Annual Report Overview

Report: Coal Mountain Operations Permit 4750 Annual Report 2018 - March 31 2019

Overview: This report summarizes Teck Coal Limited Coal Mountain Operations (CMO) 2018 permitted effluent monitoring program and satisfies the annual reporting requirements for Environmental Management Act (EMA) Permit 4750 (last amended June 2015).

This report was prepared by Teck.

If you have questions regarding this report, please:

- Phone toll-free to 1.855.806.6854
- Email feedbackteckcoal@teck.com

Permit 4750 – Coal Mountain Operations Annual Report

March 29, 2019

Prepared by:

Jay Jones

Lead Environmental

Scott Holmgren, MASc, AAg Technician Environmental

Kate Middleton

Senior Coordinator, Environment

Executive Summary

This report summarizes Teck Coal Limited – Coal Mountain Operations 2018 permitted effluent monitoring program and satisfies the annual reporting requirements for *Environmental Management Act* Permit 4750 (amended April 8, 2016 and July 25, 2016). Requirements for Permit 107517 (originally issued on November 19, 2014) will be detailed in a separate annual report.

In 2018, Teck Coal Limited (Teck) Coal Mountain Operations (CMO) continued its commitment to environmental stewardship, and further improved its systems in regards to surface water management through maintenance and upgrades to current drainage systems and research, development and monitoring on water quality improvement strategies.

In 2018, CMO had 7 incidents related to water and 6 hydrocarbon related spills and 1 non-compliance with Permit 4750.

Total suspended solids concentrations (TSS) were below the permit limit (50 mg/L) for all samples collected in 2018 across all discharge locations. In total, 132 TSS samples were collected with 100% being below the 50 mg/L discharge limit. Of the 132 samples collected at authorized discharge locations in 2018, 26% were below the TSS detection limit of 1 mg/L. Q_{10} flow rates were not exceeded at Permit 4750 discharge locations throughout 2018.

TSS and 5-day biochemical oxygen demand (BOD₅) concentrations for the Sewage Treatment Plant E206439 (CM_SEW) remained below permit limits in 2018. TSS concentrations for 50% of the samples were below the TSS detection limit of 1 mg/L. All samples collected were below the 2.0 mg/L BOD₅ detection limit in 2018. The flow remained well below the maximum authorized rate of discharge of 56.8 m³/day in 2018. Flow rates for the Sewage Treatment Plant E206439 (CM_SEW) effluent ranged from 5.64 m³/day on November 5 to 23.03 m³/day on May 7. The reduction of flow rate in 2018 can be attributed to less personnel on site as CMO transitions towards Care and Maintenance activities.

Concentrations of Extractable Petroleum Hydrocarbons (EPH) remained below the detection limits (0.50 mg/L) for all samples collected during 2018 at the Main Interceptor Sedimentation Ponds E102488 (CM_SPD), and Corbin Sedimentation Pond E206438 (CM_CCPD). The Maintenance Infiltration Ponds E206437 (CM_WBE) were below EPH permit limits for all but 1 sample collected in 2018. In total, 10 of 11 samples (91%) remained below the permit limit of 15 mg/L. Daily flows at the Maintenance Infiltration Ponds E206437 (CM_WBE) remained below the maximum authorized rate of discharge (0.38 m3/min) and maximum daily discharge (120 m³/day) throughout all of 2018.

TSS and turbidity values were most elevated during mid April through May coinciding with freshet and snowmelt, and again July and November which coincides with precipitation.

In 2018, Coal Mountain Operations dispensed 1546 L of cationic flocculant and 229.1 L of anionic flocculant. All anionic flocculant is dispensed with water as a 3% anionic floc solution whereas cationic flocculant is administered at 100% concentration or undiluted.

Water management improvements consisted of continued upgrades to the North Ditch Flocculant station, full sediment clean out of the Maintenance Infiltration Ponds E206437 (CM_WBE), and fish salvage work at both the Main Interceptor Sedimentation Ponds E102488 (CM_SPD) and the Corbin Sedimentation Pond E206438 (CM_CCPD) such that the ponds and all associated upstream appurtenances can continue to be considered non-fish bearing. The permanent fish barrier added to the Main Interceptor Sedimentation Ponds E102488 (CM_SPD) in 2017 continues to be effective. Additional water management improvements were made in

accordance with the Routine Water Infrastructure Maintenance Plan throughout the year on an as needed basis.

The Seven Pit Settling Ponds (SPSPs) were decommissioned in 2017. CMO implemented a number of erosion and sediment control measures in 2018 to reduce surface run-off from the area until vegetation is fully established. The area has been planted with trees, shrubs, and grasses as well as hydro-seeded in 2018.

Erosion and sediment control measures were implemented in the area of CMO's Quartzite Quarry in 2018. Road drainage improvements and the addition of spring berms were included to help reduce sediment transport associated with runoff due to precipitation. The Quarry has been scheduled as a priority area for 2019 Reclamation and the landform design for the area will meet the objectives of the Closure Plan. The interim water control work on the existing road infrastructure included cross ditching and re-sloping to more effectively direct water into ditches and into the quarry pit versus the outside perimeter end of the Quarry. A berm was added to protect the edge of the quarry floor where most of 2018 erosion took place. The work completed should significantly reduce the erosion of the pit floor especially through freshet.

Table 1: Exceedances of permit limits and BCWQG in site receiving waters in 2018

EMS ID	Site ID	Parameter	Permit Limits	Frequency of Exceedance
E102488	CM_SPD	TSS	50 mg/L	0
E206438	CM_CCPD	TSS	50 mg/L	0
E298733	CM_PC2	TSS	50 mg/L	0
	CM_WBE	EPH	15 mg/L	1
E206437		Flow	0.38 m³/min max 120 m³/day	0
	CM_SEW	BOD	40 mg/L	0
E206439		TSS	30 mg/L	0
		Flow	56.8 m ³ /day	0
E306136	CM_MAX-SHOP	EPH	60 mg/L	0
E306166	CM_PR-SILO	EPH	60 mg/L	0

Table of Contents

1	Des	criptio	on of Mine Operation and Discharges	1
	1.1	Intro	oduction	1
	1.2	Ove	rview of Operations	1
	1.3	Mair	ntenance of Works	3
2	Incid	dents	and Compliance Summary	5
	2.1	Incid	dentsdents	5
	2.1.	1	Incidents Related to Water Quality	5
	2.1.2	2	Corrective Actions and Comments	9
	2.	1.2.1	7 Pit Pond Decommissioned Area Sediment Release	9
	2.	1.2.2	Quartzite Quarry Sediment Release	9
	2.	1.2.3	Corbin Dam Spillway Sediment Release	10
	2.	1.2.4	Plant Offices Chlorinated Water Release	10
	2.	1.2.5	Middle Mountain Access Road Chlorinated Water Release	10
	2.1.3	3	All Other Reportable Spills and Incidents	10
	2.2	Con	npliance Summary	10
	2.2.	1	CMO Permit 4750	10
	2.3	Non	-Compliances	11
	2.4	Miss	sing and Unattainable Data	13
3	Data	a Qua	ality Assurance and Quality Control (QA/QC)	15
	3.1	QA/	QC Program	15
	3.1.	1	Staff Training	15
	3.1.2	2	Equipment Calibration	15
	3.1.3	3	Record Keeping	15
	3.1.4	4	Sample Analysis	16
	3.1.	5	Lab QA/QC Data	16
	3.1.6	ô	Field Duplicates	16
	3.1.7	7	Blank Samples	17
	3.2	QA/	QC Issues	17
4	Wat	er Mc	onitoring Program Description	21
	4.1	Wat	er Quality and Quantity Monitoring Requirements	21
	4.1.	1	Pit Pumping	21
	4.2	Sam	npling Methodology	25
5	Mon	itorin	g Results	28
	5.1	Wat	er Quality Results	28

	5.1.1	Total Suspended Solids	28
	5.1.1.1	Receiving Environment	28
	5.1.1.2	Discharge Locations	29
	5.1.2	Extractable Petroleum Hydrocarbons	30
	5.1.2.1	Discharge Locations	30
	5.1.2.2	Infiltration Sumps	31
	5.1.2.3	Maintenance Infiltration Ponds	32
	5.1.3	Sewage Treatment Plant (STP)	33
	5.1.3.1	Historical Data (CM_SEW)	35
	5.2 Wa	ter Quantity Results	37
	5.2.1	Receiving Environment (CM_MC1)	37
	5.2.2	Discharge Locations	38
	5.2.3	Maintenance Infiltration Ponds and Sewage Treatment Plant	40
6	Manager	ment Plan Summary	42
	6.1 Wa	ter Management Plan	42
	6.1.1	Pit Pumping Water Management in 2018	42
	6.2 Flo	cculant Management Plan	42
	6.3 Em	ulsion Facilities Water Management Plan	44
7	Summar	y and Conclusions	46
8	Appendi	ces	i
	Appendix A	· - QAQC Data	i
	2018 F	ield Blank and Duplicate Summary	i
	Appendix E	3 - 2018 Monitoring Data	xxviii
	2018 F	low Data (m³/s) – Discharge Locations	xxviii
	2018 T	SS & Turbidity Data –Discharge Locations	xxxvii
	2018 E	PH - CM_CCPD & CM_SPD	xl
	2018 F	low Data – Receiving Environment	xli
	2018 T	SS & Turbidity Data – Receiving Environment	xlv
	2018 N	faintenance Infiltration Ponds E206437 (CM_WBE) Data	xlviii
	2018 E	206439 (CM_SEW) Data	
	2018	A/QC Data Collected	li
	2018 F	it Pumping Data	lxii
	Appendix C	C - Historical Monitoring Data	lxxii
	E2064	38 - CM_CCPD	lxxii
	E2987	33 - CM_PC2	lxxxiv

CV	0200209 - CM_CC1
cxi>	E258175 - CM_MC1
cxxvii	E258937 - CM_MC2
cxxxi>	E206437 - CM_WBE
cxli	E206439 - CM_SEW
cxlvi	Appendix D - CMO Reportable Spills 2018

List of Figures

Figure 1: Coal Mountain Operations-surface water sampling sites	2
Figure 2: Projected vs current concentrations of sulphate, selenium, cadmium and nitrate at CM_MC2	24
Figure 3: 2018 TSS concentrations - CMO receiving environments.	29
Figure 4: 2018 TSS concentrations - CMO discharge locations	30
Figure 5: 2018 EPH concentrations - CMO discharge locations	31
Figure 6: 2018 EPH concentrations - CMO infiltration sumps	31
Figure 7: 2018 EPH concentrations - CM_WBE	32
Figure 8: Historical TEH/EPH data - CM_WBE	33
Figure 9: 2018 TSS concentrations - CM_SEW	34
Figure 10: 2018 BOD₅ concentrations - CM_SEW	35
Figure 11: Historical TSS data - CM_SEW	36
Figure 12: Historical BOD₅ data - CM_SEW	36
Figure 13: 2018 Instantaneous flow - CM_MC1.	37
Figure 14: Historical flow data - CM_MC1	38
Figure 15: 2018 Instantaneous flow - CM_CCPD	39
Figure 16: 2018 Instantaneous flow - CM_PC2	39
Figure 17: 2018 Instantaneous flow - CM_SPD	40
Figure 18: CM_WBE daily flow (m³/day)	41
Figure 19: CM_SEW daily flow (m³/day)	41
Figure 20: Total volume of flocculant used at North Ditch flocculant station	43
Figure 21: Total duration of flocculant dosing at North Ditch flocculant station	44

List of Tables

Table 1: Exceedances of permit limits and BCWQG in site receiving waters in 2018	II
Table 2: Summary of permitted sampling sites	
Table 3: Maintenance of works summary.	
Table 4: Summary of incidents related to water.	
Table 5: Summary of Permit 4750 limits.	11
Table 6: Summary of Permit 4750 non-compliances	
Table 7: Summary of unattainable data	13
Table 8: Equipment calibration checklist	
Table 9: Summary of QA/QC issues	17
Table 10: Monitoring requirements for Permit 4750 (amended April 2016 and July 2016)	21
Table 11: 34 Pit pumping monitoring requirements.	22
Table 12: 6 Pit pumping monitoring requirements	22
Table 13: Permit 4750 site parameters, detection limits, and analytical methods	
Table 14: Appendix 3A site parameters, detection limits, and analytical methods	

Teck Coal Limited Page viii

1 Description of Mine Operation and Discharges

1.1 Introduction

Teck Coal Limited (Teck) – Coal Mountain Operations (CMO) operates a metallurgical coal mine and processing plant in the southeast corner of British Columbia (BC), approximately 25 kilometres southeast of the town of Sparwood (Figure 1). The CMO property is on 520 hectares (ha) of privately owned land, 260 ha of coal lease land and 2,275 ha of coal license land.

Mining activity at CMO began in 1908 with small, underground mines and continued intermittently as open pit operations with various owners. The existing CMO mining area consists of two private land parcels (numbered 6997 and 6999) and Coal Lease 13, which is held to the south of lot 6997. The surrounding area is held in Coal Licences.

In 2018, CMO produced 0.9 million (M) tonnes of clean coal and generated 0.12 million (M) tonnes of waste rock due to mining and a total of 0.83 million (M) tonnes of breaker and plant reject (plant refuse) was produced.

1.2 Overview of Operations

In 2018, CMO operated under Permit 4750 (amended April 8, 2016 and July 25, 2016) and Permit 107517 (originally issued on November 19, 2014), both issued by the BC Ministry of Environment and Climate Change Strategy (ENV). Annual reporting requirements under Permit 4750 will be addressed in this report, while Permit 107517 requirements will be summarized in a separate report submitted concurrently to the Director by March 31, 2019. Required Permit 4750 sampling was conducted at the locations listed in Table 2 and shown in Figure 1.

Previous operations of CMO consisted of operations in four pits. 14 Pit and 34 Pit, previously mined, have been fully (14 Pit) and partially (34 Pit) backfilled with waste rock and refuse. In 2018 mining occurred within 6 Pit and 37 Pit; favourable conditions created due to in-pit backfilling with plant refuse in 37 Pit presented an opportunity for more coal recovery in 2018. This lasted until the first quarter of 2019. No additional coal after this point is expected to be recovered in 2019. CMO has no additional planned mining activities and is nearing the end of coal processing activities. At the conclusion of coal processing activities, the site will formally declare Care and Maintenance (C&M) status for a period of 10 years. The shutdown will ensure the processing plant enters the C&M stage in a stable and dormant state. This plan may change if opportunities to process coal from other Teck operations are identified before or during the planned shutdown period.

The infrastructure and processing facilities at CMO represent a valuable asset to Teck and may contribute to existing and future mining operations within the Elk Valley. The C&M stage may be updated based on new information or conditions as they are encountered in future years. In general, the following timelines are associated with the different stages of care and maintenance to closure at CMO:

- Active Operations Ongoing until Q2 2019;
- Care and Maintenance 2019 to 2029;
- Active Closure 2029 to 2037; and
- Post Closure 2037 and beyond.

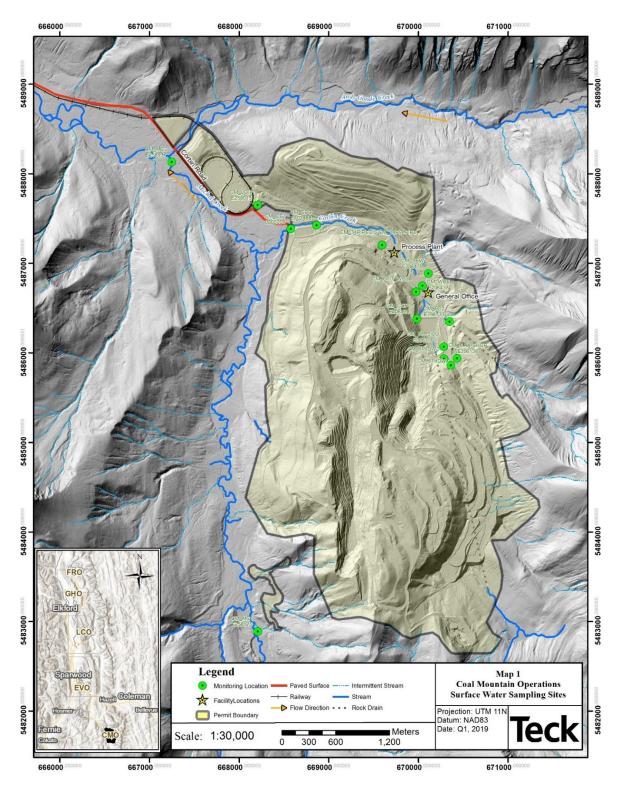


Figure 1: Coal Mountain Operations-surface water sampling sites

Table 2: Summary of permitted sampling sites.1

EMS ID	Site ID	UTM NAD 83 Zone 11		Tumo	Description	
EINIS ID	Site ID	Easting	Northing	Туре	Description	
E102488	CM_SPD	668866.7	5487415.6	Discharge	Decant Discharge from Main Interceptor Sedimentation Ponds to Corbin Creek	
E206438	CM_CCPD	670006.7	5486381.8	Discharge	Decant Discharge from Corbin Sedimentation Pond to Corbin Creek	
E298733	CM_PC2	670330.5	5486350.0	Discharge	Pengelly Channel to Corbin Creek	
E206437	CM_WBE	668520.4	5487363.6	Discharge	Maintenance Infiltration Ponds	
E206439	CM_SEW	668520.4	5487363.6	Discharge	Sewage Treatment Plant	
E258015	CM_LOIP	668210.5	5487654.4	Discharge	Loadout Infiltration Ponds	
E306136	CM_MAX- SHOP	670403.9	5485937.7	Discharge	Emulsion Shop Sump	
E306116	CM_PR-SILO	670249.5	5486057.6	Discharge	Ammonium Nitrate Prill Silo Sump	
E258175	CM_MC1	668171.0	5482892.6	Receiving	Michel Creek upstream of Operations	
E258937	CM_MC2	667185.8	5488210.7	Receiving	Michel Creek downstream of Operations near Andy Good Creek Junction	
200209	CM_CC1	668520.4	5487363.6	Receiving	Corbin Creek near confluence with Michel Creek	

1.3 Maintenance of Works

CMO submitted a document to ENV titled "Routine Water Infrastructure Maintenance Plan (RWIMP) – Ministry of Environment Notification" on April 30, 2018. This document provides notification to the ENV, as per Section 2.4, regarding CMO's plans to maintain authorized works in good working order. This document is intended to replace the requirement for individual Process Modification Notifications for specific locations at CMO. This document will be reviewed on an annual basis and if significant changes are required CMO will notify ENV prior to implementing changes. All work identified in this document can be considered routine maintenance (i.e., that is typically conducted each year) that does not require bypassing of authorized works. The Notification was approved on May 1, 2018. The Maintenance Infiltration Ponds E206437 (CM_WBE), Main Interceptor Sedimentation Ponds E102488 (CM_SPD), and Corbin Sedimentation Pond E206438 (CM_CCPD) are not covered within the scope of this document. Maintenance of these structures will require a separate process modification notification to be submitted to ENV.

On June 25, 2018, CMO submitted a Notification under Section 2.1, 2.4, and 2.5 of Permit 4750 – clean out of Maintenance Infiltration Ponds E206437 (CM_WBE). The removal of solids was required to facilitate continued operation of the ponds. Characterization of the solids indicated that the material was non-hazardous however, a composite sample collected at approximately 1 meter depth showed an exceedance of LEPH under the Contaminated Sites Regulation for Industrial Sites. For this reason, material was disposed of at an off-site certified landfill. CMO Notified ENV upon completion of the Maintenance Infiltration Pond Clean Out on July 31,

Teck Coal Limited Page 3

March 31, 2019

¹ Summary of monitoring requirements associated with Permit 4750 appendix 3A Coal Mountain Operations Approved Pit Pumping Plans are detailed in Section 4.1.1 of this report.

2018. Approximately 350 m³ of sediment was removed from Pond 1. Pond 2 did not require cleanout as sufficient capacity and freeboard was determined.

On July 30, 2018, CMO submitted a notification to ENV as per Section 2.4 of Permit 4750 Notification – Corbin Dam Geotechnical Drilling [Corbin Sedimentation Pond E206438 (CM_CCPD)]. The purpose of the geotechnical site investigation was to characterize and assess the stability of the Corbin Dam foundation to address deficiencies identified in the Corbin Dam 2015 DSR and 2017 DSI. Completion of the drilling project was communicated to ENV on Aug 15, 2018.

On Sept 18, 2018 CMO submitted notification as per Section 1.3.2 of Permit 4750 (Notification - CMO Corbin Pond Offtake Valve Test). As part of Coal Mountain Operations Corbin Pond Dam Operation, Maintenance and Surveillance Manual (OMS) as well as the BC Dam Regulations (BC Reg. 40/2016, Schedule 2, item 4), the offtake valve, which is used to divert water from the low level dust, fire and wash plant water pipe, must be tested annually. This valve allows the water in the Corbin Pond to be reduced in the event that maintenance is required on the dam infrastructure or in the case of an emergency situation. The OMS states that CMO will test the valve at least once per year. Testing of this pipe falls under Water License 125853 and Section 1.3.2 of Permit 4750. Testing of this valve occurred on October 3, 2018. The valve was free turning with little effort required. While turning the valve, there were no concerning sounds, which would indicate issues with the valve. This test showed that the offtake valve is in good working condition. The valve is considered to be effective for its intended use of lowering the water level in the Corbin Pond if required. Field results showed that turbidity in Corbin Creek was not affected.

On September 20, 2018, CMO submitted a notification to ENV in accordance with Section 2 of permit 4750 for two independent fish salvage projects within the Corbin Sedimentation Pond E206438 (CM_CCPD) and Main Interceptor Sedimentation Ponds E102488 (CM_SPD). Fish salvage work was completed on the Main Interceptor Sedimentation Ponds E102488 (CM_SPD), North Ditch (CM_ND2), West Ditch (CM_WD) and the Corbin Sedimentation Pond E206438 (CM_CCPD). A permanent fish barrier was added to the Main Interceptor Sedimentation Ponds to Corbin Creek discharge just above the Main Interceptor Sedimentation Ponds E102488 (CM_SPD) on December 1, 2017. The purpose of the barrier is to prevent upstream movement of fish into the Main Interceptor Sedimentation Ponds E102488 (CM_SPD). At this point, all of the above listed discharge monitoring location water bodies (Table 2) are considered to be non-fish bearing based on the successful completion of fish salvage operations, however, follow-up monitoring for fish presence will be conducted in 2019.

No additional work beyond that listed above or within the "Routine Water Infrastructure Maintenance Requiring MOE Notification" was conducted in 2018.

Table 3: Maintenance of works summary

Notification Date	EMS ID	Site ID	Location	Maintenance Complete
6/25/2018	E206437	CM_WBE	Maintenance Infiltration Ponds	Main Pond West (Pond 1) Sediment Cleanout
7/30/2018	E206438	CM_CCPD	Corbin Sedimentation Pond	Geotechnical Drilling
9/18/2019	E206438	CM_CCPD	Corbin Sedimentation Pond	Offtake Valve testing
9/20/2018	E206438	CM_CCPD	Corbin Sedimentation Pond	Fish Salvage
9/20/2018	E102488	CM_SPD	Main Interceptor Sedimentation Ponds	Fish Salvage

2 Incidents and Compliance Summary

2.1 Incidents

2.1.1 Incidents Related to Water Quality

Table 4: Summary of incidents related to water

	Date	Туре	Substance	Quantity	Units	Location	Incident Summary	PEP#
1	8-May-18	Release of Deleterious Substance	Sediment Laden Water	>200	L	7 Pit Pond Decommissioned Area	On May 8 a TSS discharge event occurred at the confluence of Kuta Creek and Michel Creek. CMO conducted sampling on May 8 and received the preliminary laboratory results from ALS on May 11. The potential TSS discharge event was reported to ENV and Environment Canada on May 13. The final confirmed TSS discharge report was submitted to ENV and Environment Canada on May 23. The TSS event was a result of rapid snowmelt across the recently decommissioned Seven Pit Pond area and additional seasonal run-off from Peach Creek, all of which were flowing into Kuta Creek above the Flathead Road. The area was decommissioned in the fall of 2017 and had little established vegetation at the time of the TSS event.	N/A
2	6-Jun-18	Release of Fine Sediment Material	Fine Sediment Material	464	m³	CMO Quarry	On June 6 the CMO Environmental Department found approximately 463.5 m3 of fine sediment material spilled into an undisturbed forested area within the C-84 Mine Permit Boundary. The spill was reported to ENV at 12:51 on June 14. At approximately 13:06 on June 6, CMO discovered significant erosion on the east berm in the CMO sand and gravel quarry. Investigations confirmed the material to be non-mine/coal influenced, consistent with sand and gravel, and mobilized by water flow. Erosion of the quarry's berm has resulted in erosion rills on the east side by which sediment was able to flow into an undisturbed, forested area. This area was determined to be within C-84 Mine Permit Boundary, approximately 300 m southwest from Corbin Creek.	DGIR 180981

	Date	Туре	Substance	Quantity	Units	Location	Incident Summary	PEP#
3	26-Jul-18	Release of Deleterious Substance	Sediment Laden Water	>200	L	7 Pit Pond Decommissioned Area	On July 26 a TSS discharge event occurred at the confluence of Kuta Creek and Michel Creek. CMO conducted sampling on July 26 and received the final laboratory results from ALS on July 29. The potential TSS discharge event was reported to ENV and Environment Canada on July 27 and the final laboratory reports were submitted to ENV and Environment Canada on July 31. At approximately 3:00 pm, a fast moving rain and hail event occurred in the area of CMO, which lasted for approximately 1.5 hours. The TSS event was a result of the rapid, onset rain event in combination with the low flow observed in Kuta Creek. Kuta Creek TSS downstream of the decommissioned area was 204 mg/L, Kuta Creek confluence was 64 mg/L, and Michel Creek TSS upstream of the Kuta Creek confluence was 2.6 mg/L. The rain event triggered immediate water management, infrastructure inspections and turbidity monitoring of discharge locations, which confirmed this event was isolated to Kuta Creek. Follow up sampling on July 27 confirmed this was a brief, singular event with TSS results of 2.3 mg/L in Kuta Creek confluence, and < 1 mg/L upstream of the Kuta Creek confluence, and < 1 mg/L upstream of the Kuta Creek confluence.	DGIR 181505
4	2-Aug-18	Sediment Spill	Sediment Laden Water	>200	L	Corbin Dam Spillway (CM_CCPD)	On August 2, 2018, a potential TSS discharge event occurred at the Corbin Pond Decant (EMS #206438; hereby referred to as the "Pond"). CMO conducted sampling on August 2 and received final laboratory results from ALS on August 7. The potential TSS discharge event was reported to ENV and Environment Canada on August 2. The final laboratory reports were submitted to ENV and Environment Canada on August 8. On August 1, a Corbin Dam foundation-drilling program commenced at the Pond. This program included a turbidity monitoring plan, which stated	DGIR 181603

	Date	Туре	Substance	Quantity	Units	Location	Incident Summary	PEP#
							that a baseline turbidity sample would be taken from the Pond discharge every morning prior to work starting. Additionally, prior to drilling water being discharged to the Pond, the environmental monitor were to be notified and conduct hourly monitoring of the Pond discharge to Corbin Creek.	
							On August 2, a baseline turbidity sample was taken while drilling water was not discharging to the Pond. At 12:42 pm, a turbidity measurement of 156 NTU was taken, which triggered further action; TSS sampling occurred at 1:17 pm and in that time turbidity had lowered to 21.7 NTU and a TSS result of 2.5 mg/L; thus, concluding the very brief event. Ultimately, it is undetermined if there was an actual TSS exceedance or not. The cause of the rapid spike in turbidity is likely from high winds causing wave action on the Pond and mobilizing the finer sediment along the bank of the Pond from the drilling water released a day earlier.	
5	9-Aug-18	Chlorinated Water Release	Chlorinated Water	124,000	۔	Plant Offices	On August 8 a potable water leak occurred in the CMO processing plant. CMO conducted sampling on August 9 and received the final laboratory results from ALS on August 13 and Nautilus on August 24. The discharge event was reported to ENV on August 9 and the final laboratory reports were submitted to ENV on August 24. In total, approximately 124,000 liters of potable water had discharged throughout the duration of the event. At approximately 9:15 pm, a low-level alarm was triggered from the potable water reservoir at CMO, which indicated the water level as less than 70%. Between approximately 9:15 pm and 3:00 am, staff undertook investigations as to the cause of the alarm. At approximately 3:00 am on August 9, the leak was determined to be discharging from a pipe in the processing plant, located under the stairs beside the plant maintenance lunchroom.	DGIR 181687

	Date	Туре	Substance	Quantity	Units	Location	Incident Summary	PEP#
6	10-Sep-18	Chlorinated Water Release	Chlorinated Water	66,000	L	Middle Mountain Access Road	On September 10 a potable water line was ruptured by a piece of equipment during ditch cleanout. CMO conducted sampling on September 10 and received the final laboratory results from ALS on September 16. The discharge event was reported to ENV on September 10 and the final laboratory reports were submitted to ENV on September 10 and the final laboratory reports were submitted to ENV on September 19. In total, approximately 66,000 l of potable water had discharged throughout the duration of the event. At approximately 8:00 am, a potable water line was struck by equipment removing accumulated solids from a ditch northwest of the diesel island at CMO. At 8:30 am, the chlorinated water pump was shut off and the valve was closed to prevent further loss of water from the potable water reservoir. The chlorinated water discharged from the ruptured pipe to the ditch and then to ground. The potable water did not directly enter the surface water system, but precautionary	DGIR 182111
7	13-Sep-18	Release of Deleterious Substance	Sediment Laden Water	>200	L	7 Pit Pond Decommissioned Area	water quality measures were taken. CMO Environment sampled Corbin Creek downstream of the ditch where the leak occurred. Final laboratory results confirmed chlorine was non-detectable. On September 13 a TSS discharge event occurred at the confluence of Kuta Creek and Michel Creek. CMO conducted sampling on September 13 and received the final laboratory results from ALS on September 17. The potential TSS discharge event was reported to ENV and Environment Canada on September 13 and the final laboratory reports were submitted to ENV and Environment Canada on September 18. At approximately 2:30 PM on, a fast moving rain event occurred in the area of CMO, which lasted for approximately one hour. The TSS event was a result of the rapid, onset rain event in combination with the low flow observed in Kuta Creek. Kuta Creek TSS downstream of the	DGIR 182157

Date	Туре	Substance	Quantity	Units	Location	Incident Summary	PEP#
						decommissioned area was 205 mg/L, Kuta Creek TSS at the	
						Michel Creek confluence was	
						52.9 mg/L, and Michel Creek	
						TSS upstream of the Kuta	
						Creek confluence was 1.5	
						mg/L. The rain event triggered	
						immediate water management,	
						infrastructure inspections and	
						turbidity monitoring of discharge	
						locations, which confirmed this	
						event was isolated to Kuta	
						Creek. Follow up sampling on	
						September 14 confirmed this	
						was a brief event with TSS	
						results of 7.0 mg/L in Kuta	
						Creek, 5.8 mg/L at the Kuta	
						Creek confluence, and 1.4 mg/L	
						upstream of the Kuta Creek confluence.	

2.1.2 Corrective Actions and Comments

2.1.2.1 7 Pit Pond Decommissioned Area Sediment Release

The TSS event was result of rapid snowmelt across the recently decommissioned Seven Pit Pond area and additional seasonal run-off from Peach Creek, all of which were flowing into Kuta Creek above the Flathead Road. The area was decommissioned in the fall of 2017 and had little established vegetation at the time of the TSS event.

In addition to the straw bales, straw logs, and silt fencing that was still in place from the previous year, CMO implemented a number of immediate erosion and sediment control measures to reduce the surface run-off into Kuta Creek. On May 10, three spring berms and one silt fence were added to the main swale that was contributing significant quantities of water and turbidity to Kuta Creek. Drone inspections of the area were completed to ensure no further erosion was occurring elsewhere. On May 16, four additional silt fences were added to the main swale, Peach Creek runoff was directed away from the Seven Pit Pond area, and approximately 15 spring berms were added into the channel that stretches from the Seven Pit Pond area to Kovack Creek. From May 16 to 17, excavation and re-sloping of the Seven Pit Pond area occurred. This resulted in improved drainage throughout the area with the construction of a new swale to collect the surface runoff, filter it with spring berms, and then divert it into Kuta Creek quicker, which ultimately reduced sediment erosion throughout the site.

The Seven Pit Pond area, erosion and sediment control infrastructure, and the turbidity at Kuta Creek, Kovack Creek, and Niven Creek continues to be monitored regularly and in response to significant precipitation events that pose a risk to water quality. In addition, the area has been planted with trees, shrubs, and grasses and hydro-seeded. No TSS issues were observed after September 13.

2.1.2.2 Quartzite Quarry Sediment Release

Several follow-up inspections were conducted following the initial discovery, including one on June 11 where the channels were mapped out for spring berm placement and the extent of the erosion was further investigated. An additional inspection occurred on June 14 where three temporary silt berms were installed within the main erosion rill to limit additional fine material from being released in the event of a rainstorm.

Additionally, an inspection occurred on June 25 to assess permanent remediation and preventative strategies for erosion in the area.

Currently, regular monitoring of the area is conducted to ensure effectiveness of the controls in place and to identify any new erosion issues. Reclamation of this area is scheduled in 2021 but may occur as early as 2019.

2.1.2.3 Corbin Dam Spillway Sediment Release

Due to the potential of the fine sediments in the drilling water not settling within the Pond during wind events, drilling water was pumped into totes rather than being directly released into the Pond. The tote allowed CMO to hold and control the release of the water when weather conditions were ideal as well as direct water to an area of the pond where sediment mobilization would not be an issue. On August 11, the Corbin Dam foundation-drilling program was completed with no further TSS or turbidity issues.

2.1.2.4 Plant Offices Chlorinated Water Release

After the leak was discovered, plant staff immediately shut off the chlorinated water pump. At 4:00 am, plant staff shut off the valve at the potable water reservoir, which significantly reduced flow. Additionally, they added de-chlorination tablets into the Horseshoe Ponds. The chlorinated water had discharged from the processing plant to the ground south of the plant as well as to a nearby surface water ditch. The chlorinated water may have traveled from the surface water ditch to the Horseshoe Ponds, Main Sedimentation Ponds, and Corbin Creek, which prompted water quality monitoring measures. At approximately 9:00 am, the leak in the pipe was fixed and potable water service returned to normal. On August 9, CMO Environment sampled three locations downstream of the plant, including the North Ditch, Main Sediment Ponds, and Corbin Creek. Final laboratory results from ALS and Nautilus confirmed chlorine was non-detectable and no acute toxicity effects were observed in the Main Sediment Ponds.

2.1.2.5 Middle Mountain Access Road Chlorinated Water Release

Precautionary water quality measures were taken. CMO Environment sampled Corbin Creek downstream of the ditch where the leak occurred. Final laboratory results confirmed chlorine was non-detectable. In addition, signage was posted to warn equipment operators when cleaning the section of the Middle Mountain ditch where the potable water line is located to prevent future incidents.

2.1.3 All Other Reportable Spills and Incidents

The B.C. Spill Reporting Regulation is followed when reporting spills onsite. A summary of all spills and incidents reported to Emergency Management B.C. can be found in Appendix D.

2.2 Compliance Summary

2.2.1 CMO Permit 4750

Permit 4750 was amended on April 8, 2016 to authorize Pit Pumping from 34 and 6 pits. The latest amendment occurred on July 25, 2016 and added permitted discharges of surface water runoff from the Ammonium Nitrate Prill Silo Sump (E306116) and Emulsion Shop Sump (E306136). A requirement for emulsion facilities surface water management was also included (see Section 6.3 of this report).

CMO has eight authorized discharge sample locations and three receiving environment sample locations under Permit 4750. A complete list of authorized works can be found in Section 1 of the permit under each discharge site.

Monitoring and reporting requirements are specified in Sections 4 and 5 of Permit 4750. There are no permit limits for receiving environment sites in Permit 4750; however, monitoring results must be compared to approved and working BC Water Quality Guidelines for the Protection of Freshwater Aquatic Life (BCWQG FAL) when applicable.

Permit 4750 specifies limits on total suspended solids (TSS), flow, 5-day biochemical oxygen demand (BOD5), and extractable petroleum hydrocarbons (EPH). Monitoring requirements including field parameters, conventional parameters, major ions, nutrients, total and dissolved metals scan, and toxicity are required under Permit 107517 and will be discussed in the Permit 107517 Annual Report. A summary of Permit 4750 authorized discharge limits is provided in Table 5.

Table 5: Summary of Permit 4750 limits

EMS ID	Site ID	Parameter	Permit 4750 Limit
E102488	Main Interceptor Sedimentation Ponds (CM_SPD)	Flow	1.5 m³/s
2102100	main interespect estamentation i state (em_en_e)	TSS	50 mg/L
E206437	Maintenance Infiltration Ponds (CM_WBE)	Flow	0.38 m³/min to maximum 120 m³/d
L200437	Maintenance minitation Folios (GM_WBE)	EPH	15 mg/L
E206438	Corbin Sedimentation Pond (CM_CCPD)	TSS	50 mg/L
E200436	Colbin Sedimentation Fond (CM_CCFD)	Flow	5.4 m³/s
		Flow	56.8 m³/day
E206439	Sewage Treatment Plant (CM_SEW)	BOD ₅	40 mg/L and a 12 month average of 20 mg/L
		TSS	30 mg/L
E298733	Pengelly Channel Decant (CM_PC2)	Flow	2.11 m³/s
E290133	r engelly Chaillel Decall (CM_PC2)	TSS	50 mg/L
E306136	Emulsion Shop Sump (CM_MAX-SHOP)	EPH	60 mg/L
E306116	Ammonium Nitrate Prill Silo Sump (CM_PR-SILO)	EPH	60 mg/L

2.3 Non-Compliances

A summary of Permit 4750 non-compliances that occurred in 2018 are summarized in Table 6. No additional non-compliances were identified.

Table 6: Summary of Permit 4750 non-compliances

Non-					
Compliance #	EMS ID	Site ID	Date	Parameters	Description/Corrective Actions
1	E206437	CM_WBE	5-Jun-18	EPH (C10-C32)	On June 5 the EPH in the Heavy Duty Steam Bay Oil-Water Separator exceeded the permit limit of 15 mg/L (result = 319 mg/L). Note this sample was not taken from the discharge point but instead was taken from the Heavy Duty Steam Bay Oil-Water Separator. The laboratory results were received from ALS on June 7 and the exceedance was reported to ENV on June 11. The EPH exceedance was likely due to the capture of a remaining sheen on top of the water surface within the oil-water separator following a complete clean out and refill of the oil-water separator. The investigation concluded that proper oil-water separator sampling protocol was not followed during the sampling event on June 5. EPH may have stuck to the sample bottle when the top of the surface was skimmed, which may have resulted in an increased EPH result. As a result of the sheen identified on June 4 the maintenance department was immediately informed and the Heavy Duty Steam Bay was shut down. An external contractor was called in on June 5 to clean out the oil-water separator and skim the second Maintenance Infiltration Pond's surface. A sample was collected from the oil-water separator once it was filled with clean water. In addition to sampling the oil-water separator, an EPH sample was taken from the second Maintenance Infiltration Pond where the original sheen was identified. After the oil-water separator and the pond's surface were cleaned, the Heavy Duty Steam Bay was re-opened and normal operations resumed. Preliminary laboratory results indicated that the cleanout of the oil water separator might not have removed all diesel from the separator, resulting in the 319 mg/L EPH result. However, the second Maintenance Infiltration Pond results showed much lower levels of EPH at 2.27 mg/L, which indicated that oil-water separation was still occurring and that skimming the sheen on the surface may have reduced the quantity of EPH in the pond. These results required further follow up investigation and sampling, which occurred on June 11. The investiga

2.4 Missing and Unattainable Data

All monitoring is conducted in accordance with Permit 4750. When data is not obtained, it is categorized as either 'missing data' or 'unattainable data'. Missing data are the result of operator error (e.g., miscommunication, or sampling planning errors). Unattainable data is circumstantial and refers to when the collection of water samples from authorized discharges or receiving environment-sampling sites is not achievable. Such circumstances are generally out of Teck's control and include, but are not limited to, unsafe sampling conditions, no flow due to freezing conditions, or cessation of discharge activities.

Table 7: Summary of missing data

EMS ID	Site ID	Date	Parameters	Reason				
There was no missing data in 2018								

Table 8: Summary of unattainable data

Date	EMS ID	Location Code	Parameters	Reason	
7-May-18 19-Jun-18 26-Jun-18	-	CM_6PIT_WELL	All	Pump was turned off, sample unattainable	
2-Apr-18 10-Apr-18 17-Apr-18 24-Apr-18 1-May-18 7-May-18 29-May-18	-	CM_6PitDW	All	6 Pit was closed due to geotechnical safety concerns, sample unattainable	
12-Jun-18 19-Jun-18 26-Jun-18 4-Apr-18					Pump was turned off, sample unattainable
10-Apr-18				6 Pit was closed due to geotechnical safety concerns, sample unattainable	
7-May-18 24-Jul-18 7-Aug-18 28-Aug-18	-	CM_6PitDW2	All	Pump was turned off, sample unattainable	

Date	EMS ID	Location Code	Parameters	Reason
4-Sep-18				
11-Sep-18				
Q1	E306136	CM_MAX-SHOP ¹	EPH	Zero flow
Q3	2000.00			25.0
Q1				
4-Apr-18				
10-Apr-18				
17-Apr-18				
24-Apr-18				
17-Jul-18	E298733	CM_PC2	All	Zero flow
24-Jul-18				
31-Jul-18				
7-Aug-18				
4-Sep-18				
Q4				
Q1	E306116	CM_PR-SILO ¹	EPH	Zero Flow
Q3				

¹ The four samples per year commitment outlined in Permit 4750 for CM_MAX-SHOP and CM_PR-SILO was met for each site.

In the case of an unattainable sample due to no flow present, reasonable efforts will be made to take a sample if there is a significant environmental change that would result in the return of flow at the permitted sampling location. If a sample is unattainable upon initial site visit during a scheduled sampling period the following triggers below will initiate a second attempt to collect a sample.

- Significant rain event;
- Increase in flow at other sampling locations;
- Presence of flowing water in road side ditches or sumps (i.e. if it is raining hard enough to have surface flow in ditches, then the sample point in the creek likely has flow);
- · Any mine operational change that may result in flow or impact the drainage; and
- Significant warming trend in winter months.

3 Data Quality Assurance and Quality Control (QA/QC)

3.1 QA/QC Program

In accordance with Section 4.1.3.3 of Permit 4750, CMO has implemented a Quality Assurance and Quality Control (QA/QC) Plan in accordance with the Environmental Data Quality Assurance Regulation and guidance provided in the "British Columbia Field Sampling Manual for continuous Monitoring and the Collection of Air, Air-emissions, Water, Wastewater, Soil, Sediment, and Biological Samples" and the "British Columbia Laboratory Methods Manual for the Analysis of Water, Wastewater, Sediment, Biological Materials and Discrete Ambient Air." A summary of CMO's QA/QC program is provided below.

3.1.1 Staff Training

CMO environment staff, environmental consultants and contractors are trained using onsite Standard Practices & Procedures (SP&P), Management Plans, guidance documents, as well as other training sessions available throughout the year. CMO's Environmental SP&P documents include training for all environmental monitoring and reporting activities including sampling procedures, shipping methods, and equipment calibration procedures. These documents are reviewed annually by environment staff, environmental consultants and contractors.

3.1.2 Equipment Calibration

Equipment is calibrated as per manufacturer's specifications and calibration dates are tracked internally. Inhouse calibrations are conducted using certified calibration solutions and the calibration results are recorded on the appropriate calibration forms. Equipment requiring manufacturer calibration is shipped off site to the appropriate location or a manufacturer representative performs the calibration onsite. All calibration log sheets are filed in a calibration log folder on the CMO SharePoint.

Table 9:	Equipment	calibration	checklist.
----------	------------------	-------------	------------

Equipment	Model	Calibration Frequency	Last Calibration
Field Parameter Meter #1	YSI Handheld Multiparameter Instrument (Professional Plus) (pH, DO, EC, ORP, Temperature)	Weekly	3/4/2019
Field Parameter Meter #2	YSI Handheld Multiparameter Instrument (556MPS) (pH, DO, EC, ORP, Temperature)	Weekly	3/8/2019
Field Turbidity Meter #1	LaMotte 2020wi	Weekly	3/4/2019
Field Turbidity Meter #2	LaMotte 2020wi	Weekly	3/8/2019
Field Turbidity Meter #3 LaMotte 2020we		Weekly	3/8/2019
Flow Meter Hach FH950		As required* (Completed by manufacturer upon purchase in February 2018)	2/8/2019

3.1.3 Record Keeping

Data quality is maintained by storing all sampling data in a controlled database. The current data management application at CMO is EQuIS (Environmental Quality Information System). User defined rules are applied to the uploading of data. Additionally, all data is subjected to comparison against standards such as permit limits, Approved and Working Water Quality Guidelines, or other criteria as specified by the Director. If a value

entered is above a limit or guideline, the user is advised in a report generated by the database. This enables users to determine if the value is entered incorrectly, if it is a possible laboratory error or if values have truly exceeded the applicable standards.

3.1.4 Sample Analysis

Third-party sample analysis was conducted by:

- ALS Laboratory Group 8081 Loughheed HWY Suite 100 Burnaby, BC
- ALS Laboratory Group 2559 29th Street NE Calgary, AB

Analyses were carried out in accordance with procedures described in the most recent edition of the British Columbia Laboratory Methods Manual for the Analysis of Water, Wastewater, Sediment, Biological Materials and Discrete Ambient Air, or by suitable alternative procedures as authorized by the Director.

3.1.5 Lab QA/QC Data

As noted in Section 3.1.4, CMO utilizes two accredited laboratories for effluent analyses: ALS Environmental located in Vancouver, B.C. and ALS Environmental located in Calgary, Alberta. All labs report quality assurance and quality control (QA/QC) results for sample submission through determination of a Relative Percent Difference (RPD) value (as defined in the British Columbia Field Sampling Manual). Results of lab QA/QC can be made available upon request.

3.1.6 Field Duplicates

Field Duplicate sample precision was evaluated using a RPD, which is the difference between the duplicates as a function of their average (Appendix A). Four criteria were used to evaluate each set of duplicate samples:

- RPD of < 20% = Pass;
- RPD of >20% with results < 5 times the detection limit = Pass-1;
- RPD of > 20% and <50% with results > 5 times the detection limit = Pass-2; and
- RPD of >50% with results > 5 times the detection limit = Fail.

Throughout 2018, 59 field duplicate samples were collected, resulting in 118 analytes being evaluated for RPD (TSS, Turbidity, PAH, LEPH and EPH). Of the 188 analytes evaluated, 4 exceeded the RPD control limits (Turbidity), 1 was Pass-2 (Turbidity), 28 were Pass-1 (6 Turbidity and 22 TSS), and 85 were Pass (Appendix A).

SRK Consultants have provided an explanation on the variability of TSS and Turbidity in duplicate samples:

TSS and Turbidity parameters are prone to high variability because they are measures of suspended particles, which are dependent on turbulence and mixing at the time of sample collection. The variability of duplicates at

concentrations near the analytical detection limit and measurements of suspended particles are not unexpected, unusual, or cast aspersions on the quality of the sample collection or the data.

ALS Laboratories has also attributed the variability in TSS and Turbidity measurements to sample heterogeneity, and due to the nature of these parameters, they can vary significantly within the sample due to the presence of both fine and course particles.

3.1.7 Blank Samples

Control blank sampling (field blanks) was conducted throughout the year in accordance with procedures established in *British Columbia Field Sampling Manual for Continuous Monitoring Plus the Collection of Air, Air-Emission, Water, Wastewater, Soil, Sediment, and Biological Samples*, or by suitable alternative procedures as authorized by the Director.

Throughout 2018, 59 field blank samples were collected, resulting in 118 analytes being evaluated for Turbidity (59) and TSS (59). Of these 118 analytes, 10 Turbidity and 1 TSS were above the detection limits (Appendix A).

3.2 QA/QC Issues

In accordance with the QA/QC Plan, concerns identified in the field and/or laboratories are tracked. There were 106 QA/QC concerns for 2018 under Permit 4750 authorization (0.25% of the 41,048 total constituents analyzed) and no permit non-compliances due to QA/QC issues. Of these 106 QA/QC issues, 23 were exceeding the laboratory hold times, 8 were RPD failures, and 75 were blank sample detects. QAQC issues are summarized in Table 10.

Table 10: Summary of QA/QC issues

Date	EMS ID	Site ID	Parameter	Reason
23-Jan-18			Chromium, T	Duplicate RPD Failure
1-Mar-18	E206438	CM_CCPD	Cadmium, D	Duplicate RPD Failure
1-iviai-10			Zinc, D	Duplicate RPD Failure
20-Mar-18	E258175	CM_MC1	Alkalinity, Total (As CaCO3), Lab Measured.	EHT – Exceeded ALS recommended hold time prior to analysis
20-iviai-10	E258937	CM_MC2	Alkalinity, Total (As CaCO3), Lab Measured.	EHT – Exceeded ALS recommended hold time prior to analysis
9-Apr-18	E102488	CM_SPD	Ortho-Phosphate	EHT – Exceeded ALS recommended hold time prior to analysis
16-May-18	5/16/2018	CM_14PIT-PIPE	Nitrate Nitrogen (NO3), As N	HTD – Hold time exceeded for re-analysis or dilution, but initial testing was conducted within hold time
17-May-18	5/17/2018	CM_6PitDW2	Nitrite Nitrogen (NO2), As N	HTD – Hold time exceeded for re-analysis or dilution, but initial testing was conducted within hold time
17-Way-10			Nitrate Nitrogen (NO3), As N	HTD – Hold time exceeded for re-analysis or dilution, but initial testing was conducted within hold time
			Carbon, Dissolved Organic	Plank Sample Detect
3-Jul-18	0200209	CM_CC1	Nitrogen, Ammonia (As N)	Blank Sample Detect
3-Jul-16			Total Kjeldahl Nitrogen	Duplicate RPD Failure
	E258175	CM_MC1	Nitrogen, Ammonia (As N)	Blank Sample Detect

Date	EMS ID	Site ID	Parameter	Reason
			Turbidity, Lab	Duplicate RPD Failure
			Nitrogen, Ammonia (As N)	
40 kd 40	0000000	CM CC4	Ortho-Phosphate	Plank Carrella Datast
10-Jul-18	0200209	CM_CC1	Total Kjeldahl Nitrogen	Blank Sample Detect
			Turbidity, Lab	
	-	CM_34PIPEDIS	Ortho-Phosphate	HTD – Hold time exceeded for re-analysis or dilution, but initial testing was conducted within hold time
	0200209	CM_CC1	Ortho-Phosphate	EHT – Exceeded ALS recommended hold time prior to analysis
17-Jul-18	E258175	CM_MC1	Ortho-Phosphate	EHT – Exceeded ALS recommended hold time prior to analysis
			Calcium, T	
	E400400	CM CDD	Nitrogen, Ammonia (As N)	Black Comple Datest
	E102488	CM_SPD —	Strontium, T	Blank Sample Detect
			Turbidity, Lab	
			Nitrate Nitrogen (NO3), As N	HTD – Hold time exceeded for re-analysis
	-	CM_14PIT-PIPE	Nitrite Nitrogen (NO2), As N	or dilution, but initial testing was conducted within hold time
	-	CM 24DIDEDIS	Nitrate Nitrogen (NO3), As N	HTD – Hold time exceeded for re-analysis
		CM_34PIPEDIS	Nitrite Nitrogen (NO2), As N	or dilution, but initial testing was conducted within hold time
	0200209		Nitrate Nitrogen (NO3), As N	HTD – Hold time exceeded for re-analysis
31-Jul-18		CM_CC1	Nitrite Nitrogen (NO2), As N	or dilution, but initial testing was conducted within hold time
31-Jul-10	E102488	014.000	Nitrate Nitrogen (NO3), As N	HTD – Hold time exceeded for re-analysis
		CM_SPD	Nitrite Nitrogen (NO2), As N	or dilution, but initial testing was conducted within hold time
	E206438	CM_CCPD	Nitrate Nitrogen (NO3), As N	HTD – Hold time exceeded for re-analysis or dilution, but initial testing was conducted
		CW_CCFD	Nitrite Nitrogen (NO2), As N	within hold time
	E258175		Nitrate Nitrogen (NO3), As N	HTD – Hold time exceeded for re-analysi
		CM_MC1	Nitrite Nitrogen (NO2), As N	or dilution, but initial testing was conducted within hold time
			Nitrogen, Ammonia (As N)	
7-Aug-18	E206438	CM_CCPD	Phosphorus	Blank Sample Detect
3	L200400		Total Dissolved Solids (Residue, Filterable)	'
			Nitrogen, Ammonia (As N)	Blank Sample Detect
15-Aug-18	E206438	CM_CCPD	Total Kjeldahl Nitrogen	Blank Gample Beteet
			Magnesium, D	Duplicate RPD Failure
			Carbon, Dissolved Organic	
28-Aug-18	E206438	CM_CCPD	Total Organic Carbon	Blank Sample Detect
			Turbidity, Lab	
			Nitrogen, Ammonia (As N)	_
	0200209	CM_CC1	Ortho-Phosphate	Blank Sample Detect
4-Sep-18			Phosphorus	
2-10			Ortho-Phosphate	Blank Sample Detect
	E102488	CM_SPD	Phosphorus	*
			Turbidity, Lab	Duplicate RPD Failure

Date	EMS ID	Site ID	Parameter	Reason
			Nitrogen, Ammonia (As N)	
	0200209	CM_CC1	Ortho-Phosphate	Blank Sample Detect
			Total Kjeldahl Nitrogen	
2-Oct-18			Chromium, T	
	E400400	014.000	Nitrogen, Ammonia (As N)	
	E102488	CM_SPD —	Ortho-Phosphate	Blank Sample Detect
			Phosphorus	
	5 000.400	014 0000	Nitrogen, Ammonia (As N)	Blank Sample Detect - Additional Sampling
9-Oct-18	E206438	CM_CCPD —	Ortho-Phosphate	Not Required by Permit
			Nitrogen, Ammonia (As N)	
16-Oct-18	-	CM_14PIT-PIPE	Total Kjeldahl Nitrogen	Blank Sample Detect
			Total Suspended Solids, Lab	
			Nitrogen, Ammonia (As N)	Blank Sample Detect - Additional Sampling
29-Oct-18	E206438	CM_CCPD —	Total Kjeldahl Nitrogen	Not Required by Permit
			Nitrogen, Ammonia (As N)	
	0200209	CM_CC1	Ortho-Phosphate	Blank Sample Detect
			Total Kjeldahl Nitrogen	<u> </u>
			Chromium, T	
5-Nov-18	E206438		Nickel, T	\dashv
		CM_CCPD	Nitrogen, Ammonia (As N)	Blank Sample Detect
			Strontium, D	<u> </u>
			Total Kjeldahl Nitrogen	
			Ortho-Phosphate	
13-Nov-18	-	CM_14PIT-PIPE —	Total Kjeldahl Nitrogen	Blank Sample Detect
			Barium, T	
			Ortho-Phosphate	Blank Sample Detect - Additional Sampling
20-Nov-18	-	CM_14PIT-PIPE	Total Kjeldahl Nitrogen	Not Required by Permit
			Turbidity, Lab	
			Nitrogen, Ammonia (As N)	
27-Nov-18	=	CM_14PIT-PIPE	Ortho-Phosphate	Blank Sample Detect - Additional Sampling
			Phosphorus	Not Required by Permit
			Nitrate Nitrogen (No3), As N	
	0200209	CM_CC1	Ortho-Phosphate	Blank Sample Detect
			Total Kjeldahl Nitrogen	
3-Dec-18			Nitrogen, Ammonia (As N)	
	E102488	CM SPD	Ortho-Phosphate	Blank Sample Detect
	L 102400		Total Kjeldahl Nitrogen	
			Ortho-Phosphate	EHT – Exceeded ALS recommended hold time prior to analysis. Additional Sampling Not Required by Permit
11-Dec-18	-	CM_14PIT-PIPE	Total Kjeldahl Nitrogen	RPD Failure – Additional Sampling Not Required by Permit
			Nitrogen, Ammonia (As N)	Blank Sample Detect – Additional Sampling Not Required by Permit

Date	EMS ID	Site ID	Parameter	Reason
	E206438	CM_CCPD	Ortho-Phosphate	EHT – Exceeded ALS recommended hold time prior to analysis. Additional Sampling Not Required by Permit
			Aluminum, D	
			Antimony, D	
	-	CM_14PIT-PIPE	Barium, D	
			Barium, T	
			Calcium, D	
18-Dec-18			Silicon, D	Blank Sample Detect – Additional Sampli Not Required by Permit
			Sodium, D	
			Strontium, D	
			Tin, D	
			Nitrogen, Ammonia (As N)	
			Turbidity, Lab	
28-Dec-18		CM 14DIT DIDE	Nitrogen, Ammonia (As N)	Blank Sample Detect – Additional Sampling
20-Dec-10	-	CM_14PIT-PIPE	Phosphorus	Not Required by Permit

4 Water Monitoring Program Description

4.1 Water Quality and Quantity Monitoring Requirements

Samples were collected from January 1, 2018 to December 31, 2018 in accordance with Permit 4750 requirements (Table 11). All sample results can be viewed in Appendix B – Monitoring Data and QA/QC Data.

Table 11: Monitoring requirements for Permit 4750 (amended April 2016 and July 2016)

		Parameters								
EMS ID	Site ID	(mg/L)	(mg/L)	NTU	(mg/L)	(m ³ /s) ^(a)				
		5-day Biochemical Oxygen Demand (BOD ₅)	Total Suspended Solids (TSS)	Turbidity	Extractable Petroleum Hydrocarbons (EPH)	Flow				
E102488	CM_SPD	-	W/M	W/M	Q	W/M				
E206437	CM_WBE	-	-	-	Q	Q				
E206438	CM_CCPD	-	W/M	W/M	Q	W/M				
E206439	CM_SEW	M	М	M	-	М				
E298733	CM_PC2	-	W/M	W/M	-	W/M				
E258175	CM_MC1	-	W/M	W/M	-	W/M				
E258937	CM_MC2	-	W/M	W/M	-	-				
0200209	CM_CC1	-	W/M	W/M	-	-				
E306136	CM_MAX-SHOP	-	-	-	4x per year	-				
E306116	CM_PR-SILO	-	-	-	4x per year	-				

Notes:

M = *Monthly from August 1 - March 31*

W = Weekly from April 1 - July 31

4.1.1 Pit Pumping

Monitoring requirements for 34 Pit and 6 Pit pumping are summarized in Tables 12 and 13, respectively. Monitoring results from the following monitoring program associated with Michel Creek downstream of Operations E258937 (CM_MC2), Corbin Creek near confluence with Michel Creek 0200209 (CM_CC1), the Main Interceptor Sedimentation Ponds E102488 (CM_SPD), and the Corbin Sedimentation Pond E206438 (CM_CCPD) are included within the Permit 107517 annual report submission due March 31, 2019. The pit pumping locations listed within Tables 12 and 13 are specific to Permit 4750 and therefore are not included in the Permit 107517 annual effluent report. All sample results for 6 pit, 34 Pit ad 14 Pit monitoring locations are included within Appendix B. Pit pumping volumes are summarized in section 6.1.1 of this report.

Q = Quarterly

⁴ x per year = collected during spring and rainfall events

a) m³/day for CM_SEW and CM_WBE

Table 12: 34 Pit pumping monitoring requirements

EMS ID	Location	Duration	Field Parameters	Conventional Parameters	Major Ions	Nutrients	Total/Dissolved Metals	TSS/Turbidity
		One week before pumping	One Time	One Time	One Time	One Time	One Time	One Time
	14 Pit	For 2 months after Pumping Begins	W	w	W	W	W	n/a
		Ongoing while pumping	М	М	М	M	М	n/a
n/a	34 Pit	For 2 months after Pumping Begins	W	W	W	W	W	n/a
		Ongoing while pumping	М	М	М	M	М	n/a
E258937	CM_MC2	Ongoing while pumping	W/M	W/M	W/M	W/M	W/M	n/a
E102488	CM_SPD	Ongoing while pumping	W/M	М	М	М	М	W/M

W/M = Weekly from March 15-July 31; monthly the rest of the year W = Weekly as per specified duration

Table 13: 6 Pit pumping monitoring requirements

EMS ID	Location	Duration	Field Parameters	Conventional Parameters	Major Ions	Nutrients	Total/ Dissolved Metals	TSS/ Turbidity	Flow
N/A	6 Pit Infiltration Sump	Starting April 27, 2016 to pumping completion	W/M	W-M	W-M	W-M	W-M	W/M	*
E206436	CM_CCPD	Starting April 27, 2016 to pumping completion	W/M	W-M	W-M	W-M	W-M	W/M	W/M
E258937	CM_MC2	To pumping completion	W/M	W/M	W/M	W/M	W/M	W/M	W/M

EMS ID	Location	Duration	Field Parameters	Conventional Parameters	Major Ions	Nutrients	Total/ Dissolved Metals	TSS/ Turbidity	Flow
200209	CM_CC1	To pumping completion	W/M	W/M	W/M	W/M	W/M	W/M	С
E102488	CM_SPD	To pumping completion	М	M	М	М	М	W/M	W/M

Notes:

M = Monthly

W/M = Weekly April 1 to July 31 (March 15 to July 3 at E258937 and 200209) and monthly the remainder of the year

W-M = Weekly sampling, switch to monthly once water quality parameter variability is understood

C = Continuous monitoring

Coal Mountain Operations provides a memo quarterly within the quarterly Permit 4750 effluent report to ENV summarizing projected versus current (Jan 2018 – December 2018) concentrations for parameters that have discharge limits at CMO's Compliance Station, Michel Creek downstream of Operations E258937 (CM_MC2). Results are presented in Figure 2.

The projected scenario represents pumping measured in 2018 from both 34 Pit and 6 Pit, and changes to waste management approved through the November 2017, amendment to Permit C-84 Approving E1728 Spoil Refuse Blending. 2018 pumping rates from 6 Pit and 34 Pit were maintained below maximum authorized rates of 150 L/s. Permit 107517 limits are included in the plots for sulphate, nitrate, dissolved cadmium and total selenium concentrations. The cadmium limit is hardness dependent and was calculated using measured hardness values at Michel Creek downstream of Operations E258937 (CM_MC2).

Cadmium and selenium concentrations at Michel Creek downstream of Operations E258937 (CM_MC2) have remained below the Permit 107517 limits as well as projected concentrations during 2018 pumping. Sulphate and nitrate concentrations also remained below Permit 107517 limits in 2018.

Overall, CMO will continue to monitor water quality data as per permit conditions and conduct additional sampling to support pit pumping activities.

^{*}Volume of water pumped from 6 Pit is measured utilizing a flow meter

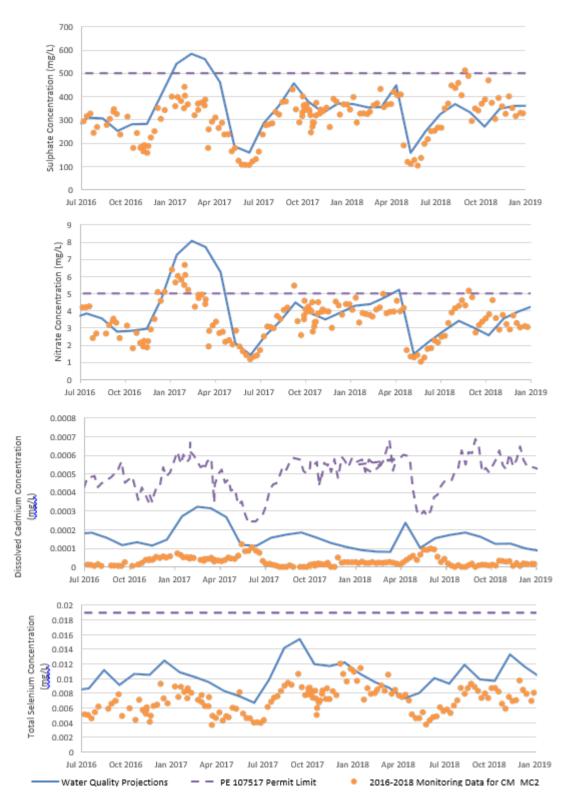


Figure 2: Projected vs current concentrations of sulphate, selenium, cadmium and nitrate at Michel Creek downstream of Operations E258937 (CM_MC2)

4.2 Sampling Methodology

All samples are collected in accordance with procedures established in the "British Columbia Field Sampling Manual – For Continuous Monitoring and the Collection of Air, Air-Emission, Water, Wastewater, Soil, Sediment and Biological Samples" (2013) published by the Water, Air and Climate Change Branch of the Ministry of Water, Land and Air Protection, Province of BC or by suitable alternative procedures as authorized by the Director.

Permit 4750 Detection limits and analytical methods used for TSS, turbidity, BOD5, and EPH Total are listed in Table 14. A summary of parameters sampled for in accordance with Appendix 3A of Permit 4750 and applicable analytical methods are provided in Table 15.

Table 14: Permit 4750 site parameters, detection limits, and analytical methods

Parameter	Unit	Analytical Method	Detection Limit
TSS	mg/L	APHA 2540D	1.0
Turbidity	NTU	APHA 2130 Turbidity	0.1
BOD ₅	mg/L	APHA 5210 B-Biochemical Oxygen Demand	2.0
EPH Total	mg/L	BC Lab Manual	0.5
Water Temperature (Field)	Degrees C	Field Measure	N/A
Specific Conductance (Field)	uS/cm	Field Measure	N/A
Dissolved Oxygen (Field)	mg/L	Field Measure	N/A
pH (Field)	pH units	Field Measure	N/A

Table 15: Appendix 3A site parameters, detection limits, and analytical methods

Parameter	Fraction	Unit	Analytical Method	Min (detect limit)	Max (detect limit)
ACIDITY TO pH 8.3 (As CaCO3)	N	mg/l	E305.1	1.0	1.0
ALKALINITY, BICARBONATE (As CaCO3), lab measured.	N	mg/l	SM2320B	1.0	1.0
ALKALINITY, CARBONATE (As CaCO3), lab measured.	N	mg/l	SM2320B	1.0	1.0
ALKALINITY, HYDROXIDE (As CaCO3), lab measured.	N	mg/l	SM2320B	1.0	1.0
ALKALINITY, TOTAL (As CaCO3), lab measured.	N	mg/l	SM2320B	1.0	1.0
ALUMINUM	D	mg/l	SW6020A	0.0010	0.0030
ALUMINUM	Т	mg/l	EPA 200.2/6020A	0.0030	0.0030
ANTIMONY	D	mg/l	SW6020A	0.00010	0.00010
ANTIMONY	T	mg/l	EPA 200.2/6020A	0.00010	0.00055
ARSENIC	D	mg/l	SW6020A	0.00010	0.00010
ARSENIC	Т	mg/l	EPA 200.2/6020A	0.00010	0.00010
BARIUM	D	mg/l	SW6020A	0.000050	0.000050
BARIUM	T	mg/l	EPA 200.2/6020A	0.000050	0.000050
BERYLLIUM	D	mg/l	SW6020A	0.000020	0.000020
BERYLLIUM	T	mg/l	EPA 200.2/6020A	0.000020	0.000020

BISMUTH BISMUTH BORON BORON BROMIDE CADMIUM CADMIUM CALCIUM CALCIUM CARBON, DISSOLVED ORGANIC CARBON, DISSOLVED ORGANIC CARBON, DISSOLVED ORGANIC CATION - Anion Balance CHLORIDE CHROMIUM CHROMIUM COBALT COBALT CONDUCTIVITY, LAB COPPER COPPER	D T D T D D T D T D T D T D T D T D T D	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	SW6020A EPA 200.2/6020A SW6020A EPA 200.2/6020A EPA 200.2/6020A EPA300.1 (mod) SW6020A EPA 200.2/6020A SW6020A EPA 200.2/6020A APHA 5310B E415.1 APHA 1030E EPA300.1 (mod) SW6020A EPA 200.2/6020A SW6020A EPA 200.2/6020A	0.000050 0.000050 0.010 0.010 0.050 0.0000050 0.0000050 0.050 0.50 0.50 0.50 0.000 0.10 0.00010 0.00010	0.000050 0.000050 0.010 0.010 0.25 0.0000050 0.050 0.050 2.5 0.000 2.5 0.00010 0.00010
BORON BORON BROMIDE CADMIUM CALCIUM CALCIUM CARBON, DISSOLVED ORGANIC CARBON, DISSOLVED ORGANIC CARBON, DISSOLVED ORGANIC CARBON, DISSOLVED ORGANIC CATON - Anion Balance CHLORIDE CHROMIUM CHROMIUM COBALT COBALT CONDUCTIVITY, LAB COPPER	D T D D T D T D T D T D T D T D T D T D	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	SW6020A EPA 200.2/6020A EPA300.1 (mod) SW6020A EPA 200.2/6020A SW6020A EPA 200.2/6020A APHA 5310B E415.1 APHA 1030E EPA300.1 (mod) SW6020A EPA 200.2/6020A SW6020A EPA 200.2/6020A SW6020A	0.010 0.010 0.050 0.0000050 0.0000050 0.050 0.50 0.50 0.000 0.10 0.00010 0.00010	0.010 0.010 0.25 0.0000050 0.0000050 0.050 2.5 0.50 0.000 2.5 0.00010
BORON BROMIDE CADMIUM CADMIUM CALCIUM CALCIUM CARBON, DISSOLVED ORGANIC CARBON, DISSOLVED ORGANIC CATION - Anion Balance CHLORIDE CHROMIUM CHROMIUM COBALT COBALT CONDUCTIVITY, LAB COPPER	T D D T D T D T D T D T D T D T D T D T	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	EPA 200.2/6020A EPA300.1 (mod) SW6020A EPA 200.2/6020A SW6020A EPA 200.2/6020A APHA 5310B E415.1 APHA 1030E EPA300.1 (mod) SW6020A EPA 200.2/6020A SW6020A SW6020A	0.010 0.050 0.0000050 0.0000050 0.050 0.50 0.50 0.50 0.000 0.10 0.00010 0.00010	0.010 0.25 0.0000050 0.0000050 0.050 2.5 0.50 0.000 2.5 0.00010
BROMIDE CADMIUM CADMIUM CALCIUM CALCIUM CARBON, DISSOLVED ORGANIC CARBON, DISSOLVED ORGANIC CATION - Anion Balance CHLORIDE CHROMIUM CHROMIUM COBALT COBALT CONDUCTIVITY, LAB COPPER	D D T D T D T D T D T D T T D T N D T T D D T D T	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	EPA300.1 (mod) SW6020A EPA 200.2/6020A SW6020A EPA 200.2/6020A APHA 5310B E415.1 APHA 1030E EPA300.1 (mod) SW6020A EPA 200.2/6020A SW6020A	0.050 0.0000050 0.0000050 0.050 0.050 0.50 0.50 0.000 0.10 0.00010 0.00010	0.25 0.0000050 0.0000050 0.050 0.050 2.5 0.50 0.000 2.5 0.00010
CADMIUM CADMIUM CALCIUM CALCIUM CARBON, DISSOLVED ORGANIC CARBON, DISSOLVED ORGANIC CAtion - Anion Balance CHLORIDE CHROMIUM CHROMIUM COBALT COBALT CONDUCTIVITY, LAB COPPER	D T D T D T D T D T D T D T D T N D T D T	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	SW6020A EPA 200.2/6020A SW6020A EPA 200.2/6020A APHA 5310B E415.1 APHA 1030E EPA300.1 (mod) SW6020A EPA 200.2/6020A SW6020A	0.0000050 0.0000050 0.050 0.050 0.50 0.	0.0000050 0.0000050 0.050 0.050 2.5 0.50 0.000 2.5 0.00010
CADMIUM CALCIUM CARBON, DISSOLVED ORGANIC CARBON, DISSOLVED ORGANIC Cation - Anion Balance CHLORIDE CHROMIUM CHROMIUM COBALT COBALT CONDUCTIVITY, LAB COPPER	T D T D D T D T D T T D T N D T T D T D	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	EPA 200.2/6020A SW6020A EPA 200.2/6020A APHA 5310B E415.1 APHA 1030E EPA300.1 (mod) SW6020A EPA 200.2/6020A SW6020A	0.0000050 0.050 0.050 0.50 0.50 0.000 0.10 0.00010 0.00010	0.0000050 0.050 0.050 2.5 0.50 0.000 2.5 0.00010
CALCIUM CALCIUM CARBON, DISSOLVED ORGANIC CARBON, DISSOLVED ORGANIC Cation - Anion Balance CHLORIDE CHROMIUM CHROMIUM COBALT COBALT CONDUCTIVITY, LAB COPPER	D T D D N D T D T T D T D T D T D T D T	mg/l mg/l mg/l mg/l mg/l % mg/l mg/l mg/l mg/l mg/l mg/l us/cm	SW6020A EPA 200.2/6020A APHA 5310B E415.1 APHA 1030E EPA300.1 (mod) SW6020A EPA 200.2/6020A SW6020A	0.050 0.050 0.50 0.50 0.000 0.10 0.00010 0.00010	0.050 0.050 2.5 0.50 0.000 2.5 0.00010 0.00010
CALCIUM CARBON, DISSOLVED ORGANIC CARBON, DISSOLVED ORGANIC Cation - Anion Balance CHLORIDE CHROMIUM CHROMIUM COBALT COBALT CONDUCTIVITY, LAB COPPER	T D D N D T D T D T D T D T D T	mg/l mg/l mg/l mg/l mg/l % mg/l mg/l mg/l mg/l mg/l mg/l us/cm	EPA 200.2/6020A APHA 5310B E415.1 APHA 1030E EPA300.1 (mod) SW6020A EPA 200.2/6020A SW6020A	0.050 0.50 0.50 0.000 0.10 0.00010 0.00010	0.050 2.5 0.50 0.000 2.5 0.00010 0.00010
CARBON, DISSOLVED ORGANIC CARBON, DISSOLVED ORGANIC Cation - Anion Balance CHLORIDE CHROMIUM CHROMIUM COBALT COBALT CONDUCTIVITY, LAB COPPER	D D N D T D T N D T	mg/l mg/l mg/l % mg/l mg/l mg/l mg/l mg/l mg/l us/cm	APHA 5310B E415.1 APHA 1030E EPA300.1 (mod) SW6020A EPA 200.2/6020A SW6020A	0.50 0.50 0.000 0.10 0.00010 0.00010	2.5 0.50 0.000 2.5 0.00010 0.00010
CARBON, DISSOLVED ORGANIC Cation - Anion Balance CHLORIDE CHROMIUM CHROMIUM COBALT COBALT CONDUCTIVITY, LAB COPPER	D N D T D T N D	mg/l mg/l % mg/l mg/l mg/l mg/l mg/l us/cm	APHA 5310B E415.1 APHA 1030E EPA300.1 (mod) SW6020A EPA 200.2/6020A SW6020A	0.50 0.000 0.10 0.00010 0.00010 0.00010	0.50 0.000 2.5 0.00010 0.00010
CARBON, DISSOLVED ORGANIC Cation - Anion Balance CHLORIDE CHROMIUM CHROMIUM COBALT COBALT CONDUCTIVITY, LAB COPPER	N D D T D T N D T	mg/l % mg/l mg/l mg/l mg/l mg/l us/cm	APHA 1030E EPA300.1 (mod) SW6020A EPA 200.2/6020A SW6020A	0.50 0.000 0.10 0.00010 0.00010 0.00010	0.50 0.000 2.5 0.00010 0.00010
Cation - Anion Balance CHLORIDE CHROMIUM CHROMIUM COBALT COBALT CONDUCTIVITY, LAB COPPER	D D T D T N D	% mg/l mg/l mg/l mg/l mg/l us/cm	EPA300.1 (mod) SW6020A EPA 200.2/6020A SW6020A	0.000 0.10 0.00010 0.00010 0.00010	0.000 2.5 0.00010 0.00010
CHLORIDE CHROMIUM CHROMIUM COBALT COBALT CONDUCTIVITY, LAB COPPER	D T D T N D	mg/l mg/l mg/l mg/l mg/l us/cm	EPA300.1 (mod) SW6020A EPA 200.2/6020A SW6020A	0.10 0.00010 0.00010 0.00010	2.5 0.00010 0.00010
CHROMIUM CHROMIUM COBALT COBALT CONDUCTIVITY, LAB COPPER	D T D T N D	mg/l mg/l mg/l mg/l us/cm	SW6020A EPA 200.2/6020A SW6020A	0.00010 0.00010 0.00010	0.00010 0.00010
CHROMIUM COBALT COBALT CONDUCTIVITY, LAB COPPER	T D T N D	mg/l mg/l mg/l us/cm	EPA 200.2/6020A SW6020A	0.00010 0.00010	0.00010
COBALT COBALT CONDUCTIVITY, LAB COPPER	D T N D	mg/l mg/l us/cm	SW6020A	0.00010	
COBALT CONDUCTIVITY, LAB COPPER	T N D	mg/l us/cm			
CONDUCTIVITY, LAB COPPER	N D	us/cm		0.00010	0.00010
COPPER	D	, .	APHA 2510	2.0	2.0
		mg/l	SW6020A	0.00020	0.00050
CUEFER	T	mg/l	EPA 200.2/6020A	0.00050	0.00050
FLUORIDE	D .	mg/l	EPA300.1 (mod)	0.020	0.10
Hardness, Total or Dissolved CaCO3	N	mg/l	SM2340B	0.50	0.50
HYDROGEN SULFIDE	N	mg/l	CALC	0.0016	0.021
ION BALANCE	N	%	APHA 1030E	0.000	100.0
IRON	D	mg/l	SW6020A	0.010	0.010
IRON	T	mg/l	EPA 200.2/6020A	0.010	0.010
LEAD	D .	mg/l	SW6020A	0.000050	0.000050
LEAD	T	mg/l	EPA 200.2/6020A	0.000050	0.000050
LITHIUM	D	mg/l	SW6020A	0.0010	0.0010
LITHIUM	T	mg/l	EPA 200.2/6020A	0.0010	0.0010
MAGNESIUM	D	mg/l	SW6020A	0.0050	0.10
MAGNESIUM	T	mg/l	EPA 200.2/6020A	0.0050	0.10
MAJOR ANION SUM	N	meq/l	APHA 1030E	0.00	0.0
MAJOR CATION SUM	N	meq/I	APHA 1030E	0.0	0.0
MANGANESE	D	mg/l	SW6020A	0.00010	0.00010
	T	mg/l	EPA 200.2/6020A	0.00010	0.00010
MERCURY	D	mg/l	A3030B/EPA1631 REV-E	0.0000050	0.0000050
MERCURY	D	mg/l	EPA 1631E	0.0000050	0.000010
MERCURY	T	mg/l	EPA 1631 REV-E	0.0000050	0.0000050
MERCURY	T	ug/l	EPA 1631 REV-E	0.00050	0.00050
MERCURY	T	ug/l	EPA 1631E	0.00050	0.00050
Methyl Mercury	T	ug/l	E1630	0.000050	0.00050
MICROCYSTIN	N	ug/l	ENVLGXQUANTI	0.20	0.20
MOLYBDENUM	D	mg/l	SW6020A	0.000050	0.000050
MOLYBDENUM	T	mg/l	EPA 200.2/6020A	0.000050	0.000050
NICKEL NICKEL	D	mg/l	SW6020A	0.00050	0.00050
NICKEL NICKEL	T T	mg/l	EPA 200.2/6020A	0.00050	0.00050
NITRATE NITROGEN (NO3), AS N	N	mg/l	E300.0	0.0050	0.0050

Parameter	Fraction	Unit	Analytical Method	Min (detect limit)	Max (detect limit)
NITRATE NITROGEN (NO3), AS N	N	mg/l	EPA300.1 (mod)	0.0050	0.025
NITRITE NITROGEN (NO2), AS N	N	mg/l	E300.0	0.0010	0.0050
NITRITE NITROGEN (NO2), AS N	N	mg/l	EPA300.1 (mod)	0.0010	0.0050
NITROGEN, AMMONIA (AS N)	N	mg/l	APHA 4500 NH3	0.0050	0.0050
NITROGEN, AMMONIA (AS N)	N	mg/l	JENVMON	0.0050	0.0050
ORTHO-PHOSPHATE	N	mg/l	A4500P	0.0010	0.0010
OXIDATION-REDUCTION POTENTIAL, LAB	N	mv	ASTM D1498-14	1000	1000
pH, LAB	N	ph units	APHA 4500-H	0.10	0.10
PHOSPHORUS	N	mg/l	A4500P	0.0010	0.050
POTASSIUM	D	mg/l	SW6020A	0.050	0.050
POTASSIUM	Т	mg/l	EPA 200.2/6020A	0.050	0.050
SELENIUM	D	ug/l	SW6020A	0.050	0.050
SELENIUM	Т	ug/l	EPA 200.2/6020A	0.050	0.050
SILICON	D	mg/l	SW6020A	0.050	0.050
SILICON	Т	mg/l	EPA 200.2/6020A	0.050	0.10
SILVER	D	mg/l	SW6020A	0.000010	0.000010
SILVER	Т	mg/l	EPA 200.2/6020A	0.000010	0.000030
SODIUM	D	mg/l	SW6020A	0.050	0.050
SODIUM	Т	mg/l	EPA 200.2/6020A	0.050	0.050
STRONTIUM	D	mg/l	SW6020A	0.00020	0.00020
STRONTIUM	Т	mg/l	EPA 200.2/6020A	0.00020	0.00020
SULFATE (AS SO4)	D	mg/l	EPA300.1 (mod)	0.30	1.5
SULFIDE (as S)	Т	mg/l	A4500SE	0.0015	0.0015
SULFIDE (as S)	Т	mg/l	SM4500S2D	0.0020	0.020
THALLIUM	D	mg/l	SW6020A	0.000010	0.000010
THALLIUM	Т	mg/l	EPA 200.2/6020A	0.000010	0.000010
TIN	D	mg/l	SW6020A	0.00010	0.00010
TIN	Т	mg/l	EPA 200.2/6020A	0.00010	0.00010
TITANIUM	D	mg/l	SW6020A	0.010	0.010
TITANIUM	Т	mg/l	EPA 200.2/6020A	0.010	0.010
TOTAL DISSOLVED SOLIDS (RESIDUE, FILTERABLE)	N	mg/l	SM2540C	10	20
TOTAL KJELDAHL NITROGEN	N	mg/l	APHA 4500-NORG	0.050	1.0
TOTAL ORGANIC CARBON	Т	mg/l	E415.1	0.50	2.5
TOTAL SUSPENDED SOLIDS, LAB	N	mg/l	SM2540D	1.0	3.0
TURBIDITY, LAB	N	ntu	E180.1	0.10	0.10
URANIUM	D	mg/l	SW6020A	0.000010	0.000010
URANIUM	Т	mg/l	EPA 200.2/6020A	0.000010	0.000010
VANADIUM	D	mg/l	SW6020A	0.00050	0.00050
VANADIUM	Т	mg/l	EPA 200.2/6020A	0.00050	0.00050
ZINC	D	mg/l	SW6020A	0.0010	0.0030
ZINC	Т	mg/l	EPA 200.2/6020A	0.0030	0.0030

5 Monitoring Results

All results from 2018 sampling under Permit 4750 can be viewed in Appendix B.

5.1 Water Quality Results

In this section, water quality data are presented by parameter and compared to permit limits where applicable. Permit 4750 specifies monitoring requirements for discharges and receiving environment for parameters such as TSS, turbidity, BOD5, EPH and flow.

As per requirement 'vi' under Permit 4750 Section 5.3, Annual Report, CMO is required to include "All acute and chronic toxicity test-specific reports from the laboratory and an interpreted summary and discussion of results, including recommendations and any subsequent actions where applicable". Toxicity testing is conducted under Permit 107517 and all reporting, interpretation and discussion of results for this testing program will be provided as part of the 2018 107517 Annual Report and the 2018 Chronic Toxicity Program Annual Report.

All 2018 Permit 4750 monitoring parameters are discussed below. 2018 raw data with statistical summaries are presented in Appendix B and historical data are presented in Appendix C.

5.1.1 Total Suspended Solids

5.1.1.1 Receiving Environment

2018 TSS data for CMO's three receiving environment-sampling sites are presented in Figure 3. In total, 46 TSS samples were collected Michel Creek upstream of Operations E258175 (CM_MC1), 65 were collected at Michel Creek downstream of Operations E258937 (CM_MC2), and 47 at Corbin Creek near confluence with Michel Creek 0200209 (CM_CC1). Additional samples were collected for TSS beyond the Permit 4750 monthly and weekly sampling requirements to support pit pumping activities and in conjunction with additional sampling conducted to support Nitrate compliance at the CMO Permit 107517 compliance point.

At Michel Creek upstream of Operations E258175 (CM_MC1), 54% of the samples (25 of 46) collected were below the TSS detection limit of 1 mg/L and 34% of the samples (22 of 65) collected at Michel Creek downstream of Operations E258937 (CM_MC2) and 30% (14 of 47) collected at Corbin Creek near confluence with Michel Creek 0200209 (CM_CC1) were below the TSS detection limit of 1 mg/L.

TSS concentrations in the receiving environment were generally most elevated during the month of May (i.e., coinciding with freshet); however, rain events on July 26 and November 2 elevated TSS concentrations and may have impacted the Michel Creek downstream of Operations E258937 (CM_MC2) receiving environment sampling location. Background TSS sampling found that Michel Creek upstream of Operations E258175 (CM_MC1) was experiencing similar turbidity inputs compared to downstream of operations. The Main Interceptor Sedimentation Ponds E102488 (CM_SPD) authorized discharge location remained below the 50 mg/L TSS limit during the event.

The following are maximum TSS concentrations recorded in the receiving environment in 2018:

- 13.7 mg/L at Corbin Creek near confluence with Michel Creek 0200209 (CM_CC1) on July 26;
- 34.8 mg/L at Michel Creek upstream of Operations E258175 (CM_MC1) on November 2; and

60.9 mg/L at Michel Creek downstream of Operations E258937 (CM_MC2) on May 15.

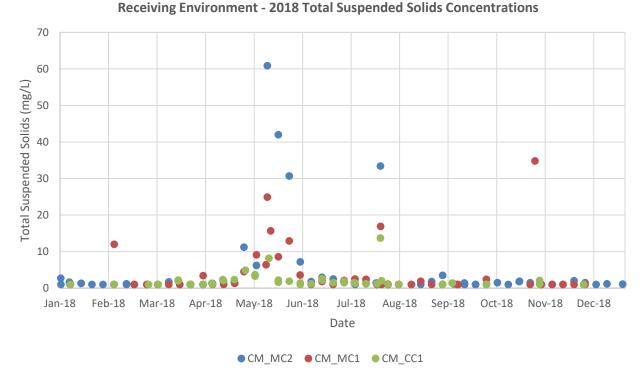
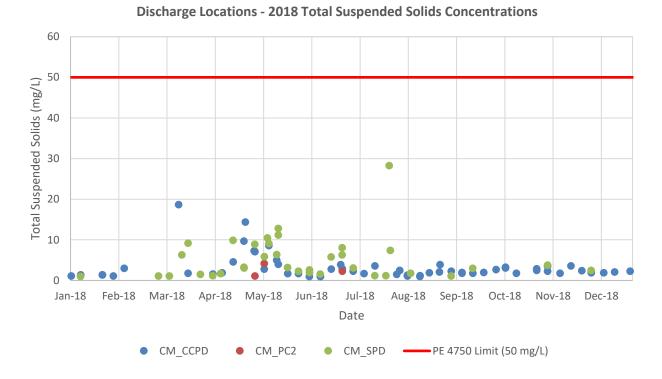


Figure 3: 2018 TSS concentrations - CMO receiving environments


5.1.1.2 Discharge Locations

2018 TSS data for CMO's three discharge locations are presented in Figure 4. In total, 73 samples were collected at the Corbin Sedimentation Pond E206438 (CM_CCPD), 14 at Pengelly Channel Decant E298733 (CM_PC2) and 45 at the Main Interceptor Sedimentation Ponds E102488 (CM_SPD). All samples collected in 2018 were below TSS permit limits (50 mg/L). Additional TSS samples were collected beyond the Permit 4750 monthly and weekly sampling requirements to support ongoing pit pumping requirements (Section 4.1.1). There was zero observable flow at the Pengelly Channel Decant E298733 (CM_PC2) from approximately July 4 until the end of December.

At the Corbin Sedimentation Pond E206438 (CM_CCPD), 19% of the samples (14 of 73) collected were below the TSS detection limit of 1 mg/L and 78% of the samples (11 of 14) collected at the Pengelly Channel Decant E298733 (CM_PC2), and 20% of the samples (9 of 45) collected at the Main Interceptor Sedimentation Ponds E258937 (CM_SPD) were below the TSS detection limit of 1 mg/L.

The following are maximum TSS concentrations recorded in the discharge locations in 2018:

- 18.7 mg/L at Corbin Sedimentation Pond E206438 (CM_CCPD) on March 13;
- 4.2 mg/L at Pengelly Channel Decant E298733 (CM_PC2) on May 7; and
- 28.3 mg/L at Main Interceptor Sedimentation Ponds E258937 (CM SPD) on July 26.

Figure 4: 2018 TSS concentrations - CMO discharge locations

5.1.2 Extractable Petroleum Hydrocarbons

5.1.2.1 Discharge Locations

Extractable Petroleum Hydrocarbons (EPH) concentrations are monitored at discharge locations under Appendix 2A, Table 2, of Permit 4750. Four samples were collected at the Corbin Sedimentation Pond E206438 (CM_CCPD) and the Main Interceptor Sedimentation Ponds E102488 (CM_SPD) each in 2018. All samples collected were below the EPH detection limit of 0.50 mg/L (Figure 5).

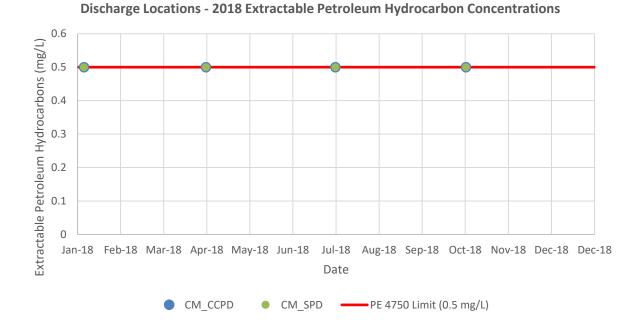


Figure 5: 2018 EPH concentrations - CMO discharge locations

5.1.2.2 Infiltration Sumps

All samples collected at Ammonium Nitrate Prill Silo Sump E306116 (CM_PR-SILO) and Emulsion Shop Sump E306136 (CM_MAX-SHOP) were below the 60 mg/L EPH permit limit (Figure 6).

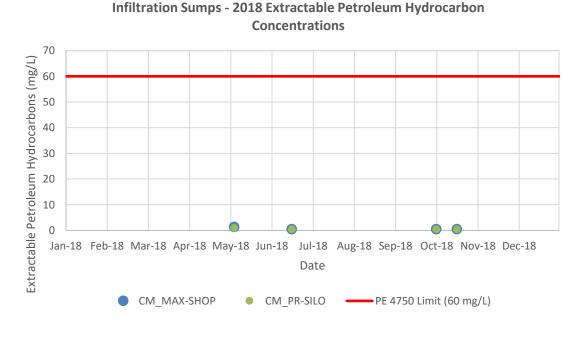


Figure 6: 2018 EPH concentrations - CMO infiltration sumps

5.1.2.3 Maintenance Infiltration Ponds

Eleven samples were collected from CMO's effluent discharge to the Maintenance Infiltration Ponds E206437 (CM_WBE; Figure 7). There was one sample above the 15 mg/L EPH limit with a concentration of 319 mg/L. A summary of this event can be found in Section 2.3 Non-Compliances.

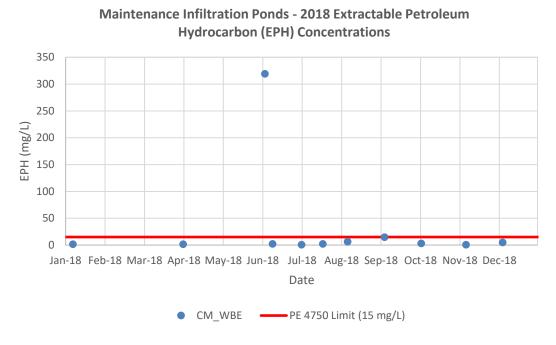


Figure 7: 2018 EPH concentrations - CM_WBE

Reduction of TEH/EPH concentrations can be observed since 2008 at the Maintenance Infiltration Ponds E206437 (CM_WBE), which can be attributed, in part, to improved maintenance practices in the shop and improved management procedures for the oil-water separator. Six exceedances were recorded between 2008-2010, one in 2014, and zero in 2016 and 2017.

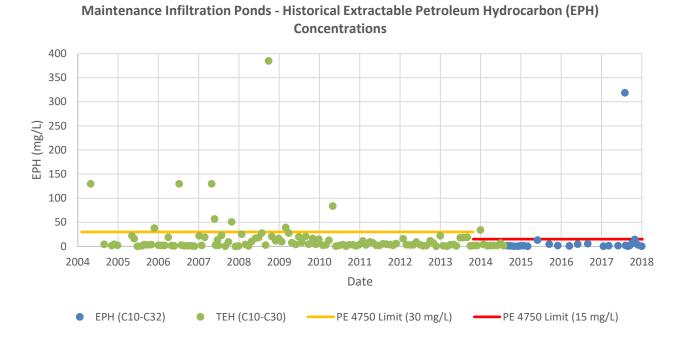


Figure 8: Historical TEH/EPH data - CM_WBE²

5.1.3 Sewage Treatment Plant (STP)

Twelve samples were collected at the Sewage Treatment Plant E206439 (CM_SEW) and none exceeded the TSS limit of 30 mg/L (Figure 9); 50% of the samples collected (6 of 12) were below the TSS detection limit of 1 mg/L.

Teck Coal Limited Page 33

March 31, 2019

² Historically, the Maintenance Infiltration Ponds E206437 (CM_WBE) had a permit limit for total extractable hydrocarbons (TEH) of 30 mg/L. When Permit 4750 was amended in September 2014, the limit for TEH was lowered to 15 mg/L. A new limit of 15 mg/L EPH was implemented for the Maintenance Infiltration Ponds E206437 (CM_WBE) in the June 2015 amendment.

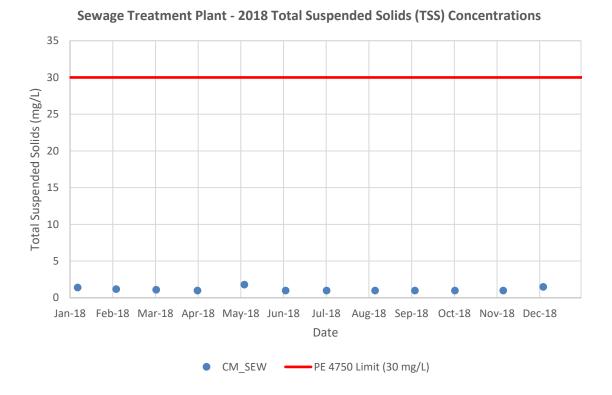


Figure 9: 2018 TSS concentrations - CM_SEW

All 2018 5 Day Biological Oxygen Demand (BOD5) results for the Sewage Treatment Plant E206439 (CM_SEW) were below the 40 mg/L and 20 mg/L (12 month average) permit limits. All samples collected (12 of 12) were below the 2.0 mg/L BOD5 detection limit (Figure 10).

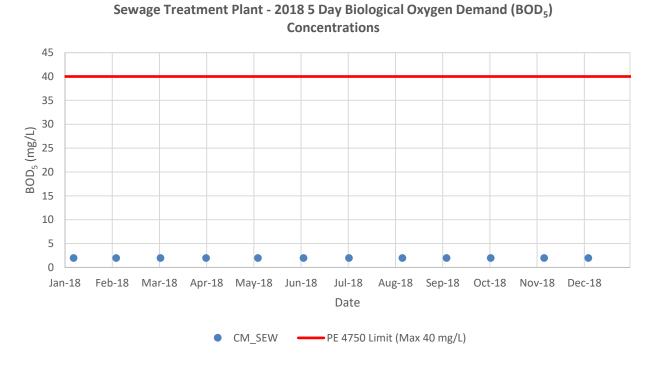


Figure 10: 2018 BOD₅ concentrations - CM_SEW

5.1.3.1 Historical Data (CM_SEW)

TSS and BOD5 concentrations have been trending downwards at the Sewage Treatment Plant E206439 (CM_SEW) since 2007 (Figures 11 and 12). These reductions can mainly be attributed to continual improvement of maintenance practices at the STP. The majority of TSS concentrations recorded since 2013 are below the 1 mg/L detection limit.

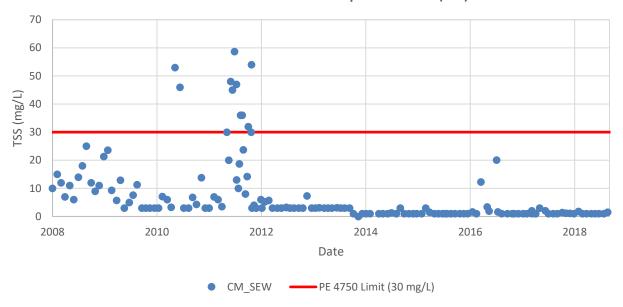


Figure 11: Historical TSS data - CM_SEW

Treated Domestic Effluent - Historical 5 Day Biological Oxygen Demand (BOD₅) Concentrations

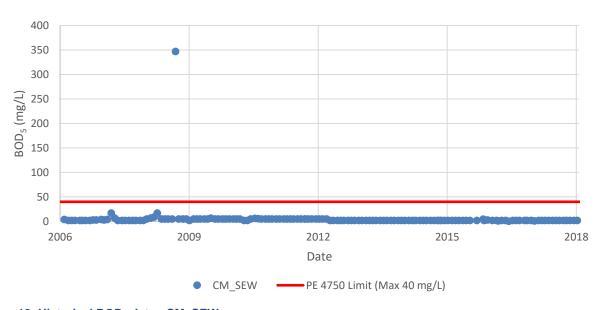


Figure 12: Historical BOD₅ data - CM_SEW

5.2 Water Quantity Results

In this section, flow-monitoring data are presented and compared to permit limits where applicable. The 2018 data are presented in tabular form in Appendix B. Permit 4750 requires flow measurements at all discharge locations.

5.2.1 Receiving Environment (CM_MC1)

In 2018, freshet generally commenced (i.e., flows started to increase) at CMO in mid to late April. Measured peak flow in Michel Creek upstream of Operations E258175 (CM_MC1) was 1.99 m3/s on May 16. The lowest flow recorded occurred on December 19 with measured values of 0.0159 m3/s (Figure 13). Historical flow data from Michel Creek upstream of Operations E258175 (CM_MC1; collected since October 2008) is presented in Figure 14 below.

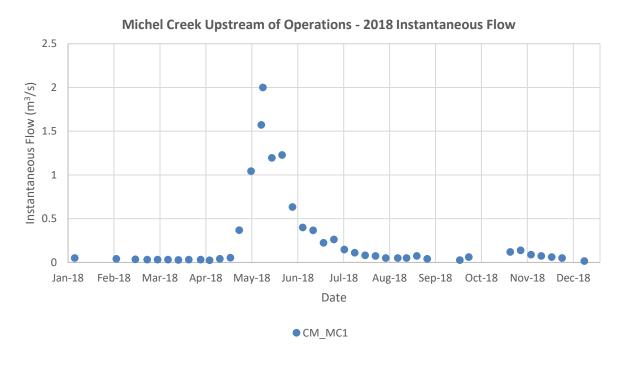


Figure 13: 2018 Instantaneous flow - CM_MC1

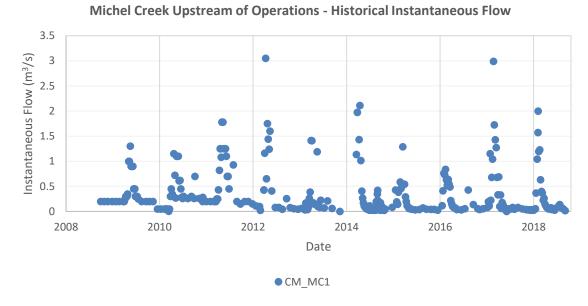


Figure 14: Historical flow data - CM_MC1

5.2.2 Discharge Locations

Measured peak flows for all three stations were well below permitted Q10 discharge rates. Peak flow measurements were as follows: the Corbin Sedimentation Pond E206438 (CM_CCPD) was 1.291 m3/s on May 17 and 18; Pengelly Channel Decent E298733 (CM_PC2) was 0.466 m3/s on May 16 and; the Main Interceptor Sedimentation Ponds E102488 (CM_SPD) was 0.662 m3/s on April 29. Flow data for CMO's three permitted discharge locations are presented in Figures 15 through 17.

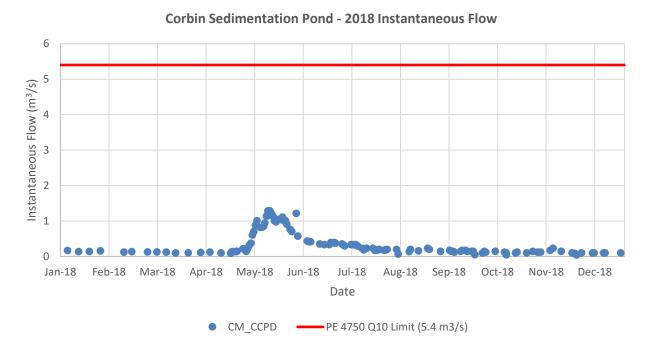


Figure 15: 2018 Instantaneous flow - CM_CCPD

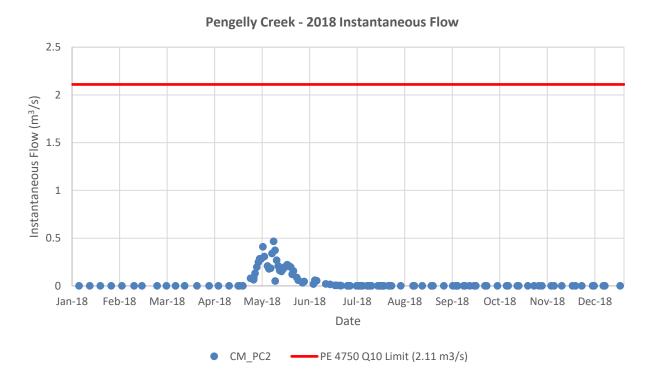
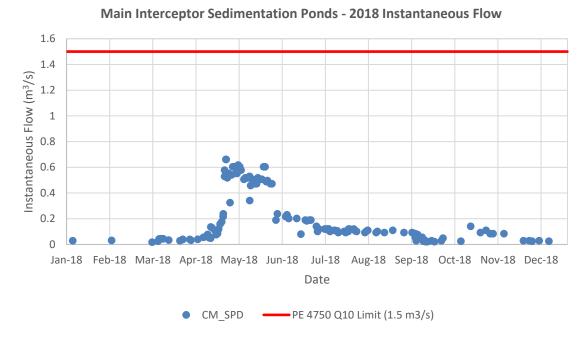



Figure 16: 2018 Instantaneous flow - CM_PC2

Figure 17: 2018 Instantaneous flow - CM_SPD

5.2.3 Maintenance Infiltration Ponds and Sewage Treatment Plant

Flow data of the Maintenance Infiltration Ponds E206437 (CM_WBE) and the Sewage Treatment Plant E206439 (CM_SEW) are presented in Figures 18 and 19.

In 2018, flow measurements of the Maintenance Infiltration Ponds E206437 (CM_WBE) influent ranged from 0.03 m3/day on December 28 to 47.5 m3/day on September 18. The permit limit of 120 m3/day was not exceeded in 2018.

Flow rates of the Sewage Treatment Plant E206439 (CM_SEW) ranged from 5.64 m3/day on November 5 to 23.03 m3/day on May 7. Measured flows did not exceed the permit limit of 56.8 m3/d in 2018.

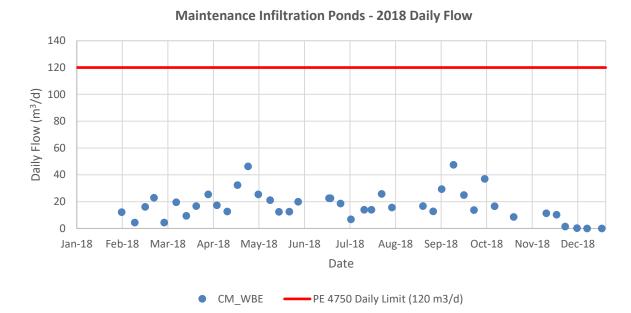


Figure 18: CM_WBE daily flow (m³/day)

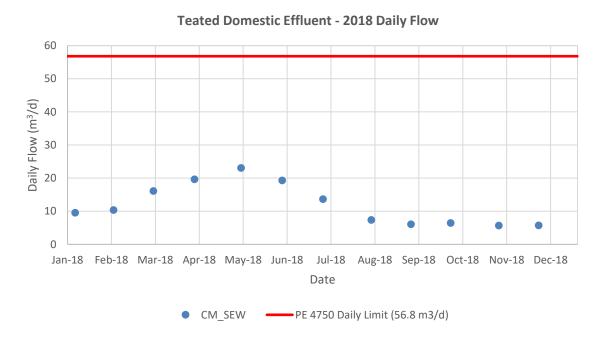


Figure 19: CM_SEW daily flow (m³/day)

6 Management Plan Summary

6.1 Water Management Plan

Teck has developed a Care and Maintenance Integrated Water Management Plan (IWMP) for CMO, which was submitted December 2017 to the Ministry of Energy, Mines, and Petroleum Resources (EMPR) for review. This plan describes the approach to water management at CMO during the care and maintenance period (planned over the next ten years prior to active closure) and acts as a repository where site information related to water management is centralized.

The overarching water management goals at CMO are to identify and manage water-related risks, maintain compliance with permit limits, and continually improve water quality by reducing sediment and mine-related constituents. The IWMP is to be reviewed annually until site conditions are considered static and then every three years after that, with updates completed as required. A review was completed on December 17, 2018. Results of the review of the IWMP will be included within the CMO Annual Reclamation Report submitted by March 31, 2019.

6.1.1 Pit Pumping Water Management in 2018

In 2018, CMO conducted active dewatering of 34 and 6 Pits as authorized under Section 3.2 of Permit 4750, Pit Pumping Plans.

As required in Section 5.2 (iii) of Permit 4750, total estimated pumping volumes for 2018 were as follows:

- 915 804 m3 from 34 Pit; and
- 725 109.23 m3 from 6 Pit.

6.2 Flocculant Management Plan

In 2018, the North Ditch Flocculant station saw significant continued improvements to the work completed the previous year. The focus in 2018 was to increase automation technologies as well real time system monitoring and alarm notifications. In 2018, two new peristaltic dosing pumps were commissioned, allowing the previous dosing pumps to be utilized as back-up pumps in an effort to create redundancy. An uninterruptible power supply (UPS) was added to bridge the data gap in the event of a power outage to the programmable logic controller (PLC). Back up water level and turbidity sensors were also installed in order to have redundancy in the event of a meter malfunction.

In 2018, CMO dispensed a total of 1,546 L of cationic floc and 229.1 L of anionic floc at the North Ditch Flocculant Station, all in accordance with approved 2015 Flocculant Management Plan (FMP) rates. Flocculant dosing took place over a total duration of 185.9 hours between April 9, 2018 and September 19, 2018. Daily maximum concentrations vary depending on turbidity and flow rate in the North Ditch. All anionic floc is dispensed with water as a 3% anionic floc solution whereas cationic flocculant is dispensed at 100 % concentration or undiluted. Flocculant products used at CMO are cationic CYFLOC™ C-591 and an anionic CYFLOC A-1849RS; both of which are manufactured by Cytec Industries Inc. Figures 20 and 21 show the amount of cationic and anionic flocculant (3 % solution) used per month as well as the duration of flocculant dosing per month. CMO also consumed 20.4 Water Lynx 494 portable flocculant blocks (manufactured by

Clearflow Enviro Systems Group Inc.) in three locations upstream of the Main Interceptor Sedimentation Ponds as well as the West Ditch and Main Pond West (Pond 1) inlet in accordance with the approved FMP.

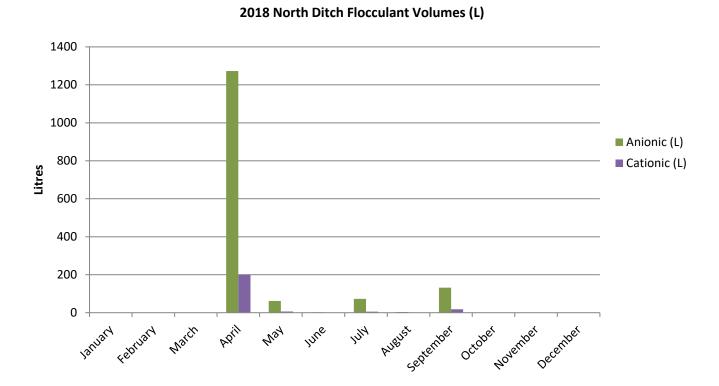


Figure 20: Total volume of flocculant used at North Ditch flocculant station

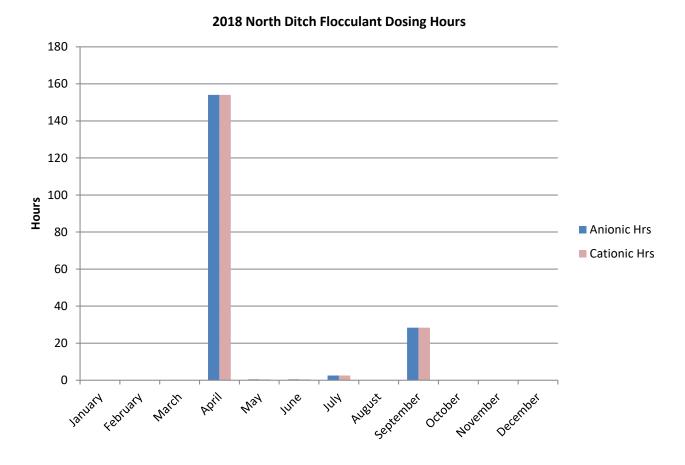


Figure 21: Total duration of flocculant dosing at North Ditch flocculant station

6.3 Emulsion Facilities Water Management Plan

On September 1, 2016 CMO submitted an Emulsion Facilities Water Management Plan (or Plan) to ENV as required under Section 3.5 in Permit 4750.

The Plan describes the approach to water management that avoids or minimizes the release of nitrogen forms (ammonia, nitrogen dioxide, nitrite and nitrate) at each of the areas where CMO stores or handles blasting products:

- Ammonium Nitrate Prill Silo Sump E306116;
- Emulsion Shop Sump E306136; and
- Emulsion Silo.

The objective of the Plan is to implement management activities and procedures that reduce the environmental risks associated with surface water runoff from CMO's emulsion facilities. To achieve this objective, the following actions are performed:

- Runoff from the Emulsion Shop and the Ammonium Nitrate Prill Silo areas is directed to infiltration sumps;
- Runoff from the Emulsion Silo storage facility is directed into 34 Pit;
- The facilities are regularly inspected; and
- Contingency plans are prepared.

In August 2016, Ammonium Nitrate Prill Silo sump E306116 (CM_PR-SILO) and Emulsion Shop sump E306136 (CM_MAX-SHOP) were sized to store runoff from a 12 hour Q10 event assuming zero infiltration. Berms were constructed around the infiltration sumps to help capture and retain surface water runoff. Surface water runoff from each facility is directed toward the permitted discharge location.

Section 1.8.1 of Permit 4750 sets a limit of 60 mg/L EPH for the sumps.

All samples collected at Ammonium Nitrate Prill Silo Sump E306116 (CM_PR-SILO) and Emulsion Shop Sump E306136 (CM_MAX-SHOP) were below the 60 mg/L EPH permit limit (Figure 6).

CMO completed its final blasting operation on November 17th, 2017. Since then, Maxam has vacated the Emulsion Shop building and it is no longer being used to service or store blasting products, related equipment or gear. The building is therefore no longer associated with Emulsion product handling. The Emulsion Silo was also decommissioned in October 2017 and is no longer used for storage of emulsion product at CMO. All product within the Ammonium Nitrate Prill Silo has been transferred to another facility and the empty Ammonium Nitrate Prill Silo's are going to be transferred to another Teck facility.

Since blasting products are no longer stored on site, and all facilities associated with blasting have been decommissioned, CMO has submitted a permit amendment application that includes the request to remove sections 3.3 to 3.7 of Permit 4750.

Water management of existing sumps and drainage around the facilities will be monitored through our existing surface water management monitoring program and included within CMO Care and Maintenance Intergraded Water Management Plan (IWMP).

7 Summary and Conclusions

This report summarizes Teck Coal Limited – Coal Mountain Operations 2018 permitted effluent monitoring program and satisfies the annual reporting requirements for *Environmental Management Act* Permit 4750 (amended April 8, 2016 and July 25, 2016). Requirements for Permit 107517 (originally issued on November 19, 2014) will be detailed in a separate annual report.

In 2018, CMO had 7 incidents related to water, 6 hydrocarbon related spills and 1 non-compliance with Permit 4750. Where possible, corrective and/or preventative actions were implemented to address spills and to prevent re-occurrences.

Consistent with previous years, TSS concentrations and turbidity values were most elevated during freshet and in response to precipitation. TSS concentrations were below the permit limit (50 mg/L) for all samples collected in 2018 across all discharge locations. The Q10 flow rates were not exceeded at Permit 4750 discharge locations throughout 2018.

TSS and BOD₅ concentrations for the Sewage Treatment Plant E206439 (CM_SEW) were below Permit Limits for all monitoring conducted in 2018. Flow rates measured at the Sewage Treatment Plant E206439 (CM_SEW) have continued to decrease as employee numbers decrease at CMO towards the shift to Care and Maintenance activities. The rate of discharge remained below the authorized permit limit for all of 2018.

The Maintenance Infiltration Ponds E206437 (CM_WBE) were below permit limits for all but one sample collected in 2018. EPH results remained below the permit limit of 15 mg/L for 10 of 11 (91%) samples collected in 2018. Measured daily flows were below the permitted authorized discharge limits for all of 2018.

Water management improvements consisted of continued upgrades to the North Ditch Flocculant station, full sediment clean out of the first Maintenance Infiltration Pond E206437 (CM_WBE), and fish salvage work on the Main Interceptor Sedimentation Ponds E102488 (CM_SPD) and the Corbin Sedimentation Pond E206438 (CM_CCPD) such that the ponds and all associated upstream appurtenances can continue to be considered non-fish bearing. The permanent fish barrier added to the Main Interceptor Sedimentation Ponds E102488 (CM_SPD) in 2017 continues to be affective. Additional water management improvements were made in accordance with the Routine Water Infrastructure Maintenance Plan throughout the year on an as needed basis.

The Seven Pit Settling Ponds (SPSPs) were decommissioned in 2017. CMO implemented a number of erosion and sediment control measures in 2018 to reduce surface run-off from the area until vegetation is more fully established. The area has been planted with trees, shrubs, and grasses as well as hydro-seeded in 2018.

Erosion and sediment control measures were implemented in the area of CMO's Quartzite Quarry in 2018. Road drainage improvements and the addition of spring berms were included to help reduce sediment transport associated with runoff due to precipitation. The Quarry has been schedule as a priority area for 2019 Reclamation and the landform design for the area will meet the objectives of the Closure Plan. The interim water control work on the existing road infrastructure included cross ditching and re-sloping to more effectively direct water into ditches and into the quarry pit versus the outside end of the Quarry. A berm was added to protect the edge of the quarry floor where most of 2018 erosion took place. The work completed should significantly reduce the erosion of the pit floor especially through freshet.

8 Appendices

Appendix A - QAQC Data

2018 Field Blank and Duplicate Summary

Analyte	Total Suspended Solids, Lab	Turbidity, Lab
Analytic	SM2540D	E180.1
Method	31012340D	E 100.1
Unit	mg/L	NTU
Date	Result	Result
1/3/2018	< 1.0	< 0.10
1/9/2018	< 1.0	< 0.10
1/16/2018	< 1.0	< 0.10
1/23/2018	< 1.0	< 0.10
1/30/2018	< 1.0	< 0.10
2/6/2018	< 1.0	< 0.10
2/14/2018	< 1.0	< 0.10
2/19/2018	< 1.0	0.17
3/1/2018	< 1.0	< 0.10
3/6/2018	< 1.0	< 0.10
3/13/2018	< 1.0	< 0.10
3/19/2018	< 1.0	< 0.10
3/27/2018	< 1.0	< 0.10
4/4/2018	< 1.0	0.18
4/10/2018	< 1.0	< 0.10
4/17/2018	< 1.0	< 0.10
4/24/2018	< 1.0	< 0.10
5/1/2018	< 1.0	< 0.10
5/7/2018	< 1.0	0.22
5/7/2018	< 1.0	0.26
5/16/2018	< 1.0	< 0.10
5/22/2018	< 1.0	< 0.10
5/29/2018	< 1.0	< 0.10
6/5/2018	< 1.0	< 0.10
6/5/2018	< 1.0	< 0.10
6/12/2018	< 1.0	< 0.10
6/19/2018	< 1.0	< 0.10
6/26/2018	< 1.0	< 0.10

Analyte	Total Suspended Solids, Lab	Turbidity, Lab
Analytic Method	SM2540D	E180.1
Unit	mg/L	NTU
Date	Result	Result
7/3/2018	< 1.0	< 0.10
7/3/2018	< 1.0	< 0.10
7/10/2018	< 1.0	0.12
7/17/2018	< 1.0	0.10
7/24/2018	< 1.0	< 0.10
7/31/2018	< 1.0	< 0.10
8/7/2018	< 1.0	< 0.10
8/15/2018	< 1.0	< 0.10
8/21/2018	< 1.0	0.23
8/28/2018	< 1.0	0.26
9/4/2018	< 1.0	< 0.10
9/4/2018	< 1.0	< 0.10
9/11/2018	< 1.0	< 0.10
9/18/2018	< 1.0	< 0.10
9/25/2018	< 1.0	< 0.10
10/2/2018	< 1.0	< 0.10
10/2/2018	< 1.0	< 0.10
10/9/2018	< 1.0	< 0.10
10/16/2018	4.4	< 0.10
10/23/2018	< 1.0	< 0.10
10/29/2018	< 1.0	< 0.10
11/5/2018	< 1.0	< 0.10
11/5/2018	< 1.0	< 0.10
11/13/2018	< 1.0	< 0.10
11/20/2018	< 1.0	0.19
11/27/2018	< 1.0	< 0.10
12/3/2018	< 1.0	< 0.10
12/3/2018	< 1.0	< 0.10
12/11/2018	< 1.0	< 0.10
12/18/2018	< 1.0	0.42
12/28/2018	< 1.0	< 0.10

Location:	CM_14PIT-PIPE	CM_14PIT-PIPE
Sample ID:	CM_14PIT-PIPE_AHC_2018-12-11_N	CM_NNP_AHC_2018-12-11_N
Date Sampled:	12/11/2018	12/11/2018
Sample Type:	Primary	Secondary

Analyte	Detection Limit Pri.	Detection Limit Dup.	Units			Primary vs. Duplicate	Category1
TOTAL SUSPENDED SOLIDS, LAB		1	mg/l	1.3	1.7	26.67%	Pass
TURBIDITY, LAB	0.1	0.1	ntu	0.68	0.59	14.17%	Pass

Location:	CM_14PIT-PIPE	CM_14PIT-PIPE
Sample ID:	CM_14PIT-PIPE_AHC_2018-12-18_N	CM_NNP_AHC_2018-12-18_N
Date Sampled:	12/18/2018	12/18/2018
Sample Type:	Primary	Secondary

Analyte	Detection Limit	Detection Limit	Units			Primary vs. Duplicate	Category1
_	Pri.	Dup.					
TOTAL SUSPENDED SOLIDS, LAB		1	mg/l	2.4	3.5	37.29%	Pass-1
TURBIDITY, LAB	0.1	0.1	ntu	0.95	0.78	19.65%	Pass

Location:	CM_14PIT-PIPE	CM_14PIT-PIPE
Sample ID:	CM_14PIT-PIPE_AHC_2018-12-25_N	CM_NNP_AHC_2018-12-25_N
Date Sampled:	12/28/2018	12/28/2018
Sample Type:	Primary	Secondary

Analyte	Detection Limit	Detection Limit	Units		Primary vs. Duplicate	Category1
•	Pri.	Dup.				

TOTAL SUSPENDED SOLIDS, LAB	1	1	mg/l	3.3	2.6	23.73%	Pass
TURBIDITY, LAB	0.1	0.1	ntu	0.39	0.3	26.09%	Pass

Location:	CM_14PIT-PIPE	CM_14PIT-PIPE
Sample ID:	CM_14PIT- PIPE_WKLY_WS_20180219_N	CM_NNP_WKLY_WS_20180219_N
Date Sampled:	2/19/2018	2/19/2018
Sample Type:	Primary	Secondary

Analyte	Detection Limit Pri.	Detection Limit Dup.	Units			Primary vs. Duplicate	Category1
TOTAL SUSPENDED SOLIDS, LAB		1	mg/l	<0.50	<0.5	0.00%	Pass
TURBIDITY, LAB	0.1	0.1	ntu	0.65	0.7	7.41%	Pass

Location:	CM_14PIT-PIPE	CM_14PIT-PIPE
Sample ID:	CM_14PIT- PIPE_WKLY_WS_20180313_N	CM_NNP_WKLY_WS_20180313_N
Date Sampled:	3/13/2018	3/13/2018
Sample Type:	Primary	Secondary

Analyte	Detection Limit	Detection Limit	Units			Primary vs. Duplicate	Category1
	Pri.	Dup.					
TOTAL SUSPENDED SOLIDS, LAB		1	mg/l	<0.50	<0.5	0.00%	Pass
TURBIDITY, LAB	0.1	0.1	ntu	1.52	1.47	3.34%	Pass

Location:	CM_14PIT-PIPE	CM_14PIT-PIPE
Sample ID:	CM_14PIT-	CM_NNP_WKLY_WS_20180821_N
	PIPE_WKLY_WS_20180821_N	
Date Sampled:	8/21/2018	8/21/2018
Sample Type:	Primary	Secondary

Analyte	Detection Limit Pri.	Detection Limit Dup.	Units			Primary vs. Duplicate	Category1
TOTAL SUSPENDED SOLIDS, LAB		1	mg/l	1.9	<0.5	116.67%	Pass-1
TURBIDITY, LAB	0.1	0.1	ntu	0.67	0.51	27.12%	Pass

Location:	CM_14PIT-PIPE	CM_14PIT-PIPE
Sample ID:	CM_14PIT- PIPE_WKLY_WS_20181016_N	CM_NNP_WKLY_WS_20181016_N
Date Sampled:	10/16/2018	10/16/2018
Sample Type:	Primary	Secondary

Analyte	Detection Limit	Detection Limit	Units			Primary vs. Duplicate	Category1
	Pri.	Dup.					
TOTAL SUSPENDED SOLIDS, LAB		1	mg/l	3.3	<0.5	147.37%	Pass-1
TURBIDITY, LAB	0.1	0.1	ntu	0.33	0.32	3.08%	Pass

Location:	CM_14PIT-PIPE	CM_14PIT-PIPE
Sample ID:	CM_14PIT- PIPE WKLY WS 20181113 N	CM_NNP_WKLY_WS_20181113_N
Date Sampled:		11/13/2018

			Sample Type:	Primary	Secondary		
Analyte	Detection Limit Pri.	Detection Limit Dup.	Units			Primary vs. Duplicate	Category1
TOTAL SUSPENDED SOLIDS, LAB		1	mg/l	<0.50	1.3	88.89%	Pass-1
TURBIDITY, LAB	0.1	0.1	ntu	0.32	0.33	3.08%	Pass

Location:	CM_14PIT-PIPE	CM_14PIT-PIPE
Sample ID:	CM_14PIT- PIPE_WKLY_WS_20181120_N	CM_NNP_WKLY_WS_20181120_N
Date Sampled:	11/20/2018	11/20/2018
Sample Type:	Primary	Secondary

Analyte	Detection Limit	Detection Limit	Units			Primary vs. Duplicate	Category1
	Pri.	Dup.					
TOTAL SUSPENDED SOLIDS, LAB		1	mg/l	1.9	1.4	30.30%	Pass-1
TURBIDITY, LAB	0.1	0.1	ntu	0.49	0.3	48.10%	Pass-1

Location:	CM_14PIT-PIPE	CM_14PIT-PIPE
Sample ID:	CM_14PIT- PIPE_WKLY_WS_20181127_N	CM_NNP_WKLY_WS_20181127_N
Date Sampled:	11/27/2018	11/27/2018
Sample Type:	Primary	Secondary

	Limit Detection Limi	t Units			Primary vs. Duplicate	Category1
Pi	Dup.					
TOTAL 1 SUSPENDED SOLIDS, LAB	1	mg/l	2.4	2.2	8.70%	Pass

TURBIDITY,	0.1	0.1	ntu	0.33	0.53	46.51%	Pass-1
LAB							

Location:	CM_CC1	CM_CC1
Sample ID:	CM_CC1_WKLY_WS_20180313_N	CM_NNP_WKLY_WS_20180320_N
Date Sampled:	3/19/2018	3/19/2018
Sample Type:	Primary	Secondary

Analyte	Detection Limit Pri.	Detection Limit Dup.	Units			Primary vs. Duplicate	Category1
TOTAL SUSPENDED SOLIDS, LAB	1	1	mg/l	2.0	2.2	9.52%	Pass
TURBIDITY, LAB	0.1	0.1	ntu	2.40	2.6	8.00%	Pass

Location:	CM_CC1	CM_CC1
Sample ID:	CM_CC1_WKLY_WS_20180327_N	CM_NNP_WKLY_WS_20180327_N
Date Sampled:	3/27/2018	3/27/2018
Sample Type:	Primary	Secondary

Analyte	Detection Limit	Detection Limit	Units			Primary vs. Duplicate	Category1
	Pri.	Dup.					
TOTAL SUSPENDED SOLIDS, LAB		1	mg/l	<0.50	<0.5	0.00%	Pass
TURBIDITY, LAB	0.1	0.1	ntu	0.76	0.74	2.67%	Pass

Location:	CM_CC1	CM_CC1
Sample ID:	CM_CC1_WKLY_WS_20180410_N	CM_NNP_WKLY_WS_20180410_N
Date Sampled:	4/10/2018	4/10/2018
Sample Type:	Primary	Secondary

Analyte	Detection Limit Pri.	Detection Limit Dup.	Units			Primary vs. Duplicate	Category1
TOTAL SUSPENDED SOLIDS, LAB		1	mg/l	1.1	1.3	16.67%	Pass
TURBIDITY, LAB	0.1	0.1	ntu	0.58	0.66	12.90%	Pass

Location:	CM_CC1	CM_CC1
Sample ID:	CM_CC1_WKLY_WS_20180417_N	CM_NNP_WKLY_WS_20180417_N
Date Sampled:	4/17/2018	4/17/2018
Sample Type:	Primary	Secondary

Analyte	Detection Limit	Detection Limit	Units			Primary vs. Duplicate	Category1
_	Pri.	Dup.					
TOTAL SUSPENDED SOLIDS, LAB		1	mg/l	2.1	2.3	9.09%	Pass
TURBIDITY, LAB	0.1	0.1	ntu	4.03	4.02	0.25%	Pass

Location:	CM_CC1	CM_CC1
Sample ID:	CM_CC1_WKLY_WS_20180522_N	CM_NNP_WKLY_WS_20180522_N
Date Sampled:	5/22/2018	5/22/2018
Sample Type:	Primary	Secondary

Analyte	Detection Limit	Detection Limit	Units		Primary vs. Duplicate	Category1
	Pri.	Dup.				

TOTAL SUSPENDED SOLIDS, LAB	1	1	mg/l	2.2	1.6	31.58%	Pass-1
TURBIDITY, LAB	0.1	0.1	ntu	1.49	1.46	2.03%	Pass

Location:	CM_CC1	CM_CC1
Sample ID:	CM_CC1_WKLY_WS_20180619_N	CM_NNP_WKLY_WS_20180619_N
Date Sampled:	6/19/2018	6/19/2018
Sample Type:	Primary	Secondary

Analyte	Detection Limit Pri.	Detection Limit Dup.	Units			Primary vs. Duplicate	Category1
TOTAL SUSPENDED SOLIDS, LAB		1	mg/l	2.6	2.2	16.67%	Pass
TURBIDITY, LAB	0.1	0.1	ntu	1.40	1.16	18.75%	Pass

Location:	CM_CC1	CM_CC1
Sample ID:	CM_CC1_WKLY_WS_20180710_N	CM_NNP_WKLY_WS_20180710_N
Date Sampled:	7/10/2018	7/10/2018
Sample Type:	Primary	Secondary

Analyte	Detection Limit Pri.	Detection Limit Dup.	Units			Primary vs. Duplicate	Category1
TOTAL SUSPENDED SOLIDS, LAB		1	mg/l	1.3	1.5	14.29%	Pass
TURBIDITY, LAB	0.1	0.1	ntu	1.35	1.13	17.74%	Pass

Location:	CM_CC1	CM_CC1
Sample ID:	CM_CC1_WS_2018-03-06_N	CM_NNP_WS_2018-03-06_N
Date Sampled:	3/6/2018	3/6/2018
Sample Type:	Primary	Secondary

Analyte	Detection Limit Pri.	Detection Limit Dup.	Units			Primary vs. Duplicate	Category1
TOTAL SUSPENDED SOLIDS, LAB		1	mg/l	<0.50	<0.5	0.00%	Pass
TURBIDITY, LAB	0.1	0.1	ntu	0.26	267	199.61%	Pass-1

Location:	CM_CC1	CM_CC1
Sample ID:	CM_CC1_WS_2018-05-01_N	CM_NNP_WS_2018-05-01_N
Date Sampled:	5/7/2018	5/7/2018
Sample Type:	Primary	Secondary

Analyte	Detection Limit	Detection Limit	Units			Primary vs. Duplicate	Category1
	Pri.	Dup.					
TOTAL SUSPENDED SOLIDS, LAB		1	mg/l	3.3	3.7	11.43%	Pass
TURBIDITY, LAB	0.1	0.1	ntu	12.5	10.4	18.34%	Pass

Location:	CM_CC1	CM_CC1
Sample ID:	CM_CC1_WS_2018-06-05_N	CM_NNP_WS_2018-06-05_N
Date Sampled:	6/5/2018	6/5/2018
Sample Type:	Primary	Secondary

Analyte	Detection Limit	Detection Limit	Units			Primary vs. Duplicate	Category1
	Pri.	Dup.					
TOTAL SUSPENDED SOLIDS, LAB		1	mg/l	1.0	1.4	33.33%	Pass-1
TURBIDITY, LAB	0.1	0.1	ntu	1.20	1.3	8.00%	Pass

Location:	CM_CC1	CM_CC1
Sample ID:	CM_CC1_WS_2018-07-02_N	CM_NNP2_WS_2018-07-02_N
Date Sampled:	7/3/2018	7/3/2018
Sample Type:	Primary	Secondary

Analyte		Detection Limit	Units			Primary vs. Duplicate	Category1
	Pri.	Dup.					
TOTAL SUSPENDED SOLIDS, LAB		1	mg/l	1.9	1.5	23.53%	Pass
TURBIDITY, LAB	0.1	0.1	ntu	1.86	1.68	10.17%	Pass

Sample Type:	Primary	Secondary
Date Sampled:	9/4/2018	9/4/2018
Sample ID:	CM_CC1_WS_2018-09-04_N	CM_NNP_WS_2018-09-04_N
Location:	CM_CC1	CM_CC1

Analyte	Detection Limit	Detection Limit	Units			Primary vs. Duplicate	Category1
	Pri.	Dup.					
TOTAL SUSPENDED SOLIDS, LAB		1	mg/l	<0.50	1.1	75.00%	Pass-1
TURBIDITY, LAB	0.1	0.1	ntu	0.69	0.67	2.94%	Pass

Location:	CM_CC1	CM_CC1
Sample ID:	CM_CC1_WS_2018-10-01_N	CM_NNP_WS_2018-10-01_N
Date Sampled:	10/2/2018	10/2/2018
Sample Type:	Primary	Secondary

Analyte	Detection Limit Pri.	Detection Limit Dup.	Units			Primary vs. Duplicate	Category1
TOTAL SUSPENDED SOLIDS, LAB		1	mg/l	<0.50	<0.5	0.00%	Pass
TURBIDITY, LAB	0.1	0.1	ntu	0.66	0.54	20.00%	Pass

Location:	CM_CC1	CM_CC1
Sample ID:	CM_CC1_WS_2018-11-06_N	CM_NNP_WS_2018-11-06_N
Date Sampled:	11/5/2018	11/5/2018
Sample Type:	Primary	Secondary

Analyte	Detection Limit	Detection Limit	Units			Primary vs. Duplicate	Category1
	Pri.	Dup.					
TOTAL SUSPENDED SOLIDS, LAB		1	mg/l	2.1	1.1	62.50%	Pass-1
TURBIDITY, LAB	0.1	0.1	ntu	1.41	1.39	1.43%	Pass

Location:	CM_CC1	CM_CC1
Sample ID:	CM_CC1_WS_2018-12-04_N	CM_NNP2_WS_2018-12-04_N

Date Sampled:	12/3/2018	12/3/2018
Sample Type:	Primary	Secondary

Analyte	Detection Limit	Detection Limit	Units			Primary vs. Duplicate	Category1
	Pri.	Dup.					
TOTAL SUSPENDED SOLIDS, LAB		1	mg/l	<0.50	<0.5	0.00%	Pass
TURBIDITY, LAB	0.1	0.1	ntu	0.46	0.47	2.15%	Pass

Location:	CM_CCPD	CM_CCPD
Sample ID:	CM_CCPD_WKLY_WS_20180123_N	CM_NNP_WKLY_WS_20180123_FD
Date Sampled:	1/23/2018	1/23/2018
Sample Type:	Primary	Secondary

Analyte	Detection Limit Pri.	Detection Limit Dup.	Units			Primary vs. Duplicate	Category1
TOTAL SUSPENDED SOLIDS, LAB		1	mg/l	1.4	1.4	0.00%	Pass
TURBIDITY, LAB	0.1	0.1	ntu	2.68	2.51	6.55%	Pass

Location:	CM_CCPD	CM_CCPD
Sample ID:	CM_CCPD_WKLY_WS_20180130_N	CM_NNP_WKLY_WS_20180130_FD
Date Sampled:	1/30/2018	1/30/2018
Sample Type:	Primary	Secondary

Analyte	Detection Limit	Detection Limit	Units		Primary vs. Duplicate	Category1
	Pri.	Dup.				ı

TOTAL SUSPENDED SOLIDS, LAB	1	1	mg/l	1.1	<0.5	75.00%	Pass-1
TURBIDITY, LAB	0.1	0.1	ntu	1.99	1.81	9.47%	Pass

Location:	CM_CCPD	CM_CCPD
Sample ID:	CM_CCPD_WKLY_WS_20180301_N	CM_NNP_WKLY_WS_20180301_N
Date Sampled:	3/1/2018	3/1/2018
Sample Type:	Primary	Secondary

Analyte	Detection Limit Pri.	Detection Limit Dup.	Units			Primary vs. Duplicate	Category1
TOTAL SUSPENDED SOLIDS, LAB		1	mg/l	<0.50	<0.5	0.00%	Pass
TURBIDITY, LAB	0.1	0.1	ntu	0.73	0.71	2.78%	Pass

Sample Type:	Primary	Secondary
Date Sampled:	5/1/2018	5/1/2018
Sample ID:	CM_CCPD_WKLY_WS_20180501_N	CM_NNP_WKLY_WS_20180501_N
Location:	CM_CCPD	CM_CCPD

Analyte	Detection Limit	Detection Limit	Units			Primary vs. Duplicate	Category1
	Pri.	Dup.					
TOTAL SUSPENDED SOLIDS, LAB		1	mg/l	7.1	7.3	2.78%	Pass
TURBIDITY, LAB	0.1	0.1	ntu	6.92	9.12	27.43%	Pass

Location:	CM_CCPD	CM_CCPD
Sample ID:	CM_CCPD_WKLY_WS_20180529_N	CM_NNP_WKLY_WS_20180529_N
Date Sampled:	5/29/2018	5/29/2018
Sample Type:	Primary	Secondary

Analyte	Detection Limit Pri.	Detection Limit Dup.	Units			Primary vs. Duplicate	Category1
TOTAL SUSPENDED SOLIDS, LAB		1	mg/l	1.7	<0.5	109.09%	Pass-1
TURBIDITY, LAB	0.1	0.1	ntu	1.82	1.88	3.24%	Pass

Location:	CM_CCPD	CM_CCPD
Sample ID:	CM_CCPD_WKLY_WS_20180612_N	CM_NNP_WKLY_WS_20180612_N
Date Sampled:	6/12/2018	6/12/2018
Sample Type:	Primary	Secondary

Analyte	Detection Limit	Detection Limit	Units			Primary vs. Duplicate	Category1
	Pri.	Dup.					
TOTAL SUSPENDED SOLIDS, LAB		1	mg/l	1.0	1	0.00%	Pass
TURBIDITY, LAB	0.1	0.1	ntu	1.79	1.47	19.63%	Pass

Sample Type:		Secondary
Date Sampled:	8/15/2018	8/15/2018
Sample ID:	CM_CCPD_WKLY_WS_20180815_N	CM_NNP_WKLY_WS_20180815_N
Location	CM_CCPD	CM_CCPD

Analyte	Detection Limit	Detection Limit	Units			Primary vs. Duplicate	Category1
	Pri.	Dup.					
TOTAL SUSPENDED SOLIDS, LAB		1	mg/l	1.2	1	18.18%	Pass
TURBIDITY, LAB	0.1	0.1	ntu	0.89	0.92	3.31%	Pass

Location:	CM_CCPD	CM_CCPD
Sample ID:	CM_CCPD_WKLY_WS_20180828_N	CM_NNP_WKLY_WS_20180828_N
Date Sampled:	8/28/2018	8/28/2018
Sample Type:	Primary	Secondary

Analyte		Detection Limit	Units			Primary vs. Duplicate	Category1
	Pri.	Dup.					
TOTAL SUSPENDED SOLIDS, LAB		1	mg/l	3.9	2.1	60.00%	Pass-1
TURBIDITY, LAB	0.1	0.1	ntu	2.64	1.89	33.11%	Fail

Sample Type:	Primary	Secondary
Date Sampled:	9/11/2018	9/11/2018
Sample ID:	CM_CCPD_WKLY_WS_20180911_N	CM_NNP_WKLY_WS_20180911_N
Location:	CM_CCPD	CM_CCPD

Analyte	Detection Limit	Detection Limit	Units			Primary vs. Duplicate	Category1
	Pri.	Dup.					
TOTAL SUSPENDED SOLIDS, LAB		1	mg/l	1.8	2	10.53%	Pass
TURBIDITY, LAB	0.1	0.1	ntu	1.56	1.55	0.64%	Pass

Location:	CM_CCPD	CM_CCPD
Sample ID:	CM_CCPD_WKLY_WS_20181009_N	CM_NNP_WKLY_WS_20181009_N
Date Sampled:	10/9/2018	10/9/2018
Sample Type:	Primary	Secondary

Analyte	Detection Limit	Detection Limit	Units			Primary vs. Duplicate	Category1
	Pri.	Dup.					
TOTAL SUSPENDED SOLIDS, LAB		1	mg/l	3.1	3.3	6.25%	Pass
TURBIDITY, LAB	0.1	0.1	ntu	2.11	2.15	1.88%	Pass

Location:	CM_CCPD	CM_CCPD
Sample ID:	CM_CCPD_WKLY_WS_20181030_N	CM_NNP_WKLY_WS_20181030_N
Date Sampled:	10/29/2018	10/29/2018
Sample Type:	Primary	Secondary

Analyte	Detection Limit	Detection Limit	Units			Primary vs. Duplicate	Category1
	Pri.	Dup.					
TOTAL SUSPENDED SOLIDS, LAB		1	mg/l	2.5	2.9	14.81%	Pass
TURBIDITY, LAB	0.1	0.1	ntu	3.52	3.18	10.15%	Pass

Locatio	n: CM_CCPD	CM_CCPD
Sample I	D: CM_CCPD_WS_2018-08-07_N	CM_NNP2_WS_2018-08-07_N

Date Sampled:	8/7/2018	8/7/2018
Sample Type:	Primary	Secondary

Analyte	Detection Limit	Detection Limit	Units			Primary vs. Duplicate	Category1
	Pri.	Dup.					
TOTAL SUSPENDED SOLIDS, LAB		1	mg/l	1.3	1.1	16.67%	Pass
TURBIDITY, LAB	0.1	0.1	ntu	0.83	0.75	10.13%	Pass

Location:	CM_CCPD	CM_CCPD
Sample ID:	CM_CCPD_WS_2018-11-06_N	CM_NNP2_WS_2018-11-06_N
Date Sampled:	11/5/2018	11/5/2018
Sample Type:	Primary	Secondary

Analyte	Detection Limit Pri.	Detection Limit Dup.	Units			Primary vs. Duplicate	Category1
TOTAL SUSPENDED SOLIDS, LAB		1	mg/l	3.5	2.3	41.38%	Pass-1
TURBIDITY, LAB	0.1	0.1	ntu	3.04	2.91	4.37%	Pass

Location:	CM_MC1	CM_MC1
Sample ID:	CM_MC1_WS_2018-07-02_N	CM_NNP_WS_2018-07-02_N
Date Sampled:	7/3/2018	7/3/2018
Sample Type:	Primary	Secondary

Analyte	Detection Limit	Detection Limit	Units		Primary vs. Duplicate	Category1
	Pri.	Dup.				ı

TOTAL SUSPENDED SOLIDS, LAB	1	1	mg/l	2.1	1.9	10.00%	Pass
TURBIDITY, LAB	0.1	0.1	ntu	24.0	0.74	188.04%	Fail

Sample Type:	Primary	Secondary
Date Sampled:	1/3/2018	1/3/2018
Sample ID:	CM_MC2_WKLY_WS_20180103_N	CM_NNP_WKLY_WS_20180103_FD
Location:	CM_MC2	CM_MC2

Analyte	Detection Limit Pri.	Detection Limit Dup.	Units			Primary vs. Duplicate	Category1
TOTAL SUSPENDED SOLIDS, LAB		1	mg/l	2.7	<0.5	137.50%	Pass-1
TURBIDITY, LAB	0.1	0.1	ntu	0.47	0.58	20.95%	Pass

Date Sampled: Sample Type:		1/16/2018 Secondary
•		
Sample ID:	CM_MC2_WKLY_WS_20180116_N	CM_NNP_WKLY_WS_20180116_FD
Location:	CM_MC2	CM_MC2

Analyte	Detection Limit Pri.	Detection Limit Dup.	Units			Primary vs. Duplicate	Category1
TOTAL SUSPENDED SOLIDS, LAB		1	mg/l	1.3	1.3	0.00%	Pass
TURBIDITY, LAB	0.1	0.1	ntu	0.75	0.69	8.33%	Pass

Location:	CM_MC2	CM_MC2
Sample ID:	CM_MC2_WKLY_WS_20180214_N	CM_NNP_WKLY_WS_20180214_N
Date Sampled:	2/14/2018	2/14/2018
Sample Type:	Primary	Secondary

Analyte	Detection Limit Pri.	Detection Limit Dup.	Units			Primary vs. Duplicate	Category1
TOTAL SUSPENDED SOLIDS, LAB		1	mg/l	1.0	1.2	18.18%	Pass
TURBIDITY, LAB	0.1	0.1	ntu	0.25	0.28	11.32%	Pass

Location:	CM_MC2	CM_MC2
Sample ID:	CM_MC2_WKLY_WS_20180724_N	CM_NNP_WKLY_WS_20180724_N
Date Sampled:	7/24/2018	7/24/2018
Sample Type:	Primary	Secondary

Analyte	Detection Limit	Detection Limit	Units			Primary vs. Duplicate	Category1
	Pri.	Dup.					
TOTAL SUSPENDED SOLIDS, LAB		1	mg/l	<0.50	1.4	94.74%	Pass-1
TURBIDITY, LAB	0.1	0.1	ntu	0.44	0.46	4.44%	Pass

Location:	CM_MC2	CM_MC2
Sample ID:	CM_MC2_WKLY_WS_20180731_N	CM_NNP_WKLY_WS_20180731_N
Date Sampled:	7/31/2018	7/31/2018
Sample Type:	Primary	Secondary

Analyte	Detection Limit	Detection Limit	Units			Primary vs. Duplicate	Category1
	Pri.	Dup.					
TOTAL SUSPENDED SOLIDS, LAB		1	mg/l	<0.50	1.1	75.00%	Pass-1
TURBIDITY, LAB	0.1	0.1	ntu	0.25	0.5	66.67%	Pass-1

Location:	CM_MC2	CM_MC2
Sample ID:	CM_MC2_WKLY_WS_20180918_N	CM_NNP_WKLY_WS_20180918_N
Date Sampled:	9/18/2018	9/18/2018
Sample Type:	Primary	Secondary

Analyte		Detection Limit	Units			Primary vs. Duplicate	Category1
	Pri.	Dup.					
TOTAL SUSPENDED SOLIDS, LAB		1	mg/l	1.4	<0.5	94.74%	Pass-1
TURBIDITY, LAB	0.1	0.1	ntu	0.58	0.59	1.71%	Pass

Location:	CM_MC2	CM_MC2
Sample ID:	CM_MC2_WKLY_WS_20180925_N	CM_NNP_WKLY_WS_20180925_N
Date Sampled:	9/25/2018	9/25/2018
Sample Type:	Primary	Secondary

Analyte	Detection Limit	Detection Limit	Units			Primary vs. Duplicate	Category1
	Pri.	Dup.					
TOTAL SUSPENDED SOLIDS, LAB		1	mg/l	<0.50	<0.5	0.00%	Pass
TURBIDITY, LAB	0.1	0.1	ntu	0.50	0.43	15.05%	Pass

Location:	CM_MC2	CM_MC2
Sample ID:	CM_MC2_WKLY_WS_20181023_N	CM_NNP_WKLY_WS_20181023_N
Date Sampled:	10/23/2018	10/23/2018
Sample Type:	Primary	Secondary

Analyte	Detection Limit Pri.	Detection Limit Dup.	Units			Primary vs. Duplicate	Category1
TOTAL SUSPENDED SOLIDS, LAB		1	mg/l	1.8	1.9	5.41%	Pass
TURBIDITY, LAB	0.1	0.1	ntu	1.19	0.57	70.45%	Fail

Location:	CM_MC2	CM_MC2
Sample ID:	CM_MC2_WS_2018-01-01_N	WS_2018-01-01_007
Date Sampled:	1/9/2018	1/9/2018
Sample Type:	Primary	Secondary

Analyte	Detection Limit	Detection Limit	Units			Primary vs. Duplicate	Category1
	Pri.	Dup.					
TOTAL SUSPENDED SOLIDS, LAB		1	mg/l	1.0	1.6	46.15%	Pass-1
TURBIDITY, LAB	0.1	0.1	ntu	0.44	0.53	18.56%	Pass

Location:	CM_MC2	CM_MC2
Sample ID:	CM_MC2_WS_2018-02-07_N	WS_2018-02-07_052

Date Sampled:	2/6/2018	2/6/2018
Sample Type:	Primary	Secondary

Analyte	Detection Limit	Detection Limit	Units			Primary vs. Duplicate	Category1
	Pri.	Dup.					
TOTAL SUSPENDED SOLIDS, LAB		1	mg/l	<0.50	<0.5	0.00%	Pass
TURBIDITY, LAB	0.1	0.1	ntu	0.32	0.4	22.22%	Pass

Location:	CM_MC2	CM_MC2
Sample ID:	CM_MC2_WS_2018-04-02_N	CM_NNP_WS_2018-04-02_N
Date Sampled:	4/4/2018	4/4/2018
Sample Type:	Primary	Secondary

Analyte	Detection Limit Pri.	Detection Limit Dup.	Units			Primary vs. Duplicate	Category1
TOTAL SUSPENDED SOLIDS, LAB		1	mg/l	<0.50	<0.5	0.00%	Pass
TURBIDITY, LAB	0.1	0.1	ntu	1.02	0.84	19.35%	Pass

Location:	CM_SPD	CM_SPD
Sample ID:	CM_SPD_WKLY_WS_20180424_N	CM_NNP_WKLY_WS_20180424_N
Date Sampled:	4/24/2018	4/24/2018
Sample Type:	Primary	Secondary

-	Analyte	Detection Limit	Detection Limit	Units		Primary vs. Duplicate	Category1
		Pri.	Dup.				

TOTAL SUSPENDED SOLIDS, LAB	1	1	mg/l	3.3	3.1	6.25%	Pass
TURBIDITY, LAB	0.1	0.1	ntu	4.18	3.35	22.05%	Pass

Location:	CM_SPD	CM_SPD
Sample ID:	CM_SPD_WKLY_WS_20180516_N	CM_NNP_WKLY_WS_20180516_N
Date Sampled:	5/16/2018	5/16/2018
Sample Type:	Primary	Secondary

Analyte		Detection Limit	Units			Primary vs. Duplicate	Category1
	Pri.	Dup.					
TOTAL SUSPENDED SOLIDS, LAB		1	mg/l	12.8	11.2	13.33%	Pass
TURBIDITY, LAB	0.1	0.1	ntu	15.5	14	10.17%	Pass

Sample Type:	Primary	Secondary
Date Sampled:	6/26/2018	6/26/2018
Sample ID:	CM_SPD_WKLY_WS_20180626_N	CM_NNP_WKLY_WS_20180626_N
Location:	CM_SPD	CM_SPD

Analyte		Detection Limit	Units			Primary vs. Duplicate	Category1
	Pri.	Dup.					
TOTAL SUSPENDED SOLIDS, LAB		1	mg/l	8.1	6.3	25.00%	Pass
TURBIDITY, LAB	0.1	0.1	ntu	4.63	2.51	59.38%	Fail

Location:	CM_SPD	CM_SPD
Sample ID:	CM_SPD_WKLY_WS_20180717_N	CM_NNP_WKLY_WS_20180717_N
Date Sampled:	7/17/2018	7/17/2018
Sample Type:	Primary	Secondary

Analyte	Detection Limit	Detection Limit	Units			Primary vs. Duplicate	Category1
	Pri.	Dup.					
TOTAL SUSPENDED SOLIDS, LAB		1	mg/l	1.2	<0.5	82.35%	Pass-1
TURBIDITY, LAB	0.1	0.1	ntu	1.28	1.11	14.23%	Pass

Location:	CM_SPD	CM_SPD
Sample ID:	CM_SPD_WS_2018-06-05_N	CM_NNP2_WS_2018-06-05_N
Date Sampled:	6/5/2018	6/5/2018
Sample Type:	Primary	Secondary

Analyte	Detection Limit	Detection Limit	Units			Primary vs. Duplicate	Category1
	Pri.	Dup.					
TOTAL SUSPENDED SOLIDS, LAB		1	mg/l	2.6	2	26.09%	Pass
TURBIDITY, LAB	0.1	0.1	ntu	2.82	2.82	0.00%	Pass

Sample Type:	Primary	Secondary
Date Sampled:	9/4/2018	9/4/2018
Sample ID:	CM_SPD_WS_2018-09-04_N	CM_NNP2_WS_2018-09-04_N
Location:	CM_SPD	CM_SPD

Analyte	Detection Limit	Detection Limit	Units			Primary vs. Duplicate	Category1
	Pri.	Dup.					
TOTAL SUSPENDED SOLIDS, LAB		1	mg/l	<0.50	1.1	75.00%	Pass-1
TURBIDITY, LAB	0.1	0.1	ntu	0.53	1.27	82.22%	Pass-1

Location:	CM_SPD	CM_SPD
Sample ID:	CM_SPD_WS_2018-10-01_N	CM_NNP2_WS_2018-10-01_N
Date Sampled:	10/2/2018	10/2/2018
Sample Type:	Primary	Secondary

Analyte	Detection Limit Pri.	Detection Limit	Units			Primary vs. Duplicate	Category1
	FII.	Dup.					
TOTAL SUSPENDED SOLIDS, LAB		1	mg/l	<0.50	<0.5	0.00%	Pass
TURBIDITY, LAB	0.1	0.1	ntu	1.06	1.08	1.87%	Pass

Sample Type:	Primary	Secondary
Date Sampled:	12/3/2018	12/3/2018
Sample ID:	CM_SPD_WS_2018-12-04_N	CM_NNP_WS_2018-12-04_N
Location:	CM_SPD	CM_SPD

Analyte	Detection Limit	Detection Limit	Units			Primary vs. Duplicate	Category1
	Pri.	Dup.					
TOTAL SUSPENDED SOLIDS, LAB		1	mg/l	2.5	<0.5	133.33%	Pass-1
TURBIDITY, LAB	0.1	0.1	ntu	1.56	1.09	35.47%	Pass-2

RPD Control Limits

Pass - RPD <= 30%

Pass-1 - RPD > 30%, Analysis results < 10 times Detection Limit

Pass-2 - RPD > 30% and RPD <= 50%, Analysis result > 10 times Detection Limit and < 20 times Detection Limit

Exceeds RPD Control Limits

Appendix B - 2018 Monitoring Data

2018 Flow Data (m³/s) - Discharge Locations

Site ID	CM_CCPD	CM PC2	CM_SPD
EMS Code	E206438	E298733	E102488
1/3/2018	0.149		
1/3/2018		0	
1/9/2018			0.0297642
1/9/2018	0.171871		
1/9/2018		0	
1/16/2018	0.136277		
1/16/2018		0	
1/23/2018	0.144		
1/23/2018		0	
1/30/2018	0.161		
1/30/2018		0	
2/6/2018			0.031962
2/6/2018		0	
2/14/2018	0.124573		
2/14/2018		0	
2/19/2018	0.136277		
2/19/2018		0	
3/1/2018	0.126872		
3/1/2018		0	
3/7/2018			0.018814
3/7/2018	0.126872		
3/7/2018		0	
3/11/2018			0.025648
3/12/2018			0.043308
3/13/2018	0.124573		
3/13/2018		0	
3/13/2018			0.044394
3/14/2018			0.044394
3/15/2018			0.044394
3/19/2018			0.034254
3/19/2018	0.102757		
3/19/2018		0	
3/27/2018			0.030196
3/27/2018	0.106951		
3/27/2018		0	
3/29/2018			0.039127
3/29/2018			0.039127
4/3/2018			0.039127
4/4/2018			0.0333254

Teck Coal Limited Page xxviii

Site ID	CM_CCPD	CM_PC2	CM_SPD
EMS Code	E206438	E298733	E102488
4/4/2018	0.1134		
4/4/2018		0	
4/9/2018			0.041186
4/10/2018	0.122296		
4/10/2018		0	
4/13/2018			0.056149
4/16/2018			0.077743
4/17/2018			0.053054
4/17/2018	0.102757		
4/17/2018		0	
4/18/2018			0.056149
4/18/2018			0.050064
4/18/2018			0.050064
4/18/2018			0.136348
4/19/2018			0.131051
4/21/2018			0.111109
4/22/2018			0.076981
4/23/2018		0	
4/23/2018			0.085623
4/23/2018	0.092643		
4/24/2018			0.120833
4/24/2018	0.136277		
4/24/2018		0	
4/25/2018	0.136277		
4/25/2018			0.158808
4/26/2018			0.177018
4/26/2018		0	
4/26/2018	0.136277		
4/27/2018	0.148511		
4/27/2018			0.217058
4/27/2018			0.238939
4/27/2018	0.148511		
4/28/2018			0.529576
4/28/2018			0.578104
4/29/2018			0.662359
4/29/2018			0.662359
4/30/2018			0.518573
5/1/2018			0.552985
5/1/2018	0.217659		
5/1/2018		0.079858	
5/2/2018			0.3259
5/3/2018		0.064	
5/3/2018			0.541056

Teck Coal Limited Page xxix

Site ID	CM_CCPD	CM_PC2	CM_SPD
EMS Code	E206438	E298733	E102488
5/3/2018	0.146712		
5/3/2018	0.202764		
5/3/2018		0.083562	
5/4/2018			0.604782
5/4/2018		0.130693	
5/4/2018	0.217659		
5/5/2018	0.3182		
5/5/2018		0.196	
5/5/2018			0.6048
5/6/2018	0.3757		
5/6/2018		0.2479	
5/6/2018			0.553
5/7/2018	0.6074		
5/7/2018		0.2839	
5/7/2018			0.553
5/8/2018			0.6187
5/8/2018	0.708		
5/8/2018		0.2839	
5/9/2018	0.8828		
5/9/2018		0.4087	
5/9/2018			0.6048
5/10/2018			0.5781
5/10/2018	1.0101		
5/10/2018		0.3068	
5/12/2018			0.5081
5/12/2018	0.8224		
5/12/2018		0.2083	
5/13/2018		0.1783	
5/13/2018	0.8224		
5/13/2018			0.5186
5/14/2018		0.1841	
5/14/2018	0.8523		
5/14/2018			0.5186
5/15/2018			0.5186
5/15/2018	0.9454		
5/15/2018		0.339	
5/16/2018			0.5296
5/16/2018		0.4658	
5/16/2018	1.1461		
5/16/2018			0.342
5/17/2018			0.4592
5/17/2018		0.3729	
5/17/2018	1.2907		

Teck Coal Limited Page xxx

Site ID	CM_CCPD	CM_PC2	CM_SPD
EMS Code	E206438	E298733	E102488
5/17/2018	1.15		
5/17/2018		0.05	
5/18/2018		0.2692	
5/18/2018			0.5081
5/18/2018	1.2907		
5/19/2018		0.2083	
5/19/2018	1.2173		
5/19/2018			0.4888
5/20/2018		0.1615	
5/20/2018	1.1461		
5/20/2018			0.4722
5/21/2018		0.1508	
5/21/2018	1.0101		
5/21/2018			0.4722
5/22/2018			0.5186
5/22/2018	0.9775		
5/22/2018		0.1726	
5/23/2018			0.5081
5/23/2018	1.0433		
5/23/2018		0.196	
5/24/2018			0.5081
5/24/2018	1.0433		
5/24/2018		0.2021	
5/25/2018		0.2211	
5/25/2018	1.0433		
5/25/2018			0.5081
5/26/2018			0.6048
5/26/2018		0.2083	
5/26/2018	1.1113		
5/27/2018			0.6048
5/27/2018		0.196	
5/27/2018	1.0101		
5/28/2018		0.1212	
5/28/2018	1.0101		
5/28/2018			0.4888
5/29/2018			0.4981
5/29/2018	0.9138		
5/29/2018		0.1561	
5/31/2018		0.0874	
5/31/2018			0.4722
5/31/2018	0.7641		
6/1/2018			0.4722
6/1/2018		0.0596	

Teck Coal Limited Page xxxi

Site ID	CM_CCPD	CM_PC2	CM_SPD
EMS Code	E206438	E298733	E102488
6/1/2018	0.708		
6/4/2018		0.033	
6/4/2018	1.2173		
6/4/2018			0.1898
6/5/2018		0.0452	
6/5/2018	0.5773		
6/5/2018			0.2389
6/11/2018		0.0195	
6/11/2018	0.4381		
6/11/2018			0.2171
6/12/2018			0.2315
6/12/2018		0.0596	
6/12/2018	0.4168		
6/13/2018		0.0536	
6/13/2018	0.4168		
6/13/2018			0.203166
6/19/2018			0.2032
6/19/2018	0.356		
6/19/2018		0.0212	
6/22/2018		0.0163	
6/22/2018	0.3369		
6/22/2018			0.0808
6/25/2018			0.1898
6/25/2018	0.3369		
6/25/2018		0.0059	
6/26/2018			0.1834
6/26/2018	0.396		
6/26/2018		0.0051	
6/28/2018	0.396		
6/28/2018		0.003	
6/28/2018			0.1898
6/29/2018	0.3757		
6/29/2018		0.002	
6/29/2018			0.1898
7/3/2018			0.1418
7/3/2018		0.0001	
7/3/2018	0.356		
7/4/2018		0	
7/4/2018	0.3369		
7/4/2018			0.1019
7/5/2018		0	
7/5/2018	0.3001		
7/5/2018			0.1208

Teck Coal Limited Page xxxii

Site ID	CM_CCPD	CM_PC2	CM_SPD
EMS Code	E206438	E298733	E102488
7/9/2018		0	
7/9/2018	0.3369		
7/9/2018			0.1208
7/10/2018			0.1208
7/10/2018		0	
7/10/2018	0.3369		
7/11/2018		0	
7/11/2018	0.3369		
7/11/2018			0.1208
7/12/2018			0.1208
7/12/2018	0.3369		
7/12/2018		0	
7/12/2018			0.1208
7/12/2018			0.1111
7/13/2018			0.1019
7/13/2018		0	
7/13/2018	0.3001		
7/16/2018		0	
7/16/2018	0.2331		
7/16/2018			0.1111
7/17/2018			0.1083
7/17/2018	0.1884		
7/17/2018		0	
7/18/2018			0.1064
7/18/2018	0.2177		
7/18/2018		0	
7/19/2018		0	0.0931
7/19/2018	0.2331		
7/23/2018			0.10187
7/23/2018		0	
7/23/2018	0.233086		
7/24/2018			0.0931078
7/24/2018	0.174573		
7/24/2018		0	
7/25/2018			0.10187
7/25/2018		0	
7/25/2018	0.174573		
7/26/2018			0.10187
7/26/2018		0	
7/26/2018	0.188402		
7/26/2018			0.120833
7/26/2018		0	
7/27/2018		0	

Teck Coal Limited Page xxxiii

Site ID	CM_CCPD	CM_PC2	CM_SPD
EMS Code	E206438	E298733	E102488
7/27/2018			0.120833
7/27/2018	0.202764		
7/30/2018			0.120833
7/30/2018		0	
7/30/2018	0.174573		
7/31/2018			0.106429
7/31/2018	0.188402		
7/31/2018		0	
8/1/2018			0.10187
8/1/2018	0.202764		
8/1/2018		0	
8/7/2018			0.0931078
8/7/2018	0.202764		
8/7/2018		0	
8/8/2018	0.07145		
8/8/2018			0.103882
8/9/2018			0.111109
8/15/2018			0.0931078
8/15/2018		0	
8/15/2018	0.136277		
8/16/2018		0	
8/16/2018	0.202764		
8/16/2018			0.10187
8/21/2018			0.0931078
8/21/2018	0.161276		
8/21/2018		0	
8/27/2018			0.111109
8/27/2018		0	
8/27/2018	0.233086		
8/28/2018		0	
8/28/2018	0.202764		
9/4/2018			0.0931078
9/4/2018		0	
9/4/2018	0.148511		
9/10/2018			0.0931078
9/10/2018	0.174573		
9/10/2018		0	
9/11/2018	0.148511		
9/12/2018			0.0848143
9/12/2018	0.148511		
9/12/2018		0	
9/12/2018			0.0848143
9/12/2018			0.0769805

Teck Coal Limited Page xxxiv

Site ID	CM_CCPD	CM_PC2	CM_SPD
EMS Code	E206438	E298733	E102488
9/12/2018			0.056149
9/13/2018			0.0297642
9/13/2018	0.124573		
9/13/2018		0	
9/13/2018		0	
9/13/2018			0.0342537
9/13/2018			0.0342537
9/14/2018			0.0769805
9/17/2018			0.056149
9/17/2018			0.056149
9/17/2018		0	
9/17/2018	0.148511		
9/17/2018			0.056149
9/18/2018			0.0297642
9/18/2018			0.0297642
9/18/2018		0	
9/18/2018	0.174573		
9/18/2018			0.0256477
9/18/2018			0.0342537
9/19/2018			0.0342537
9/19/2018			0.0297642
9/19/2018			0.0297642
9/19/2018			0.0256477
9/20/2018			0.0218931
9/20/2018			0.0218931
9/20/2018			0.0218931
9/20/2018	0.174573		
9/21/2018			0.0218931
9/21/2018		0	
9/21/2018	0.148511		
9/24/2018			0.0297642
9/24/2018	0.148511		
9/24/2018		0	
9/25/2018		0	
9/25/2018	0.148511		
9/26/2018			0.02268
9/26/2018	0.05007		
10/1/2018			0.0297642
10/1/2018		0	
10/1/2018	0.102757		
10/2/2018			0.0500644
10/2/2018		0	
10/2/2018	0.148511		

Teck Coal Limited Page xxxv

Site ID	CM_CCPD	CM_PC2	CM_SPD
EMS Code	E206438	E298733	E102488
10/3/2018	0.124573		
10/9/2018		0	
10/9/2018	0.148511		
10/15/2018			0.0256477
10/15/2018		0	
10/15/2018	0.124573		
10/16/2018		0	
10/16/2018	0.102757		
10/16/2018	0.04857		
10/22/2018			0.14177
10/22/2018		0	
10/22/2018	0.102757		
10/23/2018	0.124573		
10/23/2018		0	
10/29/2018		0	
10/29/2018			0.0931078
10/29/2018	0.102757		
11/2/2018		0	
11/2/2018	0.148511		
11/2/2018			0.111109
11/5/2018			0.0848143
11/5/2018	0.124573		
11/5/2018		0	
11/7/2018			0.0848143
11/7/2018		0	
11/7/2018	0.124573		
11/13/2018		0	
11/13/2018	0.174573		
11/15/2018			0.0848143
11/15/2018	0.233086	0	
11/20/2018		0	
11/20/2018	0.148511		
11/27/2018		0	
11/27/2018	0.102757		
11/29/2018			0.0297642
11/29/2018		0	
11/29/2018	0.0830581		
11/30/2018	0.0449198		
12/3/2018			0.0297642
12/3/2018		0	
12/3/2018	0.102757		
12/5/2018			0.025675
12/10/2018		0	

Teck Coal Limited Page xxxvi

Site ID	CM_CCPD	CM_PC2	CM_SPD
EMS Code	E206438	E298733	E102488
12/10/2018	0.102757		
12/10/2018			0.0297642
12/11/2018		0	
12/11/2018	0.102757		
12/17/2018		0	
12/17/2018	0.102757		
12/17/2018			0.0256477
12/18/2018		0	
12/18/2018	0.102757		
12/28/2018		0	
12/28/2018	0.102757		
Minimum	0.0449198	0	0.018814
Maximum	1.290700	0.465800	0.662359
Mean	0.353928865	0.054653442	0.193264772
Median	0.174573	0	0.1019
Standard			
Deviation	0.346165396	0.102335778	0.198900268
Sample Size	127	120	149

2018 TSS & Turbidity Data - Discharge Locations

Parameter	TOTAL SUSPENDED SOLIDS (TSS), LAB		TU	JRBIDITY, LA	\B	
Unit		mg/L			NTU	
Site ID	CM_CCPD	CM_PC2	CM_SPD	CM_CCPD	CM_PC2	CM_SPD
EMS Code	E206438	E298733	E102488	E206438	E298733	E102488
1/3/2018	1.1			0.91		
1/9/2018			1			0.61
1/9/2018	1.4			1.61		
1/16/2018	< 1.0			1.37		
1/23/2018	1.4			2.68		
1/30/2018	1.1			1.99		
2/6/2018			< 1.0			0.78
2/6/2018	3			1.21		
2/14/2018	< 1.0			1.15		
2/19/2018	< 1.0			0.61		
2/28/2018			1.1			0.7
3/1/2018	< 1.0			0.73		
3/7/2018			1.1			0.58
3/7/2018	< 1.0			0.61		
3/13/2018	18.7			14.7		

Teck Coal Limited Page xxxvii

Parameter	TOTAL SUSPE	NDED SOLIDS	(TSS), LAB	TU	JRBIDITY, LA	\B
Unit		mg/L			NTU	
Site ID	CM_CCPD	CM_PC2	CM_SPD	CM_CCPD	CM_PC2	CM_SPD
EMS Code	E206438	E298733	E102488	E206438	E298733	E102488
3/15/2018			6.3			21.6
3/19/2018			9.2			15.3
3/19/2018	1.8			2.04		
3/27/2018			1.5			3.21
3/27/2018	< 1.0			1.34		
4/4/2018			1.2			3.42
4/4/2018	1.6			2.8		
4/9/2018			1.7			2.68
4/10/2018	1.9			3.1		
4/17/2018			9.9			15.8
4/17/2018	4.6			6.46		
4/24/2018			3.3			4.18
4/24/2018	9.7			16.1		
4/25/2018	14.4			24.1		
5/1/2018			8.9			7.74
5/1/2018	7.1			6.92		
5/1/2018		1.1			0.3	
5/7/2018	2.8			15.8		
5/7/2018		< 1.0			0.78	
5/7/2018			5.9			19.7
5/9/2018			10.5			12.7
5/10/2018			9.1			11.2
5/10/2018	8.6			7.5		
5/10/2018		< 1.0			0.51	
5/15/2018			6.4			5.25
5/15/2018	5			3.88		
5/15/2018		< 1.0			1.12	
5/16/2018			12.8			15.5
5/16/2018		< 1.0			0.4	
5/16/2018	4			4.93		
5/22/2018			3.2			3.49
5/22/2018	1.7			1.95		
5/22/2018		< 1.0			0.21	
5/29/2018			2.3			2.95
5/29/2018	1.7			1.82		
5/29/2018		< 1.0			0.19	
6/5/2018		< 1.0			0.16	
6/5/2018	1			1.68		

Teck Coal Limited Page xxxviii

Parameter	TOTAL SUSPE	NDED SOLIDS	(TSS), LAB	Tl	JRBIDITY, LA	\B
Unit		mg/L			NTU	
Site ID	CM_CCPD	CM_PC2	CM_SPD	CM_CCPD	CM_PC2	CM_SPD
EMS Code	E206438	E298733	E102488	E206438	E298733	E102488
6/5/2018			2.6			2.82
6/12/2018			1.6			2.92
6/12/2018		< 1.0			0.26	
6/12/2018	1			1.79		
6/19/2018			5.8			2.54
6/19/2018	2.8			2.43		
6/19/2018		< 1.0			1.14	
6/25/2018	3.9			3.67		
6/26/2018			8.1			4.63
6/26/2018	2.9			2.48		
6/26/2018		2.3			0.5	
7/3/2018			3.1			2.5
7/3/2018		< 1.0			0.13	
7/3/2018	2.3			4.52		
7/10/2018			< 1.0			1.28
7/10/2018		< 1.0			0.25	
7/10/2018	1.7			5.35		
7/17/2018			1.2			1.28
7/17/2018	3.6			2.81		
7/24/2018			1.2			0.79
7/24/2018	< 1.0			0.67		
7/26/2018			28.3			35.5
7/26/2018	< 1.0			1.15		
7/27/2018			7.4			13.3
7/27/2018	< 1.0			2.34		
7/31/2018			< 1.0			1.08
7/31/2018	1.5			1.26		
8/2/2018	2.5			1.1		
8/7/2018			< 1.0			1.2
8/7/2018	1.3			0.83		
8/9/2018			1.8			1.59
8/15/2018	1.2			0.89		
8/21/2018	1.9			0.97		
8/28/2018	3.9			2.64		
9/4/2018			< 1.0			0.53
9/4/2018	2.3			0.93		
9/11/2018	1.8			1.56		
9/18/2018			3			2.57

Teck Coal Limited Page xxxix

Parameter	TOTAL SUSPE	NDED SOLIDS	(TSS), LAB	TU	JRBIDITY, LA	AB
Unit		mg/L			NTU	
Site ID	CM_CCPD	CM_PC2	CM_SPD	CM_CCPD	CM_PC2	CM_SPD
EMS Code	E206438	E298733	E102488	E206438	E298733	E102488
9/18/2018	1.8			2.19		
9/25/2018	2			2.64		
10/2/2018			< 1.0			1.06
10/2/2018	< 1.0			1.79		
10/3/2018	2.7			1.84		
10/9/2018	3.1			2.11		
10/16/2018	1.8			1.3		
10/23/2018	< 1.0			1.35		
10/29/2018	2.5			3.52		
11/5/2018			3.8			4.21
11/5/2018	3.5			3.04		
11/13/2018	1.8			2.6		
11/20/2018	3.6			2.27		
11/27/2018	2.4			1.16		
12/3/2018			2.5			1.56
12/3/2018	1.9			0.71		
12/11/2018	1.9			0.7		
12/18/2018	2.1			0.56		
12/28/2018	2.3			0.48		
Minimum	< 1.0	< 1.0	< 1.0	0.48	0.13	0.53
Maximum	18.7	2.3	28.3	24.1	1.14	35.5
Mean	3.28	1.7	5.35	3.23	0.46	6.18
Median	2.3	1.7	3.2	1.9	0.3	2.92
Standard Deviation	3.32	0.85	5.46	4.3	0.35	7.7
Sample size	60	13	37	60	13	37
Non-Detects	11	11	6	0	0	0
% Non- Detects	18.3	84.6	16.2	0	0	0
Detection Limit	1.0	1.0	1.0	0.1	0.1	0.1

2018 EPH - CM_CCPD & CM_SPD

Parameter	EPH		
Unit	mg/L		
Site ID	CM_CCPD CM_SPD		
EMS Code	E206438 E102488		
1/9/2018	< 0.50	< 0.50	

Teck Coal Limited Page xl

4/4/2018	< 0.50	< 0.50
7/3/2018	< 0.50	< 0.50
10/2/2018	< 0.50	< 0.50
Minimum	< 0.50	< 0.50
Maximum	< 0.50	< 0.50
Mean	< 0.50	< 0.50
Median	< 0.50	< 0.50
Standard		
Dev.	0	0
Sample Size	4	4
Non-Detects	4	4
% Non-		
Detects	100	100
Detection Limit	0.5	0.5

2018 Flow Data - Receiving Environment

Site ID	CM_CC1	CM_MC1	CM_MC2
EMS Code	0200209	E258175	E258937
1/9/2018			0.134743
1/9/2018	0.162392		
1/9/2018		0.0506086	
1/16/2018			0.144529
1/23/2018			0.153
1/30/2018			0.145
2/6/2018			0.15271
2/6/2018	0.133902		
2/6/2018		0.040646	
2/14/2018			0.318162
2/19/2018		0.036123	
2/19/2018			0.108196
2/27/2018		0.031899	
3/6/2018		0.031962	
3/6/2018	0.131229		
3/13/2018			0.125435
3/13/2018		0.031899	
3/19/2018	0.131229		
3/20/2018			0.114876
3/20/2018		0.027969	
3/27/2018			0.108196

Teck Coal Limited Page xli

Site ID	CM_CC1	CM_MC1	CM_MC2
EMS Code	0200209	E258175	E258937
3/27/2018	0.120849		
3/27/2018		0.031899	
4/4/2018			0.118323
4/4/2018	0.131229		
4/4/2018		0.0318991	
4/10/2018	0.147746		
4/10/2018			0.134743
4/10/2018		0.025034	
4/17/2018			0.165587
4/17/2018	0.147746		
4/17/2018		0.040646	
4/24/2018			0.33966
4/24/2018	0.21128		
4/24/2018		0.05384	
4/26/2018			0.33966
4/30/2018			1.63413
4/30/2018		0.368	
5/1/2018	0.747914		
5/2/2018	0.620635		
5/7/2018	1.4236		
5/8/2018			5.6457
5/8/2018		1.0433	
5/15/2018		1.5721	
5/15/2018			6.7851
5/16/2018	2.241		
5/16/2018	1.8908		
5/16/2018		1.999	
5/16/2018			7.086
5/22/2018			5.6457
5/22/2018	1.4236		
5/22/2018		1.1955	
5/29/2018	1.268	1.2273	
5/29/2018			5.6457
6/5/2018		0.6333	
6/5/2018			3.0374
6/6/2018	0.7852		
6/12/2018		0.3992	
6/12/2018	0.577		
6/12/2018			1.8672

Teck Coal Limited Page xlii

Site ID	CM_CC1	CM_MC1	CM_MC2
EMS Code	0200209	E258175	E258937
6/19/2018		0.366	
6/19/2018	0.5158		
6/19/2018			1.1421
6/26/2018		0.2239	
6/26/2018			1.0178
6/26/2018	0.5158		
7/3/2018			1.0581
7/3/2018		0.2624	
7/3/2018	0.4586		
7/10/2018		0.1472	
7/10/2018			0.7021
7/10/2018	0.4315		
7/17/2018		0.1114	
7/17/2018	0.31		
7/17/2018			0.4628
7/24/2018		0.0810566	
7/24/2018	0.267849		
7/24/2018			0.397866
7/26/2018			0.58705
7/26/2018	0.48673		
7/27/2018	0.309987		
7/27/2018			0.978547
7/31/2018		0.0743174	
7/31/2018	0.309987		
7/31/2018			0.33966
8/7/2018		0.0506086	
8/7/2018			0.287741
8/7/2018	0.267849		
8/9/2018	0.19702		
8/9/2018			0.32918
8/15/2018		0.0506086	
8/15/2018			0.241692
8/21/2018		0.0506086	
8/21/2018			0.201106
8/28/2018		0.0743174	
8/28/2018			0.165587
9/4/2018		0.0406463	
9/4/2018			0.176888
9/4/2018	0.194147		

Teck Coal Limited Page xliii

Site ID	CM_CC1	CM_MC1	CM_MC2
EMS Code	0200209	E258175	E258937
9/10/2018	0.162392		
9/10/2018	0.229267		
9/11/2018			0.201106
9/18/2018			0.201106
9/25/2018			0.188723
9/26/2018		0.027135	
10/2/2018		0.0618212	
10/2/2018	0.194147		
10/2/2018			0.227576
10/9/2018			0.154805
10/16/2018			0.134743
10/23/2018			0.176888
10/30/2018		0.119811	
10/30/2018			0.256414
11/5/2018	0.267849		
11/6/2018		0.137738	
11/6/2018			0.321676
11/13/2018		0.0881283	
11/13/2018			0.201106
11/20/2018		0.0743174	
11/20/2018			0.165587
11/27/2018		0.0618212	
11/27/2018			0.134743
12/3/2018	0.577032		
12/4/2018		0.0506086	
12/4/2018			0.134743
12/11/2018			0.176888
12/18/2018			0.176888
12/19/2018		0.0159	
12/19/2018	0.07584		
12/20/2018			0.20348
12/28/2018			0.176888
Minimum	0.076	0.016	0.108
Maximum	2.241	1.999	7.086
Mean	0.502	0.269	0.947
Median	0.29	0.062	0.203
Standard	0.521	0.464	1.77
Dev. Sample Size	36	41	54
Jampie Jize	30	41	54

Teck Coal Limited Page xliv

2018 TSS & Turbidity Data - Receiving Environment

	Parameter TOTAL SUSPENDED SOLIDS (TSS), TURBIDITY, LAB					В
	LAB					
Unit		mg/l		NTU		
Site ID	CM_CC1	CM_MC1	CM_MC2	CM_CC1	CM_MC1	CM_MC2
EMS code	0200209	E258175	E258937	0200209	E258175	E258937
1/3/2018			2.7			0.47
1/9/2018			1.0			0.44
1/9/2018	< 1.0			0.56		
1/9/2018		< 1.0			0.30	
1/16/2018			1.3			0.75
1/23/2018			< 1.0			0.79
1/30/2018			< 1.0			0.37
2/6/2018			< 1.0			0.32
2/6/2018	< 1.0			0.37		
2/6/2018		12.0			2.46	
2/14/2018			1.0			0.25
2/19/2018		< 1.0			0.13	
2/19/2018			< 1.0			0.24
2/27/2018			< 1.0			0.25
2/27/2018		< 1.0			0.22	
2/28/2018	< 1.0			0.30		
3/6/2018			1.0			0.56
3/6/2018		< 1.0			0.18	
3/6/2018	< 1.0			0.26		
3/13/2018			1.7			0.90
3/13/2018		< 1.0			0.11	
3/19/2018	2.0			2.40		
3/20/2018			1.0			1.14
3/20/2018		< 1.0			0.11	
3/27/2018			< 1.0			0.52
3/27/2018	< 1.0			0.76		
3/27/2018		< 1.0			0.15	
4/4/2018			< 1.0			1.02
4/4/2018	< 1.0			1.23		
4/4/2018		3.4			0.50	
4/10/2018	1.1			0.58		
4/10/2018			1.3			0.54
4/10/2018		< 1.0			0.17	
4/17/2018			1.6			1.56
4/17/2018	2.1			4.03		

Teck Coal Limited Page xlv

Parameter	TOTAL SUSPENDED SOLIDS (TSS), LAB		TURBIDITY, LAB			
Unit		mg/l		NTU		
Site ID	CM_CC1	CM_MC1	CM_MC2	CM_CC1	CM_MC1	CM_MC2
EMS code	0200209	E258175	E258937	0200209	E258175	E258937
4/17/2018		< 1.0			0.16	
4/24/2018			1.7			1.39
4/24/2018	2.3			1.89		
4/24/2018		1.3			0.32	
4/30/2018			11.2			5.51
4/30/2018		4.5			2.37	
5/1/2018	4.9			4.34		
5/7/2018	3.3			12.5		
5/8/2018			6.2			71.3
5/8/2018		9.1			10.5	
5/14/2018		6.4			4.91	
5/15/2018		24.9			7.54	
5/15/2018			60.9			20.1
5/16/2018	8.2			3.93		
5/17/2018		15.7			11.1	
5/22/2018			42.0			24.2
5/22/2018	2.2			1.49		
5/22/2018		8.6			4.79	
5/29/2018	1.9	12.9		1.50	5.41	
5/29/2018			30.7			15.8
6/5/2018		3.6			1.50	
6/5/2018			7.2			3.11
6/5/2018	1.0			1.20		
6/12/2018		1.0			1.01	
6/12/2018	1.2			1.30		
6/12/2018			1.8			1.93
6/19/2018		1.8			0.69	
6/19/2018	2.6			1.40		
6/19/2018			3.0			1.21
6/26/2018		< 1.0			0.49	
6/26/2018			2.5			1.02
6/26/2018	1.5			1.05		
7/3/2018			1.9			0.64
7/3/2018		2.1			24.0	
7/3/2018	1.9			1.86		
7/10/2018		2.5			0.38	
7/10/2018			< 1.0			0.69

Teck Coal Limited Page xlvi

Parameter	eter TOTAL SUSPENDED SOLIDS (TSS),		DS (TSS),	TURBIDITY, LAB				
Unit		mg/l NTU		mg/l NTU		NTU		
Site ID	CM_CC1	CM_MC1	CM_MC2	CM_CC1	CM_MC1	CM_MC2		
EMS code	0200209	E258175	E258937	0200209	E258175	E258937		
7/10/2018	1.3			1.35				
7/17/2018		2.4			0.53			
7/17/2018	1.2			0.54				
7/17/2018			1.4			0.57		
7/24/2018		< 1.0			0.25			
7/24/2018	1.2			0.38				
7/24/2018			< 1.0			0.44		
7/26/2018			33.4			37.9		
7/26/2018	13.7			6.85				
7/26/2018		16.9			30.2			
7/27/2018	2.0			3.08				
7/27/2018			1.7			1.32		
7/27/2018		< 1.0			0.50			
7/31/2018		< 1.0			0.25			
7/31/2018	1.1			0.50				
7/31/2018			< 1.0			0.25		
8/7/2018		< 1.0			0.24			
8/7/2018			< 1.0			0.45		
8/7/2018	< 1.0			0.43				
8/15/2018		< 1.0			0.55			
8/15/2018			1.0			0.54		
8/21/2018		1.9			1.23			
8/21/2018			< 1.0			0.33		
8/28/2018		< 1.0			0.37			
8/28/2018			1.8			0.87		
9/4/2018		< 1.0			0.16			
9/4/2018			3.5			0.45		
9/4/2018	< 1.0			0.69				
9/10/2018	1.4			0.78				
9/11/2018			1.2			0.50		
9/13/2018		< 1.0			0.62			
9/14/2018		< 1.0			0.72			
9/18/2018			1.4			0.58		
9/25/2018			< 1.0			0.50		
10/2/2018		2.4			0.42			
10/2/2018	< 1.0			0.66				
10/2/2018			1.1			0.61		

Teck Coal Limited Page xlvii

Parameter	TOTAL SUSPENDED SOLIDS (TSS), LAB		TURBIDITY, LAB		В	
Unit		mg/l		NTU		
Site ID	CM_CC1	CM_MC1	CM_MC2	CM_CC1	CM_MC1	CM_MC2
EMS code	0200209	E258175	E258937	0200209	E258175	E258937
10/9/2018			1.5			0.43
10/16/2018			< 1.0			0.31
10/23/2018			1.8			1.19
10/30/2018		< 1.0			0.29	
10/30/2018			1.5			0.84
11/2/2018		34.8			26.7	
11/5/2018	2.1			1.41		
11/6/2018		< 1.0			0.33	
11/6/2018			1.0			0.86
11/13/2018		< 1.0			0.24	
11/13/2018			< 1.0			0.60
11/20/2018		< 1.0			0.26	
11/20/2018			< 1.0			0.50
11/27/2018		< 1.0			0.42	
11/27/2018			2.0			0.54
12/3/2018	< 1.0			0.46		
12/4/2018		< 1.0			0.23	
12/4/2018			1.5			0.46
12/11/2018			< 1.0			0.44
12/18/2018			1.2			0.80
12/28/2018			1.1			0.21
Minimum	< 1.0	< 1.0	< 1.0	0.26	0.11	0.21
Maximum	13.7	34.8	60.9	12.5	30.2	71.3
Mean	2.736	8.41	6.481	1.878	3.2	3.88
Median	1.95	4.05	1.7	1.215	0.42	0.59
Standard Dev.	2.925	8.983	13.209	2.432	6.954	11.504
Sample size	32	45	54	32	45	54
Non-Detects	10	25	17	0	0	0
% Non- Detects	31.3	55.6	31.5	0	0	0
Detection Limit	1.0	1.0	1.0	0.1	0.1	0.1

2018 Maintenance Infiltration Ponds E206437 (CM_WBE) Data

Parameter	Daily Flow	EPH Total
Unit	m³/day	mg/L
1/3/2018	12.78	

Teck Coal Limited Page xlviii

1/10/2018		1.57
	12.10	1.37
2/4/2018	12.19	
2/13/2018	4.44	
2/20/2018	16.14	
2/26/2018	23	
3/5/2018	4.43	
3/13/2018	19.63	
3/20/2018	9.43	
3/27/2018	16.71	
4/4/2018	25.5	1.61
4/10/2018	17.33	
4/17/2018	12.71	
4/24/2018	32.43	
5/1/2018	46.29	
5/8/2018	25.43	
5/16/2018	21.13	
5/22/2018	12.5	
5/29/2018	12.57	
6/4/2018	20	
6/5/2018		319
6/11/2018		2.22
6/25/2018	22.55	
6/26/2018	22.55	
7/3/2018	18.71	< 0.50
7/10/2018	6.86	
7/19/2018	14	2.02
7/24/2018	14	
7/31/2018	25.83	
8/7/2018	15.71	6.21
8/28/2018	16.71	
9/4/2018	12.75	14.5
9/10/2018	29.4	
9/18/2018	47.5	
9/25/2018	25	
10/2/2018	13.71	3.07
10/9/2018	37	
10/16/2018	16.57	
10/29/2018	8.67	
11/5/2018		< 0.50
11/20/2018	11.43	
11/27/2018	10.29	
12/3/2018	1.5	4.77
		1

Teck Coal Limited Page xlix

12/11/2018	0.31	
12/18/2018	0.06	
12/28/2018	0.03	
Minimum	0.03	< 0.50
Maximum	47.5	319
Mean	17.042	39.441
Median	15.925	3.07
Standard Dev.	10.891	104.914
Sample size	42	11
Non-Detects	N/A	2
% Non-Detects	N/A	18.2
Detection Limit	N/A	0.5

2018 E206439 (CM_SEW) Data

Parameter	Turbidity	TSS	BOD ₅	Daily Flow
Unit	NTU	mg/L	mg/L	m³/day
1/10/2018	0.47	1.4	< 2.0	9.54
2/6/2018	0.45	1.2	< 2.0	10.34
3/6/2018	0.13	1.1	< 2.0	16.08929
4/4/2018	0.20	< 1.0	< 2.0	19.614
5/7/2018	0.30	1.8	< 2.0	23.033
6/5/2018	0.15	< 1.0	< 2.0	19.31034
7/4/2018	0.35	1	< 2.0	13.65
8/7/2018	0.16	< 1.0	< 2.0	7.370588
9/4/2018	0.94	< 1.0	< 2.0	6.068966
10/2/2018	0.16	< 1.0	< 2.0	6.440741
11/5/2018	0.48	< 1.0	< 2.0	5.644118
12/3/2018	1.63	1.5	< 2.0	5.728571
Minimum	0.13	< 1.0	< 2.0	5.644
Maximum	1.63	1.8	< 2.0	23.033
Mean	0.452	1.333	< 2.0	11.903
Median	0.325	1.3	< 2.0	9.94
Standard Deviation	0.436	0.294	0	6.242
Sample Size	12	12	12	12
Non-Detects	0	6	12	N/A
% Non-Detects	0	50	100	N/A
Detection Limit	0.1	1.0	2.0	N/A

Teck Coal Limited Page I

2018 QA/QC Data Collected

Site ID	Date	Sample Type	TSS (mg/L)	Turbidity, Lab (NTU)
CM_14PIT-PIPE	1/3/2018	N	1.1	0.68
CM_14PIT-PIPE	1/10/2018	N	< 1.0	0.55
CM_14PIT-PIPE	1/16/2018	N	< 1.0	0.33
CM_14PIT-PIPE	1/23/2018	N	< 1.0	0.55
CM_14PIT-PIPE	1/30/2018	N	< 1.0	0.66
CM_14PIT-PIPE	2/6/2018	N	< 1.0	0.56
CM_14PIT-PIPE	2/14/2018	N	< 1.0	0.57
CM_14PIT-PIPE	2/19/2018	N	< 1.0	0.65
CM_14PIT-PIPE	2/19/2018	FB	< 1.0	0.17
CM_14PIT-PIPE	2/19/2018	FD	< 1.0	0.70
CM_14PIT-PIPE	3/1/2018	N	< 1.0	0.20
CM_14PIT-PIPE	3/7/2018	N	< 1.0	0.71
CM_14PIT-PIPE	3/13/2018	FB	< 1.0	< 0.10
CM_14PIT-PIPE	3/13/2018	FD	< 1.0	1.47
CM_14PIT-PIPE	3/13/2018	N	< 1.0	1.52
CM_14PIT-PIPE	3/19/2018	N	1.4	1.52
CM_14PIT-PIPE	3/27/2018	N	< 1.0	1.44
CM_14PIT-PIPE	4/4/2018	N	1.0	0.51
CM_14PIT-PIPE	4/10/2018	N	< 1.0	1.29
CM_14PIT-PIPE	4/17/2018	N	< 1.0	0.61
CM_14PIT-PIPE	4/24/2018	N	1.1	0.88
CM_14PIT-PIPE	5/1/2018	N	< 1.0	0.47
CM_14PIT-PIPE	5/7/2018	N	5.8	0.57
CM_14PIT-PIPE	5/16/2018	N	< 1.0	0.45
CM_14PIT-PIPE	5/22/2018	N	< 1.0	0.27
CM_14PIT-PIPE	5/29/2018	N	< 1.0	0.35
CM_14PIT-PIPE	6/5/2018	N	1.0	0.41
CM_14PIT-PIPE	6/12/2018	N	< 1.0	0.40
CM_14PIT-PIPE	6/19/2018	N	1.0	0.46
CM_14PIT-PIPE	6/26/2018	N	< 1.0	0.37
CM_14PIT-PIPE	7/3/2018	N	< 1.0	0.39
CM_14PIT-PIPE	7/10/2018	N	1.1	0.32
CM_14PIT-PIPE	7/17/2018	N	< 1.0	0.46
CM_14PIT-PIPE	7/24/2018	N	< 1.0	0.29
CM_14PIT-PIPE	7/31/2018	N	< 1.0	0.60
CM_14PIT-PIPE	8/7/2018	N	< 1.0	0.43
CM_14PIT-PIPE	8/15/2018	N	< 1.0	0.45
CM_14PIT-PIPE	8/21/2018	N	1.9	0.67
CM_14PIT-PIPE	8/21/2018	FB	< 1.0	0.23
CM_14PIT-PIPE	8/21/2018	FD	< 1.0	0.51

Teck Coal Limited Page li

Site ID	Date	Sample Type	TSS (mg/L)	Turbidity, Lab (NTU)
CM_14PIT-PIPE	8/28/2018	N	< 1.0	0.43
CM_14PIT-PIPE	9/4/2018	N	< 1.0	0.44
CM_14PIT-PIPE	9/11/2018	N	< 1.0	0.30
CM_14PIT-PIPE	9/18/2018	N	1.4	0.33
CM_14PIT-PIPE	9/25/2018	N	< 1.0	0.24
CM_14PIT-PIPE	10/2/2018	N	< 1.0	0.28
CM_14PIT-PIPE	10/9/2018	N	1.9	0.17
CM_14PIT-PIPE	10/16/2018	N	3.3	0.33
CM_14PIT-PIPE	10/16/2018	FB	4.4	< 0.10
CM_14PIT-PIPE	10/16/2018	FD	< 1.0	0.32
CM_14PIT-PIPE	10/23/2018	N	2.8	0.33
CM_14PIT-PIPE	10/29/2018	N	< 1.0	0.40
CM_14PIT-PIPE	11/5/2018	N	1.7	0.51
CM_14PIT-PIPE	11/13/2018	FB	< 1.0	< 0.10
CM_14PIT-PIPE	11/13/2018	FD	1.3	0.33
CM_14PIT-PIPE	11/13/2018	N	< 1.0	0.32
CM_14PIT-PIPE	11/20/2018	N	1.9	0.49
CM_14PIT-PIPE	11/20/2018	FB	< 1.0	0.19
CM_14PIT-PIPE	11/20/2018	FD	1.4	0.30
CM_14PIT-PIPE	11/27/2018	N	2.4	0.33
CM_14PIT-PIPE	11/27/2018	FB	< 1.0	< 0.10
CM_14PIT-PIPE	11/27/2018	FD	2.2	0.53
CM_14PIT-PIPE	12/3/2018	N	1.2	0.65
CM_14PIT-PIPE	12/11/2018	FB	< 1.0	< 0.10
CM_14PIT-PIPE	12/11/2018	FD	1.7	0.59
CM_14PIT-PIPE	12/11/2018	N	1.3	0.68
CM_14PIT-PIPE	12/18/2018	FB	< 1.0	0.42
CM_14PIT-PIPE	12/18/2018	FD	3.5	0.78
CM_14PIT-PIPE	12/18/2018	N	2.4	0.95
CM_14PIT-PIPE	12/28/2018	FB	< 1.0	< 0.10
CM_14PIT-PIPE	12/28/2018	FD	2.6	0.30
CM_14PIT-PIPE	12/28/2018	N	3.3	0.39
CM_CC1	1/9/2018	N	< 1.0	0.56
CM_CC1	2/6/2018	N	< 1.0	0.37
CM_CC1	2/28/2018	N	< 1.0	0.30
CM_CC1	3/6/2018	FB	< 1.0	< 0.10
CM_CC1	3/6/2018	FD	< 1.0	267
CM_CC1	3/6/2018	N	< 1.0	0.26
CM_CC1	3/19/2018	N	2.0	2.40
CM_CC1	3/19/2018	FB	< 1.0	< 0.10
CM_CC1	3/19/2018	FD	2.2	2.60

Teck Coal Limited Page Iii

Site ID	Date	Sample Type	TSS (mg/L)	Turbidity, Lab (NTU)
CM_CC1	3/27/2018	FB	< 1.0	< 0.10
CM_CC1	3/27/2018	FD	< 1.0	0.74
CM_CC1	3/27/2018	N	< 1.0	0.76
CM_CC1	4/4/2018	N	< 1.0	1.23
CM_CC1	4/10/2018	FB	< 1.0	< 0.10
CM_CC1	4/10/2018	FD	1.3	0.66
CM_CC1	4/10/2018	N	1.1	0.58
CM_CC1	4/17/2018	FB	< 1.0	< 0.10
CM_CC1	4/17/2018	FD	2.3	4.02
CM_CC1	4/17/2018	N	2.1	4.03
CM_CC1	4/24/2018	N	2.3	1.89
CM_CC1	5/1/2018	N	4.9	4.34
CM_CC1	5/7/2018	FB	< 1.0	0.26
CM_CC1	5/7/2018	FD	3.7	10.4
CM_CC1	5/7/2018	N	3.3	12.5
CM_CC1	5/16/2018	N	8.2	3.93
CM_CC1	5/22/2018	N	2.2	1.49
CM_CC1	5/22/2018	FB	< 1.0	< 0.10
CM_CC1	5/22/2018	FD	1.6	1.46
CM_CC1	5/29/2018	N	1.9	1.50
CM_CC1	6/5/2018	FB	< 1.0	< 0.10
CM_CC1	6/5/2018	FD	1.4	1.30
CM_CC1	6/5/2018	N	1.0	1.20
CM_CC1	6/12/2018	N	1.2	1.30
CM_CC1	6/19/2018	N	2.6	1.40
CM_CC1	6/19/2018	FB	< 1.0	< 0.10
CM_CC1	6/19/2018	FD	2.2	1.16
CM_CC1	6/26/2018	N	1.5	1.05
CM_CC1	7/3/2018	FB	< 1.0	< 0.10
CM_CC1	7/3/2018	FD	1.5	1.68
CM_CC1	7/3/2018	N	1.9	1.86
CM_CC1	7/10/2018	FB	< 1.0	0.12
CM_CC1	7/10/2018	FD	1.5	1.13
CM_CC1	7/10/2018	N	1.3	1.35
CM_CC1	7/17/2018	N	1.2	0.54
CM_CC1	7/24/2018	N	1.2	0.38
CM_CC1	7/26/2018	N	13.7	6.85
CM_CC1	7/27/2018	N	2.0	3.08
CM_CC1	7/31/2018	N	1.1	0.50
CM_CC1	8/7/2018	N	< 1.0	0.43
CM_CC1	9/4/2018	FB	< 1.0	< 0.10

Teck Coal Limited Page liii

Site ID	Date	Sample Type	TSS (mg/L)	Turbidity, Lab (NTU)
CM_CC1	9/4/2018	FD	1.1	0.67
CM_CC1	9/4/2018	N	< 1.0	0.69
CM_CC1	9/10/2018	N	1.4	0.78
CM_CC1	10/2/2018	FB	< 1.0	< 0.10
CM_CC1	10/2/2018	FD	< 1.0	0.54
CM_CC1	10/2/2018	N	< 1.0	0.66
CM_CC1	11/5/2018	FB	< 1.0	< 0.10
CM_CC1	11/5/2018	FD	1.1	1.39
CM_CC1	11/5/2018	N	2.1	1.41
CM_CC1	12/3/2018	FB	< 1.0	< 0.10
CM_CC1	12/3/2018	FD	< 1.0	0.47
CM_CC1	12/3/2018	N	< 1.0	0.46
CM_CCPD	1/3/2018	N	1.1	0.91
CM_CCPD	1/9/2018	N	1.4	1.61
CM_CCPD	1/16/2018	N	< 1.0	1.37
CM_CCPD	1/23/2018	N	1.4	2.68
CM_CCPD	1/23/2018	FB	< 1.0	< 0.10
CM_CCPD	1/23/2018	FD	1.4	2.51
CM_CCPD	1/30/2018	FB	< 1.0	< 0.10
CM_CCPD	1/30/2018	FD	< 1.0	1.81
CM_CCPD	1/30/2018	N	1.1	1.99
CM_CCPD	2/6/2018	N	3.0	1.21
CM_CCPD	2/14/2018	N	< 1.0	1.15
CM_CCPD	2/19/2018	N	< 1.0	0.61
CM_CCPD	3/1/2018	FB	< 1.0	< 0.10
CM_CCPD	3/1/2018	FD	< 1.0	0.71
CM_CCPD	3/1/2018	N	< 1.0	0.73
CM_CCPD	3/7/2018	N	< 1.0	0.61
CM_CCPD	3/13/2018	N	18.7	14.7
CM_CCPD	3/19/2018	N	1.8	2.04
CM_CCPD	3/27/2018	N	< 1.0	1.34
CM_CCPD	4/4/2018	N	1.6	2.80
CM_CCPD	4/10/2018	N	1.9	3.10
CM_CCPD	4/17/2018	N	4.6	6.46
CM_CCPD	4/24/2018	N	9.7	16.1
CM_CCPD	4/25/2018	N	14.4	24.1
CM_CCPD	5/1/2018	FB	< 1.0	< 0.10
CM_CCPD	5/1/2018	FD	7.3	9.12
CM_CCPD	5/1/2018	N	7.1	6.92
CM_CCPD	5/7/2018	N	2.8	15.8
CM_CCPD	5/10/2018	N	8.6	7.50

Teck Coal Limited Page liv

Site ID	Date	Sample Type	TSS (mg/L)	Turbidity, Lab (NTU)
CM_CCPD	5/15/2018	N	5.0	3.88
CM_CCPD	5/16/2018	N	4.0	4.93
CM_CCPD	5/22/2018	N	1.7	1.95
CM_CCPD	5/29/2018	N	1.7	1.82
CM_CCPD	5/29/2018	FB	< 1.0	< 0.10
CM_CCPD	5/29/2018	FD	< 1.0	1.88
CM_CCPD	6/5/2018	N	1.0	1.68
CM_CCPD	6/12/2018	N	1.0	1.79
CM_CCPD	6/12/2018	FB	< 1.0	< 0.10
CM_CCPD	6/12/2018	FD	1.0	1.47
CM_CCPD	6/19/2018	N	2.8	2.43
CM_CCPD	6/25/2018	N	3.9	3.67
CM_CCPD	6/26/2018	N	2.9	2.48
CM_CCPD	7/3/2018	N	2.3	4.52
CM_CCPD	7/10/2018	N	1.7	5.35
CM_CCPD	7/17/2018	N	3.6	2.81
CM_CCPD	7/24/2018	N	< 1.0	0.67
CM_CCPD	7/26/2018	N	< 1.0	1.15
CM_CCPD	7/27/2018	N	< 1.0	2.34
CM_CCPD	7/31/2018	N	1.5	1.26
CM_CCPD	8/2/2018	N	2.5	1.10
CM_CCPD	8/7/2018	FB	< 1.0	< 0.10
CM_CCPD	8/7/2018	FD	1.1	0.75
CM_CCPD	8/7/2018	N	1.3	0.83
CM_CCPD	8/15/2018	FB	< 1.0	< 0.10
CM_CCPD	8/15/2018	FD	1.0	0.92
CM_CCPD	8/15/2018	N	1.2	0.89
CM_CCPD	8/21/2018	N	1.9	0.97
CM_CCPD	8/28/2018	FB	< 1.0	0.26
CM_CCPD	8/28/2018	FD	2.1	1.89
CM_CCPD	8/28/2018	N	3.9	2.64
CM_CCPD	9/4/2018	N	2.3	0.93
CM_CCPD	9/11/2018	FB	< 1.0	< 0.10
CM_CCPD	9/11/2018	FD	2.0	1.55
CM_CCPD	9/11/2018	N	1.8	1.56
CM_CCPD	9/18/2018	N	1.8	2.19
CM_CCPD	9/25/2018	N	2.0	2.64
CM_CCPD	10/2/2018	N	< 1.0	1.79
CM_CCPD	10/3/2018	N	2.7	1.84
CM_CCPD	10/9/2018	N	3.1	2.11
CM_CCPD	10/9/2018	FB	< 1.0	< 0.10

Teck Coal Limited Page Iv

Site ID	Date	Sample Type	TSS (mg/L)	Turbidity, Lab (NTU)
CM_CCPD	10/9/2018	FD	3.3	2.15
CM_CCPD	10/16/2018	N	1.8	1.30
CM_CCPD	10/23/2018	N	< 1.0	1.35
CM_CCPD	10/29/2018	N	2.5	3.52
CM_CCPD	10/29/2018	FB	< 1.0	< 0.10
CM_CCPD	10/29/2018	FD	2.9	3.18
CM_CCPD	11/5/2018	FB	< 1.0	< 0.10
CM_CCPD	11/5/2018	FD	2.3	2.91
CM_CCPD	11/5/2018	N	3.5	3.04
CM_CCPD	11/13/2018	N	1.8	2.60
CM_CCPD	11/20/2018	N	3.6	2.27
CM_CCPD	11/27/2018	N	2.4	1.16
CM_CCPD	12/3/2018	N	1.9	0.71
CM_CCPD	12/11/2018	N	1.9	0.70
CM_CCPD	12/18/2018	N	2.1	0.56
CM_CCPD	12/28/2018	N	2.3	0.48
CM_MC1	1/9/2018	N	< 1.0	0.30
CM_MC1	2/6/2018	N	12.0	2.46
CM_MC1	2/19/2018	N	< 1.0	0.13
CM_MC1	2/27/2018	N	< 1.0	0.22
CM_MC1	3/6/2018	N	< 1.0	0.18
CM_MC1	3/13/2018	N	< 1.0	0.11
CM_MC1	3/20/2018	N	< 1.0	0.11
CM_MC1	3/27/2018	N	< 1.0	0.15
CM_MC1	4/4/2018	N	3.4	0.50
CM_MC1	4/10/2018	N	< 1.0	0.17
CM_MC1	4/17/2018	N	< 1.0	0.16
CM_MC1	4/24/2018	N	1.3	0.32
CM_MC1	4/30/2018	N	4.5	2.37
CM_MC1	5/8/2018	N	9.1	10.5
CM_MC1	5/14/2018	N	6.4	4.91
CM_MC1	5/15/2018	N	24.9	7.54
CM_MC1	5/17/2018	N	15.7	11.1
CM_MC1	5/22/2018	N	8.6	4.79
CM_MC1	5/29/2018	N	12.9	5.41
CM_MC1	6/5/2018	N	3.6	1.50
CM_MC1	6/12/2018	N	1.0	1.01
CM_MC1	6/19/2018	N	1.8	0.69
CM_MC1	6/26/2018	N	< 1.0	0.49
CM_MC1	7/3/2018	N	2.1	24.0
CM_MC1	7/3/2018	FB	< 1.0	< 0.10

Teck Coal Limited Page Ivi

Site ID	Date	Sample Type	TSS (mg/L)	Turbidity, Lab (NTU)
CM_MC1	7/3/2018	FD	1.9	0.74
CM_MC1	7/10/2018	N	2.5	0.38
CM_MC1	7/17/2018	N	2.4	0.53
CM_MC1	7/24/2018	N	< 1.0	0.25
CM_MC1	7/26/2018	N	16.9	30.2
CM_MC1	7/27/2018	N	< 1.0	0.50
CM_MC1	7/31/2018	N	< 1.0	0.25
CM_MC1	8/7/2018	N	< 1.0	0.24
CM_MC1	8/15/2018	N	< 1.0	0.55
CM_MC1	8/21/2018	N	1.9	1.23
CM_MC1	8/28/2018	N	< 1.0	0.37
CM_MC1	9/4/2018	N	< 1.0	0.16
CM_MC1	9/13/2018	N	< 1.0	0.62
CM_MC1	9/14/2018	N	< 1.0	0.72
CM_MC1	10/2/2018	N	2.4	0.42
CM_MC1	10/30/2018	N	< 1.0	0.29
CM_MC1	11/2/2018	N	34.8	26.7
CM_MC1	11/6/2018	N	< 1.0	0.33
CM_MC1	11/13/2018	N	< 1.0	0.24
CM_MC1	11/20/2018	N	< 1.0	0.26
CM_MC1	11/27/2018	N	< 1.0	0.42
CM_MC1	12/4/2018	N	< 1.0	0.23
CM_MC2	1/3/2018	N	2.7	0.47
CM_MC2	1/3/2018	FB	< 1.0	< 0.10
CM_MC2	1/3/2018	FD	< 1.0	0.58
CM_MC2	1/9/2018	FB	< 1.0	< 0.10
CM_MC2	1/9/2018	FD	1.6	0.53
CM_MC2	1/9/2018	N	1.0	0.44
CM_MC2	1/16/2018	N	1.3	0.75
CM_MC2	1/16/2018	FB	< 1.0	< 0.10
CM_MC2	1/16/2018	FD	1.3	0.69
CM_MC2	1/23/2018	N	< 1.0	0.79
CM_MC2	1/30/2018	N	< 1.0	0.37
CM_MC2	2/6/2018	N	< 1.0	0.32
CM_MC2	2/6/2018	FB	< 1.0	< 0.10
CM_MC2	2/6/2018	FD	< 1.0	0.40
CM_MC2	2/14/2018	N	1.0	0.25
CM_MC2	2/14/2018	FB	< 1.0	< 0.10
CM_MC2	2/14/2018	FD	1.2	0.28
CM_MC2	2/19/2018	N	< 1.0	0.24
CM_MC2	2/27/2018	N	< 1.0	0.25

Teck Coal Limited Page Ivii

Site ID	Date	Sample Type	TSS (mg/L)	Turbidity, Lab (NTU)
CM_MC2	3/6/2018	N	1.0	0.56
CM_MC2	3/13/2018	N	1.7	0.90
CM_MC2	3/20/2018	N	1.0	1.14
CM_MC2	3/27/2018	N	< 1.0	0.52
CM_MC2	4/4/2018	FB	< 1.0	0.18
CM_MC2	4/4/2018	FD	< 1.0	0.84
CM_MC2	4/4/2018	N	< 1.0	1.02
CM_MC2	4/10/2018	N	1.3	0.54
CM_MC2	4/17/2018	N	1.6	1.56
CM_MC2	4/24/2018	N	1.7	1.39
CM_MC2	4/30/2018	N	11.2	5.51
CM_MC2	5/8/2018	N	6.2	71.3
CM_MC2	5/15/2018	N	60.9	20.1
CM_MC2	5/22/2018	N	42.0	24.2
CM_MC2	5/29/2018	N	30.7	15.8
CM_MC2	6/5/2018	N	7.2	3.11
CM_MC2	6/12/2018	N	1.8	1.93
CM_MC2	6/19/2018	N	3.0	1.21
CM_MC2	6/26/2018	N	2.5	1.02
CM_MC2	7/3/2018	N	1.9	0.64
CM_MC2	7/10/2018	N	< 1.0	0.69
CM_MC2	7/17/2018	N	1.4	0.57
CM_MC2	7/24/2018	FB	< 1.0	< 0.10
CM_MC2	7/24/2018	FD	1.4	0.46
CM_MC2	7/24/2018	N	< 1.0	0.44
CM_MC2	7/26/2018	N	33.4	37.9
CM_MC2	7/27/2018	N	1.7	1.32
CM_MC2	7/31/2018	FB	< 1.0	< 0.10
CM_MC2	7/31/2018	FD	1.1	0.50
CM_MC2	7/31/2018	N	< 1.0	0.25
CM_MC2	8/7/2018	N	< 1.0	0.45
CM_MC2	8/15/2018	N	1.0	0.54
CM_MC2	8/21/2018	N	< 1.0	0.33
CM_MC2	8/28/2018	N	1.8	0.87
CM_MC2	9/4/2018	N	3.5	0.45
CM_MC2	9/11/2018	N	1.2	0.50
CM_MC2	9/18/2018	N	1.4	0.58
CM_MC2	9/18/2018	FB	< 1.0	< 0.10
CM_MC2	9/18/2018	FD	< 1.0	0.59
CM_MC2	9/25/2018	N	< 1.0	0.50
CM_MC2	9/25/2018	FB	< 1.0	< 0.10

Teck Coal Limited Page Iviii

Site ID	Date	Sample Type	TSS (mg/L)	Turbidity, Lab (NTU)
CM_MC2	9/25/2018	FD	< 1.0	0.43
CM_MC2	10/2/2018	N	1.1	0.61
CM_MC2	10/9/2018	N	1.5	0.43
CM_MC2	10/16/2018	N	< 1.0	0.31
CM_MC2	10/23/2018	N	1.8	1.19
CM_MC2	10/23/2018	FB	< 1.0	< 0.10
CM_MC2	10/23/2018	FD	1.9	0.57
CM_MC2	10/30/2018	N	1.5	0.84
CM_MC2	11/6/2018	N	1.0	0.86
CM_MC2	11/13/2018	N	< 1.0	0.60
CM_MC2	11/20/2018	N	< 1.0	0.50
CM_MC2	11/27/2018	N	2.0	0.54
CM_MC2	12/4/2018	N	1.5	0.46
CM_MC2	12/11/2018	N	< 1.0	0.44
CM_MC2	12/18/2018	N	1.2	0.80
CM_MC2	12/28/2018	N	1.1	0.21
CM_PC2	5/1/2018	N	1.1	0.30
CM_PC2	5/7/2018	FB	< 1.0	0.22
CM_PC2	5/7/2018	FD	4.2	1.52
CM_PC2	5/7/2018	N	< 1.0	0.78
CM_PC2	5/10/2018	N	< 1.0	0.51
CM_PC2	5/15/2018	N	< 1.0	1.12
CM_PC2	5/16/2018	N	< 1.0	0.40
CM_PC2	5/22/2018	N	< 1.0	0.21
CM_PC2	5/29/2018	N	< 1.0	0.19
CM_PC2	6/5/2018	N	< 1.0	0.16
CM_PC2	6/12/2018	N	< 1.0	0.26
CM_PC2	6/19/2018	N	< 1.0	1.14
CM_PC2	6/26/2018	N	2.3	0.50
CM_PC2	7/3/2018	N	< 1.0	0.13
CM_PC2	7/10/2018	N	< 1.0	0.25
CM_SPD	1/9/2018	N	1.0	0.61
CM_SPD	2/6/2018	N	< 1.0	0.78
CM_SPD	2/28/2018	N	1.1	0.70
CM_SPD	3/7/2018	N	1.1	0.58
CM_SPD	3/15/2018	N	6.3	21.6
CM_SPD	3/19/2018	N	9.2	15.3
CM_SPD	3/27/2018	N	1.5	3.21
CM_SPD	4/4/2018	N	1.2	3.42
CM_SPD	4/9/2018	N	1.7	2.68
CM_SPD	4/17/2018	N	9.9	15.8

Teck Coal Limited Page lix

Site ID	Date	Sample Type	TSS (mg/L)	Turbidity, Lab (NTU)					
CM_SPD	4/24/2018	N	3.3	4.18					
CM_SPD	4/24/2018	FB	< 1.0	< 0.10					
CM_SPD	4/24/2018	FD	3.1	3.35					
CM_SPD	5/1/2018	N	8.9	7.74					
CM_SPD	5/7/2018	N	5.9	19.7					
CM_SPD	5/9/2018	N	10.5	12.7					
CM_SPD	5/10/2018	N	9.1	11.2					
CM_SPD	5/15/2018	N	6.4	5.25					
CM_SPD	5/16/2018	N	12.8	15.5					
CM_SPD	5/16/2018	FB	< 1.0	< 0.10					
CM_SPD	5/16/2018	FD	11.2	14.0					
CM_SPD	5/22/2018	N	3.2	3.49					
CM_SPD	5/29/2018	N	2.3	2.95					
CM_SPD	6/5/2018	FB	< 1.0	< 0.10					
CM_SPD	6/5/2018	FD	2.0	2.82					
CM_SPD	6/5/2018	N	2.6	2.82					
CM_SPD	6/12/2018	N	1.6	2.92					
CM_SPD	6/19/2018	N	5.8	2.54					
CM_SPD	6/26/2018	FB	< 1.0	< 0.10					
CM_SPD	6/26/2018	FD	6.3	2.51					
CM_SPD	6/26/2018	N	8.1	4.63					
CM_SPD	7/3/2018	N	3.1	2.50					
CM_SPD	7/10/2018	N	< 1.0	1.28					
CM_SPD	7/17/2018	FB	< 1.0	0.10					
CM_SPD	7/17/2018	FD	< 1.0	1.11					
CM_SPD	7/17/2018	N	1.2	1.28					
CM_SPD	7/24/2018	N	1.2	0.79					
CM_SPD	7/26/2018	N	28.3	35.5					
CM_SPD	7/27/2018	N	7.4	13.3					
CM_SPD	7/31/2018	N	< 1.0	1.08					
CM_SPD	8/7/2018	N	< 1.0	1.20					
CM_SPD	8/9/2018	N	1.8	1.59					
CM_SPD	9/4/2018	FB	< 1.0	< 0.10					
CM_SPD	9/4/2018	FD	1.1	1.27					
CM_SPD	9/4/2018	N	< 1.0	0.53					
CM_SPD	9/18/2018	N	3.0	2.57					
CM_SPD	10/2/2018	FB	< 1.0	< 0.10					
CM_SPD	10/2/2018	FD	< 1.0	1.08					
CM_SPD	10/2/2018	N	< 1.0	1.06					
CM_SPD	11/5/2018	N	3.8	4.21					
CM_SPD	12/3/2018	FB	< 1.0	< 0.10					

Teck Coal Limited Page Ix

Site ID	Date	Sample Type	TSS (mg/L)	Turbidity, Lab (NTU)
CM_SPD	12/3/2018	FD	< 1.0	1.09
CM_SPD	12/3/2018	N	2.5	1.56

N: normal permitted sample; FD: Field Duplicate; FB: Field Blank

Teck Coal Limited Page Ixi

2018 Pit Pumping Data

CM_14PIT-PIPE

- <u>-</u>	otor Alkalinity, Total (Ar CaCO)) Alumii	num Aluminum	Antimony	Antimony	Arzenis	Arrenic	Barium	Barium	Beryllium	Beryllium	Birmuth	Birmuth	Baran	Baran	Bromide	Cadmium	Cadmium	Calcium	Carbon, Dizzolvod Organic	Chlorido	Chromium	Chromium	Cabalt	Cabalt	Canductivity, Lab
CA	_BN Alk-T	7429-		7440-36-0	7440-36-0	7440-38-2		7440-39-3	7440-39-3	7440-41-7	7440-41-7	7440-69-9		7440-42-8	7440-42-8	24959-67-9	7440-43-9	7440-43-9		C-DOC	16887-00-6	7440-47-3	7440-47-3	7440-48-4	7440-48-4	COND-L
Fre		D		D	T	D	т	D.,	T maff	D.,	Т	D	т	D	T maři	D marii	D	T	т	D maří	D.,	D.,.	Т	D ugfl	T	N w/cm
Dato SYS_LOC_CODE Sample Ty	Unit mg/l > Rorult	Razult	fl mgfl Rorult	uqfl Razult	Rorult	Razult	ug/l Rozult	mg/l Rosult F	Rosult	Rozult	uq/l Rorult	mg/l Rozult	mg/l Rorult	mg/l Razult	mgri Rozult	mgri Razult	ugfl Rarult	uqfl Rarult R	mqfl orult	Rorult mgri	mg/l Rorult	ug/l Rosult	ug/l Rorult	ugri Razult	ugři Rozult	Bozult Bozult
1/3/2018 CM 14PIT-PIPE N		15 < 0.003		1.8		< 0.10	0.15	0.0105		1 < 0.020	<0.020	<0.000050	<0.000050	0.141			0,699		428			< 0.10	< 0.10	100	107	2870
1/10/2018 CM 14PIT-PIPE N	47	27 < 0.003	0.0077	1.67		< 0.10	0.26	0.0092		40.020	< 0.040	<0.000050	< 0.00010	0.135		₹0.25	0.687		424			< 0.10	0.20	100	101	2920
1/16/2018 CM 14PIT-PIPE N 1/23/2018 CM 14PIT-PIPE N		10 < 0.0031 12 < 0.0031		1.64			c0.40 c0.20	0.00966		40.020 1 40.040	0.033 <0.040	<0.000050	<0.000050 <0.00010	0.142 0.147		د0.25 د0.25	0.67		407	< 0.50 0.96		c0.10	c0.10	97.8 98.1	102	
1/30/2018 CM_14PIT-PIPE N		2 < 0.003		1,77			<0.20	0,0097		< 0.040	< 0.040	< 0.00010	< 0.00010	0.127		₹0.25	0.673		45			< 0.20	0.54	96	99.6	
2/6/2018 CM 14PIT-PIPE N			17772			i	7 17				144570															
2/6/2018 CM 14PIT-PIPE N		22 < 0.003		1.67			(0.20	0.00934		<0.040	<0.040	< 0.00010	< 0.00010	0.121	0.126		0.685			< 0.50		< 0.20	<0.20	97.5	100	2910
2/14/2018 CM 14PIT-PIPE N 2/19/2018 CM 14PIT-PIPE N	45	8 (0.003	0 <0.0060	1.7	1.77	<0.20	0.20	0.00941	0.00957	< 0.040	< 0.040	<0.00010	< 0.00010	0.132	0.131	0.25	0.657	0.689	410	0.5	6.9	<0.20	<0.20	95.7	99.9	2910
2/19/2018 CM 14PIT-PIPE N		7 < 0.003		1.55		< 0.10	0.14	0.0102	0.0102		₹0.020	< 0.000050	<0.000050	0.109		0.25ء	0.67	0.649		< 0.50		< 0.10	< 0.10	99.1	93.1	
2/19/2018 CM 14PIT-PIPE FD		8 40,003		1.59			0.20	0.00994		<0.020	<0.040	<0.000050		0.111	0.134		0.674			< 0.50		c0.10	<0.20	101	104	2880
3/1/2018 CM 14PIT-PIPE N 3/7/2018 CM 14PIT-PIPE N		81 < 0.003 7 < 0.003		1.65			0.20 (0.20	0.0107	0.0101	1 < 0.040	<0.040 <0.040	<0.00010 <0.00010	<0.00010 <0.00010	0.137 0.126	0,128	c0.25	0.649	0.667	395 426			<0.20 <0.20	<0.20 <0.20	99.1 97.7	97.2	2890 2950
3/13/2018 CM 14PIT-PIPE FD		3 < 0.003		1.8			0.10	0.00926	0.00917		<0.020	< 0.00010	<0.000050	0.13		ر.0.25 0.25	0.654		396		1.2	<0.20	< 0.10	96.9	103	2920
3/13/2018 CM 14PIT-PIPE N		7 < 0.003		1.77		<0.20	0.11	0.00912	0.00949		<0.020	< 0.00010	<0.000050	0.128		0.25ء	0.64	0.672	41			< 0.20	< 0.10	96.9	105	2920
3/19/2018 CM 14PIT-PIPE N 3/27/2018 CM_14PIT-PIPE N		13 (0.003)	0.038 < 0.0060	1.76			(0.20 (0.20	0.00915		<0.040 <0.040	<0.040	<0.00010 <0.00010	< 0.00010 < 0.00010	0.135 0.123		<0.050 <0.25	0,656		410	0.51 <0.50		<0.20 <0.20	<0.20 <0.20	95.6 92.6	99.1 99.5	
4/4/2018 CM_14PIT-PIPE N		2 < 0.003		1.61			(0.20	0,00864		< 0.040	<0.040	<0.00010 <0.00010	<0.00010 <0.00010	0.123		₹0.25 ₹0.25	0.639			c0.50		<0.20 <0.20	<0.20	92.6	103	
4/10/2018 CM 14PIT-PIPE N	4	2 < 0.003	0 (0,0060	1.65	1.74	< 0.20	0.20	0.00959	0.00984	4 < 0.040	<0.040	< 0.00010	< 0.00010	0.133	0.147	₹0.25	0,693	0.726	439	< 0.50	13.4	<0.20	0.25	95.6	102	2940
4/17/2018 CM 14PIT-PIPE N		81 < 0.003		1.64			0.20	0,00869		<0.040	<0.040	< 0.00010	< 0.00010	0.118	0.13	₹0.25	0.639		404			<0.20	<0.20	91.3		
4/24/2018 CM 14PIT-PIPE N 5/1/2018 CM 14PIT-PIPE N		41 < 0.003		1.49	1.5		(0.20 (0.20	0.00946	0,00909		<0.040	<0.00010 <0.000050	< 0.00010 < 0.00010	0.13 0.12		د0.25 د0.25	0.74 0.713		380	<0.50 0.58		<0.20 <0.10	<0.20 <0.20	69.3 61.6		
5/7/2018 CM 14PIT-PIPE N		19 < 0.003		1.65	1.7	<0.20	(0.20	0.00947	0.00962		<0.040	< 0.00010	<0.00010	0.123		₹0.25	0.74			<0.50		< 0.20	<0.20	67.9		
5/16/2018 CM 14PIT-PIPE N	36	7 < 0.003	0 40,0060	1.56	1.6	< 0.10	(0.20	0.0103	0.00998	<0.020	<0.040	<0.000050	< 0.00010	0.124	0.122	<0.050	0.692		336	< 0.50		< 0.10	< 0.20	74.8	73.2	2570
5/22/2018 CM 14PIT-PIPE N 5/29/2018 CM 14PIT-PIPE N		0,003 17 < 0,003		1.52			(0.20 (0.20	0.00964		1 < 0.020	<0.040 <0.040	<0.000050 <0.000050	<0.00010 <0.00010	0.119 0.113	0.132 0.129		0,691		388			< 0.10 < 0.10	<0.20 <0.20	76.8 77.6	76.3 77.5	
6/5/2018 CM 14PIT-PIPE N		28 < 0.003		1.64			(0.20	0.00992		1 < 0.040	<0.040	< 0.000050	< 0.00010	0.113	0.129		0.669			<0.50 <0.50		₹0.10 ₹0.20	<0.20 <0.20	83.1	81,6	
6/12/2018 CM 14PIT-PIPE N		16 < 0.003		1.68	1,65	< 0.20	(0.20	0,0101	0.00969	< 0.040	₹0.040	< 0.00010	₹0,00010	0.134	0.133	₹0.25	0.657		37		7	< 0.20	0.20	83.4	82.1	2680
6/19/2018 CM_14PIT-PIPE N		0.003		16	1.64			0.00981		0.020	40.020	< 0.0 <u>00050</u>	<0.000050	0.121		50.25	0.652			ــــــــــــــــــــــــــــــــــــــ		140.10	4 0.10	83.7	84,3	
6/26/2018 CM 14PIT-PIPE N 7/3/2018 CM 14PIT-PIPE N	4	0.003 14 < 0.003	0 <0.0060	1.67			(0.20 (0.20	0.00892	0.0102		<0.040	<0.00010 <0.00010	< 0.00010 < 0.00010	0.124 0.125	0.129	₹0.25 ₹0.25	0.64	0.698	404	c0.50 0.52		< 0.20 < 0.20	<0.20 <0.20	77.8	86.4 85.8	2750 2800
7/10/2018 CM 14PIT-PIPE N		6 (0.003		1.7			0.20	0.0114	0.0105		₹0.040	<0.000050	<0.00010	0.121		₹0.25	0.718			< 0.50		< 0.10	<0.20	92.5	87.1	2760
7/17/2018 CM 14PIT-PIPE N		10 < 0.003		1.66		<0.20	0.12	0.00935	0.00996		<0.020	< 0.00010	<0.000050	0.119		₹0.25	0.619			< 0.50	7	<0.20	< 0.10	82.6	88,6	
7/24/2018 CM 14PIT-PIPE N 7/31/2018 CM 14PIT-PIPE N		0.003		1.69		<0.20 <0.20	0.20	0.00963	0.0101	1 < 0.040 < 0.040	<0.040 <0.020	<0.00010 <0.00010	<0.00010 <0.000050	0.132 0.123		<0.25 <0.25	0,694 0,678		386 407	1.21 < 0.50		<0.20 <0.20	<0.20 <0.10	81.9 89.7	84.4 85.1	2760 2780
8/7/2018 CM 14PIT-PIPE N		13 < 0.003		1.66	1.63		0.20	0.011		<0.020	<0.040	<0.000050	<0.00010	0.122	0.136		0.702		395			< 0.10	<0.20	95.7	\$7.7	2810
8/15/2018 CM 14PIT-PIPE N		4 < 0.003		1.6			0.20	0.00973		< 0.040	< 0.040	< 0.00010	< 0.00010	0.12	0.137		0.645		431			< 0.20	<0.20	89.1	84.5	
8/21/2018 CM 14PIT-PIPE N 8/21/2018 CM 14PIT-PIPE FD		6 < 0.003 3 < 0.003		1.6			0.20 (0.20	0.00911		<0.040 <0.040	<0.040 <0.040	<0.00010 <0.00010	< 0.00010 < 0.00010	0.117 0.119	0.136 0.135		0.625		399 402	<0.50 0.84		<0.20 <0.20	<0.20 <0.20	83.8	87 88.3	2240 2240
8/28/2018 CM 14PIT-PIPE N	4	21 < 0.003	0 (0,0060	1.7	1.66	< 0.10	0.20	0.0104		1 < 0.020	<0.040	<0.000050	<0.00010	0.136	0.134	c1.0	0.677		415	0.83	9.3	< 0.10	< 0.20	96.8	91.5	2900
9/4/2018 CM 14PIT-PIPE N		4 < 0.003		1.64			0.20	0.0102	0.00992		< 0.040	< 0.00010	₹0,00010	0.127	0.125		0.621			< 0.50		< 0.20	0.20	89.8	86	
9/11/2018 CM 14PIT-PIPE N 9/18/2018 CM 14PIT-PIPE N		51 < 0.003 31 < 0.003		1.59		0.15 c0.20	0.20	0.00935	0,00899		<0.040 <0.020	<0.000050 <0.00010	<0.00010 <0.000050	0.127 0.127	0.132	<0.25 <0.25	0,661		386	0.79	8.7	< 0.10 < 0.20	0.22 < 0.10	85.7 85	85.3 85.9	
9/25/2018 CM 14PIT-PIPE N	45	8 < 0.003	0 (0,0060	1.61	1,67	< 0.20	0.20	0.00887	0.00898	<0.040	<0.040	< 0.00010	< 0.00010	0.123	0.131	₹0.25	0.648	0.646	385	< 0.50	9	<0.20	0.20	83.1	85	2780
10/2/2018 CM 14PIT-PIPE N	45	55 < 0.003	0.0060	1.59	1.57	0.12	0.26	0.00979	0.00905	<0.020	< 0.040	<0.000050	< 0.00010	0.119	0.136	₹0.25	0,635	0.629	389	1.44		< 0.10	< 0.60	88	87.8	2770
10/9/2018 CM 14PIT-PIPE N 10/16/2018 CM 14PIT-PIPE N		0,003 9 (0,003		1.5	1,62		0.20	0.00891	0,00908	40.020	<0.040 <0.040		<0.00010 <0.00010	0.139 0.141	0.144 0.134		0.587 0.562		403	1.09 c0.50		< 0.10 < 0.10	<0.20 <0.20	87	86 89.1	2540 2800
10/16/2018 CM 14PIT-PIPE FD		71 < 0.003		1.53	1.74			0,00929		40.020	<0.020	<0.000050		0.139	0.134		0.586		405			< 0.10	< 0.10	88.9	97.1 86.5	
10/23/2018 CM 14PIT-PIPE N		15 < 0.003		1.61			(0.40	0.00981		< 0.020	< 0.020	<0.000050	<0.000050	0.139	0.137		0.656		37			< 0.10	0.38	87.5	86.8	2740
10/29/2018 CM 14PIT-PIPE N 11/5/2018 CM 14PIT-PIPE N		50 0. 09 < 0.003	0076 < 0.0060	1.57	1.5		0.20 0.20	0,0097	0,00987	40.020 40.040	<0.040 <0.040	<0.000050 <0.00010	<0.00010 <0.00010	0.135 0.138	0.141 0.139		0.636	0.694		<0.50 <0.50		<0.10 <0.20	<0.20 <0.20	91.8	95.5	2800 2830
11/5/2018 CM 14PIT-PIPE IN		14 < 0.003		1.61		< 0.10	0.11	0,00938	0,00969		<0.020	< 0.000050	< 0.000010	0.138	0,139		0,646	0.667	412			40.20 40.10	< 0.20 < 0.10	86.9	88.8	
11/13/2018 CM 14PIT-PIPE N	31	5 < 0.003	0 (0,0030	1.62	1,62	< 0.20	0.15	0,0095	0.00948	< 0.040	< 0.020	< 0.00010	< 0.000050	0.134	0.139	₹0.25	0.598	0.643	413	< 0.50		<0.20	< 0.10	84.8	88.5	2800
11/20/2018 CM 14PIT-PIPE N 11/20/2018 CM 14PIT-PIPE FD		17 < 0.003 0 < 0.003		1.74			<0.20 <0.20	0.00944	0.00951	1 < 0.040	<0.040 <0.040	<0.00010 <0.00010	<0.00010 <0.00010	0.143 0.136		د0.25 د0.25	0.623 0.648		380			<0.20 <0.20	<0.20 <0.20	85.3 86.6	86.2 87	2820 2880
11/20/2018 CM 14PIT-PIPE PD 11/27/2018 CM 14PIT-PIPE N		(0.003) (5 < 0.003)		1,56			(0.20 (0.20	0.00988		<0.040 <0.040	<0.040	< 0.00010	<0.00010 <0.00010	0,136		₹0.25 ₹0.25	0.648			< 0.50		1 < 0.20 1 < 0.20	<0.20 <0.20	95.1	92.9	
11/27/2018 CM 14PIT-PIPE FD	4	31 < 0.003	0.0060	1.53	1.58	<0.20	0.20	0.0106	0.0102	< 0.040	< 0.040	< 0.00010	< 0.00010	0.137	0.139	₹0.25	0.579	0.652	428	< 0.50	13.5	< 0.20	د0.20	92	90.8	2750
12/3/2018 CM 14PIT-PIPE N		8 40,003		1.63			0.20	0.00909		<0.040	< 0.040	< 0.00010	< 0.00010	0.145	0.136		0.638		398			<0.20	<0.20	86.8	88	2870
12/11/2018 CM 14PIT-PIPE N 12/11/2018 CM 14PIT-PIPE FD		7 <0.003 0 0.	0 0.0075 0032 (0.0060	1.51			(0.20 (0.20	0.00965	0.00897	40.040 40.040	<0.040 <0.040	<0.00010 <0.00010	<0.00010 <0.00010	0.138 0.131	0.134 0.136		0.613 0.561		414	0.83		40.20 1 < 0.20	<0.20 <0.20	90.9	89.4 87	2820 2780
12/18/2018 CM 14PIT-PIPE N	44	3 < 0.003	0 (0,0060	1.53	1.52	0.29	0.20	0.00919	0.00941	1 < 0.040	< 0.040	< 0.00010	₹0.00010	0.142	0.139	∢0.25	0,626	0.657	401	0.64	13.3	< 0.20	<0.20	90.1	88.7	2760
12/18/2018 CM 14PIT-PIPE FD		15 < 0.003		1.53	1.53			0.00919	0.00876		<0.040	< 0.00010	< 0.00010	0.139		₹0.25	0.633		39			<0.20	0.51	92.8	87.2	2780
12/28/2018 CM_14PIT-PIPE		2 40,003 15 40,003		1.57		<0.20 <0.20	0.20	0.00948		1 < 0.040 < 0.040	<0.040	<0.00010 <0.00010	<0.00010 <0.00010	0,138 0,138		<0.25 <0.25	0.702		417	0.5		0.20 0.20	-0.68	92.3	<u>89.3</u> 89.2	2790
referencial inclination in the	- 4		V 150,0000	1.64	1.53	1.0.50	V.EV	0.00746	0.00423	4.0.040	1.0.040	1.0.00010	17.9.00010	9.138	9.158	. v.62	0.102	0.663	200	0.61	15.0	1.7.60	VV.60	71.2	97.6	

													i i		1		I I							
	Paramotor Cappor CAS_RN 7440-50-8	7440-50-8	Dizzalved Oxygen, Field DO-F	Fluoride 16984-48-8	Hardness, Total or Dissolved CaCO3 HARD	7439-89-6	Iron 7439-89-6	7439-92-1	7439-92-1	Lithium 7439-93-2	Lithium 1*	7aqnasium 7d39-95-d	Manganoro 7439-96-5	7439-96-5		Moreury 7439-97-6	Malybdonum 7439-98-7	Malybdonum 7439-98-7	Nickel 7440-02-0	Nickel 7440-02-0	Nitrato Nitragon (NO3), ASI 14797-55-8		on (NUZ), AS N	Nitragon, Ammania (ASN) 7664-41-7
	Fraction D	T	N	D	N	D	T	D	T	D	T	T	D	T	D	T	D	T	D	T	N	1	Ν	N
	Unit ug/l	uafl	mqfl	mgfl	mq#I	mgfl	mgfl	ugfl	ugfl	mgfl	mgfl	mgfl	mgři	mg/l	ugfl	ugfl	mgfl	mgfl	ugři	ugfl	mg/l		qfl	mqfl
		Result	Rosult	Result	Razult	Result	Rarult	Result	Result	Razult		iorult	Result I	Result	Result	Regult			Regult	Result F	iorult	Result		Razult
1/3/2018 CM 14PIT-PIPE N 1/10/2018 CM 14PIT-PIPE N	< 0.50 < 0.50	<0.50	2.63	0.21	182			<0.050 <0.050	< 0.050 < 0.10	0.122		185			40.0050 140.0050	<0.00050 <0.00050	0.00573	0.00558	429	425	49	3 3 < 0.0050	0.0058	0,67 0,67
1/16/2018 CM 14PIT-PIPE N	(0.50	< 0.50	0.97					<0.050	< 0.050	0,125		175			<0.0050	< 0.00050	0.00525	0.00569	410	431		2:<0.0050		0.66
1/23/2018 CM 14PIT-PIPE N	< 0.50	<1.0	0.61		194			< 0.10	< 0.10	0.127		197			<0.0050	<0.00050	0,0057	0.00564	413	422		4 < 0.0050		0,68
1/30/2018 CM_14PIT-PIPE N	< 0.50	c1.0	0.77		181	0.022	0.065	< 0.10	< 0.10	0.128	0.13	178	0.497	0.508	< 0.0050	< 0.00050	0.00574	0.00591	406	414	46	5 < 0.0050		0.65
2/6/2018 CM 14PIT-PIPE N			0.77										<u> </u>							$\overline{}$				
2/6/2018 CM 14PIT-PIPE N	< 0.50 < 0.50	<1.0	0.76	0.21	166		0.064	< 0.10	< 0.10 < 0.10	0.116		153 174			<0.0050 <0.0050	<0.00050	0.00529	0.00579	419	418		3 < 0.0050		0,89
2/14/2018 CM 14PIT-PIPE N 2/19/2018 CM 14PIT-PIPE N	30.20	41.0	0.16		117	0.023	0.064	20.10	40.10	0.122	0.131	114	0.498	0.543	120,0000	<0.00050	0.00346	0.00584	374	1 461	44	4 < 0.0050		0.02
2/19/2018 CM 14PIT-PIPE N	< 0.50	<0.50		0.12		0 < 0.010		0.050 د	< 0.050	0.113		164		0,498	<0.0050	< 0.00050	0.00518	0.00573	405	382	44	6 < 0.0050		0.64
2/19/2018 CM 14PIT-PIPE FD	< 0.50	c1.0	<u>i</u>	0.12				د0.050	< 0.10	0.112		195			<0.0050	<0.00050	0.00528	0.00519	407	434		<u>.1</u>	0.0059	0.63
3/1/2018 CM 14PIT-PIPE N 3/7/2018 CM 14PIT-PIPE N	₹0.50	<1.0 <1.0	0.53				0.075	< 0.10	< 0.10	0.134		180 175			<0.0050	<0.00050	0,00585	0.00545	413	415 392		4 < 0.0050		0.66
3/13/2018 CM 14PIT-PIPE IN	< 0.50 < 0.50	<1.0 <0.50	0.51	0.46	169		0.089		< 0.050	0.119		182			<0.0050 <0.0050	<0.00050 <0.00050	0.00538	0.00546	406	415		8 < 0.0050 5 < 0.0050		0.69
3/13/2018 CM 14PIT-PIPE N		< 0.50	0.65	0.17		0 < 0.020		< 0.10	< 0.050	0.118		188			<0.0050	<0.00050	0.00577	0.00529	401	428	46		0,0069	0.66
3/19/2018 CM 14PIT-PIPE N	₹0.50	¢1.0	0.68		178	0.07	0.142		< 0.10	0.127	0,107	170	0.485	0.491	1 < 0.0050	< 0.00050	0.00551	0.00545	395	408	46		0.002	0.66
3/27/2018 CM_14PIT-PIPE N		<1.0	0.63					< 0.10	< 0.10	0.12		173			<0.0050	<0.00050	0.00511	0.00527	389	427	47		0.0065	0.66
4/4/2018 CM 14PIT-PIPE N 4/10/2018 CM 14PIT-PIPE N	< 0.50 < 0.50	<1.0 <1.0	0.54		182	0 < 0.020	0.156		< 0.10 < 0.10	0.125		192			<0.0050 <0.0050	<0.00050 <0.00050	0.00544	0.00537 0.00551	399 398	429		1 <0.0050 3 <0.0050		0.68
4/17/2018 CM 14PIT-PIPE N	< 0.50 < 0.50	₹1.0 ₹1.0	0.39		1/5		0.122		< 0.10	0,101		180			40.0050 40.0050	<0.00050	0.00531	0.00551	398	359		3 < 0.0050 3 < 0.0050		0.68
4/24/2018 CM 14PIT-PIPE N	< 0.50	<1.0	0.45			0 < 0.020	0.121		< 0.10	0.0996	0.116	155		0,438	< 0.0050	<0.00050	0,00448	0.00442	324	336	35		0.0281	0.51
5/1/2018 CM 14PIT-PIPE N		c1.0	0.79			0 < 0.010		<0.050	< 0.10	0,104		143			<0.0050	<0.00050	0.00495	0.00483	317	314	30		0.0422	0.412
5/7/2018 CM 14PIT-PIPE N		41.0 41.0	0.31	V.26	150			<0.10 <0.050	< 0.10 < 0.10	0.112		150			<0.0050	<0.00050	0.00506	0.00517	329 350	339		4 < 0.0050		0.458
5/16/2018 CM 14PIT-PIPE N 5/22/2018 CM 14PIT-PIPE N	< 0.50 < 0.50	<1.0 <1.0	0.28 0.38		161 165			<0.050 <0.050	< 0.10	0.135		169			40.0050	<0.00050 <0.00050	0,00488	0.0047	350 352	348	41	9	0.0195 0.0144	0.51 0.575
5/29/2018 CM 14PIT-PIPE N	< 0.50	¢1.0	3.63					<0.050	< 0.10	0.113		168			4 < 0.0050	<0.00050	0.00507	0.00507	354	359	43		0.0112	0.58
6/5/2018 CM 14PIT-PIPE N	< 0.50	c1.0	0.65	0.2		0 < 0.020		< 0.10	< 0.10	0.125		166			<0.0050	<0.00050	0.00511	0.00489	374	366	41	6 < 0.0050		0.62
6/12/2018 CM 14PIT-PIPE N	< 0.50	¢1.0	1.8	0.2		0 < 0.020	0.035		< 0.10	0.131		171			<0.0050	<0.00050	0.00531	0.00517	357	346	41		0.0071	0.63
6/19/2018 CM_14PIT-PIPE		41.0	4.52			01	0.038	.0.050	< 0.050	0.121					81<0.0050 N<0.0050	<0.00050 _ <0.00050	0.00488	0.00524	361	3661	42		0,00991 cooc2	0.63i 0.67l
7/3/2018 CM 14PIT-PIPE N	< 0.50	¢1.0	1,51			0 < 0.020	0.028	< 0.10	< 0.10	0.12		181			<0.0050	<0.00050	0,00539	0.00532	337	376		6: < 0.0050	0.0002	0.66
7/10/2018 CM 14PIT-PIPE N	< 0.50	c1.0	0.4	0.22		0 < 0.010	0.04	<0.050	< 0.10	0.113		154		0.477	< 0.0050	<0.00050	0.00542	0.00508	390	378		1 < 0.0050		0,69
7/17/2018 CM 14PIT-PIPE N		<0.50	0.32			0 < 0.020		< 0.10	<0.050	0.12		177			<0.0050	<0.00050	0.00508	0.00531	359			0	0.0053	0.71
7/24/2018 CM 14PIT-PIPE N 7/31/2018 CM 14PIT-PIPE N	< 0.50 < 0.50	<1.0 <0.50	0.48		164 165		0.029		< 0.10 < 0.050	0.131		165 176			<0.0050 <0.0050	<0.00050 <0.00050	0.00508	0.00511 0.00552	358 392	363		8 < 0.0050	0,0225	0.69
8/7/2018 CM 14PIT-PIPE N	(0.50	<1.0	1.01			0 < 0.010		<0.050	< 0.10	0.112		169			1 < 0.0050	<0.00050	0.00542	0.00541	403	371	38	6 < 0.0050	0.0223	0.62
8/15/2018 CM 14PIT-PIPE N	< 0.50	c1.0	0.24		147	0 < 0.020	0.04	< 0.10	< 0.10	0.112		181		0.515	< 0.0050	<0.00050	0.00542	0.00498	381	372	38	3	0.0059	0.64
8/21/2018 CM 14PIT-PIPE N	< 0.50	c1.0		< 0.40		0 < 0.020	0.046		< 0.10	0.112		183			<0.0050	<0.00050	0.00516	0.00519	361	368		1 < 0.020		0.62
8/21/2018 CM 14PIT-PIPE FD 8/28/2018 CM 14PIT-PIPE N		41.0 41.0		c0.40	166	0 < 0.020	0.048	<0.10 <0.050	< 0.10 < 0.10	0.115		183			<0.0050 <0.0050	<0.00050 <0.00050	0.00512	0.00517 0.00536	383 405	370 386		3 < 0.020 9 < 0.020		0.61 0.63
9/4/2018 CM 14PIT-PIPE N		<1.0	0.56		167			< 0.10	< 0.10	0.118		169			40.0050	<0.00050	0.00518	0.00508	381	369	40		0.0101	0.63
9/11/2018 CM 14PIT-PIPE N		c1.0	0.38		180	0.014		< 0.050	< 0.10	0.117		173	0.537	0.477	<0.0050	< 0.00050	0.00528	0.0051	381	368		9 < 0.0050		0.64
9/18/2018 CM 14PIT-PIPE N		< 0.50	0.62		174			< 0.10	< 0.050	0.115		179			<0.0050	<0.00050	0,0048	0.00529	368	368		1 < 0.0050		0.66
9/25/2018 CM 14PIT-PIPE N 10/2/2018 CM 14PIT-PIPE N	< 0.50 < 0.50	<1.0 <1.0	0.52					<0.10 <0.050	c 0.10	0.117		171		0.478	<0.0050 4 < 0.0050	<0.00050 <0.00050	0,00485	0.00508 0.00544	356 382	367 376	39		0,0055	0,68
10/9/2018 CM 14PIT-PIPE N	(0.50	< 1.0	0.42					<0.050	< 0.10	0.122		188			<0.0050	<0.00050	0.00495	0.00522	389	366	39		0.0056	0.64
10/16/2018 CM 14PIT-PIPE N	< 0.50	c1.0	0.53	0.29	183	0 < 0.010	0.03	< 0.050	< 0.10	0.124	0.119	178	0.54	0,508	₹0.0050	<0.00050	0.00524	0.00517	404	387	39	7 < 0.0050		0.63
10/16/2018 CM 14PIT-PIPE FD		<0.50		0.29	178			<0.050	< 0.050	0.121		181			1 < 0.0050	<0.00050	0,00507	0.00535	399	377		4 < 0.0050		0.64
10/23/2018 CM 14PIT-PIPE N 10/29/2018 CM 14PIT-PIPE N	< 0.50	<0.50	0.74		167	0 < 0.010		<0.050 <0.050	< 0.050	0.125		177		0.495	<0.0050 4 < 0.0050	<0.00050 <0.00050	0,00506	0,0048	369 406	376 402		7 < 0.0050 4 < 0.0050		0.61 0.63
11/5/2018 CM 14PIT-PIPE N	< 0.50	/10	0.46	0.3	178		0.038		1 0.10	5 0.11		177		0.534	<0.0050	<0.00050	0.00515	0.00488	384	370		51 < 0.0050		0.64
11/13/2018 CM 14PIT-PIPE FD		<0.50		0.29	172	0 < 0.010	0.055	< 0.050	< 0.050	0.129	0.129	182	0,507	0.549	< 0.0050	<0.00050	0.00496	0.00508	368	384		4 < 0.0050		0.62
11/13/2018 CM 14PIT-PIPE N	< 0.50	<0.50	0.62		167			< 0.10	< 0.050	0.119		182			<0.0050	<0.00050	0.00517	0.00499	361	382	34	6	0.0056	0.64
11/20/2018 CM 14PIT-PIPE N 11/20/2018 CM 14PIT-PIPE FD	< 0.50 < 0.50	41.0 41.0	0.59	0.3	172	0 < 0.020	0.066	c0.10	< 0.10 < 0.10	0.119		169			<0.0050 <0.0050	<0.00050 <0.00050	0.00529	0,00481 0,0049	369 379	370 365		2 < 0.0050		0.606 0.618
11/27/2018 CM 14PIT-PIPE IN	₹0.50 ₹0.50	₹1.0 ₹1.0	0.58			0 < 0.020	0.043		< 0.10	0.112		200			1 < 0.0050	<0.00050 <0.00050	0,00503	0,00494	407	392		7, < 0.0050		0.518
11/27/2018 CM 14PIT-PIPE FD	₹0.50	<1.0	****	0.31		0 < 0.020	0.066		< 0.10	0.12		195			<0.0050	<0.00050	0.00491	0.00504	393	387		9: < 0.0050		0.492
12/3/2018 CM 14PIT-PIPE N	< 0.50	c1.0	0.7			0 < 0.020	0.037		< 0.10	0.125		179		0.506	<0.0050	<0.00050	0.00525	0.0049	358	377		8 < 0.0050		0.634
12/11/2018 CM 14PIT-PIPE N	< 0.50 < 0.50	c1.0	0.63	0,29			0.06	< 0.10	< 0.10 < 0.10	0.125		182			<0.0050 <0.0050	<0.00050 <0.00050	0.00495	0.00501	389	385		6 <0.0050		0.582
12/11/2018 CM 14PIT-PIPE FD 12/18/2018 CM 14PIT-PIPE N		≤1.0 ≤1.0	0.79		177		0.071		< 0.10 € 0.10	0.116		181			<0.0050 <0.0050	<0.00050 <0.00050	0.00478	0.0049	394	374		4 < 0.0050 4 < 0.0050		0,589 0,653
12/18/2018 CM 14PIT-PIPE FD	₹0.50	<1.0	V.17	0.29	181		0.048		< 0.10	0.129		189			1 < 0.0050	<0.00050	0.00495	0.00511	395	376		6 < 0.0050		0.587
12/28/2018 CM 14PIT-PIPEN		1.0 د	1.76	95.0		0.030		40.10	s 0.10	0.127	0.124	181	(<u> </u>	0.534	4140.0050	40,00050	0.00491	0.00518	394	382	39	6 40,0050		0.646i
12/28/2018 CM 14PIT-PIPE FD	< 0.50	c1.0		0.29	176	0 < 0.020	0.065	< 0.10	< 0.10	0.122	0.122	177	0.538	0.528	<0.0050	<0.00050	0.00524	0.00494	391	381	38	8,40,0050		0.613

				1			1	1		1		1				1		-		1	
	aramotor Ortho-Phorphato CAS_RN 14265-44-2-0	pH, Field	pH,LAB pH-L	7723-14-0	7440-09-7		Selenium Silver 7782-49-2 7440-22-	Silver 1 7440-22-4	Sadium 7440-23-5	Specific canductivity, temperature carrected value (25 C) SPEC_COND	7440-24-			Sulphate (AS SO4) Temperature, Field 14808-79-8 TEMP-F	Thallium 7440-28-		lium Tin -28-0 7440-31-5	Tin 7440-31-5	Titanium 7440-32-1	Titanium 7440-32-6	Total Dizzolved Solidz (Rezidue, Filterable) TDS
	Fraction N	N	N	N N	T	D	T D	T	T	N N	D	T		D N	D	1 1440	D D	T	D	T	N
	Unit mg/l	phunitr	phunitr	mgfl	mgfl	ugfl	ugfl ugfl	ugfl	mgfl	uS/cm at 25 C	mgfl	mgfl		mg/l dogs	ugfl	uq	ril mgril	mgfl	ugfl	ugfl	mqfl
Date SYS_LOC_CODE Sample			Rezult		Rezult	Rezult	Result Result	Rezult	Result	Rarult	Regult	Regult	B		Regult	Regult		Result	Regult	Regult	Rorult
1/3/2018 CM 14PIT-PIPE N	< 0.0010	6.97		4 0.0031	8.06	1.9	1 1.85 < 0.010	<0.010	84.) 79.	252			1.76	1390 3.4 1340 3.4	0.1		0.125 < 0.00010	<0.00010	<10	c 10	2680
1/10/2018 CM 14PIT-PIPE N 1/16/2018 CM 14PIT-PIPE N	< 0.0010 < 0.0010	6,99	7.39		8,37			<0.020 <0.010	79. 82.				.74	1340 3.4 1320 3.4				<0.00020 <0.00010	< 10 < 10	-10	2690 2520
1/23/2018 CM 14PIT-PIPE N	0.001	6.97		7 0.0036	8.28	11	7 1.57 < 0.020	<0.020	86.				.76	1320 3.4				<0.00020	c 10	z 10	2300
1/30/2018 CM_14PIT-PIPE N	0.0010	6.97			8.48	1.97		<0.020	86.				1.82	1360 3.4					< 10	<10	2610
2/6/2018 CM 14PIT-PIPE N		7								291	3		\blacksquare	3.4							
2/6/2018 CM 14PIT-PIPE N	0,0031		7.86		8,35			<0.020	81.		1.0		1.71	1340	0.13		0.134 < 0.00020	<0.00020	c10	< 10	2620
2/14/2018 CM 14PIT-PIPE N 2/19/2018 CM 14PIT-PIPE N	< 0.0010	7.01		1 0.0026	8.2	1.63	3 1.62 < 0.020	<0.020	85.	1 272		69	1.8	1310 3.4	0.13	37	0.152 < 0.00020	<0.00020	< 10	< 10	2570
2/19/2018 CM 14PIT-PIPE N	0,0022	1.02	7.49	9 0.0028	7.93	1.97	7 1.73 < 0.010	c0.010	77.		1.5	56 1	1.65	1340	0.13	2.0	0.127 < 0.00010	< 0.00010	z 10	z 10	2640
2/19/2018 CM 14PIT-PIPE FD	0.0022		7.5		8,39	1.93		<0.020	85.		1.		.58	1350	0.14		0.134 < 0.00010	<0.00020	<10	< 10	2590
3/1/2018 CM 14PIT-PIPE N	< 0.0010	6,99		0.0017	8.51	1.73	5 1.46 < 0.020	< 0.020	8	1 291	2 1	1.7 1	.58	1420 3.4	0.14	41	0.127 < 0.00020	<0.00020		c 10	2680
3/7/2018 CM 14PIT-PIPE N	< 0.0010	7.03			8.04	1.80		<0.020	80,				.66	1370 3.4				<0.00020	c10	< 10	2600
3/13/2018 CM 14PIT-PIPE FD	< 0.0010 < 0.0010	6.96	8.11		8.56 8.66			c0.010	79.				1.69	1390 1370 3.5	0.14			<0.00010	c10	<10	2460
3/13/2018 CM 14PIT-PIPE N 3/19/2018 CM 14PIT-PIPE N	< 0.0010	6,99			7.79		6 1.8 <0.020 1 1.76 <0.020	<0.020	78.				1.68	1370 3.5				<0.00010 <0.00020	c 10	z 10	2450) 2510)
3/27/2018 CM_14PIT-PIPE N	< 0.0010	6.89			8.26			<0.020	83.				1.63	1390 3.4				<0.00020	<10	<10	2600
4/4/2018 CM 14PIT-PIPE N	< 0.0010	6.97	8.12		8.3	1.4		<0.020	83.				1.79	1420 3.4				<0.00020	c 10	c10	2630
4/10/2018 CM 14PIT-PIPE N	₹0.0010	6,96		6 0.0027	8.6		7 1.56 < 0.020	<0.020	89.	292	4 1.0		1.68	1400 3.4		18	0.144 < 0.00020	<0.00020	c10	c 10	2650
4/17/2018 CM 14PIT-PIPE N	< 0.0010	6.97			7.42		6 1.7 < 0.020	<0.020	77.				.75	1380 3.4				<0.00020	<10	< 10	2610
4/24/2018 CM 14PIT-PIPE N 5/1/2018 CM 14PIT-PIPE N	< 0.0010 < 0.0010	7.02			7.64			140.020	80.3				1.57	1280 3.5 1180 3.3			0.132 < 0.00020	<0.00020 <0.00020	40	¢10	2450j. 2120j.
5/7/2018 CM 14PIT-PIPE N	₹0.0010	7.02			7.38	4.61		<0.020	7	246			1.62	1240 3.3			0.129 < 0.00020	<0.00020 <0.00020	c 10	z 10	2240
5/16/2018 CM 14PIT-PIPE N	< 0.0010	7.03		0,0016	7.42		5 5.78 < 0.010	40.020	7.	253			1.5	1140 3.3		33	0.12 < 0.00010	<0.00020	< 10	c 10	2280
5/22/2018 CM 14PIT-PIPE N	< 0.0010	7.06		1 0.0027	7.86		9 7.27 < 0.010	< 0.020	82.	268			1.6	1270 3.3	0.11	19	0.139 < 0.00010	<0.00020	c 10	c 10	2310
5/29/2018 CM 14PIT-PIPE N	0.002	7.57			7.98			<0.020	82.				.55				0.132 < 0.00010	<0.00020	< 10	c 10	2390
6/5/2018 CM 14PIT-PIPE N	< 0.0010	7.06			7.72	4.3		<0.020	8	1 275			1.54	1290 3.3 1300 3.3			0.122 < 0.00020	<0.00020	c10	<10	2390
6/12/2018 CM 14PIT-PIPE N 	0.0013 0.0016				*.14 7.85			<0.020 <0.010	80.°				16L				0.137 < 0.00020	<0.00020 <0.00010	<10	- de	2470 2480
6/26/2018 CM 14PIT-PIPE N	0,0014	7.04			8.07			10,020	84.	1 280			.56	1330 3.4	0.13		0.146 < 0.00020	40,00020	c 10	10	2540
7/3/2018 CM 14PIT-PIPE N	0.0019	7.13	7.84	4 < 0.0010	8.16	2.84	4 2.96 < 0.020	<0.020	85.	282	0 1.5		1.59	1320 3.4		35	0.139 < 0.00020	<0.00020	c 10	c 10	2480
7/10/2018 CM 14PIT-PIPE N	< 0.0010	7.08	8.03		8.27	3.24		<0.020	84.				1.6	1340 3.4			0.132 < 0.00010	<0.00020	<10	c 10	2480
7/17/2018 CM 14PIT-PIPE N	< 0.0010 0.0024	7.35 7.23			8,46			< 0.010	86.				1.66	1320 3,34					c10	c10	2660
7/24/2018 CM 14PIT-PIPE N 7/31/2018 CM 14PIT-PIPE N	0.0024				7.57			<0.020 <0.010	76.				.72	1370 3.4 1470 3.4				<0.00020 <0.00010	c10	<10	2590 2700
8/7/2018 CM 14PIT-PIPE N	< 0.0010	7,16			7.97			140.020	83.				1.61	1370 3.4				<0.00020	c 10	¢ 10	2700
8/15/2018 CM 14PIT-PIPE N	0.0022	7.16	8.14	4 < 0.0020	8.33	2.20	6 2,26 < 0.020	1<0.020	82.				.59	1320 3.5	0.13			<0.00020	c10	c10	2630
8/21/2018 CM 14PIT-PIPE N	0.0014			8 < 0.0020	7.89			<0.020	84.				1.61	1310 3.5			0.136 < 0.00020		c10	c 10	2620
8/21/2018 CM 14PIT-PIPE FD	0.0015			8 < 0.0020	8,03	1.95		<0.020	85.		1.5		1.6	1320	0.13			<0.00020	<10	<10	2600
8/28/2018 CM 14PIT-PIPE N 9/4/2018 CM 14PIT-PIPE N	< 0.0010 0.0021	7.05		8 < 0.0020 2 0.0021	8.04	2.6		<0.020	81.	292			1.62	1360 3.4 1380 3.5			0.138 < 0.00010	<0.00020 <0.00020	c10	c 10	2550 2670
9/11/2018 CM 14PIT-PIPE N	0,0019	7.03		3 < 0.0010	7.61			<0.020	79.				.62	1390 3.5			0.137 < 0.00010	<0.00020	c 10	c 10	2540
9/18/2018 CM 14PIT-PIPE N	0.0019	7.23	7.57	7 < 0.0020	8,35	2.4	2,45 < 0.020	< 0.010	84.		8 1.5	58 1	1.71	1370 3.4		44	0.132 < 0.00020	< 0.00010	c10	<10	2520
9/25/2018 CM 14PIT-PIPE N	0.0028	7.16			7.77			<0.020	80.				.59	1370 3.4			0.134 < 0.00020	<0.00020	c10	c 10	2550
10/2/2018 CM 14PIT-PIPE N 10/9/2018 CM 14PIT-PIPE N	0.0024 <0.0010	7.22 6.93		3 < 0.0020	8.35 7.92	2.3		1<0.020 1<0.020	82. 85.				1.61	1380 3.4 1370 3.4			0.127 < 0.00010 0.135 < 0.00010	<0.00020	c10	<10	2520
10/9/2018 CM 14PIT-PIPE N	0.0017			5 < 0.0020	8.16	2.2		<0.020	84.				1.61	1380 3.5			0.135 40.00010	<0.00020 <0.00020	410 410	- 10	2490) 2400)
10/16/2018 CM 14PIT-PIPE FD	< 0.0010	1.24		9 < 0.0020	8,08			₹0,010	84.		1.5		1.71	1370	0.12			< 0.00010	<10	c 10	2530
10/23/2018 CM 14PIT-PIPE N	0.0018	7.35	7.62	2 < 0.0020	8,18	2.14		< 0.010	8	292	5 1.5	55 1	.55	1360 3.4		46	0.139 < 0.00010	< 0.00010	< 10	c 10	2140
10/29/2018 CM 14PIT-PIPE N	0.003	7.16			8.34	2.6		<0.020	85.				1.69	1370 3.4				<0.00020	c10	c 10	2330
11/5/2018 CM 14PIT-PIPE N	0.0011	7.09		1 < 0.0020	7.84	1.63		<0.020	79.				.57	1310 3.4				<0.00020	<10	<10	2700
11/13/2018 CM 14PIT-PIPE FD 11/13/2018 CM 14PIT-PIPE N	0.0022 0.0023			2 < 0.0020 3 < 0.0020	8.28	1.9		< 0.010 < 0.010	85. 86.		3 1.0		1.68	1290 1190 3.5	0.13	25		<0.00010 <0.00010	c 10	c 10	2430 2470
11/20/2018 CM 14PIT-PIPE N	0.0023			7 < 0.0020	7.9			40.020	76.				.46	1320 3.5				<0.00020	<10	c10	2400
11/20/2018 CM 14PIT-PIPE FD	0.0021		8.08	8 < 0.0020	7.85	1.63	8 1.66 < 0.020	< 0.020	82.	1	1.0	62 1	.55	1320	0.13	38	0.132 < 0.00020	<0.00020	<10	c10	2440
11/27/2018 CM 14PIT-PIPE N	0.0027			5 < 0.0020	8.4	1.93		<0.020	91.	292			1.71	1290 3.5			0.134 < 0.00020	<0.00020	c 10	c 10	2490
11/27/2018 CM 14PIT-PIPE FD	0.0025		7.64		8.23	1.8		<0.020	9				1.71	1300	0.12			<0.00020	c 10	<10	2370
12/3/2018 CM 14PIT-PIPE N 12/11/2018 CM 14PIT-PIPE N	0.0047 0.0173			6 < 0.0020 4 < 0.0020	7.74	1.83 2.04		<0.020 <0.020	76.				L48	1310 3.5 1320 3.5				<0.00020 <0.00020	c 10	c 10	2710 2710
12/11/2018 CM 14PIT-PIPE FD	0.0173	1.16		7 < 0.0020	7.93			(0.020	82.		1,		.59	1320 3.5	0.12			<0.00020	c 10	c 10	2600
12/18/2018 CM 14PIT-PIPE N	0.0211	6.85		6 < 0.0020	8,25	1.93		1 < 0.020	81.				.53	1310 3.5			0.134 < 0.00020	<0.00020	c 10	c10	2850
12/18/2018 CM 14PIT-PIPE FD	0.0217		7.97	7 < 0.0020	7.97			<0.020	82.	9	1.		.56	1320	0.1	13	0.13 < 0.00020	<0.00020	c 10	c10	2670)
12/28/2018[CM_14PIT-PIPEN	0.0213	1 5.9			3.24			40.020	82.	1 292	513		L56j _ L65j					<0.00020_	ا	<u>- 10</u>	2670
12/28/2018 CM 14PIT-PIPE FD	0.0224		7.37	7 0.003	7.89	1.74	4 1.44 < 0.020	<0.020	\$1.	1	+ 1.0	6Z 1.	.52	1320	0.13	34	0.124 < 0.00020	<0.00020	< 10	c 10	2470

		Paramotor CAS_RN	Tutal Kjoldahl Nitrugon TKN	C-TOC	Total Surpended Solids, Lab TSS-L	TurbidityLab TURB-L	Uranium 7440-61-1	Uranium 7440-61-1	Vanadium 7440-62-2	Vanadium 7440-62-2		Zinc 7440-66-6
		Fraction	N	T	N	N	D	T	D	Т	D	T
Dato	SYS_LOC_CODE	Unit Samplo Typo	mg/l Rozult	mq/l Rozult	mg/l Rozult	ntu Rozult	ug/l Borult	ug/l Rozult	ug/l Rozult	ugři Rozult	ug/I Rorult	ug/l Borult
	CM 14PIT-PIPE	N .	0,664	0.84	1.1	0.68	16.9		< 0.50	<0.50	87.8	
1/10/2018	CM 14PIT-PIPE	N	< 0.10	< 0.50	<1.0	0.55	16.8	16.1	< 0.50	< 1.0	89	94
		N	0.076	د0.50	<1.0	0.33			< 0.50	<0.50	84.4	
		N .	< 0.25		¢1.0	0.55			<1.0	<1.0	90	
		N N	0.123	0.71	<1.0	0.66	16.9	17.9	< 1.0	<1.0	86.2	91.4
		N N	0.132	< 0.50	<1.0	0.56	17.3	17.1	< 1.0	< 1.0	92	89.7
		N	0.437		¢1.0	0.57			< 1.0	<1.0	83.2	89.3
		N		***								
		N			< 1.0	0.65	16.9	16.8	< 0.50	< 0.50	86.6	
		FD			s1.0	0.7		16.8	<0.50	<1.0	86.6	
		N N	<0.050 0.3	1.9		0.2 0.71		16.3		< 1.0 < 1.0	87.9	89.4 84.6
		FD	0.45	0.98		1.47		18.9		<0.50	86.1	83.1
		н	0.55	0.73		1.52		19.8		<0.50	\$7.1	83.6
		н		د0.50	1.4	1.52			< 1.0	c1.0	86.8	86
		н		₹0.50	c1.0	1.44			<1.0	c1.0	82	
		N	1.16	< 0.50	1	0.51		17.6		<1.0	85.2	
		H H	0,148 0,104	c0.50 0.83	<1.0 <1.0	1,29	15.3	17.6 16.7		<1.0	85.6 83.1	90.8 73.9
		N N	0.104	<0.50	1.1	0.83			<1.0	<1.0	82.5	84.2
		н	0.058		¢1.0	0.47			₹0.50	<1.0	71.3	72
		N	< 0.050	< 0.50	5.8	0.57			< 1.0	c1.0	71.3	74.5
		N		< 0.50	< 1.0	0.45			< 0.50	< 1.0	73.7	
		н	0.073		c1.0	0.27			<0.50	<1.0	77.2	
		N N	0.635 <0.050	< 0.50 0.53	<1.0	0.35 0.41			< 0.50 < 1.0	< 1.0 < 1.0	74.1 82	
		N N	< 0.050	0.65	c1.0	0.4	14.6	14.6		c1.0	77.4	74.8
		н		(0.50	1	0.46			<0.50	0.50	77.4	
		н		<0.50	<1.0	0.37		15.4	< 1.0	<1.0	77.7	84.4
		н		د0.50	c1.0	0.39			<1.0	c1.0	73.9	78.8
		N N		<0.50 <0.50	£1.0	0.32 0.46			<0.50 <1.0	<1.0 <0.50	79.3 77.1	
		N N	0,379		<1.0	0.46		15.1		<1.0	74.8	
		N	0.256	< 0.50	¢1.0	0.6	15.9	15.5	<1.0	<0.50	84.1	
8/7/2018	CM 14PIT-PIPE	N	1.02	0.73	<1.0	0.43	15.6	15.7	< 0.50	< 1.0	86.9	79.6
		N	1.23		< 1.0	0.45				< 1.0	82.8	83.3
		N	0.561		1.9	0.67		16.3	<1.0	<1.0	76	75.5
		FD N	0.41 1.39		<1.0 <1.0	0.51 0.43			<1.0 <0.50	< 1.0 < 1.0	78.9 85.4	
		N	0.975		¢1.0	0.44			< 1.0	<1.0	82.1	
		N	0.344		< 1.0	0.3	14.9			< 1.0	84.2	
9/18/2018	CM 14PIT-PIPE	н	0.814	< 0.50	1.4	0.33	15.7	15.8		<0.50	87	86.9
		N .	< 0.050	< 0.50	c1.0	0.24	15.1	15.9		<1.0	78.1	78.9
		N N	0,802 0,117	1.47		0.28 0.17	15.3	15.2 14.9	<0.50 <0.50	< 1.0 < 1.0	84.1 78.4	86.3 78.3
		N N	0,306		3.3	0.33			< 0.50	<1.0	79.3	
		FD	1.13	0.89		0.32	15		₹0.50	< 0.50	78.5	
10/23/2018	CM 14PIT-PIPE	И	0.29	0.82	2.8	0.33	16.9	16.4	< 0.50	د0.50	86.8	80.4
		N	0.067	1.02		0.4		17.7		c1.0	86.3	
		N FD	1.17 0.857	0.53 0.59	1.7	0.51 0.33	16.3	15.3 16.7		<1.0 <0.50	89.7 84.8	85.6 90.1
		N .		<0.50	41.0	0.33		16.9		< 0.50	84.8	90.1 89.2
		N .	< 0.050	0.97	1.9	0.49		16.8		c1.0	87	86.6
11/20/2018	CM 14PIT-PIPE	FD	< 0.050	0.95	1.4	0.3	16.6	16.1	<1.0	< 1.0	90	81.4
11/27/2018	CM 14PIT-PIPE	н		< 0.50	2.4		15.4	15.5	< 1.0	c1.0	90.4	
		FD		<0.50	2.2	0.53			<1.0	<1.0	88.9	
		7	0.363 0.768	0.9 0.52	1.2 1.3	0.65			<1.0 <1.0	< 1.0 < 1.0	84 87.4	
		FD	0.768	<0.50	1.3			14.5		<1.0 <1.0	88.9	*4.8 *5.2
		N	0,891	0.54	2.4	0.95		15.6	<1.0	<1.0	85.7	86.9
12/18/2018	CM 14PIT-PIPE	FD	0.902	0.7	3.5	0.78	16.1	15.2	< 1.0	c1.0	87	86.2
		٣	0.81	0.					d.0	41.0	92.3	
12/28/2018	CM 14PIT-PIPE	FD	0.73	0.86	2.6	0.3	16.4	16.2	< 1.0	< 1.0	90.5	89.2

CM_34PIPEDIS

		Parameter Al	kalinity, Total (Ar CaCO3)	Aluminum	Aluminum	Antimony	Antimony	Arzenis	Arzenic	Barium	Barium	Beryllium	Beryllium	Birmuth	Birmuth	Baran	Baran	Bramide	Cadmium	Cadmium	Calcium	Carbon, Dizzolvo d Organic	Chlorida	Chramium	Chramium	Cabalt	Cabalt	Canductivity, Lab
		CAS_RN	Alk-T	7429-90-5	7429-90-5	7440-36-0	7440-36-0	7440-38-2		7440-39-3	7440-39-3	7440-41-7	7440-41-7		7440-69-9			24959-67-9	7440-43-9	7440-43-9		C-DOC	16887-00-6	7440-47-3	7440-47-3	7440-48-4	7440-48-4	
		Fraction	N	D	T	D	T	D	T	D	T	D	T	D	T	D	T	D	D	T	T	D	D	D	T	D	Т	N
		Unit	mgfl	mgfl	mqfl	ugfl	ugfl	ugři	uqfl	mgfl	mg/l	ugfl	ugfl	mgfl	mgfl	mgfl	mgfl	mgfl	ugfl	ugfl	mgfl	mgfl	mgfl	ugfl	ugři	uqfl	ugfl	wrten
	SYS_LOC_CODE	Sample Type Re		Regult			Regult	Result	Regult		Regult		Result		Result			Result	Regult		Regult	Regult	Regult			Regult	Result	Rezult
	M 34PIPEDIS	N		<0.0030	0.043		2.43	0.27	0.46	0.0301		<0.020	< 0.040	<0.000050	< 0.00010	0.163		₹0.25	0.51	0.536		1.42		< 0.10	0.20	90.7	92.2	2050
4/24/2018 CN		N .	218	<0.0030	0.0184	2.33	2.43	0.27	0.32	0.027	0.0297	<0.040	< 0.040	< 0.00010	< 0.00010	0.159	0.143	<0.25	< 0.010	0.334	1 299	0.69	4.2	<0.20	0.20	71.2	89.7	2040
	M 34PIPEDIS	N																			-							
	M 34PIPEDIS	N		<0.0030	0.034			∢0.20	0.3	0.00892	0.0292		< 0.040	<0.00010	< 0.00010	0.122		<0.25	0.727			< 0.50		<0.20	0.20	62.8	100	2070
	M 34PIPEDIS	N		<0.0030	0.0499		2.46	0.27		0.0225		< 0.040	< 0.040	< 0.00010	< 0.00010	0.164		₹0.25	0.556			0.66		<0.20	0.20	91.3	94.4	2120
	M 34PIPEDIS	N .		<0.0030	0.025		2.4	0.29		0.0253		<0.020	< 0.040	<0.000050	< 0.00010	0.165		<0.050	0.587	0.586		< 0.50		< 0.10	0.20	108	101	2100
5/22/2018 CN		N		<0.0030	0.0196		2.63	0.24		0.0216	0.0242		< 0.040	<0.000050	< 0.00010	0.162		<0.25	0,604	0.6		< 0.50		< 0.10	0.20	106	103	2030
5/29/2018 CN		N .		<0.0030	0.0131		2.82	0.23		0.0209		< 0.020	< 0.040	<0.000050	< 0.00010	0.148		< 0.25	0.637	0.667		< 0.50		< 0.10	0.20	108	112	2070
	M 34PIPEDIS	N .		<0.0030	0.0149		6.01		0.3	0.0206		<0.040	< 0.040	<0.00010	<0.00010	0.165		<0.25	0.729			< 0.50		<0.20	0.20	116	116	2060
	M 34PIPEDIS M 34PIPEDIS	N		<0.0030	0.0408		2.3	< 0.20	0.25	0.0178		<0.040 <0.020	<0.040 <0.020	< 0.00010	< 0.00010	0.173		<0.25 <0.25	0,676			<0.50 <0.50		< 0.20	0.20	101	105	2080
6/26/2018 CN				<0.0030 <0.0030	0.0321		2.9	€0.20	0.33	0.0165		< 0.040	< 0.040	<0.000050 <0.00010	<0.000050 <0.00010	0.163		₹0.25 ₹0.25	0.704	0.733 0.806		< 0.50 < 0.50		< 0.10 < 0.20	0.10	104	106	2100
	M 34PIPEDIS	1		<0.0030	0.0275			<0.20	0.26	0.0165		<0.040	<0.020	<0.00010	<0.00010 <0.000050	0.166		40.25 40.25	0.76	1.42		< 0.50		<0.20	0.10	105	108	2040
	M 34PIPEDIS			c0.0030	0.0226		2.56	40.20	0.25	0.0199		< 0.020	¢0.020	<0.000050	<0.000050	0.178		0.25	1.69	1.92	296		r 2.5	c 0.10	0.10	121	121	1950
	M 34PIPEDIS	N .		<0.0030	0.0091		2.50	0.22	0.29	0,0175		<0.020	<0.020	<0.000050	<0.000050	0.158		c0.25	1.10	1.14	1 200	< 0.50	<2.5	< 0.10	0.10	122	122	1970
	M 34PIPEDIS	N .		<0.0030	0.0102		2.44	0.22		0,0161		< 0.020	<0.020	<0.000050	< 0.000050	0.172		< 0.050	0.941			0.20		40.10	0.10	140	116	1920
	M 34PIPEDIS	N .	25		0.0226		2.55	0.22		0.0195		< 0.040	< 0.020	<0.00010	< 0.000050	0.168		< 0.25	0.941			< 0.50		< 0.20	0.10	112	100	1960
	M 34PIPEDIS	N	287	< 0.0030	0.0064	2.51	2.48	0.23	0.23	0.019		< 0.020	< 0.020	< 0.000050	< 0.000050	0.169		₹0.25	0.91	0.879		0.97		c 0.10	0.10	124	113	1980
	M 34PIPEDIS	N		<0.0030	< 0.0030	2.64	2.37	0.23	0.25	0.0174		< 0.020	₹0.020	< 0.000050	< 0.000050	0.163		< 0.25	0.971	0,898		0.57	د2.5	< 0.10	0.10	114	115	1780
	M 34PIPEDIS	N		< 0.0030	0,0053	2.39	2.55	0.2	0.3	0.0172		< 0.020	< 0.020	< 0.000050	< 0.000050	0,153		< 0.50	0.853	0,867		< 0.50		< 0.10	0.10	104	107	1630
8/28/2018 CN	M 34PIPEDIS	N	273	< 0.0040	< 0.0090	2.85	2,62	0,32	0.31	0.0174	0.0163	< 0.020	< 0.020	< 0.000050	< 0.000050	0,183	0.207	₹0.50	0.785	0,836	261	< 0.50	2.3	< 0.10	0.19	102	108	1910
9/4/2018 CN	M 34PIPEDIS	N		<0.0030	< 0.0060	2.52	2.51	0.22	0.26	0.02	0.018	< 0.020	< 0.040	< 0.000050	< 0.00010	0,169	0.168	₹0.25	0,561	0.561	1 236	< 0.50	2.5	< 0.10	0.20	88.9	83	1630
9/11/2018 CN	M 34PIPEDIS	N	26	<0.0030	0,0064	2.24	2.29	0.26	0.29	0.0188	0.0183	< 0.020	< 0.020	< 0.000050	< 0.000050	0.181	0.173	₹0.25	0.463	0.456	250	< 0.50	¢2.5	< 0.10	0.10	75.3	76.6	1860
10/23/2018 CN		N	269	<0.0030	< 0.0030	2.37	2.29	0.24	<0.50	0.0178	0.0174	<0.020	< 0.020	< 0.000050	< 0.000050	0,189		₹0.25	0,626	0.581	1 210	1.37	2.5 ء	< 0.10	0.10	77.4	76.3	1660
10/29/2018 CN		N		<0.0030	0.0041	2.76	2.74	0.27		0.0168		<0.020	< 0.020	< 0.000050	< 0.000050	0.184		₹0.25	0.69	0.746		< 0.50	2.5ء	< 0.10	0.35	101	105	1800
10/31/2018 CN		N		<0.0030	0.0033		2.68	0.23	0.3	0.0167		< 0.040	<0.020	< 0.00010	<0.000050	0.177		₹0.25	0.637				٤2.5	₹0.20	0.22	87.5	89.1	1750
	M 34PIPEDIS	N		< 0.0030	0,0038		2.69	0.28	0.29	0.0169		< 0.020	< 0.020	< 0.000050	< 0.000050	0,185		₹0.25	0.665	0.631		< 0.50	د2.5	< 0.10	0.10	93.7	89.1	1770
11/13/2018 CN	M 34PIPEDIS	N .	287	<0.0030	0.0183	2.53	2.57	0.24	0.32	0.0174	0.0202	<0.020	<0.020	<0.000050	<0.000050	0.177	0.183	₹0.25	0.555	0,636	264	₹0.50	₹2.5	< 0.10	0.10	82.7	87.9	1810

	Parameter	Copper	Cappor	Disselve 40 Field	Florest d.	Hardness, Tatal or Dissalved CaCO3	Iron	Iran	Load	Load	Lithium	Listin-	Magnezium	М	М	Mercury	М	Malybdonum	Malek Joseph	Nickel	Nickel	Nitrato Nitragon (NO3), AS N	Nissis - Nissas - CNOSS ACM	Missess Assessing Agent
					16984-48-8													7439-98-7					14797-65-0	7664-41-7
	Fraction	1440-50-6	1440-50-8	D0-7	10704-40-0	neno N	1435-05-0	T T	1439-92-1	1435-52-1	1439-93-2	1439-93-2	1435-55-4	1437-76-3	T439-96-9	1439-91-6	1439-91-6	1437-70-1	1437-70-1	1440-02-0	1440-02-0	14191-35-0	14171-65-0	1004-41-1
	Unit			mari	mari	-"		mari	wafi	uafl	mafi	matt	mafl	mařl	mari	uati	yafl	matt				matt		matl
Date SYS_LOC_CODE			Regult	Regult	Regult .	Regult mgri	Regult .												mg/l Rozult	Rozult	Regult		Rezult	Rorult mgri
				neruit	neruit															naruit	neruit			naruit
4/20/2018 CM 34PIPEDIS N 4/24/2018 CM 34PIPEDIS N		< 0.50	<1.0	3.06	0.20		0.010	0.174	< 0.050	< 0.10 € 0.10	0.112	0.123		0.474 0.238		<0.0050 <0.0050	0,00062	0.00949		319	328	8,51		1.61
		0.50	¢1.0		0.3	111	0.020	0.023	₹0.10	< 0.10	0.0955	0.0997	(99.7	0.238	0.497	₹0.0050	0.00054	0.00902	0.00947	295	322	9.08	0.0353	1.55
4/24/2018 CM 34PIPEDIS N				12.92	-																			
5/1/2018 CM 34PIPEDIS N		<0.50	<1.0	11.48	0.4		0.020	0.053		< 0.10	0.11	0.108		0.308		<0.0050	0.00052	0.00502	0.00922	319	352	8.61		1.69
5/8/2018 CM 34PIPEDIS N		< 0.50	c1.0	14.97			0.020	0.078		0.14		0.0936				< 0.0050	0.00099	0.00919		328	335	7.71	0.0633	1.46
5/16/2018 CM 34PIPEDIS N		<0.50	c1.0	12.99	0.33		0 < 0.010		< 0.050	< 0.10	0.126	0.101		0.58		<0.0050	0.00108			371	357	6.57		1.41
5/22/2018 CM 34PIPEDIS N					0.2		0.010	0.077		0.12	0.108	0.11		0.559		₹0.0050	0.00096	0.00952	0.00956	372	356	6.7	0.0338	1.46
5/29/2018 CM 34PIPEDIS N		40.50	c1.0	16.87	0.3		0.010		< 0.050	< 0.10	0.1	0.113		0.52		< 0.0050	0.00059	0.0101	0.01	38Z	398	7.39	0.0336	1.51
6/5/2018 CM 34PIPEDIS N		0.50	c1.0	10.96			0.020	0.055		c0.10	0.105	0.107		0.54		< 0.0050	0.00055	0.01	0.0104	407	412	9.8	0.0417	1.56
6/12/2018 CM 34PIPEDIS N		< 0.50	c1.0	12.54	0.2		0.020	0.048		c0.10	0.106	0.109		0.54		< 0.0050	0.00058		0.00809	351	360	6,41		1.32
6/19/2018 CM 34PIPEDIS N			< 0.50	16.5	0.3		0.010		<0.050	0.057	0.1	0.107	7 109	0.53		< 0.0050	< 0.00050	0,00782	0,0085	366	384	6.94		1.3
6/26/2018 CM 34PIPEDIS N		٥.50	c1.0	13.15	0.2		0.020	0.043		< 0.10	0.0988	0.1	1 104	0.522		< 0.0050	0.00053	0.00738	0.00752	372	397	8.32	0.027	1.25
7/4/2018 CM 34PIPEDIS N			₹0.50	9,89			0.020	0.038		<0.050	0,101	0.102		0.528		< 0.0050	<0.00050	0.00972	0,0101	451	467	9.79	0.0476	1.22
7/10/2018 CM 34PIPEDIS N			< 0.50	12.99	0.2		0.010		< 0.050	< 0.050	0.0964	0.107				< 0.0050	<0.00050	0.00954		457	455	9,99	0.0395	1.49
7/17/2018 CM 34PIPEDIS N		0.50	< 0.50	12.41	0.2		0.010		< 0.050	<0.050	0.0976	0.099		0.551		< 0.0050	<0.00050	0.00928	0.00948	444	446	9.38	0.0402	1.46
7/25/2018 CM 34PIPEDIS N			< 0.50	13.5	0.3	114	0.010		< 0.050	<0.050	0.0946	0.0977		0.528		< 0.0050	<0.00050	0,00869	0.00891	419	409	9,48	0.0384	1.36
7/31/2018 CM 34PIPEDIS N			₹0.50	12.87		110	0.027	0.015		<0.050	0.108	0,105		0.519		< 0.0050	< 0.00050	0.00858	0.0093	407	376	9.07	0.0376	1.37
8/7/2018 CM 34PIPEDIS N			< 0.50	12.65			0.010		< 0.050	< 0.050	0.0959			0.581		< 0.0050	< 0.00050	0.00881		428	393	8,99		1.3
8/15/2018 CM 34PIPEDIS N		< 0.50	₹0.50	12.07			0.010		< 0.050	< 0.050	0.1	0.101				< 0.0050	< 0.00050	0.00947		424	422	7.84	0.0338	1.25
8/21/2018 CM 34PIPEDIS N			د0.50	11.54	0.3		0.010		< 0.050	< 0.050	0.0931	0.104		0.465		< 0.0050	< 0.00050	0.00813	0.0085	381	390	8.13	0.03	1.16
8/28/2018 CM 34PIPEDIS N		< 0.50	₹0.50	12.25	0.4		0.010	0.026	< 0.050	< 0.050	0.1	0.0992				< 0.0050	< 0.00050	0.00977	0.00919	386	425	8.34	0.029	1.22
9/4/2018 CM 34PIPEDIS N		< 0.50	c 1.0	13.28	0.3		3 < 0.010		< 0.050	< 0.10	0.092					< 0.0050	< 0.00050	0.00871		365	340	8,29	0.0445	1.08
9/11/2018 CM 34PIPEDIS N		< 0.50	< 0.50	12.86	0.3	105	0.010	0.012	< 0.050	< 0.050	0.0929	0.0942	39.9	0.327	0.339	< 0.0050	< 0.00050	0,00831	0.00827	318	323	7.8	0.0448	0.94
10/23/2018 CM 34PIPEDIS N			< 0.50	14.33	0.3	88	9 < 0.010	0.015	< 0.050	< 0.050	0.0968	0,0864	80.1	0.294	0.283	< 0.0050	<0.00050	0,00801	0.00768	350	344	6.71	0.0372	0.81
10/29/2018 CM 34PIPEDIS N		< 0.50	< 0.50	14.04	0.3	107	0.010	0.025	< 0.050	< 0.050	0.107	0,0962	97.3	0.42	0.406	< 0.0050	<0.00050	0,00968	0.00949	409	413	8,49	0.0416	1.17
10/31/2018 CM 34PIPEDIS N		< 0.50	< 0.50	14.36	0.3	103	0.020	0,019	< 0.10	< 0.050	0.0954	0.0959	88.1	0,329	0,341	< 0.0050	<0.00050	0.00937	0.00907	356	359	7.74	0,041	1.01
11/5/2018 CM 34PIPEDIS N		0.54	< 0.50	14.73		107	0.010	0,018	< 0.050	< 0.050	0.0933	0,101	1 86.7	0,365	0.345	< 0.0050	< 0.00050	0,00981	0.00948	382	364	7.22	0.036	1.14
11/13/2018 CM 34PIPEDIS N		< 0.50	<0.50	14.41	0.34	100	0.010		< 0.050	0.072		0,102	95.1	0.345		< 0.0050	< 0.00050	0,00847		341	368	7.33	0.039	1.13

Paramotor Ortho-Phorphato		pH,LAB	Pharpharur	Patarrium	Selenium	Solonium	Silver	Silver	Sadium	Specific canductivity, temperature carrected value (25 C)				d Thallium	Thallium	Tin	Tin	Titanium		Total Dizzolve d Solidz (Rezidue, Filterable)
CAS_RN 14265-44-2-0	pH-F	pH-L	7723-14-0	7440-09-7	7782-49-2	7782-49-2	7440-22-4	7440-22-4	7440-23-5	SPEC_COND	7440-24-6	7440-24-6	14808-79-8 TEMP-F	7440-28-0	7440-28-0	7440-31-5	7440-31-5	7440-32-6	7440-32-6	TDS
Fraction N	N	N	N	T	D	T	D	T	T	N	D	T	D N	D	T	D	T	D	T	N
	ph unitr	phunitr	mgfl	mgfl	ugři	ugfl	ugfl	ugfl	mgfl	uSfcm at 25 C	mgfl	mg/l	mqfl dogc	ugfl	ugfl	mgfl	mgfl	ugři	ugři	mgfl
	iarult	Razult		Regult	Regult	Razult I			Result	Razult	Regult	Razult	Result Result	Result	Regult			Rarult	Rarult	Rosult
4/20/2018 CM 34PIPEDIS N <0.0010	7.23	8.18	0.0028	6.19	2.3		ە. 0.010 i	0.020	55.7	2095	2.0	5 2.0	1 1020 6.	4 0.098					c10	1690
4/24/2018 CM 34PIPEDIS N <0.0010		8.14	0.0032	6.52	2.37	2.17	< 0.020 -	0.020	57.5		1.81	2.12	1050	0.075	0.07	<0.00020	<0.00020	c 10	c 10	1790
4/24/2018 CM 34PIPEDIS N	8.2									2055			5.	9			19.55			
5/1/2018 CM 34PIPEDIS N <0.0010	7.47	8.03	0.0023	6.51	2.26			0.020	60.6	2080		2.26		8 0.112	0.09	40.00020	< 0.00020	c 10	c 10	1790
5/8/2018 CM 34PIPEDIS N <0.0010	7.33	8.13	0.0025	6.08	1.55			0.020	58.4	2110		2.04	1 1080 5.	8 0.091		1 < 0.00020			c 10	1820
5/16/2018 CM 34PIPEDIS N <0.0010	7.29	8.01	0.0028	6.2	1.8			0.020	55	2138		2.08	1000	6 0.094		< 0.00010			c 10	1870
5/22/2018 CM 34PIPEDIS N 0.0011	7.43	8.05	0.0045	6.5	1.74			0.020	60.4	2140		2.19	1080 7.	9 0.096		1 < 0.00010			c10	1830
5/29/2018 CM 34PIPEDIS N < 0.0010	7.89	8.06	0.0024	6.88	1.81			0.020	63.4	1373		2.1	1000 1000	7 0.109		< 0.00010			c 10	1900
6/5/2018 CM 34PIPEDIS N < 0.0010	7.37	8.08	0.0026	6.3	1.71			0.020	58.8	2105		2.06	1060 8.	9 0.118		40.00020			c 10	1840
6/12/2018 CM 34PIPEDIS N 0.0011	7.29	8,09	0.0022	6.57	1.45			0.020	56.8	2122		5 2.1	1 1080 5.	7 0.097		1 < 0.00020			< 10	1810
6/19/2018 CM 34PIPEDIS N <0.0010	8.07	8,03	0.003	6.31	2.36			0.010	59.5	2091		2.14	1 1080 5.6	4 0.101		< 0.00010			c 10	1870
6/26/2018 CM 34PIPEDIS N 0.0012	7.28	8.07	0.003	6.45	1.86			0.020	58	2061	1.93	1.99	1040 6.	3 0.1		< 0.00020			c10	1920
7/4/2018 CM 34PIPEDIS N <0.0010	7.45	8.34	0.0022	6.5	3.41			0.010	57.9	1948		2.09	963	6 0.137		<0.00020			c 10	1740
7/10/2018 CM 34PIPEDIS N <0.0010	7.37	8.1	< 0.0010	6.51	2.94	2,76		0.010	56.6	1960		5 2.04	1 1000 6.	3 0.124		< 0.00010		< 10	c 10	1670
7/17/2018 CM 34PIPEDIS N <0.0010	7.54	8.19	0.002	6.51	3	3,02		0.010	57.6	1961		1.99	975 6.9	5 0.133			< 0.00010		< 10	1750
7/25/2018 CM 34PIPEDIS N <0.0010	7.34	8.12	0.0021	5.81	2.5	2,24)		0.010	53.3	2015	1.9	1.96	1060 6.	6 0.112		< 0.00010			c 10	1730
7/31/2018 CM 34PIPEDIS N <0.0010	7.48	8.08	0.002	6.61	1.94			0.010	57.6	2025		2.09	1100 7.	3 0.11		4 < 0.00020			< 10	1780
8/7/2018 CM 34PIPEDIS N <0.0010	7.44		0.0025	6.28	1.98			0.010	57.7	1986		4	1040 7.	7 0.114		€0.00010			c 10	1740
8/15/2018 CM 34PIPEDIS N <0.0010	7.45		<0.0020	6.31	2			0.010	53.3	1944		5 1.87	917 8.	5 0.131		1 < 0.00010			c 10	1730
8/21/2018 CM 34PIPEDIS N 0.0013	7.05		<0.0020	6.12	1.95	2.04		0.010	56.3	1946	1.3	1.5	909 8.	5 0.115		< 0.00010			c 10	1680
8/28/2018 CM 34PIPEDIS N <0.0010	7.41	7.63	<0.0020	5.96	2.78	2,39			53.7	1878	1.9	1 1.75	903 8.	6 0.125			< 0.00010	c 10	c 10	1560
9/4/2018 CM 34PIPEDIS N 0.0013	7.66	8.25	0.0021	5.61	2.82			0.020	50.5	1824		1.72	870 8.	9 0.112		1 < 0.00010			c 10	1580
9/11/2018 CM 34PIPEDIS N <0.0010	7.39	8.3	< 0.0010	5.73	3,39	2,59		0.010	50.2	1825		1 1.79	897 8,	9 0.104		4 < 0.00010		c 10	c 10	1530
10/23/2018 CM 34PIPEDIS N <0.0010	7.49	7.98	0.0075	5.59	3.31	3,25		0.010	51	1700		1.56	765 5.	5 0.123				c 10	c 10	1330
10/29/2018 CM 34PIPEDIS N 0.0012	7.36		<0.0020	6.75	2.76			0.010	55.7	1827		1.82	≥ 860 5.	5 0.125			< 0.00010	c 10	c 10	1360
10/31/2018 CM 34PIPEDIS N < 0.0010	7.61		<0.0020	6.04	2.71			0.010	51.3	1724		1.72	801 4.	2 0.119		<0.00020			c 10	1410
11/5/2018 CM 34PIPEDIS N <0.0010	7.43		<0.0020	5.82	2.63	2,55		0.010	52.1	1837	1.93	1.74	1 796	5 0.128	0.11	< 0.00010	< 0.00010		c 10	1500
11/13/2018 CM 34PIPEDIS N <0.0010	7.29	8.21	<0.0020	6.22	2.3	2.28	٠ 0.010	0.010	56.9	1883		1.77	7 819 4.	6 0.115	0.11	< 0.00010	< 0.00010	c 10	<10	1520

					Tatal Surpended Salids, Lab		Uranium	Uranium	Vanadium	Vanadium	Zinc	Zinc
		CAS_RN		C-TOC	TSS-L	TURB-L	7440-61-1	7440-61-1	7440-62-2	7440-62-2	7440-66-6	7440-66-6
		Fraction		T	N	N	D	T	D	T	D	T
		Unit	mgfl	mgfl	mqfl	ntu	ugfl	ugfl	ugfl	ugři	ugfl	ugfl
Date	SYS_LOC_CODE	Sample Type	Regult	Result	Razult	Razult	Rarult	Regult	Result	Result	Regult	Regult
4/20/2018	CM 34PIPEDIS	N	1.81	1.32	3.3	3.94	12.9	13.1	<0.50	< 1.0	65.3	69.7
4/24/2018	CM 34PIPEDIS	N	1.87	1.2	1.7	2.72	13.1	13.3	< 1.0	c 1.0	<2.0	40.6
4/24/2018	CM 34PIPEDIS	N										
5/1/2018	CM 34PIPEDIS	N	1,41	0.58	2.5	3,58	13.2		< 1.0	c1.0	73.2	74.1
5/8/2018	CM 34PIPEDIS	N	1.41		2.9	8.42	13.7		< 1.0	c 1.0	67.4	66.9
5/16/2018	CM 34PIPEDIS	N	1.49	1.69	2.6	5.06	13.7	13.6	<0.50	c 1.0	74.4	79.6
5/22/2018	CM 34PIPEDIS	N	2.51	1.64	5.2	5.22	14	14.2	<0.50	c 1.0	79.4	81.7
5/29/2018	CM 34PIPEDIS	N	2.03	0.61	2.1	3.02	14	14.2	<0.50	c1.0	87.4	
		N	0.895	0.8	1.4	3.14	12.9	13.4	< 1.0	c1.0	114	
6/12/2018	CM 34PIPEDIS	N	1.73		2	3,51	12.5	12.8	< 1.0	c 1.0	98.8	101
6/19/2018	CM 34PIPEDIS	N	1.3	<0.50	2.2	2.01	12.1	12.9	<0.50	<0.50	105	101
6/26/2018	CM 34PIPEDIS	N	1.19	< 0.50	2.3	2.02	11.5	12.2	< 1.0	< 1.0	114	124
7/4/2018	CM 34PIPEDIS	N	1.59	< 0.50	<1.0	2.16	11.3	11.3	< 1.0	<0.50	216	
7/10/2018	CM 34PIPEDIS	N	1.58	1.17	1.5	1.48	11.2	13.6	<0.50	₹0.50	164	187
7/17/2018	CM 34PIPEDIS	N	1.13	< 0.50	4	1.33	11.8	11.3	<0.50	<0.50	165	170
	CM 34PIPEDIS	N	1.15		<1.0	0.98	11.7		<0.50	د0.50	142	
7/31/2018	CM 34PIPEDIS	N	1,17	0.6	2.3	1,63	12.3	12.5	<1.0	<0.50	129	
8/7/2018	CM 34PIPEDIS	N	1.44	1.22	1.1	1.03	11.7		< 0.50	<0.50	136	
8/15/2018		N		<0.50	1	0.57	13.1		<0.50	د0.50	145	
		N	1.34	< 0.50	1.3	0.66	11.4	11.5	<0.50	<0.50	123	120
8/28/2018	CM 34PIPEDIS	N	1.29	< 0.50	1.4	0.78	10.6	10.4	< 0.50	<0.50	119	122
		N	1.31	<0.50	1.1	0.66	9.87		<0.50	c1.0	88	
9/11/2018	CM 34PIPEDIS	N	1.04	< 0.50	1.2	1.02	9.78	10.8	<0.50	<0.50	71.3	73.8
10/23/2018	CM 34PIPEDIS	N	1.33		3	0.57	9.09	8.78	<0.50	<0.50	106	
		N	0.645		1.1	0.65	9,95		<0.50	د0.50	106	
10/31/2018	CM 34PIPEDIS	N	0,906	0.62	1.9	0.44	10.5	10.4	< 1.0	<0.50	94.6	
11/5/2018		N		<0.50	1.5	0.82	10.7		<0.50	د0.50	102	
11/13/2018	CM 34PIPEDIS	N	0.945	< 0.50	2.3	0.7	11.3	11.5	<0.50	<0.50	87.7	102

CM_6PIT_WELL

					_																							
		Paramoto	r Alkalinity, Total (Ar CaCO3						Arzonic	Barium			Beryllium		Birmuth	Boron	Baran	Bramide				Carbon, Dizzolvod Organic		Chromium		Cabalt		Canductivity, Lab
		CAS_RN	Alk-T	7429-90-5	7429-90-5	7440-36-0	7440-36-0	7440-38-2	7440-38-2	7440-39-3	7440-39-3	7440-41-7	7440-41-7	7440-69-9	7440-69-9	7440-42-8	7440-42-8	24959-67-9	7440-43-9	7440-43-9	7440-70-2	C-DOC	16887-00-6	7440-47-3	7440-47-3	7440-48-4	7440-48-4	COND-L
		Fraction	, N	D	T	D	T	D	T	D	T	D	T	D	T	D	т	D	D	T	T	D	D	D	T	D	T	N
		Unit	t marl	maff	mařl	uafl	uafl	uafl	uafl	mafl	mari	uafl	uafl	mafl	mařl	mařl	mafl	mari	uafl	uafl	mafl	matl	mařl	uafl	uafl	uafl	uafl	wrten
Date	SYS_LOC_CODE	Sample Type	Rozult	Regult	Regult	Regult	Regult	Regult	Rorult	Regult	Rorult	Regult	Rorult	Berult	Rorult	Regult F	Rozult	Regult	Regult	Regult	Regult	Result	Regult	Regult	Rorult	Borult	Rorult	Rorult
1/3/201	CM SPIT WELL I	N		4 < 0.0030	< 0.0030	0.65	0.69	0.63	0.75	0.0985	0.0962	z 0.020	0.021	< 0.000050	z 0.000050	0.178	0.17	< 0.050	0.0061	0.0069	91.1	0.72	7.88	< 0.10	z 0.10	2 47	2.54	1130
	CM 6PIT WELL	N		3 < 0.0030	< 0.0030	0.57				0.0987				<0.000050		0.172	0.127	< 0.050	< 0.0050	0,0076		< 0.50	7.94		€0.10	2 41	2.27	1130
	CM 6PIT WELL	N .			<0.0030	0.5	0.52	0.72		0 101		< 0.020		<0.000050		0.185		< 0.050	0.0083	0.0065		0.06		< 0.10	c0.10	2.02	2.42	1070
	CM 6PIT WELL	1		5 < 0.0030	<0.0060	0.45	0.52	0.64		0.101				<0.00010		0.185		<0.050	c 0.010	< 0.010	04.0	4.00			c0.20	4.00	2.00	1010
		1	42			0.45	0.45	0.69		0.107										0.0096	06.0	1,07		c 0.10	c0.20	1.70	2.00	1120
	CM_6PIT_WELL I	1			6 < 0.0030		0.58			0.105				<0.000050		0.167			< 0.0050			0.81				1.84	1.8	1110
	CM 6PIT WELL 1	ч		5 < 0.0030	0.0038		0.19	0.19		0.0723				<0.000050		0.144		< 0.050	0.0111	0.0747		0.86	3.99	< 0.10	c0.10	24	24.5	1250
	CM 6PIT WELL 1	N	37	4 < 0.0030	0,0066		0.3	0.23		0.0693	0.0747			< 0.00010		0.177		< 0.050	0.038	0.069		< 0.50	6.4	₹0.20	< 0.20	26.1	29.1	1370
4/10/201	CM SPIT WELL IN	N	38	4 0,004	3 0.0547	0.16	0.25	0.23	3,52	0.0758	0.0743	0.047	0.423	< 0.000050	< 0.000050	0.193	0.192	< 0.25	0,318	0,505	147	0.56	7.7	7 < 0.10	0.3	41.2	41.5	1380
4/17/201	CM 6PIT WELL I	N	33	8 < 0.0030	0,0054	0.17	0.19	0.26	< 0.50	0.0619	0.0555	< 0.020	0.065	< 0.000050	< 0.000050	0.139	0.154	< 0.25	0.0432	0.0932	140	0.76	5.7	₹0.10	< 0.10	33.6	30.4	1390
4/24/201	CM 6PIT WELL I	н	34	8 < 0.0030	< 0.0030	0.11	0.13	0.27	0.54	0.0561	0.0577	< 0.020	0.03	< 0.000050	< 0.000050	0.147	0.134	< 0.25	0.0303	0.0346	139	< 0.50	5.6	< 0.10	₹0.10	20.4	20.9	1350
5/1/201	CM 6PIT WELL I	N	30	6 < 0.0030	< 0.0030	0.13	0.16	0.25	0.49	0.055	0.0587	z 0.020		< 0.000050		0.125	0.119	< 0.25	0.015	0.0233	150	< 0.50	4.6	€ 0.10	< 0.10	12.9	14.1	1360
	CM 6PIT WELL	N		8 < 0.0030	0,0033	c 0.10	< 0.10	0.23	0.79	0.0434		< 0.020		< 0.000050		0.107		< 0.050	< 0.010	0.0602		< 0.50	2.02	< 0.10	< 0.10	2.96	4.22	1240
	CM 6PIT WELL	N .			< 0.0030		< 0.10	0.53		0.0544	0.0544			<0.000050		0.122		< 0.25	< 0.0050	0.0067		0.57		< 0.10	z 0.10	2.00	2.00	1260
	CM 6PIT WELL			8 < 0.0030	<0.0060	< 0.10	<0.20	0.52	0.02	0.0244				<0.000050		0.132		<0.050	< 0.0050	< 0.010	440	0.51		0.10	< 0.20	3.40	2.00	4220
								9.1	0.10	0.0608											119	0.53	2.1			2.10	3,13	1220
	CM SPIT WELL I	Ν				₹0.20	< 0.10	0.69	0.85	0.0612				< 0.00010		0.141	0.149		< 0.010	< 0.0050		< 0.50	5.8	₹0.20	< 0.10	2.71	2.67	1290
6/12/201	CM SPIT WELL I	Ν	45	2 < 0.0030	< 0.0030	< 0.10	< 0.10	0.91	1.03	0.0655	0.062	< 0.020	0.023	< 0.000050	< 0.000050	0.164	0.165	₹0.25	k0.0050	0.0069	103	0.71	7	7 < 0.10	< 0.10	2.32	2.26	1260

		Paramotor					Hardness, Tatal or Dissolved CaCO3	Iran	Iran	Load	Load	Lithium							Malybdonum			Nickel	Nitrato Nitragon (NO3), ASN		
		CAS_RN	7440-50-8	7440-50-8	DO-F	16984-48-8	HARD	7439-89-6	7439-89-6	7439-92-1	7439-92-1	7439-93-2	7439-93-2	7439-95-4	7439-96-5	7439-96-5	7439-97-6	7439-97-6	7439-98-7	7439-98-7	7440-02-0	7440-02-0	14797-55-8	14797-65-0	7664-41-7
		Fraction	D	T	N N	D	N	D	T	D	T	D	T I	T	D	T	D	T	D	T	D	T	N	N	N
		Unit	ugři	ugfl	mgfl	mg/l	mq/l	mg/l	mgfl	ugfl	ugfl	mgfl	mgfl	mgři	mg/l	mg/l	ugfl	ugfl	mg/l	mg/l	ugfl	ugfl	mg/l	mqfl	mgfl
Date	SYS_LOC_CODE	Sample Type	Regult	Result	Rorult	Regult	Result	Razult	Result	Rarult	Regult	Regult	Rarult	Razult	Regult	Razult	Regult	Regult	Result	Rarult	Regult	Regult	Result	Razult	Result
1/3/2018	CM 6PIT WELL	N	< 0.50	< 0.50	13.5	0.62	344	0.025	0.166	< 0.050	< 0.050	0.202	0.197	25.4	0.08	0.0776	< 0.0050	<0.00050	0.0015	0.00146	12.2	12.4	< 0.0050	0.003	0,844
1/9/2018	CM 6PIT WELL	N	< 0.50	< 0.50	15.4	0,633	338	0.022	0.181	< 0.050	< 0.050	0.171	0.232	23	0.0756	0.0712	< 0.0050	<0.00050	0.00149	0.00153	12	11.7	0.0052	0.0022	0.83
1/16/2018	CM 6PIT WELL	н	<0.50	<0.50	13.0	0,659	281	0.038	0.192	< 0.050	< 0.050	0,205	0.236	22.8	0.0686	0.0695	< 0.0050	<0.00050	0.0013	0.00139	10.4	1 11.2	0.0072	0.0063	0.83
1/23/2018	CM 6PIT WELL	И	₹0.50	< 1.0	14.0	0,678	321	0.04	0.134	< 0.10	< 0.10	0.2	0.202	23.7	0.0677	0.0658	< 0.0050	<0.00050	0,00135	0.00157	10.6	10.5	< 0.0050	0.0026	0.83
1/30/2018	CM_6PIT_WELL	N	< 0.50	< 0.50	14.1	0.697	315	0.022	0.168	< 0.050	< 0.050	0.212	0.21	21.5	0.0659	0.0645	< 0.0050	< 0.00050	0.00132	0.00136	9.62	9.55	< 0.0050	0.0016	0.81
3/27/2018	CM 6PIT WELL	N	< 0.50	< 0.50	11.7	0.374	450	< 0.010	2.53	< 0.050	< 0.050	0.164	0.165	34.3	0.171	0.171	< 0.0050	< 0.00050	0,000548	0,000533	67.3	71.	0,0063	0,001	0.79
4/4/2018	CM 6PIT WELL	N	< 0.50	< 1.0	13.9	0.508	474	< 0.020	1.07	< 0.10	< 0.10	0.194	0.203	37.5	0.159	0.174	< 0.0050	< 0.00050	0.00225	0.00244	75.1	1 85.5	0.0156	0.0022	0.92
4/10/2018	CM 6PIT WELL	N	₹0.50	4.33	12.2	1 0.7	478	< 0.010	4.97	< 0.050	0.298	0.191	0.214	32.2	0.188	0.183	< 0.0050	<0.00050	0.00152	0.00182	104	1 105	0.56	0.0073	0.89
4/17/2018	CM 6PIT WELL	N	< 0.50	< 0.50	13.3	6 0.61	532	< 0.010	1.18	< 0.050	< 0.050	0.144	0.145	38.5	0.212	0.189	< 0.0050	<0.00050	0,00124	0.00126	93.1	1 83.5	0.531	0.0075	0.83
4/24/2018	CM 6PIT WELL	N	< 0.50	< 0.50	13.1	5 0.6	492	< 0.010	0.514	< 0.050	< 0.050	0.151	0.147	38.7	0.185	0.195	< 0.0050	<0.00050	0,000768	0,000866	59.2	62	0.069	0.01	0.81
5/1/2018	CM 6PIT WELL	N	< 0.50	< 0.50	11.7	0.58	576	< 0.010	0.775	< 0.050	< 0.050	0.143	0.135	48.3	0.183	0,189	< 0.0050	< 0.00050	0.000812	0.000821	41.2	44.7	0.028	0.0093	0.69
5/16/2018	CM 6PIT WELL	N	< 0.50	< 0.50	10.2	7 0.437	484	< 0.010	1.35	< 0.050	< 0.050	0.13	0.1131	43.7	0.126	0.16	< 0.0050	0.00055	0,000343	0.000186	11.9	16.5	< 0.0050	< 0.0010	0.54
5/22/2018	CM 6PIT WELL	N	₹0.50	<0.50	9.1	0.37	515	< 0.010	0.54	< 0.050	< 0.050	0.155	0.157	36.7	0.135	0.132	< 0.0050	<0.00050	0.000722	0.000692	16	16.2	0.363	< 0.0050	0.7
5/29/2018	CM 6PIT WELL	N	< 0.50	< 1.0	15.3	0.669	444	0.022	0.493	< 0.050	< 0.10	0.175	0.186	34.9	0.11	0.114		<0.00050	0.00117	0.00109	13.7	13.6	< 0.0050	< 0.0010	0.76
6/5/2018	CM 6PIT WELL	N	< 0.50	< 0.50	10.8	0.49	421	0.024	0,403	< 0.10	< 0.050	0.187	0.195	31.3	0.103	0.0987	< 0.0050	<0.00050	0.00141	0.00144	11.9	12	0.284	< 0.0050	0.77
6/12/2018	CM 6PIT WELL	N	< 0.50	< 0.50	11.7	0.54	396	0.08	0.512	< 0.050	< 0.050	0.222	0.215	29.5	0.0961	0.093	< 0.0050	< 0.00050	0.00161	0.00159	10.2	10.1	0.083	< 0.0050	0.77

		Paramotor Ortho-P		- M F1.14	. HIAD	Dt t	Potarrium	Calcaina	Salasian	Cit	Silver	Sadium	Specific conductivity, temperature corrected value (25 C)	Chambian.	I Chambio	m Sulphato (AS SO4	Tomorosano, Field	Th allins	Th alline	Ti-	Tin	Tit i	Tit i	Total Dizzolved Solidz (Rezidue, Filterable)
		CAS RN 14265-					7440-09-7							7440-24-6				7440-28-0						TDS
		Fraction 1	N N	PH-F	PH-L	N N	T T	D D	T 7	D D	T T	7	N N	D D	1440-24	D 14000-17-0	N N	D D	T T	D D	7	D D	T T	N N
		Unit m		ph unitr	ph units	matt						madi	uS/cm at 25 C	mod	matt	madl	dege			madi			uafl	matl
Date	eye Loc cone I	Sample Type Result					Rorult	Rarult	Rarult	Result	Rozult				Rorult	Borult		Borult	Regult		Rarult	Rorult		Barult
	OM 6PIT WELL			7.7	0.00	0.0033		0.09			< 0.010	445	1000	400	11100 411	96 20					< 0.00010		40	744
	OM SPIT WELL			7.77	7.02	0.0022			<0.050		< 0.010	142	1003	2.02	1 2	04 40					< 0.00010		. 10	722
	OM 6PIT WELL			7.73	0.74	0.0022	2.29				< 0.010	143	1112	1.75		00 10	2.11				< 0.00010		- 10	704
	M 6PIT WELL			7.62	9.27	0.0016	2.23				< 0.020	154	1100	2.03	1	09 10	7.6				<0.00020		.10	672
	M_6PIT_WELL	N <0.0010		7.68	0.21	0.0059					< 0.010	152	1107	100	1	00 10					< 0.00010		.10	700
	OM 6PIT WELL	N <0.0010	_	7.39	0.21	0.0039			<0.050		< 0.010	120	4204	3.46		42 26					< 0.00010		.40	422
	OM SPIT WELL			7.39	8.33	0.0038			c0.050		< 0.020	130	1281	2.93	4 - 5	93 36	4.1				<0.00010 <0.00020		:10	931
	OM SPIT WELL			7.44	0.21	0.0049		¢0.050			< 0.010	192	12/7			23 43					<0.00010		- 40	972
	OM SPIT WELL	N <0.0010		7.42	0.42	0.0049		c0.15	<0.050		< 0.010	122	1201	2.22	2 2	(2) 46					< 0.00010		. 10	974
	OM 6PIT WELL			7.41	0.2	0.0023			<0.050		< 0.010	119	0.0	2.45		24 44					< 0.00010		. 10	214
	M 6PIT WELL			7.54	0.27	0.0023					< 0.010	112	1274	2.12	2 2	27 40					< 0.00010		410	906
	M 6PIT WELL			7.52	9.42	0.0028					< 0.010	919	1254	176	1	75 42					< 0.00010		.10	901
	OM 6PIT WELL	N (0,0010		7.55	9.12	0.0024					< 0.010	117	1299	110	1	99 40					< 0.00010		.10	***
	OM SPIT WELL	N	0.0014	7.93	8.27	0.0038					< 0.020	144	1299	2.04	1	92 33					<0.00020		410	823
	OM 6PIT WELL	N <0.0010		7.61	9.2	0.0023			< 0.050		< 0.010	149	1296	197	1	07 22					< 0.00010		410	952
	OM 6PIT WELL	N	0.0022	7.56	8.04	0.0029		< 0.050		< 0.010	< 0.020	162	1297	1.98		.9 29			< 0.010		< 0.00010		c 10	860

		Paramotor	Tatal Kjoldahl Nitragon	Tatal Organic Carbon	Tatal Surpended Salidr, Lab	TurbidityLab	Uranium	Uranium	Vanadium	Vanadium	Zinc	Zinc
		CAS_RN	TKN	C-TOC	TSS-L	TURB-L	7440-61-1	7440-61-1	7440-62-2	7440-62-2	7440-66-6	7440-66-6
		Fraction	N	T	N	N	D	T	D	T	D	T
		Unit	mqël	mgfl	mgfl	ntu	ugfl	ugfl	ugfl	ugfl	ugfl	ugfl
Date	SYS_LOC_CODE	Sample Type	Rozult	Result	Razult	Result	Result	Result	Rarult	Rarult	Regult	Regult
1/3/2018	CM 6PIT WELL	N	0.887	0.75	< 1.0	0.97	0.974	0.902	< 0.50	< 0.50	5.9	18.5
1/9/2018	CM 6PIT WELL	N	0.788	< 0.50	< 1.0	0.95	1.03	0.934	د0.50	0.55	4.8	
1/16/2018	CM 6PIT WELL	N	0,809	0.8	< 1.0	0.84	1.02	1.04	<0.50	<0.50	4.9	6.2
1/23/2018	CM 6PIT WELL	N	0.82	0.93	< 1.0	0.57	0.911	0.906	c1.0	c 1.0	4.3	46.0
1/30/2018	CM_6PIT_WELL	N	0.728	1.24	< 1.0	0.69	0.926	0.941	< 0.50	< 0.50	3.8	4.3
3/27/2018	CM 6PIT WELL	N	0.795	0.96	2.9	21.9	0,896	0.913	< 0.50	<0.50	89.4	119
4/4/2018	CM 6PIT WELL	N	0,838	< 0.50	1.8	12.1	1.45	1.52	< 1.0	c 1.0	96.4	129
4/10/2018	CM 6PIT WELL	N	0.823	< 0.50	11.5	25.8	1.31	1.54	< 0.50	1.19	170	244
4/17/2018	CM 6PIT WELL	N	0.954	0.72	2.4	12.2	1.14	1.14	< 0.50	<0.50	131	133
4/24/2018	CM 6PIT WELL	М	0.78	< 0.50	1.7	3.04	0.775	0,815	< 0.50	د0.50	86.5	96.7
5/1/2018	CM 6PIT WELL	N	0,607	< 0.50	4.1	5.27	0.729	0.74	0.50	<0.50	47	56.5
5/16/2018	CM 6PIT WELL	N	0.541	0.6	2	3.85	0.422	0.437	< 0.50	<0.50	8.3	27
5/22/2018	CM 6PIT WELL	N	0.719	0.53	< 1.0	3,99	0,675	0,684	< 0.50	< 0.50	12.1	14.2
5/29/2018	CM 6PIT WELL	N	0.653	0.7	<1.0	3.45	0.793	0.782	<0.50	c1.0	8.3	9.9
6/5/2018	CM 6PIT WELL	N	0,688	2.47	<1.0	2.76	0.813	0.864	c1.0	<0.50	6.9	8.6
6/12/2018	CM 6PIT WELL	N	0,834	0.63	1	2.51	0.89	0.918	<0.50	<0.50	7	8.5

CM_6PitDW

Paramotor Alkalinity, Total (Ar CaCO3) Alumi	inum Aluminum	Antimony Antimony	Arzenis Ar	rzenic Barium	Barium Beryllium	Beryllium Birmuth	Birmuth	Baran	Baran	Bromide	Cadmium	Cadmium	Calcium	Carbon, Dizzolvod Organic	Chlorida	Chromium	Chramium	Cabalt	Cabalt	Canductivity, Lab
		7440-36-0 7440-36-0			7440-39-3 7440-41-7		9 7440-69-9	7440-42-8		24959-67-9	7440-43-9		7440-70-2				7440-47-3			
Fraction N D	T	D T	D	T D	T D	T D	T	D	T	D	D	T	T	D	D	D	T	D	T	N
Unit mg/l mg	rt mg/l	ugfl ugfl	ugfl	ugfl mgfl	mgél ugél	ugfl mgfl	mgfl	mgfl	mgfl	mg/l	ugfl	uqfl	mgři	mgfl	mgfl	ugfl	ugfl	ugfl	ugři	w/cm
Dato SYS_LOC_CODE SampleType Result Result	Result 1	Razult Razult	Regult Bern	ult Rozult	Result Result	Razult Razult	Razult	Rorult I	Rozult	Rorult	Rarult	Result	Regult	Rozult	Regult	Rarult	Regult	Rarult	Result	Rozult
1/3/2018 CM 6PitDW N 615 < 0.003		4.65 4.6	2.94	2.84 0.0746	0.0939 < 0.020	0.026 < 0.00005		0.329	0.32	0.073	0.285	0.32	104	0.68	10.5	< 0.10	c0.10	39.2	41.1	1490
1/12/2018 CM 6PITDW N 427 < 0.003		2.19 2.08	1.02	1.41 0.114	0.489 < 0.020	0.123 < 0.00005		0.471	0.466		< 0.0050	0.168	144	2.61		< 0.10	0.42		14.4	1070
1/17/2018 CM 6PitDW N 443 0.	.0039 0.0889	3.01 2.89	1.72	1.62 0.132	0.149 < 0.040	<0.040 <0.00010	< 0.00010	0.525	0.527	< 0.050	0.285	0.268	133	1.29	7.26	< 0.20	< 0.20	34.4	35	1210
1/23/2018 CM 6PitDW N 579 0	.0031 0.0193	4.35 3.96	2.45	2.54 0.0673	0.0676 < 0.040	<0.040 <0.00010	< 0.00010	0.264	0.256	< 0.10	0.248	0.254	97.2	1.57	12.3	< 0.20	0.26	29.8	31.2	1420
1/30/2018 CM 6PitDW N 626 < 0.003	0.0249	4.5 4.19	2.36	2.36 0.0725	0.0696 < 0.040	<0.040 <0.00010	< 0.00010	0.232	0.243	< 0.050	0.263	0.247	90.4	0.93	14.2	< 0.20	< 0.20	29.8	30.3	1410
2/7/2018 CM 6PitDW N 491 0.	.0043 0.022	3.89 3.75	2.14	2.11 0.0591	0.064 < 0.020	0.027 < 0.00005	< 0.000050	0.233	0.243	< 0.10	< 0.0050	0.257	85.1	1.3	11.6	< 0.10	0.14	13.2	31.3	1230
2/7/2018 CM 6PITDW N			i i																	
2/20/2018 CM 6PitDW N 567 < 0.003	0.0353	3.82 3.54	4.34	3.84 0.0632	0.0646 < 0.020	< 0.040 < 0.00005	< 0.000050	0.279	0.333	0.062	< 0.0050	0.183	99.5	0.96	13	< 0.10	₹0.10	18.1	29.6	1330
3/1/2018 CM 6PitDW N 462 < 0.003	0.0146	3.97 4.47	2.17	2.06 0.0638	0.0724 < 0.020	< 0.040 < 0.00005	< 0.00010	0.268	0.275	0.052	< 0.0050	0.225	89.2	1.9	13.7	< 0.10	0.82	8.61	27.9	1200
3/6/2018 CM 6PITDW N 518 < 0.003	0.0134	3.96 4.1	1.73	1.9 0.0607	0.0683 < 0.020	0.032 < 0.00005	< 0.000050	0.261	0.296	< 0.050	< 0.0050	0.18	84	1.06	13.2	< 0.10	0.1	9.43	24.4	1200
5/14/2018 CM 6PikDW N 532 0	.0051 0.023	2.21 2.14	1.03	1.04 0.0262	0.0283 < 0.040	< 0.040 < 0.00010	< 0.00010	0,198	0.184	< 0.25	< 0.010	< 0.010	41.5	< 0.50	13.4	< 0.20	<0.20	5.58	14.6	1980
5/25/2018 CM 6PikDW N 390 < 0.003	0.0209	1.91 1.87	0.59	0.75 0.0807	0.0904 < 0.020	< 0.040 < 0.00005	< 0.00010	0.259	0.231	< 0.25	0.0069	0.053	107	1.62	5.4	< 0.10	0.20	22.1	28.6	1430
6/5/2018 CM 6PITDW N 364 < 0.003	0.0207	1.65 1.72	0.35	0.66 0.0762	0.0799 < 0.040	0.056 < 0.00010	< 0.000050	0.26	0.274	₹0.25	0.119	0.365	124	0.98	3	<0.20	c0.10	42.1	45.9	1380
7/19/2018 CM 6PikDW N 417 < 0.003	0.0414	0.11 < 0.20	0.17	0.62 0.0539	0.081 < 0.020	0.199 < 0.00005	< 0.00010	0.594	0.624	< 0.25	0,145	0.29	174	0.76	8.1	< 0.10	<0.20	78.9	78.5	1380

		Paramotor	Capper			Fluorido	Hardness, Total or Dissolved CaCO3		Iron	Load	Load	Lithium								Malybdonum			Nitrato Nitragon (NO3), AS N	Nitrito Nitragon (NO2), AS N	
		CAS_RN	7440-50-8	7440-50-8	DO-F	16984-48-8	HARD	7439-89-6	7439-89-6	7439-92-1	7439-92-1	7439-93-2	7439-93-2	7439-95-4	7439-96-5	7439-96-5	7439-97-6	7439-97-6	7439-98-7	7439-98-7	7440-02-0	7440-02-0	14797-55-8	14797-65-0	7664-41-7
		Fraction	D	T	N	D	N	D	T	D	T	D	T	T	D	T	D	T	D	T	D	T	N	N	N
		Unit	ugfl	ugfl	mg/l	mg/l	mqfl	mgfl	mgfl	ugfl	ugfl	mgfl	mgfl	mgfl	mgfl	mgfl	ugfl	ugfl	mg/l	mgfl	ugfl	ugfl	mq/l	mg/l	mq/l
Date SYS_LOC_	C_CODE	Sample Type	Regult	Rarult	Rezult	Regult	Razult	Regult	Result	Regult	Regult	Result	Regult	Regult	Regult	Regult	Result	Regult	Regult	Regult	Result	Regult	Rorult	Razult	Razult
1/3/2018 CM 6PitDW	W N		3.71	5.08	8.	0.641	365	< 0.010	0,096	0.063	0.406	0.24	0.24	18.4	0.0672	0.0714	< 0.0050	0.00238	0.00792	0.00816	114	123	0,196	0,0576	3.15
1/12/2018 CM 6PITDV	ow N		< 0.50	4.1	7.1	0.29	445	< 0.010	0.618	< 0.050	1.45	0,166	0,146	32.5	0.00589	0.0647	< 0.0050	0.0086	0,00556	0.00634	42	50.2	0.17	0.0471	3.02
1/17/2018 CM 6PitDW	W W		2.23	4	12.2	1 0.463	438	< 0.020	0.07	< 0.10	0.25	0.191	0,208	23.5	0.0963	0.0936	< 0.0050	0.00198	0.00477	0.00466	110	111	0.162	0,0388	3.44
1/23/2018 CM 6PitDW	W N		3.05	<4.0	9.4	0.65	297	< 0.020	<0.020	< 0.10	0.15	0.343	0.285	15.5	0.0404	0.0431	< 0.0050	0.00123	0,0073	0.00638	90,6	94.4	0.247	0.0932	2.14
1/30/2018 CM 6PitDW	W N		<0.50	c1.0	11.2	1 0.691	278	< 0.020	<0.020	< 0.10	< 0.10	0.264	0.311	1 16.9	0.0398	0.0415	< 0.0050	0.00099	0.007	0.00664	88	90.4	0.193	0.0611	2.22
2/7/2018 CM 6PitDW	W N		< 0.50	5.05		0.54	219	< 0.010	0.028	0.069	0.237	0.275	0.28	15.1	0.00394	0.0399	< 0.0050	0.00093	0.00681	0.00642	75.1	93.9	0.2	0.0733	2.6
2/7/2018 CM 6PITDV	ow N				11.0	4								1											
2/20/2018 CM 6PitDW	W N		< 0.50	0.79	8.4	0.649	307	< 0.010	0,026	< 0.050	0.552	0,291	0.293	15.8	0.012	0.0497	< 0.0050	0.00071	0,00699	0.00634	79.1	89.9	0.182	0,0583	2.48
3/1/2018 CM 6PikDW	W N		< 0.50	c1.0	9.9	0.684	220	< 0.010	0,047	< 0.050	0.54	0.279	0.289	16.1	0.00192	0.0425	< 0.0050	0.00081	0.00625	0.00631	59.6	80,3	0.149	0.0634	2.34
3/6/2018 CM 6PITDV	ow N		<0.50	0,6	8.8	0.604	211	< 0.010	0,269	< 0.050	0.217	0.236	0.245	13.9	0,00265	0.0412	< 0.0050	0.00076	0.00572	0.00582	57.5	74.7	0.113	0.0546	2.58
5/14/2018 CM 6PikDW	W N		0.67	< 1.0	7.1	1.01	144	< 0.020	0.03	< 0.10	< 0.10	0.454	0.473	15.8	0.0004	0.0101	< 0.0050	0.00087	0.00601	0.00589	52.3	65	0.70	0.0525	1.24
5/25/2018 CM 6PikDW	W N		<0.50	c1.0	13.0	0.74	418	0.073	0,495	< 0.050	0.15	0,223	0.202	35.3	0.0233	0.0559	< 0.0050	0.00164	0.00612	0.00622	92	99.5	0,806	0,064	1.88
6/5/2018 CM 6PITDV	OW N		< 0.50	1,29	8.0	1 0.4	471	< 0.020	1.04	< 0.10	0.16	0,184	0,188	36.5	0.098	0,106	< 0.0050	0.00264	0.00562	0.0058	123	133	0.774	0.0792	2.02
7/19/2018 CM 6PikDW	W N		< 0.50	< 1.0	9.	0.33	549	< 0.010	8.85	< 0.050	0.2	0.169	0.164	25.3	0.377	0.375	< 0.0050	0.00196	0.000339	0.00033	211	210	0.108	0.0062	3.16

	Paramotor	Ortho-Pharphato	pH, Field	pH,LAB	Pharpharur	Potarrium	Solonium	Solonium	Silver	Silver	Sadium	Specific conductivity, temperature corrected value (25 C)	Strontium	Strontium	n Sulphato (ASS04) Tomporaturo, Fiold	Thallium	Thallium	Tin	Tin	Titanium	Titanium	Tatal Dizzalved Salidz (Rezidue, Filterable)
	CAS_RN	14265-44-2-0	pH-F	pH-L	7723-14-0	7440-09-7	7782-49-2	7782-49-2	7440-22-4	7440-22-4	7440-23-5	SPEC_COND	7440-24-6	7440-24-	6 14808-79-8	TEMP-F	7440-28-0	7440-28-0	7440-31-5	7440-31-5	7440-32-6	7440-32-6	TDS
	Fraction	N	N	N	N	T	D	T	D	T	T	N	D	T	D	N N	D	T	D	T	D	T	N
	Unit	mg/l	ph unitr	phunitr	mgfl	mgfl	ugfl	ugfl	uqfl	ugfl	mgfl	uS/cm at 25 C	mgfl	mgfl	mgfl	doge	ugfl	ugfl	mgfl	mgfl	ugfl	ugfl	mgfl
Dato SYS_LOC_CODE	Sample Type	Razult	Regult	Result	Result	Regult	Razult	Regult	Result	Regult	Regult	Result	Regult	Berult	Regult	Rorult	Razult	Regult	Regult	Regult	Regult	Result	Result
1/3/2018 CM 6PitDW N		< 0.0010	7.58	7.94	0.0058	3,09	1.64	1.22	< 0.010	< 0.010	219	1330	2.16	2.1	9 24	8 8.4	0.113	0,111	< 0.00010	0.0004	5 < 10	< 10	1010
1/12/2018 CM 6PITDW N		< 0.0010		7.73	0.0315	2.61	1,17	1.11	< 0.010	0.022	97.6	1294	2.46	2.5	5 23	9 12.5	0,047	0.061	< 0.00010	< 0.00020	c 10	< 10	770
1/17/2018 CM 6PitDW N		< 0.0010	7.9	7.89	0.0025	3,28	1.11	1.13	<0.020	< 0.020	155	1347	3,66	3.5	51 19	6. 7.6	0,078	0.077	<0.00020	0,0003	4 < 10	< 10	846
1/23/2018 CM 6PitDW N		< 0.0010	7.5	7.98	0.0014	2,59	1.38	1.12	<0.020	<0.020	234	1446	1.97	7 1.6	5 18	2 7.6	0.093	0.092	<0.00020	<0.00020	c10	c10	906
1/30/2018 CM 6PitDW N		0.0042	7.95	8.07	0.0035	2.56	1.46	1.27	<0.020	<0.020	247	1414	1,85	1.4	:1 16	4.6	0.087	0.088	<0.00020	<0.00020	c10	c 10	882
2/7/2018 CM 6PitDW N		0.0012		8.08	0,0015	2,43	1,22	1.13	< 0.010	< 0.010	227		1.93	1.7	7 15	8	0,083	0.077	< 0.00010	0.0004	c 10	c 10	798
2/7/2018 CM 6PITDW N			7.3									1364				9.3	:						
2/20/2018 CM 6PitDW N		0.0011	7.93	8.04	0.0015	2.47	1.24	0.8	< 0.010	<0.020	194	1314	2.21	1.9	7 16	3 11.3	0.089	0.077	< 0.00010	< 0.00010	c10	c10	784
3/1/2018 CM 6PitDW N		< 0.0010	8.14	8.17	0.0012	2.37	1.32	0.98	< 0.010	₹0.020	230	1360	1.83	1.9	9 15	4 7.7	0.076	0.076	< 0.00010	<0.00020	c10	c10	750
3/6/2018 CM 6PITDW N		< 0.0010	7.5	8.05	0,0016	2.38	1.22	1.04	< 0.010	k 0.010	197	1288	1,66	1.9	2 14	7 9.5	0.086	0.089	< 0.00010	< 0.00010	c10	c 10	785
5/14/2018 CM 6PitDW N		< 0.0010	8.18	8,53	0.0029	3.13	0.96	0.94	<0.020	<0.020	407	2028	0.90	0.91	3 53	8. 17	0.073	0.072	<0.00020	<0.00020	c 10	c 10	1440
5/25/2018 CM 6PikDW N		< 0.0010	8.17	8.19	0,0018	3.19	2.85	2.63	< 0.010	< 0.020	184	1590	1.42	1.4	3 43	5 12.77	0.075	0.073	< 0.00010	< 0.00020	c 10	< 10	989
6/5/2018 CM 6PITDW N		0.0012	8.2	8,25	0.0021	3.15	2,25	2.71	<0.020	< 0.010	156	1736	1.87	1.7	71 44	4 10.4	0.08	0.084	<0.00020	< 0.00010	c10	c10	977
7/19/2018 CM 6PixDW N		< 0.0010	6,98	8,09	0,0019	3.33	0.055	< 0.10	c0.010	< 0.020	134	1275	5.74	5.5	7 39	1 19	0.026	0.025	< 0.00010	<0.00020	c 10	c10	994

		Paramotor	Tatal Kjoldahl Nitragon	Tatal Organic Carbon	Tatal Surpended Salids, Lab	TurbidityLab	Uranium	Uranium	Vanadium	Vanadium	Zine	Zine
		CAS_RN	TKN	C-TOC	TSS-L	TURB-L	7440-61-1	7440-61-1	7440-62-2	7440-62-2	7440-66-6	7440-66-6
		Fraction	N	T	N	N	D	T	D	T	D	T
		Unit	mqfl	mgél	mq/l	ntu	ugfl	ugfl	ugfl	ugfl	ugři	ugfl
Dato	SYS_LOC_CODE	Sample Type	Rorult	Result	Result	Result	Regult	Regult	Result	Rarult	Razult	Regult
1/3/2018	CM 6PikDW	N	3.04	11.6	21.1	13.6	4.68	4.91	<0.50	0.99	66.2	70.8
1/12/2018	CM 6PITDW	N	5.45	119	360	223	5.97	6.45	0.99	2.9	د3.0	36.3
1/17/2018	CM 6PikDW	N	3,33	9.51	13.8	13.7	3,68	3,68	< 1.0	c1.0	67.8	70.1
1/23/2018	CM 6PikDW	N	2.81	2.03	< 1.0	4.1	2.58	2.48	< 1.0	c1.0	64.5	74
1/30/2018	CM 6PikDW	N	2.29	1.01	1.7	1,81	2.47	2.22	< 1.0	c1.0	66.2	68.8
2/7/2018	CM 6PikDW	N	2,28	0.55	6.8	4,08	2.17	2.18	<0.50	0.66	<3.0	73.5
2/7/2018	CM 6PITDW	N										
2/20/2018	CM 6PikDW	N	2.87	0.87	4.8	2.76	3.12	3.21	< 0.50	0.6	∢3.0	55.2
3/1/2018	CM 6PikDW	N	< 0.050	1,67	8.5	1.02	2.14	2.5	<0.50	c1.0	د3.0	66,5
3/6/2018	CM 6PITDW	N	2,36	1.06	11.4	9.03	2.05	2.44	<0.50	0.53	<3.0	48.8
5/14/2018	CM 6PikDW	N	1.18	0.72	2.6	3,89	1,89	1.96	< 1.0	c1.0	42.0	46.0
5/25/2018	CM 6PikDW	N	1.76	1.58	5	10.2	2.99	2.97	<0.50	c1.0	1.3	17.3
6/5/2018	CM 6PITDW	N	1.9	1,38	1.7	11.9	3.07	3.23	< 1.0	< 0.50	44.9	88
731932010	OM ERADIM	N	2 17	6.01	52.4	109	164	172	-0.50	-10	100	270

CM_6PitDW2

																											
	Paramotor	Alkalinity, Total (Ar CaCO3)		Aluminum		Antimony	Arzonic	Arrenic	Barium	Barium	Beryllium		Birmuth	Birmuth	Baran	Boron	Bramida	Cadmium	Cadmium		Carbon, Dissolved Organic	Chloride	Chramium	Chramium	Cabalt	Cabalt	Canductivity, Lab
	CAS_RN	Alk-T	7429-90-5	7429-90-5	7440-36-0	7440-36-0	7440-38-2	7440-38-2	7440-39-3	7440-39-3	7440-41-7	7440-41-7	7440-69-9	7440-69-9	7440-42-8	7440-42-8	24959-67-9	7440-43-9	7440-43-9	7440-70-2	C-DOC	16887-00-6	7440-47-3	7440-47-3	7440-48-4	7440-48-4	COND-L
	Fraction	. N	D	T	D	T	D	T	D	T	D	T	D	T	D	T	D	D	T	T	D	D	D	T	D	T	N
	Unit	mq/l	mgfl	mgfl	ugfl	ugfl	ugfl	ugfl	mgfl	mg/l	ugfl	ugfl	mgfl	mg/l	mg/l	mgfl	mgfl	ugfl	ugfl	mgfl	mqfl	mgfl	ugfl	ugfl	ugfl	uqfl	wrten
Date SYS_LOC_CODE	Sample Type	Result	Regult	Regult	Regult	Regult	Result	Rarult	Result	Rarult	Result	Rarult	Regult	Regult	Rarult	Result	Rarult	Result	Rarult	Berult	Regult	Result	Regult	Result	Regult	Regult	Result
2/7/2018 CM 6PitDW2 N	4	417	<0.0030	0.0144	0.94	0.95	0.44	0.45	0.183	0.222	0.04	0.049	< 0.000050	< 0.000050	0,683	0.642	< 0.10	< 0.0050	0.103	161	< 0.50	3.3	₹0.10	0.19	5.66	14.9	1110
2/7/2018 CM 6PITDW2 N	1																										
2/22/2018 CM 6PITDW2 N	1	595	< 0.0030	0,467	0.94	0.91	1.42	1.53	0,146	0.211	0.05		< 0.000050	< 0.000050	0.912	0.843	< 0.050	0.177	0.199	176	4.28	5.96	< 0.10	0.27	31.7	30.3	1400
3/1/2018 CM 6PikDW2 N	1	350	< 0.0030	0.12	0.65	0.7	0.88	0.95	0.133	0.199	< 0.020	0.082	< 0.000050	< 0.00010	0.682	0.684	< 0.050	< 0.0050	0.096	163	0.75	4.06	< 0.10	< 0.20	10.2	16.3	1070
4/20/2018 CM 6PikDW2 N	1	311	<0.0030	0.264	0.99	1.14	0.2	0.8	0.0631	0.0711	0.30	3 2.12	< 0.000050	< 0.000050	0.487	0.447	₹0.25	4.05	5.0	193	2.05	8.1	1 < 0.10	0.46	199	206	1630
4/24/2018 CM 6PikDW2 N	1	34	0.0035	0,101	1.54	1.69	0.21	0.57	0.0872	0,098	0.09	1 0.824	< 0.000050	< 0.000050	0.372	0.371	< 0.25	2.54	3.4	190	1.49	8.2	< 0.10	0.29	183	183	1790
5/1/2018 CM 6PitDW2 N	1	325	0.0036	0.11	1,86	2.01	0.36	0.75	0,0968	0.148	0.04	0.305	< 0.000050	< 0.000050	0,319	0.31	₹0.25	1.2	1.59	155	1.98	6.5	6 0.10	< 0.10	99.1	117	1650
5/17/2018 CM 6PikDW2 N	1	320	< 0.0030	0.0443	1.83	1.85	0.53	0.73	0.0831	0.0955	< 0.020	0.047	< 0.000050	< 0.000050	0.22	0.231	< 0.25	< 0.0050	0.356	119	1.61	3.9	0.10	< 0.10	15.4	34.3	1340
5/22/2018 CM 6PikDW2 N	1	300	<0.0030	0.0295	1.68	1.81	0.51	0.86	0.0796	0.0922	< 0.020	0.039	< 0.000050	< 0.000050	0.231	0.249	< 0.25	< 0.0050	0.29	117	1.37	3.1	1 < 0.10	< 0.10	26.6	33.9	1330
5/29/2018 CM 6PikDW2 N	1	315	< 0.0030	0.0166	1,79	1.88	0.53	0.69	0.0814	0.0841	< 0.020	0.043	< 0.000050	< 0.00010	0.252	0.265	< 0.050	< 0.0050	0.137	118	1.11	3.21	1 < 0.10	< 0.20	22	32.7	1330
6/5/2018 CM 6PITDW2 N	1	551	0.0039	0.0366	2.37	2.46	1.1	1.23	0.0319	0.0396	< 0.040	<0.020	< 0.00010	< 0.000050	0.183		< 0.25	< 0.010	0.0459		1.14		< 0.20	< 0.10	6.7	17	1720
6/12/2018 CM 6PikDW2 N	1	419	0.0030	0.0688	1.62	1.7	0.31	0.27	0.0732	0.0809	0.0		<0.000050	<0.000050	0.301		< 0.25	0.268			1.08	3	< 0.10	< 0.10	51.2	51.4	1350
6/19/2018 CM 6PikDW2 N	1	401	< 0.0030	0,0603	1.63	1.73	0.37	0.67	0,0898	0.0988	< 0.020	0.072	< 0.000050	< 0.000050	0.277	0.27	< 0.25	0.136	0.34	123	1.06	4.9	< 0.10	< 0.10	44.2	45.8	1390
6/26/2018 CM 6PikDW2 N	1	39	1 < 0.0030	0,0407	1.59	1.7	0.32	0.69	0.0829	0.111	< 0.040	0.097	< 0.00010	< 0.000050	0.286	0.303	< 0.25	0,389	0.57	125	0,66	4.6	40.20	< 0.10	55.9	60.3	1410
7/3/2018 CM 6PikDW2 N	1	417	<0.0030	0.0286	1.47	1.57	0.29	0.64	0.0901	0.101	0.02	0.113	< 0.000050	< 0.000050	0.317	0.334	< 0.25	0,692	0.87	137	0.59	5.9	0.10	< 0.10	71.1	71.2	1470
7/10/2018 CM 6PitDW2 N	1	419	0.0030	0.073	1.27	1.28	0.2	0.51	0.0967		< 0.020		< 0.000050		0.361		< 0.25	0.77			4.85	5.4	4 < 0.10	< 0.10	79.6	73.3	1500
7/31/2018 CM 6PikDW2 N	1	314	4 < 0.0030	0.376	0.73	0.77	0.2	0.48	0.188	0.424	< 0.020	0.104	< 0.000050	< 0.000050	0.495	0.517	40.25	0.0404	0.0592	153	1.34	l 6	c 0.10	0.17	16.4	15.8	1000
8/15/2018 CM 6PikDW2 N	1	399	40,0030	0.0182	0.76	0.76	0.37	0.41	0.27		< 0.020		< 0.000050	< 0.000050	0.478		< 0.25	0.0155	0.0195	139	1.1	8.7	< 0.10	< 0.10	12	10.9	1070
8/20/2018 CM 6PikDW2 N	1	405	< 0.0030	0.0326	0.36	0.38	0.17	0.24	0.363	0.347	< 0.020	0.039	< 0.000050	< 0.000050	0.48	0.593	< 0.25	0.0198	0.0219	152	1.5	6.45	6 0.10	< 0.10	11.1	10.4	978
9/20/2018 CM 6PikDW2 N	1	487	< 0.0030	0,0089	0.53	0.59	0.14	0.25	0.4	0.491	< 0.020	0.04	< 0.000050	< 0.000050	0.554	0.585	0.25	0.0232	0.0336	196	0,84	6.7	7 < 0.10	< 0.10	22.8	25	1220
9/25/2018 CM 6PikDW2 N	1	477	< 0.0030	0.0288	0.46	0.49	< 0.20	0.22	0.34		< 0.040		< 0.00010	< 0.00010	0.568		< 0.25	0.017			< 0.50	6.5	< 0.20	< 0.20	22.9	23.3	1280
10/2/2018 CM 6PITDW2 N	1	255	< 0.0030	0.0428	0.38	0.41	0.12	0.27	0.302		< 0.020		< 0.000050	< 0.000050	0.453		0.25	<0.0050	0.0374	149	1.57	5.7	7 < 0.10	< 0.80	10.1	14.7	886
10/9/2018 CM 6PitDW2 N	1	28;	0,0051	0.0078	0.41	0.46	0.2	< 0.20	0.302	0.271	0.06	0.056	< 0.000050	< 0.00010	0.61		< 0.25	0.0493	0.056	201	1.16		< 0.10	< 0.20	47.2	48.8	1180
10/16/2018 CM 6PicDW2 N	1		< 0.0030	< 0.0060	0.44	0.49	0.5	II < 0.20	0.17		₹0.020	0.040	< 0.000050	< 0.00010	0.614		40.25	< 0.0050	0.107		< 0.50		< 0.10	< 0.20	24.1	31.4	1310
10/23/2018 CM 6PikDW2 N	1		< 0.0030	0.0112	0.43			< 0.40	0.242		< 0.020		< 0.000050	< 0.000050	0.598		<0.25	0.0289			0.55	6.7	₹ 0.10	< 0.10	46.4	48.6	1230
10/29/2018 CM 6PitDW2 N	1	32	4 < 0.0030	0,0089	0.66	0.68	< 0.10	0.14	0.208		< 0.020	0.022	< 0.000050	<0.000050	0.52		₹0.25	< 0.0050	0.0597		< 0.50	6	₹0.10	< 0.10	14	26.3	1170
11/5/2018 CM 6PITDW2 N	1		< 0.0030	0.0179	0.59	0.66	0.14	0.25	0.268		< 0.020		< 0.000050	< 0.000050	0.579		< 0.25	0.516			< 0.50		< 0.10	< 0.10	84.2	83	1420
11/13/2018 CM 6P/kDW2 N	1	39	1 < 0.0030	0.062	0.46	0.52	< 0.10	0.23	0,166	0.246	< 0.020	0.18	< 0.000050	<0.000050	0.56	0.56	< 0.25	0.158	0.267	207	< 0.50	6.5	< 0.10	< 0.10	72.8	80.4	1460
																											-

	Cappor		Dizzalved Oxygen, Field			Iran	Iron	Load	Load	Lithium			Manganoro		Marcury			Malybdonum		Nickel		Nitrito Nitragon (NO2), AS N	
CAS_RN 7	440-50-8	7440-50-8	DO-F	16984-48-8	HARD	7439-89-6	7439-89-6	7439-92-1	7439-92-1	7439-93-2	7439-93-2	7439-95-4	7439-96-5	7439-96-5	7439-97-6	7439-97-6	7439-98-7	7439-98-7	7440-02-0	7440-02-0	14797-55-8	14797-65-0	7664-41-7
Fraction	D	T	N	D	N	D	T	D	T	D	T	T	D	T	D	T	D	T	D	T	N	N	N N
Unit	ugfl	ugři	mqfl	mgfl	mqfl	mqfl	mgfl	ugfl	ugfl	mg/l	mqfl	mgfl	mgfl	mgfl	ugfl	ugfl	mg/l	mgfl	uqfl	ugři	mqfl	mgfl	mqfl
Dato SYS_LOC_CODE SampleType Re			Rozult	Result				Regult	Razult	Result							Regult			Rorult		Result	Regult
	.50	1.42		0.18	447	< 0.010	0.024	< 0.050	0.187	0.134	0.144	31.4	0.00603	0.0944	< 0.0050	< 0.00050	0.00163	0.00168	42.9	55.5	0.071	0.0095	3.27
2/7/2018 CM 6PITDW2 N			10.65	<u> </u>																			
2/22/2018 CM 6PITDW2 N	0.62	1.78	9.53	0.232		< 0.010		< 0.050	0.611	0.182	0.186	21.9			< 0.0050	0.0484	0.00168	0.00163	95.4	92.9		< 0.0010	3,59
	.50	2.2	10.82	0.235		< 0.010		< 0.050	0.84	0.154	0.156				< 0.0050	<0.0025	0.00186	0.00169	43.2	50.2	0.0634		3.14
4/20/2018 CM 6PitDW2 N	1.02	13	10.21	0.34		< 0.010		< 0.050	0.312	0.188	0.197				< 0.0050	0.0012	0.00427	0.00443	497	523	0.978		3.68
	.50	5.59	10.67	0.51	650	< 0.010		< 0.050	0.219	0.239	0.233				40,0050	0.00124	0,00603	0.00602	446	469	1.75	0.177	3.09
5/1/2018 CM 6PitDW2 N	0.59	3.06	9.21	0.62	573	0.067		< 0.050	0.314	0.242	0.216	42.3			<0.0050	0.0033	0,00783	0.00782	264	294	1.97	0.316	2.45
	.50	1.24		0.59	420	0.044		< 0.050	0.22	0.181	0.191		0.00584		< 0.0050	0.00237	0,0065	0.00605	88.7	108	1.02	0.191	1.83
	.50	1.04	10.61	0.42	443	0.033			0.172	0.222	0.20		0.0388		< 0.0050	0.00192	0.00576	0.00585	94.3	105	1.34	0.0812	1.88
	.50	41.0	16.87	0.595	446	0.046		< 0.050	0.14	0.204	0.199	37.6			< 0.0050	0.00173	0.00581	0.0059	94.3	107	0.715		1.84
	.50	0.52	11.23	0.8	118	< 0.020		< 0.10	0.083	0.387	0.383	10.8	0.00034		< 0.0050	0.00139	0.00621	0.00638	44.4	57.2	0.277		1.09
	.50	1.11	9,44	0.38	485	0.013		< 0.050	0.173	0.202	0.202		0.115		< 0.0050	0,00155	0,00561	0.00582	139	141	1.13		2.24
	.50	0.82	16.6	0.62	418	0.011	0,995		0.15	0,201	0.198		0.098		< 0.0050	0.00145	0.00554	0.00595	121	128	0.646	0.0941	2.19
	.50	1.3		0.45		< 0.020		< 0.10	0.188	0.202	0.205				< 0.0050	0.00153	0.00563	0.00589	147	164	0.749	0.0962	2.36
	.50	0.98		0.63		< 0.010		< 0.050	0.193	0.216	0.204		0.188		< 0.0050	0.00181	0.00563	0.00571	180	182	0.725	0.108	2.48
	.50	0.89	7.48	0.35		< 0.010		< 0.050	0.194	0.201	0.195				< 0.0050	0.00171	0.00511	0,00511	196	185	1.51		3.93
	.50	2	13	0.37	487	< 0.010		< 0.050	0.72	0.122	V.161	26	0.0961		< 0.0050	0,0048	0.00266	0.00309	49.2	45.4	0.771		3.3
	.50	< 0.50	10.72	0.56	444	0.012	0.309		0,076	0.18	0.168	23.1	0.0712		< 0.0050	0.00152	0.00378	0.00375	38	35.2	0.127		2.88
	.50	0.53	13,35	0.34		< 0.010		< 0.050	0.082	0.112	0.118	24.9		0.0746		0.00093	0.00153	0.00153		31.6	0.078	0.0123	3
	.50	< 0.50	12.08	0.33		< 0.010		< 0.050	< 0.050	0.143	0.146		0.139		< 0.0050	0.0008	0.00154	0.00159	70.6	76.8	2.6	0.05	3.14
	.50	<1.0	11.72	0.33		< 0.020		< 0.10	0.11	0.131	0.13		0.132		< 0.0050	0.00089	0.00122	0.0012	68,3	69.5	1.23		3.27
	.50	< 0.50	12.45	0.28	465	< 0.010		<0.050	0.068	0.106	0.106				< 0.0050	0.00089	0.00145	0.00156	41.9	46.8	0.585	0.0312	2.61
	.50	41.0	12.12	0.3	657	3.64		< 0.050	c0.10	0.146	0.148				< 0.0050	< 0.00050	0.00111	0.00112	133	131	1.57	0.0447	3.16
	.50	<1.0	12.8	0.31		< 0.010		< 0.050	< 0.10	0.137	0.130		0.0786		< 0.0050	< 0.00050	0.00173	0.00179	96,8	108	1.67	0.0215	2.71
	.50	0.86				< 0.010		< 0.050	< 0.050	0.14	0.132		0.26		< 0.0050	0.0019	0.00129	0.00122	122	136	0.579		3.14
	.50	ر 0.50	12.02		26	< 0.010		< 0.050	< 0.050	0.126	0.119	34.3	0.0271		< 0.0050	< 0.00050	0.00298	0.00305	71.6	88,1	3.92		2.73
	.50	< 0.50	12.69			< 0.010		< 0.050	0.141	0.137	0.135	38.5	0.372		< 0.0050	0.0231	0.00253	0.00253	221	231	1.52	0.0441	3.22
11/13/2018 CM 6PitDW2 N < 0	.50	0.9	20.02	0.32	673	< 0.010	9.52	< 0.050	0.186	0.147	0.157	37.4	0.333	0.372	<0.0050	0.0027	0.00176	0.00186	185	218	0.314	0.0399	3.37

															.1						T
			Pherphere							Specific canductivity, temperature carrected value (25 C)								Tin	Titanium		Tatal Dizzalved Salidr (Rezidue, Filterable)
CAS_RN 14265-44-2-0	pH-F	pH-L	7723-14-0	7440-09-7	7782-49-2	7782-49-2	7440-22-4	7440-22-4	7440-23-5	SPEC_COND	7440-24-	7440-2	4-6 14808	79-8 TEMP-F	7440-28-0	7440-28-0	7440-31-5	7440-31-5	7440-32-6	7440-32-6	TDS
Fraction N	N	N	N	T	D	T	D	т	T	N	D	T		l N	D D	T	D	T	D	T	N
Unit mg/l	phunitr	ph unitr	mg/l	mgři	ugfl	ugfl	ugfl	ugfl	mgfl	uSłom at 25 C	mg/l	mgfl			ugfl	ugfl	mg/l	mg/l	uqfl	ugři	mqfl
	Rozult			Result					Regult	Rarult	Regult	Regult	Result	Borult		Rorult			Rozult	Regult	Rorult
2/7/2018 CM 6PitDW2 N <0.0010		7.92	0.001	3.36	0.352	0.325	0.010 j	< 0.010	90.1		5.2	4 5	5.05	198	0.01	0.01	7 < 0.00010	<0.00010	< 10	c 10	792
2/7/2018 CM 6PITDW2 N	7.53									1298				10.	.7						
2/22/2018 CM 6PITDW2 N <0.0010	7.25	7.72	0.0062		0.431		< 0.010	0.014	124	1427	7.7	5	7.14	215 7.	.1 0.03		5 < 0.00010	< 0.00010	< 10	27	972
3/1/2018 CM 6PixDW2 N <0.0010	7.6	7.95	0.0029		0.438			< 0.020	100	1281		1	5.15	209 6.	3 0.02		1 < 0.00010	< 0.00020	c 10	c 10	772
4/20/2018 CM 6PikDW2 N <0.0010	6,99	8.28			2.36			< 0.010	132	1666			4.58	639 3.	8 0.084		1 < 0.00010	< 0.00010	c 10	c 10	1260
4/24/2018 CM 6PieDW2 N <0.0010	7.3	8.36	0.0035	3.46	3.12			0.010 د	186	1825			3.54	688 5.	3 0.108		8 < 0.00010	< 0.00010	c 10	c 10	1340
5/1/2018 CM 6PikDW2 N <0.0010	7.43	8.11	0.0028	3.52	4.51			< 0.010	205	1672		6 7	2.99	582 7.	5 0.099		1 < 0.00010	<0.00010	c 10	c 10	1140
5/17/2018 CM 6PikDW2 N <0.0010	7.94	8.03	0,0021	3.25	4.09			< 0.010	154	1427	1.5	4	1.5	447 13.	2 0.077		7 < 0.00010	< 0.00010	< 10	c 10	938
5/22/2018 CM 6PikDW2 N <0.0010	7.98	8.22	0.0019	3.09	3.05			< 0.010	175	1450	1.5	2 .	1.47	443 13.			9 < 0.00010	< 0.00010	c 10	c 10	991
5/29/2018 CM 6PikDW2 N 0.0017	7.89	8.19	0.0056		3,39			< 0.020	165	1373		4	1.53	403 16.0	7 0.07		2 < 0.00010	<0.00020	c 10	c 10	939
6/5/2018 CM 6PITDW2 N 0.001	7.91	8.4	0.0029	2.6	1.04			< 0.010	379	1397		6 0.	756	370 11.	6 0.064		4 < 0.00020	< 0.00010	c 10	c 10	1090
6/12/2018 CM 6PitDW2 N 0.0019	7.73	8.16	0.0022	3.34	2.37			< 0.020	156	1399		8	1.91	445 10.	7 0.094		5 < 0.00010	< 0.00010	c 10	c 10	982
6/19/2018 CM 6PitDW2 N 0.0025	8.1	8.1	1 0.0025		2.55	2.23		< 0.010	166	1385	1.7	4	1.83	399 10.8	6 0.01		3 < 0.00010	< 0.00010	< 10	c 10	953
6/26/2018 CM 6PitDW2 N <0.0010	7.6	8.1	1 0.0022	3.19	1.88	2.19	<0.020	< 0.010	187	1423		2	2.1	435 11.	8 0.089	0.09	6 < 0.00020	< 0.00010	< 10	c 10	1040
7/3/2018 CM 6PitDW2 N 0.0024	7.4	7.94	0.0036	3.18	1.76	1.89		< 0.010	180	1468	2.5	9 7	2.46	436 10.	8 0.10	1 0.09	6 < 0.00010	< 0.00010	< 10	c 10	1040
7/10/2018 CM 6PikDW2 N <0.0010	7.2	7.92			1.62			< 0.010	157	1454		3	2.8	456 11.		< 0.095	< 0.00010	< 0.00010	c 10	c 10	984
7/31/2018 CM 6PitDW2 N <0.0010	7.38	1.76		2.92	0.495		1 ≤0.010 i	0.012	89.8	1231		8 6	4.43	273 16.	.1 0.019		2 < 0.00010	< 0.00010	c 10	c 10	797
8/15/2018 CM 6PikDW2 N 0.0015	7.49	8.05	5 < 0.0020	2.75	0.564	0.528		< 0.010	125	1226	4.0	2 4	4.07	213 11.	4 0.01	0.01	3 < 0.00010	< 0.00010	c 10	c10	827
8/20/2018 CM 6PikDW2 N 0.001	7.16	8.1	1 < 0.0020	2.55	0.297	0,306	< 0.010	< 0.010	86.4	1128	4.7	5 6	4.65	193 7.	2 < 0.010	< 0.010	< 0.00010	< 0.00010	< 10	c 10	818
9/20/2018 CM 6PikDW2 N <0.0010	7.7	8.05	60,0020	3.04	1.35			< 0.010	101	1429	6.1	3 6	6.24	330 6.	.3 0.0		3 < 0.00010	< 0.00010	< 10	c 10	1010
9/25/2018 CM 6PitDW2 N <0.0010	7.48	7.94		2.81	0.61			< 0.020	92.7	1377	5.8	3 5	5.73	324 5.	5 < 0.020	< 0.020	<0.00020	<0.00020	< 10	c 10	958
10/2/2018 CM 6PITDW2 N 0.0013	7.82	8.02	0.0034	2.54	0.752	0.645	< 0.010	0.010 د	78.5	- 1121	4.6	9 .	4.81	256 4.	0.0	1 0.0	11 < 0.00010	< 0.00010	c 10	c 10	742
10/9/2018 CM 6PikDW2 N <0.0010	7.52	8.07	7 < 0.0020	2.77	0.92	0.65	6 c 0.010	0.020	105	1557	6.3	4 6	6.26	469 3.	7 < 0.010	<0.020	< 0.00010	<0.00020	c 10	c 10	1110
10/16/2018 CM 6PitDW2 N <0.0010	7.7	8.05	< 0.0020	2.86	0,708			< 0.020	96.9	1483	5.5	3 5	5.67	420 5.	4 0.022	0.02	4 < 0.00010	<0.00020	< 10	c 10	1000
10/23/2018 CM 6PitDW2 N <0.0010	7.55			2.84	0,373	0.526		0.010 د	97.1	1501	5.5	5 5	5,66	400 1.	9 < 0.010	< 0.010	< 0.00010	< 0.00010	<10	c 10	979
10/29/2018 CM 6PikDW2 N 0.0021	7.58		< 0.0020	2.86	5.64	4.87	0.010	0.010 د	83.9	1344	4.7	3 6	1.96	324 7.	9 0.012	0.01	6 < 0.00010	< 0.00010	<10	c 10	868
11/5/2018 CM 6PITDW2 N <0.0010	7.32	8.12	< 0.0020	2.78	1.31	1.47	< 0.010	c 0.010	87.8	1528	6.1	6 9	5.38	440 4.	8 0.018		7 < 0.00010	< 0.00010	<10	c 10	1080
11/13/2018 CM 6PitDW2 N <0.0010	7.1	8.07	0.0032	2.83	0.258	0.426	< 0.010	< 0.010	110	1586	5.2	عساد	5.42	437 2.	9 0.012	0.0	11 < 0.00010	< 0.00010	c 10	c10	1110

		Parameter	T . DO LI LINE.									
				Total Organic Carbon	Tatal Surpended Salids, Lab	TurbidityLab	Uranium	Uranium	Vanadium	Vanadium	Zinc	Zinc
		CAS_RN	TKN	C-TOC	TSS-L	TURB-L	7440-61-1	7440-61-1	7440-62-2	7440-62-2	7440-66-6	7440-66-6
		Fraction	N	T	N	N	D	T	D	T	D	T
		Unit	mgfl	mgři	mg/l	ntu	ugfl	ugfl	ugfl	ugři	ugfl	ugfl
Date SYS	_LOC_CODE	Sample Type	Razult	Rezult	Razult	Result	Result	Result	Razult	Rarult	Regult	Regult
2/7/2018 CM 6		N	3.48	1.31	12.4	7.01	2.55	2.67	< 0.50	< 0.50	<3.0	37.3
2/7/2018 CM 6		N .	5.47									
2/22/2018 CM 6			4.13	17	133		3.37		<0.50	0.84		60.2
3/1/2018 CM 6			4.44	2.8	108		2.13		<0.50	c 1.0	د3.0	30.8
4/20/2018 CM 6			4.48	2.96	37.8		4.9		<0.50	< 0.50	1030	1240
4/24/2018 CM 6			3.09	4.82	24.3	50.9	4.07		< 0.50	< 0.50	630	821
5/1/2018 CM 6			3.09	5.2	24.9		3.6		< 0.50	< 0.50	288	361
5/17/2018 CM 6		N	1.55	3.9	7.2		3.18		<0.50	< 0.50	c1.0	67.2
5/22/2018 CM 6			1.66	1.68	4.8		2.84		<0.50	0.92	2.2	63.6
5/29/2018 CM 6			1.94	1.19	2.7		2,89		< 0.50	c 1.0	1.1	37.6
6/5/2018 CM 6		N	1.04		< 1.0	5.85	1.58		c 1.0	0.59		10.6
6/12/2018 CM 6		N	2.45	1.97	5.6		3.34		<0.50	< 0.50	70.6	93.3
6/19/2018 CM 6		N	1.85	2.05	4.4		3,32		<0.50	< 0.50	56.4	86.5
6/26/2018 CM 6			2.24	1.38	\$.7		3,52	3,77		< 0.50	104	148
7/3/2018 CM 6			2.49	2.84	8.9		3,69		<0.50	< 0.50	180	215
7/10/2018 CM 6			2.65	6.23	7.3		3.7		<0.50	< 0.50	184	215
7/31/2018 CM 6			4.03	56.8	126		3,78		<0.50	1.05	22.1	27
8/15/2018 CM 6			2.8	0.93	10.6		2.71		< 0.50	< 0.50	10.4	12.4
8/20/2018 CM 6				<2.5	31.3		2.02		<0.50	< 0.50	12.9	14.3
9/20/2018 CM 6			2.9	0.82	9	13.4	1.61		<0.50	< 0.50	16.7	23.5
9/25/2018 CM 6			2.9	2.79	13		1.54		c 1.0	c1.0	19.8	34.8
10/2/2018 CM 6			2.41	2.22	3.8		1.38		<0.50	< 0.50	<1.0	22.6
10/9/2018 CM 6			3,23	3.55	14.1	38.4	1.56		<0.50	c1.0	116	111
10/16/2018 CM 6			3,25	0.67	5.1		2.08		<0.50	<1.0	4.2	90.2
10/23/2018 CM 6			3.42	1.24	45	70.9	1.61		< 0.50	< 0.50	127	194
10/29/2018 CM 6		N	2.45	1.26	5	8.66	1,67		<0.50	< 0.50	<1.0	70.8
11/5/2018 CM 6			2.9	2.1	31.5		2.14		<0.50	< 0.50	311	535
11/13/2018 CM 6	PikDW2 I	N	3.23	0.8	71,3	113	2.06	2.24	<0.50	<0.50	273	487

Appendix C - Historical Monitoring Data

E206438 - CM_CCPD

Sample Date	INSTANTANEOUS FLOW (m³/s)	TOTAL SUSPENDED SOLIDS (mg/L)	TURBIDITY, LAB (NTU)
2-Jan-08	0.107	< 3.0	0.32
5-Feb-08	0.01	< 3.0	0.21
4-Mar-08	0.01	< 3.0	0.27
1-Apr-08	0.0132	3	1.6
7-Apr-08	0.02	< 3.0	3.1
14-Apr-08	0.29	< 3.0	4.6
21-Apr-08	0.051	3	1.3
28-Apr-08	0.124	6	2.8
6-May-08	0.254	< 3.0	1.2
12-May-08	0.292	5	0.76
20-May-08	1.01	< 3.0	4.5
26-May-08	2.55	4	8.4
3-Jun-08	1.497	< 3.0	1
9-Jun-08	0.724	< 3.0	0.98
16-Jun-08	0.766	< 3.0	< 0.2
23-Jun-08	0.332	< 3.0	0.21
7-Jul-08	0.18	< 3.0	< 0.2
14-Jul-08	0.178	< 3.0	0.27
21-Jul-08	0.178	< 3.0	0.21
28-Jul-08	0.095	< 3.0	0.22
5-Aug-08	0.079	< 3.0	0.59
11-Aug-08	0.044	7	1.3
18-Aug-08	0.09	5	0.82
25-Aug-08	0.043	3	1.1
2-Sep-08	0.094	5	0.69
7-Oct-08	0.065	< 3.0	1.1
4-Nov-08	0.061	3	0.49
2-Dec-08	0.034	< 3.0	0.63
6-Jan-09	0.027	< 3.0	0.23
3-Feb-09	0.052	< 3.0	0.48
3-Mar-09	0.066	< 3.0	0.27
7-Apr-09		4.4	2.94
14-Apr-09	0.049	6.2	6.65

Teck Coal Limited Page Ixxii

Campula	INSTANTANEOUS	TOTAL	TUDDIDITY
Sample Date	FLOW (m ³ /s)	SUSPENDED SOLIDS	TURBIDITY, LAB (NTU)
	1 2011 (70)	(mg/L)	
20-Apr-09	0.075	4.9	5.9
27-Apr-09	0.119	< 3.0	1.1
5-May-09	0.136	3.6	1.07
11-May-09	0.133	4.7	0.71
19-May-09	0.334	6.4	2.87
25-May-09	0.573	< 3.0	1.2
2-Jun-09	0.79	< 3.0	0.92
8-Jun-09	0.318	4.3	0.58
15-Jun-09	0.215	< 3.0	0.47
22-Jun-09	0.25	3.8	0.67
29-Jun-09	0.196	< 3.0	0.68
7-Jul-09	0.13	4.2	0.55
13-Jul-09	0.166	< 3.0	0.76
20-Jul-09	0.133	3.3	1.01
27-Jul-09	0.143	< 3.0	4.99
4-Aug-09	0.148	< 3.0	1.71
1-Sep-09	0.144	< 3.0	1.13
6-Oct-09	0.047	< 3.0	1.01
3-Nov-09	0.04	< 3.0	3.7
1-Dec-09	0.038	< 3.0	0.47
5-Jan-10	0.018		0.44
2-Feb-10	0.019	< 3.0	0.33
2-Mar-10	0.011	3.7	0.7
8-Mar-10	0.017		
15-Mar-10	0.016		
23-Mar-10	0.0243	< 3.0	0.93
29-Mar-10	0.037	3.1	1.15
6-Apr-10	0.033	< 3.0	1.75
12-Apr-10	0.03	< 3.0	0.51
19-Apr-10	0.049	< 3.0	1.36
26-Apr-10	0.324	< 3.0	1.21
4-May-10	0.255	< 3.0	1.6
10-May-10	0.187	5.3	0.55
17-May-10	0.403	4.3	0.46
25-May-10	0.43	< 3.0	0.52

Teck Coal Limited Page Ixxiii

Sample Date	INSTANTANEOUS FLOW (m³/s)	TOTAL SUSPENDED SOLIDS (mg/L)	TURBIDITY, LAB (NTU)
1-Jun-10	0.633	< 3.0	1.54
7-Jun-10	0.658	< 3.0	0.65
14-Jun-10	0.422	< 3.0	0.69
21-Jun-10	0.682	< 3.0	3.32
28-Jun-10	0.362	< 3.0	10.9
6-Jul-10	0.274	6.2	0.78
12-Jul-10	0.225	< 3.0	1.09
19-Jul-10	0.184	< 3.0	2.09
26-Jul-10	0.206	< 3.0	1.13
3-Aug-10	0.164	< 3.0	0.93
7-Sep-10	0.111	< 5.0	0.79
5-Oct-10	0.169	< 3.0	0.75
27-Oct-10	0.0827	< 3.0	0.82
2-Nov-10	0.162	4.3	3.58
7-Dec-10	0.099	< 3.0	0.36
3-Jan-11	0.0126	< 3.0	0.53
4-Jan-11	0.052	< 3.0	0.38
1-Feb-11	0.0063	75.4	0.26
7-Mar-11	0.0151	< 3.0	0.23
5-Apr-11	0.0672	< 3.0	1.44
12-Apr-11	0.0384	5	1.25
19-Apr-11	0.0157	9.8	2.86
26-Apr-11	0.052	3	3.04
3-May-11	0.0605	< 3.0	4.35
10-May-11	0.175	9.2	20.6
17-May-11	0.583	< 3.0	6.73
24-May-11	0.777	7.8	8.46
31-May-11	0.801	11.2	10.8
7-Jun-11	1.344	< 3.0	2.96
14-Jun-11	1.63	17.8	24.1
20-Jun-11	1.3	< 3.0	1.33
27-Jun-11	1.04	< 3.0	0.46
5-Jul-11	0.711	< 3.0	1.37
12-Jul-11	0.458	< 3.0	0.61
19-Jul-11	0.106	< 3.0	1.5

Teck Coal Limited Page Ixxiv

Sample Date	INSTANTANEOUS FLOW (m³/s)	TOTAL SUSPENDED SOLIDS (mg/L)	TURBIDITY, LAB (NTU)
25-Jul-11	0.198	< 3.0	3
2-Aug-11	0.348	< 3.0	2.25
6-Sep-11		< 3.0	0.82
4-Oct-11	0.0512	< 3.0	1.37
1-Nov-11	0.0749	3.6	2.51
6-Dec-11	0.0225	< 3.0	0.62
3-Jan-12	0.0126	< 3.0	0.53
7-Feb-12	0.0304	< 3.0	0.41
7-Mar-12	0.0287	< 3.0	0.3
3-Apr-12	0.008	< 3.0	1.63
10-Apr-12		< 3.0	
17-Apr-12	0.0373	< 3.0	
24-Apr-12	0.343	10	
1-May-12	0.759	11.7	14.9
8-May-12	0.386	9.2	
15-May-12	0.862	11.3	
22-May-12	0.898	3.3	
29-May-12	0.58	< 3.0	
5-Jun-12	0.91	< 3.0	
12-Jun-12	0.865	3.7	
19-Jun-12	0.768	< 3.0	
26-Jun-12	0.77	< 3.0	
3-Jul-12	0.653	5.7	1.86
10-Jul-12	0.42	< 3.0	
17-Jul-12	0.291	< 3.0	
24-Jul-12		4	
31-Jul-12		< 3.0	
7-Aug-12	0.114	< 3.0	2.21
4-Sep-12	0.115	3.5	
6-Sep-12	0.0924	4.6	
7-Sep-12	0.0669	< 3.0	
10-Sep-12	0.0867	< 3.0	
12-Sep-12	0.0669	< 3.0	
14-Sep-12	0.0482	4	
17-Sep-12	0.0688	< 3.0	

Teck Coal Limited Page Ixxv

		TOTAL	
Sample Date	INSTANTANEOUS FLOW (m ³ /s)	SUSPENDED SOLIDS	TURBIDITY, LAB (NTU)
Date	FLOW (III75)	(mg/L)	LAB (NTO)
19-Sep-12	0.0547	< 3.0	
20-Sep-12	0.0564	59	
24-Sep-12	0.0498	3.3	
26-Sep-12	0.045	< 3.0	
2-Oct-12	0.0244		
6-Nov-12	0.067	< 3.0	
4-Dec-12	0.026	< 3.0	
2-Jan-13	0.0923	< 3.0	
5-Feb-13	0.067	< 3.0	0.39
5-Mar-13	0.0765	4.3	1.8
2-Apr-13	0.0851	9.4	10.2
9-Apr-13	0.171	15.7	5.79
16-Apr-13	0.0735	11.5	6.37
23-Apr-13	0.0528	9.1	10.4
30-Apr-13	0.124	< 3.0	3.87
7-May-13	0.24	11.4	7.57
14-May-13	1.376	33.8	26
21-May-13	0.719	< 3.0	3.64
28-May-13	0.719	3.9	2.99
4-Jun-13	0.628	4.3	1.61
11-Jun-13	0.414	< 3.0	1.17
18-Jun-13	0.365	6.2	0.71
21-Jun-13		27.8	24.8
22-Jun-13		7.8	10.7
24-Jun-13		9.1	4.92
25-Jun-13	0.875	6.7	4.46
2-Jul-13	0.489	< 3.0	1.1
9-Jul-13	0.292	< 3.0	1.76
16-Jul-13	0.362	< 3.0	0.84
23-Jul-13	0.222	3.3	1.07
30-Jul-13	0.169	< 3.0	1.02
2-Aug-13		20	36
2-Aug-13		< 4.0	11.8
6-Aug-13	0.24	5.4	1.88
3-Sep-13	0.097	3.6	1.11

Teck Coal Limited Page Ixxvi

Sample Date	INSTANTANEOUS FLOW (m³/s)	TOTAL SUSPENDED SOLIDS (mg/L)	TURBIDITY, LAB (NTU)
1-Oct-13	0.097	6.9	8.58
5-Nov-13	0.063	< 1.0	0.81
3-Dec-13		< 1.0	0.66
7-Jan-14	0	< 1.0	0.45
4-Feb-14		< 1.0	0.42
4-Mar-14		< 1.0	0.39
1-Apr-14		< 1.0	1.04
8-Apr-14	0.063	2.8	8.29
15-Apr-14	0.085	4.1	7.08
22-Apr-14	0.142	6.2	5.5
29-Apr-14	0.153	7.7	2.36
6-May-14	0.39	6.1	10.1
13-May-14	0.297	2	2.65
20-May-14	0.379	4.3	5.17
27-May-14	1.283	6.2	6.21
3-Jun-14	1.012	2.6	1.39
10-Jun-14	0.702	1.5	0.86
17-Jun-14	0.987	77	79.9
24-Jun-14	1.024	2.1	1.96
2-Jul-14	0.658	1.2	0.54
8-Jul-14	0.0084	< 1.0	0.65
15-Jul-14	0.344	1.1	0.58
22-Jul-14	0.25	< 1.0	1.32
29-Jul-14	0.26	1.9	1.41
5-Aug-14	0.18	< 1.0	0.93
2-Sep-14	0.12	1.1	0.79
7-Oct-14	0.073	2.3	1.48
4-Nov-14	0.091	4.5	3.17
3-Dec-14		< 1.0	1.68
6-Jan-15	0.063	< 1.0	0.71
3-Feb-15	0.0645	< 1.0	0.71
3-Mar-15 30-Mar-15	0.048 0.22	< 1.0 3.3	0.68 5.06
8-Apr-15	0.225	2.6	1.53
15-Apr-15	0.204	< 1.0	1.11
22-Apr-15	0.24	3.4	0.99
29-Apr-15	0.293	2.4	1.43

Teck Coal Limited Page Ixxvii

Sample Date	INSTANTANEOUS FLOW (m³/s)	TOTAL SUSPENDED SOLIDS	TURBIDITY, LAB (NTU)
Zaio	. 2011 (/0/	(mg/L)	
6-May-15	0.455504	3.2	3.04
13-May-15	0.413677	1.8	1.62
20-May-15	0.36	< 1.0	1.12
27-May-15	0.457716	10.1	4.62
2-Jun-15		6.8	7.67
3-Jun-15			
3-Jun-15	0.923	8.8	7
10-Jun-15	0.388	1	1.52
15-Jun-15		< 3.0	0.7
17-Jun-15	0.289	< 1.0	0.91
24-Jun-15	0.235	< 1.0	0.6
30-Jun-15	0.279	< 1.0	0.52
8-Jul-15	0.165	< 1.0	0.57
15-Jul-15	0.111	< 1.0	0.65
21-Jul-15	0.094	1.8	1.09
27-Jul-15	0.113	1.8	1.16 1.31
5-Aug-15 2-Sep-15	0.117 0.062	2.4	1.6
28-Sep-15	0.002	2.9	0.9
7-Oct-15	0.028	2.1	0.92
4-Nov-15	0.069	2.2	2.69
5-Nov-15	0.003	2.2	2.03
2-Dec-15	0.088	< 1.0	0.77
6-Jan-16	0.057	< 1.0	0.50
3-Feb-16	0.049	< 1.0	0.74
3-Feb-16			
23-Feb-16		< 1.0	0.60
2-Mar-16	0.041	< 1.0	0.86
6-Apr-16	0.085	15.0	11.6
13-Apr-16	0.225	2.1	2.89
14-Apr-16		5.5	8.62
16-Apr-16	0.290	2.7	4.73
17-Apr-16	0.245	3.5	7.66
17-Apr-16		< 1.0	< 0.10
18-Apr-16		4.1	7.99
18-Apr-16	0.280		
19-Apr-16	2 222	3.4	5.60
19-Apr-16	0.320	0.4	0.50
20-Apr-16	0.390	3.4	6.58
21-Apr-16	0.504	8.0	8.81
27-Apr-16	0.591	4.8	1.94
4-May-16	0.351	1.1	1.12
11-May-16	0.515		

Teck Coal Limited Page Ixxviii

		TOTAL	
Sample	INSTANTANEOUS	SUSPENDED	TURBIDITY,
Date	FLOW (m³/s)	SOLIDS	LAB (NTU)
Zaio	1 2011 (70)	(mg/L)	
11-May-16		3.5	5.41
18-May-16	0.303		
18-May-16		2.5	1.92
25-May-16	0.235	2.4	2.59
1-Jun-16	0.336	2.1	2.00
8-Jun-16	0.290	1.8	0.93
15-Jun-16	0.235	2.4	1.40
22-Jun-16	0.222	2.0	1.14
29-Jun-16	0.189	< 1.0	1.47
6-Jul-16	0.225	1.9	1.45
13-Jul-16	0.198	2.7	1.42
20-Jul-16	0.123	< 1.0	1.03
27-Jul-16	0.138	1.9	1.04
3-Aug-16	0.119	1.3	0.79
7-Sep-16	0.078	1.6	2.15
5-Oct-16	0.061	2.0	1.39
2-Nov-16	0.262	7.2	11.4
15-Nov-16		5.4	7.82
17-Nov-16	0.228	5.1	5.77
23-Nov-16	0.228	2.0	3.41
30-Nov-16		2.0	3.74
13-Dec-16	0.169	< 1.0	1.25
1/17/2017	0.156	3.1	3.44
2/1/2017	0.149	1.3	0.95
3/1/2017	0.156	< 1.0	1.22
4/5/2017	0.134	1.9	4.06
4/12/2017	0.1612768	1.2	4.93
4/19/2017	0.14851092	22.7	6.98
4/26/2017	0.218	2.2	2.79
5/2/2017	0.218	15.2	7.16
5/6/2017	0.000	2.8	40.0
5/9/2017	0.628	6.2	10.8
5/16/2017	0.834	4.7	5.62
5/17/2017		18.2	
5/17/2017		14.6	
5/18/2017	1.042	3.2	F OF
5/23/2017 5/30/2017	1.043	4.4	5.85
	1.146	8.4 2.8	17.2 4.25
6/6/2017 6/14/2017	0.9775 0.708		8.69
6/21/2017	0.4599	4.0	4.89
6/21/2017	0.4599	2.1 1.3	4.89 1.01
7/5/2017	0.3757	1.8	2.26
1/3/2017	0.413	1.0	2.20

Teck Coal Limited Page Ixxix

Sample Date	INSTANTANEOUS FLOW (m³/s)	TOTAL SUSPENDED SOLIDS	TURBIDITY, LAB (NTU)
2 0.10	(, ,	(mg/L)	
7/12/2017	0.356	1.3	1.68
7/19/2017	0.2394	11.3	4.69
7/25/2017	0.249	58.2	10.4
8/1/2017	0.2146	< 1.0	1.03
8/22/2017	0.17457	2.2	1.18
9/12/2017	0.1028	4.4	2.63
9/19/2017	0.10276	3.2	2.3
10/3/2017	0.113400418	4.7	4.23
10/3/2017		3.2	3.56
10/10/2017	0.08306	14.5	8.24
10/11/2017		1.9	2.58
10/24/2017		8.7	6.42
11/7/2017		1.1	1.78
11/22/2017		8.1	6.87
11/28/201 7		2.4	4.59
12/6/2017		2.5	3.42
12/12/201 7		2.1	2.68
12/19/201 7		2.3	3.14
12/27/201 7		< 1.0	1.61
1/3/2018	0.149	1.1	0.91
1/9/2018	0.171871	1.4	1.61
1/16/2018	0.136277	< 1.0	1.37
1/23/2018	0.144	1.4	2.68
1/30/2018	0.161	1.1	1.99
2/6/2018		3.0	1.21
2/14/2018	0.124573	< 1.0	1.15
2/19/2018		< 1.0	0.61
2/19/2018	0.136277		
3/1/2018	0.126872	< 1.0	0.73
3/7/2018	0.126872	< 1.0	0.61
3/13/2018	0.124573	18.7	14.7
3/19/2018	0.102757	1.8	2.04
3/27/2018	0.106951	< 1.0	1.34
4/4/2018	0.1134	1.6	2.80
4/10/2018	0.122296	1.9	3.10
4/17/2018	0.102757	4.6	6.46
4/23/2018	0.092643		
4/24/2018	0.136277	9.7	16.1
4/25/2018	0.136277	14.4	24.1

Teck Coal Limited Page Ixxx

		TOTAL	
Sample	INSTANTANEOUS	SUSPENDED	TURBIDITY,
Date	FLOW (m ³ /s)	SOLIDS	LAB (NTU)
4/26/2018	0.136277	(mg/L)	
4/20/2018	0.130277		
4/27/2018	0.148511		
5/1/2018	0.217659	7.1	6.92
5/3/2018	0.146712		0.02
5/3/2018	0.202764		
5/4/2018	0.217659		
5/5/2018	0.3182		
5/6/2018	0.3757		
5/7/2018	0.6074	2.8	15.8
5/8/2018	0.708		
5/9/2018	0.8828		
5/10/2018	1.0101	8.6	7.50
5/12/2018	0.8224		
5/13/2018	0.8224		
5/14/2018	0.8523		
5/15/2018	0.9454	5.0	3.88
5/16/2018	1.1461	4.0	4.93
5/17/2018	1.2907		
5/17/2018	1.15		
5/18/2018	1.2907		
5/19/2018	1.2173		
5/20/2018 5/21/2018	1.1461 1.0101		
5/21/2018	0.9775	1.7	1.95
5/23/2018	1.0433	1.7	1.95
5/24/2018	1.0433		
5/25/2018	1.0433		
5/26/2018	1.1113		
5/27/2018	1.0101		
5/28/2018	1.0101		
5/29/2018	0.9138	1.7	1.82
5/31/2018	0.7641		
6/1/2018	0.708		
6/4/2018	1.2173		
6/5/2018	0.5773	1.0	1.68
6/11/2018	0.4381		
6/12/2018	0.4168	1.0	1.79
6/13/2018	0.4168		
6/19/2018	0.356	2.8	2.43
6/22/2018	0.3369		
6/25/2018	0.3369	3.9	3.67
6/26/2018	0.396	2.9	2.48

Teck Coal Limited Page Ixxxi

		TOTAL	
Sample	INSTANTANEOUS	SUSPENDED	TURBIDITY,
Date	FLOW (m ³ /s)	SOLIDS (mg/L)	LAB (NTU)
6/28/2018	0.396	(***9. =/	
6/29/2018	0.3757		
7/3/2018	0.356	2.3	4.52
7/4/2018	0.3369		
7/5/2018	0.3001		
7/9/2018	0.3369		
7/10/2018	0.3369	1.7	5.35
7/11/2018	0.3369		
7/12/2018	0.3369		
7/13/2018	0.3001		
7/16/2018	0.2331		
7/17/2018	0.1884	3.6	2.81
7/18/2018	0.2177		
7/19/2018	0.2331		
7/23/2018	0.233086	4.0	0.07
7/24/2018	0.174573	< 1.0	0.67
7/25/2018	0.174573		
7/26/2018 7/26/2018	0.188402	< 1.0	1.15
7/20/2018	0.202764	< 1.0	2.34
7/30/2018	0.202764	< 1.0	2.34
7/30/2018	0.174573	1.5	1.26
8/1/2018	0.202764	1.0	1.20
8/2/2018	0.202104	2.5	1.10
8/7/2018	0.202764	1.3	0.83
8/8/2018	0.07145		0.00
8/15/2018	0.136277	1.2	0.89
8/16/2018	0.202764		
8/21/2018	0.161276	1.9	0.97
8/27/2018	0.233086		
8/28/2018	0.202764	3.9	2.64
9/4/2018	0.148511	2.3	0.93
9/10/2018	0.174573		
9/11/2018	0.148511	1.8	1.56
9/12/2018	0.148511		
9/13/2018	0.124573		
9/17/2018	0.148511		
9/18/2018	0.174573	1.8	2.19
9/20/2018	0.174573		
9/21/2018	0.148511		
9/24/2018	0.148511	0.0	0.04
9/25/2018	0.148511	2.0	2.64
9/26/2018	0.05007		

Teck Coal Limited Page Ixxxii

Sample Date	INSTANTANEOUS	TOTAL SUSPENDED SOLIDS	TURBIDITY,
Date	FLOW (m³/s)	(mg/L)	LAB (NTU)
10/1/2018	0.102757	(3- /	
10/2/2018	0.148511	< 1.0	1.79
10/3/2018	0.124573	2.7	1.84
10/9/2018	0.148511	3.1	2.11
10/15/201	0.124573		
8			
10/16/201	0.102757	1.8	1.30
8 10/16/201	0.04057		
8	0.04857		
10/22/201	0.102757		
8	002.0.		
10/23/201	0.124573	< 1.0	1.35
8			
10/29/201	0.102757	2.5	3.52
8			
11/2/2018	0.148511		
11/5/2018	0.124573	3.5	3.04
11/7/2018	0.124573		
11/13/201	0.174573	1.8	2.60
8	0.000000		
11/15/201 8	0.233086		
11/20/201		3.6	2.27
8		3.0	2.27
11/20/201	0.148511		
8			
11/27/201	0.102757	2.4	1.16
8			
11/29/201	0.0830581		
8			
11/30/201	0.0449198		
8	0.400757	4.0	0.74
12/3/2018	0.102757	1.9	0.71
12/10/201 8	0.102757		
12/11/201	0.102757	1.9	0.70
8	5.102707	1.0	5.75
12/17/201	0.102757		
8			
12/18/201	0.102757	2.1	0.56
8			
12/28/201	0.102757	2.3	0.48
8			

Teck Coal Limited Page Ixxxiii

E298733 - CM_PC2

		TOTAL	
Sample Date	INSTANTANEOUS FLOW (m³/s)	SUSPENDED SOLIDS (mg/L)	TURBIDITY, LAB (NTU)
6-May-08	0.209		
3-Jun-08	0.215		
7-Jul-08	0.18		
23-Apr-09	0.351		
27-Apr-09	0.005		
5-May-09	0.005	< 3.0	0.68
11-May-09	0.012		
19-May-09	0.256		
25-May-09	0.219		
2-Jun-09	0.206	< 3.0	0.37
8-Jun-09	0.066		
15-Jun-09	0.018		
22-Jun-09	0.01		
29-Jun-09	0.011		
15-Mar-10			
19-Apr-10	0.043	< 3.0	0.88
26-Apr-10	0.077	< 3.0	0.25
4-May-10	0.024	< 3.0	0.2
10-May-10	0.004	6	0.13
17-May-10	0.138	3.7	0.26
25-May-10	0.034	< 3.0	0.19
1-Jun-10	0.105	< 3.0	0.2
7-Jun-10	0.105	< 3.0	0.12
14-Jun-10	0.085	< 3.0	0.15
21-Jun-10	0.209	< 3.0	0.2
28-Jun-10	0.043	3.1	0.16
6-Jul-10	0.004	< 3.0	0.11
12-Jul-10	0.001	< 3.0	0.41
19-Jul-10	0.001	< 3.0	0.17
10-May-11	0.081	< 3.0	0.47
17-May-11	0.239	< 3.0	0.42
24-May-11	0.159	< 3.0	1.11
31-May-11	0.168	< 3.0	0.22

Teck Coal Limited Page Ixxxiv

Sample Date	INSTANTANEOUS FLOW (m³/s)	TOTAL SUSPENDED SOLIDS (mg/L)	TURBIDITY, LAB (NTU)
7-Jun-11	0.312	5.3	0.49
14-Jun-11	0.386	< 3.0	0.4
20-Jun-11	0.177	< 3.0	0.47
27-Jun-11	0.121	< 3.0	0.22
5-Jul-11	0.089	< 3.0	0.21
12-Jul-11	0.013	< 3.0	0.19
19-Jul-11	0.003	< 3.0	0.27
25-Jul-11	0.001	< 3.0	0.23
24-Apr-12		< 3.0	
1-May-12		< 3.0	0.23
8-May-12	0.0417	< 3.0	
15-May-12	0.221	< 3.0	
22-May-12	0.188	< 3.0	
29-May-12	0.0561	< 3.0	
5-Jun-12	0.301	< 3.0	
12-Jun-12	0.11	< 3.0	
19-Jun-12	0.177	< 3.0	
26-Jun-12	0.249	< 3.0	
3-Jul-12	0.069	< 3.0	0.25
10-Jul-12	0.0194	< 3.0	
17-Jul-12	0.00993	< 3.0	
24-Jul-12		< 3.0	
9-Apr-13	0.0316	< 3.0	0.21
16-Apr-13		< 3.0	0.14
23-Apr-13		5	0.4
30-Apr-13	0.0786	< 3.0	0.24
7-May-13	0.146	< 3.0	0.67
14-May-13	0.439	< 3.0	0.53
21-May-13			
21-May-13		< 3.0	0.21
28-May-13		< 3.0	0.22
28-May-13	0.165		
4-Jun-13	0.0576	< 3.0	0.21
11-Jun-13	0.0455		
11-Jun-13		< 3.0	0.23

Teck Coal Limited Page Ixxxv

Sample Date	INSTANTANEOUS FLOW (m³/s)	TOTAL SUSPENDED SOLIDS (mg/L)	TURBIDITY, LAB (NTU)
18-Jun-13	0.6003	< 3.0	0.19
25-Jun-13	0.153	< 3.0	0.35
2-Jul-13	0.0286	< 3.0	0.19
9-Jul-13	0.004	< 3.0	0.15
16-Jul-13		< 3.0	0.16
16-Jul-13			
6-Aug-13	0.008	< 3.0	0.26
1-Oct-13	0.058	< 1.0	0.3
15-Apr-14	0.0075	< 3.0	0.44
22-Apr-14	0.016		0.11
29-Apr-14	0.01	< 1.0	0.22
•			
6-May-14 13-May-14	0.087 0.045	< 1.0 < 1.0	0.28 0.27
20-May-14	0.298	< 1.0	0.36
27-May-14	0.262	< 1.0	0.53
3-Jun-14	0.202	< 1.0	0.3
10-Jun-14	0.141	< 1.0	0.28
17-Jun-14	0.0411	< 1.0	0.42
24-Jun-14	0.153	< 1.0	0.28
2-Jul-14	0.021	< 1.0	0.53
8-Jul-14	0.00400	< 1.0	0.15
15-Jul-14 16-Mar-15	0.00108	< 1.0 < 1.0	0.23 0.52
30-Mar-15	0.062569	< 1.0	0.32
8-Apr-15	0.006	< 1.0	0.17
15-Apr-15	0.003	< 1.0	0.11
22-Apr-15	0.147	< 1.0	0.24
29-Apr-15	0.077	< 1.0	0.19
6-May-15	0.155	1.6	0.14
13-May-15	0.034737	< 1.0	0.12
20-May-15	0.008 0.097930903	< 1.0	1.5
27-May-15 2-Jun-15	0.097930903	< 3.0 < 1.0	0.27 0.49
3-Jun-15		\ 1.0	0.43
6-Jan-16	0		
3-Feb-16	0		
2-Mar-16	0		
6-Apr-16	0.046	< 1.0	0.23
13-Apr-16	0.130	< 1.0	0.26
20-Apr-16	0.159	< 1.0	0.46

Teck Coal Limited Page Ixxxvi

		TOTAL	TUDDIDITY
Sample Date	INSTANTANEOUS	SUSPENDED	TURBIDITY,
·	FLOW (m ³ /s)	SOLIDS	LAB (NTU)
27 Apr 16	0.563	(mg/L) < 1.0	0.19
27-Apr-16		< 1.0	0.19
4-May-16	0.068		0.16
11-May-16	0.061	< 1.0	
18-May-16	0.022	< 1.0 < 1.0	0.14
25-May-16	0.034		0.19
1-Jun-16 8-Jun-16	0.031	< 1.0	0.15 0.16
	0.033	< 1.0	
15-Jun-16	0.002	< 1.0	0.16
22-Jun-16	0	< 1.0	0.15
29-Jun-16	0	2.0	0.43
6-Jul-16	0	4.2	0.33
13-Jul-16	0		
20-Jul-16	0		
27-Jul-16	0		
3-Aug-16	0		
7-Sep-16	0		
5-Oct-16	0		0.00
2-Nov-16	0.012	< 1.0	0.23
13-Dec-16	0		
4/12/2017	0.00012714	< 1.0	0.15
4/19/2017		9.7	2.88
4/26/2017	0.0287	< 1.0	0.19
5/2/2017	0.009573		
5/9/2017	0.178	< 1.0	0.29
5/16/2017	0.137	< 1.0	0.28
5/23/2017	0.347	2.4	0.64
5/30/2017	0.3473	< 1.0	0.65
6/6/2017	0.1561		
6/14/2017	0.04791	< 1.0	0.19
6/21/2017	0.02117	< 1.0	0.19
6/28/2017	0.00507	< 1.0	0.23
7/5/2017	0.0003	1.2	0.43
7/12/2017	0		
7/19/2017	0		
7/25/2017	0		
8/1/2017	0		
8/8/2017	0		
8/15/2017	0		
8/22/2017	0		
8/29/2017	0		
9/5/2017	0		
9/12/2017	0		
9/19/2017	0		

Teck Coal Limited Page Ixxxvii

Commis Data	INSTANTANEOUS	TOTAL SUSPENDED	TURBIDITY,
Sample Date	FLOW (m ³ /s)	SOLIDS (mg/L)	LAB (NTU)
9/26/2017	0		
10/3/2017	0		
10/10/2017	0		
10/17/2017	0		
10/24/2017	0		
10/31/2017	0		
11/7/2017	0		
11/14/2017	0		
11/21/2017	0		
11/22/2017	0.00407	.10	1.00
11/24/2017 11/28/2017	0.06467 0	< 1.0	1.02
12/6/2017	0		
12/12/2017	0		
12/19/2017	0		
12/27/2017	0		
1/3/2018	0		
1/9/2018	0		
1/16/2018	0		
1/23/2018	0		
1/30/2018	0		
2/6/2018	0		
2/14/2018	0		
2/19/2018	0		
3/1/2018	0		
3/7/2018	0		
3/13/2018	0		
3/19/2018	0		
3/27/2018 4/4/2018	0		
4/10/2018	0		
4/17/2018	0		
4/23/2018	0		
4/24/2018	0		
4/26/2018	0		
5/1/2018	0.079858	1.1	0.30
5/3/2018	0.064		
5/3/2018	0.083562		
5/4/2018	0.130693		
5/5/2018	0.196	_	
5/6/2018	0.2479		
5/7/2018	0.2839	< 1.0	0.78
5/8/2018	0.2839		

Teck Coal Limited Page Ixxxviii

Sample Date	INSTANTANEOUS FLOW (m³/s)	TOTAL SUSPENDED SOLIDS (mg/L)	TURBIDITY, LAB (NTU)
5/9/2018	0.4087	(9. –)	
5/10/2018	0.3068	< 1.0	0.51
5/12/2018	0.2083	11.0	0.01
5/13/2018	0.1783		
5/14/2018	0.1841		
5/15/2018	0.339	< 1.0	1.12
5/16/2018	0.4658	< 1.0	0.40
5/17/2018	0.3729		5110
5/17/2018	0.05		
5/18/2018	0.2692		
5/19/2018	0.2083		
5/20/2018	0.1615		
5/21/2018	0.1508		
5/22/2018	0.1726	< 1.0	0.21
5/23/2018	0.196		
5/24/2018	0.2021		
5/25/2018	0.2211		
5/26/2018	0.2083		
5/27/2018	0.196		
5/28/2018	0.1212		
5/29/2018	0.1561	< 1.0	0.19
5/31/2018	0.0874		
6/1/2018	0.0596		
6/4/2018	0.033		
6/5/2018	0.0452	< 1.0	0.16
6/11/2018	0.0195		
6/12/2018	0.0596	< 1.0	0.26
6/13/2018	0.0536		
6/19/2018	0.0212	< 1.0	1.14
6/22/2018	0.0163		
6/25/2018	0.0059		
6/26/2018	0.0051	2.3	0.50
6/28/2018	0.003		
6/29/2018	0.002		
7/3/2018	0.0001	< 1.0	0.13
7/4/2018	0		
7/5/2018	0		
7/9/2018	0		
7/10/2018	0	< 1.0	0.25
7/11/2018	0		
7/12/2018	0		
7/13/2018	0		
7/16/2018	0		

Teck Coal Limited Page Ixxxix

		TOTAL	
Sample Date	INSTANTANEOUS FLOW (m³/s)	SUSPENDED SOLIDS (mg/L)	TURBIDITY, LAB (NTU)
7/17/2018	0		
7/18/2018	0		
7/19/2018	0		
7/23/2018	0		
7/24/2018	0		
7/25/2018	0		
7/26/2018	0		
7/26/2018	0		
7/27/2018	0		
7/30/2018	0		
7/31/2018	0		
8/1/2018	0		
8/7/2018	0		
8/15/2018	0		
8/16/2018	0		
8/21/2018	0		
8/27/2018	0		
8/28/2018	0		
9/4/2018	0		
9/10/2018	0		
9/12/2018	0		
9/13/2018	0		
9/13/2018	0		
9/17/2018	0		
9/18/2018	0		
9/21/2018	0		
9/24/2018	0		
9/25/2018 10/1/2018	0		
	0		
10/2/2018 10/9/2018	0		
10/9/2018	0		
10/16/2018	0		
10/10/2018	0		
10/23/2018	0		
10/29/2018	0		
11/2/2018	0		
11/5/2018	0		
11/7/2018	0		
11/13/2018	0		
11/15/2018	0		
11/20/2018	0		
11/27/2018	0		
, , _ 0 10	ı		

Teck Coal Limited Page xc

Sample Date	INSTANTANEOUS FLOW (m³/s)	TOTAL SUSPENDED SOLIDS (mg/L)	TURBIDITY, LAB (NTU)
11/29/2018	0		
12/3/2018	0		
12/10/2018	0		
12/11/2018	0		
12/17/2018	0		
12/18/2018	0		
12/28/2018	0		

E102488 - CM_SPD

Sample Date	INSTANTANEOUS FLOW (m³/s)	TOTAL SUSPENDED SOLIDS (mg/L)	TURBIDITY, LAB (NTU)
2-Jan-08		< 3.0	0.88
5-Feb-08		< 3.0	1.8
4-Mar-08	0.015	< 3.0	2.5
1-Apr-08	0.0102	63	72.4
7-Apr-08	0.0315	7	35.1
14-Apr-08	0.32	22	49.8
21-Apr-08	0.0669	8	11.4
28-Apr-08	0.137	9	19.6
6-May-08	0.273	3	13.3
12-May-08	0.213	5	8.4
20-May-08	0.311	18	17.7
26-May-08	0.389	17	39.8
3-Jun-08	0.247	5	11.7
9-Jun-08	0.206	4	31.9
16-Jun-08	0.0877	5	9.5
23-Jun-08	0.163	5	7
7-Jul-08	0.098	8	7.5
14-Jul-08	0.08	< 3.0	3.9
21-Jul-08	0.066	5	3.7
28-Jul-08	0.047	6	8.4
5-Aug-08	0.055	3	4.9
11-Aug-08	0.007	11	17.1
18-Aug-08	0.039	4	3.7
25-Aug-08	0.033	5	7.9

Teck Coal Limited Page xci

Sample Date	INSTANTANEOUS FLOW (m³/s)	TOTAL SUSPENDED SOLIDS (mg/L)	TURBIDITY, LAB (NTU)
2-Sep-08	0.033	6	7.1
7-Oct-08	0.077	9	5.6
4-Nov-08	0.023	3	2.9
2-Dec-08	0.011	< 3.0	1.56
6-Jan-09	0.01	< 3.0	0.67
3-Feb-09	0.007	13.6	7.47
3-Mar-09	0.03	181	233
7-Apr-09	0.087	37.6	34.5
14-Apr-09	0.077	13.5	31.1
20-Apr-09	0.13	19.6	39.8
27-Apr-09	0.143	14	19.8
5-May-09	0.122	19.6	30.7
11-May-09	0.164	12.7	22.3
19-May-09	0.179	13.1	36.8
25-May-09	0.157	9.7	23.4
2-Jun-09	0.143	9.8	14.1
8-Jun-09	0.094	10.3	13.5
15-Jun-09	0.066	13.6	15.2
22-Jun-09	0.234	31.7	44.7
29-Jun-09	0.041	10.2	11.6
7-Jul-09	0.043	7.5	3.86
13-Jul-09	0.029	10.3	0.1
20-Jul-09	0.033	< 3.0	7.91
27-Jul-09	0.048	12.3	18.2
4-Aug-09	0.042	6.9	7.24
1-Sep-09	0.026		2.85
6-Oct-09	0.019	3.2	6.42
3-Nov-09	0.026	7.3	18.7
1-Dec-09	0.02	< 3.0	2.61
5-Jan-10	0.004		0.55
2-Feb-10	0.005	< 3.0	0.7
2-Mar-10	0.023	7.7	7.03
8-Mar-10	0.036		
15-Mar-10	0.026		
23-Mar-10	0.029	5	3.85

Teck Coal Limited Page xcii

Sample Date	INSTANTANEOUS FLOW (m³/s)	TOTAL SUSPENDED SOLIDS (mg/L)	TURBIDITY, LAB (NTU)
29-Mar-10	0.048	7.1	21.2
6-Apr-10	0.024	< 3.0	3.5
12-Apr-10	0.024	< 3.0	3.22
19-Apr-10	0.099	12.5	34.5
26-Apr-10	0.09	9.3	13.3
4-May-10	0.016	11.1	20
10-May-10	0.068	< 3.0	6.2
17-May-10	0.117	9	7.31
25-May-10	0.083	< 3.0	4.87
1-Jun-10	0.161	14.7	39.2
7-Jun-10	0.12	3.3	14.9
14-Jun-10	0.099	3	10.5
21-Jun-10	0.201	6.2	14
28-Jun-10	0.165	6.4	8.58
6-Jul-10	0.108	6.2	7.95
12-Jul-10	0.043	21.3	35.6
19-Jul-10	0.014	3.2	6.08
26-Jul-10	0.132	< 3.0	9.79
3-Aug-10	0.052	5.8	6.58
7-Sep-10	0.055	10	8.58
5-Oct-10	0.178	3.1	3.73
27-Oct-10	0.04	5.7	7.02
2-Nov-10	0.182	28.3	55
7-Dec-10	0.107	< 3.0	2.39
3-Jan-11	0.0336	7.7	9.76
4-Jan-11	0.0913	4.7	2.07
1-Feb-11	0.0036	< 3.0	1.28
7-Mar-11	0.045	6.1	4.09
5-Apr-11	0.102	4.2	13.2
12-Apr-11	0.0869	9	11
19-Apr-11	0.0759	11.2	11.9
26-Apr-11	0.04	12.3	21
3-May-11	0.107	27.3	36.1
10-May-11	0.135	57.4	67.3
17-May-11	0.458	44.6	42

Teck Coal Limited Page xciii

Sample Date	INSTANTANEOUS FLOW (m³/s)	TOTAL SUSPENDED SOLIDS (mg/L)	TURBIDITY, LAB (NTU)
24-May-11	0.223	26.9	36
27-May-11		80	
31-May-11	0.291	43.9	62.3
7-Jun-11	0.132	29.3	24.9
14-Jun-11	0.426	< 3.0	2.03
20-Jun-11	0.24	10.8	10.3
27-Jun-11	0.163	7.1	7.03
5-Jul-11	0.154	10.3	4.71
12-Jul-11	0.288	10	8.97
19-Jul-11	0.232	6.3	6.37
25-Jul-11	0.169	4.1	4.99
2-Aug-11	0.226	6	6.32
6-Sep-11	0.07	4.7	5.95
4-Oct-11	0.024	5.5	2.26
13-Oct-11			
1-Nov-11	0.0882	16.9	21
6-Dec-11	0.0523	6.8	8.66
3-Jan-12	0.0336	7.7	9.76
7-Feb-12	0.0235	4	8.17
7-Mar-12	0.0851	6	4.83
3-Apr-12	0.106	4.9	13.7
10-Apr-12	0.138	26.9	
17-Apr-12	0.186	29.5	
23-Apr-12		362	
24-Apr-12	0.887	128	
25-Apr-12		104	
1-May-12	0.424	65.1	85
8-May-12	0.358	22.2	
15-May-12	0.391	24	
22-May-12	0.281	20.7	
29-May-12	0.226	13.3	
5-Jun-12	0.208	8	
12-Jun-12	0.238	7	
19-Jun-12	0.203	52.8	
26-Jun-12	0.288	24.4	

Teck Coal Limited Page xciv

Sample Date	INSTANTANEOUS FLOW (m³/s)	TOTAL SUSPENDED SOLIDS (mg/L)	TURBIDITY, LAB (NTU)
3-Jul-12	0.239	29.7	39.3
10-Jul-12	0.128	19.3	
17-Jul-12	0.137	6.7	
24-Jul-12		18	
31-Jul-12	0.086	11.6	
7-Aug-12	0.126	14	12.6
4-Sep-12	0.0794	< 3.0	
5-Sep-12	0.0891		
6-Sep-12	0.085	5	
7-Sep-12	0.0836	12.4	
10-Sep-12	0.111	13.3	
11-Sep-12	0.0867		
12-Sep-12	0.0806	3.7	
13-Sep-12	0.0794		
14-Sep-12	0.08	5.3	
17-Sep-12	0.0742	5	
18-Sep-12	0.0812		
19-Sep-12	0.0824	3.2	
20-Sep-12	0.0748	9.7	
24-Sep-12	0.081	4	
25-Sep-12	0.078		
26-Sep-12	0.064	< 3.0	
2-Oct-12			
6-Nov-12	0.14	13.9	
4-Dec-12	0.078	33.6	
2-Jan-13	0.0618	< 3.0	
8-Jan-13		< 4.0	
9-Jan-13		9	
10-Jan-13		5	
11-Jan-13		< 4.0	
12-Jan-13		10	
13-Jan-13		< 4.0	
14-Jan-13		6	
15-Jan-13		6	
16-Jan-13		< 4.0	

Teck Coal Limited Page xcv

Sample Date	INSTANTANEOUS FLOW (m³/s)	TOTAL SUSPENDED SOLIDS (mg/L)	TURBIDITY, LAB (NTU)
17-Jan-13		7	
18-Jan-13		8	
19-Jan-13		21	
20-Jan-13		17	
21-Jan-13		< 4.0	
22-Jan-13		< 4.0	
23-Jan-13		6	
24-Jan-13		5	
25-Jan-13		15	
26-Jan-13		42	
28-Jan-13		< 4.0	
29-Jan-13		6	
30-Jan-13		19.2	
31-Jan-13		10	
1-Feb-13		57	
2-Feb-13		15	
3-Feb-13		14	
4-Feb-13		< 4.0	
5-Feb-13	0.0548	10.7	18
6-Feb-13		16	
7-Feb-13		4	
8-Feb-13		10	
9-Feb-13		14	
10-Feb-13		< 4.0	
11-Feb-13		12	
12-Feb-13		6	
13-Feb-13		6	
14-Feb-13		9.5	
15-Feb-13		11.5	
16-Feb-13		9	
16-Feb-13		5	
16-Feb-13		15	
17-Feb-13		8	
17-Feb-13		11	
17-Feb-13		5.2	

Teck Coal Limited Page xcvi

Sample Date	INSTANTANEOUS FLOW (m³/s)	TOTAL SUSPENDED SOLIDS (mg/L)	TURBIDITY, LAB (NTU)
21-Feb-13		7.5	
22-Feb-13		< 4.0	
23-Feb-13		< 4.0	
24-Feb-13		6.5	
25-Feb-13		4.5	
26-Feb-13		11	
27-Feb-13		11	
28-Feb-13		12.5	
1-Mar-13		8.5	
2-Mar-13		10	
3-Mar-13		7	
4-Mar-13		14	
5-Mar-13	0.0548	21.875	43.7
6-Mar-13		15.5	
7-Mar-13		10.5	
8-Mar-13		17	
9-Mar-13		9	
10-Mar-13		8.5	
11-Mar-13		23.5	
12-Mar-13		11.5	
13-Mar-13		77	
14-Mar-13		18	
15-Mar-13		26.5	
16-Mar-13		10	
16-Mar-13		11.5	
17-Mar-13		14	
18-Mar-13		15	
19-Mar-13		13.5	
20-Mar-13		26	
21-Mar-13		19	
22-Mar-13		10	
23-Mar-13		< 4.0	
24-Mar-13		6	
28-Mar-13		19.4	
31-Mar-13		42.6	

Teck Coal Limited Page xcvii

Sample Date	INSTANTANEOUS FLOW (m³/s)	TOTAL SUSPENDED SOLIDS (mg/L)	TURBIDITY, LAB (NTU)
2-Apr-13	0.103	37	56.1
9-Apr-13	0.151	19.7	38
16-Apr-13	0.0394	70.3	59.2
23-Apr-13	0.0394	37.8	38.7
30-Apr-13	0.129	19.2	25.4
7-May-13	0.177	27.6	35.9
14-May-13	0.177	42.5	61.5
21-May-13	0.118	7.3	8.89
28-May-13	0.118	20.5	20.1
4-Jun-13	0.0875	13.6	16.2
11-Jun-13	0.0613	8.3	8.52
12-Jun-13		9	
18-Jun-13	0.1561	9.1	6.16
19-Jun-13		677	< 0.10
20-Jun-13		1670	1200
21-Jun-13		129	153
22-Jun-13		59.2	78.6
24-Jun-13		33.3	40.8
25-Jun-13	0.159	23.9	31.1
2-Jul-13	0.0394	25.9	19.4
9-Jul-13	0.0535	15.3	16.7
16-Jul-13	0.0394	4.6	2.42
23-Jul-13	0.0353	3.5	2.98
30-Jul-13	0.053	< 3.0	2.45
2-Aug-13		84	139
2-Aug-13		30	70.8
6-Aug-13	0.067	19.3	15.6
3-Sep-13	0.0302	11.2	4.69
1-Oct-13	0.019	14.9	20.6
5-Nov-13	0.021	1.2	2.16
3-Dec-13	0.006	1.7	3.1
7-Jan-14	0	< 1.0	0.98
4-Feb-14	0.013	12.7	3.46
4-Mar-14	0.00174	2.5	1.8
26-Mar-14		13.7	

Teck Coal Limited Page xcviii

Sample Date	INSTANTANEOUS FLOW (m³/s)	TOTAL SUSPENDED SOLIDS (mg/L)	TURBIDITY, LAB (NTU)
1-Apr-14	0.013	8.4	21.7
8-Apr-14		29	69.7
8-Apr-14	0.152	66.3	68.5
9-Apr-14		417	520
9-Apr-14		96	119
10-Apr-14		43.3	70.6
10-Apr-14		21.9	40.8
10-Apr-14		22.9	45.4
11-Apr-14		32.2	41.2
15-Apr-14	0.147	27.2	52.3
22-Apr-14	0.175	61.1	64
29-Apr-14	0.088	29.7	34.2
6-May-14	0.178	41.8	53.3
13-May-14	0.169	22.9	27.5
20-May-14	0.221	27.3	25.2
27-May-14	0.171	28.4	35
3-Jun-14	0.193	8.5	6.25
10-Jun-14	0.101	3.8	3.41
17-Jun-14	0.393	134	140
24-Jun-14	0.074	18.4	20.9
2-Jul-14	0.046	11.8	7.68
8-Jul-14	0.033	18.3	6.37
15-Jul-14	0.103	25.3	17.4
22-Jul-14	0.04	11.5	14.5
29-Jul-14	0.0425	26.7	8.16
5-Aug-14	0.592	3.4	1.54
2-Sep-14	0.009	6.9	2.16
7-Oct-14	0.016	7.3	1.75
4-Nov-14	0.088	77.1	38
3-Dec-14	0.052	1.8	5.53
6-Jan-15	0.032	1.9	1.26
3-Feb-15	0.03016	2	1.46
3-Mar-15	0.029	1.6	1.93
30-Mar-15	0.148	9.4	22.3
8-Apr-15	0.112	3.7	4.3

Teck Coal Limited Page xcix

Sample Date	INSTANTANEOUS FLOW (m³/s)	TOTAL SUSPENDED SOLIDS (mg/L)	TURBIDITY, LAB (NTU)
15-Apr-15	0.089	3.9	3.01
22-Apr-15	0.159	12	3.96
29-Apr-15	0.116	14.8	4.14
6-May-15	0.111615	18	16.9
13-May-15	0.04776	10.8	8.49
20-May-15	0.06	4	1.37
27-May-15	0.103246	16.1	3.18
2-Jun-15	0.103240	51.6	51.5
2-Jun-15			42.3
		39.2	
2-Jun-15		20.2	21.2
3-Jun-15			0.00
3-Jun-15	0.100110	7 8.9	8.69
3-Jun-15 10-Jun-15	0.188119	9.7	6.95 2.96
17-Jun-15	0.097375 0.068267	4.2	0.67
24-Jun-15	0.06267	2.4	0.67
30-Jun-15	0.059	< 1.0	2.13
8-Jul-15	0.0459	2.1	0.72
15-Jul-15	0.051	8	1.23
21-Jul-15	0.030495	2	1.61
27-Jul-15	0.012	1.3	0.73
5-Aug-15	0.036	2	1.09
17-Aug-15		3.9	
24-Aug-15		6.3	
2-Sep-15	0.029	2.5	1.09
28-Sep-15	0.0053	2.8	1.04
7-Oct-15	0.04	1.8	1.22
4-Nov-15			
4-Nov-15	0.039	9.5	17.6
2-Dec-15	0.033	2	2.67
6-Jan-16	0.035	1.3	0.84
3-Feb-16	0.019	< 1.0	< 0.10
2-Mar-16	0.050	2.2	4.96
6-Apr-16 13-Apr-16	0.160 0.261	10.3 9.0	5.49 16.4
20-Apr-16	0.197	6.6	7.17
27-Apr-16	0.197	2.4	1.36
4-May-16	0.249	12.5	5.11
11-May-16	0.261	13.6	11.6
18-May-16	0.123	2.3	0.71

Teck Coal Limited Page c

25-May-16	Sample Date	INSTANTANEOUS FLOW (m³/s)	TOTAL SUSPENDED SOLIDS (mg/L)	TURBIDITY, LAB (NTU)
8-Jun-16 0.165 < 1.0	25-May-16	0.131	11.6	13.3
15-Jun-16 0.165 4.5 1.92 22-Jun-16 0.086 5.5 2.42 22-Jun-16 < 1.0	1-Jun-16	0.217	< 1.0	< 0.10
22-Jun-16 0.086 5.5 2.42 22-Jun-16 < 1.0	8-Jun-16	0.165	< 1.0	< 0.10
22-Jun-16	15-Jun-16	0.165	4.5	1.92
29-Jun-16 0.102 3.6 3.52 6-Jul-16 0.102 3.3 1.27 13-Jul-16 0.085 4.8 2.51 20-Jul-16 0.077 4.5 1.76 27-Jul-16 0.015 2.1 1.27 3-Aug-16 0.015 2.6 1.43 7-Sep-16 0.026 2.1 1.77 5-Oct-16 0.034 2.3 2.16 17-Oct-16 8.0 9.47 2-Nov-16 0.153 < 1.0	22-Jun-16	0.086	5.5	2.42
6-Jul-16 0.102 3.3 1.27 13-Jul-16 0.085 4.8 2.51 20-Jul-16 0.077 4.5 1.76 27-Jul-16 0.015 2.1 1.27 3-Aug-16 0.015 2.6 1.43 7-Sep-16 0.026 2.1 1.77 5-Oct-16 0.034 2.3 2.16 17-Oct-16 8.0 9.47 2-Nov-16 0.153 < 1.0	22-Jun-16		< 1.0	
13-Jul-16 0.085 4.8 2.51 20-Jul-16 0.077 4.5 1.76 27-Jul-16 0.015 2.1 1.27 3-Aug-16 0.015 2.6 1.43 7-Sep-16 0.026 2.1 1.77 5-Oct-16 0.034 2.3 2.16 17-Oct-16 8.0 9.47 2-Nov-16 0.153 < 1.0	29-Jun-16	0.102	3.6	3.52
20-Jul-16 0.077 4.5 1.76 27-Jul-16 0.015 2.1 1.27 3-Aug-16 0.015 2.6 1.43 7-Sep-16 0.026 2.1 1.77 5-Oct-16 0.034 2.3 2.16 17-Oct-16 8.0 9.47 2-Nov-16 0.153 < 1.0		0.102	3.3	
27-Jul-16 0.015 2.1 1.27 3-Aug-16 0.015 2.6 1.43 7-Sep-16 0.026 2.1 1.77 5-Oct-16 0.034 2.3 2.16 17-Oct-16 8.0 9.47 2-Nov-16 0.153 < 1.0	13-Jul-16	0.085	4.8	2.51
3-Aug-16	20-Jul-16	0.077	4.5	
7-Sep-16 0.026 2.1 1.77 5-Oct-16 0.034 2.3 2.16 17-Oct-16 8.0 9.47 2-Nov-16 0.153 < 1.0				
5-Oct-16 0.034 2.3 2.16 17-Oct-16 8.0 9.47 2-Nov-16 0.153 < 1.0				
17-Oct-16 8.0 9.47 2-Nov-16 0.153 < 1.0				
2-Nov-16 0.153 < 1.0		0.034		
7-Nov-16 1.6 2.80 8-Nov-16 0.126 1.8 0.78 9-Nov-16 0.131 1.5 2.36 10-Nov-16 2.7 1.98 15-Nov-16 0.167 10.4 17.0 17-Nov-16 0.131 1.9 2.41 23-Nov-16 0.111 1.2 2.21 30-Nov-16 0.111 5.0 8.48 13-Dec-16 0.093 < 1.0				
8-Nov-16 0.126 1.8 0.78 9-Nov-16 0.131 1.5 2.36 10-Nov-16 2.7 1.98 15-Nov-16 0.167 10.4 17.0 17-Nov-16 0.131 1.9 2.41 23-Nov-16 0.111 1.2 2.21 30-Nov-16 0.111 5.0 8.48 13-Dec-16 0.093 < 1.0		0.153		
9-Nov-16 0.131 1.5 2.36 10-Nov-16 2.7 1.98 15-Nov-16 0.167 10.4 17.0 17-Nov-16 0.131 1.9 2.41 23-Nov-16 0.111 1.2 2.21 30-Nov-16 0.111 5.0 8.48 30-Nov-16 0.011 5.0 8.48 13-Dec-16 0.093 < 1.0				
10-Nov-16 2.7 1.98 15-Nov-16 0.167 10.4 17.0 17-Nov-16 0.131 1.9 2.41 23-Nov-16 0.111 1.2 2.21 30-Nov-16 0.111 5.0 8.48 30-Nov-16 0.011 5.0 8.48 13-Dec-16 0.093 < 1.0				
15-Nov-16 0.167 10.4 17.0 17-Nov-16 0.131 1.9 2.41 23-Nov-16 0.111 1.2 2.21 30-Nov-16 0.111 5.0 8.48 30-Nov-16 0.111 5.0 8.48 13-Dec-16 0.093 < 1.0		0.131		
17-Nov-16 0.131 1.9 2.41 23-Nov-16 0.111 1.2 2.21 30-Nov-16 0.111 5.4 8.88 30-Nov-16 0.111 5.0 8.48 13-Dec-16 0.093 < 1.0				
23-Nov-16 0.111 1.2 2.21 30-Nov-16 5.4 8.88 30-Nov-16 0.111 5.0 8.48 13-Dec-16 0.093 < 1.0				
30-Nov-16 5.4 8.88 30-Nov-16 0.111 5.0 8.48 13-Dec-16 0.093 < 1.0				
30-Nov-16 0.111 5.0 8.48 13-Dec-16 0.093 < 1.0		0.111		
13-Dec-16 0.093 < 1.0		2.1.1		
1/17/2017 0.063 1.6 1.68 1/24/2017 0.053 1.6 1.68 1/29/2017 0.0471 1.9 2.8 2/1/2017 0.0472 1.9 2.8 2/7/2017 0.05 2.2/21/2017 0.053 3/1/2017 0.056 1.6 2.07 3/7/2017 0.0561 3/29/2017 0.113 4/5/2017 0.133 16.2 8.11 4/10/2017 8.2 3.4 4/10/2017 3.4 4/19/2017 0.210043417 3.9 4.37 4/26/2017 0.46512 8.8 15.0 4/27/2017 20.9 15.0				
1/24/2017 0.053 1/29/2017 0.0471 1/30/2017 0.044 2/1/2017 0.0472 1.9 2/7/2017 0.05 2/21/2017 0.053 3/1/2017 0.056 1.6 3/7/2017 0.0561 3/29/2017 0.113 4/5/2017 0.133 16.2 4/10/2017 8.2 4/12/2017 0.141770504 2.7 4/19/2017 0.210043417 3.9 4/26/2017 0.46512 8.8 4/27/2017 20.9				
1/29/2017 0.0471 1/30/2017 0.044 2/1/2017 0.0472 1.9 2.8 2/7/2017 0.05 2/21/2017 0.053 3/1/2017 0.056 3/7/2017 0.0561 3/29/2017 0.113 4/5/2017 0.133 4/10/2017 8.2 4/12/2017 0.141770504 2.7 4/19/2017 0.210043417 3.9 4/26/2017 0.46512 8.8 15.0 4/27/2017 20.9			1.6	1.68
1/30/2017 0.044 2/1/2017 0.0472 1.9 2.8 2/7/2017 0.05 2/21/2017 0.053 3/1/2017 0.056 1.6 2.07 3/7/2017 0.0561 3/29/2017 0.113 4/5/2017 0.133 16.2 8.11 4/10/2017 8.2 4/12/2017 0.141770504 2.7 3.4 4/19/2017 0.210043417 3.9 4.37 4/26/2017 0.46512 8.8 15.0 4/27/2017 20.9				
2/1/2017 0.0472 1.9 2.8 2/7/2017 0.05 2/21/2017 0.053 3/1/2017 0.056 1.6 2.07 3/7/2017 0.0561 3/29/2017 0.113 4/5/2017 0.133 16.2 8.11 4/10/2017 8.2 4/12/2017 0.141770504 2.7 3.4 4/19/2017 0.210043417 3.9 4.37 4/26/2017 0.46512 8.8 15.0 4/27/2017 20.9				
2/7/2017 0.05 2/21/2017 0.053 3/1/2017 0.056 1.6 2.07 3/7/2017 0.0561 3/29/2017 0.113 4/5/2017 0.133 16.2 8.11 4/10/2017 8.2 4/12/2017 0.141770504 2.7 3.4 4/19/2017 0.210043417 3.9 4.37 4/26/2017 0.46512 8.8 15.0 4/27/2017 20.9			1.0	2.0
2/21/2017 0.053 3/1/2017 0.056 1.6 2.07 3/7/2017 0.0561 3/29/2017 0.113 4/5/2017 0.133 16.2 8.11 4/10/2017 8.2 4/12/2017 0.141770504 2.7 3.4 4/19/2017 0.210043417 3.9 4.37 4/26/2017 0.46512 8.8 15.0 4/27/2017 20.9			1.9	2.8
3/1/2017 0.056 1.6 2.07 3/7/2017 0.0561 2.07 3/29/2017 0.113 3/29/2017 0.133 16.2 8.11 4/5/2017 0.133 16.2 8.11 4/10/2017 8.2 2.7 3.4 4/12/2017 0.210043417 3.9 4.37 4/26/2017 0.46512 8.8 15.0 4/27/2017 20.9				
3/7/2017 0.0561 3/29/2017 0.113 4/5/2017 0.133 16.2 8.11 4/10/2017 8.2 4/12/2017 0.141770504 2.7 3.4 4/19/2017 0.210043417 3.9 4.37 4/26/2017 0.46512 8.8 15.0 4/27/2017 20.9			1.6	2.07
3/29/2017 0.113 4/5/2017 0.133 16.2 8.11 4/10/2017 8.2 4/12/2017 0.141770504 2.7 3.4 4/19/2017 0.210043417 3.9 4.37 4/26/2017 0.46512 8.8 15.0 4/27/2017 20.9			1.0	2.07
4/5/2017 0.133 16.2 8.11 4/10/2017 8.2 4/12/2017 0.141770504 2.7 3.4 4/19/2017 0.210043417 3.9 4.37 4/26/2017 0.46512 8.8 15.0 4/27/2017 20.9				
4/10/2017 8.2 4/12/2017 0.141770504 2.7 3.4 4/19/2017 0.210043417 3.9 4.37 4/26/2017 0.46512 8.8 15.0 4/27/2017 20.9			16.2	0 11
4/12/2017 0.141770504 2.7 3.4 4/19/2017 0.210043417 3.9 4.37 4/26/2017 0.46512 8.8 15.0 4/27/2017 20.9		U.133		0.11
4/19/2017 0.210043417 3.9 4.37 4/26/2017 0.46512 8.8 15.0 4/27/2017 20.9		0.141770504		2 /
4/26/2017 0.46512 8.8 15.0 4/27/2017 20.9				
4/27/2017 20.9				
		0.40012		13.0
	4/27/2017		18.1	

Teck Coal Limited Page ci

	INSTANTANEOUS	TOTAL SUSPENDED	TURBIDITY,
Sample Date	FLOW (m³/s)	SOLIDS (mg/L)	LAB (NTU)
4/282017		21.3	
5/2/2017	0.217	5.2	3.6
5/5/2017		32.4	
5/5/2017		26.6	
5/6/2017		39.5	
5/6/2017		29.0	
5/6/2017		20.0	
5/6/2017		21.0	
5/7/2017		12.2	
5/9/2017	0.532	10.5	12.3
5/16/2017	0.141	6.5	10.2
5/17/2017		26.6	
5/17/2017		16.6	
5/18/2017		8.6	
5/23/2017	0.57295	8.6	9.35
5/30/2017	0.51857	7	10.5
6/6/2017	0.51857	23.6	16.3
6/14/2017	0.488782	8.2	3.99
6/21/2017	0.2171	12.5	10.1
6/28/2017	0.217058	2.1	1.79
7/4/2017	0.2242	10.3	7.02
7/12/2017	0.1198	4.4	1.68
7/19/2017	0.09569	8.1	2.37
7/25/2017	0.07323	3.8	3.2
8/1/2017	0.04066	40.8	14.0
8/8/2017	0.0455	13.7	5.68
8/15/2017	0.04439	3.4	3.72
8/22/2017	0.04439	5	5.1
8/29/2017	0.05065	1.9	2.49
9/5/2017	0.04948	5.2	2.72
9/12/2017	0.04331	2	1.03
9/19/2017	0.0000460721	4	5.96
10/3/2017	0.034253685	1.6	1.29
10/19/2017		11.1	13.2
10/19/2017		33.0	35.6
10/20/2017		12.0	22.7
10/23/2017	0.000.10	2.7	7.63
11/7/2017	0.02849	1.3	1.36
11/22/2017	0.088903	2.0	4.05
12/6/2017	0.050	1.1	4.69
12/12/2017	0.146	4.0	0.04
1/9/2018	0.0297642	1.0	0.61
2/6/2018	0.031962	< 1.0	0.78

Teck Coal Limited Page cii

	INSTANTANEOUS	TOTAL SUSPENDED	TURBIDITY,
Sample Date	FLOW (m ³ /s)	SOLIDS (mg/L)	LAB (NTU)
2/28/2018		1.1	0.70
3/7/2018	0.018814	1.1	0.58
3/11/2018	0.025648		
3/12/2018	0.043308		
3/13/2018	0.044394		
3/14/2018	0.044394		
3/15/2018	0.044394	6.3	21.6
3/19/2018	0.034254	9.2	15.3
3/27/2018	0.030196	1.5	3.21
3/29/2018	0.039127		
3/29/2018	0.039127		
4/3/2018	0.039127		
4/4/2018	0.0333254	1.2	3.42
4/9/2018	0.041186	1.7	2.68
4/13/2018	0.056149		
4/16/2018	0.077743		
4/17/2018	0.053054	9.9	15.8
4/18/2018	0.056149		
4/18/2018	0.050064		
4/18/2018	0.050064		
4/18/2018	0.136348		
4/19/2018	0.131051		
4/21/2018	0.111109		
4/22/2018	0.076981		
4/23/2018	0.085623		
4/24/2018	0.120833	3.3	4.18
4/25/2018	0.158808		
4/26/2018	0.177018		
4/27/2018	0.217058		
4/27/2018	0.238939		
4/28/2018	0.529576		
4/28/2018	0.578104		
4/29/2018	0.662359		
4/29/2018	0.662359		
4/30/2018	0.518573	0.0	774
5/1/2018	0.552985	8.9	7.74
5/2/2018	0.3259		
5/3/2018	0.541056		
5/4/2018	0.604782		
5/5/2018	0.6048		
5/6/2018	0.553	5.0	10.7
5/7/2018	0.553	5.9	19.7
5/8/2018	0.6187		

Teck Coal Limited Page ciii

	INICTANTANEOUS	TOTAL	TURRIBITY
Sample Date	FLOW (m ³ /s)	SUSPENDED SOLIDS (mg/L)	TURBIDITY, LAB (NTU)
5/9/2018	0.6048	(9, _)	
5/9/2018		10.5	12.7
5/10/2018	0.5781	9.1	11.2
5/12/2018	0.5081		
5/13/2018	0.5186		
5/14/2018	0.5186		
5/15/2018	0.5186	6.4	5.25
5/16/2018	0.5296	12.8	15.5
5/16/2018	0.342		
5/17/2018	0.4592		
5/18/2018	0.5081		
5/19/2018	0.4888		
5/20/2018	0.4722		
5/21/2018	0.4722		
5/22/2018	0.5186	3.2	3.49
5/23/2018	0.5081		
5/24/2018	0.5081		
5/25/2018	0.5081		
5/26/2018	0.6048		
5/27/2018	0.6048		
5/28/2018	0.4888		
5/29/2018	0.4981	2.3	2.95
5/31/2018	0.4722		
6/1/2018	0.4722		
6/4/2018	0.1898		
6/5/2018	0.2389	2.6	2.82
6/11/2018	0.2171		
6/12/2018	0.2315	1.6	2.92
6/13/2018	0.203166		
6/19/2018	0.2032	5.8	2.54
6/22/2018	0.0808		
6/25/2018	0.1898		4.00
6/26/2018	0.1834	8.1	4.63
6/28/2018	0.1898		
6/29/2018	0.1898	0.1	0.50
7/3/2018	0.1418	3.1	2.50
7/4/2018	0.1019		
7/5/2018	0.1208		
7/9/2018	0.1208	.10	4.00
7/10/2018	0.1208	< 1.0	1.28
7/11/2018	0.1208		
7/12/2018	0.1208		
7/12/2018	0.1208		

Teck Coal Limited Page civ

		TOTAL	
Sample Date	INSTANTANEOUS FLOW (m³/s)	SUSPENDED SOLIDS	TURBIDITY, LAB (NTU)
		(mg/L)	
7/12/2018	0.1111		
7/13/2018	0.1019		
7/16/2018	0.1111		
7/17/2018	0.1083	1.2	1.28
7/18/2018	0.1064		
7/19/2018	0.0931		
7/23/2018	0.10187		. =-
7/24/2018	0.0931078	1.2	0.79
7/25/2018	0.10187		
7/26/2018	0.10187		
7/26/2018	0.120833		
7/26/2018	0.400000	28.3	35.5
7/27/2018	0.120833	7.4	13.3
7/30/2018	0.120833		4.00
7/31/2018	0.106429	< 1.0	1.08
8/1/2018	0.10187		1.00
8/7/2018	0.0931078	< 1.0	1.20
8/8/2018	0.103882		4.50
8/9/2018	0.111109	1.8	1.59
8/15/2018	0.0931078		
8/16/2018	0.10187		
8/21/2018	0.0931078		
8/27/2018	0.111109	1.0	0.50
9/4/2018	0.0931078	< 1.0	0.53
9/10/2018	0.0931078		
9/12/2018	0.0848143		
9/12/2018	0.0848143		
9/12/2018	0.0769805		
9/12/2018	0.056149		
9/13/2018	0.0297642 0.0342537		
9/13/2018 9/13/2018	0.0342537		
9/13/2018			
9/17/2018	0.0769805 0.056149		
9/17/2018	0.056149		
9/17/2018	0.056149		
9/18/2018	0.036149		
9/18/2018	0.0297642	3.0	2.57
9/18/2018	0.0256477	3.0	2.31
9/18/2018	0.0250477		
9/19/2018	0.0342537		
9/19/2018	0.0342537		
9/19/2018	0.0297642		
3/13/2010	0.0231042		

Teck Coal Limited Page cv

Sample Date	INSTANTANEOUS FLOW (m³/s)	TOTAL SUSPENDED SOLIDS (mg/L)	TURBIDITY, LAB (NTU)
9/19/2018	0.0256477		
9/20/2018	0.0218931		
9/20/2018	0.0218931		
9/20/2018	0.0218931		
9/21/2018	0.0218931		
9/24/2018	0.0297642		
9/26/2018	0.02268		
10/1/2018	0.0297642		
10/2/2018	0.0500644	< 1.0	1.06
10/15/2018	0.0256477		
10/22/2018	0.14177		
10/29/2018	0.0931078		
11/2/2018	0.111109		
11/5/2018	0.0848143	3.8	4.21
11/7/2018	0.0848143		
11/15/2018	0.0848143		
11/29/2018	0.0297642		
12/3/2018	0.0297642	2.5	1.56
12/5/2018	0.025675		
12/10/2018	0.0297642		
12/17/2018	0.0256477		

0200209 - CM_CC1

Sample Date	TOTAL SUSPENDED SOLIDS (mg/L)	TURBIDITY, LAB (NTU)
2-Jan-08	< 3.0	0.27
5-Feb-08	< 3.0	0.22
4-Mar-08	< 3.0	0.21
1-Apr-08	3	0.93
7-Apr-08	< 3.0	3.9
14-Apr-08	21	32.4
21-Apr-08	4	2
28-Apr-08	3	4.8
6-May-08	< 3.0	2.5
12-May-08	3	1.8
20-May-08	3	3.8
26-May-08	6	9
3-Jun-08	< 3.0	2.1

Teck Coal Limited Page cvi

Sample Date	TOTAL SUSPENDED SOLIDS (mg/L)	TURBIDITY, LAB (NTU)
9-Jun-08	< 3.0	4
16-Jun-08	< 3.0	1.7
23-Jun-08	< 3.0	1.5
7-Jul-08	4	1.1
14-Jul-08	3	1.1
21-Jul-08	< 3.0	0.26
28-Jul-08	< 3.0	1.3
5-Aug-08	< 3.0	1.2
11-Aug-08	3	3
18-Aug-08	5	0.9
25-Aug-08	< 3.0	1.6
2-Sep-08	3	1.5
7-Oct-08	18	7.6
4-Nov-08	7	0.86
2-Dec-08	< 3.0	1.23
6-Jan-09	< 3.0	0.39
3-Feb-09	< 3.0	0.45
3-Mar-09	7.3	9.53
7-Apr-09	11	11.6
14-Apr-09	21.5	14.8
20-Apr-09	9.6	14
27-Apr-09	4	6.18
5-May-09	6.9	8.92
11-May-09	8.7	4.83
19-May-09	23.1	16.5
25-May-09	11.7	6.2
2-Jun-09	< 3.0	2.6
8-Jun-09	3.7	1.63
15-Jun-09	< 3.0	2.56
22-Jun-09	19.8	20.1
29-Jun-09	< 3.0	1.3
7-Jul-09	5.5	0.96
13-Jul-09	< 3.0	1.71
20-Jul-09	< 3.0	2.13
27-Jul-09	5.7	3.37
4-Aug-09	< 3.0	1.43

Teck Coal Limited Page cvii

Sample Date	TOTAL SUSPENDED SOLIDS (mg/L)	TURBIDITY, LAB (NTU)
1-Sep-09	< 3.0	0.91
6-Oct-09	< 3.0	1.1
3-Nov-09	< 3.0	3.07
1-Dec-09	< 3.0	1.53
5-Jan-10		0.26
2-Feb-10	< 3.0	0.25
2-Mar-10	< 3.0	1.27
8-Mar-10		
15-Mar-10		
23-Mar-10	< 3.0	0.88
29-Mar-10	3.8	4.59
6-Apr-10	< 3.0	0.99
12-Apr-10	< 3.0	0.74
19-Apr-10	7.7	14.6
26-Apr-10	8	2.7
4-May-10	< 3.0	4.35
10-May-10	4	1.56
17-May-10	5.7	2.36
25-May-10	< 3.0	1.32
1-Jun-10	8.5	14
7-Jun-10	< 3.0	2.61
14-Jun-10	< 3.0	1.96
21-Jun-10	< 3.0	3.64
28-Jun-10	< 3.0	2.02
6-Jul-10	< 3.0	1.94
12-Jul-10	8	6.93
19-Jul-10	< 3.0	1.75
26-Jul-10	< 3.0	3.91
3-Aug-10	5.1	1.47
7-Sep-10	< 3.0	2.07
5-Oct-10	3.1	1.72
27-Oct-10	11	3.68
2-Nov-10	15.7	17.9
7-Dec-10	< 3.0	1.41
3-Jan-11	3.7	3.23
4-Jan-11	< 3.0	1.16

Teck Coal Limited Page cviii

Sample Date	TOTAL SUSPENDED SOLIDS (mg/L)	TURBIDITY, LAB (NTU)
1-Feb-11	< 3.0	0.59
7-Mar-11	< 3.0	1.52
5-Apr-11	< 3.0	2.9
12-Apr-11	5.7	3.31
19-Apr-11	7.8	4.49
26-Apr-11	5.7	7.54
3-May-11	14.7	14
10-May-11	40.4	39.8
17-May-11	10.6	12.8
24-May-11	20.9	13.8
27-May-11	24	
31-May-11	10.5	18.2
7-Jun-11	15.3	5.51
14-Jun-11	3.8	4.14
20-Jun-11	3.5	2.37
27-Jun-11	3.1	1.17
5-Jul-11	< 3.0	1.43
12-Jul-11	4	2.09
19-Jul-11	< 3.0	1.77
25-Jul-11	< 3.0	2.25
2-Aug-11	7.3	2.14
6-Sep-11	4	1.73
4-Oct-11	< 3.0	1.07
1-Nov-11	4.9	5.34
6-Dec-11	< 3.0	2.24
3-Jan-12	3.7	3.23
7-Feb-12	< 3.0	2.38
7-Mar-12	< 3.0	1.31
3-Apr-12	< 3.0	3.77
10-Apr-12	12.2	
17-Apr-12	16.9	
23-Apr-12	248	
24-Apr-12	74.7	
1-May-12	22.4	31.2
2-May-12	260	
2-May-12	650	

Teck Coal Limited Page cix

	TOTAL	
Sample Date	SUSPENDED SOLIDS (mg/L)	TURBIDITY, LAB (NTU)
8-May-12	10.2	
15-May-12	10	
22-May-12	5.3	
29-May-12	4	
5-Jun-12	< 3.0	
12-Jun-12	4.3	
19-Jun-12	10.2	
26-Jun-12	28.9	
3-Jul-12	8.3	7.91
10-Jul-12	< 3.0	
17-Jul-12	4	
24-Jul-12	8	
31-Jul-12	< 3.0	
7-Aug-12	5.3	1.75
4-Sep-12	< 3.0	
5-Sep-12		
6-Sep-12	< 3.0	
7-Sep-12	15.8	
10-Sep-12	3.5	
11-Sep-12		
12-Sep-12	< 3.0	
13-Sep-12		
14-Sep-12	< 3.0	
17-Sep-12	< 3.0	
18-Sep-12		
19-Sep-12	< 3.0	
20-Sep-12	3.7	
24-Sep-12	< 3.0	
25-Sep-12		
26-Sep-12	< 3.0	
2-Oct-12		
6-Nov-12	5.6	
7-Nov-12	1800	
7-Nov-12	25	
7-Nov-12	22	
4-Dec-12	< 3.0	

Teck Coal Limited Page cx

Sample Date	TOTAL SUSPENDED SOLIDS (mg/L)	TURBIDITY, LAB (NTU)
2-Jan-13	< 3.0	
8-Jan-13	< 4.0	
9-Jan-13	< 4.0	
10-Jan-13	< 4.0	
11-Jan-13	< 4.0	
12-Jan-13	< 4.0	
13-Jan-13	< 4.0	
14-Jan-13	6	
15-Jan-13	< 4.0	
16-Jan-13	< 4.0	
17-Jan-13	4	
18-Jan-13	< 4.0	
19-Jan-13	< 4.0	
20-Jan-13	< 4.0	
21-Jan-13	< 4.0	
22-Jan-13	< 4.0	
23-Jan-13	< 4.0	
24-Jan-13	< 4.0	
25-Jan-13	< 4.0	
26-Jan-13	< 4.0	
27-Jan-13	< 4.0	
28-Jan-13	< 4.0	
29-Jan-13	< 4.0	
30-Jan-13	< 4.0	
31-Jan-13	< 4.0	
1-Feb-13	18	
2-Feb-13	< 4.0	
3-Feb-13	< 4.0	
4-Feb-13	< 4.0	
5-Feb-13	< 3.0	1.34
6-Feb-13	4	
7-Feb-13	< 4.0	
8-Feb-13	< 4.0	
9-Feb-13	< 4.0	
10-Feb-13	17	
11-Feb-13	7.5	

Teck Coal Limited Page cxi

Sample Date	TOTAL SUSPENDED SOLIDS (mg/L)	TURBIDITY, LAB (NTU)
12-Feb-13	< 4.0	
13-Feb-13	< 4.0	
14-Feb-13	< 4.0	
15-Feb-13	< 4.0	
16-Feb-13	< 4.0	
16-Feb-13	4	
16-Feb-13	< 4.0	
17-Feb-13	7	
17-Feb-13	< 4.0	
17-Feb-13	< 4.0	
21-Feb-13	< 4.0	
22-Feb-13	< 4.0	
23-Feb-13	< 4.0	
24-Feb-13	< 4.0	
25-Feb-13	< 4.0	
26-Feb-13	< 4.0	
27-Feb-13	< 4.0	
28-Feb-13	< 4.0	
1-Mar-13	< 4.0	
2-Mar-13	< 4.0	
3-Mar-13	< 4.0	
4-Mar-13	< 4.0	
5-Mar-13	7	6.77
6-Mar-13	4	
7-Mar-13	< 4.0	
8-Mar-13	4.5	
9-Mar-13	< 4.0	
10-Mar-13	< 4.0	
11-Mar-13	< 4.0	
12-Mar-13	< 4.0	
13-Mar-13	30	
14-Mar-13	5	
15-Mar-13	13	
16-Mar-13	< 4.0	
16-Mar-13	< 4.0	
17-Mar-13	4.5	

Teck Coal Limited Page cxii

Sample Date	TOTAL SUSPENDED SOLIDS (mg/L)	TURBIDITY, LAB (NTU)
18-Mar-13	< 4.0	
19-Mar-13	< 4.0	
20-Mar-13	6	
21-Mar-13	6	
22-Mar-13	< 4.0	
23-Mar-13	< 4.0	
24-Mar-13	< 4.0	
2-Apr-13	20.8	21.9
9-Apr-13	13.7	12.4
16-Apr-13	8.1	4.95
23-Apr-13	13.6	9.39
30-Apr-13	8.4	5.85
7-May-13	17.1	7.99
14-May-13	25.2	20.1
21-May-13	< 3.0	3.03
28-May-13	8.5	3.22
31-May-13		
4-Jun-13	3.6	1.39
11-Jun-13	< 3.0	1.19
18-Jun-13	< 3.0	0.87
19-Jun-13	2850	3910
20-Jun-13	1100	848
21-Jun-13	52.5	37.8
22-Jun-13	24.5	19.2
24-Jun-13	14.3	7.21
25-Jun-13	11.9	6.17
2-Jul-13	5.3	1.03
9-Jul-13	< 3.0	1.48
16-Jul-13	< 3.0	0.67
23-Jul-13	< 3.0	0.55
30-Jul-13	< 3.0	0.65
2-Aug-13	35	36.9
2-Aug-13	21	24.5
6-Aug-13	6.4	1.62
3-Sep-13		0.49
3-Sep-13	< 3.0	

Teck Coal Limited Page cxiii

Sample Date	TOTAL SUSPENDED	TURBIDITY,
Campio Sato	SOLIDS (mg/L)	LAB (NTU)
1-Oct-13	4.9	4.16
5-Nov-13	< 1.0	0.55
3-Dec-13	< 1.0	0.6
7-Jan-14	< 1.0	0.28
4-Feb-14	< 1.0	0.39
4-Mar-14	2.4	0.47
26-Mar-14	169	
27-Mar-14	6.3	
27-Mar-14	< 4.0	
28-Mar-14	545	
1-Apr-14	6.6	6.62
1-Apr-14	48.5	
2-Apr-14	19.3	
3-Apr-14	5.1	
4-Apr-14	< 4.0	
7-Apr-14	< 4.0	6.11
8-Apr-14	14.6	23.5
8-Apr-14	23.4	20.6
8-Apr-14	74.6	40.1
9-Apr-14	149	178
9-Apr-14	85.3	68.3
10-Apr-14	28	34.6
10-Apr-14	17.3	17.2
11-Apr-14	15	16.6
15-Apr-14	14.5	17.6
22-Apr-14	32.5	20.4
29-Apr-14	7.9	7.43
6-May-14	13.1	10.8
13-May-14	8.1	5.9
20-May-14	14.1	5.66
27-May-14	9.2	8.37
3-Jun-14	1.7	1.15
10-Jun-14	1.5	0.92
17-Jun-14	32.6	20.7
24-Jun-14	3.7	2.88
2-Jul-14	< 1.0	1.13

Teck Coal Limited Page cxiv

Sample Date	TOTAL SUSPENDED SOLIDS (mg/L)	TURBIDITY, LAB (NTU)
8-Jul-14	2.4	0.88
15-Jul-14	4.1	1.42
22-Jul-14	1.5	1.1
29-Jul-14	2.2	1.05
5-Aug-14	< 1.0	0.45
2-Sep-14	1.5	0.61
7-Oct-14	< 1.0	0.43
4-Nov-14	10.2	5.33
3-Dec-14	1.1	1.47
6-Jan-15	< 1.0	0.48
3-Feb-15	< 1.0	0.46
3-Mar-15	< 1.0	0.64
16-Mar-15	14.6	15.7
23-Mar-15	1.8	2.01
30-Mar-15	3.6	4.32
8-Apr-15	1	1.14
15-Apr-15	< 1.0	0.72
22-Apr-15	4.4	1.41
29-Apr-15	4.1	2.03
6-May-15	2.8	1.96
13-May-15	2.2	1.6
20-May-15	1.2	0.8
27-May-15	4.7	1.95
3-Jun-15	29.5	7.67
10-Jun-15	2.1	1.06
17-Jun-15	1.8	0.45
24-Jun-15	< 1.0	0.42
30-Jun-15	1	0.35
8-Jul-15	< 1.0	0.33
15-Jul-15	1.1	0.36
21-Jul-15	1	0.57
27-Jul-15	1.9	0.3
5-Aug-15	1.1	0.38
2-Sep-15	< 1.0	0.33
7-Oct-15	3.4	0.37
4-Nov-15	3.5	4.68

Teck Coal Limited Page cxv

Sample Date	TOTAL SUSPENDED SOLIDS (mg/L)	TURBIDITY, LAB (NTU)
2-Dec-15	< 1.0	0.74
6-Jan-16	< 1.0	0.31
3-Feb-16	< 1.0	0.25
2-Mar-16	< 1.0	0.97
15-Mar-16	1.5	1.95
22-Mar-16	1.1	1.68
29-Mar-16	1.6	1.02
6-Apr-16	4.8	2.73
13-Apr-16	2.9	3.66
13-Apr-16	5.0	4.95
16-Apr-16	2.6	3.20
17-Apr-16	2.9	4.33
18-Apr-16	3.5	6.01
19-Apr-16	3.2	2.42
20-Apr-16	7.0	4.79
21-Apr-16	7.6	3.98
27-Apr-16	2.5	1.16
4-May-16	1.9	1.49
11-May-16	2.3	2.25
18-May-16	2.4	0.91
25-May-16	5.0	2.39
1-Jun-16	3.8	1.56
8-Jun-16	3.1	0.59
15-Jun-16	2.7	1.01
22-Jun-16	2.6	0.53
29-Jun-16	1.6	1.13
6-Jul-16	< 1.0	0.65
6-Jul-16	1.9	0.74
13-Jul-16	2.1	1.16
20-Jul-16	1.3	0.54
27-Jul-16	< 1.0	0.39
3-Aug-16	< 1.0	0.40
7-Sep-16	1.3	0.58
5-Oct-16	1.6	0.46
17-Oct-16	4.2	3.16
2-Nov-16	3.4	3.41

Teck Coal Limited Page cxvi

Sample Date	TOTAL SUSPENDED SOLIDS (mg/L)	TURBIDITY, LAB (NTU)
7-Nov-16	1.2	1.48
8-Nov-16	1.5	1.22
9-Nov-16	1.3	1.24
10-Nov-16	2.7	1.07
15-Nov-16	4.6	5.86
17-Nov-16	1.1	0.91
23-Nov-16	1.0	1.02
30-Nov-16	1.8	2.58
13-Dec-16	1.1	1.10
1/17/2017	1.2	1.03
2/1/2017	< 1.0	1.01
3/1/2017	1.0	1.05
3/15/2017	3.2	2.29
3/22/2017	3.4	1.66
3/29/2017	8.0	4.06
4/5/2017	1.6	2.4
4/12/2017	2.5	1.43
4/19/2017	4.3	2.8
4/26/2017	6.4	7.08
5/2/2017	3.6	1.15
5/9/2017	6.8	7.14
5/16/2017	4.3	5.05
5/17/2017	13.2	
5/17/2017	10.4	
5/18/2017	4.4	
5/23/2017	7.8	4.97
5/30/2017	6.2	8.38
6/6/2017	3.4	4.23
6/14/2017	2.0	2.56
6/21/2017	4.5	3.75
6/28/2017	2.7	0.7
7/5/2017	2.0	1.46
7/12/2017	3.5	1.04
7/19/2017	1.7	0.37
7/25/2017	1.0	0.43
8/1/2017	25.7	3.49

Teck Coal Limited Page cxvii

Sample Date	TOTAL SUSPENDED SOLIDS (mg/L)	TURBIDITY, LAB (NTU)
8/8/2017	1.7	0.74
8/15/2017	1.8	0.99
8/22/2017	1.0	1.18
8/29/2017	2.3	0.75
9/5/2017	2.8	0.68
9/12/2017	< 1.0	0.57
9/19/2017	1.2	0.43
10/4/2017	1.2	0.44
11/7/2017	3.3	0.65
12/6/2017	1.1	1.24
1/9/2018	< 1.0	0.56
2/6/2018	< 1.0	0.37
2/28/2018	< 1.0	0.30
3/6/2018	< 1.0	0.26
3/19/2018	2.0	2.40
3/27/2018	< 1.0	0.76
4/4/2018	< 1.0	1.23
4/10/2018	1.1	0.58
4/17/2018	2.1	4.03
4/24/2018	2.3	1.89
5/1/2018	4.9	4.34
5/2/2018		
5/7/2018	3.3	12.5
5/16/2018		
5/16/2018	8.2	3.93
5/22/2018	2.2	1.49
5/29/2018	1.9	1.50
6/5/2018	1.0	1.20
6/6/2018		
6/12/2018	1.2	1.30
6/19/2018	2.6	1.40
6/26/2018	1.5	1.05
7/3/2018	1.9	1.86
7/10/2018	1.3	1.35
7/17/2018	1.2	0.54
7/24/2018	1.2	0.38

Teck Coal Limited Page cxviii

Sample Date	TOTAL SUSPENDED SOLIDS (mg/L)	TURBIDITY, LAB (NTU)
7/26/2018	13.7	6.85
7/27/2018	2.0	3.08
7/31/2018	1.1	0.50
8/7/2018	< 1.0	0.43
8/9/2018		
9/4/2018	< 1.0	0.69
9/10/2018	1.4	0.78
9/10/2018		
10/2/2018	< 1.0	0.66
11/5/2018	2.1	1.41
12/3/2018	< 1.0	0.46
12/19/2018		

E258175 - CM_MC1

Sample Date	TOTAL SUSPENDED SOLIDS (mg/L)	TURBIDITY, LAB (NTU)
2-Jan-08	< 3.0	< 0.2
5-Feb-08	< 3.0	0.2
4-Mar-08	< 3.0	< 0.2
1-Apr-08	< 3.0	0.24
7-Apr-08	< 3.0	0.29
14-Apr-08	< 3.0	0.2
21-Apr-08	< 3.0	< 0.2
28-Apr-08	3	0.33
6-May-08	< 3.0	1.4
12-May-08	3	0.47
26-May-08	18	15.9
3-Jun-08	3	7.6
9-Jun-08	< 3.0	4.7
16-Jun-08	< 3.0	3.1
23-Jun-08	< 3.0	1.9
7-Jul-08	< 3.0	< 0.2
14-Jul-08	< 3.0	< 0.2
21-Jul-08	< 3.0	< 0.2
28-Jul-08	< 3.0	0.21

Teck Coal Limited Page cxix

Sample Date	TOTAL SUSPENDED SOLIDS (mg/L)	TURBIDITY, LAB (NTU)
5-Aug-08	< 3.0	0.22
11-Aug-08	3	0.3
18-Aug-08	< 3.0	0.22
25-Aug-08	< 3.0	0.22
2-Sep-08	< 3.0	0.28
7-Oct-08	5	7.5
4-Nov-08	< 3.0	0.25
2-Dec-08	< 3.0	0.14
6-Jan-09	< 3.0	0.35
3-Feb-09	< 3.0	0.16
3-Mar-09	< 3.0	< 0.10
7-Apr-09	< 3.0	0.32
14-Apr-09	< 3.0	0.39
20-Apr-09	< 3.0	0.35
27-Apr-09	< 3.0	0.31
5-May-09	< 3.0	0.47
11-May-09	< 3.0	0.54
19-May-09	9.7	9.46
25-May-09	5	3.06
2-Jun-09	4.4	5.06
8-Jun-09	5	2
15-Jun-09	< 3.0	1.06
22-Jun-09	7.1	5.71
29-Jun-09	< 3.0	0.68
7-Jul-09	< 3.0	0.56
13-Jul-09	< 3.0	0.47
20-Jul-09	< 3.0	0.43
27-Jul-09	5.7	0.7
4-Aug-09	< 3.0	0.48
1-Sep-09	< 3.0	0.26
6-Oct-09	< 3.0	0.27
3-Nov-09	< 3.0	0.26
1-Dec-09	< 3.0	0.22
5-Jan-10		0.36
2-Feb-10		0.17
2-Mar-10	< 3.0	0.13

Teck Coal Limited Page cxx

Sample Date	TOTAL SUSPENDED SOLIDS (mg/L)	TURBIDITY, LAB (NTU)
8-Mar-10	< 3.0	
15-Mar-10		
23-Mar-10	< 3.0	< 0.1
29-Mar-10	< 3.0	0.15
6-Apr-10	< 3.0	0.11
12-Apr-10	< 3.0	0.11
19-Apr-10	3	0.48
26-Apr-10	< 3.0	0.85
4-May-10	< 3.0	0.38
10-May-10	3.3	0.19
17-May-10	< 3.0	4.59
25-May-10	< 3.0	1.12
1-Jun-10	6.5	4.63
7-Jun-10	5.3	6.7
14-Jun-10	< 3.0	2.87
21-Jun-10	6.2	4.35
28-Jun-10	< 3.0	0.95
6-Jul-10	6.2	0.74
12-Jul-10	< 3.0	2.88
19-Jul-10	< 3.0	0.4
26-Jul-10	4.9	2.04
3-Aug-10	< 3.0	0.27
7-Sep-10	9	0.57
5-Oct-10	< 3.0	0.25
27-Oct-10	< 3.0	0.38
2-Nov-10	7.3	7.51
7-Dec-10	< 3.0	0.27
3-Jan-11	< 3.0	0.19
4-Jan-11	< 3.0	0.37
1-Feb-11	< 3.0	0.36
7-Mar-11	< 3.0	0.22
5-Apr-11	< 3.0	0.16
12-Apr-11	< 3.0	0.16
19-Apr-11	< 3.0	0.22
26-Apr-11	< 3.0	0.2
3-May-11	< 3.0	0.23

Teck Coal Limited Page cxxi

Sample Date	TOTAL SUSPENDED SOLIDS (mg/L)	TURBIDITY, LAB (NTU)
10-May-11	< 3.0	0.67
17-May-11	< 3.0	2.51
24-May-11	10.3	7.09
31-May-11	3.9	2.3
7-Jun-11	22.7	12.7
14-Jun-11	12.5	8.17
20-Jun-11	12.8	8.15
27-Jun-11	8.4	2.39
5-Jul-11	7	3.56
12-Jul-11	4.7	2.62
19-Jul-11	3	0.89
25-Jul-11	3.5	1.19
2-Aug-11	< 3.0	0.76
6-Sep-11	< 3.0	0.27
4-Oct-11	< 3.0	0.83
1-Nov-11	< 3.0	0.4
6-Dec-11	< 3.0	0.28
3-Jan-12	< 3.0	0.19
7-Feb-12	< 3.0	0.18
7-Mar-12	< 3.0	0.14
3-Apr-12	< 3.0	0.31
10-Apr-12	< 3.0	
17-Apr-12	< 3.0	
1-May-12	< 3.0	2.31
8-May-12	< 3.0	
15-May-12	12	
22-May-12	13.3	
29-May-12	< 3.0	
5-Jun-12	54	
12-Jun-12	8.3	
19-Jun-12	22.2	
26-Jun-12	49.6	
3-Jul-12	12.3	9.66
10-Jul-12	3.3	
17-Jul-12	< 3.0	
24-Jul-12	3.3	

Teck Coal Limited Page cxxii

Sample Date	TOTAL SUSPENDED SOLIDS (mg/L)	TURBIDITY, LAB (NTU)
31-Jul-12	< 3.0	
7-Aug-12	< 3.0	0.3
4-Sep-12	< 3.0	0.23
2-Oct-12	< 3.0	
6-Nov-12	< 3.0	
4-Dec-12	< 3.0	
2-Jan-13	< 3.0	
5-Feb-13	< 3.0	0.25
5-Mar-13	< 3.0	0.45
2-Apr-13	7	1.19
9-Apr-13	6.3	1.95
16-Apr-13	3.3	1.03
23-Apr-13	3.6	1.05
30-Apr-13	< 3.0	1.07
7-May-13	9.6	5.8
14-May-13	68.5	25.1
21-May-13	8	5.24
28-May-13	18.5	4.61
4-Jun-13	4.3	2.69
11-Jun-13	4.8	2.79
18-Jun-13		1.53
25-Jun-13	19.6	19.5
2-Jul-13	< 3.0	1.75
9-Jul-13	< 3.0	0.97
16-Jul-13	< 3.0	0.46
23-Jul-13	< 3.0	0.41
30-Jul-13	< 3.0	0.49
6-Aug-13	< 3.0	0.75
3-Sep-13	< 3.0	0.23
1-Oct-13	2.3	2.66

Teck Coal Limited Page cxxiii

Sample Date	TOTAL SUSPENDED SOLIDS (mg/L)	TURBIDITY, LAB (NTU)
5-Nov-13	1	0.4
3-Dec-13	< 1.0	0.24
7-Jan-14	< 1.0	0.11
4-Feb-14	< 1.0	0.25
4-Mar-14	1.2	0.46
1-Apr-14	< 1.0	0.24
8-Apr-14	< 1.0	0.2
15-Apr-14	< 3.0	0.21
22-Apr-14	< 1.0	0.23
29-Apr-14	< 1.0	0.19
6-May-14	1.8	2.61
13-May-14	1.6	1.69
20-May-14	31.7	12.1
27-May-14	39.5	21.8
3-Jun-14	15.1	14.1
10-Jun-14	13.7	9.76
17-Jun-14	473	230
24-Jun-14	7.7	4.32
2-Jul-14	2.3	1.26
8-Jul-14	< 1.0	0.73
15-Jul-14	1.8	1.06
22-Jul-14	< 1.0	0.69
29-Jul-14	1.5	0.57

Teck Coal Limited Page cxxiv

Sample Date	TOTAL SUSPENDED SOLIDS (mg/L)	TURBIDITY, LAB (NTU)
5-Aug-14	< 1.0	0.26
2-Sep-14	4.1	0.77
7-Oct-14	< 1.0	0.29
4-Nov-14	5.9	5.82
3-Dec-14	< 1.0	0.45
6-Jan-15	< 2.0	0.35
3-Feb-15	< 1.0	0.17
3-Mar-15	< 1.0	0.21
30-Mar-15	1.8	1.61
8-Apr-15	1.4	0.4
15-Apr-15	< 1.0	0.28
22-Apr-15	1.3	0.93
29-Apr-15	5.2	3.11
6-May-15	3.8	2.68
13-May-15	1	1.14
20-May-15	1.7	1.59
27-May-15	22.5	6.05
3-Jun-15	47.2	20.5
10-Jun-15	3.7	1.39
17-Jun-15	1.4	0.59
24-Jun-15	< 1.0	0.36
30-Jun-15	< 1.0	0.54
8-Jul-15	< 1.0	0.25
15-Jul-15	< 1.0	0.25
21-Jul-15	2	0.35
27-Jul-15	1.8	0.34
5-Aug-15	< 1.0	0.28
2-Sep-15	< 1.0	0.25
2-Sep-15	< 1.0	< 0.10
7-Oct-15	< 1.0	0.13
4-Nov-15	< 1.0	0.34
2-Dec-15	< 1.0	0.18
6-Jan-16	< 1.0	0.15
3-Feb-16	< 1.0	0.13

Teck Coal Limited Page cxxv

	TOTAL	
Sample Date	SUSPENDED	TURBIDITY,
Campic Date	SOLIDS (mg/L)	LAB (NTU)
2-Mar-16	< 1.0	0.24
6-Apr-16	< 1.0	0.37
13-Apr-16	4.4	2.68
20-Apr-16	3.8	4.03
27-Apr-16	3.6	2.43
4-May-16	7.1	4.41
11-May-16	3.5	2.51
18-May-16	5.6	1.63
25-May-16	2.5	2.02
1-Jun-16	1.6	1.37
8-Jun-16	3.8	1.51
15-Jun-16	3.1	0.64
22-Jun-16	4.0	0.39
29-Jun-16	1.4	0.44
6-Jul-16	< 1.0	0.24
13-Jul-16	1.9	0.54
20-Jul-16	< 1.0	0.21
27-Jul-16	2.8	0.39
3-Aug-16	1.1	0.22
7-Sep-16	< 1.0	0.15
5-Oct-16	1.9	0.84
2-Nov-16	1.4	1.72
13-Dec-16	1.0	0.42
1/18/2017	2.0	0.75
2/1/2017 3/1/2017	< 1.0 < 1.0	0.37 0.22
4/5/2017	< 1.0	0.53
4/12/2017	1.5	0.33
4/19/2017	1.7	0.44
4/26/2017	2.8	1.26
5/2/2017	< 1.0	0.41
5/9/2017	3.8	2.87
5/16/2017	2.7	2.36
5/23/2017	27.2	13.9
5/30/2017	27.2	20.5
6/6/2017	18.4	10.8
6/14/2017	9.4	6.46
6/21/2017	3.5	2.94
6/28/2017	1.9	1.09
7/4/2017	2.5	0.11
7/12/2017	2.8	0.78
7/19/2017	3.1	0.38
7/25/2017	< 1.0	0.37
8/1/2017	< 1.0	0.41

Teck Coal Limited Page cxxvi

	TOTAL	TUDDIDITY
Sample Date	SUSPENDED SOLIDS (mg/L)	TURBIDITY, LAB (NTU)
8/8/2017	< 1.0	0.35
8/15/2017	< 1.0	0.35
8/22/2017	1.0	0.44
8/29/2017	< 1.0	0.58
9/12/2017	< 1.0	0.22
9/19/2017	< 1.0	0.28
9/26/2017	1.2	0.38
10/2/2017	2.4	1.28
10/10/2017	< 1.0	0.16
10/17/2017	< 1.0	0.22
10/24/2017	< 1.0	0.42
10/31/2017	< 1.0	0.3
11/7/2017	2.3	0.8
12/6/2017	< 1.0	0.56
1/9/2018	< 1.0	0.30
2/6/2018	12.0	2.46
2/19/2018	< 1.0	0.13
2/27/2018	< 1.0	0.22
3/6/2018	< 1.0	0.18
3/13/2018	< 1.0	0.11
3/20/2018	< 1.0	0.11
3/27/2018	< 1.0	0.15
4/4/2018	3.4	0.50
4/10/2018	< 1.0	0.17
4/17/2018	< 1.0	0.16
4/24/2018	1.3	0.32
4/30/2018	4.5	2.37
5/8/2018	9.1	10.5
5/14/2018	6.4	4.91
5/15/2018	24.9	7.54
5/17/2018	15.7	11.1
5/22/2018 5/29/2018	8.6 12.9	4.79 5.41
6/5/2018		1.50
6/12/2018	3.6 1.0	1.01
6/19/2018	1.8	0.69
6/26/2018	< 1.0	0.49
7/3/2018	2.1	24.0
7/10/2018	2.5	0.38
7/17/2018	2.4	0.53
7/24/2018	< 1.0	0.25
7/24/2018	16.9	30.2
7/27/2018	< 1.0	0.50
7/31/2018	< 1.0	0.25
.,0.,2010	. 110	0.20

Teck Coal Limited Page cxxvii

Sample Date	TOTAL SUSPENDED SOLIDS (mg/L)	TURBIDITY, LAB (NTU)
8/7/2018	< 1.0	0.24
8/15/2018	< 1.0	0.55
8/21/2018	1.9	1.23
8/28/2018	< 1.0	0.37
9/4/2018	< 1.0	0.16
9/13/2018	< 1.0	0.62
9/14/2018	< 1.0	0.72
10/2/2018	2.4	0.42
10/30/2018	< 1.0	0.29
11/2/2018	34.8	26.7
11/6/2018	< 1.0	0.33
11/13/2018	< 1.0	0.24
11/20/2018	< 1.0	0.26
11/27/2018	< 1.0	0.42
12/4/2018	< 1.0	0.23

E258937 - CM_MC2

Sample Date	TOTAL SUSPENDED SOLIDS (mg/L)	TURBIDITY, LAB (NTU)
18-Jan-00	8	0.7
2-Jan-08	4	1.8
5-Feb-08	< 3.0	0.2
4-Mar-08	< 3.0	0.22
1-Apr-08	< 3.0	1.1
7-Apr-08	< 3.0	1.3
14-Apr-08	53	18.8
21-Apr-08	< 3.0	1.7
28-Apr-08	< 3.0	2.1
6-May-08	3	4.5
12-May-08	< 3.0	1.8
20-May-08	21	25.1
26-May-08	28	21
3-Jun-08	9	15.5
9-Jun-08	< 3.0	4.8
16-Jun-08	< 3.0	3.4
23-Jun-08	3	4.6
7-Jul-08	< 3.0	1.3
14-Jul-08	< 3.0	1.1

Teck Coal Limited Page cxxviii

Sample Date	TOTAL SUSPENDED SOLIDS (mg/L)	TURBIDITY, LAB (NTU)
21-Jul-08	< 3.0	1
28-Jul-08	< 3.0	0.21
5-Aug-08	< 3.0	0.81
11-Aug-08	< 3.0	1.4
18-Aug-08	< 3.0	0.68
25-Aug-08	< 3.0	0.65
2-Sep-08	3	0.66
7-Oct-08	8	5.2
4-Nov-08	< 3.0	0.48
2-Dec-08	< 3.0	0.42
7-Apr-09	3	2.99
14-Apr-09	4.8	2.59
20-Apr-09	5.6	3.56
27-Apr-09	3.3	1.88
5-May-09	< 3.0	2.69
11-May-09	3.3	2.01
19-May-09	41.1	34
25-May-09	41.7	33
2-Jun-09	11.8	11.1
8-Jun-09	7.7	3.25
15-Jun-09	8.2	4.61
22-Jun-09	16.4	11.3
29-Jun-09	< 3.0	2.11
7-Jul-09	< 3.0	1.46
13-Jul-09	3.7	1.91
20-Jul-09	3.3	1.41
27-Jul-09	9	7.38
4-Aug-09	4.2	2.29
1-Sep-09	< 3.0	1.27
6-Oct-09	< 3.0	0.71
3-Nov-09	< 3.0	1.04
1-Dec-09	< 3.0	0.63
5-Jan-10		0.38
2-Feb-10	< 3.0	0.29
2-Mar-10	4.3	0.79
23-Mar-10	< 3.0	0.52

Teck Coal Limited Page cxxix

Sample Date	TOTAL SUSPENDED SOLIDS (mg/L)	TURBIDITY, LAB (NTU)
29-Mar-10	3.1	1.16
6-Apr-10	< 3.0	0.44
12-Apr-10	3.2	0.52
19-Apr-10	10.4	6.24
26-Apr-10	9.3	2.9
4-May-10	< 3.0	1.92
10-May-10	< 3.0	1.08
17-May-10	32.3	19.2
25-May-10	6	3.56
1-Jun-10	12	10.7
7-Jun-10	26	21.9
14-Jun-10	8.3	8.17
21-Jun-10	8.9	5.72
28-Jun-10	12.4	3.84
6-Jul-10	7.7	1.54
12-Jul-10	16.7	18.6
19-Jul-10	< 3.0	1.26
26-Jul-10	< 3.0	2.3
3-Aug-10	3.3	1.06
7-Sep-10	< 3.0	1.11
5-Oct-10	< 3.0	1.14
27-Oct-10	< 3.0	1.22
2-Nov-10	13.8	10.1
7-Dec-10	3.2	0.77
3-Jan-11	3.7	1.41
4-Jan-11	< 3.0	1.06
7-Mar-11	4.6	1.37
5-Apr-11	< 3.0	1.73
12-Apr-11	9.8	4.01
19-Apr-11	13.8	4.65
26-Apr-11	4.3	2.68
3-May-11	7	4.81
10-May-11	23.9	16.4
17-May-11	12.9	8.52
24-May-11	41.9	24.6
31-May-11	16.5	12.5

Teck Coal Limited Page cxxx

Sample Date	TOTAL SUSPENDED SOLIDS (mg/L)	TURBIDITY, LAB (NTU)
7-Jun-11	64.7	36.9
14-Jun-11	35.2	22.7
20-Jun-11	29.5	19.1
27-Jun-11	22.4	10.7
5-Jul-11	21	8.29
12-Jul-11	12	5.94
19-Jul-11	9	2.42
25-Jul-11	4.8	2.05
2-Aug-11	4	1.51
6-Sep-11	< 3.0	0.87
4-Oct-11	< 3.0	1.48
1-Nov-11	3.6	2.67
6-Dec-11	< 3.0	0.87
3-Jan-12	3.7	1.41
7-Feb-12	< 3.0	0.83
7-Mar-12	5.3	0.93
3-Apr-12	< 3.0	1.63
10-Apr-12	< 3.0	
17-Apr-12	7.5	
23-Apr-12	224	
24-Apr-12	155	
1-May-12	13.1	12.6
8-May-12	6.8	
15-May-12	38	
22-May-12	36	
29-May-12	4.7	

Teck Coal Limited Page cxxxi

Sample Date	TOTAL SUSPENDED SOLIDS (mg/L)	TURBIDITY, LAB (NTU)
5-Jun-12	174	
12-Jun-12	22.3	
19-Jun-12	45.5	
26-Jun-12	45.6	
3-Jul-12	19.7	10.8
10-Jul-12	8	
17-Jul-12	4	
24-Jul-12	5.3	
31-Jul-12	3.7	
7-Aug-12	< 3.0	0.72
4-Sep-12	< 3.0	0.39
2-Oct-12	< 3.0	
6-Nov-12	9.7	
7-Nov-12	705	
7-Nov-12	29	
7-Nov-12	15	
4-Dec-12	< 3.0	
2-Jan-13	3.2	
5-Feb-13	4	0.95
5-Mar-13	5	3.32
2-Apr-13	7.1	6.01
9-Apr-13	6.3	5.14
16-Apr-13	3.8	2.22

Teck Coal Limited Page cxxxii

Sample Date	TOTAL SUSPENDED SOLIDS (mg/L)	TURBIDITY, LAB (NTU)
23-Apr-13	3.6	2.07
30-Apr-13	5	3.45
7-May-13	27.6	14.8
14-May-13	143	67.5
21-May-13	18	13.2
28-May-13	17.2	8.02
4-Jun-13	6.9	3.89
11-Jun-13	13.2	5.68
18-Jun-13	5.1	2.11
20-Jun-13	533	290
24-Jun-13	60.3	35.4
25-Jun-13	37.5	25.6
2-Jul-13	14.7	4.07
9-Jul-13	3.3	2.25
16-Jul-13	< 3.0	0.77
23-Jul-13	< 3.0	0.63
30-Jul-13	< 3.0	0.81
6-Aug-13	3.7	1.62
3-Sep-13	< 3.0	0.65
1-Oct-13	6.3	5.22
5-Nov-13	< 1.0	0.49
3-Dec-13	< 1.0	0.63
7-Jan-14	< 1.0	0.24
4-Feb-14	< 1.0	0.32
4-Mar-14	1	0.45
1-Apr-14	6.6	5.19
8-Apr-14	9.6	6.52
15-Apr-14	9.1	11.1
22-Apr-14	14.6	7.12
29-Apr-14	3.9	3.24
6-May-14	15.8	8.72
13-May-14	9	4.78
20-May-14	53.9	24.5
27-May-14	144	68.5

Teck Coal Limited Page cxxxiii

Sample Date	TOTAL SUSPENDED SOLIDS (mg/L)	TURBIDITY, LAB (NTU)
3-Jun-14	28.4	16.9
10-Jun-14	21.6	10.6
17-Jun-14	320	136
24-Jun-14	20.4	12.1
2-Jul-14	5.8	2.48
8-Jul-14	5.3	1.75
15-Jul-14		
15-Jul-14	3.7	1.65
22-Jul-14	1.7	1.9
29-Jul-14	2.4	0.68
5-Aug-14	< 1.0	0.53
2-Sep-14	1.8	0.78
7-Oct-14	< 1.0	0.5
4-Nov-14	9.1	9.79
3-Dec-14	1.7	1.19
6-Jan-15	1.7	0.47
3-Feb-15	< 1.0	0.26
3-Mar-15	1.7	0.53
10-Mar-15	2.1	1.09
16-Mar-15	29.7	18.9
23-Mar-15	4.5	2.09
30-Mar-15	10.2	6.69
8-Apr-15	4.3	1.81
15-Apr-15	2.2	1.03
22-Apr-15	10.6	3.78
29-Apr-15	17	8.88
5-May-15	9.6	5.84
6-May-15	13.4	5.83
12-May-15	3	1.95
19-May-15	3.8	2.42
26-May-15	111	54
3-Jun-15	47.1	28.5
10-Jun-15	13.4	4.12
17-Jun-15	5.3	0.95
24-Jun-15	1.6	0.56
30-Jun-15	2.8	0.7

Teck Coal Limited Page cxxxiv

Sample Date	TOTAL SUSPENDED SOLIDS (mg/L)	TURBIDITY, LAB (NTU)
8-Jul-15	2.2	0.6
15-Jul-15	1.9	0.55
21-Jul-15	1.2	0.61
27-Jul-15	1.4	0.32
29-Jul-15	1.6	0.41
5-Aug-15	< 1.0	0.42
12-Aug-15	1.6	0.42
19-Aug-15	1.6	0.69
26-Aug-15	< 1.0	0.4
2-Sep-15	1.5	0.61
7-Oct-15	< 1.0	0.41
26-Oct-15	6.6	0.99
2-Nov-15	3.4	3.36
4-Nov-15	< 1.0	0.85
9-Nov-15	< 1.0	0.49
16-Nov-15	3.1	2.82
23-Nov-15	6.3	2.34
1-Dec-15	15.3	3.48
2-Dec-15	1.7	0.64
6-Jan-16	< 1.0	0.27
3-Feb-16	< 1.0	0.14
16-Feb-16	< 1.0	0.34
1-Mar-16	< 1.0	0.57
2-Mar-16 8-Mar-16	< 1.0 1.1	0.40 0.86
15-Mar-16	< 1.0	0.63
22-Mar-16	1.2	0.88
29-Mar-16	< 1.0	0.33
6-Apr-16	5.3	1.87
13-Apr-16	9.6	5.63
13-Apr-16	< 1.0	< 0.10
16-Apr-16	5.2	3.93
16-Apr-16	4.9	3.36
17-Apr-16	6.9	4.69
18-Apr-16	6.7	4.90
19-Apr-16	13.8	7.39
20-Apr-16	30.8	15.2
21-Apr-16	26.6	15.0
27-Apr-16	14.5	6.51
4-May-16	19.7	10.9
11-May-16	11.6	6.46

Teck Coal Limited Page cxxxv

	TOTAL	TURRIDITY
Sample Date	SUSPENDED SOLIDS (mg/L)	TURBIDITY, LAB (NTU)
18-May-16	8.2	2.54
25-May-16	6.0	3.30
1-Jun-16	6.3	2.10
8-Jun-16	3.8	7.58
15-Jun-16	3.2	1.67
22-Jun-16	2.8	0.79
29-Jun-16	2.6	1.24
6-Jul-16	2.2	0.51
13-Jul-16	1.7	0.63
20-Jul-16	1.4	0.46
27-Jul-16	1.3	0.48
3-Aug-16	1.7	0.45
23-Aug-16	1.5	0.37
30-Aug-16	< 1.0	0.67
6-Sep-16	< 1.0	0.41
7-Sep-16	< 1.0	0.35
13-Sep-16	< 1.0	0.28
20-Sep-16	3.1	0.83
5-Oct-16	1.3	0.35
17-Oct-16	9.1	3.75
25-Oct-16	1.9	0.68
1-Nov-16	3.4	2.67
2-Nov-16	4.2	3.42
7-Nov-16	2.2	1.99
8-Nov-16	2.4	1.80
9-Nov-16	2.1	1.63
10-Nov-16	2.9	1.78
15-Nov-16	6.4	5.66
17-Nov-16	6.5	2.64
23-Nov-16	1.6	1.11
30-Nov-16	2.2	1.67
13-Dec-16	2.5	1.14
1/17/2017	1.7	0.53
1/30/2017	1.1	0.46
2/1/2017	1.3	0.82
2/28/2017	1.1	0.55
3/1/2017 3/7/2017	4.8	1.01
	1.1 1.2	0.69 0.65
3/14/2017	4.2	2.28
3/15/2017 3/21/2017		
3/21/2017	4.2 13.4	3.1 6.79
3/29/2017	2.2	2.21
4/5/2017	2.4	1.98
4/3/2017	۷.4	1.90

Teck Coal Limited Page cxxxvi

	TOTAL	TURBIDITY,
Sample Date	SUSPENDED	LAB (NTU)
4/12/2017	SOLIDS (mg/L)	1.61
4/12/2017	3.5	2.72
4/24/2017	9.0	6.91
5/2/2017	4.4	2.27
5/9/2017	16.0	11.5
5/16/2017	15.9	16.4
5/23/2017	48.6	24.5
5/30/2017	70.2	43.3
6/6/2017	33.8	20.5
6/13/2017	6.7	8.14
6/14/2017	22.8	13.8
6/21/2017	13.9	9.15
6/28/2017	4.9	3.73
7/4/2017	3.9	1.39
7/12/2017	2.3	1.08
7/19/2017	6.8	0.81
7/25/2017	2.4	1.03
8/1/2017	2.1	0.92
8/8/2017	5.1	1.6
8/15/2017	3.0	1.4
8/22/2017	3.4	0.85
8/29/2017	1.1	0.52
9/12/2017	1.6	0.53
9/19/2017	2.2	0.35
9/26/2017	1.2	0.32
10/2/2017	1.4	0.63
10/2/2017	5.2	2.23
10/3/2017	1.2	0.8
10/5/2017	< 1.0	0.29
10/6/2017	< 1.0	0.46
10/10/2017	1.0	0.25
10/11/2017	< 1.0	0.34
10/12/2017	< 1.0	0.48
10/16/2017	1.1	0.29
10/17/2017	5.2	2.08
10/19/2017	154	66.5
10/20/2017	4.6	4.01
10/23/2017	1.3	1.3
10/24/2017	1.3	1.18
10/26/2017	1.4	0.83
10/30/2017	1.7	1.37
10/31/2017	1.5	0.6
11/7/2017	8.9	3.08
11/9/2017	< 1.0	0.5
11/3/2017	< 1.0	0.0

Teck Coal Limited Page cxxxvii

	TOTAL	TURBIDITY,
Sample Date	SUSPENDED SOLIDS (mg/L)	LAB (NTU)
11/14/2017	< 1.0	0.47
11/21/2017	< 1.0	0.42
11/28/2017	2.0	2.07
12/6/2017	< 1.0	0.59
12/12/2017	1.7	0.93
12/19/2017	< 1.0	0.64
12/27/2017	1.6	0.72
1/3/2018	2.7	0.47
1/9/2018	1.0	0.44
1/16/2018	1.3	0.75
1/23/2018	< 1.0	0.79
1/30/2018	< 1.0	0.37
2/6/2018	< 1.0	0.32
2/14/2018	1.0	0.25
2/19/2018	< 1.0	0.24
2/27/2018	< 1.0	0.25
3/6/2018	1.0	0.56
3/13/2018	1.7	0.90
3/20/2018	1.0	1.14
3/27/2018	< 1.0	0.52
4/4/2018	< 1.0	1.02
4/10/2018	1.3	0.54
4/17/2018	1.6	1.56
4/24/2018	1.7	1.39
4/30/2018	11.2	5.51
5/8/2018	6.2	71.3
5/15/2018	60.9	20.1
5/22/2018	42.0	24.2
5/29/2018	30.7	15.8
6/5/2018	7.2	3.11
6/12/2018	1.8	1.93
6/19/2018	3.0	1.21
6/26/2018	2.5	1.02
7/3/2018	1.9	0.64
7/10/2018	< 1.0	0.69
7/17/2018	1.4	0.57
7/24/2018	< 1.0	0.44
7/26/2018	33.4 1.7	37.9
7/27/2018		1.32
7/31/2018	< 1.0	0.25
8/7/2018	< 1.0 1.0	0.45
8/15/2018		0.54
8/21/2018 8/28/2018	< 1.0 1.8	0.33
0/20/2018	1.0	0.87

Teck Coal Limited Page cxxxviii

Sample Date	TOTAL SUSPENDED SOLIDS (mg/L)	TURBIDITY, LAB (NTU)
9/4/2018	3.5	0.45
9/11/2018	1.2	0.50
9/18/2018	1.4	0.58
9/25/2018	< 1.0	0.50
10/2/2018	1.1	0.61
10/9/2018	1.5	0.43
10/16/2018	< 1.0	0.31
10/23/2018	1.8	1.19
10/30/2018	1.5	0.84
11/6/2018	1.0	0.86
11/13/2018	< 1.0	0.60
11/20/2018	< 1.0	0.50
11/27/2018	2.0	0.54
12/4/2018	1.5	0.46
12/11/2018	< 1.0	0.44
12/18/2018	1.2	0.80
12/28/2018	1.1	0.21

E206437 - CM_WBE

Sample Date	EPH (mg/L)	FLOW (m³/day)	THE (mg/L)
1/3/2008		24.64	19
3/5/2008			130
4/1/2008		24.43	57
4/10/2008			3
4/28/2008			14
5/6/2008			2.1
6/3/2008			23
7/7/2008		39.3	0.53
8/5/2008		37.84	9.5
9/2/2008		42.23	51
10/7/2008		43.5	0.23
11/4/2008		53.83	1
12/3/2008		26.36	25.4
1/6/2009		11.14	4.2
2/3/2009		31.96	1.28
3/3/2009		34.01	10.5
4/7/2009		55.61	17
5/5/2009			18.6
6/2/2009		40.8	27.7
7/7/2009		40.86	2.74
8/4/2009		23.67	385
9/1/2009		35.3	20.9
10/6/2009		32.69	11.8
11/3/2009		39.99	16.6

Teck Coal Limited Page cxxxix

Sample Date	EPH (mg/L)	FLOW	THE
-	(9, _,	(m³/day)	(mg/L)
12/1/2009		39.95	10.1
1/5/2010			39.4
2/2/2010		39.75	27.8
3/2/2010		39.75	7.92
4/6/2010		39.67	4.3
5/4/2010		42.25	20
6/1/2010		52.84	8.65
7/6/2010		45.29	20.9
8/3/2010		42.47	4.92
9/7/2010		0.13	16.9
10/5/2010		27.64	4.47
10/27/2010		38.47	
11/2/2010		48.96	15
12/7/2010		27.03	2.42
1/4/2011		18.14	3.34
2/1/2011		21.9	12.7
3/8/2011		24.67	83.77
4/6/2011		49.87	< 0.5
5/3/2011		10101	2.25
6/7/2011		65.54	3.78
7/6/2011		67.43	0.6
8/2/2011		35.22	3.58
9/6/2011		60.76	3.43
10/4/2011		000	1.23
11/1/2011		45.89	3.56
12/6/2011		26.8	11.6
1/4/2012		18.14	3.34
2/8/2012		37.26	9.56
3/6/2012		28.48	7.5
4/4/2012		38.62	2.5
5/1/2012		81.75	1.79
6/5/2012		72.84	5.39
7/4/2012		86.09	5.03
8/7/2012		63.65	3.03
8/8/2012		63.65	3.92
9/4/2012		55.92	2.12
10/2/2012		55.92	6.04
11/6/2012		60.75	0.04
12/4/2012		46.43	16.1
1/3/2013		25.75	3.39
2/6/2013		30.78	3.26
3/6/2013		42.12	3.29
4/2/2013		56.32	
-			9.09
5/7/2013		71.29	3.68
6/4/2013		59.16	1.22
7/2/2013		55.36	1.94
8/6/2013		50.44	11.8
9/3/2013		50.44	7.63

Teck Coal Limited Page cxl

Sample Date	EPH (mg/L)	FLOW	THE
-	(0 /	(m³/day)	(mg/L)
10/1/2013		53.19	0.63
11/5/2013		44.26	22.2
12/3/2013		35.99	1.53
1/7/2014			0.54
2/4/2014		23.5	3.55
3/4/2014		33	4.12
4/1/2014		33.14	1.25
5/6/2014		36.22	18.2
6/3/2014		23.38	18.5
7/9/2014			19.3
8/5/2014			1.14
9/2/2014			1.92
10/7/2014		38.25	1.75
11/4/2014		39.57	34.0
12/3/2014		26.3	4.35
1/6/2015		20.48	1.55
2/3/2015		28	2.02
3/3/2015		43.3	2.02
4/8/2015		51	2.27
5/6/2015		32.86	7067
6/3/2015		28.86	1.64
7/8/2015	1.39	29.41	1.17
8/5/2015	1.3	22.07	1.14
9/2/2015	< 0.50	30.86	0.36
10/7/2015	< 0.50	33.71	0.36
11/4/2015	1.40	31.71	1.15
12/2/2015	1.67	23.71	1.45
1/6/2016	< 0.50	24	0.42
4/6/2016	13.3	50.86	12.8
7/18/2016		21.86	
7/20/2016	4.80	21.86	4.22
10/5/2016	1.93	40.14	1.71
1/19/2017	1.34	31.43	1.23
4/5/2017	4.78	23.58	4.29
7/5/2017	5.91	18.33	5.59
11/23/2017	0.57	9.63	0.56
1/3/2018		12.78	
1/10/2018	1.57		1.36
2/4/2018		12.19	
2/13/2018		4.44	
2/20/2018		16.14	
2/26/2018		23	
3/5/2018		4.43	
3/13/2018		19.63	
3/20/2018		9.43	
3/27/2018		16.71	
4/4/2018	1.61	25.5	1.46
4/10/2018		17.33	

Teck Coal Limited Page cxli

Sample Date	EPH (mg/L)	FLOW	THE
•	(3 /	(m³/day)	(mg/L)
4/17/2018		12.71	
4/24/2018		32.43	
5/1/2018		46.29	
5/8/2018		25.43	
5/16/2018		21.13	
5/22/2018		12.5	
5/29/2018		12.57	
6/4/2018		20	
6/5/2018	319		318
6/11/2018	2.22		2.14
6/25/2018		22.55	
6/26/2018		22.55	
7/3/2018	< 0.50	18.71	< 0.25
7/10/2018		6.86	
7/19/2018	2.02	14	2.24
7/24/2018		14	
7/31/2018		25.83	
8/7/2018	6.21	15.71	5.47
8/28/2018		16.71	
9/4/2018	14.5	12.75	12.7
9/10/2018		29.4	
9/18/2018		47.5	
9/25/2018		25	
10/2/2018		13.71	
10/2/2018	3.07		2.87
10/9/2018		37	
10/16/2018		16.57	
10/29/2018		8.67	
11/5/2018	< 0.50		0.46
11/20/2018		11.43	
11/27/2018		10.29	
12/3/2018	4.77	1.5	4.24
12/11/2018		0.31	
12/18/2018		0.06	
12/28/2018		0.03	

E206439 - CM_SEW

Sample Date	BOD₅ (mg/L)	FLOW (m³/day)	TOTAL SUSPENDED SOLIDS (mg/L)	TURBIDITY, LAB (NTU)
1/3/2008	4	21.93	10	
2/6/2008	17	28	15	
3/5/2008	7	28.1	12	
4/1/2008	2	24.42	7	
5/6/2008	< 2	20.956	11	

Teck Coal Limited Page cxlii

Sample Date	BOD₅ (mg/L)	FLOW (m³/day)	TOTAL SUSPENDED SOLIDS (mg/L)	TURBIDITY, LAB (NTU)
6/3/2008	< 2	23.37	6	
7/7/2008	< 2	21.81	14	
8/5/2008	< 2	19.96	18	
9/2/2008	< 2	24.26	25	
10/7/2008	< 2	18.72	12	
11/4/2008	< 2	17.69	9	
12/3/2008	< 5	19.68	11	
1/6/2009	7	23.21	21.3	
2/3/2009	9	18.29	23.6	
3/3/2009	17	16.24	9.3	
4/7/2009	< 5.0	28.6	5.7	
5/5/2009	< 5.0	16	12.9	
6/2/2009	< 5.0	16	< 3.0	
7/7/2009	< 5.0	14.91	< 5.0	
8/4/2009	347	18.22	7.6	
9/1/2009	< 5.0	20.8	11.3	
10/6/2009	< 5.0	20.4	< 3.0	
11/3/2009	< 5.0	19.1	< 3.0	
12/1/2009	< 2.0	17.805	< 3.0	
1/5/2010	< 5	15.57	< 3	
2/2/2010	< 5	15.15	< 3	
3/2/2010	< 5	18.435	7.1	
4/6/2010	< 5	18.117	6	
5/4/2010	< 5	18.85	3.3	
6/1/2010	6.6	2.18	53	
7/6/2010	< 5	33.5	46	
8/3/2010	< 5	18.465	< 3	
9/7/2010	< 5	17.83	< 3	
10/5/2010	< 5	16.47	6.8	
11/2/2010	< 5	17.14	4.3	4.53
12/7/2010	< 5	19.032	13.8	
1/4/2011	< 5.0	22.007	< 3.0	
2/1/2011	< 5.0	22.85	< 3.0	
3/8/2011	< 2		7	
4/6/2011	< 2	17.59	6	
5/3/2011	< 5.0	17.86	3.5	
6/8/2011	6.2	18.091	30	
6/22/2011			20	

Teck Coal Limited Page cxliii

Sample Date	BOD₅ (mg/L)	FLOW (m³/day)	TOTAL SUSPENDED SOLIDS (mg/L)	TURBIDITY, LAB (NTU)
7/6/2011	5.6	16.825	48	
7/18/2011			45	
8/2/2011	< 5	16.867	58.7	
8/16/2011			47	
8/17/2011			13	
8/30/2011			10	
9/6/2011	< 5	40.477	18.7	
9/15/2011			36	
9/26/2011			36	
10/4/2011	< 5		23.7	
10/19/2011			8	
11/1/2011	< 5.0	8.03	14.2	
11/9/2011			32	
11/30/2011			30	
12/2/2011			54	
12/6/2011	< 5.0	14.167	< 3.0	
12/21/2011			4	
1/4/2012	< 5.0	22.007	< 3.0	
2/8/2012	< 5.0	18.64	6	
2/15/2012			< 3.0	
3/6/2012	< 5.0	19.41	5.2	
4/4/2012	< 5.0	16.076	5.7	
5/1/2012	< 5.0	25.45	< 3.0	
6/5/2012	< 5.0	19.537	< 3.0	
7/4/2012	< 5.0	16.85	< 3.0	
8/7/2012	< 5.0	15.11	3.2	
8/8/2012	< 5.0		3.2	
9/4/2012	< 5.0	15.35	< 3.0	
10/2/2012	< 5.0	14.439	< 3.0	
11/6/2012	< 5.0	17.166	< 3.0	
12/4/2012	< 5.0	16.59	< 3.0	
1/3/2013	< 5.0	11.57	7.3	
1/3/2013				
2/6/2013	< 5.0	16.22	< 3.0	
3/6/2013	< 2.0	16.21	< 3.0	
4/2/2013	< 2.0	20.3	3.1	
5/7/2013	< 2.0	19.33	< 3.0	
6/4/2013	< 2.0	18.53	< 3.0	

Teck Coal Limited Page cxliv

Sample Date	BOD₅ (mg/L)	FLOW (m³/day)	TOTAL SUSPENDED SOLIDS (mg/L)	TURBIDITY, LAB (NTU)
7/2/2013	< 2.0	22.14	< 3.0	
8/6/2013	< 2.0	17.2	3.1	
9/3/2013	< 2.0	17.2	< 3.0	
10/1/2013	< 2.0	18.1	< 3.0	
11/5/2013	< 2.0	19.66	< 3.0	
12/3/2013	< 2.0	16.59	< 1.0	
1/7/2014	< 2.0	21.67	< 1.0	
2/4/2014	< 2.0	23.51	< 1.0	
3/4/2014	< 2.0	23.94	< 1.0	
4/1/2014	< 2.0	23.53	< 1.0	
5/6/2014	< 2.0	24.24		
6/3/2014	< 2.0		< 1.0	
7/2/2014	< 2.0		< 1.0	
8/5/2014	< 2.0		< 1.0	
9/2/2014	< 2.0		1.3	
10/7/2014	< 2.0	15.83	< 1.0	
11/4/2014	< 2.0	18.66	< 3.0	
12/3/2014	< 2.0	21.7	< 1.0	
1/6/2015	< 2.0	15.9	< 1.0	1.26
2/5/2015	< 2.0	13.59	< 1.0	0.19
3/3/2015	< 2.0	19.65	< 1.0	0.20
4/8/2015	< 2.0	18.04	< 1.0	0.17
5/6/2015	< 2.0	17.15	< 3.0	0.21
6/3/2015	< 2.0	16.62	1.5	0.55
7/8/2015	< 2.0	12.88	< 1.0	0.16
8/5/2015	< 2.0	9.72	< 1.0	0.14
9/2/2015	< 2.0		< 1.0	
9/21/2015	< 2.0	18.06	< 1.0	0.45
10/7/2015	< 2.0	17.206	< 1.0	0.13
11/4/2015	< 2.0	17.54	< 1.0	0.22
12/2/2015	< 2.0	16.94	< 1.0	0.22
1/6/2016	< 2.0	13.3	< 1.0	0.13
2/3/2016	< 2.0	16.9	< 1.0	0.12
3/2/2016	< 2.0	15.31	< 1.0	0.94
4/6/2016	< 2.0	14.5	1.6	1.08
5/4/2016	< 2.0	14.5	< 1.0	0.43
6/6/2016	< 2.0	14.39	12.3	8.12
7/20/2016		32.63	3.4	1.14

Teck Coal Limited Page cxlv

Sample Date	BOD₅ (mg/L)	FLOW (m³/day)	TOTAL SUSPENDED SOLIDS (mg/L)	TURBIDITY, LAB (NTU)
8/3/2016	< 2.0	14.31	1.9	0.27
9/26/2016	4.7	13.09	20.1	10.4
10/5/2016	< 2.0	11.08	1.6	1.45
11/2/2016	2.9	14.6571	< 1.0	0.42
12/13/2016	< 2.0	13.9317	< 1.0	0.16
1/17/2017	< 2.0	12.88	< 1.0	0.16
2/1/2017	< 1.0	12.94	< 1.0	0.22
3/1/2017	< 2.0	12.2	< 1.0	0.56
4/5/2017	< 2.0	12.8543	< 1.0	0.19
5/2/2017	< 0.50	12.544	< 1.0	0.20
6/6/2017	< 2.0	12.286	< 2.0	0.35
7/4/2017	< 2.0	12.0793	< 1.0	
8/1/2017	< 2.0	12.7926	< 3.0	0.29
9/12/2017	< 2.0	12.3333	2.0	0.81
10/4/2017	< 2.0	12.6909	< 1.0	0.14
11/7/2017	< 2.0	11.794	< 1.0	0.22
12/6/2017	< 1.0		< 1.0	0.47
12/6/2017		15.931		
1/10/2018	< 2.0	9.54	1.4	0.47
2/6/2018	< 2.0		1.2	0.45
2/6/2018		10.34		
3/6/2018	< 2.0	16.0893	1.1	0.13
4/4/2018	< 2.0	19.614	< 1.0	0.20
5/7/2018	< 2.0	23.033	1.8	0.30
6/5/2018	< 2.0	19.3103	< 1.0	0.15
7/4/2018	< 2.0	13.65	1.0	0.35
8/7/2018	< 2.0	7.37059	< 1.0	0.16
9/4/2018	< 2.0	6.06897	< 1.0	0.94
10/2/2018	< 2.0	6.44074	< 1.0	0.16
11/5/2018	< 2.0	5.64412	< 1.0	0.48
12/3/2018	< 2.0	5.72857	1.5	1.63

Teck Coal Limited Page cxlvi

Appendix D - CMO Reportable Spills 2018

Incident #	Date	Туре	Substance	Quantity	Units	Location	Incident Summary	Corrective Action	PEP#
1	1-Feb-2018	Oil / Petroleum	Hydraulic Oil	110	Litres	6 Pit	the Dozer. He had shut the machine down, and due to a Hydraulic Hose being blown the contents of the Tank drained onto the floor of Coal.	CAP task assigned to Mine Ops Supervisor to review the Spill Clean up SP&P GEN31B and review appropriate clean up actions (i.e. excavate and put material in contaminated soil bin). Environment representative discussed corrective actions with the Mine Ops General Supervisor at the monthly Environmental Action Committee meeting.	DGIR 173782
2	3-Feb-2018	Oil / Petroleum	Hydraulic Oil	342	Litres	Load Out	around to front of south loadout pile in order to accommodate safe repair work. A spill pool was put in place and captured approximately 100 litres after the loader was shutdown.		DGIR 173815
3	8-May-18	Miscellaneous	Sediment	>200	Litres	Decommissioned 7 Pit Ponds site	potential Total Suspended Solids (TSS) discharge event that may have occurred on Tuesday May 8, 2018. The location of the potential TSS discharge was from Kuta Creek into Michel Creek. The laboratory results received on May 11, 2018 indicate that Kuta Creek TSS was > 25 mg/L above the background TSS for the receiving environment (Michel Creek). Kuta Creek TSS was 101 mg/L, Michel Creek downstream of Kuta Creek was 83.4 mg/L and Michel Creek upstream was 70.3 mg/L. Compliance was confirmed on Monday, May 14,	The area was hydro seeded and planted in June. Once vegetation is established, it is expected to prevent TSS occurrences. CMO implemented a number of immediate erosion and sediment control (ESC) measures to reduce the surface run-off into Kuta Creek. In addition to the straw bales, straw logs, and silt fencing that was still in place from last year we added 4 rows of silt fencing, approximately 25 spring berms, redirected natural run-off away from the construction area and used an excavator to re-grade the swale for better drainage. The ESC measures are currently effective; we continue to monitor the area regularly.	

Incident #	Date	Туре	Substance	Quantity	Units	Location	Incident Summary	Corrective Action	PEP#
							Flathead Road. The rapid snowmelt occurring in the area was likely due unseasonably high temperatures in the Elk Valley.		
4	14-Jun-2018	Miscellaneous	Sand/Gravel	464	m3	Quarry	showing signs of erosion, likely due to freshet. The erosion has resulted in fine sand and gravel material	Sand and gravel was not cleared from the undisturbed area. Interim erosion control measures were put in place (silt berms). An erosion control and reclamation plan for the area is being escalated - led by the Biodiversity and Closure team.	DGIR 180981
5	16-Jun-2018	Oil / Petroleum	Hydraulic Oil	73	Litres	6 Pit	operator saw a leak, the operator of 403 loader then stopped to check out the leak and put a spill pool down to catch the hydraulic fluid leaking out. When the mechanic inspected where the leak was coming from he determined a bolt had broken in a flange cause the leak (estimate 273L hydraulic oil), which	Spill pool captured approximately 200 L. The mine ops supervisor reported the spill as 273 L, which is why it was reported to PEP. An updated volume was provided to PEP; approximately 73 L hit the ground and was cleaned up with soaker pads and the dirt was scrapped up and put in the contaminated soils bin.	DGIR 180998
6	26-Jul-18	Miscellaneous	Sediment	>200	Litres	Decommissioned 7 Pit Ponds site	the Seven Pit Pond Decommissioned area to the newly re-established Kuta Creek during a rain event. Sample CM_KTC (204 mg/L) was taken directly below the decommissioned area from Kuta Creek.	The area was hydro seeded and planted in June. Once vegetation is established, it is expected to prevent TSS occurrences. The monitoring on July 27 confirmed that conditions had returned to normal and additional erosion controls were added to the Kuta Creek area, which included silt fencing and new silt berms. The Seven Pit Pond area continues to be inspected on a weekly basis or during rain events.	DGIR 181505
7	2-Aug-2018	Miscellaneous	Sediment	>200	Litres	Corbin Dam Spillway (CM_CCPD)	Ministry of Energy, Mines and Petroleum Resources (EMPR) and Ministry of Environment and Climate	Due to the potential of the fine sediments in the drilling water not settling within the pond during windy events, CMO pumped the drilling water into totes and did not directly release the drilling water to the pond. The tote allowed CMO to hold and control the release of the water when weather conditions were ideal.	DGIR 182157

Incident #	Date	Туре	Substance	Quantity	Units	Location	Incident Summary	Corrective Action	PEP#
							monitored every hour during drilling. No turbidity issues occurred. On Aug 2, the baseline turbidity sample was taken and drilling water was not discharging to the pond. However, environmental monitoring continued to occur on an hourly basis and a spike in turbidity was noted from 12:42 (156 NTU) to 13:17 (22 NTU). The cause of the rapid spike in turbidity is likely from high winds causing wave action on the pond and mobilizing the finer sediment from August 1, 2018 drilling water.		
8	7-Aug-2018	Fuel	Diesel	200	Litres	6 Pit	The shovel had been over filled with diesel causing it to leak out the over flow.	Soaker pads were placed down to pick up the pool of diesel and then the contaminated soil was removed and discarded into the contaminated soils bin. Maintenance Supervisor indicated shovel was decommissioned.	DGIR 181661
9	8-Aug-2018	Oil / Petroleum	Hydraulic Oil	275	Litres		hydraulic oil. The cause was two hoses rubbing	Absorbent pads and spill tubs were used then the bobcat was used to remove the contaminated soil. All material was put into waste containment bins.	DGIR 181678
10	9-Aug-2018	Miscellaneous	Chlorinated water	124000	Litres	Plant	1		DGIR 181687

Incident #	Date	Туре	Substance	Quantity	Units	Location	Incident Summary	Corrective Action	PEP#
							chlorinated water had discharged from the processing plant to the ground south of the plant, as well as to a surface water ditch. The chlorinated water is expected to have traveled from the surface water ditch to horseshoe ponds, the Main Sedimentation Ponds, and thence into Corbin Creek. Approximately 124,000 L is expected to have discharged.		
11	10-Sep-2018	Miscellaneous	Chlorinated water	66000	Litres	Middle Mountain access road	1	CMO fixed the ruptured line on September 10. Waterline accurately surveyed level of ditch elevated and signs have been put up ("Potable Waterline No Digging").	DGIR 182111
12	13-Sep-2018	Miscellaneous	Sediment	>200	Litres		Decommissioned area to the recently re-established Kuta Creek during a rain event. Kuta Creek turbidity was 205 mg/L during the rain event and background TSS in Michel Creek was <1 mg/L TSS (after the rain event).	The Seven Pit Pond area has been hydro seeded, and planted as part of the final reclamation stages earlier this summer 2018. In the future, the vegetation cover will act as a mitigation to these types of events once fully established. CMO continues to monitor the area regularly and will be implementing further upgrades to the existing silt fencing and spring berms through the addition of erosion control blankets. These improvements should help control possible future rain runoff reporting to low flow Kuta Creek via the swale where the vegetation is not yet well established.	DGIR 182157
13	24-Nov-2018	Oil / Petroleum	Hydraulic Oil	150	Litres		failed causing a hydraulic fluid loss to ground.	Ground and snow was removed and taken to a bin for off site disposal. Spill pads and spill pool were picked up and taken for proper disposal.	DGIR 183054