 50 mg/L 96.2 80.0 120	
7440.24.6 [742]	
sulfur, dissolved 7704-34-9 E421 0.5 mg/L 50 mg/L 92.4 80.0 120	
7440 00 0 5104	
744.04.5 [5194	

Page : 15 of 19

Work Order : CG2104114 Amendment 2

Client : Teck Coal Limited

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery	Limits (%)		
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Dissolved Metals (QCLot: 295658) - continu	ed									
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	0.25 mg/L	97.9	80.0	120		
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	0.005 mg/L	101	80.0	120		
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	0.5 mg/L	99.0	80.0	120		
zinc, dissolved	7440-66-6	E421	0.001	mg/L	0.5 mg/L	98.6	80.0	120		
Dissolved Metals (QCLot: 295659)										
chromium, dissolved	7440-47-3	E421.Cr-L	0.0001	mg/L	0.25 mg/L	97.6	80.0	120		
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	0.0001 mg/L	97.2	80.0	120		

Page : 16 of 19

Work Order : CG2104114 Amendment 2

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

ocario for the acces	natou oumpro (or ommar our	inpies/ may be subject to bias. ND	tooo rong mot dotom.	milea, basing earla is to	in opino ioron					
Sub-Matrix: Water							Matrix Spik	e (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Anions and Nutr	ients (QCLot: 293811)									
CG2104113-005	Anonymous	fluoride	16984-48-8	E235.F	1.04 mg/L	1 mg/L	104	75.0	125	
Anions and Nutr	ients (QCLot: 293812)									
CG2104113-005	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	113 mg/L	100 mg/L	113	75.0	125	
Anions and Nutr	ients (QCLot: 293813)									
CG2104113-005	Anonymous	bromide	24959-67-9	E235.Br-L	0.534 mg/L	0.5 mg/L	107	75.0	125	
Anions and Nutr	ients (QCLot: 293814)									
CG2104113-005	Anonymous	chloride	16887-00-6	E235.CI-L	102 mg/L	100 mg/L	102	75.0	125	
Anions and Nutr	ients (QCLot: 293815)									
CG2104113-005	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	2.56 mg/L	2.5 mg/L	102	75.0	125	
Anions and Nutr	ients (QCLot: 293816)									
CG2104113-005	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.510 mg/L	0.5 mg/L	102	75.0	125	
Anions and Nutr	ients (QCLot: 293964)									
CG2104111-001	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0567 mg/L	0.05 mg/L	113	70.0	130	
Anions and Nutr	ients (QCLot: 298289)									
CG2104110-001	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	2.83 mg/L	2.5 mg/L	113	70.0	130	
Anions and Nutr	ients (QCLot: 298650)									
CG2104110-002	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0540 mg/L	0.0676 mg/L	79.8	70.0	130	
nions and Nutr	ients (QCLot: 302671)									
CG2104088-005	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0971 mg/L	0.1 mg/L	97.1	75.0	125	
Organic / Inorga	nic Carbon (QCLot: 299	651)								
CG2104113-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	23.5 mg/L	23.9 mg/L	98.4	70.0	130	
Organic / Inorga	nic Carbon (QCLot: 299	659)								
CG2104108-001	Anonymous	carbon, total organic [TOC]		E355-L	24.7 mg/L	23.9 mg/L	103	70.0	130	
otal Metals (QC	CLot: 295656)									
CG2104071-002	Anonymous	aluminum, total	7429-90-5	E420	0.191 mg/L	0.2 mg/L	95.6	70.0	130	
		antimony, total	7440-36-0	E420	0.0195 mg/L	0.02 mg/L	97.7	70.0	130	
		arsenic, total	7440-38-2	E420	0.0199 mg/L	0.02 mg/L	99.4	70.0	130	
		barium, total	7440-39-3	E420	ND mg/L	0.02 mg/L	ND	70.0	130	

Page : 17 of 19

Work Order : CG2104114 Amendment 2

Client : Teck Coal Limited

Sub-Matrix: Water							Matrix Spik	ke (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Total Metals (QC	CLot: 295656) - conti	inued								
CG2104071-002	Anonymous	beryllium, total	7440-41-7	E420	0.0370 mg/L	0.04 mg/L	92.6	70.0	130	
		bismuth, total	7440-69-9	E420	0.00912 mg/L	0.01 mg/L	91.2	70.0	130	
		boron, total	7440-42-8	E420	0.097 mg/L	0.1 mg/L	96.8	70.0	130	
		cadmium, total	7440-43-9	E420	0.00383 mg/L	0.004 mg/L	95.7	70.0	130	
		calcium, total	7440-70-2	E420	ND mg/L	4 mg/L	ND	70.0	130	
		cobalt, total	7440-48-4	E420	0.0188 mg/L	0.02 mg/L	94.1	70.0	130	
		copper, total	7440-50-8	E420	0.0188 mg/L	0.02 mg/L	93.8	70.0	130	
		iron, total	7439-89-6	E420	1.91 mg/L	2 mg/L	95.5	70.0	130	
		lead, total	7439-92-1	E420	0.0180 mg/L	0.02 mg/L	90.0	70.0	130	
		lithium, total	7439-93-2	E420	0.0968 mg/L	0.1 mg/L	96.8	70.0	130	
		magnesium, total	7439-95-4	E420	ND mg/L	1 mg/L	ND	70.0	130	
		manganese, total	7439-96-5	E420	0.0192 mg/L	0.02 mg/L	96.1	70.0	130	
		molybdenum, total	7439-98-7	E420	0.0196 mg/L	0.02 mg/L	98.0	70.0	130	
		nickel, total	7440-02-0	E420	0.0374 mg/L	0.04 mg/L	93.6	70.0	130	
		potassium, total	7440-09-7	E420	3.93 mg/L	4 mg/L	98.3	70.0	130	
		selenium, total	7782-49-2	E420	0.0412 mg/L	0.04 mg/L	103	70.0	130	
		silicon, total	7440-21-3	E420	9.02 mg/L	10 mg/L	90.2	70.0	130	
		silver, total	7440-22-4	E420	0.00375 mg/L	0.004 mg/L	93.7	70.0	130	
		sodium, total	17341-25-2	E420	1.90 mg/L	2 mg/L	95.0	70.0	130	
		strontium, total	7440-24-6	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
		sulfur, total	7704-34-9	E420	ND mg/L	20 mg/L	ND	70.0	130	
		thallium, total	7440-28-0	E420	0.00364 mg/L	0.004 mg/L	91.1	70.0	130	
		tin, total	7440-31-5	E420	0.0195 mg/L	0.02 mg/L	97.6	70.0	130	
		titanium, total	7440-32-6	E420	0.0389 mg/L	0.04 mg/L	97.3	70.0	130	
		uranium, total	7440-61-1	E420	0.00398 mg/L	0.004 mg/L	99.6	70.0	130	
		vanadium, total	7440-62-2	E420	0.0991 mg/L	0.1 mg/L	99.1	70.0	130	
		zinc, total	7440-66-6	E420	0.389 mg/L	0.4 mg/L	97.2	70.0	130	
otal Metals (QC	Lot: 295657)									
CG2104071-002	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.0387 mg/L	0.04 mg/L	96.8	70.0	130	
otal Metals (QC	CLot: 299637)									
CG2104111-002	Anonymous	mercury, total	7439-97-6	E508-L	4.87 ng/L	5 ng/L	97.5	70.0	130	
issolved Metals	(QCLot: 295658)									
CG2104110-002	Anonymous	aluminum, dissolved	7429-90-5	E421	0.194 mg/L	0.2 mg/L	96.8	70.0	130	
		antimony, dissolved	7440-36-0	E421	0.0193 mg/L	0.02 mg/L	96.7	70.0	130	
		arsenic, dissolved	7440-38-2	E421	0.0196 mg/L	0.02 mg/L	98.0	70.0	130	
	I	barium, dissolved	7440-39-3	E421	ND mg/L	0.02 mg/L	ND	70.0	130	

Page : 18 of 19

Work Order : CG2104114 Amendment 2

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water						Matrix Spil	ke (MS) Report			
					Sp	ike	Recovery (%)	Recovery	overy Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
	(QCLot: 295658) - (continued								
CG2104110-002	Anonymous	beryllium, dissolved	7440-41-7	E421	0.0383 mg/L	0.04 mg/L	95.8	70.0	130	
		bismuth, dissolved	7440-69-9	E421	0.00882 mg/L	0.01 mg/L	88.2	70.0	130	
		boron, dissolved	7440-42-8	E421	0.096 mg/L	0.1 mg/L	96.0	70.0	130	
		cadmium, dissolved	7440-43-9	E421	0.00376 mg/L	0.004 mg/L	93.9	70.0	130	
		calcium, dissolved	7440-70-2	E421	ND mg/L	4 mg/L	ND	70.0	130	
		cobalt, dissolved	7440-48-4	E421	0.0186 mg/L	0.02 mg/L	92.9	70.0	130	
		copper, dissolved	7440-50-8	E421	0.0184 mg/L	0.02 mg/L	92.3	70.0	130	
		iron, dissolved	7439-89-6	E421	1.85 mg/L	2 mg/L	92.5	70.0	130	
		lead, dissolved	7439-92-1	E421	0.0181 mg/L	0.02 mg/L	90.7	70.0	130	
		lithium, dissolved	7439-93-2	E421	0.101 mg/L	0.1 mg/L	101	70.0	130	
		magnesium, dissolved	7439-95-4	E421	ND mg/L	1 mg/L	ND	70.0	130	
		manganese, dissolved	7439-96-5	E421	0.0188 mg/L	0.02 mg/L	94.0	70.0	130	
		molybdenum, dissolved	7439-98-7	E421	0.0193 mg/L	0.02 mg/L	96.3	70.0	130	
		nickel, dissolved	7440-02-0	E421	0.0368 mg/L	0.04 mg/L	92.0	70.0	130	
		potassium, dissolved	7440-09-7	E421	3.83 mg/L	4 mg/L	95.7	70.0	130	
		selenium, dissolved	7782-49-2	E421	0.0387 mg/L	0.04 mg/L	96.7	70.0	130	
		silicon, dissolved	7440-21-3	E421	8.66 mg/L	10 mg/L	86.6	70.0	130	
		silver, dissolved	7440-22-4	E421	0.00375 mg/L	0.004 mg/L	93.8	70.0	130	
		sodium, dissolved	17341-25-2	E421	1.91 mg/L	2 mg/L	95.7	70.0	130	
		strontium, dissolved	7440-24-6	E421	ND mg/L	0.02 mg/L	ND	70.0	130	
		sulfur, dissolved	7704-34-9	E421	ND mg/L	20 mg/L	ND	70.0	130	
		thallium, dissolved	7440-28-0	E421	0.00368 mg/L	0.004 mg/L	91.9	70.0	130	
		tin, dissolved	7440-31-5	E421	0.0192 mg/L	0.02 mg/L	96.0	70.0	130	
		titanium, dissolved	7440-32-6	E421	0.0381 mg/L	0.04 mg/L	95.3	70.0	130	
		uranium, dissolved	7440-61-1	E421	0.00392 mg/L	0.004 mg/L	98.0	70.0	130	
		vanadium, dissolved	7440-62-2	E421	0.0982 mg/L	0.1 mg/L	98.2	70.0	130	
		zinc, dissolved	7440-66-6	E421	0.389 mg/L	0.4 mg/L	97.2	70.0	130	
Dissolved Metals	(QCLot: 295659)									
CG2104110-002	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.0384 mg/L	0.04 mg/L	95.9	70.0	130	
Dissolved Metals	(QCLot: 295812)									
CG2104086-002	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000978 mg/L	0.0001 mg/L	97.8	70.0	130	

Page : 19 of 19

Work Order : CG2104114 Amendment 2

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

		1						Page	1 of 1		-								
Teck								·									г		
	1	COC ID:	Septembe					1	AROUNI				- in in in in in in in in in in in in in		nicorrect to the same	iolica et al consiste		outries arrive to TEX	
120-2-120-2	191	PED PROJECTATE	ENTINEO 4H A						ob Nama	ALS Calgary	LTORY	11		12.	14	Tax .		Excel I	PDF EDD
	Facility Name / Job# Project Manager	Allie Ferguson								Lyudmyla Si				 				, and a	
	Project Manager	We leaden against cont.						 				sglobal.com		 			described to the	in i	
		421 Pine Avenue						<u> </u>	Address	2559 29 Stre	et NE					torna mar			
	City		Sparwood			Province BC				Calgary		Province	AB			********		,14173	19 1
	Postal Code		V0B 2G0		Country Can	ada		tal Code			Country	Canada						<u> </u>	
	Phone Number			manus (1900)			Phone	Number	1 403 407 17				<u> </u>						
1		SA'	MPLE DETAILS	. n. 1	أكالاللالم		: 10 ts.	61	4	, <u>u</u>	. A.Y	ALVSIS REC)UESTE	D 17.		سلاف	(Aural 1.5	ida lat.	A. Died & Lab 10 Dec
					1			ŀ		á N	r	N	Ν.	'n.	į N	F			
										ž .						ļ			- 12
***************************************]	ļ					4		H2504		HCL	Emeria.	нуол			
المسممين			,	i .	(o)	1				2	112504	E2504	11.00	11.	11.103	1.00	9.		
					- Z						المستحب	رد		2-60000000					
				! ,	Hazardous Material (Yes					TECKCOAL-ROUTINE		Package-I KN/TUC	ļ		ے ا	اخا		1	
					<u>1</u>		1		ĺ	15	×	ह	.∢		F.	🖺		ŀ	
·	•			!	बुद		1			¥ 22	age-DOC	ļ - 	<u>د</u> م <u>نا</u>	××	N N	¥	į		
•	•			ı	Σ					2 Z	38	988	\ \$	AF-V	\ \	l ž		}	
	-				ğ		1			1 8	Pack	32	3	Ç	8	8	į		
1				Field	ZST		Time	G=Grab	#Of) Š	ALS_F	\ \sigma_1	HG-T-U-CVAF	нс-р-су	TECKCOAL-MET-T- VA	TECKCOAL MET-D.			ı
Sar	mple ID		nple Location	Matrix	표	Date	(24hr)_	C=Comp	Cont.	Z Z	_¥_	ALS	_≌_	ਬ	7 X	Z X :			
RG_MICOMP_WS_E	VO_LAEMP_2021-09-13_NP	R	G_MICOMP	WS	No	9/13/2021	1600	G	7	X	х	x	x	x	X	x			
RG_RIVER_	WS_2021-09-13_NP		RG RIVER	ws	No	9/13/2021	1600	G	. 7	х	х	х	Х	х	X	x			
RG_FBLANK	_WS_2021-09-13_NP	R.	G_FBLANK	ws	No:	9/13/2021	1600	G	7	х	x	х	х	Х	x	x			
																,			
	2																		
L				_	e.				L				L	ļ. <u>.</u>					
																i			
		917								·					Í <u>.</u>	ļ			
					Yare v		_						<u> </u>	ļ		ļ			
T 11	ADDITIONAL COMMENTS	SPECIAL INSTRUC	TWO			RELANDUISTE	·	er realization		A TEZETMI		166	**************************************	BY/AFF					
¥	AUNITORIA	ALERO MANUSCRIPTOR	280/15			and a market a contract	A) DIJAFF	1831/4831/14		10X 1 ES 2 DATA		34.1	A	WY AFF	HIA 110	•	~~~	, , , , , , , , , , , , , , , , , , , ,	
	. X					lennifer	Ings/Minn				*******		M.				4	10	020
ALS PO 750546	1				-	- Jennier	11163-1-120-1				71111111111	l á	M					_ر_	رري
					-							*							·
	NB OF BOTTLES RETL	RET DORSE DIRECTO			1									1		***			
	WOMAN CHORAC	A CONTRACTOR OF THE PARTY OF TH		default) x				1110											
			rity (2-3 business days) - 50% su	rcharge	L	Sampler's Nam	e			lenn if er luş			Mol	oile#			519-500-		
		Emerge	ency (1 Business Day) - 100% su	rcharge		Sampler's Signat	ure	Low	J. D.	~ III			Date	Time	14.7	5	entember	14, 2021	

Environmental Division
Calgary
Work Order Reference
CG2104114

Telephone: + i 403 407 1800

6

WATER CHEMISTRY

ALS Laboratory Report CG2106842 (Finalized January 5, 2022)

CERTIFICATE OF ANALYSIS

Work Order : CG2106842

Client : Teck Coal Limited

Contact : Allie Ferguson
Address : 421 Pine Aven

ddress : 421 Pine Avenue

Sparwood BC Canada

Telephone : ---

Project : REGIONAL EFFECTS PROGRAM

PO : VPO00748510

C-O-C number : DECEMBER EVP LAEMP 2021

Sampler : AMC Site : ----

Quote number : Teck Coal Master Quote

No. of samples received : 7
No. of samples analysed : 7

Page : 1 of 11

Laboratory : Calgary - Environmental

Account Manager : Lyudmyla Shvets
Address : 2559 29th Street N

: 2559 29th Street NE

Calgary AB Canada T1Y 7B5

Telephone : +1 403 407 1800

Date Samples Received : 16-Dec-2021 09:00

Date Analysis Commenced : 16-Dec-2021

Issue Date : 05-Jan-2022 11:32

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department	
Anthony Calero	Team Leader - Inorganics	Inorganics, Calgary, Alberta	
Caleb Deroche	Lab Analyst	Metals, Burnaby, British Columbia	
Dan Gebert	Laboratory Analyst	Metals, Burnaby, British Columbia	
Dee Lee	Analyst	Metals, Burnaby, British Columbia	
Elke Tabora		Inorganics, Calgary, Alberta	
Erin Sanchez		Inorganics, Calgary, Alberta	
Hannah Phung	Lab Assistant	Inorganics, Calgary, Alberta	
Harpreet Chawla	Team Leader - Inorganics	Inorganics, Calgary, Alberta	
Ilnaz Badbezanchi	Team Leader - Metals preparation	Metals, Burnaby, British Columbia	
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia	
Maria Tuguinay	Lab Assistant	Inorganics, Calgary, Alberta	
Miles Gropen	Department Manager - Inorganics	Inorganics, Burnaby, British Columbia	
Parker Sgarbossa	Laboratory Analyst	Inorganics, Calgary, Alberta	
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta	
Russell Zhang		Metals, Burnaby, British Columbia	
Sara Niroomand		Inorganics, Calgary, Alberta	
Saron Kim	Analyst	Metals, Burnaby, British Columbia	
Vladka Stamenova	Analyst	Inorganics, Calgary, Alberta	

 Page
 : 3 of 11

 Work Order
 : CG2106842

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
%	percent
μg/L	micrograms per litre
μS/cm	Microsiemens per centimetre
meq/L	milliequivalents per litre
mg/L	milligrams per litre
mV	millivolts
ng/L	nanograms per litre
NTU	nephelometric turbidity units
pH units	pH units

<: less than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
DLA	Detection Limit adjusted for required dilution.
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical Conductivity.
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).
DTC	Dissolved concentration exceeds total. Results were confirmed by re-analysis.
RRV	Reported result verified by repeat analysis.
TKNI	TKN result may be biased low due to Nitrate interference. Nitrate-N is > 10x TKN.

>: greater than.

Page : 4 of 11
Work Order : CG2106842
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water (Matrix: Water)			lient sample ID	RG_M13_WS_L AEMP_EVO_20 21-12-14_NP	RG_RIVER_WS _LAEMP_EVO_ 2021-09_NP	RG_TRIP_WS_L AEMP_EVO_20 21-12_NP	RG_ERCKUT_W S_LAEMP_EVO _2021-12-14_N P	RG_ERCK_WS_ LAEMP_EVO_2 021-12-14_NP	
			Client samp	oling date / time	14-Dec-2021 15:30	14-Dec-2021 13:30	14-Dec-2021 13:30	14-Dec-2021 13:30	14-Dec-2021 09:45
Analyte	CAS Number	Method	LOR	Unit	CG2106842-001	CG2106842-002	CG2106842-003	CG2106842-004	CG2106842-005
					Result	Result	Result	Result	Result
Physical Tests		F202	2.0		40.0	40.5	*0.0	0.4	40.0
acidity (as CaCO3)		E283	2.0	mg/L	<2.0	10.5	<2.0	8.4	<2.0
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	121	478	<1.0	484	428
alkalinity, bicarbonate (as HCO3)	71-52-3	E290 E290	1.0 1.0	mg/L	147 <1.0	583 <1.0	<1.0 <1.0	590 <1.0	522
alkalinity, carbonate (as CaCO3)		E290 E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0 <1.0
alkalinity, carbonate (as CO3)	3812-32-6	E290 E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
alkalinity, hydroxide (as CaCO3) alkalinity, hydroxide (as OH)	44200 20 0	E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
alkalinity, hydroxide (as On)	14280-30-9	E290	1.0	mg/L	121	478	<1.0	484	428
conductivity		E100	2.0	mg/L µS/cm	318	1990	<2.0	1960	1850
hardness (as CaCO3), dissolved		EC100	0.50	μο/cm mg/L	173	1420	<0.50	1390	1290
oxidation-reduction potential [ORP]		E125	0.10	mV	439	421	479	439	426
pH		E108	0.10	pH units	8.27	8.22	5.51	7.76	8.18
solids, total dissolved [TDS]		E162	10	mg/L	203	1720	<10	1670	1580
solids, total suspended [TSS]		E160-L	1.0	mg/L	4.0	7.6	<1.0	2.6	26.2
turbidity	<u></u>	E121	0.10	NTU	1.52	2.08	<0.10	<0.10	2.76
Anions and Nutrients									
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0118	0.0091	<0.0050	0.0060	0.0074
bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.250 DLDS	<0.050	<0.250 DLDS	<0.250 DLDS
chloride	16887-00-6	E235.CI-L	0.10	mg/L	0.97	6.24	<0.10	6.46	7.58
fluoride	16984-48-8	E235.F	0.020	mg/L	0.136	0.112	<0.020	0.130	0.184
Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	0.091	0.377 TKNI	<0.050	<0.050 TKNI	0.451 TKNI
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	0.286	17.6	<0.0050	17.5	7.77
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0010	<0.0050 DLDS	<0.0010	<0.0050 DLDS	<0.0050 DLDS
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	0.0100	0.0215	<0.0010	0.0222	0.0011
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0109	0.0215 DLM	<0.0020	0.0229 DLM	0.0323
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	56.8	807	<0.30	802	818
Organic / Inorganic Carbon									
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	2.57 DTC, RRV	0.81	<0.50	0.68	0.86

Page : 5 of 11
Work Order : CG2106842
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water			CI	ient sample ID	RG_M13_WS_L	RG_RIVER_WS	RG_TRIP_WS_L	RG_ERCKUT_W	RG_ERCK_WS_
(Matrix: Water)					AEMP_EVO_20	_LAEMP_EVO_	AEMP_EVO_20	S_LAEMP_EVO	LAEMP_EVO_2
					21-12-14_NP	2021-09_NP	21-12_NP	_2021-12-14_N P	021-12-14_NP
								•	
			Client samp	ling date / time	14-Dec-2021	14-Dec-2021	14-Dec-2021	14-Dec-2021	14-Dec-2021
					15:30	13:30	13:30	13:30	09:45
Analyte	CAS Number	Method	LOR	Unit	CG2106842-001	CG2106842-002	CG2106842-003	CG2106842-004	CG2106842-005
					Result	Result	Result	Result	Result
Organic / Inorganic Carbon		E355-L	0.50	m a/l	1.76 DTC, RRV	0.68	<0.50	0.67	0.90
carbon, total organic [TOC]		E333-L	0.50	mg/L	1.70	0.00	\0.50	0.07	0.90
Ion Balance anion sum		EC101	0.10	mog/l	3.66	27.8	<0.10	27.8	26.4
				meq/L				28.1	
cation sum		EC101	0.10	meq/L	3.63 99.2	28.6	<0.10	101	26.2 99.2
ion balance (cations/anions ratio)		EC101	0.010	%		103	100		
ion balance (cation-anion difference)		EC101	0.010	%	0.412	1.42	<0.010	0.537	0.380
Total Metals aluminum, total	7400.00.5	E420	0.0030	ma #/I	0.0346	<0.0060 DLA	<0.0030	<0.0030	0.117
·	7429-90-5	E420	0.0030	mg/L	<0.0010	<0.0000 DLA	<0.0030	0.00020	0.00036
antimony, total	7440-36-0		0.00010	mg/L	0.00010	0.00027	<0.00010	0.00020	0.00036
arsenic, total	7440-38-2	E420		mg/L	0.00020	0.0064		0.0652	0.0046
barium, total	7440-39-3	E420	0.00010	mg/L		<0.040 DLA	<0.00010		<0.020
beryllium, total	7440-41-7	E420	0.020	μg/L	<0.020	<0.040	<0.020 <0.00050	<0.020 <0.00050	<0.020
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050				
boron, total	7440-42-8	E420	0.010	mg/L	<0.010	<0.020 DLA	<0.010	0.014	0.028
cadmium, total	7440-43-9	E420	0.0050	μg/L "	0.0299	0.104	<0.0050	0.0819	0.0516
calcium, total	7440-70-2	E420	0.050	mg/L	42.7	267	<0.050	263	248
chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00012	<0.00020 DLA	<0.00010	0.00020	0.00026
cobalt, total	7440-48-4	E420	0.10	μg/L 	<0.10	<0.20 DLA	<0.10	<0.10	4.61
copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00100 DLA	<0.00050	<0.00050	<0.00050
iron, total	7439-89-6	E420	0.010	mg/L	0.031	<0.020 DLA	<0.010	<0.010	0.200
lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000100 DLA	<0.000050	<0.000050	0.000205
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0050	0.0288	<0.0010	0.0281	0.0482
magnesium, total	7439-95-4	E420	0.0050	mg/L	13.8	157	<0.0050	156	155
manganese, total	7439-96-5	E420	0.00010	mg/L	0.00206	<0.00020 DLA	<0.00010	<0.00010	0.107
mercury, total	7439-97-6	E508-L	0.50	ng/L	1.06	<0.50	<0.50	0.85	<0.50
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.000644	0.00108	<0.000050	0.00104	0.0104
nickel, total	7440-02-0	E420	0.00050	mg/L	0.00152	<0.00100 DLA	<0.00050	0.00090	0.0286
potassium, total	7440-09-7	E420	0.050	mg/L	0.607	2.72	<0.050	2.73	3.92
selenium, total	7782-49-2	E420	0.050	μg/L	2.18	161	<0.050	169	77.8

Page : 6 of 11
Work Order : CG2106842
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water			ent sample ID	RG_M13_WS_L	RG_RIVER_WS	RG_TRIP_WS_L	RG_ERCKUT_W	RG_ERCK_WS_	
(Matrix: Water)					AEMP_EVO_20 21-12-14 NP	_LAEMP_EVO_ 2021-09 NP	AEMP_EVO_20 21-12 NP	S_LAEMP_EVO 2021-12-14 N	LAEMP_EVO_2 021-12-14 NP
					21-12-14_1	2021-03_III	21-12_141	P	021-12-14_INI
			Client sampl	ing date / time	14-Dec-2021 15:30	14-Dec-2021	14-Dec-2021	14-Dec-2021 13:30	14-Dec-2021 09:45
Analyte	CAS Number	Method	LOR	Unit	CG2106842-001	13:30 CG2106842-002	13:30 CG2106842-003	CG2106842-004	CG2106842-005
Analyte	CAS Number	Wictiloa	LON	Oint	Result	Result	Result	Result	Result
Total Metals					. roduit	, toodii	. rooun	1100011	rtodak
silicon, total	7440-21-3	E420	0.10	mg/L	2.33	3.97	<0.10	3.98	3.79
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000020 DLA	<0.000010	<0.000010	<0.000010
sodium, total	7440-23-5	E420	0.050	mg/L	3.38	3.45	<0.050	3.48	5.61
strontium, total	7440-24-6	E420	0.00020	mg/L	0.135	0.240	<0.00020	0.245	0.321
sulfur, total	7704-34-9	E420	0.50	mg/L	20.5	303	<0.50	312	323
thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000020 DLA	<0.000010	<0.000010	0.000043
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00020 DLA	<0.00010	<0.00010	<0.00010
titanium, total	7440-32-6	E420	0.00030	mg/L	0.00052	<0.00060 DLA	<0.00030	<0.00030	0.00196
uranium, total	7440-61-1	E420	0.000010	mg/L	0.000569	0.00822	<0.000010	0.00895	0.0109
vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00100 DLA	<0.00050	<0.00050	0.00058
zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	<0.0060 DLA	<0.0030	<0.0030	<0.0030
Dissolved Metals									
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0091	0.0073	<0.0010	<0.0010	0.0019
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	<0.00010	0.00017	<0.00010	0.00018	0.00034
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00018	0.00029	<0.00010	0.00025	0.00034
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0851	0.0682	<0.00010	0.0672	0.0294
beryllium, dissolved	7440-41-7	E421	0.020	μg/L	<0.020	<0.020	<0.020	<0.020	<0.020
cadmium, dissolved	7440-43-9	E421	0.0050	μg/L	0.0253	0.101	<0.0050	0.0884	0.0168
calcium, dissolved	7440-70-2	E421	0.050	mg/L	46.0	294	<0.050	291	262
chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00018	0.00023	<0.00010	0.00020	<0.00010
copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00031	<0.00020	<0.00020	<0.00020	<0.00020
iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	<0.010	<0.010	<0.010
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0047	0.0288	<0.0010	0.0292	0.0513
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	14.1	166	<0.0050	162	155
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00095	<0.00010	<0.00010	<0.00010	0.0747
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	<0.0000050	<0.000050	<0.000050
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.000840	0.00105	<0.000050	0.00110	0.0113
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00138	0.00094	<0.00050	0.00092	0.0264
potassium, dissolved	7440-09-7	E421	0.050	mg/L	0.665	3.07	<0.050	2.93	4.09
•	1						•		'

Page : 7 of 11
Work Order : CG2106842
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water							RG_TRIP_WS_L	RG_ERCKUT_W	RG_ERCK_WS_
(Matrix: Water)					AEMP_EVO_20 21-12-14_NP	_LAEMP_EVO_ 2021-09_NP	AEMP_EVO_20 21-12_NP	S_LAEMP_EVO _2021-12-14_N P	LAEMP_EVO_2 021-12-14_NP
			Client samp	ling date / time	14-Dec-2021 15:30	14-Dec-2021 13:30	14-Dec-2021 13:30	14-Dec-2021 13:30	14-Dec-2021 09:45
Analyte CAS N	ımber	Method	LOR	Unit	CG2106842-001	CG2106842-002	CG2106842-003	CG2106842-004	CG2106842-005
					Result	Result	Result	Result	Result
Dissolved Metals									
selenium, dissolved 778.	-49-2	E421	0.050	μg/L	2.11	199	<0.050	204	89.6
silicon, dissolved 744	-21-3	E421	0.050	mg/L	2.30	4.04	<0.050	4.04	3.54
silver, dissolved 744	-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
sodium, dissolved 744	-23-5	E421	0.050	mg/L	3.55	3.72	<0.050	3.60	5.72
strontium, dissolved 744	-24-6	E421	0.00020	mg/L	0.134	0.241	<0.00020	0.242	0.312
sulfur, dissolved 770-	-34-9	E421	0.50	mg/L	20.0	297	<0.50	306	304
thallium, dissolved 744	-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	0.000035
titanium, dissolved 744	-32-6	E421	0.00030	mg/L	0.00034	<0.00030	<0.00030	<0.00030	<0.00030
uranium, dissolved 744	-61-1	E421	0.000010	mg/L	0.000594	0.00873	<0.000010	0.00874	0.0105
vanadium, dissolved 744	-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
zinc, dissolved 744	-66-6	E421	0.0010	mg/L	0.0030	0.0037	<0.0010	0.0018	<0.0010
dissolved mercury filtration location		EP509	-	-	Field	Field	Field	Field	Field
dissolved metals filtration location		EP421	-	-	Field	Field	Field	Field	Field

Please refer to the General Comments section for an explanation of any qualifiers detected.

Page : 8 of 11
Work Order : CG2106842
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water (Matrix: Water)			C	lient sample ID	RG_ERCKDT_W S_LAEMP_EVO	RG_FBLANK_W S_LAEMP_EVO	 	
					_2021-12-15_N P	_2021-12-15_N P		
			Client samp	oling date / time	15-Dec-2021 12:00	15-Dec-2021 16:00	 	
Analyte	CAS Number	Method	LOR	Unit	CG2106842-006	CG2106842-007	 	
					Result	Result	 	
Physical Tests								
acidity (as CaCO3)		E283	2.0	mg/L	6.1	<2.0	 	
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	484	<1.0	 	
alkalinity, bicarbonate (as HCO3)	71-52-3	E290	1.0	mg/L	590	<1.0	 	
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	 	
alkalinity, carbonate (as CO3)	3812-32-6	E290	1.0	mg/L	<1.0	<1.0	 	
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	 	
alkalinity, hydroxide (as OH)	14280-30-9	E290	1.0	mg/L	<1.0	<1.0	 	
alkalinity, total (as CaCO3)		E290	1.0	mg/L	484	<1.0	 	
conductivity		E100	2.0	μS/cm	1960	<2.0	 	
hardness (as CaCO3), dissolved		EC100	0.50	mg/L	1380	<0.50	 	
oxidation-reduction potential [ORP]		E125	0.10	mV	437	480	 	
pH		E108	0.10	pH units	8.04	5.21	 	
solids, total dissolved [TDS]		E162	10	mg/L	1800	<10	 	
solids, total suspended [TSS]		E160-L	1.0	mg/L	5.9	<1.0	 	
turbidity		E121	0.10	NTU	2.25	<0.10	 	
Anions and Nutrients								
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	<0.0050	 	
bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.250 DLDS	<0.050	 	
chloride	16887-00-6	E235.CI-L	0.10	mg/L	6.57	<0.10	 	
fluoride	16984-48-8	E235.F	0.020	mg/L	0.119	<0.020	 	
Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	0.440 TKNI	<0.050	 	
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	18.3	<0.0050	 	
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0050 DLDS	<0.0010	 	
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	0.0195	<0.0010	 	
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0224	<0.0020	 	
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	788	<0.30	 	
Organic / Inorganic Carbon								
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	0.74	<0.50	 	
carbon, total organic [TOC]		E355-L	0.50	mg/L	0.73	<0.50	 	
ı	ı		1			1	ı	

Page : 9 of 11
Work Order : CG2106842
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water (Matrix: Water)			Cl	ient sample ID	RG_ERCKDT_W S_LAEMP_EVO	RG_FBLANK_W S_LAEMP_EVO	 	
					_2021-12-15_N	_2021-12-15_N		
					Р	Р		
			Client samp	ling date / time	15-Dec-2021 12:00	15-Dec-2021 16:00	 	
Analyte	CAS Number	Method	LOR	Unit	CG2106842-006	CG2106842-007	 	
					Result	Result	 	
Ion Balance								
anion sum		EC101	0.10	meq/L	27.6	<0.10	 	
cation sum		EC101	0.10	meq/L	27.8	<0.10	 	
ion balance (cations/anions ratio)		EC101	0.010	%	101	100	 	
ion balance (cation-anion difference)		EC101	0.010	%	0.361	<0.010	 	
Total Metals								
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0117	<0.0030	 	
antimony, total	7440-36-0	E420	0.00010	mg/L	0.00021	<0.00010	 	
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00051	<0.00010	 	
barium, total	7440-39-3	E420	0.00010	mg/L	0.0649	<0.00010	 	
beryllium, total	7440-41-7	E420	0.020	μg/L	<0.020	<0.020	 	
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	 	
boron, total	7440-42-8	E420	0.010	mg/L	0.015	<0.010	 	
cadmium, total	7440-43-9	E420	0.0050	μg/L	0.189	<0.0050	 	
calcium, total	7440-70-2	E420	0.050	mg/L	273	<0.050	 	
chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00022	<0.00010	 	
cobalt, total	7440-48-4	E420	0.10	μg/L	1.85	<0.10	 	
copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	 	
iron, total	7439-89-6	E420	0.010	mg/L	0.427	<0.010	 	
lead, total	7439-92-1	E420	0.000050	mg/L	0.000096	<0.000050	 	
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0294	<0.0010	 	
magnesium, total	7439-95-4	E420	0.0050	mg/L	156	<0.0050	 	
manganese, total	7439-96-5	E420	0.00010	mg/L	0.0467	<0.00010	 	
mercury, total	7439-97-6	E508-L	0.50	ng/L	<0.50	<0.50	 	
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00102	<0.000050	 	
nickel, total	7440-02-0	E420	0.00050	mg/L	0.00448	<0.00050	 	
potassium, total	7440-09-7	E420	0.050	mg/L	2.74	<0.050	 	
selenium, total	7782-49-2	E420	0.050	μg/L	168	<0.050	 	
silicon, total	7440-21-3	E420	0.10	mg/L	4.01	<0.10	 	
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	 	
I	I		1	- 1				

Page : 10 of 11
Work Order : CG2106842
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water			ent sample ID	RG_ERCKDT_W	RG_FBLANK_W	 		
(Matrix: Water)					S_LAEMP_EVO	S_LAEMP_EVO		
					_2021-12-15_N	_2021-12-15_N		
					Р	Р		
			Client samp	ling date / time	15-Dec-2021	15-Dec-2021	 	
			Chom camp.		12:00	16:00		
Analyte	CAS Number	Method	LOR	Unit	CG2106842-006	CG2106842-007	 	
					Result	Result	 	
Total Metals								
sodium, total	7440-23-5	E420	0.050	mg/L	3.56	<0.050	 	
strontium, total	7440-24-6	E420	0.00020	mg/L	0.248	<0.00020	 	
sulfur, total	7704-34-9	E420	0.50	mg/L	314	<0.50	 	
thallium, total	7440-28-0	E420	0.000010	mg/L	0.000015	<0.000010	 	
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	 	
titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	 	
uranium, total	7440-61-1	E420	0.000010	mg/L	0.00875	<0.000010	 	
vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	 	
zinc, total	7440-66-6	E420	0.0030	mg/L	0.0079	<0.0030	 	
Dissolved Metals								
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	<0.0010	<0.0010	 	
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00018	<0.00010	 	
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00028	<0.00010	 	
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0673	<0.00010	 	
beryllium, dissolved	7440-41-7	E421	0.020	μg/L	<0.020	<0.020	 	
cadmium, dissolved	7440-43-9	E421	0.0050	μg/L	0.0964	<0.0050	 	
calcium, dissolved	7440-70-2	E421	0.050	mg/L	290	<0.050	 	
chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00020	<0.00010	 	
copper, dissolved	7440-50-8	E421	0.00020	mg/L	<0.00020	<0.00020	 	
iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	 	
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0289	<0.0010	 	
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	159	<0.0050	 	
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00460	<0.00010	 	
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	 	
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00120	<0.000050	 	
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00306	<0.00050	 	
potassium, dissolved	7440-09-7	E421	0.050	mg/L	2.88	<0.050	 	
selenium, dissolved	7782-49-2	E421	0.050	μg/L	206	<0.050	 	
silicon, dissolved	7440-21-3	E421	0.050	mg/L	4.08	<0.050	 	
	I			1		ı		'

Page : 11 of 11
Work Order : CG2106842
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water (Matrix: Water)			Cl	ient sample ID	RG_ERCKDT_W S_LAEMP_EVO _2021-12-15_N P	RG_FBLANK_W S_LAEMP_EVO _2021-12-15_N P	 	
			Client samp	ling date / time	15-Dec-2021 12:00	15-Dec-2021 16:00	 	
Analyte	CAS Number	Method	LOR	Unit	CG2106842-006	CG2106842-007	 	
					Result	Result	 	
Dissolved Metals								
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	 	
sodium, dissolved	7440-23-5	E421	0.050	mg/L	3.54	<0.050	 	
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.249	<0.00020	 	
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	305	<0.50	 	
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	0.000012	<0.000010	 	
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	 	
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00877	<0.000010	 	
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	 	
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0034	<0.0010	 	
dissolved mercury filtration location		EP509	-	-	Field	Field	 	
dissolved metals filtration location		EP421	-	-	Field	Field	 	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : **CG2106842** Page : 1 of 29

Client : Teck Coal Limited : Aboratory : Calgary - Environmental Contact : Allie Ferguson : Lyudmyla Shvets

: 421 Pine Avenue Address : 2559 29th Street NE

Sparwood BC Canada Calgary, Alberta Canada T1Y 7B5

Telephone :---- Telephone :+1 403 407 1800

Project : REGIONAL EFFECTS PROGRAM Date Samples Received :16-Dec-2021 09:00

Sampler : AMC Site :----

Quote number : Teck Coal Master Quote

No. of samples received : 7
No. of samples analysed : 7

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Address

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Summary of Outliers

Outliers: Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers: Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

 Page
 : 2 of 29

 Work Order
 : CG2106842

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

 Matrix: Water
 Evaluation: x = Holding time exceedance; √ = Within Holding Time

 Analyte Group
 Method
 Sampling Date
 Extraction / Preparation
 Analysis

 Container / Client Sample ID(x)
 Analysis
 Total Validity Times
 Analysis

		Camping Date								
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
nions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
RG_ERCKDT_WS_LAEMP_EVO_2021-12-15_NP	E298	15-Dec-2021	16-Dec-2021				16-Dec-2021	28 days	1 days	✓
nions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
RG_FBLANK_WS_LAEMP_EVO_2021-12-15_NP	E298	15-Dec-2021	16-Dec-2021				16-Dec-2021	28 days	1 days	✓
nions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										_
RG_ERCK_WS_LAEMP_EVO_2021-12-14_NP	E298	14-Dec-2021	16-Dec-2021				16-Dec-2021	28 days	2 days	✓
nions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
RG_ERCKUT_WS_LAEMP_EVO_2021-12-14_NP	E298	14-Dec-2021	16-Dec-2021				16-Dec-2021	28 days	2 days	✓
nions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
RG_M13_WS_LAEMP_EVO_2021-12-14_NP	E298	14-Dec-2021	16-Dec-2021				16-Dec-2021	28 days	2 days	✓
nions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
RG_RIVER_WS_LAEMP_EVO_2021-09_NP	E298	14-Dec-2021	16-Dec-2021				16-Dec-2021	28 days	2 days	✓
nions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
RG TRIP WS LAEMP EVO 2021-12 NP	E298	14-Dec-2021	16-Dec-2021				16-Dec-2021	28 days	2 42/10	✓

 Page
 : 3 of 29

 Work Order
 : CG2106842

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

watin. Water					L.	aluation. • –	ribiding time excer	cuarice, .	- *************************************	Troluing Til
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE RG_ERCK_WS_LAEMP_EVO_2021-12-14_NP	E235.Br-L	14-Dec-2021					16-Dec-2021	28 days	2 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE RG_ERCKUT_WS_LAEMP_EVO_2021-12-14_NP	E235.Br-L	14-Dec-2021					16-Dec-2021	28 days	2 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE RG_M13_WS_LAEMP_EVO_2021-12-14_NP	E235.Br-L	14-Dec-2021					16-Dec-2021	28 days	2 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE RG_RIVER_WS_LAEMP_EVO_2021-09_NP	E235.Br-L	14-Dec-2021					16-Dec-2021	28 days	2 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE RG_TRIP_WS_LAEMP_EVO_2021-12_NP	E235.Br-L	14-Dec-2021					16-Dec-2021	28 days	2 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE RG_ERCKDT_WS_LAEMP_EVO_2021-12-15_NP	E235.Br-L	15-Dec-2021					18-Dec-2021	28 days	3 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE RG_FBLANK_WS_LAEMP_EVO_2021-12-15_NP	E235.Br-L	15-Dec-2021					18-Dec-2021	28 days	3 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE RG_ERCK_WS_LAEMP_EVO_2021-12-14_NP	E235.CI-L	14-Dec-2021					16-Dec-2021	28 days	2 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE RG_ERCKUT_WS_LAEMP_EVO_2021-12-14_NP	E235.CI-L	14-Dec-2021					16-Dec-2021	28 days	2 days	✓

Page : 4 of 29 Work Order : CG2106842

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

 Matrix: Water
 Evaluation: x = Holding time exceedance; √ = Within Holding Time

 Analyte Group
 Method
 Sampling Date
 Extraction / Preparation
 Analysis

Analyte Group	Method	Sampling Date	Ext	raction / Pi	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE RG_M13_WS_LAEMP_EVO_2021-12-14_NP	E235.CI-L	14-Dec-2021					16-Dec-2021	28 days	2 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE RG_RIVER_WS_LAEMP_EVO_2021-09_NP	E235.CI-L	14-Dec-2021					16-Dec-2021	28 days	2 days	√
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE RG_TRIP_WS_LAEMP_EVO_2021-12_NP	E235.CI-L	14-Dec-2021					16-Dec-2021	28 days	2 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE RG_ERCKDT_WS_LAEMP_EVO_2021-12-15_NP	E235.CI-L	15-Dec-2021					18-Dec-2021	28 days	3 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)									1	
HDPE RG_FBLANK_WS_LAEMP_EVO_2021-12-15_NP	E235.CI-L	15-Dec-2021					18-Dec-2021	28 days	3 days	✓
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Le	vel)									
HDPE RG_ERCKDT_WS_LAEMP_EVO_2021-12-15_NP	E378-U	15-Dec-2021					16-Dec-2021	3 days	1 days	✓
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Le	vel)									
HDPE RG_FBLANK_WS_LAEMP_EVO_2021-12-15_NP	E378-U	15-Dec-2021					16-Dec-2021	3 days	1 days	✓
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Le	vel)									
HDPE RG_ERCK_WS_LAEMP_EVO_2021-12-14_NP	E378-U	14-Dec-2021					16-Dec-2021	3 days	2 days	✓
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Le	vel)									
HDPE RG_ERCKUT_WS_LAEMP_EVO_2021-12-14_NP	E378-U	14-Dec-2021					16-Dec-2021	3 days	2 days	✓

Page : 5 of 29 Work Order : CG2106842

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

wattin. Water					L.	aluation. • –	ribiding time excer	cuarice, .	- *************************************	Holding H
Analyte Group	Method	Sampling Date	Ex	traction / P	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Uli	tra Trace Level)									
HDPE										
RG_M13_WS_LAEMP_EVO_2021-12-14_NP	E378-U	14-Dec-2021					16-Dec-2021	3 days	2 days	✓
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Uli	tra Trace Level)									
HDPE	E378-U	14-Dec-2021					40 D 2004	0 4	0 -1	1
RG_RIVER_WS_LAEMP_EVO_2021-09_NP	E376-U	14-Dec-2021					16-Dec-2021	3 days	2 days	•
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Uli HDPE	tra Trace Level)							I		
RG TRIP WS LAEMP EVO 2021-12 NP	E378-U	14-Dec-2021					16-Dec-2021	3 davs	2 days	1
								,	,_	
Anions and Nutrients : Fluoride in Water by IC										
HDPE										
RG_ERCK_WS_LAEMP_EVO_2021-12-14_NP	E235.F	14-Dec-2021					16-Dec-2021	28 days	2 days	✓
Anions and Nutrients : Fluoride in Water by IC										
HDPE										
RG_ERCKUT_WS_LAEMP_EVO_2021-12-14_NP	E235.F	14-Dec-2021					16-Dec-2021	28 days	2 days	✓
Anions and Nutrients : Fluoride in Water by IC										
HDPE	F005 F	44 D 2004					40 D 2004	20 4	0 -1	√
RG_M13_WS_LAEMP_EVO_2021-12-14_NP	E235.F	14-Dec-2021					16-Dec-2021	28 days	2 days	•
Anions and Nutrients : Fluoride in Water by IC										
RG_RIVER_WS_LAEMP_EVO_2021-09_NP	E235.F	14-Dec-2021					16-Dec-2021	28 days	2 days	1
10_111211_110_E11EIIII							.0 200 202	20 44,0		
Anions and Nutrients : Fluoride in Water by IC										
HDPE										
RG_TRIP_WS_LAEMP_EVO_2021-12_NP	E235.F	14-Dec-2021					16-Dec-2021	28 days	2 days	✓
Anions and Nutrients : Fluoride in Water by IC								1		
HDPE										
RG_ERCKDT_WS_LAEMP_EVO_2021-12-15_NP	E235.F	15-Dec-2021					18-Dec-2021	28 days	3 days	✓

Page : 6 of 29 Work Order : CG2106842

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analyte Group										
	Method	Sampling Date	Ext	raction / Pr	eparation			Analys		
Container / Client Sample ID(s)			Preparation		g Times	Eval	Analysis Date		Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Fluoride in Water by IC										
HDPE										
RG_FBLANK_WS_LAEMP_EVO_2021-12-15_NP	E235.F	15-Dec-2021					18-Dec-2021	28 days	3 days	✓
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE										
RG_ERCK_WS_LAEMP_EVO_2021-12-14_NP	E235.NO3-L	14-Dec-2021					16-Dec-2021	3 days	2 days	✓
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE										
RG_ERCKUT_WS_LAEMP_EVO_2021-12-14_NP	E235.NO3-L	14-Dec-2021					16-Dec-2021	3 days	2 days	✓
								,		
Anione and Nutriente - Nitrate in Water by IC (Levy Level)										
Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE							l .	I		
RG M13 WS LAEMP EVO 2021-12-14 NP	E235.NO3-L	14-Dec-2021					16-Dec-2021	3 days	2 days	√
NG_W13_W3_LALWF_LVO_2021-12-14_NF	L233.1103-L	14-Dec-2021					10-Dec-2021	Juays	2 days	•
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE	E235.NO3-L	14-Dec-2021					40 D 0004	2 4	0 4	1
RG_RIVER_WS_LAEMP_EVO_2021-09_NP	E235.NO3-L	14-Dec-2021					16-Dec-2021	3 days	2 days	•
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE										
RG_TRIP_WS_LAEMP_EVO_2021-12_NP	E235.NO3-L	14-Dec-2021					16-Dec-2021	3 days	2 days	✓
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE										
RG_ERCKDT_WS_LAEMP_EVO_2021-12-15_NP	E235.NO3-L	15-Dec-2021					18-Dec-2021	3 days	3 days	✓
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE										
RG_FBLANK_WS_LAEMP_EVO_2021-12-15_NP	E235.NO3-L	15-Dec-2021					18-Dec-2021	3 days	3 days	✓
_										
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE							1			
	E235.NO2-L	14-Dec-2021					16-Dec-2021	3 days	2 davs	1
RG_ERCK_WS_LAEMP_EVO_2021-12-14_NP									_ ~~,0	

Page : 7 of 29 Work Order : CG2106842

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation		J	Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE RG_ERCKUT_WS_LAEMP_EVO_2021-12-14_NP	E235.NO2-L	14-Dec-2021					16-Dec-2021	3 days	2 days	✓
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE RG_M13_WS_LAEMP_EVO_2021-12-14_NP	E235.NO2-L	14-Dec-2021					16-Dec-2021	3 days	2 days	✓
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE RG_RIVER_WS_LAEMP_EVO_2021-09_NP	E235.NO2-L	14-Dec-2021					16-Dec-2021	3 days	2 days	✓
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE RG_TRIP_WS_LAEMP_EVO_2021-12_NP	E235.NO2-L	14-Dec-2021					16-Dec-2021	3 days	2 days	✓
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE RG_ERCKDT_WS_LAEMP_EVO_2021-12-15_NP	E235.NO2-L	15-Dec-2021					18-Dec-2021	3 days	3 days	✓
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE RG_FBLANK_WS_LAEMP_EVO_2021-12-15_NP	E235.NO2-L	15-Dec-2021					18-Dec-2021	3 days	3 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE RG_ERCK_WS_LAEMP_EVO_2021-12-14_NP	E235.SO4	14-Dec-2021					16-Dec-2021	28 days	2 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE RG_ERCKUT_WS_LAEMP_EVO_2021-12-14_NP	E235.SO4	14-Dec-2021					16-Dec-2021	28 days	2 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE RG_M13_WS_LAEMP_EVO_2021-12-14_NP	E235.SO4	14-Dec-2021					16-Dec-2021	28 days	2 days	✓

Page : 8 of 29 Work Order : CG2106842

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

vialitix: water							noiding time exce	,		· · · · · · · · · · · · · · · · · · ·
Analyte Group	Method	Sampling Date	Ext	traction / Pr	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Sulfate in Water by IC										
HDPE										
RG_RIVER_WS_LAEMP_EVO_2021-09_NP	E235.SO4	14-Dec-2021					16-Dec-2021	28 days	2 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE										
RG TRIP WS LAEMP EVO 2021-12 NP	E235.SO4	14-Dec-2021					16-Dec-2021	28 days	2 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE								<u> </u>		
RG_ERCKDT_WS_LAEMP_EVO_2021-12-15_NP	E235.SO4	15-Dec-2021					18-Dec-2021	28 days	3 davs	✓
									,-	
Anima and Nutrianta - Outfate in Water has 10										
Anions and Nutrients : Sulfate in Water by IC HDPE							l e	<u> </u>		
RG FBLANK WS LAEMP EVO 2021-12-15 NP	E235.SO4	15-Dec-2021					18-Dec-2021	28 days	3 days	√
NG_FBLANK_W3_LAEMIF_EVO_2021-12-13_NF	L233.304	13-Dec-2021					10-Dec-2021	20 days	3 days	•
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)								T		
Amber glass total (sulfuric acid)	E318	15-Dec-2021	00 D 0004				00 D 0004	00 4	0 -1	1
RG_ERCKDT_WS_LAEMP_EVO_2021-12-15_NP	E318	15-Dec-2021	23-Dec-2021				23-Dec-2021	28 days	8 days	•
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid)										
RG_FBLANK_WS_LAEMP_EVO_2021-12-15_NP	E318	15-Dec-2021	23-Dec-2021				23-Dec-2021	28 days	8 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid)										
RG_ERCK_WS_LAEMP_EVO_2021-12-14_NP	E318	14-Dec-2021	23-Dec-2021				23-Dec-2021	28 days	9 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid)										
RG_ERCKUT_WS_LAEMP_EVO_2021-12-14_NP	E318	14-Dec-2021	23-Dec-2021				23-Dec-2021	28 days	9 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid)										
RG_M13_WS_LAEMP_EVO_2021-12-14_NP	E318	14-Dec-2021	23-Dec-2021				23-Dec-2021	28 days	9 days	✓
'- ' -										

Page : 9 of 29 Work Order : CG2106842

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Water						uluulion.	nolding time exce	cuarioc , .	- vvicinii	riolaling riili
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual		-	Rec	Actual	
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid)										
RG_RIVER_WS_LAEMP_EVO_2021-09_NP	E318	14-Dec-2021	23-Dec-2021				23-Dec-2021	28 days	9 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid)										
RG_TRIP_WS_LAEMP_EVO_2021-12_NP	E318	14-Dec-2021	23-Dec-2021				23-Dec-2021	28 days	9 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)										
Amber glass total (sulfuric acid)										
RG_ERCKDT_WS_LAEMP_EVO_2021-12-15_NP	E372-U	15-Dec-2021	21-Dec-2021				21-Dec-2021	28 days	6 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)										
Amber glass total (sulfuric acid)										
RG_FBLANK_WS_LAEMP_EVO_2021-12-15_NP	E372-U	15-Dec-2021	21-Dec-2021				21-Dec-2021	28 days	6 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)										
Amber glass total (sulfuric acid)										
RG_ERCK_WS_LAEMP_EVO_2021-12-14_NP	E372-U	14-Dec-2021	21-Dec-2021				21-Dec-2021	28 days	7 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)										
Amber glass total (sulfuric acid)										
RG_ERCKUT_WS_LAEMP_EVO_2021-12-14_NP	E372-U	14-Dec-2021	21-Dec-2021				21-Dec-2021	28 days	7 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)										
Amber glass total (sulfuric acid)										
RG_M13_WS_LAEMP_EVO_2021-12-14_NP	E372-U	14-Dec-2021	21-Dec-2021				21-Dec-2021	28 days	7 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)										
Amber glass total (sulfuric acid)										
RG_RIVER_WS_LAEMP_EVO_2021-09_NP	E372-U	14-Dec-2021	21-Dec-2021				21-Dec-2021	28 days	7 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (Ultra Trace)										
Amber glass total (sulfuric acid)										
RG_TRIP_WS_LAEMP_EVO_2021-12_NP	E372-U	14-Dec-2021	21-Dec-2021				21-Dec-2021	28 days	7 days	✓

 Page
 : 10 of 29

 Work Order
 : CG2106842

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Water						aldation. • -	Holding time exce	cuarice,	- vvicinii	riolaling rilli
Analyte Group	Method	Sampling Date	Ext	raction / Pi	eparation			Analys	sis	
Container / Client Sample ID(s)			Preparation Date	Holdin Rec	g Times Actual	Eval	Analysis Date	Holding Rec	7 Times Actual	Eval
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE dissolved (nitric acid) RG_ERCKDT_WS_LAEMP_EVO_2021-12-15_NP	E421.Cr-L	15-Dec-2021	28-Dec-2021				28-Dec-2021	180 days	13 days	✓
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE dissolved (nitric acid) RG_FBLANK_WS_LAEMP_EVO_2021-12-15_NP	E421.Cr-L	15-Dec-2021	28-Dec-2021				28-Dec-2021	180 days	13 days	✓
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE dissolved (nitric acid) RG_ERCK_WS_LAEMP_EVO_2021-12-14_NP	E421.Cr-L	14-Dec-2021	28-Dec-2021				28-Dec-2021	180 days	14 days	✓
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE dissolved (nitric acid) RG_ERCKUT_WS_LAEMP_EVO_2021-12-14_NP	E421.Cr-L	14-Dec-2021	28-Dec-2021				28-Dec-2021	180 days	14 days	✓
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE dissolved (nitric acid) RG_M13_WS_LAEMP_EVO_2021-12-14_NP	E421.Cr-L	14-Dec-2021	28-Dec-2021				28-Dec-2021	180 days	14 days	✓
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE dissolved (nitric acid) RG_RIVER_WS_LAEMP_EVO_2021-09_NP	E421.Cr-L	14-Dec-2021	28-Dec-2021				28-Dec-2021	180 days	14 days	✓
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE dissolved (nitric acid) RG_TRIP_WS_LAEMP_EVO_2021-12_NP	E421.Cr-L	14-Dec-2021	28-Dec-2021				28-Dec-2021	180 days	14 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid) RG_ERCKDT_WS_LAEMP_EVO_2021-12-15_NP	E509	15-Dec-2021	04-Jan-2022				04-Jan-2022	28 days	20 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid) RG_FBLANK_WS_LAEMP_EVO_2021-12-15_NP	E509	15-Dec-2021	04-Jan-2022				04-Jan-2022	28 days	20 days	✓

Page : 11 of 29 Work Order : CG2106842

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Water						/aluation. * -	Holding time exce	euance, v	– vvitriiri	nolaing till
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation Date	Holdin Rec	g Times Actual	Eval	Analysis Date	Holding Rec	7 Times Actual	Eval
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid) RG_ERCK_WS_LAEMP_EVO_2021-12-14_NP	E509	14-Dec-2021	04-Jan-2022				04-Jan-2022	28 days	21 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid) RG_ERCKUT_WS_LAEMP_EVO_2021-12-14_NP	E509	14-Dec-2021	04-Jan-2022				04-Jan-2022	28 days	21 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid) RG_M13_WS_LAEMP_EVO_2021-12-14_NP	E509	14-Dec-2021	04-Jan-2022				04-Jan-2022	28 days	21 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid) RG_RIVER_WS_LAEMP_EVO_2021-09_NP	E509	14-Dec-2021	04-Jan-2022				04-Jan-2022	28 days	21 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid) RG_TRIP_WS_LAEMP_EVO_2021-12_NP	E509	14-Dec-2021	04-Jan-2022				04-Jan-2022	28 days	21 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid) RG_ERCKDT_WS_LAEMP_EVO_2021-12-15_NP	E421	15-Dec-2021	28-Dec-2021				28-Dec-2021	180 days	13 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid) RG_FBLANK_WS_LAEMP_EVO_2021-12-15_NP	E421	15-Dec-2021	28-Dec-2021				28-Dec-2021	180 days	13 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid) RG_ERCK_WS_LAEMP_EVO_2021-12-14_NP	E421	14-Dec-2021	28-Dec-2021				28-Dec-2021	180 days	14 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid) RG_ERCKUT_WS_LAEMP_EVO_2021-12-14_NP	E421	14-Dec-2021	28-Dec-2021				28-Dec-2021	180 days	14 days	✓

Page : 12 of 29 Work Order : CG2106842

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: water						aldation. • -	noiding time exce	cuarioc ,	- vvicinii	riolaling rill
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
RG_M13_WS_LAEMP_EVO_2021-12-14_NP	E421	14-Dec-2021	28-Dec-2021				28-Dec-2021	180	14 days	✓
								days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
RG_RIVER_WS_LAEMP_EVO_2021-09_NP	E421	14-Dec-2021	28-Dec-2021				28-Dec-2021	180	14 days	✓
								days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
RG_TRIP_WS_LAEMP_EVO_2021-12_NP	E421	14-Dec-2021	28-Dec-2021				28-Dec-2021	180	14 days	✓
								days		
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Le	evel)									
Amber glass dissolved (sulfuric acid)										
RG_ERCKDT_WS_LAEMP_EVO_2021-12-15_NP	E358-L	15-Dec-2021	16-Dec-2021				18-Dec-2021	28 days	3 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Le	evel)									
Amber glass dissolved (sulfuric acid)										
RG_FBLANK_WS_LAEMP_EVO_2021-12-15_NP	E358-L	15-Dec-2021	16-Dec-2021				18-Dec-2021	28 days	3 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Le	evel)									
Amber glass dissolved (sulfuric acid)										
RG_ERCK_WS_LAEMP_EVO_2021-12-14_NP	E358-L	14-Dec-2021	16-Dec-2021				18-Dec-2021	28 days	4 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Le	evel)									
Amber glass dissolved (sulfuric acid)										
RG_ERCKUT_WS_LAEMP_EVO_2021-12-14_NP	E358-L	14-Dec-2021	16-Dec-2021				18-Dec-2021	28 days	4 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Le	evel)									
Amber glass dissolved (sulfuric acid)										
RG_M13_WS_LAEMP_EVO_2021-12-14_NP	E358-L	14-Dec-2021	16-Dec-2021				18-Dec-2021	28 days	4 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Le	evel)									
Amber glass dissolved (sulfuric acid)										
RG_RIVER_WS_LAEMP_EVO_2021-09_NP	E358-L	14-Dec-2021	16-Dec-2021				18-Dec-2021	28 days	4 days	✓

Page : 13 of 29 Work Order : CG2106842

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analyte Group	Method	Sampling Date	Ext	traction / Pr	reparation		Analysis					
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval		
			Date	Rec	Actual			Rec	Actual			
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Lev	vel)											
Amber glass dissolved (sulfuric acid)												
RG_TRIP_WS_LAEMP_EVO_2021-12_NP	E358-L	14-Dec-2021	16-Dec-2021				18-Dec-2021	28 days	4 days	✓		
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combust	ion (Low Level)											
Amber glass total (sulfuric acid)												
RG_ERCKDT_WS_LAEMP_EVO_2021-12-15_NP	E355-L	15-Dec-2021	16-Dec-2021				18-Dec-2021	28 days	3 days	✓		
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combust	ion (Low Level)								1			
Amber glass total (sulfuric acid)												
RG_FBLANK_WS_LAEMP_EVO_2021-12-15_NP	E355-L	15-Dec-2021	16-Dec-2021				18-Dec-2021	28 days	3 days	✓		
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combust	ion (Low Level)											
Amber glass total (sulfuric acid)												
RG_ERCK_WS_LAEMP_EVO_2021-12-14_NP	E355-L	14-Dec-2021	16-Dec-2021				18-Dec-2021	28 days	4 days	✓		
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combust	ion (Low Level)											
Amber glass total (sulfuric acid)												
RG_ERCKUT_WS_LAEMP_EVO_2021-12-14_NP	E355-L	14-Dec-2021	16-Dec-2021				18-Dec-2021	28 days	4 days	✓		
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combust	ion (Low Level)											
Amber glass total (sulfuric acid)												
RG_M13_WS_LAEMP_EVO_2021-12-14_NP	E355-L	14-Dec-2021	16-Dec-2021				18-Dec-2021	28 days	4 days	✓		
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combust	ion (Low Level)											
Amber glass total (sulfuric acid)												
RG_RIVER_WS_LAEMP_EVO_2021-09_NP	E355-L	14-Dec-2021	16-Dec-2021				18-Dec-2021	28 days	4 days	✓		
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combust	ion (Low Level)											
Amber glass total (sulfuric acid)												
RG_TRIP_WS_LAEMP_EVO_2021-12_NP	E355-L	14-Dec-2021	16-Dec-2021				18-Dec-2021	28 days	4 days	✓		
Physical Tests : Acidity by Titration												
HDPE												
RG_ERCKDT_WS_LAEMP_EVO_2021-12-15_NP	E283	15-Dec-2021					16-Dec-2021	14 days		✓		

Page : 14 of 29 Work Order : CG2106842

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

wattix: water						uluulloii.	noiding time exce	oddiioo ,	- vviciniii	riolaling rill		
Analyte Group	Method	Sampling Date	Ext	raction / Pr	reparation		Analysis					
Container / Client Sample ID(s)			Preparation	Preparation Holding Tim		Eval	Analysis Date	Holding	Times	Eval		
			Date	Rec	Actual		-	Rec	Actual			
Physical Tests : Acidity by Titration												
HDPE												
RG_FBLANK_WS_LAEMP_EVO_2021-12-15_NP	E283	15-Dec-2021					16-Dec-2021	14 days	1 days	✓		
Physical Tests : Acidity by Titration												
HDPE												
RG ERCK WS LAEMP EVO 2021-12-14 NP	E283	14-Dec-2021					16-Dec-2021	14 days	2 days	✓		
								_	-			
Physical Tests : Acidity by Titration												
HDPE												
RG_ERCKUT_WS_LAEMP_EVO_2021-12-14_NP	E283	14-Dec-2021					16-Dec-2021	14 days	2 days	✓		
Physical Tests : Acidity by Titration							<u> </u>					
HDPE												
RG M13 WS LAEMP EVO 2021-12-14 NP	E283	14-Dec-2021					16-Dec-2021	14 days	2 days	1		
110_W10_W0_E11EWII _EV0_2021=12=14_IV	2200	11 200 2021					10 200 2021	11 days	2 days	•		
Physical Tests : Acidity by Titration HDPE							I					
	E283	14-Dec-2021					16-Dec-2021	14 days	2 daya	√		
RG_RIVER_WS_LAEMP_EVO_2021-09_NP	E203	14-Dec-2021					16-Dec-2021	14 days	2 days	•		
Physical Tests : Acidity by Titration				I				1				
HDPE	F202	44 D 0004					40 D 0004	44	0 4	,		
RG_TRIP_WS_LAEMP_EVO_2021-12_NP	E283	14-Dec-2021					16-Dec-2021	14 days	2 days	✓		
Physical Tests : Alkalinity Species by Titration												
HDPE												
RG_ERCKDT_WS_LAEMP_EVO_2021-12-15_NP	E290	15-Dec-2021					20-Dec-2021	14 days	5 days	✓		
Physical Tests : Alkalinity Species by Titration												
HDPE												
RG_FBLANK_WS_LAEMP_EVO_2021-12-15_NP	E290	15-Dec-2021					20-Dec-2021	14 days	5 days	✓		
Physical Tests : Alkalinity Species by Titration												
HDPE												
RG_ERCK_WS_LAEMP_EVO_2021-12-14_NP	E290	14-Dec-2021					20-Dec-2021	14 days	6 days	✓		
_									-			

Page : 15 of 29 Work Order : CG2106842

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

			_							Holding Till	
Analyte Group	Method	Sampling Date	Ex	traction / Pr	eparation		Analysis				
Container / Client Sample ID(s)			Preparation		g Times	Eval	Analysis Date			Eval	
			Date	Rec	Actual			Rec	Actual		
Physical Tests : Alkalinity Species by Titration											
HDPE											
RG_ERCKUT_WS_LAEMP_EVO_2021-12-14_NP	E290	14-Dec-2021					20-Dec-2021	14 days	6 days	✓	
Physical Tests : Alkalinity Species by Titration											
HDPE								<u> </u>			
RG M13 WS LAEMP EVO 2021-12-14 NP	E290	14-Dec-2021					20-Dec-2021	14 days	6 days	1	
NO_W10_W0_E/\E\WI _E VO_2021=12=14_\WI							20 200 2021	11 days	o dayo		
Physical Tests : Alkalinity Species by Titration											
HDPE								l		,	
RG_RIVER_WS_LAEMP_EVO_2021-09_NP	E290	14-Dec-2021					20-Dec-2021	14 days	6 days	✓	
Physical Tests : Alkalinity Species by Titration											
HDPE											
RG_TRIP_WS_LAEMP_EVO_2021-12_NP	E290	14-Dec-2021					20-Dec-2021	14 days	6 days	✓	
Physical Tests : Conductivity in Water											
HDPE											
RG ERCKDT WS LAEMP EVO 2021-12-15 NP	E100	15-Dec-2021					20-Dec-2021	28 days	5 days	✓	
NG_ENCROT_WG_EAEMIF_EVG_2021-12-13_NF	2100	10-000-2021					20-Dec-2021	20 days	5 days	•	
Physical Tests : Conductivity in Water											
HDPE											
RG_FBLANK_WS_LAEMP_EVO_2021-12-15_NP	E100	15-Dec-2021					20-Dec-2021	28 days	5 days	✓	
Physical Tests : Conductivity in Water											
HDPE											
RG_ERCK_WS_LAEMP_EVO_2021-12-14_NP	E100	14-Dec-2021					20-Dec-2021	28 days	6 days	✓	
Physical Tests : Conductivity in Water											
•				I			I	I			
HDPE	E100	14-Dec-2021					20-Dec-2021	28 days	6 days	√	
RG_ERCKUT_WS_LAEMP_EVO_2021-12-14_NP	E100	14-060-2021					20-066-2021	20 uays	o uays	•	
Physical Tests : Conductivity in Water											
HDPE											
RG_M13_WS_LAEMP_EVO_2021-12-14_NP	E100	14-Dec-2021					20-Dec-2021	28 days	6 days	✓	

Page : 16 of 29 Work Order : CG2106842

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analyte Group	Method	Sampling Date	Ex	traction / Pr	Tiolding time exec	Analysis				
Container / Client Sample ID(s)	Mound	Gamping Bato	Preparation Holding Times			Eval	Analysis Date	Holding	Eval	
,			Date	Rec	Actual		7 many one 2 die	Rec	Actual	
Physical Tests : Conductivity in Water										
HDPE RG_RIVER_WS_LAEMP_EVO_2021-09_NP	E100	14-Dec-2021					20-Dec-2021	28 days	6 days	✓
Physical Tests : Conductivity in Water										
HDPE RG_TRIP_WS_LAEMP_EVO_2021-12_NP	E100	14-Dec-2021					20-Dec-2021	28 days	6 days	✓
Physical Tests : ORP by Electrode										
HDPE RG_FBLANK_WS_LAEMP_EVO_2021-12-15_NP	E125	15-Dec-2021					22-Dec-2021	0.25 hrs	163 hrs	≭ EHTR-FM
Physical Tests : ORP by Electrode										
HDPE RG_ERCKDT_WS_LAEMP_EVO_2021-12-15_NP	E125	15-Dec-2021					22-Dec-2021	0.25 hrs	167 hrs	≭ EHTR-FM
Physical Tests : ORP by Electrode										
HDPE RG_M13_WS_LAEMP_EVO_2021-12-14_NP	E125	14-Dec-2021					22-Dec-2021	0.25 hrs	187 hrs	* EHTR-FM
Physical Tests : ORP by Electrode										
HDPE RG_ERCKUT_WS_LAEMP_EVO_2021-12-14_NP	E125	14-Dec-2021					22-Dec-2021	0.25 hrs	189 hrs	* EHTR-FM
Physical Tests : ORP by Electrode										
HDPE RG_RIVER_WS_LAEMP_EVO_2021-09_NP	E125	14-Dec-2021					22-Dec-2021	0.25 hrs	189 hrs	* EHTR-FM
Physical Tests : ORP by Electrode										
HDPE RG_TRIP_WS_LAEMP_EVO_2021-12_NP	E125	14-Dec-2021					22-Dec-2021	0.25 hrs	189 hrs	* EHTR-FM
Physical Tests : ORP by Electrode										
HDPE RG_ERCK_WS_LAEMP_EVO_2021-12-14_NP	E125	14-Dec-2021					22-Dec-2021	0.25 hrs	193 hrs	* EHTR-FM

Page : 17 of 29 Work Order : CG2106842

HDPE

RG_ERCKDT_WS_LAEMP_EVO_2021-12-15_NP

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

21-Dec-2021

7 days 6 days

Analyte Group	Method	Sampling Date	Extraction / Preparation					Analys		
Container / Client Sample ID(s)			Preparation	Holding Times		Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
hysical Tests : pH by Meter										
HDPE RG_FBLANK_WS_LAEMP_EVO_2021-12-15_NP	E108	15-Dec-2021					20-Dec-2021	0.25 hrs	114 hrs	* EHTR-F
hysical Tests : pH by Meter										
HDPE RG_ERCKDT_WS_LAEMP_EVO_2021-12-15_NP	E108	15-Dec-2021					20-Dec-2021	0.25 hrs	118 hrs	* EHTR-F
Physical Tests : pH by Meter										
HDPE RG_M13_WS_LAEMP_EVO_2021-12-14_NP	E108	14-Dec-2021					20-Dec-2021	0.25 hrs	138 hrs	EHTR-F
hysical Tests : pH by Meter										
HDPE RG_ERCKUT_WS_LAEMP_EVO_2021-12-14_NP	E108	14-Dec-2021					20-Dec-2021	0.25 hrs	140 hrs	EHTR-F
hysical Tests : pH by Meter										
HDPE RG_RIVER_WS_LAEMP_EVO_2021-09_NP	E108	14-Dec-2021					20-Dec-2021	0.25 hrs	140 hrs	# EHTR-I
hysical Tests : pH by Meter										
HDPE RG_TRIP_WS_LAEMP_EVO_2021-12_NP	E108	14-Dec-2021					20-Dec-2021	0.25 hrs	140 hrs	# EHTR-I
hysical Tests : pH by Meter										
HDPE RG_ERCK_WS_LAEMP_EVO_2021-12-14_NP	E108	14-Dec-2021					20-Dec-2021	0.25 hrs	144 hrs	# EHTR-
hysical Tests : TDS by Gravimetry										
HDPE RG_ERCK_WS_LAEMP_EVO_2021-12-14_NP	E162	14-Dec-2021					20-Dec-2021	7 days	6 days	✓
nysical Tests : TDS by Gravimetry										
							I			

15-Dec-2021

E162

Page : 18 of 29 Work Order : CG2106842

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

viatrix. VVater					L V	aluation	riolaling time excel	cuarice,	vviti iii	Holding H
Analyte Group	Method	Sampling Date	Ex	traction / Pi	reparation					
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual		1	Rec	Actual	
Physical Tests : TDS by Gravimetry										
HDPE										
RG_ERCKUT_WS_LAEMP_EVO_2021-12-14_NP	E162	14-Dec-2021					20-Dec-2021	7 days	6 days	✓
Physical Tests : TDS by Gravimetry										
HDPE	E162	15-Dec-2021					21-Dec-2021	7 days	6 days	✓
RG_FBLANK_WS_LAEMP_EVO_2021-12-15_NP	E102	15-Dec-2021					21-Dec-2021	7 days	o days	,
Dhysical Tosta - TDC by Custimatur										
Physical Tests : TDS by Gravimetry HDPE							1			
RG M13 WS LAEMP EVO 2021-12-14 NP	E162	14-Dec-2021					20-Dec-2021	7 days	6 days	✓
								_		
Physical Tests : TDS by Gravimetry										
HDPE										
RG_RIVER_WS_LAEMP_EVO_2021-09_NP	E162	14-Dec-2021					20-Dec-2021	7 days	6 days	✓
Physical Tests : TDS by Gravimetry										
HDPE										
RG_TRIP_WS_LAEMP_EVO_2021-12_NP	E162	14-Dec-2021					20-Dec-2021	7 days	6 days	✓
Physical Tests : TSS by Gravimetry (Low Level)				ı				ı	I	
HDPE RG_ERCK_WS_LAEMP_EVO_2021-12-14_NP	E160-L	14-Dec-2021					20-Dec-2021	7 days	6 days	✓
NO_ENON_WO_EALIMI _E VO_2021-12-14_IVI	2100-2	14-000-2021					20-2021	7 days	odays	
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE										
RG_ERCKUT_WS_LAEMP_EVO_2021-12-14_NP	E160-L	14-Dec-2021					20-Dec-2021	7 days	6 days	✓
								_		
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE										
RG_FBLANK_WS_LAEMP_EVO_2021-12-15_NP	E160-L	15-Dec-2021					21-Dec-2021	7 days	6 days	✓
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE		44.5					00 B			
RG_M13_WS_LAEMP_EVO_2021-12-14_NP	E160-L	14-Dec-2021					20-Dec-2021	7 days	6 days	~

Page : 19 of 29 Work Order : CG2106842

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

iviaurix: water						araaro	Holding time excee	oudinoo ,	***************************************			
Analyte Group	Method	Sampling Date	Ext	raction / Pi	reparation		Analysis					
Container / Client Sample ID(s)			Preparation Ho.		g Times	Eval	Analysis Date	Holding	g Times	Eval		
			Date	Rec	Actual			Rec	Actual			
Physical Tests : TSS by Gravimetry (Low Level)												
HDPE												
RG_RIVER_WS_LAEMP_EVO_2021-09_NP	E160-L	14-Dec-2021					20-Dec-2021	7 days	6 days	✓		
Physical Tests : TSS by Gravimetry (Low Level)												
HDPE												
RG TRIP WS LAEMP EVO 2021-12 NP	E160-L	14-Dec-2021					20-Dec-2021	7 days	6 days	✓		
Physical Tests : TSS by Gravimetry (Low Level)												
HDPE												
RG_ERCKDT_WS_LAEMP_EVO_2021-12-15_NP	E160-L	15-Dec-2021					22-Dec-2021	7 days	7 days	✓		
									-			
Physical Tests : Turbidity by Nephelometry												
HDPE												
RG ERCK WS LAEMP EVO 2021-12-14 NP	E121	14-Dec-2021					16-Dec-2021	3 days	2 days	✓		
Physical Tests : Turbidity by Nephelometry												
HDPE												
RG_ERCKDT_WS_LAEMP_EVO_2021-12-15_NP	E121	15-Dec-2021					18-Dec-2021	3 days	3 days	✓		
									,			
Physical Tests : Turbidity by Nephelometry												
HDPE												
RG_ERCKUT_WS_LAEMP_EVO_2021-12-14_NP	E121	14-Dec-2021					17-Dec-2021	3 days	3 days	✓		
									-			
Physical Tests : Turbidity by Nephelometry												
HDPE												
RG_FBLANK_WS_LAEMP_EVO_2021-12-15_NP	E121	15-Dec-2021					18-Dec-2021	3 days	3 days	✓		
									,			
Physical Tests : Turbidity by Nephelometry												
HDPE												
RG M13 WS LAEMP EVO 2021-12-14 NP	E121	14-Dec-2021					17-Dec-2021	3 days	3 days	✓		
								, ,-	, ,			
Physical Tests : Turbidity by Nephelometry												
HDPE												
RG_RIVER_WS_LAEMP_EVO_2021-09_NP	E121	14-Dec-2021					17-Dec-2021	3 davs	3 days	✓		
·····-·								,,	,-			

Page : 20 of 29 Work Order : CG2106842

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Method	Sampling Date	Ext	traction / Pi	reparation		Analysis				
		Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval	
		Date	Rec	Actual			Rec	Actual		
E121	14-Dec-2021					17-Dec-2021	3 days	3 days	✓	
5400 O I	45.5								,	
E420.Cr-L	15-Dec-2021					23-Dec-2021		8 days	✓	
							days			
			I							
E420 Cr I	15 Dog 2021					22 Dog 2021	400	9 days	√	
E420.01-L	15-Dec-2021					23-Dec-2021		o uays	•	
							uays			
						I				
F420 Cr-I	14-Dec-2021					23-Dec-2021	100	9 days	1	
L+20.01-L	14-000-2021					20-000-2021		5 days	·	
							dayo			
E420.Cr-L	14-Dec-2021					23-Dec-2021	180	9 davs	✓	
								,		
							,			
E420.Cr-L	14-Dec-2021					23-Dec-2021	180	9 days	✓	
							days			
E420.Cr-L	14-Dec-2021					23-Dec-2021	180	9 days	✓	
							days			
E420.Cr-L	14-Dec-2021					23-Dec-2021	180	9 days	✓	
							days			
E508-L	15-Dec-2021					22-Dec-2021	28 days	7 davs	✓	
	E121 E420.Cr-L E420.Cr-L E420.Cr-L E420.Cr-L E420.Cr-L	E121 14-Dec-2021 E420.Cr-L 15-Dec-2021 E420.Cr-L 14-Dec-2021 E420.Cr-L 14-Dec-2021 E420.Cr-L 14-Dec-2021 E420.Cr-L 14-Dec-2021	E121 14-Dec-2021 E420.Cr-L 15-Dec-2021 E420.Cr-L 14-Dec-2021 E420.Cr-L 14-Dec-2021 E420.Cr-L 14-Dec-2021 E420.Cr-L 14-Dec-2021	Preparation Date Holdin Rec Preparation Date Holding Times Rec Actual	Preparation Date Holding Times Rec Actual Preparation Date Holding Times Rec Eval Analysis Date E121 14-Dec-2021 17-Dec-2021 E420.Cr-L 15-Dec-2021 23-Dec-2021 E420.Cr-L 15-Dec-2021 23-Dec-2021 E420.Cr-L 14-Dec-2021 23-Dec-2021	Preparation Holding Times Rec Actual Analysis Date Holding Rec Actual	Preparation Date Rec Actual Eval Analysis Date Holding Times Rec Actual			

 Page
 : 21 of 29

 Work Order
 : CG2106842

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Total Metals: Total Metals in Water by CRC ICPMS

Total Metals: Total Metals in Water by CRC ICPMS

RG ERCK WS LAEMP EVO 2021-12-14 NP

RG FBLANK WS LAEMP EVO 2021-12-15 NP

HDPE total (nitric acid)

HDPE total (nitric acid)

✓

✓

8 days

9 days

180 days

180 days

23-Dec-2021

23-Dec-2021

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Method Sampling Date Extraction / Preparation Analysis Container / Client Sample ID(s) Preparation **Holding Times** Eval Analysis Date Holding Times Eval Actual Rec Actual Date Total Metals: Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt) Pre-cleaned amber glass - total (lab preserved) RG_FBLANK_WS_LAEMP_EVO_2021-12-15_NP E508-L 15-Dec-2021 22-Dec-2021 28 days 7 days ✓ Total Metals: Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt) Pre-cleaned amber glass - total (lab preserved) ✓ RG_ERCK_WS_LAEMP_EVO_2021-12-14_NP E508-L 14-Dec-2021 22-Dec-2021 28 days 8 days ----Total Metals: Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt) Pre-cleaned amber glass - total (lab preserved) E508-L 14-Dec-2021 28 days 8 days ✓ RG ERCKUT WS LAEMP EVO 2021-12-14 NP 22-Dec-2021 Total Metals: Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt) Pre-cleaned amber glass - total (lab preserved) RG M13 WS LAEMP EVO 2021-12-14 NP E508-L 14-Dec-2021 22-Dec-2021 28 days 8 days Total Metals: Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt) Pre-cleaned amber glass - total (lab preserved) RG RIVER WS LAEMP EVO 2021-09 NP E508-L 14-Dec-2021 ✓ 22-Dec-2021 28 days 8 days Total Metals: Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt) Pre-cleaned amber glass - total (lab preserved) E508-L ✓ RG_TRIP_WS_LAEMP_EVO_2021-12_NP 14-Dec-2021 22-Dec-2021 28 days 8 davs Total Metals: Total Metals in Water by CRC ICPMS HDPE total (nitric acid) RG ERCKDT WS LAEMP EVO 2021-12-15 NP E420 15-Dec-2021 23-Dec-2021 ✓ 8 days 180 days

15-Dec-2021

14-Dec-2021

E420

E420

Page : 22 of 29 Work Order : CG2106842

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Water

Evaluation: **x** = Holding time exceedance ; ✓ = Within Holding Time

						araaraar		, ,			
Analyte Group	Method	Sampling Date	Ext	traction / Pr	eparation		Analysis				
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval	
			Date	Rec	Actual			Rec	Actual		
Total Metals : Total Metals in Water by CRC ICPMS											
HDPE total (nitric acid) RG_ERCKUT_WS_LAEMP_EVO_2021-12-14_NP	E420	14-Dec-2021					23-Dec-2021	180 days	9 days	✓	
Total Metals : Total Metals in Water by CRC ICPMS											
HDPE total (nitric acid) RG_M13_WS_LAEMP_EVO_2021-12-14_NP	E420	14-Dec-2021					23-Dec-2021	180 days	9 days	✓	
Total Metals : Total Metals in Water by CRC ICPMS											
HDPE total (nitric acid) RG_RIVER_WS_LAEMP_EVO_2021-09_NP	E420	14-Dec-2021					23-Dec-2021	180 days	9 days	✓	
Fotal Metals : Total Metals in Water by CRC ICPMS											
HDPE total (nitric acid) RG_TRIP_WS_LAEMP_EVO_2021-12_NP	E420	14-Dec-2021					23-Dec-2021	180 days	9 days	✓	

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended Rec. HT: ALS recommended hold time (see units).

Page : 23 of 29 Work Order : CG2106842

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Quality Control Sample Type			C	ount		Frequency (%)	<i>S)</i>
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Acidity by Titration	E283	369891	1	20	5.0	5.0	1
Alkalinity Species by Titration	E290	372517	2	29	6.9	5.0	✓
Ammonia by Fluorescence	E298	369894	1	20	5.0	5.0	1
Bromide in Water by IC (Low Level)	E235.Br-L	369689	2	31	6.4	5.0	1
Chloride in Water by IC (Low Level)	E235.CI-L	369688	2	31	6.4	5.0	1
Conductivity in Water	E100	372518	2	30	6.6	5.0	1
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	377071	1	20	5.0	5.0	1
Dissolved Mercury in Water by CVAAS	E509	380334	1	16	6.2	5.0	1
Dissolved Metals in Water by CRC ICPMS	E421	377072	1	20	5.0	5.0	1
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	369738	1	7	14.2	5.0	1
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	369930	1	20	5.0	5.0	1
Fluoride in Water by IC	E235.F	369691	2	31	6.4	5.0	1
Nitrate in Water by IC (Low Level)	E235.NO3-L	369687	2	31	6.4	5.0	1
Nitrite in Water by IC (Low Level)	E235.NO2-L	369686	2	31	6.4	5.0	1
ORP by Electrode	E125	373563	1	20	5.0	5.0	1
pH by Meter	E108	372516	2	40	5.0	5.0	1
Sulfate in Water by IC	E235.SO4	369690	2	31	6.4	5.0	1
TDS by Gravimetry	E162	371909	4	70	5.7	5.0	1
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	374584	1	19	5.2	5.0	1
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	375528	1	9	11.1	5.0	1
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	374977	1	20	5.0	5.0	<u>√</u>
Total Metals in Water by CRC ICPMS	E420	374583	1	19	5.2	5.0	1
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	369739	1	7	14.2	5.0	1
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	369765	1	20	5.0	5.0	1
Turbidity by Nephelometry	E121	369726	4	65	6.1	5.0	1
Laboratory Control Samples (LCS)							
Acidity by Titration	E283	369891	1	20	5.0	5.0	1
Alkalinity Species by Titration	E290	372517	2	29	6.9	5.0	1
Ammonia by Fluorescence	E298	369894	1	20	5.0	5.0	<u> </u>
Bromide in Water by IC (Low Level)	E235.Br-L	369689	2	31	6.4	5.0	1
Chloride in Water by IC (Low Level)	E235.CI-L	369688	2	31	6.4	5.0	<u> </u>
Conductivity in Water	E100	372518	2	30	6.6	5.0	√
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	377071	1	20	5.0	5.0	<u> </u>
Dissolved Mercury in Water by CVAAS	E509	380334	1	16	6.2	5.0	√
Dissolved Metals in Water by CRC ICPMS	E421	377072	1	20	5.0	5.0	√
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	369738	1	7	14.2	5.0	<u> </u>
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	369930	1	20	5.0	5.0	√

Page : 24 of 29 : CG2106842 Work Order

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Water		Evaluati	on: × = QC freau	encv outside spe	ecification: ✓ =	QC frequency wit	hin specificatio
Quality Control Sample Type				ount		Frequency (%)	<u> </u>
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Control Samples (LCS) - Continued							
Fluoride in Water by IC	E235.F	369691	2	31	6.4	5.0	1
Nitrate in Water by IC (Low Level)	E235.NO3-L	369687	2	31	6.4	5.0	
Nitrite in Water by IC (Low Level)	E235.NO2-L	369686	2	31	6.4	5.0	
ORP by Electrode	E125	373563	1	20	5.0	5.0	
pH by Meter	E108	372516	2	40	5.0	5.0	
Sulfate in Water by IC	E235.SO4	369690	2	31	6.4	5.0	
TDS by Gravimetry	E162	371909	4	70	5.7	5.0	√
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	374584	1	19	5.2	5.0	
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	375528	1	9	11.1	5.0	<u> </u>
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	374977	1	20	5.0	5.0	
Total Metals in Water by CRC ICPMS	E420	374583	1	19	5.2	5.0	<u> </u>
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	369739	1	7	14.2	5.0	<u>√</u>
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	369765	1	20	5.0	5.0	
TSS by Gravimetry (Low Level)	E160-L	371907	4	76	5.2	5.0	<u> </u>
Turbidity by Nephelometry	E121	369726	4	65	6.1	5.0	
Method Blanks (MB)							_
Acidity by Titration	E283	369891	1	20	5.0	5.0	1
Alkalinity Species by Titration	E290	372517	2	29	6.9	5.0	
Ammonia by Fluorescence	E298	369894	1	20	5.0	5.0	
Bromide in Water by IC (Low Level)	E235.Br-L	369689	2	31	6.4	5.0	
Chloride in Water by IC (Low Level)	E235.CI-L	369688	2	31	6.4	5.0	
Conductivity in Water	E100	372518	2	30	6.6	5.0	
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	377071	1	20	5.0	5.0	
Dissolved Mercury in Water by CVAAS	E509	380334	1	16	6.2	5.0	
Dissolved Metals in Water by CRC ICPMS	E421	377072	1	20	5.0	5.0	
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	369738	1	7	14.2	5.0	<u> </u>
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	369930	1	20	5.0	5.0	<u>√</u>
Fluoride in Water by IC	E235.F	369691	2	31	6.4	5.0	√
Nitrate in Water by IC (Low Level)	E235.NO3-L	369687	2	31	6.4	5.0	<u> </u>
Nitrite in Water by IC (Low Level)	E235.NO2-L	369686	2	31	6.4	5.0	<u>√</u>
Sulfate in Water by IC	E235.SO4	369690	2	31	6.4	5.0	√
TDS by Gravimetry	E162	371909	4	70	5.7	5.0	√
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	374584	1	19	5.2	5.0	√
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	375528	1	9	11.1	5.0	<u>√</u>
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	374977	1	20	5.0	5.0	√
Total Metals in Water by CRC ICPMS	E420	374583	1	19	5.2	5.0	<u>√</u>
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	369739	1	7	14.2	5.0	<u> </u>
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	369765	1	20	5.0	5.0	<u>√</u>
TSS by Gravimetry (Low Level)	E160-L	371907	4	76	5.2	5.0	<u>√</u>
Turbidity by Nephelometry	E121	369726	4	65	6.1	5.0	

Page : 25 of 29 Work Order : CG2106842

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: **Water**Evaluation: **×** = *QC frequency outside specification*; ✓ = *QC frequency within specification*.

				orres carerae eps	· · · · · · · · · · · · · · · · · · ·	Q o modulomoj milimi oposimo		
Quality Control Sample Type			Co	ount	Frequency (%)			
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation	
Matrix Spikes (MS)								
Ammonia by Fluorescence	E298	369894	1	20	5.0	5.0	✓	
Bromide in Water by IC (Low Level)	E235.Br-L	369689	2	31	6.4	5.0	✓	
Chloride in Water by IC (Low Level)	E235.CI-L	369688	2	31	6.4	5.0	✓	
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	377071	1	20	5.0	5.0	✓	
Dissolved Mercury in Water by CVAAS	E509	380334	1	16	6.2	5.0	✓	
Dissolved Metals in Water by CRC ICPMS	E421	377072	1	20	5.0	5.0	✓	
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	369738	1	7	14.2	5.0	✓	
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	369930	1	20	5.0	5.0	✓	
Fluoride in Water by IC	E235.F	369691	2	31	6.4	5.0	✓	
Nitrate in Water by IC (Low Level)	E235.NO3-L	369687	2	31	6.4	5.0	✓	
Nitrite in Water by IC (Low Level)	E235.NO2-L	369686	2	31	6.4	5.0	✓	
Sulfate in Water by IC	E235.SO4	369690	2	31	6.4	5.0	✓	
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	374584	1	19	5.2	5.0	✓	
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	375528	1	9	11.1	5.0	✓	
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	374977	1	20	5.0	5.0	✓	
Total Metals in Water by CRC ICPMS	E420	374583	1	19	5.2	5.0	✓	
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	369739	1	7	14.2	5.0	✓	
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	369765	1	20	5.0	5.0	✓	
					-			

Page : 26 of 29 Work Order : CG2106842

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water
	Calgary - Environmental			sample. Conductivity measurements are temperature-compensated to 25°C.
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted
	Calgary - Environmental			at ambient laboratory temperature (normally 20 ± 5°C). For high accuracy test results,
Trushidika bu Nombolomotan	0 ,	10/-4	ADIIA 0400 D (pH should be measured in the field within the recommended 15 minute hold time.
Turbidity by Nephelometry	E121	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light scatter under defined conditions.
	Calgary - Environmental			Scatter under defined conditions.
ORP by Electrode	E125	Water	ASTM D1498 (mod)	Oxidation redution potential is reported as the oxidation-reduction potential of the
				platinum metal-reference electrode employed, measured in mV. For high accuracy test
	Calgary - Environmental			results, it is recommended that this analysis be conducted in the field.
TSS by Gravimetry (Low Level)	E160-L	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre
	Calmania Fassinananantal			filter, following by drying of the filter at $104 \pm 1^{\circ}$ C, with gravimetric measurement of the
	Calgary - Environmental			filtered solids. Samples containing very high dissolved solid content (i.e. seawaters,
				brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.
TDS by Gravimetry	E162	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre
, ,	2.02		,	filter, with evaporation of the filtrate at 180 ± 2°C for 16 hours or to constant weight,
	Calgary - Environmental			with gravimetric measurement of the residue.
Bromide in Water by IC (Low Level)	E235.Br-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
	0.1			detection.
Chlorida in Water by IC (Levy Leval)	Calgary - Environmental	Water	EDA 200 1 (mod)	
Chloride in Water by IC (Low Level)	E235.CI-L	water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Calgary - Environmental			detection.
Fluoride in Water by IC	E235.F	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
				detection.
	Calgary - Environmental			
Nitrite in Water by IC (Low Level)	E235.NO2-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
	Calgary - Environmental			detection.
Nitrate in Water by IC (Low Level)	E235.NO3-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
in water by to (Low Level)	E235.NO3-L	vvator	Li A 300.1 (mod)	detection.
	Calgary - Environmental			
Sulfate in Water by IC	E235.SO4	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
				detection.
A 1 19 A 20 A 20	Calgary - Environmental	147 :	A DULA 0045 T ("	
Acidity by Titration	E283	Water	APHA 2310 B (mod)	Acidity is determined by potentiometric titration to pH 8.3
	Calgary - Environmental			
	Calgary - Environmental			

Page : 27 of 29 Work Order : CG2106842

Client : Teck Coal Limited

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Alkalinity Species by Titration	E290 Calgary - Environmental	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.
Ammonia by Fluorescence	E298 Calgary - Environmental	Water	J. Environ. Monit., 2005, 7, 37-42 (mod)	Ammonia in water is analyzed by flow-injection analysis with fluorescence detection after reaction with orthophthaldialdehyde (OPA).
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318 Vancouver - Environmental	Water	APHA 4500-Norg D (mod)	Total Kjeldahl Nitrogen is determined using block digestion followed by flow-injection analysis with fluorescence detection.
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L Calgary - Environmental	Water	APHA 5310 B (mod)	Total Organic Carbon (Non-Purgeable), also known as NPOC (total), is a direct measurement of TOC after an acidified sample has been purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of total carbon (TC) is comprised of IC (which is common), this method is more accurate and more reliable than the TOC by subtraction method (i.e. TC minus TIC).
Dissolved Organic Carbon by Combustion (Low Level)	E358-L Calgary - Environmental	Water	APHA 5310 B (mod)	Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of DC (dissolved carbon) is comprised of IC (which is common), this method is more accurate and more reliable than the DOC by subtraction method (i.e. DC minus DIC).
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U Calgary - Environmental	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U Calgary - Environmental	Water	APHA 4500-P F (mod)	Dissolved Orthophosphate is determined colourimetrically on a flow analyzer on a sample that has been lab or field filtered through a 0.45 micron membrane filter. Field filtration is recommended to ensure test results represent conditions at time of sampling.
Total Metals in Water by CRC ICPMS	E420 Vancouver - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L Vancouver - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS.
Dissolved Metals in Water by CRC ICPMS	E421 Vancouver - Environmental	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

Page : 28 of 29 Work Order : CG2106842

Client : Teck Coal Limited

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L Vancouver - Environmental	Water	APHA 3030 B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L Vancouver - Environmental	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAFS.
Dissolved Mercury in Water by CVAAS	E509 Vancouver - Environmental	Water	APHA 3030B/EPA 1631E (mod)	Water samples are filtered (0.45 um), preserved with HCl, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.
Dissolved Hardness (Calculated)	EC100 Vancouver - Environmental	Water	APHA 2340B	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations.
Ion Balance using Dissolved Metals	EC101 Calgary - Environmental	Water	APHA 1030E	Cation Sum, Anion Sum, and Ion Balance are calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis). Dissolved species are used where available. Minor ions are included where data is present. Ion Balance cannot be calculated accurately for waters with very low electrical conductivity (EC).
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298 Calgary - Environmental	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
Digestion for TKN in water	EP318 Vancouver - Environmental	Water	APHA 4500-Norg D (mod)	Samples are digested using block digestion with Copper Sulfate Digestion Reagent.
Preparation for Total Organic Carbon by Combustion	EP355 Calgary - Environmental	Water		Preparation for Total Organic Carbon by Combustion
Preparation for Dissolved Organic Carbon for Combustion	EP358 Calgary - Environmental	Water	APHA 5310 B (mod)	Preparation for Dissolved Organic Carbon
Digestion for Total Phosphorus in water	EP372 Calgary - Environmental	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
Dissolved Metals Water Filtration	EP421 Vancouver - Environmental	Water	АРНА 3030В	Water samples are filtered (0.45 um), and preserved with HNO3.

Page : 29 of 29 Work Order : CG2106842

Client : Teck Coal Limited

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Mercury Water Filtration	EP509	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HCl.
	Vancouver -			
	Environmental			

QUALITY CONTROL REPORT

: 1 of 21

Work Order Page CG2106842

Client : Teck Coal Limited Laboratory : Calgary - Environmental Contact **Account Manager** : Lyudmyla Shvets : Allie Ferguson

> Address :421 Pine Avenue : 2559 29th Street NE

Sparwood BC Canada Calgary, Alberta Canada T1Y 7B5 Telephone :+1 403 407 1800

Laboratory Department

Project : REGIONAL EFFECTS PROGRAM **Date Samples Received** : 16-Dec-2021 09:00

PO **Date Analysis Commenced** : 16-Dec-2021 : VPO00748510

C-O-C number :05-Jan-2022 11:33 : DECEMBER EVP LAEMP 2021 Issue Date

Sampler : AMC

Site Quote number : Teck Coal Master Quote

No. of samples received : 7 No. of samples analysed : 7

Position

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

Matrix Spike (MS) Report; Recovery and Acceptance Limits

:----

- Reference Material (RM) Report; Recovery and Acceptance Limits
- Method Blank (MB) Report; Recovery and Acceptance Limits
- Laboratory Control Sample (LCS) Report; Recovery and Acceptance Limits

Signatories

Signatories

Address

Telephone

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Anthony Calero	Team Leader - Inorganics	Inorganics, Calgary, Alberta	
Caleb Deroche	Lab Analyst	Metals, Burnaby, British Columbia	
Dan Gebert	Laboratory Analyst	Metals, Burnaby, British Columbia	
Dee Lee	Analyst	Metals, Burnaby, British Columbia	
Elke Tabora		Inorganics, Calgary, Alberta	
Erin Sanchez		Inorganics, Calgary, Alberta	
Hannah Phung	Lab Assistant	Inorganics, Calgary, Alberta	
Harpreet Chawla	Team Leader - Inorganics	Inorganics, Calgary, Alberta	
Ilnaz Badbezanchi	Team Leader - Metals preparation	Metals, Burnaby, British Columbia	
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia	
Maria Tuguinay	Lab Assistant	Inorganics, Calgary, Alberta	
Miles Gropen	Department Manager - Inorganics	Inorganics, Burnaby, British Columbia	
Parker Sgarbossa	Laboratory Analyst	Inorganics, Calgary, Alberta	
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta	
Russell Zhang		Metals, Burnaby, British Columbia	

Sara Niroomand Saron Kim Vladka Stamenova

Analyst Analyst Inorganics, Calgary, Alberta Metals, Burnaby, British Columbia Inorganics, Calgary, Alberta

 Page
 : 3 of 21

 Work Order
 : CG2106842

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percentage Difference

= Indicates a QC result that did not meet the ALS DQO.

 Page
 : 4 of 21

 Work Order
 : CG2106842

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test specific).

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC	C Lot: 369726)										
CG2106788-001	Anonymous	turbidity		E121	0.10	NTU	0.40	0.38	0.02	Diff <2x LOR	
Physical Tests (QC	C Lot: 369891)										
CG2106834-027	Anonymous	acidity (as CaCO3)		E283	10.0	mg/L	16.5	14.1	2.4	Diff <2x LOR	
Physical Tests (QC	C Lot: 370735)										
CG2106761-002	Anonymous	turbidity		E121	0.10	NTU	26.8	26.4	1.50%	15%	
Physical Tests (QC	C Lot: 371437)										
CG2106831-001	Anonymous	turbidity		E121	0.10	NTU	<0.10	<0.10	0	Diff <2x LOR	
Physical Tests (QC	C Lot: 371557)										
CG2106834-017	Anonymous	turbidity		E121	0.10	NTU	7.32	7.36	0.490%	15%	
Physical Tests (QC	C Lot: 371909)										
CG2106794-011	Anonymous	solids, total dissolved [TDS]		E162	20	mg/L	332	329	0.756%	20%	
Physical Tests (QC	Lot: 372482)										
CG2106761-001	Anonymous	solids, total dissolved [TDS]		E162	20	mg/L	474	470	0.742%	20%	
Physical Tests (QC	L at: 272502)					-					
CG2106834-030	Anonymous	solids, total dissolved [TDS]		E162	40	mg/L	2450	2470	0.814%	20%	
Physical Tests (QC	L et: 272546)										
CG2106834-018	Anonymous	pH		E108	0.10	pH units	8.03	8.05	0.249%	4%	
	·	P				F					
Physical Tests (QC CG2106834-027	Anonymous	alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	483	484	0.103%	20%	
002100004-027	Anonymous	alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0.10070	Diff <2x LOR	
		alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	483	484	0.103%	20%	
		arkallility, total (as CaCO3)		L290	1.0	IIIg/L	403	404	0.10370	2070	
Physical Tests (QC CG2106834-027	<u>'</u>			E400	0.0	0/	4000	4000	0.4040/	400/	
	Anonymous	conductivity		E100	2.0	μS/cm	1880	1890	0.424%	10%	
Physical Tests (QC				E.00			4070	4=00	4 0004	2001	
CG2106834-016	Anonymous	solids, total dissolved [TDS]		E162	20	mg/L	1670	1700	1.60%	20%	
Physical Tests (QC											
CG2106842-004	RG_ERCKUT_WS_LAEMP _EVO_2021-12-14_NP	conductivity		E100	2.0	μS/cm	1960	1970	0.204%	10%	
Physical Tests (QC											
CG2106842-004	RG_ERCKUT_WS_LAEMP _EVO_2021-12-14_NP	рН		E108	0.10	pH units	7.76	7.77	0.129%	4%	

 Page
 : 5 of 21

 Work Order
 : CG2106842

 Client
 : Teck Coal Limited

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC	Lot: 372530)										
CG2106842-004	RG_ERCKUT_WS_LAEMP _EVO_2021-12-14_NP	alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	484	478	1.18%	20%	
		alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, total (as CaCO3)		E290	1.0	mg/L	484	478	1.18%	20%	
Physical Tests (QC	Lot: 373563)										
CG2106834-027	Anonymous	oxidation-reduction potential [ORP]		E125	0.10	mV	416	416	0.0721%	15%	
Anions and Nutrien	ts (QC Lot: 369686)										
CG2106837-030	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.0050	mg/L	0.0237	0.0238	0.0001	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 369687)										
CG2106837-030	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	0.0250	mg/L	3.38	3.38	0.0414%	20%	
Anions and Nutrient	ts (QC Lot: 369688)										
CG2106837-030	Anonymous	chloride	16887-00-6	E235.CI-L	0.50	mg/L	8.08	8.03	0.620%	20%	
Anions and Nutrient	ts (QC Lot: 369689)										
CG2106837-030	Anonymous	bromide	24959-67-9	E235.Br-L	0.250	mg/L	<0.250	<0.250	0	Diff <2x LOR	
Anions and Nutrient	ts (QC Lot: 369690)										
CG2106837-030	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	1.50	mg/L	819	816	0.463%	20%	
Anions and Nutrient	ts (QC Lot: 369691)										
CG2106837-030	Anonymous	fluoride	16984-48-8	E235.F	0.100	mg/L	0.250	0.240	0.010	Diff <2x LOR	
Anions and Nutrient	ts (QC Lot: 369765)										
CG2106834-022	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0079	0.0072	0.0006	Diff <2x LOR	
Anions and Nutrient	ts (QC Lot: 369894)										
CG2106834-027	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0711	0.0722	1.54%	20%	
Anions and Nutrien	ts (QC Lot: 369930)										
CG2106840-002	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	0.0012	0.0013	0.00008	Diff <2x LOR	
Anions and Nutrient	ts (QC Lot: 371400)										
CG2106842-006	RG_ERCKDT_WS_LAEMP _EVO_2021-12-15_NP	bromide	24959-67-9	E235.Br-L	0.250	mg/L	<0.250	<0.250	0	Diff <2x LOR	
Anions and Nutrient	ts (QC Lot: 371401)										
CG2106842-006	RG_ERCKDT_WS_LAEMP _EVO_2021-12-15_NP	chloride	16887-00-6	E235.CI-L	0.50	mg/L	6.57	6.56	0.0746%	20%	
Anions and Nutrient	ts (QC Lot: 371402)										
CG2106842-006	RG_ERCKDT_WS_LAEMP _EVO_2021-12-15_NP	nitrate (as N)	14797-55-8	E235.NO3-L	0.0250	mg/L	18.3	17.6	4.33%	20%	
Anions and Nutrient	ts (QC Lot: 371403)										
CG2106842-006	RG_ERCKDT_WS_LAEMP _EVO_2021-12-15_NP	fluoride	16984-48-8	E235.F	0.100	mg/L	0.119	0.120	0.001	Diff <2x LOR	
Anions and Nutrient									<u> </u>		

 Page
 : 6 of 21

 Work Order
 : CG2106842

 Client
 : Teck Coal Limited

Sub-Matrix: Water								Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie				
Anions and Nutrien	ts (QC Lot: 371404) - co	ontinued													
CG2106842-006	RG_ERCKDT_WS_LAEMP _EVO_2021-12-15_NP	sulfate (as SO4)	14808-79-8	E235.SO4	1.50	mg/L	788	806	2.21%	20%					
Anions and Nutrien	ts (QC Lot: 371405)														
CG2106842-006	RG_ERCKDT_WS_LAEMP _EVO_2021-12-15_NP	nitrite (as N)	14797-65-0	E235.NO2-L	0.0050	mg/L	<0.0050	<0.0050	0	Diff <2x LOR					
Anions and Nutrien	ts (QC Lot: 375528)														
CG2106842-001	RG_M13_WS_LAEMP_EV O_2021-12-14_NP	Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	0.091	0.074	0.016	Diff <2x LOR					
Organic / Inorganic	Carbon (QC Lot: 36973	8)													
CG2106842-001	RG_M13_WS_LAEMP_EV O_2021-12-14_NP	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	2.57	2.48	0.10	Diff <2x LOR					
Organic / Inorganic	Carbon (QC Lot: 36973	9)													
CG2106842-001	RG_M13_WS_LAEMP_EV O_2021-12-14_NP	carbon, total organic [TOC]		E355-L	0.50	mg/L	1.76	1.76	0.003	Diff <2x LOR					
Total Metals (QC Lo	ot: 374583)														
CG2106788-001	Anonymous	aluminum, total	7429-90-5	E420	0.0060	mg/L	<0.0060	<0.0060	0	Diff <2x LOR					
		antimony, total	7440-36-0	E420	0.00020	mg/L	0.00245	0.00253	3.25%	20%					
		arsenic, total	7440-38-2	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR					
		barium, total	7440-39-3	E420	0.00020	mg/L	0.0204	0.0199	2.24%	20%					
		beryllium, total	7440-41-7	E420	0.040	mg/L	<0.040 µg/L	<0.000040	0	Diff <2x LOR					
		bismuth, total	7440-69-9	E420	0.000100	mg/L	<0.000100	<0.000100	0	Diff <2x LOR					
		boron, total	7440-42-8	E420	0.020	mg/L	0.130	0.135	0.006	Diff <2x LOR					
		cadmium, total	7440-43-9	E420	0.0100	mg/L	0.942 µg/L	0.000947	0.510%	20%					
		calcium, total	7440-70-2	E420	0.100	mg/L	585	624	6.37%	20%					
		cobalt, total	7440-48-4	E420	0.20	mg/L	85.0 μg/L	0.0869	2.24%	20%					
		copper, total	7440-50-8	E420	0.00100	mg/L	<0.00100	<0.00100	0	Diff <2x LOR					
		iron, total	7439-89-6	E420	0.020	mg/L	0.078	0.078	0.0002	Diff <2x LOR					
		lead, total	7439-92-1	E420	0.000100	mg/L	0.000135	0.000130	0.000006	Diff <2x LOR					
		lithium, total	7439-93-2	E420	0.0020	mg/L	1.24	1.26	2.14%	20%					
		,	7439-95-4	E420	0.0100	•	251	255	1.65%	20%					
		magnesium, total manganese, total	7439-95-4	E420	0.0100	mg/L mg/L	0.570	0.578	1.37%	20%					
			7439-90-3	E420	0.00020	•	0.00480	0.00499	3.81%	20%					
		molybdenum, total				mg/L									
		nickel, total	7440-02-0	E420	0.00100	mg/L	0.489	0.501	2.44%	20%					
		potassium, total	7440-09-7	E420	0.100	mg/L	22.1	22.0	0.450%	20%					
		selenium, total	7782-49-2	E420	0.100	mg/L	29.3 μg/L	0.0308	5.12%	20%					
		silicon, total	7440-21-3	E420	0.20	mg/L	3.20	3.20	0.0348%	20%					
		silver, total	7440-22-4	E420	0.000020	mg/L	<0.000020	<0.000020	0	Diff <2x LOR					
		sodium, total	7440-23-5	E420	0.100	mg/L	37.0	38.8	4.89%	20%					

Page : 7 of 21
Work Order : CG2106842
Client : Teck Coal Limited

Sub-Matrix: Water						Labora	tory Duplicate (D	ог) кероп			
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
	ot: 374583) - continued										
CG2106788-001	Anonymous	strontium, total	7440-24-6	E420	0.00040	mg/L	1.59	1.66	4.28%	20%	
		sulfur, total	7704-34-9	E420	1.00	mg/L	470	484	2.99%	20%	
		thallium, total	7440-28-0	E420	0.000020	mg/L	0.000218	0.000215	1.53%	20%	
		tin, total	7440-31-5	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		titanium, total	7440-32-6	E420	0.00060	mg/L	<0.00060	<0.00060	0	Diff <2x LOR	
		uranium, total	7440-61-1	E420	0.000020	mg/L	0.0363	0.0358	1.50%	20%	
		vanadium, total	7440-62-2	E420	0.00100	mg/L	<0.00100	<0.00100	0	Diff <2x LOR	
		zinc, total	7440-66-6	E420	0.0060	mg/L	0.139	0.140	0.458%	20%	
Total Metals (QC Lo	ot: 374584)										
CG2106788-001	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
Total Metals (QC Lo	ot: 374977)										
CG2106842-001	RG_M13_WS_LAEMP_EV O_2021-12-14_NP	mercury, total	7439-97-6	E508-L	0.50	ng/L	1.06	1.01	0.05	Diff <2x LOR	
Dissolved Metals (G	QC Lot: 377071)										
CG2106834-020	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00017	0.00018	0.000006	Diff <2x LOR	
Dissolved Metals (QC Lot: 377072)										
CG2106834-020	Anonymous	aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
		antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00023	0.00023	0.000005	Diff <2x LOR	
		arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00061	0.00060	0.00001	Diff <2x LOR	
		barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0132	0.0129	1.89%	20%	
		beryllium, dissolved	7440-41-7	E421	0.020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR	
		cadmium, dissolved	7440-43-9	E421	0.0050	mg/L	0.0058 µg/L	0.0000077	0.0000019	Diff <2x LOR	
		calcium, dissolved	7440-70-2	E421	0.050	mg/L	324	313	3.46%	20%	
		copper, dissolved	7440-50-8	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		iron, dissolved	7439-89-6	E421	0.010	mg/L	0.236	0.235	0.444%	20%	
		lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0745	0.0718	3.65%	20%	
		magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	173	166	3.88%	20%	
		manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.257	0.250	2.73%	20%	
		molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00541	0.00565	4.38%	20%	
		nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.103	0.101	2.11%	20%	
		potassium, dissolved	7440-09-7	E421	0.050	mg/L	5.69	5.50	3.38%	20%	
		selenium, dissolved	7782-49-2	E421	0.050	mg/L	1.37 µg/L	0.00136	1.06%	20%	
		silicon, dissolved	7440-21-3	E421	0.050	mg/L	3.16	3.18	0.680%	20%	
		silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, dissolved	7440-23-5	E421	0.050	mg/L	5.96	5.76	3.37%	20%	
		Socium, dissolved	7440-23-3	L74 I	0.030	mg/L	5.50	3.70	3.31 /0	2070	

 Page
 : 8 of 21

 Work Order
 : CG2106842

 Client
 : Teck Coal Limited

Sub-Matrix: Water					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original	Duplicate	RPD(%) or	Duplicate	Qualifier
							Result	Result	Difference	Limits	
Dissolved Metals (Dissolved Metals (QC Lot: 377072) - continued										
CG2106834-020	Anonymous	sulfur, dissolved	7704-34-9	E421	0.50	mg/L	332	334	0.432%	20%	
		thallium, dissolved	7440-28-0	E421	0.000010	mg/L	0.000060	0.000057	0.000002	Diff <2x LOR	
		titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.0142	0.0136	4.40%	20%	
		vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0281	0.0272	3.26%	20%	
Dissolved Metals (QC Lot: 380334)										
CG2106842-001	RG_M13_WS_LAEMP_EV O 2021-12-14 NP	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	

Page : 9 of 21
Work Order : CG2106842
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 369726)					
turbidity	E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 369891)					
acidity (as CaCO3)	E283	2	mg/L	2.0	
Physical Tests (QCLot: 370735)					
turbidity	E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 371437)					
urbidity	E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 371557)					
urbidity	E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 371907)					
solids, total suspended [TSS]	E160-L	1	mg/L	<1.0	
Physical Tests (QCLot: 371909)					
olids, total dissolved [TDS]	E162	10	mg/L	<10	
Physical Tests (QCLot: 372480)					
solids, total suspended [TSS]	E160-L	1	mg/L	<1.0	
Physical Tests (QCLot: 372482)					
colids, total dissolved [TDS]	E162	10	mg/L	<10	
Physical Tests (QCLot: 372502)					
solids, total dissolved [TDS]	E162	10	mg/L	<10	
Physical Tests (QCLot: 372517)					
alkalinity, bicarbonate (as CaCO3)	E290	1	mg/L	<1.0	
ılkalinity, carbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, hydroxide (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
Physical Tests (QCLot: 372518)					
conductivity	E100	1	μS/cm	<1.0	
Physical Tests (QCLot: 372520)					
colids, total suspended [TSS]	E160-L	1	mg/L	<1.0	
Physical Tests (QCLot: 372522)					
solids, total dissolved [TDS]	E162	10	mg/L	<10	
Physical Tests (QCLot: 372524)					
solids, total suspended [TSS]	E160-L	1	mg/L	<1.0	
Physical Tests (QCLot: 372528)					

 Page
 : 10 of 21

 Work Order
 : CG2106842

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 372528) - continued					
conductivity	E100	1	μS/cm	1.2	
Physical Tests (QCLot: 372530)					
alkalinity, bicarbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, carbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, hydroxide (as CaCO3)	E290	1	mg/L	<1.0	
Ikalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
Anions and Nutrients (QCLot: 369686)					
nitrite (as N)	14797-65-0 E235.NO2-L	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 369687)					
nitrate (as N)	14797-55-8 E235.NO3-L	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 369688)					
chloride	16887-00-6 E235.CI-L	0.1	mg/L	<0.10	
Anions and Nutrients (QCLot: 369689)					
promide	24959-67-9 E235.Br-L	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 369690)					
ulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 369691)					
uoride	16984-48-8 E235.F	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 369765)					
hosphorus, total	7723-14-0 E372-U	0.002	mg/L	<0.0020	
Anions and Nutrients (QCLot: 369894)					
mmonia, total (as N)	7664-41-7 E298	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 369930)					
hosphate, ortho-, dissolved (as P)	14265-44-2 E378-U	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 371400)					
promide	24959-67-9 E235.Br-L	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 371401)					
hloride	16887-00-6 E235.CI-L	0.1	mg/L	<0.10	
Anions and Nutrients (QCLot: 371402)					
itrate (as N)	14797-55-8 E235.NO3-L	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 371403)					
luoride	16984-48-8 E235.F	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 371404)					
sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 371405)					
nitrite (as N)	14797-65-0 E235.NO2-L	0.001	mg/L	<0.0010	

Page : 11 of 21
Work Order : CG2106842
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Anions and Nutrients (QCLot: 3755					
(jeldahl nitrogen, total [TKN]	E318	0.05	mg/L	<0.050	
Organic / Inorganic Carbon(QCLot					
carbon, dissolved organic [DOC]	E358-L	0.5	mg/L	<0.50	
Organic / Inorganic Carbon(QCLot	: 369739)				
carbon, total organic [TOC]	E355-L	0.5	mg/L	<0.50	
Total Metals (QCLot: 374583)					
aluminum, total	7429-90-5 E420	0.003	mg/L	<0.0030	
ntimony, total	7440-36-0 E420	0.0001	mg/L	<0.00010	
arsenic, total	7440-38-2 E420	0.0001	mg/L	<0.00010	
parium, total	7440-39-3 E420	0.0001	mg/L	<0.00010	
peryllium, total	7440-41-7 E420	0.00002	mg/L	<0.000020	
sismuth, total	7440-69-9 E420	0.00005	mg/L	<0.000050	
ooron, total	7440-42-8 E420	0.01	mg/L	<0.010	
admium, total	7440-43-9 E420	0.000005	mg/L	<0.000050	
alcium, total	7440-70-2 E420	0.05	mg/L	<0.050	
obalt, total	7440-48-4 E420	0.0001	mg/L	<0.00010	
opper, total	7440-50-8 E420	0.0005	mg/L	<0.00050	
ron, total	7439-89-6 E420	0.01	mg/L	<0.010	
ead, total	7439-92-1 E420	0.00005	mg/L	<0.000050	
thium, total	7439-93-2 E420	0.001	mg/L	<0.0010	
nagnesium, total	7439-95-4 E420	0.005	mg/L	<0.0050	
nanganese, total	7439-96-5 E420	0.0001	mg/L	<0.00010	
nolybdenum, total	7439-98-7 E420	0.00005	mg/L	<0.000050	
ickel, total	7440-02-0 E420	0.0005	mg/L	<0.00050	
otassium, total	7440-09-7 E420	0.05	mg/L	<0.050	
elenium, total	7782-49-2 E420	0.00005	mg/L	<0.000050	
ilicon, total	7440-21-3 E420	0.1	mg/L	<0.10	
ilver, total	7440-22-4 E420	0.00001	mg/L	<0.00010	
odium, total	7440-23-5 E420	0.05	mg/L	<0.050	
trontium, total	7440-24-6 E420	0.0002	mg/L	<0.00020	
ulfur, total	7704-34-9 E420	0.5	mg/L	<0.50	
nallium, total	7440-28-0 E420	0.00001	mg/L	<0.000010	
n, total	7440-31-5 E420	0.0001	mg/L	<0.00010	
itanium, total	7440-32-6 E420	0.0003	mg/L	<0.00010	
ıranium, total	7440-61-1 E420	0.00001	mg/L	<0.00030	
	7440-61-1 E420	0.0005	mg/L	<0.00050	
vanadium, total	7440-02-2 L420	0.0003	IIIg/L	~0.00030	

 Page
 : 12 of 21

 Work Order
 : CG2106842

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 374583) - continu	ied				
zinc, total	7440-66-6 E420	0.003	mg/L	<0.0030	
Total Metals (QCLot: 374584)					
chromium, total	7440-47-3 E420.Cr-L	0.0001	mg/L	<0.00010	
Total Metals (QCLot: 374977)					
mercury, total	7439-97-6 E508-L	0.5	ng/L	<0.50	
Dissolved Metals (QCLot: 377071)					
chromium, dissolved	7440-47-3 E421.Cr-L	0.0001	mg/L	<0.00010	
Dissolved Metals (QCLot: 377072)					
aluminum, dissolved	7429-90-5 E421	0.001	mg/L	<0.0010	
antimony, dissolved	7440-36-0 E421	0.0001	mg/L	<0.00010	
arsenic, dissolved	7440-38-2 E421	0.0001	mg/L	<0.00010	
barium, dissolved	7440-39-3 E421	0.0001	mg/L	<0.00010	
beryllium, dissolved	7440-41-7 E421	0.00002	mg/L	<0.000020	
cadmium, dissolved	7440-43-9 E421	0.000005	mg/L	<0.0000050	
calcium, dissolved	7440-70-2 E421	0.05	mg/L	<0.050	
copper, dissolved	7440-50-8 E421	0.0002	mg/L	<0.00020	
iron, dissolved	7439-89-6 E421	0.01	mg/L	<0.010	
lithium, dissolved	7439-93-2 E421	0.001	mg/L	<0.0010	
magnesium, dissolved	7439-95-4 E421	0.005	mg/L	<0.0050	
manganese, dissolved	7439-96-5 E421	0.0001	mg/L	<0.00010	
molybdenum, dissolved	7439-98-7 E421	0.00005	mg/L	<0.000050	
nickel, dissolved	7440-02-0 E421	0.0005	mg/L	<0.00050	
potassium, dissolved	7440-09-7 E421	0.05	mg/L	<0.050	
selenium, dissolved	7782-49-2 E421	0.00005	mg/L	<0.000050	
silicon, dissolved	7440-21-3 E421	0.05	mg/L	<0.050	
silver, dissolved	7440-22-4 E421	0.00001	mg/L	<0.000010	
sodium, dissolved	7440-23-5 E421	0.05	mg/L	<0.050	
strontium, dissolved	7440-24-6 E421	0.0002	mg/L	<0.00020	
sulfur, dissolved	7704-34-9 E421	0.5	mg/L	<0.50	
thallium, dissolved	7440-28-0 E421	0.00001	mg/L	<0.000010	
titanium, dissolved	7440-32-6 E421	0.0003	mg/L	<0.00030	
uranium, dissolved	7440-61-1 E421	0.00001	mg/L	<0.000010	
vanadium, dissolved	7440-62-2 E421	0.0005	mg/L	<0.00050	
zinc, dissolved	7440-66-6 E421	0.001	mg/L	<0.0010	
Dissolved Metals (QCLot: 380334)			<u> </u>		
mercury, dissolved	7439-97-6 E509	0.000005	mg/L	<0.000050	

 Page
 : 13 of 21

 Work Order
 : CG2106842

 Client
 : Teck Coal Limited

 Page
 : 14 of 21

 Work Order
 : CG2106842

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water	-Matrix: Water			Laboratory Control Sample (LCS) Report					
				Spike	Recovery (%)	Recovery	Limits (%)		
Analyte	CAS Number Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Physical Tests (QCLot: 369726)									
turbidity	E121	0.1	NTU	200 NTU	103	85.0	115		
Physical Tests (QCLot: 369891)									
acidity (as CaCO3)	E283	2	mg/L	50 mg/L	108	85.0	115		
Physical Tests (QCLot: 370735)									
turbidity	E121	0.1	NTU	200 NTU	101	85.0	115		
Physical Tests (QCLot: 371437)									
turbidity	E121	0.1	NTU	200 NTU	100	85.0	115		
Physical Tests (QCLot: 371557)									
turbidity	E121	0.1	NTU	200 NTU	101	85.0	115		
Physical Tests (QCLot: 371907)									
solids, total suspended [TSS]	E160-L	1	mg/L	150 mg/L	106	85.0	115		
Physical Tests (QCLot: 371909)									
solids, total dissolved [TDS]	E162	10	mg/L	1000 mg/L	94.0	85.0	115		
Physical Tests (QCLot: 372480)									
solids, total suspended [TSS]	E160-L	1	mg/L	150 mg/L	112	85.0	115		
Physical Tests (QCLot: 372482)									
solids, total dissolved [TDS]	E162	10	mg/L	1000 mg/L	99.1	85.0	115		
Physical Tests (QCLot: 372502)									
solids, total dissolved [TDS]	E162	10	mg/L	1000 mg/L	103	85.0	115		
Physical Tests (QCLot: 372516)									
рН	E108		pH units	7 pH units	100	98.6	101		
Physical Tests (QCLot: 372517)									
alkalinity, total (as CaCO3)	E290	1	mg/L	500 mg/L	100	85.0	115		
Physical Tests (QCLot: 372518)									
conductivity	E100	1	μS/cm	146.9 μS/cm	96.4	90.0	110		
Physical Tests (QCLot: 372520)									
solids, total suspended [TSS]	E160-L	1	mg/L	150 mg/L	104	85.0	115		
Physical Tests (QCLot: 372522)								1	
solids, total dissolved [TDS]	E162	10	mg/L	1000 mg/L	90.9	85.0	115		
Physical Tests (QCLot: 372524)								1	
solids, total suspended [TSS]	E160-L	1	mg/L	150 mg/L	91.2	85.0	115		
Physical Tests (QCLot: 372528)							1	1	
conductivity	E100	1	μS/cm	146.9 μS/cm	97.1	90.0	110		
I and the second second second second second second second second second second second second second second se	The state of the s	T .	I	The state of the state of	1		I	T	

 Page
 : 15 of 21

 Work Order
 : CG2106842

 Client
 : Teck Coal Limited

Sub-Matrix: Water		Laboratory Control Sample (LCS) Report						
				Spike	Recovery (%)	Recovery	Limits (%)	
Analyte CAS Num	per Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 372529) pH	E108		pH units	7 pH units	100	98.6	101	
Physical Tests (QCLot: 372530)								
alkalinity, total (as CaCO3)	E290	1	mg/L	500 mg/L	104	85.0	115	
Physical Tests (QCLot: 373563)								
oxidation-reduction potential [ORP]	E125		mV	220 mV	100	95.4	104	
Anions and Nutrients (QCLot: 369686)								
nitrite (as N) 14797-6	5-0 E235.NO2-L	0.001	mg/L	0.5 mg/L	103	90.0	110	
Anions and Nutrients (QCLot: 369687)								
nitrate (as N) 14797-5	5-8 E235.NO3-L	0.005	mg/L	2.5 mg/L	103	90.0	110	
Anions and Nutrients (QCLot: 369688)								
chloride 16887-0)-6 E235.CI-L	0.1	mg/L	100 mg/L	102	90.0	110	
Anions and Nutrients (QCLot: 369689)								
bromide 24959-6	7-9 E235.Br-L	0.05	mg/L	0.5 mg/L	102	85.0	115	
Anions and Nutrients (QCLot: 369690)								
sulfate (as SO4) 14808-7	9-8 E235.SO4	0.3	mg/L	100 mg/L	102	90.0	110	
Anions and Nutrients (QCLot: 369691)								
fluoride 16984-4	3-8 E235.F	0.02	mg/L	1 mg/L	104	90.0	110	
Anions and Nutrients (QCLot: 369765)								
phosphorus, total 7723-1	1-0 E372-U	0.002	mg/L	8.02 mg/L	97.5	80.0	120	
Anions and Nutrients (QCLot: 369894)								
ammonia, total (as N) 7664-4	I-7 E298	0.005	mg/L	0.2 mg/L	106	85.0	115	
Anions and Nutrients (QCLot: 369930)								
phosphate, ortho-, dissolved (as P) 14265-4	1-2 E378-U	0.001	mg/L	0.02 mg/L	95.7	80.0	120	
Anions and Nutrients (QCLot: 371400)								
bromide 24959-6	7-9 E235.Br-L	0.05	mg/L	0.5 mg/L	101	85.0	115	
Anions and Nutrients (QCLot: 371401)								
chloride 16887-0	0-6 E235.CI-L	0.1	mg/L	100 mg/L	101	90.0	110	
Anions and Nutrients (QCLot: 371402)								
nitrate (as N) 14797-5	5-8 E235.NO3-L	0.005	mg/L	2.5 mg/L	102	90.0	110	
Anions and Nutrients (QCLot: 371403)								
fluoride 16984-4	3-8 E235.F	0.02	mg/L	1 mg/L	96.6	90.0	110	
Anions and Nutrients (QCLot: 371404)								
sulfate (as SO4) 14808-7	9-8 E235.SO4	0.3	mg/L	100 mg/L	101	90.0	110	
Anions and Nutrients (QCLot: 371405)								
nitrite (as N) 14797-6	5-0 E235.NO2-L	0.001	mg/L	0.5 mg/L	103	90.0	110	
Anions and Nutrients (QCLot: 375528)								

Page : 16 of 21
Work Order : CG2106842
Client : Teck Coal Limited

Sub-Matrix: Water	Matrix: Water					Laboratory Control Sample (LCS) Report					
				Spike	Recovery (%)	Recovery	Limits (%)				
Analyte	CAS Number Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier			
Anions and Nutrients (QCLot: 375528) - co	ntinued										
Kjeldahl nitrogen, total [TKN]	E318	0.05	mg/L	4 mg/L	104	75.0	125				
Organic / Inorganic Carbon (QCLot: 369738											
carbon, dissolved organic [DOC]	E358-L	0.5	mg/L	10 mg/L	87.6	80.0	120				
Organic / Inorganic Carbon (QCLot: 369739))										
carbon, total organic [TOC]	E355-L	0.5	mg/L	10 mg/L	88.2	80.0	120				
Total Metals (QCLot: 374583)											
aluminum, total	7429-90-5 E420	0.003	mg/L	2 mg/L	103	80.0	120				
antimony, total	7440-36-0 E420	0.0001	mg/L	1 mg/L	105	80.0	120				
arsenic, total	7440-38-2 E420	0.0001	mg/L	1 mg/L	101	80.0	120				
barium, total	7440-39-3 E420	0.0001	mg/L	0.25 mg/L	104	80.0	120				
beryllium, total	7440-41-7 E420	0.00002	mg/L	0.1 mg/L	98.8	80.0	120				
bismuth, total	7440-69-9 E420	0.00005	mg/L	1 mg/L	97.8	80.0	120				
boron, total	7440-42-8 E420	0.01	mg/L	1 mg/L	96.6	80.0	120				
cadmium, total	7440-43-9 E420	0.000005	mg/L	0.1 mg/L	99.5	80.0	120				
calcium, total	7440-70-2 E420	0.05	mg/L	50 mg/L	101	80.0	120				
cobalt, total	7440-48-4 E420	0.0001	mg/L	0.25 mg/L	98.2	80.0	120				
copper, total	7440-50-8 E420	0.0005	mg/L	0.25 mg/L	98.5	80.0	120				
iron, total	7439-89-6 E420	0.01	mg/L	1 mg/L	101	80.0	120				
lead, total	7439-92-1 E420	0.00005	mg/L	0.5 mg/L	97.2	80.0	120				
lithium, total	7439-93-2 E420	0.001	mg/L	0.25 mg/L	102	80.0	120				
magnesium, total	7439-95-4 E420	0.005	mg/L	50 mg/L	97.7	80.0	120				
manganese, total	7439-96-5 E420	0.0001	mg/L	0.25 mg/L	101	80.0	120				
molybdenum, total	7439-98-7 E420	0.00005	mg/L	0.25 mg/L	102	80.0	120				
nickel, total	7440-02-0 E420	0.0005	mg/L	0.5 mg/L	97.9	80.0	120				
potassium, total	7440-09-7 E420	0.05	mg/L	50 mg/L	102	80.0	120				
selenium, total	7782-49-2 E420	0.00005	mg/L	1 mg/L	99.0	80.0	120				
silicon, total	7440-21-3 E420	0.1	mg/L	10 mg/L	100.0	80.0	120				
silver, total	7440-22-4 E420	0.00001	mg/L	0.1 mg/L	92.2	80.0	120				
sodium, total	7440-23-5 E420	0.05	mg/L	50 mg/L	104	80.0	120				
strontium, total	7440-24-6 E420	0.0002	mg/L	0.25 mg/L	108	80.0	120				
sulfur, total	7704-34-9 E420	0.5	mg/L	50 mg/L	95.3	80.0	120				
thallium, total	7440-28-0 E420	0.00001	mg/L	1 mg/L	103	80.0	120				
tin, total	7440-31-5 E420	0.0001	mg/L	0.5 mg/L	97.9	80.0	120				
titanium, total	7440-32-6 E420	0.0003	mg/L	0.25 mg/L	100	80.0	120				
uranium, total	7440-61-1 E420	0.00001	mg/L	0.005 mg/L	95.8	80.0	120				
vanadium, total	7440-62-2 E420	0.0005	mg/L	0.5 mg/L	101	80.0	120				

 Page
 : 17 of 21

 Work Order
 : CG2106842

 Client
 : Teck Coal Limited

Sub-Matrix: Water		Laboratory Control Sample (LCS) Report						
				Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Total Metals (QCLot: 374583) - continued								
zinc, total	7440-66-6 E420	0.003	mg/L	0.5 mg/L	100	80.0	120	
Total Metals (QCLot: 374584)								
chromium, total	7440-47-3 E420.Cr-L	0.0001	mg/L	0.25 mg/L	99.6	80.0	120	
Total Metals (QCLot: 374977)								
mercury, total	7439-97-6 E508-L	0.5	ng/L	5 ng/L	99.6	80.0	120	
Dissolved Metals (QCLot: 377071)								
chromium, dissolved	7440-47-3 E421.Cr-L	0.0001	mg/L	0.25 mg/L	105	80.0	120	
Dissolved Metals (QCLot: 377072)								
aluminum, dissolved	7429-90-5 E421	0.001	mg/L	2 mg/L	106	80.0	120	
antimony, dissolved	7440-36-0 E421	0.0001	mg/L	1 mg/L	95.2	80.0	120	
arsenic, dissolved	7440-38-2 E421	0.0001	mg/L	1 mg/L	102	80.0	120	
parium, dissolved	7440-39-3 E421	0.0001	mg/L	0.25 mg/L	102	80.0	120	
peryllium, dissolved	7440-41-7 E421	0.00002	mg/L	0.1 mg/L	105	80.0	120	
admium, dissolved	7440-43-9 E421	0.000005	mg/L	0.1 mg/L	103	80.0	120	
calcium, dissolved	7440-70-2 E421	0.05	mg/L	50 mg/L	99.9	80.0	120	
copper, dissolved	7440-50-8 E421	0.0002	mg/L	0.25 mg/L	102	80.0	120	
ron, dissolved	7439-89-6 E421	0.01	mg/L	1 mg/L	95.6	80.0	120	
ithium, dissolved	7439-93-2 E421	0.001	mg/L	0.25 mg/L	101	80.0	120	
nagnesium, dissolved	7439-95-4 E421	0.005	mg/L	50 mg/L	91.1	80.0	120	
nanganese, dissolved	7439-96-5 E421	0.0001	mg/L	0.25 mg/L	105	80.0	120	
nolybdenum, dissolved	7439-98-7 E421	0.00005	mg/L	0.25 mg/L	99.7	80.0	120	
nickel, dissolved	7440-02-0 E421	0.0005	mg/L	0.5 mg/L	101	80.0	120	
ootassium, dissolved	7440-09-7 E421	0.05	mg/L	50 mg/L	104	80.0	120	
selenium, dissolved	7782-49-2 E421	0.00005	mg/L	1 mg/L	99.0	80.0	120	
silicon, dissolved	7440-21-3 E421	0.05	mg/L	10 mg/L	99.7	80.0	120	
silver, dissolved	7440-22-4 E421	0.00001	mg/L	0.1 mg/L	88.9	80.0	120	
sodium, dissolved	7440-23-5 E421	0.05	mg/L	50 mg/L	103	80.0	120	
trontium, dissolved	7440-24-6 E421	0.0002	mg/L	0.25 mg/L	97.5	80.0	120	
sulfur, dissolved	7704-34-9 E421	0.5	mg/L	50 mg/L	99.9	80.0	120	
hallium, dissolved	7440-28-0 E421	0.00001	mg/L	1 mg/L	96.1	80.0	120	
itanium, dissolved	7440-32-6 E421	0.0003	mg/L	0.25 mg/L	93.5	80.0	120	
ıranium, dissolved	7440-61-1 E421	0.00001	mg/L	0.005 mg/L	104	80.0	120	
vanadium, dissolved	7440-62-2 E421	0.0005	mg/L	0.5 mg/L	104	80.0	120	
zinc, dissolved	7440-66-6 E421	0.001	mg/L	0.5 mg/L	104	80.0	120	
mercury, dissolved	7439-97-6 E509	0.000005	mg/L	0.0001 mg/L	86.6	80.0	120	

 Page
 : 18 of 21

 Work Order
 : CG2106842

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

ub-Matrix: Water					Matrix Spike (MS) Report						
					Spi	ike	Recovery (%)	Recovery	/ Limits (%)		
Laboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie	
	ients (QCLot: 369686)										
CG2106842-002	RG_RIVER_WS_LAEMP_E VO_2021-09_NP	nitrite (as N)	14797-65-0	E235.NO2-L	0.456 mg/L	0.5 mg/L	91.3	75.0	125		
Anions and Nutr	ients (QCLot: 369687)										
CG2106842-002	RG_RIVER_WS_LAEMP_E VO_2021-09_NP	nitrate (as N)	14797-55-8	E235.NO3-L	ND mg/L	2.5 mg/L	ND	75.0	125		
Anions and Nutr	ients (QCLot: 369688)										
CG2106842-002	RG_RIVER_WS_LAEMP_E VO_2021-09_NP	chloride	16887-00-6	E235.CI-L	90.3 mg/L	100 mg/L	90.3	75.0	125		
Anions and Nutr	ients (QCLot: 369689)										
CG2106842-002	RG_RIVER_WS_LAEMP_E VO_2021-09_NP	bromide	24959-67-9	E235.Br-L	0.439 mg/L	0.5 mg/L	87.8	75.0	125		
Anions and Nutr	ients (QCLot: 369690)										
CG2106842-002	RG_RIVER_WS_LAEMP_E VO_2021-09_NP	sulfate (as SO4)	14808-79-8	E235.SO4	ND mg/L	100 mg/L	ND	75.0	125		
Anions and Nutr	ients (QCLot: 369691)										
CG2106842-002	RG_RIVER_WS_LAEMP_E VO_2021-09_NP	fluoride	16984-48-8	E235.F	0.796 mg/L	1 mg/L	79.6	75.0	125		
Anions and Nutr	ients (QCLot: 369765)										
CG2106834-023	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0517 mg/L	0.0676 mg/L	76.4	70.0	130		
Anions and Nutr	ients (QCLot: 369894)										
CG2106842-003	RG_TRIP_WS_LAEMP_EV O_2021-12_NP	ammonia, total (as N)	7664-41-7	E298	0.110 mg/L	0.1 mg/L	110	75.0	125		
Anions and Nutr	ients (QCLot: 369930)										
CG2106840-003	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0512 mg/L	0.05 mg/L	102	70.0	130		
Anions and Nutr	ients (QCLot: 371400)										
CG2106842-007	RG_FBLANK_WS_LAEMP_ EVO_2021-12-15_NP	bromide	24959-67-9	E235.Br-L	0.517 mg/L	0.5 mg/L	103	75.0	125		
Anions and Nutr	ients (QCLot: 371401)										
CG2106842-007	RG_FBLANK_WS_LAEMP_ EVO_2021-12-15_NP	chloride	16887-00-6	E235.CI-L	99.7 mg/L	100 mg/L	99.7	75.0	125		
Anions and Nutr	ients (QCLot: 371402)										
CG2106842-007	RG_FBLANK_WS_LAEMP_ EVO_2021-12-15_NP	nitrate (as N)	14797-55-8	E235.NO3-L	2.52 mg/L	2.5 mg/L	101	75.0	125		

 Page
 : 19 of 21

 Work Order
 : CG2106842

 Client
 : Teck Coal Limited

Sub-Matrix: Water	Matrix: Water				Matrix Spike (MS) Report					
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie
Anions and Nutri	ents (QCLot: 371403)									
CG2106842-007	RG_FBLANK_WS_LAEMP_ EVO_2021-12-15_NP	fluoride	16984-48-8	E235.F	1.00 mg/L	1 mg/L	100	75.0	125	
Anions and Nutri	ents (QCLot: 371404)									
CG2106842-007	RG_FBLANK_WS_LAEMP_ EVO_2021-12-15_NP	sulfate (as SO4)	14808-79-8	E235.SO4	99.6 mg/L	100 mg/L	99.6	75.0	125	
Anions and Nutri	ents (QCLot: 371405)									
CG2106842-007	RG_FBLANK_WS_LAEMP_ EVO_2021-12-15_NP	nitrite (as N)	14797-65-0	E235.NO2-L	0.507 mg/L	0.5 mg/L	101	75.0	125	
Anions and Nutri	ents (QCLot: 375528)									
CG2106842-002	RG_RIVER_WS_LAEMP_E VO 2021-09 NP	Kjeldahl nitrogen, total [TKN]		E318	2.34 mg/L	2.5 mg/L	93.4	70.0	130	
Organic / Inorgar	nic Carbon (QCLot: 3697	738)								
CG2106842-001	RG_M13_WS_LAEMP_EVO 2021-12-14 NP	carbon, dissolved organic [DOC]		E358-L	22.0 mg/L	23.9 mg/L	91.8	70.0	130	
Organic / Inorgar	nic Carbon (QCLot: 3697	739)								
CG2106842-001	RG_M13_WS_LAEMP_EVO _2021-12-14_NP	carbon, total organic [TOC]		E355-L	22.4 mg/L	23.9 mg/L	93.8	70.0	130	
Fotal Metals (QC	Lot: 374583)									
CG2106788-002	Anonymous	aluminum, total	7429-90-5	E420	0.400 mg/L	0.4 mg/L	100	70.0	130	
		antimony, total	7440-36-0	E420	0.0410 mg/L	0.04 mg/L	102	70.0	130	
		arsenic, total	7440-38-2	E420	0.0419 mg/L	0.04 mg/L	105	70.0	130	
		barium, total	7440-39-3	E420	0.0388 mg/L	0.04 mg/L	97.1	70.0	130	
		beryllium, total	7440-41-7	E420	0.0765 mg/L	0.08 mg/L	95.6	70.0	130	
		bismuth, total	7440-69-9	E420	0.0176 mg/L	0.02 mg/L	88.0	70.0	130	
		boron, total	7440-42-8	E420	0.196 mg/L	0.2 mg/L	98.0	70.0	130	
		cadmium, total	7440-43-9	E420	0.00773 mg/L	0.008 mg/L	96.6	70.0	130	
		calcium, total	7440-70-2	E420	ND mg/L	8 mg/L	ND	70.0	130	
		cobalt, total	7440-48-4	E420	ND mg/L	0.04 mg/L	ND	70.0	130	
		copper, total	7440-50-8	E420	0.0359 mg/L	0.04 mg/L	89.7	70.0	130	
		iron, total	7439-89-6	E420	4.00 mg/L	4 mg/L	100.0	70.0	130	
		lead, total	7439-92-1	E420	0.0358 mg/L	0.04 mg/L	89.6	70.0	130	
		lithium, total	7439-93-2	E420	ND mg/L	0.2 mg/L	ND	70.0	130	
		magnesium, total	7439-95-4	E420	ND mg/L	2 mg/L	ND	70.0	130	
		manganese, total	7439-96-5	E420	ND mg/L	0.04 mg/L	ND	70.0	130	
		molybdenum, total	7439-98-7	E420	0.0428 mg/L	0.04 mg/L	107	70.0	130	
		nickel, total	7440-02-0	E420	ND mg/L	0.08 mg/L	ND	70.0	130	
		potassium, total	7440-09-7	E420	ND mg/L	8 mg/L	ND	70.0	130	
		selenium, total	7782-49-2	E420	0.0885 mg/L	0.08 mg/L	111	70.0	130	

 Page
 : 20 of 21

 Work Order
 : CG2106842

 Client
 : Teck Coal Limited

Sub-Matrix: Water				Matrix Spike (MS) Report							
					Spi	ke	Recovery (%)	Recover	Recovery Limits (%)		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie	
	CLot: 374583) - continue	d									
CG2106788-002	Anonymous	silicon, total	7440-21-3	E420	19.5 mg/L	20 mg/L	97.3	70.0	130		
		silver, total	7440-22-4	E420	0.00774 mg/L	0.008 mg/L	96.8	70.0	130		
		sodium, total	7440-23-5	E420	ND mg/L	4 mg/L	ND	70.0	130		
		strontium, total	7440-24-6	E420	ND mg/L	0.04 mg/L	ND	70.0	130		
		sulfur, total	7704-34-9	E420	ND mg/L	40 mg/L	ND	70.0	130		
		thallium, total	7440-28-0	E420	0.00723 mg/L	0.008 mg/L	90.4	70.0	130		
		tin, total	7440-31-5	E420	0.0393 mg/L	0.04 mg/L	98.4	70.0	130		
		titanium, total	7440-32-6	E420	0.0851 mg/L	0.08 mg/L	106	70.0	130		
		uranium, total	7440-61-1	E420	ND mg/L	0.008 mg/L	ND	70.0	130		
		vanadium, total	7440-62-2	E420	0.208 mg/L	0.2 mg/L	104	70.0	130		
		zinc, total	7440-66-6	E420	0.732 mg/L	0.8 mg/L	91.5	70.0	130		
otal Metals (QC	Lot: 374584)										
CG2106788-002	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.0790 mg/L	0.08 mg/L	98.7	70.0	130		
otal Metals (QC	CLot: 374977)										
CG2106842-002	RG_RIVER_WS_LAEMP_E VO_2021-09_NP	mercury, total	7439-97-6	E508-L	4.11 ng/L	5 ng/L	82.2	70.0	130		
issolved Metals	(QCLot: 377071)										
CG2106834-021	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.0427 mg/L	0.04 mg/L	107	70.0	130		
issolved Metals	(QCLot: 377072)										
CG2106834-021	Anonymous	aluminum, dissolved	7429-90-5	E421	0.215 mg/L	0.2 mg/L	108	70.0	130		
		antimony, dissolved	7440-36-0	E421	0.0204 mg/L	0.02 mg/L	102	70.0	130		
		arsenic, dissolved	7440-38-2	E421	0.0232 mg/L	0.02 mg/L	116	70.0	130		
		barium, dissolved	7440-39-3	E421	0.0206 mg/L	0.02 mg/L	103	70.0	130		
		beryllium, dissolved	7440-41-7	E421	0.0414 mg/L	0.04 mg/L	104	70.0	130		
		cadmium, dissolved	7440-43-9	E421	0.00397 mg/L	0.004 mg/L	99.3	70.0	130		
		calcium, dissolved	7440-70-2	E421	ND mg/L	4 mg/L	ND	70.0	130		
		copper, dissolved	7440-50-8	E421	0.0184 mg/L	0.02 mg/L	92.2	70.0	130		
		iron, dissolved	7439-89-6	E421	2.02 mg/L	2 mg/L	101	70.0	130		
		lithium, dissolved	7439-93-2	E421	0.105 mg/L	0.1 mg/L	105	70.0	130		
		magnesium, dissolved	7439-95-4	E421	ND mg/L	1 mg/L	ND	70.0	130		
		manganese, dissolved	7439-96-5	E421	ND mg/L	0.02 mg/L	ND	70.0	130		
		molybdenum, dissolved	7439-98-7	E421	0.0215 mg/L	0.02 mg/L	108	70.0	130		
		nickel, dissolved	7440-02-0	E421	0.0375 mg/L	0.04 mg/L	93.8	70.0	130		
		potassium, dissolved	7440-09-7	E421	ND mg/L	4 mg/L	ND	70.0	130		
		selenium, dissolved	7782-49-2	E421	0.0444 mg/L	0.04 mg/L	111	70.0	130		
	I	silicon, dissolved	7440-21-3	E421	10.3 mg/L	10 mg/L	103	70.0	130		

 Page
 : 21 of 21

 Work Order
 : CG2106842

 Client
 : Teck Coal Limited

Sub-Matrix: Water						Matrix Spike (MS) Report							
					Spi	ke	Recovery (%)	Recovery					
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier			
Dissolved Metals	(QCLot: 377072) - con	tinued											
CG2106834-021	Anonymous	silver, dissolved	7440-22-4	E421	0.00323 mg/L	0.004 mg/L	80.7	70.0	130				
		sodium, dissolved	7440-23-5	E421	ND mg/L	2 mg/L	ND	70.0	130				
		strontium, dissolved	7440-24-6	E421	ND mg/L	0.02 mg/L	ND	70.0	130				
		sulfur, dissolved	7704-34-9	E421	ND mg/L	20 mg/L	ND	70.0	130				
		thallium, dissolved	7440-28-0	E421	0.00356 mg/L	0.004 mg/L	89.1	70.0	130				
		titanium, dissolved	7440-32-6	E421	0.0433 mg/L	0.04 mg/L	108	70.0	130				
		uranium, dissolved	7440-61-1	E421	ND mg/L	0.004 mg/L	ND	70.0	130				
		vanadium, dissolved	7440-62-2	E421	0.111 mg/L	0.1 mg/L	111	70.0	130				
		zinc, dissolved	7440-66-6	E421	0.384 mg/L	0.4 mg/L	96.1	70.0	130				
Dissolved Metals	(QCLot: 380334)												
CG2106842-002	RG_RIVER_WS_LAEMP_E VO_2021-09_NP	mercury, dissolved	7439-97-6	E509	0.0000989 mg/L	0.0001 mg/L	98.9	70.0	130				

Teck						Page	l of (-	•			·							
	COC ID: Decen	nber EVO I	LAEN	1P 2021		TURN	AROUN	D TIM	ME:	·									
The state of the s	PROJECT/CLIENT INFO					8 18 K . P				TORY			1		. 7				
Facility Name / Jobs						L	ab Name										Excel	PDF	EDD
Project Manage	r Allie Ferguson					Lat	Contact	Lyudi	myla Sh	vets					allia Parpyron Place				
	site freguerrighteck.com						Email	lyudr	nyla.sh	vets@al	global.com		1		teckcoal@eq.		Ť		
Addres	s 421 Pine Avenue						Address	2559	29 Stree	et NE					Discrete Grade sons	•	×	x	x
Cit	y Sparwood			Province BC			City	Calga	irv.		Province	AB	 		jernice ritrigitech.com		ž	x	x
Postal Cod				Country Car		Por	stal Code				Country	Canada	†		L		<u>1x</u>	ix.	<u> #</u>
	r 250-425-8202			Tooming our			Number			94	,	100	!						
a raction of the control of the cont	SAMPLE DETAILS					1	3		va s i		LYSIS RE	OUESTE	D.			Filtered - F	: Fleld, L: Lab	FL. Fleid &	Lah. N: Nor
					1	T	Ī	31	•			T	1	T	11		1	<u> </u>	1
				,				ı	N	F	N	N	F	N	F		<u> </u>		
			। 					PRESERV.		H2SO4	H2SO4		HCL	IINO3	шпоз				
			al (Yes/No)						TINE		(/TOC			-T-VA	-D-VA				
		Field	Hazardous Material		Time	G=Grab		SISATAN	TECKCOAL-ROUTINE-	ALS_Package-DOC	ALS_Package-TKN/TOC	HG-T-U-CVAF-VA	HG-D-CVAF-VA	TECKCOAL-MET-T-VA	TECKCOAL-MET-D-VA				
Sample ID	Sample Location	Matrix		Date	(24hr)	C=Comp	Cont.		₽≥↓	₹.	. 4	=	E	Ļ <u>F</u>	=		├──		<u> </u>
RG_M13_WS_LAEMP_EVO_2021-12-14_NP	RG_MI3	ws	No	12/14/2021	15:30	G	7		x	X	х	х	х	х	х				
RG_RIVER_WS_LAEMP_EVO_2021-09_NP	RG_RIVER	ws	No	12/14/2021	13:30	G	7	ΙT	х	х	х	Х	х	х	х				
RG_TRIP_WS_LAEMP_EVO_2021-12_NP	RG_TRIP	ws	No	12/14/2021	13:30	G	7	ΙĪ	х	х	· x	х	х	х	х				
RG_ERCKUT_WS_LAEMP_EVO_2021-12-14_NP	RG_ERCKUT	ws	No	12/14/2021	13:30	G	7	Г	х	х	х	х	х	х	х				i i
RG_ERCK_WS_LAEMP_EVO_2021-12-14_NP	RG_ERCK	ws	No	12/14/2021	9:45	G	7		х	х -	х	x	x	x	х				l
RG_ERCKDT_WS_LAEMP_EVO_2021-12-15_NP	RG_ERCKDT	ws	No	12/15/2021	12:00	G	7		х	Х	х	х	х	х	х				
7 RG FBLANK WS LAEMP EVO 2021-12-15 NP	RG_FBLANK	WS	No	12/15/2021	16:00	. G	7		х	х	х	х	х	х.	х			··	
			ļ	ľ		1		i.L						,					
·					<u> </u>	<u> </u>	ļ							1					
		-					l ,							<u> </u>					
ADDITIONAL COMMENT	S/SPECIAL INSTRUCTIONS			RELINQUISH	UBY/AFF	ILIATION		DATE	/TIME		ACS	EPTED	BYAFF	ILJATIO	N				
A. O. DO 570-14				Alex McC	lymon <i>t/M</i> i	nnow		Dece	mber 1	5, 2021	$\overline{/}$	M				- [\mathcal{H}	\subset	
ALS PO 750546											-11	//				(1,~		
	TIDATE DE CONTENTANT			 							//	<u></u>					<u>ا جب ا</u>		~
NB OF BOTTLES RET	URNED/DESCRIPTION		1				. 4. 90				Sec. 4.11			1.0		1 1			11

Sampler's Name

Alex McClymont

AMC

Mobile#

Date/Time

780-293-6750

December 15, 2021

-Environmental-Division--Calgary
Work Order Reference
CG2106842

Regular (default) x
Priority (2-3 business days) - 50% surcharge
aency (1 Business Day) - 100% surcharge
Day, ASAP or Weekend - Contact ALS

Telaphons 1,108,107,108

WATER CHEMISTRY

ALS Laboratory Report CG2106846 (Finalized January 5, 2022)

CERTIFICATE OF ANALYSIS

Work Order : CG2106846

Client : Teck Coal Limited

Contact : Allie Ferguson

Address : 421 Pine Avenue

Sparwood BC Canada

Telephone : ---

Project : REGIONAL EFFECTS PROGRAM

PO : VPO00748510

C-O-C number : DECEMBER EVO LAEMP 2021

Sampler : AMC Site : ----

Quote number : Teck Coal Master Quote

No. of samples received : 1
No. of samples analysed : 1

Page : 1 of 6

Laboratory : Calgary - Environmental

Account Manager : Lyudmyla Shvets

Address : 2559 29th Street NE

Calgary AB Canada T1Y 7B5

Telephone : +1 403 407 1800

Date Samples Received : 16-Dec-2021 09:00

Date Analysis Commenced : 16-Dec-2021

Issue Date : 05-Jan-2022 11:41

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Anthony Calero	Team Leader - Inorganics	Inorganics, Calgary, Alberta
Caleb Deroche	Lab Analyst	Metals, Burnaby, British Columbia
Dee Lee	Analyst	Metals, Burnaby, British Columbia
Elke Tabora		Inorganics, Calgary, Alberta
Hannah Phung	Lab Assistant	Inorganics, Calgary, Alberta
Harpreet Chawla	Team Leader - Inorganics	Inorganics, Calgary, Alberta
Ilnaz Badbezanchi	Team Leader - Metals preparation	Metals, Burnaby, British Columbia
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia
Maria Tuguinay	Lab Assistant	Inorganics, Calgary, Alberta
Miles Gropen	Department Manager - Inorganics	Inorganics, Burnaby, British Columbia
Parker Sgarbossa	Laboratory Analyst	Inorganics, Calgary, Alberta
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta
Sara Niroomand		Inorganics, Calgary, Alberta

 Page
 : 2 of 6

 Work Order
 : CG2106846

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
%	percent
μg/L	micrograms per litre
μS/cm	Microsiemens per centimetre
meq/L	milliequivalents per litre
mg/L	milligrams per litre
mV	millivolts
ng/L	nanograms per litre
NTU	nephelometric turbidity units
pH units	pH units

<: less than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical
	Conductivity.
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference,
	colour, turbidity).
DTSE	Dissolved Se concentration exceeds total. Positive bias on D-Se suspected due to
	signal enhancement from volatile selenium species. Contact ALS if an alternative test
	to address this interference is needed.
TKNI	TKN result may be biased low due to Nitrate interference. Nitrate-N is > 10x TKN.

>: greater than.

Page : 3 of 6
Work Order : CG2106846
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water			Ci	lient sample ID	EV_EC_FLOW2			
(Matrix: Water)					_2021-12-15_N P			
			Client samp	oling date / time	15-Dec-2021 14:00			
Analyte	CAS Number	Method	LOR	Unit	CG2106846-001			
					Result			
Physical Tests		5000	0.0					
acidity (as CaCO3)		E283	2.0	mg/L	<2.0			
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	487			
alkalinity, bicarbonate (as HCO3)	71-52-3	E290	1.0	mg/L	594			
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0			
alkalinity, carbonate (as CO3)	3812-32-6	E290	1.0	mg/L	<1.0			
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0			
alkalinity, hydroxide (as OH)	14280-30-9	E290	1.0	mg/L	<1.0			
alkalinity, total (as CaCO3)		E290	1.0	mg/L	487			
conductivity		E100	2.0	μS/cm	1930			
hardness (as CaCO3), dissolved		EC100	0.50	mg/L	1350			
oxidation-reduction potential [ORP]		E125	0.10	mV	401			
pH		E108	0.10	pH units	8.12			
solids, total dissolved [TDS]		E162	10	mg/L	1790			
solids, total suspended [TSS]	<u></u>	E160-L	1.0	mg/L	5.7			
turbidity		E121	0.10	NTU	1.32			
Anions and Nutrients								
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050			
bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.250 DLDS			
chloride	16887-00-6	E235.CI-L	0.10	mg/L	17.4			
fluoride	16984-48-8	E235.F	0.020	mg/L	<0.100 DLDS			
Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	<0.050 TKNI			
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	15.3			
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	0.0076			
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	0.0128			
phosphorus, total		E372-U	0.0010		0.0148 DLM			
sulfate (as SO4)	7723-14-0 14808-79-8	E235.SO4	0.0020	mg/L mg/L	805			
Organic / Inorganic Carbon	14000-79-6		3.55	g/L	300			
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	0.83			
carbon, total organic [TOC]		E355-L	0.50		0.86			
carbon, total organic [100]		E333-L	0.50	mg/L	0.00			

Page : 4 of 6
Work Order : CG2106846
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water (Matrix: Water)			Cli	ient sample ID	EV_EC_FLOW2 _2021-12-15_N	 		
(Matrix. Water)					P			
			Client samp	ling date / time	15-Dec-2021 14:00	 		
Analyte	CAS Number	Method	LOR	Unit	CG2106846-001	 		
					Result	 		
Ion Balance		EC101	0.10	mo a/l	28.1		I	I
anion sum				meq/L		 		
cation sum		EC101	0.10	meq/L	27.2	 		
ion balance (cations/anions ratio)		EC101	0.010	%	96.8	 		
ion balance (cation-anion difference)		EC101	0.010	%	1.63	 		
Total Metals							1	
aluminum, total	7429-90-5	E420	0.0030	mg/L	<0.0030	 		
antimony, total	7440-36-0	E420	0.00010	mg/L	0.00023	 		
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00032	 		
barium, total	7440-39-3	E420	0.00010	mg/L	0.0560	 		
beryllium, total	7440-41-7	E420	0.020	μg/L	<0.020	 		
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	 		
boron, total	7440-42-8	E420	0.010	mg/L	0.016	 		
cadmium, total	7440-43-9	E420	0.0050	μg/L	0.185	 		
calcium, total	7440-70-2	E420	0.050	mg/L	263	 		
chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00019	 		
cobalt, total	7440-48-4	E420	0.10	μg/L	1.31	 		
copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	 		
iron, total	7439-89-6	E420	0.010	mg/L	0.057	 		
lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	 		
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0317	 		
magnesium, total	7439-95-4	E420	0.0050	mg/L	153	 		
manganese, total	7439-96-5	E420	0.00010	mg/L	0.0313	 		
mercury, total	7439-97-6	E508-L	0.50	ng/L	<0.50	 		
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00285	 		
nickel, total	7440-02-0	E420	0.00050	mg/L	0.0125	 		
potassium, total	7440-09-7	E420	0.050	mg/L	2.85	 		
selenium, total	7782-49-2	E420	0.050	μg/L	149	 		
silicon, total	7440-21-3	E420	0.10	mg/L	3.86	 		
silver, total	7440-21-3	E420	0.000010	mg/L	<0.000010	 		
sodium, total	7440-23-5	E420	0.050	mg/L	3.79	 		
Journal, total	1440-23-5	L720	0.000	IIIg/L	5.19	 	I	

Page : 5 of 6
Work Order : CG2106846
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water			Cli	ent sample ID	EV_EC_FLOW2	 	
(Matrix: Water)					_2021-12-15_N P		
			Client samp	ling date / time	15-Dec-2021 14:00	 	
Analyte	CAS Number	Method	LOR	Unit	CG2106846-001 Result	 	
Total Metals					Result	 	
strontium, total	7440-24-6	E420	0.00020	mg/L	0.245	 	
sulfur, total	7704-34-9	E420	0.50	mg/L	308	 	
thallium, total	7440-28-0	E420	0.000010	mg/L	0.000038	 	
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	 	
titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	 	
uranium, total	7440-61-1	E420	0.000010	mg/L	0.00883	 	
vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	 	
zinc, total	7440-66-6	E420	0.0030	mg/L	0.0097	 	
Dissolved Metals							
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	<0.0010	 	
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00019	 	
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00031	 	
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0590	 	
beryllium, dissolved	7440-41-7	E421	0.020	μg/L	<0.020	 	
cadmium, dissolved	7440-43-9	E421	0.0050	μg/L	0.176	 	
calcium, dissolved	7440-70-2	E421	0.050	mg/L	283	 	
chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00021	 	
copper, dissolved	7440-50-8	E421	0.00020	mg/L	<0.00020	 	
iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	 	
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0283	 	
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	156	 	
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.0249	 	
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	 	
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00152	 	
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.0128	 	
potassium, dissolved	7440-09-7	E421	0.050	mg/L	2.86	 	
selenium, dissolved	7782-49-2	E421	0.050	μg/L	209 DTSE	 	
silicon, dissolved	7440-21-3	E421	0.050	mg/L	4.19	 	
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	 	
sodium, dissolved	7440-23-5	E421	0.050	mg/L	3.60	 	

Page : 6 of 6
Work Order : CG2106846
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water			Cli	ient sample ID	EV_EC_FLOW2	 	
(Matrix: Water)					_2021-12-15_N P		
			Client samp	ling date / time	15-Dec-2021 14:00	 	
Analyte	CAS Number	Method	LOR	Unit	CG2106846-001	 	
					Result	 	
Dissolved Metals							
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.240	 	
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	316	 	
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	0.000036	 	
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	 	
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00848	 	
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	 	
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0092	 	
dissolved mercury filtration location		EP509	-	-	Field	 	
dissolved metals filtration location		EP421	-	-	Field	 	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : **CG2106846** Page : 1 of 13

 Client
 : Teck Coal Limited
 Laboratory
 : Calgary - Environmental

 Contact
 : Allie Ferguson
 Account Manager
 : Lyudmyla Shvets

: 421 Pine Avenue Address : 2559 29th Street NE
Sparwood BC Canada Calgary, Alberta Can

Sparwood BC Canada

Calgary, Alberta Canada T1Y 7B5

Telephone

: +1 403 407 1800

 Project
 : REGIONAL EFFECTS PROGRAM
 Date Samples Received
 : 16-Dec-2021 09:00

 PO
 : VPO00748510
 Issue Date
 : 05-Jan-2022 11:41

C-O-C number : DECEMBER EVO LAEMP 2021

Sampler : AMC

Quote number : Teck Coal Master Quote

No. of samples received : 1
No. of samples analysed : 1

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Address

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Summary of Outliers

Outliers: Quality Control Samples

- No Method Blank value outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- Duplicate outliers occur please see following pages for full details.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

Page : 2 of 13 CG2106846 Work Order

Client : Teck Coal Limited

: REGIONAL EFFECTS PROGRAM Project

Outliers: Quality Control Samples
Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: Water

Analyte Group	Laboratory sample ID	Client/Ref Sample ID	Analyte	CAS Number	Method	Result	Limits	Comment
Duplicate (DUP) RPDs								
Anions and Nutrients	CG2106846-001	EV_EC_FLOW2_202 1-12-15 NP	Kjeldahl nitrogen, total		E318	0.125 % TKND	Diff <2x LOR	Low Level DUP DQO exceeded (difference > 2
		_						LOR).

Result Qualifiers

Qualifier	Description
TKND	TKN duplication was poor due to interference from high nitrate, which causes negative bias on TKN.

 Page
 : 3 of 13

 Work Order
 : CG2106846

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					Ev	/aluation: × =	Holding time exce	edance ; •	/ = Within	Holding Tim
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation Holding Times		Eval Analysis Date		Holding	g Times	Eval	
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
EV_EC_FLOW2_2021-12-15_NP	E298	15-Dec-2021	16-Dec-2021				16-Dec-2021	28 days	1 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE										
EV_EC_FLOW2_2021-12-15_NP	E235.Br-L	15-Dec-2021					18-Dec-2021	28 days	3 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE										
EV_EC_FLOW2_2021-12-15_NP	E235.CI-L	15-Dec-2021					18-Dec-2021	28 days	3 days	✓
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace	Level)				_					
HDPE	E378-U	15-Dec-2021					40 D 0004	0 4	4 -1	1
EV_EC_FLOW2_2021-12-15_NP	E378-U	15-Dec-2021					16-Dec-2021	3 days	1 days	•
Anions and Nutrients : Fluoride in Water by IC					l		I			
HDPE EV EC FLOW2 2021-12-15 NP	E235.F	15-Dec-2021					18-Dec-2021	28 days	3 days	1
LV_LO_1 LOVV2_2021-12-10_INF	L255.1	13-560-2021					10-200-2021	20 days	Juays	•
A Constant of the Nice of Michael and Market and Michael and Micha										
Anions and Nutrients : Nitrate in Water by IC (Low Level) HDPE										
EV EC FLOW2 2021-12-15 NP	E235.NO3-L	15-Dec-2021					18-Dec-2021	3 days	3 days	✓
								5 22,0	2 44,5	
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE										
EV_EC_FLOW2_2021-12-15_NP	E235.NO2-L	15-Dec-2021					18-Dec-2021	3 days	3 days	✓

Page : 4 of 13 Work Order : CG2106846

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: **Water** Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

Method	Sampling Date	Ex	traction / Pr	eparation			Analys	sis	
		Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
		Date	Rec	Actual			Rec	Actual	
E235.SO4	15-Dec-2021					18-Dec-2021	28 days	3 days	✓
E318	15-Dec-2021	22-Dec-2021				23-Dec-2021	28 days	8 days	✓
F272 II	15 Dec 2021	21 Dec 2021				24 Dec 2024	20 days	G days	1
E372-U	15-Dec-2021	21-Dec-2021				21-Dec-2021	28 days	6 days	•
						I			
E421.Cr-L	15-Dec-2021	28-Dec-2021				28-Dec-2021	180	13 days	✓
								,	
E509	15-Dec-2021	04-Jan-2022				04-Jan-2022	28 days	20 days	✓
E421	15-Dec-2021	28-Dec-2021				28-Dec-2021		13 days	✓
							days		
evel)									
E250 I	15 Dog 2021	16 Dec 2021				10 Dec 2021	20 days	2 days	1
E336-L	15-Dec-2021	16-Dec-2021				16-Dec-2021	20 days	3 days	•
tion (Love Love)									
tion (Low Level)						1			
E355-L	15-Dec-2021	16-Dec-2021				18-Dec-2021	28 days	3 days	1
E283	15-Dec-2021					16-Dec-2021	144.1	1 days	1
	E235.SO4 E318 E372-U E421.Cr-L E509 E421 E358-L tion (Low Level) E355-L	E235.SO4 15-Dec-2021 E318 15-Dec-2021 E372-U 15-Dec-2021 E421.Cr-L 15-Dec-2021 E421 15-Dec-2021 E421 15-Dec-2021 tion (Low Level) E355-L 15-Dec-2021	E235.SO4 15-Dec-2021 E318 15-Dec-2021 22-Dec-2021 E372-U 15-Dec-2021 21-Dec-2021 E421.Cr-L 15-Dec-2021 28-Dec-2021 E509 15-Dec-2021 04-Jan-2022 E421 15-Dec-2021 16-Dec-2021 tion (Low Level) E355-L 15-Dec-2021 16-Dec-2021	E235.SO4 15-Dec-2021	Preparation Date Holding Times Rec Actual	Preparation Date Holding Times Rec Actual	Preparation Date Holding Times Eval Analysis Date Rec Actual	E235.SO4	Preparation Date Holding Times Rec Actual Holding Ti

 Page
 : 5 of 13

 Work Order
 : CG2106846

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Extraction / Preparation Method Sampling Date Analysis Container / Client Sample ID(s) Preparation Holding Times Eval Analysis Date **Holding Times** Eval Actual Rec Actual Date Physical Tests: Alkalinity Species by Titration HDPE E290 15-Dec-2021 20-Dec-2021 14 days 5 days ✓ EV_EC_FLOW2_2021-12-15_NP Physical Tests : Conductivity in Water HDPE 1 EV_EC_FLOW2_2021-12-15_NP E100 15-Dec-2021 20-Dec-2021 28 days 5 days ----Physical Tests: ORP by Electrode **HDPE** E125 15-Dec-2021 22-Dec-2021 165 hrs EV EC FLOW2 2021-12-15 NP 0.25 hrs EHTR-FM Physical Tests : pH by Meter HDPE EV EC FLOW2 2021-12-15 NP E108 15-Dec-2021 20-Dec-2021 0.25 116 hrs EHTR-FM hrs **Physical Tests: TDS by Gravimetry** HDPE E162 15-Dec-2021 21-Dec-2021 ✓ EV_EC_FLOW2_2021-12-15_NP 7 days 6 days Physical Tests: TSS by Gravimetry (Low Level) HDPE E160-L 15-Dec-2021 21-Dec-2021 ✓ EV_EC_FLOW2_2021-12-15_NP 7 days 6 days **Physical Tests: Turbidity by Nephelometry HDPE** EV_EC_FLOW2_2021-12-15_NP E121 15-Dec-2021 18-Dec-2021 3 days 1 3 days Total Metals : Total Chromium in Water by CRC ICPMS (Low Level) HDPE total (nitric acid) E420.Cr-L ✓ EV_EC_FLOW2_2021-12-15_NP 15-Dec-2021 23-Dec-2021 180 8 days days Total Metals: Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt) Pre-cleaned amber glass - total (lab preserved) E508-L ✓ EV EC FLOW2 2021-12-15 NP 15-Dec-2021 23-Dec-2021 28 days 8 days

Page : 6 of 13 Work Order : CG2106846

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Wild M. Futor						diddion.	riolaning airio oxooc	danoo ,	***************************************	riolanig riii
Analyte Group	Method	Sampling Date	Ext	raction / Pre	eparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid) EV_EC_FLOW2_2021-12-15_NP	E420	15-Dec-2021					23-Dec-2021	180 days	8 days	√

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

Rec. HT: ALS recommended hold time (see units).

 Page
 : 7 of 13

 Work Order
 : CG2106846

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Quality Control Sample Type			C	ount		Frequency (%))
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Acidity by Titration	E283	369891	1	20	5.0	5.0	1
Alkalinity Species by Titration	E290	372530	1	20	5.0	5.0	✓
Ammonia by Fluorescence	E298	369894	1	20	5.0	5.0	✓
Bromide in Water by IC (Low Level)	E235.Br-L	371383	1	20	5.0	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	371384	1	20	5.0	5.0	✓
Conductivity in Water	E100	372528	1	20	5.0	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	377071	1	20	5.0	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	380334	1	16	6.2	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	377072	1	20	5.0	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	369869	1	8	12.5	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	369930	1	20	5.0	5.0	✓
Fluoride in Water by IC	E235.F	371381	1	20	5.0	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	371379	1	20	5.0	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	371380	1	20	5.0	5.0	✓
ORP by Electrode	E125	373563	1	20	5.0	5.0	✓
pH by Meter	E108	372529	1	20	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	371382	1	20	5.0	5.0	✓
TDS by Gravimetry	E162	372522	1	20	5.0	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	374584	1	19	5.2	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	375014	1	20	5.0	5.0	✓
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	375468	1	19	5.2	5.0	✓
Total Metals in Water by CRC ICPMS	E420	374583	1	19	5.2	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	369872	1	9	11.1	5.0	✓
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	369765	1	20	5.0	5.0	✓
Turbidity by Nephelometry	E121	371557	1	20	5.0	5.0	✓
Laboratory Control Samples (LCS)							
Acidity by Titration	E283	369891	1	20	5.0	5.0	1
Alkalinity Species by Titration	E290	372530	1	20	5.0	5.0	✓
Ammonia by Fluorescence	E298	369894	1	20	5.0	5.0	√
Bromide in Water by IC (Low Level)	E235.Br-L	371383	1	20	5.0	5.0	√
Chloride in Water by IC (Low Level)	E235.CI-L	371384	1	20	5.0	5.0	✓
Conductivity in Water	E100	372528	1	20	5.0	5.0	√
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	377071	1	20	5.0	5.0	<u> </u>
Dissolved Mercury in Water by CVAAS	E509	380334	1	16	6.2	5.0	<u> </u>
Dissolved Metals in Water by CRC ICPMS	E421	377072	1	20	5.0	5.0	<u>√</u>
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	369869	1	8	12.5	5.0	<u> </u>
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	369930	1	20	5.0	5.0	√

 Page
 : 8 of 13

 Work Order
 : CG2106846

Turbidity by Nephelometry

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Water			ion: × = QC frequ				
Quality Control Sample Type		001.44		ount		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Control Samples (LCS) - Continued							
Fluoride in Water by IC	E235.F	371381	1	20	5.0	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	371379	1	20	5.0	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	371380	1	20	5.0	5.0	✓
ORP by Electrode	E125	373563	1	20	5.0	5.0	✓
pH by Meter	E108	372529	1	20	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	371382	1	20	5.0	5.0	✓
TDS by Gravimetry	E162	372522	1	20	5.0	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	374584	1	19	5.2	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	375014	1	20	5.0	5.0	✓
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	375468	1	19	5.2	5.0	✓
Total Metals in Water by CRC ICPMS	E420	374583	1	19	5.2	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	369872	1	9	11.1	5.0	✓
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	369765	1	20	5.0	5.0	✓
TSS by Gravimetry (Low Level)	E160-L	372524	1	20	5.0	5.0	✓
Turbidity by Nephelometry	E121	371557	1	20	5.0	5.0	1
Method Blanks (MB)							
Acidity by Titration	E283	369891	1	20	5.0	5.0	1
Alkalinity Species by Titration	E290	372530	1	20	5.0	5.0	1
Ammonia by Fluorescence	E298	369894	1	20	5.0	5.0	1
Bromide in Water by IC (Low Level)	E235.Br-L	371383	1	20	5.0	5.0	1
Chloride in Water by IC (Low Level)	E235.CI-L	371384	1	20	5.0	5.0	1
Conductivity in Water	E100	372528	1	20	5.0	5.0	1
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	377071	1	20	5.0	5.0	1
Dissolved Mercury in Water by CVAAS	E509	380334	1	16	6.2	5.0	1
Dissolved Metals in Water by CRC ICPMS	E421	377072	1	20	5.0	5.0	√
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	369869	1	8	12.5	5.0	1
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	369930	1	20	5.0	5.0	√
Fluoride in Water by IC	E235.F	371381	1	20	5.0	5.0	√
Nitrate in Water by IC (Low Level)	E235.NO3-L	371379	1	20	5.0	5.0	
Nitrite in Water by IC (Low Level)	E235.NO2-L	371380	1	20	5.0	5.0	1
Sulfate in Water by IC	E235.SO4	371382	1	20	5.0	5.0	1
TDS by Gravimetry	E162	372522	1	20	5.0	5.0	
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	374584	1	19	5.2	5.0	<u> </u>
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	375014	1	20	5.0	5.0	
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	375468	1	19	5.2	5.0	<u> </u>
Total Metals in Water by CRC ICPMS	E420	374583	1	19	5.2	5.0	√
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	369872	1	9	11.1	5.0	✓
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	369765	1	20	5.0	5.0	✓
TSS by Gravimetry (Low Level)	E160-L	372524	1	20	5.0	5.0	√
100 by Gravillotty (LOW LOVO)	E 10U-L	372324	<u>'</u>	20	5.0	0.0	✓

E121

371557

20

5.0

5.0

Page : 9 of 13 Work Order : CG2106846

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: **Water**Evaluation: **×** = *QC frequency outside specification*; ✓ = *QC frequency within specification*.

			40094	orroll caronal oper		a o moquement min	····· op o o ···· o a ti o	
Quality Control Sample Type				ount	Frequency (%)			
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation	
Matrix Spikes (MS)								
Ammonia by Fluorescence	E298	369894	1	20	5.0	5.0	✓	
Bromide in Water by IC (Low Level)	E235.Br-L	371383	1	20	5.0	5.0	✓	
Chloride in Water by IC (Low Level)	E235.CI-L	371384	1	20	5.0	5.0	✓	
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	377071	1	20	5.0	5.0	✓	
Dissolved Mercury in Water by CVAAS	E509	380334	1	16	6.2	5.0	✓	
Dissolved Metals in Water by CRC ICPMS	E421	377072	1	20	5.0	5.0	✓	
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	369869	1	8	12.5	5.0	✓	
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U	369930	1	20	5.0	5.0	✓	
Fluoride in Water by IC	E235.F	371381	1	20	5.0	5.0	✓	
Nitrate in Water by IC (Low Level)	E235.NO3-L	371379	1	20	5.0	5.0	✓	
Nitrite in Water by IC (Low Level)	E235.NO2-L	371380	1	20	5.0	5.0	✓	
Sulfate in Water by IC	E235.SO4	371382	1	20	5.0	5.0	✓	
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	374584	1	19	5.2	5.0	✓	
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	375014	1	20	5.0	5.0	✓	
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L	375468	1	19	5.2	5.0	✓	
Total Metals in Water by CRC ICPMS	E420	374583	1	19	5.2	5.0	✓	
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	369872	1	9	11.1	5.0	✓	
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U	369765	1	20	5.0	5.0	√	
						_		

Page : 10 of 13 Work Order : CG2106846

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water
	Calgary - Environmental			sample. Conductivity measurements are temperature-compensated to 25°C.
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally 20 ± 5°C). For high accuracy test results,
	Calgary - Environmental			pH should be measured in the field within the recommended 15 minute hold time.
Turbidity by Nephelometry	E121	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light scatter under defined conditions.
	Calgary - Environmental			
ORP by Electrode	E125 Calgary - Environmental	Water	ASTM D1498 (mod)	Oxidation redution potential is reported as the oxidation-reduction potential of the platinum metal-reference electrode employed, measured in mV. For high accuracy test
TSS by Gravimetry (Low Level)	0 7	Water	APHA 2540 D (mod)	results, it is recommended that this analysis be conducted in the field.
133 by Gravimenty (Low Level)	E160-L	vvalci	AFTIA 2540 D (IIIod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at 104 ± 1°C, with gravimetric measurement of the
	Calgary - Environmental			filtered solids. Samples containing very high dissolved solid content (i.e. seawaters,
				brackish waters) may produce a positive bias by this method. Alternate analysis
				methods are available for these types of samples.
TDS by Gravimetry	E162	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, with evaporation of the filtrate at 180 ± 2°C for 16 hours or to constant weight,
	Calgary - Environmental			with gravimetric measurement of the residue.
Bromide in Water by IC (Low Level)	E235.Br-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Calgary - Environmental			
Chloride in Water by IC (Low Level)	E235.CI-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Calgary - Environmental			
Fluoride in Water by IC	E235.F	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Calgary - Environmental			
Nitrite in Water by IC (Low Level)	E235.NO2-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Calgary - Environmental			
Nitrate in Water by IC (Low Level)	E235.NO3-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Calgary - Environmental			
Sulfate in Water by IC	E235.SO4	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Calgary - Environmental			
Acidity by Titration	E283	Water	APHA 2310 B (mod)	Acidity is determined by potentiometric titration to pH 8.3
	Calgary - Environmental			

Page : 11 of 13 Work Order : CG2106846

Client : Teck Coal Limited

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Alkalinity Species by Titration	E290 Calgary - Environmental	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.
Ammonia by Fluorescence	E298 Calgary - Environmental	Water	J. Environ. Monit., 2005, 7, 37-42 (mod)	Ammonia in water is analyzed by flow-injection analysis with fluorescence detection after reaction with orthophthaldialdehyde (OPA).
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318 Vancouver - Environmental	Water	APHA 4500-Norg D (mod)	Total Kjeldahl Nitrogen is determined using block digestion followed by flow-injection analysis with fluorescence detection.
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L Calgary - Environmental	Water	APHA 5310 B (mod)	Total Organic Carbon (Non-Purgeable), also known as NPOC (total), is a direct measurement of TOC after an acidified sample has been purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of total carbon (TC) is comprised of IC (which is common), this method is more accurate and more reliable than the TOC by subtraction method (i.e. TC minus TIC).
Dissolved Organic Carbon by Combustion (Low Level)	E358-L Calgary - Environmental	Water	APHA 5310 B (mod)	Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of DC (dissolved carbon) is comprised of IC (which is common), this method is more accurate and more reliable than the DOC by subtraction method (i.e. DC minus DIC).
Total Phosphorus by Colourimetry (Ultra Trace)	E372-U Calgary - Environmental	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level)	E378-U Calgary - Environmental	Water	APHA 4500-P F (mod)	Dissolved Orthophosphate is determined colourimetrically on a flow analyzer on a sample that has been lab or field filtered through a 0.45 micron membrane filter. Field filtration is recommended to ensure test results represent conditions at time of sampling.
Total Metals in Water by CRC ICPMS	E420 Vancouver - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L Vancouver - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS.
Dissolved Metals in Water by CRC ICPMS	E421 Vancouver - Environmental	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

Page : 12 of 13 Work Order : CG2106846

Client : Teck Coal Limited

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L Vancouver - Environmental	Water	APHA 3030 B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS
Total Mercury in Water by CVAFS (Low Level, LOR = 0.5 ppt)	E508-L Vancouver - Environmental	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAFS.
Dissolved Mercury in Water by CVAAS	E509 Vancouver - Environmental	Water	APHA 3030B/EPA 1631E (mod)	Water samples are filtered (0.45 um), preserved with HCl, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.
Dissolved Hardness (Calculated)	EC100 Vancouver - Environmental	Water	APHA 2340B	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations.
Ion Balance using Dissolved Metals	EC101 Calgary - Environmental	Water	APHA 1030E	Cation Sum, Anion Sum, and Ion Balance are calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis). Dissolved species are used where available. Minor ions are included where data is present. Ion Balance cannot be calculated accurately for waters with very low electrical conductivity (EC).
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298 Calgary - Environmental	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
Digestion for TKN in water	EP318 Vancouver - Environmental	Water	APHA 4500-Norg D (mod)	Samples are digested using block digestion with Copper Sulfate Digestion Reagent.
Preparation for Total Organic Carbon by Combustion	EP355 Calgary - Environmental	Water		Preparation for Total Organic Carbon by Combustion
Preparation for Dissolved Organic Carbon for Combustion	EP358 Calgary - Environmental	Water	APHA 5310 B (mod)	Preparation for Dissolved Organic Carbon
Digestion for Total Phosphorus in water	EP372 Calgary - Environmental	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
Dissolved Metals Water Filtration	EP421 Vancouver - Environmental	Water	АРНА 3030В	Water samples are filtered (0.45 um), and preserved with HNO3.

Page : 13 of 13 Work Order : CG2106846

Client : Teck Coal Limited

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Mercury Water Filtration	EP509	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HCl.
	Vancouver -			
	Environmental			

QUALITY CONTROL REPORT

Work Order : CG2106846 Page : 1 of 17

 Client
 : Teck Coal Limited
 Laboratory
 : Calgary - Environmental

 Contact
 : Allie Ferguson
 Account Manager
 : Lyudmyla Shvets

Address :421 Pine Avenue Address :2559 29th Street NE

Sparwood BC Canada Calgary, Alberta Canada T1Y 7B5
---Telephone :+1 403 407 1800

Laboratory Department

Telephone :---- Telephone :+1 403 407 1800

Project :REGIONAL EFFECTS PROGRAM Date Samples Received :16-Dec-2021 09:00

Project : REGIONAL EFFECTS PROGRAM Date Samples Received : 16-Dec-2021 09:00
PO : VPO00748510 Date Analysis Commenced : 16-Dec-2021

C-O-C number : DECEMBER EVO LAEMP 2021 Issue Date : 05-Jan-2022 11:41

Sampler : AMC
Site :----

Position

Quote number : Teck Coal Master Quote

No. of samples received : 1

No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

- Matrix Spike (MS) Report; Recovery and Acceptance Limits
- Reference Material (RM) Report; Recovery and Acceptance Limits
- Method Blank (MB) Report; Recovery and Acceptance Limits
- Laboratory Control Sample (LCS) Report; Recovery and Acceptance Limits

Signatories

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

3		The state of the s	
Anthony Calero	Team Leader - Inorganics	Inorganics, Calgary, Alberta	
Caleb Deroche	Lab Analyst	Metals, Burnaby, British Columbia	
Dee Lee	Analyst	Metals, Burnaby, British Columbia	
Elke Tabora		Inorganics, Calgary, Alberta	
Hannah Phung	Lab Assistant	Inorganics, Calgary, Alberta	
Harpreet Chawla	Team Leader - Inorganics	Inorganics, Calgary, Alberta	
Ilnaz Badbezanchi	Team Leader - Metals preparation	Metals, Burnaby, British Columbia	
Kevin Duarte	Supervisor - Metals ICP Instrumentation	Metals, Burnaby, British Columbia	
Maria Tuguinay	Lab Assistant	Inorganics, Calgary, Alberta	
Miles Gropen	Department Manager - Inorganics	Inorganics, Burnaby, British Columbia	
Parker Sgarbossa	Laboratory Analyst	Inorganics, Calgary, Alberta	
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta	
Sara Niroomand		Inorganics, Calgary, Alberta	

 Page
 : 2 of 17

 Work Order
 : CG2106846

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percentage Difference

= Indicates a QC result that did not meet the ALS DQO.

 Page
 : 3 of 17

 Work Order
 : CG2106846

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test specific).

ub-Matrix: Water							Labora	ntory Duplicate (D	иР) кероп		
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Physical Tests (QC	Lot: 369891)										
CG2106834-027	Anonymous	acidity (as CaCO3)		E283	10.0	mg/L	16.5	14.1	2.4	Diff <2x LOR	
Physical Tests (QC	Lot: 371557)										
CG2106834-017	Anonymous	turbidity		E121	0.10	NTU	7.32	7.36	0.490%	15%	
Physical Tests (QC	Lot: 372522)										
CG2106834-016	Anonymous	solids, total dissolved [TDS]		E162	20	mg/L	1670	1700	1.60%	20%	
Physical Tests (QC	Lot: 372528)										
CG2106842-004	Anonymous	conductivity		E100	2.0	μS/cm	1960	1970	0.204%	10%	
Physical Tests (QC	Lot: 372529)										
CG2106842-004	Anonymous	рН		E108	0.10	pH units	7.76	7.77	0.129%	4%	
Physical Tests (QC	Lot: 372530)										
CG2106842-004	Anonymous	alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	484	478	1.18%	20%	
		alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, total (as CaCO3)		E290	1.0	mg/L	484	478	1.18%	20%	
Physical Tests (QC	Lot: 373563)										
CG2106834-027	Anonymous	oxidation-reduction potential [ORP]		E125	0.10	mV	416	416	0.0721%	15%	
Anions and Nutrion	ts (QC Lot: 369765)										
CG2106834-022	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0079	0.0072	0.0006	Diff <2x LOR	
Anions and Nutrion	ts (QC Lot: 369894)					-					
CG2106834-027	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0711	0.0722	1.54%	20%	
Anions and Nutrion	ts (QC Lot: 369930)					-					
CG2106840-002	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	0.0012	0.0013	0.00008	Diff <2x LOR	
Anions and Nutrion	ts (QC Lot: 371379)					-					
CG2106832-001	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	0.0250	mg/L	5.50	5.31	3.54%	20%	
Amiana and Nutrian	·	mate (ac 11)				<u> </u>				-	
CG2106832-001	ts (QC Lot: 371380) Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.0050	mg/L	0.0124	0.0075	0.0049	Diff <2x LOR	
	,	mune (as iv)	11101 00 0	2230::102 2	0.0000	9,2	0.0121	0.0010	0.0010	Diii Ex Edit	
Anions and Nutrien CG2106832-001	ts (QC Lot: 371381) Anonymous	fluoride	16984-48-8	E235.F	0.100	mg/L	0.133	0.112	0.020	Diff <2x LOR	
	•	nuonue	10304-40-0		0.100	mg/L	0.100	0.112	0.020	DIII SEA LOIK	
Anions and Nutrien CG2106832-001	ts (QC Lot: 371382) Anonymous	guifete (ee SOA)	14808-79-8	E235.SO4	1.50	mg/L	831	843	1.51%	20%	
JGZ 10003Z-00 I	Anonymous	sulfate (as SO4)	14000-19-8	E235.5U4	1.50	mg/L	031	043	1.5170	∠∪70	

 Page
 : 4 of 17

 Work Order
 : CG2106846

 Client
 : Teck Coal Limited

sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Anions and Nutrient	ts (QC Lot: 371383) - c	ontinued									
CG2106832-001	Anonymous	bromide	24959-67-9	E235.Br-L	0.250	mg/L	<0.250	<0.250	0	Diff <2x LOR	
Anions and Nutrient	ts (QC Lot: 371384)										
CG2106832-001	Anonymous	chloride	16887-00-6	E235.CI-L	0.50	mg/L	1.04	1.04	0.002	Diff <2x LOR	
Anions and Nutrient	ts (QC Lot: 375014)										
CG2106846-001	EV_EC_FLOW2_2021-12- 15_NP	Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	<0.050	# 0.175	0.125	Diff <2x LOR	TKND
Organic / Inorganic	Carbon (QC Lot: 36986	9)									
CG2106846-001	EV_EC_FLOW2_2021-12- 15_NP	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	0.83	0.88	0.04	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 36987	2)									
CG2106846-001	EV_EC_FLOW2_2021-12- 15_NP	carbon, total organic [TOC]		E355-L	0.50	mg/L	0.86	0.74	0.12	Diff <2x LOR	
otal Metals (QC Lo	ot: 374583)										
CG2106788-001	Anonymous	aluminum, total	7429-90-5	E420	0.0060	mg/L	<0.0060	<0.0060	0	Diff <2x LOR	
		antimony, total	7440-36-0	E420	0.00020	mg/L	0.00245	0.00253	3.25%	20%	
		arsenic, total	7440-38-2	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		barium, total	7440-39-3	E420	0.00020	mg/L	0.0204	0.0199	2.24%	20%	
		beryllium, total	7440-41-7	E420	0.040	mg/L	<0.040 µg/L	<0.000040	0	Diff <2x LOR	
		bismuth, total	7440-69-9	E420	0.000100	mg/L	<0.000100	<0.000100	0	Diff <2x LOR	
		boron, total	7440-42-8	E420	0.020	mg/L	0.130	0.135	0.006	Diff <2x LOR	
		cadmium, total	7440-43-9	E420	0.0100	mg/L	0.942 μg/L	0.000947	0.510%	20%	
		calcium, total	7440-70-2	E420	0.100	mg/L	585	624	6.37%	20%	
		cobalt, total	7440-48-4	E420	0.20	mg/L	85.0 μg/L	0.0869	2.24%	20%	
		copper, total	7440-50-8	E420	0.00100	mg/L	<0.00100	<0.00100	0	Diff <2x LOR	
		iron, total	7439-89-6	E420	0.020	mg/L	0.078	0.078	0.0002	Diff <2x LOR	
		lead, total	7439-92-1	E420	0.000100	mg/L	0.000135	0.000130	0.000006	Diff <2x LOR	
		lithium, total	7439-93-2	E420	0.0020	mg/L	1.24	1.26	2.14%	20%	
		magnesium, total	7439-95-4	E420	0.0100	mg/L	251	255	1.65%	20%	
		manganese, total	7439-96-5	E420	0.00020	mg/L	0.570	0.578	1.37%	20%	
		molybdenum, total	7439-98-7	E420	0.000100	mg/L	0.00480	0.00499	3.81%	20%	
		nickel, total	7440-02-0	E420	0.00100	mg/L	0.489	0.501	2.44%	20%	
		potassium, total	7440-09-7	E420	0.100	mg/L	22.1	22.0	0.450%	20%	
		selenium, total	7782-49-2	E420	0.100	mg/L	29.3 μg/L	0.0308	5.12%	20%	
		silicon, total	7440-21-3	E420	0.20	mg/L	3.20	3.20	0.0348%	20%	
		silver, total	7440-22-4	E420	0.000020	mg/L	<0.000020	<0.000020	0	Diff <2x LOR	
		sodium, total	7440-23-5	E420	0.100	mg/L	37.0	38.8	4.89%	20%	
		strontium, total	7440-24-6	E420	0.00040	mg/L	1.59	1.66	4.28%	20%	

 Page
 : 5 of 17

 Work Order
 : CG2106846

 Client
 : Teck Coal Limited

Sub-Matrix: Water						Laboratory Duplicate (DUP) Report						
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie	
otal Metals (QC Lo	ot: 374583) - continued											
CG2106788-001	Anonymous	sulfur, total	7704-34-9	E420	1.00	mg/L	470	484	2.99%	20%		
		thallium, total	7440-28-0	E420	0.000020	mg/L	0.000218	0.000215	1.53%	20%		
		tin, total	7440-31-5	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR		
		titanium, total	7440-32-6	E420	0.00060	mg/L	<0.00060	<0.00060	0	Diff <2x LOR		
		uranium, total	7440-61-1	E420	0.000020	mg/L	0.0363	0.0358	1.50%	20%		
		vanadium, total	7440-62-2	E420	0.00100	mg/L	<0.00100	<0.00100	0	Diff <2x LOR		
		zinc, total	7440-66-6	E420	0.0060	mg/L	0.139	0.140	0.458%	20%		
otal Metals (QC Lo	ot: 374584)											
CG2106788-001	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR		
otal Metals (QC Lo	ot: 375468)											
CG2106846-001	EV_EC_FLOW2_2021-12- 15 NP	mercury, total	7439-97-6	E508-L	0.50	ng/L	<0.50	<0.50	0	Diff <2x LOR		
Dissolved Metals (C	QC Lot: 377071)											
CG2106834-020	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00017	0.00018	0.000006	Diff <2x LOR		
issolved Metals (C	QC Lot: 377072)											
CG2106834-020	Anonymous	aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR		
		antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00023	0.00023	0.000005	Diff <2x LOR		
		arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00061	0.00060	0.00001	Diff <2x LOR		
		barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0132	0.0129	1.89%	20%		
		beryllium, dissolved	7440-41-7	E421	0.020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR		
		cadmium, dissolved	7440-43-9	E421	0.0050	mg/L	0.0058 μg/L	0.0000077	0.0000019	Diff <2x LOR		
		calcium, dissolved	7440-70-2	E421	0.050	mg/L	324	313	3.46%	20%		
		copper, dissolved	7440-50-8	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR		
		iron, dissolved	7439-89-6	E421	0.010	mg/L	0.236	0.235	0.444%	20%		
		lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0745	0.0718	3.65%	20%		
		magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	173	166	3.88%	20%		
		manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.257	0.250	2.73%	20%		
		molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00541	0.00565	4.38%	20%		
		nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.103	0.101	2.11%	20%		
		potassium, dissolved	7440-09-7	E421	0.050	mg/L	5.69	5.50	3.38%	20%		
		selenium, dissolved	7782-49-2	E421	0.050	mg/L	1.37 µg/L	0.00136	1.06%	20%		
		silicon, dissolved	7440-21-3	E421	0.050	mg/L	3.16	3.18	0.680%	20%		
		silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR		
		sodium, dissolved	7440-23-5	E421	0.050	mg/L	5.96	5.76	3.37%	20%		
		strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.400	0.398	0.577%	20%		
		sulfur, dissolved	7704-34-9	E421	0.50	mg/L	332	334	0.432%	20%		

 Page
 : 6 of 17

 Work Order
 : CG2106846

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water	Sub-Matrix: Water						Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier		
Dissolved Metals (C	C Lot: 377072) - continu	ued											
CG2106834-020	Anonymous	thallium, dissolved	7440-28-0	E421	0.000010	mg/L	0.000060	0.000057	0.000002	Diff <2x LOR			
		titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR			
		uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.0142	0.0136	4.40%	20%			
		vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR			
		zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0281	0.0272	3.26%	20%			
Dissolved Metals (QC Lot: 380334)													
CG2106842-001	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR			

Qualifiers

Qualifier	Description
-----------	-------------

TKND TKN duplication was poor due to interference from high nitrate, which causes negative bias on TKN.

 Page
 : 7 of 17

 Work Order
 : CG2106846

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 369891)					
acidity (as CaCO3)	E283	2	mg/L	2.0	
Physical Tests (QCLot: 371557)					
turbidity	E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 372522)					
solids, total dissolved [TDS]	E162	10	mg/L	<10	
Physical Tests (QCLot: 372524)					
solids, total suspended [TSS]	E160-L	1	mg/L	<1.0	
Physical Tests (QCLot: 372528)					
conductivity	E100	1	μS/cm	1.2	
Physical Tests (QCLot: 372530)					
alkalinity, bicarbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, carbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, hydroxide (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
Anions and Nutrients (QCLot: 369765)					
phosphorus, total	7723-14-0 E372-U	0.002	mg/L	<0.0020	
Anions and Nutrients (QCLot: 369894)					
ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 369930)					
phosphate, ortho-, dissolved (as P)	14265-44-2 E378-U	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 371379)					
nitrate (as N)	14797-55-8 E235.NO3-L	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 371380)					
nitrite (as N)	14797-65-0 E235.NO2-L	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 371381)					
fluoride	16984-48-8 E235.F	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 371382)					
sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 371383)					
bromide	24959-67-9 E235.Br-L	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 371384)					
chloride	16887-00-6 E235.CI-L	0.1	mg/L	<0.10	
Anions and Nutrients (QCLot: 375014)					

 Page
 : 8 of 17

 Work Order
 : CG2106846

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Anions and Nutrients (QCLot: 37501					
Kjeldahl nitrogen, total [TKN]	E318	0.05	mg/L	<0.050	
Organic / Inorganic Carbon (QCLot:					
carbon, dissolved organic [DOC]	E358-L	0.5	mg/L	<0.50	
Organic / Inorganic Carbon (QCLot:					
carbon, total organic [TOC]	E355-L	0.5	mg/L	<0.50	
Total Metals (QCLot: 374583)					
aluminum, total	7429-90-5 E420	0.003	mg/L	<0.0030	
antimony, total	7440-36-0 E420	0.0001	mg/L	<0.00010	
arsenic, total	7440-38-2 E420	0.0001	mg/L	<0.00010	
parium, total	7440-39-3 E420	0.0001	mg/L	<0.00010	
peryllium, total	7440-41-7 E420	0.00002	mg/L	<0.000020	
pismuth, total	7440-69-9 E420	0.00005	mg/L	<0.000050	
poron, total	7440-42-8 E420	0.01	mg/L	<0.010	
cadmium, total	7440-43-9 E420	0.000005	mg/L	<0.000050	
calcium, total	7440-70-2 E420	0.05	mg/L	<0.050	
obalt, total	7440-48-4 E420	0.0001	mg/L	<0.00010	
copper, total	7440-50-8 E420	0.0005	mg/L	<0.00050	
ron, total	7439-89-6 E420	0.01	mg/L	<0.010	
ead, total	7439-92-1 E420	0.00005	mg/L	<0.000050	
thium, total	7439-93-2 E420	0.001	mg/L	<0.0010	
nagnesium, total	7439-95-4 E420	0.005	mg/L	<0.0050	
nanganese, total	7439-96-5 E420	0.0001	mg/L	<0.00010	
nolybdenum, total	7439-98-7 E420	0.00005	mg/L	<0.000050	
ickel, total	7440-02-0 E420	0.0005	mg/L	<0.00050	
ootassium, total	7440-09-7 E420	0.05	mg/L	<0.050	
elenium, total	7782-49-2 E420	0.00005	mg/L	<0.000050	
ilicon, total	7440-21-3 E420	0.1	mg/L	<0.10	
silver, total	7440-22-4 E420	0.00001	mg/L	<0.000010	
odium, total	7440-23-5 E420	0.05	mg/L	<0.050	
trontium, total	7440-24-6 E420	0.0002	mg/L	<0.00020	
ulfur, total	7704-34-9 E420	0.5	mg/L	<0.50	
nallium, total	7440-28-0 E420	0.00001	mg/L	<0.000010	
in, total	7440-31-5 E420	0.0001	mg/L	<0.00010	
itanium, total	7440-32-6 E420	0.0003	mg/L	<0.00030	
uranium, total	7440-61-1 E420	0.00001	mg/L	<0.00010	
vanadium, total	7440-62-2 E420	0.0005	mg/L	<0.00050	

 Page
 : 9 of 17

 Work Order
 : CG2106846

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 374583) - contin	ued				
zinc, total	7440-66-6 E420	0.003	mg/L	<0.0030	
Total Metals (QCLot: 374584)					
chromium, total	7440-47-3 E420.Cr-L	0.0001	mg/L	<0.00010	
Total Metals (QCLot: 375468)					
mercury, total	7439-97-6 E508-L	0.5	ng/L	<0.50	
Dissolved Metals (QCLot: 377071)					
chromium, dissolved	7440-47-3 E421.Cr-L	0.0001	mg/L	<0.00010	
Dissolved Metals (QCLot: 377072)					
aluminum, dissolved	7429-90-5 E421	0.001	mg/L	<0.0010	
antimony, dissolved	7440-36-0 E421	0.0001	mg/L	<0.00010	
arsenic, dissolved	7440-38-2 E421	0.0001	mg/L	<0.00010	
barium, dissolved	7440-39-3 E421	0.0001	mg/L	<0.00010	
beryllium, dissolved	7440-41-7 E421	0.00002	mg/L	<0.000020	
cadmium, dissolved	7440-43-9 E421	0.000005	mg/L	<0.000050	
calcium, dissolved	7440-70-2 E421	0.05	mg/L	<0.050	
copper, dissolved	7440-50-8 E421	0.0002	mg/L	<0.00020	
iron, dissolved	7439-89-6 E421	0.01	mg/L	<0.010	
lithium, dissolved	7439-93-2 E421	0.001	mg/L	<0.0010	
magnesium, dissolved	7439-95-4 E421	0.005	mg/L	<0.0050	
manganese, dissolved	7439-96-5 E421	0.0001	mg/L	<0.00010	
molybdenum, dissolved	7439-98-7 E421	0.00005	mg/L	<0.000050	
nickel, dissolved	7440-02-0 E421	0.0005	mg/L	<0.00050	
potassium, dissolved	7440-09-7 E421	0.05	mg/L	<0.050	
selenium, dissolved	7782-49-2 E421	0.00005	mg/L	<0.000050	
silicon, dissolved	7440-21-3 E421	0.05	mg/L	<0.050	
silver, dissolved	7440-22-4 E421	0.00001	mg/L	<0.000010	
sodium, dissolved	7440-23-5 E421	0.05	mg/L	<0.050	
strontium, dissolved	7440-24-6 E421	0.0002	mg/L	<0.00020	
sulfur, dissolved	7704-34-9 E421	0.5	mg/L	<0.50	
thallium, dissolved	7440-28-0 E421	0.00001	mg/L	<0.000010	
titanium, dissolved	7440-32-6 E421	0.0003	mg/L	<0.00030	
uranium, dissolved	7440-61-1 E421	0.00001	mg/L	<0.000010	
vanadium, dissolved	7440-62-2 E421	0.0005	mg/L	<0.00050	
zinc, dissolved	7440-66-6 E421	0.001	mg/L	<0.0010	
Dissolved Metals (QCLot: 380334)					
mercury, dissolved	7439-97-6 E509	0.00005	mg/L	<0.000050	

 Page
 : 10 of 17

 Work Order
 : CG2106846

 Client
 : Teck Coal Limited

Page : 11 of 17 Work Order : CG2106846 Client

: Teck Coal Limited

: REGIONAL EFFECTS PROGRAM Project

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water					Laboratory Cor	ntrol Sample (LCS)	Report	
				Spike	Recovery (%)	Recovery	Limits (%)	
Analyte CAS Nun	ber Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 369891)								
acidity (as CaCO3)	E283	2	mg/L	50 mg/L	108	85.0	115	
Physical Tests (QCLot: 371557)								
turbidity	E121	0.1	NTU	200 NTU	101	85.0	115	
Physical Tests (QCLot: 372522)								
solids, total dissolved [TDS]	E162	10	mg/L	1000 mg/L	90.9	85.0	115	
Physical Tests (QCLot: 372524)								
solids, total suspended [TSS]	E160-L	1	mg/L	150 mg/L	91.2	85.0	115	
Physical Tests (QCLot: 372528)								
conductivity	E100	1	μS/cm	146.9 μS/cm	97.1	90.0	110	
Physical Tests (QCLot: 372529)								
рН	E108		pH units	7 pH units	100	98.6	101	
Physical Tests (QCLot: 372530)								
alkalinity, total (as CaCO3)	E290	1	mg/L	500 mg/L	104	85.0	115	
Physical Tests (QCLot: 373563)								
oxidation-reduction potential [ORP]	E125		mV	220 mV	100	95.4	104	
Anions and Nutrients (QCLot: 369765)								
phosphorus, total 7723-	4-0 E372-U	0.002	mg/L	8.02 mg/L	97.5	80.0	120	
Anions and Nutrients (QCLot: 369894)								
ammonia, total (as N) 7664-	1-7 E298	0.005	mg/L	0.2 mg/L	106	85.0	115	
Anions and Nutrients (QCLot: 369930)								1
phosphate, ortho-, dissolved (as P) 14265-	4-2 E378-U	0.001	mg/L	0.02 mg/L	95.7	80.0	120	
Anions and Nutrients (QCLot: 371379)								1
nitrate (as N) 14797-	5-8 E235.NO3-L	0.005	mg/L	2.5 mg/L	103	90.0	110	
Anions and Nutrients (QCLot: 371380)								
nitrite (as N) 14797-	5-0 E235.NO2-L	0.001	mg/L	0.5 mg/L	103	90.0	110	
Anions and Nutrients (QCLot: 371381)								
fluoride 16984-	8-8 E235.F	0.02	mg/L	1 mg/L	101	90.0	110	
Anions and Nutrients (QCLot: 371382)								
sulfate (as SO4) 14808-	9-8 E235.SO4	0.3	mg/L	100 mg/L	101	90.0	110	
Anions and Nutrients (QCLot: 371383)								1
bromide 24959-	7-9 E235.Br-L	0.05	mg/L	0.5 mg/L	102	85.0	115	
Anions and Nutrients (QCLot: 371384)								

 Page
 : 12 of 17

 Work Order
 : CG2106846

 Client
 : Teck Coal Limited

Sub-Matrix: Water						Laboratory Co	ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number Meth	hod	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Anions and Nutrients (QCLot: 371384)	- continued								
chloride	16887-00-6 E235	5.CI-L	0.1	mg/L	100 mg/L	101	90.0	110	
Anions and Nutrients (QCLot: 375014)									
Kjeldahl nitrogen, total [TKN]	E318	8	0.05	mg/L	4 mg/L	98.4	75.0	125	
Organic / Inorganic Carbon (QCLot: 36	9869)								
carbon, dissolved organic [DOC]	E358	8-L	0.5	mg/L	10 mg/L	86.3	80.0	120	
Organic / Inorganic Carbon (QCLot: 36	9872)								1
carbon, total organic [TOC]	E355	5-L	0.5	mg/L	10 mg/L	89.1	80.0	120	
Total Metals (QCLot: 374583)									1
aluminum, total	7429-90-5 E420	0	0.003	mg/L	2 mg/L	103	80.0	120	
antimony, total	7440-36-0 E420	0	0.0001	mg/L	1 mg/L	105	80.0	120	
arsenic, total	7440-38-2 E420	0	0.0001	mg/L	1 mg/L	101	80.0	120	
barium, total	7440-39-3 E420	0	0.0001	mg/L	0.25 mg/L	104	80.0	120	
beryllium, total	7440-41-7 E420	0	0.00002	mg/L	0.1 mg/L	98.8	80.0	120	
bismuth, total	7440-69-9 E420	0	0.00005	mg/L	1 mg/L	97.8	80.0	120	
boron, total	7440-42-8 E420	0	0.01	mg/L	1 mg/L	96.6	80.0	120	
cadmium, total	7440-43-9 E420	0	0.000005	mg/L	0.1 mg/L	99.5	80.0	120	
calcium, total	7440-70-2 E420	0	0.05	mg/L	50 mg/L	101	80.0	120	
cobalt, total	7440-48-4 E420	0	0.0001	mg/L	0.25 mg/L	98.2	80.0	120	
copper, total	7440-50-8 E420	0	0.0005	mg/L	0.25 mg/L	98.5	80.0	120	
iron, total	7439-89-6 E420	0	0.01	mg/L	1 mg/L	101	80.0	120	
lead, total	7439-92-1 E420	0	0.00005	mg/L	0.5 mg/L	97.2	80.0	120	
lithium, total	7439-93-2 E420	0	0.001	mg/L	0.25 mg/L	102	80.0	120	
magnesium, total	7439-95-4 E420	0	0.005	mg/L	50 mg/L	97.7	80.0	120	
manganese, total	7439-96-5 E420	0	0.0001	mg/L	0.25 mg/L	101	80.0	120	
molybdenum, total	7439-98-7 E420	0	0.00005	mg/L	0.25 mg/L	102	80.0	120	
nickel, total	7440-02-0 E420	0	0.0005	mg/L	0.5 mg/L	97.9	80.0	120	
potassium, total	7440-09-7 E420	0	0.05	mg/L	50 mg/L	102	80.0	120	
selenium, total	7782-49-2 E420		0.00005	mg/L	1 mg/L	99.0	80.0	120	
silicon, total	7440-21-3 E420		0.1	mg/L	10 mg/L	100.0	80.0	120	
silver, total	7440-22-4 E420		0.00001	mg/L	0.1 mg/L	92.2	80.0	120	
sodium, total	7440-23-5 E420		0.05	mg/L	50 mg/L	104	80.0	120	
strontium, total	7440-24-6 E420		0.0002	mg/L	0.25 mg/L	108	80.0	120	
sulfur, total	7704-34-9 E420		0.5	mg/L	50 mg/L	95.3	80.0	120	
thallium, total	7440-28-0 E420		0.00001	mg/L	1 mg/L	103	80.0	120	
tin, total	7440-31-5 E420		0.0001	mg/L	0.5 mg/L	97.9	80.0	120	
un, total	7440 01-0 2420	•	0.0001	1119/12	0.5 mg/L	6.16	00.0	120	

 Page
 : 13 of 17

 Work Order
 : CG2106846

 Client
 : Teck Coal Limited

Sub-Matrix: Water	Laboratory Control Sample (LCS) Report							
				Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Total Metals (QCLot: 374583) - continue	d							
titanium, total	7440-32-6 E420	0.0003	mg/L	0.25 mg/L	100	80.0	120	
uranium, total	7440-61-1 E420	0.00001	mg/L	0.005 mg/L	95.8	80.0	120	
vanadium, total	7440-62-2 E420	0.0005	mg/L	0.5 mg/L	101	80.0	120	
zinc, total	7440-66-6 E420	0.003	mg/L	0.5 mg/L	100	80.0	120	
Total Metals (QCLot: 374584)						·		
chromium, total	7440-47-3 E420.Cr-L	0.0001	mg/L	0.25 mg/L	99.6	80.0	120	
Total Metals (QCLot: 375468)						,		1
mercury, total	7439-97-6 E508-L	0.5	ng/L	5 ng/L	106	80.0	120	
Dissolved Metals (QCLot: 377071)								
chromium, dissolved	7440-47-3 E421.Cr-L	0.0001	mg/L	0.25 mg/L	105	80.0	120	
Dissolved Metals (QCLot: 377072)						·		
aluminum, dissolved	7429-90-5 E421	0.001	mg/L	2 mg/L	106	80.0	120	
antimony, dissolved	7440-36-0 E421	0.0001	mg/L	1 mg/L	95.2	80.0	120	
arsenic, dissolved	7440-38-2 E421	0.0001	mg/L	1 mg/L	102	80.0	120	
barium, dissolved	7440-39-3 E421	0.0001	mg/L	0.25 mg/L	102	80.0	120	
beryllium, dissolved	7440-41-7 E421	0.00002	mg/L	0.1 mg/L	105	80.0	120	
cadmium, dissolved	7440-43-9 E421	0.000005	mg/L	0.1 mg/L	103	80.0	120	
calcium, dissolved	7440-70-2 E421	0.05	mg/L	50 mg/L	99.9	80.0	120	
copper, dissolved	7440-50-8 E421	0.0002	mg/L	0.25 mg/L	102	80.0	120	
iron, dissolved	7439-89-6 E421	0.01	mg/L	1 mg/L	95.6	80.0	120	
lithium, dissolved	7439-93-2 E421	0.001	mg/L	0.25 mg/L	101	80.0	120	
magnesium, dissolved	7439-95-4 E421	0.005	mg/L	50 mg/L	91.1	80.0	120	
manganese, dissolved	7439-96-5 E421	0.0001	mg/L	0.25 mg/L	105	80.0	120	
molybdenum, dissolved	7439-98-7 E421	0.00005	mg/L	0.25 mg/L	99.7	80.0	120	
nickel, dissolved	7440-02-0 E421	0.0005	mg/L	0.5 mg/L	101	80.0	120	
potassium, dissolved	7440-09-7 E421	0.05	mg/L	50 mg/L	104	80.0	120	
selenium, dissolved	7782-49-2 E421	0.00005	mg/L	1 mg/L	99.0	80.0	120	
silicon, dissolved	7440-21-3 E421	0.05	mg/L	10 mg/L	99.7	80.0	120	
silver, dissolved	7440-22-4 E421	0.00001	mg/L	0.1 mg/L	88.9	80.0	120	
sodium, dissolved	7440-23-5 E421	0.05	mg/L	50 mg/L	103	80.0	120	
strontium, dissolved	7440-24-6 E421	0.0002	mg/L	0.25 mg/L	97.5	80.0	120	
sulfur, dissolved	7704-34-9 E421	0.5	mg/L	50 mg/L	99.9	80.0	120	
thallium, dissolved	7440-28-0 E421	0.00001	mg/L	1 mg/L	96.1	80.0	120	
titanium, dissolved	7440-32-6 E421	0.0003	mg/L	0.25 mg/L	93.5	80.0	120	
uranium, dissolved	7440-61-1 E421	0.00001	mg/L	0.005 mg/L	104	80.0	120	
vanadium, dissolved	7440-62-2 E421	0.0005	mg/L	0.5 mg/L	104	80.0	120	

 Page
 : 14 of 17

 Work Order
 : CG2106846

 Client
 : Teck Coal Limited

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery	Limits (%)		
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Dissolved Metals (QCLot: 377072) - continued										
zinc, dissolved	7440-66-6	E421	0.001	mg/L	0.5 mg/L	104	80.0	120		
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	0.0001 mg/L	86.6	80.0	120		

 Page
 : 15 of 17

 Work Order
 : CG2106846

 Client
 : Teck Coal Lir

Client : Teck Coal Limited
Project : REGIONAL EFFECTS PROGRAM

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water					Matrix Spike (MS) Report					
					Spike		Recovery (%)	Recovery Limits (%)		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
	rients (QCLot: 369765)									
CG2106834-023	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0517 mg/L	0.0676 mg/L	76.4	70.0	130	
Anions and Nutr	rients (QCLot: 369894)									
CG2106842-003	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.110 mg/L	0.1 mg/L	110	75.0	125	
Anions and Nutr	rients (QCLot: 369930)									
CG2106840-003	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0512 mg/L	0.05 mg/L	102	70.0	130	
Anions and Nutr	rients (QCLot: 371379)									
CG2106832-002	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	ND mg/L	2.5 mg/L	ND	75.0	125	
Anions and Nutr	rients (QCLot: 371380)									
CG2106832-002	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.498 mg/L	0.5 mg/L	99.5	75.0	125	
Anions and Nutr	rients (QCLot: 371381)									
CG2106832-002	Anonymous	fluoride	16984-48-8	E235.F	1.01 mg/L	1 mg/L	101	75.0	125	
Anions and Nutr	rients (QCLot: 371382)									
CG2106832-002	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	ND mg/L	100 mg/L	ND	75.0	125	
Anions and Nutr	rients (QCLot: 371383)									
CG2106832-002	Anonymous	bromide	24959-67-9	E235.Br-L	0.475 mg/L	0.5 mg/L	95.0	75.0	125	
Anions and Nutr	rients (QCLot: 371384)									
CG2106832-002	Anonymous	chloride	16887-00-6	E235.CI-L	90.4 mg/L	100 mg/L	90.4	75.0	125	
Anions and Nutr	rients (QCLot: 375014)									
CG2106853-001	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	2.39 mg/L	2.5 mg/L	95.7	70.0	130	
Organic / Inorga	nic Carbon (QCLot: 369	869)								
CG2106846-001	EV_EC_FLOW2_2021-12-1 5_NP	carbon, dissolved organic [DOC]		E358-L	23.3 mg/L	23.9 mg/L	97.4	70.0	130	
Organic / Inorga	nic Carbon (QCLot: 369	872)								
CG2106846-001	EV_EC_FLOW2_2021-12-1 5_NP	carbon, total organic [TOC]		E355-L	23.4 mg/L	23.9 mg/L	98.0	70.0	130	
Total Metals (Q	CLot: 374583)									
CG2106788-002	Anonymous	aluminum, total	7429-90-5	E420	0.400 mg/L	0.4 mg/L	100	70.0	130	
		antimony, total	7440-36-0	E420	0.0410 mg/L	0.04 mg/L	102	70.0	130	
		arsenic, total	7440-38-2	E420	0.0419 mg/L	0.04 mg/L	105	70.0	130	

: 16 of 17 : CG2106846 Page Work Order Client

: Teck Coal Limited

Sub-Matrix: Water			Matrix Spike (MS) Report							
			Spi	Spike Recovery (%)			Recovery Limits (%)			
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Total Metals (QC	Lot: 374583) - conti	nued								
CG2106788-002	Anonymous	barium, total	7440-39-3	E420	0.0388 mg/L	0.04 mg/L	97.1	70.0	130	
		beryllium, total	7440-41-7	E420	0.0765 mg/L	0.08 mg/L	95.6	70.0	130	
		bismuth, total	7440-69-9	E420	0.0176 mg/L	0.02 mg/L	88.0	70.0	130	
		boron, total	7440-42-8	E420	0.196 mg/L	0.2 mg/L	98.0	70.0	130	
		cadmium, total	7440-43-9	E420	0.00773 mg/L	0.008 mg/L	96.6	70.0	130	
		calcium, total	7440-70-2	E420	ND mg/L	8 mg/L	ND	70.0	130	
		cobalt, total	7440-48-4	E420	ND mg/L	0.04 mg/L	ND	70.0	130	
		copper, total	7440-50-8	E420	0.0359 mg/L	0.04 mg/L	89.7	70.0	130	
		iron, total	7439-89-6	E420	4.00 mg/L	4 mg/L	100.0	70.0	130	
		lead, total	7439-92-1	E420	0.0358 mg/L	0.04 mg/L	89.6	70.0	130	
		lithium, total	7439-93-2	E420	ND mg/L	0.2 mg/L	ND	70.0	130	
		magnesium, total	7439-95-4	E420	ND mg/L	2 mg/L	ND	70.0	130	
		manganese, total	7439-96-5	E420	ND mg/L	0.04 mg/L	ND	70.0	130	
		molybdenum, total	7439-98-7	E420	0.0428 mg/L	0.04 mg/L	107	70.0	130	
		nickel, total	7440-02-0	E420	ND mg/L	0.08 mg/L	ND	70.0	130	
		potassium, total	7440-09-7	E420	ND mg/L	8 mg/L	ND	70.0	130	
		selenium, total	7782-49-2	E420	0.0885 mg/L	0.08 mg/L	111	70.0	130	
		silicon, total	7440-21-3	E420	19.5 mg/L	20 mg/L	97.3	70.0	130	
		silver, total	7440-22-4	E420	0.00774 mg/L	0.008 mg/L	96.8	70.0	130	
		sodium, total	7440-23-5	E420	ND mg/L	4 mg/L	ND	70.0	130	
		strontium, total	7440-24-6	E420	ND mg/L	0.04 mg/L	ND	70.0	130	
		sulfur, total	7704-34-9	E420	ND mg/L	40 mg/L	ND	70.0	130	
		thallium, total	7440-28-0	E420	0.00723 mg/L	0.008 mg/L	90.4	70.0	130	
		tin, total	7440-31-5	E420	0.0393 mg/L	0.04 mg/L	98.4	70.0	130	
		titanium, total	7440-32-6	E420	0.0851 mg/L	0.08 mg/L	106	70.0	130	
		uranium, total	7440-61-1	E420	ND mg/L	0.008 mg/L	ND	70.0	130	
		vanadium, total	7440-62-2	E420	0.208 mg/L	0.2 mg/L	104	70.0	130	
		zinc, total	7440-66-6	E420	0.732 mg/L	0.8 mg/L	91.5	70.0	130	
otal Metals (QC	Lot: 374584)									
G2106788-002	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.0790 mg/L	0.08 mg/L	98.7	70.0	130	
otal Metals (QC	Lot: 375468)									
CG2106867-001	Anonymous	mercury, total	7439-97-6	E508-L	4.78 ng/L	5 ng/L	95.6	70.0	130	
	(QCLot: 377071)									
CG2106834-021	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.0427 mg/L	0.04 mg/L	107	70.0	130	

 Page
 : 17 of 17

 Work Order
 : CG2106846

 Client
 : Teck Coal Limited

Sub-Matrix: Water			Matrix Spike (MS) Report							
			Spi	ike	Recovery (%) Recovery I		Limits (%)			
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Dissolved Metals (QCLot: 377072) - continued										
CG2106834-021	Anonymous	aluminum, dissolved	7429-90-5	E421	0.215 mg/L	0.2 mg/L	108	70.0	130	
		antimony, dissolved	7440-36-0	E421	0.0204 mg/L	0.02 mg/L	102	70.0	130	
		arsenic, dissolved	7440-38-2	E421	0.0232 mg/L	0.02 mg/L	116	70.0	130	
		barium, dissolved	7440-39-3	E421	0.0206 mg/L	0.02 mg/L	103	70.0	130	
		beryllium, dissolved	7440-41-7	E421	0.0414 mg/L	0.04 mg/L	104	70.0	130	
		cadmium, dissolved	7440-43-9	E421	0.00397 mg/L	0.004 mg/L	99.3	70.0	130	
		calcium, dissolved	7440-70-2	E421	ND mg/L	4 mg/L	ND	70.0	130	
		copper, dissolved	7440-50-8	E421	0.0184 mg/L	0.02 mg/L	92.2	70.0	130	
		iron, dissolved	7439-89-6	E421	2.02 mg/L	2 mg/L	101	70.0	130	
		lithium, dissolved	7439-93-2	E421	0.105 mg/L	0.1 mg/L	105	70.0	130	
		magnesium, dissolved	7439-95-4	E421	ND mg/L	1 mg/L	ND	70.0	130	
		manganese, dissolved	7439-96-5	E421	ND mg/L	0.02 mg/L	ND	70.0	130	
		molybdenum, dissolved	7439-98-7	E421	0.0215 mg/L	0.02 mg/L	108	70.0	130	
		nickel, dissolved	7440-02-0	E421	0.0375 mg/L	0.04 mg/L	93.8	70.0	130	
		potassium, dissolved	7440-09-7	E421	ND mg/L	4 mg/L	ND	70.0	130	
		selenium, dissolved	7782-49-2	E421	0.0444 mg/L	0.04 mg/L	111	70.0	130	
		silicon, dissolved	7440-21-3	E421	10.3 mg/L	10 mg/L	103	70.0	130	
		silver, dissolved	7440-22-4	E421	0.00323 mg/L	0.004 mg/L	80.7	70.0	130	
		sodium, dissolved	7440-23-5	E421	ND mg/L	2 mg/L	ND	70.0	130	
		strontium, dissolved	7440-24-6	E421	ND mg/L	0.02 mg/L	ND	70.0	130	
		sulfur, dissolved	7704-34-9	E421	ND mg/L	20 mg/L	ND	70.0	130	
		thallium, dissolved	7440-28-0	E421	0.00356 mg/L	0.004 mg/L	89.1	70.0	130	
		titanium, dissolved	7440-32-6	E421	0.0433 mg/L	0.04 mg/L	108	70.0	130	
		uranium, dissolved	7440-61-1	E421	ND mg/L	0.004 mg/L	ND	70.0	130	
		vanadium, dissolved	7440-62-2	E421	0.111 mg/L	0.1 mg/L	111	70.0	130	
		zinc, dissolved	7440-66-6	E421	0.384 mg/L	0.4 mg/L	96.1	70.0	130	
Dissolved Metals	(QCLot: 380334)									
CG2106842-002	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000989 mg/L	0.0001 mg/L	98.9	70.0	130	

Teck COC ID: December EVO LAEMP 2021 TURNAROUND TIME: PROJECTICIAENT INFO Facility Name / Job# REP Lab Name ALS Calgary Excel PDF EDD Project Manager Allie Ferguson Lab Contact Lyudmyla Shvets Email *********** Email lyudmyla.shvets@alsglobal.com Address 421 Pine Avenue Address 2559 29 Street NE City Calgary Sparwood Province Province City V0B 2G0 Canada Postal Code TIY 7B5 Postal Code Country Country Canada Phone Number 1 403 407 1794 Phone Number 250-425-8202 SAMPLE DETAILS Hazardous Material (Yes/No) TECKCOAL-MET-T-VA TECKCOAL-MET-D-VA ALS_Package-DOC Field Time G=Grab #Of Sample 1D Matrix Sample Location Date (24hr) C=Comp Cont. FV_EC_FLOW2 EV_EC_FLOW2_2021-12-15_NP 12/15/2021 WS No Х х X X 4 4 A A Alex McClymont/Minnow December 15, 2021 **Environmental Division** ALS PO 750546 Calgary
Work Order Reference
CG2106846 Regular (default) x Alex McClymont Sampler's Name Mobile # 780-293-6750 Priority (2-3 business days) - 50% surcharge nergency (1 Business Day) - 100% surcharge December 15, 2021 . . Sampler's Signature Date/Time

30

SELENIUM SPECIATION

BAL Final Report 2109233 (Finalized October 13, 2021)

Confidential BAL Final Report 2109233

October 13, 2021

Teck Resources Limited - Vancouver Allie Ferguson 421 Pine Avenue Sparwood, B.C. CANADA V0B2G0 allie.ferguson@teck.com

Re: REP

Dear Allie Ferguson,

On September 16, 2021, Brooks Applied Labs (BAL) received eighteen (18) aqueous samples. The samples were logged-in for total recoverable selenium [Se], dissolved Se, and Se speciation analyses, according to the chain-of-custody (COC) forms.

Sample ID values listed on the chain-of-custody (COC) forms did not exactly match the corresponding **Sample ID** values listed on container labels several samples in this work order. The discrepancies are described in the table below.

Laboratory ID	Sample ID (From COC form)	Sample ID (Listed on container label)
2109233-01	RG_ALUSM_WS_ <mark>LAEMP_EVO</mark> _2021-09-12_N	RG_ALUSM_WS_2021-09-12_N
2109233-02	RG_ALUSM_WS_ <mark>LAEMP_EVO</mark> _2021-09- 12_N_NAL	RG_ALUSM_WS_2021-09-12_N_NAL
2109233-03	RG_ALUSM_WS_ <mark>LAEMP_EVO</mark> _2021-09- 12_N_NAL	RG_ALUSM_WS_2021-09-12_N_NAL
2109233-04	RG_ERCK_WS_LAEMP_EVO_2021-09-10_N	RG_ERCK_WS_2021-09-10- <mark>1130</mark> _N
2109233-05	RG_ERCK_WS_ <mark>LAEMP_EVO</mark> _2021-09- 10_N_NAL	RG_ERCK_WS_2021-09-10- <mark>1130</mark> _N_NAL
2109233-06	RG_ERCK_WS_ <mark>LAEMP_EVO</mark> _2021-09- 10_N_NAL	RG_ERCK_WS_2021-09-10- <mark>1130</mark> _N_NAL
2109233-07	RG_M13_WS_ <mark>LAEMP_EVO</mark> _2021-09-10_N	RG_M13_WS_2021-09-10- <mark>1600</mark>
2109233-08	RG_M13_WS_LAEMP_EVO_2021-09-10_N_NAL	RG_M13_WS_2021-09-10- <mark>1600</mark>
2109233-09	RG_M13_WS_LAEMP_EVO_2021-09-10_N_NAL	RG_M13_WS_2021-09-10- <mark>1600</mark>
2109233-10	RG_MIDER_WS_ <mark>LAEMP_EVO</mark> _2021-09-09_N	RG_MIDER_WS_2021-09-09- <mark>1435</mark> _N

Confidential BAL Final Report 2109233

Laboratory ID	Sample ID (From COC form)	Sample ID (Listed on container label)
2109233-11	RG_MIDER_WS_ <mark>LAEMP_EVO</mark> _2021-09- 09_N_NAL	RG_MIDER_WS_2021-09-09- <mark>1435</mark> _N_NAL
2109233-12	RG_MIDER_WS_ <mark>LAEMP_EVO</mark> _2021-09- 09_N_NAL	RG_MIDER_WS_2021-09-09- <mark>1435</mark> _N_NAL
2109233-13	RG_MIDGA_WS_ <mark>LAEMP_EVO</mark> _2021-09-11_N	RG_MIDGA_WS_2021-09-11- <mark>1530</mark>
2109233-14	RG_MIDGA_WS_ <mark>LAEMP_EVO</mark> _2021-09- 11_N_NAL	RG_MIDGA_WS_2021-09-11- <mark>1530</mark>
2109233-15	RG_MIDGA_WS_ <mark>LAEMP_EVO</mark> _2021-09- 11_N_NAL	RG_MIDGA_WS_2021-09-11- <mark>1530</mark>
2109233-16	RG_RIVER_WS_2021-09-11 <mark>_N</mark>	RG_RIVER_WS_2021-09-11- <mark>1530</mark>
2109233-17	RG_RIVER_WS_2021-09-11_ <mark>N_NAL</mark>	RG_RIVER_WS_2021-09-11- <mark>1530</mark>
2109233-18	RG_RIVER_WS_2021-09-11 <mark>_N_NAL</mark>	RG_RIVER_WS_2021-09-11- <mark>1530</mark>
2109233-19	RG_MIDBO_WS_ <mark>LAEMP_EVO</mark> _2021-09-11_N	RG_MIDBO_WS_2021-09-11- <mark>1130</mark>
2109233-20	RG_MIDBO_WS_ <mark>LAEMP_EVO</mark> _2021-09- 11_N_NAL	RG_MIDBO_WS_2021-09-11- <mark>1130</mark>
2109233-21	RG_MIDBO_WS_ <mark>LAEMP_EVO</mark> _2021-09- 11_N_NAL	RG_MIDBO_WS_2021-09-11- <mark>1130</mark>
2109233-22	RG_MICOMP_WS_LAEMP_EVO_2021-09-13_N	RG_MICOMP_WS_LAEMP_EVO_2021-09-13- 1600_N
2109233-23	RG_MICOMP_WS_LAEMP_EVO_2021-09- 13_N_NAL	RG_MICOMP_WS_LAEMP_EVO_2021-09-13- 1600_N_NAL
2109233-24	RG_MICOMP_WS_LAEMP_EVO_2021-09- 13_N_NAL	RG_MICOMP_WS_LAEMP_EVO_2021-09-13- 1600_N_NAL

Per client request, the samples described the table above were logged and reported in using the **Sample IDs** listed on the COC forms.

The sample fractions logged in for Se speciation and dissolved Se had been field-filtered prior to receipt at BAL. All samples were stored according to BAL SOPs.

Total Recoverable and Dissolved Se

Each aqueous sample fraction for total recoverable or dissolved Se was digested in a closed vessel (bomb) with nitric and hydrochloric acids. The resulting digests were analyzed for Se content via inductively coupled plasma triple quadrupole mass spectrometry (ICP-QQQ-MS). The ICP-QQQ-MS instrumentation uses advanced interference removal techniques to ensure accuracy of the sample results. For more information, please visit the *Interference Reduction Technology* section on our website, brooksapplied.com.

Confidential BAL Final Report 2109233

Se Speciation

Each aqueous sample was analyzed for Se speciation using ion chromatography inductively coupled plasma collision reaction cell mass spectrometry (IC-ICP-CRC-MS). Selenium species are chromatographically separated on an ion exchange column and then quantified using inductively coupled plasma collision reaction cell mass spectrometry (ICP-CRC-MS); for more information on this determinative technique, please visit the *Interference Reduction Technology* section on our website. The chromatographic method applied for the analyses provides greater retention of methylseleninic acid and selenomethionine, allowing for more definitive quantitation of these species.

In accordance with the quotation issued for this project, selenium speciation was defined as dissolved selenite [Se(IV)], selenate [Se(VI)], selenocyanate [SeCN], methylseleninic acid [MeSe(IV)], methaneselenonic acid [MeSe(VI)], selenomethionine [SeMet], selenosulfate [SeSO3], and dimethylselenoxide [DMSeO]. Unknown Se species was defined as the total concentration of all unknown Se species observed during the analysis. This item is identified on the report as [Unk Se Sp].

DMSeO elutes early in the chromatographic run due to the nature of the molecule and the applied chromatographic separation method. Since this species elutes near the dead volume, additional Se species may coelute. Alternate methods can be applied, upon client request, to increase the separation of DMSeO from potentially co-eluting Se species.

The results were not method blank corrected, as described in the calculations section of the relevant BAL SOPs and were evaluated using reporting limits adjusted to account for sample aliquot size. Please refer to the *Sample Results* page for sample-specific MDLs, MRLs, and other details.

In instances when a matrix spike/matrix spike duplicate (MS/MSD) set was spiked at a level less than the native sample concentration, the recoveries and the relative percent difference (RPD) are not considered valid indicators of data quality. In such instances, the recoveries of the laboratory fortified blanks (BS) and/or standard reference materials (SRM) demonstrate the accuracy of the applied methods. When the spiking level was less than 25% of the native sample concentration, the spike recovery was not reported (NR) and the RPD of the MS/MSD set was not calculated (N/C).

Except for concentration qualifiers, all data were reported without qualification. All associated quality control sample results met the acceptance criteria.

BAL, an accredited laboratory, certifies that the reported results of all analyses for which BAL is NELAP accredited met all NELAP requirements. For more information, please see the *Report Information* page.

Please feel free to contact us if you have any questions regarding this report.

Sincerely,

Jeremy Maute

Senior Project Manager

Brooks Applied Labs

Jeremy@brooksapplied.com

Project ID: TRL-VC1701 **PM**: Jeremy Maute

BAL Final Report 2109233 Client PM: Allie Ferguson Client Project: REP

Report Information

Laboratory Accreditation

BAL is accredited by the *National Environmental Laboratory Accreditation Program* (NELAP) through the State of Florida Department of Health, Bureau of Laboratories (E87982) and is certified to perform many environmental analyses. BAL is also certified by many other states to perform environmental analyses. For a current list of our accreditations/certifications, please visit our website at http://www.brooksapplied.com/resources/certificates-permits/ or review Tables 1 and 2 in our Accreditation Information. Results reported relate only to the samples listed in the report.

Field Quality Control Samples

Please be notified that certain EPA methods require the collection of field quality control samples of an appropriate type and frequency; failure to do so is considered a deviation from some methods and for compliance purposes should only be done with the approval of regulatory authorities. Please see the specific EPA methods for details regarding required field quality control samples.

Common Abbreviations

AR	as received	MS	matrix spike
BAL	Brooks Applied Labs	MSD	matrix spike duplicate
BLK	method blank	ND	non-detect
BS	blank spike	NR	non-reportable
CAL	calibration standard	N/C	not calculated
CCB	continuing calibration blank	PS	post preparation spike
CCV	continuing calibration verification	REC	percent recovery
COC	chain of custody record	RPD	relative percent difference
D	dissolved fraction	SCV	secondary calibration verification
DUP	duplicate	SOP	standard operating procedure
IBL	instrument blank	SRM	reference material
ICV	initial calibration verification	T	total fraction
MDL	method detection limit	TR	total recoverable fraction
MRL	method reporting limit		

Definition of Data Qualifiers

(Effective 3/23/2020)

- E An estimated value due to the presence of interferences. A full explanation is presented in the narrative.
- Holding time and/or preservation requirements not met. Please see narrative for explanation.
- J Detected by the instrument, the result is > the MDL but ≤ the MRL. Result is reported and considered an estimate.
- **J-1** Estimated value. A full explanation is presented in the narrative.
- **M** Duplicate precision (RPD) was not within acceptance criteria. Please see narrative for explanation.
- **N** Spike recovery was not within acceptance criteria. Please see narrative for explanation.
- **R** Rejected, unusable value. A full explanation is presented in the narrative.
- U Result is ≤ the MDL or client requested reporting limit (CRRL). Result reported as the MDL or CRRL.
- X Result is not BLK-corrected and is within 10x the absolute value of the highest detectable BLK in the batch. Result is estimated.
- **Z** Holding time and/or preservation requirements not established for this method; however, BAL recommendations for holding time were not followed. Please see narrative for explanation.

These qualifiers are based on those previously utilized by Brooks Applied Labs, those found in the EPA <u>SOW ILM03.0</u>, Exhibit B, Section III, pg. B-18, and the <u>USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review; USEPA; January 2010</u>. These supersede all previous qualifiers ever employed by BAL.

Project ID: TRL-VC1701 **PM:** Jeremy Maute

BAL Final Report 2109233
Client PM: Allie Ferguson
Client Project: REP

Accreditation Information

Table 1. Accredited method/matrix/analytes for TNI

Issued by: State of Florida Dept. of Health (The NELAC Institute 2016 Standard)

Issued on: July 1, 2021; Valid to: June 30, 2022 Certificate Number: E87982-37

Method	Matrix	TNI Accredited Analyte(s)					
EPA 1638	Non-Potable Waters	Ag, Cd, Cu, Ni, Pb, Sb, Se, Tl, Zn					
EPA 200.8	Non-Potable Waters	Ag, Al, As, Ba, Be, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Se, Tl, U, V, Zn					
	Non-Potable Waters	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Tl, U, V, Zn					
EPA 6020	Solids/Chemicals & Biological	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Tl, V, Zn					
	Non-Potable Waters	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, U, V, Zn, Hardness					
BAL-5000	Solids/Chemicals	Ag, As, B, Be, Cd, Co, Cr, Cu, Pb, Mo, Ni, Sb, Se, Sn, Sr, Tl, V, Zn					
	Biological	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Tl, V, Zn					
EPA 1640	Non-Potable Waters	Cd, Cu, Pb, Ni, Zn					
EPA 1631E	Non-Potable Waters, Solids/Chemicals & Biological	Total Mercury					
EPA 1630	Non-Potable Waters	Methyl Mercury					
BAL-3200	Solids/Chemicals & Biological	Methyl Mercury					
BAL-4100	Non-Potable Waters	As(III), As(V), DMAs, MMAs					
BAL-4201	Non-Potable Waters	Se(IV), Se(VI)					
BAL-4300	Non-Potable Waters Solid/Chemicals	Cr(VI)					
SM2340B	Non-Potable Waters	Hardness					

Project ID: TRL-VC1701 PM: Jeremy Maute

BAL Final Report 2109233 Client PM: Allie Ferguson Client Project: REP

Accreditation Information

Table 2. Accredited method/matrix/analytes for ISO (1), Non-Governmental TNI (2), and DoD/DOE (3)

Issued by: ANAB

Issued on: September 21, 2021; Valid to: March 30, 2024

Method	Matrix	ISO and Non-Gov. TNI Accredited Analyte(s)	DoD/DOE Accredited Analytes	
EPA 1638 Mod EPA 200.8 Mod EPA 6020 Mod	Non-Potable Waters	Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, U, V, Zn	Ag, Al, As, Ba, Ca, Cd, Cr, Cu, Fe, Pb, Mg, Mn, Ni, Sb, Se, V, Zn	
BAL-5000	Solids/Chemicals & Biological	Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, V, Zn Hg (Biological Only)	Not Accredited	
EPA 1640 Mod	Non-Potable Waters	Cd, Cu, Pb, Ni, Zn Ag, As, Cr, Co, Se, Tl, V (ISO Only)	Not Accredited	
EPA 1631E Mod BAL-3100	Non-Potable Waters, Solids/Chemicals & Biological/Food	Total Mercury	Total Mercury	
EPA 1630 Mod BAL-3200	Non-Potable Waters, Solids/Chemicals Biological	Methyl Mercury	Methyl Mercury (excluding Solids/Chemicals)	
EPA 1632A Mod	Non-Potable Waters	Inorganic Arsenic (ISO Only)	Not Accredited	
BAL-3300	Biological/Food Solids/Chemicals	Inorganic Arsenic (ISO Only)	Not Accredited	
AOAC 2015.01 Mod BAL-5000	Food	As, Cd, Hg, Pb	Not Accredited	
DAI 4400	Non-Potable Waters	As(III), As(V), DMAs, MMAs	Not Accredited	
BAL-4100	Biological by BAL-4117	Inorganic Arsenic, DMAs, MMAs (ISO Only)	Not Accredited	
BAL-4101	Food by BAL-4117	Inorganic Arsenic, DMAs, MMAs (ISO Only)	Not Accredited	
BAL-4201	Non-Potable Waters	Se(IV), Se(VI), SeCN, SeMet	Not Accredited	
BAL-4300	Non-Potable Waters, Solid/Chemicals	Cr(VI)	Cr(VI)	
SM 3500-Fe BAL-4500	Non-Potable Waters	Fe, Fe(II) (ISO Only)	Not Accredited	
SM2340B	Non-Potable Waters	Hardness	Hardness	
SM 2540G BAL-0501	Solids/Chemicals & Biological	% Dry Weight	% Dry Weight	

⁽¹⁾ ISO/IEC 17025:2017 - Certificate Number ADE-1447.02

⁽²⁾ Non-Governmental NELAC Institute 2016 Standard - Certificate Number ADE-1447.01

⁽³⁾ Department of Defense/Energy Consolidated Quality Systems Manual v. 5.3 – Certificate Numbers ADE-1447 for DoD, ADE-1447.03 for DOE.

BAL Final Report 2109233
Client PM: Allie Ferguson
Client Project: REP

Sample Information

Sample	Lab ID	Report Matrix	Type	Sampled	Received
RG_ALUSM_WS_LAEMP_EVO_202 1-09-12_N	2109233-01	WS	Sample	09/12/2021	09/16/2021
RG_ALUSM_WS_LAEMP_EVO_202 1-09-12_N_NAL	2109233-02	WS	Sample	09/12/2021	09/16/2021
RG_ALUSM_WS_LAEMP_EVO_202 1-09-12_N_NAL	2109233-03	WS	Sample	09/12/2021	09/16/2021
RG_ERCK_WS_LAEMP_EVO_2021- 09-10_N	2109233-04	WS	Sample	09/10/2021	09/16/2021
RG_ERCK_WS_LAEMP_EVO_2021- 09-10_N_NAL	2109233-05	WS	Sample	09/10/2021	09/16/2021
RG_ERCK_WS_LAEMP_EVO_2021- 09-10_N_NAL	2109233-06	WS	Sample	09/10/2021	09/16/2021
RG_MI3_WS_LAEMP_EVO_2021-09 -10_N	2109233-07	WS	Sample	09/10/2021	09/16/2021
RG_MI3_WS_LAEMP_EVO_2021-09 -10_N_NAL	2109233-08	WS	Sample	09/10/2021	09/16/2021
RG_MI3_WS_LAEMP_EVO_2021-09 -10_N_NAL	2109233-09	WS	Sample	09/10/2021	09/16/2021
 RG_MIDER_WS_LAEMP_EVO_202 1-09-09_N	2109233-10	WS	Sample	09/09/2021	09/16/2021
RG_MIDER_WS_LAEMP_EVO_202 1-09-09_N_NAL	2109233-11	WS	Sample	09/09/2021	09/16/2021
 RG_MIDER_WS_LAEMP_EVO_202 1-09-09_N_NAL	2109233-12	WS	Sample	09/09/2021	09/16/2021
 RG_MIDGA_WS_LAEMP_EVO_202 1-09-11_N	2109233-13	WS	Sample	09/11/2021	09/16/2021
	2109233-14	WS	Sample	09/11/2021	09/16/2021
RG_MIDGA_WS_LAEMP_EVO_202 1-09-11_N_NAL	2109233-15	WS	Sample	09/11/2021	09/16/2021
 RG_RIVER_WS_2021-09-11_N	2109233-16	WS	Sample	09/11/2021	09/16/2021
RG_RIVER_WS_2021-09-11_N_NAL	2109233-17	WS	Sample	09/11/2021	09/16/2021
RG_RIVER_WS_2021-09-11_N_NAL	2109233-18	WS	Sample	09/11/2021	09/16/2021
RG_MIDBO_WS_LAEMP_EVO_202 1-09-11_N	2109233-19	WS	Sample	09/11/2021	09/16/2021
RG_MIDBO_WS_LAEMP_EVO_202 1-09-11_N_NAL	2109233-20	WS	Sample	09/11/2021	09/16/2021
 RG_MIDBO_WS_LAEMP_EVO_202 1-09-11_N_NAL	2109233-21	WS	Sample	09/11/2021	09/16/2021
RG_MICOMP_WS_LAEMP_EVO_20 21-09-13_N	2109233-22	WS	Sample	09/13/2021	09/16/2021
RG_MICOMP_WS_LAEMP_EVO_20 21-09-13_N_NAL	2109233-23	WS	Sample	09/13/2021	09/16/2021

BAL Final Report 2109233
Client PM: Allie Ferguson
Client Project: REP

Sample Information

Sample	Lab ID	Report Matrix	Type	Sampled	Received
RG_MICOMP_WS_LAEMP_EVO_20	2109233-24	WS	Sample	09/13/2021	09/16/2021
21-09-13_N_NAL					
RG_RIVER_WS_2021-09-13_N	2109233-25	WS	Sample	09/13/2021	09/16/2021
RG_RIVER_WS_2021-09-13_N_NAL	2109233-26	WS	Sample	09/13/2021	09/16/2021
RG_RIVER_WS_2021-09-13_N_NAL	2109233-27	WS	Sample	09/13/2021	09/16/2021

Batch Summary

Analyte	Lab Matrix	Method	Prepared	Analyzed	Batch	Sequence
DMSeO	Water	SOP BAL-4201	09/21/2021	09/22/2021	B212646	S211101
MeSe(IV)	Water	SOP BAL-4201	09/21/2021	09/22/2021	B212646	S211101
MeSe(VI)	Water	SOP BAL-4201	09/21/2021	09/22/2021	B212646	S211101
Se	Water	EPA 1638 Mod	09/17/2021	09/21/2021	B212611	S211088
Se(IV)	Water	SOP BAL-4201	09/21/2021	09/22/2021	B212646	S211101
Se(VI)	Water	SOP BAL-4201	09/21/2021	09/22/2021	B212646	S211101
SeCN	Water	SOP BAL-4201	09/21/2021	09/22/2021	B212646	S211101
SeMet	Water	SOP BAL-4201	09/21/2021	09/22/2021	B212646	S211101
SeSO3	Water	SOP BAL-4201	09/21/2021	09/22/2021	B212646	S211101
Unk Se Sp	Water	SOP BAL-4201	09/21/2021	09/22/2021	B212646	S211101

BAL Final Report 2109233
Client PM: Allie Ferguson
Client Project: REP

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
RG ALUSM W	VS LAEMP EV	O 2021-09-12 N								
2109233-01	DMSeO	ws	D	≤ 0.010	U	0.010	0.025	μg/L	B212646	S211101
2109233-01	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212646	S211101
2109233-01	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212646	S211101
2109233-01	Se(IV)	WS	D	0.015	J	0.010	0.075	μg/L	B212646	S211101
2109233-01	Se(VI)	WS	D	0.562		0.010	0.055	μg/L	B212646	S211101
2109233-01	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B212646	S211101
2109233-01	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212646	S211101
2109233-01	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B212646	S211101
2109233-01	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B212646	S211101
	VC LAEMD EV	O 2024 00 42 N	MAI							
	/S_LAEIVIP_EV Se	'O_2021-09-12_N_ WS	TR	0.615		0.165	0.528	ua/l	B212611	C244000
2109233-02	Se	VVS	IK	0.015		0.100	0.326	μg/L	DZ 12011	S211088
RG ALUSM V	VS LAEMP EV	O_2021-09-12_N_	NAL							
2109233-03	Se	ws	D	0.560		0.165	0.528	μg/L	B212611	S211088
RG ERCK WS	S LAEMP EVO	2021-09-10 N								
2109233-04	DMSeO	- ws	D	0.017	J	0.010	0.025	μg/L	B212646	S211101
2109233-04	MeSe(IV)	WS	D	0.018	J	0.010	0.025	μg/L	B212646	S211101
2109233-04	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212646	S211101
2109233-04	Se(IV)	WS	D	0.866		0.010	0.075	μg/L	B212646	S211101
2109233-04	Se(VI)	WS	D	145		0.010	0.055	μg/L	B212646	S211101
2109233-04	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B212646	S211101
2109233-04	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212646	S211101
2109233-04	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B212646	S211101
2109233-04	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B212646	S211101
DC EDCK ING	S I AEMD EVO	_2021-09-10_N_N	ΛΙ							
	Se	2021-09-10_N_N WS	AL TR	120		0.165	0.528	ua/l	B212611	S211088
2109233-05	ડ િ	VVO	II	120		0.100	0.526	μg/L	0212011	3211008
RG_ERCK_WS	S_LAEMP_EVO	_2021-09-10_N_N	AL							
2109233-06	Se	WS	D	123		0.165	0.528	μg/L	B212611	S211088

BAL Final Report 2109233
Client PM: Allie Ferguson
Client Project: REP

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
RG_MI3_WS_L	LAEMP EVO 2	021-09-10 N								
2109233-07	DMSeO	ws	D	≤ 0.010	U	0.010	0.025	μg/L	B212646	S211101
2109233-07	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212646	S211101
2109233-07	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212646	S211101
2109233-07	Se(IV)	WS	D	0.045	J	0.010	0.075	μg/L	B212646	S211101
2109233-07	Se(VI)	WS	D	1.03		0.010	0.055	μg/L	B212646	S211101
2109233-07	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B212646	S211101
2109233-07	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212646	S211101
2109233-07	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B212646	S211101
2109233-07	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B212646	S211101
	AEMD EVO 2	021-09-10 N NAL								
	-AEWP_EVO_Z Se	WS WS	TR	0.942		0.165	0.528	ua/l	B212611	\$211000
2109233-08	36	VVS	IK	0.942		0.103	0.326	μg/L	DZ 12011	S211088
RG MI3 WS L	LAEMP EVO 2	021-09-10_N_NAL								
2109233-09	Se _	ws	D	0.993		0.165	0.528	μg/L	B212611	S211088
								. •		
RG_MIDER_W	S_LAEMP_EVO	O_2021-09-09_N								
2109233-10	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212646	S211101
2109233-10	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212646	S211101
2109233-10	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212646	S211101
2109233-10	Se(IV)	WS	D	0.076		0.010	0.075	μg/L	B212646	S211101
2109233-10	Se(VI)	WS	D	1.85		0.010	0.055	μg/L	B212646	S211101
2109233-10	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B212646	S211101
2109233-10	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212646	S211101
2109233-10	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B212646	S211101
2109233-10	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B212646	S211101
PC MIDED W	'S I AEMD E\#	O 2021-09-09 N N	MA I							
2109233-11	Se	<i>3_2021-09-09_N_1</i> WS	TR	1.87		0.165	0.528	μg/L	B212611	S211088
∠ 109233-11	Se	VVO	IIX	1.07		0.100	0.320	µg/∟	DZ 12011	3211000
RG_MIDER_W	S_LAEMP_EVO	O_2021-09-09_N_I	<i>NAL</i>							
2109233-12	Se	WS	D	1.81		0.165	0.528	μg/L	B212611	S211088

BAL Final Report 2109233
Client PM: Allie Ferguson
Client Project: REP

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
RG MIDGA W	S LAEMP EV	O 2021-09-11 N								
2109233-13	DMSeO	- ws	D	≤ 0.010	U	0.010	0.025	μg/L	B212646	S211101
2109233-13	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212646	S211101
2109233-13	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212646	S211101
2109233-13	Se(IV)	WS	D	0.163		0.010	0.075	μg/L	B212646	S211101
2109233-13	Se(VI)	WS	D	3.01		0.010	0.055	μg/L	B212646	S211101
2109233-13	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B212646	S211101
2109233-13	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212646	S211101
2109233-13	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B212646	S211101
2109233-13	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B212646	S211101
DO MIDOA 141	(O. / AEMO EV	O 0004 00 44 N 1								
		O_2021-09-11_N_I		2.40		0.465	0.500	/1	D040044	0044000
2109233-14	Se	WS	TR	3.12		0.165	0.528	μg/L	B212611	S211088
RG MIDGA W	S LAEMP EV	O_2021-09-11_N_I	NAL.							
2109233-15	Se	WS	D D	2.96		0.165	0.528	μg/L	B212611	S211088
2100200 10			_			000	0.020	F-9/ -	22.20	0211000
RG_RIVER_W	S_2021-09-11_I	V								
2109233-16	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212646	S211101
2109233-16	MeSe(IV)	WS	D	0.011	J	0.010	0.025	μg/L	B212646	S211101
2109233-16	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212646	S211101
2109233-16	Se(IV)	WS	D	0.149		0.010	0.075	μg/L	B212646	S211101
2109233-16	Se(VI)	WS	D	3.00		0.010	0.055	μg/L	B212646	S211101
2109233-16	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B212646	S211101
2109233-16	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212646	S211101
2109233-16	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B212646	S211101
2109233-16	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B212646	S211101
DO DIVED 14"	0 2024 00 44 1	N NAI								
RG_RIVER_WS		_	TD	2.00		0.465	0.500	ua/l	D242644	0044000
2109233-17	Se	WS	TR	2.98		0.165	0.528	μg/L	B212611	S211088
RG_RIVER_W	S 2021-09-11 I	V NAL								
2109233-18	Se -	- WS	D	2.81		0.165	0.528	μg/L	B212611	S211088

BAL Final Report 2109233
Client PM: Allie Ferguson
Client Project: REP

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
RG MIDBO W	S LAEMP EV	O 2021-09-11 N								
2109233-19	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212646	S211101
2109233-19	MeSe(IV)	WS	D	0.012	J	0.010	0.025	μg/L	B212646	S211101
2109233-19	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212646	S211101
2109233-19	Se(IV)	WS	D	0.170		0.010	0.075	μg/L	B212646	S211101
2109233-19	Se(VI)	WS	D	8.16		0.010	0.055	μg/L	B212646	S211101
2109233-19	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B212646	S211101
2109233-19	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212646	S211101
2109233-19	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B212646	S211101
2109233-19	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B212646	S211101
DO MIDDO M	(C. / AEMD EV	O 2024 00 44 N I								
		O_2021-09-11_N_I		8.00		0.165	0.528	ua/I	D242644	0044000
2109233-20	Se	WS	TR	6.00		0.165	0.526	μg/L	B212611	S211088
RG MIDBO W	S LAEMP EV	O_2021-09-11_N_I	VAL							
2109233-21	Se	WS	D	8.25		0.165	0.528	μg/L	B212611	S211088
								. 0		
RG MICOMP	WS LAEMP E	VO 2021-09-13 N								
2109233-22	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212646	S211101
2109233-22	MeSe(IV)	WS	D	0.014	J	0.010	0.025	μg/L	B212646	S211101
2109233-22	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212646	S211101
2109233-22	Se(IV)	WS	D	0.174		0.010	0.075	μg/L	B212646	S211101
2109233-22	Se(VI)	WS	D	6.97		0.010	0.055	μg/L	B212646	S211101
2109233-22	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B212646	S211101
2109233-22	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212646	S211101
2109233-22	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B212646	S211101
2109233-22	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B212646	S211101
PC MICOMP	MO LAEMD E	VO 2021-09-13 N	NAI							
	VVS_LAEIVIP_E Se	WS WS	_ <i>NAL</i> TR	6.33		0.165	0.528	ua/l	B212611	S211088
2109233-23	ડિં	VVO	II	0.33		0.100	0.526	μg/L	DZ 1Z011	3211008
RG_MICOMP_	WS_LAEMP_E	VO_2021-09-13_N	_NAL							
2109233-24	Se	WS	D	6.47		0.165	0.528	μg/L	B212611	S211088

BAL Final Report 2109233
Client PM: Allie Ferguson
Client Project: REP

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
RG_RIVER_WS	S_2021-09-13_i	N								
2109233-25	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212646	S211101
2109233-25	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212646	S211101
2109233-25	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212646	S211101
2109233-25	Se(IV)	WS	D	0.194		0.010	0.075	μg/L	B212646	S211101
2109233-25	Se(VI)	WS	D	6.94		0.010	0.055	μg/L	B212646	S211101
2109233-25	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B212646	S211101
2109233-25	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212646	S211101
2109233-25	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B212646	S211101
2109233-25	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B212646	S211101
RG_RIVER_WS	S_2021-09-13_i	N_NAL								
2109233-26	Se	WS	TR	6.61		0.165	0.528	μg/L	B212611	S211088
RG_RIVER_WS	S_2021-09-13_	N_NAL								
2109233-27	Se	WS	D	6.83		0.165	0.528	μg/L	B212611	S211088

BAL Final Report 2109233
Client PM: Allie Ferguson
Client Project: REP

Accuracy & Precision Summary

Batch: B212611 Lab Matrix: Water Method: EPA 1638 Mod

Sample B212611-BS1	Analyte Blank Spike, (2104075) Se	Native	Spike 200.0	Result 187.9	Units µg/L	REC & Limits 94% 75-125	
B212611-BS2	Blank Spike , (2104075) Se		200.0	187.6	μg/L	94% 75-125	
B212611-BS3	Blank Spike, (2104075) Se		200.0	188.4	μg/L	94% 75-125	
B212611-BS4	Blank Spike, (2104075) Se		200.0	195.3	μg/L	98% 75-125	
B212611-BS5	Blank Spike , (2104075) Se		200.0	189.7	μg/L	95% 75-125	
B212611-SRM1	Reference Material (21100) Se	06, TMDA 5	51.5 Referenc 14.30	e Standard 12.97	- Bottle 6 - µg/L	SRM) 91% 75-125	
B212611-SRM2	Reference Material (21100) Se	06, TMDA 5	5 1.5 Referenc 14.30	e Standard 13.22	- Bottle 6 - µg/L	SRM) 92% 75-125	
B212611-SRM3	Reference Material (21100) Se	06, TMDA 5	5 1.5 Referenc 14.30	e Standard 13.06	- Bottle 6 - 9 µg/L	SRM) 91% 75-125	
B212611-SRM4	Reference Material (21100) Se	06, TMDA 5	51.5 Referenc 14.30	e Standard 13.28	- Bottle 6 - µg/L	SRM) 93% 75-125	
B212611-SRM5	Reference Material (21100) Se	06, TMDA 5	5 1.5 Referenc 14.30	e Standard 13.55	- Bottle 6 - µg/L	SRM) 95% 75-125	
B212611-DUP9	Duplicate, (2109230-02) Se	138.5		128.2	μg/L		8% 20

BAL Final Report 2109233
Client PM: Allie Ferguson
Client Project: REP

Accuracy & Precision Summary

Batch: B212611 Lab Matrix: Water Method: EPA 1638 Mod

Sample	Analyte	Native	Spike	Result	Units	REC & Limits	RPD & Limits
B212611-MS9	Matrix Spike, (2109230-02) Se	138.5	220.0	336.4	μg/L	90% 75-125	
B212611-MSD9	Matrix Spike Duplicate, (21 Se	1 09230-02) 138.5	220.0	340.0	μg/L	92% 75-125	1% 20
B212611-DUPA	Duplicate , (2109233-11) Se	1.867		1.832	μg/L		2% 20
B212611-MSA	Matrix Spike, (2109233-11) Se	1.867	220.0	205.8	μg/L	93% 75-125	
B212611-MSDA	Matrix Spike Duplicate, (21 Se	1 09233-11) 1.867	220.0	202.6	μg/L	91% 75-125	2% 20

BAL Final Report 2109233
Client PM: Allie Ferguson
Client Project: REP

Accuracy & Precision Summary

Batch: B212646 Lab Matrix: Water Method: SOP BAL-4201

Sample	Analyte	Native	Spike	Result	Units	REC & Limits	RPD & Limits
B212646-BS1	Blank Spike, (2124033)						
	MeSe(IV)		5.095	5.618	μg/L	110% 75-125	
	Se(IV)		5.000	5.126	μg/L	103% 75-125	
	Se(VI)		5.000	4.881	μg/L	98% 75-125	
	SeCN		5.015	5.110	μg/L	102% 75-125	
	SeMet		4.932	5.110	μg/L	104% 75-125	
B212646-DUP2	Duplicate, (2109233-16)						
	DMSeO	ND		ND	μg/L		N/C 25
	MeSe(IV)	0.011		0.011	μg/L		7% 25
	MeSe(VI)	ND		ND	μg/L		N/C 25
	Se(IV)	0.149		0.149	μg/L		0.06% 25
	Se(VI)	2.999		3.030	μg/L		1% 25
	SeCN	ND		ND	μg/L		N/C 25
	SeMet	ND		ND	μg/L		N/C 25
	SeSO3	ND		ND	μg/L		N/C 25
	Unk Se Sp	ND		ND	μg/L		N/C 25
B212646-MS2	Matrix Spike, (2109233-1	16)					
	Se(IV)	0.149	4.900	5.676	μg/L	113% 75-125	
	Se(VI)	2.999	5.100	8.673	μg/L	111% 75-125	
	SeCN	ND	1.962	2.012	μg/L	103% 75-125	
	SeMet	ND	1.977	2.036	μg/L	103% 75-125	
B212646-MSD2	Matrix Spike Duplicate, ((2109233-16)				
	Se(IV)	0.149	4.900	5.651	μg/L	112% 75-125	0.5% 25
	Se(VI)	2.999	5.100	8.573	μg/L	109% 75-125	1% 25
	SeCN	ND	1.962	2.041	μg/L	104% 75-125	1% 25
	SeMet	ND	1.977	2.109	μg/L	107% 75-125	4% 25

Project ID: TRL-VC1701 **PM:** Jeremy Maute

BAL Final Report 2109233
Client PM: Allie Ferguson
Client Project: REP

Method Blanks & Reporting Limits

Batch: B212611 Matrix: Water

Method: EPA 1638 Mod

Analyte: Se

Sample	Result	Units
B212611-BLK1	0.152	μg/L
B212611-BLK2	0.115	μg/L
B212611-BLK3	0.120	μg/L
B212611-BLK4	0.124	μg/L
B212611-BLK5	0.189	μg/L

 Average: 0.140
 MDL: 0.150

 Limit: 0.480
 MRL: 0.480

Project ID: TRL-VC1701 **PM:** Jeremy Maute

BAL Final Report 2109233
Client PM: Allie Ferguson
Client Project: REP

Method Blanks & Reporting Limits

Batch: B212646 Matrix: Water

Method: SOP BAL-4201 Analyte: DMSeO

Sample	Result	Units
B212646-BLK1	0.00	μg/L
B212646-BLK2	0.00	μg/L
B212646-BLK3	0.00	μg/L
B212646-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.005
 MRL: 0.005

Analyte: MeSe(IV)

Sample	Result	Units
B212646-BLK1	0.00	μg/L
B212646-BLK2	0.00	μg/L
B212646-BLK3	0.00	μg/L
B212646-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.005
 MRL: 0.005

Analyte: MeSe(VI)

Sample	Result	Units
B212646-BLK1	0.00	μg/L
B212646-BLK2	0.00	μg/L
B212646-BLK3	0.00	μg/L
B212646-BLK4	0.00	μg/L

Average: 0.000 **MDL:** 0.002 **Limit:** 0.005 **MRL:** 0.005

BAL Final Report 2109233
Client PM: Allie Ferguson
Client Project: REP

Method Blanks & Reporting Limits

Analyte: Se(IV)

Sample	Result	Units
B212646-BLK1	0.008	μg/L
B212646-BLK2	0.003	μg/L
B212646-BLK3	0.002	μg/L
B212646-BLK4	0.003	μg/L

Average: 0.004 **MDL:** 0.002 **Limit:** 0.015 **MRL:** 0.015

Analyte: Se(VI)

Sample	Result	Units
B212646-BLK1	0.002	μg/L
B212646-BLK2	0.001	μg/L
B212646-BLK3	0.0006	μg/L
B212646-BLK4	0.00	μg/L

 Average: 0.001
 MDL: 0.002

 Limit: 0.011
 MRL: 0.011

Analyte: SeCN

Units	Result	Sample
μg/L	0.00	B212646-BLK1
μg/L	0.00	B212646-BLK2
μg/L	0.00	B212646-BLK3
μg/L	0.00	B212646-BLK4
	Average: 0.000	

 Average: 0.000
 MDL: 0.002

 Limit: 0.010
 MRL: 0.010

Analyte: SeMet

Sample	Result	Units
B212646-BLK1	0.00	μg/L
B212646-BLK2	0.00	μg/L
B212646-BLK3	0.00	μg/L
B212646-BI K4	0.00	ua/l

 Average: 0.000
 MDL: 0.002

 Limit: 0.005
 MRL: 0.005

Project ID: TRL-VC1701 **PM**: Jeremy Maute

BAL Final Report 2109233
Client PM: Allie Ferguson
Client Project: REP

Method Blanks & Reporting Limits

Analyte: SeSO3

Sample	Result	Units
B212646-BLK1	0.00	μg/L
B212646-BLK2	0.00	μg/L
B212646-BLK3	0.00	μg/L
B212646-BLK4	0.00	μg/L

Average: 0.000 **MDL:** 0.002 **Limit:** 0.011 **MRL:** 0.011

Analyte: Unk Se Sp

Sample	Result	Units
B212646-BLK1	0.00	μg/L
B212646-BLK2	0.00	μg/L
B212646-BLK3	0.00	μg/L
B212646-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.015
 MRL: 0.015

Project ID: TRL-VC1701 **PM:** Jeremy Maute

BAL Final Report 2109233
Client PM: Allie Ferguson
Client Project: REP

2109233

Sample Containers

Lab ID: 2109233-01 Sample: RG_ALUSM_WS_LAEMP_EVO_2021-09-12_N				Report Matrix: WS Sample Type: Sample + Sum		Collected: 09/12/2021 Received: 09/16/2021				
	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.			
Α	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Styrofoam Cooler #1 - 2109233			
В	XTRA_VOL	15 mL	na	none	na	na	Styrofoam Cooler #1 - 2109233			
С	XTRA_VOL	60 mL	na	none	na	na	Styrofoam Cooler #1 - 2109233			
Sam	I D : 2109233-02 ple: ALUSM_WS_LAEMP_EVO_2	2021-09-12_N_NA		Report Matrix: WS Sample Type: Sample + Sum			cted: 09/12/2021 ived: 09/16/2021			
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.			
Α	Client-Provided - TM	60 mL	na	10% HNO3 (BAL)	2127026	<2	Styrofoam Cooler #1 - 2109233			
Sam	ID: 2109233-03 ple: ALUSM_WS_LAEMP_EVO_2	2021-09-12_N_NA		Report Matrix: WS Sample Type: Sample + Sum			cted: 09/12/2021 ived: 09/16/2021			
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.			
Α	Client-Provided - TM	60 mL	na	10% HNO3 (BAL)	2127026	<2	Styrofoam Cooler #1 -			

BAL Final Report 2109233
Client PM: Allie Ferguson
Client Project: REP

Sample Containers

Sam	ID: 2109233-04 ple: ERCK_WS_LAEMP_EVO_20	021-09-10 N		Report Matrix: WS Sample Type: Sample + Sum			cted: 09/10/2021 ived: 09/16/2021
	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Styrofoam Cooler #1 - 2109233
В	XTRA_VOL	15 mL	na	none	na	na	Styrofoam Cooler #1 - 2109233
С	XTRA_VOL	60 mL	na	none	na	na	Styrofoam Cooler #1 - 2109233
Sam	-	021 00 10 N NAI		Report Matrix: WS Sample Type: Sample + Sum			cted: 09/10/2021 ived: 09/16/2021
	ERCK_WS_LAEMP_EVO_20 Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
A	Client-Provided - TM	60 mL	na	10% HNO3 (BAL)	2127026	<2	Styrofoam
,,	Charlet rovided Tim	oo me	na	1070111100 (2712)	2121020	-2	Cooler #1 - 2109233
Sam	ID: 2109233-06 ple: ERCK_WS_LAEMP_EVO_20	021-09-10 N NAI		Report Matrix: WS Sample Type: Sample + Sum			cted: 09/10/2021 ived: 09/16/2021
	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Client-Provided - TM	60 mL	na	10% HNO3 (BAL)	2127026	<2	Styrofoam Cooler #1 - 2109233
Sam	ID: 2109233-07 ple: MI3_WS_LAEMP_EVO_2022	I-09-10 N		Report Matrix: WS Sample Type: Sample + Sum			cted: 09/10/2021 ived: 09/16/2021
	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Styrofoam Cooler #1 - 2109233
В	XTRA_VOL	15 mL	na	none	na	na	Styrofoam Cooler #1 - 2109233
С	XTRA_VOL	60 mL	na	none	na	na	Styrofoam Cooler #1 -

Project ID: TRL-VC1701 **PM:** Jeremy Maute

BAL Final Report 2109233
Client PM: Allie Ferguson
Client Project: REP

2109233

Sample Containers

Lab ID: 2109233-08 Report Matrix: WS Collected: 09/10/2021 Sample: Received: 09/16/2021 Sample Type: Sample + Sum RG MI3 WS LAEMP EVO 2021-09-10 N NAL **Des Container Size** Lot **Preservation** P-Lot рH Ship. Cont. 10% HNO3 (BAL) Client-Provided - TM 60 mL na 2127026 <2 Styrofoam Cooler #1 -2109233 Lab ID: 2109233-09 Report Matrix: WS Collected: 09/10/2021 Sample: Sample Type: Sample + Sum Received: 09/16/2021 RG_MI3_WS_LAEMP_EVO_2021-09-10_N_NAL **Des Container Size** Lot **Preservation** P-Lot Hq Ship. Cont. Client-Provided - TM 60 mL na 10% HNO3 (BAL) 2127026 <2 Stvrofoam Cooler #1 -2109233 Lab ID: 2109233-10 Report Matrix: WS Collected: 09/09/2021 Sample: Received: 09/16/2021 Sample Type: Sample + Sum RG_MIDER_WS_LAEMP_EVO_2021-09-09_N **Preservation** P-Lot Container **Size** Lot pН Ship. Cont. Cent Tube 15mL Se-Sp 15 mL Stvrofoam Α na none na na Cooler #1 -2109233 XTRA_VOL В 15 mL na none na Styrofoam na Cooler #1 -2109233 С XTRA_VOL 60 mL none Styrofoam na na na Cooler #1 -2109233 Lab ID: 2109233-11 Report Matrix: WS Collected: 09/09/2021 Sample: Sample Type: Sample + Sum Received: 09/16/2021 RG_MIDER_WS_LAEMP_EVO_2021-09-09_N NAL Preservation **Des Container Size** Lot P-Lot pН Ship. Cont. Client-Provided - TM 60 mL na 10% HNO3 (BAL) 2127026 <2 Styrofoam Cooler #1 -

Project ID: TRL-VC1701 **PM**: Jeremy Maute

BAL Final Report 2109233
Client PM: Allie Ferguson
Client Project: REP

2109233

Sample Containers

Lab ID: 2109233-12 Report Matrix: WS Collected: 09/09/2021 Sample: Received: 09/16/2021 Sample Type: Sample + Sum RG MIDER WS LAEMP EVO 2021-09-09 N NAL **Des Container Size** Lot **Preservation** P-Lot рH Ship. Cont. 10% HNO3 (BAL) Client-Provided - TM 60 mL na 2127026 <2 Styrofoam Cooler #1 -2109233 Lab ID: 2109233-13 Report Matrix: WS Collected: 09/11/2021 Sample: Sample Type: Sample + Sum Received: 09/16/2021 RG_MIDGA_WS_LAEMP_EVO_2021-09-11_N **Des Container Size** Lot **Preservation** P-Lot pН Ship. Cont. Cent Tube 15mL Se-Sp 15 mL Stvrofoam Α na none na na Cooler #1 -2109233 В XTRA_VOL 15 mL Stvrofoam na none na na Cooler #1 -2109233 XTRA_VOL 60 mL С na none na na Styrofoam Cooler #1 -2109233 Lab ID: 2109233-14 Report Matrix: WS Collected: 09/11/2021 Sample: Sample Type: Sample + Sum Received: 09/16/2021 RG MIDGA WS LAEMP EVO 2021-09-11 N NAL **Des Container** Size **Preservation** P-Lot рΗ Ship. Cont. Lot Client-Provided - TM 60 mL 10% HNO3 (BAL) na 2127026 <2 Styrofoam Cooler #1 -2109233 Lab ID: 2109233-15 Report Matrix: WS Collected: 09/11/2021 Sample: Sample Type: Sample + Sum Received: 09/16/2021 RG_MIDGA_WS_LAEMP_EVO_2021-09-11_N_NAL Preservation **Des Container Size** Lot P-Lot pН Ship. Cont. Client-Provided - TM 60 mL na 10% HNO3 (BAL) 2127026 <2 Styrofoam Cooler #1 -

BAL Final Report 2109233
Client PM: Allie Ferguson
Client Project: REP

Sample Containers

	Lab ID: 2109233-16 Sample: RG_RIVER_WS_2021-09-11_N Des Container Size			Report Matrix: WS Sample Type: Sample + Sum		Collected: 09/11/2021 Received: 09/16/2021			
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.		
Α	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Styrofoam Cooler #1 - 2109233		
В	XTRA_VOL	15 mL	na	none	na	na	Styrofoam Cooler #1 - 2109233		
С	XTRA_VOL	60 mL	na	none	na	na	Styrofoam Cooler #1 - 2109233		
Lab I	D : 2109233-17			Report Matrix: WS		Collec	cted: 09/11/2021		
-	ole: RG_RIVER_WS_2021-09-			Sample Type: Sample + Sum			ved: 09/16/2021		
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.		
Α	Client-Provided - TM	60 mL	na	10% HNO3 (BAL)	2127026	<2	Styrofoam Cooler #1 - 2109233		
Samp	D : 2109233-18 ble : RG_RIVER_WS_2021-09-			Report Matrix: WS Sample Type: Sample + Sum		Recei	cted: 09/11/2021 ved: 09/16/2021		
	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.		
Α	Client-Provided - TM	60 mL	na	10% HNO3 (BAL)	2127026	<2	Styrofoam Cooler #1 - 2109233		
Lab I	D : 2109233-19			Report Matrix: WS		Collec	cted: 09/11/2021		
Samp RG_N	ble: MIDBO_WS_LAEMP_EVO_20:	21-09-11_N		Sample Type: Sample + Sum		Recei	ved: 09/16/2021		
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.		
Α	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Styrofoam Cooler #1 - 2109233		
В	XTRA_VOL	15 mL	na	none	na	na	Styrofoam Cooler #1 - 2109233		
С	XTRA_VOL	60 mL	na	none	na	na	Styrofoam Cooler #1 - 2109233		

Project ID: TRL-VC1701 **PM:** Jeremy Maute

BAL Final Report 2109233
Client PM: Allie Ferguson
Client Project: REP

Cooler #1 - 2109233

Sample Containers

Lab ID: 2109233-20 Report Matrix: WS Collected: 09/11/2021 Sample: Received: 09/16/2021 Sample Type: Sample + Sum RG MIDBO WS LAEMP EVO 2021-09-11 N NAL **Des Container Size** Lot **Preservation** P-Lot рH Ship. Cont. 10% HNO3 (BAL) Client-Provided - TM 60 mL na 2127026 <2 Styrofoam Cooler #1 -2109233 Lab ID: 2109233-21 Report Matrix: WS Collected: 09/11/2021 Sample: Sample Type: Sample + Sum Received: 09/16/2021 RG_MIDBO_WS_LAEMP_EVO_2021-09-11_N_NAL **Des Container Size** Lot **Preservation** P-Lot Hq Ship. Cont. Client-Provided - TM 60 mL na 10% HNO3 (BAL) 2127026 <2 Stvrofoam Cooler #1 -2109233 Lab ID: 2109233-22 Report Matrix: WS Collected: 09/13/2021 Sample: Received: 09/16/2021 Sample Type: Sample + Sum RG_MICOMP_WS_LAEMP_EVO_2021-09-13_N **Preservation** P-Lot Container **Size** Lot pН Ship. Cont. Cent Tube 15mL Se-Sp 15 mL Stvrofoam Α na none na na Cooler #1 -2109233 XTRA_VOL В 15 mL na none na Styrofoam na Cooler #1 -2109233 С XTRA_VOL 60 mL Styrofoam na none na na Cooler #1 -2109233 Lab ID: 2109233-23 Report Matrix: WS Collected: 09/13/2021 Sample Type: Sample + Sum Received: 09/16/2021 RG_MICOMP_WS_LAEMP_EVO_2021-09-13_N_N AL Container **Preservation** Des **Size** Lot P-Lot pН Ship. Cont. Styrofoam Client-Provided - TM 60 mL 10% HNO3 (BAL) <2 na 2127026

Project ID: TRL-VC1701 **PM:** Jeremy Maute

BAL Final Report 2109233
Client PM: Allie Ferguson
Client Project: REP

Sample Containers

Lab ID: 2109233-24 Sample: RG_MICOMP_WS_LAEMP_EVO_2021-09-13_N_AL Des Container Size				Report Matrix: WS Sample Type: Sample + Sum		Collected: 09/13/2021 Received: 09/16/2021			
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.		
Α	Client-Provided - TM	60 mL	na	10% HNO3 (BAL)	2127026	<2	Styrofoam Cooler #1 - 2109233		
Lab	ID : 2109233-25			Report Matrix: WS		Collec	cted: 09/13/2021		
Sam	ple: RG_RIVER_WS_2021-09	-13_N		Sample Type: Sample + Sum		Recei	ived: 09/16/2021		
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.		
Α	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Styrofoam Cooler #1 - 2109233		
В	XTRA_VOL	15 mL	na	none	na	na	Styrofoam Cooler #1 - 2109233		
С	XTRA_VOL	60 mL	na	none	na	na	Styrofoam Cooler #1 - 2109233		
Lab	ID : 2109233-26			Report Matrix: WS		Collec	cted: 09/13/2021		
Sam	ple: RG_RIVER_WS_2021-09	-13_N_NAL		Sample Type: Sample + Sum		Recei	ived: 09/16/2021		
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.		
Α	Client-Provided - TM	60 mL	na	10% HNO3 (BAL)	2127026	<2	Styrofoam Cooler #1 - 2109233		
	ID: 2109233-27	42 NI NIAI		Report Matrix: WS			cted: 09/13/2021		
Sam Des	ple: RG_RIVER_WS_2021-09 Container	-13_N_NAL Size	Lot	Sample Type: Sample + Sum Preservation	P-Lot		ived: 09/16/2021		
	Client-Provided - TM	60 mL			2127026	pH <2	Ship. Cont.		
Α	Ciletti-Provided - Tivi	OU ML	na	10% HNO3 (BAL)	2127020	< Z	Styrofoam Cooler #1 - 2109233		

Project ID: TRL-VC1701 **PM:** Jeremy Maute

BAL Final Report 2109233
Client PM: Allie Ferguson
Client Project: REP

Shipping Containers

Styrofoam Cooler #1 - 2109233

Received: September 16, 2021 6:41

Tracking No: PAPS#RWHV87364 via Courier **Coolant Type:** Ice

Temperature: 0.8 °C

Description: Styrofoam Cooler Damaged in transit? No Returned to client? No Comments: IR#30 Custody seals present? No Custody seals intact? No COC present? No

ICCI	COC ID:	Sente	mhei	r EVO I	LAEM	IP	TURNA	ROUN	JD 3	TIME:											
PRO	JECT/CLIENT INFO	Septe	HIDCE	EVOL	DA DIVI		T C I C I C				ATORY		Regula	ir.	ATTIO IN	1000	OTHE	RINFO	nin ka		
Facility Name / Job#			-				Lal	b Name	April		lied Labs			Re	enort Fo	rmat / D	istribution		Excel	PDF	EDD
Project Manager									-	n Woznia					ail 1:	7	uson@lec		SACOI	v	LD0
	allie.ferguson@teck.com								-		pplied.com			_	ail 2:		@eguison			1	Y
Address	421 Pine Avenue						1	Address	188	804 Nortl	h Creek Pa	arkway			ail 3:	100000000000000000000000000000000000000	ntz@teck.c		x	v	X
														Em	ail 4:	1000	@minnow.		Y	Y.	N N
City	Sparwo	od		Province	BC			City	Во	thell		Province	WA	+	ail 5;	1000001110001	hler@minr	****	x	X	X
Postal Code	V0B 20	30		Country	Canada		Post	al Code	986	011		Country	USA	Em	ail 5:						
Phone Number							Phone 1	Number	200	6-632-62	06			PO n	number			VP000	748540		750
	SAMPLE DETAI	LS	y Vi	stay=8ffi	Discoul N	America April	The street				ANA	LYSIS REC	DUESTE	D		· ~	Filte	erol - F: Flet	d, L. Lab, F	L Full &	Lab, N. N
									101		F	F					14				
									W.											11.5	
			(0)						PRESE												
			(Yes/																		
	Sample Location	Field	Hazardous Material (Yes/No)	_			G=Grab C=Com	# Of	1000	Fotal Selenium	Dissolved Selenium	Selenium Speciation									
Sample ID	(sys_loc_code)	Matrix	1	Date	e 7	Time (24hr)	p	Cont.		Ĕ	Ā		-	-	-	-	1		-	-	-
RG_ALUSM_WS_LAEMP_EVO_2021-09-12_N	RG_ALUSM	WS	No	12-Sep-	-21	1300	G	1				1									
RG_ALUSM_WS_LAEMP_EVO_2021-09-12_N_NAL	RG_ALUSM	ws	No	12-Sep-	-21	1300	G	2		1	1										
RG_ERCK_WS_LAEMP_EVO_2021-09-10_N	RG_ERCK	ws	No	10-Sep-	-21	1130	G	1				1									
RG_ERCK_WS_LAEMP_EVO_2021-09-10_N_NAL	RG_ERCK	ws	No	10-Sep-	-21	1130	G	2	S.	1	1										
RG_MI3_WS_LAEMP_EVO_2021-09-10_N	RG_MI3	WS	No	10-Sep-	-21	1600	G	1				1									
RG_MI3_WS_LAEMP_EVO_2021-09-10_N_NAL	RG_MI3	ws	No	10-Sep-	-21	1600	G	2	100	i	1										
RG_MIDER_WS_LAEMP_EVO_2021-09-09_N	RG_MIDER	ws	No	9-Sep-	21	1435	G	1				1									
RG_MIDER_WS_LAEMP_EVO_2021-09-09_N_NAL	RG_MIDER	ws	No	9-Sep-	-21	1435	G	2		1	1										
ADDITIONAL COMMENTS/SPECIAL	INSTRUCTIONS					D BY/AFFIL				DATE	/TIME	ACC	CEPTED	BY/AF	FILIAT	ION		D	ATE/TI		
Total and dissolved selenium samples have NOT been p been filtered. Speciation samples have bee		nium have			Jennifer —	r Ings/Minno	w			14-Se	p-2021	Shi	tila B	سار م	h		A	1161	21	6:1	41
SERVICE REQUEST (rush - subject	to arsifability)	HE DOWN					Little Vos	E EY						300 D	V. III					H D	-
		(default) X		Samp	oler's Na	me			Je	ennifer l	Ings		Me	bile#	T		51	19-500-3	444		
Emergency (1 Business Day) - 100% s ASAP or Weekend - Con	surcharge		Sample	er's Signa	ature	James!	19.70	-				Dat	e/Time			Septe	ember 1	4, 2021		

Page

1 of

BAL Final Report 2109233

	COC ID:	Septe	mbei	r EVO LAE	ЕМР	TURNA	ROUN					Regular							
	DECT/CLIENT INFO					BILLETA	LX			ATORY	MILL					R INFO		10	1
Facility Name / Job#										lied Labs					mat / Distributio		Excel	PDF	EDI
Project Manager	allie.ferguson@teck.co	m				Lab		-	1 Woznia	ьк applied.com			Email		allie ferguson@te		X	X	X
	421 Pine Avenue	511				ļ .		-	-	applied.com n Creek Pa			Email		teckcoal@equiso			-	X
Address	421 Fille Avellue		-	- 4		- '	Addiess	100	904 NOIU	I CICEK FA	ikway		Email Email		jessica ritz@teck.		X	X	X
City	Sparw	zood		Province BC			City	Bot	thell		Province	WA	Email		lbowron@minnov		X	X	X
Postal Code				Country Can	ada	Post	al Code	-			Country	USA	Email		tyler.mehler@min	now.ca	X	X	X
	250-910-8755			, , , , , , ,				-	5-632-620	06	Country	00.1	PO num			VP000	748540		
	SAMPLE DETA	ILS		Report of					uds) college	ANAI	ASIS REC	QUESTE		7050	Yas	tored - F: Fiel	CATALOGRAPHIC TORSES	Illemand Company	Lab, No
								Bilt.		F	F								
														-110					+
								ERV.			, like	19.							4
			6					PRES				1 5 9					11-11	11.	
			S.			1			P			-					-	-	-
			Hazardous Material (Yes/No)									7						1	1
			[e					0		8	8								
			ate					7		- E	jati								1
			×					NAL	į.	sele) ad					-			1
			Jone			G=Grab		*	eler	5 2	E								
	Sample Location	Field	zarc			C=Com			Total Selenium	Dissolved Selenium	Selenium Speciation								
Sample ID	(sys_loc_code)	Matrix	Ha	Date	Time (24hr)	p	Cont.		Tot	Dis	Sele								
CG_MIDGA_WS_LAEMP_EVO_2021-09-11_N	RG_MIDGA	ws	No	11-Sep-21	1530	G	1				1								
G_MIDGA_WS_LAEMP_EVO_2021-09-11_N_NAL	RG_MIDGA	ws	No	11-Sep-21	1530	G	2		1	1									Ш
RG_RIVER_WS_2021-09-11_N	RG_RIVER	ws	No	11-Sep-21	1530	G	1				1								
RG_RIVER_WS_2021-09-11_N_NAL	RG_RIVER	ws	No	11-Sep-21	1530	G	2	=0	1	1									
RG_MIDBO_WS_LAEMP_EVO_2021-09-11_N	RG_MIDBO	ws	No	11-Sep-21	1130	G	1	Ti I			1								
RG_MIDBO_WS_LAEMP_EVO_2021-09-11_N_NAL	RG_MIDBO	ws	No	11-Sep-21	1130	G	2	00	1	1									
RG_MICOMP_WS_LAEMP_EVO_2021-09-13_N	RG_MICOMP	ws	No	13-Sep-21	1600	G	1				1								
RG_MICOMP_WS_LAEMP_EVO_2021-09-13_N_NAL	RG_MICOMP	ws	No	13-Sep-21	1600	G	2		1	1									
RG_RIVER_WS_2021-09-13_N	RG_RIVER	ws	No	13-Sep-21	1600	G	1	100			1								
RG_RIVER_WS_2021-09-13_N_NAL	RG_RIVER	ws	No	13-Sep-21	1600	G	2	U,	1	1									
ADDITIONAL COMMENTS/SPECIAL	INSTRUCTIONS		Andre	***************************************	SHED BY/AFFII	The second second				/TIME	AC	CEPTED	BY/AFFI	LIAT	ION	D	ATE/I	ME	
Total and dissolved selenium samples have NOT been p	preserved. Dissolved se	lenium have		Jenn	ifer Ings/Minno	w		-	14-Sep	p-2021	M	ith	Philip	·h.	9	1166	21_	6:1	41
been filtered. Speciation samples have been	en filtered and frozen.						-	t										-	
				- 11				T											
SERVICE REQUEST (rash - subject									You !!								i to		188
Priority (Regul 2-3 business days) - 50%	ar (default) X		Sampler's	Name				anifer I	ngs		Mo	bile#		5	19-500-3	3444		
	(1 Business Day) - 100%			Sampler's Si	ianatura	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	20					Det	/Time		Cant	ember 1	4 2021		
For Emergency <1 Day,	ASAP or Weekend - C	ontact ALS	1	Sampler 8 S	ignature	ر مساد و ۱ دست						Date	z i ime		Sept	emper I	4, 4041		

STRAIGHT BILL OF ADING NOT NEGOTIABLE

No. 87364

Sparwood, BC Terrace, BC Red Deer, AB Vancouver, BC Calgary, AB Montreal, QC Prince George, BC Edmonton, AB Spokane, WA Elkford, BC Ft. McMurray, AB Shelby, MT Tumbler Ridge, BC Hinton, AB Gillette, WY

DICE TO	*	PURCHASE ORDER NUMBER		
OF LADING #	***	CONSIGNEE (TO)	poliedla	bs .
ECK COLLIC	k Treatment	TREOH N	LICEK YO	GRATITI
WERDVINCE VOCA 13	POSTAL CODE	CNTVIPROVINCE	JA	REIGHT CHARGES
ECIAL INSTRUCTIONS	SCRIPTION OF ARTICLES AND SPECIAL WARKS	(\$	WEIGHT	PREPAID COLLECT
ACKAGES	Water Sonal	FS 10	O LBS FE	
Da Lootes	Maxis - Samuel	*	W	UTING
1/2 /			x	NU
200 · DI	1111/072		C	(ARGES
PAPS#KI	CIBAHA	67	F	sc
17119 111	3	VALUATION: Maximum	ı	s
JNIT#	liability of can kilogram) unl otherwise.	ess declared valuation states		SUB TOTAL
	PICK OF TIME	GNATURE - GLESVETT		ST
DRIVER O Significant of delay of any	goods under the Bill of Licking unless notice, therefor setting out per goods under the Bill of Licking unless notice, therefor setting out per	riculars of the origin. destination and date of shipment of the goods, ofn the case of patter to make delivery within a topy of; the paid (rough) bill. with a copy of; the paid (rough) and	goods and the estimated amount cannot name (9) months from the date of shipment sackage unknown) merited, consigned and the date of shipment.	TOTAL \$
PRIVER'S SIGNATURE: **ROTICE OF CLAMB: (a) No carrier is limble for loss, derming or delay of any of the origination of such loss, deemage or delay is given in warrier of the origination of the delay is settlement of the delay of the origination of the carrier is settlement of the delay or modified from the consignation of delay or the posterior origination within the carrier agrees to carrier of the carrier agrees to carrier of the car	under of the teacher from . The date of shipment is also me (9) months from . The date of shipment sections are shipment sections and the shipment sections of the shipment sections are shipment sections and shipment sections are shipment sections and shipment sections are shipment sections and shipment sections are shipment sections and shipment sections are shipment sections and shipment sections are shipment sections.	for except as notified (consensus are and, classification in netion, subject to the rates and, classification in me inheristed in all or any of the goods, that every service to this assigns. Printed or viction, including conditions set asside its assigns that the printed or viction, including conditions set asside shipment and is subject to the conditions set out in such as	be performed hereunder shall be stoped by the standard RA of Lading, in power at	FAY OWNER'S RISK, WRITE ORD HERE.
SHIPPER	med by regulation in force the presentation of CONSIGNEE PRINT	2006 10	AL) GA	6771 E
SHIPPER	CONSIGNE	GST # 86454	10398RT0001 7	WHATE OF PHINES RECEIVED
SIGN WHITE: Office YELLOW: Carr	ier PINK: Consignee SOLUENRO	AD: Shipper		(] "16/71"

Cooler ID: Styrofoam Cooler # 1 COC (Y/N) Temperature: (). 8

Coolant Type: Ice Blue Ice Ambient

Notes:

Container Types:

Opened By:

Date: 9/16/2

COPY

STRAIGHT BILL OF ADING

No. 87364

Sparwood, BC Terrace, BC Red Deer, AB Vancouver, BC Calgary, AB Montreal, QC Prince George, BC Edmonton, AB Spokane, WA Elkford, BC Ft. McMurray, AB Shelby, MT Tumbler Ridge, BC Hinton, AB Gillette, WY

	Red Deer, AB		· · · · · · · · · · · · · · · · · · ·	1.3	
E TO	1. Oak		PURCHASE ORDER NU	JMBER ,	
F LADING	13		CONSIGNEE (TO)	Applied	abs
ER (FROM	Scort	tel on	STREET	N. Cleek	POSTAL CODE
ROVINCE	Line 1	TECK III	POSTAL CODE CHY/PROVINCE	WA	FREIGHT CHARGES
IAL INSTR	RUCTIONS	- E -	9	WEIGHT	SHIPPER TO CHECK
oro	1.77	DESCRIPTION OF ART	TICLES AND SPECIAL MARKS	(Subject to Correction)	If not indicated, shipping will automatically move
KAGES	1/2	- Note	1 Samoles	10019	FEE
5	LCOIC	2 1/1/1/	1 - Aller II		WAITING
	1				
- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1					XPU
		Si (11)	1072111	**	CHARGES
M	DCT	KITH.	181364		FSC
					1 530
	011	INATT	40100	* .	Also (c
	1013	Tratt	VALUATION: Maximum		US
/ \		Inatt	DECLARED VALUATION: Maximum liability of carrier is \$2.00 per lb. (\$4.41 per kilogram) unless declared valuation states	\$	Also (c
/ \		ITAATT	kilogram) unless declared valuation states otherwise.	FINISH TIME	us
-	GNATURE - PICK UP BY	PICK UP TIME	liability of camer is \$2.00 per library states kilogram) unless declared valuation states otherwise. DRIVER'S SIGNATURE - DELIVERY BY	FINISH TIME	US SUB TOTAL GST
-	GNATURE - PICK UP BY	PICK UP TIME	liability of camer is \$2.00 per library states kilogram) unless declared valuation states otherwise. DRIVER'S SIGNATURE - DELIVERY BY	FINISH TIME	US SUB TOTAL GST
-	GNATURE - PICK UP BY (a) No carrier in liable for bost, chartage, (b) chartage or delay is given in writing or (b) chartage or delay is given in writing or (c) chartage or delay is given in writing or (c) chartage or delay is given in writing or (c) chartage or delay is given in writing or (c) chartage or delay is given in writing or (c) chartage or delay is given in writing or delay in writing or dela	PICK UP TIME	liability of camer is \$2.00 per library states kilogram) unless declared valuation states otherwise. DRIVER'S SIGNATURE - DELIVERY BY	FINISH TIME	US SUB TOTAL GST
-	GNATURE - PICK UP BY Schemble of their patient in writing or Schemble of their patient must be a point of origin on the date specified from Schemble or their patient must be specified to origin on the date specified to Schemble origin on the date specified to Schemble origin on the date specified to Schemble origin on the date specified to Schemble origin or the date or Schemble origin origin or Schemble origin origin or Schemble origin origin or Schemble origin orig	PICK UP TIME	liability of camer is \$2.00 per library states kilogram) unless declared valuation states otherwise. DRIVER'S SIGNATURE - DELIVERY BY	FINISH TIME	US SUB TOTAL GST
IVER'S SII	GNATURE - PICK UP BY Its (a) No carrier is spice for box, demands, demands of other carrier in writing of some of the carrier in must be a mount of other one date specified in deated before, writing at or any of the day of the carrier in power in or suit of the carrier in power in the suiting, which are in-payly agree as suiting, which are in-payly agree as the carriage of the goods foliate in the Ball	PICK UP TIME	kilogram) unless declared valuation states otherwise.	FINISH TIME	SUB TOTAL GST TOTAL \$ GAT OWNERS RISK, WRITE ORD HERE DATE
IVER'S SII	GNATURE - PICK UP BY the (a) No carrier is faither for hose, demands, a, demange or delays in others in writing or atterned of the carrier was a country of the carrier and the carrier of the carrier to see the carrier of all or any of the carrier of the carrier of all or any of the carriege of the goods faither the carriege of the goods faither in the carriege of the goods faither in the CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	PICK UP TIME	ilability of carrier is 3/2/0 per local per lo	shipment of the goods and the estimates exercise of delingry within one (9) months from the date of the state	SUB TOTAL GST TOTAL \$ IF-AT OWNER'S RISK, WRITE ORD HERE DATE 7 / MARCON
T# IVER'S SI INCE OF CLAIM INCE O	GNATURE - PICK UP BY Bit (a) No carrier is liquide for boss, dismaging s, descript of other parties of the par	PICK UP TIME be ordelay of any goods under the BB of LL the originating center or the delivering or filled within into your bearing the pro- ground or any produce or deliver to produce over slay any portion or opening to produce over slay any portion or opening to produce over slay any portion or opening to produce over slay any portion or produce over slay an	ilability of carrier is 3/2/0 per local per lo	FINISH TIME	SUB TOTAL GST GST TOTAL \$ IF AT OWNER'S RISK, WHITE ORD HERE DATE

Cooler ID: Styrofoam	Cooler	#2	COC (YN)	Te	mperatur		: 5.6		IR: 3	30 ·
Coolant Type: Ice	Blue Ice	Ambi	ent	ę		Sp:	1.1°C	,		A. Carrier
Notes:			# -			*	•		4	ŧ
Sampling Locations:	LC)	R	G						
Sample Types:	T/D	SP	T/D	SP _	T/D	SP	T/D	SP	T/D	SP
Container Types:	40ml		40ml	60mL						
Opened By: SP			Date: 1	116/21			 -			" 🤫

STRAIGHT BILL OF ADING

No. 87364

Sparwood, BC Terrace, BC Vancouver, BC Calgary, AB Montreal, QC Prince George, BC Edmonton, AB Spokane, WA Elkford, BC Ft. McMurray, AB Shelby, MT Tumbler Ridge, BC Hinton, AB Gillette, WY

CE TO					
	A. 844		PURCHASE ORDER	NUMBER	
OF LADING	# · · · · · · · · · · · · · · · · · · ·		CONSIGNEE (TO)	s Applied	abs
ER (FRIDM	Coult	d Vort	mat 1804	N. Creek	Parkuay
PROVINCE	Jord 30	11	TAL CODE CHTY/PROVINCE	II WA	FREIGHT CHARGES
AL INSTR	UCTIONS	*	Commence of the contract of th	WEIGHT	OPREPAID OCCULECT
1	* / ₂	DESCRIPTION OF ARTICLES A	ND SPECIAL MARKS	(Subject to Correction)	If not indicated, shipping will automatically moves of
CKAGES	-	1 104=1	Sandes	100 185	FEE
5 :	looleis	- MYTEL	MINIMA TO THE REAL PROPERTY OF THE PERTY OF	A. W.	
					WAITING
. , , ,	1 1/2				ΧΡU
		* ·	V		
	1		ATOLI		CHARGES_
	1700 a a l				
M	IN 42 K	1-1-11	2 767	A 1 2	
A	17#C	MILA	T dCl O		FSC
将	15#K	MILA	5 1367		PSC:
A	12# K	MILA	DECLARED VALUATION: Maximu	um per	us
4	13#K	MIIA	kilogram) unless declared valuation sta	um per	
* A	1/5#K	- , • , •	kilogram) unless declared valuation sta otherwise:	um per ites	us
- 3	GNATURE - PICK UP BY	PICK UP TIME	tiability of carrier is declared valuation state otherwise: DRIVER'S SIGNATURE - DELIVERY	per tes \$	US SUB TOTAL GST
- X	GNATURE - PICK UP BY	PICK UP TIME	tiability of carrier is declared valuation state otherwise: DRIVER'S SIGNATURE - DELIVERY	per tes \$	US SUB TOTAL GST
- X	GNATURE - PICK UP BY	PICK UP TIME	tiability of carrier is declared valuation state otherwise: DRIVER'S SIGNATURE - DELIVERY	per tes \$	US SUB TOTAL GST
£ 5	GNATURE - PICK UP BY t. (a) No carrier is instale for loss, damning or delay, damning or delay is given in writing. If the origin remember of their, damning or delay is given in writing. If the origin remember of their delay is the second of their delays, which the carrier systems of their work of their wore	PICK UP TIME	tiability of carrier is declared valuation state otherwise: DRIVER'S SIGNATURE - DELIVERY	per tes \$	US SUB TOTAL GST
- X	GNATURE - PICK UP BY L(a) No carrier si labele for lose, clamage or delegation of the contract size of the contract size of the contract size of the contract of the color of the color of the color of the color of orbin on the delegation of the color of orbin on the delegation of the color	PICK UP TIME	tiability of carrier is declared valuation state otherwise: DRIVER'S SIGNATURE - DELIVERY	per tes \$	USSUB TOTALST
RIVER'S SIGNATURE OF CLASSIFICATION OF CLASSIFICATION OF THE PROPERTY OF THE P	GNATURE - PICK UP BY L. (a) No carrier is liable for loss, charmings or delay, charming to the origin, charming to the origin, charming to the origin of the charming to the origin of the charming to the origin of the charming to the origin of the charming to the origin of the charming to the origin of the charming to the charming to be charming to the charming to be charming to the charming to the charming which are harriery, sgreet by the charming which are harriery, sgreet by the charming thas charming the charming the charming the charming the charming t	PICK UP TIME	kilogram) unless declared valuation sta otherwise:	per tes \$	SUB TOTAL SUB TOTAL GST TOTAL S FAT OWNERS RISK, WRITE SENTER DATE CA TIME
RIVER'S SIN	ch (a) No carrier is liebtle for loss, damnings or delight, channings of delight (a) the control of delight (a) when in writing (a) the order treament of the college of the control of delight (a) the college of the control of delight (b) the college of the control of delight (b) the college of the control of delight (b) the college of	PICK UP TIME	Indianry of carrier is declared valuation stated in the condition of the c	per tes \$	SUB TOTAL SST CENTRAL GST TOTAL \$ manner audient E AT OWNER'S RISK, WRITE DEDUESTE DATE G 7 TIME
RIVER'S SIGN TITE OF CLASSING SOCIETY OF CLASSING SOCIETY OF CLASSING SOCIETY OF CLASSING SOCIETY OF CONTROL OF THE STRIPPER SHIPPER SHIPPER SHIPPER SHIPPER SHIPPER SHIPPER SHIPPER	GNATURE - PICK UP BY Let (a) No carrier to liable for lote, charage or delege, charage of the claim must be filed we carried to the claim must be filed we carried order to the claim must be filed we carried order to the claim must be filed we carried order to the claim must be filed we carried to the claim of the control of the contr	PICK UP TIME	Indianty of carrier is declared valuation state otherwise: DRIVER'S SIGNATURE - DELIVERY I propose, breator entire out personal residence of the order, destination and declared output together with a car reflect content of the product on the case of share except of the product on the case of share except of the product on the residence of the product of the produ	per tes \$	SUB TOTAL GST TOTAL \$ FAT OWNER'S RISK, WRITE JODNESS DATE Control of the co

Cooler ID: Styrafoam	Cooler	#3.	coc (ØN)	Te	, mperatu	re: T/D: Sp:	6.0°C		IR:	30
Coolant Type: Ice	Blue Ice) Ambi	ent	* *	اد اداد الاحمادي	26.	0.40	2	4	
Notes:						*				
Sampling Locations:	R	G	EV	/	Ĺ	C				
Sample Types:	T/D	SP	T/D	SP _	T/D	SP	T/D	SP	T/D	SP
Container Types:	Homl	60mL	40mL			60mL		-		
Opened By: SP :		0	Date: 9	116/21		0				

From: <u>Tyler Mehler</u>

To: Chelsea Van Landeghen; allie.ferguson@teck.com; jessica.ritz@teck.com; Lisa Bowron
Cc: Jeremy Maute
Subject: RE: Received - WO (2109233, 2109235, 2109237), REP - Privileged and Confidential

Date: Wednesday, September 22, 2021 1:25:20 PM

Hi Chelsea -- Please use the sample ID from the COC in this situation. Thanks.

From: Chelsea Van Landeghen <chelsea@brooksapplied.com>

Sent: Wednesday, September 22, 2021 10:47 AM

To: allie.ferguson@teck.com; jessica.ritz@teck.com; Lisa Bowron <LBowron@minnow.ca>; Tyler Mehler

<tyler.mehler@minnow.ca>

Cc: Jeremy Maute < Jeremy@brooksapplied.com>

Subject: Received - WO (2109233, 2109235, 2109237), REP - Privileged and Confidential

Good morning!

This is confirmation that samples from the REP project were received at Brooks Applied Labs on September 16, 2021. The samples were logged in for the following turnaround times (TATs):

WO 2109233 - (5-9 business day) TAT

WO 2109235 - (5-9 business day) TAT

WO 2109237 - (5-9 business day) TAT

The **Sample ID** value listed on the chain-of-custody (COC) form did not exactly match the corresponding **Sample ID** terms listed on container labels for samples in WO 2109233, 2109235, and 2109237. The discrepancies are described in the table below.

Laboratory ID	Sample ID (From COC form)	Sample ID (listed on container label)	Analytical Parameter
2109233-01	RG_ALUSM_WS_ <mark>LAEMP_EVO</mark> _2021-09- 12_N	RG_ALUSM_WS_2021-09-12_N	Se Speciation
2109233-02	RG_ALUSM_WS_ <mark>LAEMP_EVO</mark> _2021-09- 12_N_NAL	RG_ALUSM_WS_2021-09-12_N_NAL	Total Recoverable Se
2109233-03	RG_ALUSM_WS_ <mark>LAEMP_EVO</mark> _2021-09- 12_N_NAL	RG_ALUSM_WS_2021-09-12_N_NAL	Dissolved Se
2109233-04	RG_ERCK_WS_ <mark>LAEMP_EVO</mark> _2021-09- 10_N	RG_ERCK_WS_2021-09-10- <mark>1130</mark> _N	Se Speciation
2109233-05	RG_ERCK_WS_ <mark>LAEMP_EVO</mark> _2021-09- 10_N_NAL	RG_ERCK_WS_2021-09-10- <mark>1130</mark> _N_NAL	Total Recoverable Se
2109233-06	RG_ERCK_WS_ <mark>LAEMP_EVO</mark> _2021-09- 10_N_NAL	RG_ERCK_WS_2021-09-10- <mark>1130</mark> _N_NAL	Dissolved Se
2109233-07	RG_M13_WS_ <mark>LAEMP_EVO</mark> _2021-09- 10_N	RG_M13_WS_2021-09-10- <mark>1600</mark>	Se Speciation
2109233-08	RG_M13_WS_ <mark>LAEMP_EVO</mark> _2021-09- 10_N_NAL	RG_M13_WS_2021-09-10- <mark>1600</mark>	Total Recoverable Se
2109233-09	RG_M13_WS <mark>_LAEMP_EVO</mark> _2021-09- 10_N_NAL	RG_M13_WS_2021-09-10- <mark>1600</mark>	Dissolved Se

2109233-10	RG_MIDER_WS_ <mark>LAEMP_EVO</mark> _2021-09- 09_N	RG_MIDER_WS_2021-09-09- <mark>1435</mark> _N	Se Speciation
2109233-11	RG_MIDER_WS_ <mark>LAEMP_EVO</mark> _2021-09- 09_N_NAL	RG_MIDER_WS_2021-09- 09- <mark>1435</mark> _N_NAL	Total Recoverable Se
2109233-12	RG_MIDER_WS_ <mark>LAEMP_EVO</mark> _2021-09- 09_N_NAL	RG_MIDER_WS_2021-09- 09- <mark>1435</mark> _N_NAL	Dissolved Se
2109233-13	RG_MIDGA_WS_ <mark>LAEMP_EVO</mark> _2021-09- 11_N	RG_MIDGA_WS_2021-09-11- <mark>1530</mark>	Se Speciation
2109233-14	RG_MIDGA_WS_ <mark>LAEMP_EVO</mark> _2021-09- 11_N_NAL	RG_MIDGA_WS_2021-09-11- <mark>1530</mark>	Total Recoverable Se
2109233-15	RG_MIDGA_WS_ <mark>LAEMP_EVO</mark> _2021-09- 11_N_NAL	RG_MIDGA_WS_2021-09-11- <mark>1530</mark>	Dissolved Se
2109233-16	RG_RIVER_WS_2021-09-11 <mark>_N</mark>	RG_RIVER_WS_2021-09-11- <mark>1530</mark>	Se Speciation
2109233-17	RG_RIVER_WS_2021-09-11_N_NAL	RG_RIVER_WS_2021-09-11- <mark>1530</mark>	Total Recoverable Se
2109233-18	RG_RIVER_WS_2021-09-11 <mark>_N_NAL</mark>	RG_RIVER_WS_2021-09-11- <mark>1530</mark>	Dissolved Se
2109233-19	RG_MIDBO_WS_ <mark>LAEMP_EVO</mark> _2021-09- 11_N	RG_MIDBO_WS_2021-09-11- <mark>1130</mark>	Se Speciation
2109233-20	RG_MIDBO_WS_ <mark>LAEMP_EVO</mark> _2021-09- 11_N_NAL	RG_MIDBO_WS_2021-09-11- <mark>1130</mark>	Total Recoverable Se
2109233-21	RG_MIDBO_WS_ <mark>LAEMP_EVO</mark> _2021-09- 11_N_NAL	RG_MIDBO_WS_2021-09-11- <mark>1130</mark>	Dissolved Se
2109233-22	RG_MICOMP_WS_LAEMP_EVO_2021- 09-13_N	RG_MICOMP_WS_LAEMP_EVO_2021- 09-13- <mark>1600</mark> _N	Se Speciation
2109233-23	RG_MICOMP_WS_LAEMP_EVO_2021- 09-13_N_NAL	RG_MICOMP_WS_LAEMP_EVO_2021- 09-13- <mark>1600</mark> _N_NAL	Total Recoverable Se
2109233-24	RG_MICOMP_WS_LAEMP_EVO_2021- 09-13_N_NAL	RG_MICOMP_WS_LAEMP_EVO_2021- 09-13- <mark>1600</mark> _N_NAL	Dissolved Se
2109235-04	RG_RIVER_WS_2021-09-09_N	RG_RIVER_WS_ <mark>RAEM</mark> _2021-09-09_N	Se Speciation
2109235-06	RG_RIVER_WS_2021-09-09_N_NAL	RG_RIVER_WS_ <mark>RAEM</mark> _2021-09- 09_N_NAL	Dissolved Se
2109235-20	RG_GHCKD_WS_RAEMP_2021- 09- <mark>11</mark> _N_NAL	RG_GHCKD_WS_RAEMP_2021- 09- <mark>NP</mark> _N_NAL	Total Recoverable Se
2109235-21	RG_GHCKD_WS_RAEMP_2021- 09- <mark>11</mark> _N_NAL	RG_GHCKD_WS_RAEMP_2021- 09- <mark>NP</mark> _N_NAL	Dissolved Se
2109235-26	RG_BACK_WS_RAEMP_2021-09- <mark>13</mark> _NAL	RG_BACK_WS_RAEMP_2021-09-NP_NAL	Total Recoverable Se
2109235-27	RG_BACK_WS_RAEMP_2021-09- <mark>13</mark> _NAL	RG_BACK_WS_RAEMP_2021-09- <mark>NP</mark> _NAL	Dissolved Se
2109237-05	RG_GHNF_WS_GGCAMP_2021- 09- <mark>10</mark> _N_NAL	RG_GHNF_WS_GGCAMP_2021- 09- <mark>NP</mark> _N_NAL	Total Recoverable Se
2109237-06	RG_GHNF_WS_GGCAMP_2021- 09- <mark>10</mark> _N_NAL	RG_GHNF_WS_GGCAMP_2021- 09- <mark>NP</mark> _N_NAL	Dissolved Se
2109237-08	RG_GHUT_WS_GGCAMP_2021- 09- <mark>13</mark> _N_NAL	RG_GHUT_WS_GGCAMP_2021- 09- <mark>NP</mark> _N_NAL	Total Recoverable Se
2109237-09	RG_GHUT_WS_GGCAMP_2021- 09- <mark>13</mark> _N_NAL	RG_GHUT_WS_GGCAMP_2021- 09- <mark>NP</mark> _N_NAL	Dissolved Se
2109237-11	RG_RIVER_WS_2021-09- <mark>13</mark> _N_NAL	RG_RIVER_WS_2021-09- <mark>NP</mark> _N_NAL	Total Recoverable Se
2109237-12	RG_RIVER_WS_2021-09- <mark>13</mark> _N_NAL	RG_RIVER_WS_2021-09- <mark>NP</mark> _N_NAL	Dissolved Se
	RG_GHBP_WS_GGCAMP_2021-	RG_GHBP_WS_GGCAMP_2021-	Total

2109237-14	09- <mark>13</mark> _N_NAL	09- <mark>NP</mark> _N_NAL	Recoverable Se
2109237-15	RG_GHBP_WS_GGCAMP_2021-	RG_GHBP_WS_GGCAMP_2021-	Dissolved Se
	09- <mark>13</mark> _N_NAL	09- <mark>NP</mark> _N_NAL	

The samples described the table above were logged in using the **Sample ID** terms listed on the COC form. Please let us know if you would have us report any of these samples in a different manner.

Unfortunately, a recent storm has damaged our server and the lab has not had access to the server this week. Do not worry; no data was lost. We just do not have access to the server currently. This has delayed many processes, including analysis and reporting. The board we needed was obtained today and access to the server should be restored by this evening. We are making every effort to get the work orders reported within the requested time frame. I apologize for any inconvenience this may cause.

I've attached copies of the COC forms. If you have any questions, please contact the project manager, Jeremy Maute.

Best, Chelsea

Chelsea Van Landeghen

Group Lead - Sample Control

email: chelsea@brooksapplied.com

BROOKS APPLIED LABS

Meaningful Metals Data and Advanced Speciation Solutions

P: 206-632-6206 | F: 206-632-6017 | 18804 North Creek Parkway, Suite 100, Bothell, WA 98011, USA

This electronic message transmission (including any attachments) is intended only for use by the addressee(s) named herein; it contains legally privileged and confidential information. If you are not the intended recipient, you are hereby notified that any dissemination, distribution, printing, or copying is strictly prohibited. If you have received this e-mail in error, please notify the sender and permanently delete any copies thereof.

SELENIUM SPECIATION

BAL Final Report 2109308 (Finalized October 22, 2021)

October 22, 2021

Teck Resources Limited - Vancouver Allie Ferguson 421 Pine Avenue Sparwood, B.C. CANADA V0B2G0 allie.ferguson@teck.com

Re: REP

Dear Allie Ferguson,

On September 23, 2021, Brooks Applied Labs (BAL) received twelve (12) aqueous samples. The samples were logged-in for total recoverable selenium [Se], dissolved Se, and Se speciation analyses, according to the chain-of-custody (COC) form.

The **Sample ID** value listed on the chain-of-custody (COC) form did not exactly match the corresponding **Sample ID** values on container labels for samples 2109308-08 and 2109308-09. The discrepancies are described in the table below.

Laboratory ID	Sample ID (From COC form)	Sample ID (From container label)
2109308-08	RG_ERCK <mark>U</mark> T_WS_LAEMP_EVO_2021- 09-15_N_NAL	RG_ERCK <mark>D</mark> T_WS_LAEMP_EVO_2021-09- 15_N_NAL
2109308-09	RG_ERCK <mark>U</mark> T_WS_LAEMP_EVO_2021- 09-15_N_NAL	RG_ERCK <mark>D</mark> T_WS_LAEMP_EVO_2021-09- 15_N_NAL

The samples described the table above were logged in and reported according to the **Sample ID** value listed on the COC form.

The sample fractions logged in for Se speciation and dissolved Se had been field-filtered prior to receipt at BAL. All samples were stored according to BAL SOPs.

Total Recoverable and Dissolved Se

Each aqueous sample fraction for total recoverable or dissolved Se was digested in a closed vessel (bomb) with nitric and hydrochloric acids. The resulting digests were analyzed for Se content via inductively coupled plasma triple quadrupole mass spectrometry (ICP-QQQ-MS). The ICP-QQQ-MS instrumentation uses advanced interference removal techniques to ensure accuracy of the sample results. For more information, please visit the *Interference Reduction Technology* section on our website, brooksapplied.com.

B212656-SRM1 was mis-prepped in the digest. Consequently, results are not reported for B212656-SRM1. The remaining blank spike samples and reference material samples in batch B212656 are used to demonstrate acceptable digest performance.

Se Speciation

Each aqueous sample was analyzed for Se speciation using ion chromatography inductively coupled plasma collision reaction cell mass spectrometry (IC-ICP-CRC-MS). Selenium species are chromatographically separated on an ion exchange column and then quantified using inductively coupled plasma collision reaction cell mass spectrometry (ICP-CRC-MS); for more information on this determinative technique, please visit the *Interference Reduction Technology* section on our website. The chromatographic method applied for the analyses provides greater retention of methylseleninic acid and selenomethionine, allowing for more definitive quantitation of these species.

In accordance with the quotation issued for this project, selenium speciation was defined as dissolved selenite [Se(IV)], selenate [Se(VI)], selenocyanate [SeCN], methylseleninic acid [MeSe(IV)], methaneselenonic acid [MeSe(VI)], selenomethionine [SeMet], selenosulfate [SeSO3], and dimethylselenoxide [DMSeO]. Unknown Se species was defined as the total concentration of all unknown Se species observed during the analysis. This item is identified on the report as [Unk Se Sp].

DMSeO elutes early in the chromatographic run due to the nature of the molecule and the applied chromatographic separation method. Since this species elutes near the dead volume, additional Se species may coelute. Alternate methods can be applied, upon client request, to increase the separation of DMSeO from potentially co-eluting Se species.

Chromatographic interference, as indicated by an elevated baseline, or co-eluting peak, was observed for selenosulfate in 2109308-13. Due to potential bias, the affected result has been qualified as estimated (**J-1**). Upon client request, Brooks Applied Labs can apply a higher dilution to this sample to potentially mitigate the chromatographic interferences, but a higher dilution would elevate the detection limit for SeMet above the client's requested limit of 0.010µg/L.

The results were not method blank corrected, as described in the calculations section of the relevant BAL SOPs and were evaluated using reporting limits adjusted to account for sample aliquot size. Please refer to the *Sample Results* page for sample-specific MDLs, MRLs, and other details.

In instances when a matrix spike/matrix spike duplicate (MS/MSD) set was spiked at a level less than the native sample concentration, the recoveries and the relative percent difference (RPD) are not considered valid indicators of data quality. In such instances, the recoveries of the laboratory fortified blanks (BS) and/or standard reference materials (SRM) demonstrate the accuracy of the applied methods. When the spiking level was less than 25% of the native sample concentration, the spike recovery was not reported (NR) and the RPD of the MS/MSD set was not calculated (N/C).

Except for concentration qualifiers and the item noted above, all data were reported without qualification. All associated quality control sample results met the acceptance criteria.

BAL, an accredited laboratory, certifies that the reported results of all analyses for which BAL is NELAP accredited met all NELAP requirements. For more information, please see the *Report Information* page.

Confidential BAL Final Report 2109308

Please feel free to contact us if you have any questions regarding this report.

Sincerely,

Jeremy Maute Senior Project Manager

Brooks Applied Labs

Jeremy@brooksapplied.com

Project ID: TRL-VC1701 **PM**: Jeremy Maute

BAL Final Report 2109308 Client PM: Allie Ferguson Client Project: REP

Report Information

Laboratory Accreditation

BAL is accredited by the *National Environmental Laboratory Accreditation Program* (NELAP) through the State of Florida Department of Health, Bureau of Laboratories (E87982) and is certified to perform many environmental analyses. BAL is also certified by many other states to perform environmental analyses. For a current list of our accreditations/certifications, please visit our website at http://www.brooksapplied.com/resources/certificates-permits/ or review Tables 1 and 2 in our Accreditation Information. Results reported relate only to the samples listed in the report.

Field Quality Control Samples

Please be notified that certain EPA methods require the collection of field quality control samples of an appropriate type and frequency; failure to do so is considered a deviation from some methods and for compliance purposes should only be done with the approval of regulatory authorities. Please see the specific EPA methods for details regarding required field quality control samples.

Common Abbreviations

AR	as received	MS	matrix spike
BAL	Brooks Applied Labs	MSD	matrix spike duplicate
BLK	method blank	ND	non-detect
BS	blank spike	NR	non-reportable
CAL	calibration standard	N/C	not calculated
CCB	continuing calibration blank	PS	post preparation spike
CCV	continuing calibration verification	REC	percent recovery
COC	chain of custody record	RPD	relative percent difference
D	dissolved fraction	SCV	secondary calibration verification
DUP	duplicate	SOP	standard operating procedure
IBL	instrument blank	SRM	reference material
ICV	initial calibration verification	T	total fraction
MDL	method detection limit	TR	total recoverable fraction
MRL	method reporting limit		

Definition of Data Qualifiers

(Effective 3/23/2020)

- E An estimated value due to the presence of interferences. A full explanation is presented in the narrative.
- Holding time and/or preservation requirements not met. Please see narrative for explanation.
- J Detected by the instrument, the result is > the MDL but ≤ the MRL. Result is reported and considered an estimate.
- **J-1** Estimated value. A full explanation is presented in the narrative.
- **M** Duplicate precision (RPD) was not within acceptance criteria. Please see narrative for explanation.
- **N** Spike recovery was not within acceptance criteria. Please see narrative for explanation.
- **R** Rejected, unusable value. A full explanation is presented in the narrative.
- U Result is ≤ the MDL or client requested reporting limit (CRRL). Result reported as the MDL or CRRL.
- X Result is not BLK-corrected and is within 10x the absolute value of the highest detectable BLK in the batch. Result is estimated.
- **Z** Holding time and/or preservation requirements not established for this method; however, BAL recommendations for holding time were not followed. Please see narrative for explanation.

These qualifiers are based on those previously utilized by Brooks Applied Labs, those found in the EPA <u>SOW ILM03.0</u>, Exhibit B, Section III, pg. B-18, and the <u>USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review; USEPA; January 2010</u>. These supersede all previous qualifiers ever employed by BAL.

Project ID: TRL-VC1701 **PM:** Jeremy Maute

BAL Final Report 2109308 Client PM: Allie Ferguson Client Project: REP

Accreditation Information

Table 1. Accredited method/matrix/analytes for TNI

Issued by: State of Florida Dept. of Health (The NELAC Institute 2016 Standard) Issued on: July 1, 2021; Valid to: June 30, 2022

Certificate Number: E87982-37

Method	Matrix	TNI Accredited Analyte(s)					
EPA 1638	Non-Potable Waters	Ag, Cd, Cu, Ni, Pb, Sb, Se, Tl, Zn					
EPA 200.8	Non-Potable Waters	Ag, Al, As, Ba, Be, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Se, Tl, U, V, Zn					
	Non-Potable Waters	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Tl, U, V, Zn					
EPA 6020	Solids/Chemicals & Biological	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Tl, V, Zn					
BAL-5000	Non-Potable Waters	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, N Pb, Sb, Se, Sn, Sr, Tl, U, V, Zn, Hardness					
	Solids/Chemicals	Ag, As, B, Be, Cd, Co, Cr, Cu, Pb, Mo, Ni, Sb, Se, Sn, Sr, Tl, V, Zn					
	Biological	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Tl, V, Zn					
EPA 1640	Non-Potable Waters	Cd, Cu, Pb, Ni, Zn					
EPA 1631E	Non-Potable Waters, Solids/Chemicals & Biological	Total Mercury					
EPA 1630	Non-Potable Waters	Methyl Mercury					
BAL-3200	Solids/Chemicals & Biological	Methyl Mercury					
BAL-4100	Non-Potable Waters	As(III), As(V), DMAs, MMAs					
BAL-4201	Non-Potable Waters	Se(IV), Se(VI)					
BAL-4300	Non-Potable Waters Solid/Chemicals	Cr(VI)					
SM2340B	Non-Potable Waters	Hardness					

Project ID: TRL-VC1701 PM: Jeremy Maute

BAL Final Report 2109308 Client PM: Allie Ferguson Client Project: REP

Accreditation Information

Table 2. Accredited method/matrix/analytes for ISO (1), Non-Governmental TNI (2), and DoD/DOE (3)

Issued by: ANAB

Issued on: September 21, 2021; Valid to: March 30, 2024

Method	Matrix	ISO and Non-Gov. TNI Accredited Analyte(s)	DoD/DOE Accredited Analytes
EPA 1638 Mod EPA 200.8 Mod EPA 6020 Mod	Non-Potable Waters	Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, U, V, Zn	Ag, Al, As, Ba, Ca, Cd, Cr, Cu, Fe, Pb, Mg, Mn, Ni, Sb, Se, V, Zn
BAL-5000	Solids/Chemicals & Biological	Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, V, Zn Hg (Biological Only)	Not Accredited
EPA 1640 Mod	1640 Mod Non-Potable Waters Cd, Cu, Pb, Ni, Zn Ag, As, Cr, Co, Se, Tl, V (ISO Only)		Not Accredited
EPA 1631E Mod BAL-3100	Solids/Chemicals & Total Mercury Biological/Food		Total Mercury
EPA 1630 Mod BAL-3200	Non-Potable Waters, Solids/Chemicals Biological	Methyl Mercury	Methyl Mercury (excluding Solids/Chemicals)
EPA 1632A Mod	Non-Potable Waters	Inorganic Arsenic (ISO Only)	Not Accredited
BAL-3300	Biological/Food Solids/Chemicals	Inorganic Arsenic (ISO Only)	Not Accredited
AOAC 2015.01 Mod BAL-5000	Food	As, Cd, Hg, Pb	Not Accredited
BAL 4400	Non-Potable Waters	As(III), As(V), DMAs, MMAs	Not Accredited
BAL-4100	Biological by BAL-4117	Inorganic Arsenic, DMAs, MMAs (ISO Only)	Not Accredited
BAL-4101	Food by BAL-4117	Inorganic Arsenic, DMAs, MMAs (ISO Only)	Not Accredited
BAL-4201	Non-Potable Waters	Se(IV), Se(VI), SeCN, SeMet	Not Accredited
BAL-4300	Non-Potable Waters, Solid/Chemicals	Cr(VI)	Cr(VI)
SM 3500-Fe BAL-4500	Non-Potable Waters	Fe, Fe(II) (ISO Only)	Not Accredited
SM2340B	Non-Potable Waters	Hardness	Hardness
SM 2540G BAL-0501	Solids/Chemicals & Biological	% Dry Weight	% Dry Weight

⁽¹⁾ ISO/IEC 17025:2017 - Certificate Number ADE-1447.02

⁽²⁾ Non-Governmental NELAC Institute 2016 Standard - Certificate Number ADE-1447.01

⁽³⁾ Department of Defense/Energy Consolidated Quality Systems Manual v. 5.3 – Certificate Numbers ADE-1447 for DoD, ADE-1447.03 for DOE.

BAL Final Report 2109308
Client PM: Allie Ferguson
Client Project: REP

Sample Information

Sample	Lab ID	Report Matrix	Type	Sampled	Received
RG_BOCK_WS_LAEMP_EVO_2021 -09-16_N	2109308-01	WS	Sample	09/16/2021	09/23/2021
RG_BOCK_WS_LAEMP_EVO_2021 -09-16_N_NAL	2109308-02	WS	Sample	09/16/2021	09/23/2021
RG_BOCK_WS_LAEMP_EVO_2021 -09-16_N_NAL	2109308-03	WS	Sample	09/16/2021	09/23/2021
RG_ERCKDT_WS_LAEMP_EVO_20 21-09-15_N	2109308-04	WS	Sample	09/15/2021	09/23/2021
RG_ERCKDT_WS_LAEMP_EVO_20 21-09-15_N_NAL	2109308-05	WS	Sample	09/15/2021	09/23/2021
RG_ERCKDT_WS_LAEMP_EVO_20 21-09-15_N_NAL	2109308-06	WS	Sample	09/15/2021	09/23/2021
RG_ERCKUT_WS_LAEMP_EVO_20 21-09-15_N	2109308-07	WS	Sample	09/15/2021	09/23/2021
RG_ERCKUT_WS_LAEMP_EVO_20 21-09-15_N_NAL	2109308-08	WS	Sample	09/15/2021	09/23/2021
RG_ERCKUT_WS_LAEMP_EVO_20 21-09-15_N_NAL	2109308-09	WS	Sample	09/15/2021	09/23/2021
RG_GATEDP_WS_LAEMP_EVO_20 21-09-16_N	2109308-10	WS	Sample	09/16/2021	09/23/2021
RG_GATEDP_WS_LAEMP_EVO_20 21-09-16_N_NAL	2109308-11	WS	Sample	09/16/2021	09/23/2021
RG_GATEDP_WS_LAEMP_EVO_20 21-09-16_N_NAL	2109308-12	WS	Sample	09/16/2021	09/23/2021
RG_GATE_WS_LAEMP_EVO_2021- 09-16_N	2109308-13	WS	Sample	09/16/2021	09/23/2021
RG_GATE_WS_LAEMP_EVO_2021- 09-16_N_NAL	2109308-14	WS	Sample	09/16/2021	09/23/2021
RG_GATE_WS_LAEMP_EVO_2021- 09-16_N_NAL	2109308-15	WS	Sample	09/16/2021	09/23/2021
 RG_MI25_WS_LAEMP_EVO_2021-0 9-13_N	2109308-16	WS	Sample	09/13/2021	09/23/2021
	2109308-17	WS	Sample	09/13/2021	09/23/2021
 RG_MI25_WS_LAEMP_EVO_2021-0 9-13_N_NAL	2109308-18	WS	Sample	09/13/2021	09/23/2021

Project ID: TRL-VC1701 **PM:** Jeremy Maute

BAL Final Report 2109308
Client PM: Allie Ferguson
Client Project: REP

Batch Summary

Analyte	Lab Matrix	Method	Prepared	Analyzed	Batch	Sequence
DMSeO	Water	SOP BAL-4201	09/23/2021	09/24/2021	B212628	S211093
DMSeO	Water	SOP BAL-4201	09/23/2021	10/01/2021	B212628	S211109
MeSe(IV)	Water	SOP BAL-4201	09/23/2021	09/24/2021	B212628	S211093
MeSe(IV)	Water	SOP BAL-4201	09/23/2021	10/01/2021	B212628	S211109
MeSe(VI)	Water	SOP BAL-4201	09/23/2021	09/24/2021	B212628	S211093
MeSe(VI)	Water	SOP BAL-4201	09/23/2021	10/01/2021	B212628	S211109
Se	Water	EPA 1638 Mod	09/28/2021	09/30/2021	B212656	S211116
Se(IV)	Water	SOP BAL-4201	09/23/2021	09/24/2021	B212628	S211093
Se(IV)	Water	SOP BAL-4201	09/23/2021	10/01/2021	B212628	S211109
Se(VI)	Water	SOP BAL-4201	09/23/2021	09/24/2021	B212628	S211093
Se(VI)	Water	SOP BAL-4201	09/23/2021	10/01/2021	B212628	S211109
SeCN	Water	SOP BAL-4201	09/23/2021	09/24/2021	B212628	S211093
SeCN	Water	SOP BAL-4201	09/23/2021	10/01/2021	B212628	S211109
SeMet	Water	SOP BAL-4201	09/23/2021	09/24/2021	B212628	S211093
SeMet	Water	SOP BAL-4201	09/23/2021	10/01/2021	B212628	S211109
SeSO3	Water	SOP BAL-4201	09/23/2021	09/24/2021	B212628	S211093
SeSO3	Water	SOP BAL-4201	09/23/2021	10/01/2021	B212628	S211109
Unk Se Sp	Water	SOP BAL-4201	09/23/2021	09/24/2021	B212628	S211093
Unk Se Sp	Water	SOP BAL-4201	09/23/2021	10/01/2021	B212628	S211109
•						

BAL Final Report 2109308
Client PM: Allie Ferguson
Client Project: REP

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence	
RG BOCK W	S LAEMP EVO	_2021-09-16_N									
2109308-01	DMSeO	- ws	D	0.118		0.010	0.025	μg/L	B212628	S211093	
2109308-01	MeSe(IV)	WS	D	0.089		0.010	0.025	μg/L	B212628	S211093	
2109308-01	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212628	S211093	
2109308-01	Se(IV)	WS	D	2.23		0.010	0.075	μg/L	B212628	S211093	
2109308-01	Se(VI)	WS	D	201		0.010	0.055	μg/L	B212628	S211093	
2109308-01	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B212628	S211093	
2109308-01	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212628	S211093	
2109308-01	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B212628	S211093	
2109308-01	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B212628	S211093	
RG BOCK WS LAEMP EVO 2021-09-16 N NAL											
2109308-02	S_LAEINIP_EVC Se		TR	209		0.165	0.528	μg/L	B212656	S211116	
2109306-02	36	WS	IIX	209		0.103	0.320	µg/L	D2 12030	3211110	
RG_BOCK_WS_LAEMP_EVO_2021-09-16_N_NAL											
2109308-03	Se	WS	D	204		0.165	0.528	μg/L	B212656	S211116	
		VO_2021-09-15_N									
2109308-04	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212628	S211093	
2109308-04	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212628	S211093	
2109308-04	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212628	S211093	
2109308-04	Se(IV)	WS	D	0.064	J	0.010	0.075	μg/L	B212628	S211093	
2109308-04	Se(VI)	WS	D	137		0.010	0.055	μg/L	B212628	S211093	
2109308-04	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B212628	S211093	
2109308-04	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212628	S211093	
2109308-04	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B212628	S211093	
2109308-04	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B212628	S211093	
RG ERCKDT	WS LAEMP E	VO 2021-09-15 N	NAL								
2109308-05	Se	WS	TR	142		0.165	0.528	μg/L	B212656	S211116	
DC EDCKRT	We LAEME F	WO 2024 00 45 N	LAIAI								
2109308-06	.WS_LAEMP_E Se	TVO_2021-09-15_N WS	_ NAL D	139		0.165	0.528	ua/l	B212656	S211116	
∠ 109308-06	SE	VVS	U	139		0.100	0.320	μg/L	DZ 12000	3211110	

BAL Final Report 2109308
Client PM: Allie Ferguson
Client Project: REP

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence	
RG ERCKUT	WS LAEMP E	VO_2021-09-15_N									
2109308-07	DMSeO	ws	D	≤ 0.010	U	0.010	0.025	μg/L	B212628	S211093	
2109308-07	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212628	S211093	
2109308-07	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212628	S211093	
2109308-07	Se(IV)	WS	D	0.019	J	0.010	0.075	μg/L	B212628	S211093	
2109308-07	Se(VI)	WS	D	110		0.010	0.055	μg/L	B212628	S211093	
2109308-07	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B212628	S211093	
2109308-07	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212628	S211093	
2109308-07	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B212628	S211093	
2109308-07	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B212628	S211093	
RG_ERCKUT_WS_LAEMP_EVO_2021-09-15_N_NAL											
2109308-08	_ws_lacimp_c Se	VO_2021-09-15_N WS	_ <i>NAL</i> TR	141		0.165	0.528	μg/L	B212656	S211116	
2109308-08	Je -	WS	IIX	141		0.103	0.520	µу/∟	DZ 12000	3211110	
RG_ERCKUT_WS_LAEMP_EVO_2021-09-15_N_NAL											
2109308-09	Se	WS	D	143		0.165	0.528	μg/L	B212656	S211116	
RG_GATEDP_	WS_LAEMP_E	VO_2021-09-16_N									
2109308-10	DMSeO	ws	D	0.034		0.010	0.025	μg/L	B212628	S211093	
2109308-10	MeSe(IV)	WS	D	0.051		0.010	0.025	μg/L	B212628	S211093	
2109308-10	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212628	S211093	
2109308-10	Se(IV)	WS	D	0.910		0.010	0.075	μg/L	B212628	S211093	
2109308-10	Se(VI)	WS	D	201		0.010	0.055	μg/L	B212628	S211093	
2109308-10	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B212628	S211093	
2109308-10	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212628	S211093	
2109308-10	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B212628	S211093	
2109308-10	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B212628	S211093	
DC CATEDO	We LAEMD E	VO_2021-09-16_N	NAI								
	.ws_ <i>Laeinif_e</i> Se	WS WS	_ <i>NAL</i> TR	199		0.165	0.528	ua/l	B212656	S211116	
2109308-11	36	VVO	IK	199		0.100	0.526	µg/L	DZ 12000	3211110	
RG_GATEDP	WS_LAEMP E	VO_2021-09-16_N	NAL								
2109308-12	Se	WS	D	199		0.165	0.528	μg/L	B212656	S211116	

BAL Final Report 2109308
Client PM: Allie Ferguson
Client Project: REP

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence	
RG GATE WS	LAEMP EVO	2021-09-16 N									
2109308-13	DMSeO	- ws	D	≤ 0.010	U	0.010	0.025	μg/L	B212628	S211093	
2109308-13	MeSe(IV)	WS	D	0.042		0.010	0.025	μg/L	B212628	S211093	
2109308-13	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212628	S211093	
2109308-13	Se(IV)	WS	D	0.912		0.010	0.075	μg/L	B212628	S211093	
2109308-13	Se(VI)	WS	D	224		0.010	0.055	μg/L	B212628	S211093	
2109308-13	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B212628	S211093	
2109308-13	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212628	S211093	
2109308-13	SeSO3	WS	D	≤ 0.010	J-1 U	0.010	0.055	μg/L	B212628	S211093	
2109308-13	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B212628	S211093	
DC CATE WS	LAEMD EVO	2024 00 46 N N	Λ.Ι								
	Se	_ 2021-09-16_N_N WS	TR	219		0.165	0.528	ua/l	B212656	C211116	
2109308-14	Se	VVS	IK	219		0.103	0.326	μg/L	DZ 12000	S211116	
RG GATE WS LAEMP EVO 2021-09-16 N NAL											
2109308-15	Se	ws	D	222		0.165	0.528	μg/L	B212656	S211116	
RG_MI25_WS_	LAEMP_EVO_	2021-09-13_N									
2109308-16	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212628	S211109	
2109308-16	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212628	S211109	
2109308-16	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212628	S211109	
2109308-16	Se(IV)	WS	D	0.020	J	0.010	0.075	μg/L	B212628	S211109	
2109308-16	Se(VI)	WS	D	0.148		0.010	0.055	μg/L	B212628	S211109	
2109308-16	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B212628	S211109	
2109308-16	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B212628	S211109	
2109308-16	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B212628	S211109	
2109308-16	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B212628	S211109	
DC MISE INC	I AEMD EVO	2021-09-13 N NA									
	_LAEWP_EVU_ Se	.2021-09-13_N_NA WS	TR	0.252	J	0.165	0.528	ua/l	B212656	S211116	
2109308-17	ડ િ	VVO	IIX	0.232	J	0.103	0.526	μg/L	DZ 12000	3211110	
RG_MI25_WS_	_LAEMP_EVO_	2021-09-13_N_NA	L								
2109308-18	Se	WS	D	0.180	J	0.165	0.528	μg/L	B212656	S211116	

BAL Final Report 2109308
Client PM: Allie Ferguson
Client Project: REP

Accuracy & Precision Summary

Batch: B212628 Lab Matrix: Water Method: SOP BAL-4201

Sample B212628-BS1 Analyte Blank Spike, (2124033) Native Spike Result Page Page Page Page Page Page Page Page	
MeSe(IV) 5.095 5.739 μg/L 113% 75-125 Se(IV) 5.000 5.115 μg/L 102% 75-125 Se(VI) 5.000 4.895 μg/L 98% 75-125 SeCN 5.015 5.044 μg/L 101% 75-125	ts
Se(IV) 5.000 5.115 μg/L 102% 75-125 Se(VI) 5.000 4.895 μg/L 98% 75-125 SeCN 5.015 5.044 μg/L 101% 75-125	
Se(VI) 5.000 4.895 µg/L 98% 75-125 SeCN 5.015 5.044 µg/L 101% 75-125	
SeCN 5.015 5.044 µg/L 101% 75-125	
SeMet 4.932 5.209 μg/L 106% 75-125	
B212628-DUP1 Duplicate, (2109295-01)	
DMSeO ND ND μg/L N/C 2	25
MeSe(IV) ND ND µg/L N/C 2	25
MeSe(VI) ND ND μg/L N/C 2	25
Se(IV) 0.159 0.158 µg/L 0.4% 2	25
Se(VI) ND 0.016 µg/L N/C 2	25
SeCN ND ND µg/L N/C 2	25
SeMet ND ND µg/L N/C 2	25
	25
Unk Se Sp ND ND µg/L N/C 2	25
B212628-MS1 Matrix Spike, (2109295-01)	
Se(IV) 0.159 4.900 4.733 μg/L 93% 75-125	
Se(VI) ND 5.100 5.182 µg/L 102% 75-125	
SeCN ND 1.962 1.839 µg/L 94% 75-125	
SeMet ND 1.977 1.944 µg/L 98% 75-125	
B212628-MSD1 Matrix Spike Duplicate, (2109295-01)	
	25
· •	25
	25
	25

Project ID: TRL-VC1701 **PM:** Jeremy Maute

BAL Final Report 2109308
Client PM: Allie Ferguson
Client Project: REP

Accuracy & Precision Summary

Batch: B212628 Lab Matrix: Water Method: SOP BAL-4201

Sample B212628-DUP8	Analyte Duplicate, (2109308-16)	Native	Spike	Result	Units	REC & Limits	RPD & Lin	mits
	DMSeO	ND		ND	μg/L		N/C	25
	MeSe(IV)	ND		ND	μg/L		N/C	25
	MeSe(VI)	ND		ND	μg/L		N/C	25
	Se(IV)	0.020		0.020	μg/L		0.5%	25
	Se(VI)	0.148		0.140	μg/L		6%	25
	SeCN	ND		ND	μg/L		N/C	25
	SeMet	ND		ND	μg/L		N/C	25
	SeSO3	ND		ND	μg/L		N/C	25
	Unk Se Sp	ND		ND	μg/L		N/C	25

BAL Final Report 2109308
Client PM: Allie Ferguson
Client Project: REP

Accuracy & Precision Summary

Batch: B212656 Lab Matrix: Water Method: EPA 1638 Mod

Sample	Analyte	Native	Spike	Result	Units	REC &	Limits	RPD & Lii	mits
B212656-BS1	Blank Spike, (2104075) Se		200.0	200.6	μg/L	100%	75-125		
B212656-BS2	Blank Spike , (2104075) Se		200.0	196.2	μg/L	98%	75-125		
B212656-BS3	Blank Spike, (2104075) Se		200.0	201.0	μg/L	100%	75-125		
B212656-BS4	Blank Spike , (2104075) Se		200.0	197.1	μg/L	99%	75-125		
B212656-SRM2	Reference Material (21100) Se	08, TMDA 5	51.5 Referenc 14.30	e Standard 13.20	- Bottle 8 - µg/L	•	75-125		
B212656-SRM3	Reference Material (21100)	NO TMDA F							
D212030-3KW3	Se	JO, TIVIDA S	14.30	13.91	μg/L		75-125		
B212656-SRM4	Reference Material (21100)	08, TMDA 5				-	75 405		
	Se		14.30	13.70	μg/L	96%	75-125		
B212656-DUP4	Duplicate, (2109307-02) Se	5.947		6.345	μg/L			6%	20
B212656-MS4	Matrix Spike, (2109307-02 Se) 5.947	220.0	229.8	μg/L	102%	75-125		
B212656-MSD4	Matrix Spike Duplicate, (2 Se	109307-02) 5.947	220.0	226.8	μg/L	100%	75-125	1%	20
B212656-DUP5	Duplicate, (2109311-08) Se	163.5		163.3	μg/L			0.09%	20

Project ID: TRL-VC1701 **PM:** Jeremy Maute

BAL Final Report 2109308
Client PM: Allie Ferguson
Client Project: REP

Accuracy & Precision Summary

Batch: B212656 Lab Matrix: Water Method: EPA 1638 Mod

Sample B212656-MS5	Analyte Matrix Spike, (2109311-08)	Native	Spike	Result	Units	REC & Limits	RPD & Limits
	Se	163.5	220.0	393.8	μg/L	105% 75-125	
B212656-MSD5	Matrix Spike Duplicate, (2: Se	109311-08) 163.5	220.0	400.8	μg/L	108% 75-125	2% 20

Project ID: TRL-VC1701 **PM:** Jeremy Maute

BAL Final Report 2109308
Client PM: Allie Ferguson
Client Project: REP

Method Blanks & Reporting Limits

Batch: B212628 Matrix: Water

Method: SOP BAL-4201 Analyte: DMSeO

Sample	Result	Units
B212628-BLK1	0.00	μg/L
B212628-BLK2	0.00	μg/L
B212628-BLK3	0.00	μg/L
B212628-BLK4	0.00	ua/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.005
 MRL: 0.005

Analyte: MeSe(IV)

Sample	Result	Units
B212628-BLK1	0.00	μg/L
B212628-BLK2	0.00	μg/L
B212628-BLK3	0.00	μg/L
B212628-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.005
 MRL: 0.005

Analyte: MeSe(VI)

Sample	Result	Units
B212628-BLK1	0.00	μg/L
B212628-BLK2	0.00	μg/L
B212628-BLK3	0.00	μg/L
B212628-BLK4	0.00	μg/L

Average: 0.000 **MDL:** 0.002 **Limit:** 0.005 **MRL:** 0.005

BAL Final Report 2109308
Client PM: Allie Ferguson
Client Project: REP

Method Blanks & Reporting Limits

Analyte: Se(IV)

Sample	Result	Units
B212628-BLK1	0.00	μg/L
B212628-BLK2	0.00	μg/L
B212628-BLK3	0.00	μg/L
B212628-BLK4	0.00	μg/L

Average: 0.000 **MDL:** 0.002 **Limit:** 0.015 **MRL:** 0.015

Analyte: Se(VI)

Sample	Result	Units
B212628-BLK1	0.00	μg/L
B212628-BLK2	0.00	μg/L
B212628-BLK3	0.00	μg/L
B212628-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.011
 MRL: 0.011

Analyte: SeCN

Sample	Result	Units
B212628-BLK1	0.00	μg/L
B212628-BLK2	0.00	μg/L
B212628-BLK3	0.00	μg/L
B212628-BLK4	0.00	μg/L
	• 0.000	

 Average: 0.000
 MDL: 0.002

 Limit: 0.010
 MRL: 0.010

Analyte: SeMet

Sample	Result	Units
B212628-BLK1	0.00	μg/L
B212628-BLK2	0.00	μg/L
B212628-BLK3	0.00	μg/L
B212628-BLK4	0.00	μg/L

Average: 0.000 **MDL:** 0.002 **Limit:** 0.005 **MRL:** 0.005

BAL Final Report 2109308
Client PM: Allie Ferguson
Client Project: REP

Method Blanks & Reporting Limits

Analyte: SeSO3

ple	Result	Units
.628-BLK1	0.00	μg/L
:628-BLK2	0.00	μg/L
:628-BLK3	0.00	μg/L
:628-BLK4	0.00	μg/L

Average: 0.000 **MDL:** 0.002 **Limit:** 0.011 **MRL:** 0.011

Analyte: Unk Se Sp

Sample	Result	Units
B212628-BLK1	0.00	μg/L
B212628-BLK2	0.00	μg/L
B212628-BLK3	0.00	μg/L
B212628-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.015
 MRL: 0.015

Project ID: TRL-VC1701 **PM:** Jeremy Maute

BAL Final Report 2109308
Client PM: Allie Ferguson
Client Project: REP

Method Blanks & Reporting Limits

Batch: B212656 Matrix: Water

Method: EPA 1638 Mod

Analyte: Se

Sample	Result	Units
B212656-BLK1	0.077	μg/L
B212656-BLK2	0.095	μg/L
B212656-BLK3	0.154	μg/L
B212656-BLK4	0.153	μg/L

 Average: 0.120
 MDL: 0.150

 Limit: 0.480
 MRL: 0.480

BAL Final Report 2109308
Client PM: Allie Ferguson
Client Project: REP

Sample Containers

Sam	ID: 2109308-01 ple: BOCK_WS_LAEMP_EVO_202	21-09-16_N		Report Matrix: WS Sample Type: Sample + Sum			cted: 09/16/2021 ived: 09/23/2021
	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Styrofoam Cooler #4 - 2109308
В	XTRA_VOL	15 mL	na	none	na	na	Styrofoam Cooler #4 - 2109308
С	XTRA_VOL	60 mL	na	none	na	na	Styrofoam Cooler #4 - 2109308
Lab Sam	ID: 2109308-02 ple:			Report Matrix: WS Sample Type: Sample + Sum			cted: 09/16/2021 ived: 09/23/2021
	BOCK_WS_LAEMP_EVO_202						
	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Client-Provided - TM	60 mL	na	10% HNO3 (BAL)	2127026	<2	Styrofoam Cooler #1 - 2109308
Sam	=	01 00 16 NI NIAI		Report Matrix: WS Sample Type: Sample + Sum			cted: 09/16/2021 ived: 09/23/2021
	BOCK_WS_LAEMP_EVO_202 Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
A	Client-Provided - TM	60 mL	na	10% HNO3 (BAL)	2127026	<2	Styrofoam Cooler #1 - 2109308
Sam	•	2004 00 45 N		Report Matrix: WS Sample Type: Sample + Sum			cted: 09/15/2021 ived: 09/23/2021
	ERCKDT_WS_LAEMP_EVO_2 Container	2021-09-15_N Size	Lot	Preservation	P-Lot	ьU	Shin Cont
A	Cent Tube 15mL Se-Sp	15 mL				pН	Ship. Cont.
A	Cent Tube Tomic Se-Sp	13 IIIL	na	none	na	na	Styrofoam Cooler #4 - 2109308
В	XTRA_VOL	15 mL	na	none	na	na	Styrofoam Cooler #4 - 2109308
С	XTRA_VOL	60 mL	na	none	na	na	Styrofoam Cooler #4 - 2109308

Project ID: TRL-VC1701 **PM:** Jeremy Maute

Client-Provided - TM

60 mL

na

BAL Final Report 2109308
Client PM: Allie Ferguson
Client Project: REP

Sample Containers

Lab ID: 2109308-05 Report Matrix: WS Collected: 09/15/2021 Sample: Received: 09/23/2021 Sample Type: Sample + Sum RG_ERCKDT_WS_LAEMP_EVO_2021-09-15_N_N ΑL Des Container Size Lot **Preservation** P-Lot рH Ship. Cont. 10% HNO3 (BAL) Client-Provided - TM 60 mL Α na 2127026 <2 Styrofoam Cooler #1 -2109308 Lab ID: 2109308-06 Report Matrix: WS Collected: 09/15/2021 Sample: Sample Type: Sample + Sum Received: 09/23/2021 RG_ERCKDT_WS_LAEMP_EVO_2021-09-15_N_N ΑL **Size Preservation** P-Lot Ship. Cont. Des Container Lot pН Client-Provided - TM 60 mL 10% HNO3 (BAL) <2 Styrofoam Α na 2127026 Cooler #1 -2109308 Lab ID: 2109308-07 Report Matrix: WS Collected: 09/15/2021 Sample: Sample Type: Sample + Sum Received: 09/23/2021 RG ERCKUT WS LAEMP EVO 2021-09-15 N **Des Container Size** Lot **Preservation** P-Lot Hq Ship. Cont. Styrofoam Cent Tube 15mL Se-Sp 15 mL na none na na Cooler #4 -2109308 В XTRA_VOL 15 mL none Styrofoam na na na Cooler #4 -2109308 С XTRA VOL 60 mL na none na na Styrofoam Cooler #4 -2109308 Lab ID: 2109308-08 Report Matrix: WS Collected: 09/15/2021 Sample Type: Sample + Sum Received: 09/23/2021 RG_ERCKUT_WS_LAEMP_EVO_2021-09-15_N_N ΑL **Preservation** Des Container Size Lot P-Lot pН Ship. Cont.

10% HNO3 (BAL)

2127026

<2

Styrofoam Cooler #1 -2109308

Project ID: TRL-VC1701 **PM:** Jeremy Maute

BAL Final Report 2109308
Client PM: Allie Ferguson
Client Project: REP

2109308

Sample Containers

Lab ID: 2109308-09 Report Matrix: WS Collected: 09/15/2021 Sample: Received: 09/23/2021 Sample Type: Sample + Sum RG_ERCKUT_WS_LAEMP_EVO_2021-09-15_N_N ΑL Des Container Size Lot **Preservation** P-Lot рH Ship. Cont. Client-Provided - TM 60 mL 10% HNO3 (BAL) Α na 2127026 <2 Styrofoam Cooler #1 -2109308 Lab ID: 2109308-10 Report Matrix: WS Collected: 09/16/2021 Sample: Sample Type: Sample + Sum Received: 09/23/2021 RG_GATEDP_WS_LAEMP_EVO_2021-09-16 N **Des Container** Size **Preservation** P-Lot рΗ Ship. Cont. Lot Α Cent Tube 15mL Se-Sp 15 mL none Styrofoam na na na Cooler #4 -2109308 В XTRA_VOL 15 mL na none na na Styrofoam Cooler #4 -2109308 С XTRA_VOL 60 mL na none Styrofoam na na Cooler #4 -2109308 Lab ID: 2109308-11 Report Matrix: WS Collected: 09/16/2021 Sample: Sample Type: Sample + Sum Received: 09/23/2021 RG_GATEDP_WS_LAEMP_EVO_2021-09-16_N_N ΑL Container Size **Preservation** P-Lot Des Lot рΗ Ship. Cont. Client-Provided - TM 60 mL na 10% HNO3 (BAL) 2127026 <2 Styrofoam Cooler #1 -2109308 **Lab ID:** 2109308-12 Report Matrix: WS Collected: 09/16/2021 Sample Type: Sample + Sum Received: 09/23/2021 RG_GATEDP_WS_LAEMP_EVO_2021-09-16_N_N ΑL **Preservation** Des Container Size Lot P-Lot pН Ship. Cont. 2127026 Α Client-Provided - TM 60 mL na 10% HNO3 (BAL) <2 Styrofoam Cooler #1 -

BAL Final Report 2109308
Client PM: Allie Ferguson
Client Project: REP

Sample Containers

Sam	ID: 2109308-13 ple: GATE_WS_LAEMP_EVO_202	1-09-16 N		Report Matrix: WS Sample Type: Sample + Sum			cted: 09/16/2021 ived: 09/23/2021
	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Styrofoam Cooler #4 - 2109308
В	XTRA_VOL	15 mL	na	none	na	na	Styrofoam Cooler #4 - 2109308
С	XTRA_VOL	60 mL	na	none	na	na	Styrofoam Cooler #4 - 2109308
Sam	•			Report Matrix: WS Sample Type: Sample + Sum			cted: 09/16/2021 ived: 09/23/2021
Des	GATE_WS_LAEMP_EVO_202 Container	11-09-16_N_NAL Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
A	Client-Provided - TM	60 mL	na	10% HNO3 (BAL)	2127026	<2	Styrofoam Cooler #1 - 2109308
Sam	ID: 2109308-15 ple: GATE_WS_LAEMP_EVO_202	1-09-16 N NAI		Report Matrix: WS Sample Type: Sample + Sum			cted: 09/16/2021 ived: 09/23/2021
	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Client-Provided - TM	60 mL	na	10% HNO3 (BAL)	2127026	<2	Styrofoam Cooler #1 - 2109308
Sam	ID: 2109308-16 ple: MI25_WS_LAEMP_EVO_2021	-09-13 N		Report Matrix: WS Sample Type: Sample + Sum			cted: 09/13/2021 ived: 09/23/2021
	Container	Size	Lot	Preservation	P-Lot	На	Ship. Cont.
Α	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Styrofoam Cooler #4 - 2109308
В	XTRA_VOL	15 mL	na	none	na	na	Styrofoam Cooler #4 - 2109308
С	XTRA_VOL	60 mL	na	none	na	na	Styrofoam Cooler #4 - 2109308

Project ID: TRL-VC1701 PM: Jeremy Maute

BAL Final Report 2109308 Client PM: Allie Ferguson Client Project: REP

Sample Containers

Lab ID: 2109308-17 Report Matrix: WS Collected: 09/13/2021 Received: 09/23/2021

Sample: Sample Type: Sample + Sum

Des Container Lot **Preservation** P-Lot рH Ship. Cont. 60 mL 10% HNO3 (BAL) <2 Client-Provided - TM na 2127026 Styrofoam

Cooler #1 -2109308

Lab ID: 2109308-18 Report Matrix: WS Collected: 09/13/2021

Sample: Sample Type: Sample + Sum Received: 09/23/2021

RG_MI25_WS_LAEMP_EVO_2021-09-13_N_NAL

Des Container Size Lot **Preservation** P-Lot Hq Ship. Cont. Client-Provided - TM 60 mL na 10% HNO3 (BAL)

2127026 <2 Stvrofoam Cooler #1 -

2109308

Shipping Containers

Styrofoam Cooler #1 - 2109308

RG MI25 WS LAEMP EVO 2021-09-13 N NAL

Custody seals present? No Received: September 23, 2021 7:15 **Description:** Styrofoam Cooler Tracking No: PAPS#RWHV87409 via Courier Damaged in transit? No

Coolant Type: Blue Ice Returned to client? No Temperature: 2.0 °C Comments: IR#30

Styrofoam Cooler #4 - 2109308

Received: September 23, 2021 7:15 **Description:** Styrofoam Cooler Tracking No: PAPS#RWHV87409 via Courier Damaged in transit? No

Coolant Type: Blue Ice Returned to client? No Temperature: 0.5 °C Comments: IR#31

Custody seals intact? No **COC present?** Yes

> Custody seals present? No Custody seals intact? No **COC present?** Yes

ICCN	COC ID:		mber	EVO LA	EMP	TURNA	ROUND				Regula	u .							
	JECT/CLIENT INFO	Mellie I	K OW		Magniti pina	16.00		-	RATORY	100	- Enc		THE		OTHER	-	-	MSET.	100
Facility Name / Job#							b Name E						*	mat / Dis			Excel	PDF	EDD
Project Manager						Lab	Contact E			_		_	ail 1:	2000000	isen@teck		X	X	X
	allie.ferguson@teck.co	om				-	_		sapplied.co			_	ail 2:		Dequison				7
Address	421 Pine Avenue					+ '	Address 1	0004 11011	ui Creek P	arkway		_	ail 3: ail 4:		z@feck.co		*	3	X
City	Spars	wood		Province B		-	City E	tothell	====	Province	WA	-	ail 4; ail 5:	110000000000000000000000000000000000000	minnow.c	-	X	X	X
Postal Code	<u>·</u>	2G0			anada	Post	al Code 9			Country	USA	+	ail 5:	tyler.meh	ler@minno	so,wca	χ	*	X
	250-910-8755						Number 2		206	Country	100.1		umber			VPO00	748540	i	1
	SAMPLE DET	AILS		FIRM			TO STATE	******	ANA	LYSIS RE	QUESTE					of Child		Carett A	Luck No.
			Hazardous Material (Yes/No)					nium	Selenium	Speciation				or television common partition and the					
Sample ID	Sample Location (sys_loc_code)	1	Hazardou	Date	Time (24hr)	G=Grab C=Com		Total Selenium	Dissolved Selenium	Selenium Speciation					,				
G_BOCK_WS_LAEMP_EVO_2021-09-16_N	RG_BOCK	ws	No	September 10 2021	0920	G	1			1	100			V					
G_BOCK_WS_LAEMP_EVO_2021-09-16_N_NAL	RG_BOCK	ws	No	September 1 2021	5, 0920	G	2	1	1										7
RG_ERCKDT_WS_LAEMP_EVO_2021-09-15_N	RG_ERCKDT	ws	No	September 1. 2021	0909	G	1			1	-		+						
RG_ERCKDT_WS_LAEMP_EVO_2021-09-15_N_NAL	RG_ERCKDT	ws	No	September 1 2021	5, 0909	G	2	1 1	1										+
RG_ERCKUT_WS_LAEMP_EVO_2021-09-15_N	RG_ERCKUT	ws	No	September T	1530	G	1	1	† 	1	-	1	1						+
RG_ERCKUT_WS_LAEMP_EVO_2021-09-15_N_NAL	RG_ERCKUT	ws	No	September 1 2021	1530	G	2	1	1			1					-		
RG_GATEDP_WS_LAEMP_EVO_2021-09-16_N	RG_GATEDP	ws	No	September 1 2021	5, 1100	G	1			1									1
G_GATEDP_WS_LAEMP_EVO_2021-09-16_N_NAL	RG_GATEDP	ws	No	September 1 2021	6, 1100	G	2	1	1										
G_GATE_WS_LAEMP_EVO_2021-09-16_N	RG_GATE	ws	No	September 1 2021	1330	G	1	1		1									
RG_GATE_WS_LAEMP_EVO_2021-09-16_N_NAL	RG_GATE	ws	No	September 1 2021	1330	G	2	1	1										
G_MI25_WS_LAEMP_EVO_2021-09-13_N	RG_MI25	ws	No	September 1 2021	1300	G	1	N.		1									
RG_MI25_WS_LAEMP_EVO_2021-09-13_N_NAL	RG_MI25	ws	No	September 1 2021	1300	G	2	1	1										
															9.3				
Total and dissolved selenium samples have NOT been placed been filtered. Speciation samples have been	preserved. Dissolved s				IISHLD BY/AFFI nnifer Ings/Minno				ер-2021		CEPIEI			ION	9/2	13/2	/ C	07	15
SERVICE REQUEST (rush - subject		DESCRIPTION		1 15 75			= 30	219	1			9 2 8		Zelfall.	1012	MIA II			Nomen .
Priority (Regu 2-3 business days) - 50°	lar (default) X % surcharge		Sampler	's Name			Jennifer	Ings		Mo	bile#			519	-500-3	444		
	(1 Business Day) - 100	% surcharge		Sampler's	Signature	س ئۇسىمىلىن	An or				Dat	e/Time			Septer	nber 21	1, 2021		

STRAIGHT BILL OF LADING NOT NEGOTIABLE

BAL Final Report 2109308

No. 87409

Sparwood, BC Terrace, BC Red Deer, AB

Vancouver, BC Calgary, AB Montreal, QC

Prince George, BC Edmonton, AB Spokane, WA

Elkford, BC Ft. McMurray, AB Shelby, MT

Tumbler Ridge, BC Hinton, AB Gillette, WY

점점 기계 상태를 맞았다. (1) 등 학자 기계 등이 함께 하는 것이 되었다. 그는 그리고 나타를 다 다 보다 되었다.		MENOR SENT MEDICA	PTI XX ZI
ADING#	PURCHASE ORDER N	UMBER EL A FALL &	T GAL)
(FROM)	CONSIGNEE (TQ)	Applied	Labs -
-stine i rek Tie	STREET STREET	N. Creek	POSTAL GODE
PO PO	STAL CODE 6/TY/PROVINCE	AWA	MACHI
INSTRUCTIONS	AT THE	***	FREIGHT CHARGES SHIPPER TO CHECK
DESCRIPTION OF ARTICLES	AND SPECIAL WARKS	WEIGHT (Subject to Correction)	OPREPAID OCCLECT
1 Cresters-Wate	o Samples !	97135	
			FEF.
			WAITING
500 - 500 700 700 700 700 700 700 700 700 700		9	XPU (A)
Oca Di Iliy	חחוורח		CHARGES
	XITO		
A CHIMIT	O I I I		FSC
		1 * * * * * * * * * * * * * * * * * * *	U8
	DECLARED VALUATION: Maximum liability of carrier is \$2.00 per (b. (\$4,41 per kilogram) unless declared valuation states otherwise.	\$	SUB TOTAL
EVENATIBE PICK UP BY PICK UP TIME	DRIVER'S SIGNATURE - DELIVERY BY	FINISH TIME	
		1 1100111111111111111111111111111111111	GST
Soldwin			
Saldieriote			
Soldier State of the State of t			
SSIGNATURE: Or bins temper of only of any goods under the stiff of Lading Unless good in writing to the only. Savine as the delivering cattler failure but the control of the only of the stiff of Lading Unless good in writing to the only. Savine as the delivering cattler failure but the control of the only of the control of the only of the control of the only of the control of the stiff of the only of the control of the stiff of the only of the control of the stiff of the only of the control of the stiff of the only of the control of the stiff of the only of the o	trotto. In valor setting out participates of the cytoin destination and seek of elicination of the set of the cytoin destination and seek of elicination of the problem of	ment of this goods and the elemented amount obtaining my within rise (if) mortals from the delic of elements of prolesses profession ments of prolesses profession ments of prolesses profession and provided of elements of subproceed in continue 10; ellips, on the data. Of subproced in sortice to be professionally in the continue to t	
The first income to the foreign the second of the polytopic series to the first of Lading littless to the first income of the delivering carrier to the origin to the configuration of the delivering carrier to the origin to the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the first in the carrier delivering the configuration of the first in the configuration of the config	resic: ** valor setting out purchases of the crupin destination and sees of ship to 1990; after the destination and sees of charge seed. If the proof of the proo	ment of this goods and the elemented amount obtaining my within rise (if) mortals from the delic of elements of prolesses profession ments of prolesses profession ments of prolesses profession and provided of elements of subproceed in continue 10; ellips, on the data. Of subproced in sortice to be professionally in the continue to t	
The state of the s	region which setting out particulates of the cyruin, destination and steen of elicina for problems of the groups of the cyruin destination and steen of elicina for problems of the problems o	wainst of the spoots and the elemented amount claims are within rains (9) months from the delic of elements are within rains (9) months from the delic of elements are also as a second of the spoot of	TOTAL \$ FATOWNEYS PLSK, WRITE ORD PERMIT DATE 0 9/23/21 THRE 7 1 5
The first income to the foreign the second of the polytopic series to the first of Lading littless to the first income of the delivering carrier to the origin to the configuration of the delivering carrier to the origin to the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the first in the carrier delivering the configuration of the first in the configuration of the config	region which setting out particulates of the cyruin, destination and steen of this proof. In the cyruin, destination and steen of this proof of the	ment of this goods and the elemented amount obtaining my within rise (if) mortals from the delic of elements of prolesses profession ments of prolesses profession ments of prolesses profession and provided of elements of subproceed in continue 10; ellips, on the data. Of subproced in sortice to be professionally in the continue to t	TOTAL \$ IF AT OWNER'S RISK, WINTE ORD HERE DATE O 9 /2 3 /2 1 TABE 7 1 S NUMBER OF PIECES RECEIVED
The first list carrier is such for time, thanges of thinky of any poods under the till of Lading Utilias. In the summer occasion is such that the state of the summer occasion is such that the summer occasion is such that the summer occasion is such of other than the summer occasion of the summer occasion of the summer occasion of the summer occasion of the summer occasion of the sum of the summer occasion of the sum of the sum occasion of the sum of the sum occasion of the sum of the sum occasion of the sum of the sum occasion of the sum of the sum occasion of the sum of the sum occasion of the sum of the sum occasion of the sum occasion of the sum occasion of the sum occasion of the sum occasion occasion of the summer occasion oc	region which setting out particulates of the cyruin, destination and steen of this proof. In the cyruin, destination and steen of this proof of the	which of the spoots and the elektrated arrough Claims are within rise (9) months from the claim of elektron are within rise (9) months from the claim of elektron arrows of processor windown) merked, common elektron (2) elektron (2) elektron (2) elektron (3) elektro	TOTAL \$ FATOWNEYS PLSK, WRITE ORD PERMIT DATE 0 9/23/21 THRE 7 1 5
The first list carrier is such for time, thanges of thinky of any poods under the till of Lading Utilias. In the summer occasion is such that the state of the summer occasion is such that the summer occasion is such that the summer occasion is such of other than the summer occasion of the summer occasion of the summer occasion of the summer occasion of the summer occasion of the sum of the summer occasion of the sum of the sum occasion of the sum of the sum occasion of the sum of the sum occasion of the sum of the sum occasion of the sum of the sum occasion of the sum of the sum occasion of the sum of the sum occasion of the sum occasion of the sum occasion of the sum occasion of the sum occasion occasion of the summer occasion oc	region which setting out particulates of the cyruin, destination and steen of this proof. In the cyruin, destination and steen of this proof of the	reject of the spoots and the elemented arrount claims are width of the spoots and the element should be considered to delegate matrices of produces entirely the care in a considered to the preferred features to be preferred hereunder that of althouses to be preferred hereunder that of althouses are at under by the submitted bit of Ludge, to open a set under by the submitted bit of Ludge, to open a line puch conditions.	TOTAL \$ IF AT OWNER'S RISK, WINTE ORD HERE DATE O 9 /2 3 /2 1 TABE 7 1 S NUMBER OF PIECES RECEIVED

Cooler ID: Styroto	am Cooler#		COC	Te	mperatur	3	9/23/01		IR:	5 0
Coolant Type:	ce Blue Ice	Ambi	ent		ë. E	2.0	•			
Notes:		*		1	-	• 0	1		1	
Sampling Locations:	1261		EA							CO.
Sample Types:	(1/0)	SP	(A)	SP	T/D	SP.	T/D	SP	T/D	SP
Container Types:	40 ml		10ml	,	اي. ا					
Opened By:			Date: 9/13	121		in the second	***			
	COR	P		\$ \$ \$						- 004
Effective 7/29/20										on 004

BAL Final Report 2109308

	PURCHASE ORDER (TQ) CONSIGNEE (TQ) CONSIGNEE (TQ)	SADVICAL	
FALCONAL BC	POSTAL CODE GRY/PROVINCE		27.07211114
	tec Samples	(Pospect to Connection) COT LBS	
	VSTI 69		GUARDA (M. 1997)
The second secon	DECLARED VALUATION - Maximum lithlity of center is \$2.00 per ib. (\$4.4) per tillogram) unless detlared valuation states otherwise.		is the sole of the
PICKUPTINE	DRIVER'S SIGNATURE - DELIVERY BY	FINISH TIME	TOTAL \$7
	SEAN 716A	The of Land I seemed to the se	6://x///-(-u-)
Wild Colles VELCON, Carlo: File Co	SIGN	6 85.15.16.19alk70001	

Cooler 10: Styrotogm	Cooler# 6	OC (Y)	emperatur	e: 0.5			etk: S	31
Contant Type: Ice	Blue ice Ambie	nt 🛒 🦯		i.				
Notes:	2 L	111	- FV	• 1			1	
Sampling Locations:	" NO	- 6A	EV					CO
Sample Types:	T/D - SP 60nl	T/D SP 60ml	T/D	SP 60nl	T/D	SP	T/D	SP
Centainer Types:				-	. •		1	
Consider A	Đ	ate: A 199	171	î"				

CVL COPPE: 9/23/21 * 7/29/20

Revision 004

SELENIUM SPECIATION

BAL Final Report 2112284 (Finalized January 13, 2022)

Confidential BAL Final Report 2112284

January 13, 2022

Teck Resources Limited - Vancouver Allie Ferguson 421 Pine Avenue Sparwood, B.C. CANADA V0B2G0 allie.ferguson@teck.com

Re: Elkview Operations

Dear Allie Ferguson,

On December 23, 2021, Brooks Applied Labs (BAL) received twelve (12) aqueous samples. The samples were logged-in for total recoverable selenium [Se], dissolved Se, and Se speciation analyses, according to the chain-of-custody (COC) form.

The sample fractions logged in for Se speciation and dissolved Se had been field-filtered prior to receipt at BAL. All samples were stored according to BAL SOPs.

Total Recoverable and Dissolved Se

Each aqueous sample fraction for total recoverable or dissolved Se was digested in a closed vessel (bomb) with nitric and hydrochloric acids. The resulting digests were analyzed for Se content via inductively coupled plasma triple quadrupole mass spectrometry (ICP-QQQ-MS). The ICP-QQQ-MS instrumentation uses advanced interference removal techniques to ensure accuracy of the sample results. For more information, please visit the *Interference Reduction Technology* section on our website, brooksapplied.com.

Se Speciation

Each aqueous sample was analyzed for Se speciation using ion chromatography inductively coupled plasma collision reaction cell mass spectrometry (IC-ICP-CRC-MS). Selenium species are chromatographically separated on an ion exchange column and then quantified using inductively coupled plasma collision reaction cell mass spectrometry (ICP-CRC-MS); for more information on this determinative technique, please visit the *Interference Reduction Technology* section on our website. The chromatographic method applied for the analyses provides greater retention of methylseleninic acid and selenomethionine, allowing for more definitive quantitation of these species.

In accordance with the quotation issued for this project, selenium speciation was defined as dissolved selenite [Se(IV)], selenate [Se(VI)], selenocyanate [SeCN], methylseleninic acid [MeSe(IV)], methaneselenonic acid [MeSe(VI)], selenomethionine [SeMet], selenosulfate [SeSO3], and dimethylselenoxide [DMSeO]. Unknown Se species was defined as the total concentration of all unknown Se species observed during the analysis. This item is identified on the report as [Unk Se Sp].

DMSeO elutes early in the chromatographic run due to the nature of the molecule and the applied chromatographic separation method. Since this species elutes near the dead volume, additional

Confidential BAL Final Report 2112284

Se species may coelute. Alternate methods can be applied, upon client request, to increase the separation of DMSeO from potentially co-eluting Se species.

The results were not method blank corrected, as described in the calculations section of the relevant BAL SOPs and were evaluated using reporting limits adjusted to account for sample aliquot size. Please refer to the *Sample Results* page for sample-specific MDLs, MRLs, and other details.

In instances when a matrix spike/matrix spike duplicate (MS/MSD) set was spiked at a level less than the native sample concentration, the recoveries and the relative percent difference (RPD) are not considered valid indicators of data quality. In such instances, the recoveries of the laboratory fortified blanks (BS) and/or standard reference materials (SRM) demonstrate the accuracy of the applied methods. When the spiking level was less than 25% of the native sample concentration, the spike recovery was not reported (NR) and the RPD of the MS/MSD set was not calculated (N/C).

Except for concentration qualifiers, all data were reported without qualification. All associated quality control sample results met the acceptance criteria.

BAL, an accredited laboratory, certifies that the reported results of all analyses for which BAL is NELAP accredited met all NELAP requirements. For more information, please see the *Report Information* page.

Please feel free to contact us if you have any questions regarding this report.

Sincerely,

Jeremy Maute

Senior Project Manager Brooks Applied Labs

Jeremy@brooksapplied.com

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2112284
Client PM: Allie Ferguson
Client Project: Elkview Operations

Report Information

Laboratory Accreditation

BAL is accredited by the *National Environmental Laboratory Accreditation Program* (NELAP) through the State of Florida Department of Health, Bureau of Laboratories (E87982) and is certified to perform many environmental analyses. BAL is also certified by many other states to perform environmental analyses. For a current list of our accreditations/certifications, please visit our website at http://www.brooksapplied.com/resources/certificates-permits/ or review Tables 1 and 2 in our Accreditation Information. Results reported relate only to the samples listed in the report.

Field Quality Control Samples

Please be notified that certain EPA methods require the collection of field quality control samples of an appropriate type and frequency; failure to do so is considered a deviation from some methods and for compliance purposes should only be done with the approval of regulatory authorities. Please see the specific EPA methods for details regarding required field quality control samples.

Common Abbreviations

AR	as received	MS	matrix spike
BAL	Brooks Applied Labs	MSD	matrix spike duplicate
BLK	method blank	ND	non-detect
BS	blank spike	NR	non-reportable
CAL	calibration standard	N/C	not calculated
CCB	continuing calibration blank	PS	post preparation spike
CCV	continuing calibration verification	REC	percent recovery
COC	chain of custody record	RPD	relative percent difference
D	dissolved fraction	SCV	secondary calibration verification
DUP	duplicate	SOP	standard operating procedure
IBL	instrument blank	SRM	reference material
ICV	initial calibration verification	T	total fraction
MDL	method detection limit	TR	total recoverable fraction
MRL	method reporting limit		

Definition of Data Qualifiers

(Effective 3/23/2020)

- E An estimated value due to the presence of interferences. A full explanation is presented in the narrative.
- Holding time and/or preservation requirements not met. Please see narrative for explanation.
- J Detected by the instrument, the result is > the MDL but ≤ the MRL. Result is reported and considered an estimate.
- **J-1** Estimated value. A full explanation is presented in the narrative.
- **M** Duplicate precision (RPD) was not within acceptance criteria. Please see narrative for explanation.
- **N** Spike recovery was not within acceptance criteria. Please see narrative for explanation.
- **R** Rejected, unusable value. A full explanation is presented in the narrative.
- U Result is ≤ the MDL or client requested reporting limit (CRRL). Result reported as the MDL or CRRL.
- X Result is not BLK-corrected and is within 10x the absolute value of the highest detectable BLK in the batch. Result is estimated.
- **Z** Holding time and/or preservation requirements not established for this method; however, BAL recommendations for holding time were not followed. Please see narrative for explanation.

These qualifiers are based on those previously utilized by Brooks Applied Labs, those found in the EPA <u>SOW ILM03.0</u>, Exhibit B, Section III, pg. B-18, and the <u>USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review; USEPA; January 2010</u>. These supersede all previous qualifiers ever employed by BAL.

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2112284
Client PM: Allie Ferguson
Client Project: Elkview Operations

Accreditation Information

Table 1. Accredited method/matrix/analytes for TNI

Issued by: State of Florida Dept. of Health (The NELAC Institute 2016 Standard) Issued on: July 1, 2021; Valid to: June 30, 2022

Certificate Number: E87982-37

Method	Matrix	TNI Accredited Analyte(s)
EPA 1638	Non-Potable Waters	Ag, Cd, Cu, Ni, Pb, Sb, Se, Tl, Zn
EPA 200.8	Non-Potable Waters	Ag, Al, As, Ba, Be, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Se, Tl, U, V, Zn
	Non-Potable Waters	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Tl, U, V, Zn
EPA 6020	Solids/Chemicals & Biological	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Tl, V, Zn
	Non-Potable Waters	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, U, V, Zn, Hardness
BAL-5000	Solids/Chemicals	Ag, As, B, Be, Cd, Co, Cr, Cu, Pb, Mo, Ni, Sb, Se, Sn, Sr, Tl, V, Zn
	Biological	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Tl, V, Zn
EPA 1640	Non-Potable Waters	Cd, Cu, Pb, Ni, Zn
EPA 1631E	Non-Potable Waters, Solids/Chemicals & Biological	Total Mercury
EPA 1630	Non-Potable Waters	Methyl Mercury
BAL-3200	Solids/Chemicals & Biological	Methyl Mercury
BAL-4100	Non-Potable Waters	As(III), As(V), DMAs, MMAs
BAL-4201	Non-Potable Waters	Se(IV), Se(VI)
BAL-4300	Non-Potable Waters Solid/Chemicals	Cr(VI)
SM2340B	Non-Potable Waters	Hardness

Project ID: TRL-VC2101 PM: Jeremy Maute

BAL Final Report 2112284 Client PM: Allie Ferguson Client Project: Elkview Operations

Accreditation Information

Table 2. Accredited method/matrix/analytes for ISO (1), Non-Governmental TNI (2), and DoD/DOE (3)

Issued by: ANAB

Issued on: September 21, 2021; Valid to: March 30, 2024

Method	Matrix	ISO and Non-Gov. TNI Accredited Analyte(s)	DoD/DOE Accredited Analytes
EPA 1638 Mod EPA 200.8 Mod EPA 6020 Mod	Non-Potable Waters	Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, U, V, Zn	Ag, Al, As, Ba, Ca, Cd, Cr, Cu, Fe, Pb, Mg, Mn, Ni, Sb, Se, V, Zn
BAL-5000	Solids/Chemicals & Biological	Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, V, Zn Hg (Biological Only)	Not Accredited
EPA 1640 Mod	Non-Potable Waters Cd, Cu, Pb, Ni, Zn Ag, As, Cr, Co, Se, Tl, V (ISO Only)		Not Accredited
EPA 1631E Mod BAL-3100	Non-Potable Waters, Solids/Chemicals & Biological/Food	Total Mercury	Total Mercury
EPA 1630 Mod BAL-3200	Non-Potable Waters, Solids/Chemicals Biological	Methyl Mercury	Methyl Mercury (excluding Solids/Chemicals)
EPA 1632A Mod	Non-Potable Waters	Inorganic Arsenic (ISO Only)	Not Accredited
BAL-3300	Biological/Food Solids/Chemicals	Inorganic Arsenic (ISO Only)	Not Accredited
AOAC 2015.01 Mod BAL-5000	Food	As, Cd, Hg, Pb	Not Accredited
DAI 4400	Non-Potable Waters	As(III), As(V), DMAs, MMAs	Not Accredited
BAL-4100	Biological by BAL-4117	Inorganic Arsenic, DMAs, MMAs (ISO Only)	Not Accredited
BAL-4101	Food by BAL-4117	Inorganic Arsenic, DMAs, MMAs (ISO Only)	Not Accredited
BAL-4201	Non-Potable Waters	Se(IV), Se(VI), SeCN, SeMet	Not Accredited
BAL-4300	Non-Potable Waters, Solid/Chemicals	Cr(VI)	Cr(VI)
SM 3500-Fe BAL-4500	Non-Potable Waters	Fe, Fe(II) (ISO Only)	Not Accredited
SM2340B	Non-Potable Waters	Hardness	Hardness
SM 2540G BAL-0501	Solids/Chemicals & Biological	% Dry Weight	% Dry Weight

⁽¹⁾ ISO/IEC 17025:2017 - Certificate Number ADE-1447.02

⁽²⁾ Non-Governmental NELAC Institute 2016 Standard - Certificate Number ADE-1447.01

⁽³⁾ Department of Defense/Energy Consolidated Quality Systems Manual v. 5.3 – Certificate Numbers ADE-1447 for DoD, ADE-1447.03 for DOE.

BAL Final Report 2112284
Client PM: Allie Ferguson
Client Project: Elkview Operations

Sample Information

Sample	Lab ID	Report Matrix	Type	Sampled	Received
RG_M13_WS_LAEMP_EVO_2021-1 2-14_N	2112284-01	WS	Sample	12/14/2021	12/23/2021
RG_M13_WS_LAEMP_EVO_2021-1 2-14_N_NAL	2112284-02	WS	Sample	12/14/2021	12/23/2021
RG_M13_WS_LAEMP_EVO_2021-1 2-14_N_NAL	2112284-03	WS	Sample	12/14/2021	12/23/2021
RG_ERCKUT_WS_LAEMP_EVO_20 21-12-14_N	2112284-04	WS	Sample	12/14/2021	12/23/2021
RG_ERCKUT_WS_LAEMP_EVO_20 21-12-14_N_NAL	2112284-05	WS	Sample	12/14/2021	12/23/2021
RG_ERCKUT_WS_LAEMP_EVO_20 21-12-14_N_NAL	2112284-06	WS	Sample	12/14/2021	12/23/2021
RG_ERCK_WS_LAEMP_EVO_2021- 12-14_N	2112284-07	WS	Sample	12/14/2021	12/23/2021
RG_ERCK_WS_LAEMP_EVO_2021- 12-14_N_NAL	2112284-08	WS	Sample	12/14/2021	12/23/2021
RG_ERCK_WS_LAEMP_EVO_2021- 12-14_N_NAL	2112284-09	WS	Sample	12/14/2021	12/23/2021
RG_RIVER_WS_LAEMP_EVO_2021 -12-14_N	2112284-10	WS	Sample	12/14/2021	12/23/2021
RG_RIVER_WS_LAEMP_EVO_2021 -12-14_N_NAL	2112284-11	WS	Sample	12/14/2021	12/23/2021
RG_RIVER_WS_LAEMP_EVO_2021 -12-14_N_NAL	2112284-12	WS	Sample	12/14/2021	12/23/2021
RG_ERCKDT_WS_LAEMP_EVO_20 21-12-15_N	2112284-13	WS	Sample	12/15/2021	12/23/2021
RG_ERCKDT_WS_LAEMP_EVO_20 21-12-15_N_NAL	2112284-14	WS	Sample	12/15/2021	12/23/2021
RG_ERCKDT_WS_LAEMP_EVO_20 21-12-15_N_NAL	2112284-15	WS	Sample	12/15/2021	12/23/2021
RG_FBLANK_WS_LAEMP_EVO_20 21-12-15_N	2112284-16	WS	Sample	12/15/2021	12/23/2021
RG_FBLANK_WS_LAEMP_EVO_20 21-12-15_N_NAL	2112284-17	WS	Sample	12/15/2021	12/23/2021
RG_FBLANK_WS_LAEMP_EVO_20 21-12-15_N_NAL	2112284-18	WS	Sample	12/15/2021	12/23/2021

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2112284
Client PM: Allie Ferguson
Client Project: Elkview Operations

Batch Summary

Analyte	Lab Matrix	Method	Prepared	Analyzed	Batch	Sequence
DMSeO	Water	SOP BAL-4201	12/29/2021	12/30/2021	B213545	S211464
MeSe(IV)	Water	SOP BAL-4201	12/29/2021	12/30/2021	B213545	S211464
MeSe(VI)	Water	SOP BAL-4201	12/29/2021	12/30/2021	B213545	S211464
Se	Water	EPA 1638 Mod	01/03/2022	01/05/2022	B213542	S220018
Se(IV)	Water	SOP BAL-4201	12/29/2021	12/30/2021	B213545	S211464
Se(VI)	Water	SOP BAL-4201	12/29/2021	12/30/2021	B213545	S211464
SeCN	Water	SOP BAL-4201	12/29/2021	12/30/2021	B213545	S211464
SeMet	Water	SOP BAL-4201	12/29/2021	12/30/2021	B213545	S211464
SeSO3	Water	SOP BAL-4201	12/29/2021	12/30/2021	B213545	S211464
Unk Se Sp	Water	SOP BAL-4201	12/29/2021	12/30/2021	B213545	S211464

BAL Final Report 2112284
Client PM: Allie Ferguson
Client Project: Elkview Operations

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
RG M13 WS	LAEMP EVO	2021-12-14 N								
2112284-01	DMSeO	ws _	D	≤ 0.010	U	0.010	0.025	μg/L	B213545	S211464
2112284-01	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B213545	S211464
2112284-01	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B213545	S211464
2112284-01	Se(IV)	WS	D	0.027	J	0.010	0.075	μg/L	B213545	S211464
2112284-01	Se(VI)	WS	D	1.71		0.010	0.055	μg/L	B213545	S211464
2112284-01	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B213545	S211464
2112284-01	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B213545	S211464
2112284-01	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B213545	S211464
2112284-01	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B213545	S211464
PC M12 WS	I AEMD EVO	2021-12-14_N_NAI	,							
2112284-02	Se	WS WS	TR	1.95		0.165	0.528	μg/L	B213542	S220018
2112204-02	36	WS	110	1.90		0.103	0.320	µg/L	DZ 1334Z	3220010
RG_M13_WS_I	LAEMP_EVO_	2021-12-14_N_NA	L							
2112284-03	Se	WS	D	1.73		0.165	0.528	μg/L	B213542	S220018
DO EDOKUT		".								
		VO_2021-12-14_N		< 0.040		0.040	0.005	/1	D040545	0044404
2112284-04	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B213545	S211464
2112284-04	MeSe(IV)	WS	D	≤ 0.010	U U	0.010	0.025 0.025	μg/L	B213545	S211464
2112284-04	MeSe(VI)	WS WS	D D	≤ 0.010 0.030	J	0.010 0.010	0.025	μg/L	B213545 B213545	S211464
2112284-04	Se(IV)	WS	D	139	J	0.010	0.075	μg/L μg/L	B213545 B213545	S211464
2112284-04 2112284-04	Se(VI) SeCN	WS	D	≤ 0.010	U	0.010	0.055	μg/L μg/L	B213545 B213545	S211464 S211464
2112284-04	SeMet	WS	D	≤ 0.010 ≤ 0.010	U	0.010	0.030	μg/L μg/L	B213545	S211464 S211464
2112284-04	SeSO3	WS	D	≤ 0.010 ≤ 0.010	U	0.010	0.025	μg/L μg/L	B213545	S211464 S211464
2112284-04	Unk Se Sp	WS	D	≤ 0.010 ≤ 0.010	U	0.010	0.035	μg/L μg/L	B213545	S211464
2112204-04	Olik Se Sp	WS	D	⊒ 0.010	O	0.010	0.073	µg/L	DZ 10040	3211404
RG_ERCKUT_	WS_LAEMP_E	VO_2021-12-14_N	_NAL							
2112284-05	Se	WS	TR	137		0.165	0.528	μg/L	B213542	S220018
RG FRCKUT	WS I AFMP F	VO 2021-12-14 N	ΝΔΙ							
2112284-06	Se	WS	_ <i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>	129		0.165	0.528	μg/L	B213542	S220018

BAL Final Report 2112284
Client PM: Allie Ferguson
Client Project: Elkview Operations

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
RG ERCK WS	LAEMP EVO	_2021-12-14_N								
2112284-07	DMSeO	- ws	D	≤ 0.010	U	0.010	0.025	μg/L	B213545	S211464
2112284-07	MeSe(IV)	WS	D	0.014	J	0.010	0.025	μg/L	B213545	S211464
2112284-07	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B213545	S211464
2112284-07	Se(IV)	WS	D	0.514		0.010	0.075	μg/L	B213545	S211464
2112284-07	Se(VI)	WS	D	61.7		0.010	0.055	μg/L	B213545	S211464
2112284-07	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B213545	S211464
2112284-07	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B213545	S211464
2112284-07	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B213545	S211464
2112284-07	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B213545	S211464
DO 500K W	. / A.E.M.D. E.V.O									
)_2021-12-14_N_N		64.0		0.465	0.500	/1	D040E40	0000010
2112284-08	Se	WS	TR	61.2		0.165	0.528	µg/L	B213542	S220018
RG ERCK WS	LAEMP EVO	2021-12-14 N N	AL							
2112284-09	 Se	- ws	D	60.8		0.165	0.528	μg/L	B213542	S220018
								. 0		
RG_RIVER_WS	S_LAEMP_EVO	D_2021-12-14_N								
2112284-10	DMSeO	- ws	D	≤ 0.010	U	0.010	0.025	μg/L	B213545	S211464
2112284-10	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B213545	S211464
2112284-10	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B213545	S211464
2112284-10	Se(IV)	WS	D	0.024	J	0.010	0.075	μg/L	B213545	S211464
2112284-10	Se(VI)	WS	D	134		0.010	0.055	μg/L	B213545	S211464
2112284-10	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B213545	S211464
2112284-10	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B213545	S211464
2112284-10	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B213545	S211464
2112284-10	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B213545	S211464
DO DIVER W	S LAEMD 51/	2 2024 42 44 14	141							
		D_2021-12-14_N_N		120		0.165	0.520	ua/l	D212542	6220040
2112284-11	Se	WS	TR	138		0.165	0.528	μg/L	B213542	S220018
RG_RIVER_WS	S_LAEMP_EVO	D_2021-12-14_N_N	IAL							
2112284-12	Se	- ws	D	135		0.165	0.528	μg/L	B213542	S220018

BAL Final Report 2112284
Client PM: Allie Ferguson
Client Project: Elkview Operations

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
RG ERCKDT WS LAEMP EVO 2021-12-15 N										
2112284-13	DMSeO	ws	D	≤ 0.010	U	0.010	0.025	μg/L	B213545	S211464
2112284-13	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B213545	S211464
2112284-13	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B213545	S211464
2112284-13	Se(IV)	WS	D	0.054	J	0.010	0.075	μg/L	B213545	S211464
2112284-13	Se(VI)	WS	D	94.4		0.010	0.055	μg/L	B213545	S211464
2112284-13	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B213545	S211464
2112284-13	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B213545	S211464
2112284-13	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B213545	S211464
2112284-13	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B213545	S211464
RG_ERCKDT_WS_LAEMP_EVO_2021-12-15_N_NAL										
2112284-14	Se	WS	TR	129		0.165	0.528	μg/L	B213542	S220018
2112204-14	00	WO	111	123		0.100	0.020	µg/L	DZ 10042	3220010
RG_ERCKDT_WS_LAEMP_EVO_2021-12-15_N_NAL										
2112284-15	Se	WS	D	131		0.165	0.528	μg/L	B213542	S220018
RG FBLANK WS LAEMP EVO 2021-12-15 N										
	DMSeO	VO_2021-12-15_N WS	D	≤ 0.010	U	0.010	0.025	ua/l	B213545	0044404
2112284-16 2112284-16	MeSe(IV)	WS	D	≤ 0.010 ≤ 0.010	U	0.010	0.025	μg/L μg/L	B213545 B213545	S211464 S211464
2112284-16	MeSe(VI)	WS	D	≤ 0.010 ≤ 0.010	U	0.010	0.025	μg/L μg/L	B213545	S211464 S211464
2112284-16	Se(IV)	WS	D	≤ 0.010 ≤ 0.010	U	0.010	0.025	μg/L μg/L	B213545	S211464
2112284-16	Se(VI)	WS	D	0.033	J	0.010	0.055	μg/L μg/L	B213545	S211464
2112284-16	SeCN	WS	D	≤ 0.010	Ü	0.010	0.050	μg/L	B213545	S211464
2112284-16	SeMet	WS	D	≤ 0.010	Ü	0.010	0.025	μg/L	B213545	S211464
2112284-16	SeSO3	WS	D	≤ 0.010	Ü	0.010	0.055	μg/L	B213545	S211464
2112284-16	Unk Se Sp	WS	D	≤ 0.010	Ü	0.010	0.075	μg/L	B213545	S211464
211220110	о со ор		_	_ 0.0.0		0.0.0	0.0.0	F-9/ -	22.00.0	0211101
RG_FBLANK_WS_LAEMP_EVO_2021-12-15_N_NAL										
2112284-17	Se	WS	TR	0.781		0.165	0.528	μg/L	B213542	S220018
RG FBLANK WS LAEMP EVO 2021-12-15 N NAL										
2112284-18	Se	WS	_ D	≤ 0.165	U	0.165	0.528	μg/L	B213542	S220018

BAL Final Report 2112284
Client PM: Allie Ferguson
Client Project: Elkview Operations

Accuracy & Precision Summary

Batch: B213542 Lab Matrix: Water Method: EPA 1638 Mod

Sample B213542-BS1	Analyte Blank Spike, (2128021)	Native	Spike	Result	Units	REC 8	k Limits	RPD & Lii	mits
B210042-B01	Se Se		200.0	176.3	μg/L	88%	75-125		
B213542-BS2	Blank Spike, (2128021) Se		200.0	175.7	μg/L	88%	75-125		
B213542-BS3	Blank Spike, (2128021) Se		200.0	178.2	μg/L	89%	75-125		
B213542-SRM1	Reference Material (214500 Se	3, TMDA 5	1.5 Reference 14.30	Standard - 12.64	Bottle 2 - SI μg/L	-	75-125		
B213542-SRM2	Reference Material (214500 Se	3, TMDA 5	1.5 Reference 14.30	Standard - 12.74	Bottle 2 - Si µg/L	•	75-125		
B213542-SRM3	Reference Material (214500 Se	3, TMDA 5	1.5 Reference 14.30	Standard - 12.16	Bottle 2 - SI μg/L		75-125		
B213542-DUP2	Duplicate , (2112279-02) Se	114.3		112.0	μg/L			2%	20
B213542-MS2	Matrix Spike, (2112279-02) Se	114.3	220.0	311.7	μg/L	90%	75-125		
B213542-MSD2	Matrix Spike Duplicate, (21 Se	12279-02) 114.3	220.0	321.7	μg/L	94%	75-125	3%	20
B213542-DUP3	Duplicate , (2112284-14) Se	129.1		133.3	μg/L			3%	20
B213542-MS3	Matrix Spike, (2112284-14) Se	129.1	220.0	335.8	μg/L	94%	75-125		

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2112284
Client PM: Allie Ferguson
Client Project: Elkview Operations

Accuracy & Precision Summary

Batch: B213542 Lab Matrix: Water Method: EPA 1638 Mod

Sample	Analyte	Native	Spike	Result	Units	REC & Limits	RPD & Limits
B213542-MSD3	Matrix Spike Duplicate,	(2112284-14)					
	Se	129.1	220.0	327.9	ua/L	90% 75-125	2% 20

BAL Final Report 2112284
Client PM: Allie Ferguson
Client Project: Elkview Operations

Accuracy & Precision Summary

Batch: B213545 Lab Matrix: Water Method: SOP BAL-4201

Sample	Analyte	Native	Spike	Result	Units	REC & I	Limits	RPD & Li	mits
B213545-BS1	Blank Spike, (2124033)								
	MeSe(IV)		5.095	5.814	μg/L	114%	75-125		
	Se(IV)		5.000	4.736	μg/L	95%	75-125		
	Se(VI)		5.000	4.452	μg/L	89%	75-125		
	SeCN		5.015	4.689	μg/L	93%	75-125		
	SeMet		4.932	5.160	μg/L	105%	75-125		
B213545-DUP2	Duplicate, (2112279-01)								
	DMSeO	ND		ND	μg/L			N/C	25
	MeSe(IV)	ND		ND	μg/L			N/C	25
	MeSe(VI)	ND		ND	μg/L			N/C	25
	Se(IV)	0.189		0.191	μg/L			1%	25
	Se(VI)	129.3		126.2	μg/L			2%	25
	SeCN	ND		ND	μg/L			N/C	25
	SeMet	ND		ND	μg/L			N/C	25
	SeSO3	ND		ND	μg/L			N/C	25
	Unk Se Sp	ND		ND	μg/L			N/C	25
B213545-MS2	Matrix Spike, (2112279-0	1)							
	Se(IV)	0.189	4.900	4.736	μg/L	93%	75-125		
	Se(VI)	129.3	5.100	133.4	μg/L	NR 7	75-125		
	SeCN	ND	1.962	1.829	μg/L	93%	75-125		
	SeMet	ND	1.977	2.065	μg/L	104%	75-125		
B213545-MSD2	Matrix Spike Duplicate, (2112279-01)						
	Se(IV)	0.189	4.900	4.781	μg/L	94%	75-125	1%	25
	Se(VI)	129.3	5.100	132.7	μg/L	NR 7	75-125	N/C	25
	SeCN	ND	1.962	1.857	μg/L	95%	75-125	2%	25
	SeMet	ND	1.977	2.068	μg/L	105%	75-125	0.2%	25

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2112284
Client PM: Allie Ferguson
Client Project: Elkview Operations

Method Blanks & Reporting Limits

Batch: B213542 Matrix: Water

Method: EPA 1638 Mod

Analyte: Se

Sample	Result	Units
B213542-BLK1	0.028	μg/L
B213542-BLK2	-0.064	μg/L
B213542-BLK3	-0.001	μg/L
B213542-BLK4	-0.068	μg/L

 Average: -0.026
 MDL: 0.150

 Limit: 0.480
 MRL: 0.480

BAL Final Report 2112284
Client PM: Allie Ferguson
Client Project: Elkview Operations

Method Blanks & Reporting Limits

Batch: B213545 Matrix: Water

Method: SOP BAL-4201 Analyte: DMSeO

 Sample
 Result
 Units

 B213545-BLK1
 0.00
 μg/L

 B213545-BLK2
 0.00
 μg/L

 B213545-BLK3
 0.00
 μg/L

 B213545-BLK4
 0.00
 μg/L

Average: 0.000 MDL: 0.002 Limit: 0.005 MRL: 0.005

Analyte: MeSe(IV)

 Sample
 Result
 Units

 B213545-BLK1
 0.00
 μg/L

 B213545-BLK2
 0.00
 μg/L

 B213545-BLK3
 0.00
 μg/L

 B213545-BLK4
 0.00
 μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.005
 MRL: 0.005

Analyte: MeSe(VI)

 Sample
 Result
 Units

 B213545-BLK1
 0.00
 μg/L

 B213545-BLK2
 0.00
 μg/L

 B213545-BLK3
 0.00
 μg/L

 B213545-BLK4
 0.00
 μg/L

Average: 0.000 MDL: 0.002 Limit: 0.005 MRL: 0.005

BAL Final Report 2112284
Client PM: Allie Ferguson
Client Project: Elkview Operations

Method Blanks & Reporting Limits

Analyte: Se(IV)

Sample	Result	Units
B213545-BLK1	0.002	μg/L
B213545-BLK2	0.001	μg/L
B213545-BLK3	0.00	μg/L
B213545-BLK4	0.00	μg/L

Average: 0.001 **MDL:** 0.002 **Limit:** 0.015 **MRL:** 0.015

Analyte: Se(VI)

Sample	Result	Units
B213545-BLK1	0.002	μg/L
B213545-BLK2	0.001	μg/L
B213545-BLK3	0.00	μg/L
B213545-BLK4	0.00	μg/L

 Average: 0.001
 MDL: 0.002

 Limit: 0.011
 MRL: 0.011

Analyte: SeCN

Sample	Result	Units
B213545-BLK1	0.00	μg/L
B213545-BLK2	0.00	μg/L
B213545-BLK3	0.00	μg/L
B213545-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.010
 MRL: 0.010

Analyte: SeMet

Sample	Result	Units
B213545-BLK1	0.00	μg/L
B213545-BLK2	0.00	μg/L
B213545-BLK3	0.00	μg/L
B213545-BI K4	0.00	ua/l

Average: 0.000 **MDL:** 0.002 **Limit:** 0.005 **MRL:** 0.005

BAL Final Report 2112284
Client PM: Allie Ferguson
Client Project: Elkview Operations

Method Blanks & Reporting Limits

Analyte: SeSO3

Sample	Result	Units
B213545-BLK1	0.00	μg/L
B213545-BLK2	0.00	μg/L
B213545-BLK3	0.00	μg/L
B213545-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.011
 MRL: 0.011

Analyte: Unk Se Sp

Sample	Result	Units
B213545-BLK1	0.00	μg/L
B213545-BLK2	0.00	μg/L
B213545-BLK3	0.00	μg/L
B213545-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.015
 MRL: 0.015

BAL Final Report 2112284
Client PM: Allie Ferguson
Client Project: Elkview Operations

Sample Containers

				Report Matrix: WS Sample Type: Sample + Sum	Collected: 12/14/2021 Received: 12/23/2021		
	Container	Size	Lot	Preservation	P-Lot	На	Ship. Cont.
Α	Cent Tube 15mL Se-Sp	15mL	N/A	None	N/A	N/A	Cooler #3 - 2112284
В	XTRA_VOL	15mL	N/A	None	N/A	N/A	Cooler #3 - 2112284
С	XTRA_VOL	60mL	N/A	None	N/A	N/A	Cooler #3 - 2112284
Lab ID: 2112284-02 Sample: RG_M13_WS_LAEMP_EVO_2021-12-14_N_NAL				Report Matrix: WS Sample Type: Sample + Sum			cted: 12/14/2021 ived: 12/23/2021
_	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Client-Provided - TM	40mL	N/A	10% HNO3 (BAL)	2142027	<2	Cooler #3 - 2112284
Lab ID: 2112284-03 Sample: RG_M13_WS_LAEMP_EVO_2021-12-14_N_NAL			Report Matrix: WS Sample Type: Sample + Sum			cted: 12/14/2021 ived: 12/23/2021	
_	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Client-Provided - TM	40mL	N/A	10% HNO3 (BAL)	2142027	<2	Cooler #3 - 2112284
Lab ID: 2112284-04 Sample: RG ERCKUT WS LAEMP EVO 2021-12-14 N			Report Matrix: WS Sample Type: Sample + Sum		Collected: 12/14/2021 Received: 12/23/2021		
_	Container	Size	Lot	Preservation	P-Lot	На	Ship. Cont.
Α	Cent Tube 15mL Se-Sp	15mL	N/A	None	N/A	N/A	Cooler #3 - 2112284
В	XTRA_VOL	15mL	N/A	None	N/A	N/A	Cooler #3 - 2112284
С	XTRA_VOL	60mL	N/A	None	N/A	N/A	Cooler #3 - 2112284

Project ID: TRL-VC2101 PM: Jeremy Maute

BAL Final Report 2112284
Client PM: Allie Ferguson
Client Project: Elkview Operations

Sample Containers

Lab ID: 2112284-05 Report Matrix: WS Collected: 12/14/2021 Sample: Received: 12/23/2021 Sample Type: Sample + Sum RG_ERCKUT_WS_LAEMP_EVO_2021-12-14_N_N ΑL Container Des Size Lot **Preservation** P-Lot рH Ship. Cont. Client-Provided - TM 40mL N/A 10% HNO3 (BAL) Α 2142027 <2 Cooler #3 -2112284 Lab ID: 2112284-06 Report Matrix: WS Collected: 12/14/2021 Sample: Received: 12/23/2021 Sample Type: Sample + Sum RG_ERCKUT_WS_LAEMP_EVO_2021-12-14_N_N Container Size Lot **Preservation** P-Lot pН Ship. Cont. Client-Provided - TM 40mL N/A 10% HNO3 (BAL) 2142027 <2 Cooler #3 -2112284 Lab ID: 2112284-07 Report Matrix: WS Collected: 12/14/2021 Sample: Sample Type: Sample + Sum Received: 12/23/2021 RG ERCK WS LAEMP EVO 2021-12-14 N **Des Container Preservation** P-Lot **Size** рН Ship. Cont. Lot Cent Tube 15mL Se-Sp Α 15mL N/A None N/A N/A Cooler #3 -2112284 N/A Cooler #3 -В XTRA VOL 15mL N/A None N/A 2112284 XTRA_VOL 60mL N/A None N/A N/A Cooler #3 -2112284 Lab ID: 2112284-08 Report Matrix: WS Collected: 12/14/2021 Sample: Sample Type: Sample + Sum Received: 12/23/2021 RG_ERCK_WS_LAEMP_EVO_2021-12-14_N_NAL **Preservation Des Container Size** Lot P-Lot рΗ Ship. Cont. Client-Provided - TM 40mL N/A 10% HNO3 (BAL) 2142027 <2 Cooler #3 -2112284

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2112284
Client PM: Allie Ferguson
Client Project: Elkview Operations

2112284

Sample Containers

Lab ID: 2112284-09 Report Matrix: WS Collected: 12/14/2021 Sample: Received: 12/23/2021 Sample Type: Sample + Sum RG ERCK WS LAEMP EVO 2021-12-14 N NAL **Des Container Size** Lot **Preservation** P-Lot рH Ship. Cont. 10% HNO3 (BAL) Cooler #3 -Client-Provided - TM 40mL N/A 2142027 <2 2112284 Lab ID: 2112284-10 Report Matrix: WS Collected: 12/14/2021 Received: 12/23/2021 Sample: Sample Type: Sample + Sum RG_RIVER_WS_LAEMP_EVO_2021-12-14_N рΗ **Des Container Preservation** P-Lot **Size** Lot Ship. Cont. Cent Tube 15mL Se-Sp 15mL N/A None N/A N/A Cooler #3 -2112284 В Cooler #3 -XTRA_VOL 15mL N/A N/A N/A None 2112284 С XTRA_VOL 60mL N/A None N/A N/A Cooler #3 -2112284 Lab ID: 2112284-11 Report Matrix: WS Collected: 12/14/2021 Sample: Sample Type: Sample + Sum Received: 12/23/2021 RG RIVER WS LAEMP EVO 2021-12-14 N NAL P-Lot **Des Container Preservation Size** рН Ship. Cont. Lot Client-Provided - TM 40mL N/A 10% HNO3 (BAL) <2 Cooler #3 -2142027 2112284 Lab ID: 2112284-12 Report Matrix: WS Collected: 12/14/2021 Sample: Sample Type: Sample + Sum Received: 12/23/2021 RG_RIVER_WS_LAEMP_EVO_2021-12-14_N_NAL Container **Size** Lot **Preservation** P-Lot pН Ship. Cont. Client-Provided - TM 40mL N/A 10% HNO3 (BAL) <2 2142027 Cooler #3 -

BAL Final Report 2112284
Client PM: Allie Ferguson
Client Project: Elkview Operations

Sample Containers

Lab ID: 2112284-13 Sample: RG_ERCKDT_WS_LAEMP_EVO_2021-12-15_N			Report Matrix: WS Sample Type: Sample + Sum		Collected: 12/15/2021 Received: 12/23/2021		
_	Container	Size	Lot	Preservation	P-Lot	На	Ship. Cont.
Α	Cent Tube 15mL Se-Sp	15mL	N/A	None	N/A	N/A	Cooler #3 - 2112284
В	XTRA_VOL	15mL	N/A	None	N/A	N/A	Cooler #3 - 2112284
С	XTRA_VOL	60mL	N/A	None	N/A	N/A	Cooler #3 - 2112284
Sam	I D: 2112284-14 ple: ERCKDT_WS_LAEMP_EVO_:	2021-12-15_N_N		Report Matrix: WS Sample Type: Sample + Sum			eted: 12/15/2021 ved: 12/23/2021
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
A	Client-Provided - TM	40mL	N/A	10% HNO3 (BAL)	2142027	<2	Cooler #3 - 2112284
Sam	I D: 2112284-15 ple: ERCKDT_WS_LAEMP_EVO_:	2021-12-15_N_N		Report Matrix: WS Sample Type: Sample + Sum			cted: 12/15/2021 ved: 12/23/2021
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
A	Client-Provided - TM	40mL	N/A	10% HNO3 (BAL)	2142027	<2	Cooler #3 - 2112284
Lab ID: 2112284-16 Sample:		Report Matrix: WS Sample Type: Sample + Sum			eted: 12/15/2021 ved: 12/23/2021		
_	FBLANK_WS_LAEMP_EVO_2 Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
A	Cent Tube 15mL Se-Sp	15mL	N/A	None	N/A	N/A	Cooler #3 - 2112284
В	XTRA_VOL	15mL	N/A	None	N/A	N/A	Cooler #3 - 2112284
С	XTRA_VOL	60mL	N/A	None	N/A	N/A	Cooler #3 - 2112284

Project ID: TRL-VC2101 **PM**: Jeremy Maute

BAL Final Report 2112284
Client PM: Allie Ferguson
Client Project: Elkview Operations

Sample Containers

 Lab ID: 2112284-17
 Report Matrix: WS
 Collected: 12/15/2021

 Sample:
 Sample Type: Sample + Sum
 Received: 12/23/2021

RG_FBLANK_WS_LAEMP_EVO_2021-12-15_N_N

ΑL

Des Container Preservation Ship. Cont. Size Lot P-Lot рH Client-Provided - TM 40mL N/A 10% HNO3 (BAL) <2 Α 2142027 Cooler #3 -2112284

 Lab ID: 2112284-18
 Report Matrix: WS
 Collected: 12/15/2021

 Sample:
 Sample Type: Sample + Sum
 Received: 12/23/2021

RG_FBLANK_WS_LAEMP_EVO_2021-12-15_N_N

ΑL

DesContainerSizeLotPreservationP-LotpHShip. Cont.AClient-Provided - TM40mLN/A10% HNO3 (BAL)2142027<2</td>Cooler #3 - 2112284

Shipping Containers

Cooler #3 - 2112284

Received: December 23, 2021 7:13

Tracking No: PAPS# RWHV85287 via Courier

Coolant Type: Ice Temperature: 1.1 °C Description: Styrofoam Cooler Damaged in transit? No Returned to client? No Comments: IR# 31

Custody seals present? No Custody seals intact? No COC present? Yes

Page 1 of 1

BAL Final Report 2112284

Teck																				
	COC ID:		nber	EVO LAE	MP	TURNA	ROUNI					Regula	r							
Facility Name / Job#	PROJECT/CLIENT INFO	STEEL ST		CALL SECURITY		Lak	Name 1			ied Labs	THE LAW		Pone	ort Form	ant / Die	Stribution		Excel	PDF	EDD
Project Manager			_				Contact						Emai			guson@t			Y DI	LEDD
	allie.ferguson@teck.com						Email	ben@br	ooksa	pplied.com	n		Emai			ritz@leck		1		X
Address	421 Pine Avenue					A	Address	18804	North	Creek Pa	rkway		Emai	il 3:	teckcoa	@equiso	nline.co	n		K
												_	Emai			@minnov		X	X	13
City	Sparwood V0B 2G0			Province BC Country Can	oda	Deat	City al Code	Bothell			Province	WA USA	Emai Emai		tyler.Me	hler@mir	now.ca	Х	1	×
Postal Code Phone Number		,		Country Can	aua		Number		2-620	6	Country	USA	PO nui	_	VID	"מטים	711 6	<u></u>	<u> </u>	1
Thore regulation	SAMPLE DET	AILS				T Hone I					LYSIS REC	QUESTE		inder	XI	Four	ed - P. Parl	THE PARTY	L Field &	Lab, & No
								41												
			Yes/No)					HILIDIN	P	F										
Sample ID	Sample Location (sys loc code)	Field Matrix	Hazardous Material (Yes/No)	Date	Time (24hr)	G=Grab C=Com		SHATINA	Fotal Selenium	Dissolved Selenium	Selenium Speciation									
RG_M13_WS_LAEMP_EVO_2021-12-14_N	RG_M13	ws	No	14-Dec-21	15:30	G	1	1			1								7	
RG M13 WS LAEMP EVO 2021-12-14 N NAL	RG_M13	ws	No	14-Dec-21	15:30	G	2		1	1										
RG_ERCKUT_WS_LAEMP_EVO_2021-12-14_N	RG_ERCKUT	ws	Ne	14-Dec-21	13:30	G	1				1									1
RG_ERCKUT_WS_LAEMP_EVO_2021-12-14_N_NAL	RG_ERCKUT	ws	No	14-Dec-21	13:30	G	2	-	1	1										
RG_ERCK_WS_LAEMP_EVO_2021-12-14_N	RG_ERCK	ws	No	14-Dec-21	9:45	G	1				1									
RG_ERCK_WS_LAEMP_EVO_2021-12-14_N_NAL	RG_ERCK	ws	No	14-Dec-21	9:45	G	2		1	1										
RG_RIVER_WS_LAEMP_EVO_2021-12-14_N	RG_RIVER	ws	No	14-Dec-21	13:30	G	1				1				h					
RG_RIVER_WS_LAEMP_EVO_2021-12-14_N_NAL	RG_RIVER	ws	No	14-Dec-21	13:30	G	2	20	1	1										
ADDITIONAL COMMENTS/SPEC	TAL INSTRUCTIONS	Water Street		RELINQUE	SHED BY/AFFII		45 52	D	ATE	TIME			BY/AFF			107-20		ATE/TI		
PO				Alex McC	Clymont, Minno	w Env.		Dec	ember	15, 2021	1/2	11	1	BAL		120	1331	21	0716	13
VPO00748540																				
SERVICE REQUEST (rush - sul						5, 7, 81		(g) 250	TO						TILE	10	100		1450	0, 3
	!-3 business days) - 50% su			Sampler's	Name		A	lex M	lcCly	mont		Mo	Mobile # 780-293-6750				60			
	1 Business Day) - 100% st ASAP or Weekend - Cont			Sampler's S	ignature			A	MC	æ	/	Dat	e/Time	me December 15, 2021						

Confidential IECK						Page	1	of	1							BAL	Final R	eport	211228
IECK	COC ID:	Dece	mber	EVO LAE	MP	TURNAROUND TIME:					Objection	4		T					
	PROJECT/CLIENT INFO			et machinical		The same of	0.00	10	ABOR	ATORY	TOTAL PROPERTY.	Regula		C 22"	OTT	ER INFO	30 500	11565	-
Facility Name / Job#	THE RESIDENCE AND PROPERTY OF THE PARTY OF T					Lat	Name			lied Labs			Report F	ormat /	Distribut		Excel	PDF	EDD
Project Manager							Contact	-					Email 1:	1		@teck.com			
, c	allie.ferguson@teck.com							-		applied.com			Email 2:	200	ica ritz@t	discount and the second			
	421 Pine Avenue				-			_		Creek Pa			Email 3:	175.075	FI CLASSIC CONTRACTOR	isonline.co			10
Address	4211 me Avenue					1	iddioss	1000	1 110111	I CIOOK I W	.iciruj		Email 4:	-					3
City	Sparwoo	vd.		Province BC	-	-	City	Both	ell		Province	WA	Email 5:	- 1500	ron@min	minnow.ca			T.
Postal Code	V0B 2G			Country Can	ada	Post	al Code	-			Country	USA	Email 5:	tyter.	Werner Q	munow.ca	A		N.
Phone Number		10		Country Can	ada	Phone 1		_		06	Country	JUSA	PO numbe	-	Vor	007485	40	-	1
Phone Number	SAMPLE DE	PAHS	No. of Lot	- TOTAL		Filolici	vuilloci	200-0	032*021		YSIS REC	WESTE		No.		Dured - F. Phil		Plate &	Lan N. North
	STRITTE SIEF SPAN	e.ce.eas.	-					THE REAL PROPERTY.		201725	A RADIO ANEX	COLUMN						A CHIE	
								曹											
														-	30 40			-	
								187	P	F									
			6					100											
			Z					2											
			Hazardous Material (Yes/No)					133											
l l) <u>F</u>					100		_	=								
			eT.					140		i.i.	ig.		. 4	- 1					
			Mat					5	Ħ	<u>=</u>	eci;								
			St					5.5	iu	Š	Sp		V I						
			ᅙ			G=Grab			Sele	ved	Ē								
1	Sample Location	Field	zar			C=Com			Total Selenium	Dissolved Selenium	l ii								
Sample ID	(sys loc code)	Matrix	Ha	Date	Time (24hr)	p	Cont.		Tot	Dis.	Selenium Speciation								
RG_ERCKDT_WS_LAEMP_EVO_2021-12-15_N	RG_ERCKDT	ws	N	15-Dec-21	12:00	G	1		•		1								
RG_ERCKDT_WS_LAEMP_EVO_2021-12-15_N_NAL	RG_ERCKDT	ws	N	15-Dec-21	12:00	G	2		X	X									
RG_FBLANK_WS_LAEMP_EVO - 2021-12-15 N	RG-FBLANK	ws.	N	15-Occ.21	16:00	6	1												
RG_FBLANK_WS_LAEMP_EVO_ ZOEL-12-15 N.	AL REFLANK	ws	N	15-Dec-21	16:00	1	2		1	1									
MO DE ANNUAL PROPERTY OF STATE TON STATE OF STAT	ME CALLANIE	111	1	ta yet	(0 00	- 12				-1-									1
			-			-	-	-			-	-			_				-
						-	-												1
							_	-88				1							-
ADDITIONAL COMMENTS/SPEC	TAL INSTRUCTIONS				SHED BY/AFFR		370	-		/TIME	AC	CEPTER	BY/AFFILI/	TION			ATE/TH		2
10			-	Alex MCC	Tymont, Minny	W EHV.		Dec	cembe	r 15, 202	1	-41		46	- 2	2/23/2	-/	07:1	3
VP00074854								-			-				_				
(PU 00 14854)	U		-								-				_				
SERVICE REQUEST (cush - sut	short to availability		Tarrest or					100			() () () () () () () () () ()	Part and				THE PER	1000		
SHUTTER REQUEST (CHARLES AND		(default) X	1		The Court of the C					remier.		7			-	09	-	0	A
Priority (2	-3 business days) - 50% s		1	Sampler's	Name		4	Alex	McCly	ymont		Me	obile#	- FK	2-6	45	45-	3	3 or
	Emergency (1 Ruciness Day) 100% surchasso			180			1					-		-					
	For Emergency < 1 Day, ASAP or Weekend - Contact ALS			Sampler's Signature			NO			Date/Time December 15, 2021									

24 of 26

STRAIGHT BILL OF LADING NOT NEGOTIABLE

No. 85287

Sparwood, BC Terrace, BC Red Deer, AB

Vancouver, BC Calgary, AB Montreal, QC Prince George, BC Edmonton, AB Spokane, WA Elkford, BC Ft. McMurray, AB Shelby, MT Tumbler Ridge, BC Hinton, AB Gillette, WY

BILL OF LADING # SHIPPER (FROM) STREET CITY/PROVINCE SPECIAL INSTRUCTIONS PACKAGES UNIT #					
SAIPPER (FROM) STREET CITY/PROVINCE SPECIAL INSTRUCTIONS PACKAGES			* * * * * * * * * * * * * * * * * * *		DATE
STREET CITYPROVINCE SPECIAL INSTRUCTIONS PACKAGES			PURCHASE O	RDER NUMBER	
CITY/PROVINCE SPECIAL INSTRUCTIONS PACKAGES PACKAGES			CONSIGNEE (TO)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
PACKAGES PACKAGES			SFREET	<u>s</u>	
PAPS		POSTAL C	ODE CITY/PROVING	CE The second second second second second second second second second second second second second second second se	POSTAL CODE
PAPS		6412		1	FREIGHT CHARGES
PAPS	ř	DESCRIPTION OF ARTICLES AND SPE	ECIAL MARKS	WEIGHT (Subject to Correction	SHIPPER TO CHECK DPREPAID COLLEC
PAPS		- 10	A all se	· V 6/ LOS	If not indicated, shipping will automatically move collection
PAPS					ree
PAPS			- 1		WAITING
		A STATE OF THE STA	7		XPU
	# R1.	IHVAS	187		CHARGES
UNIT#	[[]	ALIAOD	201	-	FSC
		. J_kilo	CLARED VALUATION: Maximum illity of carrier is \$2.00 per lb. (\$4.41 gram) unless declared valuation sta envise.	per tes \$ -	US
DRIVER'S SIGNATURE - F		PICK UP TIME DRI	IVER'S SIGNATURE - DELIVERY E	07/3	GST
NOTICE OF CLAIM: (a) No camer is liable respect of such loss, damage or delay is 76 lb) The final statement of the clair RCCEIVED at the point of origin on the dat destined as indigated below, which is multially agreed, as to each camer of a lith econditions standard Bird Lading, in the date of issuing, which are he The Contract for the camage of the goods!	for loss, damage or delay of any goven in writing to the ongenitage carning must be filed within nine as specified from the consignor ment in the carrier agrees to carry all or any of the goods over all or any of the goods over all or any of the goods over all or any reby agreed by the consignised in the Bid of Lading is governed.	ods under the Bill of Lading unless notice, therefor er of the delivering camer within saty (50) days after the best of the control of the control of the control of the lading the control of the control of the control of and to deliver to the consigned at the perion of the yould to desulation, and as to each perion of the yould to desulation, and as to each or and accepted for himself and his as by regulation in force in the unsoficion at the same	setting our particulars of the ongin, destination and date if the delivery of the goods, on the case of failurs to ma In together with a copy of the paid freight irrent good order, except as noted (contents and condition said destination, subject to the rates and and the said of the said of the said of the goods, the content of the said of the said of the said of the paid of the said of the said of the said of the and place of shipment and is subject to the conditions and place of shipment and is subject to the conditions.	of shipmen! of the goods and the estimated smount to all the things of the shipmen! of the shipmen of the shipmen of the shipmen of contents of package unknown; marked, christon classification in effect on the date of all the shipmen of the shipm	TOTAL S TOTAL S TOTAL S TOTAL S TOTAL S TOTAL S TOTAL S TOTAL S TOTAL S TOTAL S TOTAL S TOTAL S TOTAL S
SHIPPER *** PRINT		CON	ISIGNEE	1	DATE
SHIPPER SIGN		CON	ISIGNEE		TIME .
WHITE: Office	YELLOW: Carrier	PiNK: Consignee GOLI	DENROAD: Shipper G	ST #864540398RT0001	NUMBER OF PIECES RECEIVED
GOS PRINTING	Coaler #	3 0	OC (V/N) Temper	ee HSG 13 ature: 2.7 1.1°C	2/23/21 IR: 3/

, , , , , ,	·	÷ ;	183		MSG 12	163(6)	ID. S	2 t
Cooler ID: Coaler #3	, coc (√/v	l) Temp	erature:	2.1	1.1°C		IR: <i>3</i>) <i>[</i>
Coolant Type: Ice Blue Ic	e Ambient ,	-	, *		= 1	- and the same	Alen. + Sr	Marian Later
Notes:	•		-		-			35
Sampling Locations:	EV	RG and		5 H	T/D	SP	T/D	SP
Sample Types:	COMP 40 ML	(onl	; T/D	1000	T/Þ ⊶∵	51	1,0	J.
Container Types:	plastic	Hope						
Opened By: \$36	Date: (2	123121	*				li (II)	

Effective 7/29/20

004

STRAIGHT BILL OF LADING NOT NEGOTIABLE

No. 85287

Sparwood, BC Terrace, BC Red Deer, AB

Vancouver, BC Calgary, AB Montreal, QC Prince George, BC Edmonton, AB Spokane, WA Elkford, BC Ft. McMurray, AB Shelby, MŢ Tumbler Ridge, BC Hinton, AB Gillette, WY

INVOICE TO				t '		DATE
BILL OF LADING #			•	PURCHASE ORDE	R NUMBER	The second coding whomas a
SHIPPER (FROM)		1	\$	CONSIGNEE (TO)		· ·
STREET		W	2000	STREET		7 7 7 7
5.1.5v		***			47	1 v v
CITY/PROVINCE		1 4 14	POSTAL CODE	CITY/PROVINCE	- A 25	POSTAL CODE
SPĘCIAL INSTRUCT	TONS	5.1			1	FREIGHT CHARGE
					WEIGHT	SHIPPER TO CHECK
PACKAGES	,	DESCRIPTION OF ARTICL	ES AND SPECIAL MARKS		(Subject to Correction	PREPAID □COLLECT
7,	3 5 . + 4				V 1/1/ LBS	If not indicated, shipping will automatically move collect
9 1.			4.	•	Water 1,399/	FEE
,				*		WAITING
	₹.			2		XPU
-			*:			^FU
PAP	S# K I	3HV8	3528	7		CHARGES
	13				· .	F3C
UNIT#	-te	·w	DECLARED VAL	JATION: Maximum 2.00 per lb. (\$4.41 per	•	US
		,	.kilogram) unless dec otherwise.	clared valuation states	\$	SUB TOTAL
DRIVER'S SIGNATUR		PICK UP TIME	DRIVER'S SIGNATU	•	FINISH TIME	GST
(OTICE OF CLAIM: (a) No came espect of such loss, damage or dependent of the statement of the control of the co	r is liable for loss, damage or delay of an elay is given in writing to the ongreating the claim must be filed within ; in the data specified from the consignor ry, which the carrier agrees to carrier of all or any of the goods over all or acting, in power at the date of issuing, who are hereby agreed by the conse goods listed in the Bull of Lading is gowt.	goods under the Bill of Lading unless arrier or the delivering carrier within so inne [9] months. Irom the digite learning the months in the construction arry and to deliver to the cons any portion of the route to destination, ch are hereto agreed by the consignor gnor and accepted for himself med by regulation in force in the jurisd.	notice, therefor setting out particulars of the (60) days after the delivery of the goods of shipment together with a consciously a supparent good order, except a igned at the said dealination, sull and as to each party of any time interested and sccepted for himself and his assigns, and his assigns, and his assigns.	e origin, destination and date of ship, om the case of failure to make flap ply of the Lost of freight bill. is noted (contents and condition of ca- ject to the rates and classi- in all or any of the goods, that ever remided or written, including condition of its subject to the conditions set ou	pment of the goods and the estimated amounting within raine (9) months from the date of contents of package unknown) marked, critication in affect on the date of package of the contents of the date of the later of	oned and jument. TOTAL \$
SHIPPER PRINT		,	CONSIGNEE PRINT		in .	DATE
SHIPPER BIGN			CONSIGNEE SIGN	E 📲		-TIME
WHITE: 0	Office YELLOW: Carri	er PINK: Consignee	GOLDENROAD: Shipp	er GST#	864540398RT0001	NUMBER OF PIECES RECEIVED

Cooler ID: Cooler#	7	CO	(V)N)	Temperatu	ure: [, ()			IR:	30
Coolant Type: (Ice)	Blue Ice	Ambient		*		1 may 3	-angles	Mac. + Pr	No. 11 and
Notes:	•	1.0			**				
Sampling Locations: *	UL.	1K	6	MIN TO	(SP)	T/Đ	SP	T/D	SP
Sample Types:	*, (T/D)	SP)	T/D SF		125mL	i	J.	-,-	
Container Types:	40mL Glass	PICSAIZ	610	:	61058				
Opened By: 4 tipe	2	Date	12/23	/2 (. 5		and the same	· ·	

Effective 7/29/20

Revision 004

SELENIUM SPECIATION

BAL Final Report 2112283 (Finalized January 13, 2022)

18804 North Creek Parkway, Ste 100, Bothell, WA 98011 • USA • T: 206 632 6206 F: 206 632 6017 • info@brooksapplied.com

January 13, 2022

Confidential

Teck Resources Limited - Vancouver Allie Ferguson 421 Pine Avenue Sparwood, B.C. CANADA V0B2G0 allie.ferguson@teck.com

Re: Elkview Operations

Dear Allie Ferguson,

On December 23, 2021, Brooks Applied Labs (BAL) received five (5) aqueous samples. The samples were logged-in for the analysis of volatile selenium (Se) speciation, in accordance with the chain-of-custody (COC) form.

The volatile selenium fraction for sample *RG_ERCKUT_WS_LAEMP_EVO_20 21-12-14_N* (2112283-02) was received in an empty container. There was no sample volume available for quantitation. No results are reported for *RG_ERCKUT_WS_LAEMP_EVO_20 21-12-14_N* (2112283-02).

Each sample requesting volatile Se speciation had been field-filtered into bottles containing isopropanol preservative (provided by BAL). All sample fractions were stored according to BAL SOPs and EPA methodology.

Volatile Selenium Speciation

Each aqueous sample was analyzed for volatile selenium speciation using high performance liquid chromatography inductively coupled plasma collision reaction cell mass spectrometry (HPLC-ICP-CRC-MS). Volatile selenium species are chromatographically separated on a reversed phase column and then quantified using inductively coupled plasma collision reaction cell mass spectrometry (ICP-CRC-MS); for more information on this determinative technique, please visit the *Interference Reduction Technology* section on our website.

In accordance with the quotation issued for this project, volatile selenium species were defined as dissolved dimethylselenide [DMeSe] and dimethyldiselenide [DMDSe].

The results were not method blank corrected, as described in the calculations section of the relevant BAL SOPs and were evaluated using reporting limits adjusted to account for sample aliquot size. Please refer to the *Sample Results* page for sample-specific MDLs, MRLs, and other details.

In instances where a matrix spike/matrix spike duplicate (MS/MSD) set was spiked at a level less than the native sample concentration, the recoveries and the relative percent difference (RPD) values are not considered valid indicators of data quality. In such instances, the recoveries of the laboratory fortified blank (BS) demonstrates the accuracy of the applied methods. When the spiking level was less than 25% of the native sample concentration, the spike recovery was not reported (NR) and the relative percent difference (RPD) of the MS/MSD set was not calculated (N/C).

Except for concentration qualifiers, all data were reported without qualification. All associated quality control sample results met the acceptance criteria.

Confidential BAL Final Report 2112283

BAL, an accredited laboratory, certifies that the reported results of all analyses for which BAL is NELAP accredited meet all NELAP requirements. For more information, please see the *Report Information* page.

Please feel free to contact us if you have any questions regarding this report.

Sincerely,

Jeremy Maute

Senior Project Manager

Jeremy@brooksapplied.com

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2112283 Client PM: Allie Ferguson Client Project: Elkview Operations

Report Information

Laboratory Accreditation

BAL is accredited by the *National Environmental Laboratory Accreditation Program* (NELAP) through the State of Florida Department of Health, Bureau of Laboratories (E87982) and is certified to perform many environmental analyses. BAL is also certified by many other states to perform environmental analyses. For a current list of our accreditations/certifications, please visit our website at http://www.brooksapplied.com/resources/certificates-permits/ or review Tables 1 and 2 in our Accreditation Information. Results reported relate only to the samples listed in the report.

Field Quality Control Samples

Please be notified that certain EPA methods require the collection of field quality control samples of an appropriate type and frequency; failure to do so is considered a deviation from some methods and for compliance purposes should only be done with the approval of regulatory authorities. Please see the specific EPA methods for details regarding required field quality control samples.

Common Abbreviations

AR	as received	MS	matrix spike
BAL	Brooks Applied Labs	MSD	matrix spike duplicate
BLK	method blank	ND	non-detect
BS	blank spike	NR	non-reportable
CAL	calibration standard	N/C	not calculated
CCB	continuing calibration blank	PS	post preparation spike
CCV	continuing calibration verification	REC	percent recovery
COC	chain of custody record	RPD	relative percent difference
D	dissolved fraction	SCV	secondary calibration verification
DUP	duplicate	SOP	standard operating procedure
IBL	instrument blank	SRM	reference material
ICV	initial calibration verification	T	total fraction
MDL	method detection limit	TR	total recoverable fraction
MRL	method reporting limit		

Definition of Data Qualifiers

(Effective 3/23/2020)

- E An estimated value due to the presence of interferences. A full explanation is presented in the narrative.
- Holding time and/or preservation requirements not met. Please see narrative for explanation.
- J Detected by the instrument, the result is > the MDL but ≤ the MRL. Result is reported and considered an estimate.
- **J-1** Estimated value. A full explanation is presented in the narrative.
- **M** Duplicate precision (RPD) was not within acceptance criteria. Please see narrative for explanation.
- **N** Spike recovery was not within acceptance criteria. Please see narrative for explanation.
- **R** Rejected, unusable value. A full explanation is presented in the narrative.
- U Result is ≤ the MDL or client requested reporting limit (CRRL). Result reported as the MDL or CRRL.
- X Result is not BLK-corrected and is within 10x the absolute value of the highest detectable BLK in the batch. Result is estimated.
- **Z** Holding time and/or preservation requirements not established for this method; however, BAL recommendations for holding time were not followed. Please see narrative for explanation.

These qualifiers are based on those previously utilized by Brooks Applied Labs, those found in the EPA <u>SOW ILM03.0</u>, Exhibit B, Section III, pg. B-18, and the <u>USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review; USEPA; January 2010</u>. These supersede all previous qualifiers ever employed by BAL.

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2112283 Client PM: Allie Ferguson Client Project: Elkview Operations

Accreditation Information

Table 1. Accredited method/matrix/analytes for TNI

Issued by: State of Florida Dept. of Health (The NELAC Institute 2016 Standard) Issued on: July 1, 2021; Valid to: June 30, 2022

Certificate Number: E87982-37

Method	Matrix	TNI Accredited Analyte(s)
EPA 1638	Non-Potable Waters	Ag, Cd, Cu, Ni, Pb, Sb, Se, Tl, Zn
EPA 200.8	Non-Potable Waters	Ag, Al, As, Ba, Be, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Se, Tl, U, V, Zn
	Non-Potable Waters	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Tl, U, V, Zn
EPA 6020	Solids/Chemicals & Biological	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Tl, V, Zn
	Non-Potable Waters	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, U, V, Zn, Hardness
BAL-5000	Solids/Chemicals	Ag, As, B, Be, Cd, Co, Cr, Cu, Pb, Mo, Ni, Sb, Se, Sn, Sr, Tl, V, Zn
	Biological	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Tl, V, Zn
EPA 1640	Non-Potable Waters	Cd, Cu, Pb, Ni, Zn
EPA 1631E	Non-Potable Waters, Solids/Chemicals & Biological	Total Mercury
EPA 1630	Non-Potable Waters	Methyl Mercury
BAL-3200	Solids/Chemicals & Biological	Methyl Mercury
BAL-4100	Non-Potable Waters	As(III), As(V), DMAs, MMAs
BAL-4201	Non-Potable Waters	Se(IV), Se(VI)
BAL-4300	Non-Potable Waters Solid/Chemicals	Cr(VI)
SM2340B	Non-Potable Waters	Hardness

Project ID: TRL-VC2101 PM: Jeremy Maute

BAL Final Report 2112283 Client PM: Allie Ferguson Client Project: Elkview Operations

Accreditation Information

Table 2. Accredited method/matrix/analytes for ISO (1), Non-Governmental TNI (2), and DoD/DOE (3)

Issued by: ANAB

Issued on: September 21, 2021; Valid to: March 30, 2024

Method	Matrix	ISO and Non-Gov. TNI Accredited Analyte(s)	DoD/DOE Accredited Analytes
EPA 1638 Mod EPA 200.8 Mod EPA 6020 Mod	Non-Potable Waters	Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, U, V, Zn	Ag, Al, As, Ba, Ca, Cd, Cr, Cu, Fe, Pb, Mg, Mn, Ni, Sb, Se, V, Zn
BAL-5000	Solids/Chemicals & Biological	Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, V, Zn Hg (Biological Only)	Not Accredited
EPA 1640 Mod	Non-Potable Waters	Cd, Cu, Pb, Ni, Zn Ag, As, Cr, Co, Se, Tl, V (ISO Only)	Not Accredited
EPA 1631E Mod BAL-3100	Non-Potable Waters, Solids/Chemicals & Biological/Food	Total Mercury	Total Mercury
EPA 1630 Mod BAL-3200	Non-Potable Waters, Solids/Chemicals Biological	Methyl Mercury	Methyl Mercury (excluding Solids/Chemicals)
EPA 1632A Mod	Non-Potable Waters	Inorganic Arsenic (ISO Only)	Not Accredited
BAL-3300	Biological/Food Solids/Chemicals	Inorganic Arsenic (ISO Only)	Not Accredited
AOAC 2015.01 Mod BAL-5000	Food	As, Cd, Hg, Pb	Not Accredited
DAI 4400	Non-Potable Waters	As(III), As(V), DMAs, MMAs	Not Accredited
BAL-4100	Biological by BAL-4117	Inorganic Arsenic, DMAs, MMAs (ISO Only)	Not Accredited
BAL-4101	Food by BAL-4117	Inorganic Arsenic, DMAs, MMAs (ISO Only)	Not Accredited
BAL-4201	Non-Potable Waters	Se(IV), Se(VI), SeCN, SeMet	Not Accredited
BAL-4300	Non-Potable Waters, Solid/Chemicals	Cr(VI)	Cr(VI)
SM 3500-Fe BAL-4500	Non-Potable Waters	Fe, Fe(II) (ISO Only)	Not Accredited
SM2340B	Non-Potable Waters	Hardness	Hardness
SM 2540G BAL-0501	Solids/Chemicals & Biological	% Dry Weight	% Dry Weight

⁽¹⁾ ISO/IEC 17025:2017 - Certificate Number ADE-1447.02

⁽²⁾ Non-Governmental NELAC Institute 2016 Standard - Certificate Number ADE-1447.01

⁽³⁾ Department of Defense/Energy Consolidated Quality Systems Manual v. 5.3 – Certificate Numbers ADE-1447 for DoD, ADE-1447.03 for DOE.

BAL Final Report 2112283 Client PM: Allie Ferguson Client Project: Elkview Operations

Sample Information

Sample	Lab ID	Report Matrix	Туре	Sampled	Received
RG_M13_WS_LAEMP_EVO_2021-1 2-14_N	2112283-01	WS	Sample	12/14/2021	12/23/2021
RG_ERCKUT_WS_LAEMP_EVO_20 21-12-14_N	2112283-02	WS	Sample	12/14/2021	12/23/2021
RG_ERCK_WS_LAEMP_EVO_2021- 12-14 N	2112283-03	WS	Sample	12/14/2021	12/23/2021
RG_RIVER_WS_LAEMP_EVO_2021 -12-14 N	2112283-04	WS	Sample	12/14/2021	12/23/2021
RG_ERCKDT_WS_LAEMP_EVO_20 21-12-15 N	2112283-05	WS	Sample	12/15/2021	12/23/2021
RG_FBLANK_WS_LAEMP_EVO_20 21-12-15 N	2112283-06	WS	Sample	12/15/2021	12/23/2021

Batch Summary

Analyte	Lab Matrix	Method	Prepared	Analyzed	Batch	Sequence
DMDSe	Water	HPLC-ICP-MS	01/06/2021	01/06/2022	B213555	S220009
DMeSe	Water	HPI C-ICP-MS	01/06/2021	01/06/2022	B213555	\$220009

BAL Final Report 2112283 Client PM: Allie Ferguson Client Project: Elkview Operations

Sample Results

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
RG_M13_WS_L	AEMP_EVO_2	2021-12-14_N								
2112283-01	DMDSe	WS	D	≤ 0.022	U	0.022	0.222	μg/L	B213555	S220009
2112283-01	DMeSe	WS	D	≤ 0.022	U	0.022	0.222	μg/L	B213555	S220009
RG_ERCK_WS_	LAEMP EVO	2021-12-14 N								
2112283-03	DMDSe	- ws	D	≤ 0.022	U	0.022	0.222	μg/L	B213555	S220009
2112283-03	DMeSe	WS	D	≤ 0.022	U	0.022	0.222	μg/L	B213555	S220009
RG_RIVER_WS	_LAEMP_EVO	D_2021-12-14_N								
2112283-04	DMDSe	WS	D	≤ 0.022	U	0.022	0.222	μg/L	B213555	S220009
2112283-04	DMeSe	WS	D	≤ 0.022	U	0.022	0.222	μg/L	B213555	S220009
RG_ERCKDT_W	/S_LAEMP_E	VO_2021-12-15_N								
2112283-05	DMDSe	WS	D	≤ 0.022	U	0.022	0.222	μg/L	B213555	S220009
2112283-05	DMeSe	WS	D	≤ 0.022	U	0.022	0.222	μg/L	B213555	S220009
RG_FBLANK_W	/S_LAEMP_E	VO_2021-12-15_N								
2112283-06	DMDSe	WS	D	≤ 0.022	U	0.022	0.222	μg/L	B213555	S220009
2112283-06	DMeSe	WS	D	≤ 0.022	U	0.022	0.222	μg/L	B213555	S220009

BAL Final Report 2112283
Client PM: Allie Ferguson
Client Project: Elkview Operations

Accuracy & Precision Summary

Batch: B213555 Lab Matrix: Water Method: HPLC-ICP-MS

Sample B213555-BS1	Analyte Blank Spike, (2107050)	Native	Spike	Result	Units	REC & Limits	RPD & Limits
	DMDSe		4.991	4.429	μg/L	89% 80-120	
	DMeSe		5.005	4.870	μg/L	97% 80-120	
B213555-DUP2	Duplicate, (2112283-05)						
	DMDSe	ND		ND	μg/L		N/C 25
	DMeSe	ND		ND	μg/L		N/C 25
B213555-MS2	Matrix Spike, (2112283-05)					
	DMDSe	ND	5.547	5.250	μg/L	95% 75-125	
	DMeSe	ND	5.542	5.188	μg/L	94% 75-125	
B213555-MSD2	Matrix Spike Duplicate, (2	112283-05)				
	DMDSe	ND	5.547	5.172	μg/L	93% 75-125	2% 25
	DMeSe	ND	5.542	5.137	μg/L	93% 75-125	1% 25

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2112283
Client PM: Allie Ferguson
Client Project: Elkview Operations

Method Blanks & Reporting Limits

Batch: B213555 Matrix: Water

Method: HPLC-ICP-MS Analyte: DMDSe

Sample	Result	Units
B213555-BLK1	0.00	μg/L
B213555-BLK2	0.00	μg/L
B213555-BLK3	0.00	μg/L
B213555-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.010

 Limit: 0.100
 MRL: 0.100

Analyte: DMeSe

Sample	Result	Units
B213555-BLK1	0.0002	μg/L
B213555-BLK2	-0.0003	μg/L
B213555-BLK3	0.0003	μg/L
B213555-BLK4	0.0007	μg/L

 Average: 0.000
 MDL: 0.010

 Limit: 0.100
 MRL: 0.100

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2112283
Client PM: Allie Ferguson
Client Project: Elkview Operations

Sample Containers

 Lab ID: 2112283-01
 Report Matrix: WS
 Collected: 12/14/2021

 Sample:
 Sample Type: Sample + Sum
 Received: 12/23/2021

RG M13 WS LAEMP EVO 2021-12-14 N

RG_ERCK_WS_LAEMP_EVO_2021-12-14_N

Des Container Lot **Preservation** P-Lot рΗ Ship. Cont. **Size** Vial Glass 40mL N/A 4mL Isopropanol 1828013 N/A Cooler #3 -(PP) 2112283

Sample: Sample Type: Sample + Sum Received: 12/23/2021 RG_ERCKUT_WS_LAEMP_EVO_2021-12-14_N

Des Container Size Lot Preservation P-Lot pH Ship. Cont.

A Vial Glass 40mL N/A 4mL Isopropanol 1828013 N/A Cooler #3 -(PP) 2112283

Lab ID: 2112283-03 **Report Matrix:** WS **Collected:** 12/14/2021

Sample: Sample Type: Sample + Sum Received: 12/23/2021

Des ContainerSizeLotPreservationP-LotpHShip. Cont.A Vial Glass40mLN/A4mL Isopropanol1828013N/ACooler #3 -

(PP) 2112283

Lab ID: 2112283-04 **Report Matrix:** WS **Collected:** 12/14/2021

Sample: Sample Type: Sample + Sum Received: 12/23/2021 RG_RIVER_WS_LAEMP_EVO_2021-12-14_N

Des Container Size Lot Preservation P-Lot pH Ship. Cont.

A Vial Glass 40mL N/A 4mL Isopropanol 1828013 N/A Cooler #3 - (PP) 2112283

Lab ID: 2112283-05 **Report Matrix**: WS **Collected**: 12/15/2021

Sample: Sample Type: Sample + Sum Received: 12/23/2021 RG ERCKDT WS LAEMP EVO 2021-12-15 N

Des ContainerSizeLotPreservationP-LotpHShip. Cont.A Vial Glass40mLN/A4mL Isopropanol1828013N/ACooler #3 -

(PP) 2112283

Project ID: TRL-VC2101 PM: Jeremy Maute

BAL Final Report 2112283 Client PM: Allie Ferguson Client Project: Elkview Operations

Sample Containers

Lab ID: 2112283-06

Sample:

RG_FBLANK_WS_LAEMP_EVO_2021-12-15_N

Des Container Vial Glass

40mL

Report Matrix: WS

Sample Type: Sample + Sum

Preservation 4mL Isopropanol (PP)

Lot

N/A

P-Lot

рH N/A 1828013

Ship. Cont. Cooler #3 -2112283

Collected: 12/15/2021

Received: 12/23/2021

Shipping Containers

Cooler #3 - 2112283

Received: December 23, 2021 7:13

Tracking No: PAPS#RWHV85287 via Courier

Coolant Type: Ice Temperature: 1.1 °C **Description:** Styrofoam Cooler

Damaged in transit? No Returned to client? No Comments: IR# 31

Custody seals present? No Custody seals intact? No **COC present?** Yes Confidential **ECK** BAL Final Report 2112283 COC ID: **December EVO LAEMP** TURNAROUND TIME: Regular PROJECT/CLIENT INFO LABORATORY Facility Name / Job# Elkview Operations Lab Name Brooks Applied Labs Report Format / Distribution Excel PDF EDD Project Manager Allie Ferguson Lab Contact Ben Wozniak Email 1: Allie Ferguson@teck.com Email allie.ferguson@teck.com Email ben@brooksapplied.com Email 2: Jessica ritz@teck.com Address 421 Pine Avenue Address 18804 North Creek Parkway Email 3: teckcoal@equisonline.com Email 4: ibowron@minnow.ca City Sparwood Province BC City Bothell Province WA Email 5: tyler,Mehler@minnow.ca Postal Code V0B 2G0 Canada Postal Code 98011 Country Country USA Email 5: VP000748540 Phone Number 250-910-8755 Phone Number 206-632-6206 PO number SAMPLE DETAILS ANALYSIS REQUESTED F/P Hazardous Material (Yes/No) Volatile Selenium G=Grab Sample Location Field C=Com # Of Sample ID (sys loc code) Matrix Date Time (24hr) Cont. RG M13 WS LAEMP EVO 2021-12-14 N RG M13 WS No 15:30 1 1 14-Dec-21 RG_ERCKUT RG_ERCKUT_WS_LAEMP_EVO_2021-12-14_N WS No G 1 1 13:30 14-Dec-21 RG_ERCK RG_ERCK_WS_LAEMP_EVO_2021-12-14_N WS No 9:45 G 1 1 14-Dec-21 RG_RIVER_WS_LAEMP_EVO_2021-12-14_N RG_RIVER WS Ne G 13:30 1 1 14-Dec-21 RG_ERCKDT_WS_LAEMP_EVO_2021-12-15_N RG ERCKDT WS No 12:00 \mathbf{G} 1 1 15-Dec-21 RG_FBLANK_WS_LAENP_EVO 2021-12-15-N RG_FBLANK 6:00 100 6 15-12121 1 RELINQUISHED BY/AFFILIATION ADDITIONAL COMMENTS/SPECIAL INSTRUCTIONS DATE/TIME Alex McClymont, Minnow Env. December 15, 2021 BAL 07:13 12/23/21 1P0 00748540 SERVICE REQUEST (rush - subject to availability) Regular (default) X 587-597-1612 Sampler's Name Alex McClymont Mobile #

Date/Time

December 15, 2021

Sampler's Signature

Priority (2-3 business days) - 50% surcharge Emergency (1 Business Day) - 100% surcharge

For Emergency <1 Day, ASAP or Weekend - Contact ALS

BAL Final Report 2112283

STRAIGHT BILL OF LADING NOT NEGOTIABLE

No. 85287

Sparwood, BC Terrace, BC Red Deer, AB

Vancouver, BC Calgary, AB Montreal, QC Prince George, BC Edmonton, AB Spokane, WA Elkford, BC Ft. McMurray, AB Shelby, MT Tumbler Ridge, BC Hinton, AB Gillette, WY

	Red Deer, AB	Montreal, QC	Spokan	e, wa	Snelby, Mil	Gillette, WT
INVOICE TO			1		1	DATE
BILL OF LADING #			1	PURCHASE ORDER	NUMBER	The same to be been been been
SHIPPER (FROM)		2 4	*	CONSIGNEE (TO)	- k - 1	
STREET				STREET		2 1
CITY/PROVINCE	/	POST	AL CODE	CITY/PROVINCE	Α	POSTAL CODE
SPECIAL INSTRUC	TIONS	\:\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\			3	FREIGHT CHARGES
PACKAGES	;	DESCRIPTION OF A RICLES AN	D SPECIAL MARKS	. *	WEIGHT (Subject to Correction)	SHIPPER TO CHECK □PREPAID □COLLEC
7	*	111			1/2/1/25	If not indicated, shipping will automatically move collect.
		1			1000	FEE
3				_		
						WAITING
	*	a constraint of the constraint	! 2		*	XPU
DAD	CH DI	ILIVOI	740-	7		CHARGES
TAT	3# nv	MUNO.	120			
9 - 9-	75				<u> </u>	FSC
UNIT#	Ne.	-	DECLARED VALUA	TION: Maximum		US
		e i	liability of carner is \$2.1 _kilogram) unless decla otherwise.	00 per lb. (\$4.41 per red valuation states	\$	SUB TOTAL
DRIVER'S SIGNATU	RE - PICK UP BY	PICK UP TIME	DRIVER'S SIGNATURE	E - DELIVERY BY	FINISH TIME	
			from from		07/3	GST
NOTICE OF CLAIM: (a) No carr respect of such loss, damage or (b) The linal statement of	rier is liable for loss, damage or delay of any delay is given in writing to the originating ca the claim must be filed within ni	goods under the Bilt of Lading unless notice, the mer or the delivering carrier within sixty (60) da ne (9) months from the date of sh	erefor setting out particulars of the or rys after the delivery of the goods, or ipment together with a copy	ngin, destination and date of shipn in the case of failure to make delive of the spaid freight bill.	nent of the goods and the estimated amount claim erg within nine (9) months from the date of shipme	ned TOTAL \$
RECEIVED at the point of origin destined as indicated below it is mutually agreed, as to each all the conditions standard Birrof	n on the date specified from the consignor me ow, which the carrier agrees to car carrier of all or any of the goods over all or a [Lading, in power at the date of issuing, which have hereby accorded by the	entioned herein, the property herein described, ivy and to deliver to the consigned a iny portion of the route to destination, and as to that here to agreed by the consignor and acce- tors, and acceptant for himself.	in apparent good order, except as not the said destination, subject each party of any time interested in order for himself and his assigns. Professions	ted (contents and condition of coret to the rates and classificall or any of the goods, that every ted or written, including conditions	nent of the goods and the estimated amount claim pry within nine (9) months from the date of shipm tents of package unknown; marked, consigned, cation in affect on the date of shipme seed to be shipmed to the shipmed set aside by the standard Bill of Lading, in power in such conditions	ortional in a company of the company
The Contract for the carriage of the SHIPPER	the goods listed in the Bill of Lading is govern	hed by regulation in force in the jurisdiction all U	CONSIGNEE	subject to the conditions set out	in such conditions	DATE DATE
PRINT			PRINT			(5)
SHIPPER SIGN			CONSIGNEE SIGN	T-4		TIME
WH!TE:	Office YELLOW: Carrie	r PINK: Consignee	GOLDENROAD: Shipper	GST#8	864540398RT0001	NUMBER OF PIECES RECEIVED
IIGOS PRINTING		1990)		-	ee HSG 12	123/21
	. 0 1 #	2	coc ON	Temperatu	re: 2.7 1.1°C	IR: 31
Cooler	ID: Cooler #	* * * .	COC (Y/N)	remperatu	16. 2.7 1.1 6	-
Coolan	t Type: Ice	Blue Ice Amb	eient ,	¥* **	- 165 - 165	connections, established to the world con-
Notes:	ec.	•		7 18	1	· ·
Sampli	ng Locations:	EV	' R	6 .6	GH	
	: Types:	T/D SP		P T/D	uom	SP T/D SP
	ner Types:	Cons	40 ml 60	66	401	
Contail	iei i Abea.	plu.		15	1 1	

Opened By:

SELENIUM SPECIATION

BAL Final Report 2112280 (Finalized January 13, 2022)

18804 North Creek Parkway, Ste 100, Bothell, WA 98011 • USA • T: 206 632 6206 F: 206 632 6017 • info@brooksapplied.com

January 13, 2022

Confidential

Teck Resources Limited - Vancouver Allie Ferguson 421 Pine Avenue Sparwood, B.C. CANADA V0B2G0 allie.ferguson@teck.com

Re: Elkview Operations

Dear Allie Ferguson,

On December 23, 2021, Brooks Applied Labs (BAL) received one (1) aqueous sample. The sample was logged-in for the analysis of volatile selenium (Se) speciation, in accordance with the chain-of-custody (COC) form.

Each sample requesting volatile Se speciation had been field-filtered into bottles containing isopropanol preservative (provided by BAL). All sample fractions were stored according to BAL SOPs and EPA methodology.

Volatile Selenium Speciation

Each aqueous sample was analyzed for volatile selenium speciation using high performance liquid chromatography inductively coupled plasma collision reaction cell mass spectrometry (HPLC-ICP-CRC-MS). Volatile selenium species are chromatographically separated on a reversed phase column and then quantified using inductively coupled plasma collision reaction cell mass spectrometry (ICP-CRC-MS); for more information on this determinative technique, please visit the *Interference Reduction Technology* section on our website.

In accordance with the quotation issued for this project, volatile selenium species were defined as dissolved dimethylselenide [DMeSe] and dimethyldiselenide [DMDSe].

The results were not method blank corrected, as described in the calculations section of the relevant BAL SOPs and were evaluated using reporting limits adjusted to account for sample aliquot size. Please refer to the *Sample Results* page for sample-specific MDLs, MRLs, and other details.

In instances where a matrix spike/matrix spike duplicate (MS/MSD) set was spiked at a level less than the native sample concentration, the recoveries and the relative percent difference (RPD) values are not considered valid indicators of data quality. In such instances, the recoveries of the laboratory fortified blank (BS) demonstrates the accuracy of the applied methods. When the spiking level was less than 25% of the native sample concentration, the spike recovery was not reported (NR) and the relative percent difference (RPD) of the MS/MSD set was not calculated (N/C).

Except for concentration qualifiers, all data were reported without qualification. All associated quality control sample results met the acceptance criteria.

BAL, an accredited laboratory, certifies that the reported results of all analyses for which BAL is NELAP accredited meet all NELAP requirements. For more information, please see the *Report Information* page.

Confidential BAL Final Report 2112280

Please feel free to contact us if you have any questions regarding this report.

Sincerely,

Jeremy Maute Senior Project Manager

Jeremy@brooksapplied.com

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2112280 Client PM: Allie Ferguson Client Project: Elkview Operations

Report Information

Laboratory Accreditation

BAL is accredited by the *National Environmental Laboratory Accreditation Program* (NELAP) through the State of Florida Department of Health, Bureau of Laboratories (E87982) and is certified to perform many environmental analyses. BAL is also certified by many other states to perform environmental analyses. For a current list of our accreditations/certifications, please visit our website at http://www.brooksapplied.com/resources/certificates-permits/ or review Tables 1 and 2 in our Accreditation Information. Results reported relate only to the samples listed in the report.

Field Quality Control Samples

Please be notified that certain EPA methods require the collection of field quality control samples of an appropriate type and frequency; failure to do so is considered a deviation from some methods and for compliance purposes should only be done with the approval of regulatory authorities. Please see the specific EPA methods for details regarding required field quality control samples.

Common Abbreviations

AR	as received	MS	matrix spike
BAL	Brooks Applied Labs	MSD	matrix spike duplicate
BLK	method blank	ND	non-detect
BS	blank spike	NR	non-reportable
CAL	calibration standard	N/C	not calculated
CCB	continuing calibration blank	PS	post preparation spike
CCV	continuing calibration verification	REC	percent recovery
COC	chain of custody record	RPD	relative percent difference
D	dissolved fraction	SCV	secondary calibration verification
DUP	duplicate	SOP	standard operating procedure
IBL	instrument blank	SRM	reference material
ICV	initial calibration verification	T	total fraction
MDL	method detection limit	TR	total recoverable fraction
MRL	method reporting limit		

Definition of Data Qualifiers

(Effective 3/23/2020)

- E An estimated value due to the presence of interferences. A full explanation is presented in the narrative.
- Holding time and/or preservation requirements not met. Please see narrative for explanation.
- J Detected by the instrument, the result is > the MDL but ≤ the MRL. Result is reported and considered an estimate.
- **J-1** Estimated value. A full explanation is presented in the narrative.
- **M** Duplicate precision (RPD) was not within acceptance criteria. Please see narrative for explanation.
- **N** Spike recovery was not within acceptance criteria. Please see narrative for explanation.
- **R** Rejected, unusable value. A full explanation is presented in the narrative.
- U Result is ≤ the MDL or client requested reporting limit (CRRL). Result reported as the MDL or CRRL.
- X Result is not BLK-corrected and is within 10x the absolute value of the highest detectable BLK in the batch. Result is estimated.
- **Z** Holding time and/or preservation requirements not established for this method; however, BAL recommendations for holding time were not followed. Please see narrative for explanation.

These qualifiers are based on those previously utilized by Brooks Applied Labs, those found in the EPA <u>SOW ILM03.0</u>, Exhibit B, Section III, pg. B-18, and the <u>USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review; USEPA; January 2010</u>. These supersede all previous qualifiers ever employed by BAL.

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2112280
Client PM: Allie Ferguson
Client Project: Elkview Operations

Accreditation Information

Table 1. Accredited method/matrix/analytes for TNI

Issued by: State of Florida Dept. of Health (The NELAC Institute 2016 Standard) Issued on: July 1, 2021; Valid to: June 30, 2022

Certificate Number: E87982-37

Method	Matrix	TNI Accredited Analyte(s)	
EPA 1638	Non-Potable Waters	Ag, Cd, Cu, Ni, Pb, Sb, Se, Tl, Zn	
EPA 200.8	Non-Potable Waters	Ag, Al, As, Ba, Be, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Se, Tl, U, V, Zn	
	Non-Potable Waters	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Tl, U, V, Zn	
EPA 6020	Solids/Chemicals & Biological	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Tl, V, Zn	
	Non-Potable Waters	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, U, V, Zn, Hardness	
BAL-5000	Solids/Chemicals	Ag, As, B, Be, Cd, Co, Cr, Cu, Pb, Mo, Ni, Sb, Se, Sn, Sr, Tl, V, Zn	
	Biological	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Tl, V, Zn	
EPA 1640	Non-Potable Waters	Cd, Cu, Pb, Ni, Zn	
EPA 1631E	Non-Potable Waters, Solids/Chemicals & Biological	Total Mercury	
EPA 1630	Non-Potable Waters	Methyl Mercury	
BAL-3200	Solids/Chemicals & Biological	Methyl Mercury	
BAL-4100	Non-Potable Waters	As(III), As(V), DMAs, MMAs	
BAL-4201	Non-Potable Waters	Se(IV), Se(VI)	
BAL-4300	Non-Potable Waters Solid/Chemicals	Cr(VI)	
SM2340B	Non-Potable Waters	Hardness	

Project ID: TRL-VC2101 PM: Jeremy Maute

BAL Final Report 2112280 Client PM: Allie Ferguson Client Project: Elkview Operations

Accreditation Information

Table 2. Accredited method/matrix/analytes for ISO (1), Non-Governmental TNI (2), and DoD/DOE (3)

Issued by: ANAB

Issued on: September 21, 2021; Valid to: March 30, 2024

Method	Matrix	ISO and Non-Gov. TNI Accredited Analyte(s)	DoD/DOE Accredited Analytes
EPA 1638 Mod EPA 200.8 Mod EPA 6020 Mod	Non-Potable Waters	Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, U, V, Zn	Ag, Al, As, Ba, Ca, Cd, Cr, Cu, Fe, Pb, Mg, Mn, Ni, Sb, Se, V, Zn
BAL-5000	Solids/Chemicals & Biological	Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, V, Zn Hg (Biological Only)	Not Accredited
EPA 1640 Mod	Non-Potable Waters	Cd, Cu, Pb, Ni, Zn Ag, As, Cr, Co, Se, Tl, V (ISO Only)	Not Accredited
EPA 1631E Mod BAL-3100	Non-Potable Waters, Solids/Chemicals & Biological/Food	Total Mercury	Total Mercury
EPA 1630 Mod BAL-3200	Non-Potable Waters, Solids/Chemicals Biological	Methyl Mercury	Methyl Mercury (excluding Solids/Chemicals)
EPA 1632A Mod	Non-Potable Waters	Inorganic Arsenic (ISO Only)	Not Accredited
BAL-3300	Biological/Food Solids/Chemicals	Inorganic Arsenic (ISO Only)	Not Accredited
AOAC 2015.01 Mod BAL-5000	Food	As, Cd, Hg, Pb	Not Accredited
DAI 4400	Non-Potable Waters	As(III), As(V), DMAs, MMAs	Not Accredited
BAL-4100	Biological by BAL-4117	Inorganic Arsenic, DMAs, MMAs (ISO Only)	Not Accredited
BAL-4101	Food by BAL-4117	Inorganic Arsenic, DMAs, MMAs (ISO Only)	Not Accredited
BAL-4201	Non-Potable Waters	Se(IV), Se(VI), SeCN, SeMet	Not Accredited
BAL-4300	Non-Potable Waters, Solid/Chemicals	Cr(VI)	Cr(VI)
SM 3500-Fe BAL-4500	Non-Potable Waters	Fe, Fe(II) (ISO Only)	Not Accredited
SM2340B	Non-Potable Waters	Hardness	Hardness
SM 2540G BAL-0501	Solids/Chemicals & Biological	% Dry Weight	% Dry Weight

⁽¹⁾ ISO/IEC 17025:2017 - Certificate Number ADE-1447.02

⁽²⁾ Non-Governmental NELAC Institute 2016 Standard - Certificate Number ADE-1447.01

⁽³⁾ Department of Defense/Energy Consolidated Quality Systems Manual v. 5.3 – Certificate Numbers ADE-1447 for DoD, ADE-1447.03 for DOE.

BAL Final Report 2112280 Client PM: Allie Ferguson Client Project: Elkview Operations

Sample Information

Sample	Lab ID	Report Matrix	Type	Sampled	Received
EV_EC_FLOW2_WS_LAEMP_EVO_ 2021-12-15_N	2112280-01	WS	Sample	12/15/2021	12/23/2021

Batch Summary

Analyte	Lab Matrix	Method	Prepared	Analyzed	Batch	Sequence
DMDSe	Water	HPLC-ICP-MS	01/06/2021	01/06/2022	B213555	S220009
DMeSe	Water	HPLC-ICP-MS	01/06/2021	01/06/2022	B213555	S220009

Sample Results

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence	
EV_EC_FLOW2_WS_LAEMP_EVO_2021-12-15_N											
2112280-01	DMDSe	WS	D	≤ 0.022	U	0.022	0.222	μg/L	B213555	S220009	
2112280-01	DMeSe	WS	D	≤ 0.022	U	0.022	0.222	μg/L	B213555	S220009	

BAL Final Report 2112280
Client PM: Allie Ferguson
Client Project: Elkview Operations

Accuracy & Precision Summary

Batch: B213555 Lab Matrix: Water Method: HPLC-ICP-MS

Sample B213555-BS1	Analyte Blank Spike, (2107050)	Native	Spike	Result	Units	REC & Limits	RPD & Limits
	DMDSe		4.991	4.429	μg/L	89% 80-120	
	DMeSe		5.005	4.870	μg/L	97% 80-120	
B213555-DUP1	Duplicate, (2112282-01)						
	DMDSe	ND		ND	μg/L		N/C 25
	DMeSe	ND		ND	μg/L		N/C 25
B213555-MS1	Matrix Spike, (2112282-01))					
	DMDSe	ND	5.547	5.354	μg/L	97% 75-125	
	DMeSe	ND	5.542	5.192	μg/L	94% 75-125	
B213555-MSD1	Matrix Spike Duplicate, (2	112282-01)				
	DMDSe	ND	5.547	5.244	μg/L	95% 75-125	2% 25
	DMeSe	ND	5.542	5.084	μg/L	92% 75-125	2% 25

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2112280 Client PM: Allie Ferguson Client Project: Elkview Operations

Method Blanks & Reporting Limits

Batch: B213555 Matrix: Water

Method: HPLC-ICP-MS Analyte: DMDSe

Sample	Result	Units
B213555-BLK1	0.00	μg/L
B213555-BLK2	0.00	μg/L
B213555-BLK3	0.00	μg/L
B213555-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.010

 Limit: 0.100
 MRL: 0.100

Analyte: DMeSe

Sample	Result	Units
B213555-BLK1	0.0002	μg/L
B213555-BLK2	-0.0003	μg/L
B213555-BLK3	0.0003	μg/L
B213555-BLK4	0.0007	μg/L

 Average: 0.000
 MDL: 0.010

 Limit: 0.100
 MRL: 0.100

Project ID: TRL-VC2101 PM: Jeremy Maute

BAL Final Report 2112280 Client PM: Allie Ferguson Client Project: Elkview Operations

Sample Containers

Report Matrix: WS

Lab ID: 2112280-01

Sample:

EV EC FLOW2 WS LAEMP EVO 2021-12-15 N

Des Container

Vial Glass

Size 40 mL Lot na

Sample Type: Sample + Sum **Preservation**

> 10% Isopropanol (PP)

P-Lot 1828013 рΗ Ship. Cont. na

Cooler #4 -2112280

Collected: 12/15/2021

Received: 12/23/2021

Shipping Containers

Cooler #4 - 2112280

Received: December 23, 2021 7:13

Tracking No: PAPS#RWHV85287 via Courier

Coolant Type: Blue Ice Temperature: 1.5 °C

Description: Styrofoam Cooler

Damaged in transit? No Returned to client? No Comments: IR# 31

Custody seals present? No Custody seals intact? No COC present? Yes

Confidential CCK						Page	1 6	of	1						BAL	Final F	Report	2112
ICCK	COC ID:	Decem	ber EVO	LAEMP		TURNA	ROUN	D TIME	:		Regular							
80.4820.0004.Tr. J. 009007.Tr.	PROJECT/CLIENT INFO) I I I I I I	744		Sancra M	N SIBOR	7,-311	LABO	DRATO	RY				on	IER INFO	304.5		5755
Facility Name / Job#	Elkview Operations					Lab	Name	Brooks A	pplied L	abs		Report	Form	at / Distribu	tion	Excel	PDF	EDD
Project Manager	Allie Ferguson					Lab (Contact	Ben Woz	niak			Email 1		Allie Ferguso	@teck.co	m's	X	N.
Email	allie.ferguson@teck.com						Emai!	ben@broc	ksapplied	t.com		Email 2		Jessica ritz@		N	X	X
Address	421 Pine Avenue					A	ddress	18804 No	orth Cree	k Parkway		Email 3	3:	eckcoal@eq	uisonline.ci	om		X
												Email 4	- 12	bowron@mir		x	×	Y
City	Sparwo	od	Province	BC			City	Bothell		Province	WA	Email 5		yler Mehler@		a E		1
Postal Code			Country	Canada		Posta	l Code			Country	USA	Email 5	- 12	97	II. III. STANKEN SEE			
Phone Number			1			Phone N			6206		1	PO numb		MPD	0074	Q CU)	
T Hotel Training	SAMPLE DI	TAILS	S 3 (5)(0)		to not					NALYSIS RE	QUESTEI			410	Itanced - Fi Fie	M. L. Lab. 7	Do Frederica	Lab, Nr. N
								No.					v. tunilean					
								2										
			6					F/P										
			(es/N															
			Hazardous Material (Yes/No)					0.										
			Mate					Volatile Selenium									1	
			ns l					Sele		1		l i						
			rdo			G=Grab		i e										
	Sample Location	Field	3Z3			C=Com		la ta						1	1			
Sample ID	(sys_loc_code)	Matrix	Ħ D	ate Tim	e (24hr)	p	Cont.	>										
EV_EC_FLOW2_WS_LAEMP_EVO_2021-12-15_N	EV_EC_FLOW2	WS	N 15-D	ec-21 1	4:00	G	1	1			-					-	-	
								-	_		-			-			-	
					-													+
HARACAN AND THE WAY AND																		
ADDITIONAL COMMENTS/SPEC	TAL INSTRUCTIONS		REI	INQUISHED E	WAFFIE	TATION		DA	TE/TIM	E AC	CEPTED	BY/AFFIL	fATIC	ON I		DATE/T	ME	
PO				ex McClymon				_	nber 15, 2	021	-1/1/2	BA	4/_		12/23/		071	13
										70	mn	- V/	10-				-,,	-

Mobile #

Date/Time

587-597-1612

December 15, 2021

Sampler's Name

Sampler's Signature

Alex McClymont

Regular (default) X
Priority (2-3 business days) - 50% surcharge

Emergency (1 Business Day) - 100% surcharge

For Emergency <1 Day, ASAP or Weekend - Contact ALS

STRAIGHT BILL OF LADING NOT NEGOTIABLE

No. 85288

Sparwood, BC Terrace, BC Red Deer, AB

Vancouver, BC Calgary, AB Montreal, QC

Prince George, BC **Edmonton, AB** Spokane, WA

Elkford, BC Ft. McMurray, AB Shelby, MT

Tumbler Ridge, BC Hinton, AB Gillette, WY

INVOICE TO					v ipku	22-21
			•	PURCHÁSE ORDER NI	JMBER	,
BILL OF LADING #	E *		* * *	CONSIGNEE (TO)	1 - 2 1 - 2 1	Ilalas
SHIPPER (FROM)	(100.11+	cl	3	P. C.V.	5 Fi) // 11 (1 ((1))
STREET	() - ()	1744 m()		SIREE	N. CIECK	ROSTAL CODE
CITY/PROVINCE	1 12	POSTA	AL CODE	CITY/PROVINCE	WA	10011
SPECIAL INSTRU	CTIONS	124		I ALL IN		FREIGHT CHARGES
	· /_	DESCRIPTION OF ARTICLE WAN	D SPECIAL MARKS		WEIGHT	SHIPPER TO CHECK
PACKAGES		DESCRIPTION OF ARTHUE	D OF CORE III A III		(Subject to Correction)	☐PREPAID ☐COLLEC If not indicated, shipping will automatically move collect.
2:	Conter	- Wate	1 0001	1162	42 LISS	FEE
				1		
-	1 2.	Ĭ,	١.,			WAITING
	1					хри
0	2011	1111/2	1-00			CHARGES
UA	ン非エ	KIHW	(h //X			
	[7 [7	MITAC			b.	FSC
			7º 1	100		US
UNIT#		ş -	I limbility of carrier is %	JATION: Maximum 2.00 per lb. (\$4.41 per lared valuation states		
	•		otherwise.	:.	\$	SUB TOTAL
DRIVER'S SIGNAT	TURE - PICK UP BY	PICK UP TIME	DRIVER'S SIGNATU	RE - DELIVERY BY	FINISH TIME	GST
¥.			FERM		at all the second and the second amount claimed	
NOTICE OF CLAIM: (a) No respect of such tests. damag	carrier is liable for loss, damage or delay of a e or delay is given in writing to the originating of the claim must be filled within	ny goods under the Bill of Lading unless notice, carrier or the delivering carrier within sixty (60) nine (9) manths from the date of	therefor setting out particulars of the days after the delivery of the goods shipment together with a club, in apparent good order, except a	e origin, destination and date of shipme, on the case of failure to make deriver opy of the paid freight bill. s noted (contents and condition of con-	and of the goods and the street amount claimed, within nane (0) months from the dage of shipment enter of package outmown) marked coestinger and stillow in effect on the date of efficiency enterior to be performed hereunder to be performed hereunder to the performed hereunder to the street of th	TOTAL \$
RECEIVED at the point of or destined as indicated it is mutually agreed, as to e all the conditions standard 8	rigin on it is date specified from the consignor below, which the cerrier agrees to such carrier of all or any of the goods over all litt of Leding, in power at the date of issuing, w	memorac merce the protection of the consigned or any portion of the route to destination, and and which are hereto agreed by the consignor and account of the himself and	at the said destination, sub to each party of any time interests coepted for himself and his assigns, his assigns.	pject to the rates and the conditions of the goods, that every seprinted or written, including conditions and is subject to the conditions set out in	ervice to be performed hereunder shall be subject at aside by the standard Bill of Lading, in power at a such conditions.	IF AT OWNER'S RISK, WRITE ORD HERE
the date of issuing, w The Contract for the carriage SHIPPER	e of the goods listed in the Bill of Lading is go	remed by regulation in force in the jurisdiction a	CONSIGNEE PRINT	3	•	DATE /28/21/
PRINT			CONSIGNEE	3 Comment	114 " 11 CR"	TIME
SHIPPER SIGN	i.		SIGN			NUMBER OF PIECES RECEIVED
WHI	TE: Office YELLTOW: Car	rier PINK: Consignee	GOLDENROAD: Ship	nor -	64540398RT0001	
AMIZOS PRINTING	•	AND THE RESERVE OF THE PERSON NAMED IN COLUMN TO THE PERSON NAMED		ب در از در در از در در در در در در در در در در در در در	25 ee 156 121	23(21
	0 6.44	garanta da	COC (Y/N)	Temperature	25	IR: 3/
Cooler	ID: Coolera			S	1,5°C	· •.
Coolan	t Type: Ice	Brue Ice Amb	ient (🚗	**		Market within
Notes:	yes, or to	*	· . •	7 11	•	>
	ing Locations:	61/	, FZ		•	
		T/D SP	T/D	SP T/D	SP T/D	SP T/D SP
Sample	e Types:	T/D SP	100mg 125	me		
Contai	ner Types:	ansher plastic	parker P	ashie	5	
	-	WI	Date: (2/23	121	4	
Opene	d By: 456		10/00	1-51		
•				ODV		
				UTT	2112	280 ₁₄

SELENIUM SPECIATION

BAL Final Report 2112279 (Finalized January 13, 2022)

Confidential BAL Final Report 2112279

January 13, 2022

Teck Resources Limited - Vancouver Allie Ferguson 421 Pine Avenue Sparwood, B.C. CANADA V0B2G0 allie.ferguson@teck.com

Re: Elkview Operations

Dear Allie Ferguson,

On December 23, 2021, Brooks Applied Labs (BAL) received two (2) aqueous samples. The samples were logged-in for total recoverable selenium [Se], dissolved Se, and Se speciation analyses, according to the chain-of-custody (COC) form.

The sample fractions logged in for Se speciation and dissolved Se had been field-filtered prior to receipt at BAL. All samples were stored according to BAL SOPs.

Total Recoverable and Dissolved Se

Each aqueous sample fraction for total recoverable or dissolved Se was digested in a closed vessel (bomb) with nitric and hydrochloric acids. The resulting digests were analyzed for Se content via inductively coupled plasma triple quadrupole mass spectrometry (ICP-QQQ-MS). The ICP-QQQ-MS instrumentation uses advanced interference removal techniques to ensure accuracy of the sample results. For more information, please visit the *Interference Reduction Technology* section on our website, brooksapplied.com.

Se Speciation

Each aqueous sample was analyzed for Se speciation using ion chromatography inductively coupled plasma collision reaction cell mass spectrometry (IC-ICP-CRC-MS). Selenium species are chromatographically separated on an ion exchange column and then quantified using inductively coupled plasma collision reaction cell mass spectrometry (ICP-CRC-MS); for more information on this determinative technique, please visit the *Interference Reduction Technology* section on our website. The chromatographic method applied for the analyses provides greater retention of methylseleninic acid and selenomethionine, allowing for more definitive quantitation of these species.

In accordance with the quotation issued for this project, selenium speciation was defined as dissolved selenite [Se(IV)], selenate [Se(VI)], selenocyanate [SeCN], methylseleninic acid [MeSe(IV)], methaneselenonic acid [MeSe(VI)], selenomethionine [SeMet], selenosulfate [SeSO3], and dimethylselenoxide [DMSeO]. Unknown Se species was defined as the total concentration of all unknown Se species observed during the analysis. This item is identified on the report as [Unk Se Sp].

DMSeO elutes early in the chromatographic run due to the nature of the molecule and the applied chromatographic separation method. Since this species elutes near the dead volume, additional

Confidential BAL Final Report 2112279

Se species may coelute. Alternate methods can be applied, upon client request, to increase the separation of DMSeO from potentially co-eluting Se species.

The results were not method blank corrected, as described in the calculations section of the relevant BAL SOPs and were evaluated using reporting limits adjusted to account for sample aliquot size. Please refer to the *Sample Results* page for sample-specific MDLs, MRLs, and other details.

In instances when a matrix spike/matrix spike duplicate (MS/MSD) set was spiked at a level less than the native sample concentration, the recoveries and the relative percent difference (RPD) are not considered valid indicators of data quality. In such instances, the recoveries of the laboratory fortified blanks (BS) and/or standard reference materials (SRM) demonstrate the accuracy of the applied methods. When the spiking level was less than 25% of the native sample concentration, the spike recovery was not reported (NR) and the RPD of the MS/MSD set was not calculated (N/C).

Except for concentration qualifiers, all data were reported without qualification. All associated quality control sample results met the acceptance criteria.

BAL, an accredited laboratory, certifies that the reported results of all analyses for which BAL is NELAP accredited met all NELAP requirements. For more information, please see the *Report Information* page.

Please feel free to contact us if you have any questions regarding this report.

Sincerely,

Jeremy Maute

Senior Project Manager Brooks Applied Labs

Jeremy@brooksapplied.com

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2112279
Client PM: Allie Ferguson
Client Project: Elkview Operations

Report Information

Laboratory Accreditation

BAL is accredited by the *National Environmental Laboratory Accreditation Program* (NELAP) through the State of Florida Department of Health, Bureau of Laboratories (E87982) and is certified to perform many environmental analyses. BAL is also certified by many other states to perform environmental analyses. For a current list of our accreditations/certifications, please visit our website at http://www.brooksapplied.com/resources/certificates-permits/ or review Tables 1 and 2 in our Accreditation Information. Results reported relate only to the samples listed in the report.

Field Quality Control Samples

Please be notified that certain EPA methods require the collection of field quality control samples of an appropriate type and frequency; failure to do so is considered a deviation from some methods and for compliance purposes should only be done with the approval of regulatory authorities. Please see the specific EPA methods for details regarding required field quality control samples.

Common Abbreviations

AR	as received	MS	matrix spike
BAL	Brooks Applied Labs	MSD	matrix spike duplicate
BLK	method blank	ND	non-detect
BS	blank spike	NR	non-reportable
CAL	calibration standard	N/C	not calculated
CCB	continuing calibration blank	PS	post preparation spike
CCV	continuing calibration verification	REC	percent recovery
COC	chain of custody record	RPD	relative percent difference
D	dissolved fraction	SCV	secondary calibration verification
DUP	duplicate	SOP	standard operating procedure
IBL	instrument blank	SRM	reference material
ICV	initial calibration verification	T	total fraction
MDL	method detection limit	TR	total recoverable fraction
MRL	method reporting limit		

Definition of Data Qualifiers

(Effective 3/23/2020)

- E An estimated value due to the presence of interferences. A full explanation is presented in the narrative.
- Holding time and/or preservation requirements not met. Please see narrative for explanation.
- J Detected by the instrument, the result is > the MDL but ≤ the MRL. Result is reported and considered an estimate.
- **J-1** Estimated value. A full explanation is presented in the narrative.
- **M** Duplicate precision (RPD) was not within acceptance criteria. Please see narrative for explanation.
- **N** Spike recovery was not within acceptance criteria. Please see narrative for explanation.
- **R** Rejected, unusable value. A full explanation is presented in the narrative.
- U Result is ≤ the MDL or client requested reporting limit (CRRL). Result reported as the MDL or CRRL.
- X Result is not BLK-corrected and is within 10x the absolute value of the highest detectable BLK in the batch. Result is estimated.
- **Z** Holding time and/or preservation requirements not established for this method; however, BAL recommendations for holding time were not followed. Please see narrative for explanation.

These qualifiers are based on those previously utilized by Brooks Applied Labs, those found in the EPA <u>SOW ILM03.0</u>, Exhibit B, Section III, pg. B-18, and the <u>USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review; USEPA; January 2010</u>. These supersede all previous qualifiers ever employed by BAL.

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2112279
Client PM: Allie Ferguson
Client Project: Elkview Operations

Accreditation Information

Table 1. Accredited method/matrix/analytes for TNI

Issued by: State of Florida Dept. of Health (The NELAC Institute 2016 Standard)

Issued on: July 1, 2021; Valid to: June 30, 2022 Certificate Number: E87982-37

Method	Matrix	TNI Accredited Analyte(s)
EPA 1638	Non-Potable Waters	Ag, Cd, Cu, Ni, Pb, Sb, Se, Tl, Zn
EPA 200.8	Non-Potable Waters	Ag, Al, As, Ba, Be, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Se, Tl, U, V, Zn
	Non-Potable Waters	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Tl, U, V, Zn
EPA 6020	Solids/Chemicals & Biological	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Tl, V, Zn
BAL-5000	Non-Potable Waters	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, U, V, Zn, Hardness
	Solids/Chemicals	Ag, As, B, Be, Cd, Co, Cr, Cu, Pb, Mo, Ni, Sb, Se, Sn, Sr, Tl, V, Zn
	Biological	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Tl, V, Zn
EPA 1640	Non-Potable Waters	Cd, Cu, Pb, Ni, Zn
EPA 1631E	Non-Potable Waters, Solids/Chemicals & Biological	Total Mercury
EPA 1630	Non-Potable Waters	Methyl Mercury
BAL-3200	Solids/Chemicals & Biological	Methyl Mercury
BAL-4100	Non-Potable Waters	As(III), As(V), DMAs, MMAs
BAL-4201	Non-Potable Waters	Se(IV), Se(VI)
BAL-4300	Non-Potable Waters Solid/Chemicals	Cr(VI)
SM2340B	Non-Potable Waters	Hardness

Project ID: TRL-VC2101 PM: Jeremy Maute

BAL Final Report 2112279 Client PM: Allie Ferguson Client Project: Elkview Operations

Accreditation Information

Table 2. Accredited method/matrix/analytes for ISO (1), Non-Governmental TNI (2), and DoD/DOE (3)

Issued by: ANAB

Issued on: September 21, 2021; Valid to: March 30, 2024

Method	Matrix	ISO and Non-Gov. TNI Accredited Analyte(s)	DoD/DOE Accredited Analytes
EPA 1638 Mod EPA 200.8 Mod EPA 6020 Mod	Non-Potable Waters	Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, U, V, Zn	Ag, Al, As, Ba, Ca, Cd, Cr, Cu, Fe, Pb, Mg, Mn, Ni, Sb, Se, V, Zn
BAL-5000	Solids/Chemicals & Biological	Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, V, Zn Hg (Biological Only)	Not Accredited
EPA 1640 Mod	Non-Potable Waters	Cd, Cu, Pb, Ni, Zn Ag, As, Cr, Co, Se, Tl, V (ISO Only)	Not Accredited
EPA 1631E Mod BAL-3100	Non-Potable Waters, Solids/Chemicals & Biological/Food	Total Mercury	Total Mercury
EPA 1630 Mod BAL-3200	Non-Potable Waters, Solids/Chemicals Biological	Methyl Mercury	Methyl Mercury (excluding Solids/Chemicals)
EPA 1632A Mod	Non-Potable Waters	Inorganic Arsenic (ISO Only)	Not Accredited
BAL-3300	Biological/Food Solids/Chemicals	Inorganic Arsenic (ISO Only)	Not Accredited
AOAC 2015.01 Mod BAL-5000	Food	As, Cd, Hg, Pb	Not Accredited
BAL 4400	Non-Potable Waters	As(III), As(V), DMAs, MMAs	Not Accredited
BAL-4100	Biological by BAL-4117	Inorganic Arsenic, DMAs, MMAs (ISO Only)	Not Accredited
BAL-4101	Food by BAL-4117	Inorganic Arsenic, DMAs, MMAs (ISO Only)	Not Accredited
BAL-4201	Non-Potable Waters	Se(IV), Se(VI), SeCN, SeMet	Not Accredited
BAL-4300	Non-Potable Waters, Solid/Chemicals	Cr(VI)	Cr(VI)
SM 3500-Fe BAL-4500	Non-Potable Waters	Fe, Fe(II) (ISO Only)	Not Accredited
SM2340B	Non-Potable Waters	Hardness	Hardness
SM 2540G BAL-0501	Solids/Chemicals & Biological	% Dry Weight	% Dry Weight

⁽¹⁾ ISO/IEC 17025:2017 - Certificate Number ADE-1447.02

⁽²⁾ Non-Governmental NELAC Institute 2016 Standard - Certificate Number ADE-1447.01

⁽³⁾ Department of Defense/Energy Consolidated Quality Systems Manual v. 5.3 – Certificate Numbers ADE-1447 for DoD, ADE-1447.03 for DOE.

BAL Final Report 2112279
Client PM: Allie Ferguson
Client Project: Elkview Operations

Sample Information

Sample	Lab ID	Report Matrix	Type	Sampled	Received
EV_EC_FLOW2_WS_LAEMP_EVO_	2112279-01	WS	Sample	12/15/2021	12/23/2021
2021-12-15_N					
EV_EC_FLOW2_WS_LAEMP_EVO_	2112279-02	WS	Sample	12/15/2021	12/23/2021
2021-12-15_N_NAL					
EV_EC_FLOW2_WS_LAEMP_EVO_	2112279-03	WS	Sample	12/15/2021	12/23/2021
2021-12-15_N_NAL					

Batch Summary

Analyte	Lab Matrix	Method	Prepared	Analyzed	Batch	Sequence
DMSeO	Water	SOP BAL-4201	12/29/2021	12/29/2021	B213545	S211464
MeSe(IV)	Water	SOP BAL-4201	12/29/2021	12/29/2021	B213545	S211464
MeSe(VI)	Water	SOP BAL-4201	12/29/2021	12/29/2021	B213545	S211464
Se	Water	EPA 1638 Mod	01/03/2022	01/05/2022	B213542	S220018
Se(IV)	Water	SOP BAL-4201	12/29/2021	12/29/2021	B213545	S211464
Se(VI)	Water	SOP BAL-4201	12/29/2021	12/29/2021	B213545	S211464
SeCN	Water	SOP BAL-4201	12/29/2021	12/29/2021	B213545	S211464
SeMet	Water	SOP BAL-4201	12/29/2021	12/29/2021	B213545	S211464
SeSO3	Water	SOP BAL-4201	12/29/2021	12/29/2021	B213545	S211464
Unk Se Sp	Water	SOP BAL-4201	12/29/2021	12/29/2021	B213545	S211464

BAL Final Report 2112279
Client PM: Allie Ferguson
Client Project: Elkview Operations

Sample Results

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence	
EV_EC_FLOW2_WS_LAEMP_EVO_2021-12-15_N											
2112279-01	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B213545	S211464	
2112279-01	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B213545	S211464	
2112279-01	MeSe(VI)	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B213545	S211464	
2112279-01	Se(IV)	WS	D	0.189		0.010	0.075	μg/L	B213545	S211464	
2112279-01	Se(VI)	WS	D	129		0.010	0.055	μg/L	B213545	S211464	
2112279-01	SeCN	WS	D	≤ 0.010	U	0.010	0.050	μg/L	B213545	S211464	
2112279-01	SeMet	WS	D	≤ 0.010	U	0.010	0.025	μg/L	B213545	S211464	
2112279-01	SeSO3	WS	D	≤ 0.010	U	0.010	0.055	μg/L	B213545	S211464	
2112279-01	Unk Se Sp	WS	D	≤ 0.010	U	0.010	0.075	μg/L	B213545	S211464	
EV EC ELOW2	WS LAFMP	EVO 2021-12-15	Ν ΝΔΙ								
2112279-02	_VV3_LALIIII : Se	_ 	_/ _ / \ Z	114		0.165	0.528	μg/L	B213542	S220018	
2112219-02	00	WO	111	114		0.100	0.020	µg/L	D2 100+2	3220010	
EV_EC_FLOW2	_WS_LAEMP	_EVO_2021-12-15	_N_NAL								
2112279-03	Se	WS	D	132		0.165	0.528	μg/L	B213542	S220018	

BAL Final Report 2112279
Client PM: Allie Ferguson
Client Project: Elkview Operations

Accuracy & Precision Summary

Batch: B213542 Lab Matrix: Water Method: EPA 1638 Mod

Sample	Analyte	Native	Spike	Result	Units	REC & Li	imits	RPD & Lin	nits
B213542-BS1	Blank Spike, (2128021) Se		200.0	176.3	μg/L	88% 75	5-125		
B213542-BS2	Blank Spike, (2128021) Se		200.0	175.7	μg/L	88% 75	5-125		
B213542-BS3	Blank Spike, (2128021) Se		200.0	178.2	μg/L	89% 75	5-125		
B213542-SRM1	Reference Material (214500	3, TMDA 5	14.30	e Standard - 12.64	- Bottle 2 - \$ μg/L	SRM) 88% 75	5 125		
	Se		14.50	12.04	µу/∟	0070 7	J-125		
B213542-SRM2	Reference Material (214500 Se)3, TMDA 5	14.30	e Standard - 12.74	- Bottle 2 - \$ μg/L	89% 75	5-125		
B213542-SRM3	Reference Material (214500	3, TMDA 5				•	F 40F		
	Se		14.30	12.16	μg/L	85% 75	5-125		
B213542-DUP2	Duplicate , (2112279-02) Se	114.3		112.0	μg/L			2%	20
B213542-MS2	Matrix Spike , (2112279-02) Se	114.3	220.0	311.7	μg/L	90% 75	5-125		
B213542-MSD2	Matrix Spike Duplicate, (2'	112279-02) 114.3	220.0	321.7	μg/L	94% 75	5-125	3%	20

BAL Final Report 2112279
Client PM: Allie Ferguson
Client Project: Elkview Operations

Accuracy & Precision Summary

Batch: B213545 Lab Matrix: Water Method: SOP BAL-4201

Sample	Analyte	Native	Spike	Result	Units	REC &	Limits	RPD & Li	mits
B213545-BS1	Blank Spike, (2124033)								
	MeSe(IV)		5.095	5.814	μg/L	114%	75-125		
	Se(IV)		5.000	4.736	μg/L		75-125		
	Se(VI)		5.000	4.452	μg/L	89%	75-125		
	SeCN		5.015	4.689	μg/L	93%	75-125		
	SeMet		4.932	5.160	μg/L	105%	75-125		
B213545-DUP2	Duplicate, (2112279-01)								
	DMSeO	ND		ND	μg/L			N/C	25
	MeSe(IV)	ND		ND	μg/L			N/C	25
	MeSe(VI)	ND		ND	μg/L			N/C	25
	Se(IV)	0.189		0.191	μg/L			1%	25
	Se(VI)	129.3		126.2	μg/L			2%	25
	SeCN	ND		ND	μg/L			N/C	25
	SeMet	ND		ND	μg/L			N/C	25
	SeSO3	ND		ND	μg/L			N/C	25
	Unk Se Sp	ND		ND	μg/L			N/C	25
B213545-MS2	Matrix Spike, (2112279-0	1)							
	Se(IV)	0.189	4.900	4.736	μg/L	93%	75-125		
	Se(VI)	129.3	5.100	133.4	μg/L	NR	75-125		
	SeCN	ND	1.962	1.829	μg/L	93%	75-125		
	SeMet	ND	1.977	2.065	μg/L	104%	75-125		
B213545-MSD2	Matrix Spike Duplicate, (2	2112279-01))						
	Se(IV)	0.189	4.900	4.781	μg/L	94%	75-125	1%	25
	SeCN	ND	1.962	1.857	μg/L	95%	75-125	2%	25
	SeMet	ND	1.977	2.068	μg/L	105%	75-125	0.2%	25

Project ID: TRL-VC2101 **PM:** Jeremy Maute

BAL Final Report 2112279
Client PM: Allie Ferguson
Client Project: Elkview Operations

Method Blanks & Reporting Limits

Batch: B213542 Matrix: Water

Method: EPA 1638 Mod

Analyte: Se

Sample	Result	Units
B213542-BLK1	0.028	μg/L
B213542-BLK2	-0.064	μg/L
B213542-BLK3	-0.001	μg/L
B213542-BLK4	-0.068	μg/L

 Average: -0.026
 MDL: 0.150

 Limit: 0.480
 MRL: 0.480

BAL Final Report 2112279
Client PM: Allie Ferguson
Client Project: Elkview Operations

Method Blanks & Reporting Limits

Batch: B213545 Matrix: Water

Method: SOP BAL-4201 Analyte: DMSeO

 Sample
 Result
 Units

 B213545-BLK1
 0.00
 μg/L

 B213545-BLK2
 0.00
 μg/L

 B213545-BLK3
 0.00
 μg/L

 B213545-BLK4
 0.00
 μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.005
 MRL: 0.005

Analyte: MeSe(IV)

 Sample
 Result
 Units

 B213545-BLK1
 0.00
 μg/L

 B213545-BLK2
 0.00
 μg/L

 B213545-BLK3
 0.00
 μg/L

 B213545-BLK4
 0.00
 μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.005
 MRL: 0.005

Analyte: MeSe(VI)

 Sample
 Result
 Units

 B213545-BLK1
 0.00
 μg/L

 B213545-BLK2
 0.00
 μg/L

 B213545-BLK3
 0.00
 μg/L

 B213545-BLK4
 0.00
 μg/L

Average: 0.000 MDL: 0.002 Limit: 0.005 MRL: 0.005

BAL Final Report 2112279
Client PM: Allie Ferguson
Client Project: Elkview Operations

Method Blanks & Reporting Limits

Analyte: Se(IV)

Sample	Result	Units
B213545-BLK1	0.002	μg/L
B213545-BLK2	0.001	μg/L
B213545-BLK3	0.00	μg/L
B213545-BLK4	0.00	μg/L

Average: 0.001 **MDL:** 0.002 **Limit:** 0.015 **MRL:** 0.015

Analyte: Se(VI)

Sample	Result	Units
B213545-BLK1	0.002	μg/L
B213545-BLK2	0.001	μg/L
B213545-BLK3	0.00	μg/L
B213545-BLK4	0.00	μg/L

 Average: 0.001
 MDL: 0.002

 Limit: 0.011
 MRL: 0.011

Analyte: SeCN

Sample	Result	Units
B213545-BLK1	0.00	μg/L
B213545-BLK2	0.00	μg/L
B213545-BLK3	0.00	μg/L
B213545-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.010
 MRL: 0.010

Analyte: SeMet

Sample	Result	Units
B213545-BLK1	0.00	μg/L
B213545-BLK2	0.00	μg/L
B213545-BLK3	0.00	μg/L
B213545-BI K4	0.00	ua/l

 Average: 0.000
 MDL: 0.002

 Limit: 0.005
 MRL: 0.005

BAL Final Report 2112279
Client PM: Allie Ferguson
Client Project: Elkview Operations

Method Blanks & Reporting Limits

Analyte: SeSO3

Sample	Result	Units
B213545-BLK1	0.00	μg/L
B213545-BLK2	0.00	μg/L
B213545-BLK3	0.00	μg/L
B213545-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.011
 MRL: 0.011

Analyte: Unk Se Sp

Sample	Result	Units
B213545-BLK1	0.00	μg/L
B213545-BLK2	0.00	μg/L
B213545-BLK3	0.00	μg/L
B213545-BLK4	0.00	μg/L

 Average: 0.000
 MDL: 0.002

 Limit: 0.015
 MRL: 0.015

BAL Final Report 2112279
Client PM: Allie Ferguson
Client Project: Elkview Operations

Sample Containers

 Lab ID: 2112279-01
 Report Matrix: WS
 Collected: 12/15/2021

 Sample:
 Sample Type: Sample + Sum
 Received: 12/23/2021

EV_EC_FLOW2_WS_LAEMP_EVO_2021-12-15_N

Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
Α	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Cooler #4 - 2112279
В	XTRA_VOL	15 mL	na	none	na	na	Cooler #4 - 2112279
С	XTRA_VOL	60 mL	na	none	na	na	Cooler #4 - 2112279

 Lab ID: 2112279-02
 Report Matrix: WS
 Collected: 12/15/2021

 Sample:
 Sample Type: Sample + Sum
 Received: 12/23/2021

EV_EC_FLOW2_WS_LAEMP_EVO_2021-12-15_N_

NAL

Des ContainerSizeLotPreservationP-LotpHShip. Cont.A Client-Provided - TM60 mLna10% HNO3 (BAL)2142027<2</td>Cooler #4 -2112279

 Lab ID: 2112279-03
 Report Matrix: WS
 Collected: 12/15/2021

 Sample:
 Sample Type: Sample + Sum
 Received: 12/23/2021

EV_EC_FLOW2_WS_LAEMP_EVO_2021-12-15_N_

NAL

Des ContainerSizeLotPreservationP-LotpHShip. Cont.A Client-Provided - TM60 mLna10% HNO3 (BAL)2142027<2</td>Cooler #4 -2112279

Shipping Containers

Cooler #4 - 2112279

Received: December 23, 2021 7:13 **Tracking No:** PAPS#RWHV85287 via Courier

Coolant Type: Blue Ice Temperature: 1.5 °C Description: Styrofoam Cooler Damaged in transit? No Returned to client? No Comments: IR #31 Custody seals present? No Custody seals intact? No COC present? Yes

AMC

Date/Time

December 15, 2021

Sampler's Signature

Emergency (1 Business Day) - 100% surcharge

For Emergency <1 Day, ASAP or Weekend - Contact ALS

STRAIGHT BILL OF LADING NOT NEGOTIABLE

No. 85288

24 Hour Hot Skot Service

Sparwood, BC Terrace, BC Red Deer, AB

Vancouver, BC Calgary, AB Montreal, QC

Prince George, BC **Edmonton, AB** Spokane, WA

Eikford, BC Ft. McMurray, AB Shelby, MT

Tumbler Ridge, BC Hinton, AB Gillette, WY

INVOICE TO	- 1	2-61
	PURCHASE ORDER NUMBER	
BILL OF LADING #	The second of th	
SHIPPER (FROM)	CONSIGNEE (TO)	1 (11)3
OTREET.	STREET	Machibau
STREET, POSTAL CODE	CITYIPROVINCE	ROSTAL CODE
CITY/PROVINCE	I BOTTIETT WA	TO UT OUR CES
SPECIAL INSTRUCTIONS		FREIGHT CHARGES SHIPPER TO CHECK
DESCRIPTION OF ARTICLES AND SPECIAL	MARKS (Subject to Correction)	□PREPAID □COLLECT
PACKAGES		If not indicated, shipping will automationsy move culleut.
2 molece - Water	0010 CS : 42 LBS	FEE
	(WAITING
	2	
	·	XPU
DADCILDILLION	007	CHARGES
DAV TRUHIVAS	181	
LUID. IMITAOS	201	FSC
	200	US
	ARED VALUATION: Maximum of carrier is \$2.00 per lb. (\$4.41 per	
kilopar kilopar kilopar	m) unless declared valdation states	SUB TOTAL
The state of the s	R'S SIGNATURE - DELIVERY BY FINISH TIME	~
DRIVER'S SIGNATURE - PICK UP BY PICK UP TIME DRIVE	6713	GST
	and particulars of the origin, destination and date of shipment of the goods and the antimuted amount claims	d n
MOTICE OF CLAIM: (a) No camer is lable for loss, damage or delay of any poots under the Bill of Lading timess notice, previous settlements of each of the control of the claim says (b) days after the respect of such loss, damage or delay is given in writing to the originating carrier or the delayering carrier within says (60) days after the respect to the claim of the claim must be filled within nine, (9), megiths from the date of a hipment to the control the property heapt described, it apparant	Gelivery of the goods, on the case of failure to make dervery wram near (i) included the control of the paid freight bill. gether with a copy of the paid freight bill. good order, except as noted (contents and condition of contents of package unknown) marked toposigned an agreement of the control of the paid of the control of the co	TOTAL \$
RECEIVED 87%-poligi of origin or the data specials from the consignor menusive transmission. On deliver to the consigned at the satisfactions as indicated below, which the carrier grees to carry and to deliver to the transmission, and also each party it is mutually lagreed, as to each carrier of all or any of the goods over all or any portion of the route to destination, and also each party it is mutually lagreed, as to each carrier of all or any of the goods over all or any portion of the consignor and excepted for this is mutually lagreed, as to each carrier of all or any other greek to the consignor and excepted for this carrier of the consignor and excepted for this carrier of the consignor and excepted for this carrier of the consignor and excepted for the con	id destriction. Supplied to any of the goods, that every service to be performed netraunors state by supplied for damp time interested in all or any of the goods, that every service to be performed netraunors state to supplie standard Bill of Lading, in power a used and his assigns. Printed or written, including conditions set exide by the standard Bill of Lading, in power a used in the standard Bill of Lading, in power as	IF AT OWNER'S RISK, WRITE ORD HERE
MOTICE OF CLAME: (a) No carrier is liable for loss. damage or delay of any goods under the Bill of Leging Triless notice, therefor settle respect of such less, damage or delay is given in writing to the originating carrier or to deliver the most of the Claim must be filled within most of the claim must be filled within most of the claim must be filled within most of the claim must be filled within most of the claim of the claim must be filled within most of the claim o	place of shipment and is subject to the controllers and the subject to the controllers and the subject to the controllers and the subject to the controllers and the subject to the controllers and the subject to the controllers and the subject to the controllers and the subject to the controllers and the subject to the controllers and the subject to the controllers and the subject to the controllers and the subject to the controllers and the subject to the controllers and the subject to the controllers and the subject to the controllers and the subject to the controllers and the subject to the controllers and the subject to the controllers and the subject to the controllers and the subject to the subjec	DATE / 25 / 21
SHIPPER PRINT	or mar book in home in the	TIME
SHIPPER SIGN	GNEE	-7 13 -
SIGN	GST # 864540398RT0001	NUMBER OF PIECES RECEIVED
WHITE: Office YELLOW: Carrier PINK: Consignee GOLDE	(N/N) Temperature: 25 ce #56.121	00101
AMS/CE PRINTING	2 ee #6 121	22(61 2)
Cooler ID: Cooler#4	(N/N) Temperature:	IR: 3/
Cooler ID.	1,50	**************************************
Coolant Type: Ice Blue Ice Ambient		Market space.
Notes:	and the second second	I
	7	,
Sampling Locations:		SP T/D SP
T/D SP T	D SP T/D SP T/D	JF 1/0 -
Sample Types:	12 12 Sout	
Container Types:	ben Plast	
# W/* ***	12/23/21	
Opened By: 456 Date:		
•		
	(())	16614

حا لمحل

SEDIMENT CHEMISTRY

ALS Laboratory Report L2641269 (Finalized October 5, 2021)

Teck Coal Ltd.

ATTN: Allie Ferguson 421 Pine Avenue

Sparwood BC VOB 2G0

Date Received: 16-SEP-21

Report Date: 05-OCT-21 13:40 (MT)

Version: FINAL

Client Phone: 250-425-8202

Certificate of Analysis

Lab Work Order #: L2641269
Project P.O. #: VPO00750546

Job Reference: REGIONAL EFFECTS PROGRAM

C of C Numbers:

September EVO LAEMP

Legal Site Desc:

Lyudmyla Shvets, B.Sc. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 2559 29 Street NE, Calgary, AB T1Y 7B5 Canada | Phone: +1 403 291 9897 | Fax: +1 403 291 0298 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

PAGE 2 of 9 05-OCT-21 13:40 (MT)

Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2641269-1 SE 13-SEP-21 09:45 RG_MICOMP_SE- 1_2021-09- 13_0945	L2641269-2 SE 13-SEP-21 10:45 RG_MICOMP_SE- 2_2021-09- 13_1045	L2641269-3 SE 13-SEP-21 12:15 RG_MICOMP_SE- 3_2021-09- 13_1215	L2641269-4 SE 13-SEP-21 14:15 RG_MICOMP_SE- 4_2021-09- 13_1415	L2641269-5 SE 13-SEP-21 15:45 RG_MICOMP_SE- 5_2021-09- 13_1545
Grouping	Analyte		_	_	_	_
SOIL						
Physical Tests	Moisture (%)	86.2	75.3	95.1	66.7	96.1
	pH (1:2 soil:water) (pH)	8.24	8.17	7.80	8.25	7.88
Particle Size	% Gravel (>2mm) (%)	<1.0	<1.0 PSAL	<1.0	<1.0	<1.0 PSAL
	% Sand (2.00mm - 1.00mm) (%)	3.5	2.4	<1.0	<1.0	4.5
	% Sand (1.00mm - 0.50mm) (%)	8.4	6.5	6.0	<1.0	5.2
	% Sand (0.50mm - 0.25mm) (%)	11.0	19.0 PSAL	23.5	3.4	3.7
	% Sand (0.25mm - 0.125mm) (%)	7.6	15.3 PSAL	15.2	14.8	3.6
	% Sand (0.125mm - 0.063mm) (%)	7.1	9.6	7.7	18.5	PSAL 5.6
	% Silt (0.063mm - 0.0312mm) (%)	PSAL 25.7	20.1	19.5	29.6	75AL 33.1
	% Silt (0.0312mm - 0.004mm) (%)	30.1	22.1	22.6	29.9	36.9
	% Clay (<4um) (%)	6.7	5.0	PSAL 4.5	3.5	7.3
	Texture	Silt loam	Sandy loam	Sandy loam	Silt loam	Silt loam
Organic / Inorganic Carbon	Total Organic Carbon (%)	5.74	4.40	4.98	4.36	6.17
Metals	Aluminum (Al) (mg/kg)	5600	5780	5940	6180	5020
	Antimony (Sb) (mg/kg)	0.64	0.59	0.56	0.64	0.53
	Arsenic (As) (mg/kg)	4.72	4.71	4.17	4.27	3.92
	Barium (Ba) (mg/kg)	228	216	267	202	170
	Beryllium (Be) (mg/kg)	0.47	0.45	0.42	0.45	0.46
	Bismuth (Bi) (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	Boron (B) (mg/kg)	7.0	6.0	7.2	5.3	5.5
	Cadmium (Cd) (mg/kg)	1.35	1.21	1.78	1.15	2.12
	Calcium (Ca) (mg/kg)	43300	39300	64800	34200	52200
	Chromium (Cr) (mg/kg)	10.4	10.7	11.1	11.8	9.99
	Cobalt (Co) (mg/kg)	8.26	7.57	7.86	6.03	9.17
	Copper (Cu) (mg/kg)	12.0	12.0	13.7	11.9	12.5
	Iron (Fe) (mg/kg)	13700	12800	11100	11300	12000
	Lead (Pb) (mg/kg)	8.40	9.41	7.77	8.19	7.08
	Lithium (Li) (mg/kg)	7.5	7.1	7.2	7.5	7.6
	Magnesium (Mg) (mg/kg)	5280	5190	5460	5260	9570
	Manganese (Mn) (mg/kg)	357	313	324	206	727
	Mercury (Hg) (mg/kg)	0.0399	0.0417	0.0531	0.0453	0.0406
	Molybdenum (Mo) (mg/kg)	1.19	1.03	1.20	0.95	1.24
	Nickel (Ni) (mg/kg)	37.5	33.4	30.7	27.3	61.1
	Phosphorus (P) (mg/kg)	1000	981	1020	946	1060
	Potassium (K) (mg/kg)	1220	1260	1480	1370	1320
	Selenium (Se) (mg/kg)	2.28	1.66	4.98	2.00	1.97
	Silver (Ag) (mg/kg)	0.18	0.16	0.16	0.18	0.16

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L2641269 CONTD.... PAGE 3 of 9

05-OCT-21 13:40 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2641269-6 SE 13-SEP-21 10:45 RG_RIVER_SE_20 21-09-13_1045		
Grouping	Analyte			
SOIL				
Physical Tests	Moisture (%)	72.1		
	pH (1:2 soil:water) (pH)	8.18		
Particle Size	% Gravel (>2mm) (%)	PSAL <1.0		
	% Sand (2.00mm - 1.00mm) (%)	<1.0		
	% Sand (1.00mm - 0.50mm) (%)	PSAL 1.5		
	% Sand (0.50mm - 0.25mm) (%)	3.0		
	% Sand (0.25mm - 0.125mm) (%)	PSAL 3.8		
	% Sand (0.125mm - 0.063mm) (%)	PSAL 5.6		
	% Silt (0.063mm - 0.0312mm) (%)	95AL 37.4		
	% Silt (0.0312mm - 0.004mm) (%)	PSAL 40.5		
	% Clay (<4um) (%)	7.9		
	Texture	Silt loam		
Organic / Inorganic Carbon	Total Organic Carbon (%)	7.17		
Metals	Aluminum (Al) (mg/kg)	4660		
	Antimony (Sb) (mg/kg)	0.63		
	Arsenic (As) (mg/kg)	4.79		
	Barium (Ba) (mg/kg)	202		
	Beryllium (Be) (mg/kg)	0.42		
	Bismuth (Bi) (mg/kg)	<0.20		
	Boron (B) (mg/kg)	<5.0		
	Cadmium (Cd) (mg/kg)	1.20		
	Calcium (Ca) (mg/kg)	42400		
	Chromium (Cr) (mg/kg)	8.99		
	Cobalt (Co) (mg/kg)	7.12		
	Copper (Cu) (mg/kg)	11.8		
	Iron (Fe) (mg/kg)	12400		
	Lead (Pb) (mg/kg)	8.76		
	Lithium (Li) (mg/kg)	6.4		
	Magnesium (Mg) (mg/kg)	5120		
	Manganese (Mn) (mg/kg)	309		
	Mercury (Hg) (mg/kg)	0.0443		
	Molybdenum (Mo) (mg/kg)	1.07		
	Nickel (Ni) (mg/kg)	32.1		
	Phosphorus (P) (mg/kg)	1040		
	Potassium (K) (mg/kg)	900		
	Selenium (Se) (mg/kg)	1.57		
	Silver (Ag) (mg/kg)	0.16		

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

PAGE 4 of 9 05-OCT-21 13:40 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2641269-1 SE 13-SEP-21 09:45 RG_MICOMP_SE- 1_2021-09- 13_0945	L2641269-2 SE 13-SEP-21 10:45 RG_MICOMP_SE- 2_2021-09- 13_1045	L2641269-3 SE 13-SEP-21 12:15 RG_MICOMP_SE- 3_2021-09- 13_1215	L2641269-4 SE 13-SEP-21 14:15 RG_MICOMP_SE- 4_2021-09- 13_1415	L2641269-5 SE 13-SEP-21 15:45 RG_MICOMP_SE- 5_2021-09- 13_1545
Grouping	Analyte			10_1210		15_15.15
SOIL						
Metals	Sodium (Na) (mg/kg)	82	72	103	67	67
	Strontium (Sr) (mg/kg)	74.7	67.6	89.7	58.8	60.2
	Sulfur (S) (mg/kg)	<1000	<1000	<1000	<1000	<1000
	Thallium (TI) (mg/kg)	0.195	0.193	0.193	0.204	0.177
	Tin (Sn) (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
	Titanium (Ti) (mg/kg)	17.5	16.3	14.8	23.5	8.9
	Tungsten (W) (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Uranium (U) (mg/kg)	0.967	0.875	1.34	0.825	0.901
	Vanadium (V) (mg/kg)	25.8	27.2	26.3	29.4	23.8
	Zinc (Zn) (mg/kg)	91.9	90.1	99.2	82.5	156
	Zirconium (Zr) (mg/kg)	<1.0	<1.0	<1.0	<1.0	<1.0
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/kg)	<0.018	<0.025	<0.050	<0.025	<0.050
	Acenaphthylene (mg/kg)	<0.018	0.011	<0.050	<0.015	<0.050
	Acridine (mg/kg)	0.037	<0.030	<0.10	<0.030	<0.10
	Anthracene (mg/kg)	<0.014	0.0119	<0.040	<0.0040	<0.040
	Benz(a)anthracene (mg/kg)	0.041	0.042	<0.10	0.052	<0.10
	Benzo(a)pyrene (mg/kg)	<0.035	0.036	<0.10	0.037	<0.10
	Benzo(b&j)fluoranthene (mg/kg)	0.086	0.090	<0.10	0.102	<0.10
	Benzo(b+j+k)fluoranthene (mg/kg)	0.086	0.090	<0.14	0.121	<0.14
	Benzo(e)pyrene (mg/kg)	0.077	0.074	<0.10	0.082	<0.10
	Benzo(g,h,i)perylene (mg/kg)	<0.035	0.032	<0.10	0.041	<0.10
	Benzo(k)fluoranthene (mg/kg)	<0.035	<0.020	<0.10	0.019	<0.10
	Chrysene (mg/kg)	0.074	0.067	0.14	0.111	<0.10
	Dibenz(a,h)anthracene (mg/kg)	<0.018	<0.010	<0.050	0.0128	<0.050
	Fluoranthene (mg/kg)	0.046	<0.050	<0.10	<0.070	<0.10
	Fluorene (mg/kg)	0.043	<0.050	<0.10	0.034	<0.10
	Indeno(1,2,3-c,d)pyrene (mg/kg)	<0.035	<0.020	<0.10	0.023	<0.10
	1-Methylnaphthalene (mg/kg)	0.166	0.166	<0.30	0.208	0.28
	2-Methylnaphthalene (mg/kg)	0.247	0.234	0.45	0.290	0.34
	Naphthalene (mg/kg)	0.136	0.113	0.17 DLHM	0.159	<0.10
	Perylene (mg/kg)	<0.035	<0.020	<0.10	0.018	<0.10
	Phenanthrene (mg/kg)	0.300 DLHM	0.291	0.39 DLHM	0.365	0.42
	Pyrene (mg/kg)	0.054	0.055	<0.10	<0.070	<0.10
	Quinoline (mg/kg)	<0.035	<0.020	<0.10	<0.050	<0.10
	Surrogate: d10-Acenaphthene (%)	98.6	99.3	98.1	98.5	104.5
	Surrogate: d12-Chrysene (%)	111.2	111.1	108.0	107.4	112.1

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L2641269 CONTD.... PAGE 5 of 9

05-OCT-21 13:40 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2641269-6 SE 13-SEP-21 10:45 RG_RIVER_SE_20 21-09-13_1045		
Grouping	Analyte			
SOIL				
Metals	Sodium (Na) (mg/kg)	67		
	Strontium (Sr) (mg/kg)	69.8		
	Sulfur (S) (mg/kg)	<1000		
	Thallium (TI) (mg/kg)	0.173		
	Tin (Sn) (mg/kg)	<2.0		
	Titanium (Ti) (mg/kg)	9.1		
	Tungsten (W) (mg/kg)	<0.50		
	Uranium (U) (mg/kg)	0.892		
	Vanadium (V) (mg/kg)	23.0		
	Zinc (Zn) (mg/kg)	87.5		
	Zirconium (Zr) (mg/kg)	<1.0		
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/kg)	<0.015		
•	Acenaphthylene (mg/kg)	OLHM <0.0085		
	Acridine (mg/kg)	0.019		
	Anthracene (mg/kg)	O.0068		
	Benz(a)anthracene (mg/kg)	0.026		
	Benzo(a)pyrene (mg/kg)	0.020 DLHM		
	Benzo(b&j)fluoranthene (mg/kg)	0.056		
	Benzo(b+j+k)fluoranthene (mg/kg)	0.056		
	Benzo(e)pyrene (mg/kg)	0.054		
	Benzo(g,h,i)perylene (mg/kg)	O.017		
	Benzo(k)fluoranthene (mg/kg)	O.017		
	Chrysene (mg/kg)	0.050		
	Dibenz(a,h)anthracene (mg/kg)	<0.0085		
	Fluoranthene (mg/kg)	0.038		
	Fluorene (mg/kg)	0.035		
	Indeno(1,2,3-c,d)pyrene (mg/kg)	<0.017		
	1-Methylnaphthalene (mg/kg)	0.131		
	2-Methylnaphthalene (mg/kg)	0.201		
	Naphthalene (mg/kg)	0.099		
	Perylene (mg/kg)	O.017		
	Phenanthrene (mg/kg)	0.233		
	Pyrene (mg/kg)	OLCI		
	Quinoline (mg/kg)	OLHM <0.017		
	Surrogate: d10-Acenaphthene (%)	101.0		
	Surrogate: d12-Chrysene (%)	109.8		

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L2641269 CONTD....

PAGE 6 of 9 05-OCT-21 13:40 (MT)

Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2641269-1 SE 13-SEP-21 09:45 RG_MICOMP_SE- 1_2021-09- 13_0945	L2641269-2 SE 13-SEP-21 10:45 RG_MICOMP_SE- 2_2021-09- 13_1045	L2641269-3 SE 13-SEP-21 12:15 RG_MICOMP_SE- 3_2021-09- 13_1215	L2641269-4 SE 13-SEP-21 14:15 RG_MICOMP_SE- 4_2021-09- 13_1415	L2641269-5 SE 13-SEP-21 15:45 RG_MICOMP_SE-5_2021-09- 13_1545
Grouping	Analyte	· _ ····•				= 7.9
SOIL						
Polycyclic Aromatic Hydrocarbons	Surrogate: d8-Naphthalene (%)	81.3	92.4	87.3	90.7	90.2
	Surrogate: d10-Phenanthrene (%)	105.1	107.7	102.6	105.1	107.4
	IACR:Coarse	<0.050	<0.050	0.063	<0.050	0.062
	IACR:Fine	0.069	0.061	0.12	0.084	<0.12
	B(a)P Total Potency Equivalent (mg/kg)	0.043	0.057	0.097	0.071	<0.096
	IACR (CCME)	0.90	0.91	1.1	1.13	<1.1

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L2641269 CONTD.... PAGE 7 of 9

05-OCT-21 13:40 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2641269-6 SE 13-SEP-21 10:45 RG_RIVER_SE_20 21-09-13_1045		
Grouping	Analyte			
SOIL				
Polycyclic Aromatic Hydrocarbons	Surrogate: d8-Naphthalene (%)	94.6		
	Surrogate: d10-Phenanthrene (%)	104.8		
	IACR:Coarse	<0.050		
	IACR:Fine	<0.050		
	B(a)P Total Potency Equivalent (mg/kg)	0.035		
	IACR (CCME)	0.58		
		0.00		

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

Reference Information

L2641269 CONTD....

PAGE 8 of 9

05-OCT-21 13:40 (MT)

Version: FINAL

Qualifiers for Individual Parameters Listed:

Qualifier	Description
DLCI	Detection Limit Raised: Chromatographic Interference due to co-elution.
DLHM	Detection Limit Adjusted: Sample has High Moisture Content
PSAL	Limited sample was available for Particle Size Analysis (100g minimum is standard). Measurement Uncertainty for PSA results may be higher than usual.

Test Method References:

ALS Test Code Matrix Test Description		Test Description	Method Reference**
C-TIC-PCT-SK	Soil	Total Inorganic Carbon in Soil	CSSS (2008) P216-217

A known quantity of acetic acid is consumed by reaction with carbonates in the soil. The pH of the resulting solution is measured and compared against a standard curve relating pH to weight of carbonate.

C-TOC-CALC-SK Soil Total Organic Carbon Calculation CSSS (2008) 21.2

Total Organic Carbon (TOC) is calculated by the difference between total carbon (TC) and total inorganic carbon. (TIC)

C-TOT-LECO-SK Soil Total Carbon by combustion method CSSS (2008) 21.2

The sample is ignited in a combustion analyzer where carbon in the reduced CO2 gas is determined using a thermal conductivity detector.

HG-200.2-CVAA-CL Soil Mercury in Soil by CVAAS EPA 200.2/1631E (mod)

Soil samples are digested with nitric and hydrochloric acids, followed by analysis by CVAAS.

IC-CACO3-CALC-SK Soil Inorganic Carbon as CaCO3 Equivalent Calculation

MET-200.2-CCMS-CL Soil Metals in Soil by CRC ICPMS EPA 200.2/6020A (mod)

Soil/sediment is dried, disaggregated, and sieved (2 mm). Strong Acid Leachable Metals in the <2mm fraction are solubilized by heated digestion with nitric and hydrochloric acids. Instrumental analysis is by Collision / Reaction Cell ICPMS.

Limitations: This method is intended to liberate environmentally available metals. Silicate minerals are not solubilized. Some metals may be only partially recovered (matrix dependent), including Al, Ba, Be, Cr, S, Sr, Ti, Tl, V, W, and Zr. Elemental Sulfur may be poorly recovered by this method. Volatile forms of sulfur (e.g. sulfide, H2S) may be excluded if lost during sampling, storage, or digestion.

MOISTURE-CL Soil % Moisture CCME PHC in Soil - Tier 1 (mod)

This analysis is carried out gravimetrically by drying the sample at 105 C

PAH-TMB-H/A-MS-CL Soil PAH Tumbler Extraction (Hexane/Acetone) EPA 3570/8270-GC/MS

This analysis is carried out using procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846, Methods 3545 & 8270, published by the United States Environmental Protection Agency (EPA). The procedure uses a mechanical shaking technique to extract a subsample of the sediment/soil with a 1:1 mixture of hexane and acetone. The extract is then solvent exchanged to toluene. The final extract is analysed by capillary column gas chromatography with mass spectrometric detection (GC/MS). Surrogate recoveries may not be reported in cases where interferences from the sample matrix prevent accurate quantitation. Because the two isomers cannot be readily chromatographically separated, benzo(j)fluoranthene is reported as part of the benzo(b)fluoranthene parameter.

PH-1:2-CL Soil pH in soil (1:2 Soil:Water Extraction) CSSS Ch. 16

Soil and de-ionized water (by volume) are mixed in a defined ratio. The slurry is allowed to stand, shaken, and then allowed to stand again prior to taking measurements. After equilibration, the pH of the liquid portion of the extract is measured by a pH meter. Field Measurement is recommended where accurate pH measurements are required, due to the 15 minute recommended hold time.

PSA-PIPET-DETAIL-SK Soil Particle size - Sieve and Pipette SSIR-51 METHOD 3.2.1

Particle size distribution is determined by a combination of techniques. Dry sieving is performed for coarse particles, wet sieving for sand particles and the pipette sedimentation method for clay particles.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
SK	ALS ENVIRONMENTAL - SASKATOON, SASKATCHEWAN, CANADA
CL	ALS ENVIRONMENTAL - CALGARY, ALBERTA, CANADA

Chain of Custody Numbers:

September EVO LAEMP

Reference Information

L2641269 CONTD....
PAGE 9 of 9
05-OCT-21 13:40 (MT)
Version: FINAL

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Quality Control Report

Workorder: L2641269 Report Date: 05-OCT-21 Page 1 of 15

Client: Teck Coal Ltd.

421 Pine Avenue

Sparwood BC V0B 2G0

Contact: Allie Ferguson

C-TIC-PCT-SK Soil Batch R5598776 WG3622363-4 IRM O8-109_SOIL Inorganic Carbon 91.2 % 80-120 24-SEP-21 WG3622363-2 LCS O.5	Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MG362256-4 IRM	C-TIC-PCT-SK	Soil							
Inorganic Carbor	Batch R5598776	;							
Inorganic Carbon 96.2 96.2 90.110 24-SEP-21 WG362236-3 MB 100 1			08-109_SOIL			%		80-120	24-SEP-21
Norganic Carbo Soil Soi			0.5	96.2		%		90-110	24-SEP-21
Batch R5599818 W3362204-2 IRM O8-109_SOIL Total Carbon by Combustion 99.3 % 80-120 22-SEP-21 W33622204-3 LCS SULFADIAZINE Total Carbon by Combustion 06.0 % 90-110 22-SEP-21 W33622204-3 MB Total Carbon by Combustion 0.05 22-SEP-21 W3362240-3 MB Total Carbon by Combustion 0.05 22-SEP-21 W3362240-3 MB Total Carbon by Combustion 0.05 22-SEP-21 W33622462-4 CRM TILL-2				<0.050		%		0.05	24-SEP-21
MG362204-2	C-TOT-LECO-SK	Soil							
Total Carbon by Combustion 99.3 99.3 90.20 22-SEP-21 W33622204-4 LCS SULFADIAZINE 90.10 22-SEP-21 W33622204-3 MB 70tal Carbon by Combustion 40.05 90.05 90.05 22-SEP-21 HG-200.2-CVAA-C	Batch R5599818	}							
Total Carbon by Combustion 106.0 % 90.110 22-SEP-21 WG3622204-3 MB Total Carbon by Combustion < 0.05 \$0.05 \$0.05 \$0.05 \$0.05 \$0.05 \$0.05 \$0.05 \$0.05 \$0.05 \$0.05 \$0.05 \$0.05 \$0.05 \$0.05 \$0.05 \$0.05 \$0.05 \$0.05		ustion	08-109_SOIL	99.3		%		80-120	22-SEP-21
WG3622204-3 MB Total Carbon by Combustion co.05 <	WG3622204-4 LCS		SULFADIAZI	NE					
Total Carbon by Combustion	-	ustion		106.0		%		90-110	22-SEP-21
Batch R505501 WG3627462-4 Mercury (Hg) CRM TILL-2 98.1 % 70-130 30-SEP-21 WG3627462-9 Mercury (Hg) CCRM TILL-2 101.0 % 70-130 30-SEP-21 WG3627462-3 Mercury (Hg) LCS 94.4 % 80-120 30-SEP-21 WG3627462-8 Mercury (Hg) LCS 98.4 % 80-120 30-SEP-21 WG3627462-1 Mercury (Hg) MB <		ustion		<0.05		%		0.05	22-SEP-21
WG3627462-4 Mercury (Hg) CRM Moreury (Hg) TILL-2 98.1 % 70-130 30-SEP-21 WG3627462-9 Mercury (Hg) CRM Moreury (Hg) TILL-2 101.0 % 70-130 30-SEP-21 WG3627462-8 Mercury (Hg) LCS Mercury (Hg) 94.4 % 80-120 30-SEP-21 WG3627462-8 Mercury (Hg) MB Mercury (Hg) <0.0050 mg/kg 0.005 30-SEP-21 WG3627462-6 Mercury (Hg) MB Mercury (Hg) <0.0050 mg/kg 0.005 30-SEP-21 WG3627462-6 Mercury (Hg) MB Mercury (Hg) <0.0050 mg/kg 0.005 30-SEP-21 MET-200.2-CCMs- Soil Soil 8 MG3627462-4 Mercury (Hg) TILL-2 89.5 % 70-130 30-SEP-21 Aluminum (Al) Aluminum (Al) 89.5 % 70-130 30-SEP-21 Arsenic (As) 103.1 % 70-130 30-SEP-21 Barium (Ba) 103.0 % 70-130 30-SEP-21 <t< td=""><td>HG-200.2-CVAA-CL</td><td>Soil</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	HG-200.2-CVAA-CL	Soil							
Mercury (Hg) CRM TILL-2 101.0 % 70-130 30-SEP-21 WG3627462-3 Mercury (Hg) LCS Mercury (Hg) 94.4 % 80-120 30-SEP-21 WG3627462-3 Mercury (Hg) LCS Mercury (Hg) 98.4 % 80-120 30-SEP-21 WG3627462-8 MG3627462-1 MB Mercury (Hg) MB Mercury (Hg) <0.0050 mg/kg 0.005 30-SEP-21 WG3627462-6 Mercury (Hg) MB Mercury (Hg) <0.0050 mg/kg 0.005 30-SEP-21 MET-200.2-CCMS-L Soil Soil Sel V Y0-130 30-SEP-21 Aluminum (Al) Aluminum (Al) 89.5 % 70-130 30-SEP-21 Arsenic (As) 102.3 % 70-130 30-SEP-21 Arsenic (As) 103.1 % 70-130 30-SEP-21 Barium (Ba) 103.0 % 70-130 30-SEP-21 Beryllium (Be) 91.6 % 70-130 30-SEP-21	Batch R5605501								
Mercury (Hg) LCS 94.4 % 70-130 30-SEP-21 WG3627462-8 Mercury (Hg) LCS 98.4 % 80-120 30-SEP-21 WG3627462-8 Mercury (Hg) LCS 98.4 % 80-120 30-SEP-21 WG3627462-1 Mercury (Hg) MB <0.0050 mg/kg 0.005 30-SEP-21 WG3627462-6 Mercury (Hg) Soil Soil Soil Sep-21 Soil Sep-21 Sep-21 Antimony (Sb) Ferroman Sep-21 Ferroman Se			TILL-2	98.1		%		70-130	30-SEP-21
Mercury (Hg) 94.4 % 80-120 30-SEP-21 WG3627462-8 Mercury (Hg) LCS 98.4 % 80-120 30-SEP-21 WG3627462-1 Mercury (Hg) MB -0.0050 mg/kg 0.005 30-SEP-21 WG3627462-6 Mercury (Hg) VB -0.0050 mg/kg 0.005 30-SEP-21 MET-200.2-CCMS-CCMS-CCMS-CCMS-CCMS-CCMS-CCMS-CCM			TILL-2	101.0		%		70-130	30-SEP-21
Mercury (Hg) 98.4 % 80-120 30-SEP-21 WG3627462-6 MB Mercury (Hg) Colo050 mg/kg 0.005 30-SEP-21 MET-200.2-CCMS-C Soil Batch R5605699 TILL-2 Aluminum (Al) 89.5 % 70-130 30-SEP-21 Antimony (Sb) 102.3 % 70-130 30-SEP-21 Arsenic (As) 103.1 % 70-130 30-SEP-21 Barium (Ba) 103.0 % 70-130 30-SEP-21 Beryllium (Be) 91.6 % 70-130 30-SEP-21				94.4		%		80-120	30-SEP-21
WG3627462-1 MB Mercury (Hg) < 0.0050 mg/kg 0.005 30-SEP-21 WG3627462-6 MB Mercury (Hg) MB < 0.0050 mg/kg 0.005 30-SEP-21 MET-200.2-CCMS-C Soil Batch R5-05699 TILL-2 Aluminum (Al) 89.5 % 70-130 30-SEP-21 Antimony (Sb) 102.3 % 70-130 30-SEP-21 Arsenic (As) 103.1 % 70-130 30-SEP-21 Barium (Ba) 103.0 % 70-130 30-SEP-21 Beryllium (Be) 91.6 % 70-130 30-SEP-21				98.4		%		80-120	30-SEP-21
WG3627462-6 MB Mercury (Hg) <0.0050 mg/kg 0.005 30-SEP-21 MET-200.2-CCMS-CL Soil Batch R5605699 WG3627462-4 CRM TILL-2 Aluminum (Al) 89.5 % 70-130 30-SEP-21 Antimony (Sb) 102.3 % 70-130 30-SEP-21 Arsenic (As) 103.1 % 70-130 30-SEP-21 Barium (Ba) 103.0 % 70-130 30-SEP-21 Beryllium (Be) 91.6 % 70-130 30-SEP-21	WG3627462-1 MB			<0.0050		mg/kg			
MET-200.2-CCMS-CL Soil Batch R5605699 WG3627462-4 CRM TILL-2 Aluminum (Al) 89.5 % 70-130 30-SEP-21 Antimony (Sb) 102.3 % 70-130 30-SEP-21 Arsenic (As) 103.1 % 70-130 30-SEP-21 Barium (Ba) 103.0 % 70-130 30-SEP-21 Beryllium (Be) 91.6 % 70-130 30-SEP-21	WG3627462-6 MB			<0.0050					
Batch R5605699 WG3627462-4 CRM Aluminum (AI) TILL-2 Aluminum (Sb) 89.5 % 70-130 30-SEP-21 Antimony (Sb) 102.3 % 70-130 30-SEP-21 Arsenic (As) 103.1 % 70-130 30-SEP-21 Barium (Ba) 103.0 % 70-130 30-SEP-21 Beryllium (Be) 91.6 % 70-130 30-SEP-21		Soil		10.0000		9,119		0.000	JU-ULF -21
WG3627462-4 Aluminum (Al) CRM TILL-2 Aluminum (Al) 89.5 % 70-130 30-SEP-21 Antimony (Sb) 102.3 % 70-130 30-SEP-21 Arsenic (As) 103.1 % 70-130 30-SEP-21 Barium (Ba) 103.0 % 70-130 30-SEP-21 Beryllium (Be) 91.6 % 70-130 30-SEP-21									
Aluminum (Al) 89.5 % 70-130 30-SEP-21 Antimony (Sb) 102.3 % 70-130 30-SEP-21 Arsenic (As) 103.1 % 70-130 30-SEP-21 Barium (Ba) 103.0 % 70-130 30-SEP-21 Beryllium (Be) 91.6 % 70-130 30-SEP-21		•	TII I -2						
Arsenic (As) 103.1 % 70-130 30-SEP-21 Barium (Ba) 103.0 % 70-130 30-SEP-21 Beryllium (Be) 91.6 % 70-130 30-SEP-21			1155-2	89.5		%		70-130	30-SEP-21
Arsenic (As) 103.1 % 70-130 30-SEP-21 Barium (Ba) 103.0 % 70-130 30-SEP-21 Beryllium (Be) 91.6 % 70-130 30-SEP-21	Antimony (Sb)			102.3		%		70-130	30-SEP-21
Barium (Ba) 103.0 % 70-130 30-SEP-21 Beryllium (Be) 91.6 % 70-130 30-SEP-21	Arsenic (As)			103.1		%			
Beryllium (Be) 91.6 % 70-130 30-SEP-21	Barium (Ba)					%			
	Beryllium (Be)			91.6		%			
				99.5		%			

Quality Control Report

Workorder: L2641269 Report Date: 05-OCT-21 Page 2 of 15

MET-200.2-CCMS-CL Soil	Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MO3627462-4 CRM	MET-200.2-CCMS-CL	Soil							
Cadrium (Cd) 99.6 % 70-130 30-SEP-21 Calcium (Ca) 97.1 % 70-130 30-SEP-21 Chomium (Cr) 100.6 % 70-130 30-SEP-21 Cobalt (Co) 100.0 % 70-130 30-SEP-21 Copper (Cu) 101.8 % 70-130 30-SEP-21 Iron (Fe) 99.8 % 70-130 30-SEP-21 Lead (Pb) 100.2 % 70-130 30-SEP-21 Lithium (Li) 94.4 % 70-130 30-SEP-21 Magnaesium (Mg) 92.5 % 70-130 30-SEP-21 Maphaese (Mn) 97.0 % 70-130 30-SEP-21 Molybdeanum (Mo) 92.8 % 70-130 30-SEP-21 Nickel (Ni) 102.6 % 70-130 30-SEP-21 Nickel (Ni) 102.6 % 70-130 30-SEP-21 Potassium (K) 100.1 % 70-130 30-SEP-21 Selenium (Se) 0.42	Batch R5605699)							
Calcium (Ca) 97.1 % 70.130 30.SEP-21 Chromium (Cr) 100.6 % 70.130 30.SEP-21 Cobalt (Co) 100.0 % 70.130 30.SEP-21 Copper (Cu) 101.8 % 70.130 30.SEP-21 Iron (Fe) 99.8 % 70.130 30.SEP-21 Lead (Pb) 100.2 % 70.130 30.SEP-21 Lithium (Li) 94.4 % 70.130 30.SEP-21 Magnesium (Mg) 92.5 % 70.130 30.SEP-21 Manganese (Mn) 97.0 % 70.130 30.SEP-21 Molybdenum (Mo) 92.8 % 70.130 30.SEP-21 Molybdenum (Mo) 92.8 % 70.130 30.SEP-21 Molybdenum (Mo) 92.8 % 70.130 30.SEP-21 No Eleval 91.0 % 70.130 30.SEP-21 No Eleval 91.0 % 70.130 30.SEP-21 Potassium (K) 100.1			TILL-2	22.2		0.4			
Chromium (Cr)									
Cobalt (Co) 100.0 % 70-130 30-SEP-21 Copper (Cu) 101.8 % 70-130 30-SEP-21 Iron (Fe) 99.8 % 70-130 30-SEP-21 Lead (Pb) 100.2 % 70-130 30-SEP-21 Lithium (Li) 94.4 % 70-130 30-SEP-21 Magnesium (Mg) 92.5 % 70-130 30-SEP-21 Molydedneum (Mo) 92.8 % 70-130 30-SEP-21 Molydedneum (Mo) 92.8 % 70-130 30-SEP-21 Nickel (Ni) 102.6 % 70-130 30-SEP-21 Phosphorus (P) 91.0 % 70-130 30-SEP-21 Photassium (K) 100.1 % 70-130 30-SEP-21 Selenium (Se) 0.42 mg/kg 0.15-0.55 30-SEP-21 Silver (Ag) 0.26 mg/kg 0.16-0.36 30-SEP-21 Sodium (Na) 90.8 % 70-130 30-SEP-21 Strontium (Sr)									
Copper (Cu) 101.8 % 70-130 30-SEP-21 Iron (Fe) 99.8 % 70-130 30-SEP-21 Lead (Pb) 100.2 % 70-130 30-SEP-21 Lithium (Li) 94.4 % 70-130 30-SEP-21 Magnesium (Mg) 92.5 % 70-130 30-SEP-21 Manganese (Mn) 97.0 % 70-130 30-SEP-21 Molybdenum (Mo) 92.8 % 70-130 30-SEP-21 Nickel (Ni) 102.6 % 70-130 30-SEP-21 Phosphorus (P) 91.0 % 70-130 30-SEP-21 Phosphorus (R) 91.0 % 70-130 30-SEP-21 Potassium (K) 100.1 % 70-130 30-SEP-21 Selenium (Se) 0.42 mg/kg 0.16-0.36 30-SEP-21 Selenium (Se) 0.42 mg/kg 0.16-0.36 30-SEP-21 Storonium (Si) 97.4 % 70-130 30-SEP-21 Tin (Sn) <									
Iron (Fe)									
Lead (Pb)	, ,								
Lithium (Li) 94.4 % 70-130 30-SEP-21 Magnesium (Mg) 92.5 % 70-130 30-SEP-21 Manganese (Mn) 97.0 % 70-130 30-SEP-21 Molybdenum (Mo) 92.8 % 70-130 30-SEP-21 Nickel (Ni) 102.6 % 70-130 30-SEP-21 Phosphorus (P) 91.0 % 70-130 30-SEP-21 Potassium (K) 100.1 % 70-130 30-SEP-21 Selenium (Se) 0.42 mg/kg 0.15-0.55 30-SEP-21 Silver (Ag) 0.26 mg/kg 0.16-0.36 30-SEP-21 Stontium (Sr) 97.4 % 70-130 30-SEP-21 Strontium (Sr) 97.4 % 70-130 30-SEP-21 Tin (Sn) 2.3 mg/kg 0.2-4.2 30-SEP-21 Tin (Sn) 2.3 mg/kg 0.2-4.2 30-SEP-21 Tungsten (W) 1.39 mg/kg 1.2 30-SEP-21 Vanadium (V) 99.6 % 70-130 30-SEP-21 Varadium (V)									
Magnesium (Mg) 92.5 % 70-130 30-SEP-21 Manganese (Mn) 97.0 % 70-130 30-SEP-21 Molybdenum (Mo) 92.8 % 70-130 30-SEP-21 Nickel (Ni) 102.6 % 70-130 30-SEP-21 Phosphorus (P) 91.0 % 70-130 30-SEP-21 Potassium (K) 100.1 % 70-130 30-SEP-21 Selenium (Se) 0.42 mg/kg 0.15-0.55 30-SEP-21 Silver (Ag) 0.26 mg/kg 0.16-0.36 30-SEP-21 Silver (Ag) 0.26 mg/kg 0.16-0.36 30-SEP-21 Storntium (Sr) 97.4 % 70-130 30-SEP-21 Strontium (Sr) 97.4 % 70-130 30-SEP-21 Tin (Sn) 2.3 mg/kg 0.2-4.2 30-SEP-21 Tin (sm) 2.3 mg/kg 1.2 30-SEP-21 Tungsten (W) 1.39 mg/kg 1-2 30-SEP-21 Vandium (U)								70-130	30-SEP-21
Manganese (Mn) 97.0 % 70-130 30-SEP-21 Molybdenum (Mo) 92.8 % 70-130 30-SEP-21 Nickel (Ni) 102.6 % 70-130 30-SEP-21 Phosphorus (P) 91.0 % 70-130 30-SEP-21 Potassium (K) 100.1 % 70-130 30-SEP-21 Selenium (Se) 0.42 mg/kg 0.15-0.55 30-SEP-21 Silver (Ag) 0.26 mg/kg 0.16-0.36 30-SEP-21 Sodium (Na) 90.8 % 70-130 30-SEP-21 Strontium (Sr) 97.4 % 70-130 30-SEP-21 Tin (Sn) 2.3 mg/kg 0.2-4.2 30-SEP-21 Tin (Sn) 2.3 mg/kg 0.2-4.2 30-SEP-21 Tungsten (W) 1.39 mg/kg 1-2 30-SEP-21 Uranium (U) 99.6 % 70-130 30-SEP-21 Vanadium (Y) 97.7 % 70-130 30-SEP-21 Zirconium (Zr)								70-130	30-SEP-21
Molybdenum (Mo) 92.8 % 70-130 30-SEP-21 Nickel (Ni) 102.6 % 70-130 30-SEP-21 Phosphorus (P) 91.0 % 70-130 30-SEP-21 Potassium (K) 100.1 % 70-130 30-SEP-21 Selenium (Se) 0.42 mg/kg 0.15-0.55 30-SEP-21 Silver (Ag) 0.26 mg/kg 0.16-0.36 30-SEP-21 Sodium (Na) 90.8 % 70-130 30-SEP-21 Strontium (Sr) 97.4 % 70-130 30-SEP-21 Thallium (TI) 106.3 % 70-130 30-SEP-21 Tin (Sn) 2.3 mg/kg 0.2-4.2 30-SEP-21 Tinalium (Ti) 98.0 % 70-130 30-SEP-21 Uranium (W) 99.6 % 70-130 30-SEP-21 Uranium (W) 97.7 % 70-130 30-SEP-21 Zinc (Zn) 103.4 % 70-130 30-SEP-21 Zinc (Zn) 103.4 % 70-130 30-SEP-21 WG3627462-9 CRM<								70-130	30-SEP-21
Nickel (Ni) 102.6 % 70.130 30.SEP-21 Phosphorus (P) 91.0 % 70.130 30.SEP-21 Potassium (K) 100.1 % 70.130 30.SEP-21 Selenium (Se) 0.42 mg/kg 0.15-0.55 30.SEP-21 Silver (Ag) 0.26 mg/kg 0.16-0.36 30.SEP-21 Sodium (Na) 90.8 % 70.130 30.SEP-21 Strontium (Sr) 97.4 % 70.130 30.SEP-21 Thallium (TI) 106.3 % 70.130 30.SEP-21 Tin (Sn) 2.3 mg/kg 0.2-4.2 30.SEP-21 Tingsten (W) 1.39 mg/kg 1.2 30.SEP-21 Uranium (U) 99.6 % 70.130 30.SEP-21 Uranium (U) 99.6 % 70.130 30.SEP-21 Zinc (Zn) 103.4 % 70.130 30.SEP-21 Zinc (Zn) 103.4 % 70.130 30.SEP-21 Zinconium (Zr) 98.3 % 70.130 30.SEP-21 WG3627462-9 CRM TILL-2 Aluminum (Al) 77.6 % 70.130 01.CCT-21 Arsenic (As) 92.2 % 70.130 01.CCT-21 Barium (Ba) 87.5 % 70.130 01.CCT-21 Beryllium (Be) 86.6 % 70.130 01.CCT-21 Beryllium (Be) 86.6 % 70.130 01.CCT-21 Bismuth (Bi) 94.4 % 70.130 01.CCT-21	-			97.0		%		70-130	30-SEP-21
Phosphorus (P) 91.0 % 70-130 30-SEP-21 Potassium (K) 100.1 % 70-130 30-SEP-21 Selenium (Se) 0.42 mg/kg 0.15-0.55 30-SEP-21 Silver (Ag) 0.26 mg/kg 0.16-0.36 30-SEP-21 Sodium (Na) 90.8 % 70-130 30-SEP-21 Strontium (Sr) 97.4 % 70-130 30-SEP-21 Thallium (TI) 106.3 % 70-130 30-SEP-21 Tin (Sn) 2.3 mg/kg 0.2-4.2 30-SEP-21 Titanium (TI) 98.0 % 70-130 30-SEP-21 Tungsten (W) 1.39 mg/kg 1-2 30-SEP-21 Uranium (U) 99.6 % 70-130 30-SEP-21 Vanadium (V) 97.7 % 70-130 30-SEP-21 Zirconium (Zr) 98.3 % 70-130 30-SEP-21 WG3627462-9 CRM TILL-2 Aluminum (Al) 77.6 % 7	Molybdenum (Mo)			92.8		%		70-130	30-SEP-21
Potassium (K) 100.1 % 70-130 30-SEP-21 Selenium (Se) 0.42 mg/kg 0.15-0.55 30-SEP-21 Silver (Ag) 0.26 mg/kg 0.16-0.36 30-SEP-21 Sodium (Na) 90.8 % 70-130 30-SEP-21 Strontium (Sr) 97.4 % 70-130 30-SEP-21 Thallium (TI) 106.3 % 70-130 30-SEP-21 Tin (Sn) 2.3 mg/kg 0.2-4.2 30-SEP-21 Titanium (TI) 98.0 % 70-130 30-SEP-21 Tungsten (W) 1.39 mg/kg 1-2 30-SEP-21 Uranium (U) 99.6 % 70-130 30-SEP-21 Vanadium (V) 97.7 % 70-130 30-SEP-21 Zirconium (Zr) 98.3 % 70-130 30-SEP-21 WG3627462-9 CRM TILL-2 Aluminum (Al) 77.6 % 70-130 01-OCT-21 Arsenic (As) 92.2 % 70-	Nickel (Ni)			102.6		%		70-130	30-SEP-21
Selenium (Se) 0.42 mg/kg 0.15-0.55 30-SEP-21 Silver (Ag) 0.26 mg/kg 0.16-0.36 30-SEP-21 Sodium (Na) 90.8 % 70-130 30-SEP-21 Strontium (Sr) 97.4 % 70-130 30-SEP-21 Thallium (Tl) 106.3 % 70-130 30-SEP-21 Tin (Sn) 2.3 mg/kg 0.2-4.2 30-SEP-21 Titanium (Ti) 98.0 % 70-130 30-SEP-21 Tungsten (W) 1.39 mg/kg 1-2 30-SEP-21 Uranium (U) 99.6 % 70-130 30-SEP-21 Vanadium (V) 97.7 % 70-130 30-SEP-21 Zinc (Zn) 103.4 % 70-130 30-SEP-21 Zirconium (Zr) 98.3 % 70-130 30-SEP-21 WG3627462-9 CRM TILL-2 Aluminum (Al) 77.6 % 70-130 01-OCT-21 Arsenic (As) 96.9 % 70-130 01-OCT-21 Barium (Ba) 87.5 % 70-130	Phosphorus (P)			91.0		%		70-130	30-SEP-21
Silver (Ag) 0.26 mg/kg 0.16-0.36 30-SEP-21 Sodium (Na) 90.8 % 70-130 30-SEP-21 Strontium (Sr) 97.4 % 70-130 30-SEP-21 Thallium (TI) 106.3 % 70-130 30-SEP-21 Tin (Sn) 2.3 mg/kg 0.2-4.2 30-SEP-21 Titanium (Ti) 98.0 % 70-130 30-SEP-21 Tungsten (W) 1.39 mg/kg 1-2 30-SEP-21 Uranium (U) 99.6 % 70-130 30-SEP-21 Vanadium (V) 97.7 % 70-130 30-SEP-21 Zirc (Zn) 103.4 % 70-130 30-SEP-21 Zirconium (Zr) 98.3 % 70-130 30-SEP-21 WG3627462-9 CRM TILL-2 Aluminum (Al) 70-130 01-OCT-21 Arsenic (As) 96.9 % 70-130 01-OCT-21 Barium (Ba) 87.5 % 70-130 01-OCT-21 Beryllium (Be) 86.6 % 70-130 01-OCT-21 <tr< td=""><td>Potassium (K)</td><td></td><td></td><td>100.1</td><td></td><td>%</td><td></td><td>70-130</td><td>30-SEP-21</td></tr<>	Potassium (K)			100.1		%		70-130	30-SEP-21
Sodium (Na) 90.8 % 70-130 30-SEP-21 Strontium (Sr) 97.4 % 70-130 30-SEP-21 Thallium (TI) 106.3 % 70-130 30-SEP-21 Tin (Sn) 2.3 mg/kg 0.2-4.2 30-SEP-21 Titanium (Ti) 98.0 % 70-130 30-SEP-21 Tungsten (W) 1.39 mg/kg 1-2 30-SEP-21 Uranium (U) 99.6 % 70-130 30-SEP-21 Vanadium (V) 97.7 % 70-130 30-SEP-21 Zinc (Zn) 103.4 % 70-130 30-SEP-21 Zirconium (Zr) 98.3 % 70-130 30-SEP-21 WG3627462-9 CRM TILL-2 T7.6 % 70-130 01-OCT-21 Antimony (Sb) 96.9 % 70-130 01-OCT-21 Arsenic (As) 92.2 % 70-130 01-OCT-21 Barium (Ba) 87.5 % 70-130 01-OCT-21 Beryllium (Be) 86.6 % 70-130 01-OCT-21 Bism	Selenium (Se)			0.42		mg/kg		0.15-0.55	30-SEP-21
Strontium (Sr) 97.4 % 70-130 30-SEP-21 Thallium (TI) 106.3 % 70-130 30-SEP-21 Tin (Sn) 2.3 mg/kg 0.2-4.2 30-SEP-21 Titanium (Ti) 98.0 % 70-130 30-SEP-21 Tungsten (W) 1.39 mg/kg 1-2 30-SEP-21 Uranium (U) 99.6 % 70-130 30-SEP-21 Vanadium (V) 97.7 % 70-130 30-SEP-21 Zinc (Zn) 103.4 % 70-130 30-SEP-21 Zirconium (Zr) 98.3 % 70-130 30-SEP-21 WG3627462-9 CRM TILL-2 * Aluminum (Al) 77.6 % 70-130 01-OCT-21 Arsenic (As) 96.9 % 70-130 01-OCT-21 Arsenic (As) 92.2 % 70-130 01-OCT-21 Barium (Ba) 87.5 % 70-130 01-OCT-21 Beryllium (Be) 86.6 % 70-130 01-OCT-21 Bismuth (Bi) 94.4 % 70-13	Silver (Ag)			0.26		mg/kg		0.16-0.36	30-SEP-21
Thallium (TI) 106.3 % 70-130 30-SEP-21 Tin (Sn) 2.3 mg/kg 0.2-4.2 30-SEP-21 Titanium (Ti) 98.0 % 70-130 30-SEP-21 Tungsten (W) 1.39 mg/kg 1-2 30-SEP-21 Uranium (U) 99.6 % 70-130 30-SEP-21 Vanadium (V) 97.7 % 70-130 30-SEP-21 Zinc (Zn) 103.4 % 70-130 30-SEP-21 Zirconium (Zr) 98.3 % 70-130 30-SEP-21 WG3627462-9 CRM TILL-2 Aluminum (Al) 77.6 % 70-130 01-OCT-21 Antimony (Sb) 96.9 % 70-130 01-OCT-21 Arsenic (As) 92.2 % 70-130 01-OCT-21 Barium (Ba) 87.5 % 70-130 01-OCT-21 Beryllium (Be) 86.6 % 70-130 01-OCT-21 Bismuth (Bi) 94.4 % 70-130 01-OCT-21	Sodium (Na)			90.8		%		70-130	30-SEP-21
Tin (Sn) 2.3 mg/kg 0.2-4.2 30-SEP-21 Titanium (Ti) 98.0 % 70-130 30-SEP-21 Tungsten (W) 1.39 mg/kg 1-2 30-SEP-21 Uranium (U) 99.6 % 70-130 30-SEP-21 Vanadium (V) 97.7 % 70-130 30-SEP-21 Zinc (Zn) 103.4 % 70-130 30-SEP-21 Zirconium (Zr) 98.3 % 70-130 30-SEP-21 WG3627462-9 Aluminum (Al) CRM TILL-2 TILL-2 Antimony (Sb) 96.9 % 70-130 01-OCT-21 Arsenic (As) 92.2 % 70-130 01-OCT-21 Barium (Ba) 87.5 % 70-130 01-OCT-21 Beryllium (Be) 86.6 % 70-130 01-OCT-21 Bismuth (Bi) 94.4 % 70-130 01-OCT-21	Strontium (Sr)			97.4		%		70-130	30-SEP-21
Titanium (Ti) 98.0 % 70-130 30-SEP-21 Tungsten (W) 1.39 mg/kg 1-2 30-SEP-21 Uranium (U) 99.6 % 70-130 30-SEP-21 Vanadium (V) 97.7 % 70-130 30-SEP-21 Zinc (Zn) 103.4 % 70-130 30-SEP-21 Zirconium (Zr) 98.3 % 70-130 30-SEP-21 WG3627462-9 CRM TILL-2 Y 70-130 01-OCT-21 Aluminum (Al) 77.6 % 70-130 01-OCT-21 Antimony (Sb) 96.9 % 70-130 01-OCT-21 Arsenic (As) 92.2 % 70-130 01-OCT-21 Barium (Ba) 87.5 % 70-130 01-OCT-21 Beryllium (Be) 86.6 % 70-130 01-OCT-21 Bismuth (Bi) 94.4 % 70-130 01-OCT-21	Thallium (TI)			106.3		%		70-130	30-SEP-21
Tungsten (W) 1.39 mg/kg 1-2 30-SEP-21 Uranium (U) 99.6 % 70-130 30-SEP-21 Vanadium (V) 97.7 % 70-130 30-SEP-21 Zinc (Zn) 103.4 % 70-130 30-SEP-21 Zirconium (Zr) 98.3 % 70-130 30-SEP-21 WG3627462-9 CRM TILL-2 Aluminum (Al) 77.6 % 70-130 01-OCT-21 Antimony (Sb) 96.9 % 70-130 01-OCT-21 Arsenic (As) 92.2 % 70-130 01-OCT-21 Barium (Ba) 87.5 % 70-130 01-OCT-21 Beryllium (Be) 86.6 % 70-130 01-OCT-21 Bismuth (Bi) 94.4 % 70-130 01-OCT-21	Tin (Sn)			2.3		mg/kg		0.2-4.2	30-SEP-21
Uranium (U) 99.6 % 70-130 30-SEP-21 Vanadium (V) 97.7 % 70-130 30-SEP-21 Zinc (Zn) 103.4 % 70-130 30-SEP-21 Zirconium (Zr) 98.3 % 70-130 30-SEP-21 WG3627462-9 CRM TILL-2 Aluminum (Al) 77.6 % 70-130 01-OCT-21 Antimony (Sb) 96.9 % 70-130 01-OCT-21 Arsenic (As) 92.2 % 70-130 01-OCT-21 Barium (Ba) 87.5 % 70-130 01-OCT-21 Beryllium (Be) 86.6 % 70-130 01-OCT-21 Bismuth (Bi) 94.4 % 70-130 01-OCT-21	Titanium (Ti)			98.0		%		70-130	30-SEP-21
Vanadium (V) 97.7 % 70-130 30-SEP-21 Zinc (Zn) 103.4 % 70-130 30-SEP-21 Zirconium (Zr) 98.3 % 70-130 30-SEP-21 WG3627462-9 CRM TILL-2 Aluminum (Al) 77.6 % 70-130 01-OCT-21 Antimony (Sb) 96.9 % 70-130 01-OCT-21 Arsenic (As) 92.2 % 70-130 01-OCT-21 Barium (Ba) 87.5 % 70-130 01-OCT-21 Beryllium (Be) 86.6 % 70-130 01-OCT-21 Bismuth (Bi) 94.4 % 70-130 01-OCT-21	Tungsten (W)			1.39		mg/kg		1-2	30-SEP-21
Zinc (Zn) 103.4 % 70-130 30-SEP-21 Zirconium (Zr) 98.3 % 70-130 30-SEP-21 WG3627462-9 CRM TILL-2 TILL-2 Aluminum (Al) 77.6 % 70-130 01-OCT-21 Antimony (Sb) 96.9 % 70-130 01-OCT-21 Arsenic (As) 92.2 % 70-130 01-OCT-21 Barium (Ba) 87.5 % 70-130 01-OCT-21 Beryllium (Be) 86.6 % 70-130 01-OCT-21 Bismuth (Bi) 94.4 % 70-130 01-OCT-21	Uranium (U)			99.6		%		70-130	30-SEP-21
Zirconium (Zr) 98.3 % 70-130 30-SEP-21 WG3627462-9 CRM TILL-2 TILL-2 Aluminum (Al) 77.6 % 70-130 01-OCT-21 Antimony (Sb) 96.9 % 70-130 01-OCT-21 Arsenic (As) 92.2 % 70-130 01-OCT-21 Barium (Ba) 87.5 % 70-130 01-OCT-21 Beryllium (Be) 86.6 % 70-130 01-OCT-21 Bismuth (Bi) 94.4 % 70-130 01-OCT-21	Vanadium (V)			97.7		%		70-130	30-SEP-21
WG3627462-9 CRM TILL-2 Aluminum (Al) 77.6 % 70-130 01-OCT-21 Antimony (Sb) 96.9 % 70-130 01-OCT-21 Arsenic (As) 92.2 % 70-130 01-OCT-21 Barium (Ba) 87.5 % 70-130 01-OCT-21 Beryllium (Be) 86.6 % 70-130 01-OCT-21 Bismuth (Bi) 94.4 % 70-130 01-OCT-21	Zinc (Zn)			103.4		%		70-130	30-SEP-21
Aluminum (Al) 77.6 % 70-130 01-OCT-21 Antimony (Sb) 96.9 % 70-130 01-OCT-21 Arsenic (As) 92.2 % 70-130 01-OCT-21 Barium (Ba) 87.5 % 70-130 01-OCT-21 Beryllium (Be) 86.6 % 70-130 01-OCT-21 Bismuth (Bi) 94.4 % 70-130 01-OCT-21	Zirconium (Zr)			98.3		%		70-130	30-SEP-21
Antimony (Sb) 96.9 % 70-130 01-OCT-21 Arsenic (As) 92.2 % 70-130 01-OCT-21 Barium (Ba) 87.5 % 70-130 01-OCT-21 Beryllium (Be) 86.6 % 70-130 01-OCT-21 Bismuth (Bi) 94.4 % 70-130 01-OCT-21	WG3627462-9 CRM		TILL-2						
Arsenic (As) 92.2 % 70-130 01-OCT-21 Barium (Ba) 87.5 % 70-130 01-OCT-21 Beryllium (Be) 86.6 % 70-130 01-OCT-21 Bismuth (Bi) 94.4 % 70-130 01-OCT-21	Aluminum (Al)			77.6		%		70-130	01-OCT-21
Barium (Ba) 87.5 % 70-130 01-OCT-21 Beryllium (Be) 86.6 % 70-130 01-OCT-21 Bismuth (Bi) 94.4 % 70-130 01-OCT-21				96.9		%		70-130	01-OCT-21
Beryllium (Be) 86.6 % 70-130 01-OCT-21 Bismuth (Bi) 94.4 % 70-130 01-OCT-21	Arsenic (As)			92.2		%		70-130	01-OCT-21
Bismuth (Bi) 94.4 % 70-130 01-OCT-21	Barium (Ba)			87.5		%		70-130	01-OCT-21
	Beryllium (Be)			86.6		%		70-130	01-OCT-21
Cadmium (Cd) 95.8 % 70-130 01-OCT-21	Bismuth (Bi)			94.4		%		70-130	01-OCT-21
	Cadmium (Cd)			95.8		%		70-130	01-OCT-21

Quality Control Report

Workorder: L2641269 Report Date: 05-OCT-21 Page 3 of 15

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-CL	Soil							
Batch R5605699								
WG3627462-9 CRM		TILL-2	0.4.0		04			
Calcium (Ca)			84.0		%		70-130	01-OCT-21
Chromium (Cr)			90.0		%		70-130	01-OCT-21
Cobalt (Co)			92.5		%		70-130	01-OCT-21
Copper (Cu)			93.5		%		70-130	01-OCT-21
Iron (Fe)			92.3		%		70-130	01-OCT-21
Lead (Pb)			93.3		%		70-130	01-OCT-21
Lithium (Li)			90.7		%		70-130	01-OCT-21
Magnesium (Mg)			85.8		%		70-130	01-OCT-21
Manganese (Mn)			87.8		%		70-130	01-OCT-21
Molybdenum (Mo)			86.4		%		70-130	01-OCT-21
Nickel (Ni)			95.0		%		70-130	01-OCT-21
Phosphorus (P)			93.0		%		70-130	01-OCT-21
Potassium (K)			83.1		%		70-130	01-OCT-21
Selenium (Se)			0.36		mg/kg		0.15-0.55	01-OCT-21
Silver (Ag)			0.24		mg/kg		0.16-0.36	01-OCT-21
Sodium (Na)			79.9		%		70-130	01-OCT-21
Strontium (Sr)			87.6		%		70-130	01-OCT-21
Thallium (TI)			92.0		%		70-130	01-OCT-21
Tin (Sn)			2.1		mg/kg		0.2-4.2	01-OCT-21
Titanium (Ti)			76.9		%		70-130	01-OCT-21
Tungsten (W)			1.30		mg/kg		1-2	01-OCT-21
Uranium (U)			91.1		%		70-130	01-OCT-21
Vanadium (V)			87.6		%		70-130	01-OCT-21
Zinc (Zn)			93.9		%		70-130	01-OCT-21
Zirconium (Zr)			90.3		%		70-130	01-OCT-21
WG3627462-3 LCS								
Aluminum (Al)			95.1		%		80-120	30-SEP-21
Antimony (Sb)			99.8		%		80-120	30-SEP-21
Arsenic (As)			101.2		%		80-120	30-SEP-21
Barium (Ba)			103.4		%		80-120	30-SEP-21
Beryllium (Be)			94.4		%		80-120	30-SEP-21
Bismuth (Bi)			92.3		%		80-120	30-SEP-21
Boron (B)			91.1		%		80-120	30-SEP-21
Cadmium (Cd)			102.2		%		80-120	30-SEP-21

Workorder: L2641269 Report Date: 05-OCT-21 Page 4 of 15

MET-200.2-CCMS-CL Soil	Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
WG3627462-3 LCS Calcium (Ca) 91.1 % 80-120 30-SEP-21 Chromium (Cr) 101.0 % 80-120 30-SEP-21 Cobalt (Co) 101.7 % 80-120 30-SEP-21 Copper (Cu) 98.3 % 80-120 30-SEP-21 Iron (Fe) 104.8 % 80-120 30-SEP-21 Lead (Pb) 93.6 % 80-120 30-SEP-21 Lithium (Li) 96.3 % 80-120 30-SEP-21 Limium (Mg) 97.2 % 80-120 30-SEP-21 Magnaesum (Mg) 97.2 % 80-120 30-SEP-21 Molybdenum (Mo) 94.4 % 80-120 30-SEP-21 Nickel (Ni) 101.9 % 80-120 30-SEP-21	MET-200.2-CCMS-CL	Soil							
Calcium (Ca) 91.1 % 80-120 30-SEP-21 Chromium (Cr) 101.0 % 80-120 30-SEP-21 Cobalt (Co) 101.7 % 80-120 30-SEP-21 Copper (Cu) 98.3 % 80-120 30-SEP-21 Iron (Fe) 104.8 % 80-120 30-SEP-21 Lead (Pb) 33.6 % 80-120 30-SEP-21 Lithium (Li) 96.3 % 80-120 30-SEP-21 Magnesium (Mg) 97.2 % 80-120 30-SEP-21 Magnesium (Mg) 97.2 % 80-120 30-SEP-21 Manganese (Mm) 102.4 % 80-120 30-SEP-21 Molydemum (Mo) 94.4 % 80-120 30-SEP-21 Molydemum (Mo) 94.4 % 80-120 30-SEP-21 Probassium (K) 101.9 % 80-120 30-SEP-21 Probassium (K) 104.0 % 80-120 30-SEP-21 Silver (Ag) 96.4 <th>Batch R5605699</th> <th>1</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Batch R5605699	1							
Chromium (Cr)				04.4		0/			
Cobait (Co) 101.7 % 80-120 30-SEP-21 Copper (Cu) 98.3 % 80-120 30-SEP-21 Iron (Fe) 104.8 % 80-120 30-SEP-21 Lead (Pb) 93.6 % 80-120 30-SEP-21 Lithium (Li) 96.3 % 80-120 30-SEP-21 Magnesium (Mg) 97.2 % 80-120 30-SEP-21 Manganese (Mn) 102.4 % 80-120 30-SEP-21 Molybdenum (Mo) 94.4 % 80-120 30-SEP-21 Mickal (N) 101.9 % 80-120 30-SEP-21 Phosphorus (P) 98.5 % 80-120 30-SEP-21 Photassium (K) 104.0 % 80-120 30-SEP-21 Selenium (Se) 103.1 % 80-120 30-SEP-21 Selum (Na) 102.4 % 80-120 30-SEP-21 Sulfur (S) 96.4 % 80-120 30-SEP-21 Strontium (Sr) 93.1	, ,								
Copper (Cu) 98.3 % 80-120 30-SEP-21 Iron (Fe) 104.8 % 80-120 30-SEP-21 Lead (Pb) 93.6 % 80-120 30-SEP-21 Lithium (Li) 96.3 % 80-120 30-SEP-21 Magnesium (Mg) 97.2 % 80-120 30-SEP-21 Manganese (Mn) 102.4 % 80-120 30-SEP-21 Molybdenum (Mo) 94.4 % 80-120 30-SEP-21 Molybdenum (Mo) 94.4 % 80-120 30-SEP-21 Plossphorus (P) 98.5 % 80-120 30-SEP-21 Phosphorus (P) 98.5 % 80-120 30-SEP-21 Potassium (K) 104.0 % 80-120 30-SEP-21 Seloenium (Se) 103.1 % 80-120 30-SEP-21 Silver (Ag) 96.4 % 80-120 30-SEP-21 Strontium (Se) 102.4 % 80-120 30-SEP-21 Struim (Se) 102									
Iron (Fe)									
Lead (Pb) 93.6 % 80-120 30-SEP-21 Lithium (Li) 96.3 % 80-120 30-SEP-21 Magnesium (Mg) 97.2 % 80-120 30-SEP-21 Manganese (Mn) 102.4 % 80-120 30-SEP-21 Molydenum (Mo) 94.4 % 80-120 30-SEP-21 Nickel (Ni) 101.9 % 80-120 30-SEP-21 Phosphorus (P) 98.5 % 80-120 30-SEP-21 Potassium (K) 104.0 % 80-120 30-SEP-21 Selenium (Se) 103.1 % 80-120 30-SEP-21 Silver (Ag) 96.4 % 80-120 30-SEP-21 Sodium (Na) 102.4 % 80-120 30-SEP-21 Strontium (Sr) 93.1 % 80-120 30-SEP-21 Stuffur (S) 102.0 % 80-120 30-SEP-21 Thalilum (Ti) 92.8 % 80-120 30-SEP-21 Tin (Sn) 94.4									
Lithium (L) 96.3 % 80.120 30.5EP.21 Magnesium (Mg) 97.2 % 80.120 30.5EP.21 Manganesium (Mg) 97.2 % 80.120 30.5EP.21 Manganeses (Mn) 102.4 % 80.120 30.5EP.21 Molybdenum (Mo) 94.4 % 80.120 30.5EP.21 Molybdenum (Mo) 101.9 % 80.120 30.5EP.21 Phosphorus (P) 98.5 % 80.120 30.5EP.21 Phosphorus (P) 98.5 % 80.120 30.5EP.21 Selenium (Se) 103.1 % 80.120 30.5EP.21 Silver (Ag) 96.4 % 80.120 30.5EP.21 Silver (Ag) 96.4 % 80.120 30.5EP.21 Silver (Ag) 96.4 % 80.120 30.5EP.21 Strontium (Sr) 93.1 % 80.120 30.5EP.21 Strontium (Sr) 93.1 % 80.120 30.5EP.21 Thallium (Ti) 92.8 % 80.120 30.5EP.21 Thallium (Ti) 92.8 % 80.120 30.5EP.21 Tin (Sn) 94.4 % 80.120 30.5EP.21 Tin (Sn) 94.4 % 80.120 30.5EP.21 Tingsten (W) 99.2 % 80.120 30.5EP.21 Uranium (U) 96.0 % 80.120 30.5EP.21 Uranium (U) 96.0 % 80.120 30.5EP.21 Uranium (U) 96.0 % 80.120 30.5EP.21 Zirconium (Z) 96.6 % 80.120 30.5EP.21 Zirconium (Z) 96.6 % 80.120 30.5EP.21 Zirconium (Z) 96.2 % 80.120 30.5EP.21 Zirconium (B) 96.2 % 80.120 30.5EP.21 Zirconium (B) 96.2 % 80.120 01.0CT.21 Reprilium (B) 96.8 % 96.2 % 96.2 % 96.2 % 96.2 % 96.2 % 96.2 % 96.2 % 96.2 % 9									
Magnesium (Mg) 97.2 % 80-120 30-SEP-21 Manganese (Mn) 102.4 % 80-120 30-SEP-21 Molybdenum (Mo) 94.4 % 80-120 30-SEP-21 Nickel (Ni) 101.9 % 80-120 30-SEP-21 Phosphorus (P) 98.5 % 80-120 30-SEP-21 Potassium (K) 104.0 % 80-120 30-SEP-21 Selenium (Se) 103.1 % 80-120 30-SEP-21 Silver (Ag) 96.4 % 80-120 30-SEP-21 Sodium (Na) 102.4 % 80-120 30-SEP-21 Storntium (Sr) 93.1 % 80-120 30-SEP-21 Sulfur (S) 102.0 % 80-120 30-SEP-21 Thallium (TI) 92.8 % 80-120 30-SEP-21 Tin (Sn) 94.4 % 80-120 30-SEP-21 Titanium (TI) 99.2 % 80-120 30-SEP-21 Tungsten (W) 99.2 % 80-120 30-SEP-21 Vanadium (V) 100.2	, ,								
Manganese (Mn) 102.4 % 80-120 30-SEP-21 Molybdenum (Mo) 94.4 % 80-120 30-SEP-21 Nickel (Ni) 101.9 % 80-120 30-SEP-21 Phosphorus (P) 98.5 % 80-120 30-SEP-21 Potassium (K) 104.0 % 80-120 30-SEP-21 Selenium (Se) 103.1 % 80-120 30-SEP-21 Silver (Ag) 96.4 % 80-120 30-SEP-21 Sodium (Na) 102.4 % 80-120 30-SEP-21 Strontium (Sr) 93.1 % 80-120 30-SEP-21 Strontium (Sr) 93.1 % 80-120 30-SEP-21 Tin (Sn) 94.4 % 80-120 30-SEP-21 Tin (Sn) 94.4 % 80-120 30-SEP-21 Tinajum (Ti) 99.2 % 80-120 30-SEP-21 Uranium (U) 96.0 % 80-120 30-SEP-21 Vandium (V) 100.2								80-120	
Molybdenum (Mo) 94.4 % 80-120 30-SEP-21 Nickel (Ni) 101.9 % 80-120 30-SEP-21 Phosphorus (P) 98.5 % 80-120 30-SEP-21 Potassium (K) 104.0 % 80-120 30-SEP-21 Selenium (Se) 103.1 % 80-120 30-SEP-21 Silver (Ag) 96.4 % 80-120 30-SEP-21 Sodium (Na) 102.4 % 80-120 30-SEP-21 Strontium (Sr) 93.1 % 80-120 30-SEP-21 Sulfur (S) 102.0 % 80-120 30-SEP-21 Thallium (TI) 92.8 % 80-120 30-SEP-21 Tin (Sn) 94.4 % 80-120 30-SEP-21 Titanium (Ti) 99.2 % 80-120 30-SEP-21 Tungsten (W) 99.2 % 80-120 30-SEP-21 Uranium (U) 96.0 % 80-120 30-SEP-21 Zirconium (Zr) 96.6 % 80-120 30-SEP-21 WG3627462-8 LCS									
Nickel (Ni) 101.9 % 80-120 30-SEP-21 Phosphorus (P) 98.5 % 80-120 30-SEP-21 Potassium (K) 104.0 % 80-120 30-SEP-21 Selenium (Se) 103.1 % 80-120 30-SEP-21 Silver (Ag) 96.4 % 80-120 30-SEP-21 Silver (Ag) 96.4 % 80-120 30-SEP-21 Silver (Ag) 96.4 % 80-120 30-SEP-21 Silver (Ag) 96.4 % 80-120 30-SEP-21 Silver (Ag) 97.1 % 80-120 30-SEP-21 Sulfur (Sr) 93.1 % 80-120 30-SEP-21 Sulfur (Sr) 93.1 % 80-120 30-SEP-21 Thallium (TI) 92.8 % 80-120 30-SEP-21 Tin (Sn) 94.4 % 80-120 30-SEP-21 Tin (Sn) 94.4 % 80-120 30-SEP-21 Tin (Sn) 94.4 % 80-120 30-SEP-21 Tin (Sn) 99.2 % 80-120 30-SEP-21 Uranium (U) 99.2 % 80-120 30-SEP-21 Uranium (U) 99.2 % 80-120 30-SEP-21 Uranium (U) 96.0 % 80-120 30-SEP-21 Zinc (Zn) 100.2 % 80-120 30-SEP-21 Zinc (Zn) 100.2 % 80-120 30-SEP-21 Zinc (Zn) 102.2 % 80-120 30-SEP-								80-120	30-SEP-21
Phosphorus (P) 98.5 % 80-120 30-SEP-21 Potassium (K) 104.0 % 80-120 30-SEP-21 Selenium (Se) 103.1 % 80-120 30-SEP-21 Silver (Ag) 96.4 % 80-120 30-SEP-21 Sodium (Na) 102.4 % 80-120 30-SEP-21 Strontium (Sr) 93.1 % 80-120 30-SEP-21 Strontium (Sr) 93.1 % 80-120 30-SEP-21 Stufur (S) 102.0 % 80-120 30-SEP-21 Thallium (TI) 92.8 % 80-120 30-SEP-21 Tin (Sn) 94.4 % 80-120 30-SEP-21 Tinajum (TI) 99.2 % 80-120 30-SEP-21 Tungsten (W) 99.2 % 80-120 30-SEP-21 Uranium (U) 96.0 % 80-120 30-SEP-21 Zirco (Zn) 102.2 % 80-120 30-SEP-21 Zirconium (Zr) 96.6								80-120	30-SEP-21
Potassium (K) 104.0 % 80-120 30-SEP-21 Selenium (Se) 103.1 % 80-120 30-SEP-21 Silver (Ag) 96.4 % 80-120 30-SEP-21 Sodium (Na) 102.4 % 80-120 30-SEP-21 Strontium (Sr) 93.1 % 80-120 30-SEP-21 Sulfur (S) 102.0 % 80-120 30-SEP-21 Thallium (TI) 92.8 % 80-120 30-SEP-21 Tin (Sn) 94.4 % 80-120 30-SEP-21 Titanium (TI) 99.2 % 80-120 30-SEP-21 Tungsten (W) 99.2 % 80-120 30-SEP-21 Uranium (U) 96.0 % 80-120 30-SEP-21 Vanadium (V) 100.2 % 80-120 30-SEP-21 Zinc (Zn) 102.2 % 80-120 30-SEP-21 WG3627462-8 LCS 80-120 30-SEP-21 Aluminum (A) 89.4 % <td< td=""><td></td><td></td><td></td><td>101.9</td><td></td><td>%</td><td></td><td>80-120</td><td>30-SEP-21</td></td<>				101.9		%		80-120	30-SEP-21
Selenium (Se) 103.1 % 80-120 30-SEP-21 Silver (Ag) 96.4 % 80-120 30-SEP-21 Sodium (Na) 102.4 % 80-120 30-SEP-21 Strontium (Sr) 93.1 % 80-120 30-SEP-21 Sulfur (S) 102.0 % 80-120 30-SEP-21 Thallium (TI) 92.8 % 80-120 30-SEP-21 Tin (Sn) 94.4 % 80-120 30-SEP-21 Titanium (Ti) 99.2 % 80-120 30-SEP-21 Tungsten (W) 99.2 % 80-120 30-SEP-21 Uranium (U) 96.0 % 80-120 30-SEP-21 Vanadium (V) 100.2 % 80-120 30-SEP-21 Zirco (Zn) 102.2 % 80-120 30-SEP-21 Zirconium (Zr) 96.6 % 80-120 30-SEP-21 WG3627462-8 LCS Aluminum (Al) 89.4 % 80-120 01-OCT-21 Arsenic (As) 94.9 % 80-120 01-OCT-21	Phosphorus (P)			98.5		%		80-120	30-SEP-21
Silver (Ag) 96.4 % 80-120 30-SEP-21 Sodium (Na) 102.4 % 80-120 30-SEP-21 Strontium (Sr) 93.1 % 80-120 30-SEP-21 Sulfur (S) 102.0 % 80-120 30-SEP-21 Thallium (TI) 92.8 % 80-120 30-SEP-21 Tin (Sn) 94.4 % 80-120 30-SEP-21 Titanium (Ti) 99.2 % 80-120 30-SEP-21 Tungsten (W) 99.2 % 80-120 30-SEP-21 Uranium (U) 96.0 % 80-120 30-SEP-21 Vanadium (V) 100.2 % 80-120 30-SEP-21 Zirc (Zn) 102.2 % 80-120 30-SEP-21 Zirconium (Zr) 96.6 % 80-120 30-SEP-21 WG3627462-8 LCS Aluminum (Al) 89.4 % 80-120 01-OCT-21 Arsenic (As) 94.9 % 80-120 01-OCT-21 Barium (Ba) 93.9 % 80-120 01-OCT-21 <t< td=""><td>Potassium (K)</td><td></td><td></td><td>104.0</td><td></td><td>%</td><td></td><td>80-120</td><td>30-SEP-21</td></t<>	Potassium (K)			104.0		%		80-120	30-SEP-21
Sodium (Na) 102.4 % 80-120 30-SEP-21 Strontium (Sr) 93.1 % 80-120 30-SEP-21 Sulfur (S) 102.0 % 80-120 30-SEP-21 Thallium (TI) 92.8 % 80-120 30-SEP-21 Tin (Sn) 94.4 % 80-120 30-SEP-21 Titanium (Ti) 99.2 % 80-120 30-SEP-21 Tungsten (W) 99.2 % 80-120 30-SEP-21 Uranium (U) 96.0 % 80-120 30-SEP-21 Vanadium (V) 100.2 % 80-120 30-SEP-21 Zinc (Zn) 102.2 % 80-120 30-SEP-21 Zirconium (Zr) 96.6 % 80-120 30-SEP-21 WG3627462-8 LCS Aluminum (Al) 89.4 % 80-120 01-OCT-21 Arsenic (As) 94.9 % 80-120 01-OCT-21 Barium (Ba) 93.9 % 80-120 01-OCT-21 Beryllium (Be) 94.8 % 80-120 01-OCT-21	Selenium (Se)			103.1		%		80-120	30-SEP-21
Strontium (Sr) 93.1 % 80-120 30-SEP-21 Sulfur (S) 102.0 % 80-120 30-SEP-21 Thallium (TI) 92.8 % 80-120 30-SEP-21 Tin (Sn) 94.4 % 80-120 30-SEP-21 Titanium (Ti) 99.2 % 80-120 30-SEP-21 Tungsten (W) 99.2 % 80-120 30-SEP-21 Uranium (U) 96.0 % 80-120 30-SEP-21 Vanadium (V) 100.2 % 80-120 30-SEP-21 Zinc (Zn) 102.2 % 80-120 30-SEP-21 Zirconium (Zr) 96.6 % 80-120 30-SEP-21 WG3627462-8 LCS Aluminum (Al) 89.4 % 80-120 01-OCT-21 Antimony (Sb) 96.2 % 80-120 01-OCT-21 Arsenic (As) 94.9 % 80-120 01-OCT-21 Barium (Ba) 93.9 % 80-120 01-OCT-21 Beryllium (Be) 94.8 % 80-120 01-OCT-21	Silver (Ag)			96.4		%		80-120	30-SEP-21
Sulfur (S) 102.0 % 80-120 30-SEP-21 Thallium (TI) 92.8 % 80-120 30-SEP-21 Tin (Sn) 94.4 % 80-120 30-SEP-21 Titanium (Ti) 99.2 % 80-120 30-SEP-21 Tungsten (W) 99.2 % 80-120 30-SEP-21 Uranium (U) 96.0 % 80-120 30-SEP-21 Vanadium (V) 100.2 % 80-120 30-SEP-21 Zinc (Zn) 102.2 % 80-120 30-SEP-21 Zirconium (Zr) 96.6 % 80-120 30-SEP-21 WG3627462-8 LCS Aluminum (Al) 89.4 % 80-120 01-OCT-21 Antimony (Sb) 96.2 % 80-120 01-OCT-21 Arsenic (As) 94.9 % 80-120 01-OCT-21 Barium (Ba) 93.9 % 80-120 01-OCT-21 Beryllium (Be) 94.8 % 80-120 01-OCT-21 Bismuth (Bi) 90.8 80-120 01-OCT-21	Sodium (Na)			102.4		%		80-120	30-SEP-21
Thallium (TI) 92.8 % 80-120 30-SEP-21 Tin (Sn) 94.4 % 80-120 30-SEP-21 Titanium (Ti) 99.2 % 80-120 30-SEP-21 Tungsten (W) 99.2 % 80-120 30-SEP-21 Uranium (U) 96.0 % 80-120 30-SEP-21 Vanadium (V) 100.2 % 80-120 30-SEP-21 Zinc (Zn) 102.2 % 80-120 30-SEP-21 Zirconium (Zr) 96.6 % 80-120 30-SEP-21 WG3627462-8 LCS Aluminum (Al) 89.4 % 80-120 30-SEP-21 Antimony (Sb) 96.2 % 80-120 01-OCT-21 Arsenic (As) 94.9 % 80-120 01-OCT-21 Barium (Ba) 93.9 % 80-120 01-OCT-21 Beryllium (Be) 94.8 % 80-120 01-OCT-21 Bismuth (Bi) 90.8 % 80-120 01-OCT-21	Strontium (Sr)			93.1		%		80-120	30-SEP-21
Tin (Sn) 94.4 % 80-120 30-SEP-21 Titanium (Ti) 99.2 % 80-120 30-SEP-21 Tungsten (W) 99.2 % 80-120 30-SEP-21 Uranium (U) 96.0 % 80-120 30-SEP-21 Vanadium (V) 100.2 % 80-120 30-SEP-21 Zinc (Zn) 102.2 % 80-120 30-SEP-21 Zirconium (Zr) 96.6 % 80-120 30-SEP-21 WG3627462-8 LCS Aluminum (Al) 89.4 % 80-120 01-OCT-21 Antimony (Sb) 96.2 % 80-120 01-OCT-21 Arsenic (As) 94.9 % 80-120 01-OCT-21 Barium (Ba) 93.9 % 80-120 01-OCT-21 Beryllium (Be) 94.8 % 80-120 01-OCT-21 Bismuth (Bi) 90.8 % 80-120 01-OCT-21	Sulfur (S)			102.0		%		80-120	30-SEP-21
Titanium (Ti) 99.2 % 80-120 30-SEP-21 Tungsten (W) 99.2 % 80-120 30-SEP-21 Uranium (U) 96.0 % 80-120 30-SEP-21 Vanadium (V) 100.2 % 80-120 30-SEP-21 Zinc (Zn) 102.2 % 80-120 30-SEP-21 Zirconium (Zr) 96.6 % 80-120 30-SEP-21 WG3627462-8 LCS Aluminum (Al) 89.4 % 80-120 01-OCT-21 Antimony (Sb) 96.2 % 80-120 01-OCT-21 Arsenic (As) 94.9 % 80-120 01-OCT-21 Barium (Ba) 93.9 % 80-120 01-OCT-21 Beryllium (Be) 94.8 % 80-120 01-OCT-21 Bismuth (Bi) 90.8 % 80-120 01-OCT-21	Thallium (TI)			92.8		%		80-120	30-SEP-21
Tungsten (W) 99.2 % 80-120 30-SEP-21 Uranium (U) 96.0 % 80-120 30-SEP-21 Vanadium (V) 100.2 % 80-120 30-SEP-21 Zinc (Zn) 102.2 % 80-120 30-SEP-21 Zirconium (Zr) 96.6 % 80-120 30-SEP-21 WG3627462-8 LCS Aluminum (Al) 89.4 % 80-120 01-OCT-21 Antimony (Sb) 96.2 % 80-120 01-OCT-21 Arsenic (As) 94.9 % 80-120 01-OCT-21 Barium (Ba) 93.9 % 80-120 01-OCT-21 Beryllium (Be) 94.8 % 80-120 01-OCT-21 Bismuth (Bi) 90.8 % 80-120 01-OCT-21	Tin (Sn)			94.4		%		80-120	30-SEP-21
Uranium (U) 96.0 % 80-120 30-SEP-21 Vanadium (V) 100.2 % 80-120 30-SEP-21 Zinc (Zn) 102.2 % 80-120 30-SEP-21 Zirconium (Zr) 96.6 % 80-120 30-SEP-21 WG3627462-8 LCS Aluminum (Al) 89.4 % 80-120 01-OCT-21 Antimony (Sb) 96.2 % 80-120 01-OCT-21 Arsenic (As) 94.9 % 80-120 01-OCT-21 Barium (Ba) 93.9 % 80-120 01-OCT-21 Beryllium (Be) 94.8 % 80-120 01-OCT-21 Bismuth (Bi) 90.8 % 80-120 01-OCT-21	Titanium (Ti)			99.2		%		80-120	30-SEP-21
Vanadium (V) 100.2 % 80-120 30-SEP-21 Zinc (Zn) 102.2 % 80-120 30-SEP-21 Zirconium (Zr) 96.6 % 80-120 30-SEP-21 WG3627462-8 LCS Aluminum (Al) 89.4 % 80-120 01-OCT-21 Antimony (Sb) 96.2 % 80-120 01-OCT-21 Arsenic (As) 94.9 % 80-120 01-OCT-21 Barium (Ba) 93.9 % 80-120 01-OCT-21 Beryllium (Be) 94.8 % 80-120 01-OCT-21 Bismuth (Bi) 90.8 % 80-120 01-OCT-21	Tungsten (W)			99.2		%		80-120	30-SEP-21
Zinc (Zn) 102.2 % 80-120 30-SEP-21 Zirconium (Zr) 96.6 % 80-120 30-SEP-21 WG3627462-8 LCS LCS Aluminum (Al) 89.4 % 80-120 01-OCT-21 Antimony (Sb) 96.2 % 80-120 01-OCT-21 Arsenic (As) 94.9 % 80-120 01-OCT-21 Barium (Ba) 93.9 % 80-120 01-OCT-21 Beryllium (Be) 94.8 % 80-120 01-OCT-21 Bismuth (Bi) 90.8 % 80-120 01-OCT-21	Uranium (U)			96.0		%		80-120	30-SEP-21
Zirconium (Zr) 96.6 % 80-120 30-SEP-21 WG3627462-8 Aluminum (Al) B9.4 % 80-120 01-OCT-21 Antimony (Sb) 96.2 % 80-120 01-OCT-21 Arsenic (As) 94.9 % 80-120 01-OCT-21 Barium (Ba) 93.9 % 80-120 01-OCT-21 Beryllium (Be) 94.8 % 80-120 01-OCT-21 Bismuth (Bi) 90.8 % 80-120 01-OCT-21	Vanadium (V)			100.2		%		80-120	30-SEP-21
WG3627462-8 LCS Aluminum (Al) 89.4 % 80-120 01-OCT-21 Antimony (Sb) 96.2 % 80-120 01-OCT-21 Arsenic (As) 94.9 % 80-120 01-OCT-21 Barium (Ba) 93.9 % 80-120 01-OCT-21 Beryllium (Be) 94.8 % 80-120 01-OCT-21 Bismuth (Bi) 90.8 % 80-120 01-OCT-21	Zinc (Zn)			102.2		%		80-120	30-SEP-21
WG3627462-8 LCS Aluminum (Al) 89.4 % 80-120 01-OCT-21 Antimony (Sb) 96.2 % 80-120 01-OCT-21 Arsenic (As) 94.9 % 80-120 01-OCT-21 Barium (Ba) 93.9 % 80-120 01-OCT-21 Beryllium (Be) 94.8 % 80-120 01-OCT-21 Bismuth (Bi) 90.8 % 80-120 01-OCT-21	Zirconium (Zr)			96.6		%		80-120	30-SEP-21
Aluminum (Al) 89.4 % 80-120 01-OCT-21 Antimony (Sb) 96.2 % 80-120 01-OCT-21 Arsenic (As) 94.9 % 80-120 01-OCT-21 Barium (Ba) 93.9 % 80-120 01-OCT-21 Beryllium (Be) 94.8 % 80-120 01-OCT-21 Bismuth (Bi) 90.8 % 80-120 01-OCT-21	WG3627462-8 LCS								
Arsenic (As) 94.9 % 80-120 01-OCT-21 Barium (Ba) 93.9 % 80-120 01-OCT-21 Beryllium (Be) 94.8 % 80-120 01-OCT-21 Bismuth (Bi) 90.8 % 80-120 01-OCT-21				89.4		%		80-120	01-OCT-21
Barium (Ba) 93.9 % 80-120 01-OCT-21 Beryllium (Be) 94.8 % 80-120 01-OCT-21 Bismuth (Bi) 90.8 % 80-120 01-OCT-21	Antimony (Sb)			96.2		%		80-120	01-OCT-21
Beryllium (Be) 94.8 % 80-120 01-OCT-21 Bismuth (Bi) 90.8 % 80-120 01-OCT-21	Arsenic (As)			94.9		%		80-120	01-OCT-21
Beryllium (Be) 94.8 % 80-120 01-OCT-21 Bismuth (Bi) 90.8 % 80-120 01-OCT-21	Barium (Ba)			93.9		%		80-120	01-OCT-21
Bismuth (Bi) 90.8 % 80-120 01-OCT-21	Beryllium (Be)			94.8		%		80-120	
	Bismuth (Bi)			90.8		%		80-120	
	Boron (B)			87.7		%		80-120	01-OCT-21

Workorder: L2641269 Report Date: 05-OCT-21 Page 5 of 15

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-CL	Soil							
Batch R5605699)							
WG3627462-8 LCS			04.7		0/			
Cadmium (Cd)			94.7		%		80-120	01-OCT-21
Calcium (Ca)			88.4		%		80-120	01-OCT-21
Chromium (Cr)			95.5		%		80-120	01-OCT-21
Cobalt (Co)			97.4		%		80-120	01-OCT-21
Copper (Cu)			93.6		%		80-120	01-OCT-21
Iron (Fe)			99.8		%		80-120	01-OCT-21
Lead (Pb)			91.7		%		80-120	01-OCT-21
Lithium (Li)			97.2		%		80-120	01-OCT-21
Magnesium (Mg)			94.1		%		80-120	01-OCT-21
Manganese (Mn)			96.7		%		80-120	01-OCT-21
Molybdenum (Mo)			91.6		%		80-120	01-OCT-21
Nickel (Ni)			98.5		%		80-120	01-OCT-21
Phosphorus (P)			97.4		%		80-120	01-OCT-21
Potassium (K)			96.6		%		80-120	01-OCT-21
Selenium (Se)			95.3		%		80-120	01-OCT-21
Silver (Ag)			92.7		%		80-120	01-OCT-21
Sodium (Na)			95.8		%		80-120	01-OCT-21
Strontium (Sr)			92.9		%		80-120	01-OCT-21
Sulfur (S)			82.2		%		80-120	01-OCT-21
Thallium (TI)			88.9		%		80-120	01-OCT-21
Tin (Sn)			92.9		%		80-120	01-OCT-21
Titanium (Ti)			84.6		%		80-120	01-OCT-21
Tungsten (W)			94.9		%		80-120	01-OCT-21
Uranium (U)			93.9		%		80-120	01-OCT-21
Vanadium (V)			95.7		%		80-120	01-OCT-21
Zinc (Zn)			92.0		%		80-120	01-OCT-21
Zirconium (Zr)			92.5		%		80-120	01-OCT-21
WG3627462-1 MB								
Aluminum (AI)			<50		mg/kg		50	30-SEP-21
Antimony (Sb)			<0.10		mg/kg		0.1	30-SEP-21
Arsenic (As)			<0.10		mg/kg		0.1	30-SEP-21
Barium (Ba)			<0.50		mg/kg		0.5	30-SEP-21
Beryllium (Be)			<0.10		mg/kg		0.1	30-SEP-21
Bismuth (Bi)			<0.20		mg/kg		0.2	30-SEP-21

Workorder: L2641269 Report Date: 05-OCT-21 Page 6 of 15

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-CL	Soil							
Batch R5605699								
WG3627462-1 MB			5.0				_	
Boron (B)			<5.0		mg/kg		5	30-SEP-21
Cadmium (Cd)			<0.020		mg/kg		0.02	30-SEP-21
Calcium (Ca)			<50		mg/kg		50	30-SEP-21
Chromium (Cr)			<0.50		mg/kg		0.5	30-SEP-21
Cobalt (Co)			<0.10		mg/kg		0.1	30-SEP-21
Copper (Cu)			<0.50		mg/kg		0.5	30-SEP-21
Iron (Fe)			<50		mg/kg 		50	30-SEP-21
Lead (Pb)			<0.50		mg/kg 		0.5	30-SEP-21
Lithium (Li)			<2.0		mg/kg		2	30-SEP-21
Magnesium (Mg)			<20		mg/kg		20	30-SEP-21
Manganese (Mn)			<1.0		mg/kg		1	30-SEP-21
Molybdenum (Mo)			<0.10		mg/kg		0.1	30-SEP-21
Nickel (Ni)			<0.50		mg/kg		0.5	30-SEP-21
Phosphorus (P)			<50		mg/kg		50	30-SEP-21
Potassium (K)			<100		mg/kg		100	30-SEP-21
Selenium (Se)			<0.20		mg/kg		0.2	30-SEP-21
Silver (Ag)			<0.10		mg/kg		0.1	30-SEP-21
Sodium (Na)			<50		mg/kg		50	30-SEP-21
Strontium (Sr)			<0.50		mg/kg		0.5	30-SEP-21
Sulfur (S)			<1000		mg/kg		1000	30-SEP-21
Thallium (TI)			< 0.050		mg/kg		0.05	30-SEP-21
Tin (Sn)			<2.0		mg/kg		2	30-SEP-21
Titanium (Ti)			<1.0		mg/kg		1	30-SEP-21
Tungsten (W)			< 0.50		mg/kg		0.5	30-SEP-21
Uranium (U)			< 0.050		mg/kg		0.05	30-SEP-21
Vanadium (V)			<0.20		mg/kg		0.2	30-SEP-21
Zinc (Zn)			<2.0		mg/kg		2	30-SEP-21
Zirconium (Zr)			<1.0		mg/kg		1	30-SEP-21
WG3627462-6 MB								
Aluminum (AI)			<50		mg/kg		50	01-OCT-21
Antimony (Sb)			<0.10		mg/kg		0.1	01-OCT-21
Arsenic (As)			<0.10		mg/kg		0.1	01-OCT-21
Barium (Ba)			<0.50		mg/kg		0.5	01-OCT-21
Beryllium (Be)			<0.10		mg/kg		0.1	01-OCT-21

Workorder: L2641269

Report Date: 05-OCT-21

Page 7 of 15

est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-CL	Soil							
Batch R5605699								
WG3627462-6 MB			0.00					
Bismuth (Bi)			<0.20		mg/kg		0.2	01-OCT-21
Boron (B)			<5.0		mg/kg		5	01-OCT-21
Cadmium (Cd)			<0.020		mg/kg		0.02	01-OCT-21
Calcium (Ca)			<50		mg/kg		50	01-OCT-21
Chromium (Cr)			<0.50		mg/kg		0.5	01-OCT-21
Cobalt (Co)			<0.10		mg/kg		0.1	01-OCT-21
Copper (Cu)			<0.50		mg/kg		0.5	01-OCT-21
Iron (Fe)			<50		mg/kg		50	01-OCT-21
Lead (Pb)			<0.50		mg/kg		0.5	01-OCT-21
Lithium (Li)			<2.0		mg/kg		2	01-OCT-21
Magnesium (Mg)			<20		mg/kg		20	01-OCT-21
Manganese (Mn)			<1.0		mg/kg		1	01-OCT-21
Molybdenum (Mo)			<0.10		mg/kg		0.1	01-OCT-21
Nickel (Ni)			<0.50		mg/kg		0.5	01-OCT-21
Phosphorus (P)			<50		mg/kg		50	01-OCT-21
Potassium (K)			<100		mg/kg		100	01-OCT-21
Selenium (Se)			<0.20		mg/kg		0.2	01-OCT-21
Silver (Ag)			<0.10		mg/kg		0.1	01-OCT-21
Sodium (Na)			<50		mg/kg		50	01-OCT-21
Strontium (Sr)			<0.50		mg/kg		0.5	01-OCT-21
Sulfur (S)			<1000		mg/kg		1000	01-OCT-21
Thallium (TI)			<0.050		mg/kg		0.05	01-OCT-21
Tin (Sn)			<2.0		mg/kg		2	01-OCT-21
Titanium (Ti)			<1.0		mg/kg		1	01-OCT-21
Tungsten (W)			<0.50		mg/kg		0.5	01-OCT-21
Uranium (U)			<0.050		mg/kg		0.05	01-OCT-21
Vanadium (V)			<0.20		mg/kg		0.2	01-OCT-21
Zinc (Zn)			<2.0		mg/kg		2	01-OCT-21
Zirconium (Zr)			<1.0		mg/kg		1	01-OCT-21
MOISTURE-CL	Soil							
Batch R5600336								
WG3625226-2 LCS								
Moisture			99.4		%		90-110	27-SEP-21

Workorder: L2641269 Report Date: 05-OCT-21 Page 8 of 15

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MOISTURE-CL	Soil							
Batch R5600336 WG3625226-1 MB Moisture			<0.25		%		0.25	27-SEP-21
PAH-TMB-H/A-MS-CL	Soil							
Batch R5603578								
WG3626733-4 IRM Acenaphthene		ALS PAH RM	2 84.8		%		60-130	27-SEP-21
Acenaphthylene			101.9		%		60-130	27-SEP-21
Anthracene			107.6		%		60-130	27-SEP-21
Acridine			116.5		%		60-130	27-SEP-21
Benz(a)anthracene			103.0		%		60-130	27-SEP-21
Benzo(a)pyrene			103.6		%		60-130	27-SEP-21
Benzo(b&j)fluoranthene			98.0		%		60-130	27-SEP-21
Benzo(e)pyrene			104.0		%		60-130	27-SEP-21
Benzo(g,h,i)perylene			91.4		%		60-130	27-SEP-21
Benzo(k)fluoranthene			80.6		%		60-130	27-SEP-21
Chrysene			99.7		%		60-130	27-SEP-21
Dibenz(a,h)anthracene			91.3		%		60-130	27-SEP-21
Fluoranthene			87.0		%		60-130	27-SEP-21
Fluorene			88.5		%		60-130	27-SEP-21
Indeno(1,2,3-c,d)pyrene			116.1		%		60-130	27-SEP-21
2-Methylnaphthalene			83.4		%		60-130	27-SEP-21
Naphthalene			78.6		%		50-130	27-SEP-21
Perylene			103.9		%		60-130	27-SEP-21
Phenanthrene			89.7		%		60-130	27-SEP-21
Pyrene			90.3		%		60-130	27-SEP-21
1-Methylnaphthalene			82.5		%		60-130	27-SEP-21
WG3626733-6 IRM Acenaphthene		ALS PAH RM	2 93.6		%		60-130	27-SEP-21
Acenaphthylene			107.4		%		60-130	27-SEP-21
Anthracene			116.1		%		60-130	27-SEP-21
Acridine			111.2		%		60-130	27-SEP-21 27-SEP-21
Benz(a)anthracene			106.0		%		60-130	27-SEP-21 27-SEP-21
Benzo(a)pyrene			100.6		%		60-130	27-SEP-21 27-SEP-21
Benzo(b&j)fluoranthene			102.0		%		60-130	27-SEP-21 27-SEP-21
Benzo(e)pyrene			96.6		%		60-130	27-SEP-21 27-SEP-21
2325(3/2)10110			00.0		,•		00-100	21-0Li21

Workorder: L2641269 Report Date: 05-OCT-21 Page 9 of 15

PAH-TMB-H/A-MS-CL Soil	Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
WG3626733-6 IRM Benzo(gh,h)perylene ALS PAH RM2 Benzo(gh,h)perylene 95.0 % 60-130 27-SEP-21 Chrysene 102.8 % 60-130 27-SEP-21 Chrysene 102.8 % 60-130 27-SEP-21 Dibenz(a,h)anthracene 96.7 % 60-130 27-SEP-21 Fluoranthene 92.5 % 60-130 27-SEP-21 Fluorene 98.4 % 60-130 27-SEP-21 Indeno(1,2,3-c,d)pyrene 69.6 % 60-130 27-SEP-21 Indeno(1,2,3-c,d)pyrene 86.2 % 60-130 27-SEP-21 Jehthylaphthalene 92.5 % 60-130 27-SEP-21 Perylene 86.2 % 60-130 27-SEP-21 Phenanthrene 97.9 % 60-130 27-SEP-21 Pyrene 95.5 % 60-130 27-SEP-21 Hohthylaphthalene 91.3 % 60-130 28-SEP-21 WG3626733-9 RM ALS PAH	PAH-TMB-H/A-MS-CL	Soil							
Benzo(g,hi)perylene 95.0 % 60-130 27-SEP-21 Benzo(k)fluoranthene 87.8 % 60-130 27-SEP-21 Chysene 102.8 % 60-130 27-SEP-21 Dibenz(a,h)anthracene 96.7 % 60-130 27-SEP-21 Fluorene 92.5 % 60-130 27-SEP-21 Indeno (12,3-c,d)pyrene 69.6 % 60-130 27-SEP-21 2-Methylnaphthalene 92.5 % 60-130 27-SEP-21 2-Methylnaphthalene 86.2 % 50-130 27-SEP-21 Perylene 84.2 % 50-130 27-SEP-21 Phenanthrene 97.9 % 60-130 27-SEP-21 Pyrene 95.5 % 60-130 28-SEP-21 Acenaphthylene 91.3	Batch R5603578								
Benzo(k)fluoranthene 87.8 % 60-130 27-SEP-21 Chrysene 102.8 % 60-130 27-SEP-21 Dibenz(a,h)anthracene 96.7 % 60-130 27-SEP-21 Fluoranthene 92.5 % 60-130 27-SEP-21 Fluorene 98.4 % 60-130 27-SEP-21 Indero(1,2,3-c,d)pyrene 69.6 % 60-130 27-SEP-21 Jedethynaphthalene 92.5 % 60-130 27-SEP-21 Aleythalene 86.2 % 50-130 27-SEP-21 Perylene 84.2 % 60-130 27-SEP-21 Perylene 97.9 % 60-130 27-SEP-21 Pyrene 95.5 % 60-130 27-SEP-21 1-Methynaphthalene 91.3 % 60-130 27-SEP-21 WG362673-9 IRM ALS PAH RM2 ALS PAH RM2 Accepathylingh			ALS PAH RI						
Chrysene 102.8 % 60-130 27-SEP-21 Dibenz(a,h)anthracene 96.7 % 60-130 27-SEP-21 Fluoranthene 92.5 % 60-130 27-SEP-21 Fluorene 98.4 % 60-130 27-SEP-21 Indeno(1,2,3-c,d)pyrene 69.6 % 60-130 27-SEP-21 2-Methylnaphthalene 92.5 % 60-130 27-SEP-21 Naphthalene 86.2 % 50-130 27-SEP-21 Perylene 84.2 % 60-130 27-SEP-21 Phenanthrene 97.9 % 60-130 27-SEP-21 Pyrene 95.5 % 60-130 28-SEP-21 Accertal Marianthracene 91.3 %									
Dibenz(a,h)anthracene 96.7 % 60-130 27-SEP-21									
Fluoranthene 92.5 % 60.130 27-SEP-21 Fluorene 98.4 % 60.130 27-SEP-21 Indemo(1,2,3-c,d)pyrene 69.6 % 60.130 27-SEP-21 Indemo(1,2,3-c,d)pyrene 99.5 % 60.130 27-SEP-21 2-Methy/naphthalene 92.5 % 60.130 27-SEP-21 Naphthalene 86.2 % 50.130 27-SEP-21 Perylene 84.2 % 60.130 27-SEP-21 Phenanthrene 97.9 % 60.130 27-SEP-21 Phenanthrene 97.9 % 60.130 27-SEP-21 I-Methy/naphthalene 91.3 % 60.130 27-SEP-21 I-Methy/naphthalene 91.3 % 60.130 27-SEP-21 WG3626733-9 IRM ALS PAH RM2 Acenaphthene 98.8 % 60.130 28-SEP-21 Acenaphthylene 98.8 % 60.130 28-SEP-21 Anthracene 108.2 % 60.130 28-SEP-21 Anthracene 108.5 % 60.130 28-SEP-21 Benze(a)anthracene 97.5 % 60.130 28-SEP-21 Benze(a)pyrene 94.3 % 60.130 28-SEP-21 Benze(b,j)fluoranthene 93.3 % 60.130 28-SEP-21 Benze(b,j)fluoranthene 97.8 % 60.130 28-SEP-21 Benze(b,j)fluoranthene 97.8 % 60.130 28-SEP-21 Benze(b,j)fluoranthene 97.8 % 60.130 28-SEP-21 Benze(c,j)fluoranthene 87.6 % 60.130 28-SEP-21 Benze(c,j)fluoranthene 87.6 % 60.130 28-SEP-21 Benze(c,j)fluoranthene 87.6 % 60.130 28-SEP-21 Benze(c,j)fluoranthene 88.4 % 60.130 28-SEP-21 Benze(c,j)fluoranthene 88.4 % 60.130 28-SEP-21 Benze(c,j)fluoranthene 88.4 % 60.130 28-SEP-21 Benze(h,j)pyrene 88.3 % 60.130 28-SEP-21 Benze(h,j)pyrene 88.3 % 60.130 28-SEP-21 Benze(h,j)pyrene 88.3 % 60.130 28-SEP-21 Benze(h,j)pyrene 88.3 % 60.130 28-SEP-2	-								
Fluorene 98.4 % 60-130 27-SEP-21 Indeno(1,2,3-c,d)pyrene 69.6 % 60-130 27-SEP-21 Indeno(1,2,3-c,d)pyrene 69.6 % 60-130 27-SEP-21 2-Methylnaphthalene 92.5 % 60-130 27-SEP-21 Naphthalene 86.2 % 50-130 27-SEP-21 Naphthalene 86.2 % 60-130 27-SEP-21 Perylene 84.2 % 60-130 27-SEP-21 Perylene 97.9 % 60-130 27-SEP-21 Pyrene 95.5 % 60-130 27-SEP-21 Pyrene 95.5 % 60-130 27-SEP-21 Pyrene 95.5 % 60-130 27-SEP-21 Pyrene 95.5 % 60-130 27-SEP-21 Pyrene 95.5 % 60-130 27-SEP-21 Pyrene 95.5 % 60-130 27-SEP-21 Pyrene 91.3 % 60-130 28-SEP-21 Pyrene 91.3 % 60-130 28-SEP-21 Pyrene 98.8 % 60-130 28-SEP-21 Pyrene 98.8 % 60-130 28-SEP-21 Pyrene 98.8 % 60-130 28-SEP-21 Pyrene 98.8 % 60-130 28-SEP-21 Pyrene 99.8 % 60-130 28-SEP-21 Pyrene 99.3 % 60-130 28-SEP-21 Pyrene 99.3 % 60-130 28-SEP-21 Pyrene 99.3 % 60-130 28-SEP-21 Pyrene 99.3 % 60-130 28-SEP-21 Pyrene 99.3 % 60-130 28-SEP-21 Pyrene 99.3 % 60-130 28-SEP-21 Pyrene 99.3 % 60-130 28-SEP-21 Pyrene 99.3 % 60-130 28-SEP-21 Pyrene 99.3 % 60-130 28-SEP-21 Pyrene 99.3 % 60-130 28-SEP-21 Pyrene 99.3 % 60-130 28-SEP-21 Pyrene 99.3 % 60-130 28-SEP-21 Pyrene 99.3 % 60-130 28-SEP-21 Pyrene 99.3 % 60-130 28-SEP-21 Pyrene 99.3 % 60-130 28-SEP-21 Pyrene 99.3 % 60-130 28-SEP-21 Pyrene 99.3 % 60-130 28-SEP-21 Pyrene 90.3 % 60-130 28-SEP-21	, , ,								
Indeno(1,2,3-c,d)pyrene 69.6 % 60-130 27-SEP-21 2-Methylnaphthalene 92.5 % 60-130 27-SEP-21 2-Methylnaphthalene 92.5 % 60-130 27-SEP-21 Naphthalene 86.2 % 50-130 27-SEP-21 Perylene 84.2 % 60-130 27-SEP-21 Perylene 97.9 % 60-130 27-SEP-21 Phenanthrene 97.9 % 60-130 27-SEP-21 Pyrene 95.5 % 60-130 27-SEP-21 1-Methylnaphthalene 91.3 % 60-130 27-SEP-21 1-Methylnaphthalene 91.3 % 60-130 27-SEP-21 1-Methylnaphthalene 91.3 % 60-130 27-SEP-21 1-Methylnaphthalene 98.8 % 60-130 28-SEP-21 Accapaththylene 98.8 % 60-130 28-SEP-21 Accapaththylene 98.8 % 60-130 28-SEP-21 Anthracene 108.2 % 60-130 28-SEP-21 Acridine 106.5 % 60-130 28-SEP-21 Benzo(a)pyrene 97.5 % 60-130 28-SEP-21 Benzo(a)pyrene 94.3 % 60-130 28-SEP-21 Benzo(a)pyrene 97.8 % 60-130 28-SEP-21 Benzo(b)tilluoranthene 87.6 % 60-130 28-SEP-21 Benzo(b)tilluoranthene 87.6 % 60-130 28-SEP-21 Benzo(b)tilluoranthene 87.6 % 60-130 28-SEP-21 Benzo(b)tilluoranthene 87.6 % 60-130 28-SEP-21 Fluoranthene 88.5 % 60-130 28-SEP-21 Fluoranthene 88.5 % 60-130 28-SEP-21 Fluoranthene 88.5 % 60-130 28-SEP-21 Fluoranthene 88.6 % 60-130 28-SEP-21 Fluoranthene 88.6 % 60-130 28-SEP-21 Fluoranthene 88.6 % 60-130 28-SEP-21 Fluoranthene 88.8 % 60-130 28-SEP-21 Fluora								60-130	27-SEP-21
2-Methylnaphthalene 92.5 % 60.130 27-SEP-21 Naphthalene 86.2 % 50.130 27-SEP-21 Perylene 84.2 % 60.130 27-SEP-21 Perylene 97.9 % 60.130 27-SEP-21 Pyrene 95.5 % 60.130 27-SEP-21 Pyrene 95.5 % 60.130 27-SEP-21 Pyrene 95.5 % 60.130 27-SEP-21 WG3626733-9 IRM ALS PAH RM2 Acenaphthene 98.8 % 60.130 28-SEP-21 Acenaphthylene 98.8 % 60.130 28-SEP-21 Anthracene 108.2 % 60.130 28-SEP-21 Antificine 106.5 % 60.130 28-SEP-21 Benzo(a)pyrene 97.5 % 60.130 28-SEP-21 Benzo(a)pyrene 94.3 % 60.130 28-SEP-21 Benzo(b&j)fluoranthene 93.3 % 60.130 28-SEP-21 Benzo(b)pyrene 97.8 % 60.130 28-SEP-21 Benzo(b)pyrene 97.8 % 60.130 28-SEP-21 Benzo(b)pyrene 97.8 % 60.130 28-SEP-21 Benzo(b)pyrene 97.8 % 60.130 28-SEP-21 Benzo(b)pyrene 97.8 % 60.130 28-SEP-21 Benzo(b)pyrene 97.8 % 60.130 28-SEP-21 Benzo(b)pyrene 97.8 % 60.130 28-SEP-21 Benzo(b)pyrene 97.8 % 60.130 28-SEP-21 Benzo(b)pyrene 97.8 % 60.130 28-SEP-21 Benzo(b)pyrene 97.8 % 60.130 28-SEP-21 Benzo(b)pyrene 97.8 % 60.130 28-SEP-21 Benzo(b)pyrene 97.8 % 60.130 28-SEP-21 Benzo(b)pyrene 97.8 % 60.130 28-SEP-21 Benzo(b)pyrene 87.6 % 6									
Naphthalene 86.2 % 50-130 27-SEP-21 Perylene 84.2 % 60-130 27-SEP-21 Phenanthrene 97.9 % 60-130 27-SEP-21 Pyrene 95.5 % 60-130 27-SEP-21 1-Methylnaphthalene 91.3 % 60-130 27-SEP-21 1-Methylnaphthalene 87.0 % 60-130 28-SEP-21 Acenaphthene 87.0 % 60-130 28-SEP-21 Acenaphthylene 98.8 % 60-130 28-SEP-21 Ardidine 108.2 % 60-130 28-SEP-21 Ardidine 108.2 % 60-130 28-SEP-21 Benz(a)anthracene 97.5 % 60-130 28-SEP-21 Benz(a)pyrene 94.3 % 60-130 28-SEP-21 Benzo(b)fluoranthene 93.3 % 60-130 28-SEP-21 Benzo(g)pyrene 97.8 % 60-130 28-SEP-21 Benzo(k)fluoranthene		Э						60-130	27-SEP-21
Perylene 84.2 % 60-130 27-SEP-21 Phenanthrene 97.9 % 60-130 27-SEP-21 Pyrene 95.5 % 60-130 27-SEP-21 1-Methylaphthalene 91.3 % 60-130 27-SEP-21 WG3626733-9 IRM ALS PAH RM2 ALS PAH RM2 Acenaphthylene 87.0 % 60-130 28-SEP-21 Acenaphthylene 98.8 % 60-130 28-SEP-21 Ardine 108.2 % 60-130 28-SEP-21 Acridine 106.5 % 60-130 28-SEP-21 Benzo(a)pyrene 97.5 % 60-130 28-SEP-21 Benzo(b§)fluoranthene 93.3 % 60-130 28-SEP-21 Benzo(b)pyrene 97.8 % 60-130 28-SEP-21 Benzo(k)fluoranthene 87.6 % 60-130 28-SEP-21 Benzo(k)fluoranthene 89.4 % 60-130 28-SEP-21 Chrysene 93.8 %								60-130	27-SEP-21
Phenanthrene 97.9 % 60-130 27-SEP-21 Pyrene 95.5 % 60-130 27-SEP-21 1-Methylnaphthalene 91.3 % 60-130 27-SEP-21 WG3626733-9 IRM ALS PAH RM2 SER-21 SER-21 </td <td>Naphthalene</td> <td></td> <td></td> <td>86.2</td> <td></td> <td></td> <td></td> <td>50-130</td> <td>27-SEP-21</td>	Naphthalene			86.2				50-130	27-SEP-21
Pyrene 95.5 % 60-130 27-SEP-21 1-Methylnaphthalene 91.3 % 60-130 27-SEP-21 1-Methylnaphthalene 91.3 % 60-130 27-SEP-21 1-Methylnaphthalene 91.3 % 60-130 28-SEP-21 MG3626733-9 IRM ALS PAH RM2 Acenaphthene 87.0 % 60-130 28-SEP-21 Acenaphthylene 98.8 % 60-130 28-SEP-21 Anthracene 108.2 % 60-130 28-SEP-21 Acridine 106.5 % 60-130 28-SEP-21 Acridine 106.5 % 60-130 28-SEP-21 Benz(a)pyrene 97.5 % 60-130 28-SEP-21 Benz(a)pyrene 94.3 % 60-130 28-SEP-21 Benzo(b§)filuoranthene 93.3 % 60-130 28-SEP-21 Benzo(b§)filuoranthene 97.8 % 60-130 28-SEP-21 Benzo(g)pyrene 97.8 % 60-130 28-SEP-21 Benzo(g)pyrene 87.6 % 60-130 28-SEP-21 Benzo(g)h,i)perylene 87.6 % 60-130 28-SEP-21 Chrysene 93.8 % 60-130 28-SEP-21 Chrysene 93.8 % 60-130 28-SEP-21 Dibenz(a,h)anthracene 83.5 % 60-130 28-SEP-21 Fluoranthene 83.6 % 60-130 28-SEP-21 Fluoranthene 86.4 % 60-130 28-SEP-21 Fluoranthene 86.4 % 60-130 28-SEP-21 Indeno(1,2,3-c,d)pyrene 109.6 % 60-130 28-SEP-21 Pruoranthene 84.8 % 60-130 28-SEP-21	Perylene			84.2		%		60-130	27-SEP-21
1-Methylnaphthalene 91.3 % 60-130 27-SEP-21 WG3626733-9 IRM ALS PAH RM2 Acenaphthene 87.0 % 60-130 28-SEP-21 Acenaphthylene 98.8 % 60-130 28-SEP-21 Anthracene 108.2 % 60-130 28-SEP-21 Actidine 106.5 % 60-130 28-SEP-21 Benz(a)anthracene 97.5 % 60-130 28-SEP-21 Benzo(a)pyrene 94.3 % 60-130 28-SEP-21 Benzo(b)jfluoranthene 93.3 % 60-130 28-SEP-21 Benzo(b)jfluoranthene 97.8 % 60-130 28-SEP-21 Benzo(c)jn,i)perylene 87.6 % 60-130 28-SEP-21 Benzo(k)fluoranthene 89.4 % 60-130 28-SEP-21 Chrysene 93.8 % 60-130 28-SEP-21 Dibenz(a,h,i)anthracene 83.5 % 60-130 28-SEP-21 Dibenz(a,h)anthracene 83.6 % 60-130 28-SEP-21 Fluoranthene 83.6 % 60-130 28-SEP-21 Fluoranthene 83.6 % 60-130 28-SEP-21 Indeno(1,2,3-c.d)pyrene 109.6 % 60-130 28-SEP-21 Lindeno(1,2,3-c.d)pyrene 109.6 % 60-130 28-SEP-21 Perylene 98.3 % 60-130 28-SEP-21 Perylene 98.3 % 60-130 28-SEP-21 Perylene 98.3 % 60-130 28-SEP-21	Phenanthrene			97.9		%		60-130	27-SEP-21
WG3626733-9 IRM ALS PAH RM2 Acenaphthene 87.0 % 60-130 28-SEP-21 Acenaphthylene 98.8 % 60-130 28-SEP-21 Anthracene 108.2 % 60-130 28-SEP-21 Acridine 106.5 % 60-130 28-SEP-21 Benz(a)anthracene 97.5 % 60-130 28-SEP-21 Benzo(a)pyrene 94.3 % 60-130 28-SEP-21 Benzo(b§j)fluoranthene 93.3 % 60-130 28-SEP-21 Benzo(s)pyrene 97.8 % 60-130 28-SEP-21 Benzo(s, hi)perylene 87.6 % 60-130 28-SEP-21 Chrysene 89.4	Pyrene			95.5		%		60-130	27-SEP-21
Acenaphthene 87.0 % 60-130 28-SEP-21 Acenaphthylene 98.8 % 60-130 28-SEP-21 Anthracene 108.2 % 60-130 28-SEP-21 Acridine 106.5 % 60-130 28-SEP-21 Benz(a)anthracene 97.5 % 60-130 28-SEP-21 Benzo(a)pyrene 94.3 % 60-130 28-SEP-21 Benzo(b§)fluoranthene 93.3 % 60-130 28-SEP-21 Benzo(e)pyrene 97.8 % 60-130 28-SEP-21 Benzo(g,h,i)perylene 87.6 % 60-130 28-SEP-21 Benzo(k)fluoranthene 89.4 % 60-130 28-SEP-21 Chrysene 93.8 % 60-130 28-SEP-21 Dibenz(a,h)anthracene 83.5 % 60-130 28-SEP-21 Fluoranthene 83.6 % 60-130 28-SEP-21 Fluorene 86.4 % 60-130 28-SEP-21 Indeno(1,2,3-c,d)pyrene 109.6 % 60-130 28-SEP-21 Napht	1-Methylnaphthalene			91.3		%		60-130	27-SEP-21
Acenaphthylene 98.8 % 60-130 28-SEP-21 Anthracene 108.2 % 60-130 28-SEP-21 Acridine 106.5 % 60-130 28-SEP-21 Benz(a)anthracene 97.5 % 60-130 28-SEP-21 Benzo(a)pyrene 94.3 % 60-130 28-SEP-21 Benzo(b/s)fluoranthene 93.3 % 60-130 28-SEP-21 Benzo(e)pyrene 97.8 % 60-130 28-SEP-21 Benzo(g,h,i)perylene 87.6 % 60-130 28-SEP-21 Benzo(k)fluoranthene 89.4 % 60-130 28-SEP-21 Chrysene 93.8 % 60-130 28-SEP-21 Dibenz(a,h)anthracene 83.5 % 60-130 28-SEP-21 Fluoranthene 83.6 % 60-130 28-SEP-21 Fluorene 86.4 % 60-130 28-SEP-21 Indeno(1,2,3-c,d)pyrene 109.6 % 60-130 28-SEP-21 Naphthalene 82.3 % 60-130 28-SEP-21 Napht			ALS PAH RI						
Anthracene 108.2 % 60-130 28-SEP-21 Acridine 106.5 % 60-130 28-SEP-21 Benz(a)anthracene 97.5 % 60-130 28-SEP-21 Benzo(a)pyrene 94.3 % 60-130 28-SEP-21 Benzo(b&j)fluoranthene 93.3 % 60-130 28-SEP-21 Benzo(b)pyrene 97.8 % 60-130 28-SEP-21 Benzo(e)pyrene 97.8 % 60-130 28-SEP-21 Benzo(g,h,i)perylene 87.6 % 60-130 28-SEP-21 Benzo(k)fluoranthene 89.4 % 60-130 28-SEP-21 Chrysene 93.8 % 60-130 28-SEP-21 Dibenz(a,h)anthracene 83.5 % 60-130 28-SEP-21 Fluoranthene 83.6 % 60-130 28-SEP-21 Fluoranthene 83.6 % 60-130 28-SEP-21 Indeno(1,2,3-c,d)pyrene 109.6 % 60-130 28-SEP-21 2-Methylnaphthalene 84.8 % 60-130 28-SEP-21 Naphthalene 82.3 % 60-130 28-SEP-21 Perylene 98.3 % 60-130 28-SEP-21 Perylene 98.3 % 60-130 28-SEP-21 Perylene 98.3 % 60-130 28-SEP-21 Perylene 87.9 % 60-130 28-SEP-21									
Acridine 106.5 % 60-130 28-SEP-21 Benz(a)anthracene 97.5 % 60-130 28-SEP-21 Benzo(a)pyrene 94.3 % 60-130 28-SEP-21 Benzo(b&j)fluoranthene 93.3 % 60-130 28-SEP-21 Benzo(e)pyrene 97.8 % 60-130 28-SEP-21 Benzo(g,h,i)perylene 87.6 % 60-130 28-SEP-21 Benzo(k)fluoranthene 89.4 % 60-130 28-SEP-21 Chrysene 93.8 % 60-130 28-SEP-21 Dibenz(a,h)anthracene 83.5 % 60-130 28-SEP-21 Fluoranthene 83.6 % 60-130 28-SEP-21 Fluorene 86.4 % 60-130 28-SEP-21 Indeno(1,2,3-c,d)pyrene 109.6 % 60-130 28-SEP-21 Naphthalene 84.8 % 60-130 28-SEP-21 Naphthalene 82.3 % 60-130 28-SEP-21 Perylene 98.3 % 60-130 28-SEP-21 Phenanthren	, ,							60-130	
Benz(a)anthracene 97.5 % 60-130 28-SEP-21 Benzo(a)pyrene 94.3 % 60-130 28-SEP-21 Benzo(b&j)fluoranthene 93.3 % 60-130 28-SEP-21 Benzo(e)pyrene 97.8 % 60-130 28-SEP-21 Benzo(g,h,i)perylene 87.6 % 60-130 28-SEP-21 Benzo(k)fluoranthene 89.4 % 60-130 28-SEP-21 Chrysene 93.8 % 60-130 28-SEP-21 Dibenz(a,h)anthracene 83.5 % 60-130 28-SEP-21 Fluoranthene 83.6 % 60-130 28-SEP-21 Fluorene 86.4 % 60-130 28-SEP-21 Indeno(1,2,3-c,d)pyrene 109.6 % 60-130 28-SEP-21 Vaphthalene 84.8 % 60-130 28-SEP-21 Naphthalene 82.3 % 60-130 28-SEP-21 Perylene 98.3 % 60-130 28-SEP-21 Phenant								60-130	
Benzo(a)pyrene 94.3 % 60-130 28-SEP-21 Benzo(b&j)fluoranthene 93.3 % 60-130 28-SEP-21 Benzo(e)pyrene 97.8 % 60-130 28-SEP-21 Benzo(g,h,i)perylene 87.6 % 60-130 28-SEP-21 Benzo(k)fluoranthene 89.4 % 60-130 28-SEP-21 Chrysene 93.8 % 60-130 28-SEP-21 Dibenz(a,h)anthracene 83.5 % 60-130 28-SEP-21 Fluoranthene 83.6 % 60-130 28-SEP-21 Fluorene 86.4 % 60-130 28-SEP-21 Indeno(1,2,3-c,d)pyrene 109.6 % 60-130 28-SEP-21 2-Methylnaphthalene 84.8 % 60-130 28-SEP-21 Naphthalene 82.3 % 50-130 28-SEP-21 Perylene 98.3 % 60-130 28-SEP-21 Phenanthrene 87.9 % 60-130 28-SEP-21								60-130	28-SEP-21
Benzo(b&j)fluoranthene 93.3 % 60-130 28-SEP-21 Benzo(e)pyrene 97.8 % 60-130 28-SEP-21 Benzo(g,h,i)perylene 87.6 % 60-130 28-SEP-21 Benzo(k)fluoranthene 89.4 % 60-130 28-SEP-21 Chrysene 93.8 % 60-130 28-SEP-21 Dibenz(a,h)anthracene 83.5 % 60-130 28-SEP-21 Fluoranthene 83.6 % 60-130 28-SEP-21 Fluorene 86.4 % 60-130 28-SEP-21 Indeno(1,2,3-c,d)pyrene 109.6 % 60-130 28-SEP-21 2-Methylnaphthalene 84.8 % 60-130 28-SEP-21 Naphthalene 82.3 % 50-130 28-SEP-21 Perylene 98.3 % 60-130 28-SEP-21 Phenanthrene 87.9 % 60-130 28-SEP-21	, ,							60-130	28-SEP-21
Benzo(e)pyrene 97.8 % 60-130 28-SEP-21 Benzo(g,h,i)perylene 87.6 % 60-130 28-SEP-21 Benzo(k)fluoranthene 89.4 % 60-130 28-SEP-21 Chrysene 93.8 % 60-130 28-SEP-21 Dibenz(a,h)anthracene 83.5 % 60-130 28-SEP-21 Fluoranthene 83.6 % 60-130 28-SEP-21 Fluorene 86.4 % 60-130 28-SEP-21 Indeno(1,2,3-c,d)pyrene 109.6 % 60-130 28-SEP-21 2-Methylnaphthalene 84.8 % 60-130 28-SEP-21 Naphthalene 82.3 % 50-130 28-SEP-21 Perylene 98.3 % 60-130 28-SEP-21 Phenanthrene 87.9 % 60-130 28-SEP-21								60-130	28-SEP-21
Benzo(g,h,i)perylene 87.6 % 60-130 28-SEP-21 Benzo(k)fluoranthene 89.4 % 60-130 28-SEP-21 Chrysene 93.8 % 60-130 28-SEP-21 Dibenz(a,h)anthracene 83.5 % 60-130 28-SEP-21 Fluoranthene 83.6 % 60-130 28-SEP-21 Fluorene 86.4 % 60-130 28-SEP-21 Indeno(1,2,3-c,d)pyrene 109.6 % 60-130 28-SEP-21 2-Methylnaphthalene 84.8 % 60-130 28-SEP-21 Naphthalene 82.3 % 50-130 28-SEP-21 Perylene 98.3 % 60-130 28-SEP-21 Phenanthrene 87.9 % 60-130 28-SEP-21	Benzo(b&j)fluoranthene)		93.3				60-130	28-SEP-21
Benzo(k)fluoranthene 89.4 % 60-130 28-SEP-21 Chrysene 93.8 % 60-130 28-SEP-21 Dibenz(a,h)anthracene 83.5 % 60-130 28-SEP-21 Fluoranthene 83.6 % 60-130 28-SEP-21 Fluorene 86.4 % 60-130 28-SEP-21 Indeno(1,2,3-c,d)pyrene 109.6 % 60-130 28-SEP-21 2-Methylnaphthalene 84.8 % 60-130 28-SEP-21 Naphthalene 82.3 % 50-130 28-SEP-21 Perylene 98.3 % 60-130 28-SEP-21 Phenanthrene 87.9 % 60-130 28-SEP-21	Benzo(e)pyrene			97.8		%		60-130	28-SEP-21
Chrysene 93.8 % 60-130 28-SEP-21 Dibenz(a,h)anthracene 83.5 % 60-130 28-SEP-21 Fluoranthene 83.6 % 60-130 28-SEP-21 Fluorene 86.4 % 60-130 28-SEP-21 Indeno(1,2,3-c,d)pyrene 109.6 % 60-130 28-SEP-21 2-Methylnaphthalene 84.8 % 60-130 28-SEP-21 Naphthalene 82.3 % 50-130 28-SEP-21 Perylene 98.3 % 60-130 28-SEP-21 Phenanthrene 87.9 % 60-130 28-SEP-21	Benzo(g,h,i)perylene			87.6		%		60-130	28-SEP-21
Dibenz(a,h)anthracene 83.5 % 60-130 28-SEP-21 Fluoranthene 83.6 % 60-130 28-SEP-21 Fluorene 86.4 % 60-130 28-SEP-21 Indeno(1,2,3-c,d)pyrene 109.6 % 60-130 28-SEP-21 2-Methylnaphthalene 84.8 % 60-130 28-SEP-21 Naphthalene 82.3 % 50-130 28-SEP-21 Perylene 98.3 % 60-130 28-SEP-21 Phenanthrene 87.9 % 60-130 28-SEP-21	Benzo(k)fluoranthene			89.4		%		60-130	28-SEP-21
Fluoranthene 83.6 % 60-130 28-SEP-21 Fluorene 86.4 % 60-130 28-SEP-21 Indeno(1,2,3-c,d)pyrene 109.6 % 60-130 28-SEP-21 2-Methylnaphthalene 84.8 % 60-130 28-SEP-21 Naphthalene 82.3 % 50-130 28-SEP-21 Perylene 98.3 % 60-130 28-SEP-21 Phenanthrene 87.9 % 60-130 28-SEP-21	Chrysene			93.8		%		60-130	28-SEP-21
Fluorene 86.4 % 60-130 28-SEP-21 Indeno(1,2,3-c,d)pyrene 109.6 % 60-130 28-SEP-21 2-Methylnaphthalene 84.8 % 60-130 28-SEP-21 Naphthalene 82.3 % 50-130 28-SEP-21 Perylene 98.3 % 60-130 28-SEP-21 Phenanthrene 87.9 % 60-130 28-SEP-21	Dibenz(a,h)anthracene			83.5		%		60-130	28-SEP-21
Indeno(1,2,3-c,d)pyrene 109.6 % 60-130 28-SEP-21 2-Methylnaphthalene 84.8 % 60-130 28-SEP-21 Naphthalene 82.3 % 50-130 28-SEP-21 Perylene 98.3 % 60-130 28-SEP-21 Phenanthrene 87.9 % 60-130 28-SEP-21	Fluoranthene			83.6		%		60-130	28-SEP-21
2-Methylnaphthalene 84.8 % 60-130 28-SEP-21 Naphthalene 82.3 % 50-130 28-SEP-21 Perylene 98.3 % 60-130 28-SEP-21 Phenanthrene 87.9 % 60-130 28-SEP-21	Fluorene			86.4		%		60-130	28-SEP-21
Naphthalene 82.3 % 50-130 28-SEP-21 Perylene 98.3 % 60-130 28-SEP-21 Phenanthrene 87.9 % 60-130 28-SEP-21	Indeno(1,2,3-c,d)pyrene	Э		109.6		%		60-130	28-SEP-21
Perylene 98.3 % 60-130 28-SEP-21 Phenanthrene 87.9 % 60-130 28-SEP-21	2-Methylnaphthalene			84.8		%		60-130	28-SEP-21
Phenanthrene 87.9 % 60-130 28-SEP-21	Naphthalene			82.3		%		50-130	28-SEP-21
	Perylene			98.3		%		60-130	28-SEP-21
	Phenanthrene			87.9		%		60-130	28-SEP-21
	Pyrene			86.9		%			28-SEP-21

Workorder: L2641269 Report Date: 05-OCT-21 Page 10 of 15

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-H/A-MS-CL	Soil							
Batch R5603578								
WG3626733-9 IRM		ALS PAH RM						
1-Methylnaphthalene			83.4		%		60-130	28-SEP-21
WG3626733-3 LCS Acenaphthene			104.8		%		60-130	27-SEP-21
Acenaphthylene			101.8		%		60-130	27-SEP-21
Anthracene			110.1		%		60-130	27-SEP-21
Acridine			91.6		%		60-130	27-SEP-21
Benz(a)anthracene			115.1		%		60-130	27-SEP-21
Benzo(a)pyrene			105.5		%		60-130	27-SEP-21
Benzo(b&j)fluoranthene			109.0		%		60-130	27-SEP-21
Benzo(e)pyrene			112.1		%		60-130	27-SEP-21
Benzo(g,h,i)perylene			98.5		%		60-130	27-SEP-21
Benzo(k)fluoranthene			103.7		%		60-130	27-SEP-21
Chrysene			106.2		%		60-130	27-SEP-21
Dibenz(a,h)anthracene			95.6		%		60-130	27-SEP-21
Fluoranthene			104.3		%		60-130	27-SEP-21
Fluorene			105.0		%		60-130	27-SEP-21
Indeno(1,2,3-c,d)pyrene			100.6		%		60-130	27-SEP-21
2-Methylnaphthalene			107.0		%		60-130	27-SEP-21
Naphthalene			101.6		%		50-130	27-SEP-21
Perylene			99.6		%		60-130	27-SEP-21
Phenanthrene			110.2		%		60-130	27-SEP-21
Pyrene			105.5		%		60-130	27-SEP-21
1-Methylnaphthalene			107.9		%		60-130	27-SEP-21
Quinoline			86.7		%		60-130	27-SEP-21
WG3626733-5 LCS								
Acenaphthene			107.5		%		60-130	27-SEP-21
Acenaphthylene			104.6		%		60-130	27-SEP-21
Anthracene			114.7		%		60-130	27-SEP-21
Acridine			112.8		%		60-130	27-SEP-21
Benz(a)anthracene			119.5		%		60-130	27-SEP-21
Benzo(a)pyrene			110.0		%		60-130	27-SEP-21
Benzo(b&j)fluoranthene			111.3		%		60-130	27-SEP-21
Benzo(e)pyrene			118.1		%		60-130	27-SEP-21
Benzo(g,h,i)perylene			103.3		%		60-130	27-SEP-21
Benzo(k)fluoranthene			110.3		%		60-130	27-SEP-21

Workorder: L2641269 Report Date: 05-OCT-21 Page 11 of 15

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-H/A-MS-CL	Soil							
Batch R5603578								
WG3626733-5 LCS								
Chrysene			112.7		%		60-130	27-SEP-21
Dibenz(a,h)anthracene			100.2		%		60-130	27-SEP-21
Fluoranthene			108.9		%		60-130	27-SEP-21
Fluorene			112.1		%		60-130	27-SEP-21
Indeno(1,2,3-c,d)pyrene			80.6		%		60-130	27-SEP-21
2-Methylnaphthalene			113.5		%		60-130	27-SEP-21
Naphthalene			106.5		%		50-130	27-SEP-21
Perylene			108.2		%		60-130	27-SEP-21
Phenanthrene			115.4		%		60-130	27-SEP-21
Pyrene			110.2		%		60-130	27-SEP-21
1-Methylnaphthalene			110.8		%		60-130	27-SEP-21
Quinoline			103.2		%		60-130	27-SEP-21
WG3626733-1 MB								
Acenaphthene			<0.0050		mg/kg		0.005	27-SEP-21
Acenaphthylene			< 0.0050		mg/kg		0.005	27-SEP-21
Anthracene			<0.0040		mg/kg		0.004	27-SEP-21
Acridine			<0.010		mg/kg		0.01	27-SEP-21
Benz(a)anthracene			<0.010		mg/kg		0.01	27-SEP-21
Benzo(a)pyrene			<0.010		mg/kg		0.01	27-SEP-21
Benzo(b&j)fluoranthene			<0.010		mg/kg		0.01	27-SEP-21
Benzo(e)pyrene			<0.010		mg/kg		0.01	27-SEP-21
Benzo(g,h,i)perylene			<0.010		mg/kg		0.01	27-SEP-21
Benzo(k)fluoranthene			<0.010		mg/kg		0.01	27-SEP-21
Chrysene			<0.010		mg/kg		0.01	27-SEP-21
Dibenz(a,h)anthracene			<0.0050		mg/kg		0.005	27-SEP-21
Fluoranthene			<0.010		mg/kg		0.01	27-SEP-21
Fluorene			<0.010		mg/kg		0.01	27-SEP-21
Indeno(1,2,3-c,d)pyrene			<0.010		mg/kg		0.01	27-SEP-21
2-Methylnaphthalene			<0.010		mg/kg		0.01	27-SEP-21
Naphthalene			<0.010		mg/kg		0.01	27-SEP-21
Perylene			<0.010		mg/kg		0.01	27-SEP-21
Phenanthrene			<0.010		mg/kg		0.01	27-SEP-21
Pyrene			<0.010		mg/kg		0.01	27-SEP-21
1-Methylnaphthalene			<0.050		mg/kg		0.05	27-SEP-21

Workorder: L2641269 Report Date: 05-OCT-21 Page 12 of 15

Test Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-H/A-MS-CL	Soil							
Batch R5603578								
WG3626733-1 MB Quinoline			<0.050		mg/kg		0.05	27-SEP-21
Surrogate: d8-Naphthalen	е		84.6		%		50-130	27-SEP-21
Surrogate: d10-Acenaphth	nene		89.8		%		60-130	27-SEP-21
Surrogate: d10-Phenanthi	ene		91.4		%		60-130	27-SEP-21
Surrogate: d12-Chrysene			93.8		%		60-130	27-SEP-21
WG3626733-10 MB Acenaphthene			<0.0050		mg/kg		0.005	28-SEP-21
Acenaphthylene			<0.0050		mg/kg		0.005	28-SEP-21
Anthracene			<0.0040		mg/kg		0.004	28-SEP-21
Acridine			<0.010		mg/kg		0.01	28-SEP-21
Benz(a)anthracene			<0.010		mg/kg		0.01	28-SEP-21
Benzo(a)pyrene			<0.010		mg/kg		0.01	28-SEP-21
Benzo(b&j)fluoranthene			<0.010		mg/kg		0.01	28-SEP-21
Benzo(e)pyrene			<0.010		mg/kg		0.01	28-SEP-21
Benzo(g,h,i)perylene			<0.010		mg/kg		0.01	28-SEP-21
Benzo(k)fluoranthene			<0.010		mg/kg		0.01	28-SEP-21
Chrysene			<0.010		mg/kg		0.01	28-SEP-21
Dibenz(a,h)anthracene			<0.0050		mg/kg		0.005	28-SEP-21
Fluoranthene			<0.010		mg/kg		0.01	28-SEP-21
Fluorene			<0.010		mg/kg		0.01	28-SEP-21
Indeno(1,2,3-c,d)pyrene			<0.010		mg/kg		0.01	28-SEP-21
2-Methylnaphthalene			<0.010		mg/kg		0.01	28-SEP-21
Naphthalene			<0.010		mg/kg		0.01	28-SEP-21
Perylene			<0.010		mg/kg		0.01	28-SEP-21
Phenanthrene			<0.010		mg/kg		0.01	28-SEP-21
Pyrene			<0.010		mg/kg		0.01	28-SEP-21
1-Methylnaphthalene			<0.050		mg/kg		0.05	28-SEP-21
Quinoline			<0.050		mg/kg		0.05	28-SEP-21
Surrogate: d8-Naphthalen	е		82.5		%		50-130	28-SEP-21
Surrogate: d10-Acenaphth	nene		94.5		%		60-130	28-SEP-21
Surrogate: d10-Phenanthi	rene		95.0		%		60-130	28-SEP-21
Surrogate: d12-Chrysene			99.1		%		60-130	28-SEP-21
WG3626733-7 MB Acenaphthene			<0.0050		mg/kg		0.005	27-SEP-21
Acenaphthylene			<0.0050		mg/kg		0.005	27-SEP-21 27-SEP-21

Workorder: L2641269 Report Date: 05-OCT-21 Page 13 of 15

								•
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-H/A-MS-CL	Soil							
Batch R5603578								
WG3626733-7 MB								
Anthracene			<0.0040		mg/kg		0.004	27-SEP-21
Acridine			<0.010		mg/kg		0.01	27-SEP-21
Benz(a)anthracene			<0.010		mg/kg		0.01	27-SEP-21
Benzo(a)pyrene			<0.010		mg/kg		0.01	27-SEP-21
Benzo(b&j)fluoranthene			<0.010		mg/kg		0.01	27-SEP-21
Benzo(e)pyrene			<0.010		mg/kg		0.01	27-SEP-21
Benzo(g,h,i)perylene			<0.010		mg/kg		0.01	27-SEP-21
Benzo(k)fluoranthene			<0.010		mg/kg		0.01	27-SEP-21
Chrysene			<0.010		mg/kg		0.01	27-SEP-21
Dibenz(a,h)anthracene			<0.0050		mg/kg		0.005	27-SEP-21
Fluoranthene			<0.010		mg/kg		0.01	27-SEP-21
Fluorene			<0.010		mg/kg		0.01	27-SEP-21
Indeno(1,2,3-c,d)pyrene			<0.010		mg/kg		0.01	27-SEP-21
2-Methylnaphthalene			<0.010		mg/kg		0.01	27-SEP-21
Naphthalene			<0.010		mg/kg		0.01	27-SEP-21
Perylene			<0.010		mg/kg		0.01	27-SEP-21
Phenanthrene			<0.010		mg/kg		0.01	27-SEP-21
Pyrene			<0.010		mg/kg		0.01	27-SEP-21
1-Methylnaphthalene			< 0.050		mg/kg		0.05	27-SEP-21
Quinoline			< 0.050		mg/kg		0.05	27-SEP-21
Surrogate: d8-Naphthale	ene		85.4		%		50-130	27-SEP-21
Surrogate: d10-Acenaph	thene		94.6		%		60-130	27-SEP-21
Surrogate: d10-Phenantl	hrene		98.6		%		60-130	27-SEP-21
Surrogate: d12-Chrysene	е		102.3		%		60-130	27-SEP-21
PH-1:2-CL	Soil							
Batch R5604712								
WG3627849-5 IRM		SAL-STD11						
pH (1:2 soil:water)			7.99		рН		7.7-8.3	29-SEP-21
WG3627849-4 LCS								
pH (1:2 soil:water)			7.00		рН		6.8-7.2	29-SEP-21
PSA-PIPET-DETAIL-SK	Soil							
Batch R5602040		0000 504 5	011					
WG3622187-2 IRM % Sand (2.00mm - 1.00r	mm)	2020-PSA_S	OIL 2.3		%		0-7.2	27-SEP-21
	,				/0		0-1.2	Z1-OEF-Z1

Workorder: L2641269 Report Date: 05-OCT-21 Page 14 of 15

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PSA-PIPET-DETAIL-SK	Soil							
Batch R5602040								
WG3622187-2 IRM		2020-PSA_S	OIL					
% Sand (0.50mm - 0.25m	ım)		8.9		%		4-14	27-SEP-21
% Sand (0.25mm - 0.125i	mm)		16.6		%		11.7-21.7	27-SEP-21
% Sand (0.125mm - 0.063	3mm)		13.4		%		8.4-18.4	27-SEP-21
% Silt (0.063mm - 0.0312	mm)		13.4		%		8.5-18.5	27-SEP-21
% Silt (0.0312mm - 0.004	mm)		21.1		%		15.1-25.1	27-SEP-21
% Clay (<4um)			21.4		%		16.5-26.5	27-SEP-21

Workorder: L2641269 Report Date: 05-OCT-21 Page 15 of 15

Legend:

Limit ALS Control Limit (Data Quality Objectives)

DUP Duplicate

RPD Relative Percent Difference

N/A Not Available

LCS Laboratory Control Sample SRM Standard Reference Material

MS Matrix Spike

MSD Matrix Spike Duplicate

ADE Average Desorption Efficiency

MB Method Blank

IRM Internal Reference Material
CRM Certified Reference Material
CCV Continuing Calibration Verification
CVS Calibration Verification Standard
LCSD Laboratory Control Sample Duplicate

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Teck							Page	1 of 1											
IECK	COC ID:	Septembe	r EVO	LAEM	P 2021		TURNA	ROUNI	D TIME:	T									
		NT INFO : 3							LABOR		11						Ý		
Facility Name / Job# F	REP								ALS Calgar								Excel	PDF	EDD
Project Manager	Allie Ferguson						Lab		Lyudmyla S						or@teck.co		7		*
Email a	allie.ferguson@teck.co	om									Isglobal.com	<u> </u>		reckcoel@e	gulsonline.c	om			
Address 4	421 Pine Avenue					.		Address	2559 29 Str	eet NE					@mirnow.ca		r		1
					n Inc			City	Calgary		Province	Tim			tz@leck.com		4		*
City		Sparwood			Province BC Country Car				TIY 7B5		Country	AB Canada	222	Mermenie	r@minnow.	<u> </u>	z e	N .	z
Postal Code	250 405 8202	V0B 2G0			Country Car	1808	Phone	Number	1 403 407 1	794	Country	Canada							
Phone Number 2		IPLE DETAILS					- Hone	ranser			ALYSIS RE	Allegre	D.	7. 10.	779	C14.44.1	Field, L. Lab.		
	34.5	IFUE DEIAILS		 		-				7		¥	, T		+	17417			
		1							ž N	И	N	N	N						
· 	1-#1- 11-11# 1 #									1				*****		-	 		
<i>i</i>		1 .							NONE	NONE	NONE	NONE	NONE						
						 			2	+		4	-	 	****				
1.0044000.0050		•		Material (Yes/N						L		Ä	٠,	_					
L2641269-COFC				Š						25		PSA-PIPET-DETAIL-SK Particle Size	PAH-TMB-D/A-MS-CL	. *	'				į
				rial						MET-CCME+FULI	*	₹	MS	-					
T. Control of the Con				latc					7.E	<u>~</u>	MOISTURE-CL . Moisture	DE	\$						
		4, .		S					ž 75	ME	₩ 2	ize T	2		'				
		5. **		l dor					SS	၂ ဗ	T.U.	le S	Ξ		'				
•			Field	Hazardous		Time	G=Grab	# Of	C-TOC-SK	1	OIS	1 ₹ £	# #			ĺ			
Sample ID	CONTRACTOR OF THE PROPERTY OF	ple Location	Matrix		Date	(24hr)	C=Comp	Cont.	్ట్	Ξ	Σž	S G	PA PA		<u> </u>	<u> </u>	<u> </u>		
RG_MICOMP_SE-1_2021-09-13_0945	RG	MICOMP.	SE	No	9/13/2021	945	G ·	2	x	X	x	x	х		i '		ļ į		
RG_MICOMP_SE-2_2021-09-13_1045	" RG	MICOMP	SE	No	9/13/2021	1045	G	2	X	х	х	X	Х						
RG_MICOMP_SE-3_2021-09-13_1215	" RG	MICOMP	SE	No	9/13/2021	1215	G	2	X	х	х	х	Х						
RG_MICOMP_SE-4_2021-09-13_1415	RG	MICOMP	SE	No	9/13/2021	1415	G	2	X	Х	х	х	х						
RG_MICOMP_SE-5_2021-09-13_1545	RG	MICOMP.	SE	No	9/13/2021	1545	G	2	Х	х	х	х	х						
RG_RIVER_SE_2021-09-13_1045		G RIVER	SE	No	9/13/2021	1045	G	2	X	Х	Х	Х	Х						
	11			7.4															
		ر ا		399					,										
										1						<u> </u>			
		1000																	
ADDITIONAL COMMENTS	SPECIAL INSTRUCT	IIONS		-	RELINQUISH	D BY/AFF	ILIATION		DATE/TIM	I	A.C	CEPTED	BY/AFF	ILIATIO	<u> </u>	-	5 / 1	- 7	
		•			1	· Ings/Minr							h-	-		-	514	//	1
LS PO 750546				ļ	Jennilei	· ings/iviini	10W		***************************************	***************************************	 			\					1/12
•											-		1				14	<i>\</i>	12
NR OF BOTTLES RETU	PARTY PARTY CONTRACTOR																<u>ب (</u>		
NB OF BOTTLES RETUI	MINED/DESCRIPTIO		1-61-1									,		1786					
	Prior	Regular (c ity (2-3 business days) - 50% sur		1	Sampler's Nan	ie		Ų	lennifer In	gs		Mol	ile#	1		519-500	0-3444		-
	Emerger	ncy (1 Business Day) - 100% sur	charge		ampler's Signat		Jon	A A	yo 🗮				m.	ta			16 303	- 3	
	For Emergency <1 D	Day, ASAP or Weekend - Conta	ct ALS		ampier's Signat	ure	T	<i>9</i> 2	1.1			Date	Time		S	September	15, 2021		

mg 4" "

4.

SEDIMENT CHEMISTRY

ALS Laboratory Report L2641071 (Finalized October 11, 2021)

Teck Coal Ltd.

ATTN: Allie Ferguson 421 Pine Avenue

Sparwood BC VOB 2G0

Date Received: 14-SEP-21

Report Date: 11-OCT-21 18:05 (MT)

Version: FINAL REV. 3

Client Phone: 250-425-8202

Certificate of Analysis

Lab Work Order #: L2641071
Project P.O. #: VP000750546

Job Reference: REGIONAL EFFECTS PROGRAM

C of C Numbers:

September EVO LAEMP

Legal Site Desc:

Lyudmyla Shvets, B.Sc. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 2559 29 Street NE, Calgary, AB T1Y 7B5 Canada | Phone: +1 403 291 9897 | Fax: +1 403 291 0298 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

L2641071 CONTD.... **PAGE** 2 of 15

11-OCT-21 18:05 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT Version: FINAL REV. 3

L2641071-1 L2641071-2 L2641071-3 L2641071-4 L2641071-5 Sample ID SE Description SE SE SE SE 09-SEP-21 09-SEP-21 09-SEP-21 09-SEP-21 09-SEP-21 Sampled Date Sampled Time 11:30 15:40 16:00 16:00 16:15 RG MIDER SE-RG MIDER SE-RG MIDER SE-RG MIDER SE-RG MIDER SE-Client ID 1_2021-09-2_2021-09-3_2021-09-4_2021-09-5_2021-09-09_1130 09_1540 09_1600 09_1600 09_1615 Grouping **Analyte** SOIL **Physical Tests** Moisture (%) 74.1 64.0 75.9 68.9 73.5 pH (1:2 soil:water) (pH) 7.15 7.21 7.30 7.52 7.53 PSAL PSAL PSAL PSAL PSAL **Particle Size** % Gravel (>2mm) (%) 15.2 <1.0 3.8 <1.0 1.2 PSAL **PSAL** PSAL PSAL PSAL % Sand (2.00mm - 1.00mm) (%) 15.6 1.7 2.9 3.7 5.4 PSAL PSAL **PSAL** PSAL PSAL % Sand (1.00mm - 0.50mm) (%) 15.2 3.2 3.9 13.4 12.1 PSAL PSAL PSAL PSAL PSAL % Sand (0.50mm - 0.25mm) (%) 11.4 9.9 9.4 13.0 9.3 PSAL PSAL PSAL PSAL PSAL % Sand (0.25mm - 0.125mm) (%) 7.6 10.0 6.4 6.8 5.3 **PSAL PSAL** PSAL PSAL PSAL % Sand (0.125mm - 0.063mm) (%) 7.4 8.5 11.7 8.5 6.1 **PSAL PSAL PSAL** PSAL PSAL % Silt (0.063mm - 0.0312mm) (%) 12.3 29.1 23.9 22.0 25.5 **PSAL PSAL** PSAL PSAL PSAL % Silt (0.0312mm - 0.004mm) (%) 14.0 34.0 27.2 26.5 29.5 **PSAL PSAL** PSAL PSAL PSAL % Clay (<4um) (%) 2.9 7.7 5.3 5.5 5.5 Texture Sandy loam Silt loam Silt loam Sandy loam Silt loam Organic / Total Organic Carbon (%) 3.14 6.68 3.94 3.70 4.97 **Inorganic Carbon** Aluminum (Al) (mg/kg) Metals 6100 6350 7510 7580 5650 Antimony (Sb) (mg/kg) 0.88 1.07 0.74 0.76 0.81 Arsenic (As) (mg/kg) 6.49 8.44 9.64 5.65 5.95 Barium (Ba) (mg/kg) 193 207 262 225 183 Beryllium (Be) (mg/kg) 0.49 0.52 0.56 0.56 0.52 Bismuth (Bi) (mg/kg) <0.20 < 0.20 < 0.20 < 0.20 < 0.20 Boron (B) (mg/kg) 6.3 6.0 8.8 8.6 6.4 Cadmium (Cd) (mg/kg) 1.37 1.38 1.64 1.40 1.24 Calcium (Ca) (mg/kg) 39400 38500 36900 47200 41200 Chromium (Cr) (mg/kg) 13.5 15.7 15.0 14.8 12.4 Cobalt (Co) (mg/kg) 6.72 7.32 7.18 8.84 7.11 Copper (Cu) (mg/kg) 12.4 12.9 13.7 12.4 11.6 Iron (Fe) (mg/kg) 14300 15500 14500 14400 13600 Lead (Pb) (mg/kg) 8.54 8.87 9.36 9.85 8.72 Lithium (Li) (mg/kg) 7.3 7.3 8.7 9.0 8.0 Magnesium (Mg) (mg/kg) 5880 6440 6510 5870 5410 Manganese (Mn) (mg/kg) 272 258 267 344 271 Mercury (Hg) (mg/kg) 0.0502 0.0455 0.0525 0.0480 0.0363 Molybdenum (Mo) (mg/kg) 1.61 2.61 1.40 1.44 1.55 Nickel (Ni) (mg/kg) 29.2 30.9 35.9 30.9 29.3 Phosphorus (P) (mg/kg) 1230 1160 1180 1210 1100 Potassium (K) (mg/kg) 1220 1280 1560 1660 1120 Selenium (Se) (mg/kg) 1.43 1.36 1.95 1.70 1.78 Silver (Ag) (mg/kg) 0.17 0.21 0.19 0.16

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L2641071 CONTD.... PAGE 3 of 15

11-OCT-21 18:05 (MT)

Version: FINAL REV. 3

	Sample ID Description Sampled Date Sampled Time Client ID	L2641071-6 SE 10-SEP-21 10:00 RG_ERCK_1_SE- 1_2021-09- 10_1000	L2641071-7 SE 10-SEP-21 10:10 RG_ERCK_1_SE- 2_2021-09- 10_1010	L2641071-8 SE 10-SEP-21 10:20 RG_ERCK_1_SE- 3_2021-09- 10_1020	L2641071-9 SE 10-SEP-21 10:30 RG_ERCK_1_SE- 4_2021-09- 10_1030	L2641071-10 SE 10-SEP-21 10:40 RG_ERCK_1_SE- 5_2021-09- 10_1040
Grouping	Analyte				_	_
SOIL						
Physical Tests	Moisture (%)	61.3	44.8	55.4	40.8	47.1
	pH (1:2 soil:water) (pH)	6.95	7.44	7.12	7.55	7.42
Particle Size	% Gravel (>2mm) (%)	4.7	2.0	3.3	<1.0	<1.0
	% Sand (2.00mm - 1.00mm) (%)	7.4	2.9	5.6 PSAL	<1.0	1.1
	% Sand (1.00mm - 0.50mm) (%)	PSAL 8.2	5.9	7.3	1.3	5.0
	% Sand (0.50mm - 0.25mm) (%)	PSAL 15.6	19.4	21.8	20.8	20.2
	% Sand (0.25mm - 0.125mm) (%)	PSAL 27.3	30.6	30.4	36.5	19.5
	% Sand (0.125mm - 0.063mm) (%)	13.9	13.8	PSAL 11.1	15.4	12.4
	% Silt (0.063mm - 0.0312mm) (%)	PSAL 11.1	11.7	9.4	12.0	17.8
	% Silt (0.0312mm - 0.004mm) (%)	10.0	11.4	9.2	11.1	19.6
	% Clay (<4um) (%)	PSAL 1.7	2.2	PSAL 1.9	2.3	3.5
	Texture	Loamy sand	Loamy sand	Loamy sand	Loamy sand	Sandy loam
Organic / Inorganic Carbon	Total Organic Carbon (%)	2.4	2.1	2.2	2.33	4.58
Metals	Aluminum (Al) (mg/kg)	4360	3550	1360	6550	5920
	Antimony (Sb) (mg/kg)	0.49	0.42	0.19	0.76	0.56
	Arsenic (As) (mg/kg)	3.77	3.63	1.47	6.23	5.35
	Barium (Ba) (mg/kg)	127	109	81.2	129	126
	Beryllium (Be) (mg/kg)	0.32	0.30	0.12	0.54	0.43
	Bismuth (Bi) (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	Boron (B) (mg/kg)	5.5	<5.0	<5.0	6.1	5.9
	Cadmium (Cd) (mg/kg)	0.651	0.571	0.320	0.839	0.791
	Calcium (Ca) (mg/kg)	123000	103000	149000	48000	59200
	Chromium (Cr) (mg/kg)	8.66	7.11	2.81	11.6	10.9
	Cobalt (Co) (mg/kg)	11.0	18.2	28.3	12.8	17.3
	Copper (Cu) (mg/kg)	7.37	7.02	2.67	10.8	10.7
	Iron (Fe) (mg/kg)	9180	7680	3540	13000	13000
	Lead (Pb) (mg/kg)	5.96	5.54	2.03	8.68	7.77
	Lithium (Li) (mg/kg)	6.2	5.2	2.5	8.9	7.5
	Magnesium (Mg) (mg/kg)	5760	4910	3600	6160	7020
	Manganese (Mn) (mg/kg)	188	401	643	346	399
	Mercury (Hg) (mg/kg)	0.0191	0.0225	<0.0050	0.0412	0.0335
	Molybdenum (Mo) (mg/kg)	1.35	1.00	0.62	1.72	1.58
	Nickel (Ni) (mg/kg)	37.0	51.8	52.2	45.8	54.4
	Phosphorus (P) (mg/kg)	869	782	337	1030	942
	Potassium (K) (mg/kg)	1160	890	400	1430	1300
	Selenium (Se) (mg/kg)	8.18	1.90	1.58	1.72	1.51
	Silver (Ag) (mg/kg)	<0.10	<0.10	<0.10	0.16	0.14

 $^{^{\}star}$ Please refer to the Reference Information section for an explanation of any qualifiers detected.

L2641071 CONTD.... PAGE 4 of 15

11-OCT-21 18:05 (MT)

Version: FINAL REV. 3

	Sample ID Description Sampled Date Sampled Time Client ID	L2641071-11 SE 12-SEP-21 10:00 RG_ALUSM_SE- 1_2021-09- 12_1000	L2641071-12 SE 12-SEP-21 11:10 RG_ALUSM_SE- 2_2021-09- 12_1110	L2641071-13 SE 12-SEP-21 13:00 RG_ALUSM_SE- 3_2021-09- 12_1300	L2641071-14 SE 12-SEP-21 15:00 RG_MI3_SE- 1_2021-09- 10_1500	L2641071-15 SE 12-SEP-21 14:30 RG_MI3_SE- 2_2021-09- 12_1430
Grouping	Analyte	12_1000	12_1110	12_1300	10_1300	12_1430
SOIL						
Physical Tests	Moisture (%)	34.1	65.0	82.7	31.8	53.3
	pH (1:2 soil:water) (pH)	7.63	7.26	7.32	7.56	7.30
Particle Size	% Gravel (>2mm) (%)	1.7	19.4	PSAL 8.5	6.8	PSAL 8.4
	% Sand (2.00mm - 1.00mm) (%)	4.5	PSAL 3.2	PSAL <1.0	4.8	PSAL 4.0
	% Sand (1.00mm - 0.50mm) (%)	10.9	PSAL <1.0	PSAL <1.0	20.2	PSAL 7.5
	% Sand (0.50mm - 0.25mm) (%)	19.1	PSAL 1.3	PSAL 1.3	37.7	PSAL 16.0
	% Sand (0.25mm - 0.125mm) (%)	16.9	5.7	4.0 PSAL	17.4	PSAL 19.1
	% Sand (0.125mm - 0.063mm) (%)	11.5	PSAL 11.5	7.7	4.4	PSAL 12.5
	% Silt (0.063mm - 0.0312mm) (%)	15.1	PSAL 25.7	75AL 32.2	3.7	PSAL 14.9
	% Silt (0.0312mm - 0.004mm) (%)	16.4	28.0	75AL 39.1	3.9	PSAL 15.0
	% Clay (<4um) (%)	3.8	4.3	PSAL 6.6	1.1	PSAL 2.6
	Texture	Sandy loam	Silt loam	Silt loam	Sand	Sandy loam
Organic / Inorganic Carbon	Total Organic Carbon (%)	2.23	5.89	7.50	1.13	2.56
Metals	Aluminum (Al) (mg/kg)	9240	7250	7260	7460	7230
	Antimony (Sb) (mg/kg)	0.40	0.36	0.60	1.05	0.89
	Arsenic (As) (mg/kg)	7.23	4.30	6.75	9.30	7.86
	Barium (Ba) (mg/kg)	149	149	177	205	220
	Beryllium (Be) (mg/kg)	0.60	0.50	0.54	0.60	0.51
	Bismuth (Bi) (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	Boron (B) (mg/kg)	8.5	7.2	7.4	6.2	6.3
	Cadmium (Cd) (mg/kg)	0.505	0.731	0.972	1.17	1.10
	Calcium (Ca) (mg/kg)	28800	34000	41000	38300	28500
	Chromium (Cr) (mg/kg)	13.8	13.6	14.9	14.6	16.7
	Cobalt (Co) (mg/kg)	5.61	5.12	6.18	5.83	5.85
	Copper (Cu) (mg/kg)	12.8	12.0	14.6	12.8	10.9
	Iron (Fe) (mg/kg)	19900	13800	17800	20400	14600
	Lead (Pb) (mg/kg)	10.9	10.2	11.3	9.13	8.82
	Lithium (Li) (mg/kg)	14.3	10.8	10.9	8.4	7.5
	Magnesium (Mg) (mg/kg)	8450	9590	9250	6810	4920
	Manganese (Mn) (mg/kg)	137	222	388	280	213
	Mercury (Hg) (mg/kg)	0.0252	0.0393	0.0467	0.0262	0.0458
	Molybdenum (Mo) (mg/kg)	1.71	1.01	1.58	2.02	1.73
	Nickel (Ni) (mg/kg)	18.4	18.7	21.9	23.7	25.9
	Phosphorus (P) (mg/kg)	1020	1040	1200	1360	1130
	Potassium (K) (mg/kg)	2090	1520	1460	1670	1600
	Selenium (Se) (mg/kg)	0.55	1.51	1.98	0.64	1.00
	Silver (Ag) (mg/kg)	<0.10	0.13	0.16	0.16	0.16

 $^{^{\}star}$ Please refer to the Reference Information section for an explanation of any qualifiers detected.

L2641071 CONTD.... PAGE 5 of 15

11-OCT-21 18:05 (MT) Version: FINAL REV. 3

	Sample ID Description Sampled Date Sampled Time Client ID	L2641071-16 SE 12-SEP-21 14:40 RG_MI3_SE- 3_2021-09- 12_1440	L2641071-17 SE 12-SEP-21 14:40 RG_RIVER_SE- 4_2021-09- 12_1440		
Grouping	Analyte				
SOIL					
Physical Tests	Moisture (%)	44.5	45.2		
	pH (1:2 soil:water) (pH)	7.33	7.32		
Particle Size	% Gravel (>2mm) (%)	PSAL 4.3	PSAL 1.9		
	% Sand (2.00mm - 1.00mm) (%)	PSAL 3.3	PSAL 2.0		
	% Sand (1.00mm - 0.50mm) (%)	7.3	3.4		
	% Sand (0.50mm - 0.25mm) (%)	PSAL 8.3	5.9		
	% Sand (0.25mm - 0.125mm) (%)	PSAL 16.6	17.7		
	% Sand (0.125mm - 0.063mm) (%)	PSAL 23.2	26.2		
	% Silt (0.063mm - 0.0312mm) (%)	PSAL 18.4	21.3 PSAL		
	% Silt (0.0312mm - 0.004mm) (%)	PSAL 16.2	PSAL 18.8		
	% Clay (<4um) (%)	PSAL 2.4	PSAL 2.8		
	Texture	Sandy loam	Sandy loam		
Organic / Inorganic Carbon	Total Organic Carbon (%)	3.22	5.81		
Metals	Aluminum (Al) (mg/kg)	7920	7900		
	Antimony (Sb) (mg/kg)	0.84	0.86		
	Arsenic (As) (mg/kg)	6.18	6.03		
	Barium (Ba) (mg/kg)	219	247		
	Beryllium (Be) (mg/kg)	0.58	0.57		
	Bismuth (Bi) (mg/kg)	<0.20	<0.20		
	Boron (B) (mg/kg)	6.5	6.4		
	Cadmium (Cd) (mg/kg)	1.40	1.46		
	Calcium (Ca) (mg/kg)	29100	29000		
	Chromium (Cr) (mg/kg)	15.7	16.2		
	Cobalt (Co) (mg/kg)	6.82	6.55		
	Copper (Cu) (mg/kg)	12.7	13.1		
	Iron (Fe) (mg/kg)	14300	14200		
	Lead (Pb) (mg/kg)	10.3	9.07		
	Lithium (Li) (mg/kg)	8.6	7.6		
	Magnesium (Mg) (mg/kg)	5400	5210		
	Manganese (Mn) (mg/kg)	215	233		
	Mercury (Hg) (mg/kg)	0.0385	0.0640		
	Molybdenum (Mo) (mg/kg)	1.39	1.51		
	Nickel (Ni) (mg/kg)	28.0	27.4		
	Phosphorus (P) (mg/kg)	1150	1260		
	Potassium (K) (mg/kg)	1670	1720		
	Selenium (Se) (mg/kg)	1.08	1.18		
	Silver (Ag) (mg/kg)	0.18	0.18		

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L2641071 CONTD PAGE 6 of 15

11-OCT-21 18:05 (MT) Version: FINAL REV. 3

ALS ENVIRONMENTAL ANALYTICAL REPORT

L2641071-1 L2641071-2 L2641071-3 L2641071-4 L2641071-5 Sample ID Description SE SE SE SE SE 09-SEP-21 09-SEP-21 09-SEP-21 09-SEP-21 09-SEP-21 Sampled Date 11:30 15:40 16:00 16:00 16:15 Sampled Time RG MIDER SE-RG MIDER SE-RG MIDER SE-RG MIDER SE-RG MIDER SE-Client ID 1_2021-09-2_2021-09-3_2021-09-4_2021-09-5_2021-09-09_1130 09_1540 09_1600 09_1600 09_1615 Grouping Analyte SOIL Metals Sodium (Na) (mg/kg) 82 82 117 93 92 Strontium (Sr) (mg/kg) 76.9 66.5 64.0 68.3 66.3 Sulfur (S) (mg/kg) <1000 <1000 <1000 <1000 <1000 Thallium (TI) (mg/kg) 0.222 0.212 0.271 0.263 0.216 Tin (Sn) (mg/kg) < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 Titanium (Ti) (mg/kg) 28.8 32.4 22.1 31.2 34.8 Tungsten (W) (mg/kg) < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 Uranium (U) (mg/kg) 0.983 1.00 0.997 1.04 1.00 Vanadium (V) (mg/kg) 31.6 33.6 33.2 34.6 27.9 Zinc (Zn) (mg/kg) 94.7 103 109 99.9 93.4 Zirconium (Zr) (mg/kg) <1.0 <1.0 <1.0 <1.0 < 1.0 DLHM DLHM DLHM DLHM DLHM **Polycyclic** Acenaphthene (mg/kg) < 0.010 <0.010 0.011 0.011 < 0.010 **Aromatic Hydrocarbons** DLHM DLHM DLHM DLHM DLHM Acenaphthylene (mg/kg) < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 DLHM DLHM DLHM DLHM DLHM Acridine (mg/kg) < 0.020 <0.020 < 0.020 <0.020 < 0.020 DLHM DLHM DLHM DLHM DLHM Anthracene (mg/kg) <0.0080 <0.0080 <0.0080 <0.0080 <0.0080 DLHM DLHM DLHM DLHM DLHM Benz(a)anthracene (mg/kg) 0.022 <0.020 0.028 <0.020 < 0.020 DLHM DLHM DLHM DLHM DLHM Benzo(a)pyrene (mg/kg) < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 DLHM DLHM DLHM DLHM DLHM Benzo(b&j)fluoranthene (mg/kg) 0.039 0.022 0.049 0.029 0.026 Benzo(b+j+k)fluoranthene (mg/kg) 0.039 < 0.028 0.049 0.029 < 0.028 DLHM DLHM DLHM DLHM DLHM Benzo(e)pyrene (mg/kg) < 0.020 0.029 0.041 0.043 0.025 DLHM DLHM DLHM DLHM DLHM Benzo(g,h,i)perylene (mg/kg) < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 DLHM DLHM DLHM DI HM DLHM Benzo(k)fluoranthene (mg/kg) <0.020 <0.020 < 0.020 <0.020 < 0.020 DLHM DLHM DLHM DLHM DLHM Chrysene (mg/kg) 0.078 0.038 0.095 0.063 0.045 DLHM DLHM DLHM DLHM DLHM Dibenz(a,h)anthracene (mg/kg) <0.010 <0.010 < 0.010 <0.010 <0.010 DLHM DLHN DLHM DLHM DLHM Fluoranthene (mg/kg) 0.041 0.022 0.049 0.034 0.030 DLHM DLHN DLHM DLHM Fluorene (mg/kg) 0.025 < 0.020 0.022 < 0.020 < 0.020 Indeno(1,2,3-c,d)pyrene (mg/kg) < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 DLHM DLHM 1-Methylnaphthalene (mg/kg) 0.107 0.048 0.115 0.074 0.052 DLHM DLHM 2-Methylnaphthalene (mg/kg) 0.132 0.065 0.139 0.098 0.087 DLHM DLHM DLHM Naphthalene (mg/kg) 0.062 0.030 0.054 0.039 0.035 DLHM DLHN DLHM DLHM Perylene (mg/kg) <0.020 <0.020 < 0.020 <0.020 < 0.020 DLHM DLHM DLHM DLHM Phenanthrene (mg/kg) 0.211 0.096 0.227 0.148 0.125 DLHM DLHM DLHM DLHM DLHM Pyrene (mg/kg) 0.045 0.021 0.051 0.031 0.030 DLHM DLHM DLHM Quinoline (mg/kg) < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 Surrogate: d10-Acenaphthene (%) 87.4 79.2 81.3 82.2 84.7 Surrogate: d12-Chrysene (%)

100.7

90.4

96.2

95.1

97.9

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L2641071 CONTD.... PAGE 7 of 15

11-OCT-21 18:05 (MT) Version: FINAL REV. 3

	Sample ID Description Sampled Date Sampled Time Client ID	L2641071-6 SE 10-SEP-21 10:00 RG_ERCK_1_SE- 1_2021-09- 10_1000	L2641071-7 SE 10-SEP-21 10:10 RG_ERCK_1_SE- 2_2021-09- 10_1010	L2641071-8 SE 10-SEP-21 10:20 RG_ERCK_1_SE- 3_2021-09- 10_1020	L2641071-9 SE 10-SEP-21 10:30 RG_ERCK_1_SE- 4_2021-09- 10_1030	L2641071-10 SE 10-SEP-21 10:40 RG_ERCK_1_SE- 5_2021-09- 10_1040
Grouping	Analyte					
SOIL						
Metals	Sodium (Na) (mg/kg)	94	71	72	80	84
	Strontium (Sr) (mg/kg)	84.1	72.2	86.0	66.5	76.1
	Sulfur (S) (mg/kg)	3100	1900	2900	<1000	1000
	Thallium (TI) (mg/kg)	0.162	0.216	0.102	0.252	0.230
	Tin (Sn) (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
	Titanium (Ti) (mg/kg)	27.3	23.0	8.8	29.2	23.1
	Tungsten (W) (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Uranium (U) (mg/kg)	1.68	1.27	1.20	1.19	1.03
	Vanadium (V) (mg/kg)	21.6	17.3	6.73	29.9	25.4
	Zinc (Zn) (mg/kg)	58.4	47.3	23.0	75.0	70.7
	Zirconium (Zr) (mg/kg)	<1.0	1.1	<1.0	1.2	1.1
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/kg)	0.0064	<0.0050	<0.0050	<0.0050	<0.0050
	Acenaphthylene (mg/kg)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Acridine (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Anthracene (mg/kg)	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040
	Benz(a)anthracene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Benzo(a)pyrene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Benzo(b&j)fluoranthene (mg/kg)	0.023	0.012	<0.010	0.017	0.018
	Benzo(b+j+k)fluoranthene (mg/kg)	0.023	<0.015	<0.015	0.017	0.018
	Benzo(e)pyrene (mg/kg)	0.021	0.013	<0.010	0.018	0.018
	Benzo(g,h,i)perylene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Benzo(k)fluoranthene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Chrysene (mg/kg)	0.036	0.021	<0.010	0.038	0.039
	Dibenz(a,h)anthracene (mg/kg)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Fluoranthene (mg/kg)	0.017	0.011	<0.010	0.013	0.011
	Fluorene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Indeno(1,2,3-c,d)pyrene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	1-Methylnaphthalene (mg/kg)	<0.050	<0.050	<0.050	0.052	0.053
	2-Methylnaphthalene (mg/kg)	0.046	0.050	0.042	0.065	0.071
	Naphthalene (mg/kg)	0.028	0.024	0.023	0.030	0.029
	Perylene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Phenanthrene (mg/kg)	0.098	0.076	0.040	0.101	0.100
	Pyrene (mg/kg)	0.016	0.012	<0.010	0.016	0.016
	Quinoline (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Surrogate: d10-Acenaphthene (%)	100.4	79.4	85.9	84.0	83.0
	Surrogate: d12-Chrysene (%)	110.2	90.3	97.4	94.4	94.5

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L2641071 CONTD.... PAGE 8 of 15

11-OCT-21 18:05 (MT) Version: FINAL REV. 3

ALS ENVIRONMENTAL ANALYTICAL REPORT

L2641071-11 L2641071-12 L2641071-13 L2641071-14 L2641071-15 Sample ID Description SE SE SE SE SE 12-SEP-21 12-SEP-21 12-SEP-21 12-SEP-21 12-SEP-21 Sampled Date 15:00 14:30 Sampled Time 10:00 11:10 13:00 RG ALUSM SE-RG ALUSM SE-RG ALUSM SE-RG MI3 SE-RG MI3 SE-Client ID 1_2021-09-2_2021-09-3_2021-09-1_2021-09-2_2021-09-12_1000 12_1110 12_1300 10_1500 12_1430 Grouping **Analyte** SOIL Metals Sodium (Na) (mg/kg) 177 100 100 80 73 Strontium (Sr) (mg/kg) 66.4 45.7 59.5 71.1 62.9 Sulfur (S) (mg/kg) <1000 <1000 <1000 <1000 <1000 Thallium (TI) (mg/kg) 0.216 0.224 0.228 0.215 0.231 Tin (Sn) (mg/kg) <2.0 < 2.0 < 2.0 <2.0 < 2.0 Titanium (Ti) (mg/kg) 20.9 35.8 38.2 17.6 16.5 Tungsten (W) (mg/kg) < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 Uranium (U) (mg/kg) 0.661 0.754 0.996 1.13 1.05 Vanadium (V) (mg/kg) 23.3 18.5 23.7 41.3 38.9 Zinc (Zn) (mg/kg) 85.9 89.4 103 97.5 90.2 Zirconium (Zr) (mg/kg) 1.2 1.3 <1.0 1.1 1.5 DLHM DLHM DLCI Acenaphthene (mg/kg) Polycyclic < 0.0050 < 0.0075 < 0.013 <0.010 < 0.0050 **Aromatic Hydrocarbons** DLHM DLHM Acenaphthylene (mg/kg) < 0.0050 0.0153 0.0051 < 0.0050 < 0.013 DLHM DLHM Acridine (mg/kg) < 0.025 < 0.010 < 0.015 <0.010 0.012 DLHM DLHM Anthracene (mg/kg) 0.010 <0.0060 < 0.0040 < 0.0040 < 0.0040 DLHM DLHM Benz(a)anthracene (mg/kg) 0.091 <0.010 0.034 0.068 0.032 DLHM DLHM Benzo(a)pyrene (mg/kg) < 0.010 < 0.015 < 0.025 < 0.010 < 0.010 DLHM DLHM Benzo(b&j)fluoranthene (mg/kg) 0.033 0.067 < 0.010 0.039 0.026 Benzo(b+j+k)fluoranthene (mg/kg) < 0.015 0.033 0.067 0.039 0.026 DLHM DLHM Benzo(e)pyrene (mg/kg) < 0.010 0.031 0.052 0.045 0.029 DLHM DLHM Benzo(g,h,i)perylene (mg/kg) < 0.010 < 0.015 < 0.025 0.016 < 0.010 DLHM DLHM Benzo(k)fluoranthene (mg/kg) < 0.010 < 0.015 < 0.025 <0.010 < 0.010 DLHM DLHM Chrysene (mg/kg) 0.039 0.056 0.018 0.047 0.031 DLHM DLHM Dibenz(a,h)anthracene (mg/kg) < 0.013 < 0.0050 < 0.0075 0.0061 < 0.0050 DLHN DLHM DLCI Fluoranthene (mg/kg) < 0.010 < 0.015 < 0.025 0.024 < 0.030 DLHM DLHM Fluorene (mg/kg) < 0.010 < 0.015 < 0.025 < 0.010 0.010 Indeno(1,2,3-c,d)pyrene (mg/kg) < 0.010 < 0.015 < 0.025 < 0.010 < 0.010 1-Methylnaphthalene (mg/kg) < 0.050 0.048 0.094 0.100 0.076 2-Methylnaphthalene (mg/kg) 0.012 0.092 0.176 0.122 0.097 DLHM Naphthalene (mg/kg) < 0.010 0.038 0.074 0.076 < 0.040 DLHN Perylene (mg/kg) <0.010 0.034 0.061 <0.010 < 0.010 DLHM DLHM Phenanthrene (mg/kg) 0.026 0.130 0.234 0.221 0.145 DLHM DLHM Pyrene (mg/kg) < 0.010 0.018 0.033 0.029 < 0.030 DLHM DLHM Quinoline (mg/kg) < 0.050 < 0.015 < 0.025 < 0.050 < 0.050 Surrogate: d10-Acenaphthene (%) 79.5 110.4 105.0 78.0 87.0 SMI SMI SMI Surrogate: d12-Chrysene (%) 86.0 N/A n/a N/A 110.0

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L2641071 CONTD.... PAGE 9 of 15

ALS ENVIRONMENTAL ANALYTICAL REPORT

11-OCT-21 18:05 (MT) Version: FINAL REV. 3

	Sample ID Description Sampled Date Sampled Time Client ID	L2641071-16 SE 12-SEP-21 14:40 RG_MI3_SE- 3_2021-09- 12_1440	L2641071-17 SE 12-SEP-21 14:40 RG_RIVER_SE- 4_2021-09- 12_1440		
Grouping	Analyte		12_1110		
SOIL					
Metals	Sodium (Na) (mg/kg)	88	89		
	Strontium (Sr) (mg/kg)	61.7	71.8		
	Sulfur (S) (mg/kg)	<1000	<1000		
	Thallium (TI) (mg/kg)	0.233	0.271		
	Tin (Sn) (mg/kg)	<2.0	<2.0		
	Titanium (Ti) (mg/kg)	40.3	37.9		
	Tungsten (W) (mg/kg)	<0.50	<0.50		
	Uranium (U) (mg/kg)	1.11	1.31		
	Vanadium (V) (mg/kg)	41.3	41.9		
	Zinc (Zn) (mg/kg)	96.9	96.4		
	Zirconium (Zr) (mg/kg)	1.1	1.1		
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/kg)	0.0173	<0.020		
	Acenaphthylene (mg/kg)	0.0052	0.0053		
	Acridine (mg/kg)	DLCI <0.020	<0.020		
	Anthracene (mg/kg)	<0.0040	0.0044		
	Benz(a)anthracene (mg/kg)	0.029	0.024		
	Benzo(a)pyrene (mg/kg)	0.015	<0.010		
	Benzo(b&j)fluoranthene (mg/kg)	0.052	0.040		
	Benzo(b+j+k)fluoranthene (mg/kg)	0.052	0.040		
	Benzo(e)pyrene (mg/kg)	0.057	0.048		
	Benzo(g,h,i)perylene (mg/kg)	0.017	0.013		
	Benzo(k)fluoranthene (mg/kg)	<0.010	<0.010		
	Chrysene (mg/kg)	0.111	0.085		
	Dibenz(a,h)anthracene (mg/kg)	<0.0050	<0.0050		
	Fluoranthene (mg/kg)	0.042	<0.040		
	Fluorene (mg/kg)	<0.030	<0.020		
	Indeno(1,2,3-c,d)pyrene (mg/kg)	<0.010	<0.010		
	1-Methylnaphthalene (mg/kg)	0.294	0.215		
	2-Methylnaphthalene (mg/kg)	0.372	0.257		
	Naphthalene (mg/kg)	0.159	0.127		
	Perylene (mg/kg)	<0.010	<0.010		
	Phenanthrene (mg/kg)	0.370	0.330		
	Pyrene (mg/kg)	0.046	<0.040		
	Quinoline (mg/kg)	<0.050	<0.050		
	Surrogate: d10-Acenaphthene (%)	81.7	86.6		
	Surrogate: d12-Chrysene (%)	103.3	107.4		

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L2641071 CONTD.... PAGE 10 of 15

11-OCT-21 18:05 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

Version: FINAL REV. 3 L2641071-1 L2641071-2 L2641071-3 L2641071-4 L2641071-5 Sample ID Description SE SE SE SE SE 09-SEP-21 09-SEP-21 09-SEP-21 09-SEP-21 09-SEP-21 Sampled Date 11:30 15:40 16:00 16:00 16:15 Sampled Time RG_MIDER_SE-RG_MIDER_SE-RG MIDER SE-RG_MIDER_SE-RG MIDER SE-Client ID 1_2021-09-2_2021-09-3_2021-09-4_2021-09-5_2021-09-09_1130 09_1540 09_1600 09_1600 09_1615 Grouping **Analyte** SOIL **Polycyclic** Surrogate: d8-Naphthalene (%) 83.3 70.8 78.7 78.1 79.1 **Aromatic Hydrocarbons** Surrogate: d10-Phenanthrene (%) 94.9 88.6 90.0 91.3 91.0 IACR:Coarse < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 IACR:Fine < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 B(a)P Total Potency Equivalent (mg/kg) 0.024 0.021 0.026 0.022 0.021 IACR (CCME) 0.46 0.31 0.55 0.36 0.33

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L2641071 CONTD.... PAGE 11 of 15

ALS ENVIRONMENTAL ANALYTICAL REPORT 11-OCT-21 18:05 (MT)

Version: FINAL REV. 3

	Sample ID Description Sampled Date Sampled Time Client ID	L2641071-6 SE 10-SEP-21 10:00 RG_ERCK_1_SE- 1_2021-09- 10_1000	L2641071-7 SE 10-SEP-21 10:10 RG_ERCK_1_SE- 2_2021-09- 10_1010	L2641071-8 SE 10-SEP-21 10:20 RG_ERCK_1_SE- 3_2021-09- 10_1020	L2641071-9 SE 10-SEP-21 10:30 RG_ERCK_1_SE- 4_2021-09- 10_1030	L2641071-10 SE 10-SEP-21 10:40 RG_ERCK_1_SE 5_2021-09- 10_1040
Grouping	Analyte					
SOIL						
Polycyclic Aromatic Hydrocarbons	Surrogate: d8-Naphthalene (%)	94.7	75.5	79.4	78.8	79.4
	Surrogate: d10-Phenanthrene (%)	107.5	86.1	92.7	88.6	88.7
	IACR:Coarse	<0.050	<0.050	<0.050	<0.050	<0.050
	IACR:Fine	<0.050	<0.050	<0.050	<0.050	<0.050
	B(a)P Total Potency Equivalent (mg/kg)	<0.020	<0.020	<0.020	<0.020	<0.020
	IACR (CCME)	0.23	0.16	<0.15	0.20	0.20

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L2641071 CONTD....

PAGE 12 of 15 11-OCT-21 18:05 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

Version: FINAL REV. 3

	Sample ID Description Sampled Date Sampled Time Client ID	L2641071-11 SE 12-SEP-21 10:00 RG_ALUSM_SE- 1_2021-09- 12_1000	L2641071-12 SE 12-SEP-21 11:10 RG_ALUSM_SE- 2_2021-09- 12_1110	L2641071-13 SE 12-SEP-21 13:00 RG_ALUSM_SE- 3_2021-09- 12_1300	L2641071-14 SE 12-SEP-21 15:00 RG_MI3_SE- 1_2021-09- 10_1500	L2641071-15 SE 12-SEP-21 14:30 RG_MI3_SE- 2_2021-09- 12_1430
Grouping	Analyte					
SOIL						
Polycyclic Aromatic Hydrocarbons	Surrogate: d8-Naphthalene (%)	74.3	105.8	98.0	120.5	84.6
	Surrogate: d10-Phenanthrene (%)	82.6	122.0	118.8	72.0	101.1
	IACR:Coarse	<0.050	<0.050	<0.050	<0.050	<0.050
	IACR:Fine	<0.050	<0.050	0.061	<0.050	<0.050
	B(a)P Total Potency Equivalent (mg/kg)	<0.020	<0.020	0.038	0.023	<0.020
	IACR (CCME)	<0.15	0.42	0.86	0.55	0.33

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L2641071 CONTD.... PAGE 13 of 15

11-OCT-21 18:05 (MT) Version: FINAL REV. 3

	Sample ID Description Sampled Date Sampled Time Client ID	L2641071-16 SE 12-SEP-21 14:40 RG_MI3_SE- 3_2021-09- 12_1440	L2641071-17 SE 12-SEP-21 14:40 RG_RIVER_SE- 4_2021-09- 12_1440		
Grouping	Analyte		1 12 1 1 1 1		
SOIL					
Polycyclic Aromatic Hydrocarbons	Surrogate: d8-Naphthalene (%)	83.6	84.5		
	Surrogate: d10-Phenanthrene (%)	95.0	100.1		
	IACR:Coarse	<0.050	<0.050		
	IACR:Fine	<0.050	<0.050		
	B(a)P Total Potency Equivalent (mg/kg)	0.028	<0.020		
	IACR (CCME)	0.55	0.43		

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

Reference Information

L2641071 CONTD....

PAGE 14 of 15

11-OCT-21 18:05 (MT)

Version: FINAL REV. 3

QC Samples with Qualifiers & Comments:

QC Type Des	scription	Parameter	Qualifier	Applies to Sample Number(s)
Qualifiers fo	or Individual Parai	meters Listed:		
Qualifier	Description			
DLCI	Detection Limi	t Raised: Chromatographic Interferen	ce due to co-elution.	
DLHM	Detection Limi	t Adjusted: Sample has High Moisture	e Content	
PSAL	Limited sample higher than us	•	sis (100g minimum is sta	ndard). Measurement Uncertainty for PSA results may be
RRV	Reported Resi	ult Verified By Repeat Analysis		
SMI	Surrogate reco	overy could not be measured due to sa	ample matrix interference.	

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**
C-TIC-PCT-SK	Soil	Total Inorganic Carbon in Soil	CSSS (2008) P216-217
A known quantity of a	cetic acid is cons	sumed by reaction with carbonates in the soil	. The pH of the resulting solution is measured and compared

against a standard curve relating pH to weight of carbonate.

C-TOC-CALC-SK Soil Total Organic Carbon Calculation CSSS (2008) 21.2

Total Organic Carbon (TOC) is calculated by the difference between total carbon (TC) and total inorganic carbon. (TIC)

C-TOT-LECO-SK Soil Total Carbon by combustion method CSSS (2008) 21.2

The sample is ignited in a combustion analyzer where carbon in the reduced CO2 gas is determined using a thermal conductivity detector.

HG-200.2-CVAA-CL Soil Mercury in Soil by CVAAS EPA 200.2/1631E (mod)

Soil samples are digested with nitric and hydrochloric acids, followed by analysis by CVAAS.

IC-CACO3-CALC-SK Soil Inorganic Carbon as CaCO3 Equivalent Calculation

MET-200.2-CCMS-CL Soil Metals in Soil by CRC ICPMS EPA 200.2/6020A (mod)

Soil/sediment is dried, disaggregated, and sieved (2 mm). Strong Acid Leachable Metals in the <2mm fraction are solubilized by heated digestion with nitric and hydrochloric acids. Instrumental analysis is by Collision / Reaction Cell ICPMS.

Limitations: This method is intended to liberate environmentally available metals. Silicate minerals are not solubilized. Some metals may be only partially recovered (matrix dependent), including Al, Ba, Be, Cr, S, Sr, Ti, Tl, V, W, and Zr. Elemental Sulfur may be poorly recovered by this method. Volatile forms of sulfur (e.g. sulfide, H2S) may be excluded if lost during sampling, storage, or digestion.

MOISTURE-CL Soil % Moisture CCME PHC in Soil - Tier 1 (mod)

This analysis is carried out gravimetrically by drying the sample at 105 C

PAH-TMB-H/A-MS-CL Soil PAH Tumbler Extraction (Hexane/Acetone) EPA 3570/8270-GC/MS

This analysis is carried out using procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846, Methods 3545 & 8270, published by the United States Environmental Protection Agency (EPA). The procedure uses a mechanical shaking technique to extract a subsample of the sediment/soil with a 1:1 mixture of hexane and acetone. The extract is then solvent exchanged to toluene. The final extract is analysed by capillary column gas chromatography with mass spectrometric detection (GC/MS). Surrogate recoveries may not be reported in cases where interferences from the sample matrix prevent accurate quantitation. Because the two isomers cannot be readily chromatographically separated, benzo(j)fluoranthene is reported as part of the benzo(b)fluoranthene parameter.

PH-1:2-CL Soil pH in soil (1:2 Soil:Water Extraction) CSSS Ch. 16

Soil and de-ionized water (by volume) are mixed in a defined ratio. The slurry is allowed to stand, shaken, and then allowed to stand again prior to taking measurements. After equilibration, the pH of the liquid portion of the extract is measured by a pH meter. Field Measurement is recommended where accurate pH measurements are required, due to the 15 minute recommended hold time.

PSA-PIPET-DETAIL-SK Soil Particle size - Sieve and Pipette SSIR-51 METHOD 3.2.1

Particle size distribution is determined by a combination of techniques. Dry sieving is performed for coarse particles, wet sieving for sand particles and the pipette sedimentation method for clay particles.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
SK	ALS ENVIRONMENTAL - SASKATOON, SASKATCHEWAN, CANADA
CL	ALS ENVIRONMENTAL - CALGARY, ALBERTA, CANADA
Chain of Custody Numbers:	

Reference Information

L2641071 CONTD....

PAGE 15 of 15

11-OCT-21 18:05 (MT)

Version: FINAL REV. 3

September EVO LAEMP

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Workorder: L2641071 Report Date: 11-OCT-21 Page 1 of 22

Client: Teck Coal Ltd.

421 Pine Avenue

Sparwood BC V0B 2G0

Contact: Allie Ferguson

MG3622526-4 IRM	Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MG362258-6-1 DUP	C-TIC-PCT-SK	Soil							
Inorganic Carbon	Batch R5598779								
WG3622526-4 IRM 08-109 SOIL 93.0 % 80-120 24-SEP-WG3622526-2 LCS 0.5 99.4 % 90-110 24-SEP-WG3622526-3 MB 99.4 % 90-110 24-SEP-WG3622526-3 MB 99.4 % 90-110 24-SEP-WG362253-3 MB 90-110 24-SEP-WG3622533-3 MB 90-110 27-SEP-WG3622533-4 IRM 08-109_SOIL 90-110 27-SEP-WG3622533-2 LCS 0.5 95.1 % 90-110 27-SEP-WG3622533-3 MB 90-110 27-SEP-WG3622533-3 MB 90-110 27-SEP-WG3622533-3 MB 90-110 27-SEP-WG3622533-3 MB 90-110 27-SEP-WG3622193-1 DUP 2641071-7 7-Total Carbon by Combustion 6.42 6.64 % 3.3 20 23-SEP-WG3622193-2 IRM 98-120 23-SEP-WG3622193-3 LCS 90-110 23-SEP-WG3622193-3 MB 90-110 23-SEP-WG3624986-3 DV 90-110 23-SEP-WG3624986-3 DV 90-110						0.4			_
Inorganic Carbon	-		1.24	1.22		%	2.1	20	24-SEP-21
WG3622526-2 LCS			08-109_SOIL	02.0		0/		00.400	04.050.04
Inorganic Carbon	_		_	93.0		%		80-120	24-SEP-21
WG3622526-3 MB Inorganic Carbon < < 0.050			0.5	99.4		0/2		00 110	24 SED 21
Inorganic Carbon	_			υυ. - τ		70		30-110	24-0EF-21
Batch R5602038 WG3622533-4 IRM 08-109_SOIL Inorganic Carbon 108.1 % 80-120 27-SEP- WG3622533-2 LCS 0.5 Inorganic Carbon 95.1 % 90-110 27-SEP- WG3622533-3 MB Inorganic Carbon 0.0,050 % 0.0,050 27-SEP- C-TOT-LECO-SK Soil Batch R5599816 WG3622193-1 DUP L2641071-7 Total Carbon by Combustion 6.42 6.64 % 3.3 20 23-SEP- WG3622193-2 IRM 08-109_SOIL Total Carbon by Combustion 104.9 % 80-120 23-SEP- WG3622193-4 LCS SULFADIAZINE Total Carbon by Combustion 102.2 % 90-110 23-SEP- WG3622193-3 MB Total Carbon by Combustion 102.2 % 90-110 23-SEP- WG3622193-3 MB Total Carbon by Combustion 102.2 % 90-110 23-SEP- WG3622193-3 MB Total Carbon by Combustion 102.2 % 90-110 23-SEP- WG3622193-3 MB Total Carbon by Combustion 102.2 % 90-110 23-SEP- WG3622193-3 MB Total Carbon by Combustion 102.2 % 90-110 23-SEP- WG3622193-3 MB Total Carbon by Combustion 102.2 % 90-110 23-SEP- WG3622193-3 MB Total Carbon by Combustion 102.2 % 90-110 23-SEP- WG3622193-3 LCS WG3624986-4 CRM TILL-2 Mercury (Hg) 114.9 % 70-130 25-SEP- WG3624986-5 DUP L2641071-1 Mercury (Hg) 0.0502 0.0530 mg/kg 5.5 40 25-SEP- WG3624986-3 LCS WG3624986-2 MB Mercury (Hg) 110.0 % 80-120 25-SEP- WG3624986-2 MB Mercury (Hg) 110.0 % 80-120 25-SEP- WG3624986-2 MB Mercury (Hg) 0.0050 mg/kg 0.005 25-SEP-				<0.050		%		0.05	24-SEP-21
MG3622533-4 IRM	_							0.00	0 21
Inorganic Carbon			08-109 5011						
WG3622533-2 LCS			00-109_30IL	108.1		%		80-120	27-SEP-21
Inorganic Carbon			0.5						
Inorganic Carbon Soil So				95.1		%		90-110	27-SEP-21
C-TOT-LECO-SK Soil Batch R5599816 WG3622193-1 DUP	WG3622533-3 MB								
Batch R5599816 WG3622193-1 DUP	Inorganic Carbon			<0.050		%		0.05	27-SEP-21
WG3622193-1 DUP L2641071-7 Total Carbon by Combustion 6.42 6.64 % 3.3 20 23-SEP-WG3622193-2 WG3622193-2 IRM 08-109_SOIL 104.9 % 80-120 23-SEP-WG3622193-4 WG3622193-3 LCS SULFADIAZINE 90-110 23-SEP-WG3622193-3 MB Total Carbon by Combustion <0.05	C-TOT-LECO-SK	Soil							
Total Carbon by Combustion 6.42 6.64 % 3.3 20 23-SEP- WG3622193-2 IRM 08-109_SOIL Total Carbon by Combustion 104.9 % 80-120 23-SEP- WG3622193-4 LCS SULFADIAZINE Total Carbon by Combustion 102.2 % 90-110 23-SEP- WG3622193-3 MB Total Carbon by Combustion < 0.05 % 0.05 23-SEP- HG-200.2-CVAA-CL Soil Batch R5599684 WG3624986-4 CRM TILL-2 Mercury (Hg) 114.9 % 70-130 25-SEP- WG3624986-5 DUP L2641071-1 Mercury (Hg) 0.0502 0.0530 mg/kg 5.5 40 25-SEP- WG3624986-3 LCS Mercury (Hg) 110.0 % 80-120 25-SEP- WG3624986-2 MB Mercury (Hg) < 0.0050 mg/kg 0.005 25-SEP-	Batch R5599816								
WG3622193-2 IRM O8-109_SOIL Total Carbon by Combustion 104.9 % 80-120 23-SEP-WG3622193-4 LCS SULFADIAZINE 90-110 23-SEP-WG3622193-3 MB 90-110 23-SEP-WG3622193-3 MB 0.05 23-SEP-WG3622193-3 MB 0.05 23-SEP-WG3622193-3 MB 0.05 23-SEP-WG3622193-3 NB 0.05 23-SEP-WG3622193-3 NB 0.05 23-SEP-WG3622193-3 NB									
Total Carbon by Combustion 104.9 % 80-120 23-SEP-WG3622193-4 LCS SULFADIAZINE Total Carbon by Combustion 102.2 % 90-110 23-SEP-WG3622193-3 MB Total Carbon by Combustion < 0.05 % 0.05 23-SEP-WG3622193-3 MB Total Carbon by Combustion < 0.05 % 70-130 23-SEP-WG3624986-4 CRM TILL-2 Mercury (Hg) 114.9 % 70-130 25-SEP-WG3624986-5 DUP L2641071-1 Mercury (Hg) 0.0502 0.0530 mg/kg 5.5 40 25-SEP-WG3624986-3 LCS Mercury (Hg) 110.0 % 80-120 25-SEP-WG3624986-2 MB Mercury (Hg) < 0.0050 mg/kg 0.005 25-SEP-WG3624986-2 MB Mercury (Hg) < 0.0050 mg/kg 0.005 25-SEP-WG3624986-2 MB Mercury (Hg) < 0.0050 mg/kg 0.005 25-SEP-WG3624986-2 MB	Total Carbon by Combus	stion	6.42	6.64		%	3.3	20	23-SEP-21
WG3622193-4 LCS SULFADIAZINE Total Carbon by Combustion 102.2 % 90-110 23-SEP-WG3622193-3 MB Total Carbon by Combustion <0.05			08-109_SOIL						
Total Carbon by Combustion 102.2 % 90-110 23-SEP-WG3622193-3 MB Total Carbon by Combustion < 0.05 % 0.05 23-SEP-WG3624986-4 CRM TILL-2 Mercury (Hg) 114.9 % 70-130 25-SEP-WG3624986-5 DUP L2641071-1 Mercury (Hg) 0.0502 0.0530 mg/kg 5.5 40 25-SEP-WG3624986-3 LCS Mercury (Hg) 110.0 % 80-120 25-SEP-WG3624986-2 MB Mercury (Hg) < 0.0050 mg/kg 0.005 25-SEP-WG3624986-2 MB Mercury (Hg) < 0.0050 mg/kg 0.005 25-SEP-WG3624986-2 MB Mercury (Hg) < 0.0050 mg/kg 0.005 25-SEP-WG3624986-2 MB	•	stion				%		80-120	23-SEP-21
WG3622193-3 MB Combustion Combustion <td></td> <td>ation</td> <td>SULFADIAZIN</td> <td></td> <td></td> <td>0/</td> <td></td> <td>00.440</td> <td>00.0== 0:</td>		ation	SULFADIAZIN			0/		00.440	00.0== 0:
Total Carbon by Combustion < 0.05	•	SUOII		102.2		%		90-110	23-SEP-21
HG-200.2-CVAA-CL Soil Batch R5599684 WG3624986-4 CRM TILL-2 Mercury (Hg) 114.9 % 70-130 25-SEP- WG3624986-5 DUP L2641071-1 Mercury (Hg) 0.0502 0.0530 mg/kg 5.5 40 25-SEP- WG3624986-3 LCS Mercury (Hg) 110.0 % 80-120 25-SEP- WG3624986-2 MB Mercury (Hg) < 0.0050 mg/kg 0.005 25-SEP-		stion		~ 0.05		%		0.05	22 CED 24
Batch R5599684 WG3624986-4 Mercury (Hg) CRM CRM TILL-2 70-130 25-SEP-WG3624986-5 WG3624986-5 Mercury (Hg) DUP D.0.0502 0.0530 mg/kg 5.5 40 25-SEP-WG3624986-3 WG3624986-3 Mercury (Hg) LCS Mercury (Hg) 110.0 % 80-120 25-SEP-WG3624986-2 WG3624986-2 MG MB Mercury (Hg)				\0.03		70		0.05	23-3EF-21
WG3624986-4 Mercury (Hg) CRM L2641071-1 U.0.0502 TILL-2 U.0.0502 Mercury (Hg) U.0.0502 Mercury (Hg) U.0.0502 Mercury (Hg) U.0.0502 Mercury (Hg) U.0.0502 Mercury (Hg) U.0.0502 Mercury (Hg) U.0.0502 Mercury (Hg) U.0.0502 Mercury (Hg) U.0.0502 Mercury (Hg) U.0.0502 Mercury (Hg) U.0.050 Mercury (Hg) U.0.0502 Mercury (Hg) U.0.0502 Mercury (Hg) U.0.0502 Mercury (Hg) U.0.0502 Mercury (Hg) U.0.0050 Mercury (Hg) U.0.0502 <		Soil							
Mercury (Hg) 114.9 % 70-130 25-SEP-WG3624986-5 WG3624986-5 Mercury (Hg) DUP 0.0502 0.0530 mg/kg 5.5 40 25-SEP-WG3624986-3 Mercury (Hg) 110.0 % 80-120 25-SEP-WG3624986-2 WG3624986-2 MB MB <t< td=""><td></td><td></td><td>************************************</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			**** ********************************						
WG3624986-5 DUP L2641071-1 0.0502 0.0530 mg/kg 5.5 40 25-SEP-WG3624986-3 LCS Mercury (Hg) 110.0 % 80-120 25-SEP-WG3624986-2 MB			TILL-2	114 9		%		70-130	25-SEP-21
Mercury (Hg) 0.0502 0.0530 mg/kg 5.5 40 25-SEP-WG3624986-3 Mercury (Hg) 110.0 % 80-120 25-SEP-WG3624986-2 WG3624986-2 MB Mercury (Hg) <0.0050			1 26/1071 1			, •		70-100	20-0L1-21
WG3624986-3 LCS Mercury (Hg) 110.0 % 80-120 25-SEP-WG3624986-2 WG3624986-2 MB <0.0050				0.0530		mg/kg	5.5	40	25-SEP-21
Mercury (Hg) 110.0 % 80-120 25-SEP-WG3624986-2 WG3624986-2 MB Mercury (Hg) <0.0050						5 5	5.0		
WG3624986-2 MB Mercury (Hg) <0.0050 mg/kg 0.005 25-SEP-				110.0		%		80-120	25-SEP-21
Mercury (Hg) <0.0050 mg/kg 0.005 25-SEP-	WG3624986-2 MB								
				<0.0050		mg/kg		0.005	25-SEP-21
MET-200 2-CCMS-CL	MET-200.2-CCMS-CL	Soil							

Workorder: L2641071 Report Date: 11-OCT-21 Page 2 of 22

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-CL	Soil							
Batch R5599716								
WG3624986-4 CRM		TILL-2						
Aluminum (Al)			88.6		%		70-130	25-SEP-21
Antimony (Sb)			87.5		%		70-130	25-SEP-21
Arsenic (As)			96.2		%		70-130	25-SEP-21
Barium (Ba)			88.9		%		70-130	25-SEP-21
Beryllium (Be)			85.3		%		70-130	25-SEP-21
Bismuth (Bi)			98.8		%		70-130	25-SEP-21
Cadmium (Cd)			92.8		%		70-130	25-SEP-21
Calcium (Ca)			91.1		%		70-130	25-SEP-21
Chromium (Cr)			94.3		%		70-130	25-SEP-21
Cobalt (Co)			95.2		%		70-130	25-SEP-21
Copper (Cu)			93.6		%		70-130	25-SEP-21
Iron (Fe)			93.1		%		70-130	25-SEP-21
Lead (Pb)			97.8		%		70-130	25-SEP-21
Lithium (Li)			94.0		%		70-130	25-SEP-21
Magnesium (Mg)			92.3		%		70-130	25-SEP-21
Manganese (Mn)			91.3		%		70-130	25-SEP-21
Molybdenum (Mo)			94.0		%		70-130	25-SEP-21
Nickel (Ni)			96.6		%		70-130	25-SEP-21
Phosphorus (P)			87.6		%		70-130	25-SEP-21
Potassium (K)			90.3		%		70-130	25-SEP-21
Selenium (Se)			0.32		mg/kg		0.15-0.55	25-SEP-21
Silver (Ag)			0.26		mg/kg		0.16-0.36	25-SEP-21
Sodium (Na)			110.7		%		70-130	25-SEP-21
Strontium (Sr)			96.9		%		70-130	25-SEP-21
Thallium (TI)			92.7		%		70-130	25-SEP-21
Tin (Sn)			2.1		mg/kg		0.2-4.2	25-SEP-21
Titanium (Ti)			88.9		%		70-130	25-SEP-21
Tungsten (W)			1.40		mg/kg		1-2	25-SEP-21
Uranium (U)			94.9		%		70-130	25-SEP-21
Vanadium (V)			93.5		%		70-130	25-SEP-21
Zinc (Zn)			90.6		%		70-130	25-SEP-21
Zirconium (Zr)			107.9		%		70-130	25-SEP-21
WG3624986-5 DUP		L2641071-1						
Aluminum (Al)		6100	6650		mg/kg	8.5	40	25-SEP-21

Workorder: L2641071 Report Date: 11-OCT-21 Page 3 of 22

est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-CL	Soil							
Batch R5599716								
WG3624986-5 DUP		L2641071-1	0.05					
Antimony (Sb)		0.88	0.95		mg/kg	7.8	30	25-SEP-21
Arsenic (As)		6.49	7.01		mg/kg	7.7	30	25-SEP-21
Barium (Ba)		193	228		mg/kg	16	40	25-SEP-21
Beryllium (Be)		0.49	0.56		mg/kg	13	30	25-SEP-21
Bismuth (Bi)		<0.20	<0.20	RPD-NA	mg/kg	N/A	30	25-SEP-21
Boron (B)		6.3	6.3		mg/kg	0.2	30	25-SEP-21
Cadmium (Cd)		1.37	1.53		mg/kg	11	30	25-SEP-21
Calcium (Ca)		39400	44700		mg/kg	13	30	25-SEP-21
Chromium (Cr)		13.5	15.2		mg/kg	11	30	25-SEP-21
Cobalt (Co)		6.72	7.46		mg/kg	10	30	25-SEP-21
Copper (Cu)		12.4	13.2		mg/kg	6.7	30	25-SEP-21
Iron (Fe)		15500	17100		mg/kg	9.7	30	25-SEP-21
Lead (Pb)		8.54	9.64		mg/kg	12	40	25-SEP-21
Lithium (Li)		7.3	7.8		mg/kg	5.9	30	25-SEP-21
Magnesium (Mg)		5880	6980		mg/kg	17	30	25-SEP-21
Manganese (Mn)		258	297		mg/kg	14	30	25-SEP-21
Molybdenum (Mo)		1.61	1.78		mg/kg	9.9	40	25-SEP-21
Nickel (Ni)		29.2	32.2		mg/kg	10	30	25-SEP-21
Phosphorus (P)		1230	1280		mg/kg	3.8	30	25-SEP-21
Potassium (K)		1220	1350		mg/kg	9.9	40	25-SEP-21
Selenium (Se)		1.43	1.60		mg/kg	11	30	25-SEP-21
Silver (Ag)		0.17	0.18		mg/kg	4.5	40	25-SEP-21
Sodium (Na)		82	92		mg/kg	12	40	25-SEP-21
Strontium (Sr)		66.5	76.4		mg/kg	14	40	25-SEP-21
Sulfur (S)		<1000	<1000	RPD-NA	mg/kg	N/A	30	25-SEP-21
Thallium (TI)		0.222	0.242		mg/kg	8.8	30	25-SEP-21
Tin (Sn)		<2.0	<2.0	RPD-NA	mg/kg	N/A	40	25-SEP-21
Titanium (Ti)		28.8	27.9		mg/kg	3.2	40	25-SEP-21
Tungsten (W)		<0.50	< 0.50	RPD-NA	mg/kg	N/A	30	25-SEP-21
Uranium (U)		0.983	1.06		mg/kg	7.3	30	25-SEP-21
Vanadium (V)		31.6	35.1		mg/kg	10	30	25-SEP-21
Zinc (Zn)		94.7	108		mg/kg	13	30	25-SEP-21
Zirconium (Zr)		<1.0	<1.0	RPD-NA	mg/kg	N/A	30	25-SEP-21
WG3624986-3 LCS					-			

Workorder: L2641071 Report Date: 11-OCT-21 Page 4 of 22

est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-CL	Soil							
Batch R5599716								
WG3624986-3 LCS			440.0		0/			
Aluminum (Al)			110.6		%		80-120	25-SEP-21
Antimony (Sb)			110.0		%		80-120	25-SEP-21
Arsenic (As)			111.5		%		80-120	25-SEP-21
Barium (Ba)			107.1		%		80-120	25-SEP-21
Beryllium (Be)			103.8		%		80-120	25-SEP-21
Bismuth (Bi)			106.6		%		80-120	25-SEP-21
Boron (B)			100.5		%		80-120	25-SEP-21
Cadmium (Cd)			111.7		%		80-120	25-SEP-21
Calcium (Ca)			105.3		%		80-120	25-SEP-21
Chromium (Cr)			112.2		%		80-120	25-SEP-21
Cobalt (Co)			111.3		%		80-120	25-SEP-21
Copper (Cu)			109.7		%		80-120	25-SEP-21
Iron (Fe)			118.7		%		80-120	25-SEP-21
Lead (Pb)			109.1		%		80-120	25-SEP-21
Lithium (Li)			105.9		%		80-120	25-SEP-21
Magnesium (Mg)			114.6		%		80-120	25-SEP-21
Manganese (Mn)			110.4		%		80-120	25-SEP-21
Molybdenum (Mo)			112.9		%		80-120	25-SEP-21
Nickel (Ni)			112.5		%		80-120	25-SEP-21
Potassium (K)			110.4		%		80-120	25-SEP-21
Selenium (Se)			107.7		%		80-120	25-SEP-21
Silver (Ag)			108.6		%		80-120	25-SEP-21
Sodium (Na)			112.3		%		80-120	25-SEP-21
Strontium (Sr)			113.0		%		80-120	25-SEP-21
Sulfur (S)			110.3		%		80-120	25-SEP-21
Thallium (TI)			108.3		%		80-120	25-SEP-21
Tin (Sn)			110.9		%		80-120	25-SEP-21
Titanium (Ti)			112.3		%		80-120	25-SEP-21
Tungsten (W)			113.1		%		80-120	25-SEP-21
Uranium (U)			115.6		%		80-120	25-SEP-21
Vanadium (V)			112.0		%		80-120	25-SEP-21
Zinc (Zn)			107.7		%		80-120	25-SEP-21
Zirconium (Zr)			112.4		%		80-120	25-SEP-21
WG3624986-2 MB								- -

Workorder: L2641071 Report Date: 11-OCT-21 Page 5 of 22

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-CL	Soil							
Batch R5599716								
WG3624986-2 MB			.50				50	
Aluminum (Al)			<50		mg/kg		50	25-SEP-21
Antimony (Sb)			<0.10		mg/kg		0.1	25-SEP-21
Arsenic (As)			<0.10		mg/kg		0.1	25-SEP-21
Barium (Ba)			<0.50		mg/kg		0.5	25-SEP-21
Beryllium (Be)			<0.10		mg/kg		0.1	25-SEP-21
Bismuth (Bi)			<0.20		mg/kg		0.2	25-SEP-21
Boron (B)			<5.0		mg/kg		5	25-SEP-21
Cadmium (Cd)			<0.020		mg/kg		0.02	25-SEP-21
Calcium (Ca)			<50		mg/kg		50	25-SEP-21
Chromium (Cr)			<0.50		mg/kg		0.5	25-SEP-21
Cobalt (Co)			<0.10		mg/kg		0.1	25-SEP-21
Copper (Cu)			<0.50		mg/kg		0.5	25-SEP-21
Iron (Fe)			<50		mg/kg		50	25-SEP-21
Lead (Pb)			<0.50		mg/kg		0.5	25-SEP-21
Lithium (Li)			<2.0		mg/kg		2	25-SEP-21
Magnesium (Mg)			<20		mg/kg		20	25-SEP-21
Manganese (Mn)			<1.0		mg/kg		1	25-SEP-21
Molybdenum (Mo)			<0.10		mg/kg		0.1	25-SEP-21
Nickel (Ni)			< 0.50		mg/kg		0.5	25-SEP-21
Phosphorus (P)			<50		mg/kg		50	25-SEP-21
Potassium (K)			<100		mg/kg		100	25-SEP-21
Selenium (Se)			<0.20		mg/kg		0.2	25-SEP-21
Silver (Ag)			<0.10		mg/kg		0.1	25-SEP-21
Sodium (Na)			<50		mg/kg		50	25-SEP-21
Strontium (Sr)			< 0.50		mg/kg		0.5	25-SEP-21
Sulfur (S)			<1000		mg/kg		1000	25-SEP-21
Thallium (TI)			<0.050		mg/kg		0.05	25-SEP-21
Tin (Sn)			<2.0		mg/kg		2	25-SEP-21
Titanium (Ti)			<1.0		mg/kg		1	25-SEP-21
Tungsten (W)			<0.50		mg/kg		0.5	25-SEP-21
Uranium (U)			< 0.050		mg/kg		0.05	25-SEP-21
Vanadium (V)			<0.20		mg/kg		0.2	25-SEP-21
Zinc (Zn)			<2.0		mg/kg		2	25-SEP-21
Zirconium (Zr)			<1.0		mg/kg		1	25-SEP-21
					-			

Workorder: L2641071 Report Date: 11-OCT-21 Page 6 of 22

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MOISTURE-CL	Soil							
Batch R5594498 WG3622721-3 DUP Moisture		L2641071-12 65.0	65.4		%	0.7	20	23-SEP-21
WG3622721-2 LCS Moisture			96.4		%		90-110	23-SEP-21
WG3622721-1 MB Moisture			<0.25		%		0.25	23-SEP-21
Batch R5595519 WG3622448-2 LCS Moisture			97.7		%		90-110	23-SEP-21
WG3622448-1 MB Moisture			<0.25		%		0.25	23-SEP-21
PAH-TMB-H/A-MS-CL	Soil							
Batch R5598316								
WG3624657-2 DUP Acenaphthene		L2641071-12 < 0.0075	<0.0075	RPD-NA	mg/kg	N/A	50	24-SEP-21
Acenaphthylene		0.0153	0.0169		mg/kg	9.4	50	24-SEP-21
Anthracene		<0.0060	<0.0060	RPD-NA	mg/kg	N/A	50	24-SEP-21
Acridine		<0.015	<0.015	RPD-NA	mg/kg	N/A	50	24-SEP-21
Benz(a)anthracene		0.034	0.042		mg/kg	21	50	24-SEP-21
Benzo(a)pyrene		<0.015	<0.015	RPD-NA	mg/kg	N/A	50	24-SEP-21
Benzo(b&j)fluoranthene		0.033	0.033		mg/kg	2.3	50	24-SEP-21
Benzo(e)pyrene		0.031	0.034		mg/kg	9.3	50	24-SEP-21
Benzo(g,h,i)perylene		<0.015	<0.015	RPD-NA	mg/kg	N/A	50	24-SEP-21
Benzo(k)fluoranthene		<0.015	<0.015	RPD-NA	mg/kg	N/A	50	24-SEP-21
Chrysene		0.039	0.046		mg/kg	18	50	24-SEP-21
Dibenz(a,h)anthracene		< 0.0075	<0.0075	RPD-NA	mg/kg	N/A	50	24-SEP-21
Fluoranthene		<0.015	<0.015	RPD-NA	mg/kg	N/A	50	24-SEP-21
Fluorene		<0.015	<0.015	RPD-NA	mg/kg	N/A	50	24-SEP-21
Indeno(1,2,3-c,d)pyrene		<0.015	<0.015	RPD-NA	mg/kg	N/A	50	24-SEP-21
2-Methylnaphthalene		0.092	0.113		mg/kg	20	50	24-SEP-21
Naphthalene		0.038	0.041		mg/kg	8.8	50	24-SEP-21
Perylene		0.034	0.034		mg/kg	0.7	50	24-SEP-21
Phenanthrene		0.130	0.142		mg/kg	8.7	50	24-SEP-21
Pyrene		0.018	0.016		mg/kg	14	50	24-SEP-21
1-Methylnaphthalene		0.048	0.060		mg/kg	23	50	24-SEP-21
Quinoline		<0.015	<0.015	RPD-NA	mg/kg	N/A	50	24-SEP-21

Workorder: L2641071 Report Date: 11-OCT-21 Page 7 of 22

PAH-TMB-H/A-MS-CL Soil	Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
WG3624657-4 IRM ALS PAH RM2 Acenaphthene 107.4 % 60-130 24-SEP-21 Acenaphthylene 115.2 % 60-130 24-SEP-21 Anthracene 121.4 % 60-130 24-SEP-21 Acridine 121.9 % 60-130 24-SEP-21 Benz(a)anthracene 107.7 % 60-130 24-SEP-21 Benzo(byyene 113.9 % 60-130 24-SEP-21 Benzo(bjl)fluoranthene 102.5 % 60-130 24-SEP-21 Benzo(gl.n)peylene 89.4 % 60-130 24-SEP-21 Benzo(gl.n)peylene 89.4 % 60-130 24-SEP-21 Chrysene 106.8 % 60-130 24-SEP-21 Chrysene 106.8 % 60-130 24-SEP-21 Chrysene 106.8 % 60-130 24-SEP-21 Dibenz(a, h)anthracene 93.4 % 60-130 24-SEP-21 Fluorene 101.3 % 60-130 <th>PAH-TMB-H/A-MS-CL</th> <th>Soil</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	PAH-TMB-H/A-MS-CL	Soil							
Acenaphthene 107.4 % 60-130 24-SEP-21 Acenaphthylene 115.2 % 60-130 24-SEP-21 Anthracene 121.4 % 60-130 24-SEP-21 Acridine 121.9 % 60-130 24-SEP-21 Benzo(a)nthracene 107.7 % 60-130 24-SEP-21 Benzo(b)fluoranthene 102.5 % 60-130 24-SEP-21 Benzo(b)fluoranthene 102.5 % 60-130 24-SEP-21 Benzo(b)fluoranthene 89.4 % 60-130 24-SEP-21 Benzo(k)fluoranthene 90.2 % 60-130 24-SEP-21 Benzo(k)fluoranthene 90.2 % 60-130 24-SEP-21 Chrysene 106.8 % 60-130 24-SEP-21 Dibenz(a,k)harthracene 93.4 % 60-130 24-SEP-21 Dibenz(a,k)harthracene 101.3 % 60-130 24-SEP-21 Fluoranthene 101.3 % 60-130 24-SEP-21	Batch R5598316								
Acenaphthylene 115.2 % 60-130 24-SEP-21 Anthracene 121.4 % 60-130 24-SEP-21 Anthracene 121.4 % 60-130 24-SEP-21 Acridine 121.9 % 60-130 24-SEP-21 Benzo(a)pyrene 110.7 % 60-130 24-SEP-21 Benzo(a)pyrene 113.9 % 60-130 24-SEP-21 Benzo(b)pyrene 110.5 % 60-130 24-SEP-21 Benzo(b)pyrene 111.7 % 60-130 24-SEP-21 Benzo(b)pyrene 111.7 % 60-130 24-SEP-21 Benzo(b)pyrene 111.7 % 60-130 24-SEP-21 Benzo(b)pyrene 111.7 % 60-130 24-SEP-21 Benzo(b)pyrene 111.7 % 60-130 24-SEP-21 Benzo(b)pyrene 106.8 % 60-130 24-SEP-21 Benzo(b)pyrene 106.8 % 60-130 24-SEP-21 Benzo(b)pyrene 106.8 % 60-130 24-SEP-21 Benzo(b)pyrene 101.3 % 60-130 24-SEP-21 Benzo(b)pyrene 101.3 % 60-130 24-SEP-21 Benzo(b)pyrene 101.3 % 60-130 24-SEP-21 Benzo(b)pyrene 101.3 % 60-130 24-SEP-21 Benzo(b)pyrene 101.3 % 60-130 24-SEP-21 Benzo(b)pyrene 101.3 % 60-130 24-SEP-21 Benzo(b)pyrene 101.3 % 60-130 24-SEP-21 Benzo(b)pyrene 101.4 % 60-130 24-SEP-21 Benzo(b)pyrene 101.4 % 60-130 24-SEP-21 Benzo(b)pyrene 101.4 % 60-130 24-SEP-21 Benzo(b)pyrene 101.8 % 60-130 24-SEP-21 Benzo(b)pyrene 101.8 % 60-130 24-SEP-21 Benzo(b)pyrene 101.4 % 60-130 24-SEP-21 Benzo(b)pyrene 101.4 % 60-130 24-SEP-21 Benzo(b)pyrene 101.4 % 60-130 24-SEP-21 Benzo(b)pyrene 101.8 % 60-130 24-SEP-21 Benzo(b)pyrene 101.8 % 60-130 24-SEP-21 Benzo(b)pyrene 111.8 % 60-130 24-SEP-21 Benzo(b)pyrene 112.5 % 60-130 24-SEP-21 Benzo(b)pyrene 112.5 % 60-130 24-SEP-21 Benzo(b)pyrene 112.5 % 60-130 24-SEP-21 Benzo(b)pyrene 112.5 % 60-130 24-SEP-21 Benzo(b)pyrene 112.5 % 60-130 24-SEP-21 Benzo(b)pyrene 112.5 % 60-130 24-SEP-21 Benzo(b)pyrene 112.5 % 60-130 24-SEP-21 Benzo(b)pyrene 112.5			ALS PAH RI						
Anthracene 121.4 % 60-130 24-SEP-21 Acridine 121.9 % 60-130 24-SEP-21 Benzo(a)anthracene 107.7 % 60-130 24-SEP-21 Benzo(b)Pyrene 113.9 % 60-130 24-SEP-21 Benzo(b)Jituoranthene 102.5 % 60-130 24-SEP-21 Benzo(b)Jituoranthene 111.7 % 60-130 24-SEP-21 Benzo(b)Jituoranthene 89.4 % 60-130 24-SEP-21 Benzo(b)Jituoranthene 90.2 % 60-130 24-SEP-21 Benzo(b)Jituoranthene 90.2 % 60-130 24-SEP-21 Dibenz(a,h)anthracene 93.4 % 60-130 24-SEP-21 Dibenz(a,h)anthracene 93.4 % 60-130 24-SEP-21 Dibenz(a,h)anthracene 101.3 % 60-130 24-SEP-21 Fluoranthene 101.3 % 60-130 24-SEP-21 Picerne 101.3 % 60-130 24-SEP-21	•			-					
Acridine 121.9 % 60.130 24-SEP-21 Benz(a)anthracene 107.7 % 60.130 24-SEP-21 Benz(a)anthracene 113.9 % 60.130 24-SEP-21 Benzo(a)pyrene 113.9 % 60.130 24-SEP-21 Benzo(a)pyrene 111.7 % 60.130 24-SEP-21 Benzo(b)pyrene 111.7 % 60.130 24-SEP-21 Benzo(g,h,i)perylene 89.4 % 60.130 24-SEP-21 Benzo(g,h,i)perylene 89.4 % 60.130 24-SEP-21 Benzo(g,h,i)perylene 89.4 % 60.130 24-SEP-21 Dibenz(a,h)anthracene 106.8 % 60.130 24-SEP-21 Dibenz(a,h)anthracene 99.4 % 60.130 24-SEP-21 Fluoranthene 101.3 % 60.130 24-SEP-21 Fluoranthene 101.3 % 60.130 24-SEP-21 Indeno(1,2,3-c,d)pyrene 123.5 % 60.130 24-SEP-21 Indeno(1,2,3-c,d)pyrene 123.5 % 60.130 24-SEP-21 Perylene 118.8 % 60.130 24-SEP-21 Perylene 118.8 % 60.130 24-SEP-21 Phenanthrene 102.7 % 60.130 24-SEP-21 Phenanthrene 102.7 % 60.130 24-SEP-21 Phenanthrene 104.0 % 60.130 24-SEP-21 Pyrene 103.1 % 60.130 24-SEP-21 Pyrene 103.1 % 60.130 24-SEP-21 Pyrene 103.1 % 60.130 24-SEP-21 Pyrene 104.0 % 60.130 24-SEP-21 Pyrene 108.5 % 60.130 24-SEP-21 Pyrene 108.5 % 60.130 24-SEP-21 Pyrene 108.5 % 60.130 24-SEP-21 Pyrene 108.5 % 60.130 24-SEP-21 Pyrene 108.5 % 60.130 24-SEP-21 Pyrene 108.5 % 60.130 24-SEP-21 Pyrene 108.6 % 60.130 24-SEP-21 Pyrene 108.6 % 60.130 24-SEP-21 Pyrene 108.6 % 60.130 24-SEP-21 Pyrene 108.6 % 60.130 24-SEP-21 Pyrene 108.2 % 60.130 24-SEP-21 Pyrene 108.2 % 60.130 24-SEP-21 Pyrene 108.2 % 60.130 24-SEP-21 Pyrene 108.2 % 60.130 24-SEP-21 Pyrene 108.2 % 60.130 24-SEP-21 Pyrene 108.2 % 60.130 24-SEP-21 Pyrene 108.2 % 60.130 24-SEP-21 Pyrene 108.2 % 60.130 24-SEP-21 Pyrene 118.8 % 60.130 24-SEP-21 Pyrene 118.8 % 60.130 24-SEP-21 Pyrene 118.8 % 60.130 24-SEP-21 Pyrene 118.8 % 60.130 24-SEP-21 Pyrene 118.8 % 60.130 24-SEP-21 Pyrene 118.8 % 60.130 24-SEP-21 Pyrene 118.8 % 60.130 24-SEP-21 Pyrene 118.8 % 60.130 24-SEP-21 Pyrene 118.8 % 60.130 24-SEP-21 Pyrene 118.8 % 60.130 24-SEP-21 Pyrene 118.8 % 60.130 24-SEP-21 Pyrene 118.8 % 60.130 24-SEP-21 Pyrene 118.8 % 60.130 24-SEP-21 Pyrene 118.8 % 60.130 24-SEP-21 Pyrene 118.8 % 60.130 24-SEP-21 Pyrene 118.8 % 60.130 24-SEP-21 Pyren								60-130	24-SEP-21
Benz(a)anthracene 107.7 % 60.130 24.85E-21 Benzo(a)pyrene 113.9 % 60-130 24.85E-21 Benzo(b)Ajifluoranthene 102.5 % 60-130 24.85E-21 Benzo(a)pyrene 111.7 % 60-130 24.85E-21 Benzo(a)jh.j)peylene 89.4 % 60-130 24.85E-21 Benzo(k)fluoranthene 90.2 % 60-130 24.85E-21 Benzo(k)fluoranthene 106.8 % 60-130 24.85E-21 Dibenz(a,h)anthracene 93.4 % 60-130 24.85E-21 Dibenz(a,h)anthracene 101.3 % 60-130 24.85E-21 Fluoranthene 101.3 % 60-130 24.85E-21 Dibenz(a,h)anthracene 107.0 % 60-130 24.85E-21 Fluoranthene 101.3 % 60-130 24.85E-21 Dibenz(a,h)anthracene 107.0 % 60-130 24.85E-21 Indenot(1,2,3-c,d)pyrene 101.3 % 60-130								60-130	24-SEP-21
Benzo(a)pyrene 113.9 % 60-130 24-SEP-21 Benzo(b&)fluoranthene 102.5 % 60-130 24-SEP-21 Benzo(e)pyrene 111.7 % 60-130 24-SEP-21 Benzo(p)pyrene 111.7 % 60-130 24-SEP-21 Benzo(k)fluoranthene 89.4 % 60-130 24-SEP-21 Benzo(k)fluoranthene 106.8 % 60-130 24-SEP-21 Chrysene 106.8 % 60-130 24-SEP-21 Dibenz(a,h)anthracene 93.4 % 60-130 24-SEP-21 Fluoranthene 101.3 % 60-130 24-SEP-21 Fluoranthene 107.0 % 60-130 24-SEP-21 Fluorene 107.0 % 60-130 24-SEP-21 Indeno(1,2,3-c,d)pyrene 123.5 % 60-130 24-SEP-21 Indeno(1,2,3-c,d)pyrene 123.5 % 60-130 24-SEP-21 Naphthalene 104.7 % 60-130 24-SEP-21 <								60-130	
Benzo(b&j)fluoranthene 102.5 % 60-130 24-SEP-21 Benzo(e)pyrene 111.7 % 60-130 24-SEP-21 Benzo(g), in jerylene 89.4 % 60-130 24-SEP-21 Benzo(k) fluoranthene 90.2 % 60-130 24-SEP-21 Chrysene 106.8 % 60-130 24-SEP-21 Dibenz(a, h)anthracene 93.4 % 60-130 24-SEP-21 Fluoranthene 101.3 % 60-130 24-SEP-21 Fluorene 107.0 % 60-130 24-SEP-21 Indeno(1,2,3-c,d)pyrene 123.5 % 60-130 24-SEP-21 Indeno(1,2,3-c,d)pyrene 123.5 % 60-130 24-SEP-21 Naphthalene 197.4 % 60-130 24-SEP-21 Naphthalene 97.4 % 60-130 24-SEP-21 Perylene 118.8 % 60-130 24-SEP-21 Phenanthrene 102.7 % 60-130 24-SEP-21								60-130	24-SEP-21
Benzo(e)pyrene 111.7 % 60-130 24-SEP-21 Benzo(g,h,i)perylene 89.4 % 60-130 24-SEP-21 Benzo(k)fluoranthene 90.2 % 60-130 24-SEP-21 Chrysene 106.8 % 60-130 24-SEP-21 Dibenz(a,h)anthracene 93.4 % 60-130 24-SEP-21 Fluoranthene 101.3 % 60-130 24-SEP-21 Fluorene 107.0 % 60-130 24-SEP-21 Indeno(1,2,3-c,d)pyrene 123.5 % 60-130 24-SEP-21 Indeno(1,2,3-c,d)pyrene 123.5 % 60-130 24-SEP-21 Vettylhaphthalene 104.7 % 60-130 24-SEP-21 Naphthalene 97.4 % 60-130 24-SEP-21 Perylene 118.8 % 60-130 24-SEP-21 Phenanthrene 102.7 % 60-130 24-SEP-21 Pyrene 103.1 % 60-130 24-SEP-21 MG46	Benzo(a)pyrene			113.9		%		60-130	24-SEP-21
Benzo(g,h,i)perylene 89.4 % 60-130 24-SEP-21 Benzo(k)fluoranthene 90.2 % 60-130 24-SEP-21 Chrysene 106.8 % 60-130 24-SEP-21 Dibenz(a,h)anthracene 93.4 % 60-130 24-SEP-21 Fluoranthene 101.3 % 60-130 24-SEP-21 Fluorene 107.0 % 60-130 24-SEP-21 Indeno(1,2,3-c,d)pyrene 123.5 % 60-130 24-SEP-21 2-Methylnaphthalene 104.7 % 60-130 24-SEP-21 Naphthalene 97.4 % 60-130 24-SEP-21 Perylene 118.8 % 60-130 24-SEP-21 Phenanthrene 102.7 % 60-130 24-SEP-21 Pyrene 103.1 % 60-130 24-SEP-21 Hethylnaphthalene 104.0 % 60-130 24-SEP-21 WG3624657-3 LCS Accenaphthylnaphthylnaphthylnaphthylnaphthylnaphthylnaphthylnaphthylnaphthylnaphthylnaphthylnaphthylna	Benzo(b&j)fluoranthene			102.5		%		60-130	24-SEP-21
Benzo(k)fluoranthene 90.2 % 60.130 24-SEP-21 Chrysene 106.8 % 60-130 24-SEP-21 Dibenz(a,h)anthracene 93.4 % 60-130 24-SEP-21 Fluoranthene 101.3 % 60-130 24-SEP-21 Fluorene 107.0 % 60-130 24-SEP-21 Indeno(1,2,3-c,d)pyrene 123.5 % 60-130 24-SEP-21 Indeno(1,2,3-c,d)pyrene 123.5 % 60-130 24-SEP-21 Naphthalene 104.7 % 60-130 24-SEP-21 Naphthalene 97.4 % 60-130 24-SEP-21 Perylene 118.8 % 60-130 24-SEP-21 Phenanthrene 102.7 % 60-130 24-SEP-21 Pyrene 103.1 % 60-130 24-SEP-21 Hwethylnaphthalene 104.0 % 60-130 24-SEP-21 WG3624657-3 LCS K 60-130 24-SEP-21 Acenaphthylene </td <td>Benzo(e)pyrene</td> <td></td> <td></td> <td>111.7</td> <td></td> <td>%</td> <td></td> <td>60-130</td> <td>24-SEP-21</td>	Benzo(e)pyrene			111.7		%		60-130	24-SEP-21
Chrysene 106.8 % 60-130 24-SEP-21 Dibenz(a,h)anthracene 93.4 % 60-130 24-SEP-21 Fluoranthene 101.3 % 60-130 24-SEP-21 Fluorene 107.0 % 60-130 24-SEP-21 Indeno(1,2,3-c,d)pyrene 123.5 % 60-130 24-SEP-21 2-Methylnaphthalene 104.7 % 60-130 24-SEP-21 2-Methylnaphthalene 97.4 % 50-130 24-SEP-21 Perylene 118.8 % 60-130 24-SEP-21 Phenanthrene 102.7 % 60-130 24-SEP-21 Pyrene 103.1 % 60-130 24-SEP-21 1-Methylnaphthalene 104.0 % 60-130 24-SEP-21 WG3624657-3 LCS LCS 60-130 24-SEP-21 Acenaphthylene 118.3 % 60-130 24-SEP-21 Actricene 111.9 % 60-130 24-SEP-21 Actridine	Benzo(g,h,i)perylene			89.4		%		60-130	24-SEP-21
Dibenz(a,h)anthracene 93.4 % 60-130 24-SEP-21 Fluoranthene 101.3 % 60-130 24-SEP-21 Fluorene 107.0 % 60-130 24-SEP-21 Indeno(1,2,3-c,d)pyrene 123.5 % 60-130 24-SEP-21 2-Methylnaphthalene 104.7 % 60-130 24-SEP-21 Naphthalene 97.4 % 50-130 24-SEP-21 Perylene 118.8 % 60-130 24-SEP-21 Phenanthrene 102.7 % 60-130 24-SEP-21 Pyrene 103.1 % 60-130 24-SEP-21 1-Methylnaphthalene 104.0 % 60-130 24-SEP-21 WG3624657-3 LCS LCS Acenaphthene 118.3 % 60-130 24-SEP-21 Acenaphthylene 107.3 % 60-130 24-SEP-21 Acridine 108.2 % 60-130 24-SEP-21 Acridine 108.2 % 60-130 <td< td=""><td>Benzo(k)fluoranthene</td><td></td><td></td><td>90.2</td><td></td><td>%</td><td></td><td>60-130</td><td>24-SEP-21</td></td<>	Benzo(k)fluoranthene			90.2		%		60-130	24-SEP-21
Fluoranthene 101.3 % 60-130 24-SEP-21 Fluorene 107.0 % 60-130 24-SEP-21 Indeno(1,2,3-c,d)pyrene 123.5 % 60-130 24-SEP-21 Indeno(1,2,3-c,d)pyrene 123.5 % 60-130 24-SEP-21 2-Methylnaphthalene 104.7 % 60-130 24-SEP-21 2-Methylnaphthalene 97.4 % 50-130 24-SEP-21 Naphthalene 97.4 % 50-130 24-SEP-21 Perylene 118.8 % 60-130 24-SEP-21 Perylene 102.7 % 60-130 24-SEP-21 Pyrene 103.1 % 60-130 24-SEP-21 Pyrene 103.1 % 60-130 24-SEP-21 1-Methylnaphthalene 104.0 % 60-130 24-SEP-21 WG3624657-3 LCS Acenaphthene 118.3 % 60-130 24-SEP-21 Acriane 118.3 % 60-130 24-SEP-21 Acriane 111.9 % 60-130 24-SEP-21 Acriane 111.9 % 60-130 24-SEP-21 Acriane 111.9 % 60-130 24-SEP-21 Benz(a)anthracene 116.8 % 60-130 24-SEP-21 Benz(a)pyrene 110.6 % 60-130 24-SEP-21 Benzo(b§)fluoranthene 124.5 % 60-130 24-SEP-21 Benzo(b)pyrene 112.8 % 60-130 24-SEP-21 Benzo(b,h)perylene 112.5 % 60-130 24-SEP-21 Benzo(b,h)perylene 112.5 % 60-130 24-SEP-21 Benzo(b,h)perylene 112.5 % 60-130 24-SEP-21 Benzo(b,fluoranthene 120.0 %	Chrysene			106.8		%		60-130	24-SEP-21
Fluorene 107.0 % 60-130 24-SEP-21 Indeno(1,2,3-c,d)pyrene 123.5 % 60-130 24-SEP-21 2-Methylnaphthalene 104.7 % 60-130 24-SEP-21 2-Methylnaphthalene 97.4 % 50-130 24-SEP-21 Naphthalene 97.4 % 50-130 24-SEP-21 Perylene 118.8 % 60-130 24-SEP-21 Perylene 118.8 % 60-130 24-SEP-21 Pyrene 102.7 % 60-130 24-SEP-21 Pyrene 103.1 % 60-130 24-SEP-21 1-Methylnaphthalene 104.0 % 60-130 24-SEP-21 1-Methylnaphthalene 104.0 % 60-130 24-SEP-21 MG3624657-3 LCS Acenaphthene 118.3 % 60-130 24-SEP-21 Acenaphthylene 107.3 % 60-130 24-SEP-21 Acridine 108.2 % 60-130 24-SEP-21 Benz(a)anthracene 111.9 % 60-130 24-SEP-21 Benz(a)anthracene 116.8 % 60-130 24-SEP-21 Benz(a)pyrene 110.6 % 60-130 24-SEP-21 Benz(b\(\bar{b}\)jfiuoranthene 124.5 % 60-130 24-SEP-21 Benz(a)pyrene 112.8 % 60-130 24-SEP-21 Benz(a)hjperylene 112.5 % 60-130 24-SEP-21 Benz(a)hjperylene 112	Dibenz(a,h)anthracene			93.4		%		60-130	24-SEP-21
Indeno(1,2,3-c,d)pyrene 123.5 % 60-130 24-SEP-21 2-Methylnaphthalene 104.7 % 60-130 24-SEP-21 Naphthalene 97.4 % 50-130 24-SEP-21 Perylene 118.8 % 60-130 24-SEP-21 Phenanthrene 102.7 % 60-130 24-SEP-21 Pyrene 103.1 % 60-130 24-SEP-21 1-Methylnaphthalene 104.0 % 60-130 24-SEP-21 1-Methylnaphthalene 104.0 % 60-130 24-SEP-21 MG3624657-3 LCS Acenaphthene 118.3 % 60-130 24-SEP-21 Acenaphthylene 107.3 % 60-130 24-SEP-21 Anthracene 111.9 % 60-130 24-SEP-21 Acridine 108.2 % 60-130 24-SEP-21 Benzo(a)pyrene 110.6 % 60-130 24-SEP-21 Benzo(băj)fluoranthene 124.5 % 60-130 24-SEP-21 Benzo(e)pyrene 112.8 % 60-130 24-SEP-21 Benzo(g,h,i)perylene 112.5 % 60-130 24-SEP-21 Benzo(k)fluoranthene 120.0 % 60-130 24-SEP-21 Benzo(k)fluoranthene 120.0 % 60-130 24-SEP-21 Benzo(k)fluoranthene 120.0 % 60-130 24-SEP-21 Benzo(k)fluoranthene 120.0 % 60-130 24-SEP-21 Benzo(k)fluoranthene 120.0 % 60-130 24-SEP-21 Benzo(k)fluoranthene 120.0 % 60-130 24-SEP-21 Benzo(k)fluoranthene 120.0 % 60-130 24-SEP-21 Benzo(k)fluoranthene 120.0 % 60-130 24-SEP-21 Benzo(k)fluoranthene 120.0 % 60-130 24-SEP-21 Benzo(k)fluoranthene 120.0 % 60-130 24-SEP-21 Benzo(k)fluoranthene 120.0 % 60-130 24-SEP-21 Benzo(k)fluoranthene 120.0 % 60-130 24-SEP-21 Benzo(k)fluoranthene 120.0 % 60-130 24-SEP-21	Fluoranthene			101.3		%		60-130	24-SEP-21
2-Methylnaphthalene 104.7 % 60-130 24-SEP-21 Naphthalene 97.4 % 50-130 24-SEP-21 Perylene 118.8 % 60-130 24-SEP-21 Perylene 118.8 % 60-130 24-SEP-21 Phenanthrene 102.7 % 60-130 24-SEP-21 Pyrene 103.1 % 60-130 24-SEP-21 1-Methylnaphthalene 104.0 % 60-130 24-SEP-21 1-Methylnaphthalene 104.0 % 60-130 24-SEP-21 MG3624657-3 LCS Acenaphthene 118.3 % 60-130 24-SEP-21 Acenaphthylene 107.3 % 60-130 24-SEP-21 Anthracene 111.9 % 60-130 24-SEP-21 Acridine 108.2 % 60-130 24-SEP-21 Benz(a)anthracene 116.8 % 60-130 24-SEP-21 Benz(a)pyrene 110.6 % 60-130 24-SEP-21 Benz(b)fluoranthene 124.5 % 60-130 24-SEP-21 Benz(e)pyrene 112.8 % 60-130 24-SEP-21 Benz(c)h,i)perylene 112.5 % 60-130 24-SEP-21 Benz(k)fluoranthene 120.0 % 60-130 24-SEP-21 Benz(k)fluoranthene 120.0 % 60-130 24-SEP-21 Chrysene 118.3 % 60-130 24-SEP-21	Fluorene			107.0		%		60-130	24-SEP-21
Naphthalene 97.4 % 50-130 24-SEP-21 Perylene 118.8 % 60-130 24-SEP-21 Phenanthrene 102.7 % 60-130 24-SEP-21 Pyrene 103.1 % 60-130 24-SEP-21 1-Methylnaphthalene 104.0 % 60-130 24-SEP-21 WG3624657-3 LCS Acenaphthene 118.3 % 60-130 24-SEP-21 Acenaphthylene 107.3 % 60-130 24-SEP-21 Anthracene 111.9 % 60-130 24-SEP-21 Acridine 108.2 % 60-130 24-SEP-21 Benz(a)anthracene 116.8 % 60-130 24-SEP-21 Benzo(a)pyrene 110.6 % 60-130 24-SEP-21 Benzo(b)ğijfluoranthene 124.5 % 60-130 24-SEP-21 Benzo(c)pyrene 112.8 % 60-130 24-SEP-21 Benzo(g)h,i)perylene 112.5 % 60-130 24-SEP-21 Benzo(k)fluoranthene 120.0 % 60-130 <td>Indeno(1,2,3-c,d)pyrene</td> <td>)</td> <td></td> <td>123.5</td> <td></td> <td>%</td> <td></td> <td>60-130</td> <td>24-SEP-21</td>	Indeno(1,2,3-c,d)pyrene)		123.5		%		60-130	24-SEP-21
Perylene 118.8 % 60-130 24-SEP-21 Phenanthrene 102.7 % 60-130 24-SEP-21 Pyrene 103.1 % 60-130 24-SEP-21 1-Methylnaphthalene 104.0 % 60-130 24-SEP-21 1-Methylnaphthalene 104.0 % 60-130 24-SEP-21 1-Methylnaphthalene 118.3 % 60-130 24-SEP-21 MG3624657-3 LCS Acenaphthene 118.3 % 60-130 24-SEP-21 Acenaphthylene 107.3 % 60-130 24-SEP-21 Anthracene 111.9 % 60-130 24-SEP-21 Acridine 108.2 % 60-130 24-SEP-21 Benz(a)anthracene 116.8 % 60-130 24-SEP-21 Benzo(a)pyrene 110.6 % 60-130 24-SEP-21 Benzo(b&j)fluoranthene 124.5 % 60-130 24-SEP-21 Benzo(e)pyrene 112.8 % 60-130 24-SEP-21 Benzo(g,h,i)perylene 112.5 % 60-130 24-SEP-21 Benzo(g,h,i)perylene 112.5 % 60-130 24-SEP-21 Benzo(k)fluoranthene 120.0 % 60-130 24-SEP-21 Chrysene 118.3 % 60-130 24-SEP-21	2-Methylnaphthalene			104.7		%		60-130	24-SEP-21
Phenanthrene 102.7 % 60-130 24-SEP-21 Pyrene 103.1 % 60-130 24-SEP-21 1-Methylnaphthalene 104.0 % 60-130 24-SEP-21 WG3624657-3 LCS	Naphthalene			97.4		%		50-130	24-SEP-21
Pyrene 103.1 % 60-130 24-SEP-21 1-Methylnaphthalene 104.0 % 60-130 24-SEP-21 WG3624657-3 LCS Acenaphthene 118.3 % 60-130 24-SEP-21 Acenaphthylene 107.3 % 60-130 24-SEP-21 Anthracene 111.9 % 60-130 24-SEP-21 Acridine 108.2 % 60-130 24-SEP-21 Benz(a)anthracene 116.8 % 60-130 24-SEP-21 Benzo(a)pyrene 110.6 % 60-130 24-SEP-21 Benzo(b&j)fluoranthene 124.5 % 60-130 24-SEP-21 Benzo(e)pyrene 112.8 % 60-130 24-SEP-21 Benzo(g,h,i)perylene 112.5 % 60-130 24-SEP-21 Benzo(k)fluoranthene 120.0 % 60-130 24-SEP-21 Chrysene 118.3 % 60-130 24-SEP-21	Perylene			118.8		%		60-130	24-SEP-21
1-Methylnaphthalene 104.0 % 60-130 24-SEP-21 WG3624657-3 LCS Acenaphthene 118.3 % 60-130 24-SEP-21 Acenaphthylene 107.3 % 60-130 24-SEP-21 Anthracene 111.9 % 60-130 24-SEP-21 Acridine 108.2 % 60-130 24-SEP-21 Benz(a)anthracene 116.8 % 60-130 24-SEP-21 Benzo(a)pyrene 110.6 % 60-130 24-SEP-21 Benzo(b&j)fluoranthene 124.5 % 60-130 24-SEP-21 Benzo(e)pyrene 112.8 % 60-130 24-SEP-21 Benzo(g,h,i)perylene 112.5 % 60-130 24-SEP-21 Benzo(k)fluoranthene 120.0 % 60-130 24-SEP-21 Chrysene 118.3 % 60-130 24-SEP-21	Phenanthrene			102.7		%		60-130	24-SEP-21
WG3624657-3 LCS Acenaphthene 118.3 % 60-130 24-SEP-21 Acenaphthylene 107.3 % 60-130 24-SEP-21 Anthracene 111.9 % 60-130 24-SEP-21 Acridine 108.2 % 60-130 24-SEP-21 Benz(a)anthracene 116.8 % 60-130 24-SEP-21 Benzo(a)pyrene 110.6 % 60-130 24-SEP-21 Benzo(b&j)fluoranthene 124.5 % 60-130 24-SEP-21 Benzo(e)pyrene 112.8 % 60-130 24-SEP-21 Benzo(g,h,i)perylene 112.5 % 60-130 24-SEP-21 Benzo(k)fluoranthene 120.0 % 60-130 24-SEP-21 Chrysene 118.3 % 60-130 24-SEP-21	Pyrene			103.1		%		60-130	24-SEP-21
Acenaphthene 118.3 % 60-130 24-SEP-21 Acenaphthylene 107.3 % 60-130 24-SEP-21 Anthracene 111.9 % 60-130 24-SEP-21 Acridine 108.2 % 60-130 24-SEP-21 Benz(a)anthracene 116.8 % 60-130 24-SEP-21 Benzo(a)pyrene 110.6 % 60-130 24-SEP-21 Benzo(b&j)fluoranthene 124.5 % 60-130 24-SEP-21 Benzo(e)pyrene 112.8 % 60-130 24-SEP-21 Benzo(g,h,i)perylene 112.5 % 60-130 24-SEP-21 Benzo(k)fluoranthene 120.0 % 60-130 24-SEP-21 Chrysene 118.3 % 60-130 24-SEP-21	1-Methylnaphthalene			104.0		%		60-130	24-SEP-21
Acenaphthylene 107.3 % 60-130 24-SEP-21 Anthracene 111.9 % 60-130 24-SEP-21 Acridine 108.2 % 60-130 24-SEP-21 Benz(a)anthracene 116.8 % 60-130 24-SEP-21 Benzo(a)pyrene 110.6 % 60-130 24-SEP-21 Benzo(b&j)fluoranthene 124.5 % 60-130 24-SEP-21 Benzo(e)pyrene 112.8 % 60-130 24-SEP-21 Benzo(g,h,i)perylene 112.5 % 60-130 24-SEP-21 Benzo(k)fluoranthene 120.0 % 60-130 24-SEP-21 Chrysene 118.3 % 60-130 24-SEP-21	WG3624657-3 LCS								
Anthracene 111.9 % 60-130 24-SEP-21 Acridine 108.2 % 60-130 24-SEP-21 Benz(a)anthracene 116.8 % 60-130 24-SEP-21 Benzo(a)pyrene 110.6 % 60-130 24-SEP-21 Benzo(b&j)fluoranthene 124.5 % 60-130 24-SEP-21 Benzo(e)pyrene 112.8 % 60-130 24-SEP-21 Benzo(g,h,i)perylene 112.5 % 60-130 24-SEP-21 Benzo(k)fluoranthene 120.0 % 60-130 24-SEP-21 Chrysene 118.3 % 60-130 24-SEP-21	Acenaphthene			118.3		%		60-130	24-SEP-21
Acridine 108.2 % 60-130 24-SEP-21 Benz(a)anthracene 116.8 % 60-130 24-SEP-21 Benzo(a)pyrene 110.6 % 60-130 24-SEP-21 Benzo(b&j)fluoranthene 124.5 % 60-130 24-SEP-21 Benzo(e)pyrene 112.8 % 60-130 24-SEP-21 Benzo(g,h,i)perylene 112.5 % 60-130 24-SEP-21 Benzo(k)fluoranthene 120.0 % 60-130 24-SEP-21 Chrysene 118.3 % 60-130 24-SEP-21	Acenaphthylene			107.3		%		60-130	24-SEP-21
Benz(a)anthracene 116.8 % 60-130 24-SEP-21 Benzo(a)pyrene 110.6 % 60-130 24-SEP-21 Benzo(b&j)fluoranthene 124.5 % 60-130 24-SEP-21 Benzo(e)pyrene 112.8 % 60-130 24-SEP-21 Benzo(g,h,i)perylene 112.5 % 60-130 24-SEP-21 Benzo(k)fluoranthene 120.0 % 60-130 24-SEP-21 Chrysene 118.3 % 60-130 24-SEP-21	Anthracene			111.9		%		60-130	24-SEP-21
Benzo(a)pyrene 110.6 % 60-130 24-SEP-21 Benzo(b&j)fluoranthene 124.5 % 60-130 24-SEP-21 Benzo(e)pyrene 112.8 % 60-130 24-SEP-21 Benzo(g,h,i)perylene 112.5 % 60-130 24-SEP-21 Benzo(k)fluoranthene 120.0 % 60-130 24-SEP-21 Chrysene 118.3 % 60-130 24-SEP-21	Acridine			108.2		%		60-130	24-SEP-21
Benzo(b&j)fluoranthene 124.5 % 60-130 24-SEP-21 Benzo(e)pyrene 112.8 % 60-130 24-SEP-21 Benzo(g,h,i)perylene 112.5 % 60-130 24-SEP-21 Benzo(k)fluoranthene 120.0 % 60-130 24-SEP-21 Chrysene 118.3 % 60-130 24-SEP-21	Benz(a)anthracene			116.8		%		60-130	24-SEP-21
Benzo(e)pyrene 112.8 % 60-130 24-SEP-21 Benzo(g,h,i)perylene 112.5 % 60-130 24-SEP-21 Benzo(k)fluoranthene 120.0 % 60-130 24-SEP-21 Chrysene 118.3 % 60-130 24-SEP-21	Benzo(a)pyrene			110.6		%		60-130	24-SEP-21
Benzo(g,h,i)perylene 112.5 % 60-130 24-SEP-21 Benzo(k)fluoranthene 120.0 % 60-130 24-SEP-21 Chrysene 118.3 % 60-130 24-SEP-21	Benzo(b&j)fluoranthene			124.5		%		60-130	24-SEP-21
Benzo(k)fluoranthene 120.0 % 60-130 24-SEP-21 Chrysene 118.3 % 60-130 24-SEP-21	Benzo(e)pyrene			112.8		%		60-130	24-SEP-21
Chrysene 118.3 % 60-130 24-SEP-21	Benzo(g,h,i)perylene			112.5		%		60-130	24-SEP-21
	Benzo(k)fluoranthene			120.0		%		60-130	24-SEP-21
Dibona/o bloodbysoons	Chrysene			118.3		%		60-130	24-SEP-21
Diberiz(a,ri)antitriacene 111.1 % 60-130 24-SEP-21	Dibenz(a,h)anthracene			111.1		%		60-130	24-SEP-21

Workorder: L2641071 Report Date: 11-OCT-21 Page 8 of 22

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-H/A-MS-CL	Soil							
Batch R5598316								
WG3624657-3 LCS Fluoranthene			447.0		0/			
			117.8		%		60-130	24-SEP-21
Fluorene			114.7		%		60-130	24-SEP-21
Indeno(1,2,3-c,d)pyrene	•		94.1		%		60-130	24-SEP-21
2-Methylnaphthalene			117.4		%		60-130	24-SEP-21
Naphthalene			109.6		%		50-130	24-SEP-21
Perylene			123.5		%		60-130	24-SEP-21
Phenanthrene			121.3		%		60-130	24-SEP-21
Pyrene			117.4		%		60-130	24-SEP-21
1-Methylnaphthalene			118.3		%		60-130	24-SEP-21
Quinoline			93.1		%		60-130	24-SEP-21
WG3624657-1 MB Acenaphthene			<0.0050		mg/kg		0.005	22 SED 24
Acenaphthylene			<0.0050				0.005	23-SEP-21
Anthracene			<0.0030		mg/kg		0.005 0.004	23-SEP-21 23-SEP-21
Acridine			<0.010		mg/kg mg/kg		0.004	23-SEP-21 23-SEP-21
Benz(a)anthracene			<0.010		mg/kg			
Benzo(a)pyrene			<0.010				0.01 0.01	23-SEP-21
Benzo(b&j)fluoranthene			<0.010		mg/kg mg/kg		0.01	23-SEP-21 23-SEP-21
Benzo(e)pyrene			<0.010		mg/kg			
Benzo(g,h,i)perylene			<0.010				0.01	23-SEP-21
Benzo(k)fluoranthene			<0.010		mg/kg mg/kg		0.01 0.01	23-SEP-21 23-SEP-21
Chrysene			<0.010		mg/kg		0.01	23-SEP-21 23-SEP-21
Dibenz(a,h)anthracene			<0.0050					
Fluoranthene			<0.010		mg/kg mg/kg		0.005	23-SEP-21
Fluorene			<0.010				0.01	23-SEP-21
Indeno(1,2,3-c,d)pyrene			<0.010		mg/kg mg/kg		0.01	23-SEP-21
2-Methylnaphthalene	•		<0.010				0.01	23-SEP-21
					mg/kg		0.01	23-SEP-21
Naphthalene			<0.010		mg/kg		0.01	23-SEP-21
Perylene Phenanthrene			<0.010		mg/kg		0.01	23-SEP-21
			<0.010		mg/kg		0.01	23-SEP-21
Pyrene			<0.010		mg/kg		0.01	23-SEP-21
1-Methylnaphthalene			<0.050		mg/kg		0.05	23-SEP-21
Quinoline			<0.050		mg/kg		0.05	23-SEP-21
Surrogate: d8-Naphthale	ene		76.4		%		50-130	23-SEP-21

Workorder: L2641071 Report Date: 11-OCT-21 Page 9 of 22

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-H/A-MS-CL	Soil							
Batch R5598310 WG3624657-1 MB Surrogate: d10-Acena			80.8		%		60-130	23-SEP-21
Surrogate: d10-Phena			86.8		%		60-130	23-SEP-21
Surrogate: d12-Chryse			99.3		%		60-130	23-SEP-21
			00.0		,,		00-130	23-3LF-21
Batch R5599599 WG3625117-12 IRM Acenaphthene	y	ALS PAH RM	2 83.5		%		60-130	25-SEP-21
Acenaphthylene			95.1		%		60-130	25-SEP-21
Anthracene			98.6		%		60-130	25-SEP-21
Acridine			106.1		%		60-130	25-SEP-21
Benz(a)anthracene			94.2		%		60-130	25-SEP-21
Benzo(a)pyrene			92.4		%		60-130	25-SEP-21
Benzo(b&j)fluoranthen	ie		87.2		%		60-130	25-SEP-21
Benzo(e)pyrene			94.7		%		60-130	25-SEP-21
Benzo(g,h,i)perylene			89.4		%		60-130	25-SEP-21
Benzo(k)fluoranthene			78.9		%		60-130	25-SEP-21
Chrysene			94.4		%		60-130	25-SEP-21
Dibenz(a,h)anthracene	Э		78.7		%		60-130	25-SEP-21
Fluoranthene			84.6		%		60-130	25-SEP-21
Fluorene			85.7		%		60-130	25-SEP-21
Indeno(1,2,3-c,d)pyrer	ne		103.7		%		60-130	25-SEP-21
2-Methylnaphthalene			83.4		%		60-130	25-SEP-21
Naphthalene			78.6		%		50-130	25-SEP-21
Perylene			100.5		%		60-130	25-SEP-21
Phenanthrene			85.2		%		60-130	25-SEP-21
Pyrene			87.6		%		60-130	25-SEP-21
1-Methylnaphthalene			81.6		%		60-130	25-SEP-21
WG3625117-20 IRM Acenaphthene		ALS PAH RM	2 91.5		%		60-130	26-SEP-21
Acenaphthylene			97.2		%		60-130	26-SEP-21
Anthracene			105.0		%		60-130	26-SEP-21
Acridine			109.7		%		60-130	26-SEP-21
Benz(a)anthracene			97.1		%		60-130	26-SEP-21
Benzo(a)pyrene			98.7		%		60-130	26-SEP-21
Benzo(b&j)fluoranthen	ie		91.2		%		60-130	26-SEP-21
Benzo(e)pyrene			104.3		%		60-130	26-SEP-21

Workorder: L2641071 Report Date: 11-OCT-21 Page 10 of 22

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-H/A-MS-CL	Soil							
Batch R5599599	9							
WG3625117-20 IRM		ALS PAH RI						
Benzo(g,h,i)perylene			89.9		%		60-130	26-SEP-21
Benzo(k)fluoranthene			91.2		%		60-130	26-SEP-21
Chrysene			97.0		%		60-130	26-SEP-21
Dibenz(a,h)anthracene)		92.8		%		60-130	26-SEP-21
Fluoranthene			88.2		%		60-130	26-SEP-21
Fluorene			93.3		%		60-130	26-SEP-21
Indeno(1,2,3-c,d)pyren	ie		113.3		%		60-130	26-SEP-21
2-Methylnaphthalene			85.2		%		60-130	26-SEP-21
Naphthalene			80.2		%		50-130	26-SEP-21
Perylene			92.2		%		60-130	26-SEP-21
Phenanthrene			90.5		%		60-130	26-SEP-21
Pyrene			91.5		%		60-130	26-SEP-21
1-Methylnaphthalene			85.5		%		60-130	26-SEP-21
WG3625117-5 IRM		ALS PAH RI						
Acenaphthene			82.8		%		60-130	25-SEP-21
Acenaphthylene			88.3		%		60-130	25-SEP-21
Anthracene			93.0		%		60-130	25-SEP-21
Acridine			96.0		%		60-130	25-SEP-21
Benz(a)anthracene			84.4		%		60-130	25-SEP-21
Benzo(a)pyrene			80.0		%		60-130	25-SEP-21
Benzo(b&j)fluoranthen	е		79.0		%		60-130	25-SEP-21
Benzo(e)pyrene			84.0		%		60-130	25-SEP-21
Benzo(g,h,i)perylene			73.8		%		60-130	25-SEP-21
Benzo(k)fluoranthene			69.4		%		60-130	25-SEP-21
Chrysene			84.4		%		60-130	25-SEP-21
Dibenz(a,h)anthracene)		74.1		%		60-130	25-SEP-21
Fluoranthene			78.9		%		60-130	25-SEP-21
Fluorene			87.5		%		60-130	25-SEP-21
Indeno(1,2,3-c,d)pyren	ie		98.0		%		60-130	25-SEP-21
2-Methylnaphthalene			78.2		%		60-130	25-SEP-21
Naphthalene			69.6		%		50-130	25-SEP-21
Perylene			83.7		%		60-130	25-SEP-21
Phenanthrene			81.8		%		60-130	25-SEP-21
Pyrene			80.7		%		60-130	25-SEP-21
•							22 100	

Workorder: L2641071 Report Date: 11-OCT-21 Page 11 of 22

est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
AH-TMB-H/A-MS-CL	Soil							
Batch R5599599								
WG3625117-5 IRM		ALS PAH RM						
1-Methylnaphthalene			78.0		%		60-130	25-SEP-21
WG3625117-8 IRM Acenaphthene		ALS PAH RM	2 79.0		%		CO 400	25-SEP-21
Acenaphthylene			82.6		%		60-130 60-130	25-SEP-21 25-SEP-21
Anthracene			88.8		%		60-130	25-SEP-21 25-SEP-21
Acridine			81.2		%		60-130	25-SEP-21 25-SEP-21
Benz(a)anthracene			81.4		%			25-SEP-21 25-SEP-21
Benzo(a)pyrene			76.9		%		60-130	
Benzo(b&j)fluoranthene			74.2		%		60-130	25-SEP-21
Benzo(e)pyrene			81.5		%		60-130	25-SEP-21 25-SEP-21
Benzo(g,h,i)perylene			71.7		%		60-130	25-SEP-21 25-SEP-21
Benzo(k)fluoranthene			70.1		%		60-130	
Chrysene			80.1		%		60-130	25-SEP-21
Dibenz(a,h)anthracene			76.0		%		60-130 60-130	25-SEP-21
Fluoranthene			74.6		%		60-130	25-SEP-21 25-SEP-21
Fluorene			78.0		%		60-130	25-SEP-21 25-SEP-21
Indeno(1,2,3-c,d)pyrene			89.0		%		60-130	25-SEP-21 25-SEP-21
2-Methylnaphthalene			75.5		%		60-130	25-SEP-21 25-SEP-21
Naphthalene			67.6		%		50-130	
Perylene			80.3		%			25-SEP-21 25-SEP-21
Phenanthrene			77.0		%		60-130 60-130	25-SEP-21 25-SEP-21
Pyrene			76.4		%		60-130	25-SEP-21 25-SEP-21
1-Methylnaphthalene			74.7		%		60-130	25-SEP-21 25-SEP-21
WG3625117-1 LCS			74.7		76		00-130	20-SEP-21
Acenaphthene			101.3		%		60-130	24-SEP-21
Acenaphthylene			92.7		%		60-130	24-SEP-21
Anthracene			93.8		%		60-130	24-SEP-21
Acridine			98.0		%		60-130	24-SEP-21
Benz(a)anthracene			99.7		%		60-130	24-SEP-21
Benzo(a)pyrene			78.9		%		60-130	24-SEP-21
Benzo(b&j)fluoranthene			91.1		%		60-130	24-SEP-21
Benzo(e)pyrene			100.0		%		60-130	24-SEP-21
Benzo(g,h,i)perylene			91.1		%		60-130	24-SEP-21
Benzo(k)fluoranthene			95.7		%		60-130	24-SEP-21
Chrysene			99.3		%		60-130	24-SEP-21

Workorder: L2641071 Report Date: 11-OCT-21 Page 12 of 22

est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-H/A-MS-CL	Soil							
Batch R5599599								
WG3625117-1 LCS								
Dibenz(a,h)anthracene			84.8		%		60-130	24-SEP-21
Fluoranthene			98.4		%		60-130	24-SEP-21
Fluorene			97.8		%		60-130	24-SEP-21
Indeno(1,2,3-c,d)pyrene			92.2		%		60-130	24-SEP-21
2-Methylnaphthalene			100.5		%		60-130	24-SEP-21
Naphthalene			96.6		%		50-130	24-SEP-21
Perylene			93.2		%		60-130	24-SEP-21
Phenanthrene			102.7		%		60-130	24-SEP-21
Pyrene			97.6		%		60-130	24-SEP-21
1-Methylnaphthalene			105.7		%		60-130	24-SEP-21
Quinoline			92.2		%		60-130	24-SEP-21
WG3625117-11 LCS								
Acenaphthene			96.9		%		60-130	25-SEP-21
Acenaphthylene			92.6		%		60-130	25-SEP-21
Anthracene			96.5		%		60-130	25-SEP-21
Acridine			92.5		%		60-130	25-SEP-21
Benz(a)anthracene			96.9		%		60-130	25-SEP-21
Benzo(a)pyrene			85.7		%		60-130	25-SEP-21
Benzo(b&j)fluoranthene			90.1		%		60-130	25-SEP-21
Benzo(e)pyrene			96.6		%		60-130	25-SEP-21
Benzo(g,h,i)perylene			89.7		%		60-130	25-SEP-21
Benzo(k)fluoranthene			92.3		%		60-130	25-SEP-21
Chrysene			94.3		%		60-130	25-SEP-21
Dibenz(a,h)anthracene			83.0		%		60-130	25-SEP-21
Fluoranthene			94.1		%		60-130	25-SEP-21
Fluorene			93.4		%		60-130	25-SEP-21
Indeno(1,2,3-c,d)pyrene			91.2		%		60-130	25-SEP-21
2-Methylnaphthalene			97.0		%		60-130	25-SEP-21
Naphthalene			94.0		%		50-130	25-SEP-21
Perylene			91.7		%		60-130	25-SEP-21
Phenanthrene			97.5		%		60-130	25-SEP-21
Pyrene			94.1		%		60-130	25-SEP-21
1-Methylnaphthalene			96.3		%		60-130	25-SEP-21
Quinoline			85.5		%		60-130	25-SEP-21
WG3625117-19 LCS			00.0		70		00-130	20-3EF-21

Workorder: L2641071 Report Date: 11-OCT-21 Page 13 of 22

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-H/A-MS-CL	Soil							
Batch R5599599								
WG3625117-19 LCS			400.0		0/			
Acenaphthene			100.6		%		60-130	26-SEP-21
Acenaphthylene			99.1		%		60-130	26-SEP-21
Anthracene			103.3		%		60-130	26-SEP-21
Acridine			98.8		%		60-130	26-SEP-21
Benz(a)anthracene			105.8		%		60-130	26-SEP-21
Benzo(a)pyrene			95.0		%		60-130	26-SEP-21
Benzo(b&j)fluoranthene			96.9		%		60-130	26-SEP-21
Benzo(e)pyrene			102.4		%		60-130	26-SEP-21
Benzo(g,h,i)perylene			98.5		%		60-130	26-SEP-21
Benzo(k)fluoranthene			98.6		%		60-130	26-SEP-21
Chrysene			100.4		%		60-130	26-SEP-21
Dibenz(a,h)anthracene			93.7		%		60-130	26-SEP-21
Fluoranthene			100.7		%		60-130	26-SEP-21
Fluorene			103.5		%		60-130	26-SEP-21
Indeno(1,2,3-c,d)pyrene			98.1		%		60-130	26-SEP-21
2-Methylnaphthalene			103.7		%		60-130	26-SEP-21
Naphthalene			101.5		%		50-130	26-SEP-21
Perylene			98.7		%		60-130	26-SEP-21
Phenanthrene			104.9		%		60-130	26-SEP-21
Pyrene			101.1		%		60-130	26-SEP-21
1-Methylnaphthalene			104.0		%		60-130	26-SEP-21
Quinoline			91.2		%		60-130	26-SEP-21
WG3625117-22 LCS								
Acenaphthene			100.6		%		60-130	26-SEP-21
Acenaphthylene			101.0		%		60-130	26-SEP-21
Anthracene			99.8		%		60-130	26-SEP-21
Acridine			95.0		%		60-130	26-SEP-21
Benz(a)anthracene			115.6		%		60-130	26-SEP-21
Benzo(a)pyrene			96.9		%		60-130	26-SEP-21
Benzo(b&j)fluoranthene			98.6		%		60-130	26-SEP-21
Benzo(e)pyrene			105.0		%		60-130	26-SEP-21
Benzo(g,h,i)perylene			96.1		%		60-130	26-SEP-21
Benzo(k)fluoranthene			103.6		%		60-130	26-SEP-21
Chrysene			116.2		%		60-130	26-SEP-21
•			-				00 100	

Workorder: L2641071 Report Date: 11-OCT-21 Page 14 of 22

							ГС	· ·
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-H/A-MS-CL	Soil							
Batch R5599599								
WG3625117-22 LCS								
Dibenz(a,h)anthracene			90.2		%		60-130	26-SEP-21
Fluoranthene			100.4		%		60-130	26-SEP-21
Fluorene			99.5		%		60-130	26-SEP-21
Indeno(1,2,3-c,d)pyrene			94.1		%		60-130	26-SEP-21
2-Methylnaphthalene			100.6		%		60-130	26-SEP-21
Naphthalene			96.2		%		50-130	26-SEP-21
Perylene			102.2		%		60-130	26-SEP-21
Phenanthrene			100.5		%		60-130	26-SEP-21
Pyrene			101.6		%		60-130	26-SEP-21
1-Methylnaphthalene			104.5		%		60-130	26-SEP-21
Quinoline			92.4		%		60-130	26-SEP-21
WG3625117-4 LCS			405.4		0/			
Acenaphthene			105.1		%		60-130	25-SEP-21
Acenaphthylene			94.1		%		60-130	25-SEP-21
Anthracene			100.2		%		60-130	25-SEP-21
Acridine			101.9		%		60-130	25-SEP-21
Benz(a)anthracene			111.0		%		60-130	25-SEP-21
Benzo(a)pyrene			91.6		%		60-130	25-SEP-21
Benzo(b&j)fluoranthene			103.2		%		60-130	25-SEP-21
Benzo(e)pyrene			111.1		%		60-130	25-SEP-21
Benzo(g,h,i)perylene			99.5		%		60-130	25-SEP-21
Benzo(k)fluoranthene			106.3		%		60-130	25-SEP-21
Chrysene			103.4		%		60-130	25-SEP-21
Dibenz(a,h)anthracene			96.8		%		60-130	25-SEP-21
Fluoranthene			103.8		%		60-130	25-SEP-21
Fluorene			103.7		%		60-130	25-SEP-21
Indeno(1,2,3-c,d)pyrene			104.5		%		60-130	25-SEP-21
2-Methylnaphthalene			106.9		%		60-130	25-SEP-21
Naphthalene			99.4		%		50-130	25-SEP-21
Perylene			103.1		%		60-130	25-SEP-21
Phenanthrene			106.9		%		60-130	25-SEP-21
Pyrene			105.1		%		60-130	25-SEP-21
1-Methylnaphthalene			108.2		%		60-130	25-SEP-21
Quinoline			94.2		%		60-130	25-SEP-21

Workorder: L2641071 Report Date: 11-OCT-21 Page 15 of 22

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-H/A-MS-CL	Soil							
Batch R5599599								
WG3625117-7 LCS			00.0		0/			
Acenaphthene			92.3		%		60-130	25-SEP-21
Acenaphthylene			87.8		%		60-130	25-SEP-21
Anthracene			92.5		%		60-130	25-SEP-21
Acridine			82.4		%		60-130	25-SEP-21
Benz(a)anthracene			96.9		%		60-130	25-SEP-21
Benzo(a)pyrene			89.6		%		60-130	25-SEP-21
Benzo(b&j)fluoranthene			92.6		%		60-130	25-SEP-21
Benzo(e)pyrene			95.4		%		60-130	25-SEP-21
Benzo(g,h,i)perylene			84.3		%		60-130	25-SEP-21
Benzo(k)fluoranthene			93.9		%		60-130	25-SEP-21
Chrysene			91.7		%		60-130	25-SEP-21
Dibenz(a,h)anthracene			84.4		%		60-130	25-SEP-21
Fluoranthene			90.8		%		60-130	25-SEP-21
Fluorene			90.3		%		60-130	25-SEP-21
Indeno(1,2,3-c,d)pyrene			92.0		%		60-130	25-SEP-21
2-Methylnaphthalene			95.3		%		60-130	25-SEP-21
Naphthalene			88.8		%		50-130	25-SEP-21
Perylene			90.8		%		60-130	25-SEP-21
Phenanthrene			94.1		%		60-130	25-SEP-21
Pyrene			90.5		%		60-130	25-SEP-21
1-Methylnaphthalene			95.1		%		60-130	25-SEP-21
Quinoline			74.7		%		60-130	25-SEP-21
WG3625117-13 MB								
Acenaphthene			<0.0050		mg/kg		0.005	26-SEP-21
Acenaphthylene			<0.0050		mg/kg		0.005	26-SEP-21
Anthracene			<0.0040		mg/kg		0.004	26-SEP-21
Acridine			<0.010		mg/kg		0.01	26-SEP-21
Benz(a)anthracene			<0.010		mg/kg		0.01	26-SEP-21
Benzo(a)pyrene			<0.010		mg/kg		0.01	26-SEP-21
Benzo(b&j)fluoranthene			<0.010		mg/kg		0.01	26-SEP-21
Benzo(e)pyrene			<0.010		mg/kg		0.01	26-SEP-21
Benzo(g,h,i)perylene			<0.010		mg/kg		0.01	26-SEP-21
Benzo(k)fluoranthene			<0.010		mg/kg		0.01	26-SEP-21
Chrysene			<0.010		mg/kg		0.01	26-SEP-21

Workorder: L2641071 Report Date: 11-OCT-21 Page 16 of 22

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-H/A-MS-CL	Soil							
Batch R55995	99							
WG3625117-13 MB			0.0050					
Dibenz(a,h)anthracer	ne		<0.0050		mg/kg		0.005	26-SEP-21
Fluoranthene			<0.010		mg/kg		0.01	26-SEP-21
Fluorene			<0.010		mg/kg		0.01	26-SEP-21
Indeno(1,2,3-c,d)pyre			<0.010		mg/kg		0.01	26-SEP-21
2-Methylnaphthalene			<0.010		mg/kg		0.01	26-SEP-21
Naphthalene			<0.010		mg/kg		0.01	26-SEP-21
Perylene			<0.010		mg/kg		0.01	26-SEP-21
Phenanthrene			<0.010		mg/kg		0.01	26-SEP-21
Pyrene			<0.010		mg/kg		0.01	26-SEP-21
1-Methylnaphthalene			< 0.050		mg/kg		0.05	26-SEP-21
Quinoline			< 0.050		mg/kg		0.05	26-SEP-21
Surrogate: d8-Naphth	nalene		75.4		%		50-130	26-SEP-21
Surrogate: d10-Acena	aphthene		82.3		%		60-130	26-SEP-21
Surrogate: d10-Phen	anthrene		85.2		%		60-130	26-SEP-21
Surrogate: d12-Chrys	sene		88.5		%		60-130	26-SEP-21
WG3625117-15 MB								
Acenaphthene			< 0.0050		mg/kg		0.005	26-SEP-21
Acenaphthylene			<0.0050		mg/kg		0.005	26-SEP-21
Anthracene			<0.0040		mg/kg		0.004	26-SEP-21
Acridine			<0.010		mg/kg		0.01	26-SEP-21
Benz(a)anthracene			<0.010		mg/kg		0.01	26-SEP-21
Benzo(a)pyrene			<0.010		mg/kg		0.01	26-SEP-21
Benzo(b&j)fluoranthe	ne		<0.010		mg/kg		0.01	26-SEP-21
Benzo(e)pyrene			<0.010		mg/kg		0.01	26-SEP-21
Benzo(g,h,i)perylene			<0.010		mg/kg		0.01	26-SEP-21
Benzo(k)fluoranthene)		<0.010		mg/kg		0.01	26-SEP-21
Chrysene			<0.010		mg/kg		0.01	26-SEP-21
Dibenz(a,h)anthracer	ne		<0.0050		mg/kg		0.005	26-SEP-21
Fluoranthene			<0.010		mg/kg		0.01	26-SEP-21
Fluorene			<0.010		mg/kg		0.01	26-SEP-21
Indeno(1,2,3-c,d)pyre	ene		<0.010		mg/kg		0.01	26-SEP-21
2-Methylnaphthalene			<0.010		mg/kg		0.01	26-SEP-21
Naphthalene			<0.010		mg/kg		0.01	26-SEP-21
Perylene			<0.010		mg/kg		0.01	26-SEP-21

Workorder: L2641071 Report Date: 11-OCT-21 Page 17 of 22

Test M	latrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-H/A-MS-CL S	ioil							
Batch R5599599								
WG3625117-15 MB								
Phenanthrene			<0.010		mg/kg		0.01	26-SEP-21
Pyrene			<0.010		mg/kg		0.01	26-SEP-21
1-Methylnaphthalene			<0.050		mg/kg		0.05	26-SEP-21
Quinoline			<0.050		mg/kg		0.05	26-SEP-21
Surrogate: d8-Naphthalene			88.2		%		50-130	26-SEP-21
Surrogate: d10-Acenaphthe	ene		103.5		%		60-130	26-SEP-21
Surrogate: d10-Phenanthre	ne		99.3		%		60-130	26-SEP-21
Surrogate: d12-Chrysene			122		%		60-130	26-SEP-21
WG3625117-17 MB			0.00=5		,			
Acenaphthene			<0.0050		mg/kg		0.005	26-SEP-21
Acenaphthylene			<0.0050		mg/kg		0.005	26-SEP-21
Anthracene			<0.0040		mg/kg		0.004	26-SEP-21
Acridine			<0.010		mg/kg		0.01	26-SEP-21
Benz(a)anthracene			<0.010		mg/kg		0.01	26-SEP-21
Benzo(a)pyrene			<0.010		mg/kg		0.01	26-SEP-21
Benzo(b&j)fluoranthene			<0.010		mg/kg		0.01	26-SEP-21
Benzo(e)pyrene			<0.010		mg/kg		0.01	26-SEP-21
Benzo(g,h,i)perylene			<0.010		mg/kg		0.01	26-SEP-21
Benzo(k)fluoranthene			<0.010		mg/kg		0.01	26-SEP-21
Chrysene			<0.010		mg/kg		0.01	26-SEP-21
Dibenz(a,h)anthracene			<0.0050		mg/kg		0.005	26-SEP-21
Fluoranthene			<0.010		mg/kg		0.01	26-SEP-21
Fluorene			<0.010		mg/kg		0.01	26-SEP-21
Indeno(1,2,3-c,d)pyrene			<0.010		mg/kg		0.01	26-SEP-21
2-Methylnaphthalene			<0.010		mg/kg		0.01	26-SEP-21
Naphthalene			<0.010		mg/kg		0.01	26-SEP-21
Perylene			<0.010		mg/kg		0.01	26-SEP-21
Phenanthrene			<0.010		mg/kg		0.01	26-SEP-21
Pyrene			<0.010		mg/kg		0.01	26-SEP-21
1-Methylnaphthalene			< 0.050		mg/kg		0.05	26-SEP-21
Quinoline			< 0.050		mg/kg		0.05	26-SEP-21
Surrogate: d8-Naphthalene			93.2		%		50-130	26-SEP-21
Surrogate: d10-Acenaphthe	ene		97.7		%		60-130	26-SEP-21
Surrogate: d10-Phenanthre			107.7		%		60-130	26-SEP-21

Workorder: L2641071 Report Date: 11-OCT-21 Page 18 of 22

est N	latrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
AH-TMB-H/A-MS-CL	Soil							
Batch R5599599								
WG3625117-17 MB			100.0		0/		00.400	00.050.04
Surrogate: d12-Chrysene			109.9		%		60-130	26-SEP-21
WG3625117-2 MB Acenaphthene			<0.0050		mg/kg		0.005	24-SEP-21
Acenaphthylene			<0.0050		mg/kg		0.005	24-SEP-21
Anthracene			<0.0040		mg/kg		0.004	24-SEP-21
Acridine			<0.010		mg/kg		0.01	24-SEP-21
Benz(a)anthracene			<0.010		mg/kg		0.01	24-SEP-21
Benzo(a)pyrene			<0.010		mg/kg		0.01	24-SEP-21
Benzo(b&j)fluoranthene			<0.010		mg/kg		0.01	24-SEP-21
Benzo(e)pyrene			<0.010		mg/kg		0.01	24-SEP-21
Benzo(g,h,i)perylene			<0.010		mg/kg		0.01	24-SEP-21
Benzo(k)fluoranthene			<0.010		mg/kg		0.01	24-SEP-21
Chrysene			<0.010		mg/kg		0.01	24-SEP-21
Dibenz(a,h)anthracene			<0.0050		mg/kg		0.005	24-SEP-21
Fluoranthene			<0.010		mg/kg		0.01	24-SEP-21
Fluorene			<0.010		mg/kg		0.01	24-SEP-21
Indeno(1,2,3-c,d)pyrene			<0.010		mg/kg		0.01	24-SEP-21
2-Methylnaphthalene			<0.010		mg/kg		0.01	24-SEP-21
Naphthalene			<0.010		mg/kg		0.01	24-SEP-21
Perylene			<0.010		mg/kg		0.01	24-SEP-21
Phenanthrene			<0.010		mg/kg		0.01	24-SEP-21
Pyrene			<0.010		mg/kg		0.01	24-SEP-21
1-Methylnaphthalene			<0.050		mg/kg		0.05	24-SEP-21
Quinoline			<0.050		mg/kg		0.05	24-SEP-21
Surrogate: d8-Naphthalene	:		77.0		%		50-130	24-SEP-21
Surrogate: d10-Acenaphthe	ene		72.7		%		60-130	24-SEP-21
Surrogate: d10-Phenanthre	ene		77.1		%		60-130	24-SEP-21
Surrogate: d12-Chrysene			79.3		%		60-130	24-SEP-21
WG3625117-6 MB								
Acenaphthene			<0.0050		mg/kg		0.005	25-SEP-21
Acenaphthylene			<0.0050		mg/kg		0.005	25-SEP-21
Anthracene			<0.0040		mg/kg		0.004	25-SEP-21
Acridine			<0.010		mg/kg		0.01	25-SEP-21
Benz(a)anthracene			<0.010		mg/kg		0.01	25-SEP-21
Benzo(a)pyrene			<0.010		mg/kg		0.01	25-SEP-21

Workorder: L2641071 Report Date: 11-OCT-21 Page 19 of 22

est N	latrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-H/A-MS-CL S	Soil							
Batch R5599599								
WG3625117-6 MB								
Benzo(b&j)fluoranthene			<0.010		mg/kg		0.01	25-SEP-21
Benzo(e)pyrene			<0.010		mg/kg		0.01	25-SEP-21
Benzo(g,h,i)perylene			<0.010		mg/kg		0.01	25-SEP-21
Benzo(k)fluoranthene			<0.010		mg/kg		0.01	25-SEP-21
Chrysene			<0.010		mg/kg		0.01	25-SEP-21
Dibenz(a,h)anthracene			<0.0050		mg/kg		0.005	25-SEP-21
Fluoranthene			<0.010		mg/kg		0.01	25-SEP-21
Fluorene			<0.010		mg/kg		0.01	25-SEP-21
Indeno(1,2,3-c,d)pyrene			<0.010		mg/kg		0.01	25-SEP-21
2-Methylnaphthalene			<0.010		mg/kg		0.01	25-SEP-21
Naphthalene			<0.010		mg/kg		0.01	25-SEP-21
Perylene			<0.010		mg/kg		0.01	25-SEP-21
Phenanthrene			<0.010		mg/kg		0.01	25-SEP-21
Pyrene			<0.010		mg/kg		0.01	25-SEP-21
1-Methylnaphthalene			< 0.050		mg/kg		0.05	25-SEP-21
Quinoline			< 0.050		mg/kg		0.05	25-SEP-21
Surrogate: d8-Naphthalene)		82.7		%		50-130	25-SEP-21
Surrogate: d10-Acenaphthe	ene		76.0		%		60-130	25-SEP-21
Surrogate: d10-Phenanthre	ene		80.5		%		60-130	25-SEP-21
Surrogate: d12-Chrysene			86.8		%		60-130	25-SEP-21
WG3625117-9 MB								
Acenaphthene			<0.0050		mg/kg		0.005	25-SEP-21
Acenaphthylene			<0.0050		mg/kg		0.005	25-SEP-21
Anthracene			<0.0040		mg/kg		0.004	25-SEP-21
Acridine			<0.010		mg/kg		0.01	25-SEP-21
Benz(a)anthracene			<0.010		mg/kg		0.01	25-SEP-21
Benzo(a)pyrene			<0.010		mg/kg		0.01	25-SEP-21
Benzo(b&j)fluoranthene			<0.010		mg/kg		0.01	25-SEP-21
Benzo(e)pyrene			<0.010		mg/kg		0.01	25-SEP-21
Benzo(g,h,i)perylene			<0.010		mg/kg		0.01	25-SEP-21
Benzo(k)fluoranthene			<0.010		mg/kg		0.01	25-SEP-21
Chrysene			<0.010		mg/kg		0.01	25-SEP-21
Dibenz(a,h)anthracene			<0.0050		mg/kg		0.005	25-SEP-21
Fluoranthene			<0.010		mg/kg		0.01	25-SEP-21

Workorder: L2641071 Report Date: 11-OCT-21 Page 20 of 22

PAH-TMB-H/A-MS-CL	Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
NG0362517-9 MB	PAH-TMB-H/A-MS-CL	Soil							
Fluorene	Batch R559959	9							
Indeno(1,2,3-c,d)pyrene				0.040					
2-Methylnaphthalene		_							
Naphthalene	, , , , , ,	ie							
Perylene									
Phenanthrene									
Pyene	•								
1-Methylnaphthalene									
Quinoline <0.050 mg/kg 0.05 25-SEP-21 Surrogate: d8-Naphthalene 113.5 % 50-130 25-SEP-21 Surrogate: d10-Acenaphthene 86.1 % 60-130 25-SEP-21 Surrogate: d10-Acenaphthene 82.1 % 60-130 25-SEP-21 Surrogate: d12-Chrysene 79.5 % 60-130 25-SEP-21 PH-1:2-CL Soil Soil Sepended Sepended Sepended Batch R5601417 R5601	•					mg/kg		0.01	25-SEP-21
Surrogate: d8-Naphthalene 113.5 % 50-130 25-SEP-21 Surrogate: d10-Acenaphthene 86.1 % 60-130 25-SEP-21 Surrogate: d10-Phenanthrene 82.1 % 60-130 25-SEP-21 Surrogate: d12-Chrysene 79.5 % 60-130 25-SEP-21 PH-1:2-CL Soil Batch R5601417 WG3625686-2 IRM SAL-STD11 PH 7.7-8.3 27-SEP-21 WG3625688-1 LCS PH 7.7-8.3 27-SEP-21 PSA-PIET-DETAIL-SK Soil Batch R559999 WG3622179-1 DIP 6.8-7.2 27-SEP-21 % Gravel (>2mm) 15.2 15.2 % 0.0 25 24-SEP-21 % Sand (0.20mm - 1.00mm) 15.6 13.5 J % 0.0 25 24-SEP-21 % Sand (0.50mm - 0.25mm) 9.9 9.8 J % 0.1 5 24-SEP-21 % Sand (0.125mm - 0.063mm) 7.4 7.7 J %	1-Methylnaphthalene			<0.050		mg/kg		0.05	25-SEP-21
Surrogate: d10-Acenaphthene 86.1 % 60-130 25-SEP-21 Surrogate: d10-Phenanthrene 82.1 % 60-130 25-SEP-21 Surrogate: d12-Chrysene 79.5 % 60-130 25-SEP-21 PH-1:2-CL Soil Batch R5601417 WG3625668-2 IRM pH (1:2 soil:water) SAL-STD11 r.89 pH 7.7-8.3 27-SEP-21 WG3625688-1 LCS pH (1:2 soil:water) 7.00 pH 6.8-7.2 27-SEP-21 PSA-PIPET-DETAIL-SK Soil Batch R5599099 WG3622179-1 DUP L2641071-1 SAG (2.00mm - 1.00mm) 15.2 % 0.0 25 24-SEP-21 % Sand (2.00mm - 1.00mm) 15.6 13.5 J % 0.0 25 24-SEP-21 % Sand (0.05mm - 0.25mm) 9.9 9.8 J % 0.6 5 24-SEP-21 % Sand (0.25mm - 0.063mm) 7.4 7.7 J % 0.1 5 24-SEP-21 % Sand (0.0312mm - 0.063mm) 7.4 7.7	Quinoline			<0.050				0.05	25-SEP-21
Surrogate: d10-Phenanthrene 82.1 % 60-130 25-SEP-21 PH-1:2-CL Soil Batch R5601417 WG362568-2 IRM pH (1:2 soil:water) SAL-STD11 7.89 pH 7.7-8.3 27-SEP-21 WG3625868-1 LCS pH (1:2 soil:water) 7.00 pH 6.8-7.2 27-SEP-21 PSA-PIPET-DETAIL-SK Soil Batch R5599099 WG3622179-1 DUP L2641071-1 Value of the colspan="6">Value	Surrogate: d8-Naphtha	alene		113.5		%		50-130	25-SEP-21
Surrogate: d12-Chrysene 79.5 % 60-130 25-SEP-21 PH-1:2-CL Soil Satch R5601417 SAL-STD11 7.89 PH 7.7-8.3 27-SEP-21 PG3625868-2 RM PH 7.7-8.3 27-SEP-21 PG3625868-1 LCS PH 7.00 PH R529099 PH 7.7-8.3 27-SEP-21 PSA-PIPET-DETAIL-SK Soil Satch R5599099 PH Saccess PH PH PH PH PH PH PH	Surrogate: d10-Acena	phthene		86.1		%		60-130	25-SEP-21
PH-1:2-CL Soil Batch R5601417 WG3625868-2 IRM pH (1:2 soil:water) 7.89 pH 7.7-8.3 27-SEP-21 WG3625868-1 LCS pH (1:2 soil:water) 7.00 pH 6.8-7.2 27-SEP-21 PSA-PIPET-DETAIL-SK Soil Batch R5599099 WG3622179-1 DUP L2641071-1	Surrogate: d10-Phena	nthrene		82.1		%		60-130	25-SEP-21
Batch R5601417 WG3625868-2 IRM pH (1:2 soil:water) SAL-STD11 7.89 pH 7.7-8.3 27-SEP-21 WG3625868-1 LCS pH (1:2 soil:water) 7.00 pH 6.8-7.2 27-SEP-21 PSA-PIPET-DETAIL-SK Soil Batch R5599099 L2641071-1 % Gravel (>2rmm) 15.2 15.2 % 0.0 25 24-SEP-21 % Sand (2.00mm - 1.00mm) 15.6 13.5 J % 0.0 25 24-SEP-21 % Sand (0.00mm - 0.05mm) 15.2 15.7 J % 0.6 5 24-SEP-21 % Sand (0.50mm - 0.25mm) 9.9 9.8 J % 0.1 5 24-SEP-21 % Sand (0.50mm - 0.125mm) 7.6 7.7 J % 0.1 5 24-SEP-21 % Sand (0.125mm - 0.063mm) 7.4 7.7 J % 0.1 5 24-SEP-21 % Silt (0.0312mm - 0.004mm) 14.0 14.6 J % 0.6 5 24-SEP-21 % Sand (Surrogate: d12-Chryse	ene		79.5		%		60-130	25-SEP-21
WG3625868-2 IRM pH (1:2 soil:water) SAL-STD11 7.89 pH 7.7-8.3 27-SEP-21 WG3625868-1 LCS pH (1:2 soil:water) 7.00 pH 6.8-7.2 27-SEP-21 PSA-PIPET-DETAIL-SK Soil Batch R5599099 WG3622179-1 DUP L2641071-1 September 15.2 15.2 9 0.0 25 24-SEP-21 % Gravel (>2mm) 15.2 15.2 15.7 J % 0.0 25 24-SEP-21 % Sand (1.00mm - 0.50mm) 15.2 15.7 J % 0.6 5 24-SEP-21 % Sand (0.50mm - 0.50mm) 15.2 15.7 J % 0.6 5 24-SEP-21 % Sand (0.50mm - 0.25mm) 9.9 9.8 J % 0.1 5 24-SEP-21 % Sand (0.125mm - 0.063mm) 7.4 7.7 J % 0.1 5 24-SEP-21 % Silt (0.063mm - 0.0312mm) 12.3 13.0 J % 0.6 5 24-SEP-21	PH-1:2-CL	Soil							
PH (1:2 soil:water) 7.89 pH 7.7-8.3 27-SEP-21 WG3625868-1 LCS pH (1:2 soil:water) 7.00 pH 6.8-7.2 27-SEP-21 PSA-PIPET-DETAIL-SK Soil Batch R5599099 WG3622179-1 DUP L2641071-1 Substitution of the parameter of the paramet	Batch R560141	7							
WG3625868-1 LCS pH (1:2 soil:water) 7.00 pH 6.8-7.2 27-SEP-21 PSA-PIPET-DETAIL-SK Soil Batch R5599099 WG3622179-1 DUP L2641071-1 Value of Care (>2mm) 15.2 15.2 % 0.0 25 24-SEP-21 % Sand (2.00mm - 1.00mm) 15.6 13.5 J % 0.0 25 24-SEP-21 % Sand (1.00mm - 0.50mm) 15.2 15.7 J % 0.6 5 24-SEP-21 % Sand (0.50mm - 0.25mm) 9.9 9.8 J % 0.1 5 24-SEP-21 % Sand (0.25mm - 0.125mm) 7.6 7.7 J % 0.1 5 24-SEP-21 % Sand (0.125mm - 0.063mm) 7.4 7.7 J % 0.1 5 24-SEP-21 % Silt (0.0312mm - 0.004mm) 12.3 13.0 J % 0.6 5 24-SEP-21 % Clay (<4um)			SAL-STD11	7.00		-11			
PSA-PIPET-DETAIL-SK Soil Batch R5599099 WG3622179-1 DUP L2641071-1 % Gravel (>2mm) 15.2 15.2 % 0.0 25 24-SEP-21 % Sand (2.00mm - 1.00mm) 15.6 13.5 J % 0.6 5 24-SEP-21 % Sand (1.00mm - 0.50mm) 15.2 15.7 J % 0.6 5 24-SEP-21 % Sand (0.50mm - 0.25mm) 9.9 9.8 J % 0.1 5 24-SEP-21 % Sand (0.25mm - 0.125mm) 7.6 7.7 J % 0.1 5 24-SEP-21 % Sand (0.125mm - 0.063mm) 7.4 7.7 J % 0.1 5 24-SEP-21 % Silt (0.063mm - 0.0312mm) 12.3 13.0 J % 0.7 5 24-SEP-21 % Silt (0.0312mm - 0.004mm) 14.0 14.6 J % 0.6 5 24-SEP-21 WG3622179-2 IRM 2020-PSA_SOIL 2.4 % 0.7.2 24-SEP-21				7.89		рн		7.7-8.3	27-SEP-21
PSA-PIPET-DETAIL-SK Soil Batch R5599099 WG3622179-1 DUP L2641071-1 % Gravel (>2mm) 15.2 15.2 % 0.0 25 24-SEP-21 % Sand (2.00mm - 1.00mm) 15.6 13.5 J % 0.6 5 24-SEP-21 % Sand (1.00mm - 0.50mm) 15.2 15.7 J % 0.6 5 24-SEP-21 % Sand (0.50mm - 0.50mm) 9.9 9.8 J % 0.1 5 24-SEP-21 % Sand (0.25mm - 0.125mm) 7.6 7.7 J % 0.1 5 24-SEP-21 % Sand (0.125mm - 0.063mm) 7.4 7.7 J % 0.3 5 24-SEP-21 % Silt (0.063mm - 0.0312mm) 12.3 13.0 J % 0.6 5 24-SEP-21 % Silt (0.0312mm - 0.004mm) 14.0 14.6 J % 0.6 5 24-SEP-21 WG3622179-2 IRM 2.9 2.8 J % 0.1				7.00		На		68-72	27-SEP-21
Batch R5599099 WG3622179-1 DUP L2641071-1 % Gravel (>2mm) 15.2 15.2 % 0.0 25 24-SEP-21 % Sand (2.00mm - 1.00mm) 15.6 13.5 J % 2.0 5 24-SEP-21 % Sand (1.00mm - 0.50mm) 15.2 15.7 J % 0.6 5 24-SEP-21 % Sand (0.50mm - 0.25mm) 9.9 9.8 J % 0.1 5 24-SEP-21 % Sand (0.25mm - 0.125mm) 7.6 7.7 J % 0.1 5 24-SEP-21 % Sand (0.125mm - 0.063mm) 7.4 7.7 J % 0.3 5 24-SEP-21 % Silt (0.063mm - 0.0312mm) 12.3 13.0 J % 0.6 5 24-SEP-21 % Silt (0.0312mm - 0.004mm) 14.0 14.6 J % 0.6 5 24-SEP-21 WG3622179-2 IRM 2020-PSA_SOIL 2.4 % 0-7.2 24-SEP-21 % Sand (2.00mm - 1.00mm) 3.5 % 0-8.7 24-SEP-21	, ,	Sail				P		0.0 7.2	27 021 21
WG3622179-1 DUP L2641071-1 % Gravel (>2mm) 15.2 15.2 % 0.0 25 24-SEP-21 % Sand (2.00mm - 1.00mm) 15.6 13.5 J % 2.0 5 24-SEP-21 % Sand (1.00mm - 0.50mm) 15.2 15.7 J % 0.6 5 24-SEP-21 % Sand (0.50mm - 0.25mm) 9.9 9.8 J % 0.1 5 24-SEP-21 % Sand (0.25mm - 0.125mm) 7.6 7.7 J % 0.1 5 24-SEP-21 % Sand (0.125mm - 0.063mm) 7.4 7.7 J % 0.3 5 24-SEP-21 % Silt (0.063mm - 0.0312mm) 12.3 13.0 J % 0.7 5 24-SEP-21 % Silt (0.0312mm - 0.004mm) 14.0 14.6 J % 0.6 5 24-SEP-21 WG3622179-2 IRM 2020-PSA_SOIL % 0.7 24-SEP-21 % Sand (1.00mm - 0.50mm) 3.5 % 0-7.2 24-SEP-21									
% Gravel (>2mm) 15.2 15.2 % 0.0 25 24-SEP-21 % Sand (2.00mm - 1.00mm) 15.6 13.5 J % 2.0 5 24-SEP-21 % Sand (1.00mm - 0.50mm) 15.2 15.7 J % 0.6 5 24-SEP-21 % Sand (0.50mm - 0.25mm) 9.9 9.8 J % 0.1 5 24-SEP-21 % Sand (0.25mm - 0.125mm) 7.6 7.7 J % 0.1 5 24-SEP-21 % Sand (0.125mm - 0.063mm) 7.4 7.7 J % 0.3 5 24-SEP-21 % Silt (0.063mm - 0.0312mm) 12.3 13.0 J % 0.7 5 24-SEP-21 % Silt (0.0312mm - 0.004mm) 14.0 14.6 J % 0.6 5 24-SEP-21 WG3622179-2 IRM 2.9 2.8 J % 0.1 5 24-SEP-21 W Sand (2.00mm - 1.00mm) 2.4 % 0-7.2 24-SEP-21 W Sand (1.00mm - 0.50mm) 3.5 % 0-8.7 24-SEP-21		ð	I 2641071-1						
% Sand (1.00mm - 0.50mm) 15.2 15.7 J % 0.6 5 24-SEP-21 % Sand (0.50mm - 0.25mm) 9.9 9.8 J % 0.1 5 24-SEP-21 % Sand (0.25mm - 0.125mm) 7.6 7.7 J % 0.1 5 24-SEP-21 % Sand (0.125mm - 0.063mm) 7.4 7.7 J % 0.3 5 24-SEP-21 % Sand (0.125mm - 0.063mm) 7.4 7.7 J % 0.3 5 24-SEP-21 % Silt (0.063mm - 0.0312mm) 12.3 13.0 J % 0.7 5 24-SEP-21 % Silt (0.0312mm - 0.004mm) 14.0 14.6 J % 0.6 5 24-SEP-21 % Silt (0.0312mm - 0.004mm) 14.0 14.6 J % 0.1 5 24-SEP-21 % Sand (2.00mm - 1.00mm) 2.9 2.8 J % 0-7.2 24-SEP-21 % Sand (1.00mm - 0.50mm) 3.5 % 0-8.7 24-SEP-21				15.2		%	0.0	25	24-SEP-21
% Sand (0.50mm - 0.25mm) 9.9 9.8 J % 0.1 5 24-SEP-21 % Sand (0.25mm - 0.125mm) 7.6 7.7 J % 0.1 5 24-SEP-21 % Sand (0.125mm - 0.063mm) 7.4 7.7 J % 0.3 5 24-SEP-21 % Silt (0.063mm - 0.0312mm) 12.3 13.0 J % 0.7 5 24-SEP-21 % Silt (0.0312mm - 0.004mm) 14.0 14.6 J % 0.6 5 24-SEP-21 % Clay (<4um) 2.9 2.8 J % 0.1 5 24-SEP-21 WG3622179-2 IRM 2020-PSA_SOIL % Sand (2.00mm - 1.00mm) 2.4 % 0-7.2 24-SEP-21 % Sand (1.00mm - 0.50mm) 3.5 % 0-8.7 24-SEP-21	% Sand (2.00mm - 1.0	00mm)	15.6	13.5	J	%	2.0	5	24-SEP-21
% Sand (0.25mm - 0.125mm) 7.6 7.7 J % 0.1 5 24-SEP-21 % Sand (0.125mm - 0.063mm) 7.4 7.7 J % 0.3 5 24-SEP-21 % Silt (0.063mm - 0.0312mm) 12.3 13.0 J % 0.7 5 24-SEP-21 % Silt (0.0312mm - 0.004mm) 14.0 14.6 J % 0.6 5 24-SEP-21 % Clay (<4um) 2.9 2.8 J % 0.1 5 24-SEP-21 WG3622179-2 IRM 2020-PSA_SOIL % Sand (2.00mm - 1.00mm) 2.4 % 0-7.2 24-SEP-21 % Sand (1.00mm - 0.50mm) 3.5 % 0-8.7 24-SEP-21	% Sand (1.00mm - 0.5	i0mm)	15.2	15.7	J	%	0.6	5	24-SEP-21
% Sand (0.125mm - 0.063mm) 7.4 7.7 J % 0.3 5 24-SEP-21 % Silt (0.063mm - 0.0312mm) 12.3 13.0 J % 0.7 5 24-SEP-21 % Silt (0.0312mm - 0.004mm) 14.0 14.6 J % 0.6 5 24-SEP-21 % Clay (<4um) 2.9 2.8 J % 0.1 5 24-SEP-21 WG3622179-2 IRM 2020-PSA_SOIL % Sand (2.00mm - 1.00mm) 2.4 % 0-7.2 24-SEP-21 % Sand (1.00mm - 0.50mm) 3.5 % 0-8.7 24-SEP-21	% Sand (0.50mm - 0.2	25mm)	9.9	9.8	J	%	0.1	5	24-SEP-21
% Silt (0.063mm - 0.0312mm) 12.3 13.0 J % 0.7 5 24-SEP-21 % Silt (0.0312mm - 0.004mm) 14.0 14.6 J % 0.6 5 24-SEP-21 % Clay (<4um) 2.9 2.8 J % 0.1 5 24-SEP-21 WG3622179-2 IRM 2020-PSA_SOIL % Sand (2.00mm - 1.00mm) 2.4 % 0-7.2 24-SEP-21 % Sand (1.00mm - 0.50mm) 3.5 % 0-8.7 24-SEP-21	% Sand (0.25mm - 0.1	25mm)	7.6	7.7	J	%	0.1	5	24-SEP-21
% Silt (0.063mm - 0.0312mm) 12.3 13.0 J % 0.7 5 24-SEP-21 % Silt (0.0312mm - 0.004mm) 14.0 14.6 J % 0.6 5 24-SEP-21 % Clay (<4um) 2.9 2.8 J % 0.1 5 24-SEP-21 WG3622179-2 IRM 2020-PSA_SOIL % Sand (2.00mm - 1.00mm) 2.4 % 0-7.2 24-SEP-21 % Sand (1.00mm - 0.50mm) 3.5 % 0-8.7 24-SEP-21	% Sand (0.125mm - 0.	.063mm)	7.4	7.7	J	%	0.3	5	24-SEP-21
% Silt (0.0312mm - 0.004mm) 14.0 14.6 J % 0.6 5 24-SEP-21 % Clay (<4um) 2.9 2.8 J % 0.1 5 24-SEP-21 WG3622179-2 IRM Sand (2.00mm - 1.00mm) 2.4 % Sand (1.00mm - 0.50mm) 3.5 % 0-8.7 24-SEP-21	% Silt (0.063mm - 0.03	312mm)	12.3	13.0		%			
% Clay (<4um) 2.9 2.8 J % 0.1 5 24-SEP-21 WG3622179-2 IRM 2020-PSA_SOIL % Sand (2.00mm - 1.00mm) 2.4 % Sand (1.00mm - 0.50mm) 3.5 % 0-8.7 24-SEP-21									
WG3622179-2 IRM 2020-PSA_SOIL % Sand (2.00mm - 1.00mm) 2.4 % 0-7.2 24-SEP-21 % Sand (1.00mm - 0.50mm) 3.5 % 0-8.7 24-SEP-21									
% Sand (2.00mm - 1.00mm) 2.4 % 0-7.2 24-SEP-21 % Sand (1.00mm - 0.50mm) 3.5 % 0-8.7 24-SEP-21			2020-PSA SC	OIL					
		00mm)				%		0-7.2	24-SEP-21
% Sand (0.50mm - 0.25mm) 8.5 % 4-14 24-SEP-21	% Sand (1.00mm - 0.5	60mm)		3.5		%		0-8.7	24-SEP-21
	% Sand (0.50mm - 0.2	25mm)		8.5		%		4-14	24-SEP-21

Workorder: L2641071 Report Date: 11-OCT-21 Page 21 of 22

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PSA-PIPET-DETAIL-SK	Soil							
Batch R5599099								
WG3622179-2 IRM		2020-PSA_S	OIL					
% Sand (0.25mm - 0.125	mm)		16.3		%		11.7-21.7	24-SEP-21
% Sand (0.125mm - 0.06	3mm)		13.7		%		8.4-18.4	24-SEP-21
% Silt (0.063mm - 0.0312	mm)		13.1		%		8.5-18.5	24-SEP-21
% Silt (0.0312mm - 0.004	lmm)		21.0		%		15.1-25.1	24-SEP-21
% Clay (<4um)			21.5		%		16.5-26.5	24-SEP-21

Workorder: L2641071 Report Date: 11-OCT-21 Page 22 of 22

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard

Sample Parameter Qualifier Definitions:

LCSD Laboratory Control Sample Duplicate

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Sampler's Signature

Emergency (1 Business Day) - 100% surcharge

For Emergency <1 Day, ASAP or Weekend - Contact ALS

September 13, 2021

Date/Time

SEDIMENT CHEMISTRY

ALS Laboratory Report L2641329 (Finalized October 13, 2021)

Teck Coal Ltd.

ATTN: Allie Ferguson

421 Pine Avenue

Sparwood BC VOB 2G0

Date Received: 17-SEP-21

Report Date: 13-OCT-21 17:32 (MT)

Version: FINAL REV. 4

Client Phone: 250-425-8202

Certificate of Analysis

Lab Work Order #: L2641329
Project P.O. #: VPO00750546

Job Reference: REGIONAL EFFECTS PROGRAM

C of C Numbers:

September EVO LAEMP

Legal Site Desc:

Lyudmyla Shvets, B.Sc.

Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 2559 29 Street NE, Calgary, AB T1Y 7B5 Canada | Phone: +1 403 291 9897 | Fax: +1 403 291 0298 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

PAGE 2 of 12 13-OCT-21 17:32 (MT)

Version: FINAL REV. 4

	Sample ID Description Sampled Date Sampled Time Client ID	L2641329-1 SE 14-SEP-21 11:00 RG_ERCKDT_SE- 1_2021-09- 14_1100	L2641329-2 SE 14-SEP-21 11:00 RG_RIVER_SE_20 21-09-14_1100	L2641329-3 SE 14-SEP-21 12:40 RG_ERCKDT_SE- 2_2021-09- 14_1240	L2641329-4 SE 14-SEP-21 13:30 RG_ERCKDT_SE- 3_2021-09- 14_1330	L2641329-5 SE 15-SEP-21 08:55 RG_ERCKDT_SE- 4_2021-09- 15_0855
Grouping	Analyte	_		_	_	_
SOIL						
Physical Tests	Moisture (%)	86.4	85.8	78.9	83.9	80.3
	pH (1:2 soil:water) (pH)	8.01	8.03	7.91	8.05	7.82
Particle Size	% Gravel (>2mm) (%)	<1.0	<1.0 PSAL	2.1 PSAL	PSAL 2.2	<1.0
	% Sand (2.00mm - 1.00mm) (%)	PSAL <1.0	<1.0	PSAL 1.6	6.4	<1.0
	% Sand (1.00mm - 0.50mm) (%)	<1.0	<1.0 PSAL	3.1	5.9	<1.0
	% Sand (0.50mm - 0.25mm) (%)	PSAL <1.0	<1.0	7.7	4.3	1.3
	% Sand (0.25mm - 0.125mm) (%)	7.2 PSAL	PSAL 2.8	10.5	PSAL 4.1	4.3
	% Sand (0.125mm - 0.063mm) (%)	PSAL 4.7	PSAL 5.0	7.8	5.0	7.1
	% Silt (0.063mm - 0.0312mm) (%)	PSAL 24.7	PSAL 27.7	18.3	PSAL 21.5	24.5
	% Silt (0.0312mm - 0.004mm) (%)	PSAL 50.8	50.4	35.0	75AL 39.2	48.9
	% Clay (<4um) (%)	PSAL 15.5	13.6	13.9	PSAL 11.5	13.2
	Texture	Silt	Silt	Silt loam	Silt loam	Silt loam
Organic / Inorganic Carbon	Total Organic Carbon (%)	11.8	11.1	8.97	7.66	10.0
Metals	Aluminum (Al) (mg/kg)	3610	4110	3700	3950	3660
	Antimony (Sb) (mg/kg)	0.95	1.08	0.80	0.66	0.82
	Arsenic (As) (mg/kg)	14.5	14.6	21.1	20.2	9.80
	Barium (Ba) (mg/kg)	178	173	197	199	193
	Beryllium (Be) (mg/kg)	0.46	0.48	0.56	0.59	0.47
	Bismuth (Bi) (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	Boron (B) (mg/kg)	8.5	10.4	<5.0	<5.0	6.1
	Cadmium (Cd) (mg/kg)	3.85	3.60	4.65	5.15	3.13
	Calcium (Ca) (mg/kg)	67400	64000	75800	71900	79500
	Chromium (Cr) (mg/kg)	8.58	9.97	8.76	8.46	8.51
	Cobalt (Co) (mg/kg)	63.6	57.7	123	121	45.7
	Copper (Cu) (mg/kg)	15.4	14.5	14.0	15.1	14.9
	Iron (Fe) (mg/kg)	25700	24300	41100	40400	20300
	Lead (Pb) (mg/kg)	7.56	7.04	9.52	11.0	6.97
	Lithium (Li) (mg/kg)	5.5	5.7	6.2	6.5	5.9
	Magnesium (Mg) (mg/kg)	8620	8020	9890	8830	9720
	Manganese (Mn) (mg/kg)	1290	1140	2710	2680	808
	Mercury (Hg) (mg/kg)	0.0366	0.0314	0.0340	0.0345	0.0282
	Molybdenum (Mo) (mg/kg)	1.72	1.83	2.49	2.31	1.65
	Nickel (Ni) (mg/kg)	98.0	91.9	122	127	82.4
	Phosphorus (P) (mg/kg)	1170	1160	1200	1160	1270
	Potassium (K) (mg/kg)	1100	1290	1160	1280	1150
	Selenium (Se) (mg/kg)	32.1	32.9	20.1	23.9	20.9
	Silver (Ag) (mg/kg)	0.19	0.18	0.20	0.24	0.20

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

PAGE 3 of 12 13-OCT-21 17:32 (MT)

Version: FINAL REV. 4

	Sample ID Description Sampled Date Sampled Time Client ID	L2641329-6 SE 15-SEP-21 09:05 RG_ERCKDT_SE- 5_2021-09- 15_0905	L2641329-7 SE 15-SEP-21 15:20 RG_ERCKUT_SE- 1_2021-09- 15_1520	L2641329-8 SE 15-SEP-21 14:05 RG_ERCKUT_SE- 2_2021-09- 15_1405	L2641329-9 SE 15-SEP-21 13:50 RG_ERCKUT_SE- 3_2021-09- 15_1350	L2641329-10 SE 15-SEP-21 12:15 RG_ERCKUT_SE- 4_2021-09- 15_1215
Grouping	Analyte				_	_
SOIL						
Physical Tests	Moisture (%)	73.8	56.4	58.1	58.5	56.5
	pH (1:2 soil:water) (pH)	8.04	8.13	7.72	7.51	7.53
Particle Size	% Gravel (>2mm) (%)	<1.0	8.3	6.0	<1.0	4.1
	% Sand (2.00mm - 1.00mm) (%)	<1.0	2.2	2.8	1.5	3.5
	% Sand (1.00mm - 0.50mm) (%)	<1.0	4.1	5.4	5.5	8.0
	% Sand (0.50mm - 0.25mm) (%)	2.0	9.3	18.7	16.7	14.9
	% Sand (0.25mm - 0.125mm) (%)	6.5	14.9	23.3	27.3	18.8
	% Sand (0.125mm - 0.063mm) (%)	8.0	13.8	11.4	14.8	13.1
	% Silt (0.063mm - 0.0312mm) (%)	23.1	21.5	14.2	15.9	15.1
	% Silt (0.0312mm - 0.004mm) (%)	45.9	22.1	15.3	15.5	17.3
	% Clay (<4um) (%)	12.9	3.7	2.9	2.8	5.3
	Texture	Silt loam	Sandy loam	Sandy loam	Sandy loam	Sandy loam
Organic / Inorganic Carbon	Total Organic Carbon (%)	8.67	7.99	7.90	10.2	10.4
Metals	Aluminum (Al) (mg/kg)	4180	4580	5000	4560	4980
	Antimony (Sb) (mg/kg)	0.73	0.34	0.93	0.90	0.61
	Arsenic (As) (mg/kg)	16.4	4.04	4.90	5.37	4.64
	Barium (Ba) (mg/kg)	207	133	174	167	179
	Beryllium (Be) (mg/kg)	0.52	0.51	0.58	0.55	0.61
	Bismuth (Bi) (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	Boron (B) (mg/kg)	6.0	<5.0	5.4	<5.0	<5.0
	Cadmium (Cd) (mg/kg)	4.06	0.992	1.23	1.26	1.27
	Calcium (Ca) (mg/kg)	81300	22400	42800	22700	18800
	Chromium (Cr) (mg/kg)	9.42	8.87	9.73	9.25	9.18
	Cobalt (Co) (mg/kg)	55.3	4.48	4.98	6.25	5.70
	Copper (Cu) (mg/kg)	14.5	12.0	13.4	15.2	15.0
	Iron (Fe) (mg/kg)	30100	9560	12000	12200	10900
	Lead (Pb) (mg/kg)	8.79	6.88	8.60	8.75	8.44
	Lithium (Li) (mg/kg)	6.1	5.7	6.4	5.8	6.3
	Magnesium (Mg) (mg/kg)	9360	3720	3560	3380	2840
	Manganese (Mn) (mg/kg)	936	113	186	263	174
	Mercury (Hg) (mg/kg)	0.0298	0.0333	0.0298	0.0255	0.0258
	Molybdenum (Mo) (mg/kg)	1.97	0.85	1.16	1.17	0.98
	Nickel (Ni) (mg/kg)	88.9	17.7	20.5	21.7	19.7
	Phosphorus (P) (mg/kg)	1340	865	1040	1090	971
	Potassium (K) (mg/kg)	1330	1170	1360	1200	1250
	Selenium (Se) (mg/kg)	19.0	5.14	5.93	5.96	5.02
	Silver (Ag) (mg/kg)	0.21	0.19	0.19	0.21	0.22

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L2641329 CONTD.... PAGE 4 of 12

13-OCT-21 17:32 (MT) Version: FINAL REV. 4

	Sample ID Description Sampled Date Sampled Time Client ID	L2641329-11 SE 15-SEP-21 11:55 RG_ERCKUT_SE- 5_2021-09- 15_1155		
Grouping	Analyte	_		
SOIL				
Physical Tests	Moisture (%)	48.9		
	pH (1:2 soil:water) (pH)	7.63		
Particle Size	% Gravel (>2mm) (%)	<1.0		
	% Sand (2.00mm - 1.00mm) (%)	2.1		
	% Sand (1.00mm - 0.50mm) (%)	5.5		
	% Sand (0.50mm - 0.25mm) (%)	17.8		
	% Sand (0.25mm - 0.125mm) (%)	28.3		
	% Sand (0.125mm - 0.063mm) (%)	15.0		
	% Silt (0.063mm - 0.0312mm) (%)	14.9		
	% Silt (0.0312mm - 0.004mm) (%)	13.9		
	% Clay (<4um) (%)	2.5		
	Texture	Sandy loam		
Organic / Inorganic Carbon	Total Organic Carbon (%)	6.34		
Metals	Aluminum (Al) (mg/kg)	4630		
	Antimony (Sb) (mg/kg)	0.86		
	Arsenic (As) (mg/kg)	5.34		
	Barium (Ba) (mg/kg)	154		
	Beryllium (Be) (mg/kg)	0.56		
	Bismuth (Bi) (mg/kg)	<0.20		
	Boron (B) (mg/kg)	<5.0		
	Cadmium (Cd) (mg/kg)	1.17		
	Calcium (Ca) (mg/kg)	30400		
	Chromium (Cr) (mg/kg)	9.16		
	Cobalt (Co) (mg/kg)	5.55		
	Copper (Cu) (mg/kg)	13.2		
	Iron (Fe) (mg/kg)	13600		
	Lead (Pb) (mg/kg)	8.89		
	Lithium (Li) (mg/kg)	6.0		
	Magnesium (Mg) (mg/kg)	3480		
	Manganese (Mn) (mg/kg)	229		
	Mercury (Hg) (mg/kg)	0.0313		
	Molybdenum (Mo) (mg/kg)	1.09		
	Nickel (Ni) (mg/kg)	21.1		
	Phosphorus (P) (mg/kg)	1050		
	Potassium (K) (mg/kg)	1250		
	Selenium (Se) (mg/kg)	4.02		
	Silver (Ag) (mg/kg)	0.17		

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

PAGE 5 of 12 13-OCT-21 17:32 (MT)

Version: FINAL REV. 4

	Sample ID Description Sampled Date Sampled Time Client ID	L2641329-1 SE 14-SEP-21 11:00 RG_ERCKDT_SE- 1_2021-09- 14_1100	L2641329-2 SE 14-SEP-21 11:00 RG_RIVER_SE_20 21-09-14_1100	L2641329-3 SE 14-SEP-21 12:40 RG_ERCKDT_SE- 2_2021-09- 14_1240	L2641329-4 SE 14-SEP-21 13:30 RG_ERCKDT_SE- 3_2021-09- 14_1330	L2641329-5 SE 15-SEP-21 08:55 RG_ERCKDT_SE- 4_2021-09- 15_0855
Grouping	Analyte	14_1100		14_1240	14_1000	10_0000
SOIL						
Metals	Sodium (Na) (mg/kg)	84	75	82	89	82
	Strontium (Sr) (mg/kg)	71.4	68.9	89.5	88.3	80.4
	Sulfur (S) (mg/kg)	2100	1800	1200	1800	1700
	Thallium (TI) (mg/kg)	0.355	0.394	0.297	0.302	0.249
	Tin (Sn) (mg/kg)	<2.0	15.8	<2.0	<2.0	<2.0
	Titanium (Ti) (mg/kg)	5.6	9.7	4.6	3.7	6.1
	Tungsten (W) (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Uranium (U) (mg/kg)	1.55	1.55	2.06	2.10	1.57
	Vanadium (V) (mg/kg)	18.9	21.3	19.2	20.2	18.6
	Zinc (Zn) (mg/kg)	243	227	334	350	180
	Zirconium (Zr) (mg/kg)	<1.0	<1.0	<1.0	<1.0	<1.0
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/kg)	<0.085	<0.085	<0.070	<0.090	<0.095
	Acenaphthylene (mg/kg)	<0.018	<0.018	0.013	0.011	0.013
	Acridine (mg/kg)	<0.22	<0.22	<0.19	<0.20	<0.20
	Anthracene (mg/kg)	<0.020	<0.014	<0.0080	<0.0080	0.0127
	Benz(a)anthracene (mg/kg)	0.102	0.272	0.063	<0.090	<0.070
	Benzo(a)pyrene (mg/kg)	0.064	<0.035	0.033	0.053	0.025
	Benzo(b&j)fluoranthene (mg/kg)	0.162	0.152	0.112	0.160	0.125
	Benzo(b+j+k)fluoranthene (mg/kg)	0.162	0.152	0.112	0.160	0.125
	Benzo(e)pyrene (mg/kg)	0.156	0.147	0.123	0.163	0.130 DLHM
	Benzo(g,h,i)perylene (mg/kg)	0.073	0.056	0.048	0.067	0.049
	Benzo(k)fluoranthene (mg/kg)	<0.035	<0.035	<0.020	<0.020	<0.020
	Chrysene (mg/kg)	<0.39	0.212	0.285	<0.38	0.311
	Dibenz(a,h)anthracene (mg/kg)	0.019	<0.018	0.011	0.027	<0.010
	Fluoranthene (mg/kg)	0.081	0.060	0.062	0.068	0.055
	Fluorene (mg/kg)	0.274	0.302	0.248	0.326	0.238
	Indeno(1,2,3-c,d)pyrene (mg/kg)	<0.035	<0.035	<0.020	<0.020	<0.020
	1-Methylnaphthalene (mg/kg)	0.751	0.836	0.655	0.873	0.718
	2-Methylnaphthalene (mg/kg)	1.48	1.55	1.30 DLHM	1.70 DLHM	1.32
	Naphthalene (mg/kg)	0.374	0.380	0.325	0.433	0.335
	Perylene (mg/kg)	<0.035	<0.035	<0.020	<0.020	<0.020
	Phenanthrene (mg/kg)	1.06	1.12	0.898	1.24	0.944
	Pyrene (mg/kg)	0.101	0.112	0.085	0.109	0.089
	Quinoline (mg/kg)	<0.035	<0.035	<0.020	<0.020	<0.020
	Surrogate: d10-Acenaphthene (%)	123.1	122.4	97.0	114.3	123.5
	Surrogate: d12-Chrysene (%)	119.1	N/A	117.1	N/A	126.4

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L2641329 CONTD.... PAGE 6 of 12

13-OCT-21 17:32 (MT) Version: FINAL REV. 4

ALS ENVIRONMENTAL ANALYTICAL REPORT

L2641329-6 L2641329-7 L2641329-8 L2641329-9 L2641329-10 Sample ID Description SE SE SE SE SE 15-SEP-21 15-SEP-21 15-SEP-21 15-SEP-21 15-SEP-21 Sampled Date 09:05 14:05 13:50 12:15 Sampled Time 15:20 RG ERCKDT SE-RG ERCKUT SE-RG ERCKUT SE-RG ERCKUT SE-RG ERCKUT SE-Client ID 5_2021-09-1_2021-09-2_2021-09-3_2021-09-4_2021-09-15_0905 15_1520 15_1405 15_1350 15_1215 Grouping **Analyte** SOIL Metals Sodium (Na) (mg/kg) 90 <50 54 55 53 Strontium (Sr) (mg/kg) 86.2 37.4 51.0 46.1 39.0 Sulfur (S) (mg/kg) 1500 <1000 <1000 <1000 <1000 Thallium (TI) (mg/kg) 0.281 0.151 0.183 0.174 0.160 Tin (Sn) (mg/kg) <2.0 < 2.0 < 2.0 <2.0 < 2.0 Titanium (Ti) (mg/kg) 2.5 5.3 9.4 3.9 2.8 Tungsten (W) (mg/kg) < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 Uranium (U) (mg/kg) 1.73 1.26 1.49 1.43 1.24 Vanadium (V) (mg/kg) 21.6 20.5 25.3 24.1 23.2 Zinc (Zn) (mg/kg) 70.5 248 82.5 86.8 81.0 Zirconium (Zr) (mg/kg) <1.0 <1.0 <1.0 <1.0 < 1.0 DLCI DLCI DLCI DLCI DLCI Acenaphthene (mg/kg) Polycyclic <0.080 < 0.025 < 0.015 <0.020 < 0.045 **Aromatic Hydrocarbons** Acenaphthylene (mg/kg) 0.0074 < 0.0050 < 0.0050 < 0.0050 0.0052 DLCI DLCI DLCI DLCI Acridine (mg/kg) < 0.030 <0.020 < 0.050 < 0.18 < 0.040 Anthracene (mg/kg) < 0.0040 < 0.0040 < 0.0040 < 0.0040 < 0.0040 Benz(a)anthracene (mg/kg) 0.067 0.073 0.045 0.022 0.109 Benzo(a)pyrene (mg/kg) 0.029 < 0.010 < 0.010 < 0.010 < 0.010 Benzo(b&j)fluoranthene (mg/kg) 0.081 0.037 0.125 0.064 0.112 Benzo(b+j+k)fluoranthene (mg/kg) 0.081 0.037 0.125 0.064 0.112 Benzo(e)pyrene (mg/kg) 0.127 0.069 0.033 0.059 0.099 Benzo(g,h,i)perylene (mg/kg) 0.051 0.014 < 0.010 0.018 0.024 Benzo(k)fluoranthene (mg/kg) < 0.010 < 0.010 < 0.010 <0.010 < 0.010 Chrysene (mg/kg) 0.332 0.130 0.045 0.140 0.143 Dibenz(a,h)anthracene (mg/kg) 0.0083 < 0.0050 0.0134 0.0060 0.0117 DLCI Fluoranthene (mg/kg) 0.057 0.035 0.014 < 0.030 0.040 Fluorene (mg/kg) 0.265 0.016 0.027 0.038 0.044 Indeno(1,2,3-c,d)pyrene (mg/kg) 0.010 < 0.010 < 0.010 < 0.010 < 0.010 1-Methylnaphthalene (mg/kg) 0.698 0.177 0.156 0.190 0.329 2-Methylnaphthalene (mg/kg) 1.40 0.259 0.248 0.294 0.544 Naphthalene (mg/kg) 0.349 0.174 0.071 0.113 0.272 Perylene (mg/kg) < 0.010 0.022 < 0.010 <0.010 0.050 Phenanthrene (mg/kg) 0.992 0.583 0.258 0.409 0.873 Pyrene (mg/kg) 0.084 0.043 0.021 0.037 0.065 Quinoline (mg/kg) < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 Surrogate: d10-Acenaphthene (%) 100.2 92.2 83.5 86.9 84.0 Surrogate: d12-Chrysene (%) 122.0 116.2 102.0 107.9 102.5

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

L2641329 CONTD.... PAGE 7 of 12

13-OCT-21 17:32 (MT) Version: FINAL REV. 4

	Sample ID Description Sampled Date Sampled Time Client ID	L2641329-11 SE 15-SEP-21 11:55 RG_ERCKUT_SE- 5_2021-09- 15_1155		
Grouping	Analyte			
SOIL				
Metals	Sodium (Na) (mg/kg)	51		
	Strontium (Sr) (mg/kg)	45.7		
	Sulfur (S) (mg/kg)	<1000		
	Thallium (TI) (mg/kg)	0.171		
	Tin (Sn) (mg/kg)	<2.0		
	Titanium (Ti) (mg/kg)	3.9		
	Tungsten (W) (mg/kg)	<0.50		
	Uranium (U) (mg/kg)	1.13		
	Vanadium (V) (mg/kg)	23.8		
	Zinc (Zn) (mg/kg)	90.9		
	Zirconium (Zr) (mg/kg)	<1.0		
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/kg)	<0.025		
	Acenaphthylene (mg/kg)	<0.0050		
	Acridine (mg/kg)	OLCI		
	Anthracene (mg/kg)	<0.0040		
	Benz(a)anthracene (mg/kg)	0.123		
	Benzo(a)pyrene (mg/kg)	<0.010		
	Benzo(b&j)fluoranthene (mg/kg)	0.096		
	Benzo(b+j+k)fluoranthene (mg/kg)	0.096		
	Benzo(e)pyrene (mg/kg)	0.081		
	Benzo(g,h,i)perylene (mg/kg)	0.019		
	Benzo(k)fluoranthene (mg/kg)	<0.010		
	Chrysene (mg/kg)	0.132		
	Dibenz(a,h)anthracene (mg/kg)	0.0068		
	Fluoranthene (mg/kg)	0.037		
	Fluorene (mg/kg)	0.022		
	Indeno(1,2,3-c,d)pyrene (mg/kg)	<0.010		
	1-Methylnaphthalene (mg/kg)	0.250		
	2-Methylnaphthalene (mg/kg)	0.388		
	Naphthalene (mg/kg)	0.226		
	Perylene (mg/kg)	<0.010		
	Phenanthrene (mg/kg)	0.719		
	Pyrene (mg/kg)	0.053		
	Quinoline (mg/kg)	<0.050		
	Surrogate: d10-Acenaphthene (%)	89.5		
	Surrogate: d12-Chrysene (%)	107.4		

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

PAGE 8 of 12 13-OCT-21 17:32 (MT)

ALS ENVIRONMENTAL ANALYTICAL REPORT

Version: FINAL REV. 4

	Sample ID Description Sampled Date Sampled Time Client ID	L2641329-1 SE 14-SEP-21 11:00 RG_ERCKDT_SE- 1_2021-09- 14_1100	L2641329-2 SE 14-SEP-21 11:00 RG_RIVER_SE_20 21-09-14_1100	L2641329-3 SE 14-SEP-21 12:40 RG_ERCKDT_SE- 2_2021-09- 14_1240	L2641329-4 SE 14-SEP-21 13:30 RG_ERCKDT_SE- 3_2021-09- 14_1330	L2641329-5 SE 15-SEP-21 08:55 RG_ERCKDT_SE 4_2021-09- 15_0855
Grouping	Analyte					
SOIL						
Polycyclic Aromatic Hydrocarbons	Surrogate: d8-Naphthalene (%)	115.0	114.9	95.1	110.8	118.7
	Surrogate: d10-Phenanthrene (%)	110.0	N/A	108.9	129.2	88.6
	IACR:Coarse	0.061	0.069	<0.050	<0.050	<0.050
	IACR:Fine	0.117	0.131	0.078	0.095	0.076
	B(a)P Total Potency Equivalent (mg/kg)	0.116	0.075	0.067	0.104	0.051
	IACR (CCME)	1.80	2.09	1.24	1.56	1.20

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

PAGE 9 of 12 13-OCT-21 17:32 (MT)

Version: FINAL REV. 4

	Sample ID Description Sampled Date Sampled Time Client ID	L2641329-6 SE 15-SEP-21 09:05 RG_ERCKDT_SE- 5_2021-09- 15_0905	L2641329-7 SE 15-SEP-21 15:20 RG_ERCKUT_SE- 1_2021-09- 15_1520	L2641329-8 SE 15-SEP-21 14:05 RG_ERCKUT_SE- 2_2021-09- 15_1405	L2641329-9 SE 15-SEP-21 13:50 RG_ERCKUT_SE- 3_2021-09- 15_1350	L2641329-10 SE 15-SEP-21 12:15 RG_ERCKUT_SE- 4_2021-09- 15_1215
Grouping	Analyte	·=····•	\ <u></u>	-=	=	-=
SOIL						
Polycyclic Aromatic Hydrocarbons	Surrogate: d8-Naphthalene (%)	95.7	90.1	83.3	86.6	87.0
	Surrogate: d10-Phenanthrene (%)	113.3	107.1	96.2	100.6	96.9
	IACR:Coarse	<0.050	<0.050	<0.050	<0.050	<0.050
	IACR:Fine	0.076	0.052	<0.050	<0.050	0.069
	B(a)P Total Potency Equivalent (mg/kg)	0.067	0.031	<0.020	0.022	0.041
	IACR (CCME)	1.32	0.87	0.44	0.61	1.20

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

PAGE 10 of 12 13-OCT-21 17:32 (MT) Version: FINAL REV. 4

ALS ENVIRONMENTAL ANALYTICAL REPORT

L2641329-11 Sample ID SE Description 15-SEP-21 Sampled Date 11:55 **Sampled Time** RG_ERCKUT_SE-5_2021-09-15_1155 Client ID Grouping **Analyte** SOIL Polycyclic Surrogate: d8-Naphthalene (%) 87.4 Aromatic Hydrocarbons Surrogate: d10-Phenanthrene (%) 99.5 IACR:Coarse < 0.050 IACR:Fine 0.065 B(a)P Total Potency Equivalent (mg/kg) 0.036 IACR (CCME) 1.11

^{*} Please refer to the Reference Information section for an explanation of any qualifiers detected.

Reference Information

L2641329 CONTD.... PAGE 11 of 12 13-OCT-21 17:32 (MT)

Version: FINAL REV. 4

Qualifiers for Individual Parameters Listed:

Qualifier	Description
DLCI	Detection Limit Raised: Chromatographic Interference due to co-elution.
DLHM	Detection Limit Adjusted: Sample has High Moisture Content
PSAL	Limited sample was available for Particle Size Analysis (100g minimum is standard). Measurement Uncertainty for PSA results may be higher than usual.
SMI	Surrogate recovery could not be measured due to sample matrix interference.

Test Method References:

ALS Test Code Matrix		Test Description	Method Reference**
C-TIC-PCT-SK	Soil	Total Inorganic Carbon in Soil	CSSS (2008) P216-217
A 1	area a sea estado a casa a casa a casa a casa a casa a casa a casa a casa a casa a casa a casa a casa a casa a	and the state of t	The all of the according a coloring to be accorded and according

A known quantity of acetic acid is consumed by reaction with carbonates in the soil. The pH of the resulting solution is measured and compared against a standard curve relating pH to weight of carbonate.

Total Organic Carbon Calculation CSSS (2008) 21.2 C-TOC-CALC-SK Soil

Total Organic Carbon (TOC) is calculated by the difference between total carbon (TC) and total inorganic carbon. (TIC)

Total Carbon by combustion method CSSS (2008) 21.2 C-TOT-LECO-SK

The sample is ignited in a combustion analyzer where carbon in the reduced CO2 gas is determined using a thermal conductivity detector.

Soil Mercury in Soil by CVAAS EPA 200.2/1631E (mod) HG-200.2-CVAA-CL

Soil samples are digested with nitric and hydrochloric acids, followed by analysis by CVAAS.

IC-CACO3-CALC-SK Soil Inorganic Carbon as CaCO3 Equivalent Calculation

MET-200.2-CCMS-CL Soil Metals in Soil by CRC ICPMS EPA 200.2/6020A (mod)

Soil/sediment is dried, disaggregated, and sieved (2 mm). Strong Acid Leachable Metals in the <2mm fraction are solubilized by heated digestion with nitric and hydrochloric acids. Instrumental analysis is by Collision / Reaction Cell ICPMS.

Limitations: This method is intended to liberate environmentally available metals. Silicate minerals are not solubilized. Some metals may be only partially recovered (matrix dependent), including Al, Ba, Be, Cr, S, Sr, Ti, Tl, V, W, and Zr. Elemental Sulfur may be poorly recovered by this method. Volatile forms of sulfur (e.g. sulfide, H2S) may be excluded if lost during sampling, storage, or digestion.

MOISTURE-CL Soil % Moisture CCME PHC in Soil - Tier 1 (mod)

This analysis is carried out gravimetrically by drying the sample at 105 C

PAH Tumbler Extraction (Hexane/Acetone) EPA 3570/8270-GC/MS PAH-TMB-H/A-MS-CL Soil

This analysis is carried out using procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846, Methods 3545 & 8270, published by the United States Environmental Protection Agency (EPA). The procedure uses a mechanical shaking technique to extract a subsample of the sediment/soil with a 1:1 mixture of hexane and acetone. The extract is then solvent exchanged to toluene. The final extract is analysed by capillary column gas chromatography with mass spectrometric detection (GC/MS). Surrogate recoveries may not be reported in cases where interferences from the sample matrix prevent accurate quantitation. Because the two isomers cannot be readily chromatographically separated, benzo(j)fluoranthene is reported as part of the benzo(b)fluoranthene parameter.

pH in soil (1:2 Soil:Water Extraction) CSSS Ch. 16 PH-1:2-CL

Soil and de-ionized water (by volume) are mixed in a defined ratio. The slurry is allowed to stand, shaken, and then allowed to stand again prior to taking measurements. After equilibration, the pH of the liquid portion of the extract is measured by a pH meter. Field Measurement is recommended where accurate pH measurements are required, due to the 15 minute recommended hold time.

PSA-PIPET-DETAIL-SK Particle size - Sieve and Pipette **SSIR-51 METHOD 3.2.1**

Particle size distribution is determined by a combination of techniques. Dry sieving is performed for coarse particles, wet sieving for sand particles and the pipette sedimentation method for clay particles.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
SK	ALS ENVIRONMENTAL - SASKATOON, SASKATCHEWAN, CANADA
CL	ALS ENVIRONMENTAL - CALGARY, ALBERTA, CANADA

Chain of Custody Numbers:

September EVO LAEMP

Reference Information

L2641329 CONTD.... PAGE 12 of 12 13-OCT-21 17:32 (MT)

Version: FINAL REV. 4

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Workorder: L2641329 Report Date: 13-OCT-21 Page 1 of 11

Client: Teck Coal Ltd.

421 Pine Avenue

Sparwood BC V0B 2G0

Contact: Allie Ferguson

Test Matri	x Reference	Result Qualifier	Units	RPD	Limit	Analyzed
C-TIC-PCT-SK Soil						
Batch R5606512						
WG3628485-1 DUP Inorganic Carbon	L2641329-4 2.21	2.20	%	0.6	20	01-OCT-21
WG3628485-4 IRM Inorganic Carbon	08-109_SOIL	97.4	%		80-120	01-OCT-21
WG3628485-2 LCS Inorganic Carbon	0.5	97.0	%		90-110	01-OCT-21
WG3628485-3 MB Inorganic Carbon		<0.050	%		0.05	01-OCT-21
C-TOT-LECO-SK Soil						
Batch R5606047						
WG3622206-2 IRM Total Carbon by Combustion	08-109_SOIL	101.6	%		80-120	24-SEP-21
WG3622206-4 LCS Total Carbon by Combustion	SULFADIAZII	NE 102.2	%		90-110	24-SEP-21
WG3622206-3 MB Total Carbon by Combustion		<0.05	%		0.05	24-SEP-21
HG-200.2-CVAA-CL Soil						
Batch R5605501 WG3627462-14 CRM Mercury (Hg)	TILL-2	83.4	%		70-130	30-SEP-21
WG3627462-13 LCS Mercury (Hg)		98.4	%		80-120	30-SEP-21
WG3627462-11 MB Mercury (Hg)		<0.0050	mg/kg		0.005	30-SEP-21
MET-200.2-CCMS-CL Soil						
Batch R5605699						
WG3627462-14 CRM Aluminum (Al)	TILL-2	79.0	%		70-130	01-OCT-21
Antimony (Sb)		93.8	%		70-130	01-OCT-21
Arsenic (As)		91.4	%		70-130	01-OCT-21
Barium (Ba)		89.2	%		70-130	01-OCT-21
Beryllium (Be)		84.9	%		70-130	01-OCT-21
Bismuth (Bi)		91.5	%		70-130	01-OCT-21
Cadmium (Cd)		93.9	%		70-130	01-OCT-21
Calcium (Ca)		85.1	%		70-130	01-OCT-21
Chromium (Cr)		86.7	%		70-130	01-OCT-21
Cobalt (Co)		90.7	%		70-130	01-OCT-21

Workorder: L2641329 Report Date: 13-OCT-21 Page 2 of 11

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-CL	Soil							
Batch R5605699								
WG3627462-14 CRM		TILL-2						
Copper (Cu)			92.4		%		70-130	01-OCT-21
Iron (Fe)			90.6		%		70-130	01-OCT-21
Lead (Pb)			92.3		%		70-130	01-OCT-21
Lithium (Li)			88.5		%		70-130	01-OCT-21
Magnesium (Mg)			82.5		%		70-130	01-OCT-21
Manganese (Mn)			85.1		%		70-130	01-OCT-21
Molybdenum (Mo)			86.4		%		70-130	01-OCT-21
Nickel (Ni)			93.2		%		70-130	01-OCT-21
Phosphorus (P)			84.8		%		70-130	01-OCT-21
Potassium (K)			83.0		%		70-130	01-OCT-21
Selenium (Se)			0.38		mg/kg		0.15-0.55	01-OCT-21
Silver (Ag)			0.24		mg/kg		0.16-0.36	01-OCT-21
Sodium (Na)			78.6		%		70-130	01-OCT-21
Strontium (Sr)			88.4		%		70-130	01-OCT-21
Thallium (TI)			93.3		%		70-130	01-OCT-21
Tin (Sn)			2.0		mg/kg		0.2-4.2	01-OCT-21
Titanium (Ti)			77.2		%		70-130	01-OCT-21
Tungsten (W)			1.11		mg/kg		1-2	01-OCT-21
Uranium (U)			91.8		%		70-130	01-OCT-21
Vanadium (V)			86.1		%		70-130	01-OCT-21
Zinc (Zn)			88.5		%		70-130	01-OCT-21
Zirconium (Zr)			93.9		%		70-130	01-OCT-21
WG3627462-13 LCS								
Aluminum (AI)			85.0		%		80-120	01-OCT-21
Antimony (Sb)			91.4		%		80-120	01-OCT-21
Arsenic (As)			90.5		%		80-120	01-OCT-21
Barium (Ba)			91.8		%		80-120	01-OCT-21
Beryllium (Be)			90.2		%		80-120	01-OCT-21
Bismuth (Bi)			86.5		%		80-120	01-OCT-21
Boron (B)			83.7		%		80-120	01-OCT-21
Cadmium (Cd)			92.4		%		80-120	01-OCT-21
Calcium (Ca)			84.8		%		80-120	01-OCT-21
Chromium (Cr)			88.8		%		80-120	01-OCT-21
Cobalt (Co)			92.7		%		80-120	01-OCT-21

Workorder: L2641329 Report Date: 13-OCT-21 Page 3 of 11

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-CL	Soil							
Batch R5605699								
WG3627462-13 LCS			00.4		0/		00.400	04 007 04
Copper (Cu)			90.1		%		80-120	01-OCT-21
Iron (Fe)			95.1		%		80-120	01-OCT-21
Lead (Pb)			86.9		%		80-120	01-OCT-21
Lithium (Li)			93.8		%		80-120	01-OCT-21
Magnesium (Mg)			85.8		%		80-120	01-OCT-21
Manganese (Mn)			93.5		%		80-120	01-OCT-21
Molybdenum (Mo)			87.3		%		80-120	01-OCT-21
Nickel (Ni)			93.4		%		80-120	01-OCT-21
Phosphorus (P)			90.9		%		80-120	01-OCT-21
Potassium (K)			88.3		%		80-120	01-OCT-21
Selenium (Se)			91.5		%		80-120	01-OCT-21
Silver (Ag)			89.9		%		80-120	01-OCT-21
Sodium (Na)			89.8		%		80-120	01-OCT-21
Strontium (Sr)			88.4		%		80-120	01-OCT-21
Sulfur (S)			83.4		%		80-120	01-OCT-21
Thallium (TI)			85.4		%		80-120	01-OCT-21
Tin (Sn)			86.8		%		80-120	01-OCT-21
Titanium (Ti)			81.1		%		80-120	01-OCT-21
Tungsten (W)			89.8		%		80-120	01-OCT-21
Uranium (U)			88.2		%		80-120	01-OCT-21
Vanadium (V)			90.8		%		80-120	01-OCT-21
Zinc (Zn)			87.7		%		80-120	01-OCT-21
Zirconium (Zr)			89.8		%		80-120	01-OCT-21
WG3627462-11 MB								
Aluminum (Al)			<50		mg/kg		50	01-OCT-21
Antimony (Sb)			<0.10		mg/kg		0.1	01-OCT-21
Arsenic (As)			<0.10		mg/kg		0.1	01-OCT-21
Barium (Ba)			< 0.50		mg/kg		0.5	01-OCT-21
Beryllium (Be)			<0.10		mg/kg		0.1	01-OCT-21
Bismuth (Bi)			<0.20		mg/kg		0.2	01-OCT-21
Boron (B)			<5.0		mg/kg		5	01-OCT-21
Cadmium (Cd)			<0.020		mg/kg		0.02	01-OCT-21
Calcium (Ca)			<50		mg/kg		50	01-OCT-21
Chromium (Cr)			<0.50		mg/kg		0.5	01-OCT-21

Page 4 of 11

Workorder: L2641329 Report Date: 13-OCT-21

Units Test Matrix Reference Result Qualifier **RPD** Limit Analyzed MET-200.2-CCMS-CL Soil R5605699 WG3627462-11 MB Cobalt (Co) < 0.10 mg/kg 0.1 01-OCT-21 Copper (Cu) < 0.50 mg/kg 0.5 01-OCT-21 Iron (Fe) <50 mg/kg 50 01-OCT-21 Lead (Pb) < 0.50 mg/kg 0.5 01-OCT-21 Lithium (Li) <2.0 2 mg/kg 01-OCT-21 Magnesium (Mg) <20 mg/kg 20 01-OCT-21 Manganese (Mn) <1.0 mg/kg 1 01-OCT-21 Molybdenum (Mo) < 0.10 mg/kg 0.1 01-OCT-21 Nickel (Ni) < 0.50 mg/kg 0.5 01-OCT-21 Phosphorus (P) <50 mg/kg 50 01-OCT-21 Potassium (K) <100 mg/kg 100 01-OCT-21 Selenium (Se) < 0.20 mg/kg 0.2 01-OCT-21 Silver (Ag) < 0.10 mg/kg 0.1 01-OCT-21 Sodium (Na) <50 mg/kg 50 01-OCT-21 Strontium (Sr) < 0.50 mg/kg 0.5 01-OCT-21 Sulfur (S) <1000 mg/kg 1000 01-OCT-21 Thallium (TI) < 0.050 mg/kg 0.05 01-OCT-21 Tin (Sn) <2.0 mg/kg 2 01-OCT-21 Titanium (Ti) <1.0 mg/kg 1 01-OCT-21 Tungsten (W) < 0.50 mg/kg 0.5 01-OCT-21 Uranium (U) < 0.050 mg/kg 0.05 01-OCT-21 Vanadium (V) <0.20 mg/kg 0.2 01-OCT-21 Zinc (Zn) < 2.0 mg/kg 2 01-OCT-21 Zirconium (Zr) mg/kg <1.0 1 01-OCT-21 **MOISTURE-CL** Soil R5602397 **Batch** WG3625482-3 DUP L2641329-1 Moisture 86.4 86.2 % 0.2 20 28-SEP-21 WG3625482-2 LCS 96.4 Moisture % 90-110 28-SEP-21 WG3625482-1 MB <0.25 Moisture % 0.25 28-SEP-21 Soil PAH-TMB-H/A-MS-CL

Workorder: L2641329 Report Date: 13-OCT-21 Page 5 of 11

est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-H/A-MS-CL	Soil							
Batch R5604623								
WG3627661-5 DUP		L2641329-1						
Acenaphthene		<0.085	<0.085	RPD-NA	mg/kg	N/A	50	29-SEP-21
Acenaphthylene		<0.018	<0.018	RPD-NA	mg/kg	N/A	50	29-SEP-21
Anthracene		<0.020	<0.020	RPD-NA	mg/kg	N/A	50	29-SEP-21
Acridine		<0.22	<0.22	RPD-NA	mg/kg	N/A	50	29-SEP-21
Benz(a)anthracene		0.102	0.069		mg/kg	39	50	29-SEP-21
Benzo(a)pyrene		0.064	< 0.035	RPD-NA	mg/kg	N/A	50	29-SEP-21
Benzo(b&j)fluoranthene		0.162	0.130		mg/kg	22	50	29-SEP-21
Benzo(e)pyrene		0.156	0.137		mg/kg	13	50	29-SEP-21
Benzo(g,h,i)perylene		0.073	0.051		mg/kg	35	50	29-SEP-21
Benzo(k)fluoranthene		<0.035	< 0.035	RPD-NA	mg/kg	N/A	50	29-SEP-21
Chrysene		< 0.39	< 0.39	RPD-NA	mg/kg	N/A	50	29-SEP-21
Dibenz(a,h)anthracene		0.019	0.026		mg/kg	31	50	29-SEP-21
Fluoranthene		0.081	0.045	J	mg/kg	0.037	0.07	29-SEP-21
Fluorene		0.274	0.184		mg/kg	39	50	29-SEP-21
Indeno(1,2,3-c,d)pyrene		< 0.035	< 0.035	RPD-NA	mg/kg	N/A	50	29-SEP-21
2-Methylnaphthalene		1.48	1.28		mg/kg	15	50	29-SEP-21
Naphthalene		0.374	0.333		mg/kg	12	50	29-SEP-21
Perylene		<0.035	< 0.035	RPD-NA	mg/kg	N/A	50	29-SEP-21
Phenanthrene		1.06	0.958		mg/kg	10	50	29-SEP-21
Pyrene		0.101	0.087		mg/kg	16	50	29-SEP-21
1-Methylnaphthalene		0.751	0.693		mg/kg	8.0	50	29-SEP-21
Quinoline		<0.035	< 0.035	RPD-NA	mg/kg	N/A	50	29-SEP-21
WG3627661-3 IRM		ALS PAH RI	12					
Acenaphthene			93.4		%		60-130	29-SEP-21
Acenaphthylene			104.9		%		60-130	29-SEP-21
Anthracene			113.6		%		60-130	29-SEP-21
Acridine			117.1		%		60-130	29-SEP-21
Benz(a)anthracene			110.3		%		60-130	29-SEP-21
Benzo(a)pyrene			109.5		%		60-130	29-SEP-21
Benzo(b&j)fluoranthene			103.6		%		60-130	29-SEP-21
Benzo(e)pyrene			110.4		%		60-130	29-SEP-21
Benzo(g,h,i)perylene			95.7		%		60-130	29-SEP-21
Benzo(k)fluoranthene			93.2		%		60-130	29-SEP-21
Chrysene			105.7		%		60-130	29-SEP-21

Workorder: L2641329 Report Date: 13-OCT-21 Page 6 of 11

est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-H/A-MS-CL	Soil							
Batch R5604623								
WG3627661-3 IRM Dibenz(a,h)anthracene		ALS PAH RM	92.9		%		60-130	29-SEP-21
Fluoranthene			93.7		%		60-130	29-SEP-21
Fluorene			95.6		%		60-130	29-SEP-21
Indeno(1,2,3-c,d)pyrene			124.7		%		60-130	29-SEP-21
2-Methylnaphthalene			92.2		%		60-130	29-SEP-21
Naphthalene			86.7		%		50-130	29-SEP-21
Perylene			110.2		%		60-130	29-SEP-21
Phenanthrene			96.0		%			29-SEP-21 29-SEP-21
Pyrene			97.0		%		60-130	29-SEP-21 29-SEP-21
1-Methylnaphthalene			91.3		%		60-130	
		41 O D411 D8			70		60-130	29-SEP-21
WG3627661-7 IRM Acenaphthene		ALS PAH RM	96.1		%		60-130	29-SEP-21
Acenaphthylene			102.2		%		60-130	29-SEP-21
Anthracene			116.7		%		60-130	29-SEP-21
Acridine			108.0		%		60-130	29-SEP-21
Benz(a)anthracene			102.2		%		60-130	29-SEP-21
Benzo(a)pyrene			98.4		%		60-130	29-SEP-21
Benzo(b&j)fluoranthene			97.4		%		60-130	29-SEP-21
Benzo(e)pyrene			98.9		%		60-130	29-SEP-21
Benzo(g,h,i)perylene			89.7		%		60-130	29-SEP-21
Benzo(k)fluoranthene			82.5		%		60-130	29-SEP-21
Chrysene			98.9		%		60-130	29-SEP-21
Dibenz(a,h)anthracene			87.5		%		60-130	29-SEP-21
Fluoranthene			92.2		%		60-130	29-SEP-21
Fluorene			100.9		%		60-130	29-SEP-21
Indeno(1,2,3-c,d)pyrene			118.9		%		60-130	29-SEP-21
2-Methylnaphthalene			95.9		%		60-130	29-SEP-21
Naphthalene			92.0		%		50-130	29-SEP-21
Perylene			104.2		%		60-130	29-SEP-21
Phenanthrene			97.6		%		60-130	29-SEP-21
Pyrene			95.2		%		60-130	29-SEP-21
1-Methylnaphthalene			94.7		%		60-130	29-SEP-21
WG3627661-2 LCS			J-1.1		,,		00-130	23-3EF-21
Acenaphthene			104.6		%		60-130	29-SEP-21
Acenaphthylene			101.7		%		60-130	29-SEP-21

Workorder: L2641329 Report Date: 13-OCT-21 Page 7 of 11

est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-H/A-MS-CL	Soil							
Batch R5604623								
WG3627661-2 LCS								
Anthracene			111.1		%		60-130	29-SEP-21
Acridine			120.0		%		60-130	29-SEP-21
Benz(a)anthracene			118.0		%		60-130	29-SEP-21
Benzo(a)pyrene			113.5		%		60-130	29-SEP-21
Benzo(b&j)fluoranthene			115.3		%		60-130	29-SEP-21
Benzo(e)pyrene			118.5		%		60-130	29-SEP-21
Benzo(g,h,i)perylene			103.0		%		60-130	29-SEP-21
Benzo(k)fluoranthene			108.5		%		60-130	29-SEP-21
Chrysene			110.9		%		60-130	29-SEP-21
Dibenz(a,h)anthracene			101.5		%		60-130	29-SEP-21
Fluoranthene			106.1		%		60-130	29-SEP-21
Fluorene			108.0		%		60-130	29-SEP-21
Indeno(1,2,3-c,d)pyrene			112.4		%		60-130	29-SEP-21
2-Methylnaphthalene			111.0		%		60-130	29-SEP-21
Naphthalene			104.6		%		50-130	29-SEP-21
Perylene			106.4		%		60-130	29-SEP-21
Phenanthrene			111.5		%		60-130	29-SEP-21
Pyrene			110.4		%		60-130	29-SEP-21
1-Methylnaphthalene			108.1		%		60-130	29-SEP-21
Quinoline			89.5		%		60-130	29-SEP-21
WG3627661-6 LCS								
Acenaphthene			100.5		%		60-130	29-SEP-21
Acenaphthylene			99.9		%		60-130	29-SEP-21
Anthracene			106.6		%		60-130	29-SEP-21
Acridine			104.5		%		60-130	29-SEP-21
Benz(a)anthracene			111.3		%		60-130	29-SEP-21
Benzo(a)pyrene			110.0		%		60-130	29-SEP-21
Benzo(b&j)fluoranthene			106.9		%		60-130	29-SEP-21
Benzo(e)pyrene			110.3		%		60-130	29-SEP-21
Benzo(g,h,i)perylene			98.4		%		60-130	29-SEP-21
Benzo(k)fluoranthene			103.1		%		60-130	29-SEP-21
Chrysene			103.7		%		60-130	29-SEP-21
Dibenz(a,h)anthracene			97.4		%		60-130	29-SEP-21
Fluoranthene			102.1		%		60-130	29-SEP-21

Workorder: L2641329 Report Date: 13-OCT-21 Page 8 of 11

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-H/A-MS-CL	Soil							
Batch R5604623								
WG3627661-6 LCS Fluorene			102.6		%		00.400	00.055.04
			102.6		%		60-130	29-SEP-21
Indeno(1,2,3-c,d)pyrene			102.7		%		60-130	29-SEP-21
2-Methylnaphthalene			104.4		%		60-130	29-SEP-21
Naphthalene							50-130	29-SEP-21
Perylene			105.1		%		60-130	29-SEP-21
Phenanthrene			106.7		%		60-130	29-SEP-21
Pyrene			103.4		%		60-130	29-SEP-21
1-Methylnaphthalene			103.3		%		60-130	29-SEP-21
Quinoline			98.3		%		60-130	29-SEP-21
WG3627661-1 MB Acenaphthene			<0.0050		mg/kg		0.005	28-SEP-21
Acenaphthylene			<0.0050		mg/kg		0.005	28-SEP-21
Anthracene			<0.0040		mg/kg		0.004	28-SEP-21
Acridine			<0.010		mg/kg		0.01	28-SEP-21
Benz(a)anthracene			<0.010		mg/kg		0.01	28-SEP-21
Benzo(a)pyrene			<0.010		mg/kg		0.01	28-SEP-21
Benzo(b&j)fluoranthene			<0.010		mg/kg		0.01	28-SEP-21
Benzo(e)pyrene			<0.010		mg/kg		0.01	28-SEP-21
Benzo(g,h,i)perylene			<0.010		mg/kg		0.01	28-SEP-21
Benzo(k)fluoranthene			<0.010		mg/kg		0.01	28-SEP-21
Chrysene			<0.010		mg/kg		0.01	28-SEP-21
Dibenz(a,h)anthracene			<0.0050		mg/kg		0.005	28-SEP-21
Fluoranthene			<0.010		mg/kg		0.01	28-SEP-21
Fluorene			<0.010		mg/kg		0.01	28-SEP-21
Indeno(1,2,3-c,d)pyrene			<0.010		mg/kg		0.01	28-SEP-21
2-Methylnaphthalene			<0.010		mg/kg		0.01	28-SEP-21
Naphthalene			<0.010		mg/kg		0.01	28-SEP-21
Perylene			<0.010		mg/kg		0.01	28-SEP-21
Phenanthrene			<0.010		mg/kg		0.01	28-SEP-21
Pyrene			<0.010		mg/kg		0.01	28-SEP-21
1-Methylnaphthalene			<0.050		mg/kg		0.05	28-SEP-21
Quinoline			<0.050		mg/kg		0.05	28-SEP-21
Surrogate: d8-Naphthale	ene		91.9		%		50-130	28-SEP-21
Surrogate: d10-Acenaph	thene		100.4		%		60-130	28-SEP-21

Workorder: L2641329 Report Date: 13-OCT-21 Page 9 of 11

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-H/A-MS-CL	Soil							
Batch R5604	1623							
WG3627661-1 M			400.5		0/			
Surrogate: d10-Phe			102.5		%		60-130	28-SEP-21
Surrogate: d12-Chr			107.9		%		60-130	28-SEP-21
WG3627661-4 M Acenaphthene	В		<0.0050		mg/kg		0.005	29-SEP-21
Acenaphthylene			< 0.0050		mg/kg		0.005	29-SEP-21
Anthracene			<0.0040		mg/kg		0.004	29-SEP-21
Acridine			<0.010		mg/kg		0.01	29-SEP-21
Benz(a)anthracene	:		<0.010		mg/kg		0.01	29-SEP-21
Benzo(a)pyrene			<0.010		mg/kg		0.01	29-SEP-21
Benzo(b&j)fluorantl	hene		<0.010		mg/kg		0.01	29-SEP-21
Benzo(e)pyrene			<0.010		mg/kg		0.01	29-SEP-21
Benzo(g,h,i)peryler	ne		<0.010		mg/kg		0.01	29-SEP-21
Benzo(k)fluoranthe	ne		<0.010		mg/kg		0.01	29-SEP-21
Chrysene			<0.010		mg/kg		0.01	29-SEP-21
Dibenz(a,h)anthrac	ene		<0.0050		mg/kg		0.005	29-SEP-21
Fluoranthene			<0.010		mg/kg		0.01	29-SEP-21
Fluorene			<0.010		mg/kg		0.01	29-SEP-21
Indeno(1,2,3-c,d)py	/rene		<0.010		mg/kg		0.01	29-SEP-21
2-Methylnaphthaler	ne		<0.010		mg/kg		0.01	29-SEP-21
Naphthalene			<0.010		mg/kg		0.01	29-SEP-21
Perylene			<0.010		mg/kg		0.01	29-SEP-21
Phenanthrene			<0.010		mg/kg		0.01	29-SEP-21
Pyrene			<0.010		mg/kg		0.01	29-SEP-21
1-Methylnaphthaler	ne		< 0.050		mg/kg		0.05	29-SEP-21
Quinoline			< 0.050		mg/kg		0.05	29-SEP-21
Surrogate: d8-Napl	nthalene		90.9		%		50-130	29-SEP-21
Surrogate: d10-Ace	enaphthene		93.3		%		60-130	29-SEP-21
Surrogate: d10-Phe	enanthrene		100.0		%		60-130	29-SEP-21
Surrogate: d12-Chr	rysene		108.0		%		60-130	29-SEP-21
PH-1:2-CL	Soil							
Batch R5604	1712							
	UP	L2641329-1						
pH (1:2 soil:water)		8.01	8.00	J	рН	0.01	0.2	29-SEP-21
	RM	SAL-STD11	7.06		nU		7700	00.055.04
pH (1:2 soil:water)			7.96		рН		7.7-8.3	29-SEP-21

Page 10 of 11

Workorder: L2641329 Report Date: 13-OCT-21

							`	0		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed		
PH-1:2-CL	Soil									
Batch R5604712										
WG3627849-7 LCS										
pH (1:2 soil:water)			7.00		рН		6.8-7.2	29-SEP-21		
PSA-PIPET-DETAIL-SK	Soil									
Batch R5604764										
WG3622197-2 IRM		2020-PSA_S								
% Sand (2.00mm - 1.00m	,		2.2		%		0-7.2	28-SEP-21		
% Sand (1.00mm - 0.50m	ım)		3.9		%		0-8.7	28-SEP-21		
% Sand (0.50mm - 0.25m	ım)		9.2		%		4-14	28-SEP-21		
% Sand (0.25mm - 0.125r	mm)		16.8		%		11.7-21.7	28-SEP-21		
% Sand (0.125mm - 0.063	3mm)		14.2		%		8.4-18.4	28-SEP-21		
% Silt (0.063mm - 0.0312	mm)		11.6		%		8.5-18.5	28-SEP-21		
% Silt (0.0312mm - 0.004	mm)		20.2		%		15.1-25.1	28-SEP-21		
% Clay (<4um)			21.9		%		16.5-26.5	28-SEP-21		
Batch R5606465										
WG3625839-2 IRM % Sand (2.00mm - 1.00m	ım)	2020-PSA_S	OIL 2.9		%		0.7.0	04 007 04		
`	,		3.7		%		0-7.2	01-OCT-21		
% Sand (1.00mm - 0.50m	,		-				0-8.7	01-OCT-21		
% Sand (0.50mm - 0.25m	,		9.0		%		4-14	01-OCT-21		
% Sand (0.25mm - 0.125r	,		16.9		%		11.7-21.7	01-OCT-21		
% Sand (0.125mm - 0.060	,		13.8		%		8.4-18.4	01-OCT-21		
% Silt (0.063mm - 0.0312	mm)		11.5		%		8.5-18.5	01-OCT-21		
% Silt (0.0312mm - 0.004	mm)		20.4		%		15.1-25.1	01-OCT-21		
% Clay (<4um)			21.9		%		16.5-26.5	01-OCT-21		

Workorder: L2641329 Report Date: 13-OCT-21 Page 11 of 11

Legend:

CVS

ALS Control Limit (Data Quality Objectives)
Duplicate
Relative Percent Difference
Not Available
Laboratory Control Sample
Standard Reference Material
Matrix Spike
Matrix Spike Duplicate
Average Desorption Efficiency
Method Blank
Internal Reference Material
Certified Reference Material
Continuing Calibration Verification

Sample Parameter Qualifier Definitions:

Calibration Verification Standard LCSD Laboratory Control Sample Duplicate

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Te	eck							Page 1	of 1											
•		COC ID:		ber EVO				TURNARO	OUND '	TIME:										
	Facility Name / Jobs		ENTINGO					Lah N		LABORA LS Calgary	TORY				1.				200	
		Allie Ferguson								yudmyla Sh	vets			-	allie.forguso			THE PARTY OF THE P	DF	EDI
		allie.ferguson@teck.	com									global.com			eckossi@eq			i d i		ř
		s 421 Pine Avenue	 -							559 29 Stree					lbowron@					
															jessica.rltz					
	Cit	y	Sparwood			Province BC			City Ca	algary	F	Province	AB		lyler.mehler					1
	Postal Code		V0B 2G0			Country Ca	nada	Postal C				Country	Canada	L						
	Phone Numbe	r 250-425-8202			-			Phone Nur	nber 1	403 407 179	V. T. C.									
	100	SA	MPLE DETAILS **				4.			4. 4	ANAI	LYSIS REC	OVESTE	D			Pitered 7:1	66 8 (2 Lab. 2)	. Value I	ab, fi
M.	Control of the contro	1							盘	N	N	Ń	N	N						
1			But am dis sis	1					-				-							
									283	NONE	NONE	NONE	NONE	None				1.		
					6				PHES	TORE	HOME	AUITE	VORE	NONE						
					Material (Yes/No)				<u></u>		,		고						-	
	L264°	1329-COFC			Š				100		MET-CCME+FULL-CL		PSA-PIPET-DETAIL-SK Particle Size	PAH-TMB-D/A-MS-CL-PAHs					1	
ŀ	·			•	rial						12	%	Ξ	NS.]				
					late				ž		¥	ij		-V/						
					≥ st				TW.	*	ME	8	ET.	0 . 0		ļ				
					o p					\\ \cdot \cdot \\ \cdot \cdot \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \cdot \cdot \cdot \cdot \\ \cdot \cd	Ş	ure ure	l E S	Į.						
	ı			Field	Hazardous		Time		Of	C-TOC-SK	ET	MOISTURE-CL - 9 Moisture	Ti Š	H H						
L	Sample ID	The second secon	nple Location	Matrix	3.00	Date	(24hr)	C=Comp Co		-										
	RG_ERCKDT_SE-1_2021-09-14_1100		G_ERCKDT	SE	No	9/14/2021	1100		2	X 🕈	х	х	х	Х						
	RG_RIVER_SE_2021-09-14_1100		RG_RIVER	SE	No	9/14/2021	1100		2	Х	х	X	X	X						
	RG_ERCKDT_SE-2_2021-09-14_1240		G_ERCKDT	SE	No	9/14/2021	1240		2	X	X	X	X	X		-				
	RG_ERCKDT_SE-3_2021-09-14_1330		G ERCKDT G ERCKDT	SE SE	No No	9/14/2021 9/15/2021	1330		2	X	x .	X	X	X				-		
<u> </u>	RG_ERCKDT_SE-4_2021-09-14:0855		G_ERCKDT	SE	No No	9/15/2021	855 905		2	X	X .	<u>x</u>	X	X	\vdash				-+	
-	RG_ERCKDT_SE-5_2021-09-14_0905 RG_ERCKUT_SE-1_2021-09-15_1520		G ERCKUT	SE SE	No	9/15/2021	1520		2	X	X	X	X	X						—
-	RG_ERCKUT_SE-2_2021-09-15_1405		G ERCKUT	SE	No	9/15/2021	1405		2	$\frac{\hat{x}}{x}$	$\frac{\lambda}{x}$	- ^ x	X	X		-				—
1	RG_ERCKUT_SE-3_2021-09-15_1350		G ERCKUT		No	9/15/2021	1350			$\frac{x}{x}$	X	<u>x</u>	X	X						
12	RG_ERCKUT_SE-4_2021-09-15_1215		G_ERCKUT	~~~	No	9/15/2021	1215		2	X	х	x	х	х						
21	RG_ERCKUT_SE-5_2021-09-15_1155		G ERCKUT	SE	No	9/15/2021	1155		2	X	х	Х	X	х						
	* ADDITIONAL COMMENT					RELINQUISH	ED BY/AFF	ILIATION	DA	TE/TIME		ACC	RPTED	BY/AFFI	LIATION				'1	
"					<u></u>			_		_									7—	
ALS PO	750546					Jennife	r Ings/Minr	10W	#		******			$ \alpha$	_			Pn /	1	
									_					14	\rightarrow			ν / /		7
																.		$\perp \! \! \perp \! \! \perp$	I	<i>'</i>
	NB OF BOTTLES REI	TRNED/DESCRIPTION		ar (default) x					T.	nnifer lags				<i>)</i>						
						Sampler's Nar								ile#			519-500-			

: A.

See.

4

BENTHIC COMMUNITY

Cordillera Methods and QC Report 21-09 (Finalized May 11, 2022)

Methods and QC Report 2022

Project ID: EVO LAEMP (21-09)

Client: Minnow Environmental

P: 250.494.7553

F: 250.494.7562

Prepared by:

Cordillera Consulting Inc. Summerland, BC © 2022

Table of Contents

Sample Reception	3
Sample Sorting	4
Sorting Quality Control - Sorting Efficiency	5
Sorting Quality Control - Sub-Sampling QC	6
Taxonomic Effort	9
Taxonomists	9
Taxonomic QC	10
Error Summary	11
Error Rationale	11
References	15
Taxonomic Kevs	15

Sample Reception

On September 28, 2021, Cordillera Consulting received 27 benthic samples from Minnow Environmental. When samples arrived to Cordillera Consulting, exterior packaging was initially inspected for damage or wet spots that would have indicated damage to the interior containers.

Samples were logged into a proprietary software database (INSTAR1) where the clients assigned sample name was recorded along with a Cordillera Consulting (CC) number for cross-reference. Each sample was checked to ensure that all sites and replicates recorded on field sheets or packing lists were delivered intact and with adequate preservative. Any missing, mislabelled or extra samples were reported to the client immediately to confirm the total numbers and correct names on the sample jars. The client representative was notified of the arrival of the shipment and provided a sample inventory once intake was completed.

See table below for sample inventory:

Table 1: Summary of sample information including Cordillera Consulting (CC) number

Sample	CC#	Date	Size	# of Jars
RG_ERCKUT_BIC-1_2021-09-15	CC221287	9/15/2021	400μΜ	3
RG_ERCKUT_BIC-2_2021-09-15	CC221288	9/15/2021	400μΜ	5
RG_ERCKUT_BIC-3_2021-09-15	CC221289	9/15/2021	400μΜ	3
RG_MIDBO_BIC-1_2021-09-11	CC221290	9/11/2021	400μΜ	1
RG_MIDBO_BIC-2_2021-09-11	CC221291	9/11/2021	400μΜ	1
RG_MIDBO_BIC-3_2021-09-11	CC221292	9/11/2021	400μΜ	1
RG_ERCKDT_BIC-1_2021-09-15	CC221293	9/15/2021	400μΜ	2
RG_ERCKDT_BIC-2_2021-09-15	CC221294	9/15/2021	400μΜ	3
RG_ERCKDT_BIC-3_2021-09-15	CC221295	9/15/2021	400μΜ	4
RG_MIDER_BIC-1_2021-09-09	CC221296	9/9/2021	400μΜ	1
RG_MIDER_BIC-2_2021-09-09	CC221297	9/9/2021	400μΜ	1
RG_MIDER_BIC-3_2021-09-09	CC221298	9/9/2021	400μΜ	1
RG_ERCK_BIC-1_2021-09-10	CC221299	9/10/2021	400μΜ	2
RG_ALUSM_BIC-1_2021-09-12	CC221300	9/12/2021	400μΜ	1
RG_ALUSM_BIC-2_2021-09-12	CC221301	9/12/2021	400μΜ	1
RG_ALUSM_BIC-3_2021-09-12	CC221302	9/12/2021	400μΜ	1
RG_MIDGA_BIC-1_2021-09-11	CC221303	9/11/2021	400μΜ	1
RG_MIDGA_BIC-2_2021-09-11	CC221304	9/11/2021	400μΜ	1
RG_MIDGA_BIC-3_2021-09-11	CC221305	9/11/2021	400μΜ	1
RG_MI3_BIC-1_2021-09-11	CC221306	9/11/2021	400μΜ	1
RG_MI3_BIC-2_2021-09-11	CC221307	9/11/2021	400μΜ	1
RG_MI3_BIC-3_2021-09-11	CC221308	9/11/2021	400μΜ	1
RG_MICOMP_BIC-1_2021-09-13	CC221309	9/13/2021	400μΜ	1
RG_MICOMP_BIC-2_2021-09-13	CC221310	9/13/2021	400μΜ	1
RG_MICOMP_BIC-3_2021-09-13	CC221311	9/13/2021	400μΜ	1
RG_MICOMP_BIC-4_2021-09-13	CC221312	9/13/2021	400μΜ	1

RG_MICOMP_BIC-5_2021-09-13	CC221313	9/13/2021	400μΜ	1
----------------------------	----------	-----------	-------	---

Sample Sorting

- Using a gridded Petri dish, fine forceps and a low power stereo-microscope (Olympus, Nikon, Leica) the sorting technicians removed the invertebrates and sorted them into family/orders.
- The sorting technician kept a running tally of total numbers excluding organisms from Porifera, Nemata, Platyhelminthes, Ostracoda, Copepoda, Cladocera and terrestrial drop-ins such as aphids. These organisms were marked for their presence (given a value of 1) only and left in the sample. They were not included towards the 300-organism subsample count.
- Where specimens are broken or damaged, only heads were counted.
- Subsampling was conducted with the use of a Marchant Box.
- When using the Marchant box, cells were extracted at the same time in the order indicated by a random number table. If the 300th organism was found part way into sorting a cell then the balance of that cell was sorted. If the organism count had not reached 300 by the 50th cell then the entire sample was sorted.
- The total number of cells sorted and the number of organisms removed were recorded manually on a bench sheet and then recorded into INSTAR1
- Organisms were stored in vials containing 80% ethanol and an interior label indicating the site names, date of sampling, site code numbers and portion subsampled. This information was also recorded on the laboratory bench sheet and on INSTAR1.
- The sorted portion of the debris was preserved and labeled separately from the unsorted portion and was tested for sorting efficiency (Sorting Quality Control – Sorting Efficiency). The unsorted portion was also labeled and preserved in separate jars.

Percent sub-sampled and total countable invertebrates pulled from the samples were summarized in the table below.

Table 2: Percent sub-sample and invertebrate count for each sample

Sample	Date	CC#	400 micron fraction	
			% Sampled	# Invertebrates
RG_ERCKUT_BIC-1_2021-09-15	15-Sep-21	CC221287	5%	556
RG_ERCKUT_BIC-2_2021-09-15	15-Sep-21	CC221288	5%	722
RG_ERCKUT_BIC-3_2021-09-15	15-Sep-21	CC221289	5%	373
RG_MIDBO_BIC-1_2021-09-11	11-Sep-21	CC221290	5%	524
RG_MIDBO_BIC-2_2021-09-11	11-Sep-21	CC221291	5%	404
RG_MIDBO_BIC-3_2021-09-11	11-Sep-21	CC221292	5%	400
RG_ERCKDT_BIC-1_2021-09-15	15-Sep-21	CC221293	5%	942

RG_ERCKDT_BIC-2_2021-09-15	15-Sep-21	CC221294	5%	599
RG_ERCKDT_BIC-3_2021-09-15	15-Sep-21	CC221295	5%	782
RG_MIDER_BIC-1_2021-09-09	09-Sep-21	CC221296	12%	417
RG_MIDER_BIC-2_2021-09-09	09-Sep-21	CC221297	8%	324
RG_MIDER_BIC-3_2021-09-09	09-Sep-21	CC221298	5%	340
RG_ERCK_BIC-1_2021-09-10	10-Sep-21	CC221299	5%	868
RG_ALUSM_BIC-1_2021-09-12	12-Sep-21	CC221300	5%	475
RG_ALUSM_BIC-2_2021-09-12	12-Sep-21	CC221301	5%	427
RG_ALUSM_BIC-3_2021-09-12	12-Sep-21	CC221302	5%	362
RG_MIDGA_BIC-1_2021-09-11	11-Sep-21	CC221303	5%	647
RG_MIDGA_BIC-2_2021-09-11	11-Sep-21	CC221304	5%	391
RG_MIDGA_BIC-3_2021-09-11	11-Sep-21	CC221305	5%	400
RG_MI3_BIC-1_2021-09-11	11-Sep-21	CC221306	5%	356
RG_MI3_BIC-2_2021-09-11	11-Sep-21	CC221307	5%	633
RG_MI3_BIC-3_2021-09-11	11-Sep-21	CC221308	5%	474
RG_MICOMP_BIC-1_2021-09-13	13-Sep-21	CC221309	5%	800
RG_MICOMP_BIC-2_2021-09-13	13-Sep-21	CC221310	5%	399
RG_MICOMP_BIC-3_2021-09-13	13-Sep-21	CC221311	5%	561
RG_MICOMP_BIC-4_2021-09-13	13-Sep-21	CC221312	5%	671
RG_MICOMP_BIC-5_2021-09-13	13-Sep-21	CC221313	5%	784

Sorting Quality Control - Sorting Efficiency

As a part of Cordillera's laboratory policy, all projects undergo sorting efficiency checks.

- As sorting progresses, 10% of samples were randomly chosen by senior members of the sorting team for resorting.
- All sorters working on a project had at least 1 sample resorted by another sorter.
- An efficiency of 90 % was expected (95% for CABIN samples).
- If 90/95% efficiency was not met, samples from that sorter were resorted.
- To calculated sorting efficiency the following formula was used:

$$\frac{\#OrganismsMissed}{TotalOrganismsFound}*100 = \%OM$$

Table 3 Summary of sorting efficiency

Total from Percent Sample Efficiency

Site - QC, Sample - QC 1, CC# - CC22130	0, Percent			
sampled = 5%, Sieve size = 400				
Diptera		1		
Chironomidae		1		
Ephemeroptera		8		
Plecoptera		3		
Trichoptera		1		
Trombidiformes		1		
Oligochaeta		3		
	Total:	18	475	96%
City 00 Cyrylly 002 CCII CC22420	2. D			
Site - QC, Sample - QC 2, CC# - CC22130	3, Percent			
sampled = 5%, Sieve size = 400		2		
Gastropoda		2		
Collembola		1		
Trombidiformes		7		
Trichoptera		7		
Plecoptera		4		
Ephemerellidae		1		
Chironomidae		6		
Diptera		2		
	Total:	30	647	95%
Site - QC, Sample - QC 3, CC# - CC22130	6 Dercent			
sampled = 5%, Sieve size = 400	o, i ercent			
Diptera		1		
Trichoptera		1		
Trombidiformes		3		
	Total:	5	356	99%

Sorting Quality Control - Sub-Sampling QC

Certain Provincial and Mining projects require additional sorting checks in the form of sub-sampling QC, (Environmental Effects Monitoring (EEM) protocol). This ensured that any fraction of the total sample that was examined was actually an accurate representation of the number of total organisms. Organisms from the additional subsamples were not identified; rather total organism count only was compared.

Sub-Sampling efficiency was measured on 10% of the number of sub-sampled samples in the project. Ex. In a project where 50 of 100 total samples were processed through subsampling using a Marchant box, then 10% of 50; or 5 samples were used for sub sampling efficiency.

Sub-Sampling efficiency was performed by fractioning the entire sample into subsample percentages. On each sub-sampled portion, a total organism count was recorded and compared to the rest of the sub-samples. In order to pass, all fractions were required to be within 20% of total organism count.

Example: If 300 organisms are found in 10% of the sample, the sorter will continue to sample in 10% fractions until the entire sample is separated. They will then count the total number of organisms in each of the 10 fractions of 10% and compare the organism count.

When divergence is >20% the sorting manager examines for the source of the problem and takes steps to correct it. With the Marchant box, the problem typically rested with how the box is flipped back to the upright position. For this reason, subsampling was performed by experienced employees only. Another common source of error would be the type of debris in the sample. Samples with algae or heavy with periphyton have a higher incident of failure due to clumping than clear samples.

Table 4 Summary of Sub Sample efficiency

S	ation ID																					Sort	er	Actua	Precis	ion	Accura	асу
CC#	Sample									Organ	isms in	Subsam	ple									Ву	Time	l Total	Perce Rang		Min	Ma x
CC#	Name	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20							
22129	RG_MIDB 1 O_BIC-2	384	369	370	413	369																C M	120	1905	0.0	10.65	0.7 9	8.4 0
22130	RG_MI3_B 8 IC-3	437	447	446	435	433																C M	240	2198	0.2	3.13	0.5 9	1.6 8
22130	RG_ALUS 1 M_BIC-2	414	410	392	380	415	408	418	425	426	373	378	377	414	400	440	364	409	384	385	410	C M	950	8022	0.0	17.27	0.2 7	9.7 0

Taxonomic Effort

The next procedure was the identification to genus-species level where possible of all the organisms in the sample.

- Identifications were made at the genus/species level for all insect organisms found including Chironomidae (Based on CABIN protocol).
- Non-insect organisms (except those not included in CABIN count) were identified to genus/species where possible and to a minimum of family level with intact and mature specimens.
- The Standard Taxonomic Effort lists compiled by the CABIN manual¹, SAFIT², and PNAMP³ were used as a guide line for what level of identification to achieve where the condition and maturity of the organism enabled.
- Organisms from the same families/order were kept in separate vials with 80% ethanol and an interior label of printed laser paper.
- Chironomidae was identified to genus/species level where possible and was aided by slide mounts. CMC-10 was used to clear and mount the slide.
- Oligochaetes was identified to family/genus level with the aid of slide mounts. CMC-10 was used to clear and mount the slide.
- Other Annelida (leeches, polychaetes) were identified to the family/genus/species level with undamaged, mature specimens.
- Mollusca was identified to family and genus/species where possible
- Decapoda, Amphipoda and Isopoda were identified at family/genus/species level where possible.
- Bryozoans and Nemata remained at the phylum level
- Hydrachnidae and Cnidaria were identified at the family/genus level where possible.
- When requested, reference collections were made containing at least one individual from each taxa listed. Organisms represented will have been identified to the lowest practical level.
- Reference collection specimens were stored in 55 mm glass vials with screw-cap lids with polyseal inserts (museum quality). They were labeled with taxa name, site code, date identified and taxonomist name. The same information was applied to labels on the slide mounts.

Taxonomists

The taxonomists for this project were certified by the Society of Freshwater Science (SFS) Taxonomic Certification Program at level 2 which is the required certification for CABIN projects:

Scott Finlayson: Group 1 General Arthropods (East/West); Group 2 EPT (East/West); Group 3 Chironomidae (East/West); Group 4 Oligochaeta

Adam Bliss: Group 1 General Arthropods (East/West); Group 2 EPT (East/West); Group 3 Chironomidae

Rita Avery: Group 1 General Arthropods (East/West); Group 2 EPT (East/West)

Taxonomic QC

Taxonomic QC was performed in house by someone other than the original taxonomist.

- Quality control protocol involved complete, blind re-identification and reenumeration of at least 10% of samples by a second SFS-certified taxonomist.
- Samples for taxonomic quality control were randomly selected and quality control procedures were conducted as the project progresses through the laboratories.
- The second (QC) taxonomist will calculate and record four types of errors:
 - 1. Misidentification error
 - 2. Enumeration error
 - 3. Questionable taxonomic resolution error
 - 4. Insufficient taxonomic resolution error

The QC coordinator then calculates the following estimates of taxonomic precision.

1. The percent total identification error rate is calculated as:

$$\frac{Sum\ of\ incorrect\ identifications}{total\ organisms\ counted\ in\ audit}*(100)$$

The average total identification error rate of audited samples did not exceed 5%. All samples that exceed a 5% error rate were re-evaluated to determine whether repeated errors or patterns in error contributed.

2. The percent difference in enumeration (PDE) to quantify the consistency of specimen counts.

$$PDE = \frac{|n_1 - n_2|}{n_1 + n_2} x100$$

3. The percent taxonomic disagreement (PTD) to quantify the shared precision between two sets of identifications.

$$PTD = \left(1 - \left[\frac{a}{N}\right]\right) x100$$

4. Bray Curtis dissimilarity Index to quantify the differences in identifications.

$$BC_{ij} = 1 - \frac{2C_{ij}}{S_i + S_i}$$

Error Summary

All samples report errors within the acceptable limits for CABIN Laboratory methods (less than 5% error).

Table 5 Summary of taxonomic error following QC

Site	Taxa Identified	% Error	BDE	PTD	Bray - Curtis Dissimilarity index
Site - 2021, Sample - RG_ERCKUT_BIC-2_2021-09-					
15, CC# - CC221288, Percent sampled = 5%, Sieve					
size = 400	723	0.00	0.06920415	0.41493776	0.00346021
Site - 2021, Sample - RG_ERCKDT_BIC-2_2021-09-					
15, CC# - CC221294, Percent sampled = 5%, Sieve					
size = 400	599	0.00	0	0.50083472	0.00500835
Site - 2021, Sample - RG_MIDGA_BIC-2_2021-09-					
11, CC# - CC221304, Percent sampled = 5%, Sieve					
size = 400	392	0.00	0.12771392	1.02040816	0.00893997

There will always be disagreements between taxonomists regarding the degree of taxonomic resolution in immature specimens and when laboratories make use of different keys for certain groups (Mollusks is an especially disputed group). It is always possible that some taxa found by the original taxonomist were overlooked in QC.

All of the Taxonomic QC samples that were observed passed testing according to the CABIN misidentification protocols. See the tables below for results from taxonomic QC audit.

Error Rationale

Site - 2021, Sample - RG_ERCKUT_BIC-2_2021- 09-15, CC# - CC221288, Percent sampled = 5%, Sieve size = 400	Laboratory Count	QC Audit Count	Agreement	Misidentification	Questionable Taxonomic Resolution	Enumeration	Insufficient Taxonomic Resolution	Comments
Capniidae	2	2						
Chironomidae	168	167	No			Χ		
Chloroperlidae	8	8						

Diamesa	5	5						
Dicranota	1	1						
Empididae	1	1						
Eukiefferiella	87	88	No			Х		
Heptageniidae	1	1						
Hydrobaenus	7	7						
Limnephilidae	7	7						
Malenka	2	2						
Micropsectra	11	11						
Neoplasta	1	1						
Oribatida	1	1						
Orthocladius complex	2	2						
Pagastia	1	1						
Peltoperlidae	55	55						
Pericoma/Telmatoscopus	2	2						
Perlodidae	35	35						
Rhyacophila								
brunnea/vemna group	1	1						
Sperchon	4	4						
Sweltsa	5	5						
Tvetenia	110	111	No			Х		
Yoraperla	121	121						
Zapada	41	42	No			Х		
Zapada cinctipes	16	16						
Zapada columbiana	26	25	No			Х		
Zapada oregonensis group	1	1						
Total:	722	723			_	_		
			0.00	_	0	5	0	
% Total Misidentification Rate	misidentifications	x100	0.00	Pass				
=	total number	=						
Site - 2021, Sample - RG_ERCKDT_BIC-2_2021- 09-15, CC# - CC221294, Percent sampled = 5%, Sieve size = 400	Laboratory Count	QC Audit Count	Agreement	Misidentification	Questionable Taxonomic Resolution	Enumeration	Insufficient Taxonomic Resolution	Comments
Albertathyas	2	2						
Arctopsyche	1	1						
Chironomidae	40	40						
Corynoneura	2	2						
Corynoneura			<u> </u>	<u> </u>		J	<u> </u>	

Diamesa	16	16						
Ecclisomyia	2	2						
Ephemerellidae	14	14						
Eukiefferiella	25	25						
Hydrobaenus	7	7						
Lebertia	5	4	No			Х		
Lepidostoma	2	2						
Micropsectra	76	77	No			Х		
Nais	39	39						
Orthocladius complex	3	3						
Pagastia	3	3						
Parapsyche	3	3						
Peltoperlidae	44	44						
Pericoma/Telmatoscopus	1	1						
Pseudodiamesa	2	2						
Rhyacophila	_							
brunnea/vemna group	1	1						
Sperchon	2	2						
Sweltsa	2	2						
Tipula	1	1						
Trichoptera	12	12						
Tubificinae with hair								
chaetae	5	5						
Tubificinae without hair								
chaetae	1	1						
Tvetenia	90	90						
Yoraperla	60	60						
Zapada	128	126	No			Χ		
Zapada columbiana	8	10	No			Χ		
Zapada oregonensis group	2	2						
Total:	599	599						
					0	4	0	
% Total Misidentification Rate	misidentifications	x100	0.00	Pass				
=	total number	=						
Site - 2021, Sample - RG_MIDGA_BIC-2_2021-09- 11, CC# - CC221304, Percent sampled = 5%, Sieve size = 400	Laboratory Count	QC Audit Count	Agreement	Misidentification	Questionable Taxonomic Resolution	Enumeration	Insufficient Taxonomic Resolution	Comments
Apatania	73	73						

Arctopsyche	4	4					
Baetidae	1	1					
Baetis	63	66	No		Х		
Baetis rhodani group	67	64	No		Х		
Brachycentrus	1	1					
Capniidae	1	1					
Chironomidae	7	7					
Drunella doddsii	12	12					
Drunella spinifera	1	1					
Ephemerella	3	3					
Ephemerellidae	4	4					
Glossosoma	2	2					
Glossosomatidae	12	12					
Heptageniidae	49	49					
Hesperoperla	1	1					
Heterlimnius	3	3					
Hexatoma	4	4					
Lebertia	4	4					
Lepidostoma	2	2					
Micropsectra	1	1					
Neoplasta	2	2					
Orthocladius complex	2	2					
Pagastia	2	2					
Pericoma/Telmatoscopus	2	2					
Polypedilum	1	1					
Rheocricotopus	3	3					
Rhithrogena	4	4					
Rhyacophila	3	3					
Simuliidae	2	2					
Sperchon	1	1					
Sweltsa	1	1					
Taeniopterygidae	5	5					
Torrenticola	13	14	No		Χ		
Trichoptera	2	2					
Tubificinae without hair							
chaetae	2	2					
Tvetenia	6	6					
Zapada	1	1					
Zapada cinctipes	24	24					
Total:	391	392					
				0	3	0	

% Total Misidentification Rate	misidentifications	x100	0.00	Pass	
=	total number	=			

References

¹ McDermott, H., Paull, T., Strachan, S. (May 2014). Laboratory Methods: Processing, Taxonomy, and Quality Control of Benthic Macroinvertebrate Samples, Environment Canada. ISBN: 978-1-100-25417-3

² Southwest Association of Freshwater Invertebrate Taxonomists. (2015). www.safit.org

³ Pacific Northwest Aquatic Monitoring Partnership (Accessed 2015). www.pnamp.org

Taxonomic Keys

Below is a reference list of taxonomic keys utilized by taxonomists at Cordillera Consulting. Cordillera taxonomists routinely seek out new literature to ensure the most accurate identification keys are being utilized. This is not reflective of the exhaustive list of resources that we use for identification. A more complete list of taxonomic resources can be found at Southwest Association of Freshwater Invertebrate Taxonomists. (2015).

http://www.safit.org/Docs/SAFIT_Taxonomic_Literature_Database_1_March_2011.enl

Brook, Arthur R. and Leonard A. Kelton. 1967. Aquatic and semiaquatic Heteroptera of Alberta, Saskatchewan and Manitoba (Hemiptera) Memoirs of the Entomological Society of Canada. No. 51.

Brown HP & White DS (1978) Notes on Seperation and Identification of North American Riffle Beetles (Coleoptera: Dryopidea: Elmidae). Entomological News 89 (1&2): 1-13

Clifford, Hugh F. 1991. Aquatic Invertebrates of Alberta. University of Alberta Press Edmonton, Alberta.

Epler, John. 2001 The Larval Chironomids of North and South Carolina. http://home.earthlink.net/~johnepler/

Epler, John. Identification Manual for the Water Beetles of Florida. http://home.earthlink.net/~johnepler/

Epler, John. Identification Manual for the Aquatic and Semi-aquatic Heteroptera of Florida. $\label{lem:heteroptera} http://home.earthlink.net/~johnepler/$

Trond Andersen, Peter S. Cranston & John H. Epler (Eds) (2013) Chironomidae of the Holarctic Region: Keys and Diagnoses. Part 1. Larvae. *Insect Systematics and Evolution Supplements* 66: 1-571.

Jacobus, Luke and Pat Randolph. 2005. Northwest Ephemeroptera Nymphs. Manual from Northwest Biological Assessment Working Group. Moscow Idaho 2005. Not Published.

Jacobus LM, McCafferty WP (2004) Revisionary Contributions to the Genus Drunella (Ephemeroptera : Ephemerellidae). Journal of the New York Entomological Society 112: 127-147

Jacobus LM, McCafferty WP (2003) Revisionary Contributions to North American Ephemerella and Serratella (Ephemeroptera: Ephemerellidae). Journal of the New York Entomological Society 111 (4): 174-193.

Kathman, R.D., R.O. Brinkhurst. 1999. Guide to the Freshwater Oligochaetes of North America. Aquatic Resources Center, College Grove, Tennessee.

Larson, D.J., Y. Alarie, R.E. Roughly. 2005. Predaceous Diving Beetles (Coleoptera: Dytiscidae) of the Neararctic Region. NRC-CNRC Research Press. Ottawa.

Merritt, R.W., K.W. Cummins, M. B. Berg. (eds.). 2007. An introduction to the aquatic insects of North America, 4th. Kendall/Hunt, Dubuque, IA

Morihara DK, McCafferty WP (1979) The Baetis Larvae of North American (Ephemeroptera: Baetidae). Transactions of the American Entomological Society 105: 139-221.

Needham, James, M. May, M. Westfall Jr. 2000. Dragonflies of North America. Scientific Publishers. Gainsville FL.

Prescott David, R.C. and Medea M. Curteanu. 2004. Survey of Aquatic Gastropods of Alberta. Species at Risk Report No. 104. ISSN: 1496-7146 (Online Edition)

Needham, K. 1996. An Identification Guide to the Nymphal Mayflies of British Columbia. Publication #046 Resource Inventory Committee, Government of British Columbia.

Oliver, Donald R. and Mary E. Roussel. 1983. The Insects and Arachnids of Canada Part 11. The Genera of larval midges of Canada. Biosystematics Research Institute. Ottawa, Ontario. Research Branch, Agriculture Canada. Publication 1746.

Proctor, H. The 'Top 18' Water Mite Families in Alberta. Zoology 351. University of Alberta, Edmonton, Alberta.

Rogers, D.C. and M. Hill, 2008. Key to the Freshwater Malacostraca (Crustacea) of the mid-Atlantic Region. EPA-230-R-08-017. US Environmental Protection Agency, Office of Environmental Information, Washington, DC.

Stewart, Kenneth W. and Bill Stark. 2002. The Nymphs of North American Stonefly Genera (Plecoptera). The Caddis Press. Columbus Ohio.

Stewart, Kenneth W. and Mark W. Oswood. 2006 The Stoneflies (Plecoptera) of Alaska and Western Canada. The Caddis Press.

Stonedahl, Gary and John D. Lattin. 1986. The Corixidae of Oregon and Washington (Hemiptera: Heteroptera). Technical Bulletin 150. Oregon State University, Corvalis Oregon.

Thorpe, J. H. and A. P. Covich [Eds.] 1991. Ecology and classification of North American freshwater invertebrates. Academic Press, San Diego.

Tinerella, Paul P. and Ralph W. Gunderson. 2005. The Waterboatmen (Insecta: Heteroptera: Corixidae) of Minisota. Publication No. 23 Dept. Of Entomology, North Dakota State University, Fargo, North Dakota, USA.

Weiderholm, Torgny (Ed.) 1983. The larvae of Chironomidae (Diptera) of the Holartic region. Entomologica Scaninavica. Supplement No. 19.

Westfall, Minter J. Jr. and May, Michael L. 1996. Damselflies of North America. Scientific Publishers, Gainesville, FL.

Wiggins, Glenn B. 1998. Larvae of the North American Caddisfly Genera (Tricoptera) 2nd ed. University of Toronto Press. Toronto Ontario.

Project: EVO LAEMP (21-09)

Minnow Environmental (BC) Taxonomist: Scott Finlayson

 $\underline{scottfinlayson@cordilleraconsulting.ca}$

250-494-7553

Site:	2021	2021	2021	2021	2021	2021	2021
	RG_ERCKUT_BIC-	RG_ERCKUT_BIC-	RG ERCKUT BIC-	RG MIDBO BIC-	RG_MIDBO_BIC-	RG MIDBO BIC-	RG ERCKDT BIC-
Sample:	1 2021-09-15	2 2021-09-15	3 2021-09-15	1 2021-09-11	2 2021-09-11	3 2021-09-11	1 2021-09-15
Sample Collection Date:	15-Sep-21	15-Sep-21	15-Sep-21	11-Sep-21	11-Sep-21	11-Sep-21	15-Sep-21
CC#:	CC221287	CC221288	CC221289	CC221290	CC221291	CC221292	CC221293
Phylum: Arthropoda	0	0	0	0	0	0	0
Subphylum: Hexapoda	0	0	0	0	0	0	0
Class: Insecta	0	0	0	0	0	0	0
Order: Ephemeroptera	0	0	0	0	0	0	0
Family: Ameletidae	0	0	0	0	0	0	0
<u>Ameletus</u>	0	0	0	0	0	0	0
Family: Baetidae	0	0	0	40	0	160	40
<u>Acentrella</u>	0	0	0	0	0	0	0
<u>Baetis</u>	0	0	0	1,960	1,220	2400	0
<u>Baetis rhodani group</u>	0	0	0	760	540	580	0
Family: Ephemerellidae	40	0	0	180	240	180	320
<u>Caudatella</u>	0	0	0	0	0	0	0
<u>Drunella</u>	0	0	0	0	0	0	0
<u>Drunella coloradensis</u>	0	0	0	0	0	0	0
<u>Drunella doddsii</u>	0	0	0	200	220	200	0
<u>Drunella spinifera</u>	0	0	0	20	0	0	0
<u>Ephemerella</u>	0	0	0	160	0	40	0
Ephemerella excrucians complex	0	0	0	0	0	0	0
Family: Heptageniidae	20	20	0	1,020	1,360	1,040	20
<u>Cinyamula</u>	0	0	0	0	0	0	0
<u>Epeorus</u>	0	0	0	20	0	20	0
<u>Rhithrogena</u>	0	0	0	40	40	20	0
Family: Leptophlebiidae	0	0	0	0	0	0	0
Order: Plecoptera	40	0	60	0	20	0	0
Family: Capniidae	40	40	0	0	20	0	20
<u>Utacapnia</u>	60	0	60	0	0	0	0
Family: Chloroperlidae	80	160	160	0	40	0	20
<u>Sweltsa</u>	80	100	80	60	160	100	0
Family: Leuctridae	0	0	0	0	20	0	0
<u>Paraleuctra</u>	0	0	0	20	20	0	0

Project: EVO LAEMP (21-09)

Minnow Environmental (BC) Taxonomist: Scott Finlayson

scottfinlayson@cordilleraconsulting.ca

250-494-7553

Site:	2021	2021	2021	2021	2021	2021	2021
Site.	RG_ERCKUT_BIC-	RG ERCKUT BIC-	RG ERCKUT BIC-	RG MIDBO BIC-	RG MIDBO BIC-	RG MIDBO BIC-	RG ERCKDT BIC-
Sample:	1 2021-09-15	2 2021-09-15	3 2021-09-15	1 2021-09-11	2 2021-09-11	3 2021-09-11	1 2021-09-15
Sample Collection Date:	15-Sep-21	15-Sep-21	15-Sep-21	11-Sep-21	11-Sep-21	11-Sep-21	15-Sep-21
CC#:	CC221287	CC221288	CC221289	CC221290	CC221291	CC221292	CC221293
Family: Nemouridae	0	0	0	0	0	40	120
Malenka	0	40	40	0	0	0	0
Zapada	1.320	820	660	20	0	60	6280
Zapada oregonensis group	80	20	0	0	20	40	80
Zapada cinctipes	320	320	180	720	820	800	0
Zapada columbiana	620	520	360	0	0	0	300
Family: Peltoperlidae	2,020	1,100	780	0	0	0	560
Yoraperla	1,480	2420	1,840	0	0	0	1,320
Family: Perlidae	0	0	1,840	0	0	0	0
Doroneuria	0	0	0	0	0	0	0
Hesperoperla	0	0	0	0	20	20	0
Family: Perlodidae	300	700	360	0	0	0	0
Cultus	0	0	0	0	0	0	0
<u>Koqotus</u>	0	0	0	20	0	0	0
Megarcys	20	0	20	0	0	0	0
Skwala	0	0	0	0	20	0	0
Family: Pteronarcyidae	0	0	0	0	0	0	0
Pteronarcella	0	0	0	0	0	0	0
Family: Taeniopterygidae	0	0	0	100	20	200	20
Order: Trichoptera	20	0	20	1,660	0	0	580
Family: Apataniidae	0	0	0	0	0	0	0
Apatania	0	0	20	280	80	240	0
Family: Brachycentridae	0	0	0	0	20	40	0
Brachycentrus	0	0	0	0	0	0	0
Brachycentrus americanus	0	0	0	0	0	0	0
Micrasema	0	0	0	0	0	0	0
Family: Glossosomatidae	0	0	0	420	600	320	0
Glossosoma	0	0	0	340	360	120	0
Family: Hydropsychidae	0	0	0	60	220	80	0
<u>Arctopsyche</u>	0	0	0	260	220	120	0
<u>Parapsyche</u>	0	0	0	0	0	0	0
Parapsyche elsis	0	0	0	0	0	0	0
Family: Hydroptilidae	0	0	0	0	0	0	0
<u>Hydroptila</u>	0	0	0	0	0	0	0
Family: Lepidostomatidae	0	0	0	0	0	0	0
<u>Lepidostoma</u>	0	0	0	0	60	20	40

Project: EVO LAEMP (21-09)

Minnow Environmental (BC)
Taxonomist: Scott Finlayson

scottfinlayson@cordilleraconsulting.ca

250-494-7553

Site:	2021	2021	2021	2021	2021	2021	2021
	RG ERCKUT BIC-	RG ERCKUT BIC-	RG ERCKUT BIC-	RG MIDBO BIC-	RG MIDBO BIC-	RG MIDBO BIC-	RG ERCKDT BIC-
Sample:	1 2021-09-15	2 2021-09-15	3 2021-09-15	1 2021-09-11	2 2021-09-11	3 2021-09-11	1 2021-09-15
Sample Collection Date:	15-Sep-21	15-Sep-21	15-Sep-21	11-Sep-21	11-Sep-21	11-Sep-21	15-Sep-21
CC#:	CC221287	CC221288	CC221289	CC221290	CC221291	CC221292	CC221293
Family: Limnephilidae	100	140	60	0	0	0	20
Ecclisomvia	0	0	0	0	0	0	40
Family: Rhyacophilidae	0	0	0	0	0	0	0
Rhyacophila	140	0	20	100	60	0	0
Rhyacophila anaelita aroup	0	0	0	0	0	0	0
Rhyacophila betteni group	0	0	0	0	0	0	0
Rhyacophila brunnea/vemna group	20	20	100	0	0	0	0
Rhyacophila hyalinata aroup	0	0	0	0	0	0	0
Rhyacophila narvae	0	0	0	0	0	0	0
Family: Thremmatidae	0	0	0	0	0	0	0
Oligophlebodes	0	0	0	0	0	20	0
Family: Uenoidae	0	0	0	0	0	0	0
Neothremma	0	0	0	40	0	0	0
Order: Coleoptera	0	0	0	0	0	0	0
Family: Dytiscidae	0	0	0	0	0	0	0
<u>Desmopachria</u>	0	0	0	0	0	0	0
Family: Elmidae	0	0	0	20	0	0	0
<u>Heterlimnius</u>	0	0	0	0	0	40	0
<u>Narpus</u>	0	0	0	0	20	0	0
Zaitzevia	0	0	0	0	0	0	0
Order: Diptera	0	0	0	0	0	0	0
Family: Athericidae	0	0	0	0	0	0	0
<u>Atherix</u>	0	0	0	0	0	0	0
Family: Ceratopogonidae	0	0	0	0	0	0	0
<u>Bezzia/ Palpomyia</u>	0	0	0	0	0	0	0
<u>Mallochohelea</u>	0	0	0	0	0	0	0
Family: Chironomidae	1,120	3360	800	340	660	120	600
Subfamily: Chironominae	0	0	0	0	0	0	0
Tribe: Chironomini	0	0	0	0	0	0	0
<u>Polypedilum</u>	0	0	0	20	40	0	0
Tribe: Tanytarsini	0	0	0	0	0	0	1,420
<u>Micropsectra</u>	60	220	100	60	20	20	2060
<u>Rheotanytarsus</u>	0	0	0	0	20	0	0
<u>Stempellina</u>	0	0	0	0	0	0	0
<u>Sublettea</u>	0	0	0	0	0	0	0
Subfamily: Diamesinae	0	0	0	0	0	0	0

Project: EVO LAEMP (21-09)

Minnow Environmental (BC) Taxonomist: Scott Finlayson

scottfinlayson@cordilleraconsulting.ca

250-494-7553

Site:	2021	2021	2021	2021	2021	2021	2021
Site.	RG_ERCKUT_BIC-		RG ERCKUT BIC-	RG_MIDBO_BIC-	RG_MIDBO_BIC-	RG_MIDBO_BIC-	RG ERCKDT BIC-
Sample:							
Consula Callestian Date	1_2021-09-15	2_2021-09-15	3_2021-09-15	1_2021-09-11	2_2021-09-11	3_2021-09-11	1_2021-09-15
Sample Collection Date:	15-Sep-21	15-Sep-21	15-Sep-21	11-Sep-21	11-Sep-21	11-Sep-21	15-Sep-21
CC#:	CC221287	CC221288	CC221289	CC221290	CC221291	CC221292	CC221293
Tribe: Diamesini	0	0	0	0	0	0	0
<u>Diamesa</u>	140	100	40	0	0	0	260
<u>Pagastia</u>	0	20	0	60	0	0	120
Potthastia gaedii group	0	0	0	0	0	0	0
<u>Pseudodiamesa</u>	0	0	0	0	0	0	60
Subfamily: Orthocladiinae	0	0	0	0	0	0	0
<u>Brillia</u>	0	0	0	0	0	0	0
<u>Corynoneura</u>	0	0	0	0	0	0	20
<u>Eukiefferiella</u>	1,880	1,740	820	20	40	60	460
<u>Hydrobaenus</u>	0	140	0	0	0	0	140
<u>Limnophyes</u>	0	0	0	0	0	0	20
<u>Orthocladius complex</u>	0	40	80	520	0	120	420
<u>Orthocladius lignicola</u>	0	0	0	0	0	0	0
<u>Psectrocladius</u>	0	0	0	0	0	0	0
<u>Rheocricotopus</u>	0	0	0	60	80	20	0
<u>Thienemanniella</u>	0	0	0	0	0	0	0
<u>Tvetenia</u>	460	2200	660	180	100	100	1,700
Subfamily: Tanypodinae	20	0	0	0	0	0	0
Tribe: Pentaneurini	0	0	0	0	0	0	0
Thienemannimyia group	0	0	0	20	0	0	0
Tribe: Procladiini	0	0	0	0	0	0	0
<u>Procladius</u>	0	0	0	0	0	0	20
Family: Empididae	100	20	0	0	20	0	20
Clinocera	0	0	0	0	0	0	0
Neoplasta	340	20	60	60	120	80	0
Wiedemannia	0	0	0	0	0	0	0
Family: Muscidae	0	0	0	0	0	0	0
Limnophora	0	0	0	0	0	0	0
Family: Pelecorhynchidae	0	0	0	0	0	0	0
Glutops	40	0	0	0	0	0	20
Family: Psychodidae	0	0	0	0	0	0	0
Pericoma/Telmatoscopus	20	40	0	100	20	120	0
Family: Simuliidae	0	0	0	20	0	80	0
Simulium	0	0	0	20	20	20	0

Project: EVO LAEMP (21-09)

Minnow Environmental (BC) Taxonomist: Scott Finlayson

scottfinlayson@cordilleraconsulting.ca

250-494-7553

Site:	2021	2021	2021	2021	2021	2021	2021
	RG_ERCKUT_BIC-	RG_ERCKUT_BIC-	RG_ERCKUT_BIC-	RG_MIDBO_BIC-	RG_MIDBO_BIC-	RG_MIDBO_BIC-	RG_ERCKDT_BIC-
Sample:	1 2021-09-15	2 2021-09-15	3 2021-09-15	1 2021-09-11	2 2021-09-11	3 2021-09-11	1 2021-09-15
Sample Collection Date:	15-Sep-21	15-Sep-21	15-Sep-21	11-Sep-21	11-Sep-21	11-Sep-21	15-Sep-21
CC#:	CC221287	CC221288	CC221289	CC221290	CC221291	CC221292	CC221293
Family: Tipulidae	0	0	0	0	0	0	0
Antocha	0	0	0	20	0	20	0
Dicranota	0	20	0	0	0	0	0
Hexatoma	0	0	0	20	60	20	0
Tipula	0	0	0	0	0	0	0
Subphylum: Chelicerata	0	0	0	0	0	0	0
Class: Arachnida	0	0	0	0	0	0	0
Order: Trombidiformes	20	0	40	0	0	0	0
Family: Aturidae	0	0	0	0	0	0	0
<u>Aturus</u>	0	0	0	0	0	0	0
Family: Feltriidae	0	0	0	0	0	0	0
<u>Feltria</u>	0	0	0	0	0	0	0
Family: Hydryphantidae	0	0	0	0	0	0	0
<u>Albertathyas</u>	0	0	0	0	0	0	0
<u>Protzia</u>	0	0	0	0	20	0	0
Family: Lebertiidae	0	0	0	0	0	0	0
<u>Lebertia</u>	0	0	0	60	20	0	80
Family: Sperchontidae	0	0	0	0	0	0	0
<u>Sperchon</u>	40	80	20	60	20	60	40
Family: Torrenticolidae	0	0	0	0	0	0	0
<u>Testudacarus</u>	0	0	0	0	0	0	0
<u>Torrenticola</u>	0	0	0	240	340	220	0
Suborder: Prostigmata	0	0	0	0	0	0	0
Family: Stygothrombidiidae	0	0	0	0	0	0	0
<u>Stygothrombium</u>	0	0	0	0	0	0	0
Order: Sarcoptiformes	0	0	0	0	0	0	0
Order: Oribatida	0	20	0	0	0	0	0
Family: Hydrozetidae	0	0	0	0	0	0	40
Phylum: Annelida	0	0	0	0	0	0	0
Subphylum: Clitellata	0	0	0	0	0	0	0
Class: Oligochaeta	0	0	0	0	0	0	0
Order: Lumbriculida	0	0	0	0	0	0	0
Family: Lumbriculidae	0	0	0	0	0	0	0
<u>Lumbriculus</u>	0	0	0	20	20	0	0
<u>Rhynchelmis</u>	U	0	U	U	Ü	0	0

Project: EVO LAEMP (21-09)

Minnow Environmental (BC) Taxonomist: Scott Finlayson

scottfinlayson@cordilleraconsulting.ca

250-494-7553

			T				
Site:	2021	2021	2021	2021	2021	2021	2021
Sample:	RG_ERCKUT_BIC-	RG_ERCKUT_BIC-	RG_ERCKUT_BIC-	RG_MIDBO_BIC-	RG_MIDBO_BIC-	RG_MIDBO_BIC-	RG_ERCKDT_BIC-
Jampie.	1_2021-09-15	2_2021-09-15	3_2021-09-15	1_2021-09-11	2_2021-09-11	3_2021-09-11	1_2021-09-15
Sample Collection Date:	15-Sep-21	15-Sep-21	15-Sep-21	11-Sep-21	11-Sep-21	11-Sep-21	15-Sep-21
CC#:	CC221287	CC221288	CC221289	CC221290	CC221291	CC221292	CC221293
Order: Tubificida	0	0	0	0	0	0	0
Family: Enchytraeidae	0	0	0	0	0	0	0
<u>Enchytraeus</u>	60	0	0	0	0	0	0
Family: Naididae	0	0	20	0	0	0	0
<u>Nais</u>	0	0	0	60	20	40	1,120
Subfamily: Tubificinae with hair chaetae	0	0	0	0	0	0	440
Subfamily: Tubificinae without hair chaetae	20	0	0	0	0	0	0
Totals:	11,120	14,440	7,460	10,480	8,080	8,000	18,840
Taxa present but not included: Phylum: Arthropoda	0	0	0	0	0	0	0
Subphylum: Hexapoda	0	0	0	0	0	0	0
Class: Insecta	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
Order: Homoptera		0	20	_	0	_	
Family: Cicadellidae	0			0	Ŭ	0	0
Subphylum: Crustacea	0	0	0	0	0	0	0
Class: Ostracoda	20	20	20	20	20	0	20
Phylum: Nemata	20	0	20	20	20	0	20
Phylum: Platyhelminthes	0	0	0	0	0	0	0
Class: Turbellaria	20	20	20	20	20	20	20
Totals:	60	40	80	60	60	20	60

Project: EVO LAEMP (21-09)

Minnow Environmental (BC) Taxonomist: Scott Finlayson

scottfinlayson@cordilleraconsulting.ca

250-494-7553

Site:	2021	2021	2021	2021	2021	2021	2021
	RG ERCKDT BIC-	RG_ERCKDT_BIC-	RG MIDER BIC-	RG MIDER BIC-	RG MIDER BIC-	RG ERCK BIC-	RG_ALUSM_BIC-
Sample:	2 2021-09-15	3 2021-09-15	1 2021-09-09	2 2021-09-09	3 2021-09-09	1 2021-09-10	1 2021-09-12
Sample Collection Date:	15-Sep-21	15-Sep-21	09-Sep-21	09-Sep-21	09-Sep-21	10-Sep-21	12-Sep-21
CC#:	CC221294	CC221295	CC221296	CC221297	CC221298	CC221299	CC221300
Phylum: Arthropoda	0	0	0	0	0	0	0
Subphylum: Hexapoda	0	0	0	0	0	0	0
Class: Insecta	0	0	0	0	0	0	0
Order: Ephemeroptera	0	0	0	0	0	0	0
Family: Ameletidae	0	0	0	0	0	0	0
Ameletus	0	0	17	0	0	0	0
Family: Baetidae	0	0	408	775	380	0	120
Acentrella	0	0	8	0	0	0	0
<u>Baetis</u>	0	0	383	400	1,380	0	660
Baetis rhodani group	0	0	42	212	380	0	40
Family: Ephemerellidae	280	160	275	438	480	140	1,780
<u>Caudatella</u>	0	0	0	0	20	0	320
<u>Drunella</u>	0	0	0	0	0	20	20
<u>Drunella coloradensis</u>	0	0	0	0	20	0	0
<u>Drunella doddsii</u>	0	0	25	38	180	0	140
<u>Drunella spinifera</u>	0	0	33	12	0	0	20
<u>Ephemerella</u>	0	0	0	0	0	0	0
Ephemerella excrucians complex	0	0	0	0	0	0	0
Family: Heptageniidae	0	0	242	412	520	20	1,060
<u>Cinygmula</u>	0	0	0	0	0	0	20
<u>Epeorus</u>	0	0	0	12	0	0	200
<u>Rhithrogena</u>	0	0	0	0	20	0	40
Family: Leptophlebiidae	0	0	0	0	0	0	0
Order: Plecoptera	0	0	0	0	0	0	20
Family: Capniidae	0	20	0	0	0	40	0
<u>Utacapnia</u>	0	0	0	0	0	0	0
Family: Chloroperlidae	0	0	0	12	0	0	20
<u>Sweltsa</u>	40	60	67	25	20	0	0
Family: Leuctridae	0	0	0	12	0	0	40
<u>Paraleuctra</u>	0	0	0	0	0	0	0

Project: EVO LAEMP (21-09)

Minnow Environmental (BC) Taxonomist: Scott Finlayson

scottfinlayson@cordilleraconsulting.ca

250-494-7553

Site:	2021	2021	2021	2021	2021	2021	2021
Site.	RG ERCKDT BIC-	RG ERCKDT BIC-	RG MIDER BIC-	RG MIDER BIC-	RG MIDER BIC-	RG ERCK BIC-	RG ALUSM BIC-
Sample:	2 2021-09-15		1 2021-09-09	2 2021-09-09	3 2021-09-09	1 2021-09-10	
Samula Callaction Data.	_	3_2021-09-15					1_2021-09-12
Sample Collection Date: CC#:	15-Sep-21 CC221294	15-Sep-21 CC221295	09-Sep-21 CC221296	09-Sep-21 CC221297	09-Sep-21 CC221298	10-Sep-21 CC221299	12-Sep-21 CC221300
Family: Nemouridae	CC221294				80		40
j ramily: Nemouridae Malenka	0	0	0	0	0	0	0
<u>IMalenka</u> Zapada	2560	1.740	42	25	0	220	340
Zapada Zapada oregonensis group	40	80	0	0	20	0	220
Zapada oregoriensis group Zapada cinctipes	0	160	58	162	620	1,420	1.040
Zapada Cirictipes Zapada columbiana	160	300			0	460	60
<u> </u>	880	800	0	0	0		
Family: Peltoperlidae			0	0	_	20	0
<u>Yoraperla</u>	1,200	1,740	0	0	0		0
Family: Perlidae	0	0	8	12	20	0	0
<u>Doroneuria</u>	0	0	8	0	0	0	0
<u>Hesperoperla</u>	0	0	0	0	40	0	0
Family: Perlodidae	0	0	8	0	20	20	40
<u>Cultus</u>	0	0	0	0	0	0	0
<u>Kogotus</u>	0	0	0	0	0	0	60
<u>Megarcys</u>	0	0	0	0	0	40	0
<u>Skwala</u>	0	0	0	0	0	0	0
Family: Pteronarcyidae	0	0	0	0	0	0	0
<u>Pteronarcella</u>	0	0	0	0	0	0	0
Family: Taeniopterygidae	0	0	0	0	40	40	120
Order: Trichoptera	240	20	25	0	20	140	0
Family: Apataniidae	0	0	0	0	0	0	0
<u>Apatania</u>	0	0	792	225	320	20	20
Family: Brachycentridae	0	0	0	0	0	100	0
<u>Brachycentrus</u>	0	0	0	0	40	0	0
<u>Brachycentrus americanus</u>	0	0	0	0	0	0	0
<u>Micrasema</u>	0	0	0	12	0	540	140
Family: Glossosomatidae	0	0	192	138	20	0	80
Glossosoma	0	0	0	25	120	0	0
Family: Hydropsychidae	0	40	0	0	180	40	20
<u>Arctopsyche</u>	20	0	58	38	180	0	0
Parapsyche	60	0	0	0	0	0	0
Parapsyche elsis	0	0	0	0	0	0	0
Family: Hydroptilidae	0	0	0	0	0	0	0
<u>Hydroptila</u>	0	20	0	0	0	60	0
Family: Lepidostomatidae	0	0	0	0	0	0	0
Lepidostoma	40	0	0	0	0	0	0

Project: EVO LAEMP (21-09)

Minnow Environmental (BC) Taxonomist: Scott Finlayson

scottfinlayson@cordilleraconsulting.ca

250-494-7553

Site:	2021	2021	2021	2021	2021	2021	2021
	RG ERCKDT BIC-	RG ERCKDT BIC-	RG MIDER BIC-	RG MIDER BIC-	RG MIDER BIC-	RG ERCK BIC-	RG ALUSM BIC-
Sample:	2 2021-09-15	3 2021-09-15	1 2021-09-09	2 2021-09-09	3 2021-09-09	1 2021-09-10	1 2021-09-12
Sample Collection Date:	15-Sep-21	15-Sep-21	09-Sep-21	09-Sep-21	09-Sep-21	10-Sep-21	12-Sep-21
CC#:	CC221294	CC221295	CC221296	CC221297	CC221298	CC221299	CC221300
Family: Limnephilidae	0	0	0	0	0	0	0
Ecclisomvia	40	0	0	0	0	0	0
Family: Rhyacophilidae	0	0	0	0	0	0	0
Rhyacophila	0	0	42	100	200	100	300
Rhyacophila angelita group	0	0	0	0	0	0	0
Rhyacophila betteni group	0	0	0	0	0	0	0
Rhyacophila betterii group	20	0	0	12	20	0	140
Rhyacophila hyalinata group	0	0	0	0	0	0	0
Rhyacophila narvae	0	0	0	0	0	0	60
Family: Thremmatidae	0	0	0	0	0	0	0
Oligophlebodes	0	0	8	0	20	40	0
Family: Uenoidae	0	0	0	0	0	0	0
Neothremma	0	0	0	0	0	0	0
Order: Coleoptera	0	0	0	0	0	0	0
Family: Dytiscidae	0	0	0	0	0	0	0
<u>Desmopachria</u>	0	0	0	0	0	0	0
Family: Elmidae	0	0	0	0	20	0	120
Heterlimnius	0	0	8	0	20	20	180
Narpus	0	0	0	0	0	0	0
Zaitzevia	0	0	0	0	0	0	0
Order: Diptera	0	0	0	0	0	0	0
Family: Athericidae	0	0	0	0	0	0	0
<u>Atherix</u>	0	0	0	0	0	0	0
Family: Ceratopogonidae	0	0	0	0	0	0	0
Bezzia/ Palpomyia	0	0	0	0	0	0	0
<u>Mallochohelea</u>	0	0	0	0	20	0	120
Family: Chironomidae	800	1,100	8	25	0	740	80
Subfamily: Chironominae	0	0	0	0	0	0	0
Tribe: Chironomini	0	0	0	0	0	0	0
<u>Polypedilum</u>	0	0	0	0	0	0	0
Tribe: Tanytarsini	0	0	0	0	0	0	0
<u>Micropsectra</u>	1,520	1,000	0	25	20	40	0
<u>Rheotanytarsus</u>	0	0	0	0	0	0	0
<u>Stempellina</u>	0	0	0	0	0	0	0
<u>Sublettea</u>	0	0	0	12	0	0	0
Subfamily: Diamesinae	0	0	0	0	0	0	0

Project: EVO LAEMP (21-09)

Minnow Environmental (BC) Taxonomist: Scott Finlayson

scottfinlayson@cordilleraconsulting.ca

250-494-7553

Site:	2021	2021	2021	2021	2021	2021	2021
	RG_ERCKDT_BIC-	RG_ERCKDT_BIC-	RG_MIDER_BIC-	RG_MIDER_BIC-	RG_MIDER_BIC-	RG_ERCK_BIC-	RG_ALUSM_BIC-
Sample:	2 2021-09-15	3 2021-09-15	1 2021-09-09	2 2021-09-09	3 2021-09-09	1 2021-09-10	1 2021-09-12
Sample Collection Date:	15-Sep-21	15-Sep-21	09-Sep-21	09-Sep-21	09-Sep-21	10-Sep-21	12-Sep-21
CC#:	CC221294	CC221295	CC221296	CC221297	CC221298	CC221299	CC221300
Tribe: Diamesini	0	0	0	0	0	0	0
Diamesa	320	680	0	0	0	0	20
Pagastia	60	580	25	50	20	460	20
Potthastia gaedii group	0	0	0	0	0	0	0
Pseudodiamesa	40	300	0	0	0	0	0
Subfamily: Orthocladiinae	0	0	0	0	0	0	0
<u>Brillia</u>	0	0	0	0	0	0	20
<u>Corynoneura</u>	40	60	0	0	0	0	0
<u>Eukiefferiella</u>	500	760	50	25	120	7540	200
<u>Hydrobaenus</u>	140	540	0	0	0	0	0
<u>Limnophyes</u>	0	20	0	0	0	0	0
Orthocladius complex	60	800	125	200	200	1,500	100
Orthocladius lignicola	0	0	0	0	0	0	0
<u>Psectrocladius</u>	0	0	0	0	0	0	0
Rheocricotopus	0	0	17	50	40	20	120
<u>Thienemanniella</u>	0	0	0	0	0	380	0
<u>Tvetenia</u>	1,800	1,540	0	12	20	400	60
Subfamily: Tanypodinae	0	0	0	0	0	0	0
Tribe: Pentaneurini	0	0	0	0	0	0	0
Thienemannimyia group	0	0	0	0	20	0	20
Tribe: Procladiini	0	0	0	0	0	0	0
<u>Procladius</u>	0	0	0	0	0	0	0
Family: Empididae	0	0	0	0	0	340	0
<u>Clinocera</u>	0	0	0	0	0	360	0
<u>Neoplasta</u>	0	0	17	12	60	160	140
<u>Wiedemannia</u>	0	0	0	0	0	0	0
Family: Muscidae	0	0	0	0	0	0	0
<u>Limnophora</u>	0	0	0	0	0	40	0
Family: Pelecorhynchidae	0	0	0	0	0	0	0
<u>Glutops</u>	0	0	0	0	0	0	0
Family: Psychodidae	0	0	0	0	0	0	0
<u>Pericoma/Telmatoscopus</u>	20	20	250	312	260	140	900
Family: Simuliidae	0	0	0	38	260	0	0
Simulium	0	0	8	38	220	0	40

Project: EVO LAEMP (21-09)

Minnow Environmental (BC) Taxonomist: Scott Finlayson

scottfinlayson@cordilleraconsulting.ca

250-494-7553

Site:	2021	2021	2021	2021	2021	2021	2021
	RG ERCKDT BIC-	RG_ERCKDT_BIC-	RG MIDER BIC-	RG MIDER BIC-	RG MIDER BIC-	RG ERCK BIC-	RG ALUSM BIC-
Sample:	2 2021-09-15	3 2021-09-15	1 2021-09-09	2 2021-09-09	3 2021-09-09	1 2021-09-10	1 2021-09-12
Sample Collection Date:	15-Sep-21	15-Sep-21	09-Sep-21	09-Sep-21	09-Sep-21	10-Sep-21	12-Sep-21
CC#:	CC221294	CC221295	CC221296	CC221297	CC221298	CC221299	CC221300
Family: Tipulidae	0	0	0	0	0	0	0
Antocha	0	0	0	0	0	200	0
Dicranota	0	40	0	0	0	20	0
Hexatoma	0	0	42	0	0	0	0
Tipula	20	0	0	0	0	0	0
Subphylum: Chelicerata	0	0	0	0	0	0	0
Class: Arachnida	0	0	0	0	0	0	0
Order: Trombidiformes	0	0	0	0	0	0	0
Family: Aturidae	0	0	0	0	0	0	0
<u>Aturus</u>	0	0	0	0	0	0	0
Family: Feltriidae	0	0	0	0	0	0	0
<u>Feltria</u>	0	0	0	0	0	20	20
Family: Hydryphantidae	0	0	0	0	0	0	0
<u>Albertathyas</u>	40	0	0	0	0	0	0
<u>Protzia</u>	0	0	17	12	0	0	0
Family: Lebertiidae	0	0	0	0	0	0	0
<u>Lebertia</u>	100	0	92	62	80	260	20
Family: Sperchontidae	0	0	0	0	0	0	0
<u>Sperchon</u>	40	80	17	12	40	40	0
Family: Torrenticolidae	0	0	0	0	0	0	0
<u>Testudacarus</u>	0	0	0	0	0	0	120
<u>Torrenticola</u>	0	0	58	50	20	0	20
Suborder: Prostigmata	0	0	0	0	0	0	0
Family: Stygothrombidiidae	0	0	0	0	0	0	0
<u>Stygothrombium</u>	0	0	0	0	0	0	0
Order: Sarcoptiformes	0	0	0	0	0	0	0
Order: Oribatida	0	0	0	0	0	0	0
Family: Hydrozetidae	0	20	0	0	0	0	0
Phylum: Annelida	0	0	0	0	0	0	0
Subphylum: Clitellata	0	0	0	0	0	0	0
Class: Oligochaeta	0	0	0	0	0	0	0
Order: Lumbriculida	0	0	0	0	0	0	0
Family: Lumbriculidae	0	0	0	0	0	0	0
Lumbriculus	0	0	0	0	0	0	0
<u>Rhynchelmis</u>	0	0	0	0	0	0	0

Project: EVO LAEMP (21-09)

Minnow Environmental (BC) Taxonomist: Scott Finlayson

scottfinlayson@cordilleraconsulting.ca

250-494-7553

Site:	2021	2021	2021	2021	2021	2021	2021
	RG_ERCKDT_BIC-	RG_ERCKDT_BIC-	RG_MIDER_BIC-	RG_MIDER_BIC-	RG_MIDER_BIC-	RG_ERCK_BIC-	RG_ALUSM_BIC-
Sample:	2 2021-09-15	3 2021-09-15	1 2021-09-09	2 2021-09-09	3 2021-09-09	1 2021-09-10	1 2021-09-12
Sample Collection Date:	15-Sep-21	15-Sep-21	09-Sep-21	09-Sep-21	09-Sep-21	10-Sep-21	12-Sep-21
CC#:	CC221294	CC221295	CC221296	CC221297	CC221298	CC221299	CC221300
Order: Tubificida	0	0	0	0	0	0	0
Family: Enchytraeidae	0	0	0	0	0	0	0
<u>Enchytraeus</u>	0	0	0	0	0	0	0
Family: Naididae	0	0	0	0	0	0	0
<u>Nais</u>	780	2720	0	12	0	780	0
Subfamily: Tubificinae with hair chaetae	100	80	0	0	0	0	0
Subfamily: Tubificinae without hair chaetae	20	160	0	0	0	420	0
Totals:	11,980	15,640	3,475	4,044	6,800	17,360	9,500
Taxa present but not included:					T		
Phylum: Arthropoda	0	0	0	0	0	0	0
Subphylum: Hexapoda	0	0	0	0	0	0	0
Class: Insecta	0	0	0	0	0	0	0
Order: Homoptera	0	0	0	0	0	0	0
Family: Cicadellidae	0	0	0	0	0	0	0
Subphylum: Crustacea	0	0	0	0	0	0	0
Class: Ostracoda	20	20	8	12	0	20	20
Phylum: Nemata	0	20	0	12	20	0	20
Phylum: Platyhelminthes	0	0	0	0	0	0	0
Class: Turbellaria	20	20	0	0	20	20	20
Totals:	40	60	8	24	40	40	60

Project: EVO LAEMP (21-09)

Minnow Environmental (BC) Taxonomist: Scott Finlayson

scottfinlayson@cordilleraconsulting.ca

250-494-7553

Site:	2021	2021	2021	2021	2021	2021	2021
	RG ALUSM BIC-	RG ALUSM BIC-	RG MIDGA BIC-	RG_MIDGA_BIC-	RG MIDGA BIC-	RG MI3 BIC-	RG MI3 BIC-
Sample:	2 2021-09-12	3 2021-09-12	1 2021-09-11	2 2021-09-11	3 2021-09-11	1 2021-09-11	2 2021-09-11
Sample Collection Date:	12-Sep-21	12-Sep-21	11-Sep-21	11-Sep-21	11-Sep-21	11-Sep-21	11-Sep-21
CC#:	CC221301	CC221302	CC221303	CC221304	CC221305	CC221306	CC221307
Phylum: Arthropoda	0	0	0	0	0	0	0
Subphylum: Hexapoda	0	0	0	0	0	0	0
Class: Insecta	0	0	0	0	0	0	0
Order: Ephemeroptera	0	0	0	0	0	0	0
Family: Ameletidae	0	0	0	0	0	0	0
<u>Ameletus</u>	0	0	0	0	20	40	0
Family: Baetidae	160	20	420	20	200	100	400
<u>Acentrella</u>	0	0	0	0	0	0	0
<u>Baetis</u>	440	300	3500	1,260	760	720	1,620
<u>Baetis rhodani group</u>	40	20	520	1,340	1,620	940	2580
Family: Ephemerellidae	1,100	1,120	280	80	380	1,380	1,240
<u>Caudatella</u>	40	20	0	0	0	20	0
<u>Drunella</u>	0	20	20	0	0	0	0
<u>Drunella coloradensis</u>	140	100	0	0	20	0	40
<u>Drunella doddsii</u>	180	180	260	240	60	60	100
<u>Drunella spinifera</u>	20	20	0	20	0	60	0
<u>Ephemerella</u>	0	0	420	60	0	0	0
Ephemerella excrucians complex	0	0	0	0	0	0	0
Family: Heptageniidae	1,780	1,200	1,340	980	840	620	540
<u>Cinyamula</u>	80	100	0	0	0	0	0
<u>Epeorus</u>	240	20	20	0	20	0	0
<u>Rhithrogena</u>	20	0	0	80	20	0	40
Family: Leptophlebiidae	0	0	0	0	0	0	0
Order: Plecoptera	0	0	60	0	20	0	0
Family: Capniidae	0	0	60	20	0	0	20
<u>Utacapnia</u>	0	0	0	0	0	0	0
Family: Chloroperlidae	20	40	0	0	0	0	0
<u>Sweltsa</u>	100	40	80	20	80	60	60
Family: Leuctridae	40	60	0	0	0	0	0
<u>Paraleuctra</u>	20	60	0	0	0	0	0

Project: EVO LAEMP (21-09)

Minnow Environmental (BC) Taxonomist: Scott Finlayson

scottfinlayson@cordilleraconsulting.ca

250-494-7553

Site:	2021	2021	2021	2021	2021	2021	2021
	RG_ALUSM_BIC-	RG_ALUSM_BIC-	RG_MIDGA_BIC-	RG_MIDGA_BIC-	RG_MIDGA_BIC-	RG_MI3_BIC-	RG MI3 BIC-
Sample:	2 2021-09-12	3 2021-09-12	1 2021-09-11	2 2021-09-11	3 2021-09-11	1 2021-09-11	2 2021-09-11
Sample Collection Date:	12-Sep-21	12-Sep-21	11-Sep-21	11-Sep-21	11-Sep-21	11-Sep-21	11-Sep-21
CC#:	CC221301	CC221302	CC221303	CC221304	CC221305	CC221306	CC221307
Family: Nemouridae	60	0	0	0	0	0	0
Malenka	0	0	0	0	0	0	0
Zapada	540	160	60	20	20	0	160
Zapada oregonensis group	20	160	40	0	0	0	20
Zapada cinctipes	200	420	1,560	480	780	180	740
Zapada columbiana	320	120	20	0	0	0	40
Family: Peltoperlidae	0	0	0	0	0	0	0
<u>Yoraperla</u>	0	0	0	0	0	0	0
Family: Perlidae	0	0	40	0	20	0	0
<u>Doroneuria</u>	0	0	0	0	0	0	20
<u>Hesperoperla</u>	0	0	40	20	20	0	20
Family: Perlodidae	0	0	0	0	0	0	20
<u>Cultus</u>	0	0	0	0	0	0	0
<u>Koqotus</u>	20	40	20	0	20	0	40
<u>Megarcys</u>	20	0	0	0	0	0	20
<u>Skwala</u>	0	0	0	0	0	0	0
Family: Pteronarcyidae	0	0	0	0	0	0	0
<u>Pteronarcella</u>	0	0	0	0	0	0	0
Family: Taeniopterygidae	360	200	120	100	60	0	40
Order: Trichoptera	20	0	0	40	0	0	100
Family: Apataniidae	0	0	0	0	0	0	0
<u>Apatania</u>	60	160	920	1,460	1,000	140	360
Family: Brachycentridae	0	0	0	0	0	0	0
<u>Brachycentrus</u>	20	20	20	20	0	100	40
<u>Brachycentrus americanus</u>	0	0	0	0	0	0	0
<u>Micrasema</u>	0	0	0	0	20	0	40
Family: Glossosomatidae	20	40	320	240	320	60	100
Glossosoma	20	0	60	40	220	60	0
Family: Hydropsychidae	20	100	180	0	20	20	60
<u>Arctopsyche</u>	0	0	500	80	140	40	160
<u>Parapsyche</u>	0	0	0	0	0	0	0
Parapsyche elsis	0	0	0	0	0	0	20
Family: Hydroptilidae	0	0	0	0	0	0	0
<u>Hydroptila</u>	0	0	0	0	0	0	0
Family: Lepidostomatidae	0	0	0	0	0	0	0
Lepidostoma	0	0	120	40	0	0	0

Project: EVO LAEMP (21-09)

Minnow Environmental (BC) Taxonomist: Scott Finlayson

scottfinlayson@cordilleraconsulting.ca

250-494-7553

Site:	2021	2021	2021	2021	2021	2021	2021
	RG ALUSM BIC-	RG ALUSM BIC-	RG MIDGA BIC-	RG MIDGA BIC-	RG MIDGA BIC-	RG MI3 BIC-	RG MI3 BIC-
Sample:	2 2021-09-12	3 2021-09-12	1 2021-09-11	2 2021-09-11	3 2021-09-11	1 2021-09-11	2 2021-09-11
Sample Collection Date:	12-Sep-21	12-Sep-21	11-Sep-21	11-Sep-21	11-Sep-21	11-Sep-21	2_2021-09-11 11-Sep-21
Sample Collection Date: CC#:	CC221301	CC221302	CC221303	CC221304	CC221305	CC221306	CC221307
Family: Limnephilidae	0	0	0	0	0	0	0
Ecclisomvia	0	0	0	0	0	0	0
Family: Rhyacophilidae	0	0	0	0	0	0	0
Rhyacophila	80	40	0	60	0	40	180
Rhyacophila angelita group	80	140	0	0	0	40	0
Rhyacophila betteni group	220	60	0	0	0	0	0
Rhyacophila betteni qroup	60	80	0	0	0	0	60
Rhyacophila hyalinata group	0	20	0	0	0	0	20
Rhyacophila narvae	360	80	0	0	0	0	0
Family: Thremmatidae	0	0	0	0	0	0	0
Oligophlebodes	0	0	60	0	0	0	0
Family: Uenoidae	0	0	0	0	0	0	0
Neothremma	0	0	0	0	0	0	0
Order: Coleoptera	0	0	0	0	0	0	0
Family: Dytiscidae	0	0	0	0	0	0	0
Desmopachria	0	0	0	0	20	0	0
Family: Elmidae	20	80	20	0	20	20	20
Heterlimnius	300	220	20	60	0	100	140
Narpus	0	0	0	0	20	0	0
<u>Narpus</u> Zaitzevia	0	0	20	0	0	0	0
Order: Diptera	0	0	0	0	0	0	0
	0	0	0	0	0	0	0
Family: Athericidae Atherix	0	0	0	0	0	0	0
Family: Ceratopogonidae	0	0	20	0	0	0	0
Bezzia/ Palpomyia	0	0	0	0	0	0	20
Mallochohelea	20	40	0	0	0	100	20
Family: Chironomidae	120	20	280	140	140	200	660
Subfamily: Chironominae	0	0	0	0	0	0	0
Tribe: Chironomini	0	0	0	0	0	0	0
Polypedilum	0	0	0	20	20	0	40
Tribe: Tanytarsini	0	0	0	0	0	0	0
Micropsectra	40	0	40	20	20	20	80
Rheotanytarsus	0	0	0	0	0	0	0
<u>kneotanytarsus</u> Stempellina	0	0	0	0	0	0	0
<u>Stempenina</u> Sublettea	0	0	0	0	0	0	0
	0	0	0	0	0	0	0
Subfamily: Diamesinae	U	U	U	U	U	U	U

Project: EVO LAEMP (21-09)

Minnow Environmental (BC) Taxonomist: Scott Finlayson

scottfinlayson@cordilleraconsulting.ca

250-494-7553

Site:	2021	2021	2021	2021	2021	2021	2021
	RG_ALUSM_BIC-	RG_ALUSM_BIC-	RG_MIDGA_BIC-	RG_MIDGA_BIC-	RG_MIDGA_BIC-	RG_MI3_BIC-	RG_MI3_BIC-
Sample:	2_2021-09-12	3 2021-09-12	1 2021-09-11	2 2021-09-11	3 2021-09-11	1 2021-09-11	2 2021-09-11
Sample Collection Date:	12-Sep-21	12-Sep-21	11-Sep-21	11-Sep-21	11-Sep-21	11-Sep-21	11-Sep-21
CC#:	CC221301	CC221302	CC221303	CC221304	CC221305	CC221306	CC221307
Tribe: Diamesini	0	0	0	0	0	0	0
Diamesa	0	0	0	0	0	0	20
Pagastia	20	40	0	40	20	20	240
Potthastia gaedii group	0	0	0	0	0	20	20
Pseudodiamesa	0	0	0	0	0	0	0
Subfamily: Orthocladiinae	0	0	0	0	0	0	0
<u>Brillia</u>	20	20	0	0	0	0	0
<u>Corynoneura</u>	0	0	0	0	0	0	0
<u>Eukiefferiella</u>	0	20	40	0	0	60	0
<u>Hydrobaenus</u>	0	0	0	0	0	0	0
<u>Limnophyes</u>	0	0	0	0	0	0	0
<u>Orthocladius complex</u>	0	40	220	40	140	580	1,240
<u>Orthocladius lignicola</u>	0	20	0	0	0	0	0
<u>Psectrocladius</u>	0	0	0	0	20	0	0
<u>Rheocricotopus</u>	0	40	120	60	20	40	160
<u>Thienemanniella</u>	0	0	0	0	0	0	0
<u>Tvetenia</u>	20	0	200	120	40	0	40
Subfamily: Tanypodinae	0	0	0	0	0	0	0
Tribe: Pentaneurini	0	0	0	0	0	0	0
<u>Thienemannimyia qroup</u>	20	0	0	0	0	0	0
Tribe: Procladiini	0	0	0	0	0	0	0
<u>Procladius</u>	0	0	0	0	0	0	0
Family: Empididae	0	0	20	0	0	0	100
<u>Clinocera</u>	0	0	0	0	0	0	0
<u>Neoplasta</u>	60	80	60	40	0	0	0
<u>Wiedemannia</u>	0	0	0	0	0	0	0
Family: Muscidae	0	0	0	0	0	0	0
<u>Limnophora</u>	0	0	0	0	0	0	0
Family: Pelecorhynchidae	0	0	0	0	0	0	0
Glutops	0	40	0	0	0	0	0
Family: Psychodidae	0	0	0	0	0	0	0
<u>Pericoma/Telmatoscopus</u>	840	1,260	240	40	160	560	280
Family: Simuliidae	0	0	20	40	20	0	20
<u>Simulium</u>	60	40	20	0	0	0	40

Project: EVO LAEMP (21-09)

Minnow Environmental (BC) Taxonomist: Scott Finlayson

scottfinlayson@cordilleraconsulting.ca

250-494-7553

Site:	2021	2021	2021	2021	2021	2021	2021
Site.	RG_ALUSM_BIC-	RG_ALUSM_BIC-	RG_MIDGA_BIC-	RG_MIDGA_BIC-	RG_MIDGA_BIC-	RG_MI3_BIC-	RG MI3 BIC-
Sample:	2 2021-09-12	3 2021-09-12	1 2021-09-11	2 2021-09-11	3 2021-09-11	1 2021-09-11	2 2021-09-11
Sample Collection Date:	12-Sep-21	12-Sep-21	11-Sep-21	11-Sep-21	11-Sep-21	11-Sep-21	11-Sep-21
CC#:	CC221301	CC221302	CC221303	CC221304	CC221305	CC221306	CC221307
Family: Tipulidae	0	0	0	0	0	0	0
Antocha	0	0	20	0	0	0	0
Dicranota	0	0	0	0	0	0	0
Hexatoma	0	0	40	80	20	0	20
Tipula	0	0	0	0	0	0	0
Subphylum: Chelicerata	0	0	0	0	0	0	0
l Class: Arachnida	0	0	0	0	0	0	0
Order: Trombidiformes	40	0	0	0	0	0	0
Family: Aturidae	0	0	0	0	0	0	0
Aturus	0	0	0	0	0	0	0
Family: Feltriidae	0	0	0	0	0	0	0
Feltria	0	0	0	0	0	0	0
Family: Hydryphantidae	0	0	0	0	0	0	0
<u>Albertathyas</u>	0	0	0	0	0	0	0
Protzia	0	0	20	0	0	0	20
Family: Lebertiidae	0	0	0	0	0	0	0
<u>Lebertia</u>	0	60	220	80	80	340	260
Family: Sperchontidae	0	0	0	0	0	0	0
<u>Sperchon</u>	0	0	0	20	40	80	140
Family: Torrenticolidae	0	0	0	0	0	0	0
<u>Testudacarus</u>	0	20	0	0	0	0	0
<u>Torrenticola</u>	0	0	140	260	400	240	160
Suborder: Prostigmata	0	0	0	0	0	0	0
Family: Stygothrombidiidae	0	0	0	0	0	0	0
<u>Stygothrombium</u>	0	0	0	0	0	0	0
Order: Sarcoptiformes	0	0	0	0	0	0	0
Order: Oribatida	0	0	0	0	0	0	0
Family: Hydrozetidae	20	0	0	0	0	0	0
Phylum: Annelida	0	0	0	0	0	0	0
Subphylum: Clitellata	0	0	0	0	0	0	0
Class: Oligochaeta	0	0	0	0	0	0	0
Order: Lumbriculida	0	0	0	0	0	0	0
Family: Lumbriculidae	20	40	0	0	40	0	0
<u>Lumbriculus</u>	0	0	0	0	0	0	0
<u>Rhynchelmis</u>	0	0	0	0	0	40	0

Project: EVO LAEMP (21-09)

Minnow Environmental (BC) Taxonomist: Scott Finlayson

scottfinlayson@cordilleraconsulting.ca

250-494-7553

Site:	2021	2021	2021	2021	2021	2021	2021
	RG_ALUSM_BIC-	RG_ALUSM_BIC-	RG_MIDGA_BIC-	RG_MIDGA_BIC-	RG_MIDGA_BIC-	RG_MI3_BIC-	RG_MI3_BIC-
Sample:	2 2021-09-12	3 2021-09-12	1 2021-09-11	2 2021-09-11	3 2021-09-11	1 2021-09-11	2 2021-09-11
Sample Collection Date:	12-Sep-21	12-Sep-21	11-Sep-21	11-Sep-21	11-Sep-21	11-Sep-21	11-Sep-21
CC#:	CC221301	CC221302	CC221303	CC221304	CC221305	CC221306	CC221307
Order: Tubificida	0	0	0	0	0	0	0
Family: Enchytraeidae	0	0	0	0	0	0	0
<u>Enchytraeus</u>	0	0	20	0	0	0	0
Family: Naididae	0	0	0	0	0	0	0
<u>Nais</u>	0	0	80	0	80	60	20
Subfamily: Tubificinae with hair chaetae	0	0	0	0	0	0	0
Subfamily: Tubificinae without hair chaetae	0	0	0	40	0	0	0
Totals:	8,540	7,240	12,940	7,820	8,000	7,120	12,660
Taxa present but not included:							
Phylum: Arthropoda	0	0	0	0	0	0	0
Subphylum: Hexapoda	0	0	0	0	0	0	0
Class: Insecta	0	0	0	0	0	0	0
Order: Homoptera	0	0	0	0	0	0	0
Family: Cicadellidae	0	0	0	0	0	0	0
Subphylum: Crustacea	0	0	0	0	0	0	0
Class: Ostracoda	20	20	0	20	20	20	20
Phylum: Nemata	20	20	0	20	0	0	20
Phylum: Platyhelminthes	0	0	0	0	0	0	0
Class: Turbellaria	20	20	0	20	20	20	20
Totals:	60	60	0	60	40	40	60

Project: EVO LAEMP (21-09)

Minnow Environmental (BC) Taxonomist: Scott Finlayson

scottfinlayson@cordilleraconsulting.ca

250-494-7553

Site:	2021	2021	2021	2021	2021	2021
	RG_MI3_BIC-	RG_MICOMP_BIC-	RG_MICOMP_BIC-	RG_MICOMP_BIC-	RG_MICOMP_BIC-	RG_MICOMP_BIC-
Sample:	3 2021-09-11	1 2021-09-13	2 2021-09-13	3 2021-09-13	4 2021-09-13	5 2021-09-13
Sample Collection Date:	11-Sep-21	13-Sep-21	13-Sep-21	13-Sep-21	13-Sep-21	13-Sep-21
CC#:	CC221308	CC221309	CC221310	CC221311	CC221312	CC221313
Phylum: Arthropoda	0	0	0	0	0	0
Subphylum: Hexapoda	0	0	0	0	0	0
Class: Insecta	0	0	0	0	0	0
Order: Ephemeroptera	0	0	0	0	0	0
Family: Ameletidae	0	0	0	0	0	0
<u>Ameletus</u>	60	0	0	0	40	0
Family: Baetidae	320	220	80	160	40	260
<u>Acentrella</u>	0	0	0	60	0	0
<u>Baetis</u>	900	2220	700	1,360	1,440	1,140
Baetis rhodani group	1,240	1,900	580	680	1,300	1,820
Family: Ephemerellidae	1,080	640	360	80	600	380
<u>Caudatella</u>	0	0	20	0	20	0
<u>Drunella</u>	60	20	0	20	0	0
<u>Drunella coloradensis</u>	20	0	0	0	0	0
<u>Drunella doddsii</u>	80	260	60	240	160	180
<u>Drunella spinifera</u>	20	0	20	0	40	0
<u>Ephemerella</u>	0	100	0	0	180	280
Ephemerella excrucians complex	20	0	20	0	0	0
Family: Heptageniidae	2380	1,580	1,660	1,440	1,080	2040
<u>Cinyamula</u>	0	0	0	0	0	0
<u>Epeorus</u>	40	0	0	20	0	0
<u>Rhithrogena</u>	0	0	0	40	60	100
Family: Leptophlebiidae	0	0	20	0	0	0
Order: Plecoptera	0	0	20	100	0	0
Family: Capniidae	0	60	60	0	20	20
<u>Utacapnia</u>	0	0	0	0	0	0
Family: Chloroperlidae	0	0	20	0	0	0
<u>Sweltsa</u>	0	40	220	0	40	20
Family: Leuctridae	20	0	20	20	0	40
Paraleuctra	0	0	0	0	0	0

Project: EVO LAEMP (21-09)

Minnow Environmental (BC) Taxonomist: Scott Finlayson

scottfinlayson@cordilleraconsulting.ca

250-494-7553

Site:	2021	2021	2021	2021	2021	2021
	RG_MI3_BIC-	RG_MICOMP_BIC-	RG_MICOMP_BIC-	RG_MICOMP_BIC-	RG_MICOMP_BIC-	RG_MICOMP_BIC-
Sample:	3 2021-09-11	1 2021-09-13	2 2021-09-13	3 2021-09-13	4 2021-09-13	5 2021-09-13
Sample Collection Date:	11-Sep-21	13-Sep-21	13-Sep-21	13-Sep-21	13-Sep-21	13-Sep-21
CC#:	CC221308	CC221309	CC221310	CC221311	CC221312	CC221313
Family: Nemouridae	0	0	0	0	20	20
Malenka	0	0	0	0	0	0
Zapada	140	80	40	180	240	380
Zapada oregonensis group	20	20	40	0	0	0
Zapada cinctipes	640	1,520	460	1,300	980	1,240
Zapada columbiana	0	20	0	0	200	180
Family: Peltoperlidae	0	0	0	0	0	0
<u>Yoraperla</u>	0	0	0	0	0	0
Family: Perlidae	40	20	0	0	0	40
<u>Doroneuria</u>	20	20	0	0	0	0
<u>Hesperoperla</u>	0	40	0	40	20	20
Family: Perlodidae	0	0	0	0	0	0
<u>Cultus</u>	0	20	0	0	0	0
<u>Kogotus</u>	40	20	0	0	20	0
<u>Megarcys</u>	0	0	0	0	0	0
<u>Skwala</u>	0	0	20	0	0	0
Family: Pteronarcyidae	0	0	0	0	0	0
<u>Pteronarcella</u>	0	0	0	20	0	0
Family: Taeniopterygidae	60	340	180	280	20	280
Order: Trichoptera	0	80	140	100	100	220
Family: Apataniidae	0	0	0	0	0	0
<u>Apatania</u>	380	1,380	680	80	120	960
Family: Brachycentridae	0	0	0	0	0	0
<u>Brachycentrus</u>	20	20	0	20	0	80
<u>Brachycentrus americanus</u>	0	20	0	0	40	20
<u>Micrasema</u>	0	40	0	0	20	0
Family: Glossosomatidae	80	180	20	0	80	800
<u>Glossosoma</u>	0	140	80	0	20	680
Family: Hydropsychidae	20	60	40	140	40	200
<u>Arctopsyche</u>	20	300	20	460	160	440
<u>Parapsyche</u>	0	0	0	0	0	0
<u>Parapsyche elsis</u>	0	0	0	0	0	0
Family: Hydroptilidae	0	0	0	0	0	0
<u>Hydroptila</u>	0	0	0	0	20	0
Family: Lepidostomatidae	0	0	0	0	0	0
<u>Lepidostoma</u>	0	100	160	60	380	60

Project: EVO LAEMP (21-09)

Minnow Environmental (BC) Taxonomist: Scott Finlayson

scottfinlayson@cordilleraconsulting.ca

250-494-7553

Cita	2024	2021	2021	2024	2021	2021
Site:	2021	2021		2021	2021	2021
Sample:	RG_MI3_BIC-	RG_MICOMP_BIC-	RG_MICOMP_BIC-	RG_MICOMP_BIC-	RG_MICOMP_BIC-	RG_MICOMP_BIC-
•	3_2021-09-11	1_2021-09-13	2_2021-09-13	3_2021-09-13	4_2021-09-13	5_2021-09-13
Sample Collection Date:	11-Sep-21	13-Sep-21	13-Sep-21	13-Sep-21	13-Sep-21	13-Sep-21
CC#:	CC221308	CC221309	CC221310	CC221311	CC221312	CC221313
Family: Limnephilidae	0	0	0	0	0	0
<u>Ecclisomyia</u>	0	0	0	0	0	0
Family: Rhyacophilidae	0	0	0	0	0	0
<u>Rhyacophila</u>	120	40	60	40	120	200
Rhyacophila angelita group	0	0	0	0	0	0
<u>Rhyacophila betteni group</u>	20	0	0	0	0	0
Rhyacophila brunnea/vemna group	40	0	0	0	20	0
Rhyacophila hyalinata group	0	0	0	0	0	20
Rhyacophila narvae	0	0	0	20	0	0
Family: Thremmatidae	0	0	0	0	0	0
Oligophlebodes	20	0	0	0	0	0
Family: Uenoidae	0	0	0	0	0	0
Neothremma	0	0	0	0	0	0
Order: Coleoptera	0	0	0	0	0	0
Family: Dytiscidae	0	0	0	0	0	0
<u>Desmopachria</u>	0	0	0	0	0	0
Family: Elmidae	20	0	0	20	0	0
<u>Heterlimnius</u>	80	0	20	0	0	0
Narpus	0	0	20	0	0	0
Zaitzevia	0	0	0	0	0	0
Order: Diptera	0	0	0	0	0	0
Family: Athericidae	0	0	0	0	0	0
Atherix	0	60	40	20	60	40
Family: Ceratopogonidae	0	0	0	20	0	0
Bezzia/ Palpomyia	0	0	0	0	0	0
Mallochohelea	40	0	20	20	0	0
Family: Chironomidae	100	1,240	360	700	1,080	760
Subfamily: Chironominae	0	0	0	0	0	0
Tribe: Chironomini	0	0	0	0	0	0
Polypedilum	0	240	160	140	540	120
Tribe: Tanytarsini	0	0	0	0	0	0
Micropsectra	20	100	100	20	20	120
Rheotanytarsus	0	0	0	0	0	0
Stempellina Stempellina	0	20	0	0	0	0
Sublettea	0	0	0	0	0	0
Subfamily: Diamesinae	0	0	0	0	0	0

Project: EVO LAEMP (21-09)

Minnow Environmental (BC) Taxonomist: Scott Finlayson

scottfinlayson@cordilleraconsulting.ca

250-494-7553

Site:	2021	2021	2021	2021	2021	2021
	RG MI3 BIC-	RG MICOMP BIC-	RG_MICOMP_BIC-	RG_MICOMP_BIC-	RG MICOMP BIC-	RG_MICOMP_BIC-
Sample:	3 2021-09-11	1 2021-09-13	2 2021-09-13	3 2021-09-13	4 2021-09-13	5 2021-09-13
Sample Collection Date:	11-Sep-21	13-Sep-21	13-Sep-21	13-Sep-21	13-Sep-21	13-Sep-21
CC#:	CC221308	CC221309	CC221310	CC221311	CC221312	CC221313
Tribe: Diamesini	0	0	0	0	0	0
Diamesa	0	0	0	20	80	0
Pagastia	0	60	0	0	0	20
Potthastia gaedii group	0	80	40	40	20	40
<u>Pseudodiamesa</u>	0	0	0	0	0	0
Subfamily: Orthocladiinae	0	0	0	0	0	0
<u>Brillia</u>	0	0	0	0	0	0
<u>Corynoneura</u>	0	0	0	0	0	0
<u>Eukiefferiella</u>	140	100	40	180	140	140
<u>Hydrobaenus</u>	0	0	60	0	0	40
<u>Limnophyes</u>	0	0	0	0	0	0
Orthocladius complex	140	1,500	420	1,360	2300	640
Orthocladius lignicola	0	0	0	0	0	0
<u>Psectrocladius</u>	0	0	0	0	0	0
<u>Rheocricotopus</u>	140	20	40	0	100	40
<u>Thienemanniella</u>	0	0	0	0	0	0
<u>Tvetenia</u>	0	300	40	180	240	500
Subfamily: Tanypodinae	0	20	0	0	0	0
Tribe: Pentaneurini	0	0	0	0	0	0
Thienemannimyia group	20	0	0	0	20	0
Tribe: Procladiini	0	0	0	0	0	0
<u>Procladius</u>	0	0	0	0	0	0
Family: Empididae	0	0	0	0	20	20
<u>Clinocera</u>	0	0	0	0	0	0
<u>Neoplasta</u>	0	0	20	40	20	40
<u>Wiedemannia</u>	0	20	0	0	20	0
Family: Muscidae	0	0	0	0	0	0
<u>Limnophora</u>	0	0	0	0	0	0
Family: Pelecorhynchidae	0	0	0	0	0	0
<u>Glutops</u>	0	0	0	0	0	0
Family: Psychodidae	0	0	0	0	0	0
<u>Pericoma/Telmatoscopus</u>	520	240	180	60	180	220
Family: Simuliidae	0	20	20	960	80	140
<u>Simulium</u>	0	0	0	300	20	100

Project: EVO LAEMP (21-09)

Minnow Environmental (BC) Taxonomist: Scott Finlayson

scottfinlayson@cordilleraconsulting.ca

250-494-7553

Site:	2021	2021	2021	2021	2021	2021
	RG_MI3_BIC-	RG_MICOMP_BIC-	RG_MICOMP_BIC-	RG_MICOMP_BIC-	RG_MICOMP_BIC-	RG_MICOMP_BIC-
Sample:	3 2021-09-11	1 2021-09-13	2 2021-09-13	3 2021-09-13	4 2021-09-13	5 2021-09-13
Sample Collection Date:	11-Sep-21	13-Sep-21	13-Sep-21	13-Sep-21	13-Sep-21	13-Sep-21
CC#:	CC221308	CC221309	CC221310	CC221311	CC221312	CC221313
Family: Tipulidae	0	0	0	0	20	0
Antocha	0	40	0	0	0	40
Dicranota	0	0	0	0	0	0
Hexatoma	0	40	20	20	20	40
Tipula	0	0	0	0	0	0
Subphylum: Chelicerata	0	0	0	0	0	0
Class: Arachnida	0	0	0	0	0	0
Order: Trombidiformes	0	0	0	0	0	0
Family: Aturidae	0	0	0	0	0	0
<u>Aturus</u>	0	20	0	0	0	0
Family: Feltriidae	0	0	0	0	0	0
<u>Feltria</u>	0	0	0	0	0	0
Family: Hydryphantidae	0	0	0	0	0	0
<u>Albertathyas</u>	0	0	0	0	0	0
<u>Protzia</u>	20	0	20	0	0	0
Family: Lebertiidae	0	0	0	0	0	0
<u>Lebertia</u>	60	180	220	20	120	180
Family: Sperchontidae	0	0	0	0	0	0
<u>Sperchon</u>	100	60	20	0	40	60
Family: Torrenticolidae	0	0	0	0	0	0
<u>Testudacarus</u>	40	20	20	0	0	0
<u>Torrenticola</u>	100	60	180	80	80	100
Suborder: Prostigmata	0	0	0	0	0	0
Family: Stygothrombidiidae	0	0	0	0	0	0
<u>Stygothrombium</u>	0	0	0	0	20	0
Order: Sarcoptiformes	0	0	0	0	0	0
Order: Oribatida	0	0	0	0	0	0
Family: Hydrozetidae	0	0	0	0	0	0
Phylum: Annelida	0	0	0	0	0	0
Subphylum: Clitellata	0	0	0	0	0	0
Class: Oligochaeta	0	0	0	0	0	0
Order: Lumbriculida	0	0	0	0	0	0
Family: Lumbriculidae	0	0	0	0	0	0
Lumbriculus Bhumahalmin	0	0	0	0	0	0
Rhynchelmis	0	0	0	0	0	0

Project: EVO LAEMP (21-09)

Minnow Environmental (BC) Taxonomist: Scott Finlayson

scottfinlayson@cordilleraconsulting.ca

250-494-7553

a::	2024	2024	2024	2024	2024	2024
Site:	2021	2021	2021	2021	2021	2021
Sample:	RG_MI3_BIC-	RG_MICOMP_BIC-	RG_MICOMP_BIC-	RG_MICOMP_BIC-	RG_MICOMP_BIC-	RG_MICOMP_BIC-
Sumple.	3_2021-09-11	1_2021-09-13	2_2021-09-13	3_2021-09-13	4_2021-09-13	5_2021-09-13
Sample Collection Date:	11-Sep-21	13-Sep-21	13-Sep-21	13-Sep-21	13-Sep-21	13-Sep-21
CC#:	CC221308	CC221309	CC221310	CC221311	CC221312	CC221313
Order: Tubificida	0	0	0	0	0	0
Family: Enchytraeidae	0	0	0	0	0	0
<u>Enchytraeus</u>	0	0	0	20	0	0
Family: Naididae	0	0	0	0	0	0
<u>Nais</u>	20	60	120	40	540	160
Subfamily: Tubificinae with hair chaetae	0	0	0	0	0	0
Subfamily: Tubificinae without hair chaetae	0	0	0	0	0	0
Totals:	9,480	16,000	7,980	11,220	13,420	15,680
Taxa present but not included: Phylum: Arthropoda	0	0	0	0	0	0
, .			_		_	_
Subphylum: Hexapoda	0	0	0	0	0	0
Class: Insecta	0	0	0	0	0	0
Order: Homoptera	0	0	0	0	0	0
Family: Cicadellidae	0	0	0	0	0	0
Subphylum: Crustacea	0	0	0	0	0	0
Class: Ostracoda	20	20	20	0	0	20
Phylum: Nemata	20	20	0	20	0	0
Phylum: Platyhelminthes	0	0	0	0	0	0
Class: Turbellaria	20	20	20	20	0	20
Totals:	60	60	40	40	0	40

BENTHIC BIOMASS

ZEAS 21-09 Raw Data (September 15, 2021)

RG_ERCKOT	Area	Date	Sample ID	Таха	Count	Total Biomass
Record Pid-1922 Record Ress-1 2021-09-14 Sperchonidee 3 0.02857 Record Ress-1 2021-09-14 Sperchonidee 3 0.00317 Record Ress-1 2021-09-14 Sperchonidee 3 0.00317 Record Ress-1 2021-09-14 Sperchonidee 2 0.00317 Record Ress-1 2021-09-14 Sperchonidee 2 0.00317 Record Ress-1 2021-09-14 Sperchonidee 2 0.00317 Record Ress-1 2021-09-14 Record Record Record Ress-1 2021-09-14 Record Record Ress-1 2021-09-14 Record Record Record Ress-1 2021-09-14 Record Record Ress-1 2021-09-14 Record Record Record Ress-1 2021-09-14						
RG ERRODT 9114/2021 RG ERRODT HESS-1 2021-09-14 Detreocella	RG_ERCKDT	9/14/2021	RG_ERCKDT_HESS-1_2021-09-14	Naididae	34	0.13968
RG_ERCOT 91/42021 RG_ERCOT HESS-1_2021-09-14 Pentoperidade 3 0.00397 RG_ERCOT 91/42021 RG_ERCOT HESS-1_2021-09-14 Pentoperidade 17 2.65025 RG_ERCOT 91/42021 RG_ERCOT HESS-1_2021-09-14 Pentoperidade 17 2.65025 RG_ERCOT 91/42021 RG_ERCOT HESS-1_2021-09-14 Pentoperidade 17 0.00397 RG_ERCOT Pentoperidade 17 0.00397 RG_ERCOT Pentoperidade 17 0.00397 RG_ERCOT RGS-1_2021-09-14 Pentoperidade 18 0.1597 RG_ERCOT RGS-1_2021-09-14 Pentoperidade 18 0.00397 RG_ERCOT RGS-1_2021-09-14 Pentoperidade 19 0.00397 RG_ERCOT RGS-1_2021-09-14 RG_ERCOT	_			•		
RIG ERRODT 91470271 RG ERRODT HESS-1 2001-90-14 Perhaperticise 17 2-28032 RG ERRODT 91470271 RG ERRODT HESS-1 2001-90-14 Chrinomoridae 123 0.7774 RG ERRODT 91470271 RG ERRODT HESS-1 2021-90-14 Chrinomoridae 123 0.7774 RG ERRODT P01470271 RG ERRODT HESS-1 2021-90-14 Chrinomoridae 123 0.7774 RG ERRODT 91470271 RG ERRODT HESS-2 2021-90-14 Polymoridae 123 0.7774 RG ERRODT 91470271 RG ERRODT HESS-2 2021-90-14 Nomination 123 0.7774 RG ERRODT P01470271 RG ERRODT HESS-2 2021-90-14 Nomination 123 0.7774 RG ERRODT HESS-2 2021-90-14 Nomination 123 0.77937 RG ERRODT 91470271 RG ERRODT HESS-2 2021-90-14 Nomination 13 0.97937 RG ERRODT 91470271 RG ERRODT HESS-2 2021-90-14 Nomination 13 0.97937 RG ERRODT 91470271 RG ERRODT HESS-2 2021-90-14 Nomination 13 0.97937 RG ERRODT 91470271 RG ERRODT HESS-2 2021-90-14 Nomination 13 0.97937 RG ERRODT 91470271 RG ERRODT HESS-2 2021-90-14 Nomination 13 0.97937 RG ERRODT 91470271 RG ERRODT HESS-2 2021-90-14 Polymoridae 17 2 2.98252 RG ERRODT 91470271 RG ERRODT HESS-2 2021-90-14 Polymoridae 17 2 2.98252 RG ERRODT 91470271 RG ERRODT HESS-2 2021-90-14 Polymoridae 17 2 2.98252 RG ERRODT 91470271 RG ERRODT HESS-2 2021-90-14 Polymoridae 17 2 2.98252 RG ERRODT 91470271 RG ERRODT HESS-2 2021-90-14 Polymoridae 17 2 2.98252 RG ERRODT 91470271 RG ERRODT HESS-2 2021-90-14 Polymoridae 12 2 0.00252 RG ERRODT 91470271 RG ERRODT HESS-2 2021-90-14 Polymoridae 12 2 0.00252 RG ERRODT 91470271 RG ERRODT HESS-2 2021-90-14 RG ERRODT H	_					
RG_ERCKOT 91/4/2021 RG_ERCKOT HESS-1_2021-09-14 Peltoperidice 17 2.266/32 2.266/31						
ROS_ERCKOT 91/4/2021 RQ ERCKOT_HESS-1_2021-091-41 Empidiase 123 0.71746 RQ ERCKOT ERCKOT_HESS-1_2021-091-41 Empidiase 1 0.00835 RQ ERCKOT 91/4/2021 RQ ERCKOT_HESS-1_2021-091-41 Normatis 5 0.00852 RQ ERCKOT_HESS-1_2021-091-41 Normatis 5 0.00852 RQ ERCKOT_HESS-1_2021-091-41 Normatis 5 0.00852 RQ ERCKOT_HESS-2_2021-091-41 Normatis 5 0.00852 RQ ERCKOT_HESS-2_2021-091-41 Romatis 6 0.00852 RQ ERCKOT_HESS-2_2021-091-41 Romatis 6 0.00852 RQ ERCKOT_HESS-2_2021-091-41 Romatis 6 0.00852 RQ ERCKOT_HESS-2_2021-091-42 RQ ERCKOT_HESS-2_2021-091-42 RQ ERCKOT_HESS-2_2021-091-42 RQ ERCKOT_HESS-2_2021-091-42 RQ ERCKOT_HESS-2_2021-091-42 RQ ERCKOT_HESS-2_2021-091-43 RQ ERCKOT_HESS-2_2021-091-44	_					
RG FROKDT 91/42/2017 RG FROKDT HESS-1 2001-00-14 Empididae				·		
RG_ERCNDT 9/14/2021 RG_ERCNDT_HESS=2, 2021-90-14 Nemala	_					
RG_ERCKDT 9114/2021 RG_ERCKDT_HESS-2_2021-09-14 Enchytraeides	_				-	
RG_ERCKDT 91/4/2021 RG_ERCKDT_HESS-2_2021-09-14 Enchtyraeidee	RG_ERCKDT			•	5	
RG FRCKDT 91/4/2021 RG FRCKDT HESS-2 2021-09-14 Ostracoda 9 0.08032 RG FRCKDT 91/4/2021 RG FRCKDT HESS-2 2021-09-14 Dept-remerilidae 3 0.00035 RG FRCKDT 1855-2 2021-09-14 Personal policy of the process	_				18	
RG_ERCKDT 9/14/2021 RG_ERCKDT HESS2_2021-99-14 Ostracoda 9 0.08002 RG_ERCKDT S/14/2021 RG_ERCKDT HESS2_2021-99-14 Nemouridae 57 0.75558 RG_ERCKDT S/14/2021 RG_ERCKDT HESS2_2021-99-14 Peltoperidae 17 2.96857 RG_ERCKDT S/14/2021 RG_ERCKDT HESS2_2021-99-14 Hydrosyrchidae 17 2.96857 RG_ERCKDT S/14/2021 RG_ERCKDT HESS2_2021-99-14 Hydrosyrchidae 2 0.08079 RG_ERCKDT	_			*		
RG ERCKOT 9/14/2021 RG ERCKOT HESS-2 2021-99-14 Ephemerelidae 3 0.00635 RG ERCKOT 9/14/2021 RG ERCKOT HESS-2 2021-99-14 Peloperidae 17 2.96625 RG ERCKOT 9/14/2021 RG ERCKOT HESS-2 2021-99-14 Hydropsychidae 2 0.0507 RG ERCKOT 9/14/2021 RG ERCKOT HESS-2 2021-99-14 Hydropsychidae 2 0.0507 RG ERCKOT 9/14/2021 RG ERCKOT HESS-2 2021-99-14 Hydropsychidae 1 0.0256 RG ERCKOT 9/14/2021 RG ERCKOT HESS-2 2021-99-14 Lepdostomatidae 5 0.02222 RG ERCKOT 9/14/2021 RG ERCKOT HESS-2 2021-99-14 Chronomidae 234 0.87837 RG ERCKOT 9/14/2021 RG ERCKOT HESS-2 2021-99-14 Chronomidae 234 0.87837 RG ERCKOT HESS-2 2021-99-14 Chronomidae 234 0.87837 RG ERCKOT 9/14/2021 RG ERCKOT HESS-2 2021-99-14 Chronomidae 234 0.87837 RG ERCKOT 9/14/2021 RG ERCKOT HESS-2 2021-99-14 Plantidae 6 0.04762 RG ERCKOT 9/14/2021 RG ERCKOT HESS-2 2021-99-14 Plantidae 6 0.04762 RG ERCKOT 9/14/2021 RG ERCKOT HESS-3 2021-99-14 Plantidae 1 0.04762 RG ERCKOT 9/14/2021 RG ERCKOT HESS-3 2021-99-14 Plantidae 1 0.04762 RG ERCKOT 9/14/2021 RG ERCKOT HESS-3 2021-99-14 Plantidae 1 0.04762 RG ERCKOT 9/14/2021 RG ERCKOT HESS-3 2021-99-14 Plantidae 1 0.04762 RG ERCKOT 9/14/2021 RG ERCKOT HESS-3 2021-99-14 Plantidae 1 0.04762 RG ERCKOT 9/14/2021 RG ERCKOT HESS-3 2021-99-14 Plantidae 1 0.04762 RG ERCKOT 9/14/2021 RG ERCKOT HESS-3 2021-99-14 Plantidae 3 0.0176 RG ERCKOT 9/14/2021 RG ERCKOT HESS-3 2021-99-14 Plantidae 1 0.03364 RG ERCKOT 9/14/2021 RG ERCKOT HESS-3 2021-99-14 Plantidae 1 0.03364 RG ERCKOT 9/14/2021 RG ERCKOT HESS-3 2021-99-14 Plantidae 1 0.03364 RG ERCKOT 9/14/2021 RG ERCKOT HESS-3 2021-99-14 Plantidae 1 0.03364 RG ERCKOT 9/14/2021 RG ERCKOT HESS-3 2021-99-14 Plantidae 1 0.03364 RG ERCKOT 9/14/2021 RG ERCKOT HESS-3 2021-99-14 Plantidae 1 0.03364 RG ERCKOT 9/14/2021 RG ERCKOT HESS-3 2021-99-14 Plantidae 1 0.03364 RG ERCKOT 9/14/2021 RG ERCKOT HESS-3 2021-99-14 Plantidae 1 0.03364 RG ERCKOT 9/14/2021 RG ERCKOT HESS-3 2021-99-14 Plantidae 1 0.03364 RG ERCKOT 9/14/2021 RG ERCKOT HESS-3 2021-99-14 Plantidae 1 0.03						
RS_ERCKDT						
RG ERCKOT 9144/2021 RG ERCKOT HESS-2 2021-09-14 Petoperidase 17 2.96825 RG ERCKOT 9144/2021 RG ERCKOT HESS-2 2021-09-14 Hydropsychidase 2 0.05027 RG ERCKOT 9144/2021 RG ERCKOT HESS-2 2021-09-14 Hydropsychidase 5 0.02222 RG ERCKOT 9144/2021 RG ERCKOT HESS-2 2021-09-14 Limsephilidae 1 0.0244 RG ERCKOT 9144/2021 RG ERCKOT HESS-2 2021-09-14 Chironomidae 234 0.87937 RG ERCKOT 914/2021 RG ERCKOT HESS-2 2021-09-14 Petocorhymidae 2 0.6507 RG ERCKOT 914/2021 RG ERCKOT HESS-2 2021-09-14 Petocorhymidae 4 0.46349 RG ERCKOT 914/2021 RG ERCKOT HESS-2 2021-09-14 Petocorhymidae 6 0.04722 RG ERCKOT 914/2021 RG ERCKOT HESS-2 2021-09-14 Petocorhymidae 6 0.04722 RG ERCKOT 914/2021 RG ERCKOT HESS-3 2021-09-14 Principal 914/2021 RG ERCKOT HESS-3 2021-09-14 Principal 914/2021 RG ERCKOT HESS-3 2021-09-14 Principal 914/2021 RG ERCKOT HESS-3 2021-09-14 Principal 914/2021 RG ERCKOT HESS-3 2021-09-14 Principal 914/2021 RG ERCKOT HESS-3 2021-09-14 Oxford RG ERCKOT HESS-3 202	_			•		
RG_ERCKOT 91442021 RG_ERCKDT_HESS-2_2021-09-14 Hydropsychidae 2	_					
RG_ERCKOT						
RG_ERCKDT	_					
RG ERCKOT 9/14/2021 RG ERCKOT HESS-2 2021-09-14 Empididae 2 0.05079 RG ERCKOT 9/14/2021 RG ERCKOT HESS-2 2021-09-14 Peleopromyrophidae 4 0.46348 RG ERCKOT 9/14/2021 RG ERCKOT HESS-3 2021-09-14 Pelanaridae 4 0.016 RG ERCKOT 9/14/2021 RG ERCKOT HESS-3 2021-09-14 Pelanaridae 14 0.344 RG ERCKOT 9/14/2021 RG ERCKOT HESS-3 2021-09-14 Pelanaridae 14 0.344 RG ERCKOT 9/14/2021 RG ERCKOT HESS-3 2021-09-14 Pelanaridae 1 0.044 RG ERCKOT 9/14/2021 RG ERCKOT HESS-3 2021-09-14 Pelanaridae 3 0.0176 RG ERCKOT 9/14/2021 RG ERCKOT HESS-3 2021-09-14 Obstraceda 24 0.088 RG ERCKOT 9/14/2021 RG ERCKOT HESS-3 2021-09-14 Pelanerellidae 3 0.004 RG ERCKOT 9/14/2021 RG ERCKOT HESS-3 2021-09-14 Pelaperilidae 1 0.038 RG ERCKOT 9/14/2021 RG ERCKOT HESS-3 2021-09-14 Pelaporilidae 1 1.034 RG ERCKOT 9/14/2021 RG ERCKOT HESS-3 2021-09-14 Pelaporilidae <th< td=""><td>RG_ERCKDT</td><td>9/14/2021</td><td>RG_ERCKDT_HESS-2_2021-09-14</td><td>•</td><td>1</td><td>0.0254</td></th<>	RG_ERCKDT	9/14/2021	RG_ERCKDT_HESS-2_2021-09-14	•	1	0.0254
RG ERCKDT 9/14/2021 RG ERCKDT HESS-2 2021-09-14 Pelecorhynoidae 4 0.46349 RG ERCKDT 9/14/2021 RG ERCKDT HESS-2 2021-09-14 Nemata 2 0.0016 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Nemata 2 0.0016 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Naiddae 142 0.0448 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Naiddae 42 0.0448 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Leptoridae 3 0.0176 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Sperchonidae 7 0.0352 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Sperchonidae 7 0.0352 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Sperchonidae 3 0.0064 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Sperchonidae 3 0.0064 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Nemouridae 3 0.0064 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Nemouridae 52 0.3806 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Nemouridae 52 0.3806 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Peltoperidae 42 1872 RG ERCKDT HESS-3 2021-09-14 Peltoperidae 42 0.033 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Leptoriosomidiae 2 0.033 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Leptoriosomidiae 2 0.033 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Leptoriosomidiae 2 0.033 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Leptoriosomidiae 5 0.0016 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Leptoriosomidiae 3 0.0464 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Leptoriosomidiae 5 0.0016 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Peletoriosomidiae 3 0.0464 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Peletoriosomidiae 5 0.0016 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Peletoriosomidiae 3 0.0464 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Peletoriosomidiae 5 0.0016 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Peletoriosomidiae 3 0.0034 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Peletoriosomidiae 3 0.0034 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Peletoriosomidiae 3 0.0034 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Peletoriosomidiae 4 0.00	RG_ERCKDT	9/14/2021	RG_ERCKDT_HESS-2_2021-09-14	Chironomidae	234	0.87937
RG ERCKOT 9/14/2021 RG ERCKOT HESS-3 2021-09-14 Toulidae 6 0.04762 RG ERCKOT 9/14/2021 RG ERCKOT HESS-3 2021-09-14 Planaridae 14 0.344 RG ERCKOT 9/14/2021 RG ERCKOT HESS-3 2021-09-14 Planaridae 14 0.344 RG ERCKOT 9/14/2021 RG ERCKOT HESS-3 2021-09-14 Lebertiidae 3 0.0176 RG ERCKOT 9/14/2021 RG ERCKOT HESS-3 2021-09-14 Lebertiidae 3 0.0176 RG ERCKOT 9/14/2021 RG ERCKOT HESS-3 2021-09-14 Spertonidae 7 0.0352 RG ERCKOT 9/14/2021 RG ERCKOT HESS-3 2021-09-14 Spertonidae 7 0.0352 RG ERCKOT 9/14/2021 RG ERCKOT HESS-3 2021-09-14 Spertonidae 1 0.0384 RG ERCKOT 9/14/2021 RG ERCKOT HESS-3 2021-09-14 Chloropertidae 1 0.0384 RG ERCKOT 9/14/2021 RG ERCKOT HESS-3 2021-09-14 Peltopertidae 1 0.0384 RG ERCKOT 9/14/2021 RG ERCKOT HESS-3 2021-09-14 Peltopertidae 1 0.0384 RG ERCKOT 9/14/2021 RG ERCKOT HESS-3 2021-09-14 Peltopertidae 42 1.872 RG ERCKOT 9/14/2021 RG ERCKOT HESS-3 2021-09-14 Peltopertidae 42 1.872 RG ERCKOT RG ERCKOT HESS-3 2021-09-14 Peltopertidae 42 1.872 RG ERCKOT RG ERCKOT HESS-3 2021-09-14 Peltopertidae 5 0.0016 RG ERCKOT 9/14/2021 RG ERCKOT HESS-3 2021-09-14 Peltopertidae 5 0.0016 RG ERCKOT 9/14/2021 RG ERCKOT HESS-3 2021-09-14 Peltopertidae 5 0.0016 RG ERCKOT 9/14/2021 RG ERCKOT HESS-3 2021-09-14 Peltopertidae 5 0.0016 RG ERCKOT 9/14/2021 RG ERCKOT HESS-3 2021-09-14 Peltopertidae 6 2 0.0336 RG ERCKOT 9/14/2021 RG ERCKOT HESS-3 2021-09-14 Peltopertidae 6 2 0.0336 RG ERCKOT 9/14/2021 RG ERCKOT HESS-3 2021-09-14 Peltopertidae 6 0 0.0016 RG ERCKOT 9/14/2021 RG ERCKOT HESS-3 2021-09-14 Peltopertidae 6 0 0.0016 RG ERCKOT 9/14/2021 RG ERCKOT HESS-3 2021-09-14 Peltopertidae 6 0 0.0016 RG ERCKOT 9/14/2021 RG ERCKOT HESS-3 2021-09-14 Peltopertymicae 6 0 0.0016 RG ERCKOT 9/14/2021 RG ERCKOT HESS-3 2021-09-14 Peltopertymicae 6 0 0.0016 RG ERCKOT 9/14/2021 RG ERCKOT HESS-3 2021-09-14 Peltopertidae 6 0 0.0016 RG ERCKOT 9/14/2021 RG ERCKOT HESS-3 2021-09-14 Peltopertidae 6 0 0.0016 RG ERCKOT 9/14/2021 RG ERCKOT HESS-3 2				·		
RG ERCKOT 9/14/2021 RG ERCKOT HESS-3 2021-09-14 Alemata 2						
RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 RG ERCKDT 9/14/2021 RG ERCKDT				•		
RG ERCKDT 9/14/2021 RG ERCKDT HESS3. 2021-09-14 Naididae 42 0.048 RG ERCKDT 9/14/2021 RG ERCKDT HESS3. 2021-09-14 Sperchonidae 7 0.0352 RG ERCKDT 9/14/2021 RG ERCKDT HESS3. 2021-09-14 Sperchonidae 7 0.0352 RG ERCKDT 9/14/2021 RG ERCKDT HESS3. 2021-09-14 Chicroperidae 3 0.0068 RG ERCKDT 9/14/2021 RG ERCKDT HESS3. 2021-09-14 Ephemerillidae 3 0.0068 RG ERCKDT 9/14/2021 RG ERCKDT HESS3. 2021-09-14 Chicroperidae 1 0.034 RG ERCKDT 9/14/2021 RG ERCKDT HESS3. 2021-09-14 Chicroperidae 52 0.3808 RG ERCKDT 9/14/2021 RG ERCKDT HESS3. 2021-09-14 Pelpoeridae 42 1.872 RG ERCKDT 9/14/2021 RG ERCKDT HESS3. 2021-09-14 Pelpoeridae 22 0.032 RG ERCKDT 9/14/2021 RG ERCKDT HESS3. 2021-09-14 Pelpoeridae 22 0.0336 RG ERCKDT 9/14/2021 RG ERCKDT HESS3. 2021-09-14 Pelpoeridae 22 0.0336 RG ERCKDT 9/14/2021 RG ERCKDT HESS3. 2021-09-14 Lenoidae 2 0.0336 RG ERCKDT 9/14/2021 RG ERCKDT HESS3. 2021-09-14 Lenoidae 2 0.0336 RG ERCKDT 9/14/2021 RG ERCKDT HESS3. 2021-09-14 Chicropognidae 1 0.0032 RG ERCKDT 9/14/2021 RG ERCKDT HESS3. 2021-09-14 Chicropognidae 1 0.0032 RG ERCKDT 9/14/2021 RG ERCKDT HESS3. 2021-09-14 Chicropognidae 1 0.0032 RG ERCKDT 9/14/2021 RG ERCKDT HESS3. 2021-09-14 Chicropognidae 1 0.0032 RG ERCKDT 9/14/2021 RG ERCKDT HESS3. 2021-09-14 Pelecotryncidae 2 0.048 RG ERCKDT 9/14/2021 RG ERCKDT HESS3. 2021-09-14 Pelecotryncidae 2 0.048 RG ERCKDT 9/14/2021 RG ERCKDT HESS3. 2021-09-14 Pelecotryncidae 2 0.048 RG ERCKDT 9/14/2021 RG ERCKDT HESS3. 2021-09-14 Pelecotryncidae 2 0.048 RG ERCKDT 9/14/2021 RG ERCKDT HESS4. 2021-09-14 Nemata 3 0.0016 RG ERCKDT 9/14/2021 RG ERCKDT HESS4. 2021-09-14 Nemata 3 0.0016 RG ERCKDT 9/14/2021 RG ERCKDT HESS4. 2021-09-14 Nemata 3 0.0016 RG ERCKDT 9/14/2021 RG ERCKDT HESS4. 2021-09-14 Nemata 3 0.0016 RG ERCKDT 9/14/2021 RG ERCKDT HESS4. 2021-09-14 Nemata 6 0.008 RG ERCKDT 9/14/2021 RG ERCKDT HESS4. 2021-09-14 Nemata 6 0.008 RG ERCKDT 9/14/2021 RG ERCKDT HESS4. 2021-09-14 Nemata 6 0.008 RG ERCKDT 9/14/2021 RG ERCKDT HESS4. 2021-09-14 Nemoundae 1 10.0068 RG ERCKDT 9/14/2021 RG ERCKDT HESS4. 2021-09-14 Nemounda						
RS_ERCKDT 914/2021 RQ_ERCKDT_HESS3_2021-09-14 RS_ERCKDT 914/2021 RQ_ERCKDT_HESS3_2021-09-14 RS_ERCKDT 914/2021 RQ_ERCKDT_HESS3_2021-09-14 RG_ERCKDT 914/2021 RQ_ERCKDT_HESS4_2021-09-14 RG_ERCKDT 914/2021 RQ_ERC						
RS_ERCKDT 9/14/2021 RG_ERCKDT_HESS3_2021-09-14						
RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Ostracoda 24 0.0688 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Chloroperitade 1 0.0384 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Chloroperitade 1 0.0384 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Peltoperitade 42 0.3808 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Peltoperitade 42 0.3808 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Lepidostomatidae 5 0.0016 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Lepidostomatidae 5 0.0016 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Lepidostomatidae 5 0.0016 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Lepidostomatidae 5 0.0016 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Lepidostomatidae 6 0.0032 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Lepidostomatidae 7 0.0032 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Lepidostomatidae 7 0.0032 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Pelecotryncidae 8 0.408 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Pelecotryncidae 9 0.0032 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Pelecotryncidae 2 0.048 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Pelecotryncidae 2 0.048 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Pelecotryncidae 2 0.048 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Pelecotryncidae 1 0.0032 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Pelecotryncidae 2 0.048 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Pelecotryncidae 2 0.046 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Pelecotryncidae 2 0.046 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Pelecotryncidae 2 0.046 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Pelecotryncidae 2 0.046 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Pelecotryncidae 2 0.046 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Pelecotryncidae 1 0.008 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Pelecotryncidae 1 0.008 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Pelecotryncidae 1 1 0.008 RG ERCKDT 9/14/2021 RG ERCKDT HESS	_				7	
RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Ephemerellidae 1 0.0384 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Nemouridae 6 2 0.3808 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Nemouridae 6 2 0.3808 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Apatanidae 6 2 0.3808 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Apatanidae 6 2 0.032 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Uenoidae 2 0.032 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Uenoidae 2 0.0338 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Uenoidae 2 0.0338 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Uenoidae 2 0.0338 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Uenoidae 8 0.0408 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Chironomidae 8 0.0408 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Chironomidae 8 0.0408 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Empididae 3 0.0464 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Empididae 3 0.0464 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Empididae 5 0.0038 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Pelecorhyncidae 2 0.0448 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Pilanaridae 5 0.0038 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Pilanaridae 5 0.0038 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Pilanaridae 5 0.0038 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Pilanaridae 5 0.0046 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Empididae 15 0.0046 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Empididae 15 0.0046 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Pilanaridae 5 0.005 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Pilanaridae 5 0.006 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Pilanaridae 15 0.006 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Pilanaridae 15 0.006 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Pilanaridae 15 0.006 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Pilanaridae 15 0.006 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Pilanaridae 15 0.006 R					24	
RG_ERCKDT	_					
RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Peltopertidae 42 0.032 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Lepidostomatidae 5 0.0016 Lepidostomatidae 5 0.0016 Lepidostomatidae 5 0.0016 Lepidostomatidae 5 0.0016 Lepidostomatidae 5 0.0016 Lepidostomatidae 5 0.0016 Lepidostomatidae 5 0.0016 Lepidostomatidae 6 0.0016 Lepidostomatidae 6 0.0016 Lepidostomatidae 6 0.0016 Lepidostomatidae 6 0.0016 Lepidostomatidae 6 0.0016 Lepidostomatidae 7 0.0016 Lepidostomatidae 7 0.0016 Lepidostomatidae 7 0.0016 Lepidostomatidae 7 0.0016 Lepidostomatidae 7 0.0016 Lepidostomatidae 7 0.0016 Lepidostomatidae 8 0.0016 Lepidostomatidae 8 0.0016 Lepidostomatidae 8 0.0016 Lepidostomatidae 8 0.0016 Lepidostomatidae 8 0.0016 Lepidostomatidae 8 0.0016 Lepidostomatidae 8 0.0016 Lepidostomatidae 8 0.0016 Lepidostomatidae 8 0.0016 Lepidostomatidae 8 0.0016 Lepidostomatidae 9 0.0016 Lepidostomatidae 1 0.0016 Lepidostomatidae 9 0.0016 Lepidostomatidae 1 0.0016 Lepidostomatidae 9 0.0016 Lepidostomatidae 1 0.0016 Lepidostomatidae 9 0.0016 Lepidostomatidae 1 0.0016 Lepidostomatidae 1 0.0016 Lepidostomatidae 1 0.0016 Lepidostomatidae 1 0.0016 Lepidostomatidae 1 0.0016 Lepidostomatidae 1 0.0016 Lepidostomatidae 1 0.0016 Lepidostomatidae 1 0.0016 Lep	RG_ERCKDT	9/14/2021	RG_ERCKDT_HESS-3_2021-09-14	Chloroperlidae	1	0.0384
RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Lepidostomatidae 5 0.0032 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Uenoidae 2 0.0336 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Uenoidae 2 0.0336 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Ceratopognidae 1 0.0032 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Chironomidae 88 0.400 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Chironomidae 3 0.0404 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Chironomidae 2 0.0404 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Empididae 3 0.0404 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Figure 1 0.0032 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Figure 1 0.0032 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Figure 1 0.0032 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Pianariidae 5 0.009 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Pianariidae 5 0.009 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Pianariidae 5 0.009 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Enchytraeidae 1 0.008 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Enchytraeidae 1 0.008 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Enchytraeidae 1 0.008 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Sperchonidae 1 0.008 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Sperchonidae 1 0.008 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Sperchonidae 1 0.008 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Sperchonidae 1 0.008 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Nemouridae 1 0.008 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Nemouridae 1 0.008 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Nemouridae 1 0.008 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Pianaridae 1 0.008 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Nemouridae 1 1 0.008 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Nemouridae 1 1 0.008 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Nemouridae 1 1 0.008 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Nemouridae 1 1 0.008 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Nemouridae 1 1 0.						
RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Lepidostomatidae 5 0.0016 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Uenotidae 2 0.0336 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Ceratopogonidae 1 0.0032 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Ceratopogonidae 1 0.0032 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Chironomidae 88 0.448 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Empididae 3 0.0464 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Pierotryncidae 2 0.048 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Pierotryncidae 1 0.0032 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Pierotryncidae 5 0.009 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Pianamidae 5 0.009 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Pianamidae 5 0.009 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Pianamidae 5 0.006 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Pianamidae 5 0.006 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Pianamidae 1 0.0048 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Naididae 159 0.216 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Sperbnoidae 1 0.0048 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Ostracoda 9 0.0304 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Ostracoda 9 0.0304 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Naididae 1 0.0048 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Ostracoda 9 0.0304 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Ostracoda 9 0.0304 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Ostracoda 9 0.0304 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 HORNOURIDAE 1 0.00161 RG ERCKDT HESS-4 2021-09-14 HORNOURIDAE 1 0.00161 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 HORNOURIDAE 1 0.00161 RG ERCKDT HESS-4 2021-09-14 Hornouridae 1 1 0.0026 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Hydropsychidae 1 2 0.9872 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Hydropsychidae 1 1 0.0026 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Hydropsychidae 1 1 0.0026 RG ERCKDT 9/14/2021 RG ERCKDT HESS-5 2021-09-14 Hydropsychidae 1 1 0.002				<u> </u>		
RG_ERCKDT 9/14/2021 RG_ERCKDT HESS-3_2021-09-14						
RG_ERCKDT 9/14/2021 RG_ERCKDT HESS-3_2021-09-14 Chronomidae 88 0.408 RG_ERCKDT 9/14/2021 RG_ERCKDT HESS-3_2021-09-14 Chronomidae 88 0.408 RG_ERCKDT 9/14/2021 RG_ERCKDT HESS-3_2021-09-14 Empididae 3 0.0464 RG_ERCKDT 9/14/2021 RG_ERCKDT HESS-3_2021-09-14 Empididae 1 0.0032 RG_ERCKDT 9/14/2021 RG_ERCKDT HESS-3_2021-09-14 Floring from 1 0.0032 RG_ERCKDT 9/14/2021 RG_ERCKDT HESS-3_2021-09-14 Floring from 1 0.0032 RG_ERCKDT 9/14/2021 RG_ERCKDT HESS-3_2021-09-14 Floring from 1 0.0032 RG_ERCKDT 9/14/2021 RG_ERCKDT HESS-3_2021-09-14 Floring from 1 0.0032 RG_ERCKDT 9/14/2021 RG_ERCKDT HESS-4_2021-09-14 Sperhonidae 1 0.0038 RG_ERCKDT 9/14/2021 RG_ERCKDT HESS-4_2021-09-14 Sperhonidae 1 0.0038 RG_ERCKDT 9/14/2021 RG_ERCKDT HESS-4_2021-09-14 Sperhonidae 1 0.0038 RG_ERCKDT 9/14/2021 RG_ERCKDT HESS-4_2021-09-14 Nemouridae 1 0.0039 RG_ERCKDT 9/14/2021 RG_ERCKDT HESS-4_2021-09-14 Nemouridae 1 0.0039 RG_ERCKDT 9/14/2021 RG_ERCKDT HESS-4_2021-09-14 Nemouridae 1 0.0039 RG_ERCKDT 9/14/2021 RG_ERCKDT HESS-4_2021-09-14 Nemouridae 1 0.0039 RG_ERCKDT 9/14/2021 RG_ERCKDT HESS-4_2021-09-14 Nemouridae 1 0.0039 RG_ERCKDT 9/14/2021 RG_ERCKDT HESS-4_2021-09-14 Hydropsychidae 1 0.0039 RG_ERCKDT 9/14/2021 RG_ERCKDT HESS-5_2021-09-14 Hydropsychidae 1 0.0039 RG_ERCKDT 9/14/2021 RG_ERCKDT HESS-						
RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Chironomidae 88 0.408 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Empididae 3 0.0484 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Pelecorhyncidae 2 0.048 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Pipulidae 1 0.0032 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Nemata 3 0.0016 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Pipulidae 5 0.009 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Pipulidae 5 0.009 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Pipulidae 5 0.009 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Pipulidae 5 0.009 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Pipulidae 5 0.009 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Naiddae 159 0.216 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Naiddae 159 0.216 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Sperchonidae 1 0.008 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Sperchonidae 1 0.008 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Nemouridae 1 0.0048 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Nemouridae 1 0.0048 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Nemouridae 1 0.0048 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Nemouridae 1 0.0064 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Hydropsychidae 1 0.0064 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Hydropsychidae 1 0.0064 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Hydropsychidae 1 0.0064 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Hydropsychidae 2 0.048 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Hydropsychidae 1 0.0064 RG ERCKDT 9/14/2021 RG ERCKDT HESS-5 2021-09-14 Hydropsychidae 1 0.0064 RG ERCKDT 9/14/2021 RG ERCKDT HESS-5 2021-09-14 Hydropsychidae 2 0.048 RG ERCKDT 9/14/2021 RG ERCKDT HESS-5 2021-09-14 Hydropsychidae 1 0.0064 RG ERCKDT 9/14/2021 RG ERCKDT HESS-5 2021-09-14 Hydropsychidae 1 0.0064 RG ERCKDT 9/14/2021 RG ERCKDT HESS-5 2021-09-14 Hydropsychidae 1 0.0064 RG E	_					
RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-3_2021-09-14 Pelecorhyncidae 3 0.0484 RG_ERCKDT 9/14/2021 RG_ERCKDT HESS-3_2021-09-14 Tipulidae 1 0.0032 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-3_2021-09-14 Tipulidae 1 0.0032 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14 Nemata 3 0.0016 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14 Planariidae 5 0.009 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14 Planariidae 25 0.456 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14 Planariidae 25 0.456 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14 Planariidae 25 0.456 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14 Planariidae 25 0.456 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14 Naididae 159 0.216 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14 Naididae 159 0.216 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14 Sperchonidae 1 0.0048 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14 Ostracoda 9 0.0304 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14 Nemouridae 1 10.0161 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14 Nemouridae 1 10.0161 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14 Nemouridae 1 10.0161 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14 Nemouridae 1 10.0161 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14 Hydropsychidae 1 0.0929 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14 Hydropsychidae 1 0.0938 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14 Hydropsychidae 1 0.0938 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14 Hydropsychidae 1 0.0938 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14 Hydropsychidae 1 0.0068 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14 Lepidostomatidae 42 0.0886 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14 Lepidostomatidae 42 0.0886 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14 Lepidostomatidae 42 0.0886 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Nemouridae 1 0.0068 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Nemouridae 1 0.0068 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Nemouridae 1 0.0068 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Nemouridae 2 0.0068 RG_ERCKDT 9/14/2021 RG_ERCK	_				•	
RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Pelecorhyncidae 2 0.048 RG ERCKDT 9/14/2021 RG ERCKDT HESS-3 2021-09-14 Tipulidae 1 0.0032 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Nemata 3 0.0016 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Planariidae 5 0.009 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Planariidae 1 0.008 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Nemburidae 1 0.0048 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Nemburidae 1 0.0048 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Nemburidae 1 0.0048	_					
RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-3_2021-09-14 Nemata 3 0.0016 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14 Planariidae 5 0.009 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14 Planariidae 5 0.009 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14 Planariidae 25 0.456 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14 Planariidae 15 0.008 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14 Planariidae 15 0.008 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14 Planariidae 15 0.008 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14 Naididae 159 0.216 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14 Sperchonidae 1 0.0048 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14 Sperchonidae 1 0.0048 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14 Sperchonidae 1 0.0048 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14 Planariidae 1 0.0048 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14 Nemouridae 1 1 0.0161 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14 Nemouridae 1 1 0.0161 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14 Platoperidae 1 2 0.3872 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14 Hydropsychidae 1 0.0929 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14 Hydropsychidae 1 0.0939 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14 Lepidostomatidae 42 0.0886 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14 Lepidostomatidae 42 0.0886 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14 Lepidostomatidae 42 0.0886 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14 Lepidostomatidae 42 0.0886 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14 Lepidostomatidae 42 0.0086 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14 Lepidostomatidae 42 0.0086 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 RMuscidae 1 0.0266 RG_ERCKDT 9/14/2	_			·		
RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Planariidae 5 0.009 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Planariidae 5 0.009 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Planariidae 25 0.456 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Enchytraeidae 1 0.008 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Naldidae 159 0.216 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Naldidae 159 0.216 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Naldidae 159 0.216 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Sperchonidae 1 0.0048 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Sperchonidae 1 0.0048 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Sperchonidae 1 0.0048 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Nemoundae 11 0.0161 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Nemoundae 11 0.0161 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Nemoundae 154 0.7872 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Pletoperidae 12 0.3872 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Pletoperidae 12 0.3872 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Plydropsychidae 1 0.0092 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Plydropsychidae 2 0.048 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Plydropsychidae 2 0.048 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Limnephilidae 1 0.0068 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Limnephilidae 1 0.0068 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Limnephilidae 1 0.0068 RG ERCKDT 9/14/2021 RG ERCKDT HESS-5 2021-09-14 Limnephilidae 1 0.0068 RG ERCKDT 9/14/2021 RG ERCKDT HESS-5 2021-09-14 Republicae 1 0.0068 RG ERCKDT 9/14/2021 RG ERCKDT HESS-5 2021-09-14 Republicae 1 0.0068 RG ERCKDT 9/14/2021 RG ERCKDT HESS-5 2021-09-14 Republicae 1 0.0068 RG ERCKDT 9/14/2021 RG ERCKDT HESS-5 2021-09-14 Nemoundae 3 1 8.128 RG ERCKDT 9/14/2021 RG ERCKDT HESS-5 2021-09-14 Nemoundae 2 0.0068 RG ERCKDT 9/14/2021 RG ERCKDT HESS-5 2021-09-14 Nemoundae 2 0.0068 RG ERCKDT 9/14/2021 RG ERCKDT HESS-5 2021-09-14 Nemoundae 3 0.0068 RG ERCKDT 9/14/2021 RG ERCKDT HESS-5 20	_					
RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14 Planariidae	RG_ERCKDT	9/14/2021	RG_ERCKDT_HESS-4_2021-09-14	Nemata	3	0.0016
RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Enchytraeidae 1 0.008 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Naididae 159 0.216 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Sperchonidae 1 0.0048 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Ostracoda 9 0.0304 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Ostracoda 9 0.034 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Nemouridae 11 0.0161 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Nemouridae 15 0.7872 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Nemouridae 15 0.7872 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Hydropsychidae 12 0.3872 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Hydropsychidae 1 0.0929 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Hydropsychidae 1 0.0929 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Limnephilidae 1<	_					
RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14						
RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Sperchonidae 1 0.0048 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Ostracoda 9 0.0304 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Phemperellidae 4 0.0048 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Nemouridae 11 0.0161 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Nemouridae 12 0.3872 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Peltoperlidae 12 0.3872 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Hydropsychidae 1 0.0929 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Lepidostomatidae 42 0.0886 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Limnephilidae 1 0.0064 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Limnephilidae 1 0.0064 RG ERCKDT 9/14/2021 RG ERCKDT HESS-5 2021-09-14 Limnep						
RG_ERCKDT	_					
RG_ERCKDT 9/14/2021 RG_ERCKDT HESS-4_2021-09-14 Ephemerellidae 4 0.048 RG_ERCKDT 9/14/2021 RG_ERCKDT HESS-4_2021-09-14 Nemouridae 154 0.7872 RG_ERCKDT 9/14/2021 RG_ERCKDT HESS-4_2021-09-14 Peltoperildae 12 0.3872 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14 Peltoperildae 12 0.3872 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14 Hydropsychidae 2 0.048 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14 Lepidostomatidae 42 0.0896 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14 Limnephilidae 1 0.0064 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14 Limnephilidae 1 0.056 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14 Limnephilidae 1 0.056 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14 Muscidae 1 0.052 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14	_				•	
RG_ERCKDT	_					
RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Nemouridae 154 0.7872 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Peltoperlidae 12 0.3872 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Hydropsychidae 2 0.048 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Hydropsychidae 2 0.048 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Hydropsychidae 42 0.0896 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Limpoplidae 1 0.006 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Muscidae 2 0.0714 RG ERCKDT 9/14/2021 RG ERCKDT HESS-5 2021-09-14 Muscidae 2 0.0714 RG ERCKDT 9/14/2021 RG ERCKDT HESS-5 2021-09-14 Nematidae 2 0.0714 RG E	_					
RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Peltoperlidae 12 0.3872 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Hydropsychidae 2 0.048 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Hydropsychidae 2 0.048 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Limnephilidae 1 0.0064 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Chironomidae 381 1.8128 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Muscidae 2 0.0714 RG ERCKDT 9/14/2021 RG ERCKDT HESS-5 2021-09-14 Muscidae 2 0.0714 RG ERCKDT 9/14/2021 RG ERCKDT HESS-5 2021-09-14 Nemata 8 0	_					
RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Hydropsychidae 2 0.048 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Limnephilidae 1 0.0896 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Limnephilidae 1 0.056 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Chironomidae 381 1.8128 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Chironomidae 2 0.0714 RG ERCKDT 9/14/2021 RG ERCKDT HESS-5 2021-09-14 Tipulidae 1 0.0016 RG ERCKDT 9/14/2021 RG ERCKDT HESS-5 2021-09-14 Nemata 8 0.0064 RG ERCKDT 9/14/2021 RG ERCKDT HESS-5 2021-09-14 Nemata 8 0.0064 RG ERCKDT 9/14/2021	_					
RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14 Lepidostomatidae 42 0.0896 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14 Limnephilidae 1 0.0064 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14 Chironomidae 381 1.8128 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14 Chironomidae 381 1.8128 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14 Empididae 1 0.0256 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Muscidae 2 0.0714 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Nemata 8 0.0064 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Planariidae 2 0.0023 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Planariidae 20 0.7264 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Planariidae 20 0.0734 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Planariidae	RG_ERCKDT	9/14/2021	RG_ERCKDT_HESS-4_2021-09-14	Hydropsychidae		0.0929
RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Limnephilidae 1 0.0064 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Chironomidae 381 1.8128 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Empidiae 1 0.0256 RG ERCKDT 9/14/2021 RG ERCKDT HESS-4 2021-09-14 Muscidae 2 0.0714 RG ERCKDT 9/14/2021 RG ERCKDT HESS-5 2021-09-14 Nemata 8 0.0064 RG ERCKDT 9/14/2021 RG ERCKDT HESS-5 2021-09-14 Nemata 8 0.0064 RG ERCKDT 9/14/2021 RG ERCKDT HESS-5 2021-09-14 Planariidae 2 0.0023 RG ERCKDT 9/14/2021 RG ERCKDT HESS-5 2021-09-14 Naididae 307 0.7488 RG ERCKDT 9/14/2021 RG ERCKDT HESS-5 2021-09-14 Naididae 307 0.7488 RG ERCKDT 9/14/2021 RG ERCKDT HESS-5 2021-09-14 Naididae 307 0.064	_					
RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14 Chironomidae 381 1.8128 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14 Empididae 1 0.0256 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14 Muscidae 2 0.0714 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Tipulidae 1 0.0016 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Nemata 8 0.0064 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Planariidae 2 0.07264 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Planariidae 20 0.7264 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Naididae 307 0.7488 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Ephemerellidae 2 0.0058 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Pehemerellidae 2 0.0055 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Nemouridae <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14 Empididae 1 0.0256 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14 Muscidae 2 0.0714 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14 Muscidae 2 0.0714 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Nemata 8 0.0064 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Nemata 8 0.0064 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Planariidae 2 0.0023 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Planariidae 307 0.7488 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Nemouridae 307 0.7488 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Pelmerellidae 2 0.0064 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Nemouridae 97 1.6992 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Nemouridae 97	_				-	
RG_ERCKDT 9/14/2021 RG_ERCKDT HESS-4 2021-09-14 Muscidae 2 0.0714 RG_ERCKDT 9/14/2021 RG_ERCKDT HESS-5 2021-09-14 Tipulidae 1 0.0016 RG_ERCKDT 9/14/2021 RG_ERCKDT HESS-5 2021-09-14 Nemata 8 0.0064 RG_ERCKDT 9/14/2021 RG_ERCKDT HESS-5 2021-09-14 Nematidae 2 0.0023 RG_ERCKDT 9/14/2021 RG_ERCKDT HESS-5 2021-09-14 Planariidae 20 0.7264 RG_ERCKDT 9/14/2021 RG_ERCKDT HESS-5 2021-09-14 Naididae 307 0.7488 RG_ERCKDT 9/14/2021 RG_ERCKDT HESS-5 2021-09-14 Ostracoda 6 0.0384 RG_ERCKDT 9/14/2021 RG_ERCKDT HESS-5 2021-09-14 Nemouridae 2 0.0064 RG_ERCKDT 9/14/2021 RG_ERCKDT HESS-5 2021-09-14 Nemouridae 9 0.0064 RG_ERCKDT 9/14/2021 RG_ERCKDT HESS-5 2021-09-14 Nemouridae 97 1.6992	_					
RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-4_2021-09-14 Tipulidae 1 0.0016 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Nemata 8 0.0064 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Planariidae 2 0.0023 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Planariidae 20 0.7264 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Naididae 307 0.7488 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Naididae 307 0.7488 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Planariidae 2 0.0064 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Planariidae 2 0.0064 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Planariidae 2 0.0064 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Nemouridae 9 7 1.6992 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Peltoperlidae<				•	-	
RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Nemata 8 0.0064 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Planariidae 2 0.0023 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Planariidae 20 0.7264 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Naididae 307 0.7488 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Naididae 307 0.7488 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Nemouridae 6 0.0384 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Nemouridae 2 0.0055 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Peltoperlidae 1 0.0069 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Peltoperlidae 1 1.1552 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Peltoperlidae 1 0.0729 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Hydropsychidae						
RG_ERCKDT 9/14/2021 RG_ERCKDT HESS-5 2021-09-14 Planariidae 2 0.0023 RG_ERCKDT 9/14/2021 RG_ERCKDT HESS-5 2021-09-14 Planariidae 20 0.7264 RG_ERCKDT 9/14/2021 RG_ERCKDT HESS-5 2021-09-14 Naididae 307 0.7488 RG_ERCKDT 9/14/2021 RG_ERCKDT HESS-5 2021-09-14 Ostracoda 6 0.0384 RG_ERCKDT 9/14/2021 RG_ERCKDT HESS-5 2021-09-14 Dephemerellidae 2 0.0064 RG_ERCKDT 9/14/2021 RG_ERCKDT HESS-5 2021-09-14 Nemouridae 2 0.0055 RG_ERCKDT 9/14/2021 RG_ERCKDT HESS-5 2021-09-14 Nemouridae 97 1.6992 RG_ERCKDT 9/14/2021 RG_ERCKDT HESS-5 2021-09-14 Peltoperlidae 1 0.0069 RG_ERCKDT 9/14/2021 RG_ERCKDT HESS-5 2021-09-14 Hydropsychidae 1 1.152 RG_ERCKDT 9/14/2021 RG_ERCKDT HESS-5 2021-09-14 Hydropsychidae 3	_			•	•	
RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Naididae 307 0.7488 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Ostracoda 6 0.0384 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Ephemerellidae 2 0.0064 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Nemouridae 97 1.6992 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Nemouridae 97 1.6992 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Nemouridae 97 1.6992 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Peltoperlidae 1 0.0069 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Hydropsychidae 1 0.0729 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Hydropsychidae 3 0.0864 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Lepidostomatidae 4 0.016 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Muscidae <td>RG_ERCKDT</td> <td>9/14/2021</td> <td>RG_ERCKDT_HESS-5_2021-09-14</td> <td>Planariidae</td> <td>2</td> <td></td>	RG_ERCKDT	9/14/2021	RG_ERCKDT_HESS-5_2021-09-14	Planariidae	2	
RG_ERCKDT 9/14/2021 RG_ERCKDT HESS-5_2021-09-14 Ostracoda 6 0.0384 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Ephemerellidae 2 0.0064 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Nemouridae 2 0.0055 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Nemouridae 97 1.6992 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Peltoperlidae 1 0.0069 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Peltoperlidae 11 1.1552 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Hydropsychidae 1 0.0729 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Hydropsychidae 3 0.0864 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Lepidostomatidae 4 0.016 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Muscidae 11 0.3694 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Pelcoprhync	_					
RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Ephemerellidae 2 0.0064 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Nemouridae 2 0.0055 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Nemouridae 97 1.6992 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Peltoperlidae 1 0.0069 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Peltoperlidae 11 1.1552 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Peltoperlidae 1 0.0729 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Hydropsychidae 1 0.0729 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Hydropsychidae 3 0.0864 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Hydropsychidae 3 0.0864 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Hydropsychidae 4 0.016 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Chir	_					
RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Nemouridae 2 0.0055 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Nemouridae 97 1.6992 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Peltoperlidae 1 0.0069 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Peltoperlidae 11 1.1552 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Hydropsychidae 1 0.0729 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Hydropsychidae 3 0.0864 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Hydropsychidae 4 0.016 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Mus						
RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Nemouridae 97 1.6992 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Peltoperlidae 1 0.0069 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Peltoperlidae 11 1.1552 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Hydropsychidae 1 0.0729 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Hydropsychidae 3 0.0864 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Lepidostomatidae 4 0.016 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Chironomidae 211 1.6544 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Muscidae 11 0.3698 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Pelecorhyncidae 9 0.1248 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Planariidae 20 0.544 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Naid						
RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Peltoperlidae 1 0.0069 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Peltoperlidae 11 1.1552 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Hydropsychidae 1 0.0729 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Hydropsychidae 3 0.0864 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Lepidostomatidae 4 0.016 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Chironomidae 211 1.6544 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Muscidae 11 0.3698 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Pelecorhyncidae 9 0.1248 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Planariidae 20 0.544 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Naididae 308 0.6048 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Ostra						
RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Peltoperlidae 11 1.1552 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Hydropsychidae 1 0.0729 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Hydropsychidae 3 0.0864 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Lepidostomatidae 4 0.016 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Chironomidae 211 1.6544 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Muscidae 11 0.3698 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Pelecorhyncidae 9 0.1248 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Planariidae 20 0.544 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Naididae 308 0.6048 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Ostracoda 1 0.0032 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Chloroperlidae 2 0.032 RG_ERCKDT 9/14/2021	RG ERCKDT					
RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Hydropsychidae 1 0.0729 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Hydropsychidae 3 0.0864 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Lepidostomatidae 4 0.016 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Chironomidae 211 1.6544 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Muscidae 11 0.3698 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Pelecorhyncidae 9 0.1248 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Planariidae 20 0.544 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Naididae 308 0.6048 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Ostracoda 1 0.0032 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Ephemerellidae 3 0.0032 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Chloroperlidae 2 0.032 RG_ERCKDT 9/14/2021				•	-	
RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Hydropsychidae 3 0.0864 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Lepidostomatidae 4 0.016 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Chironomidae 211 1.6544 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Muscidae 11 0.3698 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Pelecorhyncidae 9 0.1248 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Planariidae 20 0.544 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Naididae 308 0.6048 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Ostracoda 1 0.0032 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Ephemerellidae 3 0.0032 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Nemouridae 2 0.032 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Nemouridae 86 0.9312 RG_ERCKDT 9/14/2021 <	RG_ERCKDT	9/14/2021	RG_ERCKDT_HESS-5_2021-09-14	·	1	
RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Chironomidae 211 1.6544 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Muscidae 11 0.3698 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Pelecorhyncidae 9 0.1248 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Planariidae 20 0.544 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Naididae 308 0.6048 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Ostracoda 1 0.0032 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Ephemerellidae 3 0.0032 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Chloroperlidae 2 0.032 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Nemouridae 86 0.9312 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Peltoperlidae 31 3.2448	RG_ERCKDT			Hydropsychidae		
RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Muscidae 11 0.3698 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Pelecorhyncidae 9 0.1248 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Planariidae 20 0.544 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Naididae 308 0.6048 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Ostracoda 1 0.0032 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Ephemerellidae 3 0.0032 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Chloroperlidae 2 0.032 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Nemouridae 86 0.9312 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Peltoperlidae 31 3.2448	_					
RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-5_2021-09-14 Pelecorhyncidae 9 0.1248 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Planariidae 20 0.544 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Naididae 308 0.6048 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Ostracoda 1 0.0032 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Ephemerellidae 3 0.0032 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Chloroperlidae 2 0.032 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Nemouridae 86 0.9312 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Peltoperlidae 31 3.2448	_					
RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Planariidae 20 0.544 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Naididae 308 0.6048 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Ostracoda 1 0.0032 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Ephemerellidae 3 0.0032 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Chloroperlidae 2 0.032 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Nemouridae 86 0.9312 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Peltoperlidae 31 3.2448	_					
RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Naididae 308 0.6048 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Ostracoda 1 0.0032 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Ephemerellidae 3 0.0032 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Chloroperlidae 2 0.032 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Nemouridae 86 0.9312 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Peltoperlidae 31 3.2448	_					
RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Ostracoda 1 0.0032 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Ephemerellidae 3 0.0032 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Chloroperlidae 2 0.032 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Nemouridae 86 0.9312 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Peltoperlidae 31 3.2448	_					
RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Ephemerellidae 3 0.0032 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Chloroperlidae 2 0.032 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Nemouridae 86 0.9312 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Peltoperlidae 31 3.2448	_					
RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Chloroperlidae 2 0.032 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Nemouridae 86 0.9312 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Peltoperlidae 31 3.2448	_				-	
RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Nemouridae 86 0.9312 RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Peltoperlidae 31 3.2448	_			•		
RG_ERCKDT 9/14/2021 RG_ERCKDT_HESS-6_2021-09-14 Peltoperlidae 31 3.2448	_			·		
	_	9/14/2021	RG_ERCKDT_HESS-6_2021-09-14			
	_			·	1	

Area	Date	Sample ID	Таха	Count	Total Biomass
RG ERCKDT		RG ERCKDT HESS-6 2021-09-14	Lepidostomatidae	6	0.0224
RG_ERCKDT	9/14/2021	RG_ERCKDT_HESS-6_2021-09-14	Chironomidae	177	1.2416
RG_ERCKDT		RG_ERCKDT_HESS-6_2021-09-14	Empididae	1	0.0064
RG_ERCKDT		RG_ERCKDT_HESS-6_2021-09-14	Tipulidae	1	0.0064
RG_ERCKDT		RG_ERCKDT_HESS-7_2021-09-15	Nemata	20	0.0052
RG_ERCKDT RG_ERCKDT		RG_ERCKDT_HESS-7_2021-09-15 RG_ERCKDT_HESS-7_2021-09-15	Planariidae	3 25	0.0108 0.0164
RG_ERCKDT		RG ERCKDT HESS-7 2021-09-15	Enchytraeidae Naididae	19	0.0164
RG ERCKDT		RG ERCKDT HESS-7 2021-09-15	Lebertiidae	13	4.00E-04
RG ERCKDT		RG ERCKDT HESS-7 2021-09-15	Sperchonidae	1	4.00E-04
RG_ERCKDT		RG_ERCKDT_HESS-7_2021-09-15	Heptageniidae	1	0.0012
RG_ERCKDT		RG_ERCKDT_HESS-7_2021-09-15	Chloroperlidae	2	0.0108
RG_ERCKDT		RG_ERCKDT_HESS-7_2021-09-15	Nemouridae	31	0.052
RG_ERCKDT		RG_ERCKDT_HESS-7_2021-09-15	Peltoperlidae	13	0.2656
RG_ERCKDT RG_ERCKDT		RG_ERCKDT_HESS-7_2021-09-15 RG_ERCKDT_HESS-7_2021-09-15	Hydropsychidae	1 2	0.0012
RG_ERCKDT RG_ERCKDT		RG_ERCKDT_HESS-7_2021-09-15	Rhyacophilidae Chironomidae	165	0.2112 0.6532
RG ERCKDT		RG ERCKDT HESS-7 2021-09-15	Pelecorhyncidae	2	0.0332
RG ERCKDT		RG ERCKDT HESS-7 2021-09-15	Tipulidae	1	0.0456
RG ERCKDT		RG ERCKDT HESS-8 2021-09-15	Nemata	15	0.002
RG_ERCKDT	9/15/2021	RG_ERCKDT_HESS-8_2021-09-15	Planariidae	11	0.0884
RG_ERCKDT	9/15/2021	RG_ERCKDT_HESS-8_2021-09-15	Enchytraeidae	9	0.0044
RG_ERCKDT		RG_ERCKDT_HESS-8_2021-09-15	Naididae	210	0.0752
RG_ERCKDT		RG_ERCKDT_HESS-8_2021-09-15	Sperchonidae	1	6.00E-04
RG_ERCKDT		RG_ERCKDT_HESS-8_2021-09-15	Sperchonidae	1	8.00E-04
RG_ERCKDT		RG_ERCKDT_HESS-8_2021-09-15	Ostracoda	4	0.0048
RG_ERCKDT RG_ERCKDT		RG_ERCKDT_HESS-8_2021-09-15 RG_ERCKDT_HESS-8_2021-09-15	Ephemerellidae	3	0.0036
RG_ERCKDT RG_ERCKDT		RG_ERCKDT_HESS-8_2021-09-15 RG_ERCKDT_HESS-8_2021-09-15	Chloroperlidae Nemouridae	86	0.004 0.3212
RG_ERCKDT		RG_ERCKDT_HESS-8_2021-09-15	Peltoperlidae	2	0.3212
RG ERCKDT		RG ERCKDT HESS-8 2021-09-15	Peltoperlidae	41	0.4664
RG_ERCKDT		RG_ERCKDT_HESS-8_2021-09-15	Limnephilidae	1	0.002
RG_ERCKDT		RG_ERCKDT_HESS-8_2021-09-15	Rhyacophilidae	1	0.0357
RG_ERCKDT		RG_ERCKDT_HESS-8_2021-09-15	Rhyacophilidae	1	0.2876
RG_ERCKDT		RG_ERCKDT_HESS-8_2021-09-15	Ceratopogonidae	2	0.0036
RG_ERCKDT		RG_ERCKDT_HESS-8_2021-09-15	Chironomidae	557	1.86
RG_ERCKDT		RG_ERCKDT_HESS-8_2021-09-15	Empididae	2	0.0092
RG_ERCKDT		RG_ERCKDT_HESS-8_2021-09-15	Muscidae	1	0.0353
RG_ERCKDT		RG_ERCKDT_HESS-8_2021-09-15	Muscidae	2	0.0092
RG_ERCKDT RG_ERCKDT		RG_ERCKDT_HESS-8_2021-09-15 RG_ERCKDT_HESS-8_2021-09-15	Pelecorhyncidae Pelecorhyncidae	1	0.0502 0.0176
RG ERCKDT		RG ERCKDT HESS-9 2021-09-15	Nemata	3	0.0176
RG ERCKDT		RG ERCKDT HESS-9 2021-09-15	Planariidae	37	1.936
RG ERCKDT		RG ERCKDT HESS-9 2021-09-15	Enchytraeidae	7	0.1152
RG_ERCKDT		RG_ERCKDT_HESS-9_2021-09-15	Naididae	302	1.3312
RG_ERCKDT		RG_ERCKDT_HESS-9_2021-09-15	Ostracoda	32	0.2688
RG_ERCKDT		RG_ERCKDT_HESS-9_2021-09-15	Ephemerellidae	3	0.0224
RG_ERCKDT		RG_ERCKDT_HESS-9_2021-09-15	Chloroperlidae	3	0.1056
RG_ERCKDT		RG_ERCKDT_HESS-9_2021-09-15	Nemouridae	24	0.7296
RG_ERCKDT RG_ERCKDT		RG_ERCKDT_HESS-9_2021-09-15 RG_ERCKDT_HESS-9_2021-09-15	Peltoperlidae Perlodidae	23	3.3248 0.1536
RG_ERCKDT		RG ERCKDT HESS-9 2021-09-15	Chironomidae	238	6.4768
RG ERCKDT		RG ERCKDT HESS-9 2021-09-15	Empididae	1	0.0416
RG ERCKDT		RG ERCKDT HESS-9 2021-09-15	Muscidae	1	0.2176
RG ERCKDT		RG ERCKDT HESS-10 2021-09-15	Nemata	17	0.0224
RG_ERCKDT		RG_ERCKDT_HESS-10_2021-09-15	Planariidae	16	0.7144
RG_ERCKDT		RG_ERCKDT_HESS-10_2021-09-15	Enchytraeidae	7	0.008
RG_ERCKDT		RG_ERCKDT_HESS-10_2021-09-15	Naididae	58	0.04
RG_ERCKDT		RG_ERCKDT_HESS-10_2021-09-15	Lebertiidae	2	0.0032
RG_ERCKDT RG_ERCKDT		RG_ERCKDT_HESS-10_2021-09-15	Sperchonidae Ostracoda	15 29	0.0672
RG_ERCKDT		RG_ERCKDT_HESS-10_2021-09-15 RG_ERCKDT_HESS-10_2021-09-15	Capniidae	1	0.0576 0.048
RG_ERCKDT		RG ERCKDT HESS-10 2021-09-15	Chloroperlidae	6	0.048
RG ERCKDT		RG ERCKDT HESS-10 2021-09-15	Nemouridae	20	0.1112
RG_ERCKDT		RG_ERCKDT_HESS-10_2021-09-15	Peltoperlidae	9	0.4872
RG_ERCKDT	9/15/2021	RG_ERCKDT_HESS-10_2021-09-15	Perlodidae	1	0.0024
RG_ERCKDT		RG_ERCKDT_HESS-10_2021-09-15	Rhyacophilidae	5	0.3227
RG_ERCKDT		RG_ERCKDT_HESS-10_2021-09-15	Rhyacophilidae	2	0.424
RG_ERCKDT		RG_ERCKDT_HESS-10_2021-09-15	Chironomidae	407	4.3608
RG_ERCKDT		RG_ERCKDT_HESS-10_2021-09-15	Empididae	3	0.016
RG_ERCKDT RG_ERCKDT		RG_ERCKDT_HESS-10_2021-09-15 RG_ERCKDT_HESS-10_2021-09-15	Pelecorhyncidae Tipulidae	1	0.4184 0.0032
RG_ERCKUT		RG ERCKUT HESS-1 2021-09-15	Nemata	4	4.00E-04
RG ERCKUT		RG ERCKUT HESS-1 2021-09-15	Planariidae	16	0.11
RG_ERCKUT		RG_ERCKUT_HESS-1_2021-09-15	Naididae	1	0.032
RG_ERCKUT		RG_ERCKUT_HESS-1_2021-09-15	Ostracoda	2	0.002
RG_ERCKUT		RG_ERCKUT_HESS-1_2021-09-15	Capniidae	3	0.0376
RG_ERCKUT	9/15/2021	RG_ERCKUT_HESS-1_2021-09-15	Chloroperlidae	8	0.0268
RG_ERCKUT		RG_ERCKUT_HESS-1_2021-09-15	Nemouridae	12	0.1192
RG_ERCKUT		RG_ERCKUT_HESS-1_2021-09-15	Peltoperlidae	69	1.1324
RG_ERCKUT		RG_ERCKUT_HESS-1_2021-09-15	Perlodidae	3	0.0312
RG_ERCKUT		RG_ERCKUT_HESS-1_2021-09-15	Glossosomatidae	24	0.0268
RG_ERCKUT RG_ERCKUT		RG_ERCKUT_HESS-1_2021-09-15 RG_ERCKUT_HESS-1_2021-09-15	Rhyacophilidae Ceratopogonidae	24	4.6116 4.00E-04
RG_ERCKUT		RG_ERCKUT_HESS-1_2021-09-15	Chironomidae	58	4.00E-04 0.1668
RG ERCKUT		RG ERCKUT HESS-1 2021-09-15	Empididae	5	0.0232
	J J J_ I		, , ,	J	5.5252

Area	Date	Sample ID	Taxa	Count	Total Biomass
RG ERCKUT		RG ERCKUT HESS-2 2021-09-15	Nemata	12	0.0016
RG_ERCKUT	9/15/2021	RG_ERCKUT_HESS-2_2021-09-15	Planariidae	8	0.0976
RG_ERCKUT		RG_ERCKUT_HESS-2_2021-09-15	Enchytraeidae	2	0.002
RG_ERCKUT		RG_ERCKUT_HESS-2_2021-09-15	Sperchonidae	6	0.01
RG_ERCKUT RG_ERCKUT		RG_ERCKUT_HESS-2_2021-09-15 RG_ERCKUT_HESS-2_2021-09-15	Ostracoda Capniidae	12	0.0088 0.0328
RG_ERCKUT		RG_ERCKUT_HESS-2_2021-09-15	Caprilidae	7	0.0326
RG ERCKUT		RG ERCKUT HESS-2 2021-09-15	Nemouridae	26	0.1868
RG ERCKUT		RG ERCKUT HESS-2 2021-09-15	Peltoperlidae	103	1.3032
RG_ERCKUT		RG_ERCKUT_HESS-2_2021-09-15	Perlodidae	10	0.0252
RG_ERCKUT		RG_ERCKUT_HESS-2_2021-09-15	Glossosomatidae	1	8.00E-04
RG_ERCKUT		RG_ERCKUT_HESS-2_2021-09-15	Rhyacophilidae	2	0.2872
RG_ERCKUT		RG_ERCKUT_HESS-2_2021-09-15	Ceratopogonidae	1	8.00E-04
RG_ERCKUT RG_ERCKUT		RG_ERCKUT_HESS-2_2021-09-15 RG_ERCKUT_HESS-2_2021-09-15	Chironomidae Empididae	204	0.4336 0.0732
RG_ERCKUT		RG ERCKUT HESS-2 2021-09-15	Pelecorhyncidae	5	0.0732
RG ERCKUT		RG ERCKUT HESS-3 2021-09-15	Planariidae	8	0.0868
RG ERCKUT		RG ERCKUT HESS-3 2021-09-15	Enchytraeidae	1	4.00E-04
RG_ERCKUT	9/15/2021	RG_ERCKUT_HESS-3_2021-09-15	Naididae	3	0.018
RG_ERCKUT		RG_ERCKUT_HESS-3_2021-09-15	Ostracoda	9	0.0088
RG_ERCKUT		RG_ERCKUT_HESS-3_2021-09-15	Capniidae	3	0.0312
RG_ERCKUT		RG_ERCKUT_HESS-3_2021-09-15	Chloroperlidae	14	0.0716
RG_ERCKUT		RG_ERCKUT_HESS-3_2021-09-15	Nemouridae	21 42	0.1012
RG_ERCKUT RG_ERCKUT		RG_ERCKUT_HESS-3_2021-09-15 RG_ERCKUT_HESS-3_2021-09-15	Peltoperlidae Perlodidae	42	1.03 0.056
RG_ERCKUT		RG ERCKUT HESS-3 2021-09-15	Limnephilidae	1	0.0028
RG_ERCKUT		RG ERCKUT HESS-3 2021-09-15	Rhyacophilidae	2	0.4084
RG_ERCKUT		RG_ERCKUT_HESS-3_2021-09-15	Chironomidae	62	0.1068
RG_ERCKUT		RG_ERCKUT_HESS-3_2021-09-15	Empididae	2	0.0072
RG_ERCKUT		RG_ERCKUT_HESS-3_2021-09-15	Pelecorhyncidae	1	0.0252
RG_ERCKUT		RG_ERCKUT_HESS-4_2021-09-15	Nemata	22	0.0144
RG_ERCKUT RG_ERCKUT		RG_ERCKUT_HESS-4_2021-09-15 RG_ERCKUT_HESS-4_2021-09-15	Planariidae Enchytraeidae	25 1	0.392 0.0016
RG ERCKUT		RG ERCKUT HESS-4 2021-09-15	Sperchonidae	3	0.0018
RG ERCKUT		RG ERCKUT_HESS-4 2021-09-15	Ostracoda	25	0.088
RG ERCKUT		RG ERCKUT HESS-4 2021-09-15	Capniidae	1	0.0272
RG_ERCKUT	9/15/2021	RG_ERCKUT_HESS-4_2021-09-15	Chloroperlidae	8	0.0752
RG_ERCKUT		RG_ERCKUT_HESS-4_2021-09-15	Nemouridae	71	0.8256
RG_ERCKUT		RG_ERCKUT_HESS-4_2021-09-15	Peltoperlidae	36	1.5568
RG_ERCKUT		RG_ERCKUT_HESS-4_2021-09-15	Perlodidae	8	0.144
RG_ERCKUT RG_ERCKUT		RG_ERCKUT_HESS-4_2021-09-15 RG_ERCKUT_HESS-4_2021-09-15	Glossosomatidae Rhyacophilidae	1 2	0.0016 1.3536
RG ERCKUT		RG ERCKUT HESS-4 2021-09-15	Chironomidae	155	1.0352
RG ERCKUT		RG ERCKUT HESS-4 2021-09-15	Empididae	6	0.056
RG_ERCKUT		RG_ERCKUT_HESS-4_2021-09-15	Pelecorhyncidae	1	0.0016
RG_ERCKUT		RG_ERCKUT_HESS-5_2021-09-15	Nemata	5	0.0026
RG_ERCKUT		RG_ERCKUT_HESS-5_2021-09-15	Planariidae	5	0.0162
RG_ERCKUT		RG_ERCKUT_HESS-5_2021-09-15	Ostracoda	1	4.00E-04
RG_ERCKUT RG_ERCKUT		RG_ERCKUT_HESS-5_2021-09-15 RG_ERCKUT_HESS-5_2021-09-15	Chloroperlidae	13	0.0138
RG_ERCKUT		RG ERCKUT HESS-5 2021-09-15	Nemouridae Peltoperlidae	39	0.044 0.2668
RG ERCKUT		RG ERCKUT HESS-5 2021-09-15	Perlodidae	8	0.0352
RG_ERCKUT		RG_ERCKUT_HESS-5_2021-09-15	Rhyacophilidae	8	0.455
RG_ERCKUT		RG_ERCKUT_HESS-5_2021-09-15	Chironomidae	68	0.08
RG_ERCKUT		RG_ERCKUT_HESS-5_2021-09-15	Empididae	3	0.003
RG_ERCKUT		RG_ERCKUT_HESS-5_2021-09-15	Pelecorhyncidae	1	0.0078
RG_ERCKUT		RG_ERCKUT_HESS-6_2021-09-15	Nemata	8	0.0024
RG_ERCKUT RG_ERCKUT		RG_ERCKUT_HESS-6_2021-09-15 RG_ERCKUT_HESS-6_2021-09-15	Planariidae Sperchonidae	29 8	0.1868 0.0152
RG_ERCKUT		RG_ERCKUT_HESS-6_2021-09-15	Ostracoda	21	0.0152
RG ERCKUT		RG ERCKUT HESS-6 2021-09-15	Chloroperlidae	13	0.0784
RG_ERCKUT		RG_ERCKUT_HESS-6_2021-09-15	Nemouridae	40	0.1752
RG_ERCKUT	9/15/2021	RG_ERCKUT_HESS-6_2021-09-15	Peltoperlidae	76	0.8352
RG_ERCKUT		RG_ERCKUT_HESS-6_2021-09-15	Perlodidae	3	0.0072
RG_ERCKUT		RG_ERCKUT_HESS-6_2021-09-15	Limnephilidae	5	0.0064
RG_ERCKUT RG_ERCKUT		RG_ERCKUT_HESS-6_2021-09-15	Chironomidae Empididae	184 10	0.432
RG_ERCKUT RG_ERCKUT		RG_ERCKUT_HESS-6_2021-09-15 RG_ERCKUT_HESS-6_2021-09-15	Pelecorhyncidae	10	0.0372 0.0408
RG ERCKUT		RG ERCKUT HESS-6 2021-09-15	Psychodidae	2	0.0056
RG_ERCKUT		RG_ERCKUT_HESS-7_2021-09-15	Nemata	3	2.00E-04
RG_ERCKUT	9/15/2021	RG_ERCKUT_HESS-7_2021-09-15	Planariidae	18	0.0668
RG_ERCKUT		RG_ERCKUT_HESS-7_2021-09-15	Enchytraeidae	1	2.00E-04
RG_ERCKUT		RG_ERCKUT_HESS-7_2021-09-15	Sperchonidae	5	0.0034
RG_ERCKUT		RG_ERCKUT_HESS-7_2021-09-15	Ostracoda	7	0.0042
RG_ERCKUT RG_ERCKUT		RG_ERCKUT_HESS-7_2021-09-15 RG_ERCKUT_HESS-7_2021-09-15	Chloroperlidae Nemouridae	17 47	0.0282 0.1456
RG_ERCKUT		RG_ERCKUT_HESS-7_2021-09-15	Peltoperlidae	83	0.1456
RG_ERCKUT		RG ERCKUT HESS-7 2021-09-15	Perlodidae	8	0.02
RG_ERCKUT		RG_ERCKUT_HESS-7_2021-09-15	Rhyacophilidae	2	0.1388
RG_ERCKUT		RG_ERCKUT_HESS-7_2021-09-15	Chironomidae	165	0.1784
RG_ERCKUT		RG_ERCKUT_HESS-7_2021-09-15	Empididae	10	0.0178
RG_ERCKUT		RG_ERCKUT_HESS-8_2021-09-15	Nemata	5	0.0064
RG_ERCKUT		RG_ERCKUT_HESS-8_2021-09-15	Planariidae	11	0.1936
RG_ERCKUT RG_ERCKUT		RG_ERCKUT_HESS-8_2021-09-15 RG_ERCKUT_HESS-8_2021-09-15	Sperchonidae Ostracoda	6	0.0112 0.0176
RG_ERCKUT		RG ERCKUT HESS-8 2021-09-15	Staphylinidae	1	0.0176
	U1 1U1ZUZ I		- apriyiiriidae	ı	0.0224

Area	Date	Sample ID	Taxa	Count	Total_Biomass
RG_ERCKUT		RG_ERCKUT_HESS-8_2021-09-15	Capniidae	1	0.0416
RG_ERCKUT	9/15/2021	RG_ERCKUT_HESS-8_2021-09-15	Chloroperlidae	5	0.0656
RG_ERCKUT	9/15/2021	RG_ERCKUT_HESS-8_2021-09-15	Nemouridae	46	0.4608
RG_ERCKUT	9/15/2021	RG_ERCKUT_HESS-8_2021-09-15	Peltoperlidae	54	2.6784
RG_ERCKUT	9/15/2021	RG_ERCKUT_HESS-8_2021-09-15	Perlodidae	1	0.0096
RG_ERCKUT	9/15/2021	RG_ERCKUT_HESS-8_2021-09-15	Limnephilidae	1	0.0016
RG_ERCKUT	9/15/2021	RG_ERCKUT_HESS-8_2021-09-15	Rhyacophilidae	1	1.4128
RG_ERCKUT	9/15/2021	RG_ERCKUT_HESS-8_2021-09-15	Chironomidae	113	0.8496
RG_ERCKUT	9/15/2021	RG_ERCKUT_HESS-8_2021-09-15	Empididae	1	0.0144
RG_ERCKUT	9/15/2021	RG_ERCKUT_HESS-9_2021-09-15	Nemata	13	0.0448
RG_ERCKUT	9/15/2021	RG_ERCKUT_HESS-9_2021-09-15	Planariidae	19	0.3328
RG_ERCKUT	9/15/2021	RG_ERCKUT_HESS-9_2021-09-15	Enchytraeidae	4	0.0064
RG_ERCKUT		RG_ERCKUT_HESS-9_2021-09-15	Sperchonidae	4	0.0256
RG_ERCKUT	9/15/2021	RG_ERCKUT_HESS-9_2021-09-15	Ostracoda	159	0.5408
RG_ERCKUT	9/15/2021	RG_ERCKUT_HESS-9_2021-09-15	Chloroperlidae	15	0.0896
RG_ERCKUT	9/15/2021	RG_ERCKUT_HESS-9_2021-09-15	Nemouridae	20	0.5408
RG_ERCKUT	9/15/2021	RG_ERCKUT_HESS-9_2021-09-15	Peltoperlidae	78	5.392
RG_ERCKUT	9/15/2021	RG_ERCKUT_HESS-9_2021-09-15	Perlodidae	9	0.08
RG_ERCKUT	9/15/2021	RG_ERCKUT_HESS-9_2021-09-15	Limnephilidae	4	0.0192
RG_ERCKUT	9/15/2021	RG_ERCKUT_HESS-9_2021-09-15	Rhyacophilidae	1	0.047
RG_ERCKUT	9/15/2021	RG_ERCKUT_HESS-9_2021-09-15	Chironomidae	77	0.8208
RG_ERCKUT	9/15/2021	RG_ERCKUT_HESS-9_2021-09-15	Empididae	2	0.0224
RG_ERCKUT	9/15/2021	RG_ERCKUT_HESS-10_2021-09-15	Nemata	27	0.0112
RG_ERCKUT		RG_ERCKUT_HESS-10_2021-09-15	Planariidae	10	0.2008
RG_ERCKUT	9/15/2021	RG_ERCKUT_HESS-10_2021-09-15	Enchytraeidae	1	8.00E-04
RG_ERCKUT	9/15/2021	RG_ERCKUT_HESS-10_2021-09-15	Naididae	1	0.0048
RG_ERCKUT	9/15/2021	RG_ERCKUT_HESS-10_2021-09-15	Sperchonidae	3	0.008
RG_ERCKUT	9/15/2021	RG_ERCKUT_HESS-10_2021-09-15	Ostracoda	48	0.0824
RG_ERCKUT	9/15/2021	RG_ERCKUT_HESS-10_2021-09-15	Capniidae	1	0.0368
RG_ERCKUT	9/15/2021	RG_ERCKUT_HESS-10_2021-09-15	Chloroperlidae	12	0.0776
RG_ERCKUT	9/15/2021	RG_ERCKUT_HESS-10_2021-09-15	Nemouridae	40	0.4032
RG_ERCKUT	9/15/2021	RG_ERCKUT_HESS-10_2021-09-15	Peltoperlidae	61	1.424
RG_ERCKUT		RG_ERCKUT_HESS-10_2021-09-15	Perlodidae	2	0.3171
RG_ERCKUT		RG_ERCKUT_HESS-10_2021-09-15	Perlodidae	5	0.0312
RG_ERCKUT		RG_ERCKUT_HESS-10_2021-09-15	Limnephilidae	3	0.0096
RG_ERCKUT		RG_ERCKUT_HESS-10_2021-09-15	Rhyacophilidae	3	0.2672
RG_ERCKUT	9/15/2021	RG_ERCKUT_HESS-10_2021-09-15	Chironomidae	133	0.6776
RG_ERCKUT	9/15/2021	RG_ERCKUT_HESS-10_2021-09-15	Empididae	13	0.0792
RG_ERCKUT		RG_ERCKUT_HESS-10_2021-09-15	Pelecorhyncidae	4	0.0416
RG_ERCKUT	9/15/2021	RG_ERCKUT_HESS-10_2021-09-15	Tipulidae	1	8.00E-04

BENTHIC TISSUE CHEMISTRY

TrichAnalytics Laboratory Report 2021-260 (Finalized October 20, 2021)

Trich Analytics Inc.

Tissue Microchemistry Analysis Report

Client: Peter Schnurr Date Received: 28 Sep 2021

Aquatic Scientist

Date of Analysis: 18 Oct 2021

Minnow Environmental

Final Report Date: 20 Oct 2021

 Phone:
 (250) 595-1627
 Project No.:
 2021-260

 Email:
 pschnurr@minnow.ca
 Method No.:
 MET-002.05

Client Project: FRO LAEMP (21-11) (PO 748530)

Analytical Request: Composite-Taxa Benthic Invertebrate Tissue (total metals and moisture) - 42 samples.

See chain of custody form provided for sample identification numbers.

Notes:

Analytical results are expressed in parts per million (ppm) dry weight (equivalent to mg/kg). Samples quantified using DORM-4, NIST-1566b, and NIST-2976 certified reference standards. Aluminum concentrations above 1,000 ppm are outside linear range of the calibration curve. RPD values calculated according to the British Columbia Environmental Laboratory Manual (2020) criteria.

Client specific DQO for Selenium accuracy is 90-110% of the certified value; result achieved 105% (ranging from 97-109%).

This report provides the analytical results only for tissue samples noted above as received from the Client.

Reviewed and Approved by Jennie Christensen, PhD, RPBio

20 Oct 2021

[The analytical report shall not be reproduced except in full under the expressed written consent of TrichAnalytics Inc.]

TrichAnalytics Inc. 207-1753 Sean Heights Saanichton, BC V8M 0B3 www.trichanalytics.com

		Client ID	RG_GATE_INV-	RG_GATE_INV-	RG_GATE_INV-		RG_GATEDP_INV-
		Client ID	1_2021-09-16	2_2021-09-16	3_2021-09-16	1_2021-09-16	2_2021-09-16
		Lab ID	608	609	610	611	612
	We	et Weight (g)	0.2843	0.3056	0.2425	0.2590	0.2462
		ry Weight (g)	0.0597	0.0978	0.0529	0.0726	0.0733
		Moisture (%)	79.0	68.0	78.2	72.0	70.2
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.011	0.037	4.4	1.2	2.9	2.6	0.724
11B	0.101	0.337	5.0	1.8	6.0	2.0	1.1
23Na	1.9	6.3	7,802	3,460	4,867	4,530	1,862
24Mg	0.024	0.080	3,464	1,517	3,191	2,615	800
27Al	0.035	0.117	5,028	279	3,545	672	54
31P	33	110	14,680	9,143	14,248	12,094	5,180
39K	2.8	9.3	16,713	9,072	18,465	10,643	5,473
44Ca	9.5	32	10,790	2,896	9,437	7,482	1,432
49Ti	0.212	0.707	413	17	276	40	2.4
51V	0.066	0.220	8.4	0.657	6.1	1.1	0.144
52Cr	0.326	1.1	42	10	17	13	4.0
55Mn	0.008	0.027	146	45	185	57	22
57Fe	1.3	4.3	3,232	398	2,634	474	90
59Co	0.008	0.027	5.0	1.1	4.1	2.0	0.639
60Ni	0.037	0.123	114	21	79	33	7.6
63Cu	0.008	0.027	27	20	20	18	8.5
66Zn	0.341	1.1	255	148	294	282	86
75As	0.441	1.5	1.9	< 0.441	2.6	< 0.441	< 0.441
77Se	0.390	1.3	34	21	24	18	8.7
88Sr	0.001	0.003	245	23	289	21	3.9
95Mo	0.001	0.003	0.933	0.203	0.872	0.324	0.101
107Ag	0.001	0.003	0.140	0.069	0.115	0.086	0.011
111Cd	0.059	0.197	5.1	1.6	4.8	9.4	1.7
118Sn	0.023	0.077	0.653	0.160	0.597	0.298	0.153
121Sb	0.005	0.017	0.255	0.054	0.235	0.069	0.015
137Ba	0.001	0.003	22,221	1,685	30,247	695	79
202Hg	0.023	0.077	0.096	0.048	0.088	0.048	0.016
205Tl	0.001	0.003	0.333	0.117	0.281	0.067	0.022
208Pb	0.001	0.003	1.1	0.072	0.777	0.168	0.018
238U	0.001	0.003	0.283	0.039	0.379	0.315	0.028

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

		Client ID	RG_GATEDP_INV- 3_2021-09-16	RG_BOCK_INV- 1_2021-09-16	RG_BOCK_INV- 2_2021-09-16	RG_BOCK_INV- 3_2021-09-16	RG_ERCKDT_INV- 1_2021-09-14
		Lab ID	613	614	615	616	617
	We	et Weight (g)	0.0643	0.1506	0.6665	0.7696	0.4500
		ry Weight (g)	0.0162	0.0171	0.1204	0.1261	0.0936
		Moisture (%)	74.8	88.6	81.9	83.6	79.2
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.011	0.037	3.2	2.4	1.5	2.1	0.917
11B	0.101	0.337	2.0	5.1	1.5	2.2	1.5
23Na	1.9	6.3	6,146	16,416	10,177	12,519	2,297
24Mg	0.024	0.080	2,713	3,034	2,801	3,255	1,818
27Al	0.035	0.117	408	3,907	677	1,072	1,288
31P	33	110	13,224	12,303	11,876	13,732	8,302
39K	2.8	9.3	11,232	16,642	13,298	14,583	6,947
44Ca	9.5	32	5,466	4,891	2,689	3,551	5,190
49Ti	0.212	0.707	31	298	43	64	90
51V	0.066	0.220	1.0	6.2	1.4	2.1	2.6
52Cr	0.326	1.1	10	14	8.2	5.7	17
55Mn	0.008	0.027	35	30	12	14	177
57Fe	1.3	4.3	438	966	285	364	3,148
59Co	0.008	0.027	2.0	3.2	1.2	1.5	9.8
60Ni	0.037	0.123	23	120	26	28	36
63Cu	0.008	0.027	26	14	33	28	14
66Zn	0.341	1.1	292	144	100	112	144
75As	0.441	1.5	< 0.441	0.677	0.677	0.867	2.0
77Se	0.390	1.3	20	92	49	69	12
88Sr	0.001	0.003	23	30	8.3	13	7.9
95Mo	0.001	0.003	0.446	0.892	0.183	0.266	0.642
107Ag	0.001	0.003	0.149	0.072	0.235	0.153	0.061
111Cd	0.059	0.197	10	2.3	0.540	0.796	1.3
118Sn	0.023	0.077	0.639	0.964	0.279	0.224	1.6
121Sb	0.005	0.017	0.141	0.245	0.076	0.101	0.100
137Ba	0.001	0.003	1,127	892	138	132	44
202Hg	0.023	0.077	0.056	0.056	0.056	0.067	0.036
205TI	0.001	0.003	0.090	0.287	0.279	0.267	0.108
208Pb	0.001	0.003	0.177	1.3	0.247	0.343	0.849
238U	0.001	0.003	0.228	0.509	0.062	0.089	0.169

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

			RG ERCKDT INV-	RG ERCKDT INV-	RG ERCKDT INV-	RG ERCKUT INV-	RG_ERCKUT_INV-
		Client ID	2_2021-09-14	3_2021-09-14	4 2021-09-14	1 2021-09-15	2_2021-09-15
			_	_	_	_	_
		Lab ID	618	619	620	621	622
	We	et Weight (g)	0.4511	0.3908	0.3080	0.6035	0.5876
	Dı	y Weight (g)	0.0866	0.0741	0.0597	0.1545	0.1493
		Moisture (%)	80.8	81.0	80.6	74.4	74.6
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.011	0.037	1.0	0.872	0.822	0.374	0.422
11B	0.101	0.337	3.0	1.2	1.6	2.0	1.2
23Na	1.9	6.3	2,683	2,140	3,262	2,782	2,413
24Mg	0.024	0.080	2,674	1,907	2,631	1,996	1,618
27Al	0.035	0.117	1,832	744	894	207	198
31P	33	110	7,837	8,789	10,512	9,223	8,200
39K	2.8	9.3	9,172	8,066	9,722	8,294	7,257
44Ca	9.5	32	6,227	4,918	5,264	3,660	3,184
49Ti	0.212	0.707	125	44	66	11	12
51V	0.066	0.220	3.2	1.4	2.0	1.0	0.807
52Cr	0.326	1.1	17	9.8	14	4.8	6.0
55Mn	0.008	0.027	453	113	132	9.4	6.6
57Fe	1.3	4.3	3,449	1,848	2,050	177	173
59Co	0.008	0.027	20	5.7	7.9	0.222	0.264
60Ni	0.037	0.123	47	22	30	7.1	10
63Cu	0.008	0.027	14	17	16	19	17
66Zn	0.341	1.1	245	166	175	168	132
75As	0.441	1.5	2.7	1.3	1.4	< 0.441	<0.441
77Se	0.390	1.3	17	16	20	5.8	4.1
88Sr	0.001	0.003	9.3	5.9	6.5	2.7	2.0
95Mo	0.001	0.003	0.930	0.708	0.553	0.133	0.089
107Ag	0.001	0.003	0.068	0.075	0.061	0.051	0.068
111Cd	0.059	0.197	2.7	0.446	1.8	1.9	1.3
118Sn	0.023	0.077	1.2	0.958	0.864	0.500	0.225
121Sb	0.005	0.017	0.168	0.072	0.087	0.094	0.086
137Ba	0.001	0.003	62	21	25	9.9	7.1
202Hg	0.023	0.077	0.054	<0.023	0.036	0.045	0.027
205TI	0.001	0.003	0.672	0.094	0.125	0.023	0.018
208Pb	0.001	0.003	0.926	0.407	0.458	0.070	0.054
238U	0.001	0.003	0.248	0.154	0.182	0.122	0.095

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

			RG_ERCKUT_INV-	RG_ERCKUT_INV-	RG_ERCKUT_INV-	RG_ERCKDT_INV-	RG_MIDBO_INV-
		Client ID	3_2021-09-15	4_2021-09-15	5_2021-09-15	5_2021-09-15	1_2021-09-11
		Lab ID	623	624	625	626	627
	14/		1.1726	0.8104	0.4100	1.1524	1.4947
		et Weight (g)				0.2143	
		ry Weight (g)	0.2876	0.2099	0.1025		0.3355
		Moisture (%)	75.5	74.1	75.0	81.4	77.6
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.011	0.037	0.363	0.380	0.446	1.2	3.7
11B	0.101	0.337	1.3	0.982	1.1	2.3	1.4
23Na	1.9	6.3	2,119	2,727	2,446	3,027	3,621
24Mg	0.024	0.080	1,850	1,820	1,612	2,403	1,163
27Al	0.035	0.117	140	180	157	1,405	166
31P	33	110	7,713	10,235	8,240	11,010	10,517
39K	2.8	9.3	6,280	8,381	7,581	9,111	9,909
44Ca	9.5	32	3,585	2,992	3,775	6,657	1,772
49Ti	0.212	0.707	8.5	10	6.5	109	8.1
51V	0.066	0.220	0.678	0.700	0.589	2.8	0.355
52Cr	0.326	1.1	3.6	3.7	3.5	15	3.6
55Mn	0.008	0.027	7.3	7.9	6.6	252	92
57Fe	1.3	4.3	129	137	120	2,514	177
59Co	0.008	0.027	0.109	0.176	0.142	17	2.4
60Ni	0.037	0.123	4.7	4.2	4.6	34	19
63Cu	0.008	0.027	16	19	18	16	12
66Zn	0.341	1.1	110	148	134	167	117
75As	0.441	1.5	< 0.441	0.467	< 0.441	1.9	0.577
77Se	0.390	1.3	4.8	6.4	5.6	18	7.0
88Sr	0.001	0.003	2.1	2.1	1.9	8.8	3.8
95Mo	0.001	0.003	0.111	0.169	0.097	0.701	0.254
107Ag	0.001	0.003	0.048	0.104	0.067	0.067	0.089
111Cd	0.059	0.197	1.1	1.6	1.1	1.1	0.712
118Sn	0.023	0.077	0.226	0.336	0.417	0.645	0.400
121Sb	0.005	0.017	0.086	0.124	0.081	0.156	0.023
137Ba	0.001	0.003	6.1	7.5	6.9	42	37
202Hg	0.023	0.077	0.027	0.057	0.038	<0.023	0.057
205TI	0.001	0.003	0.019	0.014	0.012	0.081	0.017
208Pb	0.001	0.003	0.046	0.052	0.038	0.710	0.096
238U	0.001	0.003	0.110	0.146	0.118	0.218	0.027

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

		1	DG 1 41DDG 11 11 4	DO 1 4/DDO 11/11/	DO 1 11 DO 1 11 D 1	DO 1 11 DO 1 11 11 1	
		CI:	RG_MIDBO_INV-	RG_MIDBO_INV-	RG_MIDGA_INV-	RG_MIDGA_INV-	
		Client ID	2_2021-09-11	3_2021-09-11	1_2021-09-11	2_2021-09-11	3_2021-09-11
			620	620	630	634	622
	147	Lab ID	628	629	630	631	632
		et Weight (g)	1.7357	0.9464	1.2264	1.2599	0.9716
		y Weight (g)	0.3583	0.2102	0.2393	0.2938	0.2137
		Moisture (%)	79.4	77.8	80.5	76.7	78.0
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.011	0.037	0.948	0.452	6.0	3.7	1.7
11B	0.101	0.337	1.2	1.4	1.3	1.1	1.2
23Na	1.9	6.3	3,738	3,637	3,284	3,240	5,121
24Mg	0.024	0.080	1,691	1,649	1,092	1,411	1,214
27Al	0.035	0.117	204	241	414	190	247
31P	33	110	10,063	11,419	10,060	10,936	11,014
39K	2.8	9.3	8,356	11,088	9,702	9,608	9,563
44Ca	9.5	32	4,106	3,232	1,789	2,185	2,419
49Ti	0.212	0.707	12	16	29	8.5	13
51V	0.066	0.220	0.457	0.538	0.837	0.406	0.794
52Cr	0.326	1.1	5.8	4.5	7.6	3.2	9.1
55Mn	0.008	0.027	50	38	112	111	101
57Fe	1.3	4.3	239	219	457	269	373
59Co	0.008	0.027	2.2	3.5	3.3	3.7	4.3
60Ni	0.037	0.123	15	14	29	24	25
63Cu	0.008	0.027	16	13	8.3	9.8	11
66Zn	0.341	1.1	262	133	119	158	162
75As	0.441	1.5	< 0.441	0.535	0.714	0.796	0.714
77Se	0.390	1.3	6.0	5.1	5.8	5.7	9.9
88Sr	0.001	0.003	7.9	5.6	4.0	4.9	4.9
95Mo	0.001	0.003	0.242	0.266	0.266	0.266	0.483
107Ag	0.001	0.003	0.196	0.178	0.067	0.096	0.111
111Cd	0.059	0.197	1.3	1.5	2.0	1.6	2.3
118Sn	0.023	0.077	0.273	0.384	0.354	0.300	0.358
121Sb	0.005	0.017	0.024	0.022	0.039	0.033	0.040
137Ba	0.001	0.003	43	31	98	68	83
202Hg	0.023	0.077	0.076	0.057	0.076	0.062	0.076
205TI	0.001	0.003	0.022	0.033	0.040	0.032	0.032
208Pb	0.001	0.003	0.086	0.096	0.189	0.124	0.171
238U	0.001	0.003	0.033	0.033	0.059	0.041	0.077

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

			RG_MIDER_INV-	RG_MIDER_INV-	RG_MIDER_INV-	RG ALUSM INV-	RG_ALUSM_INV-
		Client ID	1_2021-09-09	2_2021-09-09	3_2021-09-09	1_2021-09-12	2_2021-09-12
			<u></u>				
		Lab ID	633	634	635	636	637
	We	et Weight (g)	1.1411	0.8337	1.8467	1.4960	1.0551
		ry Weight (g)	0.2855	0.1880	0.4664	0.2845	0.2111
		Moisture (%)	75.0	77.4	74.7	81.0	80.0
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.011	0.037	0.348	0.398	0.223	0.479	0.398
11B	0.101	0.337	1.5	1.6	1.0	1.9	1.9
23Na	1.9	6.3	4,333	4,762	3,819	4,274	3,234
24Mg	0.024	0.080	1,971	1,419	1,701	1,394	1,309
27Al	0.035	0.117	605	553	330	766	735
31P	33	110	11,583	12,508	12,152	12,784	9,964
39K	2.8	9.3	10,212	13,408	11,356	11,151	9,537
44Ca	9.5	32	4,213	2,721	2,484	2,072	2,148
49Ti	0.212	0.707	21	31	17	49	60
51V	0.066	0.220	0.741	1.1	0.590	1.2	0.952
52Cr	0.326	1.1	7.3	13	4.0	7.8	5.9
55Mn	0.008	0.027	63	80	78	128	78
57Fe	1.3	4.3	459	508	286	925	738
59Co	0.008	0.027	4.8	2.9	2.1	1.4	1.0
60Ni	0.037	0.123	18	25	11	12	10
63Cu	0.008	0.027	18	13	12	16	14
66Zn	0.341	1.1	213	141	118	171	127
75As	0.441	1.5	0.943	0.796	0.604	0.943	1.0
77Se	0.390	1.3	5.8	6.9	5.0	5.0	6.1
88Sr	0.001	0.003	8.5	5.5	5.0	4.4	4.5
95Mo	0.001	0.003	0.395	0.633	0.250	0.422	0.461
107Ag	0.001	0.003	0.151	0.092	0.134	0.092	0.076
111Cd	0.059	0.197	2.5	2.2	1.3	0.757	0.874
118Sn	0.023	0.077	0.199	0.262	0.080	0.114	0.241
121Sb	0.005	0.017	0.043	0.046	0.025	0.031	0.037
137Ba	0.001	0.003	40	76	41	86	54
202Hg	0.023	0.077	0.051	0.040	0.045	0.071	0.061
205TI	0.001	0.003	0.048	0.060	0.038	0.047	0.039
208Pb	0.001	0.003	0.180	0.202	0.121	0.585	0.355
238U	0.001	0.003	0.036	0.042	0.029	0.074	0.052

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

		Client ID	RG_ALUSM_INV- 3_2021-09-12	RG_BOCK_INVLU M-1_2021-09-16	RG_GATEDP_INV LUM-1_2021-09- 16	RG_MI3_INV- 1_2021-09-10	RG_MI3_INV- 2_2021-09-10
		Lab ID	638	639	640	641	642
	We	et Weight (g)	1.4955	0.2343	0.0881	0.6412	0.8517
		y Weight (g)	0.2875	0.0540	0.0271	0.1190	0.2391
		Moisture (%)	80.8	77.0	69.2	81.4	71.9
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.011	0.037	0.452	4.7	3.6	0.348	0.134
11B	0.101	0.337	2.0	12	4.2	2.5	0.965
23Na	1.9	6.3	3,571	3,160	3,612	3,130	2,874
24Mg	0.024	0.080	1,291	3,207	2,617	1,573	2,854
27Al	0.035	0.117	926	12,949	3,475	565	221
31P	33	110	11,128	10,940	11,647	10,887	15,025
39K	2.8	9.3	9,683	11,060	10,877	9,999	11,273
44Ca	9.5	32	2,017	20,114	30,485	3,016	5,285
49Ti	0.212	0.707	67	970	321	41	8.9
51V	0.066	0.220	1.2	20	5.5	0.963	0.416
52Cr	0.326	1.1	6.0	29	13	8.5	4.6
55Mn	0.008	0.027	89	74	77	56	55
57Fe	1.3	4.3	1,021	3,040	1,922	466	247
59Co	0.008	0.027	1.0	12	7.3	1.9	0.818
60Ni	0.037	0.123	9.9	120	78	16	6.6
63Cu	0.008	0.027	14	27	13	12	21
66Zn	0.341	1.1	120	243	186	150	284
75As	0.441	1.5	1.0	6.4	11	0.987	0.639
77Se	0.390	1.3	5.4	240	138	4.5	5.9
88Sr	0.001	0.003	3.7	85	132	5.5	4.0
95Mo	0.001	0.003	0.409	1.6	1.1	0.475	0.252
107Ag	0.001	0.003	0.067	0.903	0.281	0.084	0.121
111Cd	0.059	0.197	0.807	5.0	4.9	1.9	0.765
118Sn	0.023	0.077	0.317	1.1	0.748	0.320	0.136
121Sb	0.005	0.017	0.041	0.721	0.217	0.033	0.030
137Ba	0.001	0.003	55	2,728	7,635	82	30
202Hg	0.023	0.077	0.051	0.354	0.303	0.061	0.042
205Tl	0.001	0.003	0.033	0.641	0.529	0.051	0.037
208Pb	0.001	0.003	0.609	3.5	0.868	0.198	0.119
238U	0.001	0.003	0.061	1.2	0.729	0.053	0.016

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

		Client ID	RG_MI3_INV- 3_2021-09-10	RG_ERCK_INV- 1_2021-09-10	RG_MICOMP_IN V-1_2021-09-13	RG_MICOMP_IN V-2_2021-09-13	RG_MICOMP_IN V-3_2021-09-13
		Lab ID	643	644	645	646	647
	We	et Weight (g)	0.8373	0.6746	0.8965	1.5421	0.7996
		y Weight (g)	0.1995	0.1798	0.1778	0.3437	0.1493
		Moisture (%)	76.2	73.3	80.2	77.7	81.3
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.011	0.037	0.268	0.418	0.455	0.358	0.256
11B	0.101	0.337	1.7	0.919	4.7	2.2	1.7
23Na	1.9	6.3	3,134	2,504	2,231	4,667	3,240
24Mg	0.024	0.080	1,312	1,548	1,025	2,108	, 988
27Al	0.035	0.117	452	89	802	182	107
31P	33	110	9,500	9,657	6,951	13,416	8,133
39K	2.8	9.3	9,863	8,322	6,763	10,645	7,205
44Ca	9.5	32	1,944	4,524	4,166	4,465	2,552
49Ti	0.212	0.707	27	3.7	55	11	5.4
51V	0.066	0.220	1.0	0.225	1.8	0.426	0.243
52Cr	0.326	1.1	10	3.8	18	4.6	3.4
55Mn	0.008	0.027	54	63	80	54	36
57Fe	1.3	4.3	195	127	699	372	159
59Co	0.008	0.027	0.831	3.4	3.6	4.2	1.2
60Ni	0.037	0.123	17	12	39	17	9.6
63Cu	0.008	0.027	14	10	11	22	8.7
66Zn	0.341	1.1	136	192	100	288	135
75As	0.441	1.5	0.528	< 0.441	0.722	0.792	< 0.441
77Se	0.390	1.3	3.0	3.3	4.5	5.1	2.7
88Sr	0.001	0.003	4.0	4.1	7.5	7.5	4.5
95Mo	0.001	0.003	0.299	0.299	0.435	0.353	0.163
107Ag	0.001	0.003	0.113	0.098	0.091	0.174	0.083
111Cd	0.059	0.197	1.2	0.315	2.3	2.0	0.811
118Sn	0.023	0.077	0.133	0.151	0.419	0.225	0.228
121Sb	0.005	0.017	0.030	0.024	0.039	0.023	0.008
137Ba	0.001	0.003	54	5.2	70	44	25
202Hg	0.023	0.077	0.067	0.034	0.063	0.084	0.067
205TI	0.001	0.003	0.033	0.028	0.057	0.047	0.031
208Pb	0.001	0.003	0.167	0.033	0.237	0.130	0.058
238U	0.001	0.003	0.030	0.029	0.075	0.050	0.026

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

		Client ID	RG_MICOMP_IN V-4_2021-09-13	RG_MICOMP_IN V-5_2021-09-13
		Lab ID	648	649
		et Weight (g)	0.8781	1.1884
		y Weight (g)	0.1578	0.2685
	Moisture (%)		82.0	77.4
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)
7Li	0.011	0.037	0.415	0.305
11B	0.101	0.337	2.1	1.1
23Na	1.9	6.3	3,067	2,756
24Mg	0.024	0.080	1,184	1,414
27Al	0.035	0.117	334	179
31P	33	110	9,929	9,273
39K	2.8	9.3	10,159	7,653
44Ca	9.5	32	2,620	2,023
49Ti	0.212	0.707	16	8.5
51V	0.066	0.220	0.609	0.423
52Cr	0.326	1.1	3.3	4.1
55Mn	0.008	0.027	97	47
57Fe	1.3	4.3	325	196
59Co	0.008	0.027	2.7	1.4
60Ni	0.037	0.123	15	11
63Cu	0.008	0.027	9.6	10
66Zn	0.341	1.1	142	125
75As	0.441	1.5	0.875	< 0.441
77Se	0.390	1.3	4.3	3.5
88Sr	0.001	0.003	5.6	3.8
95Mo	0.001	0.003	0.408	0.217
107Ag	0.001	0.003	0.068	0.136
111Cd	0.059	0.197	1.1	0.645
118Sn	0.023	0.077	0.426	0.211
121Sb	0.005	0.017	0.024	0.020
137Ba	0.001	0.003	70	36
202Hg	0.023	0.077	0.038	0.055
205TI	0.001	0.003	0.048	0.030
208Pb	0.001	0.003	0.148	0.089
238U	0.001	0.003	0.047	0.033

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

% = percent

Page 10 of 20

Teck Coal Limited Tissue QA/QC Relative Percent Difference Results

	Client ID	RG_GAT	RG_GATE_INV-3_2021-09-16		RG_BOC	RG_BOCK_INV-2_2021-09-16		RG_BOCK_INV-3_2021-09-16		
	Lab ID	610 615 616			615					
Parameter	DL (ppm)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)
7Li	0.011	2.9	3.4	16	1.5	1.3	14	2.1	1.9	10
11B	0.101	6.0	5.9	1.7	1.5	1.5	0.0	2.2	2.1	4.7
23Na	1.9	4,867	5,305	8.6	10,177	8,531	18	12,519	9,607	26
24Mg	0.024	3,191	3,426	7.1	2,801	2,503	11	3,255	3,152	3.2
27Al	0.035	3,545	4,409	22	677	824	20	1,072	1,138	6.0
31P	33	14,248	14,461	1.5	11,876	10,908	8.5	13,732	10,956	23
39K	2.8	18,465	18,116	1.9	13,298	11,930	11	14,583	12,517	15
44Ca	9.5	9,437	10,797	13	2,689	2,685	0.1	3,551	4,411	22
49Ti	0.212	276	349	23	43	39	9.8	64	71	10
51V	0.066	6.1	7.0	14	1.4	1.2	15	2.1	2.1	0.0
52Cr	0.326	17	18	5.7	8.2	8.4	2.4	5.7	5.5	3.6
55Mn	0.008	185	186	0.5	12	9.3	25	14	17	19
57Fe	1.3	2,634	3,356	24	285	265	7.3	364	405	11
59Co	0.008	4.1	4.4	7.1	1.2	1.2	0.0	1.5	1.5	0.0
60Ni	0.037	79	85	7.3	26	26	0.0	28	30	6.9
63Cu	0.008	20	19	5.1	33	30	9.5	28	25	11
66Zn	0.341	294	300	2.0	100	90	11	112	112	0.0
75As	0.441	2.6	2.3	-	0.677	0.702	-	0.867	0.921	-
77Se	0.390	24	23	4.3	49	50	2.0	69	60	14
88Sr	0.001	289	335	15	8.3	8.3	0.0	13	17	27
95Mo	0.001	0.872	0.892	2.3	0.183	0.183	0.0	0.266	0.376	34
107Ag	0.001	0.115	0.126	9.1	0.235	0.218	7.5	0.153	0.163	6.3
111Cd	0.059	4.8	5.2	8.0	0.540	0.600	-	0.796	0.859	7.6
118Sn	0.023	0.597	0.657	9.6	0.279	0.254	9.4	0.224	0.215	-
121Sb	0.005	0.235	0.236	0.4	0.076	0.078	2.6	0.101	0.109	7.6
137Ba	0.001	30,247	35,664	16	138	120	14	132	133	0.8
202Hg	0.023	0.088	0.088	-	0.056	0.048	-	0.067	0.080	-
205TI	0.001	0.281	0.328	15	0.279	0.258	7.8	0.267	0.229	15
208Pb	0.001	0.777	0.926	18	0.247	0.250	1.2	0.343	0.396	14
238U	0.001	0.379	0.401	5.6	0.062	0.050	21	0.089	0.104	16

Notes:

ppm = parts per million

RPD = relative percent difference

DL = detection limit

< = less than detection limit

% = percent

Data Quality Objectives:

Laboratory Duplicates - RPD \leq 40% for all elements, except Ca and Sr, which are \leq 60% Minimum DQOs apply to individual samples at concentrations above 10x DL

Teck Coal Limited
Tissue QA/QC Relative Percent Difference Results

Client ID	RG_ERCKUT_INV-1_2021-09-15	RG_MIDER_INV-1_2021-09-09
Lab ID	621	633

	Lab ID			! <u>L</u>	955			
Parameter	DL (ppm)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)		Sample (ppm)	Sample Duplicate (ppm)	RPD (%)
7Li	0.011	0.374	0.430	14		0.348	0.263	28
11B	0.101	2.0	1.7	16		1.5	1.1	31
23Na	1.9	2,782	2,929	5.1		4,333	5,042	15
24Mg	0.024	1,996	2,112	5.6		1,971	1,817	8.1
27Al	0.035	207	206	0.5		605	504	18
31P	33	9,223	10,349	12		11,583	12,056	4.0
39K	2.8	8,294	8,919	7.3		10,212	9,935	2.7
44Ca	9.5	3,660	3,439	6.2		4,213	4,476	6.1
49Ti	0.212	11	16	37		21	21	0.0
51V	0.066	1.0	0.907	9.8		0.741	0.778	4.9
52Cr	0.326	4.8	5.7	17		7.3	7.8	6.6
55Mn	0.008	9.4	8.5	10		63	57	10
57Fe	1.3	177	198	11		459	413	11
59Co	0.008	0.222	0.258	15		4.8	3.8	23
60Ni	0.037	7.1	10	34		18	16	12
63Cu	0.008	19	18	5.4		18	20	11
66Zn	0.341	168	163	3.0		213	242	13
75As	0.441	< 0.441	0.460	-		0.943	0.855	-
77Se	0.390	5.8	5.4	7.1		5.8	5.2	11
88Sr	0.001	2.7	2.7	0.0		8.5	7.8	8.6
95Mo	0.001	0.133	0.155	15		0.395	0.335	16
107Ag	0.001	0.051	0.065	24		0.151	0.202	29
111Cd	0.059	1.9	1.6	17		2.5	2.2	13
118Sn	0.023	0.500	0.427	16		0.199	0.137	-
121Sb	0.005	0.094	0.082	14		0.043	0.032	-
137Ba	0.001	9.9	8.7	13		40	40	0.0
202Hg	0.023	0.045	0.027	-		0.051	0.071	-
205TI	0.001	0.023	0.020	14		0.048	0.057	17
208Pb	0.001	0.070	0.051	31		0.180	0.139	26
238U	0.001	0.122	0.113	7.7		0.036	0.031	15

Notes:

ppm = parts per million

RPD = relative percent difference

DL = detection limit

< = less than detection limit

% = percent

Data Quality Objectives:

Laboratory Duplicates - RPD \leq 40% for all elements, except Ca and Sr, which are \leq 60% Minimum DQOs apply to individual samples at concentrations above 10x DL

Teck Coal Limited Tissue QA/QC Accuracy and Precision Results

	S	ample Group ID		01			02	
Parameter	DL (ppm)	Certified Conc. (ppm)	Mean Estimated Conc. (ppm)	Accuracy (%)	Precision RSD (%)	Mean Estimated Conc. (ppm)	Accuracy (%)	Precision RSD (%)
7Li	0.011	1.21	1.3	106	7.4	1.3	105	6.4
11B	0.101	4.5	4.9	109	4.4	4.8	107	2.4
23Na	1.9	14,000	15,956	114	7.6	15,091	108	4.3
24Mg	0.024	910	998	110	5.5	979	108	11
27Al	0.035	197.2	221	112	5.5	203	103	5.7
31P	33	8,000	9,016	113	4.1	8,654	108	4.9
39K	2.8	15,500	17,006	110	6.3	17,690	114	3.0
44Ca	9.5	2,360	2,573	109	3.9	2,636	112	5.7
49Ti	0.212	12.24	13	110	7.7	13	104	9.5
51V	0.066	1.57	1.9	119	8.2	1.8	117	5.7
52Cr	0.326	1.87	2.2	118	5.6	2.0	110	3.5
55Mn	0.008	3.17	3.5	112	6.5	3.6	113	11
57Fe	1.3	343	382	111	5.0	390	114	6.9
59Co	0.008	0.25	0.295	118	6.8	0.278	111	6.3
60Ni	0.037	1.34	1.6	117	6.8	1.5	111	1.5
63Cu	0.008	15.7	19	120	3.7	17	110	2.5
66Zn	0.341	51.6	58	113	3.3	59	114	3.1
75As	0.441	6.87	7.8	113	5.0	7.5	110	2.7
77Se	0.390	3.45	3.7	107	2.2	3.8	109	1.5
88Sr	0.001	10.1	11	110	5.7	12	115	7.2
95Mo	0.001	0.29	0.310	107	6.4	0.317	109	10
107Ag	0.001	0.0252	0.030	118	8.6	0.030	119	12
111Cd	0.059	0.299	0.340	114	10	0.312	104	12
118Sn	0.023	0.061	0.071	116	12	0.072	118	15
121Sb	0.005	0.011	0.013	120	17	0.011	96	18
137Ba	0.001	8.6	9.3	109	3.9	9.2	106	5.5
202Hg	0.023	0.412	0.423	103	4.9	0.458	111	5.6
205Tl	0.001	0.0013	-	-	-	-	-	-
208Pb	0.001	0.404	0.458	113	10	0.477	118	6.3
238U	0.001	0.05	0.059	119	12	0.058	116	6.4

Notes:

ppm = parts per million; % = percent; DL = detection limit; RSD = relative standard deviation

Data Quality Objectives:

Accuracy: DQO of 60 - 140% of the certified values for B, Ti, Ag, Sn, Sb, and Ba.

Accuracy: DQO of 90 - 110% of the certified values for Se.

Accuracy: DQO of 70 - 130% of the certified values for all other elements provided.

Precision: DQO of ≤20% for all elements.

DORM-4 used for all parameters except B, Ti, Sb, Ba, and Al where NIST-1566b was used.

TI certified concentration from NIST-2976.

Accuracy and precision for TI are not reported as the certified concentration is too close to the reportable detection limit.

Teck Coal Limited Tissue QA/QC Accuracy and Precision Results

	Sa	ample Group ID		03			04	
Parameter	DL (ppm)	Certified Conc. (ppm)	Mean Estimated Conc. (ppm)	Accuracy (%)	Precision RSD (%)	Mean Estimated Conc. (ppm)	Accuracy (%)	Precision RSD (%)
7Li	0.011	1.21	1.3	106	6.6	1.4	114	4.3
11B	0.101	4.5	4.6	103	1.7	4.8	106	2.1
23Na	1.9	14,000	14,307	102	4.6	14,996	107	3.1
24Mg	0.024	910	965	106	4.1	995	109	3.0
27Al	0.035	197.2	189	96	7.3	217	110	1.7
31P	33	8,000	8,165	102	3.9	8,650	108	2.9
39K	2.8	15,500	15,511	100	1.5	16,623	107	3.5
44Ca	9.5	2,360	2,367	100	2.8	2,633	112	3.8
49Ti	0.212	12.24	12	98	13	14	116	11
51V	0.066	1.57	1.5	96	9.6	1.6	104	9.8
52Cr	0.326	1.87	1.9	101	5.3	2.0	108	4.5
55Mn	0.008	3.17	3.1	99	4.6	3.7	116	6.7
57Fe	1.3	343	345	101	2.6	391	114	3.8
59Co	0.008	0.25	0.254	102	2.8	0.271	108	3.3
60Ni	0.037	1.34	1.3	98	2.1	1.5	114	6.1
63Cu	0.008	15.7	16	102	3.1	18	114	3.3
66Zn	0.341	51.6	52	100	3.0	55	107	1.8
75As	0.441	6.87	7.0	102	3.2	7.4	108	2.4
77Se	0.390	3.45	3.6	105	2.5	3.7	108	5.2
88Sr	0.001	10.1	10	101	3.1	11	110	4.8
95Mo	0.001	0.29	0.317	109	5.7	0.316	109	8.3
107Ag	0.001	0.0252	0.027	109	7.4	0.029	113	16
111Cd	0.059	0.299	0.320	107	11	0.328	110	6.5
118Sn	0.023	0.061	0.058	95	3.9	0.067	110	17
121Sb	0.005	0.011	0.015	136	14	0.012	108	4.1
137Ba	0.001	8.6	8.7	101	3.0	9.0	104	2.5
202Hg	0.023	0.412	0.438	106	5.3	0.439	106	4.4
205Tl	0.001	0.0013	-	-	-	-	-	-
208Pb	0.001	0.404	0.395	98	15	0.430	106	17
238U	0.001	0.05	0.048	95	7.4	0.054	108	7.4

Notes:

ppm = parts per million; % = percent; DL = detection limit; RSD = relative standard deviation

Data Quality Objectives:

Accuracy: DQO of 60 - 140% of the certified values for B, Ti, Ag, Sn, Sb, and Ba.

Accuracy: DQO of 90 - 110% of the certified values for Se.

Accuracy: DQO of 70 - 130% of the certified values for all other elements provided.

Precision: DQO of ≤20% for all elements.

DORM-4 used for all parameters except B, Ti, Sb, Ba, and Al where NIST-1566b was used.

TI certified concentration from NIST-2976.

Accuracy and precision for TI are not reported as the certified concentration is too close to the reportable detection limit.

Teck Coal Limited Tissue QA/QC Accuracy and Precision Results

Sample Group ID	05

Parameter	DL (ppm)	Certified Conc. (ppm)	Mean Estimated Conc. (ppm)	Accuracy (%)	Precision RSD (%)
7Li	0.011	1.21	1.2	98	8.9
11B	0.101	4.5	4.7	104	2.4
23Na	1.9	14,000	14,247	102	6.9
24Mg	0.024	910	879	97	3.1
27Al	0.035	197.2	186	94	5.2
31P	33	8,000	7,292	91	0.9
39K	2.8	15,500	15,289	99	2.5
44Ca	9.5	2,360	2,221	94	3.2
49Ti	0.212	12.24	11	92	10
51V	0.066	1.57	1.5	93	7.9
52Cr	0.326	1.87	1.9	99	0.6
55Mn	0.008	3.17	3.0	95	2.7
57Fe	1.3	343	339	99	3.5
59Co	0.008	0.25	0.242	97	4.0
60Ni	0.037	1.34	1.3	98	4.6
63Cu	0.008	15.7	16	104	4.4
66Zn	0.341	51.6	50	97	3.9
75As	0.441	6.87	6.6	96	3.7
77Se	0.390	3.45	3.3	97	2.6
88Sr	0.001	10.1	9.8	97	4.9
95Mo	0.001	0.29	0.288	99	14
107Ag	0.001	0.0252	0.026	102	16
111Cd	0.059	0.299	0.312	104	5.8
118Sn	0.023	0.061	0.054	89	7.1
121Sb	0.005	0.011	0.009	82	16
137Ba	0.001	8.6	8.4	98	4.4
202Hg	0.023	0.412	0.425	103	10
205Tl	0.001	0.0013	-	-	-
208Pb	0.001	0.404	0.357	88	9.8
238U	0.001	0.05	0.045	90	2.5

Notes:

 $ppm = parts \ per \ million; \ \% = percent; \ DL = detection \ limit; \ RSD = relative \ standard \ deviation$

Data Quality Objectives:

Accuracy: DQO of 60 - 140% of the certified values for B, Ti, Ag, Sn, Sb, and Ba.

Accuracy: DQO of 90 - 110% of the certified values for Se.

Accuracy: DQO of 70 - 130% of the certified values for all other elements provided.

Precision: DQO of ≤20% for all elements.

DORM-4 used for all parameters except B, Ti, Sb, Ba, and Al where NIST-1566b was used.

TI certified concentration from NIST-2976.

Accuracy and precision for TI are not reported as the certified concentration is too close to the reportable detection limit.

Teck Coal Limited Sample Group Information

Sample Group ID	Client ID	Lab ID	Date of Analysis
01	RG_GATE_INV-1_2021-09-16	608	18 Oct 2021
	RG_GATE_INV-2_2021-09-16	609	
	RG_GATE_INV-3_2021-09-16	610	
	RG_GATEDP_INV-1_2021-09-16	611	
	RG_GATEDP_INV-2_2021-09-16	612	
	RG_GATEDP_INV-3_2021-09-16	613	
	RG_BOCK_INV-1_2021-09-16	614	
	RG_BOCK_INV-2_2021-09-16	615	
02	RG_BOCK_INV-3_2021-09-16	616	18 Oct 2021
	RG_ERCKDT_INV-1_2021-09-14	617	
	RG_ERCKDT_INV-2_2021-09-14	618	
	RG_ERCKDT_INV-3_2021-09-14	619	
	RG_ERCKDT_INV-4_2021-09-14	620	
	RG_ERCKUT_INV-1_2021-09-15	621	
	RG_ERCKUT_INV-2_2021-09-15	622	
	rg erckut inv-3 2021-09-15	623	
03	RG_ERCKUT_INV-4_2021-09-15	624	18 Oct 2021
	RG_ERCKUT_INV-5_2021-09-15	625	
	RG_ERCKDT_INV-5_2021-09-15	626	
	RG_MIDBO_INV-1_2021-09-11	627	
	RG_MIDBO_INV-2_2021-09-11	628	
	RG_MIDBO_INV-3_2021-09-11	629	
	RG_MIDGA_INV-1_2021-09-11	630	
	RG_MIDGA_INV-2_2021-09-11	631	
	RG_MIDGA_INV-3_2021-09-11	632	
04	RG_MIDER_INV-1_2021-09-09	633	18 Oct 2021
	RG_MIDER_INV-2_2021-09-09	634	
	RG_MIDER_INV-3_2021-09-09	635	
	RG_ALUSM_INV-1_2021-09-12	636	
	RG_ALUSM_INV-2_2021-09-12	637	
	RG_ALUSM_INV-3_2021-09-12	638	
	RG_BOCK_INVLUM-1_2021-09-16	639	
	RG_GATEDP_INVLUM-1_2021-09-16	640	
	RG_MI3_INV-1_2021-09-10	641	
05	RG_MI3_INV-2_2021-09-10	642	18 Oct 2021
	RG_MI3_INV-3_2021-09-10	643	
	RG_ERCK_INV-1_2021-09-10	644	
	RG_MICOMP_INV-1_2021-09-13	645	
	RG_MICOMP_INV-2_2021-09-13	646	
	RG_MICOMP_INV-3_2021-09-13	647	

Teck Coal Limited Sample Group Information

Sample Client ID Lab ID Analysis
05 RG_MICOMP_INV-4_2021-09-13 648 18 Oct 20

Trich Analytics Inc. Chain of Custody (COC) 207-1753 Sean Heights, Saanichton, BC, V8M 0B3 for LA-ICP-MS Analysis Ph: (250) 532-1084 Invoicing Reporting (if different from Invoicing) Project Number: FRO LAEMP (21-11) (PO 748530) Company Name: Teck Coal Limited Company Name: Minnow Environmental Contact Name: Cait Good Contact Name: Peter Schnurr Address: 421 Pine Avenue Address: 2 Lamb Street City, Province: Sparwood, BC City, Province: Georgetown, ON Postal Code: **V0B 2G0** Postal Code: L7G 2G7 Phone: 250-425-8202 Phone: 250-595-1627 Email: cait.good@teck.com Email: oschnurr@minnow.ca Sample Analysis Requested Sample Type: Sample Identification: TRICH ID Species Sample type RG_GATE_INV-1_2021-09-16 / 608 Composite Composite-taxa benthic invertebrate tissue samples 2 RG_GATE_INV-2_2021-09-16 609 Composite Composite-taxa benthic invertebrate tissue samples 3 RG_GATE_INV-3_2021-09-16 / 610 Composite composite-taxa benthic invertebrate tissue samples 611 4 RG_GATEDP_INV-1_2021-09-16 Composite Composite-taxa benthic invertebrate tissue samples 5 RG_GATEDP_INV-2_2021-09-16 / 612 Composite Composite-taxa benthic invertebrate tissue samples 6 RG_GATEDP_INV-3_2021-09-16 / 613 Composite Composite-taxa benthic invertebrate tissue samples 7 RG_3OCK_INV-1_2021-09-16 / 614 Composite Composite-taxa benthic invertebrate tissue samples 8 RG_BOCK_INV-2_2021-09-16 615 Composite Composite taxa benthic invertebrate tissue samples 9 RG_BOCK_INV-3_2021-09-16 / 616 Composite Composite-taxa benthic invertebrate tissue samples 10 RG_ERCKDT_INV-1_2021-09-14 / 617 Composite Composite-taxa benthic invertebrate tissue samples 618 11 RG_ERCKDT_INV-2_2021-09-14 Composite Composite-taxa benthic invertebrate tissue samples RG_ERCKDT_INV-3_2021-09-14 619 Composite Composite-taxa benthic invertebrate tissue samples 13 RG_ERCKDT_INV-4_2021-09-14 600 Composite Composite-taxa benthic invertebrate tissue samples 14 RG_ERCKUT_INV-1_2021-09-15 / 621 Composite Composite-taxa benthic invertebrate tissue samples 15 RG_ERCKUT_INV-2_2021-09-15 / 699 Composite Composite-taxa benthic invertebrate tissue samples 16 RG_ERCKUT_INV-3_2021-09-15 -623 Composite Composite-taxa benthic invertebrate tissue samples RG_ERCKUT_INV-4_2021-09-15 624 Composite Composite taxa benthic invertebrate tissue samples 625 18 RG_ERCKUT_INV-5_2021-09-15/ Composite Composite-taxa benthic invertebrate tissue samples 19 RG_ERCKDT_INV-5_2021-09-15 626 Composite Composite-taxa benthic invertebrate tissue samples 20 RG_MIDBO_INV-1_2021-09-11 627 Composite omposite-taxa benthic invertebrate tissue samples Sample(s) Released By: Sample(s) Received By: Alex Wade Signature: Signature: aw osoctron Date Received: (Pig # 2021- 260) 28 Sep 2021 Sample(s) Returned to Client By: Shipping Conditions: Shipping Container: Signature: Date Sent:

	ChAnalytics Inc. Gean Heights, Saanichton, BC, V8M 0B3 Ph: (250) 532-1084	Chain of Custody (COC) for LA-ICP-MS Analysis				
	Invoicing		Reporting (if different from Invoicing)			
Project Numb	er: FRO LAEMP (21-11) (PO 7485	30)				
Company Name	:: Teck Coal Limited	Company Name:	Minnow Environmental			
Contact Name:	Cait Good	Contact Name:	Peter Schnurr			
Address:	421 Pine Avenue	Address:	2 Lamb Street			
City, Province:	Sparwood, BC	City, Province:	Georgetown, ON			
Postal Code:	VOB 2G0	Postal Code:	L7G 2G7			
Phone:	250-425-8202	Phone:	250-595-1627			
Email:	cait.good@teck.com	Email:	pschnurr@minnow.ca			
	- U	Sample Analysis Re				
	Sample Identification:	The Finding Sis No	Sample Type:			
TEICH ID	Jumple Identification.	Species	Sample type			
698	21 RG_MIDBO_INV-2_2021-09-11	Composite	Composite-taxa benthic invertebrate tissue samples			
699	RG_MIDBO_INV-3_2021-09-11 /	Composite	Composite-taxa benthic invertebrate tissue samples			
630 2	3 RG_MIDGA_INV-1_2021-09-11 /	Composite	Composite-taxa benthic invertebrate tissue samples			
631 2	4 RG_MIDGA_INV-2_2021-09-11 /	Composite	Composite-taxa benthic invertebrate tissue samples			
632 2	5 RG_MIDGA_INV-3_2021-09-11_	Composite	Composite-taxa benthic invertebrate tissue samples			
633 2	6 RG_MIDER_INV-1_2021-09-09 /	Composite	Composite-taxa beninic invertebrate tissue samples			
634 2	7 RG_MIDER_INV-2_2021-09-09 /	Composite	Composite-taxa benthic invertebrate tissue samples			
635 2	8 RG_MIDER_INV-3_2021-09-09 /	Composite	Composite-taxa benthic invertebrate tissue samples			
636 2	9 RG_ALUSM_INV-1_2021-09-12 /	Composite	Composite-taxa benthic invertebrate tissue samples			
637 3	0 RG_ALUSM_INV-2_2021-09-12 /	Composite	Composite taxa benthic invertebrate tissue samples			
638 3	11 RG_ALUSM_INV-3_2021-09-12 /	Composite	Composite-taxa benthic invertebrate tissue samples			
639 3.	2 RG_BOCK_INVLUM-1_2021-09-16 /	Single Taxon	Benthic invertebrate sample			
640 3	RG_GATEDP_INVLUM-1_2021-09-16	Single Taxon	Benthic invertebrate sample			
641 3	4 RG_MI3_INV-1_2021-09-10 /	Composite	Composite-taxa benthic invertebrate tissue samples			
642 3!	5 RG_MI3_INV-2_2021-09-10 /	Composite	Composite-taxa benthic invertebrate tissue samples			
643 36	6 RG_MI3_INV-3_2021-09-10 /	Composite	Composite-taxa benthic invertebrate tissue samples			
644 37	7 RG_ERCK_INV-1_2021-09-10 /	Composite	Composite-taxa benthic invertebrate tissue samples			
645 38	RG_MICOMP_INV-1_2021-09-13 */	Composite	Composite-taxa benthic invertebrate tissue samples			
646 39	RG_MICOMP_INV-2_2021-09-13	Composite	Composite-taxa benthic invertebrate tissue samples			
647 40	RG_MICOMP_INV-3_2021-09-13 *	Composite	Composite-taxa benthic invertebrate tissue samples			
ample(s) Released By:		Sample(s) Received				
ignature:		Signature:	De Co			
ate Sent:		Date Received:	28 500 2721 / R. # 3021-27 2 aw pot			
ample(s) Returne	ed to Client By:	Shipping Condition	00 sep 2021 (110) 2021 260)			
	****	Shipping Container				
gnature:		Date Sent:				

Signature: Date sent:

* Samples missing -> samples located in another project bag (now in correct project bag) another page 2 of 3

Trich Analytics Inc. Chain of Custody (COC) 207-1753 Sean Heights, Saanichton, BC, V8M 0B3 for LA-ICP-MS Analysis Ph: (250) 532-1084 Invoicing Reporting (if different from Invoicing) Project Number: FRO LAEMP (21-11) (PO 748530) Company Name: Teck Coal Limited Company Name: Minnow Environmental Contact Name: Cait Good Contact Name: Tyler Mehler Address: 421 Pine Avenue Address: 2 Lamb Street City, Province: Sparwood, BC City, Province: Georgetown, ON Postal Code: V0B 2G0 Postal Code: L7G 2G7 Phone: 250-425-8202 Phone: Email: cait.good@teck.com Email: Sample Analysis Requested Sample Type: Sample Identification: TRICH ID Species Sample type 41 RG_MICOMP_INV-4_2021-09-13 */ 648 Composite Composite-taxa benthic invertebrate tissue samples 42 RG_MICOMP_INV-5_2021-09-13 * 649 Composite Composite-taxa benthic invertebrate tissue samples 43 44 45 46 48 49 50 51 52 53 54 55 56 58 59 60 Sample(s) Released By: Sample(s) Received By: Alex Wade Signature: Signature:

aw osoct zor

Proj # 2021-260

Date Received:

Date Sent:

Shipping Conditions: Shipping Container:

28 Sep 2021

Signature:

Date Sent:

Sample(s) Returned to Client By:

BENTHIC TISSUE CHEMISTRY

TrichAnalytics Laboratory Report 2021-285 (Finalized December 23, 2021)

Trich Analytics Inc.

Tissue Microchemistry Analysis Report

Client: Tyler Mehler

Aquatic Scientist

Minnow Environmental

Phone: (587) 587-1612

Email: tyler.mehler@minnow.ca; jings@minnow.ca

Client Project: EVO LAEMP (21-09) - PO 750554

Analytical Request: Composite-Taxa Benthic Invertebrate Tissue Microchemistry (total metals and moisture) - 17 samples.

See chain of custody form provided for sample identification numbers.

Notes:

Analytical results are expressed in parts per million (ppm) dry weight (equivalent to mg/kg). Samples quantified using DORM-4, NIST-1566b, and NIST-2976 certified reference standards. Aluminum concentrations above 1,000 ppm are outside linear range of the calibration curve. RPD values calculated according to the British Columbia Environmental Laboratory Manual (2020) criteria. Client specific DQO for Selenium accuracy is 90-110% of the certified value; result achieved 104%.

This report provides the analytical results only for tissue samples noted above as received from the Client.

Reviewed and Approved by Jennie Christensen, PhD, RPBio

Data

23 Dec 2021

[The analytical report shall not be reproduced except in full under the expressed written consent of TrichAnalytics Inc.]

TrichAnalytics Inc. 207-1753 Sean Heights Saanichton, BC V8M 0B3 www.trichanalytics.com

Date Received:

Project No.:

Method No.:

Date of Analysis:

Final Report Date:

17 Dec 2021

22 Dec 2021

23 Dec 2021

MET-002.05

2021-285

Project No: 2021-285

			RG_ERCKUT_INV-	RG FRCKUT INV-	RG_ERCKUT_INV-	RG FRCKUT INV-	RG_ERCK_INV-
		Client ID	01_2021-12-15	02_2021-12-15	03_2021-12-15	05_2021-12-15	01_2021-12-14
			_	_	_	_	_
		Lab ID	158	159	160	161	162
	We	et Weight (g)	0.1973	0.2583	0.1191	0.1069	0.4909
	Di	y Weight (g)	0.0381	0.0507	0.0284	0.0302	0.1181
		Moisture (%)	80.7	80.4	76.2	71.7	75.9
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.007	0.023	0.375	0.459	0.487	0.304	0.736
11B	0.085	0.283	1.4	2.0	1.3	0.936	2.4
23Na	0.558	1.9	1,965	2,004	1,752	1,583	2,948
24Mg	0.017	0.057	1,892	2,256	2,763	1,510	1,620
27Al	0.040	0.133	75	180	219	108	1,279
31P	24	80	7,691	8,975	9,000	6,749	11,255
39K	1.7	5.7	6,003	7,206	6,071	5,305	8,729
44Ca	14	47	3,540	4,155	4,081	2,334	13,738
49Ti	0.001	0.003	4.3	8.0	13	5.6	85
51V	0.058	0.193	0.358	0.974	0.873	0.326	2.6
52Cr	0.193	0.643	2.6	6.0	7.2	3.1	16
55Mn	0.005	0.017	8.4	7.6	8.1	5.0	72
57Fe	0.834	2.8	76	188	191	101	598
59Co	0.005	0.017	0.218	0.133	0.345	0.136	4.7
60Ni	0.039	0.130	3.5	8.7	10	3.2	37
63Cu	0.010	0.033	20	22	18	15	12
66Zn	0.457	1.5	149	141	162	131	191
75As	0.451	1.5	< 0.451	0.602	< 0.451	< 0.451	0.486
77Se	0.307	1.0	3.9	3.8	4.4	4.0	4.6
88Sr	0.001	0.003	2.5	2.5	3.1	1.5	13
95Mo	0.001	0.003	0.111	0.148	0.204	0.074	0.352
107Ag	0.001	0.003	0.049	0.049	0.049	0.049	0.113
111Cd	0.039	0.130	1.4	2.0	1.6	0.739	1.6
118Sn	0.022	0.073	0.642	0.916	0.710	0.402	0.171
121Sb	0.003	0.010	0.056	0.066	0.108	0.061	0.078
137Ba	0.001	0.003	5.2	6.3	9.1	3.9	36
202Hg	0.025	0.083	0.045	0.030	<0.025	0.030	0.045
205TI	0.001	0.003	0.011	0.008	0.015	0.010	0.049
208Pb	0.001	0.003	0.040	0.059	0.062	0.029	0.297
238U	0.001	0.003	0.086	0.112	0.143	0.062	0.112

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

% = percent

Page 2 of 9

			RG_ERCK_INV-	RG_ERCK_INV-	RG_ERCKDT_INV-		RG_ERCKDT_INV-
		Client ID	02_2021-12-14	03_2021-12-14	01_2021-12-15	02_2021-12-15	03_2021-12-15
		Lab ID	163	164	165	166	167
	We	et Weight (g)	0.3020	0.3250	0.2201	0.1046	0.1007
		y Weight (g)	0.0520	0.0734	0.0444	0.0160	0.0168
		Moisture (%)	82.8	77.4	79.8	84.7	83.3
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.007	0.023	1.2	0.827	0.567	0.768	1.3
11B	0.085	0.283	2.2	3.6	2.4	3.3	4.6
23Na	0.558	1.9	3,781	2,835	2,486	2,776	2,474
24Mg	0.017	0.057	1,533	1,835	1,760	1,820	2,074
27Al	0.040	0.133	1,225	1,679	235	728	1,641
31P	24	80	10,962	10,935	7,223	7,984	8,579
39K	1.7	5.7	8,997	7,694	6,835	6,567	6,616
44Ca	14	47	4,104	7,409	2,858	5,613	7,537
49Ti	0.001	0.003	78	138	16	45	125
51V	0.058	0.193	2.2	3.6	0.531	1.6	3.6
52Cr	0.193	0.643	4.0	30	3.5	9.0	31
55Mn	0.005	0.017	59	111	152	359	620
57Fe	0.834	2.8	444	923	537	2,288	3,576
59Co	0.005	0.017	2.3	7.2	5.2	16	26
60Ni	0.039	0.130	14	52	16	27	75
63Cu	0.010	0.033	13	16	15	20	19
66Zn	0.457	1.5	210	263	263	200	218
75As	0.451	1.5	< 0.451	0.465	< 0.451	1.4	1.8
77Se	0.307	1.0	5.2	5.9	13	15	21
88Sr	0.001	0.003	5.3	8.6	3.3	6.8	9.9
95Mo	0.001	0.003	0.389	0.500	0.963	1.0	1.1
107Ag	0.001	0.003	0.119	0.119	0.027	0.081	0.070
111Cd	0.039	0.130	1.8	3.2	1.0	0.907	1.2
118Sn	0.022	0.073	0.561	0.312	0.256	0.750	0.970
121Sb	0.003	0.010	0.061	0.070	0.086	0.167	0.242
137Ba	0.001	0.003	28	33	22	38	59
202Hg	0.025	0.083	0.075	0.075	0.045	0.049	0.053
205Tl	0.001	0.003	0.048	0.093	0.044	0.066	0.094
208Pb	0.001	0.003	0.313	0.313	0.231	0.587	1.1
238U	0.001	0.003	0.112	0.134	0.118	0.223	0.325

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

% = percent

Page 3 of 9

			RG_ERCKDT_INV-	RG_ERCKDT_INV-	EV_EC_FLOW2_I	EV_EC_FLOW2_I	EV_EC_FLOW2_I
		Client ID	04_2021-12-15	05_2021-12-15	NV-01_2021-12-	NV-02_2021-12-	NV-03_2021-12-
					15	15	15
		Lab ID	168	169	170	171	172
	We	et Weight (g)	0.1189	0.2913	0.1186	0.1013	0.1674
	Di	y Weight (g)	0.0218	0.0538	0.0248	0.0149	0.0208
		Moisture (%)	81.7	81.5	79.1	85.3	87.6
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.007	0.023	0.815	1.6	0.632	0.534	0.567
11B	0.085	0.283	2.3	4.3	2.3	1.4	1.4
23Na	0.558	1.9	2,324	3,094	1,851	3,030	2,453
24Mg	0.017	0.057	1,487	1,891	1,590	1,855	1,969
27Al	0.040	0.133	1,251	2,495	798	372	140
31P	24	80	6,862	9,811	7,038	8,740	8,238
39K	1.7	5.7	5,710	8,976	5,334	7,389	5,838
44Ca	14	47	3,974	7,051	4,242	3,934	3,729
49Ti	0.001	0.003	111	193	52	28	8.6
51V	0.058	0.193	2.7	6.1	1.5	0.959	0.373
52Cr	0.193	0.643	21	67	8.0	7.7	5.0
55Mn	0.005	0.017	197	394	222	227	167
57Fe	0.834	2.8	2,091	2,942	1,568	1,348	819
59Co	0.005	0.017	9.5	24	9.5	8.3	5.8
60Ni	0.039	0.130	45	113	26	21	15
63Cu	0.010	0.033	15	16	15	15	15
66Zn	0.457	1.5	171	168	133	199	185
75As	0.451	1.5	0.993	1.2	0.887	0.972	0.592
77Se	0.307	1.0	20	22	8.2	9.0	8.8
88Sr	0.001	0.003	5.3	8.3	5.7	4.8	4.4
95Mo	0.001	0.003	0.592	1.0	0.537	0.648	0.778
107Ag	0.001	0.003	0.049	0.065	0.038	0.043	0.054
111Cd	0.039	0.130	0.784	1.4	0.873	0.750	0.537
118Sn	0.022	0.073	0.550	0.444	0.525	0.781	0.460
121Sb	0.003	0.010	0.132	0.247	0.091	0.068	0.052
137Ba	0.001	0.003	41	53	25	20	11
202Hg	0.025	0.083	< 0.025	0.045	0.038	0.053	0.045
205TI	0.001	0.003	0.068	0.082	0.065	0.064	0.056
208Pb	0.001	0.003	0.602	0.750	0.457	0.400	0.287
238U	0.001	0.003	0.206	0.255	0.161	0.152	0.104

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

% = percent

			EV_EC_FLOW2_I	EV_EC_FLOW2_I
		Client ID	NV-04_2021-12-	NV-05_2021-12-
			15	15
		Lab ID	173	174
	We	et Weight (g)	0.1212	0.0757
	Di	ry Weight (g)	0.0182	0.0121
		Moisture (%)	85.0	84.0
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)
7Li	0.007	0.023	1.1	1.1
11B	0.085	0.283	3.9	2.2
23Na	0.558	1.9	3,228	3,802
24Mg	0.017	0.057	2,660	2,017
27Al	0.040	0.133	1,004	552
31P	24	80	8,316	10,087
39K	1.7	5.7	7,053	8,162
44Ca	14	47	42,044	6,913
49Ti	0.001	0.003	73	45
51V	0.058	0.193	2.5	1.3
52Cr	0.193	0.643	17	11
55Mn	0.005	0.017	712	699
57Fe	0.834	2.8	2,366	2,562
59Co	0.005	0.017	38	23
60Ni	0.039	0.130	88	45
63Cu	0.010	0.033	17	22
66Zn	0.457	1.5	210	282
75As	0.451	1.5	1.4	1.5
77Se	0.307	1.0	15	14
88Sr	0.001	0.003	22	7.9
95Mo	0.001	0.003	1.0	0.833
107Ag	0.001	0.003	0.070	0.105
111Cd	0.039	0.130	1.7	1.1
118Sn	0.022	0.073	0.866	1.1
121Sb	0.003	0.010	0.225	0.146
137Ba	0.001	0.003	116	46
202Hg	0.025	0.083	0.053	0.060
205TI	0.001	0.003	0.129	0.085
208Pb	0.001	0.003	0.707	0.600
00011	0.001	0 000	0.554	0.400

Notes:

238U

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

0.001

0.003

0.551

g = grams

% = percent

0.198

Teck Coal Limited Tissue QA/QC Relative Percent Difference Results

(Client ID	ent ID					021-12-15	
	Lab ID		162			Sample Duplicate (ppm) RPD (%) 1.5 6.5 3.7 15 3,009 2.8 1,795 5.2 2,423 2.9 9,353 4.8 8,037 11 6,624 6.2 162 18 5.7 6.8 77 14 340 15 3,221 9.1 24 0.0 139 21 16 0.0 150 11		
Parameter	DL (ppm)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)	Sample (ppm)	Duplicate (ppm)		
7Li	0.007	0.736	0.932	24	1.6	1.5	6.5	
11B	0.085	2.4	3.1	26	4.3	3.7	15	
23Na	0.558	2,948	2,956	0.3	3,094	3,009		
24Mg	0.017	1,620	2,096	26	1,891	1,795	5.2	
27AI	0.040	1,279	1,908	40	2,495	2,423	2.9	
31P	24	11,255	10,961	2.6	9,811	9,353	4.8	
39K	1.7	8,729	9,377	7.2	8,976	8,037		
44Ca	14	13,738	17,242	23	7,051	6,624	6.2	
49Ti	0.001	85	86	1.2	193		18	
51V	0.058	2.6	3.7	35	6.1		6.8	
52Cr	0.193	16	14	13	67	77		
55Mn	0.005	72	80	11	394	340		
57Fe	0.834	598	690	14	2,942	3,221	9.1	
59Co	0.005	4.7	5.7	19	24	24		
60Ni	0.039	37	34	8.5	113	139	21	
63Cu	0.010	12	15	22	16			
66Zn	0.457	191	187	2.1	168	150	11	
75As	0.451	0.486	< 0.451	-	1.2	1.2	-	
77Se	0.307	4.6	5.4	16	22	21	4.7	
88Sr	0.001	13	15	14	8.3	7.9	4.9	
95Mo	0.001	0.352	0.389	10	1.0	1.1	9.5	
107Ag	0.001	0.113	0.135	18	0.065	0.059	9.7	
111Cd	0.039	1.6	1.9	17	1.4	1.3	7.4	
118Sn	0.022	0.171	0.230	-	0.444	0.561	23	
121Sb	0.003	0.078	0.074	5.3	0.247	0.220	12	
137Ba	0.001	36	42	15	53	49	7.8	
202Hg	0.025	0.045	0.045	-	0.045	0.045	-	
205Tl	0.001	0.049	0.050	2.0	0.082	0.075	8.9	
208Pb	0.001	0.297	0.341	14	0.750	0.670	11	
238U	0.001	0.112	0.152	30	0.255	0.229	11	

Notes:

ppm = parts per million

RPD = relative percent difference

DL = detection limit

< = less than detection limit

% = percent

Data Quality Objectives:

Laboratory Duplicates - RPD ≤40% for all elements, except Ca and Sr, which are ≤60% Minimum DQOs apply to individual samples at concentrations above 10x DL

Teck Coal Limited Tissue QA/QC Accuracy and Precision Results

Sample Group ID 01

Parameter	DL (ppm)	Certified Conc. (ppm)	Mean Estimated Conc. (ppm)	Accuracy (%)	Precision RSD (%)
7Li	0.007	1.21	1.3	107	7.2
11B	0.085	4.5	4.7	105	3.0
23Na	0.558	14,000	14,801	106	5.8
24Mg	0.017	910	999	110	2.7
27AI	0.040	197.2	203	103	7.1
31P	24	8,000	8,864	111	4.2
39K	1.7	15,500	16,461	106	5.7
44Ca	14	2,360	2,605	110	4.4
49Ti	0.001	12.24	14	112	13
51V	0.058	1.57	1.8	115	11
52Cr	0.193	1.87	2.2	117	3.7
55Mn	0.005	3.17	3.5	111	2.2
57Fe	0.834	343	402	117	3.6
59Co	0.005	0.25	0.293	117	1.4
60Ni	0.039	1.34	1.6	117	3.5
63Cu	0.010	15.7	19	118	2.8
66Zn	0.457	51.6	58	113	1.7
75As	0.451	6.87	7.5	110	3.6
77Se	0.307	3.45	3.6	104	3.8
88Sr	0.001	10.1	11	107	3.8
95Mo	0.001	0.29	0.296	102	4.4
107Ag	0.001	0.0252	0.032	129	12
111Cd	0.039	0.299	0.336	112	9.1
118Sn	0.022	0.061	0.067	110	11
121Sb	0.003	0.011	0.011	100	18
137Ba	0.001	8.6	8.6	100	2.0
202Hg	0.025	0.412	0.452	110	3.0
205Tl	0.001	0.0013	-	-	-
208Pb	0.001	0.404	0.416	103	17
238U	0.001	0.05	0.048	95	5.1

Notes:

ppm = parts per million; % = percent; DL = detection limit; RSD = relative standard deviation

Data Quality Objectives:

Accuracy: DQO of 60 - 140% of the certified values for B, Ti, Ag, Sn, Sb, and Ba.

Accuracy: DQO of 90 - 110% of the certified values for Se.

Accuracy: DQO of 70 - 130% of the certified values for all other elements provided.

Precision: DQO of ≤20% for all elements.

DORM-4 used for all parameters except B, Ti, Sb, Ba, and Al where NIST-1566b was used.

TI certified concentration from NIST-2976.

Accuracy and precision for TI are not reported as the certified concentration is too close to the reportable detection limit.

Teck Coal Limited Sample Group Information

Commis			Doto of
Sample Group ID	Client ID	Lab ID	Date of Analysis
01	RG_ERCKUT_INV-01_2021-12-15	158	22 Dec 2021
01	RG_ERCKUT_INV-01_2021-12-13 RG_ERCKUT_INV-02_2021-12-15	150	22 Dec 2021
	RG_ERCKUT_INV-03_2021-12-15	160	
	RG_ERCKUT_INV-05_2021-12-15	161	
	RG_ERCK_INV-01_2021-12-14	162	
	RG_ERCK_INV-02_2021-12-14	163	
	RG_ERCK_INV-03_2021-12-14	164	
	RG_ERCKDT_INV-01_2021-12-15	165	
	RG_ERCKDT_INV-02_2021-12-15	166	
	RG_ERCKDT_INV-03_2021-12-15	167	
	 RG_ERCKDT_INV-04_2021-12-15	168	
	RG_ERCKDT_INV-05_2021-12-15	169	
	EV_EC_FLOW2_INV-01_2021-12-15	170	
	EV_EC_FLOW2_INV-02_2021-12-15	171	
	EV_EC_FLOW2_INV-03_2021-12-15	172	
	EV_EC_FLOW2_INV-04_2021-12-15	173	
	EV_EC_FLOW2_INV-05_2021-12-15	174	

Page 8 of 9

Trich Analytics Inc. Chain of Custody (COC) 207-1753 Sean Heights, Saanichton, BC, V8M 0B3 for LA-ICP-MS Analysis Ph: (250) 532-1084 Invoicing Reporting (if different from Invoicing) Project Number: EVO LAEMP (21-09) -- PO: VPO00750554 Company Name: Teck Coal Limited Company Name: Minnow Environmental Contact Name: Mike Pope Contact Name: Tyler Mehler 101a Centennial Square Address: 421 Pine Avenue Address: City, Province: Sparwood, BC City, Province: Sparwood, BC Postal Code: Postal Code: V0B 2G0 V0B2G0 Phone: Phone: 250-425-8202 587-587-1612 mike.pope@Teck.com; Email: jessica.ritz@teck.com; Email: tyler.mehler@minnow.ca; allie.ferguson@Teck.com jings@minnow.ca Sample Analysis Requested Sample Type: Sample Identification: Species TRICH ID Sample type 1 RG_ERCKUT_INV-01_2021-12-15 > Composite 158 Composite-taxa benthic invertebrate tissue samples 2 RG_ERCKUT_INV-02_2021-12-15 / Composite 159 Composite-taxa benthic invertebrate tissue samples 3 RG_ERCKUT_INV-03_2021-12-15 / Composite Composite-taxa benthic invertebrate tissue samples 160 4 RG_ERCKUT_INV-05_2021-12-15 -Composite Composite-taxa benthic invertebrate tissue samples 161 5 RG_ERCK_INV-01_2021-12-14 _ Composite 162 Composite-taxa benthic invertebrate tissue samples 6 RG_ERCK_INV-02_2021-12-14 _ 163 Composite Composite-taxa benthic invertebrate tissue samples 7 RG_ERCK_INV-03_2021-12-14 , 164 Composite Composite-taxa benthic invertebrate tissue samples 8 RG_ERCKDT_INV-01_2021-12-15 , 165 Composite Composite-taxa benthic invertebrate tissue samples 9 RG_ERCKDT_INV-02_2021-12-15 Composite 166 Composite-taxa benthic invertebrate tissue samples 167 10 RG_ERCKDT_INV-03_2021-12-15 Composite Composite-taxa benthic invertebrate tissue samples 168 11 RG_ERCKDT_INV-04_2021-12-15 Composite Composite-taxa benthic invertebrate tissue samples 12 RG_ERCKDT_INV-05_2021-12-15 * 169 Composite Composite-taxa benthic invertebrate tissue samples 13 EV_EC_FLOW2_INV-01_2021-12-15 / 170 Composite Composite-taxa benthic invertebrate tissue samples 171 14 EV_EC_FLOW2_INV-02_2021-12-15 _ Composite Composite-taxa benthic invertebrate tissue samples 15 EV_EC_FLOW2_INV-03_2021-12-15 Composite 172 Composite-taxa benthic invertebrate tissue samples 16 EV_EC_FLOW2_INV-04_2021-12-15 / 173 Composite Composite-taxa benthic invertebrate tissue samples 17 EV_EC_FLOW2_INV-05_2021-12-15 , Composite 174 Composite-taxa benthic invertebrate tissue samples 18 19 20 Sample(s) Released By: W. Tyler Mehler Sample(s) Received By: Wade Signature: Signature: Date Sent: 12.17.2021 20 Dec 2021 (Lab) (Project #: 2021 - 285 Date Received: Sample(s) Returned to Client By: Shipping Conditions: Shipping Container: Signature: WTM Date Sent:

BRYOPHYTE AND PERIPHYTON TISSUE CHEMISTRY

ALS Laboratory Report CG2106913 (Finalized February 28, 2022)

CERTIFICATE OF ANALYSIS

Calgary AB Canada T1Y 7B5

Work Order : CG2106913 Page : 1 of 20

Amendment : 1

Client : Teck Coal Limited : Laboratory : Calgary - Environmental

Contact : Mike Pope Account Manager : Lyudmyla Shvets
Address : 421 Pine Avenue Address : 2559 29th Street NE

Sparwood BC Canada

Telephone : ---- Telephone : +1 403 407 1800

Project : REGIONAL EFFECTS PROGRAM Date Samples Received : 17-Dec-2021 08:45

PO : VPO00748510 Date Analysis Commenced : 07-Feb-2022

C-O-C number : December EVO LAEMP 2021 Issue Date : 28-Feb-2022 17:28

Sampler : Tyler Mehler

Site : ---

Quote number : Teck Coal Master Quote

No. of samples received : 19
No. of samples analysed : 19

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

SignatoriesPositionLaboratory DepartmentKevin DuarteSupervisor - Metals ICP InstrumentationMetals, Burnaby, British ColumbiaKim JensenDepartment Manager - MetalsMetals, Burnaby, British ColumbiaSalimah KhimaniLab AssistantMetals, Burnaby, British Columbia

Page : 2 of 20

Work Order : CG2106913 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
%	percent
mg/kg	milligrams per kilogram
mg/kg wwt	milligrams per kilogram wet weight

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Workorder Comments

Samples 005, 009, 018, 019 are low in volume and will be done as Micro digestion.

Qualifiers

Qualifier	Description
DLA	Detection Limit adjusted for required dilution.

Page : 3 of 20

Work Order : CG2106913 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Tissue (Matrix: Biota)			С	lient sample ID	RG_ERCKDT_B RYO-01_2021-1 2-15	RG_ERCKDT_B RYO-02_2021-1 2-15	RG_ERCKDT_B RYO-03_2021-1 2-15	RG_ERCKDT_B RYO-04_2021-1 2-15	RG_ERCKDT_P ERI-02_2021-12 -15
			Client sam	oling date / time	15-Dec-2021 12:00	15-Dec-2021 12:00	15-Dec-2021 12:00	15-Dec-2021 12:00	15-Dec-2021 12:00
Analyte	CAS Number	Method	LOR	Unit	CG2106913-001	CG2106913-002	CG2106913-003	CG2106913-004	CG2106913-005
District Control					Result	Result	Result	Result	Result
Physical Tests moisture		E144	0.50	%	83.6	86.8	90.8	87.2	
moisture		E144-H	2.0	%					37.4
		2144-11	2.0	70					07.4
Metals aluminum	7429-90-5	E440	2.0	mg/kg	1200	1560	433	1740	
aluminum	7429-90-5	E472	5.0	mg/kg					610
aluminum	7429-90-5	E440A	0.40	mg/kg wwt	197	194	39.7	223	
aluminum	7429-90-5	E472A	1.0	mg/kg wwt					382
antimony	7440-36-0	E472	0.010	mg/kg					0.296
antimony	7440-36-0	E440	0.010	mg/kg	0.402	0.880	0.585	0.295	
antimony	7440-36-0	E472A	0.0020	mg/kg wwt					0.185
antimony	7440-36-0	E440A	0.0020	mg/kg wwt	0.0660	0.116	0.0537	0.0378	
arsenic	7440-38-2	E440	0.020	mg/kg	4.65	9.26	3.86	7.51	
arsenic	7440-38-2	E472	0.030	mg/kg					1.20
arsenic	7440-38-2	E440A	0.0040	mg/kg wwt	0.762	1.24	0.355	0.960	
arsenic	7440-38-2	E472A	0.0060	mg/kg wwt					0.752
barium	7440-39-3	E472	0.050	mg/kg					332
barium	7440-39-3	E440	0.050	mg/kg	110	204	82.3	110	
barium	7440-39-3	E472A	0.010	mg/kg wwt					208
barium	7440-39-3	E440A	0.010	mg/kg wwt	18.0	30.1	7.56	14.1	
beryllium	7440-41-7	E472	0.010	mg/kg					0.058
beryllium	7440-41-7	E440	0.010	mg/kg	0.387	0.660	0.538	0.594	
beryllium	7440-41-7	E472A	0.0020	mg/kg wwt					0.0366
beryllium	7440-41-7	E440A	0.0020	mg/kg wwt	0.0635	0.0858	0.0494	0.0760	
bismuth	7440-69-9	E472	0.010	mg/kg					<0.014 DLA
bismuth	7440-69-9	E440	0.010	mg/kg	0.031	0.033	0.011	0.036	
bismuth	7440-69-9	E472A	0.0020	mg/kg wwt					<0.0136 DLA
bismuth	7440-69-9	E440A	0.0020	mg/kg wwt	0.0051	<0.0073 DLA	<0.0020	0.0046	
boron	7440-42-8	E472	1.0	mg/kg					11.2
boron	7440-42-8	E440	1.0	mg/kg	47.5	61.5	85.8	56.1	

Page : 4 of 20

Work Order : CG2106913 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Tissue (Matrix: Biota)				lient sample ID	RG_ERCKDT_B RYO-01_2021-1 2-15	RG_ERCKDT_B RYO-02_2021-1 2-15	RG_ERCKDT_B RYO-03_2021-1 2-15	RG_ERCKDT_B RYO-04_2021-1 2-15	RG_ERCKDT_P ERI-02_2021-12 -15
				oling date / time	15-Dec-2021 12:00	15-Dec-2021 12:00	15-Dec-2021 12:00		15-Dec-2021 12:00
Analyte	CAS Number	Method	LOR	Unit	CG2106913-001 Result	CG2106913-002 Result	CG2106913-003 Result	CG2106913-004 Result	CG2106913-005 Result
Metals					Result	Result	Result	Result	Nesuit
boron	7440-42-8	E472A	0.20	mg/kg wwt					7.02
boron	7440-42-8	E440A	0.20	mg/kg wwt	7.79	7.90	7.88	7.17	
cadmium	7440-43-9	E440	0.0050	mg/kg	3.15	7.01	3.58	4.80	
cadmium	7440-43-9	E472	0.010	mg/kg					5.01
cadmium	7440-43-9	E440A	0.0010	mg/kg wwt	0.516	0.929	0.329	0.614	
cadmium	7440-43-9	E472A	0.0020	mg/kg wwt					3.14
calcium	7440-70-2	E472	20	mg/kg					261000
calcium	7440-70-2	E440	20	mg/kg	56400	55000	21300	63300	
calcium	7440-70-2	E472A	4.0	mg/kg wwt					163000
calcium	7440-70-2	E440A	4.0	mg/kg wwt	9260	7580	1960	8090	
cesium	7440-46-2	E472	0.0050	mg/kg					0.176
cesium	7440-46-2	E440	0.0050	mg/kg	0.524	0.584	0.163	0.796	
cesium	7440-46-2	E472A	0.0010	mg/kg wwt					0.110
cesium	7440-46-2	E440A	0.0010	mg/kg wwt	0.0859	0.0785	0.0149	0.102	
chromium	7440-47-3	E440	0.050	mg/kg	3.07	4.62	1.64	4.01	
chromium	7440-47-3	E472	0.20	mg/kg					3.76
chromium	7440-47-3	E440A	0.010	mg/kg wwt	0.503	0.603	0.151	0.513	
chromium	7440-47-3	E472A	0.040	mg/kg wwt					2.35
cobalt	7440-48-4	E472	0.020	mg/kg					214
cobalt	7440-48-4	E440	0.020	mg/kg	222	672	274	73.2	
cobalt	7440-48-4	E472A	0.0040	mg/kg wwt					134
cobalt	7440-48-4	E440A	0.0040	mg/kg wwt	36.4	91.8	25.2	9.36	
copper	7440-50-8	E440	0.10	mg/kg	7.84	15.8	11.3	9.35	
copper	7440-50-8	E472	0.20	mg/kg					2.28
copper	7440-50-8	E440A	0.020	mg/kg wwt	1.29	2.21	1.03	1.20	
copper	7440-50-8	E472A	0.040	mg/kg wwt					1.43
iron	7439-89-6	E440	3.0	mg/kg	8660	13500	6140	13400	
iron	7439-89-6	E472	5.0	mg/kg					1470
iron	7439-89-6	E440A	0.60	mg/kg wwt	1420	1850	564	1720	
iron	7439-89-6	E472A	1.0	mg/kg wwt					923

Page : 5 of 20

Work Order : CG2106913 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Tissue (Matrix: Biota)				lient sample ID	RG_ERCKDT_B RYO-01_2021-1 2-15	RG_ERCKDT_B RYO-02_2021-1 2-15	RG_ERCKDT_B RYO-03_2021-1 2-15	RG_ERCKDT_B RYO-04_2021-1 2-15	RG_ERCKDT_P ERI-02_2021-12 -15
				oling date / time	15-Dec-2021 12:00	12:00	15-Dec-2021 12:00	15-Dec-2021 12:00	15-Dec-2021 12:00
Analyte	CAS Number	Method	LOR	Unit	CG2106913-001 Result	CG2106913-002 Result	CG2106913-003 Result	CG2106913-004 Result	CG2106913-005 Result
Metals					Result	Result	Result	Result	Result
lead	7439-92-1	E440	0.020	mg/kg	3.05	4.86	2.00	4.42	
lead	7439-92-1	E472	0.050	mg/kg					0.735
lead	7439-92-1	E440A	0.0040	mg/kg wwt	0.501	0.699	0.184	0.565	
lead	7439-92-1	E472A	0.010	mg/kg wwt					0.460
lithium	7439-93-2	E472	0.50	mg/kg					1.22
lithium	7439-93-2	E440	0.50	mg/kg	1.65	2.54	1.11	4.37	
lithium	7439-93-2	E472A	0.10	mg/kg wwt					0.77
lithium	7439-93-2	E440A	0.10	mg/kg wwt	0.27	<0.36 DLA	0.10	0.56	
magnesium	7439-95-4	E472	2.0	mg/kg					3520
magnesium	7439-95-4	E440	2.0	mg/kg	4880	7480	6650	7390	
magnesium	7439-95-4	E472A	0.40	mg/kg wwt					2200
magnesium	7439-95-4	E440A	0.40	mg/kg wwt	801	949	611	946	
manganese	7439-96-5	E472	0.050	mg/kg					5890
manganese	7439-96-5	E440	0.050	mg/kg	5720	18600	6940	1780	
manganese	7439-96-5	E472A	0.010	mg/kg wwt					3690
manganese	7439-96-5	E440A	0.010	mg/kg wwt	939	2460	637	228	
molybdenum	7439-98-7	E440	0.020	mg/kg	3.23	8.88	5.26	1.97	
molybdenum	7439-98-7	E472	0.040	mg/kg					3.22
molybdenum	7439-98-7	E440A	0.0040	mg/kg wwt	0.530	1.18	0.483	0.252	
molybdenum	7439-98-7	E472A	0.0080	mg/kg wwt					2.02
nickel	7440-02-0	E472	0.20	mg/kg					102
nickel	7440-02-0	E440	0.20	mg/kg	110	288	148	162	
nickel	7440-02-0	E472A	0.040	mg/kg wwt					63.9
nickel	7440-02-0	E440A	0.040	mg/kg wwt	18.1	39.5	13.6	20.8	
phosphorus	7723-14-0	E472	10	mg/kg					490
phosphorus	7723-14-0	E440	10	mg/kg	3460	5740	5610	4020	
phosphorus	7723-14-0	E472A	2.0	mg/kg wwt					307
phosphorus	7723-14-0	E440A	2.0	mg/kg wwt	567	717	515	514	
potassium	7440-09-7	E472	20	mg/kg					367
potassium	7440-09-7	E440	20	mg/kg	6180	7530	12400	5670	

Page : 6 of 20

Work Order : CG2106913 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Tissue (Matrix: Biota)			C.	lient sample ID	RG_ERCKDT_B RYO-01_2021-1 2-15	RG_ERCKDT_B RYO-02_2021-1 2-15	RG_ERCKDT_B RYO-03_2021-1 2-15	RG_ERCKDT_B RYO-04_2021-1 2-15	RG_ERCKDT_P ERI-02_2021-12 -15
				oling date / time	15-Dec-2021 12:00	15-Dec-2021 12:00	15-Dec-2021 12:00	15-Dec-2021 12:00	15-Dec-2021 12:00
Analyte	CAS Number	Method	LOR	Unit	CG2106913-001 Result	CG2106913-002 Result	CG2106913-003 Result	CG2106913-004 Result	CG2106913-005 Result
Metals					Nesuit	Result	Nesuit	Result	Nesuit
potassium	7440-09-7	E472A	4.0	mg/kg wwt					230
potassium	7440-09-7	E440A	4.0	mg/kg wwt	1010	1060	1140	725	
rubidium	7440-17-7	E472	0.050	mg/kg					1.40
rubidium	7440-17-7	E440	0.050	mg/kg	5.94	7.40	6.63	8.39	
rubidium	7440-17-7	E472A	0.010	mg/kg wwt					0.874
rubidium	7440-17-7	E440A	0.010	mg/kg wwt	0.975	0.987	0.609	1.07	
selenium	7782-49-2	E440	0.050	mg/kg	16.6	40.1	38.4	31.5	
selenium	7782-49-2	E472	0.10	mg/kg					10.1
selenium	7782-49-2	E440A	0.010	mg/kg wwt	2.73	5.65	3.52	4.03	
selenium	7782-49-2	E472A	0.020	mg/kg wwt					6.33
sodium	7440-23-5	E472	20	mg/kg					77
sodium	7440-23-5	E440	20	mg/kg	78	208	164	520	
sodium	7440-23-5	E472A	4.0	mg/kg wwt					48.1
sodium	7440-23-5	E440A	4.0	mg/kg wwt	12.8	26.3	15.1	66.5	
strontium	7440-24-6	E440	0.050	mg/kg	41.8	53.9	24.1	51.7	
strontium	7440-24-6	E472	0.10	mg/kg					130
strontium	7440-24-6	E440A	0.010	mg/kg wwt	6.85	7.43	2.21	6.61	
strontium	7440-24-6	E472A	0.020	mg/kg wwt					81.4
tellurium	13494-80-9	E472	0.020	mg/kg					<0.027 DLA
tellurium	13494-80-9	E440	0.020	mg/kg	<0.020	<0.020	<0.020	<0.020	
tellurium	13494-80-9	E472A	0.0040	mg/kg wwt					<0.0272 DLA
tellurium	13494-80-9	E440A	0.0040	mg/kg wwt	<0.0040	<0.0146 DLA	<0.0040	<0.0040	
thallium	7440-28-0	E472	0.0020	mg/kg					0.0741
thallium	7440-28-0	E440	0.0020	mg/kg	0.137	0.292	0.109	0.284	
thallium	7440-28-0	E472A	0.00040	mg/kg wwt					0.0464
thallium	7440-28-0	E440A	0.00040	mg/kg wwt	0.0224	0.0424	0.0100	0.0363	
tin	7440-31-5	E472	0.10	mg/kg					<0.14 DLA
tin	7440-31-5	E440	0.10	mg/kg	<0.10	<0.10	<0.10	<0.10	
tin	7440-31-5	E472A	0.020	mg/kg wwt					<0.136 DLA
tin	7440-31-5	E440A	0.020	mg/kg wwt	<0.020	<0.073 DLA	<0.020	<0.020	

Page : 7 of 20

Work Order : CG2106913 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Tissue			C	lient sample ID	RG_ERCKDT_B	RG_ERCKDT_B	RG_ERCKDT_B	RG_ERCKDT_B	RG_ERCKDT_P
(Matrix: Biota)					RYO-01_2021-1	RYO-02_2021-1	RYO-03_2021-1	RYO-04_2021-1	ERI-02_2021-12
					2-15	2-15	2-15	2-15	-15
			Client samp	oling date / time	15-Dec-2021	15-Dec-2021	15-Dec-2021	15-Dec-2021	15-Dec-2021
				ŭ	12:00	12:00	12:00	12:00	12:00
Analyte	CAS Number	Method	LOR	Unit	CG2106913-001	CG2106913-002	CG2106913-003	CG2106913-004	CG2106913-005
					Result	Result	Result	Result	Result
Metals									
titanium	7440-32-6	E440.Ti	0.25	mg/kg	6.85	10.9	5.59	13.4	
titanium	7440-32-6	E472.Ti	0.50	mg/kg					3.24
titanium	7440-32-6	E440A.Ti	0.050	mg/kg wwt	1.12	1.01	0.514	1.71	
titanium	7440-32-6	E472A.Ti	0.10	mg/kg wwt					2.03
uranium	7440-61-1	E472	0.0020	mg/kg					0.648
uranium	7440-61-1	E440	0.0020	mg/kg	0.948	1.71	1.07	1.44	
uranium	7440-61-1	E472A	0.00040	mg/kg wwt					0.405
uranium	7440-61-1	E440A	0.00040	mg/kg wwt	0.155	0.228	0.0986	0.185	
vanadium	7440-62-2	E472	0.10	mg/kg					2.85
vanadium	7440-62-2	E440	0.10	mg/kg	8.18	11.6	3.35	10.2	
vanadium	7440-62-2	E472A	0.020	mg/kg wwt					1.78
vanadium	7440-62-2	E440A	0.020	mg/kg wwt	1.34	1.48	0.307	1.30	
zinc	7440-66-6	E440	0.50	mg/kg	235	443	306	285	
zinc	7440-66-6	E472	1.0	mg/kg					138
zinc	7440-66-6	E440A	0.10	mg/kg wwt	38.6	62.0	28.0	36.5	
zinc	7440-66-6	E472A	0.20	mg/kg wwt					86.4
zirconium	7440-67-7	E472	0.20	mg/kg					0.41
zirconium	7440-67-7	E440	0.20	mg/kg	0.89	1.02	0.82	1.70	
zirconium	7440-67-7	E472A	0.040	mg/kg wwt					<0.272 DLA
zirconium	7440-67-7	E440A	0.040	mg/kg wwt	0.146	0.157	0.075	0.218	

Please refer to the General Comments section for an explanation of any qualifiers detected.

Page : 8 of 20

Work Order : CG2106913 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Tissue (Matrix: Biota)			<i>C</i>	lient sample ID	RG_ERCKDT_P ERI-03_2021-12 -15	RG_ERCKDT_P ERI-04_2021-12 -15	RG_ERCK_BRY O-01_2021-12- 15	RG_ERCK_PERI -02_2021-12-15	EV_EC_FLOW2 _BRYO-01_202 1-12-15
				oling date / time	15-Dec-2021 12:00	15-Dec-2021 12:00	14-Dec-2021 09:45	14-Dec-2021 09:45	15-Dec-2021 14:00
Analyte	CAS Number	Method	LOR	Unit	CG2106913-006 Result	CG2106913-007 Result	CG2106913-008 Result	CG2106913-009 Result	CG2106913-010 Result
Physical Tests					Result	Nesuit	rtesuit	ixesuit	Result
moisture		E144	0.50	%					80.7
moisture		E144-H	2.0	%	83.9	61.8	92.5	29.4	
Metals									
aluminum	7429-90-5	E440	2.0	mg/kg					324
aluminum	7429-90-5	E472	5.0	mg/kg	634	2820	1180	213	
aluminum	7429-90-5	E440A	0.40	mg/kg wwt					62.6
aluminum	7429-90-5	E472A	1.0	mg/kg wwt	102	1080	87.9	150	
antimony	7440-36-0	E472	0.010	mg/kg	0.332	0.159	0.138	0.068	
antimony	7440-36-0	E440	0.010	mg/kg					0.162
antimony	7440-36-0	E472A	0.0020	mg/kg wwt	0.0533	0.0606	0.0103	0.0484	
antimony	7440-36-0	E440A	0.0020	mg/kg wwt					0.0314
arsenic	7440-38-2	E440	0.020	mg/kg					2.51
arsenic	7440-38-2	E472	0.030	mg/kg	4.38	4.23	4.42	0.737	
arsenic	7440-38-2	E440A	0.0040	mg/kg wwt					0.484
arsenic	7440-38-2	E472A	0.0060	mg/kg wwt	0.703	1.61	0.330	0.520	
barium	7440-39-3	E472	0.050	mg/kg	78.2	165	24.5	118	
barium	7440-39-3	E440	0.050	mg/kg					163
barium	7440-39-3	E472A	0.010	mg/kg wwt	12.6	63.0	1.83	83.3	
barium	7440-39-3	E440A	0.010	mg/kg wwt					31.5
beryllium	7440-41-7	E472	0.010	mg/kg	0.078	0.228	0.080	<0.017 DLA	
beryllium	7440-41-7	E440	0.010	mg/kg					0.167
beryllium	7440-41-7	E472A	0.0020	mg/kg wwt	0.0126	0.0870	0.0059	<0.0169 DLA	
beryllium	7440-41-7	E440A	0.0020	mg/kg wwt					0.0323
bismuth	7440-69-9	E472	0.010	mg/kg	<0.010	0.034	0.017	<0.017 DLA	
bismuth	7440-69-9	E440	0.010	mg/kg					<0.018 DLA
bismuth	7440-69-9	E472A	0.0020	mg/kg wwt	<0.0020	0.0132	<0.0020	<0.0169 DLA	
bismuth	7440-69-9	E440A	0.0020	mg/kg wwt					<0.0036 DLA
boron	7440-42-8	E472	1.0	mg/kg	62.0	24.6	200	10.7	
boron	7440-42-8	E440	1.0	mg/kg					34.7
boron	7440-42-8	E472A	0.20	mg/kg wwt	9.95	9.40	14.9	7.54	

Page : 9 of 20

Work Order : CG2106913 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Tissue (Matrix: Biota)			C	lient sample ID	RG_ERCKDT_P ERI-03_2021-12 -15	RG_ERCKDT_P ERI-04_2021-12 -15	RG_ERCK_BRY O-01_2021-12- 15	RG_ERCK_PERI -02_2021-12-15	EV_EC_FLOW2 _BRYO-01_202 1-12-15
				oling date / time	15-Dec-2021 12:00	15-Dec-2021 12:00	14-Dec-2021 09:45	14-Dec-2021 09:45	15-Dec-2021 14:00
Analyte	CAS Number	Method	LOR	Unit	CG2106913-006 Result	CG2106913-007 Result	CG2106913-008 Result	CG2106913-009 Result	CG2106913-010 Result
Metals					Result	Result	Nesuit	Nesuit	Nesuit
boron	7440-42-8	E440A	0.20	mg/kg wwt					6.71
cadmium	7440-43-9	E440	0.0050	mg/kg					4.57
cadmium	7440-43-9	E472	0.010	mg/kg	15.8	2.89	0.959	0.378	
cadmium	7440-43-9	E440A	0.0010	mg/kg wwt					0.882
cadmium	7440-43-9	E472A	0.0020	mg/kg wwt	2.54	1.10	0.0715	0.267	
calcium	7440-70-2	E472	20	mg/kg	30200	155000	20200	324000	
calcium	7440-70-2	E440	20	mg/kg					228000
calcium	7440-70-2	E472A	4.0	mg/kg wwt	4840	59100	1510	228000	
calcium	7440-70-2	E440A	4.0	mg/kg wwt					44000
cesium	7440-46-2	E472	0.0050	mg/kg	0.155	0.640	0.290	0.0316	
cesium	7440-46-2	E440	0.0050	mg/kg					0.101
cesium	7440-46-2	E472A	0.0010	mg/kg wwt	0.0248	0.244	0.0216	0.0223	
cesium	7440-46-2	E440A	0.0010	mg/kg wwt					0.0195
chromium	7440-47-3	E440	0.050	mg/kg					0.771
chromium	7440-47-3	E472	0.20	mg/kg	17.3	43.6	3.08	1.07	
chromium	7440-47-3	E440A	0.010	mg/kg wwt					0.149
chromium	7440-47-3	E472A	0.040	mg/kg wwt	2.78	16.6	0.230	0.758	
cobalt	7440-48-4	E472	0.020	mg/kg	0.704	142	6.35	11.7	
cobalt	7440-48-4	E440	0.020	mg/kg					57.7
cobalt	7440-48-4	E472A	0.0040	mg/kg wwt	0.113	54.3	0.473	8.24	
cobalt	7440-48-4	E440A	0.0040	mg/kg wwt					11.2
copper	7440-50-8	E440	0.10	mg/kg					3.57
copper	7440-50-8	E472	0.20	mg/kg	6.77	5.50	3.98	<0.34 DLA	
copper	7440-50-8	E440A	0.020	mg/kg wwt					0.690
copper	7440-50-8	E472A	0.040	mg/kg wwt	1.09	2.10	0.297	<0.339 DLA	
iron	7439-89-6	E440	3.0	mg/kg					4310
iron	7439-89-6	E472	5.0	mg/kg	1200	5570	2300	210	
iron	7439-89-6	E440A	0.60	mg/kg wwt					833
iron	7439-89-6	E472A	1.0	mg/kg wwt	192	2130	171	148	
lead	7439-92-1	E440	0.020	mg/kg					1.09

Page : 10 of 20

Work Order : CG2106913 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Tissue (Matrix: Biota)			С	lient sample ID	RG_ERCKDT_P ERI-03_2021-12	RG_ERCKDT_P ERI-04_2021-12	RG_ERCK_BRY O-01_2021-12-	RG_ERCK_PERI -02 2021-12-15	EV_EC_FLOW2 _BRYO-01_202
(Iniation Biola)					-15	-15	15		1-12-15
			Client	oling date / time	45 D-+ 0004	45 D- 10004	44 D- 10004	44 Day 2004	45 D- 2004
			Chent Samp	Jiing date / time	15-Dec-2021 12:00	15-Dec-2021 12:00	14-Dec-2021 09:45	14-Dec-2021 09:45	15-Dec-2021 14:00
Analyte	CAS Number	Method	LOR	Unit	CG2106913-006	CG2106913-007	CG2106913-008	CG2106913-009	CG2106913-010
					Result	Result	Result	Result	Result
Metals									
lead	7439-92-1	E472	0.050	mg/kg	0.551	2.69	1.11	0.152	
lead	7439-92-1	E440A	0.0040	mg/kg wwt					0.211
lead	7439-92-1	E472A	0.010	mg/kg wwt	0.088	1.03	0.083	0.107	
lithium	7439-93-2	E472	0.50	mg/kg	0.96	4.08	2.57	2.18	
lithium	7439-93-2	E440	0.50	mg/kg					2.28
lithium	7439-93-2	E472A	0.10	mg/kg wwt	0.15	1.56	0.19	1.54	
lithium	7439-93-2	E440A	0.10	mg/kg wwt					0.44
magnesium	7439-95-4	E472	2.0	mg/kg	4780	9270	6200	5780	
magnesium	7439-95-4	E440	2.0	mg/kg					5560
magnesium	7439-95-4	E472A	0.40	mg/kg wwt	767	3540	462	4080	
magnesium	7439-95-4	E440A	0.40	mg/kg wwt					1070
manganese	7439-96-5	E472	0.050	mg/kg	38.2	3620	233	398	
manganese	7439-96-5	E440	0.050	mg/kg					2250
manganese	7439-96-5	E472A	0.010	mg/kg wwt	6.14	1380	17.4	281	
manganese	7439-96-5	E440A	0.010	mg/kg wwt					435
molybdenum	7439-98-7	E440	0.020	mg/kg					5.18
molybdenum	7439-98-7	E472	0.040	mg/kg	0.533	2.51	0.690	0.118	
molybdenum	7439-98-7	E440A	0.0040	mg/kg wwt					1.00
molybdenum	7439-98-7	E472A	0.0080	mg/kg wwt	0.0856	0.958	0.0514	0.0835	
nickel	7440-02-0	E472	0.20	mg/kg	10.8	87.4	17.4	24.4	
nickel	7440-02-0	E440	0.20	mg/kg					71.3
nickel	7440-02-0	E472A	0.040	mg/kg wwt	1.73	33.4	1.30	17.2	
nickel	7440-02-0	E440A	0.040	mg/kg wwt					13.8
phosphorus	7723-14-0	E472	10	mg/kg	3510	1670	4780	383	
phosphorus	7723-14-0	E440	10	mg/kg					2260
phosphorus	7723-14-0	E472A	2.0	mg/kg wwt	563	639	356	270	
phosphorus	7723-14-0	E440A	2.0	mg/kg wwt					437
potassium	7440-09-7	E472	20	mg/kg	3850	2320	20300	412	
potassium	7440-09-7	E440	20	mg/kg					4500
potassium	7440-09-7	E472A	4.0	mg/kg wwt	617	886	1510	291	
	1440-03-1		""	mg/ng wwt	0	1	1010		

Page : 11 of 20

Work Order : CG2106913 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Tissue (Matrix: Biota)			C	lient sample ID	RG_ERCKDT_P ERI-03_2021-12	RG_ERCKDT_P ERI-04_2021-12	RG_ERCK_BRY O-01_2021-12-	RG_ERCK_PERI -02_2021-12-15	EV_EC_FLOW2 _BRYO-01_202
			Client samp	oling date / time	-15 15-Dec-2021 12:00	-15 15-Dec-2021 12:00	15 14-Dec-2021 09:45	14-Dec-2021 09:45	1-12-15 15-Dec-2021 14:00
Analyte	CAS Number	Method	LOR	Unit	CG2106913-006	CG2106913-007	CG2106913-008	CG2106913-009	CG2106913-010
Metals					Result	Result	Result	Result	Result
potassium	7440-09-7	E440A	4.0	mg/kg wwt					869
rubidium	7440-17-7	E472	0.050	mg/kg	3.56	6.30	18.0	0.596	
rubidium	7440-17-7	E440	0.050	mg/kg					2.80
rubidium	7440-17-7	E472A	0.010	mg/kg wwt	0.571	2.40	1.34	0.420	
rubidium	7440-17-7	E440A	0.010	mg/kg wwt					0.542
selenium	7782-49-2	E440	0.050	mg/kg					7.60
selenium	7782-49-2	E472	0.10	mg/kg	4.67	4.55	2.45	1.73	
selenium	7782-49-2	E440A	0.010	mg/kg wwt					1.47
selenium	7782-49-2	E472A	0.020	mg/kg wwt	0.750	1.74	0.183	1.22	
sodium	7440-23-5	E472	20	mg/kg	102	128	301	136	
sodium	7440-23-5	E440	20	mg/kg					230
sodium	7440-23-5	E472A	4.0	mg/kg wwt	16.3	49.0	22.4	96.2	
sodium	7440-23-5	E440A	4.0	mg/kg wwt					44.4
strontium	7440-24-6	E440	0.050	mg/kg					93.8
strontium	7440-24-6	E472	0.10	mg/kg	21.7	100	27.2	207	
strontium	7440-24-6	E440A	0.010	mg/kg wwt					18.1
strontium	7440-24-6	E472A	0.020	mg/kg wwt	3.49	38.2	2.02	146	
tellurium	13494-80-9	E472	0.020	mg/kg	<0.020	<0.024 DLA	<0.027 DLA	<0.034 DLA	
tellurium	13494-80-9	E440	0.020	mg/kg					<0.036 DLA
tellurium	13494-80-9	E472A	0.0040	mg/kg wwt	<0.0040	<0.0123 DLA	<0.0040	<0.0339 DLA	
tellurium	13494-80-9	E440A	0.0040	mg/kg wwt					<0.0071 DLA
thallium	7440-28-0	E472	0.0020	mg/kg	0.0275	0.116	0.153	0.0186	
thallium	7440-28-0	E440	0.0020	mg/kg					0.0889
thallium	7440-28-0	E472A	0.00040	mg/kg wwt	0.00442	0.0443	0.0114	0.0131	
thallium	7440-28-0	E440A	0.00040	mg/kg wwt					0.0172
tin	7440-31-5	E472	0.10	mg/kg	<0.10	<0.12 DLA	0.20	<0.17 DLA	
tin	7440-31-5	E440	0.10	mg/kg					<0.18 DLA
tin	7440-31-5	E472A	0.020	mg/kg wwt	<0.020	<0.061 DLA	<0.020	<0.169 DLA	
tin	7440-31-5	E440A	0.020	mg/kg wwt					<0.036 DLA
titanium	7440-32-6	E440.Ti	0.25	mg/kg					4.31

Page : 12 of 20

Work Order : CG2106913 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Tissue		C	lient sample ID	RG_ERCKDT_P	RG_ERCKDT_P	RG_ERCK_BRY	RG_ERCK_PERI	EV_EC_FLOW2
(Matrix: Biota)				ERI-03_2021-12 -15	ERI-04_2021-12 -15	O-01_2021-12- 15	-02_2021-12-15	_BRYO-01_202 1-12-15
				-13	-15	10		1-12-15
		Client samp	oling date / time	15-Dec-2021	15-Dec-2021	14-Dec-2021	14-Dec-2021	15-Dec-2021
				12:00	12:00	09:45	09:45	14:00
Analyte CAS Number	Method	LOR	Unit	CG2106913-006	CG2106913-007	CG2106913-008	CG2106913-009	CG2106913-010
				Result	Result	Result	Result	Result
Metals								
titanium 7440-32-6	E472.Ti	0.50	mg/kg	7.16	12.4	21.8	1.64	
titanium 7440-32-6	E440A.Ti	0.050	mg/kg wwt					0.833
titanium 7440-32-6	E472A.Ti	0.10	mg/kg wwt	1.15	4.75	1.63	1.16	
uranium 7440-61-1	E472	0.0020	mg/kg	1.74	1.11	0.453	2.28	
uranium 7440-61-1	E440	0.0020	mg/kg					2.23
uranium 7440-61-1	E472A	0.00040	mg/kg wwt	0.279	0.422	0.0338	1.61	
uranium 7440-61-1	E440A	0.00040	mg/kg wwt					0.431
vanadium 7440-62-2	E472	0.10	mg/kg	10.3	12.6	5.75	0.97	
vanadium 7440-62-2	E440	0.10	mg/kg					1.86
vanadium 7440-62-2	E472A	0.020	mg/kg wwt	1.65	4.82	0.429	0.684	
vanadium 7440-62-2	E440A	0.020	mg/kg wwt					0.360
zinc 7440-66-6	E440	0.50	mg/kg					231
zinc 7440-66-6	E472	1.0	mg/kg	65.8	153	33.0	9.7	
zinc 7440-66-6	E440A	0.10	mg/kg wwt					44.6
zinc 7440-66-6	E472A	0.20	mg/kg wwt	10.6	58.4	2.46	6.85	
zirconium 7440-67-7	E472	0.20	mg/kg	13.5	1.76	8.30	0.37	
zirconium 7440-67-7	E440	0.20	mg/kg					0.53
zirconium 7440-67-7	E472A	0.040	mg/kg wwt	2.17	0.673	0.619	<0.339 DLA	
zirconium 7440-67-7	E440A	0.040	mg/kg wwt					0.103

Please refer to the General Comments section for an explanation of any qualifiers detected.

Page : 13 of 20

Work Order : CG2106913 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

er Method	Client sam	pling date / time Unit	15-Dec-2021 14:00	15-Dec-2021	15-Dec-2021	15-Dec-2021	15-Dec-2021
	LOR	Unit		14:00	14:00	14:00	13:00
F144		Jiii.	CG2106913-011	CG2106913-012	CG2106913-013	CG2106913-014	CG2106913-015
F144			Result	Result	Result	Result	Result
	0.50	%	66.2	89.1	90.1	90.2	87.8
5 E440	2.0	mg/kg	363	700	1160	720	1420
5 E440A	0.40	mg/kg wwt	122	76.4	114	70.5	174
0 E440	0.010	mg/kg	0.135	0.349	0.579	0.247	4.09
0 E440A	0.0020	mg/kg wwt	0.0457	0.0381	0.0573	0.0242	0.500
2 E440	0.020	mg/kg	2.27	11.7	23.1	12.3	1.82
2 E440A	0.0040	mg/kg wwt	0.767	1.28	2.28	1.20	0.223
3 E440	0.050	mg/kg	192	135	187	102	80.0
3 E440A	0.010	mg/kg wwt	64.9	14.8	18.5	9.99	9.78
7 E440	0.010	mg/kg	0.115	0.371	0.593	0.289	0.285
7 E440A	0.0020	mg/kg wwt	0.0388	0.0405	0.0587	0.0283	0.0348
9 E440	0.010	mg/kg	<0.015 DLA	0.021	<0.062 DLA	<0.034 DLA	0.025
9 E440A	0.0020	mg/kg wwt	<0.0074 DLA	0.0023	<0.0062 DLA	<0.0034 DLA	0.0031
8 E440	1.0	mg/kg	15.7	58.6	72.6	31.0	11.9
8 E440A	0.20	mg/kg wwt	5.30	6.40	7.19	3.03	1.45
9 E440	0.0050	mg/kg	4.71	6.10	10.6	5.17	6.79
9 E440A	0.0010	mg/kg wwt	1.59	0.665	1.05	0.506	0.830
2 E440	20	mg/kg	286000	124000	82600	41600	76200
	4.0	mg/kg wwt	96800	13500	8180	4070	9320
	0.0050	mg/kg	0.112	0.326	0.582	0.333	0.404
2 E440A	0.0010	mg/kg wwt	0.0380	0.0356	0.0576	0.0326	0.0494
	0.050	mg/kg	0.877	1.91	3.25	1.93	4.64
3 E440A	0.010	mg/kg wwt	0.296	0.209	0.321	0.189	0.568
4 E440	0.020	mg/kg	57.6	152	272	163	1.76
	0.0040	mg/kg wwt	19.4	16.5	26.9	15.9	0.216
8 E440	0.10	mg/kg	2.61	8.03	13.7	6.96	24.6
	0.020	ma es // c ==	0.001	0.070	1.00	0.004	2.01
0 -440/	0.020	mg/kg wwt	0.881	0.876	1.36	0.681	3.01
6 E440A	3.0	mg/kg wwt	3640	0.876 18900	1.36 38100	20300	3.01 4220
	F440 F440A F440A F440A F440A F440A F440A F440A F440A F440A F440A F440A F440A F440A F440A F440A F440A	7 E440 0.010 7 E440A 0.0020 9 E440 0.010 9 E440A 0.0020 8 E440A 0.20 8 E440A 0.0050 9 E440A 0.0010 2 E440A 4.0 2 E440A 0.0050 2 E440A 0.0010 3 E440A 0.050 3 E440A 0.010 4 E440A 0.020 4 E440A 0.0040 8 E440A 0.0040	7 E440 0.010 mg/kg 7 E440A 0.0020 mg/kg wwt 9 E440 0.010 mg/kg 9 E440A 0.0020 mg/kg wwt 8 E440A 0.20 mg/kg wwt 9 E440A 0.0050 mg/kg wwt 9 E440A 0.0010 mg/kg wwt 2 E440A 20 mg/kg 2 E440A 4.0 mg/kg wwt 2 E440A 0.0050 mg/kg 2 E440A 0.0010 mg/kg wwt 3 E440A 0.050 mg/kg 3 E440A 0.010 mg/kg wwt 4 E440 0.020 mg/kg wwt 4 E440A 0.0040 mg/kg wwt 8 E440A 0.0040 mg/kg wwt	7 E440 0.010 mg/kg 0.115 7 E440A 0.0020 mg/kg wwt 0.0388 9 E440 0.010 mg/kg wwt 0.015 9 E440A 0.0020 mg/kg wwt <0.0074	7 E440 0.010 mg/kg 0.115 0.371 7 E440A 0.0020 mg/kg wwt 0.0388 0.0405 9 E440 0.010 mg/kg <0.015	7 E440 0.010 mg/kg 0.115 0.371 0.593 7 E440A 0.0020 mg/kg wwt 0.0388 0.0405 0.0587 9 E440 0.010 mg/kg <0.015	7 E440 0.010 mg/kg 0.115 0.371 0.593 0.289 7 E440A 0.0020 mg/kg wwt 0.0388 0.0405 0.0587 0.0283 9 E440A 0.010 mg/kg <0.015 ° LA

Page : 14 of 20

Work Order : CG2106913 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Tissue (Matrix: Biota)			C	lient sample ID	EV_EC_FLOW2 _BRYO-02_202 1-12-15	EV_EC_FLOW2 _BRYO-03_202 1-12-15	EV_EC_FLOW2 _BRYO-04_202 1-12-15	EV_EC_FLOW2 _BRYO-05_202 1-12-15	RG_ERCKUT_B RYO-01_2021-1 2-15
				oling date / time	15-Dec-2021 14:00	15-Dec-2021 14:00	15-Dec-2021 14:00	15-Dec-2021 14:00	15-Dec-2021 13:00
Analyte	CAS Number	Method	LOR	Unit	CG2106913-011 Result	CG2106913-012 Result	CG2106913-013 Result	CG2106913-014 Result	CG2106913-015 Result
Metals					Result	resuit	resuit	resuit	resuit
lead	7439-92-1	E440	0.020	mg/kg	0.952	4.15	8.49	4.45	1.75
lead	7439-92-1	E440A	0.0040	mg/kg wwt	0.322	0.453	0.841	0.436	0.214
lithium	7439-93-2	E440	0.50	mg/kg	2.10	3.86	4.04	1.92	2.45
lithium	7439-93-2	E440A	0.10	mg/kg wwt	0.71	0.42	0.40	0.19	0.30
magnesium	7439-95-4	E440	2.0	mg/kg	5110	6360	7580	3570	4980
magnesium	7439-95-4	E440A	0.40	mg/kg wwt	1720	694	751	350	609
manganese	7439-96-5	E440	0.050	mg/kg	2080	6220	10200	6220	91.3
manganese	7439-96-5	E440A	0.010	mg/kg wwt	702	678	1010	609	11.2
molybdenum	7439-98-7	E440	0.020	mg/kg	1.44	8.38	9.72	4.19	1.71
molybdenum	7439-98-7	E440A	0.0040	mg/kg wwt	0.488	0.914	0.962	0.410	0.209
nickel	7440-02-0	E440	0.20	mg/kg	86.1	147	210	112	10.7
nickel	7440-02-0	E440A	0.040	mg/kg wwt	29.1	16.0	20.8	11.0	1.31
phosphorus	7723-14-0	E440	10	mg/kg	1230	3100	4110	1750	4320
phosphorus	7723-14-0	E440A	2.0	mg/kg wwt	416	338	407	171	529
potassium	7440-09-7	E440	20	mg/kg	1750	6810	8750	3870	15600
potassium	7440-09-7	E440A	4.0	mg/kg wwt	590	743	867	379	1910
rubidium	7440-17-7	E440	0.050	mg/kg	1.69	5.31	6.72	3.63	10.6
rubidium	7440-17-7	E440A	0.010	mg/kg wwt	0.570	0.580	0.665	0.355	1.30
selenium	7782-49-2	E440	0.050	mg/kg	5.70	20.4	35.7	18.7	7.45
selenium	7782-49-2	E440A	0.010	mg/kg wwt	1.92	2.22	3.54	1.83	0.911
sodium	7440-23-5	E440	20	mg/kg	153	521	437	186	153
sodium	7440-23-5	E440A	4.0	mg/kg wwt	51.7	56.9	43.3	18.2	18.7
strontium	7440-24-6	E440	0.050	mg/kg	111	85.4	72.5	35.2	39.8
strontium	7440-24-6	E440A	0.010	mg/kg wwt	37.5	9.32	7.18	3.44	4.87
tellurium	13494-80-9	E440	0.020	mg/kg	<0.029 DLA	<0.020	<0.124 DLA	<0.068 DLA	<0.020
tellurium	13494-80-9	E440A	0.0040	mg/kg wwt	<0.0147 DLA	<0.0040	<0.0124 DLA	<0.0068 DLA	<0.0040
thallium	7440-28-0	E440	0.0020	mg/kg	0.0966	0.337	0.609	0.371	0.122
thallium	7440-28-0	E440A	0.00040	mg/kg wwt	0.0326	0.0368	0.0603	0.0363	0.0149
tin	7440-31-5	E440	0.10	mg/kg	<0.15 DLA	<0.10	<0.62 DLA	<0.34 DLA	<0.10
tin	7440-31-5	E440A	0.020	mg/kg wwt	<0.074 DLA	<0.020	<0.062 DLA	<0.034 DLA	<0.020

Page : 15 of 20

Work Order : CG2106913 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Tissue			C	lient sample ID	EV_EC_FLOW2	EV_EC_FLOW2	EV_EC_FLOW2	EV_EC_FLOW2	RG_ERCKUT_B
(Matrix: Biota)					_BRYO-02_202	_BRYO-03_202	_BRYO-04_202	_BRYO-05_202	RYO-01_2021-1
					1-12-15	1-12-15	1-12-15	1-12-15	2-15
			Client samp	oling date / time	15-Dec-2021	15-Dec-2021	15-Dec-2021	15-Dec-2021	15-Dec-2021
					14:00	14:00	14:00	14:00	13:00
Analyte	CAS Number	Method	LOR	Unit	CG2106913-011	CG2106913-012	CG2106913-013	CG2106913-014	CG2106913-015
					Result	Result	Result	Result	Result
Metals									
titanium	7440-32-6	E440.Ti	0.25	mg/kg	4.36	10.8	11.6	6.09	12.6
titanium	7440-32-6	E440A.Ti	0.050	mg/kg wwt	1.47	1.17	1.14	0.597	1.55
uranium	7440-61-1	E440	0.0020	mg/kg	2.74	1.63	1.88	0.946	2.30
uranium	7440-61-1	E440A	0.00040	mg/kg wwt	0.924	0.177	0.186	0.0926	0.281
vanadium	7440-62-2	E440	0.10	mg/kg	2.20	6.34	11.0	6.22	12.2
vanadium	7440-62-2	E440A	0.020	mg/kg wwt	0.743	0.691	1.09	0.609	1.50
zinc	7440-66-6	E440	0.50	mg/kg	179	479	672	342	54.4
zinc	7440-66-6	E440A	0.10	mg/kg wwt	60.4	52.3	66.5	33.5	6.65
zirconium	7440-67-7	E440	0.20	mg/kg	0.43	1.29	1.53	0.81	4.85
zirconium	7440-67-7	E440A	0.040	mg/kg wwt	<0.147 DLA	0.141	0.152	0.080	0.593

Please refer to the General Comments section for an explanation of any qualifiers detected.

Page : 16 of 20

Work Order : CG2106913 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Tissue (Matrix: Biota)			С	lient sample ID	RG_ERCKUT_B RYO-02_2021-1 2-15	RG_ERCKUT_B RYO-03_2021-1 2-15	RG_ERCKUT_P ERI-02_2021-12 -15	RG_ERCKUT_P ERI-03_2021-12 -15	
			Client sam	pling date / time	15-Dec-2021 13:00	15-Dec-2021 13:00	15-Dec-2021 13:00	15-Dec-2021 13:00	
Analyte	CAS Number	Method	LOR	Unit	CG2106913-016	CG2106913-017	CG2106913-018	CG2106913-019	
Physical Tasts					Result	Result	Result	Result	
Physical Tests moisture		E144	0.50	%		78.1			
moisture		E144-H	2.0	%	71.8		80.7	81.0	
Metals									
aluminum	7429-90-5	E440	2.0	mg/kg		374		[
aluminum	7429-90-5	E472	5.0	mg/kg	4000		1320	581	
aluminum	7429-90-5	E440A	0.40	mg/kg wwt		81.8			
aluminum	7429-90-5	E472A	1.0	mg/kg wwt	1130		255	111	
antimony	7440-36-0	E472	0.010	mg/kg	0.456		0.246	0.289	
antimony	7440-36-0	E440	0.010	mg/kg		1.10			
antimony	7440-36-0	E472A	0.0020	mg/kg wwt	0.129		0.0476	0.0550	
antimony	7440-36-0	E440A	0.0020	mg/kg wwt		0.242			
arsenic	7440-38-2	E440	0.020	mg/kg		0.379			
arsenic	7440-38-2	E472	0.030	mg/kg	2.94		4.08	3.87	
arsenic	7440-38-2	E440A	0.0040	mg/kg wwt		0.0831			
arsenic	7440-38-2	E472A	0.0060	mg/kg wwt	0.829		0.788	0.738	
barium	7440-39-3	E472	0.050	mg/kg	129		37.1	176	
barium	7440-39-3	E440	0.050	mg/kg		46.5			
barium	7440-39-3	E472A	0.010	mg/kg wwt	36.5		7.16	33.6	
barium	7440-39-3	E440A	0.010	mg/kg wwt		10.2			
beryllium	7440-41-7	E472	0.010	mg/kg	0.493		0.123	0.073	
beryllium	7440-41-7	E440	0.010	mg/kg		0.261			
beryllium	7440-41-7	E472A	0.0020	mg/kg wwt	0.139		0.0237	0.0139	
beryllium	7440-41-7	E440A	0.0020	mg/kg wwt		0.0572			
bismuth	7440-69-9	E472	0.010	mg/kg	0.071		0.015	<0.010	
bismuth	7440-69-9	E440	0.010	mg/kg		<0.010			
bismuth	7440-69-9	E472A	0.0020	mg/kg wwt	0.0201		0.0028	<0.0020	
bismuth	7440-69-9	E440A	0.0020	mg/kg wwt		<0.0020			
boron	7440-42-8	E472	1.0	mg/kg	19.4		50.1	51.3	
boron	7440-42-8	E440	1.0	mg/kg		39.4			
boron	7440-42-8	E472A	0.20	mg/kg wwt	5.48		9.68	9.77	

Page : 17 of 20

Work Order : CG2106913 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Tissue (Matrix: Biota)				lient sample ID	RG_ERCKUT_B RYO-02_2021-1 2-15	RG_ERCKUT_B RYO-03_2021-1 2-15	RG_ERCKUT_P ERI-02_2021-12 -15	RG_ERCKUT_P ERI-03_2021-12 -15	
				oling date / time	15-Dec-2021 13:00	15-Dec-2021 13:00	15-Dec-2021 13:00	15-Dec-2021 13:00	
Analyte	CAS Number	Method	LOR	Unit	CG2106913-016 Result	CG2106913-017 Result	CG2106913-018 Result	CG2106913-019 Result	
Metals					Result	Result	Result	Result	
boron	7440-42-8	E440A	0.20	mg/kg wwt		8.63			
cadmium	7440-43-9	E440	0.0050	mg/kg		2.87			
cadmium	7440-43-9	E472	0.010	mg/kg	3.24		12.9	11.9	
cadmium	7440-43-9	E440A	0.0010	mg/kg wwt		0.629			
cadmium	7440-43-9	E472A	0.0020	mg/kg wwt	0.915		2.50	2.27	
calcium	7440-70-2	E472	20	mg/kg	50500		57700	55000	
calcium	7440-70-2	E440	20	mg/kg		23600			
calcium	7440-70-2	E472A	4.0	mg/kg wwt	14200		11100	10500	
calcium	7440-70-2	E440A	4.0	mg/kg wwt		5180			
cesium	7440-46-2	E472	0.0050	mg/kg	1.21		0.351	0.136	
cesium	7440-46-2	E440	0.0050	mg/kg		0.0955			
cesium	7440-46-2	E472A	0.0010	mg/kg wwt	0.342		0.0677	0.0260	
cesium	7440-46-2	E440A	0.0010	mg/kg wwt		0.0209			
chromium	7440-47-3	E440	0.050	mg/kg		2.61			
chromium	7440-47-3	E472	0.20	mg/kg	10.8		13.1	23.3	
chromium	7440-47-3	E440A	0.010	mg/kg wwt		0.571			
chromium	7440-47-3	E472A	0.040	mg/kg wwt	3.03		2.54	4.44	
cobalt	7440-48-4	E472	0.020	mg/kg	2.86		1.00	0.507	
cobalt	7440-48-4	E440	0.020	mg/kg		0.249			
cobalt	7440-48-4	E472A	0.0040	mg/kg wwt	0.808		0.193	0.0966	
cobalt	7440-48-4	E440A	0.0040	mg/kg wwt		0.0545			
copper	7440-50-8	E440	0.10	mg/kg		11.7			
copper	7440-50-8	E472	0.20	mg/kg	12.8		6.32	6.64	
copper	7440-50-8	E440A	0.020	mg/kg wwt		2.56			
copper	7440-50-8	E472A	0.040	mg/kg wwt	3.61		1.22	1.26	
iron	7439-89-6	E440	3.0	mg/kg		226			
iron	7439-89-6	E472	5.0	mg/kg	9310		1700	1260	
iron	7439-89-6	E440A	0.60	mg/kg wwt		49.5			
iron	7439-89-6	E472A	1.0	mg/kg wwt	2630		329	241	
lead	7439-92-1	E440	0.020	mg/kg		0.514			

Page : 18 of 20

Work Order : CG2106913 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Tissue (Matrix: Biota)			С	lient sample ID	RG_ERCKUT_B RYO-02_2021-1 2-15	RG_ERCKUT_B RYO-03_2021-1 2-15	RG_ERCKUT_P ERI-02_2021-12 -15	RG_ERCKUT_P ERI-03_2021-12 -15	
			Client sam	oling date / time	15-Dec-2021 13:00	15-Dec-2021 13:00	15-Dec-2021 13:00	15-Dec-2021 13:00	
Analyte	CAS Number	Method	LOR	Unit	CG2106913-016	CG2106913-017	CG2106913-018	CG2106913-019	
					Result	Result	Result	Result	
Metals									
lead	7439-92-1	E472	0.050	mg/kg	5.09		1.07	0.502	
lead	7439-92-1	E440A	0.0040	mg/kg wwt		0.113			
lead	7439-92-1	E472A	0.010	mg/kg wwt	1.44		0.206	0.096	
lithium	7439-93-2	E472	0.50	mg/kg	3.92		1.55	0.88	
lithium	7439-93-2	E440	0.50	mg/kg		0.71			
lithium	7439-93-2	E472A	0.10	mg/kg wwt	1.11		0.30	0.17	
lithium	7439-93-2	E440A	0.10	mg/kg wwt		0.16			
magnesium	7439-95-4	E472	2.0	mg/kg	3970		2780	5140	
magnesium	7439-95-4	E440	2.0	mg/kg		5410			
magnesium	7439-95-4	E472A	0.40	mg/kg wwt	1120		536	978	
magnesium	7439-95-4	E440A	0.40	mg/kg wwt		1180			
manganese	7439-96-5	E472	0.050	mg/kg	107		60.8	35.7	
manganese	7439-96-5	E440	0.050	mg/kg		26.0			
manganese	7439-96-5	E472A	0.010	mg/kg wwt	30.1		11.7	6.80	
manganese	7439-96-5	E440A	0.010	mg/kg wwt		5.70			
molybdenum	7439-98-7	E440	0.020	mg/kg		1.52			
molybdenum	7439-98-7	E472	0.040	mg/kg	1.20		0.468	0.658	
molybdenum	7439-98-7	E440A	0.0040	mg/kg wwt		0.332			
molybdenum	7439-98-7	E472A	0.0080	mg/kg wwt	0.339		0.0903	0.125	
nickel	7440-02-0	E472	0.20	mg/kg	17.0		9.42	12.6	
nickel	7440-02-0	E440	0.20	mg/kg		14.4			
nickel	7440-02-0	E472A	0.040	mg/kg wwt	4.79		1.82	2.41	
nickel	7440-02-0	E440A	0.040	mg/kg wwt		3.15			
phosphorus	7723-14-0	E472	10	mg/kg	3160		3300	3020	
phosphorus	7723-14-0	E440	10	mg/kg		7360			
phosphorus	7723-14-0	E472A	2.0	mg/kg wwt	893		638	574	
phosphorus	7723-14-0	E440A	2.0	mg/kg wwt		1610			
potassium	7440-09-7	E472	20	mg/kg	3940		3900	3230	
potassium	7440-09-7	E440	20	mg/kg		4770			
potassium	7440-09-7	E472A	4.0	mg/kg wwt	1110		754	615	

Page : 19 of 20

Work Order : CG2106913 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Tissue Client sample II (Matrix: Biota)					RG_ERCKUT_B RYO-02_2021-1 2-15	RG_ERCKUT_B RYO-03_2021-1 2-15	RG_ERCKUT_P ERI-02_2021-12 -15	RG_ERCKUT_P ERI-03_2021-12 -15	
			·	oling date / time	15-Dec-2021 13:00	15-Dec-2021 13:00	15-Dec-2021 13:00	15-Dec-2021 13:00	
Analyte	CAS Number	Method	LOR	Unit	CG2106913-016 Result	CG2106913-017 Result	CG2106913-018 Result	CG2106913-019 Result	
Metals					Result	Result	Result	Result	
potassium	7440-09-7	E440A	4.0	mg/kg wwt		1040			
rubidium	7440-17-7	E472	0.050	mg/kg	10.7		4.99	3.02	
rubidium	7440-17-7	E440	0.050	mg/kg		1.91			
rubidium	7440-17-7	E472A	0.010	mg/kg wwt	3.02		0.963	0.574	
rubidium	7440-17-7	E440A	0.010	mg/kg wwt		0.419			
selenium	7782-49-2	E440	0.050	mg/kg		5.02			
selenium	7782-49-2	E472	0.10	mg/kg	5.77		4.86	5.05	
selenium	7782-49-2	E440A	0.010	mg/kg wwt		1.10			
selenium	7782-49-2	E472A	0.020	mg/kg wwt	1.63		0.938	0.961	
sodium	7440-23-5	E472	20	mg/kg	262		97	93	
sodium	7440-23-5	E440	20	mg/kg		245			
sodium	7440-23-5	E472A	4.0	mg/kg wwt	73.8		18.7	17.6	
sodium	7440-23-5	E440A	4.0	mg/kg wwt		53.7			
strontium	7440-24-6	E440	0.050	mg/kg		21.5			
strontium	7440-24-6	E472	0.10	mg/kg	47.8		76.7	36.4	
strontium	7440-24-6	E440A	0.010	mg/kg wwt		4.71			
strontium	7440-24-6	E472A	0.020	mg/kg wwt	13.5		14.8	6.93	
tellurium	13494-80-9	E472	0.020	mg/kg	0.025		<0.020	<0.020	
tellurium	13494-80-9	E440	0.020	mg/kg		<0.020			
tellurium	13494-80-9	E472A	0.0040	mg/kg wwt	0.0071		<0.0040	<0.0040	
tellurium	13494-80-9	E440A	0.0040	mg/kg wwt		<0.0040			
thallium	7440-28-0	E472	0.0020	mg/kg	0.150		0.0590	0.0256	
thallium	7440-28-0	E440	0.0020	mg/kg		0.0506			
thallium	7440-28-0	E472A	0.00040	mg/kg wwt	0.0423		0.0114	0.00487	
thallium	7440-28-0	E440A	0.00040	mg/kg wwt		0.0111			
tin	7440-31-5	E472	0.10	mg/kg	<0.10		<0.10	<0.10	
tin	7440-31-5	E440	0.10	mg/kg		<0.10			
tin	7440-31-5	E472A	0.020	mg/kg wwt	<0.020		<0.020	<0.020	
tin	7440-31-5	E440A	0.020	mg/kg wwt		<0.020			
titanium	7440-32-6	E440.Ti	0.25	mg/kg		2.18			

Page : 20 of 20

Work Order : CG2106913 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Tissue (Matrix: Biota)		c	lient sample ID	RG_ERCKUT_B RYO-02_2021-1 2-15	RG_ERCKUT_B RYO-03_2021-1 2-15	RG_ERCKUT_P ERI-02_2021-12 -15	RG_ERCKUT_P ERI-03_2021-12 -15	
		Client sam	oling date / time	15-Dec-2021 13:00	15-Dec-2021 13:00	15-Dec-2021 13:00	15-Dec-2021 13:00	
Analyte CAS Nun	ber Method	LOR	Unit	CG2106913-016	CG2106913-017	CG2106913-018	CG2106913-019	
				Result	Result	Result	Result	
Metals								
titanium 7440-3	2-6 E472.Ti	0.50	mg/kg	9.02		10.5	6.65	
titanium 7440-3	2-6 E440A.Ti	0.050	mg/kg wwt		0.476			
titanium 7440-3	2-6 E472A.Ti	0.10	mg/kg wwt	2.54		2.02	1.27	
uranium 7440-6	1-1 E472	0.0020	mg/kg	1.73		2.04	1.41	
uranium 7440-6	1-1 E440	0.0020	mg/kg		3.35			
uranium 7440-6	1-1 E472A	0.00040	mg/kg wwt	0.488		0.394	0.269	
uranium 7440-6	1-1 E440A	0.00040	mg/kg wwt		0.733			
vanadium 7440-6	2-2 E472	0.10	mg/kg	24.8		9.88	9.88	
vanadium 7440-6	2-2 E440	0.10	mg/kg		6.92			
vanadium 7440-6	2-2 E472A	0.020	mg/kg wwt	7.00		1.91	1.88	
vanadium 7440-6	2-2 E440A	0.020	mg/kg wwt		1.52			
zinc 7440-6	6-6 E440	0.50	mg/kg		76.4			
zinc 7440-6	6-6 E472	1.0	mg/kg	94.3		71.7	55.0	
zinc 7440-6	6-6 E440A	0.10	mg/kg wwt		16.7			
zinc 7440-6	6-6 E472A	0.20	mg/kg wwt	26.6		13.8	10.5	
zirconium 7440-6	7-7 E472	0.20	mg/kg	0.93		9.18	11.8	
zirconium 7440-6	7-7 E440	0.20	mg/kg		0.70			
zirconium 7440-6		0.040	mg/kg wwt	0.262		1.77	2.24	
zirconium 7440-6		0.040	mg/kg wwt		0.154			

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : **CG2106913** Page : 1 of 16

Amendment : 1

Client : Teck Coal Limited Laboratory : Calgary - Environmental

Contact : Mike Pope Account Manager : Lyudmyla Shvets
Address : 421 Pine Avenue Address : 2559 29th Street NE

Sparwood BC Canada Calgary, Alberta Canada T1Y 7B5

Telephone : ---- : +1 403 407 1800

 Project
 : REGIONAL EFFECTS PROGRAM
 Date Samples Received
 : 17-Dec-2021 08:45

 PO
 : VPO00748510
 Issue Date
 : 28-Feb-2022 17:29

C-O-C number : December EVO LAEMP 2021

Sampler : Tyler Mehler

Site : ----

Quote number : Teck Coal Master Quote

No. of samples received : 19
No. of samples analysed : 19

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Summary of Outliers

Outliers: Quality Control Samples

- No Method Blank value outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- Duplicate outliers occur please see following pages for full details.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• Reference Material (RM) Sample outliers occur - please see the following pages for full details.

Outliers : Analysis Holding Time Compliance (Breaches)

No Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

Quality Control Sample Frequency Outliers occur - please see following pages for full details.

Page : 2 of 16

Work Order : CG2106913 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: Biota

Analyte Group	Laboratory sample ID	Client/Ref Sample ID	Analyte	CAS Number	Method	Result	Limits	Comment
Duplicate (DUP) RPDs								
Metals	CG2106913-016	RG_ERCKUT_BRYO-	magnesium	7439-95-4	E472	54.2 % DUP-H	40%	Duplicate RPD does not
		02_2021-12-15						meet the DQO for this test.
Metals	CG2106913-016	RG_ERCKUT_BRYO-	magnesium	7439-95-4	E472A	54.2 % DUP-H	40%	Duplicate RPD does not
		02_2021-12-15						meet the DQO for this test.
Metals	CG2106913-016	RG_ERCKUT_BRYO-	tellurium	13494-80-9	E472A	0.0084 DUP-H	Diff <2x LOR	Low Level DUP DQO
		02_2021-12-15				%		exceeded (difference > 2
								LOR).

Result Qualifiers

Qualifier Description

DUP-H Duplicate results outside ALS DQO, due to sample heterogeneity.

Reference Material (RM) Sample							
Metals	QC-MRG2-4197100	 lead	7439-92-1	E472	134 % MES	70.0-130%	Recovery greater than
	03						upper control limit
Metals	QC-MRG2-4015420	 lead	7439-92-1	E472A	134 % MES	70.0-130%	Recovery greater than
	03						upper control limit

Result Qualifiers

Qualifier Description

MES Data Quality Objective was marginally exceeded (by < 10% absolute) for < 10% of analytes in a

Multi-Element Scan / Multi-Parameter Scan (considered acceptable as per OMOE & CCME).

Page : 3 of 16

Work Order : CG2106913 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Biota					Ev	aluation: 🗴 =	Holding time excee	edance ;	✓ = Within	Holding Time
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation			Analy	sis	
Container / Client Sample ID(s)			Preparation	Holding Times		Eval	Analysis Date	Holding Times		Eval
			Date	Rec	Actual			Rec	Actual	
Metals : Metals in Biota by CRC ICPMS (DRY units, Micro)										
RG_ERCKDT_PERI-02_2021-12-15	E472	15-Dec-2021	28-Feb-2022				28-Feb-2022	730 days	75 days	✓
Metals : Metals in Biota by CRC ICPMS (DRY units, Micro)										
LDPE bag RG_ERCKDT_PERI-03_2021-12-15	E472	15-Dec-2021	28-Feb-2022				28-Feb-2022	730 days	75 days	✓
Metals : Metals in Biota by CRC ICPMS (DRY units, Micro)										
RG_ERCKDT_PERI-04_2021-12-15	E472	15-Dec-2021	28-Feb-2022				28-Feb-2022	730 days	75 days	✓
Metals : Metals in Biota by CRC ICPMS (DRY units, Micro)										
RG_ERCKUT_BRYO-02_2021-12-15	E472	15-Dec-2021	28-Feb-2022				28-Feb-2022	730 days	75 days	✓
Metals : Metals in Biota by CRC ICPMS (DRY units, Micro)										
LDPE bag RG_ERCKUT_PERI-02_2021-12-15	E472	15-Dec-2021	28-Feb-2022				28-Feb-2022	730 days	75 days	✓
Metals : Metals in Biota by CRC ICPMS (DRY units, Micro)										
RG_ERCKUT_PERI-03_2021-12-15	E472	15-Dec-2021	28-Feb-2022				28-Feb-2022	730 days	75 days	✓
Metals : Metals in Biota by CRC ICPMS (DRY units, Micro)										
LDPE bag RG_ERCK_BRYO-01_2021-12-15	E472	14-Dec-2021	28-Feb-2022				28-Feb-2022	730 days	76 days	✓

Page : 4 of 16

Matrix: Biota

LDPE bag

LDPE bag

Work Order : CG2106913 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Metals: Metals in Biota by CRC ICPMS (DRY units, Routine)

Metals: Metals in Biota by CRC ICPMS (DRY units, Routine)

RG ERCKDT BRYO-02 2021-12-15

RG ERCKDT BRYO-03 2021-12-15

Evaluation: x = Holding time exceedance; ✓ = Within Holding Time

days

730

days

730 days 75 days

75 days

28-Feb-2022

28-Feb-2022

✓

✓

Sampling Date Extraction / Preparation Analyte Group Method Analysis Container / Client Sample ID(s) Preparation **Holding Times** Eval Analysis Date Holding Times Eval Actual Rec Actual Date Metals: Metals in Biota by CRC ICPMS (DRY units, Micro) LDPE bag RG_ERCK_PERI-02_2021-12-15 E472 14-Dec-2021 28-Feb-2022 28-Feb-2022 ✓ 76 days 730 days Metals: Metals in Biota by CRC ICPMS (DRY units, Routine) LDPE bag ✓ EV EC FLOW2 BRYO-01 2021-12-15 E440 15-Dec-2021 28-Feb-2022 28-Feb-2022 730 75 days ---days Metals: Metals in Biota by CRC ICPMS (DRY units, Routine) LDPE bag E440 15-Dec-2021 28-Feb-2022 28-Feb-2022 75 days ✓ EV EC FLOW2 BRYO-02 2021-12-15 730 days Metals: Metals in Biota by CRC ICPMS (DRY units, Routine) LDPE bag E440 EV EC FLOW2 BRYO-03 2021-12-15 15-Dec-2021 28-Feb-2022 28-Feb-2022 730 75 days days Metals: Metals in Biota by CRC ICPMS (DRY units, Routine) LDPE bag E440 15-Dec-2021 28-Feb-2022 28-Feb-2022 ✓ EV EC FLOW2 BRYO-04 2021-12-15 75 days 730 days Metals: Metals in Biota by CRC ICPMS (DRY units, Routine) LDPE bag 15-Dec-2021 28-Feb-2022 28-Feb-2022 ✓ EV_EC_FLOW2_BRYO-05_2021-12-15 E440 730 75 davs days Metals: Metals in Biota by CRC ICPMS (DRY units, Routine) LDPE bag RG ERCKDT BRYO-01 2021-12-15 E440 15-Dec-2021 28-Feb-2022 28-Feb-2022 75 days ✓ 730

15-Dec-2021

15-Dec-2021

28-Feb-2022

28-Feb-2022

E440

E440

Page : 5 of 16

Work Order : CG2106913 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Biota Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Extraction / Preparation Analyte Group Method Sampling Date Analysis Container / Client Sample ID(s) Preparation **Holding Times** Eval Analysis Date Holding Times Eval Actual Rec Actual Date Metals: Metals in Biota by CRC ICPMS (DRY units, Routine) LDPE bag RG_ERCKDT_BRYO-04_2021-12-15 E440 15-Dec-2021 28-Feb-2022 28-Feb-2022 75 days ✓ 730 days Metals: Metals in Biota by CRC ICPMS (DRY units, Routine) LDPE bag ✓ RG ERCKUT BRYO-01 2021-12-15 E440 15-Dec-2021 28-Feb-2022 28-Feb-2022 730 75 days ---days Metals: Metals in Biota by CRC ICPMS (DRY units, Routine) LDPE bag RG ERCKUT BRYO-03 2021-12-15 E440 15-Dec-2021 28-Feb-2022 28-Feb-2022 75 days ✓ 730 days Metals: Metals in Biota by CRC ICPMS (WET units, Micro) LDPE bag RG ERCKDT PERI-02 2021-12-15 E472A 07-Feb-2022 15-Dec-2021 07-Feb-2022 730 54 days days Metals: Metals in Biota by CRC ICPMS (WET units, Micro) LDPE bag E472A 15-Dec-2021 07-Feb-2022 07-Feb-2022 ✓ RG ERCKDT PERI-03 2021-12-15 54 days 730 days Metals: Metals in Biota by CRC ICPMS (WET units, Micro) LDPE bag E472A 15-Dec-2021 07-Feb-2022 07-Feb-2022 ✓ RG_ERCKDT_PERI-04_2021-12-15 730 54 days days Metals: Metals in Biota by CRC ICPMS (WET units, Micro) LDPE bag RG ERCKUT BRYO-02 2021-12-15 E472A 15-Dec-2021 07-Feb-2022 07-Feb-2022 54 days ✓ 730 days Metals: Metals in Biota by CRC ICPMS (WET units, Micro) LDPE bag RG ERCKUT PERI-02 2021-12-15 ✓ E472A 15-Dec-2021 07-Feb-2022 07-Feb-2022 730 54 days days Metals: Metals in Biota by CRC ICPMS (WET units, Micro) LDPE bag E472A 07-Feb-2022 RG ERCKUT PERI-03 2021-12-15 15-Dec-2021 07-Feb-2022 54 days ✓ 730 ---days

Page : 6 of 16

Work Order : CG2106913 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: **Biota**Evaluation: **x** = Holding time exceedance; **√** = Within Holding Time

Matrix: Biota						aluation. * -	nolding time excee	dance ,	· - vvicinii	riolaling riii
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Metals : Metals in Biota by CRC ICPMS (WET units, Micro)										
LDPE bag										
RG_ERCK_BRYO-01_2021-12-15	E472A	14-Dec-2021	07-Feb-2022				07-Feb-2022	730	55 days	✓
								days		
Metals : Metals in Biota by CRC ICPMS (WET units, Micro)										
LDPE bag										
RG_ERCK_PERI-02_2021-12-15	E472A	14-Dec-2021	07-Feb-2022				07-Feb-2022	730	55 days	✓
								days		
Metals : Metals in Biota by CRC ICPMS (WET units, Routine)										
LDPE bag										
EV_EC_FLOW2_BRYO-01_2021-12-15	E440A	15-Dec-2021	07-Feb-2022				07-Feb-2022	730	54 days	✓
								days		
Metals : Metals in Biota by CRC ICPMS (WET units, Routine)										
LDPE bag										
EV_EC_FLOW2_BRYO-02_2021-12-15	E440A	15-Dec-2021	07-Feb-2022				07-Feb-2022	730	54 days	✓
								days		
Metals : Metals in Biota by CRC ICPMS (WET units, Routine)										
LDPE bag										
EV_EC_FLOW2_BRYO-03_2021-12-15	E440A	15-Dec-2021	07-Feb-2022				07-Feb-2022	730	54 days	✓
								days		
Metals : Metals in Biota by CRC ICPMS (WET units, Routine)										
LDPE bag										
EV_EC_FLOW2_BRYO-04_2021-12-15	E440A	15-Dec-2021	07-Feb-2022				07-Feb-2022	730	54 days	✓
								days		
Metals : Metals in Biota by CRC ICPMS (WET units, Routine)										
LDPE bag										
EV_EC_FLOW2_BRYO-05_2021-12-15	E440A	15-Dec-2021	07-Feb-2022				07-Feb-2022	730	54 days	✓
								days		
Metals : Metals in Biota by CRC ICPMS (WET units, Routine)										
LDPE bag										
RG_ERCKDT_BRYO-01_2021-12-15	E440A	15-Dec-2021	07-Feb-2022				07-Feb-2022	730	54 days	✓
								days		
Metals : Metals in Biota by CRC ICPMS (WET units, Routine)										
LDPE bag										
RG_ERCKDT_BRYO-02_2021-12-15	E440A	15-Dec-2021	07-Feb-2022				07-Feb-2022	730	54 days	✓
								days		

Page : 7 of 16

Work Order : CG2106913 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: **Biota**Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

Analyte Group	Method	Sampling Date	Ex	traction / P	reparation			Analy	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holdin	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Metals : Metals in Biota by CRC ICPMS (WET units, Routine)										
RG_ERCKDT_BRYO-03_2021-12-15	E440A	15-Dec-2021	07-Feb-2022				07-Feb-2022	730 days	54 days	✓
Metals : Metals in Biota by CRC ICPMS (WET units, Routine)										
LDPE bag RG_ERCKDT_BRYO-04_2021-12-15	E440A	15-Dec-2021	07-Feb-2022				07-Feb-2022	730 days	54 days	✓
Metals : Metals in Biota by CRC ICPMS (WET units, Routine)										
RG_ERCKUT_BRYO-01_2021-12-15	E440A	15-Dec-2021	07-Feb-2022				07-Feb-2022	730 days	54 days	✓
Metals : Metals in Biota by CRC ICPMS (WET units, Routine)										
RG_ERCKUT_BRYO-03_2021-12-15	E440A	15-Dec-2021	07-Feb-2022				07-Feb-2022	730 days	54 days	✓
Metals : Titanium in Biota by CRC ICPMS (DRY units, Micro)										
RG_ERCKDT_PERI-02_2021-12-15	E472.Ti	15-Dec-2021	28-Feb-2022				28-Feb-2022	730 days	75 days	✓
Metals : Titanium in Biota by CRC ICPMS (DRY units, Micro)										
RG_ERCKDT_PERI-03_2021-12-15	E472.Ti	15-Dec-2021	28-Feb-2022				28-Feb-2022	730 days	75 days	✓
Metals : Titanium in Biota by CRC ICPMS (DRY units, Micro)										
RG_ERCKDT_PERI-04_2021-12-15	E472.Ti	15-Dec-2021	28-Feb-2022				28-Feb-2022	730 days	75 days	✓
Metals : Titanium in Biota by CRC ICPMS (DRY units, Micro)										
LDPE bag RG_ERCKUT_BRYO-02_2021-12-15	E472.Ti	15-Dec-2021	28-Feb-2022				28-Feb-2022	730 days	75 days	✓
Metals : Titanium in Biota by CRC ICPMS (DRY units, Micro)										
LDPE bag RG_ERCKUT_PERI-02_2021-12-15	E472.Ti	15-Dec-2021	28-Feb-2022				28-Feb-2022	730 days	75 days	✓

Page : 8 of 16

Work Order : CG2106913 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: **Biota**Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

evaluation. * - Holding time exceedance , * - Within Holdin							riolaling rill			
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation			Analy	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holdin	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Metals : Titanium in Biota by CRC ICPMS (DRY units, Micro)										
LDPE bag										
RG_ERCKUT_PERI-03_2021-12-15	E472.Ti	15-Dec-2021	28-Feb-2022				28-Feb-2022	730	75 days	✓
								days		
Metals : Titanium in Biota by CRC ICPMS (DRY units, Micro)										
LDPE bag										
RG_ERCK_BRYO-01_2021-12-15	E472.Ti	14-Dec-2021	28-Feb-2022				28-Feb-2022	730	76 days	✓
								days		
Metals : Titanium in Biota by CRC ICPMS (DRY units, Micro)										
LDPE bag										
RG_ERCK_PERI-02_2021-12-15	E472.Ti	14-Dec-2021	28-Feb-2022				28-Feb-2022	730	76 days	✓
								days		
Metals : Titanium in Biota by CRC ICPMS (DRY units, Routine)										
LDPE bag										
EV_EC_FLOW2_BRYO-01_2021-12-15	E440.Ti	15-Dec-2021	28-Feb-2022				28-Feb-2022	730	75 days	✓
								days		
Metals : Titanium in Biota by CRC ICPMS (DRY units, Routine)										
LDPE bag										
EV_EC_FLOW2_BRYO-02_2021-12-15	E440.Ti	15-Dec-2021	28-Feb-2022				28-Feb-2022	730	75 days	✓
								days		
Metals : Titanium in Biota by CRC ICPMS (DRY units, Routine)										
LDPE bag										
EV_EC_FLOW2_BRYO-03_2021-12-15	E440.Ti	15-Dec-2021	28-Feb-2022				28-Feb-2022	730	75 days	✓
								days		
Metals : Titanium in Biota by CRC ICPMS (DRY units, Routine)										
LDPE bag										
EV_EC_FLOW2_BRYO-04_2021-12-15	E440.Ti	15-Dec-2021	28-Feb-2022				28-Feb-2022	730	75 days	✓
								days		
Metals : Titanium in Biota by CRC ICPMS (DRY units, Routine)										
LDPE bag										
EV_EC_FLOW2_BRYO-05_2021-12-15	E440.Ti	15-Dec-2021	28-Feb-2022				28-Feb-2022	730	75 days	✓
								days		
Metals : Titanium in Biota by CRC ICPMS (DRY units, Routine)										
LDPE bag										
RG_ERCKDT_BRYO-01_2021-12-15	E440.Ti	15-Dec-2021	28-Feb-2022				28-Feb-2022	730	75 days	✓
								days		

Page : 9 of 16

Work Order : CG2106913 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: **Biota**Evaluation: **x** = Holding time exceedance; **√** = Within Holding Time

Matrix: Blota							dance,	· - vvicinii	riolaling rill	
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation			Analy	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual		-	Rec	Actual	
Metals : Titanium in Biota by CRC ICPMS (DRY units, Routine)										
LDPE bag										
RG_ERCKDT_BRYO-02_2021-12-15	E440.Ti	15-Dec-2021	28-Feb-2022				28-Feb-2022	730	75 days	✓
								days		
Metals : Titanium in Biota by CRC ICPMS (DRY units, Routine)										
LDPE bag										
RG_ERCKDT_BRYO-03_2021-12-15	E440.Ti	15-Dec-2021	28-Feb-2022				28-Feb-2022	730	75 days	✓
								days		
Metals : Titanium in Biota by CRC ICPMS (DRY units, Routine)										
LDPE bag										
RG_ERCKDT_BRYO-04_2021-12-15	E440.Ti	15-Dec-2021	28-Feb-2022				28-Feb-2022	730	75 days	✓
								days		
Metals : Titanium in Biota by CRC ICPMS (DRY units, Routine)										
LDPE bag										
RG_ERCKUT_BRYO-01_2021-12-15	E440.Ti	15-Dec-2021	28-Feb-2022				28-Feb-2022	730	75 days	✓
								days		
Metals : Titanium in Biota by CRC ICPMS (DRY units, Routine)										
LDPE bag										
RG_ERCKUT_BRYO-03_2021-12-15	E440.Ti	15-Dec-2021	28-Feb-2022				28-Feb-2022	730	75 days	✓
								days		
Metals : Titanium in Biota by CRC ICPMS (WET units, Micro)										
LDPE bag										
RG_ERCKDT_PERI-02_2021-12-15	E472A.Ti	15-Dec-2021	07-Feb-2022				07-Feb-2022	730	54 days	✓
								days		
Metals : Titanium in Biota by CRC ICPMS (WET units, Micro)										
LDPE bag										
RG_ERCKDT_PERI-03_2021-12-15	E472A.Ti	15-Dec-2021	07-Feb-2022				07-Feb-2022	730	54 days	✓
								days		
Metals : Titanium in Biota by CRC ICPMS (WET units, Micro)										
LDPE bag										
RG_ERCKDT_PERI-04_2021-12-15	E472A.Ti	15-Dec-2021	07-Feb-2022				07-Feb-2022	730	54 days	✓
								days		
Metals : Titanium in Biota by CRC ICPMS (WET units, Micro)										
LDPE bag										
RG_ERCKUT_BRYO-02_2021-12-15	E472A.Ti	15-Dec-2021	07-Feb-2022				07-Feb-2022	730	54 days	✓
								days		

Page : 10 of 16

Work Order : CG2106913 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Biota Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Extraction / Preparation Analyte Group Method Sampling Date Analysis Container / Client Sample ID(s) Preparation **Holding Times** Eval Analysis Date Holding Times Eval Actual Rec Actual Date Metals: Titanium in Biota by CRC ICPMS (WET units, Micro) LDPE bag RG_ERCKUT_PERI-02_2021-12-15 E472A.Ti 15-Dec-2021 07-Feb-2022 07-Feb-2022 ✓ 54 days 730 days Metals: Titanium in Biota by CRC ICPMS (WET units, Micro) LDPE bag 1 RG ERCKUT PERI-03 2021-12-15 E472A.Ti 15-Dec-2021 07-Feb-2022 07-Feb-2022 730 54 days ---days Metals: Titanium in Biota by CRC ICPMS (WET units, Micro) LDPE bag RG ERCK BRYO-01 2021-12-15 E472A.Ti 14-Dec-2021 07-Feb-2022 07-Feb-2022 55 days ✓ 730 days Metals: Titanium in Biota by CRC ICPMS (WET units, Micro) LDPE bag RG ERCK PERI-02 2021-12-15 E472A.Ti 07-Feb-2022 14-Dec-2021 07-Feb-2022 730 55 days days Metals: Titanium in Biota by CRC ICPMS (WET units, Routine) LDPE bag E440A.Ti 15-Dec-2021 07-Feb-2022 07-Feb-2022 ✓ EV EC FLOW2 BRYO-01 2021-12-15 54 days 730 days Metals: Titanium in Biota by CRC ICPMS (WET units, Routine) LDPE bag E440A.Ti 15-Dec-2021 07-Feb-2022 07-Feb-2022 ✓ EV_EC_FLOW2_BRYO-02_2021-12-15 730 54 days days Metals : Titanium in Biota by CRC ICPMS (WET units, Routine) LDPE bag EV EC FLOW2 BRYO-03 2021-12-15 E440A.Ti 15-Dec-2021 07-Feb-2022 07-Feb-2022 54 days ✓ 730 days Metals: Titanium in Biota by CRC ICPMS (WET units, Routine) LDPE bag ✓ EV EC FLOW2 BRYO-04 2021-12-15 E440A.Ti 15-Dec-2021 07-Feb-2022 07-Feb-2022 730 54 days days Metals: Titanium in Biota by CRC ICPMS (WET units, Routine) LDPE bag E440A.Ti EV EC FLOW2 BRYO-05 2021-12-15 15-Dec-2021 07-Feb-2022 07-Feb-2022 54 days ✓ 730 ---days

Page : 11 of 16

Work Order : CG2106913 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Biota Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Extraction / Preparation Method Sampling Date Analysis Container / Client Sample ID(s) Preparation **Holding Times** Eval Analysis Date Holding Times Eval Actual Rec Actual Date Metals: Titanium in Biota by CRC ICPMS (WET units, Routine) LDPE bag RG_ERCKDT_BRYO-01_2021-12-15 E440A.Ti 15-Dec-2021 07-Feb-2022 07-Feb-2022 ✓ 54 days 730 days Metals: Titanium in Biota by CRC ICPMS (WET units, Routine) LDPE bag 1 RG ERCKDT BRYO-02 2021-12-15 E440A.Ti 15-Dec-2021 07-Feb-2022 07-Feb-2022 730 54 days ---days Metals: Titanium in Biota by CRC ICPMS (WET units, Routine) LDPE bag RG ERCKDT BRYO-03 2021-12-15 E440A.Ti 15-Dec-2021 07-Feb-2022 07-Feb-2022 54 days 1 730 days Metals: Titanium in Biota by CRC ICPMS (WET units, Routine) LDPE bag RG_ERCKDT_BRYO-04_2021-12-15 E440A.Ti 07-Feb-2022 15-Dec-2021 07-Feb-2022 730 54 days days Metals: Titanium in Biota by CRC ICPMS (WET units, Routine) LDPE bag RG ERCKUT BRYO-01 2021-12-15 E440A.Ti 15-Dec-2021 07-Feb-2022 07-Feb-2022 ✓ 54 days 730 days Metals: Titanium in Biota by CRC ICPMS (WET units, Routine) LDPE bag E440A.Ti 15-Dec-2021 07-Feb-2022 07-Feb-2022 ✓ RG_ERCKUT_BRYO-03_2021-12-15 730 54 days days **Physical Tests: Moisture Content by Gravimetry (Micro)** LDPE bag RG ERCK BRYO-01 2021-12-15 E144-H 14-Dec-2021 17-Feb-2022 Physical Tests: Moisture Content by Gravimetry (Micro) LDPE bag RG ERCK PERI-02 2021-12-15 E144-H 14-Dec-2021 17-Feb-2022 **Physical Tests: Moisture Content by Gravimetry (Micro)** LDPE bag RG ERCKDT PERI-02 2021-12-15 E144-H 15-Dec-2021 17-Feb-2022 --------

Page : 12 of 16

Work Order : CG2106913 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: **Biota**Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

Analyte Group	Method	Sampling Date	Ext	traction / P	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Moisture Content by Gravimetry (Micro)										
LDPE bag RG_ERCKDT_PERI-03_2021-12-15	E144-H	15-Dec-2021					17-Feb-2022			
Physical Tests : Moisture Content by Gravimetry (Micro)										
LDPE bag RG_ERCKDT_PERI-04_2021-12-15	E144-H	15-Dec-2021					17-Feb-2022			
Physical Tests : Moisture Content by Gravimetry (Micro)										
RG_ERCKUT_BRYO-02_2021-12-15	E144-H	15-Dec-2021					17-Feb-2022			
Physical Tests : Moisture Content by Gravimetry (Micro)										
LDPE bag RG_ERCKUT_PERI-02_2021-12-15	E144-H	15-Dec-2021					17-Feb-2022			
Physical Tests : Moisture Content by Gravimetry (Micro)										
RG_ERCKUT_PERI-03_2021-12-15	E144-H	15-Dec-2021					17-Feb-2022			
Physical Tests : Moisture Content by Gravimetry										
LDPE bag EV_EC_FLOW2_BRYO-01_2021-12-15	E144	15-Dec-2021					17-Feb-2022			
Physical Tests : Moisture Content by Gravimetry										
LDPE bag EV_EC_FLOW2_BRYO-02_2021-12-15	E144	15-Dec-2021					17-Feb-2022			
Physical Tests : Moisture Content by Gravimetry										
LDPE bag EV_EC_FLOW2_BRYO-03_2021-12-15	E144	15-Dec-2021					17-Feb-2022			
Physical Tests : Moisture Content by Gravimetry										
LDPE bag EV_EC_FLOW2_BRYO-04_2021-12-15	E144	15-Dec-2021					17-Feb-2022			

Page : 13 of 16

Work Order : CG2106913 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: **Biota**Evaluation: **x** = Holding time exceedance; **√** = Within Holding Time

Wattix. Blota						aluation. • =	- Holding time exceedance, Within Hold				
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation			Analy	sis		
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holdin	g Times	Eval	
			Date	Rec	Actual			Rec	Actual		
Physical Tests : Moisture Content by Gravimetry											
LDPE bag											
EV_EC_FLOW2_BRYO-05_2021-12-15	E144	15-Dec-2021					17-Feb-2022				
Physical Tests : Moisture Content by Gravimetry											
LDPE bag	E144	45 D 0004					47 5 1 0000				
RG_ERCKDT_BRYO-01_2021-12-15	E144	15-Dec-2021					17-Feb-2022				
Discription Total Maintena Contact has Considerate											
Physical Tests : Moisture Content by Gravimetry LDPE bag											
RG_ERCKDT_BRYO-02_2021-12-15	E144	15-Dec-2021					17-Feb-2022				
Physical Tests : Moisture Content by Gravimetry											
LDPE bag											
RG_ERCKDT_BRYO-03_2021-12-15	E144	15-Dec-2021					17-Feb-2022				
Physical Tests : Moisture Content by Gravimetry							I	I			
LDPE bag RG ERCKDT BRYO-04 2021-12-15	E144	15-Dec-2021					17-Feb-2022				
NG_ENGRET_BNTO-04_2021-12-10		10 200 2021					11 1 05 2022				
Physical Tests : Moisture Content by Gravimetry											
LDPE bag											
RG_ERCKUT_BRYO-01_2021-12-15	E144	15-Dec-2021					17-Feb-2022				
Physical Tests : Moisture Content by Gravimetry											
LDPE bag	E4.1	45 D 0004					47.5 1.0055				
RG_ERCKUT_BRYO-03_2021-12-15	E144	15-Dec-2021					17-Feb-2022				

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

Page : 14 of 16

Work Order : CG2106913 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

International Authorities Authorities	Matrix: Biota		Evaluat	ion: × = QC freque	ency outside spe	ecification; ✓ =	QC frequency wi	thin specificatio
Atelas in Biota by CRC iCPMS (DRY units, Micro) E472	Quality Control Sample Type				ount		Frequency (%)
Affals in Biota by CRC iCPMS (DRY units, Micro) E472 419710 1 8 12.5 5.0	Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Actals in Biota by CRC ICPMS (DRY units, Routine)	Laboratory Duplicates (DUP)							
Metals in Blota by CRC ICPMS (WET units, Micro)	Metals in Biota by CRC ICPMS (DRY units, Micro)	E472	419710	1	8	12.5	5.0	✓
Metals in Biola by CRC ICPMS (WET units, Routine)	Metals in Biota by CRC ICPMS (DRY units, Routine)	E440	419708	1	11	9.0	5.0	✓
Acisture Content by Gravimetry E144	Metals in Biota by CRC ICPMS (WET units, Micro)	E472A	401542	1	8	12.5	5.0	✓
Moisture Content by Gravimetry (Micro) E144-H 412843 1 8 12.5 5.0 √	Metals in Biota by CRC ICPMS (WET units, Routine)	E440A	401732	1	11	9.0	5.0	✓
Titanium in Biota by CRC ICPMS (DRY units, Micro)	Moisture Content by Gravimetry	E144	412812	1	11	9.0	5.0	✓
E440.Ti	Moisture Content by Gravimetry (Micro)	E144-H	412843	1	8	12.5	5.0	✓
Earliam in Biota by CRC ICPMS (WET units, Routine)	Titanium in Biota by CRC ICPMS (DRY units, Micro)	E472.Ti	419711	1	8	12.5	5.0	✓
Relation Biota by CRC ICPMS (WET units, Routine) E440A.Ti 401731 1 11 9.0 5.0 \$\sqrt{aboratory Control Samples (LCS)}	Titanium in Biota by CRC ICPMS (DRY units, Routine)	E440.Ti	419709	1	11	9.0	5.0	✓
Aboratory Control Samples (LCS)	Titanium in Biota by CRC ICPMS (WET units, Micro)	E472A.Ti	401543	1	8	12.5	5.0	✓
Metals in Biota by CRC ICPMS (DRY units, Micro)	Titanium in Biota by CRC ICPMS (WET units, Routine)	E440A.Ti	401731	1	11	9.0	5.0	✓
Aletals in Biota by CRC ICPMS (DRY units, Routine)	Laboratory Control Samples (LCS)							
Metals in Biota by CRC ICPMS (WET units, Micro)	Metals in Biota by CRC ICPMS (DRY units, Micro)	E472	419710	2	8	25.0	10.0	1
Metals in Biota by CRC ICPMS (WET units, Routine) E440A 401732 2 11 18.1 10.0 ✓ Moisture Content by Gravimetry E144 412812 1 11 9.0 5.0 ✓ Moisture Content by Gravimetry (Micro) E144-H 412843 1 8 12.5 5.0 ✓ Titanium in Biota by CRC ICPMS (DRY units, Micro) E472.Ti 419711 1 8 12.5 10.0 ✓ Titanium in Biota by CRC ICPMS (DRY units, Routine) E440.Ti 419709 1 11 9.0 10.0 ★ Titanium in Biota by CRC ICPMS (WET units, Micro) E472A.Ti 401543 1 8 12.5 10.0 ★ Titanium in Biota by CRC ICPMS (WET units, Routine) E440A.Ti 401731 1 11 9.0 10.0 ★ Metals in Biota by CRC ICPMS (WET units, Micro) E472 419710 1 8 12.5 5.0 ✓ Metals in Biota by CRC ICPMS (DRY units, Routine) E440 419708 1 11 9.0 <t< td=""><td>Metals in Biota by CRC ICPMS (DRY units, Routine)</td><td>E440</td><td>419708</td><td>2</td><td>11</td><td>18.1</td><td>10.0</td><td>1</td></t<>	Metals in Biota by CRC ICPMS (DRY units, Routine)	E440	419708	2	11	18.1	10.0	1
## Adoisture Content by Gravimetry ## E144 # 12812	Metals in Biota by CRC ICPMS (WET units, Micro)	E472A	401542	2	8	25.0	10.0	✓
Adisture Content by Gravimetry (Micro)	Metals in Biota by CRC ICPMS (WET units, Routine)	E440A	401732	2	11	18.1	10.0	✓
E472.Ti 419711 1 8 12.5 10.0 ✓ Titanium in Biota by CRC ICPMS (DRY units, Micro)	Moisture Content by Gravimetry	E144	412812	1	11	9.0	5.0	✓
E440.Ti	Moisture Content by Gravimetry (Micro)	E144-H	412843	1	8	12.5	5.0	✓
Eitanium in Biota by CRC ICPMS (WET units, Micro) E472A.Ti 401543 1 8 12.5 10.0 ✓ Eitanium in Biota by CRC ICPMS (WET units, Routine) E440A.Ti 401731 1 11 9.0 10.0 ✔ Metals in Biota by CRC ICPMS (DRY units, Micro) E472 419710 1 8 12.5 5.0 ✔ Metals in Biota by CRC ICPMS (DRY units, Routine) E440 419708 1 11 9.0 5.0 ✔ Metals in Biota by CRC ICPMS (WET units, Micro) E472A 401542 1 8 12.5 5.0 ✔ Metals in Biota by CRC ICPMS (WET units, Routine) E440A 401732 1 11 9.0 5.0 ✔ Metals in Biota by CRC ICPMS (WET units, Routine) E144 412812 1 11 9.0 5.0 ✔ Moisture Content by Gravimetry E144-H 412843 1 8 12.5 5.0 ✔ Moisture Content by Gravimetry (Micro) E144-H 412843 1 8 12.5 5.0 ✔ Titanium in Biota by CRC ICPMS (DRY units, Routine) E472.Ti	Titanium in Biota by CRC ICPMS (DRY units, Micro)	E472.Ti	419711	1	8	12.5	10.0	✓
E440A.Ti 401731 1 11 9.0 10.0 ★ Method Blanks (MB)	Titanium in Biota by CRC ICPMS (DRY units, Routine)	E440.Ti	419709	1	11	9.0	10.0	x
Method Blanks (MB) Metals in Biota by CRC ICPMS (DRY units, Micro) E472 419710 1 8 12.5 5.0 ✓ Metals in Biota by CRC ICPMS (DRY units, Routine) E440 419708 1 11 9.0 5.0 ✓ Metals in Biota by CRC ICPMS (WET units, Micro) E472A 401542 1 8 12.5 5.0 ✓ Metals in Biota by CRC ICPMS (WET units, Routine) E440A 401732 1 11 9.0 5.0 ✓ Moisture Content by Gravimetry E144 412812 1 11 9.0 5.0 ✓ Moisture Content by Gravimetry (Micro) E144-H 412843 1 8 12.5 5.0 ✓ Vitanium in Biota by CRC ICPMS (DRY units, Micro) E472.Ti 419711 1 8 12.5 5.0 ✓ Titanium in Biota by CRC ICPMS (WET units, Micro) E440.Ti 419709 1 11 9.0 5.0 ✓ Titanium in Biota by CRC ICPMS (WET units, Micro) E472.Ti 401543 1	Titanium in Biota by CRC ICPMS (WET units, Micro)	E472A.Ti	401543	1	8	12.5	10.0	✓
Metals in Biota by CRC ICPMS (DRY units, Micro) E472 419710 1 8 12.5 5.0 ✓ Metals in Biota by CRC ICPMS (DRY units, Routine) E440 419708 1 11 9.0 5.0 ✓ Metals in Biota by CRC ICPMS (WET units, Micro) E472A 401542 1 8 12.5 5.0 ✓ Metals in Biota by CRC ICPMS (WET units, Routine) E440A 401732 1 11 9.0 5.0 ✓ Moisture Content by Gravimetry E144 412812 1 11 9.0 5.0 ✓ Moisture Content by Gravimetry (Micro) E144-H 412843 1 8 12.5 5.0 ✓ Vistanium in Biota by CRC ICPMS (DRY units, Micro) E472.Ti 419711 1 8 12.5 5.0 ✓ Titanium in Biota by CRC ICPMS (WET units, Micro) E440.Ti 419709 1 11 9.0 5.0 ✓ Titanium in Biota by CRC ICPMS (WET units, Micro) E472A.Ti 401543 1 8 12.5 5.0	Titanium in Biota by CRC ICPMS (WET units, Routine)	E440A.Ti	401731	1	11	9.0	10.0	.sc
Metals in Biota by CRC ICPMS (DRY units, Routine) E440 419708 1 11 9.0 5.0 ✓ Metals in Biota by CRC ICPMS (WET units, Micro) E472A 401542 1 8 12.5 5.0 ✓ Metals in Biota by CRC ICPMS (WET units, Routine) E440A 401732 1 11 9.0 5.0 ✓ Moisture Content by Gravimetry E144 412812 1 11 9.0 5.0 ✓ Moisture Content by Gravimetry (Micro) E144-H 412843 1 8 12.5 5.0 ✓ Titanium in Biota by CRC ICPMS (DRY units, Micro) E472.Ti 419711 1 8 12.5 5.0 ✓ Titanium in Biota by CRC ICPMS (DRY units, Routine) E440.Ti 419709 1 11 9.0 5.0 ✓ Titanium in Biota by CRC ICPMS (WET units, Micro) E472.Ti 401543 1 8 12.5 5.0 ✓	Method Blanks (MB)							
Metals in Biota by CRC ICPMS (WET units, Micro) E472A 401542 1 8 12.5 5.0 ✓ Metals in Biota by CRC ICPMS (WET units, Routine) E440A 401732 1 11 9.0 5.0 ✓ Moisture Content by Gravimetry E144 412812 1 11 9.0 5.0 ✓ Moisture Content by Gravimetry (Micro) E144-H 412843 1 8 12.5 5.0 ✓ Fitanium in Biota by CRC ICPMS (DRY units, Micro) E472.Ti 419711 1 8 12.5 5.0 ✓ Fitanium in Biota by CRC ICPMS (DRY units, Routine) E440.Ti 419709 1 11 9.0 5.0 ✓ Fitanium in Biota by CRC ICPMS (WET units, Micro) E472A.Ti 401543 1 8 12.5 5.0 ✓	Metals in Biota by CRC ICPMS (DRY units, Micro)	E472	419710	1	8	12.5	5.0	✓
Metals in Biota by CRC ICPMS (WET units, Routine) E440A 401732 1 11 9.0 5.0 ✓ Moisture Content by Gravimetry E144 412812 1 11 9.0 5.0 ✓ Moisture Content by Gravimetry (Micro) E144-H 412843 1 8 12.5 5.0 ✓ Titanium in Biota by CRC ICPMS (DRY units, Micro) E472.Ti 419711 1 8 12.5 5.0 ✓ Titanium in Biota by CRC ICPMS (DRY units, Routine) E440.Ti 419709 1 11 9.0 5.0 ✓ Titanium in Biota by CRC ICPMS (WET units, Micro) E472A.Ti 401543 1 8 12.5 5.0 ✓	Metals in Biota by CRC ICPMS (DRY units, Routine)	E440	419708	1	11	9.0	5.0	✓
Moisture Content by Gravimetry E144 412812 1 11 9.0 5.0 ✓ Moisture Content by Gravimetry (Micro) E144-H 412843 1 8 12.5 5.0 ✓ Titanium in Biota by CRC ICPMS (DRY units, Micro) E472.Ti 419711 1 8 12.5 5.0 ✓ Titanium in Biota by CRC ICPMS (DRY units, Routine) E440.Ti 419709 1 11 9.0 5.0 ✓ Titanium in Biota by CRC ICPMS (WET units, Micro) E472A.Ti 401543 1 8 12.5 5.0 ✓	Metals in Biota by CRC ICPMS (WET units, Micro)	E472A	401542	1	8	12.5	5.0	✓
Moisture Content by Gravimetry (Micro) E144-H 412843 1 8 12.5 5.0 ✓ Titanium in Biota by CRC ICPMS (DRY units, Micro) E472.Ti 419711 1 8 12.5 5.0 ✓ Titanium in Biota by CRC ICPMS (DRY units, Routine) E440.Ti 419709 1 11 9.0 5.0 ✓ Titanium in Biota by CRC ICPMS (WET units, Micro) E472A.Ti 401543 1 8 12.5 5.0 ✓	Metals in Biota by CRC ICPMS (WET units, Routine)	E440A	401732	1	11	9.0	5.0	1
Titanium in Biota by CRC ICPMS (DRY units, Micro) E472.Ti 419711 1 8 12.5 5.0 ✓ Titanium in Biota by CRC ICPMS (DRY units, Routine) E440.Ti 419709 1 11 9.0 5.0 ✓ Titanium in Biota by CRC ICPMS (WET units, Micro) E472A.Ti 401543 1 8 12.5 5.0 ✓	Moisture Content by Gravimetry	E144	412812	1	11	9.0	5.0	✓
Titanium in Biota by CRC ICPMS (DRY units, Routine) E440.Ti 419709 1 11 9.0 5.0 ✓ Titanium in Biota by CRC ICPMS (WET units, Micro) E472A.Ti 401543 1 8 12.5 5.0 ✓	Moisture Content by Gravimetry (Micro)	E144-H	412843	1	8	12.5	5.0	✓
Titanium in Biota by CRC ICPMS (WET units, Micro) E472A.Ti 401543 1 8 12.5 5.0 ✓	Titanium in Biota by CRC ICPMS (DRY units, Micro)	E472.Ti	419711	1	8	12.5	5.0	✓
	Titanium in Biota by CRC ICPMS (DRY units, Routine)	E440.Ti	419709	1	11	9.0	5.0	✓
itanium in Biota by CRC ICPMS (WET units, Routine) E440A.Ti 401731 1 11 9.0 5.0	Titanium in Biota by CRC ICPMS (WET units, Micro)	E472A.Ti	401543	1	8	12.5	5.0	✓
	Titanium in Biota by CRC ICPMS (WET units, Routine)	E440A.Ti	401731	1	11	9.0	5.0	✓

Page : 15 of 16

Work Order : CG2106913 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Moisture Content by Gravimetry	E144 Vancouver - Environmental	Biota	Puget Sound Water Quality Authority/CCME PHC in Soil - Tier 1	Moisture is measured gravimetrically by drying the sample at 105°C. Moisture content is calculated as the weight loss (due to water) divided by the wet weight of the sample, expressed as a percentage.
Moisture Content by Gravimetry (Micro)	E144-H Vancouver - Environmental	Biota	Puget Sound Water Quality Authority/BC MOE Lab Manual	Moisture is measured gravimetrically by drying the sample at <60°C for a minimum of 3 days to constant weight. Moisture content is calculated as the weight loss (due to water) divided by the wet weight of soil, expressed as a percentage.
Metals in Biota by CRC ICPMS (DRY units, Routine)	E440 Vancouver - Environmental	Biota	EPA 200.3/6020B (mod)	Tissue samples are homogenized and sub-sampled prior to hotblock digestion with HNO3, HCl, and H2O2. Analysis is by Collision/Reaction Cell ICPMS. Method Limitation: This method employs a strong acid/peroxide digestion, and is intended to provide a conservative estimate of bio-available metals. Near complete recoveries are achieved for most toxicologically important metals, but elements associated with recalcitrant minerals may be only partially recovered.
Titanium in Biota by CRC ICPMS (DRY units, Routine)	E440.Ti Vancouver - Environmental	Biota	EPA 200.3/6020B (mod)	Tissue samples are homogenized and sub-sampled prior to hotblock digestion with HNO3, HCl, and H2O2. Analysis is by Collision/Reaction Cell ICPMS. Method Limitation: This method employs a strong acid/peroxide digestion, and is intended to provide a conservative estimate of bio-available metals. Near complete recoveries are achieved for most toxicologically important metals, but elements associated with recalcitrant minerals may be only partially recovered.
Metals in Biota by CRC ICPMS (WET units, Routine)	E440A Vancouver - Environmental	Biota	EPA 200.3/6020B (mod)	Tissue samples are homogenized and sub-sampled prior to hotblock digestion with HNO3, HCl, and H2O2. Analysis is by Collision/Reaction Cell ICPMS. Method Limitation: This method employs a strong acid/peroxide digestion, and is intended to provide a conservative estimate of bio-available metals. Near complete recoveries are achieved for most toxicologically important metals, but elements associated with recalcitrant minerals may be only partially recovered.
Titanium in Biota by CRC ICPMS (WET units, Routine)	E440A.Ti Vancouver - Environmental	Biota	EPA 200.3/6020B (mod)	Tissue samples are homogenized and sub-sampled prior to hotblock digestion with HNO3, HCl, and H2O2. Analysis is by Collision/Reaction Cell ICPMS. Method Limitation: This method employs a strong acid/peroxide digestion, and is intended to provide a conservative estimate of bio-available metals. Near complete recoveries are achieved for most toxicologically important metals, but elements associated with recalcitrant minerals may be only partially recovered.

Page : 16 of 16

Work Order : CG2106913 Amendment 1

Client : Teck Coal Limited

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Metals in Biota by CRC ICPMS (DRY units, Micro)	E472 Vancouver - Environmental	Biota	EPA 200.3/6020B (mod)	Tissue samples are homogenized and sub-sampled prior to hotblock digestion with HNO3, HCl, and H2O2. Analysis is by Collision/Reaction Cell ICPMS. Method Limitation: This method employs a strong acid/peroxide digestion, and is intended to provide a conservative estimate of bio-available metals. Near complete recoveries are achieved for most toxicologically important metals, but elements associated with recalcitrant minerals may be only partially recovered.
Titanium in Biota by CRC ICPMS (DRY units, Micro)	E472.Ti Vancouver - Environmental	Biota	EPA 200.3/6020B (mod)	Tissue samples are homogenized and sub-sampled prior to hotblock digestion with HNO3, HCl, and H2O2. Analysis is by Collision/Reaction Cell ICPMS. Method Limitation: This method employs a strong acid/peroxide digestion, and is intended to provide a conservative estimate of bio-available metals. Near complete recoveries are achieved for most toxicologically important metals, but elements associated with recalcitrant minerals may be only partially recovered.
Metals in Biota by CRC ICPMS (WET units, Micro)	E472A Vancouver - Environmental	Biota	EPA 200.3/6020B (mod)	Tissue samples are homogenized and sub-sampled prior to hotblock digestion with HNO3, HCl, and H2O2. Analysis is by Collision/Reaction Cell ICPMS. Method Limitation: This method employs a strong acid/peroxide digestion, and is intended to provide a conservative estimate of bio-available metals. Near complete recoveries are achieved for most toxicologically important metals, but elements associated with recalcitrant minerals may be only partially recovered.
Titanium in Biota by CRC ICPMS (WET units, Micro)	E472A.Ti Vancouver - Environmental	Biota	EPA 200.3/6020B (mod)	Tissue samples are homogenized and sub-sampled prior to hotblock digestion with HNO3, HCl, and H2O2. Analysis is by High Resolution ICPMS. Method Limitation: This method employs a strong acid/peroxide digestion, and is intended to provide a conservative estimate of bio-available metals. Near complete recoveries are achieved for most toxicologically important metals, but elements associated with recalcitrant minerals may be only partially recovered.
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Metals and Mercury Biota Digestion	EP440 Vancouver - Environmental	Biota	EPA 200.3	This method uses a heated strong acid digestion with HNO3, HCl, and H2O2 and is intended to provide a conservative estimate of bio-available metals.
Metals and Mercury Biota Digestion (Micro)	EP472 Vancouver - Environmental	Biota	EPA 200.3	This method, designed for small sample amounts, uses a heated strong acid digestion with HNO3, HCl, and H2O2 and is intended to provide a conservative estimate of bio-available metals.

QUALITY CONTROL REPORT

: 1 of 21

Work Order : CG2106913

Amendment : 1

Client : Teck Coal Limited Laboratory : Calgary - Environmental
Contact : Mike Pope Account Manager : Lyudmyla Shvets

Address : 421 Pine Avenue Address : 2559 29th Street NE

Sparwood BC Canada Calgary, Alberta Canada T1Y 7B5

Telephone :---- Telephone :+1 403 407 1800

Project : REGIONAL EFFECTS PROGRAM Date Samples Received : 17-Dec-2021 08:45

PO : VPO00748510 Date Analysis Commenced : 07-Feb-2022

C-O-C number : December EVO LAEMP 2021 Issue Date : 28-Feb-2022 17:29
Sampler : Tyler Mehler

Sampler : Tyler Mehler Site : ____

Quote number : Teck Coal Master Quote

No. of samples analysed : 19

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This report superiod of the provider report (b) with this country to the sumple (c) as submitted. This december of representation of the sumple (c) as submitted.

This Quality Control Report contains the following information:

: 19

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits
- Reference Material (RM) Report; Recovery and Acceptance Limits
- Method Blank (MB) Report; Recovery and Acceptance Limits
- Laboratory Control Sample (LCS) Report; Recovery and Acceptance Limits

Signatories

No. of samples received

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories Position Laboratory Department

Kevin DuarteSupervisor - Metals ICP InstrumentationMetals, Burnaby, British ColumbiaKim JensenDepartment Manager - MetalsMetals, Burnaby, British ColumbiaSalimah KhimaniLab AssistantMetals, Burnaby, British Columbia

Page : 2 of 21

Work Order : CG2106913 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percentage Difference

= Indicates a QC result that did not meet the ALS DQO.

Page : 3 of 21

Work Order : CG2106913 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test specific).

Sub-Matrix: Biota							Labora	ntory Duplicate (D	ин) кероп		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Physical Tests (QC	Lot: 412812)										
CG2106913-017	RG_ERCKUT_BRYO-03_2 021-12-15	moisture		E144	0.50	%	78.1	78.0	0.128%	20%	
Physical Tests (QC	Lot: 412843)										
CG2106913-016	RG_ERCKUT_BRYO-02_2 021-12-15	moisture		E144-H	2.0	%	71.8	71.7	0.0861%	20%	
Metals (QC Lot: 40	1542)										
CG2106913-016	RG_ERCKUT_BRYO-02_2 021-12-15	aluminum	7429-90-5	E472A	1.0	mg/kg wwt	1130	1100	2.20%	40%	
		antimony	7440-36-0	E472A	0.0020	mg/kg wwt	0.129	0.178	31.9%	40%	
		arsenic	7440-38-2	E472A	0.0060	mg/kg wwt	0.829	0.959	14.5%	40%	
		barium	7440-39-3	E472A	0.010	mg/kg wwt	36.5	38.2	4.49%	40%	
		beryllium	7440-41-7	E472A	0.0020	mg/kg wwt	0.139	0.116	18.3%	40%	
		bismuth	7440-69-9	E472A	0.0020	mg/kg wwt	0.0201	0.0194	3.44%	40%	
		boron	7440-42-8	E472A	0.20	mg/kg wwt	5.48	5.40	1.47%	40%	
		cadmium	7440-43-9	E472A	0.0020	mg/kg wwt	0.915	0.864	5.70%	40%	
		calcium	7440-70-2	E472A	4.0	mg/kg wwt	14200	15200	6.43%	60%	
		cesium	7440-46-2	E472A	0.0010	mg/kg wwt	0.342	0.275	21.4%	40%	
		chromium	7440-47-3	E472A	0.040	mg/kg wwt	3.03	3.47	13.4%	40%	
		cobalt	7440-48-4	E472A	0.0040	mg/kg wwt	0.808	0.796	1.47%	40%	
		copper	7440-50-8	E472A	0.040	mg/kg wwt	3.61	3.05	16.8%	40%	
		iron	7439-89-6	E472A	1.0	mg/kg wwt	2630	2270	14.7%	40%	
		lead	7439-92-1	E472A	0.010	mg/kg wwt	1.44	1.25	13.8%	40%	
		lithium	7439-93-2	E472A	0.10	mg/kg wwt	1.11	1.12	1.09%	40%	
		magnesium	7439-95-4	E472A	0.40	mg/kg wwt	1120	1950	54.2%	40%	DUP-H
		manganese	7439-96-5	E472A	0.010	mg/kg wwt	30.1	36.7	19.7%	40%	
		molybdenum	7439-98-7	E472A	0.0080	mg/kg wwt	0.339	0.325	4.30%	40%	
		nickel	7440-02-0	E472A	0.040	mg/kg wwt	4.79	4.78	0.0394%	40%	
		phosphorus	7723-14-0	E472A	2.0	mg/kg wwt	893	904	1.23%	40%	
		potassium	7440-09-7	E472A	4.0	mg/kg wwt	1110	1030	7.66%	40%	
		rubidium	7440-17-7	E472A	0.010	mg/kg wwt	3.02	2.53	17.7%	40%	
		selenium	7782-49-2	E472A	0.020	mg/kg wwt	1.63	1.58	2.84%	40%	
		sodium	7440-23-5	E472A	4.0	mg/kg wwt	73.8	72.4	1.93%	40%	
		strontium	7440-24-6	E472A	0.020	mg/kg wwt	13.5	14.2	5.00%	60%	
			1	1	1			· ··-	2.3070		

Page : 4 of 21

Work Order : CG2106913 Amendment 1

Client : Teck Coal Limited

ub-Matrix: Biota							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Metals (QC Lot: 40'											
CG2106913-016	RG_ERCKUT_BRYO-02_2 021-12-15	tellurium	13494-80-9	E472A	0.0040	mg/kg wwt	0.0071	# 0.0155	0.0084	Diff <2x LOR	DUP-H
		thallium	7440-28-0	E472A	0.00040	mg/kg wwt	0.0423	0.0480	12.7%	40%	
		tin	7440-31-5	E472A	0.020	mg/kg wwt	<0.020	0.029	0.009	Diff <2x LOR	
		uranium	7440-61-1	E472A	0.00040	mg/kg wwt	0.488	0.451	7.96%	40%	
		vanadium	7440-62-2	E472A	0.020	mg/kg wwt	7.00	5.48	24.3%	40%	
		zinc	7440-66-6	E472A	0.20	mg/kg wwt	26.6	22.7	15.7%	40%	
		zirconium	7440-67-7	E472A	0.040	mg/kg wwt	0.262	0.266	1.80%	40%	
letals (QC Lot: 40°	1543)										
CG2106913-016	RG_ERCKUT_BRYO-02_2 021-12-15	titanium	7440-32-6	E472A.Ti	0.10	mg/kg wwt	2.54	2.56	0.684%	40%	
Metals (QC Lot: 40°	1731)										
CG2106913-012	EV_EC_FLOW2_BRYO-03 2021-12-15	titanium	7440-32-6	E440A.Ti	0.050	mg/kg wwt	1.17	1.22	3.62%	40%	
Metals (QC Lot: 40°	1732)										
CG2106913-012	EV_EC_FLOW2_BRYO-03 2021-12-15	aluminum	7429-90-5	E440A	0.40	mg/kg wwt	76.4	82.8	8.13%	40%	
	_2021 12 10	antimony	7440-36-0	E440A	0.0020	mg/kg wwt	0.0381	0.0401	5.11%	40%	
		arsenic	7440-38-2	E440A	0.0040	mg/kg wwt	1.28	1.21	5.72%	40%	
		barium	7440-39-3	E440A	0.010	mg/kg wwt	14.8	13.2	11.2%	40%	
		beryllium	7440-41-7	E440A	0.0020	mg/kg wwt	0.0405	0.0393	3.00%	40%	
		bismuth	7440-69-9	E440A	0.0020	mg/kg wwt	0.0023	0.0021	0.0002	Diff <2x LOR	
		boron	7440-42-8	E440A	0.20	mg/kg wwt	6.40	6.59	2.90%	40%	
		cadmium	7440-43-9	E440A	0.0010	mg/kg wwt	0.665	0.634	4.80%	40%	
		calcium	7440-70-2	E440A	4.0	mg/kg wwt	13500	13200	2.62%	60%	
		cesium	7440-46-2	E440A	0.0010	mg/kg wwt	0.0356	0.0352	1.14%	40%	
		chromium	7440-47-3	E440A	0.010	mg/kg wwt	0.209	0.208	0.205%	40%	
		cobalt	7440-48-4	E440A	0.0040	mg/kg wwt	16.5	15.6	5.84%	40%	
		copper	7440-50-8	E440A	0.020	mg/kg wwt	0.876	0.848	3.28%	40%	
		iron	7439-89-6	E440A	0.60	mg/kg wwt	2070	2030	1.90%	40%	
		lead	7439-92-1	E440A	0.0040	mg/kg wwt	0.453	0.432	4.80%	40%	
		lithium	7439-93-2	E440A	0.10	mg/kg wwt	0.42	0.41	0.007	Diff <2x LOR	
		magnesium	7439-95-4	E440A	0.40	mg/kg wwt	694	668	3.73%	40%	
		manganese	7439-96-5	E440A	0.010	mg/kg wwt	678	644	5.22%	40%	
		molybdenum	7439-98-7	E440A	0.0040	mg/kg wwt	0.914	0.855	6.69%	40%	
		nickel	7440-02-0	E440A	0.040	mg/kg wwt	16.0	15.2	5.37%	40%	
		phosphorus	7723-14-0	E440A	2.0	mg/kg wwt	338	330	2.27%	40%	
		potassium	7440-09-7	E440A	4.0	mg/kg wwt	743	726	2.32%	40%	

Page : 5 of 21

Work Order : CG2106913 Amendment 1

Client : Teck Coal Limited

Sub-Matrix: Biota							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
letals (QC Lot: 401	1732) - continued										
CG2106913-012	EV_EC_FLOW2_BRYO-03 _2021-12-15	rubidium	7440-17-7	E440A	0.010	mg/kg wwt	0.580	0.583	0.602%	40%	
		selenium	7782-49-2	E440A	0.010	mg/kg wwt	2.22	2.16	2.60%	40%	
		sodium	7440-23-5	E440A	4.0	mg/kg wwt	56.9	54.5	4.30%	40%	
		strontium	7440-24-6	E440A	0.010	mg/kg wwt	9.32	9.13	2.01%	60%	
		tellurium	13494-80-9	E440A	0.0040	mg/kg wwt	<0.0040	<0.0040	0	Diff <2x LOR	
		thallium	7440-28-0	E440A	0.00040	mg/kg wwt	0.0368	0.0354	3.79%	40%	
		tin	7440-31-5	E440A	0.020	mg/kg wwt	<0.020	<0.020	0	Diff <2x LOR	
		uranium	7440-61-1	E440A	0.00040	mg/kg wwt	0.177	0.169	5.00%	40%	
		vanadium	7440-62-2	E440A	0.020	mg/kg wwt	0.691	0.663	4.23%	40%	
		zinc	7440-66-6	E440A	0.10	mg/kg wwt	52.3	48.2	7.98%	40%	
		zirconium	7440-67-7	E440A	0.040	mg/kg wwt	0.141	0.130	0.011	Diff <2x LOR	
etals (QC Lot: 419	9708)										
G2106913-012	EV_EC_FLOW2_BRYO-03 _2021-12-15	aluminum	7429-90-5	E440	2.0	mg/kg	700	759	8.13%	40%	
		antimony	7440-36-0	E440	0.010	mg/kg	0.349	0.368	5.11%	40%	
		arsenic	7440-38-2	E440	0.020	mg/kg	11.7	11.1	5.72%	40%	
		barium	7440-39-3	E440	0.050	mg/kg	135	121	11.2%	40%	
		beryllium	7440-41-7	E440	0.010	mg/kg	0.371	0.360	3.00%	40%	
		bismuth	7440-69-9	E440	0.010	mg/kg	0.021	0.019	0.002	Diff <2x LOR	
		boron	7440-42-8	E440	1.0	mg/kg	58.6	60.4	2.90%	40%	
		cadmium	7440-43-9	E440	0.0050	mg/kg	6.10	5.81	4.80%	40%	
		calcium	7440-70-2	E440	20	mg/kg	124000	120000	2.62%	60%	
		cesium	7440-46-2	E440	0.0050	mg/kg	0.326	0.323	1.14%	40%	
		chromium	7440-47-3	E440	0.050	mg/kg	1.91	1.91	0.205%	40%	
		cobalt	7440-48-4	E440	0.020	mg/kg	152	143	5.84%	40%	
		copper	7440-50-8	E440	0.10	mg/kg	8.03	7.77	3.28%	40%	
		iron	7439-89-6	E440	3.0	mg/kg	18900	18600	1.90%	40%	
		lead	7439-92-1	E440	0.020	mg/kg	4.15	3.96	4.80%	40%	
		lithium	7439-93-2	E440	0.50	mg/kg	3.86	3.79	1.78%	40%	
		magnesium	7439-95-4	E440	2.0	mg/kg	6360	6120	3.73%	40%	
		manganese	7439-96-5	E440	0.050	mg/kg	6220	5900	5.22%	40%	
		molybdenum	7439-98-7	E440	0.020	mg/kg	8.38	7.83	6.69%	40%	
		nickel	7440-02-0	E440	0.20	mg/kg	147	139	5.37%	40%	
		phosphorus	7723-14-0	E440	10	mg/kg	3100	3030	2.27%	40%	
		potassium	7440-09-7	E440	20	mg/kg	6810	6650	2.32%	40%	
		rubidium	7440-17-7	E440	0.050	mg/kg	5.31	5.34	0.602%	40%	

Page : 6 of 21

Work Order : CG2106913 Amendment 1

Client : Teck Coal Limited

Sub-Matrix: Biota						Labora	tory Duplicate (D	UP) Report			
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Metals (QC Lot: 419	9708) - continued										
CG2106913-012	EV_EC_FLOW2_BRYO-03 2021-12-15	selenium	7782-49-2	E440	0.050	mg/kg	20.4	19.8	2.60%	40%	
	_	sodium	7440-23-5	E440	20	mg/kg	521	499	4.30%	40%	
		strontium	7440-24-6	E440	0.050	mg/kg	85.4	83.7	2.01%	60%	
		tellurium	13494-80-9	E440	0.020	mg/kg	<0.020	<0.020	0	Diff <2x LOR	
		thallium	7440-28-0	E440	0.0020	mg/kg	0.337	0.325	3.79%	40%	
		tin	7440-31-5	E440	0.10	mg/kg	<0.10	<0.10	0	Diff <2x LOR	
		uranium	7440-61-1	E440	0.0020	mg/kg	1.63	1.55	5.00%	40%	
		vanadium	7440-62-2	E440	0.10	mg/kg	6.34	6.07	4.23%	40%	
		zinc	7440-66-6	E440	0.50	mg/kg	479	442	7.98%	40%	
		zirconium	7440-67-7	E440	0.20	mg/kg	1.29	1.19	7.99%	40%	
Metals (QC Lot: 419	9709)										
CG2106913-012	EV_EC_FLOW2_BRYO-03 _2021-12-15	titanium	7440-32-6	E440.Ti	0.25	mg/kg	10.8	11.2	3.62%	40%	
Metals (QC Lot: 419	9710)										
CG2106913-016	RG_ERCKUT_BRYO-02_2 021-12-15	aluminum	7429-90-5	E472	5.0	mg/kg	4000	3910	2.20%	40%	
		antimony	7440-36-0	E472	0.010	mg/kg	0.456	0.630	31.9%	40%	
		arsenic	7440-38-2	E472	0.030	mg/kg	2.94	3.40	14.5%	40%	
		barium	7440-39-3	E472	0.050	mg/kg	129	135	4.49%	40%	
		beryllium	7440-41-7	E472	0.010	mg/kg	0.493	0.410	18.3%	40%	
		bismuth	7440-69-9	E472	0.010	mg/kg	0.071	0.069	3.44%	40%	
		boron	7440-42-8	E472	1.0	mg/kg	19.4	19.2	1.47%	40%	
		cadmium	7440-43-9	E472	0.010	mg/kg	3.24	3.06	5.70%	40%	
		calcium	7440-70-2	E472	20	mg/kg	50500	53900	6.43%	60%	
		cesium	7440-46-2	E472	0.0050	mg/kg	1.21	0.976	21.4%	40%	
		chromium	7440-47-3	E472	0.20	mg/kg	10.8	12.3	13.4%	40%	
		cobalt	7440-48-4	E472	0.020	mg/kg	2.86	2.82	1.47%	40%	
		copper	7440-50-8	E472	0.20	mg/kg	12.8	10.8	16.8%	40%	
		iron	7439-89-6	E472	5.0	mg/kg	9310	8040	14.7%	40%	
		lead	7439-92-1	E472	0.050	mg/kg	5.09	4.43	13.8%	40%	
		lithium	7439-93-2	E472	0.50	mg/kg	3.92	3.97	1.09%	40%	
		magnesium	7439-95-4	E472	2.0	mg/kg	3970	6930	54.2%	40%	DUP-H
		manganese	7439-96-5	E472	0.050	mg/kg	107	130	19.7%	40%	
		molybdenum	7439-98-7	E472	0.040	mg/kg	1.20	1.15	4.30%	40%	
		nickel	7440-02-0	E472	0.20	mg/kg	17.0	17.0	0.0394%	40%	
		phosphorus	7723-14-0	E472	10	mg/kg	3160	3200	1.23%	40%	

Page : 7 of 21

Work Order : CG2106913 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Biota							Labora	tory Duplicate (D	JP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Metals (QC Lot: 419	9710) - continued										
CG2106913-016	RG_ERCKUT_BRYO-02_2 021-12-15	potassium	7440-09-7	E472	20	mg/kg	3940	3650	7.66%	40%	
		rubidium	7440-17-7	E472	0.050	mg/kg	10.7	8.95	17.7%	40%	
		selenium	7782-49-2	E472	0.10	mg/kg	5.77	5.60	2.84%	40%	
		sodium	7440-23-5	E472	20	mg/kg	262	257	1.93%	40%	
		strontium	7440-24-6	E472	0.10	mg/kg	47.8	50.3	5.00%	60%	
		tellurium	13494-80-9	E472	0.020	mg/kg	0.025	0.055	0.030	Diff <2x LOR	
		thallium	7440-28-0	E472	0.0020	mg/kg	0.150	0.170	12.7%	40%	
		tin	7440-31-5	E472	0.10	mg/kg	<0.10	0.10	0.003	Diff <2x LOR	
		uranium	7440-61-1	E472	0.0020	mg/kg	1.73	1.60	7.96%	40%	
		vanadium	7440-62-2	E472	0.10	mg/kg	24.8	19.4	24.3%	40%	
		zinc	7440-66-6	E472	1.0	mg/kg	94.3	80.6	15.7%	40%	
		zirconium	7440-67-7	E472	0.20	mg/kg	0.93	0.94	0.02	Diff <2x LOR	
Metals (QC Lot: 41	9711)										
CG2106913-016	RG_ERCKUT_BRYO-02_2 021-12-15	titanium	7440-32-6	E472.Ti	0.50	mg/kg	9.02	9.08	0.684%	40%	

Qualifiers

Qualifier	Description
DUP-H	Duplicate results outside ALS DQO, due to sample heterogeneity.

Page : 8 of 21

Work Order : CG2106913 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

ALS

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 412812						
moisture		E144	0.5	%	<0.50	
Physical Tests (QCLot: 412843						
moisture		E144-H	2	%	<2.0	
Metals (QCLot: 401542)						
aluminum	7429-90-5		1	mg/kg wwt	<1.0	
antimony	7440-36-0		0.002	mg/kg wwt	<0.0020	
ırsenic	7440-38-2	E472A	0.006	mg/kg wwt	<0.0060	
parium	7440-39-3		0.01	mg/kg wwt	<0.010	
peryllium	7440-41-7	E472A	0.002	mg/kg wwt	<0.0020	
sismuth	7440-69-9	E472A	0.002	mg/kg wwt	<0.0020	
poron	7440-42-8	E472A	0.2	mg/kg wwt	<0.20	
admium	7440-43-9	E472A	0.002	mg/kg wwt	<0.0020	
alcium	7440-70-2	E472A	4	mg/kg wwt	<4.0	
esium	7440-46-2	E472A	0.001	mg/kg wwt	<0.0010	
hromium	7440-47-3	E472A	0.04	mg/kg wwt	<0.040	
obalt	7440-48-4	E472A	0.004	mg/kg wwt	<0.0040	
opper	7440-50-8	E472A	0.04	mg/kg wwt	<0.040	
ron	7439-89-6	E472A	1	mg/kg wwt	<1.0	
ead	7439-92-1	E472A	0.01	mg/kg wwt	<0.010	
thium	7439-93-2	E472A	0.1	mg/kg wwt	<0.10	
nagnesium	7439-95-4	E472A	0.4	mg/kg wwt	<0.40	
nanganese	7439-96-5	E472A	0.01	mg/kg wwt	<0.010	
nolybdenum	7439-98-7	E472A	0.008	mg/kg wwt	<0.0080	
ickel	7440-02-0	E472A	0.04	mg/kg wwt	<0.040	
hosphorus	7723-14-0	E472A	2	mg/kg wwt	<2.0	
otassium	7440-09-7	E472A	4	mg/kg wwt	<4.0	
ubidium	7440-17-7	E472A	0.01	mg/kg wwt	<0.010	
elenium	7782-49-2	E472A	0.02	mg/kg wwt	<0.020	
odium	7440-23-5	E472A	4	mg/kg wwt	<4.0	
trontium	7440-24-6	E472A	0.02	mg/kg wwt	<0.020	
ellurium	13494-80-9	E472A	0.004	mg/kg wwt	<0.0040	
hallium	7440-28-0	E472A	0.0004	mg/kg wwt	<0.00040	
in	7440-31-5	E472A	0.02	mg/kg wwt	<0.020	

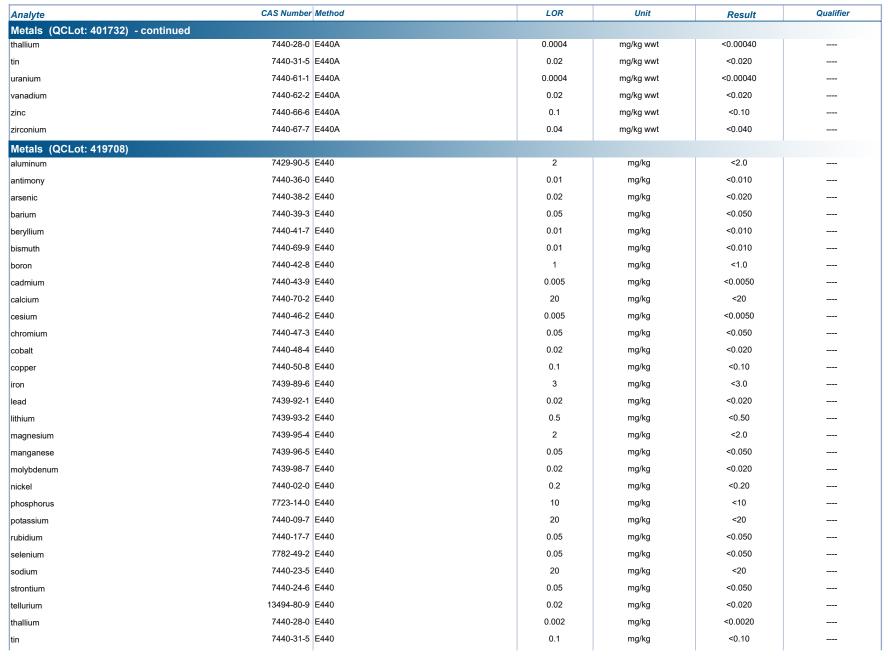
Page : 9 of 21

Work Order : CG2106913 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Metals (QCLot: 401542) - continue	d				
uranium	7440-61-1 E472A	0.0004	mg/kg wwt	<0.00040	
vanadium	7440-62-2 E472A	0.02	mg/kg wwt	<0.020	
zinc	7440-66-6 E472A	0.2	mg/kg wwt	<0.20	
zirconium	7440-67-7 E472A	0.04	mg/kg wwt	<0.040	
Metals (QCLot: 401543)					
titanium	7440-32-6 E472A.Ti	0.1	mg/kg wwt	<0.10	
Metals (QCLot: 401731)					
titanium	7440-32-6 E440A.Ti	0.05	mg/kg wwt	<0.050	
Metals (QCLot: 401732)					
aluminum	7429-90-5 E440A	0.4	mg/kg wwt	<0.40	
antimony	7440-36-0 E440A	0.002	mg/kg wwt	<0.0020	
arsenic	7440-38-2 E440A	0.004	mg/kg wwt	<0.0040	
barium	7440-39-3 E440A	0.01	mg/kg wwt	<0.010	
beryllium	7440-41-7 E440A	0.002	mg/kg wwt	<0.0020	
bismuth	7440-69-9 E440A	0.002	mg/kg wwt	<0.0020	
boron	7440-42-8 E440A	0.2	mg/kg wwt	<0.20	
cadmium	7440-43-9 E440A	0.001	mg/kg wwt	<0.0010	
calcium	7440-70-2 E440A	4	mg/kg wwt	<4.0	
cesium	7440-46-2 E440A	0.001	mg/kg wwt	<0.0010	
chromium	7440-47-3 E440A	0.01	mg/kg wwt	<0.010	
cobalt	7440-48-4 E440A	0.004	mg/kg wwt	<0.0040	
copper	7440-50-8 E440A	0.02	mg/kg wwt	<0.020	
iron	7439-89-6 E440A	0.6	mg/kg wwt	<0.60	
lead	7439-92-1 E440A	0.004	mg/kg wwt	<0.0040	
lithium	7439-93-2 E440A	0.1	mg/kg wwt	<0.10	
magnesium	7439-95-4 E440A	0.4	mg/kg wwt	<0.40	
manganese	7439-96-5 E440A	0.01	mg/kg wwt	<0.010	
molybdenum	7439-98-7 E440A	0.004	mg/kg wwt	<0.0040	
nickel	7440-02-0 E440A	0.04	mg/kg wwt	<0.040	
phosphorus	7723-14-0 E440A	2	mg/kg wwt	<2.0	
potassium	7440-09-7 E440A	4	mg/kg wwt	<4.0	
rubidium	7440-17-7 E440A	0.01	mg/kg wwt	<0.010	
selenium	7782-49-2 E440A	0.01	mg/kg wwt	<0.010	
sodium	7440-23-5 E440A	4	mg/kg wwt	<4.0	
strontium	7440-24-6 E440A	0.01	mg/kg wwt	<0.010	
tellurium	13494-80-9 E440A	0.004	mg/kg wwt	<0.0040	
l e			5 5		

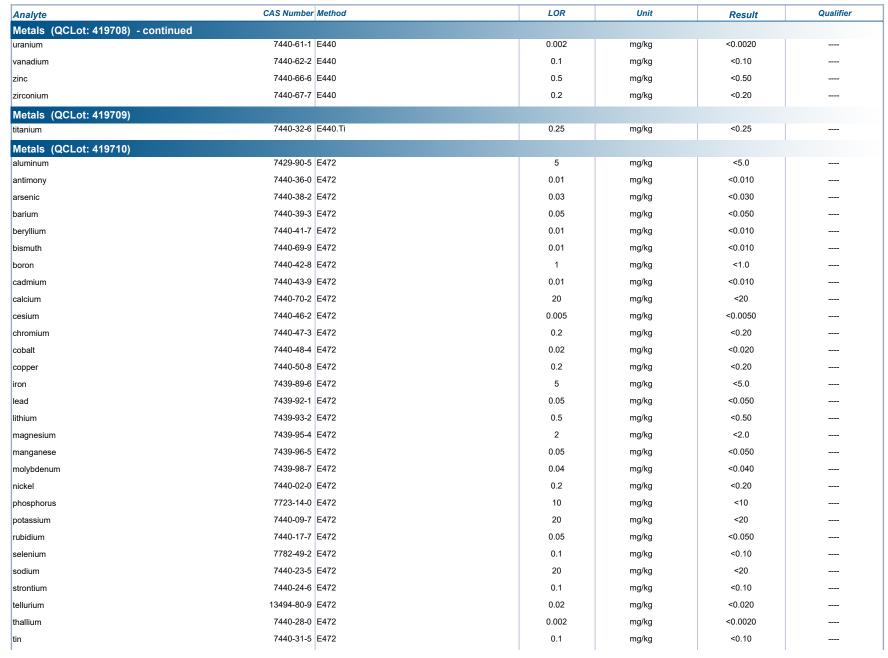


Page : 10 of 21

Work Order : CG2106913 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM



Page : 11 of 21

Work Order : CG2106913 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Page : 12 of 21

Work Order : CG2106913 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

ALS

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Metals (QCLot: 419710) - continued						
uranium	7440-61-1	E472	0.002	mg/kg	<0.0020	
vanadium	7440-62-2	E472	0.1	mg/kg	<0.10	
zinc	7440-66-6	E472	1	mg/kg	<1.0	
zirconium	7440-67-7	E472	0.2	mg/kg	<0.20	
Metals (QCLot: 419711)						
titanium	7440-32-6	E472.Ti	0.5	mg/kg	<0.50	

Page : 13 of 21

Work Order : CG2106913 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Biota					Laboratory Co.	ntrol Sample (LCS)	Report	
				Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 412812)								
moisture	E144	0.5	%	50 %	100	90.0	110	
Physical Tests (QCLot: 412843)								
moisture	E144-H	2	%	100 %	100	90.0	110	
Metals (QCLot: 401542)								
aluminum	7429-90-5 E472A	1	mg/kg wwt	20 mg/kg wwt	106	80.0	120	
antimony	7440-36-0 E472A	0.002	mg/kg wwt	10 mg/kg wwt	102	80.0	120	
arsenic	7440-38-2 E472A	0.006	mg/kg wwt	10 mg/kg wwt	102	80.0	120	
barium	7440-39-3 E472A	0.01	mg/kg wwt	2.5 mg/kg wwt	101	80.0	120	
beryllium	7440-41-7 E472A	0.002	mg/kg wwt	1 mg/kg wwt	103	80.0	120	
bismuth	7440-69-9 E472A	0.002	mg/kg wwt	10 mg/kg wwt	100	80.0	120	
boron	7440-42-8 E472A	0.2	mg/kg wwt	10 mg/kg wwt	95.3	80.0	120	
cadmium	7440-43-9 E472A	0.002	mg/kg wwt	1 mg/kg wwt	99.9	80.0	120	
calcium	7440-70-2 E472A	4	mg/kg wwt	500 mg/kg wwt	96.9	80.0	120	
cesium	7440-46-2 E472A	0.001	mg/kg wwt	0.5 mg/kg wwt	106	80.0	120	
chromium	7440-47-3 E472A	0.04	mg/kg wwt	2.5 mg/kg wwt	104	80.0	120	
cobalt	7440-48-4 E472A	0.004	mg/kg wwt	2.5 mg/kg wwt	103	80.0	120	
copper	7440-50-8 E472A	0.04	mg/kg wwt	2.5 mg/kg wwt	101	80.0	120	
iron	7439-89-6 E472A	1	mg/kg wwt	10 mg/kg wwt	102	80.0	120	
lead	7439-92-1 E472A	0.01	mg/kg wwt	5 mg/kg wwt	101	80.0	120	
lithium	7439-93-2 E472A	0.1	mg/kg wwt	2.5 mg/kg wwt	102	80.0	120	
magnesium	7439-95-4 E472A	0.4	mg/kg wwt	500 mg/kg wwt	101	80.0	120	
manganese	7439-96-5 E472A	0.01	mg/kg wwt	2.5 mg/kg wwt	106	80.0	120	
molybdenum	7439-98-7 E472A	0.008	mg/kg wwt	2.5 mg/kg wwt	109	80.0	120	
nickel	7440-02-0 E472A	0.04	mg/kg wwt	5 mg/kg wwt	100	80.0	120	
phosphorus	7723-14-0 E472A	2	mg/kg wwt	100 mg/kg wwt	110	80.0	120	
potassium	7440-09-7 E472A	4	mg/kg wwt	500 mg/kg wwt	103	80.0	120	
rubidium	7440-17-7 E472A	0.01	mg/kg wwt	1 mg/kg wwt	108	80.0	120	
selenium	7782-49-2 E472A	0.02	mg/kg wwt	10 mg/kg wwt	92.4	80.0	120	
sodium	7440-23-5 E472A	4	mg/kg wwt	500 mg/kg wwt	110	80.0	120	
strontium	7440-24-6 E472A	0.02	mg/kg wwt	2.5 mg/kg wwt	105	80.0	120	
tellurium	13494-80-9 E472A	0.004	mg/kg wwt	1 mg/kg wwt	99.6	80.0	120	
thallium	7440-28-0 E472A	0.0004	mg/kg wwt	10 mg/kg wwt	99.2	80.0	120	
tin	7440-31-5 E472A	0.02	mg/kg wwt	5 mg/kg wwt	103	80.0	120	

Page : 14 of 21

Work Order : CG2106913 Amendment 1

Client : Teck Coal Limited

Sub-Matrix: Biota					Laboratory Control Sample (LCS) Report				
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number M	lethod	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Metals (QCLot: 401542) - continued									
uranium	7440-61-1 E4	472A	0.0004	mg/kg wwt	0.05 mg/kg wwt	102	80.0	120	
vanadium	7440-62-2 E4	472A	0.02	mg/kg wwt	5 mg/kg wwt	107	80.0	120	
zinc	7440-66-6 E4	472A	0.2	mg/kg wwt	5 mg/kg wwt	98.2	80.0	120	
zirconium	7440-67-7 E4	472A	0.04	mg/kg wwt	1 mg/kg wwt	104	80.0	120	
Metals (QCLot: 401543)									
titanium	7440-32-6 E4	472A.Ti	0.1	mg/kg wwt	2.5 mg/kg wwt	103	80.0	120	
Metals (QCLot: 401731)									1
titanium	7440-32-6 E4	440A.Ti	0.05	mg/kg wwt	2.5 mg/kg wwt	107	80.0	120	
Metals (QCLot: 401732)									
aluminum	7429-90-5 E4	440A	0.4	mg/kg wwt	20 mg/kg wwt	103	80.0	120	
antimony	7440-36-0 E4	440A	0.002	mg/kg wwt	10 mg/kg wwt	110	80.0	120	
arsenic	7440-38-2 E4	440A	0.004	mg/kg wwt	10 mg/kg wwt	104	80.0	120	
barium	7440-39-3 E4	440A	0.01	mg/kg wwt	2.5 mg/kg wwt	101	80.0	120	
beryllium	7440-41-7 E4	440A	0.002	mg/kg wwt	1 mg/kg wwt	100	80.0	120	
bismuth	7440-69-9 E4	440A	0.002	mg/kg wwt	10 mg/kg wwt	100	80.0	120	
boron	7440-42-8 E4	440A	0.2	mg/kg wwt	10 mg/kg wwt	94.9	80.0	120	
cadmium	7440-43-9 E4	440A	0.001	mg/kg wwt	1 mg/kg wwt	104	80.0	120	
calcium	7440-70-2 E4	440A	4	mg/kg wwt	500 mg/kg wwt	102	80.0	120	
cesium	7440-46-2 E4	440A	0.001	mg/kg wwt	0.5 mg/kg wwt	110	80.0	120	
chromium	7440-47-3 E4	440A	0.01	mg/kg wwt	2.5 mg/kg wwt	103	80.0	120	
cobalt	7440-48-4 E4	440A	0.004	mg/kg wwt	2.5 mg/kg wwt	102	80.0	120	
copper	7440-50-8 E4	440A	0.02	mg/kg wwt	2.5 mg/kg wwt	102	80.0	120	
iron	7439-89-6 E4	440A	0.6	mg/kg wwt	10 mg/kg wwt	104	80.0	120	
lead	7439-92-1 E4	440A	0.004	mg/kg wwt	5 mg/kg wwt	103	80.0	120	
lithium	7439-93-2 E4	440A	0.1	mg/kg wwt	2.5 mg/kg wwt	100	80.0	120	
magnesium	7439-95-4 E4	440A	0.4	mg/kg wwt	500 mg/kg wwt	107	80.0	120	
manganese	7439-96-5 E4	440A	0.01	mg/kg wwt	2.5 mg/kg wwt	104	80.0	120	
molybdenum	7439-98-7 E4	440A	0.004	mg/kg wwt	2.5 mg/kg wwt	110	80.0	120	
nickel	7440-02-0 E4	440A	0.04	mg/kg wwt	5 mg/kg wwt	101	80.0	120	
phosphorus	7723-14-0 E4	440A	2	mg/kg wwt	100 mg/kg wwt	114	80.0	120	
potassium	7440-09-7 E4	440A	4	mg/kg wwt	500 mg/kg wwt	104	80.0	120	
rubidium	7440-17-7 E4	440A	0.01	mg/kg wwt	1 mg/kg wwt	108	80.0	120	
selenium	7782-49-2 E4	440A	0.01	mg/kg wwt	10 mg/kg wwt	102	80.0	120	
sodium	7440-23-5 E4	440A	4	mg/kg wwt	500 mg/kg wwt	111	80.0	120	
strontium	7440-24-6 E4	440A	0.01	mg/kg wwt	2.5 mg/kg wwt	110	80.0	120	
tellurium	13494-80-9 E4	440A	0.004	mg/kg wwt	1 mg/kg wwt	106	80.0	120	
thallium	7440-28-0 E4	440A	0.0004	mg/kg wwt	10 mg/kg wwt	103	80.0	120	

Page : 15 of 21

Work Order : CG2106913 Amendment 1

Client : Teck Coal Limited

Sub-Matrix: Biota					Report			
				Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Metals (QCLot: 401732) - continued								
tin	7440-31-5 E440A	0.02	mg/kg wwt	5 mg/kg wwt	107	80.0	120	
uranium	7440-61-1 E440A	0.0004	mg/kg wwt	0.05 mg/kg wwt	103	80.0	120	
vanadium	7440-62-2 E440A	0.02	mg/kg wwt	5 mg/kg wwt	106	80.0	120	
zinc	7440-66-6 E440A	0.1	mg/kg wwt	5 mg/kg wwt	99.1	80.0	120	
zirconium	7440-67-7 E440A	0.04	mg/kg wwt	1 mg/kg wwt	103	80.0	120	
Metals (QCLot: 419708)								
aluminum	7429-90-5 E440	2	mg/kg	20 mg/kg	103	80.0	120	
antimony	7440-36-0 E440	0.01	mg/kg	10 mg/kg	110	80.0	120	
arsenic	7440-38-2 E440	0.02	mg/kg	10 mg/kg	104	80.0	120	
barium	7440-39-3 E440	0.05	mg/kg	2.5 mg/kg	101	80.0	120	
beryllium	7440-41-7 E440	0.01	mg/kg	1 mg/kg	100	80.0	120	
bismuth	7440-69-9 E440	0.01	mg/kg	10 mg/kg	100	80.0	120	
boron	7440-42-8 E440	1	mg/kg	10 mg/kg	94.9	80.0	120	
cadmium	7440-43-9 E440	0.005	mg/kg	1 mg/kg	104	80.0	120	
calcium	7440-70-2 E440	20	mg/kg	500 mg/kg	102	80.0	120	
cesium	7440-46-2 E440	0.005	mg/kg	0.5 mg/kg	110	80.0	120	
chromium	7440-47-3 E440	0.05	mg/kg	2.5 mg/kg	103	80.0	120	
cobalt	7440-48-4 E440	0.02	mg/kg	2.5 mg/kg	102	80.0	120	
copper	7440-50-8 E440	0.1	mg/kg	2.5 mg/kg	102	80.0	120	
iron	7439-89-6 E440	3	mg/kg	10 mg/kg	104	80.0	120	
lead	7439-92-1 E440	0.02	mg/kg	5 mg/kg	103	80.0	120	
lithium	7439-93-2 E440	0.5	mg/kg	2.5 mg/kg	100	80.0	120	
magnesium	7439-95-4 E440	2	mg/kg	500 mg/kg	107	80.0	120	
manganese	7439-96-5 E440	0.05	mg/kg	2.5 mg/kg	104	80.0	120	
molybdenum	7439-98-7 E440	0.02	mg/kg	2.5 mg/kg	110	80.0	120	
nickel	7440-02-0 E440	0.2	mg/kg	5 mg/kg	101	80.0	120	
phosphorus	7723-14-0 E440	10	mg/kg	100 mg/kg	114	80.0	120	
potassium	7440-09-7 E440	20	mg/kg	500 mg/kg	104	80.0	120	
rubidium	7440-17-7 E440	0.05	mg/kg	1 mg/kg	108	80.0	120	
selenium	7782-49-2 E440	0.05	mg/kg	10 mg/kg	102	80.0	120	
sodium	7440-23-5 E440	20	mg/kg	500 mg/kg	111	80.0	120	
strontium	7440-24-6 E440	0.05	mg/kg	2.5 mg/kg	110	80.0	120	
tellurium	13494-80-9 E440	0.02	mg/kg	1 mg/kg	106	80.0	120	
thallium	7440-28-0 E440	0.002	mg/kg	10 mg/kg	103	80.0	120	
tin	7440-31-5 E440	0.1	mg/kg	5 mg/kg	107	80.0	120	
uranium	7440-61-1 E440	0.002	mg/kg	0.05 mg/kg	103	80.0	120	
vanadium	7440-62-2 E440	0.1	mg/kg	5 mg/kg	106	80.0	120	

Page : 16 of 21

Work Order : CG2106913 Amendment 1

Client : Teck Coal Limited

Sub-Matrix: Biota		Laboratory Control Sample (LCS) Report						
				Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Metals (QCLot: 419708) - continued								
zinc	7440-66-6 E440	0.5	mg/kg	5 mg/kg	99.1	80.0	120	
zirconium	7440-67-7 E440	0.2	mg/kg	1 mg/kg	103	80.0	120	
Metals (QCLot: 419709)								•
titanium	7440-32-6 E440.Ti	0.25	mg/kg	2.5 mg/kg	107	80.0	120	
Metals (QCLot: 419710)								•
aluminum	7429-90-5 E472	5	mg/kg	20 mg/kg	106	80.0	120	
antimony	7440-36-0 E472	0.01	mg/kg	10 mg/kg	102	80.0	120	
arsenic	7440-38-2 E472	0.03	mg/kg	10 mg/kg	102	80.0	120	
barium	7440-39-3 E472	0.05	mg/kg	2.5 mg/kg	101	80.0	120	
beryllium	7440-41-7 E472	0.01	mg/kg	1 mg/kg	103	80.0	120	
bismuth	7440-69-9 E472	0.01	mg/kg	10 mg/kg	100	80.0	120	
boron	7440-42-8 E472	1	mg/kg	10 mg/kg	95.3	80.0	120	
cadmium	7440-43-9 E472	0.01	mg/kg	1 mg/kg	99.9	80.0	120	
calcium	7440-70-2 E472	20	mg/kg	500 mg/kg	96.9	80.0	120	
cesium	7440-46-2 E472	0.005	mg/kg	0.5 mg/kg	106	80.0	120	
chromium	7440-47-3 E472	0.2	mg/kg	2.5 mg/kg	104	80.0	120	
cobalt	7440-48-4 E472	0.02	mg/kg	2.5 mg/kg	103	80.0	120	
copper	7440-50-8 E472	0.2	mg/kg	2.5 mg/kg	101	80.0	120	
iron	7439-89-6 E472	5	mg/kg	10 mg/kg	102	80.0	120	
lead	7439-92-1 E472	0.05	mg/kg	5 mg/kg	101	80.0	120	
lithium	7439-93-2 E472	0.5	mg/kg	2.5 mg/kg	102	80.0	120	
magnesium	7439-95-4 E472	2	mg/kg	500 mg/kg	101	80.0	120	
manganese	7439-96-5 E472	0.05	mg/kg	2.5 mg/kg	106	80.0	120	
molybdenum	7439-98-7 E472	0.04	mg/kg	2.5 mg/kg	109	80.0	120	
nickel	7440-02-0 E472	0.2	mg/kg	5 mg/kg	100	80.0	120	
phosphorus	7723-14-0 E472	10	mg/kg	100 mg/kg	110	80.0	120	
, , , , , , , , , , , , , , , , , , ,	7440-09-7 E472	20	mg/kg	500 mg/kg	103	80.0	120	
rubidium	7440-17-7 E472	0.05	mg/kg	1 mg/kg	108	80.0	120	
selenium	7782-49-2 E472	0.1	mg/kg	10 mg/kg	92.4	80.0	120	
sodium	7440-23-5 E472	20	mg/kg	500 mg/kg	110	80.0	120	
strontium	7440-24-6 E472	0.1	mg/kg	2.5 mg/kg	105	80.0	120	
tellurium	13494-80-9 E472	0.02	mg/kg	1 mg/kg	99.6	80.0	120	
thallium	7440-28-0 E472	0.002	mg/kg	10 mg/kg	99.2	80.0	120	
tin	7440-31-5 E472	0.1	mg/kg	5 mg/kg	103	80.0	120	
uranium	7440-61-1 E472	0.002	mg/kg	0.05 mg/kg	102	80.0	120	
vanadium	7440-62-2 E472	0.1	mg/kg	5 mg/kg	107	80.0	120	
zinc	7440-66-6 E472	1	mg/kg	5 mg/kg	98.2	80.0	120	

Page : 17 of 21

Work Order : CG2106913 Amendment 1

Client : Teck Coal Limited

Sub-Matrix: Biota					Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	ry (%) Recovery Limits (%)			
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Metals (QCLot: 419710) - continued										
zirconium	7440-67-7	E472	0.2	mg/kg	1 mg/kg	104	80.0	120		
Metals (QCLot: 419711)										
titanium	7440-32-6	E472.Ti	0.5	mg/kg	2.5 mg/kg	103	80.0	120		

Page : 18 of 21

Work Order : CG2106913 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Reference Material (RM) Report

A Reference Material (RM) is a homogenous material with known and well-established analyte concentrations. RMs are processed in an identical manner to test samples, and are used to monitor and control the accuracy and precision of a test method for a typical sample matrix. RM results are expressed as percent recovery of the target analyte concentration. RM targets may be certified target concentrations provided by the RM supplier, or may be ALS long-term mean values (for empirical test methods).

Sub-Matrix: Biota						Referer	nce Material (RM) R	eport	
					RM Target	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Reference Material ID	Analyte	CAS Number	Method	Concentration	RM	Low	High	Qualifier
Metals (QCLot:	401542)								
QC-401542-003	RM	aluminum	7429-90-5	E472A	11.2 mg/kg wwt	98.1	70.0	130	
QC-401542-003	RM	arsenic	7440-38-2	E472A	34.6 mg/kg wwt	104	70.0	130	
QC-401542-003	RM	bismuth	7440-69-9	E472A	0.0247 mg/kg wwt	90.8	60.0	140	
QC-401542-003	RM	cadmium	7440-43-9	E472A	14.5 mg/kg wwt	101	70.0	130	
QC-401542-003	RM	calcium	7440-70-2	E472A	550 mg/kg wwt	110	70.0	130	
QC-401542-003	RM	cesium	7440-46-2	E472A	0.0712 mg/kg wwt	108	70.0	130	
QC-401542-003	RM	chromium	7440-47-3	E472A	1.96 mg/kg wwt	98.8	70.0	130	
QC-401542-003	RM	cobalt	7440-48-4	E472A	0.267 mg/kg wwt	98.2	70.0	130	
QC-401542-003	RM	copper	7440-50-8	E472A	35 mg/kg wwt	102	70.0	130	
QC-401542-003	RM	iron	7439-89-6	E472A	1070 mg/kg wwt	104	70.0	130	
QC-401542-003	RM	lead	7439-92-1	E472A	0.162 mg/kg wwt	# 134	70.0	130	MES
QC-401542-003	RM	magnesium	7439-95-4	E472A	940 mg/kg wwt	105	70.0	130	
QC-401542-003	RM	manganese	7439-96-5	E472A	8.91 mg/kg wwt	104	70.0	130	
QC-401542-003	RM	molybdenum	7439-98-7	E472A	1.41 mg/kg wwt	105	70.0	130	
QC-401542-003	RM	nickel	7440-02-0	E472A	1.57 mg/kg wwt	93.9	70.0	130	
QC-401542-003	RM	phosphorus	7723-14-0	E472A	11500 mg/kg wwt	108	70.0	130	
QC-401542-003	RM	potassium	7440-09-7	E472A	14400 mg/kg wwt	106	70.0	130	
QC-401542-003	RM	rubidium	7440-17-7	E472A	5.11 mg/kg wwt	105	70.0	130	
QC-401542-003	RM	selenium	7782-49-2	E472A	8 mg/kg wwt	101	70.0	130	
QC-401542-003	RM	sodium	7440-23-5	E472A	10673 mg/kg wwt	109	70.0	130	
QC-401542-003	RM	strontium	7440-24-6	E472A	3.92 mg/kg wwt	110	70.0	130	
QC-401542-003	RM	thallium	7440-28-0	E472A	0.013 mg/kg wwt	92.0	70.0	130	
QC-401542-003	RM	uranium	7440-61-1	E472A	0.0786 mg/kg wwt	106	70.0	130	
QC-401542-003	RM	vanadium	7440-62-2	E472A	0.51 mg/kg wwt	102	70.0	130	
QC-401542-003	RM	zinc	7440-66-6	E472A	105.3 mg/kg wwt	100	70.0	130	
Metals (QCLot:									
QC-401732-003	RM	aluminum	7429-90-5	E440A	11.2 mg/kg wwt	84.9	70.0	130	

Page : 19 of 21

Work Order : CG2106913 Amendment 1

Client : Teck Coal Limited

Sub-Matrix: Biota						Reference Material (RM) Report								
					RM Target	Recovery (%)	Recovery							
Laboratory sample ID	Reference Material ID Analyte CAS Number Method		Concentration	RM	Low	High	Qualifier							
	401732) - continued													
QC-401732-003	RM	arsenic	7440-38-2	E440A	34.6 mg/kg wwt	99.9	70.0	130						
QC-401732-003	RM	bismuth	7440-69-9	E440A	0.0247 mg/kg wwt	101	60.0	140						
QC-401732-003	RM	cadmium	7440-43-9	E440A	14.5 mg/kg wwt	97.2	70.0	130						
QC-401732-003	RM	calcium	7440-70-2	E440A	550 mg/kg wwt	100	70.0	130						
QC-401732-003	RM	cesium	7440-46-2	E440A	0.0712 mg/kg wwt	108	70.0	130						
QC-401732-003	RM	chromium	7440-47-3	E440A	1.96 mg/kg wwt	106	70.0	130						
QC-401732-003	RM	cobalt	7440-48-4	E440A	0.267 mg/kg wwt	97.4	70.0	130						
QC-401732-003	RM	copper	7440-50-8	E440A	35 mg/kg wwt	101	70.0	130						
QC-401732-003	RM	iron	7439-89-6	E440A	1070 mg/kg wwt	102	70.0	130						
QC-401732-003	RM	lead	7439-92-1	E440A	0.162 mg/kg wwt	93.6	70.0	130						
QC-401732-003	RM	magnesium	7439-95-4	E440A	940 mg/kg wwt	102	70.0	130						
QC-401732-003	RM	manganese	7439-96-5	E440A	8.91 mg/kg wwt	101	70.0	130						
QC-401732-003	RM	molybdenum	7439-98-7	E440A	1.41 mg/kg wwt	106	70.0	130						
QC-401732-003	RM	nickel	7440-02-0	E440A	1.57 mg/kg wwt	94.9	70.0	130						
C-401732-003	RM	phosphorus	7723-14-0	E440A	11500 mg/kg wwt	106	70.0	130						
QC-401732-003	RM	potassium	7440-09-7	E440A	14400 mg/kg wwt	105	70.0	130						
QC-401732-003	RM	rubidium	7440-17-7	E440A	5.11 mg/kg wwt	102	70.0	130						
QC-401732-003	RM	selenium	7782-49-2	E440A	8 mg/kg wwt	99.6	70.0	130						
QC-401732-003	RM	sodium	7440-23-5	E440A	10673 mg/kg wwt	107	70.0	130						
QC-401732-003	RM	strontium	7440-24-6	E440A	3.92 mg/kg wwt	101	70.0	130						
QC-401732-003	RM	thallium	7440-28-0	E440A	0.013 mg/kg wwt	89.0	70.0	130						
QC-401732-003	RM	uranium	7440-61-1	E440A	0.0786 mg/kg wwt	104	70.0	130						
QC-401732-003	RM	vanadium	7440-62-2	E440A	0.51 mg/kg wwt	98.1	70.0	130						
QC-401732-003	RM	zinc	7440-66-6	E440A	105.3 mg/kg wwt	99.4	70.0	130						
letals (QCLot:	419708)													
QC-419708-003	RM	aluminum	7429-90-5	E440	11.2 mg/kg	84.9	70.0	130						
C-419708-003	RM	arsenic	7440-38-2	E440	34.6 mg/kg	99.9	70.0	130						
QC-419708-003	RM	bismuth	7440-69-9	E440	0.0247 mg/kg	101	60.0	140						
QC-419708-003	RM	cadmium	7440-43-9	E440	14.5 mg/kg	97.2	70.0	130						
QC-419708-003	RM	calcium	7440-70-2	E440	550 mg/kg	100	70.0	130						
C-419708-003	RM	cesium	7440-46-2	E440	0.0712 mg/kg	108	70.0	130						

Page : 20 of 21

Work Order : CG2106913 Amendment 1

Client : Teck Coal Limited

b-Matrix: Biota						Reference Material (RM) Report								
					RM Target	Recovery (%)	Recovery I							
Laboratory sample ID			yte CAS Number Method		Concentration	RM	Low	High	Qualifier					
letals (QCLot:	419708) - continued													
QC-419708-003	RM	chromium	7440-47-3	E440	1.96 mg/kg	106	70.0	130						
QC-419708-003	RM	cobalt	7440-48-4	E440	0.267 mg/kg	97.4	70.0	130						
QC-419708-003	RM	copper	7440-50-8	E440	35 mg/kg	101	70.0	130						
QC-419708-003	RM	iron	7439-89-6	E440	1070 mg/kg	102	70.0	130						
QC-419708-003	RM	lead	7439-92-1	E440	0.162 mg/kg	93.6	70.0	130						
QC-419708-003	RM	magnesium	7439-95-4	E440	940 mg/kg	102	70.0	130						
QC-419708-003	RM	manganese	7439-96-5	E440	8.91 mg/kg	101	70.0	130						
QC-419708-003	RM	molybdenum	7439-98-7	E440	1.41 mg/kg	106	70.0	130						
QC-419708-003	RM	nickel	7440-02-0	E440	1.57 mg/kg	94.9	70.0	130						
QC-419708-003	RM	phosphorus	7723-14-0	E440	11500 mg/kg	106	70.0	130						
QC-419708-003	RM	potassium	7440-09-7	E440	14400 mg/kg	105	70.0	130						
QC-419708-003	RM	rubidium	7440-17-7	E440	5.11 mg/kg	102	70.0	130						
QC-419708-003	RM	selenium	7782-49-2	E440	8 mg/kg	99.6	70.0	130						
QC-419708-003	RM	sodium	7440-23-5	E440	10673 mg/kg	107	70.0	130						
QC-419708-003	RM	strontium	7440-24-6	E440	3.92 mg/kg	101	70.0	130						
QC-419708-003	RM	thallium	7440-28-0	E440	0.013 mg/kg	89.0	70.0	130						
QC-419708-003	RM	uranium	7440-61-1	E440	0.0786 mg/kg	104	70.0	130						
QC-419708-003	RM	vanadium	7440-62-2	E440	0.51 mg/kg	98.1	70.0	130						
QC-419708-003	RM	zinc	7440-66-6	E440	105.3 mg/kg	99.4	70.0	130						
letals (QCLot:	419710)													
QC-419710-003	RM	aluminum	7429-90-5	E472	11.2 mg/kg	98.1	70.0	130						
QC-419710-003	RM	arsenic	7440-38-2	E472	34.6 mg/kg	104	70.0	130						
QC-419710-003	RM	bismuth	7440-69-9	E472	0.0247 mg/kg	90.8	60.0	140						
QC-419710-003	RM	cadmium	7440-43-9	E472	14.5 mg/kg	101	70.0	130						
QC-419710-003	RM	calcium	7440-70-2	E472	550 mg/kg	110	70.0	130						
QC-419710-003	RM	cesium	7440-46-2	E472	0.0712 mg/kg	108	70.0	130						
QC-419710-003	RM	chromium	7440-47-3	E472	1.96 mg/kg	98.8	70.0	130						
QC-419710-003	RM	cobalt	7440-48-4	E472	0.267 mg/kg	98.2	70.0	130						
QC-419710-003	RM	copper	7440-50-8	E472	35 mg/kg	102	70.0	130						
QC-419710-003	RM	iron	7439-89-6	E472	1070 mg/kg	104	70.0	130						
QC-419710-003	RM	lead	7439-92-1	E472	0.162 mg/kg	# 134	70.0	130	MES					
QC-419710-003	RM	magnesium	7439-95-4	E472	940 mg/kg	105	70.0	130						

Page : 21 of 21

Work Order : CG2106913 Amendment 1

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Biota						Reference Material (RM) Report									
					RM Target	Recovery (%)	Recovery	Limits (%)							
Laboratory sample ID	Reference Material ID	Analyte	CAS Number	Method	Concentration	RM	Low	High	Qualifier						
Metals (QCLot:	419710) - continued														
QC-419710-003	RM	manganese	7439-96-5	E472	8.91 mg/kg	104	70.0	130							
QC-419710-003	RM	molybdenum	7439-98-7	E472	1.41 mg/kg	105	70.0	130							
QC-419710-003	RM	nickel	7440-02-0	E472	1.57 mg/kg	93.9	70.0	130							
QC-419710-003	RM	phosphorus	7723-14-0	E472	11500 mg/kg	108	70.0	130							
QC-419710-003	RM	potassium	7440-09-7	E472	14400 mg/kg	106	70.0	130							
QC-419710-003	RM	rubidium	7440-17-7	E472	5.11 mg/kg	105	70.0	130							
QC-419710-003	RM	selenium	7782-49-2	E472	8 mg/kg	101	70.0	130							
QC-419710-003	RM	sodium	7440-23-5	E472	10673 mg/kg	109	70.0	130							
QC-419710-003	RM	strontium	7440-24-6	E472	3.92 mg/kg	110	70.0	130							
QC-419710-003	RM	thallium	7440-28-0	E472	0.013 mg/kg	92.0	70.0	130							
QC-419710-003	RM	uranium	7440-61-1	E472	0.0786 mg/kg	106	70.0	130							
QC-419710-003	RM	vanadium	7440-62-2	E472	0.51 mg/kg	102	70.0	130							
QC-419710-003	RM	zinc	7440-66-6	E472	105.3 mg/kg	100	70.0	130							

Qualifiers

Qualifier	Description
MES	Data Quality Objective was marginally exceeded (by < 10% absolute) for < 10% of analytes in a

Data Quality Objective was marginally exceeded (by < 10% absolute) for < 10% of analytes in a Multi-Element Scan / Multi-Parameter Scan (considered acceptable as per OMOE & CCME).

Teck							Page	r lofJ									
COCID: December EVO LAE							TURN	AROUN	D TIME:	39							
	PROJECT/CLI	ENT INFO							LABOR	ATORY:							
Facility Name / Job#	REP								ALS Calgar						and a resource of the second	Excel PI	DF EDD
Project Manager				, ,			Lab		Lyudmyla S							<u> </u>	
	sile, for grysoniffices start										sglobal.com				· **	<i>,,,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4
Address	421 Pine Avenue			· · · · · · ·				Address	2559 29 Stre	eet NE .							
			<u>:</u>		vince B	· · · · · ·		Cimi	Calgary	<u> </u>	Province	AB					- 4
City		Sparwood				anada		tal Code			Country	Canada				a.Z.OV	Marie Marie
Postal Code Phone Number		V0B 2G0		-4 Cei	untry C	anada		Number	1 403 407 I	704	Country	Lanada					
Prione Number	and the same of th	MPIT DETAILS		(((((((((((((((((((Thone	Manicel	1 403 407 1		LYSIS RE						BULL A LAB TO NO.
· The state of the	``	ANTI DELATES					I .	T		A 7/	ALTOID AD	UN ESTEL	·		Patried - 13		
			,			1			đ ∾		Links	1.00			i i i i eri		
			F						aya aya a a ay .	## ** =		1			are en	Carelia	
				1					6	100		1		34 Jan			
				G -	•	į.			a de la companya de l								
		Ÿ.		es/No)		i				17.000.60.		-	2 L				
				Ž.					CRC								
•				<u>.</u>					Ū							ı l	
				Matorial (Y					و ۾		1					ı I	į
1									§ 8 8		ŀ					ı I	
	!			SII			1		∄ ⊑ ≥							i l	
				Hazardous		Time	G=Gгаб	*.	mls i					i		i l	
Sample ID	Sam	ple Location	Field Matrix	Haz	Date	(24hr)	C=Comp		Metals in Tissu ICPMS (Wet)								ľ
RG_ERCKDT_BRYO-01_2021-12-15	R(ERCKDT	Tissue (see	No	12/15/2021	12:00	G	1	х								
RG_ERCKDT_BRYO-02_2021-12-15	all a let 1977 RC			No	12/15/2021	12:00	G	1	x								
RG ERCKDT BRYO-03 2021-12-15	RC				12/15/2021	12,00	G	1	X								
RG_ERCKDT_BRYO-04_2021-12-15	CONTRACTOR OF THE STATE OF THE	ERCKDT		ri : i casi i sel i se	12/15/2021	12:00	G		X								
RG ERCKDT PERI-02 2021-12-15	RC				12/15/2021	12:00	G	ī	X X								.
RG_ERCKDT_PERI-03_2021-12-15	RC	seemproximation & or environmentarium example of the third of			12/15/2021	12:00	G	ı	<u>x</u>								
RG_ERCKDT_PERI-04_2021-12-15	RC	The second section of the second seco	, N.	California and California and California and California and California and California and California and California and California and California and California and California and California and California and California	12/15/2021	12:00	G	ı	×						1 '		
(2) RG_ERCK_BRYO-01_2021-12-15				A1 5 K30	12/14/2021	9:45	Ğ	1	x						1		
RG ERCK PERI-02 2021-12-15	100				12/14/2021	9:45	G	1	X						1.		
		NAMES OF TAXABLE PARTY OF TAXABLE PARTY.					-					. /					
ADDITIONAL COMMENT	S/SPECIAL INSTRUC	TIONS		HL	LINQUESI	IED BY/A#F	HATION)ATE/HMI		KJA .	THEO .	IY/A KYILI	ATION.			
•								- [_				l i	45-	
LS PO 750546					Tyler I	Mehler/Minn	ow .		December	16, 2021	//	L			K).	717	
issue samples are wet periphyton or moss that has been frozei	n.		·								- 7	Y			104	-17	77.
						•					1	/			1		7
NB OF BOTTLES REI	URNED/DESCRIPTION	ON.									//				-	-	·VJ
			ır (default) ×	Sa	mpler's Na	me		2.1	fyler Mehle		1	Mobi	le #	2000	587-597	J_161?	
		iority (2-3 business days) - 50%			mbiet 2 14M	me			1 3461 14141			MIODI	In the Section				ne er avstan in neveren in innere
	Emer	rgency (1 Business Day) - 100%	surcharge	Sant	nier's Sian	oturo	tiralia"		WTM		1000	Date/	rime		Nacember 1	16 2021	WE

Environmental Division
Calgary
Work Order Reference
CG2106913

Telephone

4024071000

Tools	Pege 1 ref j																		
Teck	COC ID: December EVO LAEMP 2021																		
		ientinpo	er EVO L	AEM)	P 2021			TURNA	KOUN	D TIME:									
Facility Name / Job#	<u> </u>				Lá	ab Name	LABORATO				<u> </u>	· 	Eurol BO	EDD					
Project Manager										Lyudmyla Shvets			Excel PDF 1						
Email	allis /ergvaes/frack.com								Email	lyudmyla.shvets	@alsglobal.com	1			GOLONA I				
Address	421 Pine Avenue								Address	2559 29 Street NE			17						
													1,	ma ha					
City		Sparwood			Province	BC				Calgary	Province	AB		*****	ewa .				
Postal Code		VOB 2G0		·	Country .	Canada				TIY 7B5	Country	Canada							
Phone Number								Phone	Number	1 403 407 1794	i ki ka kirwa wa								
	S /	AMPLE BETAILS			1						ANALYSIS RI	QUESTE	1		Filtered : P. I	ide to tab Ft 9	Fili & Eat, Y Nobe		
				1.	İ .		İ			€ N									
			 	ļ											+				
·					: :					6 .									
		-		<u>~</u>	- **	ļ.			_				16 3	873					
				Ž		·				M T				***		1			
,			1	, e			ĺ			CRC						ł			
				<u></u>) o						!			
· · · · · · · · · · · · · · · · · · ·				ater		- 1				a de de						İ			
40			1.	Σ		i				Tissue by (1 :		ľ		
l i			ľ.	nop		. 1					I	į					į		
				Hazardous Material (Yes/No)			Time	G=Grab	# Of	Metals i		!	ļ				!		
Sample ID	An included the Section of the Secti	nple Location	Field Matrix		Dat		24hr)	C=Comp	Cont.	₹ D .		+		-					
1 6 EV_EC_FLOW2_BRYO-01_2021-12-15	jy# .≯″ "EV	EC FLOW2	Tissue (see notes)	No	12/15/2	021	14:00	G	1	X					<u></u>		Ì		
EV_EC_FLOW2_BRYO-02_2021-12-15 EV_EC_FLOW2_BRYO-03_2021-12-15	FV . FV	PC FLOW2	#HT	No	12/15/2	021	14:00	G	1	Х							i.		
BZ EV_EC_FLOW2_BRYO-03_2021-12-15	, EV	_EC_FLOW2	78 1	No	12/15/2	021	14:00	G	1	Х									
FV_EC_FLOW2_BRYO-04_2021-12-15_F4	EV.	PC FLOW2	1981	No	12/15/2	021	14:00	G	1	X X									
5 S EV_EC_FLOW2_BRYO-05_2021-12-15		EC_FLOW2	. 117	No	12/15/2		14:00	G	1	X					1				
RG_ERCKUT_BRYO-01_2021-12-15	TO STATE OF THE PARTY OF THE PA	G ERCKUT	411	No	12/15/2	-	13:00	G	1	X		1							
RG_ERCKUT_BRYO-02_2021-12-15		G ERCKUT	***	No	12/15/2		13:00	G	_ ' _	x		1		_	ļ				
77 RG_ERCKUT_BRYO-03_2021-12-15		i_erckui	98	No:	12/15/2		13:00	G	1	x					 -				
RG_ERCKUT_PERI-02_2021-12-15	CONTRACTOR OF THE PROPERTY OF	I ERCKUT		No.	12/15/2		13:00	G	1	×		-				•			
RG_ERCKUT_PERI-03_2021-12-15 ADDITIONAL COMMENT		JERCKUT .	""	.:No	12/15/2		13:00	G LEATION	1	X DATE/TIME	A.E	evolka	P V/AFFILIA	run	_		-		
AMDITEDATE COMMENT	STATE CARE CONTROL	119940			************************							1///	7	i ion	1	./			
ALS PO 750546	•				Tv	ler Mehl	er/Minn	OW		December 16, 20	21 2	14 l			+	110	DV		
Tissue samples are wet periphyton or moss that has been frozer	1.										-	ומו			IN	HH-			
The state of the s	.,			<u> </u>					}			//				F7:- (V		
. NE OF BOTTLES REL	LIENT DOS SERIPE	ON.									_1	#			1				
• *************************************	Con Programme All II		ar (default) x		S1	N.			1000	Tyler Mehler	/		B. 11 11 May 95 100 11 11 11 11 11 11		505 S				
	Р	riority (2-3 business days) - 50%		Ĺ	Sampler'	s Name				i yier Mehler		Mob	ile#		587- 597	1612			
		rgency (1 Business Day) - 100%			Sampler's S	Signature				WTM		Date/	Time	\overline{A}	December	16,2021			
	For Emergency	I Day, ASAP or Weekend - Co	ntact ALS	L	•			*10.25	MOLITI								195 (19)		

APPENDIX I

RELOCATION OF EV_ECOUT (MEMO)

Victoria, British Columbia V8V 3K4

Tel: (250) 595-1627 Fax: (250) 595-1625

Confidential Technical Memo

Date: June 29, 2022

To: Mike Pope and Nick Manklow (Teck Coal Limited)

From: W. Tyler Mehler and Jennifer Ings (Minnow Environmental Inc.)

RE: Justification for the Relocation of E321814 (EV_ECOUT) outlined in Table

4C4 in Appendix 4 of Permit 107517 (December 1, 2021), in Erickson Creek

Background

Minnow was notified on November 16th, 2021 that Teck Coal Limited (Teck) was considering the relocation of the permitted monitoring station E321814 (EV_ECOUT). This station is monitored in accordance with Table 4C4 in Appendix 4 of Permit 107517 (December 1, 2021) and is associated with the Elkview Operation (EVO) Local Aquatic Effects Monitoring Program (LAEMP) biological monitoring area, RG_ERCKDT. Specifically, water quality collected at EV_ECOUT is used in the interpretation of biological monitoring results collected at RG_ERCKDT. The content of this memo details the justification of this relocation from the original EV_ECOUT location to a new location (referred to as 'Transect A') and how this relocation affects biological monitoring and interpretation of biological data in this area for the EVO LAEMP.

Teck's basis for this relocation stems from observed variability in water quality monitoring data at the current EV_ECOUT location, which is in close proximity (10 meters) to where the EVO Saturated Rock Fill (SRF) Phase 2 (P2) effluent connects with Erickson Creek. Effluent from the P2 SRF is discharged into Erickson Creek channel via a pipe, energy dissipation box, and riprap channel on the right bank that is immediately adjacent to the spillway from the infiltration gallery that holds Erickson Creek water for treatment upstream. This infiltration gallery is designed to allow non-treated Erickson Creek water to overflow the weir during SRF bypass and during periods of high flow (i.e. when flow volume is greater than the maximum volume captured by the SRF intake). Variability in water chemistry measured at EV_ECOUT in conjunction with observational field evidence, suggests incomplete mixing of EVO SRF P2 effluent and residual non-treated Erickson Creek water has occurred at the EV_ECOUT monitoring location (Figure 1).

To assess mixing levels of EVO SRF P2 effluent and non-treated Erickson Creek water within the vicinity of EV_ECOUT, Teck initiated a field investigation on August 18, 2021, during a period when the EVO SRF P2 was operating, wherein water was sampled for nitrate in Erickson Creek along four transects to determine if the nitrate levels were consistent across the creek (i.e. bank to bank). Nitrate was selected as the analyte of interest as a large relative differential exists between the non-treated Erickson Creek water (approximately 17 mg/L) and the EVO SRF P2 Effluent (approximately 1 mg/L). The first transect location was at the current EV_ECOUT station location, with three additional locations selected downstream of this point (Transect A, Transect B, and Transect C; Table 1). Water sampling and nitrate analysis was conducted by the Teck internal lab at the EVO SRF. It was hypothesized that a more homogenesis representation of water nitrate concentrations over the transverse of the creek would exist further downstream of the current EV_ECOUT location as the effluent and non-treated Erickson Creek water would have additional mixing time. Results from this field investigation support that hypothesis and are shown in Table 1 below.

Table 1: Nitrate Field Investigation at Erickson Creek

Transect Location	Approximate Downstream Distance from the EVO SRF P2 Outfall (m)	Right Downstream Bank	Creek Centerline	Left Downstream Bank
EV_ECOUT	10	2.36	3.30	5.66
"Transect A"	60	4.06	4.06	4.05
"Transect B"	90	4.04	4.11	4.04
"Transect C"	120	4.03	3.98	4.05

Note: Nitrate is expressed as mg N/L.

The results from this field investigation as well as field observations noted during previous water quality monitoring events indicate incomplete mixing of EVO SRF P2 effluent and non-treated Erickson Creek water at the current EV_ECOUT location. As such, EV_ECOUT is not a suitable monitoring location for measuring fully mixed water quality conditions, especially during periods where Erickson Creek water is high (i.e. water that EVO SRF P2 facility is unable to capture). Transect A (as well as transects B and C which are further downstream) showed uniform nitrate concentrations over the entire transect. As such, Transect A (which is the closest to the old location) is being proposed as the new EV_ECOUT location. This area is easy to access and is approximately 60 m downstream of the current EV_ECOUT location. Additionally, no other visible surface water inputs to Erickson Creek are evident between the two locations. This was confirmed by evaluating concurrent water quality samples from both locations on May 30 and June 2, 2022 during a period when the SRF was non-operational. All aqueous constituent concentrations at EV_ECOUT and Transect A (Table 2) were, with few exceptions, within 10% of

one another suggesting that no additional inputs are present between the two areas. Of those that were different, such as total manganese and total aluminum, higher concentrations were present at Transect A (likely due to a residual presence from previous SRF discharge) providing a more conservative representation of conditions downstream of the SRF outfall.

Teck notified ENV of the proposed change on August 30, 2021 as well as worked with the EVO LAEMP team (i.e. Minnow) to determine the potential impacts of EV_ECOUT relocation on biological monitoring and data interpretation associated with the EVO LAEMP. The EVO LAEMP team conducted a site visit and determined that two of the three riffles (or biological stations) used for biological monitoring at RG_ERCKDT were downstream of the proposed new location, with only one station (Kick and Sweep Benthic Invertebrate Community [K&S BIC] Station 3; Figure 2) remaining upstream (which is in close proximity to the current EV ECOUT location).

Minnow recommends moving K&S BIC Station 3 to ensure all benthic invertebrate sampling is being collected in stations exposed to fully mixed water. It is important for comparability among samples that all replicates are collected in a section of the creek with homogeneous water quality with no additional inputs (e.g., tributaries, treatment discharges, significant hydrological features) between stations (Chessman 1995). A new sampling station representative of the RG_ERCKDT biological monitoring area that receives fully mixed water will be located in a subsequent riffle downstream of Riffle 3 (i.e. K&S BIC Station 1; Figure 2). The exact station location will be dependent on habitat and access conditions. The new biological station will be established during the next sampling event. Overall, it is expected that the new EV_ECOUT location and the new RG_ERCKDT biological station will provide consistent and reliable data reflective of conditions within Erickson Creek.

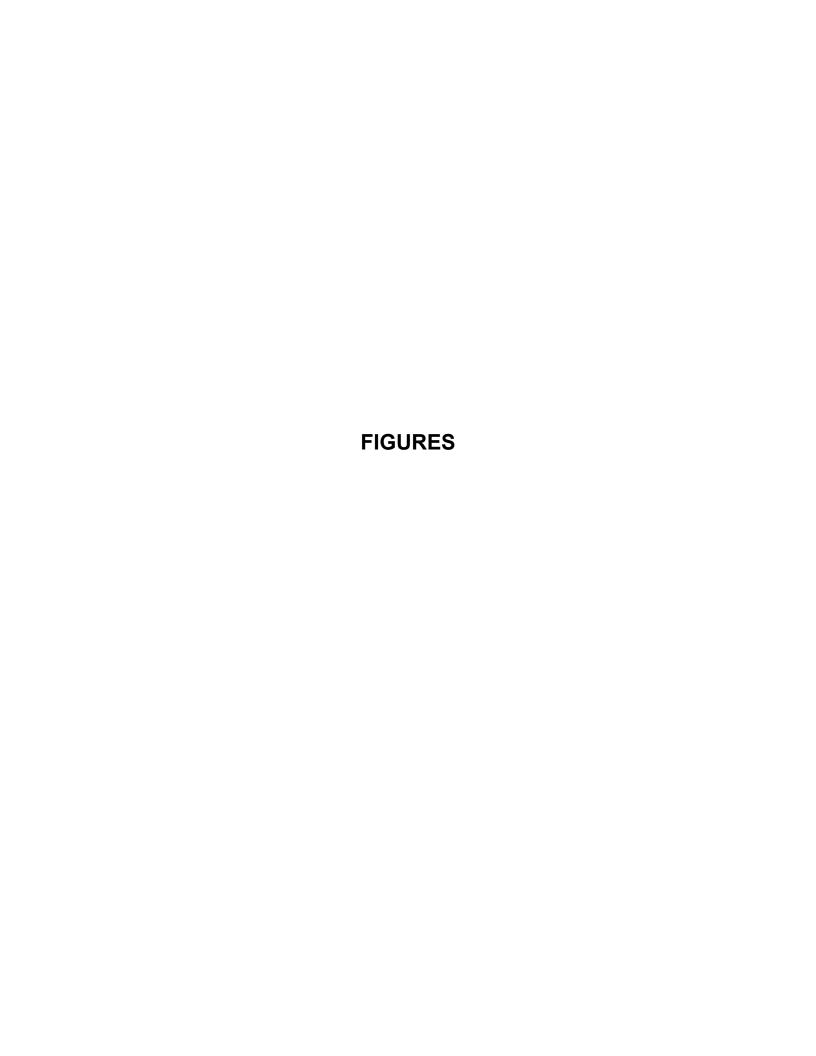
Sincerely,

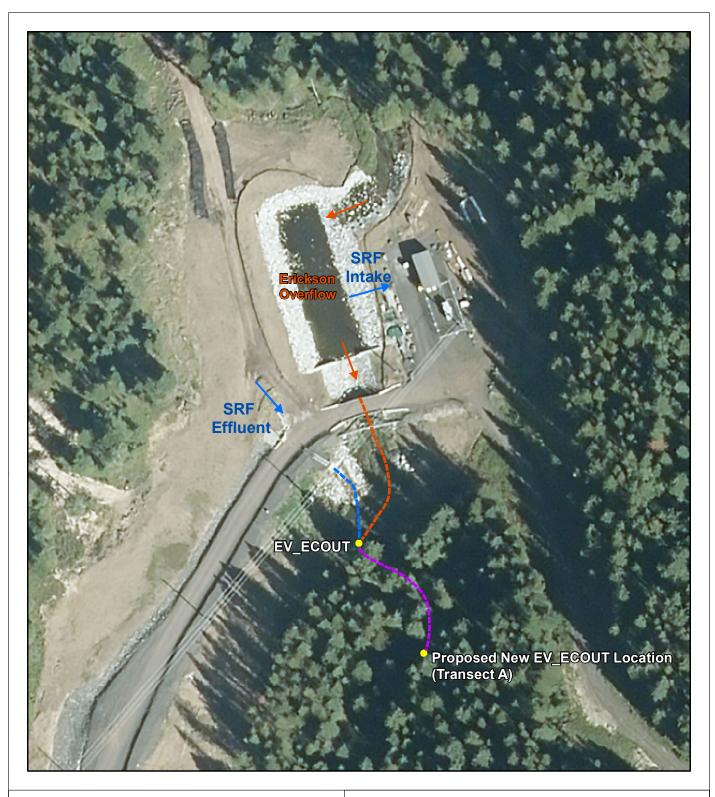
Minnow Environmental Inc.

W. Tyler Mehler, Ph.D.

Aquatic Scientist

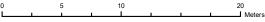
Jennifer Ings, Ph.D., R.P.Bio,


Jamy Dr


Senior Aquatic Scientist

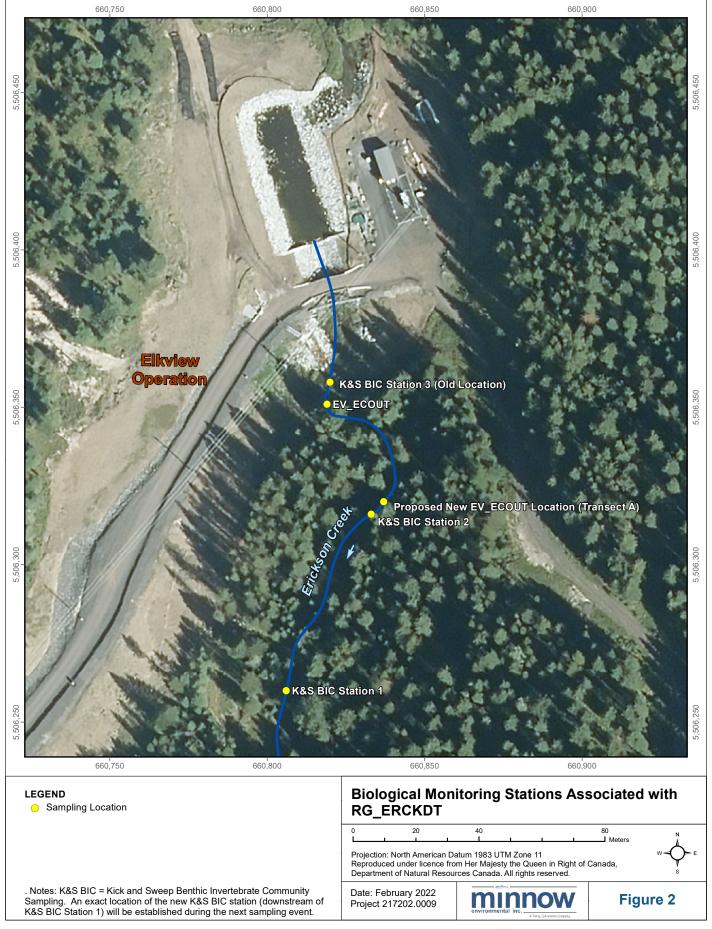
References

Chessman, Bruce C. "Rapid assessment of rivers using macroinvertebrates: a procedure based on habitat-specific sampling, family level identification and a biotic index." Australian Journal of Ecology 20.1 (1995): 122-129.



LEGEND

Sampling Location


EVO SRF P2 Influent and Effluent Schematic: Proposed New Location for EV_ECOUT

Projection: North American Datum 1983 UTM Zone 11 Reproduced under licence from Her Majesty the Queen in Right of Canada, Department of Natural Resources Canada. All rights reserved.

Figure 1

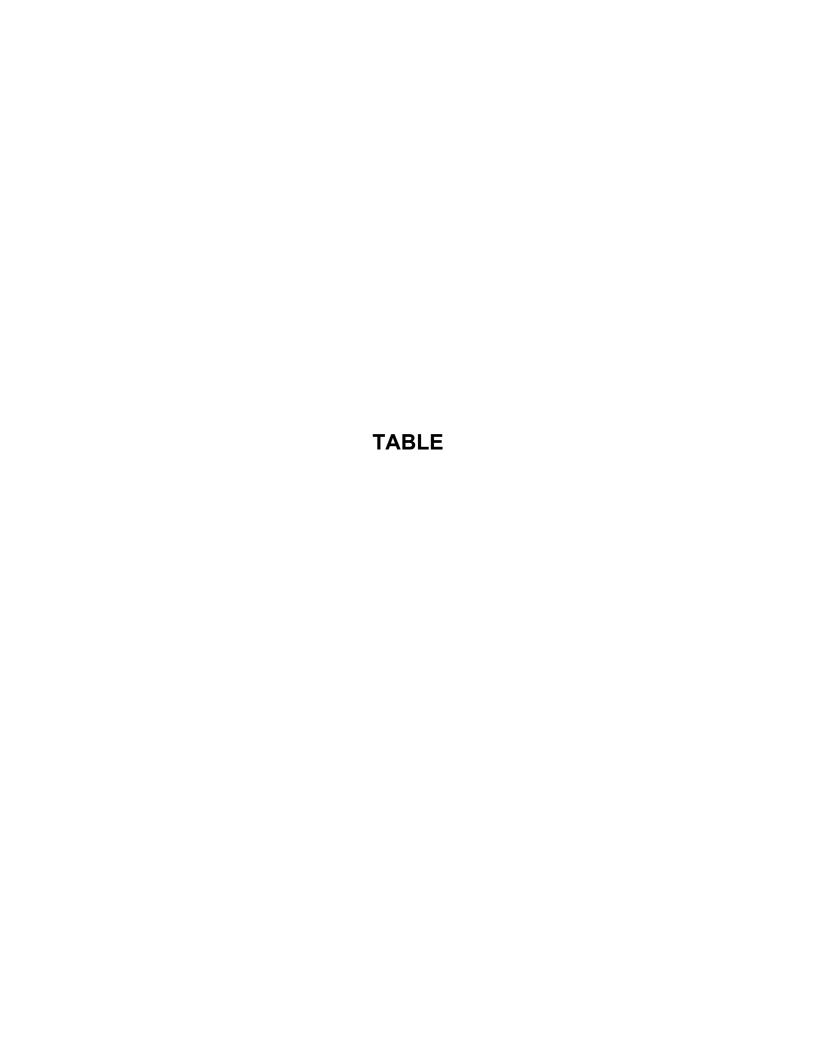


Table 2: Percent Difference in Parameter Values between Transect A and EV_ECOUT

Parameter	Units		30-May-22			2-Jun-22	
Field Temperature		Transect A	EV_ECOUT 5.2	% Difference	Transect A 5.6	EV_ECOUT 5.5	% Difference 1.82%
Field pH	deg c ph units	-	7.49	-	7.72	7.53	2.52%
Lab pH Acidity (as CaCO3)	ph units mg/l	7.97 4.9	8.00 < 2.0	0.375% 145%	8.16 7.5	8.13 9.0	0.369% 16.7%
Alkalinity Bicarbonate (as CaCO3)	mg/l	443	444	0.225%	421	422	0.237%
Alkalinity Carbonate (as CaCO3) Alkalinity Hydroxide (as CaCO3)	mg/l mg/l	< 1.0 < 1.0	< 1.0 < 1.0	0% 0%	< 1.0 < 1.0	< 1.0 < 1.0	0% 0%
Alkalinity Total (as CaCO3)	mg/l	443	444	0.225%	421	422	0.237%
Specific Conductance Lab Conductivity	us/cm us/cm	- 1970	2034 1960	0.51%	2033 1920	2034 1920	0% 0%
Bicarbonate	mg/l	540	542	0.369%	514	514	0%
Biochemical Oxygen Demand Carbonate (as CaCO3)	mg/l mg/l	< 2.0 < 1.0	< 2.0 < 1.0	0% 0%	< 2.0 < 1.0	< 2.0 < 1.0	0% 0%
Chemical Oxygen Demand	mg/l	< 10	< 10	0%	< 10	< 10	0%
Dissolved Oxygen (in-situ) Dissolved Organic Carbon	mg/l mg/l	0.82	11.27 0.60	36.7%	10.55 < 0.50	10.46 0.60	0.86% 16.7%
Total Organic Carbon	mg/l	0.66	0.66	0%	< 0.50	0.58	13.8%
Total or Dissolved Hardness Hydroxide	mg/l mg/l	1230 < 1.0	1250 < 1.0	1.60% 0%	1170 < 1.0	1160 < 1.0	0.86% 0%
Cation - Anion Balance	%	5.36	3.82	40.3%	6.72	8.27	18.7%
Ion Balance Major Anion Sum	% meg/l	89.8 27.5	92.6 27.2	3.02% 1.10%	87.4 27.0	84.7 27.5	3.19% 1.82%
Major Cation Sum	meq/l	24.7	25.2	1.98%	23.6	23.3	1.29%
Total Dissolved Solids Total Suspended Solids	mg/l mg/l	1380 2.0	1380 2.6	0% 23.1%	1590 1.3	1490 7.5	6.71% 82.7%
Field Turbidity	ntu	-	0.35	-	0.55	0.73	24.7%
Lab Turbidity Nitrate	ntu mg/l	0.24 17.2	0.12 17.0	100.0% 1.18%	< 0.10 17.9	< 0.10 18.3	0% 2.19%
Nitrite	mg/l	< 0.0050	< 0.0050	0%	< 0.0050	< 0.0050	0%
Ammonia (as N) Total Kjeldahl Nitrogen	mg/l mg/l	< 0.0050 < 0.050	< 0.0050 0.355	0% 85.9%	< 0.0050 < 0.050	< 0.0050 < 0.050	0% 0%
Orthophosphate	mg/l	0.0215	0.0221	2.71%	0.0202	0.0198	2.02%
ORP (in-situ) ORP (lab)	mv mv	- 399	156.2 446	- 10.5%	163.9 264	166.6 279	1.62% 5.38%
Phosphorus	mg/l	0.0192	0.0281	31.7%	0.0237	0.0223	6.28%
Sulphate Sulphide	mg/l mg/l	827 < 0.0015	817 < 0.0015	1.22% 0%	825 < 0.0015	843 < 0.0015	2.14% 0%
Bromide	mg/l	< 0.250	< 0.250	0%	< 0.250	< 0.250	0%
Chloride	mg/l	5.79 < 0.100	5.72 < 0.100	1.22% 0%	6.06 0.107	6.22 0.110	2.57% 2.73%
Fluoride Total	mg/l						
Aluminum	mg/l	0.0045 0.00019	< 0.0030 0.00019	50.0% 0%	0.0042 0.00022	< 0.0030 0.00021	40.0% 4.76%
Antimony Arsenic	mg/l mg/l	0.00019	0.00022	0%	0.00022	0.00025	8.00%
Barium	mg/l	0.0631	0.0628	0.478%	0.0597	0.0610	2.13%
Beryllium Bismuth	ug/l mg/l	< 0.020 < 0.000050	< 0.020 < 0.000050	0% 0%	< 0.020 < 0.00050	< 0.020 < 0.000050	0% 0%
Boron	mg/l	0.013	0.013	0%	0.013	0.012	8.33%
Cadmium Calcium	ug/l mg/l	0.0848 300	0.0832 289	1.92% 3.81%	0.0914 251	0.0920 249	0.65% 0.80%
Chromium	mg/l	0.00025	0.00025	0% 0%	0.00023	0.00021	9.52%
Cobalt Copper	ug/l mg/l	< 0.10 < 0.00050	< 0.10 < 0.00050	0%	0.12 < 0.00050	< 0.10 < 0.00050	20.0%
Iron	mg/l	< 0.010	< 0.010	0%	0.019	< 0.010	90.0%
Lead Lithium	mg/l mg/l	< 0.000050 0.0271	< 0.000050 0.0272	0% 0.368%	< 0.000050 0.0269	< 0.000050 0.0265	0% 1.51%
Magnesium	mg/l	187	183	2.19%	156	158	1.27%
Manganese Mercury	mg/l ug/l	0.00070 < 0.00050	0.00020 < 0.00050	250% 0%	0.00165 < 0.00050	0.00017 < 0.00050	871% 0%
Molybdenum	mg/l	0.00102	0.00102	0%	0.00103	0.00109	5.50%
Nickel Potassium	mg/l mg/l	0.00102 2.64	0.00090 2.63	13.3% 0.380%	0.00100 2.52	0.00089 2.55	12.4% 1.18%
Selenium	ug/l	163	169	3.55%	171	171	0%
Silicon Silver	mg/l mg/l	3.81 0.000016	3.78 0.000032	0.79% 50.0%	3.70 < 0.000010	3.73 < 0.000010	0.80%
Sodium	mg/l	3.02	3.03	0.330%	3.30	3.19	3.45%
Sulphur Strontium	mg/l mg/l	298 0.234	299 0.240	0.334% 2.50%	275 0.226	281 0.224	2.14% 0.89%
Thallium	mg/l	< 0.000010	< 0.000010	0%	< 0.000010	< 0.000010	0%
Tin Titanium	mg/l mg/l	0.00025 < 0.00030	< 0.00010 < 0.00030	150% 0%	< 0.00010 < 0.00030	< 0.00010 < 0.00030	0% 0%
Uranium	mg/l	0.00837	0.00840	0.357%	0.00869	0.00866	0.346%
Vanadium Zinc	mg/l mg/l	< 0.00050 0.0030	< 0.00050 < 0.0030	0% 0%	< 0.00050 < 0.0030	< 0.00050 0.0041	0% 26.8%
Dissolved	Ğ						
Aluminum Antimony	mg/l mg/l	< 0.0020 < 0.00020	< 0.0020 < 0.00020	0% 0%	0.0014 0.00021	0.0015 0.00021	6.67% 0%
Arsenic	mg/l	< 0.00020 0.0589	0.00020	0% 5.76%	0.00023 0.0607	0.00022 0.0659	4.55%
Barium Beryllium	mg/l ug/l	< 0.0589	0.0625 < 0.040	5.76% 0%	< 0.020	< 0.020	7.89% 0%
Bismuth	mg/l	< 0.000100	< 0.000100	0%	< 0.000050	< 0.000050	0%
Boron Cadmium	mg/l ug/l	< 0.020 0.0803	< 0.020 0.0878	0% 8.54%	0.012 0.0826	0.012 0.0788	0% 4.82%
Calcium	mg/l	249	248	0.403%	253	256	1.17%
Chromium Cobalt	mg/l ug/l	< 0.00020 < 0.20	0.00026 < 0.20	23.1% 0%	0.00017 < 0.10	0.00020 < 0.10	15.0% 0%
Copper	mg/l	< 0.00040	< 0.00040	0%	< 0.00020	< 0.00020	0%
Iron Lead	mg/l mg/l	< 0.020 < 0.000100	< 0.020 < 0.000100	0% 0%	< 0.010 < 0.00050	< 0.010 < 0.000050	0% 0%
Lithium	mg/l	0.0246	0.0254	3.15%	0.0277	0.0254	9.06%
Magnesium Manganese	mg/l mg/l	147 < 0.00020	154 < 0.00020	4.55% 0%	131 0.00018	126 < 0.00010	3.97% 80.0%
Mercury	mg/l	0.0000143	0.0000154	7.14%	0.000133	0.0000174	664%
Molybdenum Nickel	mg/l mg/l	0.00105 < 0.00100	0.00109 < 0.00100	3.67% 0%	0.00108 0.00062	0.00112 0.00063	3.57% 1.59%
Potassium	mg/l	2.55	2.67	4.49%	2.58	2.61	1.15%
Selenium Silicon	ug/l mg/l	165 3.73	166 3.80	0.60% 1.84%	169 3.52	171 3.35	1.17% 5.07%
Silver	mg/l	< 0.000020	< 0.000020	0%	< 0.000010	< 0.000010	0%
Sodium Sulphur	mg/l mg/l	2.97 269	3.07 276	3.26% 2.54%	3.20 273	2.99 273	7.02% 0%
Strontium	mg/l	0.221	0.221	0%	0.223	0.226	1.33%
Thallium Tin	mg/l mg/l	< 0.000020 < 0.00020	< 0.000020 < 0.00020	0% 0%	< 0.000010 < 0.00010	< 0.000010 < 0.00010	0% 0%
Titanium	mg/l	< 0.00060	< 0.00060	0%	< 0.00030	< 0.00030	0%
Uranium	mg/l	0.00840	0.00836	0.478%	0.00831	0.00802	3.62%
Vanadium	mg/l	< 0.00100	< 0.00100	0%	< 0.00050	< 0.00050	0%

APPENDIX J

PAIRING OF F2_ECIN AND RG_ERCKUT STATIONS (MEMO)

Confidential Technical Memo

Date: June 29, 2022

To: Mike Pope and Nick Manklow, Teck Coal Ltd

From: W. Tyler Mehler and Jennifer Ings, Minnow Environmental Inc.

RE: Statistical Comparison of Water Quality Between RG_ERCKUT and

F2_ECIN for Elkview Operations Local Aquatic Effects Monitoring Program

Background

On October 15th, 2021, the British Columbia Ministry of Environment and Climate Change Strategy (BCMOECC) approved the "Study Design for the 2021 to 2023 Elkview Operations (EVO) Local Aquatic Effects Monitoring Program" (the Study Design; BCMOECC 2021). One of the conditions of the approval required monthly water quality monitoring at biological monitoring station RG ERCKUT in Erickson Creek upstream of the EVO Saturated Rockfill (SRF) intake structure, which was not associated with a routine water quality monitoring station in the study design. On December 7th, 2021, Teck Coal Limited (Teck) submitted a request to BCMOECC to revise the approval for the study design on the basis that the routine water quality station F2 ECIN (water collected from the Erickson Creek intake) is representative of RG ERCKUT water quality. Water from F2 ECIN is collected directly from the pipeline which transports Erickson Creek water from the infiltration gallery to the SRF The infiltration gallery is roughly 60 meters downstream of the biological (Figure 1). Following a review of advice from the Environmental Monitoring station RG ERCKUT. Committee (EMC), the Ktunaxa Nation Council (KNC), and Teck's responses to the EMC, the revised Study Design approval was issued by BCMOECC on March 4th, 2022, but required, as one of its conditions, a statistical comparison of water quality between RG ERCKUT and F2 ECIN to determine if F2 ECIN is a suitable surrogate for monthly water quality monitoring at RG ERCKUT (BCMOECC 2022). The focus of this memo is to present the findings of the statistical analysis comparing water quality between RG ERCKUT and F2 ECIN from 2019 to 2022 in response to the approval condition issued by BCMOECC.

Data Analysis

Statistical analyses were conducted to determine whether water chemistry constituents collected at RG_ERCKUT and F2_ECIN were significantly different for the years of 2019 to 2022. Differences in concentrations between the two areas were calculated using two approaches: 1) using the difference in monthly mean concentrations between the stations for months with overlapping data, and 2) matching sampling events at RG_ERCKUT with data from F2_ECIN collected on the closest day and taking a difference in the concentrations between the stations. When concentrations from both stations were at the laboratory reporting limit (LRL) for a water quality constituent, no difference was calculated for that month or event. In both analyses, the vector of differences were then tested against zero (i.e., no difference) using a Student's t-test, with $\alpha = 0.05$. When the differences were not normally distributed, a non-parametric Wilcoxon signed-rank test was used. A magnitude of difference (MOD) between the stations was reported for constituents that were significantly different and was calculated as:

$$MOD = \frac{\left(MCT_{F2_ECIN} - MCT_{RG_ERCKUT}\right)}{MCT_{RG_ERCKUT}} \times 100\%$$

where *MCT* is the measure of central tendency (i.e., means over the whole period). All calculated means used the Kaplan-Meier (K-M) method to account for values at the LRL and statistical comparisons were conducted in R (R Core Team 2021).

Results and Conclusion

Water quality differed significantly between RG_ERCKUT and F2_ECIN for 2 of 36 water quality constituents when comparing RG_ERCKUT and F2_ECIN monthly means (hardness and total ammonia; Table 1), and for 5 of 36 constituents, including several key mine-related constituents, when samples matched by sampling date were compared between the two areas (hardness, total phosphorus, total nickel, selenite, and dissolved cadmium; Table 2). Of the constituents that significantly differed, concentrations of total ammonia, total nickel, and selenite were significantly higher at F2_ECIN relative to RG_ERCKUT suggesting that F2_ECIN may be conservative relative to conditions at RG_ERCKUT for these constituents (Table 1 and 2). Hardness (both analyses), total phosphorus, and dissolved cadmium were significantly lower at F2_ECIN than RG_ERCKUT but the magnitude of difference was relatively low (3.6 to 11%) except for total phosphorus (59%; Table 2).

Overall, results of the statistical analysis comparing water quality at RG_ERCKUT and F2_ECIN revealed very few significant differences in water quality constituents between these areas using two different data analysis approaches. For constituents that differed, where concentration at F2_ECIN was higher, this could provide a conservative representation of conditions

at RG_ERCKUT. Where the concentration was lower at F2_ECIN, the difference in nearly all cases was relatively small. Collectively, this suggests that the F2_ECIN routine water quality sampling location is reflective of water quality conditions at RG_ERCKUT and would act as a suitable surrogate for water quality sampling at RG_ERCKUT for the 2021 to 2023 EVO LAEMP.

Sincerely,

Minnow Environmental Inc.

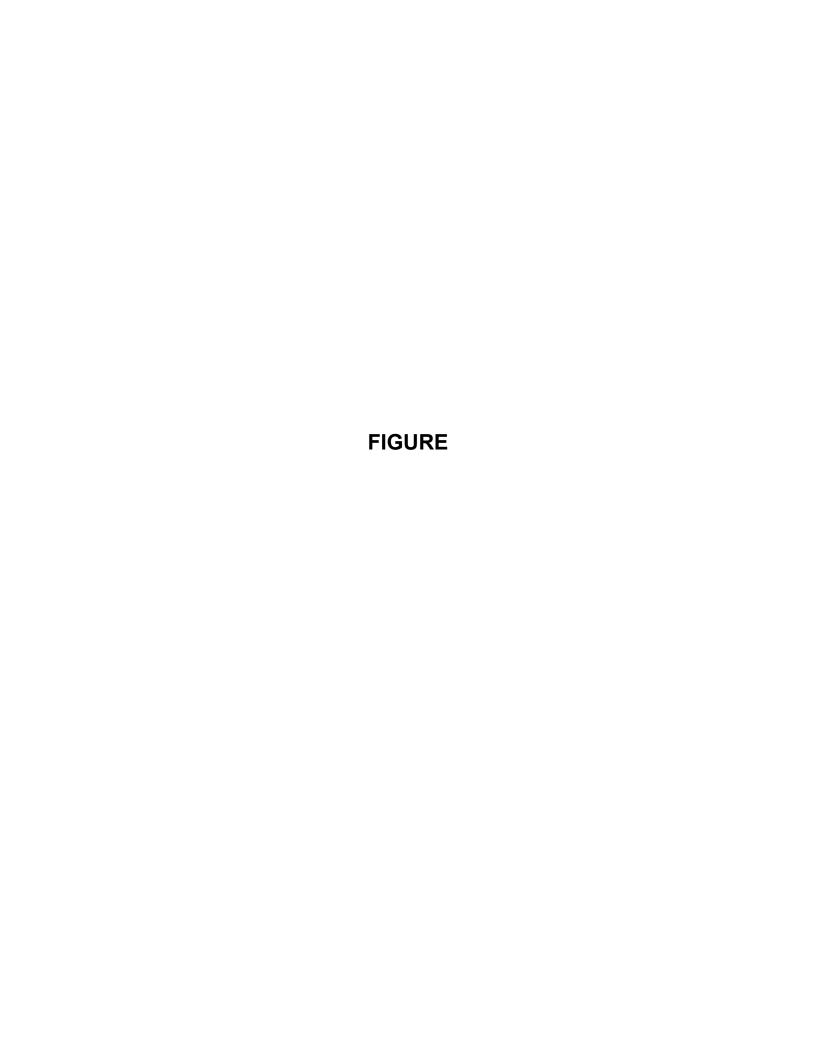
W. Tyler Mehler, Ph.D.

Aquatic Scientist

Jennifer Ings, Ph.D., R.P.Bio,

Jamp Dr

Senior Aquatic Scientist


References

BCMOECC (British Columbia Ministry of Environment and Climate Change Strategy). 2021. Re: Approval of the EVO LAEMP 2021-2023 Study Design. October 15th, 2021.

BCMOECC. 2022. Re: Approval of the EVO LAEMP 2021-2023 Study Design Revised. March 4th, 2022.

R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

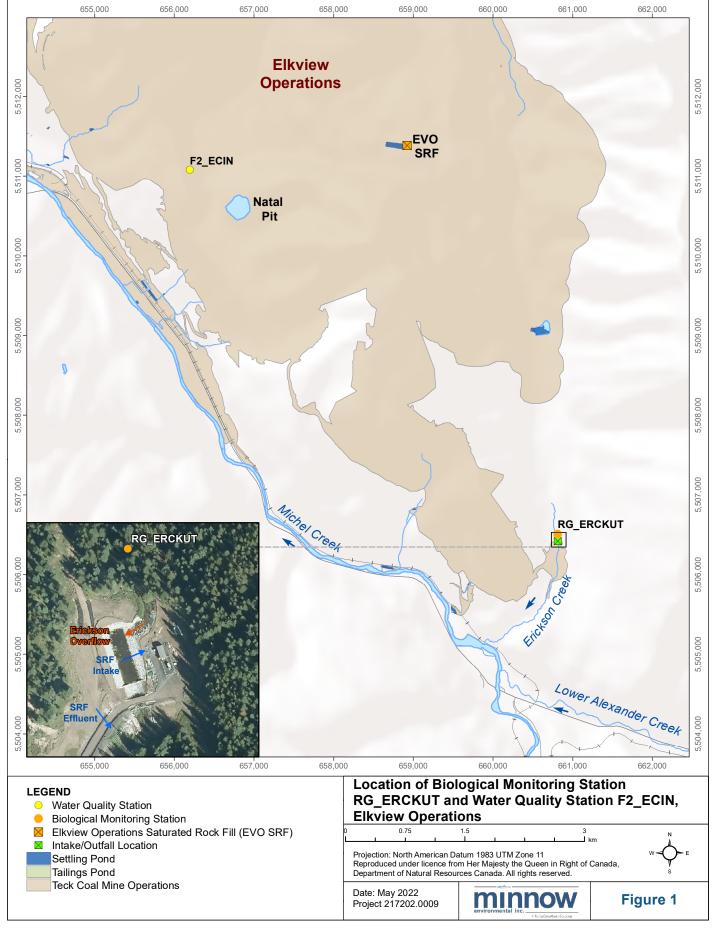
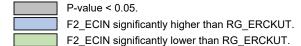
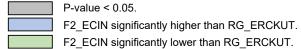



Table 1: Statistical Comparison of Water Quality Between FC_ECIN and RG_ERCKUT, 2020 to 2022

Analyte	n	P-value	P-value	MOD ^a
Dissolved Organic Carbon	7	Wilcoxon Test	0.375	ns
Temperature, Field	5	Wilcoxon Test	0.062	ns
pH, Field	5	T-Test	0.884	ns
Dissolved Oxygen, Field	5	T-Test	0.125	ns
Acidity (as CaCO3)	7	T-Test	0.984	ns
Alkalinity, Total (as CaCO3)	7	T-Test	0.226	ns
Conductivity	7	T-Test	0.359	ns
Chloride (CI)	7	T-Test	0.944	ns
Fluoride	6	T-Test	0.283	ns
Hardness - Dissolved (as CaCO3)	6	Wilcoxon Test	0.031	-6.0
Nitrate (as N)	7	T-Test	0.085	ns
Nitrite (as N)	5	T-Test	0.717	ns
Ammonia, Total (as N)	4	T-Test	0.003	48
Phosphorus (P)-Total	7	Wilcoxon Test	0.078	ns
Sulphate	7	Wilcoxon Test	0.469	ns
Total Dissolved Solids	7	T-Test	0.214	ns
Antimony (Sb)-Total	7	Wilcoxon Test	0.834	ns
Arsenic (As)-Total	7	T-Test	0.375	ns
Barium (Ba)-Total	7	T-Test	0.506	ns
Boron (B)-Total	7	T-Test	0.278	ns
Chromium (Cr)-Total	7	T-Test	0.098	ns
Iron (Fe)-Total	4	T-Test	0.269	ns
Lead (Pb)-Total	3	T-Test	0.122	ns
Lithium (Li)-Total	7	T-Test	0.911	ns
Manganese (Mn)-Total	7	T-Test	0.560	ns
Molybdenum (Mo)-Total	7	Wilcoxon Test	1.000	ns
Nickel (Ni)-Total	7	T-Test	0.094	ns
Selenium (Se)-Total	7	Wilcoxon Test	0.109	ns
Uranium (U)-Total	7	T-Test	0.757	ns
Zinc (Zn)-Total	4	T-Test	0.134	ns
Se(IV) - Selenite	5	T-Test	0.055	ns
Se(VI) - Selenate	5	T-Test	0.067	ns
Aluminum (Al)-Dissolved	7	Wilcoxon Test	0.297	ns
Cadmium (Cd)-Dissolved	7	T-Test	0.112	ns
Copper (Cu)-Dissolved	6	T-Test	0.639	ns
Molybdenum (Mo)-Dissolved	7	T-Test	0.420	ns
Iron (Fe)-Dissolved	6	Wilcoxon Test	0.438	ns
Selenium (Se)-Dissolved	7	T-Test	0.452	ns



Notes: "ns" = not significant. Differences between F2_ECIN and ERCKUT were calculated and the result was tested against zero (i.e., no difference) using a t-test or a Wilcoxon test when differences were not normally distributed.

^aMagnitude of Difference (MOD) = $(MCT_{F2_ECIN} - MCT_{RG_ERCKUT})/MCT_{RG_ERCKUT}*100$. MCT = Kaplan-Meier (K-M) means over the whole period.

Table 2: Statistical Comparison of Water Quality Between F2_ECIN and RG_ERCKUT (Matched Sampling Date), 2020 to 2022

Analyte	n	P-value	P-value	MOD ^a
Dissolved Organic Carbon	7	T-Test	0.334	ns
Temperature, Field	5	Wilcoxon Test	0.062	ns
pH, Field	5	T-Test	0.541	ns
Dissolved Oxygen, Field	5	Wilcoxon Test	0.625	ns
Acidity (as CaCO3)	7	T-Test	0.189	ns
Alkalinity, Total (as CaCO3)	7	Wilcoxon Test	0.297	ns
Conductivity	7	T-Test	0.731	ns
Chloride (CI)	7	T-Test	0.937	ns
Fluoride	4	T-Test	0.185	ns
Hardness - Dissolved (as CaCO3)	6	T-Test	0.038	-3.6
Nitrate (as N)	7	T-Test	0.903	ns
Ammonia, Total (as N)	3	T-Test	0.506	ns
Phosphorus (P)-Total	7	Wilcoxon Test	0.031	-59
Sulphate	7	Wilcoxon Test	0.204	ns
Total Dissolved Solids	7	T-Test	0.294	ns
Antimony (Sb)-Total	7	Wilcoxon Test	0.784	ns
Arsenic (As)-Total	7	T-Test	0.224	ns
Barium (Ba)-Total	7	T-Test	0.482	ns
Boron (B)-Total	7	Wilcoxon Test	0.371	ns
Chromium (Cr)-Total	7	T-Test	0.344	ns
Iron (Fe)-Total	3	Wilcoxon Test	0.500	ns
Lithium (Li)-Total	7	T-Test	0.766	ns
Manganese (Mn)-Total	7	T-Test	0.695	ns
Molybdenum (Mo)-Total	7	Wilcoxon Test	1.000	ns
Nickel (Ni)-Total	7	T-Test	0.036	8.1
Selenium (Se)-Total	7	T-Test	0.240	ns
Uranium (U)-Total	7	T-Test	0.501	ns
Zinc (Zn)-Total	3	Wilcoxon Test	0.250	ns
Se(IV) - Selenite	5	T-Test	0.022	41
Se(VI) - Selenate	5	T-Test	0.103	ns
Aluminum (AI)-Dissolved	6	T-Test	0.802	ns
Cadmium (Cd)-Dissolved	7	T-Test	0.038	-11
Copper (Cu)-Dissolved	3	T-Test	0.580	ns
Molybdenum (Mo)-Dissolved	7	Wilcoxon Test	0.834	ns
Selenium (Se)-Dissolved	7	T-Test	0.766	ns

Notes: "ns" = not significant. Sampling dates were matched between F2_ECIN and RG_ERCKUT. Differences between F2_ECIN and RG_ERCKUT were then calculated and the result was tested against zero (i.e., no difference) using a t-test or a Wilcoxon test when differences were not normally distributed.

^aMagnitude of Difference (MOD) = $(MCT_{F2_ECIN} - MCT_{RG_ERCKUT})/MCT_{RG_ERCKUT}*100$. MCT = Kaplan-Meier (K-M) means over the whole period.