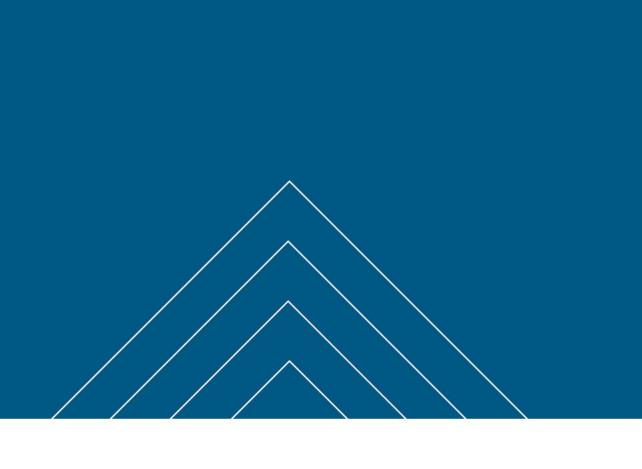


2022 Annual Report: Elk Valley Regional and Site-Specific Groundwater Monitoring Program

Regional Groundwater Monitoring Program
Fording River Operations
Greenhills Operations
Line Creek Operations
Elkview Operations
Coal Mountain mine

Teck Coal Limited


VOLUME II OF VI

March 24, 2023

SNC-Lavalin Project: 635544

Appendix I

Permit 107517

December 19, 2022 Tracking Number: 417388
Authorization Number: 107517

REGISTERED MAIL

Teck Coal Limited 3300-550 Burrard ST Vancouver, BC V6C 0B3

Dear Permittee:

Enclosed is Amended Permit 107517 issued under the provisions of the *Environmental Management Act*. Your attention is respectfully directed to the terms and conditions outlined in the permit. An annual fee will be determined according to the Permit Fees Regulation.

The following authorization amendment letters have been incorporated.

Date of decision	Subject	Description
2021-12-22	Line Creek Operations Dry	Adds clause 3.5.5 Best Achievable
	Creek Water Management	Technology Assessment, and 3.5.6
	Plan Submission	Initial Dilution Zone Assessment
2022-02-10	Selenium bioaccumulation	Inserts new clause 2.8.1 Dry Creek
	downstream of the Line	Benthic Invertebrate Tissue Selenium
	Creek Operations Dry Creek	Concentration and new Appendix 1Ia
	Water Management System	monitoring location map
2022-04-07	Discontinuation of the	Removes clauses 8.3.4 and 9.5 ii.
	Greenhills Local Aquatic	
	Effects Monitoring Program	
2022-04-14	Change the requirement to	Updates clause 9.1
	upload data to EMS	
2022-05-11	Implementation Plan	Adds terms to Section 1. Definitions
		and Glossary, inserts new clause 7.1
		Implementation Plan
2022-06-01	Approving use of transect	Updates Section 3.1 Table, and adds
	data to determine compliance	footnote #4, updates clause 8.1.1 Table
	with SPOs at LK2,	2 Order Stations Sampling Locations
	Koocanusa Reservoir south of	and adds Table 2A, adds clause 9.2.4 xi.
	Elk River	Quarterly Reporting requirements,
		updates Appendix 1E sampling location
		map, updates Appendix 2 Table 11
		monitoring program, and adds
		Appendix 3 Table 26 abbreviation M/T.
2022-06-02	Elkview Operations Saturated	Updates clause 5.2.2.1 Trigger
	Rock Fill Nickel Trigger	Response Plan for Nickel
	Response Plan Submission	

2022-06-28	Authorizing discharge of	Adds Appendix 5E Liverpool
	effluent from the Liverpool	Antiscalant Addition System
	Antiscalant Addition System	
2022-06-30	Authorizing discharge of	Changes Appendix 5B from Lower to
	effluent from the Upper	Upper Greenhills Creek Antiscalant
	Greenhills Creek Antiscalant	Addition System, adds clause 8.3.5 and
	Addition System	9.5 Greenhills Creek LAEMP
2022-01-31	Approval of the Nickel	Adds date for submission of final nickel
	Benchmark Derivation	benchmark to clause 5.2.1.
	Workplan	
2022-11-01	Approval of the Antiscalant	Changes date for submission of final
	Cumulative Effects Study	Antiscalant Effects Assessment in
	Design	clause 5.1.1.

Please note that the May 11, 2022 letter regarding the 2022 Implementation Plan submission is a standalone authorization amendment letter that remains an addendum to this amended permit. Also note that on August 22, 2022, the Lower Greenhills Creek Antiscalant Addition System ceased discharging and began decommissioning for relocation to Upper Greenhills Creek.

The new decisions being made with issuance of this permit are summarized below.

Subject	Section
Inclusion/update of standard clauses: veracity of data,	9.12, 6.7, 9.13, 8.1.2.1, 8.1.2.1.2,
split sample audit failure, annual status forms, sampling	and 1
and analytical procedures, QA/QC Program, glossary term	
'suitably tabulated'	
Update Ministry names	9.2.5 and 11.2
Change several occurrences of 'shall' to 'must'	2, 6.5.1, 6.6, 7.3.1, 8.1.2.3,
	8.2.2.1, 8.5.1, 8.9, 8.10, 9.2.4,
	9.2.5, 9.6, 9.10, 10, 11.1,
Remove table footnote regarding re-evaluation of	Appendix 2, Table 16
monitoring station with acceptance of GHO LAEMP	
study design	
Change the date for submission of the 3-year	7.1.1 and 7.1.3
Implementation Plan update, and associated terms of	
reference, from July 31 to April 30 as requested by the	
permittee to allow 3 months between submission of the	
IPA and CMP	
Remove Sparwood Area Groundwater Supporting Study	8.2.3 and 9.4.2
and Sparwood Area Groundwater Study Report as	
requested by the permittee. These requirements have been	
met and continued monitoring will be conducted under the	
Regional and EVO Site-Specific Groundwater Monitoring	
Programs	

Add a linkage to annual reporting clause in LAEMP section	8.3
Clarify that discharge characteristics for listed parameters	2, 4B1.2, 4C1.2, 4D1.2, and
are determined by third-party qualified laboratory results	4E1.3
Add clarifying statement that process modification notifications during commissioning of facilities is not required and operational refinements or adjustment of works as needed to optimize efficiency and/or effluent quality during commissioning is to be reported in the Commissioning Report.	4A1 and 4A4
Remove a redundant monitoring requirement for nitrate	4D3

This permit does not authorize entry upon, crossing over, or use for any purpose of private or Crown lands or works, unless and except as authorized by the owner of such lands or works. The responsibility for obtaining such authority rests with the permittee. This permit is issued pursuant to the provisions of the *Environmental Management Act* to ensure compliance with Section 120(3) of that statute, which makes it an offence to discharge waste, from a prescribed industry or activity, without proper authorization. It is also the responsibility of the permittee to ensure that all activities conducted under this authorization are carried out with regard to the rights of third parties, and comply with other applicable legislation that may be in force.

When a spill occurs, or there is an imminent risk of one occurring, the responsible person must ensure that it is reported in accordance with the Spill Reporting Regulation. Additional information on spill reporting requirements is available at gov.bc.ca/reportaspill

This decision may be appealed to the Environmental Appeal Board in accordance with Part 8 of the *Environmental Management Act*. An appeal must be delivered within 30 days from the date that notice of this decision is given. For further information, please contact the Environmental Appeal Board at (250) 387-3464.

Administration of this permit will be carried out by staff from the Environmental Protection Division's Regional Operations Branch. Plans, data and reports pertinent to the permit are to be submitted by email or electronic transfer to the Director, designated Officer, or as further instructed.

Please be reminded that the director may require the permittee to do one or more of the following at any time:

- repair, alter, remove, improve or add to existing works, or to construct new works, and to submit plans and specifications for works specified in this authorization.
- conduct monitoring, and may specify procedures for monitoring and analysis, and procedures or requirements respecting the handling, treatment, transportation, discharge or storage of waste.
- provide security in the amount and form, and subject to the conditions, specified by the director.
- conduct studies and to report information in accordance with the specifications of the director.
- recycle certain wastes and recover certain reusable resources, including energy potential from wastes, in accordance with the specifications of the director.
- submit copies of reports and notifications to specified Indigenous Groups, within specified timelines, in accordance with the specifications of the director.

For more information about how the Ministry will assess compliance with your permit please refer to gov.bc.ca/environmentalcompliance.

For more information about how to make changes to your permit and to access waste discharge amendment forms and guidance, please refer to gov.bc.ca/wastedischarge-authorizations.

Yours truly,

ajson

107517

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

MINISTRY OF ENVIRONMENT AND CLIMATE CHANGE STRATEGY

PERMIT

107517

Under the Provisions of the Environmental Management Act

Teck Coal Limited

3300-550 Burrard ST Vancouver, BC V6C 0B3

is authorized to discharge effluent to the land and water from five coal mine sites located within the Elk Valley near Elkford and Sparwood, British Columbia, subject to the terms and conditions listed below. Contravention of any of these conditions is a violation of the *Environmental Management Act* and may lead to prosecution.

The terms and conditions included in this permit are intended to ensure implementation of commitments and processes contained in the Elk Valley Area Based Management Plan approved November 18, 2014. Should any conflict exist between this permit and the Elk Valley Area Based Management Plan, the permit requirements take precedence.

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 1 of 89 Permit Number: 107517

TABLE OF CONTENTS

1.	DEFINITIONS AND GLOSSARY	pg.3
2.	AUTHORIZED DISCHARGES	pg.6
3.	SITE PERFORMANCE OBJECTIVES	pg.16
4.	TRIBUTARY EVALUATION AND MANAGEMENT	pg.26
5.	CONTAMINANT MANAGEMENT PLANS	pg.29
6.	GENERAL REQUIREMENTS	pg.33
7.	ABMP COMMITMENTS	pg.38
8.	MONITORING REQUIREMENTS	pg.43
9.	REPORTING REQUIREMENTS	pg.70
10.	ADAPTIVE MANAGEMENT	pg.83
11.	DATA ANALYSIS ACCOUNTABILITY AND TRANSPARENCY	pg.87
12.	SECURITY	pg.89
13.	PUBLICATION OF DOCUMENTS	pg.89

APPENDIX 1:	TECK COAL LIMITED OPERATIONS MAPS
APPENDIX 2:	SURFACE WATER DISCHARGE AND RECEIVING ENVIRONMENT MONITORING PROGRAM
APPENDIX 3:	MONITORING PROGRAM NOTES AND EXPLANATIONS
APPENDIX 4:	SELENIUM AND NITRATE TREATMENT FACILITIES
APPENDIX 5:	CALCITE TREATMENT FACILITIES

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

 $for\ Director,\ Environmental\ Management\ Act$

Mining Authorizations

Page 2 of 89 Permit Number: 107517

1. <u>DEFINITIONS AND GLOSSARY</u>

Unless otherwise defined, all terms used in this permit are defined as in the Area Based Management Plan titled "The Elk Valley Water Quality Plan", approved November 18, 2014.

ABMP: Area Based Management Plan titled "The Elk Valley Water Quality Plan".

AMP: Adaptive Management Plan

AWTF: Active Water Treatment Facility

BCWQG FWAL: British Columbia Water Quality Guideline for Fresh Water Aquatic Life

Best Achievable Technology: The technology that has been evaluated for its feasibility, reliability, control-effectiveness, and cost-effectiveness and is demonstrated to be best-suited to meet waste discharge standards for the protection of the environment and human health.

CMO: Coal Mountain Operations as described in the latest approved *Mines Act* Permit C-84

Compliance Point: an effluent monitoring location specified in the permit at which discharge limits apply

Designated Area: a portion of southeastern British Columbia that contains the Elk Valley Watershed and the portion of Koocanusa Reservoir within Canada, and is geographically defined by Ministerial Order M113 (references to the Elk Valley are references to the Designated Area)

EVWQP: The Area Based Management Plan titled 'The Elk Valley Water Quality Plan'

EMC: Environmental Monitoring Committee

EMS: Environmental Monitoring System (provincial environmental quality data base)

EVO: Elkview Operations as described in the latest approved *Mines Act* Permit C-2

Date issued:

November 19, 2014

Date amended: (most recent)

December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 3 of 89

FRO: Fording River Operations as described in the latest approved *Mines Act* Permit C-3

GHO: Greenhills Operations as described in the latest approved *Mines Act* Permit C-137

KNC: Ktunaxa Nation Council

LAEMP: Local Aquatic Effects Monitoring Program

LCO: Line Creek Operations as described in the latest approved *Mines Act* Permit C-129, including Phase I and Phase II

LCO Phase I: permitted mining area in upper portion of Line Creek.

LCO Phase II: permitted mining area in LCO Dry Creek watershed.

Operational Date: The date when facility commissioning activities are completed.

Order (the): Ministerial Order number M113, which was the directive issued by the B.C. Minister of Environment in April 2013 requiring Teck Coal Limited to develop an Area Based Management Plan for the Designated Area in the Elk Valley.

Order Constituents: Identified in Ministerial Order M113: selenium, cadmium, nitrate, and sulphate.

Order station: a monitoring location specified by the Order to monitor water quality in the Designated Area, at which site performance objectives apply

Parameter of Concern: any physical, chemical, or biological substance in air, soil or water at a concentration, or predicted to be at a concentration that exceeds regulatory thresholds, or may have an adverse effect on environmental or human health receptors

Permitted Development Planning Period: The period of time in which the permittee's permitted development activities in the Elk Valley are proposed to be carried out, plus the time required for the full effects (constituent loadings) of that development to report to the environment.

RAEMP: Regional Aquatic Effects Monitoring Program

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Permit Number: 107517

Page 4 of 89

Regulatory Document: means any document that the permittee is required to provide to the director or the Province pursuant to:

- i. This authorization;
- ii. Any regulation made under the *Environmental Management Act* that regulates the facilities described in this authorization or the discharge of waste from those facilities; or
- iii. Any order issued under the *Environmental Management Act* directed against the permittee that is related to the facilities described in this authorization or the discharge of waste from those facilities.

SPO: Site Performance Objective

SRF: Saturated Rock Fill Water Treatment Facility

Standing Water: For Section 8.1.2.4, Table 8A, standing water is defined as pooled effluent in the Floodplain Widening Sediment Pond of at least 0.5 metre depth, with no decant occurring from the pond.

Suitably Tabulated: Data is to be clearly presented in a table, or a series of tables. The table(s) must include any applicable regulatory limits/guidelines e.g., permit limits, BCWQGs, CSR guidelines etc. Any exceedances of respective regulatory limits/guidelines must be clearly highlighted. Any missed sampling events/missing data must be identified with an explanation provided.

WLC: West Line Creek

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 5 of 89 Permit Number: 107517

2. AUTHORIZED DISCHARGES

Sections 2.1 to 2.7 refer to compliance points that correspond to locations where all or most of the point and non-point discharges from a mine site or specified portions of a mine site are expected to accumulate. These accumulated discharges are subject to the concentration limits (the "limits") at the compliance points.

For Sections 2.1 to 2.7, the limits are expressed as monthly average concentrations and/or specified daily maximums. The monthly average concentration is defined as the average value of measured concentrations for all samples collected in a calendar month at the sample location, except for months when there is an authorized bypass of a selenium and nitrate treatment facility and enhanced monitoring occurs. With enhanced monitoring, as per Appendix 4, the monthly average concentration must be calculated as follows:

 $CMo = [(\Sigma C24/N24)*(D24/Dmo)] + [(\Sigma CR/NR)*((Dmo-D24)/Dmo)]$

Where:

- Cmo is the monthly average concentration;
- C24 are the concentrations of the samples collected during a 24-hour recirculation in the month;
- N24 are the number of samples collected during a 24-hour recirculation in the month;
- D24 is the number of days in 24-hour recirculation in the month;
- Dmo is the number of days in the month;
- CR are the concentrations of the routine samples collected in the month; and
- NR are the number of routine samples collected in the month

For months where only one result is collected, that result must be compared to both the monthly average and daily maximum limits. Daily maximums are defined as any single grab sample. Effluent characteristics for the listed parameters must be determined by a third-party qualified laboratory.

Date issued:
Date amended:
(most recent)

November 19, 2014

December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 6 of 89 Permit Number: 107517

2.1 <u>FORDING RIVER OPERATIONS – FORDING RIVER</u> <u>COMPLIANCE POINT (FR FRABCH)</u>

This section applies to effluent from Teck Coal Limited mine operations (Fording River Operations and the Greenhills Operations into the Fording River watershed) upstream of FRO Compliance Point (EMS E223753). The FRO Compliance Point (EMS E223753) is located approximately 100 m upstream of Chauncey Creek as shown in Appendix 1.

2.1.1 The characteristics of the effluent at the compliance point must not exceed the following monthly average limits:

MONTHLY AVERAGE EFFECTIVE DATE		
PARAMETERS	Mar. 10, 2021	Dec. 31, 2023
Total selenium (µg/L)	85	58
Nitrate as N (mg/L)	18.0	12.0
Sulphate (mg/L)	577	605

2.1.2 The characteristic of the effluent at the compliance point must not exceed the following daily maximums:

DAILY MAXIMUM	EFFECTIVE	DATE
PARAMETERS	Dec.31, 2021	Dec. 31, 2023
Total selenium (μg/L)	100	67
Nitrate as N (mg/L)	21.0	14.0

2.1.3 The authorized works associated with this compliance point are tailings impoundments, sedimentation and infiltration ponds, diversions, ditches, pipelines and pumping, active water treatment facility, antiscalant addition systems, sewage treatment plants, and related appurtenances.

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 7 of 89

2.2 <u>GREENHILLS OPERATIONS – FORDING RIVER COMPLIANCE</u> <u>POINT (GH_FR1)</u>

This section applies to effluent from Teck Coal Limited mine operations (Fording River Operations, Greenhill Operations and Line Creek Operations) upstream of GHO Fording River Compliance Point (EMS 0200378). The GHO Fording River Compliance Point (EMS 0200378) is located 205 m downstream of Greenhills Creek as shown in Appendix 1.

2.2.1 The characteristics of the effluent at the compliance point must not exceed the following monthly average limits:

MONTHLY AVERAGE EFFECTIVE DATE			
PARAMETERS	Nov. 19, 2014 Dec. 31, 2019 Dec. 31, 2023		
Total selenium (μg/L)	80	63	57
Nitrate as N (mg/L)	20	14.0	11.0

2.2.2 The characteristics of the effluent at the compliance point must not exceed the following daily maximums:

DAILY MAXIMUM		EFFECTIVE DATE		
PARAMETERS	Nov. 19, 2014 Dec. 31, 2019 Dec. 31, 2023			
Total selenium (μg/L)	100	78	62	
Nitrate as N (mg/L)	29	17.0	15.0	

2.2.3 The authorized works associated with this compliance point are tailings impoundments, sedimentation and infiltration ponds, diversions, sewage treatment plants, antiscalant addition system, and related appurtenances.

Date issued: Date amended: November 19, 2014

December 19, 2022

(most recent)

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 8 of 89 Permit Number: 107517

2.3 <u>GREENHILLS OPERATIONS – ELK RIVER COMPLIANCE POINT</u> (GH ERC)

This section applies to effluent from Teck Coal Limited mine operations (Greenhills Operations into the Elk River watershed) upstream of GHO Elk River Compliance Point (EMS E300090). The GHO Elk River Compliance Point (EMS E300090) is located 220 m downstream of Thompson Creek as shown in Appendix 1.

2.3.1 The characteristics of the effluent at the compliance point must not exceed the following monthly average limits:

MONTHLY AVERAGE	EFFECTIVE DATE	
PARAMETERS	Immediately	Dec. 31, 2027
Total selenium (μg/L)	15	8
Nitrate as N (mg/L)	3.0	3.0

2.3.2 The authorized works associated with this compliance point are tailings impoundments, sedimentation and infiltration ponds, diversions, sewage treatment plants and related appurtenances.

Date issued:
Date amended:
(most recent)

November 19, 2014

December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 9 of 89 Permit Number: 107517

2.4 <u>LINE CREEK OPERATIONS – LINE CREEK COMPLIANCE POINT</u> (<u>LC LCDSSLCC</u>)

This section applies to effluent from Teck Coal Limited mine operations (Line Creek Operations into the Line Creek Watershed) above LCO Compliance Point (EMS E297110). The LCO Compliance Point (EMS E297110) is located approximately 1500 m downstream of the West Line Creek Active Water Treatment Facility (WLC AWTF) outfall as shown in Appendix 1.

2.4.1 The characteristics of the effluent at the compliance point must not exceed the following monthly average limits:

MONTHLY AVERAGE EFFECTIVE DATE			
PARAMETERS	Nov. 19, 2014 Dec. 31, 2015 Dec. 31, 2033		
Total selenium (μg/L)	80	50	29
Nitrate as N (mg/L)	14	7.0	3.0

2.4.2 The characteristics of the effluent at the compliance point must not exceed the following daily maximums:

DAILY MAXIMUM	EFFECTIVE DATE					
PARAMETERS	Nov. 19, 2014	Dec. 31, 2015	Dec. 31, 2033			
Total selenium (μg/L)	95	58	33			
Nitrate as N (mg/L)	20	9.0	4.0			

2.4.3 The authorized works associated with this compliance point are tailings impoundments, sedimentation and infiltration ponds, active water treatment facility, diversions, sewage treatment plants, and related appurtenances.

Date issued:
Date amended:
(most recent)

November 19, 2014

December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 10 of 89

2.5 <u>ELKVIEW OPERATIONS – HARMER CREEK COMPLIANCE</u> <u>POINT (EV HC1)</u>

This section applies to effluent from Teck Coal Limited mine operations (Elkview Operations into the Harmer Creek watershed) above EVO Harmer Compliance Point (EMS E102682). The EVO Harmer Compliance Point (EMS E102682) is located at the Harmer Spillway as shown in Appendix 1.

2.5.1 The characteristics of the effluent at the compliance point must not exceed the following monthly average limits:

MONTHLY AVERAGE	EFFECTIVE DATE					
PARAMETERS	Nov. 19, 2014	Dec. 31, 2017	Dec. 31, 2021			
Total selenium (μg/L)	45	57	57			
Nitrate as N (mg/L)	4	16.0	8.0			
Sulphate (mg/L)	300	380	450			

2.5.2 The authorized works associated with this compliance point are sedimentation and infiltration ponds, diversions, and related appurtenances.

2.6 <u>ELKVIEW OPERATIONS – MICHEL CREEK COMPLIANCE</u> POINT (EV MC2)

This section applies to effluent from Teck Coal mine operations (Elkview Operations into the Michel Creek watershed) above EVO Michel Creek Compliance Point (EMS E300091). The EVO Michel Creek Compliance Point (EMS E300091) is located at the Highway 3 bridge over Michel Creek as shown in Appendix 1.

2.6.1 The characteristics of the effluent at the compliance point must not exceed the following monthly average limits:

MONTHLY AVERAGE	EFFECTIVE DATE				
PARAMETERS	Nov.19, 2014	Dec. 31, 2021	Dec. 31, 2025		
Total selenium (μg/L)	28	20	19		
Nitrate as N (mg/L)	6.0	6.0	6.0		

Date issued:

November 19, 2014

Date amended: (most recent)

December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 11 of 89

2.6.2 The authorized works associated with this compliance point are sedimentation and infiltration ponds, tailings impoundments, saturated rock fill treatment facility, diversions, sewage treatment plants, and related appurtenances.

2.7 <u>COAL MOUNTAIN OPERATIONS (CMO) – MICHEL CREEK</u> <u>COMPLIANCE POINT (CM MC2)</u>

This section applies to effluent from Teck Coal Limited mine operations (Coal Mountain Operations) above CMO Compliance Point (EMS E258937). The CMO Compliance Point (EMS E258937) is located 50 m upstream of Andy Goode Creek as shown in Appendix 1.

2.7.1 The characteristics of the effluent at the compliance point must not exceed the following monthly average limits:

MONTHLY AVERAGE	EFFECTIVE DATE
PARAMETERS	Nov.19, 2014
Total selenium (μg/L)	19
Nitrate as N (mg/L)	5.0
Sulphate (mg/L)	500

2.7.2 The authorized works associated with this compliance point are sedimentation and infiltration ponds, diversions, sewage treatment plant, and related appurtenances.

2.8 LCO DRY CREEK SEDIMENTATION PONDS TO DRY CREEK

This section applies to the discharge of effluent from the LCO Dry Creek (2) Sedimentation Ponds to Dry Creek. The site reference number for this discharge is E295211.

2.8.1 Dry Creek Benthic Invertebrate Tissue Selenium Concentration

The characteristics of benthic invertebrate tissue immediately downstream of the LCO Dry Creek Sedimentation Ponds discharge pipe to Dry Creek at monitoring location E326678 must not exceed the following limit:

Date issued:
Date amended:
(most recent)

November 19, 2014

December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 12 of 89

EFFECTIVE DATE	April 1, 2023	
PARAMETER	LIMIT	METHOD/NOTES
Benthic invertebrate tissue selenium concentration	11 μg/g (dry weight)	Average of 5 replicate composite samples representative of the benthic invertebrate community calculated from measurements collected during the same sampling event

Monitoring location E326678 spans the 500 m long reach of Dry Creek between the following UTM locations as shown in Appendix 1Ia. The permittee must ensure sampling locations are distributed throughout the following 500 m long reach of stream representing exposure of fish to dietary selenium in this part of Dry Creek:

Location	Easting	Northing	coord_type_code
LC_DCDS (upstream extent)	657766	5542073	UTM_11N
500 m d/s LC_DCDS			
(downstream extent)	657548	5542477	UTM_11N

2.8.1.1 Monitoring

The permittee must conduct quarterly monitoring of benthic invertebrates at E326678. Each monitoring event must include the collection of five replicate composite samples that represent the benthic invertebrate community collected on the same day. Samples must be analyzed for abundance and taxonomy, and selenium tissue concentration. A photograph must be taken of the benthic invertebrates collected for each sample sent for tissue analysis, and the location within each sampling reach must be recorded.

If environmental conditions prevent the permittee from collecting the samples during a quarter, the permittee must document the effort and reason that the samples could not be collected within the quarter.

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 13 of 89 Permit Number: 107517

2.8.1.2 Reporting

The permittee must evaluate quarterly results from monitoring defined in Section 2.8.1.1 at E326678 against the benthic invertebrate tissue selenium concentration limit and submit a report to the director as per Sections 9.2.4 and 9.2.5 of this permit. The written quarterly report submitted in accordance with Section 9.2.4 must now include a summary of any benthic invertebrate tissue selenium concentration limit exceedances at E326678 and actions taken in response to any exceedances. The annual report submitted in accordance with Section 9.2.5 must now include a summary of all benthic invertebrate tissue selenium data collected throughout Dry Creek, including appropriate graphs and comparison of results to the permit limit, a description of actions taken in response to any exceedances, any new mitigation measures that were implemented, the status of investigations into alternative mitigation measures, and a schedule for proposed improvements.

For clarity, although the tissue selenium limit does not come into full effect until April 1, 2023, the permittee is required to fulfill the reporting requirements noted above beginning in the next quarter (Q2 2022), including identification of any levels above the future limit and associated actions taken to achieve the future limit.

- 2.8.2 The authorized works are the upper LCO Dry Creek Valley ditches, sumps, pumps, LCO Dry Creek rock drain, diversion embankment structure, dual lined head pond with leak detection and recovery system and spillway for flows in excess of Q10 up to Q200 flows, transfer pipeline, two dual lined sedimentation ponds with leak detection and recovery system and spillway for flows in excess of Q10, bypass works, return channel, decant structure, flocculant addition station, fish barrier and related appurtenances.
- 2.8.3 The location of the facilities from which the discharge originates and the location of the point of discharge is Lot 1 District Lot 4588, Kootenay District Plan NEP 21818. PID 019-075-308.

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 14 of 89 Permit Number: 107517

2.8.4 Controlled Bypasses to LCO Dry Creek

Bypass of the LCO Dry Creek Sedimentation Ponds via the bypass works is authorized by Permit 5353 on a seasonal basis, during non-freshet flows to reduce or avoid the generation of bioavailable selenium. A record of bypass of the LCO Dry Creek Sedimentation Ponds must be presented in the quarterly and annual reports.

2.9 LCO DRY CREEK SEDIMENTATION PONDS TO FORDING RIVER

This section applies to the discharge of effluent from a diffuser and conveyance pipeline from the LCO Dry Creek (2) Sedimentation Ponds to the Fording River. The site reference number for this discharge is E295231.

- 2.9.1 The maximum authorized rate of discharge is the Q10 flow of 1.8 cubic meters per second.
- 2.9.2 The characteristics of the discharge must not exceed:

Parameter	Limit
Total Dissolved Solids	1,982 mg/L
Nitrate	141 mg/L
Total Cadmium	0.0014 mg/L
Total Selenium	0.32 mg/L
Sulphate	1067 mg/L

- 2.9.3 The authorized works are the upper LCO Dry Creek Valley ditches, sumps, pumps, LCO Dry Creek rock drain, diversion embankment structure, dual lined head pond with leak detection and recovery system and spillway for flows in excess of Q10 up to Q200 flows, transfer pipeline, two dual lined sedimentation ponds with leak detection and recovery system and spillway for flows in excess of Q10, return channel, decant structure, flocculant addition station, conveyance pipeline, outfall, diffuser, fish barrier and related appurtenances.
- 2.9.4 The location of the facilities from which the discharge originates is Lot 1 District Lot 4588, Kootenay District Plan NEP 21818. PID 019-075-308 and the location of the point of discharge is Lot 1 District Lot 4588, Kootenay District Plan 11279 except plans 572, 12976, NEP70655 and NEP70656.

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 15 of 89 Permit Number: 107517

3. SITE PERFORMANCE OBJECTIVES

3.1 <u>SITE PERFORMANCE OBJECTIVES FOR ORDER STATIONS</u>

The following Site Performance Objectives (SPO) are established at the Order Stations. It is expected that SPOs will be maintained during all timeframes shown in the tables or immediately maintained if no date is indicated. Site performance objectives are expressed as monthly average concentrations. The monthly average concentration is defined as the average of all samples collected in a calendar month.

ORDER STATION {Teck ID} (EMS number)	ORDER DESCRIPTION (Teck location description)	PARAMETER	UNIT	Nov. 19, 2014 ³	Dec. 31, 2019 ³	Dec. 31, 2023 ³	Dec. 31, 2025 ³	Dec. 31, 2028 ³
FR4	Fording River	Total Selenium	μg/L	-	63	57	57	57
{GH_FR1}	Downstream of	Nitrate as N ²	mg/L	20	14.0	11.0	11.0	11.0
(0200378)	Greenhills Creek	Sulphate	mg/L	429	429	429	429	429
		Dissolved Cadmium ¹	μg/L	0.39	0.39	0.39	0.39	0.39
FR5	Fording River at	Total Selenium	μg/L	-	51	40	40	40
{LC_LC5}	the Mouth	Nitrate as N ²	mg/L	18	10.0	10.0	10.0	10.0
(200028)	(Fording River	Sulphate	mg/L	429	429	429	429	429
	downstream of Line Creek)	Dissolved Cadmium ¹	μg/L	0.39	0.39	0.39	0.39	0.39
ER1	Elk River	Total Selenium	μg/L	19	19	19	19	19
{GH_ER1}	downstream of	Nitrate as N	mg/L	3	3.0	3.0	3.0	3.0
(206661)	Greenhills	Sulphate	mg/L	309	309	309	309	309
	Operations (Upstream of Boivin Creek)	Dissolved Cadmium ¹	μg/L	0.24	0.24	0.24	0.24	0.24
ER2	Elk River from	Total Selenium	μg/L	23	23	19	19	19
{EV_ER4}	Fording River	Nitrate as N	mg/L	-	4.0	4.0	3.5	3.0
(200027)	to Michel Creek	Sulphate	mg/L	429	429	429	429	429
	(upstream of Grave Creek)	Dissolved Cadmium ¹	μg/L	0.24	0.24	0.24	0.24	0.24
ER3	Elk River	Total Selenium	μg/L	19	19	19	19	19
{EV_ER1}	downstream of	Nitrate as N	mg/L	-	3.0	3.0	3.0	3.0
(200393)	Michel Creek	Sulphate	mg/L	429	429	429	429	429
		Dissolved Cadmium ¹	μg/L	0.24	0.24	0.24	0.24	0.24

Date issued: Date amended: November 19, 2014

(most recent)

December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 16 of 89 Permit Number: 107517

ER4	Elk River at Elko	Total Selenium	μg/L	19	19	19	19	19
{RG_ELKORES}	Reservoir	Nitrate as N	mg/L	ı	3.0	3.0	3.0	3.0
(E294312)		Sulphate	mg/L	429	429	429	429	429
		Dissolved Cadmium ¹	μg/L	0.24	0.24	0.24	0.24	0.24
LK2 (4)	Koocanusa	Total Selenium	μg/L	2	2	2	2	2
LK2 (4)	Koocanusa Reservoir	Total Selenium Nitrate as N	μg/L mg/L	3	3.0	3.0	3.0	3.0
LK2 (4)								

¹ Cadmium SPOs are hardness dependent based on the following formula: Cd (in μ g/L) = $10^{0.83\log10(hardness)-2.53}$ where hardness is in mg/L of CaCO₃

Level 1 benchmark for the Fording River N as $mg/L = 10^{1.0003log~10(hardness)-1.52}$ where hardness is in mg/L of $CaCO_3$

For the purposes of calculating the targets above, hardness is based on the following concentrations:

```
FR4\{GH\_FR1\}, FR5\{LC\_LC5\}, and <math display="inline">ER1\{GH\_ER1\} - 360 \ mg/L \ ER2\{EV\_ER4\}, ER3\{EV\_ER1\}, and ER4\{RG\_ELKORES\} - 200 \ mg/L \ LK2\{RG\_DSELK\} - 150 \ mg/L
```

$CKMo = [\Sigma(\Sigma CD/ND)]/Nmo$

Where:

- CKMo is the monthly average concentration at Koocanusa Reservoir Order station LK2;
- CD are the concentrations of samples collected at transect locations at all depths sampled on the same day;
- ND are the number of samples collected at transect locations at all depths sampled on the same day; and
- Nmo are the number of days sampled in the month.

3.2 TRIGGERS FOR REASSESSMENT OF LIMITS

In the event that a site performance objective listed in Section 3.1 is exceeded without an exceedance of limits in Section 2, the permittee must:

i. Immediately notify the director and KNC of the exceedance;

Date issued:

November 19, 2014

Date amended: (most recent)

December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 17 of 89 Permit Number: 107517

² Nitrate SPOs for FR4 {GH_FR1} as of 2023 and FR5 {LC_LC5} as of 2019 are hardness dependent based on the following formula:

³ Effective Date

⁴ These SPOs are compared to the average of all samples collected on the transect as described in Tables 2A and 26, and according to the following calculation:

- ii. Re-sample within 7 days of receiving data to confirm results;
- iii. If the results continue to exceed an SPO, the permittee must re-assess discharge sources and determine appropriate limits for the compliance points detailed in Section 2, or new compliance points based on the re-assessment of discharge sources; and
- iv. Provide to the director and KNC an explanation of the temporary exceedance or an application for an amendment of this permit with new or revised Section 2 limits within 3 months.

The director may specify additional monitoring in the event of a continued exceedance.

3.3 <u>SITE PERFORMANCE OBJECTIVES FOR COMPLIANCE POINTS</u>

The following Site Performance Objectives (SPOs) are established at the Compliance Points for sites where permit limits have not been specified in Section 2. It is expected that the SPOs will be maintained during all time frames.

COMPLIANCE POINT	SITE PERFORMANCE OBJECTIVE				
GHO Fording River, GHO Elk River,	Sulphate:				
LCO,	BCWQG FWAL ¹ (hardness dependent)				
EVO Michel Creek	(nardness dependent)				
	WATER	SULPHATE			
	HARDNESS ² (mg/L)	GUIDELINE (mg/L)			
	Very Soft (0-30)	128			
	Soft to moderately soft (31-75)	218			
	Moderately soft/hard to hard (76-180)	309			
	Very hard (181-250)	429			
	In addition, the following water quality benchmark as developed for the ABMP will be applied:				
	Very hard (>250)	429			
All Compliance Points	Cadmium:				
	Cd (in μ g/L) = $10^{\{0.83(\log[\text{hardness}])-2.53\}}$				
	where hardness is in mg/L of CaCO3				

¹BC Water Quality Guideline for Freshwater Aquatic Life

Site performance objectives are expressed as monthly average concentrations. The monthly average concentration is defined as the average of the samples collected in a month.

Date issued:

November 19, 2014

Date amended: (most recent)

December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 18 of 89

²Hardness is in mg/L CaCO₃

3.4 <u>SITE PERFORMANCE OBJECTIVES – CALCITE</u>

The permittee must manage calcite levels in streams in Management Units 1, 2, 3, and 4 for streams that are fish bearing, provide fish habitat or flow directly into fish bearing streams and are not scheduled by an Environmental Assessment Certificate or *Mines Act* Permit to be buried. These streams must meet the following Site Performance Objectives:

- 1) By December 31, 2024 CIConc ≤ 0.50
- 2) By December 31, 2029 Citotal ≤ 0.50

Where:

Citotal: Calcite Index (total) = CIConc + CIPres

CIConc: Calcite Concretion = Sum of pebble concretion scores

Number of pebbles counted

CIPres: Calcite Presence = <u>Number of pebbles with calcite</u>

Number of pebbles counted

Date issued:
Date amended:
(most recent)

November 19, 2014

December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Permit Number: 107517

Page 19 of 89

3.5 <u>LCO DRY CREEK WATER MANAGEMENT AND SITE</u> <u>PERFORMANCE OBJECTIVES</u>

3.5.1 LCO DRY CREEK WATER MANAGEMENT PLAN

The Permittee shall develop and implement an LCO Dry Creek Water Management Plan to achieve Site Performance Objectives while maintaining Minimum Instream Flow Requirements in order to minimize impacts to fish habitat. The Plan must clearly identify proposed works, management actions and contingencies to ensure that the Site Performance Objectives and Minimum Instream Flow Requirements will be met.

- 3.5.1.1 Approval of the Dry Creek Water Management Plan (dated December 23, 2015) was subject to the following conditions:
 - i. Teck will participate in a process with KNC and MOE to establish long-term Site Performance Objectives (SPO) and instream Flow Requirements for LCO Dry Creek and provide the required information for review in a timely manner. In this regard, reference is made to the recommended actions found in Table 1 of the MOE memo dated February 10, 2015 (S. Reddekopp to J. Carmody-Fallows). Teck is requested to provide submissions for a decision making framework for this process by September 30, 2015.
 - ii. All inflows into the LCO Dry Creek Sediment Ponds must discharge through the return channel back into LCO Dry Creek until December 31, 2019, with the exception of the commissioning period and during scheduled maintenance of the ponds.
 - iii. For the purposes of commissioning the sediment ponds (diverting water to fill the ponds) and routine maintenance of the ponds Teck must maintain a minimum instream flow requirement of 20% MAD in LCO Dry Creek.
 - iv. Teck will provide the predicted monthly mean SPO constituent concentrations at the SPO location (E295210) and at the mouth of LCO Dry Creek (E288270), for all months up to January 1, 2020. This summary shall be submitted to the Director by May 30, 2015.

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 20 of 89 Permit Number: 107517

- v. Teck will update the December 15, 2014 LCO Nitrate Management Plan to control nitrate releases from the site. The updated Nitrate Management Plan must be implemented and submitted to the Director by June 1, 2015.
- vi. Teck shall take reasonable efforts to collect at least two years of continuous monitoring at the East Tributary of LCO Dry Creek (E288274) and at LCO Dry Creek near its Mouth (E288270) for the purposes of updating the streamflow model. Teck shall develop and implement contingencies to maintain continuous data collection at the LCO Dry Creek Station.

Teck must report on and provide detail demonstrating how mine affected surface and sub-surface water is being captured by the lined head pond and embankment in its next annual report (2015), and provide an estimate of the proportion of mine-affected water (surface and sub-surface) that is not captured by the system in its subsequent annual reports, required initially by OIC Permit 106970, and currently by Permit 107517.

3.5.1.2 Updated LCO Dry Creek Water Management Plan

The updated Dry Creek Water Management Plan will include proposed long-term SPOs and IFRs for LCO Dry Creek along with proposed timing for when they come into effect and a plan and schedule for implementation of active water treatment. The submission date for the updated LCO Dry Creek Water Management Plan is April 30, 2020, with the following conditions:

- 1) Teck Coal Ltd. Shall continue to provide bi-weekly updates to the Director and members of the Structured Decision-Making Process and studies to date until the SDM process is complete. Once the SDM process is completed Teck shall provide updates on water quality results and the status of work in Dry Creek related to the DCWMP to the Director, KNC, and EMLI at a minimum on a quarterly basis between October and April each year and on a monthly basis during bypass of the LCO Dry Creek Sedimentation Ponds via the bypass works.
- 2) Teck will provide a progress report on the SDM process to the Director on December 15, 2019. The progress report must include:

a. Summary of the investigations to date;

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 21 of 89 Permit Number: 107517

- b. Mitigation measures and a schedule for implementation to prevent/reduce selenium bioaccumulation in aquatic species; and
- c. Updated schedule for the SDM process to ensure submission of the updated plan by April 30, 2020.
- 3) Teck must provide a comprehensive findings report from its investigations and studies regarding the unexpected Se concentrations and unexpected Se bioaccumulation in LCO Dry Creek to the working group and Director in support of the updated LCO Dry Creek Water Management Plan on April 30, 2020.

3.5.2 INSTREAM FLOW REQUIREMENTS

3.5.2.1 Minimum Instream Flow Requirements (IFRs) for LCO Dry Creek will be developed by the Director for the protection of fish habitat.

Minimum IFRs shall be developed in consultation with the Permittee.

Minimum IFRs for LCO Dry Creek must be met each and every year once waste rock placement in the LCO Dry Creek watershed commences.

3.5.2.2 Interim Instream Flow Requirements

Commencing on January 1, 2020, Interim Instream Flow Requirements for LCO Dry Creek must be met if the Permittee discharges to Fording River through the LCO Dry Creek Water Management System. These Interim Flow Requirements for LCO Dry Creek will be the values outlined below or as otherwise specified by the Director as the result of a process with KNC and MOE to establish long-term SPO and Instream Flow Requirements for LCO Dry Creek.

Aug 1 – Apr 1, 20% Mean Annual Discharge (MAD); for the purpose of summer rearing and overwintering periods

Apr 15 - Apr 30, 50% MAD; for the purpose of natural freshet ramp-up

May 1 - May 14, 100% MAD; for the purpose of braided areas, side channel connectivity

May 15 – June 14, 209% MAD for the purpose of migration and spawning

June 15 - July 14, 105% MAD for the purpose of out-migration July 15 - July 31, 40% MAD for the purpose of out-migration, incubation

Date issued:
Date amended:
(most recent)

November 19, 2014

December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 22 of 89

3.5.2.3 The Mean Annual Discharges for LCO Dry Creek and the East Tributary are as follows:

LCO Dry Creek – 0.382 m3/s East Tributary – 0.113 m3/s

3.5.2.4 In the event that the stream flow in the East Tributary drops below East Tributary IFRs, a LCO Dry Creek IFR adjustment shall be calculated using the following equation:

(Modified DryCreekIFR) = (Dry Creek IFR) * (EastTributaryStreamFlow /EastTributaryIFR)

3.5.3 SITE PERFORMANCE OBJECTIVES

The following Site Performance Objectives (SPOs) are established for LCO Dry Creek, Unnamed Creek and Grace Creek:

Parameter
Total Selenium
Total Cadmium

Total Cadmium

To a maximum of 0.00038 mg/L

(H = site water hardness as CaCO3)

3.5.3.1 The requirement to meet SPOs for LCO Dry Creek in Section 3.5.3 is suspended until January 1, 2020. Prior to this date the Director may reestablish or set alternative SPOs as deemed necessary by the Director for the protection of the environment. The permittee may convey water to the Fording River to maintain any established SPOs provided IFRs are maintained.

A plan and schedule for implementation of active water treatment to the Director's satisfaction must be submitted to the Director by December 31, 2019, or earlier if required by the Director.

- 3.5.3.2 The Director may require the Permittee to develop and implement a plan to achieve the Site Performance Objectives at the mouth of Unnamed Creek (E295213) and/or at Grace Creek upstream of the CP rail tracks (E288275). The plan shall be to the satisfaction of the Director.
- 3.5.3.3 The Permittee must undertake a comprehensive review of the Site Performance Objectives every three years. The review should consider all available general and site-specific data and science, including but not

Date issued:
Date amended:
(most recent)

November 19, 2014

December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

yson

Page 23 of 89 Permit Number: 107517

limited to: The Elk Valley Area Based Management Plan, B.C. Water Quality Guidelines and standards from other jurisdictions, water quality sampling and Aquatic Effects Monitoring Program results, mixtures toxicity testing results, the Upper Fording River Westslope Cutthroat Trout Population Study, and other special studies and relevant research. Terms of Reference for the first review must be submitted to the Director for approval, by March 31, 2017. The next review of Site Performance Objectives must be submitted to the Director by March 31, 2023. The Director may require an earlier review if significant information becomes available.

3.5.4 <u>ESTABLISHING LONG-TERM SITE PERFORMANCE</u> <u>OBJECTIVES AND INSTREAM FLOW REQUIREMENTS</u>

To support the process for developing long term SPOs and IFRs for LCO Dry Creek, Teck is required to undertake the following:

- i. Completion of an Interim Report for the Tributary Management Plan by July 31, 2017.
- ii. Compilation of all available chronic toxicity and water quality monitoring data through August 31, 2016. The data must be provided to the Director and KNC for review by September 30, 2016.
- iii. Submission of the report to the Director validating the Westslope Cutthroat Trout Habitat Suitability Index Model as required by Condition 13 of EAC #13-02 by August 31, 2016.
- iv. Submission of the instream flow needs study required by Condition 14 of EAC#13-02 but August 31, 2017. In addition, Teck must include a review of frequency analysis, using intensity-duration-frequency curves, to ensure appropriateness and applicability.
- v. Submission of an updated streamflow model (based on the UBC Watershed Model) using all available data to September 30, 2016.
- vi. Submission of an options analysis on the SPOs and IFRs and the DCWMP by October 30, 2016, which shall include the following:
 - a. An evaluation of the resultant flow impacts to LCO Dry Creek under differing SOP values ranging from the original SPO in OIC 106970 (10 ug/L) to that proposed in the 2014 DCWMP for the date December 23, 2024 (70 ug/L), and timelines for when conveyance might be required to meet the specific SPO.

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 24 of 89 Permit Number: 107517

- b. An evaluation of other potential mitigations explored by Teck to meet both instream flow requirements and site performance objectives.
- c. Proposed triggers for construction of active water treatment, conveyance or other necessary mitigations.
- vii. Teck shall provide progress reports to MOE and KNC on July 30, 2015, and January 31, 2016, regarding the above requirements.
- viii. An additional progress report regarding the requirements of the LCO Dry Creek Water Management Plan approval must be made to the Director and to KNC by November 30, 2016.

3.5.5 Best Achievable Technology Assessment

The permittee must cause a Qualified Professional to complete two sitespecific Best Achievable Technology (BAT) assessments in accordance with ENV's Best Achievable Technology Assessment policy and the terms of reference provided in Appendix A. The 2022-2025 BAT assessment must be submitted to the director by January 17, 2022 and the 2026 BAT assessment must be submitted to the director by February 28, 2022.

The purpose of the BAT assessments is to (1) identify the potential technologies that could be implemented to mitigate mining-related effects in Dry Creek, (2) assess each option to understand its feasibility, reliability, control-effectiveness, cost-effectiveness, and implementation timelines, and (3) select the option(s) demonstrated to be best-suited to meet waste discharge standards in Dry Creek. The permittee must use the selected option(s) and additional strategies, if appropriate, to develop a complete mitigation strategy for Dry Creek. The permittee must predict receiving environment water quality for the mitigation strategy at monitoring station LC_DCDS using the 2020 Regional Water Quality Model.

3.5.6 Initial Dilution Zone Assessment

For the proposed conveyance and supplementation project the permittee must cause a Qualified Professional to complete an Initial Dilution Zone (IDZ) assessment in accordance with the methodology described in the December 10, 2021 technical memo prepared by Golder Associates Ltd. Entitled Proposed Fording River Diffuser, Initial Dilution Zone and ENV's Technical Guidance 11 – Development and Use of Initial Dilution Zones in Effluent Discharge Authorizations and submit it to the director by January 28, 2022. The assessment must include an analysis of the incremental effect of the discharge and IDZ on aquatic health in the Fording River.

Date issued:
Date amended:
(most recent)

November 19, 2014

December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Permit Number: 107517

Page 25 of 89

4. TRIBUTARY EVALUATION AND MANAGEMENT

The permittee must develop and implement a phased study design for a Tributary Evaluation Program and develop and implement a Tributary Management Plan. The Tributary Evaluation Program and the Tributary Management Plan must include all tributaries affected or potentially influenced by the permittee's current operations and future development plans in Management Units 1, 2, 3, and 4, as defined in the Elk Valley Water Quality Plan.

The <u>Tributary Evaluation Program</u> is intended to evaluate the ecological value of tributaries to the Elk and Fording Rivers to support identification of tributaries that play a significant role in supporting the health of the ecosystem as a whole. The Tributary Evaluation Program must include the following elements:

- i. Inventory of tributaries to the Elk and Fording Rivers that are located in Management Units 1, 2, 3, and 4 that are affected or potentially influenced by the permittee's current and future development plans;
- ii. Maps of Management Units 1, 2, 3, and 4 showing the locations of the tributaries of the Elk and Fording Rivers, and identifying the tributaries that are affected or potentially influenced by the permittee's current and future development plans;
- iii. Collation of existing and readily available data and information on each tributary, including surface-water chemistry, surface-water toxicity, sediment chemistry, sediment-toxicity, calcification, flow, habitat value ranking, benthic invertebrate community structure, and habitat use by fish and/or sensitive aquatic dependent wildlife (i.e., water birds);
- iv. Evaluation of historical (i.e. conditions relevant to the 1980 timeframe, where available) and current habitat value, based on surface-water quality, sediment quality, extent of calcification, flow, amount of habitat available, habitat types, physical features, connectivity to fish habitat, status of riparian habitat, and habitat use by fish and sensitive aquatic dependent wildlife species;
- v. Evaluation of the potential for rehabilitation of aquatic and riparian habitat and potential for improvement of water quality conditions; and
- vi. Prioritization of each tributary for ongoing protection and/or restoration based on the evaluation of current ecological value, potential for rehabilitation, and potential to contribute to the objectives of the EVWQP.

Date issued:
Date amended:
(most recent)

November 19, 2014

December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 26 of 89 Permit Number: 107517

The purpose of this evaluation is to provide context for the development of specific management objectives for tributaries included in the Tributary Management Plan. As the Tributary Evaluation Program will also provide essential information for assessing the potential effects of planned mine expansions and new projects, the components of the program that relate to the upper Fording River and the Michel Creek watershed should be completed on a priority basis as part of the phased study design.

Following the evaluation of the tributaries, the permittee must develop and implement a Tributary Management Plan. The Tributary Management Plan is intended to incorporate protection and rehabilitation goals for tributaries that will support achieving the area-based objectives of the Elk Valley Water Quality Plan. In development of the Tributary Management Plan, those tributaries that are not impacted by mining activities, that provide relatively high habitat value, and/or support ongoing habitat use by fish and sensitive aquatic dependent wildlife (i.e. directly or indirectly through food production) shall be identified as the highest priority tributaries for permanent protection. Those tributaries that have been impacted by mining, provide or have the potential to provide relatively high habitat value, and/or support or could support habitat use by fish and sensitive aquatic dependent wildlife shall be identified as the highest priority tributaries for restoration/rehabilitation. The Tributary Management Plan will consider the permittee's future mine development plans. The scope of the Tributary Management Plan excludes tributaries that have been permanently removed or severely altered (e.g., covered by waste spoils or other mine infrastructure or dewatered) by mining activities within the permittee's current mine permit boundaries. Loss of habitat for such tributaries is governed by requirements under the Federal *fisheries Act* and the provincial mitigation policy.

The Tributary Evaluation Program and Tributary Management Plan will complement the Elk Valley Water Quality Plan and clearly detail any proposed management of water quality conditions, flows and ecological values within the tributaries affected or influenced by the permittee's current operations and planned developments in Management Units 1, 2, 3, and 4, as defined in the Elk Valley Water Quality Plan.

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 27 of 89 Permit Number: 107517

The following development and implementation timelines apply:

- 1) A Phased Study Design for the Tributary Evaluation Program, including a listing of all tributaries to be evaluated, must be submitted to the EMC by May 1, 2015.
- 2) The Phased Study Design for the Tributary Evaluation Program must be submitted for acceptance to the director by May 31, 2015.
- 3) The Terms of Reference for the Tributary Management Plan must be submitted to the EMC by March 31, 2016.
- 4) Data collected during the Tributary Evaluation Program for current ecological value of tributaries within Management Units 1, 2, 3 and 4 must be compiled into a written report and submitted to the EMC by March 31, 2016.
- 5) Analysis and interpretation of Tributary Evaluation Program data, assessment of potential for rehabilitation and/or mitigation, and prioritization of tributaries for potential future habitat rehabilitation must be compiled into a written interim report and submitted to the EMC by August 31, 2016.
- 6) Interim Tributary Management Plan report must be submitted to the EMC by July 31, 2017. The Tributary Management Plan must be submitted for acceptance to the director by December 31, 2017. The Tributary Management Plan must be implemented by March 1, 2018.
- 7) An updated Tributary Management Plan must be submitted for acceptance to the director by July 31, 2020. Thereafter, the Plan must be updated and submitted for acceptance to the director by July 31st every three years. Updated Tributary Management Plans must be prepared in consultation with the EMC. The updates shall, at a minimum, incorporate any changes to the permittee's current and future development plans.
- 8) The accepted Tributary Management Plan must be implemented, and an annual implementation report must be submitted to the director and to the EMC by January 31st of each year. The annual report must describe implementation activities undertaken in tributaries in the Designated Area including those under the Tributary Management Plan itself, other legal requirements and other supporting programs, in the previous 12 months to rehabilitate impacted tributaries and protect high value, unimpacted tributaries.

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 28 of 89 Permit Number: 107517

5. <u>CONTAMINANT MANAGEMENT PLANS</u>

5.1 <u>CALCITE MANAGEMENT PLAN</u>

The permittee must update and submit the Calcite Management Plan to the satisfaction of the director, as outlined in Chapter 7 of the Elk Valley Water Quality Plan, by July 31, 2016 and every three years thereafter. The Calcite Management Plan must include a list of streams that according to Section 3.4 must meet the Calcite Site Performance Objectives and provide a schedule for implementation of mitigation measures. Mitigation measures must be implemented according to the schedule.

Refer to Appendix 5 for calcite treatment facility operational requirements.

5.1.1 Antiscalant Effects Assessment

The permittee must develop and implement a study design for assessing the cumulative effects of regional antiscalant application in parallel to work being undertaken by the permittee in accordance with Sections 3.4 and 5.1. The study design must be reviewed by the EMC prior to submission to the director. The assessment must include the permittee's operating calcite treatment facilities and future planned calcite treatment facilities as outlined within the 2022 Calcite Management Plan.

The purpose of this assessment is to evaluate the potential effects of planned calcite treatment projects on a regional scale. The assessment must address the potential toxic effects of exposure of ecological and human receptors to antiscalant addition as well as to modelled concentrations of metal constituents typically attenuated during calcite formation. Should the assessment demonstrate that the planned calcite treatment projects represent an unacceptable level of risk to the environment or human health, the director may require submission of an interim Calcite Management Plan.

The following timelines apply:

- i. A study design for the Antiscalant Effects Assessment must be submitted to the director, for approval, by April 20, 2022.
- ii. Analysis and an integrated interpretation of Antiscalant Effects Assessment data in the Elk River Watershed and evaluation of

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

appon

Page 29 of 89 Permit Number: 107517

the potential for antiscalant cumulative effects must be compiled into a written report and submitted to the director and the EMC by June 2, 2023. The assessment must be accompanied by recommendations from a Qualified Professional regarding whether any changes or updates are needed to the most recent version of the Calcite Management Plan.

5.2 <u>NICKEL MANAGEMENT</u>

5.2.1 Development of Nickel Benchmark

The permittee must develop a nickel benchmark derivation workplan and submit it to the director for approval by August 31, 2021. The workplan must incorporate feedback from the EMC and include proposed methodologies and timelines for the derivation of a nickel benchmark that could be applied in the receiving environment of the Elk Valley.

The permittee must provide the final nickel benchmark to the director for approval by August 31, 2022.

Once the final nickel benchmark is approved, the director may require additional mitigation to be implemented.

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 30 of 89 Permit Number: 107517

5.2.2 ELKVIEW OPERATIONS

5.2.2.1 Trigger Response Plan for Nickel

The permittee must develop and implement a Trigger Response Plan (TRP) for nickel. The July 14, 2021 EVO SRF Nickel TRP must be updated and submitted by June 3, 2022 to the director for approval. The permittee must notify the director at least 15 days prior to implementing any proposed changes to the TRP once approved. The TRP must describe the operational and management actions to be taken if total nickel concentrations in the effluent exceed an initial trigger value of 36 μ g/L, calculated as a quarterly (13-week) rolling average at the Effluent Retention Pond Outlet (F2_BPO, E321812), and any updated triggers, when the SRF is discharging to Erickson Creek.

The purpose of the TRP is to ensure that procedures to manage nickel concentrations in the effluent are implemented in a timely manner to minimize risks associated with elevated nickel concentrations in the receiving environment of Erickson Creek. The TRP procedures must include, but not be limited to, specific management actions to be implemented where trigger exceedances are confirmed, and a schedule for implementation of the management actions.

The permittee must cause a Qualified Professional to complete a Best Achievable Technology (BAT) Assessment in accordance with the June 2, 2022 Terms of Reference and submit it to the director by October 28, 2022. The purpose of the BAT Assessment is to (1) identify the potential technologies or options that are feasible and could be implemented to manage nickel concentrations in EVO SRF Phase 2 effluent with the objective of achieving or improving upon the level 2 nickel interim screening value for invertebrates at EV_ECOUT (E321814), (2) evaluate each feasible technology or option, including for reliability, control-effectiveness, cost-effectiveness and implementation timeframe, and (3) recommend a technology or option that could be implemented in the interim before long-term nickel BAT can be recommended and verified.

The permittee must review and update the TRP by June 1, 2023. The updated TRP must be submitted to the director and must include consideration of:

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 31 of 89 Permit Number: 107517

- i. The final approved nickel benchmark as per Section 5.2.1,
- ii. Results from the Elkview Operations Local Aquatic Effects Monitoring Program as per Section 8.3.5, and
- iii. any other relevant plans, data or information.

5.3 <u>NITROGEN SOURCE CONTROL PLAN</u>

The permittee must develop a Nitrogen Source Control Plan that applies to operations at each of the Teck Coal Mine Sites in the Designated Area prepared by a Qualified Professional. The Nitrogen Source Control Plan must be submitted to the director by May 31, 2021. The plan must include, at a minimum, the following:

- i. A discussion of the current state of understanding of the physical and biogeochemical processes occurring within and downgradient of waste rock spoils as a result of loss of nitrogen species to the environment from blasting practices.
- ii. A discussion of nitrogen speciation, interaction effects with other Parameters of Concern, changes to concentrations over time, etc.
- iii. A description of management strategies that have been and will be implemented to prevent the loss of nitrogen species to the environment. Each nitrogen management strategy must be coupled with measurable key performance indicators (KPIs) and/or management performance metrics, with timelines for achievement, that will allow the success of each management strategy to be measured.

The submitted Nitrogen Source Control Plan must be implemented and any updates to the plan must be submitted to the director within 30 days of adoption.

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 32 of 89 Permit Number: 107517

6. GENERAL REQUIREMENTS

6.1 MAINTENANCE OF WORKS AND EMERGENCY PROCEDURES

The permittee must inspect the authorized works regularly and maintain them in good working order. In the event of a condition or emergency which prevents effective operation of the authorized works, leads to unauthorized discharge, or results in a permit exceedance, the permittee must:

- i. Comply with all applicable statutory requirements, including the Spill Reporting Regulation;
- ii. Immediately contact the director or an officer designated by the director by e-mail and/or telephone;
- iii. Take immediate appropriate remedial action for the prevention or mitigation of pollution; and
- iv. Submit written documentation of any malfunction or emergency condition. The report must include all the corrective and preventative actions that will be taken, a schedule of implementation of actions and the date the findings as to the cause of the incident will be reported to the director and KNC. This information must be submitted with the next quarterly report required in Section 9 unless otherwise required by the director.

During an emergency event, the director may suspend conditions under this permit where the emergency event will prevent compliance with a requirement of this permit.

During and/or after the emergency event or condition, the permittee must conduct appropriate sampling and analysis of discharges, which may be more stringent than the monitoring requirements of this permit and/or applicable statutory requirements. As the results of such sampling become available, the permittee must provide the results to the director or a designated officer. The director may require additional monitoring or reporting at any time by specifying such in writing to the permittee.

The director may specify contingency actions to be implemented to protect human health and the environment while authorized works and/or standard operating procedures are being restored.

Date issued:
Date amended:
(most recent)

November 19, 2014

December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Permit Number: 107517

Page 33 of 89

6.2 **EFFLUENT NON-TOXICITY**

- 6.2.1 Effluent is not acutely toxic if it does not cause greater than 50% mortality in 96 hr Rainbow Trout (*Oncorhynchus mykiss*) single concentration toxicity tests (EPS 1/RM/13 2nd edition, December 2000) or greater than 50% mortality in 48 hr Daphnia magna single concentration toxicity tests (EPS 1/RM/14 2nd edition, December 2000).
- 6.2.2 Where acute toxicity testing is required at discharge monitoring sites in Appendix 2 Tables 10 through 25, effluent must not be acutely toxic, as per Section 6.2.1.

6.3 **CONTROLLED BYPASSES**

Bypass of the authorized works, except for the two (2) LCO Dry Creek Sedimentation Ponds seasonally during non-freshet flows as per Section 2.8.3, calcite treatment facilities as per Appendix Section 5A3 and selenium and nitrate treatment facilities as per Appendix Sections 4C3.5, 4D2.3, and 4E2.3 is prohibited unless the prior approval of the director is obtained and confirmed in writing. The director may specify conditions to address the bypass.

6.4 **QUALIFIED PROFESSIONAL**

A qualified professional is defined as follows:

"Qualified Professional" means an applied scientist or technologist specializing in an applied science or technology applicable to the duty or function, including, but not limited to agrology, biology, chemistry, engineering, geology or hydrogeology and who:

- i. is registered with the appropriate professional organization, is acting under that organization's code of ethics and is subject to disciplinary action by that organization, and
- ii. through suitable education, experience, accreditation and/or knowledge, may be reasonably relied on to provide advice within their area of expertise.

All documents submitted to the director by a Qualified Professional must be signed by the author(s).

Date issued: Date amended: (most recent)

November 19, 2014

December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 34 of 89

Permit Number: 107517

6.5 ENVIRONMENTAL EMERGENCY RESPONSE PLAN

The permittee must maintain an Environmental Emergency Response Plan which includes effective procedures for responding to all probable environmental emergencies associated with the Teck Coal operations and mine site areas, including the suspension of discharge of effluent(s) where appropriate, if required. The permittee must keep this plan up to date and provide the director with any updates to this plan within 30 days of adoption of the plan update.

The director may require periodic review of the response plan, and/or a report on any emergency event associated with the mine operation or occurring at the mine site.

6.5.1 The Emergency Response Plan must at a minimum include:

- i. Identification of Environmental Aspects as defined by the ISO 14001 Environmental Management System Standards that pose a risk to the environment or public safety;
- ii. An evaluation of the identified environmental aspects including a fate and effects assessment where applicable;
- iii. Maps identifying areas of high environmental sensitivity around the mine sites including along the transportation corridors, and areas downstream of water-crossings where spilled materials can reasonably be anticipated to impact;
- iv. Site specific spill response tactics, including the required training and resources to implement those tactics for each of the identified materials or risks during an emergency event;
- v. Requirements and procedures for spill reporting and/or emergency notification to various levels of government, including the KNC; and
- vi. Procedure for establishing formal interagency communication for the duration of the emergency and clean-up as necessary.

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 35 of 89 Permit Number: 107517

- 6.5.2 The permittee must maintain an Environmental Emergency Response Plan and ensure:
 - i. Adequate equipment caches are available at each operation, at a minimum, to enable timely and effective response to the identified highly sensitive areas and implementation of the plan;
 - ii. Identify, train and have available a sufficient number of emergency responders to effectively and efficiently respond and implement the identified emergency response tactics;
 - iii. Conduct regularly scheduled emergency response drills and exercises to test and refine the plan; and
 - iv. Participate in efforts to harmonize spill response kits and plans with other industrial operators and municipalities.

6.6 PUBLIC NOTIFICATION REGARDING POTABLE WATER USE IN ELK VALLEY

The permittee must provide annual notification to all current water users (specifically surface and shallow groundwater users along the Fording and Elk Rivers) downstream of the Teck Operations, where impacts from mining are causing exceedances of the British Columbia Drinking Water Quality Guidelines. The notification must:

- i. Advise current water users in the Elk Valley of the risks for drinking water sources to exceed drinking water guidelines
- ii. Remind all water users to have their source water sources tested to identify if treatment is required prior to drinking;
- iii. Have the same information accessible and maintained on the Internet; and
- iv. Annually by March 31, submit a written report to the director describing compliance with the requirements of this section for the previous year.

A draft of the notification must be submitted to Interior Health (email: hbe@interiorhealth.ca) and to the director 30 days prior to distribution. This notification requirement must continue until such time as water quality in the affected areas improves such that BC Drinking Water Quality Guidelines are achieved for mining-related Parameters of Concern determined through the Regional Groundwater Monitoring Program.

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 36 of 89 Permit Number: 107517

6.7 SPLIT SAMPLE AUDIT FAILURE

The permittee may be required to participate in a split sample audit, in accordance with the Environmental Data Quality Assurance Regulation. If the Ministry determines the results of the Split Sample Audit to be a failure, the permittee will be notified.

In the event of a split sample audit failure, the permittee must immediately, following receipt of the notification of the failure, conduct an investigation into the root cause of the failure. A report summarizing the current results of this investigation must be submitted to the director as part of the Annual Report for the year in which the notification of the split sample audit failure was issued to the permittee. This report must include, but not necessarily be limited to, the following information:

- a) Cause of failure; and
- b) Steps taken and/or planned to prevent reoccurrence.

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 37 of 89 Permit Number: 107517

7. ABMP COMMITMENTS

The following section identifies specific commitments made by the permittee in the Elk Valley Area Based Management Plan.

The permittee must aggressively pursue all viable approaches for reducing contaminant loadings to the environment and implement in a timely manner. Treatment approaches include passive and active water treatment.

7.1 IMPLEMENTATION PLAN

7.1.1 The permittee must cause a Qualified Professional to develop an Implementation Plan and submit it to the director, with a copy provided to the Ministry of Energy, Mines and Low Carbon Innovation Chief Permitting Officer, by July 31, 2022, April 30, 2025 and every third year after that.

The Implementation Plan must:

- 7.1.1.1 Demonstrate how the Compliance Point limits and Site Performance Objectives for Compliance Points and Order Stations for the Order Constituents will be met, using the most recent Regional Water Quality Model described in Section 9.9, the most recent permitted development for the permittee's five Elk Valley coal mine sites, and by implementing Best Achievable Technology, including effluent treatment technologies that have been accepted for use in mitigation planning;
- 7.1.1.2 Clearly identify the proposed location, treatment sources, capacity, and Operational Date for each proposed effluent treatment facility;
- 7.1.1.3 Provide water quality projections for Order Constituents at Compliance Points and Order stations for the Permitted Development Planning Period;
- 7.1.1.4 Be modified or amended by a Qualified Professional as required by the director, and the permittee must, within the timeframe specified by the director, resubmit to the director the Implementation Plan with any required modifications or amendments; and,

Date issued: Date amended: (most recent) November 19, 2014

December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 38 of 89 Permit Number: 107517

- 7.1.1.5 Be developed in accordance with the approved Terms of Reference described in Section 7.1.3.
- 7.1.2 The permittee must submit Regional Water Quality Model output data in digital spreadsheet format (i.e., Microsoft Excel) for the Implementation Plan scenario including projected monthly average concentrations under the range of projections used for mitigation planning.
- 7.1.3 The permittee must develop a Terms of Reference for the Implementation Plan update. The Terms of Reference must describe the treatment-related model assumptions used, the sensitivity scenarios, and other expectations for the update. The permittee must submit the initial Terms of Reference to the director, with a copy provided to the Ministry of Energy, Mines and Low Carbon Innovation Chief Permitting Officer, for approval, by April 30, 2024, and updates must be provided every third year thereafter.
- 7.1.4 The director may consider the Implementation Plan and/or request additional information to update other requirements such as those in Section 7.2 of this permit.

7.2 TREATMENT

7.2.1 ACTIVE WATER TREATMENT FACILITIES

The permittee must design, construct and operate the following active water treatment facilities (AWTF) or alternative water treatment technology as approved by the director, by the date shown. The permittee must employ best achievable technology in the development of these treatment facilities. Phosphorus treatment must be included if necessary, to ensure BC Water Quality Guidelines for chlorophyll -a for freshwater aquatic life in streams is met.

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 39 of 89 Permit Number: 107517

TREATMENT	TREATMENT	APPROXIMATE	OPERATIONAL
FACILITY	SCOPE	CAPACITY OF	DATE
		AWTF	
Fording River	Cataract, Swift,	$20,000 \text{ m}^3/\text{day}$	December 31, 2018
South	Kilmarnock		
	Creeks		
Elkview Phase I*	Bodie, Gate,	$30,000 \text{ m}^3/\text{day}$	December 31, 2020
	Erickson Creeks		
Fording River	Clode Creek,	$15,000 \text{ m}^3/\text{day}$	December 31, 2022
North	North Spoil, Swift		
	Pit		
Elkview Phase II	Erickson	$20,000 \text{ m}^3/\text{day}$	December 31, 2024
Greenhills	GHO West Spoil		
	(Thompson,	$7,500 \text{ m}^3/\text{day}$	December 31, 2026
	Leask, Wolfram),	7,500 III /day	December 31, 2020
	Greenhills Creek		
Fording River	Swift Pit	$15,000 \text{ m}^3/\text{day}$	December 31, 2030
North Phase II	Discharge	_	

^{*}Elkview Operations SRF Phase 2 replaces Elkview Phase I

Notwithstanding the above requirements to construct and operate active water treatment facilities, the permittee must ensure that all necessary active water treatment works or alternative water quality mitigation works are designed, constructed and operated in sufficient time and at sufficient capacity to meet targets and timeframes for water quality consistent with the ABMP.

Date issued:
Date amended:
(most recent)

November 19, 2014

December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 40 of 89 Permit Number: 107517

7.3 <u>RESEARCH AND TECHNOLOGY DEVELOPMENT</u>

7.3.1 RESEARCH ACTIVITIES

- i. The permittee must conduct a research and technology development program aimed at:
 - a) Identifying, evaluating, and verifying measures to minimize the release of selenium, nitrate, sulphate, cadmium, calcite, and any other Parameters of Concern designated by the director; and
 - b) Developing mitigation strategies to improve the management of water quality and calcite within the Designated Area.
- ii. Research and technology development activities must specifically include research to identify, evaluate, and validate measures to reduce the reliance on long term active water treatment.
- iii. Research areas must include, but not be limited to, the following topics:
 - a) geochemical release mechanisms, release rates and relationships between factors that influence contaminant release;
 - b) saturated and unsaturated flow mechanisms in waste piles;
 - c) mine waste rock management and dump design alternatives;
 - d) cover systems including soil and vegetative covers, complex soil covers and geomembranes;
 - e) water capture, diversion and conveyance systems;
 - f) active and semi-passive water treatment, including partially saturated waste rock fills;
 - g) water treatment residuals management;
 - h) treatment strategies for phosphorus reduction;
 - i) treatment strategies for sulphate and cadmium reduction, if needed in the future;
 - j) nitrate reduction through treatment and improved blasting practices; and,
 - k) predictive tools and treatment/management technologies for calcite formation.

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 41 of 89 Permit Number: 107517

iv. All on-site field trials for mitigation strategies and on-site piloting work for water treatment must be discussed with the director to determine whether they will require permit amendments before proceeding.

7.3.2 REPORTING

The permittee must submit an annual Research and Technology Development Progress Report by March 31st of each year that contains:

- i. A detailed rationalization of the overall research program including reasons why specific research areas are/are not being investigated in a given year;
- ii. Detailed information on research objectives, study designs, data collected, results and interpretation, and plans for future research and technology development;
- iii. An evaluation of the technologies relative to their potential for implementation at specific locations within the Designated Area;
- iv. A timeframe for implementation of technologies at pilot and at fullscales and for integration into the Adaptive Management Plan; and,
- v. Portions of the report that contain proprietary information must be marked "Confidential Proprietary." Release of information is subject to the Freedom and Information Privacy Act.

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 42 of 89 Permit Number: 107517

8. **MONITORING REQUIREMENTS**

The director may alter the monitoring and reporting requirements in this permit as needed. The need for changes to the programs will be based on results submitted as well as any other information obtained by the director in connection with the discharges.

8.1 <u>DISCHARGE AND RECEIVING ENVIRONMENT MONITORING PROGRAMS</u>

The permittee must sample the parameters at the sampling sites at the specific frequencies as defined in Appendix 2 Tables 10 through 25. The permittee must sample flow at the sites listed and at the frequency recommended in Appendix B in the approved Regional Surface Flow Monitoring Plan. The discharge and receiving environment water sampling sites are located approximately as shown in Appendix 1.

8.1.1 SAMPLING SITES

Discharge and receiving environment sample collection locations are described and numerically identified in Tables 1 through 8.

TABLE 1: COMPLIANCE POINTS SAMPLING LOCATIONS (APPENDIX 1C)

EMS #	TECK IDENTIFIER	SITE	SITE DESCRIPTION
E223753	FR_FRABCH	FRO	Fording River, approximately 100 m upstream of Chauncey Creek
0200378	GH_FR1	GHO	Fording River, approximately 205 m downstream of Greenhills Creek
E300090	GH_ERC	GHO	Elk River, approximately 220 m downstream of Thompson Creek
E297110	LC_LCDSSLCC	LCO	Line Creek, immediately downstream of South Line Creek Confluence (approximately 1500 m downstream of the WLC WTP outfall)
E102682	EV_HC1	EVO	Harmer Spillway
E300091	EV_MC2	EVO	Michel Creek, at Highway 3 Bridge
E258937	CM_MC2	СМО	Michel Creek, approximately 50m upstream of Andy Goode Creek

Date issued: Date amended: November 19, 2014

(most recent)

December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 43 of 89

Permit Number: 107517

TABLE 2: ORDER STATIONS SAMPLING LOCATIONS (APPENDIX 1D AND

1E)

EMS #	ORDER STATION (TECK IDENTIFIER)	SITE DESCRIPTION
0200378	FR4 (GH_FR1)	Upper Fording River, downstream of Greenhills Creek
0200028	FR5 (LC_LC5)	Lower Fording River, downstream of Line Creek
E206661	ER1 (GH_ER1)	Elk River, upstream of Boivin Creek
0200027	ER2 (EV_ER4)	Elk River, upstream of Grave Creek (from Fording River to Michel Creek)
0200393	ER3 (EV_ER1)	Elk River, downstream of Michel Creek
E294312	ER4 (RG_ELKORES)	Elk River, at Elko Reservoir
	LK2	Koocanusa Reservoir transect, south of the Elk River, refer to Table 2A for individual transect sampling locations

TABLE 2A: KOOCANUSA RESERVOIR ORDER STATION LK2 – TRANSECT SAMPLING LOCATIONS (APPENDIX 1E)

	THE (SECT SHAMER (SECTION SECTION SECT		
EMS #	TECK IDENTIFIER	SITE DESCRIPTION	
E300230	RG_DSELK	Koocanusa Reservoir south of Elk River, middle transect sampling	
	_	location	
E327371	RG_DSELK_L2	Koocanusa Reservoir south of Elk River, transect sampling location	
		250 m towards left downstream bank from RG_DSELK	
E327372	RG_DSELK_L1	Koocanusa Reservoir south of Elk River, transect sampling location	
		125 m towards left downstream bank from RG_DSELK	
E327373	RG_DSELK_R1	Koocanusa Reservoir south of Elk River, transect sampling location	
		125 m towards right downstream bank from RG DSELK	
E327374	RG_DSELK_R2	Koocanusa Reservoir south of Elk River, transect sampling location	
		250 m towards right downstream bank from RG_DSELK	

Date issued: Date amended: November 19, 2014

Date amended: December 19, 2022 (most recent)

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 44 of 89 Permit Number: 107517

TABLE 3: FORDING RIVER OPERATIONS DISCHARGE, RECEIVING ENVIRONMENT, AND OTHER SAMPLE LOCATIONS (APPENDIX 1F)

EMS # TECK IDENTIFIER SITE DESCRIPTION E102475 FR_TP1 Tailings Slurry to North Tailings Pond E102476 FR_NL1 North Loop Settling Pond Decant to the Fording River E102478 FR_MS1 Maintenance and Services Settling Pond Decant to the Fording River E102480 FR_C1 Eagle Settling Pond Decant to the Fording River E102481 FR CC1 Clode Settling Pond Decant to the Fording River E208394 FR_SKP1 South Kilmarnock Settling Pond Decant - Phase 1 E208395 FR_SKP2 South Kilmarnock Settling Pond Decant- Phase 2 E216781 FR_HP1 Henretta Pit Effluent into the Henretta diversion culverts E217403 FR_SP1 Smith Ponds Decant to the Fording River E217403 FR_SP1 Smith Ponds Decant to the Fording River E304750 FR_P1 Discharge from the pipeline conveying the combined, untreated mine-influenced flow from Swift-Cataract dosed with antiscalant, and Swift Clean Water Diversion at the FRO-S AWTF Outfall Structure E304750 FR_P1 Dest Sediment Pond Decant to the Fording River E304750 FR_P1 Dest Sediment Pond Decant to the Fording River E304750 FR_FN LP1 Liverpool Sediment Pond Decant to Lake Mountain Creek E325311 FR_FWP1 Floodplain Widening Sediment Pond Decant to Lake Mountain Creek E325312 FR_FWP1 Floodplain Widening Sediment Pond Decant to the Fording River E326315 FR_FRCP1 Fording River upstream of Kilmarnock Creek E30071 FR_FRCP1 Fording River downstream (approx. 100 m) of FRO-S AWTF Outfall Structure E30071 FR_FRCP1 Fording River downstream of Henretta E216777 FR_UFR1 Fording River downstream of Henretta E216777 FR_UFR1 Fording River upstream of Henretta E216777 FR_UFR1 Fording River upstream of McQuarrie Creek E300097 FR_FRRD Fording River near Fording River Road E300005 FR_FRCD Fording River near Fording Riv		(APPENDIX IF	<i>)</i>
E206660FR_TP3Tailings Slurry to South Tailings PondE102476FR_NL1North Loop Settling Pond Decant to the Fording RiverE102478FR_MS1Maintenance and Services Settling Pond Decant to the Fording RiverE102480FR_EC1Eagle Settling Pond Decant to the Fording RiverE102481FR_CC1Clode Settling Pond Decant to the Fording RiverE208394FR_SKP1South Kilmarnock Settling Pond Decant - Phase 1E208395FR_SKP2South Kilmarnock Settling Pond Decant - Phase 2E216781FR_HP1Henretta Pit Effluent into the Henretta diversion culvertsE261897FR_SP1Smith Ponds Decant to the Fording RiverE217403FR_3PITSwift Pit Effluent to the Fording RiverE304835FR_SCOUTDischarge from the pipeline conveying the combined, untreated mine-influenced flow from Swift-Cataract dosed with antiscalant, and Swift Clean Water Diversion at the FRO-S AWTF Outfall StructureE304835FR_LP1Liverpool Sediment Pond Decant to the Fording RiverE304750FR_PP1Post Sediment Pond Decant to the Fording RiverE306924FR_LMP1Lake Mountain Sediment Pond Decant to the Fording RiverE325311FR_FWP1Floodplain Widening Sediment Pond Decant to the Fording RiverE325312FR_FWP1HFloodplain Widening Sediment Pond Decant to the Fording RiverE320695FR_SCOUTDSFording River downstream (approx. 100 m) of FRO-S AWTF Outfall StructureE300071FR_FRCP1Fording River, approximately 525 m downstream of Cataract CreekC200251FR_FRIFording River downs	EMS #		SITE DESCRIPTION
E102476 FR NL1 North Loop Settling Pond Decant to the Fording River E102478 FR_MS1 Maintenance and Services Settling Pond Decant to the Fording River E102480 FR EC1 Eagle Settling Pond Decant to the Fording River E102481 FR CC1 Clode Settling Pond Decant to the Fording River E208394 FR SKP1 South Kilmarnock Settling Pond Decant - Phase 1 E208395 FR SKP2 South Kilmarnock Settling Pond Decant- Phase 2 E216781 FR HP1 Henretta Pit Effluent into the Henretta diversion culverts E261897 FR SP1 Smith Ponds Decant to the Fording River E217403 FR SP1 Swift Pit Effluent to the Fording River E320694 FR_SCOUT Swift Pit Effluent to the Fording River Discharge from the pipeline conveying the combined, untreated mine-influenced flow from Swift-Cataract dosed with antiscalant, and Swift Clean Water Diversion at the FRO-S AWTF Outfall Structure E304835 FR LP1 Liverpool Sediment Pond Decant to the Fording River E304750 FR PP1 Post Sediment Pond Decant to the Fording River E304924 FR LMP1 Lake Mountain Sediment Pond Decant to Lake Mountain Creek E325311 FR FWP1 Floodplain Widening Sediment Pond Decant to the Fording River E325312 FR FWP1H Floodplain Widening Sediment Pond in-pond sample location 0200201 FR FR2 Fording River upstream of Kilmarnock Creek E320695 FR_SCOUTDS Fording River downstream (approx. 100 m) of FRO-S AWTF Outfall Structure E300071 FR_FRCP1 Fording River, approximately 525 m downstream of Cataract Creek E216777 FR UFR1 Fording River downstream of Henretta E216777 FR UFR1 Fording River upstream of Henretta E216777 FR UFR1 Fording River worten of McQuarrie Creek E300097 FR FRD Henretta Creek upstream of McQuarrie Creek E300097 FR FRRD Fording River near Fording River Road	E102475	FR TP1	Tailings Slurry to North Tailings Pond
E102478 FR_MS1 Maintenance and Services Settling Pond Decant to the Fording River	E206660	FR TP3	Tailings Slurry to South Tailings Pond
E102480 FR EC1 Eagle Settling Pond Decant to the Fording River	E102476	FR NL1	North Loop Settling Pond Decant to the Fording River
E102481 FR CC1 Clode Settling Pond Decant to the Fording River E208394 FR SKP1 South Kilmarnock Settling Pond Decant - Phase 1 E208395 FR SKP2 South Kilmarnock Settling Pond Decant - Phase 2 E216781 FR HP1 Henretta Pit Effluent into the Henretta diversion culverts E261897 FR SP1 Smith Ponds Decant to the Fording River E217403 FR 3PIT Swift Pit Effluent to the Fording River E320694 FR SCOUT E320694 FR SCOUT E304835 FR LP1 Liverpool Sediment Pond Decant to the Fording River E304750 FR PP1 Post Sediment Pond Decant to the Fording River E306924 FR LMP1 Lake Mountain Sediment Pond Decant to the Fording River E325311 FR FWP1 Floodplain Widening Sediment Pond Decant to the Fording River E325312 FR FWP1H Floodplain Widening Sediment Pond in-pond sample location 0200201 FR FR2 Fording River upstream of Kilmarnock Creek E320695 FR_SCOUTDS Fording River downstream (approx. 100 m) of FRO-S AWTF Outfall Structure E300071 FR FR1 Fording River downstream of Henretta E216777 FR UFR1 Fording River downstream of Henretta E216778 FR HC1 Henretta Creek at mouth E300096 FR HC3 Henretta Creek E300097 FR_FRRD Fording River near Fording River Road	E102478	FR_MS1	
E208394 FR SKP1 South Kilmarnock Settling Pond Decant - Phase 1 E208395 FR SKP2 South Kilmarnock Settling Pond Decant- Phase 2 E216781 FR HP1 Henretta Pit Effluent into the Henretta diversion culverts E261897 FR SP1 Smith Ponds Decant to the Fording River E217403 FR 3PIT Swift Pit Effluent to the Fording River E320694 FR_SCOUT Discharge from the pipeline conveying the combined, untreated mine-influenced flow from Swift-Cataract dosed with antiscalant, and Swift Clean Water Diversion at the FRO-S AWTF Outfall Structure E304750 FR PP1 Post Sediment Pond Decant to the Fording River E306924 FR LMP1 Lake Mountain Sediment Pond Decant to Lake Mountain Creek E325311 FR FWP1 Floodplain Widening Sediment Pond Decant to the Fording River E325312 FR FWP1H Floodplain Widening Sediment Pond in-pond sample location 0200201 FR FR2 Fording River upstream of Kilmarnock Creek E320695 FR_SCOUTDS Fording River downstream (approx. 100 m) of FRO-S AWTF Outfall Structure E300071 FR_FRCP1 Fording River, approximately 525 m downstream of Cataract Creek E216777 FR UFR1 Fording River downstream of Henretta E216778 FR HC1 Henretta Creek at mouth E300096 FR HC3 Henretta Creek upstream of McQuarrie Creek E300097 FR FRRD Fording River near Fording River Road	E102480	FR_EC1	Eagle Settling Pond Decant to the Fording River
E208395 FR SKP2 South Kilmarnock Settling Pond Decant- Phase 2 E216781 FR HP1 Henretta Pit Effluent into the Henretta diversion culverts E261897 FR SP1 Smith Ponds Decant to the Fording River E217403 FR 3PIT Swift Pit Effluent to the Fording River E320694 FR_SCOUT E330694 FR_SCOUT E304835 FR LP1 Liverpool Sediment Pond Decant to the Fording River E304750 FR PP1 Post Sediment Pond Decant to the Fording River E306924 FR LMP1 Lake Mountain Sediment Pond Decant to Lake Mountain Creek E325311 FR FWP1 Floodplain Widening Sediment Pond Decant to the Fording River E325312 FR FWP1H Floodplain Widening Sediment Pond in-pond sample location 0200201 FR FR2 Fording River upstream of Kilmarnock Creek E320695 FR_SCOUTDS Fording River downstream (approx. 100 m) of FRO-S AWTF Outfall Structure Fording River, approximately 525 m downstream of Cataract Creek E216777 FR UFR1 Fording River upstream of Henretta E216778 FR HC1 Henretta Creek at mouth E300097 FR FRRD Fording River near Fording River Road	E102481	FR_CC1	Clode Settling Pond Decant to the Fording River
E216781 FR HP1 Henretta Pit Effluent into the Henretta diversion culverts E261897 FR SP1 Smith Ponds Decant to the Fording River E217403 FR 3PIT Swift Pit Effluent to the Fording River Discharge from the pipeline conveying the combined, untreated mine-influenced flow from Swift-Cataract dosed with antiscalant, and Swift Clean Water Diversion at the FRO-S AWTF Outfall Structure E304835 FR LP1 Liverpool Sediment Pond Decant to the Fording River E304750 FR PP1 Post Sediment Pond Decant to the Fording River E306924 FR LMP1 Lake Mountain Sediment Pond Decant to Lake Mountain Creek E325311 FR FWP1 Floodplain Widening Sediment Pond Decant to the Fording River E325312 FR FWP1H Floodplain Widening Sediment Pond in-pond sample location 0200201 FR FR2 Fording River upstream of Kilmarnock Creek E320695 FR_SCOUTDS Fording River downstream (approx. 100 m) of FRO-S AWTF Outfall Structure E300071 FR_FRCP1 Fording River downstream of Henretta E216777 FR_UFR1 Fording River downstream of Henretta E216778 FR_HC1 Henretta Creek at mouth E300096 FR_HC3 Henretta Creek upstream of McQuarrie Creek E300097 FR_FRRD Fording River near Fording River Road	E208394	FR_SKP1	South Kilmarnock Settling Pond Decant - Phase 1
E261897 FR SP1 Smith Ponds Decant to the Fording River E217403 FR 3PIT Swift Pit Effluent to the Fording River B320694 FR_SCOUT Discharge from the pipeline conveying the combined, untreated mine-influenced flow from Swift-Cataract dosed with antiscalant, and Swift Clean Water Diversion at the FRO-S AWTF Outfall Structure E304835 FR LP1 Liverpool Sediment Pond Decant to the Fording River E304750 FR PP1 Post Sediment Pond Decant to the Fording River E306924 FR LMP1 Lake Mountain Sediment Pond Decant to Lake Mountain Creek E325311 FR FWP1 Floodplain Widening Sediment Pond Decant to the Fording River E325312 FR FWP1H Floodplain Widening Sediment Pond in-pond sample location 0200201 FR FR2 Fording River upstream of Kilmarnock Creek E320695 FR_SCOUTDS Fording River downstream (approx. 100 m) of FRO-S AWTF Outfall Structure Fording River, approximately 525 m downstream of Cataract Creek Fording River downstream of Henretta E216777 FR UFR1 Fording River downstream of Henretta E216778 FR_HC1 Henretta Creek at mouth E300096 FR_HC3 Henretta Creek upstream of McQuarrie Creek E300097 FR_FRRD Fording River near Fording River Road	E208395	FR_SKP2	South Kilmarnock Settling Pond Decant- Phase 2
E320694 FR_SCOUT E320694 FR_SCOUT E320694 FR_SCOUT E320694 FR_SCOUT E320694 FR_SCOUT E320694 FR_SCOUT E320695 FR_SCOUT E320695 FR_SCOUTDS E320695 FR_SCOUTDS E320695 FR_FREPI E320695 FR_FREPI E320696 FR_FREPI E320697 FR_FREPI E320697 FR_FREPI E320697 FR_FREPI E320698 FR_FREPI E320698 FR_FREPI E320699	E216781	FR_HP1	Henretta Pit Effluent into the Henretta diversion culverts
E320694 FR_SCOUT Discharge from the pipeline conveying the combined, untreated mine-influenced flow from Swift-Cataract dosed with antiscalant, and Swift Clean Water Diversion at the FRO-S AWTF Outfall Structure	E261897	FR_SP1	Smith Ponds Decant to the Fording River
E320694 FR_SCOUT mine-influenced flow from Swift-Cataract dosed with antiscalant, and Swift Clean Water Diversion at the FRO-S AWTF Outfall Structure	E217403	FR_3PIT	Swift Pit Effluent to the Fording River
E304750 FR PP1 Post Sediment Pond Decant to the Fording River E306924 FR LMP1 Lake Mountain Sediment Pond Decant to Lake Mountain Creek E325311 FR FWP1 Floodplain Widening Sediment Pond Decant to the Fording River E325312 FR FWP1H Floodplain Widening Sediment Pond in-pond sample location 0200201 FR FR2 Fording River upstream of Kilmarnock Creek E320695 FR_SCOUTDS Fording River downstream (approx. 100 m) of FRO-S AWTF Outfall Structure E300071 FR_FRCP1 Fording River, approximately 525 m downstream of Cataract Creek 0200251 FR FR1 Fording River downstream of Henretta E216777 FR UFR1 Fording River upstream of Henretta E216778 FR_HC1 Henretta Creek at mouth E300096 FR HC3 Henretta Creek upstream of McQuarrie Creek E300097 FR_FRRD Fording River near Fording River Road	E320694	FR_SCOUT	mine-influenced flow from Swift-Cataract dosed with antiscalant, and Swift Clean Water Diversion at the FRO-S AWTF Outfall
E306924 FR LMP1 Lake Mountain Sediment Pond Decant to Lake Mountain Creek E325311 FR FWP1 Floodplain Widening Sediment Pond Decant to the Fording River E325312 FR FWP1H Floodplain Widening Sediment Pond in-pond sample location 0200201 FR FR2 Fording River upstream of Kilmarnock Creek E320695 FR_SCOUTDS Fording River downstream (approx. 100 m) of FRO-S AWTF Outfall Structure E300071 FR_FRCP1 Fording River, approximately 525 m downstream of Cataract Creek 0200251 FR_FR1 Fording River downstream of Henretta E216777 FR_UFR1 Fording River upstream of Henretta E216778 FR_HC1 Henretta Creek at mouth E300096 FR_HC3 Henretta Creek upstream of McQuarrie Creek E300097 FR_FRRD Fording River near Fording River Road	E304835	FR LP1	Liverpool Sediment Pond Decant to the Fording River
E325311 FR FWP1 Floodplain Widening Sediment Pond Decant to the Fording River E325312 FR FWP1H Floodplain Widening Sediment Pond in-pond sample location 0200201 FR FR2 Fording River upstream of Kilmarnock Creek E320695 FR_SCOUTDS Fording River downstream (approx. 100 m) of FRO-S AWTF Outfall Structure E300071 FR_FRCP1 Fording River, approximately 525 m downstream of Cataract Creek 0200251 FR FR1 Fording River downstream of Henretta E216777 FR_UFR1 Fording River upstream of Henretta E216778 FR HC1 Henretta Creek at mouth E300096 FR HC3 Henretta Creek upstream of McQuarrie Creek E300097 FR_FRRD Fording River near Fording River Road	E304750	FR PP1	Post Sediment Pond Decant to the Fording River
E325312FR FWP1HFloodplain Widening Sediment Pond in-pond sample location0200201FR FR2Fording River upstream of Kilmarnock CreekE320695FR_SCOUTDSFording River downstream (approx. 100 m) of FRO-S AWTF Outfall StructureE300071FR_FRCP1Fording River, approximately 525 m downstream of Cataract Creek0200251FR FR1Fording River downstream of HenrettaE216777FR UFR1Fording River upstream of HenrettaE216778FR HC1Henretta Creek at mouthE300096FR HC3Henretta Creek upstream of McQuarrie CreekE300097FR FRRDFording River near Fording River Road	E306924	FR LMP1	Lake Mountain Sediment Pond Decant to Lake Mountain Creek
0200201FR FR2Fording River upstream of Kilmarnock CreekE320695FR_SCOUTDSFording River downstream (approx. 100 m) of FRO-S AWTF Outfall StructureE300071FR_FRCP1Fording River, approximately 525 m downstream of Cataract Creek0200251FR FR1Fording River downstream of HenrettaE216777FR_UFR1Fording River upstream of HenrettaE216778FR_HC1Henretta Creek at mouthE300096FR_HC3Henretta Creek upstream of McQuarrie CreekE300097FR_FRRDFording River near Fording River Road	E325311	FR FWP1	Floodplain Widening Sediment Pond Decant to the Fording River
E320695 FR_SCOUTDS Fording River downstream (approx. 100 m) of FRO-S AWTF Outfall Structure E300071 FR_FRCP1 Fording River, approximately 525 m downstream of Cataract Creek 0200251 FR FR1 Fording River downstream of Henretta E216777 FR UFR1 Fording River upstream of Henretta E216778 FR_HC1 Henretta Creek at mouth E300096 FR_HC3 Henretta Creek upstream of McQuarrie Creek E300097 FR_FRRD Fording River near Fording River Road	E325312	FR_FWP1H	Floodplain Widening Sediment Pond in-pond sample location
E320093 FR_SCOUTDS Outfall Structure E300071 FR_FRCP1 Fording River, approximately 525 m downstream of Cataract Creek 0200251 FR_FR1 Fording River downstream of Henretta E216777 FR_UFR1 Fording River upstream of Henretta E216778 FR_HC1 Henretta Creek at mouth E300096 FR_HC3 Henretta Creek upstream of McQuarrie Creek E300097 FR_FRRD Fording River near Fording River Road	0200201	FR_FR2	Fording River upstream of Kilmarnock Creek
Creek 0200251 FR FR1 Fording River downstream of Henretta E216777 FR_UFR1 Fording River upstream of Henretta E216778 FR HC1 Henretta Creek at mouth E300096 FR HC3 Henretta Creek upstream of McQuarrie Creek E300097 FR_FRRD Fording River near Fording River Road	E320695	FR_SCOUTDS	Outfall Structure
E216777FR UFR1Fording River upstream of HenrettaE216778FR HC1Henretta Creek at mouthE300096FR HC3Henretta Creek upstream of McQuarrie CreekE300097FR FRRDFording River near Fording River Road	E300071	FR_FRCP1	• • • • • • • • • • • • • • • • • • • •
E216778FRHC1Henretta Creek at mouthE300096FRHC3Henretta Creek upstream of McQuarrie CreekE300097FRFRRDFording River near Fording River Road	0200251	FR_FR1	Fording River downstream of Henretta
E300096 FR HC3 Henretta Creek upstream of McQuarrie Creek E300097 FR FRRD Fording River near Fording River Road	E216777	_	
E300097 FR_FRRD Fording River near Fording River Road	E216778	FR_HC1	
	E300096	_	Henretta Creek upstream of McQuarrie Creek
0200252 FR_KC1 Kilmarnock Creek at mouth	E300097	FR_FRRD	
	0200252	FR_KC1	Kilmarnock Creek at mouth

Date issued: Date amended: November 19, 2014

(most recent)

December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 45 of 89 Permit Number: 107517

TABLE 4: GREENHILLS OPERATIONS DISCHARGE AND RECEIVING ENVIRONMENT SAMPLE LOCATIONS (APPENDIX 1G)

	ET () II(O) (IVIE) (1 SAMI LE LOCATIONS (ATTENDIX 10)
EMS #	TECK IDENTIFIER	SITE DESCRIPTION
E287438	GH_TPS	Tailings Pond Water
E102709	GH_GH1	Greenhills Creek Sediment Pond Decant to Greenhills Creek
E207436	GH_TC2	Thompson Creek Sediment Pond Decant to Thompson Creek
0200385	GH_PC1	Porter Creek Sed. Pond Decant to Porter Creek
E257795	GH_WC1	Wolfram Creek Sediment Pond Decant to the Elk River
E257796	GH_LC1	Leask Creek Sediment Pond Decant to the Elk River
E207437	GH_RLP	Rail Loop Sediment Pond Decant
0200388	GH_MC1	Mickelson Creek at LRP Road
E287433	GH_WADE	Wade Creek at LRP Road
E305855	GH_WOLF_SP1	Wolf Creek Sediment Pond Decant to the Elk River
E305854	GH_WILLOW_SP1	Willow Creek Sediment Pond Decant to the Elk River
0200389	GH_ER2	Elk River upstream of Greenhills Operation
E102714	GH_TC1	Thompson Creek at LRP Road
E287432	GH_COUGAR	Cougar Creek at LRP Road
E287437	GH_BR_F	Branch F at LRP Road
E305875	GH_NNC	No Name Creek
E305876	GH_ER1A	Elk River Side Channel downstream of Wolfram Creek
E305877	GH_ERSC2	Elk River downstream of Thompson Creek
E305878	GH_ERSC4	Elk River Side Channel upstream of Wolfram Creek

TABLE 5: LINE CREEK OPERATIONS PHASE I DISCHARGE AND RECEIVING ENVIRONMENT SAMPLE LOCATIONS (APPENDIX 1H)

	111)	
EMS #	TECK IDENTIFIER	SITE DESCRIPTION
E221268	LC_LC9	No Name Creek Diversion and Sediment Pond Decant
E216144	LC_LC7	MSA North Ponds to Line Creek
E304613	LC_LC7DSTF	MSA North Ponds to Line Creek Alternate
E219411	LC_LC8	Contingency Treatment System to Line Creek
0200044	LC_LC4	Line Creek upstream of Process Plant (~5,550 m downstream of WLC AWTF outfall)
0200337	LC_LC3	Line Creek downstream of West Line Creek (~200 m downstream of WLC AWTF outfall)
0200335	LC_LC2	Line Creek upstream of Rock Drain
E293369	LC_LCUSWLC	Line Creek upstream of West Line Creek, below rock drain (~ 140 m upstream of WLC AWTF outfall)
E216142	LC_LC1	Line Creek upstream MSA North Pit
E282149	LC_SLC	South Line Creek West Side of Main Rock Drain
E261958	LC_WLC	West Line Creek
E223240	LC_LC12	North Horseshoe Creek Near Mouth

Date issued: Date amended: November 19, 2014

(most recent)

December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 46 of 89 Permit Number: 107517

TABLE 6: LINE CREEK OPERATIONS PHASE II DISCHARGE AND RECEIVING ENVIRONMENT SAMPLE LOCATIONS (APPENDIX 1H)

EMS #	TECK IDENTIFIER	SITE DESCRIPTION
E295211	LC_SPDC	LCO Dry Creek Sedimentation Ponds to Dry Creek
E295231	LC_SPFR	LCO Dry Creek Sedimentation Ponds to Fording River
E295313	LC_DSSW	Diversion Structure Spillway
E295314	LC_SP1SW	Sedimentation Pond 1 Spillway
E295315	LC_SP2SW	Sedimentation Pond 2 Spillway
E295316	LC_SP3SW	Sedimentation Pond 3 Spillway
E288274	LC_DCEF	East Tributary of LCO Dry Creek
E288273	LC_DC3	LCO Dry Creek upstream of East Tributary Creek
E295210	LC_DCDS	LCO Dry Creek downstream of sedimentation ponds
E288270	LC_DC1	LCO Dry Creek near mouth (at bridge)
E295213	LC_UC	Unnamed Creek
E288275	LC_GRCK	Grace Creek upstream of the CP rail tracks
E295232	LC_FRUS	Fording River 100m upstream of conveyance outfall
E288271	LC_FRUSDC	Fording River upstream of LCO Dry Creek, 100m downstream of conveyance outfall
E288272	LC_FRDSDC	Fording River downstream of LCO Dry Creek
E295214	RG_CH1	Chauncey Creek

Date issued:
Date amended:
(most recent)

November 19, 2014

December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 47 of 89 Permit Number: 107517

TABLE 7: ELKVIEW OPERATIONS DISCHARGE, RECEIVING ENVIRONMENT AND OTHER SAMPLE LOCATIONS (APPENDIX 11)

		,
EMS #	TECK IDENTIFIER	SITE DESCRIPTION
E296310	EV_GH1	West Fork Tailings Impoundment to ground
0200097	EV_EC1	Erickson Creek at Mouth to Michel Creek
E296311	EV_SP1	South Pit Creek Sedimentation Pond Decant to Michel Creek
E208057	EV_MG1	Lower Milligan Creek Sedimentation Pond Decant to Michel Creek
E206231	EV_GT1	Gate Creek Sedimentation Pond Decant to Michel Creek
E102685	EV_BC1	Bodie Creek Sedimentation Pond Decant to Bodie Creek
E302170	EV_AQ6	Aqueduct Pond Control Structure to Aqueduct Creek
E102679	EV_OC1	Otto Creek Sedimentation Pond, measured 70 m upstream of the confluence with the Elk River
E208043	EV_GC2	Goddard Creek Sedimentation Pond Decant to Elk River via Goddard Marsh
E258135	EV_LC1	Lindsay Creek Infiltration Pond to ground
E298590	EV_DC1	Dry Creek Sedimentation Pond Decant to Harmer Creek
E102681	EV_SM1	6 Mile Creek Sedimentation Pond Decant to Elk River
0200203	EV_MC3	Michel Creek upstream of Erickson Creek
0200111	EV_ER2	Elk River upstream of Michel Creek
E298592	EV_BLM2	Balmer Creek at CFI Road
E298591	EV_FC1	Fennelon Creek at CFI Road
E298594	EV_SPR2	Spring Creek upstream of confluence with Aqueduct Creek
E298593	EV_TC1	Thresher Creek at Milligan Road

TABLE 8: COAL MOUNTAIN OPERATIONS DISCHARGE AND RECEIVING ENVIRONMENT SAMPLE LOCATIONS (APPENDIX 1J)

EMS #	TECK IDENTIFIER	SITE DESCRIPTION
E102488	CM_SPD	Main Interceptor Sedimentation Ponds Decant to Corbin Creek
E206438	CM_CCPD	Corbin Sedimentation Pond Decant to Corbin Creek
E298733	CM_PC2	Pengelly Channel to Corbin Creek
E298734	CM_SOW	Sowchuck Sump
E258175	CM_MC1	Michel Creek upstream of Operations
0200209	CM_CC1	Corbin Creek near confluence with Michel Creek

Date issued: Date amended: November 19, 2014

(most recent)

December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Permit Number: 107517

Page 48 of 89

TABLE 9: KOOCANUSA RESERVOIR RECEIVING ENVIRONMENT
SAMPLE LOCATIONS (APPENDIX 1E)

EMS #	TECK IDENTIFIER	SITE DESCRIPTION
E300095	RG_KERRRD	Koocanusa Reservoir, downstream of Kikkoman Creek
E300092	RG_GRASMERE	Koocanusa Reservoir, west of Grasmere
E300093	RG_USGOLD	Koocanusa Reservoir, upstream of Gold Creek
E300094	RG_BORDER	Koocanusa Reservoir, upstream of the Canada/US border

8.1.2 SAMPLING AND ANALYTICAL PROCEDURES

The following sections apply to the monitoring required as per Section 8 of this permit.

8.1.2.1 SAMPLING PROCEDURES & LAB ANALYSES

The permittee must carry out sampling in accordance with the procedures described in the "British Columbia Field Sampling Manual for Continuous Monitoring and the Collection of Air, Air-Emission, Water, Wastewater, Soil, Sediment, and Biological Samples, 2013 Edition" or most recent edition, or by alternative procedures as authorized by the director.

A copy of the above manual is available on the Ministry web page at https://www2.gov.bc.ca/gov/content/environment/research-monitoring-reporting/monitoring/laboratory-standards-quality-assurance/bc-field-sampling-manual.

The permittee must carry out analyses in accordance with procedures described in the "British Columbia Environmental Laboratory Manual, 2020 Edition", or the most recent edition or by alternative procedures as authorized by the director.

A copy of the above manual is available on the ministry web page at https://www2.gov.bc.ca/gov/content/environment/research-monitoring-reporting/monitoring/laboratory-standards-quality-assurance/bc-environmental-laboratory-manual.

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 49 of 89 Permit Number: 107517

8.1.2.1.1 Minimum Detection Limit

Minimum analytical detection limits for each parameter required by this permit must be suitable for comparison with the applicable standards listed in the most recent Approved and Working Water Quality Guidelines prepared by the ministry or other applicable limits acceptable to the director.

8.1.2.1.2 Quality Assurance/Quality Control (QA/QC) Program

The permittee must implement a Quality Assurance and Quality Control program in accordance with the Environmental Data Quality Assurance Regulation and guidance provided in the "British Columbia Field Sampling Manual for Continuous Monitoring and the Collection of Air, Air-Emissions, Water, Wastewater, Soil, Sediment, and Biological Samples", and "British Columbia Environmental Laboratory Manual." The permittee must submit samples to analytical laboratory(ies) that meet the definition of a qualified laboratory under the Environmental Data Quality Assurance Regulation unless otherwise instructed by the director.

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 50 of 89 Permit Number: 107517

8.1.2.2 FLOW MONITORING

8.1.2.2.1 Flow Calculation

Flow calculation methods for receiving streams or creeks where flow measurements are not taken must be based on a regional hydrological evaluation and recommendations made by a qualified professional. Appropriate current and historical stream gauging data should be utilized. Methods must be updated at a frequency and in a manner recommended by a qualified professional and acceptable to the director.

For the purposes of permit fee calculation, mean annual flows for the previous calendar year will be used.

8.1.2.2.2 Flow Measurement

Flow monitoring programs must be designed and implemented, and flow measurements conducted, with the intent of achieving acceptable data quality standards as defined in the approved Regional Surface Flow Monitoring Plan.

In order to appropriately determine data quality, flow measurement must be conducted in accordance with the Manual of British Columbia Hydrometric Standards (RISC, 2018), or by suitable alternative procedures as authorized by the director. The "British Columbia Field Sampling Manual for Continuous Monitoring Plus the Collection of Air, Air-Emission, Water, Wastewater, Soil, Sediment, and Biological Samples" may also be used in conjunction with the Hydrometric Standards to provide more detailed guidance on monitoring of flow using rated structures, or as a reference for alternative monitoring methods.

8.1.2.2.3 *Metadata Summary*

The permittee must compile flow monitoring station metadata for all mine sites and Elk Valley monitoring locations, including:

- i. Station lat/long, elevation, basin area and median basin elevation;
- ii. Measurement method;

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 51 of 89 Permit Number: 107517

- iii. Measurement frequency;
- iv. Rating curve established, and stability of rating curve;
- v. Identify where benchmarks and staff gauge are installed;
- vi. Identify where flow is measured and where it is calculated (by summing/subtracting/scaling other gauged flows);
- vii. Identify where data is collected to meet a permit condition;
- viii. Identify qualitatively where station information is considered representative of "mine affected" or "natural" catchments;
 - ix. Targeted RISC data grade as defined in the approved Regional Surface Flow Monitoring Plan;
 - x. identify the percent contribution of mean annual flow to nearest downstream order station listed;
- xi. identify qualitatively where station information likely representative of total watershed yield, and if not, list the known issues affecting the ability of the station to represent total watershed yield;
- xii. a general site description of each hydrometric monitoring station including a photo(s) of the station; and,
- xiii. The permittee must submit an updated Metadata Summary every three years, beginning February 28, 2021.

8.1.2.2.4 Regional Surface Flow Monitoring Plan

The permittee must develop a Regional Surface Flow Monitoring Plan. The intent of the Regional Surface Flow Monitoring Plan is to review the permittee's flow monitoring network in the Elk Valley (including receiving environment and discharge locations) to define the appropriate temporal and spatial frequency of flow monitoring locations. The plan should include:

- i. Definition of the assessment criteria and associated data requirements for the different types of flow monitoring locations
- ii. An assessment of each existing flow monitoring location, identification of stations not meeting the assessment criteria; and identification of locations where additional flow monitoring is needed; and,

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 52 of 89 Permit Number: 107517

- iii. A plan with timelines to implement or modify flow monitoring locations based on results of the assessment, including definition of the appropriate measurement methods and acceptable data quality standard for each type of flow monitoring location.
- iv. The permittee must submit an updated version of the Regional Surface Flow Monitoring Plan for approval by the director every three years, beginning December 31, 2020. Updates must include, when appropriate, changes to the location, frequency and grading of monitoring stations and to data needs and grading criteria. In the interim if changes to the monitoring program are recommended that result in a reduction in monitoring requirements these changes must be approved by the director prior to adoption.

8.1.2.3 TEMPORARY MODIFIED SAMPLING SCHEDULE FOR THE LCO MSX SHORT DUMP PROJECT

- i. Site E304613 shall be temporarily used to collect water samples only when access to E216144 is restricted due to safety concerns with the progression of the MSX Short Dump.
- ii. At least twice per year during the duration of the MSX Short Dump Project, paired samples must be taken from the site E304613 and E216144 when safe access is available to E216144. The results should be compared in the Annual Report.
- iii. During the duration of the MSX Short Dump Project, water samples do not have to be collected when access to 0200335 is restricted due to safety concerns with the progression of the MSX Short Dump. In the event regular scheduled sampling times cannot be met every effort must be made to obtain the number of samples normally required for a 6-month period. Missed samples and non-routine sampling times must be itemized in the Quarterly Report.

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 53 of 89 Permit Number: 107517

8.1.2.4 TEMPORARY SAMPLING SCHEDULE FOR THE FLOODPLAIN WIDENING SEDIMENT POND

The permittee must conduct the additional monitoring and sampling for the Floodplain Widening Sediment Pond as described in Table 8A below:

TABLE 8A – FORDING RIVER OPERATIONS FLOODPLAIN WIDENING SEDIMENT POND TEMPORARY SAMPLING SCHEDULE

SEDIMENT TO THE TENT OWNER STRING SCHEDULE		
	FLOODPLAIN WIDENING SEDIMENT POND INLET	FLOODPLAIN WIDENING SEDIMENT POND IN- POND SAMPLE LOCATION
EMS Number	E329272	E325312
Teck Station ID	FR_FWP2	FR_FWP1H
PARAMETER		
Field Parameters _(a)	M	As per Table 13
Conventional Parameters (b)	M	As per Table 13
Major Ions (c)	M	As per Table 13
Nutrients (d)	M	As per Table 13
Total and Dissolved Metals ScI _(e)	M	As per Table 13
Visual Observation	M	W(2)
Dissolved and Total Organic Carbon	-	M(1)
Selenium Speciation(i)	-	M(1)
Chlorophyll-a	-	M(1)

- Sample collection must be conducted immediately during the growing season (March 15 to October 31) if: standing water is present in the pond for > 1 week; and the most recent sample results received for either the pond inlet or in-pond samples show elevated levels of dissolved selenium ($\ge 2.0 \, \mu g/L$) and total phosphorus ($\ge 0.010 \, mg/L$).
- 2) Weekly observations from March 15 to October 31 of each year.

Date issued:
Date amended:
(most recent)

November 19, 2014

December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 54 of 89 Permit Number: 107517

8.2 GROUNDWATER MONITORING PROGRAM

8.2.1 REGIONAL GROUNDWATER MONITORING

The permittee must implement a comprehensive regional groundwater monitoring program for Management Units 1, 2, 3, 4 and relevant portions of 5, as defined in the Elk Valley Water Quality Plan, prepared by a Qualified Professional. The intent of the program is to monitor groundwater and groundwater systems within the valley bottom unconsolidated deposits along the mainstems in the Elk Valley and where appropriate, underlying bedrock, outside the mine operations boundaries.

The program must include the following as they pertain to the regional program:

- i. A program to establish and maintain a groundwater monitoring well network in the Elk Valley, with wells (single/multi-level in unconsolidated deposits and bedrock, as appropriate for intended purpose) installed in locations that are representative of background and mine-impacted conditions.
- ii. An ongoing monitoring program, developed in accordance with the BC Water and Air Baseline Monitoring Guidance Document for Mine Proponents and Operators (ENV, 2016).
- iii. A conceptual hydrogeological model for the Elk Valley, developed and updated by integrating all available groundwater information collected as part of the regional and site-specific groundwater monitoring programs, relevant operational field investigations, and relevant conceptual and numerical modelling studies carried out for diverse purposes (e.g., as part of permitting applications, water supply assessments and geotechnical investigations). The conceptual hydrogeological model must include, but is not limited to, a description of the following, where relevant: aquifer characteristics (e.g., location, extent and geometry and hydraulic properties), regional groundwater flow patterns (directions, gradients and velocities), recharge and discharge areas, groundwater interactions with surface water, the effects of surface and groundwater withdrawals, groundwater quality and the transport of mine-related parameters of concern. Seasonal fluctuations and trends of all

Date issued: Date amended: (most recent) November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 55 of 89 Permit Number: 107517

- relevant hydrogeological variables must also be included in the hydrogeological characterization.
- iv. An evaluation of the regional effects of the permittee's operations on groundwater and where relevant on surface water, as a result of surface water groundwater interaction, in Management Units 1, 2, 3, 4 and relevant portions of 5, by comparison to all applicable standards.
- v. Identification of limitations and data gaps and recommendation of additional field activities and/or studies to fill in gaps, where possible, and to refine the conceptual hydrogeological model.
- vi. A proposed schedule for the additional recommended field activities and studies described in point v.
- vii. Where appropriate, identify activities, studies and investigations proposed to be discontinued or existing monitoring infrastructure to be decommissioned/removed in order to optimize/improve the program.

The plan must be updated every three years starting in 2017 and submitted to the director by September 30 for approval. Each update must consider relevant changes to permit requirements and results of special studies.

8.2.2 SITE SPECIFIC GROUNDWATER MONITORING

The permittee must develop and implement a comprehensive groundwater monitoring program at each mine site (Fording River Operations, Greenhills Operations, Line Creek Operations, Elkview Operations, Coal Mountain Operations), prepared by a Qualified Professional. The intent of each program is to monitor groundwater and groundwater systems within the valley bottom unconsolidated deposits and, where appropriate, the bedrock downgradient of potential minerelated sources of groundwater contamination within or in proximity of the mine operations boundaries.

Updated Site-Specific Groundwater Monitoring Plans must be submitted to the director for approval by October 31, 2021. Thereafter, the plans must be updated and submitted to the director for approval by October 31 every three years. The plans must include points i. to vii. in Section 8.2.1, as they pertain to each mine site.

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 56 of 89 Permit Number: 107517

8.2.2.1 LINE CREEK MINE PHASE II GROUNDWATER MONITORING PROGRAM

The Permittee must develop and implement a comprehensive groundwater monitoring program for the Line Creek Mine Phase II area, prepared by a qualified professional. This program must be conducted to the satisfaction of the Director and should achieve the following objectives at a minimum:

- i. Characterize the groundwater resource (including water quality, quantity, flow characteristics, hydraulic conductivity of the affected aquifer(s), and relationship to surface water system);
- ii. Identify (and if necessary, quantify) impacts to groundwater from mining-related activities;
- iii. Provide the information necessary to support the development and verification of water quality predictions for the mine site (as per Section 9.9);

The Terms of Reference for the monitoring program shall be submitted to the Director, Environmental Protection by January 31, 2013.

The monitoring program must be submitted to the Director for approval by March 31, 2014. Monitoring activities must commence in 2014.

Monitoring results and interpretation must be compiled into a written report and submitted on an annual basis for each calendar year to the Director, Environmental Protection, by March 31 of the following year. Included in the submission must be a Study Design for the next year.

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 57 of 89 Permit Number: 107517

8.2.3 CEDAR NORTH IN-PIT BACKFILL EXTENSION

- 8.2.3.1 The permittee must develop a study design to refine the hydrogeological characterization of fault F42 and to obtain site-specific estimates of hydraulic conductivity in the weathered bedrock located between Cedar North Pit and the Elk River and Michel Creek valley bottom. The study design must be developed by a Qualified Professional and should include, but not be limited to:
 - i. estimating hydraulic conductivity using hydraulic testing methods, along the F42 fault alignment south of the interception with the conveyor tunnel, and along a hypothetical fault extension towards Michel Creek;
 - ii. estimating hydraulic conductivity of the weathered bedrock to obtain site-specific estimates of hydraulic conductivity between Cedar North Pit and the Elk River valley bottom; and
 - iii. establishing monitoring well(s) along the F42 fault alignment south of the interception with the conveyor tunnel at the hydraulic testing site(s), if the results indicate a potential for the fault to convey mine-impacted groundwater, currently or as a result of future mining activities.

A study design for the completion of the field activities described at i. and ii. must be submitted to the director for approval by October 31, 2021. The permittee must implement the approved study design.

- 8.2.3.2 The permittee must update the BRE Project groundwater flow model by adding the following as calibration targets:
 - i. the groundwater levels collected as part of the activities outlined in Section 8.2.3.1; and
 - ii. the streamflow and groundwater level data set collected from the hydrometric stations and monitoring wells located near the model's west southwest boundary, on Lindsay Creek, Goddard Creek, Otto Creek, Aqueduct Creek, Bodie Creek and Gate Creek.

The BRE Project groundwater flow model update must also include the simulation of faults in the model.

Date issued: Date amended: (most recent) November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 58 of 89 Permit Number: 107517

8.2.3.3 The permittee must use the information obtained from activities outlined in Section 8.2.3.1 and 8.2.3.2 to refine the groundwater flow component of the water balances for the Cedar North Pit and EVO Dry Creek catchments.

8.3 LOCAL AQUATIC EFFECTS MONITORING PROGRAM (LAEMP)

The permittee may be required to develop, with input from the EMC, and implement a Local Aquatic Effects Monitoring program (LAEMP) to determine the effects of a mining effluent discharge(s) on the receiving environment. The permittee must prepare and submit annual reports as per Section 9.5.

8.3.1 LINE CREEK OPERATIONS

8.3.1.1 LCO Phase I

The permittee must develop and implement a Local Aquatic Effects Monitoring program to determine the effects of the Line Creek discharge on the receiving environment. An annual study design for the program must be prepared in consultation with the EMC and submitted to the director for approval by May 1 each year. Any changes to the approved study design must be reported in the annual LAEMP report.

8.3.1.2 LCO Phase II

The Permittee must develop and implement a Local Aquatic Effects Monitoring Program to determine the effects of mining activities from Line Creek Phase II in the LCO Dry Creek, Grace Creek and Unnamed Creek receiving environments. An annual study design for the program must be prepared in consultation with the EMC and submitted to the director for approval by May 1 each year. Any changes to the approved study design must be reported in the annual LAEMP report.

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 59 of 89 Permit Number: 107517

8.3.2 FORDING RIVER OPERATIONS

The permittee must complete to the satisfaction of the director a study design for a LAEMP which will focus on the upper Fording River for 2021-2023 by April 1, 2021. The study design must be reviewed by the EMC and be designed to an appropriate temporal scale to capture short term, local effects to the immediate receiving environment. Any changes to the approved study design must be reported in the annual LAEMP report.

8.3.3 COAL MOUNTAIN OPERATIONS

The permittee must complete to the satisfaction of the director, a study design for a LAEMP by February 28, 2019. The study design must be reviewed by the EMC and be designed to assess the magnitude and extent of influence from CMO on water quality, calcite and benthic invertebrate communities downstream of CMO and to assess what factors are contributing to the observed effects. Any changes to the approved study design must be reported in the annual LAEMP report.

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 60 of 89 Permit Number: 107517

8.3.4 ELKVIEW OPERATIONS

The permittee must develop and implement a LAEMP to determine the magnitude and extent of influence from EVO SRF discharge on water quality (including temperature), calcite and benthic invertebrate communities to assess what factors are contributing to the observed effects. The study design must be reviewed by the EMC and submitted to the director for approval by June 30, 2021. The LAEMP must be designed to an appropriate temporal scale to capture short term, local effects to the immediate receiving environment, and must consider the possibility of impacts resulting from potential selenium speciation. The LAEMP must focus on Erickson Creek from EV_ECOUT (E321814) to EV_EC1 (0200097) and Michel Creek between EV_MC3 (0200203) and EV MC2 (E300091) for 2021-2023.

Until the 2021-2023 LAEMP study design is approved and implemented, the permittee must continue the pre-operational aquatic effects monitoring program as outlined in Section 8.2.2 the EVO SRF Phase 2 Operations application.

The permittee must notify the director at least 15 days prior to implementing any proposed changes to the approved LAEMP. Any changes to the approved study design must be reported in the annual LAEMP report.

8.3.5 GREENHILLS CREEK

The permittee must implement the monitoring program as described in the approved monitoring program "Greenhills Creek Aquatic Effects Assessment and Monitoring Program" (Greenhills Creek LAEMP). Changes to the aquatic effects monitoring program must be outlined in a study design that is reviewed by the EMC. The permittee must submit the study design to the director prior to implementation and must describe how EMC advice was considered.

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 61 of 89 Permit Number: 107517

8.4 REGIONAL AQUATIC EFFECTS MONITORING PROGRAM (RAEMP)

The permittee must implement the Regional Aquatic Effect Monitoring Program as per the November 14, 2014 approval or the latest director approved program. A final Study Design for each subsequent three-year cycle must be submitted to the director by February 28 in the first year of each three-year cycle.

8.5 <u>CALCITE MONITORING</u>

8.5.1 CALCITE MONITORING PROGRAM

- i. The permittee must continue to conduct annual calcite monitoring following the methods in the approved monitoring program.
- ii. The permittee must submit, for director's approval, changes to the monitoring program by April 15 of the data collection year.

8.5.2 SEASONAL CALCITE SUPPORTING STUDY – 2015/2016

The permittee must have a Qualified Professional develop a monitoring program to assess seasonality of calcite formation and potential dissolution. The program must, at minimum, include multiple locations and assess seasonal variation in the rate of calcite formation or dissolution, water quality, and presence and density of algae, and the presence and density of benthic invertebrates.

- i. An Initial Study Design for the program must be submitted to the Environmental Monitoring Committee for input prior to submission to the director for acceptance by March 1, 2015.
- ii. Monitoring results and interpretation for the 2015 program must be compiled into a written report with a study design for the 2016 program and submitted to the satisfaction of the director by March 31, 2016.
- iii. Monitoring results and interpretation of the 2016 program must be compiled into a written report and submitted to the satisfaction of the director by March 31, 2017.

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 62 of 89 Permit Number: 107517

8.6 SELENIUM SPECIATION MONITORING PROGRAM

The permittee must develop and implement a Selenium Speciation Monitoring Program. The Selenium Speciation Monitoring Program is intended to:

- Identify sites in the Designated Area, affected or potentially influenced by the permittee's current operations, where organic and reduced forms of selenium are occurring or are likely to occur;
- Investigate the physical and/or biogeochemical mechanisms driving selenium speciation and the generation of organic and reduced forms of selenium species; and
- Assess the site-specific bioaccumulation of selenium in biological resources.

The Selenium Speciation Monitoring Program must include the following elements:

- i. Assessment of water quality and selenium tissue concentrations in benthic invertebrates; and
- ii. Characterization of factors that lead to enhanced selenium bioaccumulation in the receiving environment, as applicable.

The following timelines apply:

- 1) A written report of selenium speciation data collected to-date within the Designated Area, that includes analysis and interpretation of the data, must be compiled and submitted to the EMC and the director by March 31, 2021.
- 2) Selenium Speciation Monitoring Program Study Design must be reviewed by the EMC prior to submission to the director, for approval, by July 30, 2021. Thereafter, the study design must be updated and submitted, for approval, to the director by July 30th every three years.

The approved Selenium Speciation Monitoring Program Study Design must be implemented, and an annual report must be submitted to the director and to the EMC as per Section 9.11.

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 63 of 89

Permit Number: 107517

8.7 KOOCANUSA RESERVOIR WORKING GROUP

A Koocanusa Reservoir Monitoring and Research Working Group will be established under the BC & Montana government to government Memorandum of Understanding. The permittee must participate fully in the Koocanusa Reservoir Monitoring and Research Working Group.

The permittee is required to contribute to the costs of the Koocanusa Reservoir Monitoring and Research Program as operated by the Koocanusa Reservoir Monitoring and Research Working Group

8.8 KOOCANUSA RESERVOIR BURBOT BASELINE STUDY 2015

The permittee shall undertake a sampling program in Koocanusa Reservoir to evaluate the potential for selenium related effects in Burbot. The permittee shall make reasonable efforts to collaborate with Ktunaxa Nation representatives to identify suitable fishing locations in Koocanusa Reservoir, to develop a sampling plan, and to implement the program.

The sampling must be initiated in February 2015 and include the following:

- i. Sampling will occur at representative locations within Koocanusa Reservoir and should consider areas upstream of Elk River, near the mouth of the Elk River, and near of the mouth of Gold Creek.
- ii. All fish captured during the sampling program will be identified and enumerated with results captured on field sheets and sexually mature burbot measured and sampled in the field as follows:
 - a) Field examination of condition of each fish for external deformities, erosions, lesions, or tumors with condition recorded on field sheets
 - b) Muscle tissue will be sampled from each fish
 - c) Collection of eggs from up to 10 ripe female burbot from the three sampling locations where available.
- iii. Tissue and eggs will be analysed for metals using a high-resolution inductively coupled plasma mass spectrometry.
- iv. Results will be reported on a dry weight basis along with the moisture content.

Results of the sampling program shall be submitted to the director by July 31, 2015.

Date issued:
Date amended:
(most recent)

November 19, 2014

December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 64 of 89 Permit Number: 107517

The permittee will evaluate the human health risk with respect to Ktunaxa consumers specific to the burbot tissue data.

8.9 CHRONIC TOXICITY TESTING PROGRAM

The permittee must develop and implement a toxicity testing program for receiving environments affected by coal mining operations. The purpose of the program is to evaluate chronic toxicity at the compliance points and other locations throughout the Elk Valley.

The program must be planned and implemented by qualified professionals using methods that have documented test procedures, reliability, and quality assurance.

The toxicity testing program must include, at a minimum, the following elements:

- i. Once every three years beginning in 2015, bioassays must be conducted to evaluate the survival and development (incidence of deformities) of targeted aquatic species using gametes obtained from species using habitats in the Elk River, the Fording River, their tributaries, and associated lentic habitats, and the Koocanusa Reservoir. The concentrations of selenium in the eggs of each female spawned must be measured.
- ii. For the purposes of the following requirements the listed mine-influenced stations must include:
 - FR FRCP1 (EMS E300071),
 - FR FRABCH (EMS 223753),
 - GH FR1 (EMS 0200378),
 - LC LC5 (EMS E200028),
 - GH ERC (E300090),
 - CM MC2 (EMS E258937),
 - EV MC2 (EMS E300091),
 - EV HC1 (EMSE102682),
 - LC LCDSSLCC (EMS E297110),
 - LC LC3 (EMS 200337), and

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 65 of 89

Permit Number: 107517

LC_DCDS (EMS E295210).

Appropriate reference stations must be determined in consultation with the Environmental Monitoring Committee.

The following toxicity test must be conducted during each semi-annual (spring and fall) sampling event at all listed mine-influenced stations plus multiple reference stations:

- 30-day early life-stage test with the rainbow trout (*Oncorhynchus mykiss*; EPS1/RM/28) using <24-hour post-fertilization eggs; endpoints: survival, viability, length, wet weight (plus documentation of observed deformities or behavioral changes); and
- 28-day water-only test with amphipod, *Hyalella azteca* (adapted from USEPA 2000, with appropriate supplementation of halides); endpoints: survival, growth.

The following toxicity tests must be conducted during each semi-annual (summer and winter) sampling event at all listed mine-influenced stations plus multiple reference stations:

• 30-day early life-stage test with the fathead minnow, *Pimephales promelas* (USEPA 1996) using <24-hour post-fertilization eggs; endpoints: survival, normal development, length, biomass (plus documentation of observed deformities or behavioral changes).

The following toxicity tests must be conducted during each quarterly sampling event at all listed mine-influenced stations plus multiple reference stations:

- 7-day water-only test with the cladoceran, *Ceriodaphnia dubia* (EPS1/RM/21); endpoints: survival, reproduction; and
- 72-hour test with the alga, *Pseudokirchneriella subcapitata* (EPS1/RM/25); endpoints: growth inhibition.
- iii. Toxicity testing methods must be consistent with Environment Canada's, U.S. Environmental Protection Agency's, or ASTM's approved biological test methods. Waters used for fathead minnow (Pimephales promelas) and rainbow trout (Oncorhynchus mykiss) 30-day early life-stage tests may be augmented with up to, and not exceeding, 20 ug/L copper to control for fungi and microbial pathogens. Ameliorating factors that influence copper toxicity (e.g., water hardness, dissolved organic carbon, and major ions) must be considered when determining the lowest and most effective dose below this limit.

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 66 of 89 Permit Number: 107517

- iv. A Quality Assurance/Quality Control component.
- v. A proposed schedule of dates that coincide with water quality sampling and that target predicted worst-case times such as low flow, during flocculant use, or when discharge quality is expected to be reduced.

The suite of toxicity tests will be reviewed on an annual basis by the EMC and recommendations provided to the director for consideration.

8.9.1 SULPHATE TOXICITY AT HIGH HARDNESS CONCENTRATIONS

The permittee must develop with input from the EMC and implement a toxicity testing program specifically to assess sulphate toxicity at high hardness concentrations. Results will be used to support finalization of long-term sulphate site performance objectives.

The following toxicity test shall be conducted as a component of the Sulphate toxicity testing program.

- 30-day early life-stage test with the fathead minnow, *Pimephales promelas* (USEPA 1996) using <24-hour post-fertilization eggs; endpoints: survival, hatching, growth, deformity.
- Other sensitive species (amphibian, trout, water flea, etc.) shall be included.

Monitoring results and interpretation must be compiled into a written report and submitted to the satisfaction of the director by December 31, 2017.

8.9.2 SUBLETHAL TOXICITY STUDY

The permittee must develop with input from the EMC and implement a sublethal toxicity study to confirm that surface waters meeting the Site Performance Objectives for the order stations are not toxic to sensitive aquatic receptors. The permittee must submit the study design to the director by April 30, 2015.

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 67 of 89

8.10 HUMAN HEALTH RISK ASSESSMENT

The permittee must conduct a Human Health Risk Assessment (HHRA), in consultation with the EMC to examine the potential effects of mine-related parameters of concern including selenium, mercury cadmium, chromium, copper, manganese, nickel, vanadium and zinc for the Designated Area. The permittee is responsible for developing the HHRA design and addressing any concerns raised by the Interior Health Authority.

A draft terms of reference and a work plan for the HHRA must be discussed at the EMC. A final terms of reference and work plan for the HHRA shall be submitted by May 31, 2015 and be of a quality acceptable to the director.

The Human Health Risk Assessment must follow the BC Contaminated Sites Regulation approved methodologies and levels of acceptable risk for Human Health Risk Assessment.

The permittee must provide the results of the HHRA by March 31, 2016 to the EMC. The permittee must provide the results of the HHRA to the director by March 31, 2016. The risk assessment must be to the satisfaction of the director.

The assessment must determine the exposure pathways and potential human health risks from selenium and other mine-related parameters of concern which may be present in vegetation, fish and wildlife that are potentially used for food or medicinal sources, or present in currently known potable water sources. The assessment must take into consideration First Nations consumption patterns and risk sensitivities.

The study must incorporate information available from a variety of sources such as: traditional use studies, consultation records, consumption surveys, and baseline and monitoring data for mine-related parameters of concern.

Wherever possible, the assessment must incorporate data obtained from established monitoring programs. If required for the assessment, additional sampling programs must be implemented to ensure data gaps are addressed.

The conclusions and findings of the Human Health Risk Assessment must be risk ranked and prioritized and include recommended risk management controls and other mitigation actions to address human health risks identified

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 68 of 89 Permit Number: 107517

in the human health risk assessment for inclusion in the adaptive management plan for the area.

8.11 <u>SCREENING LEVEL ECOLOGICAL RISK ASSESSMENT</u>

The permittee shall re-evaluate the Screening Level Ecological Risk Assessment. The Screening Level Ecological Risk Assessment re-evaluation must address the following points:

- i. some contaminants of potential concern exceeded the criteria for negligible risk,
- ii. there was an incorrect use of tissue concentrations as indicators of toxicity, and
- iii. multiple food type dietary exposure was not incorporated.

The re-evaluation must be conducted by an approved Contaminated Sites Approved Professional (CSAP) or follow the BC Contaminated Sites Regulation approved methodologies. If the re-evaluation is not conducted by an approved CSAP, the re-evaluation must be submitted to the director for review and acceptance. The re-evaluation shall be submitted by July 31, 2015.

In the event that this re-evaluation determines changes to the monitoring requirements, this information shall be shared with the EMC and a report with recommendations provided to the director regarding the outcome of the re-evaluation.

8.12 DETAILED ECOLOGICAL RISK ASSESSMENT

A Detailed Ecological Risk Assessment may be required.

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

cccinoci 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 69 of 89 Permit Number: 107517

9. REPORTING REQUIREMENTS

9.1 **SUBMISSION RESULTS**

The permittee must submit water quality and benthic invertebrate tissue selenium concentration data of all effluent discharge and water analyses, and biological sampling associated with monitoring programs required in this permit, collected at sites with EMS site identification numbers. Data is to be directly uploaded to the Ministry's Environmental Management System (EMS) database using the appropriate EMS site identification numbers within the following timelines:

- i. surface water quality data within 30 days of the end of the quarter in which the samples were collected;
- ii. groundwater quality data within 60 days of the end of the quarter in which the samples were collected;
- iii. benthic invertebrate tissue selenium concentration data within 60 days of the end of the quarter in which the samples were collected; and
- iv. flow data is to be submitted annually.

For instructions on the electronic submission process or for more information visit the Ministry website:

https://www2.gov.bc.ca/gov/content/environment/waste-management/waste-discharge-authorization/comply

All data and calculations required in this permit, whether or not required to be uploaded to EMS, must be managed by the permittee and provided to the director or member of the EMC upon request in a format specified by the director or member of the EMC. The permittee must provide all requested data within 10 business days of the original request or within the timeline agreed upon by both the permittee and the requestor.

All data lab sheets are to be kept on site and are to be provided in an electronic format to the director or member of the EMC upon request.

All deliverables required by Section 9 must not exceed manageable file sizes or must be divided into smaller files prior to submittal.

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Permit Number: 107517

Page 70 of 89

9.2 <u>DISCHARGE AND RECEIVING ENVIRONMENT MONITORING</u> DATA

9.2.1 NON-COMPLIANCE NOTIFICATION

The permittee must immediately notify the director or designate by e-mail (ENVSECoal@gov.bc.ca) of any non-compliance with the requirements of this permit, including requirements within the appendices, by the permittee and take appropriate remedial action to remedy any effects of such non-compliance.

The permittee must provide the director and KNC with written confirmation of all such non-compliance events, including available test results within 24 hours of the original notification unless otherwise directed by the director.

9.2.2 NON-COMPLIANCE REPORTING

If the permittee fails to comply with any of the requirements of this authorization, the permittee must, within 30 days of such non-compliance, submit to the director and KNC, a written report that is satisfactory to the director and includes, but is not necessarily limited to, the following:

- i. all relevant test results obtained by the permittee related to the noncompliance,
- ii. an explanation of the most probable cause(s) of the noncompliance, and
- iii. a description of remedial action planned and/or taken by the permittee to prevent similar noncompliance(s) in the future.

The permittee must submit all non-compliance reporting required to be submitted under this section by email to (ENVSECoal@gov.bc.ca).

9.2.3 MONITORING AND REPORTING FOLLOWING TOXICITY NON-COMPLIANCE

In addition to Section 9.2.1, for any acute toxicity test failure in the effluent, the permittee must:

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 71 of 89 Permit Number: 107517

- i. Immediately conduct a confirmatory test on the effluent using multiple concentrations (i.e. 96 hr LC50 for Rainbow Trout or 48 hr LC50 for Daphnia magna, as appropriate). The director may require a Toxicity Identification Evaluation (TIE) to be initiated to determine the cause of the effluent toxicity,
- ii. Immediately take corrective action, and
- iii. Forward all test results including raw laboratory data sheets to the director as soon as they are available. As soon as possible, submit a full report indicating the cause and effects of the incident, which identifies all actions taken by the permittee to correct, restore and prevent a similar event from occurring in the future. This report must be submitted with the next quarterly report or as otherwise instructed by the director.

9.2.4 QUARTERLY REPORTING

The permittee must submit a written quarterly report to the director or designate, due within 30 days of the end of the quarter in which the samples were taken. The quarterly report must include:

- i. Effluent water quality results used to calculate monthly averages for the limits in Section 2, if applicable;
- ii. Effluent water quality results exceeding limits and targets or other criteria, such as daily maximums or as specified by the director;
- iii. Identification of all missing data and all QA/QC issues;
- All toxicity test results and raw laboratory data sheets for all mortality results;
- v. All reportable spills or other incidents related to water quality, occurring in the quarter;
- vi. Explanation of the most probable cause(s) of any non-compliances;
- vii. All measures taken to reduce or eliminate non-compliances;
- viii. All other reports or documentation as specified by this permit to be submitted quarterly; and
 - ix. Any additional sampling results for the compliance points identified in Section 2 obtained for any reason, whether compliance, maintenance, or operational purposes. All test data must be reported

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 72 of 89 Permit Number: 107517

within 30 days of the end of the quarter in which sampling occurred. These additional results may be reported in summary form. Further information on the testing event may be requested in writing by the director.

- a) Any data collected at the compliance points in Section 2 for research-oriented activities that do not meet the analytical requirements in Section 8.1.2.1 of the Permit must be submitted separate from Quarterly Reports in a project report at the completion of the applicable study.
- x. A summary of measures taken under the Nitrogen Source Control Plan, Section 5.3.
- xi. An appendix containing the LK2 Order station transect discrete sample results for each sampling event, the reason samples could not be collected, and whether stratification was observed.

The format of the quarterly report must be suitable for review by the public.

9.2.5 ANNUAL REPORTING

The permittee must prepare on an annual basis a report or series of reports summarizing activities, incidents, and discharge/receiving environment monitoring results. The report(s) must include but is not limited to:

- i. A map of monitoring locations with EMS and permittee descriptors.
- ii. A summary of non-compliances with the permit conditions for the previous calendar year. This must include interpretation of significance, and the status of corrective actions and/or ongoing investigations.
- iii. A summary of measured parameters including all collected monitoring data for the reporting year suitably tabulated (i.e., excel spreadsheets), appropriate graphs and comparison of results to limits, Approved and Working Water Quality Guidelines, Site Performance Objectives, or other criteria and benchmarks as specified by the director.
- iv. An analysis and discussion of early warning triggers for management action as developed under the Adaptive Management Plan for surface water quality. This analysis will include order

Date issued: Date amended: (most recent) November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

ujson

Page 73 of 89 Permit Number: 107517

- constituents and non-order parameters of concern at key receiving environment sites as identified in the AMP and an evaluation of upstream source sites and activities when monitoring results exceed the early warning trigger criteria.
- v. All acute toxicity test-specific reports from the laboratory and an interpreted summary and discussion of results, including recommendations and all subsequent actions.
- vi. All acute toxicity test lab reports must include data and/or observations for hardness, alkalinity, pH, temperature, and formation of precipitate either in the vessel or on the organism.
- vii. A summary of all QA/QC issues during the year.
- viii. The following hydrology information:
 - a) A description of measurement methods, field procedures or data calculation that deviate from the information provided in the Metadata Summary.
 - b) A summary table of the discharge measurements recorded during the year. The summary must include staff gauge measurements, calculated flow values from a stage-discharge rating curve, and manual flow measurements.
 - c) A hydrograph(s) at a scale appropriate for visually comparing flow values between stations.
 - d) A data quality grade for each monitoring station using the Manual of British Columbia Hydrometric Standards (RISC, 2018) methodology, and comparison of the grade to target grades as listed in the Regional Surface Flow Monitoring Program.
 - e) In conjunction with the submission of the annual report, final non-continuous flow data will be uploaded to the EMS database while final continuous flow data records and associated rating curves will be provided in Excel format.
 - ix. An interpreted summary and discussion of the effectiveness of measures taken under the Nitrogen Source Control Plan, Section 5.3.

The Annual Report must be submitted to the director by March 31 of each year following the data collection calendar year.

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Permit Number: 107517

Page 74 of 89

The format of the Annual Report must be suitable for review by the public. The Permittee must post a copy of the report to the Teck website annually, within six months of submission. Copies must be made available for the Ministry of Energy, Mines and Low Carbon Innovation and Ktunaxa First Nation. The Permittee may omit proprietary information from the publicly available annual report in accordance with the Freedom of Information and Protection of Privacy Act, as agreed to by the Director.

9.3 TOXICITY REPORTING

All acute toxicity test lab reports must include data and/or observations for pH, temperature, and formation of precipitate either in the vessel or on the organism. Lab reports for the 48-hour *Daphnia magna* single concentration toxicity test must also include data and/or observations for hardness and alkalinity.

The permittee must prepare on an annual basis a report summarizing all acute and chronic toxicity data from the laboratory and an interpreted summary and discussion of results, including recommendations and subsequent actions. The report is to be submitted to the director by April 30 of each year following the data collection calendar year.

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 75 of 89 Permit Number: 107517

9.4 **GROUNDWATER**

9.4.1 ANNUAL GROUNDWATER MONITORING REPORTING

The permittee must prepare on an annual basis a report or series of reports summarizing monitoring activities and results for the Regional and Site-Specific Groundwater Monitoring Programs. The annual report(s) must be submitted to the director by March 31st of each year following the data collection calendar year.

The annual report(s) must include, but is not limited to:

- i. A map of surface and groundwater monitoring locations with EMS and permittee descriptors;
- ii. Cross sections showing well installation details, stratigraphy, groundwater elevations, and where relevant surface water elevations and inferred groundwater flow direction(s). Cross sections should be in the direction of groundwater flow and/or perpendicular to groundwater flow, as appropriate;
- iii. Drawings showing locations and water quality data of groundwater sampling points;
- iv. Summary of program modifications relative to previous years and additional one-time activities, such as the installation of new monitoring wells;
- v. Summary of measured parameters, including appropriate graphs and comparison of results to, Approved and Working Water Quality Guidelines, or other criteria and benchmarks as specified by the director;
- vi. If applicable, a summary of exceedances of screening benchmarks;
- vii. Evaluation and discussion of spatial patterns and temporal trends;
- viii. Evaluation and discussion of the correlation between the monitoring results of surface water and groundwater monitoring stations, where relevant, in terms of spatial distribution and temporal changes;
- ix. Relevant information from specific studies on surface water and groundwater to support the hydrogeological characterization;
- x. A summary of all QA/QC issues during the year; and
- xi. Recommendations for further study or measures to be taken.

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 76 of 89 Permit Number: 107517

9.5 LAEMP

The LAEMP Annual Reports must be reported on in accordance with generally accepted standards of good scientific practice in a written report and submitted to the director of each year following the data collection calendar year on the following dates:

- i. LCO and LCO Dry LAEMP: April 30
- ii. FRO LAEMP: May 31
- iii. CMO LAEMP: June 30 (The first report is due June 30, 2020)
- iv. EVO LAEMP: June 30 (The first report is due June 30, 2022)
- v. Greenhills Creek LAEMP: June 30

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 77 of 89 Permit Number: 107517

9.6 **RAEMP**

The RAEMP report for the first approved cycle under the ABMP must be submitted to the director by September 30, 2017 and by November 30 of the final year of each subsequent three-year monitoring cycle.

The permittee must submit a report that contains a detailed rationalization of the overall RAEMP including reasons why specific monitoring areas are/are not being monitored in a given year. The report may include a discussion and analysis of the results of the previous cycle of monitoring of the following components:

- i. Water quality
- ii. Sediment quality and calcite
- iii. Water and sediment toxicity testing
- iv. Periphyton productivity and community structure
- v. Benthic invertebrate community structure and tissue contaminants
- vi. Fish population metrics and tissue contaminants
- vii. Amphibian and bird egg tissue contaminants
- viii. QA/QC

Each report will also discuss cumulative effects by providing an integrated interpretation of conditions in the Elk River Watershed.

Each report will, on a three-year cycle, verify and calibrate the selenium bioaccumulation model using the most recent three years of water quality, aquatic effects and other data from any special studies undertaken.

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Permit Number: 107517

Page 78 of 89

9.7 CALCITE

A Calcite Monitoring Annual Report must be submitted to the director by April 15 of each year following the data collection calendar year. The report must include the following, at minimum:

- i. A map of monitoring locations;
- ii. A summary of background information on that year's program, including discussion of program modifications relative to previous years;
- iii. Results of stream selection reassessment highlight streams added/removed;
- iv. Summary of where sampling followed the methodology in the monitoring plan document, and details where sampling deviated from the approved methodology;
- v. Statement of results for the period over which sampling was conducted;
- vi. Reference to the raw data, provided as appendices;
- vii. General discussion of observations, including summary tables of sites with increasing and decreasing deposition indices;
- viii. Interpretation of location, extent, and any other observations;
 - ix. A summary of any QA/QC issues during the year;
 - x. Recommendations for sites to add, sites to remove, modifications to methodology, monitoring frequency adjustments; and
- xi. A statistical evaluation of monitoring data to evaluate the presence of short and long term calcite related trends in the Elk Valley main stems and select tributaries.

9.8 KOOCANUSA RESERVOIR

The permittee must prepare on an annual basis a report summarizing activities and monitoring results. The report must be submitted to the Koocanusa Reservoir Monitoring and Research Working Group (Koocanusa Reservoir Working Group) and the EMC by June 30 of each year.

Date issued:
Date amended:
(most recent)

November 19, 2014

December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 79 of 89

9.9 WATER QUALITY MODELLING

The permittee must update the regional water quality model and complete a water quality prediction report for each mine site and the Designated Area as a whole to be submitted to the director.

This report must be updated every 3 years starting October 31, 2017, or more frequently as required, based on changes to the mine plan, when observed water quality and water quantity are regularly and significantly different from predicted values, or as otherwise required by the director in writing. The report must include data collected from the monitoring programs described in Section 8 as well as any other special studies undertaken to investigate water quality in the Designated Area.

On a three-year cycle, verify and, failing verification, calibrate the Elk Valley Regional Water Quality Model using the most recent three years of water quality data and regional flow data from appropriate (e.g., Environment Canada regional) hydrometric data stations.

The report must provide:

- i. Current and projected (through the next twenty years) bank cubic meters of waste rock at the mine, detailed by affected drainage;
- ii. Hydrology modelling information, detailed by affected drainage:
 - a) Identify the specific hydrology information used in the modeling work;
 - b) An evaluation of the relative data accuracy/precision and overall confidence in the data used. The evaluation should consider any relative bias that a station may introduce (e.g., a stations' ability to represent total watershed yield). Documentation must clearly provide a rational for why specific data was selected for use in the model;
- iii. Current and predicted concentrations of Parameters of Concern as required, in the surface water of affected drainages through the life of the mine based on current model, which incorporates waste rock volumes and local hydrology, compared to BC Water Quality Guidelines or water quality targets for selenium, nitrate, sulphate and cadmium;

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 80 of 89 Permit Number: 107517

- iv. A description of the calibration and validation of the flow model and water quality;
- v. A sensitivity analysis for variation in flows and potential errors in measured input data;
- vi. Water quality and water quantity model output in electronic format;
- vii. A monitoring plan for continued evaluation of ii), iii) and iv) as the mine progresses;
- viii. Refined hydrology, hydrogeology and geochemical source term information (including refinements for cadmium source terms), together with any site-specific water balance models and hydrogeology studies;
 - ix. Changes to the mine plan; and
 - x. Information and outcomes from research and technology development studies that have been incorporated into the model.

9.9.1 EVALUATION OF WATER QUALITY MODELLING FOR TRIBUTARIES (LCO)

- i. The permittee shall assess the conservatism and uncertainty associated with the scaling approach used to predict tributary concentrations in the EVWQP by independent comparison with predictions obtained from project specific model outputs and provide recommendation for evaluating future water quality in tributaries in the Elk River watershed.
- ii. During operations, the Permittee must track waste rock placement, water quality and flow monitoring data to enable calibration, updating and refinement of the water quality predictions and model. The Permittee must complete the first water quality prediction report for Line Creek Operations and submit it to the Director, Environmental Protection by March 31, 2014.
- iii. A report presenting the comparison and analysis of water quality modelling methods, as well as a list of tributaries where the scaling method was/or was not applied in the EVWQP shall be provided to the director by February 28, 2015.

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 81 of 89 Permit Number: 107517

9.10 ENVIRONMENTAL IMPACT ASSESSMENT - CHANGES TO MINE PLANS

Where changes to a mine plan requires amendment of the *Mines Act* Permit for a site, the permittee must provide the director and KNC with a project description detailing the changes and results of water quality modelling that assesses the effects on water quality at the applicable order stations/compliance points. The director may require an environmental impact assessment to be completed to evaluate the effects of the changes on the environment.

9.10.1 FRO MINE PLAN

If FRO's mine plan changes such that FRO's total waste rock volume exceeds the maximum volume assessed in the Swift Environmental Assessment Certificate application and the North Spoil Re-handle screening-level assessment an environmental effects assessment be conducted.

9.11 <u>SELENIUM SPECIATION MONITORING PROGRAM</u>

The permittee must prepare an annual report documenting the activities and results of monitoring undertaken for each element of the Selenium Speciation Monitoring Program, as per Section 8.6. The report must be submitted to the director and the EMC by April 15th of each year.

9.12 VERACITY OF DATA

The permittee must ensure all information submitted as a requirement of this permit is accurate and free from mistakes or misleading statements. The permittee must include in any submission required under this permit an explanation for any data that:

- a) is required under the permit but is missing from the submission; and
- b) the permittee considers to be not representative of the actual discharge, conditions, or other circumstances the data is intended to measure.

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 82 of 89 Permit Number: 107517

9.13 ANNUAL STATUS FORMS

The permittee must submit to the director an annual status report for each calendar year, in the form of the Annual Status Form template found on the Ministry website. The first Annual Status Form for 2023 must be submitted by March 31, 2024.

For each numbered requirement in the permit, the permittee must include the following information in the Annual Status Form:

- a) An assessment of compliance against the requirement for the previous year, determining whether the permittee was in compliance, out of compliance, or if the requirement did not apply for that year;
- b) Justification for the compliance determination; and
- c) If the Annual Report or other submissions made to the director support the compliance determination, identify the submission and relevant page or part of the submission.

10. <u>ADAPTIVE MANAGEMENT</u>

The permittee must develop and implement a detailed adaptive management plan (AMP) to support implementation of the ABMP, to achieve water quality targets including calcite targets, ensure that human health and the environment are protected, and where necessary, restored, and to achieve continuous improvement of water quality in the Elk Valley. The adaptive management cycle consists of six stages, as summarized below. Elements of the AMP required for this permit have been included in the ABMP, but other key components remain outstanding, as described below. The permittee must prepare and implement an AMP to the satisfaction of the director. The AMP must fulfill the following requirements at a minimum:

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 83 of 89 Permit Number: 107517

- 1) Stage one Assess and Define the Scope
 - a) Section 1.2 of the Elk Valley Area Based Management Plan identifies the following environmental management objectives that apply to the AMP: protection of aquatic ecosystem health; management of bioaccumulation of Parameters of Concern in the receiving environment (including fish tissue); protection of human health; and protection of groundwater.
 - b) The AMP should support continuous improvement of water quality conditions in the Elk Valley such that human health and ecosystem health are protected in the long-term, without restrictions or limitations on the use of water resources or associated biological resources.
 - c) Identify areas of uncertainty for further analysis and development of hypotheses to support adaptive management. Uncertainties may include effects on aquatic health, actual water quality conditions in space and time, treatment capability and results, R&D project success and implementation, efficacy of passive and semi-passive mitigation methods, etc.
 - d) The conceptual water quality model in Annex D of the ABMP should link management activities to effects to water quality and other components of the aquatic environment.
 - e) Select measurement end points for monitoring and determining what activities and/or actions could be adjusted to influence the measurement endpoints to improve water quality and the aquatic environment to meet the environmental management objectives of the ABMP.
- 2) Stage two Design of Adaptive Management Plan
 - a) Review of existing monitoring programs in relation to uncertainties and alternative hypotheses developed above in 1.b and ensure that the monitoring will provide sufficient information to evaluate which hypothesis is most supported. Clear linkages between the AMP and the RAEMP, supporting studies, other monitoring and water quality modelling must be included.
 - b) Establish early-warning triggers for management action. If not already in place, identify the locations where the indicators will be monitored and develop a monitoring program to assess the status of these indicators.
 - c) An assessment framework for evaluating whether an outcome is acceptable or not must be provided. Monitoring and operational outcomes or indicators must be detailed and what responses will be taken as a result of exceedances

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

yson

Page 84 of 89 Permit Number: 107517

- of each indicator, as well as the order and timeframe in which the responses will be implemented.
- d) Develop and test hypotheses associated with alternative mitigation strategies. The intention is to evaluate applying active adaptive management to research and development activities related to non-active water treatment plant technologies and calcite management.
- 3) Stage three Implement the Adaptive Management Plan
 - a) Implement the AMP as designed.
 - b) Document all deviations to the AMP including rationale and information considered in the decision to deviate.
- 4) Stage four Conduct Monitoring
 - a) Implement and follow the various monitoring programs and supporting studies in this permit and within the ABMP. Additional monitoring may be required as per 2.b above.
 - b) Identify how collected information/data will be managed to facilitate evaluation of hypotheses and status of indicators.
- 5) Stage five Evaluate the results of monitoring activities
 - a) Describe how the information/data from the monitoring programs and supporting studies will be analyzed/evaluated for the AMP.
 - b) Document exceedances of the indicators and the management responses that were undertaken.
 - c) Identify whether the results were expected, where results deviated from those expected, why the deviations occurred, and what lessons were learned.
 - d) Communicate results to the EMC (Section 11.2).
- 6) Stage six Adjust and Revise the Hypotheses and Management Strategies
 - a) Adjust the ABMP implementation plans and actions as required, including knowledge gained from Section 7.2 Research and Development.
 - b) Communicate changes to ABMP implementation plans and activities to the EMC.

Date issued:
Date amended:
(most recent)

November 19, 2014

December 19, 2022

A.J. Downie, M.Sc., P.Ag.

paon

for Director, Environmental Management Act

Mining Authorizations

Page 85 of 89

- c) Reassess expected outcomes, potential impacts, and responses to these outcomes for an adjusted plan. Where plan components are related to impacts on Human Health, the permittee shall make reasonable efforts to consult with Interior Health (hbe@interiorhealth.ca).
- d) Adjust the AMP as required in consultation with the EMC.

The permittee must develop and implement an Adaptive Management Plan to ensure that the management goals in the approved ABMP are met. The permittee must deliver the following:

- i. The permittee must prepare a draft Terms of Reference (TOR) for the Adaptive Management Plan for discussion at the EMC by February 15, 2015.
- ii. The permittee must submit a final TOR by March 15, 2015 to the director for review and approval.
- iii. The permittee must prepare a draft AMP for discussion at the EMC by September 30, 2015.
- iv. The permittee must submit the final AMP by February 29, 2016 to the director for review and acceptance.
- v. The permittee must prepare and submit an annual report documenting the activities undertaken in each stage of the Adaptive Management Plan. The AMP report must be submitted to the director annually by July 31. The first AMP report is due July 31, 2016.
- vi. The permittee must update and revise the AMP every three years. The next update report is due December 15, 2021.
- vii. The permittee must implement the AMP to the satisfaction of the director.
- viii. The permittee must notify the director immediately regarding significant deviations from or adjustments to the accepted AMP (e.g., changes in triggers, responses, timeframes and/or study designs).

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 86 of 89

11. DATA ANALYSIS ACCOUNTABILITY AND TRANSPARENCY

11.1 FIRST NATIONS REPORTING REQUIREMENT

Unless otherwise agreed to by the KNC and the permittee, the permittee must provide the KNC with information related to any material changes to the Initial Implementation Plan, Adaptive Management Plan, the Calcite Management Plan and the Research and Technology Development Plan. In addition, the permittee must provide the KNC with all data, information and/or reports generated during the implementation of these plans in accordance with this permit.

11.2 ENVIRONMENTAL MONITORING COMMITTEE (EMC)

The permittee must establish an Environmental Monitoring Committee (EMC), consisting of representatives from the Ministry of Environment and Climate Change Strategy, the Ministry of Energy, Mines and Low Carbon Innovation, Environment Canada, the Ktunaxa Nation, Interior Health Authority, and the permittee. The Committee will review submissions and provide technical advice to the permittee and director regarding monitoring submissions in Sections:

- 8.2.1 Groundwater Monitoring Program
- 8.3 Local Aquatic Effects Monitoring
- 8.4 Regional Aquatic Effects Monitoring
- 8.5 Calcite Monitoring
- 8.6 Selenium Speciation Monitoring Program
- 8.9 Chronic Toxicity Testing Program
- 8.10 Human Health Risk Assessment
- 10. Adaptive Management
- 11.3 Third-Party Audit

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 87 of 89 Permit Number: 107517

The committee will also provide input to the permittee regarding <u>reports</u> which are required under Sections:

- 4 Tributary Evaluation and Management
- 8.8 Koocanusa Reservoir Burbot Baseline Study 2015
- 9.2.5 Annual Reporting
- 9.3 Toxicity Reporting
- 9.4 Groundwater
- 9.5 LAEMP
- 9.6 RAEMP
- 9.7 Calcite
- 9.8 Koocanusa Reservoir
- 9.9 Water Quality Modelling
- 9.11 Selenium Speciation Monitoring Program
- 10 Adaptive Management
- 11.3 Third-Party Audit

The EMC will convene a public meeting once per calendar year for the purpose of informing the public of information reviewed by the committee and any audit results as per Section 11.3.

The EMC will confirm the scope of third-party audit in Section 11.3 a minimum of 9 months prior to the audit submission deadline.

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Permit Number: 107517

Page 88 of 89

11.3 THIRD-PARTY AUDIT

Monitoring data for this permit and its analysis is subject to the review and audit by a third-party qualified professional on a three-year cycle. The audit must include a review of monitoring data and data analysis for reports submitted under this permit relevant to at least three components (monitoring endpoints) of Teck's environmental monitoring programs undertaken as requirements of this permit for the previous three years and must address at least the following:

- i. Data quality and completeness;
- ii. Protocols and procedures from the QA/QC plan for the monitoring program; and,
- iii. Standard operating procedures and data handling protocols in place for Teck Coal Limited.

The audit objectives scope, components, and criteria must be selected in consultation with the EMC. Each Third-Party Audit Report must be submitted to the EMC and to the director, by October 31 of each audit year. The next Third-Party Audit Report must be submitted to the director by October 31, 2020. The Third-Party Audit Report must report on actions taken to address findings of previous reports.

12. SECURITY

Although financial security under the *Environmental Management Act* is not required at this time, the director may require security in the amount and form subject to the conditions the director specifies.

13. PUBLICATION OF DOCUMENTS

The Ministry publishes Regulatory Documents on its website for the purpose of research, public education, and to provide transparency in the administration of environmental laws. The permittee acknowledges that the Province may publish any Regulatory Document submitted by the permittee, excluding information that would be excepted from disclosure if the document was disclosed pursuant to a request under section 5 of the *Freedom of Information and Protection of Privacy Act*, and the permittee consents to such publication by the Province.

Date issued:
Date amended:
(most recent)

November 19, 2014

December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page 89 of 89

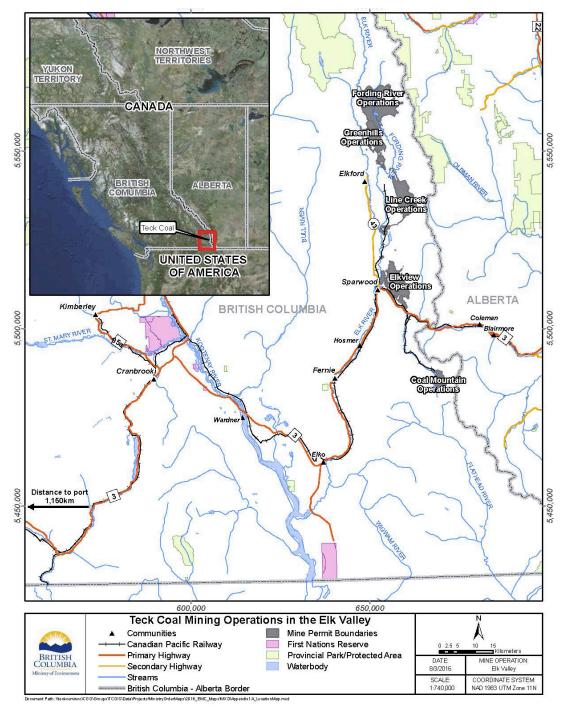
APPENDICES 1A-1K: TECK COAL LIMITED OPERATIONS MAPS

- **APPENDIX 1A Teck Coal Limited Location Map**
- APPENDIX 1B Teck Coal Limited Sampling Locations Overview Map
- **APPENDIX 1C Teck Coal Limited Sampling Locations Map Compliance Points**
- APPENDIX 1D Teck Coal Limited Sampling Locations Map Order Stations
- APPENDIX 1E Teck Coal Limited Sampling Locations Map Koocanusa Reservoir
- APPENDIX 1F Teck Coal Limited Sampling Locations Map Fording River Operations
- APPENDIX 1G Teck Coal Limited Sampling Locations Map Greenhills Operations
- APPENDIX 1H Teck Coal Limited Sampling Locations Map Line Creek Operations
- APPENDIX 1I Teck Coal Limited Sampling Locations Map Line Creek Operations Phase II
- APPENDIX 1Ia Dry Creek Water Management System Benthic Invertebrate Tissue Monitoring Location Map – Line Creek Operations
- APPENDIX 1J Teck Coal Limited Sampling Locations Map Elkview Operations
- **APPENDIX 1K Teck Coal Limited Sampling Locations Map Coal Mountain Operations**

Date issued:
Date amended:
(most recent)

November 19, 2014

December 19, 2022


A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

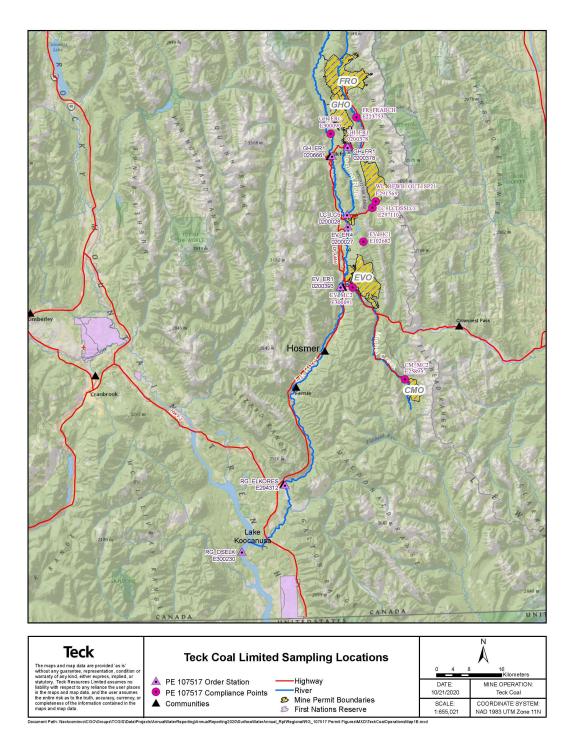
Mining Authorizations

Page Appendix 1: 1 of 13

APPENDIX 1A - Teck Coal Limited Location Map

Date issued:
Date amended:
(most recent)

November 19, 2014


December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

APPENDIX 1B – Teck Coal Limited Sampling Locations Overview Map

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Alberta Legend Map 1C Teck Coal Limited Sampling Locations Compliance Points PE 107517 Compliance Points Mine Permit Boundary Paved Surface Projection: UTM 111 Datum: NAD83 Date: Q1, 2019

APPENDIX 1C – Teck Coal Limited Sampling Locations Map – Compliance Points

3,250 6,500

Date issued: Date amended: (most recent)

November 19, 2014 December 19, 2022

1:325,000°n

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

■ Meters 13,000

Mining Authorizations

Permit Number: 107517

Page Appendix 1: 4 of 13

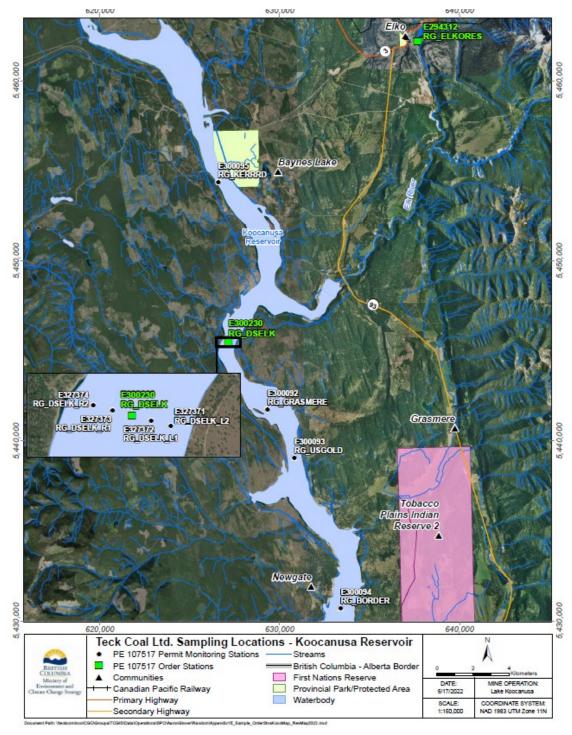
E297110 LC_LCDSSLCC EV_HC1 Elkview Operations Sparwood 660,000 Teck Coal Mining Operations in the Elk Valley PE 107517 Order Stations Primary Highway PE 107517 Compliance Stations Secondary Highway DATE: 8/3/2016 MINE OPERATION: Elk Valley Communities British Columbia - Alberta Border Waterbody Canadian Pacific Railway SCALE: 1:115,000 COORDINATE SYSTEM: NAD 1983 UTM Zone 11N Streams

APPENDIX 1D - Teck Coal Limited Sampling Locations Map - Order Stations

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.


for Director, Environmental Management Act

Mining Authorizations

Permit Number: 107517

Page Appendix 1: 5 of 13

APPENDIX 1E - Teck Coal Limited Sampling Locations Map - Koocanusa Reservoir

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page Appendix 1: 6 of 13

Legend eck Coal Limited Sampling Locations PE 107517 Compliance Points Flow Direction Facility Locations Fording River Operations PE 107517 Monitoring Location Mine Permit Boundary Intermittent Strea PE 107517 Order Station Paved Surface Projection: UTM 11 Datum: NAD83 Date: Q1, 2020

APPENDIX 1F - Teck Coal Limited Sampling Locations Map - Fording River

Date issued: Date amended: (most recent)

November 19, 2014 December 19, 2022

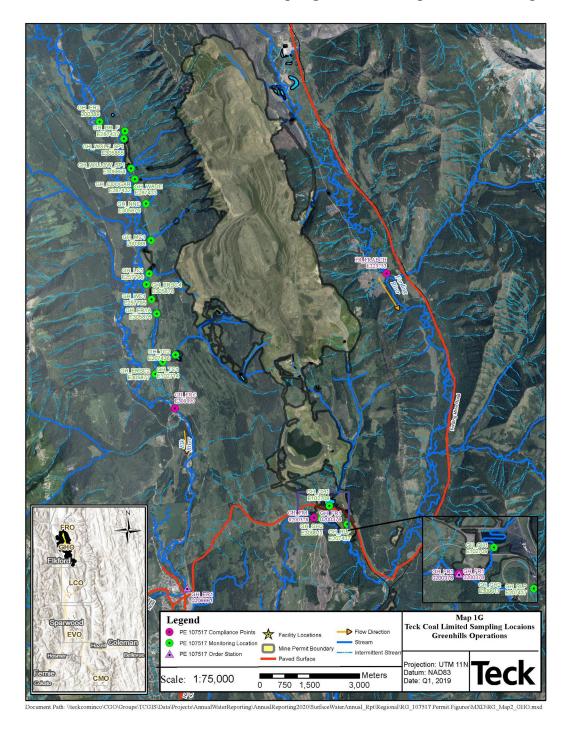
Scale: 1:55,000

A.J. Downie, M.Sc., P.Ag.

Meters

2,200

550 1,100


for Director, Environmental Management Act

Mining Authorizations

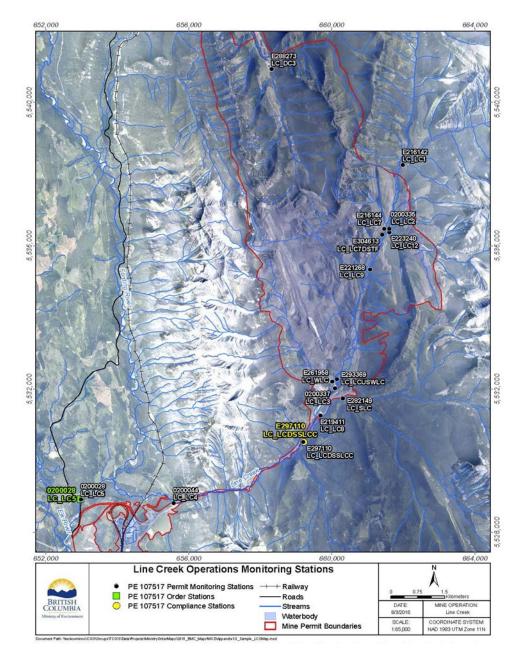
Permit Number: 107517

Page Appendix 1: 7 of 13

APPENDIX 1G - Teck Coal Limited Sampling Locations Map - Greenhills Operations

Date issued: Date amended: (most recent) November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

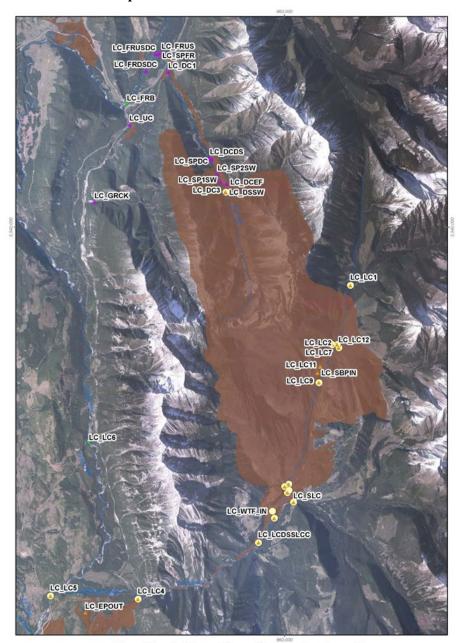

 $for\ Director,\ Environmental\ Management\ Act$

Mining Authorizations

Permit Number: 107517

Page Appendix 1: 8 of 13

APPENDIX 1H – Teck Coal Limited Sampling Locations Map – Line Creek Operations Phase I


Date issued: Date amended: (most recent) November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

 $for\ Director, \textit{Environmental Management Act}$

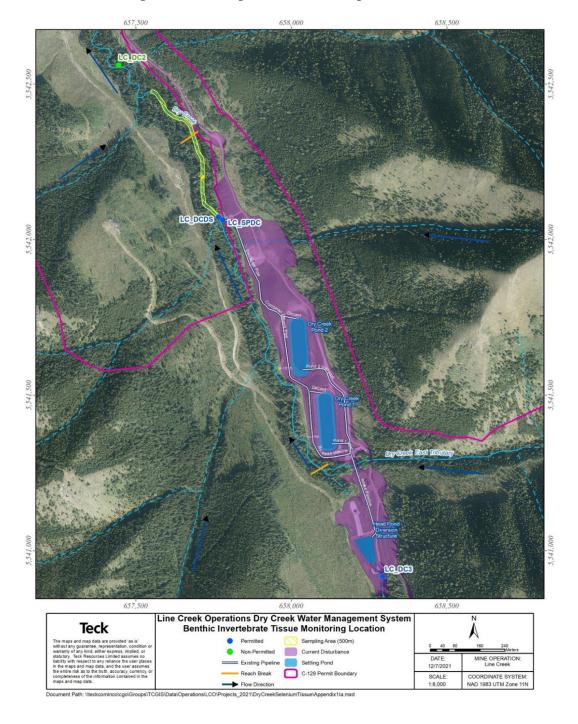
Mining Authorizations

APPENDIX 1I – Teck Coal Limited Sampling Locations Map – Line Creek Operations Phase II

Line Creek Operations Monitoring Locations

Date issued: Date amended: (most recent) November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.


for Director, Environmental Management Act

Mining Authorizations

Permit Number: 107517

Page Appendix 1: 10 of 13

APPENDIX 1Ia – Dry Creek Water Management System Benthic Invertebrate Tissue Monitoring Location Map – Line Creek Operations

Date issued: Date amended: (most recent) November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

 $for\ Director, \textit{Environmental Management Act}$

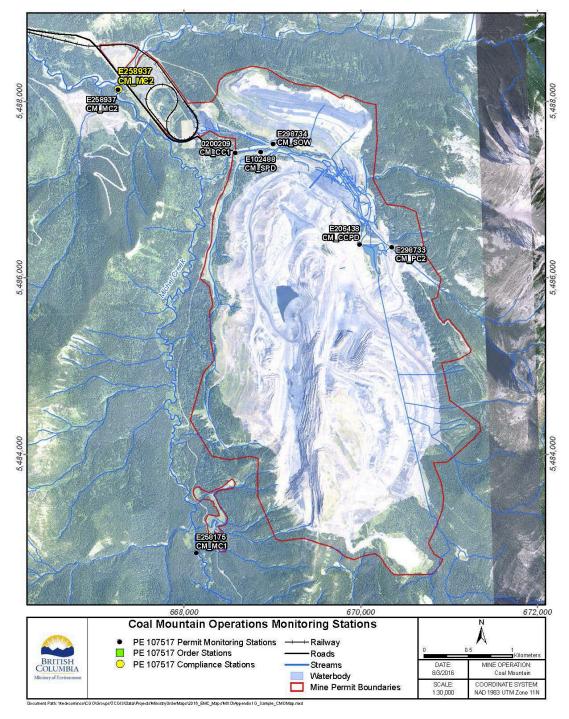
Mining Authorizations

648,000 664,000 **Elkview Operations Monitoring Stations** PE 107517 Permit Monitoring Stations PE 107517 Order Stations Roads MINE OPERATION Elkview PE 107517 Compliance Stations -Streams Waterbody
■ Mine Permit Boundaries COORDINATE SYSTEM: NAD 1983 UTM Zone 11N SCALE: 1:101,500

APPENDIX 1J - Teck Coal Limited Sampling Locations Map - Elkview Operations

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022


A.J. Downie, M.Sc., P.Ag.

 $for\ Director, \textit{Environmental Management Act}$

Mining Authorizations

Page Appendix 1: 12 of 13

APPENDIX 1K - Teck Coal Limited Sampling Locations Map - Coal Mountain

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

 $for\ Director, \textit{Environmental Management Act}$

Mining Authorizations

Page Appendix 1: 13 of 13

APPENDIX 2: SURFACE WATER DISCHARGE AND RECEIVING ENVIRONMENT MONITORING PROGRAM

TABLE 10 - DESIGNATED AREA MONITORING PROGRAM - COMPLIANCE POINTS

TABLE 10 - DESIGNATED AREA MONTORING	TROGRAM COMERNO	ETGHTS				-	1
	FRO – FORDING RIVER ~100m UPSTREAM OF CHAUNCEY CREEK (4)	GHO – FORDING RIVER ~205m DOWNSTREAM OF GREENHILLS CREEK	GHO – ELK RIVER ~220m DOWNSTREAM OF THOMPSON CREEK	LCO – LINE CREEK IMMEDIATELY DOWNSTREAM OF SOUTH LINE CREEK CONFLUENCE	EVO – HARMER SPILLWAY	EVO – MICHEL CREEK AT HWY 3 BRIDGE (4)	CMO – MICHEL CREEK 50m UPSTREAM OF ANDY GOODE CREEK
EMS Number	E223753	0200378	E300090	E297110	E102682	E300091	E258937
PARAMETER							
Field Parameters(a)	W/M	W/M	W/M	W/M	W/M	W/M	W/M
Conventional Parameters (b)	W/M	W/M	W/M	W/M	W/M	W/M	W/M
Major Ions (c)	W/M	W/M	W/M	W/M	W/M	W/M	W/M
Nutrients (d)	W/M	W/M	W/M	W/M	W/M	W/M	W/M
Total and Dissolved Metals Scans (e)	W/M	W/M	W/M	W/M	W/M	W/M	W/M
BOD	-	-	-	M	-	-	-
Chlorophyll-a	-	-	-	Three times annually, between July 15 & Sept 30 annually	-	-	-
Total Phosphorus	-	-	-	Every two weeks beginning Jun 15 through Sept 30, annually	-	-	-
Bromate	-	-	-	W/M	-	-	-
Hydrogen Peroxide	-	-	-	W/M	-	-	-

- Refer to Table 26, Appendix 3, for abbreviation description. 1)
- 2) 3) Refer to Table 27, Appendix 3, for explanatory notes.
- Refer to Section 8.1.2.2 and the Regional Surface Flow Monitoring Plan for flow monitoring requirements.
- 4) Monitoring location appears in two monitoring tables in this permit; therefore, monitoring data must be reported according to the requisite reporting requirements in both Section 9 and Appendix 4.

Date issued: Date amended: November 19, 2014

(most recent)

December 19, 2022

for Director, Environmental Management Act

Mining Authorizations

A.J. Downie, M.Sc., P.Ag.

Page Appendix 2: 1 of 16

TABLE 11 – DESIGNATED AREA MONITORING PROGRAM – ORDER STATIONS

	FR4 GH_FR1	FR5 LC_LC5	ER1 GH_ER1	ER2 EV_ER4	ER3 EV_ER1	ER4 RG_ELKORES	LK2
	UPPER FORDING RIVER (DOWNSTREAM OF GREENHILLS CREEK)	LOWER FORDING RIVER (DOWNSTREAM OF LINE CREEK)	ELK RIVER UPSTREAM OF BOIVIN CREEK	ELK RIVER UPSTREAM OF GRAVE CREEK (FROM FORDING RIVER TO MICHEL CREEK)	ELK RIVER DOWNSTREAM MICHEL CREEK	ELK RIVER AT ELKO RESERVOIR	KOOCANUSA RESERVOIR TRANSECT SOUTH OF THE ELK RIVER (4)
EMS Number	0200378	0200028	E206661	0200027	0200393	E294312	
PARAMETER							
Field Parameters (a)	W/M	W/M	W/M	W/M	W/M	W/M	M/T
Conventional Parameters (b)	W/M	W/M	W/M	W/M	W/M	W/M	M/T
Major Ions (c)	W/M	W/M	W/M	W/M	W/M	W/M	M/T
Nutrients (d)	W/M	W/M	W/M	W/M	W/M	W/M	M/T
Total and Dissolved Metals Scan (e)	W/M	W/M	W/M	W/M	W/M	W/M	M/T
Secchi depth and chlorophyll-a	-	-	-	-	-	-	M/T

- Refer to Table 26, Appendix 3, for abbreviation description.
- 2) Refer to Table 27, Appendix 3, for explanatory notes.
- 3) Refer to Section 8.1.2.2 and the Regional Surface Flow Monitoring Plan for flow monitoring requirements.
- 4) Refer to Table 2A for transect sampling locations and EMS IDs.

Date issued: Date amended: November 19, 2014 December 19, 2022

(most recent)

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page Appendix 2: 2 of 16

TABLE 12 - DESIGNATED AREA MONITORING PROGRAM – KOOCANUSA RESERVOIR RECEIVING ENVIRONMENT STATIONS

	KOOCANUSA RESERVOIR DOWNSTREAM OF KIKKOMAN CREEK	KOOCANUSA RESERVOIR WEST OF GRASMERE	KOOCANUSA RESERVOIR UPSTREAM OF GOLD CREEK	KOOCANUSA RESERVOIR UPSTREAM OF CANADA/US BORDER
EMS Number	E300095	E300092	E300093	E300094
PARAMETER				
Field Parameters (a)	M	M	M	M
Conventional Parameters (b)	M/EH	M/EH	M/EH	M
Major Ions (c)	M/EH	M/EH	M/EH	M
Nutrients (d)	M/EH	M/EH	M/EH	M
Total and Dissolved Metals Scan (e)	M/EH	M/EH	M/EH	M
Secchi depth and chlorophyll-a	M	M	M	M

Note: sample collection is based upon access; ice on the reservoir may prevent sample collection, if this is the case, the monitoring report must include a reason in the report

- 1) Refer to Table 26, Appendix 3, for abbreviation description.
- 2) Refer to Table 27, Appendix 3, for explanatory notes.
- 3) Refer to Section 8.1.2.2 and the Regional Surface Flow Monitoring Plan for flow monitoring requirements.

Date issued: Date amended: November 19, 2014 December 19, 2022

(most recent)

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page Appendix 2: 3 of 16

TABLE 13 - FORDING RIVER OPERATIONS DISCHARGE MONITORING PROGRAM

	TAILINGS SLURRY TO NORTH TAILINGS POND	TAILINGS SLURRY TO SOUTH TAILINGS POND	NORTH LOOP POND DECANT (h)	MAINTENANCE AND SERVICES POND DECANT	EAGLE POND DECANT (h)	CLODE POND DECANT (h)	SOUTH KILMARNOCK POND DECANT – PHASE I (h)	SOUTH KILMARNOCK POND DECANT – PHASE II (h)	HENRETTA PIT EFFLUENT INTO DIVERSION CULVERTS (j)	SMITH PONDS DECANT (h)	SWIFT PIT EFFLUENT TO FORDING RIVER	SWIFT- CATARACT SED. POND DOSED WITH ANTISCALANT TO FORDING RIVER (4;5)	LIVERPOOL SED. PONDS DECANT (h)	POST SED. PONDS DECANT (h)	LAKE MOUNTAIN SED. PONDS TO LAKE MOUNTAIN CREEK	FLOODPLAIN WIDENING SED. POND DECANT (h)
EMS Number	E102475	E206660	E102476	E102478	E102480	E102481	E208394	E208395	E216781	E261897	E217403	E320694	E304835	E304750	E306924	E325311
(h) In-pond sample EMS Number	-	-	E310046	-	E310047	E310048	E310049	E310050	-	E310051	-	-	E310052	E310053	-	E325312
PARAMETER																
Field Parameters (a)	-	-	M	M	M	M	М	M	М	M	M	M	М	M	M	M
Conventional Parameters (b)	SA	SA	M	M	M	M	M	M	М	M	M	M	М	M	М	M
Major Ions (c)	SA	SA	M	M	M	M	M	M	M	M	M	M	M	M	M	M
Nutrients (d)	SA	SA	M	M	M	M	M	M	M	M	M	M	M	M	M	M
Total and Dissolved Metals Scan (e)	SA	SA	M	M	M	M	М	М	М	M	M	M	М	M	М	М
96 hour Rainbow Trout single concentration toxicity test (g)	-	-	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	-	Q	Q
48 hour <i>Daphnia</i> magna single concentration toxicity test (g)	-	-	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	-	Q	Q

- 1) Refer to Table 26, Appendix 3, for abbreviation description.
- 2) Refer to Table 27, Appendix 3, for explanatory notes.
- 3) Refer to Section 8.1.2.2 and the Regional Surface Flow Monitoring Plan for flow monitoring requirements.
- 4) Monitoring location appears in two monitoring tables in this permit; therefore, monitoring data must be reported according to the requisite reporting requirements in both Section 9 and Appendix 5.
- Samples are to be collected only when there is discharge via overflow from the FRO-S AWTF Swift Creek Intake. If the discharge is initiated because of a recirculation event at FRO-S AWTF, the monitoring program is not effective during the first four (4) hours of the recirculation event.

Date issued: Date amended: November 19, 2014

(most recent)

December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

appour

Page Appendix 2: 4 of 16

TABLE 14 - FORDING RIVER OPERATIONS RECEIVING ENVIRONMENT AND OTHER MONITORING PROGRAM

	FORDING RIVER U/S OF KILMARNOCK CREEK	FORDING RIVER D/S OF FRO-S AWTF OUTFALL STRUCTURE (4)	FORDING RIVER ~525 m D/S OF CATARACT CREEK	FORDING RIVER D/S OF HENRETTA	FORDING RIVER U/S OF HENRETTA	HENRETTA CREEK AT MOUTH	HENRETTA CREEK UPSTREAM OF MCQUARRIE CREEK	FORDING RIVER NEAR FORDING RIVER ROAD	KILMARNOCK CREEK AT MOUTH
EMS Number	0200201	E320695	E300071	0200251	E216777	E216778	E300096	E300097	0200252
PARAMETER									
Field Parameters (a)	W/M	W/M	W/M	M	M	W/M	M	M	M
Conventional Parameters (b)	W/M	W/M	W/M	M	M	W/M	M	M	М
Major Ions (c)	W/M	W/M	W/M	M	M	W/M	M	M	M
Nutrients (d)	W/M	W/M	W/M	M	M	W/M	M	M	M
Total and Dissolved Metals Scan (e)	W/M	W/M	W/M	М	M	W/M	M	M	M

- 1) Refer to Table 26, Appendix 3, for abbreviation description.
- 2) Refer to Table 27, Appendix 3, for explanatory notes.
- 3) Refer to Section 8.1.2.2 and the Regional Surface Flow Monitoring Plan for flow monitoring requirements.
- 4) Monitoring location appears in three monitoring tables in this permit, therefore monitoring data must be reported according to the requisite reporting requirements in Section 9 and Appendices 4 and 5.

Date issued: Date amended: November 19, 2014 December 19, 2022

(most recent)

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page Appendix 2: 5 of 16

TABLE 15 – GREENHILLS OPERATIONS DISCHARGE MONITORING PROGRAM

	TAILINGS POND WATER	GREENHILLS CREEK SED. POND DECANT (4)	THOMPSON CREEK SED. POND DECANT	PORTER CREEK SED. POND DECANT	WOLFRAM CREEK SED. POND DECANT	LEASK CREEK SED. POND DECANT	RAIL LOOP SED. POND DECANT	MICKELSON CREEK AT LRP ROAD	WADE CREEK AT LRP ROAD	WOLF CREEK SED. POND DECANT	WILLOW CREEK SED. POND DECANT
EMS Number	E287438	E102709	E207436	0200385	E257795	E257796	E207437	0200388	E287433	E305855	E305854
PARAMETER											
Field Parameters (a)	-	M	M	M	М	М	M	M	M	M	M
Conventional Parameters (b)	SA	M	M	M	M	M	M	M	M	M	M
Major Ions (c)	SA	M	M	M	M	M	M	M	M	M	M
Nutrients (d)	SA	M	M	M	М	М	М	M	М	M	M
Total and Dissolved Metals Scan (e)	SA	M	M	M	M	M	M	M	М	M	M
96 hour Rainbow Trout single concentration toxicity test (g)	-	Q	Q	Q	Q	Q	-	-	Q	Q	Q
48 hour <i>Daphnia magna</i> single concentration toxicity test (g)	-	Q	Q	Q	Q	Q	-	-	Q	Q	Q

- 1) Refer to Table 26, Appendix 3, for abbreviation description.
- 2) Refer to Table 27, Appendix 3, for explanatory notes.
- 3) Refer to Section 8.1.2.2 and the Regional Surface Flow Monitoring Plan for flow monitoring requirements.
- 4) Monitoring location appears in two monitoring tables in this permit; therefore, monitoring data must be reported according to the requisite reporting requirements in both Section 9 and Appendix 5.

Date issued: Date amended: November 19, 2014 December 19, 2022

(most recent)

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page Appendix 2: 6 of 16

TABLE 16 - GREENHILLS OPERATIONS RECEIVING ENVIRONMENT MONITORING PROGRAM

	ELK RIVER UPSTREAM OF GREENHILLS OPERATIONS	THOMPSON CREEK AT LRP ROAD	COUGAR CREEK AT LRP ROAD	BRANCH F AT LRP ROAD	NO NAME CREEK	ELK RIVER SIDE CHANNEL D/S WOLFRAM CREEK	ELK RIVER D/S OF THOMPSON CREEK	ELK RIVER SIDE CHANNEL U/S WOLFRAM CREEK
EMS Number	0200389	E102714	E287432	E287437	E305875	E305876	E305877	E305878
PARAMETER								
Field Parameters (a)	M	M	M	M	M	M	M	M
Conventional Parameters (b)	M	M	M	M	M	M	M	M
Major Ions (c)	M	M	M	M	M	M	M	M
Nutrients (d)	M	M	M	M	M	M	M	M
Total and Dissolved Metals Scan (e)	M	M	M	M	M	M	M	M
96 hour Rainbow Trout single concentration toxicity test (g)	-	Q	-	-	-		-	-
48 hour <i>Daphnia magna</i> single concentration toxicity test (g)	-	Q	-	-	-	-	-	-

- Refer to Table 26, Appendix 3, for abbreviation description. Refer to Table 27, Appendix 3, for explanatory notes.
- 2)
- 3) Refer to Section 8.1.2.2 and the Regional Surface Flow Monitoring Plan for flow monitoring requirements.

Date issued: Date amended: November 19, 2014 December 19, 2022

(most recent)

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page Appendix 2: 7 of 16

TABLE 17 - LINE CREEK OPERATIONS PHASE I DISCHARGE MONITORING PROGRAM

	NO NAME CREEK SED. POND DECANT	MSA NORTH PONDS DECANT	MSA NORTH PONDS ALTERNATE (4)	CONTINGENCY TREATMENT SYSTEM (r)
EMS Number	E221268	E216144	E304613	E219411
PARAMETERS				
Field Parameters (a)	M	M	M	M
Conventional Parameters (b)	M	M	M	M
Major Ions (c)	M	M	M	M
Nutrients (d)	M	M	M	M
Total and Dissolved Metals Scan (e)	M	M	M	M
96 hour Rainbow Trout single concentration toxicity test (g)	Q	Q	Q	-
48 hour Daphnia magna single concentration toxicity test (g)	Q	Q	Q	-

- 1) Refer to Table 26, Appendix 3, for abbreviation description.
- 2) Refer to Table 27, Appendix 3, for explanatory notes.
- 3) Refer to Section 8.1.2.2 and the Regional Surface Flow Monitoring Plan for flow monitoring requirements.
- 4) Monitoring location E304613 to be used as an alternate for E216144, as required.

Date issued: Date amended: November 19, 2014 December 19, 2022

(most recent)

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page Appendix 2: 8 of 16

TABLE 18 - LINE CREEK OPERATIONS PHASE II DISCHARGE MONITORING PROGRAM

	LCO DRY CREEK SED. PONDS TO DRY CREEK	LCO DRY CREEK SED.PONDS TO FORDING RIVER VIA OUTFALL (WHEN IN USE)	DIVERSION STRUCTURE SPILLWAY (WHEN IN USE)	SED. POND 1 SPILLWAY (WHEN IN USE)	SED. POND 2 SPILLWAY (WHEN IN USE)	SED. POND 3 SPILLWAY (WHEN CONSTRUCTED AND IN USE)
EMS Number	E295211	E295231	E295313	E295314	E295315	E295316
PARAMETER						
Field Parameters (a)	BP-W/M _(i)	W/M	D*/W	D*/W	D*/W	D*/W
Conventional Parameters (b)	BP-W/M	W/M	D*/W	D*/W	D*/W	D*/W
Major Ions (c)	BP-W/M	W/M	D*/W	D*/W	D*/W	D*/W
Nutrients (d)	BP-W/M	W/M	D*/W	D*/W	D*/W	D*/W
96-hour LC50 Rainbow Trout (g)	Q	Q	-	-	-	-
48-hour LT50 Daphnia magna (g)	Q	Q	-	-	-	-
Selenium Speciation	BP-W/M	-	-	-	-	-
Chlorophyll-a (h)	BP-W/M	-	-	-	-	-

- 1) Refer to Table 26, Appendix 3, for abbreviation description.
- 2) Refer to Table 27, Appendix 3, for explanatory notes.
- 3) Refer to Section 8.1.2.2 and the Regional Surface Flow Monitoring Plan for flow monitoring requirements.

Date issued: Date amended: November 19, 2014 December 19, 2022

(most recent)

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page Appendix 2: 9 of 16

TABLE 19 – LINE CREEK OPERATIONS PHASE I RECEIVING ENVIRONMENT MONITORING PROGRAM

	LINE CREEK U/S OF PROCESS PLANT	LINE CREEK D/S OF WEST LINE CREEK	LINE CREEK U/S OF ROCK DRAIN	LINE CREEK U/S OF WLC BELOW ROCK DRAIN	LINE CREEK U/S MSA NORTH PIT	SOUTH LINE CREEK	WEST LINE CREEK	NORTH HORSESHOE CREEK NEAR MOUTH
EMS Number	0200044	0200337	0200335	E293369	E216142	E282149	E261958	E223240
PARAMETER								
Field Parameters (a)	W/M	W/M	M	M	M	M	M	M
Conventional Parameters (b)	W/M	W/M	M	M	M	M	M	M
Major Ions (c)	W/M	W/M	M	M	M	M	M	M
Nutrients (d)	W/M	W/M	M	M	M	M	M	M
Nitrate	-	-	-	W	-	-	W	-
Total and Dissolved Metals Scan (e)	W/M	W/M	M	M	M	M	M	M
BOD	-	W/M	M	M	-	M	-	-
Total Sulphide	-	W/M	-	-	-	-	-	-
Bromate	W/M	W/M	-	-	-	-	-	-
Hydrogen peroxide (Teck Internal Lab Results)	W/M	W/M	-	-	-	-	-	-

- 1) Refer to Table 23, Appendix 3, for abbreviation description.
- 2) Refer to Table 24, Appendix 3, for explanatory notes.
- 3) Refer to Section 8.1.2.2 and the Regional Surface Flow Monitoring Plan for flow monitoring requirements.

Date issued: Date amended: November 19, 2014

(most recent)

December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page Appendix 2: 10 of 16

TABLE 20 – LINE CREEK OPERATIONS PHASE II RECEIVING ENVIRONMENT MONITORING PROGRAM

	EAST TRIBUTARY OF LCO DRY CREEK	LCO DRY CREEK U/S OF EAST TRIBUTARY CREEK	LCO DRY CREEK D/S OF SED. PONDS	LCO DRY CREEK NEAR MOUTH	UNNAMED CREEK	GRACE CREEK U/S OF THE CP RAIL TRACKS	FORDING RIVER 100M U/S OF THE CONVEYANCE OUTFALL (K)	FORDING RIVER U/S OF LCO DRY CREEK, 100M D/S OF THE CONVEYANCE OUTFALL TO FORDING RIVER (K)	FORDING RIVER D/S OF LCO DRY CREEK	CHAUNCEY CREEK
EMS Number	E288274	E288273	E295210	E288270	E295213	E288275	E295232	E288271	E288272	E295214
PARAMETER										
Field Parameters (a)	M	BP-W/M	BP- W/M _(i)	W/M	M	M	M	M	W/M	M
Conventional Parameters (b)	M	BP-W/M	BP- W/M	W/M	M	M	M	M	W/M	М
Major Ions (c)	M	BP-W/M	BP- W/M	W/M	M	M	M	M	W/M	М
Nutrients (d)	M	BP-W/M	BP- W/M	W/M	M	M	M	M	W/M	М
Selenium Speciation	-	BP-W/M	BP- W/M	-	-	-	-	-	-	-
Chlorophyll-a	M	BP-W/M	BP- W/M	W/M	-	-	-	-	-	-

- 1) Refer to Table 26, Appendix 3, for abbreviation description.
- 2) Refer to Table 27, Appendix 3, for explanatory notes.
- Refer to Section 8.1.2.2 and the Regional Surface Flow Monitoring Plan for flow monitoring requirements.

Date issued: Date amended: November 19, 2014

(most recent)

December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page Appendix 2: 11 of 16

TABLE 21 - ELKVIEW OPERATIONS DISCHARGE MONITORING PROGRAM

	WESTFORK TAILINGS IMPOUNDMENT TO GROUND	ERICKSON CREEK AT MOUTH	SOUTH PIT CREEK SED. POND DECANT	LOWER MILLIGAN CREEK SED. POND DECANT	GATE CREEK SED. POND DECANT	BODIE CREEK SED. POND DECANT	AQUEDUCT POND CONTROL STRUCTURE TO AQUEDUCT CREEK
EMS Number	E296310	0200097	E296311	E208057	E206231	E102685	E302170
PARAMETER							
Field Parameters (a)	SA	M	M	M	M	M	M
Conventional Parameters (b)	SA	M	M	M	M	M	M
Major Ions (c)	SA	M	M	M	M	M	M
Nutrients (d)	SA	M	M	M	M	M	M
Total and Dissolved Metals Scan (e)	SA	M	M	M	M	M	M
96 hour Rainbow Trout single concentration toxicity test (g)	-	Q	Q	Q	Q	Q	Q
48 hour <i>Daphnia magna</i> single concentration toxicity test (g)	-	Q	Q	Q	Q	Q	Q

- Refer to Table 26, Appendix 3, for abbreviation description. Refer to Table 27, Appendix 3, for explanatory notes.
- 2)
- Refer to Section 8.1.2.2 and the Regional Surface Flow Monitoring Plan for flow monitoring requirements. 3)

Date issued: Date amended: November 19, 2014 December 19, 2022

(most recent)

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page Appendix 2: 12 of 16

TABLE 22 - ELKVIEW OPERATIONS DISCHARGE MONITORING PROGRAM (CONTINUED)

	OTTO CREEK AT MOUTH	GODDARD CREEK SED. POND DECANT	LINDSAY CREEK INFILTRATION POND TO GROUND	DRY CREEK SED. POND DECANT	6 MILE CREEK SED. POND DECANT
EMS Number	E102679	E208043	E258135	E298590	E102681
PARAMETER					
Field Parameters (a)	M	M	M	M	M
Conventional Parameters (b)	M	M	M	M	M
Major Ions (c)	M	M	M	M	M
Nutrients (d)	M	M	M	M	M
Total and Dissolved Metals Scan (e)	M	M	M	M	M
96 hour Rainbow Trout single concentration toxicity test (g)	Q	Q	Q	Q	Q
48 hour <i>Daphnia magna</i> single concentration toxicity test (g)	Q	Q	Q	Q	Q

- 1) Refer to Table 26, Appendix 3, for abbreviation description.
- 2) Refer to Table 27, Appendix 3, for explanatory notes.
- 3) Refer to Section 8.1.2.2 and the Regional Surface Flow Monitoring Plan for flow monitoring requirements.

Date issued: Date amended: November 19, 2014 December 19, 2022

(most recent)

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page Appendix 2: 13 of 16

TABLE 23- ELKVIEW OPERATIONS RECEIVING ENVIRONMENT AND OTHER MONITORING PROGRAM

	MICHEL CREEK U/S OF ERICKSON CREEK	ELK RIVER U/S OF MICHEL CREEK	BALMER CREEK AT CFI ROAD	FENNELON CREEK AT CFI ROAD	SPRING CREEK AT MOUTH	THRESHER CREEK AT MILLIGAN ROAD
EMS Number	0200203	0200111	E298592	E298591	E298594	E298593
PARAMETER						
Field Parameters (a)	W/M	M	M	М	M	M
Conventional Parameters (b)	W/M	M	M	M	M	M
Major Ions (c)	W/M	M	M	M	M	M
Nutrients (d)	W/M	M	M	M	M	M
Total and Dissolved Metals Scan (e)	W/M	M	M	M	M	M

- Refer to Table 26, Appendix 3, for abbreviation description. 1)
- 2)
- Refer to Table 27, Appendix 3, for explanatory notes.

 Refer to Section 8.1.2.2 and the Regional Surface Flow Monitoring Plan for flow monitoring requirements. 3)

Date issued: Date amended: November 19, 2014 December 19, 2022

(most recent)

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page Appendix 2: 14 of 16

TABLE 24- COAL MOUNTAIN OPERATIONS DISCHARGE MONITORING PROGRAM

	MAIN INTERCEPTOR SED. POND DECANT (h)	CORBIN SED. POND DECANT (h)	PENGELLY CHANNEL DECANT (h)	SOWCHUCK SUMP
EMS Number	E102488	E206438	E298733	E298734
PARAMTER				
Field Parameters (a)	M	M	M	M
Conventional Parameters (b)	M	M	M	M
Major Ions (c)	M	M	M	M
Nutrients (d)	M	M	M	M
Total Metals Scan (e)	M	M	M	M
96 hour Rainbow Trout single concentration toxicity test (g)	Q	Q	Q	-
48 hour LT50 Daphnia magna single concentration toxicity test (g)	Q	Q	Q	-

- 1) Refer to Table 26, Appendix 3, for abbreviation description.
- 2) Refer to Table 27, Appendix 3, for explanatory notes.
- 3) Refer to Section 8.1.2.2 and the Regional Surface Flow Monitoring Plan for flow monitoring requirements.

Date issued: Date amended: November 19, 2014 December 19, 2022

(most recent)

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page Appendix 2: 15 of 16

PROVINCE OF BRITISH COLUMBIA

Environmental Protection

TABLE 25 – COAL MOUNTAIN OPERATIONS RECEIVING ENVIRONMENT MONITORING PROGRAM

	MICHEL CREEK U/S OF OPERATIONS	CORBIN CREEK NEAR CONFLUENCE WITH MICHEL CREEK
EMS Number	E258175	0200209
PARAMETER		
Field Parameters(a)	М	W/M
Conventional Parameters (b)	M	W/M
Major Ions (c)	M	W/M
Nutrients (d)	M	W/M
Total Metals Scan (e)	M	W/M

- 1) Refer to Table 26, Appendix 3, for abbreviation description.
- 2) Refer to Table 27, Appendix 3, for explanatory notes.
- Refer to Section 8.1.2.2 and the Regional Surface Flow Monitoring Plan for flow monitoring requirements.

Date issued: Date amended: November 19, 2014 December 19, 2022

(most recent)

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page Appendix 2: 16 of 16 Permit Number: 107517

APPENDIX 3: MONITORING PROGRAM NOTES AND EXPLANATIONS

Table 26 - Abbreviations for Surface Water Monitoring Program

Α	Annual frequency
3X/W	
	Sampling three times per week
1X/2W	Sampling once every two weeks
1X/6W	Six week in-stream cycle
TW	Twice weekly
TA	Twice annually
C	Continuous Monitoring refer to (f) Table 24
D	Daily frequency
D*/W	One sample within the first 24 hours when actively discharging at spillway, then weekly thereafter for continued discharge from the spillways. Discharge from the spillway(s) occurs for flows greater than a 1:10 year, 24-hour storm event.
M	Monthly frequency
М/ЕН	Monthly frequency of one epilimnetic composite of water sampled from three depths (e.g. 1m, 5m,10m) and another hypolimnetic composite of water sampled from three depths (e.g. 20m,32m,45m) Stratification into an epilimnion and hypolimnion will be confirmed wherever a thermocline (defined as a 1°C change over 1 meter depth) is recorded. This temperature differential must be sustained in order to constitute stratification. Where stratified, one composite sample will be formed from three evenly spaced grab samples in the epilimnion and one composite sample similarly from the hypolimnion. Where unstratified, samples will be collected 3 m from the surface, 3 m from the substrate and at the mid-point of the water column. These samples will be averaged to comprise a composite sample.
M/T	Should conditions allow; monthly frequency of discrete samples from all sampled depths at all transect sampling locations identified in Table 2A. The number of discrete samples at each transect sampling location is determined by the depth of the reservoir at that location. If the depth is <6m, then a single sample is taken at the mid-point of the water column. If the depth is 6-12 m then a sample is taken at ½ depth and a second sample is taken at ½ depth. If the depth is > 12m, then three samples are taken: 3 m from surface, mid-point depth, and 3 m from the substrate.
Q	Quarterly frequency
Q*	Toxicity testing done weekly until one year after commissioning is completed, at which time testing must be done quarterly.
SA	Semi-Annual frequency (twice per year), SA sampling schedules must coincide with the monthly sampling schedule for sampling locations where both sampling frequencies are required.
W/M	Weekly frequency March 15 – July 15, monthly during the rest of the year.

Date issued:
Date amended:
(most recent)

November 19, 2014

December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Permit Number: 107517

Page Appendix 3: 1 of 3

BP- W/M	Weekly frequency March 15 to at least August 31 during bypass of the LCO Dry Creek Water Management System, monthly during the rest of the year, depending on unexpected monitoring results that indicate potential ortho-P uptake or the generation of organic selenium species.
BOD	5-day Biochemical Oxygen Demand
ЕРН	Extractable Petroleum Hydrocarbons, a combination of HEPH (C19-32) & LEPH (C10-19)
TSS	Total Suspended Solids

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page Appendix 3: 2 of 3

Table 27- Surface Water Monitoring Program: Explanatory Notes

able 27- Suri	ace water Monitoring Program: Explanatory Notes
	Field Parameters must include water temperature, specific conductance, dissolved
a	oxygen, pH; for Koocanusa Reservoir locations this includes vertical profiles of
	dissolved oxygen and temperature
	Conventional Parameters must include specific conductance, total dissolved solids,
b	total suspended solids, hardness, alkalinity, dissolved organic carbon, total organic
	carbon, and turbidity.
	Major Ions must include bromide, fluoride, calcium, chloride, magnesium,
c	potassium, sodium, sulphate.
	Nutrients must include ammonia, nitrate, nitrite, TKN, orthophosphate, total
d	phosphorus.
	Dissolved Metals Scan must include aluminum, antimony, arsenic, barium,
	beryllium, bismuth, boron, cadmium, chromium, cobalt, copper, iron, lead, lithium,
	manganese, mercury, molybdenum, nickel, selenium, silver, strontium, thallium, tin,
e	titanium, uranium, vanadium, and zinc.
	Total Metals Scan must include aluminum, antimony, arsenic, barium, beryllium,
	bismuth, boron, cadmium, chromium, cobalt, copper, iron, lead, lithium, manganese,
	mercury, molybdenum, nickel, selenium, silver, strontium, thallium, tin, titanium,
	uranium, vanadium, and zinc.
	Flow monitoring locations may be changed through approved flow monitoring plan
f	and must follow latest approved plan. Flow measurements must be taken in
•	accordance with Section 8.1.2.2 or in accordance with an approved Flow Monitoring
	Plan.
	Acute toxicity tests must coincide with water quality sampling and-must be
	implemented in accordance with the toxicity testing program approved by the
a	director.
g	
	Teck shall collect samples when ponds are decanting within the permitted sampling
	frequency
	If the discharge point is not decanting to the receiving environment, water quality
h	samples Must be taken just inside the decant point for all parameters, with the
	exception of toxicity.
	Selenium Speciation must include total selenium, dissolved selenium, selenate (Se
•	(VI)), selenite (Se (IV)), methylseleninic acid (MeSe (IV)), selenocyanate (SeCN),
i	selenomethionine (SeMe), selenosulfate, dimethylselenoxide (DMSeO),
	methaneselenonic acid (MeSe(VI) and unknown selenium species.
j	Field observations of algae growth (presence/absence and photograph)
k	Monitoring at this location is not required until commissioning of the conveyance
	works authorized in section 2.9 for the discharge to the Fording River. The permittee
	must notify the Ministry 1 year prior to discharge through the outfall to discuss
	initiation of monitoring at this location.
o (LCO)	Water temperature, dissolved oxygen, pH must be continuously monitored.
r (LCO)	To be sampled only when in use.
	1 * *

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Permit Number: 107517

Page Appendix 3: 3 of 3

APPENDIX 4: SELENIUM AND NITRATE TREATMENT FACILITIES

APPENDIX 4A – Selenium and Nitrate Treatment Facility General Operational Requirements

APPENDIX 4B – West Line Creek Active Water Treatment Facility (AWTF)

APPENDIX 4C – Elkview Operations Saturated Rock Fill (EVO SRF)

APPENDIX 4D – Fording River Operations – South (FRO-S) AWTF

APPENDIX 4E - Fording River Operations - North (FRO-N) SRF

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page Appendix 4: 1 of 39

APPENDIX 4A – Selenium and Nitrate Treatment Facility General Operational Requirements

This section includes requirements that apply to all selenium and nitrate treatment facilities. Subsequent sections include facility-specific requirements.

4A1 **COMMISSIONING**

For the purpose of this permit, commissioning means bringing selenium and nitrate treatment facility works into operation. A maximum of 120 days in forward flow during commissioning is considered a reasonable time to undertake operational refinement or adjustment of works to optimize efficiency and/or effluent quality prior to moving to the operational phase of the treatment facility. The permittee must notify the director when the facility commences forward flow and commissioning must be completed within 120 days of commencing forward flow. Alternative commissioning periods must be approved by the director.

During pre-commissioning and commissioning of a treatment facility, the authorized discharge limits and associated site performance objectives for each specific facility included in the subsequent sections do not apply, but the discharge is required to be non-acutely toxic as per Section 6.2 and the downstream Compliance Point compliance limits apply. During the time that commissioning is underway, periodic reporting on the status of commissioning must be provided to the satisfaction of the director.

Notification of process modification adjustments, as outlined in Section 4A4, is not required during the commissioning period. System optimization adjustments made during the commissioning period must be reported in the Commissioning Report, as per Section 4A8. Once the commissioning phase is complete, or the maximum approved commissioning period has ended, whichever occurs first, the operational phase begins, and the permittee must notify the director.

4A2 COMMISSIONING PLAN

A Commissioning Plan for each selenium and nitrate treatment facility must be prepared by a Qualified Professional, submitted to the director and implemented prior to commencement of the discharge from the treatment facility while in forward flow during the commissioning phase. The Commissioning Plan must include but is not necessarily limited to operational procedures required to commission and to start-up following a shut-down of

Date issued: Date amended: November 19, 2014

December 19, 2022

(most recent)

A.J. Downie, M.Sc., P.Ag.

yson

for Director, Environmental Management Act

Mining Authorizations

Page Appendix 4: 2 of 39

the water treatment facility, including sequencing, estimated timeline of steps, and any additional monitoring and reporting required to demonstrate that no adverse environmental impacts result from commissioning. The Commissioning Plan must, at a minimum, include the operational monitoring for each specific facility as required by subsequent sections.

4A3 OPERATIONS PLAN

An Operations Plan for each selenium and nitrate treatment facility and the associated authorized works in Appendix 4 must be prepared by a Qualified Professional, submitted to the director and implemented prior to commencement of the discharge from the treatment facility during the operational phase. The Operations Plan must include but is not necessarily limited to:

- i. The facility operator's manual, with provision for its continual improvement;
- ii. An overview of the planned maintenance program which includes an inventory of facility components and authorized replacement parts, and a detailed description of inspection, repair and replacement frequency for facility components;
- iii. Documentation to verify that the facility is operated at all times within specifications and in a manner to ensure compliance with this authorization and other applicable legislation;
- iv. Procedures for safely shutting down the treatment facility; and
- v. Actions to be taken if effluent quality fails to meet the requirements of this permit;
- vi. Contingency planning which describes built-in redundancy of the facility and outlines measures to prevent emergency conditions from occurring; and
- vii. Key metrics to be used to demonstrate the performance of the treatment facility relative to the intended performance.

The Operations Plan must be reviewed and updated following the first year of facility operations and as needed thereafter to assess its appropriateness for the authorized works, discharges and conditions. Results of the initial review must be provided to the director in the commissioning report prepared under Section 4A6 of this permit. Changes in procedures may be required by the director on the basis of this or later assessments, the operational records for

Date issued:
Date amended:
(most recent)

November 19, 2014

December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page Appendix 4: 3 of 39

the treatment facility and/or the results of discharge and receiving environment monitoring under Section 8. Any significant update to the plan must be submitted to the director within 30 days of adoption. Minor updates must be summarized in the quarterly report for the time period when the minor update was made.

4A4 PROCESS MODIFICATIONS

The permittee must notify the director in writing, prior to implementing changes to any process that may adversely affect the quality and/or quantity of the discharge from the selenium and nitrate treatment facilities. Notwithstanding notification under this Section, permitted levels must not be exceeded.

During commissioning notification for process modifications is not required for operational refinements or adjustments of works as needed to optimize efficiency and/or effluent quality. Adjustments made during the commissioning period must be reported in the Commissioning Report, as per Section 4A8.

4A5 <u>NEW WORKS</u>

The director may require upgrading of the selenium and nitrate treatment works and disposal facilities based on monitoring results, and/or any other pertinent information. Plans and specifications for new pollution treatment works and upgrades to existing works must be submitted to the director as an amendment application. All new works must be approved before a discharge from the works commences.

4A6 <u>SITE SPECIFIC ENVIRONMENTAL EMERGENCY RESPONSE</u> PLAN

A Site-Specific Environmental Emergency Response Plan must be prepared for all selenium and nitrate treatment facilities. The plan must be submitted to the director prior to commencement of the discharge from the selenium and nitrate treatment facilities.

The plan must include, but is not limited to:

i. A description of measures to mitigate any health or environmental impacts, if emergencies occur;

Date issued:
Date amended:
(most recent)

November 19, 2014

December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

- ii. Specific reference to the Spill Reporting Regulation; and
- iii. Instructions for staff in the event of an emergency, including contact information for local authorities (fire, police, public health), Emergency Management BC, and the director.

Any significant update to the plan must be submitted to the director within 30 days of adoption. Minor updates must be summarized in the quarterly report for the time period when the minor update was made.

4A7 <u>DISCHARGE MONITORING</u>

The permittee must sample the parameters at the sampling sites at the specific frequencies as defined in subsequent sections in Appendix 4. The influent and discharge water sampling sites are located approximately as shown in subsequent sections in Appendix 4. Sampling and analytical procedures in Section 8.1.2 apply to the monitoring required per Appendix 4 of this permit.

4A8 **COMMISSIONING REPORT**

Within 12 months of finalizing the commissioning phase of the selenium and nitrate treatment facility, the permittee must submit a commissioning report, prepared by a Qualified Professional to the director. The report must document the results of performance monitoring and system optimization over the first year of operations at the facility and recommend any necessary system improvements.

4A9 QUARTERLY TREATMENT PERFORMANCE REPORT

The permittee must submit a quarterly treatment performance report to the director within 30 days of the end of the quarter in which the samples were collected. The quarterly treatment performance report must include the following for each water treatment facility:

- i. Effluent water quality results used to calculate monthly averages for the limits in Section 2 and Appendix 4, if applicable;
- ii. Calculated rolling 30-day cumulative total hours in recirculation for each day of the quarter;
- iii. A summary of timing and duration of authorized and unauthorized bypass events (i.e., full recirculation events) and routine and enhanced monitoring conducted during each bypass event.

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

- iv. Effluent water quality results exceeding limits and targets or other criteria, such as daily maximums or as specified by the director;
- v. Facility throughput and availability;
- vi. Selenium and nitrate load removal;
- vii. A summary of selenium speciation data;
- viii. Identification of all missing data and all QA/QC issues;
 - ix. All toxicity test results and raw laboratory data sheets for all mortality results;
 - x. All reportable spills or other incidents related to water quality, occurring in the quarter;
- xi. A summary of operational and/or performance highlights and trends from the quarter, including key performance indicators;
- xii. Effluent water quality results exceeding alarm level 3 at the effluent retention pond;
- xiii. Explanation of the most probable cause(s) of any non-compliances;
- xiv. All measures taken to reduce or eliminate non-compliances; and
- xv. Any additional sampling results for the compliance points identified in Section 2 obtained for any reason, whether compliance, maintenance, or operational purposes. All test data must be reported within 30 days of the end of the quarter in which sampling occurred. These additional results may be reported in summary form. Further information on the testing event may be requested in writing by the director.

Results from samples collected in the last month of the quarter that are not available must be included in the following quarterly report. Any deviation from the information listed in this section must be communicated in the quarterly report and include rationale for the changes.

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

4A10ANNUAL TREATMENT PERFORMANCE REPORT

The permittee must submit an annual treatment performance report to the director by March 31 of each year following the data collection calendar year. The report may include all facilities, though discussion for each facility must be distinct. Alternatively, the permittee may submit a series of reports. Each deliverable should not exceed manageable file sizes.

The report must include the following for each water treatment facility:

- i. A summary of facility performance compared to the key performance metrics listed in the Operations Plan;
- ii. Influent sources and flow rates, including alternate sources;
- iii. Selenium and nitrate load removal;
- iv. Quantities of reagents used and residuals generated;
- v. Details on continuous improvement initiatives;
- vi. A description of any incidents including process upsets, spills (quantity and quality, including analytical results), issues with and bypasses of the Authorized Works, including recirculation events and contingency discharges;
- vii. Quantity and quality of effluent (e.g., non-hazardous waste liquids) discharged to the Turnbull South Pit Tailings Storage Facility;
- viii. A summary of non-compliances with the requirements of Appendix 4 for the previous calendar year. This must include interpretation of significance, and the status of corrective actions and/or ongoing investigations;
 - ix. A map of monitoring locations with EMS and permittee descriptors;
 - x. A summary and evaluation of key operational and receiving environment monitoring data associated with the selenium and nitrate treatment facilities and all analytical results from the monitoring plans in Appendix 4 for the reporting year. Data must be suitably tabulated (i.e., excel spreadsheets), with appropriate graphs and comparison of results to limits, Approved and Working Water Quality Guidelines, Site Performance Objectives, or other criteria and benchmarks as specified by the director;

Date issued:
Date amended:
(most recent)

November 19, 2014

December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page Appendix 4: 7 of 39

- xi. If Site Performance Objectives in Appendix 4 are exceeded the permittee must provide an interpretation of significance, and the status of corrective actions and/or ongoing investigations;
- xii. All acute toxicity test-specific reports from the laboratory and an interpreted summary and discussion of results, including recommendations and all subsequent actions;
- xiii. All acute toxicity test lab reports must include data and/or observations for hardness, alkalinity, pH, temperature, and formation of precipitate either in the vessel or on the organism; and
- xiv. A summary of all QA/QC issues during the year.

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

 $for\ Director, \textit{Environmental Management Act}$

Mining Authorizations

Page Appendix 4: 8 of 39

APPENDIX 4B – West Line Creek (WLC) AWTF

Additional requirements are detailed in Appendix 4A.

4B1 AUTHORIZED DISCHARGES

This section applies to the discharge of effluent from the West Line Creek Active Water Treatment Facility (WLC AWTF) Phase 1 to Line Creek. The WLC AWTF influent is comprised of contact water from waste rock piles and non-hazardous leachate from the WLC AWTF residual waste landfill. The site reference number for this discharge is E291569 (WL BFWB OUT SP21) as shown in Appendix 4B4.

- 4B1.1 The maximum authorized rate of discharge is 8,300 cubic meters per day.
- 4B1.2 The treated effluent discharged to Line Creek must not be acutely toxic, as per Section 6.2. The characteristics of the discharge at the Buffer Pond Outfall (E291569) must not exceed:

PARAMETER	LIMIT ^(a,b)
Ammonia (as N)	1.0 mg/L
Biological Oxygen Demand	25 mg/L
pН	6.5-8.5 pH units, allowable range
Nitrate (as N)	3.0 mg/L
Total Phosphorus	0.3 mg/L
Total Selenium	20 μg/L, monthly average
Total Suspended Solids	10.0 mg/L
Antiscalant	25 mg/L, two-minute time weighted average

- (a) Discharge characteristics for the listed parameters must be determined by third-party qualified laboratory results, except for Antiscalant which must be determined by dosing rates, and pH which must be determined by field measurements.
- (b) Maximum allowable concentration in any grab sample, unless otherwise noted in this table.
- 4B1.3 This discharge is authorized from Authorized Works which are the West Line Creek intake structure and pipeline, active water treatment plant, the advanced oxidation process facility, combined Line Creek intake and outfall structure and pipeline, infrastructure associated with

Date issued:
Date amended:
(most recent)

November 19, 2014

December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

transferring leachate influent from the biosolids residual management facility, buffer pond, buffer pond overflow spillway and wet pond, and groundwater diversion, and related appurtenances.

4B1.4 The location of the facilities from which the discharge originates and the location of the point of discharge is District Lot 6772, District Lot 4588, Kootenay Land District.

4B2 SITE PERFORMANCE OBJECTIVES

Additional requirements for WLC AWTF are detailed in Appendix 4A.

4B2.1 The following Site Performance Objectives are established for Line Creek immediately downstream of the confluence with South Line Creek. The site reference number where the Site Performance Objective applies is E297110 as shown in Appendix 1.

PARAMETER	OBJECTIVE	METHOD/NOTES
Total Phosphorus	$\leq 20 \mu g/L$	Growing season average calculated from measurements collected every two weeks between June 15 and September 30 annually.

Date issued:
Date amended:
(most recent)

November 19, 2014

December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page Appendix 4: 10 of 39

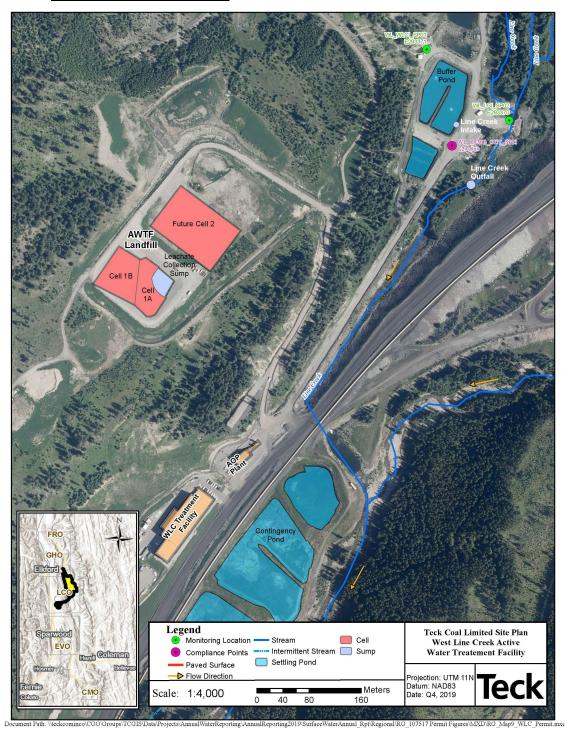
4B3 <u>WLC AWTF MONITORING PROGRAM</u>

EMS Number	WLC AWTF WEST LINE CREEK (Influent) E293371	WLC AWTF LINE CREEK (Influent) E293370	BUFFER POND OUTFALL (Effluent) E291569
PARAMETER	E2733/1	E273370	1271307
TSS & Turbidity (field parameters) (3)	D	D	D
BOD	-	-	3X/W
Total Selenium	-	-	3X/W
Selenium Speciation (i)	-	-	M
Field Parameters (a)	D	D	D
Conventional Parameters (b)	M	M	M
Major Ions (c)	M	M	M
Nutrients (d)	M	M	M
Nitrate (Teck Internal Lab Results)	W	W	W
Total Sulphide	-	-	M
Total and Dissolved Metals Scan (e)	M	M	M
Bromate	-	-	M
Hydrogen Peroxide (Teck Internal Lab Results)	-	-	M
Ozone (Teck Internal Lab Results)	-	_	M
Flow (f)	C	C	C
96 hour Rainbow Trout single concentration toxicity test (g)	-	-	Q*
48 hour <i>Daphnia magna</i> single concentration toxicity test (g)	-	-	Q*

- 1) Refer to Table 26, Appendix 3, for abbreviation description.
- 2) Refer to Table 27, Appendix 3, for explanatory notes.
- TSS may be determined as per Permit 5353, Section 2.3.
- 4) Teck must notify the director within 24 hours if an LCO laboratory result for TSS is greater than 10 mg/L at the WLC AWTF Buffer Pond outlet (E291569).
- Teck must notify the director immediately if a third-party laboratory result is greater than 10 mg/L TSS at the WLC AWTF Buffer Pond outlet (E291569).

Date issued: November 19, 2014 Date amended: December 19, 2022

(most recent)


A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page Appendix 4: 11 of 39 Permit Number: 107517

4B4 WLC AWTF SITE PLAN

Date issued: Date amended: (most recent) November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Permit Number: 107517

Page Appendix 4: 12 of 39

<u>APPENDIX 4C – ELKVIEW OPERATIONS SATURATED ROCK FILL (EVO SRF)</u>

Additional requirements are detailed in Appendix 4A.

4C1 AUTHORIZED DISCHARGES

This section applies to the discharge of effluent from the Elkview Operations Saturated Rock Fill (EVO SRF) to Erickson Creek and Bodie Rock Drain. The EVO SRF influent is comprised of contact water from Erickson Creek and Natal Pit. The site reference number for this discharge is the Effluent Retention Pond Outlet (F2_BPO, E321812) as shown in Appendix 4C5.

- 4C1.1 The typical flow is to be used to calculate permit fees for effluent discharges. The typical flow through the EVO SRF is 20,000 cubic meters per day (i.e., 95% of the design capacity of 21,053 m³/day). The typical flow refers to the discharge rate expected during normal operations and should not be interpreted as a compliance limit or requirement.
- 4C1.2 The treated effluent discharged to Erickson Creek must not be acutely toxic, as per Section 6.2. The characteristics of the discharge at the Effluent Retention Pond Outlet (F2_BPO, E321812) must not exceed:

PARAMETER	LIMIT ^(a,b)
Effluent Toxicity (96 hr rainbow trout single concentration, and 48 hr <i>Daphnia magna</i> single concentration)	50% mortality
Antiscalant	25 mg/L, two-minute time weighted average (c)
Ammonia	1.2 mg/L
Biochemical Oxygen Demand (BOD)	25 mg/L
Nitrite (as N)	0.4 mg/L

Date issued:
Date amended:
(most recent)

November 19, 2014

December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page Appendix 4: 13 of 39

Total Sulphide	0.01 mg/L
Total Phosphorus	0.10 mg/L, monthly average
рН	6.5-9.0 pH units, allowable range
Dissolved Oxygen	5.0 mg/L, minimum

- (a) Discharge characteristics for the listed parameters must be determined by third-party qualified laboratory results, except for Antiscalant which must be determined by dosing rates, and pH and DO which must be determined by field measurements.
- (b) Maximum allowable concentration in any grab sample, unless otherwise noted in this table.
- (c) According to the calculation in the Operations Plan
- 4C1.3 Limits for total selenium and nitrate (as N) in effluent discharged from the EVO SRF are included in the Elkview Operations compliance limit at the Elkview Operations Michel Creek Compliance Point (EV_MC2) (Section 2.6).
- 4C1.4 The discharge is authorized from Authorized Works which are the Erickson Creek intake, influent pipeline from Erickson Creek, influent piping from Natal Pit, reagent dosing facilities, conveyance pipelines, injection wells, monitoring wells, extraction wells, Effluent retention pond, Erickson Creek effluent pipeline, Erickson Creek outfall, Bodie Rock Drain, low point drains, high point vents, pressure safety valves, rupture discs and related appurtenances approximately located as shown on the Site Plan in Appendix 4C5.
- 4C1.5 The location of the facilities from which the discharge originates and the location of the points of discharge are Lot 1, District Lot 4588 4589 Kootenay District, Plan 7590 9330, except parts included in Plans 9591 9262 10218 10797 11205 12980 14030 14643 15615 15081 17773 18084 18351 12403 NEP59847 NEP22563 NEP60990 NEP61045 NEP61240 NEP61298 NEP62835 NEP66365 NEP68373 NEP73532 NEP89674 PID: 010-681-043.

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page Appendix 4: 14 of 39

4C2 <u>RECEIVING ENVIRONMENT LIMITS</u>

4C2.1 Water Temperature

Water temperature measured at Erickson Creek at mouth (EV_EC1; 0200097) must be managed to be equivalent to or below the following temperature limits:

PARAMETER		Daily Maximum Temperature ^(a)
	January 1 to April 30 and November 1 to December 31	7°C
Temperature	May 1 to August 31	13°C
	September 1 to October 31	10°C

⁽a) Based on the maximum of the hourly averages over 24 hours.

Based on the results of the LAEMP, the director may adjust these limits, and the permittee may be required to implement mitigation measures if needed to achieve the updated limits.

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page Appendix 4: 15 of 39

4C3 OPERATIONAL REQUIREMENTS

4C3.1 SRF Operational Contingency Plan

The permittee must develop and implement an operational contingency plan to manage the parameters listed in Section 4C1.2 related to operation of the EVO SRF. The plan must be submitted to the director 30 days prior to the end of the commissioning period for the EVO SRF, and the permittee must notify the director at least 15 days prior to implementing any proposed changes to the plan. The plan must include an operational monitoring program and thresholds that trigger management actions that will be implemented to mitigate the risk of impacts.

If the onsite laboratory sample results are in exceedance of the limits specified in Section 4C1.2, the permittee must immediately collect samples for analysis at a third-party qualified laboratory. These results must be included in the routine reports per Section 4A of Appendix 4.

4C3.2 EVO SRF Performance Metrics

The permittee must develop and track key metrics demonstrating the performance of the EVO SRF, including but not limited to removal of nitrate and selenium load. The performance metrics to be tracked must be submitted to the director 30 days prior to the end of the commissioning period for the EVO SRF, and the permittee must notify the director at least 15 days prior to implementing any proposed changes to the metrics. The performance metrics must align with the EVWQP goals and environmental management objectives. The permittee must present the performance metrics results at routine regulator updates and in routine reports per Section 4A of Appendix 4.

4C3.3 Erickson Creek Discharge Management Plan

The permittee must develop and implement a discharge management plan to manage discharge from the EVO SRF to Erickson Creek. The plan must be submitted to the director 30 days prior to the end of the commissioning period for the EVO SRF, and the permittee must notify the director at least 15 days prior to implementing any proposed changes to the plan. The plan must describe the actions and monitoring Teck will

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

appon

Page Appendix 4: 16 of 39

implement to minimize change in streamflow between upstream and downstream of the Erickson Creek intake/outfall structure and follow the Federal Department of Fisheries and Oceans Canada (DFO) guidance on allowable rates of change in streamflow to avoid adverse effects to fish habitat. The permittee must report the monitoring results from the plan in the routine reports per Section 4A of Appendix 4.

4C3.4 Adaptive Management Plan Studies

The permittee must develop and implement the following studies under the Adaptive Management Plan (AMP) to resolve uncertainties regarding the water balance in Erickson Creek and potential unidentified mine contact water discharge pathways. The study designs must incorporate feedback from the Elk Valley Groundwater Working Group and be submitted to the director for approval by March 31, 2021.

- i. Uncertainty: Erickson Creek water balance study. The study must resolve uncertainty related to the magnitude of total precipitation, evapotranspiration, surface flow and groundwater flow in the watershed. In completing the study, the permittee must demonstrate closure of the Erickson Creek water balance to the satisfaction of the director.
- ii. Uncertainty: Michel Creek contaminant load balance study. The study must resolve uncertainty related to the potential existence of an unaccounted mine contact water discharge pathway from EVO to Michel Creek. The study must utilize measured water quality data from mine contact surface water and groundwater sources. If the mass balance for contaminant loadings cannot be adequately closed to the satisfaction of the director, then Teck must develop and implement an additional study to locate and characterize the missing contaminant load pathway(s).

Progress updates and study findings must be reported in the annual AMP report per Section 10.

4C3.5 EVO SRF Maintenance of Works, Emergency Procedures and Bypasses

This section refers only to authorized discharges and Authorized Works defined in Section 4C1 and is applicable during the operational phase of this facility.

Date issued:
Date amended:
(most recent)

November 19, 2014

December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page Appendix 4: 17 of 39

The permittee must regularly inspect the Authorized Works and maintain them in good working order, in accordance with the Operations Plan.

The permittee must maintain a record of inspections and maintenance of the Authorized Works and make the record available to an officer upon request.

In the event of an emergency or other condition which prevents normal operation of the Authorized Works or leads to an unauthorized discharge, the permittee must take remedial action immediately to restore the normal operation of the Authorized Works and to prevent any unauthorized discharges.

The permittee must not allow any discharge of influent or effluent authorized in Section 4C1 to bypass the Authorized Works, except with the prior written approval of the director or as defined in the following table.

EVENT	CONSECUTIVE HOURS IN RECIRCULATION (hrs)	REPORTING	MEET ALL EXISTING REQUIREMENTS OF PERMIT	ENHANCED MONITORING	IMMEDIATE NOTIFICATION TO DIRECTOR
Planned maintenance, unplanned maintenance and other	<24	X	Х	-	-
downtime when influent bypasses the SRF	≥24	Х	Х	Х	Х
Discharge from influent or effluent pipelines to maintain design pressure, prevent freezing or prevent water quality changes	n/a	-	X	-	-

Date issued:
Date amended:
(most recent)

November 19, 2014

December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page Appendix 4: 18 of 39

For the purpose of this condition the following definitions apply.

- i. Immediate notification to director: notify the director of the emergency or other condition via the ENVSECoal@gov.bc.ca email address, or as otherwise instructed by the director.
- ii. Meet all existing permit requirements: continue to meet the requirements of this authorization, including, but not limited to, meeting Section 2 compliance limits at all Compliance Points.
- iii. Reporting: submit written documentation of the emergency or other condition and the remedial action that has and will be taken, a schedule of implementation of actions and the date the findings as to the cause of the incident will be reported to the director and KNC. This information must be submitted with the next quarterly treatment performance report required in Section 4A9 unless otherwise required by the director.
- iv. Normal or effective operation of the SRF: The SRF is considered to be operating effectively if it is removing the facility's portion of the selenium and nitrate load to meet the downstream monthly average limits at EV_MC2. Under normal operations, temporary recirculation (i.e., downtime) occurs both during routine maintenance and during unscheduled events such as power fluctuations or alarm level exceedances.
- v. Influent Bypass: When the SRF is put into temporary recirculation mode (i.e., full recycle) and untreated influent contact water from Erickson Creek temporarily bypasses the facility.
- vi. Enhanced monitoring: The permittee must collect daily samples at EV_EC1 (0200097) and EV_MC2 (E300091) and analyze them for total selenium and nitrate for the remainder of the bypass event.
- vii. Discharge from the influent or effluent pipelines to maintain design pressure, prevent freezing, or prevent water quality changes:

 Discharges from either the influent or effluent pipeline at low point drains, high point vents, pressure safety valves or rupture discs at booster stations. This means discharges associated with the intended function of the Authorized Works to control pressure and vacuum, prevent freezing, and prevent water quality changes within the pipeline (e.g., generation of H2S). The released water must be controlled via the operation's surface water management system.

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Permit Number: 107517

Page Appendix 4: 19 of 39

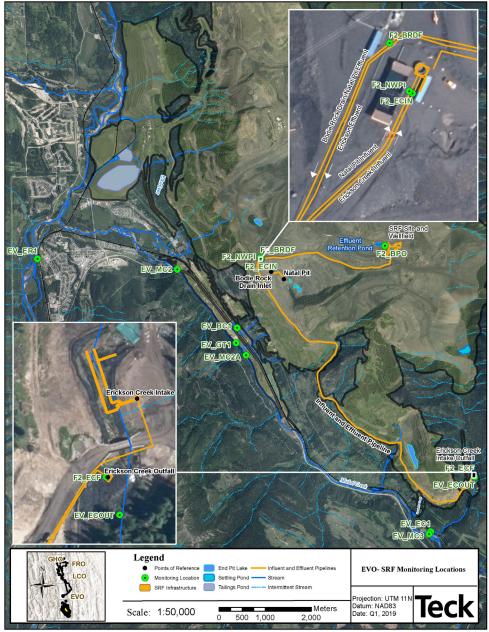
4C4 **EVO SRF MONITORING PROGRAM**

	NATAL PIT INTAKE (Influent)	ERICKSON CREEK INTAKE (Influent)	EFFLUENT RETENTION POND OUTLET (Effluent)	ERICKSON CREEK OUTFALL (Effluent)	BODIE ROCK DRAIN (Effluent)	ERICKSON CREEK IMMEDIATELY DOWNSTREAM OF OUTFALL	ERICKSON CREEK AT MOUTH (3)	EVO MICHEL CREEK COMPLIANCE POINT (3)	MICHEL CREEK UPSTREAM OF BODIE AND GATE CREEK	MICHEL CREEK UPSTREAM OF ERICKSON CREEK (3)	GATE CREEK DISCHARGE MONITORING LOCATION (3)	BODIE CREEK DISCHARGE MONITORING LOCATION (3)	ELK RIVER DOWNSTREAM OF MICHEL CREEK
EMS Number	E321791	E321811	E321812	E321813	E321815	E321814	0200097	E300091	310168	0200203	E206231	E102685	200393
Teck Station ID	F2 NWPI	F2 ECIN	F2 BPO	F2 ECF	F2 BRDF	EV ECOUT	EV EC1	EV MC2	EV MC2a	EV MC3	EV GT1	EV BC1	EV ER1
PARAMETER	_	_	_	_	_	_	_	_	_	_	_	_	_
Field parameters (a)	D	D	D	-	-	M/W	M/W	M/W	M/W	M/W	M/W	M/W	M/W
Conventional Parameters (b)	W	W	W	-	-	M/W	M/W	M/W	M/W	M/W	M/W	M/W	M/W
Major Ions (c)	W	W	W	-	-	M/W	M/W	M/W	M/W	M/W	M/W	M/W	M/W
Nutrients (d)	W	W	W	-	-	M/W	M/W	M/W	M/W	M/W	M/W	M/W	M/W
Total Sulphide	W	W	W	-	-	M/W	M/W	M/W	M/W	M/W	M/W	M/W	M/W
Dissolved Metals Scan (e)	W	W	W	-	-	M/W	M/W	M/W	M/W	M/W	M/W	M/W	M/W
Total Metals Scan (e)	M	M	M	-	-	M	M	M/W	M	M/W	M	M	M/W
Total Selenium	-	-	3X/W	-	-	-	-	-	-	-	-	-	-
Flow	С	С	С	С	C	С	С	С	-	-	С	С	-
Temperature	С	С	-	С	-	-	С	-	-	-	-	-	-
96 hour Rainbow Trout single concentration toxicity test (g)	-	-	Q	-	-	Q	Q	-	-	-	Q	Q	-
48 hour Daphnia magna single concentration Toxicity (g)	-	-	Q	-	-	Q	Q	-	-	-	Q	Q	-
Selenium Speciation (i)	W	W	W	-	-	-	-	M	M	M	-	-	-
Calcite Precipitation Propensity Monitoring	-	-	М	-	-	М	-	-	-	-	M	M	-
Rock Mass Monitoring (4)													

- 1) Refer to Table 26, Appendix 3, for abbreviation descriptions
- 2) Refer to Table 27, Appendix 3, for explanatory notes.
- 3) Monitoring location appears in two monitoring tables in this permit; therefore, monitoring data must be reported according to the requisite reporting requirements in both Section 9 and Appendix 4.
- 4) Rock mass monitoring to be conducted 1X/6W on an as-needed basis as a confirmatory measure of the more frequent calcite monitoring methods. Locations to be determined, both upstream and downstream of EV ECOUT.

Date issued: Date amended: November 19, 2014 December 19, 2022

(most recent)


A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page Appendix 4: 20 of 39

4C5 EVO SRF SITE PLAN

Date issued: Date amended: (most recent) November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

APPENDIX 4D – Fording River Operations – South AWTF (FRO-S AWTF)

Additional requirements are detailed in Appendix 4A.

4D1 <u>AUTHORIZED DISCHARGES</u>

This section applies to the discharge of effluent from the Fording River Operations – South Active Water Treatment Facility (FRO-S AWTF) to the Fording River and Kilmarnock Creek. The FRO-S AWTF influent is comprised of contact water from waste rock piles in the Kilmarnock Creek, Cataract Creek, and Swift Creek catchments, non-hazardous leachate from the WLC AWTF residual waste landfill, and other sources as approved by the director in writing. The site reference number for this discharge is E321351 (FS_BPO) as shown in Appendix 4D4.

- 4D1.1 The typical flow is to be used to calculate permit fees for effluent discharges. The typical flow through the FRO-S AWTF is 20,000 cubic meters per day (i.e., 95% of the design capacity of 21,053 m³/day). The typical flow refers to the discharge rate expected during normal operations and should not be interpreted as a compliance limit or requirement.
- 4D1.2 The treated effluent discharged to the Fording River and Kilmarnock Creek must not be acutely toxic, as per Section 6.2. The characteristics of the discharge at the Effluent Retention Pond outlet (FS_BPO, E321351) must not exceed:

PARAMETER	LIMIT (a,b)
Effluent Toxicity (96 hr rainbow trout	500/ · 1'
single concentration, and 48 hr <i>Daphnia</i> magna single concentration)	50% mortality
Antiscalant	25 mg/L, two-minute time weighted average (c)

⁽a) Discharge characteristics for the listed parameters must be determined by third-party qualified laboratory results, except for Antiscalant which must be determined by dosing rates.

4D1.3 Limits for total selenium and nitrate (as N) in effluent discharged from the FRO-S AWTF are included in the Fording River Operations

Date issued: Date amended: November 19, 2014

December 19, 2022

(most recent)

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page Appendix 4: 22 of 39

⁽b) Maximum allowable concentration in any grab sample, unless otherwise noted in this table.

⁽c) According to the calculation in the Operations Plan

- compliance limit at the Fording River Operations Compliance Point (Section 2.1).
- 4D1.4 The permittee must manage FRO-S AWTF effluent temperature to be equivalent to or below the following monthly average limits at the Fording River Outfall (FS_EFF-SC; E323231).

PARAMETER	LIMIT (monthly average)						
	January 1 to February 28	6°C					
	March 1 to April 30*	6°C					
Temperature	May 1 to September 30	13°C					
	October 1 to October 31*	10°C					
	November 1 to November 30*	6°C					
	December 1 to December 31	6°C					

^{*}Effective date – September 1, 2022

4D1.5 The permittee must manage the parameters listed in the table below in accordance with the operational contingency plan required in Section 4D2.1. Treated effluent during normal operations was predicted in the FRO-S AWTF operations application to have characteristics as presented in the following table. These maximum concentrations should not be interpreted as compliance limits; however, are to be used to calculate permit fees for effluent discharges:

PARAMETER	MAXIMUM PREDICTED CONCENTRATION (a)
Sulphide	0.05 mg/L
Nitrite	0.2 mg/L
Ammonia	1 mg/L
Dissolved Oxygen	8 mg/L, minimum
pН	6.5 – 8.5 pH units, range
Hydrogen Peroxide	0.1 mg/L
Ozone	20 μg/L
Biological Oxygen Demand	45 mg/L
Total Phosphorus	0.1 mg/L
Chloride	150 mg/L
Total Suspended Solids	5 mg/L

(a) from FRO-S AWTF operations application Table 5.3-3

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

- 4D1.6 The discharge is authorized from Authorized Works which are the Swift Creek Intake, Kilmarnock Creek Intake, influent and effluent conveyance pipelines, Effluent Retention Structure, Active Water Treatment Plant, Fording River Outfall, Kilmarnock Creek Outfall, low point drains, high point vents, pressure safety valves, rupture discs and related appurtenances approximately located as shown on the Site Plan in Appendix 4D4.
- 4D1.7 The location of the facilities from which the discharge originates and the location of the point of discharge is District Lot 6637, District Lot 6047, District Lot 6688, Kootenay Land District.

4D2 OPERATIONAL REQUIREMENTS

4D2.1 AWTF Operational Contingency Plan

The permittee must develop and implement an operational contingency plan to manage the parameters listed in Section 4D1.5 related to operation of the AWTF. The plan must be submitted to the director 30 days prior to the end of the commissioning period for the FRO-S AWTF, and the permittee must notify the director at least 15 days prior to implementing any proposed changes to the plan. The plan must include an operational monitoring program and thresholds that trigger management actions that will be implemented to mitigate the risk of impacts.

4D2.2 FRO-S AWTF Performance Metrics

The permittee must develop and track key metrics demonstrating the performance of the AWTF, including but not limited to removal of nitrate and selenium load, and implementation of alarm strategy level 3 responses. The performance metrics must align with the EVWQP goals and environmental management objectives.

- i. The performance metrics to be tracked must be submitted to the director 30 days prior to the end of the commissioning period for the FRO-S AWTF.
- ii. The permittee must notify the director at least 15 days prior to implementing any proposed changes to the metrics.

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

0

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

- iii. The permittee must present the performance metrics results at routine regulator updates and in routine reports per Section 4A of Appendix 4.
- iv. The permittee must include a performance metric to assess performance of the temperature management system in managing temperature downstream of the Fording River Outfall (at FR_SCOUTDS) to within +/- 1 degree Celcius of background (at FR_FR3). The performance metric must consider the influence of the Swift Creek Sediment Pond discharge and available chiller capacity.
- v. The permittee must complete an engineering review of the temperature management system to determine necessary operational changes and process modifications needed to meet the permit limits for temperature in Section 4D1.4, and submit the report to the director by July 31, 2021.
- 4D2.3 FRO-S AWTF Maintenance of Works, Emergency Procedures and Bypasses

This section refers only to authorized discharges and Authorized Works defined in Section 4D1 and is applicable during the operational phase of this facility.

The permittee must regularly inspect the Authorized Works and maintain them in good working order, in accordance with the Operations Plan.

The permittee must maintain a record of inspections and maintenance of the Authorized Works and make the record available to an officer upon request.

In the event of an emergency or other condition which prevents normal operation of the Authorized Works or leads to an unauthorized discharge, the permittee must take remedial action immediately to restore the normal operation of the Authorized Works and to prevent any unauthorized discharges.

The permittee must not allow any discharge of influent or effluent authorized in Section 4D1 to bypass the Authorized Works, except with

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

the prior written approval of the director or as defined in the following table.

EVENT	CONSECUTIVE HOURS IN RECIRCULATION (hrs)	REPORTING	MEET ALL EXISTING REQUIREMENTS OF PERMIT	ENHANCED MONITORING	IMMEDIATE NOTIFICATION TO DIRECTOR
Planned maintenance, unplanned	<24	X	X	-	-
maintenance and other downtime	≥24	X	X	X	X
when influent bypasses the AWTF			(a)		
Discharge from influent or effluent pipelines to maintain design pressure, prevent freezing or prevent water quality changes	n/a	-	X	-	-

(a) The permittee must not exceed a total of 144 hours in recirculation per month (i.e., rolling 30-day cumulative total)

For the purpose of this condition the following definitions apply.

- i. Immediate notification to director: notify the director of the emergency or other condition via the ENVSECoal@gov.bc.ca email address, or as otherwise instructed by the director;
- ii. Meet all existing permit requirements: continue to meet the requirements of this authorization, including, but not limited to, meeting Section 2 compliance limits at all Compliance Points;
- iii. Reporting: submit written documentation of the emergency or other condition and the remedial action that has and will be taken, a schedule of implementation of actions and the date the findings as to the cause of the incident will be reported to the director and KNC. This information must be submitted with the next quarterly

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

- treatment performance report required in Section 4A9 unless otherwise required by the director.
- iv. Normal or effective operation of the AWTF: The AWTF is considered to be operating effectively if it is removing the facility's portion of the selenium and nitrate load to meet the downstream monthly average limits at FR_FRABCH. Under normal operations, temporary recirculation (i.e., downtime) occurs both during routine maintenance and during unscheduled events such as power fluctuations or alarm level exceedances.
- v. Influent Bypass: When the AWTF is put into a temporary recirculation mode and untreated influent water temporarily bypasses the facility. This occurs with full closure of the intakes.
- vi. Enhanced monitoring: The permittee must collect daily samples at FR_FRABCH (E223753) and FR_SCOUTDS (E320695) and analyze them for total selenium and nitrate for the remainder of the bypass event.
- vii. Discharge from the influent or effluent pipelines to maintain design pressure, prevent freezing, or prevent water quality changes:

 Discharges from either the influent or effluent pipeline at low point drains, high point vents, pressure safety valves or rupture discs at booster stations. This means discharges associated with the intended function of the Authorized Works to control pressure and vacuum, prevent freezing, and prevent water quality changes within the pipeline (e.g., generation of H2S). The released water must be controlled via the operation's surface water management system.

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

4D2.4 Adaptive Management Plan Studies

The permittee must develop and implement the following studies under the Adaptive Management Plan (AMP) to resolve uncertainties regarding operation of the Kilmarnock Clean Water Diversion and the need for additional flow and groundwater information to support water quality management in FRO-S. The study designs must be submitted to the director and KNC by April 30, 2021. The permittee must provide quarterly updates to ENV and KNC on implementation of the workplans. This enhanced engagement will end when written notice is provided by the director.

- i. Uncertainty: Kilmarnock Clean Water Diversion study. The study must resolve uncertainty related to how operation of the Kilmarnock Clean Water Diversion influences the magnitude of mine contact water entering groundwater.
- ii. Uncertainty: Kilmarnock Creek Intake groundwater load bypass study. The study must resolve the uncertainty related to the magnitude and seasonal fluctuation of groundwater load bypassing the FRO-S AWTF Kilmarnock Creek Intake.
- iii. Uncertainty: Fording River valley groundwater study. The study must resolve the uncertainty related to the parameter of concern groundwater plume and load in the Fording River valley between well FR GH WELL4 and FR FRABCH.
- iv. Uncertainty: Swift Creek Sediment Ponds seepage study. The study must resolve the uncertainty related to the magnitude of seepage from the Swift Creek Sediment Ponds and the resulting parameter of concern groundwater plume and load towards the Fording River valley aquifer.

Progress updates and study findings must be reported in the annual AMP report per Section 10.

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

4D2.5 Upper Fording River Chronic Toxicity Study

The permittee must submit a study design for an Upper Fording River Chronic Toxicity Study to the director by January 31, 2021, for approval. The study design must be reviewed by the EMC and be designed as a study to evaluate the cause, extent, and magnitude of chronic effects in the upper Fording River. The permittee must provide a summary of EMC advice and how it was considered in the study design. Monitoring results and interpretation must be compiled into a written report and submitted to the director by April 15, 2022. The final report must be to the satisfaction of the director.

4D2.6 Fording River Compliance Point Monitoring Frequency

The permittee must undertake a study to assess the accuracy of monthly average surface water nitrate, selenium and sulphate concentration calculations at FR_FRABCH with the below listed sampling frequencies. Accuracy must be estimated for each parameter for each calendar month for each sampling program. A report on findings must be submitted to the director by May 31, 2022.

- i. Weekly sampling March 15 through July 15 and monthly sampling August through February.
- ii. Weekly sampling March 15 through July 15 and twice-monthly sampling in August through February.
- iii. Weekly sampling year-round.

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page Appendix 4: 29 of 39

4D2.7 FRO-S AWTF Recirculation Event Mass Loading Travel Time Assessment

The permittee must undertake an assessment to determine the appropriate timing for water quality sample collection at FR_FRABCH that is representative of the conditions during FRO-S AWTF recirculation. The FRO Compliance Point is approximately 11.8 km downstream of the Fording River Outfall and the full realization of recirculation on surface water quality is not expected to be instantaneous. The assessment must incorporate both seasonal and temporal aspects to inform the appropriate timing of water quality sample collection during recirculation. A summary report must be submitted to the director by April 30, 2023.

4D2.8 Fording River Outfall Fish Plan

- The permittee must develop a plan to manage potential residual risks to fish resulting from effluent discharged from the Fording River Outfall. The permittee must prepare the plan in consultation with the Elk Valley Fish and Fish Habitat Committee and/or the Westslope Cutthroat Trout Recovery Working Group and include a summary of advice and how it was incorporated in the plan. The plan must include a trigger response plan and mitigations, or reference previously developed guidance, that can be implemented to prevent fish stranding and reduce the risks of isolation and fish mortality. The scope and scale of the plan is limited to areas of the Fording River that could be directly affected by the FRO-S AWTF operations. The plan must be submitted to the director by 7 days prior to forward flow commissioning of the FRO-S AWTF. The submitted Fording River Outfall Fish Plan must be implemented and any updates to the plan must be submitted to the director within 30 days of adoption. The permittee must submit an annual summary of trigger exceedances and actions taken to the director by June 30th of each year.
- ii. The permittee must complete an assessment of modifications required to meet a potential site performance objective for temperature of +/- 1 degree Celcius of background downstream of the Fording River Outfall, or other temperature requirements developed to support the Westslope Cutthroat Trout Recovery Plan. The assessment must be submitted to the director by June 30, 2023.

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page Appendix 4: 30 of 39

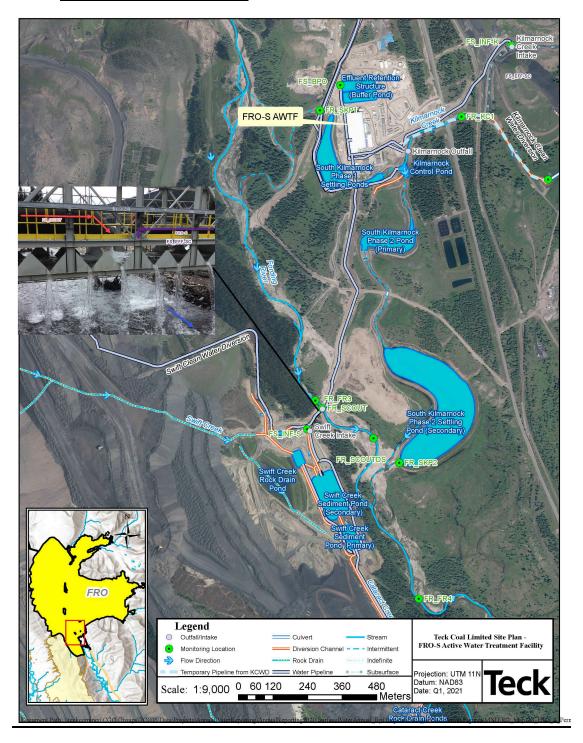
4D3 FRO-S AWTF MONITORING PROGRAM

	KILMARNOCK CREEK FRO-S AWTF INFLUENT (Influent)	SWIFT-CATARACT CREEKS FRO-S AWTF INFLUENT (Influent)	FRO-S AWTF EFFLUENT RETENTION POND OUTLET (Effluent)	FRO-S AWTF OUTFALL STRUCTURE	FORDING RIVER UPSTREAM OF FRO-S AWTF OUTFALL STRUCTURE (5)	FORDING RIVER ~100 M DOWNSTREAM OF FRO-S AWTF OUTFALL STRUCTURE (5)	FORDING RIVER OPERATIONS COMPLIANCE POINT
EMS Number	E321412	È321411	E321351	E323231	E320693	E320695	E223753
Teck Station ID	FS INF-K	FS INF-S	FS BPO	FS EFF-SC	FR FR3	FR SCOUTDS	FR FRABCH
PARAMETER	_	_	_	_	_		_
TSS & Turbidity (field parameters) (3)	D	D	D	-	-	-	-
BOD	-	-	3X/W	-	-	W/M	-
Total Selenium	-	-	3X/W	-	-	-	-
Selenium Speciation (i)	-	-	M	-	-	M	-
Field Parameters (a)	D	D	D	-	-	W/M	W/M
Conventional Parameters (b)	M	M	M	-	-	W/M	W/M
Major Ions (c)	M	M	M	-	-	W/M	W/M
Nutrients (d)	M	M	M	-	-	W/M	W/M
Nitrate (Teck Internal Lab Results)	3X/W	3X/W	3X/W	-	ı	-	-
Total Sulphide	-	-	M	-	ı	W/M	-
Total and Dissolved Metals Scan (e)	M	M	M	=	ı	W/M	W/M
Bromate	-	-	M	-	ı	M	-
Hydrogen Peroxide (Teck Internal Lab Results)	-	-	M	-	-	M	-
Ozone (Teck Internal Lab Results)	-	-	M	-	-	-	-
Flow	C	С	C	-	=	-	-
Temperature	<u>-</u>	-	-	С	C	C	-
96 hour Rainbow Trout single concentration toxicity test (g)	<u>-</u>	-	Q*	-	-	-	-
48 hour <i>Daphnia magna</i> single concentration toxicity test (g)	-	-	Q*	-	-	-	-
Calcite Precipitation Propensity -Monitoring	-	-	-	-	1X/2W	1X/2W	-
Rock Mass Monitoring (4)	-	-	-	-	1X/6W, as needed	1X/6W, as needed	-

- 1) Refer to Table 26, Appendix 3, for abbreviation description.
- 2) Refer to Table 27, Appendix 3, for explanatory notes.
- 3) TSS may be determined as per Permit 424, Section 2.3.
- 4) Rock mass monitoring to be conducted on an as-needed basis as a confirmatory measure of the more frequent calcite monitoring methods.
- 5) Monitoring location appears in multiple monitoring tables in this permit; therefore, monitoring data must be reported according to the requisite reporting requirements in Section 9 and Appendices 4 and 5.

Date issued: Date amended: November 19, 2014 December 19, 2022

(most recent)


A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page Appendix 4: 31 of 39

4D4 FRO-S AWTF SITE PLAN

Date issued: Date amended: (most recent) November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Permit Number: 107517

Page Appendix 4: 32 of 39

APPENDIX 4E – Fording River Operations – North SRF (FRO-N SRF) Phase 1

Additional requirements are detailed in Appendix 4A.

4E1 <u>AUTHORIZED DISCHARGES</u>

This authorization applies to the discharge of effluent from Phase 1 of the Fording River Operations North Saturated Rock Fill North Project (FRO-N SRF) which includes the conveyance of treated effluent from the Effluent Retention Pond (E326355, E4_BPO) to the E4 Discharge Injection wells, to Clode Settling Ponds (E102481, FR_CC1) and thence to the Fording River. For the purpose of this authorization, influent is defined as Eagle 4 Pit water directed to the injection wells and effluent is defined as treated effluent from the Effluent Retention Pond.

- 4E1.1 This discharge is authorized from November 01, 2021 to January 1, 2024.
- 4E1.2 The maximum weekly average flow is to be used to calculate permit fees for effluent discharges. The maximum weekly average flow through the FRO-N SRF is 9,500 cubic metres per day. This flow rate refers to the maximum discharge rate expected during normal operations and should not be interpreted as a compliance limit or requirement.
- 4E1.3 The characteristics of the discharge at the Effluent Retention Pond Outlet (E326355, E4_BPO) to the E4 Discharge Injection wells must not exceed:

PARAMETER	LIMIT ^(a,b)
Ammonia (as N)	7.0 mg/L
Biological Oxygen Demand	25 mg/L
Nitrite (as N)	1.1 mg/L
Total Sulphide	0.032 mg/L
Total Phosphorus	0.2 mg/L, monthly average
pH	6.5-9.0 pH units, allowable
	range
Dissolved Oxygen	5 mg/L, minimum

⁽a) Discharge characteristics for the listed parameters must be determined by third-party qualified laboratory results, except for pH and DO which must be determined by field measurements.

Date issued:

November 19, 2014

Date amended: (most recent)

December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page Appendix 4: 33 of 39

- (b) Maximum allowable concentration in any grab sample, unless otherwise noted in this table.
- 4E1.4 The effluent discharged at the Clode Settling Pond Decant must not be acutely toxic, as defined in Section 6.2. The characteristics of the discharge at the Clode Settling Pond Decant (E102481, FR_CC1) must not exceed:

PARAMETER	LIMIT ^(a,b)
Antiscalant	25 mg/L, two-minute time weighted average (c)

- (a) Discharge characteristics for Antiscalant must be determined by dosing rates.
- (b) Maximum allowable concentration.
- (c) According to the calculation in the Operations Plan.
- 4E1.5 The discharge is authorized from Authorized Works which are the influent source pumping wells within the E4 Pit, reagent dosing facilities, conveyance piping system, injection wells, monitoring wells, extraction wells, Effluent Retention Pond, E4 Discharge Injection wells, Antiscalant system, low point drains, high point vents, pressure safety valves, rupture discs and related appurtenances approximately located as shown on the Site Plan in Appendix 4E4.
- 4E1.6 The location of the facilities from with the discharge originates and the location of the point of discharge is District Lot 6700, District Lot 6701, and District Lot 6709, Kootenay Land District.

4E2 **OPERATIONAL REQUIREMENTS**

4E2.1 SRF Operational Contingency Plan

The permittee must develop and implement an operational contingency plan to manage the parameters listed in 4E1 related to operation of the FRO-N SRF. The plan must be submitted to the director 30 days prior to the end of the commissioning period for the FRO-N SRF, and the permittee must notify the director at least 15 days prior to implementing any proposed changes to the plan. The plan must include an operational monitoring program and thresholds that trigger management actions that will be implemented to mitigate the risk of impacts.

Date issued:
Date amended:
(most recent)

November 19, 2014

December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

If the onsite laboratory sample results are in exceedance of the limits specified in Section 4E1.3, the permittee must immediately collect samples for analysis at a third-party qualified laboratory. These results must be included in the routine reports per Section 4A of Appendix 4.

4E2.1.1 Nickel

The SRF Operational Contingency Plan must include nickel trigger(s) and response actions to manage nickel concentrations in effluent at the Clode Settling Pond Decant (FR_CC1). The plan must describe actions to be taken if total nickel concentrations in effluent at FR_CC1 exceed an initial trigger value of 90 μ g/L, the maximum projected 2022 basecase concentrations, when the SRF is discharging to the E4 Discharge Injection Wells. The purpose of the contingency plan is to ensure that nickel concentrations in lower Clode Creek do not exceed the level 1 nickel interim screening value of 157 μ g/L due to operation of the FRON SRF. The plan must be updated within 9 months of the submission of the final nickel benchmark to the director.

4E2.2 FRO-N SRF Performance Metrics

The permittee must develop and track key metrics demonstrating the performance of the FRO-N SRF, including but not limited to removal of nitrate and selenium load. The performance metrics to be tracked must be submitted to the director 30 days prior to the end of the commissioning period for the FRO-N SRF, and the permittee must notify the director at least 15 days prior to implementing any proposed changes to the metrics. The performance metrics must align with the EVWQP goals and environmental management objectives. The permittee must present the performance metrics results at routine regulator updates and in routine reports per Section 4A of Appendix A.

4E2.3 FRO-N SRF MAINTENANCE OF WORKS, EMERGENCY PROCEDURES AND BYPASSES

This section refers only to authorized discharges and Authorized Works defined in Section 4E1 and is applicable during the operational phase of this facility.

The permittee must regularly inspect the Authorized Works and maintain them in good working order, in accordance with the

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

upaan

for Director, Environmental Management Act

Mining Authorizations

Page Appendix 4: 35 of 39

Operations Plan. The permittee must maintain a record of inspections and maintenance of the Authorized Works and make the record available to an officer upon request.

In the event of an emergency or other condition which prevents normal operation of the Authorized Works or leads to an unauthorized discharge, the permittee must take remedial action immediately to restore the normal operation of the Authorized Works and to prevent any unauthorized discharges. The permittee must not allow any discharge of influent or effluent authorized in 4E1 to bypass the Authorized Works, except with the prior written approval of the director or as defined in the following table.

EVENT	CONSECUTIVE HOURS IN RECIRCULATION (hrs)	REPORTING	MEET ALL EXISTING REQUIREMENTS OF PERMIT	IMMEDIATE NOTIFICATION TO DIRECTOR
Planned maintenance, unplanned maintenance and other	<24	X	X	-
downtime when influent bypasses the SRF	≥24	X	X	X
Discharge from influent or effluent pipelines to maintain design pressure, prevent freezing or prevent water quality changes	n/a	-	X	-
Discharge to Turnbull South Pit Tailings Storage Facility as per EMA Permit 424	n/a	Х	X	Х
Use as per WSA Water Licences	n/a	-	n/a	-

For the purpose of this condition the following definitions apply.

Date issued:

November 19, 2014

Date amended: (most recent)

December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page Appendix 4: 36 of 39

- i. Immediate notification to director: notify the director of the emergency or other condition via the ENVSECoal@gov.bc.ca email address, or as otherwise instructed by the director.
- ii. Meet all existing permit requirements: continue to meet the requirements of this authorization, including, but not limited to, meeting Section 2 compliance limits at all Compliance Points.
- iii. Reporting: submit written documentation of the emergency or other condition and the remedial action that has and will be taken, a schedule of implementation of actions and the date the findings as to the cause of the incident will be reported to the director and KNC. This information must be submitted with the next quarterly treatment performance report required in Section 4A9 unless otherwise required by the director.
- iv. Normal operation of the SRF: Under normal operations, temporary recirculation (i.e., downtime) occurs both during routine maintenance and during unscheduled events such as power fluctuations or alarm level exceedances.
- v. Influent Bypass: When the SRF is put into temporary recirculation mode (i.e., full recycle) or contingency discharge mode (i.e., discharge to Turnbull South Pit Tailings Storage Facility) and untreated influent contact water from Eagle 4 Pit temporarily bypasses the facility.
- vi. Discharge from the influent or effluent pipelines to maintain design pressure, prevent freezing, or prevent water quality changes: Discharges from either the influent or effluent pipeline at low point drains, high point vents, pressure safety valves or rupture discs at booster stations. This means discharges associated with the intended function of the Authorized Works to control pressure and vacuum, prevent freezing, and prevent water quality changes within the pipeline (e.g., generation of H2S). The released water must be controlled via the operation's surface water management system.

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page Appendix 4: 37 of 39

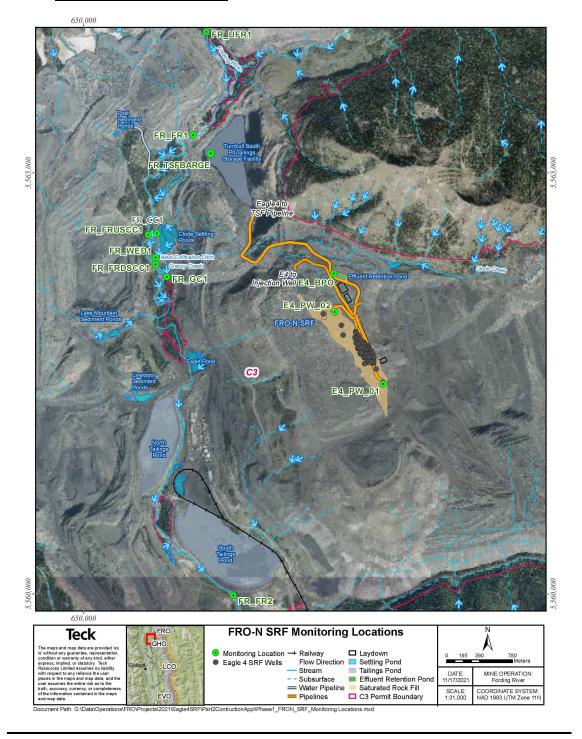
4E3 FRO-N SRF PHASE 1 MONITORING PROGRAM

TL3 TRO-11	orti Timiod I i	MONITORING.										
	FORDING RIVER UPSTREAM OF HENRETTA	FORDING RIVER DOWNSTREAM OF HENRETTA	FORDING RIVER UPSTREAM OF CLODE PONDS DISCHARGE	SOUTHERN FAR FIELD WELL (Influent)	NORTHERN FAR FIELD WELL (Influent)	EFFLUENT RETENTION POND OUTLET (Effluent)	CLODE SETTLING POND DECANT (Discharge)	GRASSY CREEK	FORDING RIVER DOWNSTREAM OF CLODE PONDS DISCHARGE	WEST EXFILTRATION DITCH	FORDING RIVER UPSTREAM OF KILMARNOCK CREEK	FORDING RIVER OPERATIONS COMPLIANCE POINT
EMS Number	E216777	0200251	E326352	E326353	E326354	E326355	E102481	E326356	E326357	E326358	0200201	E223753
Teck Station ID	FR UFR1	FR FR1	FR FRUSCC1	E4 PW 01	E4 PW 02	E4 BPO	FR CC1	FR GC1	FR FRDSCC1	FR WED1	FR FR2	FR FRABCH
PARAMETER												
Field parameters (a)	M	M	1	TW	TW	D	W	M	M	M	W/M	W/M
BOD	-	-	-	-	-	W	W	-	-	-	-	-
Conventional Parameters (b)	M	M	-	TW	TW	W	W	M	M	M	W/M	W/M
Major Ions (c)	M	M	-	TW	TW	W	W	M	M	M	W/M	W/M
Nutrients (d)	M	M	-	TW	TW	W	W	M	M	M	W/M	W/M
Total Sulphide	M	M	=	TW	TW	W	W	M	M	M	W/M	W/M
Dissolved Metals Scan (e)	M	M	-	TW	TW	W	W	M	M	M	W/M	W/M
Total Metals Scan (e)	M	M	-	TW	TW	W	W	M	M	M	W/M	W/M
Flow	-	-	-	С	С	С	-	-	-	-	-	-
96 hour Rainbow Trout single concentration toxicity test (g)	-	-	-	-	-	-	Q	-	-	-	-	-
48 hour Daphnia magna single concentration Toxicity (g)	-	-	1	-	-	-	Q	-	-	-	-	-
Selenium Speciation (i)	-	-	-	-	-	W	-	-	-	-	-	-
Calcite Precipitation Propensity Monitoring	-	-	М	-	-	-	М	-	M	-	-	-
Rock Mass Monitoring (4)				-	-	-		-		-	-	-

- 1) Refer to Table 26, Appendix 3, for abbreviation descriptions
- 2) Refer to Table 27, Appendix 3, for explanatory notes.
- Monitoring location appears in two monitoring tables in this permit; therefore, monitoring data must be reported according to the requisite reporting requirements in both Section 9 and Appendix 4.
- Rock mass monitoring to be conducted 1X/6W on an as-needed basis as a confirmatory measure of the more frequent calcite monitoring methods. Locations to be determined, both upstream in the Fording River and downstream of FR_CC1.

Date issued: Date amended: November 19, 2014 December 19, 2022

(most recent)


A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page Appendix 4: 38 of 39

4E4 FRO-N SRF SITE PLAN

Date issued: Date amended: (most recent) November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

APPENDIX 5: CALCITE TREATMENT FACILITIES

- **APPENDIX 5A Calcite Treatment Facility General Operational Requirements**
- APPENDIX 5B Upper Greenhills Creek Antiscalant Addition System
- APPENDIX 5C Swift-Cataract Antiscalant Addition System
- APPENDIX 5D Line Creek Operations (LCO) Dry Creek Antiscalant Addition System
- **APPENDIX 5E Liverpool Antiscalant Addition System**

Date issued:
Date amended:
(most recent)

November 19, 2014

December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Permit Number: 107517

Page Appendix 5: 1 of 20

APPENDIX 5A – Calcite Treatment Facility General Operational Requirements

This section includes requirements that apply to all calcite treatment facilities. Subsequent sections include facility-specific requirements.

5A1 COMMISSIONING PLAN

A Commissioning Plan for calcite treatment facilities must be prepared by a Qualified Professional, submitted to the director and implemented prior to commencement of discharge from the calcite treatment facility. The Commissioning Plan may include all facilities, though discussion for each facility must be distinct. Alternatively, the permittee may submit a Commissioning Plan for each facility. The Commissioning Plan must include but is not necessarily limited to operational procedures required to commission the calcite treatment facilities, including any additional monitoring and reporting required to demonstrate that no adverse environmental impacts result from commissioning.

5A2 **OPERATIONS PLAN**

An Operations Plan for calcite treatment facilities must be prepared by a Qualified Professional, submitted to the director and implemented prior to commencement of the discharge from the calcite treatment facilities. The Operations Plan may include all facilities, though discussion for each facility must be distinct. Alternatively, the permittee may submit an Operations Plan for each facility. The Operations Plan must include all stand-alone calcite treatment systems. Calcite treatment associated with any treatment facility (e.g., WLC AWTF) must be captured in the Operations Plan for that treatment facility.

The Operations Plan must include but is not necessarily limited to:

- i. The facility operator's manual, with provision for its continual improvement;
- ii. An overview of the planned maintenance program which includes an inventory of facility components and authorized replacement parts, and a detailed description of inspection, repair and replacement frequency for facility components;
- iii. Information on reagent usage and storage;

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page Appendix 5: 2 of 20

- iv. Documentation to verify that the facility is operated at all times within specifications and in a manner to ensure compliance with this authorization and other applicable legislation;
- v. Actions to be taken if effluent quality fails to meet the requirements of the permit;
- vi. Contingency planning which describes built-in redundancy of the facility and outlines measures to prevent emergency conditions from occurring.

Any significant update to the plan must be submitted to the director within 30 days of adoption. Minor updates must be summarized in the annual report for the time period when the minor update was made.

5A3 <u>CALCITE TREATMENT FACILITY MAINTENANCE OF WORKS, EMERGENCY PROCEDURES AND BYPASSES</u>

This section refers only to authorized discharges and Authorized Works defined within Appendix 5.

The permittee must regularly inspect the Authorized Works and maintain them in good working order, in accordance with the Operations Plan.

The permittee must maintain a record of inspections and maintenance of the Authorized Works and make the record available to an officer upon request.

In the event of an emergency or other condition which prevents normal operation of the Authorized Works or leads to an unauthorized discharge, the permittee must:

- take remedial action immediately to restore the normal operation of the Authorized Works and to prevent any unauthorized discharges; and
- ii. submit written documentation of the emergency or other condition and the remedial action that has and will be taken, a schedule of implementation of actions and the date the findings as to the cause of the incident will be reported to the director and KNC. This information must be submitted with the next annual performance report required in Section 5A9 unless otherwise required by the director.

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Permit Number: 107517

Page Appendix 5: 3 of 20

The permittee must not allow any discharge of influent or effluent authorized in Appendix 5 to bypass the Authorized Works, except with the prior written approval of the director or as defined in Sections 5B1.6, 5C1.5, 5D1.5, and 5E1.5.

Normal or effective operation of Calcite Treatment Facilities is defined as follows: Calcite Treatment Facilities are considered to be operating effectively if they are achieving the prevention of calcite formation in the downstream receiving environment that the facility is intended to manage. According to the Commissioning and Operations Plans, under normal operation, temporary downtime may occur during commissioning, trouble shooting, maintenance, unsuitable in-stream flows, power fluctuations or facility alarm exceedances.

5A4 PROCESS MODIFICATIONS

The permittee must notify the director in writing, prior to implementing changes to any process that may adversely affect the quality and/or quantity of the discharge from the calcite treatment facilities. Notwithstanding notification under this Section, permitted levels must not be exceeded.

5A5 **NEW WORKS**

The director may require upgrading of the calcite treatment works based on monitoring results, and/or any other pertinent information. Plans and specifications for new pollution treatment works and upgrades to existing works must be submitted to the director as an amendment application. All new works must be approved before a discharge from the works commences.

5A6 <u>SITE SPECIFIC ENVIRONMENTAL EMERGENCY RESPONSE</u> PLAN

A Site-Specific Environmental Emergency Response Plan must be prepared for all stand-alone calcite treatment systems. The plan must be submitted to the director prior to commencement of the discharge from the calcite treatment facilities. Calcite treatment associated with any treatment facility in Appendix 4 must be captured in the Emergency Response Plan for that treatment facility.

Date issued:
Date amended:
(most recent)

November 19, 2014

December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Permit Number: 107517

Page Appendix 5: 4 of 20

The plan must include, but is not limited to:

- i. A description of measures to mitigate any health or environmental impacts, if emergencies occur;
- ii. Specific reference to the Spill Reporting Regulation; and
- iii. Instructions for staff in the event of an emergency, including contact information for local authorities (fire, police, public health), Emergency Management BC, and the director.

Any significant update to the plan must be submitted to the director within 30 days of adoption. Minor updates must be summarized in the annual report for the time period when the minor update was made.

5A7 **MONITORING**

The permittee must conduct monitoring associated with the calcite treatment facilities as defined in subsequent sections in Appendix 5. The discharge and receiving environment water sampling sites are located approximately as shown in subsequent sections in Appendix 5.

5A8 COMMISSIONING REPORT

A commissioning report must be submitted to the director within 60 days of completing commissioning of any new calcite treatment facility. If the commissioning report deadline corresponds with the annual report deadline, one report may be submitted to meet both requirements.

The commissioning report must include, but is not limited to:

- i. operating times;
- ii. influent flow rates or treated water volume;
- iii. antiscalant dosing rates;
- iv. calculated in-pipe antiscalant concentrations (where applicable); and
- v. monitoring data.

Date issued:
Date amended:
(most recent)

November 19, 2014

December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

5A9 ANNUAL PERFORMANCE REPORT

An annual performance report must be submitted to the director by March 31 for each year following the data collection calendar year. The report must include, but is not limited to:

- i. operating availability of the Authorized Works;
- ii. influent flow rates or treated water volume;
- iii. quantity of antiscalant used and dosing rates;
- iv. calculated in-pipe antiscalant concentrations (where applicable);
- v. a description of any incidents including process upsets, spills, issues with and bypasses of the Authorized Works;
- vi. monitoring data;
- vii. interpretation and analysis of monitoring data;
- viii. discussion of results and recommendations for changes to management and/or regulatory controls to improve protection of the environment, as appropriate; and
 - ix. A summary of non-compliances with the requirements of Appendix 5 for the previous calendar year. This must include interpretation of significance, and the status of corrective actions and/or ongoing investigations.

The report must also include operational performance results of antiscalant addition systems associated with selenium and nitrate treatment facilities, including:

- x. quantity of antiscalant used and dosing rates;
- xi. rock mass monitoring and calcite precipitation propensity monitoring data;
- xii. Daphnia magna and rainbow trout acute toxicity results; and
- xiii. Calcite Indices.

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page Appendix 5: 6 of 20

APPENDIX 5B – Upper Greenhills Creek Antiscalant Addition System

Additional requirements are detailed in Appendix 5A.

5B1 AUTHORIZED DISCHARGES

This section applies to the discharge of effluent from the Upper Greenhills Creek (UGHC) Antiscalant Addition System to Greenhills Creek. The UGHC Antiscalant Addition System influent is comprised of diverted mine influenced water from Greenhills Creek. The site reference number for this discharge is E328694 (GH EFPIPE) as shown in Appendix 5B4.

- 5B1.1 Treated effluent discharged at E328694 must not be acutely toxic as per Section 6.2.
- 5B1.2 Treated effluent at E328694 must not exceed an antiscalant concentration of 350 mg/L based on a 2-minute time-weighted average, according to the sampling and calculation procedure in the Operations Plan.
- 5B1.3 Antiscalant concentrations in Greenhills Creek at E328695 (GH_HWGH_BRB) must not exceed 15 mg/L based on a 2-minute time-weighted average, according to the sampling and calculation procedure in the Operations Plan.
- 5B1.4 Notification of deviation from the identified antiscalant in the Teck application "Greenhills Operations Greenhills Creek Calcite Remediation Field Trial & Antiscalant Addition Project" dated December 11, 2020, must be provided to the director and KNC prior to implementation.
- 5B1.5 The discharge is authorized from Authorized Works which are: antiscalant addition module, raw water intake structure, discharge pipeline with diffuser pipe to return water to Greenhills Creek, and related appurtenances approximately located as shown in Appendix 5B4.
- 5B1.6 The UGHC Antiscalant Addition System may operate intermittently, in accordance with the Operations Plan, as required to meet the Site

Date issued:
Date amended:
(most recent)

November 19, 2014

December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Permit Number: 107517

Page Appendix 5: 7 of 20

Performance Objectives for Calcite per Section 3.4 and prevent acute toxicity failures per Section 6.2.

5B2 GREENHILLS CREEK DOWNSTREAM MONITORING REVIEW

5B2.1 The permittee must provide an analysis and interpretation of monitoring results from Greenhills Creek downstream monitoring locations during the initial period of 12 months during project commissioning and operations to the director and KNC. The report must be submitted within 14 months of the project start date and include a recommendation for ongoing monitoring at these locations.

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page Appendix 5: 8 of 20

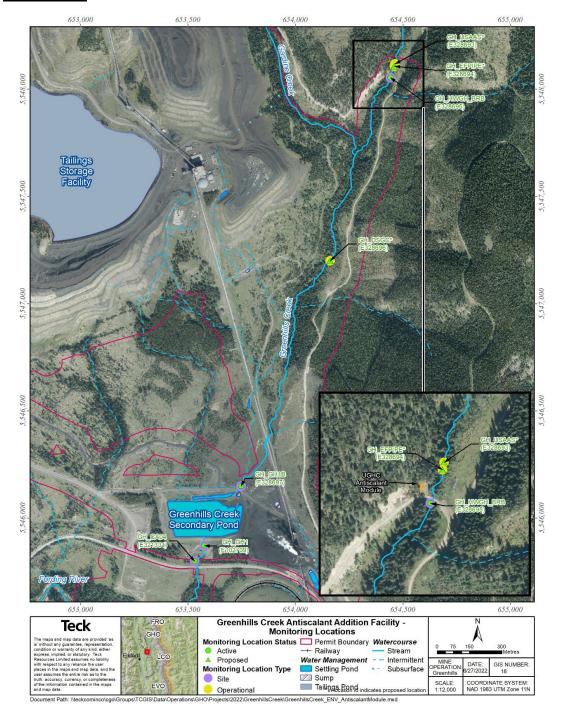
5B3 <u>UPPER GREENHILLS CREEK ANTISCALANT ADDITION SYSTEM MONITORING PROGRAM</u>

	GREENHILLS CREEK UPSTREAM OF UGHC SYSTEM (Upstream in receiving environment; Influent)	UGHC ANTISCALANT MODULE (Effluent)	GREENHILLS CREEK ~65 M D/S OF UGHC AAS, D/S OF BRANCH B ROAD CULVERT (Downstream in receiving environment)	GREENHILLS CREEK D/S OF GARDINE CREEK (Downstream in receiving environment)	GREENHILLS CREEK SEDIMENT POND INLET (Downstream in receiving environment)	GREENHILLS CREEK SEDIMENT POND DECANT (Downstream in receiving environment) (4)	GREENHILLS CREEK REACH 1 (Downstream in receiving environment)
EMS Number	E328693	E328694	E328695	E328696	E328697	E102709	E321331
Teck Station ID	GH_USAAS	GH_EFFPIPE	GH_HWGH_BRB	GH_DSGC	GH_GH1B	GH_GH1	GH_CA04
PARAMETER							
Field Parameters (a)	M	M	M	-	M	M	M
Conventional Parameters (b)	M	M	M	-	M	M	M
Major Ions (c)	M	M	M	-	M	M	M
Nutrients (d)	M	M	M	-	M	M	M
Total and Dissolved Metals Scan (e)	M	M	M	-	M	M	M
96 hour Rainbow Trout single concentration toxicity test (g)	-	Q	-	-	-	-	-
48 hour <i>Daphnia magna</i> single concentration toxicity test (g)	-	Q	-	-	-	-	-
Flow (f)	-	-	С	-	С	С	-
Calcite Precipitation Propensity Monitoring	1X/2W	-	1X/2W	1X/2W	1X/2W	1X/2W	1X/2W
Rock Mass Monitoring (5)	1X/6W, as needed		1X/6W, as needed	1X/6W, as needed	-	-	1X/6W, as needed

- 1) Refer to Table 26, Appendix 3, for abbreviation description.
- 2) Refer to Table 27, Appendix 3, for explanatory notes.
- 3) Refer to Section 8.5.1 and the approved annual calcite monitoring program for Calcite Index Monitoring requirements.
- 4) Monitoring location appears in two monitoring tables in this permit; therefore, monitoring data must be reported according to the requisite reporting requirements in both Section 9 and Appendix 5.
- 5) Rock mass monitoring to be conducted on an as-needed basis as a confirmatory measure of the more frequent calcite monitoring methods.

Date issued: Date amended: November 19, 2014 December 19, 2022

(most recent)


A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page Appendix 5: 9 of 20

5B4 <u>UPPER GREENHILLS CREEK ANTISCALANT ADDITION SYSTEM</u> <u>SITE PLAN</u>

Date issued: Date amended: (most recent) November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

 $for\ Director,\ Environmental\ Management\ Act$

Mining Authorizations

APPENDIX 5C – Swift-Cataract Antiscalant Addition System

Additional requirements are detailed in Appendix 5A

5C1 <u>AUTHORIZED DISCHARGES</u>

This section applies to the discharge of effluent from the Swift-Cataract Antiscalant Addition System to the Fording River via the Swift Creek Intake structure, FRO-S AWTF bypass pipeline and the Fording River Outfall (i.e., saw-tooth weir on the Fording River Road crossing). The Swift-Cataract Antiscalant Addition System influent is Swift Creek Sediment Ponds effluent comprised of combined flow of Swift Creek and Cataract Creek. The site reference number for this discharge is E320694 (FR_SCOUT) as shown in Appendix 5C3.

- 5C1.1 Treated effluent discharged at E320694 must not be acutely toxic, as per Section 6.2.
- 5C1.2 Treated effluent at E320694 must not exceed an antiscalant concentration of 25 mg/L based on a two-minute time-weighted average, according to the sampling and calculation procedure in the Operations Plan.
- 5C1.3 Notification of deviation from the identified antiscalant in the Teck application "Swift Cataract Antiscalant Addition Project" dated August 30, 2019 must be provided to the director and KNC prior to implementation.
- 5C1.4 The discharge is authorized from Authorized Works which are: antiscalant addition module and related appurtenances approximately located as shown in Appendix 5C3.
- 5C1.5 The Swift-Cataract Antiscalant Addition System may operate intermittently, in accordance with the Operations Plan, as required to meet the Site Performance Objectives for Calcite per Section 3.4 and prevent acute toxicity failures per Section 6.2.

Date issued:
Date amended:
(most recent)

November 19, 2014

December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page Appendix 5: 11 of 20

5C2 <u>SWIFT-CATARACT ANTISCALANT ADDITION SYSTEM</u> MONITORING PROGRAM

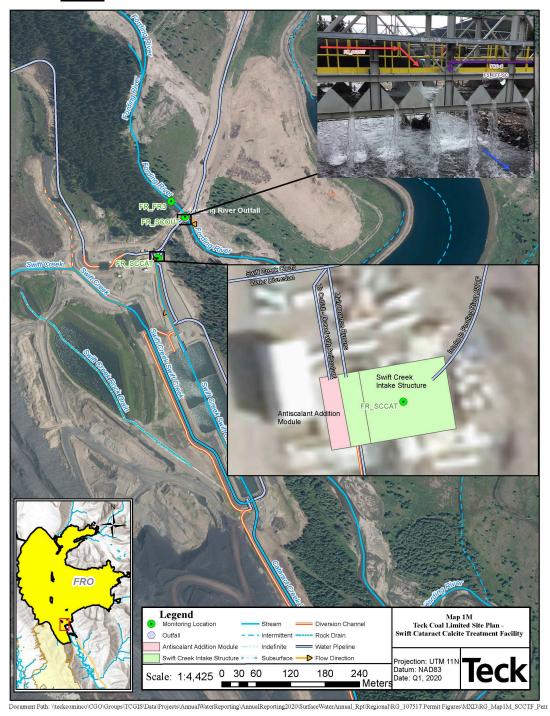
	SWIFT-CATARACT SED. POND DOSED WITH ANTISCALANT TO FORDING RIVER (3;4) (Effluent)	FORDING RIVER U/S OF FRO-S AWTF OUTFALL STRUCTURE (Upstream in receiving environment)	FORDING RIVER D/S OF FRO-S AWTF OUTFALL STRUCTURE (Downstream in receiving environment) (4)	SWIFT CREEK SEDIMENT PONDS TO FORDING RIVER
EMS Number	E320694	E320693	E320695	E319331
Teck Station ID	FR_SCOUT	FR_FR3	$FR_SCOUTDS$	FR_SCCAT
PARAMETER				
Field Parameters (a)	M	-	M	-
Conventional Parameters (b)	M	-	M	-
Major Ions (c)	M	-	M	-
Nutrients (d)	M	-	M	-
Total and Dissolved Metals Scan (e)	М	-	M	-
96 hour Rainbow Trout single concentration toxicity test (g)	Q	-	-	-
48 hour <i>Daphnia magna</i> single concentration toxicity test (g)	Q	-	-	-
Flow (f)	-	-	-	C
Calcite Precipitation Propensity Monitoring	1X/2W	1X/2W	1X/2W	-
Rock Mass Monitoring (5)	-	1X/6W, as needed	1X/6W, as needed	-

- 1) Refer to Table 26, Appendix 3, for abbreviation description.
- 2) Refer to Table 27, Appendix 3, for explanatory notes.
- 3) Samples are to be collected only when there is discharge via overflow from the FRO-S AWTF Swift Creek Intake. If the discharge is initiated because of a recirculation event at FRO-S AWTF, the monitoring program is not effective during the first four (4) hours of the recirculation event.
- 4) Monitoring location appears in three monitoring tables in this permit; therefore, monitoring data must be reported according to the requisite reporting requirements in Section 9, Appendix 4, and Appendix 5.
- 5) Rock mass monitoring to be conducted on an as-needed basis as a confirmatory measure of the more frequent calcite monitoring methods.

Date issued: No Date amended: De (most recent)

November 19, 2014

December 19, 2022


A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page Appendix 5: 12 of 20

5C3 SWIFT-CATARACT ANTISCALANT ADDITION SYSTEM SITE PLAN

Date issued: Date amended: (most recent) November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

APPENDIX 5D - LCO Dry Creek Antiscalant Addition System

Additional requirements are detailed in Appendix 5A.

5D1 **AUTHORIZED DISCHARGES**

This section applies to the discharge of effluent from the LCO Dry Creek Antiscalant Addition System to Dry Creek. The LCO Dry Creek Antiscalant Addition System influent is Dry Creek Sediment Pond effluent. The site reference number for this discharge is E295211 (LC_SPDC) as shown in Appendix 5D4.

- 5D1.1 Treated effluent discharged at E295211 must not be acutely toxic, as per Section 6.2.
- 5D1.2 Treated effluent at E295211 must not exceed an antiscalant concentration of 25 mg/L based on a two-minute time-weighted average, according to the sampling and calculation procedure in the Operations Plan.
- 5D1.3 Notification of deviation from the identified antiscalant in the Teck application "Line Creek Operations Dry Creek Calcite Management Project" dated May 8, 2020 must be provided to the director and KNC prior to implementation.
- 5D1.4 The discharge is authorized from Authorized Works which are: antiscalant addition module, the combined effluent pipeline, and related appurtenances approximately located as shown in Appendix 5D4.
- 5D1.5 The LCO Dry Creek Antiscalant Addition System may operate intermittently, in accordance with the Operations Plan, as required to meet the Site Performance Objectives for Calcite per Section 3.4 and prevent acute toxicity failures per Section 6.2.

Date issued:
Date amended:
(most recent)

November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page Appendix 5: 14 of 20

5D2 DRY CREEK DOWNSTREAM MONITORING REVIEW

5D2.1 The permittee must provide an analysis and interpretation of monitoring results from Dry Creek downstream monitoring locations during the initial period of 12 months during project commissioning and operations to the director and KNC. The report must be submitted within 14 months of the project start date and include a recommendation for ongoing monitoring at these locations.

Date issued:
Date amended:
(most recent)

November 19, 2014

December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page Appendix 5: 15 of 20

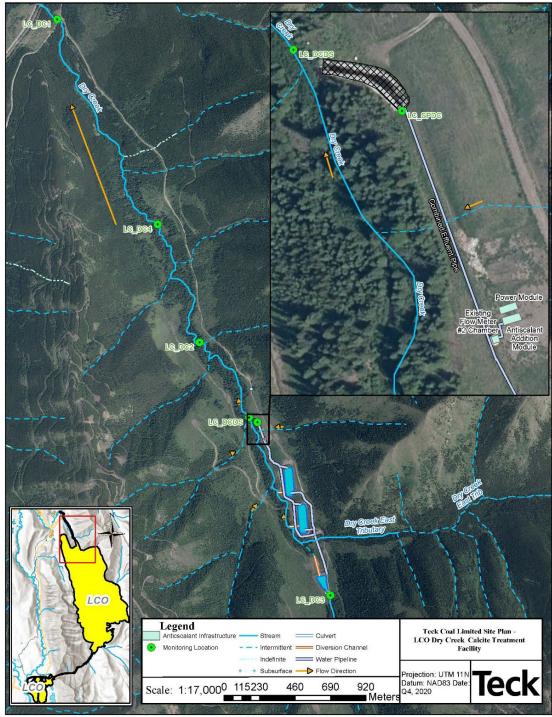
5D3 LCO DRY CREEK ANTISCALANT ADDITION SYSTEM MONITORING PROGRAM

	LCO DRY CREEK U/S OF DCWMS HEAD POND	LCO DRY CREEK SEDIMENT POND COMBINED EFFLUENT D/S OF ANTISCALANT ADDITION (Effluent)	LCO DRY CREEK 30 M D/S OF DCWMS DISCHARGE LOCATION IN REACH 4 (Downstream in receiving environment)	LCO DRY CREEK 0.6 KM D/S OF DCWMS IN REACH 3 (Downstream in receiving environment)	LCO DRY CREEK 1.5 KM D/S OF DCWMS IN REACH 3 (Downstream in receiving environment)	LCO DRY CREEK 0.5 KM U/S OF FORDING RIVER IN REACH 1 (Downstream in receiving environment)
EMS Number	E288273	E295211	E295210	E326823	E326821	E288270
Teck Station ID	LC_DC3	LC_SPDC	LC_DCDS	LC_DC2	LC_DC4	LC_DC1
PARAMETER						
Field Parameters (a)	M	M	M	-	-	-
Conventional Parameters (b)	M	M	M	-	-	-
Major Ions (c)	M	M	M	-	-	-
Nutrients (d)	M	M	M	-	-	-
Total and Dissolved Metals Scan (e)	M	M	M	-	-	-
96 hour Rainbow Trout single concentration toxicity test (g)	-	Q	-	-	-	-
48 hour <i>Daphnia magna</i> single concentration toxicity test (g)	-	Q	-	-	-	-
Flow (f)	-	С	-	-	-	-
Calcite Precipitation Propensity Monitoring	M	M	M	M	M	M
Rock Mass Monitoring (4)	1X/6W, as needed	-	1X/6W, as needed	-	-	1X/6W, as needed

- Refer to Table 26, Appendix 3, for abbreviation description.
- 2) Refer to Table 27, Appendix 3, for explanatory notes.
- 3) Refer to Section 8.5.1 and the approved annual calcite monitoring program for Calcite Index Monitoring requirements.
- Rock mass monitoring to be conducted on an as-needed basis as a confirmatory measure of the more frequent calcite monitoring methods.
- 4) 5) If monitoring locations appear in multiple monitoring tables in this permit, monitoring data must be reported according to the requisite reporting requirements in Appendix 5 and the other associated sections.

Date issued: Date amended: November 19, 2014

(most recent)


December 19, 2022

A.J. Downie, M.Sc., P.Ag. for Director, Environmental Management Act

Mining Authorizations

Page Appendix 5: 16 of 20

5D4 <u>LCO DRY CREEK ANTISCALANT ADDITION SYSTEM SITE PLAN</u>

Document Path: \teckcominco'CGOGroupsTCGIS\Data\Projects\Annual\WaterReporting\Annual\Reporting\2020\Surface\WaterAnnual_Rpc\Regional\RG_107517 Permit Figures\MXD\RG_Map_LCODC_Antisea

Date issued: Date amended: (most recent) November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

 $for\ Director,\ Environmental\ Management\ Act$

Mining Authorizations

Page Appendix 5: 17 of 20

APPENDIX 5E – Liverpool Antiscalant Addition System

Additional requirements are detailed in Appendix 5A.

5E1 AUTHORIZED DISCHARGES

This section applies to the discharge of effluent from the Liverpool Antiscalant Addition System to the Fording River. The Liverpool Antiscalant Addition System influent is Liverpool Sediment Pond effluent. The site reference number for this discharge is E304835 (FR_LP1) as shown in Appendix 5E3.

- 5E1.1 Treated effluent discharged at E304835 must not be acutely toxic as per Section 6.2.
- 5E1.2 Treated effluent at E304835 must not exceed an antiscalant concentration of 25 mg/L based on a 2-minute time-weighted average, according to the sampling and calculation procedure in the Operations Plan.
- 5E1.3 Notification of deviation from the identified antiscalant in the Teck application "Liverpool Sediment Ponds Temporary Antiscalant Addition Project: Emergency Authorization Request" dated April 19, 2022, must be provided to the director and KNC prior to implementation.
- 5E1.4 The discharge is authorized from Authorized Works which are: antiscalant addition module and related appurtenances approximately located as shown in Appendix 5E3.
- 5E1.5 The Liverpool Antiscalant Addition System may operate intermittently, in accordance with the Operations Plan, as required to meet the Site Performance Objectives for Calcite per Section 3.4 and prevent acute toxicity failures per Section 6.2.

Date issued:
Date amended:
(most recent)

November 19, 2014

December 19, 2022

A.J. Downie, M.Sc., P.Ag.

for Director, Environmental Management Act

Mining Authorizations

Page Appendix 5: 18 of 20

5E2 <u>LIVERPOOL ANTISCALANT ADDITION SYSTEM MONITORING</u> PROGRAM

	LIVERPOOL SEDIMENT PONDS TO FORDING RIVER (Effluent)(4)	FORDING RIVER U/S OF LIVERPOOL PONDS DISCHARGE CHANNEL (~130 m upstream in receiving environment)	FORDING RIVER D/S OF LIVERPOOL PONDS DISCHARGE CHANNEL (Downstream in receiving environment)
EMS Number	E304835	E328891	E328692
Teck Station ID	FR_LP1	FR_MULTIPLATE	FR_FRDSLP1
PARAMETER			
Field Parameters (a)	M	M	M
Conventional Parameters (b)	M	M	M
Major Ions (c)	M	M	M
Nutrients (d)	M	M	M
Total and Dissolved Metals Scan (e)	M	M	М
96 hour Rainbow Trout single concentration toxicity test (g)	Q	-	-
48 hour <i>Daphnia</i> magna single concentration toxicity test (g)	Q	-	-
Flow (f)	С	-	-
Calcite Precipitation Propensity Monitoring	1X/2W	1X/2W	1X/2W
Rock Mass Monitoring (5)	-	1X/6W, as needed	1X/6W, as needed

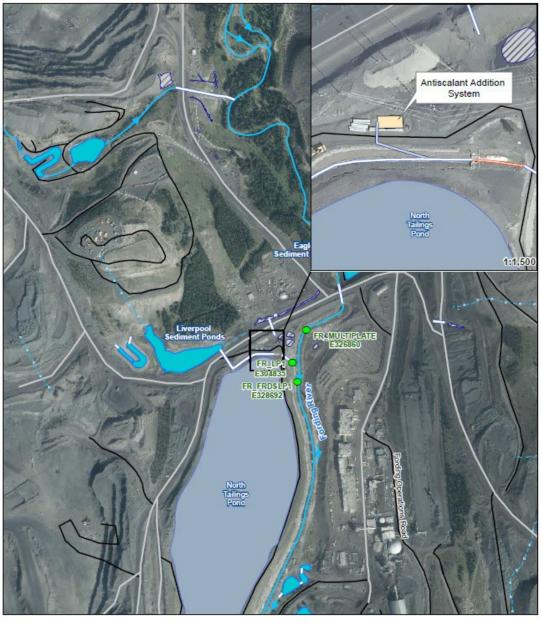
- 1) Refer to Table 26, Appendix 3, for abbreviation description.
- 2) Refer to Table 27, Appendix 3, for explanatory notes.
- 3) Refer to Section 8.5.1 and the approved annual calcite monitoring program for Calcite Index Monitoring requirements.
- 4) Monitoring location appears in two monitoring tables in this permit; therefore, monitoring data must be reported according to the requisite reporting requirements in both Section 9 and Appendix 5.
- 5) Rock mass monitoring to be conducted on an as-needed basis as a confirmatory measure of the more frequent calcite monitoring methods.

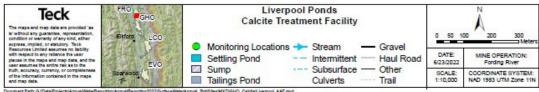
Date issued:

November 19, 2014

Date amended: (most recent)

December 19, 2022


A.J. Downie, M.Sc., P.Ag.


for Director, Environmental Management Act

Mining Authorizations

Page Appendix 5: 19 of 20

5E3 <u>LIVERPOOL ANTISCALANT ADDITION SYSTEM SITE PLAN</u>

Date issued: Date amended: (most recent) November 19, 2014 December 19, 2022

A.J. Downie, M.Sc., P.Ag.

 $for\ Director,\ Environmental\ Management\ Act$

Mining Authorizations

Appendix II

Government Approval Letters and Report Recommendations

- Attachments
 - I. 2020 RGMP Approval
 - II. 2018 Site-Specific GWMP Approval Letter
 - III. 2017 RGMP ENV Approval

1 ENV Approval Letters and Conditions and Previous Recommendations

The Ministry of Environment & Climate Change Strategy (ENV) approval letters for the 2020 Regional Groundwater Monitoring Program (RGMP), and the 2018 Site-specific Groundwater Monitoring Program (SSGMP) updates for the Fording River Operations (FRO), Greenhills Operations (GHO), Line Creek Operations (LCO), Elkview Operations (EVO), and Coal Mountain Mine (CMm) are attached to this Appendix (Attachments 1 and 2, respectively). The 2018 SSGMPs and 2020 RGMP and were approved by ENV on March 2020 and March 2023, respectively. The SSGMPs were subsequently updated and provided to ENV in October 2021. The 2021 SSGMP Updates are pending ENV's approval. For reference, the ENV approval letter for the 2017 RGMP Update is also attached (Attachment 3).

The sections below provide the key recommendations presented in the 2020 RGMP Update and the proposed studies to address the data gaps presented in the 2021 SSGMP Update.

1.1 2020 Regional Groundwater Monitoring Program Update Recommendations

Recommendations were developed in the 2020 RGMP Update and are provided below for each operation (SNC-Lavalin, 2020). These recommendations were incorporated or assessed in this year's annual report.

Background

 Install one background well in 2021. Evaluate monitoring data in background monitoring wells drilled in 2020 and 2021 and after one year of monitoring assess the need for additional background wells and location.

Study Area 1

- Review results from MBI once a year of data is obtained and evaluate identified gaps on the western side of the Fording River Valley. Based on the results, a subset of MBI monitoring wells should be incorporated into the RGMP. Additional monitoring wells will also be installed as part of MBI based on the preliminary assessments. The location and number of wells will be refined in early 2021.
- Consider installing a nested monitoring well in the southern portion of Study Area 1 near or upgradient of FR FRABCH.

Study Area 2

• Install a nested groundwater monitoring well in the Dry Creek alluvial fan near the confluence of Dry Creek and the Fording River.

Study Area 3

- Install nested monitoring wells near western boundary of Study Area 3 along potential groundwater flow path to Elk River watershed prior to Josephine Falls.
- Where possible, install pressure transducers for continuous water level measurements in existing production wells in the Fording River valley-bottom monitored under the RGMP.

Study Area 4

- Once at least one year of data is available at the new wells drilled in the vicinity of Leask and Wolfram Creek Sedimentation Ponds as Part of CPX2, compile and assess the need for replacement of existing monitoring wells and/or inclusion of new monitoring wells in RGMP. Review data from newly installed hydrometric stations as part of the MBI.
- Once one year of data has been collected from the MBI wells, determine if gap at GH_MW-ERSC-1
 has been filled and select monitoring wells for inclusion in RGMP. Additional monitoring wells will be
 installed as part of MBI based on the preliminary assessments. The location and number of wells will
 be refined in early 2021.
- Add new groundwater monitoring wells GH_MW_EF1A/B to the RGMP and review one year of data to evaluate if gap at RG_DW-01-03 is filled.

Study Area 5/6

- Add new groundwater monitoring wells LC_MW_ER4A/B to the RGMP and review one year of data for potential long-term inclusion.
- Install a nested well pair between LC_LC4 and the Fording River to facilitate an understanding of geology and groundwater flow along Line Creek.
- It may be possible that one or some of the existing Teck water supply wells near LC_LC4 can provide supplemental information on the groundwater quality in the alluvial fan to address this objective.
 Develop understanding of pumping rates, capture zones, water quality and water levels to improve understanding of groundwater-surface water interaction and load balance.
- Remove PIZP1101 as part of the Study Area 5/6 assessment but retain sampling as part of the Background Groundwater Assessment.

Study Area 7

- Add new groundwater monitoring well RG_MW_WW to the RGMP and review one year of data for potential long-term inclusion.
- Install a nested well pair in the Grave Creek alluvial fan at confluence with Elk River. Monitor and sample the monitoring wells for one year to determine whether the gap has been filled.

Study Area 8

 New monitoring wells EV_MW_GC1A/1B were installed to provide monitoring near the Goddard Creek in the valley-bottom. The shallow well EV_MC_GC1B should be included in the RGMP and the deeper well EV_MW_GC1A should be monitored for a minimum of one year then evaluated for inclusion in the RGMP.

Study Area 9

- Include monitoring and sampling at EV_MW_MC2-A/B, EV_MW_GT1-A/B, EV_MW_BC1-A/B, and EV_MW_SPR1-C to the RGMP to better define CI sources and downward migration.
- Install pressure transducers for continuous water level measurements in existing supply wells. Monitor and analyze the pressure transducer as part of the RGMP.
- Include monitoring and sampling at EV_MW_BC2, EV_MW_BC3, EV_MW_SGC1, and EV_MW_SGC2 to the Elkview Operations (EVO) SSGMP to further investigate dissolved selenium in bedrock.
- New monitoring wells EV_MW_MCgwA/B were installed in 2020. The wells should be monitored for a minimum of one year then evaluated for inclusion in the RGMP.

- Remove RG_DW-03-01 from RGMP.
- Remove EV MCgwS/D from RGMP and decommission both wells.
- Survey surface water monitoring datum at EV_GT1 and EV_BC1 relative to geodetic elevations, install transducers at both stations to continuously monitor surface water.
- A flow and load accretion study should be completed along Michel Creek extending to an area upstream of Study Area 10.

Study Area 10

- New monitoring wells EV_MW_SP1A/B/C were installed to assess groundwater quality near
 Michel Creek. The wells should be monitored for a minimum of one year then evaluated for inclusion in the RGMP
- A flow accretion study for Michel Creek extending beyond the karst potential blocks is recommended
 to assess the potential influx. The study should extend to Study Area 9 to assess additional potential
 surface or groundwater monitoring locations.

Study Area 11

- Evaluate water level and water quality data from CM_MW_AG1A/B evaluate whether it suitably monitors groundwater quality downgradient of all mining-related sources in Study Area 11.
- To aid in evaluation, collect water quality samples at the Andy Good Creek station (CM_AG2) timed with the groundwater sampling at CM_MW_AG1A/B.
- Install pressure transducers for continuous water level measurements in CM_MW1-OB/SH/DP.

Study Area 12

Collect concurrent samples from RG_MW-03-04 and RG_DW-03-04 to develop a correlation. Survey
and monitor groundwater levels at RG_DW-03-04 to refine groundwater flow direction. Data from
should be reviewed in 2021 Annual Report and assess for potential removal of RG_DW-03-04 from
the RGMP.

1.2 2021 Site-Specific Groundwater Monitoring Program Update Proposed 2022-2024 Studies to Address Data Gaps

The following studies were proposed for 2022-2024 to address data gaps identified in the 2021 SSGMP Update and are summarized below for each operation (SNC-Lavalin, 2021).

Fording River Operations

- Review existing data on the stratification of Henretta Lake. If the assessment is seasonally limited, collect field data and water quality samples in a vertical profile of the water column in Henretta Lake in other seasons.
- Installation of additional nested monitoring wells completed in bedrock and overburden west of Henretta Lake.
- Additional monitoring and sampling of newly installed wells to assess loading from Turnbull Bridge spoil, and evaluation of data.
- Installation of additional monitoring wells installed in overburden to assess influence of groundwater extraction on flows and load in the Fording River.

- Review ongoing studies and access in this area, and installation of new monitoring well in Fording River valley-bottom west of the Clode Creek ponds and between the FR_POTWELLS and Lake Mountain Pit/Clode Creek.
- Monitoring and sampling of newly installed bedrock wells and evaluation of data to assess potential westward flow of bedrock seepage from E4 Saturated Rock Fill (SRF; now FRO-N SRF).
- Monitoring and sampling of newly installed wells FR_LMA-1, FR_LMA-2, and FR_LMA-3 to assess seepage from the river towards the pit.
- Monitoring and sampling of newly installed wells and evaluation of data to assess groundwater quality and groundwater surface water interactions with the pond which overlies the historic Clode Creek alluvial fan.
- Monitoring and sampling historic wells and seeps at the toe of the slope of the STP to assess source
 of mine related constituents south of the STP (FR_BH-03-16 and FR_BH-04-16) and whether there is
 attenuation of order constituents (OC) at FR_09-03-A/B.
- Seepage study of the Swift Creek sediment ponds is ongoing. Once complete, the findings will be assessed to inform whether select wells need to be added to the SSGMP.
- Teck is undertaking a seepage study of the Cataract Creek sediment ponds to understand potential seepage and pathway from the pond to the Fording River though groundwater. The findings of this study will be reviewed by the SSGMP.
- Additional monitoring and sampling of wells installed in under the Mass Balance Investigation (MBI) and evaluation of data for potential incorporation into the SSGMP or RGMP.
- Create a new surface water monitoring station at the confluence of the Fording River and the Oxbow Channel downstream of the regional groundwater discharge zone.

Greenhills Operations

- Review results of ongoing Mass Balance Investigation (MBI) and Porter Creek investigations.
- Assess results from GHO Greenhills-Fording Aquifer Study drilling program and evaluate the new monitoring wells for potential inclusion in the GHO SSGMP.
- Assess results of isotope samples (18O-H₂O, 2H-H₂O, tritium and sulphate) at GH_MW-MC-2D. If results are inconclusive, further field investigation of the deep groundwater flow regime will be conducted.
- Assess results from MBI investigation downgradient of Thompson Creek watershed to assess potential inclusion of new monitoring wells into SSGMP/RGMP.

Line Creek Operations

- Assess need for a bedrock monitoring well within the Dry Creek Drainage, near the Dry Creek sedimentation ponds.
- Well pair RG_MW_DC1A/B should be monitored quarterly for one year and, following data review, considered for incorporating into subsequent SSGMPs.
- Install a shallow well in the Dry Creek drainage, downgradient from the sedimentation ponds.

- Review the findings of the groundwater bypass study once it has been concluded and evaluate future
 planned monitoring wells near Upper Line Creek and the upper portions of Centre Line Creek to
 assess the need for additional investigations.
- Review the findings of the groundwater bypass study once it has been concluded and evaluate future
 planned monitoring wells in the vicinity of the West Line Creek Active Water Treatment Facility (WLC
 AWTF) to assess the need for additional investigations.
- Monitor groundwater at LC MW CP1A/B.
- Monitor groundwater at LC_MW_ER4A/B and LC_MW_SRDA/B.
- Monitor groundwater at RG MW LCA/B.
- Decommission LC_PIZP1101 and replace with an appropriate well.
- Inspect LC PIZP1105 to confirm well integrity.

Elkview Operations

- Review of data obtained from recent well installations and test pits at the Harmer Reservoir.
- Review groundwater monitoring and sampling data obtained from new Dry Creek Sedimentation Pond wells after two years of data are collected.
- Review data obtained from Harmer Reservoir decommissioning study, including preparation of a cross section extending from EV_GV3gw to the new wells near the reservoir.
- Restore surface water monitoring location EV_GV1 or add new surface water monitoring location near new well RG MW GCA.
- Cedar North in-pit Backfill Extension (CNIBE) Fault F42 to investigate hydraulic conductivity, connectivity and preferred pathways of faults and weathered bedrock as part of Permit 107517 Condition 8.2.4.
- Decommission EV_MCgwS/D.
- Review Goddard Marsh load balance study.
- Review shallow wells to be installed near Lagoon D as part of decommissioning investigation.
- Conduct single-well response tests at EV_OCgw and EV_ECgw to re-evaluate hydraulic conductivity.
- Continue monitoring chemistry at EV_MW_MC3 and at nearby SEEP_1B and review isotope results.
- Survey datum at Gate Creek and Bodie Creek monitoring stations to be consistent with groundwater wells.
- Install multilevel well nest adjacent to EV_RCSgw (formerly known as EV_RCgw) and near MV_MW_MC1A/B to investigate OC pathways.
- Complete a site reconnaissance of the Balmer North mine area in conjunction with an opportunistic sampling program where surface water seeps or where other surface water is noted.
- Perform a reconnaissance to understand potential suitable locations to install well nest near Milligan Creek Sedimentation Pond.
- Review of data obtained from new wells EV_MW_MC3A/B installed as part of RGMP drilling near Erickson Creek intake.

Coal Mountain mine

- Hydraulic conductivity testing at CM_MW7-SH, CM_MW7-DP and CM_MW8.
- Conduct a flow and load accretion Study to inform the need and location for potential additional groundwater monitoring well(s).

2 2021 Annual Report Recommendations by Program

Recommendations were developed in the 2021 Annual Report and are provided below for each operation (SNC-Lavalin, 2022). These recommendations were incorporated or assessed in this year's annual report.

2.1 FRO SSGMP

Table A: FRO SSGMP – 2021 Annual Report Recommendations

Recommendation	Status	Comments		
2021 Annual Report New Recommendations				
A local background well should be installed at FRO to replace the mine-influenced FR_HMW5 if a suitable location can be identified.	Complete	Monitoring wells FR_MW22_KCWD1A/B were installed in the upper Kilmarnock Creek watershed in Q3 of 2022. The wells are located in an area inferred to be upgradient of mining operations and believed to be suitable for use as local background wells, though data has not been yet reviewed to confirm this.		
An attempt should be made to retrieve the tubing that is stuck in monitoring well FR_HMW2. If this is not possible, the well should be decommissioned and a new well installed within spoils in the Henretta Creek watershed to replace it.	Complete	Tubing retrieval using a drill rig in Q3 2022 failed. FR_HMW2 was decommissioned and replaced with FR_MW23_HMW2_V2 in Q1 of 2023. An adjacent well (FR_MW23_HMW2_BR) was also completed in bedrock in Q1 of 2023.		
An attempt should be made to complete another hydraulic conductivity test at monitoring well FR_HMW1S, where recovery was too rapid and there was insufficient displacement for analysis in 2011.	Complete	Additional hydraulic conductivity tests at FR_HMW1S were completed in Q4 of 2022.		
A datalogger should be re-installed in monitoring well FR_MW_NTPSE, which had it's datalogger pulled when monitoring ceased as part of the previous program.	Complete	The datalogger was re-installed in Q1 of 2022.		
Consideration should be given to the need for installing new monitoring wells within overburden and bedrock in Study Area 1 once recently installed monitoring wells have been evaluated for inclusion in the FRO SSGMP and/or RGMP.	Complete	New monitoring wells were installed within overburden and bedrock at three locations in Study Area 1 in 2022 in support of the MBI, including wells RG_MW22_FR12A/B/C/D, RG_MW22_FR13A/B/C, and RG_MW22_FR14A/B/C.		
Monitoring wells RG_MW_FR1A/B/C should be incorporated into the SSGMP and RGMP to eventually replace supply well FR_GH_WELL4. Addition of these new wells will provide water quality and groundwater elevation data over the entire overburden thickness in the Fording River valley bottom. However, sampling of monitoring well FR_GH_WELL4 should continue for a period of time until a relationship between the water quality at FR_GH_WELL4 and RG_MW_FR1A/B/C is established.	Ongoing	Monitoring wells RG_MW_FR1A/B/C have been incorporated into the programs for the 2022 Annual Report and going forward. However, their inclusion in the programs has not been approved by ENV and the relationship between hydrogeologic conditions at FR_GH_WELL4 and RG_MW_FR1A/B/C is still being established.		

Table A (Cont'd): FRO SSGMP – 2021 Annual Report Recommendations

Recommendation	Status	Comments		
2021 Annual Report Existing Recommendations				
Nested (clustered) monitoring wells should be installed in the Henretta Creek Valley bottom west of Henretta Lake to investigate a potential down-valley pathway of mine-influenced groundwater sourced from the spoils and backfilled pits that may bypass the lake and creek, as well as the hydrogeologic conditions in bedrock in the Henretta Creek Valley.	Complete	Clustered monitoring wells were attempted to be installed west of Henretta Lake in Q3 of 2022. However, only the bedrock well (FR_MW22_HC1_1A) was installed since the overburden was shallow and unsaturated.		
Review findings of the ongoing investigation, once completed, to understand potential stratification of OC in Henretta Lake.	Ongoing	The data will be reviewed in 2023 and the findings presented in a separate deliverable.		
Additional monitoring wells should be installed in the area of FR_POTWELLS and instrumented with dataloggers to investigate the hydraulic connection between the supply wells and the Fording River.	Ongoing	An additional 16 wells in nine locations were installed in Q3 and Q4 of 2022, including: FR_MW22_POTW1A/B/C, FR_MW22_POTW2A/B, FR_MW22_POTW3A/B, FR_MW22_POTW5, FR_MW22_POTW6A/B, FR_MW22_POTW6A/B, FR_MW22_POTW7, FR_MW22_POTW9. FOUR drivepoint piezometers were also installed in Q4 of 2022, including FR_DP22_POTW1 to FR_DP22_POTW4. Additional work remains to complete the recommendations and a status update will be provided as part of the 2023 Annual Report		
Monitoring wells should be installed in the area between FR_POTWELLS and Clode Creek and in the area west of the Clode Creek ponds, where groundwater quality is unknown.	Complete	Monitoring wells FR_MW22_FC1A/B were installed in the Fish Creek area to investigate water quality between the FR_POTWELLS and Clode Creek area. Monitoring wells FR_MW_CB-7A/B/C were also installed west of the Clode Creek ponds to assess the potential transport pathway between the ponds and Fording River beneath the West Exfiltration Ditch.		
Historic monitoring wells FR_BH-03-16, FR_BH-04-16, and FR_09-03-A/B south of the STP should be assessed for suitability of monitoring and sampling. If the wells are in good condition, FR_BH-03-16 and FR_BH-04-16 should be monitored and sampled to assess the source of OC in this area, while wells FR_09-03-A/B should be monitored and sampled to assess whether OC are similarly attenuated immediately downgradient of the STP east of FR_09-04-A/B.	Ongoing	Monitoring wells FR_BH-03-16, FR_BH-04-16, and FR_09-03-A/B were located and found to be in good condition. The 2022 FRO Annual Report recommends all four monitoring wells be sampled.		

Table A (Cont'd): FRO SSGMP – 2021 Annual Report Recommendations

Recommendation	Status	Comments		
2021 Annual Report Ex	2021 Annual Report Existing Recommendations (Cont'd)			
Monitoring wells recently installed in the Henretta Creek Valley, Turnbull Bridge Spoil area, Clode Creek area, Lake Mountain Creek area, Eagle pond area, Kilmarnock Creek area, Swift Creek and Cataract Creek Sediment Pond areas, and downgradient of the FRO operational area (MBI wells) should be evaluated for potential inclusion in the SSGMP once interpretation of the data have been published.	Ongoing	These wells will be evaluated and considered for inclusion in the SSGMP in the 2024 SSGMP Update Report.		

2.2 GHO SSGMP

Table B: GHO SSGMP – 2021 Annual Report Recommendations

Recommendation	Status	Comments		
2021 Annual Report New Recommendations				
Replace the transducer in GH_MW_GHC-1B. Complete Transducer was replaced in Q3 2022.				
Install a transducer in GH_MW_RLP2.	Ongoing	Transducer has not yet been installed. It is planned to be installed in 2023.		
2021 Annual Report Existing Recommendations				
Decommission GH_GA-MW-4 which was replaced with RG_MW_LC3A/B, now that one year of data has been collected at RG_MW_LC3A/B.	Complete	Well was decommissioned in September 2022.		
Decommission GH_GA-MW-2 which was replaced with RG_MW_WC2A/B, now that one year of data has been collected at RG_MW_WC2A/B.	Complete	Well was decommissioned in September 2022.		

2.3 LCO SSGMP

Table C: LCO SSGMP - 2021 Annual Report Recommendations

Recommendation	Status	Comments	
2021 Annual Report New Recommendations			
Assess available data from LC_MW_LC1-1A, LC_MW_LC1-2A, and LC_MW_LC1-3A for potential continuous groundwater level monitoring and install a transducer in a minimum of one well. Continuous groundwater level measurements would facilitate a more detailed assessment of groundwater in this area.	Complete	Pressure transducers were installed in all three wells in October 2022.	
Develop the repaired well LC_PIZP1101 prior to next sampling event and assess whether water quality is representative of the aquifer. Conduct new geodetic survey of ground surface and top of casing. Deploy protection measures to mitigate future damage.	Ongoing	Well development, survey, and deployment of protection measures are still pending.	
Utilize a bladder pump at LC_PIZP1105.	Complete	Upon field inspection, the static water column was not tall enough to allow for the proper functioning of a bladder pump, and therefore one was not installed. Investigate alternative sampling methods, such as a stainless-steel bailer.	
In 2022, Teck will conduct hydrologic surveys to confirm the location of the high-water marks of LCO Dry Creek and Elk River near RG_MW_DC1A/B and LC_MW_ER4A/B, respectively. If the hydrologic surveys determine that the well locations are within 10 m of the high-water mark, future reporting will be updated to reflect the appropriate guideline.	Complete	Geodetic surveys were conducted by Kerr Wood Leidel Associated Ltd (KWL) in October 2022 which determined that these four wells are greater than 10 m laterally from the high-water mark of the closest watercourse. The KWL report is attached in Appendix XII.	
2021 Annual Report Existing Recommendations			
Install pressure transducers for continuous groundwater level monitoring at LC_PIZDC1404S, LC_MW_CP1A, and LC_MW_CP1B. Assess whether a pressure transducer can be installed at LC_PIZDC1306. Continuous groundwater level measurements would facilitate more detailed assessments of groundwater at these locations.	Complete	Pressure transducers were installed in all four wells in October 2022.	
Reduce sampling frequency to twice per year for the following wells (LC_PIZDC1307, LC_PIZDC1308, LC_PIZP 1101 and LC_PIZP1103) because OCs are less than primary screening levels, baseline data has been established with a long period of data and trends are stable or decreasing according to Mann-Kendall statistical analysis.	Ongoing	Proposed in the 2021 SSGMP Update. Pending regulatory approval	

Recommendation	Status	Comments		
2021 Annual Report Existing Recommendations (Cont'd)				
Reduce manual water level measurement frequency to twice per year for the following wells; LC_PIZP1001, LC_PIZP1002 and LC_PIZP1003 because groundwater levels for these wells are only needed to augment interpreted groundwater flow direction at the Process Plant.	Ongoing	Proposed in the 2021 SSGMP Update. Pending regulatory approval		
Recommend continuous groundwater level monitoring of LC_PIZP1001, LC_PIZP1002 and LC_PIZP1003	Complete	A pressure transducer was installed in LC_PIZP1001 in Q4 2020 and in LC_PIZP1002 in October 2022. A pressure transducer was not installed in LC_PIZP1003 due to insufficient space because of large diameter tubing in the well.		
Investigate the reason for the anomalously high groundwater elevations at LC_PIZP1002 and LC_PIZP1003 (17 m and 9 m, respectively). Depths to bottom and depths to water information should be validated. A new geodetic survey of the ground surfaces and tops of casings may be warranted.	Complete	Inspection at LC_PIZP1001 indicated the presence of large diameter tubing that is almost completely filling the well diameter and may be influencing groundwater elevations. LC_PIZP1002 is a large diameter well with no issues noted during inspection. The depths to bottom and water were confirmed. New geodetic surveys were conducted.		

2.4 EVO SSGMP

Table D: **EVO SSGMP – 2021 Annual Report Recommendations**

Recommendation	Status	Comments		
2021 Annual Report New Recommendations				
Complete hydraulic conductivity tests at EV_GV3gwS, EV_GV3gw, RG_MW_GCA, EV_BALgw, EV_MW_MCgwA/B, and EV_MW_BC1B.	Complete	Hydraulic conductivity testing was conducted and results reported in Appendix VIII.		
Re-develop monitoring well RG_MW_GCA to attempt to reduce turbidity in the water column.	Complete	Turbidity increased with each sampling event in 2022 despite redevelopment efforts. Decommissioning is recommended.		
Review cross section EA-EA' to include borehole log data from the Harmer Reservoir project, where appropriate. Review data to confirm whether a secondary cross section should be included in the area.	Complete	Additional west-east cross-section was included in the 2022 Annual Report (EV-05 in Appendix VIII).		
Conduct a site visit to determine the feasibility of installing additional wells north of Sparwood Ridge and south of Michel Creek to further investigate groundwater flow and the source of selenium at EV_MW_MC3.	Complete	EV_MW22_MC3B was installed in 2022.		
Collect water quality from seep EV_SPR1B quarterly for at least one year to investigate possible selenium sources at EV_MW_MC3.	Complete	Samples were collected in 2022 and reported in Appendix VIII.		

Recommendation	Status	Comments		
2021 Annual Report New Recommendations (Cont'd)				
Collect quarterly water samples from discharge point EV_SPR5 for at least one year to confirm trends.	Complete	Samples were collected in 2022 and reported in Appendix VIII.		
2021 Annual Repo	rt Existing Re	ecommendations		
Sample monitoring wells near the Dry Creek Sedimentation Pond (EV_MW_DC1 through EV_MW_DC7 and EV_PW_DC1) as well as near the Harmer Reservoir (EV_MW_HC1 through EV_MW_HC5) per recommendations in the 2021 SSGMP Update. Assess analytical results from the Harmer Dam Removal Project in 2022 for potential inclusion in the SSGMP. Assess analytical results from the Dry Creek Sedimentation Pond in 2023 for potential inclusion in the SSGMP.	Ongoing	Monitoring wells EV_MW_DC1, EV_MW_DC2 and EV_MW_DC7 were selected for biannual sampling (Q2/Q3) starting in 2023. Winter access to these wells is difficult due to their remote location. Harmer Reservoir well analytical data will be reviewed in 2023 for potential inclusion in the SSGMP.		
Survey surface water stations at Harmer Creek (EV_HC1) and Goddard Creek (EV_GC2) to a local datum.	Ongoing	EV_HC1 was surveyed to both a local and a geodetic datum, whereas EV_GC2 was surveyed to a local datum. In 2023, a geodetic survey is planned for EV_GC2.		
Add monitoring well EV_GV3gwS to the SSGMP.	Complete	Well was included in 2022 SSGMP.		
Results from the groundwater investigation planned for Lagoon D decommissioning should be reviewed to evaluate whether additional wells (including near EV_OCgw) are recommended for this area and for inactive Lagoons A-C to evaluate shallow groundwater.	Ongoing	The results of the groundwater investigation have not yet been reviewed, and will be undertaken once available.		
Review results from investigation activities planned west of Cedar North Pit to Elk River (Permit 107517 Condition 8.2.4) to assess possible transport pathways of mine-influenced groundwater within faults and fractures.	Ongoing	The results will be reviewed in 2023 once the finalized reports are available.		
Review the findings of the Goddard Marsh load balance study as well as the existing monitoring network to assess whether additional groundwater monitoring is warranted.	Ongoing	The load balance study is currently under review.		
Complete a hydraulic conductivity test at EV_OCgw.	Complete	Hydraulic conductivity testing was conducted and results reported in Appendix VIII.		
Decommission nested well pair EV_MCgwS/D since both of these wells are installed in the aquitard.	Complete	These wells were decommissioned in 2022.		
Continue monitoring chemistry at EV_MW_MC3 and at nearby SEEP_1B and review isotope results.	Ongoing	Monitoring is ongoing.		

Table D (Cont'd): EVO SSGMP - 2021 Annual Report Recommendations

Table D (Contrd): EVO SSGMP = 2021 Annu	-				
Recommendation	Status	Comments			
2021 Annual Report Existing Recommendations (Cont'd)					
Survey surface water stations at Bodie Creek (EV_BC1) and Gate Creek (EV_GT1) to a local datum.	Ongoing	These stations were surveyed to a local datum in 2019 and this data has been added to the hydrographs. EV_BC1 was surveyed to a geodetic datum in 2022; EV_GT1 has yet to be geodetically surveyed.			
Investigate the condition of monitoring wells EV_MW_BC2 and EV_MW_BC3 and if appropriate, add to SSGMP to obtain a better understanding of shallow groundwater and to monitor the bedrock pathway.	Complete	These wells have been added to the SSGMP and are included in the 2022 annual report.			
Review contaminant load study related to condition 4C3.4ii in Permit 107517 to understand whether a load imbalance along Michel Creek exists.	Ongoing	The contaminant load study has not been reviewed. This report can be reviewed once available.			
Add additional wells screened through middle portion of sand and gravel aquifer, near EV_RCSgw, and further downstream, at EV_MW_MC1A/B, to identify heterogeneities within the aquifer that may be affecting groundwater flow and transport of dissolved selenium.	Complete	Additional wells have been added: EV_MW22_RCSgw1A/B/C, EV_MW22_BCgw1A/B, and EV_MW22_MC2C.			
Complete a site reconnaissance of the Balmer North mine area.	Ongoing	The Balmer North desktop study was completed in 2022. Site reconnaissance identified the Bodie Seep and confirmed that wells EV_MW_BC1A/B were in good condition, which were added to the SSGMP program. Additional site reconnaissance was not completed.			
Complete a site reconnaissance near Milligan Creek Sedimentation Pond to assess the feasibility of installing a well nest.	Complete	The site reconnaissance indicated that access restrictions, including a railway crossing and pond berms, block well installation near the Milligan Creek Sedimentation Pond.			
Sample newly installed monitoring wells in Erickson Creek (EV_MW_EC3A/B) for at least two years. Assess analytical results in 2023 for potential inclusion in the SSGMP.	Ongoing	Sampling results from these wells will be reviewed in 2023.			
Complete hydraulic conductivity test at EV_ECgw.	Complete	A hydraulic conductivity was conducted at this well and reported on accordingly in Appendix VIII.			
Sampling frequency at EV_BALgw, EV_LSgw, EV_OCgw, EV_GCgw, EV_MW_MC1A, EV_MW_MC2A, EV_MW_AQ1, EV_MW_AQ2, EV_MW_MC4, EV_MW_SPR1A, EV_MW_GT1A, and EV_BCgw should be reduced to semi-annual based on low and/or stable OC concentrations.	Ongoing	There is sufficient data available from prior years to reduce the sample frequency to semi-annual. These wells were sampled quarterly in 2022. The sampling frequency of these monitoring wells will be updated when the 2021 SSGMP Update is approved by ENV.			
Remove monitoring well EV_WF_SW from the SSGMP as the well is located upland along Erickson Creek and has significant groundwater variations. The well is screened below 159 m of waste rock and concentrations of OC are less than the primary screening criteria.	Ongoing	This well remains part of the SSGMP. The well will be removed when the 2021 SSGMP Update is approved.			

2.5 **CMm SSGMP**

Table E: CMm SSGMP – 2021 Annual Report Recommendations

Recommendation	Status	Comments		
2021 Annual Report New Recommendations				
Complete hydraulic conductivity testing at CM_MW4-SH/DP.	Ongoing	The field portion of hydraulic conductivity testing was completed at CM_MW4-DP in 2022. Hydraulic conductivity testing has not yet been completed at CM_MW4-SH due to an irretrievable artesian well control plug.		
Install transducers in monitoring wells CM_MW6-DP/SH, CM_MW7-DP/SH, CM_MW8, CM_MW9, and CM_MW10 to understand groundwater-surface water interaction and groundwater recharge.	Complete	Pressure transducers were installed in all wells in 2022 Q4.		
2021 Annual Repo	rt Existing Re	ecommendations		
It is unlikely CM_MW9 will ever be successfully developed, therefore development efforts on CM_MW9 should cease. Continue collecting quarterly groundwater levels to verify the minimal water seepage into the well.	Complete	Development efforts have ceased at CM_MW9. A pressure transducer was installed at CM_MW9 in 2022 Q4, and quarterly groundwater levels are being collected to verify minimal water seepage into the well.		
Complete a flow accretion study on relevant water courses (Corbin Creek from Corbin Pond to confluence with Michel Creek, Michel Creek from upgradient of CM_MC1 to downstream of confluence with Andy Good Creek, and the lower portion of Andy Good Creek). Survey continuous water level monitoring stations at CM_CC1, CM_MC1 and CM_SPD relative to sea level (geodetic datum). Establish continuous level monitoring at CM_MC2.	Ongoing	A flow accretion study was completed in 2022 Q4. In 2023, a geodetic survey of CM_CC1, CM_MC1 and CM_SPD, and the establishment of continuous level monitoring at CM_MC2 is being evaluated.		
Complete hydraulic conductivity testing at CM_MW7-DP/SH and CM_MW8.	Ongoing	Hydraulic conductivity testing was completed at CM_MW7-DP/SH in 2022 Q4. Hydraulic conductivity testing was not successful at CM_MW8 in 2022 Q4 due to downhole logistics associated with water and well depth. Another attempt is planned for 2023.		
Update sampling frequency of monitoring wells CM_MW4-SH, CM_MW4-DP, CM_MW5-DP, CM_MW6-SH, CM_MW6-DP, CM_MW7-SH and CM_MW8 to twice per year. OC are below primary screening levels in these monitoring wells, there is a relatively long period of record and trends are stable or decreasing according to Mann-Kendall statistical analysis.	Ongoing	The sampling frequency of these monitoring wells will be updated when the 2021 SSGMP Update is approved by ENV.		

2.6 RGMP

Table F: **RGMP – 2021 Annual Report Recommendations**

Recommendation	Status	Comments		
AMP KU 6.3 (Triggers) - 2021 New Recommendations				
A full year of data from monitoring wells installed in drinking water aquifers (i.e., GH_MW_EF1A/B, RG_MW_WW and RG_MW-03-04). The next steps for trigger development will be to analyze data from wells to understand whether triggers will be effective in achieving objectives through a defined response framework.	Ongoing	Trigger review is currently underway.		
Background – 20	21 New Rec	ommendations		
Update the Background Assessment as part of the 2023 RGMP Update, including a review of the adequacy of the current background monitoring well network. Continue to supplement the background monitoring network with new monitoring wells.	Ongoing	The background assessment will be updated as part of the 2023 RGMP Update.		
Evaluate analytical results for newly installed background wells including RG_MW_AC1A/B once one year of data is available to assess whether they should be added to the background monitoring network.	Ongoing	RG_MW_AC1A/B will be evaluated for inclusion in the RGMP background monitoring well network in the 2023 RGMP Update.		
Sample groundwater at all background monitoring wells once for isotope analysis (³ H, ² H, ¹⁸ O and potentially ¹⁴ C) to obtain a better understanding of the origin of groundwater in background monitoring wells.	Ongoing	Background monitoring wells will be sampled for isotope analysis (³ H, ² H, ¹⁸ O and potentially ¹⁴ C) in 2023.		
Install data loggers within GH_MW_BG1A/B/C to assess continuous groundwater level changes.	Complete	Data loggers were installed in GH_MW_BG1A/B/C in 2022 Q2.		
Assess trends of OC in background monitoring wells on an annual basis, and reassess annually if they should continue to be considered as representative of background groundwater quality.	Ongoing	Trends of OC in background monitoring wells have been assessed in the 2022 RGMP Annual Report.		
RG_DW-03-10 (Sparwood Well 4) in Study Area 8 should be added to the background monitoring network.	Ongoing	RG_DW-03-10 (Sparwood Well 4) was assessed as part of Study Area 8 in the 2022 RGMP Annual Report, and will be added to the background monitoring well network in the 2023 RGMP Update.		
Background – 2021 Existing Recommendations				
Continue to monitor/sample background locations at least two times in a year, as recommended in the 2020 RGMP Update (SNC-Lavalin, 2020).	Ongoing	Background locations will continue to be monitored/sampled at least two times per year. The background assessment will be updated as part of the 2023 RGMP Update, and the background monitoring well network and required monitoring/sampling frequency will be updated.		

Table F (Cont'd): RGMP – 2021 Annual Report Recommendations

Recommendation	Status	Comments		
Study Area 1 – 2	021 New Rec	ommendations		
Add monitoring wells RG_FR7A/B and RG_FR8A/B/C to the RGMP as they are located along the inferred flow paths between source areas (Kilmarnock Alluvial fan and Fording River) and the regional groundwater discharge zone.	Ongoing	Monitoring wells RG_MW_FR8A/B/C have been incorporated into the RGMP for the 2022 Annual Report and going forward. However, their inclusion in the programs has not been approved by ENV. Monitoring wells RG_FR7A/B were decommissioned in 2022 due to their location in an ephemeral channel and concerns about well seal integrity, and replaced with RG_MW22_FR12A/B/C/D. Monitoring wells RG_MW22_FR12A/B/C/D jave been recommended to be added to the RGMP in the 2022 Annual Report.		
Study Area 1 – 202	1 Existing Re	ecommendations		
Potential inclusion of wells installed in support of the MBI other than RG_MW_FR1A/B/C, RG_MW_FR7A/B and RG_MW_FR8A/B/C (newly recommended to be added) should be assessed once the interpretive reporting for that program has been completed.	Ongoing	These wells will be evaluated and considered for inclusion in the SSGMP in the 2023 RGMP Update Report.		
Review results of ongoing MBI and Porter Creek investigations to assess the potential groundwater transport of OCs from the Porter Creek catchment.	Ongoing	Review of this work is ongoing. Available, relevant findings will be discussed in the 2023 RGMP Update.		
Study Area 2 – 2	021 New Rec	ommendations		
Evaluate the feasibility of installing transducers in RG_MW_DC1A and RG_MW_DC1B for continuous groundwater level monitoring. Continuous groundwater level measurements would facilitate a more detailed assessment of groundwater at this location.	Complete	Pressure transducers were installed in both wells in December 2021.		
Study Area 2 – 202	1 Existing Re	ecommendations		
No recommendations	Not applicable	Not applicable		
Study Area 3 – 2021 New Recommendations				
No recommendations	Not applicable	Not applicable		
Study Area 3 – 2021 Existing Recommendations				
Assess results from GHO Greenhills-Fording Aquifer Study drilling program to consider potential inclusion of the new monitoring wells in the GHO SSGMP.	Ongoing	Review of this work is ongoing. Available, relevant findings will be discussed in the 2023 RGMP Update.		
Study Area 4 – 2021 New Recommendations				
Lower the hanging depth of loggers installed in RG_MW_LC3A/B	Complete	Hanging depths of transducers were lowered in Q3.		

Table F (Cont'd): RGMP – 2021 Annual Report Recommendations

rable F (Contrd): RGMP = 2021 Annual Rep	1				
Recommendation	Status	Comments			
Study Area 4 – 2021 Existing Recommendations					
Assess results of isotope samples (¹⁸ O-H ₂ O, ² H-H ₂ O, tritium and sulphate) at GH_MW-MC-2D and GH_MW-MC-1D. If results are inconclusive, further field investigation of the deep groundwater flow regime will be conducted.	Ongoing	¹⁸ O-H ₂ O, ² H H ₂ O, and tritium samples from well GH_MW-MC-2D were collected and reporting is underway. Relevant data is expected to be incorporated into the 2023 RGMP Update.			
Assess results from MBI investigation downgradient of Thompson Creek watershed to consider potential inclusion of new monitoring wells into SSGMP/RGMP.	Ongoing	Review of this work is ongoing. Available and relevant findings will be discussed in the 2023 RGMP Update.			
Study Area 5/6 – 2	2021 New Red	commendations			
No recommendations provided in report.	Not applicable	Not applicable			
Study Area 5/6 – 20	21 Existing R	Recommendations			
Install transducers in newly drilled clustered monitoring wells RG_MW_LC4A and RG_MW_LC4B. Continuous groundwater level measurements would facilitate a more detailed assessment of groundwater at this location.	Complete	Pressure transducers were installed in both wells in October 2022.			
Teck has existing water supply wells near the top of the Line Creek alluvial fan. It may be possible that one or some of the existing water supply wells near LC_LC4 can provide supplemental information to facilitate characterization of groundwater - surface water interactions in the alluvial fan. Assess available relevant data for inclusion into the SSGMP and potentially validate through monitoring.	Ongoing	Groundwater withdrawals from two pumping wells have been incorporated into the 2022 annual SSGP report.			
Confirm the December 2021 repairs were successful and the well integrity of PIZP1101 has been maintained. If the well was successfully repaired, remove PIZP1101 as part of the Study Areas 5/6 assessment but retain sampling as part of the BGA. If subsequent analytical results do not align with historical ranges (i.e., within 2 sampling events), this well should be decommissioned.	Complete	The post-repair analytical results appear to align with historical ones, therefore this well should be retained in the program. There does not appear to be sediment build up within the screened interval, however high groundwater turbidity remains. As listed in Table E above, the well should be redeveloped.			
Add LC_MW_ER4A and LC_MW_ER4B to the RGMP. Continue quarterly sampling and continuous groundwater level measurements.	Complete	These wells were added to the program, sampled quarterly, and instrumented with pressure transducers.			
Study Area 7 – 2021 New Recommendations					
No recommendations	Not applicable	Not applicable			
Study Area 7 – 2021 Existing Recommendations					
Establish a new surface water monitoring location at Grave Creek near RG_MW_GCA to replace former EV_GV1 location which is very difficult to access.	Ongoing	A new surface water sampling location has not yet been identified.			

Table F (Cont'd): RGMP – 2021 Annual Report Recommendations

Recommendation	Status	Comments		
Study Area 8 – 2	u∠1 New Rec	ommendations		
A hydrometric station should be established at the Goddard Creek Sedimentation Pond and the water level in the pond should be monitored to better understand the redox conditions at EV_MW_GC1B.	Ongoing	Staff gauge (EV_GC2) was installed in 2021. Water level monitoring, redox monitoring and review of data should continue to be undertaken at this location.		
Study Area 8 – 202	1 Existing Re	ecommendations		
No recommendations	Not applicable	Not applicable		
Study Area 9a/b –	2021 New Re	commendations		
Survey wellhead elevations at EV_WH50 and EV_HW1 so that pressure transducer groundwater level data can be correlated to groundwater elevations.	Complete	Completed by Align Surveys in mid 2022.		
Study Area 9a/b – 20	21 Existing I	Recommendations		
Install multilevel well nest adjacent to EV_RCSgw and EV_BRgw. Install dataloggers at these new locations. Dataloggers cannot be installed at EV_RCSgw and EV_BRgw as the downhole pumps cannot be removed to facilitate installation. Also, these two wells do not have a borehole log, construction details are unknown and there is uncertainty as to the source of dissolved copper from these wells. Nested monitoring wells will aid in the understand the surface water/groundwater relationship and any potential effects of pumping of these wells.	Complete	The following wells were installed in 2022: • Adjacent to EV_RCSgw: - EV_MW22_RCSgw1A/B/C • Adjacent to EV_BRgw: - EV_MW22_BCgw1A/B		
Study Area 10 – 2	2021 New Red	commendations		
Consider re-establishing surface water monitoring station EV_MC3A to evaluate surface water quality in Michel Creek immediately downgradient of Erickson Creek, and consider establishing a new station in Michel Creek downgradient of Milligan Creek. These additional locations will help in the understanding of OC inputs to Michel Creek.	Ongoing	Monitoring station is active, but no recent sample data is available.		
Study Area 11 – 2021 New Recommendations				
No new recommendations	Not Applicable	Not Applicable		
Study Area 11 – 2021 Existing Recommendations				
Complete a flow and load accretion study on Michel Creek, lower Corbin Creek, and lower Andy Good Creek to help assess the adequacy of the existing groundwater monitoring network. Then assess if additional groundwater monitoring well(s) are required and/or if existing monitoring wells should be replaced/abandoned.	Complete	A flow accretion study was completed in 2022 Q4 and is bring reported on in Q1 2023.		
Study Area 12 – 2021 New Recommendations				
Install pressure transducer at RG_MW_03-04.	Complete	Transducer installed in April 2022.		

3 References

- SNC-Lavalin. 2020. 2020 Regional Groundwater Program Update. Report prepared for Teck Coal Limited. Dated December 4, 2020.
- SNC-Lavalin. 2021. 2021 Site-specific Groundwater Monitoring Program Update. Report prepared for Teck Coal Limited. Dated October 31, 2021.
- SNC-Lavalin, 2022. 2021 Annual Report: Elk Valley Regional and Site-Specific Groundwater Monitoring Programs. Report prepared for Teck Coal Limited. Dated March 29, 2022.

Attachment I

2020 RGMP Approval

March 20, 2023 Authorization Number: 107517

VIA EMAIL: Cam.Jaeger@teck.com; Nathaniel.Barnes@teck.com

Teck Coal Limited 3300-550 Burrard St Vancouver, BC V6C 0B3

Dear Teck Coal Limited:

Re: Approval of 2020 Update to Regional Groundwater Monitoring Program as per Section 8.2.1 of *Environmental Management Act* Permit 107517

This approval replaces my earlier letter on this subject dated February 3, 2023, and includes a minor correction to the numbering in requirement 2(d).

The 2020 update of the Elk Valley Regional Groundwater Monitoring Program (2020 RGMP) dated December 2020 has been received and reviewed by Ministry of Environment and Climate Change Strategy (ENV) staff, along with the 2021 RGMP Annual Report dated March 2022. Review indicates that the 2020 RGMP meets the conditions of Permit 107517, although ENV expects advancements (detailed below) to be included in the next update.

Pursuant to Section 8.2.1 of Permit PE107517, I hereby approve the 2020 RGMP with the following conditions established as new requirements to be met by Teck:

- 1. Teck Coal Limited (Teck) must continue to host and facilitate the Groundwater Working Group (GWG). Membership in the GWG must be extended to ENV, Ktunaxa Nation Council (KNC), the Interior Health Authority (IHA), and the Ministry of Energy, Mines and Low Carbon Innovation (EMLI). GWG meetings must be held a minimum of four times annually, one of which should be in-person. Timing of any in-person meeting may be at Teck's discretion. A site tour should be included in the agenda of the in-person meeting and invitation to the site tour extended to all GWG members.
- 2. Teck must submit the next version of the RGMP (2023 RGMP) to the director for approval by September 30, 2023. In the 2023 RGMP:
 - a. Teck must complete and report on all activities recommended in the 2020-2023 Work Plan as described in the 2020 RGMP.
 - b. Teck must update all components of the 2020 RGMP (including Table D summarizing all hydrogeological studies). The update must clearly identify

ongoing and planned studies, and describe how they are informing the RGMP update. New information from all ongoing studies in Table D must be

c. Teck must provide an updated assessment of:

incorporated into the regional Conceptual Site Model.

i. Background groundwater quality, with reference to B.C. CSR Protocol 9.

Authorization Number: 107517

Page 2 of 3

- ii. The fate and transport of mine-influenced groundwater near Elkford.
- iii. The potential for mine contact water to be transported through regional bedrock aquifers and structural features such as weathered bedrock, faults, fractures and karst to the receiving environment.
- iv. The potential for mine-influenced water to be transported to Baynes Lake and Kikomun Creek.
- d. Teck must provide a 2023-2026 Work Plan to fill gaps in hydrogeological understanding identified in the 2023 RGMP, including those noted in section 2(c) of this 2020 RGMP approval letter.
- 3. Teck must submit to the director a 3D visualization in digital format, of borehole lithology and screened interval data from all relevant boreholes and monitoring wells drilled by or on behalf of Teck.
 - a. By December 31, 2023 the visualization must include information from MU1, MU2 and MU3, and by October 31, 2024 it must be augmented with information from MU4 and relevant portions for MU5.
 - b. Boreholes and monitoring wells included in the RGMP (and Site-Specific Groundwater Monitoring Programs) must be highlighted and base maps (containing waterbodies, watercourses, and permitted mine areas), best available topographic data (LiDAR or other), and satellite imagery, must be included.
 - c. An updated version of the 3D visualization must be submitted each year starting in 2025 along with the Annual Groundwater Monitoring Report as required in Section 9.4.1 of Permit 107517.

A copy of this approval letter is being placed on the permit file, as an addendum to the permit, to reflect the director's approval of the 2020 RGMP. All other terms and conditions detailed in the *Environmental Management Act* Permit 107517 remain in effect.

This authorization does not authorize entry upon, crossing over, or use for any purpose of private or Crown lands or works, unless and except as authorized by the owner of such lands or works. The responsibility for obtaining such authority rests with the permittee. This permit is issued pursuant to the provisions of the *Environmental Management Act* to ensure compliance with Section 120(3) of that statute, which makes it an offence to discharge waste, from a prescribed industry or activity, without proper authorization. It is also the responsibility of the permittee to ensure that all activities conducted under this authorization are carried out with regard to the rights of third parties and comply with other applicable legislation that may be in force.

Authorization Number: 107517 Page 3 of 3

This decision may be appealed to the Environmental Appeal Board in accordance with Part 8 of the *Environmental Management Act*. An appeal must be delivered within 30 days from the date that notice of this decision is given. For further information, please contact the Environmental Appeal Board at (250) 387-3464.

Administration of this permit will be carried out by staff from the Environmental Protection Division's Regional Operations Branch. Plans, data and reports pertinent to the permit are to be submitted by email or electronic transfer to the director, designated officer, or as further instructed.

Should you have any questions concerning this authorization letter, please contact Kyle Terry at Kyle.Terry@gov.bc.ca.

Yours truly,

A.J. Downie, M.Sc., P.Ag.

aprom

for Director, Environmental Management Act

SE Coal Mining

cc: <u>Lucy.Eykamp@teck.com</u>

Referrals@ktunaxa.org

PERMRECL@gov.bc.ca

Hmcmahon@ktunaxa.org

H2ORegulatorySubmissions@teck.com

Attachment II

2018 Site-Specific GWMP Approval Letter

File: PE107517

March 11, 2020

Mariah Arnold
Sr. Lead Environmental Sciences
Cam Jaeger
Coordinator Environment

Teck Coal Limited 124B Aspen Drive Sparwood, BC VOB 2G0

Dear Mariah and Cam:

RE: Elk Valley Site-Specific Groundwater Monitoring Programs (SSGMP) - 2018 Update

The 2018 update of the Site-Specific Groundwater Monitoring Plans (2018 SSGMPs) for Teck's operations in the Elk Valley (Fording River, FRO; Greenhills, GHO; Line Creek, LCO; Elkview, EVO; Coal Mountain, CMO) dated October 31, 2018 were received and reviewed by staff of the Ministry of Environment and Climate Change Strategy (ENV). Ministry Assessments for the 2018 SSGMPs were submitted by ENV to Teck in April 2019, which indicated that four of the five plans (FRO, GHO, LCO and EVO) did not meet the requirements described in Permit 107517. ENV requested a revised version of these plans to be submitted by September 30, 2019. ENV has received and completed the review of the revised submissions.

Pursuant to Section 9.2.2 of Permit PE107517, the 2018 update of the Elk Valley Site-Specific Groundwater Monitoring Plans (2018 SSGMP) for the following operations: Fording River Operations (FRO); Greenhills Operations (GHO); Line Creek Operations (LCO); Elkview Operations (EVO) and Coal Mountain Operations (CMO), are accepted with the following conditions:

- 1. Updated Site-Specific Groundwater Monitoring Plans for FRO, GHO, LCO, EVO and CMO will be submitted to the Director for approval **by October 31, 2021.**
- 2. The 2021 SSGMP updates will include the following:

- a. Expand the site-specific monitoring well network as follows:
 - i. FRO Swift Creek valley bottom. Add a well to the FRO network, to investigate the presence of a potential mine-affected groundwater transport pathway in overburden and/or shallow weathered bedrock in the area downgradient of the Swift Creek sediment management system towards the Fording River valley bottom aquifer.
 - ii. GHO Porter Creek valley bottom. Replace GH_MW-PC with a well pair installed in unconsolidated sediments and bedrock, to monitor a potential mine-affected groundwater transport pathway and investigate the surface water groundwater interaction upgradient of the confluence with Fording River.
 - iii. LCO Dry Creek. Add to the LCO well network the new well that is planned to be installed in Study Area #2 and added to the RGMP network, as per the Work Plan included in the ENV Acceptance Letter for the 2017 RGMP Update.
 - iv. LCO Confluence of West Line Creek and Line Creek. Add to the LCO well network well AWTF-MW-15-02B and AWTF-Seep, if suitable, and/or a new well pair installed in the area downstream of the confluence of West Line Creek with Line Creek, where the surficial geology mapping indicates the presence of fluvial deposits. The objective of monitoring this well(s) and seep is to investigate the presence of a potential mine-affected groundwater transport pathway by-passing the AWTF intake location.
 - v. LCO Background. Install a well pair (overburden / bedrock) upstream of the LCO mine-affected areas in the area within the Tornado Creek watershed where surficial geology mapping indicates the presence of fluvial deposits. Use this well to characterize background conditions for LCO. If no unconsolidated deposits are found in the area indicated by mapping, install a well in weathered bedrock to characterize background bedrock conditions in LCO.
 - vi. EVO Grave Creek. Install a well in unconsolidated sediments in the Grave Creek valley fill aquifer, at a shallower depth than EV_GV3gw, to investigate a potential shallow groundwater pathway and the interaction between surface and shallow groundwater.
- b. Update the Conceptual Site Model for each operation, based on the integration of the updated groundwater monitoring data set and relevant information obtained from other groundwater studies supporting site-specific permit applications or regional programs (e.g. Kilmarnock alluvial fan groundwater study conducted in support of the FRO-S Active Wastewater Treatment Plant, groundwater investigations in the Clode Creek watershed, updated modelling and flow accretion survey in Dry Creek as part of the LCO Dry Creek Structured Decision Making process (SDM)).
- c. Update maps for the same themes and in the same format as those included in the revised 2018 SSGMPs. Update the maps for LCO and CMO using the same format and notation of the maps included in FRO, GHO and EVO.

- d. Update hydrogeological cross-sections to reflect the information acquired from new wells (and updated locations in plan view, where cross-sections have been extended to include new wells). Additional cross-sections will be developed for all wells, in directions parallel and perpendicular to the main direction of flow. The cross-sections should show all the wells (including wells drilled for purposes other than monitoring, e.g. geotechnical wells) used to define them, with the following details: well screens location, average groundwater elevation and elevation of nearby surface water bodies. The stratigraphic logs of all the wells used to define the cross-sections will also be provided.
- e. Update the structure of the documents describing the plans for LCO and CMO to be consistent with those prepared for FRO, GHO and EVO.
- f. Update the characterization of the effect of dewatering of the pits that intercept groundwater on the groundwater head, flow pattern and on interaction of groundwater with surface water.

If you have any questions, please contact Sarah Alloisio, Hydrogeologist, at Sarah.Alloisio@gov.bc.ca or at 236-468-2286.

Yours truly,

Liz Freyman

for Director, Environmental Management Act

Mining Operations

C. Freyman

Cc: Jeanien Carmody-Fallows, Section Head, Mining Authorizations, ENV

Heather McMahon, Ktunaxa Nation Council

Attachment III

2017 RGMP ENV Approval

File: PE107517

July 9, 2020

Mariah Arnold Sr. Lead Environmental Sciences Cam Jaeger Coordinator Environment Nathaniel Barnes Lead Water

Teck Coal Limited 124B Aspen Drive Sparwood, BC VOB 2G0

RE: Elk Valley Regional Groundwater Monitoring Program (RGMP) - 2017 Update

[**Rev. 1 – Amendment of Condition 2.6.** This document is an update of the Approval Letter issued on February 19, 2020, whereby Condition 2.6 is modified as follows: From:

"An update on how the RGMP addresses the changes introduced in the 2018 Adaptive Management Plan (AMP), with reference to Question 4 (effects of groundwater discharge to streams on calcite development) and Question 6 (groundwater triggers)."

To:

"An update on how the RGMP addresses the changes introduced in the 2018 Adaptive Management Plan (AMP)".]

The 2017 update of the Elk Valley Regional Groundwater Monitoring Program (2017 RGMP) dated September 2017 has been received and reviewed by ministry staff, along with the 2017 and 2018 Regional Groundwater Monitoring Program Annual Reports dated March 2018 and March 2019.

Pursuant to Section 9.2.1 of Permit PE107517, I hereby accept the 2017 update of the Elk Valley Regional Groundwater Monitoring Program (2017 RGMP), subject to the following conditions:

1. The Groundwater Work Plan will be carried out as written. The Groundwater Work Plan and the accompanying Table of Proposed Drilling Locations (Proposed Drilling Locations), which were discussed during the Groundwater Working Group (GWG) meeting of November 26-27, 2019 and submitted to ENV on January 7, 2020, are included as appendices to this Letter. Specifically, the monitoring wells proposed as part of the ongoing Mass Balance Investigation studies in support of the Regional Water Quality Model will be installed as soon as possible, subject to access and permitting constraints, and added to the Regional Groundwater Monitoring Network. Updates on the implementation of the Work Plan will be provided to the GWG during the Group's meetings and

- conference calls. All proposed changes to the Work Plan and Proposed Drilling Locations will need to be justified and will require review by the GWG and approval prior to being implemented.
- 2. An update of the RGMP must be submitted to the Director for approval **by September 30, 2020** and will meet in full, all the requirements detailed in point *i* to *vii* Of Section 9.2.1 of Permit PE107517.

Specifically, the 2020 RGMP update will contain the following:

- 2.1 Based on the data acquired from the monitoring between 2017 and December 31, 2019, a "updated description of relevant aquifer characteristics (e.g. hydraulic conductivity, storage properties, transmissivity, etc.), and a description of regional groundwater flow patterns (directions and velocities) and recharge areas, fate, groundwater interactions with surface waters, the effects of groundwater withdrawals on the SW/GW interactions, and the mobility of mine related constituents of interest." (point vi of Section 9.2.1).
- 2.2 An updated Conceptual Site Model (CSM), and on a closer integration with the Site-Specific groundwater programs, the Mass Balance Investigation and the Sparwood Area Groundwater Study.
- 2.3 A list of all the hydrogeological studies conducted between 2017 and 2019, in support of other programs included in the Elk Valley Area-Based Management Plan (e.g. Regional Aquatic Effects Assessment, Regional Water Quality Model) or permit applications (e.g. Fording River South water treatment plant intake, Elkview and Fording River North Saturated Rock Fill), with an overview of each study and indication of whether and what information resulting from these studies is relevant to inform the CSM.
- 2.4 In addition to the maps included in the 2017 update, include the following maps:
 - Updated maps of the location of the existing groundwater monitoring wells included in the RGMP and proposed new RGMP wells (if applicable). The location of surface water monitoring stations should also be added as a reference.
 - ii. Updated maps allowing the visualization of the main aspects of the Conceptual Site Model (e.g. surface and groundwater pathways, indicative gaining and losing stream reaches, receptors associated with monitoring wells).
 - iii. Maps showing all the locations of the hydrogeological studies referred to in point 2.3 (two maps showing the study locations located in the northern and southern portion of the Elk Valley, respectively).
- 2.5 Updated hydrogeological cross-sections to reflect the information acquired from new wells (and updated locations in plan view, where cross-sections have been extended to include new wells). Additional cross-sections will be developed for all the wells included in the updated regional groundwater monitoring network, in directions parallel and perpendicular to the main direction of flow. The cross-sections should show all the wells (including wells drilled for purposes other than monitoring, e.g. geotechnical wells) used to define them, with the following details:

topographic profile, bedrock contact elevation (where this is available or can be inferred), well screens location, average groundwater elevation and elevation of nearby surface water bodies. The stratigraphic logs of all the wells used to define the cross-sections will also be provided.

- 2.6 An update on how the RGMP addresses the changes introduced in the 2018 Adaptive Management Plan (AMP).
- 3. Provide a proposed Work Plan for 2020-2023 with proposed well drilling locations to fill in any remaining gaps identified during the update, with a tentative schedule for its implementation, as per condition *iv* of PE107517, Section 9.2.1 "Identify limitations and data gaps and conduct additional studies necessary to refine the hydrogeological conceptual model, determine the location and extent of mine-affected groundwater discharge to surface waters and to evaluate management and mitigation options."

Further, the Director expects the following:

- A minimum of two (2) in-person meetings and two (2) conference calls of the GWG will be held in 2020. The GWG will meet approximately every three months, to maintain continuity in the communication and activities related to the groundwater programs. This will ensure that these programs achieve the objectives of the Elk Valley Area-Based Management Plan (ABMP) to protect groundwater, human health and aquatic ecosystems.

If you have any questions, please contact Sarah Alloisio, Hydrogeologist, at Sarah.Alloisio@gov.bc.ca or at 236-468-2286.

Yours truly,

Liz Freyman, Head, Environmental Impact Assessment Section - Mining

for Director, Environmental Management Act

Mining Operations

C. Freyman

cc: Heather McMahon, Ktunaxa Nation Council (HMcMahon@ktunaxa.org)

Regional Groundwater Monitoring Program: Work Plan 2020

Relevant Study Area	ENV Condition	Teck Response
Background/Northeast of Study Area 1	Add a newly drilled well pair in the Henretta Creek valley bottom upstream of FR_HMW5, to replace FR_HMW5 as background well	Teck proposes to install a monitoring well nest in this Study Area in 2020. The timeline and final location for the wells are contingent on regulatory approval landowner permission, and weather but is anticipated to be complete by Q3 2020. Teck has begun ongoing engagement with EMPR and other regulatory bodies to better understand regulatory requirements and pre-disturbance obligations for this location.
Background/North of Study Area 1	Add a newly drilled well pair (shallow and deep) in Upper Fording River, north of Henretta Creek and spoil.	Teck proposes to install a monitoring well nest in this Study Area in 2020. This timeline and final location for the wells are contingent on regulatory approval landowner permission and weather but is anticipated to be completed by Q3 2020. Teck has begun ongoing engagement with EMPR and other regulatory bodies to better understand regulatory requirements and pre-disturbance obligations for this location.
Background/South of Study Area 4	Select an additional well pair among the existing CPX2 baseline wells (GH_MW-Wolf-1S/D, GH_MW-Willow-1S/D and GH_MW-Willow-2S/D) or add a newly drilled well pair (shallow and deep) north of surface water sampling station GH_ER2 if the existing wells are not suitable for monitoring.	Geochemical analysis of water in the Wolf and Willow wells indicate that they are not representative of background Elk River alley aquifer conditions but may be suitable for use as background wells for their respective tributaries. The British Columbia MoE Water and Air Baseline Monitoring Guidance Document for Mine Proponents and Operators (2016) indicates that a minimum of 1 year of quarterly data collection is required for adequate baseline groundwater chemistry characterization. Insufficient data has been collected to make this determination and as such the Wolf and Willow Creek wells will continue to be monitored until such time that their suitability for baseline characterization can be established. In 2020, a number of wells are scheduled to be drilled on the west side of GHO under the scope of the MBI. Results from this program will be evaluated to determine whether one or more of these wells are representative of background Elk River valley bottom groundwater chemistry.
 Background/North of Study Area 4 Background/West portion of Study Area 8 Background/South of Study Area 10 Background/North of Study Area 11 	Add a newly drilled well pair (shallow and deep) in the Boivin Creek alluvial fan north of Elkford.	A draft framework for identifying and prioritizing additional areas for investigation under the RGMP was included in the Terms of Reference to meet Condition 2 of the April 18, 2017 approval letter from ENV. This framework ranked Study Areas based on purpose statements and stated objectives of the groundwater monitoring programs as well as timeline requirements. The 2017 RGMP update used this ranking to develop a schedule for additional studies in the prioritized study areas. This gap was not identified as a priority for the 2017-2020 cycle. As such data collected during the current program cycle will be reviewed as part of the 2020 Update and if this gap remains it will be ranked and prioritized for the 2020-2023 program.
Background/East of Study Area 7	Add a newly drilled well pair (shallow and deep) in Grave Creek valley bottom sediments upstream of the confluence with Harmer Creek.	A draft framework for identifying and prioritizing areas of investigation under the RGMP was included in the Terms of Reference to meet Condition 2 of the April 18, 2017 approval letter from ENV. This framework ranked Study Areas based on purpose statements and stated objectives of the groundwater monitoring programs as well as timeline requirements. The 2017 RGMP update used this ranking to develop a schedule for additional studies in the prioritized study areas. This gap was not identified as a priority for the 2017-2020 cycle. A number of investigations are planned for 2020, including flow and load accretion studies over Grave Creek Alluvial fan. All data collected will be reviewed and will determine the placement and ranking of monitoring wells for the 2020-2023 program. There is one location scheduled to be drilled in Study Area 7 by Q3 2020 to support the development and implementation of groundwater triggers but the timeline and final location for the wells are contingent on regulatory approval, landowner permission, and weather.
Background/South of Study Area 11	CM_MW3-DP as background wells for CMO. If the data	Available data for CM_MW3-SH and CM_MW3-DP will be reviewed in 2020 in order to evaluate the suitability of these wells to serve as background monitoring locations. The findings of these evaluations will inform the need for additional background wells upgradient of CMO. If additional well(s) are required, installation of the well(s) will be ranked under the prioritization framework for the 2020-2023 program during the 2020 Update.
Study Area 1	Upper Fording River valley bottom. Select additional well(s) among the recently drilled five wells (FR_MW_FRRD1, FR_MW_CASW6-A/B and FR_MW_CH1-A/B), or install a newly drilled well pair (shallow and deep) if none of the five wells is suitable for monitoring.	Available groundwater chemistry data for FR_MW_FRRD1, FR_MW_CASW6-A/B and FR_MW_CH1-A/B were evaluated in October 2019. Analysis suggests that these wells do not intersect a potential down-valley plume of mine related constituents. The same data gap was identified under the scope of the MBI) program. A number of investigations including geophysics and flow accretion studies were completed in Q4 2019 and new groundwater monitoring wells are scheduled to be completed by the end of Q3 2020. The timeline and final location for the wells are contingent on regulatory approval, landowner permission, and weather. The data collected within the scope of the MBI will be reviewed prior to the 2020 Update and if additional wells are required they will be ranked under the prioritization framework for the 2020-2023 program.
Study Area 2	Dry Creek – Fording River confluence. Add a newly drilled well pair (shallow and deep) in the Dry Creek alluvial fan.	This Study Area was ranked low in relative priority in 2017(12 out of 13). The same data gap was identified under the scope of the MBI program. A number of investigations including geophysics and the addition of new groundwater monitoring wells were completed under that program in Q4 2019. The data collected MBI program will be reviewed prior to the 2020 Update and if additional wells are required they will be ranked under the 2020 Update prioritization framework for the 2020-2023 program.
Study Area 3	Fording River valley bottom upstream of Josephine Falls. Add a newly drilled well pair (shallow and deep) in the glaciofluvial sediments to the west of where Fording River turns to the south, upgradient of Josephine Falls.	The same data gap was identified under the scope of the MBI program. A number of investigations including geophysics, flow and load accretion studies were completed in Study Area 3 in 2019. This data will inform the number and location of new groundwater monitoring wells scheduled to be drilled under that program in 2020. The data collected within the scope of the MBI program will be reviewed prior to the 2020 RGMP Update and if additional wells are required they will be ranked under the 2020 Update prioritization framework for the 2020-2023 program.
Study Area 4	Upgradient of GH_GA-MW-4. Remove well GH_GA-MW-1 from the regional network and replace it either with recently drilled wells GH_MW-MC-1S/D and GH_MW-MC-2S/D or with a newly drilled well pair (shallow and deep) upgradient of GH_GA-MW-4, if the existing wells are not suitable for monitoring.	A desktop review of available water chemistry data completed in October 2019 suggests that while GH_MW-MC-1S/D and GH_MW-MC-2S/D may be suitable for use as background piezometers in their respective drainages, they are not representative of groundwater chemistry in the Elk River valley-bottom. The same data gap was identified under the scope of the MBI program. A number of investigations including geophysics, bedrock reconnaissance, and flow and load accretion studies were completed in November 2019. This data will inform the number and location of new groundwater monitoring wells completed under the MBI program in 2020. The data collected will be reviewed prior to the 2020 Update and if additional wells are required they will be ranked under prioritization framework for the 2020-2023 RGMP program. Teck will also drill a new well in this Study Area in 2020 to support groundwater trigger development. The timeline and final location for the wells are contingent on regulatory approval, landowner permission, and weather.

Regional Groundwater Monitoring Program: Work Plan 2020

Relevant Study Area (Cont.)	ENV Condition (Cont.)	Teck Response (Cont.)
Study Area 5	Line Creek valley bottom downgradient of LC_LC4. Add a newly drilled well pair at the eastern portion of Study Area 5 downgradient of surface water monitoring station LC_LC4, in the area mapped as glaciofluvial sediments on the edge of the Fording River floodplain.	The same data gap was identified under the scope of the MBI program. A number of investigations including geophysics and flow and load accretion studies were completed in November 2019. The data collected will inform the number and location of new groundwater monitoring wells drilled under the MBI in 2020. MBI program results will be reviewed prior to the 2020 Update and if additional wells are required they will be ranked under the prioritization framework for the 2020-2023 program.
Study Area 6	Downgradient of Process Pond and CCR Pile. Add a newly drilled well pair downgradient of the CCR pile and adjacent to Order Station EV_ER4.	Teck proposes to install a nested monitoring well in this Study Area in 2020 to address this gap. This timeline and final location for the wells are contingent on regulatory approval, landowner permission and weather.
Study Area 7	Grave Creek alluvial fan at confluence with Elk River. Add a newly drilled well pair (shallow and deep) in the Grave Creek alluvial fan close to the confluence with Elk River.	Teck will complete two rounds of flow and load accretion studies over Grave Creek alluvial fan in 2020. Data collected will inform the location of an additional well for the 2020 update. Teck will also drill a new well in this Study Area in 2020 to support groundwater trigger development but the timeline and final location for the wells are contingent on regulatory approval, landowner permission, and weather.
Study Area 8	Valley bottom aquifers near Goddard Creek Sedimentation Pond. Add wells EV_TW1 and EV_TW2 to monitor the deep and shallow valley bottom aquifer in the area of Goddard Creek Sedimentation Pond or drill a new well pair (shallow and deep) near the Pond, if these wells are not suitable for monitoring.	EV_TW1 and EV_TW were assessed in November 2019 and found to be unsuitable for monitoring. Teck proposes to install a nested replacement monitoring well to fill this gap by Q3 2020. This timeline and final location for the well(s) are contingent on regulatory acceptance, landowner permission, and the weather.
Study Area 9	Michel Creek valley bottom aquifer. Conduct K-testing of well EV_MCgwS/D and replace it with a newly drilled well pair (shallow and deep) if the K-testing results indicate that EV_MCgwS/D is not suitable for monitoring. Replace EV_RCgw this well with one of the recently installed well pairs as part of the Sparwood Area Study, if suitable for monitoring, or add a newly drilled well pair (shallow and deep).	Conductivity (K) testing was completed in November 2019 on groundwater monitoring well EV_MCgwS/D. Evaluation of this data (scheduled for Q1 2020) will inform whether a new well will be drilled before the 2020 RGMP update. If a well is required, the timeline and final location for the well(s) are contingent on regulatory approval, landowner permission, and weather. In addition, 15 new groundwater wells were installed in Study Area 9 in Q1 2019 as a part of the Sparwood Area and Study Area Study. Teck will collect and evaluate a year of baseline data in the new well network. This will inform the prioritization process for new monitoring wells in this Study Area under the scope of the 2020 RGMP update.
Study Area 10	Michel Creek valley bottom downgradient of confluence with Erickson Creek. Add a newly drilled well pair (shallow and deep) between surface water monitoring stations EV_EC1 and EV_SP1, one well pair between EV_SP1 and EV_MG1 and one well pair downgradient of EV_MG1.	Teck collected flow and load accretion studies in Erickson Creek in Q3 2019. Evaluation of this data will inform the final location and number of wells in this Study Area. Teck proposes to install a nested monitoring well nest in this Study Area by Q3 2020. This timeline and final location for the well(s) are contingent on regulatory approval, landowner permission, and weather.
Study Area 11	Michel Creek valley bottom downgradient of CMO. Add a newly drilled well pair (shallow and deep) in the Michel Creek valley bottom aquifer downgradient of CM_MW1-OB/SH/DP.	Teck proposes to install a nested monitoring well in this Study Area by Q3 2020. This timeline and final location for the wells are contingent on regulatory approval, weather, and landowner permission.
Study Area 12	Michel Creek northern valley bottom aquifer. Add a newly drilled well pair (shallow and deep) in the valley bottom sediments north of Michel Creek in the Sparwood area.	Sparwood well #4 was drilled in Q4 2019 and full commissioning and tie in with the drinking water supply has not yet been completed. Drilling and pumping data as well as historic Well #1, #2, and #3 data will be evaluated in Q1 2020. This will inform the placement and prioritization of new wells in SA12 for the 2020 update as well as the value of adding Well # 4 to the RGMP. Teck will also drill a new well in this Study Area by Q3 2020 to support groundwater trigger development but the timeline and final location for the well(s) are contingent on regulatory approval, landowner permission, and weather.
Drinking Water	Add at least three monitoring well pairs (shallow and deep) in targeted areas where groundwater is used for drinking water supply, to support the development and implementation of Groundwater Triggers.	Teck proposes to install nested monitoring wells in Study Areas 4, 7, 12 by Q3 2020. Please refer to those sections for more details. This timeline and final locations for the wells are contingent on evaluation of available 2019 data as well as regulatory approval, landowner permission and weather.
Regional	3. An update of the RGMP will be submitted to the Director for approval by September 30, 2020, and will contain the following at a minimum: a. An updated Conceptual Site Model, based on the data acquired from the monitoring wells added in 2019 and 2020 and a closer integration with the Site-Specific Groundwater Monitoring Programs. b. Updated versions of the 3D block diagrams based on the most recent data. c. Maps allowing the visualization of the main aspects of the conceptual site model (e.g. surface and groundwater pathways, gaining and losing stream reaches at macro-scale and inferred seasonality, receptors associated with monitoring wells). d. A map showing all the areas where studies with a groundwater component have been carried out or are ongoing (e.g. groundwater investigations in support of the design of the intake for water treatment plants). e. Proposed areas requiring additional data collection and/or studies. This should include a list of proposed modifications of the existing Study Areas, if any are warranted; a system for prioritizing the implementation of groundwater studies for the areas where gaps are identified; a tentative schedule for the additional studies. f. Groundwater triggers that integrate with the Elk Valley Adaptive Management Plan, based on the framework discussed within the Groundwater Working Group. g. A framework for the development of a Groundwater Trigger Response Plan.	Teck commits to submission of the RGMP Update to the Director by October 31st, 2020. However, the Adaptive Management Plan (AMP) 2018 Approval Letter from Doug Hill (ENV) dated May 23, 2019 indicated that groundwater triggers should be finalized, through engagement with EMC, prior to the December 15, 2021 AMP update. Teck will continue to engage with the Groundwater Working Group and EMC to develop and finalize the groundwater triggers, which will be included in the December 15, 2021 AMP update and 2021 RGMP report. The framework for the groundwater triggers will be the Response Framework developed under the AMP.

Please Note: The timeline for the proposed investigations and drilling program presented in this table do not represent the finalized 2020 program schedule and are subject to change due to limitations in access, permit application and approvals, pre-disturbance work, results of additional evaluations and drilling activities outside the scope of this program, and other factors.


Accompanying Table of Numbered Proposed Drilling Locations

Possible Location ID ¹	Location ²	Summary of Gap ³	Proposed Studies ⁴	Proposed Timing ⁵
1	SA1/background	There is no background well upgradient of mine operations in the Fording River Valley	Drill a well location in the Upper Fording River Valley, north of Henretta Creek and influence from spoils.	2020
2	SA1/background	Concentrations of CI in monitoring well FR_HMW5 are increasing and this well is no longer suitable as a background well.	Drill a well location in the Henretta Creek valley bottom upstream of FR_HMW5 to replace FR_HMW5 as a background well.	2020
3	SA4/background	Background monitoring well network sufficiency.	Further evaluate background monitoring network through trigger development. If greater spatial coverage is required, drill a well location near surface water sampling station GH_ER2.	post 2020
4	SA4	Well GH_MW-ERSC-1 may not be a suitable downgradient sentry well for monitoring.	Monitoring well network, flow accretion and geophysical studies to be completed as part of the Mass Balance Investigation in late 2019/2020. Once complete, assess the need for and location of additional wells near the southern boundary of Study Area 4 and north of Elkford	post 2020
5	SA2	Groundwater quality in the Fording River valley bottom downgradient of the confluence with Dry Creek is not currently monitored.	As above, Mass Balance Investigation to perform studies in this area. If results suggest a gap remains, consider adding a well location in the Dry Creek alluvial fan	post 2020
6	SA4/background	Background monitoring well network sufficiency.	Further evaluate background monitoring network through trigger development. If greater spatial coverage is required, evaluate the need for a well location in the Boivin Creek alluvial fan north of Elkford.	post 2020
7	SA3	Possibility of deep groundwater flow to the west and surface water infiltration from the Fording River before Josephine Falls.	Flow and load accretion studies to be completed in Fording River to Josephine Falls as part of Mass Balance Investigation. Pending results, consider adding a well location in the glaciofluvial sediment upgradient of Josephine Falls	post 2020
10	SA6	There are limited data for the Elk River valley-bottom aquifer downgradient of LCO to monitor possible effects from the LCO process plant site and CCR pile.	Drill a nested well pair downgradient of CCR Pile and adjacent to Order Station EV_ER4.	2020
11	SA7	Grave Creek potentially loses to ground over an alluvial fan. There are currently no monitoring wells in the valley bottom in this area.	Flow and load accretion studies over the Grave Creek alluvial fan at confluence with Elk River will be completed in 2020, with the last study to be completed in fall 2020. Results will inform the need for and location of a well in the alluvial fan.	post 2020
12	SA8/Background	Background monitoring well network sufficiency	Further evaluate background monitoring network through trigger development. If greater spatial coverage is required, evaluate the need for a well location in Cummings Creek alluvial fan.	post 2020
13	SA9	Uncertain whether EV_MCgwS/D is suitable for monitoring based on the materials they are screened in. These wells do not intersect deep pathway, but newly-installed monitoring wells do.	Hydraulic conductivity testing to be completed in 2019 at EV_MCgwS/D. Collect a year of baseline data from the newly-installed monitoring well network and review data to assess deep flow pathway. Based on a review of these data, a well location may be drilled west of RG_DW-03-01.	2020
15	SA10	There are no groundwater monitoring data for the Michel Creek valley-bottom aquifer downgradient of Erickson Creek and the South Pit Decant Pond and local groundwater conditions are unknown.	Load and flow accretions studies have been completed on Erickson Creek. Drill a nested well pair after a review of the flow accretion studies from Erickson Creek.	2020
16	SA11/background	Background monitoring well network sufficiency.	Further evaluate background monitoring network through trigger development, including suitability of review of data from CH_MW3-SH and CM_MW3-DP as background monitoring wells. If greater spatial coverage is required, evaluate the need for adding a well location upstream of the confluence of Leach Creek with Michel Creek	post 2020
17	SA11	Only one monitoring well (CM-MW1-OB) is in gravel in the valley bottom in Michel Creek downgradient of CMO.	Drill a well location in the Michel Creek valley-bottom aquifer downgradient of CM_MW1-OB/SH/DP and RG_DW-07-01 (and downgradient boundary of SA11).	2020
18	SA10/background	Background monitoring well network sufficiency.	Further evaluate background monitoring network through trigger development. If greater spatial coverage is required, evaluate the possibility of adding a well location in Alexander Creek valley bottom sediment at the confluence with Lower Alexander Creek.	post 2020
21	SA7/background	Background monitoring well network sufficiency.	Further evaluate background monitoring network through trigger development. If greater spatial coverage is required, evaluate the need for a nested well pair in Grave Creek valley-bottom sediment upstream of the confluence with Harmer Creek.	post 2020
22	SA8	Groundwater quality is unknown in shallow and deep valley-bottom aquifers near Goddard Creek Sedimentation Pond.	Drill a well location near the Goddard Creek Sedimentation Pond by EV_GC2.	2020
-	SA4	Additional data required in targeted areas where groundwater is used for drinking water supply to support the development and implementation of groundwater triggers.	Monitoring well will be drilled where groundwater is used for drinking water supply to support the groundwater trigger development (location TBD).	2020
-	SA7	Additional data required in targeted areas where groundwater is used for drinking water supply to support the development and implementation of groundwater triggers.	Monitoring well will be drilled where groundwater is used for drinking water supply to support the groundwater trigger development (location TBD).	2020
-	SA12	Additional data required in targeted areas where groundwater is used for drinking water supply to support the development and implementation of groundwater triggers.	Monitoring well will be drilled where groundwater is used for drinking water supply to support the groundwater trigger development (location TBD).	2020

Notes: 1) Refers to the assigned possible well location number outlined on the wall map as 'Proposed RGMP Monitoring Well to drill in 2020' or 'Proposed RGMP Monitoring Well to drill post 2020'; 2) Refers to associated Study Area (SA) or closest Study Area and whether or not the possible well location is related to background monitoring well network; 3) Brief summary of gap as outlined in previous 2019 GWG meetings; 4) Proposed studies to fill the gap, as outlined in previous 2019 GWG meetings and ENV correspondence, as well as November 26/29 GWG meeting; 5) 2020 refers to work to be completed pre-2020 RGMP Update (shown in green highlight) and post 2020 refers to work to be completed afterwards.

Appendix III

2022 Seep Monitoring Program (SRK, 2023)

FINAL

Elk Valley Regional Seep Monitoring: 2022 Annual Report

CAPR002058, Elk Valley, BC, Canada Teck Coal Limited

FINAL

Elk Valley Regional Seep Monitoring: 2022 Annual Report

CAPR002058, Elk Valley, BC, Canada

Prepared for:

Teck Coal Limited Bentall 5, 550 Burrard Street #3300 Vancouver, BC, V6B 0B3 Canada

Teck

+1 606 699 4000 www.teck.com

Prepared by:

SRK Consulting (Canada) Inc. 320 Granville Street, Suite 2600 Vancouver, BC V6E 3X2 Canada

+1 604 681 4196 www.srk.com

Reg. No.: EGBC 1003655

Lead Author: Anne Day, MLWS, GIT Initials: AMD Reviewer: Stephen Day, MSc, PGeo Initials: SDJ

File Name:

CAPR002058_RSMP2022Report_FINAL_20230223.docx

Suggested Citation:

SRK Consulting (Canada) Inc. 2023. Elk Valley Regional Seep Monitoring: 2022 Annual Report. FINAL. Prepared for Teck Coal Limited: Vancouver, BC. Project number: CAPR002058. Issued February. 2023.

Copyright © 2023

SRK Consulting (Canada) Inc. - CAPR002058 - February 2023

Disclaimer. SRK Consulting (Canada) Inc. has prepared this document for Teck Coal Limited, our client. Any use or decisions by which a third party makes of this document are the responsibility of such third parties. In no circumstance does SRK accept any consequential liability arising from commercial decisions or actions resulting from the use of this report by a third party.
The opinions expressed in this document have been based on the information available to SRK at the time of preparation. SRK has exercised all due care in reviewing information supplied by others for use on this project. While SRK has compared key supplied data with expected values, the accuracy of the results and conclusions from the review are entirely reliant on the accuracy and completeness of the supplied data. SRK does not accept responsibility for any errors or omissions in the supplied information, except to the extent that SRK was hired to verify the data.

Contents

1	Introduction	
1.1	Background	
1.2	Regulatory Context	2
2	Conformity Review	3
3	Review Methods	6
3.1	Seep Quality Screening Criteria	6
3.2	Statistical Trend Analysis	
3.3	Water Chemistry Criteria	g
3.4	PHREEQC Modelling Methods	
3.5	Relative Flow and Loading Comparisons	
	3	
4	Quality Assurance/Quality Control	11
5	Site-Specific Interpretation	12
5.1	Fording River Operation	13
	5.1.1 Overview	
	5.1.2 Discussion	
5.2	Greenhills Operation	
·-	5.2.1 Overview	
	5.2.2 Discussion	
5.3	Line Creek Operation	
0.0	5.3.1 Overview	
	5.3.2 Discussion	
5.4	Elkview Operation	
J. T	5.4.1 Overview	
	5.4.2 Discussion	
5.5	Coal Mountain Mine	
5.5	5.5.1 Overview	
	5.5.2 Discussion	
	5.5.2 DISCUSSIOI1	48
6	Regional Interpretation	55
6.1	Seasonality and Year-on-Year Trends	
6.2	Solubility Controls	
O. <u>_</u>	6.2.1 pH	
	6.2.2 Mineral Saturation Indices.	
6.3	Effect of Low Oxygen Conditions	
7	Seep Dataset Modifications	57
7.1	New Seeps Review	
7.2	Seep Retirement Review	
8	Summary	58
Eigu:	res	e,
ıuul	150	

Tables

Table 1:	Commitment Review	4
Table 2:	BC Water Quality Guidelines for Freshwater Aquatic Life	
Table 3:	Mann-Kendall Analysis Decision Matrix	
Table 4:	Summary of Seep Samples Collected by Operation	
Table 5:	2022 FRO Seeps	
Table 6:	FRO – Summary of Mann-Kendall Trend Analysis for OC	15
Table 7:	Summary of Trends and Controls on Water Quality for Seeps at FRO	
Table 8:	Average seasonal flow and SO ₄ load for FRO seeps and comparison permitted surface water	
	monitoring locations	23
Table 9:	2022 GHO Seeps	
Table 10:	GHO – Summary of Mann-Kendall Trend Analysis for OC	25
Table 11:	Summary of Trends and Controls on Water Quality for Seeps at GHO	29
Table 12:	Average seasonal flow and SO ₄ load for GHO seeps and comparison permitted surface water monitoring locations	31
Table 13:	2022 LCO Seeps	32
Table 14:	LCO – Summary of Mann-Kendall Trend Analysis for OC	33
Table 15:	Summary of Trends and Controls on Water Quality for Seeps at LCO	34
Table 16:	Average seasonal flow and SO ₄ load for LCO seeps and comparison permitted surface water monitoring locations	38
Table 17:	2022 EVO Seeps	39
Table 18:	EVO – Summary of Mann-Kendall Trend Analysis for OC	40
Table 19:	Summary of Trends and Controls on Water Quality for Seeps at EVO	45
Table 20:	Average seasonal flow and SO ₄ load for EVO seeps and comparison permitted surface water monitoring locations	47
Table 21:	2022 CMm Seeps	48
Table 22:	CMm – Summary of Mann-Kendall Trend Analysis for OC	49
Table 23:	Summary of Trends and Controls on Water Quality for Seeps at CMm	52
Table 24:	Average seasonal flow and SO ₄ load for CMm seeps and comparison permitted surface water monitoring locations	54
Table 25:	New seep identified in 2022 in relation to historical seep location	57
Table 26:	New seep: Oxidation, MF Influence, and BCWQGs comparison	57
Table 27:	RSMP seeps identified for retirement in 2022	57
Figures		
Figure 1:	Teck Operations Map	1
Figure 2:	2022 Seeps and Selected Surface Water Monitoring Locations - FRO	2
Figure 3:	High Flow Calcite Saturation - FRO	
Figure 4:	Low Flow Calcite Saturation - FRO	4
Figure 5:	Constituents of Interest Concentration Timeseries at FR_SCRDSEEP1	
Figure 6:	2022 Seeps and Selected Surface Water Monitoring Locations - GHO	6
Figure 7:	High Flow Calcite Saturation - GHO	
Figure 8:	Low Flow Calcite Saturation - GHO	
Figure 9:	Constituents of Interest Concentration Timeseries at GH_SEEP_5	9
Figure 10:	2022 Seeps and Selected Surface Water Monitoring Locations - LCO	10

Figure 11:	High Flow Calcite Saturation - LCO	11
Figure 12:	Low Flow Calcite Saturation - LCO	
Figure 13:	Constituents of Interest Concentration Timeseries at LC_UDHP	
Figure 14:	2022 Seeps and Selected Surface Water Monitoring Locations - EVO	
Figure 15:	High Flow Calcite Saturation - EVO	15
Figure 16:	Low Flow Calcite Saturation - EVO	16
Figure 17:	2022 Seeps and Selected Surface Water Monitoring Locations - CMm	17
Figure 18:	High Flow Calcite Saturation - CMm	18
Figure 19:	Low Flow Calcite Saturation - CMm	19
Figure 20:	Dissolved molybdenum versus field pH across the Elk Valley	20
Figure 21:	Dissolved selenium versus field pH across the Elk Valley	21
Figure 22:	Dissolved cobalt versus field pH across the Elk Valley	22
Figure 23:	Modelled calcite SI compared to partial pressure (pCO ₂) of carbon dioxide across all operations in the Elk Valley	23
Figure 24:	Dissolved manganese concentrations versus dissolved oxygen measurements across all operations in the Elk Valley	24
Figure 25:	Dissolved iron concentrations versus dissolved oxygen measurements across all operations in the Elk Valley	25
Figure 26:	Se/SO ₄ versus field dissolved oxygen measurements across all operations in the Elk Valley	

Appendices

Appendix A	Seep Dataset Summary Table
Appendix B	2022 Seep Analytical Data Summary
Appendix C	2022 Comparison Point Analytical Data Summary
Appendix D	Mann-Kendall Summary Tables
Appendix E	High Flow Seep Survey QAQC Memo
Appendix F	Low Flow Seep Survey QAQC Memo

Definitions

This list contains definitions of symbols, units, abbreviations, and terminology that may be unfamiliar to the reader.

FWAL BCWQG British Columbia Water Quality Guideline for Freshwater Aquatic Life (approved and working)

CCR Coarse coal reject
DL Detection limit

DO Dissolved oxygen (milligrams per litre, mg/L)

DOC Dissolved organic carbon (milligrams per litre, mg/L)

EC Electrical conductivity (micro siemens per centimeter, μS/cm)

EMLI Ministry of Energy, Mines, and Low Carbon Innovation

EMPR BC Ministry of Energy and Petroleum Resources

High Flow March 15th to July 15th MF Morrissey Formation

ORP Oxidation reduction potential (millivolts, mV)

PAG Potentially acid-generating

The Plan Regional Seep Monitoring Plan – Phase 3

QA/QC Quality assurance/quality control

RPD Relative percent difference

RSMP Regional Seep Monitoring Program

SI Saturation indices
Teck Coal Limited

TDS Total dissolved solids (milligrams per litre, mg/L)
TOC Total organic carbon (milligrams per litre, mg/L)
TSS Total suspended solids (milligrams per litre, mg/L)

WR Waste rock

Executive Summary

This report presents the 2022 results of the Elk Valley Regional Seep Monitoring Program (RSMP). The objectives of the RSMP are to improve understanding of source loading and aid in water management planning. Seep monitoring occurs across Teck Coal Limited's (Teck) five Elk Valley operations: Fording River Operations (FRO), Greenhills Operations (GHO), Line Creek Operations (LCO), Elkview Operations (EVO), and Coal Mountain Mine (CMm) (previously called Coal Mountain Operations [CMO] and currently in care and maintenance). Teck's RSMP began in 2018. Seeps were visited at least twice during 2022; during high flows (between March 15, 2022 and July 15, 2022) and low flows (between September 1, 2022 and December 31, 2022). In 2022, Teck Coal personnel sampled 86 seeps during high flow and 76 during low flow (Table 4).

A conformity review of the 2022 RSMP to commitments in previous reports and letters was conducted. A QA/QC review found that the data quality of the 2022 dataset is acceptable for annual reporting. Samples collected in 2022 were screened against the BC Water Quality Guidelines (BCWQG) for Freshwater Aquatic Life (FWAL).

A geochemical review was conducted to develop interpretations based on the five years of accumulated data. Mann-Kendall trend analysis was conducted. PHREEQC was used to evaluate solubility controls by interpreting saturation indices and calcite controls. Seeps were compared to nearby permitted surface water monitoring location using sulfate as a conservative tracer and suboxic indicator ratios.

Saturation indices (SI) for calcite are essential to evaluate the potential for calcite to form. Ferrihydrite can help understand disequilibrium with oxygen and the potential for sequestration of metals. Gypsum can potentially control sulfate concentrations. Apart from CMm, seeps at FRO, GHO, LCO, and EVO do not show apparent spatial trends in calcite saturation indices. At CMm, seeps to the east of the site have been categorized as undersaturated and seeps to the west as oversaturated. About half of all the RSMP seeps had a calcite SI above 0.6 and may exhibit a predisposition to precipitate calcite. No seeps had a gypsum SI above zero and therefore are not likely to be precipitating gypsum, and most seeps are in equilibrium or precipitating ferrihydrite.

During the initial seep prioritization by SRK in 2019, seeps were categorized based on Zn/Cd and sulfate concentration to estimate source conditions related to the Morrissey Formation (MF). Parts of the MF are known to be potentially acid-generating (PAG), and seeps showing possible MF influences may indicate areas where future changes in water quality might be expected. Seeps were also categorized based on Se/SO₄ and sulfate concentration to evaluate the influence of low-oxygen conditions on seeps originating from waste materials.

- One seep at FRO, FR_FRVWSEEP3, has been classified as potentially possibly MF influenced. To date, FR_FRVWSEEP3 is pH neutral. One seep at FRO, FR_HENSSEEP1, has been classified as suboxic.
- At GHO, GH_E1 in the GH_CCR group has been categorized as possibly MF influenced. To date,
 GH_E1 is pH neutral. Several GHO seeps downstream of the GHO CCR storage facility have been

classified as potentially suboxic or suboxic, indicating possible suboxic zones within the GHO CCR storage facility.

- No LCO seeps have been categorized as suboxic or possibly MF influenced.
- At EVO, EV_SEEP_ERICKSON1 and EV_SEEP_PLANT23 continue to be categorized as possibly MF influenced. To date, both seeps are pH neutral. All seeps at EVO except EV_SEEP_PLANT10, have been categorized as oxic.
- At CMm, CM_PLANT-SEEP1 is categorized as possibly MF influenced and is pH neutral to date.
 Six seeps at CMm have been classified as potentially suboxic or suboxic.

Two seeps (FR_SHNSEEP1 and FR_FSEAMWSEEP4) have been formally retired from the RSMP after being covered over with waste rock. One new seep (CM_WD9-SOURCE) was identified at CMm.

1 Introduction

1.1 Background

Teck Coal Limited carried out monitoring under the Regional Seep Monitoring Program (RSMP) within the Elk Valley (Figure 1) during high flows (March 15 to July 15, 2022) and low flows (September 1 to December 31, 2022). The purpose of the RSMP is to comply with a directive from the Ministry of Energy, Mines, and Low Carbon Innovation (EMLI). In addition, the RSMP can improve Teck's understanding of source loading, provide early warning of site water quality changes, assess potential effects to surface and groundwater, and track trends in water quality and quantity over time. The purpose of this report is to demonstrate Teck's compliance with monitoring commitments of the RSMP for 2022.

This report summarizes results collected under the RSMP in 2022 and provides an initial geochemical interpretation of all the data collected under the RSMP thus far. Sampling was conducted by Teck personnel, and annual reporting provided herein was prepared using information and data supplied by Teck.

The report has been structured as follows:

Section 1	Introduction
Section 2	Conformity Review : The implementation of the RSMP in 2022 was assessed for conformity with recommendations and commitments made in the SRK 2018 seep assessment (SRK 2019), 2019 annual RSMP report (SRK 2020), 2020 annual RSMP report (SRK 2021), EMPR's (now the Ministry of Energy, Mines and Low Carbon Innovation [EMLI]) review letter, and Teck's response to EMLI.
Section 3	Review Methods : Summary of methods applied to review the water chemistry of seeps.
Section 4	Quality Assurance/Quality Control (QAQC) : Summary of QAQC of all seep samples collected in 2022.
Section 5	Site-Specific Interpretation: The water chemistry review compared seep water quality results against the BC Approved and Working Water Quality Guidelines (BCWQGs) and water chemistry criteria described in SRK (2019). In addition, site-specific seepage geochemical interpretations are provided.
	The tables below summarize each seep's main characteristics during high flow and low flow seasons that have been identified thus far. Table 7 – Fording River Operations (FRO), Table 11 – Greenhills Operations (GHO), Table 15 – Line Creek Operations (LCO), Table 19 – Elkview Operations (EVO), Table 23 – Coal Mountain Mine (CMm)
Section 6	Regional Interpretation : The geochemical review builds on interpretations from previous years and summarizes key geochemical controls that affect water chemistry both at the seeps monitoring within the RSMP and at downstream permitted surface water locations. This section will summarize controls and trends that apply in a regional context to the Elk Valley.
Section 7	Seep Dataset Modifications: New seeps review and seep retirement review.

Summary: Summary of the results of the 2021 review.

Section 8

1.2 Regulatory Context

Teck operates four steelmaking coal mines in the Elk Valley: Fording River Operations (FRO), Greenhills Operations (GHO), Line Creek Operations (LCO), and Elkview Operations (EVO), and Coal Mountain mine (CMm) (formerly Coal Mountain Operations [CMO]), which is currently in the care and maintenance stage of closure. These are referred to collectively herein as the Elk Valley Operations. Teck monitored select seeps at mine site facilities at these operations; however, based on an inspection in 2017, the Ministry of Energy, Mines, and Low Carbon Innovation (EMLI) ordered Teck to develop a Regional Seep Monitoring Plan for the Elk Valley Operations. In response, Teck (2018) proposed to implement the Plan in three phases:

- Phase 1: Identification of seep locations, development of sampling procedures, and collection of samples.
- Phase 2: Technical evaluation of seep water quality and quantity data collected during Phase 1.
 The assessment completed in Phase 2 aided in determining the sampling locations and frequency for seeps in Phase 3 (SRK 2019). Future monitoring would also consider the following:
 - Comparison of monitoring data to the BCWQGs freshwater aquatic life median to understand the potential risk to aquatic health
 - The classification of seeps and the potentially associated discharge point to the receiving environment (via ground infiltration, surface water sediment pond, directly to receiving environment, etc.)
 - Mining related constituent concentrations relative to discharge water in the case where the seep flows into existing mine infrastructure
 - Unexpected changes in water quality in seeps, associated discharges, or the receiving environment
- Phase 3: A longer-term Regional Seep Monitoring Program was developed and implemented, including reducing redundant seep sampling and sampling of seeps collected by existing site infrastructure (Teck 2019b). Phase 3 described any changes to the water quality analyses for seep monitoring and the locations and frequencies for ongoing seep monitoring.

Previous RSMP annual reports were submitted with that year's Annual Reclamation Report (ARR) for each operation. The 2022 Elk Valley Regional Seep Monitoring Program Report will be submitted with the 2022 ARR in March 2023. In addition, data from the Elk Valley Regional Seep Monitoring Reports may be discussed in other studies, such as the Regional Groundwater Monitoring Program (RGMP), the Site-Specific Groundwater Monitoring Program (SSGMPs), and the Mine Water Management Plans (MWMP) at each operation or in other monitoring program reporting, as appropriate.

2 Conformity Review

Table 1 summarizes commitments from previous reports or letters and reviews and whether the 2022 RSMP met these commitments. The Elk Valley Regional Seep Monitoring 2019 and 2021 Annual reports did not include any new recommendations in addition to those previously stated.

Table 1: Commitment Review

Category	Commitment	Source	Implementation Review	Additional Recommendations
Sampling Procedure	Samples will be collected (or attempted to be collected) for all seeps identified in the Plan two times per year, once during high flows (between March 15 and July 15)	Regional Seep Monitoring Plan – Phase 3	Commitment met.	
	and once during low flows (Between September 1 and December 31).	SRK (2019)		-
	A standardized field form will collect field information to ensure appropriate and consistent information is collected across all operations.	Regional Seep Monitoring Plan – Phase 3	Commitment met.	-
		SRK (2019)		
	Blanks and duplicates will each account for 10% of the sampling.	Regional Seep Monitoring Plan – Phase 3	Commitment met.	Prepare QAQC samples before beginning sampling
		SRK (2019)		5 5 1 5
	Field parameters will be measured at the time of seep sampling.	Regional Seep Monitoring Plan – Phase 3	Commitment met.	-
		SRK (2019)		
	Field filtering and preservation of samples will occur at the collection point to determine element concentrations for dissolved metals analysis.	Regional Seep Monitoring Plan – Phase 3	Commitment met.	-
	for dissolved metals analysis.	SRK (2019)		
	Seep samples collected will be analyzed for water quality parameters outlined in Section 3.8 of the Plan.	Regional Seep Monitoring Plan – Phase 3	Commitment met.	-
	When possible and safe to do so, flow measurements will be taken at each location at the time of sample, following the Teck Coal Flow Monitoring Protocol.	Regional Seep Monitoring Plan – Phase 3	Commitment met.	-
	The direction of flow of the seeps will be noted in the field sheets to help map and track possible changes to seep water quality.	Regional Seep Monitoring Plan – Phase 3	Commitment met.	
	осор поло дашну.	SRK (2019)		-
		EMLI Review (April 2019)		
	Observations of calcite precipitate presence will be noted in the field sheets if observed at seep locations.	Regional Seep Monitoring Plan – Phase 3	Calcite precipitate presence notes were not completed at GHO during	Use a standardized field form when collecting
		EMLI Review (April 2019)	low flow sampling. Other sites met commitment.	samples.

Category	Commitment	Source	Implementation Review	Additional Recommendations
New Seep Identification	General site surveys will be conducted annually to identify any new seeps.	Regional Seep Monitoring Plan – Phase 3	Commitment met.	-
		EMLI Review (April 2019)		
	Newly identified seeps will be sampled (or attempted to be sampled) two times in the first year, once during high flow (March 15 to July 15) and once during low flow (September 1 to December 31).	Regional Seep Monitoring Plan – Phase 3	Commitment met.	-
Seep Retirement	When seeps are found to be dry or covered by mined- out material, the seep retirement framework will be used to determine if a seep can be retired from the RSMP.	SRK (2021)	Commitment met.	-
QAQC	Data will be reviewed in a timely manner upon receipt from the laboratory to rectify any discrepancies to initiate resampling if required. Teck's data quality objectives (DQOs) are implemented.	Regional Seep Monitoring Plan – Phase 3	Commitment met.	-

3 Review Methods

The purpose of review in this report is to conduct an initial screening of seep water quality and relative flow contributions of seeps. Natural variability can exaggerate the scale of minor changes within a small dataset of two samples each year over five years. All annual RSMP reports have reported on the constituents of interest identified in the *Environmental Management Act* (EMA) Permit 107517 (dissolved selenium¹, dissolved cadmium, sulfate, and nitrate-N, called Order Constituents [OC]). In addition, the 2019 annual report reported on field pH, dissolved cobalt, and dissolved nickel.

In 2020, the annual report reported on the OCs and on nitrite as nitrogen (nitrite-N), total dissolved solids (TDS), dissolved antimony, dissolved molybdenum, and dissolved uranium. Consistent with the findings of the Background Assessment conducted as part of the 2020 Regional Groundwater Monitoring Program Update (RGMP BGA; SNC-Lavalin 2020), this report will assess seepage water quality for ten constituents, the four OCs and the following non-Order Constituents (non-OCs): dissolved antimony, dissolved cobalt, dissolved nickel, nitrite-N, TDS, and dissolved uranium. The six non-OCs assessed have been identified as mine-related constituents by SNC-Lavalin (SNC-Lavalin 2020). The list of mine-related constituents in groundwater will be reassessed, as needed, every three years as part of the RGMP update. Field pH has also been evaluated yearly because of its relationship with many water quality constituents.

3.1 Seep Quality Screening Criteria

Seep water quality results were screened against the British Columbia Water Quality Guidelines (BCWQG) for Freshwater Aquatic Life (FWAL; ENV 2019, 2022). The purpose of screening seep water quality results against the BC FWAL guidelines is to identify seeps with changing water quality that may influence water chemistry in the downstream receiving environment. Seepages with changing BCWQG categorization may indicate where further monitoring or water management should potentially be considered.

Seeps were highlighted if the BCWQG screening categorization for field pH, sulfate, nitrate-N, dissolved cadmium, total selenium, total cobalt, total nickel, nitrite-N, or total uranium changed. The BCWQG screening guidelines are presented in Table 2.

Selenium is an Order Constituent where screening is performed on the total fraction. However, it is more appropriate to use dissolved selenium for geochemical interpretation of seeps.

Table 2: BC Wate	r Quality Guidelines f	for Freshw	ater Aquati	c Life	
Parameter	Rationale	Unit	BCW	QG FWAL	Notes
Field pH	RSMP specific parameter	pH units	Minimum Maximum	6.5 9	-
Sulfate	Order Constituent	mg/L	Chronic	128 to 429	Hardness dependent ¹
Nitrate-N	Order Constituent	mg-N/L	Chronic Acute	3 32.8	-
Dissolved Cadmium	Order Constituent	mg/L	Chronic Acute	0.004 to 2.5 0.003 to 18.5	Hardness dependent ²
Total Selenium	Order Constituent	μg/L	Chronic	2	-
Antimony	GW mine-related CI ³	mg/L	-	-	-
Total Cobalt	GW mine-related CI	μg/L	Chronic Acute	4 110	-
Total Nickel	GW mine-related CI	μg/L	Chronic	25 to 150	Working Guideline Hardness dependent
Nitrite-N	GW mine-related CI	mg-N/L	Chronic Acute	0.02 to 0.2 0.06 to 0.6	Chloride dependent
Total Dissolved Solids	GW mine-related CI	mg/L		-	-
Total Uranium	GW mine-related CI	mg/L	Chronic	0.0085	Working Guideline

3.2 Statistical Trend Analysis

Concentration trends for OCs were evaluated based on available analytical data using Mann-Kendall analysis. Statistical tests help identify quantifiable concentration patterns over time; however, a statistical test should be used along with other lines of evidence to confirm patterns over time. The Mann-Kendall test has a high probability of not finding a trend when one would be present if more points were provided. This approach was conducted with a limited dataset and potential trends will continue to be assessed in the future as more data becomes available. Seeps showing notable trending in OCs and/or field pH have been highlighted within their respective site-specific sections below. Summary tables of the Mann-Kendall analysis results for all the RSMP seeps are available in Appendix D.

The Mann-Kendall statistical test is a non-parametric trend analysis test that identifies changes in environmental conditions (Gilbert, 1987). The analysis tests the null hypothesis of no trend against the alternative hypothesis of a significant trend. The same methods applied in the RGMP and SSGMP programs were applied to the RSMP seeps for consistency:

Sampling locations with less than seven sampling events were not selected for assessment.

¹ If water hardness exceeds 250 mg/L, a site-specific assessment may be required.

Short-term acute WQG applies to water hardness below 455 mg/L, the long-term chronic WQG applies to water hardness below 285 mg/L. When water hardness exceeds the upper bound, a site-specific assessment may be required.

³ GW mine-related CI = Groundwater mine-related constituent of interest

- Where field duplicates were collected, the higher value was selected for analysis.
- Concentrations below the method detection limit (MDL) were assigned the MDL concentration.
- Where the sample size of a dataset exceeded 40 samples, the trend analysis was completed for the 40 most recent samples, based on probability available in the Kendall table.
- Trend analysis was not completed for parameters where concentrations were consistently less than or within five times the MDL.
- The analytical results were reviewed before completing trend analysis, and any obvious outliers were removed from the dataset based on the below equation and the judgement of the qualified professional.

Outliers were defined as values below [$lower\ quartile - (IQR * 3)$] or above [$upper\ quartile + (IQR * 3)$]. Where IQR is the interquartile range.

The analysis for each parameter is determined by calculating the Mann-Kendall Statistic (S), the percent confidence of a significant trend, and the coefficient of variance (COV). The percent confidence of a significant trend is calculated using a Kendall probability table, which requires the S value of the test and the number of samples (n). The Kendall table identifies the probability of rejecting a null hypothesis (no trend) of a given level of significance. The confidence level is subsequently calculated by subtracting the probability from 1 (Newell et al., 2007). A COV value is the standard deviation divided by the average and presented as a percent. A COV below 100% can be used to infer stability in concentrations. In contrast, a value above 100% indicates a non-stable trend and a greater degree of scatter. The process of determining a significant trend and stability is in Table 3 (Aziz et al., 2003).

"No trend" and "stable" indicate that neither an increasing nor a decreasing trend could be discerned within the specified confidence limit. A "stable" result also signifies that the data had minimal scatter (less than 100% COV), further emphasizing that concentrations are relatively unchanging over time.

Table 3: Mann-Kendall Analysis Decision Matrix

Mann-Kendall Statistic (S)	Trend Confidence	Concentration Trend		
S>0	> 95%	Increasing		
S>0	90 – 95%	Probably Increasing		
S>0	< 90%	No Trend		
S≤0	< 90% and COV¹ ≥ 100%	No Trend		
S≤0	< 90% and COV < 100%	Stable		
S<0	90 – 95%	Probably Decreasing		
S<0	> 95%	Decreasing		

Source: SNC-Lavalin (2022)

¹ COV – coefficient of variance

3.3 Water Chemistry Criteria

During seep prioritization in 2019, seeps were categorized based on Zn/Cd and sulfate concentration to estimate source conditions related to the Morrissey Formation (MF). Parts of the MF are potentially acid generating (PAG), and seeps showing possible MF influences may indicate areas where future changes in water quality might be expected. Based on experience with acid rock drainage in the Elk Valley, seeps with a Zn/Cd above 200 mg/mg and a sulfate concentration greater than 100 mg/L are considered possibly influenced by the MF.

Seeps were also classified as suboxic or oxic during the 2019 seep prioritization based on the sulfate concentration and Se/SO₄ ratios. Se/SO₄ was used to evaluate the influence of low-oxygen conditions on seeps originating from waste materials (Hay et al., 2016). Based on experience primarily with evaluating waters in saturated backfills, Se/SO₄ of about 1x10⁻⁴ mol/mol represents dominantly oxidizing conditions. It is consistent with the typical characteristics of unsaturated oxidizing waste rock. In comparison, ratios below 1x10⁻⁵ mol/mol are considered to show selenium attenuation under oxygen-deficient conditions, including backfills, reject spoils, suboxic zones in waste rock or along groundwater flow pathways.

Seeps with a sulfate concentration greater than 500 mg/L and a Se/SO₄ less than 1x10⁻⁵ mol/mol are considered to be suboxic. Seeps where the oxidation or MF influence classification has changed between 2019 and 2020 were highlighted in the results section for each operation (Section 5).

3.4 PHREEQC Modelling Methods

Saturation indices (SI) for gypsum (CaSO₄·2H₂O), calcite (CaCO₃), and ferrihydrite (Fe(OH)₃) were modelled using PHREEQC with the minteq.v4 database. Gypsum is considered due to its potential to control sulfate concentrations. Calcite is considered due to the potential for calcite concretions to form. Ferrihydrite can help understand disequilibrium with oxygen and the potential for the sequestration of metals. Modelling inputs included field pH, oxidation-reduction potential (ORP) (corrected to Eh), and temperature. Seeps that did not include a field ORP measurement were not modelled. All remaining seeps had field pH and field temperature measurements. Concentrations below the detection limit were modelled using the detection limit concentration.

An SI value of zero conventionally indicates the mineral is at equilibrium (neither forming nor dissolving); however, this might change due to dilution, dissolution of other minerals, and changes in the gas phases. An evaluation of calcite precipitates and water chemistry in the Elk Valley shows that calcite has a practical SI reference value of 0.6 (i.e., an SI of at least 0.6 is needed before calcite precipitates) (SRK 2011). This is inferred to be due to the slow kinetics of calcite nucleation resulting from dissolved magnesium in the waters. Samples with a modelled calcite SI of 0.6 were considered at equilibrium. Any seeps below or above the reference value were considered undersaturated or oversaturated, respectively. If oversaturated, the seep has the potential to precipitate calcite given the right environmental conditions.

No gypsum or ferrihydrite SI reference values have been established for the Elk Valley. An SI value of zero generally represents equilibrium for gypsum and ferrihydrite. It was assumed that seeps with

gypsum or ferrihydrite SIs below -0.5 indicated undersaturation, values between -0.5 and 0.5 indicated near equilibrium, and values above 0.5 indicated oversaturation.

3.5 Relative Flow and Loading Comparisons

Seep flow and loading estimates were compared to a permitted surface water monitoring location. Comparison permitted surface water monitoring locations were selected based on proximity and suspected connectivity to each seep. Based on professional judgement, seep estimated flow or load greater than 15% compared to the permitted surface water monitoring flow or load have been considered as significant and have been highlighted in the site-specific sections below.

Seep flow estimates were taken during the field surveys following the Teck Coal Flow Monitoring Protocol. However, due to the often-diffuse nature of seeps, flow measurements are inherently imprecise. In many cases, it is not possible to capture flow from the whole seep in one measurement. In addition, because seep flows are only measured during seepage surveys, it is difficult to determine if the measured flow is representative of "low" or "high" flow conditions in the annual hydrological cycle at each location. Therefore, loadings calculated here should be regarded as semi-quantitative. Seasonal flow and loading averages at the seep monitoring locations were estimated using flow and analytical data collected between 2018 and 2022. The 2022 analytical results at the seep monitoring locations are in Appendix B.

Permitted surface water monitoring locations were selected based on proximity and relationship to seeps. When possible, the nearest downstream permitted surface water monitoring location was used as a comparison point. Seasonal flow and loading averages at the permitted surface water monitoring locations were estimated using flow and analytical data collected between 2018 and 2022. The 2022 analytical results at the permitted surface water monitoring locations are in Appendix C.

4 Quality Assurance/Quality Control

QA/QC is essential for establishing data reliability. Teck provided field and lab quality control data to SRK, which were reviewed regarding the QA/QC program in the Plan and using SRK's internal chemical analysis quality control systems. Separate memos summarizing SRK's QAQC findings can be found in Appendix B, and Appendix F for the high flow and low flow seep surveys, respectively.

During the high flow seep survey, there were ten paired field duplicates and eight field blank samples, representing 21% of all samples collected compared to a target of 10%.

During the low flow seep survey, eight paired field duplicates and six field blanks, represented 19% of all samples collected compared to a target of 10%.

SRK's opinion is that data quality is acceptable for 2022 annual reporting.

5 Site-Specific Interpretation

The analysis and review detailed below were conducted on the seeps recommended by SRK for carryover from 2018 through 2021. Table 4 summarizes the number of seeps identified and sampled during 2022. Some RSMP seeps were dry or covered by mined-out material (spoiled over) and could not be sampled in 2022.

The number of seeps recommended by SRK (2022) in Table 4 includes:

- The number of seeps initially identified for inclusion in the RSMP
- The addition of any newly identified seeps assessed for inclusion since 2018
- The removal of any seeps that have been formally retired following the seep retirement framework in SRK (2022)

The number of seeps identified and sampled during high flows in Table 4 refers to all seeps revisited and sampled between March 15 and July 15, 2022, following Teck's formal definition of the high flows monitoring period (Appendix 3 of Permit 107517). The number of seeps identified and sampled during low flows in Table 4 refers to all the seeps revisited and sampled between September 1, 2022, and December 31, 2022.

The results of the review are discussed below by operation.

Table 4: Summary of Seep Samples Collected by Operation

Operation	Number of seeps recommended for	Seeps Revis	sited in 2022	Seeps Sampled in 2022		
	continued sampling in RSMP (SRK 2022)	High Flow ¹	Low Flow ²	High Flow ¹	Low Flow ²	
FRO	24	22	22 ³	22	19 ⁴	
GHO	20	19 ⁵	19	15	12	
LCO	12	12	12	12	11	
EVO	20	20	20	19	17	
CMm	16	16	16	18	17	
All	92	89	89	86	76	

¹ High flow includes samples collected between March 15, 2022, and July 15, 2022.

The group name associated with each seep ID in the seep tables for each operation is a product of the seep grouping conducted by SRK (2019). Seeps were assigned a sub-area/material type on an operation-by-operation basis to help identify each seep based on the general area and upstream material type related to each seep. The groupings were used for graphing purposes to evaluate the geochemical influence of different material types. In addition, each group of seeps was assigned a

² Low flow includes samples collected between September 1, 2022, and December 31, 2022.

Two seeps at FRO (FR FSEAMWSEEP4 and FR SHNSEEP1) were unsafe to access during sampling.

⁴ Three seeps were dry at FRO during low flow sampling.

⁵ One seep at GHO, RG_ERSP3, was unsafe to access during both sampling events.

downstream comparison point, either a surface water monitoring location or an authorized discharge location. Grouping seeps to a nearby comparison point was used to make concentration comparisons, evaluate the overall significance of a given seep to a group, and evaluate seepage water for possible attenuation.

Seeps in groupings ending with the WR suffix have been assigned to a sub-area that is assumed to be downstream of a waste rock dump. Seeps in groupings ending with the CCR suffix have been assigned to a sub-area that is assumed to be downstream of a coarse coal reject (CCR) pile. Seeps in groupings ending with the PIT suffix have been assigned to a sub-area that is assumed to be downstream of a pit. Seeps in groupings ending with the TAILINGS suffix have been assigned to a sub-area downstream of a tailings storage facility. Seeps in groupings ending with the PLANT suffix have been assigned to a sub-area downstream of a plant facility.

5.1 Fording River Operation

5.1.1 Overview

Seep monitoring locations at the FRO mine site facilities are presented in Figure 2. Seeps are color-coded by the comparison permitted surface water sampling location. Table 5 summarizes the seeps visited during the 2022 RSMP.

FR_SHNSEEP1 and FR_FSEAMWSEEP4 have been formally retired from the RSMP, effective December 31, 2022, after undergoing a seep retirement assessment (Section 7.2).

Mann-Kendall trend analyses were completed for OCs and field pH for seep samples with seven or more sampling events and are summarized in Table 6. A summary of Mann-Kendall trend analysis for all COIs is available in Appendix D.

The oxidation and MF influence categorization of seeps and modelled calcite and ferrihydrite saturation at FRO are summarised in Table 7.

Table 5: 2022 FRO Seeps

Seep ID	Group Name	Comparison Permitted Surface Water Sampling Location	Permitted Surface Water Sampling Location Type	Notes	Seep Status
FR_HENSEEP3	FR_HEN_WR	FR_FR1	SW	-	ACTIVE
FR_HENSSEEP1	FR_HEN_WR	FR_FR1	SW	Dry Sept 2022	ACTIVE
FR_TURNSEEP1	FR_TURNBULLWREAST_WR	FR_FR1	SW	-	ACTIVE
FR_TBWSEEP1	FR_TURNBULLWRWEST_WR	FR_PP1	DL	-	ACTIVE
FR_TURNSEEP2	FR_TURNBULLWRWEST_WR	FR_PP1	DL	-	ACTIVE
FR_FCSEEP2	FR_TURNBULLWREAST_WR	FR_CC1	DL	-	ACTIVE
FR_CCSEEPE1	FR_CLODECR_WR	FR_CC1	DL	-	ACTIVE
FR_CCSEEPSE1	FR_CLODECR_WR	FR_CC1	DL	-	ACTIVE
FR_LMCWSEEP5	FR_LAKEMTN_WR_PITS	FR_LMP1	DL	-	ACTIVE
FR_EAGLENORTH	FR_EAGLE_WR	FR_EC1	DL	-	ACTIVE
FR_ASPSEEP1	FR_A_CCR	FR_LP1	DL	-	ACTIVE
FR_DOKASEEP1	FR_DOKA_WR	FR_NL1	DL	-	ACTIVE
FR_FSEAMSEEP7	FR_DOKA_UNKNOWN	FR_NL1	DL	Dry Sept 2022	ACTIVE
FR_SPRWSEEP1	FR_BLAIN_CCR	FR_NL1	DL	-	ACTIVE
FR_BLAKESEEP1	FR_BLAIN_CCR	FR_FR2	SW	-	ACTIVE
FR_FRVWSEEP3	FR_SMITH_WR	FR_SP1	DL	-	ACTIVE
FR_STPNSEEP	FR_SOUTHTAILS_TAILINGS	FR_FR2	SW	Dry Sept 2022	ACTIVE
FR_BLAINESEEP1	FR_BLAIN_CCR	FR_FR2	SW	-	ACTIVE
FR_STPWSEEP	FR_SOUTHTAILS_TAILINGS	FR_FR2	SW	-	ACTIVE
FR_STPSWSEEP	FR_SOUTHTAILS_TAILINGS	FR_FR2	SW	-	ACTIVE
FR_BLAINESEEP5	FR_BLAIN_CCR	FR_FR2	SW	-	ACTIVE
FR_SCRDSEEP1	FR_SWIFTWR_ROCKDRAIN_WR	FR_SCOUT	DL	-	ACTIVE

Notes: Permitted surface water sampling location types are surface water (SW) or discharge location (DL).

Table 6: FRO – Summary of Mann-Kendall Trend Analysis for OC

Parameter Site ID	Dissolved Cadmium	Nitrate-N	Dissolved Selenium	Sulfate	Field pH
FR_HENSEEP3	Stable	Stable	Decreasing	No Trend	No Trend
FR_HENSSEEP1	-	Increasing	No Trend	Prob. Increasing	-
FR_TURNSEEP1	Decreasing	Stable	No Trend	No Trend	_
FR_TBWSEEP1	Decreasing	Stable	Prob. Increasing	Increasing	No Trend
FR_TURNSEEP2	No Trend	Stable	Increasing	Increasing	Prob. Decreasing
FR_FCSEEP2	No Trend	Stable	Stable	Stable	Stable
FR_CCSEEPE1	No Trend	Increasing	Increasing	Increasing	Prob. Increasing
FR_CCSEEPSE1	Stable	Stable	Decreasing	Prob. Decreasing	Decreasing
FR_LMCWSEEP5	Prob. Increasing	No Trend	No Trend	No Trend	Decreasing
FR_EAGLENORTH	No Trend	No Trend	Decreasing	Stable	Prob. Decreasing
FR_ASPSEEP1	No Trend	Prob. Decreasing	Decreasing	No Trend	No Trend
FR_DOKASEEP1	-	-	-	-	-
FR_FSEAMSEEP7	Stable	Decreasing	Decreasing	Stable	-
FR_SPRWSEEP1	Stable	No Trend	No Trend	Decreasing	No Trend
FR_BLAKESEEP1	-	No Trend	No Trend	No Trend	No Trend
FR_FRVWSEEP3	Prob. Increasing	No Trend	Increasing	Stable	Stable
FR_STPNSEEP	Decreasing	Stable	No Trend	Stable	No Trend
FR_BLAINESEEP1	Prob. Increasing	Prob. Decreasing	Stable	Stable	No Trend
FR_STPWSEEP	Decreasing	No Trend	No Trend	Decreasing	No Trend
FR_STPSWSEEP	Decreasing	No Trend	No Trend	Decreasing	Stable
FR_BLAINESEEP5	Stable	Stable	No Trend	Prob. Decreasing	No Trend
FR_SCRDSEEP1	Increasing	Increasing	Prob. Increasing	Increasing	No Trend

Notes: "-" denotes trend analysis was not completed because of insufficient data or because concentrations of parameter have been consistently less than, or marginally greater than the detection limit. Where increasing trends are noted (except for field pH), the cell is shaded in orange. Decreasing trends in field pH at shaded orange.

Table 7: Summary of Trends and Controls on Water Quality for Seeps at FRO

Seep ID	Group Name	Flow Period	Oxidation Category	MF Influence	Calcite Status (CaCO₃ aq)	Calcite (CaCO₃ aq) SI	Calcite Precipitate Presence (2022) ¹	Ferrihydrite Status	OC and field pH Mann- Kendall Trend ²	Seasonality ³	Parameters Above FWAL BCWQGs ³
FR HENSEEP3	FR HEN WR	High Flow	Oxic	Not MF Influenced	Potentially Undersaturated	0.54	-	Not determined	Stable or decreasing	-	SO ₄ , NO ₃ -N, Se-T
TICTICINOCLES	TIX_TIEN_WIX	Low Flow	Oxic	Not MF Influenced	Undersaturated	0.38	No	Potentially Oversaturated	Stable of decreasing	Higher SO ₄	
FR HENSSEEP1	ED LIEN WD	High Flow	Potentially Suboxic	Not MF Influenced	Oversaturated	0.97	-	Oversaturated	Increasing NO ₃ -N Prob. Increasing SO ₄		SO ₄ , NO ₃ -N, Se-T,
FK_HEN99EEP1	FR_HEN_WR	Low Flow	Suboxic	Not MF Influenced	No Samples	-	No	No Samples		-	U-T
FR TURNSEEP1	FR TURNBULLWREAST WR	High Flow	Oxic	Not MF Influenced	Potentially Oversaturated	0.73	-	Potentially Oversaturated	Stable or decreasing	_	SO ₄ , NO ₃ -N, Se-T,
TI_TOTATOLLI T	TIC_TORNBOLEWILEAGT_WIC	Low Flow	Oxic	Not MF Influenced	Oversaturated	0.67	No	Oversaturated	otable of decreasing	-	U-T
FR TBWSEEP1	FR TURNBULLWRWEST WR	High Flow	Oxic	Not MF Influenced	Undersaturated	-0.13	-	Oversaturated	Increasing SO ₄		
TR_IBWSELF1	TIX_TORNBOLEWIKWE31_WIK	Low Flow	Oxic	Not MF Influenced	No Samples	-	No	No Samples	Prob. Increasing Se-D	-	
FR TURNSEEP2	FR TURNBULLWRWEST WR	High Flow	Oxic	Not MF Influenced	Undersaturated	-0.052	-	Oversaturated	Increasing SO ₄ and Se-D		NO ₃ -N, Se-T
FK_TURNSEEF2	FR_TORNBOLLWRWEST_WR	Low Flow	Oxic	Not MF Influenced	Undersaturated	0.074	No	Not determined	Prob. Decreasing field pH.	-	NO3-N, 36-1
	ED TUDNISUU WIDE AGT W/D	High Flow	Oxic	Not MF Influenced	Undersaturated	-0.091	No	Oversaturated	0.11	-	
FR_FCSEEP2	FR_TURNBULLWREAST_WR	Low Flow	Oxic	Not MF Influenced	Undersaturated	0.12	-	Oversaturated	Stable or decreasing	Higher NO ₃ -N, SO ₄ , Se-D, U-D	
FR CCSEEPE1	FR CLODECR WR	High Flow	Oxic	Not MF Influenced	Potentially Oversaturated	1.2	No	Oversaturated		-	
FK_CCSEEPE1	FR_CLODECK_WK	Low Flow	Oxic	Not MF Influenced	Oversaturated	1.2	No	Oversaturated	Increasing NO ₃ -N, Se-D, SO ₄	Higher SO ₄ , Cd-D, Ni- D, U-D	-
ED COSEEDSE4	ED CLODECD WD	High Flow	Oxic	Not MF Influenced	Undersaturated	0.47	No	Oversaturated	Decreesing field all	·	C- T
FR_CCSEEPSE1	FR_CLODECR_WR	Low Flow	Oxic	Not MF Influenced	Undersaturated	0.56	No	Oversaturated	Decreasing field pH	-	Se-T
		High Flow	Oxic	Not MF Influenced	Undersaturated	0.093	No	Oversaturated	Prob. Increasing Cd-D	-	SO ₄ , NO ₃ -N, Se-T,
FR_LMCWSEEP5	FR_LAKEMTN_WR_PITS	Low Flow	Oxic	Not MF Influenced	Not determined	0.45	No	Not determined	Decreasing field pH	Higher NO ₃ -N, NO ₂ -N, SO ₄ , Se-D, U-D	U-T
FR EAGLENORTH	FR EAGLE WR	High Flow	Oxic	Not MF Influenced	Not determined	0.7	No	Oversaturated	Prob. decreasing field pH	-	
FR_EAGLENORTH	FK_EAGLE_WK	Low Flow	Oxic	Not MF Influenced	Not determined	0.72	No	Oversaturated	Prob. decreasing lield ph	Higher Ni-D	-
ED ASDSEED1	FR A CCR	High Flow	Oxic	Not MF Influenced	Potentially Undersaturated	0.38	No	Potentially Oversaturated	0.11	-	
FR_ASPSEEP1	TILA_CON	Low Flow	Oxic	Not MF Influenced	Not determined	0.59	No	Potentially Oversaturated	Stable or decreasing	Higher NO ₃ -N, SO ₄ , Se-D, U-D	<u>-</u>
ED DOWAGEES!	EB DOKA WB	High Flow	Oxic	Not MF Influenced	Oversaturated	0.81	No	Oversaturated			
FR_DOKASEEP1	FR_DOKA_WR	Low Flow	Oxic	Not MF Influenced	Not determined	1.1	No	Not determined	-	-	-
ER ESEAMSEED7	FR DOKA UNKNOWN	High Flow	Oxic	Not MF Influenced	Oversaturated	0.86	No	Oversaturated	Stable or decreasing	Higher Cd-D	_
FR_FSEAMSEEP7	. IV_DOINY_DIVINIVOVIN	Low Flow	Oxic	Not MF Influenced	Not determined	0.82	No	Oversaturated	Clable of decreasing	-	=

SRK CONSULTING (CANADA) INC. • FEBRUARY 2023 • AMD/SDJ

Elk Valley Regional Seep Monitoring: 2022 Annual Report Site-Specific Interpretation • FINAL

Seep ID	Group Name	Flow Period	Oxidation Category	MF Influence	Calcite Status (CaCO₃ aq)	Calcite (CaCO₃ aq) SI	Calcite Precipitate Presence (2022) ¹	Ferrihydrite Status	OC and field pH Mann- Kendall Trend ²	Seasonality ³	Parameters Above FWAL BCWQGs ³
	FR_BLAIN_CCR	High Flow	Oxic	Not MF Influenced	Not determined	0.28	No	Oversaturated	Chable on decreasing	-	SO ₄ , NO ₃ -N, NO ₂ -N, Se-T, U-T
FR_SPRWSEEP1		Low Flow	Oxic	Not MF Influenced	Not determined	0.73	No	Oversaturated	Stable or decreasing		
	50 81 411 000	High Flow	Oxic	Not MF Influenced	Oversaturated	1	No	Oversaturated	0.11		
FR_BLAKESEEP1	FR_BLAIN_CCR	Low Flow	Oxic	Not MF Influenced	Oversaturated	0.94	-	Not determined	 Stable or decreasing 	-	Se-T
FR FRVWSEEP3	FR SMITH WR	High Flow	Oxic	Potentially Possibly MF Influenced	Oversaturated	0.81	No	Oversaturated	Increasing Se-D	-	Se-T
FR_FRVWSEEP3	FR_SMITH_WR	Low Flow	Oxic	Potentially Possibly MF Influenced	Oversaturated	0.92	-	Potentially Oversaturated	Prob. Increasing Cd-D	Higher SO ₄	
ED OTDNOEED	FR_SOUTHTAILS_TAILINGS	High Flow	Oxic	Not MF Influenced	Undersaturated	0.012	No	Oversaturated	 Stable or decreasing 	-	-
FR_STPNSEEP		Low Flow	Oxic	Not MF Influenced	Undersaturated	0.3	No	Oversaturated			
	FR_BLAIN_CCR	High Flow	Oxic	Not MF Influenced	Oversaturated	0.92	-	Oversaturated	Prob. Increasing Cd-D	-	-
FR_BLAINESEEP1		Low Flow	Oxic	Not MF Influenced	Potentially Oversaturated	0.98	No	Oversaturated			
	FR_SOUTHTAILS_TAILINGS	High Flow	Oxic	Not MF Influenced	Not determined	0.55	No	Oversaturated	Stable or decreasing	-	SO ₄ , Se-T, U-T
FR_STPWSEEP		Low Flow	Oxic	Not MF Influenced	Not determined	0.5	No	Potentially Oversaturated			
FR STPSWSEEP	FR SOUTHTAILS TAILINGS	High Flow	Oxic	Not MF Influenced	Undersaturated 0.	0.41	No	Potentially Oversaturated	Stable or decreasing	_	SO ₄
0 0022.		Low Flow	Oxic	Not MF Influenced	Undersaturated	0.37	No	Oversaturated			554
ED DI AINECEEDE	ED DIAIN COD	High Flow	Oxic	Not MF Influenced	Oversaturated	0.83	No	Oversaturated	Chable on decreasing		00 0-111
FR_BLAINESEEP5	FR_BLAIN_CCR	Low Flow	Oxic	Not MF Influenced	Oversaturated	0.87	Dry	Oversaturated	 Stable or decreasing 	-	SO ₄ , Se-T, U-T
FR_SCRDSEEP1	FR SWIFTWR ROCKDRAIN WR	High Flow	Oxic	Not MF Influenced	Potentially Undersaturated	0.69	No	Potentially Oversaturated	Increasing Cd-D, NO ₃ -N, SO ₄		SO ₄ , Se-T
	TIX_SWII TWIX_ROCKDRAIN_WR	Low Flow	Oxic	Potentially Not MF Influenced	Oversaturated	1.1	No	Oversaturated	Prob. Increasing Se-D	-	304, 3e-1

Notes: Categorizations labelled as "Not Determined" indicate a seep where an equal number of instances occurred for each category, so classification could not be determined.

[&]quot;-" calcite precipitate presence (2022) denotes that the seep was visited, but no calcite presence field notes were made. Low flow calcite observations were conducted in July 2022.

^{2 &}quot;Stable or decreasing" indicates that Cd-D, NO₃-N, Se-D, and SO₄ concentrations show stable, no trend, or decreasing trends while field pH shows a stable trend or no trend. "-" denotes that there was insufficient data to conduct trend analysis.

^{3 &}quot;-" for seasonality denotes that no seasonality has been visually identified and for parameters above FWAL BCWQGs "-" indicates that no COIs were identified as above FWAL BCWQGs.

5.1.2 Discussion

Summary

There are 22 RSMP seeps at FRO. The seeps will be discussed from upstream to downstream along the Fording River.

All seeps at FRO (except FR_HENSSEEP1, as discussed below) were categorized as oxic, and all seeps (except for FR_FRVWSEEP3 discussed below) were categorized as not MF influenced (Table 7). Ferrihydrite was modelled and classified as oversaturated or potentially oversaturated for all seeps at FRO. Maps of modelled calcite saturation and field presence during high and low flows in Figure 3 and Figure 4, respectively, show no apparent spatial trends for calcite saturation at FRO.

A comparison of average flows during high and low flows at each FRO seep and its associated comparison permitted surface water monitoring location is reported in Table 8. Four FRO seeps are estimated to contribute at least 15% of the flow to their corresponding downstream surface water monitoring station: FR_TURNSEEP2, FR_CCSEEPE1, FR_FCSEEP2, and FR_EAGLENORTH.

Henretta Seeps

FR_HENSEEP3 and FR_HENSSEEP1 are downstream of the Henretta waste rock dump area and upstream of the FR_FR1 surface water monitoring location. Neither seep appears to significantly contribute flow or load to FR_FR1.

FR_HENSEEP3 has the highest dissolved selenium concentrations (average 560 μ g/L) among all the FRO RSMP seeps (average 180 μ g/L), however, Mann-Kendall analysis indicates that dissolved selenium concentrations are decreasing. Dissolved selenium concentrations at FR_HENSSEEP1 are significantly lower compared to FR_HENSEEP3 and closer to the 2 μ g/L BC FWAL guideline. Total selenium concentrations at FR_FR1 (average 15 μ g/L) are above the BC FWAL guideline.

Nitrate-N concentrations at FR_HENSEEP3 (average 85 mg/L-N) are some of the highest of the FRO seeps (average 45 mg/L-N). However, nitrate-N concentrations at FR_FR1 (2.4 mg/L-N) are below the BC FWAL guideline (3.0 mg/L-N chronic and 33 mg/L-N acute). Sulfate concentrations at FR_HENSSEEP1 (average 840 mg/L) are probably increasing and may be related to recent reclamation activity upstream to the east of the Henretta Pit Lake. Based on calcite modelling, FR_HENSSEEP1 has been categorized as oversaturated during high flows; however, no field presence has been historically noted.

Turnbull Seeps

FR_TURNSEEP1 is downstream of the Turnbull waste rock area and upstream of the FR_FR1 surface water monitoring location. Mann-Kendall analysis indicates stable or no trends thus far. Like FR_HENSEEP3 and FR_HENSSEEP1 upstream of FR_FR1, FR_TURNSEEP1 does not appear to significantly contribute flow or load to FR_FR1 (Table 8). Calcite modelling indicates that

FR_TURNSEEP1 is potentially oversaturated; however, no field presence has been historically observed.

FR_TBWSEEP1 and FR_TURNSEEP2 are also downstream of the Turnbull waste rock area but upstream of the FR_PP1 surface water monitoring location. The semi-quantitative load comparison in Table 8 indicates that FR_TURNSEEP2 may contribute up to 23% of the flow and 27% of the sulfate load at FR_PP1, depending on the time of year. Both seeps' nitrate concentrations are above the chronic BC FWAL guideline. Average nitrate concentrations at FR_TBWSEEP1 and FR_TURNSEEP2 are 13 and 19 mg/L-N, respectively, compared to the 3 mg/L-N chronic BC FWAL and 33 mg/L-N acute guidelines. Downstream at FR_PP1, nitrate-N concentrations are also above the nitrate BC FWAL guidelines, averaging 35 mg/L-N. Total selenium concentrations at FR_TBWSEEP1 (average 68 μ g/L), FR_TURNSEEP2 (average 92 μ g/L), and FR_PP1 (average 120 μ g/L) are above the chronic total selenium BC FWAL guideline of 2 μ g/L. In addition, dissolved selenium concentrations are increasing at FR_TURNSEEP2 and probably increasing at FR_TBWSEEP1. Field pH at FR_TBWSEEP1 (average 7.2) and FR_TURNSEEP2 (average 7.1) is the lowest of all the FRO RSMP seeps (average 7.7) and shows a probably decreasing trend at FR_TURNSEEP2 in Mann-Kendall analysis.

FR_FCSEEP2 is also downstream of the Turnbull waste rock area, but upstream of the FR_CC1 surface water monitoring location. The semi-quantitative load comparison in Table 8 indicates that FR_FCSEEP2 may contribute up to 18% of the flow but only up to 1% of the sulfate load at FR_CC1, depending on the time of year. Nitrate-N, sulfate, dissolved selenium, and dissolved uranium concentrations show a seasonal pattern at FR_FCSEEP2, with higher concentrations during low flows. FR_FCSEEP2 has the lowest TDS and sulfate concentrations (260 mg/L and 84 mg/L, respectively), compared to all the FRO RSMP seeps (1,600 mg/L and 770 mg/L, respectively).

Clode Catchment Seeps

Clode Catchment Seeps FR_CCSEEPE1 and FR_CCSEEPSE1 are also upstream of the FR_CC1 surface water monitoring location, downstream of the Clode waste rock area. Semi-quantitative flow and load calculations estimate that FR_CCSEEPE1 could contribute up to 38% of the flow and 41% of the sulfate load at FR_CC1, depending on the time of year.

Nitrate-N concentrations at FR_CCSEEPE1 are some of the highest of the FRO RSMP seeps (61 mg/L-N compared to 45 mg/L-N) and above the BC FWAL. FR_CCSEEPE1 and FR_CCSEEPSE1 also have the highest dissolved cadmium (1.0 and 1.4 µg/L, respectively) and dissolved nickel (0.07 and 0.07 mg/L, respectively) concentrations of the FRO RSMP seeps (0.5 µg/L average cadmium and 0.03 mg/L average nickel). In addition, Mann-Kendall analysis indicates that nitrate-N, dissolved selenium, sulfate, dissolved cobalt, dissolved nickel, dissolved uranium, and TDS are increasing at FR_CCSEEPE1. Dissolved selenium, and sulfate concentrations at FR_CCSEEPSE1 are decreasing. No COIs are exhibiting notable trends at FR_CCSEEPSE1, aside from field pH, which is decreasing (becoming more acidic). Downstream at FR_CC1, nitrate-N, total selenium, and sulfate concentrations are above the BC FWAL guidelines. Based on calcite modelling, FR_CCSEEPE1 is calcite oversaturated. However, calcite presence in the field has not been noted since 2020.

Lake Mountain Seeps

FR_LMCWSEEP5 is downstream of the Lake Mountain area and upstream of the FR_LMP1 surface water monitoring location. FR_LMCWSEEP5 does not appear to significantly contribute flow or load to FR_LMP1 (Table 8). Mann-Kendall analysis shows dissolved cadmium and nickel concentrations are probably increasing, and field pH is decreasing. OC concentrations show seasonality trends, with higher concentrations during low flows at FR_LMCWSEEP5.

FRO CCR Seeps

FR_ASPSEEP1 is downstream of a CCR area and upstream of the FR_LP1 surface water monitoring location. There was increased sampling at FR_ASPSEEP1 in 2022 to support pumping plan development. Mann-Kendall analysis indicates no increasing trends. At FR_ASPSEEP1, sulfate, nitrate, and total selenium concentrations are consistently above BC FWAL guidelines. The same constituent concentrations are above the BC FWAL guidelines at FR_LP1, however, FR_ASPSEEP1 does not appear to significantly contribute flow or load to FR_LP1 (Table 8).

Eagle Catchment Seeps

FR_EAGLENORTH is downstream of the Eagle waste rock area and upstream of the FR_EC1 surface water monitoring location. During high flows, FR_EAGLENORTH is estimated to contribute up to 30% of flows and 56% of sulfate load to FR_EC1. Sulfate, nitrate-N and total selenium concentrations are consistently above the BC FWAL guidelines; however, Mann-Kendall analysis shows no trend for these OCs. Field pH is probably decreasing at FR_EAGLENORTH based on Mann-Kendall analysis. FR_EAGLENORTH has the highest TDS (average 3,340 mg/L) of all FRO RSMP seeps (average 1,610 mg/L) and relatively elevated sulfate, dissolved cadmium, dissolved nickel, dissolved selenium, and dissolved uranium concentrations.

There are three seeps upstream of the FR_NL1² surface water monitoring location: FR_FSEAMSEEP7, FR_DOKASEEP1, and FR_SPRWSEEP1. All three seeps do not appear to significantly contribute flow or load to FR_NL1. FR_FSEAMSEEP7 and FR_DOKASEEP1 are downstream of the Doka waste rock area. FR_SPRWSEEP1 is downstream of the Blain CCR area. Nitrate-N concentrations at consistently above the BC FWAL guideline at FR_FSEAMSEEP7 (13 mg/L-N) and FR_SPRWSEEP1 (7.6 mg/L). Total selenium concentrations are also above the BC FWAL guideline at these two seeps (average of 140 μ g/L at FR_FSEAMSEEP7, 35 μ g/L at FR_SPRWSEEP1). However, Mann-Kendall analysis indicates no increasing trends for all OCs and COIs at all three seeps. During high flows, FR_FSEAMPSEEP7 and FR_DOKASEEP1 have been categorized as calcite oversaturated; however, calcite presence has not been noted in the field since 2019.

² FR NL1 did not discharge in 2022 (pers. comm. David Burroughs January 16, 2022).

Smith Seeps

FR_FRVWSEEP3 is downstream of the Smith waste rock area and upstream of the FR_SP1 surface water monitoring location. FR_FRVWSEEP3 does not appear to significantly contribute flow or load to FR_SP1 (Table 8). Total selenium and sulfate concentrations are consistently above the BC FWAL guideline (80 µg/L and 510 mg/L, respectively). In addition, Mann-Kendall analysis indicates that dissolved selenium concentrations are increasing, and dissolved cadmium and antimony concentrations are probably increasing at FR_FRVWSEEP3. FR_FRVWSEEP3 is the only seep at FRO that has been categorized as potentially³ possibly MF influenced. Sulfate concentrations are consistently above 100 mg/L (average 510 mg/L), and Zn/Cd has been mostly above 200 mg/mg (average 300 mg/mg). However, to date, pH is neutral (average 8.0 pH units).

Blaine CCR Seeps

There are six seeps in the FRO RSMP that are upstream of the FR_FR2 surface water monitoring location. Three seeps (FR_BLAKESEEP1, FR_BLAINESEEP1 and FR_BLAINSEEP5) are downstream of the Blaine CCR area. Three seeps (FR_STPNSEEP, FR_STPWSEEP, and FR_STPSWSEEP) are downstream of the South Tailings Pond (see section below). The three seeps downstream of the Blaine CCR area do not appear to significantly contribute flow or load to FR_FR2.

Sulfate, total selenium, and nitrate-N concentrations are above the BC FWAL guideline at all three seeps downstream of the Blaine CCR area. In addition, total uranium concentrations are above the BC FWAL guideline at FR_ BLAINESEEP1 and FR_ BLAINESEEP5. Nitrite-N concentrations are also above the guideline at FR_ BLAINESEEP5. The OC concentrations at these three seeps are stable or show no trend, apart from probably increasing dissolved cadmium concentrations at FR_BLAINESEEP1. The TDS is relatively elevated at FR_BLAINESEEP1 and FR_BLAINESEEP5 (average of 2,860 mg/L and 3,340 mg/L, respectively) compared to all the FRO RSMP seeps (average of 1,610 mg/L). Likewise, FR_BLAINESEEP1 shows relatively elevated sulfate, dissolved nickel, dissolved selenium, and dissolved uranium concentrations compared to all the FRO RSMP seeps. FR_BLAINESEEP5 also shows relatively elevated sulfate and dissolved uranium concentrations. The three seeps downstream of the Blaine CCR area have all been categorized as oversaturated or potentially oversaturated for calcite. However, calcite has not been observed at these seeps.

South Tailings Pond Seeps

The three seeps downstream of the South Tailings Pond do not appear to significantly contribute flow or load to FR_FR2. FR_STPNSEEP is the only seep of the three seeps downstream of the South Tailings Pond with concentrations above a BC FWAL guideline for total selenium (18 μ g/L) and nitrate-N (5.6 mg/L-N). The OC concentrations at all three seeps are stable or decreasing based on Mann-Kendall analysis.

³ Seeps categorized as potentially possibly MF influenced indicate that the majority but not all samples indicate possible MF influenced conditions.

Swift Seeps

FR_SCRDSEEP1 is downstream of the Swift waste rock area and upstream of the FR_SCOUT surface water monitoring location. Based on the qualitative flow and sulfate loading analysis, FR_SCRDSEEP1 does not have significant flow or sulfate loading rates relative to FR_SCOUT. Sulfate, nitrate-N, nitrite-N, total cobalt, and total selenium concentrations are consistently above BC FWAL guidelines. In addition, Mann-Kendall analysis indicates that all COI concentrations (except field pH) are increasing at FR_SCRDSEEP1 (Figure 5). Several COIs have shown a relatively significant concentration increase in recent years, including nitrate-N, nitrite-N, dissolved antimony, dissolved cobalt, dissolved nickel, and dissolved selenium. FR_SCRDSEEP1 has been classified as calcite oversaturated during low flows; however, calcite has not been observed in the field since 2019.

Table 8: Average seasonal flow and SO₄ load for FRO seeps and comparison permitted surface water monitoring locations

		urface Water		urface Water					Seep F	low¹			
Permitted Surface Water Monitoring		ocation Flow ³/d)	Monitoring Loc (kg		Seep Location	Hig	h Flow	Lo	w Flow	Hi	gh Flow	Lo	w Flow
Location	High Flow	Low Flow	High Flow	Low Flow		Flow (m ³ /d)	% of Permitted Location Flow	Flow (m ³ /d)	% of Permitted Location Flow	SO ₄ Load (kg/d)	% of Permitted Location Load	SO ₄ Load (kg/d)	% of Permitted Location Load
FR_CC1	9,200	4,800	6,100	3,000	FR_CCSEEPE1	3,500	38%	650	14%	2,500	41%	650	22%
				_	FR_CCSEEPSE1	84	0.91%	46	0.97%	110	1.8%	70	2.3%
					FR_FCSEEP2	1,700	18%	240	5.1%	57	0.94%	38	1.3%
FR_EC1	520	350	500	380	FR_EAGLENORTH	150	30%	10	2.9%	280	56%	19	5.0%
FR_FR1	180,000	31,000	15,000	3,600	FR_HENSEEP3	29	0.02%	4	0.01%	38	0.25%	5	0.14%
					FR_HENSSEEP1	51	0.03%	1	0.002%	48	0.32%	1	0.02%
					FR_TURNSEEP1	28	0.02%	1	0.002%	11	0.07%	0	0.01%
FR_FR2	170,000	71,000	28,000	18,000	FR_BLAINESEEP1	150	0.09%	210	0.30%	250	0.89%	370	2.1%
					FR_BLAINESEEP5	15	0.01%	0	0.001%	36	0.13%	1	0.004%
					FR_BLAKESEEP1	61	0.04%	20	0.03%	30	0.11%	21	0.12%
					FR_STPNSEEP	330	0.19%	-	-	41	0.14%	-	-
					FR_STPSWSEEP	82	0.05%	67	0.10%	28	0.10%	22	0.12%
					FR_STPWSEEP	450	0.26%	390	0.55%	140	0.50%	110	0.59%
FR_LMP1	24,000	4,800	5,100	1,900	FR_LMCWSEEP5	430	1.7%	150	3.2%	35	0.68%	62	3.3%
FR_LP1	2,400	2,000	890	900	FR_ASPSEEP1	230	9.4%	120	6.0%	110	12%	91	10%
					FR_FSEAMWSEEP4	160	6.5%	-	-	21	2.4%	-	-
					FR_SHNSEEP1	160	6.7%	-	-	20	2.3%	-	-
FR_NL1	1,700	4,200	460	1,500	FR_DOKASEEP1	32	1.9%	14	0.34%	2	0.43%	1	0.05%
					FR_FSEAMSEEP7	22	1.3%	1	0.03%	9	1.9%	1	0.03%
				_	FR_SPRWSEEP1	23	1.3%	20	0.48%	8	1.8%	8	0.51%
FR_PP1	5,800	2,100	1,400	1,300	FR_TBWSEEP1	460	7.9%	140	6.6%	130	9.5%	31	2.3%
				_	FR_TURNSEEP2	1,000	17%	490	23%	380	27%	170	13%
FR_SCOUT	5,400	3,900	4,200	7,900	FR_SCRDSEEP1	99	1.8%	170	4.4%	40	1.0%	-	-
FR_SP1	3,500	2,500	860	790	FR_FRVWSEEP3	35	1.0%	15	0.59%	17	2.0%	8	1.0%

Due to the often-diffuse nature of seeps, seep flow measurements are inherently imprecise. The comparisons reported here should be regarded as semi-quantitative.

5.2 Greenhills Operation

5.2.1 Overview

Seep monitoring locations at GHO are presented in Figure 6. Seeps are color-coded by the comparison permitted surface water sampling location. Table 9 summarizes the seeps visited during the 2022 RSMP.

Mann-Kendall trend analyses were completed for OC for seep samples with seven or more sampling events and are summarized in Table 10. A summary of Mann-Kendall trend analysis for all COIs is available in Appendix D.

The oxidation and MF influence categorization of seeps and modelled calcite and ferrihydrite saturation at GHO is summarised in Table 11. Calcite precipitate presence was not noted down during the 2022 low flow sampling survey.

Table 9: 2022 GHO Seeps

Seep ID	Group Name	Comparison Permitted Surface Water Sampling Location	Permitted Surface Water Sampling Location Type	Notes	Seep Status
GH_SEEP_12	GH_PORTER_CREEK	GH_PC1	DL	-	ACTIVE
GH_SEEP_76	GH_LEASK_WR	GH_LC1	DL	-	ACTIVE
GH_SEEP_77	GH_WOLFRAM_WR	GH_WC1	DL	-	ACTIVE
GH_SEEP_79	GH_WOLFRAM_WR	GH_TC2	DL	-	ACTIVE
GH_SEEP_60	GH_THOMPSON_WR	GH_TC2	DL	Dry Sept 2022	ACTIVE
GH_SEEP_46	GH_THOMPSON_WR	GH_TC2	DL	Dry Sept 2022	ACTIVE
GH_SEEP_5	GH_THOMPSON_WR	GH_TC2	DL	-	ACTIVE
GH_SEEP_50	GH_UPSTREAM_CCR	GH_TC2	DL	Dry Sept 2022	ACTIVE
GH_SEEP_15	GH_UPSTREAM_CCR	GH_FC1	SW	Dry Sept 2022	ACTIVE
GH_SEEP_30	GH_UPSTREAM_CCR	GH_FC1	SW	Dry June & Sept 2022	ACTIVE
GH_WTDS	GH_CCR	GH_FC1	SW	-	ACTIVE
GH_SEEP_16	GH_CCR	GH_GH1	DL	Dry June 2022	ACTIVE
GH_SEEP_21	GH_CCR	GH_GH1	DL	-	ACTIVE
GH_SEEP_22	GH_CCR	GH_GH1	DL	-	ACTIVE

Seep ID	Group Name	Comparison Permitted Surface Water Sampling Location	Permitted Surface Water Sampling Location Type	Notes	Seep Status
GH_SEEP_26	GH_CCR	GH_GH1	DL	Dry June & Sept 2022	ACTIVE
GH_W-SEEP	GH_CCR	GH_GH1	DL	Dry June & Sept 2022	ACTIVE
GH_E1	GH_CCR	GH_GH1	DL	-	ACTIVE
GH_E3	GH_CCR	GH_GH1	DL	-	ACTIVE
GH_SEEP_98	GH_RAILLOOP	GH_FR1	SW	-	ACTIVE

Notes: Permitted surface water sampling location types are surface water (SW) or discharge location (DL).

Table 10: GHO – Summary of Mann-Kendall Trend Analysis for OC

Parameter Site ID	Dissolved Cadmium	Nitrate-N	Dissolved Selenium	Sulfate	Field pH
GH_SEEP_12	Stable	-	Stable	Stable	Prob. Decreasing
GH_SEEP_76	No Trend	Decreasing	No Trend	Increasing	No Trend
GH_SEEP_77	Prob. Decreasing	Stable	Stable	Stable	No Trend
GH_SEEP_79	-	Stable	Stable	No Trend	Stable
GH_SEEP_60	-	-	-	-	-
GH_SEEP_46	-	-	-	-	-
GH_SEEP_5	No Trend	Increasing	Increasing	Increasing	-
GH_SEEP_50	-	-	-	-	-
GH_SEEP_15	-	-	-	-	-
GH_SEEP_30	-	-	-	-	-
GH_WTDS	Decreasing	Prob. Decreasing	Stable	Decreasing	Stable
GH_SEEP_16	-	-	Decreasing	Stable	-
GH_SEEP_21	Stable	Stable	Decreasing	Stable	No Trend
GH_SEEP_22	Decreasing	Stable	Decreasing	Stable	Stable
GH_SEEP_26	-	-	-	-	-
GH_W-SEEP	-	-	No Trend	Prob. Decreasing	No Trend
GH_E1	Prob. Increasing	No Trend	No Trend	Stable	Stable
GH_E3	Stable	Stable	Decreasing	No Trend	Prob. Decreasing
GH_SEEP_98	-	-	-	-	-
RG_ERSP3	-	_	-	-	-

Notes: "-" denotes trend analysis was not completed because of insufficient data or because concentrations of parameter have been consistently less than, or marginally greater than the detection limit. Where increasing trends are noted (except for field pH), the cell is shaded in orange. Decreasing trends in field pH at shaded orange.

5.2.2 Discussion

Summary

There are 20 RSMP seeps at GHO. The seeps will be discussed from upstream to downstream along the Fording River and then from upstream to downstream along the Elk River.

Several GHO seeps downstream of the GHO CCR storage facility were categorized as potentially suboxic or suboxic (Table 11). All seeps (except for GH_E1, discussed below) were categorized as not MF influenced. Ferrihydrite was modelled and classified as oversaturated for all seeps at GHO. Maps of modelled calcite saturation and field presence during high and low flows in Figure 7 and Figure 8, respectively, show no apparent spatial trends for calcite saturation at GHO.

A comparison of average instantaneous flows during high and low flows at each GHO seep and its associated permitted surface water monitoring location is reported in Table 12. No GHO seeps (except GH_WTDS and GH_SEEP_15 discussed below) contribute significantly to their comparison permitted surface water monitoring location counterparts.

Porter Creek Seeps

GH_SEEP_12 is downstream of the Porter Creek area and upstream of the GH_PC1 surface water monitoring location. When flow measurements are available for GH_SEEP_12, it does not appear to significantly contribute flow or sulfate load to GH_PC1. Total selenium concentrations (average 3.2 μ g/L) are above the BC FWAL guideline (2 μ g/L), however, selenium concentrations are not likely to increase further above the BC FWAL guideline as Mann-Kendall analysis indicates a stable trend for dissolved selenium concentrations. Downstream, total selenium concentrations are also above the BC FWAL guideline at FR_PC1 (average 65 μ g/L). GH_SEEP_12 has the lowest TDS (average 250 mg/L) and sulfate (average 24 mg/L) concentrations of all the GHO RSMP seeps (average 1,380 mg/L TDS and 680 mg/L sulfate). According to the Mann-Kendall analysis, field pH is probably decreasing, however GH_SEEP_12 field pH is still neutral-alkaline, the last and lowest measurement was 7.8 in September 2022.

Leask Seeps

GH_SEEP_76 is downstream of the West Spoil area and upstream of the GH_LC1 surface water monitoring location. GH_SEEP_76 does not appear to significantly contribute flow or sulfate load to GH_LC1. Sulfate, nitrate-N, nitrite-N, total selenium, and total uranium concentrations are above the BC FWAL guidelines. In addition, sulfate and dissolved uranium concentrations show increasing trends based on Mann-Kendall analysis. GH_SEEP_76 has the highest nitrate-N (average 130 mg/L-N), nitrite-N (0.06 mg/L-N), and dissolved selenium (570 μg/L) concentrations of the GHO RSMP seeps (9.9 mg/L-N nitrate, 0.01 mg/L-N nitrite, and 54 μg/L selenium). Downstream at GH_LC1, nitrate-N and total selenium are above the BC FWAL guidelines. This seep has also has relatively elevated levels of dissolved antimony, dissolved cobalt, dissolved nickel, and dissolved uranium compared to the other GHO RSMP seeps. Active spoiling above this seep may be contributing to the higher-than-average concentrations compared to other GHO RSMP seeps. Concentrations at GH_SEEP_76 show a strong

seasonal pattern, with higher concentrations during high flows. Calcite modelling indicates that GH_SEEP_76 may be potentially oversaturated during high flows and oversaturated during low flows. Calcite precipitate presence has also been observed in the field during high flow sampling events.

Wolfram Seeps

GH_SEEP_77 is also downstream of the West Spoil area and upstream of the GH_WC1 surface water monitoring location. GH_SEEP_77 does not appear to significantly contribute flow or sulfate load to GH_WC1. Sulfate, nitrate-N, nitrite-N, total selenium, and total uranium concentrations are above the BC FWAL guidelines; however, no further increases above the guidelines are expected as no COI concentrations show an increasing trend based on Mann-Kendall analysis. Like GH_SEEP_76, GH_SEEP_77 has relatively elevated concentrations of dissolved uranium, dissolved selenium, dissolved nickel, dissolved antimony, nitrite-N, and nitrate-N compared to the whole GHO RSMP seep group. Downstream at GH_WC1, sulfate, nitrate, total selenium, and total uranium concentrations are above the BC FWAL guidelines. GH_SEEP_77 has also been categorized as calcite oversaturated, and calcite precipitate presence has been consistently observed in the field since 2021.

GH_SEEP_79 is also downstream of the West Spoil area but upstream of the GH_TC2 surface water monitoring location. Based on a semi-quantitative estimate, GH_SEEP_79 does not appear to significantly contribute flow or sulfate load to downstream GH_TC2. No COIs are above BC FWAL guidelines at this seep, and OC concentrations based on Mann-Kendall analysis are stable or show no trending. Only TDS shows a probably increasing trend. Compared to the other seeps downstream of the West Spoil area, GH_SEEP_79 has relatively low concentrations for COIs. Based on calcite SI modelling, GH_SEEP_79 has been categorized as potentially oversaturated. The first occurrence of calcite presence at this seep was recently noted during 2022 high flow sampling.

West Spoil Seeps

GH_SEEP_5, GH_SEEP_46, and GH_SEEP_60 are also upstream of GH_TC2 but downstream of the West Spoil area. It is estimated that these seeps do not significantly contribute flow or sulfate load to GH_TC2 (Table 12). Total selenium concentrations are above the BC FWAL guideline at GH_SEEP_5 (average 2.3 μg/L) and GH_SEEP_46 (average 160 μg/L). Sulfate and nitrate-N concentrations are also above BC FWAL guidelines at GH_SEEP_46 (averages of 410 mg/L sulfate and 6.1 mg/L-N nitrate). In addition to having concentrations above BC FWAL guidelines, Mann-Kendall analysis indicates that nitrate-N, dissolved selenium, and sulfate concentrations are increasing at GH_SEEP_5 (Figure 9). Not enough data was available at GH_SEEP_46 or GH_SEEP_60 for Mann-Kendall analyses. Of the three seeps in this group, GH_SEEP_46 shows the highest concentrations when data is available. At the downstream GH_TC2, sulfate, nitrate, total selenium, and uranium concentrations are above BC FWAL guidelines.

GHO CCR Seeps

GH_SEEP_50 is upstream of GH_TC2, and downstream of the GHO CCR area. Calcite SI modelling indicates that GH_SEEP_50 may be oversaturated during low flows; however, no calcite presence has been observed in the field.

Three seeps (GH_SEEP_15, GH_SEEP_30 and GH_WTDS) downstream of the GHO CCR area are compared to the GH_FC1 surface water monitoring location. In Table 12 below, the relative sulfate loading is estimated to be 190% from GH_SEEP_15 and 1500% from GH_WTDS compared to sulfate loadings at GH_FC1 during low flows. The relative flow is estimated to be 5% from GH_SEEP_15 and 1500% from GH_WTDS compared to GH_FC1 during low flows. GH_WTDS is also estimated to have 150% sulfate loading compared to GH_FC1 during high flows.

Total selenium concentrations are consistently above the BC FWAL guideline at GH_WTDS (average 9.2 μ g/L); however, selenium concentrations are not likely to increase further above the BC FWAL guideline as Mann-Kendall analysis indicates no trend for dissolved selenium concentrations. No COI concentrations are above the BC FWAL guidelines at the downstream GH_FC1 monitoring location. Based on calcite SI modelling, all three seeps have been categorized as potentially oversaturated or oversaturated. Field calcite presence has historically been observed at GH_SEEP_15 and GH_WTDS but not at GH_SEEP_30.

Seven RSMP seeps are downstream of the GHO CCR area and upstream of the GH_GH1 surface water monitoring location. None of the seeps in this group appear to significantly contribute flow or sulfate load to GH GH1. Sulfate, total selenium, and total uranium are often above BC FWAL guidelines at these seeps (group averages of 940 mg/L for sulfate, 5.2 µg/L for total selenium, and 68 μg/L for total uranium). Concentrations for these parameters are often above the BC FWAL guidelines downstream at GH GH1 (averages of 590 mg/L for sulfate, 120 μg/L for total selenium, and 66 μg/L for total uranium). Mann-Kendall analysis indicates that GH_E1 has probably increasing dissolved cadmium concentrations and GH_E3 has decreasing field pH. As in previous years, several of the seeps downstream of the GHO CCR have been categorized as potentially suboxic or suboxic. This could indicate possible suboxic zones within the GHO CCR storage facility. GH SEEP 15 is the only seep in this group that was categorized as oxic. GH_E1 has been categorized as possibly MF influenced. Sulfate concentrations at GH_E1 are consistently above 100 mg/L (average 1,200 mg/L) and Zn/Cd is consistently above 200 mg/mg (average 710 mg/mg). The field pH at GH_E1 continues to be neutral (average 7.8 pH units). The calcite status of this group of seeps varies. All the seeps in this group, except for GH_SEEP_16 and GH_SEEP_22, have been categorized as potentially oversaturated or oversaturated. Calcite presence in the field has been consistently observed at GH_E1, GH_E3, GH_SEEP_21 and GH_SEEP_22.

GH_SEEP_98 is upstream of the GH_FR1 surface water monitoring location. Samples collected thus far since GH_SEEP_98's addition to the RSMP have been above the sulfate and total selenium BC FWAL guidelines. There is insufficient data to conduct statistical trend analysis on this seep.

Table 11: Summary of Trends and Controls on Water Quality for Seeps at GHO

Seep ID	Group Name	Flow Period	Oxidation Category	MF Influence	Calcite Status (CaCO₃ aq)	Calcite (CaCO₃ aq) SI	Calcite Precipitate Presence (2022) ¹	Ferrihydrite Status	OC and field pH Mann-Kendall Trend ²	Seasonality ³	Parameters Above FWAL BCWQGs ³
GH_SEEP_12	GH PORTER CREEK —	High Flow	Oxic	Not MF Influenced	Undersaturated	0.39	No	Potentially Oversaturated	Prob. Decreasing field	_	Se-T
011_0221 _12	On_ OKTEN_OKEEK =	Low Flow	Oxic	Not MF Influenced	Undersaturated	0.4	-	Oversaturated	pН		00 1
GH_SEEP_76	GH LEASK WR —	High Flow	Oxic	Not MF Influenced	Potentially Oversaturated	0.72	Yes	Oversaturated	- Increasing SO ₄	Higher Sb-D, Co-D, Ni-D, Se-D	SO ₄ , NO ₃ -N, NO ₂ -N,
	011 <u>2</u> 221011 <u>2</u> 1111	Low Flow	Oxic	Not MF Influenced	Oversaturated	0.82	-	Oversaturated	moreasing ee	-	Se-T, U-T
		High Flow	Oxic	Not MF Influenced	Oversaturated	1	Yes	Oversaturated			
GH_SEEP_77	GH_WOLFRAM_WR -	Low Flow	Oxic	Potentially Not MF Influenced	Oversaturated	0.98	-	Oversaturated	-	-	SO ₄ , NO ₃ -N, Se-T
GH SEEP 79	GH WOLFRAM WR -	High Flow	Oxic	Not MF Influenced	Potentially Oversaturated	0.77	Yes	Oversaturated	_		Se-T
GII_SEEF_19	GII_WOLI NAW_WK	Low Flow	Oxic	Not MF Influenced	Potentially Oversaturated	0.71	-	Oversaturated	-	-	36-1
GH SEEP 60	GH THOMPSON WR -	High Flow	Oxic	Not MF Influenced	Undersaturated	0.3	Yes	Potentially Oversaturated			Ni-T, Se-T, U-T
GIT_OLLI _00	GI_IIIOMI GGIV_WIK	Low Flow	Oxic	Not MF Influenced	Not determined	0.45	-	Not determined			141-1, 06-1, 0-1
GH SEEP 46	GH THOMPSON WR -	High Flow	Oxic	Not MF Influenced	Potentially Undersaturated	0.47	No	Oversaturated			SO4, NO3-N, Se-T
GII_3LLF_40	GI_IIIOMF30N_WK	Low Flow	No Samples	No Samples	No Samples	-	-	No Samples	-	-	304, NO3-N, 36-1
GH SEEP 5	GH THOMPSON WR —	High Flow	Oxic	Not MF Influenced	Undersaturated	-0.061	No	Potentially Oversaturated	Increasing NO ₃ -N,	_	Se-T
51.2-2-1.2		Low Flow	Oxic	Not MF Influenced	Undersaturated	0.32	-	Oversaturated	Se-D, SO ₄		
GH SEEP 50	GH UPSTREAM CCR —	High Flow	Oxic	Not MF Influenced	Potentially Undersaturated	0.22	No	Oversaturated		_	_
		Low Flow	Oxic	Not MF Influenced	Oversaturated	0.63	-	Oversaturated			
CIL CEED 45	CH LIBSTREAM CCD	High Flow	Potentially Oxic	Not MF Influenced	Not determined	0.69	No	Oversaturated			
GH_SEEP_15	GH_UPSTREAM_CCR —	Low Flow	Suboxic	Not MF Influenced	Oversaturated	0.87	-	Oversaturated	- <u>-</u>	-	-
OH SEED 22	CIL LIDSTDEAM COD	High Flow	Oxic	Not MF Influenced	Oversaturated	1.1	No	Oversaturated			
GH_SEEP_30	GH_UPSTREAM_CCR —	Low Flow	No Samples	No Samples	No Samples	-	-	No Samples	- -	-	-
GH WTDS	GH CCR —	High Flow	Oxic	Not MF Influenced	Potentially Oversaturated	0.84	No	Oversaturated		_	Se-T
	3H_33H	Low Flow	Oxic	Not MF Influenced	Potentially Oversaturated	0.85	-	Potentially Oversaturated			

SRK CONSULTING (CANADA) INC. • FEBRUARY 2023 • AMD/SDJ

Seep ID	Group Name	Flow Period	Oxidation Category	MF Influence	Calcite Status (CaCO₃ aq)	Calcite (CaCO₃ aq) SI	Calcite Precipitate Presence (2022) ¹	Ferrihydrite Status	OC and field pH Mann-Kendall Trend ²	Seasonality ³	Parameters Above FWAL BCWQGs ³
GH SEEP 16	CIL COD	High Flow	Oxic	Not MF Influenced	No Samples	-	-	No Samples			SO ₄ , Se-T, U-T
GH_SEEP_10	GH_CCR	Low Flow	Oxic	Not Determined	Undersaturated	0.49	-	Oversaturated		-	SO4, Se-1, U-1
		High Flow	Suboxic	Not MF Influenced	Oversaturated	0.96	Yes	Oversaturated			
GH_SEEP_21	GH_CCR	Low Flow	Suboxic	Not MF Influenced	Potentially Undersaturated	0.54	-	Oversaturated	- -	-	SO ₄ , Se-T, U-T
		High Flow	Not Determined	Not MF Influenced	Not determined	0.61	Yes	Oversaturated			
GH_SEEP_22	GH_CCR	Low Flow	Potentially Suboxic	Not MF Influenced	Potentially Undersaturated	0.44	-	Oversaturated	- -	-	U-T
GH SEEP 26	GH_CCR -	High Flow	Suboxic	Not MF Influenced	Oversaturated	0.83	-	Oversaturated			
GH_SEEP_20		Low Flow	No Samples	No Samples	No Samples	-	-	No Samples		-	
GH W-SEEP	GH CCR	High Flow	Suboxic	Not MF Influenced	Oversaturated	0.94	-	Oversaturated			SO ₄ , Se-T
GH_W-SEEP	GH_CCR	Low Flow	Suboxic	Not MF Influenced	Oversaturated	0.79	-	Oversaturated		-	SO ₄ , Se-1
GH E1	GH CCR	High Flow	Suboxic	Possibly MF Influenced	Potentially Oversaturated	0.99	Yes	Oversaturated	- Prob. Increasing Cd-D	_	SO ₄ , Se-T
GH_E1	GH_CCK	Low Flow	Suboxic	Potentially Possibly MF Influenced	Potentially Oversaturated	0.84	-	Oversaturated	- Prob. Increasing Cd-D	-	3O4, 3e-1
CII E2	CH CCD	High Flow	Potentially Oxic	Not MF Influenced	Potentially Oversaturated	1	Yes	Oversaturated	Prob. Decreasing field		20.
GH_E3	GH_CCR	Low Flow	Potentially Suboxic	Not MF Influenced	Potentially Oversaturated	0.78	-	Potentially Oversaturated	pН	-	SO ₄
OH 0555 00	OLL DAILLOOD	High Flow	Oxic	Not MF Influenced	Undersaturated	0.35	Yes	Oversaturated			00 0 T
GH_SEEP_98	GH_RAILLOOP	Low Flow	Oxic	Not MF Influenced	Undersaturated	0.33	-	Oversaturated		-	SO ₄ , Se-T
GH_SEEP_98	GH_RAILLOOP				Undersaturated			Oversaturated		-	

Notes: Categorizations labelled as "Not Determined" indicate a seep where an equal number of instances occurred for each category, so classification could not be determined.

[&]quot;-" calcite precipitate presence (2022) denotes that the seep was visited, but no calcite presence field notes were made. Low flow calcite observations were conducted in July 2022.

^{2 &}quot;Stable or decreasing" indicates that Cd-D, NO₃-N, Se-D, and SO₄ concentrations show stable, no trend, or decreasing trends while field pH shows a stable trend or no trend. "-" denotes that there was insufficient data to conduct trend analysis.

^{3 &}quot;-" for seasonality denotes that no seasonality has been visually identified and for parameters above FWAL BCWQGs "-" indicates that no COIs were identified as above FWAL BCWQGs.

Table 12: Average seasonal flow and SO₄ load for GHO seeps and comparison permitted surface water monitoring locations

	Permitted St			urface Water					Seep F	low¹			
Permitted Surface Water Monitoring	Monitoring L (m ²			ation SO₄ Load g/d)	Seep Location	Hig	h Flow	Lo	ow Flow	Hi	gh Flow	Lo	w Flow
Location	High Flow	Low Flow	High Flow	Low Flow		Flow (m ³ /d)	% of Permitted Location Flow	Flow (m ³ /d)	% of Permitted Location Flow	SO ₄ Load (kg/d)	% of Permitted Location Load	SO ₄ Load (kg/d)	% of Permitted Location Load
GH_FC1	890	76	19	2	GH_SEEP_15	36	4.0%	3.8	5.0%	0.45	2.4%	2.9	190%
					GH_SEEP_30	1.2	0.13%	-	-	0.07	0.4%	-	-
					GH_WTDS	140	16%	130	170%	28	150%	22	1500%
GH_FR1	-	-	-	-	GH_SEEP_98	-	-	-	-	-	-	-	-
GH_GH1	16,000	4,500	6,200	3,400	GH_E1	30	0.18%	78	1.7%	25	0.40%	72	2.1%
					GH_E3	820	5.1%	70	1.6%	480	7.8%	42	1.2%
					GH_SEEP_16	-	-	-	-	-	-	-	-
					GH_SEEP_21	54	0.34%	22	0.49%	61	0.99%	27	0.78%
					GH_SEEP_22	41	0.26%	24	0.54%	76	1.2%	28	0.84%
					GH_SEEP_26	3.4	0.02%	-	-	7	0.11%	-	-
					GH_W-SEEP	3.4	0.02%	-	-	6.3	0.10%	-	-
GH_LC1	2,900	640	500	390	GH_SEEP_76	43	1.5%	12	1.9%	33	6.5%	6	1.5%
GH_PC1	1,300	1,400	420	540	GH_SEEP_12	-	-	3.9	0.27%	-	-	0.14	0.03%
GH_TC2	12,000	2,300	5,800	2,000	GH_SEEP_46	2	0.02%	-	-	0.91	0.02%	-	-
					GH_SEEP_5	36	0.30%	20	0.90%	4.8	0.08%	2	0.10%
					GH_SEEP_50	17	0.14%	8.2	0.36%	1.3	0.02%	1.7	0.09%
					GH_SEEP_60	18	0.15%	-	-	30	0.52%	-	-
					GH_SEEP_79	34	0.3%	8.7	0.38%	2.3	0.04%	0.69	0.04%
GH_WC1	1,900,000	2,100	1,600,000	2,200	GH_SEEP_77	530	0.03%	150	6.9%	660	0.04%	210	10%

¹ Due to the often-diffuse nature of seeps, seep flow measurements are inherently imprecise. The comparisons reported here should be regarded as semi-quantitative.

5.3 Line Creek Operation

5.3.1 Overview

Seep monitoring locations at LCO at presented in Figure 10. Seeps are color-coded by the comparison permitted surface water sampling location. Table 13 summarizes the seeps visited during the 2022 RSMP.

Table 13: 2022 LCO Seeps

Seep ID	Group Name	Comparison Permitted Surface Water Sampling Location	Permitted Surface Water Sampling Location Type	Notes	Seep Status
LC_UDHP	LC_DC_WR	LC_DCDS	SW	-	ACTIVE
LC_UDP1	LC_DC_WR	LC_DCDS	SW	-	ACTIVE
LC_SEEP8	LC_DC_WR	LC_DCDS	SW	-	ACTIVE
LC_SEEP19	LC_HSP_WR	LC_LC12	DL	-	ACTIVE
LC_3KM	LC_MSA_WR	LC_LC9	DL	-	ACTIVE
LC_SEEP1	LC_MSA_WR	LC_LC9	DL	-	ACTIVE
LC_WLC_LOT2	LC_WLC_WR	LC_WLC	DL	-	ACTIVE
LC_SEEP2	LC_MAXAM	LC_LCDSSLCC	DL	-	ACTIVE
LC_SEEP15	LC_DISTURBEDWSLOPE	LC_LCDSSLCC	DL	-	ACTIVE
LC_SEEP14	LC_DISTURBEDWSLOPE	LC_LCDSSLCC	DL	Dry Sept 2022	ACTIVE
LC_SEEP10	LC_PLANT	EV_ER4	DL	-	ACTIVE
LC_SEEP11	LC_PLANT	EV_ER4	DL	-	ACTIVE

Notes: Permitted surface water sampling location types are surface water (SW) or discharge location (DL).

Mann-Kendall trend analyses were completed for OC for seep samples with seven or more sampling events and are summarized in Table 14. A summary of Mann-Kendall trend analysis for all COIs is available in Appendix D.

The oxidation and MF influence categorization of seeps and modelled calcite and ferrihydrite saturation at LCO is summarised in Table 15.

	-				
Parameter Site ID	Dissolved Cadmium	Nitrate-N	Dissolved Selenium	Sulfate	Field pH
LC_UDHP	No Trend	No Trend	No Trend	No Trend	Stable
LC_UDP1	Stable	No Trend	Stable	Stable	Stable
LC_SEEP8	No Trend	-	Stable	-	-
LC_SEEP19	No Trend	Stable	No Trend	No Trend	Stable
LC_3KM	Decreasing	Prob. Decreasing	Decreasing	Stable	No Trend
LC_SEEP1	-	-	Decreasing	Stable	No Trend
LC_WLC_LOT2	Stable	Prob. Decreasing	Stable	Prob. Increasing	-
LC_SEEP2	No Trend	No Trend	Stable	Stable	Stable
LC_SEEP15	-	Decreasing	Decreasing	Stable	Stable
LC_SEEP14	Decreasing	-	No Trend	No Trend	-
LC_SEEP10	Prob. Decreasing	No Trend	Stable	No Trend	Prob. Decreasing
LC_SEEP11	No Trend	Stable	No Trend	No Trend	Decreasing

Table 14: LCO – Summary of Mann-Kendall Trend Analysis for OC

Notes: "-" denotes trend analysis was not completed because of insufficient data or because concentrations of parameter have been consistently less than, or marginally greater than the detection limit. Where increasing trends are noted, the cell is shaded in orange.

5.3.2 Discussion

Summary

There are 12 RSMP seeps at LCO. The seeps will be discussed from upstream to downstream along Line Creek.

All seeps at LCO were categorized as oxic and all seeps (except for LC_SEEP1 discussed below) were categorized as not MF influenced (Table 15). Ferrihydrite was modelled and classified as oversaturated for all seeps at LCO. Modelled calcite SIs were categorized as oversaturated for five seeps (LC_SEEP8, LC_SEEP1, LC_3KM, LC_WLC_LOT2, and LC_SEEP15). Calcite presence has not been noted at any of these seeps. Maps of modelled calcite saturation and presence during high and low flows in Figure 11 and Figure 12, respectively, show no apparent spatial trends for calcite saturation at LCO.

A comparison of average flows during high and low flows at each LCO seep and its associated permitted surface water monitoring location is reported in Table 16. Several permitted surface water monitoring locations at LCO do not have flow measurements against which to compare because the location was not discharging or has not been measured over the monitoring period. No LCO seeps (except LC_WLC_LOT2 and LC_3KM discussed below) contribute significantly to their comparison permitted surface water monitoring location counterparts.

Table 15: Summary of Trends and Controls on Water Quality for Seeps at LCO

Seep ID	Group Name	Flow Period	Oxidation Category	MF Influence	Calcite Status (CaCO₃ aq)	Calcite (CaCO₃ aq) SI	Calcite Precipitate Presence (2022) ¹	Ferrihydrite Status	OC and field pH Mann-Kendall Trend ²	Seasonality ³	Parameters Above FWAL BCWQGs ³
LO LIDUD	10.00.00	High Flow	Oxic	Not MF Influenced	Undersaturated	-0.19	No	Oversaturated		-	NO NO T
LC_UDHP	LC_DC_WR	Low Flow	Oxic	Not MF Influenced	Undersaturated	-0.056	No	Oversaturated	•	Higher SO ₄ , Se, U-D	— NO₃-N, Se-T
LC UDP1	LC DC WD	High Flow	Oxic	Not MF Influenced	Undersaturated	-0.12	No	Oversaturated		Higher Sb-D	- Se-T
LC_ODP1	LC_DC_WR	Low Flow	Oxic	Not MF Influenced	Undersaturated	-0.17	No	Oversaturated	· -	-	Se-1
1.0 00000	LC DC WD	High Flow	Oxic	Not MF Influenced	Oversaturated	0.99	No	Oversaturated			Se-T
LC_SEEP8	LC_DC_WR	Low Flow	Oxic	Not MF Influenced	Undersaturated	0.37	No	Oversaturated	•	-	Se-1
LC CEED40	LC LICD WD	High Flow	Oxic	Not MF Influenced	Undersaturated	0.11	No	Oversaturated		-	SO NO N S- T
LC_SEEP19	LC_HSP_WR	Low Flow	Oxic	Not MF Influenced	Undersaturated	0.28	No	Oversaturated	-	All studied parameters.	− SO ₄ , NO ₃ -N, Se-T
1.0. 21/14	LC MCA WD	High Flow	Oxic	Not MF Influenced	Oversaturated	1.0	No	Potentially Oversaturated		Higher SO ₄ , Sb-D, Se	- Se-T
LC_3KM	LC_MSA_WR	Low Flow	Oxic	Not MF Influenced	Potentially Oversaturated	0.76	No	Oversaturated	•	-	Se-1
1.0 00004	LC MCA WD	High Flow	Oxic	Potentially Not MF Influenced	Oversaturated	0.7	No	Oversaturated		Higher Ni-D	
LC_SEEP1	LC_MSA_WR	Low Flow	Oxic	Potentially Not MF Influenced	Oversaturated	0.92	No	Oversaturated	•	-	
1.C. WILC. I.O.T.	LC MIC MD	High Flow	Oxic	Not MF Influenced	Undersaturated	0.33	No	Oversaturated	Prob. Increasing		SO ₄ , Se-T, U-T
LC_WLC_LOT2	LC_WLC_WR	Low Flow	Oxic	Not MF Influenced	Oversaturated	0.88	No	Oversaturated	SO ₄	-	SO ₄ , Se-1, U-1
1.0 00000	LC MAXAM	High Flow	Oxic	Not MF Influenced	Undersaturated	0.056	No	Oversaturated		Higher TDS, NO ₃ -N, SO ₄ , Se, U-D	NO₃-N, Se-T
LC_SEEP2	LC_IMAXAM	Low Flow	Oxic	Not MF Influenced	Potentially Undersaturated	0.16	No	Oversaturated	•	-	— NO3-N, Se-1
LC SEEP15	LC DISTURBEDWSLOPE	High Flow	Oxic	Not MF Influenced	Potentially Oversaturated	0.76	No	Oversaturated			NO₃-N, Se-T
LC_SEEP 15	LC_DISTORBEDWSLOPE	Low Flow	Oxic	Not MF Influenced	Potentially Oversaturated	0.73	No	Oversaturated	•	-	NO ₃ -N, Se-1
LC CEED44	LC DISTUDDEDWS ODE	High Flow	Oxic	Not MF Influenced	Undersaturated	0.37	No	Oversaturated			NO₃-N, Se-T
LC_SEEP14	LC_DISTURBEDWSLOPE	Low Flow	Oxic	Not MF Influenced	Undersaturated	0.44	No	Oversaturated	•	-	NO ₃ -N, Se-1
LC SEEP10	LC DI ANT	High Flow	Oxic	Not MF Influenced	Undersaturated	0.11	No	Oversaturated	Prob. Decreasing	Higher Zn-D	
LC_SEEP10	LC_PLANT	Low Flow	Oxic	Not MF Influenced	Undersaturated	0.017	No	Equilibrium	field pH	-	
1.C. CEED44	LC DI ANT	High Flow	Oxic	Not MF Influenced	Undersaturated	0.11	No	Oversaturated	Decreasing field		C- T
LC_SEEP11	LC_PLANT	LC_PLANT Low Flow	Oxic	Not MF Influenced	Potentially Undersaturated	0.44	No	Potentially Oversaturated	pH	-	Se-T

Notes: Categorizations labelled as "Not Determined" indicate a seep where an equal number of instances occurred for each category, so classification could not be determined.

^{1 &}quot;-" calcite precipitate presence (2022) denotes that the seep was visited, but no calcite presence field notes were made. Low flow calcite observations were conducted in July 2022.

^{2 &}quot;Stable or decreasing" indicates that Cd-D, NO₃-N, Se-D, and SO₄ concentrations show stable, no trend, or decreasing trends while field pH shows a stable trend or no trend."-" denotes that there was insufficient data to conduct trend analysis.

^{3 *- &}quot; for seasonality denotes that no seasonality has been visually identified and for parameters above FWAL BCWQGs *- " indicates that no COIs were identified as above FWAL BCWQGs.

Phase I (Line Creek)

There are nine RSMP seeps in the Line Creek watershed. The seeps will be discussed from upstream to downstream along Line Creek.

Horseshoe Ridge Seeps

LC_SEEP19 is located on the north facing Horseshoe Ridge, downstream of previous waste rock dump areas and upstream of Horseshoe Ridge Pond and the LC_LC12 surface water monitoring location. LC_SEEP19 shows the most seasonality within the LCO RSMP seeps, with all COIs showing higher concentrations during low flows. Total selenium concentrations at LC_SEEP19 (average 47 $\mu g/L$) are consistently above the BC FWAL guideline; however, concentrations are consistently below the BC FWAL guideline at the downstream LC_LC12 surface monitoring location (average 28 $\mu g/L$). COI concentrations at LC_SEEP19 are stable based on Mann-Kendall analysis.

Mine Service Area Seeps

LC_3KM and LC_SEEP1 are downstream of the Mine Service Area (MSA) waste rock dump area and upstream of the Line Creek Rock Drain and LC_LC9 surface water monitoring location. Based on semi-quantitative analysis, LC_3KM is estimated to contribute up to 35% of the flow and 12% of the sulfate load to LC_LC9, depending on the time of the year (Table 16). Before 2020, total selenium concentrations at LC_3KM were consistently above the BC FWAL guideline. However, total selenium concentrations have since decreased to below the BC FWAL guideline. No COI concentrations at LC_LC9 are above the BC FWAL guidelines. Mann-Kendall analysis indicates no trend for the OC concentrations at LC_3KM or LC_SEEP1. However, dissolved uranium concentrations are showing an increasing trend (Appendix D). LC_SEEP1 is the only RSMP seep at LCO that has been categorized as potentially not MF influenced. However, the field pH at LC_SEEP1 is neutral (average 8.0 pH), and the seep has been categorized as not MF influenced since 2020. Based on PHREEQC modelling, LC_3KM and LC_SEEP1 were classified as calcite oversaturated; however, calcite precipitate presence has not been consistently observed at either location.

West Line Creek Seeps

LC_WLC_LOT2 is downstream of the West Line Creek waste rock dump area and upstream of the LC_WLC surface water monitoring location. Based on semi-quantitative analysis, LC_WLC_LOT2 is estimated to contribute up to 26% of the flow and 20% of the sulfate load to LC_WLC, depending on the time of the year (Table 16). Sulfate and total selenium concentrations at LC_WLC_LOT2 have been consistently above the BC FWAL guidelines (averages of 650 mg/L sulfate and 190 µg/L total selenium). In addition, Mann-Kendall analysis indicates sulfate concentrations are probably increasing. At LC_WLC, sulfate, nitrate-N, total selenium and total uranium concentrations are above the BC FWAL guidelines (averages of 920 mg/L sulfate, 15 mg/L-N nitrate, 380 µg/L total selenium and 15 µg/L total uranium). Modelled calcite saturation changed seasonally at LC_WLC_LOT2 from undersaturated during high flows (average calcite SI of 0.33) to oversaturated during low flows (average calcite SI of 0.88). No calcite presence has been observed at this seep since 2018.

LCO Valley Seeps

LC_SEEP2, LC_SEEP14, and LC_SEEP15 are located in the Line Creek valley bottom, upstream of the surface water monitoring location LC_LCDSSLCC. These three seeps do not appear to significantly contribute flow or load to LC_LCDSSLCC. Total selenium and nitrate-N concentrations are consistently above the BC FWAL guideline at LC_SEEP14 (average 4 µg/L selenium and 8.2 mg/L-N nitrate) and LC_SEEP15 (average 140 µg/L selenium and 8.0 mg/L-N nitrate). Total selenium and nitrate-N concentrations fluctuate around the guideline at LC_SEEP2. Total selenium concentrations at LC_SEEP2 were measured at 4.8 and 1.6 µg/L during high flows and low flows, respectively, and nitrate-N concentrations were measured at 12 and 0.53 mg/L-N, respectively. Mann-Kendall analysis show no increasing trends for COI concentration at all three seeps. Downstream at LC_LCDSSLCC, total selenium and nitrate-N concentrations are above BC FWAL guidelines (averages of 39 µg/L selenium, and 8.6 mg/L-N nitrate). LC_SEEP15 is modelled to be potentially oversaturated for calcite, and historically some calcite presence has been noted. However, no calcite was noted at this seep in 2022. No calcite presence has been observed at LC_SEEP2 or LC_SEEP14 and neither seep has been categorized as potentially oversaturated or oversaturated.

LCO Plant Seeps

LC_SEEP10 and LC_SEEP11 are in the plant processing area upstream of the EV_ER4 surface water monitoring location. Based on Mann-Kendall analysis, field pH is decreasing at LC_SEEP10 and probably decreasing at LC_SEEP11. In addition, dissolved uranium is probably increasing (Appendix D).

Phase II (LCO Dry Creek)

Three seeps in the RSMP are located in the LCO Dry Creek watershed downstream of the LCO Dry Creek Spoil: LC_UDHP, LC_UDP1, and LC_SEEP8. All three seeps have been classified as oxic and not MF influenced. Modelled calcite SIs indicate an increasing trend going downstream, leading to a higher potential for calcite precipitate formation. However, no calcite presence has been noted at any of these locations. These three seeps do not appear to significantly contribute flow or load to LC_DCDS.

Mann-Kendall analysis indicates that OC concentrations at these three seeps are either stable or show no trend. However, dissolved antimony and dissolved uranium are increasing, dissolved nickel and TDS are probably increasing at LC_UDHP (Figure 13 and Appendix D). TDS is also probably increasing at LC_UDP1. Field pH measurements show that LC_SEEP8 pH (average 8.3 pH) is generally one pH unit higher compared to pH at LC_UDP1 (average 7.5 pH) and LC_UDHP (average 7.4 pH). Nitrate-N concentrations are significantly higher at the most upstream seep (LC_UDHP) (range 3.7 to 40 mg/L-N) compared to LC_UDP1 and LC_SEEP8 (range 0.01 to 0.45 mg/L-N). Nitrate-N concentrations at LC_UDHP are consistently above the BC FWAL guideline and consistently below the guideline downstream at LC_UDP1 and LC_SEEP8. Sulfate and dissolved selenium concentrations are also significantly higher at LC_UDHP (sulfate ranges from 30 to 250 mg/L, and selenium ranges from 10 to 110 μg/L) compared to LC_UDP1 an LC_SEEP8 (sulfate ranges from 0.30 to 8.5 mg/L and dissolved selenium ranges from 0.14 to 3.2 μg/L). Total selenium concentrations are

consistently above the BC FWAL guideline at LC_UDHP, vary around the guideline at LC_UDP1, and are consistently below the guideline at LC_SEEP8. Downstream at LC_DCDS, nitrate-N and total selenium concentrations are above the BC FWAL guidelines (average 24 mg/L-N nitrate and 44 μ g/L selenium).

Table 16: Average seasonal flow and SO₄ load for LCO seeps and comparison permitted surface water monitoring locations

_	Permitted Su			urface Water	_	<u> </u>	_		Seep F	low¹	_		_
Permitted Surface Water Monitoring		ocation Flow 3/d)		cation SO₄ Load g/d)	Seep Location	Hig	h Flow	Lo	ow Flow	H	gh Flow	Lo	w Flow
Location	High Flow	Low Flow	High Flow	Low Flow		Flow (m ³ /d)	% of Permitted Location Flow	Flow (m ³ /d)	% of Permitted Location Flow	SO ₄ Load (kg/d)	% of Permitted Location Load	SO ₄ Load (kg/d)	% of Permitted Location Load
LC_DCDS	48,000	11,000	3,500	1,800	LC_SEEP8	-	-	-	-	-	-	-	-
					LC_UDHP	270	0.56%	130	1.1%	12	0.34%	18	1.0%
					LC_UDP1	11	0.02%	3	0.03%	0	0.002%	0	0.001%
EV_ER4	-	-	-	-	LC_SEEP10	110	-	88	-	16	-	12	=
					LC_SEEP11	110	-	150	-	10	-	12	-
LC_WLC	7,300	3,800	5,800	3,700	LC_WLC_LOT2	1,900	26%	380	10%	1,200	20%	230	6.1%
LC_LC12	-	-	-	-	LC_SEEP19	160	-	370	-	24	-	110	-
LC_LCDSSLCC	250,000	120,000	50,000	32,000	LC_SEEP15	110	0.05%	19	0.02%	31	0.06%	6	0.02%
					LC_SEEP2	180	0.07%	9	0.01%	5	0.01%	0	0.001%
					LC_SEEP14	8	0.003%	9	0.01%	1	0.003%	1	0.004%
LC_LC9	1,000	-	150	-	LC_3KM	360	35%	96	-	18	12%	4	=
					LC_SEEP1	10	1.0%	52	-	1	0.8%	5	-

Sources: https://srk.sharepoint.com/sites/NACAPR002058/Internal/Task%20200%20-%20Interpretation/CAPR002058_Loading_Calculations_rev0_amd.xlsx

Due to the often-diffuse nature of seeps, seep flow measurements are inherently imprecise. The comparisons reported here should be regarded as semi-quantitative.

5.4 Elkview Operation

5.4.1 Overview

Seep monitoring locations at EVO at presented in Figure 14:. Seeps are color-coded by the comparison permitted surface water sampling location. Table 17 summarizes the seeps visited during the 2022 RSMP.

Table 17: 2022 EVO Seeps

Seep ID	Group Name	Comparison Permitted Surface Water Sampling Location	Permitted Surface Water Sampling Location Type	Notes	Seep Status
EV_SEEP_CFI3	EV_CCR	EV_LC1	DL	Dry June & Sept 2022	ACTIVE
EV_SEEP_CFI2	EV_CCR	EV_LC1	SW	-	ACTIVE
EV_SEEP_CFI1	EV_CCR	EV_LC1	SW	-	ACTIVE
EV_SEEP_10MILE9	EV_CEDARWR	EV_LC1	SW	-	ACTIVE
EV_SEEP_10MILE5	EV_CEDARWR	EV_LC1	SW	-	ACTIVE
EV_CN1	EV_CEDARWR	EV_LC1	SW	-	ACTIVE
EV_SEEP_PLANT23	EV_PLANT	EV_GC2	DL	-	ACTIVE
EV_SEEP_BREAKERLAKE	EV_BALDYRIDGEWR	EV_GC2	DL	-	ACTIVE
EV_SEEP_PLANT10	EV_PLANT	EV_GC2	DL	Dry Sept 2022	ACTIVE
EV_WLAGC	EV_CCR/TP	EV_GC2	DL	-	ACTIVE
EV_SEEP_PLANT11	EV_PLANT	EV_OC1	SW	-	ACTIVE
EV_SEEP_PLANT1	EV_PLANT	EV_OC1	SW	Dry Sept 2022	ACTIVE
EV_SPR1B	EV_SPARWOOD_RIDGE	EV_MC2	SW	-	ACTIVE
EV_SEEP_TURCON1	EV_BALDYRIDGEWR	EV_AQ6	DL	-	ACTIVE
EV_SEEP_HOPPER2	EV_BALDYRIDGEWR	EV_BC1	DL	-	ACTIVE
EV_SEEP_SOUTHPIT4	EV_SOUTHSLOPE	EV_TC1	SW	-	ACTIVE
EV_SEEP_SOUTHPIT3	EV_SOUTHSLOPE	EV_TC1	SW	-	ACTIVE
EV_SEEP_ERICKSON2	EV_ERICKSON_WR	EV_EC1	SW	-	ACTIVE
EV_SEEP_SOUTHPIT6	EV_SOUTHPIT_PIT	EV_SP1	DL	-	ACTIVE
EV_SEEP_ERICKSON1	EV_ERICKSON_WR	EV_EC1	SW	-	ACTIVE

Notes: Permitted surface water sampling location types are surface water (SW) or discharge location (DL).

Mann-Kendall trend analyses were completed for OC for seep samples with seven or more sampling events and are summarized in Table 18. A summary of Mann-Kendall trend analysis for all COIs is available in Appendix D.

The oxidation and MF influence categorization of seeps and modelled calcite and ferrihydrite saturation at EVO is summarised in Table 19.

Table 18: EVO – Summary of Mann-Kendall Trend Analysis for OC

Parameter Site ID	Dissolved Cadmium	Nitrate-N	Dissolved Selenium	Sulfate	Field pH
EV_SEEP_CFI3	<u> </u>	-	-		-
EV_SEEP_CFI2	-	-	-	-	-
EV_SEEP_CFI1	-	No Trend	Stable	-	No Trend
EV_SEEP_10MILE9	Prob. Increasing	No Trend	No Trend	Increasing	Stable
EV_SEEP_10MILE5	No Trend	Stable	No Trend	Stable	Stable
EV_CN1	No Trend	Stable	Increasing	No Trend	Stable
EV_SEEP_PLANT23	Stable	No Trend	No Trend	Stable	Prob. Increasing
EV_SEEP_BREAKERLAKE	Stable	Stable	Stable	No Trend	Stable
EV_SEEP_PLANT10	-	-	No Trend	No Trend	Stable
EV_WLAGC	-	Prob. Increasing	-	Stable	No Trend
EV_SEEP_PLANT11	No Trend	-	Stable	No Trend	No Trend
EV_SEEP_PLANT1	No Trend	-	No Trend	Stable	Prob. Increasing
EV_SPR1B	No Trend	No Trend	No Trend	Stable	No Trend
EV_SEEP_TURCON1	-	No Trend	No Trend	Stable	No Trend
EV_SEEP_HOPPER2	No Trend	Stable	No Trend	No Trend	Prob. Decreasing
EV_SEEP_SOUTHPIT4	-	-	No Trend	No Trend	Stable
EV_SEEP_SOUTHPIT3	Stable	-	Decreasing	No Trend	No Trend
EV_SEEP_ERICKSON2	Stable	Prob. Decreasing	No Trend	Stable	No Trend
EV_SEEP_SOUTHPIT6	No Trend	No Trend	Decreasing	No Trend	Stable
EV_SEEP_ERICKSON1	V_SEEP_ERICKSON1 No Trend		-	Prob. Increasing	Stable

Notes: "-" denotes trend analysis was not completed because of insufficient data or because concentrations of parameter have been consistently less than, or marginally greater than the detection limit. Where increasing trends are noted, the cell is shaded in orange.

5.4.2 Discussion

Summary

There are 20 RSMP seeps at EVO. The seeps will be discussed from North to South.

All seeps at EVO (except for EV_SEEP_PLANT10 discussed below) were categorized as oxic (Table 19). All seeps (except for EV_SEEP_ERICKSON1 and EV_SEEP_PLANT23 discussed below) were categorized as not MF influenced. Ferrihydrite was modelled and classified as oversaturated for all seeps at EVO except at EV_SEEP_TURCON1, EV_SEEP_PLANT10, and EV_SEEP_10MILE9. Modelled calcite SI indicate several seeps at EVO are categorized as oversaturated. Calcite precipitate presence in the field does not consistently correlate with calcite saturation categorization. Maps of modelled calcite saturation and presence during high and low flows in Figure 15 and Figure 16, respectively, show no apparent spatial trends for calcite saturation at EVO.

A comparison of average flows during high and low flows at each EVO seep, and its associated permitted surface water monitoring location is reported in Table 20. Five EVO seeps (EV_CN1, EV_SEEP_CFI1, EV_SEEP_CFI2, EV_SEEP_HOPPER2, and EV_SEEP_PLANT11 discussed below) have significant flow and loading estimates compared to their comparison permitted surface water monitoring location counterpart.

Erickson Seeps

EV_SEEP_ERICKSON1 and EV_SEEP_ERICKSON2 are downstream of the South Pit Spoil area and are compared to the EV_EC1 surface water monitoring location. Neither seep appears to have significantly high flow or sulfate load estimates compared to EV_EC1. EV_SEEP_ERICKSON2 has the highest dissolved uranium (average 17 μg/L) concentrations of the EVO RSMP seeps (averages of 2.9 μg/L uranium). In addition, EV_SEEP_ERICKSON2 has relatively elevated concentrations for the OCs and other COIs in comparison to the other EVO RSMP seeps. Apart from dissolved cobalt, EV_SEEP_ERICKSON1 (average 1.7 μg/L) has lower concentrations compared to EV_SEEP_ERICKSON2 (average 0.39 μg/L). Sulfate, nitrate-N, total selenium, and total uranium are consistently above the BC FWAL guidelines at both seeps (Appendix B). The same four parameters are also above BC FWAL guidelines at EV_EC1. Mann-Kendall analysis indicates that sulfate concentrations are probably increasing at EV_SEEP_ERICKSON1. EV_SEEP_ERICKSON1 has also been categorized as possibly MF influenced during low flows. Sulfate concentrations are concisely above 100 mg/L (average 460 mg/L) and Zn/Cd fluctuates close to 200 mg/mg (average 220 mg/mg). The field pH at EV_SEEP_ERICKSON1 is neutral (average 7.5 pH units).

South Pit Seeps

EV_SEEP_SOUTHPIT6 is downstream of the South Pit Spoil and compared to the EV_SP1 surface water monitoring location. EV_SEEP_SOUTHPIT6 estimated sulfate load comes up to 15% compared to EV_SP1 (Table 20). Sulfate (1,650 mg/L) and total selenium (140 µg/L) concentrations are consistently above the BC FWAL guidelines. Sulfate and total selenium concentrations are also above the BC FWAL guidelines at EV_SP1. Dissolved selenium concentrations indicate a decreasing trend

based on Mann-Kendall analysis. Based on calcite SI modelling, EV_SEEP_SOUTHPIT6 has been categorized as oversaturated and potentially oversaturated during high and low flows, respectively. Calcite presence has historically been observed at this seep and was observed during 2022 high flows sampling. EV_SEEP_SOUTHPIT6 has relatively elevated TDS (2,560 mg/L), sulfate (1,650 mg/L), and dissolved uranium (6.5 µg/L) concentrations compared to other EVO RSMP seeps (averages of 1,010 mg/L TDS, 460 mg/L sulfate, and 2.9 µg/L uranium).

EV_ SEEP_SOUTHPIT3 and EV_ SEEP_SOUTHPIT4 are downstream of the South Slope area and compared to the EV_TC1 surface water monitoring location. Based on a semi-quantitative analysis, neither seep has relatively high flows or sulfate load compared to EV_TC1 estimates. Total selenium concentrations are above the BC FWAL guideline at EV_ SEEP_SOUTHPIT3 (average 5.3 μ g/L). selenium concentrations are not likely to increase further above the BC FWAL guideline as Mann-Kendall analysis indicates a decreasing trend for dissolved selenium concentrations at EV_ SEEP_SOUTHPIT3. Total selenium concentrations are above the BC FWAL guideline at EV_TC1 (average 9.5 μ g/L).

Baldy Ridge Seeps

EV_SEEP_HOPPER2 is downstream of the Sunshine Spoil area and compared to the EV_BC1 surface water monitoring location. The semi-quantitative loading and flow analysis indicates that EV_SEEP_HOPPER2 high flow average sulfate loadings are 18% compared to EV_BC1 high flow average sulfate loadings. Sulfate, total cobalt, total selenium, and total uranium concentrations are consistently above the BC FWAL guidelines. Concentrations for these parameters at EV_BC1 are also above the BC FWAL guidelines. Field pH shows a probably decreasing trend based on Mann-Kendall analysis, no other notable trends are noted. Besides EV_SEEP_ERICKSON2, EV_SEEP_HOPPER2 has the highest concentrations of TDS (average 2,870 mg/L), nitrate (20 mg/L-N), sulfate (1,830 mg/L), dissolved cadmium (9.0 μ g/L), dissolved cobalt (2.4 μ g/L), dissolved nickel (37 μ g/L), dissolved selenium (570 μ g/L), and dissolved uranium (15 μ g/L) compared to the other EVO RSMP seeps. Concentrations are relatively elevated for all COI. Calcite SI modelling indicates that EV_SEEP_HOPPER2 is potentially oversaturated during high flows. However, calcite presence has never been observed in the field at this seep.

EV_SEEP_TURCON1 is also downstream of the Baldy Ridge waste rock area but upstream of the EV_AQ6 surface water monitoring location. Concentrations are relatively low at this seep, Mann-Kendall analysis indicates dissolved uranium concentrations are probably increasing.

EV_SEEP_BREAKERLAKE also lies within the Baldy Ridge waste rock area, upstream of the EV_GC2 surface water monitoring location. All OC concentrations are stable or not trending based on Mann-Kendall analysis. Field pH shows a seasonal trend at EV_SEEP_BREAKERLAKE, with lower pH during low flows. Higher dissolved nickel concentrations coincide with lower pH values. In contrast, dissolved antimony concentrations are higher during high flows at EV_SEEP_BREAKERLAKE. EV_SEEP_BREAKERLAKE was categorized as oversaturated based on calcite SI modelling. No calcite precipitate presence has been historically observed at this seep.

EVO Plant Seeps

One seep within the EVO plant area (EV_SEEP_PLANT23) is compared to the EV_GC2 surface water monitoring location. Sulfate concentrations (average 430 mg/L) are consistently above the BC FWAL guideline at EV_SEEP_PLANT23 and total selenium concentrations (average 14 µg/L) are also above the BC FWAL guideline. At EV_GC2, total selenium concentrations (50 µg/L) are consistently above the BC FWAL guideline. All OC concentrations show a stable trend, or no trend based on Mann-Kendall analysis. Field pH shows a probably increasing trend. EV_SEEP_PLANT23 has been consistently categorized as potentially MF influenced. Sulfate concentrations are consistently above 100 mg/L (average 430 mg/L) and Zn/Cd is consistently above 200 mg/mg (4,600 mg/mg). However, the field pH at EV_SEEP_PLANT23 continues to be neutral (average 7.5 pH units). Calcite SI modelling has also categorized EV_SEEP_PLANT23 as potentially oversaturated during low flows. Calcite presence in the field has been consistently noted each year since 2019.

Three seeps in the EVO Plant area (EV_SEEP_PLANT1, EV_SEEP_PLANT10, and EV_SEEP_PLANT11) are upstream of the EV_OC1 surface water location. EV_SEEP_PLANT1 and EV_SEEP_PLANT10 do not appear to significantly contribute flow or sulfate load to EV_OC1. Low flow average sulfate loading at EV_SEEP_PLANT11 is estimated to be 20% compared to low flow average sulfate loading at EV_OC1. No OC concentrations show increasing trends based on Mann-Kendall analysis. Field pH shows a probably increasing trend. Based on calcite SI modelling, EV_SEEP_PLANT1 is potentially oversaturated during high flows and EV_SEEP_PLANT11 is potentially oversaturated during high flows. Calcite presence in the field has not been consistently noted at either seep. EV_SEEP_PLANT10 was categorized as potentially suboxic during high flows.

EVO CCR Seeps

EV_WLAGC is downstream of the EVO CCR area compared to the EV_GC2 surface water monitoring location. Based on Mann-Kendall analysis, nitrate-N concentrations are probably increasing; however, nitrate-N concentrations are relatively low (average 0.02 mg/L-N).

Three seeps (EV_CFI1, EV_CFI2, and EV_CFI3) within the EVO CCR area are compared to the EV_LC1 surface water monitoring location. In Table 20, EV_SEEP_CFI1 and EV_SEEP_CFI2 are estimated to have a relatively large portion of flow and sulfate load compared to EV_LC1. EV_SEEP_CFI1 has flows up to 44% compared to EV_LC1 flows and EV_SEEP_CFI2 has flows up to 33% and sulfate loads up to 44% compared to EV_LC1 estimate flows and sulfate loading. No OC concentrations show increasing trends based on Mann-Kendall analysis. Calcite SI modelling indicates that all three seeps are oversaturated. Calcite presence has been observed at each seep, but not consistently each year.

Cedar Seeps

There are three seeps (EV_CN1, EV_SEEP_10MILE5, EV_SEEP_10MILE9) within the Cedar waste rock area, upstream of the EV_LC1 surface water monitoring location. In Table 20, EV_CN1 is estimated to contribute over 100% of flow and sulfate load to the downstream EV_LC1 location. As

with other seeps that are estimated to contribute a significant percentage of flow and/or load, flow rates at these seeps may have a high degree of uncertainty due to the challenge of measuring diffuse flow accurately. Total selenium concentrations at EV_CN1 and EV_SEEP_10MILE5 are consistently above the BC FWAL guideline (averages of 170 and 47 µg/L, respectively). Dissolved selenium concentrations at EV_CN1 are increasing based on Mann-Kendall analysis. At EV_SEEP_10MILE9, dissolved cadmium concentrations are probably increasing, and sulfate concentrations are increasing. Dissolved uranium concentrations are increasing at all three seeps. Downstream at EV_LC1, total selenium concentrations are sometimes above the BC FWAL guideline (average 3.3 µg/L). EV_SEEP_10MILE9 has the lowest field pH of the EVO RSMP seeps (average 6.4 pH units). However, this seep has not been categorized as potentially MF influenced. EV_SEEP_10MILE9 does show relatively elevated dissolved cadmium concentrations. Based on calcite SI modelling, EV_CN1 has been categorized as potentially oversaturated during low flows and EV_SEEP_10MILE5 has been categorized as potentially oversaturated during high flows and oversaturated during low flows. Calcite precipitate has historically been observed at both seeps, but no precipitate was observed during 2022 sampling.

Sparwood Ridge Seeps

EV_SPR1B is a new seep added to the RSMP in 2021, upstream of the EV_MC2 surface water monitoring location. Total selenium concentrations are sometimes above the BC FWAL guideline (average 6.0 μg/L). However, Mann-Kendall analysis indicates no dissolved selenium trending. Total selenium concentration downstream at EV_MC2 are above the BC FWAL guideline (average 12 μg/).

Table 19: Summary of Trends and Controls on Water Quality for Seeps at EVO

Seep ID	Group Name	Flow Period	Oxidation Category	MF Influence	Calcite Status (CaCO₃ aq)	Calcite (CaCO₃ aq) SI	Calcite Precipitate Presence (2022) ¹	Ferrihydrite Status	OC and field pH Mann-Kendall Trend ²	Seasonality ³	Parameters Above FWAL BCWQGs ³
EV_SEEP_CFI3	EV_CCR	High Flow	Oxic	Not MF Influenced	Oversaturated	1	-	Oversaturated			
EV_SEEF_CFIS	EV_CCR	Low Flow	No Samples	No Samples	No Samples	-	-	No Samples	-	-	-
EV SEEP CFI2	EV CCR	High Flow	Oxic	Not MF Influenced	Oversaturated	1.1	Yes	Oversaturated			
LV_SLLF_OI IZ	LV_CON	Low Flow	Oxic	Not MF Influenced	Oversaturated	0.93	Yes	Oversaturated	-	-	-
EV SEEP CFI1	EV CCR	High Flow	Oxic	Not MF Influenced	Oversaturated	0.92	No	Oversaturated			
LV_SLLF_OITI	LV_CON	Low Flow	Oxic	Not MF Influenced	Not determined	0.67	-	Potentially Oversaturated	-	-	-
EV_SEEP_10MILE9	EV CEDARWR	High Flow	Oxic	Not MF Influenced	Undersaturated	-1.5	No	Potentially at Equilibrium	Increasing SO ₄ Prob. Increasing		
LV_SLLF_TOWNLL9	LV_CLDAKWK	Low Flow	Oxic	Not MF Influenced	Undersaturated	-1.1	No	Potentially at Equilibrium	Cd-D	-	-
EV SEEP 10MILE5	EV CEDARWR	High Flow	Oxic	Not MF Influenced	Potentially Oversaturated	0.82	No	Oversaturated			Se-T
EV_SEEP_TOMILES	EV_CEDARWR	Low Flow	Oxic	Not MF Influenced	Oversaturated	0.97	No	Not determined	- -	-	Se-1
		High Flow	Oxic	Not MF Influenced	Not determined	0.56	No	Potentially Oversaturated		-	
EV_CN1	EV_CEDARWR	Low Flow	Oxic	Not MF Influenced	Potentially Oversaturated	0.63	No	Oversaturated	Increasing Se-D	Higher TDS, NO ₃ -N, SO ₄ , Ni-D, Se-D, U-D	SO ₄ , Se-T
EV SEEP PLANT23	EV PLANT	High Flow	Oxic	Possibly MF Influenced	Potentially Undersaturated	0.47	Yes	Potentially Oversaturated	Prob. Decreasing	-	- SO ₄ , Se-T
EV_SEEP_PLANT23	EV_PLANT	Low Flow	Oxic	Possibly MF Influenced	Potentially Oversaturated	0.75	Yes	Oversaturated	field pH	Higher Sb	- 5U4, Se-1
EV CEED DDEAKEDLAKE	EV DALDVDIDGEMD	High Flow	Oxic	Not MF Influenced	Oversaturated	0.7	No	Oversaturated		Higher Sb	
EV_SEEP_BREAKERLAKE	EV_BALDYRIDGEWR	Low Flow	Oxic	Not MF Influenced	Potentially Undersaturated	0.54	No	Oversaturated	- -	Lower pH, Higher Ni	= -
EV CEED DIANTAG	EV DI ANT	High Flow	Potentially Suboxic	Potentially Not MF Influenced	Potentially Undersaturated	0.48	No	Potentially at Equilibrium		-	
EV_SEEP_PLANT10	EV_PLANT	Low Flow	Potentially Oxic	Not MF Influenced	Undersaturated	0.46	-	Not determined	- -	Higher Ni-D	
57.44.400	51 00D TD	High Flow	Oxic	Not MF Influenced	Undersaturated	0.54	No	Oversaturated	Prob. Increasing	Higher TDS, SO ₄	
EV_WLAGC	EV_CCR/TP	Low Flow	Oxic	Not MF Influenced	Undersaturated	0.32	No	Oversaturated	NO ₃ -N	Higher NO ₃ -N, Co-D, Ni-D	-
EV CEED DI ANTAA	EV PLANT	High Flow	Oxic	Not MF Influenced	Potentially Oversaturated	0.7	Yes	Oversaturated		Higher U-D	
EV_SEEP_PLANT11	EV_PLANT	Low Flow	Oxic	Potentially Not MF Influenced	Potentially Oversaturated	0.82	No	Not determined	- -	-	= -
EV OFFE DI ANTA	EV DI ANIT	High Flow	Oxic	Potentially Not MF Influenced	Potentially Oversaturated	0.71	No	Oversaturated	Prob. Decreasing		
EV_SEEP_PLANT1	EV_PLANT	Low Flow	Oxic	Not MF Influenced	Undersaturated	0.5	-	Oversaturated	field pH	-	-
EV CDD4D	EV CDADWOOD DIDGE	High Flow	Oxic	Potentially Not MF Influenced	Undersaturated	0.39	-	Oversaturated		Higher Se-D	C- T
EV_SPR1B	EV_SPARWOOD_RIDGE	Low Flow	Oxic	Not MF Influenced	Potentially Undersaturated	0.49	-	Potentially Oversaturated	· -	Higher TDS	- Se-T
EV SEED TUDGONA	EV DAI DVDIDGEWD	High Flow	Oxic	Not MF Influenced	Undersaturated	0.065	No	Equilibrium			
EV_SEEP_TURCON1	EV_BALDYRIDGEWR	Low Flow	Oxic	Not MF Influenced	Undersaturated	0.076	No	Potentially Undersaturated	-	-	-
EV CEED HODDEDS	EV DALDVDIDGEN	High Flow	Oxic	Not MF Influenced	Potentially Oversaturated	0.6	No	Oversaturated	Prob. Decreasing	-	SO ₄ , NO ₃ -N,
EV_SEEP_HOPPER2	EV_BALDYRIDGEWR	Low Flow	Oxic	Not MF Influenced	Potentially Undersaturated	0.5	No	Oversaturated	field pH	Higher NO ₃ -N, Co-D	- Se-T, U-T, Co- T

SRK CONSULTING (CANADA) INC. • FEBRUARY 2023 • AMD/SDJ

Elk Valley Regional Seep Monitoring: 2022 Annual Report Site-Specific Interpretation - FINAL

Seep ID	Group Name	Flow Period	Oxidation Category	MF Influence	Calcite Status (CaCO₃ aq)	Calcite (CaCO₃ aq) SI	Calcite Precipitate Presence (2022) ¹	Ferrihydrite Status	OC and field pH Mann-Kendall Trend ²	Seasonality ³	Parameters Above FWAL BCWQGs ³
EV CEED COUTUDITA	EV COLITUELODE	High Flow	Oxic	Not MF Influenced	Undersaturated	0.23	No	Oversaturated		Higher U-D	
EV_SEEP_SOUTHPIT4	/_SEEP_SOUTHPIT4 EV_SOUTHSLOPE		Oxic	Not MF Influenced	Undersaturated	0.25	-	Oversaturated		-	
EV CEED CONTUDITS	EV COLITICI ODE	High Flow	Oxic	Not MF Influenced	Potentially Undersaturated	0.55	No	Oversaturated		Higher Se-D	
EV_SEEP_SOUTHPIT3 EV_SOUTHSLOPE	Low Flow	Oxic	Not MF Influenced	Not determined	0.69	-	Oversaturated		-		
EV OFFE EDIOMONIO	EV EDIOKOON WD	High Flow	Oxic	Potentially Not MF Influenced	Potentially Undersaturated	0.78	No	Oversaturated		-	SO ₄ , NO ₃ -N,
EV_SEEP_ERICKSON2	EV_ERICKSON_WR	Low Flow	Oxic	Potentially Not MF Influenced	Potentially Undersaturated	0.41	No	Oversaturated		Higher Cd-D	Se-T, U-T
EV OFFE CONTURITO	EV COUTURE DIT	High Flow	Oxic	Not MF Influenced	Oversaturated	1	Yes	Oversaturated		-	00.0.7
EV_SEEP_SOUTHPIT6	SEEP_SOUTHPIT6 EV_SOUTHPIT_PIT		Oxic	Not MF Influenced	Potentially Oversaturated	0.71	No	Oversaturated	= -	Lower pH, SO ₄ , Cd-D	- SO ₄ , Se-T
EV OFFE EDIOMOGNA	EV EDIOKOON MD	High Flow	Potentially Oxic	Not Determined	Undersaturated	0.16	No	Oversaturated			00
EV_SEEP_ERICKSON1 EV_ERICKSON	EV_ERICKSON_WR -	Low Flow	Oxic	Possibly MF Influenced	Undersaturated	0.15	-	Potentially Oversaturated		-	SO ₄

Notes: Categorizations labelled as "Not Determined" indicate a seep where an equal number of instances occurred for each category, so classification could not be determined.

"-" calotice precipitate presence (2022) denotes that the seep was visited, but no calotice presence field notes were made. Low flow calotice observations were conducted in July 2022.

"Stable or decreasing" includes that G-D, NO₂-N, Se-D, and SO₄ concentrations show stable, no trend, or decreasing trends whose a stable trend or no trend. "-" denotes that there was insufficient data to conduct trend analysis.

"-" for seasonality denotes that no seasonality has been visually identified and for parameters above FWAL BCWQGs "-" indicates that no COIs were identified as above FWAL BCWQGs.

Table 20: Average seasonal flow and SO₄ load for EVO seeps and comparison permitted surface water monitoring locations

Permitted		urface Water		urface Water		Seep Flow ¹								
Surface Water		Location Flow 1 ³ /d)		Location SO₄ (kg/d)	Seep Location	High	n Flow	Low	Flow	High	Flow	Low	Flow	
Monitoring Location	High Flow	Low Flow	High Flow	Low Flow		Flow (m ³ /d)	% of Permitted Location Flow	Flow (m ³ /d)	% of Permitted Location Flow	SO ₄ Load (kg/d)	% of Permitted Location Load	SO ₄ Load (kg/d)	% of Permitted Location Load	
EV_AQ6	-	-	-	-	EV_SEEP_TURCON1	40	-	52	-	2.5	-	6.1	-	
EV_BC1	770	930	580	700	EV_SEEP_HOPPER2	49	6.5%	33	3.5%	110	18%	81	12%	
EV_EC1	20,000	14,000	14,000	10,000	EV_SEEP_ERICKSON1	150	0.72%	210	1.5%	70	0.49%	100	1.0%	
				_	EV_SEEP_ERICKSON2	67	0.33%	15	0.11%	110	0.76%	28	0.28%	
EV_GC2	5,100	2,900	1,100	830	EV_SEEP_BREAKERLAKE	-	-	-	-	-	-	-	-	
				_	EV_SEEP_PLANT23	17	0.33%	12	0.41%	6.9	0.63%	5.5	0.66%	
				_	EV_WLAGC	260	5.1%	130	4.4%	7.8	0.71%	3.1	0.38%	
EV_LC1	240	200	16	13	EV_CN1	1600	700%	1700	840%	390	2400%	670	5000%	
				_	EV_SEEP_10MILE5	3.5	1.5%	0.9	0.45%	1.2	7.4%	0.36	2.7%	
				_	EV_SEEP_10MILE9	8.3	3.5%	27	14%	0.1	0.61%	0.31	2.3%	
				_	EV_SEEP_CFI1	100	44%	57	29%	0.064	0.39%	0.049	0.37%	
				_	EV_SEEP_CFI2	77	33%	59	29%	7.1	44%	3	23%	
				_	EV_SEEP_CFI3	3.3	1.4%	-	-	0.5	3.1%	-	-	
EV_MC2	1,500,000	220,000	130,000	32,000	EV_SPR1B	3.2	0.0002%	9.3	0.004%	0.37	0.0003%	1.2	0.004%	
EV_OC1	800	360	61	15	EV_SEEP_PLANT10	1.3	0.17%	1.7	0.49%	0.85	1.4%	0.72	4.7%	
				_	EV_SEEP_PLANT1	14	1.7%	3.7	1.0%	1.3	2.1%	0.39	2.6%	
				=	EV_SEEP_PLANT11	26	3.2%	15	4.1%	4.7	7.7%	3	20%	
EV_SP1	910	670	560	470	EV_SEEP_SOUTHPIT6	51	5.6%	43	6.5%	77	14%	70	15%	
EV_TC1	1,200	430	60	30	EV_SEEP_SOUTHPIT3	20	1.7%	8.7	2.1%	1.3	2.2%	0.73	2.5%	
				_	EV_SEEP_SOUTHPIT4	28	2.3%	27	6.3%	0.11	0.18%	0.022	0.07%	

Due to the often-diffuse nature of seeps, seep flow measurements are inherently imprecise. The comparisons reported here should be regarded as semi-quantitative.

5.5 Coal Mountain Mine

5.5.1 Overview

Seep monitoring locations at CMm are presented in Figure 17. Seeps are color-coded by the comparison permitted surface water sampling location. Table 21 summarizes the seeps visited during the 2022 RSMP.

Table 21: 2022 CMm Seeps

Seep ID	Group Name	Comparison Permitted Surface Water Sampling Location	Permitted Surface Water Sampling Location Type	Notes	Seep Status
CM_37PIT-SEEP-E	CM_37PIT	CM_SPD	DL	-	ACTIVE
CM_37PIT-SEEP-W	CM_37PIT	CM_SPD	DL	-	ACTIVE
CM_WD4	CM_WESTWR	CM_SPD	DL	-	ACTIVE
CM_WD7	CM_WESTWR	CM_SPD	DL	-	ACTIVE
CM_WD15-SOURCE	CM_WESTWR	CM_SPD	DL	-	ACTIVE
CM_WD18	CM_WESTWR	CM_SPD	DL	-	ACTIVE
CM_WD19	CM_WESTWR	CM_SPD	DL	-	ACTIVE
CM_MM-SEEP3	CM_MMCCR	CM_SPD	DL	-	ACTIVE
CM_NS1	CM_EASTWR	CM_SPD	DL	-	ACTIVE
CM_NS7	CM_MMCCR	CM_SPD	DL	-	ACTIVE
CM_NS4	CM_MMCCR	CM_SPD	DL	-	ACTIVE
CM_MM-SEEP1	CM_MMCCR	CM_CC1	DL	-	ACTIVE
CM_MM-SEEP5	CM_MMCCR	CM_SPD	DL	-	ACTIVE
CM_PLANT-SEEP1	CM_EASTWR	CM_SPD	DL	-	ACTIVE
CM_CCDS	CM_EASTWR	CM_CCOFF	DL	Dry Sept 2022	ACTIVE
CM_CS1	CM_EASTWR	CM_CCOFF	DL	-	ACTIVE

Notes: Permitted surface water sampling location types are surface water (SW) or discharge location (DL).

Mann-Kendall trend analyses were completed for OC for seep samples with seven or more sampling events and are summarized in Table 22. A summary of Mann-Kendall trend analysis for all COIs is available in Appendix D.

The oxidation and MF influence categorization of seeps and modelled calcite and ferrihydrite saturation at CMm are summarised in Table 23.

Table 22: CMm – Summary of Mann-Kendall Trend Analysis for OC

Parameter Site ID	Dissolved Cadmium	Nitrate-N	Dissolved Selenium	Sulfate	Field pH
CM_37PIT-SEEP-E	Stable	Stable	No Trend	Decreasing	Prob. Increasing
CM_37PIT-SEEP-W	Decreasing	No Trend	No Trend	Decreasing	Increasing
CM_WD4	No Trend	Stable	Stable	No Trend	Stable
CM_WD7	Stable	No Trend	Stable	No Trend	No Trend
CM_WD15-SOURCE	-	-	-	-	-
CM_WD18	No Trend	No Trend	Stable	Stable	No Trend
CM_WD19	Stable	Stable	Stable	No Trend	No Trend
CM_MM-SEEP3	-	-	Stable	Stable	No Trend
CM_NS1	Decreasing	No Trend	No Trend	No Trend	No Trend
CM_NS7	Stable	No Trend	No Trend	No Trend	No Trend
CM_NS4	Stable	Stable	Prob. Decreasing	Stable	Stable
CM_MM-SEEP1	Prob. Increasing	Stable	Stable	Stable	No Trend
CM_MM-SEEP5	-	-	-	-	-
CM_PLANT-SEEP1	-	-	Stable	Decreasing	No Trend
CM_CCDS	-	-	-	-	-
CM_CS1	Prob. Increasing	No Trend	No Trend	No Trend	Stable
CM_MM-SEEP5	-	-	-	-	-

Notes: "-" denotes trend analysis was not completed because of insufficient data or because concentrations of parameter have been consistently less than, or marginally greater than the detection limit. Where increasing trends are noted, the cell is shaded in orange.

5.5.2 Discussion

Summary

Six CMm seeps were categorized as potentially suboxic or suboxic (Table 23). Seven seeps were categorized as potentially MF influenced. Ferrihydrite was modelled and classified as oversaturated for all seeps at CMm. Modelled calcite saturated was categorized as oversaturated at ten CMm seeps. Maps of modelled calcite saturation and field presence during high and low flows in Figure 18 and Figure 19, respectively, show a spatial east-west divide of calcite saturation categorization during low flows at CMm, with more calcite observed along the west side of the facility.

A comparison of average flows during high and low flows at each CMm seep, and its associated permitted surface water monitoring location is reported in Table 24. No CMm seeps contribute significantly to their comparison permitted surface water monitoring location counterparts.

37 Pit Seeps

Two seeps (CM_37PIT-SEEP-E and CM_37PIT-SEEP-W) are downstream of CMm's 37 Pit and upstream of CM_SPD. Sulfate (average of 560 mg/L at CM_37PIT-SEEP-E and 450 mg/L at CM_37PIT-SEEP-W) and total cobalt concentrations (average of 41 μg/L at CM_37PIT-SEEP-E and 30 μg/L at CM_37PIT-SEEP-W) are consistently above the BC FWAL guideline at both these seeps. Concentrations for sulfate and total cobalt are also above BC FWAL guidelines downstream at CM_SPD (average 710 mg/L for sulfate and 23 μg/L for total cobalt). CM_37PIT-SEEP-E has been categorized as potentially suboxic during high and low flows. Sulfate concentrations fluctuate around 500 mg/L (average 550 mg/L) and Se/SO₄ is consistently below 1x10⁻⁵ mol/ml (average 8.6x10⁻⁷ mol/mol). CM_37PIT-SEEP-E and CM_37PIT-SEEP-W have been categorized as potentially possibly MF influenced or possibly MF influenced. Field pH at both seeps continues to be neutral (CM_37PIT-SEEP-E average 7.4 and CM_37PIT-SEEP-W average 7.6 pH units). Sulfate concentrations at both seeps are consistently above 100 mg/L, averaging 450 mg/L at CM_37PIT-SEEP-W and 560 mg/L at CM_37PIT-SEEP-E. Zn/Cd fluctuates around 200 mg/mg (average 430 mg/mg) at CM_37PIT-SEEP-E, and is consistently above (average 510 mg/mg) at CM_37PIT-SEEP-W.

West Seeps

Five seeps (CM_WD4, CM_WD7, CM_WD15-SOURCE, CM_WD18, CM_WD19) are downstream of the CMm West waste rock area and upstream of CM_SPD. Sulfate and total selenium concentrations at all five seeps are consistently above the BC FWAL guidelines. CM_WD15-SOURCE was categorized as suboxic during both high and low flows. CM_WD19 was categorized as potentially suboxic during both high and low flows. Sulfate concentrations are consistently above 500 mg/L at all both seeps (average 1,420 mg/L at CM_WD15-SOURCE and 1,040 mg/L at CM_WD19). Se/SO4 is consistently below 1x10⁻⁵ mol/mol at CM_WD19 (average 7.9x10⁻⁵ mol/mol) and CM_WD15-SOURCE (average 8.4 x10⁻⁶ mol/mol). Based on calcite SI modelling, all five seeps are oversaturated during low flows. Calcite presence has not been observed at CM_WD4 but has been consistently observed at the four other seeps in this area.

East Seeps

Two seeps (CM_PLANT-SEEP1 and CM_NS1) are downstream of CMm's East waste rock area and upstream of CM_SPD. Sulfate and total selenium concentrations at CM_NS1 are consistently above BC FWAL guidelines (average 1,400 mg/L sulfate and 18 μg/L total selenium). Total cobalt concentrations are above BC FWAL guidelines at CM_PLANT-SEEP1 (average 5.2 μg/L). CM_PLANT-SEEP1 has been categorized as possibly MF influenced. Sulfate concentrations are consistently above 100 mg/L (average 370 mg/L) and Zn/Cd is consistently above 200 mg/mg (average 1,880 mg/mg). The field pH at CM_PLANT-SEEP1 is neutral (average 7.2 pH units). Calcite SI modelling indicates that CM_PLANT-SEEP1 is potentially oversaturated and CM_NS1 is

oversaturated. Calcite presence has been reported at this CM_NS1 during 2021 low flow sampling and 2022 high flow sampling. Calcite precipitate presence has not been consistently observed at CM_PLANT-SEEP1.

CM_CS1 and CM_CCDS are downstream of the East waste rock area and upstream of the CM_CCOFF surface water monitoring location. Total selenium and nitrate-N concentrations are above the BC FWAL guidelines (average 130 mg/L sulfate and 5.2 µg/L total selenium) at CM_CS1. Total selenium concentrations are above the BC FWAL guidelines (5.4 µg/L) at CM_CCDS. Nitrate-N concentrations at CM_CS1 are the highest across the CMm RSMP seeps (average 3.0 mg/L-N at CM_CS1 compared to 0.56 mg/L-N). In contrast, dissolved metal concentrations at CM_CS1 are relatively low compared to the other CMm RSMP seeps. Mann-Kendall analysis indicates that dissolved cadmium concentrations at CM_CS1 are probably increasing.

CMm CCR Seeps

Five seeps (CM_NS4, CM_NS7, CM_MM-SEEP1, CM_MM-SEEP3, and CM_MM-SEEP5) are downstream of the CCR area. CM_MM-SEEP1 is upstream of CM_CC1. CM_NS4, CM_NS7, and CM_MM-SEEP5 are upstream of CM_SPD. CM_MM-SEEP3 is not upstream of CM_SPD. However, CM_SPD is still the most appropriate permitted surface water comparison point for CM_MM-SEEP3. All five seeps have sulfate concentrations above the BC FWAL guideline. CM_NS4, CM_NS7 and CM_MM-SEEP1 have total selenium concentrations above the BC FWAL guideline. Total cobalt concentrations at CM_MM-SEEP5 are above the BC FWAL guideline. Mann-Kendall analysis indicates that dissolved cadmium concentrations are probably increasing at CM_MM-SEEP1. CM_MM-SEEP3 is the only seep within the area with a suboxic categorization. CM_MM-SEEP3 sulfate concentrations are consistently above 500 mg/L (average 770 mg/L) and Se/SO₄ is consistently below 1x10⁻⁵ mol/mol (average 5.3x10⁻⁷ mol/mol). Calcite SI modelling indicates oversaturation at CM_NS4, CM_NS7 and CM_MM-SEEP3. Calcite presence has been observed at every seep except CM_NS7.

Table 23: Summary of Trends and Controls on Water Quality for Seeps at CMm

Seep ID	Group Name	Flow Period	Oxidation Category	MF Influence	Calcite Status (CaCO₃ aq)	Calcite (CaCO₃ aq) SI	Calcite Precipitate Presence (2022) ¹	Ferrihydrite Status	OC and field pH Mann-Kendall Trend ²	Seasonality ³	Parameters Above FWAL BCWQGs ³
		High Flow	Potentially Suboxic	Potentially Not MF Influenced	Undersaturated	0.086	No	Oversaturated		Lower pH, Higher TDS, Cd-D, Co-D, Ni-D	
CM_37PIT-SEEP-E	CM_37PIT	Low Flow	Potentially Suboxic	Potentially Possibly MF Influenced	Potentially Undersaturated	0.46	-	Potentially Oversaturated	-	-	SO ₄ , Co-T
CM 37PIT-SEEP-W	CM 37PIT	High Flow	Potentially Oxic	Possibly MF Influenced	Potentially Undersaturated	0.47	Yes	Potentially Oversaturated			Co-T
CM_3/FIT-SEEF-W	CIVI_37FII	Low Flow	Not Determined	Potentially Not MF Influenced	Potentially Undersaturated	0.55	=	Potentially Oversaturated	-	-	C0-1
CM WD4	CM WESTWR	High Flow	Oxic	Not MF Influenced	Undersaturated	0.4	No	Oversaturated		Higher Cd-D, Ni-D, Se-D	SO ₄ , Se-T
CIVI_VVD4	CM_WESTWR	Low Flow	Oxic	Not MF Influenced	Oversaturated	0.93	No	Not determined	-	Higher TDS	304, 36-1
CAA MAIDZ	CM WESTWR	High Flow	Oxic	Not MF Influenced	Undersaturated	0.39	No	Oversaturated		Lower pH, Higher Sb-D, Cd-D, Se-D	Se-T
CM_WD7	CM_WESTWR	Low Flow	Oxic	Not MF Influenced	Oversaturated	1.1	-	Oversaturated	-	-	Se-1
014 14/045 001/005	011 11/5071/5	High Flow	Suboxic	Not MF Influenced	Undersaturated	-	Yes	Undersaturated			
CM_WD15-SOURCE	CM_WESTWR	Low Flow	Suboxic	Not Determined	Oversaturated	1	Yes	Oversaturated	-	-	-
OM MIDAO	OM WESTME	High Flow	Oxic	Not MF Influenced	Oversaturated	0.89	Yes	Oversaturated		Higher Cd-D	00.0.7
CM_WD18	CM_WESTWR	Low Flow	Flow Oxic Not MF Influenced Oversaturated 1 Yes Oversaturated		-	Higher U-D	SO ₄ , Se-T				
		High Flow	Potentially Suboxic	Potentially Not MF Influenced	Potentially Oversaturated	1.1	Yes	Oversaturated		Higher Cd-D	
CM_WD19	CM_WESTWR	Low Flow	Potentially Suboxic	Potentially Possibly MF Influenced	Oversaturated	0.96	Yes	Oversaturated	-	Higher TDS	SO ₄ , Se-T
OM MM SEEDS	CM MMCCD	High Flow	Suboxic	Not MF Influenced	Oversaturated	0.93	Yes	Oversaturated		Higher SO ₄	02
CM_MM-SEEP3	CM_MMCCR	Low Flow	Suboxic	Not MF Influenced	Oversaturated	1	Yes	Potentially Undersaturated	-	-	SO ₄
014 1104	OM FAOTAID	High Flow	Oxic	Not MF Influenced	Potentially Oversaturated	0.69	Yes	Oversaturated		Higher Cd-D, Se-D	00.0.7
CM_NS1	CM_EASTWR	Low Flow	Potentially Oxic	Not MF Influenced	Oversaturated	0.99	No	Oversaturated	-	Higher TDS, SO ₄	SO ₄ , Se-T
		High Flow	Oxic	Not MF Influenced	Oversaturated	0.84	No	Oversaturated		Higher Sb-D, Cd-D, Se-D	
CM_NS7	CM_MMCCR	Low Flow	Potentially Suboxic	Potentially Possibly MF Influenced	Oversaturated	0.91	No	Oversaturated	-	Higher U-D	SO ₄ , Se-T
CM NS4	CM MMCCR	High Flow	Oxic	Not MF Influenced	Oversaturated	0.88	Yes	Oversaturated		Higher NO ₃ -N, Sb-D, Se-D	SO ₄ , Se-T
CW_NG4	CIVI_IVIIVICCIX	Low Flow	Potentially Suboxic	Not MF Influenced	Oversaturated	0.94	No	Potentially Oversaturated	-	Higher TDS	304, 36-1
014 1414 055514	014 1414000	High Flow	Oxic	Not MF Influenced	Undersaturated	0.41	Yes	Oversaturated	Prob. Increasing		0. 7
CM_MM-SEEP1	CM_MMCCR	Low Flow	Oxic	Not MF Influenced	Potentially Undersaturated	0.48	Yes	Oversaturated	Cd-D	-	Se-T
CM AMA SEEDS	CM MMCCD	High Flow	Oxic	Not MF Influenced	Undersaturated	0.099	Yes	Oversaturated			50. C: T
CM_MM-SEEP5	CM_MM-SEEP5 CM_MMCCR ———	Low Flow	Oxic	Possibly MF Influenced		0.56	Yes	Oversaturated			SO ₄ , Co-T

SRK CONSULTING (CANADA) INC. • FEBRUARY 2023 • AMD/SDJ 52

Elk Valley Regional Seep Monitoring: 2022 Annual Report Site-Specific Interpretation FINAL

Seep ID	Group Name	Flow Period	Oxidation Category	MF Influence	Calcite Status (CaCO₃ aq)	Calcite (CaCO₃ aq) SI	Calcite Precipitate Presence (2022) ¹	Ferrihydrite Status	OC and field pH Mann-Kendall Trend ²	Seasonality ³	Parameters Above FWAL BCWQGs ³
CM DI ANT CEEDA	OM FACTIME	High Flow	Oxic	Possibly MF Influenced	Undersaturated	0.28	No	Potentially Oversaturated			O- T
CM_PLANT-SEEP1		Low Flow	Oxic	Possibly MF Influenced	Undersaturated	0.24	No	Potentially Oversaturated	-	-	Co-T
CM CCDS	CM FACTIVE	High Flow	Oxic	Not MF Influenced	Undersaturated	-0.052	-	Oversaturated			Se-T
CM_CCDS	CM_EASTWR	Low Flow	No Samples	No Samples	No Samples	-	-	No Samples	-	-	5e-1
CM 004	CM FACTIVE	High Flow	Oxic	Not MF Influenced	Undersaturated	0.27	No	Oversaturated	Prob. Increasing	Higher Se-D	C-T NO N
CIVI_CS1	CM_CS1 CM_EASTWR —	Low Flow	Oxic	Not MF Influenced	Undersaturated	0.27	No	Oversaturated	Cd-D	Higher NO₃-N, Co-D	— Se-T, NO₃-N

Notes: Categorizations labelled as "Not Determined" indicate a seep where an equal number of instances occurred for each category, so classification could not be determined.

^{1 * &}quot; calcite precipitate presence (2022) denotes that the seep was visited, but no calcite presence field notes were made. Low flow calcite observations were conducted in July 2022.

^{2 &}quot;Stable or decreasing" indicates that Cd-D, NO₃-N, Se-D, and SO₄ concentrations show stable, no trend, or decreasing trends while field pH shows a stable trend or no trend. "-" denotes that there was insufficient data to conduct trend analysis.

^{3 &}quot;-" for seasonality denotes that no seasonality has been visually identified and for parameters above FWAL BCWQGs "-" indicates that no COIs were identified as above FWAL BCWQGs.

Table 24: Average seasonal flow and SO₄ load for CMm seeps and comparison permitted surface water monitoring locations

1	Permitted S			urface Water					Seep F	low¹			
Permitted Surface Water Monitoring		ocation Flow 3/d)		cation SO₄ Load g/d)	Seep Location	Hig	h Flow	Lo	ow Flow	Н	igh Flow	Lo	ow Flow
Location	High Flow	Low Flow	High Flow	Low Flow		Flow (m ³ /d)	% of Permitted Location Flow	Flow (m ³ /d)	% of Permitted Location Flow	SO ₄ Load (kg/d)	% of Permitted Location Load	SO ₄ Load (kg/d)	% of Permitted Location Load
CM_CC1	61,000	22,000	37,000	16,000	CM_MM-SEEP1	28	0.0%	13	0.1%	5.3	0.01%	2	0.01%
CM_CCOFF	33,000	12,000	23,000	9,500	CM_CCDS	920	3%	-	-	140	1%	-	-
				-	CM_CS1	67	0%	6.1	0%	9.2	0%	0.62	0%
CM_SPD	16,000	6,400	11,000	4,800	CM_37PIT-SEEP-E	380	2.3%	-	-	200	1.8%	-	-
					CM_37PIT-SEEP-W	27	0%	0.36	0%	7.4	0%	0.035	0%
				_	CM_MM-SEEP3	7.2	0.04%	3.9	0.1%	5.8	0.051%	2.7	0.06%
					CM_MM-SEEP5	9.9	0%	17	0%	3.8	0%	5.1	0%
				_	CM_NS1	84	1%	18	0%	98	1%	28	1%
					CM_NS4	48	0%	6.6	0.1%	30	0%	5.5	0%
				_	CM_NS7	110	1%	18	0%	85	1%	17	0%
					CM_PLANT-SEEP1	3.4	0.02%	3.4	0.1%	1.3	0.01%	1.2	0.03%
				_	CM_WD15-SOURCE	380	2.3%	69	1.1%	490	4.30%	100	2.10%
					CM_WD18	150	0.9%	21	0.3%	210	1.8%	33	0.7%
				-	CM_WD19	120	1%	34	0.5%	120	1%	38	0.8%
				_	CM_WD4	1000	6%	170	2.7%	380	3%	95	2%
				-	CM_WD7	4.6	0.03%	13	0.2%	0.54	0.0%	1.9	0.0%

¹ Due to the often-diffuse nature of seeps, seep flow measurements are inherently imprecise. The comparisons reported here should be regarded as semi-quantitative.

6 Regional Interpretation

6.1 Seasonality and Year-on-Year Trends

No consistent year-on-year trends were identified during the Mann-Kendall analysis across all seeps at any one operation or across the Elk Valley as a whole. As previously discussed in the operation-specific sections above, some individual seeps were identified to be showing potential seasonality or year-on-year trends.

6.2 Solubility Controls

6.2.1 pH

Across the Elk Valley, pH greater than 7 continues to dominate seepages due to the strong control exerted by the dissolution of carbonate minerals. However, pH has been observed to be below 6 in some areas. pH measured in the seeps during 2022 ranged from 6.5 to 9 except for at EV_SEEP_10MILE9. The low pH measurements (2022 samples ranged from 6.2 to 6.7) reported at EV_SEEP_10MILE9 showed no other indicators of acidity, such as relatively elevated metal or sulfate concentrations (see Section 5.4.2). Therefore, these low pH measurements are likely not influenced by local PAG materials.

The dominant circumneutral to alkaline pH measured in the seepages across the Elk Valley operations is inferred to act as a solubility control on select parameters. For example, molybdenum shows a positive qualitative correlation with pH in Figure 20. As pH increases, molybdenum is expected to increase (i.e., become more mobile). Dissolved selenium shows no qualitative correlation with pH in Figure 21. Therefore, changes to pH in the range observed across the Elk Valley are not expected to impact dissolved selenium mobility. Dissolved cobalt shows a qualitative negative correlation with pH in Figure 22. As pH increases, dissolved cobalt concentrations are expected to decrease (i.e., become less mobile). The graphs for dissolved molybdenum and dissolved cobalt are examples of elements for which pH may act as a solubility control.

Out of 88 seeps, Mann-Kendall analysis indicates that five seeps show an increasing field pH trend, and nine seeps show a decreasing field pH trend. At FRO, probably increasing field pH at FR_CCSEEPE1 corresponds with increasing uranium concentrations. At CMm, increasing pH at CM_37PIT-SEEP-E and CM_37PIT-SEEP-W corresponds with decreasing cobalt concentrations. Apart from the trends noted at these three seeps, the valley-wide trend of pH acting as a control on select parameters is not reflected at a local seep scale.

6.2.2 Mineral Saturation Indices

Across the Elk Valley, 55% of seeps had modelled calcite saturation above 0.6, indicating oversaturation (calcite precipitation may be occurring) for one or both flow regimes. Calcite SIs during low flow were generally higher than in high flows, reflecting the more dilute conditions resulting from snowmelt. Across all operations, calcite saturation for 19% of seeps changed seasonally in 2022. Just over half of the seeps that had a seasonal change in calcite saturation changed from undersaturated

during high flows to oversaturated during low flow (10% of all Elk Valley seeps). The remaining seeps seasonally changed calcite saturation in the opposite direction (9% of all Elk Valley seeps).

Figure 23 shows modelled calcite SI compared to the modelled partial pressure of carbon dioxide (pCO₂). pCO₂ above $10^{-3.4}$ atm indicates CO₂ is over-pressurized (dashed vertical line in Figure 23). As seeps equilibrate with atmospheric pressure, dissolved CO₂ will decrease along the flow path (White 2020). pH will increase as a result, and calcite may become oversaturated and precipitate. Most seeps in the Elk Valley have pCO₂ > $10^{-3.4}$, indicating over-pressurization (Figure 23).

No seeps in the Elk Valley had a gypsum SI above zero (-0.41 to -0.11); hence they are not likely to precipitate gypsum. Most seeps (99%) are in equilibrium or oversaturated with ferrihydrite. This may be because iron is commonly non-detect and ferrihydrite SIs are a function of the detection limit. However, the alkaline pH and dominantly oxidizing conditions of the area support the finding that the majority of seeps are in equilibrium or oversaturated with ferrihydrite.

6.3 Effect of Low Oxygen Conditions

In reducing environments, iron and manganese may be released through the reductive dissolution of oxyhydroxides. Other metals (e.g., cobalt, nickel, and zinc) adsorbed or co-precipitated with iron, and manganese minerals may also be released. Lower manganese concentrations tended to be associated with higher field DO concentrations (Figure 24). In contrast, higher manganese concentrations were spread across the field DO range measured during the seep sampling events. Qualitatively, a similar relationship between iron and field DO was observed, but to a lesser extent because iron was not detected in many samples (Figure 25). Seeps did not show a correlation of concentrations of other metals with field DO.

Figure 26 shows the suboxic indicator ratio Se/SO₄ compared to field DO measurements. There is a cluster of data points where field DO and Se/SO₄ are relatively elevated and scatter across the range of Se/SO₄ at lower field DO. The scatter is generally consistent with expectations, and it is conceivable that low Se/SO₄ can be present under a wide range of DO because water can reoxygenate after being reduced. Still, higher Se/SO₄ is less likely to be present in suboxic waters. The criterium previously set by SRK (2019) for identifying suboxic conditions, where Se/SO₄ is less than 1x10⁻⁵ mol/mol, appear to continue to provide a generally reliable indication of waters affected by suboxic conditions.

7 Seep Dataset Modifications

7.1 New Seeps Review

This section describes the methodology used to evaluate new seep(s) identified in 2022. Teck identified one new seep at CMm in 2022 (Table 25). No new seeps were identified at FRO, GHO, LCO, or EVO in 2022.

The newly identified seeps were compared to the nearest seep sampled in 2022 based on the seep groupings developed by SRK (2019). Seeps were compared based on oxidation categorization, MF categorization, and BCWQG exceedances for sulfate, selenium, and nitrate-N. The new seeps were considered different from the closest historical seep if the categorization of oxidation and MF influence were different, or the new seeps had more or different BCWQG exceedances for sulfate, selenium, or nitrate-N than the comparison seeps' water quality results.

Table 26 summarizes the oxidation, MF influence categorization, and the BCWQG exceedance screening of the newly identified seep to their RSMP seep counterparts sampled in 2022.

Table 25: New seep identified in 2022 in relation to historical seep location

Operation	Group Name	Seep ID	Sampling Dates	Nearest Historical Seep Sampled in 2022 in Same Group	Distance to 2022 Seep (m)
CMm	CM_WESTWR	CM_WD9-SOURCE	Oct 28, 2022	CM_WD7	350

Table 26: New seep: Oxidation, MF Influence, and BCWQGs comparison

			Flows	Low	Flows	BCWQG
Туре	Type Seep ID	Oxidation	n MF Influence Oxidation		MF Influence	Exceedances of SO ₄ , Se, and NO ₃ in 2022
New	CM_WD9- SOURCE	N/A	N/A	Suboxic	No MF Influence	1 Exceedance for SO ₄ and Se-T for 1 sample
Existing	CM_WD7	Oxic	No MF Influence	Oxic	No MF Influence	2 Exceedances for Se-T for 2 samples

Notes: Italicized rows indicate historical seeps

CM_WD9-SOURCE should be added to the current set of seeps to be monitored during 2023 because it was categorized as suboxic during 2022 low flows, which is different from the closest historical seep (CM_WD7), which has been consistently categorized as oxic since 2018.

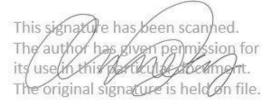
7.2 Seep Retirement Review

Following the seep retirement framework laid out in SRK (2021), the following two seeps at FRO listed in Table 27 have been retired from the RSMP, effective January 2, 2023.

Table 27: RSMP seeps identified for retirement in 2022

Seep ID	Seep Group	Reason for Retirement
FR_SHNSEEP1	FR_SHANDLEY_WR	Covered over by a road.
FR_FSEAMWSEEP4	FR_FSEAM_WR	Spoiled over and last sampled in 2018.

FRO personnel conducted a retirement survey in 2022 to confirm the retirement of FR_SHNSEEP1 and FR_FSEAMWSEEP4 from the RSMP.


8 Summary

The following are noted for the 2022 Elk Valley RSMP:

- The RSMP has been implemented with an approach consistent with that used for RGMP, follow-up requirements from EMLI, and previous recommendations made by SRK.
- Data quality was found to be acceptable based on the findings of a QA/QC assessment conducted in support of this report.
- Several parameters' year-on-year trends were identified based on a quantitative review of water quality time-series.
- Valley-wide geochemical interpretations show broad consistency with expected trends. Metals generally become more mobile as pH decreases except when speciated as an oxyanion (i.e., molybdenum and uranium). Evidence for sub-oxic conditions is shown by lower Se/SO₄, and higher iron and manganese concentrations when dissolved
- One new seep (CM_WD19-SOURCE) was identified at CMm in 2022.
- Two seeps at FRO (FR_SHNSEEP1 and FR_FSEAMWSEEP4) have been retired from the RSMP, effective January 1, 2023.
- One new seep at CMm (CM_WD9-SOURCE) has been added to the RSMP for sampling in 2023 and onwards.

Closure

This report, Elk Valley Regional Seep Monitoring: 2022 Annual Report, was prepared by

Anne Day, MLWS, GIT Consultant

and reviewed by

Stephen Day, MSc, PGeo Corporate Consultant, Geochemistry

All data used as source material plus the text, tables, figures, and attachments of this document have been reviewed and prepared in accordance with generally accepted professional engineering and environmental practices.

References

- Hay, M.B., Leone, G., Partey, F. and Wilking, B., 2016. Selenium attenuation via reductive precipitation in unsaturated waste rock as a control on groundwater impacts in the Idaho phosphate patch. Applied Geochemistry, 74, pp.176-193.
- Ministry of Energy, Mines, and Low Carbon Innovation (EMLI). 2018. Regional Seep Monitoring Program Acceptances Letter. June 21, 2018. File: 14675-01.
- Ministry of Environment and Climate Change Strategy [ENV]. 2019. British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture. Summary Report. August 2019.
- Ministry of Environment and Climate Change Strategy [ENV] 2021. British Columbia Working Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture. Water Quality Guideline Series, WQG-08. Prov. B.C., Victoria B.C.
- Parkhurst, D.L. and Appelo, C.A.J. 1999. User's Guide to PHREEQC (Version 2) A computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. Denver, Colorado, 1999.
- SNC-Lavalin. 2020. 2020 Regional Groundwater Monitoring Program Update. Report prepared for Teck Coal Limited. December 4, 2020.
- SRK Consulting [SRK]. 2011. Laboratory Evaluation of Critical Saturation Index for Calcite in Swift Creek Mine Water. Project No. 1CT017.006. July 2011.
- SRK Consulting [SRK]. 2019. Regional Seep Monitoring Plan: Phases 2 and 3. Project No. 1CT017.216. March 2019.
- SRK Consulting [SRK]. 2020. Elk Valley Seep Monitoring: 2019 Annual Report. Project No. 1CT017.259. March 2020.
- SRK Consulting [SRK]. 2021. Elk Valley Seep Monitoring: 2020 Annual Report. Project No. 1CT017.358. March 2021.
- Teck Coal [Teck]. 2018. Regional Seep Monitoring Plan. May 2018.
- Teck Coal [Teck]. 2019. Regional Seep Monitoring Plan: Phases 2 and 3 Response to EMPR Review Comments Memo. May 28, 2019.
- Teck Coal [Teck]. 2019b. Regional Seep Monitoring Plan Phase 3. May 2019.
- Teck Coal [Teck]. 2019c. 2018 Annual Reclamation Report. March 2019.
- White, W.M., 2020. Geochemistry. John Wiley & Sons.

Figures

Figure 1: Teck Operations Map

Figure 2: 2022 Seeps and Selected Surface Water Monitoring Locations - FRO

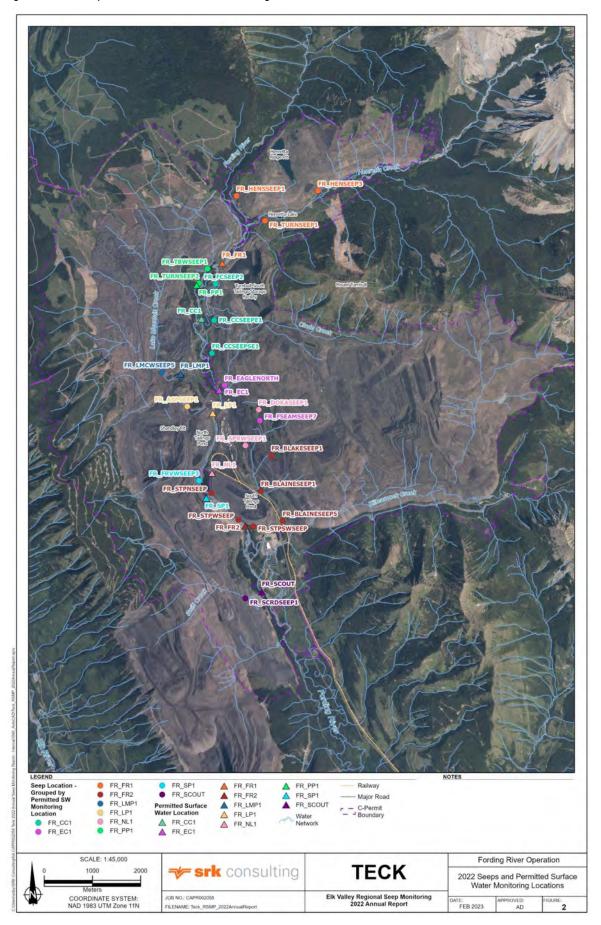


Figure 3: High Flow Calcite Saturation - FRO

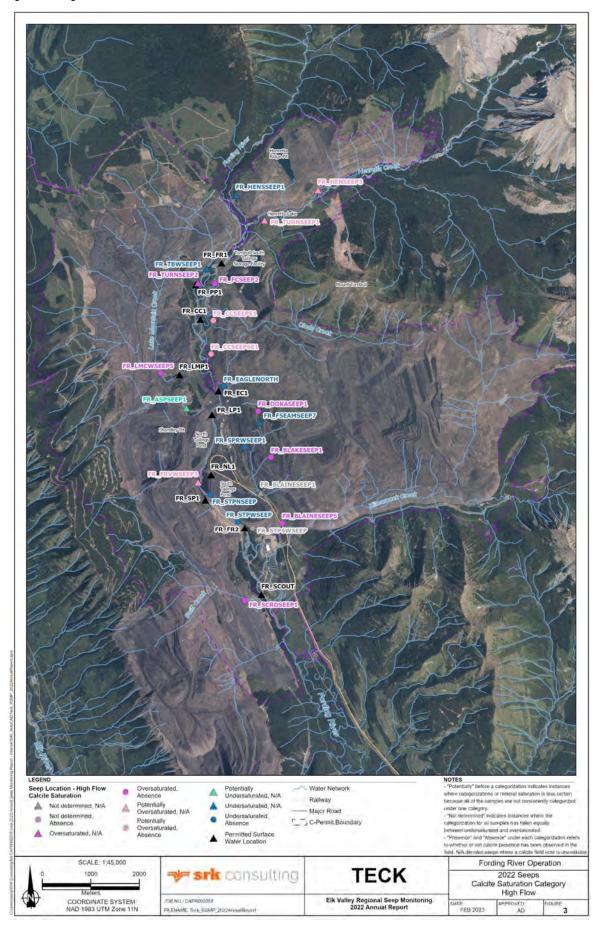


Figure 4: Low Flow Calcite Saturation - FRO

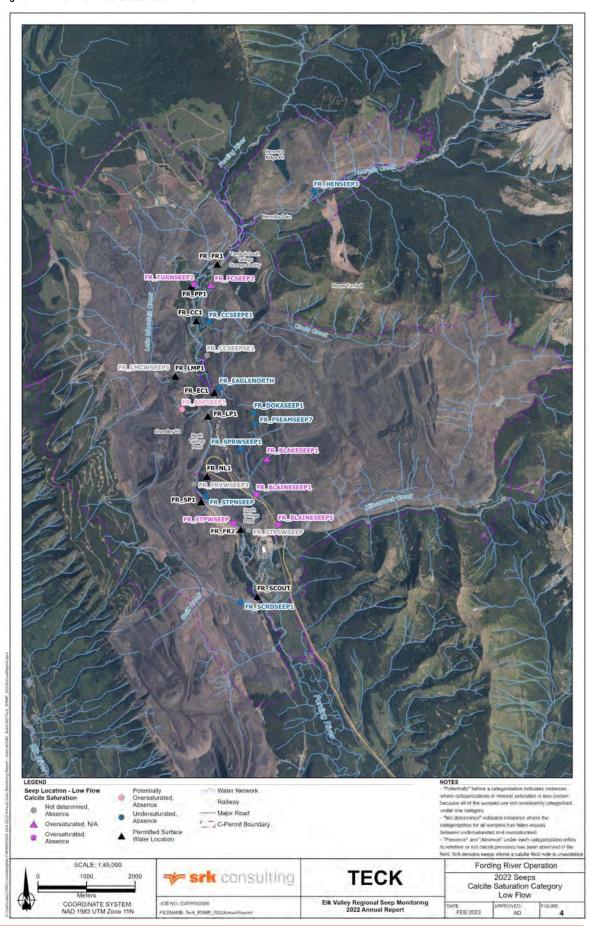
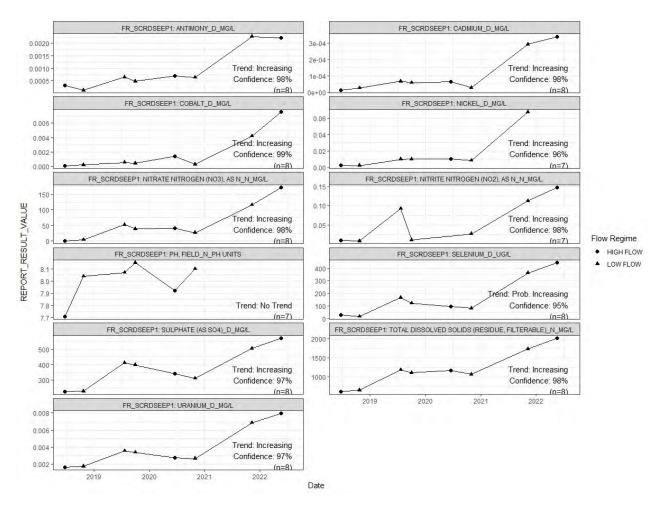



Figure 5: Constituents of Interest Concentration Timeseries at FR_SCRDSEEP1

5

Figure 6: 2022 Seeps and Selected Surface Water Monitoring Locations - GHO

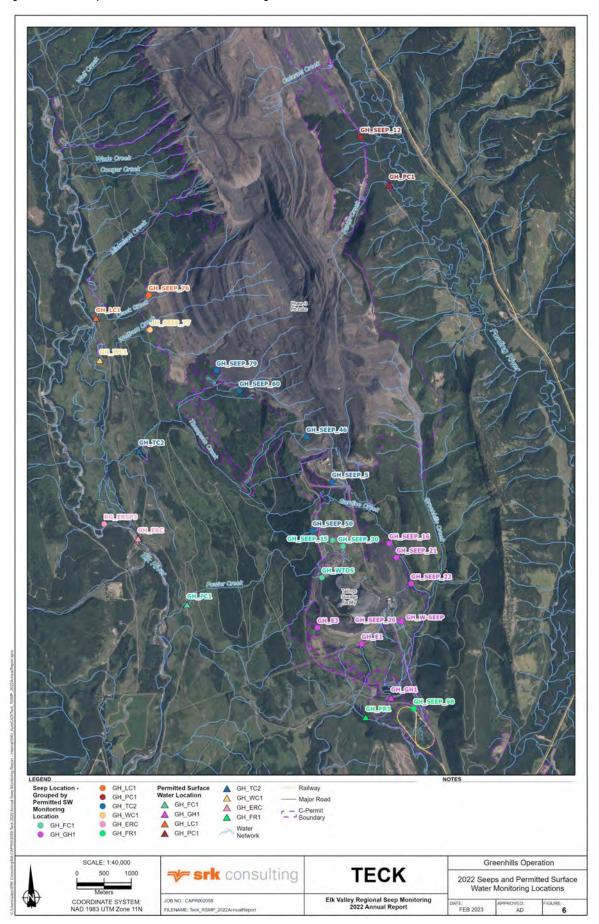


Figure 7: High Flow Calcite Saturation - GHO

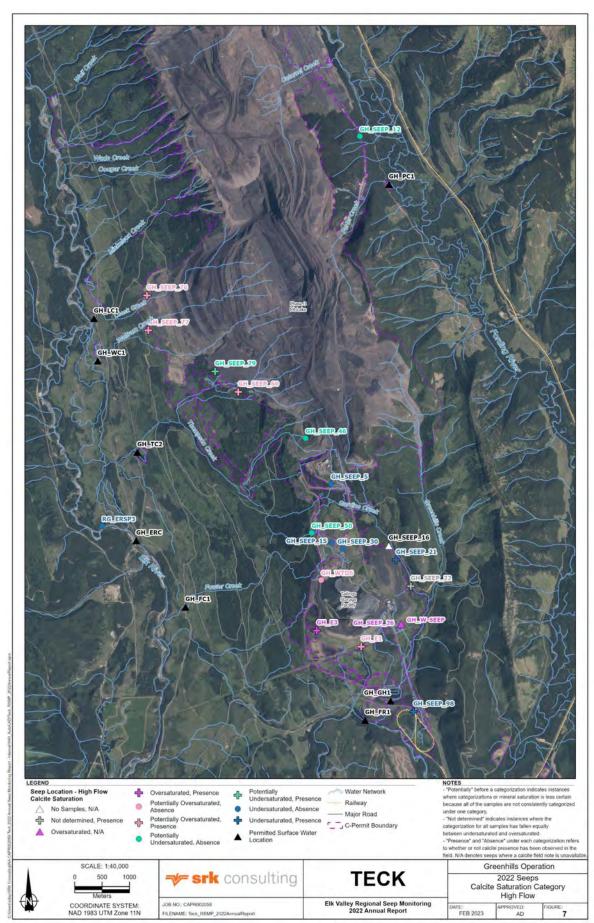


Figure 8: Low Flow Calcite Saturation - GHO

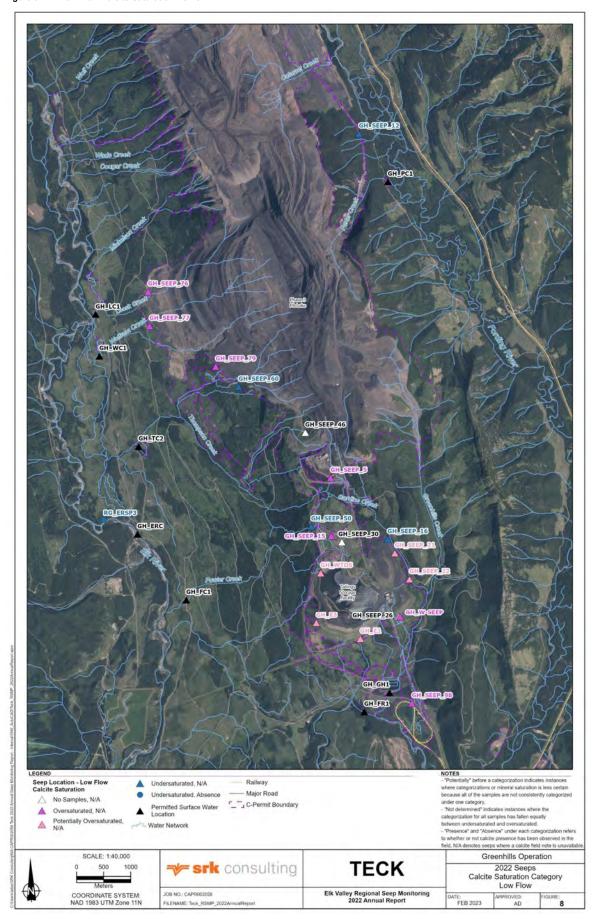


Figure 9: Constituents of Interest Concentration Timeseries at GH_SEEP_5

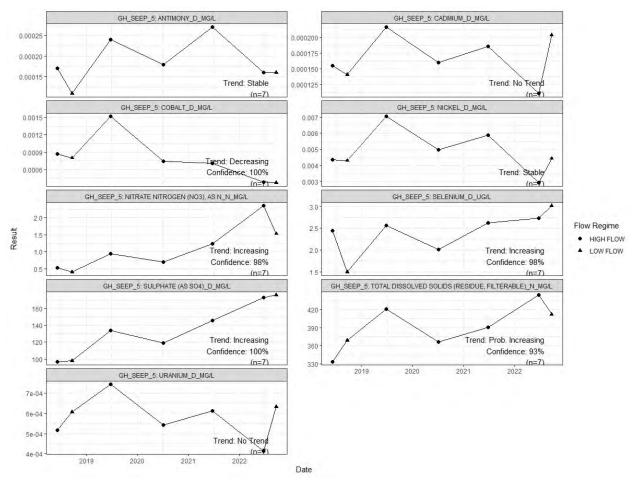


Figure 10: 2022 Seeps and Selected Surface Water Monitoring Locations - LCO

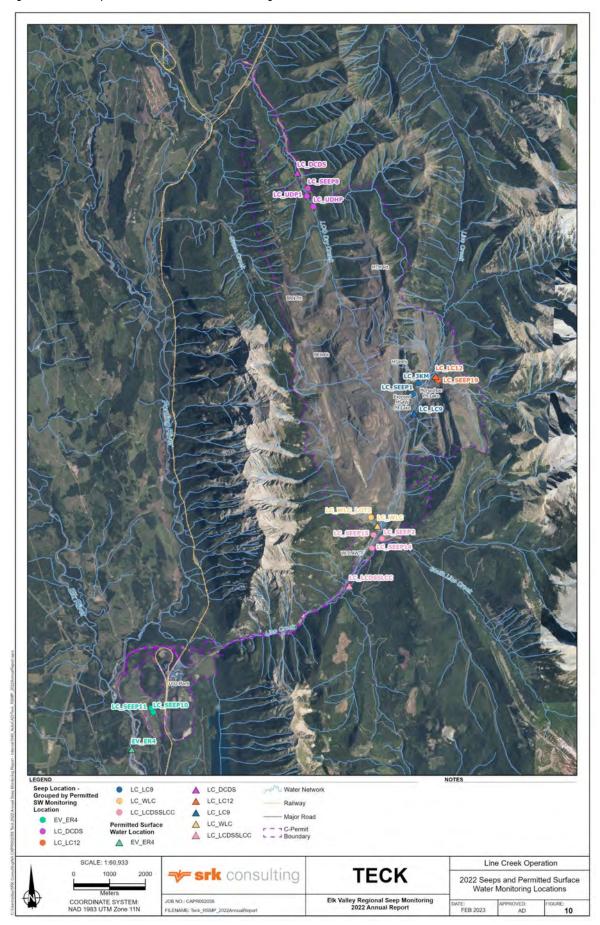


Figure 11: High Flow Calcite Saturation - LCO

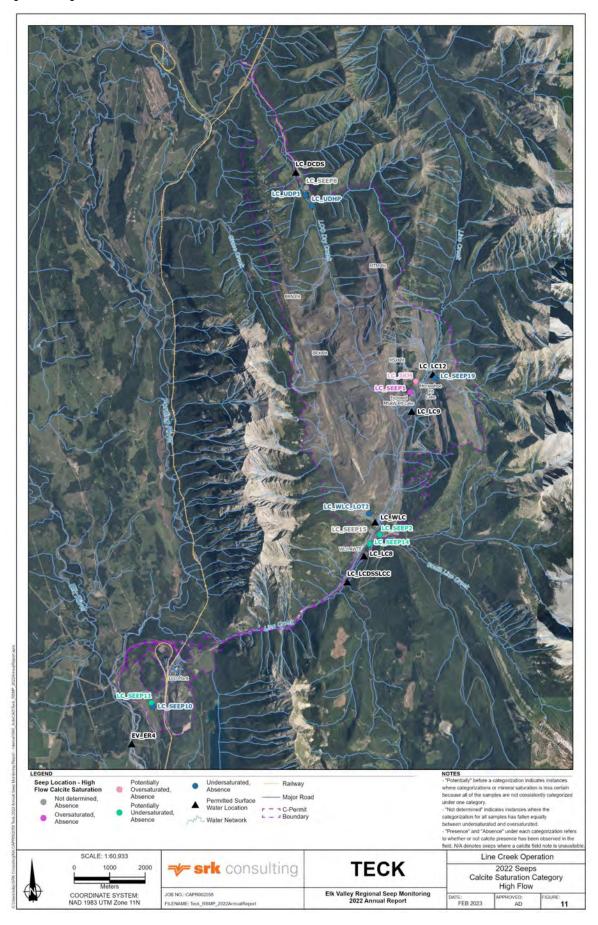


Figure 12: Low Flow Calcite Saturation - LCO

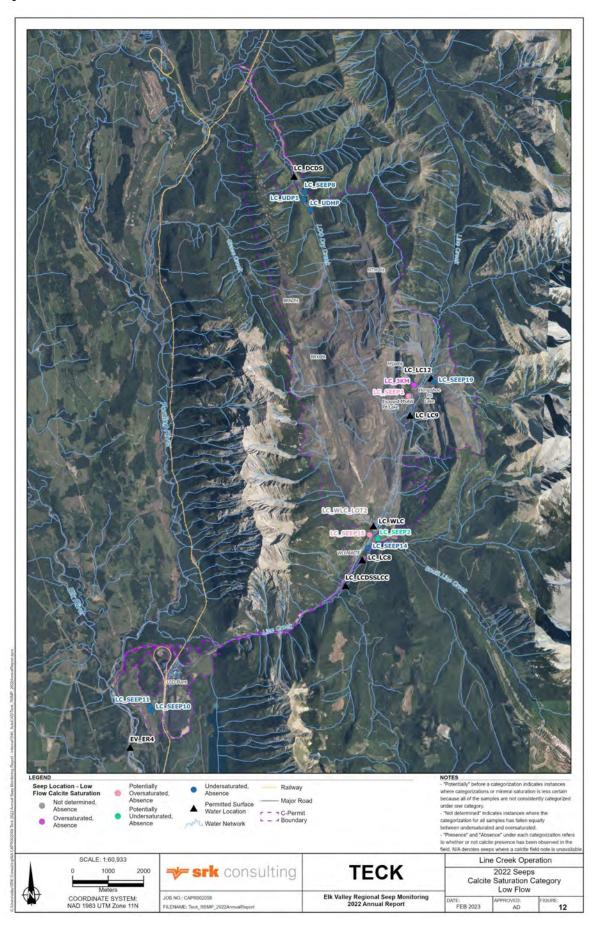


Figure 13: Constituents of Interest Concentration Timeseries at LC_UDHP

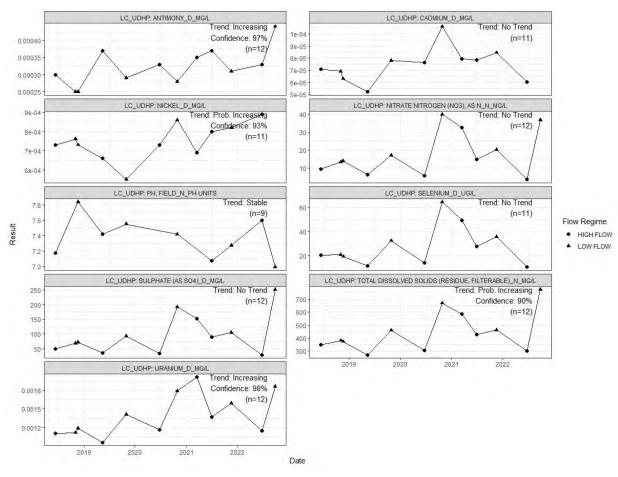


Figure 14: 2022 Seeps and Selected Surface Water Monitoring Locations - EVO

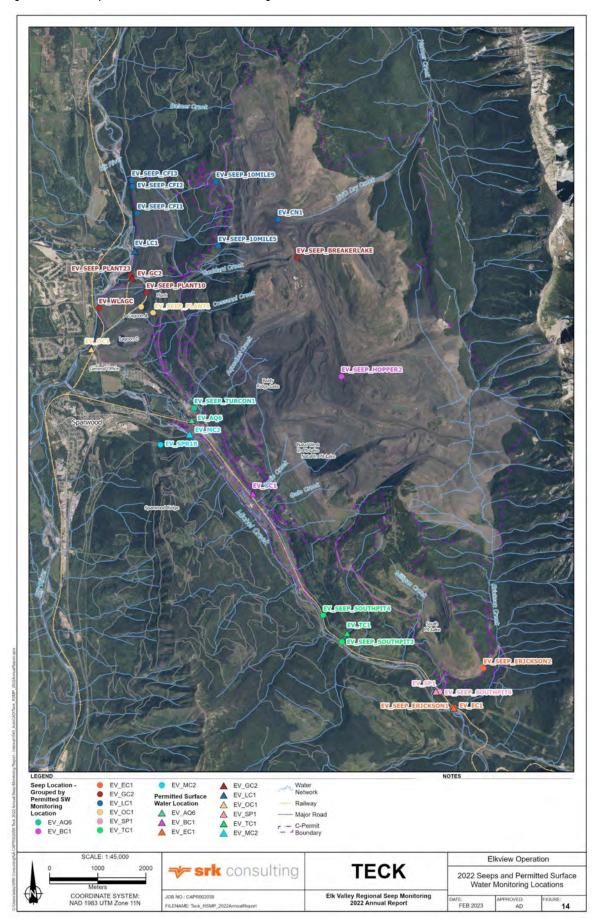


Figure 15: High Flow Calcite Saturation - EVO

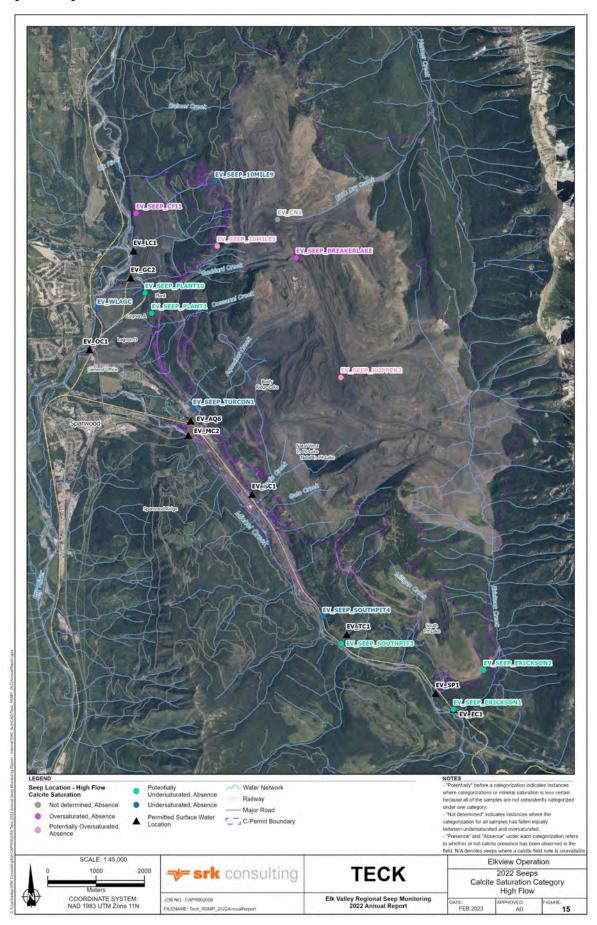


Figure 16: Low Flow Calcite Saturation - EVO



Figure 17: 2022 Seeps and Selected Surface Water Monitoring Locations - CMm

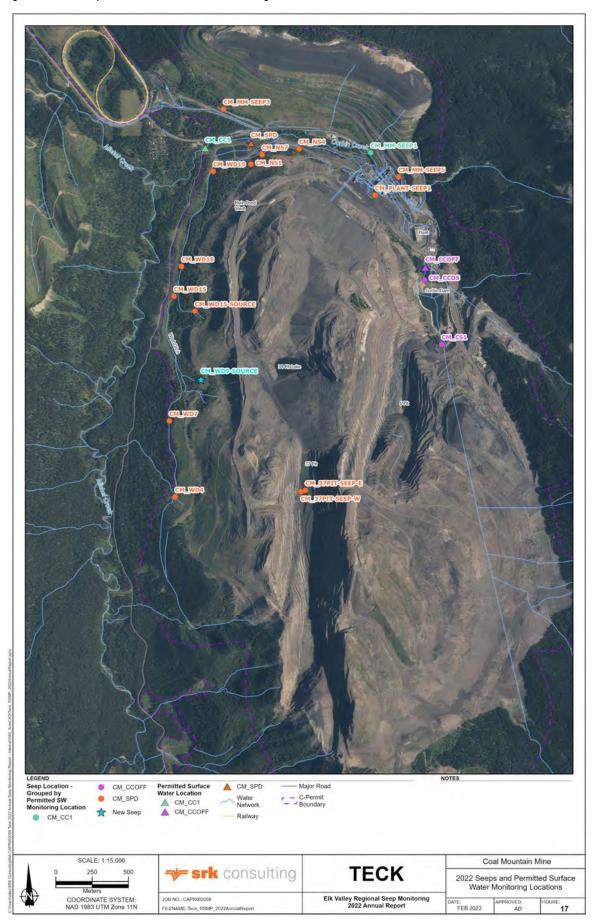


Figure 18: High Flow Calcite Saturation - CMm

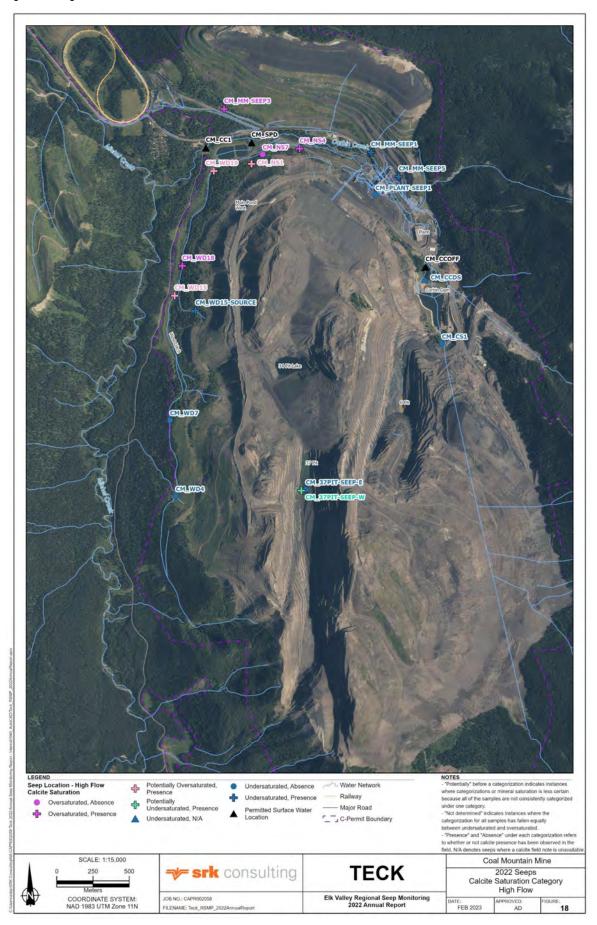


Figure 19: Low Flow Calcite Saturation - CMm

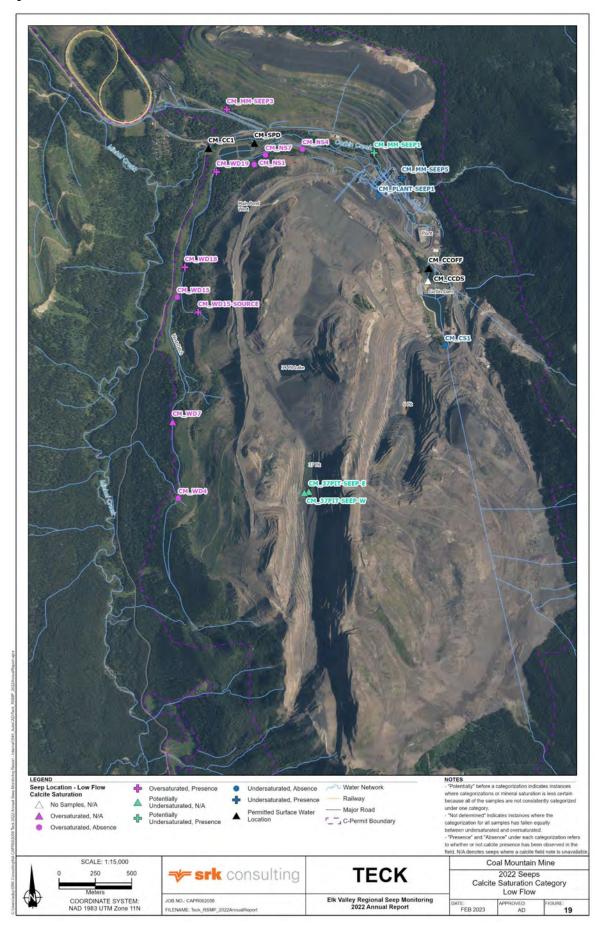


Figure 20: Dissolved molybdenum versus field pH across the Elk Valley

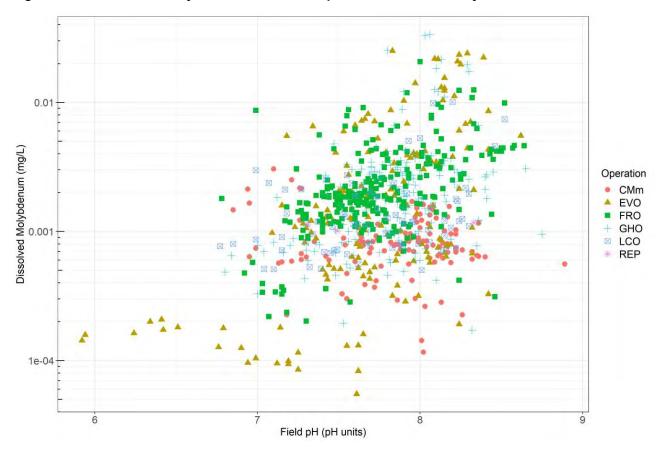


Figure 21: Dissolved selenium versus field pH across the Elk Valley

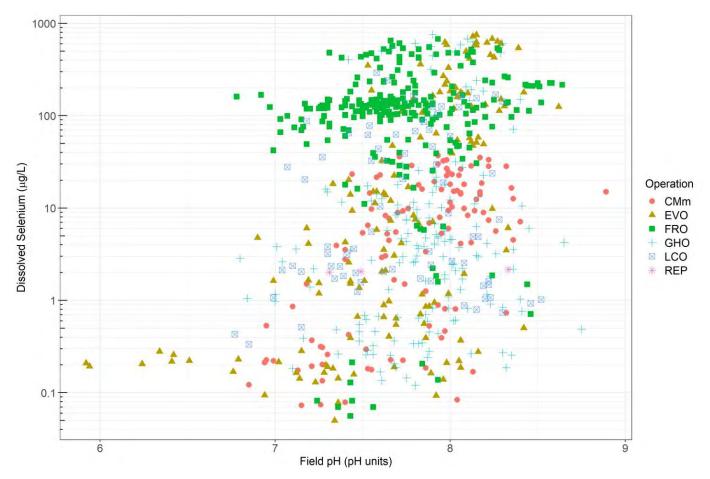
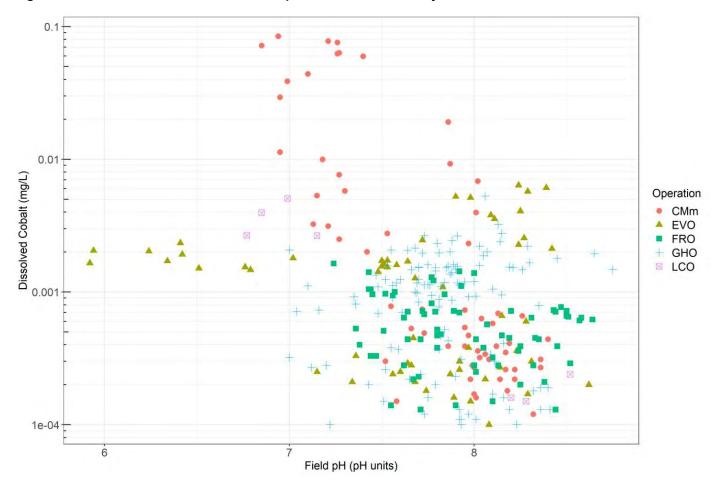



Figure 22: Dissolved cobalt versus field pH across the Elk Valley

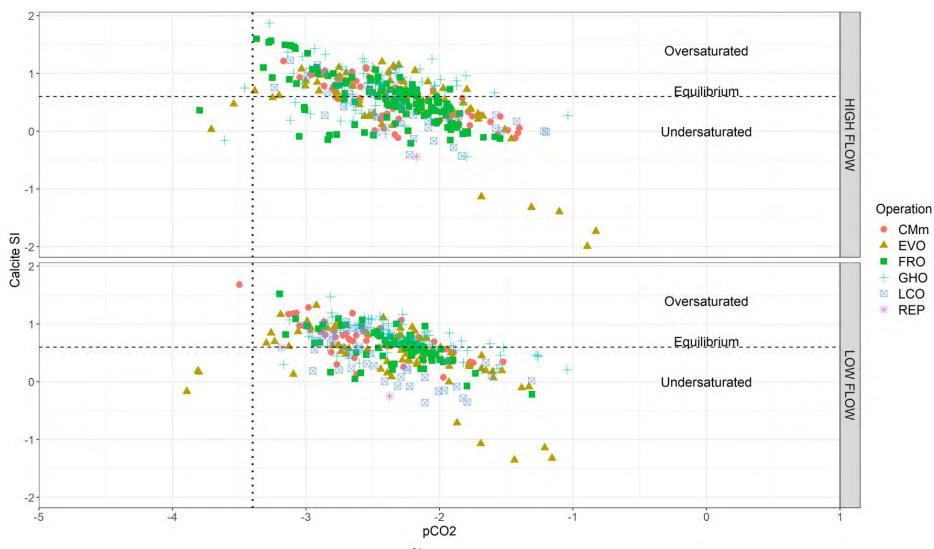


Figure 23: Modelled calcite SI compared to partial pressure (pCO₂) of carbon dioxide across all operations in the Elk Valley

Notes: The vertical dashed line indicates pCO₂ commonly at atmospheric pressure (10^{-3.4} atm). The horizontal dashed line indicates calcite equilibrium.

Figure 24: Dissolved manganese concentrations versus dissolved oxygen measurements across all operations in the Elk Valley

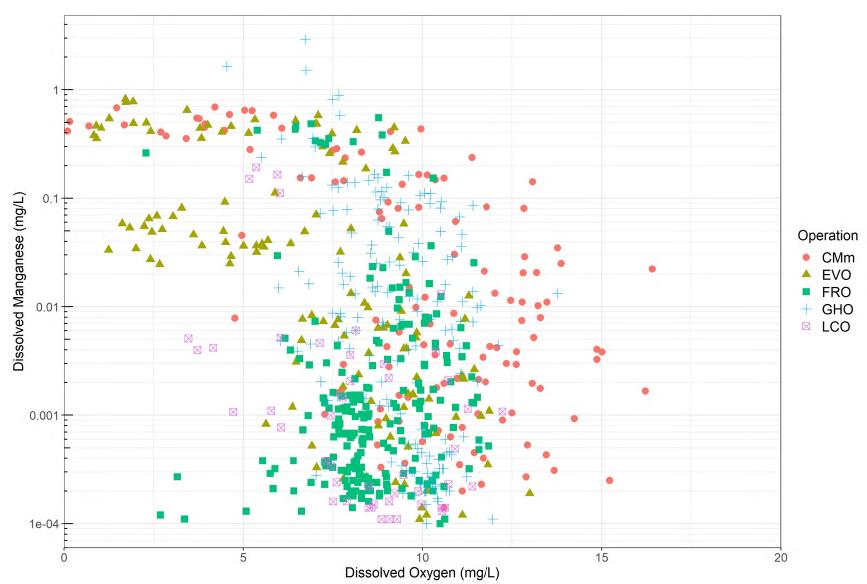
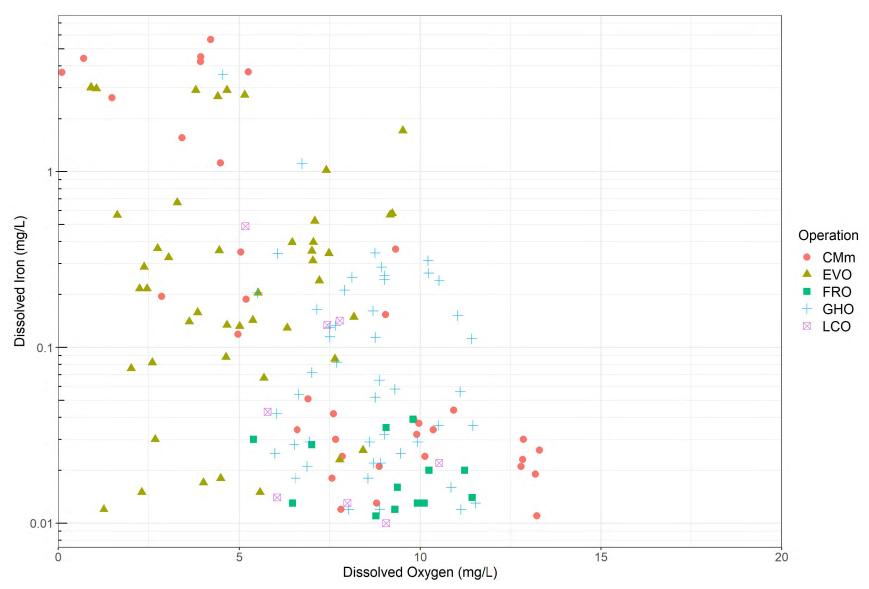



Figure 25: Dissolved iron concentrations versus dissolved oxygen measurements across all operations in the Elk Valley

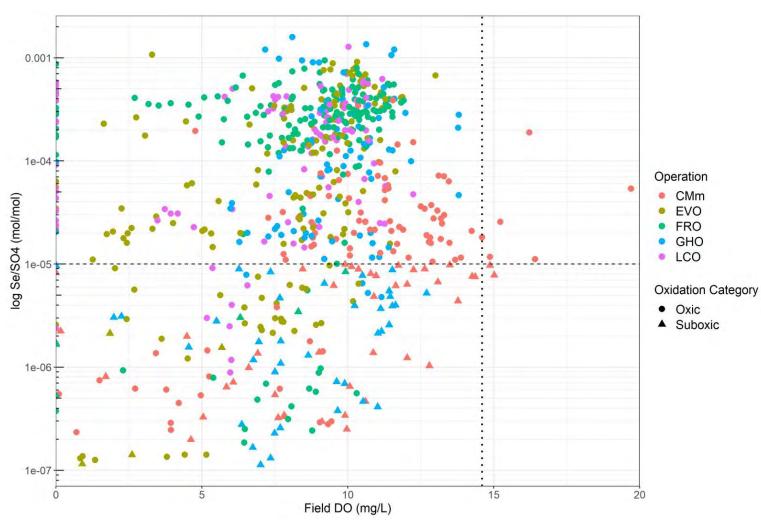


Figure 26: Se/SO₄ versus field dissolved oxygen measurements across all operations in the Elk Valley

Notes: The horizontal dashed line delimits the Se/SO₄ criterium that is applied to categorize seeps as suboxic/oxic. The vertical dashed line delimits the 14.6 mg/L limit for acceptable field DO readings.

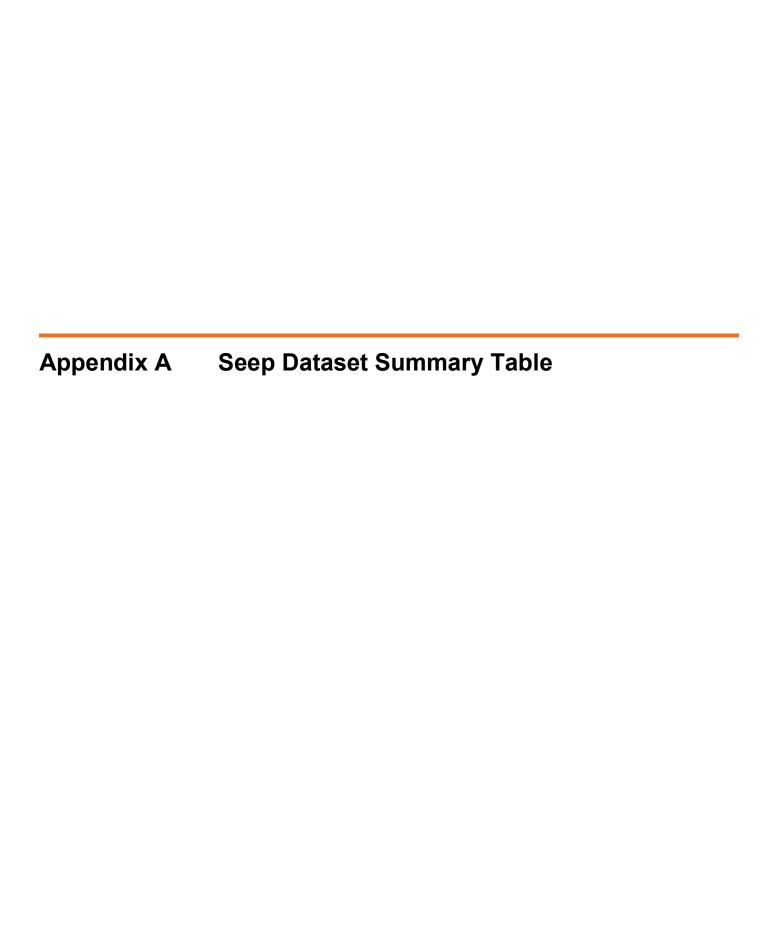


Table 1: Regional Seep Monitoring Program – Summary of Seep Monitoring Program Locations

Area	Seep ID	Group Name	Comparison Permitted Monitoring Location	Easting	Northing	Elevation ¹	Rationale for inclusion in RSMP at time of inclusion
СМО	CM_37PIT-SEEP-E	CM_37PIT	CM_SPD	669241	5485019	2,035	Selected in 2018. Potential MF influence and suboxic with high percent rank group concentrations.
СМО	CM_37PIT-SEEP-W	CM_37PIT	CM_SPD	669210	5485010	2,018	Selected in 2018. Oxic with high percent rank group concentrations.
СМО	CM_WD4	CM_WESTWR	CM_SPD	668344	5484973	1,648	Selected in 2018. Added to provide spatial coverage.
СМО	CM_WD7	CM_WESTWR	CM_SPD	668304	5485497	1,639	Selected in 2018. Added to provide spatial coverage.
СМО	CM_WD15-SOURCE	CM_WESTWR	CM_SPD	668480	5486255	1,575	Selected in 2018. High relative nitrate loading during high flow.
СМО	CM_WD18	CM_WESTWR	CM_SPD	668388	5486564	1,536	Selected during 2018. Oxic with high percent rank group concentrations.
СМО	CM_WD19	CM_WESTWR	CM_SPD	668606	5487220	1,528	Selected in 2018. Added to provide spatial coverage.
СМО	CM_MM-SEEP3	CM_MMCCR	CM_SPD	668677	5487649	1,547	Selected in 2018. Added to provide spatial coverage.
СМО	CM_NS1	CM_EASTWR	CM_SPD	668866	5487270	1,534	Selected in 2018. High relative sulfate loadings, oxic with high percent rank group concentrations.
СМО	CM_NS7	CM_MMCCR	CM_SPD	668943	5487335	1,528	Selected in 2018. High relative group loadings. Oxic with high percent rank group concentrations.
СМО	CM_NS4	CM_MMCCR	CM_SPD	669198	5487375	1,531	Selected in 2018. Suboxic with high percent rang group concentrations.
СМО	CM_MM-SEEP1	CM_MMCCR	CM_CC1	669691	5487349	1,547	Selected in 2018. High relative group nitrate loadings.
СМО	CM_MM-SEEP5	CM_MMCCR	CM_SPD	669882	5487182	1,551	Added in 2020. Suboxic and sulfate concentrations above BCWGs for FWAL.
СМО	CM_PLANT-SEEP1	CM_EASTWR	CM_SPD	669722	5487055	1,561	Selected in 2018. Potential MF influence.
СМО	CM_CCDS	CM_EASTWR	CM_CCOFF	670061	5486470	1,577	Selected in 2018. Added to provide spatial coverage.
СМО	CM_CS1	CM_EASTWR	CM_CCOFF	670180	5486025	1,598	Added in 2018. High relative nitrate loadings.
CMm	CM_WD9-SOURCE	CM_WESTWR	CM_SPD	668347	5485897	1,586	Added in 2022.
EVO	EV_SEEP_CFI3	EV_CCR	EV_LC1	653180	5516139	1,188	Selected in 2018. Oxic with high group percent rank concentrations.
EVO	EV_SEEP_CFI2	EV_CCR	EV_LC1	653197	5516015	1,188	Added in 2022. Replacement for EV_SEEP_CFI3.
EVO	EV_SEEP_CFI1	EV_CCR	EV_LC1	653297	5515455	1,190	Selected in 2018. High relative group loadings.
EVO	EV_SEEP_10MILE9	EV_CEDARWR	EV_LC1	654933	5516114	1,647	Selected in 2018. Added to provide spatial coverage, high relative concentrations to compliance point.
EVO	EV_SEEP_10MILE5	EV_CEDARWR	EV_LC1	654977	5514775	1,581	Selected in 2018. Added to provide spatial coverage, high relative concentrations to compliance point.
EVO	EV_CN1	EV_CEDARWR	EV_LC1	656223	5515327	1,769	Selected in 2018. High group loadings and oxic with high percent rank concentrations during high flow.
EVO	EV_SEEP_PLANT23	EV_PLANT	EV_GC2	653153	5514163	1,134	Selected in 2018. Potential MF influence, high relative group loadings.
EVO	EV_SEEP_BREAKERLAKE	EV_BALDYRIDGEWR	EV_GC2	656609	5514535	1,752	Selected in 2018. Added to provide spatial coverage.
EVO	EV_SEEP_PLANT10	EV_PLANT	EV_GC2	653483	5513807	1,145	Selected in 2018. Potential MF influence, suboxic with high percent rank concentrations.
EVO	EV_WLAGC	EV_CCR/TP	EV_GC2	652492	5513481	1,127	Selected in 2018. High relative group loadings.
EVO	EV_SEEP_PLANT11	EV_PLANT	EV_OC1	653374	5513509	1,141	Selected in 2018. Potential MF influence.
EVO	EV_SEEP_PLANT1	EV_PLANT	EV_OC1	653620	5513384	1,189	Selected in 2018. Potential MF influence, oxic with high percent rank group concentrations.

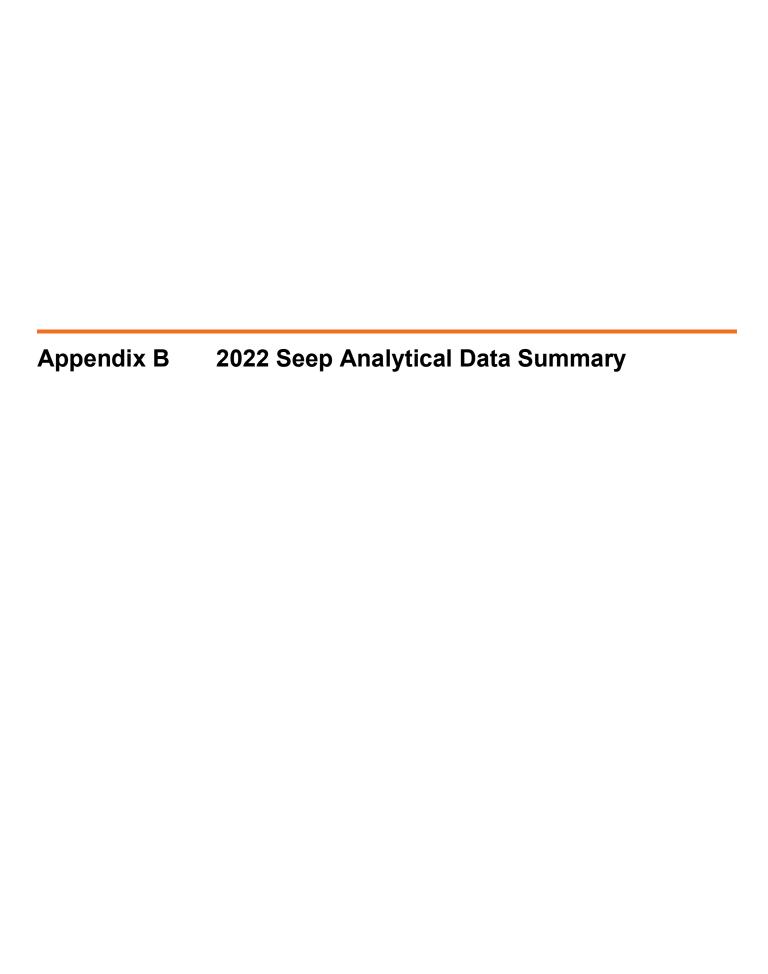
SRK CONSULTING (CANADA) INC. FEBRUARY 2023

Area	Seep ID	Group Name	Comparison Permitted Monitoring Location	Easting	Northing	Elevation ¹	Rationale for inclusion in RSMP at time of inclusion
EVO	EV_SPR1B	EV_SPARWOOD_RIDGE	EV_MC2	653775	5510634	1,200	Added in 2022. Represents Sparwood Ridge area.
EVO	EV_SEEP_TURCON1	EV_BALDYRIDGEWR	EV_AQ6	654475	5511398	1,166	Selected in 2018. Potential MF influence.
EVO	EV_SEEP_HOPPER2	EV_BALDYRIDGEWR	EV_BC1	657535	5512053	1,689	Selected in 2018. Added to provide spatial coverage, concentrations above the BCWQG FWALs of selenium and nitrate.
EVO	EV_SEEP_SOUTHPIT4	EV_SOUTHSLOPE	EV_TC1	657156	5507088	1,199	Selected in 2018. High relative group loadings.
EVO	EV_SEEP_SOUTHPIT3	EV_SOUTHSLOPE	EV_TC1	657543	5506537	1,199	Selected in 2018. Oxic with high percent range group concentrations.
EVO	EV_SEEP_ERICKSON2	EV_ERICKSON_WR	EV_EC1	660488	5505986	1,345	Selected in 2018. High nitrate loadings, oxic with high percent rank nitrate concentrations.
EVO	EV_SEEP_SOUTHPIT6	EV_SOUTHPIT_PIT	EV_SP1	659577	5505500	1,217	Selected in 2018. Oxic with high percent range group concentrations.
EVO	EV_SEEP_ERICKSON1	EV_ERICKSON_WR	EV_EC1	659864	5505175	1,225	Selected in 2018. Potential MF influenced. High sulfate loadings
FRO	FR_HENSEEP3	FR_HEN_WR	FR_FR1	653292	5566949	1,742	Selected in 2018. High group loadings, suboxic with high percent rank group concentrations and parameter concentrations above the BCWQGs for FWAL
FRO	FR_HENSSEEP1	FR_HEN_WR	FR_FR1	651602	5566845	1,756	Selected in 2018. Added to provide spatial coverage.
FRO	FR_TURNSEEP1	FR_TURNBULLWREAST_WR	FR_FR1	652192	5566325	1,733	Selected in 2018. High relative group loadings, oxic with high percent rank group concentrations.
FRO	FR_TBWSEEP1	FR_TURNBULLWRWEST_WR	FR_PP1	650998	5565327	1,689	Selected in 2018. High relative group loadings during high flows, oxic with high percent rank group concentrations.
FRO	FR_TURNSEEP2	FR_TURNBULLWRWEST_WR	FR_PP1	650819	5565026	1,683	Selected in 2018. High relative group loadings during low flows, oxic with high percent rank group concentrations.
FRO	FR_FCSEEP2	FR_TURNBULLWREAST_WR	FR_CC1	651166	5565014	1,682	Selected in 2018. High relative group loadings, elevated parameters.
FRO	FR_CCSEEPE1	FR_CLODECR_WR	FR_CC1	651135	5564250	1,678	Selected in 2018. High group relative loadings.
FRO	FR_CCSEEPSE1	FR_CLODECR_WR	FR_CC1	651090	5563563	1,677	Selected in 2018. Oxic with high percent rank group concentrations.
FRO	FR_LMCWSEEP5	FR_LAKEMTN_WR_PITS	FR_LMP1	650054	5563169	1,711	Selected in 2018. High group loadings, oxic with high percent rank concentrations.
FRO	FR_EAGLENORTH	FR_EAGLE_WR	FR_EC1	651352	5562896	1,658	Selected in 2018. High group loadings, oxic with high percent rank group concentrations and parameter concentrations above the BCWQGs for FWAL.
FRO	FR_ASPSEEP1	FR_A_CCR	FR_LP1	650581	5562456	1,678	Selected in 2018. Oxic with high percent rank group concentrations and high group relative loadings.
FRO	FR_DOKASEEP1	FR_DOKA_WR	FR_NL1	652060	5562391	1,791	Selected in 2018. Added to provide spatial coverage. High percent rank concentrations and parameter concentrations above the BCWQGs for FWAL.
FRO	FR_FSEAMSEEP7	FR_DOKA_UNKNOWN	FR_NL1	652086	5562165	1,794	Selected in 2018. High group loadings, oxic with high percent rank group concentrations and parameter concentrations above the BCWQGs for FWAL.
FRO	FR_SPRWSEEP1	FR_BLAIN_CCR	FR_NL1	651785	5561644	1,719	Selected in 2018. Different catchment (north of CCR) to other group seeps. Highest cadmium loadings in group catchment.
FRO	FR_BLAKESEEP1	FR_BLAIN_CCR	FR_FR2	652324	5561442	1,776	Selected in 2018. Spatially different from other group selection.
FRO	FR_FRVWSEEP3	FR_SMITH_WR	FR_SP1	650821	5560922	1,645	Selected in 2018. Potential MF influence. Oxic, high loadings and group concentrations.
FRO	FR_STPNSEEP	FR_SOUTHTAILS_TAILINGS	FR_FR2	651078	5560665	1,628	Selected in 2018. High nitrate loadings, group concentrations and parameter concentrations above the BCWQGs for FWAL.
FRO	FR_BLAINESEEP1	FR_BLAIN_CCR	FR_FR2	652108	5560708	1,641	Selected in 2018. High group relative loadings.
FRO	FR_STPWSEEP	FR_SOUTHTAILS_TAILINGS	FR_FR2	651637	5560108	1,615	Selected in 2018. Located to the south of the STP. Oxic with high percent rank and high sulfate loadings in high flow.
FRO	FR_STPSWSEEP	FR_SOUTHTAILS_TAILINGS	FR_FR2	651946	5559971	1,607	Selected in 2018. Located to the south of the STP. High sulfate loadings in low flow.
FRO	FR_BLAINESEEP5	FR_BLAIN_CCR	FR_FR2	652556	5560083	1,636	Selected in 2018. Oxic with high percent rank group concentrations.
FRO	FR_SCRDSEEP1	FR_SWIFTWR_ROCKDRAIN_WR	FR_SCOUT	651785	5558475	1,618	Selected in 2018. Only seep in group, oxic with elevated parameters.

SRK CONSULTING (CANADA) INC. FEBRUARY 2023

Area	Seep ID	Group Name	Comparison Permitted Monitoring Location	Easting	Northing	Elevation ¹	Rationale for inclusion in RSMP at time of inclusion
GHO	GH_SEEP_12	GH_PORTER_CREEK	GH_PC1	653013	5556192	1,642	Selected in 2018. Oxic with high percent rank group concentrations.
GHO	GH_SEEP_76	GH_LEASK_WR	GH_LC1	649122	5553280	1,460	Selected in 2018. Only seep in group with water quality data.
GHO	GH_SEEP_77	GH_WOLFRAM_WR	GH_WC1	649147	5552638	1,433	Selected in 2018. Added to provide spatial coverage. High relative group sulfate, nitrate, selenium, cobalt, and cadmium loadings.
GHO	GH_SEEP_79	GH_WOLFRAM_WR	GH_TC2	650369	5551888	1,601	Selected in 2018. Added to provide spatial coverage.
GHO	GH_SEEP_60	GH_THOMPSON_WR	GH_TC2	650791	5551514	1,625	Selected in 2018. Oxic with high percent rank group concentrations.
GHO	GH_SEEP_46	GH_THOMPSON_WR	GH_TC2	652023	5550668	1,875	Selected in 2018. Added to provide spatial coverage.
GHO	GH_SEEP_5	GH_THOMPSON_WR	GH_TC2	652491	5549837	1,920	Selected in 2018. Added to provide spatial coverage. High cadmium and cobalt loadings.
GHO	GH_SEEP_50	GH_UPSTREAM_CCR	GH_TC2	652132	5548940	1,755	Selected in 2018. Added to provide spatial coverage. High relative group loadings.
GHO	GH_SEEP_15	GH_UPSTREAM_CCR	GH_FC1	652502	5548763	1,778	Selected in 2018. Suboxic with high percent rang group concentrations.
GHO	GH_SEEP_30	GH_UPSTREAM_CCR	GH_FC1	652696	5548652	1,766	Selected in 2018. Added to provide spatial coverage.
GHO	GH_WTDS	GH_CCR	GH_FC1	652307	5548078	1,721	Selected in 2018. Added to provide spatial coverage.
GHO	GH_SEEP_16	GH_CCR	GH_GH1	653542	5548705	1,743	Selected in 2018. Potential MF influence.
GHO	GH_SEEP_21	GH_CCR	GH_GH1	653676	5548447	1,734	Selected in 2018. High relative group sulfate loading.
GHO	GH_SEEP_22	GH_CCR	GH_GH1	653945	5547966	1,680	Selected in 2018. High relative group nitrate and selenium loadings. Oxic with high percent rank group concentrations.
GHO	GH_SEEP_26	GH_CCR	GH_GH1	653749	5547262	1,673	Selected in 2018. Added to provide spatial coverage.
GHO	GH_W-SEEP	GH_CCR	GH_GH1	653772	5547268	1,670	Selected in 2018. Suboxic with high percent rank group concentrations.
GHO	GH_E1	GH_CCR	GH_GH1	653038	5546856	1,652	Selected in 2018. Potential MF influence.
GHO	GH_E3	GH_CCR	GH_GH1	652225	5547151	1,677	Selected in 2018. Potential MF influence.
GHO	GH_SEEP_98	GH_RAILLOOP	GH_FR1	653991	5545666	1,502	Added in 2021. Added to provide spatial coverage.
LCO	LC_UDHP	LC_DC_WR	LC_DCDS	658219	5541119	1,702	Added in 2019. Provides spatial coverage. Selenium and Nitrate concentrations above BCWQGs for FWAL.
LCO	LC_UDP1	LC_DC_WR	LC_DCDS	658040	5541412	1,680	Added in 2019. Provides spatial coverage. Selenium and Nitrate concentrations above BCWQGs for FWAL.
LCO	LC_SEEP8	LC_DC_WR	LC_DCDS	658065	5541627	1,675	Selected in 2018. Added to provide spatial coverage.
LCO	LC_SEEP19	LC_HSP_WR	LC_LC12	661708	5536262	1,598	Selected in 2018. High group loadings and oxic with high percent rank concentrations.
LCO	LC_3KM	LC_MSA_WR	LC_LC9	661151	5536174	1,625	Selected in 2018. High relative group cadmium and cobalt loadings.
LCO	LC_SEEP1	LC_MSA_WR	LC_LC9	660992	5535864	1,597	Selected in 2018. Potential MF influence.
LCO	LC_WLC_LOT2	LC_WLC_WR	LC_WLC	659828	5532439	1,496	Selected in 2018. Oxic with high percent rank group concentrations.
LCO	LC_SEEP2	LC_MAXAM	LC_LCDSSLCC	660133	5531841	1,443	Selected in 2018. Added to provide spatial coverage.
LCO	LC_SEEP15	LC_DISTURBEDWSLOPE	LC_LCDSSLCC	659898	5531949	1,464	Selected in 2018. Oxic with high percent rank group concentrations.
LCO	LC_SEEP14	LC_DISTURBEDWSLOPE	LC_LCDSSLCC	659849	5531582	1,427	Selected in 2018. Oxic with high percent rank group concentrations.
LCO	LC_SEEP10	LC_PLANT	EV_ER4	654861	5528350	1,303	Selected in 2018. Added to provide spatial coverage. High relative group loadings.

SRK CONSULTING (CANADA) INC. FEBRUARY 2023


Appendix A: Seep Dataset Summary Table

Area	Seep ID	Group Name	Comparison Permitted Monitoring Location	Easting	Northing	Elevation ¹	Rationale for inclusion in RSMP at time of inclusion
LCO	LC_SEEP11	LC_PLANT	EV_ER4	653702	5527103	1,217	Selected in 2018. High relative group nitrate and selenium loadings.

Sources: https://srk.sharepoint.com/sites/FS4639/Internal/!020_Site-Wide_Data/Seep_WQ_Database/Seeps_WQ_MASTER.xlsx

SRK CONSULTING (CANADA) INC. • FEBRUARY 2023

¹ Elevations were estimated using Google Earth

APPENDIX B - TABLE 1: Summary of Analytical Results for Dissolved Organics, Nutrients and Organics

			_																									
		_	+	Fiel	d Paran	neters			F	hysical Pa	rameters	\$	1	<u> </u>		Disso	lved Inor	ganics	_				Nutrient	S	_	_	_	$\overline{}$
Sample Location	Sample DD	Sample Date	O Field Temperature	전 전 전	Dissolved Oxygen	Field Conductivity	Field ORP	표	Hardness	Conductivity	Total Suspended Solids	Total Dissolved Solids	Turbidity	Bicarbonate	Zarbonate	Mg/r Hydroxide	mg/L Bromide	mg/L	Mg/L	Sulfate	B Ammonia Nitrogen	Mitrate Nitrogen	Witrie Nitrogen	Kjeldahl Nitrogen-N	D Ortho-Phosphate	Phosphorus, Total	Total Organic Carbon	Dissolved Organic Carbon
Location	ID ID	(yyyy-iiiii-uu)	-	pn F	IIIg/L	ро/спі	IIIV	_ Pn	IIIg/L	ралсии	IIIg/L	IIIg/L	IIIu	IIIg/L	IIIg/L	IIIg/L	IIIg/L	IIIg/L	IIIg/L	IIIg/L	IIIg/L	IIIg/L	IIIg/L	IIIg/L	IIIg/L	IIIg/L	IIIg/L	IIIg/L
				Minimum	Acute			Minimum	<u>.</u>		Acute		Acute					Acute	Acute	Chronic	Acute Chronic	Acute	Acute			Chronic		
BC WQG FWAL			n/a	6.5 9	1 5	n/a	n/a	6.5 9	n/a	n/a	25 5	n/a	8 2	n/a	n/a	n/a	n/a	600 150	0.4-	128-429	0.681-28.7 ^b 0.102-2.08 ^b	32.8 3.7	0.06-0.60* 0.02-0.20*	n/a	n/a	0.015	n/a	n/a
Coal Mountain Mine CM 37PIT-SEEP-E	CM 37PIT-SEEP-E WS 2022-07-07 NP	2022-07-07	1440	7.86	1 00	Т-	6 12	8.31	709	1290	17.1	987	6.56	368	4.2	-10	< 0.250	1.06	I 0.412	530	0.728	0.366	< 0.0050	0.87	< 0.0010	0.0024	< 0.50	< 0.50
CM_37PIT-SEEP-E	CM 37PIT-SEEP-E WS 2022-07-07 NP	2022-07-07	13.1				71.2		476	1160	3.3	878	3,63	348	< 1.0	< 1.0	< 0.250		0.517		0.728	0.300	< 0.0050	0.982	< 0.0010	0.0024	1.49	1.24
CM 37PIT-SEEP-W	CM 37PIT-SEEP-W WS 2022-07-07 NP	2022-03-20	12.1		9.32		-129.1	8.37	458	1130	8.5	760	2.92	614	11	< 1.0	< 0.250	0.56	0.289		0.759	0.0746	< 0.0050	0.718	< 0.0010	0.0025	< 0.50	< 0.50
CM 37PIT-SEEP-W	CM 37PIT-SEEP-W WS 2022-09-02 NP	2022-09-28	17.2			-	146.5		180	933	6.3	604	0.56	603	< 1.0	< 1.0	< 0.250	0.94	0.49	98.6	0.648	0.0948	0.0109	0.784	< 0.0010		< 0.50	0.85
CM CCDS	CM CCDS WS 2022-07-20 NP	2022-06-16	4.4		11.27		98.4	7.96	300	506	< 1.0	335	0.15	214	< 1.0	< 1.0	< 0.050	0.39	0.167		< 0.0050	0.776	< 0.0010	0.097	0.0056	0.005	0.98	0.95
CM CS1	CM CS1 WS 2022-07-20 NP	2022-06-16	5.5		11.03		57.3		365	596	< 1.0		0.15		< 1.0	< 1.0	< 0.050	2.16	0.238		< 0.0050	2.46	< 0.0010	0.173	0.0015	0.0027	0.64	0.6
CM CS1	CM CS1 WS 2022-09-02 NP	2022-09-15	7.1		11.11	-		8.06	314	569	< 1.0	388	0.99	288	< 1.0	< 1.0	< 0.050	2.83	0.358		< 0.0050	3.63	< 0.0010	0.269	0.002	0.0043	< 0.50	< 0.50
CM MM-SEEP1	CM MM-SEEP1 WS 2022-07-20 NP	2022-06-16	6.3		11.44	-	91.9	7.98	614	973	< 1.0	694	0.15	527	< 1.0	< 1.0	< 0.250	2.42	0.308		< 0.0050	0.592	0.0099	0.118	< 0.0010	< 0.0020	0.84	0.76
CM MM-SEEP1	CM MM-SEEP1 WS 2022-09-02 NP	2022-09-15	10.7		9.6	-	98	8.12	490	850	< 1.0	532	0.10		< 1.0	< 1.0		3 14	0.327		< 0.0050	0.307	< 0.0010	< 0.050		< 0.0020	< 0.50	< 0.50
CM MM-SEEP3	CM MM-SEEP3 WS 2022-07-20 NP	2022-06-16	7.2		6.91	-	82.2	8.04	1020	1530	3.8	1320	1.4	459	< 1.0	< 1.0	< 0.250	1.18	< 0.100		0.0161	0.1	0.0052	0.337	< 0.0010	0.0054	3.56	3.32
CM MM-SEEP3	CM MM-SEEP3 WS 2022-09-02 NP	2022-09-15	19.2		7.61	-	86.6	8.02	976	1580	9.6	1270	2.97	480	< 1.0	< 1.0	< 0.250	0.75	< 0.100		< 0.0050	0.079	< 0.0050	0.147	< 0.0010	< 0.0020	2.66	2.6
CM MM-SEEP5	CM MM-SEEP5 WS 2022-07-20 NP	2022-06-16	7.3		7.57	-	114.4		791	1170	12.2	981	2.85	372	< 1.0	< 1.0	< 0.250	3.3	0.203		0.0093	0.204	< 0.0050	0.083	< 0.0010	< 0.0020	0.59	0.95
CM MM-SEEP5	CM MM-SEEP5 WS 2022-09-02 NP	2022-09-15	11			-	92.6	7.9	581	932	3.3	658	1.02	506	< 1.0	< 1.0	< 0.050	0.93	0.242	201	< 0.0050	0.0731	< 0.0010	< 0.050	< 0.0010	< 0.0020	< 0.50	< 0.50
CM NS1	CM NS1 WS 2022-07-20 NP	2022-06-16	4.5		13.23	-	37.6	8.09	1380	1860	1.8	1720	0.32	272	< 1.0	< 1.0	< 0.250	2.55	0.243	1140	< 0.0050	0.248	< 0.0050	0.11	0.0031	0.0066	1.86	2.04
CM NS1	CM NS1 WS 2022-09-02 NP	2022-09-14	5.6	8.17	16.41	-	2.3	8.33	1650	2420	3.1	2300	0.25	306	7.2	< 1.0	< 0.250	5.46	0.23	1620	0.006	0.393	< 0.0050	0.114	0.0046	0.0097	2.07	1.67
CM_NS4	CM_NS4_WS_2022-07-20_NP	2022-06-16	7.9	7.93	11.27	-	70.6	8.13	768	1200	1.5	997	0.8	356	< 1.0	< 1.0	< 0.250	1.74	0.252	506	< 0.0050	0.261	< 0.0050	< 0.050	< 0.0010	< 0.0020	0.94	0.93
CM_NS4	CM_NS4_WS_2022-09-02_NP	2022-09-14	11.4	7.88	10.06	-	68.6	8.28	1100	1810	1.2	1540	0.2	390	< 1.0	< 1.0	< 0.250	1.89	0.254	988	< 0.0050	0.032	< 0.0050	< 0.050	0.003	< 0.0020	< 0.50	< 0.50
CM_NS7	CM_NS7_WS_2022-07-20_NP	2022-06-16	4.7	7.98	12.86	-	11.5	8.09	1020	1500	1.6	1250	0.43	344	< 1.0	< 1.0	< 0.250	2.49	0.266	731	< 0.0050	0.361	< 0.0050	0.055	0.003	0.0066	1.88	1.54
CM_NS7	CM_NS7_WS_2022-09-02_NP	2022-09-14	10.3	8.1	9.9	-	67.2	8.36	1080	1810	3.4	1430	1.39	336	10	< 1.0	< 0.250	3.02	0.228	1020	< 0.0050	0.0691	< 0.0050	0.17	0.0034	0.0092	1.4	1.28
CM_PLANT-SEEP1	CM_PLANT-SEEP1_WS_2022-07-20_NP	2022-06-16	18.1		5.19	-	23	7.97	756	1100	1.7	878	1.59	484	< 1.0	< 1.0		3.16	0.284		0.0226	< 0.0250	< 0.0050	0.116	< 0.0010	0.0033	1.63	0.98
CM_PLANT-SEEP1	CM_PLANT-SEEP1_WS_2022-09-02_NP	2022-09-15	10.7		3.94	-	-103.6		800	1200	9.5	928	60.3	587	< 1.0	< 1.0	< 0.250	3.17	0.26	361	0.103	0.0262	< 0.0050	0.118	< 0.0010	0.0046	0.73	0.59
CM_WD15	CM_WD15_WS_2022-07-20_NP	2022-06-15	7.7		11.11	-	120.9	8.25	1250	1900	2	1830	0.27	262	< 1.0	< 1.0	< 0.250	3	0.17		< 0.0050	1.08	< 0.0050	0.097	0.0012	0.0052	1.52	1.79
CM_WD15	CM_WD15_WS_2022-09-02_NP	2022-09-14	8.4	7.85	11.64	-	160	8.32	1570	2350	2.7	2090	0.36	297	6.5	< 1.0	< 0.250	3.94	0.14		< 0.0050	0.337	< 0.0050	0.108	0.0042	0.0068	0.67	0.74
CM_WD15	CM_WD15_WS_2022-09-19_NP	2022-09-19	-	-	-	-	-	8.32	1530	2330	< 1.0	2280	0.15	279	4.4	< 1.0	< 0.250	4.16	0.145		< 0.0050	0.35	< 0.0050	0.091	0.0057	0.0057	0.98	0.84
CM_WD15-SOURCE	CM_WD15-SOURCE_WS_2022-07-20_NP	2022-06-15	6		12.62		122.9	8.31	1330	1990	2	1770	0.11	265	5.6	< 1.0	< 0.250	2.55	0.17	1170	< 0.0050	1.19	< 0.0050	0.411	< 0.0010	0.0033	1.1	1.07
CM_WD15-SOURCE	CM_WD15-SOURCE_WS_2022-09-02_NP	2022-09-14	6.8		15.01	-	143.3	8.34	1680	2380	1.5	2220	< 0.10		8.2	< 1.0	< 0.250	3.81	0.146		< 0.0050	0.474	< 0.0050	0.112	< 0.0010	< 0.0020	0.58	< 0.50
CM_WD15-SOURCE	CM_WD15-SOURCE_WS_2022-09-19_NP	2022-09-19	-	-	-	-	-	8.29	1640	2390	< 1.0	2370	0.21	370	< 1.0	< 1.0	< 0.250	3.85	0.166		0.0064	0.5	< 0.0050	0.109	0.0031	0.0032	0.61	0.97
CM_WD18	CM_WD18_WS_2022-07-20_NP	2022-06-15	6.3		12.5	-	111.4	8.3	1260	1880	3	1700	0.33	242	4.2	< 1.0	< 0.250	3.32	0.176		0.0088	0.661	< 0.0050	0.138	< 0.0010	0.005	1.46	1.34
CM_WD18	CM_WD18_WS_2022-09-02_NP	2022-09-14	9.6		11.49	-	113.7	8.38	1690	2460	4.1	2380	0.36	316	12.1	< 1.0	< 0.250	4.87	0.16	1640	< 0.0050	0.515	< 0.0050	0.219	0.0041	0.006	0.74	0.68
CM_WD19	CM_WD19_WS_2022-07-20_NP	2022-06-15	5.1			-	89	8.3	1000	1600	4	1420	0.51	276	4.6	< 1.0	< 0.250	3.44	0.213		< 0.0050	0.766	< 0.0050	0.103	< 0.0010	0.0051	1.45	1.35
CM_WD19	CM_WD19_WS_2022-09-02_NP	2022-09-14	6.8		13.77		90.9	8.33	1200	1920	1.8	1810	0.53	262	6.8	< 1.0	< 0.250	3.56	0.177		< 0.0050	0.111	< 0.0050	0.07	0.0026	0.0048	< 0.50	< 0.50
CM_WD4	CM_WD4_WS_2022-07-20_NP	2022-06-15	5.4		12.35	-	106.3	8.28	503	881	1.4	694	1.18	254	< 1.0	< 1.0	< 0.050	0.39	0.157	336	< 0.0050	0.265	< 0.0010	< 0.050	0.0046	0.0111	2.02	1.73
CM_WD4	CM_WD4_WS_2022-09-02_NP	2022-09-14	6.2		14.6	-	246.4	8.22	718	1150	1.1	966	0.35	269	< 1.0	< 1.0	< 0.250	1.01	0.145		< 0.0050	0.166	< 0.0050	0.059	0.011	0.0119	0.84	0.74
CM_WD7	CM_WD7_WS_2022-07-20_NP	2022-06-15	5.3		11.54	-	107.8	8.33	354	634	10.6	417	2.7	345	7.3	< 1.0	< 0.050	0.19	0.238		0.0059	0.42	< 0.0010	0.301	0.004	0.013	2.68	2.18
CM_WD7	CM_WD7_WS_2022-09-02_NP	2022-09-14	9.2	7.76	9.07	-	204.2	8.36	480	765	10.2	532	5.41	382	9.2	< 1.0	< 0.050	0.32	0.194	159	< 0.0050	< 0.0050	< 0.0010	0.145	0.0017	0.0045	1.01	1.06

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted n/a denotes no applicable standard

BOLD ITALIC Concentrate greater than the chronic (30-Day average) BCWQG for FWAL Concentrate greater than the acute (short term) BCWQG for FWAL

^a Guideline varies with hardness ^b Guideline varies with pH and water temperature ^c Guideline varies with chloride

APPENDIX B - TABLE 1: Summary of Analytical Results for Dissolved Organics, Nutrients and Organics

				Field	i Param	otors				Physical Pa	rameter	re .		1		Dies	olved Ino	rnanics					Nutrient	e				
			1	1 1010	a a a a a a a a a a a a a a a a a a a	1010	_			yaicai Fe		Ĭ		1		ופפוש		ganico	1				Hadielle	ĭ				_
Sample	Sample	Sample Date	Field Temperature	pH (field)	Dissolved Oxygen	Field Conductivity	Field ORP	Ŧā.	Hardness	Conductivity	Total Suspended Solids	Total Dissolved Solids	Turbidity	Bicarbonate	Carbonate	Hydroxide	Bromide	Chloride	Fluoride	Sulfate	Ammonia Nitrogen	Nitrate Nitrogen	Nitrite Nitrogen	Kjeldahl Nitrogen-N	Ortho-Pho sphate	Phosphorus, Total	Total Organic Carbon	Dissolved Organic Carbon
Location	ID	(yyyy-mm-dd)	С	pН	mg/L	μS/cm	mV	pН	mg/L	μS/cm	mg/L	mg/L	ntu	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
BC WQG FWAL			n/a	Minimum Maximum	T Acute	n/a	n/a	Maximum 9	n/a	n/a	5 Acute 5 Chronic	n/a	a Acute	n/a	n/a	n/a	n/a	Chronic	Acute 4-9.0	2 CH CH 128-429	9 50 50 50 50 50 50 50 50 50 50 50 50 50	Chronic 32.8 3.7	0.06-0.60° 0.02-0.20°	n/a	n/a	0.015	n/a	n/a
Elkview Operation																												
EV_CN1	EV_CN1_WS_2022-05-18_NP	2022-05-18	5.6	8.12	10.07	-	227.7	8.22	461	824	< 1.0	578	0.1	335	< 1.0	< 1.0	< 0.050	1.51	0.168	213	< 0.0050	1.61	0.0015	0.213		0.0072		< 0.50
EV_CN1	EV_CN1_WS_2022-06-29_NP	2022-06-29	6.5		10.29	-	156.7	8.53	500	852	< 1.0		0.13		10.7	< 1.0	< 0.050		0.153		< 0.0050	1.46	< 0.0010	0.219	0.0027	0.0083	0.51	0.5
EV_CN1	EV_CN1_WS_2022-07-14_NP	2022-07-14	4.9	7.94		-	169.7	8.2	550	916	< 1.0		0.18		< 1.0	< 1.0	< 0.050		0.172		< 0.0050	1.78	0.0011	< 0.050	0.0074	0.0085		< 0.50
EV_CN1	EV_CN1_WS_2022-07-20_NP	2022-07-20	7.6		9.81		97.1	8.24	649	938	1.2	732	0.96		< 1.0	< 1.0	< 0.250		0.226	303	0.077	1.8	< 0.0050	0.286	0.0024		< 0.50	< 0.50
EV_CN1	EV_CN1_WS_2022-08-25_NP	2022-08-25	7.3		10.06	-	134.1	8.24	702	1040	< 1.0	841	0.2		< 1.0	< 1.0	< 0.250		0.167		< 0.0050	2.08	< 0.0050	-	0.008	0.0073	< 0.50	< 0.50
EV_CN1	EV_CN1_WS_2022-09_SA_NP	2022-09-27	10.8	7.98	9.45	-	159.8	8.28	652	1100	2.3	859	0.32		< 1.0	< 1.0	< 0.250		0.183	419	< 0.0050	2.25	< 0.0050	0.098	0.0054	0.0076		< 0.50
EV_CN1 EV SEEP 10MILE5	EV_CN1_WS_2022-10-20_NP EV_SEEP_10MILE5_WS_2022-05-18_NP	2022-10-20	-	-	-	-	105.4	8.18	723	1100	< 1.0	781	< 0.10		< 1.0	< 1.0	< 0.250		0.189	431	< 0.0050	2.26	< 0.0050	0.202	0.0071	0.0072	0.78	< 0.50
EV_SEEP_TOMILES EV_SEEP_TOMILES	EV_SEEP_10MILES_WS_2022-05-18_NP EV_SEEP_10MILES_WS_2022-06-29_NP	2022-05-18 2022-06-29	6 8.5	8.01	10.67	-	195.4	8.14	589 594	1000	6.6	739 745	0.19		< 1.0	< 1.0	< 0.250		< 0.101	317	< 0.0050	3.05 1.57	< 0.0050	0.322 4.08	< 0.0010	0.0078	1.26	1.26 0.87
EV_SEEP_TOMILES EV_SEEP_TOMILES	EV SEEP 10MILES WS 2022-06-29 NP EV SEEP 10MILES WS 2022-07-14 NP	2022-06-29	9.6	8.13	9.8	-	201.4	8.38	601	1010	1.1	803	0.13		< 1.0	< 1.0	< 0.250		0.198		0.0078	1.67	< 0.0050	0.274	0.0010		< 0.50	< 0.50
EV_SEEP_10MILES	EV SEEP 10MILES WS 2022-07-14 NP	2022-07-14	9.9	8.12	9.38		96.2	8.26 8.29	663	1030	< 1.0		0.31		1.1	< 1.0	< 0.250		0.196		< 0.0050 0.0721	1.54	0.0121	0.274	0.0012	0.0039	0.78	1.09
EV_SEEP_TOMILES	EV SEEP 10MILES_WS_2022-07-20_NP	2022-07-20	8.9	7.9	9.20	-	116.9	8.26	648	1070	14.7		3.79		< 1.0	< 1.0	< 0.250		0.146		0.0721	1.62	7.73 < 0.0050	0.375	< 0.0010	0.0027	0.78	0.58
EV SEEP 10MILE5	EV SEEP 10MILES WS 2022-09 SA NP	2022-09-28	10.6	8.18				8.14	685	1080	74.3	838	18.5		< 1.0	< 1.0	< 0.250		0.115		< 0.0954	1.45	< 0.0050	0.328	< 0.0010	0.0389	1.02	< 0.50
EV SEEP 10MILE9	EV SEEP 10MILE9 WS 2022-05-19 NP	2022-05-19	5.4	6.24				6.82	247	527	80.7	328	62		< 1.0	< 1.0	0.882	72.5	0.097	11.7	0.0111	0.221	0.0056	< 0.050	0.0951	0.336	2.54	0.82
EV SEEP 10MILE9	EV SEEP 10MILE9 WS 2022-06-29 NP	2022-06-29	9		2.59	-	192	7.8	247	534	95	388	37.5		< 1.0	< 1.0	0.919	71.1	0.113	13.8	< 0.0050	0.233	< 0.0010	0.77	0.104	0.208	1.08	1.16
EV SEEP 10MILE9	EV SEEP 10MILE9 WS 2022-07-20 NP	2022-07-20	7.7			- 1	128.8	6.75	258	513	3.4	391		213	< 1.0	< 1.0	0.755	58.8	0.118		0.0116	0.172	< 0.0010	0.132	0.104	0.117	1.18	1.2
EV SEEP 10MILE9	EV SEEP 10MILE9 WS 2022-08-24 NP	2022-08-24	8.5	6.67	3.31	-	104.9	6.99	226	474	2	313	3.91		< 1.0	< 1.0	0.731	52.2	0.124		< 0.0050	0.174	< 0.0010	< 0.050	0.0994	0.0972	1.08	1.01
EV SEEP 10MILE9	EV SEEP 10MILE9 WS 2022-09 SA NP	2022-09-28	11.8	6.35		-	170	7.17	203	405	1.6	252	0.61		< 1.0	< 1.0	0.441	34.4	0.135	15.1	< 0.0050	0.175	< 0.0010	< 0.050	0.102	0.11	0.62	0.57
EV SEEP 10MILE9	EV SEEP 10MILE9 WS 2022-10-20 NP	2022-10-20	-	-	-	-	-	6.81	192	368	10.5	178	3.8		< 1.0	< 1.0	0.382	28.7	0.125	15.5	< 0.0050	0.162	< 0.0010	< 0.050	0.107	0.0914	1.18	0.65
EV_SEEP_BREAKERLAKE	EV_SEEP_BREAKERLAKE_WS_2022-06_SA_NP	2022-07-14	15.6	8.24	7.75	-	151.9	6.92	242	513	10.8	390	7.94	207	< 1.0	< 1.0	0.994	67.8	0.112	13.2	< 0.0050	0.205	0.0061	0.079	0.104	0.104	0.93	0.67
	EV_SEEP_BREAKERLAKE_WS_2022-09_SA_NP	2022-09-27	9.2	7.68	5.88	-	161.5	8.19	535	952	31.4	700	35.4	347	< 1.0	< 1.0	< 0.250	12.1	0.243		0.0211	0.176	< 0.0050	0.24	< 0.0010	0.0371	7.75	1.29
EV_SEEP_CFI1	EV_SEEP_CFI1_WS_2022-06_SA_NP	2022-07-07	18.1	7.92	7.48	-	54	8.22	489	838	7.2	466	4.38		< 1.0	< 1.0	0.059	7.39	0.311		0.129	0.0339	0.0025	0.203	< 0.0010	0.0039	1.58	1.39
EV_SEEP_CFI1	EV_SEEP_CFI1_WS_2022-09_SA_NP	2022-09-26	14.1	7.86	8.05	-	-92.8	8.1	530	805	6.9	427	4.71		< 1.0	< 1.0	0.062	6.58	0.31	< 0.30	0.0983	0.0753	0.0049	0.19	< 0.0010	0.0027	1.25	1.35
EV_SEEP_CFI2	EV_SEEP_CFI2_WS_2022-06_SA_NP	2022-07-08	15.2	8.06		-	147.4	7.99	619	909	2.7	464	1.34		< 1.0	< 1.0	< 0.250	3.93	0.194	78.3	< 0.0050	< 0.0250	< 0.0050	0.084	< 0.0010	0.005	1.66	1.63
EV_SEEP_CFI2	EV_SEEP_CFI2_WS_2022-09_SA_NP	2022-09-26	14.3		9.09	-	177.4	8.11	596	872	< 1.0	492	0.62		< 1.0	< 1.0	< 0.250		0.206		0.0107	< 0.0250	< 0.0050	0.252	< 0.0010	0.0186	1.62	1.43
EV_SEEP_ERICKSON1	EV_SEEP_ERICKSON1_WS_2022-06_SA_NP	2022-07-13	6.9		0.9	-	-128.3	8.08	600	1050	7.9	870	43.9		< 1.0	< 1.0	< 0.250		0.217	528	0.0792	0.0259	< 0.0050	0.06	< 0.0010	0.0054	30	< 0.50
EV_SEEP_ERICKSON1	EV_SEEP_ERICKSON1_WS_2022-09_SA_NP	2022-10-05	7		1.34	-	-102.2	7.95	663	1000	6.3	818		214	< 1.0	< 1.0	< 0.250		0.237	484	0.0815	0.364	< 0.0050	0.099	< 0.0010	0.0046	< 0.50	< 0.50
EV_SEEP_ERICKSON2 EV_SEEP_ERICKSON2	EV SEEP ERICKSON2 WS 2022-06 SA NP EV SEEP ERICKSON2 WS 2022-09 SA NP	2022-07-07	14.2	8.24 8.15	8.98 9.65	-	184.3	8.5	349 2350	626 3050	< 1.0 5.3	432 3140	1.03		7.2	< 1.0	< 0.050		0.204	79.1 2060	0.0071 < 0.0050	0.564 13.8	0.0017 < 0.0050	0.222	0.0448	0.0446	3.06	4.12 2.94
EV_SEEP_ERICKSON2 EV_SEEP_HOPPER2	EV SEEP HOPPER2 WS 2022-09 SA NP	2022-09-26	16.8	8.15	7.9	⊢ <u>i</u> →	158.5	8.26	2720	3780	18.3	3800		206	< 1.0	< 1.0	< 0.500		0.462		0.0050	30.9	0.0103	0.455		0.0405	0.65	0.64
EV SEEP HOPPER2	EV SEEP HOPPER2 WS 2022-09 SA NP	2022-09-27	12.6	7.98	9.1		215.6	8.18	2010	2920	128	2780	23.7		< 1.0	< 1.0	< 0.250	7.29	0.532	1800	< 0.0050	18.9	0.0103	0.398	< 0.0010	< 0.0020		0.92
EV SEEP PLANT1	EV SEEP PLANT1 WS 2022-06 SA NP	2022-07-08	13.1		8.48	- 1	138.1	8.12	464	1020	5.6	605	4.15		< 1.0	< 1.0	< 0.250	69.3	0.332		< 0.0050	< 0.0250	< 0.0050	0.165	< 0.0010	0.0124	2.59	2.46
EV SEEP PLANT10	EV SEEP PLANT10 WS 2022-06 SA NP	2022-07-08	18.3	7.55		-	-186.2	7.69	767	2490	286	1780	227		< 1.0	< 1.0	< 0.250	103	0.379		0.921	0.0852	< 0.0050	2.92		0.148	125	0.71
EV_SEEP_PLANT11	EV_SEEP_PLANT11_WS_2022-06_SA_NP	2022-07-07	18	7.99	6.92	- 1	168.4	8.3	484	1140	1.4	783	0.2		< 1.0	< 1.0	0.668	93.9	0.174	190	< 0.0050	< 0.0250	< 0.0050	0.208	0.0017	0.0057	3.13	3.03
EV_SEEP_PLANT11	EV_SEEP_PLANT11_WS_2022-09_SA_NP	2022-09-26	9.7	7.88	7.73	- 1	152	8.13	544	1180	3.1	753	0.22		< 1.0	< 1.0	0.64	88.8	0.179		< 0.0050	< 0.0250	< 0.0050	0.148	0.0013	0.0044	2.88	2.87
EV_SEEP_PLANT23	EV_SEEP_PLANT23_WS_2022-06_SA_NP	2022-07-07	13.1	7.42	8.51	-	187.7	7.87	776	1340	< 1.0	1020	0.16		< 1.0	< 1.0	0.25	28.6	0.151	445	< 0.0050	0.349	< 0.0050	0.107	< 0.0010	0.0021	1.06	1.23
EV_SEEP_PLANT23	EV_SEEP_PLANT23_WS_2022-09_SA_NP	2022-09-26	13.9	7.76		-	196.9	8.09	868	1320	3.5	1030	0.84		< 1.0	< 1.0	< 0.250	23	0.164		< 0.0050	0.237	< 0.0050	< 0.050		< 0.0020		0.98
EV_SEEP_SOUTHPIT3	EV_SEEP_SOUHTPIT3_WS_2022-06_SA_NP	2022-07-13	14.5		8.9	-	40.9	8.54	264	467	1.1	306	0.18		9.2	< 1.0	< 0.050		0.106		< 0.0050	0.0069	< 0.0010	0.059	0.0175	0.0191	2.9	2.82
EV_SEEP_SOUTHPIT3	EV_SEEP_SOUTHPIT3_WS_2022-09_SA_NP	2022-09-30	13.7	7.89		-	156	8.04	438	705	4.7	468	< 0.10		< 1.0	< 1.0	< 0.050	0.45	0.078	72.6	< 0.0050	0.0053	< 0.0010	0.327	0.0154	0.03	3.94	4.05
EV_SEEP_SOUTHPIT4	EV_SEEP_SOUTHPIT4_WS_2022-06_SA_NP	2022-07-13	9	7.29		-	-743	8.22	377	688	5.5	413	0.69		< 1.0	< 1.0	< 0.050	1.29	0.742		0.844	0.0081	< 0.0010	1.14	< 0.0010	0.0364	1.38	1.31
EV_SEEP_SOUTHPIT4	EV_SEEP_SOUTHPIT4_WS_2022-09_SA_NP	2022-09-30	9.2	7.22		-	-50.3	7.8	387	665	3.2	389	1.56		< 1.0	< 1.0	< 0.050	1.14	0.875		1.1	0.0096	0.0012	1.24		0.0186	1.91	2.22
EV_SEEP_SOUTHPIT6	EV_SEEP_SOUTHPIT6_WS_2022-06_SA_NP	2022-07-13	11.6	7.92	8.38	-	107.2	8.28	1840	2600	3.6	2720	0.46		< 1.0	< 1.0	< 0.250	2	0.262		0.0065	0.244	< 0.0050	0.202	< 0.0010	0.0033	6.26	6.3
EV_SEEP_SOUTHPIT6	EV_SEEP_SOUTHPIT6_WS_2022-09_SA_NP EV_SEEP_TURCON1_WS_2022-06_SA_NP	2022-10-04 2022-07-08	14.4		6.86	-	186.8 -77.1	7.78	2140	2710	4.6	2650	0.74		< 1.0	< 1.0	< 0.250	2.32	0.282		< 0.0050	0.294	< 0.0050	0.194	0.0012	0.0056	5.15	4.96
EV_SEEP_TURCON1 EV_SEEP_TURCON1	EV_SEEP_TURCON1_WS_2022-06_SA_NP EV_SEEP_TURCON1_WS_2022-09_SA_NP	2022-07-08	9.5	7.19 7.14		-	-149.1	7.48 8.06	515 477	920 910	< 1.0	595 577	0.51		< 1.0	< 1.0	0.406	66.1 41.8	0.248		0.127 0.339	0.15 0.126	0.0025 < 0.0050	0.234	0.004	0.014	1.57	1.65
EV_SEEP_TORCON1	EV SPRIB WS 2022-09 SA_NP	2022-09-27	7.4	7.14	8.8	-	155.7	8.06	434	788	1.9	480	0.65		< 1.0 5	< 1.0	< 0.050	0.55	0.253		< 0.0050	0.126	< 0.0050	0.378	< 0.0010	0.01	2.72	0.92
EV_SPR1B	EV_SPRIB_WS_2022-04_QRT_NP EV_SPRIB_WS_2022-07_QRT_NP	2022-09-01	11.4		5.63		60.2	7.73	565	877	5.3	555	2.97		< 1.0	< 1.0	< 0.050	0.55	0.242	162	< 0.0050 < 0.0050	< 0.0155	< 0.0010	0.052	< 0.0010	0.0312	1.28	1.44
EV_SFRIB EV WLAGC	EV WLAGC WS 2022-07_QRT_NP	2022-09-01	14.2	7.74	7.22	1	-18	7.94	333	618	1.1	321	4.36		< 1.0	< 1.0	0.08	15.9	0.233	40.2	0.0572	0.0250	< 0.0050	0.032	< 0.0010	< 0.0048	45	1.85
EV WLAGC	EV WLAGC WS 2022-09 SA NP	2022-09-26	8.3	7.64	7.05		-44.2	8.1	334	551	2.2	309	5.09		< 1.0		0.096	11.9	0.328	26.6	0.0966	0.0136	< 0.0010	0.166		0.0020	1.2	1.24
21_112100		1022 00 20	0.0	7.04	7.03	-		0.1	1 00-1		4.4	1 000	0.09	1 00-1			0.000	11.0	0.020	20.0	0.0000	3.0230	~ 0.0010	3.100	0.00.0	3.0021		1.27

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

 ^a Guideline varies with hardness
 ^b Guideline varies with pH and water temperature
 ^c Guideline varies with chloride

APPENDIX B - TABLE 1: Summary of Analytical Results for Dissolved Organics, Nutrients and Organics

				Field	Parameter		_		Physical Pa	aramotor			1		Diee	olved Ino	raanice					Nutrient	te				
			1	riel	r arameter		+		r nysical Pi	a anneter	1	T	1		טומט	JIVEU IIIO	ganics					Nutrient	10				_ c
Sample	Sample	Sample Date	Field Temperature	pH (field)	Dissolved Oxygen	Field	£	Hardness	Conductivity	Total Suspended Solids	Total Dissolved Solids	Turbidity	Bicarbonate	Carbonate	Hydroxide	Bromide	Chloride	Fluoride	Sulfate	Ammonia Nitrogen	Nitrate Nitrogen	Nitrite Nitrogen	Kjeldahl Nitrogen-N	Ortho-Phosphate	Phosphorus, Total	Total Organic Carbon	Dissolved Organic Carbor
Location	ID	(yyyy-mm-dd)	С	pН	mg/L μS	cm mV	pH	mg/L	μS/cm	mg/L	mg/L	ntu	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
				Minimum 6.5 Maximum	2 Chronic		Minimum 6.5	Maximum		Chronic 25		» Acute					Acute	Acute	Chronic	Acute	Acute	Acute			Chronic		
BC WQG FWAL Fording River Operation			n/a	6.5 9	1 5 n	a n/a	6.5	9 n/a	n/a	25 5	n/a	8 2	n/a	n/a	n/a	n/a	600 150	0.4- a	128-429	0.681-28.7 ^b 0.102-2.08 ^b	32.8 3.7	0.06-0.60° 0.02-0.20	l° n/a	n/a	0.015	n/a	n/a
FR ASPSEEP1	FR ASPSEEP1 WS 2022-01-02 NP	2022-01-02	10.17	7.51	8.23	129.	2 7.73	3 1100	1760	1.1	1290	0.22	402	< 1.0	< 1.0	< 0.250	2.12	0.181	766	0.0068	21.4	< 0.0050	5.46	0.0086	0.011	2.71	2.6
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-01-05_NP	2022-01-05	10.89	7.55	7.92	87.7	5 7.7	7 673	1180	< 1.0	864	1.01	250	< 1.0	< 1.0	< 0.250	1.55	0.131	407	0.0626	31.7	0.0065	0.483	0.107	0.094	0.66	0.72
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-01-07_NP	2022-01-07	11.6	7.6	7.6	78.2			1780	11.2		2.12		< 1.0	< 1.0	< 0.250	1.97	0.175	758	0.0138	22.3	< 0.0050	< 0.050		0.0103	2.57	2.11
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-01-12_NP FR_ASPSEEP1_WS_2022-01-14_NP	2022-01-12 2022-01-14	12.11	7.61 7.39	1.10	101.			1780 1830	< 1.0		0.19		< 1.0 < 1.0	< 1.0	< 0.250	1.83	0.148	835 796	< 0.0050	23.1	< 0.0050	< 0.050	0.0096	0.0094	1.63	1.93
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-01-14_NP FR_ASPSEEP1_WS_2022-01-19_NP	2022-01-14	10.41	7.68		103.			1840	2.4	1580	1.8		< 1.0	< 1.0	< 0.250	1.61	0.145	822	< 0.0050 0.0052	24.1 25.7	0.0504 < 0.0050	0.248		0.0107	2.42	2.14
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-01-22_NP	2022-01-22	10.27	7.69		99			1880	< 1.0	1610	0.29		< 1.0	< 1.0		2.37	0.188	796	< 0.0050	25.4	0.0136	< 0.050		0.001	2.21	2.16
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-01-26_NP	2022-01-26	10.54	7.57	8.1	157	7.9	1 1200	1880	3.8	1520	1.11	352	< 1.0	< 1.0	< 0.250	2.17	0.177	800	0.0062	25.2	< 0.0050	< 0.050	0.0084	0.0146	2.27	1.87
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-01-29_NP	2022-01-29	9.66	7.9	8.31	116.			1890	2.1	1490	0.99	418	< 1.0	< 1.0	< 0.250	1.66	0.134	784	0.0113	24.5	< 0.0050	< 0.050		0.0114	2.76	2.2
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-02_NP FR_ASPSEEP1_WS_2022-02-03_NP	2022-02-02	9.54	6.78 7.74	8.53 8.43	69.8			1860 1930	93.8	1400	16.8 1.15		< 1.0 < 1.0	< 1.0	< 0.250	2.17	0.162	813 820	0.0226 < 0.0050	25.4	< 0.0050 < 0.0050	0.464	0.0058	0.0196	2.93	2.14
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-03_NP FR_ASPSEEP1_WS_2022-02-04_NP	2022-02-03	10.06	7.63		119.			1930	11.2	1550	0.28		< 1.0	< 1.0	< 0.250	2.02	0.167	850	< 0.0050 0.0099	25.4 25.6	0.0050	< 0.050		0.0094	1.97	2.52
FR ASPSEEP1	FR ASPSEEP1 WS 2022-02-05 NP	2022-02-04	12.54	7.7	7.52	86.1			1900	2.8	1520	0.16		< 1.0	< 1.0	< 0.250	8.57	0.186	851	< 0.0050	25.8	< 0.0050	< 0.050		0.012	2.24	2.51
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-06_NP	2022-02-06	11.02	7.51	7.92	69.7	7.6	3 1200	1910	< 1.0	1740	0.19	426	< 1.0	< 1.0	< 0.250	1.69	0.132	828	0.0755	25.3	< 0.0050	0.567	0.0067	0.0197	2.16	2.07
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-07_NP	2022-02-07	-	-	-		7.78		1780	15.5	1530	3.65		< 1.0	< 1.0	< 0.250	2.12	0.181	780	0.0236	23	< 0.0050	0.381	0.008	0.0159	2.46	1.99
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-08_NP	2022-02-08	-	-			7.6		1830	5.2	1570	1.83		< 1.0	< 1.0	< 0.250	2.17	0.205	811	< 0.0050	24.3	0.0058	< 0.050		0.0098	3.05	2.36
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-09_NP FR_ASPSEEP1_WS_2022-02-10_NP	2022-02-09 2022-02-10	8.75 11.71	7.62 7.62	0.00	77.9			1730 1860	136	1540 1560	257	392 408	< 1.0	< 1.0	< 0.250	1.91	0.258	728 801	0.0094	22.8	0.0082	0.526	0.018	0.445	75.2	2.03
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-10_NP FR_ASPSEEP1_WS_2022-02-11_NP	2022-02-10	11.71	7.62	7.79	82.9			1840	3.6	1520	3.3 4.24		< 1.0	< 1.0	< 0.250	2.02	0.205	844	0.0139 < 0.0050	24.9	< 0.0050 < 0.0050	< 0.050		0.0207	2.62	1.98
FR ASPSEEP1	FR ASPSEEP1 WS 2022-02-11 NP	2022-02-11	8.65	7.82	9.2	98.7			1850	9.7	1640	3.51		< 1.0	< 1.0	< 0.250	2.02	0.172	796	0.013	24.2	< 0.0050	< 0.050		0.0164	2.21	2.1
FR ASPSEEP1	FR ASPSEEP1 WS 2022-02-13 NP	2022-02-13	10.14	7.4	8.26	157.			1810	11.3	1650	5.08		< 1.0	< 1.0	< 0.250	2.09	0.144	851	< 0.0050	24.4	< 0.0050	< 0.050		0.0415	7.6	1.94
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-14_NP	2022-02-14	1	7.55	7.76	179.			1870	95.2	1610	18.7		< 1.0	< 1.0	< 0.250	1.89	0.144	844	< 0.0050	24.3	0.0081	< 0.050		0.013	1.96	1.99
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-15_NP	2022-02-15	11.4	7.56	7.86	181.			1840	6	1590	4.47		< 1.0	< 1.0	< 0.250	2.19	0.166	824	< 0.0050	25.7	< 0.0050	0.251	0.0088	0.015	2.17	1.88
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-16_NP	2022-02-16	11.28	7.58	7.97	100.			1900	12.1	1610	4.24		< 1.0	< 1.0	< 0.250	2.19	0.167	833	< 0.0050	26	< 0.0050	< 0.050		0.0257	2.51	2.37
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-17_NP FR_ASPSEEP1_WS_2022-02-18_NP	2022-02-17	13.6 7.67	7.41 7.67	1.2-4	114			1950 1960	2.8	1670	0.82		< 1.0	< 1.0	< 0.250	2.15 1.98	0.172	846 898	< 0.0050 < 0.0050	25.4 26.9	< 0.0050	< 0.050		0.0126	2.02	2.06
FR ASPSEEP1	FR ASPSEEP1 WS 2022-02-10 NP	2022-02-10	8.87	7.73		1117			1950	2.9	1430	0.44		< 1.0	< 1.0	< 0.250	1.98	0.203	895	< 0.0050	26.1	0.0314 < 0.0050	0.245		0.0102	2.35	2.35
FR ASPSEEP1	FR ASPSEEP1 WS 2022-02-20 NP	2022-02-20	10.3	7.6	8.13	105.			1970	2.9	1380	0.6		< 1.0	< 1.0		1.84	0.147	874	0.0083	25.5	< 0.0050	< 0.050		0.0096	2.02	2.4
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-21_NP	2022-02-21	11.9	7.53	7.5	220.			2000	4.7	1790	3.43		< 1.0		< 0.250	2.29	0.17	890	0.014	28.1	< 0.0050	< 0.050		0.0111		2.3
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-22_NP	2022-02-22	12	7.6	7.69	156.			2030	2.1	1770	0.48		< 1.0		< 0.250	2.24	0.174	917	< 0.0050	26.9	< 0.0050	0.417	0.009	0.012	2.81	3.82
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-23_NP FR_ASPSEEP1_WS_2022-02-24_NP	2022-02-23 2022-02-24	9.03	7.57 7.76	7.72 9.3	153.			2000 1980	2.5 < 1.0	1740 1620	0.96		< 1.0	< 1.0	< 0.250	2.37 1.96	0.167	908 949	< 0.0050 0.0066	26.8 28.3	< 0.0050	< 0.050	0.0086	0.0179	2.37	1.91
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-24_NP FR_ASPSEEP1_WS_2022-02-25_NP	2022-02-24	11.38	7.76	8.04	104.			1980	9.6	1680	3.6		< 1.0	< 1.0	< 0.250	3.3	0.154	949	< 0.0066	28.3	< 0.0050 < 0.0050	0.277		0.0114	1.85	1.62
FR ASPSEEP1	FR ASPSEEP1 WS 2022-02-25 NP	2022-02-25	8.98	7.86	10.5	89.3			1970	5.9	1860	1.74		< 1.0	< 1.0	< 0.250	2.34	0.169	903	< 0.0050	27.2	< 0.0050	0.327	0.0094	0.0031	4.7	2.22
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-27_NP	2022-02-27	9.8	7.86	9.39	124.			1990	12.6	1890	2.49		< 1.0	< 1.0	< 0.250	2.24	0.168	901	< 0.0050	27.1	< 0.0050		0.0086	0.0102	2.16	2.24
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-28_NP	2022-02-28	12.1	7.53	7.61	165.			1990	4.1	1760	1.03	438	< 1.0	< 1.0	< 0.250	1.79	0.148	906	< 0.0050	26.9	0.0056		0.0085	0.0125	2.29	2.24
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-02_NP	2022-03-02	12.84	7.66		119.			1970	4.1	1660	0.48		< 1.0		< 0.250	2.12	0.114	900	< 0.0050	27.2	< 0.0050		0.0096	0.01	1.74	1.91
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-03_NP FR_ASPSEEP1_WS_2022-03-04_NP	2022-03-03 2022-03-04	11.75 6.46	7.7 8.08		160.			1950 1980	1.7	1680 1540	0.49 3.89	440	< 1.0	< 1.0	< 0.250	2.16	0.164	886 900	< 0.0050	26.7	< 0.0050		0.0068	0.0201	2.52	1.94
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-04_NP FR_ASPSEEP1_WS_2022-03-05_NP	2022-03-04	11.9	7.63	7.67	164.			1990	9.8	1800	1.56		< 1.0			3.55	0.154	882	< 0.0050 < 0.0050	27.6 27.3	< 0.0050 < 0.0050		0.0078	0.0138	2.37	1.85
FR ASPSEEP1	FR ASPSEEP1 WS 2022-03-06 NP	2022-03-06	10.5	7.48	6.67	137.			1990	4.2	1700	1.01	432	< 1.0	< 1.0	< 0.250	2.81	0.157	897	< 0.0050	27.1	< 0.0050		0.0003	0.0125	2.3	2.36
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-07_NP	2022-03-07	11.73	7.93	8.23	107.			1990	26.4	1630	13.4	433	< 1.0	< 1.0	< 0.250	2.34	0.157	881	< 0.0050	27.6	< 0.0050	0.384	0.01	0.054	5.74	3.29
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-08_NP	2022-03-08	10.85	7.8	8.06	101.			1890	32.5	1640	16.9		< 1.0	< 1.0	< 0.250	2.04	0.184	900	< 0.0050	26.7	< 0.0050	0.301	0.0112	0.033	2.25	1.75
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-09_NP	2022-03-09	11.5	8	8.07	139.			1860	47.1	1770	33.7		< 1.0	< 1.0	< 0.250	2.24	0.175	920	0.0143	28	< 0.0050		0.0098	0.0557	2.93	1.79
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-10_NP FR_ASPSEEP1_WS_2022-03-11_NP	2022-03-10 2022-03-11	12.4 9.2	7.6	7.82	115.		1290	1960	3.6	1720	1.32	447	< 1.0	< 1.0	< 0.250	4.2	0.166	910	< 0.0050	27.5	< 0.0050	0.41	0.0062	0.0114	2.24	2.04
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-11_NP FR_ASPSEEP1_WS_2022-03-12_NP	2022-03-11	12	7.62 7.6	9.58 7.4	66.6		7 1150	1980	3.4	1600	2.98	426	< 1.0	< 1.0	< 0.250	3.13	0.194	905	< 0.0050	26	< 0.0050	0.356	0.0074	0.0119	2.17	2.62
FR ASPSEEP1	FR ASPSEEP1 WS 2022-03-13 NP	2022-03-12	11.4	7.7	7.9		2 7.65			17.8		19.3		< 1.0		< 0.250		0.162	839	< 0.0050	25	< 0.0050		0.006		4.59	2.02
			1		7.0	1 . 10.	1		1						1	1	1 2.70			- 0.0000		- 0.0000	1		1 2.2.5		

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted n/a denotes no applicable standard

^a Guideline varies with hardness ^b Guideline varies with pH and water temperature ^c Guideline varies with chloride

APPENDIX B - TABLE 1: Summary of Analytical Results for Dissolved Organics, Nutrients and Organics

				Field	Param	neters				Physical Pa	arameter	s				Disse	olved Inor	ganics					Nutrient	s				$\overline{}$
			mperature	G	ed Oxygen	anductivity	окр		82	tivity	spinded Solids	ssolved Solids	٨	nate	ıte	de					la Nifrogen	Nitrogen	ltrogen	Nitrogen-N	hosphate	orus, Total	ganic Carbon	ed Organic Carbon
Sample	Sample	Sample Date	Field Te	pH (field)	Dissolv	Field Co	Field Of	五	Hardne	Conduc	Total Su	Total Dis	Turbidit	Bicarbo	Carbon	Hydroxi	Bromid	Chlorid	Fluoride	Sulfate	Ammon	Nitrate	Nitrite N	Kjeldah	Ortho-P	Phosph	Total O	Dissolved
Location	IĎ	(yyyy-mm-dd)	С	pH	mg/L	μS/cm	mV	pH	mg/L	μS/cm	mg/L	mg/L	ntu	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
				Minimum Maximun	Acute Chronic			Minimum Maximum			Acute Chronic		Acute Chronic					Acute Chronic	Acute	Chronic	Acute Chron ic	Acute Chronic	Acute			Chronic		
BC WQG FWAL			n/a	6.5 9	1 5	n/a	n/a	6.5 9	n/a	n/a	25 5	n/a	8 2	n/a	n/a	n/a	n/a	600 150	0.4- a	128-429	0.681-28.7 ^b 0.102-2.08 ^b	32.8 3.7	0.06-0.60° 0.02-0.20°	n/a	n/a	0.015	n/a	n/a
FR ASPSEEP1	FR ASPSEEP1 WS 2022-03-14 NP	2022-03-14	11 15	7.69	8.08	T - T	83.1	7.54	1360	1940	3.9	1580	2.6	417	< 1.0	< 1.0	< 0.250	3 97	0 156	897	< 0.0050	27.4	< 0.0050	0.442	0.0044	0.0118	2.31	2.56
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-15_NP	2022-03-15	13.54	7.7	7.28	-	116.7	7.61	1200	1900	4.4	1680	3.91	419	< 1.0	< 1.0	< 0.250	2.16	0.16	856	< 0.0050	25.7	< 0.0050	0.208	0.0069	0.0329	3.6	2.46
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-16_NP FR_ASPSEEP1_WS_2022-03-17_NP	2022-03-16 2022-03-17	7.88		8.51 9.95	-	99.9 137.3	7.68	1230	1950 1910	11.8	1690 1840	6.6 7.42	432	< 1.0 < 1.0	< 1.0	< 0.250		0.183		< 0.0050 < 0.0050	26.1 26	< 0.0050 < 0.0050	< 0.050	0.0106	0.0334	3.46	2.13
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-17_NF	2022-03-17	10.6	7.4	8.3	- 1	176	7.82	1180	1880	3	1650	4.4	420	< 1.0	< 1.0	< 0.250	2.82	0.165	842	< 0.0050	24.8	< 0.0050	< 0.050	0.0104	0.0157	2.45	2.45
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-19_NP	2022-03-19	11.9	7.64		-		7.87	1160	1860	< 1.0	1570	3.43	428	< 1.0	< 1.0	< 0.250		0.159		< 0.0050	24.8	< 0.0050	0.376	0.0102	0.0098	2.59	2.55
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-20_NP FR_ASPSEEP1_WS_2022-03-21_NP	2022-03-20 2022-03-21	11.6		7.66	-	126.3 143.9	7.83	1190 1270	1850 1980	1.1	896 1800	2.83 3.69	430 431	< 1.0 < 1.0	< 1.0 < 1.0	< 0.250	2.37	0.15	798 957	< 0.0050 < 0.0050	23.8	0.0103 < 0.0050	0.46	0.009	0.027	4.69 3.03	2.22
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-22_NP	2022-03-22	10.26	7.7	8.5	-	104.6	7.82	1280	2060	7.5	1740	3.82	434	< 1.0	< 1.0	< 0.250	2.33	0.218	950	< 0.0050	26.8	0.0062	0.393	0.0104	0.0217	3.31	2.51
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-23_NP	2022-03-23	13.11	7.7	7.57	-	162.2	7.72	1300	1950	5.6	1610	2.64	429	< 1.0	< 1.0	< 0.250	2.29	0.227	933	0.0108	25.8	0.0058	0.791	0.01	0.0169	3.56	2.8
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-24_NP FR_ASPSEEP1_WS_2022-03-25_NP	2022-03-24 2022-03-25	12.01	7.73 8.15	8.13 7.5	-	155 247.8	-	-	-	-	-	1	-	-	-	+-	-	+ -	-	-		- :	-	-	-	-	-
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-26_NP	2022-03-26	13.4	7.69	9.72	-	168.5	7.73	1170	1900	7.1	1690	4.83	482	< 1.0	< 1.0	< 0.250	2.33	0.259	844	< 0.0050	19.7	< 0.0050	0.278	0.0106	0.0143	3.35	3.32
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-27_NP	2022-03-27	14.1			-	160.3 141.6	7.71	1090	1720	6.5	1510	2.72		< 1.0 < 1.0	< 1.0 < 1.0	< 0.250	2.1	0.251		< 0.0050	17.4	< 0.0050	0.42	0.011	0.0239	6.96 9.52	3.1
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-28_NP FR_ASPSEEP1_WS_2022-03-29_NP	2022-03-28 2022-03-29	13.8	7.54 7.48	7.74	-	131.3	7.59	1060 1020	1720 1620	2.6	1390	35.9 1.29	476 477	< 1.0	< 1.0	< 0.250	1.9 2.23	0.248	716 664	< 0.0050 < 0.0050	16.5 16.1	< 0.0050 < 0.0050	< 0.050	0.0123	0.178	3.04	3.19 2.88
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-30_NP	2022-03-30	13.14			-	133.1	7.79	1040	1590	4.2	1380	2.58	433	< 1.0	< 1.0	< 0.250		0.176	584	< 0.0050	15.6	< 0.0050	0.348	0.0095	0.0105	2.58	2.84
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-31_NP	2022-03-31	12	7.78		-	104.7	7.65	1030	1610	1.9	1330	1.02	456	< 1.0	< 1.0	< 0.250	1.93	0.238	656	0.0165	16.9	< 0.0050	0.345	0.0104	0.0142	2.79	2.74
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-04-01_NP FR_ASPSEEP1_WS_2022-04-02_NP	2022-04-01 2022-04-02	10.69	7.87 7.65	7.5		114	7.86	1010	1610 1620	7.3 < 1.0	1270	3.05 0.45	468 443	< 1.0 < 1.0	< 1.0	< 0.250	3.7 2.47	0.264	648 653	< 0.0050 < 0.0050	17.1 17.8	0.0181 < 0.0050	0.384	0.0104	0.0143	3.15 2.55	2.59
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-04-07_NP	2022-04-07	13.34			-	84.2	-	-	-	- 1.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-04-08_NP FR_ASPSEEP1_WS_2022-04-13_NP	2022-04-08	13.8	7.5	7.3	-	115.6 121.9	7.72	993	1620 1540	10.8	1290	3.54	438	< 1.0 < 1.0	< 1.0	< 0.250	2.08	0.189	622	< 0.0050	17.5	< 0.0050	0.206	0.0075	0.0127 0.0204	2.98	2.75
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-04-13_NP FR_ASPSEEP1_WS_2022-04-14_NP	2022-04-13	11.2	7.58 7.6	9.48		127.1	7.57	985	1620	22 16.6	1300	4.31 2.92		< 1.0	< 1.0	< 0.250	1.87	0.21	613 654	< 0.0050 < 0.0050	15 15.9	< 0.0050 < 0.0050	0.12	0.0057	0.0204	2.84	2.89
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-04-21_NP	2022-04-21	8.13	7.86	9.43	-	116.1	8.06	915	1530	3.6	1230	1.09		< 1.0	< 1.0	< 0.250	1.51	0.171	562	< 0.0050	15.5	0.0377	0.407	0.0086	0.0087	2.23	2.14
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-04-22_NP FR_ASPSEEP1_WS_2022-04-26_NP	2022-04-22 2022-04-26	11.12	7.51	7.89	-	110.7	-	-	-	-	-	-	-	-	-	-	-	+ -	-	-	-	-	-	-	-	-	-
FR_ASPSEEP1	FR ASPSEEP1 WS 2022-04-20 NP	2022-04-27	11.12	7.37		-	170.8	-	-	-	-	+ -	-	+ -	-	-	+	-	+ -	-	-	-	-	-	-	-	-	+ -
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-02_NP	2022-05-02	13.7	7.5	7.9	-	179.9	8.18	932	1490	101	1280	11		< 1.0	< 1.0	< 0.250	1.34	0.179		< 0.0050	15.4	< 0.0050	0.116	0.0036	0.0408	5.06	2.44
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-03_NP FR_ASPSEEP1_WS_2022-05-05_NP	2022-05-03	11.17			-	194.7 140.6	8.28 7.65	916 1130	1480 1480	3.3	1130 1140	0.28		< 1.0 < 1.0	< 1.0	< 0.250	4.25 1.75	0.182	616 590	< 0.0050 < 0.0050	14.9	< 0.0050 0.005	0.204	0.0049	0.0084	2.29 4.07	2.4
FR ASPSEEP1	FR ASPSEEP1 WS 2022-05-05 NP	2022-05-06	10.64				148.7	7.98	875	1470	3.3	1140	2.25 0.71	385	< 1.0	< 1.0	< 0.250	1.73	0.193	571	< 0.0050	15 14.7	< 0.0050	0.23	0.0063	0.0097	2.01	2.06
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-07_NP	2022-05-07	10.2	7.3	8.05	-	155.5	7.62	888	1440	3.8	1110	0.39	361	< 1.0	< 1.0	< 0.250	1.26	0.191	592	< 0.0050	15.1	< 0.0050	0.399	0.0041	0.0119	2.4	1.9
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-08_NP FR_ASPSEEP1_WS_2022-05-09_NP	2022-05-08 2022-05-09	9.9	7.31 7.5	8.01		210.4	7.56 7.94	857 816	1450 1420	14.9	1190	3.06	361 379	< 1.0 < 1.0	< 1.0	< 0.250	1.27	0.187	578 556	0.0086 < 0.0050	15 15.7	< 0.0050 0.0069	0.439	0.0034	0.0152	3.41	2.32
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-05_NP	2022-05-10	9.7	7.48	8.3	+ - 1	112.2	7.66	870	1350	37.3	1230	19.6	363	< 1.0	< 1.0	< 0.250	3.14	0.109	555	< 0.0050	14.8	0.008	0.468	0.0073	0.0098	7.68	2.17
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-11_NP	2022-05-11	10.8	7.87	8.34	-	117.9	7.78	852	1360	15.6	1100	5.15	362	< 1.0	< 1.0	< 0.250	4.44	0.186		0.0355	14.2	< 0.0050	0.438	0.0055	0.0208	2.44	2.48
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-12_NP FR_ASPSEEP1_WS_2022-05-13_NP	2022-05-12 2022-05-13	9.32	7.73 7.54	8.41	1 -	124 133.9	8.05 7.71	791 807	1340 1340	1.6	1140 1020	0.34	328 350	< 1.0 < 1.0	< 1.0	< 0.250	1.46	0.192	555 497	< 0.0050 < 0.0050	14.8	< 0.0050 < 0.0050	0.14	0.006	0.0064	2.19 1.95	2.24
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-14_NP	2022-05-13	9.32	7.54	8.3	1	109.5	7.71	771	1360	1	1080	0.19	355	< 1.0	< 1.0	< 0.250	1.05	0.172	511	< 0.0050	15	< 0.0050	0.339	0.0054	0.0082	1.87	1.74
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-15_NP	2022-05-15	9.4	7.27	8.5	- 1	127.4	7.54	836	1400	1.4	1100	0.39	374	< 1.0	< 1.0	< 0.250	1.17	0.165	552	< 0.0050	14.2	< 0.0050	0.502	0.0072	0.0074	2.21	2.32
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-16_NP FR_ASPSEEP1_WS_2022-05-17_NP	2022-05-16 2022-05-17	9.64	7.61	8.4		152.1	7.6 7.51	847 853	1400 1420	11	1100	5.95 1.53		< 1.0	< 1.0	< 0.250	1.37	0.169	565 406	< 0.0050 < 0.0050	14.4	0.006 < 0.0050	2.97 0.526	0.0066	0.0194	2.57	2.45 1.97
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-17_NP	2022-05-17	8.71		9	+ - 1	125	7.45	820	1410	5.5	1160	1.42	370	< 1.0	< 1.0	< 0.250	1.37	0.179	596	< 0.0050	15.2	< 0.0050	0.320	0.00374	0.0113	2.99	1.87
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-20_NP	2022-05-20	10.2	7.66	8.27	-	135.9	7.53	842	1410	7.2	1060		347	< 1.0	< 1.0	< 0.250	1.4	0.175		< 0.0050	14.8	< 0.0050	0.311	0.0098	0.0149	2.3	2.04
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-21_NP FR_ASPSEEP1_WS_2022-05-23_NP	2022-05-21 2022-05-23	9.5	7.26	8.48	+ : -	177.2	8.01 7.79	840 868	1390 1370	1.3	1090 1050	1.28	364 359	< 1.0 < 1.0	< 1.0 < 1.0	< 0.250	6.57 1.24	0.184	539 557	< 0.0050 < 0.0050	14.1	0.0316 0.005	0.224	0.007	0.0071	1.81	1.75
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-24_NP	2022-05-24	9.5	7.28		-	151.3	7.54	850	1360	6.6	1050	0.74		< 1.0	< 1.0	< 0.250	1.51	0.176	572	< 0.0050	15.4	0.003	0.242	0.0002	0.013		2.21
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-25_NP	2022-05-25	11.1	7.3	8.2	-	174	6.98	847	1380	3.6	1120	0.35	354	< 1.0	< 1.0	< 0.250	9.35	0.17	625	< 0.0050	14.6	0.0083	0.435	0.0058	0.0106	2.19	2.19
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-26_NP FR_ASPSEEP1_WS_2022-05-27_NP	2022-05-26 2022-05-27	9.7	7.25 7.28	8.5 9.02	1	140.3	7.45 7.65	857 837	1400	2.7 3.3	1110	0.3	349 352	< 1.0 < 1.0	< 1.0 < 1.0	< 0.250		0.17	528 535	< 0.0050 0.01	14.4 14.2	< 0.0050 0.0053	0.532	0.0038	0.0076	1.59 2.26	1.44
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-28_NP	2022-05-28	9.6			+ - 1		7.69		1380		1040					< 0.250				< 0.0050	14.2	0.0057		0.0053	0.0083		1.9
																-				-								$\overline{}$

< Denotes concentration less than indicated detection limit

n/a denotes no applicable standard

⁻ Denotes analysis not conducted

^a Guideline varies with hardness ^b Guideline varies with pH and water temperature ^c Guideline varies with chloride

APPENDIX B - TABLE 1: Summary of Analytical Results for Dissolved Organics, Nutrients and Organics

			_	Eigle	i Param	otore	_			Physical Pa	aramoto	re		_		Dica	olved Inor	nanice			1		Nutrient					
I		1	1	riel0	ı raram	10.015	-			r nysical Pi	ar arriete	10	T	1		DISS	Urveu iilor	yanıcə	1		-		Nutrient	1		1		-
Sample	Sample	Sample Date	Field Temperature	pH (field)	Dissolved Oxygen	Field Conductivity	Field ORP	됩	Hardness	Conductivity	Total Suspended Solids	Total Dissolved Solids	Turbidity	Bicarbonate	Carbonate	Hydroxide	Bromide	Chloride	Fluoride	Sulfate	Ammonia Nitrogen	Nitrate Nitrogen	Nitr ite Nitrogen	Kjeldahl Nitrogen-N	Ortho-Phosphate	Phosphorus, Total	Total Organic Carbon	Dissolved Organic Carbon
Location	ID	(yyyy-mm-dd)	С	pН	mg/L	μS/cm	mV	pН	mg/L	μS/cm	mg/L	mg/L	ntu	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
				Minimum Maximum	Acute Chronic			Minimum Maximum			Acute		Acute					Acute Chronic	Acute	Chronic	Acute Chron ic	Acute Chronic	Acute Chronic			Chronic		
BC WQG FWAL			n/a	6.5 9	1 5	n/a	n/a	6.5 9	n/a	n/a	25 5	n/a	8 2	n/a	n/a	n/a	n/a	600 150	0.4- a	128-429	0.681-28.7 ^b 0.102-2.08 ^b	32.8 3.7	0.06-0.60° 0.02-0.20	n/a	n/a	0.015	n/a	n/a
Fording River Operation	50 10005501 110 0000 05 00 110						100 0 1			T 1000		1 1100		1 010					10.475					T a aa i		T a a a a a	T 004	
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-29_NP	2022-05-29	9.7			-	190.6	7.44	820	1360	1.2			348	< 1.0				0.175		< 0.0050	16.5	< 0.0050	0.261	0.0039	0.0066		2.01
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-30_NP FR_ASPSEEP1_WS_2022-06-01_NP	2022-05-30 2022-06-01	9.8	7.4		-	189	7.62	808 760	1360	4.8 1.6	1110	0.32	334 341	< 1.0	< 1.0	< 0.250	1.12	0.167	552 551	< 0.0050 < 0.0050	15 15.5	< 0.0050 < 0.0050	0.247	0.0035	0.0124	1.99	2.06 1.95
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-06-01_NP FR_ASPSEEP1_WS_2022-06-02_NP	2022-06-01	12.6	7.74		+ -	202.6	7.86	782	1290	5.3	1040	1.05		< 1.0	< 1.0	< 0.250	1.12	0.182	488	< 0.0050	15.5	< 0.0050 < 0.0050	0.064	0.0066	0.0093	2.08	2.12
FR ASPSEEP1	FR ASPSEEP1 WS 2022-06-03 NP	2022-06-03	12.6	7.84	7.7		194.9	7.96	764	1220	5.5	986	1.67	338	< 1.0	< 1.0	< 0.250	1.15	0.152	469	< 0.0050	12.8	< 0.0050	0.298	0.0112	0.015	1.76	1.63
FR ASPSEEP1	FR ASPSEEP1 WS 2022-06-04 NP	2022-06-04	9.4	7.13	8.49	- 1	127.2	8.38	470	880	15.6	602	4.11	256	6.2	< 1.0	< 0.050	0.5	0.119	231	0.0088	5.52	0.0099	0.465	< 0.0010	0.0155	3.41	2.53
FR ASPSEEP1	FR ASPSEEP1 WS 2022-06-05 NP	2022-06-05	9.3	7.2		l - l	121.4	7.81	730	1300	< 1.0		0.16	345	< 1.0	< 1.0	< 0.250	1.72	0.182	524	< 0.0050	14.5	< 0.0050	0.357	0.0047	0.0072	1.86	1.85
FR ASPSEEP1	FR ASPSEEP1 WS 2022-06-06 NP	2022-06-06	12.6	7.7		-	157	7.93	724	1300	3.3	973	0.55		< 1.0	< 1.0	< 0.250	1.58	0.179		< 0.0050	14.6	< 0.0050	0.436	0.0077	0.0104	2.4	2.06
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-06-07_NP	2022-06-07	9.7	7.6	9	- 1	171.8	7.83	781	1250	1.8	990	0.57	484	< 1.0	< 1.0	< 0.050	0.74	0.148	435	< 0.0050	12.8	< 0.0010	< 0.050	0.0069	0.0102	2.49	2.64
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-06-08_NP	2022-06-08	11.57	7.68	8.97	-	124.4	7.75	724	1280	5.6	979	1.78	328	< 1.0	< 1.0	< 0.250	1.04	0.165	507	< 0.0050	13.8	< 0.0050	0.232	0.0064	0.0098	2.02	2.13
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-06-09_NP	2022-06-09	11.66	7.61	8.81	-	101	7.8	775	1280	2.8	968	0.25	306	< 1.0	< 1.0	< 0.250	0.94	0.134	416	< 0.0050	12.6	< 0.0050	0.341	0.0048	0.0082	2.15	2.08
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-06-10_NP	2022-06-10	11.5	7.4	7.97	-	180.5	7.51	724	1280	2	958	0.6	343	< 1.0	< 1.0	< 0.250	1.01	0.146		< 0.0050	12.6	< 0.0050	0.499	0.0256	0.025	2.08	1.74
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-06-11_NP	2022-06-11	9.3	7.28		-	174.1	7.67	714	1230	24.5		8.48	333	< 1.0	< 1.0	< 0.250	0.92	0.123		< 0.0050	12.1	< 0.0050	0.525	0.007	0.0264	3.63	2.18
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-06-12_NP	2022-06-12	9.1	7.25		-	159.8	7.67	726	1220	2.6	956	0.6	332	< 1.0	< 1.0	< 0.250	0.84	0.131	405	< 0.0050	11.8	< 0.0050	0.403	0.0078	0.0082	1.91	2.01
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-06-13_NP	2022-06-13	10.6	7.65		-	185.9	7.62	711	1260	5.4	896	1.39		< 1.0	< 1.0	< 0.250	1.5	0.146	444	< 0.0050	12.3	< 0.0050	0.54	0.0014	0.0144	2.86	1.84
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-06-20_NP	2022-06-20	10.4	7.6	8.5	-	112.7	8.17	648	1080	4.7	832	2.68	320	< 1.0	< 1.0	< 0.250	1.26	0.153	350	< 0.0050	10	0.0062	0.475	0.0058	0.0095	2.15	1.97
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-07-04_NP	2022-07-04	12.5	7.4		-	200.4	8.13	743	1190	5.2	1010	1.14	386	< 1.0	< 1.0	< 0.250	1.08	0.146	416	0.009	10.4	< 0.0050	0.41	0.0367	0.0406	2.9	2.43
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-07-11_NP	2022-07-11	15	7.66	7.5	-	156.8	8.17	760	1240	2.5	968	0.97	354	< 1.0	< 1.0	< 0.250	1.11	0.164	450	< 0.0050	10.5	< 0.0050	0.44	0.0025	0.0093	2.29	2.2
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-07-18_NP	2022-07-18	12.9	7.78	8.2	-	91.5	7.67	823	1320	61.1	1110	7.2	380	< 1.0	< 1.0	< 0.250	1.46	0.193	523	< 0.0050	11.8	< 0.0050	0.46	0.0151	0.0307	3.86	2.02
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-07-25_NP FR_ASPSEEP1_SEEP_2022-07-01_NP	2022-07-25	19.3	7.94		-	151.9	7.92	887 897	1380	3.5	1300	1.78 0.25	500 374	< 1.0	< 1.0	< 0.250	1.33	0.198	572 630	< 0.0050	12.6	< 0.0050	0.486	0.0036	0.0072	2.3 1.94	2.21
FR_ASPSEEP1	FR_ASPSEEPI_SEEP_2022-07-01_NP FR_ASPSEEPI_WS_2022-08-11_NP	2022-08-03 2022-08-11	15.5	7.5	6.9		141.2	7.62	959	1490	3.9	1360	0.25	377	< 1.0	< 1.0	< 0.250	1.57	0.19		< 0.0050 < 0.0050	12.7	< 0.0050 < 0.0010	0.399	0.0032	0.0095	1.94	1.82
FR_ASPSEEP1	FR ASPSEEPT WS 2022-08-11 NP	2022-08-11	13.1	7.52	8.26		155.5	8.04	1100	1640	< 1.0		0.7	414	< 1.0	< 1.0	< 0.050	1.83	0.183	713	< 0.0050	15.8	< 0.0010	1.05	0.0007	0.0139	1.94	1.82
FR_ASPSEEP1	FR ASPSEEP1 WS 2022-08-24 NP	2022-08-18	13.48	7.44	7.28	-	113.4	7.83	1130	1670	7.7	1440	3.22	394	< 1.0	< 1.0	< 0.250	1.78	0.19	753	< 0.0050	16.8	< 0.0050	0.191	0.0029	0.0069	1.39	1.19
FR ASPSEEP1	FR ASPSEEP1 WS 2022-09-01 NP	2022-09-01	13.40	7.38			138.1	7.89	1160	1760	13.8	1510		429	< 1.0	< 1.0	< 0.250	1.8	0.193		< 0.0050	18	< 0.0050	0.365	0.0063	0.0257	2.43	2
FR ASPSEEP1	FR ASPSEEP1 WS 2022-09-05 NP	2022-09-05	17	7.49	9.43		134.5	7.84	1200	1740	18.2	1590	7.14	434	< 1.0	< 1.0	< 0.250	1.88	0.2	791	0.0124	20.1	< 0.0050	0.151	0.0076	0.0217	1.94	1.7
FR BLAINESEEP1	FR BAINESEEP1 WS 2022-04-27 NP	2022-04-27	9.07		9.25	-	140	8.3	2100	2880	4.9	2760	1.23	465	2.9	< 1.0	< 0.250	1.96	0.176		< 0.0050	18.4	0.0051	< 0.050	0.0024	0.0054	2.01	1.92
FR BLAINESEEP1	FR BLAINESEEP1 SEEP 2022-07-01 NP	2022-07-19	10.9	8.04	9.16	l - l	144.5	8.25	1790	2620	5.2	2760	0.79	593	< 1.0	< 1.0	< 0.250	1.34	0.258	1430	< 0.0050	17.4	< 0.0050	< 0.050		0.0085	1.21	1.42
FR_BLAINESEEP1	FR_BLAINESEEP1_SEEP_2022-09-01_NP	2022-09-15	10.9	8.04	9.16	-	144.5	8.13	2240	2800	6.7	2530	1.88	497	< 1.0	< 1.0	< 0.250	1.54	0.226	1740	< 0.0050	18.9	0.0066	< 0.050	0.0029	0.0121	1.4	1.29
FR_BLAINESEEP5	FR_BLAINESEEP5_SEEP_2022-04-11_NP	2022-06-10	20.4	7.75		-	128.5	8.08	2340	3160	102	3100	64	439	< 1.0	< 1.0	< 0.250	0.73	0.117	1790	0.0132	15.5	0.0276	0.114	< 0.0010	0.0347	3.84	3.47
FR_BLAINESEEP5	FR_BLAINESEEP5_SEEP_2022-09-26_NP	2022-09-26	20.3	7.67	7.33	-	191.3	8	2350	2960	80.6	2920	45.5	539	< 1.0	< 1.0	< 0.250	0.85	0.162	1820	0.022	22.8	0.0252	< 0.050	< 0.0010	0.157	12.4	2.36
FR_BLAKESEEP1	FR_BLAKESEEP1_SEEP_2022-04-11_NP	2022-05-16	6		9.79	-	232.3	8.27	729	1240	8	906	5.74	332	< 1.0	< 1.0	< 0.250	2.32	0.178		< 0.0050	6.01	0.0051	0.458	0.0079	0.023	2.52	2.1
FR_BLAKESEEP1	FR_BLAKESEEP1_SEEP_2022-09-22_NP	2022-09-22	8.3	8.25	10.05	-	149.2	8.26	728	1250	6.9	988	3.71	324	< 1.0	< 1.0	< 0.250	1.87	0.153	544	< 0.0050	6.74	< 0.0050	0.446	0.0078	0.0167	3.36	1.58
FR_CCSEEPE1	FR_CCSEEPE1_2022-03-28_NP-E4F	2022-03-28	5.6	7.96	9.95	-	14.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-
FR_CCSEEPE1	FR_CCSEEPE1_SEEP_2022-04-11_NP	2022-06-10	5.6	7.4		- □	137.3	8.24	1180	2040	< 1.0			374	3.1	< 1.0	< 0.250	2.19	0.186		< 0.0050	80	0.0129	< 0.050		< 0.0020	0.81	0.89
FR_CCSEEPE1	FR_CCSEEPE1_2022-06-17_N	2022-06-17	5.6	7.84	10.38	-	128.5	8.08	1240	2170	1.1	1830	< 0.10	364	< 1.0	< 1.0	< 0.250	2.37	0.177	691	< 0.0050	85.6	< 0.0050	< 0.050	< 0.0010	0.0034	0.74	0.81
FR_CCSEEPE1	FR_CCSEEPE1_2022-08-08_NP-E4F	2022-08-08	5.7		11.54	-	73.2	-	- 4440	- 0500	-	- 0440	-	- 400	- 10	- 40	- 0.050	-			-	-	-	- 0.050	- 0.0040			- 0.50
FR_CCSEEPE1 FR_CCSEEPE1	FR_CCSEEPE1_SEEP_2022-07-01_NP	2022-08-22 2022-10-17	18.6 6.3	7.8	7.95		119.2	7.89	1410	2590	1.8	2410	0.29	423	< 1.0	< 1.0	< 0.250	3.8	0.22	964	< 0.0050	126	< 0.0050	< 0.050	< 0.0010	< 0.0020		< 0.50
FR_CCSEEPE1	FR_CCSEEPE1_2022-10-17_NP-E4F FR_CCSEEPSE1_2022-03-28_N	2022-10-17	6.3	7.77			163.9	8.01	2100	3140	2.1	2980	- 0.04	300	< 1.0	< 1.0	< 0.250	5.53	0.157	1140	< 0.0050	179	< 0.0050	< 0.050	< 0.0010	0.0021	< 0.50	< 0.50
FR_CCSEEPSE1	FR_CCSEEPSE1_2022-03-28_N FR_CCSEEPSE1_SEEP_2022-04-11_NP	2022-03-28	2.8	7.73	10.5	-	137.4	8.01	1590	2530	5.5	2200	1.97	364	2.8	< 1.0	< 0.250	5.53		1020	< 0.0050	80.3	< 0.0050 0.0158	< 0.050		0.0021	1.93	1.32
FR CCSEEPSE1	FR CCSEEPSE1 SEEP 2022-07-01 NP	2022-08-10	19.7	7.7		+ - +	106.7	7.72	1590	2570	2.6	2600		407	< 1.0		< 0.250		0.184		< 0.0050	50.8	0.0158		0.0089	0.0084	0.56	0.86
I IN_OCOLLI OE1	000EE1 0E1_0EE1 _2022-07-01_NF	2022-00-22	10.7	1.1	1.40		.00.7	1.12	1000	2010	1 2.0	2000	0.35	407	~ 1.0	1.0	1.0.230	0.01	0.104	1340	\ \ 0.0000	30.0	0.0001	1 . 0.000	3.0003	0.0004	1 0.50	J 3.00

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness ^b Guideline varies with pH and water temperature ^c Guideline varies with chloride

APPENDIX B - TABLE 1: Summary of Analytical Results for Dissolved Organics, Nutrients and Organics

				F1-1-1	. D	4	_			N		_		_		Di	about to a						Modelone					
				Field	Parame	ters				Physical Pa	rameter	s	1			Diss	olved Ino	ganics	1				Nutrient	ts		_	1	
Sample	Sample	Sample Date	Field Temperature	pH (field)	Dissolved Oxygen	Field Conductivity	Field ORP	Hd	Hardness	Conductivity	Total Suspended Solids	Total Dissolved Solids	Turbidity	Bicarbonate	Carbonate	Hydroxide	Bromide	Chloride	Fluoride	Sulfate	Ammonia Nitrogen	Nitrate Nitrogen	Nitrite Nitrogen	Kjeldahl Nitrogen-N	Ortho-Phosphate	Phosphorus, Total	Total Organic Carbon	Dissolved Organic Carbon
Location	ID	(yyyy-mm-dd)	С	pН	mg/L	μS/cm	mV	pН	mg/L	μS/cm	mg/L	mg/L	ntu	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
				Minimum Maximum	Acute Chronic			Minimum Maximum			Acute Chronic		Acute Chronic					Acute Chronic	Acute	Chronic	Acute Chron ic	Acute Chronic	Acute Chronic			Chronic		L
BC WQG FWAL			n/a	6.5 9	1 5	n/a	n/a	6.5 9	n/a	n/a	25 5	n/a	8 2	n/a	n/a	n/a	n/a	600 150	0.4- a	128-429	0.681-28.7 ^b 0.102-2.08 ^b	32.8 3.7	0.06-0.60° 0.02-0.20	° n/a	n/a	0.015	n/a	n/a
Fording River Operation	FD DOWAGEER4 OFFD 0000 04 44 ND	0000 05 40	7.4				040.0	0.17	000	507		1 040		1 000	- 4.0	- 4.0	1.0050		T 0 400	50.7				L 0 400	0.0047	0.0407	1 0.00	1077
FR_DOKASEEP1 FR_DOKASEEP1	FR_DOKASEEP1_SEEP_2022-04-11_NP FR_DOKASEEP1_SEEP_2022-07-01_NP	2022-05-16 2022-07-29	7.1	8.04	9.84	-	213.2	8.17 8.4	283 298	507 535	38.5	310 350	20.7	298 316	< 1.0 10.2	< 1.0	< 0.050	0.4	0.122	37.9	0.0057	0.0174	0.0014 < 0.0010	0.123	0.0017	0.0197	3.69 9.16	
FR_DOKASEEP1	FR DOKASEEP1 SEEP 2022-07-01 NP	2022-07-29	10.3	8.46	9.89		241.8	8.5	260	529	19.6	362	8.95	304	12	< 1.0	< 0.050	0.23	0.118	56	< 0.0071	0.009	< 0.0010		< 0.0090	0.0346	5.99	3.1
FR EAGLENORTH	FR EAGLENORTH SEEP 2022-04-11 NP	2022-05-16	4.8		9.59	-	2159	7.86	2370	3340	3.1	2880	0.14		< 1.0	< 1.0	< 0.250	15.2	0.133	1740	< 0.0050	68.3	< 0.0050	-	0.0054	0.0062	1.25	1.19
FR_EAGLENORTH	FR_EAGLENORTH_SEEP_2022-07-01_NP	2022-07-06	-	-	-	-	-	8.08	2310	3210	3.4	3590	0.18	616	< 1.0	< 1.0	< 0.250	12.1	0.108	1640	< 0.0050	57.6	< 0.0050	< 0.050	0.0018	0.0064	0.96	0.92
FR_EAGLENORTH	FR_EAGLE NORTH_SEEP_2022-09-22_NP	2022-09-22	7.2		9.58		176.3	7.85	2340	3290	79.6	1680	10.1	655	< 1.0	< 1.0	< 0.250	10.8	0.144	1850	0.0224	47.9	< 0.0050	0.722	0.0196	0.063	11.8	1.76
FR_FCSEEP2	FR_FCSEEP2_SEEP_2022-04-11_NP	2022-06-10	4.4		9.52		101.5	7.77	159	304	< 1.0		0.3	156	< 1.0	< 1.0	< 0.050	0.12	0.193	32.8	< 0.0050	0.707	0.0011	0.159	0.0015	0.0027	1.45	1.35
FR_FCSEEP2	FR_FCSEEP2_SEEP_2022-09-22_NP	2022-09-22	10.7		7.98	-	190.9	8.06	241	474	< 1.0		0.11	172	< 1.0		< 0.050	0.21	0.21	120	< 0.0050	2.38	< 0.0010	0.186	0.0018	< 0.0020		
FR_FRVWSEEP3 FR_FRVWSEEP3	FR_FRVWSEEP3_SEEP_2022-04-11_NP FR_FRVWSEEP3_SEEP_2022-09-08_NP	2022-06-16 2022-09-08	10.2 9.8	7.8	9.4	-	114 99.4	8.33 8.19	765 1010	1200 1460	1.1 3.6	927	0.56 1.09	451 557	9.2	< 1.0	< 0.250	1.52 2.18	0.194	380 523	0.0118	0.888	< 0.0050 < 0.0050	0.17	< 0.002	0.004	0.98	0.94
FR FSEAMSEEP7	FR FSEAMSEEP7 SEEP 2022-04-11 NP	2022-05-16	8.9	8.36	9.37		217.6		441	801	106	566	41.8		8.5	< 1.0	< 0.050	1.56	0.177	234	< 0.0050	6.3	0.0053	0.146	< 0.0010	0.0039	2.54	
FR FSEAMSEEP7	FR FSEAMSEEP7 SEEP 2022-07-01 NP	2022-07-20	-	- 0.50	9.10	-	-	8.26	368	776	190	634	50.7	255	< 1.0	< 1.0	< 0.050	0.84	0.28	235	0.0091	4.56	0.0035	0.457	< 0.0010	0.0294	5.24	3.69
FR FSEAMWSEEP4	FR FSEAMWSEEP4 SEEP 2022-04-11 NP	2022-06-16	9.14	8	10.17	-	95.8	8.03	505	903	37.6	664	< 0.10		< 1.0	< 1.0	< 0.250	< 0.50	0.379	209	0.0204	31.6	0.0325	0.441	< 0.0010	0.037	6.81	< 0.50
FR_HENSEEP3	FR_HENSEEP3_SEEP_2022-04-11_NP	2022-04-11	4.26	8.28	9.81	-	103.6	8.01	1710	2490	5.2	2070	1.23	288	< 1.0	< 1.0	< 0.250	0.82	0.238	1310	0.0062	60.6	0.0063	< 0.050	0.0065	0.0163	1.57	1.47
FR_HENSEEP3	FR_HENSEEP3_SEEP_2022-05-16_NP	2022-05-16	-	-	-	-	-	8.08	1860	2700	4	2330		317	< 1.0	< 1.0	< 0.250	0.84	0.171	1440	< 0.0050	73	0.0106		< 0.0010	0.0037	1.33	
FR_HENSEEP3	FR_HENSEEP3_SEEP_2022-07-01_NP	2022-07-14	-	-	-	-	-	7.71	1580	2320	4.4	2400	0.81	320	< 1.0	< 1.0	< 0.250	0.77	0.166	1210	0.0055	55.9	0.0063	0.4	0.0049	0.008	1.14	1.02
FR_HENSEEP3 FR_HENSSEEP1	FR_HENSEEP3_SEEP_2022-09-21_NP FR_HENSEEP1_SEEP_2022-04-11_NP	2022-09-21 2022-04-11	4.7 3.04	7.52 7.9	8.11 9.92	-	162.9 117.2	8.11 7.71	1590 1030	2660 1590	4.6 27.4	2540 1410	0.43 15.2	313 251	< 1.0	< 1.0	< 0.250	0.91	0.17	1320 853	0.006 0.0113	80.7 2.34	0.0143 < 0.0050	0.523	< 0.0010	0.0181	2.17 4.34	1.67 3.81
FR_HENSSEEP1	FR HENSEEP1 SEEP 2022-04-11 NP	2022-04-11	3.04	7.9	9.92	-	117.2	7.71	1360	1930	4.8	1810	0.93	407	< 1.0	< 1.0	< 0.250	< 0.50	< 0.100		< 0.0050	1.64	< 0.0050		< 0.0029	0.0032	2.83	2.33
FR LMCWSEEP5	FR LMCWSEEP5 SEEP 2022-04-11 NP	2022-07-14	7.2	8	9.8		94.6	8.21	271	492	51.1		23		< 1.0	< 1.0	< 0.050	0.16	0.12	93.3	< 0.0050	5.36	< 0.0030	0.363		0.0324	7.13	
FR LMCWSEEP5	FR LMCWSEEP5 SEEP 2022-07-01 NP	2022-07-06	-	-	-	- 1	-	8.36	316	586	5.4	474	4.9	208	3.8	< 1.0	< 0.050	0.3	0.104	133	< 0.0050	8.6	0.0016	0.311	0.0074	0.0147	3	< 0.50
FR_LMCWSEEP5	FR_LMCWSEEP5_SEEP_2022-09-22_NP	2022-09-22	5.3	7.6	10.16	-	173	8.15	664	1160	1.7	894	1.18	286	< 1.0	< 1.0	< 0.250	0.66	0.125	387	< 0.0050	29.5	< 0.0050	0.409	0.0091	0.0094	1.87	1.76
FR_SCRDSEEP1	FR_SCRDSEEP1_SEEP_2022-04-11_NP	2022-05-19	2.3	7.78	9.21	-	148.8	8	1430	2530	66.9	2020	4.77		< 1.0	< 1.0	< 0.250	2.82	0.182	570	0.175	172	0.147	< 0.050	0.0014	0.0158	3.6	4.02
FR_SCRDSEEP1	FR_SCRDSEEP1_SEEP_2022-09-21_NP	2022-09-21	5.9	7.5	10.7	-	221.1	8.14	1820	2730	6.6	2670	1.34	494	< 1.0	< 1.0	< 0.250	1.37	0.164	1490	0.0065	35.6	0.0093	< 0.050	0.0072	0.0357	2.68	2.1
FR_SPRWSEEP1	FR_SPRPSEEP1_WS_2022-04-27_NP	2022-04-27	10.07	7.98	8.38	-	130.9	8.2	636	1110	32.8	874	21	434	< 1.0	< 1.0	< 0.250	2.63	0.124	363	0.0086	8.34	< 0.0050	0.322	0.002	0.0289	12	1.23
FR_SPRWSEEP1 FR_STPNSEEP	FR_SPRWSEEP1_SEEP_2022-07-01_NP FR_STPNSEEP_SEEP_2022-04-11_NP	2022-07-14 2022-05-19	- 2 E	7.55	- 0.00	-	160.8	8.08 7.89	642 493	1085 892	57.9	836.5 641	35.93	397 248	< 1.0	< 1.0	< 0.250	2.435 9.01	0.121	345 239	< 0.0050 < 0.0050	7.45	< 0.0050 < 0.0050	0.4155	< 0.0010	0.02685	16.385	
FR STPNSEEP	FR STPNSEEP SEEP 2022-04-11_NP	2022-03-19	3.5	7.55	9.38	-	100.6	7.89	279	523	< 1.0	376	0.18	231	< 1.0	< 1.0	< 0.250	7.74	0.172	95.3	< 0.0050	16.8 5.12	0.0034		< 0.0010	0.0028	1.04	1.07
FR STPSWSEEP	FR STPSWEEP WS 2022	2022-01-15	-				-	8.13	617	1120	< 1.0	729	0.16	379	< 1.0	< 1.0	< 0.450	7.74	0.172	324	< 0.0050	0.344	< 0.0034	0.433	0.0010	< 0.0034	1.04	0.58
FR STPSWSEEP	FR STPSWSEEP WS 2022	2022-02-22	-			-	-	8.04	622.5	1080	2	788.5	0.315		< 1.0	< 1.0	< 0.250	8.12	0.2585		< 0.0050	0.07795	< 0.0050		< 0.0012	< 0.0020		
FR STPSWSEEP	FR STPSWSEEP SEEP 2022-04-11 NP	2022-05-19	9	7.54	7.2	- 1	141.8	7.98	610	1060	8.1	764	0.34	432	< 1.0	< 1.0	< 0.250	7.89	0.267	294	< 0.0050	0.296	< 0.0050	0.091	< 0.0010	< 0.0020	1.01	0.83
FR_STPSWSEEP	FR_STPSWSEEP_SEEP_2022-07-01_NP	2022-07-15	-	-	-	-	-	7.74	597	1040	1.7	759	0.36	501	< 1.0	< 1.0	< 0.250	7.65	0.321	274	< 0.0050	0.134	0.0079	0.162	< 0.0010	0.0029	1.47	0.96
FR_STPSWSEEP	FR_STPSWSEEP_SEEP_2022-09-23_NP	2022-09-23	9.4	7.44	8.07	-	193	8.2	628	968	< 1.0	723	0.11	459	< 1.0	< 1.0		7.79	0.349	267	< 0.0050	0.361	< 0.0050		< 0.0010			
FR_STPWSEEP	FR_STPWSEEP_SEEP_2022-04-11_NP	2022-05-19	8.2	7.85	9.07	-	145.6		566	1040	6.4	703	0.35	501	< 1.0	< 1.0		5.64	0.282	237	< 0.0050	0.118	< 0.0050		< 0.0010	< 0.0020		0.7
FR_STPWSEEP	FR_STPWSEEP_SEEP_2022-07-01_NP	2022-07-15	- 0.4	-	-	- 1	- 0.400	8.01	575	997	6.2	715	0.99		< 1.0		< 0.250	8.53	0.343	232	0.009	0.0912	0.0072		< 0.0010	0.0024	1.51	1.15
FR_STPWSEEP FR_STPWSEEP	FR_STPSWSEEP_SEEP_2022-09-12_NP FR_STPWSEEP_SEEP_2022-09-23_NP	2022-09-12 2022-09-23	9.4 19.5	7.44	8.07	-	0.193 136.5	8.07	637 625	1030 966	2.8	697	0.5	457 506	< 1.0	< 1.0	< 0.250	7.34	0.225	268 220	< 0.0050	0.275	< 0.0050	0.116	0.0018	0.0033	0.82	1.02
FR_STPWSEEP FR_TBWSEEP1	FR_STPWSEEP_SEEP_2022-09-23_NP FR_TBWSEEP1_SEEP_2022-04-11_NP	2022-09-23	3.12	8.25 8.09	8.9	-	179.8	8.28 7.69	728	1210	1.2	907	< 0.10		< 1.0		< 0.250	5.47 1.03	< 0.100		< 0.0050 < 0.0050	0.0923 16.7	< 0.0050 < 0.0050		0.0032	0.0020	0.68	0.73
FR_TBWSEEP1	FR TBWSEEP1 SEEP 2022-04-11 NP	2022-04-11	3.12	8.09	10.6		1/8.0	7.745	688	1130	< 1.2		0.73	339	< 1.0	< 1.0		1.03	< 0.100	383.5	< 0.0050	13.2	< 0.0050	< 0.050		0.007	0.65	0.73
FR TURNSEEP1	FR TURNSEEP1 SEEP 2022-04-11 NP	2022-04-11	4.3	8.13	10.3		207.3	8.1	1030	1690	6.8	1190	1.76	405	< 1.0		< 0.250	0.77	0.197	580	< 0.0050	53.4	0.0147		< 0.0042	0.0040	1.45	
FR TURNSEEP1	FR TURNSEEP1 SEEP 2022-07-01 NP	2022-07-14	-		-	-	-	8.12	681	1160	2.7	992	1.01	369	< 1.0	< 1.0	< 0.250	< 0.50	0.181	359	0.0061	25.5	0.0286		< 0.0010	0.0036	1.53	1.54
FR_TURNSEEP1	FR_TURNSEEP1_SEEP_2022-09-21_NP	2022-09-21	6.9	8.06	10.37	-	151.7	8.02	929	1520	18.4	1330	0.5	314	< 1.0	< 1.0	< 0.250	0.72	0.168	606	0.02	41.6	0.0111		< 0.0010	0.011	6.11	1.74
FR TURNSEEP2	FR TURNSEEP2 SEEP 2022-04-11 NP	2022-04-11	4.69	8.11	8.07	-	215.5	7.76	831	1370	1.3	1080	0.54	361	< 1.0	< 1.0	< 0.250	0.78	< 0.100	513	< 0.0050	21.7	< 0.0050	< 0.050	< 0.0010	0.0074	1.5	1.45
FR_TURNSEEP2	FR TURNSEEP2 SEEP 2022-07-01 NP	2022-07-14						7.825		1290		1100					< 0.250		< 0.100	447	< 0.0050				0.00535			

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness ^b Guideline varies with pH and water temperature

^o Guideline varies with chloride

APPENDIX B - TABLE 1: Summary of Analytical Results for Dissolved Organics, Nutrients and Organics

				Field	Parameters		Т		Physical Pa	arameter	s				Disso	lved Inor	ganics					Nutrient	s				
Sample	Sample	Sample Date	Field Temperature	pH (field)	Dissolved Oxygen	Field	Hď	Hardness	Conductivity	Total Suspended Solids	Total Dissolved Solids	Turbidity	Bicarbonate	Carbonate	Hydroxide	Bromide	Chloride	Fluoride	Sulfate	Ammonia Nitrogen	Nitrate Nitrogen	Nitr ie Nitrogen	Kjeldahl Nitrogen-N	Ortho-Phosphate	Phosphorus, Total	Total Organic Carbon	Dissolved Organic Carbon
Location	ID	(yyyy-mm-dd)	С	pH	mg/L μS/	m mV	pH	mg/L	μS/cm	mg/L	mg/L	ntu	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
BC WQG FWAL			-1-	Minimum Maximum	Chronic		mnwinim 6.5 9	n/a	n/a	25 Acute Chronic		ω Acute N Chronic		n/a	n/a	n/a	Chronic Chronic	Acute	Chronic	9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Acute	Acute	n/a	- 1-	Chronic O.015	n/a	n/a
Greenhills Operation			n/a	0.5 9	1 5 N	a n/a	0.5 9	n/a	n/a	25 5	n/a	8 2	nva	n/a	n/a	nva	000 150	0.4-	128-429	0.081-28.7 0.102-2.08	32.8 3.7	0.00-0.00 0.02-0.20	n/a	n/a	0.015	n/a	n/a
GH E1	GH E1 WS 2022-01-03 NP	2022-01-24	3.6	7.16	9.01	66.5	7.81	1440	2160	21.2	1760	11.3	483	< 1.0	< 1.0	< 0.250	4.49	< 0.100	1040	0.0085	0.184	< 0.0050	0.079	< 0.0010	0.0106	1.78	1.92
GH_E1	GH_E1_WS_2022-07-NP	2022-02-14	2	8	11.04	193.2		828	1310	< 1.0		0.18		5.3	< 1.0	< 0.250	10.3	< 0.100	435	< 0.0050	0.0332	< 0.0050		< 0.0010	0.0037	1.11	1.19
GH_E1	GH_E1_WS_2022-03-07_NP	2022-03-09	0.9	7.97	11.63	102.2	7.97	790	1310	2.2	942	0.23	545	< 1.0	< 1.0	< 0.250	13.4	< 0.100	376	< 0.0050	0.0809	< 0.0050	0.074	0.0018	0.0091	1.15	1.12
GH_E1	GH_E1_WS_2022-04-04_NP	2022-04-20	3.4		10.23	108.3		1750	2540	1.6	2460	1.1		< 1.0	< 1.0	< 0.250	2.84	0.126	1340	0.0052	< 0.0250	< 0.0050		< 0.0010	0.0032	2.18	2.16
GH_E1	GH_E1_WS_2022-05-09_NP	2022-05-12	14.9		8.29	145.5		868	1450	< 1.0	1150	0.17		< 1.0	< 1.0	< 0.250	9.87	< 0.100	534	< 0.0050	0.0529	< 0.0050	0.07	< 0.0010	0.0036	2.09	1.69
GH_E1 GH E1	GH_E1_WS_2022-06-07_NP GH_E1_WS_2022-07-04_NP	2022-06-20	15.9	8.09		127.3		921	1480	2	1160	0.31		< 1.0	< 1.0	< 0.250	8.68	< 0.100	518	0.0116	< 0.0250	< 0.0050	0.172	0.0014	0.0049	2.16	2.23
GH_E1	GH_E1_WS_2022-07-04_NP GH_E1_WS_2022-08-01_NP	2022-07-08 2022-08-10	19.8	7.91 7.6	7.65	172.4		911	1430 2370	1.3 3.6	1160 2160	0.26 2.65		< 1.0	< 1.0	< 0.250	9.82	< 0.100	607 1300	0.0115 0.007	< 0.0250	< 0.0050	0.419	< 0.0010	< 0.0054	1.35	2.17
GH_E1	GH_E1_W3_2022-08-01_NF GH_E1_WS_2022-09-05_NP	2022-08-10	9.2	7.0	8.93	84.6		1680	2270	3.5	2260	1.02		< 1.0	< 1.0	< 0.250	3.99	0.164	1280	0.007	0.286 1.16	0.0092 < 0.0050	0.074	< 0.0010	< 0.0020	1.32	1.22
GH E1	GH E1 WS 2022-10-03 NP	2022-10-07	10.7	7.56	8.87	66.4		1710	2240	3.5	2150	1.12		< 1.0		< 0.250	4.02	0.163	1380	< 0.0050	0.401	< 0.0050			< 0.0020	1.1	1.05
GH E3	GH E3 WS 2022-01-03 NP	2022-01-24	7.7		7.89	144.5		1240	1860	12.2	1460	2.28		< 1.0	< 1.0	< 0.450	8.93	< 0.180	604	< 0.0050	0.479	< 0.0090			0.0057	1.64	1.2
GH_E3	GH_E3_WS_2022-02-07_NP	2022-02-14	1.9		10.85		8.22	901	1420	1.5	1120	0.63		< 1.0		< 0.250	4.53	< 0.100	507	< 0.0050	0.0884	< 0.0050		< 0.0010	0.003	1.22	1.15
GH_E3	GH_E3_WS_2022-03-07_NP	2022-03-09	5		8.91 -	76.9		913	1500	87.2		28.1		< 1.0	< 1.0	< 0.250	5.41	< 0.100	548	< 0.0050	0.044	< 0.0050		< 0.0010	0.069	1.06	1.27
GH_E3	GH_E3_WS_2022-05-02_NP	2022-05-11	14.2	8.16	8.72	135.1		1270	1770	3.2	1470	0.96		< 1.0	< 1.0	< 0.250	4.48	< 0.100	806	< 0.0050	0.27	< 0.0050		< 0.0010	0.0055	1.49	1.59
GH_E3	GH_E3_WS_2022-06-07_NP	2022-06-23	13.6		8.93 -	243		1160	1700	159	1480	12.1		< 1.0		< 0.250	3.68	< 0.100	720	< 0.0050	< 0.0250	< 0.0050		< 0.0010	0.0127	1.75	1.71
GH_E3 GH E3	GH_E3_WS_2022-07-04_NP GH_E3_WS_2022-08-01_NP	2022-07-08	21		11.12	153.5		1310	1830 2040	15.6	1470	4.9		< 1.0		< 0.250	3.89	< 0.100	972	< 0.0050	0.0941	< 0.0050		< 0.0010	0.0127	2.68 1.29	2.38
GH_E3	GH E3 WS 2022-08-01 NP	2022-08-10	17.9 14.1	8.02 7.88	9.75			1720	2150	10.7	1710 1980	1.2 2.36		< 1.0	< 1.0	< 0.250	5.32 4.6	< 0.100	1070 1130	0.0085 0.0055	< 0.0250 0.193	< 0.0050 < 0.0050	0.112	< 0.0010	0.0045	1.29	1.30
GH_E3	GH_E3_W3_2022-09-05_NP	2022-09-27	9.3	7.51	7.9	183.6		1510	2020	5	1860	3.38		< 1.0	< 1.0	< 0.250	5.29	< 0.100	1070	< 0.0050	0.193	< 0.0050	0.106		0.0043	1.15	1.1
GH SEEP 12	GH SEEP 12 WS 2022-06-07 NP	2022-06-21	6	7.96	11.97	156.4		237	429	< 1.0		0.13		< 1.0		< 0.050	0.22	0.192	12.4	< 0.0050	0.0272	< 0.0030		< 0.0010	< 0.0020	3.07	2.95
GH SEEP 12	GH SEEP 12 WS 2022-09-06 NP	2022-09-20	6.7	7.8	9.1	208.2		240	424	10.7		1.64		1.6	< 1.0	< 0.050	0.63	0.322	21	< 0.0050	< 0.0050	< 0.0010	0.137	< 0.0010	0.0087	1.55	1.01
GH_SEEP_16	GH_SEEP_16_WS_2022-09-06_NP	2022-09-20	13.2		13.9	182.2	8.16		831	1	606	1.11		< 1.0		< 0.050		0.159	312	< 0.0050	< 0.0050	< 0.0010		< 0.0010	0.0109	2.78	2.54
GH_SEEP_21	GH_SEEP_21_WS_2022-06-07_NP	2022-06-28	9.4		5.58 -	178.2		1600	2320	67.8	2120	6.97		< 1.0	< 1.0	< 0.250	1.34	0.172	942	< 0.0050	0.303	0.0066	0.06	< 0.0010	0.0068	2.13	2.11
GH_SEEP_21	GH_SEEP_21_WS_2022-09-06_NP	2022-09-20	12.4	7	7.5	165.4		1790	2500	4.6	2370	1.94		< 1.0	< 1.0	< 0.250	3.37	0.145	1310	< 0.0050	0.0278	< 0.0050	0.076	< 0.0010	< 0.0020	2	2.06
GH_SEEP_22	GH_SEEP_22_WS_2022-06-07_NP	2022-06-28	15.3		4.55	3.2		1380	2170	13.3	1740	32.6		< 1.0		< 0.250	4.54	0.156	816	0.135	0.0438	< 0.0050		< 0.0010	0.0139	2.45	2.36
GH_SEEP_22 GH_SEEP_46	GH_SEEP_22_WS_2022-09-06_NP GH_SEEP_46_WS_2022-06-07_NP	2022-09-20 2022-06-24	12.2 3.1	6.8	5.5	18.2 290.9		1680 572	2450 1100	3.7	2320 873	13.8		< 1.0	< 1.0 < 1.0	< 0.250 < 0.250	4.46	0.183	1240 448	0.184	< 0.0250	< 0.0050		< 0.0010 0.0717	0.0203 0.0697	1.92	2.07
GH SEEP 5	GH SEEP 5 WS 2022-06-07 NP	2022-06-23	7.6	8.12 7.55	7.72	175.9		328	630	2.4	444	1.08 2.21		< 1.0	< 1.0	< 0.250	14.8 7.7	0.094	173	< 0.0050 < 0.0050	5.02 2.36	< 0.0050 < 0.0010		0.0717	0.0097	1.53	1.23
GH SEEP 5	GH SEEP 5 WS 2022-09-06 NP	2022-09-22	6.8	7.81	8.15	70.4		368	651	4.9	412	5.12		< 1.0	< 1.0	< 0.050	8.33	0.128	176	< 0.0050	1.53	< 0.0010	0.09	0.0662	0.0752	1.28	0.56
GH SEEP 50	GH SEEP 50 WS 2022-06-07 NP	2022-06-28	18.1	7.82	6.52	117.5		174	429	5.5	276	18.6		< 1.0	< 1.0	< 0.050	20.2	0.109	52.6	< 0.0050	< 0.0050	< 0.0010	0.296		0.0372	8.95	7.68
GH_SEEP_60	GH_SEEP_60_WS_2022-06-07_NP	2022-06-29	8.6	7.2	6.88	263.	7.94	73.3	155	29.2	122	13.2	83.1	< 1.0		< 0.050	< 0.10	0.049	9.96	< 0.0050	0.0121	< 0.0010	0.573		0.034	11.1	8.84
GH_SEEP_76	GH_SEEP_76_WS_2022-06-07_NP	2022-06-29	10.6	8.29	8.86	200.9		959	1600	2.7	1320	1.35		8.8		< 0.250	0.5	0.206	684	< 0.0050	34.7	< 0.0050		< 0.0010	0.0062	1.54	1.42
GH_SEEP_76	GH_SEEP_76_WS_2022-09-06_NP	2022-09-27	14.3	8.1	8.8	175.5		1360	1930	2.5	1720	0.59		< 1.0		< 0.250	0.67	0.163	909	0.0072	47.1	0.0214		< 0.0010	0.0033	0.92	0.85
GH_SEEP_77	GH_SEEP_77_WS_2022-06-07_NP	2022-06-29	7.3	7.9	9.85	248		1240	2080	1 100	1700		263	6.2		< 0.250	1.42	0.115	748	< 0.0050	89	< 0.0050		< 0.0010	0.0032	1.28	1.28
GH_SEEP_77 GH_SEEP_79	GH_SEEP_77_WS_2022-09-06_NP GH_SEEP_79_WS_2022-06-07_NP	2022-09-27 2022-06-29	23.7 7.1	8.19 7.96	13.78 · 9.63 ·	87.9 265.4		1390 1610	2080	108 38.1	1910 2010	21.6		< 1.0		< 0.250 < 0.250	1.13	0.100	1070	0.0643 < 0.0050	42.6 23.8	0.0598 < 0.0050		< 0.0010 < 0.0010		7.72	3.42 1.87
GH_SEEP_79 GH_SEEP_79	GH SEEP 79 WS 2022-08-07 NP	2022-06-29	12.4	8.3	9.63	157		208	893	38.1	554	117	456	13.7	< 1.0		66.3	0.113	61.3	< 0.0050 0.0322	0.0208	0.0050		< 0.0010	0.0284	5.11	0.75
GH_SEEP_79 GH_SEEP_98	GH SEEP 98 WS 2022-06-07 NP	2022-09-27	12.4	7.38	5.98	203.7		666	1250	6.7	896	1.25		3.8		< 0.250	34.1	0.357		< 0.0322	1.15	< 0.0050		< 0.0010	0.0061	1.45	1.15
GH SEEP 98	GH SEEP 98 WS 2022-09-06 NP	2022-09-28	11.5	7.3	6.03	153.6		739	1250	43.3	987	2.9		< 1.0		< 0.250	15.2	0.143	465	0.04	0.419	0.0089		< 0.0010	0.0299	2.75	1.2
GH_W-SEEP	GH_W_SEEP_WS_2022-04-04_NP	2022-04-20	0.7	7.98	11.15	148.6	8.18	1790	2490	23.1		3.39		< 1.0	< 1.0	< 0.250	2.96	< 0.100	1450	< 0.0050	0.449	< 0.0050	0.284	0.0037	0.0413	2.88	2.7
GH_W-SEEP	GH_W-SEEP_WS_2022-08-01_NP	2022-08-23	12.9	6.45	2.31	-27.7		3040	3490	31.3	3470	116	1020	< 1.0	< 1.0	< 0.250	2.4	0.198	2100	1.24	< 0.0250	< 0.0050	1.44	< 0.0010	0.167	5.58	5.52
GH_WTDS	GH_WTDS_WS_2022-01-03_NP	2022-01-26	4.55	8.02	10.41	72		1 -	1	-	1 -	-	-			-	-		-	-	-	-		-		-	I
GH_WTDS	GH_WTDS_WS_2022-02-07_NP	2022-02-14	4.1	7.76	10.28	93.1		549	952	< 1.0		< 0.10		< 1.0		< 0.250	14.7	0.125	149	< 0.0050	0.341	< 0.0050		< 0.0010	0.0022	1.19	1.01
GH_WTDS	GH_WTDS_WS_2022-03-07_NP	2022-03-07	5	7.75	10.43	91		532	962	< 1.0		< 0.10		< 1.0	< 1.0		15.4	0.164	139	< 0.0050	0.214	< 0.0010		< 0.0010	< 0.0020	0.89	0.78
GH_WTDS GH_WTDS	GH_WTDS_WS_2022-04-04_NP GH_WTDS_WS_2022-05-02_NP	2022-04-06 2022-05-06	5.4	7.92	10.75	166.1	8.14	547 529	945 952	< 1.0		0.13		< 1.0	< 1.0	< 0.250	14	0.19	174 172	< 0.0050 < 0.0050	0.97	< 0.0050 0.0055		< 0.0010 0.0024	< 0.0020 < 0.0020	1.17	1.14
GH_WTDS	GH_WTDS_WS_2022-05-02_NP	2022-05-00	7.2	7.88	9.79	120.7		496	946	4.2	637	0.10		< 1.0	< 1.0	< 0.250	13.2	0.178	160	< 0.0050	0.009	< 0.0050			0.0036	1.05	1.02
GH WTDS	GH WTDS WS 2022-07-04 NP	2022-00-03	6.6		9.84	166.7		587	967	< 1.0		0.27		< 1.0	< 1.0	< 0.250	11.8	0.182	190	0.011	1.36	< 0.0050		< 0.0010	0.0036	0.92	0.96
GH_WTDS	GH_WTDS_WS_2022-08-01_NP	2022-08-05	6.4	7.81	10.01	171		542	937	< 1.0		< 0.10		< 1.0	< 1.0	< 0.250	13.5	0.164	190	< 0.0050	0.878	< 0.0050		< 0.0010	< 0.0020	0.92	1.21
GH_WTDS	GH_WTDS_WS_2022-09-05_NP	2022-09-20	5.8	7.7	10.25	169.4		519	917	< 1.0		0.19		< 1.0	< 1.0	< 1.00	16.5	< 0.400	204	< 0.0050	0.397	< 0.0200	0.092	< 0.0010	< 0.0020	0.64	1.04
GH_WTDS	GH_WTDS_WS_2022-10-03_NP	2022-10-07	6.4	7.69	10.17	155	8.14	518	885	< 1.0	578	< 0.10	526	< 1.0	< 1.0	< 0.250	14	0.165	136	< 0.0050	0.25	< 0.0050	0.09	< 0.0010	< 0.0020	< 0.50	< 0.50

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness ^b Guideline varies with pH and water temperature

^o Guideline varies with chloride

APPENDIX B - TABLE 1: Summary of Analytical Results for Dissolved Organics, Nutrients and Organics

				_	FIEI	Param	eters				Physical Pa	rameters			_	_	Diss	olved Ino	rganics		_			Nutrient	5	_			_
Sam		Sample	Sample Date	Field Temperature	pH (field)	Dissolved Oxygen	Field Conductivity	Field ORP	Hd	Hardness	Conductivity	Total Suspended Solids	Total Dissolved Solids	Turbidity	Bicarbonate	Carbonate	Hydroxide	Bromide	Chloride	Fluoride	Sulfate	Ammonia Nifrogen	Nitrate Nitrogen	Nitrite Nitrogen	Kjeldahl Nitrogen-N	Ortho-Phosphate	Phosphorus, Total	Total Organic Carbon	Dissolved Organic Carbon
Loca	ation	ID	(yyyy-mm-dd)	С	pН	mg/L	μS/cm	mV	pH	mg/L	μS/cm	mg/L	mg/L	ntu	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
					Minimum Maximum	Acute Chronic			Minimum Maximum			Acute Chronic		Acute Chronic					Acute Chronic	Acute	Chronic	Acute Chron ic	Acute Chronic	Acute Chronic			Chronic		
BC WQG FWA				n/a	6.5 9	1 5	n/a	n/a	6.5 9	n/a	n/a	25 5	n/a	8 2	n/a	n/a	n/a	n/a	600 150	0.4- a	128-429°	0.681-28.7 ^b 0.102-2.08 ^b	32.8 3.7	0.06-0.60° 0.02-0.20°	n/a	n/a	0.015	n/a	n/a
Line Creek Op																													
LC_3		LC_3KM_WS_SPRING-2022_NP	2022-06-29	19.12		-	-	123.98	8.6	277	574	< 1.0	363	0.54	342	14	< 1.0	< 0.050		0.098	51	0.005	1.75		< 0.500	0.0085	0.0137	2.25	2.25
LC_3		LC_3KM_WS_FALL-2022_NP	2022-09-26	13.2		9.02	-	349	8.53	313	595	2.8	350	0.5	366	12.4	< 1.0	< 0.050		0.078	47	0.0085	1.62		< 0.500	0.0019	0.0069	1.36	1.4
LC_SI		LC_SEEP1_WS_FALL-2022_NP	2022-09-23	14.4		8.51	-	52	8.22	329	767	117	469	4.75	508	< 1.0	< 1.0	< 0.050		0.255	66.6	0.005	0.0115			< 0.0010		1.8	1.82
LC_SE		LC_SEEP10_WS_SPRING-2022_NP	2022-07-08	11.2		-	-	-2.845	7.92	782	1400	1.8	969	7.99	509	< 1.0	< 1.0	1.27	192	0.129	138	0.0341	0.0565			< 0.0010		1.54	1.47
LC_SE		LC_SEEP10_WS_FALL-2022_NP	2022-09-16	9.2		6.01	-	-14	7.74	843	1540	2.1	1060	7.92	570	< 1.0	< 1.0	1.76	208	0.15	166	0.0389	0.0488			< 0.0010		1.83	2.98
LC_SE		LC_SEEP11_WS_SPRING-2022_NP	2022-07-08	10.1		-	-	45.925	8.13	603	1170	< 1.0	768	0.37	407	< 1.0	< 1.0	1.16	174	0.249	88	0.005	0.497			< 0.0010			< 0.50
LC_SE		LC_SEEP11_WS_FALL-2022_NP	2022-09-16	9.6		4.17	-	100	7.73	608	1180	3.9	752	1.15	426	< 1.0	< 1.0	1.46	160	0.278	93	0.005	0.53			< 0.0010			< 0.50
LC_SE		LC_SEEP14_WS_SPRING-2022_NP LC_SEEP15_WS_SPRING-2022_NP	2022-06-29	6.2			-	244	7.98	468	804	3.4	562 632	0.22	247	< 1.0	< 1.0	< 0.050		0.183	217	0.005	7.2	0.001 0.005		< 0.0010			< 0.50
LC_SE			2022-06-29 2022-09-23	7.1 6.5		10.53	-	136	7.74	530	833				306	< 1.0	< 1.0	< 0.250		0.175	258	0.005	6.09	0.005	0.4	< 0.0010		0.68 1.26	< 0.50
LC_SE		LC_SEEP15_WS_FALL-2022_NP LC_SEEP19_WS_SPRING-2022_NP	2022-09-23	5.3	8.3 7.61	10.53 9.92	-	212 259	8.23 7.9	568 332	847 601	19.9 < 1.0	698 418	4.1 0.24	304 221	< 1.0 < 1.0	< 1.0	< 0.250		0.176	309 149	0.005 0.005	6.29 1.55	0.005	0.783	< 0.0010	0.0244	0.89	< 0.50
LC_SE		LC_SEEP19_WS_SPRING-2022_NP LC_SEEP19_WS_FALL-2022_NP	2022-06-29			9.92	-	282	8.22	742	1070		843	0.24	304	< 1.0	< 1.0	< 0.050		0.198	433	0.005	4.26		0.52	0.0035	0.0062		< 0.50
LC_SE		LC SEEP19 WS_FALL-2022 NP LC SEEP2 WS SPRING-2022 NP	2022-09-26	7.5		9.68	-	284	7.96	337	623	1.5 12.7	402	7.86	310	< 1.0	< 1.0	0.084	14.4	0.198	28.4	0.005	12.4	0.003		< 0.0046		1.23	0.8
LC_SI		LC SEEP2 WS_SPRING-2022_NP LC SEEP2 WS FALL-2022 NP	2022-06-29	6.5			-	264	8.17	255	428	3.7	274		291	< 1.0	< 1.0	< 0.250		0.161	30.1	0.005	0.525			< 0.0010			< 0.50
LC SI		LC SEEPS WS SPRING-2022 NP	2022-09-20	22.9		10.02	-	185	8.45	169	303	4.6	170	15.1	211	9.2	< 1.0	< 0.250			0.47	0.0094	0.0068			< 0.0010		6.8	6.15
LC SI		LC SEEP8 WS FALL-2022 NP	2022-00-20	11.7		7.78		186	7.93	138	243	566	394	850	170	< 1.0	< 1.0	< 0.050		0.146	3.7	0.456	0.0008	0.008	3.54	0.0083	0.0189	44.1	14.2
LC U		LC UDHP WS SPRING-2022 NP	2022-06-23	3.9		7.61	-	268	7.89	259	513	< 1.0	302	1.72	290	< 1.0	< 1.0	< 0.050		0.097	30.3	0.0053	3.68		< 0.500	0.0173	0.0208	3.25	3.2
LC U		LC UDHP WS FALL-2022 NP	2022-09-26	7.8		7.99		234	7.96	552	993	2.3	774	1.35	220	< 1.0	< 1.0	< 0.250		< 0.100		0.005	36.6	0.0069	0.449	0.0173	0.0200	1.12	1.32
LC U		LC UDP1 WS SPRING-2022 NP	2022-06-23	5.5		7.9		292	8	272	530	1.5	286	0.89	356	< 1.0	< 1.0	< 0.250			4.52	0.005	0.452		< 0.500	0.0065	0.0117	2.13	1.87
LC U		LC UDP1 WS FALL-2022 NP	2022-09-26	11.8		9.07		256	8.15	204	364	6.8	223	3.12	271	< 1.0	< 1.0	< 0.050		0.073	7.34	0.005	0.432	0.001	0.085	0.0003	0.0189	0.83	0.9
LC WLC		LC WLC LOT2 WS SPRING-2022 NP	2022-07-08	4.3	7.34	3.01		92.54	8.31	995	1500	< 1.0	1220	0.12	427	< 1.0	< 1.0	< 0.250		0.14	623	0.005	7.45	0.005	0.062	0.002	0.0063	0.03	1.03
LC WLC		LC WLC LOT2 WS FALL-2022 NP	2022-09-23			10.72	-	193	8.08	1100	1510	3.8	1490	1.04	387	< 1.0	< 1.0	< 0.250		0.213	813	0.005	1.64	0.005	0.765	0.0182	0.036	1.37	1.42

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted n/a denotes no applicable standard

^a Guideline varies with hardness ^b Guideline varies with pH and water temperature

Guideline varies with chloride

APPENDIX B - TABLE 2: Summary of Analytical Results for Dissolved Metals

									Dissolv	ed Metals						
Sample	Sample	Sample Date	Hardness	Aluminum	Antimony	Arsenic	Barium	Beryllium	Bismuth	Boron		Cadmium	Calcium	Chromium	Cobalt	Copper
Location	ID	(mm/dd/yyyy	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	n	ng/L	mg/L	mg/L	mg/L	mg/L
				A cute C hronic							Acute	Chronic				Acute Chronic
BC WQG FWAL			n/a	0.020-0.10 ^a 0.005-0.05 ^a	n/a	na	na	na	n/a	n/a	0.00004-0.0028	0.00002-0.00173 ^a	n/a	n/a	n/a	BLM
Coal Mountain Mine																
CM_37PIT-SEEP-E	CM_37PIT-SEEP-E_WS_2022-07-07_NP	2022-07-07	709	0.0018	0.00012	0.00018	0.0215	< 0.020	< 0.000050	0.232		000939	191	< 0.00010	0.0191	< 0.00020
CM_37PIT-SEEP-E	CM_37PIT-SEEP-E_WS_2022-09-02_NP	2022-09-28	476	< 0.0010	< 0.00010	0.00019	0.0207	< 0.020	< 0.000050	0.307		0.0050	114	< 0.00010	0.00063	0.00028
CM_37PIT-SEEP-W	CM_37PIT-SEEP-W_WS_2022-07-07_NP	2022-07-07	458	< 0.0010	< 0.00010	0.00025	0.0318	0.000025	< 0.000050	0.327		000086	128	< 0.00010	0.00397	< 0.00020
CM_37PIT-SEEP-W	CM_37PIT-SEEP-W_WS_2022-09-02_NP	2022-09-28	180	< 0.0010	< 0.00010	0.00016	0.0334	< 0.020	< 0.000050	0.295		0.0050	33.9	< 0.00010	0.00066	0.0002
CM_CCDS	CM_CCDS_WS_2022-07-20_NP	2022-06-16	300	0.0012	< 0.00010	0.00031	0.0401	< 0.020	< 0.000050	0.012		000315	72.5	0.0003	< 0.10	< 0.00020
CM_CS1	CM_CS1_WS_2022-07-20_NP	2022-06-16	365	0.0011	< 0.00010	0.0004	0.0397	< 0.020	< 0.000050	0.011		000162	90.9	0.00027	< 0.10	< 0.00020
CM_CS1	CM_CS1_WS_2022-09-02_NP	2022-09-15	314	0.0017	< 0.00010	0.00029	0.0527	< 0.020	< 0.000050	< 0.010		000182	82.4	0.00019	< 0.10	< 0.00020
CM_MM-SEEP1	CM_MM-SEEP1_WS_2022-07-20_NP	2022-06-16	614	0.0018	0.00022	< 0.00010	0.0604	< 0.020	< 0.000050	0.086		000407	120	< 0.00010	< 0.10	0.00022
CM_MM-SEEP1	CM_MM-SEEP1_WS_2022-09-02_NP	2022-09-15	490	< 0.0010	0.00021	< 0.00010	0.0817	< 0.020	< 0.000050	0.084		000286	106	< 0.00010	< 0.10	0.00036
CM_MM-SEEP3	CM_MM-SEEP3_WS_2022-07-20_NP	2022-06-16	1020	0.0019	< 0.00010	0.00044	0.0596	< 0.020	< 0.000050	0.073		0.0050	252	< 0.00010	0.00032	0.00029
CM_MM-SEEP3	CM_MM-SEEP3_WS_2022-09-02_NP	2022-09-15		0.0011	< 0.00010	0.00063	0.0586	< 0.020	< 0.000050	0.082		0.0050	231	< 0.00010	0.00039	< 0.00020
CM_MM-SEEP5	CM_MM-SEEP5_WS_2022-07-20_NP	2022-06-16	791	0.0153	< 0.00010	< 0.00010	0.0314	0.000093	< 0.000050	0.061		000844	184	< 0.00010	0.00995	0.00119
CM_MM-SEEP5	CM_MM-SEEP5_WS_2022-09-02_NP	2022-09-15	581	0.0049	< 0.00010	< 0.00010	0.0349	0.000024	< 0.000050	0.06		000143	137	< 0.00010	0.0003	0.00042
CM_NS1	CM_NS1_WS_2022-07-20_NP	2022-06-16	1380	0.0016	0.00022	0.00016	0.0287	< 0.020	< 0.000050	0.026		00152	247	< 0.00010	0.00016	0.00033
CM_NS1	CM_NS1_WS_2022-09-02_NP	2022-09-14	1650	< 0.0020	0.00024	< 0.00020	0.0183	< 0.040	< 0.000100	0.029		00157	293	< 0.00020	0.00026	0.00059
CM_NS4	CM_NS4_WS_2022-07-20_NP	2022-06-16	768	< 0.0010	0.00026	< 0.00010	0.0297	< 0.020	< 0.000050	0.058		00014	169	< 0.00010	< 0.10	0.00024
CM_NS4	CM_NS4_WS_2022-09-02_NP	2022-09-14	1100	0.0011	< 0.00010	0.00016	0.0326	< 0.020	< 0.000050	0.101		00151	268	< 0.00010	0.00102	0.00024
CM_NS7	CM_NS7_WS_2022-07-20_NP	2022-06-16	1020	0.0036	0.00029	0.00022	0.0293	< 0.020	< 0.000050	0.04		000103	198	< 0.00010	0.00022	0.00025
CM_NS7	CM_NS7_WS_2022-09-02_NP	2022-09-14	11.4	0.002	0.00019	0.00032	0.0345	< 0.020	< 0.000050	0.049		000206	218	< 0.00010	0.00058	0.00026
CM_PLANT-SEEP1	CM_PLANT-SEEP1_WS_2022-07-20_NP	2022-06-16	-	< 0.0010	< 0.00010	< 0.00010	0.0502	< 0.020	< 0.000050	0.065		000094	169	< 0.00010	0.00201	< 0.00020
CM_PLANT-SEEP1	CM_PLANT-SEEP1_WS_2022-09-02_NP	2022-09-15		0.0013	< 0.00010	0.00026	0.0423	< 0.020	< 0.000050	0.068		0.0050	194	< 0.00010	0.00533	< 0.00020
CM_WD15	CM_WD15_WS_2022-07-20_NP	2022-06-15		0.0013	0.00021	0.00013	0.0196	< 0.020	< 0.000050	0.051		000363	245	< 0.00010	< 0.10	< 0.00020
CM_WD15	CM_WD15_WS_2022-09-02_NP	2022-09-14	4.9	0.0078	< 0.00020	< 0.00020	0.0192	< 0.040	< 0.000100	0.053		000025	290	< 0.00020	< 0.20	< 0.00040
CM_WD15	CM_WD15_WS_2022-09-19_NP	2022-09-19		0.0022	< 0.00020	< 0.00020	0.0175	< 0.040	< 0.000100	0.05		000204	293	< 0.00020	< 0.20	< 0.00040
CM_WD15-SOURCE	CM_WD15-SOURCE_WS_2022-07-20_NP	2022-06-15		0.0122	0.0002	0.00014	0.0142	< 0.020	< 0.000050	0.046		000422	269	< 0.00010	0.00041	0.00023
CM_WD15-SOURCE	CM_WD15-SOURCE_WS_2022-09-02_NP	2022-09-14	10.8	0.0168	< 0.00020	< 0.00020	0.0129	< 0.040	< 0.000100	0.058		000234	321	< 0.00020	0.00031	< 0.00040
CM_WD15-SOURCE	CM_WD15-SOURCE_WS_2022-09-19_NP	2022-09-19	-	0.0199	< 0.00020	< 0.00020	0.013	< 0.040	< 0.000100	0.05		000455	328	< 0.00020	0.00045	< 0.00040
CM_WD18	CM_WD18_WS_2022-07-20_NP	2022-06-15	6	0.0022	0.00019	0.00011	0.0171	< 0.020	< 0.000050	0.016		00014	253	< 0.00010	< 0.10	< 0.00020
CM_WD18	CM_WD18_WS_2022-09-02_NP	2022-09-14		0.0086	< 0.00020	< 0.00020	0.0191	< 0.040	< 0.000100	0.02		000916	326	< 0.00020	0.00022	< 0.00040
CM_WD19	CM_WD19_WS_2022-07-20_NP	2022-06-15		0.0012	0.00015	0.00014	0.0198	< 0.020	< 0.000050	0.032		000386	224	< 0.00010	0.00026	< 0.00020
CM_WD19	CM_WD19_WS_2022-09-02_NP	2022-09-14		0.009	< 0.00020	< 0.00020	0.0234	< 0.040	< 0.000100	0.044		000172	270	< 0.00020	0.00039	< 0.00040
CM_WD4	CM_WD4_WS_2022-07-20_NP	2022-06-15	8	0.0039	0.00021	0.00014	0.0321	< 0.020	< 0.000050	0.016		000108	105	< 0.00010	< 0.10	0.00023
CM_WD4	CM_WD4_WS_2022-09-02_NP	2022-09-14		0.0657	0.00015	0.00013	0.0508	< 0.020	< 0.000050	0.025		000117	157	< 0.00010	< 0.10	0.0002
CM_WD7	CM_WD7_WS_2022-07-20_NP	2022-06-15		0.0012	0.00034	0.00012	0.044	< 0.020	< 0.000050	0.011		00135	72	< 0.00010	< 0.10	0.00054
CM WD7	CM WD7 WS 2022-09-02 NP	2022-09-14	9	0.0079	0.00016	0.00011	0.0484	< 0.020	< 0.000050	0.018	0.0	000974	104	< 0.00010	< 0.10	0.00027

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted n/a denotes no applicable standard

BOLD ITALIC Concentrate greater than the chronic (30-Day average) BCWQG for FWAL

BOLD ITALIC SHADED Concentrate greater than the acute (short term) BCWQG for FWAL

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

⁶ Guideline varies with chloride
^d Guideline varies with pH
^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX B - TABLE 2: Summary of Analytical Results for Dissolved Metals

											Dissolv	ed Metals							
Sample	Sample	Sample Date	Hardness	Iron	Lead	Lithium	Magnesium	Manganese	Nickel	Potassium	Selenium	Silver	Sodium	Strontium	Thallium	Ë	Titanium	Uranium	Zinc
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
				Acute															
BC WQG FWAL			n/a	0.35	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Coal Mountain Mine																			
CM_37PIT-SEEP-E	CM_37PIT-SEEP-E_WS_2022-07-07_NP	2022-07-07	709	< 0.010	< 0.000050	0.0859	56.3	0.265	0.0662	3.36	1.26	< 0.000010	70.1	1.76	0.000066	< 0.00010	< 0.00030	0.00265	0.0118
CM_37PIT-SEEP-E	CM_37PIT-SEEP-E_WS_2022-09-02_NP	2022-09-28	476	0.039	< 0.000050	0.0984	46.4	0.00986	0.00614	3.61	0.084	< 0.000010	88.1	1.67	0.000012	< 0.00010	< 0.00030	0.00556	< 0.0010
CM_37PIT-SEEP-W	CM_37PIT-SEEP-W_WS_2022-07-07_NP	2022-07-07	458	0.362	< 0.000050	0.146	33.5	0.0808	0.0141	3.3	< 0.050	< 0.000010	128	2.62	0.000014	< 0.00010	< 0.00030	0.000411	0.0068
CM_37PIT-SEEP-W	CM_37PIT-SEEP-W_WS_2022-09-02_NP	2022-09-28	180	0.03	< 0.000050	0.175	23.1	0.00162	0.00648	3.59	< 0.050	< 0.000010	157	1.61	0.000014	< 0.00010	< 0.00030	0.000713	< 0.0010
CM_CCDS	CM_CCDS_WS_2022-07-20_NP	2022-06-16	300	< 0.010	< 0.000050	0.005	28.9	< 0.00010	0.001	0.793	6.49	< 0.000010	6.58	0.178	0.000016	< 0.00010	< 0.00030	0.000942	0.0017
CM_CS1	CM_CS1_WS_2022-07-20_NP	2022-06-16	365	< 0.010	< 0.000050	0.0029	33.5	0.00035	0.00099	0.788	8.95	< 0.000010	10.7	0.171	0.000016	< 0.00010	< 0.00030	0.000539	0.0015
CM_CS1	CM_CS1_WS_2022-09-02_NP	2022-09-15		< 0.010	< 0.000050	0.005	26.2	0.00066	0.00096	0.692	7.73	< 0.000010	6.49	0.16	0.000018	< 0.00010	< 0.00030	0.000506	0.0018
CM_MM-SEEP1	CM_MM-SEEP1_WS_2022-07-20_NP	2022-06-16		< 0.010	< 0.000050	0.0269	76.4	0.00045	0.00307	3.23	5.25	< 0.000010	27.8	0.894	< 0.000010	< 0.00010	< 0.00030	0.00286	0.0025
CM_MM-SEEP1	CM_MM-SEEP1_WS_2022-09-02_NP	2022-09-15		< 0.010	< 0.000050	0.0206	54.7	0.00146	0.00212	3.03	2.49	< 0.000010	22.2	0.769	< 0.000010	< 0.00010	< 0.00030	0.00182	0.0022
CM_MM-SEEP3	CM_MM-SEEP3_WS_2022-07-20_NP			0.051	< 0.000050	0.0053	95.4	0.154	0.00082	1.34	0.806	< 0.000010	47.2	0.902	< 0.000010	< 0.00010	< 0.00030	0.00141	< 0.0010
CM_MM-SEEP3	CM_MM-SEEP3_WS_2022-09-02_NP	2022-09-15		0.042	< 0.000050	0.0058	97	0.286	0.00104	1.51	0.186	< 0.000010	63.1	0.844	< 0.000010	< 0.00010	< 0.00030	0.000983	< 0.0010
CM_MM-SEEP5	CM_MM-SEEP5_WS_2022-07-20_NP	2022-06-16		0.018	< 0.000050	0.0167	80.6	0.141	0.0623	2.31	1.51	< 0.000010	15.5	1.04	0.000038	< 0.00010	< 0.00030	0.00182	0.14
CM_MM-SEEP5	CM_MM-SEEP5_WS_2022-09-02_NP	2022-09-15		< 0.010	< 0.000050	0.0131	58	0.00751	0.0114	2.15	0.295	< 0.000010	13.6	0.685	0.000017	< 0.00010	< 0.00030	0.00133	0.0318
CM_NS1	CM_NS1_WS_2022-07-20_NP		1380	0.011	< 0.000050	0.0138	185	0.0102	0.00733	3.91	23.2	< 0.000010	13.6	0.475	0.000013	< 0.00010	< 0.00030	0.00474	0.0134
CM_NS1	CM_NS1_WS_2022-09-02_NP	2022-09-14	1650	< 0.020	< 0.000100	0.0191	223	0.0223	0.00969	3.93	14.9	< 0.000020	20	0.617	< 0.000020	< 0.00020	< 0.00060	0.00617	0.0141
CM_NS4	CM_NS4_WS_2022-07-20_NP	2022-06-16	768	< 0.010	< 0.000050	0.0222	84.1	0.00122	0.00487	3.61	17.3	< 0.000010	24.2	0.533	0.000012	< 0.00010	< 0.00030	0.00278	0.0056
CM_NS4	CM_NS4_WS_2022-09-02_NP	2022-09-14		< 0.010	< 0.000050	0.0325	105	0.0718	0.0101	3.94	0.529	< 0.000010	37.7	1.05	0.000035	< 0.00010	< 0.00030	0.00249	0.0068
CM_NS7	CM_NS7_WS_2022-07-20_NP	2022-06-16		0.03	< 0.000050	0.0176	129	0.0289	0.00845	3.75	22.4	< 0.000010	26.6	0.452	< 0.000010	< 0.00010	< 0.00030	0.00377	0.01
CM_NS7	CM_NS7_WS_2022-09-02_NP	2022-09-14	11.4	0.032	< 0.000050	0.0185	129	0.165	0.00817	3.44	8.33	< 0.000010	28	0.554	0.000012	< 0.00010	< 0.00030	0.00384	0.0051
CM_PLANT-SEEP1	CM_PLANT-SEEP1_WS_2022-07-20_NP	2022-06-16	-	0.188	< 0.000050	0.025	81	0.281	0.00599	2.98	0.425	< 0.000010	16.4	0.74	0.000025	< 0.00010	< 0.00030	0.0024	0.0101
CM_PLANT-SEEP1	CM_PLANT-SEEP1_WS_2022-09-02_NP	2022-09-15		4.5	< 0.000050	0.0274	76.6	0.483	0.00998	2.9	0.073	< 0.000010	18.7	0.752	< 0.000010	< 0.00010	< 0.00030	0.00218	0.006
CM_WD15	CM_WD15_WS_2022-07-20_NP	2022-06-15		< 0.010	< 0.000050	0.0291	155	0.0002	0.0078	3.87	12.3	< 0.000010	17.4	0.699	< 0.000010	< 0.00010	< 0.00030	0.00492	0.0012
CM_WD15	CM_WD15_WS_2022-09-02_NP	2022-09-14		< 0.020	< 0.000100	0.0298	206	0.00023	0.0108	4.07	7.04	< 0.000020	19.8	0.902	< 0.000020	< 0.00020	< 0.00060	0.00652	< 0.0020
CM_WD15	CM_WD15_WS_2022-09-19_NP	2022-09-19	7.6	< 0.020	< 0.000100	0.0355	194	< 0.00020	0.00982	4.24	7.92	< 0.000020	18.8	0.83	< 0.000020	< 0.00020	< 0.00060	0.00602	< 0.0020
CM_WD15-SOURCE	CM_WD15-SOURCE_WS_2022-07-20_NP	2022-06-15		< 0.010	< 0.000050	0.0288	159	0.00293	0.0171	3.85	16.2	< 0.000010	16.4	0.735	0.000012	< 0.00010	< 0.00030	0.00532	0.0061
CM_WD15-SOURCE CM_WD15-SOURCE	CM_WD15-SOURCE_WS_2022-09-02_NP CM_WD15-SOURCE_WS_2022-09-19_NP	2022-09-14	10.8	< 0.020	< 0.000100	0.0325	213	0.00382	0.0191	4.05	9.91	< 0.000020	18.2	0.877	< 0.000020	< 0.00020	< 0.00060	0.00724	0.0041
		2022-09-19	-	< 0.020	< 0.000100 < 0.000050	0.0353	200 154	0.00684	0.0185	4.03 3.09	10.1	< 0.000020	18 5.07	0.813	< 0.000020 0.000013	< 0.00020	< 0.00060	0.00655	0.0078
CM_WD18 CM_WD18	CM_WD18_WS_2022-07-20_NP CM_WD18_WS_2022-09-02_NP		0.5	< 0.010	< 0.000050	0.0097	212	0.00105 0.00653	0.00597	3.09	33.4 28.3	< 0.000010	6.87	0.418 0.62	0.000013	< 0.00010 < 0.00020	< 0.00030 < 0.00060	0.00487 0.00788	0.0056 0.0049
		2022-09-14	8.5		< 0.000100	0.0142	107			3.53		< 0.000020	16.2	0.62	< 0.00002				0.0049
CM_WD19 CM_WD19	CM_WD19_WS_2022-07-20_NP	2022-06-15	9.6	< 0.010	< 0.000050	0.0221	107	0.0114	0.00677	2.97	19.2 4.22	< 0.000010	23.2	0.595	< 0.000010	< 0.00010	< 0.00030 < 0.00060	0.00233 0.00201	0.0058
CM_WD19 CM_WD4	CM_WD19_WS_2022-09-02_NP	2022-09-14	9.9	< 0.020		0.0331	129 58.4					< 0.000020				< 0.00020		0.00201	
CM_WD4 CM_WD4	CM_WD4_WS_2022-07-20_NP CM_WD4_WS_2022-09-02_NP	2022-06-15	8	< 0.010	< 0.000050 < 0.000050	0.0047	79.1	0.003	0.0029	1.68 1.95	19.3 8.25	< 0.000010	1.81 3.61	0.278 0.475	< 0.000010	< 0.00010	< 0.00030 < 0.00030	0.002	0.0066 0.0109
CM_WD4 CM_WD7	CM_WD4_WS_2022-09-02_NP CM_WD7_WS_2022-07-20_NP	2022-09-14		< 0.010		0.0077	79.1 42.3		0.00272	1.95	33.2	< 0.000010	1.59	0.475			< 0.00030	0.00215	0.0109
CM_WD7	CM_WD7_WS_2022-07-20_NP		5.4		< 0.000050	0.0058	42.3 53.5	0.00103	0.00336	0.625	9.9	< 0.000010	3.06	0.232	< 0.000010	< 0.00010	< 0.00030	0.00278	0.0095
CM_WD7	GM_WD7_WS_2022-09-02_NP	2022-09-14	9	< 0.010	< 0.000050	0.0082	53.5	0.00279	0.00344	0.625	9.9	< 0.000010	3.06	0.393	< 0.000010	< 0.00010	< 0.00030	0.00216	0.008

< Denotes concentration less than indicated detection limit

Denotes analysis not conducted
 n/a denotes no applicable standard

a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride ^d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX B - TABLE 2: Summary of Analytical Results for Dissolved Metals

C WOO FWAL				Г							Dissolve	d Metals						
Substitution December Decem																		
BC WGG FWAL	Sample	Sample	Sample Date	Hardness	Aluminum		Antimony	Arsenic	Barium	Beryllium	Bismuth	Boron	a-denium minus		Calcium	Chromium	Cobalt	Copper
BWGG FWAL File CM WS 2022-6-18 MP 2022-6-18	Location	ID	(mm/dd/yyyy)	mg/L	mg/	L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg	J/L	mg/L	mg/L	mg/L	mg/L
Elview Elv CH1					Acute	Chronic							Acute	Chronic				Acute
EV CNI EV CNI WS 2022-05-18 NP	BC WQG FWAL			n/a	0.020-0.10 ^a	0.005-0.05 ^a	n/a	na	na	na	n/a	n/a	0.00004-0.0028	0.00002-0.00173a	n/a	n/a	n/a	BLM°
EV CN1 EV CN1 WS 2022-05-20 NP 2022-05-20 118 0.0014 0.00093 0.00011 0.0168 0.00001 0.000012 0.000012 0.000014 0.000014 0.0001	Elkview Operation																	
EV CN1					0.0	08							0.00	0117				0.00022
EV CN1 EV CN1 WS 2022-07-20 NP 2022-07-20 15.6 C 0.00016 0.000097 0.000011 0.0223 < 0.000 c 0.0000000 < 0.010 0.0000099 110 0.000019 < 0.010 c 0.0000099				11.8														< 0.00020
EV_CN1				-														0.00026
EV_CNI																		< 0.00020
EV_CNI EV_CNI WS_2022-10-20 NP																		0.0003
EV. SEEP_10MILES EV. SEEP_10MI																		< 0.00020
EV SEEP (MILES BY SEEP) (MILES																		0.00023
EV SEEP 10MLES EV SEEP 10MLES WS 2022-07-14 NP 2022-07-20 - <0.00010																		< 0.00020
EV. SEEP_10MILES																		< 0.00020 0.00044
EV. SEEP_10MILES				- 0.0														< 0.00044
EV. SEEP_IOMILES				10.2														< 0.00020
EV. SEEP_TOMILES																		< 0.00020
EV_SEEP_10MILE9									0.446									< 0.00020
EV_SEEP_10MILE9	EV SEEP 10MILE9	EV SEEP 10MILE9 WS 2022-06-29 NP	2022-06-29	12.1			< 0.00010	0.00015	0.45	< 0.020	< 0.000050	< 0.010			63.1	< 0.00010	0.00216	< 0.00020
EV SEEP_IOMILE9	EV SEEP 10MILE9	EV SEEP 10MILE9 WS 2022-07-20 NP	2022-07-20	11.5			< 0.00010	0.00014	0.507	< 0.020	< 0.000050	< 0.010			66.3	< 0.00010	0.00234	< 0.00020
EV SEEP 10MILE9	EV SEEP 10MILE9	EV SEEP 10MILE9 WS 2022-08-24 NP	2022-08-24	10.4			< 0.00010	0.00015	0.438	< 0.020	< 0.000050	< 0.010			58.2	< 0.00010	0.00205	0.00023
EV_SEEP_RAKERLAKE (EV_SEEP_BREAKERLAKE (WS_0222-06_SA_NP 02022-07-14) 9.66 (0.0011	EV SEEP 10MILE9	EV SEEP 10MILE9 WS 2022-09 SA NP	2022-09-28	10.3			< 0.00010	0.00013	0.39	< 0.020	< 0.000050	< 0.010			52.9	< 0.00010	0.00187	< 0.00020
EV_SEEP_BREAKERIAKE EV_SEEP_BREAKERIAKE WS_2022-08_SA_NP			2022-10-20	10.5			< 0.00010	0.00016		< 0.020	< 0.000050	< 0.010			51	< 0.00010	0.00171	< 0.00020
EV_SEEP_CPIT EV_SEEP_CPIT WS_2022-09_SA_NP 2022-07-97 9.56 < 0.0010 0.00069 0.0017 0.0267 < 0.020 < 0.000050 0.051 0.000061 98.8 < 0.00010 0.0017 0.0010 EV_SEEP_CPIT WS_2022-09_SA_NP 2022-07-97 9.56 < 0.0010 < 0.00010 < 0.00010 0.00011 2.78 < 0.020 < 0.000050 0.051 0.000065 94 < 0.00010 0.00010 EV_SEEP_CPIT WS_2022-09_SA_NP 2022-07-98 1.5 < 0.0010 < 0.00010 0.00011 0.0012 0.478 < 0.020 < 0.000050 0.054 < 0.0050 97.2 < 0.00010 0.00011 0.00010 EV_SEEP_CPIT WS_2022-09_SA_NP 2022-07-98 1.5 < 0.0013 < 0.00010 0.00012 0.478 < 0.020 < 0.000050 0.054 < 0.0050 97.2 < 0.00010 0.00010 EV_SEEP_CPIT WS_2022-09_SA_NP 2022-07-98 1.5 < 0.0013 < 0.00010 0.00012 0.478 < 0.020 < 0.000050 0.054 < 0.0050 0.054 < 0.0050 97.2 < 0.00010 EV_SEEP_EPICKESON WS_2022-09_SA_NP 2022-07-98 1.5 < 0.0011 < 0.00010 0.00012 0.478 < 0.020 < 0.000050 0.054 < 0.0050 0.054 < 0.0050 0.055 < 0.0050 0.055 < 0.0050 0.055 < 0.0050 0.055 < 0.0050 0.055 < 0.0050 0.055 < 0.0050 0.055 < 0.0050 0.055 < 0.0050 0.055 < 0.0050 0.055 < 0.0050 0.055 < 0.0050 0.055 < 0.0050 0.055 < 0.0050 0.055 < 0.0050 0.055 < 0.0050 0.055 < 0.0050 0.055 < 0.0050 0.055 < 0.0050 0.055 < 0.0050 0.055 < 0.0050 0.055 < 0.0050 0.055 < 0.0050 0.055 < 0.0050 0.055 < 0.0050 0.055 < 0.0050 0.055 < 0.0050 0.055 < 0.0050 0.055 < 0.0050 0.055 < 0.0050 0.055 < 0.0050 0.055 < 0.0050 0.055 < 0.0050 0.055 < 0.0050 0.055 < 0.0050 0.055 < 0.0050 0.055 < 0.0050 0.055 < 0.0050 0.055 < 0.0050 0.055 < 0.0050 0.055 < 0.0050 0.055 < 0.0050 0.055 < 0.0050 0.055 < 0.0050 0.055 < 0.0050 0.055 < 0.0050 0.055 < 0.0050 0.055 < 0.0050 0.055 < 0.0050 0.055 < 0.0050 0.055 < 0.0050 0.055 < 0.0050 0.055 < 0.0050 0.055 < 0.0							< 0.00010	0.00014			< 0.000050	< 0.010			63.9	< 0.00010	0.00227	< 0.00020
EV SEEP CFI																		0.0005
EV SEEP CFI2 EV SEEP CFI2 WS 2022-06 SA NP 2022-09-08 12.5 0.0013 < 0.00010 0.00012 0.478 < 0.020 < 0.000050 0.054 < 0.00050 97.2 < 0.00010 < 0.10 0.00 EV SEEP ERICKS CPI2 WS 2022-09 SA NP 2022-09-08 111 < 0.0010 0.00010 0.00012 0.415 < 0.020 < 0.000050 0.052 < 0.00050 89.4 < 0.00050 99.2 < 0.00010 < 0.00010 0.00012 0.415 < 0.0000 0.00050 0.052 < 0.00050 89.4 < 0.000050 89.4 < 0.000050 89.4 < 0.000050 0.052 < 0.00050 89.4 < 0.000050 89.4 < 0.00050 89.4 < 0.00010 0.00012 0.000050 0.					< 0.0	010							0.000	00054				0.0002
EV_SEEP_ERICKSONI EV_SEEP_ERICKSONI WS_022-09_SA_NP					< 0.0	010							< 0.0	0050				< 0.00020
EV_SEEP_ERICKSONI EV_SEEP_ERICKSONI WS_2022-06_SA_NP					0.00	13												0.00041
EV_SEEP_ERICKSONI				11	< 0.0	010							< 0.0	0050				< 0.00020
EV_SEEP_ERICKSON2 EV_SE2P_ERICKSON2 WS_2022.06_SA_NP				-														< 0.00020
EV_SEEP_ERICKSONZ				-														< 0.00020
EV_SEEP_HOPPER? EV_SEEP_PLANTI1 EV_SEEP_PLANTI1 WS_2022-06_SA_NP 2022-07-08 10.00058 0.00058 0.00058 0.00068 0.000059 0.00059																		0.00107
EV_SEEP_HOPPER? EV_S2022.09_SA_NP 2022-09_27 8.65 < 0.0020																		0.00095
EV_SEEP_PLANT11																		0.0008
EV_SEEP_PLANT10													0.00	0534				0.00118
EV_SEEP_PLANT11																		0.00078
EV_SEEP_PLANT11																		< 0.00040
EV_SEEP_FLANT23																		0.00023
EV_SEEP_PLANT23																		0.00035
EV_SEEP_SOUTHPIT3 EV_SEEP_SOUTHPIT3 WS_2022-06_SA_NP 2022-07-13 - 0.0052 0.00035 0.00037 0.0885 < 0.020 < 0.000050 0.010 0.0000518 59.3 < 0.00010 < 0.10 0.000518																		0.00051
EV_SEEP_SOUTHPIT3 EV_SEEP_SOUTHPIT4 WS_2022-09_SA_NP 2022-09-SA_NP 2022-09-30 3.6 < 0.00010 0.0004 0.00039 0.144 < 0.020 < 0.000050 0.013 0.000105 102 < 0.00010 < 0.10 0.000105 0.10				-														0.00052
EV_SEEP_SOUTHPIT4				3.6														0.00052
																		< 0.00030
	EV SEEP SOUTHPIT4		2022-09-30	0.9					3.8		< 0.000050	0.101			93.5			< 0.00020
		EV_SEEP_SOUTHPIT6_WS_2022-06_SA_NP					< 0.00050	< 0.00050		< 0.100						< 0.00050	< 0.50	0.00111
		EV_SEEP_SOUTHPIT6_WS_2022-09_SA_NP		14.9			0.0005		0.0324	< 0.040		0.027			477	< 0.00020	< 0.20	0.00086
EV_SEEP_TURCON1			2022-07-08	15.9			< 0.00010			< 0.020					126		< 0.10	< 0.00020
EV_SEEP_TURCON1	EV_SEEP_TURCON1	EV_SEEP_TURCON1_WS_2022-09_SA_NP		19.8			< 0.00010	< 0.00010	0.0912	< 0.020	< 0.000050	0.077			109	< 0.00010	< 0.10	< 0.00020
EV_SPR1B EV_SPR1B_WS_2022-04_QRT_NP 2022-06-01 14.8 <0.0010 0.00023 <0.00010 0.0607 <0.020 <0.000050 0.031 0.000181 89.5 <0.00010 <0.10 0.000181			2022-06-01	14.8											89.5			0.00024
	EV_SPR1B	EV_SPR1B_WS_2022-07_QRT_NP		9.2			0.0002	0.00012	0.0752	< 0.020	< 0.000050	0.035			113	< 0.00010	< 0.10	0.00023
EV_WLAGC EV_WLAGC_WS_2022-06_SA_NP 2022-07-08 10.7 <0.0010 <0.00010 0.00078 0.342 <0.020 <0.000050 0.036 <0.0050 75.5 <0.00010 0.00018 0.00018		EV_WLAGC_WS_2022-06_SA_NP																0.00021
EV_WLAGC	EV_WLAGC	EV_WLAGC_WS_2022-09_SA_NP	2022-09-26	7.7	< 0.0	010	< 0.00010	0.00087	0.322	< 0.020	< 0.000050	0.03	< 0.0	0050	80.3	< 0.00010	0.00029	< 0.00020

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness ^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

d Guideline varies with pH

e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX B - TABLE 2: Summary of Analytical Results for Dissolved Metals

											Dissolv	ed Metals							
Sample	Sample	Sample Date	Hardness	Iron	Lead	Lithium	Magnesium	Manganese	Nickel	Potassium	Selenium	Silver	Sodium	Strontium	Thallium	Ē	Titanium	Uranium	Zinc
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
				Acute										-					
BC WQG FWAL			n/a	0.35	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Elkview Operation																			
EV_CN1	EV_CN1_WS_2022-05-18_NP	2022-05-18		< 0.010	< 0.000050	0.0153	62.8	< 0.00010	0.00364	1.68	126	< 0.000010	2.18	0.0682	0.000016	< 0.00010	< 0.00030	0.00415	0.0048
EV_CN1	EV_CN1_WS_2022-06-29_NP	2022-06-29	11.8	< 0.010	< 0.000050	0.0168	71.6	< 0.00010	0.00428	1.86	131	< 0.000010	2.54	0.07	0.000016	< 0.00010	< 0.00030	0.00449	0.0058
EV_CN1 EV CN1	EV_CN1_WS_2022-07-14_NP EV_CN1_WS_2022-07-20_NP	2022-07-14	15.6	< 0.010 < 0.010	< 0.000050 < 0.000050	0.0179	76.2 93.3	< 0.00010 < 0.00010	0.00502 0.00557	2.08	180 201	< 0.000010 < 0.000010	2.68 3.05	0.083	0.000019	< 0.00010 < 0.00010	< 0.00030 < 0.00030	0.00558 0.00627	0.0068
EV_CN1	EV CN1 WS 2022-07-20 NP EV CN1 WS 2022-08-25 NP	2022-07-20	9.2	< 0.010	< 0.000050	0.0209	102	< 0.00010	0.00558	2.07	217	< 0.000010	3.5	0.0953	0.00002	< 0.00010	< 0.00030	0.0065	0.0074
EV CN1	EV CN1 WS 2022-09 SA NP	2022-09-27	18.1	< 0.010	< 0.000050	0.0196	97	< 0.00010	0.00564	1.88	237	< 0.000010	2.51	0.107	0.000017	< 0.00010	< 0.00030	0.00659	0.0082
EV CN1	EV CN1 WS 2022-10-20 NP	2022-10-20	14.1	< 0.010	< 0.000050	0.0209	101	< 0.00010	0.00581	2.06	224	< 0.000010	2.99	0.0966	0.000017	< 0.00010	< 0.00030	0.0065	0.0065
EV_SEEP_10MILE5	EV_SEEP_10MILE5_WS_2022-05-18_NP	2022-05-18	15.2	< 0.010	< 0.000050	0.0179	60	< 0.00010	0.00055	1.54	39.2	< 0.000010	5.95	0.291	< 0.000010	< 0.00010	< 0.00030	0.00192	< 0.0010
EV_SEEP_10MILE5	EV_SEEP_10MILE5_WS_2022-06-29_NP	2022-06-29	594	< 0.010	< 0.000050	0.0184	63.1	< 0.00010	0.00055	1.45	43.5	< 0.000010	6.32	0.284	< 0.000010	< 0.00010	< 0.00030	0.00176	< 0.0010
EV_SEEP_10MILE5	EV_SEEP_10MILE5_WS_2022-07-14_NP	2022-07-14	6.9	< 0.010	< 0.000050	0.0191	61	0.00279	0.00071	1.51	47.5	< 0.000010	6.19	0.316	< 0.000010	< 0.00010	< 0.00030	0.00189	< 0.0010
EV_SEEP_10MILE5	EV_SEEP_10MILE5_WS_2022-07-20_NP	2022-07-20	-	< 0.010	< 0.000050	0.0213	70	< 0.00010	0.00064	1.69	52.3	< 0.000010	6.67	0.342	< 0.000010	< 0.00010	< 0.00030	0.00196	0.0035
EV_SEEP_10MILE5 EV_SEEP_10MILE5	EV SEEP 10MILE5 WS 2022-08-24 NP EV SEEP 10MILE5 WS 2022-09 SA NP	2022-08-24	10.2	< 0.010 < 0.010	< 0.000050 < 0.000050	0.0186 0.0173	69.4 71.8	< 0.00010 0.00038	0.00058 0.00052	1.46 1.55	52.8 59.4	< 0.000010 < 0.000010	6.18 6.51	0.311	< 0.000010	< 0.00010 < 0.00010	< 0.00030 < 0.00030	0.00183 0.00196	< 0.0010 0.0019
EV_SEEP_10MILE5 EV_SEEP_10MILE9	EV_SEEP_10MILE5_WS_2022-09_SA_NP EV_SEEP_10MILE9_WS_2022-05-19_NP	2022-09-28	10.9	< 0.010	< 0.000050	0.0173	20.1	0.00038	0.00052	0.864	0.205	< 0.000010	3.24	0.33	0.000010	< 0.00010	< 0.00030	0.00196	0.0019
EV_SEEP_TOMILE9	EV SEEP 10MILE9 WS 2022-05-19 NP	2022-05-19	12.1	0.018	< 0.000050	0.0023	21.8	0.778	0.00395	0.892	0.205	< 0.000010	3.73	0.118	0.000011	< 0.00010	< 0.00030	0.000184	0.0076
EV SEEP 10MILE9	EV SEEP 10MILE9 WS 2022-00-29 NP	2022-00-29	11.5	< 0.010	< 0.000050	0.0020	22.5	0.821	0.0042	0.892	0.234	< 0.000010	3.73	0.119	0.000012	< 0.00010	< 0.00030	0.000194	0.0076
EV SEEP 10MILE9	EV SEEP 10MILE9 WS 2022-08-24 NP	2022-08-24	10.4	< 0.010	< 0.000050	0.0025	19.6	0.685	0.00399	0.885	0.181	< 0.000010	3.59	0.114	0.000014	< 0.00010	< 0.00030	0.000161	0.0056
EV SEEP 10MILE9	EV SEEP 10MILE9 WS 2022-09 SA NP	2022-09-28	10.3	< 0.010	< 0.000050	0.0023	17.3	0.621	0.00341	0.884	0.202	< 0.000010	3.45	0.101	0.000013	< 0.00010	< 0.00030	0.000116	0.0064
EV_SEEP_10MILE9	EV_SEEP_10MILE9_WS_2022-10-20_NP	2022-10-20	10.5	< 0.010	< 0.000050	0.0023	15.6	0.544	0.0035	0.807	0.28	< 0.000010	3.21	0.0954	0.000014	< 0.00010	< 0.00030	0.000095	0.0054
	EV_SEEP_BREAKERLAKE_WS_2022-06_SA_NP	2022-07-14	9.66	< 0.010	< 0.000050	0.0026	20	0.789	0.00449	0.958	0.23	< 0.000010	3.6	0.126	0.000014	< 0.00010	< 0.00030	0.000186	0.0071
	EV_SEEP_BREAKERLAKE_WS_2022-09_SA_NP	2022-09-27	9.54	< 0.010	< 0.000050	0.0251	71.3	0.112	0.0092	2.4	33.8	< 0.000010	6.42	0.154	0.000048	< 0.00010	< 0.00030	0.0052	0.0067
EV_SEEP_CFI1	EV_SEEP_CFI1_WS_2022-06_SA_NP	2022-07-07		0.343	< 0.000050	0.0488	61.7	0.394	0.00085	4.5	0.093	< 0.000010	5.77	0.449	< 0.000010	< 0.00010	< 0.00030	0.000201	0.0034
EV_SEEP_CFI1	EV_SEEP_CFI1_WS_2022-09_SA_NP	2022-09-26		1.09	< 0.000050	0.0526	63.2	0.29	0.00072	4.82	0.084	< 0.000010	6.02	0.468	< 0.000010	< 0.00010	< 0.00030	0.00015	0.0068
EV_SEEP_CFI2	EV_SEEP_CFI2_WS_2022-06_SA_NP	2022-07-08	12.5	< 0.010	< 0.000050	0.0538	91.4	0.00134	0.00064	4.18	0.369	< 0.000010	5.16	0.514	< 0.000010	< 0.00010	< 0.00030	0.000356	0.0024
EV_SEEP_CFI2 EV SEEP ERICKSON1	EV_SEEP_CFI2_WS_2022-09_SA_NP EV_SEEP_ERICKSON1_WS_2022-06_SA_NP	2022-09-26 2022-07-13	11	< 0.010 3.01	< 0.000050 < 0.000050	0.052 0.0105	90.6 48.6	0.00015	< 0.00050 0.00244	4.94 1.17	0.14 < 0.050	< 0.000010 < 0.000010	5.29 2.24	0.485 0.324	< 0.000010 0.000015	< 0.00010 < 0.00010	< 0.00030 < 0.00030	0.000284 0.000153	0.0029 0.0016
EV_SEEP_ERICKSON1	EV SEEP ERICKSON1 WS 2022-06 SA NP	2022-10-05	-	2.91	< 0.000050	0.0105	54.3	0.464	0.00244	1.17	< 0.050	< 0.000010	2.24	0.324	0.000013	< 0.00010	< 0.00030	0.000153	0.0016
EV SEEP ERICKSON2	EV SEEP ERICKSON2 WS 2022-06 SA NP	2022-10-03	8.75	< 0.010	< 0.000050	0.0104	28.5	0.00093	0.00209	1.16	5.17	< 0.000010	3.4	0.324	0.00003	< 0.00010	< 0.00030	0.00245	0.0022
EV SEEP ERICKSON2	EV SEEP ERICKSON2 WS 2022-09 SA NP	2022-09-28		< 0.020	< 0.000100	0.0653	333	0.0394	0.0408	6.09	750	< 0.000020	2.91	0.235	0.000052	< 0.00010	< 0.00060	0.0269	0.0721
EV SEEP HOPPER2	EV SEEP HOPPER2 WS 2022-06 SA NP	2022-07-14		< 0.020	< 0.000100	0.953	459	0.00115	0.037	21.2	638	< 0.000020	50.5	0.657	0.000043	< 0.00020	< 0.00060	0.012	0.0281
EV_SEEP_HOPPER2	EV_SEEP_HOPPER2_WS_2022-09_SA_NP	2022-09-27	8.65	< 0.020	< 0.000100	0.388	291	0.00063	0.031	18.4	585	< 0.000020	22.2	0.911	0.000047	< 0.00020	< 0.00060	0.0116	0.0328
EV_SEEP_PLANT1	EV_SEEP_PLANT1_WS_2022-06_SA_NP	2022-07-08	10.1	< 0.010	< 0.000050	0.127	46.1	0.00981	0.00199	3.4	1.94	< 0.000010	69.1	2.15	0.000011	< 0.00010	< 0.00030	0.00085	0.0087
EV_SEEP_PLANT10	EV_SEEP_PLANT10_WS_2022-06_SA_NP	2022-07-08	1	0.082	< 0.000100	0.443	88	0.0687	< 0.00100	3.4	< 0.100	< 0.000020	350	9.01	< 0.000020	< 0.00020	< 0.00060	0.00007	< 0.0020
EV_SEEP_PLANT11	EV_SEEP_PLANT11_WS_2022-06_SA_NP	2022-07-07		< 0.010	< 0.000050	0.138	47.3	0.00833	0.00081	2.59	1.18	< 0.000010	74.3	2.28	< 0.000010	< 0.00010	< 0.00030	0.000327	< 0.0010
EV_SEEP_PLANT11	EV_SEEP_PLANT11_WS_2022-09_SA_NP	2022-09-26		< 0.010	< 0.000050	0.168	57.6	0.0541	0.00125	3.02	0.435	< 0.000010	87.8	2.32	< 0.000010	< 0.00010	< 0.00030	0.000131	0.0016
EV_SEEP_PLANT23	EV_SEEP_PLANT23_WS_2022-06_SA_NP	2022-07-07	10.9	< 0.010	< 0.000050 < 0.000050	0.0631 0.071	93.8 99.9	0.00021 < 0.00010	0.0024 0.00211	2.8 2.87	20.2 16.9	< 0.000010 < 0.000010	23.8 25.5	1.68 1.92	< 0.000010 < 0.000010	< 0.00010 < 0.00010	< 0.00030 < 0.00030	0.00227 0.00199	0.114 0.0222
EV_SEEP_PLANT23 EV_SEEP_SOUTHPIT3	EV_SEEP_PLANT23_WS_2022-09_SA_NP EV_SEEP_SOUHTPIT3_WS_2022-06_SA_NP	2022-09-26	7.67	< 0.010 < 0.010	< 0.000050	0.071	28.2	< 0.00010	0.00211	0.893	6.1	< 0.000010	0.913	0.0622	0.000010	< 0.00010	< 0.00030	0.00199	0.0222
EV_SEEP_SOUTHPIT3	EV SEEP SOUTHPITS WS 2022-06 SA NP	2022-07-13	3.6	< 0.010	< 0.000050	0.0018	44.5	< 0.00010	0.00096	0.693	1.62	< 0.000010	1.26	0.0622	0.000011	< 0.00010	< 0.00030	0.000935	< 0.0013
EV SEEP SOUTHPIT4	EV SEEP SOUTHPIT4 WS 2022-06 SA NP	2022-09-30	2	0.216	< 0.000050	0.106	37.6	0.0552	< 0.00050	6.17	0.199	< 0.000010	4.62	0.101	< 0.000010	< 0.00010	< 0.00030	0.00084	0.0014
EV SEEP SOUTHPIT4	EV SEEP SOUTHPIT4 WS 2022-09 SA NP	2022-09-30	0.9	0.324	< 0.000050	0.116	37.3	0.0532	< 0.00050	7.06	0.458	< 0.000010	5.1	0.348	< 0.000010	< 0.00010	< 0.00030	0.000241	0.0014
EV SEEP SOUTHPIT6	EV SEEP SOUTHPIT6 WS 2022-06 SA NP	2022-07-13		< 0.050	< 0.000250	0.0284	217	0.0108	< 0.00250	3.51	64.4	< 0.000050	4.05	0.452	< 0.000050	< 0.00050	< 0.00150	0.00581	0.0057
EV_SEEP_SOUTHPIT6	EV_SEEP_SOUTHPIT6_WS_2022-09_SA_NP	2022-10-04	14.9	0.028	< 0.000100	0.0293	231	0.00459	0.00202	3.97	93	< 0.000020	4.48	0.51	< 0.000020	< 0.00020	< 0.00060	0.00659	0.008
EV_SEEP_TURCON1	EV_SEEP_TURCON1_WS_2022-06_SA_NP	2022-07-08	15.9	0.088	< 0.000050	0.0358	48.6	0.025	< 0.00050	2.28	1.65	< 0.000010	14.4	1.17	< 0.000010	< 0.00010	< 0.00030	0.000388	0.0024
EV_SEEP_TURCON1	EV_SEEP_TURCON1_WS_2022-09_SA_NP	2022-09-27	19.8	0.14	< 0.000050	0.0438	49.8	0.0461	< 0.00050	2.33	7.09	< 0.000010	15.1	1.66	< 0.000010	< 0.00010	< 0.00030	0.000164	< 0.0010
EV_SPR1B	EV_SPR1B_WS_2022-04_QRT_NP	2022-06-01	14.8	< 0.010	< 0.000050	0.0186	51.2	< 0.00010	0.00083	2.49	12	< 0.000010	5.09	0.447	< 0.000010	< 0.00010	< 0.00030	0.00159	0.0013
EV_SPR1B	EV_SPR1B_WS_2022-07_QRT_NP	2022-09-01	9.2	< 0.010	< 0.000050	0.0258	68.7	0.00083	0.00107	2.28	0.667	< 0.000010	8.52	0.535	< 0.000010	< 0.00010	< 0.00030	0.00152	0.0013
EV_WLAGC	EV_WLAGC_WS_2022-06_SA_NP	2022-07-08	10.7	0.24	< 0.000050	0.0253	35.2	0.299	0.0013	2.04	0.152	< 0.000010	9.8	0.433	0.00008	< 0.00010	< 0.00030	0.00048	< 0.0010
EV_WLAGC	EV_WLAGC_WS_2022-09_SA_NP	2022-09-26	7.7	0.397	< 0.000050	0.0246	32.3	0.484	0.00167	1.9	< 0.050	< 0.000010	8.26	0.411	0.000116	< 0.00010	< 0.00030	0.000624	< 0.0010

< Denotes concentration less than indicated detection limit

- Denotes analysis not conducted n/a denotes no applicable standard

a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX B - TABLE 2: Summary of Analytical Results for Dissolved Metals

									Dissolve	d Metals					
Sample	Sample	Sample Date	Hardness	Aluminum	Antimony	Arsenic	Barium	Beryllium	Bismuth	Boron	Cadmium	Calcium	Chromium	Cobalt	Copper
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
				Acute Chronic							Acute				Acute Chronic
BC WQG FWAL			n/a	0.020-0.10 ^a 0.005-0.05 ^a	n/a	na	na	na	n/a	n/a	0.00004-0.0028 ^a 0.00002-0.00173 ^a	n/a	n/a	n/a	BLM°
FR ASPSEEP1	FR ASPSEEP1 WS 2022-01-02 NP	2022-01-02	5		0.00029	0.00017	0.0423	< 0.020	< 0.000050	0.025	I	192	< 0.00010	< 0.10	
FR_ASPSEEP1	FR ASPSEEP1 WS 2022-01-02 NP	2022-01-02		< 0.0010 < 0.0010	0.00029	< 0.00017	0.0423	< 0.020	< 0.000050	0.025	0.00023 0.000914	158	0.00010	< 0.10	0.0008 < 0.00020
FR ASPSEEP1	FR ASPSEEP1 WS 2022-01-07 NP	2022-01-07		< 0.0010	0.00032	0.00018	0.0444	< 0.020	< 0.000050	0.028	0.000243	197	< 0.00011		0.00083
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-01-12_NP	2022-01-12		< 0.0010	0.00029	0.00016	0.0455	< 0.020	< 0.000050	0.027	0.00024	195	< 0.00010		0.00074
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-01-14_NP	2022-01-14		0.0011	0.00031	0.00017	0.0469	< 0.020	< 0.000050	0.028	0.000236	199	< 0.00010		0.00079
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-01-19_NP FR_ASPSEEP1_WS_2022-01-22_NP	2022-01-19		0.0012	0.00031	0.00016 0.00017	0.0468 0.0476	< 0.020 < 0.020	< 0.000050 < 0.000050	0.031	0.000247	224	< 0.00010 < 0.00010		0.00081
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-01-22_NP FR_ASPSEEP1_WS_2022-01-26_NP	2022-01-22 2022-01-26	9.3	0.0021	0.00032	0.00017	0.0476	< 0.020	< 0.000050	0.03	0.000245	207	0.00010	< 0.00010	0.0008
FR ASPSEEP1	FR_ASPSEEP1_WS_2022-01-29_NP	2022-01-29	6.7	0.0021 < 0.0010	0.00034	0.00016	0.0502	< 0.020	< 0.000050	0.028	0.000238 0.000232	218	< 0.00014		0.00091
FR_ASPSEEP1	FR ASPSEEP1 WS 2022-02-02 NP	2022-02-02	13.2	0.0010	0.00031	0.00016	0.0475	< 0.020	< 0.000050	0.032	0.000232	217	0.00013	< 0.00010	0.00078
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-03_NP	2022-02-03	9.4	0.0232	0.00031	0.00014	0.0486	< 0.020	< 0.000050	0.03	0.000245	225	0.00091	< 0.00010	0.00094
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-04_NP	2022-02-04		0.0013	0.00031	0.00016	0.0478	< 0.020	< 0.000050	0.026	0.000248	200	< 0.00010		0.00078
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-05_NP	2022-02-05		0.0014	0.0003	0.00015	0.0457 0.047	< 0.020	< 0.000050 < 0.000050	0.03 0.028	0.000235	207	< 0.00010		0.00073
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-06_NP FR_ASPSEEP1_WS_2022-02-07_NP	2022-02-06		0.0051	0.00031	0.00015 0.00022	0.047	< 0.020 < 0.020	< 0.000050	0.028	0.000243	194	< 0.00010		0.00092
FR ASPSEEP1	FR ASPSEEP1 WS 2022-02-08 NP	2022-02-08		0.0012 0.0016	0.00038	0.00022	0.0519	< 0.020	< 0.000050	0.023	0.00023 0.000232	220	< 0.00010		0.00082
FR ASPSEEP1	FR ASPSEEP1 WS 2022-02-09 NP	2022-02-09		0.0016	0.00031	0.00024	0.0704	< 0.020	< 0.000050	0.022	0.000232	173	< 0.00010		0.00077
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-10_NP	2022-02-10	18.1	0.0033	0.00031	0.00018	0.05	< 0.020	< 0.000050	0.03	0.00034	223	0.0001	< 0.00010	0.0008
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-11_NP	2022-02-11		0.0026	0.00033	0.00015	0.0448	< 0.020	< 0.000050	0.029	0.000225	203	< 0.00010		0.00077
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-12_NP	2022-02-12		0.0012	0.0003	0.00016	0.0447	< 0.020	< 0.000050	0.029	0.000226	200	< 0.00010		0.00087
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-13_NP FR_ASPSEEP1_WS_2022-02-14_NP	2022-02-13		0.0029	0.00033	0.00017 0.00019	0.0485 0.0492	< 0.020 < 0.020	< 0.000050 < 0.000050	0.03	0.000237	210 206	0.00012 0.00013	< 0.00010	0.00094
FR_ASPSEEP1	FR ASPSEEP1 WS 2022-02-14 NP	2022-02-14		0.0016	0.00032	0.00013	0.0489	< 0.020	< 0.000050	0.031	0.000222	208	< 0.00010		0.00091
FR ASPSEEP1	FR ASPSEEP1 WS 2022-02-16 NP	2022-02-16		0.0013 0.0023	0.00034	0.00018	0.0491	< 0.020	< 0.000050	0.032	0.000239 0.000243	211	0.00012	< 0.00010	0.00077 0.00126
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-17_NP	2022-02-17		0.0023	0.00034	0.00018	0.0514	< 0.020	< 0.000050	0.032	0.000243	219	0.00013	< 0.00010	0.00120
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-18_NP	2022-02-18		0.0042	0.00031	0.00014	0.0486	< 0.020	< 0.000050	0.032	0.000236	212	< 0.00010		0.00076
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-19_NP	2022-02-19		0.0029	0.00033	0.00014	0.0508	< 0.020	< 0.000050	0.033	0.00026	216	< 0.00010		0.00076
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-20_NP FR_ASPSEEP1_WS_2022-02-21_NP	2022-02-20	9.2	0.0107	0.00033 0.00031	< 0.00020 0.00016	0.0502 0.0481	< 0.040 < 0.020	< 0.000100 < 0.000050	0.032 0.031	0.000246	225 240	< 0.00020 0.00011	< 0.00020 < 0.00010	0.00086
FR_ASPSEEP1	FR ASPSEEP1 WS 2022-02-21 NP	2022-02-21		0.0014 0.0012	0.00031	0.00010	0.0504	< 0.020	< 0.000050	0.031	0.000234 0.000248	229	< 0.00011	< 0.00010	0.00075 0.0012
FR ASPSEEP1	FR ASPSEEP1 WS 2022-02-23 NP	2022-02-23	6.2	0.0012	0.00033	0.00017	0.0485	< 0.020	< 0.000050	0.031	0.000248	226	< 0.00010	< 0.00010	0.0012
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-24_NP	2022-02-24	7.1	0.0068	0.00033	< 0.00020	0.0523	< 0.040	< 0.000100	0.034	0.000236	226	< 0.00020	< 0.00020	0.00070
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-25_NP	2022-02-25	11.2	0.0015	0.00034	0.00014	0.0501	< 0.020	< 0.000050	0.032	0.00024	220	< 0.00010	< 0.00010	0.00079
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-26_NP	2022-02-26	13.5	0.0033	0.00034	0.00018	0.0505	< 0.020	< 0.000050	0.031	0.000252	220	< 0.00010	< 0.00010	0.00093
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-27_NP FR_ASPSEEP1_WS_2022-02-28_NP	2022-02-27	10.2 7.88	0.0071	0.00035 0.00031	0.00019 0.00015	0.0522 0.0493	< 0.020 < 0.020	< 0.000050 < 0.000050	0.033	0.00025	220 233	< 0.00010	< 0.00010	0.0008
FR ASPSEEP1	FR ASPSEEP1 WS 2022-03-02 NP	2022-02-28	10.6	0.0011	0.00031	0.00018	0.0503	< 0.020	< 0.000050	0.033	0.000231	224	< 0.00010	< 0.10	0.00087
FR ASPSEEP1	FR ASPSEEP1 WS 2022-03-02 NP	2022-03-02	11.9	0.0012 0.0012	0.00032	0.00015	0.0477	< 0.020	< 0.000050	0.032	0.000249 0.000243	228	0.00010	< 0.00010	0.00082
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-04_NP	2022-03-04	11.6	0.0012	0.00034	0.00015	0.0493	< 0.020	< 0.000050	0.031	0.000243	230	< 0.00010	< 0.10	0.00078
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-05_NP	2022-03-05	12.1	0.003	0.00033	0.00017	0.0507	< 0.020	< 0.000050	0.031	0.000245	233	< 0.00010	< 0.00010	0.00079
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-06_NP	2022-03-06	10.3	0.0016	0.00031	0.0002	0.0519	< 0.020	< 0.000050	0.032	0.000242	226	< 0.00010	< 0.10	0.00075
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-07_NP	2022-03-07	13.1	0.0018	0.00034	0.00019	0.0567	< 0.020	< 0.000050	0.033	0.000239	230	< 0.00010		0.001
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-08_NP FR_ASPSEEP1_WS_2022-03-09_NP	2022-03-08 2022-03-09	12 14.2	0.0014	0.00028 0.00032	0.00017 0.0002	0.0504 0.055	< 0.020 < 0.020	< 0.000050 < 0.000050	0.028 0.03	0.000219	231 229	< 0.00010 0.00013	< 0.00010 < 0.10	0.00062
FR_ASPSEEP1	FR ASPSEEP1 WS 2022-03-10 NP	2022-03-09	13.4	0.0012 0.0018	0.00032	0.0002	0.053	< 0.020	< 0.000050	0.03	0.000249 0.000253	231	< 0.00010		0.00077 0.00076
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-12_NP	2022-03-12		0.0016	0.00028	0.00017	0.0491	< 0.020	< 0.000050	0.026	0.000253	194	< 0.00010		0.00076
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-13_NP	2022-03-13		0.0037	0.00032	0.00019	0.0523	< 0.020	< 0.000050	0.029	0.000214	215	< 0.00010		0.00072
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-14_NP	2022-03-14		< 0.0010	0.00031	0.00017	0.0508	< 0.020	< 0.000050	0.032	0.000245	229	< 0.00010		0.00078
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-15_NP	2022-03-15		0.003	0.00031	0.00017	0.0514	< 0.020	< 0.000050	0.026	0.000238	213	< 0.00010		0.00078
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-16_NP FR_ASPSEEP1_WS_2022-03-17_NP	2022-03-16 2022-03-17	10.7	0.008	0.00032 0.00031	0.00016 0.00019	0.0505 0.0518	< 0.020 < 0.020	< 0.000050 < 0.000050	0.029	0.000235	212 228	< 0.00010	< 0.10 < 0.10	0.00078
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-17_NP FR_ASPSEEP1_WS_2022-03-18_NP	2022-03-17	13.3	0.0021 0.0013	0.00031	0.00019	0.0516	< 0.020	< 0.000050	0.03	0.000238 0.000233	215	< 0.00010		0.00081
FR ASPSEEP1	FR_ASPSEEP1_WS_2022-03-19_NP	2022-03-19	13.8	0.0013	0.00032	0.00016	0.0482	< 0.020	< 0.000050	0.029	0.000233	214	< 0.00010		0.00078
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-20_NP	2022-03-20	7.7	0.0019	0.00033	0.00017	0.051	< 0.020	< 0.000050	0.03	0.000211	203	< 0.00010		0.00073
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-21_NP	2022-03-21	11.2	0.0017	0.00033	0.00018	0.0563	< 0.020	< 0.000050	0.035	0.000253	220	< 0.00010	< 0.00010	0.00073
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-22_NP	2022-03-22	8.13	0.0032	0.00032	0.00016	0.0539	< 0.020	< 0.000050	0.037	0.000263	221	< 0.00010		0.0009
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-23_NP	2022-03-23	11	0.0011	< 0.00050	< 0.00050	0.0588	< 0.100	< 0.000250	< 0.050	0.000274	212	< 0.00050		0.00113
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-26_NP FR_ASPSEEP1_WS_2022-03-27_NP	2022-03-26 2022-03-27	13.7	0.0018	0.00041	0.00021 0.00019	0.0566 0.0488	< 0.020 < 0.020	< 0.000050 < 0.000050	0.047 0.043	0.000263	198 178	< 0.00010 < 0.00010		0.00109
I N_MOFOEEF I	111_A0F0EEF1_W0_2022-00-2/_NP	2022-03-21	11.2	0.002	0.00039	0.00019	0.0400	~ 0.020	- 0.000050	0.043	0.000248	1/0	~ 0.00010	\ U.10	0.00111

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted n/a denotes no applicable standard

BOLD ITALIC Concentrate greater than the chronic (30-Day average) BCWQG for FWAL Concentrate greater than the acute (short term) BCWQG for FWAL

^a Guideline varies with hardness

b Guideline varies with pH and water temperature Guideline varies with chloride Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX B - TABLE 2: Summary of Analytical Results for Dissolved Metals

			Γ								Dissolv	ed Metals							
Sample	Sample	Sample Date	Hardness	Iron	Lead	Lithium	Magnesium	Manganese	Nickel	Potassium	Selenium	Silver	Sodium	Strontium	Thallium	Ę	Titanium	Uranium	Zinc
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
				Acute															
BC WQG FWAL			n/a	0.35	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Fording River Operation	50 A0005504 W0 0000 04 00 ND	000000400	- 1	. 0.040		0.0504	450		0.00000	0.00	105			0.400				0.0000	0.0000
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-01-02_NP FR_ASPSEEP1_WS_2022-01-05_NP	2022-01-02 2022-01-05	14.2	< 0.010	< 0.000050	0.0501 0.0851	150 67.6	< 0.00010 0.00243	0.00083 0.00774	3.82 2.13	135 92.9	< 0.000010 < 0.000010	4.4 3.22	0.193 0.217	< 0.000010 < 0.000010	< 0.00010	< 0.00030 < 0.00030	0.0039 0.00414	0.0082 0.005
FR ASPSEEP1	FR ASPSEEP1 WS 2022-01-07 NP	2022-01-07	13.6	< 0.010	< 0.000050	0.0503	152	0.00243	0.0012	3.95	154	< 0.000010	4.36	0.189	< 0.000010	< 0.00010	< 0.00030	0.00414	0.0085
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-01-12_NP	2022-01-12	21	< 0.010	< 0.000050	0.0527	150	0.00017	0.00108	3.75	134	< 0.000010	4.6	0.195	< 0.000010	< 0.00010	< 0.00030	0.00392	0.0082
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-01-14_NP	2022-01-14		< 0.010	< 0.000050	0.048	152	0.00019	0.00105	3.85	137	< 0.000010	4.57	0.195	0.00001	< 0.00010	< 0.00030	0.00425	0.0079
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-01-19_NP		14.1	< 0.010	< 0.000050	0.0596	164	0.00038	0.00113	4.15	134	< 0.000010	4.89	0.204	0.000012	< 0.00010	< 0.00030	0.00424	0.009
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-01-22_NP FR_ASPSEEP1_WS_2022-01-26_NP	2022-01-22	9.3	< 0.010	< 0.000050 < 0.000050	0.054 0.054	159 167	0.00045	0.00111 0.00119	3.95 3.86	139 124	< 0.000010 < 0.000010	4.89 4.82	0.207	< 0.000010 0.000012	< 0.00010 < 0.00010	< 0.00030 < 0.00030	0.00431 0.004	0.0131 0.0094
FR_ASPSEEP1	FR ASPSEEPT WS 2022-01-26 NP	2022-01-26	6.7	< 0.010	< 0.000050	0.054	160	0.00066	0.00119	3.96	136	< 0.000010	4.02	0.202	0.000012	< 0.00010	< 0.00030	0.00399	0.0094
FR ASPSEEP1	FR ASPSEEP1 WS 2022-02-02 NP		13.2	< 0.010	< 0.000050	0.0559	169	0.00063	0.00115	4.08	161	< 0.000010	5.06	0.209	0.000011	< 0.00010	< 0.00030	0.00423	0.008
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-03_NP	2022-02-03	9.4	0.04	< 0.000050	0.0582	163	0.0012	0.00107	4.02	135	< 0.000010	4.74	0.203	< 0.000010	0.00011	< 0.00090	0.00375	0.0122
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-04_NP		12.4	< 0.010	< 0.000050	0.0481	167	0.00058	0.00108	4.02	132	< 0.000010	4.73	0.204	< 0.000010	< 0.00010	< 0.00030	0.00402	0.0083
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-05_NP		15.3 12.2	< 0.010 < 0.010	< 0.000050 < 0.000050	0.056 0.0562	163 165	0.00041 0.00068	0.00108 0.00113	3.77 3.95	126 128	< 0.000010 < 0.000010	4.7 4.88	0.198 0.208	< 0.000010 < 0.000010	< 0.00010 < 0.00010	< 0.00030 < 0.00030	0.0041 0.00414	0.0083 0.0075
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-06_NP FR_ASPSEEP1_WS_2022-02-07_NP	2022-02-06	3.1	< 0.010	< 0.000050	0.0544	149	0.0006	0.00113	4.25	118	< 0.000010	4.66	0.206	0.000010	< 0.00010	< 0.00030	0.00414	0.0075
FR ASPSEEP1	FR ASPSEEP1 WS 2022-02-08 NP	2022-02-08		< 0.010	< 0.000050	0.0636	174	0.00742	0.00242	4.5	143	< 0.000010	5.2	0.225	0.000014	< 0.00010	< 0.00030	0.00439	0.0118
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-09_NP	2022-02-09		0.011	< 0.000050	0.0439	134	0.00302	0.00102	3.32	109	< 0.000010	4.01	0.166	< 0.000010	< 0.00010	< 0.00030	0.00343	0.0058
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-10_NP	2022-02-10		< 0.010	< 0.000050	0.0592	169	0.00114	0.00111	3.98	143	< 0.000010	4.79	0.212	0.000011	< 0.00010	< 0.00030	0.00437	0.0073
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-11_NP	2022-02-11		< 0.010	< 0.000050	0.0527	149	0.00116	0.00105	3.75	123	< 0.000010	4.6	0.202	0.000011	< 0.00010	< 0.00030	0.00386	0.0073
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-12_NP FR_ASPSEEP1_WS_2022-02-13_NP	2022-02-12		< 0.010	< 0.000050 < 0.000050	0.0528 0.0594	151 163	0.00128 0.00153	0.0011 0.0011	3.78	130 144	< 0.000010 < 0.000010	4.55 4.67	0.194	0.000011	< 0.00010 0.00094	< 0.00030 < 0.00030	0.00391 0.00404	0.0068 0.0091
FR_ASPSEEP1	FR ASPSEEP1 WS 2022-02-13 NP		7.3	< 0.010	< 0.000050	0.0594	166	0.0015	0.0011	4.16	148	< 0.000010	4.84	0.198	0.000011	< 0.00094	< 0.00030	0.00404	0.0091
FR ASPSEEP1	FR ASPSEEP1 WS 2022-02-15 NP	2022-02-15	-	< 0.010	< 0.000050	0.0571	159	0.00109	0.00112	3.88	144	< 0.000010	4.95	0.211	0.000011	< 0.00010	< 0.00030	0.00414	0.0078
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-16_NP	2022-02-16	19.1	< 0.010	0.000082	0.0592	164	0.00152	0.00118	4.03	150	< 0.000010	5.09	0.213	0.000012	< 0.00010	< 0.00030	0.00431	0.0105
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-17_NP		13.2	0.012	< 0.000050	0.0594	166	0.00144	0.00122	4.06	152	< 0.000010	5.07	0.222	0.000012	< 0.00010	< 0.00030	0.00442	0.0102
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-18_NP		14.4	< 0.010	< 0.000050	0.056	162	0.00118	0.00115	3.95	151 154	< 0.000010	5.1	0.213	0.000012	< 0.00010	< 0.00030	0.00419	0.0074
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-19_NP FR_ASPSEEP1_WS_2022-02-20_NP	2022-02-19 2022-02-20	9.2	< 0.010 < 0.020	< 0.000050 < 0.000100	0.056 0.0636	167 180	0.00083 0.00097	0.00115 < 0.00100	4.08 3.98	154	< 0.000010 < 0.000020	5.23 5.11	0.215 0.211	0.000012 < 0.000020	< 0.00010 < 0.00020	< 0.00030 < 0.00060	0.00426 0.00413	0.009
FR ASPSEEP1	FR ASPSEEP1 WS 2022-02-21 NP		10.1	< 0.010	< 0.000050	0.0646	171	0.00061	0.00110	4.18	155	< 0.000020	5.1	0.219	0.000011	< 0.00020	< 0.00030	0.00357	0.0073
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-22_NP	2022-02-22	9.6	< 0.010	< 0.000050	0.0632	185	0.00067	0.00113	4.33	160	< 0.000010	5.18	0.223	0.00001	< 0.00010	< 0.00030	0.00416	0.0084
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-23_NP	2022-02-23	6.2	< 0.010	< 0.000050	0.0644	170	0.00068	0.00109	4.03	143	< 0.000010	4.94	0.214	0.000012	< 0.00010	< 0.00030	0.00432	0.0082
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-24_NP	2022-02-24	7.1	< 0.020	< 0.000100	0.0641	183	0.00089	0.0013	4.24	127	< 0.000020	5.2	0.226	< 0.000020	< 0.00020	< 0.00060	0.00452	0.0083
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-25_NP FR_ASPSEEP1_WS_2022-02-26_NP		11.2	< 0.010 < 0.010	< 0.000050 < 0.000050	0.0679 0.0632	169 170	0.00065 0.00137	0.00113 0.00123	4.23 4.26	134 134	< 0.000010 < 0.000010	5.09 5.3	0.211 0.217	0.000012 0.000012	< 0.00010 < 0.00010	< 0.00030 < 0.00030	0.00458 0.0046	0.0074 0.0086
FR_ASPSEEP1	FR ASPSEEP1 WS 2022-02-20 NP		10.2	< 0.010	< 0.000050	0.0632	171	0.00137	0.00123	4.36	136	< 0.000010	5.35	0.217	0.000012	< 0.00010	< 0.00030	0.0046	0.0000
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-28_NP		7.88	< 0.010	< 0.000050	0.0666	180	0.00061	0.00109	4.17	138	< 0.000010	5.13	0.205	0.00001	< 0.00010	< 0.00030	0.00434	0.0072
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-02_NP		10.6	< 0.010	< 0.000050	0.0634	174	0.00063	0.00117	4.47	161	< 0.000010	5.24	0.22	0.000011	< 0.00010	< 0.00030	0.0041	0.0071
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-03_NP		11.9	< 0.010	< 0.000050	0.0648	168	0.00067	0.00108	3.95	137	< 0.000010	4.73	0.22	< 0.000010	< 0.00010	< 0.00030	0.00408	0.0084
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-04_NP FR_ASPSEEP1_WS_2022-03-05_NP	2022-03-04 2022-03-05		< 0.010 < 0.010	< 0.000050 < 0.000050	0.0655 0.0646	180 187	0.00069 0.00074	0.00104 0.00107	4.03 4.22	141 145	< 0.000010 < 0.000010	5.16 5.35	0.213 0.216	0.000011 0.000011	< 0.00010 < 0.00010	< 0.00030 < 0.00030	0.00383 0.00394	0.0079 0.0085
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-05_NP FR_ASPSEEP1_WS_2022-03-06_NP		10.3	< 0.010	< 0.000050	0.0674	178	0.00074	0.00107	4.22	145	< 0.000010	5.35	0.216	< 0.000011	< 0.00010	< 0.00030	0.00394	0.0085
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-07_NP		13.1	< 0.010	< 0.000050	0.0672	179	0.00124	0.00119	4.62	163	< 0.000010	5.31	0.222	0.000014	< 0.00010	< 0.00030	0.0042	0.0071
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-08_NP	2022-03-08	12	< 0.010	< 0.000050	0.0602	179	0.00143	0.00104	4.17	146	< 0.000010	4.87	0.22	< 0.000010	< 0.00010	< 0.00030	0.00374	0.0066
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-09_NP	2022-03-09		< 0.010	< 0.000050	0.0657	181	0.00153	0.00111	4.53	150	< 0.000010	5.35	0.227	0.000011	< 0.00010	< 0.00030	0.00453	0.0075
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-10_NP FR_ASPSEEP1_WS_2022-03-12_NP	2022-03-10 2022-03-12		< 0.010 < 0.010	< 0.000050 < 0.000050	0.064 0.0569	174 162	0.0016 0.00116	0.00123 0.00106	4.28 4.06	144 120	< 0.000010 < 0.000010	5.11 4.91	0.215 0.185	0.000011 0.00001	< 0.00010 < 0.00010	< 0.00030 < 0.00030	0.0043 0.00362	0.0069 0.0067
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-12_NP FR_ASPSEEP1_WS_2022-03-13_NP	2022-03-12		< 0.010	< 0.000050	0.0569	179	0.00116	0.00106	4.06	133	< 0.000010	4.91	0.165	0.00001	< 0.00010	< 0.00030	0.00362	0.0067
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-14_NP	2022-03-14		< 0.010	< 0.000050	0.0688	192	0.00132	0.00114	4.54	144	< 0.000010	5.43	0.222	0.000011	< 0.00010	< 0.00030	0.00424	0.007
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-15_NP	2022-03-15	12	< 0.010	< 0.000050	0.0574	162	0.0013	0.00109	4.21	144	< 0.000010	4.75	0.197	0.00001	< 0.00010	< 0.00030	0.00409	0.0081
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-16_NP	2022-03-16	10.7	< 0.010	< 0.000050	0.0617	170	0.00177	0.00127	4.22	147	< 0.000010	5.03	0.216	0.00001	< 0.00010	< 0.00030	0.00396	0.0076
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-17_NP FR_ASPSEEP1_WS_2022-03-18_NP	2022-03-17 2022-03-18	12.8	< 0.010 < 0.010	< 0.000050 < 0.000050	0.0639 0.0599	194 157	0.00134 0.00102	0.00108 0.00088	4.22 4.01	133 129	< 0.000010 < 0.000010	5.04 4.64	0.218 0.2	0.00001 < 0.000010	< 0.00010 < 0.00010	< 0.00030 < 0.00030	0.00393 0.00384	0.0078 0.0067
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-16_NP FR_ASPSEEP1_WS_2022-03-19_NP	2022-03-16	13.8	< 0.010	< 0.000050	0.0599	152	0.00102	0.00086	3.92	129	< 0.000010	4.64	0.2	< 0.000010	< 0.00010	< 0.00030	0.00364	0.0067
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-20_NP	2022-03-20	7.7	< 0.010	< 0.000050	0.059	165	0.00085	0.00106	4.24	137	< 0.000010	4.95	0.195	< 0.000010	< 0.00010	< 0.00030	0.00387	0.0065
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-21_NP	2022-03-21	11.2	< 0.010	< 0.000050	0.0701	175	0.00083	0.00113	4.38	148	< 0.000010	5.22	0.216	0.000011	< 0.00010	< 0.00030	0.00416	0.0073
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-22_NP	2022-03-22	8.13	< 0.010	< 0.000050	0.0755	178	0.00073	0.00114	4.22	131	< 0.000010	4.98	0.213	0.000011	< 0.00010	< 0.00030	0.0039	0.0075
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-23_NP	2022-03-23	11	< 0.050	< 0.000250	0.0786 0.0784	187 165	0.00081	< 0.00250 0.00129	4.5 4.5	126	< 0.000050	5.56 5.31	0.22	< 0.000050	< 0.00050 < 0.00010	< 0.00150	0.00394 0.00464	0.0162
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-26_NP FR_ASPSEEP1_WS_2022-03-27_NP	2022-03-26 2022-03-27	13.7	< 0.010	< 0.000050 < 0.000050	0.0784	157	0.00031	0.00129	4.5	124 112	< 0.000010 < 0.000010	5.31	0.19	0.000015	< 0.00010	< 0.00030 < 0.00030	0.00464	0.0092 0.0076
. NOTO GEET 1		2022 00 27		. 0.0.0	0.000000	0.0000		0.00004	0.00101	1		. 0.000010	1.07	0.111	0.000012	1 0.00010	. 0.00000	0.00-120	0.00.0

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

^d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX B - TABLE 2: Summary of Analytical Results for Dissolved Metals

									Dissolve	d Metals				
Sample	Sample	Sample Date	Hardness	Aluminum	Antimony	Arsenic	Barium	Beryllium	Bismuth	Boron	Cadmium	Calcium	Cobalt	Copper
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L mg/L	mg/L	mg/L
				Acute							Acute			Acute Chronic
BC WQG FWAL			n/a	0.020-0.10 ^a 0.005-0.05 ^a	n/a	na	na	na	n/a	n/a	0.00004-0.0028 ^a 0.00002-0.00173 ^a	n/a n/a	n/a	BLM°
Fording River Operation	ED ACROFERA INC 2022 02 20 ND	2000 00 00	1400		0.00000	0.00018	0.0464	< 0.020	< 0.000050	0.044		174 < 0.000	10 < 0.10	
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-28_NP FR_ASPSEEP1_WS_2022-03-29_NP	2022-03-28	10.6	0.0017 0.0016	0.00039	0.00018	0.0464	< 0.020	< 0.000050	0.044	0.000242 0.000236	166 < 0.000		0.00109
FR ASPSEEP1	FR ASPSEEP1 WS 2022-03-30 NP	2022-03-30	10.2	0.0016	0.0004	0.00010	0.0427	< 0.020	< 0.000050	0.043	0.000236	177 < 0.000		0.00104
FR ASPSEEP1	FR ASPSEEP1 WS 2022-03-31 NP	2022-03-31	9.9	0.0023	0.00035	0.00022	0.0429	< 0.020	< 0.000050	0.041	0.000214	163 < 0.000		0.00105
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-04-01_NP	2022-04-01	10.7	0.0163	0.00036	0.00018	0.0431	< 0.020	< 0.000050	0.038	0.000227	162 < 0.000	10 < 0.10	0.00126
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-04-02_NP	2022-04-02	9.7	< 0.0050	< 0.00050	< 0.00050	0.0426	< 0.100	< 0.000250	< 0.050	0.000281	177 < 0.000		0.00113
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-04-08_NP	2022-04-08	10.4	< 0.0050	< 0.00050	< 0.00050	0.0361	< 0.100	< 0.000250	< 0.050	0.000242	180 < 0.000		< 0.00100
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-04-13_NP	2022-04-13	9.32	0.0012	0.00035	0.00014	0.0401	< 0.020	< 0.000050	0.038	0.000212	184 < 0.000		0.00092
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-04-14_NP FR_ASPSEEP1_WS_2022-04-21_NP	2022-04-14	9.1	< 0.0010	0.00031	0.00015	0.0394 0.0376	< 0.020	< 0.000050	0.035	0.000239	172 < 0.000 157 < 0.000		0.00089
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-04-21_NP FR_ASPSEEP1_WS_2022-05-02_NP	2022-04-21 2022-05-02	9.4	0.001	0.00047	0.00016 0.00013	0.0376	< 0.020 < 0.020	< 0.000050 < 0.000050	0.031	0.000213	164 < 0.000		0.00092
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-02_NP	2022-05-03	10.2	0.0047 0.0011	0.00042	0.00013	0.0382	< 0.020	< 0.000050	0.029	0.000221 0.000225	169 < 0.000		0.00086 0.00079
FR ASPSEEP1	FR ASPSEEP1 WS 2022-05-05 NP	2022-05-05	9.5	0.005	0.00051	0.00018	0.0517	< 0.020	< 0.000050	0.034	0.000225	195 0.000		0.00079
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-06_NP	2022-05-06	9.5	0.0012	0.00039	0.00015	0.0365	< 0.020	< 0.000050	0.028	0.000215	159 < 0.000	10 < 0.10	0.00077
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-07_NP	2022-05-07	11.1	0.001	0.00038	0.00012	0.0366	< 0.020	< 0.000050	0.027	0.00018	161 < 0.000		0.00069
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-08_NP	2022-05-08	9.7	< 0.0010	0.00037	0.00016	0.0354	< 0.020	< 0.000050	0.026	0.000211	152 < 0.000		0.00072
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-09_NP	2022-05-09	9.8	0.0011	0.00042	0.00015	0.0354	< 0.020	< 0.000050	0.026	0.000204	142 < 0.000		0.00079
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-10_NP FR_ASPSEEP1_WS_2022-05-11_NP	2022-05-10 2022-05-11	9.6	0.0017	0.0004	0.00012 0.00015	0.036 0.036	< 0.020 < 0.020	< 0.000050 < 0.000050	0.026 0.026	0.000217	149 < 0.000 150 < 0.000		< 0.00100
FR_ASPSEEP1	FR ASPSEEP1 WS 2022-05-11 NP	2022-05-11	9.8	0.0016	0.0004	0.00013	0.0326	< 0.020	< 0.000050	0.026	0.000195	142 < 0.000		0.0012
FR ASPSEEP1	FR ASPSEEP1 WS 2022-05-12 NP	2022-05-13	9.2	0.0016 < 0.0010	0.00039	0.00012	0.0320	< 0.020	< 0.000050	0.026	0.000202 0.000223	150 < 0.000		0.00077 0.00072
FR ASPSEEP1	FR ASPSEEP1 WS 2022-05-14 NP	2022-05-14		0.0016	0.00036	0.00013	0.03	< 0.020	< 0.000050	0.025	0.000223	144 < 0.000		0.00072
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-15_NP	2022-05-15		0.0012	0.0004	< 0.00010	0.0305	< 0.020	< 0.000050	0.024	0.000219	155 < 0.000		0.00071
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-16_NP	2022-05-16	9.4	0.0027	0.0004	0.0001	0.0311	< 0.020	< 0.000050	0.023	0.000193	156 < 0.000		0.00077
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-17_NP	2022-05-17		0.001	0.00038	0.00015	0.0342	< 0.020	< 0.000050	0.026	0.000234	147 < 0.000		0.00089
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-19_NP	2022-05-19		0.0016	0.0004	0.00013	0.0359	< 0.020	< 0.000050	0.027	0.000217	152 < 0.000		0.00089
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-20_NP FR_ASPSEEP1_WS_2022-05-21_NP	2022-05-20	9.7 11.6	< 0.0010	0.00036 0.00036	0.00013 0.00015	0.0345 0.0339	< 0.020 < 0.020	< 0.000050 < 0.000050	0.024 0.024	0.000213	151 < 0.000 150 < 0.000		0.00085
FR ASPSEEP1	FR ASPSEEP1 WS 2022-05-21 NP	2022-05-23	11.7	0.001	0.00030	0.00013	0.0338	< 0.020	< 0.000050	0.024	0.00022	158 < 0.000		0.00075
FR ASPSEEP1	FR ASPSEEP1 WS 2022-05-24 NP	2022-05-24	11.5	< 0.0010 0.0015	0.00036	0.00013	0.0362	< 0.020	< 0.000050	0.027	0.000231 0.00022	159 < 0.000		0.00082
FR ASPSEEP1	FR ASPSEEP1 WS 2022-05-25 NP	2022-05-25	9.3	< 0.0010	0.00037	0.00014	0.0333	< 0.020	< 0.000050	0.024	0.00022	148 < 0.000		0.00077
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-26_NP	2022-05-26	9.1	0.001	0.00038	0.00014	0.0332	< 0.020	< 0.000050	0.024	0.000224	152 < 0.000	10 < 0.10	0.00077
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-27_NP	2022-05-27		0.0017	0.00034	0.00013	0.0358	< 0.020	< 0.000050	0.026	0.000243	152 < 0.000		0.00077
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-28_NP	2022-05-28	10.4	0.0042	0.00033	0.00014	0.0353	< 0.020	< 0.000050	0.025	0.000209	150 < 0.000		0.00079
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-29_NP	2022-05-29	12.5	< 0.0010	0.00035	0.00014	0.0324	< 0.020	< 0.000050	0.027	0.000236	147 < 0.000		0.00079
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-30_NP FR_ASPSEEP1_WS_2022-06-01_NP	2022-05-30	15 12.9	< 0.0010	0.00035	0.00013 0.00012	0.034 0.0323	< 0.020 < 0.020	< 0.000050 < 0.000050	0.026	0.000217	142 < 0.000 136 < 0.000		0.00076
FR ASPSEEP1	FR ASPSEEP1 WS 2022-06-02 NP	2022-06-02	19.3	0.0024 < 0.0010	0.00036	0.00012	0.0323	< 0.020	< 0.000050	0.023	0.000201 0.000208	140 < 0.000		0.00072 0.00078
FR ASPSEEP1	FR ASPSEEP1 WS 2022-06-03 NP	2022-06-03	-	< 0.0010	< 0.00050	< 0.00050	0.0307	< 0.100	< 0.000250	< 0.050	0.000208	133 < 0.000		< 0.00100
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-06-04_NP	2022-06-04	15.5	0.0038	0.0005	0.00021	0.0619	< 0.020	< 0.000050	0.016	0.000201	86 < 0.000	10 0.00013	0.0006
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-06-05_NP	2022-06-05	13.1	0.001	0.00034	0.00011	0.0284	< 0.020	< 0.000050	0.024	0.000213	131 < 0.000		0.00078
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-06-06_NP	2022-06-06	13.5	0.0013	0.00036	0.00012	0.0296	< 0.020	< 0.000050	0.023	0.000194	131 < 0.000		0.00076
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-06-07_NP	2022-06-07	13.2	< 0.0010	0.00035	0.00012	0.0358	< 0.020	< 0.000050	0.023	0.000202	138 < 0.000		0.00081
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-06-08_NP FR_ASPSEEP1_WS_2022-06-09_NP	2022-06-08	17 9.07	0.0022	0.00033 0.00037	0.0001 0.00013	0.0308 0.0331	< 0.020 < 0.020	< 0.000050 < 0.000050	0.023 0.024	0.000198	132 < 0.000 139 < 0.000		0.00077
FR_ASPSEEP1	FR ASPSEEP1 WS 2022-06-10 NP	2022-06-09	10.9	0.0011	0.00037	0.00013	0.0331	< 0.020	< 0.000050	0.024	0.000225	128 < 0.000		0.00075
FR ASPSEEP1	FR ASPSEEP1 WS 2022-06-11 NP	2022-06-11	10.9	< 0.0010 0.0012	0.00033	0.00013	0.0317	< 0.020	< 0.000050	0.022	0.000178 0.000185	127 < 0.000		0.00084
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-06-12_NP	2022-06-12	20.4	0.0012	0.00032	0.00011	0.0308	< 0.020	< 0.000050	0.021	0.000185	130 < 0.000		0.00075
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-06-13_NP	2022-06-13	20.3	0.0013	0.00035	0.00012	0.0323	< 0.020	< 0.000050	0.024	0.000194	127 < 0.000	10 < 0.10	0.0008
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-06-20_NP	2022-06-20	6	0.0012	0.00034	0.00012	0.0265	< 0.020	< 0.000050	0.024	0.000168	112 < 0.000		0.00088
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-07-04_NP	2022-07-04	8.3	< 0.0020	0.00035	0.00014	0.0307	< 0.020	< 0.000050	0.027	0.000195	137 < 0.000		0.00085
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-07-11_NP	2022-07-11	5.6 5.6	< 0.0010	0.00035	0.00013	0.0331	< 0.020	< 0.000050	0.024	0.000217	136 < 0.000		0.00095
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-07-18_NP FR_ASPSEEP1_WS_2022-07-25_NP	2022-07-18	5.6	0.001	0.00034	0.00015 0.00012	0.0362 0.0366	< 0.020 < 0.020	< 0.000050 < 0.000050	0.028 0.026	0.000239	150 < 0.000 154 < 0.000		0.00082
FR ASPSEEP1	FR ASPSEEP1 SEEP 2022-07-25_NP	2022-07-23	5.0	0.0012 0.0022	0.00033	0.00012	0.0300	< 0.020	< 0.000050	0.028	0.00024 0.00028	158 < 0.000		0.00084
FR ASPSEEP1	FR_ASPSEEP1_WS_2022-08-11_NP	2022-08-11	18.6	< 0.0022	0.00032	0.00015	0.0424	< 0.020	< 0.000050	0.028	0.00028	163 < 0.000		0.00096
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-08-18_NP	2022-08-18	6.3	< 0.0010	0.00035	0.00021	0.0464	< 0.020	< 0.000050	0.026	0.000236	185 < 0.000		0.00088
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-08-24_NP	2022-08-24	-	0.002	0.00034	0.00019	0.0468	< 0.020	< 0.000050	0.03	0.000278	186 0.0001	3 < 0.10	0.00088
		-		*****	-									

< Denotes concentration less than indicated detection limit

n/a denotes no applicable standard

⁻ Denotes analysis not conducted

 ^a Guideline varies with hardness
 ^b Guideline varies with pH and water temperature
 ^c Guideline varies with chloride

^d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX B - TABLE 2: Summary of Analytical Results for Dissolved Metals

											Dissolv	ed Metals							
Sample	Sample	Sample Date	Hardness	Iron	Lead	Lithium	Magnesium	Manganese	Nickel	Potassium	Selenium	Silver	Sodium	Strontium	Thallium	Tin	Titanium	Uranium	Zinc
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
				Acute															
BC WQG FWAL			n/a	0.35	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Fording River Operation FR ASPSEEP1	ED ACREEDA IME 2022 02 20 ND	2000 00 00	10.6	< 0.010	< 0.000050	0.0693	151	0.00031	0.00126	4 11	110	< 0.000010	4.66	0.165	0.000012	< 0.00010	< 0.00030	0.00403	0.0072
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-28_NP FR_ASPSEEP1_WS_2022-03-29_NP	2022-03-28	10.6	< 0.010	< 0.000050	0.0643	148	0.00031	0.00126	4.11	112	< 0.000010	4.56	0.153	0.000012	< 0.00010	< 0.00030	0.00403	0.0072
FR ASPSEEP1	FR ASPSEEP1 WS 2022-03-30 NP		10.2	< 0.010	< 0.000050	0.0729	146	0.00023	0.00115	4	95.6	< 0.000010	4.36	0.154	0.000017	< 0.00010	< 0.00030	0.00362	0.0073
FR ASPSEEP1	FR ASPSEEP1 WS 2022-03-31 NP	2022-03-31		< 0.010	< 0.000050	0.0646	151	0.00025	0.00121	4.21	137	< 0.000010	4.73	0.16	0.000017	< 0.00010	< 0.00030	0.00357	0.0078
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-04-01_NP	2022-04-01	10.7	0.011	< 0.000050	0.0617	148	0.00055	0.00125	3.97	105	< 0.000010	4.48	0.153	0.000012	0.00011	< 0.00030	0.0038	0.0136
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-04-02_NP	2022-04-02	9.7	< 0.050	< 0.000250	0.0588	158	< 0.00050	< 0.00250	3.85	111	< 0.000050	4.65	0.161	< 0.000050	< 0.00050	< 0.00150	0.00365	0.0084
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-04-08_NP	2022-04-08	10.4	< 0.050	< 0.000250	0.058	132	< 0.00050	< 0.00250	3.24	114	< 0.000050	3.81	0.177	< 0.000050	< 0.00050	< 0.00150	0.00374	0.0098
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-04-13_NP		9.32	< 0.010	< 0.000050	0.0582	135	0.00029	0.00119	3.62	135	< 0.000010	3.79	0.175	< 0.000010	< 0.00010	< 0.00030	0.0039	0.0093
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-04-14_NP FR_ASPSEEP1_WS_2022-04-21_NP	2022-04-14	9.1	< 0.010 < 0.010	< 0.000050 < 0.000050	0.0549 0.059	135 127	0.00029 0.00058	0.00125 0.0011	3.65 3.87	136 114	< 0.000010 < 0.000010	3.94 4.1	0.165 0.165	< 0.000010 0.000011	< 0.00010 < 0.00010	< 0.00030 < 0.00030	0.00357 0.00361	0.0088
FR ASPSEEP1	FR ASPSEEP1 WS 2022-05-02 NP		10.2	< 0.010	< 0.000050	0.0509	127	0.00052	0.0011	4.22	128	< 0.000010	3.89	0.103	0.000011	< 0.00010	< 0.00030	0.00301	0.0096
FR ASPSEEP1	FR ASPSEEP1 WS 2022-05-03 NP	2022-05-03	-	< 0.010	< 0.000050	0.0508	120	0.00032	0.00137	3.82	134	< 0.000010	3.42	0.19	0.000012	< 0.00010	< 0.00030	0.0035	0.0096
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-05_NP	2022-05-05	9.5	0.017	< 0.000050	0.0599	156	0.00108	0.00152	4.7	182	< 0.000010	4.42	0.229	0.000014	< 0.00010	< 0.00030	0.00421	0.0124
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-06_NP	2022-05-06	9.5	< 0.010	< 0.000050	0.0469	116	0.00025	0.00116	3.57	146	< 0.000010	3.36	0.174	< 0.000010	< 0.00010	< 0.00030	0.00327	0.0091
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-07_NP	2022-05-07	11.1	< 0.010	< 0.000050	0.0473	118	0.00014	0.00097	3.52	150	< 0.000010	3.4	0.171	< 0.000010	< 0.00010	< 0.00030	0.00323	0.0081
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-08_NP	2022-05-08	9.7	< 0.010	< 0.000050	0.0449	116	0.0002	0.0011	3.53	147	< 0.000010	3.31	0.163	< 0.000010	< 0.00010	< 0.00030	0.00312	0.0083
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-09_NP FR_ASPSEEP1_WS_2022-05-10_NP	2022-05-09 2022-05-10	9.8	< 0.010 < 0.010	< 0.000050 < 0.000050	0.0425 0.0418	112 121	0.0003	0.00113 0.00127	3.59 3.49	123 133	< 0.000010 < 0.000010	3.19 3.37	0.161 0.166	0.000011	< 0.00010 < 0.00010	< 0.00030 < 0.00030	0.00324 0.00307	0.0106 0.0096
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-10_NP FR_ASPSEEP1_WS_2022-05-11_NP	2022-05-10	9.0	< 0.010	< 0.000050	0.0418	116	0.00054	0.00127	3.49	129	< 0.000010	3.22	0.166	< 0.000010	< 0.00010	< 0.00030	0.00307	0.0102
FR ASPSEEP1	FR ASPSEEP1 WS 2022-05-12 NP	2022-05-12		< 0.010	< 0.000050	0.0414	106	0.00027	0.00129	3.39	122	< 0.000010	3.27	0.157	< 0.000010	< 0.00010	< 0.00030	0.00307	0.0085
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-13_NP	2022-05-13		< 0.010	< 0.000050	0.042	105	0.0002	0.00113	3.43	131	< 0.000010	3.08	0.155	0.00001	< 0.00010	< 0.00030	0.00301	0.009
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-14_NP	2022-05-14		< 0.010	< 0.000050	0.0407	100	0.00019	0.00113	3.37	132	< 0.000010	3.01	0.145	< 0.000010	< 0.00010	< 0.00030	0.00295	0.0122
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-15_NP	2022-05-15		< 0.010	< 0.000050	0.0396	109	0.0002	0.00112	3.17	129	< 0.000010	2.84	0.16	< 0.000010	< 0.00010	< 0.00030	0.00316	0.0099
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-16_NP	2022-05-16		< 0.010	< 0.000050	0.0403	111	0.00026	0.0011	3.16	124	< 0.000020	2.76	0.159	< 0.000010	< 0.00010	< 0.00030	0.00323	0.0099
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-17_NP FR_ASPSEEP1_WS_2022-05-19_NP	2022-05-17		< 0.010 < 0.010	< 0.000050 < 0.000050	0.0438 0.0433	118 107	0.00062 0.00027	0.00153 0.0012	3.53 3.59	133 133	< 0.000010 < 0.000010	3.33 3.38	0.159 0.18	< 0.000010 < 0.000010	< 0.00010 < 0.00010	< 0.00030 < 0.00030	0.00327 0.00334	0.0101
FR ASPSEEP1	FR ASPSEEP1 WS 2022-05-19 NP	2022-05-19	9.7	< 0.010	< 0.000050	0.0433	113	0.00027	0.0012	3.45	134	< 0.000010	3.26	0.165	< 0.000010	< 0.00010	< 0.00030	0.00334	0.009
FR ASPSEEP1	FR ASPSEEP1 WS 2022-05-21 NP		11.6	< 0.010	< 0.000050	0.0435	113	0.00017	0.00086	3.47	129	< 0.000010	3.24	0.161	< 0.000010	< 0.00010	< 0.00030	0.00319	0.0102
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-23_NP	2022-05-23	11.7	< 0.010	< 0.000050	0.0408	115	0.00023	0.00122	3.41	125	< 0.000010	3.21	0.157	< 0.000010	< 0.00010	< 0.00030	0.00324	0.0097
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-24_NP	2022-05-24	11.5	< 0.010	< 0.000050	0.0461	110	0.00024	0.00124	3.49	128	< 0.000010	3.36	0.161	< 0.000010	< 0.00010	< 0.00030	0.00319	0.0098
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-25_NP	2022-05-25	9.3	< 0.010	< 0.000050	0.0394	116	0.00024	0.0014	3.35	122	< 0.000010	3.24	0.159	< 0.000010	< 0.00010	< 0.00030	0.00306	0.0093
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-26_NP FR_ASPSEEP1_WS_2022-05-27_NP		9.1 10.6	< 0.010 < 0.010	< 0.000050 < 0.000050	0.041 0.0428	116 111	0.0002 0.00022	0.00132 0.0009	3.28 3.44	120 120	< 0.000010 < 0.000010	3.23 3.26	0.163 0.161	< 0.000010 < 0.000010	< 0.00010 < 0.00010	< 0.00030 < 0.00030	0.00314 0.003	0.0092 0.0103
FR ASPSEEP1	FR ASPSEEP1 WS 2022-05-27 NP		10.4	< 0.010	< 0.000050	0.0428	109	0.00022	0.0009	3.38	119	< 0.000010	3.23	0.158	< 0.000010	< 0.00010	< 0.00060	0.00306	0.0097
FR ASPSEEP1	FR ASPSEEP1 WS 2022-05-29 NP		12.5	< 0.010	< 0.000050	0.0436	110	0.0002	0.00121	3.4	135	< 0.000010	3.28	0.152	< 0.000010	< 0.00010	< 0.00030	0.00298	0.0101
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-30_NP	2022-05-30	15	< 0.010	< 0.000050	0.0422	110	0.00024	0.00114	3.44	131	< 0.000010	3.32	0.153	< 0.000010	< 0.00010	< 0.00030	0.00293	0.0092
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-06-01_NP	2022-06-01		< 0.010	< 0.000050	0.0397	102	0.00018	0.00107	3.36	119	< 0.000010	3.08	0.145	< 0.000010	< 0.00010	< 0.00030	0.00294	0.0084
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-06-02_NP	2022-06-02	19.3	< 0.010	< 0.000050	0.0402	105	0.00036	0.00112	3.33	107	< 0.000010	3.1	0.15	< 0.000010	< 0.00010	< 0.00030	0.00261	0.0089
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-06-03_NP FR_ASPSEEP1_WS_2022-06-04_NP	2022-06-03	15.5	< 0.050 < 0.010	< 0.000250 < 0.000050	0.0384 0.0241	105 62.1	< 0.00050 0.00104	< 0.00250 0.00223	3.16 2.49	90.7 58.6	0.000062 < 0.000010	2.8 1.86	0.14	< 0.000050 0.000012	< 0.00050 < 0.00010	< 0.00150 < 0.00030	0.00258 0.00178	0.0089 0.0054
FR_ASPSEEP1	FR ASPSEEP1_WS_2022-06-04_NP FR ASPSEEP1 WS 2022-06-05 NP		13.1	< 0.010	< 0.000050	0.0241	97.8	0.00104	0.00223	3.03	102	< 0.000010	2.84	0.097	< 0.000012	< 0.00010	< 0.00030	0.00178	0.0054
FR ASPSEEP1	FR ASPSEEP1 WS 2022-06-06 NP	2022-06-06	13.5	< 0.010	< 0.000050	0.0359	96.5	0.00021	0.00106	3.13	104	< 0.000020	2.89	0.142	< 0.000010	< 0.00010	< 0.00030	0.00267	0.0099
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-06-07_NP	2022-06-07	13.2	< 0.010	< 0.000050	0.0387	106	0.00023	0.00133	3.16	99.7	< 0.000020	3.09	0.146	< 0.000010	< 0.00010	< 0.00030	0.00287	0.0092
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-06-08_NP	2022-06-08	17	< 0.010	< 0.000050	0.0392	95.8	0.00029	0.001	3.24	103	< 0.000010	2.92	0.132	< 0.000010	< 0.00010	< 0.00030	0.00256	0.0099
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-06-09_NP	2022-06-09	9.07	< 0.010	< 0.000050	0.0433	104	0.00019	0.00111	3.5	102	< 0.000010	3.18	0.148	< 0.000010	< 0.00010	< 0.00030	0.00287	0.0105
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-06-10_NP FR_ASPSEEP1_WS_2022-06-11_NP	2022-06-10	10.9	0.016 < 0.010	< 0.000050 < 0.000050	0.0374 0.0365	98.2 96.5	0.00018 0.00016	0.00105 0.00104	3.22 3.14	102 99.4	< 0.000010 < 0.000010	2.86 2.87	0.133 0.131	< 0.000010 < 0.000010	< 0.00010 < 0.00010	< 0.00030 < 0.00030	0.00244 0.0024	0.0088 0.0086
FR_ASPSEEP1	FR ASPSEEP1_WS_2022-06-11_NP FR ASPSEEP1 WS 2022-06-12 NP		20.4	< 0.010	< 0.000050	0.0365	96.5 97.6	0.00016	0.00104	3.14	99.4	< 0.000010	2.87	0.131	< 0.000010	< 0.00010	< 0.00030	0.0024	0.0086
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-06-13_NP		20.4	< 0.010	< 0.000050	0.038	95.6	< 0.00022	0.00097	3.14	102	0.000016	2.82	0.134	< 0.000010	< 0.00010	< 0.00030	0.00248	0.0086
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-06-20_NP	2022-06-20	6	< 0.010	< 0.000050	0.0348	89.5	0.00026	0.001	2.9	86.7	< 0.000010	2.66	0.114	< 0.000010	< 0.00010	< 0.00030	0.00235	0.0089
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-07-04_NP	2022-07-04	8.3	< 0.010	< 0.000050	0.0403	97.3	0.00033	0.00112	3.08	101	< 0.000010	2.89	0.136	< 0.000010	< 0.00010	< 0.00030	0.0026	0.0092
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-07-11_NP	2022-07-11	5.6	< 0.010	< 0.000050	0.042	102	0.00033	0.00126	3.22	89.5	< 0.000010	3.11	0.138	< 0.000010	< 0.00010	< 0.00030	0.00274	0.0093
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-07-18_NP	2022-07-18	5.6	< 0.010	< 0.000050	0.0472	109	0.00042	0.00134	3.43	108	< 0.000010	3.21	0.146	< 0.000010	< 0.00010	< 0.00030	0.00289	0.0117
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-07-25_NP FR_ASPSEEP1_SEEP_2022-07-01_NP	2022-07-25 2022-08-03	5.6 5.7	< 0.010 < 0.010	< 0.000050 0.000086	0.0455 0.053	122 122	0.00019 0.00031	0.001 0.00142	3.55 3.72	102 115	< 0.000010 < 0.000010	3.58 3.94	0.15 0.161	< 0.000010 < 0.000010	< 0.00010 < 0.00010	< 0.00030 < 0.00030	0.00296 0.00294	0.0098 0.0133
FR_ASPSEEP1	FR_ASPSEEP1_SEEP_2022-07-01_NP FR_ASPSEEP1_WS_2022-08-11_NP	2022-08-03	18.6	< 0.010	< 0.000086	0.053	122	0.00031	0.00142	3.72	115	< 0.000010	3.94	0.161	< 0.000010	< 0.00010	< 0.00030	0.00294	0.0133
FR ASPSEEP1	FR ASPSEEP1 WS 2022-08-18 NP	2022-08-18	6.3	< 0.010	< 0.000050	0.0533	156	0.00024	0.0013	3.91	122	< 0.000010	4.54	0.181	< 0.000010	< 0.00010	< 0.00030	0.00358	0.0112
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-08-24_NP	2022-08-24	-	< 0.010	< 0.000050	0.0616	162	0.00037	0.00147	3.9	126	< 0.000010	4.47	0.186	0.000012	< 0.00010	< 0.00030	0.00378	0.0114
-																			

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

Guideline varies with chloride

^d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX B - TABLE 2: Summary of Analytical Results for Dissolved Metals

RWOOFWALE No. 0.0094-0.007					d Metals	Dissolve									
BE WIGG FRAL. Part	Cobalt	Chromium	Calcium	Cadmium	Boron	Bismuth	Berylli		Arsenic	Antimony	Aluminum	Hardness			
Company Comp	mg/L	mg/L	mg/L		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	. mg/L	mg/L	(mm/dd/yyyy)	ID	Location
FRAMESEPT FRAMES	Acute			Acute							Acute				
FR. ASPEREPT FR. ASPEREPT MR. 2002-001 APR D. 2002-001	n/a	n/a	л/а	0.00004-0.0028 ^a 0.00002-0.00173 ^a	n/a	n/a	na	na	na	n/a	0.020-0.10 ^a 0.005-0.05 ^a	n/a			
FR. SAPSEEPT FR. SAPSEEPT MR. 2022-09-08, NP 2022-09-09 197 c. n.	1 .0.40 [. 0 00040	404 T		0.000		. 0.000	0.0507	0.00044	0.00000				ED 40005504 WG 0000 00 04 ND	
FR. BLANESEEPI FR. BLANESEEPI SEP. 2020-014 NP 2020-017 10 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.00000 0.0000 0.00000 0.0000 0.00000 0.0000 0.00000 0.0000 0.00000 0.0000 0.00000 0.0000 0.000000	< 0.10 < 0.20														
FR BLAMESEEPI RF BLAMESEEPI SEEP 2022-0-0-1 NP 2022-0-15 1-0.0 0.0008															
FR. BLAMESEEPI FR. BLAMESEEPI SEEP 2022-06-11, NP 2022-06-16, 10-3	< 0.20	< 0.00020	287		0.033	< 0.000100	< 0.040	0.0142	< 0.00020	0.0006		- 1	2022-07-19	FR_BLAINESEEP1_SEEP_2022-07-01_NP	FR_BLAINESEEP1
FR BLANSSEEPS FR BLANSSEEPS FEEP 2022-09-13 PP 2022-09-10 PP 2022-09-10 PP BLANSSEEPS FEEP 2022-09-11 PP 2022-09-10 PP PP 2022-09	< 0.20			0.000753											
FR BLAKESEEPI FR BLAKESEPI SEP 2022-02-1 PP 2022-05-10 P2 20-22-1 A 0.0024 0.00035 0.00016 0.048 0.0000 0.0004 0.000001 0.024 0.000001 1.0000014 1.71 0.000010 0.078	< 0.50														
FR BLAKESEEPI FR COSEEPIS IERP 2022-04-13 NP 2022-04-20 4-4 0.0007	0.00022														
FR COSSEPFE	0.00027														
FR_COSEEPEI FR_COSEEPEI SPC_202-07-1N 222-06-17 3.6	0.00043														
FR_COSEPPEI FR_COSEPPEI SEP_2022-07-01 NP 2022-08-22	0.00047											9.8		FR_CCSEEPE1_2022-06-17_N	
FR COSEPSEI FR COSEPSEI SEP 2022-04-11 NP 2022-05-10 - 0.0008	0.00047			0.00118							< 0.0020				
FR_COSEEPSET FR_COSEEPSET SEP_2022-0471 NP 2022-05-22 - < 0.00020 0.00038 0.00024 0.0118 < 0.0001 0.0001 0.0003 0.00005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.00005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.000005 0.00005 0.000005 0.000005 0.000005 0.000005 0.000005 0.00005 0.000005 0.00005 0	0.00064														
FR DOKASEEP SEP Z022-04-11 NP 2022-05-16 4.7 < 0.00040												_			
FR_DOMASEEP1 FR_DOMASEEP1 SEP_2022-06-21 NP 2022-06-22 - 0.0043 - 0.00912 0.0092 - 0.0000 0.0088 - 0.00050 0.038 - 0.0050 68.9 - 0.0050 69.9 - 0.0050 - 0.0050 69.9 - 0.0050 - 0.0050 69.9 - 0.0050	0.00023 < 0.10														
FR_REALENDRITH FR_ADELENDRITH_SEP_2022-0471, NP 2022-0571 7.2	< 0.10														
FR_EAGLENORTH FR_EAGLENORTH_SEP_2022-09-22_07-01_NP 2022-09-6	< 0.10											- 1			
FR_EAGLENORTH	< 0.50														
FR FCSEEP2 FR FCSEEP2 SEEP 2022-04-11 NP 2022-06-10 23 0.0017 0.0001 0.00010 0.00005 0.00005 0.010 0.0000078 39 0.00010 c FR FRVWSEEP3 FR FCSEEP2 SEEP 2022-04-11 NP 2022-06-16 10.1 0.0014 0.00049 0.00010 0.00074 0.00005 0.010 0.000050 0.010 0.0000164 125 0.00010 c FR FRVWSEEP3 FR FRVWSEEP3 SEEP 2022-06-18 10.1 0.0014 0.00049 0.000010 0.0002 0.000050 0.010 0.0000514 125 0.000010 c FR FRVWSEEP3 SEEP 2022-06-19 NP 2022-06-16 10.1 0.0014 0.00049 0.000010 0.000050 0.00050 0.010 0.0000514 125 0.000010 c FR FSEAMSEEP7 FR FSEAMSEEP7 SEEP 2022-06-11 NP 2022-06-16 3.5 0.0008 0.00															
FR, FCSEEP2 FR, FCSEEP2 SEEP 2022-09-02, NP 2022-09-02 59 4.0.0010 <0.00010 <0.00010 <0.00010 <0.00010 <0.000050 <0.000050 <0.000050 <0.00010 0.0000050 <0.0010 0.0000050 <0.0010 0.0000050 <0.00010 <0.0000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.00005															
FR FRVWSEEP3 FR FRVWSEEP3 SEEP 2022-09-8 N															
FR FRVMSEEP3 FR FR SEAMSEEP7 SEEP 2022-0-1 NP 2022-0-16 8	0.00038														
FR_FSEAMSEEP7 FR_FSEAMSEEP7_SEEP_2022-04-11_NP	< 0.10	< 0.00010	164		0.015	< 0.000050	< 0.020	0.0208	< 0.00010	0.00029			2022-09-08		FR_FRVWSEEP3
FR_FSEAMWSEEP4 FR_FSEAMWSEEP4 SEEP_2022-04-11 NP	0.00011											3.5			
FR_HENSEEP3 FR_HENSEEP3 SEP_2022-05-16 NP	0.00013														
FR_HENSEEP3 FR_HENSEEP3 SEEP_2022-07-61 NP 2022-07-61 - 0.0002	0.00139 < 0.20														
FR_HENSEEP3 FR_HENSEEP3 SEEP_2022-09-21 NP 2022-09-14 - 0.00022 0.00022 < 0.00020 0.0319 < 0.040 < 0.000100 < 0.020 0.000147 319 < 0.00020 FR_HENSEEP3 SEEP_2022-09-21 NP 2022-09-14 - 0.0020 < 0.000020 < 0.000020 < 0.000100 < 0.020 0.000115 325 < 0.00020 < 0.00020 < 0.00012	< 0.20											9			
FR_HENSEEP3 FR_HENSEEP1_SEEP_2022-04-11_NP	< 0.20														
FR_HENSSEEPI FR_HENSSEEPI SEP_2022-07-01 NP	< 0.20														
FR_LMCWSEEP5 FR_LMCWSEEP5 SEEP_2022-04-11_NP 2022-06-16 9.4 0.0028 0.00024 0.00016 0.0242 < 0.020 < 0.000055 < 0.010 0.000063 \$25.5 < 0.00010 < 0.000063 FR_LMCWSEEP5 SEEP_2022-04-11_NP 2022-07-08 19.5 0.0039 0.00025 0.00016 0.0262 < 0.020 < 0.000055 < 0.010 0.0000648 \$26.6 < 0.00010 < 0.00016 FR_LMCWSEEP5 FR_LMCWSEEP5 SEEP_2022-09-22_NP 2022-09-22_ST2 < 0.0010 0.000095 0.00017 0.000095 0.0010 0.000095 0.0010 0.000095 0.0010 0.000095 0.0010 0.000095 0.0010 0.000095 0.0010 0.000095 0.0010 0.000095 0.0010 0.000095 0.0010 0.000095 0.0010 0.000095 0.0010 0.000095 0.0010 0.000095 0.0010 0.000095 0.0010 0.000095 0.0010 0.000095 0.00009	< 0.10											_			
FR_LMCWSEEP5	< 0.20														
FR_SINOSEEPF FR_SINOSEEPF SEEP_2022-08-22 NP 2022-09-22 3.12	< 0.10 < 0.10														
FR_SCROSEEPI FR_SCROSEEPI_SEEP_2022-04-11_NP	< 0.10										0.0039				
FR_SCROSEEPI FR_SCROSEEPI_SEEP_2022-09-21 NP 2022-09-21 4.3 0_0016 0_00114 0_00017 0_0218 <0.020 <0.000050 0_010 0_00133 318 <0.00010 0_015	0.00755										10.0010	_		FR SCRDSEEP1 SEEP 2022-04-11 NP	
FR_SPRWSEEP FR_SPRWSEEP SEEP_2022-07-01 NP	0.00063											4.3			
FR_STPNSEEP FR_STPNSEEP_SEEP_2022-04-11_NP	< 0.10			0.000426								-			
FR_STPNSEEP FR_STPNSEEP FR_STPNSEEP_SEP_2022-07-01_NP 2022-07-15 - < 0.0010 0.0002 < 0.00010 0.0599 < 0.020 < 0.000050 0.012 0.0000332 66.1 0.00011	< 0.10			0.000462							0.00205				
FR, STPSWSEEP FR, STPSWSEEP SEEP, 2022 202201-25 - < 0.0010 < 0.00010 < 0.00010 0.0717 < 0.020 < 0.000050 0.031 0.0002 124 < 0.00010 10 FR, STPSWSEEP SEEP, 2022-04-11, NP 2022-05-19 2 < 0.0010 < 0.00010 < 0.00010 0.0715 < 0.020 < 0.000050 0.0285 0.000215 126 5 < 0.00010 10 FR, STPSWSEEP FR, STPSWSEEP SEEP, 2022-04-11, NP 2022-05-19 2 < 0.0010 < 0.00010 < 0.00010 0.0864 < 0.020 < 0.000050 0.035 0.000055 0.00215 126 5 < 0.00010 10 FR, STPSWSEEP FR, STPSWSEEP SEEP, 2022-04-11, NP 2022-05-19 2 < 0.0010 < 0.00010 0.0864 < 0.020 < 0.00010 0.0813 < 0.000055 0.032 0.000055 0.00215 124 < 0.00010 10 FR, STPSWSEEP FR, STPSWSEEP SEEP, 2022-04-11, NP 2022-05-19 3 < 0.00010 < 0.00010 0.0864 < 0.020 < 0.000050 0.032 0.000055 0.032 0.000055 124 < 0.00010 10 FR, STPSWSEEP FR, STPSWSEEP, SEEP, 2022-04-11, NP 2022-05-19 14.9 < 0.00010 < 0.00010 < 0.00010 0.0868 < 0.020 < 0.000050 0.029 0.000255 124 < 0.00010	< 0.10			0.0000595								4.69			
FR_STPSWSEEP FR_STPSWSEEP_RSEP_2022-0-21_NP 2022-0-22_3															
FR_STPSWSEEP FR_STPSWSEEP SEP_2022-0-11_NP 2022-05-19 2 < 0.0010 < 0.00010 < 0.00010 0.0604 < 0.020 < 0.000050 0.03 0.000088 120 < 0.000010 120 < 0.00010 < 0.00010 < 0.00010 0.0614 < 0.020 < 0.000050 0.03 0.000088 120 < 0.000010 < 0.00010 < 0.00010 0.0613 < 0.00010 0.0613 < 0.020 < 0.000050 0.032 0.000216 120 < 0.00010 < 0.00010 < 0.00010 0.0613 < 0.00010 0.0613 < 0.00010 0.0613 < 0.00010 0.0613 < 0.00010 0.0613 < 0.00010 0.0613 < 0.00010 0.0613 < 0.00010 0.0613 < 0.00010 0.0613 < 0.00010 0.0613 < 0.00010 0.0613 < 0.00010 0.0613 < 0.00010 0.0613 0.00010 0.0613 0.00010 0.0613 0.00010 0.0613 0.00010 0.0613 0.00010	0.00041											3.6			
FR_STPSWSEEP FR_STPSWSEEP_SEEP_2022-07-01_NP 2022-07-15 0.9 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00013 < 0.0000 < 0.000050 0.032 0.000216 120 < 0.00016 0.0 FR_STPSWSEEP_SEEP_2022-09-23_NP 2022-09-23_N 4 0.00037 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.000050 0.029 0.00029 0.00029 124 < 0.000050 0.0 FR_STPSWSEEP_SEEP_2022-09-23_NP 2022-09-23_NP 4.9 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 0.0553 < 0.020 < 0.000050 0.027 0.000338 105 < 0.00010 0.000	0.00033					< 0.000050				< 0.00010			2022-05-19		
FR_STPWSEEP FR_STPWSEEP_SEEP_2022-04-11.NP 2022-05-19 14.9 <0.0010 <0.00010 <0.00010 0.0553 <0.020 <0.000050 0.027 0.000338 105 <0.00010 0.0678	0.0003			0.000216							< 0.0010				
FR_SIPWSEEP	0.00033														
FR_SIPWSEEP FR_SIPWSEEP_SEEP_2022-09-12_NP 2022-09-12 19.8 0.0026 < 0.00010 < 0.00010 0.0844 < 0.020 < 0.00005 0.031 0.00263 126 0.00025 0.0 FR_SIPWSEEP FR_SIPWSEEP_SEEP_2022-09-23_NP 2022-09-23_NP	0.0006										- 0.0010				
FR_STPWSEEP FR_STPWSEEP_SEEP_2022-09-23_NP	0.00054														
	0.00039														
	< 0.10	0.00018	178	0.000055	0.013	< 0.000050	< 0.020	0.124	< 0.00010	0.00011	0.0015	9.2	2022-04-11	FR_TBWSEEP1_SEEP_2022-04-11_NP	FR_TBWSEEP1
FR_TBWSEEP1 FR_TBWSEEP7_SEEP_2022-07-01_NP 2022-07-20 10.7 <0.0010 0.00011 < 0.00011 < 0.00010 0.08485 < 0.020 < 0.000050 0.018 0.00006235 166 0.000165 <	< 0.10			0.00006235							< 0.0010				
0.0000E	< 0.10														
0.000200	< 0.10 < 0.10														
0.000E//	< 0.10														
	< 0.10														

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature ^c Guideline varies with chloride

^d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX B - TABLE 2: Summary of Analytical Results for Dissolved Metals

Sample S												Dissolv	ed Metals							
COG PRIAL				Hardness	Iron	Lead		Magnesiu	Manganese	Nickel	Potassium	Selenium	Silver	Sodium	Str	Thallium		Titanium	Uranium	Zinc
No.	Location	ID .	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
FOR THE PARTY OF T					A															
Fig.				n/a	0.35	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
## APPERPI NO PROCESSES 1,000 1,00																				
Fig. August Fig. Augus																				
FREAMERSEEP FREAMERSEEP SEP ALCOHOLOGY 1.000000 1.000000 1.000000 1.0000000000																				
FR BANESEEPT TR BANESEEPT SEP 2012-01 IN 2012-01 St 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.				7.1																
FR LAMBEEFF SEP 202-04-10 (4 C-0000 C 0.0000 C 0				10.3																
FR. DAMESSEPT FR. DAMESSEPT SEP 2020-14 19 20 20 20 20 20 20 20 2																				
FF BASSEEPT FF BASSEEPT SEPT 2020-02 NP 2020-02 141 C0000 C00000 C000000 C000000 C00000 C00000 C00000 C000000 C00000 C000000 C00000 C00000				-																
FR COSEPPE FR COSEPPE SEP 2020-11 PP 2020-10 0.2 0.0000 0.375 0.375 0.375 0.0001 0.0000 0.375 0.0000 0.00000 0.375 0.0000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000000	FR_BLAKESEEP1			7.2	< 0.010		0.0304	73.4	0.00318	0.00544	2.32		< 0.000010	5.64		< 0.000010	< 0.00010		0.0024	0.003
FR COERPET FR COERPET SEP 2020-071 NP					< 0.010				0.00293	0.00557	2.34		< 0.000010					< 0.00030		0.0038
FR_COSEPPEI FR_COSEPPEI SEPP_2022-0-1 NP 2022-0-2 1 - 40001 0.00000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.000000 0.000000 0.00000 0.000000 0.000000 0.00000 0.0000																				
FR DOSSEPPSET FR COSSEPPSET SEP 2022-07-1 NP				9.8																
FR COSERPSEL FR COSERS (SEPS 2022-04-11 NP 2022-06-02 - 4 0.0000 - 0.00010				-																
FR COSERPSE EFF 7020-07-1 NP 2022-07-2 NP 7020-07-1 NP 2022-07-2 NP 7020-07-2 NP 70				4.26																
FR CONAGEEPT FR CONAGEEPT SEEPT 2022-04-11 NP 2022-05-10 4 C				_																
FR DONASEEPT FR DONASEEPT SEPT 2022-0-70 Jah 0.02 0.000009 0.0011 23 0.0072 0.00009 1.66 0.711 0.000001 35 0.34 0.000010 0.000000 0.000004 0.000001 0.000000 0.000004 0.000001 0.000000 0.000004 0.000001 0.000000 0.000004 0.000004 0.00004				17																
FR DOMASEPT RP ADMASEPT SEP 2002-09-21 NP 2002-09-12 - 0.010 < 0.000000																				
FR EAGLENORTH FR EAGLENORTH FR EAGLENORTH FR EAGLENORTH SEEP 2022-047 NP 2022-056 1 2 2 0.0503 0.00035 0.011 0.0021 0.0022 5.44 0.0003				-																
FR PCSEEPY FR PCSEEPY SEEP 2022-09-22, MP 2022-09-22 53 < 0.020				7.2																0.0242
FR_PCSEEP2 FR_PCSEEP2_0220_021_NP	FR_EAGLENORTH	FR_EAGLENORTH_SEEP_2022-07-01_NP	2022-07-06	-	< 0.050	< 0.000250	0.171	329	0.00071	0.0252	5.54	376	< 0.000050	16.1	0.281	< 0.000050	< 0.00050	< 0.00150	0.0237	0.0393
FR_FRSEEP2 FR_FRSEEP2220-04-11, NP 20220-052_NP 20220-051 N			2022-09-22																	0.0386
FR_FRYWSEEP9 FR_FRYWSEEP3 FR_FRYWSEEP3 SEP_2022-04-01 NP 2022-04-08 NP 0.016 0.000050 0.0274 110 0.00332 0.00481 2.97 100 0.0000010 0.40 0.11 0.000010 0.00001																				
FR_FRVWSEEP7 FR_FRVWSEEP7 SEP_2022-0-11 NP 2022-0-15 0.000000 0.0038																				
FR FISEAMSEEP7 FR FEAMSEEP7 SEEP 2022-04-11 NP 2022-05-16 3.5 0.016 < 0.000091				10.1																
FR, FSEAMSEEPY SEEP 2022-07-10, NP 2022-05-10				-																
FR FERAMWSEEPA FR FERAMWSEEPA SEEP 2022-04-11 NP 2022-04-1				3.5																
FR_HENSEEPS FR				÷																
FR_HENSEEPS																				
FR_HENSEEP3 FR_HENSEEP3 EEP_2022-09-21 MP 2022-09-21 9.4 c. 0.0000 0.0554 199 0.00033 0.0023 457 c. 0.000000 0.00000 c. 0.00060 0.00438 0.0063 FR_HENSEEP3 EEP_2022-09-21 MP 2022-09-21 9.4 c. 0.00000 0.0554 199 0.00037 0.00234 2.85 457 c. 0.000000 0.255 0.00000 c. 0.00060 0.00343 0.0063 FR_HENSEEP1 FR_HENSEEP1 EEP_2022-09-11 MP 2022-09-11 NP 2022-09-1	FR HENSEEP3			9	< 0.020					0.00292	3.3	517		2.46	0.276		< 0.00020			
FR_HENSEEP1 FR_HENSEEP1 SEEP_2022-04-11 NP 2022-05-21 NP 2022-04-11 R2 0.000000 0.0554 190 0.000037 0.000234 2.85 437 0.0000000 2.38 0.234 <0.000000 0.000000	FR HENSEEP3	FR HENSEEP3 SEEP 2022-07-01 NP	2022-07-14	-	< 0.020		0.0501	191	0.00189	0.003	3.02	437	< 0.000020	1.83	0.234		< 0.00020	< 0.00060	0.00436	0.0064
FR_IMCNSEEPS FR_IMCNSEEPS EEP_0222-07-01_NP 2022-07-16 - < < < < < > < < < < > < < < > < < < > < < < > < < < > < < < > < < < > < < > < < < > < < < > < < < > < < > < < > < < > < < < > < < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < < > < < > < < > < < > < < > < < > < < > < < > < < < > < < > < < < < > < < < > < < < > < < > < < > < < < > < < < > < < < > < < > < < < > < < < > < < < > < < < > < < < > < < < > < < < > < < < > < < < > < < < > < < > < < < > < < < > < < < > < < < > < < < > < < < > < < < > < < < > < < < > < < < > < < < > < < > < < > < < > < < < > < < < > < < < > < < < > < < < > < < < > < < < > < < > < < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < < > < < > < < > < < > < < > < < < > < < < > < < > < < < > < < > < < < > < < < > < < > < < > < < > < < < > < < > < < > < < > < < < > < < < > < < < > < < < > < < > < < < > < < > < < < > < < < > < < < > < < < > < < < > < < < > < < < > < < < > < < < > < < < > < < < > < < < > < < < > < < < > < < < > < < < > < < < > < < < < < > < < < > < < < > < < < > < < < > < < < > < < < > < < < > < < < > < < < > < < < > < < < > < < < > < < < > < < < > < < < > < < < < < > < < < > < < < < > < < < < < > < < < < > < < < < > < < < < < > < < < > < < < < > < < < > < < < > < < < > < < < < > < <	FR_HENSEEP3	FR_HENSEEP3_SEEP_2022-09-21_NP		9.4	< 0.020		0.0554	190	0.00037	0.00234	2.85	457	< 0.000020	2.38	0.234	< 0.000020	< 0.00020	< 0.00060	0.00343	0.0063
FR_LMCWSEEPS FR_LMCWSEEPS SEEP_2022-07-01 NP 2022-07-08 19.4 < 0.010 < 0.000090				8.2																
FR_LMCWSEEPS FR_DZ02207-01 NP																				
FR_LMCWSEEPS																				
FR_SCRDSEEPI FR_SCRDSEEPI_SEEP_2022-08-21_NP																				
FR_SCROSEEPI FR_SCROSEEPI FR_SCROSEEPI SECP_2022-09-21 NP 2022-09-21 A3 < 0.010 < 0.000050 0.0784 248 0.00337 0.0832 4.38 2.39 < 0.000010 1.95 0.202 0.000056 < 0.000010 < 0.000030 0.00144 0.0703 Control Contr				3.12																
FR SPRWSEEP1 FR SPRWSEEP1 SEEP 2022-07-07 NP 2022-04-27 - 0.011 < 0.000050				4.3																
FR SPRWSEEP FR SPRWSEEP SEP_2022-07-01 NP 2022-07-14 6.9 < 0.010 < 0.000050 0.0519 68.25 0.00462 0.00922 2.63 38.5 < 0.000010 10.5 0.5675 0.0001655 < 0.000165 < 0.000050 0.00223 0.00223 0.00225 FR SPRWSEEP SEP_2022-07-01 NP 2022-07-15 < < 0.00010 < 0.000050 0.0519 68.7 < 0.000050 0.00055 0.000				7.3																
FR_STPNSEEP FR_STPNSEEP FR_STPNSEEP_SEEP_2022-04-11_NP				6.9																
FR_STPNSEEP FR_STPNSEEP FR_STPNSEEP FR_STPNSEEP WS_2022 20220-7:5 - < 0.010								48.8												
FR_STPSWSEEP SEEP_2022-09-23 NP 2022-09-23 N- 2022-09-23 N- 2022-09-23 N- 2022-09-23 NP 2022-09-			2022-07-15	-																
FR. STPSWSEEP FR. STPSWSEEP SEP 2022-04-11, NP 2022-05-19 2 0.097 <0.000050 0.091 75.3 0.448 0.00384 5.91 0.074 <0.000010 6.9 0.217 <0.000010 <0.000010 <0.000030 0.00528 0.0019 FR. STPSWSEEP SEP 2022-04-11, NP 2022-05-13 NP 20				-																
FR_STPSWSEEP FR_STPSWSEEP FR_STPSWSEEP FR_STPSWSEEP SEEP_2022-07-07_NP 2022-07-15 0.9 < 0.010				3.6																
FR_STPSWSEEP_FR_2022-09-23_NP				2																
FR_SIPWSEEP FR_SIPWSEEP_SEEP_2022-04-11_NP				0.0																
FR_SIPWSEEP FR_SIPWSEEP FR_SIPWSEEP FR_SIPWSEEP SEP_2022-09-12 NP 2022-07-15 15.9 0.02 < 0.000050 0.0901 71.7 0.47 0.00406 5.5 0.189 < 0.000010 6.73 0.23 0.000019 < 0.00001 < 0.000030 0.00621 0.00027 FR_SIPWSEEP SEP_2022-09-12 NP 2022-09-12 NP 2022-09-12 NP 2022-09-12 NP 2022-09-13																				
FR_SIPWSEEP FR_SIPSWSEEP_SEEP_2022-09-12 NP 2022-09-12 19.8 0.011 <0.000050 0.101 78.4 0.324 0.0034 5.28 0.127 <0.000010 7.16 0.214 0.000028 <0.00010 <0.00030 0.00684 0.0017 FR_SIPWSEEP FR_SIPSWSEEP_SEEP_2022-09-23 NP 2022-09-23 14.8 <0.010 <0.000050 0.105 174.8 0.0022 0.00032 5.57 0.732 <0.000010 7.16 0.214 0.000010 0.200010 <0.000030 0.00684 0.0017 FR_SIPWSEEP FR_SIPWSEEP_SEEP_2022-09-23 14.8 <0.010 <0.000050 0.0403 68.9 0.0002 0.00099 1.77 116 <0.000010 1.58 0.766 <0.000010 <0.000010 <0.000030 0.00683 0.003 FR_SIPWSEEP_SEEP_2022-09-11 NP 2022-09-11 9.2 <0.010 <0.000050 0.05225 66.5 0.00028 0.0018 2 114.75 <0.000010 1.72 0.1635 <0.000010 <0.000010 <0.000030 0.00685 0.003 FR_SIPWSEEP_SEEP_2022-09-11 NP 2022-09-11 NP 0.000051 0.05225 66.5 0.00028 0.0018 2 114.75 <0.000010 1.72 0.1635 <0.000010 <0.000030 0.00686 0.0028 FR_SIPWSEEP_SEEP_2022-09-11 NP 2022-09-11 NP 2022-09-1																				
FR_SIPWSEEP FR_SIPWSEEP_SEP_2022-09-23 NP 2022-09-23 NP 20																				
FR_IBWSEEP1 FR_IBWSEEP1_SEEP_2022-04-11_NP																				
FR_TBWSEEP1 FR_TBWSEEP1SEEP_2022-07-01_NP 2022-07-20 10.7 < 0.010																				
FR_TURNSEEP1 FR_TURNSEEP1 SEEP_2022-07-01_NP									0.00028											
FR_TURNSEEP1 FR_TURNSEEP1_SEEP_2022-09-21_NP	FR_TURNSEEP1		2022-04-11	7.7	0.017				0.00173			378								0.0188
FR_TURNSEEP2 FR_TURNSEEP2 SEEP_2022-04-11_NP 2022-04-11 14.2 < 0.010 < 0.000050 0.0472 76.9 0.00018 0.00146 2.16 157 < 0.000010 2.03 0.196 < 0.00010 0.00016 < 0.00030 0.00388 0.003																				
FR_IURNSEEPZ FR_IURNSEEPZ_SEEP_2022-07-01_NP	FR_TURNSEEP2	FR_TURNSEEP2_SEEP_2022-07-01_NP	2022-07-14	13.6	< 0.010	< 0.000050	0.0481	70	0.000115	0.00137	2.17	155.5	< 0.000010	2.09	0.198	< 0.000010	< 0.00010	< 0.00030	0.003565	0.0021

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

^d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX B - TABLE 2: Summary of Analytical Results for Dissolved Metals

			[Dissolve	d Metals						
OI-	Sample	Samuela Bata	ardness	En in		ntimony	rsenic	arium	eryllium	ismuth	oron		admium	alcium	hromium	obalt	opper
Sample Location	Sample	Sample Date		∢	//		<	ma/l	ma/l	<u>m</u>	ma/l		ng/L	O ma/l	<u>0</u>	O ma/l	ma/l
Location	IU	(mm/dd/yyyy)	mg/L	mg		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L			mg/L	mg/L	mg/L	mg/L
				Acute	Chronic							Acute	Chronic				Acute Chronic
BC WQG FWAL			n/a	0.020-0.10 ^a	0.005-0.05 ^a	n/a	na	na	na	n/a	n/a	0.00004-0.0028	0.00002-0.00173 ^a	n/a	n/a	n/a	BLM°
Greenhills Operation		1															
GH_E1	GH_E1_WS_2022-01-03_NP	2022-01-24		< 0.0		< 0.00020	< 0.00020	0.0132	< 0.040	< 0.000100	0.023		0.0100	278	< 0.00050	0.00073	< 0.00040
GH_E1	GH_E1_WS_2022-02-07_NP	2022-02-14		< 0.0		0.00014	0.0001	0.0236	< 0.020	< 0.000050	0.02		000112	152	< 0.00010	< 0.00010	
GH_E1	GH_E1_WS_2022-03-07_NP	2022-03-09	9.3	0.00		< 0.00010	0.00014	0.0248	< 0.020	< 0.000050	0.018		000159	148	< 0.00010	< 0.10	< 0.00020
GH_E1	GH_E1_WS_2022-04-04_NP	2022-04-20	6	< 0.0		< 0.00020	< 0.00020	0.0196 0.0321	< 0.040 < 0.020	< 0.000100	0.023		00021	347	< 0.00020	0.00124	< 0.00040
GH_E1 GH E1	GH_E1_WS_2022-05-09_NP GH_E1_WS_2022-06-07_NP	2022-05-12	6.7 13.2	0.00		0.00023	0.00014 0.00016	0.0321	< 0.020	< 0.000050 < 0.000050	0.032		000144	163 161	< 0.00010	< 0.10 < 0.10	0.00021
GH_E1		2022-06-20		< 0.0		0.00014	0.00019	0.0353	< 0.020	< 0.000050	0.027		000141		< 0.00010	< 0.10	0.00022
GH_E1	GH_E1_WS_2022-07-04_NP GH_E1_WS_2022-08-01_NP	2022-07-08	9.4	< 0.0		< 0.00016	< 0.00019	0.039	< 0.020	< 0.000050	0.036		000166	157 325	< 0.00010	0.00124	0.00022
GH_E1	GH_E1_WS_2022-08-01_NP GH_E1_WS_2022-09-05_NP	2022-08-10	15.3	< 0.0		< 0.00020	< 0.00020	0.02	< 0.040	< 0.000100	0.03		0.0100	325	< 0.00020	0.00124	< 0.00040
GH_E1	GH_E1_WS_2022-09-05_NP GH_E1_WS_2022-10-03_NP	2022-09-22	12.2	0.00		< 0.00020	0.00012	0.0164	< 0.040	< 0.000100	0.027		0.0100	337	< 0.00020	0.00111	< 0.00040
GH_E1	GH E3 WS 2022-10-03 NP	2022-10-07	3.1	< 0.0		0.00010	< 0.00012	0.017	< 0.020	< 0.000050	0.029		0.0050	230	< 0.00010	0.00114	< 0.00020
GH_E3	GH E3 WS 2022-01-03 NP	2022-01-24	7.6	< 0.0		0.00019	0.00010	0.0281	< 0.020	< 0.000050	0.021		00248	173	< 0.00030	< 0.0001	0.00076
GH_E3	GH E3 WS 2022-07-NP	2022-02-14	6.8	< 0.0		0.00026	0.00012	0.0219	< 0.020	< 0.000050	0.021		000501	176	< 0.00010	< 0.00010	0.00043
GH_E3	GH_E3_W3_2022-03-07_NP GH_E3_WS_2022-05-02_NP	2022-05-09	18.1	0.00		0.00023	0.00017	0.0209	< 0.020	< 0.000050	0.022		000748	197	< 0.00010	0.00016	0.0005
GH_E3	GH E3 WS 2022-05-02 NP	2022-05-11	8.6	0.00		0.00022	0.0002	0.0331	< 0.020	< 0.000050	0.022		000152	183	< 0.00010	0.00010	0.00041
GH_E3	GH_E3_W3_2022-00-07_NP GH_E3_WS_2022-07-04_NP	2022-00-23		0.00		0.00017	0.00020	0.0263	< 0.020	< 0.000050	0.020		000062	185	< 0.00010	< 0.10	0.00032
GH_E3	GH E3 WS 2022-07-04 NP	2022-07-08	14.3	0.00		< 0.00017	0.0005	0.0377	< 0.020	< 0.000100	0.032		000085	215	< 0.00010	< 0.10	0.00043
GH_E3	GH E3 WS 2022-08-01 NP	2022-08-10	7.3	0.00		< 0.00020	0.0003	0.0354	< 0.040	< 0.000100	0.034		0.0100	219	< 0.00020	< 0.20	< 0.00040
GH_E3	GH E3 WS 2022-09-03 NP	2022-09-27	23.7	0.00		0.00017	0.00031	0.0334	< 0.040	< 0.000100	0.033		0.0100	234	< 0.00020	0.00015	0.00128
GH SEEP 12	GH SEEP 12 WS 2022-06-07 NP	2022-10-07	7.1	< 0.0		< 0.00017	0.00043	0.12	< 0.020	< 0.000050	< 0.010		0.0050	55.8	0.00096	< 0.10	< 0.00020
GH SEEP 12	GH SEEP 12 WS 2022-09-06 NP	2022-09-20	12.4	< 0.0		< 0.00010	0.00013	0.116	< 0.020	< 0.000050	< 0.010		00129	57.3	0.0005	< 0.10	0.00027
GH SEEP 16	GH SEEP 16 WS 2022-09-06 NP	2022-09-20	12.1	< 0.0		< 0.00010	0.00011	0.058	< 0.020	< 0.000050	0.014		000377	115	< 0.0003	< 0.10	< 0.00020
GH SEEP 21	GH SEEP 21 WS 2022-06-07 NP	2022-05-20		< 0.0		< 0.00010	< 0.00021	0.0207	< 0.040	< 0.000100	< 0.020		0.0050	301	< 0.00010	< 0.20	< 0.00020
GH SEEP 21	GH SEEP 21 WS 2022-09-06 NP	2022-00-20	0.7	< 0.0 < 0.0		< 0.00020	< 0.00020	0.0207	< 0.040	< 0.000100	< 0.020		00383 00252	362	< 0.00020	0.00032	< 0.001
GH SEEP 22	GH SEEP 22 WS 2022-06-07 NP	2022-06-28		< 0.0		< 0.00020	0.00024	0.0367	< 0.040	< 0.000100	< 0.020		00123	261	< 0.00020	0.00594	< 0.00040
GH SEEP 22	GH SEEP 22 WS 2022-09-06 NP	2022-09-20	4.55	< 0.0		< 0.00020	< 0.00024	0.0152	< 0.040	< 0.000100	< 0.020		00123	324	< 0.00020	< 0.20	< 0.00040
GH SEEP 46	GH SEEP 46 WS 2022-06-07 NP	2022-06-24	4.1	0.00		0.0003	0.00027	0.0892	< 0.020	< 0.000050	< 0.010		00304	131	< 0.00010	< 0.10	0.00024
GH SEEP 5	GH SEEP 5 WS 2022-06-07 NP	2022-06-23	5	0.00		0.00016	0.00027	0.112	< 0.020	< 0.000050	0.015		00111	79.2	< 0.00010	0.00038	0.00024
GH SEEP 5	GH SEEP 5 WS 2022-09-06 NP	2022-09-22		0.00		0.00016	0.0003	0.094	< 0.020	< 0.000050	0.016		00204	89.9	< 0.00010	0.00037	0.00023
GH SEEP 50	GH SEEP 50 WS 2022-06-07 NP	2022-06-28		0.0		< 0.00020	0.00025	0.0937	< 0.040	< 0.000100	< 0.020		00204	48.5	< 0.00020	< 0.20	0.00033
GH SEEP 60	GH SEEP 60 WS 2022-06-07 NP	2022-06-29	7.2	0.02		< 0.00020	< 0.00020	0.033	< 0.040	< 0.000100	< 0.020		000349	20.1	< 0.00020	< 0.20	0.00100
GH SEEP 76	GH SEEP 76 WS 2022-06-07 NP	2022-06-29		0.00		0.0017	0.00022	0.0657	< 0.040	< 0.000100	< 0.020		00119	206	< 0.00020	0.00221	< 0.00040
GH SEEP 76	GH SEEP 76 WS 2022-09-06 NP	2022-09-27	6.4	0.00		0.00186	0.00021	0.0727	< 0.040	< 0.000100	< 0.020		00113	257	< 0.00020	0.00105	0.00053
GH SEEP 77	GH SEEP 77 WS 2022-06-07 NP	2022-06-29	5.8	< 0.0		0.00099	< 0.00020	0.0799	< 0.040	< 0.000100	< 0.020		00115	290	< 0.00020	0.00149	0.00035
GH SEEP 77	GH SEEP 77 WS 2022-09-06 NP	2022-09-27	6.4	0.00		< 0.00010	0.00023	0.0913	< 0.040	< 0.000100	0.032		000088	322	< 0.00020	0.00013	0.00065
GH_SEEP_79	GH_SEEP_79_WS_2022-06-07_NP	2022-06-29	- 1	0.00		0.00054	0.00021	0.0494	< 0.040	< 0.000100	0.071		000451	275	< 0.00020	< 0.20	< 0.00040
GH_SEEP_79	GH_SEEP_79_WS_2022-09-06_NP	2022-09-27	19.1	0.02		0.00024	0.00039	0.0962	< 0.020	< 0.000050	0.481		0.0050	41.8	< 0.00010	< 0.10	0.00074
GH_SEEP_98	GH_SEEP_98_WS_2022-06-07_NP	2022-06-29	13.2	< 0.0		< 0.00020	< 0.00020	0.0439	< 0.040	< 0.000100	< 0.020		000326	170	< 0.00020	< 0.20	< 0.00040
GH_SEEP_98	GH_SEEP_98_WS_2022-09-06_NP	2022-09-28	14.4	< 0.0		< 0.00010	0.00014	0.0277	< 0.020	< 0.000050	0.015		000301	190	< 0.00010	< 0.10	< 0.00020
GH_W-SEEP	GH_W_SEEP_WS_2022-04-04_NP	2022-04-20	11.2	0.00		< 0.00020	< 0.00020	0.00963	< 0.040	< 0.000100	< 0.020		0.0100	261	< 0.00020	< 0.20	< 0.00040
GH_W-SEEP	GH_W-SEEP_WS_2022-08-01_NP	2022-08-23	9.2	0.00		< 0.00050	0.00137	0.0284	< 0.100	< 0.000250	< 0.050		0.0250	462	< 0.00050	0.00116	< 0.00100
GH_WTDS	GH_WTDS_WS_2022-01-03_NP	2022-01-26	10.1	-		-	-	-	-	-				-	-	-	-
GH_WTDS	GH_WTDS_WS_2022-02-07_NP	2022-02-14	9.6	< 0.0	010	0.00025	< 0.00010	0.0365	< 0.020	< 0.000050	0.046	0.0	00031	139	< 0.00010	0.00113	0.00042
GH_WTDS	GH_WTDS_WS_2022-03-07_NP	2022-03-07	6.2	0.00		0.00013	< 0.00010	0.0359	< 0.020	< 0.000050	0.042		00283	136	< 0.00010	0.00113	0.00052
GH_WTDS	GH_WTDS_WS_2022-04-04_NP	2022-04-06	7.1	0.00	17	0.0002	< 0.00010	0.0344	< 0.020	< 0.000050	0.047	0.0	00271	134	< 0.00010	0.00113	0.00052
GH_WTDS	GH_WTDS_WS_2022-05-02_NP	2022-05-06	6.5	0.00	144	0.00017	< 0.00010	0.0342	< 0.020	< 0.000050	0.045	0.0	00273	137	< 0.00010	0.00094	0.00054
GH_WTDS	GH_WTDS_WS_2022-06-06_NP	2022-06-09	5.3	< 0.0	010	0.00014	< 0.00010	0.0327	< 0.020	< 0.000050	0.042		00253	128	< 0.00010	0.00087	0.00039
GH_WTDS	GH_WTDS_WS_2022-07-04_NP	2022-07-19	5.6	< 0.0		0.00017	0.00011	0.0406	< 0.020	< 0.000050	0.047		00337	143	< 0.00010	0.00092	0.00057
GH_WTDS	GH_WTDS_WS_2022-08-01_NP	2022-08-05	7.5	< 0.0	010	0.00013	< 0.00010	0.0372	< 0.020	< 0.000050	0.05	0.0	00556	130	< 0.00010	0.00088	0.00057
GH_WTDS GH WTDS	GH_WTDS_WS_2022-09-05_NP	2022-09-20	6.5	< 0.0		0.00011	< 0.00010	0.0344	< 0.020	< 0.000050	0.047		00024	128	< 0.00010	0.00084	0.0003
	GH WTDS WS 2022-10-03 NP	2022-10-07	22.9	< 0.0		0.00011	< 0.00010	0.037	< 0.020	< 0.000050	0.05	0.0	00117	128	< 0.00010	0.00098	0.00027

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness ^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

^d Guideline varies with pH ^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX B - TABLE 2: Summary of Analytical Results for Dissolved Metals

										Dissolv	ed Metals							
		SS			_	E.	ese		Ë	Ē		_	Ę	E		ε	ε	
	2	ardne	5	ead	ithium	agnes	angar	ickel	otass	eleniu	ilver	odium	trontii	halliu	<u>.</u> <u>.</u>	Itaniu	raniu	2
Sample Location	Sample ID	Sample Date 主 (mm/dd/yyyy) mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	υ μg/L	mg/L	mg/L	σ mg/L	mg/L	mg/L	⊢ mg/L	⊃ mg/L	mg/L
Location	ID .	(IIIII/dd/yyyy) IIIg/L	IIIg/L	IIIg/L	IIIg/L	IIIg/L	IIIg/L	IIIg/L	IIIg/L	pg/L	IIIg/L	IIIg/L	IIIg/L	IIIg/L	IIIg/L	IIIg/L	IIIg/L	IIIg/L
			Acute															
BC WQG FWAL		n/a	0.35	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Greenhills Operation																		
GH_E1	GH_E1_WS_2022-01-03_NP	2022-01-24 17.9	0.243	< 0.000100	0.0478	182	0.0544	0.00799	3.64	0.389	< 0.000020	8.25	0.37	< 0.000020		< 0.00060	0.00697	0.0023
GH_E1 GH_E1	GH_E1_WS_2022-02-07_NP GH_E1_WS_2022-03-07_NP	2022-02-14 14.1 2022-03-09 9.3	< 0.010 < 0.010	< 0.000050 < 0.000050	0.0532	109 102	0.00413 0.0102	0.00236 0.00265	4.14	4.54 1.89	< 0.000010	8.9 9.22	0.294	< 0.000010 < 0.000010	< 0.00010	< 0.00030 < 0.00030	0.0074	< 0.0010 0.0015
GH E1	GH E1 WS 2022-03-07 NP	2022-03-09 9.3	0.265	< 0.000050	0.0485	214	0.0102	0.00265	4.02	0.256	< 0.000010	8.24	0.485	< 0.000010	< 0.00010	< 0.00030	0.00798	0.0015
GH E1	GH E1 WS 2022-04-04 NP	2022-04-20 0	< 0.010	< 0.000050	0.0656	112	0.0197	0.0123	4.64	4.18	< 0.000010	8.63	0.465	0.000020	< 0.00020	< 0.00030	0.00092	< 0.0093
GH E1	GH E1 WS 2022-06-07 NP	2022-06-20 13.2	< 0.010	< 0.000050	0.0588	126	0.0181	0.00265	4.18	4.36	< 0.000010	8.78	0.298	< 0.000010	< 0.00010	< 0.00030	0.00672	< 0.0010
GH E1	GH E1 WS 2022-07-04 NP	2022-07-08 9.4	< 0.010	< 0.000050	0.0708	126	0.0256	0.00288	4.75	4.16	< 0.000010	9.47	0.327	0.000024	< 0.00010	< 0.00030	0.00706	< 0.0010
GH_E1	GH_E1_WS_2022-08-01_NP	2022-08-10 12.4	0.212	< 0.000100	0.0601	250	0.14	0.0105	4.82	0.168	< 0.000020	9.86	0.459	< 0.000020	< 0.00020	< 0.00060	0.00814	0.0054
GH_E1	GH_E1_WS_2022-09-05_NP	2022-09-22 15.3	0.286	< 0.000100	0.06	212	0.102	0.00878	4.28	0.182	< 0.000020	8.54	0.435	< 0.000020	< 0.00020	< 0.00060	0.00791	0.0039
GH_E1	GH_E1_WS_2022-10-03_NP	2022-10-07 12.2	0.065	< 0.000050	0.0617	211	0.116	0.00911	4.52	0.321	< 0.000010	9.74	0.463	< 0.000010	< 0.00010	< 0.00030	0.00817	0.0018
GH_E3	GH_E3_WS_2022-01-03_NP	2022-01-24 3.1	< 0.010	< 0.000050	0.0548	162	0.0058	0.00404	4.57	2.19	< 0.000010	7.36	0.29	0.000015	< 0.00010	< 0.00030	0.00941	0.0068
GH_E3	GH_E3_WS_2022-02-07_NP	2022-02-14 7.6	0.016	< 0.000050	0.0514	114	0.0049	0.00363	3.26	14.8	< 0.000010	5.92	0.338	< 0.000010	< 0.00010	< 0.00030	0.00585	0.0024
GH_E3 GH_E3	GH_E3_WS_2022-03-07_NP GH_E3_WS_2022-05-02_NP	2022-03-09 6.8 2022-05-11 18.1	0.022	< 0.000050 < 0.000050	0.0499 0.0618	115 190	0.00671 0.0252	0.00392 0.00362	3.39 4.74	12.6 2.95	< 0.000010	6.13 7.27	0.33	0.000011 < 0.000010	< 0.00010	< 0.00030 < 0.00030	0.007	0.002 < 0.0010
GH_E3	GH_E3_WS_2022-05-02_NP GH_E3_WS_2022-06-07_NP	2022-06-23 8.6	0.022	< 0.000050	0.0637	170	0.0252	0.00362	4.74	2.95	< 0.000020	6.9	0.306	0.000010	< 0.00010	< 0.00030	0.00903	< 0.0010
GH_E3	GH_E3_W3_2022-00-07_NP GH_E3_WS_2022-07-04_NP	2022-00-23 8.0	0.010	< 0.000050	0.0037	207	0.0223	0.00354	4.49	1.31	< 0.000010	7.86	0.312	0.000014	< 0.00010	< 0.00030	0.00744	< 0.0010
GH_E3	GH_E3_W3_2022-07-04_NP GH_E3_WS_2022-08-01_NP	2022-07-08 10.0	< 0.020	< 0.000100	0.0701	266	0.0112	0.00334	6.46	0.6	< 0.000010	9.59	0.312	0.000019	< 0.00010	< 0.00030	0.00744	< 0.0010
GH E3	GH E3 WS 2022-09-05 NP	2022-09-27 7.3	< 0.020	< 0.000100	0.0877	284	0.00198	0.00354	6.3	0.453	< 0.000020	9.77	0.398	< 0.000020	< 0.00020	< 0.00060	0.0101	< 0.0020
GH E3	GH E3 WS 2022-10-03 NP	2022-10-07 23.7	< 0.010	< 0.000050	0.0812	225	0.0785	0.00444	5.85	0.686	< 0.000010	9.25	0.345	< 0.000010	< 0.00010	< 0.00030	0.0089	< 0.0010
GH SEEP 12	GH SEEP 12 WS 2022-06-07 NP	2022-06-21 7.1	< 0.010	< 0.000050	< 0.0010	23.8	0.00011	0.0009	0.362	2.98	< 0.000010	0.531	0.036	< 0.000010	< 0.00010	< 0.00030	0.00133	0.0078
GH_SEEP_12	GH_SEEP_12_WS_2022-09-06_NP	2022-09-20 12.4	< 0.010	< 0.000050	< 0.0010	23.6	0.00094	0.00112	0.344	5.37	< 0.000010	0.522	0.0423	0.000016	< 0.00010	< 0.00030	0.00183	0.0048
GH_SEEP_16	GH_SEEP_16_WS_2022-09-06_NP	2022-09-20 12.1	0.015	< 0.000050	0.0084	45.1	0.0286	0.00073	0.933	25.2	< 0.000010	2.84	0.226	< 0.000010	< 0.00010	< 0.00030	0.00046	< 0.0010
GH_SEEP_21	GH_SEEP_21_WS_2022-06-07_NP	2022-06-28 11.5	< 0.020	< 0.000100	0.0622	206	< 0.00020	0.00349	4.99	96.9	< 0.000020	4.66	0.212	0.000023	< 0.00020	< 0.00060	0.00826	0.0227
GH_SEEP_21	GH_SEEP_21_WS_2022-09-06_NP	2022-09-20 0.7	0.13	< 0.000100	0.0698	215	0.817	0.0115	5.74	0.97	< 0.000020	6.67	0.266	0.000026	< 0.00020	< 0.00060	0.00473	0.0138
GH_SEEP_22	GH_SEEP_22_WS_2022-06-07_NP	2022-06-28 12.9	3.57	< 0.000100	0.0521	176	1.64	0.0107	4.94	1.05	< 0.000020	6.61	0.168	0.00004	< 0.00020	< 0.00060	0.00468	0.0098
GH_SEEP_22	GH_SEEP_22_WS_2022-09-06_NP	2022-09-20 4.55	0.204	< 0.000100	0.0588	211	0.239	0.00293	5.18	4.28	< 0.000020	8.07	0.201	< 0.000020 0.000033	< 0.00020	< 0.00060	0.00764	0.0054
GH_SEEP_46 GH_SEEP_5	GH_SEEP_46_WS_2022-06-07_NP GH_SEEP_5_WS_2022-06-07_NP	2022-06-24 4.1 2022-06-23 5	< 0.010 < 0.010	< 0.000050 < 0.000050	0.0077 0.0144	59.6 31.6	0.00027 0.00805	0.00164 0.00291	1.65 1.92	190 2.73	< 0.000010 < 0.000010	4.1 5.48	0.176 0.173	0.000033	< 0.00010 < 0.00010	< 0.00030 < 0.00030	0.00196 0.000415	0.0038 0.0036
GH SEEP 5	GH SEEP 5 WS 2022-09-06 NP	2022-00-23 5.4	< 0.010	< 0.000050	0.0144	34.8	0.00803	0.00291	1.88	3.02	< 0.000010	5.2	0.173	0.000018	< 0.00010	< 0.00030	0.000413	0.0057
GH SEEP 50	GH SEEP 50 WS 2022-06-07 NP	2022-09-22 5.4	0.028	< 0.000100	0.0052	12.8	0.00389	0.00443	1.26	0.34	< 0.000010	17.3	0.194	< 0.000010	< 0.00010	< 0.00060	0.00033	< 0.0020
GH SEEP 60	GH_SEEP_60_WS_2022-06-07_NP	2022-06-29 7.2	0.020	< 0.000100	< 0.0032	5.61	0.00453	< 0.00101	0.539	0.296	< 0.000020	1.65	0.0866	< 0.000020	< 0.00020	< 0.00060	0.000323	< 0.0020
GH SEEP 76	GH SEEP 76 WS 2022-06-07 NP	2022-06-29 6.6	< 0.020	< 0.000100	0.137	108	0.00202	0.0354	2.85	476	< 0.000020	8.37	0.526	< 0.000020	< 0.00020	< 0.00060	0.0114	0.007
GH_SEEP_76	GH_SEEP_76_WS_2022-09-06_NP	2022-09-27 6.4	< 0.020	< 0.000100	0.169	174	0.00123	0.0604	4.26	676	< 0.000020	7.4	0.811	< 0.000020	< 0.00020	< 0.00060	0.0158	< 0.0020
GH_SEEP_77	GH_SEEP_77_WS_2022-06-07_NP	2022-06-29 5.8	< 0.020	< 0.000100	0.0904	125	0.0118	0.0409	3.03	443	< 0.000020	7.53	0.893	< 0.000020	< 0.00020	< 0.00060	0.00834	0.007
GH_SEEP_77	GH_SEEP_77_WS_2022-09-06_NP	2022-09-27 6.4	< 0.020	< 0.000100	0.0255	142	0.0132	0.00063	1.3	185	< 0.000010	26.1	1.3	0.000027	< 0.00020	< 0.00030	0.00112	< 0.0020
GH_SEEP_79	GH_SEEP_79_WS_2022-06-07_NP	2022-06-29 -	< 0.020	< 0.000100	0.162	225	0.0123	0.0282	4.63	87.1	< 0.000020	30.2	0.437	< 0.000020	< 0.00020	< 0.00060	0.0143	0.0026
GH_SEEP_79	GH_SEEP_79_WS_2022-09-06_NP	2022-09-27 19.1	0.025	< 0.000050	0.37	25.1	0.00019	< 0.00050	2.38	0.838	< 0.000010	169	2.28	0.000023	< 0.00010	0.00107	0.000506	< 0.0010
GH_SEEP_98	GH_SEEP_98_WS_2022-06-07_NP	2022-06-29 13.2	0.025	< 0.000100	0.0132	58.6	0.0149	< 0.00100	1.63	11.6	< 0.000020	19.6	0.302	< 0.000020	< 0.00020	< 0.00060	0.00193	< 0.0020
GH_SEEP_98 GH_W-SEEP	GH_SEEP_98_WS_2022-09-06_NP	2022-09-28 14.4	0.042	< 0.000050	0.0111	64.2	0.00826	0.00058	1.63	14.9	< 0.000010	13.6 4.38	0.376	< 0.000010	< 0.00010 < 0.00020	< 0.00030	0.00184	< 0.0010
GH_W-SEEP GH_W-SEEP	GH_W_SEEP_WS_2022-04-04_NP GH_W-SEEP_WS_2022-08-01_NP	2022-04-20 11.2 2022-08-23 9.2	< 0.020 15.3	< 0.000100 < 0.000250	0.0326 0.0555	277 458	0.0133 3.68	< 0.00100 0.00516	6.44 7.96	2.66 < 0.250	< 0.000020 < 0.000050	4.38	0.175 0.25	< 0.000020 < 0.000050	< 0.00020	< 0.00060 < 0.00150	0.00332 0.0046	< 0.0020 < 0.0050
GH_W-SEEP GH_WTDS	GH WTDS WS 2022-01-03 NP	2022-06-23 9.2	15.3	< 0.000250	0.0555	400	3.00	0.00010	7.90	< 0.250	- 0.000050	4.40	0.20	- 0.000050	× 0.00050	< 0.00150	0.0046	< 0.0050
GH_WTDS	GH_WTDS_WS_2022-01-03_NP	2022-01-20 10.1	< 0.010	0.000089	0.0497	49	0.00021	0.00737	2.43	5.3	< 0.000010	15.8	0.761	0.000043	< 0.00010	< 0.00030	0.00325	0.014
GH WTDS	GH WTDS WS 2022-03-07 NP	2022-02-14 5.0	< 0.010	0.000005	0.0472	46.7	0.00021	0.00702	2.5	4.35	< 0.000010	16.4	0.708	0.000026	< 0.00010	< 0.00030	0.00338	0.0126
GH_WTDS	GH_WTDS_WS_2022-04-04_NP	2022-04-06 7.1	< 0.010	0.000082	0.0532	51.7	0.00046	0.00784	2.75	21.6	< 0.000010	16.6	0.738	0.000029	< 0.00010	< 0.00030	0.00364	0.0126
GH_WTDS	GH_WTDS_WS_2022-05-02_NP	2022-05-06 6.5	< 0.010	0.000078	0.0475	45.5	0.0002	0.00768	2.42	10.1	< 0.000010	14.5	0.746	0.000032	< 0.00010	< 0.00030	0.0034	0.0128
GH_WTDS	GH_WTDS_WS_2022-06-06_NP	2022-06-09 5.3	< 0.010	0.000068	0.0477	42.9	0.00018	0.00674	2.48	7.82	< 0.000010	14.8	0.69	0.000028	< 0.00010	< 0.00030	0.00323	0.012
GH_WTDS	GH_WTDS_WS_2022-07-04_NP	2022-07-19 5.6	< 0.010	0.000057	0.0517	55.8	0.00187	0.0108	2.66	18.1	< 0.000010	15.7	0.763	0.000028	< 0.00010	< 0.00030	0.00376	0.0184
GH_WTDS	GH_WTDS_WS_2022-08-01_NP	2022-08-05 7.5	< 0.010	0.00007	0.0478	52.8	0.0132	0.0139	2.4	9.57	< 0.000010	15.1	0.695	0.000051	< 0.00010	< 0.00030	0.00356	0.0329
GH_WTDS	GH_WTDS_WS_2022-09-05_NP	2022-09-20 6.5	< 0.010	< 0.000050	0.0485	48.4	0.00266	0.00994	2.44	8.66	< 0.000010	14.6	0.704	0.000045	< 0.00010	< 0.00030	0.00342	0.0102
GH_WTDS	GH_WTDS_WS_2022-10-03_NP	2022-10-07 22.9	< 0.010	< 0.000050	0.0528	48.1	0.00025	0.00799	2.64	8.39	< 0.000010	17.4	0.71	0.000043	< 0.00010	< 0.00030	0.00328	0.0043

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

^d Guideline varies with pH ^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX B - TABLE 2: Summary of Analytical Results for Dissolved Metals

			[Dissolve	d Metals						
Sample	Sample	Sample Date	Hardness	Aluminum		Antimony	Arsenic	Barium	Beryllium	Bismuth	Boron		Cadmium	Calcium	Chromium	Cobalt	Copper
Location	ID	(mm/dd/yyyy) mg/L	mg	/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	п	ng/L	mg/L	mg/L	mg/L	mg/L
				Acute	Chronic							Acute	Chronic				Acute Chronic
BC WQG FWAL			n/a	0.020-0.10 ^a	0.005-0.05 ^a	n/a	na	na	na	n/a	n/a	0.00004-0.0028 ^a	0.00002-0.00173 ^a	n/a	n/a	n/a	BLM°
Line Creek Operation																	
LC_3KM	LC_3KM_WS_SPRING-2022_NP	2022-06-29		0.01	153	0.00037	0.00028	0.566	< 0.020	< 0.000050	0.043		000093	64	< 0.00010	< 0.10	0.00029
LC_3KM	LC_3KM_WS_FALL-2022_NP	2022-09-26	7.8	0.01		0.00033	0.00033	0.697	< 0.020	< 0.000050	0.048		0.0050	61.8	< 0.00010	< 0.10	0.00024
LC_SEEP1	LC_SEEP1_WS_FALL-2022_NP	2022-09-23	5.5	0.00		0.00018	0.00013	0.125	< 0.020	< 0.000050	0.08		0.0050	66.8	< 0.00010	< 0.10	0.00032
LC_SEEP10	LC_SEEP10_WS_SPRING-2022_NP	2022-07-08	11.8	< 0.0	010	< 0.00010	0.00033	0.155	< 0.020	< 0.000050	0.034		000385	209	< 0.00010	0.00417	0.00025
LC_SEEP10	LC_SEEP10_WS_FALL-2022_NP	2022-09-16	4.3	0.00		< 0.00010	0.00029	0.162	< 0.020	< 0.000050	0.032		000278	219	< 0.00010	0.00362	< 0.00020
LC_SEEP11	LC_SEEP11_WS_SPRING-2022_NP	2022-07-08	5.2	< 0.0		< 0.00010	< 0.00010	0.162	< 0.020	< 0.000050	0.021		000119	150	< 0.00010	< 0.10	< 0.00020
LC_SEEP11	LC_SEEP11_WS_FALL-2022_NP	2022-09-16	-	0.00		< 0.00010	< 0.00010	0.157	< 0.020	< 0.000050	0.02		000083	148	< 0.00010	< 0.10	< 0.00020
LC_SEEP14	LC_SEEP14_WS_SPRING-2022_NP	2022-06-29	-	0.00		0.00024	< 0.00010	0.052	< 0.020	< 0.000050	0.014		000263	103	0.00014	< 0.10	< 0.00020
LC_SEEP15	LC_SEEP15_WS_SPRING-2022_NP	2022-06-29	-	0.00		< 0.00010	< 0.00010	0.0508	< 0.020	< 0.000050	< 0.010		000196	128	0.00016	< 0.10	0.00024
LC_SEEP15	LC_SEEP15_WS_FALL-2022_NP	2022-09-23	-	< 0.0	010	< 0.00010	< 0.00010	0.0421	< 0.020	< 0.000050	< 0.010		000074	130	0.00014	< 0.10	< 0.00020
LC_SEEP19	LC_SEEP19_WS_SPRING-2022_NP	2022-06-29	-	0.00		0.00017	0.00012	0.0329	< 0.020	< 0.000050	< 0.010		00118	75.2	0.00012	< 0.10	0.00026
LC_SEEP19	LC_SEEP19_WS_FALL-2022_NP	2022-09-26	-	< 0.0		0.00022	0.00015	0.0685	< 0.020	< 0.000050	0.014		00287	152	0.00022	< 0.10	< 0.00020
LC_SEEP2	LC_SEEP2_WS_SPRING-2022_NP	2022-06-29	-	< 0.0		< 0.00010	< 0.00010	0.203	< 0.020	< 0.000050	< 0.010		000287	93.8	0.00019	< 0.10	0.00021
LC_SEEP2	LC_SEEP2_WS_FALL-2022_NP	2022-09-26	-	< 0.0		< 0.00010	< 0.00010	0.141	< 0.020	< 0.000050	< 0.010		000158	67.6	0.00032	< 0.10	< 0.00020
LC_SEEP8	LC_SEEP8_WS_SPRING-2022_NP	2022-06-28	-	0.0		0.00034	0.00043	0.131	< 0.020	< 0.000050	< 0.010		000369	40.6	0.00014	0.0001	0.00128
LC_SEEP8	LC_SEEP8_WS_FALL-2022_NP	2022-09-20	-	0.08		0.00065	0.00091	0.135	< 0.040	< 0.000100	< 0.020		000612	30	0.0004	< 0.20	0.00481
LC_UDHP	LC_UDHP_WS_SPRING-2022_NP	2022-06-23	-	0.00		0.00033	0.00034	0.194	< 0.020	< 0.000050	< 0.010		000604	70	0.00014	< 0.10	0.00042
LC_UDHP	LC_UDHP_WS_FALL-2022_NP	2022-09-26	-	0.0		0.00044	0.00031	0.444	< 0.020	< 0.000050	0.014		00014	137	< 0.00010	< 0.10	< 0.00020
LC_UDP1	LC_UDP1_WS_SPRING-2022_NP	2022-06-23	-	0.00		0.00019	0.00034	0.217	< 0.020	< 0.000050	< 0.010		000105	77.1	0.0003	< 0.10	0.00046
LC_UDP1	LC_UDP1_WS_FALL-2022_NP	2022-09-26	-	< 0.0		0.00023	0.00043	0.202	< 0.020	< 0.000050	0.014		000226	55.5	0.00042	< 0.10	0.00023
LC_WLC_LOT2	LC_WLC_LOT2_WS_SPRING-2022_NP	2022-07-08	-	0.00		0.00046	0.00018	0.0192	< 0.020	< 0.000050	0.023		00158	194	< 0.00010	< 0.10	0.00082
LC_WLC_LOT2	LC_WLC_LOT2_WS_FALL-2022_NP	2022-09-23	-	0.00	014	0.0005	0.00031	0.0613	< 0.020	< 0.000050	0.052	0.0	00489	263	< 0.00010	< 0.10	0.00058

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

d Guideline varies with pH
Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX B - TABLE 2: Summary of Analytical Results for Dissolved Metals

											Dissolv	ed Metals							
Sample	Sample	Sample Date	Hardness	lon	Lead	Lithium	Magnesium	Manganese	Nickel	Potassium	Selenium	Silver	Sodium	Strontium	Thallium	Ë	Titanium	Uranium	Zinc
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
				Acute															
BC WQG FWAL			n/a	0.35	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Line Creek Operation																			
LC_3KM	LC_3KM_WS_SPRING-2022_NP	2022-06-29	3.9	< 0.010	< 0.000050	0.154	28.4	0.00017	0.00087	6.86	1.83	< 0.000010	15.8	0.227	0.000019	< 0.00010	< 0.00030	0.0025	< 0.0010
LC_3KM	LC_3KM_WS_FALL-2022_NP	2022-09-26	7.8	< 0.010	< 0.000050	0.227	38.5	< 0.00010	0.00074	9.48	0.886	< 0.000010	26.4	0.277	0.000017	< 0.00010	< 0.00030	0.00334	< 0.0010
LC_SEEP1	LC_SEEP1_WS_FALL-2022_NP	2022-09-23	5.5	< 0.010	< 0.000050	0.424	39.3	0.00022	0.00083	4.28	0.794	< 0.000010	72.4	0.294	< 0.000010	< 0.00010	< 0.00030	0.002	0.0026
LC_SEEP10	LC_SEEP10_WS_SPRING-2022_NP	2022-07-08	11.8	0.912	< 0.000050	0.0413	63.1	0.237	0.00731	3.34	0.27	< 0.000010	16.6	0.516	< 0.000010	< 0.00010	< 0.00030	0.00128	0.0049
LC_SEEP10	LC_SEEP10_WS_FALL-2022_NP	2022-09-16	4.3	0.843	< 0.000050	0.0365	71.9	0.252	0.00741	3.72	0.152	< 0.000010	17.8	0.529	< 0.000010	< 0.00010	< 0.00030	0.00137	0.0032
LC_SEEP11	LC_SEEP11_WS_SPRING-2022_NP	2022-07-08	5.2	< 0.010	< 0.000050	0.0238	55.4	0.00357	< 0.00050	2.04	2.36	< 0.000010	18.7	0.519	< 0.000010	< 0.00010	< 0.00030	0.00312	< 0.0010
LC_SEEP11	LC_SEEP11_WS_FALL-2022_NP	2022-09-16	-	< 0.010	< 0.000050	0.0232	57.9	0.00418	< 0.00050	2.07	2.36	< 0.000010	19.1	0.531	< 0.000010	< 0.00010	< 0.00030	0.0029	< 0.0010
LC_SEEP14	LC_SEEP14_WS_SPRING-2022_NP	2022-06-29	-	< 0.010	< 0.000050	0.0374	51.2	< 0.00010	0.00073	1.49	62.6	< 0.000010	6.65	0.191	< 0.000010	< 0.00010	< 0.00030	0.00323	< 0.0010
LC_SEEP15	LC_SEEP15_WS_SPRING-2022_NP	2022-06-29	-	< 0.010	< 0.000050	0.0092	51	0.00014	< 0.00050	0.905	126	< 0.000010	1.31	0.108	< 0.000010	< 0.00010	< 0.00030	0.00257	< 0.0010
LC_SEEP15	LC_SEEP15_WS_FALL-2022_NP	2022-09-23	-	< 0.010	< 0.000050	0.009	59.2	< 0.00010	< 0.00050	0.968	143	< 0.000010	1.33	0.105	< 0.000010	< 0.00010	< 0.00030	0.00304	< 0.0010
LC_SEEP19	LC_SEEP19_WS_SPRING-2022_NP	2022-06-29	-	< 0.010	< 0.000050	0.0093	35	< 0.00010	0.00642	1.08	44.4	< 0.000010	0.896	0.121	< 0.000010	< 0.00010	< 0.00030	0.00375	0.008
LC_SEEP19	LC_SEEP19_WS_FALL-2022_NP	2022-09-26	-	< 0.010	< 0.000050	0.0165	88.1	< 0.00010	0.0167	1.93	87.4	< 0.000010	1.9	0.243	< 0.000010	< 0.00010	< 0.00030	0.00843	0.0169
LC_SEEP2	LC_SEEP2_WS_SPRING-2022_NP	2022-06-29	-	< 0.010	< 0.000050	0.0067	24.9	0.00028	< 0.00050	0.829	5.55	< 0.000010	4	0.166	< 0.000010	< 0.00010	< 0.00030	0.00114	0.0014
LC_SEEP2	LC_SEEP2_WS_FALL-2022_NP	2022-09-26	-	< 0.010	< 0.000050	0.0049	20.9	0.00014	< 0.00050	0.694	2.05	< 0.000010	2.72	0.124	< 0.000010	< 0.00010	< 0.00030	0.000951	< 0.0010
LC_SEEP8	LC_SEEP8_WS_SPRING-2022_NP	2022-06-28	-	0.022	< 0.000050	0.001	16.5	0.00115	0.00184	0.787	0.495	0.000013	0.964	0.0647	< 0.000010	< 0.00010	0.00143	0.00121	< 0.0010
LC_SEEP8	LC_SEEP8_WS_FALL-2022_NP	2022-09-20	-	0.142	0.000133	< 0.0020	15.2	0.00145	0.00644	1.52	0.874	0.000023	1.5	0.051	0.000039	< 0.00020	0.0167	0.00122	0.0024
LC_UDHP	LC_UDHP_WS_SPRING-2022_NP	2022-06-23	-	< 0.010	< 0.000050	0.0086	20.4	0.00024	0.00089	1.56	10.4	< 0.000010	1.67	0.0886	< 0.000010	< 0.00010	< 0.00030	0.00115	0.0014
LC_UDHP	LC_UDHP_WS_FALL-2022_NP	2022-09-26	-	< 0.010	< 0.000050	0.0269	51	0.00205	0.00126	2.71	105	< 0.000010	7.68	0.198	< 0.000010	< 0.00010	< 0.00030	0.00186	0.0026
LC_UDP1	LC_UDP1_WS_SPRING-2022_NP	2022-06-23	-	< 0.010	< 0.000050	0.0078	19.3	0.00016	< 0.00050	1.4	1.57	< 0.000010	1.8	0.107	< 0.000010	< 0.00010	< 0.00030	0.00116	0.0022
LC_UDP1	LC_UDP1_WS_FALL-2022_NP	2022-09-26	-	< 0.010	< 0.000050	0.0148	15.8	0.00016	< 0.00050	1.25	3.2	< 0.000010	2.53	0.0726	< 0.000010	< 0.00010	< 0.00030	0.000529	< 0.0010
LC_WLC_LOT2	LC_WLC_LOT2_WS_SPRING-2022_NP	2022-07-08	-	< 0.010	< 0.000050	0.0307	124	0.00047	0.0264	2.52	256	< 0.000010	3.34	0.249	0.00003	< 0.00010	< 0.00030	0.00876	0.065
LC_WLC_LOT2	LC_WLC_LOT2_WS_FALL-2022_NP	2022-09-23	-	< 0.010	< 0.000050	0.0584	108	0.00023	0.0119	2.41	105	< 0.000010	16.5	1.55	0.000017	< 0.00010	< 0.00030	0.00409	0.0199

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX B - TABLE 3: Summary of Analytical Results for Total Metals

		1	_			_		1		_	Total Metals		1						
Sample	Sample	Sample Date	Hardness	Aluminum	Antimony	Arsenic	Barium*	Beryllium*	Bismuth	Boron	Cadmium	Calcium	Chromium	Cobalt		Copper	Iron	Lead	
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg	/L	mg/	L	mg	/L
						Acute	Chronic	Chronic		Chronic				Acute	Chronic		Acute	Acute	Chronic
BC WQG FWAL			n/a	n/a	n/a	0.005	1	0.00013	n/a	1.2	n/a	n/a	n/a	0.11	0.004	n/a	1	0.003-5.5 a	3.3-3.5ª
Coal Mountain Mine																			
CM_37PIT-SEEP-E	CM_37PIT-SEEP-E_WS_2022-07-07_NP	2022-07-07	709	0.0112	< 0.00020	0.00031	0.0235	< 0.040	< 0.000100	0.256	0.000108	194	< 0.00020	0.02		< 0.00100	0.828	< 0.00	
CM_37PIT-SEEP-E	CM_37PIT-SEEP-E_WS_2022-09-02_NP	2022-09-28	476	0.0067	< 0.00010	0.0003	0.0253	< 0.020	< 0.000050	0.289	0.0000089	123	< 0.00010	0.00		< 0.00050	0.517	< 0.00	
CM_37PIT-SEEP-W	CM_37PIT-SEEP-W_WS_2022-07-07_NP	2022-07-07	458	< 0.0060	< 0.00020	0.00032	0.0361	< 0.040	< 0.000100	0.363	0.0000253	143	< 0.00020	0.00		< 0.00100	0.886	< 0.00	
CM_37PIT-SEEP-W	CM_37PIT-SEEP-W_WS_2022-09-02_NP	2022-09-28	180	< 0.0030	< 0.00010	0.00017	0.0432	< 0.020	< 0.000050	0.285	< 0.0050	60.5	< 0.00010	0.00		< 0.00050	0.209	< 0.00	
CM_CCDS	CM_CCDS_WS_2022-07-20_NP	2022-06-16	300	0.006	0.00014	0.00034	0.0357	< 0.020	< 0.000050	< 0.012	0.0000283	69.2 82.4	0.00029	< 0.		< 0.00050	< 0.010	< 0.00	
CM_CS1	CM_CS1_WS_2022-07-20_NP	2022-06-16	365	0.007	< 0.00010	0.00045	0.0365	< 0.020	< 0.000050		0.0000165		0.00027			< 0.00050	0.016	< 0.00	
CM_CS1 CM_MM-SEEP1	CM_CS1_WS_2022-09-02_NP CM_MM-SEEP1_WS_2022-07-20_NP	2022-09-15	314 614	0.0127 0.0032	< 0.00010 0.00022	0.0003	0.0504	< 0.020	< 0.000050 < 0.000050	< 0.010	0.000019	65.9 116	0.00023 < 0.00010	< 0.		< 0.00050 < 0.00050	< 0.010	< 0.00	
CM_MM-SEEP1 CM_MM-SEEP1	CM_MM-SEEP1_WS_2022-07-20_NP CM_MM-SEEP1_WS_2022-09-02_NP	2022-06-16	490	0.0032	0.00022	< 0.0002	0.0583	< 0.020	< 0.000050	0.083	0.0000335	99.4	< 0.00010	< 0.		< 0.00050	< 0.010		
CM_MM-SEEP1	CM_MM-SEEP1_WS_2022-09-02_NP CM_MM-SEEP3_WS_2022-07-20_NP	2022-09-15	1020	0.004	0.00022	0.00063	0.0791	< 0.020	< 0.000050	0.077	0.0000227	242	0.00010	0.00		< 0.00050	0.195	< 0.00	
CM_MM-SEEP3	CM_MM-SEEP3_WS_2022-07-20_NP CM_MM-SEEP3_WS_2022-09-02_NP	2022-09-15	976	0.0194	< 0.0001	0.00063	0.0602	< 0.020	< 0.000050	0.069	< 0.0050	213	< 0.0001	0.00		< 0.00050	0.195	< 0.00	
CM_MM-SEEP5	CM_MM-SEEP5_WS_2022-07-20_NP	2022-09-15	791	0.000	< 0.00010	0.00038	0.0293	0.00014	< 0.000050	0.073	0.000817	174	< 0.00010	0.00		0.00163	0.099	< 0.00	
CM MM-SEEP5	CM MM-SEEP5 WS 2022-07-20 NP	2022-09-15	581	0.0704	< 0.00010	0.00023	0.0293	0.000033	< 0.000050	0.00	0.000817	135	< 0.00010	0.00		< 0.00050	0.144	< 0.00	
CM NS1	CM NS1 WS 2022-07-20 NP	2022-06-16	1380	0.0133	0.00010	0.00015	0.0310	< 0.020	< 0.000050	0.004	0.000147	246	0.00010	0.00		< 0.00050	0.023	< 0.00	
CM NS1	CM_NS1_WS_2022-07-20_NP CM_NS1_WS_2022-09-02_NP	2022-09-14	1650	0.0109	0.00024	0.00020	0.0281	< 0.020	< 0.000100	0.028	0.000133	270	< 0.0001	0.00		< 0.00030	0.042	< 0.00	
CM NS4	CM NS4 WS 2022-07-20 NP	2022-06-16	768	0.0103	0.00021	0.0002	0.026	< 0.020	< 0.000050	0.059	0.00017	160	0.00011	< 0.		< 0.00050	0.003	< 0.00	
CM NS4	CM NS4 WS 2022-09-02 NP	2022-00-10	1100	< 0.0060	< 0.00020	< 0.0002	0.0305	< 0.040	< 0.000100	0.111	0.00013	235	< 0.00011	0.00		< 0.00000	< 0.020	< 0.00	
CM NS7	CM NS7 WS 2022-07-20 NP	2022-06-16	1020	0.0157	0.00028	0.00036	0.0303	< 0.020	< 0.000050	0.043	0.000133	191	0.00012	0.00		< 0.00050	0.020	< 0.00	
CM NS7	CM NS7 WS 2022-09-02 NP	2022-09-14	1080	0.011	< 0.00020	0.00031	0.0332	< 0.040	< 0.000100	0.049	0.0000529	209	< 0.00012	0.00		< 0.00100	0.143	< 0.00	
CM PLANT-SEEP1	CM PLANT-SEEP1 WS 2022-07-20 NP	2022-06-16	756	0.0116	< 0.00010	0.00021	0.0472	< 0.020	< 0.000050	0.062	0.0000142	166	< 0.00010	0.00		< 0.00050	0.306	< 0.00	
CM PLANT-SEEP1	CM PLANT-SEEP1 WS 2022-09-02 NP	2022-09-15	800	0.0052	< 0.00010	0.00033	0.039	< 0.020	< 0.000050	0.062	0.0000112	177	< 0.00010	0.0		< 0.00050	4.5	< 0.00	
CM WD15	CM WD15 WS 2022-07-20 NP	2022-06-15	1250	0.0075	0.00023	0.00021	0.021	< 0.020	< 0.000050	0.056	0.0000403	244	< 0.00010	< 0.	.10	< 0.00050	0.015	< 0.00	0050
CM WD15	CM WD15 WS 2022-09-02 NP	2022-09-14	1570	0.0335	< 0.00020	< 0.00020	0.0212	< 0.040	< 0.000100	0.061	0.0000325	340	< 0.00020	< 0.	.20	< 0.00100	< 0.020	< 0.00	0100
CM WD15	CM WD15 WS 2022-09-19 NP	2022-09-19	1530	0.008	< 0.00020	0.00022	0.0186	< 0.040	< 0.000100	0.056	0.0000335	354	0.00039	< 0.	.20	< 0.00100	< 0.020	< 0.00	0100
CM_WD15-SOURCE	CM_WD15-SOURCE_WS_2022-07-20_NP	2022-06-15	1330	0.0181	0.0002	0.00025	0.0138	< 0.020	< 0.000050	0.048	0.0000454	278	0.00011	0.00	045	< 0.00050	< 0.010	< 0.00	0050
CM_WD15-SOURCE	CM_WD15-SOURCE_WS_2022-09-02_NP	2022-09-14	1680	0.0251	< 0.00020	< 0.00020	0.0123	< 0.040	< 0.000100	0.057	0.0000232	370	< 0.00020	0.00		< 0.00100	< 0.020	< 0.00	
CM_WD15-SOURCE	CM_WD15-SOURCE_WS_2022-09-19_NP	2022-09-19	1640	0.0276	< 0.00020	< 0.00020	0.0143	< 0.040	< 0.000100	0.056	0.0000389	386	< 0.00020	0.00		< 0.00100	< 0.020	< 0.00	
CM_WD18	CM_WD18_WS_2022-07-20_NP	2022-06-15	1260	0.0092	0.00017	0.0003	0.0164	< 0.020	< 0.000050	0.017	0.00017	264	0.00011	0.00		< 0.00050	0.017	< 0.00	
CM_WD18	CM_WD18_WS_2022-09-02_NP	2022-09-14	1690	0.0187	< 0.00020	< 0.00020	0.0177	< 0.040	< 0.000100	0.022	0.000104	385	< 0.00020	0.00		< 0.00100	0.025	< 0.00	
CM_WD19	CM_WD19_WS_2022-07-20_NP	2022-06-15	1000	0.0076	0.00016	0.00032	0.0189	0.00006	< 0.000050	0.032	0.0000871	233	0.00014	0.00		< 0.00050	0.053	< 0.00	
CM_WD19	CM_WD19_WS_2022-09-02_NP	2022-09-14	1200	0.0152	< 0.00020	< 0.00020	0.0226	< 0.040	< 0.000100	0.05	0.0000187	342	< 0.00020	0.00		< 0.00100	0.048	< 0.00	
CM_WD4	CM_WD4_WS_2022-07-20_NP	2022-06-15	503	0.0176	0.0002	0.00021	0.0294	< 0.020	< 0.000050	0.016	0.000108	108	0.00012	< 0.		< 0.00050	0.027	< 0.00	
CM_WD4	CM_WD4_WS_2022-09-02_NP	2022-09-14	718	0.0104	0.00013	0.00015	0.0395	< 0.020	< 0.000050	0.023	0.000116	167	< 0.00010	< 0.		< 0.00050	0.011	< 0.00	
CM_WD7	CM_WD7_WS_2022-07-20_NP	2022-06-15	354	0.0899	0.00035	0.00028	0.0429	0.000029	< 0.000050	0.012	0.000217	76.7	0.00015	0.00		0.0008	0.082	0.000	
CM_WD7	CM_WD7_WS_2022-09-02_NP	2022-09-14	480	0.0515	0.00014	0.0001	0.0458	< 0.020	< 0.000050	0.018	0.000131	114	< 0.00010	0.00	013	< 0.00050	0.04	0.000	054

< Denotes concentration less than indicated detection limit

Page 1 of 14

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride ^d Guideline varies with pH

APPENDIX B - TABLE 3: Summary of Analytical Results for Total Metals

				_								Total Metals								
		T		⊢	_							i otai metais	_							
Sample	Sample	Sample Date	Hardness	Lithium	Magnesium	Manganese	•	Nickel*	Potassium	Selenium		Silver	Sodium	Strontium	Thallium	트	Titanium	Uranium*		Zinc
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg	/L	mg/L	mg/L	μg/L		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	m	ıg/L
						Acute	Chronic	Chronic		Chronic	Acute	Chronic						Chronic	Acute	Chronic
BC WQG FWAL			n/a	n/a	n/a	0.001-0.03ª	0.0009-0.01a	0.025-0.15 ^a	n/a	2	0.0001-0.003ª	0.00005-0.0015	n/a	n/a	n/a	n/a	n/a	0.0085	0.033-2ª	0.0075-2a
Coal Mountain Mine																				
CM_37PIT-SEEP-E	CM_37PIT-SEEP-E_WS_2022-07-07_NP	2022-07-07		0.091		0.2		0.0708	3.42			.000020		1.77		< 0.00020	< 0.00060	0.00273		019
CM_37PIT-SEEP-E	CM_37PIT-SEEP-E_WS_2022-09-02_NP	2022-09-28	476	0.098		0.01		0.00707	4.62	0.176		.000010		1.78	0.000014	< 0.00010	< 0.00030	0.00532		.0030
CM_37PIT-SEEP-W	CM_37PIT-SEEP-W_WS_2022-07-07_NP	2022-07-07		0.164		0.09		0.0171	3.82	< 0.100		.000020		3.01	< 0.000020	< 0.00020	< 0.00060	0.000479		0094
CM_37PIT-SEEP-W	CM_37PIT-SEEP-W_WS_2022-09-02_NP	2022-09-28	180	0.147		0.02		0.0118	3.64	< 0.050		.000010		2.02	0.000012	< 0.00010	< 0.00030	0.000613		.0030
CM_CCDS	CM_CCDS_WS_2022-07-20_NP	2022-06-16	300	0.005		0.00		0.00099	0.753	5.94		.000010		0.17		< 0.00010	< 0.00030	0.000892		.0030
CM_CS1	CM_CS1_WS_2022-07-20_NP	2022-06-16	365	0.003	29.4	0.00		0.00097	0.722	7.92		.000010		0.15		< 0.00010	< 0.00030	0.00052		.0030
CM_CS1	CM_CS1_WS_2022-09-02_NP	2022-09-15	314	0.004	23.8	0.00		0.00091	0.662	5		.000010		0.13		< 0.00010	0.00038	0.000406		.0030
CM_MM-SEEP1	CM_MM-SEEP1_WS_2022-07-20_NP	2022-06-16	614	0.027	68.9	0.00		0.0029	3.07	4.92		.000010		0.87	< 0.000010	< 0.00010	< 0.00030	0.00296		.0030
CM_MM-SEEP1	CM_MM-SEEP1_WS_2022-09-02_NP	2022-09-15	490	0.021	50.4	0.00		0.00214	2.82	1.67		.000010		0.73		< 0.00010	< 0.00030	0.00181		.0030
CM_MM-SEEP3 CM_MM-SEEP3	CM_MM-SEEP3_WS_2022-07-20_NP	2022-06-16	1020		89	0.1		0.00092	1.31	0.822		.000010		0.86	< 0.000010	< 0.00010	0.00054	0.00144		.0030
CM_MM-SEEP3 CM_MM-SEEP5	CM_MM-SEEP3_WS_2022-09-02_NP	2022-09-15		0.005	86.3 73.5	0.2		0.00093 0.0592	1.35	0.146 1.38		.000010		0.79		< 0.00010	< 0.00030	0.000951		.0030
CM_MM-SEEP5 CM_MM-SEEP5	CM_MM-SEEP5_WS_2022-07-20_NP CM_MM-SEEP5_WS_2022-09-02_NP	2022-06-16	791 581	0.016		0.1		0.0592	1.88	0.203		.000010		0.99	0.000038	< 0.00010	< 0.00030	0.00187		0279
CM_MM-SEEPS CM_NS1	CM_MM-SEEP5_WS_2022-09-02_NP CM_NS1_WS_2022-07-20_NP	2022-09-15	1380		189	0.01		0.0075	3.94	22.5		.000010		0.7	0.00002	< 0.00010	< 0.00030	0.0014		0131
CM_NS1	CM_NS1_WS_2022-07-20_NP	2022-00-10	1650			0.02		0.0075	3.94	12.9		.000010		0.46	< 0.000014	< 0.00010	< 0.00030	0.00479		0139
CM_NS4	CM NS4 WS 2022-07-20 NP	2022-09-14	768	0.022	78.4	0.00		0.00502	3.36	15.3		.000020		0.48	0.000014	< 0.00020	< 0.00030	0.00013		0061
CM_NS4	CM_NS4_WS_2022-07-20_NP	2022-00-10	1100	0.022	96	0.00		0.00302	3.6	0.416		.000010		0.48	0.000014	< 0.00010	< 0.00030	0.00272		.0060
CM_NS7	CM NS7 WS 2022-07-20 NP	2022-05-14	1020		118	0.03		0.00998	3.48	19.6		.000020		0.41	0.000033	< 0.00020	0.00034	0.00243		0104
CM NS7	CM_NS7_WS_2022-07-20_NP	2022-00-10		0.018		0.1		0.00852	3.28	6.92		.000010		0.57	< 0.000012	< 0.00010	< 0.00060	0.00372		006
CM PLANT-SEEP1	CM PLANT-SEEP1 WS 2022-07-20 NP	2022-05-14	756	0.015		0.2		0.00579	2.81	0.411		.000020		0.71	0.000028	< 0.00020	< 0.00030	0.0024		000
CM PLANT-SEEP1	CM PLANT-SEEP1 WS 2022-09-02 NP	2022-00-10		0.028		0.4		0.00373	2.62	0.051		.000010			< 0.000020	< 0.00010	< 0.00030	0.0024		0074
CM WD15	CM WD15 WS 2022-07-20 NP			0.031	151	0.00		0.00837	3.92	10.9		.000010			< 0.000010	< 0.00010	< 0.00030	0.005		.0030
CM WD15	CM WD15 WS 2022-09-02 NP	2022-09-14		0.039		0.00		0.0107	4.46	6.83		.000020		0.96		< 0.00020	< 0.00060	0.00698		.0060
CM WD15	CM WD15 WS 2022-09-19 NP	2022-09-19	1530		220	0.00		0.012	4.51	6.78		.000020	19.8		< 0.000020	< 0.00020	< 0.00060	0.00645		.0060
CM WD15-SOURCE	CM WD15-SOURCE WS 2022-07-20 NP	2022-06-15	1330		167	0.00		0.0182	3.92	14.8		.000010		0.77		< 0.00010	< 0.00030	0.0055		006
CM WD15-SOURCE	CM WD15-SOURCE WS 2022-09-02 NP	2022-09-14	1680	0.035	234	0.00		0.0179	4.26	8.65		.000020		0.89		< 0.00020	< 0.00060	0.00744		.0060
CM_WD15-SOURCE	CM_WD15-SOURCE_WS_2022-09-19_NP	2022-09-19	1640	0.034	232	0.00	748	0.0219	4.24	9.18		.000020	19.7	0.95	< 0.000020	< 0.00020	< 0.00060	0.00689		0086
CM_WD18	CM_WD18_WS_2022-07-20_NP	2022-06-15	1260	0.011	158	0.00		0.00652	3.01	29		.000010	5.16	0.45	0.000016	< 0.00010	< 0.00030	0.0051	0.0	0065
CM_WD18	CM_WD18_WS_2022-09-02_NP	2022-09-14	1690	0.017	252	0.00		0.00805	3.82	26.7		.000020		0.65	0.000025	< 0.00020	< 0.00060	0.00809		.0060
CM_WD19	CM_WD19_WS_2022-07-20_NP	2022-06-15	1000			0.01		0.00749	2.98	17.4		.000010		0.62	0.00004	< 0.00010	< 0.00030	0.00237		0062
CM_WD19	CM_WD19_WS_2022-09-02_NP	2022-09-14		0.041		0.04		0.00757	3.38	4.42		.000020		0.96		< 0.00020	< 0.00060	0.0021		.0060
CM_WD4	CM_WD4_WS_2022-07-20_NP	2022-06-15	503	0.005		0.00		0.00317	1.64	16.7		.000010		0.29		< 0.00010	0.00034	0.00203		006
CM_WD4	CM_WD4_WS_2022-09-02_NP	2022-09-14	718	0.007	94.3	0.00		0.00263	2.18	7.07		.000010		0.47		< 0.00010	< 0.00030	0.00223		800
CM_WD7	CM_WD7_WS_2022-07-20_NP	2022-06-15	354	0.006	42.6	0.01		0.00433	1.55	28.3		.000010		0.25		< 0.00010	0.00119	0.00305)112
CM WD7	CM WD7 WS 2022-09-02 NP	2022-09-14	480	0.01	63.7	0.01	75	0.00434	0.696	8.39	< 0	.000010	13.61	0.39	< 0.000010	< 0.00010	0.00041	0.00228	0.0	0085

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

^d Guideline varies with pH

APPENDIX B - TABLE 3: Summary of Analytical Results for Total Metals

		I			1			1	1		Total Metals		ı				
				ء ا	_						_		Ε				
			e Sé	1 2	E	ي ا	*=	5	£		l lin	Ε			-		
			두	12	Ē	E	≛	- ₹	[5	Ē	등	5	Cobalt	8	_ ا	2
Sample	Sample	Sample Date	효	#	l #	Ars	l ä	Berylliur	is is	l g	l g	Cal	5	3	8	<u>E</u>	Fe.
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg	/L	mg/L
	•				_	I -	<u>.</u>	2	_	.º	_		_				<u>5</u>
						a	, ē	5		E				Acute		Acute	4 5
						5	5	Chronic		Chronic				Acute Chronic		₽	\$ 5
BC WQG FWAL			n/a	n/a	n/a	0.005	1	0.00013	n/a	1.2	n/a	n/a	n/a	0.11 0.004	n/a	1	0.003-5.5 a 3.3-3.5a
Elkview Operation																	
EV_CN1	EV_CN1_WS_2022-05-18_NP	2022-05-18	461	0.008	0.00054	0.00012	0.0182	< 0.020	< 0.000050	< 0.010	0.000136	83.4	0.00013	< 0.10	< 0.00050	0.012	< 0.000050
EV_CN1	EV_CN1_WS_2022-06-29_NP	2022-06-29	500	< 0.0030	0.00054	0.00013	0.0174	< 0.020	< 0.000050	< 0.010	0.000156	80	0.00011	< 0.10	< 0.00050	< 0.010	< 0.000050
EV_CN1	EV_CN1_WS_2022-07-14_NP	2022-07-14	550	0.0035	0.00052	0.00021	0.0184	< 0.020	< 0.000050	< 0.010	0.000177	86.5	0.00013	< 0.10	< 0.00050	< 0.010	< 0.000050
EV_CN1	EV_CN1_WS_2022-07-20_NP	2022-07-20	649	< 0.0030	0.00057	0.00018	0.0194	< 0.020	< 0.000050	< 0.010	0.000179	93	0.00016	< 0.10	< 0.00050	< 0.010	< 0.000050
EV_CN1 EV CN1	EV_CN1_WS_2022-08-25_NP EV_CN1_WS_2022-09_SA_NP	2022-08-25	702 652	0.0075 < 0.0030	0.00054 0.00056	0.00017	0.0205	< 0.00022	< 0.000050 < 0.000050	< 0.010	0.000206 0.000187	103 107	0.00017 0.00014	< 0.10	< 0.00050 < 0.00050	< 0.010	0.000079 < 0.000050
EV_CN1	EV_CN1_WS_2022-09_SA_NP EV_CN1_WS_2022-10-20_NP	2022-10-20	723	< 0.0030	0.00054	< 0.0001	0.0204	< 0.020	< 0.000050	< 0.010	0.000167	126	< 0.00014	< 0.10	< 0.00050	< 0.010	< 0.000050 < 0.000050
EV SEEP 10MILE5	EV SEEP 10MILE5 WS 2022-05-18 NP	2022-10-20	589	0.185	< 0.00034	0.00023	0.0208	0.000031	< 0.000050	0.013	0.000109	154	0.00028	0.00028	0.00079	0.338	0.000394
EV SEEP 10MILE5	EV SEEP 10MILE5 WS 2022-06-29 NP	2022-06-29	594	0.0052	< 0.00010	< 0.00010	0.0395	< 0.020	< 0.000050	0.013	0.0000205	132	< 0.00010	< 0.10	< 0.00050	< 0.010	< 0.000050
EV_SEEP_10MILE5	EV_SEEP_10MILE5_WS_2022-07-14_NP	2022-07-14	601	0.0047	< 0.00010	0.00013	0.0442	< 0.020	< 0.000050	0.012	0.0000279	130	< 0.00010	< 0.10	< 0.00050	< 0.010	< 0.000050
EV_SEEP_10MILE5	EV_SEEP_10MILE5_WS_2022-07-20_NP	2022-07-20	663	0.0053	< 0.00010	0.00016	0.0423	< 0.020	< 0.000050	0.013	0.0000254	134	< 0.00010	< 0.10	< 0.00050	0.01	< 0.000050
EV_SEEP_10MILE5	EV_SEEP_10MILE5_WS_2022-08-24_NP	2022-08-24	648	0.0287	< 0.00010	0.00012	0.0443	< 0.020	< 0.000050	0.011	0.0000276	157	< 0.00010	< 0.10	< 0.00050	0.076	0.000065
EV_SEEP_10MILE5	EV_SEEP_10MILE5_WS_2022-09_SA_NP	2022-09-28	685	0.0822	< 0.00010	0.00014	0.0471	< 0.020	< 0.000050	0.011	0.0000463	140	0.00014	0.0002	< 0.00050	0.192	0.000198
EV_SEEP_10MILE9	EV_SEEP_10MILE9_WS_2022-05-19_NP	2022-05-19	247	1.35	0.00018	0.0013	0.519	0.000209	< 0.000050	< 0.010	0.00166	66.1	0.00205	0.00342	0.005	2.1	0.00229
EV_SEEP_10MILE9	EV_SEEP_10MILE9_WS_2022-06-29_NP	2022-06-29	247	0.261	0.0001	0.00041	0.458	0.000065 < 0.020	< 0.000050	< 0.010	0.00112	65.2	0.00058	0.00261	0.00136	0.921	0.000704
EV_SEEP_10MILE9 EV SEEP 10MILE9	EV_SEEP_10MILE9_WS_2022-07-20_NP EV_SEEP_10MILE9_WS_2022-08-24_NP	2022-07-20 2022-08-24	258 226	0.0451	< 0.00010 < 0.00010	0.00024	0.481	< 0.020	< 0.000050 < 0.000050	< 0.010	0.000977	63.5 64.2	0.00013 < 0.00010	0.00228	< 0.00050 < 0.00050	0.059	0.000079 0.000076
EV SEEP 10MILE9	EV SEEP 10MILE9 WS 2022-06-24 NP	2022-09-28	203	0.0198	< 0.00010	0.00022	0.43	< 0.020	< 0.000050	< 0.010	0.000319	52.8	< 0.00010	0.00218	< 0.00050	0.023	< 0.000076
EV SEEP 10MILE9	EV SEEP 10MILE9 WS 2022-10-20 NP	2022-10-20	192	0.0235	< 0.00010	0.00014	0.358	< 0.020	< 0.000050	< 0.010	0.000672	50.7	< 0.00010	0.00166	< 0.00050	0.034	0.000082
EV SEEP BREAKERLAKE	EV SEEP BREAKERLAKE WS 2022-06 SA NP	2022-07-14	242	0.0371	< 0.00010	0.00021	0.446	< 0.020	< 0.000050	< 0.010	0.000933	60.7	< 0.00010	0.00226	< 0.00050	0.063	0.000146
	EV_SEEP_BREAKERLAKE_WS_2022-09_SA_NP	2022-09-27	535	0.0815	0.00077	0.00034	0.0431	< 0.020	< 0.000050	0.02	0.000412	105	0.00016	0.00155	0.00129	0.237	0.000528
EV_SEEP_CFI1	EV_SEEP_CFI1_WS_2022-06_SA_NP	2022-07-07	489	0.0031	< 0.00010	0.00013	2.86	< 0.020	< 0.000050	0.056	0.0000076	99.4	< 0.00010	0.00032	< 0.00050	1.66	< 0.000050
EV_SEEP_CFI1	EV_SEEP_CFI1_WS_2022-09_SA_NP	2022-09-26	530	0.0037	< 0.00010	0.00018	2.29	< 0.020	< 0.000050	0.038	< 0.0050	95.1	0.0001	0.0002	< 0.00050	1.43	< 0.000050
EV_SEEP_CFI2	EV_SEEP_CFI2_WS_2022-06_SA_NP	2022-07-08	619	0.039	< 0.00010	0.00018	0.472	< 0.020	< 0.000050	0.054	0.0000069	98.6	< 0.00010	< 0.10	< 0.00050	0.046	0.000054
EV_SEEP_CFI2 EV_SEEP_ERICKSON1	EV_SEEP_CFI2_WS_2022-09_SA_NP	2022-09-26	596 600	< 0.0048	< 0.00010	0.00017	0.38	< 0.020	< 0.000050	< 0.041	< 0.0050	78.1 160	< 0.00010	< 0.10 0.00179	< 0.00050	< 0.010 3.2	< 0.000050
EV SEEP ERICKSON1	EV_SEEP_ERICKSON1_WS_2022-06_SA_NP EV_SEEP_ERICKSON1_WS_2022-09_SA_NP	2022-07-13	663	0.0068	< 0.00020 < 0.00010	0.00179	0.0242	< 0.040	< 0.000100 < 0.000050	0.020	0.0000123 0.0000162	177	< 0.00020 < 0.00010	0.00179	< 0.00100 < 0.00050	3.26	< 0.000100 < 0.000050
EV SEEP ERICKSON2	EV SEEP ERICKSON2 WS 2022-06 SA NP	2022-10-03	349	0.0000	0.00064	0.00099	0.192	< 0.020	< 0.000050	0.014	0.0000102	99.1	0.00026	< 0.10	0.00112	0.015	< 0.000050
EV SEEP ERICKSON2	EV SEEP ERICKSON2 WS 2022-09 SA NP	2022-09-28	2350	0.012	0.00144	0.00069	0.0196	< 0.040	< 0.000100	0.027	0.000408	365	< 0.00020	0.00076	0.00105	< 0.020	< 0.000100
EV SEEP HOPPER2	EV SEEP HOPPER2 WS 2022-06 SA NP	2022-07-14	2720	0.0104	0.0014	0.00032	0.0111	< 0.040	< 0.000100	0.084	0.000794	329	0.00226	0.00265	< 0.00100	0.066	< 0.000100
EV_SEEP_HOPPER2	EV_SEEP_HOPPER2_WS_2022-09_SA_NP	2022-09-27	2010	0.188	0.00171	0.00057	0.0545	0.000045	< 0.000100	0.148	0.00079	303	0.0016	0.00603	0.00421	0.495	0.00136
EV_SEEP_PLANT1	EV_SEEP_PLANT1_WS_2022-06_SA_NP	2022-07-08	464	0.0456	0.00026	0.00036	0.108	< 0.020	< 0.000050	0.22	0.0000678	107	< 0.00010	0.00016	0.00117	0.071	0.000095
EV_SEEP_PLANT10	EV_SEEP_PLANT10_WS_2022-06_SA_NP	2022-07-08	767	0.498	0.00038	0.00071	0.0468	0.00009	< 0.000100	0.544	0.000162	178	0.00094	0.00083	0.00185	1.73	0.00229
EV_SEEP_PLANT11	EV_SEEP_PLANT11_WS_2022-06_SA_NP	2022-07-07	484	< 0.0030	< 0.00010	0.00026	0.183	< 0.020	< 0.000050	0.282	0.0000101	125	< 0.00010	0.0001	< 0.00050	0.012	< 0.000050
EV_SEEP_PLANT11 EV_SEEP_PLANT23	EV_SEEP_PLANT11_WS_2022-09_SA_NP EV_SEEP_PLANT23_WS_2022-06_SA_NP	2022-09-26	544 776	0.0032	< 0.00010	0.00032	0.12	< 0.020	< 0.000050 < 0.000050	0.182	0.0000186	112 161	< 0.00010	< 0.10	< 0.00050 < 0.00050	< 0.019	< 0.000050 < 0.000050
EV_SEEP_PLANT23 EV_SEEP_PLANT23	EV_SEEP_PLANT23_WS_2022-06_SA_NP EV_SEEP_PLANT23_WS_2022-09_SA_NP	2022-07-07	868	0.0035	0.00037	0.00026	0.0333	< 0.020	< 0.000050	0.087	0.00002	169	< 0.00010	< 0.10	< 0.00050	< 0.010	< 0.000050
EV SEEP SOUTHPIT3	EV SEEP SOUHTPIT3 WS 2022-09 SA NP	2022-09-20	264	< 0.0032	0.00032	0.00036	0.0270	< 0.020	< 0.000030	< 0.020	0.0000458	59.8	< 0.00010	< 0.10	< 0.00030	< 0.010	< 0.000100
EV SEEP SOUTHPIT3	EV SEEP SOUTHPIT3 WS 2022-09 SA NP	2022-09-30	438	0.0076	0.00039	0.00044	0.116	< 0.020	< 0.000050	0.011	0.000028	77	< 0.00010	< 0.10	0.0006	0.011	0.000052
EV_SEEP_SOUTHPIT4	EV_SEEP_SOUTHPIT4_WS_2022-06_SA_NP	2022-07-13	377	0.0264	< 0.00020	0.0003	3.14	< 0.040	< 0.000100	0.098	0.0000163	90.8	0.00022	< 0.20	< 0.00100	0.984	0.000743
EV_SEEP_SOUTHPIT4	EV_SEEP_SOUTHPIT4_WS_2022-09_SA_NP	2022-09-30	387	0.008	< 0.00010	0.00017	4.15	< 0.020	< 0.000050	0.106	< 0.0050	96.7	< 0.00010	< 0.10	< 0.00050	0.53	< 0.000050
EV_SEEP_SOUTHPIT6	EV_SEEP_SOUTHPIT6_WS_2022-06_SA_NP	2022-07-13	1840	0.0142	0.0004	0.00044	0.0368	< 0.040	< 0.000100	0.02	0.0000947	395	< 0.00020	< 0.20	0.001	0.061	0.00024
EV_SEEP_SOUTHPIT6	EV_SEEP_SOUTHPIT6_WS_2022-09_SA_NP	2022-10-04	2140	0.0109	0.00048	0.00037	0.033	< 0.040	< 0.000100	0.027	0.000164	542	< 0.00020	< 0.20	0.00106	0.054	0.00015
EV_SEEP_TURCON1	EV_SEEP_TURCON1_WS_2022-06_SA_NP	2022-07-08	515	< 0.0030	< 0.00010	0.00022	0.134	< 0.020	< 0.000050	0.058	0.0000052	127	< 0.00010	< 0.10	< 0.00050	0.089	< 0.000050
EV_SEEP_TURCON1 EV SPR1B	EV_SEEP_TURCON1_WS_2022-09_SA_NP EV_SPR1B_WS_2022-04_QRT_NP	2022-09-27 2022-06-01	477	< 0.0030 0.0095	< 0.00010 0.00026	< 0.00010	0.0925	< 0.020 < 0.020	< 0.000050 < 0.000050	0.083	< 0.0050 0.0000438	118 92.6	< 0.00010	< 0.10 0.00016	0.0009	0.152	< 0.000050 0.000063
EV_SPR1B EV SPR1B	EV_SPR1B_WS_2022-04_QR1_NP EV_SPR1B_WS_2022-07_QRT_NP	2022-06-01	565	0.0095	0.00026	< 0.00014	0.0597	< 0.020	< 0.000050	0.033	0.0000438	92.6	< 0.00010	< 0.10	< 0.00050	0.096	0.000063
EV_SPRIB EV_WLAGC	EV WLAGC WS 2022-06 SA NP	2022-09-01	333	< 0.0030	< 0.00023	0.00098	0.0747	< 0.020	< 0.000050	0.038	< 0.0050	77	< 0.00010	0.00021	< 0.00050	0.032	< 0.000050
EV WLAGC	EV WLAGC WS 2022-00 SA NP	2022-09-26	334	0.0117	< 0.00010	0.00000	0.296	< 0.020	< 0.000050	0.030	0.000009	68.8	< 0.00010	0.00052	< 0.00050	2.75	< 0.000050
			1007	0.0111	- 0.000 10	3.00204	0.200	. 0.020	0.00000	0.02-7	3.00000	00.0	- 0.00010	0.00002	. 0.00000	20	× 0.000000

< Denotes concentration less than indicated detection limit

Denotes analysis not conducted n/a denotes no applicable standard

^a Guideline varies with hardness ^b Guideline varies with pH and water temperature ^c Guideline varies with chloride ^d Guideline varies with pH

APPENDIX B - TABLE 3: Summary of Analytical Results for Total Metals

										Total Metals							
			T							Total motals	Т						
Sample	Sample	Sample Date	Hardness	Lithium	Magnesium	Manganese	Nickel*	Potassium	Selenium	Silver	Sodium	Strontium	Thallium	Ē	Titanium	Uranium*	Zinc
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
						Acute	Chronic		Chronic	Acute						Chronic	Acute
BC WQG FWAL			n/a	n/a	n/a	0.001-0.03ª 0.0009-0.01ª	0.025-0.15 ^a	n/a	2	0.0001-0.003ª 0.00005-0.0015ª	n/a	n/a	n/a	n/a	n/a	0.0085	0.033-2ª 0.0075-2ª
Ikview Operation	51/ 01// 1//0 0000 05 /0 ND	0000 05 40	1.04	1 0 040	1 00 5		0.00393	1.00	407		In 47	0.07	0.000045			0.00455	
EV_CN1 EV_CN1	EV_CN1_WS_2022-05-18_NP	2022-05-18		0.016		0.00037	0.00393	1.89	127	< 0.000010		0.07	0.000015	< 0.00010	< 0.00030	0.00455	0.0045
EV_CN1 EV CN1	EV_CN1_WS_2022-06-29_NP EV_CN1_WS_2022-07-14_NP	2022-06-29		0.016		< 0.00010 < 0.00010	0.00434	1.98	117	< 0.000010 < 0.000010		0.07	0.000015	< 0.00010	< 0.00030	0.00456	0.0057
EV CN1	EV CN1 WS 2022-07-14 NP	2022-07-14				< 0.00010	0.00494	1.98	162	< 0.000010	2.68		0.000018	< 0.00010	< 0.00030	0.00467	0.0064
EV_CN1	EV CN1 WS 2022-07-20 NP	2022-01-20				0.00033	0.00545	1.84	189	< 0.000010	2.94		0.000016	< 0.00010	< 0.00030	0.00646	0.0078
EV_CN1	EV_CN1_WS_2022-09_SA_NP	2022-09-27				< 0.00010	0.0058	1.9	196	< 0.000010	2.92		0.000016	< 0.00010	< 0.00030	0.00663	0.0068
EV_CN1	EV_CN1_WS_2022-10-20_NP	2022-10-20	723	0.02	117	< 0.00010	0.00614	2.07	191	< 0.000010	3.23		0.000017	< 0.00010	< 0.00030	0.0064	0.0061
EV_SEEP_10MILE5	EV_SEEP_10MILE5_WS_2022-05-18_NP	2022-05-18		0.019		0.0126	0.00219	1.58	39.3	< 0.000010		0.31	< 0.000010	< 0.00010	< 0.00150	0.00184	0.0032
EV_SEEP_10MILE5	EV_SEEP_10MILE5_WS_2022-06-29_NP	2022-06-29		0.018		0.0003	0.00059	1.55	42	< 0.000010	6.48		< 0.000010	< 0.00010	< 0.00030	0.00182	< 0.0030
EV_SEEP_10MILE5	EV_SEEP_10MILE5_WS_2022-07-14_NP	2022-07-14				0.00384	0.00069	1.47	40.3	< 0.000010		0.29	< 0.000010	< 0.00010	< 0.00030	0.00173	< 0.0030
EV_SEEP_10MILE5	EV_SEEP_10MILE5_WS_2022-07-20_NP	2022-07-20				0.0003	0.00064	1.46	42.9	< 0.000010	6.34		< 0.000010	< 0.00010	< 0.00030	0.00182	< 0.0030
EV_SEEP_10MILE5	EV_SEEP_10MILE5_WS_2022-08-24_NP	2022-08-24				0.00204	0.00065	1.48	43.5	< 0.000010	6.32		< 0.000010	< 0.00010	0.00037	0.0019	< 0.0030
EV_SEEP_10MILE5	EV_SEEP_10MILE5_WS_2022-09_SA_NP	2022-09-28	685	0.017		0.00698	0.00141	1.45	49.9	< 0.000010		0.36	< 0.000010	< 0.00010	0.001	0.00204	< 0.0030
EV_SEEP_10MILE9	EV_SEEP_10MILE9_WS_2022-05-19_NP	2022-05-19	247			0.878	0.00849	1.47	0.336	0.00008		0.12	0.000085	< 0.00010	0.00677	0.00052	0.0249
EV_SEEP_10MILE9	EV_SEEP_10MILE9_WS_2022-06-29_NP	2022-06-29				0.821	0.00559	1.08	0.247	0.000013		0.13	0.000025	< 0.00010	< 0.00270	0.000299	0.0118
EV_SEEP_10MILE9 EV_SEEP_10MILE9	EV_SEEP_10MILE9_WS_2022-07-20_NP EV_SEEP_10MILE9_WS_2022-08-24_NP	2022-07-20 2022-08-24				0.771 0.734	0.0045 0.00423	0.959	0.184	< 0.000010 < 0.000010		0.13	0.000016	< 0.00010 < 0.00010	0.00062 < 0.00030	0.000203	0.0077 0.0063
EV_SEEP_10MILE9	EV SEEP 10MILE9 WS 2022-08-24 NP	2022-08-24	203			0.734	0.00423	0.897	0.196	< 0.000010		0.12	0.000016	< 0.00010	0.00030	0.000173	0.0063
EV SEEP 10MILE9	EV SEEP 10MILE9 WS 2022-10-20 NP	2022-10-20		0.002		0.563	0.00353	0.839	0.282	< 0.000010	3.48		0.000014	< 0.00010	< 0.00030	0.000104	0.0054
	EV SEEP BREAKERLAKE WS 2022-06 SA NP	2022-07-14	242	0.003		0.73	0.00444	0.91	0.16	< 0.000010		0.12	0.000016	< 0.00010	0.00033	0.00014	0.0069
	EV_SEEP_BREAKERLAKE_WS_2022-09_SA_NP	2022-09-27	535			0.128	0.0102	2.48	27.8	0.000013		0.14	0.000059	< 0.00010	0.00088	0.00524	0.0089
EV SEEP CFI1	EV SEEP CFI1 WS 2022-06 SA NP	2022-07-07	489			0.422	0.00092	4.79	0.148	< 0.000010		0.46	< 0.000010	< 0.00010	< 0.00030	0.000201	0.0048
EV SEEP CFI1	EV SEEP CFI1 WS 2022-09 SA NP	2022-09-26	530	0.047	51	0.259	0.00056	4.13	0.06	< 0.000010	4.78	0.4	< 0.000010	< 0.00010	< 0.00030	0.000133	0.0061
EV SEEP CFI2	EV SEEP CFI2 WS 2022-06 SA NP	2022-07-08	619	0.052	91.8	0.0028	0.00072	3.76	0.151	< 0.000010	4.96	0.49	< 0.000010	< 0.00010	0.00075	0.00035	0.0059
EV_SEEP_CFI2	EV_SEEP_CFI2_WS_2022-09_SA_NP	2022-09-26				0.00013	< 0.00050	3.99	0.107	< 0.000010		0.42	< 0.000010	< 0.00010	< 0.00030	0.000266	< 0.0030
EV_SEEP_ERICKSON1	EV_SEEP_ERICKSON1_WS_2022-06_SA_NP	2022-07-13	600	0.01		0.49	0.00261	1.16	< 0.100	< 0.000020		0.32	< 0.000020	< 0.00020	< 0.00060	0.000161	< 0.0060
EV_SEEP_ERICKSON1	EV_SEEP_ERICKSON1_WS_2022-09_SA_NP	2022-10-05		0.009		0.562	0.00296	1.11	< 0.050	< 0.000010	2.26		0.000013	< 0.00010	< 0.00030	0.000176	0.0036
EV_SEEP_ERICKSON2	EV_SEEP_ERICKSON2_WS_2022-06_SA_NP	2022-07-07				0.00132	0.00366	2.1	4.76	< 0.000010		0.17	0.000028	< 0.00010	< 0.00060	0.00232	< 0.0030
EV_SEEP_ERICKSON2	EV_SEEP_ERICKSON2_WS_2022-09_SA_NP	2022-09-28		0.077		0.0386	0.046	6.09	725	< 0.000020	2.61		0.000051	< 0.00020	< 0.00060	0.0292	0.0707
EV_SEEP_HOPPER2	EV_SEEP_HOPPER2_WS_2022-06_SA_NP	2022-07-14	2720	0.849		0.00222	0.0378	21.5 19.4	621	< 0.000020		0.65	0.00004	< 0.00020	< 0.00060	0.0115	0.0279
EV_SEEP_HOPPER2 EV_SEEP_PLANT1	EV_SEEP_HOPPER2_WS_2022-09_SA_NP EV_SEEP_PLANT1_WS_2022-06_SA_NP	2022-09-27 2022-07-08		0.4	290 46.4	0.0143 0.0116	0.0349	3.26	552 1.63	0.000031 < 0.000010		0.83 2.09	0.000064 0.000014	< 0.00020 < 0.00010	0.0021 < 0.00090	0.0118 0.000843	0.0463 0.0097
EV_SEEP_PLANT10	EV_SEEP_PLANT1_WS_2022-06_SA_NP EV_SEEP_PLANT10_WS_2022-06_SA_NP	2022-07-08		0.128		0.0116	0.00212	3.26	0.139	< 0.000010		8.93	< 0.000014	< 0.00010	0.00090	0.000843	0.0097
EV_SEEP_PLANT10	EV SEEP PLANT10_W3_2022-00_SA_NP	2022-07-08		0.454		0.00927	0.0009	2.7	1.03	< 0.000020		2.41	< 0.000020	< 0.00020	< 0.00030	0.000122	< 0.0030
EV SEEP PLANT11	EV SEEP PLANT11 WS 2022-09 SA NP	2022-09-26		0.158		0.0499	0.00107	2.54	0.328	< 0.000010		2.08	< 0.000010	< 0.00010	< 0.00030	0.000129	< 0.0030
EV_SEEP_PLANT23	EV_SEEP_PLANT23_WS_2022-06_SA_NP	2022-07-07		0.066		0.00044	0.00257	2.92	17.2	< 0.000010		1.72	< 0.000010	< 0.00010	< 0.00030	0.00214	0.106
EV_SEEP_PLANT23	EV_SEEP_PLANT23_WS_2022-09_SA_NP	2022-09-26	868	0.069	88.9	< 0.00010	0.00203	2.8	14.4	< 0.000010		1.79	< 0.000010	< 0.00010	< 0.00030	0.0019	0.0184
EV_SEEP_SOUTHPIT3	EV_SEEP_SOUHTPIT3_WS_2022-06_SA_NP	2022-07-13		< 0.002		< 0.00020	< 0.00100	0.89	5.47	< 0.000020		0.06	< 0.000020	< 0.00020	< 0.00060	0.000985	< 0.0060
EV_SEEP_SOUTHPIT3	EV_SEEP_SOUTHPIT3_WS_2022-09_SA_NP	2022-09-30		0.003		0.00038	0.00153	0.365	1.28	< 0.000010	1.43		0.000017	< 0.00010	< 0.00030	0.00111	< 0.0030
EV_SEEP_SOUTHPIT4	EV_SEEP_SOUTHPIT4_WS_2022-06_SA_NP	2022-07-13		0.105		0.0572	< 0.00100	6.25	0.204	< 0.000020	4.77		< 0.000020	< 0.00020	< 0.00060	0.000442	< 0.0060
EV_SEEP_SOUTHPIT4	EV_SEEP_SOUTHPIT4_WS_2022-09_SA_NP	2022-09-30	387	0.117		0.0588	< 0.00050	7.33	0.122	< 0.000010		0.36	< 0.000010	< 0.00010	< 0.00030	0.000253	< 0.0030
EV_SEEP_SOUTHPIT6	EV SEEP SOUTHPITG WS 2022-06 SA NP	2022-07-13	1840			0.0114	0.00226	3.58	73.6	< 0.000020		0.45	< 0.000020	< 0.00020	< 0.00060	0.00608	< 0.0060
EV_SEEP_SOUTHPIT6	EV_SEEP_SOUTHPIT6_WS_2022-09_SA_NP	2022-10-04	2140			0.00562	0.00231	4.07	87.2	< 0.000020	4.76		0.000023	< 0.00020	< 0.00060	0.00804	0.0073
EV_SEEP_TURCON1 EV_SEEP_TURCON1	EV_SEEP_TURCON1_WS_2022-06_SA_NP EV_SEEP_TURCON1_WS_2022-09_SA_NP	2022-07-08	515 477	0.036		0.025 0.0385	< 0.00050 < 0.00050	2.26	0.142	< 0.000010 < 0.000010		1.12	< 0.000010 < 0.000010	< 0.00010 < 0.00010	< 0.00030 < 0.00030	0.000382	0.0033
EV_SEEP_TURCON1 EV_SPR1B	EV SPR1B WS 2022-04 QRT NP	2022-09-27				0.0385	0.00050	2.44	10.9	< 0.000010			< 0.000010	< 0.00010	< 0.00030	0.000157	< 0.0030
EV_SPRIB EV SPRIB	EV_SPR1B_WS_2022-04_QR1_NP EV_SPR1B_WS_2022-07_QRT_NP	2022-06-01		0.019		0.0173	0.00134	2.34	0.55	< 0.000010	8.76	0.46	0.00001	< 0.00010	0.00030	0.00171	0.0030
	EV_WLAGC_WS_2022-06_SA_NP	2022-09-01		0.025		0.32	0.00121	1.96	0.138	< 0.000010		0.53	0.00001	< 0.00010	< 0.00030	0.000508	< 0.0030
EV WLAGC																	

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

Guideline varies with pH and water temperature

Guideline varies with pH and water temperature

Guideline varies with chloride

Guideline varies with pH

APPENDIX B - TABLE 3: Summary of Analytical Results for Total Metals

											Total Metals						
			dness	m in m	imony	enic	*mni	eryllium*	a eth	5	Sadmium	cium	omium	Cobalt	opper	_	<u> </u>
Sample	Sample	Sample Date	Ha.	Alu	Ant	Ars	Bar	Ber	Bis	Bor	Cac	Ca	Ċ		S	l o l	Lea
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg	/L	mg/L
						Acute	Chronic	Chronic		Chronic				Acute Chronic		Acute	Acute
BC WQG FWAL			n/a	n/a	n/a	0.005	1	0.00013	n/a	1.2	n/a	n/a	n/a	0.11 0.004	n/a	1	0.003-5.5 a 3.3-3.5a
Fording River Operation	50 A0005504 W0 0000 04 00 ND		14400	0.0400	0.00000	T 0 00040				0.000	0.000000	011			0.00004		
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-01-02_NP FR_ASPSEEP1_WS_2022-01-05_NP	2022-01-02	1100 673	0.0129	0.00032 0.00028	0.00019	0.0445	< 0.020	< 0.000050 < 0.000050	0.028	0.000239	214 155	< 0.00010 0.00016	< 0.10	0.00094 < 0.00050	0.012	< 0.000050 0.000072
FR ASPSEEP1	FR ASPSEEP1 WS 2022-01-05 NP	2022-01-03	1120	0.000	0.00028	0.00010	0.0451	< 0.020	< 0.000050	0.031	0.0000363	212	< 0.00010	0.00013	0.00091	0.012	< 0.000072
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-01-12_NP	2022-01-12	1100	0.0033	0.0003	0.0002	0.0471	< 0.020	< 0.000050	0.029	0.000245	202	< 0.00010	< 0.10	0.00078	< 0.010	< 0.000050
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-01-14_NP	2022-01-14	1120	0.386	0.00034	0.00035	0.0615	< 0.020	< 0.000050	0.029	0.000325	203	0.00088	0.00062	0.00136	0.24	0.000179
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-01-19_NP FR_ASPSEEP1_WS_2022-01-22_NP	2022-01-19	1230	0.0108 0.0161	0.00031 0.00032	0.0002	0.0454	< 0.020	< 0.000050 < 0.000050	0.032	0.00026 0.000254	213 206	< 0.00010	< 0.10	0.00083	< 0.010	< 0.000050 < 0.000050
FR ASPSEEP1	FR ASPSEEPT WS 2022-01-22 NP FR ASPSEEPT WS 2022-01-26 NP	2022-01-26	1200	0.0161	0.00032	0.00017	0.0475	< 0.020	< 0.000050	0.031	0.000254	214	< 0.00010	0.0001	0.00091	0.018	< 0.000050
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-01-29_NP	2022-01-29	1200	0.0203	0.00032	0.0002	0.0624	< 0.020	< 0.000050	0.032	0.000262	225	0.00017	< 0.10	0.00096	0.018	< 0.000050
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-02_NP	2022-02-02	1240	0.693	0.00042	0.00082	0.0748	0.000064	< 0.000050	0.035	0.000643	229	0.00126	0.00165	0.00478	1.31	0.00126
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-03_NP FR_ASPSEEP1_WS_2022-02-04_NP	2022-02-03	1230	0.0235 0.0048	0.00031 0.00037	0.0002	0.048	< 0.020	< 0.000050 < 0.000050	0.032	0.000266 0.00027	228 222	0.00014	< 0.10 < 0.10	0.00084	< 0.010	< 0.000050 < 0.000050
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-04_NP FR_ASPSEEP1_WS_2022-02-05_NP	2022-02-04	1190	0.0048	0.00037	0.00024	0.0514	< 0.020	< 0.000050	0.03	0.00027	234	< 0.00012	< 0.10	0.0008	< 0.010	< 0.000050
FR ASPSEEP1	FR ASPSEEP1 WS 2022-02-06 NP	2022-02-06	1200	0.0102	0.00032	0.00018	0.0461	< 0.020	< 0.000050	0.03	0.00025	212	0.00342	< 0.10	0.00086	0.026	< 0.000050
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-07_NP	2022-02-07	1100	0.0445	0.00051	0.00027	0.154	< 0.020	< 0.000050	0.031	0.000246	196	0.00013	0.00061	0.00097	0.103	0.000112
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-08_NP	2022-02-08	1260	0.0117	0.00038	0.00021	0.0502	< 0.020	< 0.000050	0.034	0.000239	224	< 0.00010	0.00016	0.00077	< 0.010	< 0.000050
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-09_NP FR_ASPSEEP1_WS_2022-02-10_NP	2022-02-09	984 1250	4.18 1.87	0.00076 0.00055	0.00287	0.159	0.000284	0.00006 < 0.000050	0.03	0.00106 0.000597	198 238	0.00659	0.00431 0.00161	0.012	5.87 2.43	0.00539 0.00233
FR ASPSEEP1	FR ASPSEEP1 WS 2022-02-11 NP	2022-02-10	1120	0.116	0.00034	0.00023	0.0468	< 0.020	< 0.000050	0.032	0.000337	208	0.0003	< 0.10	0.00102	0.068	0.00233
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-12_NP	2022-02-12	1120	0.195	0.00035	0.0003	0.0498	< 0.040	< 0.000100	0.034	0.000284	211	0.0004	0.00031	0.00166	0.305	0.000309
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-13_NP	2022-02-13	1200	0.303	0.00037	0.00031	0.0517	< 0.040	< 0.000100	0.033	0.000314	218	0.00099	0.00037	0.0017	0.427	0.000309
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-14_NP	2022-02-14	1200	0.0498	0.00033	0.0002	0.0475	< 0.040 < 0.020	< 0.000100	0.038	0.000273	215	0.00021	< 0.20	0.00108	0.035	< 0.000100
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-15_NP FR_ASPSEEP1_WS_2022-02-16_NP	2022-02-15	1200	0.0336	0.00032	0.00022	0.0533	< 0.020	< 0.000050 < 0.000050	0.032	0.00026 0.000272	242 244	0.00015	0.00014 < 0.10	0.00095	0.036	< 0.000050 < 0.000050
FR ASPSEEP1	FR ASPSEEP1 WS 2022-02-17 NP	2022-02-10	1230	0.0216	0.00038	0.00019	0.0535	< 0.020	< 0.000050	0.035	0.000272	234	0.0002	< 0.10	0.0009	0.021	< 0.000050
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-18_NP	2022-02-18	1200	0.0148	0.00034	< 0.00020	0.0532	< 0.040	< 0.000100	0.035	0.000266	231	< 0.00020	< 0.20	< 0.00100	< 0.020	< 0.000100
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-19_NP	2022-02-19	1230	0.0084	0.00033	< 0.00020	0.0507	< 0.040	< 0.000100	0.031	0.000252	215	< 0.00020	< 0.20	< 0.00100	0.024	< 0.000100
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-20_NP FR_ASPSEEP1_WS_2022-02-21_NP	2022-02-20	1300	0.807 0.0122	0.00041 0.00032	0.00059	0.0681	0.000043 < 0.020	< 0.000050 < 0.000050	0.036	0.000507 0.00025	254 244	0.00191	0.00158 < 0.10	0.00306 0.00082	0.812	0.000807 < 0.000050
FR ASPSEEP1	FR ASPSEEP1 WS 2022-02-22 NP	2022-02-21	1330	0.0122	0.00032	0.00018	0.0504	< 0.020	< 0.000050	0.033	0.00025	238	< 0.00010	< 0.10	0.00084	0.012	< 0.000050
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-23_NP	2022-02-23	1260	0.0136	0.00034	0.00021	0.0511	< 0.040	< 0.000100	0.034	0.000287	234	< 0.00020	< 0.20	< 0.00100	< 0.020	< 0.000100
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-24_NP	2022-02-24	1320	0.0138	0.00033	< 0.00020	0.0504	< 0.040	< 0.000100	0.032	0.000251	222	< 0.00020	< 0.20	< 0.00100	< 0.020	< 0.000100
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-25_NP FR_ASPSEEP1_WS_2022-02-26_NP	2022-02-25	1240 1250	0.0083 0.0181	0.00033 0.00036	0.00025	0.0536	< 0.040 < 0.020	< 0.000100 < 0.000050	0.032	0.000276 0.000263	226 234	< 0.00020 0.00013	< 0.20 < 0.10	< 0.00100 0.00117	< 0.020 0.044	< 0.000100 0.000225
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-26_NP FR_ASPSEEP1_WS_2022-02-27_NP	2022-02-26	1250	0.0161	0.00035	< 0.00020	0.0529	< 0.020	< 0.000050	0.035	0.000263	234	< 0.00013	< 0.10	< 0.00117	< 0.020	< 0.000225
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-28_NP	2022-02-28	1320	0.0125	0.00035	< 0.00020	0.0507	< 0.040	< 0.000100	0.035	0.000252	243	< 0.00020	< 0.20	< 0.00100	< 0.020	< 0.000100
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-02_NP	2022-03-02	1280	0.0067	0.00034	0.00018	0.0532	< 0.020	< 0.000050	0.031	0.000275	225	< 0.00010	< 0.10	0.0009	< 0.010	< 0.000050
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-03_NP FR_ASPSEEP1_WS_2022-03-04_NP	2022-03-03	1260 1320	0.305 0.0353	0.00041 0.00037	0.00048	0.0549	< 0.040 < 0.020	< 0.000100 < 0.000050	0.034	0.00041 0.000285	256 241	0.00056 0.00018	0.00068	0.00221	0.505	0.000651 < 0.000050
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-04_NP FR_ASPSEEP1_WS_2022-03-05_NP	2022-03-04	1350	0.0353	0.00037	< 0.00019	0.0534	< 0.020	< 0.000050	0.034	0.000285	241	< 0.00018	< 0.20	0.00099	< 0.033	< 0.000050 < 0.000100
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-06_NP	2022-03-06	1300	0.0068	0.00033	0.00019	0.0519	< 0.020	< 0.000050	0.035	0.000274	238	< 0.00020	< 0.10	0.00010	< 0.010	< 0.000100
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-07_NP	2022-03-07	1310	0.271	0.00034	0.00029	0.0555	< 0.020	< 0.000050	0.034	0.0003	217	0.00034	0.00027	0.00138	0.405	0.00024
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-08_NP	2022-03-08	1310	0.19 0.374	0.00034	0.00033	0.0593	< 0.020	< 0.000050 < 0.000050	0.034	0.000313 0.000362	250	0.00037	0.00031	0.00135	0.269	0.000253
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-09_NP FR_ASPSEEP1_WS_2022-03-10_NP	2022-03-09	1320 1290	0.374	0.0004	0.00047	0.0632	< 0.00027	< 0.000050	0.033	0.000362	232 243	0.00094	0.0005 < 0.10	0.00193	0.562	0.00054 < 0.000050
FR_ASPSEEP1	FR ASPSEEPT WS 2022-03-10 NP FR ASPSEEPT WS 2022-03-12 NP	2022-03-10	1150	0.0314	0.00034	0.0002	0.054	< 0.020	< 0.000050	0.033	0.000282	243	0.00012	< 0.10	0.00094	0.022	< 0.000050
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-13_NP	2022-03-13	1270	0.503	0.00039	0.00056	0.0633	0.000037	< 0.000050	0.03	0.000386	218	0.00089	0.00086	0.00246	0.821	0.000675
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-14_NP	2022-03-14	1360	0.0399	0.00033	0.00017	0.0523	< 0.020	< 0.000050	0.033	0.00027	235	0.00015	< 0.10	0.00094	0.039	< 0.000050
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-15_NP FR_ASPSEEP1_WS_2022-03-16_NP	2022-03-15	1200 1230	0.183	0.00035 0.00035	0.00025	0.0567	< 0.020	< 0.000050 < 0.000050	0.03	0.000288	220 225	0.00048	0.00023	0.00129	0.186	0.000212 0.000086
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-16_NP FR_ASPSEEP1_WS_2022-03-17_NP	2022-03-16	1370	0.078	0.00035	0.00021	0.0518	< 0.020	< 0.000050	0.032	0.000264	225	0.00024	0.00011	0.00117	0.079	0.000086
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-18_NP	2022-03-17	1180	0.125	0.00035	0.0002	0.0539	< 0.020	< 0.000050	0.033	0.000275	220	0.00025	< 0.10	0.00097	0.078	0.000153
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-19_NP	2022-03-19	1160	0.0537	0.00032	0.00018	0.0509	< 0.020	< 0.000050	0.034	0.000237	223	0.00016	< 0.10	0.00085	0.04	< 0.000050
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-20_NP	2022-03-20	1190	0.0571	0.00034	0.0002	0.0517	< 0.020	< 0.000050	0.033	0.000243	215	0.00046	< 0.10	0.00089	0.05	< 0.000050
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-21_NP FR_ASPSEEP1_WS_2022-03-22_NP	2022-03-21 2022-03-22	1270 1280	0.0758 0.108	0.00037 0.00034	0.00021	0.056	< 0.020 < 0.020	< 0.000050 < 0.000050	0.038	0.000267 0.000274	232 216	0.00022 0.00015	0.0001 0.00017	0.00104 0.00109	0.07	0.000071 0.000117
	FR_ASPSEEP1_WS_2022-03-22_NP FR_ASPSEEP1_WS_2022-03-23_NP	2022-03-22	1300	0.106	< 0.00050	< 0.00050	0.056	< 0.020	< 0.000050	< 0.050	0.000274	216	< 0.00050	< 0.50	< 0.00250	0.096	< 0.000117
FR ASPSEEP1																	

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness
^b Guideline varies with pH and water temperature
^c Guideline varies with chloride
^d Guideline varies with pH

APPENDIX B - TABLE 3: Summary of Analytical Results for Total Metals

										Total Metals								
Sample Location	Sample ID	Sample Date (mm/dd/yyyy)	Hardness	mg/L	Magne sium	Man gan ese	Nickel∗ mg/L	Bg Potassium	pg/L	Javis Bis mg/L	mg/L	mg/L	Thallium mg/L	E mg/L	Titaninm JL	mg/L	Ziuc gmg/	L
•						ie ie	nic			j.			_	_				-je
						cute	p <u>r</u>		hronic	cute						Chronic	ğ	hronic
BC WQG FWAL			n/a	n/a	n/a	0.001-0.03ª 0.0009-0.01ª	0.025-0.15 ^a	n/a	2	0.0001-0.003° 0.00005-0.0015°	nia	nio	n/a	n/a	n/a	0.0085	0.033-2ª	0.0075-2ª
Fording River Operation			III/a	III/a	IIIa	0.001-0.03 0.0005-0.01	0.025-0.15	IIIa		0.0001-0.003 0.00005-0.0015	IIIa	IIIa	IIIa	IVa	IIIa	0.0000	0.033-2	0.0075-2
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-01-02_NP	2022-01-02	1100	0.056	154	0.00148	0.00098	3.89	115	< 0.000010	4.73	0.21	< 0.000010	< 0.00010	< 0.00030	0.00425	0.007	78
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-01-05_NP	2022-01-05	673	0.086		0.0032	0.00826	2.54	83.6	0.000012		0.22	< 0.000010	< 0.00010	< 0.00030	0.00428	0.005	
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-01-07_NP	2022-01-07	1120	0.055		0.00198	0.00126	3.73	118	< 0.000010		0.2	< 0.000010	< 0.00010	< 0.00030	0.00429	0.008	
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-01-12_NP	2022-01-12	1100	0.054		0.0004	0.0011	3.81	125	< 0.000010		0.21	0.00001	< 0.00010	< 0.00030	0.0039	0.008	
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-01-14_NP	2022-01-14	1120	0.052	157	0.0187	0.00173	4.03	132	0.000012		0.2	0.000027	< 0.00010	< 0.0123 < 0.00060	0.00416	0.011	
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-01-19_NP FR_ASPSEEP1_WS_2022-01-22_NP	2022-01-19	1170	0.055		0.00117 0.0014	0.00118	3.93	129 130	< 0.000010 < 0.000010		0.2	0.000011	< 0.00010 0.0001	< 0.00060	0.00426 0.00428	0.008	
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-01-22_NP FR_ASPSEEP1_WS_2022-01-26_NP	2022-01-22	1200	0.054		0.0014	0.00123	3.74	123	< 0.000010		0.21	0.000011	< 0.0001	< 0.00000	0.00428	0.010	
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-01-29_NP	2022-01-29	1200			0.00201	0.00114	4.11	129	< 0.000010		0.21	0.000012	< 0.00010	0.00053	0.0041	0.00	
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-02_NP	2022-02-02	1240	0.063		0.0528	0.00445	4.44	132	0.000038		0.22	0.000048	< 0.00010	0.0134	0.0045	0.027	
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-03_NP	2022-02-03	1230			0.0017	0.00109	4.24	130	< 0.000010	5.07	0.21	< 0.000010	< 0.00010	0.00059	0.00385	0.010	04
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-04_NP	2022-02-04	1190			0.00082	0.0012	4.25	121	< 0.000010		0.22	< 0.000010	< 0.00010	< 0.00030	0.00432	0.009	
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-05_NP	2022-02-05	1190	0.063		0.00081	0.00113	4.39	132	< 0.000010		0.22	0.000011	< 0.00010	< 0.00030	0.00423	0.007	
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-06_NP	2022-02-06	1200	0.057		0.00144	0.00125	4 45	126	< 0.000010		0.2	< 0.000010	< 0.00010	< 0.00030	0.00403	0.007	
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-07_NP FR_ASPSEEP1_WS_2022-02-08_NP	2022-02-07	1260			0.0225 0.00587	0.0049 0.00205	4.45	108	< 0.000010 < 0.000010		0.22	0.000017	0.0001	< 0.00030	0.00406	0.013	
FR_ASPSEEP1	FR ASPSEEP1 WS 2022-02-09 NP	2022-02-08	984	0.003		0.137	0.0145	4.46	112	0.00022		0.22	0.00013	0.00012	0.0604	0.00432	0.073	
FR ASPSEEP1	FR ASPSEEP1 WS 2022-02-10 NP	2022-02-10	1250			0.0493	0.00673	4.79	121	0.00011		0.22	0.000086	< 0.00010	0.0425	0.00462	0.040	
FR ASPSEEP1	FR ASPSEEP1 WS 2022-02-11 NP	2022-02-11	1120			0.00305	0.00121	3.87	116	< 0.000010		0.2	0.000013	< 0.00010	0.0034	0.00412	0.007	
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-12_NP	2022-02-12	1120	0.057	163	0.0107	0.00188	3.88	117	< 0.000020	4.78	0.21	< 0.000020	< 0.00020	0.00414	0.00417	0.011	
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-13_NP	2022-02-13	1200	0.061		0.0116	0.002	4.08	120	< 0.000020		0.21	0.000024	< 0.00020	0.00648	0.00421	0.012	
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-14_NP	2022-02-14	1200			0.00226	0.00126	4	119	< 0.000020		0.21	< 0.000020	< 0.00020	0.00139	0.00435	0.008	
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-15_NP	2022-02-15	1170			0.00382	0.00131	4.27	131	< 0.000010		0.22	0.000013	< 0.00010	< 0.00090	0.00414	0.009	
FR_ASPSEEP1 FR_ASPSEEP1	FR ASPSEEP1 WS 2022-02-16 NP FR ASPSEEP1 WS 2022-02-17 NP	2022-02-16	1200	0.066		0.00246 0.00181	0.00126 0.00129	4.42	137 146	< 0.000010 < 0.000010		0.22	0.000012 0.000014	< 0.00010 < 0.00010	< 0.00030 < 0.00120	0.00414	0.009	
FR ASPSEEP1	FR ASPSEEP1 WS 2022-02-18 NP	2022-02-17	1200			0.00169	0.00127	4.23	138	< 0.000010		0.24	< 0.000014	< 0.00010	< 0.00060	0.00458	0.008	
FR ASPSEEP1	FR_ASPSEEP1_WS_2022-02-19_NP	2022-02-19		0.059		0.00152	0.0352	4.04	131	< 0.000020		0.23	< 0.000020	< 0.00020	< 0.00060	0.00434	0.008	
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-20_NP	2022-02-20	1300	0.069		0.0556	0.00336	4.7	137	0.00003	5.28	0.23	0.000037	< 0.00010	0.0251	0.00456	0.019	96
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-21_NP	2022-02-21	1300			0.00154	0.00123	4.28	140	< 0.000010		0.22	0.000013	< 0.00010	< 0.00060	0.00371	0.007	
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-22_NP	2022-02-22	1330			0.00132	0.00122	4.5	138	< 0.000010		0.23	0.00001	< 0.00010	< 0.00030	0.00435	0.007	
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-23_NP	2022-02-23	1260			0.00131	0.00122	4.41	134	< 0.000020		0.23	< 0.000020	< 0.00020	< 0.00060	0.00442	0.008	
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-24_NP FR_ASPSEEP1_WS_2022-02-25_NP	2022-02-24	1320			0.00128	0.00122	4.23	120	< 0.000020		0.22	< 0.000020	< 0.00020 < 0.00020	0.0007	0.00446	0.007	
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-02-26_NP	2022-02-25	1250	0.058		0.00094 0.0022	0.00116 0.00148	4.23	128 140	< 0.000020 0.000012		0.23	< 0.000020 0.000013	< 0.00020	< 0.00060 < 0.00030	0.00453 0.0049	0.009	
FR ASPSEEP1	FR_ASPSEEP1_WS_2022-02-27_NP	2022-02-27	1250			0.00096	0.00122	4.26	128	< 0.000012		0.23	< 0.000020	< 0.00020	< 0.00060	0.00463	0.009	
FR ASPSEEP1	FR ASPSEEP1 WS 2022-02-28 NP	2022-02-28	1320			0.00117	0.00114	4.35	132	< 0.000020	5.42	0.22	< 0.000020	< 0.00020	< 0.00060	0.00462	0.008	
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-02_NP	2022-03-02		0.064		0.00092	0.00107	4.34	135	< 0.000010		0.22	0.000011	< 0.00010	< 0.00060	0.00439	0.008	B1
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-03_NP	2022-03-03	1260			0.0235	0.00248	4.08	123	0.000028		0.23	0.000028	< 0.00020	0.00588	0.0045	0.015	
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-04_NP	2022-03-04	1320			0.00283	0.00123	4.4	133	< 0.000010		0.22	0.000014	< 0.00010	< 0.00210	0.00398	0.00	
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-05_NP FR_ASPSEEP1_WS_2022-03-06_NP	2022-03-05 2022-03-06	1350	0.072		0.00182	0.00121 0.00116	4.29 4.89	127 137	< 0.000020		0.22	< 0.000020 0.00001	< 0.00020 < 0.00010	< 0.00060 < 0.00030	0.004 0.00428	0.00	
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-06_NP FR_ASPSEEP1_WS_2022-03-07_NP	2022-03-06	1310			0.00114 0.0107	0.00116	4.69	137	< 0.000010 0.000012		0.22	0.00001	< 0.00010	0.00706	0.00428	0.008	
FR_ASPSEEP1	FR ASPSEEP1 WS 2022-03-07 NP	2022-03-07	1310	0.065		0.0107	0.00185	4.58	141	0.000012		0.23	0.000014	0.00010	0.00708	0.00411	0.008	
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-09_NP	2022-03-09	1320	0.07	186	0.0174	0.00256	4.71	138	0.000012		0.24	0.000044	< 0.00010	0.00895	0.00473	0.014	
FR_ASPSEEP1	FR ASPSEEP1 WS 2022-03-10 NP	2022-03-10	1290		189	0.00228	0.0013	4.56	131	< 0.000010	5.56	0.23	0.000012	< 0.00010	< 0.00120	0.00441	0.008	B1
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-12_NP	2022-03-12	1150			0.00235	0.00116	4.13	125	< 0.000010		0.22	0.000013	< 0.00010	< 0.00090	0.0045	0.00	
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-13_NP	2022-03-13		0.062		0.0285	0.00274	4.38	127	0.000031		0.21	0.000032	< 0.00010	0.0111	0.00414	0.016	
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-14_NP	2022-03-14 2022-03-15	1360 1200			0.00257	0.00127 0.00173	4.59 4.4	134 128	< 0.000010		0.23	0.000012 0.000015	< 0.00010 < 0.00010	< 0.00180	0.00437 0.00431	0.000	
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-15_NP FR_ASPSEEP1_WS_2022-03-16_NP	2022-03-15	1200			0.00802 0.00351	0.00173	4.45	132	< 0.000010 < 0.000010		0.21	0.000015	< 0.00010	0.00614 < 0.0210	0.00431	0.009	
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-16_NP FR_ASPSEEP1_WS_2022-03-17_NP	2022-03-16	1370	0.062	194	0.00351	0.00159	4.45	132	< 0.000010		0.23	0.000013	< 0.00010	< 0.0210	0.00417	0.009	
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-18_NP	2022-03-18	1180			0.00279	0.0013	4.41	127	< 0.000010		0.21	0.000016	< 0.00010	0.00371	0.00412	0.007	
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-19_NP	2022-03-19	1160	0.065	172	0.00226	0.00117	4.24	124	< 0.000010	4.96	0.2	0.000013	< 0.00010	< 0.00150	0.00405	0.006	67
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-20_NP	2022-03-20	1190			0.00214	0.0012	4.17	121	< 0.000010		0.2	0.000012	< 0.00010	< 0.00180	0.00403	0.007	
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-21_NP	2022-03-21	1270			0.00314	0.00128	4.34	124	0.000012		0.23	0.000016	< 0.00010	< 0.00270	0.00427	0.009	
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-22_NP	2022-03-22	1280	0.068	189	0.00406 0.00269	0.00144	4.2	122	< 0.000010		0.22	0.000015	< 0.00010	< 0.00270	0.00438	0.008	
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-23_NP FR_ASPSEEP1_WS_2022-03-26_NP	2022-03-23		0.078		0.00269	< 0.00250 0.00146	4.16 4.35	118 113	< 0.000050 < 0.000010		0.21	< 0.000050 0.000014	< 0.00050 < 0.00010	0.00184 < 0.00120	0.00435	0.015	
FR_MOFOLEF I	1 IV_HOLOEEL I_880_2022-00-50_NP	1 2022-03-20	1170	J.U02	1 101	0.00231	0.00140	4.33	113	< 0.000010	JJ.JJ	U. 18	0.000014	- 0.00010	- 0.00120	0.00438	0.000	00

Denotes concentration less than indicated detection limit
 Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature ^c Guideline varies with chloride

d Guideline varies with pH

APPENDIX B - TABLE 3: Summary of Analytical Results for Total Metals

											Total Metals						J
			dness	minum	timony	enic	rium*	eryll ium*	muth	uo.	Sadmium	cium	romium	Cobalt	opper	-	De De
Sample	Sample	Sample Date	Ē	Alu	Ā	Ars	Bal	Bei	ig is	Bor	Ča	Cal	Chr		ပိ	lo l	Ľ
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg	/L	mg/L
						Acute	Chronic	Chronic		Chronic				Acute Chronic		Acute	Acute
BC WQG FWAL			n/a	n/a	n/a	0.005	1	0.00013	n/a	1.2	n/a	n/a	n/a	0.11 0.004	n/a	1	0.003-5.5 a 3.3-3.5a
Fording River Operation																	
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-27_NP	2022-03-27	1090	0.028	0.00039	0.00022	0.0497	< 0.020	< 0.000050	0.046	0.000252	204	0.00012	< 0.10	0.00122	0.035	< 0.000050
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-28_NP FR_ASPSEEP1_WS_2022-03-29_NP	2022-03-28	1060 1020	0.508 0.0533	0.00046 0.00041	0.00065	0.061	0.000044 < 0.020	< 0.000050 < 0.000050	0.046	0.000393 0.000285	202 199	0.00094	0.00068	0.00269 0.00134	0.938	0.000792 < 0.000050
FR ASPSEEP1	FR ASPSEEP1 WS 2022-03-30 NP	2022-03-29	1040	0.0201	< 0.00050	< 0.00050	0.0446	< 0.100	< 0.000250	< 0.050	0.000248	167	< 0.00015	< 0.50	< 0.00250	< 0.050	< 0.000250
FR ASPSEEP1	FR ASPSEEP1 WS 2022-03-31 NP	2022-03-31	1030	0.0207	0.00037	0.00026	0.0424	< 0.020	< 0.000050	0.043	0.000205	164	0.00023	< 0.10	0.00111	0.028	< 0.000050
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-04-01_NP	2022-04-01	1010	0.0271	0.00038	0.0002	0.0444	< 0.020	< 0.000050	0.038	0.000235	164	0.00019	< 0.10	0.00121	0.038	< 0.000050
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-04-02_NP	2022-04-02	1090	< 0.0150	< 0.00050	< 0.00050	0.0412	< 0.100	< 0.000250	< 0.050	0.000231	169	< 0.00050	< 0.50	< 0.00250	< 0.050	< 0.000250
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-04-08_NP FR_ASPSEEP1_WS_2022-04-13_NP	2022-04-08 2022-04-13	993 1020	0.0258 0.0631	< 0.00050 0.00037	< 0.00050 0.0003	0.0393 0.0478	< 0.100 < 0.020	< 0.000250 < 0.000050	< 0.050 0.038	0.000266 0.000266	180 177	< 0.00050 0.00018	< 0.50	< 0.00250 0.00124	< 0.050 0.109	< 0.000250
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-04-13_NP FR_ASPSEEP1_WS_2022-04-14_NP	2022-04-13	985	0.0565	0.00037	0.0003	0.0478	< 0.020	< 0.000050	0.035	0.000266	178	0.00018	0.0002	0.00124	0.109	0.000168 0.000094
FR ASPSEEP1	FR ASPSEEP1 WS 2022-04-21 NP	2022-04-14	915	0.0303	0.0005	0.00023	0.038	< 0.020	< 0.000050	0.032	0.000245	156	0.00013	0.00016	0.00097	0.058	< 0.000050
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-02_NP	2022-05-02	932	0.0031	0.00046	0.00015	0.04	< 0.020	< 0.000050	0.029	0.000248	163	< 0.00010	< 0.10	0.00098	< 0.010	< 0.000050
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-03_NP	2022-05-03	916	< 0.0150	0.00046	0.00014	0.0367	< 0.020	< 0.000050	0.03	0.000226	175	< 0.00010	< 0.10	0.00082	0.017	< 0.000050
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-05_NP	2022-05-05	1130	0.0535	0.00047	0.00024	0.0423	< 0.020	< 0.000050	0.029	0.000241	150	0.00019	0.00015	0.00123	0.097	0.000121
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-06_NP FR_ASPSEEP1_WS_2022-05-07_NP	2022-05-06	875 888	< 0.0120 0.035	0.00056 0.00043	0.00017	0.0367	< 0.020 < 0.020	< 0.000050 < 0.000050	0.029	0.000237 0.000223	163 157	< 0.00010 0.00014	< 0.10	0.00089	0.014	< 0.000050 0.000062
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-07_NP FR_ASPSEEP1_WS_2022-05-08_NP	2022-05-07	857	0.0429	0.00043	0.00021	0.0376	< 0.020	< 0.000050	0.029	0.000223	151	0.00014	0.00011	0.0012	0.062	0.000062
FR ASPSEEP1	FR ASPSEEP1 WS 2022-05-09 NP	2022-05-09	816	0.0227	0.00052	0.00015	0.0363	< 0.020	< 0.000050	0.028	0.000235	154	< 0.00010	0.0001	0.00099	0.002	< 0.000050
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-10_NP	2022-05-10	870	0.0935	0.0004	0.00025	0.0459	< 0.020	< 0.000050	0.026	0.000296	142	0.00058	0.0004	0.00157	0.169	0.000297
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-11_NP	2022-05-11	852	0.0382	0.0004	0.0002	0.036	< 0.020	< 0.000050	0.025	0.000214	139	0.00033	0.00019	0.00131	0.057	0.000099
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-12_NP	2022-05-12	791	0.004	0.00043	0.00014	0.035	< 0.020	< 0.000050	0.028	0.000208	148	0.0001	< 0.10	0.00139	< 0.010	< 0.000050
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-13_NP FR_ASPSEEP1_WS_2022-05-14_NP	2022-05-13 2022-05-14	807 771	0.0035 0.0031	0.00039 0.00039	0.00016	0.0304	< 0.020 < 0.020	< 0.000050 < 0.000050	0.026	0.000233 0.000236	149 156	0.0001 < 0.00010	< 0.10 < 0.10	0.00093	< 0.010	< 0.000050
FR_ASPSEEP1	FR ASPSEEP1 WS 2022-05-14 NP	2022-05-14	836	< 0.0031	0.00039	0.00015	0.0313	< 0.020	< 0.000050	0.027	0.000236	151	< 0.00010	< 0.10	0.00099	< 0.010	< 0.000050 < 0.000050
FR ASPSEEP1	FR ASPSEEP1 WS 2022-05-16 NP	2022-05-16	847	0.111	0.00043	0.00021	0.0389	< 0.020	< 0.000050	0.027	0.000277	151	0.00031	0.00016	0.00115	0.129	0.000135
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-17_NP	2022-05-17	853	0.0188	0.00041	0.00021	0.0352	< 0.020	< 0.000050	0.028	0.000233	156	0.00019	< 0.10	0.00098	0.03	< 0.000050
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-19_NP	2022-05-19	820	0.041	0.00043	0.00016	0.038	< 0.020	< 0.000050	0.029	0.000238	159	0.00015	< 0.10	0.00109	0.069	0.000056
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-20_NP	2022-05-20	842 840	0.035 0.0035	0.00042	0.00017	0.0394	< 0.020	< 0.000050 < 0.000050	0.027	0.000222	159	0.00015 < 0.00010	< 0.10	0.00115	0.04	0.000052
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-21_NP FR_ASPSEEP1_WS_2022-05-23_NP	2022-05-21	868	0.0035	0.00038	0.00017	0.0341	< 0.020	< 0.000050	0.027	0.00023	155 150	< 0.00010	< 0.10 < 0.10	0.00085	0.013	< 0.000050 < 0.000050
FR ASPSEEP1	FR ASPSEEP1 WS 2022-05-24 NP	2022-05-24	850	0.0207	0.00037	0.00015	0.0356	< 0.020	< 0.000050	0.022	0.00024	158	0.00010	< 0.10	0.00093	0.015	< 0.000050
FR ASPSEEP1	FR ASPSEEP1 WS 2022-05-25 NP	2022-05-25	847	0.0095	0.0004	0.00016	0.0341	< 0.020	< 0.000050	0.024	0.000233	158	< 0.00010	< 0.10	0.00086	0.013	< 0.000050
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-26_NP	2022-05-26	857	0.0101	0.00038	0.00019	0.0333	< 0.020	< 0.000050	0.026	0.000236	158	< 0.00010	< 0.10	0.00079	0.015	< 0.000050
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-27_NP	2022-05-27	837	0.0107	0.00034	0.00022	0.036	< 0.020	< 0.000050	0.027	0.000233	155	0.00012	< 0.10	0.00085	0.012	< 0.000050
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-28_NP	2022-05-28	823	0.0076	0.00035	0.00023	0.0362	< 0.020	< 0.000050	0.027	0.000232	154	0.00017	< 0.10	0.00089	0.012	< 0.000050
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-29_NP FR_ASPSEEP1_WS_2022-05-30_NP	2022-05-29	820 808	< 0.0030 0.0219	0.00039 0.00037	0.00015 0.00015	0.0347 0.0353	< 0.020 < 0.020	< 0.000050 < 0.000050	0.028 0.027	0.000244 0.000219	152 148	< 0.00010 0.0001	< 0.10 < 0.10	0.0009	< 0.010 0.027	< 0.000050 < 0.000050
FR ASPSEEP1	FR ASPSEEP1 WS 2022-06-01 NP	2022-06-01	760	0.0055	0.00038	0.0005	0.0333	< 0.020	< 0.000050	0.026	0.000213	140	0.00012	< 0.10	0.00084	< 0.010	< 0.000050
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-06-02_NP	2022-06-02	782	0.0258	0.00039	0.00019	0.0375	< 0.020	< 0.000050	0.024	0.000196	143	0.00019	< 0.10	0.00104	0.042	0.000094
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-06-03_NP	2022-06-03	764	0.0265	0.00038	0.0002	0.0324	< 0.020	< 0.000050	0.028	0.000191	139	< 0.00010	< 0.10	0.00088	0.037	< 0.000050
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-06-04_NP	2022-06-04	470	0.0399	0.00051	0.00028	0.0678	< 0.020	< 0.000050	0.018	0.0000866	88.5	0.00014	0.00045	0.00074	0.053	0.000076
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-06-05_NP FR_ASPSEEP1_WS_2022-06-06_NP	2022-06-05	730 724	< 0.0030 0.0352	0.00037	0.00014	0.0307	< 0.020	< 0.000050 < 0.000050	0.025	0.000241	140 140	< 0.00010	< 0.10 < 0.10	0.0009	< 0.010 0.032	< 0.000050
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-06-06_NP FR_ASPSEEP1_WS_2022-06-07_NP	2022-06-06	781	0.0352	0.00041	0.00017	0.0316	< 0.020	< 0.000050	0.025	0.000207	140	< 0.00010	< 0.10	0.000111	0.032	< 0.000050 < 0.000050
FR ASPSEEP1	FR ASPSEEP1 WS 2022-06-08 NP	2022-06-08	724	0.0231	0.00035	0.00016	0.0298	< 0.020	< 0.000050	0.024	0.000193	134	0.00011	< 0.10	0.00094	0.021	< 0.000050
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-06-09_NP	2022-06-09	775	0.0056	0.00032	0.00012	0.0278	< 0.020	< 0.000050	0.023	0.000187	122	< 0.00010	< 0.10	0.00072	< 0.010	< 0.000050
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-06-10_NP	2022-06-10	724	0.0065	0.00042	0.00014	0.0308	< 0.020	< 0.000050	0.024	0.000199	128	0.00042	< 0.10	0.00119	0.032	< 0.000050
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-06-11_NP	2022-06-11	714	0.028 0.0148	0.00035 0.00035	0.00014	0.0314	< 0.020 < 0.020	< 0.000050	0.024	0.000217	128	0.0001	< 0.10	0.00088	0.042	0.000057
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-06-12_NP FR_ASPSEEP1_WS_2022-06-13_NP	2022-06-12	726 711	0.0148	0.00035	0.00013	0.0301	< 0.020	< 0.000050 < 0.000050	0.023	0.000201	126 128	0.00014	< 0.10 < 0.10	0.00084	0.04	< 0.000050 0.00007
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-06-13_NP FR_ASPSEEP1_WS_2022-06-20_NP	2022-06-13	648	0.0237	0.0004	0.00018	0.0332	< 0.020	< 0.000050	0.024	0.000201	119	0.00014	< 0.10	0.0011	0.035	< 0.00007
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-07-04_NP	2022-07-04	743	0.0192	0.00037	0.0002	0.0203	< 0.020	< 0.000050	0.027	0.000202	138	< 0.00011	< 0.10	0.00104	0.035	< 0.000050
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-07-11_NP	2022-07-11	760	0.0197	0.00036	0.00016	0.032	< 0.020	< 0.000050	0.028	0.000218	138	< 0.00010	< 0.10	0.00107	0.02	< 0.000050
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-07-18_NP	2022-07-18	823	0.0521	0.0004	0.00021	0.0389	< 0.020	< 0.000050	0.027	0.000353	142	0.00016	0.00016	0.00125	0.086	0.000106
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-07-25_NP	2022-07-25	887	0.0051	0.00035	0.00014	0.0375	< 0.020	< 0.000050	0.026	0.000258	151	< 0.00010	< 0.10	0.00089	< 0.010	< 0.000050
FR_ASPSEEP1	FR_ASPSEEP1_SEEP_2022-07-01_NP	2022-08-03	897	0.0049	0.00035	0.00017	0.0417	< 0.020	< 0.000050 < 0.000050	0.032	0.000262	176 172	< 0.00010	< 0.10 < 0.10	0.00101	< 0.010	< 0.000050 < 0.000050
FR ASPSEEP1	FR ASPSEEP1 WS 2022-08-11 NP	2022-08-11	959														

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness
^b Guideline varies with pH and water temperature
^c Guideline varies with chloride
^d Guideline varies with pH

APPENDIX B - TABLE 3: Summary of Analytical Results for Total Metals

										Total Metals								
					_													
			SS	l _	ļ ģ	lese		Ē	Ε		l _	Ę	ء ا		_E	*		
			g g		l ag	ngan	kel*	assi	mniue	9	Sodium	Strontiur			1	aniur		υ .
Sample	Sample	Sample Date	Ha.	Lithiu	Mag	Mar	N S	Pot	Sele	Silver	Sod	Stro	<u>F</u>	Ę	<u>‡</u>	E C	į į	i
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	mg/L		mg/L	mg/L	mg/L	mg/L	mg/L	mg	J/L
						cute	onic		Chronic	Acute						onic	2	ji o
						Chr.	Ę		Ċ.	Chr Acu						Ę	¥c⊓	Ę
BC WQG FWAL			n/a	n/a	n/a	0.001-0.03 ^a 0.0009-0.01 ^a	0.025-0.15 ^a	n/a	2	0.0001-0.003ª 0.00005-0.0015ª	n/a	n/a	n/a	n/a	n/a	0.0085	0.033-2ª	0.0075-2ª
FR ASPSEEP1	FR ASPSEEP1 WS 2022-03-27 NP	2022-03-27	11000	0.077	182	0.00188	0.00145	4.53	108	< 0.000010	E 4	0.17	0.000012	< 0.00010	0.0009	0.00409	0.00	000
FR ASPSEEP1	FR ASPSEEP1 WS 2022-03-28 NP	2022-03-27	1060		171	0.0265	0.00319	4.36	103	0.000010		0.17		< 0.00010	0.0009	0.00409	0.00	
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-29_NP	2022-03-29		0.073	176	0.00352	0.00155	4.6	110	< 0.000010		0.17		< 0.00010	0.00222	0.00404	0.00	094
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-03-30_NP FR_ASPSEEP1_WS_2022-03-31_NP	2022-03-30		0.064	157	0.00129	< 0.00250	3.88	95.95	< 0.000050		0.14		< 0.00050	< 0.00150	0.00363	< 0.0	
FR_ASPSEEP1	FR ASPSEEPT WS 2022-03-31 NP FR ASPSEEPT WS 2022-04-01 NP	2022-03-31		0.063	150	0.00108 0.00145	0.00125 0.00128	4.11	101	< 0.000010 < 0.000010		0.16		< 0.00010	< 0.00045	0.00365	0.01	
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-04-02_NP	2022-04-02	1090	0.062	149	0.00055	< 0.00250	3.73	104	< 0.000050	4.42	0.16	< 0.000050	< 0.00050	< 0.00150	0.00346	< 0.0	0150
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-04-08_NP FR_ASPSEEP1_WS_2022-04-13_NP	2022-04-08	993	0.065	146	0.00079 0.0036	< 0.00250 0.00175	3.54	110 124	< 0.000050 < 0.000010		0.18		< 0.00050 < 0.00010	< 0.00150 < 0.00150	0.00382 0.00425	< 0.0	
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-04-14_NP	2022-04-13	985	0.055	136	0.00406	0.00175	3.69	128	< 0.000010		0.18		< 0.00010	0.00156	0.00423	0.0	
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-04-21_NP	2022-04-21	915	0.057	127	0.00382	0.00124	3.82	100	< 0.000010	4.13	0.17	0.00001	< 0.00010	< 0.00060	0.00378	0.00	096
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-02_NP FR_ASPSEEP1_WS_2022-05-03_NP	2022-05-02	932 916		125	0.00031 0.00067	0.00125 0.00124	4.2 3.73	131 139	< 0.000010 < 0.000010		0.19		< 0.00010 < 0.00010	< 0.00030 < 0.00030	0.00392 0.00388	0.01	
FR ASPSEEP1	FR ASPSEEP1 WS 2022-05-05 NP	2022-05-05	1130		119	0.00314	0.00124	3.72	132	< 0.000010		0.19		< 0.00010	0.00119	0.00366	0.01	
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-06_NP	2022-05-06	875		125	0.00108	0.00127	3.69	129	< 0.000010		0.18		< 0.00010	< 0.00030	0.00344	0.01	
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-07_NP FR_ASPSEEP1_WS_2022-05-08_NP	2022-05-07	888 857		118	0.00215 0.00187	0.00126 0.00138	3.7	136	< 0.000010 < 0.000010		0.18		< 0.00010	0.00106	0.00368	0.00	
FR ASPSEEP1	FR ASPSEEP1 WS 2022-05-08 NP	2022-05-09	816	0.045	113	0.00162	0.00133	3.62	130	< 0.000010		0.17		< 0.00010	0.00067	0.00304	0.01	
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-10_NP	2022-05-10	870		120	0.0138	0.00215	3.38	117	< 0.000010		0.16		< 0.00010	0.00279	0.00296	0.01	
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-11_NP FR_ASPSEEP1_WS_2022-05-12_NP	2022-05-11	852 791	0.039	112	0.00394 0.00072	0.00234 0.00136	3.23	114 117	< 0.000010 < 0.000010		0.15		< 0.00010 < 0.00010	0.00091 < 0.00030	0.00289 0.0031	0.01	
FR ASPSEEP1	FR ASPSEEP1 WS 2022-05-12 NP	2022-05-12	807	0.043	111	< 0.00072	0.00130	3.2	115	< 0.000010		0.16		< 0.00010	< 0.00030	0.0031	0.00	
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-14_NP	2022-05-14	771	0.043	114	< 0.00030	0.00121	3.33	117	< 0.000010		0.16		< 0.00010	< 0.00030	0.00313	0.00	
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-15_NP FR_ASPSEEP1_WS_2022-05-16_NP	2022-05-15 2022-05-16	836 847	0.046	107	0.00028 0.00444	0.00123 0.00154	3.44	120 119	< 0.000010 < 0.000010		0.17		< 0.00010	< 0.00030 < 0.00300	0.0034	0.01	
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-17_NP	2022-05-17	853	0.046	118	0.00147	0.00137	3.59	115	< 0.000010		0.17		< 0.00010	< 0.00060	0.0033	0.01	
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-19_NP	2022-05-19	820	0.045	125	0.0021	0.00149	3.6	129	0.000115		0.17		< 0.00010	< 0.00150	0.00339	0.01	
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-20_NP FR_ASPSEEP1_WS_2022-05-21_NP	2022-05-20 2022-05-21	842 840	0.046	124 115	0.00197 0.00036	0.00149 0.00124	3.76 3.48	121 118	< 0.000010 < 0.000010		0.17		< 0.00010 < 0.00010	0.00066 < 0.00030	0.00331 0.00325	0.01	
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-23_NP	2022-05-23	868	0.043	112	0.0009	0.00091	3.47	113	< 0.000010	3.2	0.16	0.00001	< 0.00010	0.00052	0.00316	0.0	
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-24_NP	2022-05-24	850	0.047	111	0.00174	0.00132	3.44	109	< 0.000010		0.16		< 0.00010	< 0.00060	0.00329	0.01	
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-25_NP FR_ASPSEEP1_WS_2022-05-26_NP	2022-05-25	847 857	0.042	114	0.00072 0.0006	0.0013 0.00131	3.27	109	< 0.000010 < 0.000010		0.16		< 0.00010	0.00044 < 0.00030	0.00325 0.00319	0.01	
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-27_NP	2022-05-27	837	0.043	113	0.00079	0.00094	3.48	108	< 0.000010	3.32	0.17	< 0.000010	< 0.00010	0.00043	0.00314	0.01	
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-28_NP FR_ASPSEEP1_WS_2022-05-29_NP	2022-05-28	823 820	0.043	115	0.00073	0.0009	3.51	109	< 0.000010		0.17		< 0.00010 < 0.00010	< 0.00030 < 0.00030	0.00308 0.00296	0.00	
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-05-29_NP FR_ASPSEEP1_WS_2022-05-30_NP	2022-05-29	808	0.045	116	0.00026 0.00168	0.00133	3.51	105	< 0.000010 < 0.000010			< 0.000010	< 0.00010	0.00030	0.00296	0.01	
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-06-01_NP	2022-06-01	760	0.041	107	0.00053	0.00118	3.3	108	< 0.000010		0.15		< 0.00010	< 0.00030	0.00296	0.00	
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-06-02_NP FR_ASPSEEP1_WS_2022-06-03_NP	2022-06-02	782 764	0.041	107	0.00183 0.00162	0.0017 0.00122	3.32	97.3 102	0.00004 0.00006		0.15		< 0.00010	< 0.00090 0.00075	0.00274	0.00	
FR_ASPSEEP1	FR ASPSEEP1 WS 2022-06-03 NP FR ASPSEEP1 WS 2022-06-04 NP	2022-06-04	470	0.036	64	0.0132	0.00122	2.64	56.6	< 0.00000		0.14	0.000010	< 0.00010	0.00075	0.00272	0.00	
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-06-05_NP	2022-06-05	730	0.041	107	0.00031	0.00122	3.09	96.8	< 0.000010		0.14		< 0.00010	< 0.00030	0.00296	0.00	095
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-06-06_NP FR_ASPSEEP1_WS_2022-06-07_NP	2022-06-06	724 781	0.041	106	0.00106 0.00086	0.00122 0.00123	3.1	95.9 97.9	0.000015 < 0.000010		0.14		< 0.00010 < 0.00010	< 0.00120 < 0.00060	0.00296 0.00294	0.01	
FR ASPSEEP1	FR ASPSEEP1 WS 2022-06-08 NP	2022-06-08	724	0.038	100	0.00046	0.00123	3.17	101	< 0.000010		0.14		< 0.00010	0.00066	0.00234	0.00	
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-06-09_NP	2022-06-09	775	0.039	91	0.0004	0.00109	3.04	86.5	< 0.000010		0.13		< 0.00010	< 0.00030	0.00243	0.01	
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-06-10_NP FR_ASPSEEP1_WS_2022-06-11_NP	2022-06-10	724	0.038	94.8	0.00067	0.00118	3.42	94.3 91.1	< 0.000010 < 0.000010		0.13		< 0.00010	< 0.00030	0.00255	0.01	
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-06-12_NP	2022-06-11	726	0.038	92.7	0.002	0.00119	3.25	89.9	< 0.000010		0.14		< 0.00010	0.00047	0.00253	0.00	
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-06-13_NP	2022-06-13	711	0.038	94.9	0.001	0.00119	3.18	92.7	0.000059		0.13		< 0.00010	0.00062	0.00262	0.0	
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-06-20_NP FR_ASPSEEP1_WS_2022-07-04_NP	2022-06-20	648 743	0.037	86.8 105	0.00142 0.00113	0.00118 0.00123	3.07	81 89.2	< 0.000010 < 0.000010		0.13		0.00017 < 0.00010	< 0.00060 0.0004	0.00256 0.00268	0.00	J95 104
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-07-11_NP	2022-07-11	760	0.041	107	0.00103	0.00108	3.13	80.9	< 0.000010	3.29	0.14	< 0.000010	< 0.00010	< 0.00030	0.00286	0.00	097
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-07-18_NP	2022-07-18	823	0.047	108	0.00425	0.00166	3.53	91.5	< 0.000010		0.14		< 0.00010	< 0.00150	0.00283	0.01	
FR_ASPSEEP1 FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-07-25_NP FR_ASPSEEP1_SEEP_2022-07-01_NP	2022-07-25	887 897	0.045	120	0.00052 0.00046	0.00132 0.00138	3.46	98.7 110	< 0.000010 < 0.000010		0.16		< 0.00010	< 0.00030	0.00339 0.00357	0.01	
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-08-11_NP	2022-08-11	959	0.048	140	0.00104	0.0014	3.9	106	0.000011	4.29	0.16	< 0.000010	< 0.00010	< 0.00030	0.0034	0.01	109
FR_ASPSEEP1	FR_ASPSEEP1_WS_2022-08-18_NP	2022-08-18	1100	0.053	159	0.00051	0.0015	3.9	97.3	< 0.000010	4.32	0.18	0.000016	< 0.00010	< 0.00030	0.0038	0.01	117

Denotes concentration less than indicated detection limit
 Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature ^c Guideline varies with chloride

d Guideline varies with pH

APPENDIX B - TABLE 3: Summary of Analytical Results for Total Metals

Sample Sample Sample Date Family Fa	8
Sample S	mg/L g g g g g g g g g
Location ID (mm/dd/yyyy) mg/L	general general general 1 0.003-6.5° 3.33.5° 0.066 0.000066 0.000149 0.199 0.000149 0.00140 0.022 < 0.000100 0.022 0.022 < 0.000109 0.00159 1.2 0.00129 0.00129 1.23 0.000889 0.00150 0.131 0.000149 0.00145
SC WQG FWAL n/a n/	1 0.003-6.5 3.3-3.5 0.00066 0.109 0.000149 0.12 0.000146 0.023 <0.000100 0.122 0.000150 0.122 0.000150 0.122 0.000150 0.123 0.000150 0.131 0.000115
BC WGG FWAL n/a n/	1 0.003-6.5 3.3-3.5 0.00066 0.109 0.000149 0.12 0.000146 0.023 <0.000100 0.122 0.000150 0.122 0.000150 0.122 0.000150 0.123 0.000150 0.131 0.000115
FR_ASPSEEP1 FR_ASPSEEP1 WS_2022-08-24 NP 2022-08-24 1130 0.028 0.00034 0.00018 0.0444 < 0.020 < 0.000050 0.031 0.000266 200 0.00012 < 0.10 0.0011 FR_ASPSEEP1 WS_2022-09-01 NP 2022-09-01 1160 0.0961 0.00036 < 0.00050 0.0481 < 0.00020 < 0.000050 0.035 0.000305 200 0.00118 0.0019 FR_ASPSEEP1 FR_ASPSEEP1 WS_2022-09-05 1200 0.0068	0.109 0.000149 0.12 0.000146 0.023 < 0.000100 0.022 < 0.000100 0.152 0.000159 1.2 0.00123 1.23 0.00089 0.131 0.000115
FR. ASPSEEP1 FR. ASPSEEP1 WS. 2022-09-01 NP 2022-09-01 1160 0.0561 0.00034 0.00028 0.0046 0.0002 0.000050 0.035 0.000305 206 0.00018 0.0019 0.00123 FR. ASPSEEP1 WS. 2022-09-05 NP 2022-09-05 1200 0.0686 0.00034 0.00028 0.0046 0.00020 0.000050 0.032 0.00031 200 0.00021 0.00013 0.00014 0.00013 0.00014 0.00010 0.00014 0.00014 0.00014 0.00010 0.00014 0.	0.109 0.000149 0.12 0.000146 0.023 < 0.000100
FR_ASPSEEP1 FR_ASPSEEP1 WS 2022-09-05 NP 2022-09-05 1200 0.0688 0.00034 0.00028 0.0486 < 0.00005 0.032 0.00031 200 0.00021 0.0002 0.0011 FR_BLAINESEEP1 FR_BLAINESEEP1 SEEP 2022-04-07 NP 2022-04-27 NP 2022-04-1 NP 2022-	0.12 0.000146 0.023 < 0.000100 0.022 < 0.000100 0.152 0.000159 1.2 0.00123 1.23 0.000889 0.131 0.000115
FR_BLANESEEP1 FR_BLANESEEP1 SEP_2022-07-01 NP 2022-04-27 2100 0.0153 0.00054 < 0.00020 0.0147 < 0.00010 0.041 0.000117 314 < 0.00020 < 0.20 < 0.00100 FR_BLANESEEP1 SEP_2022-07-01 NP 2022-04-27 1790 0.00085 0.00061 < 0.00020 0.0152 < 0.0040 < 0.000100 0.034 0.000096 315 < 0.00020 < 0.020 < 0.001024 FR_BLANESEEP1 FR_BLANESEEP1 SEP_2022-09-01 NP 2022-09-15 2240 0.0863 0.00058 0.00047 0.0243 < 0.00005 0.00050 0.038 0.000745 355 0.0002 0.00018 0.00114 NRSSEEP5 FR_BLANESEEP5 SEP_2022-09-11 NP 2022-09-16 2240 0.0863 0.00058 0.00074 0.0024 0.000050 0.038 0.000745 355 0.0002 0.00018 0.00014 NRSSEEP5 SEP_2022-09-11 NP 2022-09-16 2240 0.0863 0.00058 0.00074 0.00096 0.0468 0.000059 0.00010 0.081 0.00029 374 0.00106 0.0014 NRSSEEP5 SEP_2022-09-14 NP 2022-09-26 2350 0.883 0.00053 0.0008 0.0451 0.000055 < 0.000100 0.065 0.000279 379 0.00083 0.00087 NRSSEEP5 SEP_2022-09-26 NP 2022-09-16 729 0.0443 0.0004 0.0005 0.00055 < 0.000100 0.065 0.000279 379 0.00083 0.00082 0.0028 NRSSEEP5 NRSSEEP1 SEP_2022-09-22 NP 2022-09-18 0.00045 0.00054 0.00005 0.00	0.023 < 0.000100
FR_BLAINESEEP1 FR_BLAINESEEP5 FP_2022-09-01 NP 2022-09-15 2240 0.0863 0.00058 0.00047 0.0243 < 0.0200 < 0.000050 0.038 0.000745 355 0.0002 0.00018 0.00104 FR_BLAINESEEP5 SEEP 2022-04-11 NP 2022-09-12 2240 0.0863 0.00053 0.00096 0.0486 0.000053 < 0.00010 0.081 0.00029 374 0.00106 0.00104 PR_BLAINESEEP5 FR_BLAINESEEP5 FR_BLAINESEEP5 FR_BLAINESEEP5 FR_BLAINESEEP5 FR_BLAINESEEP5 FR_BLAINESEEP5 FR_BLAINESEEP5 SEEP 2022-09-26 NP 2022-09-26 2350 0.883 0.00053 0.0008 0.0451 0.000055 < 0.000100 0.065 0.000279 379 0.00083 0.00083 0.00087 PR_BLAINESEEP5 SEEP 2022-09-11 NP 2022-09-16 729 0.0443 0.0004 0.0005 0.0045 0.000055 < 0.000100 0.065 0.000279 379 0.00083 0.00087 PR_BLAINESEEP1 FR_BLAINESEEP1 SEEP 2022-09-11 NP 2022-09-12 NP 2022-09-12 NP 2022-09-12 NP 2022-09-11 NP 2022-09-12 NP 2022-09-11 NP 2022-09-12 NP 2022-09-11 NP 2022-09-12 NP 2022-09-11 NP 2022-09-11 NP 2022-09-12 NP 2022-09-11 NP 2022-09-12 NP 2	0.152 0.000159 1.2 0.00123 1.23 0.000889 0.131 0.000115
FR_BLANESEEP5 FR_BLANESEEP5 SEEP 2022-09-68 NP 2022-09-68 0 .0666 0.00073 0.00096 0.0486 0.000058 < 0.000100 0.081 0.000329 374 0.00106 0.001 0.00304 FR_BLANESEEP5 SEEP 2022-09-68 NP 2022-09-68 0 .0863 0.00053 0.00058 0.0451 0.000055 < 0.00010 0.065 0.00079 379 0.00083 0.00052 0.00059 FR_BLANESEEP5 SEEP 2022-09-68 NP 2022-09-68 0 .0863 0.00053 0.00058 0.0451 0.000055 < 0.00010 0.065 0.00079 379 0.00083 0.00052 0.00059 FR_BLANESEEP1 FR_BLANESEEP1 SEEP 2022-09-62 NP 2022-09-6	1.2 0.00123 1.23 0.000889 0.131 0.000115
FR_BLANESEEP5 FR_BLANESEEP5 SEP_2022-09-26 NP 2022-09-26 NP 2022-09-27 N	1.23 0.000889 0.131 0.000115
FR_BLAKESEEP1 FR_BLAKESEEP1 FR_BLAKESEEP1 FR_BLAKESEEP1 SEEP_2022-04-11 NP 2022-05-16 729 0.0443 0.0004 0.0003 0.0474 0.0020 < 0.000050 0.029 0.000050 0.029 1.0000052 181 0.00019 0.00033 0.00005 FR_BLAKESEEP1 FR_BLAKESEEP1 SEEP_2022-05-022 NP 0.0220-90-22 78 0.0296 0.00042 0.00042 0.0002 0.00050 0.030 0.000115 200 0.0001 0.00015 0.0005 0.00050 FR_CCSEEPE1 FR_BLAKESEEP1 SEEP_2022-05-11 NP 2022-06-10 1180 < 0.0030 0.00095 0.00012 0.0120 < 0.000050 0.030 0.00050 0.033 0.00015 200 0.00011 0.00047 0.00054 FR_CCSEEPE1 FR_CCSEEPE1 SEEP_2022-06-17 N 2022-06-21 1140 0.0003 0.00095 0.00012 0.0151 < 0.020 < 0.000050 0.036 0.000989 244 < 0.00010 0.00047 0.00054 FR_CCSEEPE1 FR_CCSEEPE1 SEEP_2022-06-17 N 2022-06-21 1140 0.0004 0.00099 0.00022 0.0151 < 0.020 < 0.000050 0.043 0.00164 384 < 0.00010 0.00067 0.00065 0.00067 0.00065 0.00067 0.00065 0.00067 0.00065 0.00067 0.00065 0.00067 0.00065 0.00067 0.00065 0.00067 0.00065 0.00067 0.00065 0.00067 0.00065 0.00067 0.00065 0.00067 0.00065 0.00067 0.00065 0.00067 0.00065 0.00067 0.00067 0.00065 0.00067 0.00065 0.00067 0.00065 0.00067 0.000	0.131 0.000115
FR_BLAKESEEP1 FR_BLAKESEEP1 SEP_2022-09-32 NP 2022-09-22 728 0.0269 0.00042 0.00032 0.042 < 0.00032 < 0.0020 < 0.000050 0.033 0.000115 200 0.00011 0.0003 < 0.00005 FR_CCSEEPE1 FR_CCSEEPE1 SEP_2022-04-11 NP 2022-06-11 180 < < 0.0005 0.00095 0.00095 0.00012 0.0122 < < 0.020 < 0.000050 0.036 0.000989 244 < < 0.00010 0.00047 0.00054 FR_CCSEEPE1 FR_CCSEEPE1 SEP_2022-06-17 N 2022-06-17 1240 < < 0.00030 0.00095 0.00013 0.0016 < < 0.00050 0.00050 0.038 0.00169 268 < < 0.00010 0.00047 0.00054 FR_CCSEEPE1 FR_CCSEEPE1 SEP_2022-06-17 N 2022-06-12 1410 0.0004 0.00095 0.00013 0.0002 0.0151 < < 0.0000 0.0005 0.038 0.0016 288 < < 0.00010 0.00045 0.00055 0.00050 0.038 0.00018 200050 0.038 0.00018 200050 0.0005	
FR_CCSEEPE1 FR_CCSEEPE1_2022-06-17 N 2022-06-17 1240 < 0.0030 0.00093 0.00013 0.0136 < 0.020 < 0.000050 0.038 0.00106 268 < 0.00010 0.00048 0.00054 FR_CCSEEPE1 FR_CCSEEPE1_SEEP_2022-07-01 NP 2022-08-22 1410 0.0044 0.00099 0.00022 0.0151 < 0.020 < 0.00050 0.043 0.00146 384 < 0.00010 0.00062 0.00067	
FR_CCSEEPE1 FR_CCSEEPE1_SEEP_2022-07-01_NP 2022-08-22 1410 0.0044 0.00099 0.00022 0.0151 < 0.020 < 0.000050 0.043 0.0016 384 < 0.00010 0.00062 0.00067	< 0.010 < 0.000050
	< 0.010 < 0.00050 < 0.010 < 0.00050
	< 0.020 < 0.000100
FR_CCSEEPSE1 FR_CCSEEPSE1_SEEP_2022-04-11_NP 2022-06-10 1590 0.0285 0.00033 0.00039 0.0163 < 0.040 < 0.000100 0.022 0.000967 297 < 0.00020 0.00029 < 0.00100	0.048 < 0.000100
FR_CCSEEPSE1 FR_CCSEEPSE1_SEEP_2022-07-01_NP 2022-08-22 1590 0.0091 0.00083 0.00037 0.0144 < 0.020 < 0.000050 0.02 0.00144 316 < 0.00010 0.00028 0.00191	< 0.010 < 0.000050
FR_DOKASEEP1 FR_DOKASEEP1 SEP_2022-04-11 NP 2022-05-16 283 0.0868 0.00014 0.00022 0.0949 < 0.020 < 0.000050 0.025 0.0000181 77.4 0.00025 < 0.10 0.0006 FR_DOKASEEP1 SEP_2022-07-01 NP 2022-07-29 288 0.317 0.00015 0.00014 0.00025 0.000050 0.039 0.00006 83.7 0.00067 0.00072 0.001	0.092 0.000114 0.467 0.000313
FR_DOKASEEP1 FR_DOKASEEP1 SEP_2022-07-01 NP 2022-07-29 298 0.317 0.00015 0.00041 0.12 < 0.020 < 0.000050 0.099 0.00006 83.7 0.00067 0.00022 0.001 FR_DOKASEEP1 SEP_2022-09-21 NP 2022-09-21 260 0.0686 < 0.00010 0.00027 0.002 < 0.0002 < 0.0000 0.007 0.0002015 82.1 0.00011 < 0.00005	0.467 0.000313 0.121 0.000101
FR EAGLENORTH FR EAGLENORTH SEEP 2022-04-11 NP 2022-05-16 2370 < 0.0060 0.0005 0.00023 0.0144 < 0.040 < 0.000100 0.026 0.000497 411 < 0.00020 < 0.20 < 0.00100	< 0.020 < 0.000100
FR_EAGLENORTH FR_EAGLENORTH_SEEP_2022-07-01_NP 2022-07-06 2310 < 0.0060 0.0051 < 0.00051 < 0.00020 0.0158 < 0.040 < 0.000100 0.028 0.00085 411 < 0.00020 < 0.20 < 0.00100	< 0.020 < 0.000100
FR_EAGLENORTH FR_EAGLE NORTH_SEEP_2022-09-22_NP	0.167 0.000243
FR_FCSEEP2 FR_FCSEEP2_SEEP_2022-04-11_NP	< 0.010 < 0.000050 0.026 < 0.000050
FR FRVSEEP3 SEEP 2022-09-22 NF 2022-09-22 29-1 0.0000 0.00014 0.0002 0.00010 0.00000 0.0010 0.000022 7.3-4 0.00020 0.00016 FR FRVSEP3 SEEP 2022-09-11 NP 2022-09-16 765 0.0077 0.00054 0.00011 0.02023 0.000 0.0011 0.000059 120 0.00010 0.00043 0.00050	0.011 < 0.000050
FR_FRVWSEEP3 FR_FRVWSEEP3_SEEP_2022-09-08_NP 2022-09-08 1010 0.0142 0.00029 0.00013 0.0223 < 0.020 < 0.00050 0.015 0.000521 177 0.00017 < 0.10 < 0.00050	0.037 < 0.000050
FR_FSEAMSEEP7 FR_FSEAMSEEP7_SEEP_2022-04-11_NP 2022-05-16 441 0.5 0.00081 0.00064 0.086 0.00008 < 0.000050 0.017 0.000139 104 0.00084 0.00128 0.0019	0.97 0.00156
FR FSEAMSEEP7 FR FSEAMSEEP7 SEEP 2022-07-01 NP 2022-07-20 368 0.146 0.00102 0.00043 0.116 < 0.0200 < 0.000050 0.037 0.0000193 88.2 0.00033 0.00027 0.00106 FR FSEAMWSEEP4 SEEP 2022-04-11 NP 2022-06-16 505 0.109 0.00147 0.00013 0.0744 0.000023 < 0.000050 0.028 0.000244 114 0.000024 0.00050 0.00156	0.14 0.00014 0.471 0.000634
FR HENSEEP3 FR HENSEEP3 SEP 2022-04-11 NP 2022-04-11 170 0.0166 0.00031 0.00021 0.0165 < 0.000 0.022 0.000156 324 < 0.00020 < 0.20 0.00135	0.046 < 0.000100
FR_HENSEEP3 FR_HENSEEP3_022-05-16_NP	< 0.020 < 0.000100
FR_HENSEEP3 FR_HENSEEP3_SEEP_2022-07-01_NP	< 0.020 < 0.000100
FR HENSEEP3 FR HENSEEP3 SEEP 2022-09-21 NP 2022-09-21 1590 0.007 <0.00020 0.00028 0.0359 <0.040 <0.000100 <0.020 0.000192 349 <0.00020 <0.02019 <0.00010 FR HENSEEP1 FR HENSEEP1 SEEP 2022-04-11 NP 2022-04-11 1/030 0.235 0.00028 0.00028 0.0004 0.0999 0.000023 <0.00010 0.000282 250 0.00049 0.00033 0.00144	< 0.020 < 0.000100 0.388 0.000352
FR HENSEEP1 FR HENSEEP1 SEEP 2022-07-01 PP 2	0.038 < 0.000352
FR_LMCWSEEP5 FR_LMCWSEEP5 SEEP_2022-04-11_NP 2022-06-16 271 0.218 0.00028 0.00029 0.0318 < 0.020 < 0.00050 < 0.010 0.00014 50.9 0.00052 0.00034 0.00155	0.357 0.000338
FR_LMCWSEEP5 FR_LMCWSEEP5_SEEP_2022-07-01_NP 2022-07-06 316 0.0285 0.00027 0.00018 0.0282 < 0.020 < 0.000050 < 0.010 0.0000918 67.8 0.00011 < 0.10 0.00087	0.073 0.000077
FR_LMCWSEEP5 FR_LMCWSEEP5 SEP_2022-09-22 NP 2022-09-22 664 0.0165 0.00035 0.00032 0.0565 < 0.0202 < 0.000050 0.011 0.00017 152 < 0.00010 < 0.10 0.00058 FR_SCROSEEP1 SEP_2022-04-11 NP 2022-05-11 1430 0.0102 0.00225 0.00225 0.00096 0.0999 < 0.0202 < 0.000050 0.021 0.000549 341 0.00012 0.00058 0.00012 0.000549 341 0.00012 0.000549 0.000549 0.00012 0.000549 0.00012 0.000549 0.00012 0.000549 0.00012 0.000549 0.00012 0.000549 0.00012 0.000549 0.00012 0.000549 0.00	0.016 < 0.000050 0.022 0.000053
FR_SCRUSEEP1 FR_SCRUSEEP1 SEP2_2022-09-21 NP 2022-09-21 18-00 0.0102 0.00229 0.00099 0.0099 0.0020 0.00000 0.022 0.000099 341 0.00012 0.00091 0.0020	0.022 0.000053
FR_SPRWSEEP1 FR_SPRSEEP1_WS_2022-04-27 NP 2022-04-27 636 0.111 0.00122 0.00028 0.0401 < 0.020 < 0.000050 0.039 0.000482 143 0.0002 0.00028 0.00105	0.257 0.000351
FR_SPRWSEEP1 FR_SPRWSEEP1_SEEP_2022-07-01 NP 2022-07-14 642 0.1294 0.000525 0.000345 0.05595 < 0.020 < 0.000050 0.0795 0.000526 145.5 < 0.00010 < 0.10 0.001975	< 0.010 < 0.000050
FR STPNSEEP FR STPNSEEP SEEP 2022-04-11 NP 2022-05-19 493 0.00048 0.00016 < 0.00010 0.102 < 0.0200 < 0.000050 0.013 0.0000562 113 0.00015 < 0.10 < 0.00050 FR STPNSEEP FR STPNSEEP SEEP 2022-07-01 NP 2022-07-15 279 0.0035 0.00019 < 0.00010 0.0595 < 0.020 < 0.000050 0.012 0.00032 64.1 0.00013 < 0.10 < 0.00050	< 0.010 < 0.00050
FR_STPNSEEP FR_STPNSEEP SEP_2022-07-01 NP 2022-07-15 279 0.0035 0.00019 < 0.00010 0.0565 < 0.020 < 0.000050 0.012 0.000032 64.1 0.00013 < 0.10 < 0.00050	0.013 < 0.000050 0.084 < 0.000050
PR STPSWSEEP PR STPSWSEEP SEEP 2022-07-11 NP 2022-07-15 597 0.005 < 0.00010 0.0028	0.032 < 0.00050
FR STPSWSEEP FR STPSWSEEP SEEP 2022-09-23 NP 2022-09-23 628 0.005 0.00012 0.00011 0.06 < 0.020 < 0.000050 0.032 0.00028 121 < 0.00010 0.0003 < 0.00050	< 0.010 < 0.000050
FR STPWSEEP FR STPWSEEP SEEP 2022-04-11 NP 2022-05-19 566 < 0.0030 < 0.00010 < 0.00010 0.0723 < 0.020 < 0.00050 0.032 0.00048 124 < 0.00010 0.00061 < 0.00050	< 0.010 < 0.00050
FR_STPWSEEP FR_STPWSEEP_SEEP_2022-07-01 NP 2022-07-15 575 0.0122 < 0.00010 0.00015 0.0711 < 0.020 < 0.000050 0.03 0.00017 109 < 0.00010 0.00052 < 0.00050	0.152 < 0.000050 0.018 < 0.000050
PR_STPWSEEP PR_STPWSEEP_SEEP_2022-09-12, NP 2022-09-12 557 U-0071 U-0001 U-0001 U-00026 V-000050 U-0003 U-000037 132 U-00041 U-00004 V-000050 PR_STPWSEEP_FR_STPWSEEP_SEEP_2022-09-23 NP 2022-09-23 625 U-0003 G-50 00005 U-00005 U-000050 U-	< 0.010 < 0.000050
FR_TBWSEEP1 FR_TBWSEEP1_SEEP_2022-04-11_NP	0.014 < 0.000050
FR_TBWSEEP1 FR_TBWSEEP1_SEEP_2022-07-01 NP 2022-07-20 688 0.0041 0.00014 < 0.00014 < 0.00010 0.08755 < 0.020 < 0.000050 0.0185 0.00005305 161 0.000225 < 0.10 0.00061	0.0105 < 0.000050
FR_TURNSEEPI FR_TURNSEEPI SEP_2022-04-11 NP 2022-04-11 (1030 0.0152 0.00076 0.00014 0.0598 < 0.020 < 0.000050 0.023 0.000479 222 < 0.00010 < 0.10 < 0.00050	0.027 0.000111 < 0.010 < 0.000050
FR_TURNSEEP1 FR_TURNSEEP1 SEEP_2022-07-01 NP 2022-07-14 681 0.0075 0.00084 0.00011 0.0412 < 0.020 < 0.000050 0.022 0.000323 151 < 0.00010 < 0.10 < 0.00050 FR_TURNSEEP1 SEEP_2022-09-21 NP 2022-09-21 929 0.0252 0.00067 0.00067 0.00025 0.0487 < 0.020 < 0.000050 0.017 0.0000758 203 0.00011 0.00014 0.00057	< 0.010 < 0.00050 0.077 0.00011
FR_TURNSEEP2 FR_TURNSEEP2 SEEP_2022-04-11_NP 2022-04-11 831 0.015 0.00017 0.00013 0.188 < 0.020 < 0.000050 0.013 0.000129 197 0.0002 < 0.10 < 0.00050	0.026 < 0.000050
FR_TURNSEEP2 FR_TURNSEEP2_SEEP_2022-07-01_NP 2022-07-14 783 < 0.0030 0.000185 0.000155 0.182 < 0.020 < 0.000050 0.0155 0.000918 201.5 0.000115 < 0.10 < 0.00050	< 0.010 < 0.000050

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness
^b Guideline varies with pH and water temperature
^c Guideline varies with chloride
^d Guideline varies with pH

APPENDIX B - TABLE 3: Summary of Analytical Results for Total Metals

										Total Metals								
Sample Location	Sample ID	Sample Date (mm/dd/yyyy)	mg/L	mg/L	Magne sium	Manganese Maganese	e ayou	mg/L	μg/L	e e e e e e e e e e e e e e e e e e e	mg/L	mg/L	Thallium mg/L	Ę mg/L		Uranium*		2617 g/L
	•		Ĭ			cute	onic		Chronic	Acute	Ĭ	ľ				ခဲ့	te l	onic
						Chr	냥		Сћг							Chror	Acı	Ę
BC WQG FWAL			n/a	n/a	n/a	0.001-0.03 ^a 0.0009-0.01 ^a	0.025-0.15 ^a	n/a	2	0.0001-0.003ª 0.00005-0.0015ª	n/a	n/a	n/a	n/a	n/a	0.0085	0.033-2ª	0.0075-2 ^a
FR ASPSEEP1	FR ASPSEEP1 WS 2022-08-24 NP	2022-08-24	1130	0.054	152	0.0027	0.00146	3.85	106	< 0.000010	14.41	0.18	0.000013	< 0.00010	0.0008	0.00382	0.0	102
FR ASPSEEP1	FR ASPSEEP1 WS 2022-09-01 NP	2022-09-01	1160			0.0027	0.00140	3.68	124	< 0.000010		0.19	0.000018	< 0.00010	0.00136	0.00361	0.0	
FR_ASPSEEP1	FR ASPSEEP1 WS 2022-09-05 NP	2022-09-05	1200			0.00473	0.00171	3.66	123	< 0.000010		0.19	0.000014	< 0.00010	0.00183	0.00389	0.0	
FR_BLAINESEEP1	FR_BAINESEEP1_WS_2022-04-27_NP	2022-04-27	2100	0.115		0.0115	0.0515	6.2	465	< 0.000020		0.24	0.000038	< 0.00020	< 0.00060	0.0242	0.0	
FR_BLAINESEEP1	FR_BLAINESEEP1_SEEP_2022-07-01_NP	2022-07-19	1790			0.0136	0.0477	5.38	424	< 0.000020		0.24		< 0.00020	< 0.00060	0.023	0.0	
FR_BLAINESEEP1	FR_BLAINESEEP1_SEEP_2022-09-01_NP	2022-09-15	2240	0.13		0.0184	0.0561	5.93	486	< 0.000010		0.26	0.000039	< 0.00010	0.001	0.0291	0.0	
FR_BLAINESEEP5 FR_BLAINESEEP5	FR_BLAINESEEP5_SEEP_2022-04-11_NP FR_BLAINESEEP5_SEEP_2022-09-26_NP	2022-06-10	2340	0.178		0.0393 0.0228	0.0144	6.51 7.15	232 283	0.000042 0.000024		0.23	0.00007	< 0.00020 < 0.00020	0.00689	0.0209 0.0203	0.0	
FR BLAKESEEP1	FR BLAKESEEP1 SEEP 2022-09-20 NP	2022-05-20	729	0.170		0.0228	0.00616	2.46	110	< 0.000024		0.72		< 0.00020	0.00078	0.00237	0.0	
FR_BLAKESEEP1	FR_BLAKESEEP1_SEEP_2022-09-22_NP	2022-09-22	728	0.04		0.0045	0.00613	2.59	127	< 0.000010		0.86	< 0.000010	< 0.00010	0.00034	0.0023	0.0	
FR_CCSEEPE1	FR_CCSEEPE1_SEEP_2022-04-11_NP	2022-06-10	1180	0.375		0.00018	0.0436	7.45	177	< 0.000010		0.37	0.000054	< 0.00010	< 0.00030	0.0132	0.0	
FR_CCSEEPE1	FR_CCSEEPE1_2022-06-17_N	2022-06-17	1240			0.00016	0.0446	7.8	155	< 0.000010		0.42		< 0.00010	< 0.00030	0.0136	0.0	
FR_CCSEEPE1	FR_CCSEEPE1_SEEP_2022-07-01_NP	2022-08-22	1410			0.0002	0.0737	9.11	197	< 0.000010		0.59	0.000063	< 0.00010	< 0.00030	0.0208	0.0	
FR_CCSEEPSE1 FR_CCSEEPSE1	FR_CCSEEPSE1_2022-03-28_N FR_CCSEEPSE1_SEEP_2022-04-11_NP	2022-03-28	2100 1590	0.618	242	0.00038 0.00532	0.0918	10.3 6.21	264 289	< 0.000020 < 0.000020		0.73	0.000064	< 0.00020 < 0.00020	< 0.00060 < 0.00120	0.0222 0.0141	0.0	
FR CCSEEPSE1	FR CCSEEPSE1 SEEP 2022-07-01 NP	2022-08-22	1590	0.176		0.00532	0.0597	5.74	322	< 0.000020		0.31	0.000051	< 0.00020	< 0.00030	0.0163	0.0	
FR DOKASEEP1	FR DOKASEEP1 SEEP 2022-04-11 NP	2022-05-16	283	0.008		0.00414	0.00073	1.14	3.03	< 0.000010		0.36		< 0.00010	0.00142	0.000406		0030
FR_DOKASEEP1	FR_DOKASEEP1_SEEP_2022-07-01_NP	2022-07-29	298		24.2	0.0272	0.00127	1.45	0.852	0.000474		0.46		0.00011	< 0.00420	0.000428	0.0	
FR_DOKASEEP1	FR_DOKASEEP1_SEEP_2022-09-21_NP	2022-09-21	260	0.013		0.0114	0.00053	1.34	0.774	< 0.000010		0.42		< 0.00010	0.0011	0.000338		0030
FR_EAGLENORTH FR_EAGLENORTH	FR_EAGLENORTH_SEEP_2022-04-11_NP FR_EAGLENORTH_SEEP_2022-07-01_NP	2022-05-16	2370	0.175		0.00041	0.0226 0.0254	6.06 5.95	415 439	< 0.000020		0.29	0.000038	< 0.00020 < 0.00020	< 0.00060 < 0.00060	0.0223 0.0246	0.0	
FR_EAGLENORTH	FR_EAGLENORTH_SEEP_2022-07-01_NP FR_EAGLE_NORTH_SEEP_2022-09-22_NP	2022-07-06	2340	0.181		0.00075 0.00678	0.0298	6.79	390	< 0.000020 < 0.000020		0.31	0.000054	< 0.00020	0.00074	0.0246	0.0	
FR FCSEEP2	FR FCSEEP2 SEEP 2022-04-11 NP	2022-06-10	159	0.007		0.00070	< 0.00050	0.597	5.84	< 0.000020		0.07	< 0.000034	< 0.00020	< 0.00074	0.000714		0030
FR_FCSEEP2	FR_FCSEEP2_SEEP_2022-09-22_NP	2022-09-22	241	0.01	26	0.00313	< 0.00050	0.97	18	< 0.000010		0.13	< 0.000010	< 0.00010	< 0.00030	0.00105		0030
FR_FRVWSEEP3	FR_FRVWSEEP3_SEEP_2022-04-11_NP	2022-06-16	765	0.032		0.00367	0.00496	2.82	92	< 0.000010		0.11	< 0.000010	< 0.00010	< 0.00030	0.00505	0.0	
FR_FRVWSEEP3 FR_FSEAMSEEP7	FR_FRVWSEEP3_SEEP_2022-09-08_NP FR_FSEAMSEEP7_SEEP_2022-04-11_NP	2022-09-08	1010 441	0.034		0.0162 0.0529	0.00268 0.00521	3.1 2.97	86.8 90.3	< 0.000010 0.000019		0.14	< 0.000010	< 0.00010	0.00033	0.00601 0.00386	0.0	
FR_FSEAMSEEP7	FR_FSEAMSEEP7_SEEP_2022-04-11_NP FR_FSEAMSEEP7_SEEP_2022-07-01_NP	2022-05-16	368	0.032		0.0529	0.00321	3.62	94.8	< 0.000019		0.32	0.000011	0.0006	< 0.00360	0.00335	0.0	0030
FR FSEAMWSEEP4	FR FSEAMWSEEP4 SEEP 2022-04-11 NP	2022-06-16	505	0.073		0.0159	0.025	5.4	95.8	0.000012		0.11	0.000046	< 0.00010	0.00132	0.00531	0.0	
FR_HENSEEP3	FR_HENSEEP3_SEEP_2022-04-11_NP	2022-04-11	1710			0.00218	0.00358	4.02	507	< 0.000020		0.23	< 0.000020	< 0.00020	< 0.00060	0.00562	0.0	800
FR_HENSEEP3	FR_HENSEEP3_SEEP_2022-05-16_NP	2022-05-16	1860			0.00131	0.00283	3.42	528	< 0.000020		0.28	< 0.000020	< 0.00020	< 0.00060	0.0044	0.0	
FR_HENSEEP3 FR_HENSEEP3	FR HENSEEP3 SEEP 2022-07-01 NP FR HENSEEP3 SEEP 2022-09-21 NP	2022-07-14	1580	0.05		0.00254	0.00326 0.00275	3.12	460	< 0.000020		0.25	< 0.000020	< 0.00020 < 0.00020	< 0.00060	0.00442	0.0	
FR_HENSEEP3 FR_HENSSEEP1	FR_HENSEEP3_SEEP_2022-09-21_NP FR_HENSEEP1_SEEP_2022-04-11_NP	2022-09-21	1590 1030			0.00074 0.00948	0.00275	3.65 2.72	460 51.2	< 0.000020 0.000016		0.26	< 0.000020 0.000026	< 0.00020	< 0.00060 0.00388	0.00367 0.00313	0.0	
FR HENSSEEP1	FR HENSSEEP1 SEEP 2022-07-01 NP	2022-07-14	1360	0.003	126	0.0206	0.00332	3.16	8.01	< 0.000010		0.24	0.000026	< 0.00010	< 0.00000	0.00313	0.0	
FR_LMCWSEEP5	FR_LMCWSEEP5_SEEP_2022-04-11_NP	2022-06-16	271	0.009		0.00774	0.0031	1.64	37.2	0.000014		0.04	0.000023	< 0.00010	0.00329	0.0013	0.0	
FR_LMCWSEEP5	FR_LMCWSEEP5_SEEP_2022-07-01_NP	2022-07-06	316	0.009		0.00262	0.00285	1.65	52.6	< 0.000010		0.06	0.000015	< 0.00010	< 0.00060	0.00159	0.0	
FR_LMCWSEEP5	FR_LMCWSEEP5_SEEP_2022-09-22_NP	2022-09-22	664	0.019		0.00198	0.00538	2.62	135	< 0.000010		0.12	0.000019	< 0.00010	< 0.00030	0.00394	0.0	
FR_SCRDSEEP1 FR_SCRDSEEP1	FR_SCRDSEEP1_SEEP_2022-04-11_NP FR_SCRDSEEP1_SEEP_2022-09-21_NP	2022-05-19	1430 1820			0.0143 0.00381	0.102 0.0555	7.51 4.18	474 478	< 0.000010 < 0.000020		0.34	0.000051	< 0.00010	< 0.00030	0.00805 0.0131	0.0	
FR SPRWSEEP1	FR SPRPSEEP1 WS 2022-04-27 NP	2022-09-21	636	0.037		0.00381	0.00871	2.67	33.8	< 0.000020		0.19	0.000041	0.00020	0.00148	0.00408	0.0	
FR_SPRWSEEP1	FR_SPRWSEEP1_SEEP_2022-07-01_NP	2022-07-14	642	0.04		0.01317	0.0109	2.64	32.8	< 0.000010		0.56	0.000169	< 0.00011	< 0.00030	0.00237	0.0	
FR_STPNSEEP	FR_STPNSEEP_SEEP_2022-04-11_NP	2022-05-19	493	0.054		0.00077	< 0.00050	1.86	62.2	< 0.000010		0.19	< 0.000010	< 0.00010	< 0.00030	0.00283	< 0.0	0030
FR_STPNSEEP	FR_STPNSEEP_SEEP_2022-07-01_NP	2022-07-15	279	0.031		0.00265	< 0.00050	1.49	19.3	< 0.000010		0.12	< 0.000010	< 0.00010	< 0.00030	0.00163		0030
FR_STPSWSEEP FR_STPSWSEEP	FR STPSWSEEP SEEP 2022-04-11 NP FR STPSWSEEP SEEP 2022-07-01 NP	2022-05-19	610 597	0.097		0.357 0.372	0.00395	5.97 5.17	0.054	< 0.000010 < 0.000010		0.22	0.000012	< 0.00010	< 0.00030	0.0054		0030 0030
FR STPSWSEEP	FR STPSWSEEP SEEP 2022-07-01 NP	2022-07-13	628	0.090		0.314	0.00413	4.82	0.120	< 0.000010		0.22	0.000027	< 0.00010	< 0.00030	0.00578		0030
FR STPWSEEP	FR STPWSEEP SEEP 2022-04-11 NP	2022-05-19	566	0.103		0.44	0.0052	5.67	0.132	< 0.000010		0.21	0.000034	< 0.00010	< 0.00030	0.00072		0030
FR_STPWSEEP	FR_STPWSEEP_SEEP_2022-07-01_NP	2022-07-15	575			0.524	0.00438	5.81	0.099	< 0.000010	6.7	0.23	0.000021	< 0.00010	< 0.00030	0.00647	0.0	003
FR_STPWSEEP	FR_STPSWSEEP_SEEP_2022-09-12_NP	2022-09-12	637	0.102		0.327	0.0045	5.28	0.091	< 0.000010		0.22	0.000033	0.00013	< 0.00030	0.00686	< 0.0	
FR_STPWSEEP FR_TBWSEEP1	FR_STPWSEEP_SEEP_2022-09-23_NP FR_TBWSEEP1_SEEP_2022-04-11_NP	2022-09-23	625 728	0.093		0.232	0.00374	5.08 1.86	0.625 123	< 0.000010		0.21	0.000019 < 0.000010	< 0.00010	< 0.00030	0.00602 0.00438		0030
FR_IBWSEEP1	FR_TBWSEEP1_SEEP_2022-04-11_NP FR_TBWSEEP1_SEEP_2022-07-01_NP	2022-04-11	688	0.036		0.00053 0.000335	0.00108	1.86	96.2	< 0.000010 < 0.000010		0.18	< 0.000010	< 0.00010	< 0.00030	0.00438	0.0	
FR TURNSEEP1	FR TURNSEEP1 SEEP 2022-04-11 NP	2022-07-20	1030			0.000335	0.001025	3.78	352	< 0.000010		0.13	0.000034	< 0.00010	< 0.00030	0.00992	0.0	
FR_TURNSEEP1	FR_TURNSEEP1_SEEP_2022-07-01_NP	2022-07-14	681	0.078	73.2	0.00131	0.00691	2.79	209	< 0.000010	1.52	0.15	0.00003	< 0.00010	< 0.00030	0.00571	0.0	135
FR_TURNSEEP1	FR_TURNSEEP1_SEEP_2022-09-21_NP	2022-09-21	929	0.101		0.0135	0.00611	3.43	283	< 0.000010		0.18	0.000022	< 0.00010	< 0.00030	0.0075	0.0	
FR_TURNSEEP2 FR_TURNSEEP2	FR_TURNSEEP2_SEEP_2022-04-11_NP FR_TURNSEEP2_SEEP_2022-07-01_NP	2022-04-11	831	0.043		0.00075 0.00041	0.0016 0.001515	2.27	159 140.5	< 0.000010 0.0000165		0.21	< 0.000010	< 0.00010 < 0.00010	< 0.00030	0.0037	0.0	
FR_IURNSEEP2		2022-07-14	103	0.048	73.45	0.00041	0.001010	2.230	140.5	0.0000100	12.12	0.2	< 0.000010	_ \ 0.00010	< 0.00030	v.000095	< 0.0	JUJU

Denotes concentration less than indicated detection limit
 Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature ^c Guideline varies with chloride

d Guideline varies with pH

APPENDIX B - TABLE 3: Summary of Analytical Results for Total Metals

											Total Metals							
			rdness	minum	timony	senic	Barium*	Beryllium*	ff.	5	Cadmium	lcium	romium	Cobalt	opper	5	ead	
Sample	Sample	Sample Date	Ē	¥	- F	ž			ä	Bor		Ca	Ġ		Ű	<u> </u>		
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg	/L	mg/L	<u> </u>
						Acute	Chronic	Chronic		Chronic				Acute Chronic		Acute	Acute	Chronic
BC WQG FWAL			n/a	n/a	n/a	0.005	1	0.00013	n/a	1.2	n/a	n/a	n/a	0.11 0.004	n/a	1	0.003-5.5 a	3.3-3.5ª
Greenhills Operation GH E1	GH E1 WS 2022-01-03 NP	2022-01-24	1440	0.0503	< 0.00020	0.00033	0.0162	< 0.040	< 0.000100	0.023	0.0000173	302	< 0.00020	0.00178	< 0.00100	2.8		400
GH_E1	GH_E1_WS_2022-01-03_NP GH_E1_WS_2022-02-07_NP	2022-01-24	828	0.000	0.00020	0.00033	0.0162	< 0.040	< 0.000100	0.023	0.0000173	146	< 0.00020	< 0.10	< 0.00100	0.02	< 0.000	
GH E1	GH E1 WS 2022-03-07 NP	2022-03-09	790	0.015	0.0001	0.00013	0.027	< 0.020	< 0.000050	0.021	0.0000114	168	< 0.00010	< 0.10	< 0.00050	0.062	< 0.000	
GH_E1	GH_E1_WS_2022-04-04_NP	2022-04-20	1750	< 0.0060	< 0.00020	< 0.00020	0.0193	< 0.040	< 0.000100	0.022	0.0000101	345	< 0.00020	0.00122	< 0.00100	0.379	< 0.000	100
GH_E1	GH_E1_WS_2022-05-09_NP	2022-05-12	868	0.007	0.00027	0.00019	0.0323	< 0.020	< 0.000050	0.038	0.0000166	162	< 0.00020	< 0.10	< 0.00050	0.018	< 0.000	
GH_E1	GH_E1_WS_2022-06-07_NP	2022-06-20	921	0.0088	0.00012	0.00017	0.0342	< 0.020	< 0.000050	0.03	0.0000172	171	< 0.00010	< 0.10	< 0.00050	0.016	< 0.000	
GH_E1 GH_E1	GH_E1_WS_2022-07-04_NP GH_E1_WS_2022-08-01_NP	2022-07-08	911 1840	0.009 0.0046	< 0.00020 < 0.00010	0.00028	0.0391 0.0184	< 0.040 < 0.020	< 0.000100 < 0.000050	0.036	0.0000161	154 349	< 0.00020 < 0.00010	< 0.20 0.00138	< 0.00100 < 0.00050	< 0.020	< 0.000	
GH_E1	GH_E1_WS_2022-08-01_NP GH_E1_WS_2022-09-05_NP	2022-08-10	1680	< 0.0030	< 0.00010	0.00029	0.0164	< 0.020	< 0.000050	0.028	< 0.0050	349	< 0.00010	0.00138	< 0.00050	0.299	< 0.000	
GH E1	GH E1 WS 2022-10-03 NP	2022-10-07	1710	< 0.0060	< 0.00020	< 0.00020	0.0165	< 0.040	< 0.000100	0.027	< 0.0100	357	< 0.00020	0.00117	< 0.00100	0.32	< 0.000	
GH_E3	GH_E3_WS_2022-01-03_NP	2022-01-24	1240	0.481	0.00021	0.00046	0.0364	0.000038	< 0.000050	0.024	0.00059	245	0.00057	0.00069	0.00246	1.38	0.0006	
GH_E3	GH_E3_WS_2022-02-07_NP	2022-02-14	901	0.0186	0.00026	0.00015	0.0211	< 0.020	< 0.000050	0.022	0.0000553	167	< 0.00010	< 0.10	0.00051	0.048	< 0.000	
GH_E3	GH_E3_WS_2022-03-07_NP	2022-03-09	913	0.728	0.0003	0.00064	0.0366	0.000048	< 0.000050	0.024	0.000306	218	0.00081	0.0006	0.00235	1.33	0.0006	
GH_E3 GH_E3	GH_E3_WS_2022-05-02_NP GH_E3_WS_2022-06-07_NP	2022-05-11	1270 1160	0.024 0.127	0.00021	0.00024	0.0302	< 0.020 < 0.020	< 0.000050	0.022	0.0000188	180 186	< 0.00010	0.00019	< 0.00050	0.139	< 0.0001	
GH_E3	GH_E3_WS_2022-06-07_NP GH_E3_WS_2022-07-04_NP	2022-06-23	1310	0.127	0.00018 < 0.00020	0.00036	0.0296	< 0.020	< 0.000050 < 0.000100	0.026	0.0000301	182	0.00016 < 0.00020	0.00024 0.00025	0.00066	0.242	0.0001	
GH E3	GH E3 WS 2022-08-01 NP	2022-07-00	1630	0.0127	0.00014	0.00053	0.0356	< 0.020	< 0.000100	0.032	0.00000300	226	< 0.00020	0.00023	< 0.00155	0.081	< 0.0002	
GH E3	GH E3 WS 2022-09-05 NP	2022-09-27	1720	0.0186	< 0.00020	0.00032	0.0294	< 0.040	< 0.000100	0.029	0.0000154	222	< 0.00020	< 0.20	< 0.00100	0.068	< 0.000	
GH_E3	GH_E3_WS_2022-10-03_NP	2022-10-07	1510	0.0353	< 0.00020	0.00046	0.0376	< 0.040	< 0.000100	0.026	0.0000115	250	< 0.00020	0.00022	< 0.00100	0.202	0.0001	
GH_SEEP_12	GH_SEEP_12_WS_2022-06-07_NP	2022-06-21	237	0.0034	< 0.00010	0.00021	0.119	< 0.020	< 0.000050	< 0.010	0.000142	61.3	0.00106	< 0.10	< 0.00050	< 0.010	< 0.000	
GH_SEEP_12	GH_SEEP_12_WS_2022-09-06_NP	2022-09-20	240	0.0413	< 0.00010	0.00018	0.13	< 0.020 < 0.020	< 0.000050	< 0.010	0.000216	67.1	0.00067	< 0.10	< 0.00050	0.078	0.0000	56
GH_SEEP_16 GH_SEEP_21	GH_SEEP_16_WS_2022-09-06_NP GH_SEEP_21_WS_2022-06-07_NP	2022-09-20 2022-06-28	473 1600	0.0136	< 0.00010 0.00021	0.00022	0.0624 0.0232	< 0.020	< 0.000050 < 0.000100	< 0.014	< 0.0050 0.000477	132 332	< 0.00010 < 0.00020	< 0.10 < 0.20	< 0.00050 0.00245	0.062	< 0.000	
GH SEEP 21	GH SEEP 21 WS 2022-00-07 NP	2022-00-20	1790	< 0.0060	< 0.00021	< 0.00022	0.0232	< 0.040	< 0.000100	< 0.020	0.000307	474	< 0.00020	0.00044	< 0.00100	0.178	< 0.000	
GH SEEP 22	GH SEEP 22 WS 2022-06-07 NP	2022-06-28	1380	< 0.0060	< 0.00020	0.00026	0.0381	< 0.040	< 0.000100	< 0.020	0.000132	319	< 0.00020	0.00609	< 0.00100	3.83	< 0.000	
GH_SEEP_22	GH_SEEP_22_WS_2022-09-06_NP	2022-09-20	1680	< 0.0060	< 0.00020	0.00023	0.0177	< 0.040	< 0.000100	< 0.020	0.0000462	402	< 0.00020	0.00039	< 0.00100	0.241	< 0.000	100
GH_SEEP_46	GH_SEEP_46_WS_2022-06-07_NP	2022-06-24	572	0.0165	0.00042	0.00043	0.104	< 0.040	< 0.000100	< 0.020	0.000361	149	< 0.00020	< 0.20	< 0.00100	0.024	< 0.000	
GH_SEEP_5	GH_SEEP_5_WS_2022-06-07_NP	2022-06-23	328	0.0154	0.00018	0.00028	0.108	< 0.020	< 0.000050	0.015	0.000118	79.2	< 0.00010	0.00041	< 0.00050	0.015	< 0.000	
GH_SEEP_5 GH_SEEP_50	GH_SEEP_5_WS_2022-09-06_NP GH_SEEP_50_WS_2022-06-07_NP	2022-09-22 2022-06-28	368 174	0.0433 0.223	0.00019 < 0.00020	0.00031	0.0939	< 0.020 < 0.040	< 0.000050 < 0.000100	0.016	0.00018 0.0000319	94 53.2	0.00013 0.00022	0.0004 0.00024	< 0.00050 0.00151	0.032	< 0.0001	
GH_SEEP_50 GH_SEEP_60	GH_SEEP_50_WS_2022-06-07_NP GH_SEEP_60_WS_2022-06-07_NP	2022-06-29	73.3	0.223	0.00020	0.00039	0.0427	0.000027	< 0.000100	< 0.023	0.000115	20.8	0.00022	0.00024	0.00151	0.22	0.0001	
GH SEEP 76	GH SEEP 76 WS 2022-06-07 NP	2022-06-29	959	0.164	0.00010	0.00025	0.0709	< 0.040	< 0.000100	< 0.010	0.000113	20.0	0.00037	0.00029	< 0.00100	0.33	0.0003	
GH_SEEP_76	GH_SEEP_76_WS_2022-09-06_NP	2022-09-27	1360	0.0202	0.00169	0.0002	0.0567	< 0.020	< 0.000050	< 0.010	0.0000275	234	< 0.00010	0.00093	< 0.00050	0.018	< 0.000	
GH_SEEP_77	GH_SEEP_77_WS_2022-06-07_NP	2022-06-29	1240	0.0071	0.00102	0.0002	0.0808	< 0.040	< 0.000100	0.021	0.000121	292	< 0.00020	0.00168	< 0.00100	< 0.020	< 0.000	
GH_SEEP_77	GH_SEEP_77_WS_2022-09-06_NP	2022-09-27	1390	0.716	< 0.00010	0.00058	0.108	0.000061	< 0.000050	0.031	0.000222	324	0.00052	0.00056	0.00216	0.782	0.0006	
GH_SEEP_79 GH_SEEP_79	GH_SEEP_79_WS_2022-06-07_NP	2022-06-29 2022-09-27	1610 208	0.446 1.63	0.00058 0.00027	0.00046 0.00157	0.0555 0.159	< 0.040 0.000323	< 0.000100 < 0.000050	0.078	0.000104 0.000456	276 54.6	0.00048 0.00147	0.00026	0.00121	0.693 2.38	0.0003	
GH_SEEP_79 GH_SEEP_98	GH_SEEP_79_WS_2022-09-06_NP GH_SEEP_98_WS_2022-06-07_NP	2022-09-27	666	0.011	< 0.00027	< 0.00020	0.159	< 0.040	< 0.000050	< 0.020	0.000456	178	< 0.00147	0.00543 < 0.20	< 0.0067	0.12	0.0042 < 0.000	
GH SEEP 98	GH SEEP 98 WS 2022-09-06 NP	2022-00-29	739	0.011	0.00020	0.00020	0.0467	< 0.040	< 0.000100	0.014	0.000049	210	< 0.00020	< 0.10	< 0.00050	0.123	0.0000	
GH_W-SEEP	GH_W_SEEP_WS_2022-04-04_NP	2022-04-20	1790	0.286	< 0.00020	0.0005	0.0229	< 0.040	< 0.000100	< 0.020	0.0000366	275	0.00032	0.00093	< 0.00100	2.21	0.0005	
GH_W-SEEP	GH_W-SEEP_WS_2022-08-01_NP	2022-08-23	3040	< 0.0150	< 0.00020	0.00133	0.0275	< 0.040	< 0.000100	0.025	< 0.0100	498	< 0.00020	0.00118	< 0.00100	14.6	< 0.000	100
GH_WTDS	GH_WTDS_WS_2022-01-03_NP	2022-01-26						1							L	-		
GH_WTDS	GH_WTDS_WS_2022-02-07_NP	2022-02-14	549 532	0.0038 < 0.0030	0.00014	< 0.00010 < 0.00010	0.036 0.0368	< 0.020	< 0.000050	0.047	0.000316	133	< 0.00010	0.00115	< 0.00050	< 0.010	0.0000	
GH_WTDS GH WTDS	GH_WTDS_WS_2022-03-07_NP GH_WTDS_WS_2022-04-04_NP	2022-03-07	547	0.0030	0.00014 0.00021	0.00010	0.0368	< 0.020 < 0.020	< 0.000050 < 0.000050	0.045	0.000296 0.000301	140	< 0.00010 < 0.00010	0.00117	< 0.00050 0.00051	< 0.010	0.0000	
GH_WTDS	GH_WTDS_WS_2022-04-04_NP GH_WTDS_WS_2022-05-02_NP	2022-04-06	529	0.0062	0.00021	0.00012	0.0334	< 0.020	< 0.000050	0.046	0.000301	141	< 0.00010	0.0011	0.00051	< 0.010	0.0000	
GH WTDS	GH WTDS WS 2022-06-06 NP	2022-06-09	496	0.0054	0.00014	< 0.00012	0.0384	< 0.020	< 0.000050	0.044	0.000264	130	< 0.00010	0.00105	0.00055	0.013	0.0000	
GH_WTDS	GH_WTDS_WS_2022-07-04_NP	2022-07-19	587	0.0064	0.0002	0.00024	0.0421	0.000027	< 0.000050	0.052	0.00035	139	< 0.00010	0.00098	0.00059	0.011	0.0001	105
GH_WTDS	GH_WTDS_WS_2022-08-01_NP	2022-08-05	542	0.0056	0.00014	0.0002	0.0426	< 0.020	< 0.000050	0.045	0.000568	124	< 0.00010	0.00087	0.00056	0.011	0.0000	
GH_WTDS	GH_WTDS_WS_2022-09-05_NP	2022-09-20	519	0.0054	0.0001	0.0001	0.0377	< 0.020	< 0.000050	0.046	0.000057	145	< 0.00010	0.00097	< 0.00050	< 0.010	< 0.000	
GH_WTDS	GH_WTDS_WS_2022-10-03_NP	2022-10-07	518	0.0047	0.0001	0.0001	0.0335	< 0.020	< 0.000050	0.046	0.000269	145	< 0.00010	0.00093	< 0.00050	< 0.010	0.0000	/b/

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted n/a denotes no applicable standard

a Guideline varies with hardness

Guideline varies with pH and water temperature

Guideline varies with chloride

Guideline varies with pH

Guideline varies with pH

APPENDIX B - TABLE 3: Summary of Analytical Results for Total Metals

										Total Metals								
			ess	Ē	nesium	anese	÷	sium	mni	_	E	ntium	En .		E	anium*		
Sample	Sample	Sample Date	lardı	į	Magn	Nang	icke	otas	selen	Silver	Sodium	Stron	halliu	۽ ا	itani	Jrani		Since Since
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	mg/L		mg/l	mg/L	mg/L	mg/L	mg/L		g/L
		1,				Acute	Chronic		Chronic	Acute Chronic						Chronic	Acute	Chronic
BC WQG FWAL			n/a	n/a	n/a	0.001-0.03 ^a 0.0009-0.01 ^a	0.025-0.15 ^a	n/a	2	0.0001-0.003ª 0.00005-0.0015ª	n/a	n/a	n/a	n/a	n/a	0.0085	0.033-2ª	0.0075-2ª
Greenhills Operation	OU 54 WO 0000 04 00 ND	1 0000 04 04	1	0.040	100		0.04				10.50	104			0.0000	0.00700		
GH_E1	GH_E1_WS_2022-01-03_NP GH_E1_WS_2022-02-07_NP	2022-01-24	1440 828	0.049		0.125	0.01	3.82 4.15	0.367	< 0.000020		0.4		< 0.00020 < 0.00010	0.0006 < 0.00030	0.00788	< 0.0	
GH_E1 GH E1	GH_E1_WS_2022-02-07_NP GH_E1_WS_2022-03-07_NP	2022-02-14	790	0.052		0.00932 0.0377	0.00243	4.15	4.01 1.6	< 0.000010 < 0.000010		0.29		< 0.00010	< 0.00030	0.00789	< 0.0	
GH E1	GH E1 WS 2022-04-04 NP	2022-03-03	1750	0.048		0.108	0.012	3.92	0.313	< 0.000010		0.48		0.00093	< 0.00060	0.00852	0.0	
GH E1	GH E1 WS 2022-05-09 NP	2022-05-12	868	0.071		0.0246	0.00301	5.09	3.98	< 0.000020		0.31		< 0.00033	< 0.00030	0.00881	< 0.0	
GH_E1	GH_E1_WS_2022-06-07_NP	2022-06-20	921	0.065		0.0194	0.00288	4.35	3.39	< 0.000010		0.32		< 0.00010	< 0.00030	0.00746		0030
GH_E1	GH_E1_WS_2022-07-04_NP	2022-07-08	911	0.073		0.0279	0.00283	4.96	3.08	< 0.000020		0.33		< 0.00020	< 0.00060	0.00718	< 0.0	0060
GH_E1	GH_E1_WS_2022-08-01_NP	2022-08-10	1840	0.057		0.146	0.0108	4.81	0.194	< 0.000010		0.48		< 0.00010	< 0.00030	0.00785	0.0	
GH_E1	GH_E1_WS_2022-09-05_NP	2022-09-22	1680	0.056		0.107	0.01	4.43	0.186	< 0.000010		0.45		< 0.00010	< 0.00030	0.0083	0.0	
GH_E1	GH_E1_WS_2022-10-03_NP	2022-10-07	1710	0.053		0.109	0.00946	4.36	0.128	< 0.000020		0.48		< 0.00020	< 0.00060	0.00772	< 0.0	
GH_E3	GH_E3_WS_2022-01-03_NP	2022-01-24	1240	0.062		0.0298	0.00642	4.93	-	0.000013		0.31		< 0.00010	0.00414	0.0103		175
GH_E3 GH E3	GH E3 WS 2022-02-07 NP GH E3 WS 2022-03-07 NP	2022-02-14	901	0.049		0.00576 0.0402	0.00386	3.36 4.16	12.6 11.8	< 0.000010 0.000011		0.33		< 0.00010	< 0.00090	0.00608	< 0.0	
GH_E3	GH E3 WS 2022-03-07 NP	2022-03-09	1270	0.062		0.0402	0.00362	4.16	3.18	< 0.000011		0.31		< 0.00010	< 0.00030	0.00815	< 0.0	
GH E3	GH E3 WS 2022-06-07 NP	2022-06-23	1160	0.066		0.0389	0.00362	4.33	1.66	< 0.000010		0.3		< 0.00010	0.00462	0.00834	< 0.0	
GH E3	GH E3 WS 2022-07-04 NP	2022-07-08	1310	0.074		0.0263	0.0035	4.9	7.00	< 0.000010		0.32		< 0.00010	0.00402	0.00054	< 0.0	
GH E3	GH E3 WS 2022-08-01 NP	2022-08-10	1630	0.079		0.0316	0.00489	6.12	0.489	< 0.000010		0.33		< 0.00010	0.00039	0.00803	< 0.0	
GH E3	GH E3 WS 2022-09-05 NP	2022-09-27	1720	0.08		0.00328	0.00321	5.3	0.571	< 0.000020	8.52			< 0.00020	< 0.00060	0.00826	< 0.0	
GH_E3	GH_E3_WS_2022-10-03_NP	2022-10-07	1510	0.069		0.0925	0.0045	5.42	0.443	< 0.000020		0.37		< 0.00020	< 0.00060	0.00828	< 0.0	0060
GH_SEEP_12	GH_SEEP_12_WS_2022-06-07_NP	2022-06-21	237		25.8	0.0002	0.00112	0.41	2.44	< 0.000010		0.04		< 0.00010	< 0.00030	0.00148	0.0	
GH_SEEP_12	GH_SEEP_12_WS_2022-09-06_NP	2022-09-20	240	< 0.001		0.0172	0.0019	0.49	4.45	< 0.000010		0.05		< 0.00010	0.00034	0.00187		154
GH_SEEP_16	GH_SEEP_16_WS_2022-09-06_NP	2022-09-20	473	0.008		0.00316	0.0009	0.937	20.5	< 0.000010		0.24		< 0.00010	< 0.00030	0.000474		0030
GH_SEEP_21	GH_SEEP_21_WS_2022-06-07_NP	2022-06-28	1600	0.066		0.00119	0.00437	5.66	97.2	< 0.000020		0.23		< 0.00020	< 0.00060	0.00878	0.0	
GH_SEEP_21 GH_SEEP_22	GH SEEP 21 WS 2022-09-06 NP GH SEEP 22 WS 2022-06-07 NP	2022-09-20	1790 1380	0.085		0.928 1.74	0.015	6.62 5.26	0.753 0.805	< 0.000020 < 0.000020		0.33		< 0.00020 < 0.00020	< 0.00060 < 0.00060	0.00582	0.0	
GH SEEP 22	GH SEEP 22 WS 2022-09-06 NP	2022-09-20	1680	0.063		0.469	0.00385	5.62	2.86	< 0.000020		0.25		< 0.00020	< 0.00060	0.00561	< 0.0	
GH SEEP 46	GH SEEP 46 WS 2022-06-07 NP	2022-06-24	572	0.003		0.00108	0.00365	1.89	179	< 0.000020		0.18		< 0.00020	< 0.00060	0.00213	< 0.0	
GH SEEP 5	GH SEEP 5 WS 2022-06-07 NP	2022-06-23	328	0.000		0.00100	0.00243	1.87	2.46	< 0.000020		0.18		< 0.00020	0.00032	0.000469	0.0	
GH SEEP 5	GH_SEEP_5_WS_2022-09-06_NP	2022-09-22	368	0.015		0.00631	0.0049	1.82	2.48	< 0.000010		0.19		< 0.00010	0.00106	0.000727	0.0	
GH SEEP 50	GH SEEP 50 WS 2022-06-07 NP	2022-06-28	174	0.006	14.8	0.00805	0.00217	1.41	0.329	< 0.000020	19.5	0.23	< 0.000020	< 0.00020	0.00114	0.000362		0060
GH_SEEP_60	GH_SEEP_60_WS_2022-06-07_NP	2022-06-29	73.3	< 0.001	6.78	0.0259	0.00148	0.706	0.313	0.000022	1.87	0.09	0.000021	< 0.00010	0.00525	0.000031	0.0	1034
GH_SEEP_76	GH_SEEP_76_WS_2022-06-07_NP	2022-06-29	959	0.139		0.00868	0.0383	3.04	458	< 0.000020	8.93			< 0.00020	0.00134	0.0113		009
GH_SEEP_76	GH_SEEP_76_WS_2022-09-06_NP	2022-09-27	1360	0.127	129	0.00141	0.0468	3.48	526	< 0.000010		0.61		< 0.00010	0.0006	0.0158	< 0.0	
GH_SEEP_77	GH_SEEP_77_WS_2022-06-07_NP	2022-06-29	1240	0.09	135	0.0146	0.0427	3.19	427	< 0.000020		0.91		< 0.00020	< 0.00060	0.00851	0.0	
GH_SEEP_77 GH_SEEP_79	GH_SEEP_77_WS_2022-09-06_NP GH_SEEP_79_WS_2022-06-07_NP	2022-09-27 2022-06-29	1390 1610	0.026		0.0672 0.0275	0.00217	1.92 4.84	144 80.3	0.000018 < 0.000020		0.45		< 0.00010 < 0.00020	0.00801 0.00728	0.00105	0.0	
GH_SEEP_79	GH SEEP 79 WS 2022-09-06 NP	2022-06-29	208	0.163		0.0275	0.0306	2.21	0.658	0.000020		1.95		< 0.00020	0.00728	0.0145 0.0006	0.0	
GH SEEP 98	GH SEEP 98 WS 2022-06-07 NP	2022-06-29	666	0.230		0.0177	< 0.00149	1.74	10.9	< 0.000024		0.32		< 0.00010	< 0.00060	0.00204	< 0.0	
GH SEEP 98	GH SEEP 98 WS 2022-09-06 NP	2022-09-28	739	0.01		0.00485	0.0007	1.59	12.4	< 0.000010		0.37		0.00014	0.00047	0.00188	< 0.0	
GH_W-SEEP	GH_W_SEEP_WS_2022-04-04_NP	2022-04-20	1790	0.033		0.876	0.00158	6.25	2.57	< 0.000020	4.28	0.18		< 0.00020	0.00498	0.00332	< 0.0	
GH_W-SEEP	GH_W-SEEP_WS_2022-08-01_NP	2022-08-23	3040	0.049	451	3.69	0.00468	7.84	0.317	< 0.000020	4.48	0.25	< 0.000020	< 0.00020	< 0.00060	0.0045	< 0.0	0060
GH_WTDS	GH_WTDS_WS_2022-01-03_NP	2022-01-26	-	-	-	-	-	-	-	-	-		-	-		-		
GH_WTDS	GH_WTDS_WS_2022-02-07_NP	2022-02-14	549	0.045		0.00028	0.00773	2.53	4.96	< 0.000010		0.74		< 0.00010	< 0.00030	0.00328	0.0	
GH_WTDS	GH_WTDS_WS_2022-03-07_NP	2022-03-07	532	0.05		0.00019	0.00742	2.54	3.81	< 0.000010		0.75		< 0.00010	< 0.00030	0.00358	0.0	
GH_WTDS GH_WTDS	GH_WTDS_WS_2022-04-04_NP	2022-04-06	547 529	0.05	50.8	0.00038 0.00027	0.008	2.48	22.1	< 0.000010 < 0.000010		0.74		< 0.00010	< 0.00030	0.00373	0.0	
GH_WTDS	GH_WTDS_WS_2022-05-02_NP GH_WTDS_WS_2022-06-06_NP	2022-05-06	496	0.054		0.00027	0.0089	2.79	10.5 7.17	< 0.000010	16.5	0.77		< 0.00010	< 0.00030	0.00357	0.0	
GH_WTDS	GH_WTDS_WS_2022-06-06_NP GH_WTDS_WS_2022-07-04_NP	2022-06-09	587	0.044		0.00044	0.00794	2.66	14.5	< 0.000010		0.66		< 0.00010	< 0.00030	0.0034	0.0	
GH_WTDS	GH_WTDS_WS_2022-07-04_NP GH_WTDS_WS_2022-08-01_NP	2022-07-19	542	0.053		0.00221	0.0106	2.79	11.2	< 0.000010		0.73		< 0.00010	< 0.00030	0.00398	0.0	
GH WTDS	GH WTDS WS 2022-09-05 NP	2022-09-20	519	0.05	60.8	0.00189	0.0123	2.56	6.28	< 0.000010	116.4	0.76	0.000051	< 0.00010	< 0.00030	0.00357	0.0	1034

< Denotes concentration less than indicated detection limit

Denotes analysis not conducted n/a denotes no applicable standard

a Guideline varies with hardness

Guideline varies with naroness

⁶ Guideline varies with pH and water temperature

⁶ Guideline varies with chloride

^d Guideline varies with pH

APPENDIX B - TABLE 3: Summary of Analytical Results for Total Metals

											Total Metals							
	1	_						1			Total Wetals							
Sample	Sample	Sample Date	Hardness	Aluminum	Antimony	Arsenic	Barium*	Beryllium*	Bismuth	Boron	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg	/L	mg/L	<u> </u>
						Acute	Chronic	Chronic		Chronic				Acute		Acute	Acute	Chronic
BC WQG FWAL			n/a	n/a	n/a	0.005	1	0.00013	n/a	1.2	n/a	n/a	n/a	0.11 0.004	n/a	1	0.003-5.5 a	3.3-3.5ª
Line Creek Operation							•											
LC_3KM	LC_3KM_WS_SPRING-2022_NP	2022-06-29	277	0.0198	0.00038	0.00025	0.58	< 0.020	< 0.000050	0.04	0.0000146	65	< 0.00010	< 0.10	< 0.00050	< 0.010	< 0.0000	050
LC_3KM	LC_3KM_WS_FALL-2022_NP	2022-09-26	313	0.0161	0.0004	0.00031	0.674	< 0.020	< 0.000050	0.049	< 0.0050	63.2	< 0.00010	< 0.10	< 0.00050	< 0.010	0.00014	46
LC_SEEP1	LC_SEEP1_WS_FALL-2022_NP	2022-09-23	329	0.0045	0.00023	0.00016	0.117	< 0.020	< 0.000050	0.076	< 0.0050	73	< 0.00010	< 0.10	< 0.00050	0.015	< 0.0000	
LC_SEEP10	LC_SEEP10_WS_SPRING-2022_NP	2022-07-08	782	0.0031	< 0.00010	0.00032	0.146	< 0.020	< 0.000050	0.035	0.0000569	201	< 0.00010	0.00415	< 0.00050	0.991	< 0.0000	050
LC_SEEP10	LC_SEEP10_WS_FALL-2022_NP	2022-09-16	843	0.0043	< 0.00010	0.00029	0.168	< 0.020	< 0.000050	0.038	0.0000387	230	< 0.00010	0.00349	< 0.00050	0.862	< 0.0000	
LC_SEEP11	LC_SEEP11_WS_SPRING-2022_NP	2022-07-08	603	0.0046	< 0.00010	< 0.00010	0.153	< 0.020	< 0.000050	0.022	0.0000109	146	< 0.00010	< 0.10	< 0.00050	0.014	< 0.0000	
LC_SEEP11	LC_SEEP11_WS_FALL-2022_NP	2022-09-16	608	0.0072	< 0.00010	0.00012	0.164	< 0.020	< 0.000050	0.024	0.0000119	156	< 0.00010	< 0.10	< 0.00050	0.018	< 0.0000	050
LC_SEEP14	LC_SEEP14_WS_SPRING-2022_NP	2022-06-29	468	< 0.0030	0.00025	0.00011	0.0479	< 0.020	< 0.000050	0.015	0.0000276	96	0.00014	< 0.10	< 0.00050	< 0.010	< 0.0000	
LC_SEEP15	LC_SEEP15_WS_SPRING-2022_NP	2022-06-29	530	0.0543	< 0.00010	0.00012	0.0517	< 0.020	< 0.000050	< 0.010	0.0000348	127	0.00024	< 0.10	< 0.00050	0.074	0.0000	
LC_SEEP15	LC_SEEP15_WS_FALL-2022_NP	2022-09-23	568	0.0087	< 0.00010	< 0.00010	0.039	< 0.020	< 0.000050	< 0.010	0.0000063	125	0.00022	< 0.10	< 0.00050	0.011	< 0.0000	050
LC_SEEP19	LC_SEEP19_WS_SPRING-2022_NP	2022-06-29	332	0.0077	0.00019	0.00015	0.0322	< 0.020	< 0.000050	< 0.010	0.000129	71.4	0.00016	< 0.10	< 0.00050	< 0.010	< 0.0000	050
LC_SEEP19	LC_SEEP19_WS_FALL-2022_NP	2022-09-26	742	0.004	0.00025	0.00016	0.0612	< 0.020	< 0.000050	0.014	0.000244	145	0.00019	< 0.10	< 0.00050	< 0.010	< 0.0000	
LC_SEEP2	LC_SEEP2_WS_SPRING-2022_NP	2022-06-29	337	0.118	< 0.00010	0.00017	0.207	< 0.020	< 0.000050	< 0.010	0.0000595	92.2	0.00039	0.00023	0.00059	0.255	0.0002	
LC_SEEP2	LC_SEEP2_WS_FALL-2022_NP	2022-09-26	255	0.0031	< 0.00010	0.00011	0.13	< 0.020	< 0.000050	< 0.010	0.0000138	63.9	0.00026	< 0.10	< 0.00050	< 0.010	< 0.0000	
LC_SEEP8	LC_SEEP8_WS_SPRING-2022_NP	2022-06-28	169	0.471	0.00038	0.00059	0.14	0.000024	< 0.000050	< 0.010	0.0000577	41.6	0.00096	0.0002	0.00168	0.22	0.0001	
LC_SEEP8	LC_SEEP8_WS_FALL-2022_NP	2022-09-20	138	5.41	0.00094	0.00479	0.31	0.000776	0.000151	< 0.020	0.00179	41.8	0.0103	0.00523	0.0248	7.18	0.0082	27
LC_UDHP	LC_UDHP_WS_SPRING-2022_NP	2022-06-23	259	0.0286	0.00033	0.00034	0.187	< 0.020	< 0.000050	< 0.010	0.000068	68.7	0.00023	< 0.10	0.00056	0.031	< 0.0000	050
LC_UDHP	LC_UDHP_WS_FALL-2022_NP	2022-09-26	552	< 0.0150	0.0004	0.0003	0.399	< 0.020	< 0.000050	0.013	0.000146	143	0.00012	< 0.10	< 0.00050	0.01	< 0.0000	
LC_UDP1	LC_UDP1_WS_SPRING-2022_NP	2022-06-23	272	0.0121	0.0002	0.00033	0.204	< 0.020	< 0.000050	< 0.010	0.0000165	76	0.00037	< 0.10	0.0005	0.027	< 0.0000	050
LC_UDP1	LC_UDP1_WS_FALL-2022_NP	2022-09-26	204	0.0272	0.00021	0.00038	0.192	< 0.020	< 0.000050	0.013	0.0000343	60.4	0.00047	< 0.10	< 0.00050	0.169	< 0.0000	050
LC_WLC_LOT2	LC_WLC_LOT2_WS_SPRING-2022_NP	2022-07-08	995	0.0032	0.00046	0.00019	0.018	< 0.020	< 0.000050	0.024	0.00156	191	< 0.00010	< 0.10	0.00085	< 0.010	< 0.0000	050
LC WLC LOT2	LC WLC LOT2 WS FALL-2022 NP	2022-09-23	1100	0.0127	0.00052	0.00041	0.0558	< 0.020	< 0.000050	0.052	0.00047	249	< 0.00010	< 0.10	0.00051	0.019	< 0.0000	050

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

Guideline varies with pH and water temperature

Guideline varies with chloride

Guideline varies with pH

APPENDIX B - TABLE 3: Summary of Analytical Results for Total Metals

										Total Metals								
Sample	Sample	Sample Date	Hardness	Lithium	Magnesium	Manganese	Nickel*	Potassium	Selenium	Silver	Sodium	Strontium	Thallium	ř	Titanium	Uranium*		Zinc
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	mg/L	mg/l	L mg/l	mg/L	mg/L	mg/L	mg/L		mg/L
						Acute	Chronic		Chronic	Acute						Chronic	Acute	Chronic
BC WQG FWAL			n/a	n/a	n/a	0.001-0.03 ^a 0.0009-0.01 ^a	0.025-0.15 ^a	n/a	2	0.0001-0.003° 0.00005-0.0015°	n/a	n/a	n/a	n/a	n/a	0.0085	0.033-2ª	0.0075-2ª
Line Creek Operation																		
LC_3KM	LC_3KM_WS_SPRING-2022_NP	2022-06-29		0.154		0.00034	0.00094	6.87	2.04	< 0.000010		0.24		< 0.00010	< 0.00030	0.00267	<	0.0030
LC_3KM	LC_3KM_WS_FALL-2022_NP	2022-09-26	313	0.259		0.00029	0.00073	8.63	0.726	< 0.000010		0.28		< 0.00010	< 0.00030	0.00332		0.0030
LC_SEEP1	LC_SEEP1_WS_FALL-2022_NP	2022-09-23		0.375	43.7	0.00055	0.00091	4.34	0.604	< 0.000010		0.29		< 0.00010	< 0.00030	0.00205		0.004
LC_SEEP10	LC_SEEP10_WS_SPRING-2022_NP	2022-07-08	782	0.04	61.2	0.236	0.00728	3.15	0.278	< 0.000010		0.48		< 0.00010	< 0.00030	0.00123		1.0052
LC_SEEP10	LC_SEEP10_WS_FALL-2022_NP	2022-09-16	843	0.04	67.4	0.212	0.00715	3.38	0.142	< 0.000010		0.54		< 0.00010	< 0.00030	0.00138		0.003
LC_SEEP11	LC_SEEP11_WS_SPRING-2022_NP	2022-07-08	603	0.024		0.00389	0.00051	1.95	2.38	< 0.000010			< 0.000010	< 0.00010	< 0.00030	0.00314		0.0030
LC_SEEP11	LC_SEEP11_WS_FALL-2022_NP	2022-09-16	608	0.025		0.00665	0.00054	2	2.07	< 0.000010			< 0.000010	< 0.00010	< 0.00030	0.00299		0.0030
LC_SEEP14	LC_SEEP14_WS_SPRING-2022_NP	2022-06-29	468	0.04	47.3	0.00021	0.00071	1.6	62.9	< 0.000010			< 0.000010	< 0.00010	< 0.00030	0.00338		0.0030
LC_SEEP15	LC_SEEP15_WS_SPRING-2022_NP	2022-06-29	530	0.009	52.3	0.00509	< 0.00050	1.02	118	< 0.000010	1.58	0.12	< 0.000010	< 0.00010	0.00093	0.00266	<	0.0030
LC_SEEP15	LC_SEEP15_WS_FALL-2022_NP	2022-09-23	568	0.01	56.4	0.00049	< 0.00050	0.961	119	< 0.000010		0.11		< 0.00010	< 0.00030	0.0029		0.0030
LC_SEEP19	LC_SEEP19_WS_SPRING-2022_NP	2022-06-29	332	0.01	35.6	0.00028	0.00701	1.2	43.3	< 0.000010		0.13		< 0.00010	< 0.00030	0.00366	0	1.0101
LC_SEEP19	LC_SEEP19_WS_FALL-2022_NP	2022-09-26	742	0.018	77.1	0.00019	0.0145	1.67	67.1	< 0.000010		0.23		< 0.00010	< 0.00030	0.00784		0.014
LC_SEEP2	LC_SEEP2_WS_SPRING-2022_NP	2022-06-29	337	0.007	25.4	0.00754	0.00098	0.976	4.81	< 0.000010		0.18		< 0.00010	0.00145	0.00119		.0034
LC_SEEP2	LC_SEEP2_WS_FALL-2022_NP	2022-09-26	255	0.005	18.9	0.00027	< 0.00050	0.622	1.58	< 0.000010		0.12		< 0.00010	< 0.00030	0.000888		0.0030
LC_SEEP8	LC_SEEP8_WS_SPRING-2022_NP	2022-06-28	169	0.001	16.1	0.0051	0.0024	0.952	0.316	0.000024		0.07	0.000026	< 0.00010	0.0164	0.00124		.0031
LC_SEEP8	LC_SEEP8_WS_FALL-2022_NP	2022-09-20	138	0.005	16.5	0.19	0.0321	3	0.96	0.00062		0.08		< 0.00020	0.0441	0.00222		0.103
LC_UDHP	LC_UDHP_WS_SPRING-2022_NP	2022-06-23	259	0.009	19.6	0.00172	0.00082	1.53	9.43	< 0.000010		0.09		< 0.00010	0.0006	0.00114		0.0030
LC_UDHP	LC_UDHP_WS_FALL-2022_NP	2022-09-26	552	0.025	51.3	0.00219	0.00117	2.64	77.2	< 0.000010		0.2	0.00001	< 0.00010	0.00048	0.00199		0.0030
LC_UDP1	LC_UDP1_WS_SPRING-2022_NP	2022-06-23		0.008		0.00092	< 0.00050	1.38	1.26	< 0.000010		0.11		< 0.00010	< 0.00030	0.00113		.0033
LC_UDP1	LC_UDP1_WS_FALL-2022_NP	2022-09-26	204	0.014	15.4	0.00121	< 0.00050	1.26	2.27	< 0.000010		0.08		< 0.00010	0.00041	0.000582		0.0030
LC_WLC_LOT2	LC_WLC_LOT2_WS_SPRING-2022_NP	2022-07-08	995	0.032	120	0.00042	0.0266	2.42	250	< 0.000010		0.23		< 0.00010	< 0.00030	0.00897		.0631
LC WLC LOT2	LC WLC LOT2 WS FALL-2022 NP	2022-09-23	1100	0.06	103	0.00036	0.0115	2.4	99.7	< 0.000010	15.4	1.45	0.000016	< 0.00010	< 0.00030	0.00384		1.0203

Denotes concentration less than indicated detection limit
 Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^o Guideline varies with chloride

^d Guideline varies with pH

Appendix C 2022 Comparison Point Analytical Data Summary

APPENDIX C - TABLE 1: Summary of Analytical Results for Dissolved Organics, Nutrients and Organics

				Field	l Param	otors				Physical Pa	arametor	·e		1		Diens	lved Inor	nanice			1		Nutrient	e .				
		I		rieic	Farani	eters				- IIysicai F	arameter	1	T			DISSO	ivea inor	ganics	1				Nutrient	.		1		Τ
Sample	Sample	Sample Date	Field Temperature	pH (field)	Dissolved Oxygen	Field Conductivity	Field ORP	Hd	Hardness	Conductivity	Total Suspended Solids	Total Dissolved Solids	Turbidity	Bicarbonate	Carbonate	Hydroxide	Bromide	Chloride	Fluoride	Sulfate	Ammonia Nitrogen	Nitrate Nitrogen	Nitr ite Nitrogen	Kjeldahi Nitrogen-N	Ortho-Pho sphate	Phosphorus, Total	Total Organic Carbon	Dissolved Organic Carbor
Location	ID	(yyyy-mm-dd)	С	pН	mg/L	μS/cm	mV	pН	mg/L	μS/cm	mg/L	mg/L	ntu	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
				Minimum Maximum	Acute Chronic			Minimum Maximum			Acute Chronic		Acute					Acute Chronic	Acute	Chronic	Acute Chron ic	Acute Chronic	Acute Chronic			Chronic		
BC WQG FWAL			n/a	6.5 9	1 5	n/a	n/a	6.5 9	n/a	n/a	25 5	n/a	8 2	n/a	n/a	n/a	n/a	600 150	0.4- a	128-429	0.681-28.7 ^b 0.102-2.08 ^b	32.8 3.7	0.06-0.60° 0.02-0.20°	n/a	n/a	0.015	n/a	n/a
Coal Mountain Mine CM CC1	CM CC1 WS 2022-01-04 N	2022-01-06	-	- 1	-	-		8.13	922	1620	< 1.0	1290	0.71	353	< 1.0	< 1.0	< 0.250	1.67	0.163	767	0.155	4.46	0.0391	0.472	-	0.0027	0.74	0.88
CM_CC1	CM CC1 WS 2022-01-04 N	2022-01-00	+					8.03	913	1640	2.3	1370	0.71	344	< 1.0	< 1.0	< 0.250	1.77	0.146	816	0.0899	4.40	0.0299	0.472		0.0027	0.74	0.88
CM_CC1	CM CC1 WS 2022-02-01 N	2022-01-11	-	-	-	-	-	8.17	1050	1660	< 1.0			364	< 1.0	< 1.0		1.46	0.158	757	0.0568	4.05	0.0133	0.378		0.0039	0.57	< 0.50
CM CC1	CM CC1 WS 2022-03-01 N	2022-03-01	-	-	-	-	-	8.23	978	1640	2.2	1440	0.48	359	< 1.0	< 1.0	< 0.250	2.04	0.132	800	0.0069	4.53	0.0135	0.368	-	0.0028	1.21	1.12
CM CC1	CM CC1 WS 2022-03-15 N	2022-03-15	-	-	-	-	-	8.03	988	1660	1.2	1490	0.3	351	< 1.0	< 1.0	< 0.250	2.1	0.119	807	< 0.0050	4.47	< 0.0050	0.417	-	0.0026	0.58	0.56
CM_CC1	CM_CC1_WS_2022-03-22_N	2022-03-22	-	-	-	-	-	8.29	1030	1690	1.7	1370	0.19	365	< 1.0	< 1.0	< 0.250	2.92	0.125	746	< 0.0050	4.35	0.006	0.327		0.0023	0.61	0.57
CM_CC1	CM_CC1_WS_2022-03-29_N	2022-03-29	-	-	-	-	-	8.16	970	1540	1.8	1290	2.45	327	< 1.0	< 1.0	< 0.250	4.26	0.17	721	0.005	4.08	0.008	0.289	-	0.0044	0.71	0.64
CM_CC1	CM_CC1_WS_2022-04-05_N	2022-04-05	-	-	-	-	-	8.22	899	1580	1.2	1240	0.91	362	< 1.0	< 1.0	< 0.250	3.66	0.15	662	0.045	3.61	0.0344	0.319	-	0.0026	1	0.76
CM_CC1	CM_CC1_WS_2022-04-12_N	2022-04-12	-	-	-	-	-	8.12	889	1540	2.1	1190	1.08	366	< 1.0	< 1.0	< 0.250	3.5	0.166	672	0.0225	3.67	0.0139	0.272	-	0.0034	0.77	0.75
CM_CC1	CM_CC1_WS_2022-04-19_N	2022-04-19	-	-	-	-	-	8.07	872	1560	2.4		0.91	360	< 1.0	< 1.0		3.41	0.155	690	0.021	3.96	0.006	0.374	-	0.0031	0.68	0.76
CM_CC1	CM_CC1_WS_2022-04-26_N	2022-04-26	-	-	-	-	-	8.32	818.5	1500	2.95	1205	2.35	347	3.55	< 1.0	< 0.250	3.385	0.168	688.5	0.011	3.875	0.01385	0.239	-	0.0039	0.91	0.905
CM_CC1 CM CC1	CM_CC1_WS_2022-05-03_N CM_CC1_2022-05-06_N2	2022-05-03	-	-	-	-	-	8.13	772	1420	3.7 8.6	1120	2.55 9.9	327	< 1.0	< 1.0	< 0.250	3.06	0.191	644	0.0653	3.06	0.0219	0.5	-	0.0037	0.64	0.68
CM_CC1	CM_CC1_2022-05-06_N2 CM_CC1_2022-05-06_N1	2022-05-06	-	-		-	-	-	-	-	10.2	-	12	-	-			-	-			-	-	-	-	+ :	-	+ -
CM_CC1	CM_CC1_2022-05-06_N1	2022-05-07	+ -	-		-	-	-	+ -		10.2	+ -	11.2			-		-	H-i-	H -	-	-	-	-		+ -	 -	+ -
CM_CC1	CM CC1 WS 2022-05-10 N	2022-05-10	+-	-	-		<u> </u>	8.28	694	1340	4	1120	4.48	338	< 1.0	< 1.0	< 0.250	2.65	0.196	587	0.0972	3.81	0.0181	0.478		0.0061	1.14	0.96
CM CC1	CM CC1 WS 2022-05-17 N	2022-05-17	-	-	-	-	-	8.2	730.5	1285	1.95		3.155		< 1.0	< 1.0	< 0.250	2.255	0.1845		0.0744	2.77	0.0154	0.4705	-	0.00375	0.99	0.905
CM CC1	CM NNP WS 2022-05-17 N	2022-05-17	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CM CC1	CM CC1 WS 2022-05-24 N	2022-05-24	-	-	-	-	-	8.14	721	1290	2.4	992	1.26	290	< 1.0	< 1.0	< 0.250	2.07	0.176	538	0.0532	3.01	0.0092	0.352	-	0.0032	0.98	0.88
CM_CC1	CM_CC1_WS_2022-05-31_N	2022-05-31	-	-	-	-	-	8.45	637	1150	5.3	931	3.11		8.6	< 1.0	< 0.250	1.14	0.155	474	0.0556	2.86	0.0093	0.322	-	0.0061	1.18	0.78
CM_CC1	CM_CC1_WS_2022-06-07_N	2022-06-07	-	-	-	-	-	8.26	654	1160	4.8	843	2.17		< 1.0	< 1.0	< 0.250	1	0.174	465	0.0666	2.5	0.0096	0.351	-	0.0065	1.25	1.08
CM_CC1	CM_CC1_WS_2022-06-14_N	2022-06-14	-	-	-	-	-	8.21	538	1030	11.6		8.2		< 1.0	< 1.0	< 0.250	1.92	0.14	423	0.0407	1.88	< 0.0050	0.418	-	0.0116	2.37	0.83
CM_CC1	CM_CC1_WS_2022-06-21_N	2022-06-21	-		-	-	-	8.205	601.5	1030	1.65	817.5		304	< 1.0	< 1.0	< 0.250	0.97	0.142	392	0.06025	1.89	0.01245	0.277	-	0.0042	< 0.50	< 0.50
CM_CC1	CM_CC1_WS_2022-06-28_N	2022-06-28	-	-	-	-	-	8.23	798	1360	1.6	1040	0.74		< 1.0		< 0.250	1.44	0.188	517	0.0779	2.28	0.0148	0.354	-	0.0033	1	0.89
CM_CC1	CM_CC1_WS_2022-07-05_N	2022-07-05	-	-	-	-	-	8.12	834	1420	2.3	1130	1.3	362	< 1.0	< 1.0	< 0.250	1.23	0.163	619	0.0874	2.71	0.0163	0.365	-	0.0036	1.08	1
CM_CC1 CM CC1	CM_NNP_WS_2022-07-12_N CM_CC1_WS_2022-07-12_N	2022-07-12	-	-		-	-	8.245	970.5	1475	1.7	1260	1 315	364.5	< 1.0	- 10	< 0.250	1.185	0.1465	638.5	0.0907	2.59	0.0127	0.357	-	0.0033	0.695	0.71
CM_CC1	CM_CC1_WS_2022-07-12_N CM_CC1_WS_2022-08-02_N	2022-07-12	-	-	-	-		8.245	970.5	1580	1.85	1340	0.93		< 1.0	< 1.0	< 0.250	1.705	0.1465	751.5	0.0907	3.065	0.0127	0.357		0.0033	< 0.50	
CM_CC1	CM NNP WS 2022-08-02 N	2022-08-02	-	-		-	-	0.2	9/1	1580	1.00	1340	0.93	308.0	< 1.0	< 1.0	< 0.250	1.705	0.201	/51.5	0.07793	3.003	0.02203	0.347		0.00335	< 0.50	< 0.50
CM CC1	CM CC1 2022-08-25 N1	2022-08-25	+	-		-	-	<u> </u>		+	1.9	+ -	1.33	+-		-	+ -	-	+	+	-	-	-	-			<u> </u>	+ -
CM CC1	CM CC1 WS 2022-09-06 N	2022-09-06	-	-	-	-	-	8.145	1026.5	1630	2.35	1335		368.5	< 1.0	< 1.0	< 0.250	2.345	0.1665	805.5	0.03495	3.185	0.01665	0.5605	-	< 0.0020	0.535	0.605
CM_CC1	CM_CC1_WS_SEPT-2022_N	2022-09-08	-	-	-	-	-	8.18	1040	1600	1.4	1330	0.51	347	< 1.0		< 0.250	2.52	0.204	746	0.0361	3.15	0.0246	0.308	-	< 0.0020		0.67
CM_CC1	CM_CC1_WS_2022-10-04_N	2022-10-04	-	-	-	-	-	8.09	1020	1510	2.8	1280	0.35	392	< 1.0	< 1.0	< 0.250	4.07	0.19	764	0.0115	3.29	0.0196	0.325	-	0.0024	0.89	0.86
CM_CC1	CM_CC1_WS_2022-11-01_N	2022-11-01	-	-	-	-	-	7.84	1030	1670	2.5	1400		362	< 1.0		< 0.250	3.44	0.167	802	0.0388	3.54	0.0194	0.303		0.0027	1	0.97
CM_CC1	CM_CC1_WS_2022-12-06_N	2022-12-06	-	-	-	-	-	8.235	1165	1680	1.85	1430	0.415		< 1.0	< 1.0	< 0.250	4.93	0.139	796	0.0242	3.645	0.01445	0.1815	-	< 0.0020		
CM_CCOFF	CM_CCOFF_WS_2022-01-04_NP	2022-01-06	-	-	-	-	-	8.12	995	1720	1.2	1410		374	< 1.0	< 1.0	< 0.250	1.07	0.165	805	0.334	5.28	0.0458	0.644	-	0.0025	0.7	0.78
CM_CCOFF	CM_CCOFF_WS_2022-01-11_NP	2022-01-11	-	-	-	-	-	8.07	970	1760	< 1.0		1.12	382	< 1.0	< 1.0	< 0.250	0.9	0.148	868	0.203	5.27	0.0458	0.504	-	0.003	0.78	0.75
CM_CCOFF	CM_CCOFF_WS_2022-01-18_NP	2022-01-18	-	-	-	-	-	8.15	1080	1750	< 1.0	1550	0.62	368	< 1.0	< 1.0	< 0.250	1.1	0.14	890	0.094	5.2	0.0342	0.43	-	0.0027	0.8	0.78

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted n/a denotes no applicable standard

BOLD ITALIC Concentrate greater than the chronic (30-Day average) BCWQG for FWAL Concentrate greater than the acute (short term) BCWQG for FWAL

^a Guideline varies with hardness ^b Guideline varies with pH and water temperature ^c Guideline varies with chloride

APPENDIX C - TABLE 1: Summary of Analytical Results for Dissolved Organics, Nutrients and Organics

				Fiel	d Param	eters				Physical F	arameter	'S		T		Diss	solved In	organics					Nutrient	s				
Sample	Sample	Sample Date	ield Temperature	pH (field)	Dissolved Oxygen	ield Conductivity	ield ORP	¥	lardness	Conductivity	Total Suspended Solids	otal Dissolved Solids	Turbidity	Sicarbonate	carbonate	łydroxide	3romide	Chloride	luoride	sulfate	Ammonia Nifrogen	Vitrate Nitrogen	Vitrite Nitrogen	(jeldahl Nitrogen-N	Ortho-Phosphate	hosphorus, Total	otal Organic Carbon	Dissolved Organic Carbon
Location	ID	(yyyy-mm-dd)	Č			μS/cm	mV	pH	mg/L	μS/cm	mg/L	mg/L		mg/L	mg/L	mg/L	mg/L		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
BC WQG FWAL Coal Mountain Mine				Minimum Maximum 9.5	Acute Chronic		n/a	mnwixeW 9		n/a	5 2 Acute		8 Acute		n/a	n/a	n/a	Acute	ē.	Chronic	# 0.681-28.7 ^b 0.102-2.08	Acute Chronic	Acute		n/a	0.015	n/a	n/a
CM CCOFF	CM CCOFF WS 2022-01-19 NP	2022-01-19	Τ-	T -	T -	-	-	8.11	1110	1760	6.3	1380	0.45	392	< 1.0	< 1.0	< 0.25	6.34	0.162	863	0.094	5.14	0.0252	0.381	-	0.0024	0.79	0.82
CM_CCOFF	CM_CCOFF_WS_2022-01-25_NP	2022-01-25	-	-	-	-	-	8.28	1160	1830	4.3	1520	0.28	319	< 1.0	< 1.0	< 0.45	1.4	< 0.180	1000	0.0631	5.68	0.0366	0.334	-	0.0027	0.52	0.51
CM_CCOFF	CM_CCOFF_WS_2022-02-01_NP	2022-02-02	-	-	-	-	-	8.21	1110	1850	2.3	1680	0.28		< 1.0	< 1.0			0.14	975	0.0626	5.59	0.0293	0.376	-	0.003		
CM_CCOFF CM CCOFF	CM_CCOFF_WS_2022-02-08_N CM_CCOFF_WS_2022-02-15_NP	2022-02-08 2022-02-15	-	-	-	-	-	8.19 8.25	1240	1860	2.5	1700 1660	0.22		< 1.0	< 1.0				915 924	0.0465 0.0316	5.16 5.13	0.0189 0.0229	0.255	-	0.0027	0.83	0.66
CM_CCOFF	CM_CCOFF_W3_2022-02-15_NF CM_CCOFF_W3_2022-02-22_NP	2022-02-13	+-			-	-	8.18	1170	1910	2.5	1640			< 1.0	< 1.0					0.0316	5.22	0.0229	0.303		< 0.003	0.72	0.52
CM_CCOFF	CM_CCOFF_WS_2022-03-01_NP	2022-03-01	-	-	-	-	-	8.23	1220	1900	2.2	1670			< 1.0	< 1.0					0.0296	5.27	0.0241	0.527	-	0.0021	1.02	1.02
CM_CCOFF	CM_CCOFF_WS_2022-03-08_NP	2022-03-08	-	-	-	-	-	8.16	1200	1880	2.9	1720			< 1.0	< 1.0			0.153		0.0388	5.2	0.0254	0.405	-	0.0032	0.53	0.55
CM_CCOFF	CM_CCOFF_WS_2022-03-15_NP	2022-03-15	-	-	-	-	-	8.03	1170	1920	3.8	1660			< 1.0	< 1.0					0.0288	5.4	0.0222	0.329	-	0.0034	0.67	< 0.50
CM_CCOFF CM CCOFF	CM_CCOFF_WS_2022-03-22_NP CM_CCOFF_WS_2022-03-29_NP	2022-03-22 2022-03-29	-	-	-	-	-	8.19	1240	1950 1780	1.9	1620 1460			< 1.0	< 1.0				925 881	0.0242	5.29	0.0243	0.309	-	0.0022	< 0.50	< 0.50
CM CCOFF	CM_CCOFF_W3_2022-03-29_NF CM_CCOFF_W3_2022-04-05_NP	2022-03-29	+ -	-	-	-	-	8.12 8.13	1050	1840	7.6 4.8	1460			< 1.0	< 1.0				818	0.0662 0.304	4.8	0.0281 0.0346	0.612		0.0046	0.75	0.73
CM CCOFF	CM CCOFF WS 2022-04-12 NP	2022-04-12	-	—	-	-	-	8.15	1070	1840	2.3	1500			< 1.0	< 1.0			0.186	843	0.206	4.73	0.0383	0.524	-	0.0041	0.61	0.6
CM_CCOFF	CM_CCOFF_WS_2022-04-19_NP	2022-04-19	-	-	-	-	-	7.99	1060	1810	6.2	1530			< 1.0	< 1.0	< 0.25		0.167	844	0.202	5.14	0.0498	0.497	-	0.0044	0.67	0.62
CM_CCOFF	CM_CCOFF_WS_2022-04-26_NP	2022-04-26	-	-	-	-	-	8.12	912	1690	13.8	1360			< 1.0	< 1.0				796	0.164	4.91	0.0383	0.359	-	0.006	0.78	0.71
CM_CCOFF	CM_CCOFF_WS_2022-05-03_NP	2022-05-03	-	-	-	-	-	7.99	878	1730	6.2	1340			< 1.0	< 1.0	< 0.25	1.62	0.202	769	0.2	5.81	0.0465	0.31	-	0.0047	< 0.50	< 0.50
CM_CCOFF CM_CCOFF	CM_CCOFF_2022-05-06_NP1 CM_CCOFF_2022-05-07_NP1	2022-05-06 2022-05-07	-	-	-	-	-	-	<u> </u>	-	7.7	-	6.53 7.35		+ :	-	-	-	-	-	-	+ :	-	-	-	-	<u> </u>	+
CM CCOFF	CM CCOFF WS 2022-05-10 NP	2022-05-10	+-			-	-	8.2	825	1510	13.4	1220	11.5		< 1.0	< 1.0	< 0.25	1.12	0.213	687	0.193	5.88	0.0282	0.528		0.0094	1.12	0.81
CM CCOFF	CM CCOFF WS 2022-05-17 NP	2022-05-17	-	-	-	-	-	8.16	776	1470	3.6	1210	5.05		< 1.0	< 1.0					0.139	4.48	0.0202	0.917	-	0.0054	0.83	0.81
CM_CCOFF	CM_CCOFF_WS_2022-05-24_NP	2022-05-24	-	-	-	-	-	8.23	750	1320	2.4	1020	1.8	308	< 1.0	< 1.0	< 0.25	0.98	0.165	549	0.0564	3.9	0.0203	0.358	-	0.0039	0.83	0.68
CM_CCOFF	CM_CCOFF_WS_2022-05-31_NP	2022-05-31	-	-	-	-	-	8.34	691	1170	9.1	942	4.64		4.2	< 1.0					0.0502	3.48	0.0136	0.382	-	0.0066	1.35	0.66
CM_CCOFF	CM_CCOFF_WS_2022-06-07_NP	2022-06-07	-	-	-	-	-	8.08	642	1220	5.1	886	3.57		< 1.0	< 1.0	- 0.20				0.0382	3.12	0.0108	< 0.500	-	0.0072	1.41	1.13
CM_CCOFF CM CCOFF	CM_CCOFF_WS_2022-06-14_NP CM_CCOFF_WS_2022-06-21_NP	2022-06-15 2022-06-21	-	-	-	-	-	8.26	591 708	1160	6.4	876 894	6.36 1.97		< 1.0	< 1.0			0.14	458 418	0.0294 0.042	2.6	< 0.0050 0.0066	0.23	-	0.0064	1.02	0.79
CM_CCOFF	CM_CCOFF_W3_2022-06-21_NF CM_CCOFF_WS_2022-06-28_NP	2022-06-28	+-	+ :-	-	-	-	8.21	806	1420	1.8	1100	1.97		< 1.0	< 1.0					0.0533	2.71	0.0066	0.356		0.0033	1.02	0.88
CM_CCOFF	CM_CCOFF_WS_2022-07-05_NP	2022-07-05	-	-	-	-	-	8.05	988	1510	4.2	1230	4.04		< 1.0	< 1.0			0.135		0.0498	3.08	0.0174	0.378	-	0.0052	1.25	0.97
CM_CCOFF	CM_CCOFF_WS_2022-07-12_NP	2022-07-12	-	-	-	-	-	8.21	1170	1680	2.2	1490	1.48		< 1.0	< 1.0					0.0059	3.52	0.0129	0.266	-	0.0034	0.84	1
CM_CCOFF	CM_CCOFF_WS_2022-07-19_NP	2022-07-19	-	-	-	-	-	8.14	1100	1720	1.9	1470	1.51		< 1.0	< 1.0					0.0255	3.55	0.0157	0.164	-	0.0034	< 0.50	< 0.50
CM_CCOFF	CM_CCOFF_WS_2022-07-26_NP	2022-07-26	-	-	-	-	-	7.84	1180	1780	1.4	1530	1.06		< 1.0	< 1.0					0.0281	3.7	0.0117	0.254	-	0.0029	< 0.50	< 0.50
CM_CCOFF CM CCOFF	CM_CCOFF_WS_2022-08-02_NP CM_CCOFF_WS_2022-08-09_NP	2022-08-02 2022-08-10		-	-	-	-	8.09 8.13	1180	1810 1830	5.9 1.3	1560 1460	4.58 1.07		< 1.0	< 1.0				876 883	0.0257 0.021	3.83 3.94	0.0196 0.0183	0.301	-	0.0051	< 0.50	< 0.50
CM CCOFF	CM CCOFF WS 2022-08-16 NP	2022-08-16	+-	-	-	-	-	7.95	1210	1870	4.1	1720			< 1.0	< 1.0			0.153	873	0.021	3.62	0.0153	0.410		0.005		
CM_CCOFF	CM CCOFF WS SESMP 2022-08 N	2022-08-16	-			-	-	8.08	1220	1840	42.4	1580	5.17		< 1.0	< 1.0			0.159		0.0221	4.1	0.0199	0.435	-	0.0028	0.66	0.72
CM_CCOFF	CM_CCOFF_WS_2022-08-23_NP	2022-08-23	-	-	-	-	-	8.2	1340	1880	1.8	1720			< 1.0	< 1.0	< 0.25				0.0259	4.13	0.0194	0.292	-	< 0.0020	0.72	0.73
CM_CCOFF	CM_CCOFF_2022-08-25_NP1	2022-08-25	-	-	-	-	-	-	-	-	4.3	-	2.35		-	-	-	-	-	-	-	-	-	-	-	-	-	-
CM_CCOFF	CM_CCOFF_2022-08-25_NP2	2022-08-25	-	-	-	-	-	-	-	-	1460	-	2020		-	-	-	1 -	-	-	_	-	-	-	-	-	1	1 - 1
CM_CCOFF CM CCOFF	CM_CCOFF_2022-08-25_NP3 CM_CCOFF_WS_2022-08-30_NP	2022-08-25 2022-08-30	-	-	-	-	-	- 0.05	1250	1880	9.7	1530	3.13		< 1.0	< 1.0	< 0.25		0.124	921	- 0.000		- 0.0400	0.33	-	0.0087	0.84	0.76
CM_CCOFF	CM_CCOFF_WS_2022-08-30_NP CM_CCOFF_WS_2022-09-06_NP	2022-09-06		-	-	-		8.05 8.14	1250 1350	1980	3.2 4.9	1620	1.78 2.21		< 1.0	< 1.0			0.124	1010	0.029	4.17	0.0138 0.0153	0.33	-	0.0087	0.85	0.76
CM CCOFF	CM CCOFF WS 2022-09-13 NP	2022-09-13	+-	+	-	-	-	8.13	1280	1890	1.5	1590			< 1.0	< 1.0					0.0299	4.22	0.0133	0.456		0.0024		
CM_CCOFF	CM_CCOFF_WS_2022-09-20_NP	2022-09-20	-	-	-	-	-	8.23	1250	1940	2.5	1790	0.49		< 1.0	< 1.0			0.127	966	0.0229	4.31	0.0168	0.41	-	0.0028	0.87	0.83
CM_CCOFF	CM_CCOFF_WS_2022-09-27_NP	2022-09-27	-	-	-	-	-	7.98	1370	1850	3.9	1660	0.82	435	< 1.0	< 1.0	< 0.25	1.05	0.142		0.0254	4.4	0.0187	0.309	-	< 0.0020	1.1	0.62
CM_CCOFF	CM_CCOFF_WS_2022-10-04_NP	2022-10-04	-	-	-	-	-	8.02	1360	1810	3.2	1510	1.4		< 1.0	< 1.0			0.116		0.0071	4.55	0.0142	0.312	-	0.0023	0.85	1.04
CM_CCOFF	CM_CCOFF_WS_2022-10-11_NP	2022-10-11	-	-	-	-	-	8.07	1370	1900	2.5	1680	1.55		< 1.0	< 1.0			0.144		< 0.0050	4.72	0.0111	0.302		0.0031	1.14	1.06
CM_CCOFF CM CCOFF	CM_CCOFF_WS_2022-10-18_NP CM_CCOFF_WS_2022-10-25_NP	2022-10-18 2022-10-25	+-	-	-	-	-	8.08	1410	1880	3.3	1580	0.79		< 1.0	< 1.0			0.15	993	0.0284	4.54	0.0164	0.482	<u> </u>	< 0.0020	0.64	0.68
CM_CCOFF	CM_CCOFF_WS_2022-10-25_NP CM_CCOFF_WS_2022-11-01_NP	2022-10-25		-	-	-		8.1 7.91	1260	1990	4.2	1760 1620	1.31 9.62		< 1.0	< 1.0					0.0067 0.0978	4.9	0.0105 0.0187	0.35		0.004	0.79	0.69
CM CCOFF	CM_CCOFF_W3_2022-11-01_NF CM_CCOFF_W3_2022-11-08_NP	2022-11-01	+ -	+ :-	+:-	-	<u> </u>	8.18	1170	1850	3.4	1660	3.04		< 1.0	< 1.0			0.176	971	0.0978	4.41	0.0187	0.346		0.0032	0.51	0.58
CM CCOFF	CM CCOFF WS 2022-11-15 NP	2022-11-15	-	-	-	-	-	8.12	1350		1.1		1.53		< 1.0		< 0.25				0.172	4.69	0.03	0.435	-	< 0.0020		
		1		+					1 , , , ,	1	1	1	1.00		1	1		1.7	1	1	12					1	1	

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted n/a denotes no applicable standard

^a Guideline varies with hardness ^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

APPENDIX C - TABLE 1: Summary of Analytical Results for Dissolved Organics, Nutrients and Organics

				Field	i Param	otors	-			hysical Pa	rameter	•		1		Diee	olved Ino	manice			1		Nutrien	e				
			1	FIEIG	I Faraiii	leters				llysical F	ameter	_	T			DISS	oiveu iiio	rganics					Nutrien	3			$\overline{}$	_
Sample	Sample	Sample Date	Field Temperature	pH (field)	Dissolved Oxygen	Field Conductivity	Field ORP	£	Hardness	Conductivity	Total Suspended Solids	Total Dissolved Solids	Turbidity	Bicarbonate	Carbonate	Hydroxide	Bromide	Chloride	Fluoride	Sulfate	Ammonia Nitrogen	Nitrate Nitrogen	Nitr ite Nitrogen	Kjeldahl Nitrogen-N	Ortho-Phosphate	Phosphorus, Total	Total Organic Carbon	Dissolved Organic Carbon
Location	ID	(yyyy-mm-dd)	С	pН	mg/L	μS/cm	mV	pН	mg/L	μS/cm	mg/L	mg/L	ntu	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
				Minimum	Acute Chronic			Minimum			Acute		Acute					Acute	_ ~	Chronic	Acute	Acute	Acute			Chronic		
BC WQG FWAL Coal Mountain Mine			n/a	6.5 9	1 5	n/a	n/a	6.5 9	n/a	n/a	25 5	n/a	8 2	n/a	n/a	n/a	n/a	1600 150	0.4-	128-429	0.681-28.7 ^b 0.102-2.08 ^b	32.8 3.7	0.06-0.60- 0.02-0.20	n/a	n/a	0.015	n/a	n/a
CM CCOFF	CM CCOFF WS 2022-11-22 NP	2022-11-22	Τ-	-	-	T - T	- 1	8.24	1220	1990	1.7	1790	1 64	440	< 1.0	< 1.0	< 0.250	1.68	0.199	988	0.194	4.68	0.0341	0.655	Π-	0.0025	0.85	0.79
CM_CCOFF	CM_CCOFF_WS_2022-11-29_NP	2022-11-29	-	-	-	-	-	8.16	1460	1940	2	1670	1.17	457	< 1.0	< 1.0	< 0.250			1000	0.158	4.88	0.0336	0.246	-	0.0028	0.61	0.69
CM_CCOFF	CM_CCOFF_WS_2022-12-06_NP	2022-12-07	-	-	-	-	-	8.15	1360	2000	3.9	1820	0.84		< 1.0	< 1.0	< 0.250				0.0701	4.84	0.0252	0.26	-	< 0.0020	0.54	0.58
CM_CCOFF	CM_CCOFF_WS_2022-12-13_NP	2022-12-13	-	-	-	- T	- 7	8.26	1400	2000	1.3	1860	1.43	420	< 1.0	< 1.0	< 0.250		0.211		0.171	4.95	0.0372	0.432	-	0.003	< 0.50	< 0.50
CM_CCOFF CM SPD	CM_CCOFF_WS_2022-12-28_NP CM_NNP_WS_2022-01-04_N	2022-12-28 2022-01-06	-	-	-	-	-	8.18	1320	1960 1212.7	1.6	1630 926.67	2.13	425	< 1.0	< 1.0	< 0.250		0.198	1010	0.146	4.72	0.0406	0.422	-	< 0.0020	< 0.50	< 0.50
CM_SPD	CM_NNP_WS_2022-01-04_N CM_SPD_WS_2022-01-11_N	2022-01-06	+ -	-	-	-	-	7.1033 8.03	726.833	1820	2.6	1620	0.8333		< 1.0	< 1.0	< 0.250		0.1293		0.171666667 0.169	2.9202333 4.8	0.0195 0.0248	0.543	-	0.0029	0.92	0.85
CM_SFD	CM SPD WS 2022-01-11 N	2022-01-11	+		-	++	-	8.17	1110	1780	1.6	1520	0.86	369	< 1.0	< 1.0	< 0.250		0.204	883	0.169	4.38	0.0248	0.456		0.0056	< 0.50	< 0.50
CM SPD	CM NNP WS 2022-02-01 N	2022-02-01	-		-		-	6.81	550.25	901	< 1.0			182	< 1.0	< 1.0	< 0.250		0.1075		0.089	2.1325	0.0124	0.282		0.0036	< 0.50	< 0.50
CM SPD	CM SPD WS 2022-03-01 N	2022-03-01	-	-	-	- 1	-	8.22	1120	1880	4.3	1700	1.54		< 1.0	< 1.0	< 0.250		0.154	975	0.0345	6.63	0.0132	0.437	T -	0.0038	1.38	1.24
CM_SPD	CM_SPD_WS_2022-03-15_N	2022-03-15	-	-	-	- 1	-	8	1100	1880	2.4	1780	0.85	331	< 1.0	< 1.0	< 0.250	3.09	0.131	980	0.0166	6.44	0.0077	0.376	-	0.0037	0.81	0.65
CM_SPD	CM_SPD_WS_2022-03-22_N	2022-03-22	-	-	-	-	-	8.2	1170	1890	2.4	1500	0.65		< 1.0	< 1.0	< 0.250		0.142	939	0.0131	6.63	0.0105	0.532	-	0.0028	0.76	1.29
CM_SPD	CM_SPD_WS_2022-03-29_N	2022-03-29	-	-	-	-	-	8.17	977	1620	4.1	1350	8.15		< 1.0	< 1.0	< 0.250		0.178	813	0.0196	5.4	0.0158	0.393	-	0.0066	0.94	0.69
CM_SPD	CM_SPD_WS_2022-04-05_N	2022-04-05	-	-	-	-	-	8.24	1010	1620	2.8	1320	3.18		< 1.0	< 1.0	< 0.250		0.157	759	0.0143	4.68	< 0.0050	0.389	-	0.005	1.37	1.25
CM_SPD CM_SPD	CM_SPD_WS_2022-04-12_N	2022-04-12	-	-	-	-	-	8.06	991	1660	3.3	1370	3.2		< 1.0	< 1.0	< 0.250		0.168		0.0159	4.63	0.0132	0.344	-	0.0049	1.01	0.98
CM_SPD CM_SPD	CM_SPD_WS_2022-04-19_N CM_SPD_WS_2022-04-26_N	2022-04-19 2022-04-26	+ :-	-	-	-	-	8.07	1000 903	1710 1620	3.3 4.3	1390	2.88	330 293	< 1.0	< 1.0	< 0.250		0.151	830 793	0.013	5.23	0.0061	0.337		0.0044	1.05	1.02
CM_SPD	CM SPD WS 2022-04-27 N	2022-04-27	-	-	-	-	-	8.29 8.26	888	1520	4.6	1270	5.37	286	< 1.0	< 1.0	< 0.250		0.172	703	0.0093	4.63	0.013 0.0119	0.122	-	0.0038	1.23	1.12
CM_SFD	CM SPD WS 2022-04-27 N	2022-04-28	-		-		-	8.18	899	1530	3.5	1170		294	< 1.0	< 1.0	< 0.250		0.173		0.0223	3.6	0.0119	0.45		0.0063	1.02	0.98
CM SPD	CM SPD WS 2022-04-29 N	2022-04-29	-	-	-	-	-	8.12	910	1540	6.4	1330	4.15		< 1.0	< 1.0	< 0.250		0.202	751	0.097	3.51	0.025	0.398	-	0.0064	0.86	0.85
CM SPD	CM SPD WS 2022-05-03 N	2022-05-03	-	-	-	-	-	8.14	820	1440	4	1170	4.53	299	< 1.0	< 1.0	< 0.250	2.69	0.203	700	0.126	2.51	0.0181	0.542	-	0.0057	1.14	0.84
CM_SPD	CM_SPD_2022-05-06_N2	2022-05-06	-	-	-	-	-	-	-	-	21.7	-	23.8	-	-	-	-	-	-	-		-	-	-	-	-	-	-
CM_SPD	CM_SPD_2022-05-06_N1	2022-05-06	-	-	-	-	-	-	-	-	22.5	-	25.1	-	-	-	-	-	-	-		-	-	-	-	-	-	-
CM_SPD	CM_SPD_2022-05-07_N1	2022-05-07	-	-	-	-	-	-	-	-	16.6	-	25.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CM_SPD	CM_NNP_WS_2022-05-10_N	2022-05-10	-	-	-	-	-		477.833	860.6667	4.2667			201.67	< 1.0	< 1.0	< 0.250		0.148		0.093666667	1.445	0.007066667	0.3763	-	0.0056	1.07	0.98
CM_SPD CM_SPD	CM_SPD_WS_2022-05-17_N CM_NNP_WS_2022-05-24_N	2022-05-17 2022-05-24	1	-	-	-	-	8.14	838 565.167	1430 974	2.6333	1190 776.67	5.8	294 195	< 1.0	< 1.0	< 0.250		0.201	648 431.1	0.166 0.115666667	2.31	0.0155	0.64	-	0.0044	1.12 0.92333	1.02 0.8533
CM_SPD	CM_NNP_WS_2022-05-31_N	2022-05-31	-	-	-		-	7.3367	560.167	944	2.6333		1.3767		< 1.0	< 1.0	< 0.250		0.1463		0.130333333	1.6583333	0.009433333	0.3683		0.003367		0.7933
CM SPD	CM NNP WS 2022-06-07 N	2022-05-07	-		-	- 1	-	7.2433	556.833	1040.667		786.67			< 1.0	< 1.0	< 0.250			500.1	0.212	1.535	0.003433333	0.403		0.003207	0.84	0.84
CM_SPD	CM_SPD_WS_2022-06-14_N	2022-06-14	-	-	-	-	-	8.22	712	1320	20.5			284	2.4	< 1.0	< 0.250		0.187		0.198	1.9	0.0159	0.537	-	0.0166		0.67
CM_SPD	CM_SPD_2022-06-15_N1	2022-06-15	-	-	-	-	-	-	-	-	8.2	-	15.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CM_SPD	CM_SPD_WS_2022-06-21_N	2022-06-21	-	-	-	-	-	8.05	858	1450	1.8	1260	4.17		< 1.0	< 1.0	< 0.250		0.182	656	0.271	2.18	0.0158	0.489	-	0.0041	1	0.8
CM_SPD	CM_SPD_WS_2022-06-28_N	2022-06-28	-	-	-	-	-	8.09	990	1630	2.2	1320	1.01	334	< 1.0	< 1.0	< 0.250		0.191	683	0.291	2.43	0.0227	0.511	-	0.0024	0.71	0.74
CM_SPD CM_SPD	CM_NNP_WS_2022-07-05_N CM_SPD_WS_2022-07-12_N	2022-07-05 2022-07-12	-	-	-	-	-	7.2567	602.833	1057.333	2.1667			226.67	< 1.0	< 1.0	< 0.250		0.147	498.1	0.196333333	1.8816667	0.0191	0.3997	-	0.002733		0.71
CM_SPD CM_SPD	CM_SPD_WS_2022-07-12_N CM_SPD_WS_2022-07-26_N	2022-07-12	+ -	-	-	-	-	8.19 7.68	1050 936	1630 1690	2.1 < 1.0	1370	0.95	358 363	< 1.0	< 1.0	< 0.250		0.205	724 836	0.285 0.255	2.73 3.46	0.0278 0.0248	0.545	-		< 0.50	< 0.54
CM_SPD	CM_SPD_WS_2022-07-26_N CM_SPD_WS_2022-08-02_N	2022-07-20	+ -		-	-	-	8.16	1020	1660	27	1420	1.45	318	< 1.0	< 1.0	< 0.250		0.223	804	0.255	3.46	0.0248	0.304	-		< 0.50	< 0.50
CM SPD	CM_SPD_WS_2022-08-09_N	2022-08-09	+ -	1	1		-	8.16	962	1660	1	1440	0.93		< 1.0		< 0.250		0.289		0.189	3.26	0.0366	0.236	H :-	0.0027	1.08	0.93
CM_SPD	CM_SPD_WS_2022-08-10_N	2022-08-10	-	-	-	- 1	-	8.18	1020	1660	< 1.0		0.89	333	< 1.0	< 1.0	< 0.250		0.288	813	0.211	3.22	0.0376	0.496	-	0.0043	0.69	0.79
CM_SPD	CM_SPD_WS_2022-08-11_N	2022-08-11	-	-	-	-	-	8.18	1050	1660	1.1	1380	1.11	341	< 1.0	< 1.0	< 0.250	2.01	0.29	807	0.229	3.24	0.0381	0.46	-	0.004	0.56	0.53
CM_SPD	CM_SPD_WS_SESMP_2022-08_N	2022-08-16	-	-	-	-	-	8.17	968	1640	1.8	1400		341	< 1.0	< 1.0	< 0.250	1.8	0.289	803	0.191	3.25	0.047	0.468	-	< 0.0020	0.58	0.62
CM_SPD	CM_SPD_2022-08-25_N1	2022-08-25	-	-	-	-	-	-	-	-	1.3	-	1.13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CM_SPD	CM_SPD_WS_2022-09-06_N	2022-09-06	-	-	-	-		8.12	966	1650	2.3	1340	1.3		< 1.0	< 1.0	< 0.250		0.235	844	0.106	3.45	0.0398	0.473	-	0.0023	0.57	0.57
CM_SPD	CM_SPD_WS_2022-10-04_N	2022-10-04	-	-	-	-	-	7.14	713.5	1097.333	1.7333		0.71		< 1.0	< 1.0	< 0.250				0.046866667	2.785	0.038	0.3123	-		0.96667	1.01
CM_SPD CM_SPD	CM_SPD_WS_2022-11-01_N	2022-11-01	-	-	-	-	-	8.16	1060	1760	6.5	1490	10.3		< 1.0	< 1.0	< 0.250		0.21	901	0.0993	4.11	0.049	0.389	-	0.0055	1.13	0.78
CM_SPD	CM_SPD_WS_2022-11-17_N	2022-11-17	1 -			-	-	8.21	1100	1770	4.4	1020	2.32	309	< 1.U	< 1.0	< 0.∠50	0.75	0.223	950	0.0999	4.04	0.0302	< 0.500	-	0.0033	1.10	1.04

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted n/a denotes no applicable standard

^a Guideline varies with hardness ^b Guideline varies with pH and water temperature

^o Guideline varies with chloride

APPENDIX C - TABLE 1: Summary of Analytical Results for Dissolved Organics, Nutrients and Organics

				Field	i Param	eters				Physical Pa	arameter	s		_		Diss	olved Ino	rganics					Nutrient	s				
										liyorourr		Ť				1	1	guinos					, , , , , , , , , , , , , , , , , , ,	Ĭ				_
Sample	Sample	Sample Date	Field Temperature	pH (field)	Dissolved Oxygen	Field Conductivity	Field ORP	Hd.	Hardness	Conductivity	Total Suspended Solids	Total Dissolved Solids	Turbidity	Bicarbonate	Carbonate	Hydroxide	Bromide	Chloride	Fluoride	Sulfate	Ammonia Nitrogen	Nitrate Nitrogen	Nitr ite Nitrogen	Kjeldahl Nitrogen-N	Ortho-Phosphate	Phosphorus, Total	Total Organic Carbon	Dissolved Organic Carbon
Location	ID	(yyyy-mm-dd)	С	pH	mg/L	μS/cm	mV	pН	mg/L	μS/cm	mg/L	mg/L	ntu	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
BC WQG FWAL			n/a	Minimum 6:5	D Acute	n/a	n/a	mnwixeW 9	n/a	n/a	52 Acute Chronic	n/a	8 Acute		n/a	n/a	n/a	Chronic Chronic	O.4- a	128-429	9 5 V 5 0.681-28.7 ^b 0.102-2.08 ^b	9 32.8 3.7	9 0.06-0.60° 0.02-0.20	n/a	n/a	9 0.015	n/a	n/a
Elkview Operation	FV 400 W0 0000 04 N	0000 04 07							070	T 000		1 407	1	1 000	1 400	1 -40	T 0 000	1 450	10405	1 40.0	0.0000			10070	-	I o oooo	T 4.00	T 0.40
EV_AQ6 EV AQ6	EV_AQ6_WS_2022-Q1_N EV_AQ6_WS_2022-02_MON_N	2022-01-07	+ -	-	-	-		8.39 8.34	370 346	683 665	8.6 2.4		1.32	338	12.6 5.9	< 1.0		45.8 45.6	0.165		0.0076 0.0059	0.158	< 0.0010 < 0.0010	0.073		0.0098		1.35
EV AQ6	EV AQ6 WS 2022-03 MON N	2022-03-16	-	-	-	-		8.32	413	727	1.3	429	1.38		2.5	< 1.0	0.352	64	0.171		< 0.0050	0.0303	< 0.0010	0.081	-	0.0084	2.47	2.54
EV_AQ6	EV_AQ6_WS_2022-03_WEK13_N	2022-03-22	-	-	-	-	-	-	-	-	1	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_AQ6	EV_AQ6_WS_2022-03_WEK14_N	2022-03-28	-	-	-	-	-	-	-	-	3.3	-	2.86		-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_AQ6 EV_AQ6	EV_AQ6_WS_2022-04_WEK15_N EV AQ6_WS_2022-Q2_N	2022-04-04 2022-04-12	-	-	-	-	-		379	756	1.1		1.48		8.3	< 1.0	0.32		0.201	51.7	- 0.0050	- 0.0000	- 0.0040	0.117	-	0.0035	3.02	3.02
EV_AQ6	EV_AQ6_WS_2022-Q2_N EV_MC5_WS_2022-Q2_N	2022-04-12	+ -	-	-	-		8.41	379	752	< 1.0		0.87		7.8	< 1.0	0.32	63.7	0.201		< 0.0050 < 0.0050	0.0068	< 0.0010 < 0.0010	0.117	-	0.0035	3.02	3.02
EV AQ6	EV MC7 WS 2022-Q2 N	2022-04-13	-	-	-	-		5.35	< 0.50	< 2.0	< 1.0			0 < 1.0	< 1.0	< 1.0	< 0.050		< 0.020		< 0.0050	< 0.0050	< 0.0010	< 0.050	-	< 0.0020		< 0.50
EV_AQ6	EV_AQ6_WS_2022-04_WEK17_N	2022-04-18	-	-	-	-	- 1	-	-	-	< 1.0		0.73		-	-	-	- 0.10	-	-	-			-	-	-	-	-
EV_AQ6	EV_AQ6_WS_2022-04_WEK18_N	2022-04-26	-	-	-	-	-	-	-	-	1.7	-	0.72		-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_AQ6	EV_AQ6_WS_2022-05_MON_N	2022-05-03	-	-	-	-	-	8.58	361	706	2.2	452	0.79		12.1	< 1.0	0.339	58.5	0.196	52.9	0.0064	< 0.0050	< 0.0010	0.115	-	0.0035	2.4	2.42
EV_AQ6	EV_AQ6_WS_2022-05_WEK20_N	2022-05-11	-	-	-	-		-	-	-	1.4	-	0.48		-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_AQ6 EV_AQ6	EV_AQ6_WS_2022-05_WEK21_N EV_AQ6_WS_2022-05_WEK22_N	2022-05-16 2022-05-24	+ -	-	-	-	-:-	-	-	-	1.3	-	0.44		-	-	+-	-	-	-	-	-	-	-	-	H :		-
EV_AQ6	EV AQ6 WS 2022-05 WEK22 N	2022-05-30	+ -	-	-				-	<u> </u>	< 1.0 1.4		0.52			+ -	+ -	-	+	+	-	-	-	+	-	+	<u> </u>	+
EV AQ6	EV MC8 WS 2022-06 MON N	2022-06-07	-	-	-	-	- 1	5.47	< 0.50	< 2.0	< 1.0		0.42		< 1.0	< 1.0	< 0.050	< 0.10	< 0.020	< 0.30	< 0.0050	< 0.0050	< 0.0010	< 0.050	-	< 0.0020	< 0.50	< 0.50
EV_AQ6	EV_MC6_WS_2022-06_MON_N	2022-06-07	-	-	-	-	- 1	8.45	394	695	< 1.0		0.43		10.6	< 1.0	0.256	48.6	0.187		< 0.0050	0.0092	< 0.0010	0.063	-	0.0032	2.85	2.47
EV_AQ6	EV_AQ6_WS_2022-06_MON_N	2022-06-08	-	-	-	-	- 1	8.56	355	699	< 1.0	369	0.5		11.9	< 1.0	0.252	49.9	0.188	59	< 0.0050	0.0097	< 0.0010	0.057	-	0.0036	2.33	2.36
EV_AQ6	EV_AQ6_WS_2022-06-13_N_1743	2022-06-13	-	-	-	-	-	-	-	-	56.6	-	43.7		-	-	-	-	-	-	-	-	-	-	-	-	-	
EV_AQ6	EV_AQ6_WS_2022-06_WEK25_N	2022-06-13	-	-	-	-		-	-	-	1	-	1.69		-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_AQ6 EV AQ6	EV_AQ6_WS_2022-06-14_N_1725 EV_AQ6_WS_2022-06-14_N_0650	2022-06-14 2022-06-14	-		-	-	-	-	-	-	10.2		14.3		-	-	+ -	H :	1	-		+ :-	- :	1	-	-	-	
EV_AQ6	EV AQ6 WS 2022-06-14 N 0650 EV AQ6 WS 2022-06 WEK26 N	2022-06-14	-	-	-	-		-	-	-	52.3	-	47.3		-	-	-	+:-	-	-	-	+:-	-	-	-		-	+
EV_AQ6	EV AQ6 WS 2022-06 WEK27 N	2022-06-28	-		-					<u> </u>	< 1.0	+ -	0.62		-	+-	+ -	+ :	+	H-1	- :	+ :	- :	+		+	-	+:-
EV AQ6	EV AQ6 WS 2022-Q3 N	2022-07-06	-	-	-	-	- 1	8.54	389	700	< 1.0		0.54		14.5	< 1.0	0.296	51.6	0.186	65.5	< 0.0050	0.0299	< 0.0010	0.126	-	0.0034	1.89	1.73
EV_AQ6	EV_MC6_WS_2022-Q3_N	2022-07-06	-	-	-	-	- 1	8.53	372	700	< 1.0	490	0.51		13.9	< 1.0	0.3	51.5	0.192	65.5	0.0209	0.0349	< 0.0010	0.133	-	0.0042	1.95	1.72
EV_AQ6	EV_MC8_WS_2022-Q3_N	2022-07-06	-	-	-	-	- 1	5.47	< 0.50	< 2.0	< 1.0	< 10	< 0.10		< 1.0	< 1.0	< 0.050	< 0.10	< 0.020	< 0.30	< 0.0050	< 0.0050	< 0.0010	< 0.050	-	< 0.0020	8.99	9.11
EV_AQ6	EV_AQ6_WS_2022-07_WEK29_N	2022-07-12	-	-	-	-	-	-	-	-	1.4	-	0.69		-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_AQ6	EV_AQ6_WS_2022-08_MON_N	2022-08-10	-	-	-	-	-	8.52	318	619	< 1.0		1.07		9	< 1.0	0.21	36.7	0.159		0.0087	0.0624	< 0.0010	0.154	-	0.0039	1.42	1.49
EV_AQ6 EV AQ6	EV_AQ6_WS_SESMP_2022_08_N EV_AQ6_WS_2022-09_MON_N	2022-08-11 2022-09-07	-	-	-	-	-:-	8.37 8.44	305 302	576 540	8.5	352 325	1.1 0.81		9.4	< 1.0 < 1.0	0.166	34.6	0.169		< 0.0057	0.0719	< 0.0010 < 0.0010	0.072	-	0.0047	1.06	0.97 1.36
EV_AQ6	EV MC8 WS 2022-09 MON N	2022-09-07	+ -	1	-	1	- +	5.48	< 0.50	< 2.0	< 1.0		< 0.10		< 1.0	< 1.0	< 0.050		< 0.020		< 0.0050	< 0.0050	< 0.0010	< 0.050	-	< 0.0020		< 0.50
EV_AQ6	EV_AQ6_WS_2022-09-08_N	2022-09-08	-	-	-	-	- 1	8.38	305	554	< 1.0		1	283	9	< 1.0	0.157	34.8	0.195		< 0.0050	0.0449	< 0.0010	0.095	-	0.0041		1.6
EV_AQ6	EV_AQ6_WS_2022-09-09_N	2022-09-09	-	-		-	- 1	8.5	288	554	< 1.0		0.86		11.5	< 1.0	0.182	34.3		38.2	< 0.0050	0.035	< 0.0010	0.1	-	0.0042		1.42
EV_AQ6	EV_AQ6_WS_2022-09-10_N	2022-09-10	-	-	-	-	- 1	8.33	299	519	< 1.0		1.11		6.1	< 1.0	0.191	34.4		38.3	< 0.0050	0.0447	< 0.0010	0.097	-	0.0035		1.24
EV_AQ6	EV_AQ6_WS_2022-Q4_N	2022-10-07	-	-	-	-	-	8.55	294	548	< 1.0		1.05		14	< 1.0	0.166	32.8		35.4	< 0.0050	0.0114	< 0.0010	0.099	-	0.0054	1.61	1.86
EV_AQ6 EV AQ6	EV_MC6_WS_2022-Q4_N EV_MC8_WS_2022-Q4_N	2022-10-07 2022-10-07	-	-	-	-		8.57 5.57	< 0.50	537 < 2.0	< 1.0		1.03		14.4	< 1.0	< 0.050	32.8	0.18		0.0198 < 0.0050	0.0099 < 0.0050	< 0.0010 < 0.0010	0.094	-	0.0062 < 0.0020	1.62	1.63
EV_AQ6	EV AQ6 WS 2022-Q4_N	2022-10-07	+-		-	1		8.31	386	660	1.1		0.16		2.4	< 1.0	0.256	43.6			0.0052	0.0921	0.0010	0.030	-	0.0053	2.01	2.01
EV_AQ6	EV MC6 WS 2022-11 MON N	2022-11-09	+ -	-	Ė	1 - 1	- 1	8.32	386	652	1.3	409	0.83		4.7	< 1.0	0.253	43.3		42.1	< 0.0052	0.0921	< 0.0011	0.094	-	0.006	1.75	1.57
EV_AQ6	EV_MC8_WS_2022-11_MON_N	2022-11-09	-	-	-	-	- 1	5.72	< 0.50	< 2.0	< 1.0		< 0.10		< 1.0	< 1.0	< 0.050		< 0.020		< 0.0050	< 0.0050	< 0.0010	< 0.050	-	< 0.0020	< 0.50	< 0.50
EV_BC1	EV_BC1_WS_2022-01-03_N-SRF	2022-01-03	-	-	-	-	- 1	8.09	1380	2150	2.4		0.8		< 1.0	< 1.0	< 0.250		0.226		0.94	29.6	0.18	< 0.050	-	0.0027	1.09	1.13
EV_BC1	EV_BC1_WS_2022_Q1_N	2022-01-18	-	-	-	-	-	8.08	1530	2250	4.1	2170	0.88		< 1.0	< 1.0	< 0.250		0.271		0.441	33.7	0.173	< 0.050	-	0.0034	1.31	1.36
EV_BC1	EV_BC1_WS_2022-01-18_N-SRF	2022-01-18	-	-	-		- 1	8.17	1550	2290	4.5	1770	0.74		< 1.0	< 1.0	< 0.250			1100	0.47	33.9	0.194	0.565		0.0044	1.4	1.39
EV_BC1 EV BC1	EV_BC1_WS_2022-02-01_N-SRF EV_BC1_WS_2022-02_MON_N	2022-02-01 2022-02-08	-	-	-	+ -	-	8.13	1630	2360	1.7	2060 1840	0.96		< 1.0	< 1.0	< 0.250		0.226	1140	0.412	37.3	0.134	< 0.050	-	0.0048	1.38	0.84
EV_BC1	EV_BC1_WS_2022-02_MON_N EV_BC1_WS_2022-02-15_N-SRF	2022-02-08	-	-	-	+:-		8.28	1310	1980	1.4		0.73		< 1.0		0.26	16.2	0.100		0.16	20.9 13.9	0.0613 0.0314	0.050	-	0.004	0.89	0.84
EV_BC1	EV BC1 WS 2022-03-15 N-SRF	2022-02-13	-		-	+		8.03	1350	2010	16.6		12		< 1.0		0.332	18.7	0.203		0.0082	13.9	0.0314	0.475	-	0.0031	0.85	0.64
EV BC1	EV BC1 WS 2022-03-15 N-SRF	2022-03-15	-	-	-	- 1	- 1	8.01	1200	2020				364			< 0.250			1030	0.127	19.4	0.054	0.505	-	0.0078	1.1	0.95
			-	-			_						,		-													

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted n/a denotes no applicable standard

^a Guideline varies with hardness ^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

APPENDIX C - TABLE 1: Summary of Analytical Results for Dissolved Organics, Nutrients and Organics

				Fiel	d Param	eters				Physical F	aramete	rs		1		Diss	olved Ino	rganics					Nutrient	s				
Sample	Sample	Sample Date	Field Temperature	ph (field)	Dissolved Oxygen	Field Conductivity	Field ORP	H	Hardness	Conductivity	Total Suspended Solids	Total Dissolved Solids	Turbidity		Carbonate	Hydroxide	Bromide	Chloride	Fluoride	Sulfate	Ammonia Nifrogen	Nitrate Nitrogen	Nitrite Nitrogen	Kjeldahl Nitrogen-N	Ortho-Phosphate	Phosphorus, Total	Total Organic Carbon	Dissolved Organic Carbon
Location	ID	(yyyy-mm-dd)	С		mg/L	μS/cm	mV	pH	mg/L	μS/cm	mg/L	mg/L	ntı	u mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
				Minimum	Acute Chronic			Minimum			Acute		Acu.	Chronic				Acute	Acute	Chronic	Acute Chronic	Acute	Acute Chronic			Chronic		
BC WQG FWAL			n/a	6.5 9	1 5	n/a	n/a	6.5 9	n/a	n/a	25 5	n/a	8	2 n/a	n/a	n/a	n/a	600 150	0.4- a	128-429°	0.681-28.7 ^b 0.102-2.08 ^b	32.8 3.7	0.06-0.60° 0.02-0.20°	n/a	n/a	0.015	n/a	n/a
Elkview Operation EV BC1	EV BC1 WS 2022-03 MON N	2022-03-16	Τ.	Т.			-	8.09	1320	2010	18.1	1660	12	2 364	< 1.0	< 10	< n 250	21.7	I n 193	920	0.173	16.7	0.041	0.513		0.0126	1 04	1 1 1 1
EV_BC1	EV BC1 WS 2022-03-W0N N	2022-03-10	-	1	-	-	-	8.27	1320	1900	2.9				< 1.0		< 0.250			973	0.173	16.9	0.0496	< 0.050	-	0.0034	0.76	0.53
EV_BC1	EV_BC1_WS_2022-03_WEK13_N	2022-03-22	-	-	-	-	-		-	-	1.7	-	1.02	12 -	-	-	-	-	-	-	-	-		-	-	-	_	-
EV_BC1 EV BC1	EV_BC1_WS_2022-03_WEK14_N EV_BC1_WS_2022-03-29_N-SRF	2022-03-29	-	 -	-	-	-	- 0.00	1240	1990	2.2	1630	0.52		< 1.0	< 1.0	< 0.250	16.7	0.174	892	0.0504	15.3	0.041	0.286	-	0.003	0.87	0.78
EV_BC1	EV_BC1_WS_2022-03-29_N-SRF EV_BC1_WS_2022-04-05_N-SRF	2022-03-29	+=	+ -	H÷.	-	-	8.08	1340	2010	1.1	1630			< 1.0	< 1.0	< 0.250		0.174	1020	0.0594 0.068	15.3	0.041	0.46	-	0.0036	1.2	1.14
EV_BC1	EV_BC1_WS_2022-04_WEK15_N	2022-04-05	-	1 -	-	-	-	-	-	-	2	-	0.63	3 -	-	-	-	-	-	-		-	-	-	-	-	-	-
EV_BC1	EV_BC1_WS_2022-Q2_N	2022-04-12	-	-	-	-	-	8.06	1250	1880	2.5	1680			< 1.0	< 1.0	< 0.250		0.232	1000	0.0402	16.6	0.0401	0.451	-	0.0024	1	0.91
EV_BC1 EV BC1	EV_BC1_WS_2022-04-12_N-SRF EV_BC1_WS_2022-04-19_N-SRF	2022-04-12 2022-04-19	-	-	-	-	-	8.11	1260	1990	1.4	1720			< 1.0	< 1.0	< 0.250		0.234	961 927	0.0392 0.0201	16.6 12	0.0528 0.0375	< 0.050	-	0.0029	1.05	1.02 0.92
EV_BC1	EV BC1 WS 2022-04-15 NORTH	2022-04-19	-	-	-	-	-	0.09	-	- 1030	1.7	-	0.5		- 1.0	- 1.0	- 0.230	14.0	- 0.200	-	0.0201	- 12	0.0373	- 0.030	-	- 0.000		- 0.02
EV_BC1	EV_BC1_WS_2022-04-26_N-SRF	2022-04-26	-	-	-	-	-	8.25	1260	1910	1.3	1660	0.42	2 374	< 1.0	< 1.0	< 0.250	13.6	0.188	895	0.007	11.6	0.0232	< 0.050	-	0.0043	0.79	0.96
EV_BC1	EV_BC1_WS_2022-04_WEK18_N	2022-04-26	-	-	-	-	-		-	-	8.2	-	2.62		-	-	-		-	-				-	-	-	-	-
EV_BC1 EV BC1	EV_BC1_WS_2022-05-03_N-SRF EV_BC1_WS_2022-05_MON_N	2022-05-03 2022-05-03	-	-	-	-	-	8.27	1200	1880	4.9	1610 1650			< 1.0	< 1.0	< 0.250			973 861	0.0079	10.8 9.77	0.0206	< 0.050	-	0.0028	1.03	0.92
EV_BC1	EV BC1 WS 2022-05 MON N EV BC1 WS 2022-05-10 N-SRF	2022-05-10	+	+ :		-	-	8.08	1180	1820	1.8	1550			< 1.0	< 1.0	0.323	18.3		948	0.0096 0.0067	9.86	0.0172 0.0237	< 0.050	-	0.0029	0.97	1
EV_BC1	EV_BC1_WS_2022-05_WEK20_N	2022-05-11	-	-	-	-	-	-	-	-	2.2	-	0.4		-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_BC1	EV_BC1_WS_2022-05_WEK21_N	2022-05-17	-	-	-	-	-	-		-	2.4	-	0.24		-			-			-		-	-	-	-		
EV_BC1 EV BC1	EV_BC1_WS_2022-05-17_N-SRF EV_BC1_WS_2022-05-24_N-SRF	2022-05-17 2022-05-24		-	-	-	-	8.14 8.19	1230	1890	2.2	1610	0.33	339	< 1.0	< 1.0	0.335	20.7	0.191	933 947	0.0111 0.0139	11.7	0.0407 0.0876	0.456	-	0.0022	1.19	1.23
EV_BC1	EV BC1 WS 2022-05-24 N-SRP EV BC1 WS 2022-05 WEK22 N	2022-05-24	+-	+ :			-	8.19	1220	2000	< 1.0		0.5		V 1.0	× 1.0	- 0.230	23.9	0.104	- 947	0.0139	- 16	0.0876	0.143		0.004	1.19	1.02
EV_BC1	EV_BC1_WS_2022-05_WEK23_N	2022-05-31	-	-	-	-	-	-	-	-	3.4	-	0.34		-	-	-	-	-	-		-	-	-	-	-	-	-
EV_BC1	EV_BC1_WS_2022-05-31_N-SRF	2022-05-31	-	-	-	-	-	8.13	1220	2000	6.1	1610	0.3		< 1.0	< 1.0	< 0.250		0.167	913	0.0099	14.2	0.0425	< 0.050	-	0.0033	1.24	1.25
EV_BC1 EV BC1	EV_BC1_WS_2022-06_MON_N EV_BC1_WS_2022-06-07_N-SRF	2022-06-06 2022-06-07	-	-	-	-	-	8.19 8.17	1300	1900	1.8	1610 1640			< 1.0	< 1.0	0.417	15.8		984 831	0.142	7.26	0.0171	0.172	-	0.0093	0.56	< 0.50
EV_BC1	EV BC1 WS 2022-06-07 N-3KP	2022-06-07	+-	-	-		-	8.17	1200	1900	3.4	1040	1.64		× 1.0	× 1.0	0.310	14.9	0.191	- 031	0.151	6.62	0.0212	0.433		0.0033	0.02	0.07
EV_BC1	EV_BC1_WS_2022-06-14_N-SRF	2022-06-14	-	-	-	-	-	8.03	1170	1790	9.6	1480			< 1.0	< 1.0	0.39	19.4	0.201	866	0.144	6.34	0.0232	0.417	-	0.014	0.81	1.38
EV_BC1	EV_BC1_WS_2022-06-21_N-SRF	2022-06-21	-	-	-	-	-	7.98	1200	1810	2.9	1680			< 1.0	< 1.0	0.321	16			0.0696	9.36	0.0423	0.376	-	0.003	0.76	0.71
EV_BC1 EV_BC1	EV_BC1_WS_2022-06_WEK26_N EV_BC1_WS_2022-06-28_N-SRF	2022-06-21 2022-06-28	-	-	-	-	-	- 0.44	1270	1850	1.9		0.5		< 1.0	< 1.0	0.35	15.5	0.181	877	0.0512	7.52	0.0362	< 0.050	-	0.0051	0.91	0.91
EV_BC1	EV BC1 WS 2022-06-26 WEK27 N	2022-06-28	+-	-	-		-	8.11	1270	1000	1.7		0.83		- 1.0	- 1.0	0.55	15.5	0.101	-	0.0512	1.52	0.0302	- 0.030		0.0001	0.01	0.01
EV_BC1	EV_BC1_WS_2022_Q3_N	2022-07-05	-	-	-	-	-	8.15	1180	1840	2.4	1640	1.88	8 425	< 1.0	< 1.0	0.332	18.8		852	0.122	8.48	0.053	0.96	-	0.0043	0.84	0.96
EV_BC1	EV_BC1_WS_2022-07-05_N-SRF	2022-07-05	-	-	-	-	-	8.07	1160	1810	4.1	1600			< 1.0	< 1.0	< 0.250			847	0.139	8	0.0633	< 0.050	-	0.0041	0.72	0.78
EV_BC1 EV BC1	EV_BC1_WS_2022-07-12_N-SRF EV_BC1_WS_2022-07_WEK29_N	2022-07-12 2022-07-12	-	-	-	-	-	8.21	1180	1770	3.1	1680	0.45		< 1.0	< 1.0	0.53	23.7	0.2	847	0.144	7.49	0.0657	0.164	-	0.0042	0.85	0.83
EV_BC1	EV BC1 WS 2022-07-WER25-N	2022-07-19	+-	+ -	-	-	-	7.41	1150	1780	2.4	1540			< 1.0	< 1.0	0.512	20.6	0.258	816	0.0189	6.95	0.0512	0.122	-	0.0124	1.05	0.79
EV_BC1	EV_BC1_WS_2022-08-02_N-SRF	2022-08-02	-	-	-	-	-	8.16	1130	1790	1.2	1490	0.32	2 383	< 1.0	< 1.0	0.312	19.6	0.223	863	0.0107	7.84	0.0247	0.408	-	0.0043	0.77	0.76
EV_BC1	EV_BC1_WS_2022-08_MON_N	2022-08-10	-	-	-	-	-	8.35	1280	2080	1.2	1620			4.8	< 1.0	0.375	19.6	0.179		0.0117	13.1	0.0361	0.346	-	0.0024	0.96	0.85
EV_BC1 EV BC1	EV_BC1_WS_2022-08-16_N-SRF EV_BC1_WS_2022-08-30_N-SRF	2022-08-16 2022-08-30	+ -	1	-	-	-	8.23	1240	1870 1810	1.4	1510 1530	0.24		< 1.0	< 1.0	0.307	20.4	0.234	947 873	0.0075 0.0057	10.6 7.67	0.0188 0.0121	0.342		0.0034	< 0.50 0.79	< 0.50
EV_BC1	EV BC1 WS 2022-09 MON N	2022-08-30	+-	1	-	-	Ė	8.26		1790	1.3	1550			< 1.0	< 1.0	0.385	22.3		891	0.0057	7.33	0.0121	0.463	<u> </u>	0.0043	0.79	0.72
EV_BC1	EV_BC1_WS_SEPT-2022_N	2022-09-09	-	-	-	-	-	8.17	1260	1780	6.6	1500	0.24	4 353	< 1.0	< 1.0	0.454	22	0.211	881	< 0.0050	7.34	0.0056	0.388		0.0057	1.01	1.03
EV_BC1	EV_BC1_WS_2022-09-13_N-SRF	2022-09-13	-	-	-	-	-	8.32	1090	1780	1.1	1540			6.6	< 1.0	0.41	21.4		879	0.0093	7.7	0.006	0.435	-	0.0049	< 0.50	
EV_BC1 EV BC1	EV_BC1_WS_2022-09-27_N-SRF EV_BC1_WS_2022-10-04_N-SRF	2022-09-27 2022-10-04	-	-	-	-	-	8.13	1300	1850 1840	2	1490 1530			< 1.0	< 1.0 < 1.0	1.08 0.813	58.1 42.7		859 927	0.0125 0.0811	7.39 10.8	0.0094 0.0279	0.072	-	0.0039	0.96	1.21
EV_BC1	EV BC1 WS 2022-0-04 N	2022-10-04	+	+ -	-	-	-	8.23	1310	1820	< 1.0				< 1.0	< 1.0	0.718	35.2		901	0.0495	10.8	0.0279	< 0.050	-	0.0034	< 0.50	
EV_BC1	EV_BC1_WS_2022-10-06_N-SRF	2022-10-06	-	-	-	-	-	-	-	1 -		-	-	-	-	-	-	-	-	-	-	15	-	-	-	-	-	
EV_BC1	EV_BC1_WS_2022-10-18_N-SRF	2022-10-18	-	-	-	-	-	8.13	1240	1820	1.7	1600			< 1.0	< 1.0	0.481	27	0.237	909	0.0079	11	0.0266	0.627	-	0.0031	0.8	0.77
EV_BC1 EV BC1	EV_BC1_WS_2022-11-01_N-SRF EV_BC1_WS_2022-11_MON_N	2022-11-01	-	-	-	-	-	8.3 8.2	1250 1440	1820 2200	1.1	1700	0.3		4.8 < 1.0	< 1.0	0.428	26.7	0.226	939	0.0052 0.166	15 21.6	0.0156 0.053	0.153	-	0.0027	1.07	1.02 0.99
EV_BC1	EV_BC1_WS_2022-11_MON_N EV_BC1_WS_2022-11-15_N_SRF	2022-11-14	+=	-	-	-	-	8.27	1440	2190	< 1.0		0.4		< 1.0	< 1.0	0.461	33.6	0.262		0.166	20.4	0.053	< 0.500	-	0.0053	0.99	0.99
EV_EC1	EV_EC1_WS_2022-01-05_N-SRF	2022-01-05	-	1	-	-	-	8.2	1390					2 508				7.79			0.0279	5.2	0.0226	0.244	-	0.0042	1.68	0.85
											,		,	1.70	-					-				-				

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness ^b Guideline varies with pH and water temperature ^c Guideline varies with chloride

APPENDIX C - TABLE 1: Summary of Analytical Results for Dissolved Organics, Nutrients and Organics

				Field	d Param	eters				Physical P	arameter	rs				Dis	solved In	organics					Nutrient	s				
				1 1010	1	1				- Injuicari		1			T	1	00,100	Junios		T			- Nation	Ĭ				
Sample	Sample	Sample Date	Field Temperature	ph (field)	Dissolved Oxygen	Field Conductivity	Field ORP	Hd	Hardness	Conductivity	Total Suspended Solids	Total Dissolved Solids	Turbidity	Bicarbonate	Carbonate	Hydroxide	Bromide	Chloride	Fluoride	Suifate	Ammonia Nifrogen	Nitrate Nitrogen	Nitrite Nitrogen	Kjeldahi Nitrogen-N	Ortho-Phosphate	Phosphorus, Total	Total Organic Carbon	Dissolved Organic Carbon
Location	ID	(yyyy-mm-dd)	С	pH	mg/L	μS/cm	mV	pH	mg/L	μS/cm	mg/L	mg/L	ntu	mg/L	mg/L	mg/L	. mg/L	mg/l	. mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
BC WQG FWAL Elkview Operation			n/a	Maximum 9	D Acute Chronic	n/a	n/a	mnwimmu 6.5 9	n/a	n/a	5 Acute Chronic	n/a	% Acute	4	n/a	n/a	n/a	9 Acute	Year S	9 5 4 5 128-429	9 0.681-28.7 ^b 0.102-2.08 ^b	9 July 20 32.8 3.7	9 S S S S S S S S S S S S S S S S S S S	n/a	n/a	0.015	n/a	n/a
EV EC1	EV EC1 WS 2022-Q1 N	2022-01-17	T -					8.27	1220	1900	2.3	1670	I c 0 10	0 530	< 1.0	< 1.0	0.316	6.55	0.144	850	< 0.0050	5.02	< 0.0050	0.373		0.0031	0.98	1.05
EV EC1	EV EC1 WS 2022-01-17 N-SRF	2022-01-17	-	-	-	-	- 1	8.32	1200	1870	1	1650	< 0.10		6.1	< 1.0					< 0.0050	5.36	< 0.0050	0.356	-	0.0039	0.77	0.71
EV_EC1	EV_EC1_WS_2022-01-31_N-SRF	2022-01-28	-	-	-	-	-	8.33	1200	1860	1.2	1560	< 0.10		9.1	< 1.0				827	< 0.0050	4.1	< 0.0050	0.326	-	0.0041	1.41	1.08
EV_EC1	EV_EC1_WS_2022-02-14_N-SRF	2022-02-14	-	-	-	-	-	8.41	1200	1860	1.5	1680	< 0.10		13.8	< 1.0					< 0.0050	6.03	0.0795	0.334	-	0.0038	0.58	0.58
EV_EC1 EV EC1	EV_EC1_WS_2022-02_MON_N EV_EC1_WS_2022-02-28_N-SRF	2022-02-16 2022-02-28	-	-	-	-	-	8.32	1240	1860	2.2	1780	< 0.10		5.3	< 1.0					< 0.0050 < 0.0050	8.34 4.44	< 0.0050 < 0.0050	0.34	-	0.0037	0.62	0.61
EV_EC1	EV EC1 WS 2022-02-26 N-SRF	2022-02-28	-	-	-	-		8.07	1130	1840	1.6	1680		505	< 1.0						< 0.0050	7.83	< 0.0050	0.399	-	0.003	0.34	0.63
EV EC1	EV EC1 WS 2022-03 MON N	2022-03-17	-	-		-	-	8.22	1260	1860	< 1.0		< 0.10		< 1.0						< 0.0050	4.25	< 0.0050	0.363	-	0.002	0.87	0.84
EV_EC1	EV_EC1_WS_2022-03-21_N_SRF	2022-03-21	-	-	-	-	-	8.29	1230	1860	1.9	1650	< 0.10		< 1.0				0.197	821	< 0.0050	3.25	< 0.0050	0.176	-	0.0027	0.8	0.81
EV_EC1	EV_EC1_WS_2022-03_WEK13_N	2022-03-22	-	-	-	-	-	-	-	-	< 1.0		< 0.10		-	-	-	-	-	-	-		-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-03-28_N-SRF	2022-03-28	-	-	-	-	-	8.22	1210	1860	< 1.0			0 508	< 1.0						< 0.0050	16.5	< 0.0050	0.392	-	< 0.0020	0.85	0.86
EV_EC1	EV_EC1_WS_2022-03-28_N-SRF_1	2022-03-28	-	-	-	-	-	8.23	1460	1880	2.2	1480	< 0.10		< 1.0	< 1.0	< 0.25	0 5.8	< 0.100	828	< 0.0050	16.9	< 0.0050	-	-	0.011	-	-
EV_EC1 EV EC1	EV_EC1_WS_2022-03_WEK14_N EV_EC1_WS_2022-04-04_N-SRF	2022-03-30 2022-04-04	-	-	-	-	-	-	4000	1830	< 1.0		< 0.10		< 1.0	< 1.0	- 0.05	0 6.62	< 0.100	772	< 0.0050	7.38	< 0.0050	0.188	-	0.0039	-	0.89
EV_ECT	EV_ECT_WS_2022-04-04_N-SRF EV_ECT_WS_2022-04_WEK15_N	2022-04-04	+ :-	-	-			8.14	1230	1830	< 1.0 2.7	1520	< 0.10		< 1.0	< 1.0	< 0.250	0.02	< 0.100	1//2	< 0.0050	7.36	< 0.0050	0.188	-	0.0039	0.8	0.89
EV_EC1	EV EC1 WS 2022-04-10 N-SRF	2022-04-10	+		-			8.25	1240	1820	2.5	1570	< 0.10		< 1.0			_	_		< 0.0050	16.5	< 0.0050	-	-	0.0024	-	+
EV EC1	EV EC1 WS 2022-04-11 N-SRF	2022-04-11	-	-	-	-	- 1	8.19	1290	1770	1.8	1550	< 0.10		< 1.0						< 0.0050	16.2	< 0.0050	< 0.050	-	0.002	1.12	0.99
EV_EC1	EV_EC1_WS_2022-04-11_N-SRF_1	2022-04-11	-	-	-	-	-	8.29	1260	1870	1.2	1490	< 0.10	0 469	< 1.0	< 1.0	< 0.250	0 6.15	0.123	830	< 0.0050	16.5	< 0.0050	-	-	< 0.0020	-	-
EV_EC1	EV_EC1_WS_2022-04-12_N-SRF	2022-04-12	-	-	-	-	-	8.05	1120	1830	< 1.0		< 0.10		< 1.0						< 0.0050	17.5	< 0.0050	-		0.002	-	-
EV_EC1	EV_EC1_WS_2022-04-13_N-SRF	2022-04-13	-	-	-	-	-	8.1	1260	1800	1.8	1580	< 0.10		< 1.0						< 0.0050	16.5	< 0.0050	-	-	0.0021	-	-
EV_EC1	EV_EC1_WS_2022-Q2_N	2022-04-13	-	-	-	-	-	8.21	1170	1820	< 1.0		0.28		< 1.0					780	< 0.0050	16.3	< 0.0050	0.393	-	0.0031	1.08	0.96
EV_EC1 EV EC1	EV_MC6_WS_2022-Q2_N	2022-04-13	-	-	-	-	-	8.23	1100	1840	1.2	1530	< 0.10		< 1.0				< 0.100		< 0.0050 < 0.0050	16.5 < 0.0050	< 0.0050 < 0.0010	< 0.050		< 0.0026	1.15	1.02
EV_EC1	EV_MC8_WS_2022-Q2_N EV EC1 WS 2022-04-14 N-SRF	2022-04-13 2022-04-14	-	-	-	-	-	5.15 8.2	< 0.50 1170	1860	< 1.0		< 0.10		< 1.0				< 0.020		< 0.0050	15.7	< 0.0010	< 0.050	-	0.0020	< 0.50	< 0.50
EV_EC1	EV EC1 WS 2022-04-14 N-SRF	2022-04-15	-	-	-	-		8.2	1240	1870	1.4	1570	< 0.10		< 1.0						< 0.0050	16.1	< 0.0050	1 -	-	0.003	+ -	1 -
EV EC1	EV EC1 WS 2022-04-16 N-SRF	2022-04-15	-		-	-		8.13	1280	1840	2.6	1600	< 0.10		< 1.0						< 0.0050	17.1	< 0.0050	-		0.0032	<u> </u>	+
EV EC1	EV EC1 WS 2022-04-17 N-SRF	2022-04-17	-	-	-	-	-	8.21	1230	1830	1.4	1590	< 0.10		< 1.0				0.108		< 0.0050	16.7	< 0.0050	-	-	0.0023	-	-
EV EC1	EV EC1 WS 2022-04-18 N-SRF	2022-04-18	-	-	-	-	- 1	8.13	1120	1840	1.4	1550	< 0.10		< 1.0	< 1.0	< 0.25	0 6.72	0.107	833	< 0.0050	17.2	0.0053	< 0.050	-	0.0047	0.89	0.63
EV_EC1	EV_EC1_WS_2022-04-18_N-SRF_1	2022-04-18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-04-19_N-SRF	2022-04-19	-	-	-	-	-	8.05	1210	1850	< 1.0		< 0.10		< 1.0				< 0.100		< 0.0050	16.7	< 0.0050	-	-	0.0025	-	-
EV_EC1	EV_EC1_WS_2022-04-20_N-SRF	2022-04-20	-	-	-	-		8.22	1240	1840	1.5		< 0.10		< 1.0					762	< 0.0050	17.3	< 0.0050	-	-	0.002	-	-
EV_EC1 EV EC1	EV_EC1_WS_2022-04_WEK17_N EV_EC1_WS_2022-04-21_N-SRF	2022-04-20 2022-04-21	-	-	-	-		8.21	1240	1850	< 1.0	1580	0.1		< 1.0	< 1.0	< 0.250	5.33	< 0.100	791	< 0.0050	17.7	< 0.0050	-	-	0.0024	-	-
EV_EC1	EV_ECT_W3_2022-04-21_N-SRF EV_ECT_WS_2022-04-22_N-SRF	2022-04-21	-	-	-	-		8.27	1260	1830	< 1.0			0 476	< 1.0				< 0.100		< 0.0050	17.7	< 0.0050	-	-	< 0.0024	-	-
EV_EC1	EV EC1 WS 2022-04-23 N-SRF	2022-04-23	+ -	-	÷	-		8.3	1300	1840	1.5	1510	0.11		2.4	< 1.0			< 0.100		0.0619	16.4	< 0.0050	-	-	0.0029	+	H
EV_EC1	EV_EC1_WS_2022-04-24_N-SRF	2022-04-24	-	-	-	-	-	8.34	1240	1820	< 1.4		< 0.10		4.9	< 1.0					< 0.0050	16.9	< 0.0050	-	-	0.0027	-	-
EV_EC1	EV_EC1_WS_2022-04-25_N-SRF	2022-04-25	-	-	-	-		8.28	1180	1750	< 1.0		< 0.10		< 1.0	< 1.0			< 0.100	758	< 0.0050	16.2	< 0.0050	< 0.050	-	0.0054	1.2	1.05
EV_EC1	EV_EC1_WS_2022-04-25_N-SRF_1	2022-04-25	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-		-		-	-		-	-
EV_EC1	EV_EC1_WS_2022-04-26_N-SRF	2022-04-26	-	-	-	-	-	8.09	1170	1800	1.4		0.12		< 1.0						< 0.0050	15.1	< 0.0050	-	-	0.0025	-	-
EV_EC1 EV EC1	EV_EC1_WS_2022-04-27_N-SRF EV_EC1_WS_2022-04_WEK18_N	2022-04-27 2022-04-27	-	-	-	<u> </u>	-	8.3	1180	1810	1.6	1540	0.17		2	< 1.0	< 0.25	0 5.88	< 0.100	1/3	< 0.0050	16.8	< 0.0050	-	-	0.0024	-	-
EV_EC1	EV_EC1_WS_2022-04_WEK18_N EV_EC1_WS_2022-04-28_N-SRF	2022-04-27	+ -	-	-	-		8.04	1190	1780	3.1	1560	0.26	453	< 1.0	< 1.0	< 0.250	0 6.39	< 0.100	792	< 0.0050	15.9	< 0.0050	-	-	0.0027	+ -	-
EV_EC1	EV EC1 WS 2022-04-26 N-SRF	2022-04-28	+ -	-	-	-	-	8.27	1170	1810	1.9	1540	0.13		< 1.0				< 0.100		< 0.0050	15.1	< 0.0050	-	-	0.0027	+ -	-
EV_EC1	EV_EC1_WS_2022-04-30_N-SRF	2022-04-30	-	-	-	-	- 1	8.08	1210	1780	1.1	1500	< 0.10		< 1.0				0.102		< 0.0050	16.4	< 0.0050	-	-	0.0025	-	-
EV_EC1	EV_EC1_WS_2022-05-01_N-SRF	2022-05-01	-	-	-	-	- 1	8.11	1240	1790	< 1.0		< 0.10		< 1.0						< 0.0050	16.5	< 0.0050	-	-	0.0025	-	-
EV_EC1	EV_EC1_WS_2022-05-02_N-SRF	2022-05-02	-	-	-	-	-	8.23	1140	1810	1.7	1500	0.17	439	< 1.0	< 1.0	< 0.25	0 5.63	< 0.100	801	0.0083	16.5	< 0.0050	0.06	-	< 0.0020	1.07	0.85
EV_EC1	EV_EC1_WS_2022-05-02_N-SRF_1	2022-05-02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-05-03_N-SRF	2022-05-03	-		-			8.23	1160	1810	13.1		0.57		< 1.0						< 0.0050	16.5	< 0.0050	-	-	0.0022	-	-
EV_EC1	EV_EC1_WS_2022-05-04_N-SRF	2022-05-04	-	-	-	-	-	8.25	1180	1810	2.8	1470			< 1.0						< 0.0050 0.0053	16.6	< 0.0050	- 0.412	-	0.003	1.05	1.02
EV EC1	EV_EC1_WS_2022-05-MON_N	2022-05-04	-	-	-	-		8.04	1120	1800	4.2	15/0	< 0.10	0 455	< 1.0	< 1.0	< U.25	υ J 5.53	< 0.100	790	0.0053	15.8	< 0.0050	0.413		0.0026	1.05	1.03

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted n/a denotes no applicable standard

^a Guideline varies with hardness ^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

APPENDIX C - TABLE 1: Summary of Analytical Results for Dissolved Organics, Nutrients and Organics

				Field	d Param	eters				Physical Pa	arameter	s		Г		Diss	olved Ino	rganics					Nutrien	s				
			perature		1 Oxygen	ductivity				vity	pended Solids	solved Solids		ate							Nitrogen	trogen	rogen	Vitrogen-N	osphate	rus, Total	anic Carbon	l Organic Carbon
			eld Ten	H (field)	issolved	eld Con	ield ORP	_	ardness	onducti	Fotal Sus	otal Dis	Turbidity	carbon	arbonat	droxid	omide	Chloride	uoride	ulfate	m mon k	itrate Nit	ir is	eldahi	rtho-Ph	oydsou	otal Org	ssolvec
Sample Location	Sample ID	Sample Date (yyyy-mm-dd)	i <u>i</u>	표 pH	<u></u>	μS/cm	mV	pH	mg/L	uS/cm	mg/L	mg/L		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	Mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
BC WQG FWAL	10	(уууу-шш-ий)		Muminimum Maximum Maxi	Acute Chronic		n/a	mnwinim 6.5		n/a	Acute Chronic		8 Acute Chronic		n/a	n/a	n/a	Chronic 009	Acute	Chronic	* 0.681-28.7° 0.102-2.06	Acute Chronic	Acute Chronic		n/a		n/a	n/a
Elkview Operation																												
EV_EC1	EV_EC1_WS_2022-05-05_N-SRF	2022-05-05	-	-	-	-	-	8.12	1190	1760	1.8		< 0.10		< 1.0			6.62			< 0.0050	16	< 0.0050	- 0.050	-	< 0.0020	-	
EV_EC1 EV EC1	EV_EC1_WS_2022-05-05_N EV_EC1_WS_2022-05-06_N-SRF	2022-05-05 2022-05-06	-	-	-	-	-	8.11	1160	1800	1.5	1470 1540	< 0.10	418	< 1.0	< 1.0	< 0.250		0.108	797 780	< 0.0050 < 0.0050	17.6 16	< 0.0050 0.005	< 0.050	-	0.003	0.96	0.78
EV_EC1	EV EC1 WS 2022-05-06 N	2022-05-06	+-	+:-	+:-	-	- -	8.26	1130	1770	< 1.0	1440	< 0.10		< 1.0	< 1.0	< 0.250		< 0.100		< 0.0050	15.5	< 0.0050	< 0.050	H :	0.0033	1.08	1.06
EV EC1	EV EC1 WS 2022-05-05 N	2022-05-07	+ -		-	-	-	8.19	1190	1780	3	1620	0.10	441	< 1.0	< 1.0	< 0.250		< 0.100		< 0.0050	16.3	< 0.0050	- 0.030	-	0.0025		- 1.00
EV_EC1	EV_EC1_WS_2022-05-07_N	2022-05-07	-	-	-	-	-	8.16	1160	1750	3.7	1490	< 0.10		< 1.0	< 1.0	< 0.250		0.107	802	0.0057	16.5	< 0.0050	< 0.050	-	0.0032	0.99	0.9
EV_EC1	EV_EC1_WS_2022-05-08_N-SRF	2022-05-08	-	-	-	-	-	8.22	1170	1780	3.7	1620	0.13	444	< 1.0	< 1.0	< 0.250		< 0.100	757	< 0.0050	16.2	< 0.0050	-	-	0.0028	-	- 1
EV_EC1	EV_EC1_WS_2022-05-08_N	2022-05-08	-	-	-	-	-	8.24	1150	1770	4.5	1570	0.49	444	< 1.0	< 1.0	< 0.250	5.84	< 0.100	769	< 0.0050	16.2	< 0.0050	< 0.050	-	0.0022	1.06	0.95
EV_EC1	EV_EC1_WS_2022-05-09_N	2022-05-09	-	-	-	-	-	8.27	1110	1760	2.7	1570		407	< 1.0	< 1.0		5.71			< 0.0050	16.4	< 0.0050	< 0.050	-	0.0023	0.92	
EV_EC1	EV_EC1_WS_2022-05-09_N-SRF	2022-05-09	-	-	-	-	-	8.14	1180	1770	< 1.0	1560		404	< 1.0	< 1.0		5.48			< 0.0050	15.2	< 0.0050	< 0.050	-	< 0.0020	0.96	0.83
EV_EC1	EV_EC1_WS_2022-05-10_N-SRF	2022-05-10	-	-	-	-	-	8.21	1150	1800	2.5	1390	0.27	460	< 1.0	< 1.0	< 0.250		0.1	794	< 0.0050	16.9	< 0.0050	-	-	< 0.0020		<u> </u>
EV_EC1	EV_EC1_WS_2022-05_WEK20_N	2022-05-10	-	-	-	-	-	8.25	1050	1780	1.4	1600	0.18	415	< 1.0	< 1.0	< 0.250		< 0.100	738	< 0.0050	15.8	< 0.0050	0.287	-	0.003	1.09	0.83
EV_EC1 EV EC1	EV_EC1_WS_2022-05-11_N-SRF EV_EC1_WS_2022-05-12_N-SRF	2022-05-11	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	<u> </u>	-	-	16.6	-	-	-	-	-	+
EV_EC1	EV_ECT_WS_2022-05-12_N-SRF EV_ECT_WS_2022-05-13_N-SRF	2022-05-12 2022-05-13	+ -	-	-	-	-	-	-	-	-	-	-	+ -	-	-	-	-	-	-	-	16.5	-	-	-	+ : -	-	
EV_EC1	EV EC1 WS 2022-05-13 N-SRF	2022-05-13	+	-	-	-	-	-	<u> </u>		-	+ -	-	-	+ -	+	-	-	-	-	-	16.5 14.8	-	-		-	-	+:-
EV EC1	EV EC1 WS 2022-05-15 N-SRF	2022-05-15	+-	+		-		-	<u> </u>	<u> </u>	+:-	+ -	-	+	+:-		+ -	<u> </u>	+	H		17	-				<u> </u>	+ $=$ $+$ $=$ $+$ $=$ $+$ $=$ $+$ $=$ $+$ $=$ $+$ $=$ $+$ $=$ $+$ $=$ $+$ $=$ $=$ $+$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$
EV EC1	EV EC1 WS 2022-05-16 N-SRF	2022-05-16	-	<u> </u>		-	-	7.98	1200	1780	1.4	1450	0.62	437	< 1.0	< 1.0	< 0.250	6.1	< 0.100	821	< 0.0050	- "	< 0.0050	0.313	-	0.0027	2.53	1.19
EV EC1	EV EC1 WS 2022-05-16 N-SRF 1	2022-05-16	T -	T -	T -	-	-	7.00	-	-		-	- 0.02	-	-	-	-		-	-		17.2		-	-	-	-	-
EV EC1	EV EC1 WS 2022-05-17 N-SRF	2022-05-17	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	16.3	-	-	-	-	-	<u>+</u>
EV_EC1	EV_EC1_WS_2022-05-18_N-SRF	2022-05-18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	17.1	-	-	-	-	-	1
EV_EC1	EV_EC1_WS_2022-05_WEK21_N	2022-05-18	-	-	-	-	-	-	-	-	1.2	-	0.41	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-05-19_N-SRF	2022-05-19	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	19.2	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-05-20_N-SRF	2022-05-20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	17.4	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-02-21_N-SRF	2022-05-21	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	16.1	-	-	-	-	-	
EV_EC1 EV EC1	EV_EC1_WS_2022-05-22_N-SRF EV_EC1_WS_2022-05-23_N-SRF	2022-05-22 2022-05-23	-	-	-	-	-	-	1180	1800	< 1.0	1540	0.1	451	< 1.0	< 1.0	< 0.250	5.89	< 0.100	707	< 0.0050	16.8 15.9	< 0.0050	0.445	-	0.0036	0.57	0.8
EV_EC1	EV EC1 WS 2022-05-24 N-SRF	2022-05-24	+ -	-	-	-	-	8.08	1100	1000	< 1.0	1340	0.1	401	× 1.0	× 1.0	< 0.230	5.89	0.100	/6/	< 0.0050	18.8	< 0.0050	0.443	-	0.0030	0.57	0.0
EV_EC1	EV EC1 WS 2022-05-25 N-SRF	2022-05-25	+ -	-	-			-		-	+:-		+ -	+ :	+:-		+	+ :-	+:-	+	-	16.7	-	+		+ :-	H:-	+ $=$ $ =$
EV EC1	EV EC1 WS 2022-05 WEK22 N	2022-05-25	-	-	-	-	-		-	-	1.8	-	0.14	-	-	-	-	-	-	-	-		-	-	-	-	-	+
EV EC1	EV EC1 WS 2022-05-26 N-SRF	2022-05-26	-	-	-	-	-	-	-	-	-	-	-	T -	-	-	1 -	-	1 -	-		15.8	-	1 -	-	-	-	-
EV_EC1	EV_EC1_WS_2022-05-27_N-SRF	2022-05-27	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	16.4	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-05-28_N-SRF	2022-05-28	-	-	-	-	-	-	-	-	-	-	-	<u> </u>	_	-	-	-	-	-		16.4	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-05-29_N-SRF	2022-05-29	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1 -	-	16.4	-	-	-	-	-	1 -
EV_EC1	EV_EC1_WS_2022-05-30_N-SRF	2022-05-30	-	-	-	-	-	8.12	1200	1830	1.8	1480	0.24	436	< 1.0	< 1.0	< 0.250		< 0.100	800	< 0.0050	16.3	< 0.0050	< 0.050	-	0.0028	0.98	0.9
EV_EC1 EV EC1	EV_EC1_WS_2022-05-30_N-SRF_1 EV_EC1_WS_2022-05-31_N-SRF	2022-05-30 2022-05-31	-	-	-	-	-		-	-	+-	-	-	+-	+-	-	+	-	-		-		-	- -	-	-	<u> </u>	+ $ -$
EV_EC1	EV_EC1_WS_2022-05-31_N-SRF EV_EC1_WS_2022-05_WEK23_N	2022-05-31	-	-	-	-	-	<u> </u>	-	-	1.8	-	< 0.10	+-	+-	-	+-	-	+-	+-	-	18	-	-	-	-	-	+
EV_EC1	EV_EC1_WS_2022-05_WER23_N EV_EC1_WS_2022-06-01_N-SRF	2022-05-31	+-	-	-	-	-	-	+ -	H :-	1.8	+ -	< 0.10	+:-	+		+:-	-	+÷	+	-	16.8	-	+:-		+ :	+:-	+
EV EC1	EV EC1 WS 2022-06-02 N-SRF	2022-06-02	+-	+ -	-	-	-	8.24	949	1820	1.8	1520			< 1.0	< 1.0	< 0.250		< 0.100		< 0.0050	17.2	< 0.0050	< 0.050	-	0.0042	0.55	0.59
EV EC1	EV EC1 WS 2022-06-03 N-SRF	2022-06-03	+ -	-	-	-	-	0.24	-	-	-	-	- 0.10	1 -	- 1.0	- 1.0	-	3.81		+	- 0.0000	17.4	- 0.0030	-	-	-	-	+
EV_EC1	EV_EC1_WS_2022-06-04_N-SRF	2022-06-04	-	-	-	-	-	-	-	-	T -	-	-	-	-	-	T -	T -	1 -	1 -		18.2	-	1 -	-	-	-	-
EV_EC1	EV_EC1_WS_2022-06-05_N-SRF	2022-06-05	-	-	-	-	-	I -	-	-	-	-		I -	-	-	-	L -	I -	-		16.8	-	-	-	-	-	
EV_EC1	EV_EC1_WS_2022-06_MON_N	2022-06-06	-	-	-	-	-	8.31	1170	1850	2.4	1490	< 0.10		4.2	< 1.0	< 0.250		< 0.100		< 0.0050	17.1	< 0.0050	1.45	-	0.0038	< 0.50	
EV_EC1	EV_EC1_WS_2022-06-06_N-SRF	2022-06-06	-	-	-	-	-	8.09	1200	1900	< 1.0	1570	0.1	440	< 1.0	< 1.0	< 0.250	5.78	< 0.100	776	0.0062	17.3	< 0.0050	0.506	-	0.0133	1.09	1.08
EV_EC1	EV_EC1_WS_2022-06-07_N-SRF	2022-06-07	-	-	-	-	-	-		-	-	-	-	ļ -		-		-	ļ -		-	17.1	-			-		+□
EV_EC1	EV_EC1_WS_2022-06-08_N-SRF	2022-06-08	-	-	-	-	-	-	- 4400	- 4050	-	- 4540	-	-		- 10	- 0.050	-		745	-	16.8	-	- 0.050	-	- 0.004	-	- 0.07
EV_EC1 EV EC1	EV_EC1_WS_2022-06-09_N EV_EC1_WS_2022-06-09_N-SRF	2022-06-09 2022-06-09	-	-	-	-	-	8.12	1180	1850	3.1	1540	0.1	461	< 1.0	< 1.0	< 0.050	5.6	0.081	715	< 0.0050	16.1 16.3	0.0012	< 0.050	-	0.004	0.82	0.87
EV_EC1	EV_ECT_WS_2022-06-09_N-SRF EV_ECT_WS_2022-06-10_N-SRF	2022-06-10	+ -	-	-	-	-	-	+	H :-	-	+ -	-	+-	+ -	+ -	+	-	+ -	+	-	16.3	-	+	-	-	-	+
		2022 00 10	_		<u> </u>	_		<u> </u>			<u> </u>			_	_				_			10.0						-

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted n/a denotes no applicable standard

^a Guideline varies with hardness ^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

APPENDIX C - TABLE 1: Summary of Analytical Results for Dissolved Organics, Nutrients and Organics

				Fiel	d Param	eters			-	hysical P	arameter	s				Dis	solved Ino	rganics					Nutrien	ts				
Sample	Sample	Sample Date	Field Temperature	ph (field)	Dissolved Oxygen	Field Conductivity	Field ORP	Hd	Hardness	Conductivity	Total Suspended Solids	Total Dissolved Solids	Turbidity	Bicarbonate	Carbonate	Hydroxide	Bromide	Chloride	Fluoride	Sulfate	Ammonia Nitrogen	Nitrate Nitrogen	Nitrite Nitrogen	Kjeldahl Nitrogen-N	Ortho-Phosphate	Phosphorus, Total	Total Organic Carbon	Dissolved Organic Carbon
Location	ID	(yyyy-mm-dd)	С	pH F	mg/L	μS/cm	mV	pH F	mg/L	µS/cm	mg/L	mg/L	ntu	mg/L	mg/L	mg/L	. mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
				Minimur	Acute Chronic			Minimur			Acute Chronic		Acute Chronic					Acute		Chronic	Acute Chronic	Acute Chronic	Acute Chronic			Chronic		
BC WQG FWAL Elkview Operation			n/a	6.5 9	1 5	n/a	n/a	6.5 9	n/a	n/a	25 5	n/a	8 2	n/a	n/a	n/a	n/a	J600 150	0.4- "	128-429	0.681-28.7 ^b 0.102-2.08 ^b	32.8 3.7	0.06-0.60° 0.02-0.20	n/a	n/a	0.015	n/a	n/a
Elkview Operation EV EC1	EV_EC1_WS_2022-06-10_N	2022-06-10	T -		T -	-	-	8.05	1160	1790	2.3	1510	< 0.10	435	< 1.0	< 10	< 0.250	5.65	< 0.100	766	< 0.0050	16.8	0.0052	< 0.050	-	0.0039	0.73	0.8
EV_EC1	EV_EC1_WS_2022-06-11_N	2022-06-11	-	-	1 -	-	-	8.1	1180	1800	1.4	1600			< 1.0	< 1.0			0.155		< 0.0050	19.9	< 0.0050	< 0.050	-	0.0148	0.85	0.64
EV_EC1	EV_EC1_WS_2022-06-11_N-SRF_1	2022-06-11	-	-	-	-	-	-			-		-		-	I -		-			-	18.5	-		-			-
EV_EC1 EV EC1	EV_EC1_WS_2022-06-12_N EV_EC1_WS_2022-06-12_N-SRF_1	2022-06-12 2022-06-12	-		-	-	-	8	1250	1880	1.9	1570	0.21	449	< 1.0	< 1.0	< 0.250	6.13	< 0.100	833	< 0.0050	18.5	< 0.0050	< 0.050	-	0.0042	< 0.50	0.51
EV_EC1	EV_EC1_WS_2022-06-12_N-SRF_1 EV_EC1_WS_2022-06-13_N-SRF	2022-06-12	1		-	-	-	8.27	1140	1820	1.4	1490	0.21	448	< 1.0	< 1.0	< 0.250	6.73	< 0.100	791	< 0.0050	16.6 17.2	< 0.0050	1.07	-	0.0055	0.83	0.95
EV_EC1	EV EC1 WS 2022-06-14 N	2022-06-13	-	-	-	-	-	8.21	1020	1660	2.6	1310		432	5.9	< 1.0			0.102	641	< 0.0050	13.7	< 0.0050	< 0.050		0.0000	2.75	2.66
EV_EC1	EV_EC1_WS_2022-06-15_N	2022-06-15	-	-	-	-	-	8.26	1110	1790	2.2	1470			2	< 1.0			0.116	774	< 0.0050	16	< 0.0050	< 0.050	-	0.0066	1.53	1.45
EV_EC1	EV_EC1_WS_2022-06_WEK25_N	2022-06-15	-	-	-	-	-	-	-	-	2.4	-	0.13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-06-16_N-SRF	2022-06-16	-	-	-	-	-	8.27	1090	1710	< 1.0	1550	< 0.10	440	< 1.0	< 1.0		5.1	< 0.100	716	0.0055	15.7	0.007	< 0.050	-	0.0082	1.32	1.45
EV_EC1 EV EC1	EV_EC1_WS_2022-06-17_N-SRF EV_EC1_WS_2022-06-18_N-SRF	2022-06-17 2022-06-18	-	-	-	-	-	-	-	-	+ :-	-	+ -	-	-	-	-	<u> </u>	-	-	-	16.2 15.7	-	-	-	-	-	-
EV EC1	EV EC1 WS 2022-06-19 N-SRF	2022-06-19	-		-	-	-	-	-	-	+ -	-	+ -	1	-	-	-	 	1	<u> </u>	-	16.1	-	-	-		-	-
EV_EC1	EV_EC1_WS_2022-06-20_N-SRF	2022-06-20	-	-	-	-	-	8.18	1140	1760	< 1.0	1620		464	< 1.0	< 1.0	< 0.250	5.43	< 0.100	730	< 0.0050	16.1	< 0.0050	< 0.050	-	0.0077	1.17	1.42
EV_EC1	EV_EC1_WS_2022-06-22_N-SRF	2022-06-22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	16	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-06-21_N-SRF	2022-06-22	-	-	-	-	-	-	-	-	ļ	-	-	-	-	-	-	-	-	-	-	16	-	-	-	-	-	-
EV_EC1 EV EC1	EV_EC1_WS_2022-06_WEK26_N EV_EC1_WS_2022-06-23_N-SRF	2022-06-23 2022-06-23	-	-	-	-	-	-	+ :-	-	1.4	-	0.14	+ :-	-	+ -	+ :		+ :-	-	-	15.7	-		-	-	-	
EV_EC1	EV EC1 WS 2022-06-24 N-SRF	2022-06-24	-		-	-	-	-	-	-	+ -	-	+ -	1	-	-	-	+ -	1	<u> </u>	-	15.7	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-06-25_N-SRF	2022-06-25	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	16.2	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-06-26_N-SRF	2022-06-26	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	13.2	-	-	-	-	-	-
EV_EC1 EV EC1	EV_EC1_WS_2022-06-27_N-SRF EV_EC1_WS_2022-06-28_N-SRF	2022-06-27 2022-06-28	-	-	-	-	-	8.28	1180	1710	< 1.0	1560	< 0.10	433	< 1.0	< 1.0	< 0.250	5.47	< 0.100	805	< 0.0050	16.2 14.7	< 0.0050	0.086	-	0.0061	1.06	0.74
EV_EC1	EV_ECT_WS_2022-06-28_N-SRF EV_ECT_WS_2022-06-29_N-SRF	2022-06-29	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+ :	-	+ :-	-	-	15.1	-	-		+ :-	-	
EV EC1	EV EC1 WS 2022-06 WEK27 N	2022-06-29	-	-	-	-	-	-	-	-	1.4	-	< 0.10	-	-	-	-		-	-	-	-	-	-	-	T -	-	-
EV EC1	EV_EC1_WS_2022-06-30_N-SRF	2022-06-30	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	15.6	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-07-01_N-SRF	2022-07-01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	15.8	-	-	-	-	-	-
EV_EC1 EV EC1	EV_EC1_WS_2022-07-02_N-SRF EV_EC1_WS_2022-07-03_N-SRF	2022-07-02 2022-07-03	-	-	-		-	-	H:-	-	-	+ :-	-	+ :-	-	-	-	-	-	-	-	15.8	-			+:-	-	-:-
EV_EC1	EV_ECT_WS_2022-07-03_N-SRF EV_ECT_WS_2022-07-04_N-SRF	2022-07-03	+-	-	-	-	-	8.33	1200	1670	1.1	1410	< 0.10	448	< 1.0	< 1.0	< 0.250	5.06	< 0.100	702	< 0.0050	16.3 15.4	< 0.0050	0.104	-	0.0059	0.97	1.1
EV EC1	EV EC1 WS 2022-07-05 N-SRF	2022-07-05	1 -	-	-	-	-		-	-	1 -	-	- 0.10	-	- 1.0	- 1.0	-	- 3.00	-	T	- 0.0000	15.2	- 0.0030	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-Q3_N	2022-07-06	-	-	-	-	-	8.34	1120	1700	1.2	1560			8.4	< 1.0			< 0.100		< 0.0050	15.5	< 0.0050	0.14	-	0.0052	< 0.50	< 0.50
EV_EC1	EV_MC5_WS_2022-Q3_N	2022-07-06	-	-	-	-	-	8.35	1120	1680	1	1550			7.9	< 1.0			< 0.100		0.0135	15.3	< 0.0050	< 0.050	-	0.006		< 0.50
EV_EC1 EV EC1	EV_MC7_WS_2022-Q3_N EV EC1 WS 2022-07-06 N-SRF	2022-07-06	1	-	-	-	-	5.61	< 0.50	< 2.0	< 1.0	< 10	< 0.10	< 1.0	< 1.0	< 1.0	< 0.050	< 0.10	< 0.020	< 0.30	0.0179	< 0.0050 16.1	< 0.0010	< 0.050	-	< 0.0020	8.85	8.69
EV_EC1	EV_ECT_WS2022-07-06_N-SRF EV_ECT_WS2022-07-07_N-SRF	2022-07-06	+-	-	-	-	-	-	-	-	-	-	-	+ -	-	-	+ -	+ :-	+ -	+-	-	16.1	-	-	-	+ -	-	-
EV_EC1	EV_EC1_WS2022-07-08_N-SRF	2022-07-08	1 -	-	-	-	-	-	-	-	+ -	-	+ -	-	-	† -	-	T -	1 -	-	-	15.4	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-07-09_N-SRF	2022-07-09	-	-	-	-	-	-	-	-	1 -	-	-	-	-	1 -	-	1 -	-	-	-	15.2	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-07-10_N-SRF	2022-07-10	-	-	-	-	-		-	-	1	-	-	-	-	-	-	1	-	1		15.1		-	-	-	-	-
EV_EC1 EV EC1	EV_EC1_WS_2022-07-11_N-SRF EV EC1 WS 2022-07-12 N-SRF	2022-07-11 2022-07-12	1	-	-	-	-	8.27	1130	1700	2.1	1370	< 0.10	_	< 1.0	< 1.0	< 0.250		0.115	730	0.0093	15.2 14.8	< 0.0050	0.43	-	0.0052	1.05	1.22
EV_EC1	EV_EC1_WS_2022-07-12_N-SRF EV_EC1_WS_2022-07-13_N-SRF	2022-07-12	+ -	-	-	-	-	-	-	-	+ -	-	-	-	-	+ -	-	+ -	+:-	-	-	14.8 15.6	-	-	-	-	-	-
EV EC1	EV EC1 WS 2022-07-13-N-GRI	2022-07-13	+ -	-	-	-	-	-	+-	-	< 1.0		< 0.10	+-	-	+ -	+	+	+ -	+	-	- 15.0	-	+ -	-	+ -	-	-
EV_EC1	EV_EC1_WS_2022-07-14_N-SRF	2022-07-14	-	-	<u> </u>	-	-	-	-	-	-	-	-	<u> </u>	-	-	-	-	-	-	-	15.1	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-07-15_N-SRF	2022-07-15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	16	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-07-16_N-SRF	2022-07-16	-	-	-	-	-	-	-	-	-	-	-	1	-	-		1 -	1 -	-	-	15.8	-	-	-	-	-	-
EV_EC1 EV_EC1	EV_EC1_WS_2022-07-17_N-SRF EV_EC1_WS_2022-07-18_N-SRF	2022-07-17 2022-07-18	1	-	-	-	-	8.21	1120	1720	1.5	1460	< 0.10	485	< 1.0	< 1.0	< 0.250	5.15	< 0.100	721	< 0.0050	15.7 15.3	< 0.0050	< 0.050	-	0.007	0.84	0.67
EV_EC1	EV_ECT_WS_2022-07-18_N-SRF EV_ECT_WS_2022-07-19_N-SRF	2022-07-18	+ -	-	1	-	-	8.21	1120	1/20	1.5	1460	< 0.10	460	× 1.0	× 1.0	- 0.250	5.15	0.100	121	< 0.0050	15.3	< 0.0050	< 0.050		0.007	0.84	0.67
EV EC1	EV EC1 WS 2022-07-20 N-SRF	2022-07-19	+ -	-	-	-	-	-	+-	-	+ -	+ -	+ -	+-	-	+ -	+-	+÷	+ -	-	-	14.4	-	+ -	-	+ -	-	-
EV_EC1	EV_EC1_WS_2022-07-21_N-SRF	2022-07-21	1 -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	14.8	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-07-22_N-SRF	2022-07-22	-	-	-	-	-	-	-	-	I -	-	-	-	-	-	-	-	-	-	-	15	-	-	-	-	-	-
		_	•	•	•	•					•	•	•	•	•	•	•	•		•							•	

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness ^b Guideline varies with pH and water temperature ^c Guideline varies with chloride

APPENDIX C - TABLE 1: Summary of Analytical Results for Dissolved Organics, Nutrients and Organics

				Fie	d Param	eters			-	Physical P	arameters	\$				Diss	olved Inor	rganics					Nutrien	ts				
					T					.,																		Ę
Sample	Sample	Sample Date	Field Temperature	pH (field)	Dissolved Oxygen	Field Conductivity	Field ORP	Hď	Hardness	Conductivity	Total Suspended Solids	Total Dissolved Solids	Turbidity	Bicarbonate	Carbonate	Hydroxide	Bromide	Chloride	Fluoride	Sulfate	Ammonia Nitrogen	Nitrate Nitrogen	Nitrite Nitrogen	Kjeldahl Nitrogen-N	Ortho-Phosphate	Phosphorus, Total	Total Organic Carbon	Dissolved Organic Carbo
Location	ID	(yyyy-mm-dd)	С	pН	mg/L	μS/cm	mV	pН	mg/L	μS/cm	mg/L	mg/L	ntu	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
BC WQG FWAL			n/a	Minimum Maximum	D Acute	n/a	n/a	mnwixeW 9	n/a	n/a	Acute Chronic	n/a	a Acute	n/a	n/a	n/a	n/a	Chronic Chronic	9 Aonte	9 5 128-429	# 5 0.681-28.7 ^b 0.102-2.08 ^b	9 July Acute Ohron 23.8 3.7	# 5 F 5 0.06-0.60° 0.02-0.20	0° n/a	n/a	.pi O.Pi O.015	n/a	n/a
Elkview Operation																												
EV_EC1	EV_EC1_WS_2022-07-23_N-SRF	2022-07-23	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	15.3	-	-	-	-	-	-
EV_EC1 EV EC1	EV_EC1_WS_2022-07-24_N-SRF	2022-07-24	+ -	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	15.2	-	-	-	+ :	-	-
EV_EC1	EV_EC1_WS_2022-07-25_N-SRF EV_EC1_WS_2022-07-26_N-SRF	2022-07-25 2022-07-26	+ -	-	-	-	-	-	-	-	-	+	-	-	-	1 -	-	-	H		-	15.4 15	-	-	-		-	1
EV_EC1	EV ECT WS 2022-07-26 N-SRF EV ECT WS 2022-07-27 N-SRF	2022-07-27	+:-	-	+-	-	-	-		-	+ :	+		-	-	+-	+	-	+:-			15.6	-	+:-	-	+ :-	<u> </u>	+:-
EV_EC1	EV EC1 WS 2022-07-28 N-SRF	2022-07-28	+ -	-	+-	-	-	-	-	-	+ -	-	-	-	-	-	-	-	-		-	15.5	-	+-	-		-	-
EV EC1	EV EC1 WS 2022-07-29 N-SRF	2022-07-29	1 -	1	1	-	-		-	-	1	-		-	-	-	-		-	-		15.2	-	-	-	T -	-	-
EV EC1	EV EC1 WS 2022-07-30 N-SRF	2022-07-30	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		15.1	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-07-31_N-SRF	2022-07-31	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	15.1	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-08-01_N-SRF	2022-08-01	-	-	-	-	-	8.17	1080	1650	< 1.0	1410	< 0.10	466	< 1.0	< 1.0	< 0.250	5.18	0.102	718	< 0.0050	15.2	< 0.0050	0.42	-	0.005	< 0.50	< 0.50
EV_EC1	EV_EC1_WS_2022-08-02_N-SRF	2022-08-02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	15.7	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-08-03_N-SRF	2022-08-03	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	14.8	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-08-04_N-SRF	2022-08-04	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	15	-	-	-	-	-	-
EV_EC1 EV EC1	EV_EC1_WS_2022-08-05_N-SRF EV_EC1_WS_2022-08-06_N-SRF	2022-08-05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	15.6	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-08-06_N-SRF EV_EC1_WS_2022-08-07_N-SRF	2022-08-06 2022-08-07	-	-	-	-	-	-	-	-	+ :-	-	-	-	-	-	-	-	-	-	-	16.2 15.2	-	-	-	-	-	-
EV EC1	EV EC1 WS 2022-08-07 N-SRF	2022-08-08	-	-	+	-	-	-	<u> </u>	<u> </u>	+:-	-	-	-	-	-	+	-	-		-	14.9	-	-	-	-	H -	
EV_EC1	EV EC1 WS 2022-08 MON N	2022-08-09	+	+ :	+:-	-		8.27	1040	1640	2	1480	< 0.10	402	< 1.0	< 1.0	< 0.250	4.81	< 0.100	740	< 0.0050	14.8	< 0.0050	< 0.050		0.0033	0.77	0.64
EV_EC1	EV EC1 WS 2022-08-09 N-SRF	2022-08-09		+:	+-	-		0.21	1040	1040	-	-	< 0.10	- 402	- 1.0	- 1.0	- 0.230	4.01	- 0.100	740	V 0.0030	15.2	- 0.0000	- 0.030		0.0000	0.77	0.04
EV EC1	EV EC1 WS 2022-08-10 N-SRF	2022-08-10	-	T -	! -	-	-	.	-	T -	١.	-	-	-	-	-	T -	١.	T -	-		15.8	-	-	-	١.	-	- 1
EV EC1	EV EC1 WS 2022-08-11 N-SRF	2022-08-11	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		17	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-08-12_N-SRF	2022-08-12	-	-	-	-	-	-	-	-	T -	-	-	-	-	-	-	-	-	-	-	15.1	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-08-13_N-SRF	2022-08-13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	15.1	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-08-14_N-SRF	2022-08-14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	19.3	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-08-15_N-SRF	2022-08-15	-	-	-	-	-	8.16	1100	1690	< 1.0	1430	< 0.10		< 1.0	< 1.0	< 0.250	4.82	< 0.100	747	< 0.0050	14.8	< 0.0050	< 0.050	-	0.0041	< 0.50	< 0.50
EV_EC1 EV EC1	EV_EC1_WS_2022-08-16_N-SRF EV_EC1_WS_2022-08-17_N-SRF	2022-08-16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	15.2 15.6	-	-	-	-	-	-
EV_EC1	EV_ECT_WS_2022-08-17_N-SRF EV_ECT_WS_2022-08-18_N-SRF	2022-08-17	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	15.1	-	-	-	+ :-	-	-
EV EC1	EV ECT WS 2022-08-18 N-SRF	2022-08-19	-	+-	-	-	-	-	-	-	_		-		-	-	+ :-	-	+		-	15.1	-	+:-	-	-	-	
EV EC1	EV EC1 WS 2022-08-20 N-SRF	2022-08-20	+ -	+ -	+	-	-	+ -			+ -	+ -	-	! -	-	1	+	+ :	+		-	15.6	-	+-	-	+	<u> </u>	H
EV EC1	EV EC1 WS 2022-08-21 N-SRF	2022-08-21	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	15	-	-	-	T -	-	-
EV_EC1	EV_EC1_WS_2022-08-22_N-SRF	2022-08-22	-	-	1 -	-	-	-	-	-	T -	-	-	-	-	-	-	-	-	-		15.4	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-08-23_N-SRF	2022-08-23	-	I -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	I -	-	-	15.2	-	I - I	-	-	-	-
EV_EC1	EV_EC1_WS_2022-08-24_N-SRF	2022-08-24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	15.5	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-08-25_N-SRF	2022-08-25	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	15.2	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-08-26_N-SRF	2022-08-26	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	15.4	-	-	-	-	-	-
EV_EC1 EV EC1	EV_EC1_WS_2022-08-27_N-SRF EV_EC1_WS_2022-08-28_N-SRF	2022-08-27 2022-08-28	+-	-	-	-	-	-	<u> </u>	<u> </u>	-		-	-	-	-		-	<u> </u>	-	-	15.1	-	+	-	H		
EV_EC1	EV EC1 WS 2022-08-28 N-SRF	2022-08-29	-	-	-	-		8.18	1240	1700	1.8	1440	< 0.10	442	< 1.0	< 1.0	< 0.250	5.01	< 0.100	731	< 0.0050	15.8 15.1	< 0.0050	< 0.050	-	0.0021	< 0.50	< 0.50
EV_EC1	EV EC1 WS 2022-08-29 N-SRF	2022-08-29	+-		+-	-	-	0.10	1240	1700	1.6	1440	< 0.10	442	× 1.0	< 1.0	- 0.230	5.01	- 0.100	731	< 0.0030	15.1	- 0.0050	- 0.000		0.0021	- 0.50	- 0.50
EV EC1	EV EC1 WS 2022-08-31 N SRF	2022-08-31	+ -	+-	+	-	-	+ -	+ -	-	+ -	+ -	-	! -	-	- 1	+	+ -	+ -		-	16.5	-	+	-	+	! -	H
EV EC1	EV EC1 WS 2022-09-01 N-SRF	2022-09-01	-	-	! -	-	-	-	-	-	T -	-	-	-	-	-	-	١.	-	-		14.8	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-09-02_N-SRF	2022-09-02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	15	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-09-03_N-SRF	2022-09-03	-	-	I -	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	15.1	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-09-04_N-SRF	2022-09-04	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	15	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-09-05_N-SRF	2022-09-05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	15.2	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-09-06_N-SRF	2022-09-06	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	15.2	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-09-07_N-SRF	2022-09-07	1 -	-	-	-	-	-	- 4400	4070	-	- 4400		-	- 10	- 4.0	- 0.050		- 0.400	-	- 0.0050	15.6	- 0.0000	-	-	- 0.0000	-	
EV_EC1 EV EC1	EV_EC1_WS_2022-09_MON_N	2022-09-08	-	-	-	-	-	8.08	1160	1670	< 1.0	1430	< 0.10	436	< 1.0	< 1.0	< 0.250	5.07	< 0.100	731	< 0.0050	15.3	0.0063	0.202	-	0.0032	0.62	< 0.50
EV_ECT	EV_EC1_WS_2022-09-08_N-SRF	2022-09-08	-	-	-	-	-		-		<u> </u>	1 -		-	-	-	1 -	-	-		-	15.1		-	-	1 -		-

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted n/a denotes no applicable standard

^a Guideline varies with hardness ^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

APPENDIX C - TABLE 1: Summary of Analytical Results for Dissolved Organics, Nutrients and Organics

				Field	i Param	otors			-	Physical Pa	arameter	•				Dies	olved Ino	manics					Nutrien	le.				
				1.000		1				ilyoloui i i		Ĭ				D.00	1	Junios		T			Tradition.	Ĭ				_
Sample	Sample	Sample Date	Field Temperature	pH (field)	Dissolved Oxygen	Field Conductivity	Field ORP	Ηd	Hardness	Conductivity	Total Suspended Solids	Total Dissolved Solids	Turbidity	Bicarbonate	Carbonate	Hydroxide	Bromide	Chloride	Fluoride	Sulfate	Ammonia Nitrogen	Nitrate Nitrogen	Nitrite Nitrogen	Kjeldahl Nitrogen-N	Ortho-Phosphate	Phosphorus, Total	Total Organic Carbon	Dissolved Organic Carbon
Location	ID	(yyyy-mm-dd)	С	pH	mg/L	μS/cm	mV	pН	mg/L	μS/cm	mg/L	mg/L	ntu	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
BC WQG FWAL			n/a	Minimum 6:5	D Acute	n/a	n/a	Minimum 9	n/a	n/a	52 Acute Chronic	n/a	8 Acute	n/a	n/a	n/a	n/a	Chronic Chronic	O.4- a	128-429	9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	9 32.8 3.7	90.06-0.60° 0.02-0.20	° n/a	n/a	9 0.015	n/a	n/a
Elkview Operation	FV F04 W0 0000 00 00 N 0DF	1 0000 00 00	Τ.						_											_		1440		_				-
EV_EC1 EV EC1	EV_EC1_WS_2022-09-09_N-SRF EV_EC1_WS_2022-09-10_N-SRF	2022-09-09	+	-	-	-				-	-	+	+-	+ :-		-	+ -	-	H :	+ :-	-	14.9	-	+	-	-	-	-
EV EC1	EV EC1 WS 2022-09-10 N-SRF	2022-09-11	-	-	-	-	-		-	-	+ -	<u> </u>	+-	-	-	-	-	—	-	-		15.1	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-09-12_N-SRF	2022-09-12	-	-	-	-	-	8.14	995	1660	< 1.0	1400	< 0.10	445	< 1.0	< 1.0	< 0.250	5.03	< 0.100	717	< 0.0050	15.9	< 0.0050	0.379	-	0.0027	0.5	0.53
EV_EC1	EV_EC1_WS_2022-09-13_N-SRF	2022-09-13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	15.1	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_ 2022-09-14_N-SRF	2022-09-14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	15	-	-	-	-	-	-
EV_EC1 EV EC1	EV_EC1_WS_2022-09-15_N-SRF EV_EC1_WS_2022-09-16_N-SRF	2022-09-15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	15.7	-	+-	-	-	-	-
EV_EC1	EV_ECT_WS_2022-09-16_N-SRF EV_ECT_WS_2022-09-17_N-SRF	2022-09-16 2022-09-17	+ -	-	-	-	-	-	-	-	<u> </u>	+-	+-	+ -	-		-	-	-	-	-	16.3 14.9	-	-		-	-	-
EV EC1	EV EC1 WS 2022-09-18 N-SRF	2022-09-18	+-		-	-				<u> </u>	<u> </u>	+-	+-	+			+	—	+		<u> </u>	15.2	-	+		+	<u> </u>	+ -
EV EC1	EV EC1 WS 2022-09-19 N-SRF	2022-09-19	-		-	-	-		-			-	-	-		-	-		—	-	 	15	-	-	-	-	-	—
EV EC1	EV EC1 WS 2022-09-20 N-SRF	2022-09-20	-	-	-	- 1	- 1	-	-	-	-	-	-	-	-	-	-	T -	T -	-	-	15.2	-	-	-	-	-	
EV_EC1	EV_EC1_WS_2022-09-21_N_SRF	2022-09-21	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	16.7	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_ 2022-09-22_N-SRF	2022-09-22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	14.9	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-09-23_N-SRF	2022-09-23	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	15.7	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-09-24_N-SRF	2022-09-24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	15.6	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-09-25_N-SRF	2022-09-25	-	-	-	-	-	-	-		-		-	- 100	-	-		-	-		-	15.6	-		-	-	-	
EV_EC1 EV EC1	EV_EC1_WS_2022-09-26_N-SRF EV_EC1_WS_2022-09-27_N-SRF	2022-09-26 2022-09-27	-	-	-	-	-	8.13	1180	1670	4.5	1440	0.53	428	< 1.0	< 1.0	< 0.250	5.09	< 0.100	/48	< 0.0050	15.3 15.2	< 0.0050	0.467	-	0.0046	0.52	< 0.50
EV_ECT	EV_ECT_WS_2022-09-27_N-SRF EV_ECT_WS_2022-09-28_N-SRF	2022-09-27	+ -	-	-	-		-	-	-	+-	+-	-	-	-		-	-	-	-	-	15.2	-	+ -	-	-	-	+
EV EC1	EV EC1 WS 2022-09-29 N-SRF	2022-09-29	+-		-	-					<u> </u>	+	+-	+			+:-		+:-	+:-	 	15.6	-	+	-	+:-	<u> </u>	+
EV EC1	EV EC1 WS 2022-09-30 N-SRF	2022-09-30	-	-	-	-	- 1		-	-	-	-	+	-	-	-	-	<u> </u>	-	-	-	15.3	-	-	-	-	-	T -
EV EC1	EV EC1 WS 2022-10-01 N-SRF	2022-10-01	-	-	-	-	- 1	-	-	-	T -	-	-	T -	-	-	-	-	T -	-	-	15.4	-	T -	-	-	-	1 - 1
EV_EC1	EV_EC1_WS_2022-10-02_N-SRF	2022-10-02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	15.2	-	-	-	-	-	- 1
EV_EC1	EV_EC1_WS_2022-10-03_N-SRF	2022-10-03	-	-	-	-	-	8.13	1140	1590	1	1500	0.2	523	< 1.0	< 1.0	< 0.250	5.43	< 0.100	750	< 0.0050	15.6	< 0.0050	0.445	-	0.0021	< 0.50	< 0.50
EV_EC1	EV_EC1_WS_2022-10-04_N-SRF	2022-10-04	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		15.8		-	-	-		-
EV_EC1	EV_EC1_WS_2022-Q4_N	2022-10-05	-	-	-	-	-	8.28	1240	1600	1.8	1410		445	< 1.0	< 1.0	< 0.250		0.12	763	0.0072	11.7	< 0.0050	1.06	-	0.0027	0.62	0.54
EV_EC1 EV EC1	EV_EC1_WS_2022-10-06_N-SRF EV_EC1_WS_2022-10-17_N-SRF	2022-10-06 2022-10-17	-	-	-	-	-	-	1190	1680	-	1520	-	100	- 4.0	- 4.0	< 0.250	-	- 0.450		< 0.0050	15 10.6	0.0058	0.277	-	0.006	-	< 0.50
EV_EC1	EV_ECT_WS_2022-10-17_N-SRF EV_ECT_WS_2022-10-31_N-SRF	2022-10-17	-	-	-	-	-	8.18 8.18	1260	1720	< 3.0 1.5	1630	< 0.12	468 497	< 1.0	< 1.0 < 1.0	< 0.250	8.2	0.163	795 788	< 0.0050	9.59	< 0.0050	1.03	-	0.006	0.6	0.86
EV_EC1	EV EC1 WS 2022-11-14 N-SRF	2022-10-31	+ -	-			-	8.33	1240	1840	< 1.0		< 0.10		8.2	< 1.0	< 0.250		0.169		< 0.0050	10	< 0.0050	0.071		0.0064	< 0.50	< 0.50
EV EC1	EV EC1 WS 2022-11 MON N	2022-11-15	-	-	-	-	-	8.34	1250	1730	1.1	1490	0.2		6.4	< 1.0	< 0.250		0.48		< 0.0050	2.86	< 0.0050	1.86	-	0.0051	0.58	0.6
EV_EC1	EV_EC1_WS_2022-11-21_N-SRF	2022-11-21	-	-	-	- 1	- 1	-	-	-		-	1 -	-	-	T -	< 0.250		0.151		-	9.41	0.0075	-	-	-	-	-
EV_ER4	EV_ER4_WS_2022-Q1_N	2022-01-10	-	-	-	-	- 1	8.02	256	510	2.5	320	0.26	205	< 1.0	< 1.0	< 0.050	3.25	0.154		0.0052	3.92	0.0017	0.337	-	0.0032	< 0.50	1.37
EV_ER4	EV_ER4_WS_2022-02_MON_N	2022-02-15	-	-	-	-	-	8.34	301	537	1.9	312	0.33	215	2.2	< 1.0	< 0.050		0.148		< 0.0050	4.58	0.0014	0.315	-	0.0023		< 0.50
EV_ER4	EV_ER4_WS_2022-03_MON_N	2022-03-15	-	-	-	-	-	8.15	314	503	1.9	373	0.68	223	< 1.0	< 1.0	< 0.050		0.182		0.0076	4.58	0.0021	0.328	-	0.002		< 0.50
EV_ER4	EV_ER4_WS_2022-03_WEK13_N	2022-03-21	-	-	-	-		8.3	289	547	2.6	367	0.68	217	1.2	< 1.0	< 0.050	5.01	0.188		0.0077 < 0.0050	4.43 4.89	0.0027	0.552		0.0036		< 0.50
EV_ER4 EV ER4	EV_ER4_WS_2022-03_WEK14_N EV_ER4_WS_2022-04_WEK15_N	2022-03-28 2022-04-04	+ -	-	-	-	-	8.26 7.97	292 319	576 570	4.7 3.1	376	3.13 0.78		< 1.0 < 1.0	< 1.0	< 0.050	4.6	0.157	120	< 0.0050	5.43	0.0022 0.0023	0.374	-	0.0066	0.83	0.58
EV_ER4 EV ER4	EV_ER4_WS_2022-04_WER15_N EV_ER4_WS_2022-Q2_N	2022-04-04	+ -	-	-	+		8.07	319	578	2.2	317	1.3		< 1.0	< 1.0	< 0.050	4.43	0.182		< 0.0050	5.74	0.0023	0.344		0.0094	0.67	0.88
EV ER4	EV ER4 WS 2022-04 WEK17 N	2022-04-11	+	-	-	- 1	- 1	8.21	307	601	1.5	402	0.3		< 1.0	< 1.0	< 0.050	4.23	0.18	129	0.0275	5.84	0.0035	0.4	-	0.0026	0.93	1.03
EV_ER4	EV_ER4_WS_2022-04_WEK18_N	2022-04-25	-	-	-	-	- 1	8.44	301	601	18	374		205	5.6	< 1.0	< 0.050	3.81	0.143		< 0.0050	5.73	0.0021	0.101	-	0.0027	1	1.12
EV_ER4	EV_ER4_WS_2022-05_MON_N	2022-05-02	-	-	-	-	- 1	8.31	292	556	6.4	377	2.36	217	1.7	< 1.0	< 0.050	3.27	0.176		0.267	5.31	0.002	0.721	-	0.0127	1.25	1.22
EV_ER4	EV_ER4_WS_2022-05_WEK20_N	2022-05-10	-	-	-	-		8.25	231	470	14.2	339	3.61		< 1.0	< 1.0	< 0.050	3.04	0.18		< 0.0050	3.98	0.0026	0.119	-	0.0166	1.32	1.28
EV_ER4	EV_ER4_WS_2022-05_WEK21_N	2022-05-16	-	-	-	-	-	8.25	258	483	7.6	304			< 1.0	< 1.0	< 0.050	2.4	0.16		0.0139	3.86	0.002	0.635	-	0.015	1.89	1.09
EV_ER4	EV_ER4_WS_2022-05_WEK22_N	2022-05-24	-	-	-	- 7	- 1	8.37	260	468	5.4	297	2.07	193	6.2	< 1.0	< 0.050	2.17	0.135		0.132	3.76	0.0015	0.468	-	0.0084	1.29	0.99
EV_ER4	EV_ER4_WS_2022-05_WEK23_N	2022-05-30	-	-	-	-	-	8.35	217	404	50.1	241	12.3		4.2	< 1.0	< 0.050		0.142		< 0.0050 0.0488	2.48	0.0011	0.439	-	0.0629	1.81	1.54
EV_ER4 EV ER4	EV_ER4_WS_2022-06_MON_N EV ER4 WS 2022-06 WEK25 N	2022-06-07 2022-06-14	-	-	-		-	8.14	185 171	357 337	163	221	47.1 62.6	185 197	< 1.0 < 1.0	< 1.0 < 1.0	< 0.050	1.05	0.157	44.7 36.6	0.0488	1.81	0.0014 < 0.0010	0.412	-	0.204	5.46 2.13	1.46
EV_ER4 EV ER4	EV ER4 WS 2022-06 WEK25 N EV ER4 WS 2022-06 WEK26 N	2022-06-14	+	-	-	+ - +		8.19	170	313	253	233		197	< 1.0		< 0.050		0.131		< 0.0050	1.76	< 0.0010	0.812	-	0.206	2.13	2.4
21_04		2022-00-20	_	<u> </u>	_		_	0.02	0	010	203	200	/31	1.02	- 1.0	- 1.0	1 - 0.000	0.77	0.104	54.2	- 5.0050	1.42	. 0.0010	0.012		0.307	2.04	12.4

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted n/a denotes no applicable standard

^a Guideline varies with hardness ^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

APPENDIX C - TABLE 1: Summary of Analytical Results for Dissolved Organics, Nutrients and Organics

				Field	d Param	eters			-	hysical Pa	arameters	•		1		Disso	olved Ino	rganics					Nutrien	s				
																												n o
Sample	Sample	Sample Date	Field Temperature	pH (field)	Dissolved Oxygen	Field Conductivity	Field ORP	Hd	Hardness	Conductivity	Total Suspended Solid	Total Dissolved Solids	Turbidity	Bicarbonate	Carbonate	Hydroxide	Bromide	Chloride	Fluoride	Sulfate	Ammonia Nitrogen	Nitrate Nitrogen	Nitrite Nitrogen	Kjeldahl Nitrogen-N	Ortho-Pho sphate	Phosphorus, Total	Total Organic Carbon	Dissolved Organic Cart
Location	ID	(yyyy-mm-dd)	С		mg/L	μS/cm	mV	pH	mg/L	μS/cm	mg/L	mg/L	ntu	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
				Minimum	Acute			Minimum			Acute		Acute					Acute	Acute	Chronic	Acute	Acute	Acute			Chronic		<u></u>
BC WQG FWAL Elkview Operation			n/a	6.5 9	1 5	n/a	n/a	6.5 9	n/a	n/a	25 5	n/a	8 2	n/a	n/a	n/a	n/a	1600 150	0.4-	128-429"	0.681-28.7 ^b 0.102-2.08	32.8 3.7	J0.06-0.60° 0.02-0.20	n/a	n/a	0.015	n/a	n/a
EV ER4	EV ER4 WS 2022-06 WEK27 N	2022-06-27	T .					8.31	188	349	71.2	216	24.5	174	5.4	< 1.0	< 0.050	1.01	0.128	416	< 0.0050	2.03	0.0015	0.663	I -	0.106	2.47	0.99
EV ER4	EV ER4 WS 2022-Q3 N	2022-07-04	-	1	-	-	-	8.26	175	258	50	209	22.8	172	1.1	< 1.0	< 0.050		0.14	37.7	< 0.0050	1.68	0.0015	0.225	-	0.0635	2.11	
EV_ER4	EV_ER4_WS_2022-07_WEK29_N	2022-07-11	-	-	-	-	-	7.65	176	340	31.1	220	15.5	200	< 1.0	< 1.0	< 0.050	1.06	0.131	36.8	< 0.0050	1.49	0.0014	0.311	-	0.0361	1.6	1.01
EV_ER4	EV_ER4_WS_2022-08_MON_N	2022-08-08	-	-	-	-	-	8.33	212	394	9.8	254	1.77	183	5.9	< 1.0	< 0.050		0.188	57.5	< 0.0050	2.13	0.001	0.182	-	0.0088	< 0.50	
EV_ER4	EV_ER4_WS_2022-09_MON_N	2022-09-06	-	-	-	-	-	8.35	243	413	3.1	285	0.72	185	5.2	< 1.0	< 0.050		0.192	67	< 0.0050	2.54	< 0.0010	0.146	-	0.0037	< 0.50	
EV_ER4	EV_ER4_WS_2022-Q4_N	2022-10-03	-		-	-	-	8.3	258	468	3.2	299	0.3	201	1.8	< 1.0	< 0.050		0.192	86.4	< 0.0050	3.31	0.0013	0.146	-	< 0.0020	< 0.50	
EV_ER4	EV_ER4_WS_2022-11_MON_N	2022-11-07	+-		-	-		8.38	282	491	< 1.0	338	0.18	201	4.1	< 1.0	< 0.050	3.54	0.189	93	< 0.0050	3.25	0.0011	0.19		< 0.0020	0.64	
EV_GC2 EV GC2	EV_GC2_WS_2022-01-02_N EV GC2 WS 2022-01-04 N	2022-01-02 2022-01-04	-	-	-	-	-	-		-	11.4	-	14.3 29.2	<u> </u>	-	1	-		-	-	-	-	- :	-	-	+-	+:-	-
EV_GC2	EV GC2 WS 2022-01-04 N	2022-01-04		-	-	-	-	8.04	643	1100	39.4 65.4	752		314	< 1.0	< 1.0	< 0.250	17.5	0.105	402	0.0234	1.99	0.0116	0.253	-	0.0184	20	1.12
EV_GC2	EV GC2 WS 2022-Q1 N EV GC2 WS 2022-01-06 N 0915	2022-01-05	+-	-	-	-		8.04	043	1100	38.5	132	23.4	314	V 1.0	N 1.0	< 0.230	17.5	0.103	402	0.0234	1.99	0.0110	0.233		0.0104	20	1.12
EV GC2	EV GC2 WS 2022-01-06 N 1209	2022-01-06	+:		-	-					54.5		31.5	<u> </u>		+ -	+			-		+ -			-	+:-	+ -	+-
EV GC2	EV GC2 WS 2022-01-07 N	2022-01-07	-	T -	T -	-	-	-	T -	-	65.3	-	75.2	-	-	T -	-	T -	-	-		-	-	-	-	T -	T -	+-
EV GC2	EV GC2 WS 2022-01-08 N	2022-01-08	-	-	-	-	-	-	-	-	48.8	-	30.5	-	-	-	-	-	-	-		-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-01-09_N	2022-01-09	-	-	-	-	-	-	-	-	35.9	-	26.6	-	-	-	-	-	-	-		-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-01-14_N	2022-01-14	-	-	-	-	-	-	-	-	40.6	-	43.6	-	-	-	-	-	-	-		-	-	-	-	-	-	1 -
EV_GC2	EV_GC2_WS_2022-01-22_N	2022-01-22	-	-	-	-	-	-	-	-	72.2		88.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-01-23_N_1306	2022-01-23	-	-	-	-	-	-	-	-	66.5	-	82.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-01-23_N_1628	2022-01-23	-	-	-	-	-	-	-	-	50.9	-	67.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-01-24_N	2022-01-24	-	-	-	-	-	-	-	-	20	-	29.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2 EV GC2	EV_GC2_WS_2022-01-25_N EV GC2 WS_2022-01-28_N_1448	2022-01-25 2022-01-28	-	-	-	-	-	-	-	-	34.9	-	42.5	-	-	-	-	-	-	-	-	-		-	-	-	+ :	+ :-
EV_GC2	EV GC2 WS 2022-01-28 N 0816	2022-01-28	-	-		-	-	-	<u> </u>	-	30.7 28.1	-	40.4 33.8		-	+ :-	-	-	-	-	-	+ -	-		-	-	+-	+-
EV GC2	EV GC2 WS 2022-01-29 N	2022-01-20	+-			-			<u> </u>	-	24.8	-	42.1	-		1	+:-			-	- :	-	-	+:-		+ :-	+ -	+-
EV GC2	EV GC2 WS 2022-01-30 N	2022-01-30	-		-	-	-	-	-	-	43.3	-	53.4	-	-	-	-		-	-	-	+ -	-	-	-	—	—	+-
EV GC2	EV_GC2_WS_2022-01-31_N_1332	2022-01-31	-	-	-	-	-	-	T -	-	49.4	-	63	-	-	T -	-	T -	-	-		-	-	-	-	T -	T -	T -
EV_GC2	EV_GC2_WS_2022-01-31_N_1434	2022-01-31	-	-	-	-	-	-	-	-	62.8	-	63.3	-	-	-	-	-	-	-		-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-01-31_N_1509	2022-01-31	-	-	-	-	-	-	-	-	104	-	62.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-01-31_N_1539	2022-01-31	-	-	-	-	-	-	-	-	54.7	-	53.8	-	-	-	-	-	-	-		-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-01-31_N_1627	2022-01-31	-		-	-			-	-	65.2	-	81.6	-	-	-	-	-		-	-	-	-			-	-	-
EV_GC2 EV GC2	EV_GC2_WS_2022-01-31_N_1645	2022-01-31	-	-	-	-		-	-	-	48.2	-	66.9	-	-	-	-	-	-	-	-	-	-		-	-	-	+ :-
EV_GC2 EV GC2	EV_GC2_WS_2022-01-31_N_0858 EV GC2 WS 2022-01-31 N 1208	2022-01-31 2022-01-31	-	-	-	-	-	-	-	-	54.2	-	70 50.5	-	-	-	-	-	-	-		-	-	-	-	-	+-	+-
EV_GC2	EV GC2 WS 2022-01-31 N 1231	2022-01-31	+-		-	-	-		+		50 51	<u> </u>	58.6	+		+ -	+-	-		-	-	+ -	- :	+-		+	+-	+-
EV GC2	EV GC2 WS 2022-02-01 N 1304	2022-01-01	+-	+ -	-	-			H	-	24.5	-	47.2	+-	-	+ -	+ -	H :	-	-		+ -	-	+ -	.	+:-	+ -	+-
EV_GC2	EV_GC2_WS_2022-02-01_N_1405	2022-02-01	-	-	-	-	-	-	-	-	27.7	-	45.8	-	-	-	-	-	-	-		-	-	T -	-	-	-	-
EV_GC2	EV_GC2_WS_2022-02-01_N_1506	2022-02-01	-	-	-	-	-	-	-	-	26.5	-	55	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-02-01_N_1538	2022-02-01	I -	-	-	-	- 1	-	-	-	33.9		61.9	-	-	-	-	-	-	-		-	-	-	-	-	I -	-
EV_GC2	EV_GC2_WS_2022-02-01_N_0744	2022-02-01	-	-	-	-	-	-	-	-	88.1	-	98.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-02-01_N_0843	2022-02-01	-	-	-	-		-	-	-	31.7	-	74.8	-	-	-	-	-			-	-	-		-	-	-	-
EV_GC2	EV_GC2_WS_2022-02-01_N_0933	2022-02-01	-	-	-	-	-	-	-	-	34	-	66.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2 EV GC2	EV_GC2_WS_2022-02-01_N_1047 EV GC2_WS_2022-02-01_N_1204	2022-02-01 2022-02-01	-	-	-	-	-	-	<u> </u>	-	38	-	68.9	<u> </u>	-	-		-		-		-	-			H:-	-	+:-
EV_GC2	EV_GC2_WS_2022-02-01_N_1204 EV_GC2_WS_2022-02-02_N_1508	2022-02-01	+-	-	-	-	-	-	1	-	24.9 13.8	-	46.6 26.5	-	-	1	-	-	-	-	-	+ -	-	1	-	1	1	+-
EV_GC2	EV GC2 WS 2022-02-02 N 1605	2022-02-02	+-			-	-		+ -	-	13.6	-	30.3	+	-	H	+-	-	⊢÷-			+ -		+-		+	+÷	+-
EV GC2	EV GC2 WS 2022-02-02 N 0759	2022-02-02	+-	+ -	-	-			H	-	22.9	-	46.7	+ -	-	+ -	+	H :	-	-	-	+ -	-	+ -	-	+	+-	+-
EV_GC2	EV_GC2_WS_2022-02-02_N_1135	2022-02-02	-	-	T -	-	-	-	-	-	21	-	37.8	-	-	-	T -	-	-	-		-	-	T -	-	-	1 -	T-
EV_GC2	EV_GC2_WS_2022-02-02_N_1250	2022-02-02	-	-	-	-	-	-	-	-	17.8	-	32.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-02-03_N_1334	2022-02-03	-	-	-	-		-	-	-	48.3	-	82.8	-	-	-	-	-	-	-		-	-	-	-	-	I -	-
	EV GC2 WS 2022-02-03 N 1434	2022-02-03	-	-	-	-			-	-	52.3		84.9			-		-			-	-	-			-		T -
EV_GC2 EV GC2	EV GC2 WS 2022-02-03 N 1557	2022-02-03	-	-	-	-	-	-	-	-	51.4	-	83.6	<u> </u>	-	.	+ -			-		+ -	-			-		

< Denotes concentration less than indicated detection limit

SRK Consulting (Canada) Inc.
C:\Users\aday\Downloads\CAPR002058_AppC_Tables_rev0_amd.xlsx

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness ^b Guideline varies with pH and water temperature

^o Guideline varies with chloride

APPENDIX C - TABLE 1: Summary of Analytical Results for Dissolved Organics, Nutrients and Organics

				Field	d Param	eters				Physical F	arameter	s		Т		Diss	olved Ino	rganics					Nutrien	ts				
										1								Ĭ										5
Sample	Sample	Sample Date	Field Temperature	ph (field)	Dissolved Oxygen	Field Conductivity	Field ORP	H.	Hardness	Conductivity	Total Suspended Solids	Total Dissolved Solids	Turbidity	Bicarbonate	Carbonate	Hydroxide	Bromide	Chloride	Fluoride	Sulfate	Ammonia Nitrogen	Nitrate Nitrogen	Nitrite Nitrogen	Kjeldahl Nitrogen-N	Ortho-Phosphate	Phosphorus, Total	Total Organic Carbon	Dissolved Organic Carbo
Location	ID	(yyyy-mm-dd)	С	pН	mg/L	μS/cm	mV	pН	mg/L	μS/cm	mg/L	mg/L	ntu	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
BC WQG FWAL Elkview Operation				Winimum 6.5 Maximum	1 Acute 9 Chronic	n/a	n/a	mnimum 6.5 9	n/a	n/a	5 Acute Chronic	n/a	% Acute	n/a	n/a	n/a	n/a	Chronic Chronic	9.4-	9 5 5 128-429	97 5 HO W O.681-28.7 ^b 0.102-2.08	9 32.8 3.7	Que voice of the control of the cont	° n/a	n/a	0.015	n/a	n/a
EV GC2	EV GC2 WS 2022-02-03 N 0725	2022-02-03	т.						Τ.	Τ.	43.9		72.2	п.	Ι.	Т-	т.	Ι.	Τ.	Τ.				Τ.		т.		Τ.
EV_GC2	EV GC2 WS 2022-02-03 N 0840	2022-02-03	-		-	-	-		+ -	1	44.3		70.3		+ -	-	-	-	1	-	<u> </u>	 -	- :	-	-	-	-	1
EV_GC2	EV_GC2_WS_2022-02-03_N_1000	2022-02-03	-	-	-	-	-	-	-	-	43.2		72.6		-	-	-	-	-	-		-		-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-02-03_N_1101	2022-02-03	-	-	-	-	-	L -	-	-	49.1	-	80.6	-	-	-	-	-	I -	-	-		-	-	-	-	-	I -
EV_GC2	EV_GC2_WS_2022-02-04_N_1336	2022-02-04	-	-	-	-	-	-	-	-	45.1		78.3		-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-02-04_N_1421	2022-02-04	-	-	-	-		-	-	-	47.1		77.5		-	-	-	-	-	-	-	-	-		-	-	-	-
EV_GC2	EV_GC2_WS_2022-02-04_N_0757	2022-02-04	-	-	-	-	-	-	-	-	38.3		61.7		-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2 EV GC2	EV_GC2_WS_2022-02-04_N_1054	2022-02-04	-	-	-	-	-	-	-	-	44.7		74.4		-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-02-04_N_1236 EV_GC2_WS_2022-02-05_N	2022-02-04	-	-	-	-	-	-	-	_	46.7		78.7		-	-	-	-	-	-	-	+ -	-	-	-	-	-	+-
EV_GC2	EV GC2 WS 2022-02-05 N EV GC2 WS 2022-02 MON N	2022-02-05	-	-	-	-	-	8.05	606	1040	39.2	788	42.4 18.5		< 1.0	< 1.0	< 0.250	18	0.146	349	0.0191	1.86	0.0083	0.296	-	0.0112	1.16	0.81
EV_GC2	EV GC2 WS 2022-02-MON_N	2022-02-07	+	-	-	-	-	8.11	620	997	21.2	814	33.5		< 1.0	< 1.0	0.071		0.148	338	0.0191	1.83	0.0083	0.290	-	0.0112	7.68	1.42
EV_GC2	EV GC2 WS 2022-02-09 N	2022-02-09	+-	<u> </u>	-			8.2	608	1070	17.5	829	27.3		< 1.0	< 1.0	< 0.050		0.156	332	0.0200	1.84	0.012	0.276		0.0204	3.45	0.68
EV GC2	EV GC2 WS 2022-02-10 N 1330	2022-02-10	-			-	-	8.12	596	1000	27.8	679	40.2		< 1.0	< 1.0	< 0.250			310	0.0261	1.62	0.0104	0.331	-	0.025	8.34	1.15
EV GC2	EV GC2 WS 2022-02-10 N 1722	2022-02-10		1	-	-	-	0.12			28.7		33.8		- 1.0	- 1.0	- 0.200	17.2	0.104		- 0.0201	- 1.02	0.0104		-	-	- 0.04	
EV GC2	EV GC2 WS 2022-02-10 N 0925	2022-02-10	T -	-	-	-	-	-	T -	T -	23.6	-	36.9		T -	-	-	-	T-	-	-	-	-	-	-	-	-	T -
EV GC2	EV GC2 WS 2022-02-10 N 1005	2022-02-10	-	-	-	-	-	8.1	607	1010	24	714			< 1.0	< 1.0	< 0.250	17.1	0.184	312	0.0298	1.69	0.0153	0.216	-	0.0321	6.07	1.33
EV_GC2	EV_GC2_WS_2022-02-11_N	2022-02-11	-	-	-	-	-	8.27	542	920	13	642	17	317	3	< 1.0	< 0.250	20.1	0.228	307	0.024	1.61	0.0153	0.188	-	0.0202	3.21	2.25
EV_GC2	EV_GC2_WS_2022-02-13_N	2022-02-13	-	-	-	-	-	8.35	545	966	9.3	650	17.9		7.2	< 1.0	0.1	20.5	0.131	284	0.017	1.44	0.0093	0.23	-	0.0128	1.57	1.21
EV_GC2	EV_GC2_WS_2022-02-14_N_1522	2022-02-14	-	-	-	-	-	8.35	547	973	19.1	652	32.1		7	< 1.0	0.102	20.6	0.132	286	0.0277	1.46	0.0097	0.25	-	0.0176	1.51	1.4
EV_GC2	EV_GC2_WS_2022-02-14_N_1210	2022-02-14	-	-	-	-	-	-	-	-	14.6	-	24.1		-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-02-15_N_1403	2022-02-15	-	-	-	-	-	-	-	-	9.6	-	14.5		-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-02-15_N_0759	2022-02-15	-	-	-	-	-	-	-	-	10.5	-	18.1		-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-02-16_N_1330	2022-02-16	-	-	-	-	-	-	+ -	-	11.3	-	14.5		-	-	-	-	-	-	-	+ :	-	-	-	+ :	-	-
EV_GC2 EV GC2	EV_GC2_WS_2022-02-16_N_0750 EV_GC2_WS_2022-02-17_N_0820	2022-02-16		-	-		-	-	+ :-	+:-	14.1 23.6	+ -	15.8 25.2		+ :-	+ :-	+ -	-	+÷	+ -	- :	+ :-	-	-	-	+ :-	-	+ :
EV_GC2	EV GC2 WS 2022-02-17 N 10020	2022-02-17	+-	-	-	-	-	-	+-	+ :-	19.9	+-	19.6		+ -		+	<u> </u>	+:-	+	- :	+ :-	- :	+		+ -	-	+
EV GC2	EV GC2 WS 2022-02-18 N 1354	2022-02-18			-	-	-	-	—	—	15.4	-	23.3		-	-	-		T -	-		-	-	—	-	—	-	—
EV GC2	EV GC2 WS 2022-02-18 N 0745	2022-02-18	-	T -	-	-	-	-	T -	-	12.3	-	23.7		-	-	-	-	-	-		-	-	-	-	-	-	T -
EV_GC2	EV_GC2_WS_2022-02-19_N	2022-02-19	-	-	-	-	-	-	-	-	7.4	-	15.4		-	-	-	-	-	-		-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-02-20_N_1509	2022-02-20	-	-	-	-	-	-	-	-	13	-	15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-02-20_N_0900	2022-02-20	-	-	-	-	-	-	-	-	10.1	-	15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-02-22_N_1338	2022-02-22	-		-	-	-	-	-	-	7.2	-	7.04		-	-		-	ļ - T	-	-	-	-		-	-	-	-
EV_GC2 EV GC2	EV_GC2_WS_2022-02-22_N_0738 EV_GC2_WS_2022-02-23_N_0724	2022-02-22 2022-02-23	-	-	-	-		-	-	-	3.9	-	8.94		-	-	-	-	<u> </u>	-	-	-	-	+-	<u> </u>	+ -	-	-
EV_GC2	EV_GC2_WS_2022-02-23_N_0724 EV_GC2_WS_2022-02-23_N_1207	2022-02-23		+ :-	-	-	-	-	+ :	-	7.2	-	10.6 7.99		-	-	+ -	+ :	+:-	+ -	-	-	-	+ -	-	-	-	1:
EV_GC2	EV GC2 WS 2022-02-23 N 1207 EV GC2 WS 2022-02-24 N 1325	2022-02-23	+:	-	-	+	+:-	-	+ :-	+:-	6.1	+	7.99		+	+:-	+:-	-	+:-	+:-	-	+ -	- :	+:-		+:-	+:-	+:-
EV_GC2	EV GC2 WS 2022-02-24 N 0726	2022-02-24	-	+ -	-	-	! -	-	+-	+	6.1	+	8.58		+-	+ -	+ -	 - -	+-	+ -	-	+ :	- :	+ -	-	+ -	+	+ -
EV GC2	EV GC2 WS 2022-02-25 N 1435	2022-02-25	-	1	-	-	-	-	-	-	20.8	-	12.9		-	-	-	1	-	-	-	+ ÷	-	1 -	-	-	-	1 -
EV_GC2	EV_GC2_WS_2022-02-25_N_0740	2022-02-25	-	-	-	-	-	-	-	-	9.7	-	9.13		-	-	-	-	-	-		—		1 -	-	-	-	-
EV_GC2	EV_GC2_WS_2022-02-26_N_1457	2022-02-26	-	-	-	-	-	-	-	-	14.6	-	12.4		-	-	-	-	-	-	-	-	-	-	-	1 -	-	-
EV_GC2	EV_GC2_WS_2022-02-26_N_0803	2022-02-26	-	-	-	-	-	-	-	-	17.2	-	13.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-02-27_N_1421	2022-02-27	-	-	-	-	-	-	-	-	17.2	-	15.6		-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-02-27_N_0932	2022-02-27	-	-	-	-	-	-	-	-	14.7	-	12.3		-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-02-28_N_1412	2022-02-28	-		-	-		-	1 -	ļ -	11.2		9.02		ļ -	1 -	-	-	ļ - T		-	-	-					-
EV_GC2	EV_GC2_WS_2022-02-28_N_0740	2022-02-28	-	-	-	-	-	-	-	-	8.9	-	10.1		-	-	-	-	<u> </u>	-	-	-	-	-	-	-	-	1 -
EV_GC2 EV GC2	EV_GC2_WS_2022-03-01_N_1413	2022-03-01 2022-03-01	-	-	-	-	-	-	-	-	20.2	-	16.4		-	-	-	-	<u> </u>	-	-	-	-	+-	-	-	-	-
EV_GC2 EV GC2	EV_GC2_WS_2022-03-01_N_1750 EV_GC2_WS_2022-03-01_N_0723	2022-03-01	-	+ -	-	-	-	-	-	-	59.5 3.4	-	23.1		-	-	-	-	+-	-	-	+ :	-	+ -	-	+ -	-	-
EV_GC2	EV GC2 WS 2022-03-01 N 0723 EV GC2 WS 2022-03-02 N 1310	2022-03-01	+ -	-	-	-	-	-	+÷	+ -	17.7	+-	20.8		+ -	+ -	+ -	-	+ -	+	-	+		+	-	+:-	-	1
		2022 00 02	_				_		_	_	111.1	_	20.0		_	1	_		_							1		

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted n/a denotes no applicable standard

^a Guideline varies with hardness ^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

APPENDIX C - TABLE 1: Summary of Analytical Results for Dissolved Organics, Nutrients and Organics

				Field	d Param	eters			F	Physical Pa	arameters	s				Disso	olved Inor	rganics					Nutrien	ts	-			
																		Ĭ										=
Sample	Sample	Sample Date	Field Temperature	ph (feld)	Dissolved Oxygen	Field Conductivity	Field ORP	됩	Hardness	Conductivity	Total Suspended Solids	Total Dissolved Solids	Turbidity	Bicarbonate	Carbonate	Hydroxide	Bromide	Chloride	Fluoride	Sulfate	Ammonia Nitrogen	Nitrate Nitrogen	Nitrite Nitrogen	Kjeldahl Nitrogen-N	Ortho-Phosphate	Phosphorus, Total	Total Organic Carbon	Dissolved Organic Carbo
Location	ID	(yyyy-mm-dd)	С	pН	mg/L	μS/cm	mV	pН	mg/L	µS/cm	mg/L	mg/L	ntu	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
BC WQG FWAL Elkview Operation			n/a	Winimum 6.5 Maximum	1 Acute 9 Chronic	n/a	n/a	mnimum 6.5 Waximum 9	n/a	n/a	S S S S S S S S S S S S S S S S S S S	n/a	a Acute	n/a	n/a	n/a	n/a	Chronic Chronic	Pante O.4- a	0 5 5 128-429	97 0.681-28.7 ^b 0.102-2.08	9 32.8 3.7	9 P P P P P P P P P P P P P P P P P P P	n/a	n/a	.9 .6 .4 O .0.015	n/a	n/a
EV GC2	EV GC2 WS 2022-03-02 N 0830	2022-03-02	Т-	Τ.	Ι.	I -	I -				17.5	Т-	17.8	Ι.	-	Ι.	Ι.	Π.	T -	T -		т.		Τ -	Г-	Τ.	т-	Τ.
EV GC2	EV GC2 WS 2022-03-03 N 1310	2022-03-03	-		-	-	-		-	-	10.1	-	15.6	-	-	-	-		-	-	1	—		1 -	-	T -	T -	T -
EV_GC2	EV_GC2_WS_2022-03-03_N_0735	2022-03-03	-	-	-	-	-	-	-	-	7.7	-	9.86	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-03-04_N_1316	2022-03-04	-		-	-	-		-	-	7.8	-	6.96	-	-	-	-	-	-	-		-		-	-	-	I -	
EV_GC2	EV_GC2_WS_2022-03-04_N_0751	2022-03-04	-	-	-	-	-	-	-	-	6.6	-	6.45	-	-	-	-	-	-	-	-	-	-	-	-	-		
EV_GC2	EV_GC2_WS_2022-03-05_N_1357	2022-03-05	-	-	-	-	-	-	-	-	6.1	-	6.96	-	-	-	-	-	-	-	-	-	-	1 -	-	-	-	+-
EV_GC2	EV_GC2_WS_2022-03-05_N_0755	2022-03-05	-	-	-	-	-	-	-	-	4.7	-	8.04	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2 EV GC2	EV_GC2_WS_2022-03-06_N_1437	2022-03-06	-	-	-	-	-	-	-	-	7.2	-	8.52	-	-	-	-	-	-	-	-	+ :	-	-	<u> </u>	-	+	-
EV_GC2	EV_GC2_WS_2022-03-06_N_0725 EV_GC2_WS_2022-03-07_N_0735	2022-03-06	+ -	1	-	-	-	-	-	-	10	+:-	6.79	-		+	-	<u> </u>	-	-	-	+ :-	-	-	<u> </u>	+ : -	+ :-	+
EV_GC2	EV GC2 WS 2022-03-07 N 0735 EV GC2 WS 2022-03-11 N	2022-03-07	+ -	-	-	-	-	8.08	586	1050	9.2	725	10.4 7.84	352	< 1.0	< 1.0	< 0.250	21.2	0.145	327	0.0053	1.54	0.0153	0.206	-	0.0086	3.87	1.49
EV_GC2	EV GC2 WS 2022-03-11 N	2022-03-11	-	-	-	-	-	8.35	493	864	22	602	18.2	284	5	< 1.0	0.230		0.143	230	0.0053	1.09	0.016	0.200	<u> </u>	0.0064	2.23	
EV GC2	EV GC2 WS 2022-03-16 N 0005	2022-03-16	-	<u> </u>	-			0.33	400	- 004	31.7	002	22.3	204		1.0	0.01	22.4	0.102	250	0.247	1.00	0.010	0.202		0.0004	2.20	2.10
EV GC2	EV GC2 WS 2022-03 MON N	2022-03-17	-			-	-	8.29	483	799	13.5	668	11.6	347	< 1.0	< 1.0	< 0.250		0.145	254	0.0072	1.34	0.0153	0.477	-	0.0134	2.28	2.19
EV_GC2	EV MC6 WS 2022-03 MON N	2022-03-17	-	1	-	-	-	8.39	497	918	13.1	658	12.7	313	8.9	< 1.0	< 0.250			254	0.0072	1.24	0.0128	0.578	<u> </u>	0.0104	1.65	
EV GC2	EV MC8 WS 2022-03 MON N	2022-03-17	-	T -	T -	-	-	5.12	< 0.50	< 2.0	< 1.0	< 10			< 1.0	< 1.0		< 0.10			< 0.0050	< 0.0050	< 0.0010	< 0.050	T-	< 0.0020		
EV GC2	EV GC2 WS 2022-03 WEK13 N	2022-03-21	-	-	-	-	-	-	-	-	9.4	-	9.83	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-03-24_N_0634	2022-03-24	-	-	-	-	-	-	-	-	44.2	-	46	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-03-24_N_1115	2022-03-24	-	-	-	-	-	-	-	-	28.3	-	37.2	-	-	-	-	-		-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-03-24_N_1251	2022-03-24	-	-	-	-	-	-	-	-	31.7	-	40.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-03-25_N_0645	2022-03-25	-	-	-	-	-	-	-	-	35.1	-	48.9	-	-	-	-	-	-	-		-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-03-26_N_1401	2022-03-26	-	-	-	-	-	-	-	-	27.6	-	24.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-03-26_N_1557	2022-03-26	-	-	-	-	-	-	-	-	23.5	-	24.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-03-26_N_0752	2022-03-26	-	-	-	-	-	-	-	-	42	-	46.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-03-27_N	2022-03-27	-	-	-	-	-	-	-	-	27.2	-	26.8	-	-	-	-	-	-	-	-	-	-	-	<u> </u>	-	-	-
EV_GC2 EV GC2	EV_GC2_WS_2022-03_WEK14_N	2022-03-28	-	-	-	-	-	-	-	-	24.9	-	22.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+-
EV_GC2	EV_GC2_WS_2022-03-28_N_0707 EV_GC2_WS_2022-03-29_N_1543	2022-03-28	-	-	-	-	-	-	-	-	28.7	-	45.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV GC2 WS 2022-03-29 N 0750	2022-03-29	-	+:-		-	-	-	-	-	31.9 20.3	-	44.7 57.2	-	-		-	-	-	-	-	-	-	-	-	+	+-	+
EV GC2	EV GC2 WS 2022-03-29 N 1602	2022-03-20	-	_	-	-	-	<u> </u>		H :	29.3	-	41.3	-		+	-	H :	-	-		+ :		+	-	+	+-	+-
EV_GC2	EV GC2_WS_2022-03-30_N_1002 EV GC2_WS_2022-03-30_N_0728	2022-03-30	+ -	-	-	-	H	-	-	-	32.4	-	35.4	+÷		+	-	-		-	-	+ :-	-	+		+ -	+:-	+ :
EV_GC2	EV GC2 WS 2022-03-31 N 1357	2022-03-31	+ -	-	-	-	-	-	-	-	28.8	-	28.2	-	_	-	-	<u> </u>	-	-	-	-	-	-	-	+ -	+ -	+÷
EV GC2	EV GC2 WS 2022-03-31 N 0754	2022-03-31	-	1 -	-	-	-	-	-	-	26.2		33.8	-	-	-	-	-	-	-	-	-	-	1 -	-		-	-
EV_GC2	EV_GC2_WS_2022-03-31_N_1210	2022-03-31	-	-	-	-	-	-	-	-	28	-	31.2	-	-	-	-	-	-	-		-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-04-01_N_1457	2022-04-01	-	-	-	-	-	-	-	-	31.6	-	44	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-04-01_N_1556	2022-04-01	-	-	-	-	-	-	-	-	29.2	-	43.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-04-01_N_0743	2022-04-01	-	-	-	-	-	-	-	-	33.1	-	42.8	-	-	-	-	-	-	-	-	-	-	-		1 -	1 -	-
EV_GC2	EV_GC2_WS_2022-04-02_N_1554	2022-04-02	-	-	-	-		-	-	-	17.2	-	26.1	-	-	-		-		-	-	-	-		——	-	↓ -	-
EV_GC2	EV_GC2_WS_2022-04-02_N_0807	2022-04-02	-	-	-	-	-	-	-	-	21.7	-	23.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+-
EV_GC2 EV GC2	EV_GC2_WS_2022-04_WEK15_N	2022-04-04 2022-04-12	-	-	-	-	-	- 0.45	461	- 042	21.3	- 612	25.7	- 202	- 0.1	- 10	0.001		0.127	100	0.0081	1 1 1 5	0.003	- 0 222	-	0.0202		3.12
EV_GC2 EV GC2	EV_GC2_WS_2022-Q2_N EV GC2 WS 2022-04 WEK17 N	2022-04-12	+ -	+ :	-	-	-	8.45	461	843	14.6 9.9	612	19.6	303	9.1	< 1.0	0.081	20.6	0.137	198	0.0081	1.15	0.003	0.322	-	0.0202	6.66	3.12
EV_GC2	EV GC2 WS 2022-04 WEK17 N	2022-04-16	+ -	-	-	-	÷	-		<u> </u>	13.3	+-	19.4	+		+	+	-	⊢ i	⊢ <u>i</u>	- :	+ :-	- :	+	-	+:-	+÷	+:-
EV_GC2	EV GC2 WS 2022-04_WER18_N	2022-04-25	+-	-	+:-	-	H	<u> </u>	-	-	12.2	+ -	23.3	+		1	+			+	- : -	+ -	- :	+ -	-	+	+-	$+\dot{-}$
EV GC2	EV GC2 WS 2022-05 MON N	2022-05-05	+ -	+ -	-	-	-	8.51	435	790	8.6	580	14.6	280	12.2	< 1.0	0.074	18.6	0.123	203	< 0.0050	0.92	0.003	0.259		0.0082	5.74	3.01
EV GC2	EV MC6 WS 2022-05 MON N	2022-05-05	-	-	-	-	-	8.52	432	795	5.8	588	14.4	281	11.8	< 1.0	0.074	18	0.119	202	< 0.0050	0.904	0.0044	0.28	-	0.0081	5.55	
EV_GC2	EV_MC8_WS_2022-05_MON_N	2022-05-05	-	-	-	-	-	5.37	< 0.50	< 2.0	< 1.0	< 10			< 1.0	< 1.0	< 0.050		< 0.020		0.0418	< 0.0050	< 0.0010	< 0.050	-	< 0.0020		
E1 (0.00	EV GC2 WS 2022-05-07 N 1832	2022-05-07	-	-	-	-	-	-	-	-	24.3	-	28.3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2																												
EV_GC2 EV_GC2 EV GC2	EV_GC2_WS_2022-05-07_N_0655 EV_GC2_WS_2022-05-08_N_1837	2022-05-07 2022-05-08	-	-	-	-	-	-	-	-	23.2	-	31.1	-	-	-	-	-	-	-		-	-	1 -		-	-	-

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted n/a denotes no applicable standard

^a Guideline varies with hardness ^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

APPENDIX C - TABLE 1: Summary of Analytical Results for Dissolved Organics, Nutrients and Organics

				Field	d Param	eters				Physical Pa	rameter	s				Disso	olved Ino	ganics					Nutrient	s				
				T	1	1				liyorourr		Ī				1	1	guines					, , , , , , , , , , , , , , , , , , ,	Ĭ				
Sample	Sample	Sample Date	Field Temperature	pH (field)	Dissolved Oxygen	Field Conductivity	Field ORP	Н	Hardness	Conductivity	Total Suspended Solids	Total Dissolved Solids	Turbidity	Bicarbonate	Carbonate	Hydroxide	Bromide	Chloride	Fluoride	Sulfate	Ammonia Nifrogen	Nitrate Nitrogen	Nitrite Nitrogen	Kjeldahl Nitrogen-N	Ortho-Phosphate	Phosphorus, Total	Total Organic Carbon	Dissolved Organic Carbon
Location	ID	(yyyy-mm-dd)	С	pH	mg/L	μS/cm	mV	pH	mg/L	μS/cm	mg/L	mg/L	ntu	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
BC WQG FWAL Elkview Operation			n/a	mnimum 6.5	D Acute	n/a	n/a	mnwimnw 9	n/a	n/a	25 Acute Chronic	n/a	8 Acute Chronic	n/a	n/a	n/a	n/a	Chronic Chronic	9.4- a	128-429°	9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	9 32.8 3.7	97 S S S S S S S S S S S S S S S S S S S	n/a	n/a	.9 6 4 0 0.015	n/a	n/a
EV GC2	EV GC2 WS 2022-05-08 N 0700	2022-05-08	Τ-	I -	I -	- 1	- 1	-	-	Ι-	24.3	Ι-	29.2	Ι-	-	T -	T -	l -	Ι-	Ι-		Τ -		T -	-	T -	-	-
EV_GC2	EV_GC2_WS_2022-05-09_N_0655	2022-05-09	-	-	-	-	-	-	-	-	19.7	-	26	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-05_WEK20_N	2022-05-10	-	-	-	-	-	-	-	-	19.6	-	25	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2 EV GC2	EV_GC2_WS_2022-05-10_N_1846 EV_GC2_WS_2022-05-10_N_0650	2022-05-10 2022-05-10	+ :	-	-	-	-:-		-	-	18.4 16.6	+ :-	24.2	-	-	-	-	-	+ :-		-	+ :	-	-	-	-	-	-
EV_GC2	EV GC2 WS 2022-05-10 N 0800	2022-05-10	+ -	-	-	1	-:-			+ :-	16.4	+ :-	22.9	+:-		-	-	-	+ -	-	-	+ -	-	+ -	-	-	-	-
EV_GC2	EV_GC2_WS_2022-05_WEK21_N	2022-05-16	-		1	-	- 1		-	-	4.6	-	11.2	-	-	-	-		-	-		-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-05_WEK22_N	2022-05-24	-	-	-	-	-	-	-	-	9.8	-	12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-05_WEK23_N	2022-05-30	-	-	-	-	- 1		-		3.1	-	9.96	-	-	-	-		-	-		1.00		-	-	-	-	-
EV_GC2 EV GC2	EV_GC2_WS_2022-06_MON_N	2022-06-08	-	-	-	-	-	8.49	561	960	14.8			275	10.1	< 1.0	0.058		0.136		0.0076	1.27	0.0043	0.328	-	0.0076	6.14	1.52
EV_GC2	EV_GC2_WS_2022-06-13_N_1742 EV_GC2_WS_2022-06_WEK25_N	2022-06-13 2022-06-14	-	-	-	-	-	-	-	-	47	-	14.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV GC2	EV GC2 WS 2022-06-14 N 0740	2022-06-14			-		-			<u> </u>	44.2	-	111	<u> </u>		-	+	-	+		- :	+ :-	-	-	-			
EV GC2	EV GC2 WS 2022-06-14 N 2106	2022-06-14	-	1 -	1	-	-	-	-	-	29.8		63.1	-	-	-	-		T -	-		.	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-06-15_N_1553	2022-06-15	-	-	-	-	-	-	-	-	24.9	-	31.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-06-15_N_0840	2022-06-15	-	-	-	-	-	-	-	-	26	-	64.3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
EV_GC2 EV GC2	EV_GC2_WS_2022-06-16_N_0800 EV_GC2_WS_2022-06-18_N_0810	2022-06-16 2022-06-18	-	-	-	-	-	-	-	-	12.6	-	13.3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
EV_GC2	EV GC2 WS 2022-06-18 N 0810 EV GC2 WS 2022-06-19 N 1825	2022-06-18	+ -		-	-	-		-	-	77.1 8.6	-	76.4 20.4	-	-	-	-	-	+	-	-	+ -	-	-	-	-	-	-
EV GC2	EV GC2 WS 2022-06-19 N 0735	2022-06-19	+ -		-	-	-		-	-	22.5	-	46.3	-	-	-	1	-	1	-	-	<u> </u>	-	-	-	<u> </u>	-	-
EV_GC2	EV_GC2_WS_2022-06-20_N_1550	2022-06-20	-	-	-	-	-	8.43	464	816	19.5	571	17.9	284	11.8	< 1.0	0.124	19.4	0.153	224	< 0.0050	1.02	0.004	0.344	-	0.0206	3.43	3.19
EV_GC2	EV_GC2_WS_2022-06-20_N_0730	2022-06-20	-	-	-	-	-	-	-	-	35.4	-	47.1	-	-	-	-	-	-	-	-		-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-06-21_N	2022-06-21	-	-	-	-	-	8.35	487	829	14.2	601	21.3		8.6	< 1.0	0.104	19.4	0.141	216	< 0.0050	1.04	0.0051	0.298	-	0.0174	5.9	2.95
EV_GC2 EV GC2	EV_GC2_WS_2022-06_NP EV_GC2_WS_2022-06_WEK27_N	2022-06-22 2022-06-27	-	-	-	-	-	8.35	-	884	15.7	630	3.72 11.7	293	4.3	< 1.0	0.085	18.6	0.137	234	< 0.0050	1.11	0.0051		-	0.03757	-	-
EV_GC2	EV GC2 WS 2022-06 WER27 N	2022-00-27	+-		-			8.42	497	849	21.8	616	11.4		10.1	< 1.0	0.112	18.5	0.148	246	0.0618	1.33	0.0058	0.361	-	0.0291	1.93	1.79
EV GC2	EV GC2 WS 2022-Q3 N	2022-07-06	+ -	-	-	-	-	8.49	548	924	8.4	710		292	13	< 1.0	< 0.250	16.3	0.137		0.0108	1.71	< 0.0050	0.258	-	0.0237	1.33	1.2
EV GC2	EV_GC2_WS_2022-07_WEK29_N	2022-07-11	-	-	-	-	-	-	-	-	6	-	15.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-08_MON_N	2022-08-10	-	-	-	-	-	8.52	620	1150	7.9	816	9.59	310	12.2	< 1.0	< 0.250	12.7	0.11		< 0.0050	2.35	0.0094	0.309	-	0.0047	0.68	< 0.50
EV_GC2	EV_GC2_WS_2022-09_MON_N	2022-09-07	-	-	-	-	-	8.19	625	1020	2.9	744	7.68	324	< 1.0		< 0.250	12.4	0.157		0.005	2.6	0.0116	0.125	-	0.0029	1.12	< 0.50
EV_GC2 EV GC2	EV_GC2_WS_2022-Q4_N EV_GC2_WS_2022-11_MON_N	2022-10-05 2022-11-09	+ -		-	-	-	8.12	653 629	996 998	2.2 7	771 791	3.18 5.23	316 316	< 1.0 8.6	< 1.0	< 0.250	13.2	0.164	366 334	< 0.0050 < 0.0050	3.06	0.0128 0.0067	0.406	-	0.0034	0.78	0.74 1.12
EV_GC2	EV GC2 WS 2022-11_MON_N	2022-11-09	+		-			8.45	647	1100	7.3	843	4.1		11.5	< 1.0	< 0.250	17.4	0.165		< 0.0050	2.95	< 0.0050	0.323			1.26	0.88
EV GC2	EV GC2 WS 2022-11-17 N	2022-11-17	-	-	-	-	-	8.45	662	1030	6.2	767	6.22	342	13	< 1.0	< 0.250	16.2	0.144		< 0.0050	2.89	0.0067	0.277	-	0.0074	1.21	0.9
EV_GC2	EV_GC2_WS_2022-11-19_N	2022-11-19	-	-	-	-	-	8.47	649	1100	3.4	840	3.83	324	15	< 1.0	< 0.250	15.8	0.146		0.0054	3.1	0.0075	0.364	-	0.0074	1.35	0.82
EV_LC1	EV_LC1_WS_2022-Q1_N	2022-01-14	-	-	-	-	-	8.21	449	784	13.1	433	29	520	< 1.0	< 1.0	0.065	7.09	0.204	55.6	0.0163	0.112	0.003	0.078	-	0.0177	4.93	1.81
EV_LC1	EV_LC1_WS_2022-02_MON_N	2022-02-07	-	-	-	-	-	8.06	486	842	10.1	477	21.6	564	< 1.0	< 1.0	< 0.050	8.29	0.296	56	0.0117	0.127	0.0059	0.096	-	0.0164	1.25	1.03
EV_LC1 EV LC1	EV_LC1_WS_2022-03_MON_N EV_LC1_WS_2022-Q2_N	2022-03-16 2022-04-11	+ -	-	-	-	-	8.11	490 546	794 880	17.1 5.3	466 538	30.3 4.46	546 590	< 1.0 < 1.0	< 1.0	< 0.050 0.055	6.23 7.89	0.214		0.0062 < 0.0050	0.158	0.0036 < 0.0010	0.362	-	0.0203	4.77 1.77	1.39
EV_LC1	EV_LC1_WS_2022-Q2_N EV_LC1_WS_2022-04-15_N	2022-04-11	+ -		-		-	8.03	548	821	3.4	502	4.46	644	< 1.0	< 1.0	0.055	7.89	0.254	79.7	< 0.0050	0.0297	< 0.0010	0.082	-	0.0023	1.73	1.41
EV_LC1	EV_LC1_WS_2022-05_MON_N	2022-05-05	-	-	-	-	-	7.99	521	905	< 1.0		2.36	609	< 1.0	< 1.0	< 0.250		0.202		< 0.0050	< 0.0250	< 0.0050	< 0.050	-	0.0079	1.84	1.62
EV_LC1	EV_LC1_WS_2022-06_MON_N	2022-06-08	-	-	-	-	-	8.15	624	1010	< 1.0	540	1.26	686	< 1.0		< 0.250	7.96	0.215	86.9	< 0.0050	0.667	0.101	0.062	-	0.0038	1.6	1.81
EV_LC1	EV_LC1_WS_2022-Q3_N	2022-07-06	-	-	-	-	-	7.93	648	954	2.4		3.61	647	< 1.0		< 0.250	7.5	0.214		< 0.0050	0.0281	< 0.0050	0.179	-	0.0073	0.93	1.06
EV_LC1	EV_LC1_WS_2022-08_MON_N	2022-08-08	-	-	-	- 1	- 1	8.06	636	991	< 1.0		0.71		< 1.0	< 1.0	< 0.250	7.65	0.248		< 0.0050	0.067	< 0.0050	0.084	-	0.0037	1.23	1.4
EV_LC1 EV LC1	EV_LC1_WS_SESMP_2022_08_N EV LC1 WS 2022-09 MON N	2022-08-12 2022-09-07	-	-	-	-	-	8.01	634 627	929	< 1.0 1.5	594 597	0.56	602 730	< 1.0	< 1.0	< 0.250	7.71	0.206	78.3 71.1	< 0.0050 < 0.0050	0.0548	< 0.0050 < 0.0050	0.062	-	0.0041	1.26	1.42 0.76
EV_LC1	EV LC1 WS 2022-09 MON N	2022-10-03	-	-	-	$+$ \pm $+$ \pm $+$	-	7.65 7.79	636	1010	< 1.0		0.4		< 1.0		0.054	7.83	0.200		< 0.0050	0.0053	< 0.0050	0.052	-	0.0029	0.73	0.76
EV LC1	EV ER5 WS 2022-Q4 N	2022-10-03	+ -	+	H-	-	-	7.89	636	1010	< 1.0		0.65	693	< 1.0		< 0.250	7.68	0.272	68	< 0.0050	0.0053	< 0.0050	< 0.050	-	0.003	0.75	0.65
EV_LC1	EV_ER7_WS_2022-Q4_N	2022-10-03	1 -	-	-	-	-	5.41	< 0.50	< 2.0	< 1.0	< 10	< 0.10		< 1.0	< 1.0	< 0.050		< 0.020		< 0.0050	0.0158	< 0.0010	< 0.050	-	< 0.0020	< 0.50	< 0.50
EV_LC1	EV_LC1_WS_2022-11_MON_N	2022-11-09	-	-	-	-	-	8.1	540	869	2.1	542		624	< 1.0	< 1.0	0.064	8.22	0.289		< 0.0050	0.0256	< 0.0010	0.061	-	0.0029	1.38	1.27
EV_MC2	EV_MC2_WS_2022-01-06_N-SRF	2022-01-06	-	-	-	- 1	-	8.17	296	538	< 1.0	348	0.4	212	< 1.0	< 1.0	< 0.050	3.46	0.102	122	0.0165	0.945	0.0011	0.065	-	0.0065	0.65	0.57

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness ^b Guideline varies with pH and water temperature

^o Guideline varies with chloride

APPENDIX C - TABLE 1: Summary of Analytical Results for Dissolved Organics, Nutrients and Organics

				Field	d Parame	ters				Physical Pa	arameter	's				Diss	olved Ino	rganics			1		Nutrient	ts				
Sample	Sample	Sample Date	ield Temperature	oH (field)	Dissolved Oxygen	ield Conductivity	leld ORP	Ŧ	lardness	onductivity	otal Suspended Solids	otal Dissolved Solids	urbidity	Sicarbonate	arbonate	lydroxide	romide	Chloride	luoride	ulfate	Vmmonia Nitogen	litrate Nitrogen	litrite Nitrogen	jeldahl Nitrogen-N	ortho-Pho sphate	hosphorus, Total	otal Organic Carbon	issolved Organic Carbon
Location	ID	(yyyy-mm-dd)	C	pH	mg/L	μS/cm	mV	pH	mg/L	μS/cm	mg/L	mg/L	ntu	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
BC WQG FWAL		, (J))) <u>-</u>	n/a	Winimum 6.5 Maximum	Acute Chronic	n/a		Minimum 6.5 Maximum	n/a	n/a	5 Acute Chronic		& Acute	5	n/a	n/a	n/a	Acute	Acute	Chronic	\$ 5 \$ 5 \$ 0.681-28.7 ^b 0.102-2.08 ^b	Acute	9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		n/a		n/a	n/a
Elkview Operation			11/4	0.5 5	11 31	IVG	II/a	0.5 5	11/4	11/4	120 0	IIIa	10 2	- I IVA	100	II/a	IVa	1000 100	1 0.4-	120-420	0.001-20.7 0.102-2.00	JUZ.0 0.1	0.00-0.00 0.02-0.20	IVa	11/4	0.013	11/4	LIVA
EV_MC2	EV_MC2_WS_2022-01-17_N-SRF	2022-01-17	T -	-	I - I	-	-	8.31	273	516	7.6	332	1.72	209	3.1	< 1.0	< 0.050	2.79	0.105	118	0.0089	0.781	0.001	0.277	-	0.0088	0.97	0.76
EV_MC2	EV_MC2_WS_2022_Q1_N	2022-01-18	-	-	-		-	8.18	292	541	1.5	402	0.51		< 1.0	< 1.0	< 0.050	4.11	0.122	128	0.0064	0.964	0.001	0.291	-	0.0072	0.76	0.84
EV_MC2	EV_MC2_WS_2022-01-31_N-SRF	2022-01-31	1 -	-	- 1		-	8.18	278	550	< 1.0		0.99		< 1.0	< 1.0	< 0.050	3.83	0.102	128	< 0.0050	0.906	< 0.0010	0.149	-	0.007	1.32	1.22
EV_MC2 EV_MC2	EV_MC2_WS_2022_Q1_WK0_N EV_MC2_WS_2022-02_MON_N	2022-02-01 2022-02-08	+ -	-			-	8.12 8.44	325 326	599 555	< 1.0 1.1		0.23		< 1.0 7.3	< 1.0	< 0.050	4.45 3.56	0.112	151	0.006 < 0.0050	1.65 0.842	0.001	0.142	-	0.0075	0.77	1.44 0.87
EV_MC2	EV_MC2_WS_2022-02_MON_N EV_MC2_WS_2022-02-14_N-SRF	2022-02-08	+ -	+ :-				8.44	299	592	< 1.0		0.34		4.4		< 0.050	4.15	0.133	147	< 0.0050	1.04	0.0010	0.202	-	0.0028	0.77	0.87
EV MC2	EV MC2 WS 2022 Q1 WK1 N	2022-02-15	-	-	-	-	-	8.29	347	626	1.1	416	0.42		1.1	< 1.0		6.29	0.124	152	0.0114	1.48	0.0012	0.331	-	0.0032	0.91	0.9
EV_MC2	EV_MC2_WS_2022_Q1_WK2_N	2022-02-22	-	-	-	-	-	8.2	434	788	2.4	526	0.25	282	< 1.0	< 1.0	0.076	9.12	0.142	212	0.0052	1.78	0.0014	0.267	-	0.0035	0.66	0.63
EV_MC2	EV_MC2_WS_2022-02-28_N-SRF	2022-03-01	-	-	-	-	-	8.14	332	570	2.4	391	0.45		< 1.0	< 1.0		4.58	0.106	138	< 0.0050	0.944	0.0012	0.257	-	0.004	< 0.50	
EV_MC2	EV_MC2_WS_2022_Q1_WK3_N	2022-03-01	-	-	-	-	-	8	307	568	2.6	380	2.98		< 1.0		< 0.050	6.21	0.104	138	< 0.0050	0.993	0.0011	0.121	-	0.0047	0.76	0.73
EV_MC2	EV_MC2_WS_2022_Q1_WK4_N	2022-03-08	-	-	-	-	-	7.98	321	567	1.2	402	0.48	225	< 1.0	< 1.0		4.63	0.114	138	0.0333	0.904	0.0035	0.341	-	0.0053	< 0.50	
EV_MC2 EV MC2	EV_MC2_WS_2022-03-14_N-SRF EV_MC2_WS_2022_Q1_WK5_N	2022-03-14 2022-03-15	-	-	-	-	-	8.04	286	599 598	2	436 385	0.55		< 1.0	< 1.0	< 0.050	5.63	0.132	159 136	< 0.0050	1.3	0.001 0.0011	0.556	-	0.0028	0.7	0.73
EV_MC2	EV MC2 WS 2022-03 MON N	2022-03-15	-	-	-	-	-	8.21 8.13	316 331	583	1.4	383	0.77		< 1.0	< 1.0		5.79 6.04	0.107	138	0.0148 < 0.0050	0.93	< 0.0011	0.342	-	0.0035	0.93	0.85
EV_WC2	EV MC5 WS 2022-03 MON N	2022-03-16	-			-	-	8.16	324	588	2.3	366	0.88		< 1.0		< 0.050	6.06	0.107	138	< 0.0050	0.93	< 0.0010	0.129	-	0.0027	1.02	0.83
EV MC2	EV MC2 WS 2022-03-21 N-SRF	2022-03-21	-	-	-	-	-	8.31	321	592	2.6	343	0.97		1.4		< 0.050	6.48	0.147	144	< 0.0050	0.942	0.0036	0.121	-	0.0026	0.84	0.78
EV MC2	EV MC2 WS 2022-03 WEK13 N	2022-03-22	-	-	-	-	-	8.23	320	635	1.7	381	1.5		< 1.0	< 1.0	0.081	6.97	0.141	150	0.0054	0.983	0.0023	0.195	-	0.0086	1.1	0.99
EV_MC2	EV_MC5_WS_2022-03_WEK13_N	2022-03-22	-	-	-	-	-	8.24	315	601	1.6	398	1.38	246	< 1.0	< 1.0	0.071	6.62	0.14	150	< 0.0050	0.947	0.0022	0.13	-	0.0045	0.91	0.75
EV_MC2	EV_MC2_WS_2022-03-28_N-SRF	2022-03-28	-	-	-	-	-	8.23	268	519	5.4	335	4.19		< 1.0	< 1.0	< 0.050	4.4	0.102	104	< 0.0050	1.12	0.0016	0.146	-	0.0058	1.73	1.41
EV_MC2	EV_MC2_WS_2022-03-28_N-SRF_1	2022-03-28	-	-	-	-	-	8.25	308	522	6	333	3.71		< 1.0	< 1.0	< 0.050	4.69	0.131	118	< 0.0050	1.21	0.0011	-	-	0.0086	-	-
EV_MC2	EV_MC2_WS_2022-03_WEK14_N	2022-03-29	-	-	-	-	-	7.98	265	506	7	345	6.29		< 1.0	< 1.0	< 0.050	5.18	0.126	108	0.0052	1.13	< 0.0010	0.306	-	0.014	2.02	1.52
EV_MC2 EV_MC2	EV_MC5_WS_2022-03_WEK14_N EV_MC2_WS_2022-04-04_N-SRF	2022-03-29 2022-04-04	-	-	-	-	-	7.96	275 262	506 497	2.3	330	5.84 3.05		< 1.0	< 1.0	< 0.050	5.07 3.71	0.127	109	< 0.0050 < 0.0050	1.14 0.81	0.0012 0.0012	0.242	-	0.0126	1.87	1.36
EV_MC2	EV MC2 WS 2022-04-04 N-SRP	2022-04-05	-	-	-	-	-	8.15	284	603	2.5	374	2.53		< 1.0	< 1.0	< 0.050	8.83	0.103	128	< 0.0050	1.5	0.0012	0.196		0.0071	1.72	1.74
EV_MC2	EV MC5 WS 2022-04 WEK15 N	2022-04-05	+ -			-	-	8.22	300	561	3	361	2.87		< 1.0	< 1.0	< 0.050	6.26	0.09	116	< 0.0050	1.18	0.0017	0.15	-	0.0065	1.68	1.8
EV MC2	EV MC2 WS 2022-04-10 N-SRF	2022-04-10	-	-	-	-	-	8.2	272	526	3.4		1.77		< 1.0	< 1.0		3.9	0.132	114	0.0053	1.24	< 0.0010	-	-	0.0035	-	-
EV_MC2	EV_MC2_WS_2022-04-11_N-SRF	2022-04-11	-	-	-	-	-	8.17	287	513	< 1.0		2.06		< 1.0	< 1.0	< 0.050	3.64	0.127	109	< 0.0050	1.2	< 0.0010	0.203	-	0.0052	1.57	1.5
EV_MC2	EV_MC2_WS_2022-04-11_N-SRF_1	2022-04-11	-	-	-	-	-	7.82	273	527	< 1.0		1.05		< 1.0	< 1.0		3.79	0.132	115	0.0077	1.23	0.002	-	-	0.0049	-	-
EV_MC2	EV_MC2_WS_2022-Q2_N	2022-04-12	-	-	-	-	-	8.3	278	555	2.4		0.94		1.8	< 1.0		4.62	0.11	112	< 0.0050	1.37	0.0013	0.219	-	0.0056	1.71	1.51
EV_MC2	EV_MC2_WS_2022-04-12_N-SRF	2022-04-12	+-			-	-	8.06	292	537	2.6	486	1.19		< 1.0		< 0.050	4.41	0.14	119	< 0.0050	1.34	< 0.0010 < 0.0010	+:-	-	0.0047	-	-
EV_MC2 EV MC2	EV_MC2_WS_2022-04-13_N-SRF EV_MC2_WS_2022-04-14_N-SRF	2022-04-13 2022-04-14	-	-	-	-	-	7.63 8.18	296 292	573 565	2.2		1.48		< 1.0		< 0.050	7.75 4.59	0.122	133	< 0.0050 < 0.0050	1.76	< 0.0010	+-	-	0.0037	-	
EV_WC2	EV MC2 WS 2022-04-14 N-SRF	2022-04-14	+-	-	1	-	-	8.23	292	562	3.1	323	1.26		< 1.0		< 0.050	3.48	0.122	124	< 0.0050	1.36	< 0.0010	+-	-	0.0028		-
EV_MC2	EV MC2 WS 2022-04-16 N-SRF	2022-04-16	+ -	-	-	-	-	8.16	287	552	3.2	364	1.83		< 1.0	< 1.0		3.39	0.126	125	0.005	1.33	0.001	+ -	-	0.0034	-	-
EV_MC2	EV_MC2_WS_2022-04-17_N-SRF	2022-04-17	1 -	-	-	-	-	8.19	276	529	3.6	384	2.25		< 1.0	< 1.0		3.11	0.124	114	0.0058	1.2	0.0011	1 -	-	0.0027	-	-
EV_MC2	EV_MC2_WS_2022-04-18_N-SRF	2022-04-18	-	-	-	-	-	8.17	302	564	2.8	350	1.05	217	< 1.0	< 1.0	< 0.050	3.95	0.131	130	0.0052	1.5	0.0011	0.399	-	0.0044	1.26	1.18
EV_MC2	EV_MC2_WS_2022-04-18_N-SRF_1	2022-04-18	-	-	- 1	-	-	-	-	1 -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-04_WEK17_N	2022-04-19	1 -	-	- 1			8.16	288	559	2.7	375	1.95		< 1.0	< 1.0	< 0.050	4.58	0.127	125	< 0.0050	1.4	< 0.0010	0.172	-	0.0043	1.5	1.97
EV_MC2 EV MC2	EV_MC5_WS_2022-04_WEK17_N EV_MC2_WS_2022-04-19_N-SRF	2022-04-19 2022-04-19	+-	-		-	-	8.19 7.71	294 306	576 571	2.5	372 357	1.6 3.35		< 1.0		< 0.050	4.93 5.72	0.126	127 118	< 0.0050 < 0.0050	1.43	0.0013 < 0.0010	0.152	-	0.0051	1.47	1.87
EV_MC2	EV_MC2_WS_2022-04-19_N-SRF EV_MC2_WS_2022-04-20_N-SRF	2022-04-19	+:-	-		-	-	8.25	327	576	3.6	393	1 15		< 1.0		< 0.050	4.56	0.107	121	0.0050	1.54	< 0.0010	H		0.0036	-	-
EV_WC2	EV_MC2_WS_2022-04-20_N-SRF	2022-04-20	+÷	+ -		-	-	8.23	291	545	2.8	372	1.15		< 1.0	< 1.0		3.09	0.107	109	0.0032	1.33	< 0.0010	+-	-	0.0029	-	+-
EV_MC2	EV MC2 WS 2022-04-22 N-SRF	2022-04-22	+ -	-	-	-	-	8.28	289	547	2.8	358	1.36		< 1.0	< 1.0		4.56	0.116	115	< 0.0050	1.49	< 0.0010	T -	-	< 0.0020	-	-
EV_MC2	EV_MC2_WS_2022-04-23_N-SRF	2022-04-23	1 -	-	-	-	-	8.33	311	566	2.4	342	1.53		2.4	< 1.0		4.69	0.132	127	< 0.0050	1.48	0.0018	1 -	-	0.0039	-	-
EV_MC2	EV_MC2_WS_2022-04-24_N-SRF	2022-04-24	1 -	-	-	-	-	8.18	350	649	3	416	1.51		< 1.0	< 1.0	< 0.050	10.6	0.111	149	< 0.0050	1.98	< 0.0010	-	-	0.0047	-	-
EV_MC2	EV_MC2_WS_2022-04-25_N-SRF_1	2022-04-25	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-				-	-	-		-	i .
EV_MC2	EV_MC2_WS_2022-04-25_N-SRF	2022-04-25	1 -		-			8.26	272	494	3.7	330	2.43		< 1.0	< 1.0	< 0.050	3.35	0.1	99.8	< 0.0050	1.14	< 0.0010	0.189	-	0.0067	2.41	1.9
EV_MC2 EV MC2	EV_MC2_WS_2022-04-26_N-SRF	2022-04-26	+ -	-	-	-	-	8.04	260	500	6.7	307	6.89	212	< 1.0	< 1.0	< 0.050	4.5	0.126	106	< 0.0050	1.22	0.0024	-	-	0.0074	-	-
EV_MC2 EV MC2	EV_MC2_WS_2022-04-26_N-SRF_P EV_MC2_WS_2022-04-26_N-SRF_UP	2022-04-26 2022-04-26	+-	-	-	-	-	-	-	1	-	-	-	+ -	1	+ -	-	-	+-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-04-26_N-SRF_UP EV_MC2_WS_2022-04_WEK18_N	2022-04-26	+ -	-		-	-	8.16	259	460	9	276	5.02	212	<10	< 1.0	< 0.050	3.18	0.103	95.2	< 0.0050	1	< 0.0010	0.254	-	0.0103	2.41	2.32
		1 2022 07 20		<u> </u>				0.10		1 -100		1 2.0	J.82	1 2.2	1		1 - 0.000	3.10	0.100	- 00.E	- 0.0000	<u> </u>	- 0.0010	0.20-7		0.0100	2.71	

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness ^b Guideline varies with pH and water temperature

^o Guideline varies with chloride

APPENDIX C - TABLE 1: Summary of Analytical Results for Dissolved Organics, Nutrients and Organics

				Fiel	d Param	eters			-	Physical Pa	rameter	3		1		Diss	olved Ino	ganics					Nutrient	s				\neg
			perature		l Oxygen	ductivity				ity	pended Solids	solved Solids		ate							Nitrogen	trogen	rogen	Nitrogen-N	osphate	us, Total	anic Carbon	Organic Carbon
Sample	Sample	Sample Date	Field Ten	pH (field)	Dissolved	Field Con	Field ORF	표	Hardness	Conductiv	Total Sus	Total Diss	Turbidity	Bicarbon	Carbonat	Hydroxid	Bromide	Chloride	Fluoride	Sulfate	Ammonia	Nitrate Ni	Nitrite Nit	Kjeldahl	Ortho-Ph	Phosphor	Total Org	Dissolved
Location	ID	(yyyy-mm-dd)	С	pH	mg/L	μS/cm	mV	pH_	mg/L	μS/cm	mg/L	mg/L	ntu	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
				Minimum Maximur	Acute Chronic			Minimurr Maximur			Acute Chronic		Acute Chronic					Acute Chronic	Acute	Chronic	Acute	Acute Chronic	Acute Chronic			Chronic		
BC WQG FWAL			n/a	6.5 9	1 5	n/a	n/a	6.5 9	n/a	n/a	25 5	n/a	8 2	n/a	n/a	n/a	n/a	600 150	0.4- a	128-429	0.681-28.7 ^b 0.102-2.08 ^b	32.8 3.7	0.06-0.60° 0.02-0.20°	n/a	n/a	0.015	n/a	n/a
Elkview Operation										100				1 000					T o 105							I a a 100		I 0.04
EV_MC2 EV_MC2	EV_MC5_WS_2022-04_WEK18_N EV_MC2_WS_2022-04-27_N-SRF	2022-04-26 2022-04-27	+÷	-	-	-	-	8.18 8.35	245 220	462 426	9.5	282 284	7.94	187	< 1.0 2.8	< 1.0	< 0.050	1.98	0.105	79	< 0.0050 < 0.0050	1.01 0.81	< 0.0010 < 0.0010	0.2	-	0.0127	2.27	2.21
EV_MC2	EV MC2 WS 2022-04-27 N-SRF P	2022-04-27	+ -	+ :	+:-	+ -		8.35	- 220	420	10.4	204	7.94	107	2.0	× 1.0	- 0.050	1.98	0.072	- 19	- 0.0030	0.01	- 0.0010	H-	H :	0.0075	+:-	+
EV_MC2	EV_MC2_WS_2022-04-27_N-SRF_UP	2022-04-27	-	1 -	-	-		-	-	-		-	1 -	-	-	-	-		-	-		-		-	-	-	1 -	-
EV_MC2	EV_MC2_WS_2022-04-28_N-SRF	2022-04-28	-	-	-	-	-	8.1	228	423	7.8	291	4.79		< 1.0	< 1.0	< 0.050	2.13	0.122		< 0.0050	0.793	< 0.0010	-	-	0.0075	-	-
EV_MC2	EV_MC2_WS_2022-04-29_N-SRF	2022-04-29	-	-	ļ -	-	-	8.23	257	502	13.6	319	4.84	196	< 1.0	< 1.0	< 0.050	5.4	0.098	89	< 0.0050	1.22	< 0.0010	-	-	0.0073	-	-
EV_MC2 EV_MC2	EV_MC2_WS_2022-04-30_N-SRF	2022-04-30	+ :-	-	-	-	-	7.99	261	487	7.9	325	5.34		< 1.0	< 1.0	< 0.050	5.86	0.121	104	< 0.0050	1.23	< 0.0010	-	-	0.005	-	-
EV_MC2	EV_MC2_WS_2022-05-01_N-SRF EV_MC2_WS_2022-05-01_N-SRF_P	2022-05-01 2022-05-01	+ -	-	-	-		7.98	268	501	7.9	322	4.56	203	< 1.0	< 1.0	< 0.050	6.83	0.121	108	< 0.0050	1.33	0.0011	-	-	0.0054	+ :-	+ -
EV MC2	EV MC2 WS 2022-05-01 N-SRF UP	2022-05-01			+:-	+			-	<u> </u>			+ :	+	<u> </u>	+	+		+	-	-		-	-		+ :-	+	+ -
EV MC2	EV MC2 WS 2022-05-02 N-SRF	2022-05-02	-	-	-	-	- 1	8.27	205	408	7.1	306	6.48	184	< 1.0	< 1.0	< 0.050	2.12	0.109	78.3	< 0.0050	0.734	0.0012	0.209	-	0.013	2.46	2.28
EV_MC2	EV_MC2_WS_2022-05-02_N-SRF_1	2022-05-02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-05-03_N-SRF	2022-05-03	-	-	-	-	-	8.11	214	432	28.2	304	12.8		< 1.0	< 1.0	< 0.050	4.17	0.11	84.8	< 0.0050	0.965	< 0.0010	-	-	0.0079	-	-
EV_MC2	EV_MC2_WS_2022-05_MON_N	2022-05-03	-	-	-	-	-	8.44	198	383	20.6	266	9.21		2.9	< 1.0	< 0.050	1.98	0.105		0.0081	0.64	< 0.0010	0.27	-	0.0287	5.25	3.01
EV_MC2	EV_MC2_WS_2022-05-04_N-SRF	2022-05-04	-	-	-	-	-	8.19	171	333	71.5	210	30.2	153	< 1.0	< 1.0	< 0.050	1.5	0.108	55.1	0.0115	0.526	0.001	-	-	0.0141	-	-
EV_MC2	EV_MC2_WS_2022-05-05_N-SRF	2022-05-05	-	-	-	-	-	7.98	184	354	67.6	275	36.6		< 1.0	< 1.0	< 0.050	3.69	0.108		< 0.0050	0.811	< 0.0010	-	-	0.0198	-	
EV_MC2 EV_MC2	EV_MC2_WS_2022-05-06_N-SRF EV_MC2_WS_2022-05-07_N-SRF	2022-05-06 2022-05-07	-		-	-	-	8	113 149	229 300	238	179 244	141	128 134	< 1.0 < 1.0	< 1.0	< 0.050	0.86 2.81	0.105		0.0055 < 0.0050	0.314	0.0018	-	-	0.389	1 -	-
EV_MC2	EV MC2 WS 2022-05-07 N-SRF	2022-05-08	-	+ :	+:-	-	-	8.05 8.1	166	329	71.7 33	249	39.3 21.7		< 1.0	< 1.0	< 0.050	3.1	0.087	52.5	< 0.0050	0.693	< 0.0010		H :	0.035	+:-	+ -
EV MC2	EV MC2 WS 2022-05-09 N-SRF	2022-05-09	+		+:-	+		8.07	162	334	22.9	253	7.92	160	< 1.0	< 1.0	< 0.050	2.69	0.102	55.5	0.0074	0.632	< 0.0010	0.146		0.0214	3.47	3.3
EV MC2	EV MC2 WS 2022-05-10 N-SRF	2022-05-10	-		+	-	-	8.01	194	392	12.3	288	8.56		< 1.0	< 1.0	< 0.050	4.78	0.11	73.7	< 0.0050	0.96	0.0015	-		0.0142	-	-
EV_MC2	EV_MC2_WS_2022-05-11_N-SRF	2022-05-11	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.49	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-05_WEK20_N	2022-05-11	-	-	-	-	-	8.16	179	340	9.1	274	3.17		< 1.0	< 1.0	< 0.050	1.68	0.087	54.3	< 0.0050	0.549	< 0.0010	0.261	-	0.0149	3.13	3.26
EV_MC2	EV_MC5_WS_2022-05_WEK20_N	2022-05-11	-	-	-	-		8.19	179	338	9.4	288	4.53	158	< 1.0	< 1.0	< 0.050	1.53	0.087	53.3	0.0216	0.546	< 0.0010	0.24	-	0.0181	2.93	2.89
EV_MC2	EV_MC2_WS_2022-05-12_N-SRF	2022-05-12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.626	-	-	-	-	-	-
EV_MC2 EV_MC2	EV_MC10_WS_2022-05-12_N-SRF	2022-05-12	+ -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.611	-	-	-	+ -	-	-
EV_WC2	EV_MC2_WS_2022-05-13_N-SRF EV_MC10_WS_2022-05-13_N-SRF	2022-05-13	+ :-	-	+ -	-			-	-:-			-	-	-		-	-	+:-	-:-	-	0.589	-	-	-	-:-	H-i-	+ -
EV_MC2	EV_MC10_WS_2022-05-13_N-SRF EV_MC2_WS_2022-05-14_N-SRF	2022-05-13	-		+-	-	-		-	-	-		-	+ :-		-	-	-	-		-	0.598	-	-	-	+ :-	+:-	+ -
EV_MC2	EV MC10 WS 2022-05-14 N-SRF	2022-05-14	+ -	+ -	+-	+ -	- 1		-	+ -	H-i-	t -	t i	+ -		t -	+	H-i	+ -	+ -	-	0.597	-	t -	+	+ -	+ -	
EV MC2	EV MC2 WS 2022-05-15 N-SRF	2022-05-15	-	-	1	-	-		-	-	-	-	1	-	-	-	-	-	-	-	-	0.626	-	-	-	-	-	-
EV_MC2	EV_MC10_WS_2022-05-15_N-SRF	2022-05-15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.623	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-05-16_N-SRF	2022-05-16	-	-	-	-	-	8.13	171	335	5.2	198	3.4		< 1.0	< 1.0	< 0.050	1.79	0.11	60	< 0.0050		< 0.0010	0.098	-	0.0135	2.95	3.14
EV_MC2	EV_MC2_WS_2022-05-16_N-SRF_1	2022-05-16	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	0.602	-	-	-	-	-	-
EV_MC2 EV MC2	EV_MC10_WS_2022-05-16_N-SRF	2022-05-16 2022-05-17	1 -	-	-	-	-	8.14	175	335 284	5.8	212	3.25		< 1.0	< 1.0	< 0.050	1.96	0.113		0.0069 0.0118	0.598 0.579	< 0.0010 0.0074	0.127	-	0.0121 0.0626	2.53	2.73
EV_MC2 EV MC2	EV_MC2_WS_2022-05_WEK21_N EV_MC5_WS_2022-05_WEK21_N	2022-05-17	-	-	-	-	-	8.26 8.23	151 149	284	38.4 40.1	193	12.1	128	< 1.0	< 1.0	< 0.050	1.68	0.09	45.4 45.7	0.0118 < 0.0050	0.579	0.0074	0.144	-	0.0626	3.08	2.94
EV_WC2	EV_MC3_W3_2022-05_WER21_N EV_MC2_WS_2022-05-17_N-SRF	2022-05-17	+-	+-	+-	+		8.23	190	201	40.1	200	10.9	154	- 1.0	- 1.0	- 0.030	1.61	0.1	40.7	< 0.0030	0.469	0.0011	0.173	-	0.0007	3.03	2.04
EV_MC2	EV MC10 WS 2022-05-17 N-SRF	2022-05-17	-	1	+-	-	- 1		-	-		-	1 -	T -	-	-	-		-	-	-	0.382	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-05-18_N-SRF	2022-05-18	1 -	-	-	1 -	-	-	-	T -	-	-	-	T -	-	-	-	-	-	-	-	0.456	-	1 -	-	١.	1 -	-
EV_MC2	EV_MC10_WS_2022-05-18_N-SRF	2022-05-18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.387	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-05-19_N-SRF	2022-05-19	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3.39	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-05-20_N-SRF	2022-05-20	-	-			- 7				-		-			-	-	-		-	-	0.5	-	-	-	-	-	-
EV_MC2 EV_MC2	EV_MC2_WS_2022-02-21_N-SRF	2022-05-21	-	-	-	-	-	-	-	<u> </u>	-	-	+-	-	-	-	-	-	-	-	-	0.609	-	-	-	-	-	-
EV_MC2 EV MC2	EV_MC2_WS_2022-05-22_N-SRF EV_MC2_WS_2022-05-23_N-SRF	2022-05-22 2022-05-23	+ -		-	-	-	8.15	184	351	2.4	208	1.56	154	< 1.0	< 1.0	< 0.050	1.6	0.102	64	< 0.0050	0.614	0.0017	0.106	-	0.0117	2.04	2.06
EV_WC2	EV_MC2_W3_2022-05-23_N-3RF EV_MC2_WS_2022-05_WEK22_N	2022-05-24	+ -		+-	-	-	8.18	180	346	4.6	210	2.56	153	< 1.0	< 1.0	< 0.050	1.91	0.102		< 0.0050	0.391	< 0.0017	0.079	-	0.0117	2.04	2.27
EV_MC2	EV MC5 WS 2022-05 WEK22 N	2022-05-24	+ -	+	+	+ -	- 1	8.17	194	349	4.6	214	3.33		< 1.0	< 1.0	< 0.050	1.89	0.084		< 0.0050	0.649	0.0012	0.072	+ -	0.0113	2.41	2.62
EV_MC2	EV_MC2_WS_2022-05-24_N-SRF	2022-05-24	1 -	-	1	T -	- 1	-	-	-	-	-	-	1 -	-	-	-	-	-	-	-	0.602	- 0.0012	-	T -	-	1 -	-
EV_MC2	EV_MC2_WS_2022-05-25_N-SRF	2022-05-25	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.473	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-05-26_N-SRF	2022-05-26	-	-		-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	0.432	-	-	-	-	-	-

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness ^b Guideline varies with pH and water temperature

^o Guideline varies with chloride

APPENDIX C - TABLE 1: Summary of Analytical Results for Dissolved Organics, Nutrients and Organics

				Field	i Param	eters				Physical Pa	arameter	s				Diss	olved Inor	rganics					Nutrient	s				
				1.000						I I I		Ĭ				5.00	1	Junios					- Nation	Ĭ			1	
Sample	Sample	Sample Date	Field Temperature	ph (field)	Dissolved Oxygen	Field Conductivity	Field ORP	Ηd	Hardness	Conductivity	Total Suspended Solids	Total Dissolved Solids	Turbidity	Bicarbonate	Carbonate	Hydroxide	Bromide	Chloride	Fluoride	Sulfate	Ammonia Nitrogen	Nitrate Nitrogen	Nitr ite Nitrogen	Kjeldahl Nitrogen-N	Ortho-Phosphate	Phosphorus, Total	Total Organic Carbon	Dissolved Organic Carbon
Location	ID	(yyyy-mm-dd)	С	pН	mg/L	μS/cm	mV	pН	mg/L	μS/cm	mg/L	mg/L	ntu	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
BC WQG FWAL			n/a	Munimum 9	a Acute	n/a	n/a 6	Minimum 6.5 Maximum	n/a	n/a	5 Acute Chronic	n/a	& Acute	n/a	n/a	n/a	n/a	Chronic Chronic	o.4-	128-429	# 50 0.681-28.7 ^b 0.102-2.08 ^b	32.8 3.7	9.00-0.60° 0.02-0.20	n/a	n/a	.i. O.Pi. O.015	n/a	n/a
Elkview Operation																												
EV_MC2	EV_MC2_WS_2022-05-27_N-SRF	2022-05-27	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.366	-	-	-	-	-	-
EV_MC2 EV MC2	EV_MC2_WS_2022-05-28_N-SRF EV_MC2_WS_2022-05-29_N-SRF	2022-05-28 2022-05-29	-	-	-		-	-	-	-	+-	-	-	-	-	-	-	-	-		-	0.299	-	-	-	-	-	-
EV_MC2	EV MC2 WS 2022-05-29 N-SRF EV MC2 WS 2022-05-30 N-SRF	2022-05-29	+-	-	-		-	8.13	137	285	19	172	12.1	131	< 1.0	< 1.0	< 0.050		0.088	45.4	< 0.0050	0.486	< 0.0010	0.095		0.0279	2.81	2.74
EV_MC2	EV MC2 WS 2022-05-30 N-SRF 1	2022-05-30	+-	-	-	+ - +	-	8.13	-	- 200	19	- 172	12.1	- 131	- 1.0	- 1.0	- 0.030	1.03	- 0.000	- 45.4	- 0.0030	- 0.400	- 0.0010	- 5.003	-	0.0279	2.01	2.14
EV MC2	EV MC2 WS 2022-05 WEK23 N	2022-05-31	-	-	-	-	- 1	7.94	153	280	17.6	181	8.2	133	< 1.0	< 1.0	< 0.050		0.088	46.4	< 0.0050	0.494	< 0.0010	0.22	-	0.0338	2.92	2.51
EV MC2	EV MC5 WS 2022-05 WEK23 N	2022-05-31	-	-	-		- 1	7.92	150	267	17.5	189	10	129	< 1.0	< 1.0	< 0.050		0.089	47.8	< 0.0050	0.508	< 0.0010	0.141	-	0.0323	2.69	2.41
EV_MC2	EV_MC2_WS_2022-05-31_N-SRF	2022-05-31	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.393	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_ 2022-06-01_N-SRF	2022-06-01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.405	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-06-02_N-SRF	2022-06-02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.377	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-06-03_N-SRF	2022-06-03	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.41	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-06-04_N-SRF	2022-06-04	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.352	-	-	-	-	-	-
EV_MC2 EV MC2	EV_MC2_WS_2022-06-05_N-SRF EV_MC2_WS_2022-06-06_N-SRF	2022-06-05	-	-	-	-	-	7.00	112	240		168		115	< 1.0	< 1.0	< 0.050	0.74	0.104	32.5	0.0099	0.293	< 0.0010	0.335	-	0.116	6.23	2.27
EV_MC2	EV_MC2_WS_2022-06-00_N-SRF EV_MC2_WS_2022-06_MON_N	2022-06-06	+	-	-			7.93 8.1	122	252	93.8	160	33.3 35	123	< 1.0	< 1.0	< 0.050		0.089		0.0099	0.334	< 0.0010	0.333	-	0.116	3.85	2.39
EV MC2	EV MC5 WS 2022-06 MON N	2022-06-06	+:-		-		_	8.09	120	241	77.9	162	36.2		< 1.0	< 1.0	< 0.050		0.008	31.1	< 0.0050	0.297	< 0.0010	0.258	-	0.128	2.86	2.32
EV MC2	EV MC2 WS 2022 Q2 WK4 N	2022-06-07	١.	-	-	- 1		7.96	128	236	89.4	152	34.8		< 1.0	< 1.0	< 0.050		0.093		< 0.0050	0.325	0.0012	0.276	-	0.166	4.51	2.64
EV MC2	EV MC2 WS 2022-06-07 N-SRF	2022-06-07	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.446	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-06-08_N-SRF	2022-06-08	-	-	-	-	- 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.335	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-06-09_N-SRF	2022-06-09	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.341	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-06-10_N-SRF	2022-06-10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.385	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-06-11_N-SRF	2022-06-11	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.266	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-06-12_N-SRF	2022-06-12	-	-	-	-	-	-	-	-	-		-		-	-	-	-	-		-	0.225	-	-	-	-	-	
EV_MC2 EV MC2	EV_MC2_WS_2022-06-13_N-SRF EV_MC2_WS_2022-06_WEK25_N	2022-06-13 2022-06-13	-	-	-	-	-	8.09 7.77	112	233	92.9 86.6	147	33.8 58.4		< 1.0	< 1.0	< 0.050		0.082		0.005 < 0.0050	0.325	< 0.0010 0.0012	0.289	-	0.169	5.95	2.15
EV_MC2	EV MC5 WS 2022-06 WEK25 N	2022-06-13	+ -		-			7.88	109	229	91.1	170	60.7		< 1.0	< 1.0	< 0.050		0.088		0.0053	0.345	0.0012	0.243	-	0.17	6.47	2.42
EV MC2	EV MC2 WS 2022 Q2 WK5 N	2022-06-13	+	-	-			8.08	120	238	64.3	164	35.2		< 1.0	< 1.0	< 0.050		0.083		0.0052	0.326	0.0013	0.173	-	0.0518	4.55	3.39
EV MC2	EV MC2 WS 2022-06-14 N-SRF	2022-06-14	١.	-	-	- 1	- 1	-	-	-	-	-	-	T -	-	-	-		-	-	-	0.28	-	-	-	-	-	+
EV_MC2	EV_MC2_WS_2022-06-15_N-SRF	2022-06-15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		0.326	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-06-16_N-SRF	2022-06-16	-	-	-	-	- 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.33	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-06-17_N-SRF	2022-06-17	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.341	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-06-18_N-SRF	2022-06-18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.217	-	-	-	-	-	-
EV_MC2 EV_MC2	EV_MC2_WS_2022-06-19_N-SRF	2022-06-19	-	-	-		- +	- 0.4	- 121	256	- 25.7	100	- 04.7	130	-10	- 10	- 0.0E0	- 4.04	0.085	21.6	< 0.0050	0.417	0.0014	0.282	-	- 0.000	2.66	2.33
EV_MC2 EV MC2	EV_MC2_WS_2022-06-20_N-SRF EV_MC2_WS_2022-06-21_N-SRF	2022-06-20 2022-06-21	-		-		-	8.1	131	200	35.7	160	24.7	130	< 1.0	< 1.0	< 0.050	1.61	0.085	31.6	< 0.0050	0.409	0.0014	0.282	-	0.0603	2.00	2.33
EV_MC2	EV MC2 WS 2022-06-21 N-SRF EV MC2 WS 2022-06 WEK26 N	2022-06-21	+	-	-			8.16	133	260	24	167		133	< 1.0	< 1.0	< 0.050	1.22	0.087	32.1	< 0.0050	0.375	< 0.0010	0.187	-	0.062	2.84	2.28
EV MC2	EV MC5 WS 2022-06 WEK26 N	2022-06-21	+-	-	-	1 - 1	- +	8.18	135	267	26.2	169	12.2		< 1.0	< 1.0	< 0.250		< 0.100		< 0.0050	0.45	< 0.0050	0.133	-	0.0498	2.52	2.62
EV MC2	EV MC2 WS 2022-06-22 N-SRF	2022-06-22	-	-	-		- 1	-	-	1 -	- 20.2	-	- 12.2	-	-	- 1.0	- 0.200	1.70	-	-	-	0.356	-	-	-	-	-	
EV_MC2	EV_MC2_WS_2022-06-23_N-SRF	2022-06-23	-	-	-	- 1	- 1	-	-	-	T -	-	-	-	-	-	-	-	T -	-	-	0.351	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-06-24_N-SRF	2022-06-24	-	-	-	- 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-		0.374	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-06-25_N-SRF	2022-06-25	-	-	-	-	- 1	-	-	-	-	-	-	-	-	-	-	-	I -	-	-	0.507	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-06-26_N-SRF	2022-06-26	-	-	-	-	-	-	-	1 -	-	-	-	-	-	-	-	-	-	-	-	0.612	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-06-27_N-SRF	2022-06-27	-	-	-	-		8.24	186	353	6.9	218		156	< 1.0	< 1.0	< 0.050		0.101	62.1	< 0.0050	0.747	< 0.0010	0.113	-	0.0217	1.36	1.52
EV_MC2 EV_MC2	EV_MC2_WS_2022-06-28_N-SRF EV_MC2_WS_2022-06_WEK27_N	2022-06-28 2022-06-28	-	-	-	-	-	7.00	162	220	1 -	200	-	150	- 10	- 10	- 0.0E0	- 0.40	- 0.101	40.0	< 0.0050	0.463 0.633	0.0019	0.082	-	0.0084	177	- 2.04
EV_MC2 EV MC2	EV_MC2_WS_2022-06_WEK27_N EV_MC5_WS_2022-06_WEK27_N	2022-06-28	-	-	-		-	7.98 8.03	163 165	329 325	9.4	202 192	5.01	150 149	< 1.0 < 1.0	< 1.0	< 0.050	2.49	0.101	49.8 49.2	< 0.0050	0.633	0.0019	0.082	-	0.0084	1.77	2.04
EV_MC2	EV_MC5_WS_2022-06_WER27_N EV_MC2_WS_2022-06-29_N-SRF	2022-06-29	+		-		\rightarrow	8.03	100	325	9.4	192	5.05	149	~ 1.0	< 1.0	< 0.050	2.48	0.103	49.2	< 0.0050	0.597	0.0017	0.104	-	0.0242		2.25
EV MC2	EV MC2 WS 2022-06-30 N-SRF	2022-06-30	+	-	-		- +		-	+	+ -	+-	+-	+	-	-	+		+÷		-	0.475	-	+	-	+ -	+	+
EV MC2	EV MC2 WS 2022-07-01 N-SRF	2022-07-01	-	-	-	- 1	- 1		-	-	1	-	1	-	-	-	-		-	-	-	0.532	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-07-02_N-SRF	2022-07-02	-	-	-	- 1	- 1	-	-	-	1 -	1 -	-	-	-	-	-	-	T -	-	-	0.544	-	-	-	-	-	-
		-		-						-				•				-	-	-		-			-	-	-	

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted n/a denotes no applicable standard

^a Guideline varies with hardness ^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

APPENDIX C - TABLE 1: Summary of Analytical Results for Dissolved Organics, Nutrients and Organics

				Fie	ld Param	eters		Г	-	Physical P	arameter	s		1		Dis	solved Ino	rganics			1		Nutrien	ts				
				T	Τ	T				Τ,	1			1		1		Ĭ										Ę
Sample	Sample	Sample Date	Field Temperature	pH (field)	Dissolved Oxygen	Field Conductivity	Field ORP	Hď	Hardness	Conductivity	Total Suspended Solids	Total Dissolved Solids	Turbidity	Bicarbonate	Carbonate	Hydroxide	Bromide	Chloride	Fluoride	Sulfate	Ammonia Nitrogen	Nitrate Nitrogen	Nitrite Nitrogen	Kjeldahl Nitrogen-N	Ortho-Phosphate	Phosphorus, Total	Total Organic Carbon	Dissolved Organic Carbo
Location	ID	(yyyy-mm-dd)	С	pH	mg/L	μS/cm	mV	pН	mg/L	μS/cm	mg/L	mg/L	ntu	mg/L	mg/L	mg/L	. mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
BC WQG FWAL			n/a	Winimum 9.5 Maximum	D Acute	n/a	n/a	mnimum 9.5 9	n/a	n/a	25 Acute Chronic	n/a	& Acute	n/a	n/a	n/a	n/a	Chronic Chronic	a -4.0	128-429	# 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Chronic 32.8 3.7	O.06-0.60° 0.02-0.20	0° n/a	n/a	0.015	n/a	n/a
Elkview Operation																												$\overline{}$
EV_MC2	EV_MC2_WS_2022-07-03_N-SRF	2022-07-03	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-		0.571		- 1	-		-	-
EV_MC2	EV_MC2_WS_2022-07-04_N-SRF	2022-07-04	-	-	-	-	-	8.33	187	261	5.8	175	2.56	157	< 1.0	< 1.0			0.1	54.6	< 0.0050	0.631	0.0012	0.072	-	0.0136	1.3	1.29
EV_MC2	EV_MC2_WS_2022_Q3_N	2022-07-05	-	-	-	-	-	8.29	161	312	5.8	220	3	145	1.3	< 1.0	< 0.050	1.52	0.106	49	0.0088	0.49	< 0.0010	0.206	-	0.0145	1.51	1.57
EV_MC2	EV_MC2_WS_2022-07-05_N-SRF	2022-07-05	+-	-	-	-	-	-	-	-	+ -	+-	-	 -	- -	+-	+-	 -	<u> </u>	 -	-	0.508	-	-	-	<u> </u>	-	
EV_MC2 EV MC2	EV_MC2_WS_2022-07-06_N-SRF	2022-07-06	+-	-	-	-	-	-	-	-	-	-	-	+-	-	+-	+-	+	<u> </u>	- -	-	0.579	-	-	-	-	-	
EV_MC2 EV_MC2	EV_MC2_WS_2022-07-07_N-SRF EV_MC2_WS_2022-07-08_N-SRF	2022-07-07	+-	-	-	-	-	-	-	-	+-	-	-	-	-	-	-	<u> </u>	-	-		0.617	-	-	-	-	-	-
EV_MC2	EV MC2 WS 2022-07-08 N-SRF EV MC2 WS 2022-07-09 N-SRF	2022-07-08	+ -	-	+-	-	-	-	-	+ :-	+ :	+	-	+ :-	+ -	+ -	+:-	+ -	-	+:-	-	0.627	-	+:-		+ :-	-	
EV_MC2	EV MC2 WS 2022-07-09 N-SRF	2022-07-10	+ -	+ -	+-	-	-	<u> </u>	-	—	+ :	+ -	+ -	+ -	+ -	+ -	+ -	+ -	١.	-		0.735	-	1 -	-	T -	-	-
EV MC2	EV MC2 WS 2022-07-11 N-SRF	2022-07-11	-		T -	-	-	8.31	225	424	2.9	228	1.31	180	1.4	< 1.0	< 0.050	4.35	0.149	80	< 0.0050	0.9	0.0013	0.191	-	0.0077	1.32	1.29
EV MC2	EV MC2 WS 2022-07 WEK29 N	2022-07-12	-	-	-	-	-	7.72	202	382	2.8	252	1.58	207	< 1.0	< 1.0	< 0.050		0.112	65.5	0.0059	0.586	< 0.0010	0.104	-	0.0064	1.2	1.23
EV_MC2	EV_MC5_WS_2022-07_WEK29_N	2022-07-12	-	-	-	-	-	7.62	197	378	2.7	251	0.74		< 1.0	< 1.0	< 0.050		0.111	63	< 0.0050	0.6	< 0.0010	0.17	-	0.0075	0.96	1.12
EV_MC2	EV_MC2_WS_2022-07-12_N-SRF	2022-07-12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	0.692	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-07-13_N-SRF	2022-07-13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.71	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-07-14_N-SRF	2022-07-14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		0.704		-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-07-15_N-SRF	2022-07-15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.682	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-07-16_N-SRF	2022-07-16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.855	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-07-17_N-SRF	2022-07-17	-	-	-	-	-	-	-	454	-	- 044	-	-				-	- 0.445	- 00.4	-	1.15	- 0.0040	- 0.405	-	- 0.0007		- 440
EV_MC2 EV MC2	EV_MC2_WS_2022-07-18_N-SRF EV_MC2_WS_2022-07-19_N-SRF	2022-07-18 2022-07-19	-	-	-	-	-	8.27	233	451	2.1	311	0.44	214	< 1.0	< 1.0	< 0.050	3.73	0.145	90.4	0.007	0.87	< 0.0010	0.195	-	0.0067	0.99	1.16
EV_MC2	EV MC2 WS 2022-07-19 N-SRF EV MC2 WS 2022-07-20 N-SRF	2022-07-19	-	-	+-	-	-	-	-	+ :-	_	-		-	-	-	-	<u> </u>	-	-	-	0.876	-	+ : +		+ :-	-	
EV_WC2	EV MC2 WS 2022-07-20 N-SRF	2022-07-20	+ -	-	+=			+:-	-	H :	+ :-	+ -	-	+:-	+ -		+	<u> </u>	+:-	-	-	0.863	-	+ -		+ :		
EV MC2	EV MC2 WS 2022-07-21 N-SRF	2022-07-22	+-		+:-						+:	+	-	+	+:-		+:-	+:-	+:-		-	0.909		+:-		+:-		
EV MC2	EV MC2 WS 2022-07-23 N-SRF	2022-07-23	-		-	-	-			<u> </u>	-	-	-	-	-	-	-	<u> </u>	-	-		0.913	-	T .	-	· -	-	-
EV MC2	EV MC2 WS 2022-07-24 N-SRF	2022-07-24	T -	-	T -	-	-	T -	-	T -	T -	-	-	T -	-	-	T -	T -	T -	-		0.923	-	T -	-	T -	-	-
EV MC2	EV MC2 WS 2022-07-25 N-SRF	2022-07-25	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.72	-	- 1	-	-	-	-
EV_MC2	EV_MC2_WS_2022-07-26_N-SRF	2022-07-26	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.14	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_ 2022-07-27_N-SRF	2022-07-27	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.5	-	- 1	-	-	-	-
EV_MC2	EV_MC2_WS_2022-07-28_N-SRF	2022-07-28	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.09	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-07-29_N-SRF	2022-07-29	-	-	1 -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.08	-	-	-	-	-	
EV_MC2 EV_MC2	EV_MC2_WS_2022-07-30_N-SRF	2022-07-30	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.08	-	-	-	-	-	-
EV_MC2 EV MC2	EV_MC2_WS_2022-07-31_N-SRF	2022-07-31	+-	-	+-	-	-		- 227	476	-	222	- 0.00	- 217	- 10	- 10	- 0.0E0		0.153	- 06.2		1.14	- 0.0010	0.122	-	- 0.004	- 0.62	- 0.50
EV_MC2 EV_MC2	EV_MC2_WS_2022-08-01_N-SRF EV MC2 WS 2022-08-02 N-SRF	2022-08-01 2022-08-02	+ -	+ -	+-	-	-	8.29	237	475	1.4	322	0.32	217	< 1.0	< 1.0	< 0.050	2.48	0.153	96.3	0.0229	1.07	< 0.0010	0.132	-	0.004	0.63	0.59
EV_MC2	EV MC2 WS 2022-08-02 N-SRF	2022-08-03	-		+-	-		-	-	+ -	+ :	-	-	+-	+ -	+ -	-	+	-	+÷		1.17		+ -	-	+	-	-
EV_MC2	EV MC2 WS 2022-08-04 N-SRF	2022-08-04	+ -	+ -	+-	-	-	+ -	-		+ :	+-	+ -	+-		+ -	+-	+ :-	+-	! -		1.54		+ -		+	-	
EV MC2	EV MC2 WS 2022-08-05 N-SRF	2022-08-05	-	-	+ -	-	-	-	-	-	+ -	-	-	T -	T -	1 -	-		-	-	-	1.51	-	1 - 1	-	T -	-	-
EV_MC2	EV_MC2_WS_2022-08-06_N-SRF	2022-08-06	1 -	-	-	-	-	-	-	T -	+ -	1 -	-	-	-	1 -	-	T -	T -	T -		1.64			-	-	-	-
EV_MC2	EV_MC2_WS_2022-08-07_N-SRF	2022-08-07	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	T -	-	-	-	1.55	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-08-08_N-SRF	2022-08-08	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.67		-	-	-	-	-
EV_MC2	EV_MC2_WS_ 2022-08-09_N-SRF	2022-08-09	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.5	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-08-10_N-SRF	2022-08-10		-	-	-	-	-	-	-		-	-	-	↓ :.	1 :-	-	L -	1			1.56	-	-		-	-	-
EV_MC2 EV MC2	EV_MC2_WS_2022-08_MON_N EV_MC2_WS_2022-08-11_N-SRF	2022-08-10	-	-	-	-	-	8.4	361	709	11.2	444		250	4.2	< 1.0	0.078	9.13	0.118	162	0.0089	2.15	0.0022	0.277	-	0.0023	0.58	0.68
EV_MC2 EV MC2	EV_MC2_WS_2022-08-11_N-SRF EV_MC2_WS_2022-08-12_N-SRF	2022-08-11	+-	+-	+-	-	-		-	-	+ -	+-	-	-	<u> </u>	+-	+-		<u> </u>	- -	-	1.55	-	+ -	-	-	-	
EV_MC2 EV MC2	EV_MC2_WS_2022-08-12_N-SRF EV_MC2_WS_2022-08-13_N-SRF	2022-08-12 2022-08-13	+-	-	+-	-	-		-	H -	+-	-	-	+-		+-	-	+	1	-	-	1.62	-	-	-	+	-	
EV_MC2	EV MC2 WS 2022-08-13 N-SRF EV MC2 WS 2022-08-14 N-SRF	2022-08-13	+-	-	+-		-	-		+ :-	+ -	+	-	+:-	-	+÷	+:-	+	+:-	+:-	-	1.63	-	+:-		<u> </u>	-	-:-
EV_MC2	EV MC2 WS 2022-08-15 N-SRF	2022-08-14	+-	+ -	+-	-	-	8.07	311	589	< 1.0		0.76	256	< 1.0	< 1.0	< 0.050	3.79	0.124	145	0.0121	1.66	0.0012	0.089		0.0036	0.68	0.6
EV MC2	EV MC2 WS 2022-08-15 N-SRF	2022-08-16	+-	+ -	+-	-	-	0.07	-	-	1 - 1.0	-	0.76	-	- 1.0	- 1.0	- 0.000	3.10	0.124		0.0121	1.68	- 0.0012	- 0.000		- 0.0030	-	-
EV MC2	EV MC2 WS 2022 Q3 WK1 N	2022-08-16	-	-	+ -	-	-	8.19	358	630	< 1.0	423		243	< 1.0	< 1.0	< 0.050	5.86	0.155	149	0.0065	1.86	0.0019	0.239	-	0.0024	< 0.50	
				-	_					-		-		-	-									-		-		

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted n/a denotes no applicable standard

^a Guideline varies with hardness ^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

APPENDIX C - TABLE 1: Summary of Analytical Results for Dissolved Organics, Nutrients and Organics

Company Comp					Field	d Param	eters			-	Physical Pa	arameters	.		1		Diss	olved Inor	rganics					Nutrient	s				
Second Process Seco																													- C
REWIGHTON. Part Pa	Sample	Sample	Sample Date	Field Temperature	£.	ssolved (Condu		H.	Hardness	Conductivity	Total Suspended Solids	Dissolve	Turbidity	Bicarbonate	Carbonate	Hydroxide	Bromide		Fluoride	Sulfate	Ammonia Nitrogen	Nitrate Nitrogen	Nitrite Nitrogen	Kjeldahl Nitrogen-N	Ortho-Phosphate	Phosphorus, Total	Organic	Dissolved Organic Carb
Fig.				c		mg/L	μS/cm	mV	pН	mg/L	μS/cm	mg/L	mg/L		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Proceedings Process				n/a		1 Acute or Chronic	n/a	n/a		n/a	n/a	Chr	n/a	Chr	n/a	n/a	n/a	n/a	Ch. Ac.	0.4- a	128-429	型 サラマ リー リー リー リー リー リー リー リー リー リー リー リー リー	Chr	O.06-0.60° 0.02-0.20	n/a	n/a		n/a	n/a
C C C C C C C C C C		E . 1100 1110 0000 00 15 11 005																											
E W. C E W. C W 2002-0-19 C C C C C C C C C				+ :-	-	-	H	-	-			_	+:-	+-	+:-	H-:-		⊢÷-		H:-	-	-			+:-	- : -	+:-	H:-	-
DY WEZ CF WEZ WEZ 3020-031 NASS 3020-042					+	_		-	-			_	_		_			_	_						+÷				
EV MC2				-	T -	-		-	-			١.	-		_			-	T -	-	-				-		1 -	-	- 1
EV MC2		EV_MC2_WS_2022-08-21_N-SRF	2022-08-21	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	1.95	-	-	-	-	-	-
EV MC2						_		-			_	_	_		_			_	_	_					_		_	_	-
EV MC2 EV MC3 EV				-	-			-																		-			- 0.70
EV MC2				-	-	_	-	-	8.18	363		_	4/0		246	< 1.0		< 0.050	7.51	0.154	163	0.0076		0.0034	0.272	-	0.0026		0.72
EV MC2				+-	-	_			-	-	-	_		_	+		_		-			-		- :	+		+ :-	_	
EV MC2								-	-			_	_	-	_	_		_	_	-	-	-			-				-
EV MC2	EV MC2			-	-	-	-	-	-	-	-	T -	-	-	-	-	-	-	T -	-	-	-	1.65	-	-	-	-	-	-
EV MC2 EV MC2 WS 2022 0.3 WIG N SPE 2022-06-30	EV_MC2	EV_MC2_WS_2022-08-28_N-SRF	2022-08-28	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.69	-	-	-	-	-	-
EV MC2 EV MC2 WS 2002 0.5 W/S N				-	-	-	-	-	8.2	348	583	< 1.0	388	0.23	236	< 1.0	< 1.0	< 0.050	3.9	0.154	139	0.0085		0.002	0.311	-	0.0023	0.67	0.66
EV MC2					-	-		-	-		_				-	-		-			-	-			-				-
EV MC2 EV MC2 WC2 WC2 WC2 WC2 WC2 WC2 WC2 WC2 WC2 W				-	-	-		-	8.15	331	588	< 1.0	388	0.23	246	< 1.0		< 0.050	3.82	0.134	140	0.0053			0.201	-	0.0028	0.7	0.69
EV.MC2				-	-	-	_	-	-	-	-	-	-	-	-	-	_	-		-	-				-	-	-	-	-
EV MC2 EV MC2 WS 2022-09-03 NSFR 2022-09-03					-	-		-	-		_	_			_			_	-	-					-	-		_	-
EV MC2 EV MC2 WS 2022-09-6 N-SRF 2022-09-6					-	-		-	-		_		_		_			-	_	-	-				-			_	-
EV MC2				+-		-			-			_		_	_							-			+:-		+:-		+:-
EV MC2				-		_	-	-	-		-	_	-		_	-	_	-	_	-	-	-			-	-	-	-	-
EV MC2 EV MC2 WG 2022-09 MON N 2022-09-07				-	-	-	-	-	-	-	-	-	-		T -	-	-	-		-	-			-	-	-	-	-	-
EV.MC2	EV_MC2	EV_MC2_WS_2022-09_MON_N	2022-09-06	-	-	-	-	-	8.4	366	604	1.2	415	0.29	215	8.6	< 1.0	< 0.050	4.35	0.16	155	0.006	1.78	0.0024	0.173	-	< 0.0020	< 0.50	< 0.50
EV.MC2				-	-	-	-	-	8.41	360	605	< 1.0	423	0.55	231	8.8	< 1.0	< 0.050	4.31	0.16	153	0.0064		0.0023	0.226	-	< 0.0020	< 0.50	< 0.50
EV MC2					-	-		-			-				-	-		-	-	-	-	-		-			-	-	-
EV MC2				-	-	-	-	-	8.47			< 1.0	416		213	9.4		< 0.050		0.143	148	< 0.0050		0.0029	0.077	-	0.0031		0.8
EV MC2		EV_MC2_WS_2022-09-08_N-SRF		-	-	_	-	-	-	-	-	-	-	_	-	-	-	-	_	-	-	-		-	-	-	-	-	-
EV MC2 EV MC2 WS 2022-09-10 N-SRF 2022-09-10					-	_	-	-	0.20	363	622		420		246	<10	<10	< 0.050		0.154	153	0.0000		0.0022	0.143	-	0.0022	0.6	0.58
EV MC2				+-	_	_	_	-							_	_		- 0.000		0.104					5.145	-			- 0.50
EV MC2 EV MC2 WS 2022-09-12 NSRF 2022-09-12	EV_MC2		2022-09-11		_	-		-	-		_	_	_		T -	-	_	-	_	-					-	-	-	_	-
EV.MC2		EV_MC2_WS_2022-09-12_N-SRF	2022-09-12		-	-		-	8.19	290	633	< 1.0	416	0.26	247	< 1.0	< 1.0	< 0.050	4.99	0.155	162	0.0169		0.0021	0.18	-	0.0027	0.66	0.72
EV MC2						-		-			-				-	-	-	-		-	-	-		-	-	-	-		-
EV_MC2						-		-	8.29			< 1.0			228	1.9		< 0.050		0.155	158	0.0083			0.198	_		< 0.50	< 0.50
EV MC2				-		-	-	-	-	-	-	-	-	_	! -	-	-	-	_	-	-	-		-	-	-	-	-	-
EV.MC2				+-		_	-	-	-	-	-	_	-		+-	-	-	-	_	-	-	· ·		-	-	-	-	-	
EV MC2						_	_	-		_	-	_		_	_	+-	_	+	_		-				+	-	_	_	-
EV.MC2 EV.MC2 WS 2022-09-19.NSRF 2022-09-19					_	_	_	-	_		_	_	_		_		_	_	_	_					-		_	_	
EV.MC2 EV.MC2 WS.2022-09-21 N.SRF 2022-09-21			2022-09-19	-		_	-	-		-	-	_	-		1 -	-	-	-	_	-	-	-	1.89	-	-	-	-	-	- 1
EV MC2 EV MC2 WS 2022-09-22 N-SRF 2022-09-22		EV_MC2_WS_2022-09-20_N-SRF	2022-09-20	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-
EV_MC2				-		-		-	-			-		-	-			-	_	-	-				-		-	-	-
EV MC2 EV MC2 WS 2022-09-24 N-SRF 2022-09-24				-	-	-	-	-	-	-	-	-	-	-	ļ -	-	-	-	_	-	-	-		-		-	-	-	-
EV_MC2				-	-	_	-	-	-	-	-	_	ļ -	-	! -	-	-	-	_	-	-	-		-	-	-	-	-	-
EV_MC2						_	_	-	<u> </u>	_	_	_		_	+-	-	_	-	_	-	-				+-	-	-	-	
EV_MC2					_			H							244	< 1.0		< 0.050		0.154	172				0.265	H:-			0.71
						+		-	0.24			× 1.0				- 1.0		- 0.000	4.57	3.134					- 5.203		- 0.0020		0.71
	EV_MC2	EV MC2 WS 2022-09-28 N-SRF	2022-09-28	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u> </u>	-	-	-	2.16	-	-	-	-	-	-

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted n/a denotes no applicable standard

^a Guideline varies with hardness ^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

APPENDIX C - TABLE 1: Summary of Analytical Results for Dissolved Organics, Nutrients and Organics

				Fiel	d Param	eters			-	Physical Pa	rameters	s				Diss	olved Ino	rganics			I		Nutrient	s				
				T		T				.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Ī					1	guinos					- National	Ĭ				
Sample	Sample	Sample Date	Field Temperature	pH (field)	Dissolved Oxygen	Field Conductivity	Field ORP	Нd	Hardness	Conductivity	Total Suspended Solids	Total Dissolved Solids	Turbidity	Bicarbonate	Carbonate	Hydroxide	Bromide	Chloride	Fluoride	Sulfate	Ammonia Nitrogen	Nitrate Nitrogen	Nitrite Nitrogen	Kjeldahl Nitrogen-N	Ortho-Phosphate	Phosphorus, Total	Total Organic Carbon	Dissolved Organic Carbon
Location	ID	(yyyy-mm-dd)	С	pH	mg/L	μS/cm	mV	pH	mg/L	μS/cm	mg/L	mg/L	ntu	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
				Minimum	Acute			Minimum			Acute		Acute	<u> </u>				Acute	Acute	Chronic	Acute	Acute	Acute			Chronic	<u> </u>	
BC WQG FWAL Elkview Operation			n/a	6.5 9	1 5	n/a	n/a	6.5 9	n/a	n/a	25 5	n/a	8 2	n/a	n/a	n/a	n/a	1600 150	0.4-	128-429	0.681-28.7 ^b 0.102-2.08 ^b	32.8 3.7	0.06-0.60* 0.02-0.20*	n/a	n/a	0.015	n/a	n/a
EV MC2	EV MC2 WS 2022-09-29 N-SRF	2022-09-29	T -			T . T						T .	1 -	T .		Ι.	T .		т.	Τ.	1 .	2.11				Τ.		-
EV_MC2	EV MC2 WS 2022-09-30 N-SRF	2022-09-30			H :-		-					-	+:-	+		+	-	<u> </u>	+	+ -	<u> </u>	1.87	-	-	-	+	+-	+
EV MC2	EV MC2 WS 2022-10-01 N-SRF	2022-10-01	-	-	-	- 1	- 1	-	-	-	-	-	-	-	-	-	-	-	T -	-	-	1.85	-	-	-	-	T -	-
EV_MC2	EV_MC2_WS_2022-10-02_N-SRF	2022-10-02	-	-	-	-	- 1	-	-	-	-	-	-	-	-	-	-	-	-	-		2.1	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-10-03_N-SRF	2022-10-03	-	-	-	-	-	8.13	387	636	< 1.0	433	0.17	272	< 1.0	< 1.0	< 0.050	4.08	0.149	162	< 0.0050	2.18	0.0019	0.333	-	< 0.0020	0.7	0.68
EV_MC2	EV_MC2_WS_2022-10-04_N-SRF	2022-10-04	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2.24	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-10-06_N-SRF	2022-10-06	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-				2.48	-	-	-	-	-	
EV_MC2 EV MC2	EV_MC2_WS_2022-Q4_N EV MC5 WS 2022-Q4 N	2022-10-06 2022-10-06	+-	-	-		-	8.42	377 383	650 657	< 1.0	452 416	0.26	226 253	5.9 4.8	< 1.0	< 0.050		0.15		< 0.0050	2.26	0.003	0.2	-	0.0031	< 0.50	< 0.50
EV_MC2	EV MC2 WS 2022 Q4 WK1 N	2022-10-06	+ :-	-	-		-	8.39 8.22	375	650	< 1.0 1.4	416	0.38	256	< 1.0	< 1.0	< 0.050		0.148	179	0.0062 < 0.0050	2.26 1.76	0.0028 0.0018	0.239		0.0024	< 0.50	< 0.50
EV_WC2	EV MC2 WS 2022-10-12 N-SRF	2022-10-11		-	-		-	8.22	3/3	030	1.4	420	0.23	230	V 1.0	V 1.0	< 0.050		0.156		< 0.0050	1.76	0.0018	0.307	-	0.0046	V 0.50	0.50
EV MC2	EV MC2 WS 2022-10-14 N-SRF	2022-10-14	-			- 1	- 1		-	-		-	1	-	-	-	< 0.050		0.161	164		1.73	0.0019	-	-	-		
EV MC2	EV MC2 WS 2022-10-17 N-SRF	2022-10-17	-	-	-	-	-	8.1	342	641	< 1.0	445	0.2	256	< 1.0	< 1.0	< 0.050		0.154	167	< 0.0050	1.81	0.0019	0.282	-	0.0023	< 0.50	< 0.50
EV_MC2	EV_MC2_WS_2022_Q4_WK2_N	2022-10-18	-	-	-	- 1	-	8.26	392	620	< 1.0	410		264	< 1.0	< 1.0	< 0.050	4.03	0.156	157	< 0.0050	1.6	0.0021	0.079	-	0.0024	0.86	0.57
EV_MC2	EV_MC2_WS_2022-10-19_N-SRF	2022-10-19	-	-	-	-	-	-	-	-	-	-	-	-	-	-	< 0.050		0.154			1.62	0.0019	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-10-24_N-SRF	2022-10-24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	< 0.050		0.153		-	1.47	0.0014	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022_Q4_WK3_N	2022-10-25	-	-	-	-	-	8.33	330	585	1.9	371		224	6	< 1.0	< 0.050		0.156	142	< 0.0050	1.3	0.0019	0.136	-	< 0.0020		< 0.50
EV_MC2 EV MC2	EV_MC2_WS_2022-10-26_N-SRF EV_MC2_WS_2022-10-28_N_SRF	2022-10-26 2022-10-28	+ -	-	-	-	-		-	-	-	-	-	237	< 2.0	< 2.0	< 0.050		0.147		-	1.46	0.0018	-	-	-	-	-
EV_MC2	EV MC2 WS 2022-10-26 N SRF	2022-10-28	-	1 -	+:-		-	8.2	316	543	2	436	1.62	220	< 1.0	< 1.0	< 0.050		0.146		0.0103	1.23	0.0017	0.234		0.005	0.81	0.77
EV MC2	EV MC2 WS 2022 Q4 WK4 N	2022-10-01			<u> </u>		-	8.3	242	465	6.6	252	5.49	196	1.3	< 1.0	< 0.050		0.129	101	< 0.0050	0.781	0.0019	0.205	-	0.0067	2.03	1.79
EV MC2	EV MC2 WS 2022 Q4 WK5 N	2022-11-08	-	T -	-	- 1	- 1	8.25	355	645	< 1.0	428	0.55		< 1.0	< 1.0	< 0.050		0.151	159	0.0096	1.39	0.0022	0.141	-	0.0032	< 0.50	< 0.50
EV_MC2	EV_MC2_WS_2022-11-14_N-SRF	2022-11-14	-	-	-	-	-	8.39	352	684	< 1.0	447	0.12		6	< 1.0	0.053	5.06	0.148		0.0128	1.67	0.0016	0.199	-	< 0.0020		< 0.50
EV_MC2	EV_MC2_WS_2022-11_MON_N	2022-11-14	-	-	-	-	-	8.26	369	686	< 1.0	489	0.16		< 1.0	< 1.0	< 0.050		0.157	181	0.0055	1.71	0.0016	0.104	-	< 0.0020		< 0.50
EV_MC2	EV_MC5_WS_2022-11_MON_N	2022-11-14	-	-	-	-	-	8.28	368	686	< 1.0	452	0.18		< 1.0	< 1.0	< 0.050		0.151	176	0.007	1.65	0.0017	0.084	-	0.002	< 0.50	< 0.50
EV_MC2	EV_MC2_WS_2022-11-28_N-SRF	2022-11-28	-	-	-	-	-	8.5	371	672	< 1.0		0.21		11.4	< 1.0	< 0.050		0.146	171	0.0126	1.6	0.0017	0.171	-	0.0032	< 0.50	< 0.50
EV_MC2 EV MC2	EV_MC2_WS_2022-12_MON_N	2022-12-06	-	-	-	-	-	8.34	398 363	670 685	< 1.0			283	5.9 12.2	< 1.0	< 0.050		0.152		0.0071	1.42	0.0014	0.101	-	0.0022	< 0.50	< 0.50
EV_MC2	EV_MC2_WS_2022-12-12_N-SRF EV_MC2_WS_2022-12-27_N-SRF	2022-12-12 2022-12-27	-		-		-	8.56 8.18	365	607	< 1.0 1.6	446	0.17		< 1.0	< 1.0	< 0.052	6.35	0.149		0.0154 0.0185	1.45	0.002	0.203	-	0.003		< 0.50
EV OC1	EV OC1 WS 2022-Q1 N	2022-01-05	-		H		- 1	7.72	406	804	4.7	492	4.35	399	< 1.0	< 1.0	0.253	35.2	0.271		0.188	0.0707	0.0022	0.314	-	0.0056	1.82	1.6
EV OC1	EV OC1 WS 2022-02 MON N	2022-02-07	-	-	-	- 1	- 1	8.18	417	855	2	478	1.86		< 1.0	< 1.0	0.19	38.2	0.318		0.100	0.0639	0.0022	0.254	-	0.0068	1.38	1.33
EV_OC1	EV_OC1_WS_2022-03_MON_N	2022-03-16	-	-	-	-	-	8.04	328	653	7.3	397	14.1		< 1.0	< 1.0	0.148	31.1	0.2		0.0385	0.0901	0.0022	0.193	-	0.012	2.74	2.77
EV_OC1	EV_OC1_WS_2022-03_WEK13_N	2022-03-21	-	-	-	-	-	-	-	-	1.7	-	5.29	-	-	-	-	-	-	-		-	-	-	-	-	I -	- I
EV_OC1	EV_OC1_WS_2022-03_WEK14_N	2022-03-28	-	-	-	- T	- 1	-			2.7	ļ - T	4.47			-			-	ļ - T	-	-	-	-		-	—	
EV_OC1 EV OC1	EV_OC1_WS_2022-04_WEK15_N	2022-04-04 2022-04-12	-	-	-		-	7.05	202	722	5.1		5.15		- 10	- 10	0.203		0.25	- 02.0		- 0.0550	- 0.0000	0.205	-	0.007	3 17	3.01
EV_OC1	EV_OC1_WS_2022-Q2_N EV_OC1_WS_2022-04_WEK17_N	2022-04-12	-	-	-	-	-	7.95	382	723	1.4	506	3.38	418	< 1.0	< 1.0	0.203	41	0.25	92.9	0.0382	0.0559	0.0026	0.205	-	0.007	3.17	3.01
EV OC1	EV OC1 WS 2022-04 WEK17 N	2022-04-16	+-	+	+-	+ - +	-		-	-	2.8	-	3.02	+		-	+ -	+ :-	+ -	+-	 		- :	-	-	-	+ -	+ -
EV_OC1	EV OC1 WS 2022-05 MON N	2022-05-03	+ -	+ -	-	1 - 1	-	8.42	385	792	2.0	543	2.85	368	6.8	< 1.0	< 0.250	37.8	0.252		0.0198	0.218	< 0.0050	0.175	-	0.0088	2.84	2.51
EV_OC1	EV_OC1_WS_2022-05_WEK20_N	2022-05-11	-	-	-	-	- 1	-	-	-	2.1	-	2.49	1 -	-	-	-	-	-	-		- 0.2.10		-	-	1 -	-	-
EV_OC1	EV_OC1_WS_2022-05_WEK21_N	2022-05-16	-	-	-	- 1	- 1	-	-	-	44	-	3.96	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_OC1	EV_OC1_WS_2022-05_WEK22_N	2022-05-24	-	-	-	-	-	-	-	-	1.2	-	0.34	-	-	-	-	-	-	-		-	-	-	-	-	-	-
EV_OC1	EV_OC1_WS_2022-05_WEK23_N	2022-05-30	-	-	-	-	-	-	-		< 1.0	-	2.61	-	-	-	-		-	-		1		-	-	-	-	-
EV_OC1	EV_OC1_WS_2022-06_MON_N	2022-06-07	-	-	-	- 1	- 1	8.15	360	747	7	436	3.16	382	< 1.0	< 1.0	0.183	32.7	0.309	84.9	0.0182	0.0248	0.0021	0.165	-	0.0086	2.4	2.29
EV_OC1 EV OC1	EV_OC1_WS_2022-06_WEK25_N EV_OC1_WS_2022-06_WEK26_N	2022-06-13 2022-06-21	+-	-	-		-	-	-	<u> </u>	25.6	-	8.33	<u> </u>	-		-	-	H -	+	-	-	-	-				-
EV_OC1	EV_OC1_WS_2022-06_WEK26_N EV_OC1_WS_2022-06_WEK27_N	2022-06-21	+ -	-	-		-	-	-	-	4.2 1.6	-	2.65	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV OC1	EV OC1 WS 2022-06 WER27 N	2022-00-27	+ -		+-	-	-	8.42	354	692	4	465	2.88	334	9.2	< 1.0	0.21	32.5	0.272		0.0129	0.0139	< 0.0010	0.195	-	0.0083	2.43	2.49
EV OC1	EV OC1 WS 2022-07 WEK29 N	2022-07-11	-	-	-	- 1	- 1		-	-	2.7	-	2.37	-	-	- 1.0		- 52.5	-		- 0.5128	- 0.0138	- 0.0010	-	-	-	-	-
EV_OC1	EV_OC1_WS_2022-08_MON_N	2022-08-10	-	-	-	- 1	- 1	8.45	306	657	10.4	368	4.16	301	6.7	< 1.0	0.225	28.4	0.329	57.7	0.0143	0.0258	0.0014	0.224	-	0.0168	2.39	2.12
EV_OC1	EV_OC1_WS_2022-09_MON_N	2022-09-07	-	-	-	- 1	- 1	8.05	295	574	1.8	343	2.92	334	< 1.0	< 1.0	0.195	26.8	0.395	49.6	0.005	0.0094	< 0.0010	0.145	-	0.0072	1.68	1.87
		•	_	•	•		_			•		•		-		•	•		•	•		•	•	•	•	•		

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness ^b Guideline varies with pH and water temperature

^o Guideline varies with chloride

APPENDIX C - TABLE 1: Summary of Analytical Results for Dissolved Organics, Nutrients and Organics

				Fiel	d Param	eters				Physical P	arameter					Diss	olved Inor	ganics					Nutrien	s				
				1	T	T				1	1		1			1			1					Ī				_
Sample	Sample	Sample Date	Field Temperature	pH (field)	Dissolved Oxygen	Field Conductivity	Field ORP	퓝	Hardness	Conductivity	Total Suspended Solids	Total Dissolved Solids	Turbidity	Bicarbonate	Carbonate	Hydroxide	Bromide	Chloride	Fluoride	Sulfate	Ammonia Nitrogen	Nitrate Nitrogen	Nitrite Nitrogen	Kjeldahl Nitrogen-N	Ortho-Pho sp hate	Phosphorus, Total	Total Organic Carbon	Dissolved Organic Carbor
Location	ID	(yyyy-mm-dd)	С	pН	mg/L	μS/cm	mV	pН	mg/L	μS/cm	mg/L	mg/L	ntu	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
				Minimum	Acute Chronic			Minimum			Acute Chronic		Acute Chronic					Acute Chronic	Acute	Chronic	Acute Chronic	Acute Chronic	Acute			Chronic		
BC WQG FWAL			n/a	6.5 9	1 5	n/a	n/a	6.5 9	n/a	n/a	25 5	n/a	8 2	n/a	n/a	n/a	n/a	600 150	0.4- a	128-429	0.681-28.7b 0.102-2.08b	32.8 3.7	0.06-0.60° 0.02-0.20	n/a	n/a	0.015	n/a	n/a
Elkview Operation																			-									
EV_OC1	EV_OC1_WS_2022-Q4_N	2022-10-07	-	-	I -	-	-	8.44	316	588	1.7	334	3.89	317	11.6	< 1.0	0.154	22.7	0.388	44.3	0.0138	0.0197	< 0.0010	0.155	-	0.0068	1.85	1.93
EV_OC1	EV_OC1_WS_2022-11_MON_N	2022-11-09	-	-	-	-	-	8.12	364	684	1.2	440	2.82	379	< 1.0	< 1.0	0.206	30.7	0.363	68.1	0.0885	0.0613	0.0023	0.234	-	0.0047	2.39	2.32
EV_SP1	EV_SP1_WS_2022-Q1_N	2022-01-17	-	-	-	-	-	8.2	956	1510	1.5	1330	0.14	368	< 1.0	< 1.0	< 0.250	0.76	0.331	703	< 0.0050	2.75	< 0.0050	0.168	-	< 0.0020	0.88	0.92
EV_SP1	EV_SP1_WS_2022-02_MON_N	2022-02-16	-	-	-	-	-	8.26	978	1550	1.4	1400	< 0.10	381	< 1.0	< 1.0	< 0.250	0.95	0.383	711	< 0.0050	2.89	< 0.0050	0.24		< 0.0020	0.58	0.64
EV_SP1	EV_SP1_WS_2022-03_MON_N	2022-03-17	-	-	-	-	-	8.19	983	1520	< 1.0	1300	0.24	372	< 1.0	< 1.0	< 0.250	0.94	0.37	676	< 0.0050	2.49	0.0078	0.341	-	< 0.0020	0.84	0.83
EV_SP1	EV_SP1_WS_2022-03_WEK13_N	2022-03-22	-	-	-	-	-	-	-		< 1.0	-	1.06	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_SP1	EV_SP1_WS_2022-03_WEK14_N	2022-03-30	-	-	-	-	-	-	-	-	2.1	-	1.25	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_SP1	EV_SP1_WS_2022-04_WEK15_N	2022-04-06	-	-	-	-	-	-	-		1.6	-	0.58	-	-	-	-	-	-	-	-	-	-		-	-	-	-
EV_SP1	EV_SP1_WS_2022-Q2_N	2022-04-13	-	-	-	-	-	8.18	823	1370	< 1.0	1110	0.46	354	< 1.0	< 1.0	< 0.250	0.77	0.37	586	< 0.0050	2.69	< 0.0050	0.249		< 0.0020	0.95	0.92
EV_SP1	EV_SP1_WS_2022-04_WEK17_N	2022-04-20	-	-	-	-	-	-	-	-	< 1.0	-	0.18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_SP1	EV_SP1_WS_2022-04_WEK18_N	2022-04-27	-	-	-	-	-	-	-	-	3.9	-	0.37	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_SP1	EV_SP1_WS_2022-05-MON_N	2022-05-04	-	-	-	-	-	8.09	948	1540	7.3	1280	1.09	373	< 1.0	< 1.0	< 0.250	0.87	0.371	715	0.005	2.98	< 0.0050	0.355	-	< 0.0020	1.13	1.06
EV_SP1	EV_SP1_WS_2022-05_WEK20_N	2022-05-10	-	-	-	-	-	-	-	-	2.4	-	0.97	-	-	-	-	-	-	-		-	-	-	-	-	-	-
EV_SP1	EV_SP1_WS_2022-05_WEK21_N	2022-05-18	-	-	-	-	-	-	-	-	2.4	-	1.47	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_SP1	EV_SP1_WS_2022-05_WEK22_N	2022-05-25	-	-	-	-	-	-	-	-	2.2	-	0.31	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_SP1	EV_SP1_WS_2022-05_WEK23_N	2022-05-31	-	-	-	-	-	-	-	-	1	-	0.14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_SP1	EV_SP1_WS_2022-06_MON_N	2022-06-06	-	-	-	-	-	8.25	983	1540	2.6	1310		405	< 1.0	< 1.0	< 0.250	0.96	0.381	746	< 0.0050	2.57	< 0.0050	0.343	-	0.0097	0.83	1.02
EV_SP1	EV_SP1_WS_2022-06_WEK25_N	2022-06-15	-	-	-	-	-	-	-	-	5.4	-	6.58	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_SP1	EV_SP1_WS_2022-06_WEK26_N	2022-06-23	-	-	-	-	-	-	-	-	< 1.0	-	0.23	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_SP1	EV_SP1_WS_2022-06_WEK27_N	2022-06-29	-	-	-	-	-	-	-	-	1.1	-	0.25	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_SP1	EV_SP1_WS_2022-Q3_N	2022-07-06	-	-	-	-	-	8.37	904	1410	2.1	1260		348	9.1	< 1.0	< 0.250	0.78	0.332		0.0114	2.26	< 0.0050	0.255	-	0.0182	0.56	< 0.50
EV_SP1	EV_SP1_WS_2022-07_WEK29_N	2022-07-13	-	-	-	-	-	-	-	-	1.5	-	0.63	-	-	-	-	-	-	-				-	-			-
EV_SP1	EV_SP1_WS_2022-08_MON_N	2022-08-09	-	-	-	-	-	8.22	974	1490	1.4	1330	0.22		< 1.0	< 1.0	< 0.250	0.8	0.425	710	0.0129	2.38	0.0055	0.211	-	0.0021	0.86	1.05
EV_SP1	EV_SP1_WS_SESMP_2022_08_N	2022-08-15	-	-	-	-	-	8.06	984	1530	1.4	1260	0.25		< 1.0	< 1.0	< 0.050	0.69	0.393	713	< 0.0050	2.38	0.0078	0.286	-	0.002	0.8	0.93
EV_SP1	EV_SP1_WS_2022-09_MON_NP	2022-09-08	-	-	-	-	-	8.11	1080	1570	1	1330	0.17	387	< 1.0	< 1.0	< 0.250	0.91	0.444	746	< 0.0050	3.69	0.0137	0.295	-	< 0.0020	0.87	0.86
EV_SP1 EV SP1	EV_SP1_WS_2022-Q4_N	2022-10-04	-	-	-	-	-	8.23	1020	1510 1840	< 1.0	1410	0.31	384	< 1.0	< 1.0	< 0.250	1.03	0.446	762	0.0097	2.69	0.0102	0.188	-	< 0.0020	1.01	1.12
	EV_SP1_WS_2022-11_MON_N	2022-11-15	-	-	-	-	-	8.37	1120		< 1.0	1380	< 0.10		11.4	< 1.0		8.12	0.173		< 0.0050	9.18	< 0.0050	0.42	-		0.95	0.67
EV_TC1 EV TC1	EV TC1 WS 2022-03 MON N EV TC1 WS 2022-02 N	2022-03-29 2022-04-13	+ -	-	-	-	-	8.25 8.26	232	413	< 1.0		0.39	229	< 1.0	< 1.0	< 0.050	0.54	0.099	53.9 60.5	0.0094	< 0.0050	< 0.0010	0.166	-	0.0172	4.83	4.7
EV_TC1	EV_TC1_WS_2022-Q2_N EV_TC1_WS_2022-05_MON_N	2022-04-13	+ -	-	-	-	-	8.26	192	360	< 1.0	245	0.45	183	4.8	< 1.0	< 0.050	0.4	0.113	48.9	< 0.0050 < 0.0050	< 0.0050	< 0.0010 < 0.0010	0.119	-	0.0118	4.24	4.08
EV_IC1	EV_TC1_WS_2022-05_MON_N EV_TC1_WS_2022-06_MON_N	2022-05-03	_	-	-	<u> </u>	-	8.51	227	422	< 1.0		0.39	218	3.4	< 1.0	< 0.050	0.24	0.107	58.9	< 0.0050 < 0.0050	< 0.0050	< 0.0010	0.165	-	0.0164	3.1	3.14
EV_TC1	EV TC1 WS 2022 Q3 N	2022-06-06	+ :-	-	-	-	-	8.43	238	430	< 1.0		0.24	233	5.2	< 1.0	< 0.050	0.25	0.112	53.8	0.0083	< 0.0050	< 0.0010	0.097	-	0.0234	3.59	3.62
	LV_101_VV3_2022_Q3_N	2022-07-00	1 -					0.43	230	1 430	1 > 1.0	290	0.24	1 233	J.Z	- 1.U	- U.UUU	U.24	0.102	1 33.0	0.0083	_ \ U.UU5U	V 0.0010	0.194		0.014	J 5.58	1 3.02

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted n/a denotes no applicable standard

^a Guideline varies with hardness
^b Guideline varies with pH and water temperature
^c Guideline varies with chloride

APPENDIX C - TABLE 1: Summary of Analytical Results for Dissolved Organics, Nutrients and Organics

				Field	Parameter	s			Phy	/sical Par	ameters					Disso	olved Inor	ganics					Nutrien	ts				
Sample	Sample	Sample Date	Field Temperature	pH (field)	Dis		Field ORP	Ŧ.	Hardness	Conductivity	Total Suspended Solids	Total Dissolved Solids	Turbidity	Bicarbonate	Carbonate	Hydroxide	Bromide	Chloride	Fluoride	Sulfate	Ammonia Nifrogen	Nitrate Nitrogen	Nitrite Nitrogen	Kjeldahi Nitrogen-N	Ortho-Phosphate	Phosphorus, Total	Total Organic Carbon	Dissolved Organic Carbon
Location	ID ID	(yyyy-mm-dd)	С	pH F	mg/L μS	/cm m	nV j	PH F	mg/L	μS/cm	mg/L	mg/L	ntu	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
				Minimum	Acute		Minimun	Maximu			Acute		Acute			,		Acute	Acute	Chronic	Acute Chron ic	Acute	Acute			Chronic		<u></u>
BC WQG FWAL Fording River Operation			n/a	6.5 9	1 5 r	/a n	n/a 6.5	9	n/a	n/a	25 5	n/a	8 2	n/a	n/a	n/a	n/a	600 150	0.4- a	128-429	0.681-28.7 ^b 0.102-2.08 ^b	32.8 3.7	0.06-0.60° 0.02-0.20	n/a	n/a	0.015	n/a	n/a
FR CC1	FR CC1 2022-01-04 N	2022-01-04	Τ-	- 1	- 1	- 1	- 7	.96	1560	2470	1.5	1920	0.31	292	< 1.0	< 1.0	< 0.250	5.85	0.213	872	0.0099	118	0.0073	< 0.050	-	< 0.0020	0.6	0.67
FR_CC1	FR_CC1_2022-01-06_N	2022-01-06	-	-	-	-		.97	1510	2400	3.6	1980	0.21	320	< 1.0	< 1.0	< 0.250	6.13	0.206	876	0.012	120	0.0085	< 0.050	-	< 0.0020	< 0.50	< 0.50
FR_CC1	FR_CC1_2022-01-12_N	2022-01-12	-	-						2470	< 1.0	2150	0.26		< 1.0	< 1.0	< 0.250	5.46	0.175	926	< 0.0050	116	0.0075	< 0.050	-	< 0.0020		< 0.50
FR_CC1 FR_CC1	FR_CC1_2022-01-17_N FR_CC1_2022-01-24_N	2022-01-17 2022-01-24	-	-	_					2430 2400	2	2070	0.25		< 1.0		< 0.250	5.44	0.177	961	0.0056	117	0.0063	< 0.050	-	< 0.0020		< 0.50
FR_CC1	FR_CC1_2022-01-24_N FR_CC1_2022-01-31_N	2022-01-24	+ -	-		_				2450	1.3	1990 1960	0.1		< 1.0	< 1.0	< 0.250	5.74	0.165	946 866	< 0.0050 0.178	115 115	< 0.0050 0.005	< 0.050	-	< 0.0020		< 0.50
FR CC1	FR CC1 2022-02-07 N	2022-02-07	-	-						2440	3.7	2100	0.15		< 1.0	< 1.0	< 0.250	4.32	0.181	941	0.0077	113	0.0111	0.387	-	< 0.0020		< 0.50
FR_CC1	FR_CC1_2022-02-14_N	2022-02-14	-	-	-	-	- 8			2410	2.2	2140	1.18		< 1.0		< 0.250	4.31	0.179	926	0.0381	116	0.0072	< 0.050	-	0.0028		< 0.50
FR_CC1	FR_CC1_2022-02-21_N	2022-02-21	-	-	-	-				2410	2.1	2120	0.58		< 1.0	< 1.0	< 0.250	3.92	0.165	951	< 0.0050	118	0.0071	< 0.050	-	< 0.0020		< 0.50
FR_CC1 FR_CC1	FR_CC1_2022-03-01_N FR_CC1_2022-03-07_N	2022-03-01 2022-03-07	-	-	-	-				2490 2450	3.1	2230	0.12		< 1.0	< 1.0	< 0.250	4.14	0.177	954 943	< 0.0050	120	0.007	0.066	-	< 0.0020		< 0.50
FR CC1	FR_CC1_2022-03-07_N FR_CC1_2022-03-14_N	2022-03-07	+ -	-	-	-				2410	1.2	1990 1990	0.18		< 1.0	< 1.0	< 0.250	6.68	0.179	912	0.0104 < 0.0050	115 114	0.0139 0.0076	< 0.050		< 0.0020		< 0.50
FR CC1	FR CC1 2022-03-21 N	2022-03-21	-	-		-				2370	3.3	1900	1.67		< 1.0	< 1.0	< 0.250	4.16	0.209	889	0.005	111	0.0076	< 0.050	-	< 0.0020	0.92	0.54
FR_CC1	FR_CC1_2022-03-28_N	2022-03-28	-	-	-	-				2360	2.9	1950	3.93		< 1.0	< 1.0	< 0.250	3.75	0.158	884	0.0108	111	0.0177	< 0.050	-	0.0024	0.65	0.71
FR_CC1	FR_CC1_2022_04_06_N	2022-04-06	-	-	-	-				1201	1.75	1045	0.675		< 1.0	< 1.0	< 0.250	2.455		476.65	0.0052	56.0056	0.01165	< 0.050	-	< 0.0020	0.61	0.58
FR_CC1	FR_CC1_2022-04-11_N	2022-04-11	-	-	-	-				2340	3.7	1980	1.08		< 1.0	< 1.0	< 0.250	3.78	0.217	920	< 0.0050	104	0.0279	< 0.050	-	< 0.0020		
FR_CC1 FR_CC1	FR_CC1_2022-04-13_N FR_CC1_2022-04-18_N	2022-04-13 2022-04-18	+ :	-	-	-				2340 2170	3.7	1980 1860	1.08 0.34		< 1.0	< 1.0	< 0.250	3.78	0.217	920 844	< 0.0050	104	0.0279	< 0.050	-	< 0.0020	0.78	< 0.50
FR CC1	FR CC1 2022-04-16 N	2022-04-16	+ -	-	-					2150	1.3	1780	0.34		< 1.0		< 0.250	3.53	0.179	787	0.0281 < 0.0050	94.8 85	0.0261 0.0467	0.126		< 0.0023	0.77	0.82
FR CC1	FR CC1 2022-05-02 N	2022-05-02	-	-		-				2000	2.4	1790	0.43		< 1.0	< 1.0	< 0.250	3.2	0.224	809	< 0.0050	82.3	0.2887	< 0.050	-	< 0.0020	1	1
FR_CC1	FR_CC1_2022-05-06_N	2022-05-06	-	-	-	-		.18		2030	1.3	1880	0.43		< 1.0	< 1.0	< 0.250	3.04	0.23	786	< 0.0050	78.8	0.0423	0.287	-	< 0.0020	1.07	0.92
FR_CC1	FR_CC1_2022-05-07_N	2022-05-07	-	-	-	-				2020	2	1820	0.48		< 1.0		< 0.250	2.81	0.188	740	< 0.0050	78.1	0.0588	< 0.050	-	< 0.0020	1.7	1.1
FR_CC1	FR_CC1_2022-05-08_N	2022-05-08	-	-	-	-				2010	3.8	1780	0.5		< 1.0	< 1.0	< 0.250	3.62	0.227	762	< 0.0050	76.6	0.0491	< 0.050	-	< 0.0020	1.01	0.76
FR_CC1 FR_CC1	FR_CC1_2022-05-09_N FR_CC1_2022-05-10_N	2022-05-09 2022-05-10	-	-	-	-			1280 1160	1990 1900	< 1.0	1710 1660	1.26 0.29	304 306	< 1.0	< 1.0	< 0.250	3.65 2.79	0.224	747 748	< 0.0050 < 0.0050	75 74.9	0.0405 0.0498	0.174		< 0.0020	1.06	0.82
FR CC1	FR CC1 2022-05-10 N	2022-05-10	+ -	-		-			1150	1940	2.1	1610	0.45		< 1.0	< 1.0	< 0.250	2.79	0.179	718	< 0.0050	73.2	0.0498	< 0.050		0.002	1.28	1.04
FR_CC1	FR_CC1_2022-05-12_N	2022-05-12	-	-	-	-			1140	1940	1.6	1570	0.19		< 1.0	< 1.0	< 0.250	3.01	0.142	691	< 0.0050	66.2	0.0309	< 0.050	-	< 0.0020	0.94	1.02
FR_CC1	FR_CC1_2022-05-13_N	2022-05-13	-	-	-		- 8	.25	1210	1910	1.9	1640	0.32	305	< 1.0	< 1.0	< 0.250	2.52	0.192	688	< 0.0050	73	0.0384	0.372	-	0.0021	0.94	0.81
FR_CC1	FR_CC1_2022-05-14_N	2022-05-14	-	-	-	-			1160	1900	2.5	1640	0.32		< 1.0	< 1.0	< 0.250	2.56	0.232	728	< 0.0050	70.2	0.0403	0.393	-	0.003	1.08	1.07
FR_CC1	FR_CC1_2022-05-16_N	2022-05-16	-	-	-	-			1060 994	1840 1730	2	1460	0.42		< 1.0	< 1.0	< 0.250	2.9	0.229	680	< 0.0050	65.9	0.0458	0.374	-	0.0029	1.02	0.92
FR_CC1 FR_CC1	FR_CC1_2022-05-25_N FR_CC1_2022-05-30_N	2022-05-25 2022-05-30	+ -	-	-	-				1700	< 1.0	1410	0.35 2.07		< 1.0	< 1.0	< 0.250	1.82	0.224	586 556	< 0.0050 0.0088	58.8 53.2	0.0432 0.0378	< 0.050	-	< 0.0020	1.17	0.65
FR CC1	FR CC1 2022-06-13 N	2022-06-13	-	-					912	1530	3.1	1320	5.06		< 1.0		< 0.250	1.89	0.185	525	< 0.0050	54.8	0.0373	0.238	-	0.0023		< 0.50
FR_CC1	FR_CC1_2022-06-27_N	2022-06-27	-	-	-	-			870	1570	< 1.0	1340	0.59	276	< 1.0	< 1.0	< 0.250	1.65	0.194	496	< 0.0050	53.3	0.0287	0.335	-	0.0031		< 0.50
FR_CC1	FR_CC1_2022-07-18_N	2022-07-18	-	-	-	_			824	1450	1.1	1240	0.28		< 1.0	< 1.0	< 0.250	1.43	0.211	460	< 0.0050	46.1	0.0523	< 0.050	-	0.0023	0.66	0.72
FR_CC1	FR_CC1_2022-07-25_N	2022-07-25	1 -	-		_			868	1500	1.9	1290	0.37		< 1.0	< 1.0	< 0.250	2.51	0.238	501	< 0.0050	52.5	0.0448	1.6	-	< 0.0020	0.8	0.71
FR_CC1 FR_CC1	FR_CC1_2022-08-02_N FR_CC1_2022-08-08_N	2022-08-02 2022-08-08	+:-	-	-	-			918 961	1540 1620	< 1.0	1250 1400	0.42		< 1.0 < 1.0	< 1.0	< 0.250	1.62	0.195	464 487	< 0.0050 < 0.0050	51.6 57.4	0.0506 0.0676	< 0.050		0.0023 < 0.0020		< 0.50
FR_CC1	FR CC1 2022-08-08 N	2022-08-15	+-	-		- 1-			979	1640	1.3	1420	0.25		< 1.0	< 1.0	< 0.250	2.05	0.203	563	< 0.0050	63.6	0.0606	< 0.050		0.0033		< 0.50
FR_CC1	FR_CC1_WS_SESMP_2022-08_N	2022-08-19	-	-	-	-	- 8	.04	1050	1640	1.1	1420	0.28	314	< 1.0	< 1.0	< 0.250	2.12	0.219	570	< 0.0050	65.3	0.0565	0.305	-	< 0.0020	0.67	0.62
FR_CC1	FR_CC1_2022-08-22_N	2022-08-22	-	-	-	-			969	1710	2.1	1470	0.34		< 1.0	< 1.0	< 0.250	2.18	0.179	623	< 0.0050	65.9	0.0451	< 0.050	-	< 0.0020	0.67	0.59
FR_CC1	FR_CC1_2022-08-29_N	2022-08-29	-	-	-	-			1130	1790	3.7	1360	0.84		< 1.0	< 1.0	< 0.250	3.45	0.212	622	< 0.0050	70.4	0.0575	< 0.050	-	< 0.0020		
FR_CC1 FR_CC1	FR_CC1_RD_WS_2022-08-30_NP FR_CC1_WS_SEPT-2022_N	2022-08-30 2022-09-07	+-	-	-	-			1190	1760 1860	11.6 2.2	1420 1540	1.23 0.57		< 1.0	< 1.0	< 0.250	2.31	0.211	620 666	< 0.0050 < 0.0050	71.4	0.0522 0.0577	< 0.050 0.532	-	< 0.0042	0.5	< 0.57
FR_CC1	FR_CC1_WS_SEP1-2022_N FR_CC1_2022-09-07_N	2022-09-07	+	-		-			1100	1880	2.7	1550	0.57		< 1.0	< 1.0	< 0.250	2.57	0.217	665	0.0050	76.1	0.0577	0.307		0.0558		0.63
FR CC1	FR CC1 CC1A 2022-09-12 N	2022-09-12	-	-	-					1890	1.5	1480	1.07		< 1.0		< 0.250	2.96	0.204	696	< 0.0050	80.3	0.0532	< 0.050	-	< 0.0020		< 0.50
FR_CC1	FR_CC1_CC1A_2022-09-17_N	2022-09-17	1 -	-	-	-	- 7	.98	1260	2060	3.7	1700	1.18	338	< 1.0	< 1.0	< 0.250	3.01	0.208	747	0.0078	87.2	0.0431	0.512	-	< 0.0020	< 0.50	< 0.50
FR_CC1	FR_CC1_CC1A_2022-09-18_N	2022-09-18	-	-	-	-				2050	2.1	1670	1.72		< 1.0		< 0.250	2.98	0.209	741	< 0.0050	87	0.0553	0.39	-	< 0.0020		0.62
FR_CC1	FR_CC1_CC1A_2022-09-19_N	2022-09-19	-	-	-	-				2170	2.8	2090	1.05		< 1.0	< 1.0		3.33	0.194	821	0.0052	94.5	0.0474	0.268	-	< 0.0020		< 0.50
FR_CC1	FR_DC1_2022-09-19_N	2022-09-19	-	-	-	-	- 8	.12	1340	2170	2.9	1980	0.61	354	< 1.0	< 1.0	< 0.250	3.26	0.192	833	< 0.0050	96	0.0494	< 0.050	-	< 0.0020	0.66	T < 0.50

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted n/a denotes no applicable standard

^a Guideline varies with hardness ^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

APPENDIX C - TABLE 1: Summary of Analytical Results for Dissolved Organics, Nutrients and Organics

				Field	d Param	eters	1		F	Physical Pa	rameters	3				Diss	olved Ino	ganics					Nutrient	s				\neg
			d Temperature	(field)	solved Oxygen	d Conductivity	d ORP		dness	iductivity	tal Suspended Solids	Dissolved Solids	bidity	arbonate	bonate	ydroxide	mide	oride	oride	ate	monia Nitrogen	ate Nitrogen	ite Nitrogen	Çeldahi Nitrogen-N	no-Phosphate	sphorus, Total	al Organic Carbon	Dissolved Organic Carbon
Sample	Sample	Sample Date	를	표	Dis	Field	Field	표	훈	l §	ļ	Total	į	8	l ä	Ě	B G	ਤਿੰ	Ē	Sul	₩	₹	ž	흫	8	¥	5	Dis
Location	ID	(yyyy-mm-dd)	С	pН	mg/L	μS/cm	mV	pН	mg/L	μS/cm	mg/L	mg/L	ntu	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
				Minimum Maximum	Acute Chronic			Minimum			Acute Chronic		Acute					Acute	Acute	Chronic	Acute Chron ic	Acute Chronic	Acute			Chranic		
BC WQG FWAL			n/a	6.5 9	1 5	n/a	n/a	6.5 9	n/a	n/a	25 5	n/a	8 2	n/a	n/a	n/a	n/a	600 150	0.4- "	128-429	0.681-28.7 ^b 0.102-2.08 ^b	32.8 3.7	0.06-0.60° 0.02-0.20	n/a	n/a	0.015	n/a	n/a
Fording River Operation FR CC1	FR FLD1 2022-09-19 N	2022-09-19	Т.					4.92	< 0.50	3.3	< 1.0	< 10	I < 0.10	< 1.0	< 1.0	< 1.0	< 0.050	< 0.10	l< n n2n	0.43	< 0.0050	< 0.0050	< 0.0010	< 0.050		< 0.0020	T < 0.50	< 0.50
FR_CC1	FR_CC1_CC1A_2022-09-20_N	2022-09-20	-	-	-	-	-	8.06	1400	2130	< 1.0	1480	0.7	334	< 1.0	< 1.0	< 0.250		0.194		0.0066	92.2	0.0512	< 0.050	-	< 0.0020		< 0.50
FR_CC1	FR_CC1_CC1A_2022-09-21_N	2022-09-21	-	-	-	-	-	7.92	1400	2160	2.8	1920	0.98		< 1.0	< 1.0	< 0.250	3.28	0.192		< 0.0050	91	0.0525	7.23	-	< 0.0020		< 0.50
FR_CC1 FR_CC1	FR_CC1_CC1A_2022-09-22_N	2022-09-22	+-	-	-	-	-	8.04	1330	2160	4.3	1880	1.8	382	< 1.0	< 1.0	< 0.250	3.04	0.187		< 0.0050	88.5	0.0526	< 0.050	-	0.0024	< 0.50	< 0.50
FR_CC1	FR_CC1_RD-WS_2022-09-01_NP FR_CC1_CC1A_2022-09-23_N	2022-09-22	-	-	-	-		8.07	1340	2050	16.5 3.7	1700 1800	0.6	321 335	< 1.0 < 1.0	< 1.0	< 0.250		0.196		0.0062	90.5	0.0513 0.0484	< 0.050	-	0.0023	< 0.50	< 0.50
FR CC1	FR CC1 CC1A 2022-09-24 N	2022-09-24	+ -		-			8.07	1170	1800	< 1.0	1500	1.06		< 1.0	< 1.0	< 0.250		0.192		< 0.0050	74.9	0.0417	< 0.050		0.0022	0.62	0.74
FR_CC1	FR_CC1_CC1A_2022-09-25_N	2022-09-25	-	-	-	-	-	8.13	1260	1970	< 1.0	1690		317	< 1.0	< 1.0	< 0.250		0.202		< 0.0050	85.1	0.0472	< 0.050	-	< 0.0020		0.87
FR_CC1	FR_CC1_CC1A_2022-09-26_N	2022-09-26	-	-	-	-	-	7.97	1360	1950	2.5	1730	0.87	324	< 1.0	< 1.0	< 0.250		0.2		< 0.0050	83.7	0.0412	< 0.050		0.0024	0.74	0.7
FR_CC1	FR_CC1_CC1A_2022-10-03_N	2022-10-03	-	-	-	-	-	8.04	1310	1720	4	1550	1.9		< 1.0	< 1.0	< 0.250		0.199		< 0.0050	69.4	0.0183	< 0.050	-	0.004	0.54	< 0.50
FR_CC1 FR_CC1	FR_CC1_CC1A_2022-10-11_N FR_CC1_CC1A_2022-10-17_N	2022-10-11 2022-10-17	-	-	-	-	-	8.08	1050	1680 1710	3.5	1380 1580	1.79		< 1.0	< 1.0	< 0.250		0.215		0.0056	63 67.6	0.0308	< 0.050	-	0.0056	< 0.50	< 0.50
FR_CC1	FR CC1 2022-10-17 N	2022-10-17	+	-	-			8.11	1170	1710	3.8	1370	2.25		< 1.0	< 1.0	< 0.250		0.209		< 0.0050 0.0089	68.9	0.0302 0.0237	< 0.050	-	0.0043	< 0.50	< 0.50
FR CC1	FR CC1A 2022-10-31 N	2022-10-31	-	-	-	-	-	8.13	1060	1620	4.3	1430	2.6		< 1.0	< 1.0	< 0.250		0.203		< 0.0050	63.2	0.0237	< 0.050	-	0.0036	< 0.50	< 0.50
FR_CC1	FR_CC1_2022-11-07_N	2022-11-07	-	-	-	-	-	8.14	1080	1730	< 1.0	1520	0.81	312	< 1.0	< 1.0	< 0.250	2.37	0.193	656	< 0.0050	68.6	0.014	< 0.050	-	< 0.0020		< 0.50
FR_CC1	FR_CC1_2022-11-14_N	2022-11-14	-	-	-	-	-	8.11	1250	2130	1.1	1770	0.45		< 1.0	< 1.0	< 0.250		0.208		< 0.0050	85.2	0.014	0.312	-	< 0.0020		< 0.50
FR_CC1	FR_CC1_2022-11-21_N	2022-11-21	-	-	-	-	-	8.18	1460	2300	< 1.0	1900	0.22		< 1.0	< 1.0	< 0.250		0.239		0.0056	98.6	0.0148	< 0.050	- :	< 0.0020		< 0.50
FR_EC1 FR_EC1	FR_EC1_MON_2022-01-01_N FR_EC1_MON_2022-03-01_N	2022-03-23 2022-03-28	+-		-	-	-	7.92 8.16	706 455	1260 859	18.1 37.3	1020 616	44.7 111		< 1.0 < 1.0	< 1.0	< 0.250		0.207	536 280	0.233 0.178	11.1 3.98	0.0384 0.0226	0.519	-	0.0198	5.35	1.91
FR EC1	FR EC1 MON 2022-04-01 N	2022-04-04	+ -		-			8.2	1210	2010	17.1	1600	20.8	347	< 1.0	< 1.0	< 0.250		0.166	891	0.178	21	0.0220	0.596	<u> </u>	0.0162	8.1	1.29
FR EC1	FR EC1 WEK 2022-04-11 N	2022-04-14	-	-	-	-	- 1	8.22	1280	2190	5.2	1880		388	< 1.0	< 1.0	< 0.250		0.168		0.0857	28.2	0.0314	< 0.050	-	0.0072	1.12	0.94
FR_EC1	FR_EC1_WEK_2022-04-18_N	2022-04-19	-	-	-	-	-	-	-	-	4.5	-	2.93	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FR_EC1	FR_EC1_WEK_2022-04-25_N	2022-04-28	-	-	-	-	-	-	-	-	5.5	-	1.22		-	-	-	-		-	-	-	-	-	-	-	-	-
FR_EC1 FR EC1	FR_EC1_MON_2022-05-01_N FR_EC1_WEK_2022-05-09_N	2022-05-02 2022-05-12	-	-	-	-	-	8.15	1690	2580	4.9	2170		406	< 1.0	< 1.0	< 0.250	9.99	0.11	1350	0.07	37	0.087	0.434	-	0.0034	1.23	1.06
FR_EC1	FR EC1 WEK 2022-05-09 N	2022-05-12	+ -	-	-	-		÷	-	-	4.9 3.5	-	1.15	-	-		+:-	-	+-	+	-	-	-	-	-	+ :-	1	-
FR EC1	FR EC1 WEK 2022-05-10 N	2022-05-10	++	-	-	-	-		-		2.1	-	0.76	+ -	_	-	+ -	-	+÷	+ -	-		-	-		+ -	1	
FR_EC1	FR_EC1_WEK_2022-05-30_N	2022-06-01	-	-	-	-	-	-	-	-	2.6	-	0.81		-	-	-	-	-	-	-	-	-	-	-	-	-	-
FR_EC1	FR_EC1_MON_2022-06-01_N	2022-06-08	-	-	-	-	-	7.92	2030	2920	4.4	2370	1.28		< 1.0	< 1.0	< 0.250	11.3	0.1	1500	0.0076	44	0.0955	0.407	-	0.0039	1.04	1.11
FR_EC1	FR_EC1_WEK_2022-06-13_N	2022-06-13	-	-	-	-	-	-	-	-	4.2	-	0.94		-	-	-	-	-	-	-	-	-	-	-	-	-	-
FR_EC1 FR_EC1	FR_EC1_WEK_2022-06-20_N FR_EC1_WEK_2022-06-27_N	2022-06-20 2022-06-29	+ -	-	-	-	-	-	-	-	12.7 3.7	-	8.83 2.09	-	-	-	+-	-	+:-	+-	- :	-	-	-	-	+ :	-	
FR EC1	FR EC1 MON 2022-07-01 N	2022-07-04	+	-	-	-		8.23	1730	2030	6.9	1920	5.77		6.5	< 1.0	< 0.250	8.79	0.168	1200	0.142	32.8	0.0915	0.792	<u> </u>	0.0293	7.63	6.46
FR_EC1	FR_EC1_WEK_2022-07-11_N	2022-07-12	-	-	-	-	- 1	-	-	-	2.9	-	2.08	-	-	-	-	-	-	-		-	-	-	-	-	-	-
FR_FR1	FR_FR1_WEK_2022-03-28_N	2022-03-30	-	-	-	-	- 1	8.09	217	410	7.2	253	7.42	140	< 1.0	< 1.0	< 0.050	0.18	0.12		0.0052	1.86	0.0012	0.327	-	0.0201	4.08	3.66
FR_FR1	FR_FR1_MON_2022-04-01_N	2022-04-04		-	-		-	8.19	317	594	1.6	427	2.39	159	< 1.0	< 1.0	< 0.050	0.27	0.169		< 0.0050	4.68	< 0.0010	0.35	-	0.0075	2.58	1.97
FR_FR1 FR_FR1	FR_FR1_WEK_2022-04-11_N FR FR1 WEK 2022-04-18 NP	2022-04-11 2022-04-20	-	-	-	-	-	7.77 8.26	329 259	612 507	1.5	404 377	3.17 2.1	176 155	< 1.0 < 1.0	< 1.0	< 0.050	0.27	0.185		< 0.0050 < 0.0050	5.21 3.87	0.0024 < 0.0010	0.454	-	0.0075	2.95	3.07 2.39
FR_FR1	FR FR1 WS 2022-04-16 NP	2022-04-25	+-	+ -	+	-		8.04	154	283	78.2	147	54.8	104	< 1.0	< 1.0	< 0.050	0.22	0.142		0.0050	1.55	0.0015	0.290	-	0.121	8.04	9.36
FR_FR1	FR_FR1_WS_2022-04-26_NP	2022-04-26	-	-	-	-	- 1	-	-	-	7.5	-	12.8	-	-	-	-		-	1 -	- 0.0075	-		-	-	-	-	-
FR_FR1	FR_FR1_WEK_2022-04-25_NP	2022-04-26	-	-	-	- 1		7.96	198	373	6.3	242	5.96	139	< 1.0	< 1.0	< 0.050	0.2	0.11	85.4	0.0084	2.28	0.0022	0.302	-	0.0233	5.69	5.14
FR_FR1	FR_FR1_MON_2022-05-02_NP	2022-05-03	-	-	-	-	-	8.13	232	442	3.8	284	1.43		< 1.0	< 1.0	< 0.050	0.26	0.166		0.0078	2.89	0.0023	0.276	-	0.0084	2.54	2.27
FR_FR1 FR_FR1	FR_FR1_WEK_2022-05-09_NP FR_FR1_WEK_2022-05-16_NP	2022-05-10 2022-05-17	+-	 -		-	-	8.23	221 223	398 384	4.9	303 264	1.48	164 164	< 1.0 < 1.0		< 0.050	0.16	0.186		< 0.0050	2.24	0.0017	0.335	-	0.0116		2.42
FR_FR1	FR FR1 WEK 2022-05-16_NP FR FR1 WEK 2022-05-23 NP	2022-05-17	-		-	-	-:-	8.29 8.27	197	384	1.1	264	1.3	164	< 1.0	< 1.0	< 0.050	0.14	0.179	74.3	< 0.0050 < 0.0050	1.96	0.0016 0.0011	0.238	-	0.0075	1.48	1.41
FR_FR1	FR FR1 WEK 2022-05-23 NP	2022-05-25	+	-	-	-		8.27	158	284	1.1	195	0.71	148	< 1.0	< 1.0	< 0.050	0.16	0.156		< 0.0050	0.739	0.0011	0.208	-	0.0067		1.85
FR_FR1	FR_FR1_MON_2022-06-06_NP	2022-06-07	T -	-	-	-	- 1	8.29	250	505	11.7	308	4.01	183	< 1.0	< 1.0	< 0.050	0.13	0.123		< 0.0050	6.5	0.0013	0.351	-	0.0222		1.27
FR_FR1	FR_FR1_WEK_2022-06-13_NP	2022-06-14		-	-			8.14	136	246	4.9	160	2.33	134	< 1.0	< 1.0	< 0.050	< 0.10	0.129	25.9	< 0.0050	0.63	0.001	0.088	-	0.0072	1.93	1.62
FR_FR1	FR_DC1_WEK_2022-06-20_NP	2022-06-21	-	-	-	-	- 1	7.3567	97.1667	173.6667	5.7333	118	2.327		< 1.0	< 1.0	< 0.050	< 0.10		17.8667	< 0.0050	0.4533333	0.001033333	0.0793	-	0.008433		1.3733
FR_FR1 FR_FR1	FR_FR1_WEK_2022-06-27_NP FR_FR1_QTR_2022-07-04_NP	2022-06-28		-	-		-	8.2	133	264	3	154	1.85		< 1.0	< 1.0	< 0.050	0.11	0.134		< 0.0050	0.687	< 0.0010	0.167	-	0.0074		0.94
FK_FK1	FK_FK1_Q1K_2022-07-04_NP	2022-07-05	1 -	<u> </u>	<u> -</u>	-	-	8.22	135	244	3.6	167	2.39	129	< 1.0	< 1.0	< 0.050	< 0.10	U.141	29.2	< 0.0050	0.593	< 0.0010	0.139	<u> </u>	0.0083	1.22	1.02

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness ^b Guideline varies with pH and water temperature

^o Guideline varies with chloride

APPENDIX C - TABLE 1: Summary of Analytical Results for Dissolved Organics, Nutrients and Organics

				Fiel	d Param	eters				Physical P	arameter	s		T		Diss	olved Inc	rganics					Nutrient	s				
										,	s																	pou
Sample	Sample	Sample Date	Field Temperature	pH (field)	Dissolved Oxygen	Field Conductivity	Field ORP	Hd	Hardness	Conductivity	Total Suspended Solid	Total Dissolved Solids	Turbidity	Bicarbonate	Carbonate	Hydroxide	Bromide	Chloride	Fluoride	Sulfate	Ammonia Nitrogen	Nitrate Nitrogen	Nitrite Nitrogen	Kjeldahi Nitrogen-N	Ortho-Phosphate	Phosphorus, Total	Total Organic Carbon	Dissolved Organic Car
Location	ID	(yyyy-mm-dd)	С	pH	mg/L	μS/cm	mV	pН	mg/L	μS/cm	mg/L	mg/L	ntu	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
BC WQG FWAL			-1-	Minimum	Acute	n/a	-1-	Minimum Max	n/a	n/a	Acute	-/-	& Acute		n/a	n/a	-1-	Acute		Chronic	# 5 0.681-28.7 ^b 0.102-2.08	Acute	Acute Acute Chronic	-1-	-/-	Chronic	-1-	n/a
Fording River Operation			n/a	6.5 9	1 5	n/a	n/a	6.5 9	n/a	n/a	25 5	n/a	8 2	n/a	n/a	n/a	n/a	600 150	0.4-	128-429	0.681-28.7 0.102-2.08	32.8 3.7	0.06-0.60* 0.02-0.20	n/a	n/a	0.015	n/a	n/a
FR FR1	FR FR1 WEK 2022-07-11 NP	2022-07-13	Τ-	Τ.	Ι.	-	-	7.27	132	264	2.7	173	0.61	147	< 1.0	< 1.0	< 0.050	0.11	0.195	34.6	< 0.0050	0.739	< 0.0010	0.064	-	0.0039	0.54	0.65
FR_FR1	FR_FR1_MON_2022-08-01_NP	2022-08-09	-	1 -	-	-	-	8.36		436	1.1	258	0.26		1.9	< 1.0	< 0.050			88	< 0.0050	1.86	0.0021	0.112	-	0.0034	< 0.50	
FR_FR1	FR_FR1_MON_2022-09-05_NP	2022-09-13	-	I -	-	-	-	8.33	261	468	< 1.0	322	0.22	163	3.7	< 1.0	< 0.050	0.25	0.242	115	< 0.0050	2.28	0.0018	0.236	-	< 0.0020	< 0.50	
FR_FR1	FR_FR1_QTR_2022-10-03_NP	2022-10-12	-	-	-	-	-	8.32	296	527	< 1.0	304			1.8	< 1.0	< 0.050			150	< 0.0050	2.81	0.0031	0.213	-	< 0.0020	1.14	
FR_FR1	FR_FR1_MON_2022-11-07_NP	2022-11-03	-		-	-	-	8.31	286	535	< 1.0	372			2.4	< 1.0	< 0.050			168	< 0.0050	2.78	0.0025	0.246	-	0.0031	< 0.50	
FR_FR2	FR_FR2_MON_2022-01-04_N	2022-01-08	-	-	-	-	-	8.25	660	1170	1	862			< 1.0	< 1.0	< 0.250			383	0.0104	29.7	0.0069	0.389	-	0.0028	0.96	1.01
FR_FR2 FR_FR2	FR_FR2_MON_2022-02-01_N FR_FR2_WS_2022-02-28_N	2022-02-09	+-	-	-	-	-	8.26	727	1190	1.8	917			< 1.0	< 1.0	< 0.250			375 404	< 0.0050	28.6	0.007	< 0.050	-	0.0026	0.53	
FR_FR2	FR_FR2_WS_2022-02-28_N FR_FR2_MON_2022-03-01_N	2022-02-28	+ -	-	-	-	+-	8.12 8.22	702	1200	1.3	932	0.35		< 1.0	< 1.0	< 0.250			404	0.0075 < 0.0050	31 30.1	0.0107 0.0076	< 0.050	<u> </u>	0.003	0.75	
FR FR2	FR FR2 WEK 2022-03-14 N	2022-03-03	+-	-	-			8.11	759	1170	7	897	5.57		< 1.0	< 1.0	< 0.250			413	0.109	30.3	0.0076	< 0.050		0.0052	2.69	0.76
FR FR2	FR FR2 WEK 2022-03-15 NP	2022-03-15	-			-	-	7.96	668	1170	4.5	931	2.13		< 1.0	< 1.0	< 0.250			394	0.0107	29.2	0.0089	< 0.050	-	0.0064	1.38	0.89
FR FR2	FR FR2 WS 2022-03-16 NP	2022-03-16	T -	T -	-	-	-	8 18	630	1180	13	841	7.06		< 1.0		< 0.250				0.0115	28.2	0.0133	< 0.050	-	0.035	6.15	
FR_FR2	FR_FR2_WEK_2022-03-16_NP	2022-03-16	-	-	-	-	-	8.04	676	1200	9.9	934	6.46		< 1.0	< 1.0	< 0.250			401	0.199	30	0.01	< 0.050	-	0.0087	2.83	0.52
FR_FR2	FR_FR2_2_WS_2022-03-17_NP	2022-03-17	-	-	-	-	-	8.09	713	1180	24.4	906	16.5	254	< 1.0	< 1.0	< 0.250		0.183	406	0.0071	27.6	0.0164	0.358	-	0.0303	12	0.92
FR_FR2	FR_FR2_WEK_2022-03-17_NP	2022-03-17	-	-	-	-	-	8.01	618	1190	14.9	1150			< 1.0	< 1.0	< 0.250			425	0.0068	29.3	0.0249	< 0.050	-	0.0145	6.65	1.28
FR_FR2	FR_FR2_2_WS_2022-03-18_NP	2022-03-18	-	-	-	-	-	8.17	681	1190	11	923			< 1.0	< 1.0	< 0.250		0.132	403	< 0.0050	28.1	0.014	< 0.050	-	0.0112	1.13	
FR_FR2	FR_FR2_WEK_2022-18_NP	2022-03-18	-	-	-	-	-	8.08	680	1200	12.5	849			< 1.0		< 0.250				0.0097	29.9	0.0129	0.391	-	0.0101	3.42	
FR_FR2 FR_FR2	FR_FR2_WS_2022-03-19_NP FR_FR2_WS_2022-03-20_NP	2022-03-19	-	-	-	-	-	8.19	666	1190	7.8	919 885		275 261	< 1.0	< 1.0	< 0.250		0.133	418 389	0.0067	29.9	0.0195	0.276	-	0.0072	1.12	1.08
FR FR2	FR FR2 2 WS 2022-03-21 NP	2022-03-20	+ -	-	+:-		-	8.19	646	1180	12.3 6.3	917	11.5 4.84		< 1.0	< 1.0	< 0.250			412	0.009 0.0137	28.3 29.6	0.0133 0.0187	< 0.050	-	0.0059	1.61	0.86
FR FR2	FR FR2 2 WS 2022-03-22 NP	2022-03-21	+-	-	-			8.14	648	1160	4.3	918	4.04	266	< 1.0	< 1.0	< 0.250		0.102	393	0.0207	28.5	0.0187	0.394		0.0057	1.26	< 0.50
FR FR2	FR FR2 2 WS 2022-03-23 NP	2022-03-23	-			-	-	8.15	656	1120	4.5	868			< 1.0	< 1.0	< 0.250		0.176	394	0.0232	27.5	0.024	0.427	-	0.0173	1.35	0.542
FR FR2	FR DC1 WEK 2022-03-28 N	2022-03-30	T -	-	-	-	-	8.23	593.5	1015	6.8	739.5			< 1.0	< 1.0	< 0.250		0.173	324.5	0.08795	23.3	0.06055	0.1485	-	0.01195	1.76	1.19
FR FR2	FR FR2 MON 2022-04-01 N	2022-04-05	-	-	-	-	-	8.24	602	1100	4.3	761			< 1.0	< 1.0	< 0.250		0.181	360	0.0856	26	0.0797	< 0.050	-	0.0066	1.65	1.39
FR_FR2	FR_FR2_WEK_2022-04-11_N	2022-04-12	-	-	-	-	-	8.28	634	1130	4.7	812			< 1.0	< 1.0	< 0.250		0.165	384	0.0358	27.9	0.0395	0.391	-	0.0046	1.46	1.4
FR_FR2	FR_DC1_WEK_2022-04-18_N	2022-04-18	-	-	-	-	-	8.195		1170	1.4		0.665		< 1.0	< 1.0	< 0.250			415.5	< 0.0050	29.75	0.0152	0.457	-	0.0039	1.08	1.045
FR_FR2	FR_FLD_WEK_2022-04-18_N	2022-04-19	-	-	-	-	-	5.29	< 0.50	< 2.0	< 1.0	< 10			< 1.0	< 1.0		< 0.10			< 0.0050	< 0.0050	< 0.0010	< 0.050	-	< 0.0020	< 0.50	
FR_FR2 FR_FR2	FR_FLD_WEK_2022-04-25_N FR_FR2_MON_2022-05-01_N	2022-04-27	-	-	-	-	-	6.935		< 2.0	< 1.0	< 10			< 1.0	< 1.0		< 0.10			< 0.0050	< 0.0050	< 0.0010	< 0.050	-	< 0.0020	< 0.50	
FR_FR2	FR_FR2_MON_2022-05-01_N FR_FR2_WEK_2022-05-09_N	2022-05-04 2022-05-10	-	-	-	-	-	8.27	442	790 808	14.4	529 425	2.01		< 1.0 1.9	< 1.0	< 0.050		0.167	221	< 0.0050	16.1	0.0067	< 0.050	-	0.018 0.0121	2.88	1.7
FR_FR2	FR_FR2_WEK_2022-05-09_N FR_FR2_WEK_2022-05-16_N	2022-05-10	+:-	-	-	-	+	8.34 8.33	380	713	6.6 2.8	511	1.32	198	3.5	< 1.0	< 0.050		0.17	187	< 0.0050 < 0.0050	17.9 13.9	0.0119 0.0053	0.488		0.0121	1.64	1.58
FR FR2	FR FLD WEK 2022-05-10 N	2022-05-19	+ -	+ -	-		+	6.945		< 2.0	< 1.0	< 10	< 0.10		< 1.0	< 1.0	< 0.050		< 0.020		< 0.0050	< 0.0050	< 0.0033	< 0.050	-	< 0.0020	< 0.50	< 0.50
FR_FR2	FR_FR2_WS_2022-05-27_NP	2022-05-27	-	-	-	-	-	8.43		546	8.7	375	2.06		4	< 1.0	< 0.050				< 0.0050	6.5	0.003	0.502	-	0.0116	1.83	1.58
FR_FR2	FR_FR2_WEK_2022-05-30_N	2022-06-01	-	-	-	-	-	8.12		421	3.2	333	1.29	178	< 1.0	< 1.0	< 0.250	0.68	0.152	105	< 0.0050	6.59	< 0.0050	0.525	-	0.0054	1.74	1.66
FR_FR2	FR_DC3_MON_2022-06-01_N	2022-06-08	-	-	-	-	-	8.18	211.5	395	14.45	235	1.705	160	< 1.0	< 1.0	< 0.050	0.265	0.1415	68.1	< 0.0050	3.98	0.00155	0.3975	-	0.02565	1.765	1.5
FR_FR2	FR_FR2_MON_2022-06-01_N	2022-06-08	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1 -
FR_FR2	FR_DC1_WEK_2022-06-13_N	2022-06-13	-	-	-	-	-	8.14		342	13	219			< 1.0	< 1.0	< 0.050				< 0.0050	3.625	0.0018	0.3885	-	0.0163	1.685	1.765
FR_FR2 FR FR2	FR_FR2_WEK_2022-06-20_N FR_DC1_WEK_2022-06-20_N	2022-06-21 2022-06-21	+ -	+ -	-	-	-	8.17	186 186	367 367	16.6	239 238		159 160	< 1.0	< 1.0 < 1.0	< 0.050				< 0.0050	3.8	0.0025	0.286	<u> </u>	0.0288	1.57	1.34
FR_FR2	FR_DC1_WEK_2022-06-20_N FR_DC1_WEK_2022-06-27_N	2022-06-21	+ -	+ -	-	-	-	8.18 8.29	206.5	403	19 4.75	238	6.07 3.11	160	< 1.0	< 1.0	< 0.050		0.123		< 0.0050 0.0051	3.9 4.635	0.0019 0.00145	0.292	-	0.0286	1.34	0.675
FR_FR2	FR_DC1_WEK_2022-00-27_N FR_FR2_MON_2022-07-01_N	2022-06-28	+ -	-	-	-	+:-	8.29	206.5	403	1.75	283	0.42	168	< 1.0	< 1.0	< 0.050				0.0051	5.76	0.00145	0.462	H:-	0.0054	1.075	1.51
FR FR2	FR FR2 WEK 2022-07-05 N	2022-07-05	+ -	+ -	+ -	-	-	8.22	223	396	5.2	259	2.99	156	< 1.0	< 1.0	< 0.050				< 0.0072	4.83	0.0015	0.342	-	0.0034	1.57	1.28
FR FR2	FR FR2 WEK 2022-07-06 N	2022-07-06	+ -	-	-	-	-	8.19	238	411	14.5	269	3.7	160	< 1.0	< 1.0	< 0.050		0.144		0.0074	5.17	0.0013	0.46	-	0.041	1.94	1.15
FR_FR2	FR_DC1_WEK_2022-07-07_N	2022-07-07	-	-	-	-	-	8.36	229	429	1.9	268	0.74		2.2	< 1.0	< 0.050		0.164		< 0.0050	5.78	0.0018	0.407	-	0.0053	1.39	1.1
FR_FR2	FR_FR3_WEK_2022-07-07_N	2022-07-07	-	-	-	-	-	8.35	229	490	3.1	268	0.67	173	< 1.0	< 1.0	< 0.050		0.163	84.6	< 0.0050	5.8	0.0032	0.417	-	0.0046	1.69	1.06
FR_FR2	FR_DC1_WEK_2022-07-08_N	2022-07-08	-	-	-	-	-	8.41	215	404	6.4	262		151	1.8	< 1.0	< 0.050			76.7	< 0.0050	5.06	0.0016	0.338	-	0.0082	1.45	1.53
FR_FR2	FR_FR3_WEK_2022-07-08_N	2022-07-08	-	-	-	-	-	8.59	214	408	2.4	255			6.6	< 1.0	< 0.050		0.169	77.8	< 0.0050	5.11	0.0023	0.418	-	0.0046	1.31	1.6
FR_FR2 FR_FR2	FR_FR2_WS_2022-07-09_N FR_FR2_WEK_2022-07-11_N	2022-07-09 2022-07-12	-	-		-	-	7.78		442 537.5	3.1	292 394.5			< 1.0	< 1.0 < 1.0	< 0.050			96.1 123.5	< 0.0250	5.76	0.0024	0.378	<u> </u>	0.0078	1.26	1.15
FR_FR2	FR_FR2_WER_2022-07-11_N FR_DC2_MON_2022-08-01_N	2022-07-12	+ -	-		-	1	8.305 8.175		747.5	1.9	553.5			1.9	< 1.0	< 0.050			215.5	< 0.0050 < 0.0050	7.7 14.9	0.00275 0.00925	0.3635		0.00835	< 0.50	< 0.50
FR_FR2	FR FR2 MON 2022-08-01 N	2022-08-10	+ -	+ -	-	-	⊢ <u>÷</u>	0.1/5	400	141.5	× 1.0	333.3	0.40	220.0	1.0	- 1.0	- 0.000	0.040	0.2040	210.0	× 0.0000	14.9	0.00920	0.1073	- i	0.00013	10.00	+ 0.50
	110110011011011011111	1 2022 00 10		<u> </u>				<u> </u>	-		<u> </u>	+	<u> </u>		-			<u> </u>	_		-							-

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness ^b Guideline varies with pH and water temperature

^o Guideline varies with chloride

APPENDIX C - TABLE 1: Summary of Analytical Results for Dissolved Organics, Nutrients and Organics

Company Comp					Field	l Parame	otors				hysical Pa	rameters			1		Dies	olved Ino	manics					Nutrient	•				$\overline{}$
Semple S											ilyoloui i u		ĺ				1	1	Junios					T T T T T T T T T T T T T T T T T T T	Ĭ				_
Street Plane Stre	Sample	Sample	Sample Date	Field Temperature	ej.	solved		ē	£	Hardness	Conductivity			Turbidity	Bicarbonate	Carbonate	Hydroxide	Bromide	Chloride	Fluoride	Sulfate	Ammonia Nitrogen	Nitrate Nitrogen	Nitrite Nitrogen	Kjeldahl Nitrogen-N	Ortho-Pho sphate	Phosphorus, Total	Total Organic Carbon	Organic
\$\frac{1}{2} \frac{1}{2} \fr	Location	ID	(yyyy-mm-dd)	С	pН	mg/L	μS/cm	mV	pН	mg/L	μS/cm	mg/L	mg/L	ntu	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
February 1987 198	BC WOG FWAI			n/a	Minimum Maximum	- Acute n Chronic	n/a	n/a	Minimum Maximum	n/a	n/a	Acute Chronic	n/a	S P	n/a	n/a	n/a	n/a	X O	Acute	OH- OH- 128-429	9 SON O 102-2 08 ^b	§ 5	One of each of the order of the	n/a	n/a	Chronic	n/a	n/a
Fig.																			1000 .00										
FR FREE	FR_FR2			-	-	-	-	- 1	8.36			1.5		0.41			< 1.0	< 0.250	1.5	0.196	281	< 0.0050	20.8	0.0116		-			
Fig.				-	-	-	-	- 1																					
FR FRZ				-			-	- T																		-			
FR LIMP1 FR LIMP1 MORE 2002-01-07				! -	-	-	-	-																		-			
FR_LIMP1 FR_LIMP1 WS_00224-01-50				+-	-	-		-																					
FR_LIMP1 FR_LIMP1_WR_20223-10_NP = 2022-01-50				+-	-	-	-	- 1																					
FR_LIMP1				+-	-		Hill																						
FR LIMP FR LIMP WS 2022-04				-	-	-		-																					
FR_LIMP1 FR_LIMP1 W3_0222-0-10 P					-																								
FR LIMP1 FR LIMP1 MS 2022-02-14 P. 2022-02-24 P.								_																					
FR_LIMP1 FR_LIMP1 MS_2022-2024 MS_2022-2024				-			-	_																					
FR_LIMP1 FR_LIMP1 WS_02220340 P				-	-	-	- 1	- 1									< 1.0									-			
FR_LIMP1 FR_LIMP1 WS_2022-05-09 N				-	-	-	-	- 1				24.4					< 1.0									-			
FR_LIMP1 FR_LIMP1 WKS_2022-03-16 N	FR LMP1	FR LMP1 WS 2022-03-09 NP	2022-03-09	-	-	-	-	- 1								< 1.0	< 1.0	< 0.250		0.16	619				0.762	-	0.0117	1.75	1.46
FF, LIMP1 FR, LIMP1 WE, 2022-03-24 N 2022-03-22		FR_LMP1_WS_2022-03-16_NP	2022-03-16	-	-	-	- 1	-		961	1860		1450		339	< 1.0	< 1.0	< 0.250		0.143	620				0.346	-	0.0102	1.83	1.71
FR_LIMP1 FR_LIMP1 WS_2022-03-0 MP 2022-03-0 L		FR_LMP1_WEK_2022-03-21_N	2022-03-22	-	-	-	-	-	-	-	-	5.5	-	5.44	-	-	-	-	-	-	-	-	-	-	-	-			
FR_LMPI FR_LMPI WS_2022-03-20 NP 2022-03-50				-	-	-	-	-																					
FR_LMPH FR_LMPH_WS_0022-04-01 N				-	-	-		_																					
FR_LMP! FR_LMP! WS_2022-04-12 NP 2022-04-05 ·				-	-	-	-	-																					
FR_LMPI				-	-	-	-	-																					
FR LMP1 FR LMP1 WEK 2022-04-18 N 2022-04-28				-	_	_	-	\rightarrow																					
FR_LMP1 FR_LMP1 WFR_2022-04-28 N 2022-04-28				-	-	-	-	_																					
FR_LMP1 FR_LMP1 WEK_2022-04-25 N 2022-04-25				-	-	-	-	_																					
FR_LMP1 FR_LMP1_WS_0022-05-01 N 2022-05-05				-		-		\rightarrow		748	1370		1110		248	< 1.0	< 1.0			0.128	433	0.0369	49.7	0.01/2					
FR_LMP1 FR_LMP1 WEX_2022-05-10 NP 2022-05-10					-					705	1220		898		240	< 1.0	< 1.0		_	0.137	356	0.0122	46.4	0.0127					
FR_LMP1 FR_LMP1_WEX_2022-05-16 N 2022-05-12				+ -			_																			<u> </u>			
FR_LIMP1 FR_LIMP1_WEX_2022-05-16 N				_			- 1	- 1			-																	_	
FR_LMP1 FR_LMP1_WS_2022-05-30 N 2022-05-30 N				1 -	-	-	- 1	- 1	-	-	-		1 -	1.05	T -	-	1 -	1 -	T -	1 -	T -			-	T -	-	T -	-	T-
FR_LIMP1 FR_LIMP1_WEX_2022-05-08 NP 2022-05-08			2022-05-23	-	-	-	-	- 1	8.25	624	1110		838			< 1.0	< 1.0	< 0.250	0.97	0.13	345	0.0082	48.5	0.0303	< 0.050	-	0.0105	2.46	2.2
FR_LIMP1 FR_LIMP1 WEX_2022-06-13 N 2022-06-14				-	-	-	-	- 1		-	-		-	0.85	-	-		-	-		-		-		-	-	-		- 1
FR_LMP1 FR_LMP1_WS_2022-06-22 P				-	-	-	-	- 1	8.16	440	828		529			< 1.0			0.39		201	< 0.0050	26.1	0.0061	< 0.050	-			
FR_LIMP1 FR_LIMP1 WEX_2022-06-30				-			-	_		-	-		-			-					-								
FR_LMP1 FR_LMP1_WS_2022-07-05 P 2022-07-05				-			- 1	\rightarrow					541									0.0128		0.0064					
FR_LMP1 FR_LMP1_WEX_2022-07-13				-			-	$\overline{}$					750									-							
FR_LMP1 FR_LMP1_WS_2022-0519_NP 2022-09-19				+-		-	<u> </u>	_		535	931		/56		212	< 1.0			< 0.50	< 0.100	246	0.0056	31.8	0.0129					
FR_LMP1 FR_LMP1_WS_2022_08-01 N 2022_08-04				1 -	-	-	-	-		668	1180		1040		246	< 1.0			0.70	0.112	367	0.0147	44.2	0.0192					
FR_LMP1 FR_LMP1_WS_2022-08-17 P 2022-08-17				+:-	+ -		+ $=$ $+$ $=$ $+$ $=$ $+$ $=$ $+$ $=$ $+$ $=$ $+$ $=$ $+$ $=$ $+$ $=$ $+$ $=$ $=$ $+$ $=$																						
FR_LMP1 FR_LMP1_WS_022_08_01 P 2022_08_01				+-	-		H-1																						
FR_LMP1 FR_LMP1_WS_2022-05-01_NP 2022-09-01				† -			-	- 1																					
FR_LMPI FR_LMPI_WS_SEPT-2022_N 2022-09-07						-	- 1	-																					
FR_LMP1 FR_LMP_WS_2022-59-13_NP 2022-09-13 8.19 1340 1880 6.5 1700 10.1 309 < 1.0 < 1.0 < 0.250 0.04 0.11 690 < 0.0050 77.3 0.0558 < 0.050 - 0.0054 2.3 2.45 FR_LMP1 FR_LMD_MON_2022-10-01 N 2022-10-13 8.17 1220 1990 1.4 1640 0.49 338 < 1.0 < 1.0 < 0.250 0.10 1 139 754 < 0.0050 8.07 0.0191 < 0.050 0.0050 8.2 3 2.45 FR_LMP1 FR_LMD_WS_2022-11-15_NP 2022-11-15 8.31 1470 1960 2.1 1940 0.99 349 5.8 < 1.0 < 0.250 1.11 0.115 0.143 806 0.0077 77.5 0.019 < 0.050 - 0.0069 2.12 1.15 FR_LP1 FR_LP1_WS_2022-05-22_N 2022-05-22 8.31 501 842 7.2 572 7.6 246 2.4 < 1.0 < 0.050 0.080 0.088 6.0 0.0077 77.5 0.019 < 0.050 - 0.0069 2.1 2.15 PR_LP1_WS_2022-05-22_N 2022-05-22 8.31 501 842 7.2 572 7.6 246 2.4 < 1.0 < 0.050 0.080 0.088 1.8 276 < 0.0050 0.080 0.007 77.5 0.019 < 0.050 - 0.0069 2.1 2.15 PR_LP1_WS_2022-05-22_N 2022-05-22 8.31 501 842 7.2 572 7.6 246 2.4 < 1.0 < 0.050 0.080 0.088 1.8 276 < 0.0050 0.080 0.007 77.5 0.019 < 0.050 0.050 0.080 0.007 77.5 0.019 < 0.050 0.050 0.080 0.007 77.5 0.019 < 0.050 0.050 0.080 0.007 77.5 0.019 < 0.050 0.050 0.080 0.007 77.5 0.019 < 0.050 0.050 0.080 0.007 77.5 0.019 < 0.050 0.050 0.080 0.007 77.5 0.019 < 0.050 0.050 0.080 0.007 77.5 0.019 < 0.050 0.050 0.007 77.5 0.019 < 0.050 0.050 0.007 77.5 0.019 < 0.050 0.050 0.007 77.5 0.019 < 0.050 0.050 0.007 77.5 0.019 < 0.050 0.050 0.007 77.5 0.019 < 0.050 0.050 0.007 77.5 0.019 < 0.050 0.050 0.050 0.007 77.5 0.019 < 0.050 0				1 -		-		- 1																					
FR_LMP1 FR_LMD_MON_2022-10-01 N 2022-10-13 8.17 1220 1990 1.4 1640 0.49 336 <1.0 <1.0 <0.250 1.11 0.131 754 <0.0050 80.7 0.0191 <0.050 - 0.0058 1.38 1.49 FR_LMP1 FR_LMD_WS_2022-11-15 N 2022-11-15 8.31 1470 1980 2.1 1940 0.99 349 5.8 <1.0 <0.250 1.15 0.143 806 0.0077 77.5 0.019 <0.050 - 0.0058 1.38 1.49 FR_LMP1 FR_LP1 WS_2022-05-22 N 2022-05-22 8.31 501 842 7.2 572 7.6 246 2.4 <1.0 <0.050 0.68 0.754 276 0.0050 6.6 0.0115 0.509 - 0.0136 2.19 2.23				1 -	-	-	- 1	- 1																		-			
FR_LP1 FR_LP1_WS_2022-05-22 N 2022-05-22 8.31 501 842 7.2 572 7.6 246 2.4 < 1.0 < 0.050 0.68 0.154 276 < 0.0050 6.6 0.0115 0.509 - 0.0136 2.19 2.23			2022-10-13	-	-	-	-	- 1		1220	1900		1640		336	< 1.0	< 1.0			0.131	754				< 0.050	-			1.49
				-	-	-	-	- 1	8.31			2.1		0.99		5.8	< 1.0		1.15	0.143		0.0077	77.5	0.019		-			
FR_P1 FR_P1_WS_2022-05-23_N 2022-05-23_N 2022-05-23_N 8.28 494 849 4.3 590 6.68 260 <1.0 <1.0 <0.050 0.7 0.155 286 <0.0050 6.64 0.0117 0.443 0.019 2.65 2.37				-	-	-	-	-				7.2														-			
	FR_LP1	FR_LP1_WS_2022-05-23_N	2022-05-23	-		-	-	- 1	8.28	494	849	4.3	590	6.68	260	< 1.0	< 1.0	< 0.050	0.7	0.155	286	< 0.0050	6.84	0.0117	0.443	-	0.019	2.65	2.37

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

 ^a Guideline varies with hardness
 ^b Guideline varies with pH and water temperature
 ^c Guideline varies with chloride

APPENDIX C - TABLE 1: Summary of Analytical Results for Dissolved Organics, Nutrients and Organics

				Field	Parameter				Physical Pa	rameter	s				Disso	olved Inor	ganics					Nutrien	ts				
Sample	Sample	Sample Date	Field Temperature	pH (field)	Dissolved Oxygen	Field	효	Hardness	Conductivity	Total Suspended Solids	Total Dissolved Solids	Turbidity	Bicarbonate	Carbonate	Hydroxide	Bromide	Chloride	Fluoride	Sulfate	Ammonia Nitrogen	Nitrate Nitrogen	Nitrite Nitrogen	Kjeldahl Nitrogen-N	Ortho-Phosphate	Phosphorus, Total	Total Organic Carbon	Dissolved Organic Carbon
Location	ID	(yyyy-mm-dd)	С		mg/L μS	cm m\	pH	mg/L	μS/cm	mg/L	mg/L	ntu	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
DO WOO FINAL			n/a	Minimum	Chronic		Minimum	- (-	-/-	25 Acute Chronic	-/-	Acute Chronic			-1-	n/a	Acute	Acute	Chronic	Acute Chronic	Acute	Acute	9	- /-	Chronic	-1-	-1-
BC WQG FWAL Fording River Operation			n/a	6.5 9	1 5 N	a n/a	6.5	n/a	n/a	25 5	n/a	8 2	nva	n/a	n/a	nva	600 150	0.4-	128-429	0.681-28.7 ^b 0.102-2.08 ^b	32.8 3.7	0.06-0.60° 0.02-0.20	n/a	n/a	0.015	n/a	n/a
FR LP1	FR LP1 WS 2022-05-24 N	2022-05-24	т.			Т.	8.32	494	847	4.8	581	5 29	250	1.6	< 1.0	< 0.050	0.83	0.156	294	< 0.0050	7.16	0.0135	0.362		0.0164	3.2	2.94
FR_LP1	FR_LP1_WS_2022-05-25_N	2022-05-25	-	-		-	8.31	494	840	5.2	618	4.22		3.5	< 1.0	< 0.050	1.18	0.146	280	< 0.0050	6.66	0.0141	0.539	-	0.0148	2.98	2.61
FR_LP1	FR_LP1_WS_2022-05-26_N	2022-05-26	-	-			8.31	480	829	4.9	590	3.64		7.3	< 1.0	< 0.050	0.62	0.135	255	< 0.0050	6.46	0.0132	0.397	-	0.0155	1.95	2.02
FR_LP1 FR_LP1	FR_LP1_WS_2022-05-27_N FR_LP1_WS_2022-05-28_N	2022-05-27 2022-05-28	-	-			8.39	456	827 787	6.2	581	3.75		3.5 2.2		< 0.050	0.66	0.141	254	< 0.0050 < 0.0050	6.02	0.0133	0.432	-	0.0144	2.7	2.48
FR_LP1	FR_LP1_WS_2022-05-28_N FR_LP1_WS_2022-05-29_N	2022-05-28	+ -	-		_	8.34	443	787	4.5 5.2	540 584	4.96		< 1.0	< 1.0	< 0.050	0.61	0.136	253 257	< 0.0050 < 0.0050	6.02	0.012 0.0107	0.548	-	0.013 0.0192	2.42	2.13
FR LP1	FR LP1 WS 2022-05-30 N	2022-05-30	-	- 1		_	8.35	438	785	7	570	4.95		< 1.0	< 1.0	< 0.050	0.59	0.141	252	< 0.0050	6.08	0.011	0.378	-	0.0177	2.8	2.99
FR_LP1	FR_LP1_WS_2022-06-07_NP	2022-06-07	-	-		-	8.42	460	816	5.4	590	3.72	214	6.2	< 1.0	< 0.050	0.54	0.127	237	< 0.0050	6.53	0.0076	0.444	-	0.0136	3.31	2.72
FR_LP1	FR_LP1_WS_2022-06-08_NP	2022-06-08	-	-		-	8.36	513	941	8	688	4.19		4.7	< 1.0	< 0.050	0.75	0.164	333	< 0.0050	8.6	0.0112	0.695	-	0.0166	3.24	2.54
FR_LP1	FR_LP1_MON_2022-06-01_NP	2022-06-09	-	-		-	8.3	517	885	8.2	464	4.49		2.5	< 1.0	< 0.250	1.4	0.144	256	< 0.0050	7.13	0.0136	0.605	-	0.0124	3.98	2.68
FR_LP1 FR LP1	FR_LP1_WS_2022-06-10_NP FR_LP1_WS_2022-06-11_NP	2022-06-10 2022-06-11	-	-		-	8.31	444	812 787	6.8	538	4.68		1.9	< 1.0	< 0.050	0.59	0.125	246 226	< 0.0050 < 0.0050	5.98 6.05	0.0095 0.0162	0.462	-	0.022	3.53	2.48
FR LP1	FR LP1 WS 2022-06-11 NP	2022-06-11	+	-	-		8.26	424	760	5.4 3.7	546 546	4.29 2.13		< 1.0 4.3	< 1.0	< 0.250	0.93	0.127	220	< 0.0050	5.68	0.0056	0.576	-	0.0783	2.71	2.4
FR LP1	FR LP1 MON 2022-06-13 NP	2022-06-13	-		-	-	8.5	434	791	9.3	910	3.59		< 1.0	< 1.0	< 0.050	0.40	0.132	248	< 0.0050	6.17	0.0107	0.555	-	0.0173	3.35	2.75
FR_LP1	FR_LP1_WS_2022-06-20_NP	2022-06-20	-	-		-	8.37	382	669	12.3	452	12.1		6.7	< 1.0	< 0.050	0.67	0.112	178	0.0054	4.73	0.0094	0.473	-	0.0542	3.46	3.07
FR_LP1	FR_LP1_WS_2022-06-28_NP	2022-06-28	-	-		-	8.16	436	762	5	550	4.53		< 1.0	< 1.0	< 0.050	0.64	0.147	228	0.0054	5.47	0.0187	0.649	-	0.0165	2.95	2.29
FR_LP1	FR_LP1_WS_2022-07-05_NP	2022-07-05	-	-		_	8.28	485	814	6.2	629	6.78		< 1.0	< 1.0	< 0.050	0.61	0.136	250	0.0125	5.52	0.0376	0.404	-	0.016	4.03	4.59
FR_LP1 FR LP1	FR_LP1_WS_2022-07-12_N FR_LP1_WEK_2022-07-11_N	2022-07-12 2022-07-12	-	-	- '	-	8.49	540	890	4.3	698	3.26		10.4	< 1.0	< 0.250	0.88	0.154	291	0.0293	5.89	0.0242	0.588	-	0.0121	3.08	2.62
FR_LP1	FR_LP1_WER_2022-07-11_N FR_LP1_WS_2022-08-18_N	2022-07-12	-	-			8.5	680	1100	4.1 3.9	892	2.96		14.3	< 1.0	< 0.250	1.7	0.207	449	0.0289	7.94	0.0377	0.533	-	0.0112	2.45	2.04
FR LP1	FR LP1 WS 2022-08-24 N	2022-08-24	-		-	_	8.25	752	1160	2.7	935	2.04		< 1.0	< 1.0	< 0.250	1.19	0.164	480	0.0327	8.49	0.0377	0.19	-	0.0112	1.62	1.45
FR_LP1	FR_LP1_WS_2022-09-01_N	2022-09-01	-	-		-		733	1220	1.2	961	0.87		4.1		< 0.250	1.26	0.178	492	0.0126	8.66	0.0363	0.386	-	0.0049	2.34	2.58
FR_LP1	FR_LP1_WS_2022-09-05_N	2022-09-05	-	-	-	-	8.43		1220	1.6	992	0.87		9.8	< 1.0	< 0.250	1.51	0.194	517	0.0075	9.14	0.0255	0.442	-	0.0042	2.13	2.04
FR_LP1	FR_LP1_WS_SEPT-2022_N	2022-09-06	-	-		-	8.42	772	1220	< 1.0	1040	0.84		10.8	< 1.0	< 0.250	1.31	0.171	526	0.0061	9.59	0.0298	0.348	-	0.0025	1.84	1.74
FR_LP1 FR LP1	FR_LP1_MON_2022-10-01_N FR_LP1_MON_2022-11-01_N	2022-10-12	-	-	- '		8.2	886	1330	2.6	1050	1.38		< 1.0		< 0.250	1.56	0.171	631 646	0.0185 0.0195	12.7 12.6	0.0228	0.528	-	0.0028	1.8	1.85
FR_LP1	FR PP1 MON 2022-11-01 N	2022-11-03 2022-01-07	+ :-	-			8.29	877 1400	1410 2190	1.4	1180 1970	1.23 0.26		5.2 < 1.0	< 1.0	< 0.250	1.53	< 0.188	794	0.0301	81.8	0.0255 0.0134	< 0.050	-	0.0032	2.12 3.48	3.08
FR PP1	FR PP1 MON 2022-01-04_N	2022-01-07	+ -				8.02	1630	2370	< 1.0	2180	0.26		< 1.0	< 1.0	< 0.250	1.49	< 0.100	902	0.0326	95.4	0.017	< 0.050	-	0.003	3.73	3.8
FR PP1	FR PP1 WS MON 2022-03-01 N	2022-03-08	-	-		_	8.04	1560	2360	< 1.0		0.17		< 1.0	< 1.0	< 0.250	1.35	< 0.100	890	0.0139	91.2	0.0156	< 0.050	-	0.0101	3.32	3.49
FR_PP1	FR_PP1_WEK_2022-03-14_N	2022-03-14	-	-	-	-	8.1	1450	2280	1.2	1900			< 1.0	< 1.0	< 0.250	1.34	< 0.100		0.0151	88.3	0.0187	-	-	0.012	-	-
FR_PP1	FR_PP1_WEK_2022-03-21_N	2022-03-21	-	-		-	-	-	-	3.6	-	5.52		-	-	-	-	-	-	-	-	-	-	-	-	-	-
FR_PP1 FR_PP1	FR_DC_WEK_2022-03-28_N FR_PP1_MON_2022-04-01_N	2022-03-28 2022-04-04	-	-	- '		1 -	- 070	- 4400	13.85		28			- 40	< 0.250	0.75		- 070	0.0131	-	0.0105	- 0.040	-	- 0.0500	- 7.40	6.87
FR_PP1 FR_PP1	FR_PP1_MON_2022-04-01_N FR_PP1_WEK_2022-04-11_N	2022-04-04	+:-	-		-	8.1	672	1190	10.3 2.7	898	15.9 8.83		< 1.0	< 1.0	< 0.250	0.75	< 0.100	372	0.0131	36	0.0105	0.816	-	0.0582	7.19	0.87
FR PP1	FR_FFI_WER_2022-04-11_N FR_DC2_WEK_2022-04-18_N	2022-04-11	+-	-		_	+ :	+-	+ -	12.65		10.15		-	-	+ -	-	+	+	-	+ -	-	-	-	+ -	-	-
FR_PP1	FR_PP1_WEK_2022-04-25_N	2022-04-28	1 -	-		_	+ :	+ -	-	5.7	-	7.9		-	-	-	-	T -	-	-	-	-	-	-	-	-	-
FR_PP1	FR_PP1_MON_2022-05-01_N	2022-05-05	-	-			8.03	744	1240	2.7	942	4.52		< 1.0	< 1.0	< 0.250	0.59	0.116	360	0.007	36.7	0.0086	< 0.050	-	0.0137	4.06	4.04
FR_PP1	FR_PP1_WEK_2022-05-09_N	2022-05-11	-	-		-	-	-	-	2.3	-	5.27		-	-	-	-	-	-	-	-	-	-	-	-	-	-
FR_PP1 FR_PP1	FR_PP1_WEK_2022-05-16_N FR_DC2_WEK_2022-05-23_N	2022-05-18 2022-05-23	-	-			<u> </u>	-	-	3	-	2.98		-	-	-	-	-	-	-	-	-	-	-		-	-
FR_PP1	FR_DC2_WER_2022-05-23_N FR_PP1_WEK_2022-05-30_N	2022-05-23	+:-				+ -	+ -	+ :-	3.85	+	1.885 2.48			1	+:-		H:-		- :	+ :-	- :	+		+:-	-	-
FR PP1	FR_FFT_WER_2022-05-30_N FR_DC2_MON_2022-06-01_N	2022-06-07	+-	-		+-	8.09	1040	1710	2.2			332.5	< 1.0	< 1.0	< 0.250	0.95	0.1045	523.5	0.013	57.7	0.01525	< 0.050	-	0.00775	5.66	5.12
FR PP1	FR DC2 WEK 2022-06-13 N	2022-06-15	-	-	-	-	- 0.03	- 10-10		1.35	-	6.125		-	- 1.0	- 0.200	-	-	-	-	-	-	- 0.000	-	-	-	-
FR_PP1	FR_PP1_WEK_2022-06-20_N	2022-06-20	-	-		-	-	-	-	4.4	-	7.09		-	-	-	-	-	-	-	-	-	-	-	-	-	-
FR_PP1	FR_PP1_WEK_2022-06-27_N	2022-06-28	-	-		-		-	-	8.5	-	1.79		-	-	-	-	-	-	-	-	-	-	-	-	-	-
FR_PP1	FR_DC2_MON_2022-07-01_N	2022-07-04	-	-		-	8.05	1170	1740	1.95	1370	1.115		< 1.0	< 1.0	< 0.250	0.915	< 0.100	601	0.0101	58.2	0.0108	< 0.050	-	0.0233	4.25	3.955
FR_PP1 FR_PP1	FR_PP1_WEK_2022-07-11_N FR_DC1_MON_2022-08-01_N	2022-07-12 2022-08-02	-	-	- '	-	1 -	4540	2365	1.4	- 0040	1.14			- 40	- 0.050	4 475	- 0.40		0.05045	-	-	< 0.050	-	- 0.0040	- 0.40	3.265
FR_PP1 FR_PP1	FR_DC1_MON_2022-08-01_N FR_PP1_WS_SEPT-2022_N	2022-08-02	+:-	-		-	8.16 7.96		2650	2.7		1.005		< 1.0 < 1.0	< 1.0	< 0.250	1.475 1.54	0.12	935 1110	0.05045	93 110	0.13 0.156	0.767	-:-	0.0216 0.0085	3.43	3.265
FR PP1	FR PP1 MON 2022-10-25 NP	2022-10-24	+		-	+-	8.12			2.2			436	< 1.0		< 0.250		0.112		0.0209	102	0.0529	< 0.050	-	0.0065	4.03	3.88
	. IV_I I I_MON_2022-10-20_NF	2022-10-24		- 1	- 1		0.12	1000	2400	4.4	2000	0.79	400	- 1.0	~ 1.0	- 0.230	1.00	0.112	1000	0.0114	102	0.0020	- 0.000		0.0000	4.00	3.00

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted n/a denotes no applicable standard

^a Guideline varies with hardness ^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

APPENDIX C - TABLE 1: Summary of Analytical Results for Dissolved Organics, Nutrients and Organics

				Field	d Param	otors			-	Physical Pa	arameter			1		Dies	olved Ino	manics					Nutrient					
			1	1 1010	a i Giaili				т.	yo.oarre		i –				21330		games	1				Nutrient	ĺ				_
Sample	Sample	Sample Date	Field Temperature	рн (feld)	Dissolved Oxygen	Field Conductivity	Field ORP	Hd.	Hardness	Conductivity	Total Suspended Solids	Total Dissolved Solids	Turbidity	Bicarbonate	Carbonate	Hydroxide	Bromide	Chloride	Fluoride	Sulfate	Ammonia Nitrogen	Nitrate Nitrogen	Nitrite Nitrogen	Kjeldahl Nitrogen-N	Ortho-Phosphate	Phosphorus, Total	Total Organic Carbon	Dissolved Organic Carbor
Location	ID	(yyyy-mm-dd)	C	pH	mg/L	µS/cm	mV	pН	mg/L	μS/cm	mg/L	mg/L	ntu	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
BC WQG FWAL		, ,		6.5 Minimum 6.5 Maximum	Acute Chronic			6.5 Minimum A		n/a	25 Acute Chronic		α Acute N Chronic		n/a	n/a	n/a	Acute	Acute	Chronic	9 5 6 5 6 0.681-28.7 ^b 0.102-2.08 ^b	Acute Chronic	Acute Chronic		n/a	9 5 0.015	n/a	n/a
Fording River Operation			11/4	10.0 0		100	100	0.0 0	1 100	11/4	120 0	1 100	, o _	1 100	100	100	100	1000 100	1 0.4	1120 420	0.001 20.1 0.102 2.00	102.0 0.1	10.00 0.00 0.02 0.20	100	11/4	0.010	100	
FR_PP1	FR_PP1_MON_2022-11-01_N	2022-11-02	-	-	-	-	-	7.94	1700	2360	7.7	2220	9.35	408	< 1.0	< 1.0	< 0.250	1.44	0.106	1070	0.0055	102	0.033	7.48	-	0.0151	3.65	3.41
FR_SCOUT	FR_SCOUT_WS_2022-1-06_N_0900	2022-01-06	-	-	-	-	-	8.15	2050	2980	2.2	2720	0.75	517	< 1.0	< 1.0	< 0.250	3.39	0.121	1670	0.015	36.4	0.0134	0.596	-	0.0199	2.05	2.08
FR_SCOUT	FR_SCOUT_WS_2022-01-13_N	2022-01-13	-	-	-	-	-	8.41		3010	3.6	2840			17.3	< 1.0	< 0.250		0.186		0.0143	34.5	0.0102	< 0.050	-	0.0062	2.18	2.17
FR_SCOUT FR_SCOUT	FR_SCOUT_WS_2022-02-10_N_0900	2022-02-10	-	<u> </u>	-	-	<u> </u>	8.25	2070	3000	4.2	3130		550	< 1.0	< 1.0	< 0.250			1850	0.0295	35	0.0126	< 0.050	<u> </u>	0.0044	2.1	1.96
FR_SCOUT	FR_SCOUT_WS_20220216_N FR_SCOUT_WS_2022-03-10_N	2022-02-16	+-	-		-	-	8.37	891 2180	1410 2880	1.6 4.2	1090 2560	0.29	270 605	7.8	< 1.0	< 0.250		< 0.179	529	0.0089 0.0075	30.8 8.84	0.0214 < 0.0050	0.319	-	0.0053	0.74 2.1	1.98
FR_SCOUT	FR_SCOUT_WS_2022-03-10_N FR_SCOUT_2022-03-10_N_0900	2022-03-10	+ -	+ :-		-		8.04	2180	2880	4.2	2000	0.34	- 000	- 1.0	× 1.0	- 0.230	46.9	- 0.100	1000	0.0075	6.64	< 0.0050	0.001	-	0.0782	2.1	1.90
FR SCOUT	FR SCOUT 2022-04-07 N 0900	2022-03-10	+ -	-	-	-	-	-	1800	-	<u> </u>	-		T -	-	-	T -	<u> </u>	T -	T -	-	-		-	-	< 0.100	-	
FR SCOUT	FR SCOUT WS 2022-04-07 N	2022-04-07	-	-	-	-	-	8.24	-	2540	3	2320	1.11	547	< 1.0	< 1.0	< 0.250	36.2	0.16	1330	0.0073	17.4	0.0098	< 0.050	-	-	2.11	1.93
FR SCOUT	FR SCOUT 2022-05-05 N 0900	2022-05-05	-	-	-	-	-	8.35	527.667	834	6.1	622	3.71	198	1.8	< 1.0	< 0.250			254	< 0.0050	15.5	< 0.0050	0.461	-	0.04933	4.91	4.27
FR_SCOUT	FR_SCOUT_2022-06-02_N_0900	2022-06-02	-	-	-	-	-	8.13	251	491	1.1	303	1.28	128	< 1.0	< 1.0	< 0.050	0.36	0.071	149	< 0.0050	3.38	0.0022	0.325	-	0.05515	3.63	3.46
FR_SCOUT	FR_SCOUT_WS_2022-06-04_N	2022-06-04	-	-	-	-	-	8.23	257	454	6	297	1.49	174	< 1.0	< 1.0	< 0.050	1.6	0.166	111	0.0075	4.68	0.0015	0.398	-	0.008	2.02	2.06
FR_SCOUT	FR_SCOUT_2022-07-14_N_0900	2022-07-14	-	-	-	-	-	8.02	902	1320	1.5	1110	0.7	296	< 1.0	< 1.0	< 0.250		< 0.100		0.005	17.7	0.0133	0.588	-	< 0.050	2.09	1.96
FR_SCOUT	FR_FRSCOUT_WS_2022_07_25_N	2022-07-25	-	-	-	-	-	8.48	392	689	1.4	483	0.44	176	9	< 1.0	< 0.050		0.201	187	0.0053	10.8	0.0108	0.263	-	0.0043	0.73	0.65
FR_SCOUT	FR_SCOUT_2022-08-11_N_0900	2022-08-11	-	-	-	-	-	8.16	1660	2240	3.5	2210		410	< 1.0	< 1.0	< 0.250			1170	0.0101	30.6	0.0228	< 0.050	-	< 0.100	1.17	1.14
FR_SCOUT	FR_SCOUT_2022-09-08_N_0900	2022-09-08	-	-	-	-	-	7.98	2150	2930	5.1	2880	0.58	601	< 1.0	< 1.0	< 0.250		0.106	1650	< 0.0050	38.7	0.0195	< 0.050	-	0.0545	1.32	1.6
FR_SCOUT FR_SCOUT	FR_SCOUT_2022-10-06_N_0900	2022-10-06	-	-	-	-	-	8.13	2170	2520	2.3	2460	0.53	555	< 1.0	< 1.0	< 0.250			1430	< 0.0050	36.1	0.0192	< 0.050	-	< 0.100	1.74	1.7
FR_SCOUT	FR_SCOUT_2022-11-03_N_0900 FR_SCOUT_2022-12-01_N_0900_CALC	2022-11-03	-	-	-	-	-	8.06	2380	2740 3130	3	3040	0.83	404 608	< 1.0	< 1.0	< 0.250		0.145	1620 1810	0.0062	40.4 38.6	0.0159	< 0.050 < 0.050	-	0.0524 < 0.100	1.96	1.86
FR_SCOUT	FR_SCOUT_2022-12-01_N_0900_CALC	2022-12-01	+ :	-	-	-	-	8.18 8.18	2620	3180	2.5	3160	0.28		< 1.0	< 1.0	< 0.250		0.177	1860	0.0153 0.0194	40.8	0.0109	< 0.050	-	< 0.100	1.81	1.65
FR SCOUT	FR SCOUT 2022-12-22 N 0900 FR SCOUT 2022-12-29 N 0900	2022-12-22	-	-	-	-	-	8.17	2550	3080	3.2	3210	0.21	584	< 1.0	< 1.0	< 0.250		0.155	1800	0.0194	41.7	0.0104	< 0.050		< 0.100	1.68	1.48
FR SP1	FR SP1 MON 2022-01-04 N	2022-12-23		-	-			8.17	672	1100	1.4	759	0.24	503	< 1.0	< 1.0	< 0.250		0.133	294	0.0156	8.29	0.0144	0.409		0.0021	0.88	0.93
FR SP1	FR SP1 MON 2022-02-01 N	2022-02-06	-	-	-	-	-	8	1640	2380	2.6	2050	0.23	457	< 1.0	< 1.0	< 0.250		< 0.100		0.033	96.1	0.0163	< 0.050	-	0.001	3.45	3.3
FR SP1	FR SP1 MON 2022-03-01 N	2022-03-04	-	-	T -	-	-	8.09	674	1080	1.7	771	0.5	464	< 1.0	< 1.0	< 0.250		0.272	277	0.0404	7.08	0.0267	0.263	-	< 0.0020	0.64	2
FR SP1	FR SP1 WEK 2022-03-14 N	2022-03-19	-	-	-	-	-	-	-	-	2.8	-	3.99	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FR_SP1	FR_SP1_WEK_2022-03-21_N	2022-03-23	-	-	-	-	-	-	-	-	2.9	-	4.45	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FR_SP1	FR_SP1_WEK_2022-03-28_N	2022-03-31	-	-	-	-	-	-	-	-	1.2	-	3.16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FR_SP1	FR_SP1_MON_2022-04-01_N	2022-04-05	-	-	-	-	-	8.13	729	1250	1.8	957	1.58	448	< 1.0	< 1.0	< 0.250			401	0.078	6.57	0.0291	0.556	-	0.0038	1.62	1.7
FR_SP1	FR_SP1_WEK_2022-04-11_N	2022-04-14	-	-	-	-	-	-	-	-	< 1.0	-	0.48	-	-	-	ļ -	-	-	-	-	-	-	-	-	-	-	
FR_SP1 FR_SP1	FR_SP1_WEK_2022-04-18_N FR_DC2_WEK_2022-04-25_N	2022-04-19	-	-	-	-	-	-	-	-	1.1	-	0.64	<u> </u>	-	-	+	-	+-	- -	-	-	+ :	-	<u> </u>	-	-	\vdash
FR_SP1	FR_DC2_WEK_2022-04-25_N FR_DC2_MON_2022-05-01_N	2022-04-28 2022-05-02	+ -	-	-	-	-	8.075	738.5	1235	1.4	915	0.42	500.5	< 1.0	< 1.0	< 0.250	1.24	0.2655	357.5	0.02525	9,555	0.0153	0.425	-	< 0.0020	1.06	1.13
FR SP1	FR SP1 WEK 2022-05-01 N	2022-05-02	+ -	-	-	-	-	8.075	730.5	1233	< 1.0	913	0.36	300.5	< 1.0	< 1.0	- 0.230	1.24	0.2000	337.3	0.02525	9.555	0.0153	0.420	-	- 0.0020	1.00	1.13
FR SP1	FR SP1 WEK 2022-05-16 N	2022-05-16	+ -	+ -	+	-	-	H	+ -	-	2.5	+	0.19	+	-	-	+	+	+ -	<u> </u>	-		+ - :	-	-	-	-	
FR SP1	FR SP1 WEK 2022-05-23 N	2022-05-23	+ -	-	-	-	-	-	-	-	< 1.0	-	0.12	+ -	-	-	—	<u> </u>	T -	-	-	-	-	-	-	-	-	
FR_SP1	FR_SP1_WEK_2022-05-30_N	2022-06-01	-	-	-	-	-	-	-	-	< 1.0	-	0.18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FR_SP1	FR_SP1_MON_2022-06-01_N	2022-06-08	-	-	-	-	-	7.82	703	1200	1.2	800	0.13	550	< 1.0	< 1.0	< 0.250				0.0122	13.2	0.0085	0.448	-	0.0028	< 0.50	< 0.50
FR_SP1	FR_FLD1_2022-06-13_N	2022-06-13	-	-	-	-	-	5.55	< 0.50	< 2.0	< 1.0	< 10	< 0.10	< 1.0	< 1.0	< 1.0	< 0.050	< 0.10	< 0.020	< 0.30	< 0.0050	< 0.0050	< 0.0010	< 0.050	-	< 0.0020	< 0.50	< 0.50
FR_SP1	FR_SP1_WEK_2022-06-13_N	2022-06-13	-	-	-	-	-	-	-	-	1	-	0.75	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
FR_SP1	FR_SP1_WEK_2022-06-20_N	2022-06-20	-	-	-	-	-	-	-	-	1.6	-	0.17	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
FR_SP1	FR_SP1_WEK_2022-06-27_N	2022-06-29	-	-	-	-	-	-		- 4000	2.1	- 700	0.15	- 454		- 10	- 0.050		- 0.000	- 005	- 0.0000	- 100		-	-		- 0.7	0.04
FR_SP1 FR_SP1	FR_SP1_MON_2022-07-01_N FR_SP1_WEK_2022-07-11_N	2022-07-04 2022-07-12	+-	! -	-	-	-	8.09	691	1080	< 1.0			454	< 1.0	< 1.0	< 0.250	0.72	0.222	235	0.0069	10.9	< 0.0050	0.344	-	< 0.0020	0.7	0.91
FR_SP1	FR_SP1_WEK_2022-07-11_N FR_SP1_MON_2022-08-01_N	2022-07-12	+ -	+ :	-	-	-	8.07	632	875	2.1	753	0.55	454	< 1.0	< 1.0	< 0.250	1.05	0.316	272	0.0138	8.76	0.0197	0.482	-	0.0165	0.88	0.91
FR_SP1	FR DC2 MON 2022-09-01 NP	2022-08-02	+:-	+	-	-	H	8.115		1090	1.1	846.5	0.5		< 1.0	< 1.0	< 0.250		0.316	321.5	0.01395	6.88	0.0197	0.482	- : -	0.0023	1.34	1.285
FR SP1	FR SP1 WS 2022-09-01 NP	2022-09-00	+ -	-	-	-	H	7.81	767	1150	1.45	862	0.44	420.5	< 1.0	< 1.0	< 0.250		0.327		0.01393	6.02	0.0357	0.456	-	0.0023	0.99	0.89
FR SP1	FR SP1 MON 2022-10-01 N	2022-10-19	+-	+ -	+	-	-	7.94	798	1100	1.3	884	0.6	423	< 1.0	< 1.0	< 0.250		0.324	351	0.0511	5.71	0.0155	0.074	-	0.0036	1.18	1.11
FR SP1	FR SP1 MON 2022-11-01 N	2022-10-13	+ -	+ -	+	-	-	8.13	699	1100	1.3	881			< 1.0	< 1.0		0.93			0.0311	5.24	0.0104	0.318	-	< 0.0020	0.93	0.99
-														_	_	-	+								-			

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted n/a denotes no applicable standard

^a Guideline varies with hardness ^b Guideline varies with pH and water temperature ^c Guideline varies with chloride

APPENDIX C - TABLE 1: Summary of Analytical Results for Dissolved Organics, Nutrients and Organics

				Field	l Param	eters			F	hysical Pa	arameters	5		Π		Disso	lved Inor	ganics					Nutrien	ts				
Sample	Sample	Sample Date	Field Temperature	ph (field)	Dissolved Oxygen	Field Conductivity	Field ORP	Н	Hardness	Conductivity	Total Suspended Solids	Total Dissolved Solids	Turbidity	Bicarbonate	Carbonate	Hydroxide	Bromide	Chloride	Fluoride	Sulfate	Ammonia Nitrogen	Nitrate Nitrogen	Nitrite Nitrogen	Kjeldahl Nitrogen-N	Ortho-Phosphate	Phosphorus, Total	Total Organic Carbon	Dissolved Organic Carbon
Location	ID	(yyyy-mm-dd)	С	pН	mg/L	μS/cm	mV	pН	mg/L	μS/cm	mg/L	mg/L	ntu	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
BC WQG FWAL			n/a	9.5 Minimum 6.0 Maximum	a Acute	n/a	n/a	Winimum 6.5 Maximum	n/a	n/a	5 Acute Chronic	n/a	[∞] Acute δ Chronic	n/a	n/a	n/a	n/a	Ochronic Chronic	0.4- a	Ohronic 128-429ª	野	9 32.8 3.7	Chronic Chronic 0.005-0.00,000-0.00	f n/a	n/a	O.Dr. O.Dr. O.Dr.	n/a	n/a
Greenhills Operation																												
GH_FC1 GH_FC1	GH_FC1_WS_2022-01-03_NP GH_FC1_WS_2022-02-07_NP	2022-01-10 2022-02-07	-	-	-	-	-	7.93	332	590 573	< 1.0	383 328		345 375	< 1.0	< 1.0	< 0.050		0.125	58.9 33.9	0.0063	0.0306	< 0.0010	0.315	-	0.0086	7.17	
GH_FC1	GH_FC1_WS_2022-02-07_NP GH_FC1_WS_2022-03-07_N	2022-02-07	+ -	-	-			8.15 7.89	299	549	< 1.0	306	0.18	401	< 1.0	< 1.0	< 0.050		0.114	17.4	0.0066 < 0.0050	0.0157	< 0.0010 < 0.0010	0.179		< 0.0036	4.93	
GH_FC1	GH_FC1_WS_2022-03-14_NP	2022-03-07	+ -	1	Ė	-	-	8.27	288	585	1.4	367	0.12	324	< 1.0	< 1.0	< 0.050		0.113	45.2	0.0057	0.033	< 0.0010	0.149	-	0.0068	4.33	
GH_FC1	GH_FC1_WS_2022-03-20_NP	2022-03-20	-	-	-	-	-	8.19	321	537	8.9	298	2.52	323	< 1.0	< 1.0	< 0.050	12.6	0.099	42.3	0.0058	0.0404	< 0.0010	0.198	-	0.0154	4.89	4.59
GH_FC1 GH_FC1	GH_FC1_WS_2022-03-21_NP GH_FC1_WS_2022-03-28_NP	2022-03-22 2022-03-29	-	-	-		-	8.21	263 267	517 413	3.3	340 248	0.31	359 293	< 1.0 < 1.0	< 1.0	< 0.050		0.134	16.4 13.1	< 0.0050	0.0208	0.0021	0.218		0.0057 0.0235	6.42 8.23	
GH_FC1	GH_FC1_WS_2022-03-28_NP GH_FC1_WS_2022-04-04_NP	2022-03-29	+ -	-	-	-	-	8.16 8.2	267	413	10.9	248	2.52 0.23	300	< 1.0	< 1.0	< 0.050		0.12	15.9	< 0.0050 < 0.0050	0.0055	< 0.0010 < 0.0010	0.28	-	0.0235	6.63	
GH FC1	GH FC1 WS 2022-04-11 NP	2022-04-00	-		-	-	-	8.22	255	473	2.5	249	0.23	338	< 1.0	< 1.0	< 0.050		0.133	17	< 0.0050	0.0087	0.0015	0.189	-	0.0074	6.3	
GH_FC1	GH_FC1_WS_2022-04-18_NP	2022-04-21	-	-	-	-	-	8.25	266	459	1.2	285	0.18	318	< 1.0	< 1.0	< 0.050		0.149	14.8	0.0208	< 0.0050	< 0.0010	0.205	-	0.0083	5.98	
GH_FC1	GH_FC1_WS_2022-04-25_NP	2022-04-27	-	-	-	-	-	8.44	259	462	1.3	278	0.38	303	10	< 1.0	< 0.050			15.3	< 0.0050	< 0.0050	< 0.0010	0.197	-	0.003	6.12	
GH_FC1	GH_FC1_WS_2022-05-02_NP	2022-05-04	-	-	-	-	-	8.56	262	471	3.4	298	0.11	304	10	< 1.0	< 0.050		0.118	14.1	0.0055	< 0.0050	< 0.0010	0.202	-	0.0038	6.14	
GH_FC1 GH_FC1	GH_FC1_WS_2022-05-09_NP GH_FC1_WS_2022-05-16_NP	2022-05-11	-	-	-	-	-	8.3	257 264	468 483	2	312 293	0.27	325 339	1.8	< 1.0	< 0.050		0.154	16.8 14.4	< 0.0050	0.006	< 0.0010	0.225	-	0.0032	6.44	
GH_FC1	GH_FC1_WS_2022-05-16_NP GH_FC1_WS_2022-05-23_NP	2022-05-18	+ -	-	-	-	-	8.2 8.17	287	484	1.4	293		335	< 1.0	< 1.0	< 0.050		0.129	13	0.0085 < 0.0050	0.0066	< 0.0010 < 0.0010	0.172		0.0038	5.96	
GH FC1	GH FC1 WS 2022-05-30 NP	2022-05-27	-		-	-	-	8.39	270	497	1.3	306	0.17	336	7.3	< 1.0	< 0.050		0.145	13	< 0.0050	0.003	< 0.0010	0.409	-	0.0032	5.02	
GH_FC1	GH_FC1_WS_2022-06-06_NP	2022-06-08	-	-	-	-	-	8.15	266	508	< 1.0	300	0.11	388	< 1.0	< 1.0	< 0.050		0.136	13.9	0.0064	0.0077	< 0.0010	0.239	-	0.0043	6.06	
GH_FC1	GH_FC1_WS_2022-06-13_NP	2022-06-15	-	-	-	-	-	8.39	255	428	1.7	282	0.24	310	10	< 1.0	< 0.050		0.147	9.26	0.0071	0.0137	< 0.0010	0.446	-	0.0041	8.71	
GH_FC1	GH_FC1_WS_2022-06-20_NP	2022-06-22	-	-	-	-	-	8.46	314	496	1.3	298	0.24	329	10.9	< 1.0	< 0.050		0.125	8.2	< 0.0050	< 0.0050	< 0.0010	0.746	-	0.004	7.07	6.72
GH_FC1 GH_FC1	GH_FC1_WS_2022-06-27_NP GH_FC1_WS_2022-07-04_NP	2022-06-29	-	-	-	-	-	8.16 8.33	281	510 479	1.9	304	0.25	364 346	2.5 4.9	< 1.0	< 0.050		0.14	8.46 6.39	< 0.0050	< 0.0050	< 0.0010	0.244	-	0.004	6.27	
GH_FC1	GH_FC1_W3_2022-07-04_NP GH_FC1_WS_2022-07-11_NP	2022-07-00	+ -	-	-			8.26	284	508	< 1.2	332	0.19	381	< 1.0	< 1.0	< 0.050		0.138	7.09	< 0.0050 < 0.0050	0.006	0.0018	0.205		0.0034	5.92	
GH FC1	GH FC1 WS 2022-08-01 NP	2022-07-13	-	-	-	-	-	8.4	302	526	< 1.0		0.22	375	12.6	< 1.0	< 0.050		0.146	2.27	0.0051	< 0.0050	< 0.0010	0.237	-	0.0034	6.05	
GH_FC1	GH_FC1_WS_2022-09-05_NP	2022-09-08	-	-	-	-	-	8.2	-	557	< 1.0	338	0.36	406	< 1.0	< 1.0	< 0.050	0.29	0.172	2.05	0.0063	0.0102	< 0.0010	0.205	-	0.004	6.48	
GH_FC1	GH_FC1_WS_2022-10-03_NP	2022-10-05	-	-	-	-	-	8.24	316	534	1.8	291	0.3	428	< 1.0	< 1.0	< 0.050		0.157	3.74	< 0.0050	0.0057	< 0.0010	0.22	-	0.0031	6.08	
GH_FC1 GH GH1	GH_FC1_WS_2022-11-07_NP	2022-11-09	-	-	-	-	-	8.16	263	538	< 1.0	330	0.33	391	< 1.0	< 1.0	< 0.050		0.147	12.4	0.0064	0.0086	< 0.0010	0.241	-	0.0027	5.42	
GH_GH1	GH_GH1_WS_2022-01-03_N GH_GH1_WS_2022-02-07_N	2022-01-04 2022-02-04	+-	-	-	-	-	8.2 8.17	951	1520 1480	1.4	1270	0.58	371 364	< 1.0	< 1.0	< 0.250		0.139	711 749	0.0222	4.57	0.006	0.557	-	0.0031	1.92	
GH GH1	GH GH1 WS 2022-02-17 N	2022-02-04	+ -		-		-	8.43	1000	1590	1.7	1420		360	12.5	< 1.0	< 0.250	1.74	0.151	752	0.0138	5.16 4.9	< 0.0050	0.461		0.0042	2.01	
GH_GH1	GH_GH1_WS_2022-02-20_NP	2022-02-20	-	-	-	-	-	8.44	1030	1600	< 1.0	1380	0.57	342	13	< 1.0	< 0.250		0.153	753	0.0063	4.88	< 0.0050	0.4	-	0.0045	1.58	
GH_GH1	GH_GH1_WS_2022-02-21_N	2022-02-21	-	-	-	-	-	8.44	963	1590	< 1.0	1390	0.58	319	12.5	< 1.0	< 0.250		0.158	754	0.0068	4.9	0.005	0.428	-	0.0053	1.58	
GH_GH1 GH_GH1	GH_GH1_WS_2022-03-07_N	2022-03-04	-	-	-	-	-	8.29	1040	1590	1.4	1430		372	< 1.0	< 1.0	< 0.250	2.59	0.125	788	0.0224	5.2	0.0084	0.409	-	0.004	1.54	1.34
GH_GH1 GH_GH1	GH_GH1_WS_2022-03-14_N GH_GH1_WS_2022-03-21_N	2022-03-15 2022-03-21	-	-	-	-	-	-	-	-	1.6 4.5	-	3.6	H	-	-	-	-	-	-	-	+ -	-	+	-	-	+	+-
GH GH1	GH GH1 WS 2022-03-21 N	2022-03-21	+-		-	-	-	-	-	-	8.4	-	4.25 9.21	+-	-	+	-		-		-	+ :-	-	+-	-	+	+	+
GH_GH1	GH_FOX3_WS_2022-04-04_N	2022-04-04	-	-	-	-	-	8.265	614	1030	3.55	748	4.585	324	< 1.0	< 1.0	< 0.250		< 0.100	374.5	0.0122	2.48	0.00505	0.3505	-	0.01015	3.335	3.335
GH_GH1	GH_GH1_WS_2022-04-04_N	2022-04-04	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1 -
GH_GH1	GH_GH1_WS_2022-04-11_N	2022-04-11	-	-	-	-	-	-	-	-	3.1	-	4.38	-	-	-	-	-	-	-	-	-		-	-	-	-	4 -
GH_GH1 GH_GH1	GH_GH1_WS_2022-04-18_N GH_GH1_WS_2022-04-25_N	2022-04-19 2022-04-26	-	-	-	-	-	-	-	-	1.9 9.9	-	2.06	1	-	1	-	-	-	-	-	-	-	+	-	+:-	1	+ :
GH_GH1	GH_GH1_WS_2022-04-25_N GH_GH1_WS_2022-05-09_N	2022-04-26	+-	1	-	-	-	-	+	-	2.8	+-	4.71	+-	-	+	-	-	+		-	-		+-	-	+	+	+-
GH_GH1	GH_GH1_WS_2022-05-16_N	2022-05-17	+ -	-	-	-	-	-	-	-	2.3	-	2.14	-	-	-	-	-	-	-		-	-	T -	-	-	-	+-
GH_GH1	GH_GH1_WS_2022-05-23_N	2022-05-23	-	-	-	-	-	-	-	-	1.8	-	1.44	<u> </u>	-	-	-	-	-		-	-	-	1 -	-	-	-	1
GH_GH1	GH_GH1_WS_2022-05-30_N	2022-05-30	-	-	-	-	-	-	-	-	2.5	-	1.37	-	-	-	-	-	-		-	-	-	1	-			1.5
GH_GH1	GH_GH1_WS_2022-06-06_N	2022-06-06	1 -	-	-	-	-	8.52	575	981	1	701	1.08	275	9.7	< 1.0	< 0.050	0.91	0.107	343	< 0.0050	2.61	0.0016	0.315		0.0041	3.58	
GH_GH1 GH_GH1	GH_GH1_WS_2022-06-13_N GH_GH1_WS_2022-06-17_N	2022-06-14 2022-06-17	-	-	-	-	-	-	-	-	1.3		0.82	-	-	-	-	-	-	-	-	+ :-	-	+	-	+:-	-	+ :
GH_GH1	GH_GH1_WS_2022-06-17_N GH_GH1_WS_2022-06-18_N	2022-06-17	+	+	-		-	-	+		34.2	H÷.	61.7 25.5	+		H	H				-	-		+		+:-	+	+-
	GH GH1 WS 2022-06-16 N	2022-06-19	+	+	-	-	⊢÷-		-		17.3	-	17.8	+	<u> </u>	+ -						+ :-	-	+	-	+:-	+	+-
GH GH1																												

< Denotes concentration less than indicated detection limit

n/a denotes no applicable standard

⁻ Denotes analysis not conducted

^a Guideline varies with hardness ^b Guideline varies with pH and water temperature

^o Guideline varies with chloride

APPENDIX C - TABLE 1: Summary of Analytical Results for Dissolved Organics, Nutrients and Organics

				Field	i Param	eters				Physical F	Parameter	rs		T		Disso	olved Ino	rganics					Nutrient	s				
			9		E	A:					Solids	Solids									u			ž		al	rbon	ic Carbon
Sample	Sample	Sample Date	Field Temperatur	pH (field)	Dissolved Oxyge	Field Conductivit	Field ORP	玉	Hardness	Conductivity	Total Suspended	Total Dissolved 8	Turbidity	Bicarbonate	Carbonate	Hydroxide	Bromide	Chloride	Fluoride	Sulfate	Ammonia Nitrog	Nitrate Nitrogen	Nitrite Nitrogen	Kjeldahl Nitroger	Ortho-Phosphate	Phosphorus, Tot	Total Organic Ca	Dissolved Organ
Location	ID	(yyyy-mm-dd)	С		mg/L	μS/cm	mV	pH F	mg/L	μS/cm	mg/L	mg/L	ntu	mg/L	mg/L	mg/L	mg/L		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
				Minimum Maximum	Acute Chronic			Minimum			Acute		Acute					Acute	Acute	Chronic	Acute Chronic	Acute Chronic	Acute Chronic			Chronic		
BC WQG FWAL			n/a	6.5 9	1 5	n/a	n/a	6.5 9	n/a	n/a	25 5	n/a	8 2	n/a	n/a	n/a	n/a	600 150	0.4- a	128-429	0.681-28.7 ^b 0.102-2.08 ^b	32.8 3.7	0.06-0.60° 0.02-0.20°	n/a	n/a	0.015	n/a	n/a
Greenhills Operation GH GH1	GH GH1 WS 2022-06-21 N	2022-06-21	Τ.					_	Τ.	Τ.	7.9	_	11.4		-			_			1	Τ.	1			T -		
GH GH1	GH GH1 WS 2022-06-22 N	2022-06-22	1	-	-	-	-	-		1	6.5	-	6.88		-		-	<u> </u>	-	-	-	<u> </u>	- :	-	-	+ -	-	1
GH_GH1	GH_GH1_WS_2022-06-27_N	2022-06-27	-	-	-		-	-	-	-	3.4	-	6.86		-	-	-	-		-	-	-	-	-	-	-	-	-
GH_GH1 GH_GH1	GH_GH1_WS_2022-07-04_N GH_FOX3_WS_2022-07-04_N	2022-07-04	+-	-	-	-	-	7.49	355.5	595.333	3 2.6667	430.67	2.57	182	7.33333	< 1.0	< 0.250	0.66667	0.0787	214 422	0.007533333	1.4183333	< 0.0050	0.2283	-	0.0058	3.16333	3.09
GH_GH1	GH_F0X3_WS_2022-07-04_N GH_GH1_WS_2022-07-11_N	2022-07-04	+ -	+	-	-	-	7.49	- 300.5		3.3	430.07	2.57			- 1.0	- 0.230	0.00007		- 14.433	0.00/533333	1.41833333	< 0.0000	-	-	- 0.0006	- 10333	3.08
GH_GH1	GH_GH1_WS_2022-08-01_N	2022-08-04	-	L -	-	-	-	8.44	937	1340	2.6	1130	0.9	306	15.7	< 1.0	< 0.250		0.144	614	0.0093	3.83	0.0097	0.532	-	0.0059	2.74	2.8
GH_GH1	GH_GH1_WS_2022-09-05_N	2022-09-06	-	-	-	-	-	8.49	1020	1510	1.4	1350	1.06		13.9	< 1.0	< 0.250		0.149	784	0.008	4.81	0.0154	0.4	-	0.0032	1.76	1.67
GH_GH1 GH_GH1	GH_GH1_WS_2022-10-03_N GH_GH1_WS_2022-11-07_N	2022-10-03	+ :	-	-	-	-	8.35 8.39	1130	1480	1.2	1410	1.17		5.2 12.8	< 1.0	< 0.250		0.147	840 897	< 0.0050 < 0.0050	4.83	0.0153 0.0123	0.426	-	0.0049	1.95	2.18
GH GH1	GH GH1 WS 2022-11-07 N CALC	2022-11-07	-	1	-	-	-	8.35	1130	1550	1.7	1440	1.31		5.4	< 1.0	< 0.250			842	< 0.0050	4,93	0.0062	0.401	-	0.0035	1.19	1.06
GH_GH1	GH_GH1_WS_2022-11-10_N	2022-11-10	-	-	-	-	-	8.39	970	1630	1.2	1430			8.3	< 1.0	< 0.250		0.158	824	0.005	4.83	0.0073	0.496	-	0.004	1.85	1.8
GH_GH1 GH_LC1	GH_FOX1_WS_2022-11-17_FD GH_LC1_WS_2022-06_06_N	2022-11-17 2022-06-19	+ -	-	-	-	-	7.3533	713.5	1047.33 743	3 1.4 17.6	963.33 523	0.6533	197.33 255	6.46667 < 1.0	< 1.0	< 0.250	1.24667	0.1193	570.77 186	0.007633333	3.3516667	0.004633333	0.2743	-	0.002567 0.0293	1.26333	1.2167
GH_LC1	GH_LC1_W3_2022-06_06_N GH_LC1_WS_2022-06-20_N	2022-06-19	+ -	-	-		-	8.09	291	581	17.6	374	19		< 1.0	< 1.0	< 0.050		0.105	113	< 0.0050 0.35	7.54 3.78	0.0101 0.0053	0.335		0.0293	4.45	4.64
GH_PC1	GH_PC1_WS_2022-08-01_N	2022-08-08	-	-	-	-	-	8.37	609	958	2	734	0.34		7.8	< 1.0	< 0.050		0.376	353	< 0.0050	1.54	0.0022	0.2	-	0.0049	1.24	1.29
GH_PC1	GH_PC1_WS_SESMP_2022-08_N	2022-08-17	-	-	-	-	-	8.43	592	958	1.5	748			11.3	< 1.0	< 0.250			376	0.0067	1.66	< 0.0050	0.1	-	0.0046	0.9	0.9
GH_PC1 GH_PC1	GH_PC1_DS_WS_2022-08-24_NP GH_PC1_DS_WS_2022-08-25_NP	2022-08-24 2022-08-25	-	-	-	-	-	8.5 8.3	596 565	940	1.2	790 763	0.36		8.8 2.5	< 1.0	< 0.250		0.388	386 376	0.0066 0.0361	1.67	< 0.0050 < 0.0010	0.064		0.0048	0.77	0.9
GH PC1	GH PC1 DS WS 2022-08-26 NP	2022-08-26	+ -		-	-	-	8.31	595	940	< 1.0	779	0.47	248	3.7	< 1.0	< 0.050		0.319	380	< 0.0050	1.65	< 0.0010	0.202	-	0.0045	0.9	1.01
GH_PC1	GH_PC1_DS_WS_2022-08-27_NP	2022-08-27	-	-	-	-	-	8.44	537	948	2.6	740	0.47	268	6.7	< 1.0	< 0.250	1.1	0.376	389	< 0.0050	1.66	< 0.0050	< 0.050	-	0.0075	1.21	1.16
GH_PC1 GH_TC2	GH_PC1_DS_WS_2022-08-28_NP	2022-08-28	-	-	-	-	-	8.45	524	954	1.7	741	0.38		6.8	< 1.0	< 0.250		0.375	382	0.116	1.63	< 0.0050	0.323	-	0.0092	0.98	0.95
GH_TC2	GH_TC2_WS_2022-01-03_N GH_TC2_WS_2022-02-07_N	2022-01-12 2022-02-08	+ -	-	-		-	8.26 8.29	1080	1790	3.4 < 1.0	1500 1620	1.02		< 1.0	< 1.0	< 0.250		< 0.100		0.0173 0.0154	12.6	0.0097 0.0059	0.366		0.0073	1.86	1.55
GH TC2	GH TC2 WS 2022-03-07 N	2022-03-08	-	1 -	-	-	-	8.06	1110	1760	2.9	1530			< 1.0	< 1.0	< 0.250		< 0.100		0.0138	13	0.0135	0.422	-	0.0059	1.8	1.72
GH_TC2	GH_TC2_WS_2022-03-14_N	2022-03-17	-	-	-	-	-	-	-	-	< 1.0	-	0.44		-	-	-	-	-	-	-	-	-	-	-	-	-	-
GH_TC2 GH_TC2	GH_TC2_WS_2022-03-20_N GH_TC2_WS_2022-03-21_N	2022-03-20 2022-03-23	-	-	-	-	-	-	-	-	1.7	-	0.69		-	-	-	-	-	-	-	-	-	-	-	-	-	<u> </u>
GH TC2	GH TC2 WS 2022-03-21 N GH TC2 WS 2022-03-28 N	2022-03-23	+ -	+ -	-		-	<u> </u>	+ -	+ -	4.8	+	4.79		-	+ -	H -		-	-	-	+	-	-		+ -	+	+
GH_TC2	GH_TC2_WS_2022-04-04_N	2022-04-06	-	-	-	-	-	8.26	685	1080	2.6	839	1.55		< 1.0	< 1.0	< 0.250	8.81	0.104	442	< 0.0050	5.34	< 0.0050	0.516	-	0.0104	4.48	4.26
GH_TC2	GH_TC2_WS_2022-04-11_N	2022-04-12	-	-	-	-	-	-	-	-	5.4	-	3.11	-	-	-	-	-	-	-		-	-	-	-	-	-	-
GH_TC2 GH_TC2	GH_TC2_WS_2022-04-18_N GH_TC2_WS_2022-04-25_N	2022-04-21 2022-04-27	+ -	+	-	-	-	-	+ :-	+ -	9.7	-	6.57	+-	-	1	-		-	-	-	+ :	-	-	-	1	1	1 -
GH_TC2	GH_TC2_WS_2022-05-02_N	2022-05-04	-	-	-	-	-	8.52	468	869	9.9	631	5.56		7.1	< 1.0	< 0.050	7.21	0.076	277	0.0095	3.02	0.0017	0.512	-	0.0166	5.39	4.98
GH_TC2	GH_TC2_WS_2022-05-09_N	2022-05-11	-	-	-	-	-	-	-	-	4.8	-	3.58		-	-	-	-	-	-	-	-	-	-	-	-	-	-
GH_TC2 GH_TC2	GH_TC2_WS_2022-05-16_N GH_TC2_WS_2022-05-23_N	2022-05-18 2022-05-27	5.7		11.56	-	205	-	-	-	3.8	-	2.68		-	-	-	-	-	-	-	-	-	-	-	-	-	-
GH_TC2	GH_TC2_WS_2022-05-23_N GH_TC2_WS_2022-05-30_N	2022-05-27	+-	-	-	-	-	1	+-	+ -	< 1.0 1.4	+-	1.54 0.95		+-	+	+	-	-	-	-	+ :-	-	+-		+ -	+ -	+
GH_TC2	GH_TC2_WS_2022-06-06_N	2022-06-08	1 -	-	-	-	-	8.38	606	1150	1.2	858	0.73		5.2	< 1.0	< 0.250	7.95	< 0.100	461	0.006	4.61	< 0.0050	0.461		0.0054	4.86	4.93
GH_TC2	GH_TC2_WS_2022-06-13_N	2022-06-15	-	-	-	-	-	-	-	-	5.7	-	4.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GH_TC2 GH_TC2	GH_TC2_WS_2022-06-20_N GH_TC2_WS_2022-06-27_N	2022-06-22	+-	-	-	-	-	+ :	+ -	+ -	1.8	-	3.59 1.82		-	-	1	-	-	-	-	-	-	-	-	-	1	1
GH_TC2	GH TC2 WS 2022-07-04 N	2022-00-29	+ -		-	-	Ė	8.4		1040	3.6	880			6.8	< 1.0	< 0.250		0.112	417	0.0099	4.17	0.0164	0.498	-	0.011	4.87	4.61
GH_TC2	GH_TC2_WS_2022-07-11_N	2022-07-13	-	-	-	-	-	-	-	-	1.4	-	0.96	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GH_TC2	GH_TC2_WS_2022-08-01_N	2022-08-03	-	-	-	-	-	8.23	907	1630 1800	1.9	1510			< 1.0	< 1.0	< 0.250		0.106	833	0.0178	8.6	0.0345	0.843	-	0.0079	3.38 2.96	3.43
GH_TC2 GH_TC2	GH_TC2_WS_SESMP_2022-08_N GH_TC2_WS_2022-09-05_N	2022-08-22 2022-09-08	+-	-	-	-	-	8.29	1350	1800	5.4 2.5	1740 1610			< 1.0	< 1.0 < 1.0	< 0.250		< 0.100		0.0138 0.0085	11.3 2.35	0.0277 0.0023	0.611	<u> </u>	0.0171	2.96	3.13 2.53
GH_TC2	GH_TC2_WS_2022-09-14_N	2022-09-14	+ -	-	-	-	-	8.33	1420	1940	4	1740			7.4	< 1.0	< 0.250		< 0.100		0.009	12.4	0.0023	0.638		0.0056	2.07	2.04
GH_TC2	GH_TC2_WS_2022-09-21_N	2022-09-21	-	-	-	-	-	8.27	1310	1900	5	1680	1.76	271	< 1.0	< 1.0	< 0.250	11.9	< 0.100	1040	0.0073	12.2	0.0098	0.78	-	0.0084	2.46	2.42
GH_TC2	GH_TC2_WS_2022-09-22_N	2022-09-22	-	-	-		-	8.21	1310	1910	2.4	1780	1.37		< 1.0	< 1.0	< 0.250		< 0.100		0.0094	12	0.007	0.909	-	0.0074	2.24	2.17
GH_TC2 GH_TC2	GH_TC2_WS_2022-09-23_N GH_TC2_WS_2022-09-24_N	2022-09-23 2022-09-24	+-	-	-	-	-	8.31 8.26	1280 1200	1900 1850	2.1	1570	0.72		4	< 1.0 < 1.0	< 0.250		< 0.100		0.0075 0.0106	12.1 12.6	0.0067 0.0082	0.353 0.145	-	0.0056 0.0044	2.22	2.2
G11_102	G11_102_110_2022-08-24_N	2022-03-24		<u> </u>				0.20	1200	1000	2.5	1730	0.5	209	- 1.0	~ 1.0	~ 0.230	12	1-0.100	1070	0.0106	12.0	0.0082	0.143		0.0044	2.17	2.20

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted n/a denotes no applicable standard

 ^a Guideline varies with hardness
 ^b Guideline varies with pH and water temperature
 ^c Guideline varies with chloride

APPENDIX C - TABLE 1: Summary of Analytical Results for Dissolved Organics, Nutrients and Organics

				Fie	d Paran	eters			_	Physical Pa	arameter	s				Diss	olved Ino	ganics					Nutrient	s				
Sample Location	Sample ID	Sample Date (yyyy-mm-dd)	O Field Temperature	mn d pH (field)	Dissolved Oxygen	हिं। SPIEID Conductivity	B Field ORP	Ha pH wn	mg/L	Conductivity	Total Suspended Solids	a Total Dissolved Solids	to nt Turbidity	mg/L	Mg/L	mg/L mg/L	mg/L	Chloride	mg/L	mg/L	Mamonia Nitrogen	mg/L Nitrate Nitrogen	mg/L	M Kjeldahi Nitrogen-N	a Ortho-Phosphate	M Phosphorus, Total	a Total Organic Carbon	M Dissolved Organic Carbon
				Minim Maxin	Acute			Minim			Acute		Acute					Acute	Acute	Chron	Acute	Acute	Acute			Chron		
BC WQG FWAL			n/a	6.5 9	1 5	n/a	n/a	6.5 9	n/a	n/a	25 5	n/a	8 2	n/a	n/a	n/a	n/a	600 150	0.4- "	128-429°	0.681-28.7 ^b 0.102-2.08 ^b	328 37	0.06-0.60° 0.02-0.20	n/a	n/a	0.015	n/a	n/a
Greenhills Operation				10.0	1						1=0 0											102.0				1 0.0.0		
GH TC2	GH TC2 WS 2022-09-25 N	2022-09-25	-	-	T -	-	-	8.26	1310	1880	< 1.0	1750	0.77	272	< 1.0	< 1.0	< 0.250	11.9	< 0.100	1040	0.0104	12.5	0.0119	0.247	-	0.0051	2.25	2.24
GH TC2	GH TC2 WS 2022-09-26 N	2022-09-26	-	-	-	-	-	8.26	1260	1870	2.1	1770	0.9	275	< 1.0	< 1.0	< 0.250	12	< 0.100	1070	0.0977	12.9	0.0112	0.617	-	0.0061	2.3	2.19
GH_TC2	GH_TC2_WS_2022-09-27_N	2022-09-27	-	-	-	-	-	8.23	1430	1880	3.5	1680	0.96	274	< 1.0	< 1.0	< 0.250	11.8	< 0.100	1030	0.0074	12.5	0.0097	0.316	-	0.004	2.22	2.27
GH_TC2	GH_TC2_WS_2022-10-03_N	2022-10-05	-	-	-	-	-	8.24	1350	1940	1.9	1750	0.88	294	< 1.0	< 1.0	< 0.250	12.1	< 0.100	1040	< 0.0050	12.6	0.0102	0.234	-	0.0063	2.65	2.71
GH_TC2	GH_TC2_WS_2022-11-07_N	2022-11-09	-	-	-	-	-	8.35	1300	1920	1.8	1640	0.62	288	6.2	< 1.0	< 0.250	13.5	< 0.100	1070	0.0081	13.1	0.0068	0.368	-	0.0036	2.93	2.77
GH_WC1	GH_FOX1_WS_2022-01-03_N	2022-01-11	-	-	-	-	-	7.1533	1113.5	1697.333	2.5333	1530	0.1267	208.33	< 1.0	< 1.0	< 0.250	3.25667	< 0.100	853.43	0.009166667	42.935	0.004433333	< 0.050	-	0.002633	1.43333	1.3967
GH_WC1	GH_FOX2_WS_2022-02-07_N	2022-02-07	-	-	-	-	-	7.2733	1086.83	1727.333	3	1510	< 0.10	219.67	< 1.0	< 1.0	< 0.250	2.34	< 0.100	866.77	0.007166667	43.035	< 0.0050	0.151	-	0.0028	1.79333	1.76
GH_WC1	GH_FOX2_WS_2022-03-07_N	2022-03-09	-	-	-	-	-	7.2033	1073.5	1677.333	1.1333		0.1	223.67	< 1.0			2.84333	< 0.100	836.77	< 0.0050	40.10167	0.0038	0.3873		0.002533	1.72	1.5667
GH_WC1	GH_WC1_WS_2022-03-14_N	2022-03-16	-	-	-	-	-	8.2	1500	2320	2.5	1940	0.17	233	< 1.0	< 1.0	< 0.250	3.25	< 0.100	1140	< 0.0050	54.2	< 0.0050	< 0.050	-	0.0034	2.77	3.04
GH_WC1	GH_WC1_WS_2022-03-21_N	2022-03-23	-	-	-	-	-	8.32	1400	2280	2.1	2080	0.62	306	5.3	< 1.0	< 0.250	3.7	< 0.100	1040	< 0.0050	51.6	0.0112	1.46	-	0.0041	2.58	2.57
GH_WC1	GH_WC1_WS_2022-03-28_N	2022-03-30	-	-	-	-	-	8.29	792	1340	1.3	1030	2.03	270	< 1.0	< 1.0	< 0.250	1.56	0.109	533	< 0.0050	23.5	< 0.0050	0.144		0.0052	4.05	4.02
GH_WC1	GH_WC1_WS_2022-04-04_N	2022-04-05	-	-	-	-	-	8.35	891	1470	2.3	1170	0.76	271	4.8	< 1.0	< 0.250	1.68	0.114	616	< 0.0050	27	< 0.0050	0.128	-	0.004	4.93	4.67
GH_WC1	GH_WC1_WS_2022-04-11_N	2022-04-13	-	-	-	-	-	8.3	1060	1700	1.2	1320	0.8	316	< 1.0	< 1.0	< 0.250	1.86	0.103	704	< 0.0050	32.2	< 0.0050	< 0.050		0.0046	3.51	3.63
GH_WC1	GH_WC1_WS_2022-04-18_N	2022-04-20	-	-	-	-	-	8.34	1200	1960	< 1.0	1810	0.36	289	4.1	< 1.0	< 0.250	2.12	< 0.100	868	< 0.0050	42.7	0.011	2.48	-	0.004	3.13	3.19
GH_WC1	GH_WC1_WS_2022-04-25_N	2022-04-26	-	-	-	-	-	8.38	1120	1890	4.4	1680	1.48	280	8.6	< 1.0	< 0.250	2.35	0.11	870	0.0052	39.4	0.0175	1.32	-	0.0034	4.15	3.99
GH_WC1	GH_WC1_WS_2022-05-02_N	2022-05-03	-	-	-	-	-	8.47	1260	2090	4.6	1660	0.48	291	13.9	< 1.0	< 0.250	2.22	< 0.100		< 0.0050	43.1	0.0097	< 0.050	-	0.0034	3.33	
GH_WC1	GH_WC1_WS_2022-05-09_N	2022-05-10	-	-	-	-	-	8.38	1280	2010	2.7	1800	0.73	284	6.8	< 1.0	< 0.250	2.3	< 0.100		0.008	42.8	0.0128	< 0.050	-	0.0054	3.56	3.57
GH_WC1	GH_WC1_WS_2022-05-16_N	2022-05-17	-	-	-	-	-	8.4	1620	2290	3.6	2060	0.4	309	7.2	< 1.0	< 0.250	2.64	0.102	1160	0.0114	49.2	0.0189	< 0.050	-	0.0036	2.75	2.96
GH_WC1	GH_WC1_WS_2022-05-23_N	2022-05-25	-	-	-	-	-	8.42	1660	2510	1.2	2500	0.32	299	14	< 1.0	< 0.250	2.72	< 0.100		< 0.0050	54.4	0.0329	< 0.050	-	0.0036	2.72	2.6
GH_WC1	GH_WC1_WS_2022-05-30_N	2022-05-31	-	-	-	-		8.4	1720	2620	2.6	2410	0.24	309	11.8	< 1.0	< 0.250	2.63	0.102	1330	< 0.0050	57.4	0.0397	< 0.050	-	0.0032	2.97	2.92
GH_WC1	GH_WC1_WS_2022-06-06_N	2022-06-07	-	-	-	-	-	8.37	1770	2630	4.3	2300	0.36	324	7.9	< 1.0	< 0.250	2.6	< 0.100		0.0076	57	0.0461	0.738	-	0.0034	2.75	2.74
GH_WC1	GH_WC1_WS_2022-06-13_N	2022-06-14	-	-	-	-	-	8.32	1450	2190	3.8	1970	1.23		5.4	< 1.0	< 0.250	2.16	< 0.100		< 0.0050	43.2	0.0154	2.63	-	0.0048	2.84	3.07
GH_WC1	GH_WC1_WS_2022-06-20_N	2022-06-22	-	-	-	-	-	8.41	1230	1850	1.4	1520	0.26	310	6.6	< 1.0	< 0.250	1.61	< 0.100		< 0.0050	32.5	0.0172	0.434	-	0.004	2.82	2.95
GH_WC1	GH_WC1_WS_2022-06-27_N	2022-06-29	-	-	-	-	-	8.35	1570	2330	2.4	2060	0.29		< 1.0	< 1.0	< 0.250		< 0.100		0.0057	45.2	0.0223	< 0.050	-	0.0046	3.22	3.36
GH_WC1	GH_FOX2_WS_2022-07-04_N	2022-07-05	-	-	-	-	-	7.3567	953.5	1434	9.7333		10.3		8.66667		< 0.250				< 0.0050	28.335	0.009766667	< 0.050	-	0.011267		2.8233
GH_WC1	GH_WC1_WS_2022-07-11_N	2022-07-12	-	-	-	-	-	8.2	1630	2590	4.2	2580	0.18	382	< 1.0	< 1.0	< 0.250	2.43	0.106	1330	< 0.0050	55	0.047	< 0.050	-	0.0038	2.78	2.76
GH_WC1	GH_WC1_WS_2022-08-01_N	2022-08-03	-	-	-	-	-	8.28	1950	2940	2.7	3050	0.22	379	< 1.0	< 1.0	< 0.250	3.03	0.11	1600	0.012	68	0.0762	0.086	-	0.0041		2.37
GH_WC1 GH_WC1	GH_FOX2_WS_2022-09-05_N	2022-09-07	-	-	-	-	-	7.3067	1436.83		2.9333			257.33	< 1.0	< 1.0	< 0.250		< 0.100		0.0055	46.56833	0.050533333	3.8727	-	0.002567	1.51	1.51
	GH_WC1_WS_2022-09-12_N	2022-09-12	-	-	-	-	-	8.32	2170	2950	2.3	3000	0.28	363	5.2	< 1.0	< 0.250	3.25	0.108	1640	< 0.0050	71.8	0.0617	4.71	-	0.003		2.39
GH_WC1	GH_WC1_WS_2022-10-03_N	2022-10-04	-	-	-	-	-	8.27	2340	2790	3.7	2930	0.2	362	< 1.0	< 1.0	< 0.250	3.4	< 0.100		< 0.0050	74.6	0.0538	2.14	-	0.0031	2.24	2.11
GH_WC1	GH_FOX2_WS_2022-11-07_N	2022-11-08	-	-	I -	-	l -	7.3967	1293.5	1927.333	1.5333	1830	0.2333	239	< 1.0	< 1.0	< 0.250	2.39	< 0.100	1123.4	0.006533333	44.50167	0.008066667	2.2633	-	< 0.0020	2.32333	2.21

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature ^c Guideline varies with chloride

APPENDIX C - TABLE 1: Summary of Analytical Results for Dissolved Organics, Nutrients and Organics

				Fiel	d Param	eters				Physical F	Parameter	'S		Т		Dis	ssolved Inc	rganics			I		Nutrier	nts				
				1	T					.,,		Ī				1												
Sample	Sample	Sample Date	Field Temperature	pH (field)	Dissolved Oxygen	Field Conductivity	Field ORP	H.	Hardness	Conductivity	Total Suspended Solids	Total Dissolved Solids	Turbidity	Bicarbonate	Carbonate	Hydroxide	Bromide	Chloride	Fluoride	Sulfate	Ammonia Nitrogen	Nitrate Nitrogen	Nitrite Nitrogen	Kjeldahl Nitrogen-N	Ortho-Pho sphate	Phosphorus, Total	Total Organic Carbon	Dissolved Organic Carbo
Location	ID	(yyyy-mm-dd)	С	pН	mg/L	μS/cm	mV	pН	mg/L	μS/cm	mg/L	mg/L	. ntu	mg/L	mg/L	mg/L	L mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
BC WQG FWAL			n/a	9.5 Minimum & Maximum	1 Acute 5 Chronic	n/a	n/a	Minimum 6.5 Maximum	n/a	n/a	5 Acute Chronic	n/a	α Acute α Chronic		n/a	n/a	n/a	Chronic	- Acute	128-429	# 5 0.681-28.7 ^b 0.602-2.08	20 Acute Chronic 30 32.8 3.7	9.06-0.60° 0.02-0.20	0° n/a	n/a	CHLODIC CHLODIC	n/a	n/a
Line Creek Operation												•																
LC_DCDS	LC_DCDS_WS_Q1-2022_N	2022-01-05	-	-	-	-	-	7.88	513	1020				180	< 1.0		< 0.250		< 0.100		0.0068	47.8	< 0.0050	0.464	-	0.0268	1.66	1.44
LC_DCDS	LC_DCDS_WS_2022-01-10_N	2022-01-12	-	-		-	-	8.14	499	1060	1	748		172	< 1.0	< 1.0			< 0.100		0.008	49.9	< 0.0050	< 0.050	-	0.0259	1.21	1.1
LC_DCDS LC DCDS	LC_DCDS_WS_2022-01-17_N	2022-01-19 2022-01-26	+-	! -		-	-	8.14	557	1090	1.8	769		199	< 1.0	< 1.0					0.02	52.1	< 0.0050	< 0.050		0.0244	2.11	2.42
LC_DCDS	LC_DCDS_WS_2022-01-24_N LC_DCDS_WS_2022-01-31_N	2022-01-26	+-	-	-	-	-	8.26	516 552	1120	< 1.0	776 716			< 1.0	< 1.0			< 0.101		0.0059	50.4 50.3	< 0.0050 0.0061	0.456 < 0.050		0.0234	1.83	1.8
LC DCDS	LC DCDS_WS_2022-01-31_N LC DCDS_MNT_2022-02-08_N	2022-02-01	+		+:-		-	8.26	598	1120	13	670			< 1.0	< 1.0					0.0191	46.5	0.0061	< 0.050		0.0222	1.51	1.61
LC DCDS	LC DCDS WS 2022-02-14 N	2022-02-05	+ -	-	+-	-	-	8.31	551	1070	< 1.0				2.3	< 1.0			< 0.100		0.0104	47.2	< 0.0050	< 0.050	-	0.0248	1.72	1.76
LC DCDS	LC DCDS WS 2022-02-21 N	2022-02-22	T -	-	-	-	-	8.17	568	1110	< 1.0				< 1.0	< 1.0					< 0.0050	52.3	0.0067	< 0.050	-	0.025	1.72	1.6
LC_DCDS	LC_DCDS_WS_2022-02-28_N	2022-03-01	-	-	-	-	-	8.02	527	1060	< 1.0	684			< 1.0	< 1.0	< 0.250	18.2	< 0.100	228	< 0.0050	46.7	0.0073	0.487	-	0.0256	1.99	1.9
LC_DCDS	LC_DCDS_WS_2022-03-07_N	2022-03-08	-	-	-	-	-	8.11	552	1080	1.2	770	0.11	198	< 1.0	< 1.0	< 0.250	25.2	< 0.100	224	< 0.0050	47.8	0.0076	0.504	-	0.0233	1.47	1.44
LC_DCDS	LC_DCDS_WS_2022-03-14_N	2022-03-15	-	-	-	-	-	8.05	541	1110	1.3	780		192	< 1.0	< 1.0			0.07	236	< 0.0050	49.4	0.0033	0.514	-	0.0216	1.73	1.64
LC_DCDS	LC_DCDS_WS_2022-03-21_N	2022-03-23	-	-	-	-	-	8.09	605	1040	1.1	715			< 1.0	< 1.0					< 0.0050	44.1	0.0059	0.336	-	0.0225	1.86	1.84
LC_DCDS	LC_DCDS_WS_2022-03-28_N	2022-03-30	-	-	-	-	-	6.615	142.75	295	1.2	210			< 1.0	< 1.0				52.65	< 0.0050	9.3025	0.00235	0.233	-	0.0166	1.33	1.3
LC_DCDS LC_DCDS	LC_DCDS_WS_Q2-2022_N LC_DCDS_WS_2022-04-11_N	2022-04-06	-	-	-	-	-	8.18	301 263	602 554	< 1.0	413 378			< 1.0	< 1.0				99.4	< 0.0050	17.7	0.0029	0.467	-	0.0272	2.05	2.02
LC_DCDS	LC DCDS WS 2022-04-11 N LC DCDS WS 2022-04-18 N	2022-04-12	+-	-	-	-	-	7.88 8.12	324	666	< 1.0	412			< 1.0	< 1.0					< 0.0050 < 0.0050	16.2 21.1	0.0021 0.0017	< 0.050		0.0241	1.76	1.78
LC DCDS	LC DCDS WS 2022-04-10_N	2022-04-17	+:	<u> </u>	+-			8.19	306	654	1.5	475		168	< 1.0	< 1.0					< 0.0050	19.8	0.0047	0.132		0.0249	2.57	2.47
LC DCDS	LC DCDS MNT 2022-05-03 N	2022-05-03	-	-	+	-	-	8.1	268	551	2.3	374			< 1.0	< 1.0			0.093		< 0.0050	15	0.0037	< 0.050	-	0.0261	2.37	2.3
LC DCDS	LC_DCDS_WS_2022-05-09_N	2022-05-11	T -	-	T -	-	-	8.21	291	572	< 1.0	410			< 1.0	< 1.0					< 0.0050	15.8	0.0045	2.01	-	0.026	2.45	2.33
LC_DCDS	LC_CC3_WS_2022-05-16_N	2022-05-17	-	-	-	-	-	7.2867		406	1.1667			102.33	1.26667	< 1.0				88.4333	0.0067	11.36833	0.006466667	1.2867	-	0.01593	1.56	1.48
LC_DCDS	LC_DCDS_WS_2022-05-23_N	2022-05-24	-	-	-	-	-	8.35	298	628	2.5	428	0.36	158	1.4	< 1.0	< 0.050	6.94	0.082	125	< 0.0050	16.9	0.0061	0.194	-	0.0192	2.12	2.3
LC_DCDS	LC_CC3_WS_2022-05-30_N	2022-05-31	-	-	-	-	-	8.365	278	564.5	1.6	411			2.95	< 1.0					< 0.0050	13.2	0.0056	< 0.500	-	0.0212	2.025	2.03
LC_DCDS	LC_DCDS_MNT_2022-06-07_N	2022-06-07	-	-	-	-	-	8.24		611	< 1.0				< 1.0	< 1.0	- 0.000				< 0.0050	15.5	0.0055	1.27	-	0.0204	2.56	2.41
LC_DCDS	LC_DCDS_WS_2022-06-13_N	2022-06-14	-	-	-	-	-	8	326	654	1.9	412			< 1.0	< 1.0	< 0.050	7.01	0.082	149	< 0.0050	18	0.0064	1.66	-	0.0171	1.85	1.88
LC_DCDS LC_DCDS	LC_DCDS_WS_2022-06-17_N LC_DCDS_WS_2022-06-17_NP1	2022-06-17	-	-	+ :-	-	-	<u> </u>	+ :-	-	22.8	+ :	14.4	-	-	-	-	-	-	-	- :	+ :	-	+ : -	-	+ :	-	-
LC DCDS	LC DCDS WS 2022-06-17 NP1	2022-06-17	+	-	+-	-	-	-	+ :	-	21.6 15.3		14.5	H :-	+-	+ :	+-	+ -	+ :	+ :-	-	+ :	-			+ -	-	-
LC DCDS	LC CC3 WS 2022-06-20 N	2022-06-21	+ -	<u> </u>	+:-	-	-	8.125		447	10.65	316		152.5		< 1.0	< 0.050	3.96	0.078	84.55	0.0064	9,555	0.01015	< 0.500	-	0.0355	3.665	2.935
LC DCDS	LC DCDS WS 2022-06-27 N	2022-06-28	-	-	! -	-	-	8.27	278	585	2.8	403			< 1.0	< 1.0					< 0.0050	14.9	0.0233	2.11	-	0.021	2.43	2.15
LC_DCDS	LC_DCDS_WS_Q3-2022_N	2022-07-07	-	-	-	-	-	8.32	338	651	1.6	442			3.4	< 1.0				145	< 0.0050	18	0.0114	2.6	-	0.0243	2.05	1.98
LC_DCDS	LC_CC3_WS_2022-07-11_N	2022-07-12	-	-	-	-	-	8.395		672.5	< 1.0				4.2	< 1.0					0.0066	19.35	0.01415	0.8455	-	0.0189	1.77	1.845
LC_DCDS	LC_DCDS_WS_2022-07-18_N	2022-07-18	-	-	-	-	-	6.88	399	763	1.8	553			< 1.0	< 1.0					< 0.0050	21.4	0.0296	0.894	-	0.0202	2	1.61
LC_DCDS	LC_DCDS_WS_2022-07-25_N	2022-07-25	-	-	-	-		8.21	406	768	1.9	557			< 1.0	< 1.0					0.0217	24.5	0.0639	< 0.050	· -	0.0187	2.51	2.38
LC_DCDS	LC_CC3_MNT_2022-08-02_N	2022-08-02	-	-	-	-	-	8.325		853.5	< 1.0	677				< 1.0					0.00605	29.5	0.03255	2.52	-	0.0207	1.765	1.675
LC_DCDS LC_DCDS	LC_DCDS_WS_2022-08-08_N LC DCDS WS SESMP 2022-08 N	2022-08-09 2022-08-18	+ -	-	+-	-	-	8.29	469 509	902 951	< 1.0	714 656			3.7 4.7		< 0.050 0 < 0.250				0.0072	30.6	0.0073	1.56 2.11	-	0.02	1.89	1.94
LC_DCDS	LC_DCDS_WS_SESMP_2022-08_N LC_DCDS_WS_2022-08-22_N	2022-08-18	+:-	-	-	H	H	8.35 6.755		471.5	< 1.0	378.5			< 1.0	< 1.0				124.65	0.0079	34.5 17.6525	0.0127 0.0049	0.845		0.0235	1.06	1.035
LC_DCDS	LC DCDS WS 2022-08-22 N	2022-08-23	+-	-	+-	+-	H	6.715		471.5	< 1.0				< 1.0	< 1.0				124.05	0.0189	17.5525	0.0049	0.72	-	0.0174	1.255	1.185
LC DCDS	LC DCDS MNT 2022-09-06 N	2022-09-06	+ -		+	-	-	8.28	566	995	2.9	751			< 1.0	< 1.0					0.0099	38.7	0.00475	< 0.500		0.0252	1.64	1.78
LC_DCDS	LC_DCDS_WS_2022-09-12_N	2022-09-13	+ -	1 -	-	-	-	8.24		997	< 1.0				< 1.0	< 1.0					0.0227	39.5	0.0166	3.18	-	0.0218	1.62	1.76
LC_DCDS	LC_DCDS_WS_2022-09-19_N	2022-09-20	-	-	-	-	-	8.27	559	1040	< 1.0				< 1.0	< 1.0	< 0.250			271	0.0072	40	0.0084	2.73	-	0.0216	1.32	1.27
LC_DCDS	LC_DCDS_WS_2022-09-26_N	2022-09-27	-	-	-	-	-	6.86	306.25	521	1.05	393			< 1.0	< 1.0				136.15	0.01	20.8025	0.00535	1.025	-	0.01295	1.165	1.125
LC_DCDS	MORTALITY PKG 8	2022-10-04	-	-	-	-	-	8.25	570	1020	1.8	720			< 1.0		< 0.250		< 0.100		0.0057	44.3	0.0115	0.391	-	0.0245	1.04	1.04
LC_DCDS	LC_DCDS_MORTALITY_2022-10-05_N	2022-10-05	-	-	-	-	-	8.35	585	1080	1.5	725			5.8	< 1.0					0.0351	44.3	0.0107	< 0.500	-	0.0269	1.92	1.8
LC_DCDS	LC_DCDS_MORTALITY_2022-10-06_N	2022-10-06	-	-	-	-	-	8.37	581	1080	2.4	788			6.1	< 1.0					< 0.0050	51.7	0.005	< 0.500	-	0.0225	1.26	1.11
LC_DCDS LC_DCDS	LC_DCDS_MORTALITY_2022-10-07_N	2022-10-07	+-	-	<u> </u>	-	-	8.36	564	1090	1.2	786			6.1	< 1.0					< 0.0050	45.3	0.012	0.776	<u> </u>	0.0229	1.41	1.75
LC_DCDS	LC_DCDS_WS_2022-10-10_N LC_CC3_WS_2022-10-17_N	2022-10-11	+-	+ -	+-	-	-	8.17 8.11	606	1060	1.7	783 919.5			< 1.0	< 1.0					0.0075	46.4 47.45	0.0107 0.00955	1.42	-	0.0228	1.95	2.34 1.66
LC_DCDS	LC_CC3_WS_2022-10-17_N LC_DCDS_WS_2022-10-24_N	2022-10-18	+	+	+-		-	8.11	621	1130	2.3	854			< 1.0	< 1.0			< 0.100		< 0.0050 0.0078	47.45 51	0.00955	1.51		0.0223	1.76	1.00
LC DCDS	LC SPDC WS 2022-10-24_N	2022-10-23	+-	+ -	+	-	-	8.18	610	1180		916					< 0.250				0.0078	50	0.007	< 0.500		0.0203	1.76	1.54
			_		_		_	0.10	1		1	1	0.0	1				21.79		1	0.000	- 00	0.0001		_	,		

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted n/a denotes no applicable standard

^a Guideline varies with hardness ^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

APPENDIX C - TABLE 1: Summary of Analytical Results for Dissolved Organics, Nutrients and Organics

				Field	i Param	eters				Physical P	arameter	s		1		Dis	solved In	organics					Nutrient	ts				
										1	1						1	Ĭ.										- E
Sample	Sample	Sample Date	Field Temperature	ph (field)	Dissolved Oxygen	Field Conductivity	Field ORP	Hd.	Hardness	Conductivity	Total Suspended Solids	Total Dissolved Solids	Turbidity	Bicarbonate	Carbonate	Hydroxide	Bromide	Chloride	Fluoride	Sulfate	Ammonia Nitrogen	Nitrate Nitrogen	Nitrite Nitrogen	Kjeldahl Nitrogen-N	Ortho-Phosphate	Phosphorus, Total	Total Organic Carbon	Dissolved Organic Carbo
Location	ID	(yyyy-mm-dd)	C		mg/L	μS/cm	mV	pН	mg/L	μS/cm	mg/L	mg/L	ntu	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
BC WQG FWAL			n/a	Minimum 6.59	1 Acute or Chronic	n/a	n/a	6.5 Minimum Maximum	n/a	n/a	25 Chronic	n/a	8 Acute	n/a	n/a	n/a	n/a	Chronic Chronic	9 Acute	128-429	型 数 V 0.681-28.7 ^b 0.102-2.08 ^b	S 32.8 3.7	9 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	f n/a	n/a	Chronic 0.015	n/a	n/a
Line Creek Operation																												
LC_DCDS LC_DCDS	LC_CC3_WS_2022-10-31_N LC_DCDS_MNT_2022-11-08_N	2022-11-01	-	-	-		-	8.29	589	1090	2.1	838			2.3	< 1.0			< 0.100		0.0074	45.8 48.5	0.006	< 0.500	-	0.0216	1.47	1.48
LC_DCDS	LC_DCDS_MN1_2022-11-08_N LC_DCDS_WS_2022-11-14_N	2022-11-08	-	-	-	-	-	8.23 8.17	610	1090	< 1.0 1.6	814 925	0.51	196	< 1.0	< 1.0				314	< 0.0050 0.009	48.5 52.4	0.0050	0.774	-	0.0189	1.67	1.79
LC DCDS	LC DCDS WS 2022-11-14_N	2022-11-13	-			-	-	8.26	658	1210	< 1.0	924	0.77		< 1.0						0.0189	57.2	0.0083	2.54	-	0.0269	1.7	1.5
LC_LC12	LC_LC12_MNT_2022-05-03_N	2022-05-02	-	-	-	-	-	8.25	504	285	< 1.0	180	0.74		< 1.0				0.281	35.2	< 0.0050	0.173	< 0.0010	0.69	-	0.0049	0.74	0.75
LC_LC12	LC_LC12_WS_2022-05-09_N	2022-05-09	-	-	-	-	-	-	-	-	< 1.0	-	0.39		-	-	-	-	-	-	-	-	-	-	-	-	-	-
LC_LC12	LC_LC12_WS_2022-05-16_N	2022-05-18	-	-	-	-	-	-	-	-	1.6	-	0.3	-	<u> </u>	-	-	-	+ -	-	-	-	-	-	-	-	-	-
LC_LC12 LC LC12	LC_LC12_WS_2022-05-23_N LC_LC12_WS_2022-05-30_N	2022-05-24 2022-05-30	-	-	-	-	-	-	-	-	3.6 < 1.0	-	0.17		-	-	+-	-	+-	-	-	-	-	-	-	-	-	-
LC_LC12	LC LC12 WS 2022-05-30 N LC LC12 MNT 2022-06-07 N	2022-05-30	+ -	-	-			8.23	284	547	< 1.0	312			< 1.0	< 1.0	< 0.050	0.2	0.226	134	< 0.0050	2.41	0.001	< 0.500		0.0039	0.9	1.02
LC LC12	LC LC12 WS 2022-06-13 N	2022-06-13	+-	-			-	0.23	204	- 347	< 1.0	- 312	0.21	100	- 1.0	- 1.0	- 0.03	0.2	0.220	104	< 0.0030	2.41	0.001	- 0.500		0.0000	-	1.02
LC LC12	LC LC12 WS 2022-06-20 N	2022-06-20	-	-	-	-	-	-	-	-	1.3	-	0.48	-	-	-	+ -	+ :	-	T -	-	—	-	-	-	-	-	-
LC LC12	LC LC12 WS 2022-06-27 N	2022-06-27	T -	-	-	-	-	-	T -	T -	< 1.0	-	0.31		_	-		T -	T -	-		T -	-	-	-	T -	-	-
LC_LC12	LC_LC12_WS_Q3-2022_N	2022-07-05	-	-	-	-	-	8.09	266	518	< 1.0	378	0.12	196	< 1.0	< 1.0	< 0.050	0.18	0.187	136	< 0.0050	1.58	< 0.0010	< 0.500	-	0.0026	1.19	1.05
LC_LC12	LC_LC12_WS_2022-07-11_N	2022-07-13	-	-	-	-	-	-	-	-	1.4	-	0.12		-	-	-	-	-	-	-		-	-	-	-	-	-
LC_LCDSSLCC	LC_LCDSSLCC_WS_Q1-2022_N	2022-01-04	-	-	-	-	-	8.15	536	947	< 1.0	707			< 1.0	< 1.0				302	< 0.0050	10.2	< 0.0050	0.346	-	0.003	< 0.50	
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-01-10_N	2022-01-10	-	-	-	-	-	8.26	527	977	1	725			< 1.0	< 1.0				319	< 0.0050	9.27	0.0018	0.305	-	0.003	0.64	0.55
LC_LCDSSLCC LC LCDSSLCC	LC_LCDSSLCC_WS_2022-01-17_N	2022-01-17 2022-01-25	-	-	-		-	8.23	536 552	989	< 1.0	742 644	< 0.10		< 1.0	< 1.0				330 353	0.0068 < 0.0050	9.88	< 0.0050 < 0.0090	0.311		0.0022	0.5 < 0.50	0.57
LC_ECDSSECC LC LCDSSECC	LC_LCDSSLCC_WS_2022-01-24_N LC_LCDSSLCC_WS_2021-01-31_N	2022-01-25	+-	-	-		-	8.16 8.34	572	979	< 1.0	563	0.13		< 1.0 4.1	< 1.0					< 0.0050	9.6	< 0.0050	< 0.050		0.0029	0.76	
LC LCDSSLCC	LC LCDSSLCC MS 2021-01-31 N	2022-02-01	+	-	-			8.28	554	1040	1.5	723	< 0.10		< 1.0	< 1.0				325	< 0.0050	9.64	< 0.0030	0.313		0.0020	< 0.50	
LC LCDSSLCC	LC LCDSSLCC WS 2021-02-14 N	2022-02-15	-	-	-	-	-	0.20	562	-	1.5	-	- 0.10	-	- 1.0	- 1.0	- 0.00	20.7	-	-	- 0.0000	-		-	-	-		- 0.00
LC LCDSSLCC	LC LCDSSLCC WC 2022-02-18 N	2022-02-18	T -	-	-	-	-	8.27	613	1020	< 1.0	612	0.12	262	< 1.0	< 1.0	< 0.05	21.6	0.158	339	0.0052	9.77	0.001	0.368	-	0.0021	< 0.50	< 0.50
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-02-21_N	2022-02-22	-	-	-	-	-	8.24	632	1080	< 1.0	815			< 1.0	< 1.0	< 0.25	22.4			< 0.0050	10.6	< 0.0050	0.37		0.0025	< 0.50	< 0.50
LC_LCDSSLCC	LC_CC1_WS_2022-02-28_N	2022-03-01	-	-	-	-	-	8.27	626.5	1012	< 1.0	777.5	-	260.5	< 1.0	< 1.0	< 0.25	23.3	0.186	350	< 0.0050	10.25	< 0.0050	< 0.050	-	0.0025	< 0.50	< 0.50
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-02-28_N	2022-03-01	-	-	-	-	-	-	-	-	-	-	< 0.10		-	-	-	-	-	-	-	-	-	-	-	-	-	-
LC_LCDSSLCC	LC_LCDSSLCC_MNT_2021-03-07_N	2022-03-08	-	-	-	-	-	8.12	577	1070	1.7	770			< 1.0	< 1.0			0.17	342	0.0051	10.2	< 0.0050	0.369	-	0.0023		< 0.50
LC_LCDSSLCC LC LCDSSLCC	LC_LCDSSLCC_WS_2022-03-14_N LC_LCDSSLCC_WS_2022-03-21_N	2022-03-15 2022-03-22	-	-	-	-	-	8.14	569	1080	< 1.0	780 770	< 0.10		< 1.0	< 1.0				356	< 0.0050	10.8	< 0.0050 < 0.0050	< 0.050	-	0.0029	0.52 0.56	< 0.58
LC LCDSSLCC	LC_LCDSSLCC_WS_2022-03-21_N LC_LCDSSLCC_WS_2022-03-28_N	2022-03-22	-	-	-	-	-	8.21 8.25	588 666	1110	< 1.0 1.2	814	0.24		< 1.0	< 1.0				384 357	< 0.0050 < 0.0050	11.4	0.0063	0.388	-	0.0034	< 0.50	< 0.50
LC LCDSSLCC	LC LCDSSLCC_WS_2022-03-26_N	2022-03-26	+ -	-	-		H	8.35		1040	1.1	770			4 1	< 1.0				316	< 0.0050	12.4	< 0.0050	< 0.050	<u> </u>	0.0034		
LC LCDSSLCC	LC_LCDSSLCC_WS_2022-04-11_N	2022-04-07	-	-	-		-	8.15	589	1020	1.7	678		303	< 1.0	< 1.0				342	< 0.0050	12.7	< 0.0050	0.367	-	0.0022	< 0.50	< 0.50
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-04-18_N	2022-04-19	-	-	-	-	-	8.2	527	1000	3.1	744		262	< 1.0	< 1.0	< 0.25	17.8		333	< 0.0050	11.4	< 0.0050	0.459	-	0.0029	0.63	0.64
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-04-25_N	2022-04-25	-	-	-	-	-	8.28	528	1000	< 1.0	750	0.29	258	< 1.0	< 1.0					< 0.0050	11.5	< 0.0050	< 0.050	-	0.0026	0.84	0.73
LC_LCDSSLCC	LC_LCDSSLCC_MNT_2022-05-03_N	2022-05-04	-	-	-	-	-	8.29	465	852	1.9	624	0.22		3	< 1.0					< 0.0050	8.85	0.002	1.86	-	< 0.0020	1.15	0.86
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-05-09_N	2022-05-09	-	-	-	-	-	8.22	341	684	1.1	512	0.34		< 1.0	< 1.0					< 0.0050	7.08	0.0016	0.92	-	0.0032	0.95	0.99
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-05-16_N	2022-05-17	-	-	-	-	-	8.37	368	684	2.7	452	1.15		5.3	< 1.0					< 0.0050	6.41	0.002	< 0.500	-	0.004	0.98	0.94
LC_LCDSSLCC LC LCDSSLCC	LC_LCDSSLCC_WS_2022-05-23_N LC_LCDSSLCC_WS_2022-05-30_N	2022-05-24 2022-05-31	-	-	-	-	-	8.41 8.38	387 271	710 525	2.5	485 348	0.23		4.2	< 1.0					< 0.0050 < 0.0050	7.64	0.0026 < 0.0010	< 0.500	-	0.0035	1.2	1.18
LC LCDSSLCC	LC LCDSSLCC_WS_2022-06-30_N LC LCDSSLCC MNT 2022-06-07 N	2022-06-06	+ -	-	-		H-	8.38	236	466	3	304			< 1.0	< 1.0				110	< 0.0050	3.79	0.0010	< 0.500	-:-	0.0054	1.42	1.48
LC LCDSSLCC	LC LCDSSLCC WS 2022-06-13 N	2022-06-14	+-	1	-	-	-	8.16	215	452	3.9	274			< 1.0	< 1.0					0.0062	2.75	< 0.0010	< 0.500	H	0.0054	1.18	1.16
LC LCDSSLCC	LC LCUSWLC WS 2022-06-20 N	2022-06-22	+ -	-	-	-	-	7.87	265	543	< 1.0	345	0.78		< 1.0	< 1.0				118	< 0.0050	5.01	0.0012	< 0.500	-	0.0021	0.74	0.57
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-06-27_N	2022-06-27	-	-	-	-	-	8.24	252	495	15.4	237	3.14	189	< 1.0	< 1.0	< 0.05	2.75		94.4	< 0.0050	3.69	< 0.0010	< 0.500	-	0.0057	1.08	1.11
LC_LCDSSLCC	LC_LCDSSLCC_WS_Q3-2022_N	2022-07-05	-	-		-	-	8.29	239	469	1.4	334	0.68		4	< 1.0	< 0.05	2.94	0.187	100	< 0.0050	3.99	< 0.0010	< 0.500	-	0.0033	1.68	1.34
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-07-11_N	2022-07-11	-	-	-	-	-	7.55	280	534	1.1	370	0.19		< 1.0	< 1.0			0.168	110	< 0.0050	4.57	< 0.0010	< 0.500	-	0.0028	0.65	0.56
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-07-18_N	2022-07-19	-	-	-	-		7.03	330	631	< 1.0	474	0.24		< 1.0	< 1.0			0.206	138	< 0.0050	5.54	0.0012	1.03		0.0043	< 0.50	< 0.50
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-07-25_N	2022-07-26	-	-	-	-	-	8.29	374	697	< 1.0	481			< 1.0	< 1.0				180		7.31	0.0013	< 0.500	-		0.5	< 0.50
LC_LCDSSLCC LC LCDSSLCC	LC_LCDSSLCC_MNT_2022-08-02_N LC_LCDSSLCC_WS_2022-08-08_N	2022-08-03 2022-08-09	-	-		-	<u> </u>	8.36 8.38	393 424	753 784	3.1 < 1.0	560 550	0.19		9.1	< 1.0				203	< 0.0050 < 0.0050	7.77	0.0027 0.002	0.667	-	< 0.0020 0.0028	< 0.50	< 0.50
LC LCDSSLCC	LC_LCDSSLCC_WS_2022-08-08_N LC_LCDSSLCC_WS_2022-08-15_N	2022-08-09	+ -	-	-		H	8.38	438	799	< 1.0			265		< 1.0		9.51			< 0.0050	8.05	0.002	0.523	- : -	0.0028	< 0.50	
LO_LODGGLGG	20_20D00200_970_2022-00-10_N	2022-00-10						0.34	1 400	100	1 > 1.0	303	0.13	200	2.0	1.0	~ 0.00	9.31	0.229	223	. 0.0030	0.00	0.0013	0.023		0.0001	1 0.00	1 0.00

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted n/a denotes no applicable standard

^a Guideline varies with hardness ^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

APPENDIX C - TABLE 1: Summary of Analytical Results for Dissolved Organics, Nutrients and Organics

				Fiel	d Param	eters			F	hysical Pa	arameter	s				Disso	lved Inor	rganics					Nutrient	s				\neg
Sample	Sample	Sample Date	Field Temperature	pH (field)	Dissolved Oxygen	Field Conductivity	Field ORP	Нd	Hardness	Conductivity	Total Suspended Solids	Total Dissolved Solids	Turbidity	Bicarbonate	Carbonate	Hydroxide	Bromide	Chloride	Fluoride	Sulfate	Ammonia Nitrogen	Nitrate Nitrogen	Nitrite Nitrogen	Kjeldahl Nitrogen-N	Ortho-Pho sphate	Phosphorus, Total	Total Organic Carbon	Dissolved Organic Carbon
Location	ID	(yyyy-mm-dd)	С	pH	mg/L	μS/cm	mV	pH	mg/L	μS/cm	mg/L	mg/L	ntu	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
				Minimum	Acute			Minimum Maximum			Acute		Acute					Acute Chronic	Acute	Chronic	Acute Chronic	Acute Chronic	Acute Chronic			Chronic		
BC WQG FWAL			n/a	6.5 9	1 5	n/a	n/a	6.5 9	n/a	n/a	25 5	n/a	8 2	n/a	n/a	n/a	n/a	600 150	0.4- a	128-429°	0.681-28.7 ^b 0.102-2.08	32.8 3.7	0.06-0.60° 0.02-0.20°	n/a	n/a	0.015	n/a	n/a
Line Creek Operation LC LCDSSLCC	LC LCDSSLCC WS 2022-08-22 N	2022-08-23	Τ.	1	Ι.			_			< 1.0	1	< 0.10									Τ.						$\overline{}$
LC LCDSSLCC	LC CC1 WS 2022-08-22 N	2022-08-23	+ :-	-	-			8.335	456	792	< 1.0	582	< 0.10	256.5	2.25	< 1.0	< 0.050	9.93	0.226	231	< 0.0050	7.63	0.00195	< 0.500	<u> </u>	0.0023	< 0.50	< 0.50
LC LCDSSLCC	LC LCDSSLCC WS 2022-08-29 N	2022-08-30	-	1 -	-	-	-	8.29		769	1.3	510	0.15		2	< 1.0	< 0.050			204	< 0.0050	7.41	< 0.0010	< 0.500	-	0.0034	0.71	< 0.50
LC_LCDSSLCC	LC_LCDSSLCC_MNT_2022-09-06_N	2022-09-06	-	-	-	-	-	8.24	479	817	1.1	561	< 0.10		< 1.0	< 1.0	< 0.050		0.227	221	< 0.0050	7.56	0.0013	0.196	-	< 0.0020	< 0.50	< 0.50
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-09-12_N	2022-09-13	-	-	-	-	-	8.42	469	821	< 1.0	589	0.1	247	9.2	< 1.0	< 0.050	10.7	0.237	234	< 0.0050	7.68	< 0.0010	< 0.050	-	< 0.0020	< 0.50	< 0.50
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-09-19_N	2022-09-19	-	-	-	-	-	-	- 470	-	-	- 004	-		- 4.05			-	-	-	-	-	-	< 0.500	-	< 0.0020		
LC_LCDSSLCC LC LCDSSLCC	LC_CC1_WS_2022-09-19_N LC_LCDSSLCC_WS_2022-09-26_N	2022-09-19 2022-09-29	-	-	-	-	-	8.315 8.28	470 474	850 853	< 1.0	631 599	0.17		4.65 2.8	< 1.0	< 0.050		0.249	253 256	< 0.0050 < 0.0050	8.23 8.02	0.0026 0.0011	1.43	-	< 0.0020	< 0.50	< 0.50
LC LCDSSLCC	LC CC2 WS Q4-2022 N	2022-10-03	+ -	-	-	-	-	8.26	471.5	817.5	< 1.0	612.5			< 1.0	< 1.0	< 0.050		0.2235	250.5	< 0.0050	7.76	0.0011	1.56	-	< 0.0020	< 0.50	< 0.50
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-10-10_N	2022-10-11	-	-	-	-	-	-	-	-	< 1.0	-	- 0.10	-	-	-	-	- 11.0	-	-	-		-	-	-	-	-	-
LC_LCDSSLCC	LC_CC1_WS_2022-10-10_N	2022-10-11	-	-	-	-	-	8.165	485.5	830	-	591.5	0.175	265	< 1.0	< 1.0	< 0.050	11.7	0.2265	260	< 0.0050	8.075	0.001	0.829	-	< 0.0020	0.74	0.685
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-10-17_N	2022-10-18	-	-	-	-	-	8.12	465	850	< 1.0		< 0.10		< 1.0	< 1.0	< 0.050		0.217		< 0.0050	7.64	0.0014	1.61	-	0.0027	< 0.50	
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-10-24_N	2022-10-25	-	-	-	-	-	8.33	510	809	< 1.0		0.13		6.5	< 1.0	< 0.050		0.248	277	< 0.0050	8.26	0.0025	< 0.500	-	0.0024	< 0.50	< 0.50
LC_LCDSSLCC LC LCDSSLCC	LC_LCDSSLCC_WS_2022-10-31_N LC_LCDSSLCC_MNT_2022-11-08_N	2022-11-01 2022-11-08	+ -	-	-	-	-	8.24	556	867 868	1.2	660 645	0.16		< 1.0	< 1.0	< 0.050		0.223		< 0.0050	7.52	< 0.0010	< 0.500	- : -	< 0.0020 0.0023	< 0.50 < 0.50	
LC LCDSSLCC	LC_LCDSSLCC_MN1_2022-11-08_N LC_LCDSSLCC_WS_2022-11-14_N	2022-11-08	-	-	-	-	-	8.21	522 534	876	< 1.0	640			< 1.0	< 1.0	< 0.050		0.225		< 0.0050 < 0.0050	8.28 8.28	0.0013	0.561	-	< 0.0023	< 0.50	
LC LCDSSLCC	LC LCDSSLCC WS 2022-11-14_N	2022-11-14	+	-	1		-	0.21	- 354	- 070	+ :	- 040	0.13	200	- 1.0	- 1.0	- 0.030	13.0	0.100	-	- v.0000	0.20	4 0.0010	0.501		- 0.0020	- 0.50	- 0.30
LC LCDSSLCC	LC CC1 WS 2022-11-21 N	2022-11-21		-	-	-	-	8.23	507.5	897.5	< 1.0	636.5	0.18	240	< 1.0	< 1.0	< 0.050	13.85	0.2285	287.5	< 0.0050	8.805	0.00145	< 0.050	-	< 0.0020	< 0.50	< 0.50
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-11-28_N	2022-11-28	-	-	-	-	-	8.23	563	901	1.5	695	0.16		< 1.0	< 1.0	< 0.050		0.228	293	0.0057	8.45	0.001	1.71	-	< 0.0020	< 0.50	< 0.50
LC_LCDSSLCC	LC_LCDSSLCC_MNT_2022-12-05_N	2022-12-05	-	-	-	-	-	8.24	518	896	< 1.0	656	0.15		< 1.0	< 1.0	< 0.050		0.23	290	< 0.0050	8.17	< 0.0010	1.11	-	< 0.0020	< 0.50	< 0.50
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-12-12_N	2022-12-12	-	-	-	-	-	8.37	561	929	1.7	639	0.1	233	8.4	< 1.0	< 0.250		0.241	329	< 0.0050	9.14	< 0.0050	< 0.500	-	0.0024	< 0.50	< 0.50
LC_LCDSSLCC	LC_CC1_WS_2022-12-19_N	2022-12-19	-	-	-	-	-	8.395	543.5	940	-	726.5		238	5.2	< 1.0	< 0.050		0.222	302	0.00995	8.55	0.00125	0.752	-	0.00275	< 0.50	< 0.50
LC_LCDSSLCC LC LCDSSLCC	LC_LCDSSLCC_WS_2022-12-19_N LC_LCDSSLCC_WS_2022-12-26_N	2022-12-19 2022-12-28	-	-	-	-	-	-	569	931	< 1.0		-	242	3.7	< 1.0	< 0.250	-	0.198	310	< 0.0050	8.16	< 0.0050	< 0.500	-	< 0.0020	< 0.50	< 0.50
LC_ECDSSECC LC WLC	LC WLC WS Q1-2022 N	2022-12-28	-	-	-	-	-	8.35 8.28	1510	2130	1.4	1820			6.6	< 1.0	< 0.250			1090	< 0.0050	15.3	< 0.0050	0.325	-	0.0053	1.06	1.06
LC WLC	LC WLC WS 2022-01-10 N	2022-01-10		+ ÷	-			8.22	1420	2160	2.9	1910			< 1.0	< 1.0	< 0.250		0.162		< 0.0050	15.4	< 0.0050	0.314		0.0039	1.14	1.1
LC WLC	LC MT1 WS 2022-01-17 N	2022-01-17	-	-	-	-	-	5.14	< 0.50	< 2.0	< 1.0	< 10			< 1.0	< 1.0	< 0.050		< 0.020		< 0.0050	< 0.0050	< 0.0010	< 0.050	-	< 0.0020	< 0.50	< 0.50
LC_WLC	LC_CC1_WS_2022-01-17_N	2022-01-17	-	-	-	-	-	8.125		2165	1.1		0.165	420.5	< 1.0	< 1.0	< 0.250		0.166		< 0.0050	15.6	< 0.0050	< 0.050	-	0.00505	1.03	1.04
LC_WLC	LC_WLC_WS_2022-01-24_N	2022-01-25	-	-	-	-	-	8.14	1440	2160	1.2	1850	< 0.10		< 1.0	< 1.0	< 0.450		< 0.180	1230	< 0.0050	16.4	< 0.0090	0.116		0.0193	0.82	0.82
LC_WLC	LC_WLC_WS_2022-01-31_N	2022-01-31	-	-	-	-	-	8.17	1590	2210	< 1.0		< 0.10		< 1.0	< 1.0	< 0.250			1100	< 0.0050	15.9	< 0.0050	< 0.050	-	0.0051	1.14	1.05
LC_WLC	LC_MT2_MNT_2021-02-08_N	2022-02-08	-	-	-	-	-	6.82		< 2.0	< 1.0				< 1.0	< 1.0	< 0.050		< 0.020		< 0.0050	< 0.0050	< 0.0010	< 0.050	-	< 0.0020	< 0.50	< 0.50
LC_WLC	LC_CC1_WS_2022-02-14_N LC MT1 WS 2022-02-21 N	2022-02-14	-	-	-	-		8.26 6.715	1465	2140 < 2.0	1.5	1880	< 0.10		< 1.0	< 1.0	< 0.250		0.1515	1180	0.00645 < 0.0050	15.15 < 0.0050	< 0.0050 < 0.0010	0.2885	-:-	0.0054	1.215	1.41
LC_WLC	LC WLC WS 2022-02-21 N	2022-02-23	+:-	+:-	+ -	-		8.28	1620	2210	< 1.0	2040	< 0.10		< 1.0	< 1.0	< 0.050			1200	< 0.0050 < 0.0050	< 0.0050 15.8	< 0.0010	0.422		0.0020	0.85	0.8
LC WLC	LC MT1 MNT 2021-03-07 N	2022-03-01	+ -	t i	-	-	-	6.645		< 2.0	< 1.0	< 10			< 1.0	< 1.0	< 0.050				< 0.0050	< 0.0050	< 0.0030	< 0.050	-	< 0.0020	< 0.50	
LC_WLC	LC_WLC_WS_2022-03-14_N	2022-03-14	-	-	-	-	-	8	1410	2170	3.1	2090			< 1.0	< 1.0	< 0.250		0.173		< 0.0050	16.3	< 0.0050	0.364	-	0.0049	0.97	1.13
LC_WLC	LC_WLC_WS_2022-03-21_N	2022-03-22	-	-	-	-	-	8.19	1560	2270	1.6	2000	< 0.10		< 1.0	< 1.0	< 0.250		0.151		< 0.0050	15.4	< 0.0050	0.452	-	0.0048	1.01	0.94
LC_WLC	LC_WLC_WS_2022-03-28_N	2022-03-28	-	-	-	-	-	8.19	1520	2240	< 1.0			436	< 1.0	< 1.0	< 0.250		0.155		< 0.0050	15.5	< 0.0050	0.323	-	0.0041	1	0.89
LC_WLC LC WLC	LC_WLC_WS_Q2-2022_N	2022-04-05	-	-	-	-	-	8.3	1560	2260	1.2	1920	< 0.10		2.9	< 1.0	< 0.250		0.166		< 0.0050	16	< 0.0050	0.442	-	0.0056	1.07	1.05
LC_WLC	LC_WLC_WS_2022-04-11_N LC_CC1_WS_2022-04-18_N	2022-04-11	+-	+ -	-	-	-	8.12 8.21	1490	2170 2180	< 1.0	1920	< 0.10		< 1.0	< 1.0	< 0.250		0.2	1170 1130	< 0.0050 < 0.0050	16.1	< 0.0050 < 0.0050	0.447		0.0049	0.85 1.365	1.475
LC_WLC	LC CC1 WS 2022-04-18 N LC CC1 WS 2022-04-25 N	2022-04-18	+ -		-	-		8.325	1470	2165	2.85	1915			5.05	< 1.0	< 0.250		0.1955	1200	< 0.0050 < 0.0050	16.7	< 0.0050	1.115		0.0055	0.985	1.475
LC WLC	LC WLC MNT 2022-05-03 N	2022-05-03	+-	+ -	+	-	-	8.11	1430	2150	2.63	1860			< 1.0	< 1.0	< 0.250		0.197	1140	< 0.0050	16.2	< 0.0050	1.43		0.0064	1.13	1.08
LC_WLC	LC_WLC_WS_2022-05-09_N	2022-05-09	1 -	1 -	-	-	-	8.23	1380	2060	1.6	1790			< 1.0	< 1.0	< 0.250		0.193	1100	< 0.0050	16.2	< 0.0050	1.36	-	0.005	0.84	0.86
LC_WLC	LC_WLC_WS_2022-05-16_N	2022-05-16	-	-	-	-	-	8.14	1360	2020	1.6	1660	0.14	431	< 1.0	< 1.0	< 0.250	4.99	0.221	997	< 0.0050	14.5	0.0127	0.787	-	0.0056	1.16	1.16
LC_WLC	LC_WLC_WS_2022-05-23_N	2022-05-24	-	-	-	-	-	8.24	1320	1990	2	1700			< 1.0	< 1.0	< 0.250		0.177	980	< 0.0050	13.6	< 0.0050	0.793	-	0.0067	0.9	1.08
LC_WLC	LC_MT1_WS_2022-05-30_N	2022-05-30	-	-	-	-	-	6.76	< 0.50	< 2.0	< 1.0		< 0.10		< 1.0	< 1.0	< 0.050		< 0.020		< 0.0050	< 0.0050	< 0.0010	< 0.050	-	< 0.0020		
LC_WLC LC WLC	LC_MT2_MNT_2022-06-07_N	2022-06-06	-	-	-	-	-	6.81	< 0.50	< 2.0	< 1.0		< 0.10		< 1.0	< 1.0	< 0.050		< 0.020		< 0.0050	< 0.0050	< 0.0010	< 0.050	-	< 0.0020	< 0.50	
LC_WLC	LC_CC1_WS_2022-06-13_N LC_WLC_WS_2022-06-20_N	2022-06-13	+-	-	-	-		7.955 8.1	702.5 672	1165 1180	< 1.0 1.2	926.5 819	< 0.10		< 1.0	< 1.0	< 0.250		0.12	436 349	< 0.0050 < 0.0050	6.09	< 0.0050 < 0.0050	0.727		0.0039	1.025	0.985
LC_WLC	LC_WLC_WS_2022-06-20_N LC_WLC_WS_2022-06-27_N	2022-06-22	+:-	-	-	H	H	8.19	744	1230	< 1.0			391	< 1.0			1.33			< 0.0050	7.2	< 0.0050	1.53		0.0027	0.92	0.99
20_1120		1 2022 00 27		<u> </u>	<u> </u>		-	0.10	1	1.200	1 1.0	1 0.00	~ 0.10	, , ,	- 1.5		0.200	1.00	3.100	4	* 0.0000	1.2	1 .00000	1.00		3.0000	0.02	3.00

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness ^b Guideline varies with pH and water temperature

^o Guideline varies with chloride

APPENDIX C - TABLE 1: Summary of Analytical Results for Dissolved Organics, Nutrients and Organics

				Fiel	d Param	eters			F	hysical Pa	rameters	•				Diss	olved Inor	rganics					Nutrient	ts				
Sample	Sample	Sample Date	Field Temperature	pH (field)	Dissolved Oxygen	Field Conductivity	Field ORP	Æ	Hardness	Conductivity	Total Suspended Solids	Total Dissolved Solids	Turbidity	Bicarbonate	Carbonate	Hydroxide	Bromide	Chloride	Fluoride	Sulfate	Ammonia Nitrogen	Nitrate Nitrogen	Nitrite Nitrogen	Kjeldahl Nitrogen-N	Ortho-Phosphate	Phosphorus, Total	Total Organic Carbon	Dissolved Organic Carbon
Location	ID	(yyyy-mm-dd)	С	pН	mg/L	µS/cm	mV	pН	mg/L	μS/cm	mg/L	mg/L	ntu	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
				Minimum Maximum	Acute Chronic			Minimum Maximum			Acute Chronic		Acute Chronic					Acute Chronic	Acute	Chronic	Acute Chronic	Acute Chronic	Acute Chronic			Chronic		
BC WQG FWAL			n/a	6.5 9	1 5	n/a	n/a	6.5 9	n/a	n/a	25 5	n/a	8 2	n/a	n/a	n/a	n/a	600 150	0.4- a	128-429	0.681-28.7b 0.102-2.08b	32.8 3.7	0.06-0.60° 0.02-0.20	n/a	n/a	0.015	n/a	n/a
Line Creek Operation																												$\overline{}$
LC_WLC	LC_WLC_WS_Q3-2022_N	2022-07-05	-	-	-	-	-	8.22	824	1350	< 1.0	1150	< 0.10	433	< 1.0	< 1.0	< 0.050	1.51	0.108	518	< 0.0050	7.79	< 0.0010	1.55		0.0028	1.08	1.17
LC_WLC	LC_CC1_WS_2022-07-11_N	2022-07-11	-	-	-	-	-	8.08	938	1495	< 1.0	1230	0.115	455.5	< 1.0	< 1.0	< 0.250	2.57	0.1435	594	< 0.0050	8.5	< 0.0050	0.467	-	0.0039	0.635	0.71
LC_WLC	LC_WLC_WS_2022-07-18_N	2022-07-19	-	-	-	-		8.08	1020	1550	2.8	1330	< 0.10	479	< 1.0	< 1.0	< 0.250	2.08	0.14	626	< 0.0050	8.38	< 0.0050	< 0.500		0.0047	1	0.93
LC_WLC	LC_MT1_WS_2022-07-25_N	2022-07-26	-	-	-	-	-	6.65	< 0.50	< 2.0	< 1.0	< 10	< 0.10	< 1.0	< 1.0	< 1.0	< 0.050	< 0.10	< 0.020	< 0.30	-	< 0.0050	< 0.0010	< 0.050		-	< 0.50	< 0.50
LC_WLC	LC_WLC_MNT_2022-08-02_N	2022-08-03	-	-	-	-	-	8.03	1110	1730	< 1.0	1540	< 0.10	512	< 1.0	< 1.0	< 0.250	2.75	0.102	736	< 0.0050	9.78	< 0.0050	< 0.500	-	0.0043	0.62	0.6
LC_WLC	LC_WLC_WS_2022-08-08_N	2022-08-08	-	-	-	-		8.23	1250	1780	2.8	1530	0.13	475	< 1.0	< 1.0	< 0.250	2.72	0.142	799	< 0.0050	10.1	< 0.0050	0.553		0.0049	1.07	1.08
LC_WLC	LC_MT1_WS_2022-08-15_N	2022-08-15	-	-	-	-	-	6.63	< 0.50	< 2.0	< 1.0	< 10	< 0.10	< 1.0	< 1.0	< 1.0	< 0.050	< 0.10	< 0.020	< 0.30	< 0.0050	< 0.0050	< 0.0010	< 0.050		< 0.0020	< 0.50	< 0.50
LC_WLC	LC_WLC_WS_2022-08-22_N	2022-08-22	-	-	-	-		8.03	1260	1850	< 1.0	1750	0.14	513	< 1.0	< 1.0	< 0.250	3.27	0.135	886	< 0.0050	10.9	< 0.0050	1.61		0.0046	0.74	0.73
LC_WLC	LC_WLC_WS_2022-08-29_N	2022-08-29	-	-	-	-		8.11	1460	2000	4.2	1620	0.11	548	< 1.0	< 1.0	< 0.250	4.94	0.13	923	< 0.0050	11.3	< 0.0050	2.53		0.005	< 0.50	< 0.50
LC_WLC	LC_WLC_MNT_2022-09-06_N	2022-09-06	-	-	-	-	-	7.99	1320	2040	1.5	1770	< 0.10	524	< 1.0	< 1.0	< 0.250	3.17	0.111	1020	< 0.0050	11.6	< 0.0050	1.12	-	0.0036	< 0.50	0.51
LC_WLC	LC_WLC_WS_2022-09-12_N	2022-09-13	-	-	-	-		8.08	1470	2010	1.6	1820	< 0.10	504	< 1.0	< 1.0	< 0.250	3.42	0.132	965	< 0.0050	12	< 0.0050	0.088		0.0048	0.99	0.72
LC_WLC	LC_WLC_WS_2022-09-19_N	2022-09-19	-	-	-	-	-	8.3	1470	2070	1.2	1890	0.13	496	5.2	< 1.0	< 0.250	3.69	0.128	1020	< 0.0050	12.5	< 0.0050	< 0.500		0.0041	0.59	0.51
LC_WLC	LC_WLC_WS_2022-09-29_N	2022-09-29	-	-	-	-	-	8.16	1530	2010	1.7	1930	< 0.10	533	< 1.0	< 1.0	< 0.250	3.59	0.148	1030	< 0.0050	12.7	< 0.0050	3.76	-	0.0054	1.22	1.09
LC_WLC	LC_WLC_WS_Q4-2022_N	2022-10-03	-	-	-	-	-	8.2	1560	1990	< 1.0	1880	0.12	534	< 1.0	< 1.0	< 0.250	3.64	0.128	1070	< 0.0050	13	< 0.0050	0.776	-	0.0031	< 0.50	< 0.50
LC_WLC	LC_WLC_WS_2022-10-10_N	2022-10-12	-	-	-	-	-	8.08	1620	2060	< 1.0	1920	< 0.10	535	< 1.0	< 1.0	< 0.250	3.36	0.112	936	< 0.0050	12.3	< 0.0050	1.17	-	0.0035	1.47	1.4
LC_WLC	LC_WLC_WS_2022-10-17_N	2022-10-17	-	-	-	-	-	7.94	1680	2080	2.1	1840	< 0.10	547	< 1.0	< 1.0	< 0.250	4.49	0.141	1090	< 0.0050	13.5	< 0.0050	1.21	-	0.0051	0.93	0.97
LC_WLC	LC_CC1_WS_2022-10-24_N	2022-10-24	-	-	-	-	-	7.2767	1163.5	1254	1.5667	1180	< 0.10	350.67	< 1.0	< 1.0	< 0.250	2.58	0.1323	763.43	< 0.0050	9.501667	< 0.0050	0.7173	-	0.004067	0.8	0.8133
LC_WLC	LC_WLC_WS_2022-10-31_N	2022-10-31	-	-	-	-	-	8.27	1550	2060	< 1.0	2080	0.29	425	< 1.0	< 1.0	< 0.250	3.74	0.197	1120	< 0.0050	14	< 0.0050	0.93	-	0.0039	0.99	1.17
LC_WLC	LC_WLC_MNT_2022-11-08_N	2022-11-07	-	-	-	-	-	8.24	1540	2190	< 1.0	2090	< 0.10	450	< 1.0	< 1.0	< 0.250	3.8	0.223	1140	< 0.0050	14.1	< 0.0050	1.86	-	0.0046	1.1	0.93
LC_WLC	LC_MT1_WS_2022-11-14_N	2022-11-14	-	-	-	-	-	7.025	< 0.50	< 2.0	< 1.0	< 10	< 0.10		< 1.0	< 1.0	< 0.050	< 0.10	< 0.020		0.00515	< 0.0050	< 0.0010	< 0.050	-	< 0.0020	< 0.50	< 0.50
LC_WLC	LC_WLC_WS_2022-11-21_N	2022-11-21	-	-	-	-	-	8.22	1570	2150	4.1	2040	0.19	418	< 1.0	< 1.0	< 0.250	4.26	0.257	1200	< 0.0050	15.1	< 0.0050	0.813	-	0.0055	0.7	0.65

< Denotes concentration less than indicated detection limit

^a Guideline varies with hardness ^b Guideline varies with pH and water temperature ^c Guideline varies with chloride

Denotes analysis not conducted
 n/a denotes no applicable standard

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

									Dissolv	ed Metals						
			l o	Ε	2			E			١,	=		E		
			les les		5	<u>ي</u>	E		€	_ ا		<u> </u>	E	∄	<u>.</u>	-
			힏	Ē		Ser	. ₹	₹	l Ĕ	5		E	alciu	romium	pa	Coppe
Sample	Sample	Sample Date	На	Ā	Ā	Ä	Ba	Be	ä	B		5	Ca	ธ	ပိ	ပိ
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	m	g/L	mg/L	mg/L	mg/L	mg/L
				ic							_	aic .				ie ie
				atu l							a a	hronic				Acute Chronic
				G Ac							ě	5				₹ 5
BC WQG FWAL			n/a	0.020-0.10 ^a 0.005-0.05 ^a	n/a	na	na	na	n/a	n/a	0.00004-0.0028 ^a	0.00002-0.00173 ^a	n/a	n/a	n/a	BLM
Coal Mountain Mine																
CM_CC1	CM_CC1_WS_2022-01-04_N		922	0.0038	0.00038	0.00017	0.0362	< 0.020	< 0.000050	0.103		00128	201	< 0.00030	0.0106	0.00024
CM_CC1	CM_CC1_WS_2022-01-11_N	2022-01-11	913	0.0027	0.00034	0.00015	0.0348	< 0.020	< 0.000050	0.086		00102	199	< 0.00010	0.0097	< 0.00020
CM_CC1	CM_CC1_WS_2022-02-01_N	2022-02-01	1050	0.0037	0.00052	0.00017	0.0361	< 0.020	< 0.000050	0.084		0017	231	0.00012	0.0127	0.00386
CM_CC1	CM_CC1_WS_2022-03-01_N	2022-03-01	978	0.0024	0.00029	0.00017	0.045	< 0.020	< 0.000050	0.054		00764	202	0.00011	0.00368	< 0.00020
CM_CC1	CM_CC1_WS_2022-03-15_N	2022-03-15	988	0.0011	0.00028	0.00019	0.0511	< 0.020	< 0.000050	0.05		00556	211	0.00013	0.00311	< 0.00020
CM_CC1	CM_CC1_WS_2022-03-22_N	2022-03-22	1030	0.0018	0.00028	0.0002	0.054	< 0.020	< 0.000050	0.06		00476	221	0.00013	0.00304	< 0.00020
CM_CC1 CM_CC1	CM_CC1_WS_2022-03-29_N CM_CC1_WS_2022-04-05_N	2022-03-29	970	0.0018	0.00028	0.00018	0.0489	< 0.020	< 0.000050	0.055		00491	212	< 0.00010	0.00412	< 0.00020
CM_CC1		2022-04-05	899 889	0.0034	0.00026	0.00016 0.00016	0.0452	< 0.020 < 0.020	< 0.000050 < 0.000050	0.078		00505	195	0.00014	0.00369	0.0002
	CM_CC1_WS_2022-04-12_N	2022-04-12		*****	0.00028		0.0461	0.000021	< 0.000050	0.071		0005	191	0.00016	0.0035	< 0.00020
CM_CC1 CM_CC1	CM_CC1_WS_2022-04-19_N	2022-04-19	872	0.003		0.0002						00419	187	0.00014		0.00024
CM_CC1	CM_CC1_WS_2022-04-26_N CM_CC1_WS_2022-05-03_N	2022-04-26	819 772	< 0.0040	0.00027	0.00015 0.00016	0.0407 0.041	< 0.020 < 0.020	< 0.000050 < 0.000050	0.062		003535	178 171	0.0001 < 0.00010	0.003875	< 0.00020
CM_CC1	CM_CC1_WS_2022-05-03_N CM_CC1_2022-05-06_N2	2022-05-06	1112	0.0042	0.00034	0.00016	0.041	< 0.020	< 0.000050	0.08		00676	171	< 0.00010	0.00919	< 0.00020
CM_CC1	CM CC1 2022-05-06 N1	2022-05-06	-	-	-		-	-	-	-		-	-		-	-
CM_CC1	CM CC1 2022-05-06 N1	2022-05-06	<u> </u>	-	- :	- :		-	-:-	-			-	- :	-	-
CM CC1	CM CC1 WS 2022-05-10 N	2022-05-10	604	0.0092	0.00034	0.00016	0.0372	< 0.020	< 0.000050	0.079		-	153	0.0001	0.00591	0.00023
CM CC1	CM_CC1_W3_2022-05-10_N CM_CC1_WS_2022-05-17_N	2022-05-10	731	0.0092	0.00034	0.00016	0.0372	< 0.020	< 0.000050	0.075		00131 01575	162.5		0.00331	0.00023
CM CC1	CM NNP WS 2022-05-17 N	2022-05-17	751	0.0062	0.00000	-	-	- 0.020	- 0.000000	- 0.070		- 015/5	102.0	0.000120	- 0.005105	0.00028
CM CC1	CM CC1 WS 2022-05-24 N	2022-05-24	١.	0.0064	0.00034	0.00016	0.0284	< 0.020	< 0.000050	0.054		00172	153	0.00014	0.00734	0.0002
CM CC1	CM CC1 WS 2022-05-31 N	2022-05-31	١.	0.0084	0.00032	0.00018	0.0237	< 0.020	< 0.000050	0.044		00172	139	0.00011	0.00485	0.00021
CM CC1	CM CC1 WS 2022-06-07 N	2022-06-07	-	0.0035	0.00032	0.00016	0.0206	< 0.020	< 0.000050	0.042		00357	150	0.00014	0.0058	0.00021
CM CC1	CM CC1 WS 2022-06-14 N	2022-06-14	-	0.0021	0.00027	0.00018	0.0245	< 0.020	< 0.000050	0.027		0039	122	0.00011	0.00441	0.00027
CM CC1	CM CC1 WS 2022-06-21 N	2022-06-21	-	0.0023	0.000315	0.0002	0.02525	< 0.020	< 0.000050	0.0435		00485	129	0.00014	0.00625	0.000315
CM CC1	CM CC1 WS 2022-06-28 N	2022-06-28	-	0.0022	0.00041	0.00014	0.0272	< 0.020	< 0.000050	0.054		00436	176	0.00011	0.00896	0.00025
CM CC1	CM CC1 WS 2022-07-05 N	2022-07-05	-	0.0021	0.00041	0.0002	0.0271	< 0.020	< 0.000050	0.07		0027	178	< 0.00010	0.00945	0.00022
CM_CC1	CM_NNP_WS_2022-07-12_N	2022-07-12	-	< 0.0010	-	-	-	-	-	-			-	-	-	-
CM_CC1	CM_CC1_WS_2022-07-12_N	2022-07-12	-	-	0.00049	0.000195	0.0275	< 0.020	< 0.000050	0.073	0.00	0122	211.5	0.0001	0.0108	< 0.00020
CM_CC1	CM_CC1_WS_2022-08-02_N	2022-08-02	-	< 0.0010	0.00063	0.0002	0.0302	< 0.020	< 0.000050	0.0915		08485	212.5	< 0.00010	0.0102	< 0.00020
CM_CC1	CM_NNP_WS_2022-08-02_N	2022-08-02	-	-	-	-	-	-	-	-		-	-	-	-	-
CM_CC1	CM_CC1_2022-08-25_N1	2022-08-25	-	-	-	-	-	-	-	-		-	-	-	-	-
CM_CC1	CM_CC1_WS_2022-09-06_N	2022-09-06	-	< 0.0010	0.00055	0.00023	0.04185	< 0.020	< 0.000050	0.085	0.00	00065	216		0.005875	< 0.00020
CM_CC1	CM_CC1_WS_SEPT-2022_N	2022-09-08	-	0.0035	0.00059	0.00019	0.0399	< 0.020	< 0.000050	0.094		00793	210	< 0.00010	0.0062	0.00028
CM_CC1	CM_CC1_WS_2022-10-04_N	2022-10-04	-	0.0019	0.00039	0.00018	0.0503	< 0.020	< 0.000050	0.068		00034	213	0.00017	0.00265	< 0.00020
CM_CC1	CM_CC1_WS_2022-11-01_N	2022-11-01	-	0.0021	0.00032	< 0.00020	0.0466	< 0.040	< 0.000100	0.074		00303	219	< 0.00020	0.00364	< 0.00040
CM_CC1	CM_CC1_WS_2022-12-06_N	2022-12-06	-	0.00145	0.00026	0.000225	0.0641	< 0.020	< 0.000050	0.0595		00299	241.5	0.000155	0.003015	< 0.00020
CM_CCOFF	CM_CCOFF_WS_2022-01-04_NP	2022-01-06	-	0.0038	0.0003	0.00018	0.0272	< 0.020	< 0.000050	0.125		00364	209	< 0.00030	0.00525	0.00022
CM_CCOFF	CM_CCOFF_WS_2022-01-11_NP	2022-01-11	-	0.0036	0.00027	0.00014	0.0256	< 0.020	< 0.000050	0.088		0035	207	< 0.00010		< 0.00020
CM_CCOFF	CM_CCOFF_WS_2022-01-18_NP	2022-01-18	-	0.0043	0.00028	0.00017	0.0252	< 0.020	< 0.000050	0.067		0004	225	0.00012	0.00132	0.00023
CM_CCOFF CM_CCOFF	CM_CCOFF_WS_2022-01-19_NP	2022-01-19	-	0.0029	0.00027	0.00018	0.0261	< 0.020	< 0.000050	0.061		00416	229	< 0.00010	0.00113	< 0.00020
CM_CCOFF	CM_CCOFF_WS_2022-01-25_NP CM_CCOFF_WS_2022-02-01_NP	2022-01-25	1	0.0037	0.00031	0.00018 < 0.00020	0.0254 0.0246	< 0.020 < 0.040	< 0.000050 < 0.000100	0.066 0.064		00401	244	< 0.00010 < 0.00020	0.0007 0.00048	0.00027
CM_CCOFF	CM_CCOFF_WS_2022-02-01_NP CM_CCOFF_WS_2022-02-08_N	2022-02-02	1	0.0046	0.00028	< 0.00020	0.0246	< 0.040	< 0.000100	0.064		00359	262	< 0.00020	0.00048	< 0.00040
CM_CCOFF	CM_CCOFF_WS_2022-02-08_N CM_CCOFF_WS_2022-02-15_NP	2022-02-08	-	0.0038	0.00028	0.00020	0.0248	< 0.040	< 0.000100	0.07		00348	239	< 0.00020	0.00044	< 0.00040
CM_CCOFF	CM_CCOFF_WS_2022-02-15_NP CM_CCOFF_WS_2022-02-22_NP	2022-02-15	1	0.0024	0.00029	< 0.00016	0.0252	< 0.020	< 0.000050	0.062		00297	239	< 0.00010	0.00035	0.00024
CM_CCOFF	CM_CCOFF_WS_2022-02-22_NP CM_CCOFF_WS_2022-03-01_NP	2022-02-22	1	0.0036 0.0105	0.00027	0.00020	0.0263	< 0.040	< 0.000050	0.059		00326	250	0.00020	0.00038	< 0.00040 0.00022
CM_CCOFF	CM CCOFF WS 2022-03-01 NP	2022-03-01	1	< 0.0105	0.00020	< 0.00017	0.0265	< 0.020	< 0.000100	0.069		0003 00252	240	< 0.0001	0.00032	< 0.00022
CM_CCOFF	CM_CCOFF_WS_2022-03-06_NP	2022-03-15	Hi-	< 0.0050 0.0033	0.00027	0.00020	0.0265	< 0.040	< 0.000100	0.069		00252 00208	240	< 0.00020	0.00037	< 0.00040
CM CCOFF	CM CCOFF WS 2022-03-13 NP	2022-03-13	1	0.0033	0.00027	0.0002	0.0230	< 0.020	< 0.000050	0.069		0022	253	0.00011	0.00034	< 0.00020
CM CCOFF	CM CCOFF WS 2022-03-29 NP	2022-03-29	-	0.0025	0.00027	0.00017	0.0268	< 0.020	< 0.000050	0.067		0022	239	0.00011	0.00071	0.00020
CM CCOFF	CM CCOFF WS 2022-04-05 NP	2022-03-23	-	0.0036	0.00020	0.00017	0.0263	0.000027	< 0.000050	0.125		0024	225	< 0.00011	0.00604	0.0002
				0.0000	1			1	1		0.00	,0244		1	1	0.00034

< Denotes concentration less than indicated detection limit

n/a denotes no applicable standard

⁻ Denotes analysis not conducted

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

^d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

											Dissolv	ed Metals							
Sample	Sample	Sample Date	lardness	uo	ead	ithium	fagnesium	fanganese	lickel	otassium	elenium	Silver	iodium	itrontium	hallium	Ë	itanium	Iranium	inc
Location	ID	(mm/dd/yyyy)		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Location	10	(IIIIII/dd/yyyy)	ı ıng/L	IIIg/L	mg/L	mg/L	ilig/L	mg/L	mg/L	IIIg/L	pg/L	IIIg/L	mg/L	mg/L	IIIg/L	ilig/L	mg/L	mg/L	mg/L
				Acute															
WQG FWAL			n/a	0.35	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
al Mountain Mine																			
CM_CC1	CM_CC1_WS_2022-01-04_N	2022-01-06		0.01	< 0.000050	0.0576	102	0.0744	0.0612	3.52	19.3	< 0.000010	49.6	1.02	0.000046	< 0.00010	< 0.00030	0.00611	0.014
CM_CC1	CM_CC1_WS_2022-01-11_N	2022-01-11	913	< 0.010	< 0.000050	0.0501	101	0.0692	0.0569	3.34	17.8	< 0.000010	39.6	0.898	0.00004	< 0.00010	< 0.00030	0.00592	0.0118
CM_CC1	CM_CC1_WS_2022-02-01_N	2022-02-01	1050	< 0.010	< 0.000050	0.0477	115	0.0727	0.0795	3.91	17.8	< 0.000010	37	1.01	0.000046	< 0.00010	< 0.00030	0.00645	0.0182
CM_CC1	CM_CC1_WS_2022-03-01_N	2022-03-01		< 0.010	< 0.000050	0.0328	115	0.0269	0.0348	3.04	21	< 0.000010	25.9	0.695	0.000031	< 0.00010	< 0.00030	0.00606	0.0067
CM_CC1	CM_CC1_WS_2022-03-15_N	2022-03-15		< 0.010	< 0.000050	0.0342	112	0.0255	0.03	3.2	23.3	< 0.000010	26.7	0.738	0.000033	< 0.00010 < 0.00010	< 0.00030	0.00667	0.0058
CM_CC1 CM_CC1	CM_CC1_WS_2022-03-22_N CM_CC1_WS_2022-03-29_N	2022-03-22	1030	< 0.010 < 0.010	< 0.000050 < 0.000050	0.0359 0.0348	116 107	0.0259 0.0348	0.0304 0.0314	3.29 3.12	32.5 17.6	< 0.000010 < 0.000010	29.6 26.1	0.768	0.000031	< 0.00010	< 0.00030 < 0.00030	0.0063	0.0056
CM_CC1	CM CC1 WS 2022-03-29 N	2022-03-29		< 0.010	< 0.000050	0.0348	107	0.0348	0.0314	2.79	17.6	< 0.000010	41.4	0.73	0.00003	< 0.00010	< 0.00030	0.00545	0.006
CM_CC1	CM CC1 WS 2022-04-05 N	2022-04-05		< 0.010	< 0.000050	0.0444	100	0.0279	0.0283	3.05	18.8	< 0.000010	38.5	0.879	0.000032	< 0.00010	< 0.00030	0.00545	0.0057
CM_CC1	CM CC1 WS 2022-04-12 N	2022-04-12		< 0.010	< 0.000050	0.0464	98.5	0.0269	0.0281	3.06	15	< 0.000010	43.5	0.882	0.000032	< 0.00010	< 0.00030	0.00512	0.0055
CM_CC1	CM CC1 WS 2022-04-19 N	2022-04-19		< 0.010	< 0.000050	0.03885	98.5	0.0269	0.0281	2.725	13.2	< 0.000010	43.5 37.1	0.882	0.000031	< 0.00010	< 0.00030	0.00526	0.00535
CM_CC1	CM CC1 WS 2022-04-26 N	2022-04-26	772	< 0.010	< 0.000050	0.0507	83.7	0.02965	0.0296	3.15	12.2	< 0.000010	43.2	0.776	0.000026	< 0.00010	< 0.00030	0.00461	0.00535
CM CC1	CM CC1 2022-05-06 N2	2022-05-06	112	- 0.010	- 0.000000	-	-	- 0.0004	- 0.0432	5.15	12.2	- 0.000010		- 0.007	-	- 0.00010	- 0.00000		0.0070
CM CC1	CM CC1 2022-05-06 N1	2022-05-06	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-
CM CC1	CM CC1 2022-05-07 N1	2022-05-07	١.					-	-	-	-						-		
CM CC1	CM CC1 WS 2022-05-10 N	2022-05-10	694	< 0.010	< 0.000050	0.0534	75.8	0.042	0.0377	2.81	16.9	< 0.000010	50.3	0.745	0.000035	< 0.00010	< 0.00030	0.00416	0.0146
CM CC1	CM CC1 WS 2022-05-17 N	2022-05-17	731	< 0.010	< 0.000050	0.04445	78.85	0.062	0.0527	2.87	15.15	< 0.000010	35.65	0.7915	0.000038	< 0.00010	< 0.00030	0.004685	0.01695
CM CC1	CM NNP WS 2022-05-17 N	2022-05-17	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CM CC1	CM CC1 WS 2022-05-24 N	2022-05-24	-	< 0.010	< 0.000050	0.0369	82.3	0.0471	0.0454	2.94	18.8	< 0.000010	31	0.686	0.000034	< 0.00010	< 0.00030	0.00489	0.0171
CM CC1	CM CC1 WS 2022-05-31 N	2022-05-31	-	< 0.010	< 0.000050	0.0286	70.4	0.0309	0.0357	2.64	21.1	< 0.000010	21.2	0.492	0.000032	< 0.00010	< 0.00030	0.004	0.0236
CM CC1	CM CC1 WS 2022-06-07 N	2022-06-07	-	< 0.010	< 0.000050	0.0263	67.8	0.0374	0.0398	2.39	21.2	< 0.000010	16.8	0.476	0.000031	< 0.00010	< 0.00030	0.00389	0.0286
CM_CC1	CM_CC1_WS_2022-06-14_N	2022-06-14	-	< 0.010	< 0.000050	0.0185	56.6	0.0289	0.0308	2.16	14.4	< 0.000010	10	0.361	0.000023	< 0.00010	< 0.00030	0.00338	0.0286
CM_CC1	CM_CC1_WS_2022-06-21_N	2022-06-21	-	< 0.010	< 0.000050	0.026	67.95	0.0382	0.04105	2.505	16.1	< 0.000010	18.35	0.4755	0.0000325	< 0.00010	< 0.00030	0.00361	0.0333
CM_CC1	CM_CC1_WS_2022-06-28_N	2022-06-28	-	< 0.010	< 0.000050	0.0364	87	0.0515	0.0583	3.1	17.6	< 0.000010	26.1	0.648	0.00004	< 0.00010	< 0.00030	0.00506	0.0332
CM_CC1	CM_CC1_WS_2022-07-05_N	2022-07-05	-	< 0.010	< 0.000050	0.0385	94.5	0.0527	0.0626	3.25	19.2	< 0.000010	27.7	0.688	0.000041	< 0.00010	< 0.00030	0.00522	0.0205
CM_CC1	CM_NNP_WS_2022-07-12_N	2022-07-12		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CM_CC1	CM_CC1_WS_2022-07-12_N	2022-07-12	-	< 0.010	< 0.000050	0.04345	107.5	0.0529	0.07375	3.495	20.75	< 0.000010	26.65	0.76	0.0000475	< 0.00010	< 0.00030	0.00636	0.0107
CM_CC1	CM_CC1_WS_2022-08-02_N	2022-08-02	-	< 0.010	< 0.000050	0.0512	107	0.0393	0.07805	3.69	16.35	< 0.000010	32.85	0.9295	0.0000565	< 0.00010	< 0.00030	0.006915	0.0031
CM_CC1	CM_NNP_WS_2022-08-02_N	2022-08-02	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-
CM_CC1	CM_CC1_2022-08-25_N1	2022-08-25	-	-	-	-		-	-	-	-	-	-	-	-	-	-		-
CM_CC1	CM_CC1_WS_2022-09-06_N	2022-09-06	-	< 0.010	< 0.000050	0.04225	118	0.0219	0.06755	3.88	17.95	< 0.000010	34.85	0.899	0.0000485	< 0.00010	< 0.00030	0.005895	0.003
CM_CC1	CM_CC1_WS_SEPT-2022_N	2022-09-08	-	< 0.010	< 0.000050	0.0502	124	0.0235	0.0694	4.02	17.2	< 0.000010	34.8	0.803	0.000047	< 0.00010	< 0.00030	0.00618	0.0031
CM_CC1	CM_CC1_WS_2022-10-04_N	2022-10-04	-	< 0.010	< 0.000050	0.0384	118	0.0121	0.0474	3.58	22	< 0.000010	27.8	0.796	0.000036	< 0.00010	< 0.00030	0.00562	0.0027
CM_CC1 CM_CC1	CM_CC1_WS_2022-11-01_N	2022-11-01	-	< 0.020	< 0.000100	0.0366	118	0.0203	0.0446	3.46	17.3	< 0.000020	26.4 34	0.807	0.000036	< 0.00020	< 0.00060	0.00602	0.003
CM_CC1 CM CCOFF	CM_CC1_WS_2022-12-06_N CM_CCOFF_WS_2022-01-04_NP	2022-12-06	-	< 0.010 0.011	< 0.000050 < 0.000050	0.0426 0.0626	136 115	0.02805 0.0349	0.03135 0.038	3.64 3.36	21.75 29.5	< 0.000010 < 0.000010	61.4	0.81 1.14	0.000031 0.000051	< 0.00010 < 0.00010	< 0.00030 < 0.00030	0.00609 0.0064	0.0036 0.034
CM_CCOFF	CM CCOFF_WS_2022-01-04_NP	2022-01-06	1	< 0.011	< 0.000050	0.0626	110	0.0349	0.038	3.36	29.5	< 0.000010	43	0.955	0.000051	< 0.00010	< 0.00030	0.00674	0.034
CM_CCOFF	CM CCOFF_WS_2022-01-11_NP	2022-01-11	-	< 0.010	< 0.000050	0.0311	125	0.0207	0.0297	3.39	32.8	< 0.000010	30.7	0.955	0.000048	< 0.00010	< 0.00030	0.00674	0.0272
CM CCOFF	CM CCOFF WS 2022-01-18 NP	2022-01-19		< 0.010	< 0.000050	0.0357	130	0.0115	0.0276	3.51	33.6	< 0.000010	31	0.806	0.000044	< 0.00010	< 0.00030	0.00773	0.0237
CM_CCOFF	CM CCOFF WS 2022-01-19 NP	2022-01-19	+	< 0.010	< 0.000050	0.0357	134	0.00834	0.0274	3.59	36.5	< 0.000010	27	0.806	0.000042	< 0.00010	< 0.00030	0.00736	0.0241
CM CCOFF	CM CCOFF WS 2022-01-25_11	2022-01-23	l .	< 0.020	< 0.000100	0.0341	132	0.00734	0.0245	3.23	30.5	< 0.000010	26	0.718	0.00004	< 0.00010	< 0.00060	0.00799	0.0195
CM CCOFF	CM CCOFF WS 2022-02-08 N	2022-02-08	-	< 0.020	< 0.000100	0.0366	142	0.00744	0.0248	3.39	32	< 0.000020	26.3	0.768	0.000043	< 0.00020	< 0.00060	0.00784	0.0176
CM CCOFF	CM CCOFF WS 2022-02-15 NP	2022-02-15	-	< 0.010	< 0.000050	0.0363	138	0.00688	0.0251	3.45	35.9	< 0.000010	26.5	0.732	0.000043	< 0.00020	< 0.00030	0.00861	0.017
CM CCOFF	CM CCOFF WS 2022-02-22 NP	2022-02-22	-	< 0.020	< 0.000100	0.0326	137	0.0064	0.026	3.38	31	< 0.000020	25.1	0.751	0.000042	< 0.00020	< 0.00060	0.00881	0.0169
CM CCOFF	CM CCOFF WS 2022-03-01 NP	2022-03-01	-	< 0.010	< 0.000050	0.0341	146	0.00667	0.0243	3.77	32.3	< 0.000010	25.5	0.735	0.00004	< 0.00010	< 0.00030	0.00819	0.0151
CM_CCOFF	CM_CCOFF_WS_2022-03-08_NP	2022-03-08	-	< 0.020	< 0.000100	0.038	146	0.00856	0.0256	3.7	31.3	< 0.000020	29.5	0.837	0.000041	< 0.00020	< 0.00060	0.00888	0.0148
CM_CCOFF	CM_CCOFF_WS_2022-03-15_NP	2022-03-15	-	< 0.010	< 0.000050	0.0353	137	0.00756	0.0234	3.52	38.45	< 0.000010	26.1	0.784	0.000042	< 0.00010	< 0.00030	0.00876	0.013
CM_CCOFF	CM_CCOFF_WS_2022-03-22_NP	2022-03-22	-	< 0.010	< 0.000050	0.0376	148	0.00834	0.0255	3.88	38.3	< 0.000010	29.6	0.817	0.000042	< 0.00010	< 0.00030	0.00866	0.0134
ON COOPE	CM CCOFF WS 2022-03-29 NP	2022-03-29	-	< 0.010	< 0.000050	0.0382	132	0.014	0.023	3.36	29.55	< 0.000010	26.3	0.817	0.000036	< 0.00010	< 0.00030	0.00739	0.015
CM_CCOFF																			

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

^d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

									Dissolve	d Metals						
Sample	Sample	Sample Date	Hardness	Aluminum	Antimony	Arsenic	Barium	Beryllium	Bismuth	Boron		Cadmium	Calcium	Chromium	Cobalt	Copper
Location	ID	(mm/dd/yyyy) mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	m	g/L	mg/L	mg/L	mg/L	mg/L
				Acute							Acute	Chronic		_		Acute Chronic
BC WQG FWAL			n/a	0.020-0.10 ^a 0.005-0.05 ^a	n/a	na	na	na	n/a	n/a	0.00004-0.0028 ^a	0.00002-0.00173 ^a	n/a	n/a	n/a	BLMe
Coal Mountain Mine		T														
CM_CCOFF	CM_CCOFF_WS_2022-04-12_NP	2022-04-12		0.0056	0.00032	0.00014	0.0263	< 0.020	< 0.000050	0.111		00202	228	0.00014	0.00392	0.00025
CM_CCOFF CM CCOFF	CM_CCOFF_WS_2022-04-19_NP CM_CCOFF_WS_2022-04-26_NP	2022-04-19		0.0052	0.00031	0.00015 0.00014	0.0276 0.0276	< 0.020 < 0.020	< 0.000050 < 0.000050	0.112		0147	221 187	0.00011 < 0.00010	0.0029	0.00023
CM_CCOFF	CM CCOFF WS 2022-04-26 NP			0.0056	0.00029	0.00014	0.0276	< 0.020	< 0.000050			00151	185	< 0.00010		0.00021
CM_CCOFF	CM CCOFF_WS_2022-05-03_NP CM CCOFF 2022-05-06 NP1	2022-05-03		0.0136	0.00034			< 0.020		0.118		00432	185		0.00366	0.00022
CM_CCOFF	CM_CCOFF_2022-05-06_NP1 CM_CCOFF_2022-05-07_NP1	2022-05-06		-	+ :	-	-		-			-	-	-	-	-
CM_CCOFF	CM_CCOFF_2022-05-07_NP1 CM_CCOFF_WS_2022-05-10_NP	2022-05-07		- 0.0404	0.00035	0.00018	0.0261	< 0.020	< 0.000050	0.111		-	174	0.00011	0.00385	
CM_CCOFF	CM CCOFF WS 2022-05-10 NP	2022-05-10		0.0194	0.00035	0.00018	0.0261	< 0.020	< 0.000050	0.111		0023	164	0.00011	0.00385	0.00026
CM_CCOFF	CM CCOFF WS 2022-05-17 NP	2022-05-17		0.0127	0.00029	0.00014	0.0216	< 0.020	< 0.000050	0.071		00295	151	0.00014	0.00151	0.00029
CM CCOFF	CM CCOFF WS 2022-05-24 NP	2022-05-31		0.009 0.0052	0.00027	0.00017	0.0200	< 0.020	< 0.000050	0.042		00365	146	0.00010	0.00073	0.00025 0.00023
CM CCOFF	CM CCOFF WS 2022-06-07 NP	2022-06-07		0.0052	0.00023	0.00010	0.0148	< 0.020	< 0.000050	0.028		00604	136	0.00012	0.0006	0.00028
CM CCOFF	CM CCOFF WS 2022-06-14 NP	2022-06-15		0.0028	0.00031	0.00014	0.0145	< 0.020	< 0.000050	0.027		00561	120	0.00012	0.00073	0.00028
CM CCOFF	CM CCOFF WS 2022-06-21 NP	2022-06-21		0.0029	0.00033	0.00011	0.0172	< 0.020	< 0.000050	0.038		00819	146	0.00012	0.00175	0.00027
CM CCOFF	CM CCOFF WS 2022-06-28 NP	2022-06-28		0.0029	0.0003	0.00017	0.0226	< 0.020	< 0.000050	0.044		00774	169	0.00011	0.00125	0.00037
CM CCOFF	CM CCOFF WS 2022-07-05 NP	2022-07-05		0.0025	0.0003	0.00016	0.0236	< 0.020	< 0.000050	0.053		00929	201	0.00013	0.00081	0.00037
CM CCOFF	CM CCOFF WS 2022-07-12 NP	2022-07-12		0.0018	0.00029	0.00017	0.0243	< 0.020	< 0.000050	0.044		00949	244	0.00014	0.00048	0.00032
CM CCOFF	CM CCOFF WS 2022-07-19 NP	2022-07-19		0.0018	0.00028	< 0.00020	0.0251	< 0.040	< 0.000100	0.068		00843	226	< 0.00020	0.00049	< 0.00040
CM CCOFF	CM CCOFF WS 2022-07-26 NP	2022-07-26		0.0029	0.00037	0.00017	0.0254	< 0.020	< 0.000050	0.07		0078	255	< 0.00010	0.00041	0.00029
CM CCOFF	CM CCOFF WS 2022-08-02 NP	2022-08-02		< 0.0020	0.0003	< 0.00020	0.0257	< 0.040	< 0.000100	0.058		00581	240	< 0.00020	0.00052	< 0.00040
CM CCOFF	CM CCOFF WS 2022-08-09 NP	2022-08-10		0.0020	0.00033	0.0002	0.0279	< 0.020	< 0.000050	0.064		0568	260	< 0.00010	0.00043	0.00022
CM CCOFF	CM CCOFF WS 2022-08-16 NP	2022-08-16		0.0025	0.00029	< 0.00020	0.0254	< 0.040	< 0.000100	0.06		00524	235	< 0.00020	0.00042	< 0.00040
CM_CCOFF	CM_CCOFF_WS_SESMP_2022-08_N	2022-08-16	-	0.0022	0.00034	0.00019	0.025	< 0.020	< 0.000050	0.057		00542	245	0.00012	0.00039	0.00026
CM_CCOFF	CM_CCOFF_WS_2022-08-23_NP	2022-08-23	-	0.0018	0.0003	0.00024	0.0252	< 0.020	< 0.000050	0.067		00539	274	< 0.00010	0.0003	0.00027
CM_CCOFF	CM_CCOFF_2022-08-25_NP1	2022-08-25	-	-	-	-	-	-	-	-		-	-	-	-	-
CM_CCOFF	CM_CCOFF_2022-08-25_NP2	2022-08-25	-		-	-	-	-	-	-		-	-	-	-	-
CM_CCOFF	CM_CCOFF_2022-08-25_NP3	2022-08-25	-	-	-	-	-	-	-	-		-	-	-	-	-
CM_CCOFF	CM_CCOFF_WS_2022-08-30_NP	2022-08-30	-	0.0017	0.0003	0.00019	0.0257	< 0.020	< 0.000050	0.064	0.00	0481	253	< 0.00010	0.00033	0.00021
CM_CCOFF	CM_CCOFF_WS_2022-09-06_NP	2022-09-06	-	< 0.0020	0.00031	0.00021	0.0305	< 0.040	< 0.000100	0.067		00457	274	< 0.00020	0.00041	< 0.00040
CM_CCOFF	CM_CCOFF_WS_2022-09-13_NP	2022-09-13	-	0.0027	0.00032	< 0.00020	0.0244	< 0.040	< 0.000100	0.062	0.00	0423	252	< 0.00020	0.00031	< 0.00040
CM_CCOFF	CM_CCOFF_WS_2022-09-20_NP	2022-09-20	-	< 0.0020	0.00028	< 0.00020	0.0237	< 0.040	< 0.000100	0.067	0.00	0468	252	< 0.00020	0.0003	0.00225
CM_CCOFF	CM_CCOFF_WS_2022-09-27_NP	2022-09-27	-	0.0016	0.00029	0.00019	0.026	< 0.020	< 0.000050	0.06	0.00	0453	273	0.00012	0.00028	0.00029
CM_CCOFF	CM_CCOFF_WS_2022-10-04_NP	2022-10-04	-	< 0.0010	0.00028	0.0002	0.0262	< 0.020	< 0.000050	0.053		0047	278	< 0.00010	0.00027	0.00021
CM_CCOFF	CM_CCOFF_WS_2022-10-11_NP	2022-10-11	-	0.0018	0.00029	0.00014	0.0263	< 0.020	< 0.000050	0.04		0535	290	0.00012	0.00027	0.00021
CM_CCOFF	CM_CCOFF_WS_2022-10-18_NP	2022-10-18		0.003	0.00027	< 0.00020	0.026	< 0.040	< 0.000100	0.056		00437	294	< 0.00020	0.00033	0.0004
CM_CCOFF	CM_CCOFF_WS_2022-10-25_NP	2022-10-25	-	< 0.0010	0.00027	0.0002	0.0248	< 0.020	< 0.000050	0.045		00463	275	< 0.00010	0.00029	< 0.00020
CM_CCOFF	CM_CCOFF_WS_2022-11-01_NP	2022-11-01	-	0.0025	0.00027	< 0.00020	0.027	< 0.040	< 0.000100	0.078		00111	257	< 0.00020	0.00053	< 0.00040
CM_CCOFF	CM_CCOFF_WS_2022-11-08_NP	2022-11-08		0.0039	0.00026	< 0.00020	0.0245	< 0.040	< 0.000100	0.09		0167	230	< 0.00020	0.00243	< 0.00040
CM_CCOFF	CM_CCOFF_WS_2022-11-15_NP	2022-11-15	-	0.0049	0.0003	< 0.00020	0.0256	< 0.040	< 0.000100	0.109		0195	275	< 0.00020	0.00402	0.00082
CM_CCOFF CM CCOFF	CM_CCOFF_WS_2022-11-22_NP	2022-11-22	-	0.004	0.0003	0.00022	0.0273	< 0.040	< 0.000100	0.103		00176	251	< 0.00020	0.00345	< 0.00040
CM_CCOFF	CM_CCOFF_WS_2022-11-29_NP CM_CCOFF_WS_2022-12-06_NP	2022-11-29	1	0.0036	0.00034	0.00019 0.00021	0.0257 0.0222	< 0.020 < 0.040	< 0.000050	0.106 0.057		0169	311 274	< 0.00010 < 0.00020	0.00275	0.00023
CM_CCOFF CM_CCOFF	CM_CCOFF_WS_2022-12-06_NP CM_CCOFF_WS_2022-12-13_NP	2022-12-07	1	0.0026	0.0003	0.00021	0.0222	< 0.040	< 0.000100 < 0.000050	0.057		00185	274	0.00020	0.00133	< 0.00040
CM_CCOFF	CM_CCOFF_WS_2022-12-13_NP CM_CCOFF_WS_2022-12-28_NP	2022-12-13	1	0.0033	0.00032	0.00021	0.0254	< 0.020	< 0.000050	0.104		00178	295	< 0.00011	0.00137	0.0003
CM_CCOFF CM SPD	CM_CCOFF_WS_2022-12-28_NP CM_NNP_WS_2022-01-04_N	2022-12-28	H -	< 0.0010	0.00026	< 0.00014	0.02063333	< 0.020	< 0.000050	0.113		0128	166.4	< 0.00010	0.00098	< 0.00020
CM_SPD CM_SPD	CM_NNP_WS_2022-01-04_N CM_SPD_WS_2022-01-11_N	2022-01-06	1	0.0175	0.00046333	0.00020	0.02063333	< 0.040	< 0.000100	0.081		147667	233	< 0.00020	0.021167	< 0.00040
CM_SPD	CM_SPD_WS_2022-01-11_N CM_SPD_WS_2022-02-01_N	2022-01-11	+ -	0.0054	0.0009	0.00017	0.0279	< 0.020	< 0.000050	0.094		00179	261	< 0.00010	0.024	< 0.00020
CM_SPD	CM_SPD_WS_2022-02-01_N CM_NNP_WS_2022-02-01_N	2022-02-01	+ -	0.0051 0.0029	0.000495	0.00013	0.023	< 0.020	< 0.000050	0.126		00329 00167	130.5	< 0.00010	0.0318	< 0.00020 < 0.00020
CM_SPD	CM SPD WS 2022-03-01 N	2022-03-01	1	0.0029	0.000493	< 0.00012	0.01123	< 0.020	< 0.000100	0.0003		00108	235	< 0.00010	0.0162	< 0.00020
CM SPD	CM SPD WS 2022-03-15 N	2022-03-01	+ -	0.0044	0.0003	0.00015	0.0297	< 0.020	< 0.000050	0.056		00677	243	< 0.00010	0.0132	0.00022
CM SPD	CM SPD WS 2022-03-12 N	2022-03-13		0.0034	0.00042	0.00013	0.0237	< 0.020	< 0.000050	0.068		00627	256	< 0.00010	0.0132	< 0.00020
			1	0.0021							0.00	00021				- 0.00020

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

											Dissolv	ed Metals							
Sample	Sample	Sample Date	Hardness	Iron	Lead	Lithium	Magnesium	Manganese	Nickel	Potassium	Selenium	Silver	Sodium	Strontium	Thallium	Tin	Titanium	Uranium	Zinc
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
				Acute															
BC WQG FWAL			n/a	0.35	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Coal Mountain Mine																			
CM_CCOFF	CM_CCOFF_WS_2022-04-12_NP	2022-04-12	-	< 0.010	< 0.000050	0.0679	121	0.0318	0.0352	3.47	31.4	< 0.000010	59.3	1.2	0.000049	< 0.00010	< 0.00030	0.00738	0.0199
CM_CCOFF	CM_CCOFF_WS_2022-04-19_NP	2022-04-19	-	< 0.010	< 0.000050	0.072	124	0.0272	0.0317	3.33	25.1	< 0.000010	69.3	1.2	0.000047	< 0.00010	< 0.00030	0.00718	0.0145
CM_CCOFF	CM_CCOFF_WS_2022-04-26_NP	2022-04-26	-	< 0.010	< 0.000050	0.0625	108	0.0234	0.0273	3.1	22.3	< 0.000010	61.8	0.985	0.000037	< 0.00010	< 0.00030	0.00626	0.0141
CM_CCOFF	CM_CCOFF_WS_2022-05-03_NP	2022-05-03	-	< 0.010	< 0.000050	0.0912	101	0.0246	0.0335	3.18	20.7	< 0.000010	91.6	1.19	0.000051	< 0.00010	< 0.00030	0.00557	0.0072
CM_CCOFF	CM_CCOFF_2022-05-06_NP1	2022-05-06	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CM_CCOFF	CM_CCOFF_2022-05-07_NP1	2022-05-07	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CM_CCOFF	CM_CCOFF_WS_2022-05-10_NP	2022-05-10	-	< 0.010	< 0.000050	0.0862	94.8	0.0286	0.0322	3.13	25.5	< 0.000010	81.9	0.88	0.000045	< 0.00010	< 0.00030	0.00488	0.0256
CM_CCOFF	CM_CCOFF_WS_2022-05-17_NP	2022-05-17	-	< 0.010	< 0.000050	0.0483	89.1	0.014	0.0221	2.76	26.5	< 0.000010	46.1	0.73	0.000035	< 0.00010	< 0.00030	0.00452	0.0233
CM_CCOFF	CM_CCOFF_WS_2022-05-24_NP	2022-05-24	-	< 0.010	< 0.000050	0.033	90.7	0.00717	0.0201	2.76	28.8	< 0.000010	32	0.547	0.000032	< 0.00010	< 0.00030	0.00466	0.0237
CM_CCOFF	CM_CCOFF_WS_2022-05-31_NP	2022-05-31	-	< 0.010	< 0.000050	0.0266	79.3	0.00712	0.0218	2.71	28.4	< 0.000010	20.6	0.41	0.000032	< 0.00010	< 0.00030	0.00411	0.0304
CM_CCOFF	CM_CCOFF_WS_2022-06-07_NP	2022-06-07	-	0.011	< 0.000050	0.0212	73.4	0.00411	0.0237	2.32	30.3	< 0.000010	14.7	0.358	0.00003	< 0.00010	< 0.00030	0.00382	0.0424
CM_CCOFF	CM_CCOFF_WS_2022-06-14_NP	2022-06-15	-	< 0.010	< 0.000050	0.0189	70.8	0.00475	0.0248	2.42	25.5	< 0.000010	14.8	0.315	0.000028	< 0.00010	< 0.00030	0.00333	0.0461
CM_CCOFF	CM_CCOFF_WS_2022-06-21_NP	2022-06-21	-	< 0.010	< 0.000050	0.0256	83.4	0.00938	0.0309	2.73	27.6	< 0.000010	20.1	0.44	0.000041	< 0.00010	< 0.00030	0.00399	0.0529
CM_CCOFF	CM_CCOFF_WS_2022-06-28_NP	2022-06-28	-	< 0.010	< 0.000050	0.0276	93.2	0.00832	0.03	2.68	25	< 0.000010	22.3	0.494	0.00004	< 0.00010	< 0.00030	0.00456	0.0552
CM_CCOFF	CM_CCOFF_WS_2022-07-05_NP	2022-07-05	-	< 0.010	< 0.000050	0.0324	118	0.00802	0.0351	3.21	33.4	< 0.000010	26	0.59	0.000044	< 0.00010	< 0.00030	0.00588	0.0541
CM_CCOFF	CM_CCOFF_WS_2022-07-12_NP	2022-07-12	-	< 0.010	< 0.000050	0.0288	137	0.00421	0.0356	3.28	38.2	< 0.000010	16.9	0.536	0.000046	< 0.00010	< 0.00030	0.00708	0.0544
CM_CCOFF	CM_CCOFF_WS_2022-07-19_NP	2022-07-19	-	< 0.020	< 0.000100	0.0275	131	0.00504	0.0354	3.2	30.9	< 0.000020	22.7	0.582	0.000044	< 0.00020	< 0.00060	0.00682	0.0509
CM_CCOFF	CM_CCOFF_WS_2022-07-26_NP	2022-07-26	-	< 0.010	< 0.000050	0.0398	132	0.00491	0.0357	3.48	36.4	< 0.000010	25	0.845	0.000066	< 0.00010	< 0.00030	0.00934	0.0485
CM_CCOFF	CM_CCOFF_WS_2022-08-02_NP	2022-08-02	-	< 0.020	< 0.000100	0.0337	140	0.00526	0.0352	3.44	30.2	< 0.000020	23.8	0.679	0.000053	< 0.00020	< 0.00060	0.00779	0.0403
CM_CCOFF	CM_CCOFF_WS_2022-08-09_NP	2022-08-10	-	< 0.010	< 0.000050	0.0355	161	0.0047	0.037	3.81	40.4	< 0.000010	24.7	0.708	0.00006	< 0.00010	< 0.00030	0.00889	0.0427
CM_CCOFF	CM_CCOFF_WS_2022-08-16_NP	2022-08-16	-	< 0.020	< 0.000100	0.0342	151	0.00423	0.0361	3.51	32.4	< 0.000020	23.3	0.64	0.000052	< 0.00020	< 0.00060	0.00804	0.0344
CM_CCOFF	CM_CCOFF_WS_SESMP_2022-08_N	2022-08-16	-	< 0.010	< 0.000050	0.0348	149	0.00435	0.0362	3.56	39.2	< 0.000010	22.8	0.691	0.000059	< 0.00010	< 0.00030	0.00824	0.0322
CM_CCOFF	CM_CCOFF_WS_2022-08-23_NP	2022-08-23	-	< 0.010	< 0.000050	0.0367	160	0.0049	0.0381	3.83	38.4	< 0.000010	25.2	0.722	0.000055	< 0.00010	< 0.00030	0.00823	0.0364
CM_CCOFF	CM_CCOFF_2022-08-25_NP1	2022-08-25	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CM_CCOFF	CM_CCOFF_2022-08-25_NP2	2022-08-25	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
CM_CCOFF CM CCOFF	CM_CCOFF_2022-08-25_NP3 CM_CCOFF_WS_2022-08-30_NP	2022-08-25	-	< 0.010	< 0.000050	0.0438	150	0.00478	0.0373	3.69	36	< 0.000010	24.4	0.747	0.000056	< 0.00010	< 0.00030	0.00866	0.033
			-							3.69									
CM_CCOFF	CM_CCOFF_WS_2022-09-06_NP	2022-09-06	-	< 0.020	< 0.000100	0.0326	162	0.00499	0.0389		34.8	< 0.000020	27.4	0.786	0.000056	< 0.00020	< 0.00060	0.00806	0.032
CM_CCOFF CM CCOFF	CM_CCOFF_WS_2022-09-13_NP CM_CCOFF_WS_2022-09-20_NP	2022-09-13	-	< 0.020 < 0.020	< 0.000100 < 0.000100	0.0371	158 150	0.00451	0.0364	3.76	31.5 37	< 0.000020 < 0.000020	25.3 22.2	0.743 0.676	0.000054	< 0.00020 < 0.00020	< 0.00060 < 0.00060	0.00833 0.00774	0.0277 0.0353
CM_CCOFF			-		< 0.000100	0.0349	167	0.00451	0.0369	3.77	37.8		25.2	0.8	0.000054	< 0.00020	< 0.00080		0.0353
	CM_CCOFF_WS_2022-09-27_NP	2022-09-27	-	< 0.010								< 0.000010						0.00851	
CM_CCOFF CM CCOFF	CM_CCOFF_WS_2022-10-04_NP CM_CCOFF_WS_2022-10-11_NP	2022-10-04	-	< 0.010 < 0.010	< 0.000050 < 0.000050	0.0315 0.0294	161 157	0.00497	0.0397	3.98	44.4 40.3	< 0.000010 < 0.000010	20.2 15.9	0.697 0.614	0.000054 0.000054	< 0.00010 < 0.00010	< 0.00030 < 0.00030	0.00814 0.00857	0.0281 0.0387
CM_CCOFF			-		< 0.000050	0.0294	165		0.0398	3.93	32.1	< 0.000010	19.7	0.614	0.000054	< 0.00010			0.0387
CM_CCOFF	CM_CCOFF_WS_2022-10-18_NP CM_CCOFF_WS_2022-10-25_NP	2022-10-18	-	< 0.020 < 0.010	< 0.000100	0.0295	165	0.00701 0.00601	0.0373	3.78	32.1	< 0.000020	19.7	0.696	0.000054	< 0.00020	< 0.00060 < 0.00030	0.00862 0.00821	0.0336
CM CCOFF	CM CCOFF_WS_2022-10-25_NF		-	< 0.010	< 0.000100	0.0267	150	0.00956	0.0360	3.73	32.8	< 0.000010	26	0.824	0.000031	< 0.00010	< 0.00060	0.00621	0.0343
CM_CCOFF	CM CCOFF_WS_2022-11-01_NP	2022-11-01		< 0.020	< 0.000100	0.0351	145	0.00956	0.0342	3.73	32.8	< 0.000020	30.9	0.824	0.000046	< 0.00020	< 0.00060	0.00795	0.0141
CM CCOFF	CM CCOFF_WS_2022-11-06_NF	2022-11-06	<u> </u>	< 0.020	< 0.000100	0.0424	161	0.0207	0.0348	3.48	32.9	< 0.000020	43.2	1.06	0.000048	< 0.00020	< 0.00060	0.00745	0.0153
CM_CCOFF	CM CCOFF_WS_2022-11-15_NP	2022-11-15	-	< 0.020	< 0.000100	0.0476	143	0.0318	0.0423	3.72	30.8	< 0.000020	43.2	1.06	0.000053	< 0.00020	< 0.00060	0.00883	0.0204
CM_CCOFF	CM CCOFF_WS_2022-11-22_NP CM CCOFF_WS_2022-11-29_NP	2022-11-22	-	< 0.020	< 0.000100	0.0541	143	0.0312	0.0384	3.98	30.8	< 0.000020	43.5	1.13	0.000059	< 0.00020	< 0.00080	0.00826	0.0161
CM CCOFF	CM CCOFF_WS_2022-11-29_NF	2022-11-29	-	< 0.010	< 0.000100	0.0333	164	0.0304	0.032	3.81	31.3	< 0.000010	43.5	0.812	0.000059	< 0.00010	< 0.00060	0.00978	0.0149
CM_CCOFF	CM CCOFF_WS_2022-12-06_NF	2022-12-07	<u> </u>	< 0.020	< 0.000100	0.0406	162	0.019	0.032	3.64	34.7	< 0.000020	40.1	1.14	0.000063	< 0.00020	< 0.00030	0.00929	0.0142
CM_CCOFF	CM CCOFF_WS_2022-12-13_NP	2022-12-13	-	< 0.010	< 0.000050	0.0485	160	0.019	0.0283	3.52	39.5	< 0.000010	39.9	1.14	0.000054	< 0.00010	< 0.00030	0.00967	0.0108
CM_CCOFF	CM_CCOFF_WS_2022-12-28_NP CM_NNP_WS_2022-01-04_N	2022-12-28		< 0.010	< 0.000050	0.0505	75.668333333	0.017	0.0259	3.52	4.786666667	< 0.000010	29.91666667		3.96667E-05	< 0.00010	0.000416667	0.00853	0.0088
CM_SPD	CM_NNP_WS_2022-01-04_N CM_SPD_WS_2022-01-11_N	2022-01-06	1	< 0.020	< 0.000100	0.046333333	109	0.1547	0.100833333	4.25	7.87	< 0.000020	39	1.11	0.000051	< 0.00020	< 0.00030	0.00523	0.022
CM_SPD	CM SPD WS 2022-01-11_N	2022-01-11	<u> </u>	< 0.010	< 0.000050	0.0765	111	0.172	0.116	5.12	5.88	< 0.000010	50.9	1.42	0.000031	< 0.00010	< 0.00030	0.00091	0.0213
CM_SPD	CM_SPD_WS_2022-02-01_N CM_NNP_WS_2022-02-01_N	2022-02-01	-	< 0.010	< 0.000050	0.0765	55.0025	0.18	0.171	2.535	2.845	< 0.000010	24.825	0.7201	0.000078	< 0.00010	< 0.00030	0.00727	0.0374
CM_SPD	CM_NNP_WS_2022-01_N CM_SPD_WS_2022-03-01_N	2022-02-01	1	< 0.010	< 0.000050	0.03795	129	0.08755	0.08425	3.99	8.83	< 0.000010	24.825 36.3	0.7201	0.0000435	< 0.00010	< 0.00030	0.003685	0.0185
CM_SPD	CM_SPD_WS_2022-03-01_N CM_SPD_WS_2022-03-15_N	2022-03-01	-	< 0.020	< 0.000000	0.0328	129	0.104	0.101	3.82	10.3	< 0.000020	33.3	0.926	0.000041	< 0.00020	< 0.00030	0.00649	0.0104
CM_SPD	CM_SPD_WS_2022-03-15_N CM_SPD_WS_2022-03-22_N	2022-03-15	-	< 0.010	< 0.000050	0.0462	128	0.0926	0.0786	4.12	10.3	< 0.000010	37.1	0.875	0.000035	< 0.00010	< 0.00030	0.00658	0.0122
CIVI_SFD	OW_OF D_WVO_ZUZZ=U0=ZZ_IV	2022-03-22		7 0.010	- 0.0000000	0.0320	120	0.0340	0.0000	4.12	_ ''	- 0.000010	37.1	0.531	0.000037	* 0.00010	\ U.UUU3U	0.00000	0.0113

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

^d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

										Dissolve	ed Metals						
Sample	Sample	Sample Date	Hardness	Aluminum		Antimony	Arsenic	Barium	Beryllium	Bismuth	Boron		Cadmium	Calcium	Chromium	Cobalt	Copper
Location	ID	(mm/dd/yyyy	mg/L	mg	L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	m	g/L	mg/L	mg/L	mg/L	mg/L
				Acute	Chronic							Acute	Chronic				Acute Chronic
BC WQG FWAL			n/a	0.020-0.10 ^a	0.005-0.05 ^a	n/a	na	na	na	n/a	n/a	0.00004-0.0028 ^a	0.00002-0.00173 ^a	n/a	n/a	n/a	BLM ^e
Coal Mountain Mine				•		•		•	•	•			•		•		
CM_SPD	CM_SPD_WS_2022-03-29_N	2022-03-29	-	0.00	33	0.00037	0.00014	0.0322	< 0.020	< 0.000050	0.05	0.00	00067	213	< 0.00010	0.0119	< 0.00020
CM_SPD	CM_SPD_WS_2022-04-05_N	2022-04-05	-	0.00	06	0.00039	0.00016	0.0308	< 0.020	< 0.000050	0.051	0.00	00699	221	< 0.00010	0.0107	< 0.00020
CM_SPD	CM_SPD_WS_2022-04-12_N	2022-04-12	-	0.00	58	0.00038	0.00013	0.0312	< 0.020	< 0.000050	0.055	0.00	00639	217	< 0.00010	0.0117	0.00023
CM_SPD	CM_SPD_WS_2022-04-19_N	2022-04-19	-	0.00		0.00043	0.00018	0.0346	< 0.020	< 0.000050	0.058		00537	219	< 0.00010	0.0118	< 0.00020
CM_SPD	CM_SPD_WS_2022-04-26_N	2022-04-26	-	0.00		0.00034	0.00014	0.0281	< 0.020	< 0.000050	0.051		00053	195	< 0.00010	0.0102	< 0.00020
CM_SPD	CM_SPD_WS_2022-04-27_N	2022-04-27	-	0.00		0.00032	0.00012	0.0286	< 0.020	< 0.000050	0.052		00649	195	< 0.00010	0.00984	< 0.00020
CM_SPD	CM_SPD_WS_2022-04-28_N	2022-04-28	-	0.00		0.00037	0.00015	0.0314	< 0.020	< 0.000050	0.062		00787	200	< 0.00010	0.0127	0.0003
CM_SPD	CM_SPD_WS_2022-04-29_N	2022-04-29	-	0.00		0.00042	0.00013	0.0328	< 0.020	< 0.000050	0.073		00962	206	< 0.00010	0.0166	0.00028
CM_SPD	CM_SPD_WS_2022-05-03_N	2022-05-03	-	0.00		0.00043	0.00014	0.0318	< 0.020	< 0.000050	0.075		00125	185	< 0.00010	0.018	0.0002
CM_SPD	CM_SPD_2022-05-06_N2	2022-05-06	-	-		-	-	-	-	-	-		-	-	-	-	-
CM_SPD	CM_SPD_2022-05-06_N1	2022-05-06	-	-		-	-	-	-	-	-		-	-	-	-	-
CM_SPD	CM_SPD_2022-05-07_N1	2022-05-07	-			-	- 0.00044000	- 0.00450000		- 0.000050	- 0.054000		-	- 440.4	- 0.00040	- 0.0400	
CM_SPD	CM_NNP_WS_2022-05-10_N	2022-05-10	-	0.00356		0.00033333	0.00011333		< 0.020	< 0.000050	0.051333		129667	110.4		0.0103	0.000226667
CM_SPD	CM_SPD_WS_2022-05-17_N	2022-05-17	-	0.00		0.00059	0.00012	0.0286	< 0.020 < 0.020	< 0.000050	0.091		00292	193	< 0.00010	0.0215	0.00028
CM_SPD CM_SPD	CM_NNP_WS_2022-05-24_N CM_NNP_WS_2022-05-31_N	2022-05-24	-	0.00		0.00042	0.00013333		< 0.020	< 0.000050 < 0.000050	0.059		167333	130.4	< 0.00010 < 0.00010	0.015267	< 0.00020 0.000246667
CM_SPD	CM_NNP_WS_2022-05-31_N CM_NNP_WS_2022-06-07_N	2022-05-31	-	0.00		0.00043333	< 0.00014333	0.01556667	< 0.020	< 0.000030	0.058333		00165	131.4	< 0.00010	0.020333	
CM_SPD	CM_NNP_WS_2022-06-07_N CM_SPD_WS_2022-06-14_N	2022-06-07	<u> </u>	0.00226		0.00039667	0.00015	0.01536667	< 0.040	< 0.000100	0.036333		125667	164	< 0.00020	0.020333	< 0.00040
CM_SPD	CM_SPD_WS_2022-06-14_N CM_SPD_2022-06-15_N1	2022-06-14	-	0.00	32	0.00046	0.00015	0.0336	₹ 0.020	< 0.000050	0.073	0.00	00137	104	< 0.00010	0.0224	0.00025
CM_SPD	CM_SPD_2022-06-15_N1 CM_SPD_WS_2022-06-21_N	2022-06-13	<u> </u>	0.00	0.7	0.00061	0.00019	0.0297	< 0.020	< 0.000050	0.1	0.00	00208	199	< 0.00010	0.0309	< 0.00020
CM_SPD	CM_SPD_WS_2022-00-21_N CM_SPD_WS_2022-06-28_N	2022-06-28	-	0.00		0.00081	0.00018	0.0236	< 0.020	< 0.000050	0.096		00193	234	< 0.00010	0.0356	< 0.00020
CM SPD	CM NNP WS 2022-07-05 N	2022-07-05	H -	0.00206		0.00056333	0.00017333		< 0.020	< 0.000050	0.079667		00073	141.7	< 0.00010	0.020533	< 0.00020
CM_SPD	CM SPD WS 2022-07-12 N	2022-07-03	-	0.00200		0.00030333	0.00017333	0.01373333	< 0.020	< 0.000050	0.073007		00601	247	< 0.00010	0.020333	< 0.00020
CM SPD	CM SPD WS 2022-07-12_14	2022-07-26	—	0.00		0.00032	0.00010	0.0187	< 0.020	< 0.000050	0.137		00847	220	< 0.00010	0.0385	< 0.00020
CM SPD	CM SPD WS 2022-08-02 N	2022-07-20		< 0.0		0.00101	0.00013	0.0162	< 0.020	< 0.000050	0.147		00132	244	< 0.00010	0.0264	< 0.00020
CM SPD	CM SPD WS 2022-08-09 N	2022-08-09	! -	0.00		0.00113	0.00024	0.0163	< 0.020	< 0.000050	0.152		00169	222	< 0.00010	0.0262	0.00020
CM SPD	CM SPD WS 2022-08-10 N	2022-08-10	-	0.00		0.001	0.00019	0.0168	< 0.020	< 0.000050	0.15		00144	230	< 0.00010	0.0273	< 0.00022
CM SPD	CM SPD WS 2022-08-11 N	2022-08-11	١.	0.00		0.00105	0.00018	0.0168	< 0.020	< 0.000050	0.161		00144	235	< 0.00010	0.0263	< 0.00020
CM SPD	CM SPD WS SESMP 2022-08 N	2022-08-16	-	0.00		0.00106	0.00019	0.0152	< 0.020	< 0.000050	0.151		00182	218	< 0.00010	0.0236	< 0.00020
CM SPD	CM SPD 2022-08-25 N1	2022-08-25	-	0.00		-	-	-	-	-	-		-		-	-	- 0.00020
CM SPD	CM SPD WS 2022-09-06 N	2022-09-06	-	0.00		0.00098	0.00022	0.0211	< 0.020	< 0.000050	0.126		00744	217	< 0.00010	0.0158	< 0.00020
CM SPD	CM SPD WS 2022-10-04 N	2022-10-04	-	0.00116		0.00053	0.00021667		< 0.020	< 0.000050	0.074		33E-05	155.7	< 0.00010	0.0071	< 0.00020
CM SPD	CM SPD WS 2022-11-01 N	2022-11-01	-	< 0.0		0.00054	< 0.00020	0.0252	< 0.040	< 0.000100	0.1		00022	238	< 0.00020	0.0121	< 0.00040
CM SPD	CM SPD WS 2022-11-17 N	2022-11-17	-	0.00		0.00047	0.00019	0.0346	< 0.020	< 0.000050	0.074		00292	240	< 0.00010	0.0117	< 0.00020

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

											Dissolve	ed Metals							
Sample	Sample	Sample Date	Hardness	no1	Lead	Lithium	Magnesium	Manganese	Nickel	Potassium	Selenium	Silver	Sodium	Strontium	Thallium	Ę	Titanium	Uranium	Zinc
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
				Acute															
BC WQG FWAL			n/a	0.35	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Coal Mountain Mine																			
CM_SPD	CM_SPD_WS_2022-03-29_N	2022-03-29	-	< 0.010	< 0.000050	0.0427	108	0.0917	0.0639	3.38	8.18	< 0.000010	28.4	0.74	0.000028	< 0.00010	< 0.00030	0.00493	0.0101
CM_SPD	CM_SPD_WS_2022-04-05_N	2022-04-05	-	< 0.010	< 0.000050	0.0374	111	0.0809	0.0596	3.31	9.75	< 0.000010	28.1	0.786	0.000029	< 0.00010	< 0.00030	0.00561	0.0108
CM_SPD	CM_SPD_WS_2022-04-12_N	2022-04-12	-	< 0.010	< 0.000050	0.0435	109	0.0854	0.0628	3.67	10.9	< 0.000010	28.7	0.804	0.000028	< 0.00010	< 0.00030	0.0049	0.0116
CM_SPD	CM_SPD_WS_2022-04-19_N	2022-04-19	-	< 0.010	< 0.000050	0.0395	111	0.0894	0.063	3.77	9.14	< 0.000010	31	0.883	0.000028	< 0.00010	< 0.00030	0.00536	0.0117
CM_SPD	CM_SPD_WS_2022-04-26_N	2022-04-26	-	< 0.010	< 0.000050	0.0372	101	0.0721	0.0565	3.2	9.27	< 0.000010	28.2	0.729	0.000026	< 0.00010	< 0.00030	0.00511	0.0084
CM_SPD CM_SPD	CM_SPD_WS_2022-04-27_N CM_SPD_WS_2022-04-28_N	2022-04-27		< 0.010	< 0.000050 < 0.000050	0.0366	97.5 97	0.0697	0.055 0.0652	2.9 3.43	8.85 9.62	< 0.000010 < 0.000010	25.8 27.4	0.691 0.794	0.000028	< 0.00010 < 0.00010	< 0.00030 < 0.00030	0.00448 0.00513	0.0091
CM_SPD	CM_SPD_WS_2022-04-28_N CM_SPD_WS_2022-04-29_N	2022-04-28	-	< 0.010	< 0.000050	0.0403	96.2	0.09	0.0652	3.43	9.62	< 0.000010	31	0.794	0.000033	< 0.00010	< 0.00030	0.00513	0.0113
CM_SPD	CM_SPD_WS_2022-04-29_N CM_SPD_WS_2022-05-03_N	2022-04-29		< 0.010	< 0.000050	0.0463	87	0.122	0.080	3.63	8.84	< 0.000010	28.1	0.878	0.000038	< 0.00010	< 0.00030	0.00539	0.0122
CM_SPD	CM_SFB_WS_2022-05-05_N CM_SPD_2022-05-06_N2	2022-05-06		- 0.010	- 0.000030	0.0433		0.155	0.002	3.03	0.04	- 0.000010	20.1	0.070	0.000039	< 0.00010	- 0.00030	0.0032	0.0133
CM SPD	CM SPD 2022-05-06 N1	2022-05-06			-		-	-	-	-	-	-	-	-		-		-	
CM SPD	CM SPD 2022-05-07 N1	2022-05-07	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CM SPD	CM NNP WS 2022-05-10 N	2022-05-10	-	< 0.010	< 0.000050	0.02666667	49.06833333	0.073033333	0.049266667	2.163333333	8.016666667	< 0.000010	16.28333333	0.506733333	2.76667E-05	< 0.00010	< 0.00030	0.003103333	0.013733333
CM SPD	CM SPD WS 2022-05-17 N	2022-05-17	-	< 0.010	< 0.000050	0.0523	86.4	0.146	0.106	3.73	9.63	< 0.000010	31.8	1.01	0.000052	< 0.00010	< 0.00030	0.00607	0.0295
CM_SPD	CM_NNP_WS_2022-05-24_N	2022-05-24	-	< 0.010	< 0.000050	0.035533333	59.80166667	0.096366667	0.074166667	2.623333333	6.403333333	< 0.000010	23.25	0.716733333	3.86667E-05	< 0.00010	< 0.00030	0.004363333	0.018
CM_SPD	CM_NNP_WS_2022-05-31_N	2022-05-31	-	< 0.010	< 0.000050	0.036233333	56.96833333	0.099366667	0.079166667	2.676666667	6.26666667	< 0.000010	22.48333333	0.642066667	4.13333E-05	< 0.00010	< 0.00030	0.00411	0.019466667
CM_SPD	CM_NNP_WS_2022-06-07_N	2022-06-07	-	< 0.020	< 0.000100	0.040733333	55.50166667	0.128033333	0.0885	2.546666667	4.033333333	< 0.000020	21.91666667	0.6934	3.66667E-05	< 0.00020	< 0.00060	0.004436667	0.015633333
CM_SPD	CM_SPD_WS_2022-06-14_N	2022-06-14	-	< 0.010	< 0.000050	0.0448	73.4	0.154	0.0959	3.48	6.13	< 0.000010	27.7	0.821	0.00004	< 0.00010	< 0.00030	0.00499	0.0164
CM_SPD	CM_SPD_2022-06-15_N1	2022-06-15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CM_SPD	CM_SPD_WS_2022-06-21_N	2022-06-21	-	< 0.010	< 0.000050	0.0564	87.6	0.195	0.133	4.06	8.25	< 0.000010	33.9	1.04	0.000052	< 0.00010	< 0.00030	0.00639	0.0229
CM_SPD	CM_SPD_WS_2022-06-28_N	2022-06-28	-	< 0.010	< 0.000050	0.0685	98.4	0.202	0.162	4.69	5.82	< 0.000010	41.5	1.18	0.000057	< 0.00010	< 0.00030	0.0074	0.0263
CM_SPD CM_SPD	CM_NNP_WS_2022-07-05_N CM_SPD_WS_2022-07-12_N	2022-07-05	-	< 0.010 < 0.010	< 0.000050 < 0.000050	0.045533333	60.50166667	0.114366667	0.1005	2.953333333	3.463333333	< 0.000010	26.65 47.7	0.766733333	4.46667E-05 0.000072	< 0.00010 < 0.00010	< 0.00030 < 0.00030	0.004556667	0.010433333
CM_SPD	CM_SPD_WS_2022-07-12_N CM_SPD_WS_2022-07-26_N	2022-07-12	-	< 0.010	< 0.000050	0.0803	105 94	0.166 0.128	0.171 0.164	4.9 4.89	5.08 4.41	0.000010	46.7	1.3	0.000072	< 0.00010	< 0.00030	0.00775	0.0098
CM_SPD CM_SPD	CM_SPD_WS_2022-07-26_N CM_SPD_WS_2022-08-02_N	2022-07-26	-	< 0.010	< 0.000050	0.0782	100	0.128	0.164	4.89	4.41	< 0.000011	49.2	1.4	0.00008	< 0.00010	< 0.00030	0.00836	0.0063
CM_SPD	CM_SPD_WS_2022-08-02_N CM_SPD_WS_2022-08-09_N	2022-08-09		< 0.010	< 0.000050	0.0896	98.9	0.102	0.162	5.46	4.14	< 0.000010	52	1.35	0.000078	< 0.00010	< 0.00030	0.00781	0.0054
CM_SPD	CM_SPD_WS_2022-08-09_N CM_SPD_WS_2022-08-10_N	2022-08-10	-	< 0.010	< 0.000050	0.0030	108	0.0900	0.173	5.46	4.5	< 0.000010	53.5	1.33	0.000073	< 0.00010	< 0.00030	0.00722	0.0058
CM SPD	CM SPD WS 2022-08-11 N	2022-08-11	-	< 0.010	< 0.000050	0.0797	113	0.109	0.164	5.18	5.1	< 0.000010	54.7	1.35	0.00008	< 0.00010	< 0.00030	0.00785	0.0069
CM SPD	CM SPD WS SESMP 2022-08 N	2022-08-16	-	0.011	< 0.000050	0.0816	103	0.093	0.165	5.08	4.37	< 0.000010	49.8	1.32	0.000078	< 0.00010	< 0.00030	0.00756	0.0059
CM SPD	CM SPD 2022-08-25 N1	2022-08-25	- 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CM SPD	CM SPD WS 2022-09-06 N	2022-09-06	-	< 0.010	< 0.000050	0.0672	103	0.0546	0.133	4.88	5.13	< 0.000010	49.1	1.24	0.000065	< 0.00010	< 0.00030	0.00634	0.0035
CM SPD	CM SPD WS 2022-10-04 N	2022-10-04	-	< 0.010	< 0.000050	0.044933333	79.335	0.023866667	0.078166667	3.296666667	4.676666667	< 0.000010	30.05	0.790066667	3.36667E-05	< 0.00010	< 0.00030	0.004416667	0.0014
CM_SPD	CM_SPD_WS_2022-11-01_N	2022-11-01	-	< 0.020	< 0.000100	0.0568	112	0.0555	0.0992	4.47	5.91	< 0.000020	36.2	1.06	0.000038	< 0.00020	< 0.00060	0.0065	0.0028
CM_SPD	CM_SPD_WS_2022-11-17_N	2022-11-17	-	< 0.010	< 0.000050	0.0542	121	0.0766	0.0819	4.41	9.41	< 0.000010	36.4	1.09	0.000034	< 0.00010	< 0.00030	0.00668	0.0072

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

									Dissolve	d Metals						
				F				_				_		E		
			rdness	in in	ntimony	senic	m ii	yllium	au th	no			cium	ō Bi	balt	pper
Sample	Sample	Sample Date	토	Ā.	¥	Š	Ba	Be	l s	Bo		3	Ca	ਤੌ	S	Copi
Location	ID	(mm/dd/yyyy) mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg	g/L	mg/L	mg/L	mg/L	mg/L
				cute							cute	hronic				Acute Chronic
C WQG FWAL			n/a	0.020-0.10 ^a 0.005-0.05 ^a	n/a	na	na	na	n/a	n/a	0.00004-0.0028 ^a	0.00002-0.00173 ^a	n/a	n/a	n/a	BLM°
Ikview Operation			•		•	•								•		
EV_AQ6	EV_AQ6_WS_2022-Q1_N	2022-01-07	-	0.0015	0.00013	0.00016	0.197	< 0.020	< 0.000050	0.017	0.000	00081	85	0.0001	< 0.00010	0.00021
EV_AQ6	EV_AQ6_WS_2022-02_MON_N	2022-02-07	-	< 0.0010	0.00012	0.00015	0.181	< 0.020	< 0.000050	0.017	0.000	00052	78	< 0.00010	< 0.00010	< 0.00020
EV_AQ6	EV_AQ6_WS_2022-03_MON_N	2022-03-16	-	0.0022	0.00015	0.0002	0.217	< 0.020	< 0.000050	0.015	0.000	00081	100	< 0.00010	< 0.10	0.00031
EV_AQ6	EV_AQ6_WS_2022-03_WEK13_N	2022-03-22	-	_	-	-	-	-	-				-	-	-	-
EV_AQ6	EV_AQ6_WS_2022-03_WEK14_N	2022-03-28	-	-	-	-	-	-	-			-	-	-	-	-
EV_AQ6	EV_AQ6_WS_2022-04_WEK15_N	2022-04-04	-	-	-	-	-	-	-				-	-	-	
EV_AQ6	EV_AQ6_WS_2022-Q2_N	2022-04-12		0.0023	0.00016	0.00016	0.247	< 0.020	< 0.000050	0.016	0.000	00109	89	< 0.00010	< 0.10	< 0.00060
EV_AQ6	EV_MC5_WS_2022-Q2_N	2022-04-13		0.0033	0.00017	0.00016	0.26	< 0.020	< 0.000050	0.016	0.000	00108	89.5	< 0.00010	< 0.10	< 0.00060
EV_AQ6	EV_MC7_WS_2022-Q2_N	2022-04-13		< 0.0010	< 0.00010	< 0.00010	< 0.00010	< 0.020	< 0.000050	< 0.010		0050	< 0.050	< 0.00010	< 0.10	< 0.00020
EV_AQ6	EV_AQ6_WS_2022-04_WEK17_N	2022-04-18		-	-	-	-	-	-				-	-	-	-
EV_AQ6	EV_AQ6_WS_2022-04_WEK18_N	2022-04-26	-	-	-	-	-	-	-	-			-	-	-	-
EV_AQ6	EV_AQ6_WS_2022-05_MON_N	2022-05-03	-	0.0047	0.00014	0.00015	0.228	< 0.020	< 0.000050	0.017	< 0.	0050	84.6	< 0.00010	< 0.10	0.0003
EV_AQ6	EV_AQ6_WS_2022-05_WEK20_N	2022-05-11		-	-	-	-	-	-	-			-	-	-	-
EV_AQ6	EV_AQ6_WS_2022-05_WEK21_N	2022-05-16	-	-	-	-	-	-	-	-		-	-	-	-	-
EV_AQ6	EV_AQ6_WS_2022-05_WEK22_N	2022-05-24	-	-	-	-	-	-	-	-		-	-	-	-	-
EV_AQ6	EV_AQ6_WS_2022-05_WEK23_N	2022-05-30	-	-	-	-	-	-	-	-			-	-	-	-
EV_AQ6	EV_MC8_WS_2022-06_MON_N	2022-06-07	-	< 0.0010	< 0.00010	< 0.00010	< 0.00010	< 0.020	< 0.000050	< 0.010	< 0.	0050	< 0.050	< 0.00010	< 0.10	< 0.00020
EV_AQ6	EV_MC6_WS_2022-06_MON_N	2022-06-07	-	0.0018	0.00014	0.00017	0.178	< 0.020	< 0.000050	0.018	< 0.	0050	93.7	< 0.00010	< 0.10	0.00022
EV_AQ6	EV_AQ6_WS_2022-06_MON_N	2022-06-08		0.0019	0.00013	0.00013	0.172	< 0.020	< 0.000050	0.018	< 0.	0050	86.4	< 0.00010	< 0.10	0.00021
EV_AQ6	EV_AQ6_WS_2022-06-13_N_1743	2022-06-13	-	-	-	-	-	-	-	-		-	-	-	-	-
EV_AQ6	EV_AQ6_WS_2022-06_WEK25_N	2022-06-13	-	-	-	-	-	-	-	-		-	-	-	-	-
EV_AQ6	EV_AQ6_WS_2022-06-14_N_1725	2022-06-14	-	-	-	-	-	-	-	-		-	-	-	-	-
EV_AQ6	EV_AQ6_WS_2022-06-14_N_0650	2022-06-14	-	-	-	-	-	-	-	-		-	-	-	-	-
EV_AQ6	EV_AQ6_WS_2022-06_WEK26_N	2022-06-21	-	-	-	-	-	-	-	-		-	-	-	-	-
EV_AQ6	EV_AQ6_WS_2022-06_WEK27_N	2022-06-28	-	-	-	-	-	-	-	-		-	-	-	-	-
EV_AQ6	EV_AQ6_WS_2022-Q3_N	2022-07-06	-	0.002	0.00014	0.0002	0.247	< 0.020	< 0.000050	0.017	0.000	00059	86.5	< 0.00010	< 0.10	0.00034
EV_AQ6	EV_MC6_WS_2022-Q3_N	2022-07-06	-	0.0014	0.00014	0.00019	0.242	< 0.020	< 0.000050	0.017	< 0.	0050	82.4	< 0.00010	< 0.10	0.00028
EV_AQ6	EV_MC8_WS_2022-Q3_N	2022-07-06	-	< 0.0010	< 0.00010	< 0.00010	< 0.00010	< 0.020	< 0.000050	< 0.010	< 0.	0050	< 0.050	< 0.00010	< 0.10	< 0.00020
EV_AQ6	EV_AQ6_WS_2022-07_WEK29_N	2022-07-12	-	-	-	-	-	-	-	-		-	-	-	-	-
EV_AQ6	EV_AQ6_WS_2022-08_MON_N	2022-08-10	-	0.0024	0.00013	0.00025	0.174	< 0.020	< 0.000050	0.02	< 0.	0050	63	0.00015	< 0.10	0.00029
EV_AQ6	EV_AQ6_WS_SESMP_2022_08_N	2022-08-11	-	0.002	0.00013	0.00023	0.184	< 0.020	< 0.000050	0.019	< 0.	0050	62.9	< 0.00010		0.00028
EV_AQ6	EV_AQ6_WS_2022-09_MON_N	2022-09-07	-	0.0046	0.00012	0.0002	0.173	< 0.020	< 0.000050	0.018		0050	57.7	< 0.00010	< 0.10	0.00041
EV_AQ6	EV_MC8_WS_2022-09_MON_N	2022-09-07	-	< 0.0010	< 0.00010	< 0.00010	< 0.00010	< 0.020	< 0.000050	< 0.010		0050	< 0.050	< 0.00010	< 0.10	< 0.00020
EV_AQ6	EV_AQ6_WS_2022-09-08_N	2022-09-08	-	0.0017	0.00013	0.00024	0.196	< 0.020	< 0.000050	0.018		0050	57.4	< 0.00010		< 0.00020
EV_AQ6	EV_AQ6_WS_2022-09-09_N	2022-09-09	-	< 0.0010	0.00012	0.00024	0.193	< 0.020	< 0.000050	0.017		0050	55	< 0.00010		< 0.00020
EV_AQ6	EV_AQ6_WS_2022-09-10_N	2022-09-10	-	0.0012	0.00012	0.00024	0.189	< 0.020	< 0.000050	0.018		0050	58.7	< 0.00010	< 0.10	0.0003
EV_AQ6	EV_AQ6_WS_2022-Q4_N	2022-10-07	-	< 0.0010	0.00012	0.00018	0.177	< 0.020	< 0.000050	0.02		0050	58.8	< 0.00010		< 0.00020
EV_AQ6	EV_MC6_WS_2022-Q4_N	2022-10-07	-	< 0.0010	0.00012	0.00021	0.179	< 0.020	< 0.000050	0.021		0050	59.2	< 0.00010	< 0.10	0.0002
EV_AQ6	EV_MC8_WS_2022-Q4_N	2022-10-07	-	< 0.0010	< 0.00010	< 0.00010	< 0.00010	< 0.020	< 0.000050	< 0.010		0050	< 0.050	< 0.00010	< 0.10	< 0.00020
EV_AQ6	EV_AQ6_WS_2022-11_MON_N	2022-11-09	-	0.0032	0.00012	0.00017	0.204	< 0.020	< 0.000050	0.016	0.000	00082	78.9	< 0.00010		< 0.00020
EV_AQ6	EV_MC6_WS_2022-11_MON_N	2022-11-09	-	0.0038	0.00012	0.0002	0.195	< 0.020	< 0.000050	0.016		0009	79.4	< 0.00010		0.0002
EV_AQ6	EV_MC8_WS_2022-11_MON_N	2022-11-09	-	< 0.0010	< 0.00010	< 0.00010	0.00035	< 0.020	< 0.000050	< 0.010		0050	< 0.050	< 0.00010	< 0.10	0.00065
EV_BC1	EV_BC1_WS_2022-01-03_N-SRF	2022-01-03	-	< 0.0020	0.00054	0.00024	0.0567	< 0.040	< 0.000100	0.074		00954	243	< 0.00020		0.00063
EV_BC1	EV_BC1_WS_2022_Q1_N	2022-01-18	-	0.0031	0.00058	0.00023	0.0512	< 0.040	< 0.000100	0.07		0112	267	< 0.00020	0.00038	< 0.00040
EV_BC1	EV_BC1_WS_2022-01-18_N-SRF	2022-01-18	_	0.0035	0.00057	0.00023	0.0573	< 0.040	< 0.000100	0.068	0.00	0118	271	< 0.00020	0.00044	< 0.00040
EV_BC1	EV_BC1_WS_2022-02-01_N-SRF	2022-02-01	-	0.0038	0.00057	0.00024	0.0558	< 0.040	< 0.000100	0.062		0116	301	< 0.00020		< 0.00040
EV_BC1	EV_BC1_WS_2022-02_MON_N	2022-02-08	-	0.0029	0.00096	< 0.00020	0.0882	< 0.040	< 0.000100	0.045		00554	233	< 0.00020	0.00021	0.00048
EV_BC1	EV_BC1_WS_2022-02-15_N-SRF	2022-02-15	-	0.0048	0.00099	0.00026	0.0964	< 0.040	< 0.000100	0.041	0.000	00344	237	< 0.00020	< 0.00020	< 0.00040
EV_BC1	EV_BC1_WS_2022-03-01_N-SRF	2022-03-01	-	< 0.0020	0.00093	< 0.00020	0.0829	< 0.040	< 0.000100	0.042		00454	231	< 0.00020	0.00025	< 0.00040
EV_BC1	EV_BC1_WS_2022-03-15_N-SRF	2022-03-15	-	0.0041	0.00093	0.0002	0.0828	< 0.040	< 0.000100	0.04	0.000	00407	209	< 0.00020	0.0002	< 0.00040

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

											Dissolv	ed Metals							
Sample	Sample	Sample Date	Hardness	Iron	Lead	Lithium	Magnesium	Manganese	Nickel	Potassium	Selenium	Silver	Sodium	Strontium	Thallium	riT.	Titanium	Uranium	Zinc
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
				cute															
BC WQG FWAL			n/a	0.35	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Elkview Operation							•	•						•	•	•	•		
EV_AQ6	EV_AQ6_WS_2022-Q1_N	2022-01-07	-	< 0.010	< 0.000050	0.0168	38.4	0.00378	0.00077	1.49	5.94	< 0.000010	5.67	0.254	< 0.000010		< 0.00030	0.0012	0.0049
EV_AQ6	EV_AQ6_WS_2022-02_MON_N	2022-02-07	-	< 0.010	< 0.000050	0.0162	36.7	0.0012	0.00066	1.39	5.58	< 0.000010	4.8	0.238	< 0.000010	< 0.00010	< 0.00030	0.00109	0.0082
EV_AQ6	EV_AQ6_WS_2022-03_MON_N	2022-03-16	-	< 0.010	< 0.000050	0.0165	39.7	0.00187	0.00076	1.59	7.81	< 0.000010	8.39	0.283	< 0.000010	< 0.00010	< 0.00030	0.00118	0.0042
EV_AQ6	EV_AQ6_WS_2022-03_WEK13_N	2022-03-22	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_AQ6	EV_AQ6_WS_2022-03_WEK14_N	2022-03-28	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_AQ6	EV_AQ6_WS_2022-04_WEK15_N	2022-04-04	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_AQ6	EV_AQ6_WS_2022-Q2_N	2022-04-12	-	< 0.010	< 0.000050	0.0154	38	0.00072	0.0009	1.53	8.26	< 0.000010	9.27	0.294	< 0.000010	< 0.00010	< 0.00030	0.00122	0.0035
EV_AQ6	EV_MC5_WS_2022-Q2_N	2022-04-13	-	< 0.010	< 0.000050	0.0155	37.5	0.00086	0.00089	1.53	8.15	< 0.000010	9.21	0.288	< 0.000010	0.00018	< 0.00030	0.0012	0.0037
EV_AQ6	EV_MC7_WS_2022-Q2_N	2022-04-13	< 0.50		< 0.000050	< 0.0010	< 0.0050	< 0.00010	< 0.00050	< 0.050	< 0.050	< 0.000010	< 0.050	< 0.00020	< 0.000010	< 0.00010	< 0.00030	< 0.000010	< 0.0010
EV_AQ6	EV_AQ6_WS_2022-04_WEK17_N	2022-04-18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_AQ6	EV_AQ6_WS_2022-04_WEK18_N	2022-04-26	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_AQ6	EV_AQ6_WS_2022-05_MON_N	2022-05-03	-	< 0.010	< 0.000050	0.0157	36.4	0.00102	0.00078	1.55	6.74	< 0.000010	7.41	0.27	< 0.000010	< 0.00010	< 0.00030	0.00109	0.0033
EV_AQ6	EV_AQ6_WS_2022-05_WEK20_N	2022-05-11	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_AQ6	EV_AQ6_WS_2022-05_WEK21_N	2022-05-16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_AQ6	EV_AQ6_WS_2022-05_WEK22_N	2022-05-24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_AQ6	EV_AQ6_WS_2022-05_WEK23_N	2022-05-30	-	-	-			-	-	-	-		-		-	-	-	-	-
EV_AQ6	EV_MC8_WS_2022-06_MON_N	2022-06-07	-	< 0.010	< 0.000050	< 0.0010	< 0.0050	< 0.00010	< 0.00050	< 0.050	< 0.050	< 0.000010	< 0.050	< 0.00020	< 0.000010	< 0.00010	< 0.00030	< 0.000010	< 0.0010
EV_AQ6	EV_MC6_WS_2022-06_MON_N	2022-06-07	-	< 0.010	< 0.000050	0.0183	38.8	0.00102	< 0.00050	1.43	4.74	< 0.000010	6.07	0.282	< 0.000010	< 0.00010	< 0.00030	0.00116	0.0026
EV_AQ6	EV_AQ6_WS_2022-06_MON_N	2022-06-08	-	< 0.010	< 0.000050	0.0164	33.9	0.00091	< 0.00050	1.3	4.97	< 0.000010	5.59	0.268	< 0.000010	< 0.00010	< 0.00030	0.00115	0.0023
EV_AQ6	EV_AQ6_WS_2022-06-13_N_1743	2022-06-13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_AQ6 EV AQ6	EV_AQ6_WS_2022-06_WEK25_N	2022-06-13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_AQ6	EV_AQ6_WS_2022-06-14_N_1725 EV AQ6_WS_2022-06-14_N_0650	2022-06-14	-	-	-		-	-	-	- :	- :		-	-	-	-	-	-	-
EV_AQ6 EV_AQ6	EV_AQ6_WS_2022-06-14_N_0650 EV_AQ6_WS_2022-06_WFK26_N	2022-06-14	-				-											-	
EV_AQ6	EV_AQ6_WS_2022-06_WEK26_N EV_AQ6_WS_2022-06_WEK27_N	2022-06-21	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_AQ6	EV AQ6 WS 2022-06 WER27 N	2022-06-26	-	< 0.010	< 0.000050	0.0164	42	0.00227	0.00082	1.58	5.42	< 0.000010	8.14	0.284	< 0.000010	< 0.00010	< 0.00030	0.000957	0.002
EV_AQ6	EV_AQ6_WS_2022-Q3_N EV_MC6_WS_2022-Q3_N	2022-07-06	-	< 0.010	< 0.000050	0.0155	40.4	0.00227	0.00082	1.52	5.42	< 0.000010	7.91	0.287	< 0.000010	< 0.00010	< 0.00030	0.00102	0.002
EV AQ6	EV_MC8_WS_2022-Q3_N	2022-07-06	<u> </u>	< 0.010	< 0.000050	< 0.0010	< 0.0050	< 0.00201	< 0.00076	< 0.050	< 0.050	< 0.000010	< 0.050	< 0.00020	< 0.000010	< 0.00010	< 0.00030	< 0.00102	< 0.0010
EV_AQ6	EV AQ6 WS 2022-Q3_N EV AQ6 WS 2022-07 WEK29 N	2022-07-06	-	< 0.010	< 0.000050	< 0.0010	< 0.0030	< 0.00010	< 0.00050	< 0.050	< 0.050	< 0.000010	< 0.050	< 0.00020	< 0.000010	< 0.00010	< 0.00030	< 0.000010	V 0.00 10
EV_AQ6	EV AQ6 WS 2022-07_WER25_N	2022-07-12	<u> </u>	0.016	< 0.000050	0.0172	39.1	0.00909	0.0007	1.48	5.51	< 0.000010	3.83	0.238	< 0.000010	< 0.00010	< 0.00030	0.000915	0.0028
EV AQ6	EV AQ6 WS SESMP 2022 08 N	2022-08-11	-	0.014	< 0.000050	0.0172	35.9	0.00909	0.00072	1.36	4.66	< 0.000010	3.52	0.237	< 0.000010		< 0.00030	0.000918	0.0027
EV_AQ6	EV AQ6 WS 2022-09 MON N	2022-09-07	-	0.014	< 0.000050	0.0174	38.3	0.0033	0.00072	1.41	4.69	< 0.000010	3.45	0.228	< 0.000010		< 0.00030	0.000848	0.0027
EV_AQ6	EV_AQ6_W3_2022-09_MON_N EV_MC8_WS_2022-09_MON_N	2022-09-07	H:	< 0.010	< 0.000050	< 0.0010	< 0.0050	< 0.00466	< 0.00050	< 0.050	< 0.050	< 0.000010	< 0.050	< 0.00020	< 0.000010		< 0.00030	< 0.000048	< 0.0022
EV AQ6	EV AQ6 WS 2022-09-08 N	2022-09-08	1	0.012	< 0.000050	0.0161	39.2	0.00698	0.0008	1.49	5.45	< 0.000010	3.62	0.223	< 0.000010		< 0.00030	0.000759	0.0022
EV_AQ6	EV AQ6 WS 2022-09-09 N	2022-09-09	-	0.012	< 0.000050	0.0169	36.7	0.00512	0.00087	1.41	4.95	< 0.000010	3.4	0.216	< 0.000010	< 0.00010	< 0.00030	0.000733	0.0022
EV AQ6	EV AQ6 WS 2022-09-10 N	2022-09-10	-	0.011	< 0.000050	0.0173	37.1	0.00511	0.0008	1.46	5.1	< 0.000010	3.43	0.228	< 0.000010	< 0.00010	< 0.00030	0.000792	0.0022
EV AQ6	EV AQ6 WS 2022-Q4 N	2022-10-07	-	< 0.010	< 0.000050	0.0163	35.8	0.00365	0.00058	1.52	4.98	< 0.000010	3.14	0.223	< 0.000010	< 0.00010	< 0.00030	0.000763	0.0021
EV AQ6	EV MC6 WS 2022-Q4 N	2022-10-07	-	0.011	< 0.000050	0.0158	37	0.00389	0.00061	1.58	5.15	< 0.000010	3.26	0.225	< 0.000010	< 0.00010	< 0.00030	0.00078	0.0023
EV AQ6	EV MC8 WS 2022-Q4 N	2022-10-07	-	< 0.010	< 0.000050	< 0.0010	< 0.0050	< 0.00010	< 0.00050	< 0.050	< 0.050	< 0.000010	< 0.050	< 0.00020	< 0.000010	< 0.00010	< 0.00030	< 0.000010	< 0.0010
EV_AQ6	EV_AQ6_WS_2022-11_MON_N	2022-11-09	-	0.024	< 0.000050	0.019	45.8	0.00877	0.00076	1.82	6.02	< 0.000010	3.77	0.269	< 0.000010	< 0.00010	< 0.00030	0.00101	0.0024
EV_AQ6	EV_MC6_WS_2022-11_MON_N	2022-11-09	-	0.019	< 0.000050	0.0196	45.5	0.00894	0.00074	1.82	5.88	< 0.000010	3.78	0.27	< 0.000010	< 0.00010	< 0.00030	0.000738	0.0031
EV_AQ6	EV_MC8_WS_2022-11_MON_N	2022-11-09	-	< 0.010	< 0.000050	< 0.0010	< 0.0050	< 0.00010	< 0.00050	< 0.050	< 0.050	< 0.000010	0.141	< 0.00020	< 0.000010	< 0.00010	< 0.00030	< 0.000010	< 0.0010
EV_BC1	EV_BC1_WS_2022-01-03_N-SRF	2022-01-03	-	< 0.020	< 0.000100	0.166	187	0.0316	0.0226	6.27	300	< 0.000020	7.57	1.62	0.000025	< 0.00020	< 0.00060	0.00797	0.0118
EV_BC1	EV_BC1_WS_2022_Q1_N	2022-01-18	-	< 0.020	< 0.000100	0.17	209	0.0232	0.025	6.61	359	< 0.000020	7.38	1.54	0.00003	< 0.00020	< 0.00060	0.00837	0.0106
EV_BC1	EV_BC1_WS_2022-01-18_N-SRF	2022-01-18	-	< 0.020	< 0.000100	0.16	213	0.0265	0.0264	6.93	326	< 0.000020	7.81	1.51	0.00003	< 0.00020	< 0.00060	0.00848	0.0171
EV_BC1	EV_BC1_WS_2022-02-01_N-SRF	2022-02-01	-	< 0.020	< 0.000100	0.166	213	0.025	0.0245	6.2	359	< 0.000020	6.9	1.6	0.000024	< 0.00020	< 0.00060	0.00828	0.0124
EV_BC1	EV_BC1_WS_2022-02_MON_N	2022-02-08	-	< 0.020	< 0.000100	0.119	177	0.011	0.0255	5.57	173	< 0.000020	6.67	0.942	0.000027	< 0.00020	< 0.00060	0.0101	0.005
EV_BC1	EV_BC1_WS_2022-02-15_N-SRF	2022-02-15	-	< 0.020	< 0.000100	0.102	186	0.00568	0.0291	5.6	130	< 0.000020	6.79	0.792	0.000029	< 0.00020	< 0.00060	0.0114	0.129
EV_BC1	EV_BC1_WS_2022-03-01_N-SRF	2022-03-01	-	< 0.020	< 0.000100	0.107	187	0.0101	0.026	5.72	153	< 0.000020	7.21	0.934	0.000027	< 0.00020	< 0.00060	0.0108	0.0044
EV_BC1	EV_BC1_WS_2022-03-15_N-SRF	2022-03-15	-	< 0.020	< 0.000100	0.0998	165	0.00989	0.0234	5.2	174	< 0.000020	6.82	0.902	0.000028	< 0.00020	< 0.00060	0.0106	0.0033

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

^d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

									Dissolve	ed Metals						
			ardness	luminum	ntimony	rsenic	arium	eryllium	smuth	oron	ad ad		Salcium	hromium	obalt	Copper
Sample	Sample	Sample Date		∢	٨	∢		ă.	<u> </u>	<u> </u>	ن	<u>.</u>		<u> </u>	٥	
Location	ID	(mm/dd/yyyy) mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg		mg/L	mg/L	mg/L	mg/L
				Acute							Acute	Chronic				Acute
BC WQG FWAL			n/a	0.020-0.10 ^a 0.005-0.05 ^a	n/a	na	na	na	n/a	n/a	0.00004-0.0028 ^a	0.00002-0.00173 ^a	n/a	n/a	n/a	BLMe
Ikview Operation																
EV_BC1	EV_BC1_WS_2022-03_MON_N	2022-03-16	-	0.0021	0.00091	0.00023	0.0924	< 0.020	< 0.000050	0.041	0.000	00366	252		0.00022	0.00027
EV_BC1	EV_BC1_WS_2022-03-22_N-SRF	2022-03-22	-	0.0021	0.00086	0.00017	0.0942	< 0.020	< 0.000050	0.042	0.00	0015	242	< 0.00010	0.00018	0.00021
EV_BC1	EV_BC1_WS_2022-03_WEK13_N	2022-03-22	-		-	-	-	-	-	-			-	-	-	-
EV_BC1	EV_BC1_WS_2022-03_WEK14_N	2022-03-29	-		-	-	-	-	-	-			-	-	-	-
EV_BC1	EV_BC1_WS_2022-03-29_N-SRF	2022-03-29	-	0.0028	0.00092	0.0002	0.0936	< 0.020	< 0.000050	0.039	0.000	0141	217	< 0.00010	0.00013	< 0.00020
EV_BC1	EV_BC1_WS_2022-04-05_N-SRF	2022-04-05		0.0034	0.00094	0.00024	0.0858	< 0.040	< 0.000100	0.04	0.000	0154	219	< 0.00020	< 0.00020	< 0.00040
EV_BC1	EV_BC1_WS_2022-04_WEK15_N	2022-04-05	-	-	-		-	-	-	-		-	-	-	-	-
EV_BC1	EV_BC1_WS_2022-Q2_N	2022-04-12	-	0.0032	0.00092	0.00021	0.0625	< 0.020	< 0.000050	0.037	< 0.0	0150	216	< 0.00010	0.00012	0.00024
EV_BC1	EV_BC1_WS_2022-04-12_N-SRF	2022-04-12	-	< 0.0010	0.00093	0.00017	0.0654	< 0.020	< 0.000050	0.041	< 0.0		226	< 0.00010	0.00013	0.0002
EV_BC1	EV_BC1_WS_2022-04-19_N-SRF	2022-04-19	-	0.0029	0.0008	< 0.00020	0.0678	< 0.040	< 0.000100	0.038	< 0.0	0100	211	< 0.00020	< 0.20	< 0.00040
EV_BC1	EV_BC1_WS_2022-04_WEK17_N	2022-04-19	-	-	-	-	-	-	-	-			- 1	-		-
EV BC1	EV BC1 WS 2022-04-26 N-SRF	2022-04-26	-	0.0017	0.00084	0.0002	0.0577	< 0.020	< 0.000050	0.037	< 0.0	nnsn	211	0.00012	< 0.10	0.00023
EV BC1	EV BC1 WS 2022-04 WEK18 N	2022-04-26	-	-	-	-	-	-	-	-		-	-	-	-	- 0.00020
EV BC1	EV BC1 WS 2022-05-03 N-SRF	2022-05-03	-	0.0035	0.00081	0.00022	0.0541	< 0.020	< 0.000050	0.037	< 0.0		210	< 0.00010	< 0.10	0.00024
EV BC1	EV BC1 WS 2022-05 MON N	2022-05-03	-	0.0014	0.00078	0.00023	0.0541	< 0.020	< 0.000050	0.037	< 0.0		210	< 0.00010	< 0.10	< 0.00020
EV BC1	EV BC1 WS 2022-05-10 N-SRF	2022-05-10	—	< 0.0014	0.00077	0.00022	0.0591	< 0.020	< 0.000050	0.036	< 0.0		200	< 0.00010	< 0.10	0.00024
EV BC1	EV BC1 WS 2022-05 WEK20 N	2022-05-11	-	× 0.0010	-	-	-	-	-	-	× 0.0		-	-	-	0.00024
EV BC1	EV BC1 WS 2022-05 WEK21 N	2022-05-17			-			-							-	
EV BC1	EV BC1 WS 2022-05-17 N-SRF	2022-05-17		0.0028	0.0008	0.00024	0.0595	< 0.040	< 0.000100	0.046	0.000		215		< 0.20	< 0.00040
EV BC1	EV BC1 WS 2022-05-24 N-SRF	2022-05-24	H -	< 0.0028	0.00087	0.00024	0.0529	< 0.020	< 0.000050	0.043	< 0.0		215	< 0.00020	< 0.10	< 0.00040
EV BC1	EV BC1 WS 2022-05-24_14-0K1	2022-05-24	H -	- 0.0010	0.00007	-	-	- 0.020	- 0.000000	- 0.040		-		- 0.00010	- 0.10	- 0.00020
EV BC1	EV BC1 WS 2022-05 WEK22 N	2022-05-31	-			-	-	-	-					-		-
EV BC1	EV_BC1_WS_2022-05-31_N-SRF	2022-05-31	H :	0.0018	0.00087	0.00023	0.067	< 0.020	< 0.000050	0.043	< 0.0		213	< 0.00010	< 0.10	0.00027
FV BC1	EV BC1 WS 2022-06 MON N	2022-06-06	<u> </u>		0.0008	0.00023	0.007	< 0.020	< 0.000050	0.04			232	< 0.00010	0.00017	
EV BC1	EV BC1 WS 2022-06-07 N-SRF	2022-06-07	<u> </u>	< 0.0010	0.0008	0.00037	0.217	< 0.020	< 0.000050	0.044	0.000		231	< 0.00010	0.00017	< 0.00020
EV_BC1	EV BC1 WS 2022-06 WEK25 N	2022-06-07	-	0.0015	0.0006	0.00027	0.100	< 0.020 -	< 0.000050	0.044	0.000		231	< 0.00010	0.00016	0.00021
EV_BC1	EV BC1 WS 2022-06 WER25 N EV BC1 WS 2022-06-14 N-SRF	2022-06-13	<u> </u>		0.00074	0.00028	0.262	< 0.020	< 0.000050	0.041			213	< 0.00010	0.00031	
EV_BC1			<u> </u>	0.0041	0.00074		0.202	< 0.020		0.041	0.000		213			0.00025
	EV_BC1_WS_2022-06-21_N-SRF	2022-06-21	-	0.0038	0.00086	0.00023	0.226	< 0.040	< 0.000100	0.045	0.000		221	< 0.00020	< 0.20	< 0.00040
EV_BC1	EV_BC1_WS_2022-06_WEK26_N	2022-06-21	-	-	-	-	-	-	-	-			-	-	-	-
EV_BC1	EV_BC1_WS_2022-06-28_N-SRF	2022-06-28	-	0.003	0.00088	0.00025	0.234	< 0.040	< 0.000100	0.043	< 0.0		233	< 0.00020	< 0.20	< 0.00040
EV_BC1	EV_BC1_WS_2022-06_WEK27_N	2022-06-28	-	-	-	-	-	-	-	-			-	-	-	-
EV_BC1	EV_BC1_WS_2022_Q3_N	2022-07-05	-	0.0012	0.00081	0.00026	0.134	< 0.020	< 0.000050	0.049	0.000		219	< 0.00010	0.00012	< 0.00020
EV_BC1	EV_BC1_WS_2022-07-05_N-SRF	2022-07-05	-	0.0016	0.00086	0.00026	0.158	< 0.020	< 0.000050	0.044	0.000		209	< 0.00010	0.00014	0.00073
EV_BC1	EV_BC1_WS_2022-07-12_N-SRF	2022-07-12	-	0.0018	0.0008	0.00025	0.117	< 0.020	< 0.000050	0.053	0.000	0134	224	< 0.00010	0.00013	< 0.00020
EV_BC1	EV_BC1_WS_2022-07_WEK29_N	2022-07-12	-	-		-			- 0.0000=0	- 0.054		-		- 0 00010	- 0.00011	-
EV_BC1	EV_BC1_WS_2022-07-19_N-SRF	2022-07-19	-	< 0.0010	0.00086	0.00024	0.0782	< 0.020	< 0.000050	0.051	0.000		207	< 0.00010	0.00011	< 0.00020
EV_BC1	EV_BC1_WS_2022-08-02_N-SRF	2022-08-02	-	0.0025	0.00092	0.00022	0.0698	< 0.040	< 0.000100	0.056	< 0.0		196	< 0.00020	< 0.20	< 0.00040
EV_BC1	EV_BC1_WS_2022-08_MON_N	2022-08-10	-	< 0.0010	0.00084	0.00024	0.0739	< 0.020	< 0.000050	0.048	0.000		211	< 0.00010	< 0.10	0.00021
EV_BC1	EV_BC1_WS_2022-08-16_N-SRF	2022-08-16	-	< 0.0010	0.00082	0.00019	0.0744	< 0.020	< 0.000050	0.049	0.000		212	< 0.00010	< 0.10	< 0.00020
EV_BC1	EV_BC1_WS_2022-08-30_N-SRF	2022-08-30	-	0.0024	0.00078	0.00024	0.069	< 0.040	< 0.000100	0.046	< 0.0		196	< 0.00020	< 0.20	< 0.00040
EV_BC1	EV_BC1_WS_2022-09_MON_N	2022-09-06	-	0.0026	0.00071	0.0002	0.075	< 0.020	< 0.000050	0.049	0.000		216	< 0.00010	< 0.10	0.00028
EV_BC1	EV_BC1_WS_SEPT-2022_N	2022-09-09	-	0.0013	0.0007	0.00022	0.0657	< 0.020	< 0.000050	0.047	0.000		216	< 0.00010	< 0.10	< 0.00020
EV_BC1	EV_BC1_WS_2022-09-13_N-SRF	2022-09-13	-	< 0.0020	0.00068	0.0002	0.0557	< 0.040	< 0.000100	0.048	< 0.0		186	< 0.00020	< 0.20	< 0.00040
EV_BC1	EV_BC1_WS_2022-09-27_N-SRF	2022-09-27	-	0.0013	0.00076	0.00018	0.0649	< 0.020	< 0.000050	0.052	< 0.0		226	< 0.00010	< 0.10	0.0003
EV_BC1	EV_BC1_WS_2022-10-04_N-SRF	2022-10-04	-	0.0022	0.00076	0.00026	0.247	< 0.020	< 0.000050	0.049	0.000	00242	241	< 0.00010	< 0.10	< 0.00020
EV_BC1	EV_BC1_WS_2022-Q4_N	2022-10-06	-	< 0.0010	0.00076	0.00022	0.232	< 0.020	< 0.000050	0.055	0.000	00184	247	< 0.00010	< 0.10	< 0.00020
EV_BC1	EV_BC1_WS_2022-10-06_N-SRF	2022-10-06	-	-	-	-	-	-	-	-			-	-	-	-
EV_BC1	EV_BC1_WS_2022-10-18_N-SRF	2022-10-18	-	0.0027	0.00063	< 0.00020	0.0686	< 0.040	< 0.000100	0.044	< 0.0	0100	216	< 0.00020	< 0.20	< 0.00040
EV_BC1	EV_BC1_WS_2022-11-01_N-SRF	2022-11-01	-	0.0024	0.0007	< 0.00020	0.0434	< 0.040	< 0.000100	0.053	< 0.0	0100	219	< 0.00020	< 0.20	< 0.00040
EV BC1	EV_BC1_WS_2022-11_MON_N	2022-11-14	-	0.0013	0.00068	0.00026	0.0816	< 0.020	< 0.000050	0.045	0.000	0026	259	< 0.00010	0.00017	0.00033

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

											Dissolv	ed Metals							
Sample	Sample	Sample Date	Hardness	lon	Lead	Lithium	Magnesium	Manganese	Nickel	Potassium	Selenium	Silver	Sodium	Strontium	Thallium	lī.	Titanium	Uranium	Zinc
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
	•						Ť							•		Ť			
				Acute															.
BC WQG FWAL			n/a	0.35	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Elkview Operation																			
EV_BC1	EV_BC1_WS_2022-03_MON_N	2022-03-16	-	< 0.010	< 0.000050	0.11	168	0.01	0.0216	5.47	186	< 0.000010	6.88	0.947	0.00003	< 0.00010	< 0.00030	0.0112	0.0024
EV_BC1 EV BC1	EV_BC1_WS_2022-03-22_N-SRF	2022-03-22	-	< 0.010	< 0.000050	0.107	175	0.00765	0.0215	5.36	160	< 0.000010	6.87	0.939	0.000024	< 0.00010	< 0.00030	0.0104	0.0022
EV_BC1	EV_BC1_WS_2022-03_WEK13_N EV_BC1_WS_2022-03_WEK14_N	2022-03-22	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-	-	-	-
EV_BC1	EV BC1 WS 2022-03 WER14 N	2022-03-29		< 0.010	< 0.000050	0.103	169	0.00416	0.0221	5.25	156	< 0.000010	6.75	0.802	0.000028	< 0.00010	< 0.00030	0.01	0.0215
EV BC1	EV BC1 WS 2022-04-05 N-SRF	2022-04-05	-	< 0.020	< 0.000100	0.103	192	0.00471	0.0228	5.36	181	< 0.000010	7.33	0.882	0.000024	< 0.00010	< 0.00060	0.01	0.0025
EV BC1	EV BC1 WS 2022-04 WEK15 N	2022-04-05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
EV_BC1	EV_BC1_WS_2022-Q2_N	2022-04-12	-	< 0.010	< 0.000050	0.107	173	0.00323	0.0221	5.68	165	< 0.000010	7.41	0.862	0.000027	< 0.00010	< 0.00030	0.0102	0.001
EV_BC1	EV_BC1_WS_2022-04-12_N-SRF	2022-04-12	-	< 0.010	< 0.000050	0.107	168	0.00309	0.0211	5.2	145	< 0.000010	6.63	0.858	0.000026	< 0.00010	< 0.00030	0.00997	< 0.0010
EV_BC1	EV_BC1_WS_2022-04-19_N-SRF	2022-04-19	-	< 0.020	< 0.000100	0.0957	162	0.00211	0.0232	5.13	101	< 0.000020	7.22	0.71	0.000023	< 0.00020	< 0.00060	0.011	0.0022
EV_BC1	EV_BC1_WS_2022-04_WEK17_N	2022-04-19	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-
EV_BC1	EV_BC1_WS_2022-04-26_N-SRF	2022-04-26	-	< 0.010	< 0.000050	0.0886	177	0.00126	0.0217	5.51	121	< 0.000010	7.13	0.723	0.000026	< 0.00010	< 0.00030	0.0107	0.002
EV_BC1	EV_BC1_WS_2022-04_WEK18_N	2022-04-26	-	-	-	-	-	-	-	-	-			-	-		-	-	
EV_BC1	EV_BC1_WS_2022-05-03_N-SRF	2022-05-03	-	< 0.010	0.000055	0.0915	165	0.0011	0.0205	5.01	112	< 0.000010	6.69	0.679	0.000027	< 0.00010	< 0.00030	0.0102	0.0021
EV_BC1 EV_BC1	EV_BC1_WS_2022-05_MON_N EV_BC1_WS_2022-05-10_N-SRF	2022-05-03	-	< 0.010 < 0.010	< 0.000050 < 0.000050	0.0886 0.0923	163 166	0.00106 0.00108	0.0205 0.0212	5.2 5.48	107 93.2	< 0.000010 < 0.000010	6.51 6.99	0.678 0.664	0.000027	< 0.00010 < 0.00010	< 0.00030 < 0.00030	0.0102 0.0102	< 0.0010 0.002
EV_BC1	EV_BC1_W3_2022-05-10_N-SRF EV_BC1_WS_2022-05_WEK20_N	2022-05-10	-	< 0.010	< 0.000050	0.0923	100	0.00106	0.0212	3.46	93.2	< 0.000010	0.99	0.004	0.00003	< 0.00010	< 0.00030	0.0102	0.002
EV_BC1	EV_BC1_WS_2022-05_WER20_N EV_BC1_WS_2022-05_WER21_N	2022-05-17	-				- :	- :	- :	- :	-	 	-:-			-	-	- :	
EV_BC1	EV BC1 WS 2022-05-WER21 N	2022-05-17	-	< 0.020	< 0.000100	0.111	168	0.00131	0.0222	5.74	110	< 0.000020	7.84	0.802	0.000032	< 0.00020	< 0.00060	0.0103	< 0.0020
EV BC1	EV BC1 WS 2022-05-24 N-SRF	2022-05-24	-	< 0.010	< 0.000050	0.123	167	0.00144	0.0208	5.55	185	< 0.000010	7.62	0.932	0.000032	< 0.00010	< 0.00030	0.0102	0.0019
EV BC1	EV BC1 WS 2022-05 WEK22 N	2022-05-24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_BC1	EV_BC1_WS_2022-05_WEK23_N	2022-05-31	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_BC1	EV_BC1_WS_2022-05-31_N-SRF	2022-05-31	-	< 0.010	< 0.000050	0.118	167	0.00116	0.025	5.74	175	0.000021	8.76	0.851	0.000035	< 0.00010	< 0.00030	0.0112	0.0032
EV_BC1	EV_BC1_WS_2022-06_MON_N	2022-06-06	-	< 0.010	< 0.000050	0.0956	175	0.00495	0.0331	5.44	76.7	< 0.000010	9.86	0.712	0.000042	< 0.00010	< 0.00030	0.012	0.0036
EV_BC1	EV_BC1_WS_2022-06-07_N-SRF	2022-06-07	-	< 0.010	< 0.000050	0.115	167	0.00527	0.0327	5.42	66.6	< 0.000010	9.95	0.691	0.000045	< 0.00010	< 0.00030	0.0124	0.0038
EV_BC1	EV_BC1_WS_2022-06_WEK25_N	2022-06-13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_BC1	EV_BC1_WS_2022-06-14_N-SRF	2022-06-14	-	< 0.010	< 0.000050	0.114	155	0.00608	0.0287	5.31	58.6	< 0.000010	9.06	0.674	0.000044	< 0.00010	< 0.00030	0.0109	0.0018
EV_BC1 EV BC1	EV_BC1_WS_2022-06-21_N-SRF	2022-06-21	-	< 0.020	< 0.000100	0.128	154	0.00293	0.029	5.56	92.5	< 0.000020	9.32	0.747	0.000042	< 0.00020	< 0.00060	0.0111	0.0039
EV_BC1	EV_BC1_WS_2022-06_WEK26_N EV_BC1_WS_2022-06-28_N-SRF	2022-06-21	-	< 0.020	< 0.000100	0.126	167	0.00209	0.03	5.27	68.9	< 0.000020	9.59	0.718	0.000046	< 0.00020	< 0.00060	0.0117	0.0065
EV_BC1	EV BC1 WS 2022-06-26 N-SRF	2022-06-28		< 0.020	< 0.000100	0.126	-	0.00209	0.03	5.21	- 00.9	< 0.000020	9.59	0.716	0.000046	< 0.00020	< 0.00060	0.0117	0.0065
EV_BC1	EV BC1 WS 2022 Q3 N	2022-07-05	-	< 0.010	< 0.000050	0.126	154	0.00309	0.028	5.36	88.2	< 0.000010	9.48	0.766	0.000049	< 0.00010	< 0.00030	0.0112	0.0013
EV BC1	EV BC1 WS 2022-07-05 N-SRF	2022-07-05	-	< 0.010	< 0.000050	0.122	156	0.00397	0.0281	5.46	88.9	< 0.000010	9.67	0.81	0.000046	< 0.00010	< 0.00030	0.0109	0.0046
EV_BC1	EV_BC1_WS_2022-07-12_N-SRF	2022-07-12	-	< 0.010	< 0.000050	0.138	152	0.00413	0.0279	5.55	71.6	< 0.000010	9.74	0.979	0.000048	< 0.00010	< 0.00030	0.0106	0.0071
EV_BC1	EV_BC1_WS_2022-07_WEK29_N	2022-07-12	-	-	-	-	-		-	-	-	- 1	-	-	-	-	-	-	
EV_BC1	EV_BC1_WS_2022-07-19_N-SRF	2022-07-19	-	< 0.010	< 0.000050	0.133	154	0.00262	0.0277	5.52	79.5	< 0.000010	10.1	0.845	0.000035	< 0.00010	< 0.00030	0.01	0.0012
EV_BC1	EV_BC1_WS_2022-08-02_N-SRF	2022-08-02	-	< 0.020	< 0.000100	0.142	156	0.00162	0.0243	5.3	89.3	< 0.000020	9.57	0.845	0.000053	< 0.00020	< 0.00060	0.00958	0.0023
EV_BC1	EV_BC1_WS_2022-08_MON_N	2022-08-10	-	< 0.010	< 0.000050	0.145	183	0.00094	0.0253	5.64	162	< 0.000010	9.44	0.939	0.000051	< 0.00010	< 0.00030	0.0104	0.0012
EV_BC1	EV_BC1_WS_2022-08-16_N-SRF	2022-08-16		< 0.010	< 0.000050	0.143	173	0.00089	0.024	5.36	114	< 0.000010	9.37	0.836	0.000044	< 0.00010	< 0.00030	0.00973	0.0024
EV_BC1	EV_BC1_WS_2022-08-30_N-SRF	2022-08-30		< 0.020	< 0.000100	0.149	161	0.00088	0.022	4.96	82.2	< 0.000020	9.35	0.776	0.000049	< 0.00020	< 0.00060	0.0101	0.0021
EV_BC1 EV BC1	EV_BC1_WS_2022-09_MON_N	2022-09-06	-	< 0.010	< 0.000050	0.134	176	0.00073	0.0232 0.0228	5.61	82.8 90	< 0.000010	10.3 10.6	0.849	0.000041 0.000041	< 0.00010	< 0.00030	0.00996	< 0.0010
EV_BC1	EV_BC1_WS_SEPT-2022_N EV_BC1_WS_2022-09-13_N-SRF	2022-09-09	-	< 0.010 < 0.020	< 0.000050 < 0.000100	0.135 0.14	176 153	0.0003	0.0228	5.78 4.94	73.7	< 0.000010 < 0.000020	9.67	0.811 0.712	0.000041	< 0.00010 < 0.00020	< 0.00030 < 0.00060	0.0103 0.00832	< 0.0010 < 0.0020
EV_BC1	EV_BC1_WS_2022-09-13_N-SRF EV_BC1_WS_2022-09-27_N-SRF	2022-09-13		< 0.020	< 0.000100	0.14	178	0.00041	0.02	6.64	84.5	< 0.000020	12.8	1.21	0.000039	< 0.00020	< 0.00080	0.00832	0.0020
EV_BC1	EV_BC1_WS_2022-09-27_N-SRF EV_BC1_WS_2022-10-04_N-SRF	2022-10-04	H	< 0.010	< 0.000050	0.142	172	0.00031	0.0218	6.31	130	< 0.000010	11.3	1.08	0.000046	< 0.00010	< 0.00030	0.0102	0.0018
EV BC1	EV BC1 WS 2022-Q4 N	2022-10-04	+	< 0.010	< 0.000050	0.151	168	0.00067	0.0256	6.09	124	< 0.000010	10.9	0.998	0.000046	< 0.00010	< 0.00030	0.0104	0.0024
EV_BC1	EV_BC1_WS_2022-10-06_N-SRF	2022-10-06	-	- 0.010	- 0.000000	0.101	-	- 0.00007	- 0.0200	-	-	- 0.000010	-	- 0.550	3.000040	- 0.00010	- 0.00030		0.0010
EV_BC1	EV_BC1_WS_2022-10-18_N-SRF	2022-10-18	-	< 0.020	< 0.000100	0.132	170	0.00026	0.0221	5.38	102	< 0.000020	10.1	0.869	0.000035	< 0.00020	< 0.00060	0.0096	< 0.0020
EV_BC1	EV_BC1_WS_2022-11-01_N-SRF	2022-11-01	-	< 0.020	< 0.000100	0.17	170	0.0003	0.0214	5.33	138	< 0.000020	9.27	0.87	0.000034	< 0.00020	< 0.00060	0.0103	0.0041
EV_BC1	EV_BC1_WS_2022-11_MON_N	2022-11-14	-	< 0.010	< 0.000050	0.127	192	0.0034	0.0243	6.24	250	< 0.000010	10.9	1.01	0.00004	< 0.00010	< 0.00030	0.0109	0.0025
							1								·				

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

^d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

									Dissolve	d Metals						
				_										_		
			SS	Į į	Ĕ	ی ا	_	yllium	Ę			Ē	E	<u>.</u>		_
			ਵ	Ē	ntimo	l ë	Ē	▏░	Ē	- u		<u> </u>	1 = 5	E	at	
Sample	Sample	Sample Date	, ≱	7	Į	l s	3ar	l ĕ	<u>s</u>	3or		ğ	j j	홋	ļ ģ	ldo
Location	ID	(mm/dd/yyyy		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	m	ıg/L	mg/L	mg/L	mg/L	mg/L
	'	, ,,,,	,, ,	.0		Ĭ	ŭ	- ŭ	Ĭ			<u></u>		Ĭ		ن آ
				Acute							Acute	Chron				Acute
WQG FWAL			n/a	0.020-0.10 ^a 0.005-0.05 ^a	n/a	na	na	na	n/a	n/a	0.00004-0.0028 ^a	0.00002-0.00173 ^a	n/a	n/a	n/a	BLM°
kview Operation																
EV_BC1	EV_BC1_WS_2022-11-15_N_SRF	2022-11-15		0.0012	0.00076	0.00026	0.0938	< 0.020	< 0.000050	0.046		000317	271		0.00016	0.00001
EV_EC1	EV_EC1_WS_2022-01-05_N-SRF	2022-01-05		< 0.0010	0.00044	0.00036	0.028	< 0.020	-			00023	286	0.00058		< 0.00020
EV_EC1	EV_EC1_WS_2022-Q1_N	2022-01-17		< 0.0010	0.00041	0.00029	0.023	< 0.020	< 0.000050	0.028		00022	238	< 0.00010	0.00377	< 0.00020
EV_EC1	EV_EC1_WS_2022-01-17_N-SRF	2022-01-17		0.0013	0.00043	0.00028	0.0234	< 0.020				.0200	233	< 0.00010		< 0.00020
EV_EC1	EV_EC1_WS_2022-01-31_N-SRF	2022-01-28		0.0012	0.00037	0.0003	0.0222	< 0.020	< 0.000050	0.027		00185	228	< 0.00010	0.00387	< 0.00020
EV_EC1	EV_EC1_WS_2022-02-14_N-SRF	2022-02-14		0.0014	0.00035	0.00028	0.0224	< 0.020	< 0.000050	0.025		000153	232	0.00011	0.00316	
EV_EC1	EV_EC1_WS_2022-02_MON_N	2022-02-16		0.0018	0.00036	0.00027	0.025	< 0.020	< 0.000050	0.026		000192	241	0.00012	0.00256	0.00101
EV_EC1	EV_EC1_WS_2022-02-28_N-SRF	2022-02-28		< 0.0020	0.0004	0.00027	0.0224	< 0.040	< 0.000100	0.029		000169	260	< 0.00020	0.00352	< 0.00040
EV_EC1	EV_EC1_WS_2022-03-14_N-SRF	2022-03-14		0.0013	0.00038	0.00028	0.019	< 0.020	< 0.000050	0.024		000162	217	< 0.00010	0.00303	< 0.00020
EV_EC1	EV_EC1_WS_2022-03_MON_N	2022-03-17		0.002	0.00038	0.00029	0.0197	< 0.020	< 0.000050	0.027		000152	238	< 0.00010	0.00301	< 0.00020
EV_EC1	EV_EC1_WS_2022-03-21_N_SRF	2022-03-21		< 0.0010	0.00037	0.00033	0.021	< 0.020	< 0.000050	0.029	0.0	00019	240	< 0.00010	0.00288	0.00042
EV_EC1	EV_EC1_WS_2022-03_WEK13_N	2022-03-22		-	-	-	-	-	-	-		*	-	-	-	-
EV_EC1	EV_EC1_WS_2022-03-28_N-SRF	2022-03-28		< 0.0010	0.00025	0.00028	0.031	< 0.020	< 0.000050	0.015	0.00	000092	242	0.00018	0.00044	< 0.00020
EV_EC1	EV_EC1_WS_2022-03-28_N-SRF_1	2022-03-28		-	-	-	-	-	-	-			261	-	-	-
EV_EC1	EV_EC1_WS_2022-03_WEK14_N	2022-03-30		-	-	-	-	-	-	-			-	-		-
EV_EC1	EV_EC1_WS_2022-04-04_N-SRF	2022-04-04		0.0011	0.0003	0.00032	0.0306	< 0.020	< 0.000050	0.023	0.00	00186	237	< 0.00010	0.0011	0.00028
EV_EC1	EV_EC1_WS_2022-04_WEK15_N	2022-04-06		-	-	-	-	-	-	-			-	-	-	-
EV_EC1	EV_EC1_WS_2022-04-10_N-SRF	2022-04-10		-	-	-	-	-	-				244	-	-	-
EV_EC1	EV_EC1_WS_2022-04-11_N-SRF	2022-04-11		< 0.0010	0.00023	0.00027	0.0389	< 0.020	< 0.000050	0.015	0.00	000106	273	0.00014	0.00026	0.00070
EV_EC1	EV_EC1_WS_2022-04-11_N-SRF_1	2022-04-11		-	-	-	-	-	-	-		-	249	-	-	-
EV_EC1 EV EC1	EV_EC1_WS_2022-04-12_N-SRF EV_EC1_WS_2022-04-13_N-SRF	2022-04-12		-	-	-	-	-	-	-		-	248	-	-	-
EV_EC1	EV_ECT_WS_2022-04-13_N-SRF EV_ECT_WS_2022-Q2_N	2022-04-13			0.00021	0.00024	0.0415	< 0.020	< 0.000050	0.014		-	235	0.00017	0.00015	
EV_ECT		2022-04-13		0.0056	0.00021	0.00024	0.0415	< 0.020	< 0.000050	0.014		000103	208	0.00017	0.00015	< 0.00020
EV_EC1	EV_MC6_WS_2022-Q2_N EV_MC8_WS_2022-Q2_N			0.0022	< 0.00026	< 0.00027	< 0.00010	< 0.040				000063	< 0.050		0.00014	< 0.00020
EV_EC1	EV_MC8_WS_2022-Q2_N EV_EC1_WS_2022-04-14_N-SRF	2022-04-13 2022-04-14		< 0.0010	< 0.00010	< 0.00010	< 0.00010	< 0.020	< 0.000050	< 0.010	< 0	.0050	219	0.00010	< 0.10	< 0.00020
EV_EC1	EV EC1 WS 2022-04-14 N-SRF	2022-04-14		-	+ -	-		- :				-	228			-
EV_EC1	EV_EC1_W3_2022-04-13_N-SRF EV_EC1_WS_2022-04-16_N-SRF	2022-04-15		-	+ -		-			-		-	250	-	-	-
EV_EC1	EV EC1 WS 2022-04-16 N-SRF	2022-04-16		-		-	-	-	-	-		-	236		-	-
EV_EC1	EV_EC1_WS_2022-04-17_N-SRF EV_EC1_WS_2022-04-18_N-SRF	2022-04-17		-	0.00022	0.00026	0.0405	< 0.020	< 0.000050	0.014		-	215	0.00018	< 0.10	-
EV_EC1	EV_EC1_WS_2022-04-18_N-SRF EV_EC1_WS_2022-04-18_N-SRF_1	2022-04-18		< 0.0010	0.00022	0.00026	0.0405	< 0.020	< 0.000050	0.014	0.00	000066	215	0.00018	< 0.10	< 0.00020
EV_EC1	EV EC1 WS 2022-04-19 N-SRF	2022-04-19		-	+ :-		-	- :	- :			-	240	-		-
EV_EC1	EV EC1 WS 2022-04-19 N-SRF	2022-04-19		-	+ -	-	-		-				240	1	-	-
EV_EC1	EV EC1 WS 2022-04-20 N-SRF	2022-04-20			+ :-		-		-			-	241	-		- :
FV FC1	EV EC1 WS 2022-04_WER17_N	2022-04-20	+ :-	<u> </u>	+ :-		-			- :		-	243			-
EV_EC1	EV EC1 WS 2022-04-21 N-SRF	2022-04-21	+ :		+ :	-		-	-			-	241		-	+ -
EV EC1	EV EC1 WS 2022-04-22 N-SRF	2022-04-22	+ -		+ :	-	-		-			-	240	-	-	-
FV FC1	EV EC1 WS 2022-04-24 N-SRF	2022-04-23		-	- :	- :				- :		-	234			
EV_EC1	EV EC1 WS 2022-04-25 N-SRF	2022-04-25		< 0.0010	0.00022	0.00023	0.0428	< 0.020	< 0.000050	0.014	0.00	000068	226	0.00017	< 0.10	0.0002
EV EC1	EV EC1 WS 2022-04-25 N-SRF 1	2022-04-25		< 0.0010	0.00022	0.00023	0.0420	- 0.020	- 0.000030	0.014		- 800008	220	0.00017	- 0.10	0.0002
EV EC1	EV EC1 WS 2022-04-26 N-SRF	2022-04-25	+ -		+ -	-	-		-			-	223	-	-	
EV EC1	EV EC1 WS 2022-04-27 N-SRF	2022-04-27	+ -	-	-	-	-	-	-	-		:	223	-	-	+ -
EV EC1	EV EC1 WS 2022-04-27 N-SKI	2022-04-27	+ -		+ :	-	-		-			:	223	-	-	+ :-
EV EC1	EV EC1 WS 2022-04-WER16 N	2022-04-27	+ -		+ :	-	-		-			-	228	-	-	+ -
EV EC1	EV EC1 WS 2022-04-29 N-SRF	2022-04-29	+ -		+ -	-	-		-	-		-	222		-	
EV_EC1	EV EC1 WS 2022-04-30 N-SRF	2022-04-30	٠.		+ -	-	-	-	-			:	231	-	-	- :
EV EC1	EV EC1 WS 2022-05-01 N-SRF	2022-04-30	+ :	-	+ :	-		-	-			-	240			+ -
EV EC1	EV EC1 WS 2022-05-01 N-SRF	2022-05-02	+ -	0.001	0.0002	0.00024	0.0422	< 0.020	< 0.000050	0.014	0.00	000068	221	0.00024	< 0.10	< 0.00020
EV EC1	EV EC1 WS 2022-05-02 N-SRF 1	2022-05-02	+ -	0.001	0.0002	0.00024	- 0.0422	- 0.020	- 0.000000	0.014	0.00	,00000	+ '		- 0.10	< 0.00020
		1 2022 00-02	-	-	1	1				l	1	-	1	-		1 -

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

											Dissolv	ed Metals							
Sample	Sample	Sample Date	Hardness	non	Lead	Lithium	Magnesium	Manganese	Nickel	Potassium	Selenium	Siver	Sodium	Strontium	Thallium	Ē	Titanium	Uranium	Zinc
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
				cute															
BC WQG FWAL			n/a	0.35	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Elkview Operation																			
EV_BC1	EV_BC1_WS_2022-11-15_N_SRF	2022-11-15	-	< 0.010	< 0.000050	0.15	189	0.00293	0.0242	6.19	226	< 0.000010	11	1.01	0.000044	< 0.00010	< 0.00030	0.012	0.0037
EV_EC1	EV_EC1_WS_2022-01-05_N-SRF	2022-01-05	-	< 0.010	-	0.0585	165	0.108	0.0336	4.82	72	< 0.000010	6.56	0.365	0.000049	-	< 0.00030	0.0106	0.0031
EV_EC1	EV_EC1_WS_2022-Q1_N	2022-01-17	-	< 0.010	< 0.000050	0.0516	151	0.0762	0.0299	4.2	54.6	< 0.000010	5.42	0.319	0.000046	< 0.00010	< 0.00030	0.0118	< 0.0010
EV_EC1	EV_EC1_WS_2022-01-17_N-SRF	2022-01-17	-	< 0.010	-	0.0535	151	0.0754	0.0298	4.15	51.6	< 0.000010	5.63	0.321	0.000045	-	< 0.00030	0.0118	0.0016
EV_EC1	EV_EC1_WS_2022-01-31_N-SRF	2022-01-28	-	< 0.010	< 0.000050	0.0489	154	0.0769	0.0305	4.04	46.5	< 0.000010	5.52	0.3	0.000039	< 0.00010	< 0.00030	0.0112	< 0.0010
EV_EC1	EV_EC1_WS_2022-02-14_N-SRF	2022-02-14	-	< 0.010	< 0.000050	0.049	151	0.0569	0.0301	3.91	60.7	< 0.000010	5.14	0.302	0.000043	< 0.00010	< 0.00030	0.011	0.0016
EV_EC1 EV EC1	EV_EC1_WS_2022-02_MON_N EV_EC1_WS_2022-02-28_N-SRF	2022-02-16	<u> </u>	0.012 < 0.020	0.000068 < 0.000100	0.0506 0.0532	154 165	0.0462 0.0627	0.028	4.24 4.02	83.1 42.4	< 0.000010 < 0.000020	5.07 5.98	0.305 0.348	0.000044	< 0.00010 < 0.00020	< 0.00030 < 0.00060	0.0103 0.0107	0.0042 < 0.0020
FV FC1	EV EC1 WS 2022-02-26 N-SRF	2022-02-26	<u> </u>	< 0.020	< 0.000100	0.0332	144	0.0527	0.0323	3.96	72.3	< 0.000020	5.94	0.348	0.000051	< 0.00020	< 0.00030	0.0107	0.0024
EV_EC1	EV EC1 WS 2022-03 MON N	2022-03-14	<u> </u>	< 0.010	< 0.000050	0.0563	161	0.052	0.0309	4.49	45.3	< 0.000010	6.63	0.300	0.000032	< 0.00010	< 0.00030	0.0111	< 0.0024
EV_EC1	EV EC1 WS 2022-03-MON N	2022-03-17	H :	< 0.010	< 0.000050	0.0601	154	0.052	0.0237	4.42	38.9	< 0.000010	7.02	0.329	0.000048	< 0.00010	< 0.00030	0.0108	0.0017
EV EC1	EV EC1 WS 2022-03 WEK13 N	2022-03-21	-	- 0.010	- 0.000000	- 0.0001	-	- 0.0010	-		-	- 0.000010	7.02	-	- 0.000047	- 0.00010	- 0.00000	0.0112	0.0017
EV EC1	EV EC1 WS 2022-03-28 N-SRF	2022-03-28	-	< 0.010	< 0.000050	0.0278	148	0.00659	0.0169	2.78	168	< 0.000010	3.31	0.235	0.000028	< 0.00010	< 0.00030	0.00779	< 0.0010
EV EC1	EV EC1 WS 2022-03-28 N-SRF 1	2022-03-28	-	-	-	-	197	-	-	3.43	-	-	4.14	-	-	-	-	-	-
EV EC1	EV EC1 WS 2022-03 WEK14 N	2022-03-30	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-04-04_N-SRF	2022-04-04	-	< 0.010	< 0.000050	0.047	155	0.0142	0.0193	3.69	83.6	< 0.000010	5.79	0.29	0.000029	< 0.00010	< 0.00030	0.0095	0.0018
EV_EC1	EV_EC1_WS_2022-04_WEK15_N	2022-04-06	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-04-10_N-SRF	2022-04-10	-	-	-	-	152	-	-	2.63	-	-	3.29	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-04-11_N-SRF	2022-04-11	-	< 0.010	< 0.000050	0.0316	147	0.00356	0.0127	2.9	170	< 0.000010	3.43	0.268	0.000021	< 0.00010	< 0.00030	0.00781	< 0.0010
EV_EC1	EV_EC1_WS_2022-04-11_N-SRF_1	2022-04-11	-		-	i	154	-	-	2.86	-	-	3.71	-	-		-		-
EV_EC1	EV_EC1_WS_2022-04-12_N-SRF	2022-04-12	-	-	-	-	135	-	-	2.38	-	-	2.9	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-04-13_N-SRF	2022-04-13	-	-	-	-	155	-	-	2.83	-	-	3.37	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-Q2_N	2022-04-13	-	0.016	< 0.000050	0.0281	141	0.00183	0.0104	2.71	172	< 0.000010	3.36	0.238	0.000019	< 0.00010	< 0.00030	0.00766	< 0.0010
EV_EC1 EV EC1	EV_MC6_WS_2022-Q2_N EV_MC8_WS_2022-Q2_N	2022-04-13	5.7	< 0.010 < 0.010	< 0.000100 < 0.000050	0.0265 < 0.0010	142 < 0.0050	0.00183	0.0105 < 0.00050	2.79 < 0.050	163 < 0.050	< 0.000020	3.46 < 0.050	0.226 < 0.00020	< 0.000020 < 0.000010	< 0.00010 < 0.00010	< 0.00030 < 0.00030	0.00799	< 0.0010 < 0.0010
EV_EC1	EV_MC8_WS_2022-Q2_N EV_EC1_WS_2022-04-14_N-SRF	2022-04-13	-	< 0.010	< 0.000050	< 0.0010	151	< 0.00010	< 0.00050	2.49	< 0.050	< 0.000010	3.04	< 0.00020	< 0.000010	< 0.00010	< 0.00030	< 0.000010	< 0.0010
EV_EC1	EV EC1 WS 2022-04-15 N-SRF	2022-04-14	+ :-	-	-		163	-		2.49			3.47	-		-		-	
EV EC1	EV EC1 WS 2022-04-15_N-SRF	2022-04-15	-			-	159	-	-	2.65	-		3.24	-	-	-	-	-	
EV_EC1	EV EC1 WS 2022-04-17 N-SRF	2022-04-10	1		-		155	-		2.6	-	- :	3.09	-	-		-		
EV EC1	EV EC1 WS 2022-04-18 N-SRF	2022-04-18	-	< 0.010	< 0.000050	0.0269	143	0.00094	0.0081	2.84	176	< 0.000010	3.38	0.226	0.000018	< 0.00010	< 0.00030	0.0081	< 0.0010
EV EC1	EV EC1 WS 2022-04-18 N-SRF 1	2022-04-18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV EC1	EV EC1 WS 2022-04-19 N-SRF	2022-04-19	-	-	-	-	148	-	-	2.48	-	-	3.22	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-04-20_N-SRF	2022-04-20	-	-	-	-	151	-	-	2.57	-	-	3.09	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-04_WEK17_N	2022-04-20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-04-21_N-SRF	2022-04-21	-		-		155	-	-	2.45	-	-	3.05	-	-		-		-
EV_EC1	EV_EC1_WS_2022-04-22_N-SRF	2022-04-22	-		-	-	161	-	-	2.82	-	-	3.43	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-04-23_N-SRF	2022-04-23	-	-	-	-	169	-	-	2.69	-	-	3.3	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-04-24_N-SRF	2022-04-24	-	-	-	-	160	-	-	2.57	-	I	3.13	-	-	-		-	
EV_EC1	EV_EC1_WS_2022-04-25_N-SRF	2022-04-25	-	< 0.010	< 0.000050	0.0266	149	0.00055	0.00655	2.83	186	< 0.000010	3.18	0.229	0.000012	< 0.00010	< 0.00030	0.00844	0.0012
EV_EC1 EV EC1	EV_EC1_WS_2022-04-25_N-SRF_1 EV_EC1_WS_2022-04-26_N-SRF	2022-04-25 2022-04-26		- :	-	- :	149	-		2.53	-	- :	3.4	-	-	- :		- :	-
EV_EC1	EV_EC1_WS_2022-04-26_N-SRF EV_EC1_WS_2022-04-27_N-SRF	2022-04-26	Η.	- :	-		151		-	2.53	-		3.4	-	-				
EV_EC1	EV_EC1_WS_2022-04-27_N-SRF EV_EC1_WS_2022-04_WEK18_N	2022-04-27	+		-	-	151		-	2.43	-		3.2	-	-		-	-	-
EV_EC1	EV EC1 WS 2022-04-WER16 N	2022-04-27	H	-	-		150	-		2.65	-		3.37	-	-			-	
EV_EC1	EV EC1 WS 2022-04-29 N-SRF	2022-04-29	H	-	1		150			2.67		1 -	3.37	-	-	-	-		-
EV EC1	EV EC1 WS 2022-04-30 N-SRF	2022-04-30	-	-	-	-	153	-	-	2.54	-		2.95	-	-	-	-	-	-
EV_EC1	EV EC1 WS 2022-05-01 N-SRF	2022-05-01	-	-	-	-	156	-	-	2.68	-		3.02	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-05-02_N-SRF	2022-05-02	-	< 0.010	< 0.000050	0.0259	143	0.00042	0.00544	2.81	170	< 0.000010	3.31	0.205	0.000013	< 0.00010	< 0.00030	0.00795	< 0.0010
EV_EC1	EV_EC1_WS_2022-05-02_N-SRF_1	2022-05-02	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-05-03_N-SRF	2022-05-03	-	-	-	-	150	-	-	2.51	-	-	3.19	-	-	-	-	-	
_			-		1				-					1	1				

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

^d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

									Dissolve	d Metals						
				E								_		E		
			sseup.	E E	ntimony	enic	in.	yllium	muth	uo.			cium	omiur	oalt	Copper
Sample	Sample	Sample Date	Ē		l F	Ar	Bar	l ä	l si	Bor		ğ C	Ca	ੂ ਤੋਂ ਤੋਂ	5	8
Location	ID	(mm/dd/yyyy) mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	m	g/L	mg/L	mg/L	mg/L	mg/L
	•			i je							_	ē				, i
				Acute							Acute	Chro				Acute
C WQG FWAL			n/a	0.020-0.10 ^a 0.005-0.05 ^a	n/a	na	na	na	n/a	n/a	0.00004-0.0028 ^a	0.00002-0.00173 ^a	n/a	n/a	n/a	BLMe
Ikview Operation																
EV_EC1	EV_EC1_WS_2022-05-04_N-SRF	2022-05-04		-	-	-	-	-				-	212	-		-
EV_EC1	EV_EC1_WS_2022-05-MON_N	2022-05-04		< 0.0010	0.00021	0.00025	0.0455	< 0.020	< 0.000050	0.013	< 0.	.0050	215	0.00018	< 0.10	< 0.00020
EV_EC1	EV_EC1_WS_2022-05-05_N-SRF	2022-05-05		-			-	-		-			212		-	-
EV_EC1	EV_EC1_WS_2022-05-05_N	2022-05-05		0.0014	0.00022	0.00022	0.0422	< 0.020	< 0.000050	0.014	< 0.	.0050	232	0.00019	< 0.10	< 0.00020
EV_EC1	EV_EC1_WS_2022-05-06_N-SRF	2022-05-06		-	-	-	-	-	-	-		-	206		- 0.40	-
EV_EC1	EV_EC1_WS_2022-05-06_N	2022-05-06		0.001	0.00022	0.00021	0.04	< 0.020	< 0.000050	0.011		.0050	224	0.00017	< 0.10	< 0.00020
EV_EC1	EV_EC1_WS_2022-05-07_N-SRF	2022-05-07		-			- 0.0446	- 0.000	- 0.000050	- 0.040		-	218	- 0.00040		-
EV_EC1 EV EC1	EV_EC1_WS_2022-05-07_N EV_EC1_WS_2022-05-08_N-SRF	2022-05-07		< 0.0010	0.00019	0.00026	0.0441	< 0.020	< 0.000050	0.013	< 0.	.0050	227 225	0.00016	< 0.10	< 0.00020
		2022-05-08			0.00019	0.00026	0.0447	< 0.020	< 0.000050	- 0.040	-	-	225	- 0.00044		
EV_EC1	EV_EC1_WS_2022-05-08_N	2022-05-08		< 0.0010						0.012		.0050		0.00014	< 0.10	< 0.00020
EV_EC1 EV EC1	EV_EC1_WS_2022-05-09_N	2022-05-09		< 0.0010	0.00019 0.00021	0.00023	0.0417	< 0.020	< 0.000050	0.012		.0050	214	0.00015	< 0.10	< 0.00020
	EV_EC1_WS_2022-05-09_N-SRF			0.0058		0.00027	0.0442	< 0.020	< 0.000050	0.014		00093		0.00018	< 0.10	< 0.00020
EV_EC1	EV_EC1_WS_2022-05-10_N-SRF	2022-05-10		-	-	-	-	-		-		-	214	-	-	-
EV_EC1	EV EC1_WS_2022-05_WEK20_N	2022-05-10		< 0.0010	0.0002	0.00024	0.0422	< 0.020	< 0.000050	0.012		.0050	205	0.00016	< 0.10	< 0.00020
EV_EC1	EV_EC1_WS_2022-05-11_N-SRF	2022-05-11		-	-	-	-	-	-	-		-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-05-12_N-SRF	2022-05-12		-	-	-	-	-	-	-		-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-05-13_N-SRF	2022-05-13		-	-	-	-	-	-	-		-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-05-14_N-SRF	2022-05-14		-	-	-	-	-	-	-			-	-	-	-
EV_EC1	EV_EC1_WS_2022-05-15_N-SRF	2022-05-15		-			-	-		-		-	-		-	-
EV_EC1	EV_EC1_WS_2022-05-16_N-SRF	2022-05-16		0.0013	0.00021	0.00024	0.0487	< 0.020	< 0.000050	0.014	0.00	00067	232	0.00021	< 0.10	< 0.00020
EV_EC1	EV_EC1_WS_2022-05-16_N-SRF_1	2022-05-16		-	-	-	-	-	-	-		-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-05-17_N-SRF	2022-05-17		-	-	-	-	-	-	-			-	-	-	-
EV_EC1	EV_EC1_WS_2022-05-18_N-SRF	2022-05-18		-	-	-	-	-	-			-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-05_WEK21_N	2022-05-18		-	-	-	-	-	-	-		-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-05-19_N-SRF	2022-05-19		-	-	-	-	-	-	-		-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-05-20_N-SRF	2022-05-20		-	-	-	-	-	-	-			-	-	-	-
EV_EC1	EV_EC1_WS_2022-02-21_N-SRF	2022-05-21		-	-	-	-	-	-	-		-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-05-22_N-SRF	2022-05-22		-	-		-	-	-	-		-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-05-23_N-SRF	2022-05-23		0.0025	0.00021	0.00023	0.0459	< 0.020	< 0.000050	0.013		00111	228	0.00019	< 0.10	< 0.00020
EV_EC1	EV_EC1_WS_2022-05-24_N-SRF	2022-05-24		-	-	-	-	-	-	-		-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-05-25_N-SRF	2022-05-25		-	-	-	-	-	-	-		-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-05_WEK22_N	2022-05-25		-	-	-	-	-	-	-		-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-05-26_N-SRF	2022-05-26		-	-	-	-	-	-	-		-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-05-27_N-SRF	2022-05-27		-	-	-	-	-	-	-		-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-05-28_N-SRF	2022-05-28		-	-	-	-	-	-	-		-	-	-	-	-
EV_EC1 EV EC1	EV_EC1_WS_2022-05-29_N-SRF	2022-05-29			0.00021	0.00024	0.0470	- 0 000	- 0 000050	0.010			225	0.00010		L
EV_EC1	EV_EC1_WS_2022-05-30_N-SRF	2022-05-30		0.0013		0.00024	0.0478	< 0.020	< 0.000050	0.012		00058	225	0.00016	< 0.10	< 0.00020
	EV_EC1_WS_2022-05-30_N-SRF_1	2022-05-30	1 -	-	-	-	-	-	-	-		-	-	-	-	-
EV_EC1 EV_EC1	EV_EC1_WS_2022-05-31_N-SRF EV_EC1_WS_2022-05_WEK23_N	2022-05-31	1 -	-	-	-	-	-	-	-		•	<u> </u>	-	-	-
EV_EC1		2022-05-31	ļ -	-	-	-	-	-	-	-		-	-	-	-	-
EV_EC1	EV_EC1_WS_ 2022-06-01_N-SRF EV_EC1_WS_2022-06-02_N-SRF	2022-06-01	+ -	-	0.0000	0.0002	0.0392	< 0.020	- 0.000050	0.014		-	200	0.00011	- 0.10	-
EV_EC1		2022-06-02		0.0017	0.0002				< 0.000050	0.011		.0050	202	0.00014	< 0.10	< 0.00020
EV_EC1	EV_EC1_WS_2022-06-03_N-SRF	2022-06-03		-	 	-	-	-	-	-		-	-	-	-	-
	EV_EC1_WS_2022-06-04_N-SRF	2022-06-04		-		-	-	-	-	-		-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-06-05_N-SRF	2022-06-05		-			0.0470	- 0.000	- 0.0000=0	0.040				- 0.00040	- 0.40	
EV_EC1	EV_EC1_WS_2022-06_MON_N	2022-06-06		< 0.0010	0.0002	0.00022	0.0476	< 0.020	< 0.000050	0.012		00066	225	0.00018	< 0.10	< 0.00020
EV_EC1	EV_EC1_WS_2022-06-06_N-SRF	2022-06-06	+ -	0.0383	0.00022	0.00026	0.0494	< 0.020	< 0.000050	0.013		00435	232	0.00027	0.0001	0.00056
EV_EC1 EV EC1	EV_EC1_WS_2022-06-07_N-SRF	2022-06-07	+ -	-		-	-	-	-	-		•	<u> </u>	-	-	-
	EV_EC1_WS_2022-06-08_N-SRF	2022-06-08			_	0.00025	0.0481	- 0.020	- 0.000050	0.042		-	220	0.00013		L
EV_EC1	EV_EC1_WS_2022-06-09_N	2022-06-09	1 -	0.001	0.00023	0.00025	0.0481	< 0.020	< 0.000050	0.013	< 0.	.0050	229	0.00017	< 0.10	< 0.00020

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

											Dissolv	ed Metals							
Sample	Sample	Sample Date	Hardness	noıl	Lead	Lithium	Magnesium	Manganese	Nickel	Potassium	Selenium	Silver	Sodium	Strontium	Thallium	Ē.	Titanium	Uranium	Zinc
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
				cute															
BC WQG FWAL			n/a	0.35	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Elkview Operation													-						
EV_EC1	EV_EC1_WS_2022-05-04_N-SRF	2022-05-04	-	-	-	-	157	-	-	2.71	-	-	3.26	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-05-MON_N	2022-05-04	-	< 0.010	< 0.000050	0.0263	143	0.00041	0.00529	2.88	191	< 0.000010	3.34	0.219	0.000013	< 0.00010	< 0.00030	0.00743	< 0.0010
EV_EC1	EV_EC1_WS_2022-05-05_N-SRF	2022-05-05	-	-	-	-	160	-	-	2.71	-	-	3.32	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-05-05_N	2022-05-05	-	< 0.010	< 0.000050	0.027	142	0.00039	0.00503	2.68	185	< 0.000010	3.18	0.222	0.000011	< 0.00010	< 0.00030	0.00747	< 0.0010
EV_EC1	EV_EC1_WS_2022-05-06_N-SRF	2022-05-06	-	-	-	-	147	-	-	2.42	-	-	3	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-05-06_N	2022-05-06	-	< 0.010	< 0.000050	0.0225	139	0.00043	0.00472	2.46	187	< 0.000010	2.89	0.214	< 0.000010	< 0.00010	< 0.00030	0.00747	< 0.0010
EV_EC1 EV EC1	EV_EC1_WS_2022-05-07_N-SRF EV_EC1_WS_2022-05-07_N	2022-05-07	-		- 0.000050	- 0.0000	157 144	- 0.00045	0.00491	2.4	189	-	3.18 3.22	-	- 0.000044	< 0.00010	- 0.00000	0.00713	
EV_EC1	EV_EC1_WS_2022-05-07_N EV_EC1_WS_2022-05-08_N-SRF	2022-05-07	<u> </u>	< 0.010	< 0.000050	0.0266	144	0.00045	0.00491	2.68	189	< 0.000010	3.22	0.21	0.000011	< 0.00010	< 0.00030	0.00713	< 0.0010
EV_EC1	EV_ECT_WS_2022-05-06_N-SRF EV_ECT_WS_2022-05-08_N	2022-05-08	<u> </u>	< 0.010	< 0.000050	0.0253	147	0.00038	0.00466	2.42	185	< 0.000010	3.12	0.214	0.000011	< 0.00010	< 0.00030	0.00732	< 0.0010
EV_EC1	EV EC1 WS 2022-05-08 N	2022-05-09	+-	< 0.010	< 0.000050	0.0253	140	0.00036	0.00486	2.63	178	< 0.000010	3.13	0.214	< 0.000011	< 0.00010	< 0.00030	0.00732	< 0.0010
EV EC1	EV EC1 WS 2022-03-09 N-SRF	2022-05-09	 -	< 0.010	< 0.000050	0.0241	146	0.00032	0.00433	2.68	174	< 0.000010	3.18	0.211	0.000010	< 0.00010	< 0.00030	0.00717	0.0157
EV EC1	EV EC1 WS 2022-05-10 N-SRF	2022-05-10	 	- 0.010	- 0.000000	0.027	150	0.00040	- 0.0040	2.6		- 0.000010	3.12	0.210	0.000012	- 0.00010	- 0.00000	- 0.00707	0.0107
EV EC1	EV EC1 WS 2022-05 WEK20 N	2022-05-10	 .	< 0.010	< 0.000050	0.0259	131	0.00031	0.00433	2.52	173	< 0.000010	3.09	0.212	0.000011	< 0.00010	< 0.00030	0.00715	< 0.0010
EV EC1	EV EC1 WS 2022-05-11 N-SRF	2022-05-11	-	-	-	-	-	-	-	-	-	- 0.000010	-		-	-	-	-	
EV EC1	EV EC1 WS 2022-05-12 N-SRF	2022-05-12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV EC1	EV EC1 WS 2022-05-13 N-SRF	2022-05-13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV EC1	EV EC1 WS 2022-05-14 N-SRF	2022-05-14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV EC1	EV EC1 WS 2022-05-15 N-SRF	2022-05-15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-05-16_N-SRF	2022-05-16	-	< 0.010	< 0.000050	0.0278	150	0.00044	0.00441	2.95	191	< 0.000010	3.37	0.232	0.00001	< 0.00010	< 0.00030	0.00765	0.0032
EV_EC1	EV_EC1_WS_2022-05-16_N-SRF_1	2022-05-16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-05-17_N-SRF	2022-05-17	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
EV_EC1	EV_EC1_WS_2022-05-18_N-SRF	2022-05-18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-05_WEK21_N	2022-05-18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-05-19_N-SRF	2022-05-19	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-05-20_N-SRF	2022-05-20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-02-21_N-SRF	2022-05-21	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-05-22_N-SRF	2022-05-22	-			- 0.0050	-	-	- 0.00005	2.68	-	- 0.000040	-	-	- 0.000040	- 0.00040	- 0 00000	- 0.00770	
EV_EC1 EV EC1	EV_EC1_WS_2022-05-23_N-SRF EV_EC1_WS_2022-05-24_N-SRF	2022-05-23	-	< 0.010	< 0.000050	0.0253	149	0.0004	0.00365		180	< 0.000010	3.16	0.218	< 0.000010	< 0.00010	< 0.00030	0.00773	< 0.0010
EV_EC1	EV EC1 WS 2022-05-24 N-SRF	2022-05-25	<u> </u>	-	-	-	-	-		-	-	-		-	-	-	-	-	
EV_EC1	EV EC1 WS 2022-05 WEK22 N	2022-05-25	<u> </u>	- :	- :	- :	- :	- :	- :	- :	- :	- : -		- :	- 1		-	-:-	- : -
EV_EC1	EV EC1 WS 2022-05-26 N-SRF	2022-05-26	1	-	-	-	-	-	-	-	-			-	-	-	-	-	-
EV EC1	EV EC1 WS 2022-05-27 N-SRF	2022-05-27	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-
EV EC1	EV EC1 WS 2022-05-28 N-SRF	2022-05-28	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-05-29_N-SRF	2022-05-29	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-05-30_N-SRF	2022-05-30	-	< 0.010	< 0.000050	0.0256	154	0.00028	0.00334	2.72	187	0.000013	3.23	0.219	0.000011	< 0.00010	< 0.00030	0.00815	< 0.0010
EV_EC1	EV_EC1_WS_2022-05-30_N-SRF_1	2022-05-30	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-05-31_N-SRF	2022-05-31	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-05_WEK23_N	2022-05-31	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
EV_EC1	EV_EC1_WS_ 2022-06-01_N-SRF	2022-06-01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-06-02_N-SRF	2022-06-02	-	< 0.010	< 0.000050	0.0234	108	0.00026	0.00252	2.25	144	< 0.000010	2.56	0.203	< 0.000010	< 0.00010	< 0.00030	0.00682	< 0.0010
EV_EC1	EV_EC1_WS_2022-06-03_N-SRF	2022-06-03	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-06-04_N-SRF	2022-06-04	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
EV_EC1	EV_EC1_WS_2022-06-05_N-SRF	2022-06-05	ļ -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-06_MON_N	2022-06-06	-	< 0.010	< 0.000050	0.0245	148	0.00025	0.00306	2.53	167	< 0.000010	3	0.209	0.00001	< 0.00010	< 0.00030	0.00708	< 0.0010
EV_EC1 EV EC1	EV_EC1_WS_2022-06-06_N-SRF EV_EC1_WS_2022-06-07_N-SRF	2022-06-06	-	0.021	0.00032	0.026	150	0.00158	0.00333	2.65	169	< 0.000010	3.4	0.218	0.000012	< 0.00010	0.00075	0.00838	0.0026
EV_EC1	EV_EC1_WS_2022-06-07_N-SRF EV_EC1_WS_2022-06-08_N-SRF	2022-06-07 2022-06-08	H -	-	-	-		-	-		-			-			-		
EV_ECT	EV_EC1_WS_2022-06-06_N-SRF EV_EC1_WS_2022-06-09_N	2022-06-09	H÷.	< 0.010	< 0.000050	0.0298	148	0.00028	0.00303	2.87	180	< 0.000010	3.4	0.231	0.00001	< 0.00010	< 0.00030	0.00839	0.0012
		2022-00=03		10.010	. 0.000000	0.0230	1 170	0.00020	1 0.00000	1 2.07	1 100	0.000010	J. T	0.201	0.00001	- 0.00010	- 0.00000	0.00003	0.0012

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

^d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

									Dissolve	ed Metals					
Sample	Sample	Sample Date	Hardness	Aluminum	Antimony	Arsenic	Barium	Beryllium	Bismuth	Boron	Cadmium	Calcium	Chromium	Cobalt	Copper
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
				Acute		•	•				Acute				Acute
BC WQG FWAL			n/a	0.020-0.10 ^a 0.005-0.05 ^a	n/a	na	na	na	n/a	n/a	0.00004-0.0028 ^a 0.00002-0.00173	a n/a	n/a	n/a	BLMe
Elkview Operation	51 504 WO 0000 00 00 H 005														
EV_EC1	EV_EC1_WS_2022-06-09_N-SRF	2022-06-09		-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-06-10_N-SRF	2022-06-10	-	-	-	-	-	-		-	-	-	-		-
EV_EC1	EV_EC1_WS_2022-06-10_N	2022-06-10	-	< 0.0010	0.00021	0.00023	0.0504	< 0.020	< 0.000050	0.012	< 0.0050	224		< 0.10	< 0.00020
EV_EC1	EV_EC1_WS_2022-06-11_N	2022-06-11	-	< 0.0010	0.00021	0.00021	0.0514	< 0.020	< 0.000050	0.012	0.0000052	226	0.00018	< 0.10	< 0.00020
EV_EC1	EV_EC1_WS_2022-06-11_N-SRF_1	2022-06-11	-	-						-	-	-		-	-
EV_EC1	EV_EC1_WS_2022-06-12_N	2022-06-12	-	< 0.0010	0.00021	0.00029	0.0567	< 0.020	< 0.000050	0.013	0.000086	229	0.00024	< 0.10	< 0.00020
EV_EC1	EV_EC1_WS_2022-06-12_N-SRF_1	2022-06-12	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-06-13_N-SRF	2022-06-13	-	0.0034	0.00019	0.00024	0.0501	< 0.020	< 0.000050	0.012	0.000058	222		< 0.10	< 0.00020
EV_EC1	EV_EC1_WS_2022-06-14_N	2022-06-14	-	0.0049	0.00021	0.00026	0.0562	< 0.020	< 0.000050	0.01	0.0000178	202	0.00016	< 0.10	0.00024
EV_EC1	EV_EC1_WS_2022-06-15_N	2022-06-15	-	< 0.0010	0.00021	0.00031	0.0541	< 0.020	< 0.000050	0.012	0.0000137	218	0.00016	< 0.10	< 0.00020
EV_EC1	EV_EC1_WS_2022-06_WEK25_N	2022-06-15	-	-	-		-	-		-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-06-16_N-SRF	2022-06-16	-	0.001	0.0002	0.00025	0.0558	< 0.020	< 0.000050	0.011	0.0000077	214		< 0.10	< 0.00020
EV_EC1	EV_EC1_WS_2022-06-17_N-SRF	2022-06-17	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-06-18_N-SRF	2022-06-18	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-06-19_N-SRF	2022-06-19	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-06-20_N-SRF	2022-06-20	-	0.009	0.00021	0.00024	0.0549	< 0.020	< 0.000050	0.011	0.000096	223	0.00018	< 0.10	< 0.00020
EV_EC1	EV_EC1_WS_ 2022-06-22_N-SRF	2022-06-22	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-06-21_N-SRF	2022-06-22	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-06_WEK26_N	2022-06-23	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-06-23_N-SRF	2022-06-23	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-06-24_N-SRF	2022-06-24	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-06-25_N-SRF	2022-06-25	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-06-26_N-SRF	2022-06-26	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-06-27_N-SRF	2022-06-27	-	< 0.0010	0.00017	0.00023	0.0501	< 0.020	< 0.000050	0.011	0.000059	224	0.00018	< 0.10	< 0.00020
EV_EC1	EV_EC1_WS_2022-06-28_N-SRF	2022-06-28	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_ 2022-06-29_N-SRF	2022-06-29	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-06_WEK27_N	2022-06-29	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-06-30_N-SRF	2022-06-30	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-07-01_N-SRF	2022-07-01	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-07-02_N-SRF	2022-07-02	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-07-03_N-SRF	2022-07-03	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-07-04_N-SRF	2022-07-04	-	< 0.0010	0.00017	0.00026	0.0543	< 0.020	< 0.000050	0.012	0.0000071	230	0.0002	< 0.10	< 0.00020
EV_EC1	EV_EC1_WS2022-07-05_N-SRF	2022-07-05	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-Q3_N	2022-07-06	-	< 0.0010	0.0002	0.00025	0.0507	< 0.020	< 0.000050	0.011	< 0.0050	211		< 0.10	< 0.00020
EV_EC1	EV_MC5_WS_2022-Q3_N	2022-07-06	-	< 0.0010	0.0002	0.00026	0.0506	< 0.020	< 0.000050	0.011	0.0000051	213		< 0.10	< 0.00020
EV_EC1	EV_MC7_WS_2022-Q3_N	2022-07-06	-	< 0.0010	< 0.00010	< 0.00010	< 0.00010	< 0.020	< 0.000050	< 0.010	< 0.0050	< 0.05		< 0.10	< 0.00020
EV_EC1	EV_EC1_WS2022-07-06_N-SRF	2022-07-06	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS2022-07-07_N-SRF	2022-07-07	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS2022-07-08_N-SRF	2022-07-08	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-07-09_N-SRF	2022-07-09	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-07-10_N-SRF	2022-07-10	-	-	-		-	-	-	-	-	-		-	-
EV_EC1	EV_EC1_WS_2022-07-11_N-SRF	2022-07-11	-	< 0.0010	0.00021	0.00025	0.0506	< 0.020	< 0.000050	0.011	0.000058	216		< 0.10	0.00031
EV_EC1	EV_EC1_WS_2022-07-12_N-SRF	2022-07-12	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-07-13_N-SRF	2022-07-13	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-07_WEK29_N	2022-07-13	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-07-14_N-SRF	2022-07-14	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-07-15_N-SRF	2022-07-15	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-07-16_N-SRF	2022-07-16	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-07-17_N-SRF	2022-07-17	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-07-18_N-SRF	2022-07-18	-	0.0025	0.0002	0.00028	0.0529	< 0.020	< 0.000050	0.012	0.0000092	211	0.0002	< 0.10	< 0.00020

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

^d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

											Dissolv	ed Metals							
Sample	Sample	Sample Date	Hardness	lon	Lead	Lithium	Magnesium	Manganese	Nickel	Potassium	Selenium	Silver	Sodium	Strontium	Thallium	lT.	Titanium	Uranium	Zinc
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
				Acute															
BC WQG FWAL			n/a	0.35	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Elkview Operation	51/ 50/ WO 0000 00 00 H 005		_											1	1				
EV_EC1 EV EC1	EV_EC1_WS_2022-06-09_N-SRF EV_EC1_WS_2022-06-10_N-SRF	2022-06-09	-	-	-	-	-	- :	- :	-	-	-		-	-		- :		- : -
EV_EC1	EV ECT WS 2022-06-10 N-SRF EV ECT WS 2022-06-10 N	2022-06-10	-	< 0.010	< 0.000050	0.0259	147	0.00026	0.00296	2.72	179	< 0.000010	3.13	0.213	< 0.000010	< 0.00010	< 0.00030	0.0074	< 0.0010
EV_EC1	EV EC1 WS 2022-06-10 N	2022-06-10	<u> </u>	< 0.010	< 0.000050	0.0259	150	0.00026	0.00296	2.72	188	< 0.000010	3.13	0.215	< 0.000010	< 0.00010	< 0.00030	0.0074	< 0.0010
EV EC1	EV EC1 WS 2022-06-11 N-SRF 1	2022-06-11	-	< 0.010	< 0.000050	0.026	150	0.00027	0.00299	2.1	100	- 0.000010	3.20	0.215	< 0.000010	< 0.00010	- 0.00030	0.00744	- 0.0010
EV EC1	EV EC1 WS 2022-06-12 N	2022-06-11	-	< 0.010	< 0.000050	0.0266	164	0.00036	0.00329	3.12	226	< 0.000010	3.54	0.232	< 0.000010	< 0.00010	< 0.00030	0.00761	< 0.0010
EV EC1	EV EC1 WS 2022-06-12 N-SRF 1	2022-06-12	-	- 0.010	-	-	-	-	-	-	-	-	-	- 0.202	-	-	-	-	-
EV EC1	EV EC1 WS 2022-06-13 N-SRF	2022-06-13	-	< 0.010	< 0.000050	0.0252	143	0.00036	0.00277	2.77	172	< 0.000010	3.02	0.206	< 0.000010	< 0.00010	< 0.00030	0.00731	0.0056
EV_EC1	EV_EC1_WS_2022-06-14_N	2022-06-14	-	< 0.010	< 0.000050	0.0228	124	0.00047	0.00253	2.5	149	< 0.000010	2.88	0.201	< 0.000010	< 0.00010	< 0.00030	0.00684	< 0.0010
EV_EC1	EV_EC1_WS_2022-06-15_N	2022-06-15	-	< 0.010	< 0.000050	0.0225	137	0.00032	0.0027	2.56	165	< 0.000010	2.96	0.204	< 0.000010	< 0.00010	< 0.00030	0.00691	< 0.0010
EV_EC1	EV_EC1_WS_2022-06_WEK25_N	2022-06-15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-06-16_N-SRF	2022-06-16	-	< 0.010	< 0.000050	0.023	136	0.00034	0.00258	2.67	170	< 0.000010	3.18	0.208	< 0.000010	< 0.00010	< 0.00030	0.00734	< 0.0010
EV_EC1	EV_EC1_WS_2022-06-17_N-SRF	2022-06-17	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-06-18_N-SRF	2022-06-18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-06-19_N-SRF	2022-06-19	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-06-20_N-SRF	2022-06-20	-	< 0.010	0.000417	0.0232	142	0.00045	0.00242	2.52	176	< 0.000010	2.94	0.202	< 0.000010	< 0.00010	< 0.00060	0.0078	0.0053
EV_EC1	EV_EC1_WS_ 2022-06-22_N-SRF	2022-06-22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-06-21_N-SRF	2022-06-22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1 EV EC1	EV_EC1_WS_2022-06_WEK26_N EV_EC1_WS_2022-06-23_N-SRF	2022-06-23	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_ECT_WS_2022-06-23_N-SRF EV_ECT_WS_2022-06-24_N-SRF	2022-06-23 2022-06-24	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-06-24_N-SRF	2022-06-24	-	-	-			-			-	-		-	-	-	-		-
EV EC1	EV EC1 WS 2022-06-26 N-SRF	2022-06-26	H	-				- :	-	-		-	-	-	-	-	- :	-	
EV EC1	EV EC1 WS 2022-06-27 N-SRF	2022-06-27	-	< 0.010	< 0.000050	0.0248	150	0.00023	0.00215	2.6	168	< 0.000010	3.21	0.217	< 0.000010	< 0.00010	< 0.00030	0.0074	< 0.0010
EV EC1	EV EC1 WS 2022-06-28 N-SRF	2022-06-28	-	- 0.010	-	-	-	-	-	-	-	-	-	-	-	- 0.00010	-	-	- 0.0010
EV EC1	EV EC1 WS 2022-06-29 N-SRF	2022-06-29	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV EC1	EV EC1 WS 2022-06 WEK27 N	2022-06-29	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV EC1	EV EC1 WS 2022-06-30 N-SRF	2022-06-30	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV EC1	EV EC1 WS 2022-07-01 N-SRF	2022-07-01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-07-02_N-SRF	2022-07-02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-07-03_N-SRF	2022-07-03	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-07-04_N-SRF	2022-07-04	-	< 0.010	< 0.000050	0.0242	152	0.00022	0.00222	2.71	188	< 0.000010	3.34	0.216	< 0.000010	< 0.00010	< 0.00030	0.00867	< 0.0010
EV_EC1	EV_EC1_WS2022-07-05_N-SRF	2022-07-05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-Q3_N	2022-07-06	-	< 0.010	< 0.000050	0.0258	143	0.00019	0.00205	2.7	182	< 0.000010	3.22	0.207	< 0.000010	< 0.00010	< 0.00030	0.00748	< 0.0010
EV_EC1	EV_MC5_WS_2022-Q3_N	2022-07-06	-	< 0.010	< 0.000050	0.024	143	0.00016	0.00205	2.65	178	< 0.000010	3.25	0.212	< 0.000010	< 0.00010	< 0.00030	0.0072	< 0.0010
EV_EC1	EV_MC7_WS_2022-Q3_N	2022-07-06	-	< 0.010	< 0.000050	< 0.0010	< 0.0050	< 0.00010	< 0.00050	< 0.050	< 0.050	< 0.000010	< 0.050	< 0.00020	< 0.000010	< 0.00010	< 0.00030	< 0.000010	< 0.0010
EV_EC1	EV_EC1_WS2022-07-06_N-SRF	2022-07-06	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1 EV EC1	EV_EC1_WS2022-07-07_N-SRF EV_EC1_WS2022-07-08_N-SRF	2022-07-07	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS2022-07-08_N-SRF EV_EC1_WS_2022-07-09_N-SRF	2022-07-08	-	-	-	-	-	-	-	-	-		-	-		-	-	-	-
EV_EC1	EV_ECT_WS_2022-07-09_N-SRF EV_ECT_WS_2022-07-10_N-SRF	2022-07-09	H	-	-					-		- :	•	-		-	-	-	-
EV_EC1	EV_EC1_WS_2022-07-10_N-SRF	2022-07-10	H	< 0.010	< 0.000050	0.0253	143	0.00029	0.00209	2.71	168	< 0.000010	3.1	0.203	< 0.000010	< 0.00010	< 0.00030	0.00759	0.0027
EV_EC1	EV EC1 WS 2022-07-11 N-SRF	2022-07-11	H÷.	- 0.010	- 0.000050	0.0255	- 143	0.00029	0.00209	2.71	100	- 0.000010	3.1	0.203	- 0.000010	- 0.00010	- 0.00030	0.00759	0.0027
EV EC1	EV EC1 WS 2022-07-12 N-SRF	2022-07-12	-	-	-				-	-			-	-	-	-	-	-	-
EV EC1	EV EC1 WS 2022-07 WEK29 N	2022-07-13	H	-	-			1 - 1	-	-	1 -		-	-	-	1 -		-	-
EV EC1	EV EC1 WS 2022-07-14 N-SRF	2022-07-14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV EC1	EV EC1 WS 2022-07-15 N-SRF	2022-07-15	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-
EV EC1	EV EC1 WS 2022-07-16 N-SRF	2022-07-16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-07-17_N-SRF	2022-07-17	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-07-18_N-SRF	2022-07-18	-	< 0.010	< 0.000050	0.0253	145	0.00029	0.0022	2.78	204	< 0.000010	3.12	0.214	< 0.000010	< 0.00010	< 0.00030	0.00789	0.001

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

^d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

									Dissolve	ed Metals					
			ardness	luminum	ntimony	rsenic	arium	eryllium	smuth	oron	admium	Salcium	hromium	obalt	Copper
Sample	Sample	Sample Date		₹	< _	₹	<u> </u>	ă.	<u> </u>	ă.	Ö		5	ŭ	
Location	ID	(mm/dd/yyyy	/) mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
				Acute							Acute				Acute Chronic
BC WQG FWAL			n/a	0.020-0.10 ^a 0.005-0.05 ^a	n/a	na	na	na	n/a	n/a	0.00004-0.0028 ^a 0.00002-0.00173 ^a	n/a	n/a	n/a	BLM ^e
Ikview Operation												_			
EV_EC1	EV_EC1_WS_2022-07-19_N-SRF	2022-07-19		-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-07-20_N-SRF	2022-07-20		-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-07-21_N-SRF	2022-07-21		-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-07-22_N-SRF	2022-07-22		-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-07-23_N-SRF	2022-07-23		-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-07-24_N-SRF	2022-07-24	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-07-25_N-SRF	2022-07-25		-	-	-	-	-	-	-	-	-	-	-	
EV_EC1	EV_EC1_WS_2022-07-26_N-SRF	2022-07-26	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_ 2022-07-27_N-SRF	2022-07-27	-	-	-	-	-	-	-	-	-	-	-	-	-
EV EC1	EV EC1 WS 2022-07-28 N-SRF	2022-07-28	-	_	-	-	-	-	-	-	_	-	-	-	T -
EV EC1	EV EC1 WS 2022-07-29 N-SRF	2022-07-29		_	-	-	-	-	-	-	-	-	-	-	<u> </u>
EV EC1	EV EC1 WS 2022-07-30 N-SRF	2022-07-30			-	-	-	-	-	-		-	-	-	
EV EC1	EV EC1 WS 2022-07-31 N-SRF	2022-07-31			-	-	-	-	-	-	_	-	-	-	T :
EV EC1	EV EC1 WS 2022-08-01 N-SRF	2022-08-01		< 0.0020	< 0.00020	0.00031	0.054	< 0.040	< 0.000100	< 0.020	< 0.0100	197	0.00023	< 0.20	< 0.00040
EV EC1	EV EC1 WS 2022-08-02 N-SRF	2022-08-02		- 0.0020	- 0.00020	-	-	-	-	- 0.020	- 0.0100		0.00020	- 0.20	- 0.00040
EV EC1	EV EC1 WS 2022-08-03 N-SRF	2022-08-03		-	-		-	-	-		-	+ :	-	-	-
EV EC1	EV EC1 WS 2022-08-04 N-SRF	2022-08-04		-	+ -		-	-	-	-	-	+ -	-		
EV EC1	EV_EC1_WS_2022-08-05_N-SRF	2022-08-05		-	+ :	-	-	-	-	-	-	+ -	-	-	-
EV_EC1	EV EC1 WS 2022-08-06 N-SRF	2022-08-06		-	+ -	-	-	-	-	-	-	+ -	-	-	-
EV_EC1	EV EC1 WS 2022-08-06 N-SRF	2022-08-07		-	+ :-		-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-08-07_N-SRF EV_EC1_WS_2022-08-08_N-SRF	2022-08-07		-						-	-				-
EV_EC1				-	0.00021	-	-	< 0.020	- 0.000050	- 0.040	-	192	- 0.00000	- 0.40	-
	EV_EC1_WS_2022-08_MON_N	2022-08-09		< 0.0010		0.00026	0.0482		< 0.000050	0.013	< 0.0050	192	0.00023	< 0.10	0.00024
EV_EC1	EV_EC1_WS_ 2022-08-09_N-SRF	2022-08-09		-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-08-10_N-SRF	2022-08-10		-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-08-11_N-SRF	2022-08-11		-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-08-12_N-SRF	2022-08-12		-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-08-13_N-SRF	2022-08-13		-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-08-14_N-SRF	2022-08-14		-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-08-15_N-SRF	2022-08-15		0.0012	0.00021	0.00023	0.0447	< 0.020	< 0.000050	0.012	0.000068	204	0.00018	< 0.10	< 0.00020
EV_EC1	EV_EC1_WS_2022-08-16_N-SRF	2022-08-16		-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_ 2022-08-17_N-SRF	2022-08-17		-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-08-18_N-SRF	2022-08-18		-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-08-19_N_SRF	2022-08-19		-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-08-20_N-SRF	2022-08-20	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-08-21_N-SRF	2022-08-21	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-08-22_N-SRF	2022-08-22	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-08-23_N-SRF	2022-08-23	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-08-24_N-SRF	2022-08-24	-	-	-	-	-	-	-	-	-	-	-	-	T -
EV EC1	EV EC1 WS 2022-08-25 N-SRF	2022-08-25		-	-	-	-	-	-	-	-	-	-	-	-
EV EC1	EV EC1 WS 2022-08-26 N-SRF	2022-08-26		_	-	-	-	-	-	-	_	-	-	-	<u> </u>
EV EC1	EV EC1 WS 2022-08-27 N-SRF	2022-08-27	1 -	-	-	-	-	-	-	-	-	-	-	-	
EV EC1	EV EC1 WS 2022-08-28 N-SRF	2022-08-28	1 -		-	-	-	-	-	-	-	+ -	-	-	+ :
EV EC1	EV EC1 WS 2022-08-29 N-SRF	2022-08-29		< 0.0010	0.00019	0.00024	0.0456	< 0.020	< 0.000050	0.014	0.000052	225	0.0002	< 0.10	< 0.00020
EV EC1	EV EC1 WS 2022-08-30 N SRF	2022-08-30		< 0.0010			- 0.0430	- 0.020	- 0.000000	0.014	0.0000052	+		- 0.10	< 0.00020
EV EC1	EV EC1 WS 2022-08-31 N SRF	2022-08-31	+ -		+ -	-	-	-	-	-		+ -	-	-	
EV EC1	EV EC1 WS 2022-09-01 N-SRF	2022-09-01	+ :	-	+ -	-	-	-	-		-	+ -	-	-	
EV_EC1	EV EC1 WS 2022-09-02 N-SRF	2022-09-02		-	+ :-	-:-	-	-	-	- :	-	+ -	-	- :	
EV_EC1	EV_EC1_WS_2022-09-02_N-SRF EV_EC1_WS_2022-09-03_N-SRF	2022-09-02		-	+		-			-	-	+		-	
EV_EC1	EV_EC1_WS_2022-09-03_N-SRF EV_EC1_WS_2022-09-04_N-SRF	2022-09-03		-	+ :-	-			-		-	-	-		-
				-				-			-	+ -	-	-	-
EV_EC1	EV_EC1_WS_2022-09-05_N-SRF	2022-09-05	1 -	-		_	-	-		-	-	-		-	-

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

											Dissolv	ed Metals							
Sample	Sample	Sample Date	Hardness	non	Lead	Lithium	Magnesium	Manganese	Nickel	Potassium	Selenium	Silver	Sodium	Strontium	Thallium	Ę	Titanium	Uranium	Zinc
Location	ID	(mm/dd/yyyy) mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
				Acute															
BC WQG FWAL			n/a	0.35	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Elkview Operation			•	•			•					•	•	•	•	•		•	-
EV_EC1	EV_EC1_WS_2022-07-19_N-SRF	2022-07-19	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-07-20_N-SRF	2022-07-20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-07-21_N-SRF	2022-07-21		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-07-22_N-SRF	2022-07-22		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-07-23_N-SRF	2022-07-23		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1 EV EC1	EV_EC1_WS_2022-07-24_N-SRF	2022-07-24		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-07-25_N-SRF EV_EC1_WS_2022-07-26_N-SRF	2022-07-25 2022-07-26		-	-		-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV EC1 WS 2022-07-26 N-SRF	2022-07-26	+÷					-		-		-		-	-	-	-	- :	
EV EC1	EV_EC1_WS_2022-07-27_IV-OR	2022-07-28	1	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-
EV EC1	EV EC1 WS 2022-07-29 N-SRF	2022-07-29	H	-	-		-	-		-	-	-	-	-	-	-	-	-	1
EV EC1	EV EC1 WS 2022-07-25 N-SRF	2022-07-30	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-
EV EC1	EV EC1 WS 2022-07-31 N-SRF	2022-07-31	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV EC1	EV EC1 WS 2022-08-01 N-SRF	2022-08-01	-	< 0.020	< 0.000100	0.0244	144	0.00037	0.00228	2.56	141	< 0.000020	3.23	0.202	< 0.000020	< 0.00020	< 0.00060	0.007	< 0.0020
EV_EC1	EV_EC1_WS_2022-08-02_N-SRF	2022-08-02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-08-03_N-SRF	2022-08-03	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-08-04_N-SRF	2022-08-04	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-08-05_N-SRF	2022-08-05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-08-06_N-SRF	2022-08-06	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-08-07_N-SRF	2022-08-07	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-08-08_N-SRF	2022-08-08	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-08_MON_N	2022-08-09	-	< 0.010	< 0.000050	0.0234	137	0.00012	0.00198	2.58	137	< 0.000010	2.9	0.187	< 0.000010	< 0.00010	< 0.00030	0.00739	< 0.0010
EV_EC1	EV_EC1_WS_ 2022-08-09_N-SRF	2022-08-09	<u> </u>	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1 EV EC1	EV_EC1_WS_2022-08-10_N-SRF EV_EC1_WS_2022-08-11_N-SRF	2022-08-10 2022-08-11	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV EC1 WS 2022-08-11 N-SRF	2022-08-11	<u> </u>	-:-	-			-	-					- :		-	-	- :	-
EV EC1	EV EC1 WS 2022-08-13 N-SRF	2022-08-13	+:-	-			-	-				-	-	-	-	-	-		+ :
EV EC1	EV EC1 WS 2022-08-14 N-SRF	2022-08-14	1	-	-		-	-	-	-	-	-	-		-	-	-	-	
EV EC1	EV EC1 WS 2022-08-15 N-SRF	2022-08-15	 	< 0.010	< 0.000050	0.0267	144	0.00015	0.00202	2.48	174	< 0.000010	2.98	0.204	< 0.000010	< 0.00010	< 0.00030	0.00754	0.0014
EV EC1	EV EC1 WS 2022-08-16 N-SRF	2022-08-16	١.	-	-	-	-	-	-	-	-	-	-		- 0.000010	-	-	-	
EV EC1	EV EC1 WS 2022-08-17 N-SRF	2022-08-17	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV EC1	EV EC1 WS 2022-08-18 N-SRF	2022-08-18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-08-19_N_SRF	2022-08-19	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-08-20_N-SRF	2022-08-20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-08-21_N-SRF	2022-08-21	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-08-22_N-SRF	2022-08-22	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-08-23_N-SRF	2022-08-23		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-08-24_N-SRF	2022-08-24		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-08-25_N-SRF	2022-08-25	ļ -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-08-26_N-SRF	2022-08-26	ļ -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1 EV EC1	EV_EC1_WS_2022-08-27_N-SRF	2022-08-27	١.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-08-28_N-SRF EV_EC1_WS_2022-08-29_N-SRF	2022-08-28 2022-08-29	1	< 0.010	< 0.000050	0.028	164	0.00013	0.00206	2.71	183	< 0.000010	3.29	0.211	< 0.000010	< 0.00010	< 0.00030	0.00773	< 0.0010
EV_EC1	EV_ECI_WS_2022-08-29_N-SRF EV_ECI_WS_2022-08-30_N_SRF	2022-08-29	+:-	< 0.010	< 0.000050	0.028	104	0.00013	0.00206	2./1	183	< 0.000010	3.29	0.211	< 0.000010	< 0.00010	< 0.00030		< 0.0010
EV_EC1	EV_ECT_WS_2022-08-30_N_SRF EV_ECT_WS_2022-08-31_N_SRF	2022-08-30	+-	-	-		-	-		- :		- :	-	-	-		-	-	-
EV_EC1	EV_ECT_WS_2022-08-31_N_SRF EV_ECT_WS_2022-09-01_N-SRF	2022-09-01	+÷	-				-	-			- :	-	-		-	-		-
EV_EC1	EV EC1 WS 2022-09-01 N-SRF	2022-09-01	+÷	-	-		-	-	-	-		-	-	-	-	-	-	-	-
EV EC1	EV EC1 WS 2022-09-02 N-SRF	2022-09-03	l i	-	-		-	-	-	-	-	-	-		-		-		1 :
			1	1	1							1							
EV EC1	EV EC1 WS 2022-09-04 N-SRF	2022-09-04	-	-	-	-	-	-		-	-		-	-	-	-	-	-	-

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

^d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

									Dissolve	d Metals						
Sample	Sample	Sample Date		Aluminum	Antimony	Arsenic	Barium	Beryllium	Bismuth	Boron		Cadmium	Calcium	Chromium	Cobalt	Copper
Location	ID	(mm/dd/yyyy) mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	n	ıg/L	mg/L	mg/L	mg/L	mg/L
				Acute							Acute	Chronic				Acute Chronic
BC WQG FWAL			n/a	0.020-0.10 ^a 0.005-0.0	5ª n/a	na	na	na	n/a	n/a	0.00004-0.0028 ^a	0.00002-0.00173 ^a	n/a	n/a	n/a	BLMe
Ikview Operation	EV FOA WO 0000 00 00 N 0DF	1 0000 00 00	_										1			
EV_EC1 EV EC1	EV_EC1_WS_2022-09-06_N-SRF EV_EC1_WS_2022-09-07_N-SRF	2022-09-06		-	- :	- :	-	-		-			+ :		-	+
EV_EC1	EV_EC1_WS_2022-09-07_N-SRF EV_EC1_WS_2022-09_MON_N	2022-09-07			0.00024	0.00023	0.0493	< 0.020	< 0.000050	0.014			199	0.0002	< 0.10	+
EV_EC1	EV_EC1_WS_2022-09_MON_N EV_EC1_WS_2022-09-08_N-SRF	2022-09-08	+ -	0.0014	0.00024	0.00023	0.0493	< 0.020	< 0.000050	0.014	0.0	00007	199	0.0002	< 0.10	0.00045
EV_EC1	EV EC1_WS_2022-09-08_N-SRF EV EC1_WS_2022-09-09_N-SRF	2022-09-08	-	•		- :	-		-			-	+ :		-	+
	EV EC1 WS 2022-09-09 N-SRF EV EC1 WS 2022-09-10 N-SRF	2022-09-09		-		-	-	-	-			-	+ -			-
EV_EC1 EV EC1	EV_ECT_WS_2022-09-10_N-SRF EV_ECT_WS_2022-09-11_N-SRF	2022-09-10					-		-	-		•	-		-	-
EV_EC1	EV EC1 WS 2022-09-11 N-SRF	2022-09-11		- 0.004	0.0002	0.00021	0.0434	< 0.020	< 0.000050	0.011		- 0050	189	0.00015	< 0.10	+
EV_EC1	EV ECT WS 2022-09-12 N-SRF	2022-09-12		0.001	0.0002	0.00021	0.0434	- 0.020	- 0.000050	0.011	< 0	.0050	109	0.00015	- 0.10	< 0.00020
EV_EC1	EV_EC1_WS_2022-09-13_N-SRF EV_EC1_WS_2022-09-14_N-SRF	2022-09-13		-		- : -			-			-	+ -		-	+
EV_EC1	EV_ECT_WS_2022-09-14_N-SRF EV_ECT_WS_2022-09-15_N-SRF	2022-09-14			-	-			-			-	+ :		-	+
EV_EC1	EV EC1 WS 2022-09-15 N-SRF	2022-09-15		-	- :	- :	-	- :	-			-	+ :	-	-	-
EV_EC1	EV EC1 WS 2022-09-17 N-SRF	2022-09-17		<u>-</u>				-	-	-		-	+ :	-	-	+
EV EC1	EV EC1 WS 2022-09-18 N-SRF	2022-09-18					-	-	-	-		:	-	-	-	+
EV EC1	EV EC1 WS 2022-09-16 N-SRF	2022-09-19				-	-		-	- :		<u> </u>	+ :	-		+ :
EV EC1	EV EC1 WS 2022-09-20 N-SRF	2022-09-20		-				-	-			·	+ :	-	-	+
EV EC1	EV EC1 WS 2022-09-21 N SRF	2022-09-21		<u>-</u>		-	-	-	-	-		.	1	-	-	+
EV EC1	EV EC1 WS 2022-09-22 N-SRF	2022-09-22		· · · · · · · · · · · · · · · · · · ·	-	-	-	-	-	-		<u> </u>	H :	-	-	-
EV EC1	EV EC1 WS 2022-09-23 N-SRF	2022-09-23			-	-	-	-	-			•	+ -	-	-	+
EV EC1	EV EC1 WS 2022-09-24 N-SRF	2022-09-24						-	-			-	+ -	-	-	-
EV EC1	EV EC1 WS 2022-09-25 N-SRF	2022-09-25	-		-	-	-	-	-				1	-		+
EV EC1	EV EC1 WS 2022-09-26 N-SRF	2022-09-26	٠.	0.002	0.00023	0.00025	0.0498	< 0.020	< 0.000050	0.014	0.00	000074	211	0.00018	< 0.10	< 0.00020
EV_EC1	EV EC1 WS 2022-09-27 N-SRF	2022-09-27	٠.	0.002	0.00020	0.00020	0.0100	- 0.020	- 0.000000	0.011	0.00	-	-	0.00010	- 0.10	< 0.00020
EV EC1	EV EC1 WS 2022-09-28 N-SRF	2022-09-28	٠.		-	-	-	-	-			-	-	-		-
EV EC1	EV EC1 WS 2022-09-29 N-SRF	2022-09-29	٠.		-	-	-	-	-	-			-	-	-	+ :
EV_EC1	EV EC1 WS 2022-09-30 N-SRF	2022-09-30	-		-	-	-	-	-	-		•	-	-	-	
EV EC1	EV EC1 WS 2022-10-01 N-SRF	2022-10-01	-		-	-	-	-	-	-			-	-	-	1 :
EV EC1	EV EC1 WS 2022-10-02 N-SRF	2022-10-02	٠.		-	-	-	-	-	-		•	+ -	-	-	+
EV EC1	EV EC1 WS 2022-10-03 N-SRF	2022-10-03	-	0.002	0.00019	0.0003	0.0476	< 0.020	< 0.000050	0.014	0.00	000074	221	0.00019	< 0.10	< 0.00020
EV EC1	EV EC1 WS 2022-10-04 N-SRF	2022-10-04	-		-	-	-	-	-	-		-		-	-	10.00020
EV EC1	EV EC1 WS 2022-Q4 N	2022-10-05	-	< 0.0010	0.00021	0.00034	0.046	< 0.020	< 0.000050	0.021		1.0050	230	0.00013	0.00013	3 < 0.00020
EV EC1	EV EC1 WS 2022-10-06 N-SRF	2022-10-06	-	- 0.0010		-	-	-	-	-		-	-	-	-	- 0.00020
EV EC1	EV_EC1_WS_2022-10-17_N-SRF	2022-10-17	-	< 0.0020	0.00022	0.00028	0.0374	< 0.040	< 0.000100	0.022		0.0100	231	< 0.00020	0.0006	< 0.00040
EV_EC1	EV_EC1_WS_2022-10-31_N-SRF	2022-10-31	1 -	0.002	0.00021	0.00036	0.0368	< 0.020	< 0.000050	0.022		000079	228	0.00012	0.00081	1 < 0.00020
EV_EC1	EV_EC1_WS_2022-11-14_N-SRF	2022-11-14	-	< 0.0010	0.00022	0.00025	0.035	< 0.020	< 0.000050	0.025		000151	244	0.00012	0.00104	4 < 0.00020
EV_EC1	EV_EC1_WS_2022-11_MON_N	2022-11-15		< 0.0010	0.00022	0.00032	0.034	< 0.020	< 0.000050	0.026		000085	252	< 0.00010	0.00105	
EV_EC1	EV_EC1_WS_2022-11-21_N-SRF	2022-11-21	-		-	-	-	-	-	-		-	-	-	-	- 0.00020
EV_ER4	EV_ER4_WS_2022-Q1_N	2022-01-10	-	0.0015	< 0.00010	0.00019	0.0669	< 0.020	< 0.000050	< 0.010		000119	64.5	0.00031	< 0.00010	0.00025
EV_ER4	EV_ER4_WS_2022-02_MON_N	2022-02-15		0.0012	< 0.00010	0.00024	0.0761	< 0.020	< 0.000050	< 0.010		000138	77.3	0.0002	< 0.00010	0 < 0.00020
EV_ER4	EV_ER4_WS_2022-03_MON_N	2022-03-15	-	0.0742	0.00022	0.00029	0.0806	< 0.020	< 0.000050	< 0.010		000673	82.5	0.0071	0.00015	
EV_ER4	EV_ER4_WS_2022-03_WEK13_N	2022-03-21	-	< 0.0010	< 0.00010	0.00017	0.0741	< 0.020	< 0.000050	< 0.010		000118	73.9	0.00019	< 0.00010	0 < 0.00020
EV_ER4	EV_ER4_WS_2022-03_WEK14_N	2022-03-28	-	< 0.0010	< 0.00010	0.00019	0.0784	< 0.020	< 0.000050	< 0.010		000103	75	0.00019	< 0.10	
EV_ER4	EV_ER4_WS_2022-04_WEK15_N	2022-04-04	-	0.0015	< 0.00010	0.00016	0.0787	< 0.020	< 0.000050	< 0.010		000104	78.3	0.0002	< 0.10	0.00027
EV_ER4	EV_ER4_WS_2022-Q2_N	2022-04-11	-	< 0.0010	< 0.00010	0.00016	0.0745	< 0.020	< 0.000050	< 0.010		000117	76.3	0.0002	< 0.10	
EV_ER4	EV_ER4_WS_2022-04_WEK17_N	2022-04-18	-	< 0.0010	< 0.00010	0.00016	0.079	< 0.020	< 0.000050	< 0.010		.0050	77	0.00019	< 0.10	
EV_ER4	EV_ER4_WS_2022-04_WEK18_N	2022-04-25	-	< 0.0010	< 0.00010	0.00013	0.0727	< 0.020	< 0.000050	< 0.010		000096	76	0.00017	< 0.10	< 0.00020
EV_ER4	EV_ER4_WS_2022-05_MON_N	2022-05-02	-	0.003	< 0.00010	0.00013	0.0722	< 0.020	< 0.000050	< 0.010		000119	73.5	0.00018	< 0.10	
EV_ER4	EV_ER4_WS_2022-05_WEK20_N	2022-05-10	-	0.003	< 0.00010	0.00013	0.0621	< 0.020	< 0.000050	< 0.010		000142	58.9	0.00014	< 0.10	0.00034
EV_ER4	EV_ER4_WS_2022-05_WEK21_N	2022-05-16	-	0.0019	< 0.00010	0.00014	0.0659	< 0.020	< 0.000050	< 0.010		000162	65.9	0.0002	< 0.10	< 0.00020
EV ER4	EV ER4 WS 2022-05 WEK22 N	2022-05-24	_	0.0011	< 0.00010	0.00014	0.0594	< 0.020	< 0.000050	< 0.010		000168	66.6	0.00018	< 0.10	

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

Sample Location							_												
	Sample	Sample Date	Hardnes	non	-ead	lithium	Magnesiun	Manganese	Nickel	Potassium	Selenium	Silver	Sodium	Strontium	Thallium	E	litanium	Jranium	Zinc
	ID	(mm/dd/yyyy)		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
		(13-				g. =				P 8 -							g. =	
				Acute															
BC WQG FWAL			n/a	0.35	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Ikview Operation																			
EV_EC1	EV_EC1_WS_2022-09-06_N-SRF	2022-09-06	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-09-07_N-SRF	2022-09-07	-	-	-	-	-				-		-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-09_MON_N	2022-09-08	-	< 0.010	< 0.000050	0.0265	160	0.00013	0.00208	2.76	186	< 0.000010	3.32	0.186	< 0.000010	< 0.00010	< 0.00030	0.00705	< 0.0010
EV_EC1	EV_EC1_WS_2022-09-08_N-SRF	2022-09-08	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u> </u>
EV_EC1	EV_EC1_WS_2022-09-09_N-SRF	2022-09-09	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-09-10_N-SRF	2022-09-10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1 EV_EC1	EV_EC1_WS_2022-09-11_N-SRF EV_EC1_WS_2022-09-12_N-SRF	2022-09-11	-	< 0.010	< 0.000050	0.0282	127	0.00011	0.00175	2.44	161	< 0.000010	2.88	0.198	< 0.000010	< 0.00010	< 0.00030	0.00654	0.0014
EV_EC1	EV_EC1_WS_2022-09-12_N-SRF EV_EC1_WS_2022-09-13_N-SRF	2022-09-12	-	< 0.010	< 0.000050	0.0282	127	0.00011	0.00175	2.44	161	< 0.000010	2.88	0.198	< 0.000010		< 0.00030		0.0014
			-	- :				- :				- : -				-		-	-
EV_EC1 EV_EC1	EV_EC1_WS_2022-09-14_N-SRF EV_EC1_WS_2022-09-15_N-SRF	2022-09-14	-			-	-	-	-	-	-		-	-	-	-	-	-	-
EV_EC1	EV EC1 WS 2022-09-15 N-SRF	2022-09-15	-					- :	- : -			- :	- :		-	- :	- :		-
EV_EC1	EV EC1 WS 2022-09-16 N-SRF	2022-09-17	-	-			-						-	-	-	-	-		-
EV_EC1	EV_EC1_WS_2022-09-17_N-SRF EV_EC1_WS_2022-09-18_N-SRF	2022-09-17	-	-	- 1	-		-		- :	-			-	-	-	-	-	-
EV_EC1	EV EC1 WS 2022-09-18 N-SRF	2022-09-18	-			-		- :							-	-	-	-	-
EV_EC1	EV EC1 WS 2022-09-19 N-SRF	2022-09-19	-	-		-	-		-				-	-	-	-	-	-	-
EV_EC1	EV EC1 WS 2022-09-20 N-SRF	2022-09-21	-			-		- :	-	-:-		-	- :	- :	-	-	- : -	-	-
EV_EC1	EV EC1 WS 2022-09-21 N-SRF	2022-09-21	-	-	- 1	-		- :	- :	- :					-	-	-	-	-
EV_EC1	EV EC1 WS 2022-09-22 N-SRF	2022-09-23	-		-	-	-	-	-	-			-	-	-	-	-		-
EV_EC1	EV EC1 WS 2022-09-24 N-SRF	2022-09-24	-					- :	- : -		-	- : -	-		-		- :	-	-
EV_EC1	EV EC1 WS 2022-09-25 N-SRF	2022-09-25	-	-			-			-			-	-	-	-	-		-
EV EC1	EV EC1 WS 2022-09-26 N-SRF	2022-09-26	-	< 0.010	< 0.000050	0.0313	159	0.00011	0.00194	2.94	172	< 0.000010	3.58	0.205	< 0.000010	< 0.00010	< 0.00030	0.00688	0.0062
EV EC1	EV EC1 WS 2022-09-27 N-SRF	2022-09-27		< 0.010	- 0.000050	0.0313	109	0.00011	0.00194	2.94	1/2	< 0.000010	3.36	0.205	< 0.000010	< 0.00010	< 0.00030 -	0.00000	0.0062
EV_EC1	EV EC1 WS 2022-09-27 N-SRF	2022-09-28		-										-	-				
EV EC1	EV EC1 WS 2022-09-29 N-SRF	2022-09-29	-			-	-							-	-	-	-	-	-
EV EC1	EV_EC1_WS_2022-09-30_N-SRF	2022-09-30	-	-		-	-	- :	-		-	- : -	-	-	-	-			-
EV EC1	EV EC1 WS 2022-10-01 N-SRF	2022-10-01	-	-		-	-	-	-		-	-	-	-	-	-	-	-	-
EV EC1	EV EC1 WS 2022-10-02 N-SRF	2022-10-02	-	-		-	-		-	-	-	-	-	-	-	-		-	-
EV EC1	EV EC1 WS 2022-10-02_N-GRF	2022-10-02	-	< 0.010	< 0.000050	0.0248	144	0.00017	0.00173	2.92	219	< 0.000010	3.33	0.207	< 0.000010	< 0.00010	< 0.00030	0.00689	0.0089
EV EC1	EV EC1 WS 2022-10-03_N-SRF	2022-10-03	-	- 0.010	- 0.000000	0.0240	177	0.00011	0.00170	2.52	213	- 0.000010	0.00	0.207	- 0.000010	- 0.00010	- 0.00000	0.00003	0.0003
EV EC1	EV EC1 WS 2022-Q4 N	2022-10-05	-	< 0.010	< 0.000050	0.05	161	0.00079	0.00373	3.19	157	< 0.000010	5.4	0.246	0.000015	< 0.00010	< 0.00030	0.00778	< 0.0010
EV EC1	EV EC1 WS 2022-10-06 N-SRF	2022-10-06	-	- 0.010	- 0.000000	- 0.00	-	0.00010	0.00070	-	-	- 0.000010	-	0.2.10	0.000010	- 0.00010	- 0.00000	0.00170	- 0.0010
EV EC1	EV EC1 WS 2022-10-05_N-0N	2022-10-00	-	< 0.020	< 0.000100	0.068	150	0.0106	0.0095	3.26	117	< 0.000020	5.85	0.289	0.000023	< 0.00020	< 0.00060	0.00854	< 0.0020
EV EC1	EV EC1 WS 2022-10-11 N-SRF	2022-10-11	 	< 0.010	< 0.000100	0.0626	169	0.0146	0.0124	3.93	118	< 0.000020	7.4	0.316	0.000029	< 0.00020	< 0.00030	0.00956	0.0084
EV EC1	EV EC1 WS 2022-11-14 N-SRF	2022-10-01	-	< 0.010	< 0.000050	0.0649	154	0.0175	0.0124	3.73	122	< 0.000010	7.7	0.328	0.000025	< 0.00010	< 0.00030	0.0095	0.0004
EV EC1	EV EC1 WS 2022-11 MON N	2022-11-15	-	< 0.010	< 0.000050	0.0696	150	0.018	0.0144	3.55	111	< 0.000010	7.65	0.315	0.000033	< 0.00010	< 0.00030	0.00962	< 0.0010
EV EC1	EV EC1 WS 2022-11-21 N-SRF	2022-11-21	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV ER4	EV ER4 WS 2022-Q1 N	2022-01-10	-	< 0.010	< 0.000050	0.011	23	0.001	< 0.00050	0.794	19.3	< 0.000010	3.29	0.252	< 0.000010	< 0.00010	< 0.00030	0.00135	0.0024
EV ER4	EV ER4 WS 2022-02 MON N	2022-02-15	- 1	< 0.010	< 0.000050	0.0124	26.2	0.00136	< 0.00050	0.722	19.6	< 0.000010	3.57	0.265	< 0.000010	< 0.00010	< 0.00030	0.00141	0.0081
EV ER4	EV ER4 WS 2022-03 MON N	2022-03-15	- 1	0.11	0.000383	0.0143	26.3	0.0179	0.00153	1.05	18.7	< 0.000010	4.25	0.263	< 0.000010	< 0.00010	0.00102	0.00147	0.124
EV_ER4	EV_ER4_WS_2022-03_WEK13_N	2022-03-21	-	< 0.010	< 0.000050	0.0132	25.3	0.00128	< 0.00050	0.732	17.6	< 0.000010	3.85	0.261	< 0.000010	< 0.00010	< 0.00030	0.00138	< 0.0010
EV ER4	EV ER4 WS 2022-03 WEK14 N	2022-03-28	-	< 0.010	< 0.000050	0.0132	25.4	0.00192	< 0.00050	0.838	19.9	< 0.000010	3.64	0.257	< 0.000010	< 0.00010	< 0.00030	0.00151	0.0018
EV ER4	EV ER4 WS 2022-04 WEK15 N	2022-04-04	-	< 0.010	< 0.000050	0.0143	29.9	0.00145	< 0.00050	0.844	20.4	< 0.000010	3.67	0.252	< 0.000010	< 0.00010	< 0.00030	0.0016	0.002
EV_ER4	EV ER4 WS 2022-Q2 N	2022-04-11	-	< 0.010	< 0.000050	0.0149	29.5	0.0012	< 0.00050	0.883	23.1	< 0.000010	3.58	0.24	< 0.000010	< 0.00010	< 0.00030	0.00156	< 0.0010
EV_ER4	EV_ER4_WS_2022-04_WEK17_N	2022-04-18	-	< 0.010	< 0.000050	0.0156	27.9	0.00082	0.00063	0.842	23.9	< 0.000010	3.45	0.252	< 0.000010	< 0.00010	< 0.00030	0.00177	< 0.0010
EV ER4	EV ER4 WS 2022-04 WEK18 N	2022-04-25	-	< 0.010	< 0.000050	0.016	27.1	0.00099	0.00055	0.826	22.4	< 0.000010	3.12	0.239	< 0.000010	< 0.00010	< 0.00030	0.00164	< 0.0010
EV ER4	EV ER4 WS 2022-05 MON N	2022-05-02	-	< 0.010	< 0.000050	0.0134	26.4	0.00111	0.00069	0.79	22	< 0.000010	2.61	0.224	< 0.000010	< 0.00010	< 0.00030	0.00155	< 0.0010
EV_ER4	EV_ER4_WS_2022-05_WEK20_N	2022-05-10	- 1	< 0.010	< 0.000050	0.0105	20.3	0.00129	0.00071	0.693	16.4	< 0.000010	2.19	0.206	< 0.000010	< 0.00010	< 0.00030	0.0013	0.0012
EV_ER4	EV_ER4_WS_2022-05_WEK21_N	2022-05-16	-	< 0.010	< 0.000050	0.0126	22.6	0.00106	0.00067	0.716	16	< 0.000010	2.42	0.214	< 0.000010	< 0.00010	< 0.00030	0.00137	0.001
EV_ER4	EV_ER4_WS_2022-05_WEK22_N	2022-05-24	-	< 0.010	< 0.000050	0.0103	22.8	0.00102	0.00066	0.596	15	< 0.000010	2.09	0.198	< 0.000010	< 0.00010	< 0.00030	0.0013	< 0.0010

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

^d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

									Dissolve	d Metals						
				-								_		_		
			ess	<u> </u>	, and	<u>ن</u>	E	yllium	Ę	_		<u> </u>	E	ai di	=	5
			E	Ē	ntimo	l se	Ę	₹	Ĕ	o L		<u> </u>	lci.	Į.	bal	Coppe
Sample	Sample	Sample Date		₹	<	¥	Ba	Be	ä	Bo		రో	S	ธ์	ပိ	
Location	ID	(mm/dd/yyyy) mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	m	ng/L	mg/L	mg/L	mg/L	mg/L
				ji ji							2	l ë				B E
				Acute							/cm	ļ Ķ				Acute
BC WQG FWAL			n/a	0.020-0.10 ^a 0.005-0.05 ^a	n/a	na	na	na	n/a	n/a	0.00004-0.0028 ^a	0.00002-0.00173 ^a	n/a	n/a	n/a	BLM°
Ikview Operation																
EV_ER4	EV_ER4_WS_2022-05_WEK23_N	2022-05-30		0.0034	< 0.00010	0.00015	0.0624	< 0.020	< 0.000050	< 0.010		000164	52.3	0.0002	< 0.10	< 0.00020
EV_ER4	EV_ER4_WS_2022-06_MON_N	2022-06-07		0.0018	< 0.00010	0.00016	0.0497	< 0.020	< 0.000050	< 0.010		000102	48.1	0.00017	< 0.10	0.0002
EV_ER4	EV_ER4_WS_2022-06_WEK25_N	2022-06-14		0.0038	< 0.00010	0.00013	0.0414	< 0.020	< 0.000050	< 0.010		000121	46	0.00018	< 0.10	0.00021
EV_ER4	EV_ER4_WS_2022-06_WEK26_N	2022-06-20		0.0045	< 0.00010	0.00019	0.0453	< 0.020	< 0.000050	< 0.010		000108	44.7	0.00014	< 0.10	0.0003
EV_ER4	EV_ER4_WS_2022-06_WEK27_N	2022-06-27	-	0.0032	< 0.00010	0.00016	0.0472	< 0.020	< 0.000050	0.016		000269	50.6	0.00024	< 0.10	0.00027
EV_ER4	EV_ER4_WS_2022-Q3_N	2022-07-04	-	0.0024	< 0.00010	0.00014	0.0444	< 0.020	< 0.000050	< 0.010		000147	46.5	0.00017	< 0.10	0.00032
EV_ER4	EV_ER4_WS_2022-07_WEK29_N	2022-07-11		0.0019	< 0.00010	0.00017	0.0461	< 0.020	< 0.000050	< 0.010		000138	47.2	0.00027	< 0.10	< 0.00020
EV_ER4	EV_ER4_WS_2022-08_MON_N	2022-08-08	-	< 0.0010	< 0.00010	0.00018	0.0618	< 0.020	< 0.000050	< 0.010		00014	54.7	0.00021	< 0.10	< 0.00020
EV_ER4	EV_ER4_WS_2022-09_MON_N	2022-09-06	-	0.0027	< 0.00010	0.00014	0.0675	< 0.020	< 0.000050	< 0.010		000126	62.3	0.00022	< 0.10	< 0.00020
EV_ER4	EV_ER4_WS_2022-Q4_N	2022-10-03		< 0.0010	< 0.00010	0.00019	0.0728	< 0.020	< 0.000050	< 0.010		000172	66	0.00013	< 0.10	0.00036
EV_ER4	EV ER4 WS 2022-11 MON N	2022-11-07	_	< 0.0010	< 0.00010	0.00017	0.066	< 0.020	< 0.000050	< 0.010	0.00	000082	73.9	0.00023	< 0.10	< 0.00020
EV_GC2	EV_GC2_WS_2022-01-02_N	2022-01-02	-	-	-	-	-	-	-	-			-	-	-	-
EV_GC2	EV_GC2_WS_2022-01-04_N	2022-01-04		-	-	-	-	-	-			-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-Q1_N	2022-01-05	-	0.0067	0.0005	0.00015	0.102	< 0.020	< 0.000050	0.022	0.00	000713	142	< 0.00010	0.0001	< 0.00020
EV_GC2	EV_GC2_WS_2022-01-06_N_0915	2022-01-06	-	-	-	-	-	-	-	-			-	-	-	-
EV_GC2	EV_GC2_WS_2022-01-06_N_1209	2022-01-06	-	-	-	-	-	-	-	-			-	-	-	-
EV_GC2	EV_GC2_WS_2022-01-07_N	2022-01-07	-	-		-	-	-	-	-			-	-	-	-
EV_GC2	EV_GC2_WS_2022-01-08_N	2022-01-08		-		-	-	-	-	-			-	-	-	-
EV_GC2	EV_GC2_WS_2022-01-09_N	2022-01-09		-	-	-	-	-	-	-			-	-	-	
EV_GC2	EV_GC2_WS_2022-01-14_N	2022-01-14	ļ -	-		-	_	-	-	-					-	-
EV_GC2 EV GC2	EV_GC2_WS_2022-01-22_N	2022-01-22	ļ -	-	-	-	-	-	-	-		-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-01-23_N_1306 EV_GC2_WS_2022-01-23_N_1628	2022-01-23	-	-	-	-	-	-	-	-		-	-	-		
EV_GC2	EV_GC2_WS_2022-01-23_N_1626	2022-01-23	<u> </u>	-		_			-				<u> </u>			-
EV_GC2	EV GC2 WS 2022-01-24 N	2022-01-24		-		-			-	-			-	-		-
EV_GC2	EV GC2 WS 2022-01-25 N 1448	2022-01-25	1	-	+ :		- :	- :				-	1			
EV_GC2	EV GC2 WS 2022-01-28 N 0816	2022-01-28	<u> </u>	-	+ :	-	-					-	-			-
EV_GC2	EV GC2 WS 2022-01-29 N	2022-01-28	H	-	+ :	-	-	- :				-	-			-
EV_GC2	EV GC2 WS 2022-01-29 N	2022-01-29	<u> </u>	-	+ :-				-			-	<u> </u>	-		-
EV_GC2	EV GC2 WS 2022-01-30 N	2022-01-30	+-	-					-			-	+ :	_		-
EV_GC2	EV_GC2_WS_2022-01-31_N_1332 EV_GC2_WS_2022-01-31_N_1434	2022-01-31	+ -	-		-		-	-	-		-	-	-		-
EV_GC2	EV_GC2_WS_2022-01-31_N_1434 EV_GC2_WS_2022-01-31_N_1509	2022-01-31		-	+ :		- :	- :	- :			-	1			-
EV_GC2	EV GC2 WS 2022-01-31 N 1539	2022-01-31	+	-	+ :	-	-		-			-	1			-
EV_GC2	EV GC2 WS 2022-01-31 N 1627	2022-01-31	H	-	+ :				-				-			
EV_GC2	EV GC2 WS 2022-01-31 N 1645	2022-01-31	+ -		+ :-				-	- :	-	-	+ :-			-
EV GC2	EV GC2 WS 2022-01-31 N 0858	2022-01-31	+ -		+ :-	-		-	-		-	•	+ -			
EV_GC2	EV GC2 WS 2022-01-31 N 1208	2022-01-31	+ :-		+ :	-			-			-	-			-
EV_GC2	EV GC2 WS 2022-01-31 N 1231	2022-01-31	+ -		+ :	- :					-	-	+ :	- :		-
EV GC2	EV GC2 WS 2022-01-01 N 1304	2022-01-31	+ -	-	+ :	-					-	-	+ -			-
EV_GC2	EV GC2 WS 2022-02-01 N 1405	2022-02-01	+:-	-	+ :	-			-			-	-			-
EV_GC2	EV GC2 WS 2022-02-01 N 1506	2022-02-01	+ -		+ -	-			-				1			
EV GC2	EV GC2 WS 2022-02-01 N 1538	2022-02-01	٠.	-	+ -	-	-	-	-	-		-	+ -	-		-
EV_GC2	EV GC2 WS 2022-02-01 N 0744	2022-02-01	+ :-		+ :	-	-		-			:	+ :			1
EV_GC2	EV GC2 WS 2022-02-01 N 0843	2022-02-01	+ -	-	- : -	- :	- :			- :		-	+ -	- :		
EV GC2	EV GC2 WS 2022-02-01 N 0933	2022-02-01	+ -		+ -	-			-	-			1		-	
EV GC2	EV GC2 WS 2022-02-01 N 1047	2022-02-01	+ -	-	+ -	-	-	-	-				+ -			-
EV_GC2	EV GC2 WS 2022-02-01 N 1204	2022-02-01	+ -	-	+ :-	- :			-	- :	-	•	+ -			
EV_GC2	EV GC2 WS 2022-02-01 N 1508	2022-02-01	+ -	-	+ -	-	-		-	-	+	-	1		-	- -
EV GC2	EV_GC2_WS_2022-02-02_N_1605	2022-02-02	+ -	-	+ -	-	-		-				+ -	-		- :
			+ -	-	+ -	-	-		-			•	+ -			
EV_GC2	EV_GC2_WS_2022-02-02_N_0759	2022-02-02	ļ -	-	-	-	-	-	-	-		-	-	-	-	匚

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

											Dissolv	ed Metals							
Sample	Sample	Sample Date	Hardness	lron	Lead	Lithium	Magnesium	Manganese	Nickel	Potassium	Selenium	Silver	Sodium	Strontium	Thallium	Ę	Titanium	Uranium	Zinc
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
				Ĭ				_				1		Ĭ		Ĭ			
				Acute															
BC WQG FWAL			n/a	0.35	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Elkview Operation																			
EV_ER4	EV_ER4_WS_2022-05_WEK23_N	2022-05-30	-	< 0.010	< 0.000050	0.0079	21	0.00191	0.00057	0.695	11.9	< 0.000010	1.88	0.202	< 0.000010		< 0.00030	0.00116	< 0.0010
EV_ER4	EV_ER4_WS_2022-06_MON_N	2022-06-07	-	< 0.010	< 0.000050	0.0062	15.8	0.0018	0.00055	0.58	8.08	< 0.000010	1.29	0.164	< 0.000010	< 0.00010	< 0.00030	0.000976	< 0.0010
EV_ER4	EV_ER4_WS_2022-06_WEK25_N	2022-06-14	-	< 0.010	< 0.000050	0.0055	13.6	0.00183	< 0.00050	0.551	7.46	< 0.000010	1.18	0.154	< 0.000010	< 0.00010	< 0.00030	0.00093	< 0.0010
EV_ER4	EV_ER4_WS_2022-06_WEK26_N	2022-06-20	-	< 0.010	< 0.000050	0.006	14.1	0.00235	0.00058	0.675	6.96	< 0.000010	1.13	0.141	< 0.000010	< 0.00010	< 0.00030	0.000912	0.0014
EV_ER4 FV FR4	EV_ER4_WS_2022-06_WEK27_N	2022-06-27	-	< 0.010	< 0.000050 < 0.000050	0.0075 0.0065	15 14.4	0.00244	0.00062	0.618 0.524	8.41 7.67	< 0.000010	1.42 1.23	0.163	< 0.000010 < 0.000010	< 0.00010 < 0.00010	< 0.00030 < 0.00030	0.000968	0.0036 < 0.0010
EV_ER4 EV ER4	EV_ER4_WS_2022-Q3_N	2022-07-04	-	< 0.010	< 0.000050	0.0065	14.4	0.00186	0.00081	0.524	7.67	< 0.000010	1.23	0.163	< 0.000010	< 0.00010	< 0.00030	0.000876	0.0010
EV_ER4	EV_ER4_WS_2022-07_WEK29_N EV_ER4_WS_2022-08_MON_N	2022-07-11	<u> </u>	< 0.010	< 0.000050	0.0003	18.4	0.00231	0.00062	0.64	9.73	< 0.000010	1.75	0.100	< 0.000010	< 0.00010	< 0.00030	0.000972	< 0.0013
EV_ER4 FV FR4	EV ER4_WS_2022-08_MON_N EV ER4_WS_2022-09_MON_N	2022-08-08	+:	< 0.010	< 0.000050	0.009	21.2	0.00247	< 0.00051	0.624	12.2	< 0.000010	2.18	0.211	< 0.000010	< 0.00010	< 0.00030	0.00112	< 0.0010
EV_ER4	EV_ER4_WS_2022-09_MON_N EV_ER4_WS_2022-Q4_N	2022-09-06	Η.	< 0.010	< 0.000050	0.0096	22.6	0.00176	< 0.00050	0.024	15.4	< 0.000010	2.10	0.243	< 0.000010	< 0.00010	< 0.00030	0.00108	< 0.0010
EV_ER4 EV ER4	EV ER4 WS 2022-Q4 N EV ER4 WS 2022-11 MON N	2022-10-03	H	< 0.010	< 0.000050	0.0118	22.6	0.00124	< 0.00050	0.734	15.4	< 0.000010	2.59	0.254	< 0.000010	< 0.00010	< 0.00030	0.00123	< 0.0010
EV GC2	EV GC2 WS 2022-01-02 N	2022-01-02	<u> </u>	- 0.010	- 0.000030	0.0110	25.0	0.00123	- 0.00030	0.074	- 10	- 0.000010	2.09	0.233	- 0.000010	- 0.00010	- 0.00030	0.00129	- 0.0010
EV GC2	EV_GC2_WS_2022-01-02_N	2022-01-02	1					-	-		-	-	-	-	-		-		
EV GC2	EV GC2 WS 2022-Q1 N	2022-01-05	-	< 0.010	< 0.000050	0.0282	70.1	0.0092	0.00134	2.07	90.6	< 0.000010	8.11	0.408	< 0.000010	< 0.00010	< 0.00030	0.0038	0.0018
EV GC2	EV GC2 WS 2022-01-06 N 0915	2022-01-06		- 0.010	- 0.000000	-	70.1	0.0032	0.00104	-	-	- 0.000010	0.11	- 0.400	- 0.000010	- 0.00010	- 0.00000	-	0.0010
EV GC2	EV GC2 WS 2022-01-06 N 1209	2022-01-06	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV GC2	EV GC2 WS 2022-01-07 N	2022-01-07	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
EV GC2	EV GC2 WS 2022-01-08 N	2022-01-08	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-
EV GC2	EV GC2 WS 2022-01-09 N	2022-01-09	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV GC2	EV GC2 WS 2022-01-14 N	2022-01-14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
EV GC2	EV GC2 WS 2022-01-22 N	2022-01-22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV GC2	EV GC2 WS 2022-01-23 N 1306	2022-01-23	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-01-23_N_1628	2022-01-23	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-01-24_N	2022-01-24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-01-25_N	2022-01-25	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-01-28_N_1448	2022-01-28	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-01-28_N_0816	2022-01-28	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-01-29_N	2022-01-29	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-01-30_N	2022-01-30	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-01-31_N_1332	2022-01-31	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-01-31_N_1434	2022-01-31	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-01-31_N_1509	2022-01-31	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-01-31_N_1539	2022-01-31	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-01-31_N_1627	2022-01-31	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-01-31_N_1645	2022-01-31	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2 EV GC2	EV_GC2_WS_2022-01-31_N_0858 EV_GC2_WS_2022-01-31_N_1208	2022-01-31	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-
EV_GC2 EV GC2	EV_GC2_WS_2022-01-31_N_1208 EV_GC2_WS_2022-01-31_N_1231	2022-01-31	-	-			-	-	-		-	-	-	-	-	-	-	-	-
EV_GC2	EV GC2 WS 2022-01-31 N 1304	2022-01-31	٠.																
EV_GC2	EV GC2 WS 2022-02-01 N 1405	2022-02-01	-		-		-	-	-	-	-	-	-	-	-	-	-		-
EV_GC2	EV GC2 WS 2022-02-01 N 1506	2022-02-01	H:		 		-	-	-		-		-		-	- :	-		
EV_GC2	EV GC2 WS 2022-02-01 N 1538	2022-02-01	+	-			-	-	-		-	-	-	-	-	-	-		
EV GC2	EV_GC2_WS_2022-02-01_N_0744	2022-02-01	÷				-	-	-	-		-	-	-	-	-	-		
EV GC2	EV GC2 WS 2022-02-01 N 0843	2022-02-01	-	-			-	-	-	-	-	-	-	-	-	-	-		-
EV GC2	EV GC2 WS 2022-02-01 N 0933	2022-02-01	١.	-	+ - I	-	-	-	-		-	-	-	-	-	-	-	-	
EV GC2	EV GC2 WS 2022-02-01 N 1047	2022-02-01	-	-	-		-	-	-		-	-		-	-	-	-		-
EV GC2	EV GC2 WS 2022-02-01 N 1204	2022-02-01	+ -	-			-	-	-		-	-	-	-	-	-	-		
EV GC2	EV GC2 WS 2022-02-01 N 1508	2022-02-01	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV GC2	EV GC2 WS 2022-02-02 N 1605	2022-02-02	-	-	-		-	-	-	-	-	-	-	-	-	-	-		-
EV GC2	EV GC2 WS 2022-02-02 N 0759	2022-02-02	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-
		1 02	_		1														

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

^d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

			[Dissolve	ed Metals					
Sample	Sample	Sample Date	Hardness	Aluminum	Antimony	Arsenic	Barium	Beryllium	Bismuth	Boron	Cadmium	Calcium	Chromium	Cobalt	Copper
Location	ID	(mm/dd/yyyy)		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
				Acute			•				Acute				Acute
BC WQG FWAL			n/a	0.020-0.10 ^a 0.005-0.05 ^a	n/a	na	na	na	n/a	n/a	0.00004-0.0028 ^a 0.00002-0.00173 ^a	n/a	n/a	n/a	BLMe
Elkview Operation															
EV_GC2	EV_GC2_WS_2022-02-02_N_1135	2022-02-02		<u> </u>	-	-	-	-	-	-	-	-	-	-	
EV_GC2	EV_GC2_WS_2022-02-02_N_1250	2022-02-02	-	-	-	-	-	-	-	-	-	-	-	-	<u> </u>
EV_GC2	EV_GC2_WS_2022-02-03_N_1334	2022-02-03	-	<u> </u>	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-02-03_N_1434	2022-02-03	-	<u> </u>	-	-	-	-	-	-	-	-	-	-	
EV_GC2	EV_GC2_WS_2022-02-03_N_1557	2022-02-03	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-02-03_N_0725	2022-02-03	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-02-03_N_0840	2022-02-03	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-02-03_N_1000	2022-02-03	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-02-03_N_1101	2022-02-03	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-02-04_N_1336	2022-02-04	-	-	-	-	-	-	-	-	-	-	-	-	
EV_GC2	EV_GC2_WS_2022-02-04_N_1421	2022-02-04	-	-	-	-	-	-		-	-	-		-	-
EV_GC2	EV_GC2_WS_2022-02-04_N_0757	2022-02-04	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-02-04_N_1054	2022-02-04	-	-	-	-	-	-	-	-	-	-	-	-	
EV_GC2	EV_GC2_WS_2022-02-04_N_1236	2022-02-04	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-02-05_N	2022-02-05	-	-	-	-	-	-	-		-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-02_MON_N	2022-02-07	-	0.0074	0.00051	0.00017	0.104	< 0.020	< 0.000050	0.027	0.0000364	129		0.00014	0.00023
EV_GC2	EV_GC2_WS_2022-02-08_N	2022-02-08	-	0.0087	0.00065	0.00018	0.114	< 0.020	< 0.000050	0.026	0.0000294	128		0.00018	< 0.00020
EV_GC2	EV_GC2_WS_2022-02-09_N	2022-02-09	-	0.0096	0.00059	0.0002	0.105	< 0.020	< 0.000050	0.024	0.0000262	129		0.00016	< 0.00020
EV_GC2	EV_GC2_WS_2022-02-10_N_1330	2022-02-10	-	0.0069	0.00059	0.00018	0.108	< 0.020	< 0.000050	0.026	0.0000408	127		0.00019	0.00023
EV_GC2	EV_GC2_WS_2022-02-10_N_1722	2022-02-10	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-02-10_N_0925	2022-02-10	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-02-10_N_1005	2022-02-10	-	0.0077	0.0006	0.00021	0.106	< 0.020 < 0.020	< 0.000050	0.027	0.000039	128		0.00021	0.00033
EV_GC2	EV_GC2_WS_2022-02-11_N	2022-02-11	-	0.0193	0.00062	0.00019	0.0978		< 0.000050	0.027	< 0.0050	113		0.00019	0.00026
EV_GC2	EV_GC2_WS_2022-02-13_N	2022-02-13	-	0.0159	0.00052 0.00046	0.00025 0.00022	0.116	< 0.020 < 0.020	< 0.000050	0.027	0.0000676	117		0.00018	0.00034
EV_GC2	EV_GC2_WS_2022-02-14_N_1522 EV_GC2_WS_2022-02-14_N_1210	2022-02-14	-	0.015	0.00046	0.00022	0.118	< 0.020	< 0.000050	0.027	0.0000614	120	< 0.00010	0.00017	0.00041
EV_GC2 EV GC2	EV GC2 WS 2022-02-14 N 1210	2022-02-14		-					_	-	-	+ -			-
EV_GC2	EV GC2 WS 2022-02-15 N 0759	2022-02-15	-	-	-	-	-	-	-		-		-	-	-
EV_GC2	EV_GC2_WS_2022-02-15_N_0759 EV_GC2_WS_2022-02-16_N_1330			-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-02-16_N_1330 EV_GC2_WS_2022-02-16_N_0750	2022-02-16							-		-	-			-
EV_GC2	EV GC2 WS 2022-02-16 N 0/50 EV GC2 WS 2022-02-17 N 0820	2022-02-16	- 1	-	-	-	-	-	-	-	-	+ :	-	-	-
EV_GC2	EV_GC2_WS_2022-02-17_N_0820 EV_GC2_WS_2022-02-17_N_1222	2022-02-17		-	- :		-		- :	-	-	+ :	- :	-	-
EV_GC2	EV_GC2_WS_2022-02-17_N_1222 EV_GC2_WS_2022-02-18_N_1354	2022-02-17		-		-	-	-	-	-	-	-		-	-
EV_GC2	EV_GC2_WS_2022-02-18_N_1354 EV_GC2_WS_2022-02-18_N_0745	2022-02-18	-	-	-	-	-	-	-	-	-	+ :		-	-
EV_GC2	EV_GC2_WS_2022-02-18_N_0745 EV_GC2_WS_2022-02-19_N	2022-02-18		-	-		-	-	-	-	-	-		-	-
EV_GC2	EV GC2 WS 2022-02-19 N EV GC2 WS 2022-02-20 N 1509	2022-02-19		-	-		-		-	-	-	+ -		-	-
EV_GC2	EV GC2 WS 2022-02-20 N 0900	2022-02-20	+	<u>-</u>	-	-					-	+ -			-
EV_GC2	EV_GC2_WS_2022-02-20_N_0900 EV_GC2_WS_2022-02-22_N_1338	2022-02-20			- :	- :	- :				-	+ :	- :		
EV_GC2	EV GC2 WS 2022-02-22 N 0738	2022-02-22			-			-	-	-	-	+ -	-	-	-
EV_GC2	EV GC2 WS 2022-02-22 N 0724	2022-02-22			-	-		-	-	-	-	+ -	-	-	-
EV_GC2	EV GC2 WS 2022-02-23 N 1207	2022-02-23	1	-	- :		-	-	- :		-	+ :	- : -		-
EV_GC2	EV_GC2_WS_2022-02-23_N_1207 EV_GC2_WS_2022-02-24_N_1325	2022-02-23		<u>-</u>	-					-	-	+ -		-	-
EV_GC2	EV_GC2_WS_2022-02-24_N_1325 EV_GC2_WS_2022-02-24_N_0726	2022-02-24		<u>-</u>	-	-	-	-	-	-	-	+ -	-	-	-
EV_GC2	EV GC2 WS 2022-02-24 N 0726	2022-02-24			- :		-		-			+ -	- :		
EV_GC2	EV_GC2_WS_2022-02-25_N_1435 EV_GC2_WS_2022-02-25_N_0740	2022-02-25		-		-	-		- :		-	-	- : -	-	-
EV GC2	EV GC2 WS 2022-02-25 N 1457	2022-02-26	+ -	<u>-</u>				-		-	-	+ -		-	-
EV_GC2	EV GC2 WS 2022-02-26 N 0803	2022-02-26		<u> </u>	- :		-	-	-		-	+ :			-
EV_GC2	EV GC2 WS 2022-02-26 N 0603 EV GC2 WS 2022-02-27 N 1421	2022-02-20	1			-	-		<u> </u>	H :		+ -	- :-	-	-
EV_GC2	EV GC2 WS 2022-02-27 N 0932	2022-02-27	1			- :		- :				+ :	-:-		
EV_GC2	EV GC2 WS 2022-02-27 N 0532	2022-02-27	1			-		-				+ :			- -
2002		2022-02-20		-							-				

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

											Dissolv	ed Metals							
Sample	Sample	Sample Date	lardness	υo	ead	ithium	Magnesium	Nanganese	lickel	otassium	Selenium	Silver	Sodium	Strontium	Thallium	E	Titanium	Jranium	Zinc
Location	ID	(mm/dd/yyyy)		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
2004.011		(,g/ _		9.2	g	g/_	g	g. =		Pg-	9/2	g/ L	g.z	g		g/_	g/ _	g/_
				Acute															
BC WQG FWAL			n/a	0.35	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Elkview Operation																			
EV_GC2	EV_GC2_WS_2022-02-02_N_1135	2022-02-02		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-02-02_N_1250	2022-02-02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-02-03_N_1334	2022-02-03	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-02-03_N_1434	2022-02-03	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-02-03_N_1557	2022-02-03	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-02-03_N_0725	2022-02-03	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2 EV GC2	EV_GC2_WS_2022-02-03_N_0840 EV_GC2_WS_2022-02-03_N_1000	2022-02-03	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV GC2 WS 2022-02-03 N 1101	2022-02-03	-	-			-	-			-		-	-	-	-	-		-
EV_GC2	EV GC2 WS 2022-02-04 N 1336	2022-02-03	· ·				-	-	-		-	- :		-	-		-		-
EV_GC2	EV GC2 WS 2022-02-04 N 1421	2022-02-04	-				-	-	-	-	-			-		-	-		-
EV GC2	EV GC2 WS 2022-02-04 N 0757	2022-02-04	+÷	-	- : - 		- :	- :	- :		- : -	- :	- :	- :	-	- :	- :		- :
EV GC2	EV GC2 WS 2022-02-04 N 1054	2022-02-04	-	-				-	-	-	-		-	-		-	-		-
EV GC2	EV GC2 WS 2022-02-04 N 1236	2022-02-04	-	-	-		-	-	-	-	-		-	-	-	-	-		-
EV GC2	EV GC2 WS 2022-02-05 N	2022-02-05	-				-	-	-	-	-								
EV GC2	EV GC2 WS 2022-02 MON N	2022-02-07		< 0.010	< 0.000050	0.0316	69	0.0103	0.00125	1.95	74.7	< 0.000010	9.48	0.425	< 0.000010	< 0.00010	< 0.00030	0.00339	0.0012
EV GC2	EV GC2 WS 2022-02-08 N	2022-02-08	-	< 0.010	< 0.000050	0.0321	73	0.0154	0.00133	1.89	84.6	< 0.000010	9.21	0.468	< 0.000010	< 0.00010	< 0.00030	0.00348	0.0012
EV GC2	EV GC2 WS 2022-02-09 N	2022-02-09	-	< 0.010	< 0.000050	0.0296	69.5	0.0131	0.001	1.86	85.2	< 0.000010	9.05	0.43	< 0.000010	< 0.00010	< 0.00030	0.00356	< 0.0010
EV GC2	EV GC2 WS 2022-02-10 N 1330	2022-02-10	-	< 0.010	< 0.000050	0.0296	67.8	0.012	0.00134	2	82.3	< 0.000010	9.55	0.472	< 0.000010	< 0.00010	< 0.00030	0.00359	0.0016
EV GC2	EV GC2 WS 2022-02-10 N 1722	2022-02-10	-		- 0.000000	-	-	-	-	-	-	-	-	-	-	- 0.00010	- 0.00000	-	-
EV GC2	EV GC2 WS 2022-02-10 N 0925	2022-02-10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV GC2	EV GC2 WS 2022-02-10 N 1005	2022-02-10	-	< 0.010	< 0.000050	0.0306	69.9	0.0127	0.00145	2.05	84.5	< 0.000010	9.74	0.45	< 0.000010	< 0.00010	< 0.00030	0.00358	0.0016
EV_GC2	EV_GC2_WS_2022-02-11_N	2022-02-11	-	< 0.010	< 0.000050	0.0298	63.2	0.00597	0.00138	2.12	75.5	< 0.000010	10.9	0.456	< 0.000010	< 0.00010	< 0.00030	0.0027	< 0.0010
EV GC2	EV GC2 WS 2022-02-13 N	2022-02-13	-	< 0.010	< 0.000050	0.0295	61.5	0.011	0.00141	2.06	75.3	< 0.000010	10.4	0.453	< 0.000010	< 0.00010	< 0.00030	0.0031	0.0016
EV_GC2	EV_GC2_WS_2022-02-14_N_1522	2022-02-14	-	< 0.010	< 0.000050	0.0287	60.1	0.0107	0.00146	2.01	72.3	< 0.000010	10	0.443	< 0.000010	< 0.00010	< 0.00030	0.003	0.0014
EV_GC2	EV_GC2_WS_2022-02-14_N_1210	2022-02-14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-02-15_N_1403	2022-02-15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-02-15_N_0759	2022-02-15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-02-16_N_1330	2022-02-16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-02-16_N_0750	2022-02-16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-02-17_N_0820	2022-02-17	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-02-17_N_1222	2022-02-17	-	-	-	-	-	-	-	-	-	-	,	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-02-18_N_1354	2022-02-18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-02-18_N_0745	2022-02-18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-02-19_N	2022-02-19	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-02-20_N_1509	2022-02-20	٠.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-02-20_N_0900	2022-02-20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-02-22_N_1338	2022-02-22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-02-22_N_0738	2022-02-22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2 EV GC2	EV_GC2_WS_2022-02-23_N_0724	2022-02-23	٠.			-	-	-	-	-	-	-	-	-	-	-	-	-	
EV_GC2 EV GC2	EV_GC2_WS_2022-02-23_N_1207 EV_GC2_WS_2022-02-24_N_1325	2022-02-23	· ·			-	-		-	-		-	-			-		-	
EV_GC2 EV GC2	EV_GC2_WS_2022-02-24_N_1325 EV_GC2_WS_2022-02-24_N_0726	2022-02-24	· ·	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2 EV GC2	EV GC2 WS 2022-02-24 N 0726 EV GC2 WS 2022-02-25 N 1435	2022-02-24	-	-	 		-	-		-	-		-	-	-	-	-	-	
EV_GC2 EV GC2	EV GC2 WS 2022-02-25 N 0740	2022-02-25	1		1 1		-	-		-						-			
EV_GC2	EV GC2 WS 2022-02-25 N 1457	2022-02-25	H÷.	-				-	-		-				-	-	-		-
EV_GC2 EV GC2	EV GC2 WS 2022-02-26 N 0803	2022-02-26	+						-	-	-	- :		-	-		-		-
EV_GC2	EV GC2 WS 2022-02-26 N 1421	2022-02-20	H:		+								-	-		 			-
EV_GC2	EV GC2 WS 2022-02-27 N 0932	2022-02-27	+ -		-:-	:_	- :	- :	- :	- :	- :	- :	- :			- :		:_	
EV GC2	EV GC2 WS 2022-02-27 N 0932	2022-02-27	H÷.				-			-		1	-	-	-	-	-		- $=$ $=$
21_002	OOL O_ LOLL OL LO I _ I + I L	1 2022 02-20					1	1				1		l	1	<u> </u>	l		

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

^d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

									Dissolve	d Metals					
Sample	Sample	Sample Date	Hardness	uluminum	ntimony	rsenic	arium	eryllium	Sismuth	oron	admium	Salcium	hromium	obalt	Copper
Location	ID	(mm/dd/yyyy		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	. mg/L	mg/L	mg/L
Location	ID.	(IIIII/dd/yyyy	// IIIg/L	llig/L	IIIg/L	IIIg/L	IIIg/L	IIIg/L	IIIg/L	IIIg/L	l lig/L	IIIg/L	. IIIg/L	IIIg/L	1 0
				Acute							Acute				Acute
BC WQG FWAL			n/a	0.020-0.10 ^a 0.005-0.05 ^a	n/a	na	na	na	n/a	n/a	0.00004-0.0028 ^a 0.00002-0.00173 ^a	n/a	n/a	n/a	BLMe
Elkview Operation															
EV_GC2	EV_GC2_WS_2022-02-28_N_0740	2022-02-28		-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-03-01_N_1413	2022-03-01		-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-03-01_N_1750	2022-03-01	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-03-01_N_0723	2022-03-01		-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-03-02_N_1310	2022-03-02		-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-03-02_N_0830	2022-03-02		-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2 EV_GC2	EV GC2 WS 2022-03-03 N 1310	2022-03-03		-	-	-	-	-	-	-	-	-	-	-	
EV_GC2 EV_GC2	EV GC2 WS 2022-03-03 N 0735	2022-03-03		-	-	-	-	-	-	-	-	-	-	-	-
	EV_GC2_WS_2022-03-04_N_1316			-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-03-04_N_0751	2022-03-04		-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2 EV_GC2	EV_GC2_WS_2022-03-05_N_1357	2022-03-05		-	+ -	-	-	-	-	-	-	+-	-	-	-
EV_GC2 EV GC2	EV_GC2_WS_2022-03-05_N_0755 EV_GC2_WS_2022-03-06_N_1437	2022-03-05		-	-	-	-		-	-	-	-		-	-
				-							-		-		-
EV_GC2 EV_GC2	EV_GC2_WS_2022-03-06_N_0725	2022-03-06		-	-	-	-		-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-03-07_N_0735	2022-03-07		-	- 0.00040	0.0002	- 0.400	-		- 0.000	-	- 400	- 0.00040	- 0.00040	-
EV_GC2	EV_GC2_WS_2022-03-11_N EV_GC2_WS_2022-03-16_N	2022-03-11		0.0078	0.00049 0.0005	0.0002	0.106 0.0874	< 0.020 < 0.020	< 0.000050 < 0.000050	0.026 0.028	0.0000696	128 114		0.00013 0.00022	0.00055
				0.0074							0.0000592				0.00035
EV_GC2 EV_GC2	EV_GC2_WS_2022-03-16_N_0005 EV_GC2_WS_2022-03_MON_N	2022-03-16			0.00041	0.00016	0.107	< 0.020	< 0.000050	0.027		107	< 0.00010	0.00017	
EV_GC2	EV MC6 WS 2022-03 MON N	2022-03-17		0.0144	0.00041	0.00016	0.107	< 0.020	< 0.000050	0.027	0.0000558	1107		0.00017	0.00035
EV_GC2	EV_MC6_WS_2022-03_MON_N EV_MC8_WS_2022-03_MON_N	2022-03-17		0.0145	< 0.0004	< 0.00018	< 0.00010	< 0.020	< 0.000050	< 0.027	0.0000636	< 0.05		< 0.10	0.00038
EV_GC2	EV_MC6_WS_2022-03_MON_N EV_GC2_WS_2022-03_WEK13_N	2022-03-17		< 0.0010	- 0.00010	- 0.00010	< 0.00010	- 0.020	- 0.000050	- 0.010	< 0.0050	- 0.05	- 0.00010	- 0.10	< 0.00020
EV_GC2	EV GC2 WS 2022-03_WEX13_N EV GC2 WS 2022-03-24 N 0634	2022-03-21		-	+ :-			- :			-	-		-	-
EV_GC2	EV GC2 WS 2022-03-24 N 1115	2022-03-24		-			_		-		-				-
EV_GC2	EV_GC2_WS_2022-03-24_N_1113 EV_GC2_WS_2022-03-24_N_1251	2022-03-24		-			-	- :	-		-	-		-	-
EV_GC2	EV_GC2_WS_2022-03-24_N_1251 EV_GC2_WS_2022-03-25_N_0645	2022-03-25		-	+ :-	-:-		- :			-	+ :	- :	-	
EV_GC2	EV GC2 WS 2022-03-25 N 1401	2022-03-26	+-	-	+ :-	-					-	+ -	-	-	-
EV_GC2	EV GC2 WS 2022-03-26 N 1557	2022-03-26	1	-	+ :						-	+ -	-	-	-
EV_GC2	EV_GC2_WS_2022-03-26_N_1557 EV_GC2_WS_2022-03-26_N_0752	2022-03-26	+-	-	+ :-	- : -					-	-	-	-	-
EV_GC2	EV GC2 WS 2022-03-26 N 0/32	2022-03-26	+-	-							-	+ :			-
EV_GC2	EV GC2 WS 2022-03-27_N EV GC2 WS 2022-03 WEK14 N	2022-03-27	+ :	-	-	-	-	-	-	-	-	+ -	-	-	-
EV_GC2	EV GC2 WS 2022-03-WER14_N	2022-03-28		-	+ :-	- :-					-	+ :	- :	-	-
EV_GC2	EV_GC2_WS_2022-03-26_N_0/0/	2022-03-29	+ :-	-	+ :	-			-		-	+ -	-	-	-
EV_GC2	EV_GC2_WS_2022-03-29 N_1543	2022-03-29	+ :	-	+ -	-			-		-	+ -	-	-	-
EV_GC2	EV_GC2_WS_2022-03-29 N_0750	2022-03-29	+ :-		+ :-	- :			-	- :	-	+ -			-
EV_GC2	EV GC2 WS 2022-03-30 N 0728	2022-03-30	+ :		+ -		-		-		-	+ -	-	-	
EV_GC2	EV GC2 WS 2022-03-30 N 1357	2022-03-30	+ -	-	+ :-	- :	-		-		-	+ :		-	-
EV_GC2	EV_GC2_WS_2022-03-31_N_1337	2022-03-31	+ -		+ :	-:-					-	+ :	- :		
EV_GC2	EV GC2 WS 2022-03-31 N 1210	2022-03-31	+ :	-	+ -	-	-				-	+ -	-	-	-
EV_GC2	EV GC2 WS 2022-04-01 N 1457	2022-04-01	+ :		+ :-	- : -	-		-			+ -	-	-	
EV_GC2	EV GC2 WS 2022-04-01 N 1556	2022-04-01	+ -		+ :-	- : -	- :		- :	-:-	-	+ -	-		-
EV_GC2	EV GC2 WS 2022-04-01 N 0743	2022-04-01	+ -	-	+ -				-			+ -		-	-
EV_GC2	EV GC2 WS 2022-04-01 N 1554	2022-04-01	+ -		+ :-						- :	+:	-	-	- :
EV_GC2	EV GC2 WS 2022-04-02 N 0807	2022-04-02	+ -		+ :-					- :	-	+ :	- :	-	
EV_GC2	EV GC2 WS 2022-04 WEK15 N	2022-04-02	+ -		+	1 - 1	- -		-	-	-	+ -	-	-	- :
EV GC2	EV GC2 WS 2022-Q2 N	2022-04-12	+ :	0.0131	0.00032	0.00021	0.139	< 0.020	< 0.000050	0.024	0.0000628	103	< 0.00010	0.0001	< 0.00060
EV_GC2	EV GC2 WS 2022-02 N	2022-04-12		0.0131	0.00032	0.00021	0.100	- 0.020	. 0.000000	0.024	0.0000020	100	- 0.00010	0.0001	<u>\ 0.00060</u>
EV_GC2	EV GC2 WS 2022-04 WEK17 N	2022-04-16			+ -	1 -	1 -		-	-	-	+ -	1 -	-	1 -
EV GC2	EV_GC2_WS_2022-04-25_N_0757	2022-04-25			+ -	-	-		-		-	+ -	-	-	<u> </u>
EV GC2	EV GC2 WS 2022-05 MON N	2022-05-05		0.0182	0.00031	0.00018	0.124	< 0.020	< 0.000050	0.022	0.0000359	97.2	< 0.00010		0.00042
L00L		2022 00-00	1	0.0102	0.00001	0.00070	0.127		. 0.000000	0.022	0.0000339	02	1 .0.00010		0.00042

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

							_												
Sample	Sample	Sample Date	Hardness	E G	-ead	Lithium	Magnesium	Manganese	Vickel	otassium	Selenium	Silver	Sodium	Strontium	Thallium	E	fitanium	Jranium	Zinc
Location	ID	(mm/dd/yyyy)		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
	·-	[(13-				g. =				F5:-							g. =	
				Acute															
C WQG FWAL			n/a	0.35	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Ikview Operation		_																	
EV_GC2	EV_GC2_WS_2022-02-28_N_0740	2022-02-28	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-03-01_N_1413	2022-03-01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-03-01_N_1750	2022-03-01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-03-01_N_0723	2022-03-01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-03-02_N_1310	2022-03-02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-03-02_N_0830	2022-03-02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-03-03_N_1310	2022-03-03	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2 EV_GC2	EV GC2 WS 2022-03-03 N 0735 EV GC2 WS 2022-03-04 N 1316	2022-03-03	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		2022-03-04	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-03-04_N_0751	2022-03-04	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2 EV_GC2	EV_GC2_WS_2022-03-05_N_1357 EV_GC2_WS_2022-03-05_N_0755	2022-03-05	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV GC2 WS 2022-03-05 N 1437	2022-03-05	-		-		-	-	-	-	-			-	-	-	-	-	-
			_															-	
EV_GC2 EV_GC2	EV GC2 WS 2022-03-06 N 0725	2022-03-06	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-03-07_N_0735 EV_GC2_WS_2022-03-11_N	2022-03-07	-	< 0.010	< 0.000050	0.0284	64.6	0.0104	0.00132	1.95	72.6	< 0.000010	11.2	0.552	< 0.000010	< 0.00010	< 0.00030	0.00311	0.0024
EV_GC2	EV GC2 WS 2022-03-11 N EV GC2 WS 2022-03-16 N	2022-03-11	-	< 0.010	< 0.000050	0.0284	50.5	0.0104	0.00132	2.07	52.9	< 0.000010	10.6	0.552	< 0.000010	< 0.00010	< 0.00030	0.00311	0.0024
EV_GC2	EV_GC2_WS_2022-03-16_N EV_GC2_WS_2022-03-16_N_0005		-																
EV_GC2	EV GC2 WS 2022-03-16 N 0005	2022-03-16	-	< 0.010	< 0.000050	0.0277	52.5	0.0127	0.00125	1.94	54.4	< 0.000010	11.4	0.491	< 0.000010	< 0.00010	< 0.00030	0.00256	0.0014
EV_GC2	EV MC6 WS 2022-03 MON N	2022-03-17	-	< 0.010	< 0.000050	0.0277	52.5	0.0127	0.00125	1.94	54.4	< 0.000010	11.4	0.491	< 0.000010	< 0.00010	< 0.00030	0.00256	0.0014
EV_GC2 EV GC2	EV_MC6_WS_2022-03_MON_N EV_MC8_WS_2022-03_MON_N	2022-03-17	-	< 0.010	< 0.000050	< 0.0010	< 0.0050	< 0.00124	< 0.00126	< 0.050	< 0.050	< 0.000010	< 0.050	< 0.00020	< 0.000010	< 0.00010	< 0.00030	< 0.00256	< 0.0015
EV_GC2	EV GC2 WS 2022-03 WEK13 N	2022-03-17	-	< 0.010	< 0.000050	< 0.0010	< 0.0050	< 0.00010	< 0.00050	< 0.050	< 0.050	< 0.000010	< 0.050	< 0.00020	< 0.000010	< 0.00010	< 0.00030	< 0.000010	< 0.0010
EV_GC2	EV GC2 WS 2022-03-WER13-N	2022-03-21	<u> </u>								- :	- :		-	-	- :	- :	-	-:-
EV_GC2	EV GC2 WS 2022-03-24 N 1115	2022-03-24									-	-		-					
EV_GC2	EV GC2 WS 2022-03-24 N 1251	2022-03-24					-	-	-		-	-		-	-	-	-	-	
EV_GC2	EV GC2 WS 2022-03-25 N 0645	2022-03-25	-	- :	- : -					- :	- :	- :		-		- :			- :
EV GC2	EV GC2 WS 2022-03-25 N 1401	2022-03-26						-				-			-	-			
EV GC2	EV GC2 WS 2022-03-26 N 1557	2022-03-26	-	-	-		-	-	-	-	-	-		-	-	-	-	-	-
EV_GC2	EV GC2 WS 2022-03-26 N 0752	2022-03-26	-	- :	- : -			-			- :		-:-		- :	- :			- :
EV_GC2	EV GC2 WS 2022-03-27 N	2022-03-20	-		- : -		-	- :	-	- :		-	-:-	-	-		-		- :
EV GC2	EV GC2 WS 2022-03 WEK14 N	2022-03-21	-		-		-	-	-	-	-	-		-	-	-	-		-
EV GC2	EV GC2 WS 2022-03-28 N 0707	2022-03-28	-				-	-	-	-	-	-		-	-	-	-		-
EV_GC2	EV GC2 WS 2022-03-29 N 1543	2022-03-29	-				-	-	-		-	-		-	-	-	-	-	-
EV_GC2	EV GC2 WS 2022-03-29 N 0750	2022-03-29	-				-	-	-	-		-		-	-	-	-		-
EV GC2	EV GC2 WS 2022-03-29 N 07-30	2022-03-29	-					-	-		-	-		-	-	-	-	-	-
EV GC2	EV GC2 WS 2022-03-30 N 0728	2022-03-30	-		-		-	-	-	-	-	-		-	-	-	-	-	-
EV GC2	EV GC2 WS 2022-03-31 N 1357	2022-03-31	-	-	-		-	-	-	-	-	-		-	-	-	-	-	-
EV GC2	EV GC2 WS 2022-03-31 N 0754	2022-03-31	-	-	-		-	-	-	-	-	-		-	-	-	-	-	
EV GC2	EV GC2 WS 2022-03-31 N 1210	2022-03-31	-	-	- 1		-	-	-	-	-	-	-	-	-	-	-	-	-
EV GC2	EV GC2 WS 2022-04-01 N 1457	2022-04-01	-	-	- 1		-	-	-	-	-	-	-	-	-	-	-	-	-
EV GC2	EV GC2 WS 2022-04-01 N 1556	2022-04-01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV GC2	EV GC2 WS 2022-04-01 N 0743	2022-04-01	-	-	- 1	_	-	-	-	-	-	-	-	-	-	-	-	-	-
EV GC2	EV GC2 WS 2022-04-02 N 1554	2022-04-02	-	-	- 1	_	-	-	-	-	-	-	-	-	-	-	-	-	-
EV GC2	EV GC2 WS 2022-04-02 N 0807	2022-04-02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV GC2 WS 2022-04 WEK15 N	2022-04-04	-	-	- 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV GC2	EV GC2 WS 2022-Q2 N	2022-04-12	-	< 0.010	< 0.000050	0.0216	49.6	0.00756	0.00112	1.74	43.1	< 0.000010	8.56	0.461	< 0.000010	< 0.00010	< 0.00030	0.00228	0.0014
EV GC2	EV GC2 WS 2022-04 WEK17 N	2022-04-18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV GC2	EV GC2 WS 2022-04 WEK18 N	2022-04-25	-	-	- 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV GC2	EV GC2 WS 2022-04-25 N 0757	2022-04-25	-	-		-	-	-	-	-	-	-		-	-	-	-		-
EV GC2	EV GC2 WS 2022-05 MON N	2022-05-05	-	< 0.010	< 0.000050	0.0201	46.7	0.00458	0.00098	1.54	50.2	< 0.000010	6.88	0.367	< 0.000010	< 0.00010	< 0.00030	0.00214	< 0.0010

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

^d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

			[Dissolve	ed Metals						
Sample	Sample	Sample Date	Hardness	Aluminum	Antimony	Arsenic	Sarium	Seryllium	Sismuth	Soron		Cadmium	Salcium	Chromium	Sobalt	Copper
Location	ID	(mm/dd/yyyy		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	m	a/L	mg/L	mg/L	mg/L	mg/L
	.U	(mm/dd/yyyy		Acute		•	•				Acute	Chronic			•	Acute
BC WQG FWAL			n/a	0.020-0.10 ^a 0.005-0.05 ^a	n/a	na	na	na	n/a	n/a	0.00004-0.0028 ^a	0.00002-0.00173 ^a	n/a	n/a	n/a	BLM ^e
Elkview Operation	EV 1100 WO 0000 05 110W W	0000 05 05				0.0000	0.100		0.000050	0.000				0.00040	0.10	
EV_GC2	EV_MC6_WS_2022-05_MON_N	2022-05-05	-	0.0246	0.00033	0.0002	0.123	< 0.020	< 0.000050	0.022		00362	96		< 0.10	0.00066
EV_GC2	EV_MC8_WS_2022-05_MON_N	2022-05-05	-	< 0.0010	< 0.00010	< 0.00010	< 0.00010	< 0.020	< 0.000050	< 0.010	< 0.	.0050	< 0.050		< 0.10	< 0.00020
EV_GC2	EV_GC2_WS_2022-05-07_N_1832	2022-05-07	-	-	-	-	-	-	-	-			-	-	-	-
EV_GC2	EV_GC2_WS_2022-05-07_N_0655	2022-05-07	-	-	-	-	-	-	-	-			-	-	-	-
EV_GC2	EV_GC2_WS_2022-05-08_N_1837	2022-05-08	-	-	-	-	-	-	-	-		-	-	-		-
EV_GC2	EV_GC2_WS_2022-05-08_N_0700	2022-05-08	-	-	-	-	-	-	-	-			-	-	-	-
EV_GC2	EV_GC2_WS_2022-05-09_N_0655	2022-05-09	-	-	-	-	-	-	-	-		-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-05_WEK20_N	2022-05-10	-	-	-	-	-	-	-	-			-	-	-	-
EV_GC2	EV_GC2_WS_2022-05-10_N_1846	2022-05-10	-	-	-	-	-	-	-	-			-	-	-	-
EV_GC2	EV_GC2_WS_2022-05-10_N_0650	2022-05-10	-	-	-	-	-	-	-	-			-	-	-	-
EV_GC2	EV_GC2_WS_2022-05-11_N_0800	2022-05-11	-	-	-	-	-	-	-	-			-	-	-	-
EV_GC2	EV_GC2_WS_2022-05_WEK21_N	2022-05-16	-	_	-	-	-	-	-	-			-	-	-	-
EV_GC2	EV_GC2_WS_2022-05_WEK22_N	2022-05-24	-	-	-	-	-	-	-	-			-	-	-	-
EV_GC2	EV_GC2_WS_2022-05_WEK23_N	2022-05-30	-	-	-	-	-	-	-	-		-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-06_MON_N	2022-06-08	-	0.0294	0.00034	0.00015	0.101	< 0.020	< 0.000050	0.024	0.00	00142	126	< 0.00010	< 0.10	0.00026
EV_GC2	EV_GC2_WS_2022-06-13_N_1742	2022-06-13	-	-	-	-	-	-	-	-			-	-	-	-
EV_GC2	EV_GC2_WS_2022-06_WEK25_N	2022-06-14	-	-	-	-	-	-	-	-			-	-	-	-
EV GC2	EV GC2 WS 2022-06-14 N 0740	2022-06-14	-	-	-	-	-	-	-	-			-	-	-	-
EV GC2	EV GC2 WS 2022-06-14 N 2106	2022-06-14	-	-	-	-	-	-	-	-			-	-	-	
EV GC2	EV GC2 WS 2022-06-15 N 1553	2022-06-15	- 1		-	-	-	-	-	-		-	-	-	-	-
EV GC2	EV GC2 WS 2022-06-15 N 0840	2022-06-15	- 1		-	-	-	-	-	-		-	-	-	-	-
EV GC2	EV GC2 WS 2022-06-16 N 0800	2022-06-16	- 1		-	-	-	-	-	-		_	-	-	-	_
EV GC2	EV GC2 WS 2022-06-18 N 0810	2022-06-18	-		-	-	-	-	-	-			-	-	-	-
EV GC2	EV GC2 WS 2022-06-19 N 1825	2022-06-19	- 1	-	-	-	-	-	-	-		-	-	-	-	-
EV GC2	EV GC2 WS 2022-06-19 N 0735	2022-06-19	- 1		-	-	-	-	-	-		-	-	-	-	
EV GC2	EV GC2 WS 2022-06-20 N 1550	2022-06-20	- 1	0.0195	0.00036	0.00029	0.146	< 0.020	< 0.000050	0.026	0.00	00255	101	< 0.00010	0.00014	0.00059
EV GC2	EV GC2 WS 2022-06-20 N 0730	2022-06-20	- 1	0.0193	-	-	-	-	-	-	0.00	00233	-	-	-	0.00039
EV GC2	EV GC2 WS 2022-06-21 N	2022-06-21	H . I	0.0203	0.00037	0.00026	0.16	< 0.020	< 0.000050	0.025	0.00	00275	108	0.0001	0.00014	0.00064
EV GC2	EV GC2 WS 2022-06 NP	2022-06-22	1	0.0203	0.00034	0.00023	0.14	< 0.000020	< 0.000050	0.025		00275	107	< 0.00050	0.00014	0.00064
EV GC2	EV GC2 WS 2022-06 WEK27 N	2022-06-27	1		0.00004	0.00020	0.14	- 0.000020	- 0.000000	0.020		-	- 107	- 0.00000	0.00012	0.00054
EV GC2	EV GC2 WS 2022-07-05 N	2022-07-05	-	0.0208	0.00044	0.00026	0.176	< 0.020	< 0.000050	0.025		00402	106	< 0.00010	0.00016	0.00042
EV_GC2	EV GC2 WS 2022-07-05_N	2022-07-06	-	0.0208	0.00044	0.00025	0.170	< 0.020	< 0.000050	0.023		00402	111	< 0.00010	0.00010	0.00042
EV GC2	EV GC2 WS 2022-Q3_N EV GC2 WS 2022-07 WEK29 N	2022-07-00	1	0.0237	0.00041	0.00023	0.139	~ 0.020	- 0.000030	0.024		- 00332		- 0.00010	0.00014	0.00035
EV GC2	EV GC2 WS 2022-07 WER25 N	2022-07-11	1	0.0298	0.00036	0.00018	0.0968	< 0.020	< 0.000050	0.019		00095	122	< 0.00010	< 0.10	0.00023
EV GC2	EV GC2 WS 2022-09 MON N	2022-09-07	1	0.0298	0.00030	0.00016	0.0952	< 0.020	< 0.000050	0.015		.0050	118	< 0.00010	< 0.10	0.00023
EV GC2	EV GC2 WS 2022-Q4 N	2022-10-05	1		0.0004	0.00010	0.0932	< 0.020	< 0.000050	0.023			125	< 0.00010	0.00014	< 0.00020
EV GC2	EV GC2 WS 2022-Q4_N	2022-10-03	1	0.012	0.0004	0.00016	0.0849	< 0.020	< 0.000050	0.025		.0050	128	< 0.00010	< 0.10	
EV_GC2	EV GC2 WS 2022-11_MON_N	2022-11-05	1	0.0029 0.0041	0.00023	0.00018	0.0300	< 0.020	< 0.000050	0.025		00284 00313	140	< 0.00010	< 0.10	0.00021 0.00021
EV GC2	EV GC2 WS 2022-11-15 N	2022-11-13	1	0.0041	0.00027	0.00017	0.0773	< 0.020	< 0.000050	0.026		00288	141	< 0.00010	< 0.10	0.00021
EV_GC2	EV GC2 WS 2022-11-17 N	2022-11-17	1	0.0057	0.00028	0.00017	0.0773	< 0.020	< 0.000050	0.026			128	< 0.00010	< 0.10	
EV_GC2 EV LC1	EV_GC2_W3_2022-11-19_N EV_LC1_WS_2022-Q1_N	2022-11-19	1	0.0048	0.00023	0.00018	0.0601	< 0.020	< 0.000050	0.024		00303	82	< 0.00010	0.00034	0.00031
EV_LC1	EV LC1 WS 2022-02 MON N	2022-01-14	-	< 0.0024	0.00021	0.00014	0.132	< 0.020	< 0.000050	0.030		00151	88.6	< 0.00010	0.00034	0.00046
EV_LC1	EV_LC1_WS_2022-02_MON_N EV_LC1_WS_2022-03_MON_N	2022-02-07	H -		0.00019	0.00013	0.141	< 0.020	< 0.000050	0.042		00537	99.3	< 0.00010	0.00013	
EV_LC1	EV_LC1_WS_2022-03_MON_N EV_LC1_WS_2022-Q2_N	2022-04-11	-	0.0021	0.00025	0.00016	0.168	< 0.020	< 0.000050	0.035		00994	99.3	< 0.00010	< 0.10	0.00056
EV_LC1	EV_LC1_WS_2022-Q2_N EV_LC1_WS_2022-04-15_N	2022-04-11		0.0013	0.00022	0.00014	0.156	< 0.020	< 0.000050	0.046		00017	102	< 0.00010	< 0.10	0.00043
				0.0011		0.00012		< 0.020	< 0.000050	0.046		00146	91.4			0.00036
EV_LC1 EV LC1	EV_LC1_WS_2022-05_MON_N EV_LC1_WS_2022-06_MON_N	2022-05-05	-	< 0.0010	0.00022	0.00016	0.16 0.158	< 0.020	< 0.000050	0.042		00152		< 0.00010 < 0.00010	< 0.10 < 0.10	0.00037
		2022-06-08	-	< 0.0010	0.00019		0.158	< 0.020				00096	122			0.00026
EV_LC1	EV_LC1_WS_2022-Q3_N	2022-07-06	-	0.004	0.0002	0.00018			< 0.000050 < 0.000050	0.043		00648	120	< 0.00010	< 0.10	0.00054
EV_LC1	EV_LC1_WS_2022-08_MON_N	2022-08-08	-	< 0.0010		0.0002	0.212	< 0.020		0.044		00252	115	< 0.00010	< 0.10	0.00035
EV_LC1	EV_LC1_WS_SESMP_2022_08_N	2022-08-12	-	< 0.0010	0.00015	0.00014	0.183	< 0.020	< 0.000050	0.047	0.00	00258	123	0.00036	< 0.10	0.00033

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

											Dissolv	ed Metals							- 1
Sample	Sample	Sample Date	Hardness	lon	Lead	Lithium	Magnesium	Manganese	Nickel	Potassium	Selenium	Silver	Sodium	Strontium	Thallium	Ē	Titanium	Uranium	Zinc
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
	•																		
				Acute															
C WQG FWAL			n/a	0.35	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Ikview Operation																			
EV_GC2	EV_MC6_WS_2022-05_MON_N	2022-05-05	-	0.013	< 0.000050	0.0198	46.7	0.00503	0.00101	1.58	48.6	< 0.000010	6.86	0.381	< 0.000010	< 0.00010	< 0.00030	0.00216	0.0019
EV_GC2 EV GC2	EV_MC8_WS_2022-05_MON_N EV_GC2_WS_2022-05-07_N_1832	2022-05-05	-	< 0.010	< 0.000050	< 0.0010	< 0.0050	< 0.00010	< 0.00050	< 0.050	< 0.050	< 0.000010	< 0.050	< 0.00020	< 0.000010	< 0.00010	< 0.00030	< 0.000010	< 0.0010
EV_GC2	EV GC2 WS 2022-05-07 N 1632 EV GC2 WS 2022-05-07 N 0655	2022-05-07	<u> </u>	-	-		-	-				- :	-	-	-	- :		-	
EV_GC2	EV GC2 WS 2022-05-07 N 0655 EV GC2 WS 2022-05-08 N 1837	2022-05-08	<u> </u>	-	-		-	-	-	-	-	-		-		-	-	-	-
EV_GC2	EV GC2 WS 2022-05-08 N 0700	2022-05-08						-			- :		- :	-	-	-	-	- :	
EV GC2	EV GC2 WS 2022-05-09 N 0655	2022-05-09	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV GC2	EV GC2 WS 2022-05 WEK20 N	2022-05-10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV GC2	EV GC2 WS 2022-05-10 N 1846	2022-05-10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-05-10_N_0650	2022-05-10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV GC2 WS 2022-05-11 N 0800	2022-05-11	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-05_WEK21_N	2022-05-16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-05_WEK22_N	2022-05-24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-05_WEK23_N	2022-05-30	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-06_MON_N	2022-06-08	-	< 0.010	< 0.000050	0.0272	59.8	0.00669	0.00077	1.72	72.4	< 0.000010	6.55	0.421	< 0.000010	< 0.00010	< 0.00030	0.00309	< 0.0010
EV_GC2	EV_GC2_WS_2022-06-13_N_1742	2022-06-13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-06_WEK25_N	2022-06-14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-06-14_N_0740	2022-06-14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-06-14_N_2106	2022-06-14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2 EV GC2	EV_GC2_WS_2022-06-15_N_1553 EV_GC2_WS_2022-06-15_N_0840	2022-06-15	-	-		-	-	-	-		-	-	-	-	_		-	-	
EV_GC2	EV GC2 WS 2022-06-15 N 0800	2022-06-15	-	-	-		-	-	-				- :	-	-		-		-
EV_GC2	EV GC2 WS 2022-06-18 N 0810	2022-06-18	+ :-	- :					- :		-:-	- :		- :	-	- :	- :		-
FV GC2	EV GC2 WS 2022-06-19 N 1825	2022-06-19	٠.	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV GC2	EV GC2 WS 2022-06-19 N 0735	2022-06-19	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV GC2	EV GC2 WS 2022-06-20 N 1550	2022-06-20	-	< 0.010	< 0.000050	0.0227	51.5	0.0101	0.00126	2.03	52.5	< 0.000010	7.52	0.387	< 0.000010	< 0.00010	< 0.00030	0.00253	< 0.0010
EV_GC2	EV_GC2_WS_2022-06-20_N_0730	2022-06-20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-06-21_N	2022-06-21	-	< 0.010	< 0.000050	0.0232	52.8	0.00995	0.00131	2	51.1	< 0.000010	7.28	0.417	< 0.000010	< 0.00010	< 0.00030	0.00258	< 0.0010
EV_GC2	EV_GC2_WS_2022-06_NP	2022-06-22	-	< 0.010	< 0.000050	0.0229	52.8	0.0109	0.00114	1.93	59.6	< 0.000010	7.12	0.404	< 0.000010	< 0.00010	< 0.00030	0.0026	< 0.0010
EV_GC2	EV_GC2_WS_2022-06_WEK27_N	2022-06-27	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-07-05_N	2022-07-05	-	< 0.010	< 0.000050	0.0238	56.5	0.0127	0.00119	2.36	73.8	< 0.000010	7.83	0.413	< 0.000010	< 0.00010	< 0.00030	0.00317	0.0067
EV_GC2	EV_GC2_WS_2022-Q3_N	2022-07-06	-	< 0.010	< 0.000050	0.0277	65.9	0.00889	0.00124	2.18	78.9	< 0.000010	7.84	0.406	< 0.000010	< 0.00010	< 0.00030	0.00298	< 0.0010
EV_GC2	EV_GC2_WS_2022-07_WEK29_N	2022-07-11	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-08_MON_N	2022-08-10	-	< 0.010	< 0.000050	0.0277	76.7	0.00295	0.00154	2.12	112	< 0.000010	6.91	0.329	< 0.000010	< 0.00010	< 0.00030	0.00432	< 0.0010
EV_GC2 EV GC2	EV_GC2_WS_2022-09_MON_N EV_GC2_WS_2022-Q4_N	2022-09-07	-	< 0.010 < 0.010	< 0.000050	0.0298 0.03	80.3 82.7	0.00237	0.00104	2.02 2.05	122 107	< 0.000010	7.8	0.389	< 0.000010	< 0.00010	< 0.00030	0.00422	< 0.0010
EV_GC2 EV_GC2	EV_GC2_WS_2022-Q4_N EV_GC2_WS_2022-11_MON_N	2022-10-05 2022-11-09	-	< 0.010	< 0.000050 < 0.000050	0.03	82.7 75.2	0.00342 0.00779	0.00117 0.00129	1.94	60	< 0.000010 < 0.000010	8.82 8.32	0.367 0.436	< 0.000010 < 0.000010	< 0.00010 < 0.00010	< 0.00030 < 0.00030	0.0034 0.00289	< 0.0010 0.0017
EV_GC2	EV GC2 WS 2022-11_MON_N	2022-11-09	H÷.	< 0.010	< 0.000050	0.0285	72.2	0.00779	0.00129	1.94	80.8	< 0.000010	8.68	0.436	< 0.000010	< 0.00010	< 0.00030	0.00289	0.0017
EV_GC2	EV_GC2_WS_2022-11-15_N EV_GC2_WS_2022-11-17_N	2022-11-15	H÷.	< 0.010	< 0.000050	0.0326	75.3	0.00764	0.00122	1.92	89	< 0.000010	8.5	0.463	< 0.000010	< 0.00010	< 0.00030	0.00354	0.0021
EV GC2	EV GC2 WS 2022-11-17 N	2022-11-17	H	< 0.010	< 0.000050	0.0293	80.1	0.00777	0.0013	2.06	110	< 0.000010	8.84	0.442	< 0.000010	< 0.00010	< 0.00030	0.00334	0.0020
EV LC1	EV LC1 WS 2022-Q1 N	2022-01-14	-	< 0.010	< 0.000050	0.0532	59.3	0.0242	0.002	3.94	3.66	< 0.000010	8.1	0.434	< 0.000010	< 0.00010	< 0.00030	0.0026	0.0058
EV LC1	EV LC1 WS 2022-02 MON N	2022-02-07	-	< 0.010	< 0.000050	0.0597	64.2	0.0221	0.00153	4.02	3.68	< 0.000010	8.35	0.424	< 0.000010	< 0.00010	< 0.00030	0.00279	0.002
EV_LC1	EV_LC1_WS_2022-03_MON_N	2022-03-16	-	< 0.010	< 0.000050	0.0524	58.8	0.0154	0.00157	3.97	5.1	< 0.000010	6.74	0.458	< 0.000010	< 0.00010	< 0.00030	0.00295	0.003
EV_LC1	EV_LC1_WS_2022-Q2_N	2022-04-11	-	< 0.010	< 0.000050	0.0676	73.7	0.00959	0.00158	4.61	6.16	< 0.000010	9.08	0.499	< 0.000010	< 0.00010	< 0.00030	0.00329	< 0.0010
EV_LC1	EV_LC1_WS_2022-04-15_N	2022-04-15	-	< 0.010	< 0.000050	0.0661	71.3	0.00967	0.00154	4.04	6.02	< 0.000010	7.83	0.495	< 0.000010	< 0.00010	< 0.00030	0.00343	< 0.0010
EV_LC1	EV_LC1_WS_2022-05_MON_N	2022-05-05	-	< 0.010	< 0.000050	0.0623	71	0.00873	0.00151	4.23	5.75	< 0.000010	8.16	0.496	< 0.000010	< 0.00010	< 0.00030	0.00326	< 0.0010
EV_LC1	EV_LC1_WS_2022-06_MON_N	2022-06-08	-	0.021	< 0.000050	0.0686	77.5	0.00404	0.00116	4.16	5.08	< 0.000010	7.78	0.548	< 0.000010	< 0.00010	< 0.00030	0.00327	< 0.0010
EV_LC1	EV_LC1_WS_2022-Q3_N	2022-07-06	-	0.012	< 0.000050	0.0694	84.7	0.00774	0.00214	4.93	4.62	< 0.000010	8.4	0.527	< 0.000010	< 0.00010	< 0.00030	0.00261	0.0292
EV_LC1	EV_LC1_WS_2022-08_MON_N	2022-08-08	-	0.022	< 0.000050	0.0661	84.8	0.00241	0.00215	4.67	1.89	< 0.000010	8.59	0.517	0.00001	< 0.00010	< 0.00030	0.00297	0.0016
EV_LC1	EV_LC1_WS_SESMP_2022_08_N	2022-08-12		0.026	< 0.000050	0.0701	79.3	0.00338	0.00216	4.35	1.92	< 0.000010	8.65	0.533	0.000011	< 0.00010	< 0.00030	0.00305	0.002

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

^d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

									Dissolve	d Metals						
			,	E	P			_				-		E		
			rdnes	n min u	ntimon	senic	ricm	ryllium	aunth m	ē.			lcium	romiu	balt	Copper
Sample	Sample	Sample Date		Ā	¥	¥	Ba	Be	ě	₈	į č	3	င်ခ	5	ပိ	ပိ
Location	ID	(mm/dd/yyyy	/) mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	m	g/L	mg/L	mg/L	mg/L	mg/L
				vcute Chronic							Acute	Shronic				Acute Chronic
WQG FWAL			n/a	0.020-0.10 ^a 0.005-0.05 ^a	n/a	na	na	na	n/a	n/a	0.00004-0.0028 ^a	0.00002-0.00173 ^a	n/a	n/a	n/a	BLM°
kview Operation				•												•
EV_LC1	EV_LC1_WS_2022-09_MON_N	2022-09-07		0.0065	0.00013	0.00014	0.182	< 0.020	< 0.000050	0.043	0.00	00332	124		< 0.10	0.00038
EV_LC1	EV_LC1_WS_2022-Q4_N	2022-10-03		< 0.0010	0.00014	< 0.00010	0.201	< 0.020	< 0.000050	0.043	0.00	8000	128	< 0.00010	< 0.10	0.00024
EV_LC1	EV_ER5_WS_2022-Q4_N	2022-10-03		0.0011	0.00014	0.00013	0.2	< 0.020	< 0.000050	0.042	0.00	00384	128	< 0.00010	< 0.10	0.00034
EV_LC1	EV_ER7_WS_2022-Q4_N	2022-10-03	-	< 0.0010	< 0.00010	< 0.00010	< 0.00010	< 0.020	< 0.000050	< 0.010	< 0.	0050	< 0.050	0.00010	< 0.10	< 0.00020
EV_LC1	EV_LC1_WS_2022-11_MON_N	2022-11-09		< 0.0010	0.00014	0.00011	0.143	< 0.020	< 0.000050	0.037	0.00	00229	103	< 0.00010	< 0.10	0.00025
EV_MC2	EV_MC2_WS_2022-01-06_N-SRF	2022-01-06		0.0023	< 0.00010	0.00014	0.106	< 0.020	< 0.000050	0.012	0.00	00186	76.2	0.00013	0.00013	0.00027
EV_MC2	EV_MC2_WS_2022-01-17_N-SRF	2022-01-17		0.0019	< 0.00010	0.00016	0.106	< 0.020	-	-	0.00	00202	67.6	0.00012	-	0.0002
EV_MC2	EV MC2 WS 2022 Q1 N	2022-01-18		0.0018	< 0.00010	0.00016	0.108	< 0.020	< 0.000050	0.013		00257	69.3	0.00013	0.00013	< 0.00020
EV_MC2	EV_MC2_WS_2022-01-31_N-SRF	2022-01-31		0.0014	< 0.00010	0.00012	0.0963	< 0.020	< 0.000050	0.011		00231	68	0.00012	0.00012	< 0.00020
EV_MC2	EV_MC2_WS_2022_Q1_WK0_N	2022-02-01	-	0.0018	< 0.00010	0.00016	0.116	< 0.020	< 0.000050	0.014	0.00	00315	79.1	0.00013	0.00015	< 0.00020
EV_MC2	EV_MC2_WS_2022-02_MON_N	2022-02-08		0.0017	< 0.00010	0.00016	0.122	< 0.020	< 0.000050	0.013	0.00	00229	79.3	0.00028	0.00013	< 0.00020
EV_MC2	EV_MC2_WS_2022-02-14_N-SRF	2022-02-14	-	0.0012	< 0.00010	0.00013	0.104	< 0.020	< 0.000050	0.011	0.00	00201	71.4	0.00013	< 0.00010	0.00029
EV_MC2	EV_MC2_WS_2022_Q1_WK1_N	2022-02-15	-	0.001	0.00011	0.00014	0.107	< 0.020	< 0.000050	0.013	0.00	00267	82.5	0.00015	0.0001	< 0.00020
EV_MC2	EV_MC2_WS_2022_Q1_WK2_N	2022-02-22	-	0.0014	0.00013	0.00015	0.134	< 0.020	< 0.000050	0.016		00472	97.1	0.00014	0.00023	0.00022
EV_MC2	EV_MC2_WS_2022-02-28_N-SRF	2022-03-01	-	0.0011	< 0.00010	0.00013	0.108	< 0.020	< 0.000050	0.013	0.00	00028	80.3	0.00014	0.00012	0.00026
EV_MC2	EV_MC2_WS_2022_Q1_WK3_N	2022-03-01	-	< 0.0010	< 0.00010	0.00013	0.1	< 0.020	< 0.000050	0.012	0.00	00238	73.5	0.00013	0.00012	< 0.00020
EV_MC2	EV_MC2_WS_2022_Q1_WK4_N	2022-03-08	-	0.0016	< 0.00010	0.00014	0.103	< 0.020	< 0.000050	0.012		0024	77.5	0.00012	0.0001	< 0.00020
EV MC2	EV MC2 WS 2022-03-14 N-SRF	2022-03-14	-	0.0016	0.00011	0.00013	0.102	< 0.020	< 0.000050	0.011		00217	67.4	0.00012	0.0001	< 0.00020
EV MC2	EV MC2 WS 2022 Q1 WK5 N	2022-03-15	-	< 0.0010	< 0.00010	0.00014	0.104	< 0.020	< 0.000050	0.011		00212	73.7	0.00014	0.00011	< 0.00020
EV MC2	EV MC2 WS 2022-03 MON N	2022-03-16	-	0.0038	< 0.00010	0.00013	0.0953	< 0.020	< 0.000050	0.013		00019	81.5	0.0001	0.0001	< 0.00020
EV MC2	EV MC5 WS 2022-03 MON N	2022-03-16	-	0.0022	< 0.00010	0.00012	0.0934	< 0.020	< 0.000050	0.012		00025	80.2	0.00012	0.0001	< 0.00020
EV MC2	EV MC2 WS 2022-03-21 N-SRF	2022-03-21	-	0.0026	< 0.00010	0.00014	0.11	< 0.020	< 0.000050	0.013		00265	78	0.00013	0.0001	< 0.00020
EV MC2	EV MC2 WS 2022-03 WEK13 N	2022-03-22	-	0.003	0.0001	0.00014	0.104	< 0.020	< 0.000050	0.013		00029	77.2	0.00014	0.00011	0.00026
EV MC2	EV MC5 WS 2022-03 WEK13 N	2022-03-22		0.0026	< 0.00010	0.00013	0.105	< 0.020	< 0.000050	0.014		00332	76.2	0.00013	0.00011	< 0.00020
EV MC2	EV MC2 WS 2022-03-28 N-SRF	2022-03-28	-	0.002	< 0.00010	0.00014	0.111	< 0.020	< 0.000050	< 0.010		00208	66.2	0.0002	< 0.10	0.00032
EV MC2	EV MC2 WS 2022-03-28 N-SRF 1	2022-03-28		-	-	-	-	-	-	-			72.3	-	-	
EV MC2	EV MC2 WS 2022-03 WEK14 N	2022-03-29	-	0.0045	< 0.00010	0.00016	0.105	< 0.020	< 0.000050	0.011	0.00	00025	62.6	0.00013	< 0.10	0.00033
EV MC2	EV MC5 WS 2022-03 WEK14 N	2022-03-29	-	0.0016	< 0.00010	0.00016	0.0949	< 0.020	< 0.000050	0.012		00273	66	< 0.00010	< 0.10	0.00026
EV MC2	EV MC2 WS 2022-04-04 N-SRF	2022-04-04		0.0059	0.00011	0.00016	0.108	< 0.020	< 0.000050	0.01		00219	62.8	< 0.00010	< 0.10	0.00028
EV MC2	EV MC2 WS 2022-04 WEK15 N	2022-04-05	-	0.0016	< 0.00010	0.00014	0.102	< 0.020	< 0.000050	0.011		00243	67.9	< 0.00010	< 0.10	0.00024
EV MC2	EV MC5 WS 2022-04 WEK15 N	2022-04-05	-	0.0016	< 0.00010	0.00015	0.101	< 0.020	< 0.000050	0.012		00271	71.1	< 0.00010	< 0.10	0.00024
EV MC2	EV MC2 WS 2022-04-10 N-SRF	2022-04-10		-	-	-	-	-	-			-	66	-	-	0.00024
EV MC2	EV MC2 WS 2022-04-11 N-SRF	2022-04-11		0.0019	0.00012	0.00015	0.0974	< 0.020	< 0.000050	0.011		00224	72.4	0.00013	< 0.10	0.00037
EV_MC2	EV_MC2_WS_2022-04-11_N-SRF_1	2022-04-11		-	-	-	-	-	-	-	0.00		66.2	-	-	
EV_MC2	EV_MC2_WS_2022-Q2_N	2022-04-12	-	0.0042	0.00011	0.00014	0.104	< 0.020	< 0.000050	0.011	0.00	00262	66.8	0.00011	< 0.10	0.0011
EV_MC2	EV_MC2_WS_2022-04-12_N-SRF	2022-04-12		-	-	-	-	-		-		-	71.7	-	-	
EV_MC2	EV_MC2_WS_2022-04-13_N-SRF	2022-04-13		-	-	-	-	-	-	-		-	72.5	-	-	-
EV_MC2	EV_MC2_WS_2022-04-14_N-SRF	2022-04-14	-	-	-	-	-	-	-	-			68.5	-	-	-
EV_MC2	EV_MC2_WS_2022-04-15_N-SRF	2022-04-15	-	-	-	-	-	-	-	-			68.1	-	-	-
EV_MC2	EV_MC2_WS_2022-04-16_N-SRF	2022-04-16	-	-	-	-	-	-	-	-		-	67.8	-	-	-
EV_MC2	EV_MC2_WS_2022-04-17_N-SRF	2022-04-17	-	-	-	-	-	-	- 1	-	1	-	66.4	-	-	-
EV_MC2	EV_MC2_WS_2022-04-18_N-SRF	2022-04-18	1 -	0.0022	0.0001	0.00017	0.112	< 0.020	< 0.000050	0.011	0.00	00192	70.5	0.00012	< 0.10	0.00029
EV_MC2	EV_MC2_WS_2022-04-18_N-SRF_1	2022-04-18	1 -	-	-	-	-	-		-		-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-04_WEK17_N	2022-04-19	1 -	0.0016	< 0.00010	0.00016	0.115	< 0.020	< 0.000050	0.011	0.00	00252	66.2	< 0.00010	< 0.10	0.00022
EV_MC2	EV_MC5_WS_2022-04_WEK17_N	2022-04-19		0.0019	0.00011	0.00035	0.116	< 0.020	< 0.000050	0.011		00291	68.2	0.00011	< 0.10	0.00022
EV MC2	EV MC2 WS 2022-04-19 N-SRF	2022-04-19		-	-	-	-	-	-		0.00		73.6	-	-	- 0.00020
EV MC2	EV MC2 WS 2022-04-20 N-SRF	2022-04-20		-	-	-	-	-	-	-		-	77.2	-	-	-
EV MC2	EV MC2 WS 2022-04-21 N-SRF	2022-04-21	1 -	-	-	-	-	-		-	t		70.5	-	-	-
EV_MC2	EV_MC2_WS_2022-04-22_N-SRF	2022-04-22	-	_	-	-	-	-	-	-			70.2	-	-	-
EV MC2	EV MC2 WS 2022-04-23 N-SRF	2022-04-23	1 -		-	-	-	-	-				71.8	-	-	

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

^d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

											Dissolv	ed Metals							
Sample	Sample	Sample Date	Hardness	lon	Lead	Lithium	Magnesium	Manganese	Nickel	Potassium	Selenium	Silver	Sodium	Strontium	Thallium	Ę	Titanium	Uranium	Zinc
Location	ID	(mm/dd/yyyy)		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
					, i			, i	- ŭ			, i		Ĭ		, i	ŭ		
				Acute															1
BC WQG FWAL			n/a	0.35	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Elkview Operation																			
EV_LC1	EV_LC1_WS_2022-09_MON_N	2022-09-07	-	< 0.010	< 0.000050	0.0616	77	0.0014	0.00181	4.29	1.43	< 0.000010	8.22	0.54	< 0.000010		< 0.00030	0.00289	0.0016
EV_LC1	EV_LC1_WS_2022-Q4_N	2022-10-03	-	< 0.010	< 0.000050 < 0.000050	0.0641	76.9 76.9	0.00632 0.00619	0.00216 0.00212	4.69 4.69	1.68 1.6	< 0.000010 < 0.000010	8.3 8.24	0.544	0.000012 0.000011	< 0.00010 < 0.00010	< 0.00030 < 0.00030	0.00278 0.00285	0.0022 0.0017
EV_LC1 EV LC1	EV_ER5_WS_2022-Q4_N EV_ER7_WS_2022-Q4_N		-	< 0.010	< 0.000050	< 0.0047	< 0.0050	< 0.00019	< 0.00212	< 0.050	< 0.050	< 0.000010	< 0.050	< 0.00020	< 0.000011	< 0.00010	< 0.00030	< 0.00285	< 0.0017
EV_LC1	EV_ER/_WS_2022-Q4_N EV_LC1_WS_2022-11_MON_N	2022-10-03	-	< 0.010	< 0.000050	0.0604	68.8	0.00368	0.00050	4.07	3.28	< 0.000010	7.34	0.438	< 0.000010	< 0.00010	< 0.00030	0.00261	< 0.0010
EV_LC1	EV MC2 WS 2022-01-06 N-SRF	2022-01-06		< 0.010	< 0.000050	0.0004	25.6	0.00308	0.0017	0.972	8.15	< 0.000010	5.36	0.430	< 0.000010	< 0.00010	< 0.00030	0.00201	0.0015
EV_MC2	EV MC2 WS 2022-01-05 N-SRF	2022-01-17	-	< 0.010	- 0.000000	0.0121	25.3	0.00271	0.00177	0.903	8.09	< 0.000010	4.46	0.177	< 0.000010	- 0.00010	< 0.00030	0.00124	< 0.0010
EV MC2	EV MC2 WS 2022 Q1 N	2022-01-18	-	< 0.010	< 0.000050	0.0125	29	0.00298	0.00193	0.984	9.66	< 0.000010	5.24	0.186	< 0.000010	< 0.00010	< 0.00030	0.00143	< 0.0010
FV MC2	EV MC2 WS 2022-01-31 N-SRF	2022-01-31	-	< 0.010	< 0.000050	0.0111	26.2	0.00258	0.00165	0.876	7.86	< 0.000010	4.69	0.165	< 0.000010		< 0.00030	0.00126	< 0.0010
EV MC2	EV MC2 WS 2022 Q1 WK0 N	2022-02-01	-	< 0.010	< 0.000050	0.0143	31	0.00326	0.00209	1.04	15.5	< 0.000010	5.34	0.201	< 0.000010	< 0.00010	< 0.00030	0.00157	0.0013
EV MC2	EV MC2 WS 2022-02 MON N	2022-02-08	-	< 0.010	< 0.000050	0.0138	31.2	0.00272	0.00208	1.06	9.14	< 0.000010	5.1	0.19	< 0.000010		< 0.00030	0.00156	0.0016
EV MC2	EV MC2 WS 2022-02-14 N-SRF	2022-02-14	-	< 0.010	< 0.000050	0.012	29.3	0.00219	0.00211	0.979	10.8	< 0.000010	4.36	0.18	< 0.000010	< 0.00010	< 0.00030	0.00156	< 0.0010
EV_MC2	EV_MC2_WS_2022_Q1_WK1_N	2022-02-15	-	< 0.010	0.00008	0.0156	34.3	0.00222	0.00242	1.11	14.9	< 0.000010	5.34	0.2	< 0.000010	< 0.00010	< 0.00030	0.00163	< 0.0010
EV_MC2	EV_MC2_WS_2022_Q1_WK2_N	2022-02-22	-	< 0.010	< 0.000050	0.0202	46.4	0.00554	0.00342	1.43	16.6	< 0.000010	6.08	0.242	< 0.000010		< 0.00030	0.00232	0.0035
EV_MC2	EV_MC2_WS_2022-02-28_N-SRF	2022-03-01	-	< 0.010	< 0.000050	0.013	32	0.0026	0.00214	1.02	10.1	< 0.000010	5.17	0.197	< 0.000010	< 0.00010	< 0.00030	0.00153	0.0049
EV_MC2	EV_MC2_WS_2022_Q1_WK3_N	2022-03-01	-	< 0.010	< 0.000050	0.0131	30	0.00247	0.00218	1.05	11.1	< 0.000010	5.81	0.179	< 0.000010	< 0.00010	< 0.00030	0.00156	< 0.0010
EV_MC2	EV_MC2_WS_2022_Q1_WK4_N	2022-03-08	-	< 0.010	< 0.000050	0.0148	31	0.00227	0.00205	0.966	9.41	< 0.000010	4.83	0.189	< 0.000010	< 0.00010	< 0.00030	0.00135	< 0.0010
EV_MC2	EV_MC2_WS_2022-03-14_N-SRF	2022-03-14	-	< 0.010	< 0.000050	0.0129	28.6	0.00209	0.00207	1.05	14.2	< 0.000010	4.91	0.19	0.000013	< 0.00010	< 0.00030	0.00153	0.0016
EV_MC2	EV_MC2_WS_2022_Q1_WK5_N	2022-03-15	-	< 0.010	< 0.000050	0.0134	32	0.00227	0.00228	1.05	10.9	< 0.000010	5.18	0.18	< 0.000010	< 0.00010	< 0.00030	0.0015	< 0.0010
EV_MC2	EV_MC2_WS_2022-03_MON_N	2022-03-16	-	< 0.010	< 0.000050	0.0141	30.9	0.00226	0.00186	1.04	10.8	< 0.000010	5.04	0.193	< 0.000010		< 0.00030	0.0015	< 0.0010
EV_MC2	EV_MC5_WS_2022-03_MON_N	2022-03-16	-	< 0.010	< 0.000050	0.0141	30	0.00222	0.00174	1.01	11	< 0.000010	4.93	0.192	< 0.000010		< 0.00030	0.00155	< 0.0010
EV_MC2	EV_MC2_WS_2022-03-21_N-SRF	2022-03-21	-	< 0.010	< 0.000050	0.0152	30.6	0.00234	0.00199	1.08	11.5	< 0.000010	5.43	0.191	< 0.000010	< 0.00010	< 0.00030	0.00162	0.0012
EV_MC2 EV_MC2	EV_MC2_WS_2022-03_WEK13_N	2022-03-22	-	0.024	< 0.000050	0.0159	31	0.00284	0.00188	1.09	12.6	< 0.000010	5.51	0.189	< 0.000010	< 0.00010	< 0.00030	0.00156	< 0.0010
EV_MC2 EV MC2	EV_MC5_WS_2022-03_WEK13_N EV_MC2_WS_2022-03-28_N-SRF	2022-03-22	-	< 0.010 < 0.010	< 0.000050 < 0.000050	0.0159	30.2 25	0.00239 0.00133	0.00182 0.0019	1.06 0.876	11.8 12.7	< 0.000010	5.3 4.22	0.189 0.164	< 0.000010 < 0.000010	< 0.00010 < 0.00010	< 0.00030	0.00156 0.00115	< 0.0010
EV_MC2 EV MC2	EV_MC2_WS_2022-03-28_N-SRF EV_MC2_WS_2022-03-28_N-SRF_1	2022-03-28	-	< 0.010	< 0.000050	0.009	31	0.00133	0.0019	0.876	12.7	< 0.000010	5.38	0.164	< 0.000010	< 0.00010	< 0.00030	0.00115	0.0026
EV_MC2	EV MC2 WS 2022-03-26 N-SRF_1	2022-03-29	-	< 0.010	< 0.000050	0.0104	26.3	0.00139	0.00118	0.992	11.7	< 0.000010	4.86	0.165	< 0.000010	< 0.00010	< 0.00030	0.00104	0.0026
EV MC2	EV MC5 WS 2022-03 WEK14 N	2022-03-29	<u> </u>	< 0.010	< 0.000050	0.0104	26.7	0.00139	0.00116	0.963	13.9	< 0.000010	5.01	0.103	< 0.000010	< 0.00010	< 0.00030	0.00104	< 0.0020
EV MC2	EV MC2 WS 2022-04-04 N-SRF	2022-03-29	-	0.024	< 0.000050	0.0124	25.6	0.00114	0.00100	0.953	10.5	< 0.000010	4.4	0.170	< 0.000010	< 0.00010	< 0.00030	0.00107	0.0034
EV_MC2	EV MC2 WS 2022-04-04_N-0N	2022-04-05	-	< 0.010	< 0.000050	0.0117	27.7	0.00102	0.00124	0.977	11.4	< 0.000010	4.87	0.174	< 0.000010	< 0.00010	< 0.00030	0.0012	< 0.0010
EV MC2	EV MC5 WS 2022-04 WEK15 N	2022-04-05	-	< 0.010	< 0.000050	0.014	29.8	0.00135	0.00122	1.06	13.7	< 0.000010	5.44	0.185	< 0.000010		< 0.00030	0.00121	< 0.0010
EV MC2	EV MC2 WS 2022-04-10 N-SRF	2022-04-10	-	- 0.010	- 0.000000	0.011	26.1	0.00100	0.00122	0.837	10.7	- 0.000010	4.18	0.100	- 0.000010	- 0.00010	- 0.00000	0.00121	- 0.0010
EV MC2	EV MC2 WS 2022-04-11 N-SRF	2022-04-11	-	< 0.010	< 0.000050	0.0107	25.7	0.00139	0.00142	0.879	12.3	< 0.000010	4.36	0.193	< 0.000010	< 0.00010	< 0.00030	0.00116	0.0021
EV MC2	EV MC2 WS 2022-04-11 N-SRF 1	2022-04-11	-	-	-	-	26.2	-	-	0.85	-	-	4.36	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-Q2_N	2022-04-12	-	0.01	< 0.000050	0.0109	27	0.00148	0.00132	0.921	15.6	< 0.000010	4.62	0.181	< 0.000010	0.00022	< 0.00030	0.00126	0.0022
EV_MC2	EV_MC2_WS_2022-04-12_N-SRF	2022-04-12	-	-	-	-	27.5		-	0.872	-	-	4.58	-	-	-	-		-
EV_MC2	EV_MC2_WS_2022-04-13_N-SRF	2022-04-13	-	-	-	-	27.9	-	-	0.839	-	-	4.58	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-04-14_N-SRF	2022-04-14	-	-	-	-	29.4	-	-	0.89	-	-	4.52	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-04-15_N-SRF	2022-04-15	-		-	-	29.6	-		0.876	-	-	4.23	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-04-16_N-SRF	2022-04-16	-	-	-	-	28.5	-	-	0.855	-	-	4.06	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-04-17_N-SRF	2022-04-17	-	-	-		26.9	-	-	0.825	-		4.05	-	-	-	-	-	
EV_MC2	EV_MC2_WS_2022-04-18_N-SRF	2022-04-18	-	0.01	< 0.000050	0.012	30.6	0.00186	0.00162	1.04	14.6	< 0.000010	4.88	0.193	< 0.000010	< 0.00010	< 0.00030	0.00156	0.0019
EV_MC2	EV_MC2_WS_2022-04-18_N-SRF_1	2022-04-18	-	-		-	-	-	-	-	-	-	-	-	-	-		-	-
EV_MC2	EV_MC2_WS_2022-04_WEK17_N	2022-04-19	-	< 0.010	< 0.000050	0.011	29.8	0.00127	0.00119	0.932	16.2	< 0.000010	4.82	0.177	< 0.000010	< 0.00010	< 0.00030	0.00131	< 0.0010
EV_MC2	EV_MC5_WS_2022-04_WEK17_N	2022-04-19	-	< 0.010	0.000088	0.0112	30	0.0013	0.00124	0.943	15.6	< 0.000010	4.86	0.178	< 0.000010	< 0.00010	< 0.00030	0.00132	< 0.0010
EV_MC2	EV_MC2_WS_2022-04-19_N-SRF	2022-04-19	-		-	-	29.6	-	-	0.942	-	-	4.94		-	-		-	-
EV_MC2 EV_MC2	EV_MC2_WS_2022-04-20_N-SRF EV_MC2_WS_2022-04-21_N-SRF	2022-04-20 2022-04-21	-	-	-	-	32.5 27.9	-	-	0.999 0.809		-	4.97 4.12	-	-	-	-	-	
EV_MC2 EV MC2	EV_MC2_WS_2022-04-21_N-SRF EV_MC2_WS_2022-04-22_N-SRF	2022-04-21	-				27.7		-	0.809			4.12	-	-				-
EV_MC2	EV_MC2_WS_2022-04-22_N-SRF EV_MC2_WS_2022-04-23_N-SRF	2022-04-22	H:		 		32		-	0.928			4.68		-				
E V_IVIOZ	2. WOT 110 TOT 11-20 IN-21/1	2022-04-23		_	_	-	L 52		-	0.020			1 7.00	_			_	-	

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

^d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

									Dissolve	ed Metals						
				-										_		
			lness	ninun	ntimony	jui Si	Ę	yllium	ut th	- E	-		Ë	min	#	j e
Sample	Sample	Sample Date	a a	į.	Ę	l sr	Ē	l ê	l iš	ğ]	0	Salc	Ĕ	g	Coppe
Location	ID	(mm/dd/yyyy		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	m	g/L	mg/L	mg/L	mg/L	mg/L
Location		(// ····g/-		g	g/_	g	9.2	g	9.2		<u> </u>	g	g		l o
				Acute							Acute	Chroni				Acute
WQG FWAL			n/a	0.020-0.10 ^a 0.005-0.05 ^a	n/a	na	na	na	n/a	n/a	0.00004-0.0028 ^a	0.00002-0.00173 ^a	n/a	n/a	n/a	BLMe
kview Operation																
EV_MC2	EV_MC2_WS_2022-04-24_N-SRF	2022-04-24			-	-	-	-	-	-		-	82.4	-	-	
EV_MC2	EV_MC2_WS_2022-04-25_N-SRF_1	2022-04-25		-			-	-				-	-		-	
EV_MC2	EV_MC2_WS_2022-04-25_N-SRF	2022-04-25		0.0031	0.0001	0.00017	0.11	< 0.020	< 0.000050	0.012	0.00	00298	64.4	< 0.00010	< 0.10	0.00041
EV_MC2	EV_MC2_WS_2022-04-26_N-SRF	2022-04-26			-	-	-	-	-	-		-	62.9	-	-	
EV_MC2	EV_MC2_WS_2022-04-26_N-SRF_P	2022-04-26	-	-	-	-	-	-	-	-		-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-04-26_N-SRF_UP	2022-04-26	-	-			-	-		-			-			
EV_MC2	EV_MC2_WS_2022-04_WEK18_N	2022-04-26		0.0034	< 0.00010	0.00016	0.109	< 0.020	< 0.000050	0.01		00378	61.2	< 0.00010	< 0.10	0.00036
EV_MC2	EV_MC5_WS_2022-04_WEK18_N	2022-04-26	-	0.0029	< 0.00010	0.00016	0.101	< 0.020	< 0.000050	0.01	0.00	00237	58.7	< 0.00010	< 0.10	0.00039
EV_MC2	EV_MC2_WS_2022-04-27_N-SRF	2022-04-27	1 -		-	-	-	-	-	-		-	53.9	-	-	-
EV_MC2	EV_MC2_WS_2022-04-27_N-SRF_P	2022-04-27			-	-	-	-	-	-			-	-	-	-
EV_MC2	EV_MC2_WS_2022-04-27_N-SRF_UP	2022-04-27	-	-	-	-	-	-	-	-		-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-04-28_N-SRF	2022-04-28	-		-	-	-	-	-	-			56.3	-	-	-
EV_MC2	EV_MC2_WS_2022-04-29_N-SRF	2022-04-29	_	-	-	-	-	-	-	-		-	63.7	-	-	
EV_MC2	EV_MC2_WS_2022-04-30_N-SRF	2022-04-30	-	-	-	-	-	-	-	-			63.6	-	-	-
EV_MC2	EV_MC2_WS_2022-05-01_N-SRF	2022-05-01	-		-	-	-	-	-	-			67.7	-	-	-
EV_MC2	EV_MC2_WS_2022-05-01_N-SRF_P	2022-05-01	-		-	-	-	-	-	-			-	-	-	-
EV_MC2	EV_MC2_WS_2022-05-01_N-SRF_UP	2022-05-01	-			-	-	-		-				-		
EV_MC2	EV_MC2_WS_2022-05-02_N-SRF	2022-05-02		0.004	< 0.00010	0.00018	0.0862	< 0.020	< 0.000050	< 0.010		00183	50.4	0.00014	< 0.10	0.00035
EV_MC2	EV_MC2_WS_2022-05-02_N-SRF_1	2022-05-02		-	-	-	-	-	-	-		-	-	-	-	<u> </u>
EV_MC2	EV_MC2_WS_2022-05-03_N-SRF	2022-05-03	-		< 0.00010	0.00017	0.0822	< 0.020	_	_		<u> </u>	52.9	< 0.00010	-	
EV_MC2 EV MC2	EV_MC2_WS_2022-05_MON_N	2022-05-03	-	0.005					< 0.000050	< 0.010	0.00	00167	50.3 41.6		< 0.10	0.00032
EV_MC2 EV MC2	EV_MC2_WS_2022-05-04_N-SRF EV_MC2_WS_2022-05-05_N-SRF	2022-05-04		-	+ :	-	-	-	-	-		-	41.6	-	-	- -
EV_IVIC2 EV_MC2	EV MC2 WS 2022-05-05 N-SRF	2022-05-05	<u> </u>			_	_						29.2	-		-
EV_MC2 EV MC2	EV_MC2_WS_2022-05-06_N-SRF EV_MC2_WS_2022-05-07_N-SRF	2022-05-06	1	-		-	-	-		-		-	36.6	-	-	-
EV_MC2	EV MC2 WS 2022-05-07 N-SRF	2022-05-07		-	-				-			-	41.7	- :		-
EV_MC2	EV_MC2_WS_2022-05-06_N-SRF	2022-05-09	H -	-	< 0.00010	0.00018	0.0717	< 0.020	< 0.000050	< 0.010		-	40.5	0.00014	< 0.10	
EV_MC2	EV MC2 WS 2022-05-10 N-SRF	2022-05-10	H	0.0113	- 0.00010	0.00016	0.0717	- 0.020	- 0.000030	- 0.010		00249	46.9	0.00014	- 0.10	0.00038
EV_MC2	EV_MC2_WS_2022-05-10_N-SRF EV_MC2_WS_2022-05-11_N-SRF	2022-05-10	<u> </u>	-	-	-	-	-	-			-	40.9	-		-
EV_MC2	EV_MC2_WS_2022-05-11_N-SRF EV_MC2_WS_2022-05_WEK20_N	2022-05-11	<u> </u>		< 0.00010	0.00019	0.081	< 0.020	< 0.000050	0.01		-	45.5	0.0001	< 0.10	
EV_MC2	EV MC5 WS 2022-05 WER20 N	2022-05-11	<u> </u>	0.0072	< 0.00010	0.00019	0.0817	< 0.020	< 0.000050	< 0.010		00216	44.9	0.00012	< 0.10	0.00033
EV_MC2	EV MC2 WS 2022-05-12 N-SRF	2022-05-11		0.009	< 0.00010	0.0002	0.0617	V 0.020	< 0.000050	< 0.010		00241	44.9	0.00012	V 0.10	0.00038
EV_MC2	EV_MC2_WS_2022-05-12_N-SRF	2022-05-12		-	+ :				-	-		-	1	-		-
EV_MC2	EV MC2 WS 2022-05-12 N-SRF	2022-05-12		 	+ :-				-	-			1	-		-
EV_IVIC2 FV_MC2	EV_MC2_WS_2022-05-13_N-SRF	2022-05-13			-	-	-		-	- :		-	+ :-	-	- :	-
EV_MC2	EV MC2 WS 2022-05-14 N-SRF	2022-05-13			+ -	-	-						+ -	-		
EV_MC2	EV MC10 WS 2022-05-14 N-SRF	2022-05-14		<u> </u>	+ :-	-	-	-	-			-		-		-
FV MC2	EV MC2 WS 2022-05-14_N-SRF	2022-05-15		-	+ :-	- :		- :	-	- :		-	+ :	- :		
EV_MC2	EV MC10 WS 2022-05-15 N-SRF	2022-05-15		-	+ :-	-			-	-		-	+ -	-		-
FV_MC2	EV MC2 WS 2022-05-16 N-SRF	2022-05-16		0.0078	0.00014	0.00015	0.078	< 0.020	< 0.000050	< 0.010		00222	43.4	0.00014	< 0.10	0.00033
EV_MC2	EV_MC2_WS_2022-05-16_N-SRF_1	2022-05-16		0.0078	0.00074	- 0.00010	- 0.070	- 0.020	- 0.000000	- 0.010		- 00222		0.00014	- 0.10	0.00033
EV MC2	EV MC10 WS 2022-05-16 N-SRF	2022-05-16		0.0067	< 0.00010	0.00019	0.078	< 0.020	< 0.000050	< 0.010		00234	43.9	0.00014	< 0.10	0.00039
EV_MC2	EV_MC2_WS_2022-05-10_N-SK1	2022-05-17	1	0.0067	< 0.00010	0.00019	0.076	< 0.020	< 0.000050	< 0.010		00234	37.7	0.00014	< 0.10	0.00039
EV_MC2	EV MC5 WS 2022-05 WER21 N	2022-05-17	1	0.0223	< 0.00010	0.00018	0.0672	< 0.020	< 0.000050	< 0.010		00254	37.1	0.00013	< 0.10	0.00066
EV_MC2	EV MC2 WS 2022-05-17 N-SRF	2022-05-17	+ -		- 0.00010	- 0.0002	- 0.0072	- 0.020	- 0.000000	- 0.010		- 00254	- 57.1	0.00014	- 0.10	
EV MC2	EV MC10 WS 2022-05-17 N-SRF	2022-05-17	١.		+ -	-		-	-	-		-	-	-	-	
EV_MC2	EV_MC10_W3_2022-03-17_N-SKI	2022-05-17	1	-				-		- :		·	+ -		- :	-
EV_MC2	EV MC10 WS 2022-05-18 N-SRF	2022-05-18	1	-	+ -	-	<u> </u>	-	-	-		-	+ -	-	-	-
EV_MC2	EV MC2 WS 2022-05-19 N-SRF	2022-05-19	١.	-	+ -	-	-	-	-	-			-	-		-
			٠.	-	+ .	-		1	-	.		-	+			
EV_MC2	EV_MC2_WS_2022-05-20_N-SRF	2022-05-20	-	-	-	-	-	-	-	-		-	-	-	-	İ

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

											Dissolv	ed Metals							
Sample	Sample	Sample Date	Hardness	noıl	Lead	Lithium	Magnesium	Manganese	Nickel	Potassium	Selenium	Silver	Sodium	Strontium	Thallium	Ē	Titanium	Uranium	Zinc
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
				Acute															
BC WQG FWAL			n/a	0.35	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Elkview Operation																			
EV_MC2	EV_MC2_WS_2022-04-24_N-SRF	2022-04-24	-	-	-	-	35.1	-	-	1.1	-	-	6.23	-	-	-	-	-	-
EV_MC2 EV MC2	EV_MC2_WS_2022-04-25_N-SRF_1 EV_MC2_WS_2022-04-25_N-SRF	2022-04-25	-	< 0.010	< 0.000050	0.0098	27	0.00129	0.00122	0.959	12.6	< 0.000010	4.42	0.173	< 0.000010	< 0.00010	< 0.00030	0.00126	0.0016
EV_MC2 EV MC2	EV_MC2_WS_2022-04-25_N-SRF EV_MC2_WS_2022-04-26_N-SRF	2022-04-25	-	< 0.010			25.1			0.959			4.42		< 0.000010			0.00126	
EV_MC2 EV MC2	EV_MC2_WS_2022-04-26_N-SRF_P	2022-04-26	-	-	-		25.1	-	-	0.862	-		4.59	-	-	-	-		-
EV_MC2	EV MC2 WS 2022-04-26 N-SRF UP	2022-04-26	-	-			-	-		- :	-	-	-	-	-	-			-
EV_MC2	EV MC2 WS 2022-04 WEK18 N	2022-04-26	-	< 0.010	< 0.000050	0.0095	25.9	0.00131	0.00113	0.897	12	< 0.000010	4.46	0.174	< 0.000010	< 0.00010	< 0.00030	0.00108	0.0014
EV MC2	EV MC5 WS 2022-04 WEK18 N	2022-04-26	-	< 0.010	< 0.000050	0.0089	23.9	0.00117	0.00104	0.845	10.6	< 0.000010	4.18	0.16	< 0.000010	< 0.00010	< 0.00030	0.00106	< 0.0010
EV MC2	EV MC2 WS 2022-04-27 N-SRF	2022-04-27	-	-	-	-	20.8	-	-	0.708	-	-	3.66	-	-	-	-	-	-
EV MC2	EV MC2 WS 2022-04-27 N-SRF P	2022-04-27	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-04-27_N-SRF_UP	2022-04-27	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-04-28_N-SRF	2022-04-28	-	-	-	-	21.2	-	-	0.782	-	-	4.18	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-04-29_N-SRF	2022-04-29	-	-	-	-	23.9	-	-	0.878	-	-	5.15	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-04-30_N-SRF	2022-04-30	-	-	-	-	24.9	-	-	0.858	-	-	4.62	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-05-01_N-SRF	2022-05-01	-	-	-	-	24		-	0.867	-	-	4.65	-	-	-		-	-
EV_MC2	EV_MC2_WS_2022-05-01_N-SRF_P	2022-05-01	-	-	-	-	-	ı		-	-	-	-	-	-	-		-	-
EV_MC2	EV_MC2_WS_2022-05-01_N-SRF_UP	2022-05-01	-	-	-	-	-		-	-	-	-	-	-	-	-		-	-
EV_MC2	EV_MC2_WS_2022-05-02_N-SRF	2022-05-02	-	< 0.010	< 0.000050	0.0072	19.2	0.00103	0.00108	0.772	7.76	< 0.000010	3.84	0.137	< 0.000010	< 0.00010	< 0.00030	0.000937	< 0.0010
EV_MC2	EV_MC2_WS_2022-05-02_N-SRF_1	2022-05-02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-05-03_N-SRF	2022-05-03	-	-	-		20	-	-	0.79	-		4.18	-	-	-	-		-
EV_MC2	EV_MC2_WS_2022-05_MON_N	2022-05-03	-	< 0.010	< 0.000050	0.0069	17.6	0.00131	0.00095	0.705	6.68	< 0.000010	3.49	0.136	< 0.000010	< 0.00010	< 0.00030	0.000787	< 0.0010
EV_MC2	EV_MC2_WS_2022-05-04_N-SRF	2022-05-04	-	-	-		16.3	-	-	0.756	-	-	3.28	-	-	-	-	-	-
EV_MC2 EV_MC2	EV_MC2_WS_2022-05-05_N-SRF EV_MC2_WS_2022-05-06_N-SRF	2022-05-05	-	-	-		17.5 9.83			0.798 0.564			3.75	-	-	-		-	-
EV_MC2 EV MC2	EV_MC2_WS_2022-05-06_N-SRF EV_MC2_WS_2022-05-07_N-SRF	2022-05-06	-				13.9			0.564			2.19 2.9						-
EV_MC2	EV_MC2_WS_2022-05-07_N-SRF EV_MC2_WS_2022-05-08_N-SRF	2022-05-07	-	-	-		15.9	-	-	0.636			3.15	-	-	-	-		-
EV_MC2	EV_MC2_WS_2022-05-09_N-SRF	2022-05-09	-	0.015	< 0.000050	0.0068	14.7	0.00137	0.00109	0.706	5.48	< 0.000010	3.44	0.118	< 0.000010	< 0.00010	< 0.00030	0.000635	0.001
FV_MC2	EV_MC2_WS_2022-05-05_N-GNI	2022-05-10	-	0.013	- 0.000000	-	18.6	- 0.00107	-	0.751		- 0.000010	4.22	0.110	- 0.000010	- 0.00010	- 0.00000	-	0.001
EV_MC2	EV_MC2_WS_2022-05-10_N-GRI	2022-05-10	-				-	-	-	0.701	-	-		-	-	-			-
EV_MC2	EV_MC2_WS_2022-05-11_N-GRU	2022-05-11	-	< 0.010	< 0.000050	0.0067	15.9	0.00123	0.00116	0.673	4.88	< 0.000010	3.62	0.129	< 0.000010	< 0.00010	< 0.00030	0.00066	< 0.0010
EV MC2	EV MC5 WS 2022-05 WEK20 N	2022-05-11	-	< 0.010	< 0.000050	0.0064	16.2	0.00124	0.00118	0.68	5.2	< 0.000010	3.65	0.127	< 0.000010	< 0.00010	< 0.00030	0.000635	0.0017
EV_MC2	EV MC2 WS 2022-05-12 N-SRF	2022-05-12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV MC10 WS 2022-05-12 N-SRF	2022-05-12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-05-13_N-SRF	2022-05-13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC10_WS_2022-05-13_N-SRF	2022-05-13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-05-14_N-SRF	2022-05-14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC10_WS_2022-05-14_N-SRF	2022-05-14	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-05-15_N-SRF	2022-05-15	-	-	-	-	-	·	-	-	-	-	-	-	-	-		-	-
EV_MC2	EV_MC10_WS_2022-05-15_N-SRF	2022-05-15	-	-			-	-	-	-	-		-	-	-	-	-	-	
EV_MC2	EV_MC2_WS_2022-05-16_N-SRF	2022-05-16	-	0.013	< 0.000050	0.0062	15.3	0.00112	0.001	0.686	5.56	< 0.000010	3.46	0.125	< 0.000010	< 0.00010	< 0.00030	0.000675	0.0025
EV_MC2	EV_MC2_WS_2022-05-16_N-SRF_1	2022-05-16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC10_WS_2022-05-16_N-SRF	2022-05-16	-	< 0.010	< 0.000050	0.0063	15.9	0.00102	0.00117	0.706	5.52	< 0.000010	3.47	0.128	< 0.000010	< 0.00010	< 0.00030	0.000689	0.0052
EV_MC2 EV_MC2	EV_MC2_WS_2022-05_WEK21_N EV_MC5_WS_2022-05_WEK21_N	2022-05-17	-	0.03 0.018	< 0.000050 < 0.000050	0.0057 0.0054	13.9 13.8	0.00158 0.00127	0.00138 0.00135	0.642 0.636	4.48 4.36	< 0.000010 < 0.000010	3.05 3.02	0.109 0.11	< 0.000010 < 0.000010	< 0.00010 < 0.00010	0.0005 < 0.00030	0.000519 0.00054	0.0028 0.0015
EV_MC2 EV MC2	EV_MC5_WS_2022-05_WEK21_N EV_MC2_WS_2022-05-17_N-SRF	2022-05-17	-	0.018	~ U.UUUU00	0.0054	13.8	0.00127	0.00135	0.030	4.30	< 0.000010	3.02	0.11	< U.UUUU10	< 0.00010	< 0.00030	0.00054	0.0015
EV_MC2 EV MC2	EV_MC2_WS_2022-05-17_N-SRF EV_MC10_WS_2022-05-17_N-SRF	2022-05-17	<u> </u>		⊢ - ⊢				-			-	-		-		-		
EV_MC2 EV MC2	EV_MC10_WS_2022-05-17_N-SRF EV_MC2_WS_2022-05-18_N-SRF	2022-05-17	-	-			-							-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-05-18_N-SRF EV_MC10_WS_2022-05-18_N-SRF	2022-05-18	H	-	1 - 1									-		-	-		-
EV_MC2	EV MC2 WS 2022-05-16 N-SRF	2022-05-10	H	-			-				-	-	-		-	-			-
EV_MC2	EV MC2 WS 2022-05-10 N-SRF	2022-05-20	-	-	-		-	-	-	-	-	-	-	-	-	-	-		-
							1						l	1	1	1			

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

^d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

										Dissolve	d Metals						
Sample	Sample	Sample Date		Aluminum		Antimony	Arsenic	Barium	Beryllium	Bismuth	Boron		Cadmium	Calcium	Chromium	Cobalt	Copper
Location	ID	(mm/dd/yyyy) mg/L	mg/L		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	n	ıg/L	mg/L	mg/L	mg/L	mg/L
				Acute	Chronic							Acute	Chronic				Acute Chronic
BC WQG FWAL			n/a	0.020-0.10 ^a	0.005-0.05 ^a	n/a	na	na	na	n/a	n/a	0.00004-0.0028 ^a	0.00002-0.00173 ^a	n/a	n/a	n/a	BLM°
Elkview Operation																	
EV_MC2	EV_MC2_WS_2022-02-21_N-SRF	2022-05-21		-		-	-	-	-	-	-		-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-05-22_N-SRF	2022-05-22		-		-		-			-			-		-	
EV_MC2	EV_MC2_WS_2022-05-23_N-SRF	2022-05-23		0.0059		< 0.00010	0.00016	0.0728	< 0.020	< 0.000050	< 0.010		000219	46	0.00012	< 0.10	0.00027
EV_MC2	EV_MC2_WS_2022-05_WEK22_N	2022-05-24		0.007		< 0.00010	0.00017	0.0702	< 0.020	< 0.000050	0.01		000222	44.4	0.00011	< 0.10	0.00087
EV_MC2	EV_MC5_WS_2022-05_WEK22_N	2022-05-24		0.0166		0.00012	0.00017	0.0715	< 0.020	< 0.000050	0.01	0.00	000195	49.1	0.00018	< 0.10	0.00058
EV_MC2	EV_MC2_WS_2022-05-24_N-SRF	2022-05-24		-		-	-	-	-	-	-		-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-05-25_N-SRF	2022-05-25		-		-		-	-	-	-		-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-05-26_N-SRF	2022-05-26		-		-	-	-	-	-	-		-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-05-27_N-SRF	2022-05-27		-		-	-	-	-	-	-		-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-05-28_N-SRF	2022-05-28		-		-	-	-	-	-	-		-	-	-	-	
EV_MC2	EV_MC2_WS_2022-05-29_N-SRF	2022-05-29		-		- 0.00040	- 0.00040	- 0.0500	- 0.000	- 0.000050	- 0.040		-	- 04.5	- 0.00040	- 0.40	
EV_MC2 EV_MC2	EV_MC2_WS_2022-05-30_N-SRF	2022-05-30		0.0123		< 0.00010	0.00019	0.0588	< 0.020	< 0.000050	< 0.010	0.0	00021	34.5	0.00016	< 0.10	0.00032
	EV_MC2_WS_2022-05-30_N-SRF_1	2022-05-30		-		-	-	-		-				-	-		<u> </u>
EV_MC2	EV_MC2_WS_2022-05_WEK23_N	2022-05-31	-	0.0112		< 0.00010	0.00016	0.0584	< 0.020	< 0.000050	< 0.010		000226	38.8	0.00013	< 0.10	0.00036
EV_MC2	EV_MC5_WS_2022-05_WEK23_N	2022-05-31	-	0.0127		< 0.00010	0.00017	0.0604	< 0.020	< 0.000050	< 0.010	0.00	000245	38.3	0.00012	< 0.10	0.00036
EV_MC2	EV_MC2_WS_2022-05-31_N-SRF	2022-05-31		-		-	-	-	-	-	-		-	-	-		-
EV_MC2	EV_MC2_WS_ 2022-06-01_N-SRF	2022-06-01		-		-	-	-	-	-	-			-	-	-	-
EV_MC2	EV_MC2_WS_2022-06-02_N-SRF	2022-06-02		-		-	-	-	-	-	-			-	-	-	-
EV_MC2	EV_MC2_WS_2022-06-03_N-SRF	2022-06-03		-		-	-	-	-	-	-			-	-	-	-
EV_MC2	EV_MC2_WS_2022-06-04_N-SRF	2022-06-04		-		-	-	-	-	-	-		-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-06-05_N-SRF	2022-06-05		-		-		-	-	-	-			-	-	-	-
EV_MC2	EV_MC2_WS_2022-06-06_N-SRF	2022-06-06		0.0139		< 0.00010	0.00021	0.0485	< 0.020	< 0.000050	< 0.010	0.00	000227	29.3	0.00019	< 0.10	0.00054
EV_MC2	EV_MC2_WS_2022-06_MON_N	2022-06-06		0.0119		< 0.00010	0.00021	0.0495	< 0.020	< 0.000050	< 0.010	0.00	000202	30.7	0.00013	< 0.10	0.00031
EV_MC2	EV_MC5_WS_2022-06_MON_N	2022-06-06	-	0.0119		< 0.00010	0.0002	0.0468	< 0.020	< 0.000050	< 0.010		000198	30.6	0.00011	< 0.10	0.00031
EV_MC2	EV_MC2_WS_2022_Q2_WK4_N	2022-06-07	-	0.0138		< 0.00010	0.00017	0.0455	< 0.020	< 0.000050	< 0.010	0.00	000204	35.2	0.0002	< 0.10	0.00028
EV_MC2	EV_MC2_WS_2022-06-07_N-SRF	2022-06-07	-			-		-	-	-	-			-	-		-
EV_MC2	EV_MC2_WS_2022-06-08_N-SRF	2022-06-08		-		-	-	-	-	-	-		-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-06-09_N-SRF	2022-06-09		-		-		-	-	-				-	-		-
EV_MC2	EV_MC2_WS_2022-06-10_N-SRF	2022-06-10		-		-		-	-	-					-		-
EV_MC2	EV_MC2_WS_2022-06-11_N-SRF	2022-06-11				-	-	-	-	-	-			-	-	-	-
EV_MC2	EV_MC2_WS_2022-06-12_N-SRF	2022-06-12		-		-	-	-	-	-	-		-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-06-13_N-SRF	2022-06-13		0.0123		< 0.00010	0.00019	0.0484	< 0.020	< 0.000050	< 0.010		00023	29.7	0.00021	< 0.10	0.00032
EV_MC2	EV_MC2_WS_2022-06_WEK25_N	2022-06-13		0.0225		< 0.00010	0.00022	0.0485	< 0.020	< 0.000050	< 0.010		000247	28.9	0.00016	< 0.10	0.00041
EV_MC2	EV_MC5_WS_2022-06_WEK25_N	2022-06-13		0.0256		< 0.00010	0.00021	0.0485	< 0.020	< 0.000050	< 0.010	0.00	000282	28	0.0002	< 0.10	0.00042
EV_MC2	EV_MC2_WS_2022_Q2_WK5_N	2022-06-14		0.0138		< 0.00010	0.00019	0.0459	< 0.020	< 0.000050	< 0.010	0.00	000226	32	0.00016	< 0.10	0.00035
EV_MC2	EV_MC2_WS_2022-06-14_N-SRF	2022-06-14				-	-	-	-	-			-	-	-		-
EV_MC2	EV_MC2_WS_2022-06-15_N-SRF	2022-06-15		-		-	-	-	-	-	-		-	-	-		-
EV_MC2	EV_MC2_WS_2022-06-16_N-SRF	2022-06-16		-		-	-	-	-	-	-		-	-	-		-
EV_MC2	EV_MC2_WS_2022-06-17_N-SRF	2022-06-17		-		-	ı	-		-			-	-	-		-
EV_MC2	EV_MC2_WS_2022-06-18_N-SRF	2022-06-18		-		-	-	-	-	-	-			-	-	-	-
EV_MC2	EV_MC2_WS_2022-06-19_N-SRF	2022-06-19		-		-	-	-	-	-	-		-	-	-		-
EV_MC2	EV_MC2_WS_2022-06-20_N-SRF	2022-06-20	-	0.0093		< 0.00010	0.0002	0.047	< 0.020	< 0.000050	< 0.010	0.00	000167	33.7	0.00014	< 0.10	0.00029
EV_MC2	EV_MC2_WS_2022-06-21_N-SRF	2022-06-21	-	-		-	-	-	-	-	-		-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-06_WEK26_N	2022-06-21	-	0.0084		< 0.00010	0.0002	0.0479	< 0.020	< 0.000050	< 0.010	0.00	000213	34.1	0.00013	< 0.10	0.00031
EV_MC2	EV_MC5_WS_2022-06_WEK26_N	2022-06-21	-	0.0091		< 0.00010	0.00017	0.0507	< 0.020	< 0.000050	< 0.010		000209	34.3	0.00013	< 0.10	0.00029
EV_MC2	EV_MC2_WS_ 2022-06-22_N-SRF	2022-06-22	-	-		-	-	-	-	-	-		-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-06-23_N-SRF	2022-06-23	-	-		-	-	-	-	-	-		-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-06-24_N-SRF	2022-06-24	-	-		-	-	-	-	-	-			-	-	-	-
EV_MC2	EV_MC2_WS_2022-06-25_N-SRF	2022-06-25	-			-	-	-	-	-	-		-	-	-	-	-
EV MC2	EV MC2 WS 2022-06-26 N-SRF	2022-06-26	-			-	-	-	-	-	-			-	-	-	-

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

											Dissolv	ed Metals							
Sample	Sample	Sample Date	Hardness	uou	Lead	Lithium	Magnesium	Manganese	Nickel	Potassium	Selenium	Silver	Sodium	Strontium	Thallium	Ę	Titanium	Uranium	Zinc
Location	ID	(mm/dd/yyyy)		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
		1		, i	Ť		Ť	Ť	, i			_ `		Ĭ	, i	Ť			
				Acute															
BC WQG FWAL			n/a	0.35	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Elkview Operation																			
EV_MC2	EV_MC2_WS_2022-02-21_N-SRF	2022-05-21	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-05-22_N-SRF	2022-05-22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-05-23_N-SRF	2022-05-23	-	< 0.010	< 0.000050	0.0065	16.8	0.00101	0.00138	0.666	6.02	< 0.000010	3.08	0.126	< 0.000010	< 0.00010	< 0.00030	0.000738	0.0027
EV_MC2	EV_MC2_WS_2022-05_WEK22_N	2022-05-24	-	0.01	< 0.000050	0.0068	16.8	0.00094	0.00154	0.589	6.02	< 0.000010	3.08	0.115	< 0.000010	0.00019	< 0.00030	0.000675	0.0022
EV_MC2	EV_MC5_WS_2022-05_WEK22_N	2022-05-24	-	0.016	< 0.000050	0.0072	17.3	0.00172	0.00152	0.607	6.69	< 0.000010	3.17	0.11	< 0.000010	< 0.00010	< 0.00030	0.000706	0.0067
EV_MC2	EV_MC2_WS_2022-05-24_N-SRF	2022-05-24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-05-25_N-SRF	2022-05-25	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-05-26_N-SRF	2022-05-26	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-05-27_N-SRF	2022-05-27	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-05-28_N-SRF	2022-05-28	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-05-29_N-SRF	2022-05-29	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-05-30_N-SRF	2022-05-30	-	0.011	< 0.000050	0.0044	12.3	0.0011	0.00124	0.525	3.45	0.000012	1.99	0.091	< 0.000010	< 0.00010	< 0.00030	0.000519	0.001
EV_MC2	EV_MC2_WS_2022-05-30_N-SRF_1	2022-05-30	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-05_WEK23_N	2022-05-31	-	0.01	< 0.000050	0.0056	13.7	0.00104	0.00124	0.537	4.54	< 0.000010	2.28	0.0985	< 0.000010	< 0.00010	< 0.00030	0.000506	< 0.0010
EV_MC2	EV_MC5_WS_2022-05_WEK23_N	2022-05-31	-	0.01	< 0.000050	0.0055	13.1	0.0011	0.00125	0.521	4.57	< 0.000010	2.3	0.0967	< 0.000010	< 0.00010	< 0.00030	0.000517	< 0.0010
EV_MC2	EV_MC2_WS_2022-05-31_N-SRF	2022-05-31	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_ 2022-06-01_N-SRF	2022-06-01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-06-02_N-SRF	2022-06-02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-06-03_N-SRF	2022-06-03	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-06-04_N-SRF	2022-06-04	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-06-05_N-SRF	2022-06-05	-		-						-				-	-	-		
EV_MC2 EV_MC2	EV_MC2_WS_2022-06-06_N-SRF	2022-06-06	-	0.015	< 0.000050	0.0036	9.37	0.00152	0.00109	0.473	2.44	< 0.000010	1.51	0.0772	< 0.000010	< 0.00010	< 0.00030	0.000389	0.0031
	EV_MC2_WS_2022-06_MON_N	2022-06-06	-	< 0.010	< 0.000050	0.0032	11.1	0.00134	0.00131	0.487	2.91	< 0.000010	1.61	0.0796	< 0.000010	< 0.00010	< 0.00030	0.000413	< 0.0010
EV_MC2	EV_MC5_WS_2022-06_MON_N	2022-06-06	-	0.011	< 0.000050	0.0031	10.5	0.00125	0.0013	0.455	2.79	< 0.000010	1.53	0.081	< 0.000010	< 0.00010	< 0.00030	0.000405	< 0.0010
EV_MC2 EV MC2	EV_MC2_WS_2022_Q2_WK4_N	2022-06-07	-	0.015	< 0.000050	0.0041	9.88	0.00141	0.00063	0.462	2.81	< 0.000010	1.44	0.0852	< 0.000010	< 0.00010	< 0.00030	0.00044	< 0.0010
EV_MC2 EV_MC2	EV_MC2_WS_2022-06-07_N-SRF EV_MC2_WS_2022-06-08_N-SRF	2022-06-07	-	-	-	-	-	-	-	-		-	-		-		-	-	-
EV_MC2 EV_MC2			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2 EV MC2	EV_MC2_WS_2022-06-09_N-SRF	2022-06-09	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2 EV_MC2	EV_MC2_WS_2022-06-10_N-SRF EV_MC2_WS_2022-06-11_N-SRF	2022-06-10	-			-	-		-	-	-	-	-		-	-		-	-
EV_MC2 EV_MC2	EV_MC2_WS_2022-06-11_N-SRF EV_MC2_WS_2022-06-12_N-SRF		-	-		-	-	- :	-	-		-	-			-			-
EV_MC2 EV_MC2		2022-06-12	-	- 0.045		-	-		0.00097	0.472		-	-						-
EV_MC2 EV_MC2	EV_MC2_WS_2022-06-13_N-SRF EV_MC2_WS_2022-06_WEK25_N	2022-06-13	-	0.015 0.027	< 0.000050 < 0.000050	0.0035 0.0037	9.33 9.81	0.00174 0.00102	0.00097	0.472	2.64	0.000026 < 0.000010	1.35 1.47	0.0731 0.0764	< 0.000010 < 0.000010	< 0.00010 < 0.00010	< 0.00030 0.0019	0.00037 0.000388	< 0.0010 < 0.0010
EV_MC2 EV_MC2	EV_MC2_WS_2022-06_WEK25_N EV_MC5_WS_2022-06_WEK25_N	2022-06-13	-	0.027	< 0.000050	0.0037	9.81	0.00102	0.00095	0.501	2.73	< 0.000010		0.0764	< 0.000010	< 0.00010	0.0019	0.000388	< 0.0010
EV_MC2 FV MC2	EV_MC5_WS_2022-06_WEK25_N EV_MC2_WS_2022_Q2_WK5_N	2022-06-13	-	0.032	< 0.000050	0.0034	9.55	0.00112	0.00094	0.491	2.7	< 0.000010	1.4	0.0708	< 0.000010	< 0.00010	< 0.00204	0.000382	< 0.0010
EV_MC2	EV MC2 WS 2022-Q2 WK5 N	2022-06-14	-					0.0019		0.491					< 0.000010			0.000404	
EV_MC2 EV_MC2	EV_MC2_WS_2022-06-14_N-SRF EV_MC2_WS_2022-06-15_N-SRF	2022-06-14	<u> </u>	-	-	-	-		-		-	-	-	-		-	-	-	-
EV_MC2	EV_MC2_WS_2022-06-15_N-SRF EV_MC2_WS_2022-06-16_N-SRF	2022-06-15	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-
EV_MC2 EV MC2	EV_MC2_WS_2022-06-16_N-SRF EV_MC2_WS_2022-06-17_N-SRF	2022-06-16	-															-	
EV_MC2 EV_MC2	EV_MC2_WS_2022-06-17_N-SRF EV_MC2_WS_2022-06-18_N-SRF	2022-06-17	<u> </u>	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- :	-
EV_MC2	EV_MC2_WS_2022-06-16_N-SRF	2022-06-19	H	-	1 1	-					-			1	-			-	
EV_MC2	EV_MC2_WS_2022-06-19_N-SRF	2022-06-19	<u> </u>	< 0.010	< 0.000050	0.0044	11.4	0.0015	0.00094	0.483	3.58	< 0.000010	1.65	0.0834	< 0.000010	< 0.00010	< 0.00030	0.000435	0.0015
EV_MC2 EV_MC2	EV_MC2_WS_2022-06-20_N-SRF EV_MC2_WS_2022-06-21_N-SRF	2022-06-20	<u> </u>	< 0.010	< 0.000050	0.0044	11.4	0.0015	0.00094	0.483	3.30	< 0.000010	1.05	0.0834	~ 0.000010	~ 0.00010	< 0.00030	0.000435	0.0015
EV_MC2 EV_MC2	EV_MC2_WS_2022-06-21_N-SRF EV_MC2_WS_2022-06_WEK26_N	2022-06-21	<u> </u>	< 0.010	< 0.000050	0.0044	11.7	0.00163	0.00099	0.479	4.08	< 0.000010	1.84	0.0843	< 0.000010	< 0.00010	< 0.00030	0.000426	< 0.0010
EV_MC2 EV_MC2	EV_MC2_WS_2022-06_WEK26_N EV_MC5_WS_2022-06_WEK26_N		<u> </u>	< 0.010	< 0.000050	0.0044	11.7	0.00163	0.00099	0.479	4.08		1.84	0.0843	< 0.000010	< 0.00010	< 0.00030	0.000426	< 0.0010
EV_MC2 EV MC2	EV_MC5_WS_2022-06_WER26_N EV_MC2_WS_2022-06-22_N-SRF	2022-06-21	<u> </u>									< 0.000010							
EV_MC2 EV_MC2	EV_MC2_WS_2022-06-22_N-SRF EV_MC2_WS_2022-06-23_N-SRF	2022-06-22	-	-			-	-			-		-	-	-	-		-	-
EV_MC2	EV_MC2_WS_2022-06-23_N-SRF EV_MC2_WS_2022-06-24_N-SRF	2022-06-23	<u> </u>		-	-	-			-				-	-	-	-	-	
EV_MC2	EV_MC2_WS_2022-06-24_N-SRF EV_MC2_WS_2022-06-25_N-SRF		<u> </u>	-		-			- :	-	-	-			-		-	-	-
EV_MC2 EV_MC2	EV_MC2_WS_2022-06-25_N-SRF EV_MC2_WS_2022-06-26_N-SRF	2022-06-25	<u> </u>	-	-			<u> </u>										-	-
EV_IVIG2	LV_INICZ_VV3_ZUZZ-U0-Z0_N-SRF	2022-00-26		_	-	-	_	_	_	_			_			_		-	

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

^d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

									Dissolve	ed Metals						
				-								_		_		
			sse	in the second	l &	ပ္	_	<u> </u>	£			<u> </u>	Ε	romium		
			Ę	Ē	l <u>Ē</u>	e	Ē	₹		, ē		Ē	alcium	Ę	obalt	Coppe
Sample	Sample	Sample Date	Hai	¥ F	Ant	Ars	Ва	Be	iš.	Bo		Ö	Cal	ร็	ပိ	ပိ
Location	ID	(mm/dd/yyyy	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	m	g/L	mg/L	mg/L	mg/L	mg/L
				aji te							a	ronic				🌡 글
				Acut							Acut	Chro				Acute Chronic
C WQG FWAL			n/a	0.020-0.10 ^a 0.005-0.05 ^a	n/a	na	na	na	n/a	n/a	0.00004-0.0028 ^a	0.00002-0.00173 ^a	n/a	n/a	n/a	BLMe
Ikview Operation																
EV_MC2	EV_MC2_WS_2022-06-27_N-SRF	2022-06-27		0.0053	< 0.00010	0.00018	0.0548	< 0.020	< 0.000050	< 0.010	0.00	00025	46.6	0.00014	< 0.10	0.0003
EV_MC2	EV_MC2_WS_2022-06-28_N-SRF	2022-06-28	-	-	-	-	-	-	-	-		-	-	-	- 0.40	-
EV_MC2	EV_MC2_WS_2022-06_WEK27_N	2022-06-28	-	0.0085	< 0.00010	0.00017	0.0562	< 0.020	< 0.000050	< 0.010		00246	42	0.00014	< 0.10	0.00025
EV_MC2	EV_MC5_WS_2022-06_WEK27_N	2022-06-28	-	0.0064	< 0.00010	0.00019	0.0555	< 0.020	< 0.000050	< 0.010		00199	43.4	0.00014	< 0.10	0.00025
EV_MC2	EV_MC2_WS_ 2022-06-29_N-SRF	2022-06-29	-	-	-	-	-	-	-	-		-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-06-30_N-SRF	2022-06-30	1	-	-	-	-	-	-	-			-	-	-	-
EV_MC2	EV_MC2_WS_2022-07-01_N-SRF	2022-07-01	-	-	-	-	-	-	-	-			-	-	-	-
EV_MC2 EV_MC2	EV_MC2_WS_2022-07-02_N-SRF EV_MC2_WS_2022-07-03_N-SRF	2022-07-02	-	-	-	-	-	-	-	-			-	-	-	
		2022-07-03	-		- 0.00040	- 0.0000	-	- 0.000	- 0.000050				- 47	- 0.00045		
EV_MC2	EV_MC2_WS_2022-07-04_N-SRF	2022-07-04	-	0.0067	< 0.00010	0.0002	0.0632	< 0.020	< 0.000050	< 0.010		00223	47	0.00015	< 0.10	0.00023
EV_MC2 EV_MC2	EV_MC2_WS_2022_Q3_N EV_MC2_WS_2022-07-05_N-SRF	2022-07-05	-	0.0055	< 0.00010	0.0002	0.0569	< 0.020	< 0.000050	< 0.010	0.00	00181	40.3		< 0.10	< 0.00020
EV_MC2	EV_MC2_WS_2022-07-05_N-SRF EV_MC2_WS_2022-07-06_N-SRF	2022-07-05	-	-		-	-	-	-	-			-	-		-
			-	-										-		-
EV_MC2 EV_MC2	EV_MC2_WS_2022-07-07_N-SRF EV_MC2_WS_2022-07-08_N-SRF	2022-07-07	-	-	-	-	-	-	-	-		-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-07-08_N-SRF EV_MC2_WS_2022-07-09_N-SRF	2022-07-08	-	-		-		-	-	-			-	-	-	-
EV_MC2	EV_MC2_WS_2022-07-09_N-SRF EV_MC2_WS_2022-07-10_N-SRF	2022-07-09	H :	-	-	-	-	-	-	-		-	-	-		-
EV_MC2 EV_MC2	EV_MC2_WS_2022-07-10_N-SRF EV_MC2_WS_2022-07-11_N-SRF				< 0.00010	0.00017	- 0.0000	< 0.020	< 0.000050	< 0.010		-		0.00012	- 0.40	
EV_MC2	EV_MC2_WS_2022-07-11_N-SRF EV_MC2_WS_2022-07_WEK29_N	2022-07-11	-	0.0028	< 0.00010	0.00017	0.0689 0.0735	< 0.020	< 0.000050	< 0.010		00249	56 49.1	0.00012	< 0.10 < 0.10	0.00025
EV_MC2	EV_MC2_WS_2022-07_WER29_N EV_MC5_WS_2022-07_WER29_N	2022-07-12	-	0.0038	< 0.00010	0.00019	0.0735	< 0.020	< 0.000050	< 0.010		00173	49.1		< 0.10	0.00028
EV_MC2	EV_MC5_WS_2022-07_WER29_N EV_MC2_WS_2022-07-12_N-SRF	2022-07-12	-	0.0039								00199	47.9			0.00026
EV_MC2	EV_MC2_WS_2022-07-12_N-SRF EV_MC2_WS_2022-07-13_N-SRF	2022-07-12	-	-		-		-	-	-		-	-	-		-
EV MC2	EV_MC2_WS_2022-07-13_N-SRF	2022-07-13	+	-	+ :-			-	-	-		-		-		-
EV_MC2	EV_MC2_WS_2022-07-14_N-SKI	2022-07-15	<u> </u>	-	+ :-		-			-		•	-			-
EV MC2	EV_MC2_WS_2022-07-16_N-SRF	2022-07-16	H :	<u> </u>	+ -	-		-	-				-			-
EV MC2	EV_MC2_WS_2022-07-10_N-SRF	2022-07-17	1		+ -	-	-	-	-	-			-	-		-
EV_MC2	EV_MG2_WS_2022-07-17_N-CRT	2022-07-18	-	0.0027	< 0.00010	0.00018	0.0823	< 0.020	< 0.000050	0.012		00226	55.3	0.00016	< 0.10	< 0.00020
EV_MC2	EV MC2 WS 2022-07-19 N-SRF	2022-07-19	_	0.0027	- 0.00010	-	-	- 0.020	-	- 0.012		-	-	-		₹ 0.00020
EV_MC2	EV_MG2_WS_2022-07-15_N-SRF	2022-07-20	1		+ -	-		-	-	-			-			-
EV_MC2	EV_MG2_WS_2022-07-20_N-SRF	2022-07-21	1		+ -	-	-	-	-	-		-	-	-		-
EV_MC2	EV MC2 WS 2022-07-22 N-SRF	2022-07-22	-		-	-	-	-	-	-		.	-	-	-	- :
EV_MC2	EV_MG2_WS_2022-07-22_N-SRF	2022-07-23	1		1	-		-	-	-			-	-		-
EV MC2	EV_MC2_WS_2022-07-25_N-SKF	2022-07-24	1		+ -	-		-	-			-	-			-
EV_MC2	EV_MG2_WS_2022-07-25_N-SRF	2022-07-25	-		+ -	-	-	-	-	-		:	-	-	-	- :
EV_MC2	EV_MC2_WS_2022-07-26_N-SRF	2022-07-26	-		+ -	-		-	-	-		-	-	-	-	-
EV_MC2	EV MC2 WS 2022-07-27 N-SRF	2022-07-27	! -		-	-	-	-	-	-			-	-	-	-
EV MC2	EV MC2 WS 2022-07-28 N-SRF	2022-07-28	-		-	-	-	-	-	-		:	-	-	-	-
EV MC2	EV MC2 WS 2022-07-29 N-SRF	2022-07-29	-		-	-	-	-	-	-		-	-	-	-	-
EV MC2	EV MC2 WS 2022-07-30 N-SRF	2022-07-30	-	-	-	-	-	-	-	-		-	-	-	-	-
EV MC2	EV MC2 WS 2022-07-31 N-SRF	2022-07-31	-		-	-	-	-	-	-			-	-	-	
EV_MC2	EV_MC2_WS_2022-08-01_N-SRF	2022-08-01	-	< 0.0010	< 0.00010	0.00014	0.0898	< 0.020	< 0.000050	0.01		00198	57.4	0.00014	< 0.10	< 0.00020
EV MC2	EV MC2 WS 2022-08-02 N-SRF	2022-08-02	-	- 0.0010	-	-	-	-	-	-		-	-	-	-	- 0.00020
EV_MC2	EV_MC2_WS_2022-08-03_N-SRF	2022-08-03	-	-	-	-	-	-	-	-		-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-08-04_N-SRF	2022-08-04	-	-	-	-	-	-	-	-			-	-	-	-
EV_MC2	EV_MC2_WS_2022-08-05_N-SRF	2022-08-05	-	-	-	-	-	-	-	-			-	-	-	-
EV_MC2	EV_MC2_WS_2022-08-06_N-SRF	2022-08-06	-	-	-	-	-	-	-	-			-	-	-	-
EV_MC2	EV_MC2_WS_2022-08-07_N-SRF	2022-08-07	-	-	-	-	-	-	-	-		-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-08-08_N-SRF	2022-08-08	-	-	-	-	-	-	-	-		-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-08-09_N-SRF	2022-08-09	-	-	-	-	-	-	-	-			-	-	-	-
EV MC2	EV MC2 WS 2022-08-10 N-SRF	2022-08-10	- 1		-	-	-	-	-	-			-	-	-	

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

											Dissolv	ed Metals							
Sample	Sample	Sample Date	Hardness	uoıl	Lead	Lithium	Magnesium	Manganese	Nickel	Potassium	Selenium	Silver	Sodium	Strontium	Thallium	Ē	Titanium	Uranium	Zinc
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
				Acute															
BC WQG FWAL			n/a	0.35	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Elkview Operation																			
EV_MC2	EV_MC2_WS_2022-06-27_N-SRF	2022-06-27	-	< 0.010	< 0.000050	0.0078	16.8	0.00155	0.00106	0.626	6.7	< 0.000010	2.9	0.112	< 0.000010		< 0.00030	0.000642	< 0.0010
EV_MC2	EV_MC2_WS_2022-06-28_N-SRF	2022-06-28	-	-	-		-	-	-		-		-	-	-	-	-		-
EV_MC2	EV_MC2_WS_2022-06_WEK27_N	2022-06-28	-	< 0.010	< 0.000050	0.0062	14.1	0.00142	0.00107	0.547	5.42	< 0.000010	2.14	0.104	< 0.000010	< 0.00010	< 0.00030	0.000622	< 0.0010
EV_MC2	EV_MC5_WS_2022-06_WEK27_N	2022-06-28	-	< 0.010	< 0.000050	0.0062	13.7	0.00138	0.00112	0.549	5.26	< 0.000010	2.2	0.102	< 0.000010	< 0.00010	< 0.00030	0.00064	< 0.0010
EV_MC2	EV_MC2_WS_ 2022-06-29_N-SRF	2022-06-29	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-06-30_N-SRF	2022-06-30	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-07-01_N-SRF	2022-07-01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-07-02_N-SRF	2022-07-02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-07-03_N-SRF	2022-07-03	-	-			-	-	-	-	-			-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-07-04_N-SRF	2022-07-04	-	< 0.010	< 0.000050	0.0066	17	0.00136	0.00125	0.631	6.7	< 0.000010	2.52	0.116	< 0.000010	< 0.00010	< 0.00030	0.000712	0.0179
EV_MC2	EV_MC2_WS_2022_Q3_N	2022-07-05	-	< 0.010	< 0.000050	0.0058	14.7	0.00127	0.00117	0.583	5.18	< 0.000010	2.27	0.102	< 0.000010	< 0.00010	< 0.00030	0.000667	< 0.0010
EV_MC2	EV_MC2_WS_2022-07-05_N-SRF	2022-07-05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-07-06_N-SRF	2022-07-06	-	-	-		-	-	-	-	-	-		-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-07-07_N-SRF	2022-07-07	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2 EV_MC2	EV_MC2_WS_2022-07-08_N-SRF	2022-07-08	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	EV_MC2_WS_2022-07-09_N-SRF	2022-07-09	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-07-10_N-SRF	2022-07-10	-	-	-			-	-			-		-	-	-	-		-
EV_MC2	EV_MC2_WS_2022-07-11_N-SRF	2022-07-11	-	< 0.010	< 0.000050	0.01	20.6	0.00143	0.00139	0.781	9.09	< 0.000010	3.44	0.136	< 0.000010	< 0.00010	< 0.00030	0.000868	0.0028
EV_MC2	EV_MC2_WS_2022-07_WEK29_N	2022-07-12	-	< 0.010	< 0.000050	0.0084	19.2	0.00135	0.00146	0.754	9.37	< 0.000010	2.8	0.134	< 0.000010	< 0.00010	< 0.00030	0.000882	< 0.0010
EV_MC2 EV MC2	EV_MC5_WS_2022-07_WEK29_N	2022-07-12	-	< 0.010	< 0.000050	0.0076	18.8	0.00132	0.00138	0.727	9.24	< 0.000010	2.66	0.13	< 0.000010	< 0.00010	< 0.00030	0.000896	< 0.0010
EV_MC2 EV MC2	EV_MC2_WS_2022-07-12_N-SRF EV_MC2_WS_2022-07-13_N-SRF	2022-07-12	-		-		-	-	-	-	-	-		-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-07-13_N-SRF EV_MC2_WS_2022-07-14_N-SRF		-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2 EV MC2	EV_MC2_WS_2022-07-14_N-SRF EV_MC2_WS_2022-07-15_N-SRF	2022-07-14	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-
EV_MC2 EV MC2		2022-07-15	-				-			-		-				-		-	-
EV_MC2 EV MC2	EV_MC2_WS_2022-07-16_N-SRF EV_MC2_WS_2022-07-17_N-SRF	2022-07-16	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-07-17_N-SRF EV_MC2_WS_2022-07-18_N-SRF		-	< 0.010	< 0.000050	0.0107	- 22.1	0.0015	0.00146	- 0.07	- 10.0	< 0.000010	2 45	0.148	< 0.000010	< 0.00010	- 0.00030	- 0.00101	0.0051
EV_MC2	EV_MC2_WS_2022-07-18_N-SRF EV_MC2_WS_2022-07-19_N-SRF	2022-07-18	-				23.1			0.87	12.2		3.45				< 0.00030	0.00101	
EV_MC2		2022-07-19	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-07-20_N-SRF	2022-07-20	-	-	-		-	-	-	-	-	- :		-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-07-21_N-SRF	2022-07-21	-	-					-					-		-	-	-	-
EV_MC2 EV MC2	EV_MC2_WS_2022-07-22_N-SRF	2022-07-22	· ·	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-
EV_MC2 EV MC2	EV_MC2_WS_2022-07-23_N-SRF EV_MC2_WS_2022-07-24_N-SRF	2022-07-23	<u> </u>	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2 EV_MC2	EV_MC2_WS_2022-07-24_N-SRF EV_MC2_WS_2022-07-25_N-SRF	2022-07-24 2022-07-25	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-07-25_N-SRF EV_MC2_WS_2022-07-26_N-SRF	2022-07-25	<u> </u>	-	-		-	-		-	-	-		-	-	-	-		-
EV_MC2 EV_MC2	EV_MC2_WS_2022-07-26_N-SRF EV_MC2_WS_2022-07-27_N-SRF	2022-07-26	-		-			-	-	-	-	-		-		-	-	-	-
EV_MC2	EV_MC2_WS_2022-07-27_N-SRF EV_MC2_WS_2022-07-28_N-SRF	2022-07-28	H				-	-					_:	-			-	-	-
EV_MC2	EV_MC2_WS_2022-07-26_N-SRF	2022-07-29	<u> </u>	-	-		-	-		-	-			-	-	-	-		-
EV_MC2	EV_MC2_WS_2022-07-29_N-SRF EV_MC2_WS_2022-07-30_N-SRF	2022-07-29	<u> </u>		-			-	-	-				-	<u> </u>			-	-
EV_MC2	EV_MC2_WS_2022-07-30_N-SRF EV_MC2_WS_2022-07-31_N-SRF	2022-07-30	<u> </u>						-	-	- -				<u> </u>			-	
EV_MC2	EV_MC2_WS_2022-07-31_N-SRF	2022-07-31	H	< 0.010	< 0.000050	0.0087	22.8	0.00155	0.0009	0.76	9.51	< 0.000010	3.29	0.152	< 0.000010	< 0.00010	< 0.00030	0.000955	0.0049
EV_MC2	EV_MC2_WS_2022-08-01_N-SRF	2022-08-02	<u> </u>			0.0007		0.00133					3.23		- 0.000010			0.0000000	
EV_MC2	EV_MC2_WS_2022-08-02_N-SRF EV_MC2_WS_2022-08-03_N-SRF	2022-08-02	<u> </u>	-	-		-		-	-	-	-		-		-	-	-	-
EV_MC2	EV_MC2_WS_2022-08-03_N-SRF EV_MC2_WS_2022-08-04_N-SRF	2022-08-03	<u> </u>	-	-		-	-	-	-	-	-		-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-08-04_N-SRF EV_MC2_WS_2022-08-05_N-SRF	2022-08-04	<u> </u>		⊢ - ⊢				-		<u> </u>							-	
EV_MC2 EV MC2	EV_MC2_WS_2022-08-05_N-SRF EV_MC2_WS_2022-08-06_N-SRF		<u> </u>		⊢ - ⊢				-		<u> </u>								
EV_MC2 EV MC2	EV_MC2_WS_2022-08-06_N-SRF EV_MC2_WS_2022-08-07_N-SRF	2022-08-06 2022-08-07	-	-			-	-		-	-			-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-08-07_N-SRF EV_MC2_WS_2022-08-08_N-SRF	2022-08-07	<u> </u>		⊢ - ⊢		-	-	-	-	<u> </u>			-		-	-	-	-
EV_MC2	EV_MC2_WS_2022-08-08_N-SRF EV_MC2_WS_2022-08-09_N-SRF	2022-08-09	1				-	-	- :	-				-	-		-		-
EV_MC2	EV_MC2_WS_2022-08-09_N-SRF	2022-08-10	H	-			-	-	-	-	-			-		-	-	-	
EV_IVIC2	LV_IVIGZ_VV3_ZUZZ-U0-1U_IN-5RF	2022-00-10		_			_	-	-			_		_				-	

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

^d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

									Dissolve	d Metals						
Sample	Sample	Sample Date	Hardness	Aluminum	Antimony	Arsenic	Barium	Beryllium	Bismuth	Boron		Caddi	Calcium	Chromium	Cobalt	Copper
Location	ID	(mm/dd/yyyy) mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	m	g/L	mg/L	mg/L	mg/L	mg/L
				Acute							Acute	Chronic				Acute
C WQG FWAL			n/a	0.020-0.10 ^a 0.005-0.05 ^a	n/a	na	na	na	n/a	n/a	0.00004-0.0028 ^a	0.00002-0.00173 ^a	n/a	n/a	n/a	BLMe
kview Operation		0000 00 10			1 000011	0.00010	2 1 1 1	0.000	0.000050	0.015	1			0.00040	0.40	
EV_MC2 EV MC2	EV_MC2_WS_2022-08_MON_N	2022-08-10		0.0011	0.00011	0.00019	0.111	< 0.020	< 0.000050	0.015	0.00	00444	82.4	0.00016	< 0.10	0.00022
EV_MC2	EV_MC2_WS_2022-08-11_N-SRF EV_MC2_WS_2022-08-12_N-SRF	2022-08-11		-	+ :	-	-			-		-	-	-		-
EV_MC2	EV MC2 WS 2022-06-12 N-SRF	2022-08-12		-	-	-		-	-			•	-	-		-
EV_MC2	EV_MC2_WS_2022-08-13_N-SRF EV_MC2_WS_2022-08-14_N-SRF	2022-08-13		-		-	-	-	-	-		•	-	-	-	
EV_MC2 EV_MC2	EV_MC2_WS_2022-08-14_N-SRF EV_MC2_WS_2022-08-15_N-SRF	2022-08-14			0.00011	0.00017	0.109	< 0.020	< 0.000050	0.014	0.00	-	71.8	0.00019	< 0.10	
EV_MC2	EV_MC2_WS_2022-08-15_N-SRF EV_MC2_WS_2022-08-16_N-SRF	2022-08-15		0.0027	0.00011	0.00017	0.109	<u> </u>	~ 0.000050	0.014	0.00	00274	/1.8	0.00019	> 0.10	0.0002
EV_MC2	EV_MC2_WS_2022-08-16_N-SRF EV_MC2_WS_2022_Q3_WK1_N	2022-08-16			0.00011	0.0002	0.106	< 0.020	< 0.000050	0.013	0.00	-	83.2	0.00012	< 0.10	- 0.00000
FV_MC2	EV MC2 WS 2022-08-17 N-SRF	2022-08-17		< 0.0010	0.00011	0.0002	0.106	V 0.020	- 0.000050	0.013		00323	03.2	0.00012	- 0.10	< 0.00020
EV_MC2	EV_MC2_WS_2022-06-17_N-SRF EV_MC2_WS_2022-08-18_N-SRF	2022-08-17		-	 		-	- :	- :			-	1		-	-
EV_MC2	EV MC2_WS_2022-06-16_N-SRF	2022-08-19			1 -	-			-			·	<u> </u>	-		-
EV_MC2	EV MC2 WS 2022-06-19 N SRF	2022-08-19		-	+ :			-	- :	-:-		-	-	- :		-
EV_MC2	EV_MC2_WS_2022-08-20_N-SKI	2022-08-21		-	+ -	-				- :			-			-
EV_MC2	EV_MC2_WS_2022-08-21_N-SRF	2022-08-22		-	 	-	- :		-			•		-		-
EV_MC2	EV MC2 WS 2022-08-22 N-SRF	2022-08-23	+-	-	+ :			-	- :			-	-	- :		-
EV_MC2	EV MC2 WS 2022-08-25 N-5K1	2022-08-23	+ :	-	0.00011	0.0002	0.115	< 0.020	< 0.000050	0.016	0.00	-	83.4	0.00018	< 0.10	
EV_MC2	EV_MC2_WS_2022_QS_WR2_N EV_MC2_WS_2022-08-24_N-SRF	2022-08-24		< 0.0010	0.00011	0.0002	0.113	V 0.020	< 0.000030	0.010		00354	03.4	0.00016	- 0.10	< 0.00020
EV_MC2	EV_MC2_WS_2022-06-24_N-SKI	2022-08-25		-	 	- :						-	-	- :		-
EV_MC2	EV_MC2_WS_2022-08-25_N-SRF	2022-08-26		-	-	-			-			-	-	-		-
EV_MC2	EV MC2 WS 2022-08-27 N-SRF	2022-08-27		-					- :				-		-	
EV_MC2	EV_MC2_WS_2022-08-27_N-SKI	2022-08-28	+ :-	-	-	-		-	-	- :		-	-			- :
EV MC2	EV_MC2_WS_2022-08-29_N-SRF	2022-08-29	-	0.0014	< 0.00010	0.00016	0.141	< 0.020	< 0.000050	0.014		00331	80.1	0.00015	< 0.10	< 0.00020
EV MC2	EV MC2 WS 2022-08-30 N SRF	2022-08-30	1		1 0.00010	0.00010	0.141	- 0.020	- 0.000000	0.014				0.00010	- 0.10	< 0.00020
FV MC2	EV MC2 WS 2022 Q3 WK3 N	2022-08-30	+ -	0.001	0.0001	0.0002	0.114	< 0.020	< 0.000050	0.013		- 00259	74.4	0.00012	< 0.10	< 0.00020
EV MC2	EV MC2 WS 2022-08-31 N SRF	2022-08-31	+ -	0.001	0.0001	0.0002	0.114	- 0.020	- 0.000000	0.010		-	74.4	0.00012	- 0.10	< 0.00020
EV MC2	EV_MC2_WS_2022-09-01_N-SRF	2022-09-01	+ -		 	-	-	-	- :	-			-	-		-
EV MC2	EV_MC2_WS_2022-09-02_N-SRF	2022-09-02	1		-	-	-	-				-	-	-		-
EV MC2	EV MC2 WS 2022-09-03 N-SRF	2022-09-03	-		-	-	-	-	-			<u>. </u>	-	-		- :
EV_MC2	EV_MC2_WS_2022-09-04_N-SRF	2022-09-04	1			-		-		-		<u>. </u>	-		-	1
EV_MC2	EV_MC2_WS_2022-09-04_N-SKF	2022-09-05	+ -	-	1 -							<u>-</u>	-			-
EV_MC2	EV MC2 WS 2022-09-05 N-SRF	2022-09-06	1		-	-						-	-			- -
EV_MC2	EV MC2 WS 2022-09 MON N	2022-09-06	1	0.0028	< 0.00010	0.00015	0.14	< 0.020	< 0.000050	0.017		00258	84	0.00017	< 0.10	0.00026
EV MC2	EV MC5 WS 2022-09 MON N	2022-09-06	-	0.0028	< 0.00010	0.00016	0.138	< 0.020	< 0.000050	0.016		10023	82.6	0.00017	< 0.10	0.00026
EV MC2	EV MC2 WS 2022-09-07 N-SRF	2022-09-07	1	0.0026	- 0.00010	0.00010	0.100	- 0.020	- 0.000000	- 0.010		-	- 02.0	-	- 0.10	0.00022
EV_MC2	EV MC2 WS SEPT-2022 N	2022-09-08	+ -	0.0018	0.0001	0.00018	0.129	< 0.020	< 0.000050	0.014		00208	73.8	0.00013	< 0.10	< 0.00020
EV MC2	EV MC2 WS 2022-09-08 N-SRF	2022-09-08	+ -	0.0018	-	-	-	-	-	-		-	-	-	-	- 0.00020
EV MC2	EV MC2 WS 2022-09-09 N-SRF	2022-09-09	+ -		-	-	-	-		-		<u>. </u>	-	-	-	
EV MC2	EV MC2 WS 2022-09-09 N	2022-09-09	+ -	0.001	< 0.00010	0.00015	0.135	< 0.020	< 0.000050	0.018		00234	85.1	0.00014	< 0.10	< 0.00020
EV MC2	EV MC2 WS 2022-09-10 N-SRF	2022-09-10	+ -	0.001	-	-	-	-	-	-		-	-	-	-	- 0.00020
EV MC2	EV MC2 WS 2022-09-11 N-SRF	2022-09-11			-	-	-	-	-	-		-	-	-	-	
EV MC2	EV MC2 WS 2022-09-12 N-SRF	2022-09-12		< 0.0010	< 0.00010	0.00014	0.0936	< 0.020	< 0.000050	0.011		00215	69.6	0.00011	< 0.10	< 0.00020
EV MC2	EV MC2 WS 2022-09-13 N-SRF	2022-09-13		V 0.00 10	-	-	-	-	-	-		=	-	-	-	< 0.00020
EV MC2	EV_MC2_WS_2022_Q3_WK5_N	2022-09-13	+ -	0.0018	0.00012	0.00017	0.124	< 0.020	< 0.000050	0.016		00364	88.3	0.00019	< 0.10	< 0.00020
EV MC2	EV MC2 WS 2022-09-14 N-SRF	2022-09-14	+ -	0.0018	-	-	-	-	-	-		-	-	-	-	< 0.00020
EV MC2	EV MC2 WS 2022-09-15 N-SRF	2022-09-15	+ -	-	 -	-	-	-		-		-	-	-	-	-
EV MC2	EV MC2 WS 2022-09-16 N-SRF	2022-09-16	+ -	-	-	-	-	-	-	-		<u>. </u>	-	-	-	<u> </u>
EV_MC2	EV_MC2_WS_2022-09-17_N-SRF	2022-09-17	1 -	<u> </u>	-	-	-	-					-	-	-	
EV_MC2	EV_MC2_WS_2022-09-18_N-SRF	2022-09-18	 -	-	 -	-	-	-		-		-	 -	-	-	-
EV MC2	EV MC2 WS 2022-09-19 N-SRF	2022-09-19	+ -	-	-	-	-	-	-	-		<u>. </u>	-	-	-	- :

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

											Dissolv	ed Metals							
Sample	Sample	Sample Date	Hardness	lron	Lead	Lithium	Magnesium	Manganese	Nickel	Potassium	Selenium	Silver	Sodium	Strontium	Thallium	Ę	Titanium	Uranium	Zinc
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
		1		Ĭ	, i			ŭ	- J			, i	·	-	Ĭ	i i	, i		
				Acute															
BC WQG FWAL			n/a	0.35	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Elkview Operation																			
EV_MC2	EV_MC2_WS_2022-08_MON_N	2022-08-10		0.0.0	< 0.000050	0.0198	37.8	0.0018	0.00128	1.27	15.5	< 0.000010	5.68	0.211	0.00001	< 0.00010	< 0.00030	0.00156	0.0012
EV_MC2	EV_MC2_WS_2022-08-11_N-SRF	2022-08-11	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-08-12_N-SRF	2022-08-12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-08-13_N-SRF	2022-08-13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-08-14_N-SRF	2022-08-14	-																
EV_MC2	EV_MC2_WS_2022-08-15_N-SRF	2022-08-15	-	0.01	< 0.000050	0.0145	32	0.00216	0.00156	1.02	18.4	< 0.000010	3.93	0.185	< 0.000010	0.00044	< 0.00030	0.00153	0.008
EV_MC2	EV_MC2_WS_2022-08-16_N-SRF	2022-08-16	-	-	- 0.000050	- 0.0470	- 00.4	- 0.00400	- 0.00400	-	-	- 0.000040	- 4.07	- 0.40	- 0.000010	- 0.00010		- 0.00450	
EV_MC2 EV_MC2	EV_MC2_WS_2022_Q3_WK1_N EV_MC2_WS_2022-08-17_N-SRF	2022-08-16	-	< 0.010	< 0.000050	0.0178	36.4	0.00196	0.00132	1.14	22.8	< 0.000010	4.87	0.19	< 0.000010		< 0.00030	0.00153	< 0.0010
				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2 EV MC2	EV MC2 WS 2022-08-18 N-SRF EV MC2 WS 2022-08-19 N SRF	2022-08-18	<u> </u>	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
EV_MC2	EV MC2 WS 2022-08-19 N SRF EV MC2 WS 2022-08-20 N-SRF	2022-08-19	-		-	-	-		-	-	-	-	-		-	-	-	-	-
EV_MC2 EV MC2	EV_MC2_WS_2022-08-20_N-SRF EV_MC2_WS_2022-08-21_N-SRF	2022-08-20	-	-	-		-	-	-	-	-	-		-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-08-21_N-SRF EV_MC2_WS_2022-08-22_N-SRF	2022-08-21																-	
EV_MC2 EV MC2	EV_MC2_WS_2022-08-22_N-SRF EV_MC2_WS_2022-08-23_N-SRF		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV MC2 WS 2022-08-23 N-SRF EV MC2 WS 2022 Q3 WK2 N	2022-08-23	-	< 0.010	< 0.000050	0.0204	37.6	0.00188	0.00122	1.19	23.2	< 0.000010	4.98	0.204	< 0.000010	< 0.00010	< 0.00030	0.00154	< 0.0010
EV_MC2 EV MC2	EV_MC2_WS_2022_Q3_WR2_N EV_MC2_WS_2022-08-24_N-SRF	2022-08-23	-	< 0.010		0.0204	37.6	0.00188	0.00122	1.19	23.2	< 0.000010	4.98	0.204	< 0.000010	< 0.00010		0.00154	
EV_MC2 EV MC2	EV_MC2_WS_2022-08-24_N-SRF EV_MC2_WS_2022-08-25_N-SRF		-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-08-25_N-SRF EV_MC2_WS_2022-08-26_N-SRF	2022-08-25	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-08-26_N-SRF EV_MC2_WS_2022-08-27_N-SRF	2022-08-26	-	-	-				-	-	-	- :			-			-	
EV_MC2 EV MC2	EV_MC2_WS_2022-08-27_N-SRF EV_MC2_WS_2022-08-28_N-SRF	2022-08-27	-	_														-	
EV_MC2	EV_MC2_WS_2022-06-26_N-SRF EV_MC2_WS_2022-08-29_N-SRF	2022-08-29	-	< 0.010	< 0.000050	0.0148	36	0.00177	0.00134	0.924	17.1	< 0.000010	4.33	0.189	< 0.000010	< 0.00010	< 0.00030	0.00126	< 0.0010
EV MC2	EV MC2 WS 2022-08-30 N SRF	2022-08-30	<u> </u>	< 0.010	< 0.000030	0.0140	30	0.00177	0.00134	0.924	17.1	< 0.000010	4.33	0.109	< 0.000010	< 0.00010	< 0.00030	0.00126	V 0.0010
EV_WC2	EV MC2 WS 2022 Q3 WK3 N	2022-08-30	<u> </u>	< 0.010	< 0.000050	0.0134	35.2	0.00152	0.0013	1.03	18.7	< 0.000010	4.12	0.176	< 0.000010	< 0.00010	< 0.00030	0.00158	< 0.0010
EV MC2	EV MC2 WS 2022-08-31 N SRF	2022-08-31	<u> </u>	- 0.010	- 0.000030	0.0134	-	0.00132	0.0013	1.03	- 10.7	- 0.000010	4.12	0.170	- 0.000010	- 0.00010	- 0.00030	0.00136	- 0.0010
EV MC2	EV MC2 WS 2022-09-01 N-SRF	2022-09-01	H :	- :						- :	- :	- :	-				- :		- : -
EV MC2	EV MC2 WS 2022-09-01 N-SRF	2022-09-01	+ :-	-				-				-	-	-		-			
EV_MC2	EV MC2 WS 2022-09-03 N-SRF	2022-09-03	<u> </u>	-	-		-	-	-	-	-	-		-	-	-	-	-	-
EV MC2	EV MC2 WS 2022-09-04 N-SRF	2022-09-04	-	- :							- :	-	- :		- :	-	- :		- :
EV_MC2	EV MC2 WS 2022-09-05 N-SRF	2022-09-05	1	-			-	-	-	-	-	-	-		-			-	-
EV_MC2	EV MC2 WS 2022-09-06 N-SRF	2022-09-06	1	-	-		-	-	-	-	-	-	-	-	-	-			-
EV_MC2	EV MC2 WS 2022-09 MON N	2022-09-06	1	< 0.010	< 0.000050	0.0157	38	0.00183	0.00141	1.07	20.5	< 0.000010	4.54	0.2	< 0.000010	< 0.00010	< 0.00030	0.00148	< 0.0010
EV_MC2	EV_MC5_WS_2022-09_MON_N	2022-09-06	-	< 0.010	< 0.000050	0.0154	37.3	0.00103	0.00127	1.05	20.3	< 0.000010	4.42	0.201	< 0.000010	< 0.00010	< 0.00030	0.00148	0.0021
EV MC2	EV MC2 WS 2022-09-07 N-SRF	2022-09-07	H:	- 0.010	- 0.000030	0.0134	-	0.00173	0.00127	1.03	-	- 0.000010	4.42	0.201	- 0.000010	- 0.00010	- 0.00030	0.00149	0.0021
EV_MC2	EV MC2 WS SEPT-2022 N	2022-09-08	H	< 0.010	< 0.000050	0.0153	35	0.00178	0.00119	1.11	20.9	< 0.000010	4.19	0.192	< 0.000010	< 0.00010	< 0.00030	0.00151	< 0.0010
EV MC2	EV MC2 WS 2022-09-08 N-SRF	2022-09-08		- 0.010	- 0.000000	0.0100	-	-	-		-	- 0.000010		0.132	- 0.000010	- 0.00010	- 0.00000	-	- 0.0010
EV MC2	EV MC2 WS 2022-09-09 N-SRF	2022-09-09	١.	-	l .	-	-	-	-	-		-	-	-	-	-	-	-	-
EV_MC2	EV MC2 WS 2022-09-09 N	2022-09-09	١.	< 0.010	< 0.000050	0.0135	36.5	0.00158	0.00139	1.03	21.8	< 0.000010	4.33	0.195	< 0.000010	< 0.00010	< 0.00030	0.0014	< 0.0010
EV MC2	EV MC2 WS 2022-09-10 N-SRF	2022-09-10	-	- 0.010	- 0.000000	-	-	-	-	-	-	- 0.000010	-	-	- 0.000010	- 0.00010	- 0.00000	- 0.0014	- 0.0010
EV MC2	EV MC2 WS 2022-09-11 N-SRF	2022-09-11	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-
EV MC2	EV MC2 WS 2022-09-12 N-SRF	2022-09-12	-	< 0.010	< 0.000050	0.017	28.3	0.00126	0.0011	0.934	18	< 0.000010	3.78	0.174	< 0.000010	< 0.00010	< 0.00030	0.00131	< 0.0010
EV MC2	EV MC2 WS 2022-09-13 N-SRF	2022-09-13	٠.	-	-	-	-	-	-	-		-	-	-	-	-		-	- 0.0010
EV MC2	EV_MC2_WS_2022_Q3_WK5_N	2022-09-13	١.	< 0.010	< 0.000050	0.0185	46.4	0.00174	0.00162	1.5	29.5	< 0.000010	5.79	0.214	< 0.000010		< 0.00030	0.00167	0.0018
EV MC2	EV MC2 WS 2022-09-14 N-SRF	2022-09-14	١.	- 0.010	- 0.000000	-	-	- 0.00	5.00.02	-	-	- 0.000010	5.75		- 0.000010	- 0.00010	- 0.00000		-
EV MC2	EV MC2 WS 2022-09-15 N-SRF	2022-09-15	-	-		_	-	-	-	-	-	-	-	-	-	-		-	-
EV MC2	EV MC2 WS 2022-09-16 N-SRF	2022-09-16	١.	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-
EV MC2	EV MC2 WS 2022-09-17 N-SRF	2022-09-17		-	-		-	-	-	-	-	-	-	-	-	-	-	-	
EV MC2	EV MC2 WS 2022-09-18 N-SRF	2022-09-18	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
EV MC2	EV MC2 WS 2022-09-19 N-SRF	2022-09-19	٠.	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-
EV MC2	EV MC2 WS 2022-09-20 N-SRF	2022-09-20	٠.	-		_	-	-	-	-	-	-	-	-	-	-	-	-	
	910													l	1				

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

^d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

									Dissolve	ed Metals						
Sample	Sample	Sample Date	Hardness	Aluminum	Antimony	Arsenic	Sarium	Beryllium	Sismuth	Boron		Cadmium	Calcium	Chromium	Sobalt	Copper
Location	ID	(mm/dd/yyyy		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	m	g/L	mg/L	mg/L	mg/L	mg/L
,		10		Acute			3	J	J	J	Acute	Chronic		•	•	Acute
C WQG FWAL			n/a	0.020-0.10 ^a 0.005-0.0	5 ^a n/a	na	na	na	n/a	n/a	0.00004-0.0028 ^a	0.00002-0.00173 ^a	n/a	n/a	n/a	BLMe
kview Operation	57, 1400, 1410, 0000, 00 04, 14, 005	2000 00 04														
EV_MC2 EV_MC2	EV MC2 WS 2022-09-21 N SRF EV MC2 WS 2022-09-22 N-SRF	2022-09-21	-	-	-	-	-	-	-	-		-	-	-	-	-
EV_MC2 EV MC2	EV_MC2_WS_2022-09-22_N-SRF EV_MC2_WS_2022-09-23_N-SRF	2022-09-22	-		-	-	-	-	-	-			-	-	-	-
EV_MC2 EV MC2	EV MC2 WS 2022-09-23 N-SRF	2022-09-23	-			-	-	-	-	-		-			-	-
EV_MC2 EV MC2	EV MC2 WS 2022-09-24 N-SRF EV MC2 WS 2022-09-25 N-SRF		-			-	-	-	-	-		-	_	-	-	-
		2022-09-25	-		- 0.00044	- 0.0004	- 0.400	- 0.000		- 0.045		·	-	0.00047		
EV_MC2 EV MC2	EV_MC2_WS_2022-09-26_N-SRF EV_MC2_WS_2022-09-27_N-SRF	2022-09-26	-	0.0019	0.00011	0.0001	0.123	< 0.020	< 0.000050	0.015	0.00	00177	83.9	0.00017	< 0.10	
EV_MC2 EV_MC2	EV MC2 WS 2022-09-27 N-SRF	2022-09-27	-	-	+ :				<u> </u>			•				-
EV_MC2 EV_MC2	EV MC2 WS 2022-09-28 N-SRF	2022-09-28	<u> </u>		 	-	-	-	-	-		-	-	-	-	-
EV_MC2	EV MC2 WS 2022-09-29 N-SRF	2022-09-29	-	-		-		-		-		-			-	-
EV_MC2	EV MC2 WS 2022-10-01 N-SRF	2022-10-01	<u> </u>		-	-		-	-			·				-
EV_MC2	EV MC2 WS 2022-10-01 N-SRF	2022-10-01	-		-	-	-	-	- :			•			-	
EV_MC2	EV MC2 WS 2022-10-02 N-SRF	2022-10-02	<u> </u>	-	0.00011	0.00014	0.135	< 0.020	< 0.000050	0.013		-	91.3	0.0003	< 0.10	
EV_MC2	EV MC2 WS 2022-10-03_N-SRF	2022-10-03	<u> </u>	< 0.0010	0.00011	- 0.00014	0.100	- 0.020	- 0.000030	0.013		00254	91.5	0.0003	- 0.10	< 0.00020
EV_MC2	EV MC2 WS 2022-10-04 N-SRF	2022-10-04	-	· · · · ·	-			-	- :	- :					-	-
EV_MC2	EV MC2 WS 2022-10-00 N-SK1	2022-10-06	-	< 0.0010	0.00011	0.00021	0.128	< 0.020	< 0.000050	0.015		00024	86	0.00015	< 0.10	< 0.00020
EV_MC2	EV MC5 WS 2022-Q4 N	2022-10-06	1	< 0.0010 < 0.0010	0.00011	0.00021	0.120	< 0.020	< 0.000050	0.013		00184	88.6	0.00013	< 0.10	
EV_MC2	EV MC2 WS 2022 Q4 WK1 N	2022-10-00	-	< 0.0010	0.00011	0.00014	0.119	< 0.020	< 0.000050	0.015		00245	88	0.00012	< 0.10	
EV_MC2	EV MC2 WS 2022 Q4 WK1 N	2022-10-11	H -	< 0.0010	0.0001	0.00012	0.119	- 0.020	- 0.000030	0.013		-	- 00	0.00014	- 0.10	< 0.00020
EV_MC2	EV MC2 WS 2022-10-12 N-SRF	2022-10-12	+ -			-		-	-			-				-
EV_MC2	EV MC2 WS 2022-10-17 N-SRF	2022-10-17	-	< 0.0020	< 0.00020	< 0.00020	0.102	< 0.040	< 0.000100	< 0.020		00267	80.3	< 0.00020	< 0.20	< 0.00040
EV MC2	EV MC2 WS 2022 Q4 WK2 N	2022-10-18	-	0.0082	< 0.00010	0.00017	0.115	< 0.020	< 0.000050	0.015		00182	93.4	0.00015	< 0.10	< 0.00020
EV MC2	EV MC2 WS 2022-10-19 N-SRF	2022-10-19	-	0.0082	-	-	-	-	-	-		-	-	-	-	~ 0.00020
EV MC2	EV MC2 WS 2022-10-24 N-SRF	2022-10-24	-		-	-	-	-	-	-		-	-	-	-	
EV MC2	EV MC2 WS 2022 Q4 WK3 N	2022-10-25	-	< 0.0010	< 0.00010	0.00018	0.114	< 0.020	< 0.000050	0.012		00206	77.7	0.00015	< 0.10	< 0.00020
EV MC2	EV MC2 WS 2022-10-26 N-SRF	2022-10-26	-	- 0.0010	-	-	-	-	-	-	0.00	-	-	-	-	- 0.00020
EV_MC2	EV_MC2_WS_2022-10-28_N_SRF	2022-10-28	-	-	-	-	-	-	-	-		-	-	-	-	-
EV MC2	EV MC2 WS 2022-10-31 N-SRF	2022-10-31	-	0.0022	< 0.00010	0.0002	0.108	< 0.020	< 0.000050	0.012	0.00	00257	72.6	0.00016	< 0.10	< 0.00020
EV MC2	EV MC2 WS 2022 Q4 WK4 N	2022-11-01	-	0.0018	< 0.00010	0.0002	0.104	< 0.020	< 0.000050	0.011	0.00	00219	57.7	0.0001	< 0.10	0.00027
EV_MC2	EV_MC2_WS_2022_Q4_WK5_N	2022-11-08	-	0.0012	< 0.00010	0.00015	0.119	< 0.020	< 0.000050	0.014		00198	80.4	< 0.00010	< 0.10	
EV_MC2	EV_MC2_WS_2022-11-14_N-SRF	2022-11-14	-	< 0.0010	< 0.00010	0.00016	0.114	< 0.020	< 0.000050	0.013		00178	82.1	0.00013	< 0.10	< 0.00020
EV_MC2	EV_MC2_WS_2022-11_MON_N	2022-11-14	-	< 0.0010	< 0.00010	0.00016	0.117	< 0.020	< 0.000050	0.014		00282	85.3	0.0001	< 0.10	< 0.00020
EV_MC2	EV_MC5_WS_2022-11_MON_N	2022-11-14	-	< 0.0010	< 0.00010	0.00013	0.114	< 0.020	< 0.000050	0.014		00244	85.2	0.00012	< 0.10	< 0.00020
EV_MC2	EV_MC2_WS_2022-11-28_N-SRF	2022-11-28	-	< 0.0010	< 0.00010	0.00021	0.121	< 0.020	< 0.000050	0.013		00278	82	0.00015	< 0.10	< 0.00020
EV_MC2	EV_MC2_WS_2022-12_MON_N	2022-12-06	-	< 0.0010	0.00011	0.00014	0.127	< 0.020	< 0.000050	0.013	0.00	00239	90	0.00013	< 0.10	< 0.00020
EV_MC2	EV_MC2_WS_2022-12-12_N-SRF	2022-12-12	-	0.002	0.00012	0.00016	0.121	< 0.020	< 0.000050	0.014		00234	82.4	0.00014	< 0.10	< 0.00020
EV_MC2	EV_MC2_WS_2022-12-27_N-SRF	2022-12-27	-	< 0.0010	< 0.00010	0.00021	0.115	< 0.020	< 0.000050	0.016		00325	84.6	0.00013	< 0.10	0.00022
EV_OC1	EV_OC1_WS_2022-Q1_N	2022-01-05	-	< 0.0010	< 0.00010	0.00044	0.446	< 0.020	< 0.000050	0.058	< 0	.0050	101	< 0.00010	0.00019	< 0.00020
EV_OC1	EV_OC1_WS_2022-02_MON_N	2022-02-07	-	< 0.0010	< 0.00010	0.00037	0.419	< 0.020	< 0.000050	0.076		00069	102	< 0.00010	0.00013	
EV_OC1	EV_OC1_WS_2022-03_MON_N	2022-03-16	-	0.0014	0.00012	0.00034	0.226	< 0.020	< 0.000050	0.057	0.00	00287	82.2	< 0.00010	0.00019	0.00028
EV_OC1	EV_OC1_WS_2022-03_WEK13_N	2022-03-21	-	-	-	-	-	-	-	-		-	-			
EV_OC1	EV_OC1_WS_2022-03_WEK14_N	2022-03-28	-	-	-	-	-	-	-	-		-	-	-	-	-
EV_OC1	EV_OC1_WS_2022-04_WEK15_N	2022-04-04	-	-	-	-	-	-	-	-		-	-	-	-	-
EV_OC1	EV_OC1_WS_2022-Q2_N	2022-04-12	-	0.0021	0.00015	0.00036	0.27	< 0.020	< 0.000050	0.06	0.00	00138	91.8	< 0.00010	0.00015	< 0.00040
EV_OC1	EV_OC1_WS_2022-04_WEK17_N	2022-04-18	-	-	-	-	-	-	-	-		-	-	-	-	-
EV_OC1	EV_OC1_WS_2022-04_WEK18_N	2022-04-26	-	-	-	-	-	-	-	-		-	-	-	-	-
EV_OC1	EV_OC1_WS_2022-05_MON_N	2022-05-03	-	0.0046	0.00016	0.00035	0.326	< 0.020	< 0.000050	0.066	0.00	00082	95.4	< 0.00010	< 0.10	0.00039
EV_OC1	EV_OC1_WS_2022-05_WEK20_N	2022-05-11	-	-	-	-	-	-	-	-		-	-	-	-	-
EV_OC1	EV_OC1_WS_2022-05_WEK21_N	2022-05-16	-	-	-	-	-	-	-	-		-	-	-	-	-
EV OC1	EV OC1 WS 2022-05 WEK22 N	2022-05-24										-				

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

											Dissolv	ed Metals							
Sample	Sample	Sample Date	Hardness	υo	-ead	ithium	Magnesium	Manganese	Vickel	Potassium	Selenium	Silver	Sodium	Strontium	Thallium	E	fitanium	Jranium	Zinc
Location	ID	(mm/dd/yyyy)		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
		1		, i	, i		Ť	ŭ	- J				, i	Ĭ	, i	Ť	Ĭ		
				Acute															
BC WQG FWAL			n/a	0.35	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Elkview Operation																			
EV_MC2	EV_MC2_WS_2022-09-21_N_SRF	2022-09-21	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_ 2022-09-22_N-SRF	2022-09-22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-09-23_N-SRF	2022-09-23	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-09-24_N-SRF	2022-09-24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-09-25_N-SRF	2022-09-25	-	-				-	-				-				-	-	
EV_MC2	EV_MC2_WS_2022-09-26_N-SRF	2022-09-26	-	< 0.010	< 0.000050	0.0218	37.6	0.00146	0.00162	1.26	20.9	< 0.000010	4.5	0.198	< 0.000010	< 0.00010	< 0.00030	0.00166	0.0092
EV_MC2	EV_MC2_WS_2022-09-27_N-SRF	2022-09-27	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-09-28_N-SRF	2022-09-28	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-09-29_N-SRF	2022-09-29	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-09-30_N-SRF	2022-09-30	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-10-01_N-SRF	2022-10-01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-10-02_N-SRF	2022-10-02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-10-03_N-SRF	2022-10-03	-	< 0.010	< 0.000050	0.0144	38.6	0.00145	0.00122	1.24	27.4	< 0.000010	4.68	0.224	< 0.000010	< 0.00010	< 0.00030	0.00179	< 0.0010
EV_MC2	EV_MC2_WS_2022-10-04_N-SRF	2022-10-04	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-10-06_N-SRF	2022-10-06	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-Q4_N	2022-10-06	-	< 0.010	< 0.000050	0.0184	39.5	0.00169	0.00203	1.26	29.4	< 0.000010	4.14	0.203	< 0.000010	< 0.00010	< 0.00030	0.00178	< 0.0010
EV_MC2	EV_MC5_WS_2022-Q4_N	2022-10-06	-	< 0.010	< 0.000050	0.0186	39.4	0.0016	0.0015	1.28	27.8	< 0.000010	4.19	0.209	< 0.000010	< 0.00010	< 0.00030	0.00183	< 0.0010
EV_MC2	EV_MC2_WS_2022_Q4_WK1_N	2022-10-11	-	< 0.010	< 0.000050	0.0201	37.7	0.00176	0.00142	1.14	19.9	< 0.000010	4.38	0.208	< 0.000010	< 0.00010	< 0.00030	0.00174	< 0.0010
EV_MC2 EV MC2	EV_MC2_WS_2022-10-12_N-SRF	2022-10-12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2 EV MC2	EV_MC2_WS_2022-10-14_N-SRF	2022-10-14	-	< 0.020	< 0.000100	0.0197	_	0.00157	0.00132	-	_	< 0.000020	4.23	0.189	< 0.000020	< 0.00020	< 0.00060	0.0016	< 0.0020
EV_MC2 EV MC2	EV_MC2_WS_2022-10-17_N-SRF	2022-10-17	-				34.5			1	20.1								
EV_MC2 EV MC2	EV_MC2_WS_2022_Q4_WK2_N EV_MC2_WS_2022-10-19_N-SRF	2022-10-18	-	< 0.010	< 0.000050	0.0187	38.7	0.00187	0.0013	1.1	20.9	< 0.000010	4.36	0.22	< 0.000010	< 0.00010	< 0.00030	0.0017	< 0.0010
EV_MC2	EV_MC2_WS_2022-10-19_N-SRF EV_MC2_WS_2022-10-24_N-SRF	2022-10-19	-					-	-			-	-		-			-	
EV_MC2 EV MC2	EV_MC2_WS_2022-10-24_N-SRF EV_MC2_WS_2022_Q4_WK3_N	2022-10-24	-	< 0.010	< 0.000050	0.0163	33	0.00174	0.00112	0.994	-	< 0.000010	4.2	0.189	< 0.000010	< 0.00010	< 0.00030	0.00151	< 0.0010
EV_MC2 EV MC2	EV_MC2_WS_2022_Q4_WK3_N EV_MC2_WS_2022-10-26_N-SRF	2022-10-25	-	< 0.010	< 0.000050	0.0163	33	0.00174	0.00112	0.994	18.2	< 0.000010	4.2	0.189	< 0.000010	< 0.00010	< 0.00030	0.00151	< 0.0010
EV_MC2	EV_MC2_WS_2022-10-26_N-SRF EV_MC2_WS_2022-10-28_N_SRF	2022-10-28	<u> </u>	-			-	-		-	-			-	-	-	-	-	
EV_MC2	EV MC2 WS 2022-10-26 N_SRF	2022-10-20		< 0.010	< 0.000050	0.0131	32.8	0.00178	0.00132		- 40.5	< 0.000010	-	0.184	< 0.000010	< 0.00010	< 0.00030	0.00154	0.0624
EV_MC2 EV MC2			-	< 0.010	< 0.000050	0.0131	23.9	0.00178	0.00132	1.02 0.88	13.5 8.44	< 0.000010	4.3 3.41	0.184	< 0.000010	< 0.00010	< 0.00030	0.00154	0.0624
EV_MC2 EV MC2	EV_MC2_WS_2022_Q4_WK4_N EV_MC2_WS_2022_Q4_WK5_N	2022-11-01	-	< 0.010	< 0.000050	0.0104	37.4	0.00172	0.00111	1.05	19.9	< 0.000010	4.46	0.16	< 0.000010	< 0.00010	< 0.00030	0.001	< 0.002
EV_MC2 EV MC2	EV_MC2_WS_2022_Q4_WK5_N EV_MC2_WS_2022-11-14_N-SRF	2022-11-08	-	< 0.010	< 0.000050	0.0165	37.4	0.00216	0.00166	1.05	17.3	< 0.000010	4.46	0.192	< 0.000010	< 0.00010	< 0.00030	0.00171	0.0010
EV_MC2 EV MC2	EV_MC2_WS_2022-11-14_N-SRF EV_MC2_WS_2022-11_MON_N	2022-11-14	<u> </u>	< 0.010	< 0.000050	0.0165	35.8	0.00186	0.00205	1.16	17.3	< 0.000010	5.04	0.207	< 0.000010	< 0.00010	< 0.00030	0.00179	< 0.0031
EV_MC2 EV MC2	EV_MC2_WS_2022-11_MON_N EV_MC5_WS_2022-11_MON_N	2022-11-14	<u> </u>	< 0.010	< 0.000050	0.0162	37.9	0.00192	0.00214	1.16	19.1	< 0.000010	5.04	0.212	< 0.000010	< 0.00010	< 0.00030	0.00186	< 0.0010
EV_MC2 EV MC2	EV_MC5_WS_2022-11_MON_N EV_MC2_WS_2022-11-28_N-SRF	2022-11-14	<u> </u>	< 0.010	< 0.000050	0.0161	40.4	0.00197	0.00209	1.12	22.8	< 0.000010	5.02	0.21	< 0.000010	< 0.00010	< 0.00030	0.00186	0.0010
EV_MC2	EV_MC2_WS_2022-11-28_N-SRF EV_MC2_WS_2022-12_MON_N	2022-11-28	1	< 0.010	< 0.000050	0.0203	40.4	0.00204	0.00251	1.24	16.5	< 0.000010	4.85	0.21	< 0.000010	< 0.00010	< 0.00030	0.00175	< 0.0013
EV_MC2	EV MC2 WS 2022-12 MON N	2022-12-00	H	< 0.010	< 0.000050	0.0104	38.3	0.00166	0.00256	1.10	15.4	< 0.000010	5.05	0.202	< 0.000010	< 0.00010	< 0.00030	0.00209	0.0010
EV_MC2	EV MC2 WS 2022-12-17 N-SRF	2022-12-12	H	< 0.010	< 0.000050	0.0196	37.4	0.00171	0.00261	1.12	13.4	< 0.000010	6.08	0.204	< 0.000010	< 0.00010	< 0.00030	0.00213	0.0013
EV_IVIC2 EV OC1	EV OC1 WS 2022-Q1 N	2022-12-27	H	0.035	< 0.000050	0.0171	37.4	0.0014	0.00248	2.71	0.965	< 0.000010	24.9	0.196	< 0.000010	< 0.00010	< 0.00030	0.000552	0.0793
EV_OC1	EV OC1 WS 2022-Q1 N	2022-01-05	H	0.035	< 0.000050	0.0471	39.5	0.142	0.00137	2.71	0.965	< 0.000010	30.1	0.778	< 0.000010	< 0.00010	< 0.00030	0.000509	< 0.0013
EV_OC1	EV OC1 WS 2022-02 MON N	2022-02-07	H	0.025	< 0.000050	0.0371	29.8	0.107	0.00124	2.59	2.2	< 0.000010	22.4	0.92	< 0.000010	< 0.00010	< 0.00030	0.000538	0.0014
EV_OC1	EV OC1 WS 2022-03 WEK13 N	2022-03-16	⊢÷	0.032	- 0.000030	0.0350	29.0	0.0734	0.00034	-	2.2	- 0.000010	- 22.4	0.12	- 0.000010	- 0.00010	- 0.00030	J.000336	0.0014
EV_OC1	EV OC1 WS 2022-03 WEK13 N	2022-03-21	H		-			-	- :			-	- :	-		-	-	-	-
EV_OC1	EV OC1 WS 2022-03 WEK14 N	2022-03-26	H	-	-		-		-	-	-	- :			-	-	-		
EV_OC1	EV OC1 WS 2022-04 WEX 15 N	2022-04-04	-	0.038	< 0.000050	0.0423	37	0.0594	0.00147	2.32	1.71	< 0.000010	24	0.757	< 0.000010	< 0.00010	< 0.00030	0.000803	< 0.0010
EV_OC1	EV OC1 WS 2022-04 WEK17 N	2022-04-12	⊢÷	0.036	- 0.000050	0.0423	-	0.0594	0.00147	2.32	1.71	- 0.000010	-	0.737	- 0.000010	- 0.00010	- 0.00030	J.000003	- 0.0010
EV_OC1	EV OC1 WS 2022-04 WEK17 N	2022-04-16	H	-			- :	-	- :		- :	- :	- :	- :	-	- :		- :	- :
EV_OC1	EV OC1_WS_2022-04_WEX 16_N	2022-04-26	H	0.034	< 0.000050	0.0451	35.7	0.0522	0.00123	2.4	1.2	< 0.000010	22.7	0.779	< 0.000010	< 0.00010	< 0.00030	0.000645	< 0.0010
EV_OC1	EV OC1 WS 2022-05 WEK20 N	2022-05-03	H	0.034	- 0.000030	0.0431	33.7	0.0022	0.00123	2.4	1.4	- 0.000010		0.119	- 0.000010	V 0.00010	- 0.00030	J.000045	- 0.0010
EV OC1	EV OC1 WS 2022-05 WER20 N	2022-05-16	H :-	-			- :	-		- :	- :	-	- :	-		- :	-	- :	-
EV OC1	EV OC1 WS 2022-05 WER21 N	2022-05-10	H :-	-			<u> </u>	-	-				<u> </u>		-	-	-	-	
	2001_W0_2022-00_WER22_N	2022-00-24				-		_	-	-								-	

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

^d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

										Dissolve	ed Metals						
Sample	Sample	Sample Date		All minimized		Antimony	Arsenic	Barinm	Beryllium	Bismuth	Boron	:	Cadmium	Calcium	Chromium	Cobalt	Copper
Location	ID	(mm/dd/yyyy)	mg/L	mg		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	m	ıg/L	mg/L	mg/L	mg/L	mg/L
				Acute	Chronic							Acute	Chronic				Acute Chronic
BC WQG FWAL			n/a	0.020-0.10 ^a	0.005-0.05 ^a	n/a	na	na	na	n/a	n/a	0.00004-0.0028 ^a	0.00002-0.00173 ^a	n/a	n/a	n/a	BLMe
Elkview Operation																	
EV_OC1	EV_OC1_WS_2022-05_WEK23_N	2022-05-30	-	-		-	-		-		-		-	-	-	-	-
EV_OC1	EV_OC1_WS_2022-06_MON_N	2022-06-07	-	< 0.0	0010	0.00011	0.00042	0.294	< 0.020	< 0.000050	0.06	< 0	.0050	90.8	< 0.00010	< 0.10	< 0.00020
EV_OC1	EV_OC1_WS_2022-06_WEK25_N	2022-06-13	-			-	-	-	-	-	-			-	-	-	-
EV_OC1	EV_OC1_WS_2022-06_WEK26_N	2022-06-21	-	-		-	-	-	-	-	-			-	-	-	-
EV_OC1	EV_OC1_WS_2022-06_WEK27_N	2022-06-27	-	-		- 0.00040	- 0.00050	- 0.000		- 0.000050	- 0.050			79.8	- 0.00040		
EV_OC1 EV OC1	EV_OC1_WS_2022-Q3_N EV_OC1_WS_2022-07_WEK29_N	2022-07-06	-	< 0.0	0010	< 0.00010	0.00052	0.309	< 0.020	< 0.000050	0.059	< 0	.0050	79.8	< 0.00010	< 0.10	0.00025
EV_OC1	EV OC1 WS 2022-07 WER29 N	2022-07-11	-	-		< 0.00010	0.00063	0.343	< 0.020	< 0.000050	0.065		-	61.6	< 0.00010	< 0.10	-
EV_OC1	EV OC1 WS 2022-08 MON N	2022-08-10	-	0.00		< 0.00010	0.00063	0.343	< 0.020	< 0.000050	0.065		.0050	58.8	< 0.00010	< 0.10	< 0.00020
EV_OC1	EV_OC1_WS_2022-09_MON_N EV_OC1_WS_2022-Q4_N	2022-09-07	-	0.00		< 0.00010	0.00037	0.363	< 0.020	< 0.000050	0.054		.0050	68.8	< 0.00010	< 0.10	0.00024
EV_OC1	EV_OC1_WS_2022-Q4_N EV_OC1_WS_2022-11_MON_N	2022-10-07		< 0.0		< 0.00010	0.00049	0.428	< 0.020	< 0.000050	0.056		.0050	80.6	< 0.00010	< 0.10	< 0.00020
EV_OCT	EV SP1 WS 2022-01 N	2022-11-03		< 0.0 < 0.0		0.0006	< 0.0003	0.0109	< 0.020	< 0.000050	0.031		000053 00947	180	< 0.00010	< 0.00010	0.0002 0.00028
EV_SP1	EV SP1 WS 2022-01 N	2022-01-17		0.00		0.00064	< 0.00010	0.0105	< 0.020	< 0.000050	0.042		00947	179	0.00016	< 0.00010	0.00028
EV_SP1	EV SP1 WS 2022-02 MON N	2022-02-10		< 0.00		0.00061	< 0.00010	0.0103	< 0.020	< 0.000050	0.042		00941	176	< 0.00010	< 0.10	0.00033
EV_SP1	EV SP1 WS 2022-03 WEK13 N	2022-03-17		V 0.0	00 10	0.00001	- 0.00010	0.0112	- 0.020	- 0.000030	0.035		-	- 170	- 0.00010	- 0.10	0.00032
EV_SP1	EV SP1 WS 2022-03 WEK14 N	2022-03-22				-	-		-	-	-		.	-	-		
EV_SP1	EV SP1 WS 2022-04 WEK15 N	2022-04-06				-	-		-	-	-		-		-	- :	
EV SP1	EV SP1 WS 2022-Q2 N	2022-04-13	- 1	0.00		0.00061	< 0.00010	0.0109	< 0.020	< 0.000050	0.042		00779	150	< 0.00010	< 0.10	0.00032
FV SP1	EV SP1 WS 2022-04 WEK17 N	2022-04-20	- 1	0.00		- 0.00001	-	-	- 0.020	-	- 0.012		-		-	- 0.10	- 0.00002
EV SP1	EV SP1 WS 2022-04 WEK18 N	2022-04-27	- 1			-	-	-	-	-	-			- 1	-	-	
EV SP1	EV SP1 WS 2022-05-MON N	2022-05-04	-	< 0.0	0010	0.00058	< 0.00010	0.0108	< 0.020	< 0.000050	0.04		00952	177	< 0.00010	< 0.10	0.00032
EV SP1	EV SP1 WS 2022-05 WEK20 N	2022-05-10	- 1	- 0.0		-	-	-	-	-	-		-	-	-	-	- 0.00002
EV SP1	EV SP1 WS 2022-05 WEK21 N	2022-05-18	-			-	-	-	-	-	-			-	-	-	
EV SP1	EV SP1 WS 2022-05 WEK22 N	2022-05-25	-			-	-	-	-	-	-		-	-	-	-	-
EV SP1	EV SP1 WS 2022-05 WEK23 N	2022-05-31	-			-	-	-	-	-	-		-	-	-	-	-
EV_SP1	EV_SP1_WS_2022-06_MON_N	2022-06-06	-	< 0.0	0010	0.00061	< 0.00010	0.00971	< 0.020	< 0.000050	0.04	0.0	0107	176	< 0.00010	< 0.10	0.00035
EV_SP1	EV_SP1_WS_2022-06_WEK25_N	2022-06-15	-	-		-	-	-	-	-	-			-	-	-	-
EV_SP1	EV_SP1_WS_2022-06_WEK26_N	2022-06-23	-	-		-	-	-	-	-	-		-	-	-	-	-
EV_SP1	EV_SP1_WS_2022-06_WEK27_N	2022-06-29	-	-		-	-	-	-	-	-			-	-	-	-
EV_SP1	EV_SP1_WS_2022-Q3_N	2022-07-06	-	< 0.0	0010	0.00064	< 0.00010	0.0109	< 0.020	< 0.000050	0.045	0.0	00933	164	< 0.00010	< 0.10	0.0003
EV_SP1	EV_SP1_WS_2022-07_WEK29_N	2022-07-13	-			-	-	-	-	-	-		-	-	-	-	-
EV_SP1	EV_SP1_WS_2022-08_MON_N	2022-08-09	-	< 0.0	0010	0.00077	0.00014	0.0125	< 0.020	< 0.000050	0.064	0.0	0116	184	< 0.00010	< 0.10	0.00034
EV_SP1	EV_SP1_WS_SESMP_2022_08_N	2022-08-15	-	0.00	013	0.00069	< 0.00010	0.0117	< 0.020	< 0.000050	0.064		0107	178	0.00012	< 0.10	0.00037
EV_SP1	EV_SP1_WS_2022-09_MON_NP	2022-09-08	-	0.00	026	0.00077	< 0.00010	0.013	< 0.020	< 0.000050	0.064	0.0	0116	192	< 0.00010	< 0.10	0.0004
EV_SP1	EV_SP1_WS_2022-Q4_N	2022-10-04	- 1	< 0.0		0.00072	< 0.00010	0.0108	< 0.020	< 0.000050	0.067		0107	200	< 0.00010	< 0.10	0.00035
EV_SP1	EV_SP1_WS_2022-11_MON_N	2022-11-15	-	< 0.0		0.00083	< 0.00010	0.0134	< 0.020	< 0.000050	0.068		0014	222	< 0.00010	< 0.10	0.00031
EV_TC1	EV_TC1_WS_2022-03_MON_N	2022-03-29	-	0.00		0.00031	0.0003	0.0663	< 0.020	< 0.000050	< 0.010		000861	50.4	< 0.00010	< 0.10	0.0007
EV_TC1	EV_TC1_WS_2022-Q2_N	2022-04-13	-	0.00		0.0003	0.00026	0.0582	< 0.020	< 0.000050	< 0.010		00083	48.5	< 0.00010	< 0.10	0.00091
EV_TC1	EV_TC1_WS_2022-05_MON_N	2022-05-03	- 1	0.00		0.00025	0.00023	0.0474	< 0.020	< 0.000050	< 0.010		000933	44	< 0.00010	< 0.10	0.0007
EV_TC1	EV_TC1_WS_2022-06_MON_N	2022-06-06	-	0.00		0.00032	0.00024	0.061	< 0.020	< 0.000050	< 0.010		00111	50.1	< 0.00010	< 0.10	0.0005
EV_TC1	EV_TC1_WS_2022_Q3_N	2022-07-05	-	0.00	052	0.00035	0.00026	0.0698	< 0.020	< 0.000050	< 0.010	0.00	00144	54.8	< 0.00010	< 0.10	0.0005

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

d Guideline varies with pH
e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

			[Dissolv	ed Metals							
Sample Location	Sample ID	Sample Date		و و mg/L	Lead Mg/L	E I I I I I I I I I I I I I I I I I I I	Magnesium mg/L	Manganese	Nickel Nickel	Potassium	ng/L Selenium	Silver mg/L	un ipo os mg/L	Strontium T/D	Hallium Thallium	Ę mg/L	Titanium Titanium	Uraniu M	o N mg/L
Location	ib	(IIIII/dd/yyyy)	illig/L	IIIg/L	IIIg/L	IIIg/L	IIIg/L	IIIg/L	mg/L	IIIg/L	μg/L	IIIg/L	IIIg/L	IIIg/L	IIIg/L	IIIg/L	IIIg/L	IIIg/L	IIIg/L
				Acute															
BC WQG FWAL			n/a	0.35	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Elkview Operation																			
EV_OC1	EV_OC1_WS_2022-05_WEK23_N	2022-05-30	-							-	-					-			
EV_OC1	EV_OC1_WS_2022-06_MON_N	2022-06-07	-	0.027	< 0.000050	0.0396	32.4	0.0319	0.00057	1.89	0.61	< 0.000010	16.2	0.678	< 0.000010	< 0.00010	< 0.00030	0.000514	< 0.0010
EV_OC1	EV_OC1_WS_2022-06_WEK25_N	2022-06-13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_OC1 EV_OC1	EV OC1 WS 2022-06 WEK26 N EV OC1 WS 2022-06 WEK27 N	2022-06-21	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-
EV_OC1	EV_OC1_WS_2022-06_WER27_N EV_OC1_WS_2022-Q3_N	2022-06-27	-	0.035	< 0.000050	0.0364	37.5	0.0317	0.00118	1.7	0.719	< 0.000010	18.1	0.633	< 0.000010	< 0.00010	< 0.00030	0.000449	< 0.0010
EV_OC1	EV OC1 WS 2022-Q3 N EV OC1 WS 2022-07 WEK29 N	2022-07-06	-	0.035	< 0.000050			0.0317				< 0.000010		0.633	< 0.000010	< 0.00010	< 0.00030	0.000449	
EV_OC1	EV OC1 WS 2022-07 WER29 N	2022-07-11		0.039	< 0.000050	0.0374	37.1	0.0368	0.00097	1.95	0.536	< 0.000010	16.9	0.542	< 0.000010	< 0.00010	< 0.00030	0.000408	< 0.0010
EV_OC1	EV OC1 WS 2022-09 MON N	2022-08-10		0.053	< 0.000050	0.0374	35.9	0.0368	0.00097	2.17	0.536	< 0.000010	15.2	0.542	< 0.000010	< 0.00010	< 0.00030	0.000408	< 0.0010
EV_OC1	EV OC1 WS 2022-Q4 N	2022-10-07	- 1	0.033	< 0.000050	0.0307	34.9	0.0248	0.00092	2.85	0.413	< 0.000010	14.2	0.506	< 0.000010	< 0.00010	< 0.00030	0.000333	< 0.0010
EV_OC1	EV_OC1_WS_2022-Q4_N EV_OC1_WS_2022-11_MON_N	2022-10-07		0.071	< 0.000050	0.0354	39.6	0.0209	0.00087	3.29	0.625	< 0.000010	16.4	0.555	< 0.000010	< 0.00010	< 0.00030	0.000337	< 0.0010
EV SP1	EV SP1 WS 2022-Q1 N	2022-11-03		< 0.023	< 0.000050	0.0334	123	0.0036	0.00108	3.98	159	< 0.000010	1.12	0.333	0.000136	< 0.00010	< 0.00030	0.000421	0.0272
EV SP1	EV SP1 WS 2022-01 MON N	2022-01-17		0.012	< 0.000050	0.0303	129	0.00033	0.0192	4.3	157	< 0.000010	1.12	0.119	0.000136	< 0.00010	< 0.00030	0.00958	0.0302
EV SP1	EV SP1 WS 2022-03 MON N	2022-02-10	-	< 0.012	< 0.000050	0.0386	132	0.0005	0.018	4.2	152	< 0.000010	1.25	0.113	0.000121	< 0.00010	< 0.00030	0.00887	0.0302
FV SP1	EV SP1 WS 2022-03 WEK13 N	2022-03-17	1	- 0.010	- 0.000000	0.0000	102	0.0000	0.010	7.2	102	- 0.000010	1.20	0.114	0.000121	- 0.00010	- 0.00000	0.00007	0.020
EV SP1	EV SP1 WS 2022-03 WEK16 N	2022-03-22	-				-	-	-	-		-				-			
EV SP1	EV SP1 WS 2022-04 WEK15 N	2022-04-06	- 1	-	-				-		-								
EV SP1	EV SP1 WS 2022-Q2 N	2022-04-13		< 0.010	< 0.000050	0.0381	109	0.00041	0.0167	3.43	166	< 0.000010	1.18	0.1	0.00011	< 0.00010	< 0.00030	0.00773	0.0276
EV SP1	EV SP1 WS 2022-04 WEK17 N	2022-04-20	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	- 0.0270
EV SP1	EV SP1 WS 2022-04 WEK18 N	2022-04-27	-	-	-		-	-	-	-	-	-	-	-	-	-	-		-
EV SP1	EV SP1 WS 2022-05-MON N	2022-05-04	-	< 0.010	< 0.000050	0.0402	123	0.00032	0.0201	3.88	179	< 0.000010	1.22	0.118	0.00012	< 0.00010	< 0.00030	0.00926	0.0326
EV SP1	EV SP1 WS 2022-05 WEK20 N	2022-05-10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV SP1	EV SP1 WS 2022-05 WEK21 N	2022-05-18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV SP1	EV SP1 WS 2022-05 WEK22 N	2022-05-25	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV SP1	EV SP1 WS 2022-05 WEK23 N	2022-05-31	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV SP1	EV SP1 WS 2022-06 MON N	2022-06-06	-	< 0.010	< 0.000050	0.0346	132	0.00029	0.0222	3.77	160	< 0.000010	1.16	0.12	0.000122	< 0.00010	< 0.00030	0.00918	0.037
EV_SP1	EV_SP1_WS_2022-06_WEK25_N	2022-06-15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_SP1	EV_SP1_WS_2022-06_WEK26_N	2022-06-23	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_SP1	EV_SP1_WS_2022-06_WEK27_N	2022-06-29	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_SP1	EV_SP1_WS_2022-Q3_N	2022-07-06	-	< 0.010	< 0.000050	0.0391	120	0.00046	0.0218	4.09	159	< 0.000010	1.21	0.118	0.000124	< 0.00010	< 0.00030	0.00812	0.0346
EV_SP1	EV_SP1_WS_2022-07_WEK29_N	2022-07-13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_SP1	EV_SP1_WS_2022-08_MON_N	2022-08-09	-	< 0.010	< 0.000050	0.0406	125	0.00056	0.0236	4.49	138	< 0.000010	1.22	0.122	0.000181	< 0.00010	< 0.00030	0.00986	0.0377
EV_SP1	EV_SP1_WS_SESMP_2022_08_N	2022-08-15	-	< 0.010	< 0.000050	0.0448	131	0.00082	0.0255	4.54	149	< 0.000010	1.33	0.119	0.000169	< 0.00010	< 0.00030	0.00949	0.0354
EV_SP1	EV_SP1_WS_2022-09_MON_NP	2022-09-08	-	< 0.010	< 0.000050	0.0487	146	0.00063	0.0256	4.89	162	< 0.000010	1.36	0.114	0.000166	< 0.00010	< 0.00030	0.00951	0.0301
EV_SP1	EV_SP1_WS_2022-Q4_N	2022-10-04	-	< 0.010	< 0.000050	0.0432	126	0.0008	0.022	4.77	180	< 0.000010	1.32	0.126	0.000167	< 0.00010	< 0.00030	0.00938	0.0237
EV_SP1	EV_SP1_WS_2022-11_MON_N	2022-11-15	-	< 0.010	< 0.000050	0.0489	138	0.00055	0.0238	4.57	166	< 0.000010	1.37	0.132	0.00019	< 0.00010	< 0.00030	0.0112	0.0378
EV_TC1	EV_TC1_WS_2022-03_MON_N	2022-03-29	-	< 0.010	< 0.000050	0.0013	25.7	< 0.00010	0.00304	0.872	10.5	< 0.000010	0.861	0.0459	< 0.000010	< 0.00010	< 0.00030	0.000809	0.0017
EV_TC1	EV_TC1_WS_2022-Q2_N	2022-04-13	-	< 0.010	< 0.000050	0.0014	23.6	< 0.00010	0.00261	0.817	10.3	< 0.000010	0.858	0.0447	< 0.000010	< 0.00010	< 0.00030	0.000874	0.0019
EV_TC1	EV_TC1_WS_2022-05_MON_N	2022-05-03	-	< 0.010	< 0.000050	< 0.0010	20	< 0.00010	0.00297	0.678	8.87	< 0.000010	0.564	0.04	0.00001	< 0.00010	< 0.00030	0.000787	0.0018
EV_TC1	EV_TC1_WS_2022-06_MON_N	2022-06-06	- 1	< 0.010	< 0.000050	0.001	24.7	0.00011	0.00337	0.852	8.64	< 0.000010	0.717	0.0485	0.00001	< 0.00010	< 0.00030	0.000804	0.0017
EV_TC1	EV_TC1_WS_2022_Q3_N	2022-07-05	-	< 0.010	< 0.000050	0.0015	24.6	< 0.00010	0.00361	0.882	6.83	< 0.000010	0.832	0.0485	0.000011	< 0.00010	< 0.00030	0.000863	0.0021

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

d Guideline varies with pH
e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

									Dissolve	d Metals						
				_										_		
			SS	<u> </u>	È	l o	_	yllium	Ę			Ē	E	<u>.</u>		_
			#	Ė	rtimo	e i	5	1	1	5		Ē	5	E	= =	8
Sample	Sample	Sample Date	∫ <u>ĕ</u>	-	1 1	, rs	ari	e.	l iš l	ğ		Oa C	Salc	<u>Ě</u>	8	Copi
Location	ID	(mm/dd/yyyy		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	m	ig/L	mg/L	mg/L	mg/L	mg/L
	· ·	[(71 5									<u></u>				ľω
				Acute							Acute	Chron				Acute
C WQG FWAL			n/a	0.020-0.10 ^a 0.005-0.05 ^a	n/a	na	na	na	n/a	n/a	0.00004-0.0028 ^a	0.00002-0.00173 ^a	n/a	n/a	n/a	BLM°
ording River Operation																
FR_CC1	FR_CC1_2022-01-04_N	2022-01-04		< 0.0020	0.00073	< 0.00020	0.0296	< 0.040	< 0.000100	0.032		00657	335			< 0.00040
FR_CC1	FR_CC1_2022-01-06_N	2022-01-06		0.0089	0.00074	< 0.00020	0.029	< 0.040	< 0.000100	0.028		00638	318	< 0.00020	< 0.00020	< 0.00040
FR_CC1	FR_CC1_2022-01-12_N	2022-01-12		< 0.0020	0.00076	< 0.00020	0.0296	< 0.040	< 0.000100	0.031		00621	309	< 0.00020	< 0.00020	< 0.00040
FR_CC1	FR_CC1_2022-01-17_N	2022-01-17		< 0.0020	0.00075	< 0.00020	0.0332	< 0.040	< 0.000100	0.034		00677	310	< 0.00020	< 0.00020	< 0.00040
FR_CC1	FR_CC1_2022-01-24_N	2022-01-24	-	< 0.0020	0.00078	< 0.00020	0.0305	< 0.040	< 0.000100	0.031		00666	319	< 0.00020	< 0.00020	< 0.00040
FR_CC1	FR_CC1_2022-01-31_N	2022-01-31	+ -	< 0.0020	0.00075	< 0.00020	0.0293	< 0.040	< 0.000100	0.033		00654	311	< 0.00020	< 0.00020	< 0.00040
FR_CC1	FR_CC1_2022-02-07_N	2022-02-07		0.002	0.00075	< 0.00020	0.0292	< 0.040	< 0.000100	0.033		00633	310	< 0.00020	< 0.00020	0.0004
FR_CC1 FR_CC1	FR_CC1_2022-02-14_N FR_CC1_2022-02-21_N	2022-02-14	+-	0.0022	0.00074	< 0.00020	0.0292 0.0294	< 0.040	< 0.000100	0.033		00643	307 326	< 0.00020	< 0.00020	< 0.00040
		2022-02-21	H :	< 0.0020	0.00073	< 0.00020		< 0.040	< 0.000100	0.032		00607		< 0.00020		< 0.00040
FR_CC1	FR_CC1_2022-03-01_N	2022-03-01		< 0.0020	0.00072	< 0.00020	0.0306	< 0.040	< 0.000100	0.034		00686	331	< 0.00020	< 0.00020	< 0.00040
FR_CC1 FR_CC1	FR_CC1_2022-03-07_N FR_CC1_2022-03-14_N	2022-03-07	<u> </u>	< 0.0010	0.00074	< 0.00010	0.03	< 0.020	< 0.000050	0.03		00644	320	< 0.00010	0.00018	0.00034
		2022-03-14	-	< 0.0020	0.00079	< 0.00020	0.0266	< 0.040	< 0.000100	0.03		0.625	291	< 0.00020	< 0.20	< 0.00040
FR_CC1	FR_CC1_2022-03-21_N	2022-03-21	<u> </u>	< 0.0010	0.00072	< 0.00010	0.0307	< 0.020	< 0.000050	0.032		00618	315	< 0.00010		0.00029
FR_CC1	FR_CC1_2022-03-28_N	2022-03-28		0.0014	0.00069	< 0.00010	0.0286	< 0.020	< 0.000050	0.03		00572	308	< 0.00010	0.00019	0.00057
FR_CC1	FR CC1 2022 04 06 N	2022-04-06		0.00145	0.00042	< 0.00010	0.0125	< 0.020	< 0.000050	0.022		03555	155.5 308	< 0.00010	0.000175	0.00027
FR_CC1	FR_CC1_2022-04-11_N	2022-04-11		0.0023	0.0008	< 0.00020 < 0.00020	0.0258 0.0258	< 0.040 < 0.040	< 0.000100	0.033		00829	308	< 0.00020		0.00042
FR_CC1	FR_CC1_2022-04-13_N	2022-04-13		0.0023					< 0.000100	0.033		00829		< 0.00020		0.00042
FR_CC1	FR_CC1_2022-04-18_N	2022-04-18		0.0032	0.00082	< 0.00020	0.0193	< 0.040	< 0.000100	0.032		00776	271	< 0.00020		< 0.00040
FR_CC1	FR_CC1_2022-04-25_N	2022-04-25		0.0018	0.00083	< 0.00010	0.0195	< 0.020	< 0.000050	0.03		00647	259	< 0.00010		0.00043
FR_CC1	FR_CC1_2022-05-02_N	2022-05-02	-	0.0015	0.00086	< 0.00010	0.0178	< 0.020	< 0.000050	0.032		00558	273	< 0.00010	0.00023	0.00034
FR_CC1	FR_CC1_2022-05-06_N	2022-05-06	-	< 0.0010	0.00087	0.00011	0.0196	< 0.020	< 0.000050	0.032		00611	268	< 0.00010	0.00029	0.0004
FR_CC1	FR_CC1_2022-05-07_N	2022-05-07	-	0.0022	0.00085	0.00011	0.0188	< 0.020	< 0.000050	0.031		00632	241	< 0.00010		0.00039
FR_CC1	FR_CC1_2022-05-08_N	2022-05-08	-	< 0.0010	0.00086	0.00012	0.0195	< 0.020	< 0.000050	0.032		0006		0.00027	0.00032	0.00038
FR_CC1	FR_CC1_2022-05-09_N	2022-05-09	<u> </u>	< 0.0010	0.00086	< 0.00010 < 0.00010	0.0198 0.018	< 0.020 < 0.020	< 0.000050	0.036		00644	263 239	< 0.00010	0.00032	0.00037
FR_CC1	FR_CC1_2022-05-10_N	2022-05-10	<u> </u>	0.0011					< 0.000050	0.029		00628		< 0.00010		0.00037
FR_CC1 FR_CC1	FR_CC1_2022-05-11_N FR_CC1_2022-05-12_N	2022-05-11	<u> </u>	0.0011	0.00086	< 0.00010 < 0.00010	0.0183 0.0187	< 0.020 < 0.020	< 0.000050 < 0.000050	0.03		00623	246 242	< 0.00010 < 0.00010	0.00032	0.00042
FR_CC1				0.0022	0.00085	< 0.00010	0.0183	< 0.020		0.031		00613	242			0.0004
FR_CC1	FR_CC1_2022-05-13_N FR_CC1_2022-05-14_N	2022-05-13		0.0019	0.00085	< 0.00010	0.0183	< 0.020	< 0.000050 < 0.000050	0.033		00067	245	< 0.00010 < 0.00010	0.00034 0.00032	0.00067
FR_CC1	FR_CC1_2022-05-14_N FR_CC1_2022-05-16_N	2022-05-14		0.0018	0.00092	< 0.00010	0.0173	< 0.020	< 0.000050	0.033		00594	223	< 0.00010	0.00032	0.00047
				0.0016			0.0189					00632	202			0.0004
FR_CC1 FR_CC1	FR_CC1_2022-05-25_N	2022-05-25	H -	0.0018	0.00081	< 0.00010 < 0.00010	0.0189	< 0.020 < 0.020	< 0.000050	0.032		00526	202	< 0.00010 < 0.00010	0.00024	0.00039
FR_CC1	FR_CC1_2022-05-30_N FR_CC1_2022-06-13_N	2022-05-30 2022-06-13	+-	0.0046	0.00082	< 0.00010	0.0222	< 0.020	< 0.000050 < 0.000050	0.031		00446	192	< 0.00010	0.00022	0.00033
FR_CC1	FR_CC1_2022-06-13_N FR_CC1_2022-06-27_N	2022-06-13	+ :	< 0.0010	0.0007	< 0.00010	0.0278	< 0.020	< 0.000050	0.023		00419	182	< 0.00010		0.00027
FR_CC1	FR_CC1_2022-06-27_N FR_CC1_2022-07-18_N	2022-06-27		< 0.0010 0.0017	0.00065	< 0.00010	0.0322	< 0.020	< 0.000050	0.024		00522	174	< 0.00010		0.00029
FR CC1	FR CC1 2022-07-16 N	2022-07-16	+ -		0.00068	< 0.00010	0.0325	< 0.020	< 0.000050	0.025		00469	181	< 0.00010	0.00021	0.00054
FR_CC1	FR_CC1_2022-07-25_N FR_CC1_2022-08-02_N	2022-07-25	+ :-	0.0011	0.00068	< 0.00010	0.0326	< 0.020	< 0.000050	0.027		00049	188	< 0.00010		0.0004
FR_CC1	FR_CC1_2022-08-02_N FR_CC1_2022-08-08_N	2022-08-08	+-	< 0.0010	0.00066	< 0.00010	0.0399	< 0.020	< 0.000050	0.027		00478	200	< 0.00010	0.00016	0.0197
FR CC1	FR_CC1_2022-08-08_N FR_CC1_2022-08-15_N	2022-08-08	+ -	< 0.0010	0.00064	< 0.00010	0.0399	< 0.020	< 0.000050	0.027		00447	200	< 0.00010	< 0.20	0.00033
FR_CC1	FR CC1 WS SESMP 2022-08 N	2022-08-19	+-	< 0.0020	0.00064	0.00020	0.041	< 0.040	< 0.000100	0.039		00467	204	0.00020	0.00018	0.00065
FR CC1	FR CC1 2022-08-22 N	2022-08-19	+ -	< 0.0010	0.00064	< 0.00010	0.0431	< 0.020	< 0.000050	0.039		00042	205	< 0.00010		0.00032
FR CC1	FR CC1 2022-08-22 N	2022-08-29	+ -	< 0.0010 < 0.0010	0.00065	< 0.00010	0.039	< 0.020	< 0.000050	0.028		00412 00467	236	< 0.00010	0.00014	0.00029
FR_CC1	FR CC1 RD WS 2022-08-30 NP	2022-08-30	+ -		0.00065	< 0.00010	0.0406	< 0.020	< 0.000050	0.03			251	< 0.00010		
FR_CC1	FR_CC1_WS_SEPT-2022_N	2022-09-07	+ -	< 0.0010	0.00037	< 0.00010	0.0348	< 0.020	< 0.000050	0.023		00052	226	< 0.00010		0.00036
FR CC1	FR CC1 2022-09-07 N	2022-09-07	+:-	< 0.0010	0.00069	< 0.00010	0.0346	< 0.020	< 0.000050	0.021		000943	234	< 0.00010	0.00015	< 0.00020
FR_CC1	FR CC1 CC1A 2022-09-17 N	2022-09-07	+-	0.0011	0.00069	0.00010	0.0369	< 0.020	< 0.000050	0.029		00038	270	< 0.00010		0.00028
FR_CC1	FR_CC1_CC1A_2022-09-12_N FR_CC1_CC1A_2022-09-17_N	2022-09-12	+ -	0.0014	0.00077	< 0.00011	0.0369	< 0.020	< 0.000050	0.034		00297	267	< 0.00010	< 0.20	0.00063
FR_CC1	FR CC1 CC1A 2022-09-17 N	2022-09-17	+:-	< 0.0020	0.00063	< 0.00020	0.0313	< 0.040	< 0.000100	0.037		00345	264	< 0.00020	< 0.20	0.00152
FR_CC1	FR CC1 CC1A 2022-09-18 N	2022-09-10	+-	0.0032	0.00076	< 0.00020	0.0295	< 0.040	< 0.000100	0.038		00173	316	< 0.00020	< 0.20	0.00075
FR_CC1	FR_CCT_CCTA_2022-09-19_N FR_DC1_2022-09-19_N	2022-09-19	+-	0.0021	0.00079	< 0.00020	0.0313	< 0.040	< 0.000100	0.036		0002	299	< 0.00020	< 0.20	0.00056
FIX_CCT		2022-03-19	1 -	0.002	0.00076	. 0.00020	0.0201	~ 0.040	- 0.000100	0.04	1 0.00	00215	259	0.00020	~ 0.20	0.00042

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

											Dissolv	ed Metals							
Sample	Sample	Sample Date		Iron	Lead	Lithium	Magnesium	Manganese	Nickel	Potassium	Selenium	Silver	Sodium	Strontium	Thallium	Tin	Titanium	Uranium	Zinc
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
				Acute															
BC WQG FWAL			n/a	0.35	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Fording River Operation																			
FR_CC1	FR_CC1_2022-01-04_N	2022-01-04	-	< 0.020	< 0.000100	0.521	177	0.00225	0.0624	7.77	181	< 0.000020	14.2	0.519	0.000052	< 0.00020	< 0.00060	0.0178	0.0342
FR_CC1	FR_CC1_2022-01-06_N	2022-01-06	-	< 0.020	< 0.000100	0.471	175	0.00228	0.0605	7.23	169	< 0.000020	13.6	0.536	0.000051	< 0.00020	< 0.00060	0.0171	0.0339
FR_CC1	FR_CC1_2022-01-12_N	2022-01-12	-	< 0.020	< 0.000100	0.43	164	0.00224	0.06	7.44	185	< 0.000020	13.1	0.528	0.000053	< 0.00020	< 0.00060	0.0165	0.0307
FR_CC1	FR_CC1_2022-01-17_N	2022-01-17	-	< 0.020	< 0.000100	0.508	176	0.00226	0.0616	7.83	178	< 0.000020	14.2	0.513	0.000055	< 0.00020	< 0.00060	0.0166	0.0349
FR_CC1	FR_CC1_2022-01-24_N	2022-01-24	-	< 0.020	< 0.000100	0.47	166	0.00196	0.0579	7.14	188	< 0.000020	13.1	0.525	0.000052	< 0.00020	< 0.00060	0.0158	0.031
FR_CC1	FR_CC1_2022-01-31_N	2022-01-31	-	< 0.020	< 0.000100	0.454	169	0.00189	0.0566 0.0592	7.09	196 187	< 0.000020	12.8	0.531	0.000046	< 0.00020	< 0.00060	0.017	0.0334
FR_CC1 FR_CC1	FR_CC1_2022-02-07_N FR_CC1_2022-02-14_N	2022-02-07 2022-02-14	-	< 0.020 < 0.020	< 0.000100 < 0.000100	0.432 0.417	164 169	0.00205	0.0592	7.26 7.15	187	< 0.000020 < 0.000020	12.2 11.8	0.54 0.518	0.000054	< 0.00020 < 0.00020	< 0.00060 < 0.00060	0.0165 0.0166	0.03
FR_CC1	FR CC1 2022-02-14 N	2022-02-14	-	< 0.020	< 0.000100	0.417	172	0.00212	0.0567	6.96	184	< 0.000020	11.9	0.532	0.000049	< 0.00020	< 0.00060	0.0166	0.0306
FR_CC1	FR_CC1_2022-02-21_N FR_CC1_2022-03-01_N	2022-02-21	-	< 0.020	< 0.000100	0.45	187	0.00192	0.0567	7.79	199	< 0.000020	12.2	0.532	0.000048	< 0.00020	< 0.00060	0.0147	0.0306
FR_CC1	FR CC1 2022-03-01 N	2022-03-07	<u> </u>	< 0.020	< 0.000100	0.447	173	0.00197	0.0627	7.77	205	< 0.000020	11.8	0.534	0.000052	< 0.00020	< 0.00030	0.0159	0.0324
FR CC1	FR_CC1_2022-03-07_N	2022-03-07	-	< 0.010	< 0.000030	0.403	143	0.00201	0.0546	6.99	185	< 0.000010	11.1	0.536	0.000051	< 0.00010	< 0.00060	0.0153	0.0295
FR CC1	FR CC1 2022-03-14_N	2022-03-14	-	< 0.010	< 0.000100	0.446	158	0.00204	0.0548	7.52	209	< 0.000020	11.5	0.511	0.000051	< 0.00020	< 0.00030	0.0153	0.029
FR CC1	FR CC1 2022-03-28 N	2022-03-28	-	< 0.010	< 0.000050	0.429	167	0.00236	0.0559	7.06	186	< 0.000010	11.2	0.5	0.000048	< 0.00010	< 0.00030	0.014	0.0269
FR CC1	FR CC1 2022 04 06 N	2022-04-06	-	< 0.010	< 0.000050	0.212	88.00255	0.001095	0.0268	3.725	119.025	< 0.000010	5.625	0.2551	0.0000295	< 0.00010	< 0.00030	0.007755	0.01785
FR CC1	FR CC1 2022-04-11 N	2022-04-11	-	< 0.020	< 0.000100	0.414	168	0.0017	0.0532	7.33	217	< 0.000020	10.7	0.466	0.000051	< 0.00020	< 0.00060	0.0149	0.0404
FR CC1	FR CC1 2022-04-13 N	2022-04-13	-	< 0.020	< 0.000100	0.414	168	0.0017	0.0532	7.33	217	< 0.000020	10.7	0.466	0.000051	< 0.00020	< 0.00060	0.0149	0.0404
FR CC1	FR CC1 2022-04-18 N	2022-04-18	-	< 0.020	< 0.000100	0.373	155	0.00106	0.0483	7.33	216	< 0.000020	10.2	0.433	0.00005	< 0.00020	< 0.00060	0.015	0.0369
FR CC1	FR CC1 2022-04-25 N	2022-04-25	-	< 0.010	< 0.000050	0.339	148	0.0009	0.0437	6.67	211	< 0.000010	9.39	0.416	0.000043	0.00012	< 0.00030	0.0137	0.032
FR_CC1	FR_CC1_2022-05-02_N	2022-05-02	-	< 0.010	< 0.000050	0.327	143	0.00069	0.0414	6.56	230	< 0.000010	9.29	0.414	0.000046	< 0.00010	< 0.00030	0.0144	0.0286
FR_CC1	FR_CC1_2022-05-06_N	2022-05-06	-	< 0.010	< 0.000050	0.324	138	0.001	0.0417	7.06	225	< 0.000010	9.67	0.389	0.000045	< 0.00010	< 0.00030	0.0132	0.0301
FR_CC1	FR_CC1_2022-05-07_N	2022-05-07	-	< 0.010	< 0.000050	0.296	130	0.00128	0.0403	6.55	218	< 0.000010	8.97	0.404	0.000044	0.00019	< 0.00030	0.0138	0.0425
FR_CC1	FR_CC1_2022-05-08_N	2022-05-08	-	< 0.010	< 0.000050	0.334	132	0.00102	0.041	6.47	206	< 0.000010	9.37	0.401	0.000046	< 0.00010	< 0.00030	0.014	0.034
FR_CC1	FR_CC1_2022-05-09_N	2022-05-09	-	< 0.010	< 0.000050	0.345	152	0.00108	0.0412	7.04	213	< 0.000010	9.97	0.389	0.000049	< 0.00010	< 0.00030	0.0139	0.0593
FR_CC1	FR_CC1_2022-05-10_N	2022-05-10	-	< 0.010	< 0.000050	0.32	137	0.00101	0.0382	6.74	191	< 0.000010	9.16	0.37	0.000042	< 0.00010	< 0.00030	0.0125	0.0302
FR_CC1	FR_CC1_2022-05-11_N	2022-05-11	-	< 0.010	< 0.000050	0.313	130	0.00101	0.0379	6.62	180	< 0.000010	9.33	0.368	0.000044	< 0.00010	< 0.00030	0.0122	0.031
FR_CC1	FR_CC1_2022-05-12_N	2022-05-12	-	< 0.010	< 0.000050	0.304	130	0.00091	0.037	6.47	197	< 0.000010	8.83	0.362	0.000041	< 0.00010	< 0.00030	0.0117	0.0339
FR_CC1	FR_CC1_2022-05-13_N	2022-05-13	-	< 0.010	< 0.000050	0.328	146	0.00104	0.0393	7.01	172	< 0.000010	9.32	0.371	0.000047	< 0.00010	< 0.00030	0.0121	0.0335
FR_CC1 FR_CC1	FR_CC1_2022-05-14_N FR_CC1_2022-05-16_N	2022-05-14 2022-05-16	-	< 0.010 < 0.010	< 0.000050 < 0.000050	0.315 0.302	136 123	0.00088	0.036	6.5 6.48	210 191	< 0.000010 < 0.000010	9.2 8.76	0.38 0.336	0.000043	< 0.00010 < 0.00010	< 0.00030 < 0.00030	0.0125 0.0116	0.0295 0.0309
FR_CC1	FR_CC1_2022-05-16_N FR_CC1_2022-05-25_N	2022-05-16	<u> </u>	< 0.010	< 0.000050	0.302	119	0.00098	0.0336	6.64	172	< 0.000010	9.44	0.324	0.000043	< 0.00010	< 0.00030	0.0118	0.0309
FR_CC1	FR_CC1_2022-05-25_N FR_CC1_2022-05-30_N	2022-05-30	-	< 0.010	< 0.000050	0.204	118	0.00098	0.0336	6.54	147	< 0.000010	9.44	0.324	0.000039	< 0.00010	< 0.00030	0.0108	0.0264
FR_CC1	FR_CC1_2022-05-30_N FR_CC1_2022-06-13_N	2022-05-30	H	< 0.010	< 0.000050	0.297	105	0.0013	0.0342	5.2	126	< 0.000010	8.25	0.304	0.000039	< 0.00010	< 0.00030	0.0104	0.0274
FR CC1	FR CC1 2022-06-13_N	2022-06-13	<u> </u>	< 0.010	< 0.000050	0.226	101	0.00063	0.0285	5.02	126	< 0.000010	8.88	0.316	0.000033	< 0.00010	< 0.00030	0.0093	0.0259
FR CC1	FR CC1 2022-07-18 N	2022-07-18	-	< 0.010	< 0.000050	0.238	94.6	0.00071	0.0268	4.9	131	< 0.000010	8.81	0.27	0.000033	< 0.00010	< 0.00030	0.00856	0.0259
FR CC1	FR CC1 2022-07-25 N	2022-07-25	-	< 0.010	< 0.000050	0.272	101	0.00063	0.03	5.16	132	< 0.000010	9.24	0.275	0.000034	< 0.00010	< 0.00030	0.00907	0.0266
FR CC1	FR CC1 2022-08-02 N	2022-08-02	-	< 0.010	0.000457	0.263	109	0.00073	0.0315	5.29	143	< 0.000010	10.1	0.298	0.000036	0.00038	< 0.00030	0.0102	0.0399
FR CC1	FR CC1 2022-08-08 N	2022-08-08	-	< 0.010	< 0.000050	0.271	112	0.00057	0.033	5.28	139	< 0.000010	9.76	0.317	0.000033	< 0.00010	< 0.00030	0.00986	0.0221
FR_CC1	FR_CC1_2022-08-15_N	2022-08-15	-	< 0.020	< 0.000100	0.322	114	0.00066	0.0358	5.23	131	< 0.000020	9.99	0.323	0.000036	< 0.00020	< 0.00060	0.011	0.0288
FR_CC1	FR_CC1_WS_SESMP_2022-08_N	2022-08-19	-	< 0.010	< 0.000050	0.349	122	0.00064	0.0378	5.26	144	< 0.000010	10.2	0.343	0.000035	< 0.00010	< 0.00030	0.0108	0.0225
FR_CC1	FR_CC1_2022-08-22_N	2022-08-22	-	< 0.010	< 0.000050	0.307	111	0.00055	0.0339	5.01	121	< 0.000010	9.23	0.335	0.000036	< 0.00010	< 0.00030	0.0112	0.0216
FR_CC1	FR_CC1_2022-08-29_N	2022-08-29	-	< 0.010	< 0.000050	0.343	132	0.00063	0.0376	5.4	151	< 0.000010	10.6	0.381	0.000038	< 0.00010	< 0.00030	0.0117	0.0237
FR_CC1	FR_CC1_RD_WS_2022-08-30_NP	2022-08-30	-	< 0.010	< 0.000050	0.247	137	0.0007	0.0438	4.91	145	< 0.000010	11.6	0.412	0.000032	< 0.00010	< 0.00030	0.0141	0.0272
FR_CC1	FR_CC1_WS_SEPT-2022_N	2022-09-07	-	< 0.010	< 0.000050	0.286	126	0.00042	0.0415	5.53	148	< 0.000010	10.1	0.387	0.000026	< 0.00010	< 0.00030	0.0131	0.0052
FR_CC1	FR_CC1_2022-09-07_N	2022-09-07	-	< 0.010	< 0.000050	0.325	125	0.00053	0.0459	5.43	157	< 0.000010	10.3	0.39	0.000025	< 0.00010	< 0.00030	0.0128	0.0242
FR_CC1	FR_CC1_CC1A_2022-09-12_N	2022-09-12	-	< 0.010	0.00007	0.39	137	0.00063	0.0515	6.04	198	< 0.000010	11	0.418	0.00004	< 0.00010	< 0.00030	0.0134	0.0214
FR_CC1	FR_CC1_CC1A_2022-09-17_N	2022-09-17	-	< 0.020	0.000284	0.412	144	0.00063	0.0535	6.16	176	< 0.000020	11.4	0.421	0.000043	< 0.00020	< 0.00060	0.0145	0.0302
FR_CC1	FR_CC1_CC1A_2022-09-18_N	2022-09-18	-	0.036	< 0.000100	0.426	137	0.00187	0.051	5.71	160	< 0.000020	10.9	0.435	0.000041	< 0.00020	< 0.00060	0.0146	0.0202
FR_CC1	FR_CC1_CC1A_2022-09-19_N	2022-09-19	-	< 0.020	< 0.000100	0.449	153	0.00089	0.0585	6.4	202	< 0.000020	11.5	0.484	0.000044	< 0.00020	< 0.00060	0.0158	0.0176
FR_CC1	FR_DC1_2022-09-19_N	2022-09-19	-	< 0.020	< 0.000100	0.415	143	0.00072	0.0536	5.82	194	< 0.000020	10.7	0.472	0.000049	< 0.00020	< 0.00060	0.0155	0.0164

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

^d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

									Dissolve	ed Metals					
Sample	Sample	Sample Date	Hardness	Aluminum	Antimony	Arsenic	Barium	Beryllium	Bismuth	Boron	Cadmium	Calcium	Chromium	Cobalt	Copper
Location	ID	(mm/dd/yyyy	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
				Acute		·					Acute		·		Acute Chronic
BC WQG FWAL			n/a	0.020-0.10 ^a 0.005-0.05 ^a	n/a	na	na	na	n/a	n/a	0.00004-0.0028 ^a 0.00002-0.00173 ^a	n/a	n/a	n/a	BLMe
Fording River Operation	ED 51 D4 0000 00 40 N	0000 00 10			0.00010	0.00040	0.00040		0.000050	0.040	I	0.055		0.40	
FR_CC1	FR_FLD1_2022-09-19_N	2022-09-19	-	0.0037	< 0.00010	< 0.00010	< 0.00010	< 0.020	< 0.000050	< 0.010	< 0.0050	< 0.050		< 0.10	< 0.00020
FR_CC1	FR_CC1_CC1A_2022-09-20_N	2022-09-20	-	0.0017	0.0008	< 0.00010	0.0316	< 0.020 < 0.040	< 0.000050	0.039	0.000126	303	< 0.00010	0.00021	0.00059
FR_CC1	FR_CC1_CC1A_2022-09-21_N	2022-09-21	-	< 0.0020		< 0.00020	0.0311		< 0.000100	0.036	0.000118	290	< 0.00020	0.00022	0.0013
FR_CC1 FR_CC1	FR CC1 CC1A 2022-09-22 N FR CC1 RD-WS 2022-09-01 NP	2022-09-22	-	0.0152	0.00076	< 0.00020 < 0.00020	0.0348	< 0.040 < 0.040	< 0.000100 < 0.000100	0.035 0.035	0.000221	286 288	< 0.00020 0.00032	0.00021	0.00042
FR_CC1	FR CC1 CC1A 2022-09-01 NP	2022-09-22	-	0.003	0.00078	< 0.00020	0.0348	< 0.040	< 0.000100	0.035	0.000107	288	< 0.00032	< 0.20	0.00182
FR_CC1	FR CC1 CC1A 2022-09-23 N	2022-09-24	-	0.0013	0.00074	< 0.00010	0.0347	< 0.020	< 0.000050	0.034	0.000117	253	< 0.00010	0.00019	0.00145
FR_CC1	FR CC1 CC1A 2022-09-24 N	2022-09-24	+ -	0.001	0.0008	< 0.00010	0.0449	< 0.020	< 0.000050	0.03	0.000387	267	< 0.00010	< 0.20	0.00167
FR_CC1	FR_CC1_CC1A_2022-09-25_N FR_CC1_CC1A_2022-09-26_N	2022-09-25	+ -	< 0.0020	0.00078	< 0.00020	0.0382	< 0.040	< 0.000100	0.036	0.000244	281	< 0.00020	0.00022	< 0.00040
FR CC1	FR CC1 CC1A 2022-10-03 N	2022-09-20	<u> </u>	< 0.0020	0.0007	< 0.00020	0.0502	< 0.040	< 0.000100	0.033	0.000515	290	< 0.00020	0.00022	0.00046
FR_CC1	FR CC1 CC1A 2022-10-03 N	2022-10-03	<u> </u>	0.0017	0.00071	< 0.00010	0.0302	< 0.020	< 0.000050	0.033	0.000714	234	< 0.00010	0.00018	0.00051
FR_CC1	FR CC1 CC1A 2022-10-11 N	2022-10-11	<u> </u>	0.0013	0.00059	< 0.00010	0.0499	< 0.020	< 0.000030	0.029	0.000519	240	0.00032	< 0.20	0.00028
FR_CC1	FR CC1 2022-10-17 N	2022-10-17	<u> </u>	0.005	0.00057	< 0.00020	0.0499	< 0.040	< 0.000100	0.029	0.000549	256	< 0.00032	< 0.20	< 0.00040
FR CC1	FR CC1A 2022-10-24_N	2022-10-24	<u> </u>	0.005	0.00057	0.00020	0.0522	< 0.040	< 0.000100	0.023	0.000559	229	< 0.00020	0.00013	0.00128
FR_CC1	FR CC1A 2022-10-31 N	2022-10-31	<u> </u>	0.0033	0.00059	0.0001	0.0522	< 0.020	< 0.000050	0.024	0.000434	233	< 0.00010	0.00013	0.00031
FR CC1	FR CC1 2022-11-07 N	2022-11-07	-	0.0042	0.00069	< 0.00011	0.0386	< 0.020	< 0.000030	0.020	0.000501	264	< 0.00010	< 0.20	0.00032
FR CC1	FR CC1 2022-11-14_N	2022-11-14	<u> </u>	< 0.0020	0.00079	< 0.00020	0.0352	< 0.040	< 0.000100	0.026	0.000563	304	< 0.00020	< 0.20	< 0.00040
FR_CC1	FR_CCT_2022-11-21_N FR_EC1_MON_2022-01-01_N	2022-11-21	<u> </u>	0.0039	0.00079	0.00024	0.0332	< 0.040	< 0.000100	0.036	0.000646	120	< 0.00020	0.00082	< 0.00040
FR_EC1	FR_EC1_MON_2022-01-01_N FR_EC1_MON_2022-03-01_N	2022-03-23	-	0.0067	0.00102	0.00024	0.0827	< 0.020	< 0.000050	0.024	0.000126	85.4	< 0.00010	0.00082	0.00125
FR_EC1	FR EC1 MON 2022-03-01 N	2022-03-28	-	0.0082	0.00079	0.00029	0.0567	< 0.020	< 0.000050	0.023	0.0000646	211	< 0.00010	0.00058	0.00054
FR_EC1	FR EC1 WEK 2022-04-01 N	2022-04-04	-	0.0056	0.00068	< 0.00027	0.0367	< 0.020	< 0.000030	0.026	0.000156	221	< 0.00010	0.0005	0.00098
FR_EC1	FR_EC1_WEK_2022-04-11_N FR_EC1_WEK_2022-04-18_N	2022-04-14	<u> </u>	0.0043	0.00066	- 0.00020	0.0459	- 0.040	- 0.000100	0.03	0.000197	- 221	- 0.00020	0.0005	0.00042
FR EC1	FR EC1 WEK 2022-04-16_N	2022-04-19	<u> </u>		+ -	-	-	-	-		-	+-	-		
FR FC1	FR EC1 MON 2022-05-01 N	2022-04-28	<u> </u>	0.0031	0.0006	< 0.00020	0.0279	< 0.040	< 0.000100	0.035	- 0.0000440	274	< 0.00020	0.00032	< 0.00040
FR EC1	FR EC1 WEK 2022-05-09 N	2022-05-12	<u> </u>	0.0031	0.0000	- 0.00020	0.0219	- 0.040	< 0.000100	0.000	0.0000112		< 0.00020	0.00032	< 0.00040
FR EC1	FR EC1 WEK 2022-05-16 N	2022-05-16	-		+ :-	- :	-	- :	- :			+ :	- :	- :	
FR EC1	FR EC1 WEK 2022-05-10_N	2022-05-10	H :	-	+ -	-	-	-	-	-	-	+ -	-		-
FR EC1	FR EC1 WEK 2022-05-30 N	2022-06-01	<u> </u>	-		_	_	_	-	_	-	-		-	-
FR EC1	FR EC1 MON 2022-06-01 N	2022-06-08	-	0.0025	0.00065	< 0.00020	0.0189	< 0.040	< 0.000100	0.035	< 0.0100	325	< 0.00020	< 0.20	< 0.00040
FR EC1	FR EC1 WEK 2022-06-13 N	2022-06-13	<u> </u>		0.00003	- 0.00020	0.0109	- 0.040	- 0.000100	0.000		- 323	- 0.00020	- 0.20	
FR EC1	FR EC1 WEK 2022-06-20 N	2022-06-20		<u> </u>	+ -	-	-	-	-	-	-	-	-	-	-
FR EC1	FR_EC1_WEK_2022-06-27_N	2022-06-29	1	<u>-</u>	+ :	- :	-	- :	- :	-	-	-			-
FR EC1	FR EC1 MON 2022-00-27_N	2022-00-29	1	0.0052	0.00064	0.00032	0.0372	< 0.040	< 0.000100	0.039	0.000985	286	< 0.00020	0.00046	0.0007
FR EC1	FR EC1 WEK 2022-07-11 N	2022-07-04	1	0.0052	0.00004	0.00032	0.0372	V 0.040	- 0.000100	0.035	0.000000	- 200	- 0.00020	0.00040	0.0007
FR FR1	FR FR1 WEK 2022-03-28 N	2022-07-12	—	0.0197	< 0.00010	0.00012	0.0506	< 0.020	< 0.000050	< 0.010	0.000258	54.5	0.0001	< 0.10	0.00038
FR FR1	FR FR1 MON 2022-04-01 N	2022-04-04	—	0.0197	< 0.00010	0.00012	0.0501	< 0.020	< 0.000050	< 0.010	0.0000238	75.7	< 0.0001	< 0.10	< 0.00036
FR FR1	FR FR1 WEK 2022-04-11 N	2022-04-11	-	0.0093	< 0.00010	0.00011	0.0482	< 0.020	< 0.000050	< 0.010	0.0000233	76.9	0.00012	< 0.10	0.00035
FR FR1	FR FR1 WEK 2022-04-18 NP	2022-04-20	-	0.0143	< 0.00010	0.00011	0.0483	< 0.020	< 0.000050	< 0.010	0.0000287	62.4	< 0.00012	< 0.10	0.00033
FR FR1	FR FR1 WS 2022-04-25 NP	2022-04-25	-	0.0522	< 0.00010	0.00012	0.0452	< 0.020	< 0.000050	< 0.010	0.0000234	37.1	0.00011	0.00023	0.00031
FR FR1	FR FR1 WS 2022-04-26 NP	2022-04-26	 - 	0.0022		-	-	- 0.020	-		0.000000	-	-	-	0.00000
FR FR1	FR FR1 WEK 2022-04-25 NP	2022-04-26	-	0.0359	< 0.00010	0.00013	0.045	< 0.020	< 0.000050	< 0.010	0.000342	48.5	0.00011	0.00014	0.00047
FR FR1	FR FR1 MON 2022-05-02 NP	2022-05-03	! -	0.0359	< 0.00010	0.0001	0.0421	< 0.020	< 0.000050	< 0.010	0.0000342	56.5	0.00011	< 0.10	0.00047
FR FR1	FR FR1 WEK 2022-05-09 NP	2022-05-10	-	0.0081	< 0.00010	0.00011	0.0374	< 0.020	< 0.000050	< 0.010	0.0000133	54.8	0.00018	< 0.10	0.00020
FR FR1	FR FR1 WEK 2022-05-16 NP	2022-05-17	-	0.0042	< 0.00010	0.00011	0.0369	< 0.020	< 0.000050	< 0.010	0.0000138	58.2	0.00012	< 0.10	0.00038
FR FR1	FR FR1 WEK 2022-05-23 NP	2022-05-25	-	0.0042	< 0.00010	< 0.00012	0.0341	< 0.020	< 0.000050	< 0.010	0.0000164	49.2	0.00011	< 0.10	0.00032
FR FR1	FR FR1 WEK 2022-05-30 NP	2022-05-31	—	0.0044	< 0.00010	< 0.00010	0.0344	< 0.020	< 0.000050	< 0.010	0.0000163	40.7	0.0001	< 0.10	0.00034
FR FR1	FR FR1 MON 2022-06-06 NP	2022-06-07	—	0.004	0.00010	0.00010	0.0369	< 0.020	< 0.000050	< 0.010	0.0000112	57.3	< 0.0001	< 0.10	0.00024
FR FR1	FR FR1 WEK 2022-06-13 NP	2022-06-14	-	0.0039	< 0.00012	< 0.00010	0.0274	< 0.020	< 0.000050	< 0.010	0.0000476	37.2	< 0.00010	< 0.10	< 0.00024
FR FR1	FR_DC1_WEK_2022-06-20_NP	2022-06-21	-	0.0035	< 0.00010	< 0.00010	0.01823333	< 0.020	< 0.000050	< 0.010	9.66667E-06	25.62	< 0.00010	< 0.10	0.000206667
FR FR1	FR FR1 WEK 2022-06-27 NP	2022-06-28	-	0.0036	< 0.00010	< 0.00010	0.0237	< 0.020	< 0.000050	< 0.010	0.000096	35.2	< 0.00010	< 0.10	< 0.000206667
		1 20		0.0033	1	1		1	1	1 2.2.70	0.0000000			20	0.00020

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

											Dissolve	ed Metals							
Sample	Sample	Sample Date	Hardness	lon	Lead	Lithium	Magnesium	Manganese	Nickel	Potassium	Selenium	Silver	Sodium	Strontium	Thallium	lT.	Titanium	Uranium	Zinc
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
				cute															
BC WQG FWAL			n/a	0.35	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Fording River Operation					•		•	•		•				•	•	•	•		
FR_CC1	FR_FLD1_2022-09-19_N	2022-09-19	-	< 0.010	< 0.000050	< 0.0010	< 0.0050	< 0.00010	< 0.00050	< 0.050	< 0.050	< 0.000010	< 0.050	< 0.00020	< 0.000010	0.0001	< 0.00030	< 0.000010	< 0.0010
FR_CC1	FR_CC1_CC1A_2022-09-20_N	2022-09-20	-	0.019	< 0.000050	0.442	157	0.00087	0.0624	6.88	218	< 0.000010	13	0.468	0.000044	< 0.00010	< 0.00030	0.0154	0.0141
FR_CC1	FR_CC1_CC1A_2022-09-21_N	2022-09-21	-	< 0.020	0.000276	0.37	163	0.00085	0.0554	6.12	169	< 0.000020	11.4	0.447	0.00004	< 0.00020	< 0.00060	0.0153	0.0189
FR_CC1	FR_CC1_CC1A_2022-09-22_N	2022-09-22	-	< 0.020	< 0.000100	0.306	149	0.00162	0.0569	6.13	173	< 0.000020	11.7	0.424	0.000041	< 0.00020	< 0.00060	0.0152	0.0148
FR_CC1	FR_CC1_RD-WS_2022-09-01_NP	2022-09-22	-	< 0.020	0.000864	0.407	152	0.00062	0.0569	6.02	171	< 0.000020	12	0.425	0.000043	< 0.00020	< 0.00060	0.0147	0.0177
FR_CC1	FR_CC1_CC1A_2022-09-23_N	2022-09-23	-	< 0.010	0.000194	0.463	152	0.00057	0.055	6.53	222	< 0.000010	11.9	0.448	0.000041	< 0.00010	< 0.00030	0.0155	0.0167
FR_CC1	FR_CC1_CC1A_2022-09-24_N	2022-09-24	-	< 0.010	0.000533	0.354	131	0.00076	0.0452	5.99	178	< 0.000010	10.3	0.396	0.000035	< 0.00010	< 0.00030	0.0119	0.0291
FR_CC1	FR_CC1_CC1A_2022-09-25_N	2022-09-25	-	< 0.020	< 0.000100	0.39	144	0.00053	0.0503	5.99	171	< 0.000020	10.5	0.428	0.000043	< 0.00020	< 0.00060	0.0138	0.0197
FR_CC1	FR_CC1_CC1A_2022-09-26_N	2022-09-26	-	< 0.020	< 0.000100	0.42	161	0.00067	0.0585	6.64	181	< 0.000020	12.4	0.437	0.000039	< 0.00020	< 0.00060	0.0139	0.0298
FR_CC1	FR_CC1_CC1A_2022-10-03_N	2022-10-03	-	< 0.010	< 0.000050	0.35	143	0.00333	0.0478	5.69	182	< 0.000010	10.8	0.439	0.000041	0.00029	< 0.00030	0.0124	0.0372
FR_CC1	FR_CC1_CC1A_2022-10-11_N	2022-10-11	-	< 0.010	< 0.000050	0.304	114	0.00101	0.0394	4.69	159	< 0.000010	8.32	0.356	0.000032	< 0.00010	< 0.00030	0.0108	0.028
FR_CC1	FR_CC1_CC1A_2022-10-17_N	2022-10-17	-	< 0.020	< 0.000100	0.298	119	0.00098	0.0448	4.95	146	< 0.000020	8.71	0.362	0.000031	< 0.00020	< 0.00060	0.012	0.0305
FR_CC1	FR_CC1_2022-10-24_N	2022-10-24	-	< 0.020	0.000106	0.309	130	0.00112	0.0438	5.09	143	< 0.000020	9.25	0.376	0.000032	< 0.00020	< 0.00060	0.0116	0.0357
FR_CC1	FR_CC1A_2022-10-31_N	2022-10-31	-	< 0.010	< 0.000050	0.263	120	0.00094	0.0393	4.86	167	< 0.000010	8.47	0.33	0.00003	< 0.00010	< 0.00030	0.0115	0.0231
FR_CC1	FR_CC1_2022-11-07_N	2022-11-07	-	< 0.010	< 0.000050	0.258	120	0.00084	0.0414	5.01	152	< 0.000010	8.92	0.351	0.000029	< 0.00010	< 0.00030	0.0106	0.0273
FR_CC1	FR_CC1_2022-11-14_N	2022-11-14	-	< 0.020	< 0.000100	0.318	144	0.00089	0.051	6.26	182	< 0.000020	11.2	0.42	0.000045	< 0.00020	< 0.00060	0.0143	0.0287
FR_CC1	FR_CC1_2022-11-21_N	2022-11-21	-	< 0.020	< 0.000100	0.387	171	0.00116	0.0583	6.63	205	< 0.000020	12.5	0.476	0.00005	< 0.00020	< 0.00060	0.0163	0.0392
FR_EC1	FR_EC1_MON_2022-01-01_N	2022-03-23	-	< 0.010	< 0.000050	0.0406	98.8	0.0199	0.00842	3.86	112	< 0.000010	6.88	0.247	0.00002	< 0.00010	< 0.00030	0.00736	0.0048
FR_EC1	FR_EC1_MON_2022-03-01_N	2022-03-28	-	< 0.010	< 0.000050	0.0251	58.8	0.0271	0.00492	3.21	67.8	< 0.000010	5.48	0.244	0.000018	< 0.00010	< 0.00030	0.00414	0.0023
FR_EC1	FR_EC1_MON_2022-04-01_N	2022-04-04	-	< 0.010	< 0.000050	0.0737	166	0.0161	0.0124	4.26	190	< 0.000010	9.21	0.284	0.000023	< 0.00010	< 0.00030	0.013	0.007
FR_EC1	FR_EC1_WEK_2022-04-11_N	2022-04-14	-	< 0.020	< 0.000100	0.0882	177	0.014	0.0126	4.39	203	< 0.000020	11.3	0.321	0.000023	< 0.00020	< 0.00060	0.0137	0.0081
FR_EC1	FR_EC1_WEK_2022-04-18_N	2022-04-19	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FR_EC1	FR_EC1_WEK_2022-04-25_N	2022-04-28	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FR_EC1	FR_EC1_MON_2022-05-01_N	2022-05-02	-	< 0.020	< 0.000100	0.114	245	0.00154	0.0166	5.49	283	< 0.000020	14.6	0.362	0.000027	< 0.00020	< 0.00060	0.0178	< 0.0020
FR_EC1	FR_EC1_WEK_2022-05-09_N	2022-05-12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FR_EC1	FR_EC1_WEK_2022-05-16_N	2022-05-16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FR_EC1	FR_EC1_WEK_2022-05-23_N	2022-05-23	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FR_EC1	FR_EC1_WEK_2022-05-30_N	2022-06-01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FR_EC1	FR_EC1_MON_2022-06-01_N	2022-06-08	-	< 0.020	< 0.000100	0.159	295	0.00063	0.0163	5.58	355	< 0.000020	16	0.416	0.000023	< 0.00020	< 0.00060	0.0196	< 0.0020
FR_EC1	FR_EC1_WEK_2022-06-13_N	2022-06-13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FR_EC1	FR_EC1_WEK_2022-06-20_N	2022-06-20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FR_EC1	FR_EC1_WEK_2022-06-27_N	2022-06-29	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FR_EC1	FR_EC1_MON_2022-07-01_N	2022-07-04	-	< 0.020	< 0.000100	0.118	247	0.00761	0.016	5.61	290	< 0.000020	14.8	0.372	0.00003	< 0.00020	< 0.00060	0.0172	0.0057
FR_EC1	FR_EC1_WEK_2022-07-11_N	2022-07-12	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
FR_FR1	FR_FR1_WEK_2022-03-28_N	2022-03-30	-	0.018	< 0.000050	0.0056	19.7	0.00436	0.00067	0.614	13.4	< 0.000010	0.67	0.0887	< 0.000010	< 0.00010	0.00035	0.000757	0.0015
FR_FR1	FR_FR1_MON_2022-04-01_N	2022-04-04	-	< 0.010	< 0.000050	0.0098	31.1	0.00185	0.00075	0.8	25.5	< 0.000010	0.733	0.117	< 0.000010	< 0.00010	< 0.00030	0.00125	< 0.0010
FR_FR1	FR_FR1_WEK_2022-04-11_N	2022-04-11	-	0.017	< 0.000050	0.0114	33.2	0.00226	0.00088	0.851	33.5	< 0.000010	0.75	0.115	< 0.000010	< 0.00010	< 0.00030	0.00134	0.003
FR_FR1	FR_FR1_WEK_2022-04-18_NP	2022-04-20	-	0.017	< 0.000050	0.0084	25	0.0013	< 0.00050	0.75	21.9	< 0.000010	0.718	0.104	< 0.000010	< 0.00010	< 0.00030	0.00104	0.0025
FR_FR1	FR_FR1_WS_2022-04-25_NP	2022-04-25	-	0.076	< 0.000050	0.0043	15	0.0196	0.00116	0.616	10	< 0.000010	0.6	0.0651	< 0.000010	< 0.00010	0.00073	0.000579	0.0022
FR_FR1	FR_FR1_WS_2022-04-26_NP	2022-04-26	-	-	-	-	-	-	-	-	-	- 0.000040	-	-	- 0 000010	-		-	-
FR_FR1	FR_FR1_WEK_2022-04-25_NP	2022-04-26	-	0.056	< 0.000050	0.0056	18.6	0.0138	0.00086	0.608	13.9	< 0.000010	0.669	0.0836	< 0.000010	< 0.00010	0.00048	0.000762	0.0026
FR_FR1	FR_FR1_MON_2022-05-02_NP	2022-05-03	-	0.011	< 0.000050	0.0066	22	0.00203	0.00071	0.657	18.2 14.4	< 0.000010	0.723	0.095	< 0.000010	< 0.00010	< 0.00030	0.000955	< 0.0010
FR_FR1	FR_FR1_WEK_2022-05-09_NP	2022-05-10	-	< 0.010	< 0.000050	0.0064	20.4	0.00132	0.00056	0.621		< 0.000010	0.655	0.0919	< 0.000010	< 0.00010	< 0.00030	0.000861	< 0.0010
FR_FR1	FR_FR1_WEK_2022-05-16_NP	2022-05-17	-	< 0.010	< 0.000050	0.0055	18.9	0.00115	< 0.00050	0.552	10.7	< 0.000010	0.642	0.0989	< 0.000010	< 0.00010	< 0.00030	0.000861	< 0.0010
FR_FR1	FR_FR1_WEK_2022-05-23_NP	2022-05-25	-	< 0.010	< 0.000050	0.0052	18	0.001	0.00051	0.526	11.3	< 0.000010	0.626	0.0941	< 0.000010	< 0.00010	< 0.00030	0.000795	0.004
FR_FR1	FR_FR1_WEK_2022-05-30_NP	2022-05-31	-	< 0.010	< 0.000050	0.0034	13.6	0.00056	< 0.00050	0.432	5.81	< 0.000010	0.562	0.0788	< 0.000010	< 0.00010	< 0.00030	0.000586	< 0.0010
FR_FR1	FR_FR1_MON_2022-06-06_NP	2022-06-07	-	< 0.010	< 0.000050	0.0202	26	0.00125	0.00227	1.03	25.1	< 0.000010	1.42	0.084	< 0.000010	< 0.00010	< 0.00030	0.00151	0.0021
FR_FR1	FR_FR1_WEK_2022-06-13_NP	2022-06-14	-	< 0.010	< 0.000050	0.0031	10.6	0.00078	< 0.00050	0.401	4.23	< 0.000010	0.464	0.0676	< 0.000010	< 0.00010	< 0.00030	0.000507	< 0.0010
FR_FR1	FR_DC1_WEK_2022-06-20_NP	2022-06-21	-	< 0.010	< 0.000050	0.0026	8.001666667	0.000696667	< 0.00050	0.309666667	3.436666667	< 0.000010	0.400333333	0.045466667	< 0.000010	< 0.00010	< 0.00030	0.000366333	0.001066667
FR_FR1	FR_FR1_WEK_2022-06-27_NP	2022-06-28	-	< 0.010	< 0.000050	0.003	10.9	0.00078	< 0.00050	0.409	4.26	< 0.000010	0.406	0.0661	< 0.000010	< 0.00010	< 0.00030	0.000544	< 0.0010
		·	-		•		-	•		•		•			-		-		

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

^d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

									Dissolve	d Metals						
				_										_		
			SS	<u> </u>	Ē			Ē	Ę			Ę	ء	<u> </u>		_
			ਵ	Ė	rtimo	=	<u> </u>	yllium	1	5		Ē	=	E	a #	8
Sample	Sample	Sample Date	Į ž	-	j	L Š	ari l	Š.	l iš l	ğ		D S) je	ļ	셨	Cop
Location	ID	(mm/dd/yyyy		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	m	ng/L	mg/L	mg/L	mg/L	mg/L
	· · · · · · · · · · · · · · · · · · ·	1(//3. =									<u></u>				ľυ
				iron hrom							cute	no u				Acute
C WQG FWAL			n/a	0.020-0.10 ^a 0.005-0.05 ^a	n/a	na	na	na	n/a	n/a	0.00004-0.0028 ^a	0.00002-0.00173 ^a	n/a	n/a	n/a	BLM°
ording River Operation			1174	0.020-0.10 0.005-0.05	IIIu	i i i i	iiu j	iiu.	11/4	11/4	0.00004-0.0026	0.00002-0.00173	IIIa	100	1174	DLW
FR FR1	FR FR1 QTR 2022-07-04 NP	2022-07-05	Τ -	0.0034	< 0.00010	< 0.00010	0.0219	< 0.020	< 0.000050	< 0.010	0.00	000071	36.1	< 0.00010	< 0.10	< 0.00020
FR FR1	FR FR1 WEK 2022-07-11 NP	2022-07-13	-	0.0022	< 0.00010	< 0.00010	0.0228	< 0.020	< 0.000050	< 0.010		000095	35.6	< 0.00010	< 0.10	< 0.00020
FR_FR1	FR_FR1_MON_2022-08-01_NP	2022-08-09	-	0.0019	< 0.00010	0.00011	0.0376	< 0.020	< 0.000050	< 0.010		000184	54.7	0.00012	< 0.10	< 0.00020
FR FR1	FR FR1 MON 2022-09-05 NP	2022-09-13	-	0.0046	< 0.00010	< 0.00010	0.041	< 0.020	< 0.000050	< 0.010		000183	64.3	0.00013	< 0.10	< 0.00020
FR_FR1	FR_FR1_QTR_2022-10-03_NP	2022-10-12	-	< 0.0010	< 0.00010	< 0.00010	0.0392	< 0.020	< 0.000050	< 0.010	0.00	000216	74.4	< 0.00010	< 0.10	< 0.00020
FR_FR1	FR_FR1_MON_2022-11-07_NP	2022-11-03	-	0.0014	< 0.00010	< 0.00010	0.038	< 0.020	< 0.000050	< 0.010		000237	67.9	< 0.00010	< 0.10	0.00055
FR_FR2	FR_FR2_MON_2022-01-04_N	2022-01-08	-	0.0013	0.00023	0.00017	0.0965	< 0.020	< 0.000050	0.016		000801	148	0.00012	< 0.00010	< 0.00020
FR_FR2	FR_FR2_MON_2022-02-01_N	2022-02-09	-	< 0.0010	0.00022	< 0.00010	0.0958	< 0.020	< 0.000050	0.011	0.00	000894	168	< 0.00010	< 0.00010	0.00029
FR_FR2	FR_FR2_WS_2022-02-28_N	2022-02-28	-	< 0.0010	0.00026	0.00011	0.11	< 0.020	< 0.000050	0.013	0.00	000811	159	< 0.00010	< 0.00010	< 0.00020
FR_FR2	FR_FR2_MON_2022-03-01_N	2022-03-03	-	< 0.0010	0.00022	< 0.00010	0.0946	< 0.020	< 0.000050	0.011		00074	154	0.00011	< 0.10	< 0.00020
FR_FR2	FR_FR2_WEK_2022-03-14_N	2022-03-14	-	0.0038	0.00024	< 0.00010	0.0991	< 0.020	< 0.000050	0.011	0.00	000753	169	0.0001	< 0.10	0.00031
FR_FR2	FR_ FR2_WEK_2022-03-15_NP	2022-03-15	-	0.004	0.00023	< 0.00010	0.101	< 0.020	< 0.000050	0.011		000762	147	< 0.00010	< 0.10	0.00032
FR_FR2	FR_FR2_WS_2022-03-16_NP	2022-03-16		0.0012	0.00021	< 0.00010	0.0786	< 0.020	< 0.000050	0.012		000599	149	< 0.00010		0.00054
FR_FR2	FR_ FR2_WEK_2022-03-16_NP	2022-03-16	-	0.0016	0.00023	< 0.00010	0.0916	< 0.020	< 0.000050	0.012		000663	153	< 0.00010	< 0.10	< 0.00020
FR_FR2	FR_FR2_2_WS_2022-03-17_NP	2022-03-17	-	0.0035	0.00025	< 0.00010	0.0926	< 0.020	< 0.000050	0.012		000735	162	0.00015	0.00012	0.00138
FR_FR2	FR_ FR2_WEK_2022-03-17_NP	2022-03-17		0.0015	0.00024	< 0.00010	0.0938	< 0.020	< 0.000050	0.011		000791	134	< 0.00010		< 0.00020
FR_FR2	FR_FR2_2_WS_2022-03-18_NP	2022-03-18	-	0.0011	0.00026	< 0.00010	0.101	< 0.020	< 0.000050	0.011		000754	145	< 0.00010		0.00021
FR_FR2	FR_FR2_WEK_2022-18_NP	2022-03-18	-	0.0029	0.00027	< 0.00010	0.0943	< 0.020	< 0.000050	0.012		000759	148	< 0.00010		0.00026
FR_FR2	FR_FR2_WS_2022-03-19_NP	2022-03-19	-	0.0016	0.00025	< 0.00010	0.0964	< 0.020	< 0.000050	0.012		000827	148	< 0.00010		< 0.00020
FR_FR2	FR_FR2_WS_2022-03-20_NP	2022-03-20	-	0.0028	0.00028	< 0.00010	0.093	< 0.020	< 0.000050	0.012		000765	145	< 0.00010		< 0.00020
FR_FR2 FR_FR2	FR_FR2_2_WS_2022-03-21_NP	2022-03-21	ļ -	0.002	0.00028	< 0.00010 < 0.00010	0.0934	< 0.020 < 0.020	< 0.000050	0.012		000821	146 146	< 0.00010		< 0.00020
FR_FR2	FR_FR2_2_WS_2022-03-22_NP FR_FR2_2_WS_2022-03-23_NP	2022-03-22 2022-03-23	-	0.0014	0.00028	0.00010	0.0966	< 0.020	< 0.000050 < 0.000050	0.012 0.012		00078	143	0.00010	0.00012 0.00017	< 0.00020
FR FR2	FR DC1 WEK 2022-03-28 N	2022-03-23	<u> </u>	< 0.0010	0.00034	0.00013	0.0966	< 0.020	< 0.000050	0.012		000959	137.5	< 0.0001	0.00017	< 0.00020
FR FR2	FR_DC1_WER_2022-03-26_N FR_FR2_MON_2022-04-01_N	2022-03-30	<u> </u>	0.00355	0.00079	0.00017	0.1115	< 0.020	< 0.000050	0.012		00122	137.5	< 0.00010		0.000355
FR FR2	FR FR2 WEK 2022-04-01 N	2022-04-03	+ :-	0.0018	0.00074	0.00014	0.0929	< 0.020	< 0.000050	0.011		00127	146	< 0.00010		0.00027
FR FR2	FR DC1 WEK 2022-04-11 N	2022-04-18	1	0.0035 0.00165	0.00032	< 0.00012	0.08025	< 0.020	< 0.000050	0.012		00171 00149	144.5	< 0.00010	0.000195	0.00032
FR FR2	FR FLD WEK 2022-04-18 N	2022-04-19	 -	< 0.00165	< 0.00010	< 0.00010	< 0.00010	< 0.020	< 0.000050	< 0.010		1.0050	< 0.05	0 < 0.00010		< 0.00020
FR FR2	FR FLD WEK 2022-04-10_N	2022-04-13	+ -	< 0.0010	< 0.00010	< 0.00010	< 0.00010	< 0.020	< 0.000050	< 0.010		1.0050	< 0.05	0 < 0.00010		< 0.00020
FR FR2	FR FR2 MON 2022-05-01 N	2022-05-04	-	0.0043	0.00022	0.00011	0.0549	< 0.020	< 0.000050	< 0.010		00153	101	< 0.00010		0.00044
FR FR2	FR FR2 WEK 2022-05-09 N	2022-05-10	-	0.0043	0.00024	0.00011	0.0513	< 0.020	< 0.000050	< 0.010		00151	98.7	< 0.00010		0.00044
FR FR2	FR FR2 WEK 2022-05-16 N	2022-05-19	-	0.0032	0.00019	< 0.00011	0.0514	< 0.020	< 0.000050	< 0.010		00107	88.1	< 0.00010	< 0.10	0.0004
FR FR2	FR FLD WEK 2022-05-23 N	2022-05-26	-	< 0.0023	< 0.00010	< 0.00010	< 0.00010	< 0.020	< 0.000050	< 0.010		1.0050	< 0.05	0 < 0.00010	< 0.10	< 0.00032
FR_FR2	FR_FR2_WS_2022-05-27_NP	2022-05-27	-	0.0023	0.00014	0.0001	0.041	< 0.020	< 0.000050	< 0.010		000589	67.4	< 0.00010		0.00022
FR_FR2	FR_FR2_WEK_2022-05-30_N	2022-06-01	-	0.0039	0.00014	< 0.00010	0.0409	< 0.020	< 0.000050	< 0.010		000578	57.7	< 0.00010	< 0.10	0.00034
FR_FR2	FR_DC3_MON_2022-06-01_N	2022-06-08	-	0.00345	0.000115	0.0001	0.0359	< 0.020	< 0.000050	< 0.010		003655	52.8	< 0.00010	< 0.10	0.00027
FR_FR2	FR_FR2_MON_2022-06-01_N	2022-06-08	-	-	-	-	-	-	- 1	-		-	-	-	-	-
FR_FR2	FR_DC1_WEK_2022-06-13_N	2022-06-13	-	0.00755	0.000105	0.000105	0.028	< 0.020	< 0.000050	< 0.010	0.00	003155	47.35			0.000265
FR_FR2	FR_FR2_WEK_2022-06-20_N	2022-06-21	-	0.0067	0.00011	0.00011	0.0338	< 0.020	< 0.000050	< 0.010	0.00	000449	45.9	< 0.00010	< 0.10	0.00031
FR_FR2	FR_DC1_WEK_2022-06-20_N	2022-06-21	-	0.0061	0.00011	0.00012	0.0329	< 0.020	< 0.000050	< 0.010	0.00	000408	46	< 0.00010		0.00029
FR_FR2	FR_DC1_WEK_2022-06-27_N	2022-06-28	-	0.00245	< 0.00010	< 0.00010	0.0311	< 0.020	< 0.000050	< 0.010		000464	50.25	< 0.00010		< 0.00020
FR_FR2	FR_FR2_MON_2022-07-01_N	2022-07-04	-	0.0018	0.00013	< 0.00010	0.0326	< 0.020	< 0.000050	< 0.010		000549	55.3	< 0.00010		0.0002
FR_FR2	FR_ FR2_WEK_2022-07-05_N	2022-07-05	-	0.003	< 0.00010	< 0.00010	0.031	< 0.020	< 0.000050	< 0.010		000556	54.5	< 0.00010		0.00026
FR_FR2	FR_FR2_WEK_2022-07-06_N	2022-07-06	-	0.0026	< 0.00010	< 0.00010	0.0323	< 0.020	< 0.000050	< 0.010		000472	58.3	< 0.00010		0.00025
FR_FR2	FR_DC1_WEK_2022-07-07_N	2022-07-07	_	0.0023	0.00012	< 0.00010	0.0343	< 0.020	< 0.000050	< 0.010		00054	55	< 0.00010	< 0.10	< 0.00020
FR_FR2	FR_FR3_WEK_2022-07-07_N	2022-07-07	-	0.0023	0.00013	< 0.00010	0.0341	< 0.020	< 0.000050	< 0.010		000459	55.2	0.00011	< 0.10	0.00031
FR_FR2	FR_DC1_WEK_2022-07-08_N	2022-07-08	1 -	0.0133	0.00012	0.00011	0.0329	< 0.020	< 0.000050	< 0.010		000562	52.4	< 0.00010		0.00058
FR_FR2	FR_FR3_WEK_2022-07-08_N	2022-07-08	-	0.0047	0.00011	< 0.00010	0.0324	< 0.020	< 0.000050	< 0.010		000474	51.9	< 0.00010	< 0.10	0.00023
FR_FR2	FR_FR2_WS_2022-07-09_N	2022-07-09	ļ -	0.004	0.00013	< 0.00010	0.0347	< 0.020	< 0.000050	< 0.010		00052	55.1	< 0.00010		< 0.00020
FR_FR2	FR_FR2_WEK_2022-07-11_N	2022-07-12	1 -	0.0055	0.00018	< 0.00010	0.0382	< 0.020	< 0.000050	< 0.010	0.00)19131	65.1	0.000105	< 0.10	0.00213

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

											Dissolv	ed Metals							
Sample	Sample	Sample Date		lron	Lead	Lithium	Magnesium	Manganese	Nickel	Potassium	Selenium	Silver	Sodium	Strontium	Thallium	Tin	Titanium	Uranium	Zinc
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
				Acute															
BC WQG FWAL			n/a	0.35	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Fording River Operation																			
FR_FR1	FR_FR1_QTR_2022-07-04_NP	2022-07-05	-	< 0.010	< 0.000050	0.003	10.9	0.00064	< 0.00050	0.374	4.38	< 0.000010	0.404	0.0674	< 0.000010	0.00325	< 0.00030	0.000499	< 0.0010
FR_FR1	FR_FR1_WEK_2022-07-11_NP	2022-07-13	-	< 0.010 < 0.010	< 0.000050 < 0.000050	0.0033	10.6 20.9	0.00071 0.00124	< 0.00050 < 0.00050	0.399 0.692	5.63 14.5	< 0.000010 < 0.000010	0.375	0.0672	< 0.000010 < 0.000010	< 0.00010 < 0.00010	< 0.00030	0.000546 0.000905	< 0.0010 < 0.0010
FR_FR1	FR_FR1_MON_2022-08-01_NP FR_FR1_MON_2022-09-05_NP	2022-08-09	-	< 0.010	< 0.000050	0.007	24.3	0.00124	0.0005	0.692	14.5	< 0.000010	0.528 0.598	0.0999	< 0.000010	< 0.00010	< 0.00030	0.000905	< 0.0010
FR FR1	FR FR1 MON 2022-09-05 NP	2022-09-13	-	< 0.010	< 0.000050	0.0075	24.3	0.00081	0.0005	0.698	33.3	< 0.000010	0.598	0.117	< 0.000010	< 0.00010	< 0.00030	0.00108	< 0.0010
FR FR1	FR FR1 MON 2022-11-07 NP	2022-10-12		< 0.010	< 0.000050	0.0086	28.2	0.00059	0.00073	0.658	32.1	< 0.000010	0.619	0.124	< 0.000010	< 0.00010	< 0.00030	0.00111	0.0014
FR FR2	FR FR2 MON 2022-01-04 N	2022-01-08	-	0.014	< 0.000050	0.0792	70.6	0.0153	0.00648	2.32	92.6	< 0.000010	3.5	0.224	< 0.000010	< 0.00010	< 0.00030	0.00439	0.0036
FR FR2	FR FR2 MON 2022-02-01 N	2022-02-09	-	0.019	< 0.000050	0.0834	74.7	0.0167	0.00514	2.29	82.9	< 0.000010	3.67	0.23	< 0.000010	< 0.00010	< 0.00030	0.0045	0.0025
FR FR2	FR FR2 WS 2022-02-28 N	2022-02-28	-	0.02	< 0.000050	0.0908	77	0.0172	0.00574	2.92	88	< 0.000010	4.1	0.242	< 0.000010	< 0.00010	< 0.00030	0.00466	0.0032
FR FR2	FR FR2 MON 2022-03-01 N	2022-03-03	-	0.019	< 0.000050	0.0821	77.1	0.0178	0.00532	2.36	85.1	< 0.000010	3.76	0.223	< 0.000010	< 0.00010	< 0.00030	0.00457	0.0021
FR_FR2	FR_FR2_WEK_2022-03-14_N	2022-03-14	-	0.021	< 0.000050	0.0873	81.8	0.0197	0.00534	2.38	92.3	< 0.000010	3.55	0.228	< 0.000010	< 0.00010	< 0.00030	0.00477	0.0039
FR_FR2	FR_FR2_WEK_2022-03-15_NP	2022-03-15	-	0.019	< 0.000050	0.0774	73	0.0212	0.00549	2.34	84.8	< 0.000010	3.57	0.217	< 0.000010	< 0.00010	< 0.00030	0.00455	0.0044
FR_FR2	FR_FR2_WS_2022-03-16_NP	2022-03-16	-	< 0.010	< 0.000050	0.0742	62.6	0.0149	0.00402	1.97	74.6	< 0.000010	3.01	0.211	< 0.000010	< 0.00010	< 0.00030	0.00413	0.0028
FR_FR2	FR_FR2_WEK_2022-03-16_NP	2022-03-16	-	< 0.010	< 0.000050	0.0837	71.4	0.0192	0.00531	2.25	83.4	< 0.000010	3.6	0.225	< 0.000010	< 0.00010	< 0.00030	0.00481	0.0026
FR_FR2	FR_FR2_2_WS_2022-03-17_NP	2022-03-17	-	0.011	< 0.000050	0.0813	75	0.0174	0.00494	2.36	85	< 0.000010	3.82	0.229	< 0.000010	< 0.00010	< 0.00030	0.00454	0.0045
FR_FR2	FR_ FR2_WEK_2022-03-17_NP	2022-03-17	-	0.01	< 0.000050	0.069	68.7	0.0187	0.00549	2.36	90.7	< 0.000010	3.8	0.209	< 0.000010	< 0.00010	< 0.00030	0.00465	0.0034
FR_FR2	FR_FR2_2_WS_2022-03-18_NP	2022-03-18	-	< 0.010	< 0.000050	0.0806	77.4	0.018	0.00511	2.38	85.4	< 0.000010	3.91	0.231	< 0.000010	< 0.00010	< 0.00030	0.00459	0.0027
FR_FR2	FR_FR2_WEK_2022-18_NP	2022-03-18	-	< 0.010	< 0.000050	0.0824	75.3	0.0202	0.00547	2.51	89.7	< 0.000010	3.96	0.227	< 0.000010	< 0.00010	< 0.00030	0.00484	0.0044
FR_FR2	FR_FR2_WS_2022-03-19_NP	2022-03-19	-	0.011	< 0.000050	0.0828	72.1	0.018	0.00524	2.38	89.2	< 0.000010	3.87	0.222	< 0.000010	< 0.00010	< 0.00030	0.00479	0.0033
FR_FR2	FR_FR2_WS_2022-03-20_NP	2022-03-20	-	< 0.010	< 0.000050	0.0796	68.8	0.0178	0.00554	2.39	86.8	< 0.000010	3.8	0.216	< 0.000010	< 0.00010	< 0.00030	0.00455	0.0032
FR_FR2 FR_FR2	FR_FR2_2_WS_2022-03-21_NP FR_FR2_2_WS_2022-03-22_NP	2022-03-21	-	0.016	< 0.000050	0.0798	68.4	0.0174	0.00553	2.43	88.2	< 0.000010	3.62	0.221	< 0.000010	< 0.00010	< 0.00030	0.00483	0.0037
FR_FR2	FR FR2 2 WS 2022-03-22 NP	2022-03-22	-	0.012 0.013	< 0.000050 < 0.000050	0.0764 0.0813	68.8 72.7	0.0168 0.0181	0.00573	2.28 2.42	80.5 93.1	< 0.000010 < 0.000010	3.48 3.63	0.215 0.222	< 0.000010 < 0.000010	< 0.00010 < 0.00010	< 0.00030 < 0.00030	0.00452 0.00427	0.0035 0.004
FR FR2	FR DC1 WEK 2022-03-28 N	2022-03-23	<u> </u>	< 0.010	< 0.000050	0.06055	60.8	0.0101	0.00073	2.42	82.15	< 0.000010	2.55	0.212	0.000010	< 0.00010	< 0.00030	0.003685	0.0053
FR_FR2	FR FR2 MON 2022-04-01 N	2022-03-30	-	< 0.010	< 0.000050	0.06033	63.1	0.0104	0.00976	2.41	82.2	< 0.000010	2.69	0.212	0.0000145	< 0.00010	< 0.00030	0.003665	0.0053
FR FR2	FR FR2 WEK 2022-04-01 N	2022-04-03		0.013	< 0.000050	0.0003	65.4	0.0100	0.0124	2.66	91.1	< 0.000010	2.03	0.236	0.000010	< 0.00010	< 0.00030	0.00369	0.0085
FR FR2	FR DC1 WEK 2022-04-18 N	2022-04-18	-	< 0.010	< 0.000050	0.08495	66.55	0.00923	0.009915	2.405	104	< 0.000010	3.16	0.2115	0.0000115	< 0.00010	< 0.00030	0.004755	0.0067
FR FR2	FR FLD WEK 2022-04-18 N	2022-04-19	-	< 0.010	< 0.000050	< 0.0010	< 0.0050	< 0.00010	< 0.00050	< 0.050	< 0.050	< 0.000010	< 0.050	< 0.00020	< 0.0000110	< 0.00010	< 0.00030	< 0.000010	< 0.0010
FR FR2	FR FLD WEK 2022-04-25 N	2022-04-27	-	< 0.010	< 0.000050	< 0.0010	< 0.0050	< 0.00010	< 0.00050	< 0.050	< 0.050	< 0.000010	< 0.050	< 0.00020	< 0.000010	< 0.00010	< 0.00030	< 0.000010	< 0.0010
FR FR2	FR FR2 MON 2022-05-01 N	2022-05-04	-	< 0.010	< 0.000050	0.0344	46.2	0.00638	0.008	1.64	63.3	< 0.000010	1.59	0.137	< 0.000010	< 0.00010	< 0.00030	0.00262	0.0065
FR FR2	FR FR2 WEK 2022-05-09 N	2022-05-10	-	< 0.010	< 0.000050	0.0396	45.6	0.00599	0.0083	1.79	67.2	< 0.000010	1.72	0.132	< 0.000010	< 0.00010	< 0.00030	0.0028	0.0059
FR FR2	FR FR2 WEK 2022-05-16 N	2022-05-19	-	< 0.010	< 0.000050	0.0328	38.8	0.00416	0.0056	1.61	54.4	< 0.000010	1.57	0.125	< 0.000010	< 0.00010	< 0.00030	0.00247	0.0044
FR_FR2	FR_FLD_WEK_2022-05-23_N	2022-05-26	-	< 0.010	< 0.000050	< 0.0010	< 0.0050	< 0.00010	< 0.00050	< 0.050	< 0.050	< 0.000010	< 0.050	< 0.00020	< 0.000010	< 0.00010	< 0.00030	< 0.000010	< 0.0010
FR_FR2	FR_FR2_WS_2022-05-27_NP	2022-05-27	-	< 0.010	< 0.000050	0.021	28.5	0.00231	0.00298	1.04	34.8	< 0.000010	1.12	0.107	< 0.000010	< 0.00010	< 0.00030	0.00164	0.0026
FR_FR2	FR_FR2_WEK_2022-05-30_N	2022-06-01	-	< 0.010	< 0.000050	0.0172	25.7	0.00248	0.00276	0.94	25.5	< 0.000010	1.13	0.095	< 0.000010	< 0.00010	< 0.00030	0.00145	0.0033
FR_FR2	FR_DC3_MON_2022-06-01_N	2022-06-08	-	< 0.010	< 0.000050	0.0155	19.3	0.00175	0.00205	0.825	16.85	< 0.000010	0.881	0.08815	< 0.000010	< 0.00010	< 0.00030	0.00105	0.0024
FR_FR2	FR_FR2_MON_2022-06-01_N	2022-06-08	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FR_FR2	FR_DC1_WEK_2022-06-13_N	2022-06-13	-	< 0.010	< 0.000050	0.0132	15.8	0.001705	0.001645	0.7395	12.3	< 0.000010	0.8075	0.07685	< 0.000010	< 0.00010	< 0.00030	0.000974	0.0055
FR_FR2	FR_FR2_WEK_2022-06-20_N	2022-06-21	-	< 0.010	< 0.000050	0.0118	17.3	0.00203	0.00242	0.766	17.2	< 0.000010	0.771	0.0736	< 0.000010	< 0.00010	< 0.00030	0.000995	0.0021
FR_FR2	FR_DC1_WEK_2022-06-20_N	2022-06-21	-	< 0.010	< 0.000050	0.0117	17.3	0.00205	0.00245	0.738	16.6	< 0.000010	0.76	0.0723	< 0.000010	< 0.00010	< 0.00030	0.000993	0.0019
FR_FR2	FR_DC1_WEK_2022-06-27_N	2022-06-28	-	< 0.010	< 0.000050	0.01515	19.7	0.001825	0.00224	0.8155	17.4	< 0.000010	0.872	0.08135	< 0.000010	< 0.00010	< 0.00030	0.00107	0.00275
FR_FR2 FR_FR2	FR_FR2_MON_2022-07-01_N	2022-07-04	-	< 0.010 < 0.010	< 0.000050 < 0.000050	0.0203 0.0169	21.5 21.1	0.0023 0.00221	0.0024 0.00251	0.934 0.844	23.4 21.4	< 0.000010	1.02	0.0862 0.084	< 0.000010 < 0.000010	< 0.00010 < 0.00010	< 0.00030 < 0.00030	0.00136 0.00124	0.0022 0.0024
FR_FR2	FR_FR2_WEK_2022-07-05_N FR_FR2_WEK_2022-07-06_N	2022-07-05	-	< 0.010	< 0.000050	0.0169	21.1	0.00221	0.00251	0.844	21.4	< 0.000010 < 0.000010	1.04	0.084	< 0.000010	< 0.00010	< 0.00030	0.00124	0.0024
FR_FR2	FR_FR2_WEK_2022-07-06_N FR_DC1_WEK_2022-07-07_N	2022-07-06	<u> </u>	< 0.010	< 0.000050	0.019	22.4	0.0023	0.00272	0.901	24.2	< 0.000010	1.04	0.085	< 0.000010	< 0.00010	< 0.00030	0.0013	0.0027
FR_FR2	FR FR3 WEK 2022-07-07 N	2022-07-07	<u> </u>	0.014	< 0.000050	0.0198	22.2	0.00239	0.00263	0.92	23.5	< 0.000010	1.04	0.0843	< 0.000010	< 0.00010	< 0.00030	0.00126	0.0024
FR FR2	FR DC1 WEK 2022-07-07 N	2022-07-08	H	0.014	< 0.000050	0.0206	20.5	0.0018	0.00534	0.841	23.5	< 0.000010	0.941	0.0833	< 0.000010	< 0.00010	< 0.00030	0.00126	0.0032
FR FR2	FR FR3 WEK 2022-07-08 N	2022-07-08	H	< 0.014	< 0.000050	0.0173	20.6	0.00312	0.00239	0.852	21.7	< 0.000010	0.979	0.0033	< 0.000010	< 0.00010	< 0.00030	0.00123	0.0042
FR FR2	FR FR2 WS 2022-07-09 N	2022-07-09	H-	< 0.010	< 0.000050	0.0102	22.8	0.0027	0.00274	0.992	25.4	< 0.000010	1.11	0.0872	< 0.000010	< 0.00010	< 0.00030	0.00113	0.0034
FR FR2	FR FR2 WEK 2022-07-11 N	2022-07-12	-	< 0.010	0.0000685	0.0255	27.3	0.0027	0.002915	1.255	37.9	< 0.000010	1.415	0.1011	< 0.000010	< 0.00010	< 0.00030	0.00185	0.0077
11217		1							1 2.2222.70								1 2:22200		

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

^d Guideline varies with pH

e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

									Dissolve	ed Metals						
Sample	Sample	Sample Date	Hardness	Aluminum	Antimony	Arsenic	Barium	Beryllium	Bismuth	Boron		Cadmium	Calcium	Chromium	Cobalt	Copper
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	m	ng/L	mg/L	mg/L	mg/L	mg/L
				Acute							Acute	Chronic		_		Acute
BC WQG FWAL			n/a	0.020-0.10 ^a 0.005-0.	05 ^a n/a	na	na	na	n/a	n/a	0.00004-0.0028 ^a	0.00002-0.00173 ^a	n/a	n/a	n/a	BLMe
Fording River Operation		T			1											
FR_FR2	FR_DC2_MON_2022-08-01_N	2022-08-10	-	0.00105	0.000195	< 0.00010	0.07405	< 0.020	< 0.000050	0.0105	0.00	007645	96.7	< 0.00010	< 0.10	< 0.00020
FR_FR2	FR_FR2_MON_2022-08-01_N	2022-08-10	-	-				-		-			- 407			-
FR_FR2	FR_FR2_WS_SEPT-2022_N	2022-09-06	-	< 0.0010	0.00022	< 0.00010	0.0768	< 0.020	< 0.000050	0.013		000707	127	< 0.00010	< 0.10	0.00027
FR_FR2	FR_DC1_WS_SEPT-2022_N	2022-09-06	-	< 0.0010	0.00022	< 0.00010	0.075	< 0.020	< 0.000050	0.012		000721	119	0.00011	< 0.10	< 0.00020
FR_FR2	FR_FLD1_WS_SEPT-2022_N	2022-09-06	-	< 0.0010	< 0.00010	< 0.00010	< 0.00010	< 0.020	< 0.000050	< 0.010		.0050	< 0.050	< 0.00010	< 0.10	0.00048
FR_FR2	FR_FR2_MON_2022-09-01_N	2022-09-07	-	0.0039	0.00025	0.00012	0.083	< 0.020	< 0.000050	0.013		000736	119	0.0001	< 0.10	0.00022
FR_FR2	FR_FR2_MON_2022-10-01_N	2022-10-04	-	< 0.0010	0.00027	< 0.00010	0.0885	< 0.020	< 0.000050	0.013		00105	141	< 0.00010	< 0.10	0.00032
FR_LMP1	FR_LMP1_MON_2022-01-04_N	2022-01-07	-	0.0016	0.001	0.0005	0.106	< 0.020	< 0.000050	0.019		00036	237	< 0.00010	0.00113	0.00057
FR_LMP1	FR_LMP1_WS_2022-01-15_NP	2022-01-15	-	0.0025	0.00108	0.00055	0.0976	< 0.020	< 0.000050	0.019		00341	227	< 0.00010	0.00112	0.00058
FR_LMP1	FR_LMP1_WS_2022-01-20_NP	2022-01-20	-	0.002	0.00095	0.00055	0.0953	< 0.020	< 0.000050	0.019		00337	228	< 0.00010	0.00087	0.00055
FR_LMP1	FR_LMP1_WS_2022-01-27_NP	2022-01-27	-	0.0089	0.00126	0.00059	0.103	< 0.020	< 0.000050	0.018		00035	239	< 0.00010	0.00125	0.00052
FR_LMP1	FR_LMP1_WS_2022-02-04_NP	2022-02-04	-	< 0.0010	0.00106	0.00068	0.11	< 0.020	< 0.000050	0.018		00367	247	< 0.00010	0.00098	0.00062
FR_LMP1	FR_LMP1_WS_2022-02-10_NP	2022-02-10	-	0.002	0.0009	0.00058	0.107	< 0.020	< 0.000050	0.018		00346	248	< 0.00010	0.00072	0.00056
FR_LMP1	FR_LMP1_WS_2022-02-17_NP	2022-02-17	-	0.0037	0.00126	0.00051	0.112	< 0.020	< 0.000050	0.023		00303	237	< 0.00010	0.00146	0.00051
FR_LMP1	FR_LMP1_WS_2022-02-24_NP	2022-02-24	-	0.0029	0.00141	0.00056	0.1	< 0.020	< 0.000050	0.02		00354	236	< 0.00010	0.00167	0.00053
FR_LMP1	FR_LMP1_WS_2022-03-03_NP	2022-03-03	-	0.0019	0.00121	0.00051	0.0868	< 0.020	< 0.000050	0.018	0.0	00341	245	0.00011	0.00158	0.00081
FR_LMP1	FR_LMP1_WS_2022-03-09_NP	2022-03-09	-	0.0017	0.00146	0.00059	0.102	< 0.020	< 0.000050	0.02	0.0	00362	248	< 0.00010	0.00147	0.00063
FR_LMP1	FR_LMP1_WS_2022-03-16_NP	2022-03-16	-	0.0014	0.00104	0.00048	0.0983	< 0.020	< 0.000050	0.018	0.0	00324	226	< 0.00010	0.0007	0.00051
FR_LMP1	FR_LMP1_WEK_2022-03-21_N	2022-03-22	-	-	-	-	-	-	-	-			-	-	-	-
FR_LMP1	FR_FLD_WEK_2022-03-21_N	2022-03-22	-	< 0.0010	< 0.00010	< 0.00010	< 0.00010	< 0.020	< 0.000050	< 0.010	< 0	1.0050	< 0.050		< 0.10	< 0.00020
FR_LMP1	FR_LMP1_WS_2022-03-24_NP	2022-03-24	-	0.0022	0.00213	0.00046	0.108	< 0.020	< 0.000050	0.017	0.0	00248	197	< 0.00010	0.00214	0.00041
FR_LMP1	FR_LMP1_WS_2022-03-30_NP	2022-03-30	-	0.0026	0.00494	0.00081	0.352	< 0.020	< 0.000050	0.022	0.0	00321	203	< 0.00010	0.00473	0.00068
FR_LMP1	FR_LMP1_MON_2022-04-01_N	2022-04-01	-	0.0024	0.00547	0.00067	0.264	< 0.020	< 0.000050	0.022	0.0	00328	186	< 0.00010	0.00838	0.00061
FR_LMP1	FR_LMP1_WS_2022-04-05_NP	2022-04-05	-	0.0021	0.00512	0.00062	0.32	< 0.020	< 0.000050	0.021	0.0	00243	184	< 0.00010	0.00845	0.00065
FR_LMP1	FR_LMP1_WS_2022-04-12_NP	2022-04-12	-	0.0033	0.00368	0.00053	0.19	< 0.020	< 0.000050	0.02	0.0	00297	219	< 0.00010	0.00316	0.00059
FR_LMP1	FR_LMP1_WEK_2022-04-18_N	2022-04-20	-	0.0024	0.00086	0.00028	0.0624	< 0.020	< 0.000050	0.013		00357	212	< 0.00010	0.00055	0.0006
FR_LMP1	FR_LMP1_WS_2022-04-28_NP	2022-04-28	-	0.0032	0.00065	0.00022	0.0468	< 0.020	< 0.000050	0.013	0.0	00348	169	< 0.00010	0.00039	0.00075
FR_LMP1	FR_LMP1_WEK_2022-04-25_N	2022-04-28	-	-	-	-	-	-	-	-		-	-	-	-	-
FR_LMP1	FR_LMP1_MON_2022-05-01_N	2022-05-05	-	0.0022	0.00062	0.00018	0.0365	< 0.020	< 0.000050	0.012	0.0	00428	158	< 0.00010	0.00053	0.00083
FR_LMP1	FR_LMP1_WS_2022-05-10_NP	2022-05-10	-	0.0025	0.00051	0.00017	0.0365	< 0.020	< 0.000050	0.011	0.0	00396	133	< 0.00030	0.00037	0.00117
FR_LMP1	FR_LMP1_WEK_2022-05-09_N	2022-05-12		-	-	-	-	-	-	-			-		-	-
FR_LMP1	FR_LMP1_WEK_2022-05-16_N	2022-05-16	-	-	-	-	-	-	-	-			-	-	-	-
FR_LMP1	FR_LMP1_WS_2022-05-23_NP	2022-05-23	-	0.0026	0.00044	0.00018	0.0341	< 0.020	< 0.000050	< 0.010	0.0	00347	142	< 0.00010	0.00019	0.00074
FR_LMP1	FR_LMP1_WEK_2022-05-30_N	2022-06-01	-	-	-	-	-	-	-	-			-	-	-	-
FR_LMP1	FR_LMP1_WS_2022-06-08_NP	2022-06-08	-	0.0027	0.00045	0.00016	0.0286	< 0.020	< 0.000050	< 0.010	0.0	00026	104	< 0.00010	0.00013	0.0009
FR_LMP1	FR_LMP1_WEK_2022-06-13_N	2022-06-14	-	-			-	-	-	-				-		-
FR_LMP1	FR_LMP1_WS_2022-06-22_NP	2022-06-22	-	0.0039	0.00059	0.00022	0.0363	< 0.020	< 0.000050	< 0.010	0.0	00388	87.8	< 0.00010	0.00046	0.0013
FR_LMP1	FR_LMP1_WEK_2022-06-27_N	2022-06-30	-	-		-	-	-	-	-		-	<u> </u>	-		-
FR_LMP1	FR_LMP1_WS_2022-07-05_NP	2022-07-05	-	0.0042	0.00041	0.00015	0.0371	< 0.020	< 0.000050	< 0.010	0.0	00038	119	< 0.00010	0.00017	0.00112
FR_LMP1	FR_LMP1_WEK_2022-07-11_N	2022-07-13	-	-	-	-	-	-	-	-			-	-		-
FR_LMP1	FR_LMP1_WS_2022-07-19_NP	2022-07-19	-	0.0015	0.00044	0.00018	0.0424	< 0.020	< 0.000050	< 0.010		00476	156	< 0.00010	0.00018	0.00081
FR_LMP1	FR_LMP1_MON_2022-08-01_N	2022-08-04	-	0.002	0.00056	0.00023	0.0589	< 0.020	< 0.000050	0.011		00563	221	< 0.00010	0.00022	0.00074
FR_LMP1	FR_LMP1_WS_2022-08-17_NP	2022-08-17	-	< 0.0010	0.00066	0.00023	0.0604	< 0.020	< 0.000050	0.014		00464	248	< 0.00010	0.0003	0.00074
FR_LMP1	FR_LMP1_WS_WS_SESMP_2022-08_N	2022-08-22	-	< 0.0010	0.00065	0.00022	0.0598	< 0.020	< 0.000050	0.012		00438	244	< 0.00010	0.0003	0.00071
FR_LMP1	FR_LMP1_WS_2022-09-01_NP	2022-09-01	-	0.0016	0.0006	0.00026	0.0623	< 0.020	< 0.000050	0.012		00251	252	< 0.00010	0.00027	0.00072
FR_LMP1	FR_LMP1_WS_SEPT-2022_N	2022-09-07	-	< 0.0010	0.0007	0.00023	0.0619	< 0.020	< 0.000050	< 0.010		00243	245	< 0.00010	0.00027	0.00058
FR_LMP1	FR_LMP1_WS_2022-09-13_NP	2022-09-13	-	0.0019	0.00071	0.00027	0.0722	< 0.020	< 0.000050	0.015		00473	305	< 0.00010	0.00025	0.001
FR_LMP1	FR_LMD_MON_2022-10-01_N	2022-10-13	-	0.0022	0.0006	0.00023	0.0577	< 0.040	< 0.000100	< 0.020		00544	269	< 0.00020	0.0002	0.00063
FR_LMP1	FR_LMD_WS_2022-11-15_NP	2022-11-15	-	< 0.0010	0.00067	0.00027	0.0531	< 0.020	< 0.000050	0.014		00399	332	< 0.00010	0.00025	0.00058
FR_LP1	FR_LP1_WS_2022-05-22_N	2022-05-22	-	0.0022	0.0006	0.00022	0.0662	< 0.020	< 0.000050	0.018	0.0	80000	93.6	< 0.00010	0.00025	0.00065

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

											Dissolv	ed Metals							
Sample	Sample	Sample Date	Hardness	uou	Lead	Lithium	Magnesium	Manganese	Nickel	Potassium	Selenium	Silver	Sodium	Strontium	Thallium	Ę	Titanium	Uranium	Zinc
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
				Ť	Ĭ			_	_								_	, i	
				Acute															
BC WQG FWAL			n/a	0.35	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Fording River Operation																			
FR_FR2	FR_DC2_MON_2022-08-01_N	2022-08-10	-	0.012	< 0.000050	0.05105	51.3	0.00829	0.005305	1.95	52.4	< 0.000010	2.67	0.148	< 0.000010	< 0.00010	< 0.00030	0.002865	0.0035
FR_FR2	FR_FR2_MON_2022-08-01_N	2022-08-10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FR_FR2	FR_FR2_WS_SEPT-2022_N	2022-09-06	-	0.014	< 0.000050	0.0588	55.6	0.00848	0.00697	1.84	77.2	< 0.000010	2.42	0.181	< 0.000010		< 0.00030	0.00302	0.0034
FR_FR2	FR_DC1_WS_SEPT-2022_N	2022-09-06	-	0.014	< 0.000050	0.0566	57.5	0.00812	0.00701	1.85	81.7	< 0.000010	2.66	0.171	< 0.000010	< 0.00010	< 0.00030	0.00327	0.0032
FR_FR2	FR_FLD1_WS_SEPT-2022_N	2022-09-06	-	< 0.010	< 0.000050	< 0.0010	< 0.0050	< 0.00010	< 0.00050	< 0.050	< 0.050	< 0.000010	< 0.050	< 0.00020	< 0.000010	< 0.00010	< 0.00030	< 0.000010	< 0.0010
FR_FR2	FR_FR2_MON_2022-09-01_N	2022-09-07	<u> </u>	0.015	< 0.000050	0.0655	57.9	0.00856	0.00651	2.03	78	< 0.000010	2.65	0.159	< 0.000010	< 0.00010	< 0.00030	0.00344	0.0032
FR_FR2 FR_LMP1	FR_FR2_MON_2022-10-01_N FR_LMP1_MON_2022-01-04_N	2022-10-04	-	0.018	< 0.000050 < 0.000050	0.0926 0.0381	61.6 109	0.00969 0.0148	0.00766 0.0237	2.47 4.62	82.2 216	< 0.000010 < 0.000010	3.51 1.49	0.212 0.216	< 0.000010 0.000059	< 0.00010 < 0.00010	< 0.00030 < 0.00030	0.00451 0.00595	0.0039 0.0156
FR_LMP1	FR_LMP1_MON_2022-01-04_N FR_LMP1_WS_2022-01-15_NP	2022-01-07	-	0.01	< 0.000050	0.0381	109	0.0148	0.0237	4.62	216	< 0.000010	1.49	0.216	0.000059	0.00010	< 0.00030	0.00595	0.0156
FR_LMP1			<u> </u>	0.017	< 0.000050	0.0356	104	0.0166	0.0231	4.45		< 0.000010		0.206	0.000054	< 0.00014	< 0.00030	0.00582	
FR_LMP1	FR_LMP1_WS_2022-01-20_NP FR_LMP1_WS_2022-01-27_NP	2022-01-20	<u> </u>	0.014	< 0.000050	0.0356	104	0.0167	0.0227	4.45	222 228	< 0.000010	1.31	0.21	0.000054	< 0.00010	< 0.00030	0.00589	0.0148 0.0145
FR LMP1	FR LMP1 WS 2022-01-27 NP	2022-01-27	<u> </u>	0.013	< 0.000050	0.0359	116	0.0161	0.0246	4.68	262	< 0.000010	1.47	0.231	0.000058	< 0.00010	< 0.00030	0.00589	0.0145
FR LMP1	FR LMP1 WS 2022-02-04 NP	2022-02-04	-	0.013	< 0.000050	0.037	114	0.0127	0.0247	4.00	250	< 0.000010	1.30	0.216	0.000058	< 0.00010	< 0.00030	0.00569	0.0166
FR_LMP1	FR LMP1 WS 2022-02-10 NP	2022-02-10	-	0.016	< 0.000050	0.0306	105	0.011	0.0223	5.83	205	< 0.000010	1.32	0.228	0.000033	< 0.00010	< 0.00030	0.00556	0.0164
FR_LMP1	FR LMP1 WS 2022-02-17 NP	2022-02-17	-	0.01	< 0.000050	0.0431	111	0.0166	0.0231	5.83	219	< 0.000010	1.47	0.297	0.000073	< 0.00010	< 0.00030	0.00556	0.015
FR LMP1	FR LMP1 WS 2022-02-24 NP	2022-02-24	<u> </u>	0.011	< 0.000050	0.0375	123	0.0155	0.0253	5.23	242	< 0.000010	1.47	0.233	0.000074	< 0.00010	< 0.00030	0.00604	0.0133
FR_LMP1	FR LMP1 WS 2022-03-09 NP	2022-03-09	<u> </u>	0.012	< 0.000050	0.0389	110	0.0186	0.028	5.23	242	< 0.000010	1.74	0.228	0.000067	< 0.00010	< 0.00030	0.00616	0.0148
FR_LMP1	FR LMP1 WS 2022-03-09 NP	2022-03-09	<u> </u>	0.014	< 0.000050	0.0336	96.4	0.0100	0.026	4.35	234	< 0.000010	1.74	0.243	0.000067	< 0.00010	< 0.00030	0.00637	0.0149
FR LMP1	FR LMP1 WEK 2022-03-16 NP	2022-03-16	<u> </u>	0.014	- 0.000050	0.0330	90.4	0.0107	0.0216	4.35	234	- 0.000010	1.20	0.226	0.000034	< 0.00010	- 0.00030	0.00617	0.0137
FR_LMP1	FR FLD WEK 2022-03-21 N	2022-03-22	-	< 0.010	< 0.000050	< 0.0010	< 0.0050	< 0.00010	< 0.00050	< 0.050	< 0.050	< 0.000010	< 0.050	< 0.00020	< 0.000010	< 0.00010	< 0.00030	< 0.000010	< 0.0010
FR LMP1	FR_FLD_WER_2022-03-21_N FR_LMP1_WS_2022-03-24_NP	2022-03-22	<u> </u>	< 0.010	< 0.000050	0.0416	88.8	0.0144	0.00030	5.14	189	< 0.000010	1.27	0.226	0.000059	0.00010	< 0.00030	0.00524	0.0117
FR LMP1	FR LMP1 WS 2022-03-24 NP	2022-03-24	<u> </u>	< 0.010	< 0.000050	0.0410	97.1	0.0239	0.0279	6.2	195	< 0.000010	1.6	0.438	0.000039	< 0.00014	< 0.00030	0.00524	0.0117
FR LMP1	FR LMP1 MON 2022-04-01 N	2022-04-01		< 0.010	< 0.000050	0.0462	86.2	0.0239	0.0391	5.87	154	< 0.000010	1.79	0.624	0.000072	< 0.00010	< 0.00030	0.00569	0.014
FR I MP1	FR LMP1 WS 2022-04-05 NP	2022-04-01	<u> </u>	< 0.010	< 0.000050	0.0554	87.5	0.0281	0.0569	5.94	155	< 0.000010	1.79	0.634	0.000077	< 0.00010	< 0.00030	0.0034	0.0127
FR LMP1	FR LMP1 WS 2022-04-03 NP	2022-04-03	<u> </u>	< 0.010	< 0.000050	0.036	91.7	0.0261	0.0309	5.46	197	< 0.000010	1.57	0.456	0.000073	< 0.00010	< 0.00030	0.00529	0.0124
FR LMP1	FR LMP1 WEK 2022-04-12 N	2022-04-12		< 0.010	< 0.000050	0.0403	109	0.00396	0.0206	3.74	234	< 0.000010	1.27	0.430	0.000032	< 0.00010	< 0.00030	0.00565	0.0156
FR LMP1	FR LMP1 WS 2022-04-18 NP	2022-04-28		< 0.010	< 0.000050	0.0241	79.2	0.00362	0.0200	3.37	193	< 0.000010	0.971	0.134	0.000032	< 0.00010	< 0.00030	0.00303	0.0194
FR LMP1	FR LMP1 WEK 2022-04-25 N	2022-04-28	<u> </u>	- 0.010	- 0.000000	-	75.2	0.00002			-	- 0.000010	0.571	0.104	0.000001	- 0.00010	- 0.00000	- 0.00440	0.0134
FR LMP1	FR LMP1 MON 2022-05-01 N	2022-05-05		< 0.010	< 0.000050	0.0162	75.4	0.00322	0.0219	2.97	160	< 0.000010	0.802	0.118	0.00003	< 0.00010	< 0.00030	0.00382	0.0231
FR LMP1	FR LMP1 WS 2022-05-10 NP	2022-05-10		< 0.010	< 0.000050	0.0132	67	0.00322	0.0213	2.86	141	< 0.000010	0.748	0.101	0.00003	< 0.00010	< 0.00030	0.00302	0.0223
FR LMP1	FR LMP1 WEK 2022-05-09 N	2022-05-10	-	- 0.010	- 0.000000	0.0102	-	0.00000	0.0137	2.00	- 141	- 0.000010	0.740	0.101	0.000027	- 0.00010	- 0.00000	0.00002	0.0220
FR LMP1	FR LMP1 WEK 2022-05-05_14	2022-05-12	-	-			-	-	-	-	-	-	-		-	-	-	-	-
FR LMP1	FR LMP1 WS 2022-05-10 NP	2022-05-10	H	< 0.010	< 0.000050	0.013	65.5	0.00179	0.0146	2.61	151	< 0.000010	0.756	0.107	0.000023	< 0.00010	< 0.00030	0.0033	0.0184
FR LMP1	FR LMP1 WEK 2022-05-30 N	2022-05-23		- 0.010	- 0.000030	0.013	- 00.0	0.00175	0.0140	2.01	131	- 0.000010	0.730	0.107	3.000023	- 0.00010	- 0.00030	0.0000	0.0104
FR I MP1	FR LMP1 WS 2022-06-08 NP	2022-06-08	٠.	< 0.010	< 0.000050	0.0099	43.7	0.0016	0.0108	1.98	90.3	< 0.000010	0.544	0.0784	0.000022	< 0.00010	< 0.00030	0.00221	0.0168
FR LMP1	FR LMP1 WEK 2022-06-13 N	2022-06-14	٠.	- 0.010	- 0.000000	0.0000						- 0.000010			3.000022	- 0.00010	- 0.00000		0.0100
FR LMP1	FR LMP1 WS 2022-06-22 NP	2022-06-22	-	< 0.010	< 0.000050	0.0106	42.2	0.00236	0.0201	2.14	85	< 0.000010	0.635	0.0778	0.000023	< 0.00010	< 0.00030	0.00206	0.0214
FR LMP1	FR LMP1 WEK 2022-06-27 N	2022-06-30	-		- 0.000000	-	-	-	-	-	-	- 0.000010	-	-	-			-	
FR LMP1	FR LMP1 WS 2022-07-05 NP	2022-07-05	-	< 0.010	< 0.000050	0.0101	57.7	0.00316	0.0162	2.27	117	< 0.000010	0.656	0.0912	0.000024	< 0.00010	< 0.00030	0.00256	0.0218
FR LMP1	FR LMP1 WEK 2022-07-11 N	2022-07-13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FR LMP1	FR LMP1 WS 2022-07-19 NP	2022-07-19	-	< 0.010	< 0.000050	0.0123	67.6	0.00337	0.0211	2.42	177	< 0.000010	0.738	0.122	0.000026	< 0.00010	< 0.00030	0.00375	0.0251
FR LMP1	FR LMP1 MON 2022-08-01 N	2022-08-04	-	< 0.010	< 0.000050	0.0176	107	0.00286	0.0301	3.46	286	< 0.000010	1.05	0.175	0.000035	< 0.00010	< 0.00030	0.00562	0.0318
FR LMP1	FR LMP1 WS 2022-08-17 NP	2022-08-17	-	< 0.010	< 0.000050	0.0212	121	0.00298	0.039	3.45	332	< 0.000010	1.11	0.183	0.000039	< 0.00010	< 0.00030	0.00702	0.0264
FR_LMP1	FR_LMP1_WS_WS_SESMP_2022-08_N	2022-08-22	-	< 0.010	< 0.000050	0.0181	120	0.0032	0.0386	3.58	361	< 0.000010	1.16	0.184	0.000038	< 0.00010	< 0.00030	0.00709	0.0255
FR_LMP1	FR_LMP1_WS_2022-09-01_NP	2022-09-01	-	< 0.010	< 0.000050	0.02	131	0.00265	0.0424	3.61	344	< 0.000010	1.18	0.193	0.000036	< 0.00010	< 0.00030	0.00663	0.0149
FR LMP1	FR LMP1 WS SEPT-2022 N	2022-09-07	-	< 0.010	< 0.000050	0.0181	123	0.00289	0.035	3.65	313	< 0.000010	1.18	0.202	0.000023	< 0.00010	< 0.00030	0.00755	0.0118
FR_LMP1	FR_LMP1_WS_2022-09-13_NP	2022-09-13	-	< 0.010	< 0.000050	0.0222	140	0.00454	0.0391	3.86	374	< 0.000010	1.29	0.216	0.000043	< 0.00010	< 0.00030	0.008	0.0233
FR_LMP1	FR_LMD_MON_2022-10-01_N	2022-10-13	-	< 0.020	< 0.000100	0.0211	132	0.00417	0.0415	3.57	348	< 0.000020	1.14	0.194	0.000035	< 0.00020	< 0.00060	0.00827	0.0319
FR_LMP1	FR_LMD_WS_2022-11-15_NP	2022-11-15	-	< 0.010	< 0.000050	0.0222	155	0.00439	0.0471	3.88	349	< 0.000010	1.34	0.23	0.00004	< 0.00010	< 0.00030	0.0103	0.0263
FR_LP1	FR_LP1_WS_2022-05-22_N	2022-05-22	-	< 0.010	< 0.000050	0.0239	65	0.00435	0.00274	2.61	58	< 0.000010	1.88	0.101	0.000013	< 0.00010	< 0.00030	0.002	0.01

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

^d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

									Dissolve	d Metals						
				E	è			_				=		Ε		
			rdnes	uminu	ntimon	senic	ricm	ryllium	muth muth	ron		daiu i	Cium	romiu	balt	Copper
Sample	Sample	Sample Date	토	Alı	۱	Ϋ́	Ва	Be	ä	Во		ဒီ	Ca	ธ	ပိ	ပိ
Location	ID	(mm/dd/yyyy) mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	m	ıg/L	mg/L	mg/L	mg/L	mg/L
				Acute							Acute	Chronic				Acute Chronic
C WQG FWAL			n/a	0.020-0.10 ^a 0.005-0.05 ^a	n/a	na	na	na	n/a	n/a	0.00004-0.0028 ^a	0.00002-0.00173 ^a	n/a	n/a	n/a	BLMe
ording River Operation																
FR_LP1	FR_LP1_WS_2022-05-23_N	2022-05-23		0.0022	0.00057	0.00025	0.0649	< 0.020	< 0.000050	0.017		00861	91.3			0.0006
FR_LP1	FR_LP1_WS_2022-05-24_N	2022-05-24	-	0.0028	0.00055	0.00023	0.069	< 0.020	< 0.000050	0.019	0.00	00786	94.6	< 0.00010	0.00025	0.00062
FR_LP1	FR_LP1_WS_2022-05-25_N	2022-05-25	-	0.0045	0.00057	0.00021	0.0662	< 0.020	< 0.000050	0.017		00784	91.9	< 0.00010	0.00022	0.00056
FR_LP1	FR_LP1_WS_2022-05-26_N	2022-05-26	-	0.0025	0.00054	0.00022	0.069	< 0.020	< 0.000050	0.017		00074	87.3	< 0.00010	0.00018	0.00058
FR_LP1	FR_LP1_WS_2022-05-27_N	2022-05-27	-	0.0029	0.00052	0.00021	0.0922	< 0.020	< 0.000050	0.016		00007	86.7	< 0.00010	0.00016	0.00054
FR_LP1	FR_LP1_WS_2022-05-28_N	2022-05-28	-	0.0034	0.00049	0.00022	0.0738	< 0.020	< 0.000050	0.016		00704	85	< 0.00010	0.00013	0.00057
FR_LP1	FR_LP1_WS_2022-05-29_N	2022-05-29		0.0048	0.00048	0.00023	0.0698	< 0.020	< 0.000050	0.017		000697	80.7	< 0.00010	0.00014	0.00086
FR_LP1	FR_LP1_WS_2022-05-30_N	2022-05-30	-	0.0023	0.00049	0.0002	0.0724	< 0.020	< 0.000050	0.017		00071	80.4	< 0.00010	0.00013	0.00056
FR_LP1	FR_LP1_WS_2022-06-07_NP	2022-06-07	-	0.0018	0.00064	0.00021	0.068	< 0.020	< 0.000050	0.016		000665	84.8	< 0.00010	0.00031	0.00058
FR_LP1	FR_LP1_WS_2022-06-08_NP	2022-06-08	-	0.0017	0.00062	0.00019	0.0567	< 0.020	< 0.000050	0.018		000767	94	< 0.00010	0.00021	0.00062
FR_LP1	FR_LP1_MON_2022-06-01_NP	2022-06-09	-	0.0016	0.00052	0.0002	0.0707	< 0.020	< 0.000050	0.018		000775	91	< 0.00010	0.00012	0.00058
FR_LP1	FR_LP1_WS_2022-06-10_NP	2022-06-10	-	0.0029	0.00045	0.00018	0.0718	< 0.020	< 0.000050	0.015		000752	82.1	< 0.00010	0.00019	0.00066
FR_LP1	FR_LP1_WS_2022-06-11_NP	2022-06-11		0.0016	0.00042	0.00018	0.077	< 0.020	< 0.000050	0.014		00738	76.1	< 0.00010		0.0006
FR_LP1	FR_LP1_WS_2022-06-12_NP	2022-06-12	-	0.0017	0.00054	0.00018	0.07	< 0.020	< 0.000050	0.015		00519	78.3	< 0.00010	0.00012	0.00056
FR_LP1	FR_LP1_MON_2022-06-13_NP	2022-06-13	-	0.002	0.00049	0.00021	0.0778	< 0.020	< 0.000050	0.016		000634	81.7	< 0.00010	0.00021	0.00099
FR_LP1	FR_LP1_WS_2022-06-20_NP	2022-06-20		0.0027	0.00041	0.0002	0.0703	< 0.020	< 0.000050	0.02	0.00	00886	71.2	< 0.00010		0.00297
FR_LP1	FR_LP1_WS_2022-06-28_NP	2022-06-28		0.0012	0.00043	0.0002	0.0611	< 0.020	< 0.000050	0.023	0.00	000357	79.2	< 0.00010		0.00204
FR_LP1	FR_LP1_WS_2022-07-05_NP	2022-07-05		0.0033	0.00049	0.0002	0.0614	< 0.020	< 0.000050	0.021		00576	88.1	< 0.00010	0.00023	0.0015
FR_LP1	FR_LP1_WS_2022-07-12_N	2022-07-12		0.0018	0.00053	0.00022	0.0644	< 0.020	< 0.000050	0.025	0.00	00724	99	< 0.00010	< 0.10	0.00172
FR_LP1	FR_LP1_WEK_2022-07-11_N	2022-07-12		-	-	-	-	-	-	-		-	-	-	-	-
FR_LP1	FR_LP1_WS_2022-08-18_N	2022-08-18		0.0103	0.00104	0.00087	0.0588	< 0.020	< 0.000050	0.028		00181	112	0.00014	0.00025	0.00103
FR_LP1	FR_LP1_WS_2022-08-24_N	2022-08-24	-	0.0053	0.0008	0.0004	0.056	< 0.020	< 0.000050	0.03	0.00	00138	123	< 0.00010		0.00072
FR_LP1	FR_LP1_WS_2022-09-01_N	2022-09-01	-	0.0049	0.00065	0.00032	0.0506	< 0.020	< 0.000050	0.028		.0050	122	< 0.00010	< 0.10	0.00053
FR_LP1	FR_LP1_WS_2022-09-05_N	2022-09-05	-	0.0051	0.00072	0.00039	0.0543	< 0.020	< 0.000050	0.03		.0050	134	< 0.00010	0.00011	0.00058
FR_LP1	FR_LP1_WS_SEPT-2022_N	2022-09-06	-	0.0036	0.00069	0.00034	0.0518	< 0.020	< 0.000050	0.03		.0050	131	< 0.00010		0.00059
FR_LP1	FR_LP1_MON_2022-10-01_N	2022-10-12	-	0.0033	0.0007	0.00034	0.0462	< 0.020	< 0.000050	0.027		00052	142	< 0.00010		0.0005
FR_LP1	FR_LP1_MON_2022-11-01_N	2022-11-03	-	0.0026	0.00066	0.00036	0.0445	< 0.020	< 0.000050	0.029		000292	145	< 0.00010	0.00018	0.00048
FR_PP1	FR_PP1_MON_2022-01-04_N	2022-01-07	-	0.0035	0.00064	0.00027	0.0621	< 0.040	< 0.000100	< 0.020		00986	342	< 0.00020	0.00038	0.0012
FR_PP1	FR_PP1_MON_2022-02-01_N	2022-02-06	-	0.0025	0.00063	0.00026	0.0637	< 0.040	< 0.000100	< 0.020	0.0	00907	402	< 0.00020	0.00032	0.00111
FR_PP1	FR_PP1_WS_MON_2022-03-01_N	2022-03-08	-	0.0031	0.00067	0.00031	0.0644	< 0.040	< 0.000100	< 0.020	0.0	00891	388	< 0.00020	0.00033	0.00113
FR_PP1	FR_PP1_WEK_2022-03-14_N	2022-03-14	-	-	-	-	-	-	-	-		-	337	-	-	-
FR_PP1	FR_PP1_WEK_2022-03-21_N	2022-03-21	-	-	-	-	-	-	-	-		-	-	-	-	-
FR_PP1	FR_DC_WEK_2022-03-28_N	2022-03-28	-	-	-	-	-	-	-	-		-	-	-	-	-
FR_PP1	FR_PP1_MON_2022-04-01_N	2022-04-04	-	0.018	0.00066	0.00027	0.0477	< 0.020	< 0.000050	0.01	0.0	00988	166	< 0.00010	0.00182	0.00184
FR_PP1	FR_PP1_WEK_2022-04-11_N	2022-04-11	-	-	-	-	-		-	-		-	-	-	-	-
FR_PP1	FR_DC2_WEK_2022-04-18_N	2022-04-19	-	-	-	-	-	-	-	-		-	-	-	-	-
FR_PP1	FR_PP1_WEK_2022-04-25_N	2022-04-28	-	-	-		-	-		-		-	-	-	-	-
FR_PP1	FR_PP1_MON_2022-05-01_N	2022-05-05	-	0.0119	0.00071	0.00022	0.0406	< 0.020	< 0.000050	0.014		0163	182	< 0.00010	0.00435	0.00188
FR_PP1	FR_PP1_WEK_2022-05-09_N	2022-05-11	-	-	-	-	-	-	-	-		-	-	-	-	-
FR_PP1	FR_PP1_WEK_2022-05-16_N	2022-05-18	-	-	-	-	-	-	-	-		-	-	-	-	-
FR_PP1	FR_DC2_WEK_2022-05-23_N	2022-05-23	-	-	-	-	-		-	-		-	-	-	-	-
FR_PP1	FR_PP1_WEK_2022-05-30_N	2022-06-01	-	-	-	-	-	-	-	-		-	-	-	-	-
FR_PP1	FR_DC2_MON_2022-06-01_N	2022-06-07	-	0.0107	0.000645	0.00025	0.0583	< 0.020	< 0.000050	0.011	0.0	0124	254.5	< 0.00010		0.00202
FR_PP1	FR_DC2_WEK_2022-06-13_N	2022-06-15	-	-	-	-	-	-	-	-		-	-	-	-	-
FR_PP1	FR_PP1_WEK_2022-06-20_N	2022-06-20	-		-	-	-	-	-	-		-	-	-	-	-
FR_PP1	FR_PP1_WEK_2022-06-27_N	2022-06-28	-	•	-	-	-	-	-	-		-	-	-	-	-
FR_PP1	FR_DC2_MON_2022-07-01_N	2022-07-04	5.7	0.00465	0.00058	0.000235	0.05575	< 0.020	< 0.000050	0.0145	0.0	0127	281	< 0.00010	0.00102	0.00179
FR_PP1	FR_PP1_WEK_2022-07-11_N	2022-07-12	-	-	L	-	-			-			-	-	-	-
FR_PP1	FR_DC1_MON_2022-08-01_N	2022-08-02	-	0.00305	0.000645	0.000275	0.05785	< 0.040	< 0.000100	< 0.020		09595	361	< 0.00020	0.00054	0.001115
FR_PP1	FR_PP1_WS_SEPT-2022_N	2022-09-07	-	0.0015	0.00068	0.00033	0.0603	< 0.020	< 0.000050	0.016	0.0	00611	442	< 0.00010	0.00032	0.001

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

Sample Sample Sample Sample Date Sample Date Sample Date Sample Date Sample Sa	n/a 10	n/a 1.87 1.95 1.82 1.84 1.73 1.66 1.76 1.77 1.78 2.06 2.2 1.72 1.73 1.66 1.66 1.48 1.71 1.9 2.15	n/a n/a 0.0995 0.107 0.103 0.099 0.1 0.0917 0.0917 0.0917 0.0918 0.104 0.105 0.0902 0.0843 0.0872 0.0917 0.0917	n/a 0.00013 0.000014 0.000012 0.000014 0.000015 0.000015 0.000012 0.000012 0.000012 0.000012 0.000012 0.000012 0.000012 0.000012 0.000012 0.000012 0.000012	F mg/L	F F F F F F F F F F	n/a n/a 0.002 0.00207 0.00183 0.00187 0.00178 0.00179 0.00196	0.0113 0.0113 0.016 0.0089 0.0087 0.0086 0.0084 0.0089 0.0113 0.0094 0.0013 0.0004 0.0004 0.00068
BC WQG FWAL	N/a < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010	1.87 1.95 1.82 1.84 1.73 1.66 1.76 1.77 1.78 2.06 2.2 1.72 1.73 1.66 1.66 1.66 1.66 1.66 1.48	n/a 0.0995 0.107 0.103 0.099 0.103 0.099 0.10 0.0917 0.0917 0.0918 0.104 0.105 0.0902 0.0843 0.0867 0.0987 0.0879 0.0879	n/a 0.000013 0.000014 0.000012 0.000012 0.000011 0.000011 0.000011 0.000011 0.000011 0.000012 0.000012 0.000012 0.000012 0.000012 0.000012 0.000012 0.000012	n/a 0.00010 0.00010<!--</th--><th>n/a <0.00030 /th><th>n/a 0.002 0.00207 0.00187 0.00183 0.00187 0.00179 0.00168 0.00167 0.0019 0.00169 0.00154 0.00154 0.00154 0.00156 0.00156</th><th>n/a 0.0113 0.01 0.018 0.0089 0.0087 0.0086 0.0086 0.0088 0.0011 0.0165 0.0098 0.011 0.0068 0.0049 0.0069</th>	n/a <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030	n/a 0.002 0.00207 0.00187 0.00183 0.00187 0.00179 0.00168 0.00167 0.0019 0.00169 0.00154 0.00154 0.00154 0.00156 0.00156	n/a 0.0113 0.01 0.018 0.0089 0.0087 0.0086 0.0086 0.0088 0.0011 0.0165 0.0098 0.011 0.0068 0.0049 0.0069
BC WQG FWAL	 < 0.000010 	1.87 1.95 1.82 1.84 1.73 1.66 1.76 1.77 1.78 2.06 2.2 1.72 1.73 1.66 1.66 1.66 1.77	0.0995 0.107 0.103 0.099 0.1 0.097 0.0917 0.0917 0.0918 0.104 0.105 0.0902 0.0843 0.0872 0.097 0.097 0.0871	0.000013 0.000014 0.000012 0.000012 0.00001 0.00001 0.00001 0.000014 0.000015 0.000012 0.000012 0.000012 0.000012 0.000012 0.000012	 < 0.00010 	 < 0.00030 	0.002 0.00207 0.00183 0.00187 0.00178 0.00179 0.00168 0.00169 0.00196 0.00154 0.00154 0.00154 0.00154	0.0113 0.01 0.0089 0.0087 0.0086 0.0084 0.0089 0.011 0.0165 0.0098 0.013 0.0074 0.0069
BC WQG FWAL	 < 0.000010 	1.87 1.95 1.82 1.84 1.73 1.66 1.76 1.77 1.78 2.06 2.2 1.72 1.73 1.66 1.66 1.66 1.77	0.0995 0.107 0.103 0.099 0.1 0.097 0.0917 0.0917 0.0918 0.104 0.105 0.0902 0.0843 0.0872 0.097 0.097 0.0871	0.000013 0.000014 0.000012 0.000012 0.00001 0.00001 0.00001 0.000014 0.000015 0.000012 0.000012 0.000012 0.000012 0.000012 0.000012	 < 0.00010 	 < 0.00030 	0.002 0.00207 0.00183 0.00187 0.00178 0.00179 0.00168 0.00169 0.00196 0.00154 0.00154 0.00154 0.00154	0.0113 0.01 0.0089 0.0087 0.0086 0.0084 0.0089 0.011 0.0165 0.0098 0.013 0.0074 0.0069
Fording River Operation	 < 0.000010 	1.87 1.95 1.82 1.84 1.73 1.66 1.76 1.77 1.78 2.06 2.2 1.72 1.73 1.66 1.66 1.66 1.77	0.0995 0.107 0.103 0.099 0.1 0.097 0.0917 0.0917 0.0918 0.104 0.105 0.0902 0.0843 0.0872 0.097 0.097 0.0871	0.000013 0.000014 0.000012 0.000012 0.00001 0.00001 0.00001 0.000014 0.000015 0.000012 0.000012 0.000012 0.000012 0.000012 0.000012	 < 0.00010 	 < 0.00030 	0.002 0.00207 0.00183 0.00187 0.00178 0.00179 0.00168 0.00169 0.00196 0.00154 0.00154 0.00154 0.00154	0.0113 0.01 0.0089 0.0087 0.0086 0.0084 0.0089 0.011 0.0165 0.0098 0.013 0.0074 0.0069
FR_LPI	 0,000010 	1.95 1.82 1.84 1.73 1.66 1.76 1.77 1.78 2.06 2.2 1.72 1.73 1.66 1.66 1.48 1.71	0.107 0.103 0.099 0.1 0.097 0.0917 0.0917 0.0989 0.104 0.105 0.0902 0.0843 0.0872 0.0916 0.0797 0.0871	0.000014 0.000012 0.000012 0.00001 0.00001 0.00001 0.000015 0.000012 0.000012 0.000012 0.000015 0.000012 0.000015 0.000015 0.000015	< 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010	<0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030	0.00207 0.00183 0.00187 0.00178 0.0017 0.00167 0.0019 0.00204 0.00196 0.00154 0.00154 0.00154 0.00154	0.01 0.0089 0.0087 0.0076 0.0086 0.0084 0.0011 0.0165 0.0098 0.011 0.0074 0.0049 0.0049 0.0049
FR_LPI	 0,000010 	1.95 1.82 1.84 1.73 1.66 1.76 1.77 1.78 2.06 2.2 1.72 1.73 1.66 1.66 1.48 1.71	0.107 0.103 0.099 0.1 0.097 0.0917 0.0917 0.0989 0.104 0.105 0.0902 0.0843 0.0872 0.0916 0.0797 0.0871	0.000014 0.000012 0.000012 0.00001 0.00001 0.00001 0.000015 0.000012 0.000012 0.000012 0.000015 0.000012 0.000015 0.000015 0.000015	< 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010	<0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030	0.00207 0.00183 0.00187 0.00178 0.0017 0.00167 0.0019 0.00204 0.00196 0.00154 0.00154 0.00154 0.00154	0.01 0.0089 0.0087 0.0076 0.0086 0.0084 0.0011 0.0165 0.0098 0.011 0.0074 0.0049 0.0049 0.0049
FR_LPI	 < 0.000010 	1.82 1.84 1.73 1.66 1.76 1.77 1.78 2.06 2.2 1.72 1.73 1.66 1.66 1.48 1.71	0.103 0.099 0.1 0.097 0.0917 0.0989 0.104 0.105 0.0902 0.0843 0.0872 0.0916 0.0797 0.0871	0.000012 0.000012 0.00001 0.00001 0.00001 0.000014 0.000016 0.000015 0.000012 0.000012 0.000015 0.000015 0.000015	< 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010	<0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030	0.00183 0.00187 0.00178 0.0017 0.00168 0.00167 0.00190 0.00204 0.00196 0.00154 0.00154 0.00156	0.0089 0.0087 0.0076 0.0086 0.0084 0.0011 0.0165 0.0098 0.011 0.0074 0.0049 0.0068
FR_LPI	 < 0.000010 	1.84 1.73 1.66 1.76 1.77 1.78 2.06 2.2 1.72 1.73 1.66 1.48 1.71	0.099 0.1 0.097 0.0917 0.0917 0.0989 0.104 0.105 0.0902 0.0843 0.0872 0.0916 0.0797 0.0871	0.000012 0.00001 0.00001 0.00001 0.000014 0.000015 0.000012 0.000012 0.000012 0.000015 0.000015	< 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010	<0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030	0.00187 0.00178 0.0017 0.00168 0.00167 0.0019 0.00204 0.00154 0.00154 0.00156 0.00156	0.0087 0.0076 0.0086 0.0084 0.0089 0.011 0.0165 0.0098 0.013 0.0074 0.0049 0.0049 0.0068
FR_LPI	 < 0.000010 	1.73 1.66 1.76 1.77 1.78 2.06 2.2 1.72 1.73 1.66 1.66 1.48 1.71	0.1 0.097 0.0917 0.0917 0.0989 0.104 0.105 0.0902 0.0843 0.0872 0.0916 0.0797 0.0871	0.00001 0.00001 0.00001 0.000014 0.000016 0.000015 0.000012 0.000012 0.000012 0.000015	< 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010	<0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030	0.00178 0.0017 0.00168 0.00167 0.0019 0.00204 0.00154 0.00154 0.00154 0.00154	0.0076 0.0086 0.0084 0.0089 0.011 0.0165 0.0098 0.013 0.0074 0.0049 0.0068
FR_LPI	 < 0.000010 	1.66 1.76 1.77 1.78 2.06 2.2 1.72 1.73 1.66 1.66 1.48 1.71	0.097 0.0917 0.0917 0.0989 0.104 0.105 0.0902 0.0843 0.0872 0.0916 0.0797 0.0871	0.00001 0.00001 0.00001 0.000014 0.000015 0.000012 0.000012 0.000012 0.000012 0.000015 0.000015	<0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010	 < 0.00030 	0.0017 0.00168 0.00167 0.0019 0.00204 0.00196 0.00154 0.00154 0.00155 0.00154	0.0086 0.0084 0.0089 0.011 0.0165 0.0098 0.013 0.0074 0.0049 0.0068 0.0172
FR_LP1 FR_LP1_WS_2022-05-29 N 2022-05-29 - 0.038	< 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010	1.76 1.77 1.78 2.06 2.2 1.72 1.73 1.66 1.66 1.48 1.71	0.0917 0.0917 0.0989 0.104 0.105 0.0902 0.0843 0.0872 0.0916 0.0797 0.0871	0.000011 0.000014 0.000016 0.000015 0.000012 0.000012 0.000012 0.000012 0.000015 0.000015	< 0.00010 < 0.00010	< 0.00030 < 0.00030 < 0.00030 < 0.00030 < 0.00030 < 0.00030 < 0.00030 < 0.00030 < 0.00030 < 0.00030	0.00168 0.00167 0.0019 0.00204 0.00196 0.00154 0.00154 0.00156 0.00144	0.0084 0.0089 0.011 0.0165 0.0098 0.013 0.0074 0.0049 0.0068 0.0172
FR_LP1 FR_LP1_WS_2022-06-70 N 2022-06-07 - < 0.010 < 0.000050 0.0225 57.6 0.00099 0.00237 2.37 56.5 FR_LP1 FR_LP1_WS_2022-06-07 N 2022-06-07 - < 0.010 < 0.000050 0.0224 60.2 0.00164 0.00043 2.34 51.4 51.4 FR_LP1 FR_LP1_WS_2022-06-08 NP 2022-06-08 - < 0.010 < 0.000050 0.0228 67.6 0.00114 0.00445 2.73 69 FR_LP1 FR_LP1_WS_2022-06-10 NP 2022-06-09 - < 0.010 < 0.000050 0.0282 70.3 0.00147 0.0025 2.75 59.7 FR_LP1 FR_LP1_WS_2022-06-10 NP 2022-06-10 - < 0.010 < 0.000050 0.0282 70.3 0.00147 0.0025 2.75 59.7 FR_LP1 FR_LP1_WS_2022-06-11 NP 2022-06-11 - < 0.010 < 0.000050 0.0282 70.3 0.00147 0.0025 2.75 59.7 FR_LP1 FR_LP1_WS_2022-06-11 NP 2022-06-11 - < 0.010 < 0.000050 0.0288 58.9 0.00193 0.00216 2.34 51.2 FR_LP1_WS_2022-06-12 NP 2022-06-12 - < 0.010 < 0.000050 0.0208 58.9 0.00193 0.00212 2.36 50.7 FR_LP1 FR_LP1_WS_2022-06-13 NP 2022-06-12 - < 0.010 < 0.000050 0.0208 55.4 0.00078 0.00257 2.29 51.2 FR_LP1_FR_LP1_WS_2022-06-13 NP 2022-06-13 NP 2022-06-13 NP 2022-06-13 NP 2022-06-13 NP 2022-06-13 NP 2022-06-13 NP 2022-06-10 - < 0.010 < 0.000050 0.0217 55.8 0.00144 0.00219 2.37 52.9 FR_LP1_FR_LP1_WS_2022-06-20 NP 2022-06-20 - < 0.010 < 0.000050 0.0214 59.6 0.00144 0.00219 2.37 52.9 FR_LP1_FR_LP1_WS_2022-06-20 NP 2022-06-20 - < 0.010 < 0.000050 0.0214 57.8 0.00081 0.00208 2.6 38.4 FR_LP1_FR_LP1_WS_2022-07-55 NP 2022-07-55 - 0.013 < 0.000050 0.0214 57.8 0.00081 0.00208 2.6 46.5 FR_LP1_FR_LP1_WS_2022-07-12 NP 2022-07-12 - < 0.010 < 0.000050 0.0242 64.3 0.00211 0.00208 2.8 49 FR_LP1_FR_LP1_WS_2022-07-13 NP 2022-07-12 - < 0.010 < 0.000050 0.0242 64.3 0.00211 0.00292 2.8 49 FR_LP1_FR_LP1_WS_2022-07-13 NP 2022-07-12 - < 0.010 < 0.000050 0.0373 97.2 0.00383 0.0041 4.44 74.8 FR_LP1_FR_LP1_WS_2022-08-18 NP 2022-08-12 - < 0.010 < 0.000050 0.0374 104 0.000042 0.0042 3.8 44 FR_LP1_WS_2022-08-18 NP 2022-08-12 - < 0.010 < 0.000050 0.0374 104 0.000042 0.0042 3.3 84 FR_LP1_FR_LP1_WS_2022-08-18 NP 2022-08-12 - < 0.010 < 0.000050 0.0374 104 0.000042 0.0042 3.3 84 FR_LP1_FR_LP1_WS_2022-08-18 NP 2022-08-12 - < 0.010 < 0.000050 0.0374 104 0.000042	< 0.000010 < 0.000010	1.77 1.78 2.06 2.2 1.72 1.73 1.66 1.66 1.48 1.71	0.0917 0.0989 0.104 0.105 0.0902 0.0843 0.0872 0.0916 0.0797 0.0871 0.0997	0.00001 0.000014 0.000016 0.000015 0.000012 0.000012 0.000012 0.000015 0.000015	< 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010	< 0.00030 < 0.00030 < 0.00030 < 0.00030 < 0.00030 < 0.00030 < 0.00030 < 0.00030 < 0.00030	0.00167 0.0019 0.00204 0.00196 0.00154 0.00148 0.00154 0.00156 0.00144	0.0089 0.011 0.0165 0.0098 0.013 0.0074 0.0049 0.0068 0.0172
FR_LP1 FR_LP1_WS_2022-06-08 NP 2022-06-08 - <0.010 <0.000050 0.0224 60.2 0.00164 0.00423 2.34 51.4 FR_LP1 FR_LP1_WS_2022-06-08 NP 2022-06-08 - <0.010 <0.000050 0.0269 67.6 0.00114 0.00445 2.73 69 FR_LP1 FR_LP1_MON_2022-06-01 NP 2022-06-09 - <0.010 <0.000050 0.0282 70.3 0.00147 0.0025 2.75 59.7 FR_LP1 FR_LP1_WS_2022-06-10 NP 2022-06-10 - <0.010 <0.000050 0.0282 70.3 0.00147 0.0025 2.75 59.7 FR_LP1 FR_LP1_WS_2022-06-10 NP 2022-06-10 - <0.010 <0.000050 0.0282 70.3 0.00147 0.0025 2.75 59.7 FR_LP1 FR_LP1_WS_2022-06-11 NP 2022-06-10 - <0.010 <0.000050 0.0282 70.3 0.00147 0.0025 2.75 59.7 FR_LP1_FR_LP1_WS_2022-06-11 NP 2022-06-11 - <0.010 <0.000050 0.0282 70.3 0.00147 0.00213 0.00216 2.34 51.2 FR_LP1_WS_2022-06-11 NP 2022-06-11 - <0.010 <0.000050 0.0221 58.1 0.00203 0.00216 2.34 51.2 FR_LP1_WS_2022-06-11 NP 2022-06-11 - <0.010 <0.000050 0.0228 58.9 0.00193 0.00216 2.34 55.2 FR_LP1_FR_LP1_WS_2022-06-13 NP 2022-06-13 - <0.010 <0.000050 0.0208 55.4 0.00078 0.00257 2.29 51.2 FR_LP1_WS_2022-06-13 NP 2022-06-13 - <0.010 <0.000050 0.0217 55.8 0.00144 0.00219 2.37 52.9 FR_LP1_WS_2022-06-28 NP 2022-06-28 - <0.010 <0.000050 0.0217 55.8 0.00144 0.00219 2.37 52.9 FR_LP1_WS_2022-06-28 NP 2022-06-28 - <0.010 <0.000050 0.0218 57.8 0.00081 0.0028 2.6 46.5 FR_LP1_WS_2022-06-28 NP 2022-06-28 - <0.010 <0.000050 0.0218 57.8 0.00081 0.00208 2.6 46.5 FR_LP1_WS_2022-07-05 NP 2022-07-05 - 0.013 <0.000050 0.0242 64.3 0.00211 0.00292 2.8 49 FR_LP1_WS_2022-07-12 N 2022-07-12 - <0.010 <0.000050 0.029 71 0.0009 0.00301 2.82 54.4 FR_LP1_WS_2022-07-12 N 2022-07-12 - <0.010 <0.000050 0.0373 97.2 0.00383 0.0041 4.44 74.8 FR_LP1_WS_2022-08-24 N 2022-08-28 - <0.010 <0.000050 0.0374 104 0.000042 0.0034 3.23 77.6 FR_LP1_WS_2022-09-01_N 2022-08-24 - <0.010 <0.000050 0.0374 104 0.000042 0.0034 3.23 77.6 FR_LP1_WS_2022-09-01_N 2022-09-01_N	< 0.000010 < 0.000010	1.78 2.06 2.2 1.72 1.73 1.66 1.66 1.48 1.71	0.0989 0.104 0.105 0.0902 0.0843 0.0872 0.0916 0.0797 0.0871 0.0997	0.000014 0.000016 0.000015 0.000012 0.000012 0.000012 0.000012 0.000015 0.000015	< 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00010	< 0.00030 < 0.00030 < 0.00030 < 0.00030 < 0.00030 < 0.00030 < 0.00030 < 0.00030	0.0019 0.00204 0.00196 0.00154 0.00148 0.00154 0.00156 0.00144	0.011 0.0165 0.0098 0.013 0.0074 0.0049 0.0068 0.0172
FR_LPI FR_LPI_WS_2022-06-08 NP	< 0.000010 < 0.000010	2.06 2.2 1.72 1.73 1.66 1.66 1.48 1.71	0.104 0.105 0.0902 0.0843 0.0872 0.0916 0.0797 0.0871 0.0997	0.000016 0.000015 0.000012 0.000012 0.000012 0.000012 0.000015 0.000015	<0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010	< 0.00030 < 0.00030 < 0.00030 < 0.00030 < 0.00030 < 0.00030 < 0.00030	0.00204 0.00196 0.00154 0.00148 0.00154 0.00156 0.00144	0.0165 0.0098 0.013 0.0074 0.0049 0.0068 0.0172
FR_LP1 FR_LP1 MS_0222-06-10 NP 2022-06-10 - <0.010 <0.000050 0.0282 70.3 0.00147 0.0025 2.75 59.7 FR_LP1 FR_LP1 WS_2022-06-10 NP 2022-06-10 - <0.010 <0.000050 0.0221 58.1 0.00203 0.00216 2.34 51.2 FR_LP1 FR_LP1 WS_2022-06-11 NP 2022-06-11 - <0.010 <0.000050 0.0208 58.9 0.00193 0.00212 2.36 50.7 FR_LP1 FR_LP1 WS_2022-06-11 NP 2022-06-11 - <0.010 <0.000050 0.0208 58.9 0.00193 0.00212 2.36 50.7 FR_LP1 FR_LP1 WS_2022-06-12 NP 2022-06-12 - <0.010 <0.000050 0.0208 58.9 0.00193 0.00212 2.36 50.7 FR_LP1 FR_LP1 MON_2022-06-13 NP 2022-06-12 - <0.010 <0.000050 0.0208 55.4 0.00078 0.00257 2.29 51.2 FR_LP1 FR_LP1 MON_2022-06-13 NP 2022-06-13 - <0.010 <0.000050 0.0208 55.4 0.00078 0.00257 2.29 51.2 FR_LP1 FR_LP1 MON_2022-06-13 NP 2022-06-13 - <0.010 <0.000050 0.0217 55.8 0.00144 0.00251 2.37 52.9 FR_LP1 FR_LP1 WS_2022-06-20 NP 2022-06-20 - <0.010 <0.000050 0.0174 49.6 0.0144 0.00266 2.26 38.4 FR_LP1 FR_LP1_WS_2022-06-28 NP 2022-06-28 - <0.010 <0.000050 0.0214 57.8 0.00081 0.00266 2.26 38.4 FR_LP1 FR_LP1_WS_2022-06-28 NP 2022-06-28 - <0.010 <0.000050 0.0242 64.3 0.00211 0.00292 2.8 49 FR_LP1 FR_LP1_WS_2022-07-12 N 2022-07-12 - <0.010 <0.000050 0.0242 64.3 0.00211 0.00292 2.8 49 FR_LP1 FR_LP1_WS_2022-07-11 N 2022-07-12 - <0.010 <0.000050 0.029 71 0.0009 0.00301 2.82 54.4 FR_LP1 FR_LP1_WS_2022-07-11 N 2022-07-12 - <0.010 <0.000050 0.0373 97.2 0.00383 0.0041 4.44 74.8 FR_LP1 FR_LP1_WS_2022-08-24 N 2022-08-24 - <0.010 <0.000050 0.0374 104 0.000042 0.0034 3.23 77.6 FR_LP1 FR_LP1_WS_2022-09-01 N 2022-09-01 - <0.010 <0.000050 0.0374 104 0.00042 0.0034 3.23 77.6	 < 0.000010 	2.2 1.72 1.73 1.66 1.66 1.48 1.71	0.105 0.0902 0.0843 0.0872 0.0916 0.0797 0.0871 0.0997	0.000015 0.000012 0.000012 0.000012 0.000012 0.000015 0.000015	<pre>< 0.00010 < 0.00010</pre>	<0.00030 <0.00030 <0.00030 <0.00030 <0.00030 <0.00030	0.00196 0.00154 0.00148 0.00154 0.00156 0.00144	0.0098 0.013 0.0074 0.0049 0.0068 0.0172
FR_LP1 FR_LP1_WS_2022-06-10_NP 2022-06-10 - <0.010 <0.000050 0.0221 58.1 0.00203 0.00216 2.34 51.2 FR_LP1 FR_LP1_WS_2022-06-11_NP 2022-06-11 - <0.010 <0.000050 0.0208 58.9 0.00193 0.00216 2.34 51.2 FR_LP1 FR_LP1_WS_2022-06-12_NP 2022-06-12 - <0.010 <0.000050 0.0208 58.9 0.00193 0.00212 2.36 50.7 FR_LP1 FR_LP1_WS_2022-06-13_NP 2022-06-12 - <0.010 <0.000050 0.0208 55.4 0.00078 0.00257 2.29 51.2 FR_LP1 FR_LP1_WS_2022-06-20_NP 2022-06-13 - <0.010 <0.000050 0.0217 55.8 0.00144 0.00219 2.37 52.9 FR_LP1 FR_LP1_WS_2022-06-20_NP 2022-06-20_NP 2022-06-	 < 0.000010 	1.72 1.73 1.66 1.66 1.48 1.71 1.9	0.0902 0.0843 0.0872 0.0916 0.0797 0.0871 0.0997	0.000012 0.000012 0.000012 0.000012 0.000015 0.000015	<0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010	< 0.00030 < 0.00030 < 0.00030 < 0.00030 < 0.00030	0.00154 0.00148 0.00154 0.00156 0.00144	0.013 0.0074 0.0049 0.0068 0.0172
FR_LP1 FR_LP1_WS_2022-06-11_NP 2022-06-11 - <0.010 <0.000050 0.0208 58.9 0.00103 0.00212 2.36 50.7 FR_LP1 FR_LP1_WS_2022-06-12_NP 2022-06-12 - <0.010 <0.000050 0.0208 58.9 0.00103 0.00212 2.36 50.7 FR_LP1 FR_LP1_WS_2022-06-13_NP 2022-06-13 - <0.010 <0.000050 0.0217 55.8 0.00144 0.00279 2.37 52.9 FR_LP1 FR_LP1_MDN_2022-06-13_NP 2022-06-20_NP 2022-06-2	 < 0.000010 	1.73 1.66 1.66 1.48 1.71 1.9	0.0843 0.0872 0.0916 0.0797 0.0871 0.0997	0.000012 0.000012 0.000012 0.000015 0.000015	<0.00010 <0.00010 <0.00010 <0.00010 <0.00010	< 0.00030 < 0.00030 < 0.00030 < 0.00030	0.00148 0.00154 0.00156 0.00144	0.0074 0.0049 0.0068 0.0172
FR_LP1 FR_LP1 WS_2022-06-12 NP 2022-06-13 - <0.010 <0.000050 0.0208 55.4 0.00078 0.00257 2.29 51.2 FR_LP1 FR_LP1 MON_2022-06-13 NP 2022-06-13 - <0.010 <0.000050 0.0217 55.8 0.00144 0.00219 2.37 52.9 FR_LP1 FR_LP1 WS_2022-06-20 NP 2022-06-20 - <0.010 <0.000050 0.0174 49.6 0.0144 0.002266 2.26 38.4 FR_LP1 FR_LP1 WS_2022-06-28 NP 2022-06-28 - <0.010 <0.000050 0.0174 49.6 0.0144 0.00266 2.26 38.4 FR_LP1 FR_LP1 WS_2022-06-28 NP 2022-06-28 - <0.010 <0.000050 0.0218 57.8 0.00081 0.00208 2.6 46.5 FR_LP1 FR_LP1 WS_2022-07-05 NP 2022-07-05 - 0.013 <0.000050 0.0242 64.3 0.00211 0.00209 2.8 49.9 FR_LP1 FR_LP1 WS_2022-07-12 N 2022-07-12 N 2022-07-	< 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010	1.66 1.66 1.48 1.71 1.9	0.0872 0.0916 0.0797 0.0871 0.0997	0.000012 0.000012 0.000015 0.000015	< 0.00010 < 0.00010 < 0.00010 < 0.00010	< 0.00030 < 0.00030 < 0.00030	0.00154 0.00156 0.00144	0.0049 0.0068 0.0172
FR_LP1 FR_LP1 MS_2022-06-20 NP 2022-06-20 - 0.010	< 0.000010 < 0.000010 < 0.000010 < 0.000010 < 0.000010	1.66 1.48 1.71 1.9	0.0916 0.0797 0.0871 0.0997	0.000012 0.000015 0.000015	< 0.00010 < 0.00010 < 0.00010	< 0.00030 < 0.00030	0.00156 0.00144	0.0068 0.0172
FR_LP1 FR_LP1_WS_2022-06-20 NP 2022-06-28 - < 0.010 < 0.000050	< 0.000010 < 0.000010 < 0.000010 < 0.000010	1.48 1.71 1.9	0.0797 0.0871 0.0997	0.000015 0.000015	< 0.00010 < 0.00010	< 0.00030	0.00144	0.0172
FR_LP1 FR_LP1_WS_2022-06-28_NP	< 0.000010 < 0.000010 < 0.000010	1.71 1.9	0.0871	0.000015	< 0.00010			
FR_LP1 FR_LP1_WS_2022-07-05 NP 2022-07-05 - 0.013 <0.00050 0.0242 64.3 0.00211 0.00292 2.8 49 FR_LP1 FR_LP1_WS_2022-07-12 N 2022-07-12 - 0.010 <0.00050 0.029 71 0.0009 0.00301 2.82 54.4 FR_LP1 FR_LP1_WEK_2022-07-11 N 2022-07-12	< 0.000010 < 0.000010	1.9	0.0997			~ 0.00030	0.00137	0.0131
FR_LP1 FR_LP1_WS_2022-07-12_N 2022-07-12 < 0.010 < 0.000050 0.029 71 0.0009 0.00301 2.82 54.4 FR_LP1 FR_LP1_WEX_2022-07-11_N 2022-07-12	< 0.000010				< 0.00010	< 0.00030	0.0019	0.0131
FR_LP1 FR_P1_WEK_2022-07-11 N 2022-07-12			0.109	0.000017	< 0.00010	< 0.00030	0.0019	0.0131
FR_LP1 FR_LP1_WS_2022-08-18 N 2022-08-18 - <0.010 <0.000050 0.0373 97.2 0.00333 0.0041 4.44 74.8 FR_LP1 FR_LP1_WS_2022-08-24 N 2022-08-24 - <0.010 <0.000050 0.0454 108 0.00077 0.00472 3.6 84 FR_LP1 FR_LP1_WS_2022-09-01 N 2022-09-01 - <0.010 <0.000050 0.0374 104 0.00042 0.0034 3.23 77.6			0.109	0.000019	< 0.00010	< 0.00030	0.00205	0.0209
FR_LP1 FR_LP1_WS_2022-08-24 N 2022-08-24 - < 0.010 < 0.000050 0.0454 108 0.00077 0.00472 3.6 84 FR_LP1 FR_LP1_WS_2022-09-01 N 2022-09-01 - < 0.010 < 0.000050 0.0374 104 0.00042 0.0034 3.23 77.6	< 0.000010	3.08	0.149	0.000038	< 0.00010	< 0.00030	0.00336	0.0237
FR_LP1 FR_LP1_WS_2022-09-01_N 2022-09-01 - < 0.010 < 0.000050 0.0374 104 0.00042 0.0034 3.23 77.6	< 0.000010	3.05	0.144	0.000030	< 0.00010	< 0.00030	0.00330	0.0237
	< 0.000010	2.88	0.144	0.000032	< 0.00010	< 0.00030	0.00302	0.0048
	< 0.000010	3.48	0.132	0.000024	< 0.00010	< 0.00030	0.00233	0.0048
FR LP1 FR LP1 WS SEPT-2022 N 2022-09-06 - < 0.010 < 0.000050 0.0439 108 0.00034 0.00347 3.36 87	< 0.000010	3.18	0.153	0.000032	< 0.00010	< 0.00030	0.0032	0.0048
FR LP1 FR LP1 MON 2022-10-01 N 2022-10-12 - < 0.010 < 0.000050 0.0426 129 0.00045 0.00364 3.69 95.5	< 0.000010	3.47	0.151	0.000023	< 0.00010	< 0.00030	0.00203	0.0043
FR LP1 FR LP1 MON 2022-11-01 N 2022-11-03 - < 0.010 < 0.000050 0.0461 125 0.00128 0.00549 3.72 121	< 0.000010	3.69	0.162	0.000021	< 0.00010	< 0.00030	0.00337	0.0101
FR PP1 FR PP1 MON 2022-01-04 N 2022-01-07 - < 0.020 < 0.000100 0.0182 134 0.0132 0.0594 4.12 244	< 0.000010	1.43	0.102	0.000057	< 0.00010	< 0.00060	0.00991	0.0481
FR PP1 FR PP1 MON 2022-02-01 N 2022-02-06 - < 0.020 < 0.000100 0.0194 152 0.0157 0.0537 4 289	< 0.000020	1.44	0.276	0.000057	< 0.00020	< 0.00060	0.00983	0.0438
FR PP1 FR PP1 WS MON 2022-03-01 N 2022-03-08 - < 0.020 < 0.000100 0.019 145 0.0153 0.0522 4.11 283	< 0.000020	1.56	0.268	0.000063	< 0.00020	< 0.00060	0.00303	0.0555
FR PP1 FR PP1 WEK 2022-03-14 N 2022-03-14 147 3.89 -	- 0.000020	1.55	-	-	- 0.00020	-	-	
FR PP1 FR PP1 WEK 2022-03-21 N 2022-03-21		1.00	-	-	-	-	-	-
FR PP1 FR DC WEK 2022-03-28 N 2022-03-28	 		-	-	-	-	-	-
FR PP1 FR PP1 FR PP1 MON 2022-04-01 N 2022-04-04 - 0.028 < 0.000050 0.0119 62.6 0.0269 0.0467 2.54 124	< 0.000010	0.954	0.13	0.000043	< 0.00010	0.00034	0.00394	0.0567
FR PP1 FR PP1 WEK 2022-04-11 N 2022-04-11		-	-	-	- 0.00010	-	-	
FR PP1 FR DC2 WEK 2022-04-18 N 2022-04-19	-	-	-	-	-	-	-	-
FR PP1 FR PP1 WEK 2022-04-25 N 2022-04-28	-	-	-	-	-	-	-	-
FR PP1 FR PP1 MON 2022-05-01 N 2022-05-05 - 0.018 < 0.000050 0.0152 70.2 0.0781 0.0717 2.88 150	< 0.000010	0.916	0.131	0.000048	< 0.00010	< 0.00030	0.00431	0.0787
FR PP1 FR PP1 WEK 2022-05-09 N 2022-05-11	-	-	-	-	-	-	-	-
FR PP1 FR PP1 WEK 2022-05-16 N 2022-05-18	-	-	-	-	-	-	-	-
FR PP1 FR DC2 WEK 2022-05-23 N 2022-05-23	-	-	-	-	-	-	-	-
FR PP1 FR PP1 WEK 2022-05-30 N 2022-06-01		-	-	-	-	-	-	-
FR PP1 FR DC2 MON 2022-06-01 N 2022-06-07 - 0.02 < 0.000050 0.01995 98.9 0.0315 0.0659 3.395 240	< 0.000010	1.21	0.194	0.00005	< 0.00010	< 0.00030	0.006945	0.065
FR PP1 FR DC2 WEK 2022-06-13 N 2022-06-15		-	-	-	-	-	-	-
FR PP1 FR PP1 WEK 2022-06-20 N 2022-06-20		-	-	-	-	-	-	-
FR PP1 FR PP1 WEK 2022-06-27 N 2022-06-28	-	-	-	-	-	-	-	-
FR PP1 FR DC2 MON 2022-07-01 N 2022-07-04 5.7 0.0135 < 0.000050 0.0233 113.5 0.0303 0.06815 3.745 281.5	< 0.000010	1.375	0.196	0.0000535	< 0.00010	< 0.00030	0.00828	0.0633
FR_PP1 FR_PP1_WEK_2022-07-11_N	- 1	-	-	-	-	-	-	-
FR_PP1 FR_DC1_MON_2022-08-01_N 2022-08-02 - < 0.020 < 0.000100 0.0276 148.5 0.013 0.06935 4.535 347.5	0.000326	1.495	0.255	0.000065	< 0.00020	< 0.00060	0.01095	0.05685
FR_PP1 FR_PPT_WS_SEPT-2022_N 2022-09-07 - < 0.010 < 0.000050 0.0368 186 0.00788 0.0705 4.77 522		1.72	0.295	0.000067	< 0.00010	< 0.00030	0.0129	0.038

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

^d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

									Dissolve	ed Metals					
Sample	Sample	Sample Date	Hardness	Aluminum	Antimony	Arsenic	Barium	Beryllium	Bismuth	Boron	Cadmium	Calcium	Chromium	Cobalt	Copper
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
				Acute							Acute				Acute
BC WQG FWAL			n/a	0.020-0.10 ^a 0.005-0.05 ^a	n/a	na	na	na	n/a	n/a	0.00004-0.0028 ^a 0.00002-0.00173 ^a	n/a	n/a	n/a	BLM ^e
Fording River Operation															
FR_PP1	FR_PP1_MON_2022-10-25_NP	2022-10-24	-	< 0.0020	0.00051	0.00027	0.0564	< 0.040	< 0.000100	< 0.020	0.000998	364		0.00046	0.00091
FR_PP1	FR_PP1_MON_2022-11-01_N	2022-11-02	-	< 0.0020	0.00061	0.00027	0.0555	< 0.040	< 0.000100	< 0.020	0.000681	414	< 0.00020	0.00038	0.00098
FR_SCOUT	FR_SCOUT_WS_2022-1-06_N_0900	2022-01-06	-	0.0029	0.00066	0.00021	0.0272	< 0.040	< 0.000100	< 0.020	0.000339	348	< 0.00020	0.00029	0.00065
FR_SCOUT	FR_SCOUT_WS_2022-01-13_N	2022-01-13	-	< 0.0020	0.00072	0.00022	0.0279	< 0.040	< 0.000100	< 0.020	0.000505	390	< 0.00020	0.00028	0.00069
FR_SCOUT	FR_SCOUT_WS_2022-02-10_N_0900	2022-02-10	-	0.0026	0.00071	< 0.00020	0.0271	< 0.040	< 0.000100	< 0.020	0.000454	364	< 0.00020	0.00024	0.00065
FR_SCOUT	FR_SCOUT_WS_20220216_N	2022-02-16	-	< 0.0010	0.0003	< 0.00010	0.0858	< 0.020	< 0.000050	0.012	0.000115	187	0.00012	0.00011	0.0003
FR_SCOUT	FR SCOUT WS 2022-03-10 N	2022-03-10	-	-		- 0.00000	- 0.0407	- 0.000040	- 0.000400		-	390	- 0.00000	- 0.00000	-
FR_SCOUT	FR_SCOUT_2022-03-10_N_0900	2022-03-10	-	< 0.0060	0.0004	< 0.00020	0.0167	< 0.000040	< 0.000100	< 0.020	0.000101		< 0.00020	< 0.00020	< 0.00100
FR_SCOUT	FR_SCOUT_2022-04-07_N_0900	2022-04-07	-	< 0.0060	0.00051	< 0.00020	0.0266	< 0.000040	< 0.000100	< 0.020	0.00033	325.5	< 0.00020	0.00031	< 0.00100
FR_SCOUT	FR_SCOUT_WS_2022-04-07_N	2022-04-07	-	-	-	-	-	-	-	-	-	- 04.55	-		_
FR_SCOUT FR_SCOUT	FR_SCOUT_2022-05-05_N_0900	2022-05-05	-	0.0166	0.00028	0.00021	0.0363	< 0.000020		< 0.010	0.000231	94.55 54.45		0.00016	0.00077
FR_SCOUT	FR SCOUT 2022-06-02 N 0900	2022-06-02	-	0.0049	0.00018	0.00011	0.038 0.0357	< 0.000020 < 0.020		< 0.010 < 0.010	0.00006	59.9	0.0001	< 0.00010	< 0.00050
	FR_SCOUT_WS_2022-06-04_N	2022-06-04	-	0.0064		0.00011			< 0.000050		0.00036		< 0.00010	< 0.10	0.00025
FR_SCOUT FR_SCOUT	FR_SCOUT_2022-07-14_N_0900	2022-07-14	-	0.0041	0.00041	0.0003	0.0411	< 0.000020	< 0.000050	< 0.010	0.000521	160	< 0.00010	0.00043	< 0.00050
FR_SCOUT	FR FRSCOUT WS 2022 07 25 N	2022-07-25	-	0.0011	0.00018	< 0.00010 0.00022	0.0465	< 0.020 < 0.000040	< 0.000050	< 0.010 < 0.020	0.00012	88.9	< 0.00010	< 0.10 0.00073	< 0.00020
	FR_SCOUT_2022-08-11_N_0900	2022-08-11	-	< 0.0060			0.0401				0.00102	294	< 0.00020		< 0.00100
FR_SCOUT	FR_SCOUT_2022-09-08_N_0900	2022-09-08	-	< 0.0060	0.00079	0.00046	0.0353	< 0.000040		< 0.020	0.00139	387	< 0.00020	0.00079	0.00126
FR_SCOUT	FR_SCOUT_2022-10-06_N_0900	2022-10-06	-	< 0.0060	0.0006	< 0.00020	0.0397	< 0.000040	< 0.000100	< 0.020	0.00117	386.5	< 0.00020	0.00055	0.00102
FR_SCOUT	FR SCOUT 2022-11-03 N 0900	2022-11-03	-	< 0.0060	0.00068	0.00021	0.0318	< 0.000040		< 0.020	0.00119	388	< 0.00020	0.0006	< 0.00100
FR_SCOUT FR_SCOUT	FR_SCOUT_2022-12-01_N_0900_CALC FR_SCOUT_2022-12-22_N_0900	2022-12-01	-	< 0.0060	0.00063	0.0002 < 0.00020	0.0276	< 0.000040 < 0.000040	< 0.000100 < 0.000100	< 0.020 < 0.020	0.000753	421.5	< 0.00020 < 0.00020	0.00036	< 0.00100
FR_SCOUT	FR_SCOUT_2022-12-22_N_0900 FR_SCOUT_2022-12-29_N_0900	2022-12-22	-	< 0.0060	0.00072 0.00064	0.00020	0.025 0.031	< 0.000040	< 0.000100	< 0.020	0.00072	432 452.5	< 0.00020	0.0003	< 0.00100
FR_SCOUT	FR_SCOUT_2022-12-29_N_0900 FR_SP1_MON_2022-01-04_N	2022-12-29	-	< 0.0060	0.00064	< 0.00024	0.031	< 0.000040	< 0.000100	0.020	0.000773	139	< 0.00020	0.00035	< 0.00100
FR_SP1			-	0.0013				< 0.020			0.000119	407			< 0.00020
FR_SP1	FR_SP1_MON_2022-02-01_N	2022-02-06	-	0.0032	0.00063	0.00026 < 0.00010	0.0631	< 0.040	< 0.000100	< 0.020 0.019	0.000893	147	< 0.00020 < 0.00010	0.00034	0.00111
FR_SP1	FR_SP1_MON_2022-03-01_N FR_SP1_WEK_2022-03-14_N	2022-03-04	-	0.002			0.0233		< 0.000050		0.000126	147		0.0001	< 0.00020
FR_SP1	FR_SP1_WEK_2022-03-14_N FR_SP1_WEK_2022-03-21_N		-	-	-	-	-	-	-	-	-	-	-		-
FR_SP1	FR SP1 WEK 2022-03-21 N	2022-03-23	-	-		-		-	-		-				-
FR_SP1		2022-03-31	-		0.00018	< 0.00010	0.0242		< 0.000050	-		- 440	< 0.00010	0.00017	
FR_SP1	FR_SP1_MON_2022-04-01_N FR_SP1_WEK_2022-04-11_N	2022-04-05	-	0.0012	0.00016	< 0.00010	0.0242	< 0.020	< 0.000050	0.017	0.0000577	149	< 0.00010	0.00017	< 0.00020
FR_SP1	FR SP1 WEK 2022-04-11 N	2022-04-14	-	-		-	-	-	-		-	-			
FR SP1	FR DC2 WEK 2022-04-25 N	2022-04-19		-	 		-	-	-	-	-	-			-
FR_SP1	FR_DC2_WER_2022-04-25_N FR_DC2_MON_2022-05-01_N	2022-04-28	-	0.0022	0.000175	< 0.00010	0.0231	< 0.020	< 0.000050	0.019	0.0008275	153	< 0.00010	0.000165	< 0.00020
FR_SP1	FR SP1 WEK 2022-05-01 N	2022-05-02	-	0.0022	0.000175	- 0.00010	0.0231	- 0.020	- 0.000050	0.019	0.00008275	100	< 0.00010	0.000103	
FR SP1	FR SP1 WEK 2022-05-09_N	2022-05-12	-	-			-				 	-			
FR SP1	FR SP1 WEK 2022-05-10_N	2022-05-10	-	-					-		<u> </u>	-	-		
FR SP1	FR SP1 WEK 2022-05-30 N	2022-06-01	-	-	-	-	-	-	-			+ -	_		
FR SP1	FR SP1 MON 2022-06-01 N	2022-06-08	-	< 0.0010	0.00022	< 0.00010	0.0231	< 0.020	< 0.000050	0.018	0.000139	147	< 0.00010	< 0.10	< 0.00020
FR SP1	FR FLD1 2022-06-13 N	2022-06-13	-	< 0.0010	< 0.00022	< 0.00010	< 0.00010	< 0.020	< 0.000050	< 0.010	< 0.0050	< 0.050		< 0.10	< 0.00020
FR SP1	FR SP1 WEK 2022-06-13 N	2022-06-13	-	< 0.00 to	- 0.00010	- 0.00010	- 0.00010	- 0.020	- 0.000000	- 0.010	< 0.0050	- 0.000	- 0.00010	- 0.10	< 0.00020
FR SP1	FR SP1 WEK 2022-06-20 N	2022-06-20	-	-	-	-	-	-	-	-		-	-		
FR SP1	FR SP1 WEK 2022-06-27 N	2022-06-29	-	-	-	-	-	-	-	-	-	-	-		
FR SP1	FR SP1 MON 2022-07-01 N	2022-07-04	-	0.0011	0.00017	< 0.00010	0.0212	< 0.020	< 0.000050	0.019	0.000158	144	< 0.00010	< 0.10	0.00028
FR SP1	FR SP1 WEK 2022-07-11 N	2022-07-12	-	0.0011	-	-	-	-	-	-	0.000138	-	-	-	0.00020
FR SP1	FR SP1 MON 2022-08-01 N	2022-08-02	-	0.0014	0.00021	< 0.00010	0.0204	< 0.020	< 0.000050	0.017	0.00099	135	< 0.00010	< 0.10	0.00021
FR SP1	FR DC2 MON 2022-09-01 NP	2022-09-08	-	0.0014	0.0002	< 0.00010	0.02245	< 0.020	< 0.000050	0.0195	0.000099	148.5		0.00011	< 0.00021
FR SP1	FR SP1 WS 2022-09-30 NP	2022-09-30	-	0.0014	0.00024	< 0.00010	0.0245	< 0.020	< 0.000050	0.019	0.00007813	152	< 0.00010	0.00011	0.00020
FR SP1	FR SP1 MON 2022-10-01 N	2022-10-19	-	0.0014	0.0002	< 0.00010	0.0218	< 0.020	< 0.000050	0.02	0.000091	168	< 0.00010	0.00011	< 0.00021
FR SP1	FR SP1 MON 2022-11-01 N	2022-11-03	-	< 0.0012	0.00017	< 0.00010	0.0215	< 0.020	< 0.000050	0.017	0.000092	146	< 0.00010	0.0001	0.00061
				- 0.0010							0.000002				3.00001

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

^d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

BC WOOF FMAL No. N												Dissolv	ed Metals							
BC WOOF PRIAL					_=	Lead	Lithium	Magr	Manganese	Nickel	Potassium	Selenium	Silver	Sodium	Strontium	Thallium	Tin	Titanium	Uranium	Zinc
Evering River Performance	Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Forting New Operation					ď															
FR PP1 FR PP1 MON 2022-1024 N				n/a	0.35	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
FR PPI MON 2022-11-01 N 2022-10-01 - 0.000000																				
FR SCOUT FR SCOUT NS 2022-108 N 0600 2022-01-10				-																0.0612
FR SCOUT FR SCOUTWS 2022-01-18 N 2022-01-19				-																0.0437
FR SCOUT FR SCOUT WS 2022-01-0 1 0,0000 2022-01-0 - 0,0000 0,0078 00 0,0000 0,0				-																0.0203
FR SCOUT FR SCOUTWS 2022249 N 2022245 N 202245 N 202245 N 202245 N 202245 N 2000 N				-																0.0308
FR SCOUT FR SCOUT WS 2022-03-10 N 2022-03-10				-																0.0297
FR SCOUT FR SCOUT 2022-03-10 N 9890 2022-04-07 N 9900 2022-04-07 N				-																0.0053
FR SCOUT FR SCOUT 2022-04-07 N 9990 2022-04-07 N 9990 2022-04-07 N 9990 2022-04-07 N 9990 2022-04-07 N 922-04-07 N 922-04-05 N				· ·																- 0.000
FR SCOUT FR SCOUT WS 2002-04-07 N 2022-04-07 N 2022-05-05 N 9080 2				<u> </u>																0.008
FR SCOUT FR SCOUT 2222-60-26 N 0990 2222-65-5 . 0013 < 0,000059 0.0181 317 0.0188 0.0016 0.0111 1.47 119 < 0,000010 0.085 0.0085 0.000017 < 0,00001 < 0,000030 0.0109 FR SCOUT 2022-26-04 N 2022-60-04 N				· ·																
FR SCOUT FR SCOUT 2022-06-02 \ 0.0000 \ 2022-06-02 \ 0.0000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.000000 \ 0.00000 \ 0.0000000 \ 0.000000 \ 0.0000000 \ 0.000000 \ 0.0000000 \ 0.0000000 \ 0.0000000 \ 0.0000000 \ 0.0000000 \ 0.0000000 \ 0.0000000 \ 0.0000000 \ 0.000000 \ 0.0000000 \ 0.0000000 \ 0.0000000 \ 0.0000000 \ 0.0000000 \ 0.0000000 \ 0.0000000 \ 0.0000000 \ 0.0000000 \ 0.0000000 \ 0.0000000 \ 0.0000000 \ 0.0000000 \ 0.0000000 \ 0.0000000 \ 0.0000000 \ 0.00000000				-																0.0126
FR SCOUT FR SCOUT 6000000000000000000000000000000000000				<u> </u>																0.0136
FR SCOUT FR SCOUT 2022-07-14 N 0900 2022-07-14 . < < < < < < < < < > < < < > < < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < < > < < < > < < > < < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < < < > < < > < < > < < > < < < > < < > < < > < < > < < < > < < > < < < > < < < > < < < > < < < > < < < > < < < > < < < > < < < > < < < > < < < > < < < > < < < > < < < > < < < > < < < > < < < > < < < < > < < < < < < > < < < < < > < < < < < < < < > < < < < > < < < < < < > < < < < < < < < < < < > < < < < < < < < > < < < < < < < < < < < < < < < < < < < <				<u> </u>																0.003
FR SCOUT FR SCOUT 5000000000000000000000000000000000000				<u> </u>																0.0014
FR SCOUT FR SCOUT 2022-08-11 0.9000 2022-08-08 0.00000 0.0983 225 0.00689 0.0462 3.795 350 0.000000 2.025 0.174 0.000001 0.000001 0.000000				<u> </u>																0.0267
FR SCOUT FR SCOUT 2022-09.98 N 0900 2022-09-08 - <0.020 <0.000100 0.087 300 0.00652 0.0803 4.75 508 <0.000020 2.85 0.237 0.000067 <0.00020 <0.000000 0.018 0 CFR SCOUT 2022-11-103 N 0900 2022-11-03 - <0.020 <0.000100 0.0884 2815 0.00468 0.0512 4.215 468 <0.000020 2.83 0.209 0.000002 <0.000001 0.0784 327.5 0.00414 0.0572 4.71 503 <0.000020 2.83 0.209 0.000002 <0.000000 0.0183 0 CFR SCOUT 2022-11-103 N 0900 2022-11-103 - <0.020 <0.000010 0.0784 327.5 0.00414 0.0572 4.71 503 <0.000020 4.27 0.029 0.000002 <0.000000 0.0183 0 CFR SCOUT 2022-12-22 N 0900 2022-12-22 - <0.020 <0.00010 0.0784 327.5 0.00414 0.0572 4.71 503 <0.000020 4.27 0.294 0.000002 <0.000000 0.0183 0 CFR SCOUT 2022-12-22 N 0900 2022-12-22 - <0.020 <0.00010 0.0884 369 0.00417 0.0545 4.98 579 <0.0000000 4.27 0.000000 0.00000 0.0788 32.0 0.000000				<u> </u>																0.003
FR SCOUT FR SCOUT 2022-10-80 N 0900 2022-10-06 - < 0.02 < 0.000100 0.0688 281.5				<u> </u>																0.0745
FR SCOUT FR SCOUT 2022-12-10 N 0900 2022-12-10 . < 0.020				<u> </u>																0.0652
FR SCOUT FR SCOUT 2022-12-01 N 0900 CALC 2022-12-01 - < 0.020 < 0.000100 0 .012 329.5 0.0073 0.0476 4.98 5.79 < 0.000020 4.27 0.254 0.00005 < 0.000000 < 0.00000 0 .00000 0 .00000				<u> </u>																0.0652
FR SCOUT FR SCOUT 2022-1222 N 9090 2022-1222 - < 0.000 < 0.000100 0.0894 369 0.00417 0.0545 4.935 662 < 0.00020 2.955 0.247 0.000056 < 0.00020 < 0.00060 0.0205 C FR SCOUT FR SCOUT 767-202-29 N 9090 2022-1229 - < 0.000 < 0.000100 0.0867 357 0.0035 0.0542 4.78 632 < < 0.00020 2.955 0.247 0.000056 0.000051 < 0.00060 0.0183 0 FR SP1 FR SP1 MON 2022-01-04 N 2022-01-08 - < 0.000 < 0.000100 0.0867 78 8 0.00066 0.00185 3.64 39.7 < 0.000010 2.96 0.164 0.000015 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.000051 < 0.00				-																0.0404
FR SCOUT FR SCOUT 900000 202-12-29 - < 0.02 < 0.000100 0.0867 357 0.0035 0.0542 4.78 632 < 0.000020 2.96 0.245 0.00001 < 0.000000 0.0133 0				1																0.0393
FR SP1 FR SP1 MON 2022-01-04 N 2022-02-06 · <0.020 <0.000100				1																0.0455
FR SPI FR SPI MON 2022-02-01 N 2022-03-04 - <0.020 < 0.00010				-																0.0014
FR SPI FR SPI MON 2022-03-01 N 2022-03-04 - <0.010 <0.000050 0.0545 74.5 0.00065 0.00199 3.86 29.1 <0.000010 1.76 0.165 0.00016 <0.00016 <0.00010 <0.00030 0.00435 0 FR SPI FR SPI WEK 2022-03-21 N 2022-03-23				٠.																0.0455
FR SPI FR SPI_WEK_2022-03-14 N 2022-03-23				-																0.0021
FR_SPI				-								-								-
FR SPI FR SPI WEK 2022-03-28 N 2022-03-31				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FR_SPI	FR SP1	FR SP1 WFK 2022-03-28 N		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FR_SP1				-	< 0.010	< 0.000050	0.0585	86.8	0.00219	0.00207	3.33	79.2	< 0.000010	2.82	0.163	0.000015	< 0.00010	< 0.00030	0.00457	< 0.0010
FR_SPI	FR SP1			-	-				-	-				-	-				-	-
FR_SP1	FR SP1	FR SP1 WEK 2022-04-18 N		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FR_SPI	FR SP1	FR DC2 WEK 2022-04-25 N	2022-04-28	-	-	- 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FR_SP1	FR_SP1	FR_DC2_MON_2022-05-01 N	2022-05-02	-	< 0.010	< 0.000050	0.0588	86.65	0.00056	0.002345	4.05	47.55	< 0.000010	2.385	0.17	0.000021	< 0.00010	< 0.00030	0.00518	0.00165
FR_SPI	FR_SP1	FR_SP1_WEK_2022-05-09_N	2022-05-12	-	-	- 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FR_SPI	FR_SP1	FR_SP1_WEK_2022-05-16_N	2022-05-16	-	-	- 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FR_SP1 FR_SP1_MON_2022-06-01N 2022-06-08 - <0.010 <0.000050 0.0614 81.7 0.00042 0.0021 3.77 74.4 <0.000010 1.86 0.178 0.00016 <0.00010 <0.00030 0.00411 0 FR_SP1 FR_FLD1_2022-06-13 N 2022-06-13 - <0.010 <0.000050 <0.0010 <0.0050 <0.0050 <0.050 <0.050 <0.050 <0.00010 <0.0050 <0.00010 <0.00010 <0.000010 <0.000010 <0.00010 <0.000010 <0.000010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.00010 <0.0			2022-05-23	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FR_SP1				-																-
FR_SP1 FR_SP1_WEK_2022-06-13_N				-			0.0614						< 0.000010		0.178	0.000016		< 0.00030	0.00411	0.0025
FR_SP1 FR_SP1_WEK_2022-06-20_N				-	< 0.010	< 0.000050	< 0.0010	< 0.0050	< 0.00010	< 0.00050	< 0.050	< 0.050	< 0.000010	< 0.050	< 0.00020	< 0.000010	< 0.00010	< 0.00030	< 0.000010	< 0.0010
				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FR SP1				-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-
	FR_SP1	FR_SP1_WEK_2022-06-27_N	2022-06-29	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
						< 0.000050	0.057	80.6	0.00034	0.00196		85.2	< 0.000010	1.82	0.164	0.000019	< 0.00010	< 0.00030	0.00377	0.0023
FR_SP1 FR_SP1_WEK_2022-07-11_N				-			-	-	-	-		-	-	-	-	-	-	-	-	-
				-																0.0022
				-																0.0012
				-																0.0016
				-																0.0012
FR SP1	FR SP1				< 0.010	< 0.000050	0.0503	81.2	0.00076	0.00207	3.47	39.6	< 0.000010	1.86	0.168	0.000015	< 0.00010	< 0.00030	0.00474	0.0014

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

^d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

									Dissolve	d Metals						
				_										_		
			SS	<u> </u>	È		_	yllium	₅			Ē	F	5		
			ਵ	l 🛊	rt in o	<u>=</u>	5	∰	Ē	5		Ē	 		<u>#</u>	8
Sample	Sample	Sample Date	Į ž		Ē	L Š	ari	l e	<u> </u>	ğ		o o) ac	<u>Ě</u>	셨	do
Location	ID	(mm/dd/yyyy		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	m	g/L	mg/L	mg/L	mg/L	mg/L
	· -	1(// ···· 5 · –	i.								<u></u>				ن آ
				Acute							Acute	Chron				Acute
C WQG FWAL			n/a	0.020-0.10 ^a 0.005-0.05 ^a	n/a	na	na	na	n/a	n/a	0.00004-0.0028 ^a	0.00002-0.00173 ^a	n/a	n/a	n/a	BLM°
reenhills Operation																
GH_FC1	GH_FC1_WS_2022-01-03_NP	2022-01-10	-	0.0028	< 0.00010	0.0002	0.0675	< 0.020	< 0.000050	< 0.010		.0050	78.3			0.00025
GH_FC1	GH_FC1_WS_2022-02-07_NP	2022-02-07	-	0.0028	< 0.00010	0.00016	0.0626	< 0.020	< 0.000050	< 0.010		.0050	77.1	< 0.00010	< 0.00010	0.00024
GH_FC1	GH_FC1_WS_2022-03-07_N	2022-03-07	-	0.0016	< 0.00010	0.00016	0.0583	< 0.020	< 0.000050	< 0.010		.0050	72.4	< 0.00010	< 0.10	< 0.00020
GH_FC1	GH_FC1_WS_2022-03-14_NP	2022-03-17	-	0.0016	< 0.00010	0.00014	0.0697	< 0.020	< 0.000050	< 0.010		.0050	71.6	< 0.00010	< 0.10	< 0.00020
GH_FC1	GH_FC1_WS_2022-03-20_NP	2022-03-20	-	0.0022	< 0.00010	0.00018	0.0689	< 0.020	< 0.000050	< 0.010		.0050	80.9	< 0.00010		0.00021
GH_FC1	GH_FC1_WS_2022-03-21_NP	2022-03-22	-	0.0016	< 0.00010	0.00012	0.0504	< 0.020	< 0.000050	< 0.010		.0050	62.8	< 0.00010		< 0.00020
GH_FC1	GH_FC1_WS_2022-03-28_NP	2022-03-29	-	0.0026	< 0.00010	0.00015	0.0449	< 0.020	< 0.000050	< 0.010		.0050	63.9	< 0.00010		0.00023
GH_FC1	GH_FC1_WS_2022-04-04_NP	2022-04-06	-	0.0022	< 0.00010	0.00016	0.0457	< 0.020	< 0.000050	< 0.010		.0050	59.5	< 0.00010	< 0.10	0.00024
GH_FC1	GH_FC1_WS_2022-04-11_NP	2022-04-13	-	0.0014	< 0.00010	0.00015	0.0502	< 0.020	< 0.000050	< 0.010		.0050	61.2	< 0.00010	< 0.10	0.00024
GH_FC1	GH_FC1_WS_2022-04-18_NP	2022-04-21		0.0013	< 0.00010	0.00016	0.0453	< 0.020	< 0.000050	< 0.010		.0050	67.5	< 0.00010		< 0.00020
GH_FC1	GH_FC1_WS_2022-04-25_NP	2022-04-27	-	0.0013	< 0.00010	0.00014	0.0506	< 0.020	< 0.000050	< 0.010		.0050	63	< 0.00010		< 0.00020
GH_FC1	GH_FC1_WS_2022-05-02_NP	2022-05-04	-	0.0018	< 0.00010	0.00017	0.0552	< 0.020	< 0.000050	< 0.010		.0050	64.2	< 0.00010	< 0.10	< 0.00020
GH_FC1	GH_FC1_WS_2022-05-09_NP	2022-05-11		0.0018	< 0.00010	0.00016	0.0532	< 0.020	< 0.000050	< 0.010		.0050	61.6	< 0.00030		0.00021
GH_FC1	GH_FC1_WS_2022-05-16_NP	2022-05-18	-	0.0016	< 0.00010	0.00015	0.0553	< 0.020	< 0.000050	< 0.010		.0050	64.4	< 0.00010	< 0.10	< 0.00020
GH_FC1	GH_FC1_WS_2022-05-23_NP	2022-05-27	-	0.0025	< 0.00010	0.00018	0.0648	< 0.020	< 0.000050	< 0.010		.0050	66.6	< 0.00010	< 0.10	< 0.00020
GH_FC1	GH_FC1_WS_2022-05-30_NP	2022-06-01	-	0.0019	< 0.00010	0.00016	0.0586	< 0.020	< 0.000050	< 0.010		.0050	64.8	< 0.00010		0.0002
GH_FC1	GH_FC1_WS_2022-06-06_NP	2022-06-08	-	0.0017	< 0.00010	0.00019	0.0616	< 0.020	< 0.000050	< 0.010		.0050	65.5	< 0.00010		< 0.00020
GH_FC1	GH_FC1_WS_2022-06-13_NP	2022-06-15		0.0015	< 0.00010	0.00017	0.0506	< 0.020	< 0.000050	< 0.010		.0050	61.5	< 0.00010		< 0.00020
GH_FC1	GH_FC1_WS_2022-06-20_NP	2022-06-22		< 0.0010	< 0.00010	0.0002	0.0677	< 0.020	< 0.000050	0.013		.0050	76.1	< 0.00010		< 0.00020
GH_FC1	GH_FC1_WS_2022-06-27_NP	2022-06-29	-	0.0015	< 0.00010	0.00016	0.0613	< 0.020	< 0.000050	< 0.010		.0050	70.2	< 0.00010		< 0.00020
GH_FC1	GH_FC1_WS_2022-07-04_NP	2022-07-06	-	0.0016	< 0.00010	0.00018	0.0609	< 0.020	< 0.000050	< 0.010		.0050	68.2	< 0.00010	< 0.10	< 0.00020
GH_FC1	GH_FC1_WS_2022-07-11_NP	2022-07-13	-	0.0019	< 0.00010	0.0002	0.0649	< 0.020	< 0.000050	0.011		.0050	68.5	< 0.00010		< 0.00020
GH_FC1	GH_FC1_WS_2022-08-01_NP	2022-08-04	-	0.002	< 0.00010	0.00022	0.0718	< 0.020	< 0.000050	0.01	< 0	.0050	74	< 0.00010	< 0.10	< 0.00020
GH_FC1	GH_FC1_WS_2022-09-05_NP	2022-09-08	-	-		-	-	-		-		-	-	-	-	-
GH_FC1	GH_FC1_WS_2022-10-03_NP	2022-10-05	-	0.001	< 0.00010	0.00025	0.0654	< 0.020	< 0.000050	< 0.010		.0050	79.7	< 0.00010		< 0.00020
GH_FC1	GH_FC1_WS_2022-11-07_NP	2022-11-09	-	< 0.0010	< 0.00010	0.0003	0.0507	< 0.020	< 0.000050	< 0.010		.0050	64.3	< 0.00010		< 0.00020
GH_GH1	GH_GH1_WS_2022-01-03_N	2022-01-04	-	< 0.0010	0.00038	0.00016	0.0443	< 0.020	< 0.000050	< 0.010		00064	168	0.00011	< 0.00010	0.0002
GH_GH1	GH_GH1_WS_2022-02-07_N	2022-02-04	-	0.0011	0.00039	0.00017	0.039	< 0.020	< 0.000050	< 0.010		.0050	176	< 0.00010		< 0.00020
GH_GH1	GH_GH1_WS_2022-02-19_N	2022-02-19	-	0.0012	0.00037	0.00016	0.0436	< 0.020	< 0.000050	< 0.010		00006	172	< 0.00010	< 0.00010	< 0.00020
GH_GH1	GH_GH1_WS_2022-02-20_NP	2022-02-20	! -	< 0.0010	0.00039	0.00017	0.0462	< 0.020	< 0.000050	< 0.010		.0050	180	0.00011	< 0.00010	0.00029
GH_GH1	GH_GH1_WS_2022-02-21_N	2022-02-21	1 -	0.0013	0.00037	0.00016	0.043	< 0.020	< 0.000050	0.013		00073	173	0.00016	< 0.00010	0.0005
GH_GH1	GH_GH1_WS_2022-03-07_N	2022-03-04	-	< 0.0010	0.00036	0.00019	0.0438	< 0.020	< 0.000050	< 0.010		00006	186	< 0.00010	< 0.10	< 0.00020
GH_GH1	GH_GH1_WS_2022-03-14_N	2022-03-15	! -	-	-	-	-	-	-	-		-	-		-	-
GH_GH1 GH_GH1	GH_GH1_WS_2022-03-21_N	2022-03-21	<u> </u>	-	-	-	-	-	-	-		•	-	-	-	-
GH_GH1 GH_GH1	GH_GH1_WS_2022-03-28_N	2022-03-28	-			0.00010	- 0.0400	- 0.020	- 0.000000	- 0.010		-	- 110	0.00043	- 0.10	
GH_GH1	GH_FOX3_WS_2022-04-04_N	2022-04-04	1	0.00325	0.0003	0.00016	0.0406	< 0.020	< 0.000050	< 0.010		00211	116	0.00017	< 0.10	0.000445
	GH_GH1_WS_2022-04-04_N	2022-04-04	<u> </u>	-	-	-	-	-	-	-		-	<u> </u>	-	-	-
GH_GH1	GH_GH1_WS_2022-04-11_N	2022-04-11	1 -	-	-	-	-	-	-	-		-	-	-	-	-
GH_GH1 GH_GH1	GH_GH1_WS_2022-04-18_N	2022-04-19	1 -	-	-	-	-	-	-	-		•	-	-	-	-
GH_GH1	GH_GH1_WS_2022-04-25_N GH_GH1_WS_2022-05-09_N	2022-04-26	<u> </u>	-	-	-	-		-	-		-	-	-	-	-
		2022-05-10	1	-					-	-		-	<u> </u>	-	-	-
GH_GH1 GH_GH1	GH_GH1_WS_2022-05-16_N	2022-05-17	<u> </u>	-	-	-	-	-	-			•	<u> </u>	-	-	-
GH_GH1 GH_GH1	GH_GH1_WS_2022-05-23_N	2022-05-23 2022-05-30	1	-	-	-	-	-	-			•	-	-	-	-
	GH_GH1_WS_2022-05-30_N		<u> </u>		0.00035	0.00022	0.0474	< 0.020	- 0 0000000			-	110	- 0 00040		
GH_GH1	GH_GH1_WS_2022-06-06_N	2022-06-06	<u> </u>	0.0018					< 0.000050	0.011		00102	112	< 0.00010	< 0.10	0.00043
GH_GH1	GH_GH1_WS_2022-06-13_N	2022-06-14	ļ -	-	-	-	-	-	-	-		-	-	-	-	-
GH_GH1	GH_GH1_WS_2022-06-17_N	2022-06-17	1	-		-	-	-		-		•	<u> </u>		-	<u> </u>
GH_GH1 GH_GH1	GH_GH1_WS_2022-06-18_N	2022-06-18	<u> </u>	-			-	-				•	<u> </u>		-	-
	GH_GH1_WS_2022-06-19_N	2022-06-19	<u> </u>	-	-	-	-		-	-		-	<u> </u>	-	-	-
GH_GH1	GH_GH1_WS_2022-06-20_N	2022-06-20	1 -	-			-	-		-	I	-			_	-

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

Sample Sa	Silver	Sodium	Strontium	Thallium	TĪ.	Titanium	Uranium	Zinc
Location ID (mm/dd/yyyy) mg/L mg/L<	L mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Cute								
BC WQG FWAL n/a 0.35 n/a n/a n/a n/a n/a n/a n/a n/a n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Greenhills Operation				•	•	•	•	
GH_FC1 GH_FC1_WS_2022-01-03_NP		3.02	0.0956	< 0.000010	< 0.00010	0.00031	0.000417	< 0.0010
GH_FC1 GH_FC1_WS_2022-02-07_NP 2022-02-07 - 0.026 < 0.000050 0.0033 29.3 0.00814 < 0.00050 0.739 0.123		2.68	0.089	< 0.000010	< 0.00010	< 0.00030	0.000464	0.0022
GH_FC1 GH_FC1_WS_2022-03-07_N 2022-03-07 - 0.021 < 0.000050 0.0034 28.7 0.00702 < 0.00050 0.954 0.111		2.66	0.0852	< 0.000010	< 0.00010	< 0.00030	0.00033	< 0.0010
GH_FC1 GH_FC1_WS_2022-03-14_NP 2022-03-17 - 0.037 <0.000050 0.0024 26.4 0.0284 <0.00050 0.958 0.221		5.31	0.128	< 0.000010	< 0.00010	< 0.00030	0.000288	< 0.0010
GH_FC1 GH_FC1_WS_2022-03-20_NP 2022-03-20 - 0.032 < 0.000050 0.0024 29 0.0291 < 0.00050 1.12 0.227		5.11	0.136	< 0.000010	< 0.00010	< 0.00030	0.000259	0.001
GH_FC1 GH_FC1_WS_2022-03-21_NP 2022-03-22 - 0.015 <0.000050 0.0034 25.7 0.00367 <0.00050 1.16 0.093		2.39	0.0783	< 0.000010	< 0.00010	< 0.00030	0.000266	0.0014
GH_FC1 GH_FC1_WS_2022-03-28_NP 2022-03-29 - 0.011 <0.000050 0.0026 26.2 0.00293 <0.00050 1.47 0.116		1.82	0.0716	< 0.000010	< 0.00010	< 0.00030	0.000282	0.001
GH_FC1 GH_FC1_WS_2022-04-04_NP 2022-04-06 - < 0.010 < 0.000050 0.0031 24.2 0.00125 < 0.00050 1.34 0.08		2.16	0.0691	< 0.000010	< 0.00010	< 0.00030	0.00031	< 0.0010
GH_FC1 GH_FC1_WS_2022-04-11_NP 2022-04-13 - <0.010 <0.000050 0.0032 24.8 0.00133 <0.00050 1.23 0.104		2.23	0.0742	< 0.000010	< 0.00010	< 0.00030	0.000333	< 0.0010
GH_FC1 GH_FC1_WS_2022-04-18_NP 2022-04-21 - <0.010 <0.000050 0.0032 23.8 0.00099 <0.00050 1.06 0.071		2.2	0.079	< 0.000010	< 0.00010	< 0.00030	0.000378	0.0034
GH_FC1 GH_FC1_WS_2022-04-25_NP 2022-04-27 - <0.010 <0.000050 0.0035 24.6 0.0013 <0.00050 1.12 0.062		2.29	0.0751	< 0.000010	< 0.00010	< 0.00030	0.000344	< 0.0010
GH_FC1 GH_FC1_WS_2022-05-02_NP 2022-05-04 - <0.010 <0.000050 0.0034 24.8 0.00155 <0.00050 1.2 0.132		2.28	0.0788	< 0.000010	< 0.00010	< 0.00030	0.000318	< 0.0010
GH_FC1 GH_FC1_WS_2022-05-09_NP 2022-05-11 - <0.010 <0.000050 0.0036 25 0.0014 <0.00050 1.15 0.105		2.34	0.0767	< 0.000010	< 0.00010	< 0.00030	0.00032	< 0.0010
GH_FC1 GH_FC1_WS_2022-05-16_NP 2022-05-18 - <0.010 <0.000050 0.0036 25.1 0.00208 <0.00050 1.22 0.08		2.39	0.0796	< 0.000010	< 0.00010	< 0.00030	0.000343	< 0.0010
GH_FC1 GH_FC1_WS_2022-05-23_NP 2022-05-27 - <0.010 <0.000050 0.0039 29.3 0.00299 <0.00050 1.2 0.094		2.48	0.0854	< 0.000010	< 0.00010	< 0.00030	0.000313	< 0.0010
GH_FC1 GH_FC1_WS_2022-05-30_NP 2022-06-01 - 0.011 < 0.000050 0.0042 26.4 0.00362 < 0.00050 1.16 0.077		2.44	0.0831	< 0.000010	< 0.00010	< 0.00030	0.000277	< 0.0010
GH_FC1 GH_FC1_WS_2022-06-06_NP 2022-06-08 - <0.010 <0.000050 0.004 25 0.0038 <0.00050 1 0.085		2.24	0.0813	< 0.000010	< 0.00010	< 0.00030	0.000254	< 0.0010
GH_FC1 GH_FC1_WS_2022-06-13_NP 2022-06-15 - <0.010 <0.000050 0.0037 24.6 0.00174 <0.00050 0.901 0.088		2.36	0.0715	< 0.000010	< 0.00010	< 0.00030	0.000273	< 0.0010
GH_FC1 GH_FC1_WS_2022-06-20_NP 2022-06-22 - 0.011 < 0.000050 0.0046 30.2 0.00415 < 0.00050 0.807 0.175		2.49	0.0872	< 0.000010	< 0.00010	< 0.00030	0.000271	< 0.0010
GH_FC1 GH_FC1_WS_2022-06-27_NP 2022-06-29 - 0.011 < 0.000050 0.0038 25.7 0.00512 < 0.00050 0.587 0.131		2.21	0.0824	< 0.000010	< 0.00010	< 0.00030	0.000262	< 0.0010
GH_FC1 GH_FC1_WS_2022-07-04_NP 2022-07-06 - 0.015 < 0.000050 0.0043 26.8 0.00468 < 0.00050 0.693 0.084		2.35	0.0878	< 0.000010	< 0.00010	< 0.00030	0.000241	< 0.0010
GH_FC1 GH_FC1_WS_2022-07-11_NP 2022-07-13 - 0.021 < 0.000050 0.0044 27.5 0.00788 < 0.00050 0.608 0.127		2.4	0.0891	< 0.000010	< 0.00010	< 0.00030	0.000242	< 0.0010
GH_FC1 GH_FC1_WS_2022-08-01_NP 2022-08-04 - 0.046 < 0.00050 0.005 28.4 0.0186 < 0.00050 0.82 0.107		2.63	0.0962	< 0.000010	< 0.00010	< 0.00030	0.000196	< 0.0010
GH_FC1 GH_FC1_WS_2022-09-05_NP 2022-09-08		-	-	-	-	-	-	-
GH_FC1 GH_FC1_WS_2022-10-03_NP 2022-10-05 - 0.048 < 0.000050 0.0038 28.3 0.0442 < 0.00050 1.07 0.138		2.6	0.0852	< 0.000010	< 0.00010	< 0.00030	0.000171	< 0.0010
GH_FC1 GH_FC1_WS_2022-11-07_NP 2022-11-09 - 0.062 <0.000050 0.0039 24.8 0.0482 <0.00050 0.738 0.083		2.11	0.0792	< 0.000010	< 0.00010	< 0.00030	0.000218	< 0.0010
GH_GH1 GH_GH1_WS_2022-01-03_N 2022-01-04 - <0.010 <0.00050 0.0142 129 0.00158 0.00769 2.09 143		2.81	0.199	< 0.000010	< 0.00010	< 0.00030	0.00758	< 0.0010
GH_GH1 GH_GH1_WS_2022-02-07_N 2022-02-04 - <0.010 <0.000050 0.0164 136 0.00027 0.00702 2.17 153		2.62	0.206	< 0.000010	< 0.00010	< 0.00030	0.00792	< 0.0010
GH_GH1 GH_GH1_WS_2022-02-19_N 2022-02-19 - <0.010 <0.000050 0.0159 139 0.00117 0.00797 2.36 162		2.93	0.204	< 0.000010	< 0.00010	< 0.00030	0.00813	< 0.0010
GH_GH1 GH_GH1_WS_2022-02-20_NP 2022-02-20 - <0.010 <0.000050 0.0167 142 0.00121 0.00805 2.42 176		3.07	0.21	< 0.000010	< 0.00010	< 0.00030	0.00869	< 0.0010
GH_GH1 GH_GH1_WS_2022-02-21_N 2022-02-21 - <0.010 <0.000050 0.016 129 0.00117 0.00744 2.35 162		3.16	0.202	< 0.000010	0.00014	< 0.00030	0.00802	0.0052
GH_GH1		3.02	0.216	< 0.000010	< 0.00010	< 0.00030	0.00801	< 0.0010
GH_GH1		-	-	-	-	-	-	-
GH GH1 GH GH1WS 2022-03-21 N 2022-03-21	-	-	-	-	-	-	-	-
		2.615	0.154	- 0.000040	< 0.00010	- 0.00000	0.00430	0.00155
				< 0.000010		< 0.00030	0.00439	
	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-
GH GHT GH GH GH WS 2022-04-18 N 2022-04-19	-	-	-	-	-	-	-	-
	- : -	-	-	- :	-	-	-	-
		-	-		-	-	-	-
	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-
			0.134	< 0.000010	< 0.00010	< 0.00030	0.00424	- 0.0050
		2.12					0.00421	0.0059
GH_GH1		-	-	-	-	-	-	-
GH_GH1	-	-	-	-	-	-	-	
GH_GH1		-	-	-		-		-
GH_GH1		-	-	-	-	-	-	-
GH_GH1	-	-	-	-	-		_	

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

^d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

									Dissolve	d Metals						
			ss	E .	źu.			Ę	£			Ę	_	E n		_
			声	į	ntimo	en in	Ē	yllium	Ē	o u		Ē	cir	E	oalt	Coppe
Sample	Sample	Sample Date	훈	l å	A P	Ars	Bar	Ber	Bis I	Bor		Ča	Sal	ਤਿ	25	្វី
Location	ID	(mm/dd/yyyy) mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	n	ng/L	mg/L	mg/L	mg/L	mg/L
				Acute							Acute	Chronic				Acute
C WQG FWAL			n/a	0.020-0.10 ^a 0.005	.0.05 ^a n/a	na	na	na	n/a	n/a	0.00004-0.0028 ^a	0.00002-0.00173 ^a	n/a	n/a	n/a	BLMe
reenhills Operation																
GH_GH1	GH_GH1_WS_2022-06-21_N	2022-06-21		-	-	-	-	-	-	-			-	-	-	-
GH_GH1	GH_GH1_WS_2022-06-22_N	2022-06-22	-	-	-	-	-	-	-	-		-	-	-	-	-
GH_GH1	GH_GH1_WS_2022-06-27_N	2022-06-27	-	_	-	-	-	-	-	-			-	-	-	-
GH_GH1	GH_GH1_WS_2022-07-04_N	2022-07-04		-	-	-	-	-	-	-		-	-	-	-	-
GH_GH1	GH_FOX3_WS_2022-07-04_N	2022-07-04	-	0.002033333	0.00026	0.00016333	0.03726667	< 0.020	< 0.000050	0.01	7.16	667E-05	70.68	< 0.00010	< 0.10	0.000386667
GH_GH1	GH_GH1_WS_2022-07-11_N	2022-07-11	-	-	-	-	-	-	-	-			-	-	-	-
GH_GH1	GH_GH1_WS_2022-08-01_N	2022-08-04		< 0.0010	0.00048	0.00023	0.0586	< 0.020	< 0.000050	0.012		000094	151	< 0.00010		0.00041
GH_GH1	GH_GH1_WS_2022-09-05_N	2022-09-06		< 0.0010	0.000435	0.00018	0.04235	< 0.020	< 0.000050	0.0115	0.00	000063	156	< 0.00010	< 0.10	0.00023
GH_GH1	GH_GH1_WS_2022-10-03_N	2022-10-03		0.0012	0.00045	0.0002	0.0465	< 0.020	< 0.000050	< 0.010		000735	175	< 0.00010	< 0.10	0.00045
GH_GH1	GH_GH1_WS_2022-11-07_N	2022-11-03		< 0.0010	0.0004	0.00016	0.0443	< 0.020	< 0.000050	< 0.010		0.0050	170	< 0.00010		0.00029
GH_GH1	GH_GH1_WS_2022-11-07_N_CALC	2022-11-07		< 0.0010	0.00043	0.00017	0.0453	< 0.020	< 0.000050	< 0.010		000054	185	< 0.00010		< 0.00020
GH_GH1	GH_GH1_WS_2022-11-10_N	2022-11-10		< 0.0010	0.00038	0.00018	0.0452	< 0.020	< 0.000050	< 0.010		000071	138	< 0.00010	< 0.10	< 0.00020
GH_GH1	GH_FOX1_WS_2022-11-17_FD	2022-11-17		< 0.0010	0.0003	0.00014333	0.031	< 0.020	< 0.000050	< 0.010		00006	112.7	0.00010333	< 0.10	0.000216667
GH_LC1	GH_LC1_WS_2022-06_06_N	2022-06-19		0.0023	0.00042	0.00025	0.0693	< 0.020	< 0.000050	0.021	0.00	000322	83.2	< 0.00010	0.00014	0.00063
GH_LC1	GH_LC1_WS_2022-06-20_N	2022-06-20		0.0027	0.00031	0.00022	0.0764	< 0.020	< 0.000050	0.021	0.00	000282	67.3	0.0001	0.00011	0.00064
GH_PC1	GH_PC1_WS_2022-08-01_N	2022-08-08		0.0012	< 0.00010	0.00021	0.0948	< 0.020	< 0.000050	< 0.010	0.00	000306	104	0.00034	< 0.10	< 0.00020
GH_PC1	GH_PC1_WS_SESMP_2022-08_N	2022-08-17		0.0019	< 0.00010	0.00022	0.0846	< 0.020	< 0.000050	< 0.010	0.00	000288	104	0.00027	< 0.10	< 0.00020
GH_PC1	GH_PC1_DS_WS_2022-08-24_NP	2022-08-24		0.0018	< 0.00010	0.00025	0.0836	< 0.020	< 0.000050	< 0.010	0.00	000292	105	0.00025	< 0.10	< 0.00020
GH_PC1	GH_PC1_DS_WS_2022-08-25_NP	2022-08-25		< 0.0010	< 0.00010	0.00023	0.0857	< 0.020	< 0.000050	< 0.010	0.0	100026	102	0.00026	< 0.10	< 0.00020
GH_PC1	GH_PC1_DS_WS_2022-08-26_NP	2022-08-26	-	0.0011	< 0.00010	0.00022	0.0868	< 0.020	< 0.000050	< 0.010		100026	108	0.00028	< 0.10	< 0.00020
GH_PC1	GH_PC1_DS_WS_2022-08-27_NP	2022-08-27	-	< 0.0010	< 0.00010	0.0002	0.0784	< 0.020	< 0.000050	< 0.010	0.00	000242	93	0.00029	< 0.10	< 0.00020
GH_PC1	GH_PC1_DS_WS_2022-08-28_NP	2022-08-28		< 0.0010	< 0.00010	0.00022	0.0741	< 0.020	< 0.000050	< 0.010	0.00	000181	90.8	0.00026	< 0.10	< 0.00020
GH_TC2	GH_TC2_WS_2022-01-03_N	2022-01-12		0.0012	0.00017	0.00014	0.0595	< 0.020	< 0.000050	0.02	0.00	000258	215	< 0.00010	< 0.00010	0.00034
GH_TC2	GH_TC2_WS_2022-02-07_N	2022-02-08		0.0019	0.00016	0.00016	0.0653	< 0.020	< 0.000050	0.021	0.0	00023	224	0.00299	< 0.00010	0.00035
GH_TC2	GH_TC2_WS_2022-03-07_N	2022-03-08		0.0015	0.00016	0.00015	0.061	< 0.020	< 0.000050	0.019	0.00	000177	226	< 0.00010	< 0.10	0.00021
GH_TC2	GH_TC2_WS_2022-03-14_N	2022-03-17	-	-	-	-	-	-	-	-			-	-	-	-
GH_TC2	GH_TC2_WS_2022-03-20_N	2022-03-20	-	-	-	-	-	-	-	-			-	-	-	-
GH_TC2	GH_TC2_WS_2022-03-21_N	2022-03-23	-	-	-	-	-	-	-	-			-	-	-	-
GH_TC2	GH_TC2_WS_2022-03-28_N	2022-03-31	-	-	-	-	-	-	-	-		-	-	-	-	-
GH_TC2	GH_TC2_WS_2022-04-04_N	2022-04-06		0.0056	0.00014	0.00017	0.0742	< 0.020	< 0.000050	0.02	0.00	000238	147	0.00013	< 0.10	0.00064
GH_TC2	GH_TC2_WS_2022-04-11_N	2022-04-12	-	-	-	-	-	-	-	-			-	-	-	-
GH_TC2	GH_TC2_WS_2022-04-18_N	2022-04-21	-	-	-	-	-	-	-	-		-	-	-	-	-
GH_TC2	GH_TC2_WS_2022-04-25_N	2022-04-27	-	-		-	-	-	-	-		-	-	-	-	-
GH_TC2	GH_TC2_WS_2022-05-02_N	2022-05-04	-	0.0038	0.00013	0.00018	0.0603	< 0.020	< 0.000050	0.018	0.00	000204	98.8	< 0.00010	< 0.10	0.00042
GH_TC2	GH_TC2_WS_2022-05-09_N	2022-05-11	-	-	-	-	-	-	-	-		-	-	-	-	-
GH_TC2	GH_TC2_WS_2022-05-16_N	2022-05-18	-	-	-	-	-	-	-	-		-	-	-	-	-
GH_TC2	GH_TC2_WS_2022-05-23_N	2022-05-27	-	-	-	-	-	-	-	-		-	-	-	-	-
GH_TC2	GH_TC2_WS_2022-05-30_N	2022-06-01	-	-	-	-	-	-	-	-		-		-	-	-
GH_TC2	GH_TC2_WS_2022-06-06_N	2022-06-08	-	0.0013	0.00016	0.00017	0.0626	< 0.020	< 0.000050	0.019	0.00	000165	118	< 0.00010	< 0.10	0.00032
GH_TC2	GH_TC2_WS_2022-06-13_N	2022-06-15		-	-	-	-	-	-	-			-	-	-	-
GH_TC2	GH_TC2_WS_2022-06-20_N	2022-06-22	-	-	-	-	-		-	-		-	-	-	-	-
GH_TC2	GH_TC2_WS_2022-06-27_N	2022-06-29	-	-	-	-	-	-	-	-		-	-	-	-	-
GH_TC2	GH_TC2_WS_2022-07-04_N	2022-07-06		0.0031	0.00014	0.00022	0.0771	< 0.020	< 0.000050	0.025	0.00	000217	127	< 0.00010	< 0.10	0.00041
GH_TC2	GH_TC2_WS_2022-07-11_N	2022-07-13	-	-			-	-	-	-		-	-		-	-
GH_TC2	GH_TC2_WS_2022-08-01_N	2022-08-03	-	0.0012	0.00025	0.00024	0.077	< 0.020	< 0.000050	0.025		000109	162	< 0.00010	< 0.10	0.00031
GH_TC2	GH_TC2_WS_SESMP_2022-08_N	2022-08-22	-	< 0.0010	0.0003	0.00024	0.0672	< 0.020	< 0.000050	0.028	0.00	000096	226	< 0.00010	< 0.10	0.00038
GH_TC2	GH_TC2_WS_2022-09-05_N	2022-09-08	-	-			-	-	-	-		-	-		-	-
GH_TC2	GH_TC2_WS_2022-09-14_N	2022-09-14	-	0.0017	0.0003	0.00021	0.0568	< 0.020	< 0.000050	0.03		000068	261	< 0.00010	< 0.10	0.00021
GH_TC2	GH_TC2_WS_2022-09-21_N	2022-09-21	-	< 0.0020	0.00031	0.00022	0.0601	< 0.040	< 0.000100	0.028		0.0100	234	< 0.00020	< 0.20	< 0.00040
GH_TC2	GH_TC2_WS_2022-09-22_N	2022-09-22	-	< 0.0020	0.00028	0.00022	0.061	< 0.040	< 0.000100	0.028	< (0.0100	234	< 0.00020	< 0.20	< 0.00040

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

											Dissolv	ed Metals							
Sample	Sample	Sample Date	Hardness	lon	Lead	Lithium	Magnesium	Manganese	Nickel	Potassium	Selenium	Silver	Sodium	Strontium	Thallium	TĪ.	Titanium	Uranium	Zinc
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
				Acute															
BC WQG FWAL			n/a	0.35	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Greenhills Operation							•	•				•		•	•	•			
GH_GH1	GH_GH1_WS_2022-06-21_N	2022-06-21	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GH_GH1	GH_GH1_WS_2022-06-22_N	2022-06-22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GH_GH1	GH_GH1_WS_2022-06-27_N	2022-06-27	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GH_GH1	GH_GH1_WS_2022-07-04_N	2022-07-04	-	-	-		-	-			-			-		-			
GH_GH1	GH_FOX3_WS_2022-07-04_N	2022-07-04	-	< 0.010	< 0.000050	0.0071	43.46833333	0.001146667	0.004653333	1.026666667	44.98333333		1.37	0.084066667	< 0.000010	< 0.00010	< 0.00030	0.002506667	0.0037
GH_GH1 GH_GH1	GH_GH1_WS_2022-07-11_N GH_GH1_WS_2022-08-01_N	2022-07-11 2022-08-04	-	< 0.010	< 0.000050	0.0159	136	0.00074	0.00942	2.27	139	< 0.000010	2.56	0.179	< 0.000010	< 0.00010	< 0.00030	0.00768	< 0.0010
GH_GH1	GH GH1 WS 2022-08-01 N GH GH1 WS 2022-09-05 N	2022-08-04	H÷.	< 0.010	< 0.000050	0.0159	146	0.00074	0.00942	2.21	172	< 0.000010	2.395	0.179	< 0.000010	< 0.00010	< 0.00030	0.00768	< 0.0010
GH_GH1	GH GH1 WS 2022-10-03 N	2022-10-03	H	< 0.010	< 0.000050	0.0178	169	0.00055	0.00876	2.213	190	< 0.000010	2.595	0.107	< 0.000010	< 0.00010	< 0.00030	0.00827	< 0.0010
GH GH1	GH GH1 WS 2022-11-07 N	2022-11-03	-	< 0.010	< 0.000050	0.0168	158	0.0006	0.00813	2.43	211	< 0.000010	2.47	0.192	< 0.000010	< 0.00010	< 0.00030	0.00805	< 0.0010
GH GH1	GH GH1 WS 2022-11-07 N CALC	2022-11-07	-	< 0.010	< 0.000050	0.0169	163	0.00051	0.00825	2.51	186	< 0.000010	2.61	0.132	< 0.000010	< 0.00010	< 0.00030	0.00833	< 0.0010
GH_GH1	GH_GH1_WS_2022-11-10_N	2022-11-10	-	< 0.010	< 0.000050	0.0174	152	0.00041	0.00792	2.59	218	< 0.000010	2.42	0.174	< 0.000010	< 0.00010	< 0.00030	0.0076	< 0.0010
GH_GH1	GH_FOX1_WS_2022-11-17_FD	2022-11-17	-	< 0.010	< 0.000050	0.012933333	105.0016667	0.000336667	0.005813333	1.78	145.6833333	< 0.000010	1.87	0.1304	< 0.000010	< 0.00010	< 0.00030	0.005456667	< 0.0010
GH_LC1	GH_LC1_WS_2022-06_06_N	2022-06-19	-	< 0.010	< 0.000050	0.0436	43.6	0.00673	0.0112	1.87	65.1	< 0.000010	10.4	0.278	< 0.000010	< 0.00010	< 0.00030	0.00303	< 0.0010
GH_LC1	GH_LC1_WS_2022-06-20_N	2022-06-20	-	< 0.010	< 0.000050	0.0277	29.8	0.00716	0.00616	1.51	30.3	< 0.000010	8.06	0.231	< 0.000010	< 0.00010	< 0.00030	0.00177	< 0.0010
GH_PC1	GH_PC1_WS_2022-08-01_N	2022-08-08	-	< 0.010	< 0.000050	0.0074	84.9	0.00052	0.00131	1.16	69.4	< 0.000010	0.826	0.139	0.000012	< 0.00010	< 0.00030	0.00555	0.006
GH_PC1	GH_PC1_WS_SESMP_2022-08_N	2022-08-17	-	< 0.010	< 0.000050	0.0075	80.6	0.00064	0.00121	1.05	80.1	< 0.000010	0.775	0.137	0.000011	< 0.00010	< 0.00030	0.00504	0.006
GH_PC1	GH_PC1_DS_WS_2022-08-24_NP	2022-08-24	-	< 0.010	< 0.000050	0.0078	81.1	0.00066	0.00127	1.07	72.5	< 0.000010	0.789	0.135	0.000012	< 0.00010	< 0.00030	0.00495	0.0073
GH_PC1	GH_PC1_DS_WS_2022-08-25_NP	2022-08-25	-	< 0.010	< 0.000050	0.0078	75.3	0.00059	0.00119	1.09	84.9	< 0.000010	0.804	0.136	0.000012	< 0.00010	< 0.00030	0.00502	0.008
GH_PC1	GH_PC1_DS_WS_2022-08-26_NP	2022-08-26	-	< 0.010	< 0.000050	0.0074	79.1	0.00051	0.00119	1.1	81.1	< 0.000010	0.797	0.131	0.000012	< 0.00010	< 0.00030	0.00493	0.0062
GH_PC1	GH_PC1_DS_WS_2022-08-27_NP	2022-08-27	-	< 0.010	< 0.000050	0.0072	74.1	0.0006	0.00109	0.996	67.7	< 0.000010	0.748	0.118	< 0.000010	< 0.00010	< 0.00030	0.00444	0.0051
GH_PC1	GH_PC1_DS_WS_2022-08-28_NP	2022-08-28	-	< 0.010	< 0.000050	0.0066	72.3	0.00053	0.00108	0.962 1.94	67.7 144	< 0.000010	0.727	0.117	< 0.000010	< 0.00010	< 0.00030	0.00427	0.005
GH_TC2	GH_TC2_WS_2022-01-03_N GH_TC2_WS_2022-02-07_N	2022-01-12	ļ -		< 0.000050	0.0291	132 130	0.00414	0.004	1.94		< 0.000010	9.89 10.7	0.586	< 0.000010	< 0.00010	< 0.00030	0.00556	< 0.0010
GH_TC2 GH_TC2	GH_TC2_WS_2022-02-07_N GH_TC2_WS_2022-03-07_N	2022-02-08	-	0.017 < 0.010	< 0.000050 < 0.000050	0.0292 0.0295	130	0.00622 0.00719	0.00473 0.00388	1.92	132 145	< 0.000010 < 0.000010	10.7	0.559 0.547	< 0.000010 < 0.000010	< 0.00010 0.00037	< 0.00030 < 0.00030	0.0059 0.00614	0.0044 < 0.0010
GH_TC2	GH_TC2_WS_2022-03-07_N GH_TC2_WS_2022-03-14_N	2022-03-06	<u> </u>	< 0.010	< 0.000050	0.0295	132	0.00719	0.00366	1.09	145	< 0.000010	10.4	0.547	< 0.000010	0.00037	< 0.00030	0.00614	< 0.0010
GH_TC2	GH TC2 WS 2022-03-14_N	2022-03-17	+ :-								-	-			-				
GH TC2	GH TC2 WS 2022-03-20 N	2022-03-23	H -				-	-		-	-	-			-		-	-	-
GH_TC2	GH TC2 WS 2022-03-21 N	2022-03-23	1				-	-		- :	-	 		-	-		-	-	
GH TC2	GH TC2 WS 2022-04-04 N	2022-04-06	-	0.016	0.00007	0.0189	77.2	0.00748	0.00287	1.68	68.2	< 0.000010	7.98	0.371	< 0.000010	0.00016	< 0.00030	0.00287	0.0033
GH TC2	GH TC2 WS 2022-04-11 N	2022-04-12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GH TC2	GH TC2 WS 2022-04-18 N	2022-04-21	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GH_TC2	GH_TC2_WS_2022-04-25_N	2022-04-27	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GH_TC2	GH_TC2_WS_2022-05-02_N	2022-05-04	-	0.011	< 0.000050	0.0135	53.7	0.0028	0.00182	1.35	52.4	< 0.000010	5.76	0.306	< 0.000010	< 0.00010	< 0.00030	0.00211	< 0.0010
GH_TC2	GH_TC2_WS_2022-05-09_N	2022-05-11	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GH_TC2	GH_TC2_WS_2022-05-16_N	2022-05-18		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GH_TC2	GH_TC2_WS_2022-05-23_N	2022-05-27	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GH_TC2	GH_TC2_WS_2022-05-30_N	2022-06-01	-	-	-	-	-	-	-	-		-		-	-	-	-	-	
GH_TC2	GH_TC2_WS_2022-06-06_N	2022-06-08	· -	< 0.010	< 0.000050	0.0225	75.7	0.00195	0.00363	1.43	86.4	< 0.000010	6.69	0.39	< 0.000010	< 0.00010	< 0.00030	0.00327	< 0.0010
GH_TC2	GH_TC2_WS_2022-06-13_N	2022-06-15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GH_TC2 GH_TC2	GH_TC2_WS_2022-06-20_N	2022-06-22		-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-
GH_TC2	GH_TC2_WS_2022-06-27_N GH_TC2_WS_2022-07-04_N	2022-06-29 2022-07-06		< 0.010	< 0.000050	0.0234	78.4	0.00338	0.00411	1.6	70.2	< 0.000010	7 11	- 04	< 0.000010	< 0.00010	< 0.00030	0.00311	< 0.0010
GH_TC2	GH_TC2_WS_2022-07-04_N GH_TC2_WS_2022-07-11_N	2022-07-06	<u> </u>	< 0.010	< 0.000050	0.0234	78.4	0.00338	0.00411	1.6	78.3	< 0.000010	7.11	0.4	~ 0.000010	~ 0.00010	< 0.00030	0.00311	< 0.0010
GH_TC2	GH_TC2_WS_2022-07-11_N GH_TC2_WS_2022-08-01_N	2022-07-13	+-	< 0.010	< 0.000050	0.0325	122	0.00345	0.0055	2.08	125	< 0.000010	7.63	0.474	< 0.000010	< 0.00010	< 0.00030	0.00516	< 0.0010
GH_TC2	GH TC2 WS SESMP 2022-08 N	2022-08-03	H÷.	< 0.010	< 0.000050	0.0325	190	0.00345	0.0033	2.06	201	< 0.000010	9.97	0.474	< 0.000010	< 0.00010	< 0.00030	0.00316	< 0.0010
GH_TC2	GH TC2 WS 2022-09-05 N	2022-08-22	H÷.	< 0.010	< 0.000050	0.046	190	0.00254	0.00736	2.1	201	< 0.000010	9.97	0.567	< 0.000010	< 0.00010	< 0.00030	0.00772	< 0.0010
GH_TC2	GH TC2 WS 2022-09-05 N	2022-09-14	H	< 0.010	< 0.000050	0.0524	188	0.00114	0.00788	2.92	250	< 0.000010	10.6	0.64	< 0.000010	< 0.00010	< 0.00030	0.00841	0.0011
GH_TC2	GH TC2 WS 2022-09-21 N	2022-09-21	-	< 0.020	< 0.000100	0.0324	177	0.00114	0.00758	2.59	187	< 0.000020	9.9	0.587	< 0.000010	< 0.00010	< 0.00060	0.00811	< 0.0020
GH TC2	GH TC2 WS 2022-09-22 N	2022-09-22	-	< 0.020	< 0.000100	0.0443	176	0.00098	0.00783	2.6	196	< 0.000020	9.98	0.587	< 0.000020	< 0.00020	< 0.00060	0.00809	< 0.0020
							· · · · · ·												

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

^d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

			[Dissolve	ed Metals						
Sample	Sample	Sample Date		Al minimum		Antimony	Arsenic	Barium	Beryllium	Bismuth	Boron			Calcium	Chromium	Cobalt	Copper
Location	ID	(mm/dd/yyyy)	mg/L	mg		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	m		mg/L	mg/L	mg/L	mg/L
				Acute	Chronic							Acute	Chronic				Acute Chronic
BC WQG FWAL			n/a	0.020-0.10 ^a	0.005-0.05 ^a	n/a	na	na	na	n/a	n/a	0.00004-0.0028	0.00002-0.00173 ^a	n/a	n/a	n/a	BLM ^e
Greenhills Operation																	
GH_TC2	GH_TC2_WS_2022-09-23_N	2022-09-23	-	0.00		0.00027	0.0002	0.0586	< 0.020	< 0.000050	0.026		00078	226	< 0.00010	< 0.10	0.00023
GH_TC2	GH_TC2_WS_2022-09-24_N	2022-09-24	-	< 0.0		< 0.00020	< 0.00020	0.0552	< 0.040	< 0.000100	0.023		00143	216	< 0.00020	< 0.20	< 0.00040
GH_TC2	GH_TC2_WS_2022-09-25_N	2022-09-25	-	< 0.0		< 0.00020	0.00028	0.0563	< 0.040	< 0.000100	0.025		0100	239	< 0.00020	< 0.20	< 0.00040
GH_TC2	GH_TC2_WS_2022-09-26_N	2022-09-26	-	< 0.0		< 0.00020	< 0.00020	0.0572	< 0.040	< 0.000100	0.025		0100	231	< 0.00020	< 0.20	< 0.00040
GH_TC2	GH_TC2_WS_2022-09-27_N	2022-09-27	-	< 0.0		0.00031	0.00021	0.0674	< 0.020	< 0.000050	0.026		00074	254	< 0.00010	< 0.10	0.00029
GH_TC2	GH_TC2_WS_2022-10-03_N	2022-10-05	-	0.00		0.00027	0.00022	0.0672	< 0.020	< 0.000050	0.025		00087	247	< 0.00010	< 0.10	0.00023
GH_TC2	GH_TC2_WS_2022-11-07_N	2022-11-09	-	< 0.0		0.00022	0.00021	0.0671	< 0.020	< 0.000050	0.022		00122	239	< 0.00010	< 0.10	< 0.00020
GH_WC1	GH_FOX1_WS_2022-01-03_N	2022-01-11	-	< 0.0		0.00072	0.00016	0.04049333	< 0.020	< 0.000050	0.019333		33E-05	211	< 0.00010	0.000147	0.000836667
GH_WC1	GH_FOX2_WS_2022-02-07_N	2022-02-07	-	< 0.0		0.00076333	< 0.00020	0.04163333	< 0.040	< 0.000100	0.019333		33E-05	201.4	< 0.00020	< 0.00020	< 0.00040
GH_WC1	GH_FOX2_WS_2022-03-07_N	2022-03-09	-	0.00		0.00068333	< 0.00020	0.04063333	< 0.040	< 0.000100	0.018667		00225	205	< 0.00020	< 0.20	0.000366667
GH_WC1	GH_WC1_WS_2022-03-14_N	2022-03-16	-	0.00		0.00092	0.00022	0.0627	< 0.040	< 0.000100	0.025		00214	296	< 0.00020	< 0.20	< 0.00040
GH_WC1	GH_WC1_WS_2022-03-21_N	2022-03-23	-	0.00		0.00091	0.00016	0.06 0.0649	< 0.020 < 0.020	< 0.000050	0.023		00313	267	< 0.00010	0.00012	0.00034
GH_WC1	GH_WC1_WS_2022-03-28_N	2022-03-30	-	0.00		0.00065	0.00016			< 0.000050	0.018		0032	169	< 0.00010	0.00013	0.00047
GH_WC1 GH_WC1	GH_WC1_WS_2022-04-04_N GH_WC1_WS_2022-04-11_N	2022-04-05	-	0.00		0.00068	0.00017	0.0668	< 0.020	< 0.000050	0.017 0.019		00365	182	< 0.00010	0.00017	0.00087
GH_WC1 GH_WC1	GH_WC1_WS_2022-04-11_N GH_WC1_WS_2022-04-18_N	2022-04-13	-	0.00		0.00082	0.0002 0.00016	0.0711 0.0663	< 0.020 < 0.020	< 0.000050 < 0.000050	0.019		00377	213	< 0.00010 < 0.00010	0.0002	0.00062
GH_WC1	GH_WC1_WS_2022-04-18_N GH_WC1_WS_2022-04-25_N	2022-04-20	-	0.00		0.00088	0.00016	0.0663	< 0.020	< 0.000050	0.02		00434	238	< 0.00010	0.00019	0.00037
GH_WC1	GH_WC1_WS_2022-04-25_N GH_WC1_WS_2022-05-02_N	2022-04-26	-	0.0		0.00065	0.00017	0.0691	< 0.020	< 0.000050	0.021		10037	249	< 0.00010	0.00017	0.00046
GH_WC1	GH_WC1_WS_2022-05-02_N GH_WC1_WS_2022-05-09_N	2022-05-03	-	0.00		0.0009	0.00019	0.0714	< 0.020	< 0.000050	0.022		00368	254	< 0.00010	0.00019	0.00041
GH_WC1	GH_WC1_W3_2022-05-09_N GH_WC1_WS_2022-05-16_N	2022-05-10	-	0.00		0.0009	0.00019	0.077	< 0.020	< 0.000050	0.024		00332	316	< 0.00010	0.00021	0.00064
GH_WC1	GH_WC1_WS_2022-05-16_N GH_WC1_WS_2022-05-23_N	2022-05-17		< 0.0		0.00103	< 0.0002	0.0714	< 0.020	< 0.000030	0.023	0.00		305	< 0.00010	0.00022	0.00042
GH_WC1	GH WC1 WS 2022-05-25 N	2022-05-31		0.0		0.00112	0.00020	0.0695	< 0.040	< 0.000100	0.023	0.00		308	< 0.00020	0.00023	0.00046
GH_WC1	GH WC1 WS 2022-06-06 N	2022-05-07		0.00		0.00118	< 0.0002	0.0033	< 0.040	< 0.000100	0.027		00226	314	< 0.00020	0.00024	0.00072
GH WC1	GH WC1 WS 2022-06-05 N	2022-06-14	1	< 0.0		0.00095	0.00020	0.0717	< 0.040	< 0.000100	0.025		00355	262	< 0.00020	0.00023	0.00047
GH_WC1	GH WC1 WS 2022-06-13 N	2022-06-14] 	< 0.0		0.00093	< 0.00021	0.0709	< 0.020	< 0.000030	0.025		00399	232	< 0.00010	< 0.20	< 0.00044
GH_WC1	GH WC1 WS 2022-06-27 N	2022-06-29	 	0.00		0.00031	0.00020	0.0714	< 0.040	< 0.000100	0.020		00399	291	< 0.00020	0.0002	0.00040
GH WC1	GH FOX2 WS 2022-07-04 N	2022-07-05		0.0019		0.00075333	0.00019333	0.05347	< 0.040	< 0.000100	0.020667	0.00		180.4	< 0.00010	0.00017	0.00045
GH_WC1	GH WC1 WS 2022-07-04_N	2022-07-12		< 0.0		0.00128	< 0.00013555	0.0655	< 0.100	< 0.000100	< 0.050		00324	287	< 0.00050	< 0.50	< 0.001006667
GH_WC1	GH WC1 WS 2022-07-11 N	2022-07-12	 	0.00		0.00126	< 0.00050	0.0589	< 0.100	< 0.000250	< 0.050		0250	337	< 0.00050	< 0.50	< 0.00100
GH WC1	GH FOX2 WS 2022-09-05 N	2022-09-07	 	< 0.0		0.00103667	0.00017333	0.0345	< 0.040	< 0.000200	0.024		0100	231.4	< 0.00020	0.000233	< 0.00100
GH WC1	GH WC1 WS 2022-09-12 N	2022-09-12		< 0.0		0.00103007	0.00017333	0.0505	< 0.040	< 0.000100	0.024		00128	361	< 0.00020	0.000233	< 0.00040
GH_WC1	GH WC1 WS 2022-10-03 N	2022-10-04	 	< 0.0		0.00134	< 0.00020	0.0531	< 0.040	< 0.000100	0.03		0100	390	< 0.00020	0.00031	< 0.00040
GH_WC1	GH FOX2 WS 2022-11-07 N	2022-10-04	 	< 0.0		0.00083	0.00013667		< 0.040	< 0.000100	0.019667		67E-05	225	< 0.00020		0.000353333

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

^d Guideline varies with pH

e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

			Γ								Dissolve	ed Metals							
Sample	Sample	Sample Date	_	u <u>ol</u>	Lead	Lithium	Magnesium	Manganese	Nickel	Potassium	Selenium	Silver	Sodium	Strontium	Thallium	FI.	Titanium	Uranium	Zinc
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
				Acute															
BC WQG FWAL			n/a	0.35	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Greenhills Operation																			
GH_TC2	GH_TC2_WS_2022-09-23_N	2022-09-23	-	< 0.010	< 0.000050	0.0465	174	0.00064	0.00713	2.56	224	< 0.000010	9.8	0.585	< 0.000010	< 0.00010	< 0.00030	0.0079	< 0.0010
GH_TC2	GH_TC2_WS_2022-09-24_N	2022-09-24	-	< 0.020	< 0.000100	0.0376	160	0.00076	0.007	2.34	154	< 0.000020	8.72	0.509	< 0.000020	< 0.00020	< 0.00060	0.00743	< 0.0020
GH_TC2	GH_TC2_WS_2022-09-25_N	2022-09-25	-	< 0.020	< 0.000100	0.0407	173	0.00091	0.00754	2.45	168	< 0.000020	9.67	0.558	< 0.000020	< 0.00020	< 0.00060	0.00826	< 0.0020
GH_TC2	GH_TC2_WS_2022-09-26_N	2022-09-26	-	< 0.020	< 0.000100	0.0397	167	0.00077	0.00802	2.4	167	< 0.000020	9.31	0.533	< 0.000020	< 0.00020	< 0.00060	0.00826	< 0.0020
GH_TC2	GH_TC2_WS_2022-09-27_N	2022-09-27	-	< 0.010	< 0.000050	0.0369	194	0.0008	0.00885	2.91	199	< 0.000010	11.1	0.645	< 0.000010	< 0.00010	< 0.00030	0.009	< 0.0010
GH_TC2	GH_TC2_WS_2022-10-03_N	2022-10-05	-	< 0.010	< 0.000050	0.0422	179	0.00293	0.00772	2.69	226	< 0.000010	10	0.56	< 0.000010	< 0.00010	< 0.00030	0.00749	< 0.0010
GH_TC2	GH_TC2_WS_2022-11-07_N	2022-11-09	-	< 0.010	< 0.000050	0.042	171	0.00333	0.00875	2.35	128	< 0.000010	9.69	0.681	< 0.000010	< 0.00010	< 0.00030	0.00849	< 0.0010
GH_WC1	GH_FOX1_WS_2022-01-03_N	2022-01-11	-	< 0.010	< 0.000050	0.090666667	142.0033	0.00063	0.039766667	3.41	173.68333333		16.63766667	0.5824	1.53333E-05	< 0.00010	< 0.00030	0.009603333	0.0016
GH_WC1	GH_FOX2_WS_2022-02-07_N	2022-02-07	- 1	< 0.020	< 0.000100		141.6683333	0.000533333	0.0406	3.363333333	172.35		16.58333333		< 0.000020	< 0.00020	< 0.00060	0.00957	< 0.0020
GH_WC1	GH_FOX2_WS_2022-03-07_N	2022-03-09	- 1	< 0.020	< 0.000100	0.083666667	136.6684333	0.000426667	0.036966667	3.18	156.35	< 0.000020		0.560403333	< 0.000020	< 0.00020	< 0.00060	0.009336667	< 0.0020
GH_WC1	GH_WC1_WS_2022-03-14_N	2022-03-16	- 1	< 0.020	< 0.000100	0.116	186	0.00058	0.0502	4.44	215	< 0.000020	21.9	0.797	< 0.000020	< 0.00020	< 0.00060	0.0119	< 0.0020
GH_WC1 GH_WC1	GH_WC1_WS_2022-03-21_N GH WC1 WS 2022-03-28 N	2022-03-23		< 0.010 < 0.010	< 0.000050 < 0.000050	0.097 0.0656	177 89.9	0.00062 0.00105	0.046 0.0198	4.19 2.81	215 124	< 0.000010 < 0.000010	21.4 12.3	0.829 0.522	0.000014 < 0.000010	< 0.00010 < 0.00010	< 0.00030 < 0.00030	0.013 0.00557	0.0027 0.0019
			- 1																
GH_WC1 GH_WC1	GH_WC1_WS_2022-04-04_N	2022-04-05		< 0.010	< 0.000050 0.000063	0.0774	106	0.00053	0.0247	2.94	140	< 0.000010	14.3	0.537	< 0.000010	< 0.00010	< 0.00030	0.00683	0.0019
GH_WC1	GH_WC1_WS_2022-04-11_N GH_WC1_WS_2022-04-18_N	2022-04-13 2022-04-20	- 1	< 0.010 < 0.010	< 0.000050	0.0917 0.11	129 147	0.0007 0.00047	0.0322	3.48 3.74	192 222	< 0.000010 < 0.000010	16.8 18.2	0.623 0.675	0.000011 0.000012	< 0.00010 < 0.00010	< 0.00030 < 0.00030	0.00843	0.0026
GH_WC1	GH_WC1_WS_2022-04-18_N GH_WC1_WS_2022-04-25_N	2022-04-20	-	< 0.010	< 0.000050	0.0991	136	0.00047	0.039	3.74	209	< 0.000010	17.6	0.675	0.000012	< 0.00010	< 0.00030	0.0104	0.0022
GH_WC1	GH_WC1_WS_2022-04-25_N GH_WC1_WS_2022-05-02_N	2022-04-26		< 0.010	< 0.000050	0.106	154	0.00055	0.0374	4.2	250	< 0.000010	18.3	0.037	0.000012	< 0.00010	< 0.00030	0.0108	0.0023
GH_WC1	GH_WC1_WS_2022-05-02_N GH_WC1_WS_2022-05-09_N	2022-05-03	-	< 0.010	< 0.000050	0.106	157	0.00055	0.0464	4.27	242	< 0.000010	19.3	0.735	0.000015	0.00010	< 0.00030	0.0108	0.001
GH_WC1	GH WC1 WS 2022-05-09 N	2022-05-10		< 0.010	< 0.000050	0.114	201	0.00093	0.0494	4.59	291	< 0.000010	22.1	0.804	0.000014	< 0.00013	< 0.00030	0.0111	0.0029
GH_WC1	GH_WC1_WS_2022-05-16_N GH_WC1_WS_2022-05-23_N	2022-05-17	- 1	< 0.010	< 0.000030	0.122	218	0.0008	0.0045	5.09	292	< 0.000010	22.1	0.804	< 0.000018	< 0.00010	< 0.00030	0.0134	< 0.001
GH_WC1	GH_WC1_WS_2022-05-25_N GH_WC1_WS_2022-05-30_N	2022-05-25		< 0.020	< 0.000100	0.154	210	0.0008	0.0734	5.09	330	< 0.000020	23.5	0.757	0.000020	< 0.00020	< 0.00060	0.014	0.0020
GH WC1	GH WC1 WS 2022-06-06 N	2022-06-07		< 0.020	< 0.000100	0.154	239	0.00079	0.0777	5.66	318	< 0.000020	23.1	0.868	< 0.000020	< 0.00020	< 0.00060	0.0161	< 0.0020
GH_WC1	GH WC1 WS 2022-06-00 N	2022-06-14	H	< 0.020	< 0.000100	0.113	194	0.00000	0.0575	4.72	292	< 0.000020	21.3	0.738	0.000018	< 0.00020	< 0.00030	0.0128	0.0014
GH WC1	GH_WC1_W3_2022-00-13_N GH_WC1_WS_2022-06-20_N	2022-06-14		< 0.010	< 0.000030	0.113	158	0.00064	0.0373	3.69	203	< 0.000010	16	0.736	< 0.000018	< 0.00010	< 0.00060	0.0128	< 0.0014
GH WC1	GH WC1 WS 2022-06-27 N	2022-06-29	 	< 0.010	< 0.000050	0.14	204	0.00072	0.0631	5	299	< 0.000020	21.3	0.744	0.000015	< 0.00020	< 0.00030	0.0136	0.0017
GH WC1	GH FOX2 WS 2022-07-04 N	2022-00-29	 	< 0.010	< 0.000030	0.073	122.0016667	0.00072	0.0031	3.103333333	176.35	< 0.000010		0.4754	< 0.000013	< 0.00010	< 0.00060		0.0017
GH WC1	GH WC1 WS 2022-07-11 N	2022-07-12	 	< 0.050	< 0.000100	0.159	222	0.00007	0.0813	5.38	298	< 0.000050	23.3	0.793	< 0.000050	< 0.00050	< 0.00150	0.0167	< 0.0050
GH WC1	GH_WC1_WS_2022-07-11_N GH_WC1_WS_2022-08-01_N	2022-07-12	 	< 0.050	< 0.000250	0.192	269	0.00104	0.0013	6.53	371	< 0.000050	26.3	0.795	< 0.000050	< 0.00050	< 0.00150	0.0182	0.0065
GH WC1	GH FOX2 WS 2022-09-05 N	2022-09-07	 	< 0.020	< 0.000200	0.132		0.000676667	0.0685	4.603333333	252.6833333	< 0.000030			2.13333E-05	< 0.00030	< 0.00160	0.01297	< 0.0020
GH WC1	GH_WC1_WS_2022-09-12_N	2022-09-12	 	< 0.020	< 0.000100	0.208	308	0.00096	0.101	6.77	460	< 0.000020	28.8	0.907	0.000029	< 0.00020	< 0.00060	0.0203	< 0.0020
GH WC1	GH WC1 WS 2022-10-03 N	2022-10-04	 	< 0.020	< 0.000100	0.205	332	0.00103	0.1	7.23	424	< 0.000020	30.4	0.956	0.000027	< 0.00020	< 0.00060	0.0196	< 0.0020
GH WC1	GH FOX2 WS 2022-11-07 N	2022-10-04	 	< 0.010	< 0.000050	0.122666667	178.335	0.000643333		3.86	176.6833333		17.88333333		0.000027	< 0.00020	< 0.00030	0.011336667	< 0.0020

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

									Dissolve	d Metals						
Sample	Sample	Sample Date	ardness	Numinum	Antimony	Vrsenic	Sarium	Seryllium	Sismuth	Soron		Sadmium	Salcium	Chromium	Cobalt	Copper
Location	ID	(mm/dd/yyyy		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	m	ig/L	mg/L	mg/L	mg/L	mg/L
				Acute			•				Acute	Chronic				Acute
BC WQG FWAL			n/a	0.020-0.10 ^a 0.005-0.05 ^a	n/a	na	na	na	n/a	n/a	0.00004-0.0028 ^a	0.00002-0.00173 ^a	n/a	n/a	n/a	BLM ^e
Line Creek Operation																
LC_DCDS	LC_DCDS_WS_Q1-2022_N	2022-01-05		0.0048	0.00052	0.00029	0.237	< 0.020	-	-		00258	127	< 0.00010	-	< 0.00020
LC_DCDS	LC_DCDS_WS_2022-01-10_N	2022-01-12		0.0023	0.00052	0.00027	0.226	< 0.020 < 0.020	< 0.000050	< 0.010		00247	123 136	< 0.00010		0.00022
LC_DCDS	LC DCDS WS 2022-01-17 N	2022-01-19		0.0019	0.00057	0.00027 0.00026	0.253 0.225	< 0.020	< 0.000050 < 0.000050	< 0.010		00281	127	< 0.00010 < 0.00010	< 0.00010	< 0.00020
LC_DCDS LC_DCDS	LC DCDS WS 2022-01-24 N LC DCDS WS 2022-01-31 N	2022-01-26	+-	0.0016	0.00057	0.00028	0.225	< 0.020	< 0.000050	< 0.010 < 0.010		00257	135	< 0.00010	< 0.00010	0.00026
LC_DCDS	LC DCDS WS 2022-01-31 N	2022-02-01	+-	0.0027	0.00057	0.00028	0.252	< 0.020	< 0.000050	< 0.010		00274	149	< 0.00010	< 0.00010	0.00026
LC_DCDS	LC DCDS WS 2022-02-06 N	2022-02-09		0.0022 0.0027	0.00058	0.00029	0.232	< 0.020	< 0.000050	< 0.010		00271 00271	138	< 0.00010	< 0.00010	0.00024
LC_DCDS	LC DCDS WS 2022-02-14 N	2022-02-13			0.00055	0.0003	0.238	< 0.020	< 0.000050	< 0.010			141	< 0.00010	< 0.00010	0.00029
LC_DCDS	LC DCDS WS 2022-02-21 N	2022-02-22	+ -	0.0024 0.0021	0.00057	0.00028	0.240	< 0.020	< 0.000050	0.010		00243 00221	131	< 0.00010	< 0.00010	< 0.0002
LC DCDS	LC DCDS WS 2022-03-07 N	2022-03-08	+ -	0.0021	0.00055	0.0003	0.25	< 0.020	< 0.000050	< 0.010		00251	136	0.00013	< 0.00010	< 0.00020
LC DCDS	LC DCDS WS 2022-03-07 N	2022-03-15		0.0022	0.00056	0.00029	0.251	< 0.020	< 0.000050	< 0.010		00261	132	< 0.00010	< 0.00010	0.00020
LC DCDS	LC DCDS WS 2022-03-21 N	2022-03-23		0.0021	0.00056	0.00031	0.223	< 0.020	< 0.000050	< 0.010		00254	150	< 0.00010	< 0.10	< 0.00020
LC DCDS	LC DCDS WS 2022-03-28 N	2022-03-30		0.0019	0.0003	0.00019	0.06705	< 0.020	< 0.000050	< 0.010		00725	35.73	< 0.00010		0.00025
LC DCDS	LC DCDS WS Q2-2022 N	2022-04-06	١.	0.00223	0.00051	0.00026	0.132	< 0.020	< 0.000050	< 0.010		00153	73.6	< 0.00010	< 0.10	0.000233
LC DCDS	LC DCDS WS 2022-04-11 N	2022-04-12		0.0033	0.00048	0.00029	0.143	< 0.020	< 0.000050	< 0.010		00138	63.1	< 0.00010	< 0.10	0.00032
LC DCDS	LC DCDS WS 2022-04-18 N	2022-04-17		0.0026	0.00052	0.00029	0.142	< 0.020	< 0.000050	< 0.010		00165	77	< 0.00010	< 0.10	0.00027
LC DCDS	LC DCDS WS 2022-04-25 N	2022-04-24	-	0.0036	0.00057	0.0003	0.125	< 0.020	< 0.000050	< 0.010		00173	75.2	< 0.00010	< 0.10	0.00027
LC DCDS	LC DCDS MNT 2022-05-03 N	2022-05-03		0.0042	0.00062	0.0003	0.115	< 0.000020	< 0.000050	< 0.010		00171	66.2	< 0.00010	< 0.00010	0.0004
LC DCDS	LC DCDS WS 2022-05-09 N	2022-05-11	-	0.0034	0.00065	0.0003	0.125	< 0.020	< 0.000050	< 0.010		00017	70.8	< 0.00010	< 0.10	0.00031
LC DCDS	LC CC3 WS 2022-05-16 N	2022-05-17	-	0.01385	0.000645	0.00033	0.135	< 0.020	< 0.000050	< 0.010		01835	49.62	0.000145	0.00011	0.000545
LC_DCDS	LC_DCDS_WS_2022-05-23_N	2022-05-24	-	0.0032	0.00063	0.00028	0.128	< 0.020	< 0.000050	< 0.010		00173	73.4	0.00011	< 0.10	0.00026
LC_DCDS	LC_CC3_WS_2022-05-30_N	2022-05-31	-	0.0036	0.000655	0.000315	0.125	< 0.020	< 0.000050	0.01		01795	68.8	< 0.00010	< 0.10	0.00033
LC_DCDS	LC_DCDS_MNT_2022-06-07_N	2022-06-07	-	0.0033	0.00066	0.0003	0.12	< 0.020	< 0.000050	< 0.010	0.00	00182	71.8	< 0.00010	< 0.10	0.00045
LC_DCDS	LC_DCDS_WS_2022-06-13_N	2022-06-14	-	0.0026	0.00062	0.00028	0.116	< 0.020	< 0.000050	< 0.010	0.00	00204	83.2	< 0.00010	< 0.10	0.00029
LC_DCDS	LC_DCDS_WS_2022-06-17_N	2022-06-17		-	-	-	-	-	-	-			-	-	-	-
LC_DCDS	LC_DCDS_WS_2022-06-17_NP1	2022-06-17		-	-	-	-	-	-	-		-		-	-	-
LC_DCDS	LC_DCDS_WS_2022-06-19_N	2022-06-19		-	-	-	-	-	-	-			-	-	-	-
LC_DCDS	LC_CC3_WS_2022-06-20_N	2022-06-21		0.00455	0.00082	0.000325	0.1105	< 0.020	< 0.000050	0.01		00153	57.65	< 0.00010	0.000165	0.000405
LC_DCDS	LC_DCDS_WS_2022-06-27_N	2022-06-28		0.0038	0.0007	0.00037	0.134	< 0.020	< 0.000050	< 0.010	0.00	00199	67.7	< 0.00010		0.00046
LC_DCDS	LC_DCDS_WS_Q3-2022_N	2022-07-07		0.0037	0.00063	0.00028	0.15	< 0.020	< 0.000050	0.011		00196	82.4	< 0.00010	< 0.10	0.00031
LC_DCDS	LC_CC3_WS_2022-07-11_N	2022-07-12		0.00305	0.000665	0.000315	0.1575	< 0.020	< 0.000050	0.0115		02125	90.5	< 0.00010		0.00043
LC_DCDS	LC_DCDS_WS_2022-07-18_N	2022-07-18		0.003	0.00074	0.00036	0.159	< 0.020	< 0.000050	0.013		00246	98.2	< 0.00010	< 0.10	0.00188
LC_DCDS	LC_DCDS_WS_2022-07-25_N	2022-07-25		0.0028	0.0008	0.00034	0.162	< 0.020	< 0.000050	0.012		00226	97.9	0.0001	0.00011	0.00038
LC_DCDS	LC_CC3_MNT_2022-08-02_N	2022-08-02	-	0.0024	0.000675	0.000355	0.1775	< 0.020	< 0.000050	0.012		002655	103.5	< 0.00010	< 0.10	0.00041
LC_DCDS LC DCDS	LC_DCDS_WS_2022-08-08_N	2022-08-09	-	0.0073	0.00065	0.00029	0.188	< 0.020	< 0.000050	0.011		00246	113	0.00013	< 0.10	0.00023
	LC_DCDS_WS_SESMP_2022-08_N	2022-08-18	 -	0.002	0.00067	0.00031 0.00034	0.197	< 0.020	< 0.000050	0.011		00302	126	< 0.00010	< 0.10	0.00042
LC_DCDS LC DCDS	LC_DCDS_WS_2022-08-22_N LC_DCDS_WS_2022-08-29_N	2022-08-23	1	0.0071	0.00066	0.00034	0.196 0.187	< 0.020 < 0.020	< 0.000050 < 0.000050	0.012		00296	61.53	0.00075 < 0.00010	0.0001 < 0.10	0.0003
LC_DCDS	LC_DCDS_WS_2022-08-29_N LC_DCDS_MNT_2022-09-06_N	2022-08-30	<u> </u>	0.005		0.0003	0.187	< 0.020	< 0.000050			00301	138		< 0.10	0.00024
LC_DCDS	LC_DCDS_MNT_2022-09-06_N LC_DCDS_WS_2022-09-12_N	2022-09-06		< 0.0010	0.0007	0.00037	0.206	< 0.020	< 0.000050	0.012 0.011		00019	138	< 0.00010 < 0.00010		0.00026
LC_DCDS	LC DCDS_WS_2022-09-12_N LC DCDS_WS_2022-09-19_N	2022-09-13	+ :-	0.0023	0.00061	0.00029	0.242	< 0.020	< 0.000050	0.011		00312	134	< 0.00010		0.00024
LC_DCDS	LC DCDS_WS_2022-09-19_N	2022-09-20	+ -	0.002	0.00062	0.00032	0.214	< 0.020	< 0.000050	0.011		00293	76.53	< 0.00010	< 0.10	0.00061 0.00022
LC_DCDS	MORTALITY PKG 8	2022-10-04	+ :-	0.002 < 0.0010	0.0007	0.00033	0.234	< 0.020	< 0.000050	0.011		00354	143	< 0.00010		0.00022
LC DCDS	LC DCDS MORTALITY 2022-10-05 N	2022-10-04	+ -	0.0010	0.00065	0.00036	0.220	< 0.020	< 0.000050	0.011		00322	142	0.00014	< 0.10	< 0.00020
LC DCDS	LC DCDS MORTALITY 2022-10-05 N	2022-10-05	+ -	0.0016	0.00065	0.00037	0.235	< 0.020	< 0.000050	0.011		00322	146	< 0.00014	< 0.10	0.00025
LC DCDS	LC DCDS MORTALITY 2022-10-00 N	2022-10-07	٠.	< 0.0015	0.00061	0.00037	0.199	< 0.020	< 0.000050	0.011		00339	142	< 0.00010	< 0.10	< 0.00025
LC DCDS	LC DCDS WS 2022-10-07_N	2022-10-01	-	0.0010	0.00065	0.00027	0.226	< 0.020	< 0.000050	0.011		00324	150	< 0.00010		0.00020
LC DCDS	LC CC3 WS 2022-10-17 N	2022-10-18	 -	0.0014	0.000635	0.000315	0.224	< 0.020	< 0.000050	0.01		00324	154	< 0.00010	< 0.10	< 0.00021
LC DCDS	LC DCDS WS 2022-10-24 N	2022-10-25	-	0.002	0.00062	0.00031	0.227	< 0.020	< 0.000050	0.011		00322	154	< 0.00010	< 0.10	< 0.00020
LC DCDS	LC SPDC WS 2022-10-31 N	2022-11-01	+ -		0.00064	0.00035	0.212	< 0.020	< 0.000050	0.01			150	< 0.00010		0.00033
LC_DCDS	LC_SPDC_WS_2022-10-31_N	2022-11-01	-	0.0015	0.00064	0.00035	0.212	< 0.020	< 0.000050	0.01	0.00	00358	150	< 0.00010	< 0.10	0.0003

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

										Dissolv	ed Metals							
Sample	Sample	Sample Date	Hardness	Lead	Lithium	Magnesium	Manganese	Nickel	Potassium	Selenium	Silver	Sodium	Strontium	Thallium	Tin	Titanium	Uranium	Zinc
Location	ID	(mm/dd/yyyy) ı	ng/L mg	L mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
			Acute															
BC WQG FWAL			n/a 0.3	5 n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
ine Creek Operation																		
LC_DCDS	LC_DCDS_WS_Q1-2022_N	2022-01-05	- < 0.0		0.04	47.5	0.00126	0.0126	2.72	84.3	< 0.000010	8.58	0.221	0.000017		< 0.00030	0.0028	0.0092
LC_DCDS	LC_DCDS_WS_2022-01-10_N	2022-01-12	- < 0.0		0.0399	46.7	0.00168	0.0116	2.65	71.9	< 0.000010	8.73	0.225	0.000016	0.00019	< 0.00030	0.00261	0.0181
LC_DCDS	LC_DCDS_WS_2022-01-17_N	2022-01-19	- < 0.0		0.0428	52.8	0.00126	0.0124	2.98	79.1	< 0.000010	9.64	0.25	0.000016	< 0.00010	< 0.00030	0.0029	0.0096
LC_DCDS LC_DCDS	LC DCDS WS 2022-01-24 N LC DCDS WS 2022-01-31 N	2022-01-26	- < 0.0 - 0.0		0.0386	48.4 52.2	0.00132	0.0115 0.0122	2.74	78 82.4	< 0.000010 < 0.000010	8.36 8.95	0.215 0.234	0.000016 0.000015	< 0.00010 < 0.00010	< 0.00030 < 0.00030	0.00289	0.0089 0.0096
LC_DCDS	LC_DCDS_WS_2022-01-31_N LC_DCDS_MNT_2022-02-08_N	2022-02-01	- < 0.0			54.9	0.00133	0.0122	2.86	82.4 85.4	< 0.000010	8.95	0.234	0.000015	< 0.00010	< 0.00030	0.00308	0.0096
LC DCDS	LC DCDS WS 2022-02-06 N	2022-02-05	- < 0.0			50.1	0.00132	0.012	2.9	78.5	< 0.000010	8.64	0.230	0.000016	0.00059	< 0.00030	0.00231	0.0099
LC DCDS	LC DCDS WS 2022-02-14 N	2022-02-13	- < 0.0			52.4	0.00140	0.0110	2.84	90	< 0.000010	8.55	0.219	0.000016	< 0.00033	< 0.00030	0.00285	0.0033
LC DCDS	LC DCDS WS 2022-02-28 N	2022-03-01	- < 0.0			48.6	0.00117	0.0097	3.21	74.2	< 0.000010	8.36	0.223	0.000017	< 0.00010	< 0.00030	0.00292	0.0087
LC DCDS	LC DCDS WS 2022-03-07 N	2022-03-08	- < 0.0			51.7	0.00096	0.0103	2.92	85.6	< 0.000010	8.51	0.222	0.000015	< 0.00010	< 0.00030	0.00317	0.0086
LC DCDS	LC DCDS WS 2022-03-14 N	2022-03-15	- < 0.0		0.0379	51.4	0.00124	0.0109	3.02	78	< 0.000010	8.45	0.228	0.000016	< 0.00010	< 0.00030	0.00325	0.008
LC_DCDS	LC_DCDS_WS_2022-03-21_N	2022-03-23	- < 0.0		0.0379	55.9	0.00108	0.00994	2.82	78.8	< 0.000010	7.74	0.22	0.000015	< 0.00010	< 0.00030	0.00295	0.0074
LC_DCDS	LC_DCDS_WS_2022-03-28_N	2022-03-30	- < 0.0	10 < 0.000050	0.0117	12.9525	0.00177	0.003415	1.055	16.225	< 0.000010	1.965	0.0541	0.0000105	< 0.00010	< 0.00030	0.000755	0.0033
LC_DCDS	LC_DCDS_WS_Q2-2022_N	2022-04-06	- < 0.0		0.0198	28.4	0.00108	0.00705	1.91	33.3	< 0.000010	3.82	0.11	0.000012	< 0.00010	< 0.00030	0.00152	0.0067
LC_DCDS	LC_DCDS_WS_2022-04-11_N	2022-04-12	- < 0.0		0.0179	25.6	0.00066	0.00663	1.74	30	< 0.000010	3.18	0.0966	< 0.000010	< 0.00010	< 0.00030	0.0013	0.0052
LC_DCDS	LC_DCDS_WS_2022-04-18_N	2022-04-17	- < 0.0			32	0.00066	0.00778	2.08	41	< 0.000010	4.1	0.123	0.000011	< 0.00010	< 0.00030	0.00172	0.0058
LC_DCDS	LC_DCDS_WS_2022-04-25_N	2022-04-24	- < 0.0	10 < 0.000050	0.0202	28.6	0.00087	0.00827	1.97	39.7	< 0.000010	3.65	0.108	0.000015	< 0.00010	< 0.00030	0.00166	0.0069
LC_DCDS	LC_DCDS_MNT_2022-05-03_N	2022-05-03	- < 0.0			25	0.00121	0.00807	1.92	35.1	< 0.000010	2.72	0.099	0.000014	< 0.00010	< 0.00030	0.00133	0.0073
LC_DCDS	LC_DCDS_WS_2022-05-09_N	2022-05-11	- < 0.0		0.0166	27.7	0.00115	0.00892	1.81	36.6	< 0.000010	3.24	0.106	0.000014	< 0.00010	< 0.00030	0.00139	0.0067
LC_DCDS	LC_CC3_WS_2022-05-16_N	2022-05-17	- 0.02		0.01845	19.30166667	0.00257	0.009295	1.456666667	39.7	< 0.000010	2.346666667	0.1175	0.000014	0.0002	0.000435	0.00165	0.00705
LC_DCDS	LC_DCDS_WS_2022-05-23_N	2022-05-24	- < 0.0		0.0198	27.9	0.0011	0.0091	1.98	43.8	< 0.000010	3.42	0.119	0.000014	< 0.00010	< 0.00030	0.00144	0.0076
LC_DCDS	LC_CC3_WS_2022-05-30_N	2022-05-31	- < 0.0		0.0167	25.8	0.00162	0.00939	2.025	38.7	< 0.000010	2.765	0.102	0.0000115	< 0.00010	< 0.00030	0.001435	0.0066
LC_DCDS	LC_DCDS_MNT_2022-06-07_N	2022-06-07	- < 0.0		0.0174	28.3	0.00179	0.0103	1.9	41	< 0.000010	3.15	0.111	0.000016	< 0.00010	< 0.00030	0.00144	0.0079
LC_DCDS	LC_DCDS_WS_2022-06-13_N	2022-06-14	- < 0.0		0.0203	28.7	0.00137	0.0116	2.12	45.3	< 0.000010	3.49	0.13	0.000013	< 0.00010	< 0.00030	0.00148	0.0087
LC_DCDS	LC_DCDS_WS_2022-06-17_N	2022-06-17		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LC_DCDS	LC_DCDS_WS_2022-06-17_NP1	2022-06-17		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LC_DCDS	LC_DCDS_WS_2022-06-19_N	2022-06-19			- 0.04005	- 04.05	- 0.0000	-	101	- 20.4	- 0.000040	- 0.405	0.00045	0.0000405	- 0.00040	- 0 00000	- 0.00445	- 0.00545
LC_DCDS LC_DCDS	LC_CC3_WS_2022-06-20_N	2022-06-21	- < 0.0 - < 0.0		0.01235 0.0167	21.85	0.0026	0.00773	1.94 2.09	32.4	< 0.000010	2.195 2.97	0.08615	0.0000125 0.000016	< 0.00010 < 0.00010	< 0.00030	0.00115 0.00151	0.00545
LC_DCDS	LC_DCDS_WS_2022-06-27_N LC_DCDS_WS_Q3-2022_N	2022-06-28	- < 0.0			26.5 32	0.00156 0.00131	0.0105	2.09	42 50.4	< 0.000010 < 0.000010	3.7	0.105 0.125	0.000016	< 0.00010	< 0.00030 < 0.00030	0.00151	0.0072 0.0082
LC_DCDS	LC CC3 WS 2022-07-11 N	2022-07-12	- < 0.0		0.0214	34.3	0.00131	0.0113	2.07	55.2	< 0.000010	4.36	0.125	0.000016	< 0.00010	< 0.00030	0.0015	0.0082
LC_DCDS	LC_CC3_WS_2022-07-11_N LC_DCDS_WS_2022-07-18_N	2022-07-12	- < 0.0		0.023	34.3	0.0013	0.01205	2.315	68.2	< 0.000010	5.07	0.139	0.0000165	< 0.00010	< 0.00030	0.001685	0.0082
LC_DCDS	LC DCDS_WS_2022-07-16_N LC DCDS_WS_2022-07-25_N	2022-07-16	- < 0.0			39.3	0.00134	0.0142	2.61	71.6	< 0.000010	5.07	0.165	0.00002	< 0.00010	< 0.00030	0.00208	0.0097
LC DCDS	LC CC3 MNT 2022-08-02 N	2022-07-23	- < 0.0		0.0203	39.3	0.00128	0.0135	2.66	78.3	< 0.000010	6.03	0.1725	0.000023	< 0.00010	< 0.00030	0.00213	0.0104
LC DCDS	LC DCDS WS 2022-08-08 N	2022-08-09	- < 0.0		0.0334	45.3	0.001433	0.0147	2.63	76.2	< 0.000010	6.71	0.1725	0.00002	< 0.00010	< 0.00030	0.0023	0.0111
LC DCDS	LC DCDS WS SESMP 2022-08 N	2022-08-18	- < 0.0		0.0352	47.3	0.00201	0.0156	2.77	94.4	< 0.000010	7.28	0.191	0.000019	< 0.00010	< 0.00030	0.00258	0.0108
LC DCDS	LC_DCDS_WS_2022-08-22_N	2022-08-23	- < 0.0			24.9525	0.00246	0.016	1.425	86.3	< 0.000010	3.925	0.193	0.00002	< 0.00010	< 0.00030	0.00249	0.011
LC DCDS	LC DCDS WS 2022-08-29 N	2022-08-30	- < 0.0			27.0525	0.00178	0.0154	1.39	90.6	< 0.000010	3.73	0.198	0.000021	< 0.00010	< 0.00030	0.00273	0.0111
LC_DCDS	LC_DCDS_MNT_2022-09-06_N	2022-09-06	- < 0.0			53.8	0.00182	0.0138	2.81	109	< 0.000010	7.65	0.205	0.00002	< 0.00010	< 0.00030	0.00263	0.0061
LC_DCDS	LC_DCDS_WS_2022-09-12_N	2022-09-13	- < 0.0		0.036	52.9	0.00158	0.0161	2.93	97.7	< 0.000010	8.56	0.208	0.00002	< 0.00010	< 0.00030	0.00266	0.0116
LC_DCDS	LC_DCDS_WS_2022-09-19_N	2022-09-20	- < 0.0	10 < 0.000050	0.037	54.6	0.00177	0.0158	3.11	103	< 0.000010	8.85	0.222	0.00002	< 0.00010	< 0.00030	0.00279	0.0115
LC_DCDS	LC_DCDS_WS_2022-09-26_N	2022-09-27	- < 0.0	10 < 0.000050	0.0435	27.9025	0.00168	0.0167	1.495	112	< 0.000010	4.65	0.22	0.00002	< 0.00010	< 0.00030	0.00311	0.0129
LC_DCDS	MORTALITY PKG 8	2022-10-04	- < 0.0		0.047	51.8	0.00174	0.0173	3.12	112	< 0.000010	9.29	0.232	0.00002	< 0.00010	< 0.00030	0.00309	0.0114
LC_DCDS	LC_DCDS_MORTALITY_2022-10-05_N	2022-10-05	- < 0.0		0.0422	55.9	0.00176	0.0168	2.96	110	< 0.000010	9.42	0.234	0.000017	< 0.00010	< 0.00030	0.003	0.0127
LC_DCDS	LC_DCDS_MORTALITY_2022-10-06_N	2022-10-06	- < 0.0			52.6	0.00175	0.0161	2.95	107	< 0.000010	9.6	0.222	0.000019	< 0.00010	< 0.00030	0.00325	0.0128
LC_DCDS	LC_DCDS_MORTALITY_2022-10-07_N	2022-10-07	- < 0.0			51	0.0018	0.0151	3.16	127	< 0.000010	10	0.222	0.000018	< 0.00010	< 0.00030	0.00275	0.011
LC_DCDS	LC_DCDS_WS_2022-10-10_N	2022-10-11	- < 0.0		0.0447	56.3	0.0017	0.0168	3.18	118	< 0.000010	10.1	0.235	0.000019	< 0.00010	< 0.00030	0.00311	0.0126
LC_DCDS	LC_CC3_WS_2022-10-17_N	2022-10-18	- < 0.0		0.0466	58.4	0.001545	0.01735	3.165	110.5	< 0.000010	10.75	0.238	0.000021	< 0.00010	< 0.00030	0.003345	0.01325
LC_DCDS	LC_DCDS_WS_2022-10-24_N	2022-10-25	- < 0.0		0.0471	57.4	0.00148	0.0168	3.07	108	< 0.000010	10.8	0.243	0.000021	< 0.00010	< 0.00030	0.00344	0.013
LC_DCDS	LC_SPDC_WS_2022-10-31_N	2022-11-01	- < 0.0	10 < 0.000050	0.0461	57.2	0.00165	0.0176	3.19	122	< 0.000010	10.7	0.245	0.000023	< 0.00010	< 0.00030	0.00343	0.0126

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

^d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

									Dissolve	d Metals						
			dness	minum	ntimony	enic	ium	yllium	muth	uo		mi m	cium	omium	alt	pper
Sample	Sample	Sample Date	<u> </u>]	5	l s	Sar	Se.	<u> 35</u>	ğ		S S) je	<u>`</u>	Š	ldos
Location	ID	(mm/dd/yyyy		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	m	ig/L	mg/L	mg/L	mg/L	mg/L
			л 	cute			5				cute	hronic				Acute
BC WQG FWAL			n/a	0.020-0.10° 0.005-0.05°	n/a	na	na	na	n/a	n/a	0.00004-0.0028 ^a	0.00002-0.00173 ^a	n/a	n/a	n/a	BLM°
Line Creek Operation				0.020 0.10							0.00004 0.0020	0.00002 0.00110				
LC DCDS	LC CC3 WS 2022-10-31 N	2022-11-01	-	0.0017	0.00063	0.00027	0.216	< 0.020	< 0.000050	0.011	0.0	00316	147	< 0.00010	< 0.10	0.00028
LC_DCDS	LC_DCDS_MNT_2022-11-08_N	2022-11-08	-	0.0017	0.00059	0.00031	0.224	< 0.020	< 0.000050	0.01		00315	150	< 0.00010	< 0.10	0.0002
LC_DCDS	LC_DCDS_WS_2022-11-14_N	2022-11-15	-	0.0015	0.00063	0.00034	0.218	< 0.020	< 0.000050	0.01		00371	164	< 0.00010	< 0.10	0.00022
LC DCDS	LC DCDS WS 2022-11-21 N	2022-11-22	-	0.0023	0.0006	0.00032	0.225	< 0.020	< 0.000050	0.01		00325	153	< 0.00010	< 0.10	0.0003
LC LC12	LC LC12 MNT 2022-05-03 N	2022-05-02	-	0.0013	0.00018	0.00017	0.0534	< 0.020	< 0.000050	< 0.010		00118	111	0.00021	< 0.10	0.00032
LC LC12	LC LC12 WS 2022-05-09 N	2022-05-09	-	-	-	-	-	-	-	-		-	-	-	-	-
LC_LC12	LC_LC12_WS_2022-05-16_N	2022-05-18	-	-	-	-	-	-	-	-			-	-	-	-
LC_LC12	LC_LC12_WS_2022-05-23_N	2022-05-24		-	-	-	-	-	-	-		-	-	-	-	-
LC_LC12	LC_LC12_WS_2022-05-30_N	2022-05-30	-	-	-	-	-	-	-	-		-	-	-	-	-
LC_LC12	LC_LC12_MNT_2022-06-07_N	2022-06-06	-	0.0017	0.00015	0.00012	0.028	< 0.020	< 0.000050	< 0.010	0.00	00109	67.1	0.00013	0.00012	0.00031
LC_LC12	LC_LC12_WS_2022-06-13_N	2022-06-13	-	-	-	-	-	-	-	-		-	-	-	-	-
LC_LC12	LC_LC12_WS_2022-06-20_N	2022-06-20	-	-	-	-	-	-	-	-			-	-	-	-
LC_LC12	LC_LC12_WS_2022-06-27_N	2022-06-27	-	-	-	-	-	-	-	-			-	-	-	-
LC_LC12	LC_LC12_WS_Q3-2022_N	2022-07-05	-	0.001	0.00013	0.00012	0.0281	< 0.020	< 0.000050	< 0.010	0.0	00108	61.5	0.00014	< 0.10	0.00025
LC_LC12	LC_LC12_WS_2022-07-11_N	2022-07-13	-	-	-	-	-	-	-	-			-	-	-	-
LC_LCDSSLCC	LC_LCDSSLCC_WS_Q1-2022_N	2022-01-04		< 0.0010	0.0002	< 0.00010	0.0656	< 0.020	-	-	0.0	00111	120	0.00012	-	< 0.00020
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-01-10_N	2022-01-10	-	< 0.0010	0.00018	< 0.00010	0.0682	< 0.020	-	-		00109	120	< 0.00010	-	< 0.00020
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-01-17_N	2022-01-17	-	< 0.0010	0.0002	< 0.00010	0.0675	< 0.020	< 0.000050	0.014	0.0	00114	124	0.00011	< 0.00010	< 0.00020
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-01-24_N	2022-01-25	-	0.0015	0.0002	< 0.00010	0.0726	< 0.020	< 0.000050	0.013	0.0	00111	124	0.00015	< 0.00010	< 0.00020
LC_LCDSSLCC	LC_LCDSSLCC_WS_2021-01-31_N	2022-02-01	-	0.0011	0.0002	< 0.00010	0.0736	< 0.020	< 0.000050	0.014	0.0	00104	130	0.00019	< 0.00010	0.0002
LC_LCDSSLCC	LC_LCDSSLCC_MNT_2021-02-08_N	2022-02-08		0.0012	0.00019	< 0.00010	0.0739	< 0.020	< 0.000050	0.014	0.00	000961	126	0.0002	< 0.00010	0.00022
LC_LCDSSLCC	LC_LCDSSLCC_WS_2021-02-14_N	2022-02-15		0.0014	0.00021	< 0.00010	0.0705	< 0.020	< 0.000050	0.015	0.0	00107	127	< 0.00010	< 0.00010	< 0.00020
LC_LCDSSLCC	LC_LCDSSLCC_WC_2022-02-18_N	2022-02-18	-	-	-	-		-	-	-			136	-	-	-
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-02-21_N	2022-02-22	-	0.0018	0.00021	< 0.00010	0.079	< 0.020	< 0.000050	0.015	0.0	00128	142	0.0001	< 0.00010	0.00034
LC_LCDSSLCC	LC_CC1_WS_2022-02-28_N	2022-03-01	-	0.0084	0.000215	-	0.074	< 0.020	< 0.000050	0.013	0.000	013015	147	0.000945	< 0.00010	-
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-02-28_N	2022-03-01	-	-	-	< 0.00010		-	-	-		-	-	-	-	< 0.00020
LC_LCDSSLCC	LC_LCDSSLCC_MNT_2021-03-07_N	2022-03-08	-	< 0.0010	0.00021	< 0.00010	0.0771	< 0.020	< 0.000050	0.013	0.0	00099	132	0.00016	< 0.00010	< 0.00020
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-03-14_N	2022-03-15	-	< 0.0010	0.0002	< 0.00010	0.077	< 0.020	< 0.000050	0.014	0.00	000889	129	0.00014	< 0.00010	< 0.00020
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-03-21_N	2022-03-22	-	0.0022	0.00022	< 0.00010	0.074	< 0.020	< 0.000050	0.015	0.00	00105	131	0.00053	< 0.00010	< 0.00020
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-03-28_N	2022-03-28	-	0.0031	0.00026	0.0001	0.0772	< 0.020	< 0.000050	0.016		00132	150	0.00014	< 0.10	0.00023
LC_LCDSSLCC	LC_LCDSSLCC_WS_Q2-2022_N	2022-04-07	-	0.0243	0.00026	0.00011	0.0614	< 0.020	< 0.000050	0.015		00161	135	0.00028	0.0001	0.0007
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-04-11_N	2022-04-11	-	0.001	0.00026	< 0.00010	0.0672	< 0.020	< 0.000050	0.015		00115	138	0.00013	< 0.10	0.00024
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-04-18_N	2022-04-19	-	0.0015	0.00024	< 0.00010	0.0648	< 0.020	< 0.000050	0.014		00108	118	0.00021	< 0.10	0.00023
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-04-25_N	2022-04-25	-	0.0013	0.00023	< 0.00010	0.0681	< 0.020	< 0.000050	0.015		00011	121	0.00016	< 0.10	< 0.00020
LC_LCDSSLCC	LC_LCDSSLCC_MNT_2022-05-03_N	2022-05-04	-	< 0.0010	0.0002	< 0.00010	0.0538	< 0.020	< 0.000050	0.013	0.0	00119	107	0.0002	< 0.10	0.00028
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-05-09_N	2022-05-09	-	< 0.0010	0.00031	0.00012	0.0392	< 0.020	< 0.000050	0.011		00134	78.5	0.00012	< 0.10	0.00023
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-05-16_N	2022-05-17	-	0.0023	0.00019	0.00012	0.0439	< 0.020	< 0.000050	0.011		00141	86	0.00014	< 0.10	0.00055
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-05-23_N	2022-05-24	-	< 0.0010	0.0002	< 0.00010	0.0434	< 0.020	< 0.000050	0.011		00141	90.5	0.00015	< 0.10	0.0002
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-05-30_N	2022-05-31	-	0.002	0.00018	0.00011	0.0334	< 0.020	< 0.000050	< 0.010		00149	63.8	0.00013	< 0.10	0.00029
LC_LCDSSLCC	LC_LCDSSLCC_MNT_2022-06-07_N	2022-06-06	-	0.0024	0.00015	0.00011	0.0271	< 0.020	< 0.000050	< 0.010		00133	55	0.00011	< 0.10	0.00028
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-06-13_N	2022-06-14	-	0.0026	0.00016	0.00011	0.0276	< 0.020	< 0.000050	< 0.010		00164	51.9	0.00014	< 0.10	0.00031
LC_LCDSSLCC	LC_LCUSWLC_WS_2022-06-20_N	2022-06-22	-	< 0.0010	0.00036	0.00013	0.0222	< 0.020	< 0.000050	0.012		00378	58.9	0.00014	0.00019	0.0006
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-06-27_N	2022-06-27	-	0.0021	0.00021	0.00011	0.0316	< 0.020	< 0.000050	< 0.010		00234	59.7	0.00012	< 0.10	0.00043
LC_LCDSSLCC	LC_LCDSSLCC_WS_Q3-2022_N	2022-07-05	-	0.0017	0.00016	0.00012	0.0298	< 0.020	< 0.000050	< 0.010		00024	57.7	0.00018	< 0.10	0.00037
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-07-11_N	2022-07-11	-	< 0.0010	0.00019	< 0.00010	0.0335	< 0.020	< 0.000050	< 0.010		00273	66.8	0.00015	< 0.10	0.00122
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-07-18_N	2022-07-19	-	0.0014	0.00021	0.00012	0.0426	< 0.020	< 0.000050	0.012		00311	77	0.00017	< 0.10	0.00029
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-07-25_N	2022-07-26	-	< 0.0010	0.00022	0.00011	0.0491	< 0.020	< 0.000050	0.013		00311	85	0.00014	< 0.10	0.00026
LC_LCDSSLCC	LC_LCDSSLCC_MNT_2022-08-02_N	2022-08-03	-	< 0.0010	0.00021	0.0001	0.0566	< 0.020	< 0.000050	0.014		00265	91	0.0001	< 0.10	0.00028
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-08-08_N	2022-08-09	-	0.0036	0.00024	0.00011	0.0604	< 0.020	< 0.000050	0.015		00226	95.6	0.00015	< 0.10	0.00022
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-08-15_N	2022-08-16	-	0.0047	0.00022	0.00012	0.0631	< 0.020	< 0.000050	0.016	0.00	00199	98.9	0.00014	< 0.10	0.0002

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

											Dissolv	ved Metals							
Sample	Sample	Sample Date	Hardness	lon	Lead	Lithium	Magnesium	Manganese	Nickel	Potassium	Selenium	Silver	Sodium	Strontium	Thallium	-IF	Titanium	Uranium	Zinc
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
				Acute															
BC WQG FWAL			n/a	0.35	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Line Creek Operation																			
LC_DCDS	LC_CC3_WS_2022-10-31_N	2022-11-01	-	< 0.010	< 0.000050	0.0464	53.9	0.00142	0.016	2.97	116	< 0.000010	9.95	0.236	0.000021	< 0.00010	< 0.00030	0.00327	0.0116
LC_DCDS	LC_DCDS_MNT_2022-11-08_N	2022-11-08	-	< 0.010	< 0.000050	0.0469	57.3	0.0021	0.0155	3.01	108	< 0.000010	10.3	0.25	0.000018	< 0.00010	< 0.00030	0.00341	0.0124
LC_DCDS	LC_DCDS_WS_2022-11-14_N	2022-11-15	-	< 0.010	< 0.000050	0.0476	64.3	0.00211	0.0179	3.33	128	< 0.000010	11.8	0.237	0.000021	< 0.00010	< 0.00030	0.00371	0.0136
LC_DCDS	LC_DCDS_WS_2022-11-21_N	2022-11-22	-	< 0.010	< 0.000050	0.0486	66.9	0.00234	0.0175	3.29	149	< 0.000010	11.5	0.25	0.000019	< 0.00010	< 0.00030	0.00388	0.0151
LC_LC12	LC_LC12_MNT_2022-05-03_N LC_LC12_WS_2022-05-09_N	2022-05-02	-	< 0.010	< 0.000050	0.012	55	< 0.00010	0.00742	1.34	51.7	< 0.000010	1.42	0.179	< 0.000010	< 0.00010	< 0.00030	0.00572	0.0076
LC_LC12 LC LC12	LC LC12 WS 2022-05-09 N LC LC12 WS 2022-05-16 N	2022-05-09 2022-05-18	-	-	-	-	-		-	-	-			-	-	-	-	-	-
LC_LC12	LC LC12 WS 2022-05-16 N	2022-05-16	-		-		- :	-	- :	- : -	- :			-		-	-		-
LC_LC12	LC LC12 WS 2022-05-23 N	2022-05-24		- :	-	-		-			-	+ : - !		-		-	-	-	-
LC LC12	LC LC12 MNT 2022-06-07 N	2022-05-30	-	< 0.010	< 0.000050	0.008	28.2	< 0.00010	0.00576	0.908	31.6	< 0.000010	0.773	0.121	< 0.000010	< 0.00010	< 0.00030	0.00301	0.0075
LC_LC12	LC LC12 WS 2022-06-07 N	2022-06-13		< 0.010	< 0.000050	0.000	20.2	× 0.00010	0.00376	0.906	31.6	. 0.000010	0.773	0.121	- 0.000010	- 0.00010	~ 0.00030	0.00301	0.0073
LC LC12	LC LC12 WS 2022-06-10 N	2022-06-20		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LC LC12	LC LC12 WS 2022-06-27 N	2022-06-27	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-
LC LC12	LC LC12 WS Q3-2022 N	2022-07-05	-	< 0.010	< 0.000050	0.0076	27.3	< 0.00010	0.00512	0.911	28.4	< 0.000010	0.75	0.107	< 0.000010	< 0.00010	< 0.00030	0.00286	0.0065
LC LC12	LC LC12 WS 2022-07-11 N	2022-07-13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LC LCDSSLCC	LC LCDSSLCC WS Q1-2022 N	2022-01-04	-	< 0.010	-	0.0487	57.4	0.00366	0.00419	1.52	46.6	< 0.000010	9.74	0.231	< 0.000010	-	< 0.00030	0.00385	0.0038
LC LCDSSLCC	LC LCDSSLCC WS 2022-01-10 N	2022-01-10	-	< 0.010	-	0.0469	55.3	0.0046	0.00423	1.52	40.3	< 0.000010	9.93	0.232	< 0.000010	-	< 0.00030	0.00396	0.0039
LC LCDSSLCC	LC LCDSSLCC WS 2022-01-17 N	2022-01-17	-	< 0.010	< 0.000050	0.0492	55	0.00418	0.00433	1.52	42.3	< 0.000010	10	0.228	< 0.000010	< 0.00010	< 0.00030	0.00395	0.0039
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-01-24_N	2022-01-25	-	< 0.010	< 0.000050	0.0443	59	0.00368	0.00441	1.59	43.3	< 0.000010	10.8	0.245	< 0.000010	0.00015	< 0.00030	0.00397	0.0041
LC_LCDSSLCC	LC_LCDSSLCC_WS_2021-01-31_N	2022-02-01	-	< 0.010	< 0.000050	0.0473	60.2	0.00397	0.00441	1.54	43.3	< 0.000010	11.3	0.241	< 0.000010	< 0.00010	< 0.00030	0.00388	0.0054
LC_LCDSSLCC	LC_LCDSSLCC_MNT_2021-02-08_N	2022-02-08	-	< 0.010	< 0.000050	0.0495	58.1	0.00423	0.00417	1.66	43.8	< 0.000010	11.1	0.236	< 0.000010	< 0.00010	< 0.00030	0.00398	0.0043
LC_LCDSSLCC	LC_LCDSSLCC_WS_2021-02-14_N	2022-02-15	-	< 0.010	< 0.000050	0.0497	59.4	0.00504	0.00457	1.72	47.4	< 0.000010	11.7	0.246	< 0.000010	< 0.00010	< 0.00030	0.00404	0.0043
LC_LCDSSLCC	LC_LCDSSLCC_WC_2022-02-18_N	2022-02-18	-	-	-		66.4	-	-	1.56	-	-	11.8	-	-	-	-	-	-
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-02-21_N	2022-02-22	-	< 0.010	< 0.000050	0.0529	67.4	0.00584	0.00459	1.82	59.5	< 0.000010	12.7	0.268	< 0.000010	< 0.00010	< 0.00030	0.00438	0.006
LC_LCDSSLCC	LC_CC1_WS_2022-02-28_N	2022-03-01	-	-	-	0.05075	63	0.00598	0.0041	1.6	44.4	< 0.000010	11.75	0.2435	< 0.000010	-	< 0.00030	0.00366	0.02485
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-02-28_N	2022-03-01	-	< 0.010	< 0.000050	-	-	-	-	-	-	-	-	-	-	< 0.00010	-	-	-
LC_LCDSSLCC	LC_LCDSSLCC_MNT_2021-03-07_N	2022-03-08	-	< 0.010	< 0.000050	0.0482	60.1	0.00399	0.00389	1.7	49.2	< 0.000010	12	0.248	< 0.000010	< 0.00010	< 0.00030	0.00413	0.0039
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-03-14_N	2022-03-15	-	< 0.010	< 0.000050	0.0487 0.0526	60	0.0038	0.00422	1.74	46.1 52.5	< 0.000010	12.3 12.7	0.259	< 0.000010	< 0.00010	< 0.00030	0.00413	0.0037
LC_LCDSSLCC LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-03-21_N	2022-03-22	-	< 0.010 < 0.010	< 0.000050 < 0.000050	0.0526	63.4 70.7	0.00567	0.00461 0.00539	1.8		< 0.000010		0.252	< 0.000010 < 0.000010	< 0.00010 < 0.00010	< 0.00030	0.00428 0.00453	0.006
LC_LCDSSLCC LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-03-28_N LC_LCDSSLCC_WS_Q2-2022_N	2022-03-28	-	0.035	0.000122	0.0544	55.7	0.0068	0.00539	1.97	57.4 51.7	< 0.000010 < 0.000010	13.5 10.4	0.276 0.232	< 0.000010	0.00010	< 0.00030 0.0003	0.00453	0.0067 0.0814
LC_LCDSSLCC LC LCDSSLCC	LC LCDSSLCC WS 2022-04-11 N	2022-04-07	-	< 0.035	< 0.000122	0.0526	59.3	0.00621	0.00493	1.67	50.6	< 0.000010	10.4	0.232	< 0.000010	< 0.00010	< 0.0003	0.00388	0.0014
LC_LCDSSLCC	LC LCDSSLCC_WS_2022-04-11_N LC LCDSSLCC WS 2022-04-18 N	2022-04-11	-	< 0.010	< 0.000050	0.0333	56.4	0.00021	0.00307	1.57	51.1	< 0.000010	9.63	0.243	< 0.000010	< 0.00010	< 0.00030	0.00382	0.0047
LC LCDSSLCC	LC LCDSSLCC_WS_2022-04-16_N	2022-04-15		< 0.010	< 0.000050	0.0529	54.8	0.00521	0.00432	1.55	48.4	< 0.000010	9.62	0.233	< 0.000010	< 0.00010	< 0.00030	0.00362	0.0041
LC LCDSSLCC	LC LCDSSLCC MNT 2022-05-03 N	2022-05-04		< 0.010	< 0.000050	0.0323	48	0.00321	0.00442	1.34	44.5	< 0.000010	7.18	0.215	< 0.000010	< 0.00010	< 0.00030	0.00338	0.0041
LC LCDSSLCC	LC LCDSSLCC WS 2022-05-09 N	2022-05-09	- 1	< 0.010	< 0.000050	0.0321	35.2	0.00243	0.00426	1.1	31.6	< 0.000010	5.26	0.17	< 0.000010	< 0.00010	< 0.00030	0.0027	0.0071
LC LCDSSLCC	LC LCDSSLCC WS 2022-05-16 N	2022-05-17	-	< 0.010	< 0.000050	0.0333	37.2	0.00261	0.00364	1.07	31.3	< 0.000010	5.46	0.184	< 0.000010	0.00013	< 0.00030	0.0027	0.0049
LC LCDSSLCC	LC LCDSSLCC WS 2022-05-23 N	2022-05-24	-	< 0.010	< 0.000050	0.0351	39.2	0.00286	0.00424	1.13	30.3	< 0.000010	5.72	0.177	< 0.000010	< 0.00010	< 0.00030	0.00284	0.0052
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-05-30_N	2022-05-31	-	< 0.010	< 0.000050	0.0215	27.1	0.00181	0.00368	0.98	23.8	< 0.000010	3.55	0.126	< 0.000010	< 0.00010	< 0.00030	0.00218	0.0062
LC_LCDSSLCC	LC_LCDSSLCC_MNT_2022-06-07_N	2022-06-06	-	< 0.010	< 0.000050	0.0172	23.9	0.00084	0.00329	0.782	22.2	< 0.000010	2.7	0.108	< 0.000010	< 0.00010	< 0.00030	0.00167	0.007
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-06-13_N	2022-06-14	-	< 0.010	< 0.000050	0.0153	20.7	0.00081	0.00349	0.806	17.7	< 0.000010	2.61	0.1	< 0.000010	< 0.00010	< 0.00030	0.00161	0.0113
LC_LCDSSLCC	LC_LCUSWLC_WS_2022-06-20_N	2022-06-22	-	< 0.010	< 0.000050	0.0308	28.7	0.00017	0.00786	1.26	27.3	< 0.000010	4.22	0.134	< 0.000010	< 0.00010	< 0.00030	0.00214	0.017
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-06-27_N	2022-06-27	-	< 0.010	< 0.000050	0.023	25.1	0.00074	0.00493	1.07	20.1	< 0.000010	3.41	0.121	< 0.000010	0.00018	< 0.00030	0.00184	0.0114
LC_LCDSSLCC	LC_LCDSSLCC_WS_Q3-2022_N	2022-07-05	-	< 0.010	< 0.000050	0.0205	23.1	0.00087	0.00422	0.93	20	< 0.000010	3.15	0.121	< 0.000010	< 0.00010	< 0.00030	0.00179	0.0108
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-07-11_N	2022-07-11	-	< 0.010	< 0.000050	0.024	27.5	0.00112	0.00516	1.01	25.3	< 0.000010	3.83	0.139	< 0.000010	< 0.00010	< 0.00030	0.002	0.012
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-07-18_N	2022-07-19	-	< 0.010	< 0.000050	0.0313	33.4	0.00115	0.00612	1.2	35	< 0.000010	4.81	0.169	< 0.000010	< 0.00010	< 0.00030	0.00267	0.0124
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-07-25_N	2022-07-26	-	< 0.010	< 0.000050	0.0371	39.2	0.00054	0.00658	1.3	46.2	< 0.000010	5.56	0.188	0.000011	< 0.00010	< 0.00030	0.00282	0.013
LC_LCDSSLCC	LC_LCDSSLCC_MNT_2022-08-02_N	2022-08-03	-	< 0.010	< 0.000050	0.0412	40.2	0.00266	0.00576	1.35	42.4	< 0.000010	6.58	0.198	< 0.000010	< 0.00010	< 0.00030	0.00292	0.0092
LC_LCDSSLCC LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-08-08_N	2022-08-09	-	< 0.010	< 0.000050	0.0446	45.1	0.00366	0.00568	1.36	42	< 0.000010	6.7	0.198	0.000012	< 0.00010	< 0.00030	0.00311	0.0089
	LC LCDSSLCC WS 2022-08-15 N	2022-08-16		< 0.010	< 0.000050	0.0433	46.4	0.00413	0.00589	1.35	43.7	< 0.000010	7.03	0.201	< 0.000010	< 0.00010	< 0.00030	0.00326	0.0084

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

^d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

									Dissolve	ed Metals						
Sample	Sample	Sample Date		Aluminum	Antimony	Arsenic	Barium	Beryllium	Bismuth	Boron		Cadmium	Calcium	Chromium	Cobalt	Copper
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	m	ng/L	mg/L	mg/L	mg/L	mg/L
				Acute							Acute	Chronic				Acute Chronic
BC WQG FWAL			n/a	0.020-0.10 ^a 0.005-0.0	15 ^a n/a	na	na	na	n/a	n/a	0.00004-0.0028 ^a	0.00002-0.00173 ^a	n/a	n/a	n/a	BLMe
Line Creek Operation	10 10000100 110 0000 00 00 11	1 0000 00 00					1									
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-08-22_N	2022-08-23	-	-	0.000005	- 0.000405	- 0.00405		- 0.000050	- 0.045		-	- 400	- 0.00040		-
LC_LCDSSLCC	LC_CC1_WS_2022-08-22_N	2022-08-23	-	0.00345	0.000225	0.000125	0.06165	< 0.020 < 0.020	< 0.000050	0.015		00019	102 97.4	0.00042	< 0.10	0.00022
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-08-29_N	2022-08-30	-	0.003	0.00022	0.00012	0.0563		< 0.000050			00268		0.00015	< 0.10	0.0002
LC_LCDSSLCC	LC_LCDSSLCC_MNT_2022-09-06_N	2022-09-06	-	< 0.0010	0.00022	0.00011	0.062	< 0.020	< 0.000050	0.015		00128	107	0.00011	< 0.10	< 0.00020
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-09-12_N	2022-09-13	-	0.0011	0.00023	0.00012	0.0636	< 0.020	< 0.000050	0.014		00208	105	0.00013	< 0.10	0.00023
LC_LCDSSLCC LC LCDSSLCC	LC_LCDSSLCC_WS_2022-09-19_N LC_CC1_WS_2022-09-19_N	2022-09-19	-	< 0.0010	0.000205	< 0.00010	0.06715	< 0.020	< 0.000050	0.014		-	102.5	0.00012	- 0.10	
LC_LCDSSLCC		2022-09-19	-		0.000205	0.00010	0.06715	< 0.020	< 0.000050	0.014		00178	102.5	0.00012	< 0.10 < 0.10	< 0.00020
LC_LCDSSLCC LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-09-26_N LC_CC2_WS_Q4-2022_N	2022-09-29	-	< 0.0010	0.00022	< 0.0001	0.0627	< 0.020	< 0.000050	0.015		00146	106.5	0.00014	< 0.10	< 0.00020
			-	< 0.0010	0.00023		0.0603		< 0.000050		0.0	00157	106.5			< 0.00020
LC_LCDSSLCC LC LCDSSLCC	LC_LCDSSLCC_WS_2022-10-10_N LC_CC1_WS_2022-10-10_N	2022-10-11	-	< 0.0010	0.00025	< 0.00010	0.06155	< 0.020	< 0.000050	0.016		-	112	< 0.00010	< 0.10	
LC_LCDSSLCC LC_LCDSSLCC	LC LCDSSLCC WS 2022-10-10 N	2022-10-11	-	-	0.00025	< 0.00010	0.06155	< 0.020	< 0.000050	0.016		001725		0.00010	< 0.10	< 0.00020
LC LCDSSLCC	LC LCDSSLCC WS 2022-10-17 N	2022-10-16	-	< 0.0010	0.00011	< 0.00010	0.0674	< 0.020	< 0.000050	0.011		000187	104 120	0.00014	< 0.10	< 0.00020
LC_LCDSSLCC LC LCDSSLCC	LC LCDSSLCC_WS_2022-10-24_N LC LCDSSLCC WS 2022-10-31 N	2022-10-25	-	< 0.0010	0.00024	0.0001	0.064	< 0.020	< 0.000050	0.016		00161	121	0.00011	< 0.10	< 0.00020
LC_LCDSSLCC		2022-11-01	-	< 0.0010	0.00024	0.0001	0.065	< 0.020	< 0.000050	0.014		00156	117	0.00014	< 0.10	< 0.00020
LC_LCDSSLCC LC_LCDSSLCC	LC_LCDSSLCC_MNT_2022-11-08_N LC_LCDSSLCC_WS_2022-11-14_N	2022-11-08	-	0.0014	0.00024	0.00013	0.0635	< 0.020	< 0.000050	0.014		00153	120	0.00011	< 0.10	< 0.00020
			-	< 0.0010	0.00028	0.00012	0.0635	< 0.020	< 0.000050			00164		0.00018		< 0.00020
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-11-21_N	2022-11-21	-	< 0.0010				-		-			-	-		-
LC_LCDSSLCC	LC_CC1_WS_2022-11-21_N	2022-11-21	-	-	0.00023	< 0.00010	0.06545	< 0.020	< 0.000050	0.014		00158	115.5	0.00014	< 0.10	< 0.00020
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-11-28_N	2022-11-28	-	< 0.0010	0.00022	< 0.00010	0.0664	< 0.020	< 0.000050	0.014		00015	122	0.00012	< 0.10	< 0.00020
LC_LCDSSLCC	LC_LCDSSLCC_MNT_2022-12-05_N	2022-12-05	-	0.0012	0.00024	< 0.00010	0.0635	< 0.020	< 0.000050	0.012		00121	114	0.0001	< 0.10	< 0.00020
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-12-12_N	2022-12-12	-	< 0.0010	0.00028	0.00012	0.0735	< 0.020	< 0.000050	0.014		00133	128	0.00014	< 0.10	< 0.00020
LC_LCDSSLCC	LC_CC1_WS_2022-12-19_N	2022-12-19	-	< 0.0010	0.00025	< 0.00010	0.06435	< 0.020	< 0.000050	0.016	0.00	001245	122	0.000115	< 0.10	< 0.00020
LC_LCDSSLCC LC LCDSSLCC	LC_LCDSSLCC_WS_2022-12-19_N LC_LCDSSLCC_WS_2022-12-26_N	2022-12-19	-		0.00022	< 0.00010	0.0647	< 0.020	< 0.000050	0.016			400	0.00016	< 0.10	
LC_LCDSSLCC LC WLC	LC_ECDSSECC_WS_2022-12-26_N LC_WLC_WS_Q1-2022_N	2022-12-28	-	< 0.0010	0.00022	0.00010	0.0647	< 0.020	< 0.000050	0.016		000638	129 272	< 0.00016	< 0.10	< 0.00020
LC WLC	LC_WLC_WS_Q1-2022_N LC_WLC_WS_2022-01-10_N	2022-01-04	-	< 0.0020	0.00044	0.00021	0.021	< 0.040	-	- :		00281	254	< 0.00020		0.0007
LC WLC	LC MT1 WS 2022-01-10 N	2022-01-10	-	0.0029	< 0.00043	< 0.00023	< 0.00010	< 0.040	< 0.000050	< 0.010		00229	< 0.050	< 0.00020	< 0.00010	0.00067
LC WLC	LC CC1 WS 2022-01-17 N	2022-01-17	-	< 0.0010	0.000475	0.00024	0.02105	< 0.020	< 0.000030	< 0.010		0.0050	266.5	< 0.00010	< 0.00010	< 0.00020
LC WLC	LC WLC WS 2022-01-17_N	2022-01-17	-	< 0.0020	0.000475	0.00024	0.02103	< 0.040	< 0.000100	< 0.020		00183	255	< 0.00020	< 0.00020	0.00067
LC_WLC	LC_WLC_WS_2022-01-24_N LC_WLC_WS_2022-01-31_N	2022-01-23	-	< 0.0020	0.00047	0.00026	0.021	< 0.040	< 0.000100	< 0.020		00122	278	< 0.00020	< 0.00020	0.00068
LC WLC	LC MT2 MNT 2021-02-08 N	2022-01-31	-	0.0024	< 0.00047	< 0.00010	< 0.00010	< 0.020	< 0.000100	< 0.020		00108	< 0.050	< 0.00020	< 0.00020	0.00129
LC WLC	LC CC1 WS 2022-02-14 N	2022-02-04	<u> </u>	< 0.0010	0.000485	0.000245	0.02135	< 0.020	< 0.000030	< 0.010		0.0050	266	0.00022	< 0.00010	< 0.00020
LC WLC	LC MT1 WS 2022-02-14_N	2022-02-14	H -	0.0024	< 0.000483	< 0.00010	< 0.00010	< 0.040	< 0.000100	< 0.020		0.0050	< 0.050	< 0.00022	< 0.00020	0.000825 < 0.00020
LC WLC	LC WLC WS 2022-02-21 N	2022-02-23	+	< 0.0010 0.0135	0.00049	0.00024	0.00010	< 0.020	< 0.000030	< 0.010		0.0050	298	0.00029	< 0.00010	0.00020
LC WLC	LC MT1 MNT 2021-03-07 N	2022-03-01	1	< 0.0135	< 0.00049	< 0.00024	< 0.00010	< 0.040	< 0.000100	< 0.020		0.0050	< 0.050	< 0.00029	< 0.00020	< 0.0007
LC WLC	LC WLC WS 2022-03-14 N	2022-03-06	H -	0.0010	0.00047	0.00024	0.0212	< 0.020	< 0.000030	< 0.010		0.0050	247	< 0.00010	< 0.10	0.00064
LC WLC	LC WLC WS 2022-03-14_N	2022-03-14	-	0.0022	0.00047	0.00024	0.0212	< 0.040	< 0.000100	< 0.020		000538	287	< 0.00020	< 0.20	0.00064
LC WLC	LC WLC WS 2022-03-28 N	2022-03-28	-	< 0.0022	0.00044	0.00025	0.0212	< 0.040	< 0.000100	< 0.020		000529	270	< 0.00020	< 0.20	0.00059
LC WLC	LC WLC WS Q2-2022 N	2022-03-20	-	0.0020	0.00047	0.00028	0.0212	< 0.040	< 0.000100	< 0.020		000604	271	< 0.00020	< 0.20	0.00062
LC WLC	LC WLC WS 2022-04-11 N	2022-04-11	-	< 0.0031	0.00047	0.00025	0.0210	< 0.040	< 0.000100	< 0.020		000497	267	0.00029	< 0.20	0.00064
LC WLC	LC CC1 WS 2022-04-11 N	2022-04-11	-	0.0020	0.00045	0.00025	0.0203	< 0.040	< 0.000100	< 0.020		004785	265	< 0.00020	< 0.20	0.000695
LC WLC	LC CC1 WS 2022-04-15 N	2022-04-10	-	0.00235	0.000445	0.000245	0.0200	< 0.040	< 0.000100	< 0.020		006065	271	< 0.00020	< 0.20	0.000695
LC WLC	LC WLC MNT 2022-05-03 N	2022-05-03	-	0.00205	0.0005	0.00026	0.0218	< 0.040	< 0.000100	< 0.020		000000	259	< 0.00020	< 0.20	0.000645
LC WLC	LC WLC WS 2022-05-09 N	2022-05-09	-	0.0031	0.0003	0.00026	0.0196	< 0.020	< 0.000050	0.015		00176	239	0.00011	< 0.10	0.00074
LC WLC	LC WLC WS 2022-05-16 N	2022-05-16	-	0.0016	0.00052	0.00024	0.0181	< 0.020	< 0.000050	0.016		00245	253	0.0002	< 0.10	0.00073
LC WLC	LC WLC WS 2022-05-23 N	2022-05-24	١.	0.0046	0.00042	0.00028	0.0191	< 0.020	< 0.000050	0.016		00339	243	0.00014	< 0.10	0.0073
LC WLC	LC MT1 WS 2022-05-30 N	2022-05-30	-	< 0.0014	< 0.00042	< 0.00020	< 0.00010	< 0.020	< 0.000050	< 0.010		0.0050	< 0.050	< 0.00014	< 0.10	< 0.00073
LC WLC	LC MT2 MNT 2022-06-07 N	2022-06-06	-	< 0.0010	< 0.00010	< 0.00010	< 0.00010	< 0.020	< 0.000050	< 0.010		0.0050	< 0.050	< 0.00010	< 0.10	< 0.00020
LC WLC	LC CC1 WS 2022-06-13 N	2022-06-13	-	< 0.0010	0.000445	0.000115	0.01365	< 0.020	< 0.000050	0.0195		00117	130	< 0.00010	0.00014	0.000785
LC WLC	LC WLC WS 2022-06-20 N	2022-06-22	-	< 0.0010	0.00043	0.000110	0.0142	< 0.020	< 0.000050	0.018		00147	134	< 0.00010	0.00011	0.000785
		1		~ 0.00 TO		1					1 0.0	JU 171	1			0.0000

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

											Dissolv	ed Metals							
Sample	Sample	Sample Date	Hardness	lon	Lead	Lithium	Magnesium	Manganese	Nickel	Potassium	Selenium	Silver	Sodium	Strontium	Thallium	ll n	Titanium	Uranium	Zinc
Location	ID	(mm/dd/yyyy)	ma/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
		(g	g. =	g				g						g. =			
				Acute															
BC WQG FWAL			n/a	0.35	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Line Creek Operation																			
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-08-22_N	2022-08-23	-			-		-		-	-					-		-	<u> </u>
LC_LCDSSLCC	LC_CC1_WS_2022-08-22_N	2022-08-23	-	< 0.010	< 0.000050	0.0417	48.9	0.004195	0.0055	1.39	41.15	< 0.000010	7.245	0.208	< 0.000010	< 0.00010	< 0.00030	0.003275	0.0069
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-08-29_N	2022-08-30	- 1	< 0.010	< 0.000050	0.0413	44.2	0.0008	0.00658	1.26	47.7	< 0.000010	6.51	0.191	< 0.000010	< 0.00010	< 0.00030	0.00324	0.0112
LC_LCDSSLCC	LC_LCDSSLCC_MNT_2022-09-06_N	2022-09-06	- 1	< 0.010	< 0.000050	0.0398	51.4	0.0038	0.00469	1.35	51.1	< 0.000010	6.75	0.2	< 0.000010	< 0.00010	< 0.00030	0.00298	0.0041
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-09-12_N	2022-09-13	-	< 0.010	< 0.000050	0.0428	50.2	0.00456	0.00579	1.42	41.7	< 0.000010	7.52	0.212	< 0.000010	< 0.00010	< 0.00030	0.00318	0.0079
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-09-19_N	2022-09-19	-	-	-	-		-	-	-	- 10.15	-	-	- 0.0475	-	-	-	-	
LC_LCDSSLCC	LC_CC1_WS_2022-09-19_N	2022-09-19	-	< 0.010	< 0.000050	0.0443	51.9	0.003745	0.0052	1.385	43.45	< 0.000010	7.53	0.2175	< 0.000010	< 0.00010	< 0.00030	0.003305	0.0071
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-09-26_N	2022-09-29	- 1	< 0.010	< 0.000050	0.0411	48.5	0.00378	0.00548	1.39	45	< 0.000010	7.37	0.217	< 0.000010	< 0.00010	< 0.00030	0.00377	0.0071
LC_LCDSSLCC LC_LCDSSLCC	LC_CC2_WS_Q4-2022_N	2022-10-03	- 1	< 0.010	< 0.000050	0.0431	49.9	0.003665	0.005105	1.38	56.05	< 0.000010	7.335	0.199	< 0.000010	< 0.00010	< 0.00030	0.003115	0.00605
	LC_LCDSSLCC_WS_2022-10-10_N	2022-10-11	- 1	- 0.040	< 0.000050	0.04415	-	0.003935	0.00584	- 4.54	- 40.05	- 0.000040	7.50	0.214	< 0.000010	< 0.00010	< 0.00030	0.003325	0.00665
LC_LCDSSLCC	LC_CC1_WS_2022-10-10_N	2022-10-11	- 1	< 0.010		0.04415	49.9 49.8			1.51	48.25	< 0.000010	7.53 4.37					0.003325	
LC_LCDSSLCC LC LCDSSLCC	LC_LCDSSLCC_WS_2022-10-17_N LC_LCDSSLCC_WS_2022-10-24_N	2022-10-18 2022-10-25	- 1	< 0.010 < 0.010	< 0.000050 < 0.000050	0.0297	49.8 51.1	0.00032	0.0012 0.00515	1.37 1.44	47.7 43	< 0.000010	7.77	0.181 0.226	< 0.000010	< 0.00010 < 0.00010	< 0.00030	0.00245	0.0018
			-					0.00335				< 0.000010			< 0.000010		< 0.00030		0.005
LC_LCDSSLCC LC LCDSSLCC	LC_LCDSSLCC_WS_2022-10-31_N	2022-11-01	- 1	< 0.010	< 0.000050	0.044	61.7	0.00374	0.0059	1.56	52.2	< 0.000010	9.23	0.221	< 0.000010	< 0.00010	< 0.00030 < 0.00030	0.0041	0.0062
	LC_LCDSSLCC_MNT_2022-11-08_N	2022-11-08		< 0.010	< 0.000050		55.9	0.00369	0.00512	1.51	51.2 45.9	< 0.000010	8.23	0.232	< 0.000010	< 0.00010		0.0037	0.0056
LC_LCDSSLCC LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-11-14_N	2022-11-14	- 1	< 0.010	< 0.000050	0.0516	56.8	0.00333	0.00506	1.49		< 0.000010	8.72	0.2	0.000021	< 0.00010	< 0.00030	0.00392	0.0059
LC_LCDSSLCC LC LCDSSLCC	LC_LCDSSLCC_WS_2022-11-21_N		-	- 0.040	- 0.000050	0.04665	-	0.004015	- 0.004005	-		- 0.000040	7.04	- 0.004	- 0 000040	- 0.00040	- 0.00000	0.00381	- 0.0050
LC_LCDSSLCC LC LCDSSLCC	LC_CC1_WS_2022-11-21_N LC_LCDSSLCC_WS_2022-11-28_N	2022-11-21 2022-11-28	- 1	< 0.010 < 0.010	< 0.000050 < 0.000050	0.04665	53.2 62.8	0.004015	0.004965 0.00511	1.47 1.47	59.55 46.3	< 0.000010 < 0.000010	7.91 8.27	0.221 0.223	< 0.000010 < 0.000010	< 0.00010 < 0.00010	< 0.00030 < 0.00030	0.00381	0.0053
LC_LCDSSLCC LC_LCDSSLCC	LC LCDSSLCC_WS_2022-11-28_N LC LCDSSLCC MNT 2022-12-05 N	2022-11-28	-	< 0.010	< 0.000050	0.0511	56.7	0.00348	0.00511	1.47	57.6	< 0.000010	8.69	0.223	< 0.000010	< 0.00010	< 0.00030	0.00443	0.0043
LC LCDSSLCC	LC LCDSSLCC_MN1_2022-12-05_N	2022-12-05	- 1	< 0.010	< 0.000050	0.0479	58.6	0.00339	0.00454	1.55	49.6	< 0.000010	8.86	0.219	0.000010	< 0.00010	< 0.00030	0.00369	0.0044
LC LCDSSLCC	LC CC1 WS 2022-12-19 N	2022-12-12		< 0.010	< 0.000050	0.0300	58	0.00309	0.00434	1.43	57.5	< 0.000010	8.43	0.2185	< 0.000012	< 0.00010	< 0.00030	0.00431	0.0044
LC LCDSSLCC	LC LCDSSLCC WS 2022-12-19 N	2022-12-19		- 0.010	- 0.000050	0.0493	- 36	0.003415	0.00475	1.43	57.5	< 0.000010	0.43	0.2105	< 0.000010	< 0.00010	- 0.00030	0.004425	0.0041
LC LCDSSLCC	LC LCDSSLCC_WS_2022-12-19_N	2022-12-19	HH	< 0.010	< 0.000050	0.0502	59.9	0.00266	0.0039	1.5	48.7	< 0.000010	9.82	0.216	< 0.000010	< 0.00010	< 0.00030	0.0038	0.002
LC WLC	LC WLC WS Q1-2022 N	2022-12-20		< 0.010	- 0.000030	0.0373	202	< 0.00200	0.0039	2.53	40.7	< 0.000010	2.43	0.195	0.000010	- 0.00010	< 0.00060	0.0205	0.002
LC WLC	LC WLC WS 2022-01-10 N	2022-01-04		< 0.020		0.0373	190	< 0.00020	0.0163	2.36	410	< 0.000020	2.23	0.193	< 0.000024		< 0.00060	0.0203	0.0084
LC WLC	LC MT1 WS 2022-01-10 N	2022-01-10		< 0.020	< 0.000050	< 0.0010	< 0.0050	< 0.00020	< 0.00050	< 0.050	< 0.050	< 0.000020	< 0.050	< 0.00020	< 0.000020	< 0.00010	< 0.00030	< 0.000010	0.0011
LC WLC	LC CC1 WS 2022-01-17 N	2022-01-17		< 0.020	< 0.000100	0.0365	189	< 0.00010	0.0168	2.48	410	< 0.000010	2.355	0.1865	0.0000245	< 0.00010	< 0.00060	0.0179	0.0079
LC WLC	LC WLC WS 2022-01-17_N	2022-01-17		< 0.020	< 0.000100	0.0305	195	< 0.00020	0.0159	2.44	424	< 0.000020	2.37	0.1903	0.0000243	< 0.00020	< 0.00060	0.0175	0.0079
LC WLC	LC WLC WS 2022-01-24 N	2022-01-23		< 0.020	< 0.000100	0.0358	218	< 0.00020	0.0139	2.5	418	< 0.000020	2.35	0.192	0.000021	< 0.00020	< 0.00060	0.0173	0.0052
LC WLC	LC MT2 MNT 2021-02-08 N	2022-01-01		< 0.010	< 0.000050	< 0.0010	< 0.0050	< 0.00010	< 0.00050	< 0.050	< 0.050	< 0.000010	< 0.050	< 0.00020	< 0.000021	< 0.00020	< 0.00030	< 0.000010	< 0.0032
LC WLC	LC CC1 WS 2022-02-14 N	2022-02-00	-	< 0.020	< 0.000100	0.03705	195.5	< 0.00010	0.0164	2.425	470	< 0.000010	2.49	0.201	0.0000275	< 0.00010	< 0.00060	0.019	0.00495
LC WLC	LC MT1 WS 2022-02-11 N	2022-02-14		< 0.010	< 0.000100	< 0.0010	< 0.0050	< 0.00020	< 0.00050	< 0.050	< 0.050	< 0.000010	< 0.050	< 0.00020	< 0.0000270	< 0.00020	< 0.00030	< 0.000010	< 0.00433
LC WLC	LC WLC WS 2022-02-28 N	2022-02-23	-	< 0.020	< 0.000100	0.0394	214	0.0006	0.016	2.48	447	< 0.000010	2.42	0.197	0.000024	< 0.00010	< 0.00060	0.0187	0.0113
LC WLC	LC MT1 MNT 2021-03-07 N	2022-03-01	- 1	< 0.010	< 0.000100	< 0.0010	< 0.0050	< 0.00010	< 0.00050	< 0.050	< 0.050	< 0.000010	< 0.050	< 0.00020	< 0.000024	< 0.00020	< 0.00030	< 0.000010	< 0.0010
LC WLC	LC WLC WS 2022-03-14 N	2022-03-14	- 1	< 0.020	< 0.000100	0.0333	193	< 0.00010	0.0168	2.51	459	< 0.000020	2.44	0.184	0.000027	< 0.00010	< 0.00060	0.0178	0.0053
LC WLC	LC_WLC_WS_2022-03-21_N	2022-03-22	- 1	< 0.020	< 0.000100	0.0384	205	< 0.00020	0.0154	2.52	445	< 0.000020	2.46	0.194	0.00002	< 0.00020	< 0.00060	0.0168	0.0048
IC WIC	LC WLC WS 2022-03-28 N	2022-03-28	- 1	< 0.020	< 0.000100	0.0359	206	< 0.00020	0.0156	2.48	436	< 0.000020	2.3	0.134	0.000021	< 0.00020	< 0.00060	0.0100	0.0048
LC WLC	LC WLC WS Q2-2022 N	2022-04-05	- 1	< 0.020	< 0.000100	0.0352	215	< 0.00020	0.0165	2.52	433	< 0.000020	2.46	0.204	0.000027	0.0002	< 0.00060	0.018	0.0062
LC WLC	LC WLC WS 2022-04-11 N	2022-04-11	- 1	< 0.020	< 0.000100	0.0372	199	< 0.00020	0.0155	2.47	445	< 0.000020	2.46	0.189	< 0.000020	< 0.00020	< 0.00060	0.0164	0.0035
LC WLC	LC CC1 WS 2022-04-18 N	2022-04-18	- 1	< 0.020	< 0.000100	0.03925	199	< 0.00020	0.01495	2.645	430	< 0.000020	2.49	0.2015	0.0000235	< 0.00020	< 0.00060	0.01795	0.0036
LC WLC	LC CC1 WS 2022-04-25 N	2022-04-25	- 1	< 0.020	< 0.000100	0.0384	193.5	< 0.00020	0.01595	2.68	454	< 0.000020	2.5	0.201	0.0000255	< 0.00020	< 0.00060	0.0174	0.0044
LC WLC	LC WLC MNT 2022-05-03 N	2022-05-03	- 1	< 0.020	< 0.000100	0.0396	190	< 0.00020	0.0157	2.66	423	< 0.000020	2.46	0.19	0.000024	< 0.00020	< 0.00060	0.0154	0.0056
LC WLC	LC WLC WS 2022-05-09 N	2022-05-09	- 1	< 0.010	< 0.000050	0.0344	191	< 0.00010	0.016	2.42	430	< 0.000010	2.35	0.176	0.000024	< 0.00010	< 0.00030	0.0145	0.0074
LC WLC	LC WLC WS 2022-05-16 N	2022-05-16	- 1	0.011	0.000555	0.0351	177	< 0.00010	0.0152	2.46	452	< 0.000010	2.41	0.196	0.000025	0.00407	< 0.00030	0.0168	0.0254
LC WLC	LC WLC WS 2022-05-23 N	2022-05-24	- 1	< 0.010	< 0.000050	0.0356	173	< 0.00010	0.0164	2.54	379	< 0.000010	2.31	0.178	0.000023	< 0.000101	< 0.00030	0.0145	0.012
LC WLC	LC MT1 WS 2022-05-30 N	2022-05-30	- 1	< 0.010	< 0.000050	< 0.0010	< 0.0050	< 0.00010	< 0.00050	< 0.050	< 0.050	< 0.000010	< 0.050	< 0.00020	< 0.000010	< 0.00010	< 0.00030	< 0.000010	< 0.0010
LC WLC	LC MT2 MNT 2022-06-07 N	2022-06-06	- 1	< 0.010	< 0.000050	< 0.0010	< 0.0050	< 0.00010	< 0.00050	< 0.050	< 0.050	< 0.000010	< 0.050	< 0.00020	< 0.000010	< 0.00010	< 0.00030	< 0.000010	< 0.0010
LC WLC	LC CC1 WS 2022-06-13 N	2022-06-13	- 1	< 0.010	< 0.000050	0.0218	91.85	0.000395	0.01995	1.98	156.5	< 0.000010	1.365	0.09205	0.0000235	< 0.00010	< 0.00030	0.006425	0.054

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

^d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

			Γ							Dissolve	d Metals						
Sample	Sample	Sample Date		Aliminim		Antimony	Arsenic	Barium	Beryllium	Bismuth	Boron		Cadmium	Calcium	Chromium	Cobalt	Copper
Location	ID	(mm/dd/yyyy)	mg/L	mg	/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	m	g/L	mg/L	mg/L	mg/L	mg/L
				Acute	Chronic							Acute	Chronic				Acute Chronic
BC WQG FWAL			n/a	0.020-0.10 ^a	0.005-0.05 ^a	n/a	na	na	na	n/a	n/a	0.00004-0.0028 ^a	0.00002-0.00173 ^a	n/a	n/a	n/a	BLM°
Line Creek Operation																	
LC_WLC	LC_WLC_WS_2022-06-27_N	2022-06-27	-	< 0.0		0.00041	0.00014	0.0162	< 0.020	< 0.000050	0.019		0016	150	0.0001	< 0.10	0.00092
LC_WLC	LC_WLC_WS_Q3-2022_N	2022-07-05	-	< 0.0		0.00037	0.00012	0.0161	< 0.020	< 0.000050	0.018		0174	165	< 0.00010	< 0.10	0.00088
LC_WLC	LC_CC1_WS_2022-07-11_N	2022-07-11	-	0.00		0.0004	0.000125	0.0186	< 0.020	< 0.000050	0.018		0194	185.7	< 0.00010	< 0.10	0.00132
LC_WLC	LC_WLC_WS_2022-07-18_N	2022-07-19	-	< 0.0		0.00037	0.00012	0.0183	< 0.020	< 0.000050	0.02		0234	203	< 0.00010	< 0.10	0.00088
LC_WLC	LC_MT1_WS_2022-07-25_N	2022-07-26	-	< 0.0		< 0.00010	< 0.00010	< 0.00010	< 0.020	< 0.000050	< 0.010		.0050	< 0.050	< 0.00010	< 0.10	< 0.00020
LC_WLC	LC_WLC_MNT_2022-08-02_N	2022-08-03	-	< 0.0		0.00038	0.00018	0.0205	< 0.020	< 0.000050	0.022		0253	220	0.00011	< 0.10	0.00102
LC_WLC	LC_WLC_WS_2022-08-08_N	2022-08-08	-	0.00		0.00039	0.00013	0.0228	< 0.020	< 0.000050	0.019		0284	243	0.00015	< 0.10	0.00104
LC_WLC	LC_MT1_WS_2022-08-15_N	2022-08-15	-	< 0.0		< 0.00010	< 0.00010	< 0.00010	< 0.020	< 0.000050	< 0.010		.0050	< 0.050	< 0.00010	< 0.10	0.00065
LC_WLC	LC_WLC_WS_2022-08-22_N	2022-08-22	-	0.00		0.0004	0.00013	0.0244	< 0.020	< 0.000050	0.019		0273	237	0.00022	< 0.10	0.00101
LC_WLC	LC_WLC_WS_2022-08-29_N	2022-08-29	-	0.00		0.0004	0.00023	0.0248	< 0.040	< 0.000100	0.029		0293	243	< 0.00020	< 0.20	0.00111
LC_WLC	LC_WLC_MNT_2022-09-06_N	2022-09-06	-	< 0.0		0.00038	< 0.00020	0.0219	< 0.040	< 0.000100	0.025		00258	238	< 0.00020	< 0.20	0.00042
LC_WLC	LC_WLC_WS_2022-09-12_N	2022-09-13	-	0.00		0.00039	0.00014	0.027	< 0.020	< 0.000050	0.021		0357	281	< 0.00010	< 0.10	0.00124
LC_WLC	LC_WLC_WS_2022-09-19_N	2022-09-19	-	< 0.0		0.00044	< 0.00020	0.0254	< 0.040	< 0.000100	0.021		0287	271	< 0.00020	< 0.20	0.00109
LC_WLC	LC_WLC_WS_2022-09-29_N	2022-09-29	-	0.00		0.00043	0.00017	0.0282	< 0.020	< 0.000050	0.021		0264	282	0.0001	< 0.10	0.00113
LC_WLC	LC_WLC_WS_Q4-2022_N	2022-10-03	-	< 0.0	020	0.00044	< 0.00020	0.0259	< 0.040	< 0.000100	0.024		0289	293	< 0.00020	< 0.20	0.00113
LC_WLC	LC_WLC_WS_2022-10-10_N	2022-10-12	-	< 0.0	020	0.00046	0.00024	0.0279	< 0.040	< 0.000100	0.021		0296	289	< 0.00020	< 0.20	0.00129
LC_WLC	LC_WLC_WS_2022-10-17_N	2022-10-17	- 1	< 0.0		0.00042	0.00016	0.0275	< 0.020	< 0.000050	0.023		0287	304	< 0.00010	< 0.10	0.00118
LC_WLC	LC_CC1_WS_2022-10-24_N	2022-10-24	-	< 0.0	020	0.00032667	< 0.00020	0.0192	< 0.040	< 0.000100	< 0.020	0.00	01365	219	< 0.00020	< 0.20	0.00093
LC_WLC	LC_WLC_WS_2022-10-31_N	2022-10-31	-	< 0.0	020	0.00041	< 0.00020	0.0232	< 0.040	< 0.000100	< 0.020	0.0	0138	287	< 0.00020	< 0.20	0.00103
LC_WLC	LC_WLC_MNT_2022-11-08_N	2022-11-07	-	0.0	03	0.00056	< 0.00020	0.023	< 0.040	< 0.000100	< 0.020	0.00	00807	277	< 0.00020	< 0.20	0.00087
LC_WLC	LC_MT1_WS_2022-11-14_N	2022-11-14	-	0.00	215	< 0.00010	< 0.00010	0.01171	< 0.020	< 0.000050	< 0.010	< 0	.0050	< 0.050	< 0.00010	< 0.10	< 0.00020
LC_WLC	LC_WLC_WS_2022-11-21_N	2022-11-21	-	< 0.0	010	0.00044	0.00018	0.0241	< 0.020	< 0.000050	0.013	0.00	00577	282	0.00011	< 0.10	0.00091

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

^d Guideline varies with pH

^e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 2: Summary of Analytical Results for Dissolved Metals

			ſ								Dissolv	ed Metals							
Sample Location	Sample ID	Sample Date (mm/dd/yyyy)		ဋ စ mg/L	read Mg/L	mg/L	mg Magnesium /L	Manganese Mg/L	mg/L	Dotassium //D	Ma/r hg/r	mg/L	Enipos mg/L	mg/L	mg/L	Ę mg/L	mg/L	mg/L	ว เรี mg/L
BC WQG FWAL				Acute	<u> </u>														
			n/a	0.35	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Line Creek Operation LC WLC	LC WLC WS 2022-06-27 N	2022-06-27		< 0.010	< 0.000050	0.0231	89.8	0.00052	0.0227	2.16	180	< 0.000010	1.54	0.104	0.000022	< 0.00010	< 0.00030	0.00675	0.0668
LC WLC	LC WLC WS Q3-2022 N	2022-07-05	- 1	< 0.010	< 0.000050	0.023	100	0.00063	0.0253	2.16	215	< 0.000010	1.63	0.115	0.000026	< 0.00010	< 0.00030	0.00822	0.0692
LC WLC	LC CC1 WS 2022-07-11 N	2022-07-11	- 1	< 0.010	< 0.000050	0.02485	115	0.00084	0.03	2.353333333	284	< 0.000010	1.78	0.134	0.0000255	< 0.00010	< 0.00030	0.008865	0.08135
LC WLC	LC WLC WS 2022-07-18 N	2022-07-19	-	< 0.010	< 0.000050	0.0256	124	0.00109	0.0352	2.15	273	< 0.000010	1.84	0.136	0.000014	< 0.00010	< 0.00030	0.0091	0.093
LC WLC	LC MT1 WS 2022-07-25 N	2022-07-26	- 1	< 0.010	< 0.000050	< 0.0010	< 0.0050	< 0.00010	< 0.00050	< 0.050	< 0.050	< 0.000010	< 0.050	< 0.00020	< 0.000010	< 0.00010	< 0.00030	< 0.000010	< 0.0010
LC WLC	LC WLC MNT 2022-08-02 N	2022-08-03	- 1	< 0.010	< 0.000050	0.0331	137	0.00144	0.0372	2.48	334	< 0.000010	2.06	0.159	0.000027	< 0.00010	< 0.00030	0.0104	0.0998
LC WLC	LC WLC WS 2022-08-08 N	2022-08-08	- 1	< 0.010	< 0.000050	0.0307	156	0.00171	0.0392	2.43	335	< 0.000010	2.08	0.166	0.00003	< 0.00010	< 0.00030	0.0122	0.103
LC WLC	LC MT1 WS 2022-08-15 N	2022-08-15	- 1	< 0.010	< 0.000050	< 0.0010	< 0.0050	< 0.00010	< 0.00050	< 0.050	< 0.050	< 0.000010	< 0.050	< 0.00020	< 0.000010	< 0.00010	< 0.00030	< 0.000010	< 0.0010
LC_WLC	LC_WLC_WS_2022-08-22_N	2022-08-22	- 1	< 0.010	< 0.000050	0.0296	162	0.00151	0.04	2.38	407	< 0.000010	2.13	0.166	0.00003	< 0.00010	< 0.00030	0.014	0.105
LC WLC	LC WLC WS 2022-08-29 N	2022-08-29	- 1	< 0.020	< 0.000100	0.0345	208	0.00218	0.0424	2.38	366	< 0.000020	2.54	0.174	0.000031	< 0.00020	< 0.00060	0.015	0.128
LC WLC	LC WLC MNT 2022-09-06 N	2022-09-06	- 1	< 0.020	< 0.000100	0.0363	176	0.00098	0.0392	2.24	391	< 0.000020	2.06	0.174	0.00003	< 0.00020	< 0.00060	0.015	0.0093
LC_WLC	LC_WLC_WS_2022-09-12_N	2022-09-13	-	< 0.010	< 0.000050	0.0348	187	0.00182	0.0411	2.58	414	< 0.000010	2.25	0.193	0.00003	< 0.00010	< 0.00030	0.0174	0.134
LC_WLC	LC_WLC_WS_2022-09-19_N	2022-09-19	- 1	< 0.020	< 0.000100	0.0335	192	0.00182	0.043	2.48	372	< 0.000020	2.22	0.196	0.000032	< 0.00020	< 0.00060	0.0171	0.107
LC WLC	LC WLC WS 2022-09-29 N	2022-09-29	- 1	< 0.010	< 0.000050	0.0366	201	0.00129	0.0432	2.75	480	< 0.000010	2.42	0.194	0.000029	< 0.00010	< 0.00030	0.0195	0.0937
LC_WLC	LC_WLC_WS_Q4-2022_N	2022-10-03	- 1	< 0.020	< 0.000100	0.0396	201	0.0016	0.0441	2.54	438	< 0.000020	2.21	0.196	0.000034	< 0.00020	< 0.00060	0.0174	0.102
LC_WLC	LC_WLC_WS_2022-10-10_N	2022-10-12	- 1	< 0.020	< 0.000100	0.0381	218	0.00175	0.0488	2.69	400	< 0.000020	2.32	0.189	0.000046	< 0.00020	< 0.00060	0.0178	0.122
LC_WLC	LC_WLC_WS_2022-10-17_N	2022-10-17	- 1	< 0.010	< 0.000050	0.0409	224	0.00176	0.0479	2.94	471	< 0.000010	2.54	0.198	0.000031	< 0.00010	< 0.00030	0.0189	0.114
LC_WLC	LC_CC1_WS_2022-10-24_N	2022-10-24	- 1	< 0.020	< 0.000100	0.025766667	149.6683333	0.00053	0.026966667	1.873333333	296.35	< 0.000020	1.666666667	0.138066667	2.36667E-05	< 0.00020	< 0.00060	0.01467	0.0462
LC_WLC	LC_WLC_WS_2022-10-31_N	2022-10-31	- 1	< 0.020	< 0.000100	0.0358	203	0.00023	0.0301	2.5	452	< 0.000020	2.27	0.178	0.00003	< 0.00020	< 0.00060	0.0216	0.0469
LC_WLC	LC_WLC_MNT_2022-11-08_N	2022-11-07	- 1	< 0.020	< 0.000100	0.036	205	< 0.00020	0.0227	2.46	414	< 0.000020	2.14	0.178	0.000028	< 0.00020	< 0.00060	0.0193	0.0238
LC_WLC	LC_MT1_WS_2022-11-14_N	2022-11-14	- 1	< 0.010	< 0.000050	< 0.0010	< 0.0050	< 0.00010	< 0.00050	< 0.050	< 0.050	< 0.000010	< 0.050	< 0.00020	< 0.000010	< 0.00010	< 0.00030	< 0.000010	< 0.0010
LC_WLC	LC_WLC_WS_2022-11-21_N	2022-11-21	- 1	< 0.010	< 0.000050	0.0396	211	0.00011	0.0189	2.54	520	< 0.000010	2.19	0.19	0.000029	< 0.00010	< 0.00030	0.0224	0.0147

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

^d Guideline varies with pH

e Guideline calculated using the BC Biotic Ligand Model (BLM)

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

			Г								Total Metals						
				_							_		۽				
			ess	Aluminum	ony	ಲ	* <u></u>	<u> </u>	arth th	_	<u> </u>	E	aic E	_	-		
			듄	Ē	Ē	rsenic	ari um'	₹	l mr	l or	admi	킁	- 5	balt	obber	_	ead
Sample	Sample	Sample Date	포		Ā	∢	œ .	Be	ā	ă	ű	ca	5	Cop	Ú	<u>6</u>	
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg	/L	mg/L
						ي ا	onic	je je		onic				ᆲ		2	<u>a</u> <u>a</u>
						Acute	Chron	ಕ್ಷ		Įį				Acute		Acute	Acute
BC WQG FWAL			n/a	n/a	n/a	0.005	1	0.00013	n/a	1.2	n/a	n/a	n/a	0.11 0.004	n/a	1	0.003-5.5° 3.3-3.5°
Coal Mountain Mine							-										
CM_CC1	CM_CC1_WS_2022-01-04_N	2022-01-06	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 0.000050
CM_CC1 CM_CC1	CM_CC1_WS_2022-01-11_N	2022-01-11	922	0.011	0.00039 0.00036	0.00022	0.0384	< 0.020 < 0.020	< 0.000050 < 0.000050	0.116 0.085	0.000144 0.000111	235 198	0.00012 0.0001	0.0111 0.00983	< 0.00050 < 0.00050	0.071 0.044	< 0.000050 < 0.000050
CM_CC1	CM_CC1_WS_2022-02-01_N CM_CC1_WS_2022-03-01_N	2022-02-01	913 1050	0.0079	0.00036	0.00018	0.0346	< 0.020	< 0.000050	0.085	0.000111	198 236	0.0001	0.00983	< 0.00050	0.044	< 0.000050
CM CC1	CM CC1 WS 2022-03-01 N	2022-03-01	978	0.0073	0.00033	0.00023	0.0376	< 0.020	< 0.000050	0.053	0.0000775	206	0.00018	0.00393	< 0.00050	0.016	< 0.000050
CM_CC1	CM_CC1_WS_2022-03-22_N	2022-03-22	988	0.0052	0.00028	0.00019	0.0489	< 0.020	< 0.000050	0.052	0.0000657	210	0.00015	0.00317	< 0.00050	0.012	< 0.000050
CM_CC1	CM_CC1_WS_2022-03-29_N	2022-03-29	1030	0.0043	0.00028	0.00022	0.0546	< 0.020	< 0.000050	0.064	0.0000591	225	0.00022	0.00312	< 0.00050	0.012	< 0.000050
CM_CC1 CM_CC1	CM CC1 WS 2022-04-05 N CM CC1 WS 2022-04-12 N	2022-04-05 2022-04-12	970 899	0.0253	0.00028 0.00028	0.00023	0.0484	< 0.020 < 0.020	< 0.000050 < 0.000050	0.061 0.078	0.0000612 0.0000588	198 192	0.00012 0.00012	0.00416 0.00378	< 0.00050 < 0.00050	0.031	< 0.000050 < 0.000050
CM_CC1	CM CC1 WS 2022-04-12 N CM CC1 WS 2022-04-19 N	2022-04-12	889	0.001	0.00028	0.0002	0.0469	< 0.020	< 0.000050	0.078	0.0000588	213	0.00012	0.00370	< 0.00050	0.036	< 0.000050
CM CC1	CM CC1 WS 2022-04-26 N	2022-04-26	872	0.0099	0.00028	0.00018	0.0467	< 0.020	< 0.000050	0.083	0.0000452	202	0.00016	0.00377	< 0.00050	0.036	< 0.000050
CM_CC1	CM_CC1_WS_2022-05-03_N	2022-05-03	819	0.0203	0.000315	0.000225	0.04575	< 0.020	< 0.000050	0.0735	0.00004875	193.5	0.00019	0.004555	< 0.00050	0.039	< 0.000050
CM_CC1	CM_CC1_2022-05-06_N2	2022-05-06	772	0.0266	0.00039	0.00021	0.0413	< 0.020	< 0.000050	0.087	0.0000793	182	0.00021	0.0102	< 0.00050	0.061	< 0.000050
CM_CC1 CM_CC1	CM CC1_2022-05-06_N1 CM CC1_2022-05-07_N1	2022-05-06 2022-05-07	-		-	-	-	-	-	-	-	-	-	-	-	-	-
CM_CC1	CM CC1 WS 2022-05-10 N	2022-05-10		_:-	-	-:-	-:-	- :			- :	- :	-	-	-	- :	-
CM CC1	CM CC1 WS 2022-05-17 N	2022-05-17	694	0.0456	0.00038	0.00021	0.0376	< 0.020	< 0.000050	0.091	0.000161	158	0.00029	0.00648	0.00073	0.106	0.000071
CM_CC1	CM_NNP_WS_2022-05-17_N	2022-05-17	731	0.03135	0.00038	0.00024	0.0316	< 0.020	< 0.000050	0.0805	0.000191	165.5	0.000205	0.009815	0.00055	0.0595	< 0.000050
CM_CC1	CM_CC1_WS_2022-05-24_N	2022-05-24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	< 0.000050
CM CC1 CM CC1	CM CC1 WS 2022-05-31 N CM CC1 WS 2022-06-07 N	2022-05-31 2022-06-07	721 637	0.0246	0.00036 0.00036	0.00018	0.028 0.0253	< 0.020 < 0.020	< 0.000050 < 0.000050	0.059 0.048	0.000199 0.000297	162 142	0.00017 0.00018	0.00778 0.00519	< 0.00050 0.00051	0.037	0.000050
CM_CC1	CM CC1 WS 2022-06-07 N CM CC1 WS 2022-06-14 N	2022-06-07	654	0.049	0.00036	0.00022	0.0253	< 0.020	< 0.000050	0.048	0.000297	139	0.00018	0.00632	< 0.00051	0.076	0.00007
CM_CC1	CM_CC1_WS_2022-06-21_N	2022-06-21	538	0.104	0.0003	0.00027	0.0256	0.000022	< 0.000050	0.031	0.000418	133	0.00031	0.00535	0.00059	0.138	0.000181
CM_CC1	CM CC1 WS 2022-06-28 N	2022-06-28	602	0.0214	0.00032	0.000235	0.02375	< 0.020	< 0.000050	0.0465	0.0004555	126	0.00017	0.00603	< 0.00050	0.051	< 0.000050
CM_CC1	CM_CC1_WS_2022-07-05_N	2022-07-05	798	0.0121	0.0004	0.00027	0.0263	< 0.020	< 0.000050	0.052	0.000441	186	0.00013	0.00951 0.00972	< 0.00050	0.045	< 0.000050 < 0.000050
CM_CC1 CM_CC1	CM_NNP_WS_2022-07-12_N CM_CC1_WS_2022-07-12_N	2022-07-12	834	0.0306	0.00044	0.00027	0.0267	< 0.020	< 0.000050	0.071	0.000282	176	0.00019	0.00972	< 0.00050 < 0.00050	0.063	< 0.000050
CM CC1	CM CC1 WS 2022-07-12 N	2022-07-12	971	0.0098	0.000485	0.00028	0.02845	< 0.020	< 0.000050	0.076	0.0001535	192.5	0.00013	0.01135	- 0.00050	0.0305	< 0.000050
CM_CC1	CM_NNP_WS_2022-08-02_N	2022-08-02	971	0.01	0.0006	0.00022	0.03085	< 0.020	< 0.000050	0.094	0.000131	223.5	0.00011	0.01165	< 0.00050	0.0275	< 0.000050
CM_CC1	CM_CC1_2022-08-25_N1	2022-08-25	-		-	-	-	-	-	-	-	-	-	-	-	-	-
CM CC1	CM CC1 WS 2022-09-06 N	2022-09-06	4007	- 0.0450	- 0.000555	- 000000	- 0.0004		- 0.000050	- 0.4055	- 0.0000044	- 004	0.00044	0.006185	- 0.00050	0.016	< 0.000050
CM_CC1 CM_CC1	CM CC1 WS SEPT-2022 N CM CC1 WS 2022-10-04 N	2022-09-08 2022-10-04	1027 1040	< 0.0150 0.0074	0.000555 0.00049	0.000295	0.0391	< 0.020 < 0.020	< 0.000050 < 0.000050	0.1055 0.093	0.0000911	221 204	0.00014 0.00011	0.00611	< 0.00050 < 0.00050	0.016	< 0.000050
CM CC1	CM CC1 WS 2022-10-04 N	2022-10-04	1020	0.0074	0.00049	0.00027	0.0339	< 0.020	< 0.000050	0.067	0.0000562	220	0.00011	0.00291	< 0.00050	< 0.010	< 0.000050
CM CC1	CM CC1 WS 2022-12-06 N	2022-12-06	1030	0.0616	0.00033	0.00024	0.0454	< 0.020	< 0.000050	0.079	0.0000518	227	0.00017	0.00389	< 0.00050	0.044	< 0.000050
CM_CCOFF	CM_CCOFF_WS_2022-01-04_NP	2022-01-06	1165	0.0076	0.000265	0.000245	0.06165	< 0.020	< 0.000050	0.0685	0.00003975	264.5	0.00014	0.003235	< 0.00050	0.012	< 0.000050 < 0.000050
CM_CCOFF CM_CCOFF	CM CCOFF WS 2022-01-11 NP CM CCOFF WS 2022-01-18 NP	2022-01-11 2022-01-18	995 970	0.0094	0.00031 0.00028	0.00022	0.0276 0.0257	< 0.00025 < 0.020	< 0.000050 < 0.000050	0.137	0.000402 0.000363	242 205	0.00012	0.00537 0.00312	< 0.00050 < 0.00050	0.162 0.115	< 0.000050 < 0.000050
CM CCOFF	CM CCOFF WS 2022-01-18 NP CM CCOFF WS 2022-01-19 NP	2022-01-18	1080	0.0102	0.00028	0.0002	0.0237	< 0.020	< 0.000050	0.092	0.000363	244	0.00012	0.00127	< 0.00050	0.115	< 0.000050
CM CCOFF	CM CCOFF WS 2022-01-25 NP	2022-01-15	1110	0.0102	0.00028	0.00010	0.026	< 0.020	< 0.000050	0.066	0.000373	229	0.00012	0.00115	< 0.00050	0.036	< 0.000050
CM_CCOFF	CM CCOFF WS 2022-02-01 NP	2022-02-02	1160	0.0065	0.00032	0.0002	0.0252	< 0.020	< 0.000050	0.067	0.000433	244	0.00015	0.00074	< 0.00050	0.026	< 0.000050
CM_CCOFF	CM CCOFF WS 2022-02-08 N	2022-02-08	1110	< 0.0060	0.0003	< 0.00020	0.0258	< 0.040	< 0.000100	0.062	0.000392	242	< 0.00020	0.00053 0.00044	< 0.00100	0.022	< 0.000100 < 0.000050
CM CCOFF CM CCOFF	CM CCOFF WS 2022-02-15 NP CM CCOFF WS 2022-02-22 NP	2022-02-15	1240 1160	0.0058	0.00033	0.00023	0.0262 0.0265	< 0.020 < 0.020	< 0.000050 < 0.000050	0.074	0.000412 0.00045	256 271	0.00016 0.00013	0.00044	< 0.00050 < 0.00050	0.023	< 0.000050
CM_CCOFF	CM CCOFF WS 2022-02-22 NP CM CCOFF WS 2022-03-01 NP	2022-02-22	1170	0.0058	0.0003	0.00023	0.0265	< 0.020	< 0.000050	0.061	0.00045	253	< 0.00013	0.00036	< 0.00050	0.028	< 0.000100
CM CCOFF	CM CCOFF WS 2022-03-08 NP	2022-03-08	1220	0.0068	0.00031	0.0002	0.0263	< 0.040	< 0.000100	0.063	0.000366	259	< 0.00020	0.00036	< 0.00100	0.022	< 0.000100
CM_CCOFF	CM_CCOFF_WS_2022-03-15_NP	2022-03-15	1200	0.0075	0.00028	0.00019	0.0287	< 0.020	< 0.000050	0.072	0.000267	259	0.00023	0.00037	< 0.00050	0.031	< 0.000050
CM_CCOFF	CM_CCOFF_WS_2022-03-22_NP	2022-03-22	1170	0.007	0.00028	< 0.00020	0.0274	< 0.040	< 0.000100	0.063	0.000299	252	0.00076	0.00038 0.00038	< 0.00100	0.027	< 0.000100 < 0.000050
CM_CCOFF CM_CCOFF	CM_CCOFF_WS_2022-03-29_NP CM_CCOFF_WS_2022-04-05_NP	2022-03-29	1240 1140	0.0053	0.00028	0.00021	0.0267 0.0294	< 0.020	< 0.000050 < 0.000050	0.072	0.000258 0.000319	254 235	0.00014 0.0002	0.00086	< 0.00050 < 0.00050	0.027	0.000050
CIW_CCOTT	31V COOT 1 VV3 2022-04-03 NP	2022-04-03	1140	0.001	0.00020	0.00020	0.0254	· 0.020	- 0.0000000	0.001	0.0000319	233	0.0002		. 0.00050	0.134	

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

^d Guideline varies with pH

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

										Total Metals								
					1					1	T	1						
					_													
			s,		nesium	8		<u>E</u>	E			E	ε		_	<u>*</u>		
			l e	<u>E</u>	Jes	gan	*	SS.	- ₽	_	≣	₫			<u>.</u>	<u>.</u>		
			ard	1 \$	Magr	auc	icke	l ä	eni	Silver	Sodium	Strontium	allin	E	Titanium	raniu		2
Sample	Sample	Sample Date	Ĩ.			Σ	z	ă.	<u>й</u>				F.					Ñ.
Location	ID	(mm/dd/yyyy)	mg/L	. mg/L	mg/L		mg/L	mg/L	μg/L	mg/L	mg/	L mg/l	mg/L	mg/L	mg/L	mg/L	m	ng/L
						ute ronic	onic		ronic	onic fe						onic	힅	o nk
						Acute	ř		ਵੱ	Acute						ಕ್ಷ] 5	<u>E</u>
BC WQG FWAL			n/a	n/a	n/a	0.001-0.03° 0.0009-0.01°	0.025-0.15 ^a	n/a	2	0.0001-0.003° 0.00005-0.0015°	1 2/0	n/a	n/a	n/a	n/a	0.0085	0.033-2 ^a	0.0075-2ª
Coal Mountain Mine			II/a	II/a	II/a	0.001-0.03 0.0009-0.01	0.025-0.15	II/a		0.0001-0.003 0.00009-0.0015	II/a	I II/a	II/a	II/a	II/a	0.0005	0.033-2	0.0075-2
CM CC1	CM CC1 WS 2022-01-04 N	2022-01-06	-	Τ.	Ι.	-	-			I -	Τ.	Τ.	-	-	-	-		
CM_CC1	CM_CC1_WS_2022-01-11_N	2022-01-11	922	0.065	109	0.0801	0.0634	3.71	19.4	< 0.000010	52.	7 1.1	0.00005	< 0.00010	< 0.00030	0.00623	0.0	.0155
CM_CC1	CM_CC1_WS_2022-02-01_N	2022-02-01	913			0.0697	0.0578	3.34	16.6	< 0.000010		9 0.96		< 0.00010	< 0.00030	0.00607		0.013
CM_CC1	CM_CC1_WS_2022-03-01_N	2022-03-01	1050			0.0768	0.0835	3.99	16.8	< 0.000010		2 1.05		< 0.00010	< 0.00030	0.00665		0.02
CM_CC1 CM_CC1	CM_CC1_WS_2022-03-15_N	2022-03-15	978 988			0.0281 0.0257	0.0371	3.17	20.2	< 0.000010 < 0.000010		0.74		< 0.00010 < 0.00010	< 0.00030 < 0.00030	0.00644		.0074
CM_CC1	CM_CC1_WS_2022-03-22_N CM_CC1_WS_2022-03-29_N	2022-03-22	1030			0.0257	0.0304	3.13	21.2	< 0.000010		0.74		< 0.00010	< 0.00030	0.00646		.0055
CM CC1	CM CC1 WS 2022-03-29 N CM CC1 WS 2022-04-05 N	2022-03-29	970			0.0264	0.0305	3.28	16	< 0.000010		1 0.71		< 0.00010	< 0.00030	0.00537		.0065
CM CC1	CM CC1 WS 2022-04-03 N	2022-04-03	899			0.0294	0.0300	2.8	15.9	< 0.000010		8 0.91		< 0.00010	< 0.00030	0.00584		.0072
CM CC1	CM CC1 WS 2022-04-19 N	2022-04-19	889			0.0278	0.0289	2.91	16.2	< 0.000010		2 0.88		< 0.00010	< 0.00030	0.00547		.0066
CM_CC1	CM_CC1_WS_2022-04-26_N	2022-04-26	872			0.0284	0.029	3.06	15.9	< 0.000010		5 0.86		< 0.00010	< 0.00030	0.00567		.0065
CM_CC1	CM_CC1_WS_2022-05-03_N	2022-05-03	819			0.03575	0.0337	3.045	13.55	< 0.000010		4 0.81	0.000031	< 0.00010	< 0.00060	0.004915		00675
CM_CC1	CM CC1 2022-05-06 N2	2022-05-06	772	0.054	_	0.0757	0.0527	3.32	11.7	< 0.000010		7 0.9		< 0.00010	0.00047	0.00482		.0097
CM_CC1 CM_CC1	CM CC1 2022-05-06 N1 CM CC1 2022-05-07 N1	2022-05-06 2022-05-07	-	-	-	-		-	-	-	-	+	-			-		-
CM CC1	CM CC1 WS 2022-05-10 N	2022-05-10	-	+ :	+ -				-:-	- :	H:		-	-	-	- :		-
CM CC1	CM CC1 WS 2022-05-10 N	2022-05-17	694	_		0.0479	0.0394	2.9	16	< 0.000010		0.74	0.000039	< 0.00010	0.00079	0.00419		.0177
CM CC1	CM_NNP_WS_2022-05-17_N	2022-05-17	731			0.06745	0.05605	3.01	13.55	< 0.000010		1 0.76		< 0.00010	0.000635	0.00474	0.0	.0204
CM_CC1	CM_CC1_WS_2022-05-24_N	2022-05-24	-	-	-	-	-	-	-	-	-	_	-	-	-	-		-
CM_CC1	CM_CC1_WS_2022-05-31_N	2022-05-31	721			0.0519	0.0479	2.92	18.6	< 0.000010		8 0.69		< 0.00010	0.00051	0.00505		.0171
CM_CC1	CM CC1 WS 2022-06-07 N	2022-06-07	637			0.0328	0.0365	2.62	19	< 0.000010		9 0.52		< 0.00010	0.0012	0.00429		0.025
CM_CC1 CM_CC1	CM CC1 WS 2022-06-14 N CM CC1 WS 2022-06-21 N	2022-06-14 2022-06-21	654 538			0.0422 0.0388	0.0399	2.46	17 15	< 0.000010 < 0.000010		3 0.49		< 0.00010 < 0.00010	0.00099	0.00407 0.00381		.0297
CM CC1	CM CC1 WS 2022-06-21 N	2022-06-28	602		62.65	0.03825	0.0397	2.365	14.4	0.000010		8 0.45		< 0.00010	0.00033	0.00348		.0328
CM CC1	CM CC1 WS 2022-07-05 N	2022-07-05	798			0.0563	0.0598	3.02	16.8	< 0.000010		2 0.69		< 0.00010	0.00035	0.00526		.0333
CM_CC1	CM_NNP_WS_2022-07-12_N	2022-07-12	834		95.8	0.0568	0.0622	3.05	17	< 0.000010		3 0.68		< 0.00010	0.00094	0.00535		.0229
CM_CC1	CM_CC1_WS_2022-07-12_N	2022-07-12	-	-	-	-	-	-	-	-	-		-	-	< 0.00030	-		-
CM_CC1	CM CC1 WS 2022-08-02 N	2022-08-02	971		101.5	0.05855	0.07515	3.5	19.7	< 0.000010		7 0.75		< 0.00010	-	0.00647		.0135
CM_CC1	CM_NNP_WS_2022-08-02_N	2022-08-02	971	0.054	118.5	0.04865	0.0861	4.015	14.95	< 0.000010	35.	5 0.91	0.000056	< 0.00010	-	0.00687		00485
CM_CC1 CM_CC1	CM CC1 2022-08-25 N1 CM CC1 WS 2022-09-06 N	2022-08-25 2022-09-06	-	-	-	1	-	-	-	-	÷	+-	-	-	< 0.00030	-	-	
CM CC1	CM CC1 WS 2022-09-00 N	2022-09-08	1027	0.049		0.0251	0.06915	3.765	16.15	< 0.000010	35	5 0.91	0.0000495	< 0.00010	< 0.00030	0.00556	0.0	00335
CM CC1	CM CC1 WS 2022-10-04 N	2022-10-04	1040			0.0249	0.0648	3.82	14.7	< 0.000010		0.85		< 0.00010	< 0.00030	0.00593		.0035
CM_CC1	CM CC1 WS 2022-11-01 N	2022-11-01	1020	0.039		0.0142	0.0466	3.5	15.4	< 0.000010		0.75		< 0.00010	< 0.00030	0.00579	< 0	0.0030
CM_CC1	CM_CC1_WS_2022-12-06_N	2022-12-06	1030			0.0226	0.0444	3.58	16.4	< 0.000010		9 0.8		< 0.00010	0.00136	0.00597		.0039
CM_CCOFF	CM_CCOFF_WS_2022-01-04_NP	2022-01-06	1165			0.0289	0.03215	3.25	17.35	< 0.000010		7 0.85		< 0.00010	< 0.00030	0.00617		00335
CM_CCOFF CM_CCOFF	CM CCOFF WS 2022-01-11 NP CM CCOFF WS 2022-01-18 NP	2022-01-11 2022-01-18	995 970			0.0363 0.0218	0.0387	3.41 3.18	28.4 29.6	< 0.000010 < 0.000010		8 1.19 7 0.98		< 0.00010 < 0.00010	< 0.00030	0.00622 0.00679		.0354
CM CCOFF	CM CCOFF WS 2022-01-16 NP	2022-01-18	1080			0.0218	0.0312	3.10	30.6	< 0.000010		0.81		< 0.00010	< 0.00030	0.00679		.0229
CM CCOFF	CM CCOFF WS 2022-01-25 NP	2022-01-15	1110			0.0108	0.028	3.43	31.8	< 0.000010		8 0.84		< 0.00010	< 0.00030	0.00796		.0248
CM CCOFF	CM CCOFF WS 2022-02-01 NP	2022-02-02	1160	0.037	141	0.0087	0.0266	3.6	33.7	< 0.000010	27.	3 0.77		< 0.00010	< 0.00030	0.00853	0.0	.0223
CM_CCOFF	CM CCOFF WS 2022-02-08 N	2022-02-08	1110			0.00805	0.0256	3.54	30.8	< 0.000020		9 0.76		< 0.00020	< 0.00060	0.00798		.0203
CM_CCOFF	CM_CCOFF_WS_2022-02-15_NP	2022-02-15	1240			0.00795	0.0261	3.65	32.4	< 0.000010		1 0.78		< 0.00010	< 0.00030	0.00874		0.019
CM_CCOFF	CM_CCOFF_WS_2022-02-22_NP	2022-02-22 2022-03-01	1160	0.035		0.00877	0.0264	3.57 3.5	33	< 0.000010 < 0.000020		8 0.78 3 0.78		< 0.00010	< 0.00030	0.00828		.0242
CM CCOFF CM CCOFF	CM CCOFF WS 2022-03-01 NP CM CCOFF WS 2022-03-08 NP	2022-03-01	1220			0.00684 0.00693	0.0266 0.0264	3.57	30.9 31.8	< 0.000020 < 0.000020		1 0.81		< 0.00020 < 0.00020	< 0.00060 < 0.00060	0.00873 0.00934		.0201
CM_CCOFF	CM CCOFF WS 2022-03-08 NP	2022-03-08	1220			0.00887	0.0264	4.03	33.2	< 0.000020		3 0.84		< 0.00020	< 0.00030	0.00934		.0172
CM CCOFF	CM CCOFF WS 2022-03-12 NP	2022-03-13	1170			0.00818	0.026	3.74	34.35	< 0.000020		8 0.82		< 0.00010	< 0.00060	0.00936		.0144
CM_CCOFF	CM CCOFF WS 2022-03-29 NP	2022-03-29	1240	0.038	146	0.00864	0.0254	3.75	35.3	< 0.000010		9 0.84	0.000043	< 0.00010	< 0.00030	0.00886		.0135
CM CCOFF	CM CCOFF WS 2022-04-05 NP	2022-04-05	1140	0.039	136	0.0168	0.0246	3.72	27.6	< 0.000010	27.	2 0.84	0.00004	< 0.00010	< 0.00150	0.00755	0.0	.0196

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

											Total Metals						
Sample	Sample	Sample Date	Hardness	Aluminum	Antimony	Arsenic	Barium*	Beryllium*	Bismuth	Boron	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Pead
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg	/L	mg/L
						Acute	Chronic	Chronic		Chronic				Acute Chronic		Acute	Acute Chronic
BC WQG FWAL			n/a	n/a	n/a	0.005	1	0.00013	n/a	1.2	n/a	n/a	n/a	0.11 0.004	n/a	1	0.003-5.5 ^a 3.3-3.5 ^a
Coal Mountain Mine	CM CCOFF WS 2022-04-12 NP	2022-04-12	1050	0.0176	0.00032	0.00021	0.0278	0.000058	< 0.000050	0.129	0.000303	226	0.00065	0.00644	0.0006	0.306	< 0.000050
CM_CCOFF CM CCOFF	CM CCOFF WS 2022-04-12 NP	2022-04-12	1070	0.0176	0.00032	0.00021	0.0278	0.000034	< 0.000050	0.129	0.000303	263	0.00065	0.00438	< 0.00050	0.306	< 0.000050
CM CCOFF	CM CCOFF WS 2022-04-19 NP	2022-04-19	1060	0.0355	0.00033	< 0.00021	0.0281	< 0.040	< 0.000030	0.116	0.000237	227	< 0.00014	0.0031	< 0.00100	0.204	< 0.000100
CM CCOFF	CM CCOFF WS 2022-05-03 NP	2022-05-03	912	0.0529	0.00033	0.00021	0.0293	0.000026	< 0.000050	0.122	0.00021	222	0.00018	0.00269	< 0.00050	0.202	0.000079
CM CCOFF	CM CCOFF 2022-05-06 NP1	2022-05-06	878	0.0544	0.00036	0.00019	0.0295	0.000041	< 0.000050	0.123	0.000139	192	0.0002	0.00393	0.00056	0.287	0.000086
CM_CCOFF	CM_CCOFF_2022-05-07_NP1	2022-05-07	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
CM_CCOFF	CM_CCOFF_WS_2022-05-10_NP	2022-05-10	-	-	-	-	-	-	-	-	-	-	-		-	-	-
CM_CCOFF	CM_CCOFF_WS_2022-05-17_NP	2022-05-17	825	0.0846	0.00033	0.0003	0.0294	0.000051	< 0.000050	0.093	0.000359	168	0.00034	0.00396	0.00088	0.311	0.000205
CM_CCOFF	CM_CCOFF_WS_2022-05-24_NP	2022-05-24	776	0.0372	0.00031	0.00025	0.0221	0.000026	< 0.000050	0.085	0.00036	178	0.00032	0.00176	0.00068	0.143	0.000065
CM CCOFF	CM CCOFF_WS 2022-05-31 NP	2022-05-31	750	0.032	0.00028	0.00015	0.0189	< 0.020	< 0.000050	0.044	0.000415	154	0.0002	0.00086 0.00083	< 0.00050	0.071	< 0.000050 0.000123
CM_CCOFF	CM_CCOFF_WS_2022-06-07_NP	2022-06-07	691	0.0527	0.0003	0.00022	0.0194	< 0.020	< 0.000050	0.038	0.000434	141	0.0002	0.00083	< 0.00050	0.107	0.000123
CM_CCOFF CM CCOFF	CM CCOFF WS 2022-06-14 NP CM CCOFF WS 2022-06-21 NP	2022-06-15	642 591	0.0267 0.0963	0.0003	0.00022	0.0176 0.0191	< 0.020 < 0.020	< 0.000050	0.034	0.00061 0.000701	136 129	0.00019	0.00072	0.0005	0.092	0.000069
CM_CCOFF	CM CCOFF WS 2022-06-21 NP	2022-06-21	708	0.0963	0.00031	0.0003	0.0191	< 0.020	< 0.000050 < 0.000050	0.032	0.000701	130	0.00035	0.00037	0.00054	0.16	< 0.000103
CM CCOFF	CM CCOFF WS 2022-06-28 NP	2022-06-28	806	0.0207	0.0003	0.00019	0.0175	< 0.020	< 0.000050	0.04	0.000735	193	0.00016	0.00133	< 0.00050	0.071	< 0.000050
CM CCOFF	CM CCOFF WS 2022-07-03 NP	2022-07-03	988	0.0172	0.00032	0.00021	0.0216	< 0.020	< 0.000050	0.048	0.000348	174	0.00010	0.00074	< 0.00050	0.074	0.000065
CM CCOFF	CM CCOFF WS 2022-07-12 NP	2022-07-19	1170	0.015	0.00023	0.00024	0.0230	< 0.020	< 0.000050	0.041	0.000732	218	0.0002	0.0005	< 0.00050	0.042	< 0.000050
CM CCOFF	CM CCOFF WS 2022-07-26 NP	2022-07-26	1100	0.0203	0.00032	0.00029	0.0259	< 0.020	< 0.000050	0.059	0.0009	229	0.00017	0.00055	< 0.00050	0.065	< 0.000050
CM CCOFF	CM CCOFF WS 2022-08-02 NP	2022-08-02	1180	0.0099	0.00032	0.00023	0.0258	< 0.020	< 0.000050	0.062	0.000788	234	0.00013	0.00048	< 0.00050	0.053	< 0.000050
CM CCOFF	CM CCOFF WS 2022-08-09 NP	2022-08-10	1180	0.0333	0.00031	0.00025	0.0263	< 0.020	< 0.000050	0.06	0.000651	259	0.00015	0.00058	< 0.00050	0.079	0.000052
CM_CCOFF	CM_CCOFF_WS_2022-08-16_NP	2022-08-16	1310	0.0155	0.00033	0.00018	0.025	< 0.020	< 0.000050	0.066	0.000606	256	0.00014	0.00041	< 0.00050	0.039	< 0.000050
CM_CCOFF	CM_CCOFF_WS_SESMP_2022-08_N	2022-08-16	1210	0.0244	0.00029	0.00023	0.0256	< 0.020	< 0.000050	0.056	0.000521	271	0.00017	0.00048	< 0.00050	0.05	< 0.000050
CM_CCOFF	CM_CCOFF_WS_2022-08-23_NP	2022-08-23	1220	0.0166	0.00031	0.00022	0.0266	< 0.020	< 0.000050	0.064	0.000651	272	0.00016	0.00046	0.00066	0.046	< 0.000050
CM_CCOFF	CM CCOFF 2022-08-25 NP1	2022-08-25	1340	0.0086	0.00028	0.0002	0.0243	< 0.020	< 0.000050	0.057	0.000573	253	0.00013	0.00032	< 0.00050	0.027	< 0.000050
CM_CCOFF	CM_CCOFF_2022-08-25_NP2	2022-08-25	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CM_CCOFF	CM_CCOFF_2022-08-25_NP3	2022-08-25	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CM CCOFF CM CCOFF	CM CCOFF WS 2022-08-30 NP CM CCOFF WS 2022-09-06 NP	2022-08-30	1250	0.0219	0.00028	0.00018	0.0259	< 0.020	< 0.000050	0.064	0.000517	258	0.00012	0.00035	< 0.00050	0.037	< 0.000050
CM CCOFF	CM CCOFF WS 2022-09-06 NP	2022-09-06	1350	0.0219	0.00028	0.00018	0.0259	< 0.020	< 0.000030	0.004	0.000317	264	< 0.00012	0.00043	< 0.00030	0.037	< 0.000100
CM CCOFF	CM CCOFF WS 2022-09-20 NP	2022-09-20	1280	0.0105	0.00032	< 0.00020	0.0246	< 0.040	< 0.000100	0.071	0.000481	268	< 0.00020	0.00033	< 0.00100	< 0.020	< 0.000100
CM CCOFF	CM CCOFF WS 2022-09-20 NP	2022-09-27	1250	0.0094	0.0003	0.00020	0.0238	< 0.020	< 0.000100	0.067	0.000534	264	0.00012	0.00027	< 0.00100	0.016	< 0.000050
CM CCOFF	CM CCOFF WS 2022-10-04 NP	2022-10-04	1370	0.0152	0.00028	0.00022	0.0229	< 0.020	< 0.000050	0.058	0.000485	274	0.00013	0.00028	< 0.00050	0.02	< 0.000050
CM_CCOFF	CM_CCOFF_WS_2022-10-11_NP	2022-10-11	1360	0.0209	0.00028	0.00028	0.0261	< 0.020	< 0.000050	0.051	0.000459	282	0.00018	0.00031	< 0.00050	0.023	< 0.000050
CM_CCOFF	CM CCOFF WS 2022-10-18 NP	2022-10-18	1370	0.0181	0.00029	0.0002	0.025	< 0.020	< 0.000050	0.042	0.000571	291	0.00018	0.00029	< 0.00050	0.02	< 0.000050
CM_CCOFF	CM CCOFF WS 2022-10-25 NP	2022-10-25	1410	0.0115	0.0003	< 0.00020	0.0266	< 0.040	< 0.000100	0.071	0.000559	305	< 0.00020	0.00033	< 0.00100	0.044	< 0.000100
CM_CCOFF	CM_CCOFF_WS_2022-11-01_NP	2022-11-01	1350	0.0245	0.00028	0.00024	0.0258	< 0.020	< 0.000050	0.052	0.000525	295	0.00012	0.00034	0.0005	0.039	< 0.000050
CM_CCOFF	CM_CCOFF_WS_2022-11-08_NP	2022-11-08	1260	0.128	0.00028	0.00025	0.0274	< 0.020	< 0.000050	0.088	0.000265	274	0.00041	0.00068	< 0.00050	0.173	0.000104 < 0.000100
CM CCOFF	CM CCOFF WS 2022-11-15 NP	2022-11-15	1170	0.0433	0.0003	0.00021	0.0306	< 0.040	< 0.000100	0.098	0.000214	255	0.0002	0.00283 0.00376	< 0.00100	0.127	< 0.000100
CM CCOFF	CM CCOFF WS 2022-11-22 NP	2022-11-22	1350	0.0187 0.0156	0.00032	0.00021	0.0259 0.0265	0.000028	< 0.000050 < 0.000050	0.1	0.000234	274 281	0.00018	0.00376	0.0005	0.135	< 0.000050
CM_CCOFF CM CCOFF	CM CCOFF WS 2022-11-29 NP CM CCOFF WS 2022-12-06 NP	2022-11-29	1220 1460	0.0156	0.00031	0.00025	0.0265	< 0.020	< 0.000050	0.118	0.000201	267	0.00012	0.00330	< 0.00050	0.129	< 0.000050
CM CCOFF	CM CCOFF WS 2022-12-06 NP	2022-12-07	1360	0.009	0.0003	< 0.00022	0.0236	< 0.020	< 0.000100	0.091	0.000226	297	< 0.00013	0.0015	< 0.00100	0.076	< 0.000100
CM CCOFF	CM CCOFF WS 2022-12-13 NP	2022-12-13	1400	0.0085	0.00029	0.00019	0.0256	< 0.020	< 0.000100	0.074	0.00021	248	< 0.00020	0.00139	< 0.00100	0.070	< 0.000050
CM SPD	CM NNP WS 2022-01-04 N	2022-01-06	1320	0.018	0.00027	0.00017	0.027	< 0.020	< 0.000050	0.11	0.000122	274	0.00015	0.00105	< 0.00050	0.135	< 0.000050
CM SPD	CM SPD WS 2022-01-11 N	2022-01-11	727	0.01763333	0.00047	0.000173	0.0212667	< 0.020	< 0.000050	0.087667	0.000151	190.35	< 0.00010	0.02146667	< 0.00050	0.060333	< 0.000050
CM_SPD	CM SPD WS 2022-02-01 N	2022-02-01	1030	0.0176	0.00056	0.00019	0.0287	< 0.020	< 0.000050	0.096	0.000178	235	< 0.00010	0.0242	< 0.00050	0.069	< 0.000050
CM_SPD	CM NNP WS 2022-02-01 N	2022-02-01	1110	0.0098	0.00092	0.00022	0.0242	< 0.020	< 0.000050	0.134	0.00036	264	0.0017	0.033	< 0.00050	0.063	< 0.000050
CM_SPD	CM_SPD_WS_2022-03-01_N	2022-03-01	550	0.00665	0.000525	0.00016	0.01165	< 0.020	< 0.000050	0.073	0.000173	135.025	< 0.00010	0.01595	< 0.00050	0.03	< 0.000050
CM_SPD	CM_SPD_WS_2022-03-15_N	2022-03-15	1120	0.0163	0.00054	0.0002	0.0295	< 0.040	< 0.000100	0.075	0.000126	248	< 0.00020	0.0172	< 0.00100	0.033	< 0.000100
CM_SPD	CM_SPD_WS_2022-03-22_N	2022-03-22	1100	0.0101	0.00045	0.00017	0.0299	< 0.020	< 0.000050	0.059	0.0000692	249	< 0.00010	0.0135	< 0.00050	0.024	< 0.000050

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

^d Guideline varies with pH

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

										Total Metals							
						_											
			s		Magnesium	9891		Ę	E			E	_		ء	<u>*</u>	
			l se	E.	nes	gan	* 0	issi	enium		Sodium	Strontium	<u> </u>		Titanium	raniun	
Sample	Sample	Sample Date	arc a	Ę	Nag	Nan	Nickel) g	l ee	Silver	ğ	£	Thalliu	E	ig i	L ar	Gin
Location	ID	(mm/dd/yyyy)	mg/L	mg/L		mg/L	mg/L	mg/L	μg/L	mg/L		mg/l		mg/L	mg/L	mg/L	mg/L
						ro nic	ronic		ronic	a je						ronic	rte ro nic
						Acute	Ch 7		SH2	Acute						Chro	Acute
BC WQG FWAL			n/a	n/a	n/a	0.001-0.03 ^a 0.0009-0.01 ^a	0.025-0.15 ^a	n/a	2	0.0001-0.003 ^a 0.00005-0.0015 ^a	n/a	2/0	n/a	n/o	n/a	0.0085	0.033-2 ⁸ 0.0075-2 ⁸
Coal Mountain Mine			n/a	n/a	n/a	0.001-0.03 0.0009-0.01	0.025-0.15	n/a		0.0001-0.003 0.00005-0.0015	n/a	n/a	n/a	n/a	n/a	0.0085	0.033-2 0.0075-2
CM_CCOFF	CM_CCOFF_WS_2022-04-12_NP	2022-04-12	1050	0.071	120	0.0483	0.0418	3.18	23.2	< 0.000010	73	1.37	0.000054	< 0.00010	< 0.00030	0.00777	0.0347
CM_CCOFF	CM_CCOFF_WS_2022-04-19_NP	2022-04-19	1070			0.0358	0.0384	3.6	28.3	< 0.000010		1.33		< 0.00010	< 0.00030	0.00825	0.0242
CM_CCOFF CM CCOFF	CM_CCOFF_WS_2022-04-26_NP CM_CCOFF_WS_2022-05-03_NP	2022-04-26	1060 912	0.076		0.0276 0.0288	0.0331 0.0314	3.46	24.5 24	< 0.000020 < 0.000010		1.16		< 0.00020 < 0.00010	< 0.00060 0.00092	0.00758	0.0186 0.0204
CM_CCOFF	CM_CCOFF_2022-05-06_NP1	2022-05-06	878	0.096		0.0294	0.0353	3.27	18.8	< 0.000010		1.23		< 0.00010	< 0.00092	0.0057	0.0156
CM_CCOFF	CM_CCOFF_2022-05-07_NP1	2022-05-07	-	-	-	-	-	-	-	-	-		-	-	-	-	-
CM_CCOFF	CM_CCOFF_WS_2022-05-10_NP	2022-05-10	- 025	- 0.074	- 04.0	0.0293		- 2.06	- 22.2	< 0.000010	74.0	- 8 0.88	0.000044	- 0.00040	- 0.00140	- 0.00442	0.0322
CM_CCOFF CM CCOFF	CM_CCOFF_WS_2022-05-17_NP CM_CCOFF_WS_2022-05-24_NP	2022-05-17 2022-05-24	825 776			0.0293	0.0323 0.0255	2.86	22.2	< 0.000010		0.88		< 0.00010 < 0.00010	0.00149 0.00051	0.00442 0.00498	0.0322
CM_CCOFF	CM CCOFF WS 2022-05-31 NP	2022-05-31	750			0.00839	0.0206	2.65	26.2	< 0.000010		0.55		< 0.00010	< 0.00060	0.00474	0.0255
CM_CCOFF	CM_CCOFF_WS_2022-06-07_NP	2022-06-07	691	0.025		0.00843	0.0218	2.55	25.6	< 0.000010		0.41	0.000033	< 0.00010	0.00124	0.00417	0.0303
CM_CCOFF CM CCOFF	CM CCOFF WS 2022-06-14 NP CM CCOFF WS 2022-06-21 NP	2022-06-15	642 591	0.022		0.0058 0.00709	0.0246 0.0276	2.55	24.7	< 0.000010 < 0.000010		0.37	0.000035	< 0.00010 < 0.00010	0.00056	0.00396	0.0436 0.0491
CM CCOFF	CM CCOFF WS 2022-06-21 NP	2022-06-28	708	0.023		0.00709	0.0270	2.41	20.5	0.000070		0.38		< 0.00010	0.00057	0.00349	0.0486
CM_CCOFF	CM_CCOFF_WS_2022-07-05_NP	2022-07-05	806	0.031	100	0.0103	0.0334	2.9	25.6	< 0.000010	24.6	0.57	0.000044	< 0.00010	0.00051	0.00519	0.0562
CM_CCOFF	CM_CCOFF_WS_2022-07-12_NP	2022-07-12	988			0.00748	0.028	2.5	25.1	< 0.000010		0.51	0.000042	< 0.00010	0.00113	0.00526	0.0437
CM CCOFF CM CCOFF	CM CCOFF WS 2022-07-19 NP CM CCOFF WS 2022-07-26 NP	2022-07-19 2022-07-26	1170			0.00472 0.00576	0.037 0.0378	3.34 3.62	36.9 32.2	< 0.000010 < 0.000010		0.52		< 0.00010 < 0.00010	0.00038	0.00724 0.00737	0.0577 0.0507
CM CCOFF	CM CCOFF_WS 2022-07-20 NP	2022-07-20	1180			0.00516	0.0378	3.41	27.6	< 0.000010		0.67		< 0.00010	0.00032	0.00737	0.0472
CM_CCOFF	CM CCOFF WS 2022-08-09 NP	2022-08-10	1180			0.00648	0.0367	3.63	29.7	< 0.000010		0.68		< 0.00010	0.00091	0.00795	0.0433
CM_CCOFF	CM CCOFF WS 2022-08-16 NP	2022-08-16	1310			0.00503 0.00544	0.0364	3.48	30	< 0.000010 < 0.000010		0.71	0.000046 0.000056	< 0.00010	0.00034	0.00905	0.0387 0.0336
CM_CCOFF CM CCOFF	CM CCOFF WS SESMP 2022-08 N CM CCOFF WS 2022-08-23 NP	2022-08-16 2022-08-23	1210			0.00527	0.0383 0.0378	3.93	30.5 30.9	< 0.000010		0.71		< 0.00010 < 0.00010	0.00103	0.00795 0.00889	0.0356
CM_CCOFF	CM CCOFF 2022-08-25 NP1	2022-08-25	1340			0.00514	0.038	3.81	28.7	< 0.000010		0.68		< 0.00010	< 0.00030	0.00829	0.0351
CM_CCOFF	CM_CCOFF_2022-08-25_NP2	2022-08-25	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-
CM_CCOFF CM CCOFF	CM CCOFF_2022-08-25 NP3 CM CCOFF WS 2022-08-30 NP	2022-08-25 2022-08-30	-	-	-	-	-	-	-		-	-	-	-	-	-	-
CM CCOFF	CM CCOFF WS 2022-08-30 NP CM CCOFF WS 2022-09-06 NP	2022-08-30	1250	0.033	162	0.00568	0.0367	3.95	30.4	< 0.000010	25.5	0.73	0.000056	< 0.00010	0.00075	0.00888	0.0331
CM_CCOFF	CM_CCOFF_WS_2022-09-13_NP	2022-09-13	1350			0.00548	0.0371	3.67	29.9	< 0.000020		0.75		< 0.00020	< 0.00060	0.007	0.0318
CM_CCOFF	CM_CCOFF_WS_2022-09-20_NP	2022-09-20	1280			0.00495	0.0389	3.57	28.6	< 0.000020		0.75		< 0.00020	< 0.00060	0.00829	0.0273
CM CCOFF CM CCOFF	CM CCOFF WS 2022-09-27 NP CM CCOFF WS 2022-10-04 NP	2022-09-27	1250 1370			0.00499 0.00499	0.0373 0.0375	3.95 3.68	30.2 30.2	< 0.000010 < 0.000010		0.74		< 0.00010 < 0.00010	0.00034	0.00906 0.00838	0.0321 0.027
CM CCOFF	CM CCOFF WS 2022-10-04 NI	2022-10-04	1360			0.0055	0.04	3.98	31.8	< 0.000010		0.68		< 0.00010	0.00049	0.00859	0.027
CM_CCOFF	CM_CCOFF_WS_2022-10-18_NP	2022-10-18		0.029		0.00709	0.0404	3.85	34.9	< 0.000010		0.6	0.000054	< 0.00010	0.00032	0.00856	0.0381
CM_CCOFF	CM CCOFF WS 2022-10-25 NP	2022-10-25	1410			0.00801	0.0429	4.09	32.8	< 0.000020		0.76		< 0.00020	0.00075	0.00902	0.0332
CM_CCOFF CM CCOFF	CM_CCOFF_WS_2022-11-01_NP CM_CCOFF_WS_2022-11-08_NP	2022-11-01 2022-11-08	1350 1260			0.00714 0.0124	0.0416 0.0343	4.11 3.87	34.4 30.5	< 0.000010 < 0.000010		0.63	0.000055 0.000051	< 0.00010 < 0.00010	0.00072 0.0031	0.00877 0.00804	0.0379 0.0213
CM CCOFF	CM CCOFF WS 2022-11-05 NP	2022-11-00	1170			0.0233	0.0382	3.92	26.8	< 0.000020		1.03	0.000053	< 0.00010	0.00017	0.00839	0.0185
CM_CCOFF	CM CCOFF WS 2022-11-22 NP	2022-11-22	1350			0.032	0.0421	3.7	30.9	< 0.000010		1.14		< 0.00010	< 0.00030	0.00822	0.0219
CM_CCOFF CM_CCOFF	CM CCOFF WS 2022-11-29 NP CM CCOFF WS 2022-12-06 NP	2022-11-29 2022-12-07	1220 1460			0.0324 0.0284	0.0391 0.0366	3.89	27.6 28.9	< 0.000010 < 0.000010		1.19		< 0.00010 < 0.00010	< 0.00031	0.00851 0.00802	0.0186 0.016
CM_CCOFF	CM CCOFF WS 2022-12-06 NP CM CCOFF WS 2022-12-13 NP	2022-12-07	1360			0.0284	0.0357	4.18	35.8	< 0.000010		0.8	0.000044	< 0.00010	< 0.00030	0.00802	0.0163
CM_CCOFF	CM CCOFF WS 2022-12-28 NP	2022-12-28	1400	0.047	158	0.0189	0.0287	3.79	32.8	< 0.000010	43.2	1.05	0.000047	< 0.00010	< 0.00030	0.00934	0.0129
CM_SPD	CM_NNP_WS_2022-01-04_N	2022-01-06	1320			0.0181	0.028	3.76	32.1	< 0.000010		1.01	0.000047	< 0.00010	0.00065	0.00885	0.0087
CM_SPD CM_SPD	CM SPD WS 2022-01-11 N CM SPD WS 2022-02-01 N	2022-01-11	727 1030			0.160366667 0.173	0.1005 0.117	3.3433 4.21	4.85 7.5	< 0.000010 < 0.000010		0.87		< 0.00010 < 0.00010	< 0.00060 < 0.00060	0.0051 0.00704	0.0191 0.0218
CM SPD	CM_SPD_WS_2022-02-01_N CM_NNP_WS_2022-02-01_N	2022-02-01	1110			0.175	0.117	5.2	5.57	< 0.000010		1.45		< 0.00010	< 0.00030	0.00757	0.039
CM_SPD	CM_SPD_WS_2022-03-01_N	2022-03-01	550	0.04		0.09005	0.08725	2.53	2.79	< 0.000010		0.74	0.0000445	< 0.00010	< 0.00030	0.00385	0.0203
CM_SPD	CM_SPD_WS_2022-03-15_N	2022-03-15	1120	0.052		0.109 0.0956	0.107 0.0813	4.19 3.91	9.18 9.9	< 0.000020 < 0.000010		0.91		< 0.00020 < 0.00010	< 0.00060 < 0.00030	0.00706	0.0182 0.0123
CM_SPD	CM_SPD_WS_2022-03-22_N	2022-03-22	1100	0.049	121	0.0950	0.0813	3.91	9.9	< 0.000010	34.1	0.91	0.000035	< 0.00010	< 0.00030	0.00667	0.0123

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

											Total Metals						
											TOTAL METALS	1			I		I
													_				
			SS	Ę	≥] <u>`</u>	_		⊑	_	5				
			ĕ	Ē	2	끝	Ē		=	_	1	5	ΙĒ	=	, p		
			臣	'n	‡	စ္တ	Ĭ.	<u>\$</u>	ωs	e	5	글	≗	l ë	eddo	<u> </u>	-ead
Sample	Sample	Sample Date	ž	₹	₹	٩	ñ	ă	Θ	ĕ	ű	ű	5	Ö	ŭ	<u>e</u>	_
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg	/L	mg/L
							nic	을		nic .				Acute		_	onic
						Acute	Chroi	2		9				Acute		Acute	e# 5
						&	ธ	5		ਤੌ				೪ 5		¥	Ğ Ğ
BC WQG FWAL			n/a	n/a	n/a	0.005	1	0.00013	n/a	1.2	n/a	n/a	n/a	0.11 0.004	n/a	1	0.003-5.5 ^a 3.3-3.5 ^a
Coal Mountain Mine																	
CM_SPD	CM_SPD_WS_2022-03-29_N		1170	0.0146	0.00045	< 0.00020	0.0313	< 0.040	< 0.000100	0.072	0.0000694	261	< 0.00020	0.0141	< 0.00100	0.025	< 0.000100
CM_SPD	CM_SPD_WS_2022-04-05_N	2022-04-05	977	0.0541	0.00039	0.00021	0.0339	< 0.020	< 0.000050	0.058	0.0000734	216	0.00015	0.0123	< 0.00050	0.074	0.000075
CM_SPD	CM_SPD_WS_2022-04-12_N		1010	0.024	0.00038	0.00025	0.0311	< 0.020	< 0.000050	0.051	0.0000927	218	0.00022	0.011	< 0.00050	0.054	< 0.000050
CM_SPD	CM_SPD_WS_2022-04-19_N	2022-04-19	991	0.0202	0.00039	0.00018	0.0308	< 0.020	< 0.000050	0.053	0.0000761	231	< 0.00010	0.0121	< 0.00050	0.048	< 0.000050
CM_SPD	CM_SPD_WS_2022-04-26_N		1000	0.0238	0.00038	< 0.00020	0.0311	< 0.040	< 0.000100	0.064	0.0000784	230	< 0.00020	0.0131	< 0.00100	0.045	< 0.000100
CM_SPD	CM_SPD_WS_2022-04-27_N	2022-04-27	903	0.0372	0.00038	0.00017	0.0318	< 0.020	< 0.000050	0.064	0.0000684	223	< 0.00010	0.0113	< 0.00050	0.047	< 0.000050
CM_SPD	CM_SPD_WS_2022-04-28_N	2022-04-28	888	0.0373	0.00041	0.00023	0.0339	< 0.020	< 0.000050	0.064	0.0000849	226	0.00011	0.0123	< 0.00050	0.068	0.000057
CM_SPD	CM_SPD_WS_2022-04-29_N	2022-04-29	899	0.0466	0.00039	0.0002	0.0325	< 0.020	< 0.000050	0.066	0.0000886	201	0.00011	0.0128	< 0.00050	0.065	< 0.000050
CM_SPD	CM_SPD_WS_2022-05-03_N	2022-05-03	910	0.0414	0.00043	0.00018	0.0321	< 0.020	< 0.000050	0.075	0.00011	206	< 0.00010	0.0165	< 0.00050	0.074	0.000055
CM_SPD	CM SPD 2022-05-06 N2	2022-05-06	820	0.0461	0.00045	0.00021	0.0341	< 0.020	< 0.000050	0.081	0.000147	198	0.00014	0.0196	< 0.00050	0.093	0.000064
CM_SPD	CM_SPD_2022-05-06_N1	2022-05-06	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•
CM_SPD	CM_SPD_2022-05-07_N1	2022-05-07	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CM_SPD	CM_NNP_WS_2022-05-10_N	2022-05-10	- 470			-				-			-	0.01086667			0.00086
CM_SPD	CM_SPD_WS_2022-05-17_N	2022-05-17	478	0.03166667	0.000333333	0.000187	0.0261333	< 0.020	< 0.000050	0.049	0.000153 0.000288	113.35	0.00018333	0.01086667	0.00053667	0.055667	0.00006
CM_SPD CM_SPD	CM NNP WS 2022-05-24 N CM NNP WS 2022-05-31 N	2022-05-24 2022-05-31	838 565	0.0452 0.0342	0.00057 0.00041	0.00024	0.0299	< 0.020 < 0.020	< 0.000050 < 0.000050	0.099	0.000288	197 127.68333	0.00017	0.01573333	0.00058 < 0.00050	0.07	< 0.000050
CM_SPD	CM_NNP_WS_2022-05-31_N CM_NNP_WS_2022-06-07_N	2022-06-07	560	0.0342	0.00041	0.000157	0.0183333	< 0.020	< 0.000050	0.065667	0.000177		< 0.00011	0.01616667	< 0.00050	0.040333	< 0.000050
CM SPD	CM SPD WS 2022-06-07 N	2022-06-07	557	0.02190007	0.000453333	0.000137	0.0166	< 0.020	< 0.000050	0.005007	0.000164667	136.68333	0.00011333	0.02113333	< 0.00050	0.0575	< 0.000050
CM SPD	CM SPD 2022-06-15 N1	2022-06-15	712	0.02313333	0.00041	0.000203	0.0389	0.000037	< 0.000050	0.073333	0.000122	167	0.00011333	0.023	0.00078	0.033	0.000277
CM SPD	CM SPD WS 2022-06-21 N	2022-06-21	712	0.221	0.00040	0.00047	0.0000	0.000007	4 0.000000	0.000	0.000170	- 107	0.00000	-	0.00070	0.212	-
CM SPD	CM SPD WS 2022-06-28 N	2022-06-28	858	0.0359	0.00057	0.00029	0.0278	< 0.020	< 0.000050	0.104	0.000191	194	0.00013	0.0298	< 0.00050	0.081	< 0.000050
CM SPD	CM NNP WS 2022-07-05 N	2022-07-05	990	0.0159	0.00076	0.00026	0.0232	< 0.020	< 0.000050	0.093	0.000219	241	0.00011	0.0361	< 0.00050	0.058	< 0.000050
CM SPD	CM SPD WS 2022-07-12 N	2022-07-12	603	0.0195	0.00059	0.000247	0.014	< 0.020	< 0.000050	0.086667	0.000092	146.35	< 0.00011	0.02183333	< 0.00050	0.044	< 0.000050
CM SPD	CM SPD WS 2022-07-26 N	2022-07-26	1050	0.0143	0.00089	0.00028	0.0197	< 0.020	< 0.000050	0.142	0.000103	217	< 0.00010	0.0336	< 0.00050	0.049	< 0.000050
CM SPD	CM SPD WS 2022-08-02 N	2022-08-02	936	0.0105	0.001	0.00022	0.017	< 0.020	< 0.000050	0.125	0.000136	228	0.00014	0.0329	< 0.00050	0.042	< 0.000050
CM SPD	CM SPD WS 2022-08-09 N	2022-08-09	1020	0.0101	0.00106	0.00024	0.0176	< 0.020	< 0.000050	0.15	0.000218	249	0.00027	0.0306	< 0.00050	0.046	< 0.000050
CM SPD	CM SPD WS 2022-08-10 N	2022-08-10	962	0.0138	0.00106	0.00026	0.0168	< 0.020	< 0.000050	0.165	0.000238	232	< 0.00010	0.0267	< 0.00050	0.045	< 0.000050
CM SPD	CM SPD WS 2022-08-11 N	2022-08-11	1020	0.0104	0.00107	0.00017	0.0172	< 0.020	< 0.000050	0.164	0.000224	267	< 0.00010	0.0272	< 0.00050	0.036	< 0.000050
CM_SPD	CM_SPD_WS_SESMP_2022-08_N	2022-08-16	1050	0.0169	0.00094	0.00018	0.0153	< 0.020	< 0.000050	0.148	0.000243	233	0.0006	0.0271	< 0.00050	0.04	< 0.000050
CM_SPD	CM SPD 2022-08-25 N1	2022-08-25	968	0.0102	0.00102	0.00022	0.0157	< 0.020	< 0.000050	0.169	0.000269	227	< 0.00010	0.027	0.00052	0.04	< 0.000050
CM_SPD	CM SPD WS 2022-09-06 N	2022-09-06	-	-	-	-	-	-	-	-	-		-	-	-	-	-
CM_SPD	CM_SPD_WS_2022-10-04_N	2022-10-04	966	0.016	0.00094	0.0003	0.0171	< 0.020	< 0.000050	0.152	0.000119	214	< 0.00010	0.0162	< 0.00050	0.032	< 0.000050
CM_SPD	CM_SPD_WS_2022-11-01_N		714	0.01133333	0.000473333	0.0002	0.0154667	< 0.020	< 0.000050	0.072667	4.28333E-05		< 0.00010	0.00746667	< 0.00050	0.017	< 0.000050
CM_SPD	CM_SPD_WS_2022-11-17_N	2022-11-17	1060	0.172	0.00055	0.00024	0.0275	< 0.020	< 0.000050	0.108	0.0000518	249	0.00022	0.0131	< 0.00050	0.074	0.000093

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

d Guideline varies with pH

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

										Total Metals								
					1					Total Wetals	т —	т т						
Sample	Sample	Sample Date	Hardness	Lithium	Magnesium	Manganese	Nickel*	Potassium	Selenium	Silver	Sodium	Strontium	Thallium	TI	Titanium	Uranium*		Zinc
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L		mg/L	mg/l	mg/L	mg/L	mg/L	mg/L	mg/L	m	ıg/L
						Acute Chronic	Chronic		Chronic	Acute						Chronic	Acute	Chronic
BC WQG FWAL			n/a	n/a	n/a	0.001-0.03 ^a 0.0009-0.0	1 ^a 0.025-0.15 ^a	n/a	2	0.0001-0.003 ^a 0.00005-0.0015 ^a	n/a	n/a	n/a	n/a	n/a	0.0085	0.033-2 ^a	0.0075-2ª
Coal Mountain Mine																		
CM_SPD	CM_SPD_WS_2022-03-29_N	2022-03-29		0.054	128	0.0959	0.0866	4.07	9.44	< 0.000020		0.93	0.000039	< 0.00020	< 0.00060	0.00671		0132
CM_SPD	CM_SPD_WS_2022-04-05_N	2022-04-05	977		106	0.0991	0.0646	3.65	8.19	< 0.000010		0.77	0.000033	< 0.00010	0.00145	0.00526		0123
CM_SPD	CM_SPD_WS_2022-04-12_N	2022-04-12	1010		111	0.0854	0.0598	3.18	8.78	< 0.000010		0.77	0.000029	< 0.00010	0.00041	0.00553		0126
CM_SPD	CM_SPD_WS_2022-04-19_N	2022-04-19	991	0.041	117	0.0895	0.0631	3.41	9.35	< 0.000010		0.83	0.00003	< 0.00010	< 0.00030	0.00541		0124
CM_SPD	CM_SPD_WS_2022-04-26_N	2022-04-26	1000	0.045	119	0.0911	0.0681	3.66	9.3	< 0.000020		0.78	0.000026	< 0.00020	0.00079	0.00565		0127
CM_SPD	CM_SPD_WS_2022-04-27_N	2022-04-27	903	0.046	114	0.0848	0.0625	3.44	9.61	< 0.000010		0.76	0.000031	< 0.00010	< 0.00090	0.00521		0117
CM_SPD	CM_SPD_WS_2022-04-28_N	2022-04-28	888	0.043	109	0.0952	0.0652	3.58	9.85	< 0.000010		0.82	0.000031	< 0.00010	0.00056	0.00503		0125
CM_SPD	CM_SPD_WS_2022-04-29_N	2022-04-29			99.3	0.0965	0.0667	3.43	8.7	< 0.000010		0.8	0.000031	< 0.00010	< 0.00120	0.00518		0119
CM_SPD	CM_SPD_WS_2022-05-03_N	2022-05-03		0.047	93.8	0.125	0.0783	3.61	7.7	< 0.000010		0.84	0.000035	< 0.00010	< 0.00540	0.00528		0142
CM_SPD	CM_SPD_2022-05-06_N2	2022-05-06	820	0.047	90.6	0.148	0.088	3.83	9.07	< 0.000010	_	0.91	0.000042	< 0.00010	< 0.00090	0.00546		0161
CM_SPD CM_SPD	CM_SPD_2022-05-06_N1	2022-05-06	-	-	-	-	-	-	<u> </u>	-	١-		-	-	-	-		-
CM_SPD CM_SPD	CM_SPD_2022-05-07_N1 CM_NNP_WS_2022-05-10_N	2022-05-07	-	-	+ :	-	-	-	-	-	-	-	-	-	-	-		-
CM_SPD	CM_NNP_WS_2022-05-10_N CM_SPD_WS_2022-05-17_N	2022-05-10			55.44	0.076366667	0.0544	- 0.45	7.91667	< 0.000010	40.0	0.54	0.000029	< 0.00010	- 0007500	0.00303333	0.021	1266667
CM_SPD	CM_SPD_WS_2022-05-17_N CM_NNP_WS_2022-05-24_N	2022-05-17		0.026	89.4	0.07636667	0.0541 0.112	3.67	8.5	< 0.000010		1.01	0.000029	< 0.00010	0.0007533	0.00303333		0333
CM_SPD	CM_NNP_WS_2022-05-24_N CM_NNP_WS_2022-05-31_N	2022-05-24	565	0.032	60.44	0.101366667	0.0755	2.57	6.05667	< 0.000010		0.7	0.000038	< 0.00010		0.00361		9366667
CM_SPD	CM_NNP_WS_2022-05-31_N CM_NNP_WS_2022-06-07_N	2022-05-31	560	0.034	58.24	0.096366667	0.076833333	2.5033		< 0.000010		0.7	0.000036	< 0.00010		0.00437667		93333333
CM SPD	CM SPD WS 2022-06-07 N	2022-06-07	557	0.034	55.17	0.139033333	0.076633333	2.5033	3.85	< 0.000010		0.63	3.96667E-05	< 0.00010		0.00424667		8833333
CM SPD	CM SPD 2022-06-14 N	2022-06-14	712		71.7	0.13903333	0.090100007	3.26	5.18	0.000010		0.73	0.000052	< 0.00010	0.000832	0.00507		0226
CM_SPD	CM SPD WS 2022-06-13 N	2022-06-13	/ 12	0.040	71.7	-	0.0907	3.20	3.10	0.00001	20.2	0.61	0.000032	- 0.00010	0.00032	0.00307		-
CM SPD	CM SPD WS 2022-00-21 N	2022-06-28	858	0.056	82	0.192	0.129	3.88	6.52	0.000041	33.3	0.98	0.00005	< 0.00010	0.00094	0.00616		0247
CM SPD	CM NNP WS 2022-07-05 N	2022-07-05	990	0.068	98	0.214	0.162	4.6	5.23	< 0.000010		1.24	0.000064	< 0.00010	0.00054	0.00742		0272
CM_SPD	CM SPD WS 2022-07-03 N	2022-07-03		0.000		0.125366667	0.1045	2.9467		< 0.000010		0.78	0.000047	< 0.00010		0.00742		1833333
CM SPD	CM SPD WS 2022-07-26 N	2022-07-26		0.077	96.7	0.175	0.17	4.85	4.79	< 0.000010		1.28	0.000072	< 0.00010	0.00039	0.0077		0147
CM SPD	CM SPD WS 2022-08-02 N	2022-08-02	936	0.07	98.2	0.144	0.181	4.77	3.52	< 0.000010		1.28	0.000068	< 0.00010	< 0.00030	0.00786		0086
CM SPD	CM SPD WS 2022-08-09 N	2022-08-09		0.085	114	0.128	0.182	5.46		< 0.000010		1.35	0.000077	< 0.00010	< 0.00030	0.00775		0069
CM SPD	CM SPD WS 2022-08-10 N	2022-08-10		0.082	101	0.119	0.17	5.44	3.92	< 0.000010		1.32	0.000081	< 0.00010	0.00045	0.00785		0081
CM SPD	CM SPD WS 2022-08-11 N	2022-08-11		0.089	109	0.118	0.172	5.37	3.51	< 0.000010		1.36	0.000085	< 0.00010	< 0.00030	0.00785		0076
CM SPD	CM SPD WS SESMP 2022-08 N	2022-08-16		0.075	95.5	0.118	0.165	4.67	3.3	< 0.000010		1.29	0.000064	< 0.00010	0.00054	0.00744	0.0	0094
CM SPD	CM SPD 2022-08-25 N1	2022-08-25		0.082	103	0.111	0.169	5.11	3.47	< 0.000010	50.5	1.39	0.000077	< 0.00010	< 0.00030	0.00808	0.0	0096
CM SPD	CM SPD WS 2022-09-06 N	2022-09-06	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-		-
CM_SPD	CM SPD WS 2022-10-04 N	2022-10-04	966	0.07	103	0.0634	0.134	4.68	4.46	< 0.000010	49.1	1.2	0.000068	< 0.00010	0.0004	0.00606	0.0	0048
CM_SPD	CM SPD WS 2022-11-01 N	2022-11-01	714	0.043	82	0.030133333	0.077833333	3.2367	3.57333	< 0.000010	30.6	0.78	0.000037	< 0.00010	0.00038	0.0047	< 0	.0030
CM SPD	CM SPD WS 2022-11-17 N	2022-11-17	1060	0.06	120	0.065	0.102	4.65	5.73	< 0.000010	39.4	1.06	0.000041	< 0.00010	0.00431	0.00653	0.0	0041

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

											Total Metals						
				_									_				
			SSS	Ē	Ě	U	*_	Ē	£		§	Ε	<u>.</u> ≣		_		
			dne	튵	<u><u>ë</u></u>	i i	<u>.</u>	€	ismuth	6	直	Cir.	nim o	at	eddo	_ ا	9
Sample	Sample	Sample Date	후	7	\$	Ars.	Bar	l B	is.	ğ	Cadı	ğ	5	8	ğ	5	Lead
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg	/L	mg/L
							i,	2		.2				. ie			onic Onic
						불	₫	₫		Chronic				Acute Chronic		불	
						Ϋ́	5	5		ភ				₹ 5		Acı	§ 5
BC WQG FWAL			n/a	n/a	n/a	0.005	1	0.00013	n/a	1.2	n/a	n/a	n/a	0.11 0.004	n/a	1	0.003-5.5 ^a 3.3-3.5 ^a
Elkview Operation									ı					ı	1		1
EV_AQ6 EV AQ6	EV AQ6 WS 2022-Q1 N EV AQ6 WS 2022-02 MON N	2022-01-07	370	0.0391	0.00014	0.00018	0.193	< 0.020	< 0.000050	0.017	0.0000193	83.7	< 0.00010	< 0.10	< 0.00050	0.047	0.00006
EV_AQ6	EV AQ6 WS 2022-02 MON N	2022-02-07	346	0.0391	0.00014	0.00018	0.193	< 0.020	< 0.000050	0.017	0.0000193	78.7	< 0.00010	< 0.10	< 0.00050	0.047	< 0.000050
EV AQ6	EV AQ6 WS 2022-03 WEK13 N	2022-03-22	413	0.0128	0.00015	0.00018	0.2	< 0.020	< 0.000050	0.015	0.0000138	92.8	< 0.00010	< 0.10	< 0.00050	0.015	< 0.000050
EV_AQ6	EV AQ6 WS 2022-03 WEK14 N	2022-03-28	-		-	-	-	-	-	-	-	-	-	-	-	-	-
EV_AQ6	EV_AQ6_WS_2022-04_WEK15_N	2022-04-04	-		-	-	-	-	-	-	-	-	-	-	-	-	-
EV_AQ6	EV_AQ6_WS_2022-Q2_N	2022-04-12	- 070	- 0.0445		- 0.00040	- 0.000		- 0.000050	- 0.00	- 0.00004.55	- 400		< 0.10	- 0.00050	- 0.047	< 0.000050
EV_AQ6 EV AQ6	EV MC5 WS 2022-Q2 N EV MC7 WS 2022-Q2 N	2022-04-13	379 378	0.0115	0.00019 0.00018	0.00019	0.282 0.258	< 0.020 < 0.020	< 0.000050 < 0.000050	0.02	0.0000135	103 100	< 0.00010 < 0.00010	< 0.10	< 0.00050 < 0.00050	0.017 0.016	< 0.000050
EV_AQ6	EV_MC/_WS_2022-Q2_N EV_AQ6_WS_2022-04_WEK17_N	2022-04-13	< 0.50		< 0.00018	< 0.00018	< 0.00010	< 0.020	< 0.000050	< 0.019	< 0.0050	< 0.050	< 0.00010	< 0.10	< 0.00050	< 0.016	< 0.000050
EV AQ6	EV AQ6 WS 2022-04 WEK11 N	2022-04-16	- 0.50		- 0.00010	- 0.00010		- 0.020	-	- 0.010	- 0.0000	- 0.000		-	- 0.00000		-
EV_AQ6	EV_AQ6_WS_2022-05_MON_N	2022-05-03	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_AQ6	EV_AQ6_WS_2022-05_WEK20_N	2022-05-11	361	< 0.0150	0.00015	0.00019	0.235	< 0.020	< 0.000050	0.019	0.0000058	91.7	< 0.00010	< 0.10	0.00107	0.013	0.000055
EV_AQ6	EV_AQ6_WS_2022-05_WEK21_N	2022-05-16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_AQ6 EV AQ6	EV AQ6 WS 2022-05 WEK22 N EV AQ6 WS 2022-05 WEK23 N	2022-05-24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_AQ6	EV MC8 WS 2022-05 WER23 N EV MC8 WS 2022-06 MON N	2022-05-30	-	- :	-		-	- : -	-	-		-	-	-	-	-	
EV AQ6	EV MC6 WS 2022-06 MON N	2022-06-07	< 0.50	< 0.0030	< 0.00010	< 0.00010	< 0.00010	< 0.020	< 0.000050	< 0.010	< 0.0050	0.051	< 0.00010	< 0.10	< 0.00050	< 0.010	< 0.000050
EV_AQ6	EV_AQ6_WS_2022-06_MON_N	2022-06-08	394	0.0071	0.00014	0.00017	0.193	< 0.020	< 0.000050	0.017	< 0.0050	77.5	0.00014	< 0.10	< 0.00050	< 0.010	< 0.000050
EV AQ6	EV AQ6 WS 2022-06-13 N 1743	2022-06-13	355	0.0069	0.00014	0.00023	0.194	< 0.020	< 0.000050	0.018	< 0.0050	78.1	< 0.00010	< 0.10	< 0.00050	< 0.010	< 0.000050
EV_AQ6	EV AQ6 WS 2022-06 WEK25 N	2022-06-13	-	-	-	-	-	-	-	-	-	-	-		-	-	-
EV_AQ6 EV AQ6	EV AQ6 WS 2022-06-14 N 1725 EV AQ6 WS 2022-06-14 N 0650	2022-06-14 2022-06-14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_AQ6	EV AQ6 WS 2022-06-14 N 0650 EV AQ6 WS 2022-06 WEK26 N	2022-06-14	-	-:-	-	-		<u> </u>	-	-	-	-	-	-	-		-
EV AQ6	EV AQ6 WS 2022-06 WEK27 N	2022-06-28	-	-	-	-	-	-	-	-	-	-	-	-	-		-
EV_AQ6	EV_AQ6_WS_2022-Q3_N	2022-07-06	-		-	-	-	-	-	-	-	-	-	-	-	-	-
EV_AQ6	EV_MC6_WS_2022-Q3_N	2022-07-06	389	0.019	0.00014	0.00024	0.238	< 0.020	< 0.000050	0.018	< 0.0050	87.6	< 0.00010	< 0.10	0.00069	0.013	< 0.000050
EV_AQ6	EV MC8 WS 2022-Q3 N	2022-07-06	372 < 0.50	0.0064	0.00014	0.00022	0.231	< 0.020	< 0.000050	0.018	0.0000053	88.5	< 0.00010	< 0.10 < 0.10	< 0.00050	0.016	< 0.000050 < 0.000050
EV_AQ6 EV AQ6	EV AQ6 WS 2022-07 WEK29 N EV AQ6 WS 2022-08 MON N	2022-07-12 2022-08-10	< 0.50	< 0.0030	< 0.00010	< 0.00010	< 0.00010	< 0.020	< 0.000050	< 0.010	< 0.0050	< 0.050	< 0.00010	V 0.10	< 0.00050	< 0.010	- 0.000030
EV AQ6	EV AQ6 WS SESMP 2022 08 N	2022-08-11	318	0.0119	0.00014	0.00032	0.17	0.000025	< 0.000050	0.019	0.0000182	58.3	< 0.00010	< 0.10	< 0.00050	0.033	< 0.000050
EV AQ6	EV AQ6 WS 2022-09 MON N	2022-09-07	305	0.0099	0.00014	0.00025	0.175	< 0.020	< 0.000050	0.02	< 0.0050	66.1	< 0.00010	< 0.10	< 0.00050	0.035	< 0.000050
EV_AQ6	EV MC8 WS 2022-09 MON N	2022-09-07	302	0.0126	0.00012	0.00029	0.203	< 0.020	< 0.000050	0.02	< 0.0050	65.4	< 0.00010	< 0.10	< 0.00050	0.032	< 0.000050
EV_AQ6	EV AQ6 WS 2022-09-08 N	2022-09-08	< 0.50	0.0054	< 0.00010	< 0.00010	0.00043	< 0.020	< 0.000050	< 0.010	< 0.0050	< 0.050	< 0.00010	< 0.10 < 0.10	< 0.00050	< 0.010	< 0.000050 < 0.000050
EV AQ6 EV AQ6	EV AQ6 WS 2022-09-09 N	2022-09-09	305 288	0.0133 0.016	0.00012 0.00012	0.00033	0.185 0.193	< 0.020 < 0.020	< 0.000050 < 0.000050	0.019	0.0000052 0.0000063	57.2 56.3	< 0.00010 < 0.00010	< 0.10	< 0.00050 < 0.00050	0.034	< 0.000050
EV AQ6	EV AQ6 WS 2022-09-10 N EV AQ6 WS 2022-Q4 N	2022-09-10	299	0.016	0.00012	0.00034	0.193	< 0.020	< 0.000050	0.018	0.0000068	58.4	< 0.00010	< 0.10	< 0.00050	0.038	< 0.000050
EV AQ6	EV MC6 WS 2022-Q4 N	2022-10-07	294	0.012	0.00012	0.00034	0.156	< 0.020	< 0.000050	0.016	< 0.0050	54.5	< 0.00010	< 0.10	< 0.00050	0.036	< 0.000050
EV AQ6	EV MC8 WS 2022-Q4 N	2022-10-07	300	0.0102	0.00013	0.00022	0.174	< 0.020	< 0.000050	0.021	0.000008	59.6	< 0.00010	< 0.10	< 0.00050	0.036	< 0.000050
EV_AQ6	EV_AQ6_WS_2022-11_MON_N	2022-11-09	< 0.50	< 0.0030	< 0.00010	< 0.00010	< 0.00010	< 0.020	< 0.000050	< 0.010	< 0.0050	< 0.050	< 0.00010	< 0.10	< 0.00050	< 0.010	< 0.000050
EV_AQ6	EV MC6 WS 2022-11 MON N	2022-11-09	386	0.0114	0.00014	0.00022	0.209	< 0.020	< 0.000050	0.019	0.0000065	81.9	< 0.00010	0.00011 < 0.10	< 0.00050	0.067	< 0.000050 < 0.000050
EV_AQ6 EV_BC1	EV MC8 WS 2022-11 MON N EV BC1 WS 2022-01-03 N-SRF	2022-11-09	386 < 0.50	0.0114 < 0.0030	0.00013 < 0.00010	0.00021 < 0.00010	0.209 0.00038	< 0.020 < 0.020	< 0.000050 < 0.000050	0.019 < 0.010	< 0.0050 < 0.0050	82.4 < 0.050	< 0.00010 < 0.00010	< 0.10	< 0.00050 0.00074	< 0.064	< 0.000050
EV BC1	EV BC1 WS 2022-01-03 N-SRF EV BC1 WS 2022 Q1 N	2022-01-03	1380	< 0.0060	0.00062	0.0004	0.00036	< 0.020	< 0.000100	0.074	0.000113	275	< 0.00010	0.00053	< 0.00100	0.089	< 0.000100
EV BC1	EV BC1 WS 2022-01-18 N-SRF	2022-01-18	1530	0.007	0.0006	0.00025	0.0619	< 0.040	< 0.000100	0.068	0.000113	277	< 0.00020	0.0004	< 0.00100	0.06	< 0.000100
EV_BC1	EV BC1 WS 2022-02-01 N-SRF	2022-02-01	1550	0.0103	0.00055	0.00027	0.0674	< 0.040	< 0.000100	0.068	0.000114	275	< 0.00020	0.00043	< 0.00100	0.064	< 0.000100
EV_BC1	EV_BC1_WS_2022-02_MON_N	2022-02-08	1630	< 0.0060	0.00061	0.00033	0.0647	< 0.040	< 0.000100	0.064	0.000147	306	< 0.00020	0.0004	< 0.00100	0.068	< 0.000100
EV_BC1	EV BC1 WS 2022-02-15 N-SRF	2022-02-15	1310	0.006	0.00105	0.00026	0.0908	< 0.040	< 0.000100	0.048	0.0000685	251	< 0.00020	0.00024 < 0.20	< 0.00100	0.055	< 0.000100 < 0.000100
EV_BC1 EV BC1	EV BC1_WS_2022-03-01_N-SRF EV BC1_WS_2022-03-15_N-SRF	2022-03-01	1360 1350	< 0.0060 0.0425	0.00103	0.00022	0.0941	< 0.040 < 0.040	< 0.000100 < 0.000100	0.043	0.0000321	248 283	< 0.00020 0.00021	0.00035	< 0.00100	0.025	0.000100
LV_BCI	L V DO L W 3 2022-03-13 N-3RF	2022-03-13	1330	0.0423	0.0003	0.00031	0.0023	~ 0.040	- 0.000100	0.040	V.00000002	200	0.00021		0.00 100	0.14	

Denotes concentration less than indicated detection limit
 Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

^d Guideline varies with pH

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

										Total Metals								
										1	Τ	T						
					_ ا													
			o,		nesium	988		Ę	_ =			lε	_		_	*_		
			Jes	E	esi	<u>a</u>	*_	1 .5	🛓	_	⊑	₽	<u> </u>		1 5	5		
			힏	∄	Magn	g n	ickel	tas	e i	Silver	Sodium	Strontium	allin	_ ا	Titanium	anin	l :	ဥ
Sample	Sample	Sample Date	Ha	5	Wa	W _S	Nic	°	Se	 	ြတိ	Str	£	Ë	ļ į	์ ร	i	ī
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L		mg/L	mg/L	μg/L	mg/L	mg/	L mg/l	mg/L	mg/L	mg/L	mg/L	m	ng/L
						rg nic σ	Ji.		듣							onic	_	i :5
						et l	2		5	Acute						₫	#	₽ 2
						Ch Acı	ម		ร็	å 5						ร็	Acı	5
BC WQG FWAL			n/a	n/a	n/a	0.001-0.03 ^a 0.0009-0.01 ^a	0.025-0.15 ^a	n/a	2	0.0001-0.003° 0.00005-0.0015°	n/a	n/a	n/a	n/a	n/a	0.0085	0.033-2ª	0.0075-2ª
Elkview Operation																		
EV_AQ6	EV_AQ6_WS_2022-Q1_N	2022-01-07	-	-	-	-	-	-	-	-	-		-	-	-	-		-
EV_AQ6	EV_AQ6_WS_2022-02_MON_N	2022-02-07	370			0.00587 0.00145	0.00088	1.44	4.99	< 0.000010		0.26		< 0.00010		0.0012		.008 0082
EV_AQ6 EV AQ6	EV_AQ6_WS_2022-03_MON_N	2022-03-16	346			0.00145	0.00069 0.00062	1.48	5.59	< 0.000010 < 0.000010		0.26		< 0.00010	< 0.00030	0.00117		0082
EV_AQ6 EV AQ6	EV_AQ6_WS_2022-03_WEK13_N EV_AQ6_WS_2022-03_WEK14_N	2022-03-22	413	0.016	33.5	0.0018	0.00062	1.38	6.94	V.000010	7.34	1 0.27	< 0.000010	< 0.00010	< 0.00030	0.00118		-
EV_AQ6	EV_AQ6_WS_2022-03_WEK14_N EV_AQ6_WS_2022-04_WEK15_N	2022-03-28	H :	H	+ -	-		+ :	-	-	+ -	+:	-	-	-	-		-
EV_AQ6	EV AQ6 WS 2022-04 WER13 N	2022-04-04				-	-	-	-	-	+:	t i		1	- : -	1		-
EV AQ6	EV MC5 WS 2022-Q2 N	2022-04-12	379		_	0.00119	0.00101	1.82	9.39	< 0.000010		0.33	< 0.000010	< 0.00010	< 0.00030	0.00137	0.0	0034
EV AQ6	EV MC7 WS 2022-Q2 N	2022-04-13	378		40.5	0.00122	0.00097	1.72	9.06	< 0.000010		0.32	< 0.000010	< 0.00010		0.00132	0.0	0033
EV AQ6	EV AQ6 WS 2022-04 WEK17 N	2022-04-18			0.005	< 0.00010	< 0.00050	< 0.050		< 0.000010		50.000		< 0.00010		< 0.000010	< 0.	0.0030
EV_AQ6	EV_AQ6_WS_2022-04_WEK18_N	2022-04-26	-	-	-	-	,	-	-	-	-	-	-	-	-	-		-
EV_AQ6	EV_AQ6_WS_2022-05_MON_N	2022-05-03	-	-	-	-		-	-	-	-	-	-	-	-	-		
EV_AQ6	EV_AQ6_WS_2022-05_WEK20_N	2022-05-11	361	0.017		0.00164	0.00089	1.56	6.67	< 0.000010	_	0.28	< 0.000010	< 0.00010	< 0.00030	0.00121		0037
EV_AQ6	EV AQ6 WS 2022-05 WEK21 N	2022-05-16	-	-	-	-	-	-	-	-	-	_	-	-	-	-		-
EV_AQ6	EV AQ6_WS_2022-05_WEK22_N	2022-05-24	-	-	-	-	-	-	-	-	+ -	-	-	-	-	-		-
EV_AQ6	EV_AQ6_WS_2022-05_WEK23_N	2022-05-30	-	-	-		-	<u> </u>	-		H÷		-	-	-	-		-
EV AQ6 EV AQ6	EV MC8 WS 2022-06 MON N EV MC6 WS 2022-06 MON N	2022-06-07			0.023	< 0.00010	< 0.00050	< 0.050	< 0.050	< 0.00010		50.000	< 0.000010	< 0.00010	< 0.00030	< 0.000010		0.0030
EV AQ6	EV AQ6 WS 2022-06 MON N	2022-06-08		0.015		0.00102	0.00082	1.41	4.75	< 0.000010		0.25	< 0.000010	< 0.00010	< 0.00030	0.00109		0.0030
EV AQ6	EV AQ6 WS 2022-06-13 N 1743	2022-06-13	355		37.8	0.00126	0.00074	1.5	4.4	< 0.000010		0.25	< 0.000010	< 0.00010	< 0.00030	0.00114	< 0.	0.0030
EV AQ6	EV AQ6 WS 2022-06 WEK25 N	2022-06-13	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
EV AQ6	EV AQ6 WS 2022-06-14 N 1725	2022-06-14	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
EV_AQ6	EV_AQ6_WS_2022-06-14_N_0650	2022-06-14	-	-	-	-		-	-	-	-	-	-	-	-	-		
EV_AQ6	EV_AQ6_WS_2022-06_WEK26_N	2022-06-21	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
EV AQ6	EV AQ6 WS 2022-06 WEK27 N	2022-06-28	-	-	-	-	-	-	-	-	<u> </u>	-	-	-	-	-		
EV_AQ6	EV_AQ6_WS_2022-Q3_N	2022-07-06	-	-	36.3	0.00273	0.00072	1.46	4.8	< 0.00010	-	0.28	< 0.000010	< 0.00010	< 0.00030	0.00104		0.0030
EV AQ6 EV AQ6	EV MC6 WS 2022-Q3 N EV MC8 WS 2022-Q3 N	2022-07-06	389		36.8	0.00273	0.00072	1.46	4.8	< 0.000010		0.28		< 0.00010	< 0.00030	0.00104		0.0030
EV AQ6	EV AQ6 WS 2022-Q3 N	2022-07-00			0.005		< 0.00075	< 0.050	< 0.050	< 0.000010		50.000		< 0.00010	< 0.00030	< 0.0000103		0.0030
EV AQ6	EV AQ6 WS 2022-07 WER25 N	2022-08-10	- 0.00		-	-	-	-	-	-	-		-	-	-	-	-	-
EV AQ6	EV AQ6 WS SESMP 2022 08 N	2022-08-11	318	0.015	37.8	0.01	0.00124	1.42	4.32	< 0.000010	3.72	0.21	0.000014	< 0.00010	< 0.00030	0.000879	< 0.	0.0030
EV AQ6	EV AQ6 WS 2022-09 MON N	2022-09-07	305	0.016	38.3	0.0108	0.00076	1.4	4.4	< 0.000010	3.77	0.22	< 0.000010	< 0.00010	< 0.00030	0.000902		0.0030
EV_AQ6	EV MC8 WS 2022-09 MON N	2022-09-07		0.019		0.00676	0.00072	1.43	4.25	< 0.000010		0.26		< 0.00010	< 0.00030	0.000808		0.0030
EV_AQ6	EV_AQ6_WS_2022-09-08_N	2022-09-08			¢ 0.005		< 0.00050	< 0.050	< 0.050	< 0.000010		50.000		< 0.00010	< 0.00030	< 0.000010		0.0030
EV_AQ6	EV_AQ6_WS_2022-09-09_N	2022-09-09	305		35.1	0.00838	0.0009	1.39	4.07	< 0.000010		0.22		< 0.00010	0.00031	0.000772		0.0030
EV AQ6	EV AQ6 WS 2022-09-10 N	2022-09-10	288		34.2	0.00678 0.00671	0.00102 0.00096	1.36	4.21	< 0.000010 < 0.000010		0.21		< 0.00010	0.00053	0.000745		0.0030
EV_AQ6 EV AQ6	EV_AQ6_WS_2022-Q4_N	2022-10-07	299 294		33.7	0.00671	0.00096	1.46	4.17 3.17	< 0.000010		0.22	< 0.000010	< 0.00010	< 0.00042	0.000789		0.0030
EV_AQ6 EV AQ6	EV MC6 WS 2022-Q4 N EV MC8 WS 2022-Q4 N	2022-10-07	300			0.00484	0.00068	1.55	4.16	< 0.000010		0.2	< 0.000010	< 0.00010	< 0.00030	0.000701		0045
EV AQ6	EV MC6 WS 2022-Q4 N EV AQ6 WS 2022-11 MON N	2022-10-07			< 0.005		< 0.00050	< 0.050	< 0.050	< 0.000010		50.000		< 0.00010	< 0.00030	< 0.000793		0.0030
EV AQ6	EV MC6 WS 2022-11 MON N	2022-11-09	386	0.02		0.00853	0.00082	1.78	4.69	< 0.00010		0.27		< 0.00010	< 0.00030	0.000974		0033
EV AQ6	EV MC8 WS 2022-11 MON N	2022-11-09	386	0.02	42.9	0.00855	0.00083	1.77	4.81	< 0.000010	3.96	0.27	< 0.000010	< 0.00010	< 0.00030	0.000962	0.0	0035
EV_BC1	EV BC1 WS 2022-01-03 N-SRF	2022-01-03	< 0.50		0.005	< 0.00010	< 0.00050	< 0.050	< 0.050	< 0.000010		0.000		< 0.00010	< 0.00030	< 0.000010		0.0030
EV_BC1	EV_BC1_WS_2022_Q1_N	2022-01-18	1380			0.0334	0.0243	6.47	292	< 0.000020		1.71		< 0.00020	< 0.00060	0.00786		0134
EV_BC1	EV_BC1_WS_2022-01-18_N-SRF	2022-01-18	1530		211	0.0239	0.0248	6.36	334	< 0.000020		1.62		< 0.00020	< 0.00060	0.0087		0114
EV_BC1	EV BC1 WS 2022-02-01 N-SRF	2022-02-01		0.167		0.0253 0.0274	0.0248	6.25	339	< 0.000020 < 0.000020		1.57		< 0.00020	< 0.00060	0.00866		0123
EV_BC1	EV BC1 WS 2022-02 MON N	2022-02-08	1630			0.0274	0.026 0.0276	6.69	358 193	< 0.000020 < 0.000020		1.63	0.000027 0.000028	< 0.00020 < 0.00020	< 0.00060 < 0.00060	0.00836 0.0113		0124 0065
EV_BC1 EV BC1	EV BC1 WS 2022-02-15 N-SRF EV BC1 WS 2022-03-01 N-SRF	2022-02-15	1310 1360			0.0123	0.0276	5.67	139	< 0.000020		0.83	0.000028	< 0.00020	< 0.00060	0.0113		0.0060
EV_BC1	EV BC1 WS 2022-03-01 N-SRF EV BC1 WS 2022-03-15 N-SRF	2022-03-01		0.106		0.0135	0.0289	6.19	169	< 0.000020		0.95		< 0.00020	0.00078	0.0112		0064
LV_DC1		2022-03-13	1000	, 5.127	,	0.0.00	0.0201	, 55			10.70	, 0.00	0.000000	. 0.00020	, 0.000.0		0.0	

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

			[Total Metals						
																	1
			s	Ε	>			<u>*</u>			ء		E				1
			nes	Numinum	non	Arsenic	<u>*</u>	, E	ismuth	_	Cadmium	cium	Chromium	<u>#</u>	- P		1 _
01-	0	0	ard		븉	136	a a	erylli	isi E	or or	듛	Salci	ļ ģ	Cobalt	Copper	5	ead
Sample Location	Sample ID	Sample Date (mm/dd/yyyy)	ma/L	∢ mg/L	∢ mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg		mg/L
	·-	(g								
						Acute	Chronic	ΙĒ		nonic				Acute		Acute	Acute
								<u>ნ</u>		5							
BC WQG FWAL Elkview Operation			n/a	n/a	n/a	0.005	1	0.00013	n/a	1.2	n/a	n/a	n/a	0.11 0.004	n/a	1	0.003-5.5° 3.3-3.5°
Elkview Operation	EV BC1 WS 2022-03 MON N	2022-03-16	1200	0.0396	0.001	< 0.00020	0.108	< 0.040	< 0.000100	0.053	0.0000541	277	< 0.00020	0.00032	< 0.00100	0.094	0.000101
EV_BC1	EV_BC1_WS_2022-03-22_N-SRF	2022-03-22	1320	0.0448	0.00094	0.0003	0.0922	< 0.020	< 0.000050	0.044	< 0.0700	244	0.00014	0.00036	0.00054	0.11	0.000168
EV_BC1	EV_BC1_WS_2022-03_WEK13_N		1320	0.0096	0.00089	0.00023	0.104	< 0.020	< 0.000050	0.043	0.0000245	236	< 0.00010	0.0002	< 0.00050	0.038	< 0.000050
EV_BC1	EV_BC1_WS_2022-03_WEK14_N	2022-03-29	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1 - 1
EV_BC1 EV BC1	EV BC1 WS 2022-03-29 N-SRF EV BC1 WS 2022-04-05 N-SRF	2022-03-29 2022-04-05	1240	0.006	0.00091	0.00024	0.0986	< 0.020	< 0.000050	0.046	0.0000162	234	< 0.00010	0.00013	< 0.00050	0.032	< 0.000050
EV BC1	EV BC1 WS 2022-04-05 N-SKI	2022-04-05	1340	0.0054	0.00091	0.00024	0.0849	< 0.020	< 0.000050	0.040	0.0000102	231	< 0.00010	0.00014	< 0.00050	0.032	< 0.000050
EV_BC1	EV_BC1_WS_2022-Q2_N	2022-04-12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_BC1	EV_BC1_WS_2022-04-12_N-SRF	2022-04-12	1250	0.0072	0.00087	0.00026	0.0658	< 0.020	< 0.000050	0.041	< 0.0150	224	< 0.00010	0.00012	< 0.00050	0.032	< 0.000050
EV BC1 EV BC1	EV BC1 WS 2022-04-19 N-SRF EV BC1 WS 2022-04 WEK17 N	2022-04-19 2022-04-19	1260	0.0034	0.00091	0.00028	0.0653	< 0.020 < 0.020	< 0.000050 < 0.000050	0.045 0.041	< 0.0150 < 0.0150	224 229	0.00011	0.00012 0.00011	< 0.00050 < 0.00050	0.027 0.034	< 0.000050 < 0.000050
EV_BC1	EV BC1 WS 2022-04 WEK17 N EV BC1 WS 2022-04-26 N-SRF	2022-04-19	1190	0.004	0.00089	0.00024	0.0751	< U.U2U -	~ 0.000050	0.041	< 0.0150	- 229	< 0.00010	-	< 0.00050	0.034	- 0.000000
EV BC1	EV BC1 WS 2022-04-25 N-C/N	2022-04-26	1260	0.0045	0.00089	0.00027	0.0626	< 0.020	< 0.000050	0.037	0.0000071	209	< 0.00010	< 0.10	< 0.00050	0.024	< 0.000050
EV_BC1	EV BC1_WS_2022-05-03_N-SRF	2022-05-03	1	-		-		-	-	-	-	-	-	-	-	-	-
EV_BC1	EV BC1 WS 2022-05 MON N	2022-05-03	1200	0.003	0.00085	0.0003	0.062	< 0.020	< 0.000050	0.038	< 0.0150	216	0.00014	< 0.10	< 0.00050	0.017	< 0.000050
EV_BC1	EV_BC1_WS_2022-05-10_N-SRF	2022-05-10	1200 1180	< 0.0060	0.00081	0.00026	0.0544	< 0.020	< 0.000050	0.04	< 0.0100	219	< 0.00010	< 0.10 < 0.10	< 0.00050	0.014	< 0.000050 < 0.000050
EV BC1 EV BC1	EV BC1 WS 2022-05 WEK20 N EV BC1 WS 2022-05 WEK21 N	2022-05-11 2022-05-17	1180	0.0042	0.00085	0.00023	0.0592	< 0.020	< 0.000050	0.037	< 0.0100	222	< 0.00010	- 0.10	< 0.00050	0.01	- 0.000030
EV BC1	EV BC1 WS 2022-05-17 N-SRF	2022-05-17	-		-	-	-	-	-	-	-	-	-	-	-	-	-
EV BC1	EV BC1 WS 2022-05-24 N-SRF	2022-05-24	1230	0.0039	0.00082	0.00026	0.0584	< 0.020	< 0.000050	0.044	< 0.0100	207	0.00011	< 0.10	< 0.00050	< 0.010	< 0.000050
EV_BC1	EV BC1 WS 2022-05 WEK22 N	2022-05-24	1220	< 0.0060	0.00084	0.00028	0.0583	< 0.040	< 0.000100	0.048	< 0.0100	228	< 0.00020	< 0.20	< 0.00100	< 0.020	< 0.000100
EV BC1 EV BC1	EV BC1 WS 2022-05 WEK23 N EV BC1 WS 2022-05-31 N-SRF	2022-05-31	-		-	-	-	-	-	-		-	-	-	-	-	
EV BC1	EV BC1 WS 2022-05-51 N-5KI	2022-06-06	1220	< 0.0060	0.00092	0.00023	0.0637	< 0.040	< 0.000100	0.045	< 0.0100	205	< 0.00020	< 0.20	< 0.00100	< 0.020	< 0.000100
EV BC1	EV BC1 WS 2022-06-07 N-SRF	2022-06-07	1300	0.0033	0.0008	0.00031	0.236	< 0.020	< 0.000050	0.042	0.0000862	234	< 0.00010	0.00016	< 0.00050	0.091	< 0.000050
EV_BC1	EV_BC1_WS_2022-06_WEK25_N	2022-06-13	1260	0.003	0.00085	0.00035	0.209	< 0.020	< 0.000050	0.047	0.0000863	241	< 0.00010	0.00018	< 0.00050	0.096	< 0.000050
EV_BC1	EV_BC1_WS_2022-06-14_N-SRF	2022-06-14	-			-				-		-	-	0.00052		-	0.000178
EV BC1 EV BC1	EV BC1 WS 2022-06-21 N-SRF EV BC1 WS 2022-06 WEK26 N	2022-06-21	1170 1200	0.0476	0.00082 0.00082	0.00036	0.163 0.224	< 0.020 < 0.020	< 0.000050 < 0.000050	0.046	0.0000712 0.0000301	217 219	0.00015 < 0.00010	0.00032	0.00059 < 0.00050	0.122	< 0.000178
EV BC1	EV BC1 WS 2022-06 WER26 N	2022-06-28	1200	-	0.00002	0.00031	0.224	- 0.020	- 0.000030	0.044	0.0000301	213	~ 0.00010	-	- 0.00030	- 0.000	-
EV BC1	EV BC1 WS 2022-06 WEK27 N	2022-06-28	1270	0.0045	0.00094	0.00032	0.246	< 0.020	< 0.000050	0.044	< 0.0200	246	< 0.00010	0.00012	< 0.00050	0.028	< 0.000050
EV BC1	EV BC1 WS 2022 Q3 N	2022-07-05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_BC1	EV BC1 WS 2022-07-05 N-SRF	2022-07-05	1180	0.0105	0.00084	0.00029	0.126	< 0.020	< 0.000050	0.051	0.0000235	226	< 0.00010	0.00016 0.00017	< 0.00050	0.036	< 0.000050 < 0.000050
EV_BC1 EV_BC1	EV BC1 WS 2022-07-12 N-SRF EV BC1 WS 2022-07 WEK29 N	2022-07-12	1160 1180	< 0.0086	0.00086	0.00028	0.122 0.117	< 0.020 < 0.020	< 0.000050 < 0.000050	0.05 0.054	0.0000327 0.0000128	234 217	< 0.00010 < 0.00010	0.00017	< 0.00050 < 0.00050	0.046 0.022	< 0.000050
EV BC1	EV BC1 WS 2022-07 WER29 N	2022-07-12	-	- 0.0030	-				- 0.000030	-	- 0.0000120	-	- 0.00010	-	- 0.00030	- 0.022	-
EV BC1	EV BC1 WS 2022-08-02 N-SRF	2022-08-02	1150	0.0038	0.00092	0.00037	0.0827	< 0.020	< 0.000050	0.058	0.0000168	207	< 0.00010	0.00011	< 0.00050	0.015	< 0.000050
EV_BC1	EV BC1 WS 2022-08 MON N		1130	0.0038	0.00089	0.00022	0.0684	< 0.020	< 0.000050	0.05	0.0000065	217	< 0.00010	< 0.10	< 0.00050	0.015	0.000138
EV BC1	EV BC1 WS 2022-08-16 N-SRF	2022-08-16	1280	< 0.0060	0.00082	0.0004	0.0745	< 0.040	< 0.000100	0.051	< 0.0100	211	< 0.00020	< 0.20 < 0.10	< 0.00100	0.022	< 0.000100 < 0.000050
EV_BC1 EV BC1	EV_BC1_WS_2022-08-30_N-SRF EV_BC1_WS_2022-09_MON_N	2022-08-30 2022-09-06	1240 1150	0.0055 < 0.0060	0.0008 0.00075	0.00025 0.00032	0.0782	< 0.020 < 0.040	< 0.000050 < 0.000100	0.052 0.054	< 0.0050 < 0.0100	221 215	< 0.00010 < 0.00020	< 0.20	< 0.00050 < 0.00100	0.019 < 0.020	< 0.000100
EV BC1	EV BC1 WS SEPT-2022 N	2022-09-09	1260	0.0081	0.00073	0.00032	0.0771	< 0.020	< 0.000100	0.052	0.0000078	216	< 0.00020	< 0.10	< 0.00050	0.020	< 0.000050
EV BC1	EV BC1 WS 2022-09-13 N-SRF	2022-09-13	1260	< 0.0030	0.00073	0.00027	0.0623	< 0.020	< 0.000050	0.056	0.0000143	204	< 0.00010	< 0.10	< 0.00050	< 0.010	< 0.000050
EV_BC1	EV_BC1_WS_2022-09-27_N-SRF		1090	< 0.0060	0.00072	0.00024	0.0617	< 0.040	< 0.000100	0.054	< 0.0100	222	< 0.00020	< 0.20	< 0.00100	< 0.020	< 0.000100 < 0.000050
EV_BC1 EV_BC1	EV BC1 WS 2022-10-04 N-SRF EV BC1 WS 2022-Q4 N	2022-10-04 2022-10-06	1300 1310	0.0045	0.00074 0.0007	0.00024 0.00024	0.0569 0.239	< 0.020 < 0.020	< 0.000050 < 0.000050	0.046 0.045	0.0000117 0.0000273	200 236	< 0.00010 < 0.00010	< 0.10 < 0.10	< 0.00050 < 0.00050	< 0.010 0.029	< 0.000050
EV_BC1	EV BC1 WS 2022-Q4 N EV BC1 WS 2022-10-06 N-SRF	2022-10-06	1310	0.0049	0.0007	0.00024	0.239	< 0.020	< 0.000050	0.045	0.0000273	262	< 0.00010	< 0.10	< 0.00050	0.029	< 0.000050
EV BC1	EV BC1 WS 2022-10-06 N-SKI	2022-10-00	-	-	-			- 0.020	-	-	-	-		-	-	- 0.021	-
EV_BC1	EV BC1 WS 2022-11-01 N-SRF	2022-11-01	1240	< 0.0060	0.0007	0.00023	0.0716	< 0.040	< 0.000100	0.05	< 0.0100	235	< 0.00020	< 0.20	< 0.00100	< 0.020	< 0.000100
EV_BC1	EV_BC1_WS_2022-11_MON_N	2022-11-14	1250	0.0058	0.00065	0.00019	0.0446	< 0.020	< 0.000050	0.046	< 0.0050	202	< 0.00010	< 0.10	< 0.00050	< 0.010	< 0.000050

Denotes concentration less than indicated detection limit
 Denotes analysis not conducted

Page 9 of 68

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

^d Guideline varies with pH

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

										Total Metals								
										1	Τ							
					_													
			o,		nesium	988		Ę	ء			lε	_		_ ا			
			Jes	E	es	<u>a</u>	*_	1 .5	.≣	_	⊑	Strontium	<u> </u>		Titanium	5		
			힏	∄	Magn	g n	ickel	tas	eni	Silver	Sodium	5	allin	_ ا	a a	raniu		ဍ
Sample	Sample	Sample Date	Ha	5	Ma	W _S	Nic	°	Se	l s	ြတိ	Str	£	Ë	Į	์ ว	Ä	17
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	mg/L	mg/	mg/L	mg/L	mg/L	mg/L	mg/L	mg	g/L
						l in	nic		듣							ronic	_	<u>:</u> 2
						Acute	2		5	Acute						2	뱱	5
						ğ 5	ຽ		ะี	Š 5						ี่ รี	Acı	ច់
BC WQG FWAL			n/a	n/a	n/a	0.001-0.03 ^a 0.0009-0.01 ^a	0.025-0.15 ^a	n/a	2	0.0001-0.003ª 0.00005-0.0015ª	n/a	n/a	n/a	n/a	n/a	0.0085	0.033-2ª	0.0075-2ª
Elkview Operation																		
EV_BC1	EV_BC1_WS_2022-03_MON_N	2022-03-16		0.126		0.0132	0.0274	6.15	216	< 0.000020		1.04		< 0.00020	0.00085	0.0116		0116
EV_BC1	EV_BC1_WS_2022-03-22_N-SRF	2022-03-22	1320			0.0133	0.0233	5.33	175	< 0.000010		0.92		< 0.00010	0.00123	0.0105		0039
EV_BC1 EV BC1	EV_BC1_WS_2022-03_WEK13_N	2022-03-22	1320			0.0087	0.0227	5.66	151	< 0.000010	7.13	0.86		< 0.00010	< 0.00030	0.0102		.0030
EV_BC1	EV_BC1_WS_2022-03_WEK14_N EV_BC1_WS_2022-03-29_N-SRF	2022-03-29	-	-	-	-	-	-	-	:	l i	_	-	-				-
EV_BC1	EV BC1 WS 2022-03-29 N-SRF EV BC1 WS 2022-04-05 N-SRF	2022-03-29	1240	0.114		0.00503	0.0231	5.84	160	< 0.000010		0.83	0.000025	< 0.00010	< 0.00030	0.0103		.0030
EV BC1	EV BC1 WS 2022-04-05 N-3K1	2022-04-05	1340			0.00303	0.0231	5.34	178	< 0.000010		0.87	0.000023	< 0.00010	< 0.00030	0.0105		.0030
EV BC1	EV BC1 WS 2022-04 WER13 N	2022-04-03	-	- 0.113	-	-	- 0.0220	-	-		7.00		- 0.000028	- 0.00010	- 0.00030	-		-
EV_BC1	EV_BC1_WS_2022-04-12_N-SRF	2022-04-12		0.104		0.00374	0.0228	5.39	156	< 0.000010		0.85		< 0.00010	< 0.00030	0.0116	< 0.	.0030
EV_BC1	EV BC1 WS 2022-04-19 N-SRF	2022-04-19	1260			0.00359	0.0218	5.47	162	< 0.000010		0.85	0.000025	< 0.00010	< 0.00030	0.0104		.0030
EV_BC1	EV BC1 WS 2022-04 WEK17 N	2022-04-19	1190		185	0.00266	0.0238	5.64	130	< 0.000010		0.76	0.000028	< 0.00010	< 0.00030	0.0111	< 0.	.0030
EV_BC1	EV_BC1_WS_2022-04-26_N-SRF	2022-04-26	-	-	-	-	-	-	-	-	-		-	-	-	-		-
EV_BC1	EV_BC1_WS_2022-04_WEK18_N	2022-04-26	1260	0.091	_	0.00177	0.023	5.05	111	< 0.000010	_	0.72	0.000026	< 0.00010	< 0.00030	0.011	< 0.	.0030
EV_BC1	EV_BC1_WS_2022-05-03_N-SRF	2022-05-03	-	-	-	-		-	-		1 -	_		-				-
EV_BC1	EV_BC1_WS_2022-05_MON_N	2022-05-03	1200			0.0014	0.0212	5.21	102	< 0.000010		0.72		< 0.00010	< 0.00030	0.0103		.0030
EV_BC1	EV_BC1_WS_2022-05-10_N-SRF	2022-05-10	1200			0.00131	0.0211	5.16	110	< 0.000010 0.000019		0.69		< 0.00010	< 0.00030	0.0106		.0030
EV_BC1 EV_BC1	EV BC1 WS 2022-05 WEK20 N EV BC1 WS 2022-05 WEK21 N	2022-05-11 2022-05-17	1180	0.095	1/5	0.0015	0.0212	5.34	93.7	0.000019	7.38		0.000025	< 0.00010	< 0.00030	0.0103		-
EV BC1	EV BC1 WS 2022-05 WER21 N	2022-05-17		1	1	-		-	-	-	l :			-		-		-
EV BC1	EV BC1 WS 2022-05-24 N-SRF	2022-05-24	1230	0.107		0.00142	0.0218	5.59	116	< 0.000010		0.76		< 0.00010	< 0.00030	0.0104	< 0.	.0030
EV BC1	EV BC1 WS 2022-05 WEK22 N	2022-05-24	1220		194	0.00168	0.023	5.42	165	< 0.000020	7.75	0.88	0.00003	< 0.00020	< 0.00060	0.0116	< 0.	.0060
EV_BC1	EV BC1 WS 2022-05 WEK23 N	2022-05-31	-	-	-	-		-	-	-	-	-	-	-	-	-		-
EV_BC1	EV_BC1_WS_2022-05-31_N-SRF	2022-05-31	-	-	-	-	-	-	-	-	-		-	-	-	-		-
EV_BC1	EV BC1 WS 2022-06 MON N	2022-06-06	1220			0.00119	0.0231	5.42	154	< 0.000020		0.9	0.000034	< 0.00020	< 0.00060	0.0102		.0060
EV_BC1	EV_BC1_WS_2022-06-07_N-SRF	2022-06-07	1300			0.00516	0.0326	5.22	66	< 0.000010		0.67	0.000042	< 0.00010	< 0.00030	0.0124		0039
EV_BC1 EV BC1	EV BC1 WS 2022-06 WEK25 N	2022-06-13		0.117	_	0.00563	0.0334	5.41	66.5	< 0.000010	_	0.71	0.000045	< 0.00010	< 0.00030	0.012		0038
EV_BC1	EV BC1 WS 2022-06-14 N-SRF EV BC1 WS 2022-06-21 N-SRF	2022-06-14	1170	0.117	146	0.00874	0.0298	5.23	56.1	< 0.000010	0.56	0.7	0.000049	< 0.00010	0.00073	0.0115		- 0157
EV BC1	EV BC1 WS 2022-00-21 N-3K1	2022-06-21	1200			0.00361	0.0302	5.49	89.8	< 0.000010		0.7	0.000045	< 0.00010	< 0.00073	0.0113		.0030
EV BC1	EV BC1 WS 2022-06-28 N-SRF	2022-06-28	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-
EV BC1	EV BC1 WS 2022-06 WEK27 N	2022-06-28	1270	0.121		0.00278	0.0308	5.34	77.6	< 0.000010	10	0.79	0.000048	< 0.00010	< 0.00030	0.0119	< 0.	.0030
EV BC1	EV BC1 WS 2022 Q3 N	2022-07-05	-	-	-	-		-	-	-	-	-	-	-	-	-		
EV_BC1	EV_BC1_WS_2022-07-05_N-SRF	2022-07-05	1180			0.00439	0.0291	5.53	83.7	< 0.000010		0.84	0.00005	< 0.00010	< 0.00030	0.0114		.0030
EV_BC1	EV_BC1_WS_2022-07-12_N-SRF	2022-07-12	1160			0.00503	0.0301	5.55	90.5	< 0.000010		0.84		< 0.00010	< 0.00030	0.0112		0033
EV_BC1	EV BC1 WS 2022-07 WEK29 N	2022-07-12	1180	0.131		0.00422	0.0272	5.47	67.1	< 0.000010		0.96	0.000045	< 0.00010	< 0.00030	0.0104		0056
EV BC1	EV BC1 WS 2022-07-19 N-SRF	2022-07-19	4450		455	0.00318	- 0.0070			< 0.000010	10.3		- 0.000050	- 0.00010				.0030
EV_BC1 EV BC1	EV BC1 WS 2022-08-02 N-SRF EV BC1 WS 2022-08 MON N	2022-08-02 2022-08-10	1150	0.141		0.00318	0.0273 0.0251	5.52 5.17	69.7 73.4	< 0.000010		0.86	0.000052 0.000055	< 0.00010 < 0.00010	< 0.00030 < 0.00030	0.0106 0.01		.0030
EV_BC1	EV BC1 WS 2022-08 MON N EV BC1 WS 2022-08-16 N-SRF	2022-08-10	1280			0.00202	0.0251	5.17	125	< 0.000010		0.89	0.000059	< 0.00010	< 0.00030	0.01		.0060
EV BC1	EV BC1 WS 2022-08-10 N-SRF	2022-08-30	1240			0.00091	0.0232	5.32	96.4	< 0.000010		0.86		< 0.00020	< 0.00030	0.0097		.0030
EV BC1	EV BC1 WS 2022-09 MON N	2022-09-06	1150			0.00085	0.0245	5.47	75	< 0.000020		0.79		< 0.00010	< 0.00060	0.00978		.0060
EV BC1	EV BC1 WS SEPT-2022 N	2022-09-09	1260	0.138	163	0.00066	0.0229	5.06	75	< 0.000010	10.1	0.78	0.000044	< 0.00010	< 0.00030	0.01	< 0.	.0030
EV_BC1	EV BC1 WS 2022-09-13 N-SRF	2022-09-13		0.145		0.00023	0.021	5.33	76.8	< 0.000010		0.79		0.00014	< 0.00030	0.00946		.0030
EV_BC1	EV_BC1_WS_2022-09-27_N-SRF	2022-09-27	1090			0.00036	0.0232	5.37	67.2	< 0.000020		0.76		< 0.00020	< 0.00060	0.01		.0060
EV_BC1	EV_BC1_WS_2022-10-04_N-SRF	2022-10-04		0.157		0.00057	0.0228	5.77	70.9	< 0.000010		1.26	0.000049	< 0.00010	< 0.00030	0.0102		.0030
EV_BC1	EV BC1 WS 2022-Q4 N	2022-10-06		0.125		0.00185	0.0251	5.76	97.1	< 0.000010		1.08		< 0.00010	< 0.00030	0.0106		.0030
EV_BC1 EV BC1	EV_BC1_WS_2022-10-06_N-SRF EV_BC1_WS_2022-10-18_N-SRF	2022-10-06 2022-10-18	1310	0.14	187	0.00096	0.0243	6.08	96.4 153	< 0.000010	111.2	1.05	0.000045	< 0.00010	< 0.00030	0.0107		.0030
EV_BC1	EV BC1 WS 2022-10-18 N-SRF EV BC1 WS 2022-11-01 N-SRF	2022-10-18	1240	0.151		0.00028	0.0237	5.89	104	< 0.000020	11.3	1	0.000046	< 0.00020	< 0.00060	0.0107		.0060
EV_BC1	EV BC1 WS 2022-11-01 N-SRF	2022-11-01	1250			0.00026	0.0237	5.71	145	< 0.000020		0.91	0.000046	< 0.00020				0111
		- EVEE-11-14	1230	0.10		0.0000	0.0220						0.000004	- 0.00010		0.0101	0.0	

Page 10 of 68

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

											Total Metals						
Sample	Sample	Sample Date	Hardness	Aluminum	Antimony	Arsenic	Barium*	Beryllium*	Bismuth	Boron	Cadmium	Calcium	Chromium	Cobalt	Copper	lion	Pead
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg	/L	mg/L
						Acute	Chronic	Chronic		Chronic				Acute		Acute	Acute Chronic
BC WQG FWAL			n/a	n/a	n/a	0.005	1	0.00013	n/a	1.2	n/a	n/a	n/a	0.11 0.004	n/a	1	0.003-5.5 ^a 3.3-3.5 ^a
Elkview Operation		T	1											1 0 00019			< 0.0000E0
EV_BC1	EV_BC1_WS_2022-11-15_N_SRF	2022-11-15	1440	0.0086	0.00068	0.00028	0.0832	< 0.020	< 0.000050	0.051	0.000024	269	< 0.00010	0.00018 < 0.20	< 0.00050	0.011	< 0.000050 < 0.000100
EV_EC1 EV EC1	EV_EC1_WS_2022-01-05_N-SRF EV_EC1_WS_2022-Q1_N	2022-01-05	1450	0.0061 < 0.0060	0.0007 0.00045	0.00025	0.0905 0.0274	< 0.040 < 0.040	< 0.000100 < 0.000100	0.045	0.0000302	279 290	< 0.00020 < 0.00020	0.00477	< 0.00100 < 0.00100	< 0.020 < 0.020	< 0.000100
EV EC1	EV ECT WS 2022-QT N EV ECT WS 2022-01-17 N-SRF	2022-01-17	1220	< 0.0030	0.00043	0.00029	0.0274	< 0.040	< 0.000100	0.032	0.0000306	242	< 0.00020	0.0038	< 0.00100	< 0.020	< 0.000050
EV EC1	EV EC1 WS 2022-01-17 N-SRF	2022-01-17	1200	< 0.0030	0.00042	0.00033	0.0224	< 0.020	< 0.000050	0.028	0.0000267	240	< 0.00010	0.0037	< 0.00050	< 0.010	< 0.000050
EV EC1	EV EC1 WS 2022-01-31 N-SRF	2022-01-28	1200	< 0.0060	0.00042	0.00035	0.0224	< 0.020	< 0.000100	0.023	0.000020	251	< 0.00010	0.00419	< 0.00100	< 0.020	< 0.000100
EV EC1	EV EC1 WS 2022-02 MON N	2022-02-16	1200	< 0.0060	0.00046	0.00034	0.027	< 0.040	< 0.000100	0.034	0.0000229	280	< 0.00020	0.0039	< 0.00100	< 0.020	< 0.000100
EV_EC1	EV_EC1_WS_2022-02-28_N-SRF	2022-02-28	1240	< 0.0030	0.0004	0.0005	0.0269	< 0.020	< 0.000050	0.028	0.0000254	257	0.00022	0.00311	< 0.00050	< 0.010	< 0.000050
EV_EC1	EV EC1_WS_2022-03-14_N-SRF	2022-03-14	1330	< 0.0030	0.00042	0.00036	0.0214	< 0.020	< 0.000050	0.031	0.0000185	243	< 0.00010	0.00368	< 0.00050	< 0.010	< 0.000050
EV_EC1	EV EC1 WS 2022-03 MON N	2022-03-17	1130	< 0.0030	0.00036	0.0003	0.0206	< 0.020	< 0.000050	0.027	0.0000136	244	0.00012	0.00329	< 0.00050	< 0.010	< 0.000050
EV_EC1	EV_EC1_WS_2022-03-21_N_SRF	2022-03-21	1260	< 0.0030	0.00038	0.00031	0.0204	< 0.020	< 0.000050	0.028	0.0000189	240	< 0.00010	0.00316	< 0.00050	< 0.010	< 0.000050
EV_EC1	EV_EC1_WS_2022-03_WEK13_N	2022-03-22	1230	< 0.0030	0.00035	0.0003	0.0208	< 0.020	< 0.000050	0.028	0.000019	233	< 0.00010	0.00283	< 0.00050	< 0.010	< 0.000050
EV_EC1	EV_EC1_WS_2022-03-28_N-SRF	2022-03-28	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-03-28_N-SRF_1	2022-03-28	1210	< 0.0030	0.00025	0.00032	0.0337	< 0.020	< 0.000050	0.017	0.0000108	239	0.0002	0.00047	< 0.00050	< 0.010	< 0.000050
EV_EC1	EV_EC1_WS_2022-03_WEK14_N	2022-03-30	1460	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-04-04_N-SRF	2022-04-04	-		-					-		-	-	0.00142			< 0.000050
EV_EC1	EV EC1 WS 2022-04 WEK15 N	2022-04-06	1230	0.0055	0.00038	0.00039	0.0385	< 0.020	< 0.000050	0.03	0.0000256	277	0.0002	0.00142	< 0.00050	< 0.010	< 0.000050
EV EC1 EV EC1	EV EC1 WS 2022-04-10 N-SRF EV EC1 WS 2022-04-11 N-SRF	2022-04-10	1240	-	-		-	-	-	-	-	-		-	-	-	-
EV EC1	EV EC1 WS 2022-04-11 N-SRF 1	2022-04-11	1290	< 0.0030	0.00023	0.00031	0.0372	< 0.020	< 0.000050	0.016	0.0000067	233	< 0.00030	0.00028	< 0.00050	< 0.010	< 0.000050
EV EC1	EV EC1 WS 2022-04-11 N-SRF	2022-04-11	1260	- 0.0030	0.00023	0.00031	0.0372	- 0.020	- 0.000030	0.010	0.0000007	200	~ 0.00030	-	- 0.00030	V 0.010	-
EV EC1	EV EC1 WS 2022-04-12 N-SRF	2022-04-13	1120	-	-			-	-	-	-	-	-	-	-		-
EV EC1	EV EC1 WS 2022-Q2 N	2022-04-13	1260	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV EC1	EV MC6 WS 2022-Q2 N	2022-04-13	1170	< 0.0030	0.00024	0.00034	0.043	< 0.020	< 0.000050	0.016	0.0000097	243	0.00022	0.00017	< 0.00050	< 0.010	< 0.000050
EV EC1	EV MC8 WS 2022-Q2 N	2022-04-13	1100	< 0.0030	0.00024	0.00032	0.044	< 0.020	< 0.000050	0.014	0.0000078	245	0.00022	0.00015	< 0.00050	< 0.010	< 0.000050
EV_EC1	EV_EC1_WS_2022-04-14_N-SRF	2022-04-14	< 0.50	< 0.0030	< 0.00010	< 0.00010	< 0.00010	< 0.020	< 0.000050	< 0.010	< 0.0050	< 0.050	< 0.00010	< 0.10	< 0.00050	< 0.010	< 0.000050
EV_EC1	EV_EC1_WS_2022-04-15_N-SRF	2022-04-15	1170	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV EC1 WS 2022-04-16 N-SRF	2022-04-16	1240	-	-	-	-	-	-	-	-	-	-		-	-	-
EV_EC1	EV_EC1_WS_2022-04-17_N-SRF	2022-04-17	1280	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV EC1 WS 2022-04-18 N-SRF	2022-04-18	1230							- 0.045		-		0.00011			< 0.000050
EV EC1	EV EC1 WS 2022-04-18 N-SRF 1	2022-04-18	1120	0.0042	0.00024	0.00026	0.0404	< 0.020	< 0.000050	0.016	0.0000152	238	0.0002	0.00011	< 0.00050	0.011	< 0.000050
EV EC1 EV EC1	EV EC1 WS 2022-04-19 N-SRF EV EC1 WS 2022-04-20 N-SRF	2022-04-19 2022-04-20	1210		-	- :	-	-	-	-	-				- -	-	- :
EV_EC1	EV EC1 WS 2022-04-20 N-SRF EV EC1 WS 2022-04 WEK17 N	2022-04-20	1210		-	-	-		-	-	-	-	-	-	-	-	-
EV EC1	EV EC1 WS 2022-04-WER17 N EV EC1 WS 2022-04-21 N-SRF	2022-04-21	1240	- :	- :	-:-					- :	- :		-	-		-
EV EC1	EV EC1 WS 2022-04-22 N-SRF	2022-04-21	1240	-	-		-	-	-	-	-	-	-	-	-	-	-
EV EC1	EV EC1 WS 2022-04-23 N-SRF	2022-04-23	1260	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV EC1	EV EC1 WS 2022-04-24 N-SRF	2022-04-24	1300		-			-	-	-	-			-	-		-
EV_EC1	EV EC1 WS 2022-04-25 N-SRF	2022-04-25	1240	-	-	-	-	-	-	-		-		-	-	-	-
EV_EC1	EV_EC1_WS_2022-04-25_N-SRF_1	2022-04-25	1180	< 0.0030	0.00023	0.00026	0.0412	< 0.020	< 0.000050	0.013	0.0000072	231	0.00033	0.00016	< 0.00050	< 0.010	< 0.000050
EV_EC1	EV_EC1_WS_2022-04-26_N-SRF	2022-04-26	-	-	-	-	-	-	-	-		-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-04-27_N-SRF	2022-04-27	1170	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV EC1 WS 2022-04 WEK18 N	2022-04-27	1180	-	-	-	-	-	-	-	-	-	-		-	-	-
EV_EC1	EV EC1 WS 2022-04-28 N-SRF	2022-04-28		-	-	-	-	-	-	-	- -	-				-	-
EV_EC1	EV_EC1_WS_2022-04-29_N-SRF	2022-04-29	1190 1170		-	- -	-	-	-	-	- -	-	-	-	-	-	
EV_EC1 EV EC1	EV EC1 WS 2022-04-30 N-SRF EV EC1 WS 2022-05-01 N-SRF	2022-04-30	1210	- :	-	- -	-	-	-	-	- -	-		-	- -	<u> </u>	-
EV_EC1	EV EC1 WS 2022-05-01 N-SRF EV EC1 WS 2022-05-02 N-SRF	2022-05-01	1210				-		-		 			-			-
EV EC1	EV EC1 WS 2022-05-02 N-SRF 1	2022-05-02	1140	< 0.0030	0.00022	0.00036	0.0433	< 0.020	< 0.000050	0.015	0.0000073	236	0.00016	< 0.10	< 0.00050	< 0.010	< 0.000050
EV EC1	EV EC1 WS 2022-05-03 N-SRF	2022-05-03		-	-	-	-		-	-	-	-	-	-	-		-
		2022-00-03	-														

Denotes concentration less than indicated detection limit
 Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

^d Guideline varies with pH

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

										Total Metals								
			Π							1	Τ	T						
					l _													
			s		nesium	88		E	_ ا			lε	_		_	*_		
			es	E	is	, š	*_	Si.	<u>.</u>		⊑	Strontium	<u> </u>		Titanium	[
			E		Ē	Ď.	ickel	as	e ii	Silver	Sodium	E	allin	_	<u> </u>	raniu	1	2
Sample	Sample	Sample Date	1 <u>=</u>	1 5	Magr	Wa	ž	<u> </u>	8		l §	15	l ë	Ę	#	5		Ϊ
Location	ID	(mm/dd/yyyy)	mg/L	mg/L		mg/L	mg/L	mg/L	μg/L	mg/L	mg/	L mg/L	mg/L	mg/L	mg/L	mg/L	m	ng/L
	•					.i.	ic		.2	9						.2		. <u>S</u>
						cute	ē		5	Acute						onic	을 내	<u> </u>
						Ch Act	ຽ		ਤੌ	\$ 5						ਤੌ	Acr	່ ຮົ
BC WQG FWAL			n/a	n/a	n/a	0.001-0.03ª 0.0009-0.01ª	0.025-0.15 ^a	n/a	2	0.0001-0.003° 0.00005-0.0015°	n/a	n/a	n/a	n/a	n/a	0.0085	0.033-2ª	0.0075-2ª
Elkview Operation				•								•		•				
EV_BC1	EV_BC1_WS_2022-11-15_N_SRF	2022-11-15	1440	0.152	206	0.00381	0.0262	6.57	233	< 0.000010	11.4	1.02	0.000041	< 0.00010	< 0.00030	0.0107		0.0030
EV_EC1	EV_EC1_WS_2022-01-05_N-SRF	2022-01-05	1450			0.00336	0.0243	5.98	180	< 0.000020		0.97		< 0.00020	< 0.00060	0.0116		0.0060
EV_EC1	EV_EC1_WS_2022-Q1_N	2022-01-17	1390			0.104	0.0327	4.36	63.9	< 0.000020		0.37	0.000044	< 0.00020	< 0.00060	0.0112		0.0060
EV_EC1	EV_EC1_WS_2022-01-17_N-SRF	2022-01-17	1220			0.0779	0.0306	4.19	47.4	< 0.000010		0.33	0.000048	< 0.00010	< 0.00030	0.0117		0.0030
EV_EC1	EV_EC1_WS_2022-01-31_N-SRF	2022-01-28	1200			0.0752 0.0811	0.0299	4.02	50.4	< 0.000010 < 0.00020		0.32		< 0.00010	< 0.00030	0.0111		0.0030
EV_EC1 EV EC1	EV_EC1_WS_2022-02-14_N-SRF	2022-02-14	1200			0.0811	0.0327	4.44	42.4	< 0.000020 < 0.000020		0.35	0.00004	< 0.00020	< 0.00060	0.011		0.0060
EV_EC1 EV EC1	EV EC1 WS 2022-02 MON N EV EC1 WS 2022-02-28 N-SRF	2022-02-16 2022-02-28	1200			0.07	0.0372 0.0316	4.6	67.4 84.7	< 0.000020		0.37		< 0.00020 0.00056	< 0.00060 < 0.00030	0.0135 0.0115		0.0030
EV_EC1	EV EC1 WS 2022-02-28 N-SRF EV EC1 WS 2022-03-14 N-SRF	2022-02-28	1330			0.0624	0.0316	4.36	41.8	< 0.000010		0.32		< 0.00056	< 0.00030	0.0115		0.0030
EV EC1	EV EC1 WS 2022-03 I4 N-SKI	2022-03-17	1130			0.0542	0.0345	4.30	65.1	< 0.000010		0.34	0.000051	< 0.00010	< 0.00030	0.0113		0.0030
EV EC1	EV EC1 WS 2022-03 MON N	2022-03-17	1260			0.0553	0.0348	4.49	41.2	< 0.000010		0.34		< 0.00010	< 0.00030	0.0114		0.0030
EV EC1	EV EC1 WS 2022-03 WEK13 N	2022-03-22	1230			0.051	0.0294	4.32	34.2	< 0.000010	6.8	0.32	0.000047	< 0.00010	< 0.00030	0.0106	< 0.	0.0030
EV_EC1	EV_EC1_WS_2022-03-28_N-SRF	2022-03-28	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
EV_EC1	EV_EC1_WS_2022-03-28_N-SRF_1	2022-03-28	1210	0.032	148	0.00707	0.0172	3.08	163	< 0.000010	3.47	0.24	0.000027	< 0.00010	< 0.00030	0.00803	< 0.	0.0030
EV_EC1	EV_EC1_WS_2022-03_WEK14_N	2022-03-30	1460	-	-	-	-	-	171	-	-		-	-	-	-		-
EV_EC1	EV_EC1_WS_2022-04-04_N-SRF	2022-04-04	-	-	-	-	-	-	-		-		-	-	-	-		-
EV_EC1	EV EC1_WS_2022-04_WEK15_N	2022-04-06	1230			0.0187	0.025	4.78	107	< 0.000010		0.34	0.00003	0.00017	< 0.00030	0.0121		0.0030
EV EC1	EV EC1 WS 2022-04-10 N-SRF	2022-04-10	-	-	-	-	-	-			-		-	-	-	-		<u>. </u>
EV_EC1	EV_EC1_WS_2022-04-11_N-SRF	2022-04-11	1240		145	0.00358	0.013	2.92	142 177	< 0.00010	2.46	0.23	0.000023	< 0.00010	< 0.00030	0.00786		0.0030
EV EC1 EV EC1	EV EC1 WS 2022-04-11 N-SRF 1 EV EC1 WS 2022-04-12 N-SRF	2022-04-11 2022-04-12	1290 1260		145	0.00338	0.013	2.92	172	< 0.000010	3.40	0.23	0.000023	< 0.00010	< 0.00030	0.00766		-
EV EC1	EV_EC1_WS_2022-04-12_N-SRF EV_EC1_WS_2022-04-13_N-SRF	2022-04-12	11200		-	-		-:-	146		H:	_	-	- :	-:-	- :		-
EV EC1	EV EC1 WS 2022-Q2 N	2022-04-13	1260			-	-		186	-	1	_	-	-		-		
EV EC1	EV MC6 WS 2022-Q2 N	2022-04-13	1170		153	0.002	0.0114	3.04	172	< 0.000010	3.61	0.25	0.000022	< 0.00010	< 0.00030	0.00866	< 0.	0.0030
EV EC1	EV MC8 WS 2022-Q2 N	2022-04-13	1100		149	0.0019	0.0106	2.75	173	< 0.000010		0.27	0.00002	< 0.00010	< 0.00030	0.00851	< 0.	0.0030
EV_EC1	EV_EC1_WS_2022-04-14_N-SRF	2022-04-14	< 0.50	0.001	< 0.005	< 0.00010	< 0.00050	< 0.050	< 0.050	< 0.000010	0.0	50.000	< 0.000010	< 0.00010	< 0.00030	< 0.000010	< 0.	.0030
EV_EC1	EV_EC1_WS_2022-04-15_N-SRF	2022-04-15	1170		-	-	-	-	143	-	-	-	-	-	-	-		-
EV_EC1	EV_EC1_WS_2022-04-16_N-SRF	2022-04-16	1240		-	-	-	-	140	-	<u> </u>	<u> </u>	-	-	-	-		-
EV_EC1	EV EC1 WS 2022-04-17 N-SRF	2022-04-17	1280		-	-	-	-	161	-	-	<u> </u>	-	-	-	-		-
EV_EC1	EV EC1 WS 2022-04-18 N-SRF	2022-04-18	1230		159	0.00112	0.00817	2.85	158 192	< 0.00010	4.74	0.24	0.000016	< 0.00010	< 0.00030	0.00827	-0	0.0030
EV EC1 EV EC1	EV EC1 WS 2022-04-18 N-SRF 1 EV EC1 WS 2022-04-19 N-SRF	2022-04-18 2022-04-19	1120	0.029	159	0.00112	0.00817	2.00	158	< 0.000010	4.74		0.000016	< 0.00010	< 0.00030	0.00827		-
EV EC1	EV EC1 WS 2022-04-19 N-SRF EV EC1 WS 2022-04-20 N-SRF	2022-04-19	1210	_	+ -	-			154	-	H	-	-	-		- :		-
EV EC1	EV EC1 WS 2022-04 WEK17 N	2022-04-20	1240		-	-	-	-	163	-	1 -	-	-	-	-	-		-
EV EC1	EV EC1 WS 2022-04-21 N-SRF	2022-04-21	-	-	-	-	-	-	-	-	1 -	-	-	-	-	-		-
EV_EC1	EV EC1 WS 2022-04-22 N-SRF	2022-04-22	1240	-	-	-	-	-	149	-	-	-	-	-	-	-		-
EV_EC1	EV_EC1_WS_2022-04-23_N-SRF	2022-04-23	1260		-	-	-	-	154	-	-	-	-	-	-	-		-
EV_EC1	EV_EC1_WS_2022-04-24_N-SRF	2022-04-24	1300		-	-	-	-	205	-	1 -	-	-	-	-	-		-
EV_EC1	EV EC1 WS 2022-04-25 N-SRF	2022-04-25	1240		- 450	0.00047	-	-	165		-	-	-				-	-
EV_EC1	EV_EC1_WS_2022-04-25_N-SRF_1	2022-04-25	1180	0.027		0.00247	0.00616	2.59	151	< 0.000010	3.28	0.24	0.000014	< 0.00010	< 0.00030	0.00792		0.0030
EV_EC1 EV EC1	EV EC1 WS 2022-04-26 N-SRF EV EC1 WS 2022-04-27 N-SRF	2022-04-26 2022-04-27	1170	-	-	-	- :	 -	149 143		l :	1		- :	- :	-		-
EV_EC1	EV EC1 WS 2022-04-27 N-SRF EV EC1 WS 2022-04 WEK18 N	2022-04-27	1180		+ -	-		H :	147	1	l :	_	-			- :		-
EV EC1	EV EC1 WS 2022-04 WER18 N	2022-04-28	1100	1 -				1 -		-	t÷.	-		-				-
EV EC1	EV EC1 WS 2022-04-29 N-SRF	2022-04-29	1190		-	-	-	-	155	-	1 -	-	-	-		-		-
EV EC1	EV EC1 WS 2022-04-30 N-SRF	2022-04-30	1170		-	-	-	-	155	-	١.	-	-	-	-	-		-
EV EC1	EV EC1 WS 2022-05-01 N-SRF	2022-05-01	1210		-	-	-	-	144	-	_	-	-	-		-		-
EV_EC1	EV EC1 WS 2022-05-02 N-SRF	2022-05-02	1240) -	-	-	-	-	149	-	-	-	-	-	-	-		-
EV_EC1	EV_EC1_WS_2022-05-02_N-SRF_1	2022-05-02	1140	0.028	160	0.0005	0.00561	2.79	163	< 0.000010	3.61	0.22	0.000011	< 0.00010	< 0.00030	0.00832	< 0.	0.0030
EV EC1	EV EC1 WS 2022-05-03 N-SRF	2022-05-03	-	-	-	-	-	I -	149	-	1 -	1 -	-	-	-	-	1	-

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

											Total Metals						
Sample	Sample	Sample Date	Hardness	Aluminum	Antimony	Arsenic	Barium*	Beryllium*	Bismuth	Boron	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Геад
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg	/L	mg/L
						Acute	Chronic	Chronic		Chronic				Acute Chronic		Acute	Acute Chronic
BC WQG FWAL			n/a	n/a	n/a	0.005	1	0.00013	n/a	1.2	n/a	n/a	n/a	0.11 0.004	n/a	1	0.003-5.5 ^a 3.3-3.5 ^a
Elkview Operation		_															
EV_EC1	EV_EC1_WS_2022-05-04_N-SRF	2022-05-04	1160		-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1 EV EC1	EV EC1 WS 2022-05-MON N EV EC1 WS 2022-05-05 N-SRF	2022-05-04	1180 1120	< 0.0030	0.00024	0.00028	0.0478	< 0.020	< 0.000050	0.015	0.0000054	242	0.00019	< 0.10	< 0.00050	< 0.010	< 0.000050
EV_EC1	EV_ECT_WS_2022-05-05_N-SRF EV_ECT_WS_2022-05-05_N	2022-05-05	1120	< 0.0030	0.00024	0.00028	0.0478	< 0.020	< 0.000050	0.015	0.0000054	242	0.00019	V 0.10	< 0.00050	< 0.010	< 0.000000
EV_EC1	EV EC1 WS 2022-05-05 N EV EC1 WS 2022-05-06 N-SRF	2022-05-06	1160	< 0.0030	0.00021	0.00028	0.042	< 0.020	< 0.000050	0.014	< 0.0050	234	0.00017	< 0.10	< 0.00050	< 0.010	< 0.000050
EV EC1	EV EC1 WS 2022-05-06 N	2022-05-06	1120	- 0.0030	0.00021	0.00026	0.042	- 0.020	- 0.000050	0.014	- 0.0050	- 234	0.00017	-	- 0.00050	- 0.010	-
EV EC1	EV EC1 WS 2022-05-05 N	2022-05-07	1130	< 0.0030	0.00024	0.00026	0.0474	< 0.020	< 0.000050	0.014	0.0000057	227	0.00022	< 0.10	< 0.00050	< 0.010	< 0.000050
EV EC1	EV EC1 WS 2022-05-07 N	2022-05-07	1190	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-05-08_N-SRF	2022-05-08	1160	< 0.0060	0.00022	0.00027	0.043	< 0.020	< 0.000050	0.014	0.000005	227	0.00016	< 0.10	< 0.00050	< 0.010	< 0.000050
EV_EC1	EV EC1 WS 2022-05-08 N	2022-05-08	1170	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-05-09_N	2022-05-09	1150	< 0.0060	0.00021	0.00029	0.043	< 0.020	< 0.000050	0.013	< 0.0050	224	0.00015	< 0.10	< 0.00050	< 0.010	< 0.000050
EV_EC1	EV_EC1_WS_2022-05-09_N-SRF	2022-05-09	1110	< 0.0060	0.0002	0.00028	0.0416	< 0.020	< 0.000050	0.013	< 0.0050	221	0.00013	< 0.10	< 0.00050	< 0.010	< 0.000050
EV_EC1	EV_EC1_WS_2022-05-10_N-SRF	2022-05-10	1180	0.0034	0.00025	0.00026	0.0439	< 0.020	< 0.000050	0.014	0.0000084	218	0.00021	< 0.10	< 0.00050	< 0.010	< 0.000050
EV_EC1	EV_EC1_WS_2022-05_WEK20_N	2022-05-10	1150	-	-	-	-	-		-		-		< 0.10	-	-	< 0.000050
EV_EC1	EV_EC1_WS_2022-05-11_N-SRF	2022-05-11	1050	< 0.0030	0.00021	0.00027	0.043	< 0.020	< 0.000050	0.012	0.0000054	213	0.00018	< 0.10	< 0.00050	< 0.010	< 0.000050
EV_EC1	EV_EC1_WS_2022-05-12_N-SRF	2022-05-12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV EC1 WS 2022-05-13 N-SRF	2022-05-13	-	-	-	-	-	-	-	-	-	-	-		-	-	-
EV_EC1 EV EC1	EV EC1 WS 2022-05-14 N-SRF EV EC1 WS 2022-05-15 N-SRF	2022-05-14	-	-	-	-	- :	-	-	-				-	-	-	-
EV EC1	EV EC1 WS 2022-05-15 N-SRF	2022-05-16	<u> </u>	-	-	<u> </u>	-	<u> </u>	-	-	-	-	-	-	-	-	-
EV EC1	EV EC1 WS 2022-05-16 N-SRF 1	2022-05-16	1200	< 0.0030	0.00022	0.00025	0.0471	< 0.020	< 0.000050	0.014	0.0000058	228	0.00021	< 0.10	< 0.00050	< 0.010	< 0.000050
EV EC1	EV EC1 WS 2022-05-17 N-SRF	2022-05-17	-	- 0.0000	-	- 0.00020		- 0.020	- 0.000000		-	-	- 0.00021	-	- 0.00000	- 0.010	-
EV EC1	EV EC1 WS 2022-05-18 N-SRF	2022-05-18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV EC1	EV EC1 WS 2022-05 WEK21 N	2022-05-18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV EC1	EV EC1 WS 2022-05-19 N-SRF	2022-05-19	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-05-20_N-SRF	2022-05-20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-02-21_N-SRF	2022-05-21	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV EC1 WS 2022-05-22 N-SRF	2022-05-22	-	-	-	-	-	-	-	-	-	-	-		-	-	-
EV_EC1	EV_EC1_WS_2022-05-23_N-SRF	2022-05-23	-	-	-	-	-	-	-	-	-	-	-		-	-	< 0.000050
EV_EC1	EV EC1 WS 2022-05-24 N-SRF	2022-05-24	1180	0.0104	0.00024	0.00024	0.0478	< 0.020	< 0.000050	0.014	0.0000061	233	0.0002	< 0.10	< 0.00050	< 0.010	< 0.000050
EV_EC1 EV EC1	EV EC1 WS 2022-05-25 N-SRF EV EC1 WS 2022-05 WEK22 N	2022-05-25 2022-05-25	+-	-	-		- :	-	-	-	- :	-		-	-	-	
EV EC1	EV EC1 WS 2022-05 WER22 N EV EC1 WS 2022-05-26 N-SRF	2022-05-25	+-	-	-				-	-		-	- :	-	1 - 1		
EV EC1	EV EC1 WS 2022-05-26 N-SRF EV EC1 WS 2022-05-27 N-SRF	2022-05-26	H÷.		-				-	-	-			-	-	-	-
EV EC1	EV EC1 WS 2022-05-27 N-SRF	2022-05-28	T i	-	-	-		<u> </u>	-	-	-	-	-	-	-		-
EV EC1	EV EC1 WS 2022-05-29 N-SRF	2022-05-29	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV EC1	EV EC1 WS 2022-05-30 N-SRF	2022-05-30	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV EC1	EV EC1 WS 2022-05-30 N-SRF 1	2022-05-30	1200	< 0.0030	0.00022	0.00025	0.049	< 0.020	< 0.000050	0.013	0.0000064	259	0.00028	< 0.10	< 0.00050	< 0.010	< 0.000050
EV_EC1	EV EC1 WS 2022-05-31 N-SRF	2022-05-31	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-05_WEK23_N	2022-05-31	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-06-01_N-SRF	2022-06-01	<u> </u>	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV EC1 WS 2022-06-02 N-SRF	2022-06-02	-			l		 						-			- 0.000000
EV_EC1	EV EC1 WS 2022-06-03 N-SRF	2022-06-03	949	< 0.0030	0.00023	0.00026	0.0458	< 0.020	< 0.000050	0.013	0.000007	222	0.00022	< 0.10	< 0.00050	< 0.010	< 0.000050
EV_EC1	EV EC1 WS 2022-06-04 N-SRF	2022-06-04	-	-	-	-	-	-	-	-	- -	-	-	-		-	-
EV_EC1	EV_EC1_WS_2022-06-05_N-SRF	2022-06-05	+	-	-	-	-	-	-	-	- -	-	-	 	-	-	
EV_EC1 EV EC1	EV EC1 WS 2022-06 MON N	2022-06-06	1170	< 0.0030	0.00021	0.00023	0.0475	< 0.020	< 0.000050	0.013	0.000000	236	0.00018	< 0.10	< 0.00050	< 0.010	< 0.000050
EV_EC1	EV_EC1_WS_2022-06-06_N-SRF EV_EC1_WS_2022-06-07_N-SRF	2022-06-06 2022-06-07	1200	< 0.0030	0.00021	0.00023	0.0475 0.0478	< 0.020	< 0.000050	0.013	0.000006	236	0.00018	< 0.10	< 0.00050	< 0.010	< 0.000050
EV EC1	EV EC1 WS 2022-06-07 N-SRF	2022-06-08	1200	- 0.0030	0.00023	0.00020	0.0470	~ 0.020	- 0.000030	0.013	3.000000		0.00022	-	- 0.00030	~ 0.010	-
EV EC1	EV EC1 WS 2022-06-09 N	2022-06-09	١.	-	-		-		-	-	-	-	-	-	-	-	-
		. 2022-00-03	-														

Denotes concentration less than indicated detection limit
 Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

^d Guideline varies with pH

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

										Total Metals							
											П	Π					
					_												
			u,		nesium	986		⊑	ء			lε	_		_ ا		
			l se	Ε	esi	<u>a</u>	*_	· <u>5</u>	≛	_	⊑	Strontium	<u> </u>		Titanium	5	
			直	∄	Magn	g u	icke	tas	le ni	Silver	Sodium	<u>5</u>	allin	_	a a	ranin	၁င
Sample	Sample	Sample Date	표	5	Ĕ	×	ž	_ &	တီ	 	ြတ	St	₽	늗	Ĕ	5	Ϊ́Ι
Location	ID	(mm/dd/yyyy)	mg/L	. mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	mg/L	mg/l	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
						ute ronic	:2		읃	.						ronic	i je
						cute	ē		٥	Acute						₫	no ute
						Acı Chi	ភ		- E	C Ac						Сћі	Acı
BC WQG FWAL			n/a	n/a	n/a	0.001-0.03 ^a 0.0009-0.01 ^a	0.025-0.15 ^a	n/a	2	0.0001-0.003 ^a 0.00005-0.0015 ^a	n/a	n/a	n/a	n/a	n/a	0.0085	0.033-2 ^a 0.0075-2 ^a
Elkview Operation																	
EV_EC1	EV_EC1_WS_2022-05-04_N-SRF	2022-05-04	1160		-	-	-	-	153	-	-	-	-	-	-	-	
EV_EC1	EV_EC1_WS_2022-05-MON_N	2022-05-04	1180		-			-	159	-	-	-				-	
EV_EC1	EV_EC1_WS_2022-05-05_N-SRF	2022-05-05	1120			0.00049	0.00563	3.04	173	< 0.000010		0.24	0.000015	< 0.00010	< 0.00030	0.0081	< 0.0030
EV_EC1 EV EC1	EV_EC1_WS_2022-05-05_N	2022-05-05	1190		143	0.00044	0.00510	- 27	171 170	< 0.00010	2 10		0.000042	- 0.00040	- 0.00000	0.00704	< 0.0030
EV_EC1	EV EC1 WS 2022-05-06 N-SRF EV EC1 WS 2022-05-06 N	2022-05-06	1160		143	0.00044	0.00518	2.7	1/0	< 0.000010	3.18	0.22	0.000013	< 0.00010	< 0.00030	0.00794	< 0.0030
EV_EC1	EV EC1 WS 2022-05-06 N EV EC1 WS 2022-05-07 N-SRF	2022-05-06	1130			0.00049	0.00504	2.91	169	< 0.000010		0.23	0.000013	< 0.00010	< 0.00030	0.0081	< 0.0030
EV_EC1	EV EC1 WS 2022-05-07 N	2022-05-07	1190		145	0.00049	0.00504	2.51	143	- 0.000010	3.34		0.000013	- 0.00010	- 0.00030	- 0.0061	- 0.0030
EV EC1	EV EC1 WS 2022-03-07 N	2022-05-08		0.026		0.00044	0.00493	2.62	162	< 0.000010		0.21	0.000011	< 0.00010	< 0.00030	0.00749	< 0.0030
EV EC1	EV EC1 WS 2022-05-08 N	2022-05-08	1170		-	-	-	-	144	-	-		-	-	-	-	-
EV_EC1	EV EC1 WS 2022-05-09 N	2022-05-09	1150		145	0.0004	0.00471	2.58	163	< 0.000010	3.13	0.22	0.00001	< 0.00010	< 0.00030	0.00754	< 0.0030
EV_EC1	EV_EC1_WS_2022-05-09_N-SRF	2022-05-09	1110	0.025	142	0.00035	0.00447	2.58	161	< 0.000010	3.17	0.21	< 0.000010	< 0.00010	< 0.00030	0.00756	< 0.0030
EV_EC1	EV_EC1_WS_2022-05-10_N-SRF	2022-05-10	1180		141	0.00048	0.00476	2.72	161	< 0.000010	3.47	0.22	0.000011	< 0.00010	< 0.00030	0.00729	0.0155
EV_EC1	EV_EC1_WS_2022-05_WEK20_N	2022-05-10	1150		-	-	-	-	156	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-05-11_N-SRF	2022-05-11	1050	0.026		0.00034	0.00451	2.58	162	< 0.000010		0.22	0.000011	< 0.00010	< 0.00030	0.00737	< 0.0030
EV_EC1	EV_EC1_WS_2022-05-12_N-SRF	2022-05-12	-	-	-	-	-	-	155	-	<u> </u>	-	-	-	-	-	-
EV EC1 EV EC1	EV EC1 WS 2022-05-13 N-SRF	2022-05-13	-	-	-	-	-	-	151 170	-	-	_	-	-	-	-	
EV EC1	EV EC1 WS 2022-05-14 N-SRF EV EC1 WS 2022-05-15 N-SRF	2022-05-14 2022-05-15	-	-	-	-		-	149	-	-	-	-	-	-	- :	-
EV EC1	EV EC1 WS 2022-05-15 N-SRF	2022-05-16	+-	+:	+ -		-	-	152		H	1	-	-	-		-
EV EC1	EV EC1 WS 2022-05-16 N-SRF 1	2022-05-16	1200	0.028		0.00043	0.00433	2.8	195	0.000011		0.23	0.00001	< 0.00010	< 0.00030	0.00766	< 0.0030
EV EC1	EV EC1 WS 2022-05-17 N-SRF	2022-05-17	-	-	-	-	-	-	152	-	-	-	-	-	-	-	
EV_EC1	EV_EC1_WS_2022-05-18_N-SRF	2022-05-18	-	-	-	-	-	-	164	-	-	-	-	-	-	-	
EV_EC1	EV EC1 WS 2022-05 WEK21 N	2022-05-18	-	-	-	-	-	-	161	-	-	-	-	-	-	-	
EV_EC1	EV_EC1_WS_2022-05-19_N-SRF	2022-05-19	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
EV_EC1	EV_EC1_WS_2022-05-20_N-SRF	2022-05-20	-	-	-	-	-	-	174	-	-	-	-	-	-	-	
EV_EC1	EV EC1 WS 2022-02-21 N-SRF	2022-05-21	-	-	-	-	-	-	169	-	-	-	-	-	-	-	-
EV_EC1	EV EC1 WS 2022-05-22 N-SRF	2022-05-22	-	-	-	-	-	-	146	-	1	-	-	-	-	-	-
EV EC1 EV EC1	EV EC1 WS 2022-05-23 N-SRF EV EC1 WS 2022-05-24 N-SRF	2022-05-23	1180	0.026	158	0.00037	0.00393	2.84	156 158	< 0.000010		0.24	0.000011	< 0.00010	< 0.00030	0.0082	< 0.0030
EV_EC1	EV EC1 WS 2022-05-24 N-SRF EV EC1 WS 2022-05-25 N-SRF	2022-05-24	1180	0.026	- 136	0.00037	0.00393	2.04	158	- 0.000010	3.40		0.000011	- 0.00010	- 0.00030	0.0062	- 0.0030
EV EC1	EV EC1 WS 2022-05-25 N-SRP EV EC1 WS 2022-05 WEK22 N	2022-05-25	+ -	1	1	-			159	-	H	1	-			-:-	- :
EV EC1	EV EC1 WS 2022-05-26 N-SRF	2022-05-26	-	-	-		-	-	-	-	-	-	-	-	-	-	
EV EC1	EV EC1 WS 2022-05-27 N-SRF	2022-05-27	_	_	-	-	-		158	-	_	_	-	-		-	
EV_EC1	EV EC1 WS 2022-05-28 N-SRF	2022-05-28	-	-	-	-	-	-	172	-	-	-	-	-			-
EV_EC1	EV EC1 WS 2022-05-29 N-SRF	2022-05-29	-	-	-	-	-	-	169	-	-	-	-	-	-	-	
EV_EC1	EV_EC1_WS_2022-05-30_N-SRF	2022-05-30	-		1				170	-	1 -	1 -			<u> </u>		-
EV_EC1	EV EC1 WS 2022-05-30 N-SRF 1	2022-05-30	1200	0.026		0.00027	0.0036	2.63	171	0.000014	2.99	0.24	< 0.000010	< 0.00010	< 0.00030	0.00796	< 0.0030
EV_EC1	EV EC1 WS 2022-05-31 N-SRF	2022-05-31	+-	-	-	-	-	-	166 160	-	H÷.	-	-		- -	-	-
EV_EC1 EV_EC1	EV_EC1_WS_2022-05_WEK23_N EV_EC1_WS_2022-06-01_N-SRF	2022-05-31 2022-06-01	-	+ -	-	-		-	700	-	 -	-	-			- :	-
EV_EC1	EV ECT WS 2022-06-01 N-SRF EV EC1 WS 2022-06-02 N-SRF	2022-06-01	+ :	1 :	1				176	-	L i	H:	-	 	<u> </u>	- : -	-
EV EC1	EV EC1 WS 2022-06-03 N-SRF	2022-06-03	949	0.027		0.00033	0.00323	2.54	170	< 0.000010	3.23	0.22	0.000012	< 0.00010	< 0.00030	0.0082	< 0.0030
EV EC1	EV EC1 WS 2022-06-04 N-SRF	2022-06-04	-	-	-	-	-	-	167	-	-	_	-	-	-	-	-
EV EC1	EV EC1 WS 2022-06-05 N-SRF	2022-06-05		_	_	-	-		177	-	_	_	-	-	-		٠
EV_EC1	EV_EC1_WS_2022-06_MON_N	2022-06-06	-	-	-	-	-	-	178	-	-	-	-	-	-		
EV_EC1	EV_EC1_WS_2022-06-06_N-SRF	2022-06-06	1170			0.00028	0.00324	2.5	198	< 0.000010		0.21		< 0.00010	< 0.00030	0.00725	< 0.0030
EV_EC1	EV_EC1_WS_2022-06-07_N-SRF	2022-06-07	1200	0.026		0.00031	0.00322	2.61	168	< 0.000010	-	0.22		< 0.00010	< 0.00030	0.00831	< 0.0030
EV_EC1	EV_EC1_WS_2022-06-08_N-SRF	2022-06-08	-	-	-	-	-	-	181	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-06-09_N	2022-06-09	L -	<u> </u>	<u> </u>	-	-		209	-		L-	-	-	-		-

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

											Total Metals						
Sample	Sample	Sample Date	Hardness	Aluminum	Antimony	Arsenic	Barium*	Beryllium*	Bismuth	Boron	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg	/L	mg/L
						Acute	Chronic	Chronic		Chronic				Acute Chronic		Acute	Acute
BC WQG FWAL			n/a	n/a	n/a	0.005	1	0.00013	n/a	1.2	n/a	n/a	n/a	0.11 0.004	n/a	1	0.003-5.5° 3.3-3.5°
Elkview Operation	FV 504 W0 0000 00 00 V 005		14400	0.0000		0.00004	0.0110			0.040	0.0050	000	0.00047	< 0.10			< 0.000050
EV_EC1 EV EC1	EV EC1 WS 2022-06-09 N-SRF EV EC1 WS 2022-06-10 N-SRF	2022-06-09 2022-06-10	1180	< 0.0030	0.00021	0.00021	0.0449	< 0.020	< 0.000050	0.013	< 0.0050	209	0.00017	- 0.10	< 0.00050	< 0.010	- 0.000000
EV_EC1	EV EC1 WS 2022-06-10 N-SRF	2022-06-10	-	-	-	-:-		- :	-	- :	-	-		-		-	
EV EC1	EV EC1 WS 2022-06-10 N	2022-06-10	1160	< 0.0030	0.00022	0.00026	0.0476	< 0.020	< 0.000050	0.014	0.0000066	218	0.00021	< 0.10	< 0.00050	< 0.010	< 0.000050
EV EC1	EV EC1 WS 2022-06-11 N-SRF 1	2022-06-11	1180	< 0.0030	0.00022	0.00025	0.0478	< 0.020	< 0.000050	0.013	0.0000064	223	0.00021	< 0.10	< 0.00050	< 0.010	< 0.000050
EV_EC1	EV_EC1_WS_2022-06-12_N	2022-06-12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV EC1_WS 2022-06-12 N-SRF_1	2022-06-12	1250	< 0.0030	0.00023	0.00029	0.0551	< 0.020	< 0.000050	0.014	0.0000076	234	0.00024	< 0.10	< 0.00050	< 0.010	< 0.000050
EV_EC1	EV_EC1_WS_2022-06-13_N-SRF	2022-06-13	-		-	-	-	-	-	-	-	-	-	-	-	-	
EV_EC1	EV_EC1_WS_2022-06-14_N	2022-06-14	1140	< 0.0030	0.0002	0.00024	0.0495	< 0.020	< 0.000050	0.013	0.0000095	234	0.0003	< 0.10	< 0.00050	< 0.010	< 0.000050
EV_EC1	EV_EC1_WS_2022-06-15_N	2022-06-15	1020	0.003	0.00021	0.00036	0.0573	< 0.020	< 0.000050	0.011	0.0000125	206	0.00021	< 0.10	< 0.00050	< 0.010	< 0.000050
EV_EC1	EV EC1 WS 2022-06 WEK25 N	2022-06-15	1110	< 0.0030	0.00022	0.0004	0.0574	< 0.020	< 0.000050	0.013	0.000013	216	0.00029	< 0.10	< 0.00050	< 0.010	< 0.000050
EV_EC1	EV_EC1_WS_2022-06-16_N-SRF	2022-06-16	-	-	-					-	-		-	< 0.10			< 0.000050
EV_EC1	EV_EC1_WS_2022-06-17_N-SRF	2022-06-17	1090	< 0.0030	0.00022	0.00031	0.0549	< 0.020	< 0.000050	0.014	0.0000094	234	0.0002	- 0.10	< 0.00050	< 0.010	- 0.000050
EV EC1 EV EC1	EV EC1 WS 2022-06-18 N-SRF EV EC1 WS 2022-06-19 N-SRF	2022-06-18	-	-	-	- :		-	-	-		-	-	-	-	-	
EV EC1	EV EC1 WS 2022-06-19 N-SRF EV EC1 WS 2022-06-20 N-SRF	2022-06-19	-		-	- :		- :	-	-	-	-	-	-	-		-
EV EC1	EV EC1 WS 2022-06-20 N-SRF	2022-06-22	1140	< 0.0030	0.00021	0.00025	0.0552	< 0.020	< 0.000050	0.012	0.0000082	224	0.00023	< 0.10	< 0.00050	< 0.010	< 0.000050
EV EC1	EV EC1 WS 2022-00-22 N-SKI	2022-06-22	1140	- 0.0030	0.00021	0.00023	0.0002	- 0.020	- 0.000030	0.012	0.0000002		0.00023	-	- 0.00030	V 0.010	-
EV EC1	EV EC1 WS 2022-06 WEK26 N	2022-06-23	-	-							-		-	-	-	-	-
EV EC1	EV EC1 WS 2022-06-23 N-SRF	2022-06-23	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV EC1	EV EC1 WS 2022-06-24 N-SRF	2022-06-24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV EC1 WS 2022-06-25 N-SRF	2022-06-25	-	-	-	-	-	-	-	-	-	٠	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-06-26_N-SRF	2022-06-26		-	-	-		-	-	-	-		-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-06-27_N-SRF	2022-06-27	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV EC1	EV EC1_WS_2022-06-28_N-SRF	2022-06-28	1180	< 0.0030	0.00022	0.0003	0.0519	< 0.020	< 0.000050	0.012	0.0000069	220	0.0002	< 0.10	< 0.00050	< 0.010	< 0.000050
EV_EC1	EV_EC1_WS_2022-06-29_N-SRF	2022-06-29	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV EC1	EV EC1 WS 2022-06 WEK27 N	2022-06-29	-	-	-	-		-	-	-	-	-	-	-	-	-	
EV EC1 EV EC1	EV EC1 WS 2022-06-30 N-SRF EV EC1 WS 2022-07-01 N-SRF	2022-06-30	-		-	-		-	-	-	-		-	-	-	-	
EV EC1	EV EC1 WS 2022-07-01 N-SRF	2022-07-01	-		-				-		-	-		-		-	-
EV EC1	EV EC1 WS 2022-07-02 N-SRF EV EC1 WS 2022-07-03 N-SRF	2022-07-02		- :			_:		-					-	-		-
EV EC1	EV EC1 WS 2022-07-03 N-SRF	2022-07-04	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV EC1 WS 2022-07-05 N-SRF	2022-07-05	1200	< 0.0030	0.00022	0.00027	0.0515	< 0.020	< 0.000050	0.013	0.0000067	222	0.00018	< 0.10	< 0.00050	< 0.010	< 0.000050
EV_EC1	EV_EC1_WS_2022-Q3_N	2022-07-06	-		-	-	-	-	-	-	-		-		-	-	-
EV_EC1	EV_MC5_WS_2022-Q3_N	2022-07-06	1120	< 0.0030	0.00022	0.00026	0.0508	< 0.020	< 0.000050	0.012	< 0.0050	211	0.00018	< 0.10	< 0.00050	< 0.010	< 0.000050
EV_EC1	EV MC7 WS 2022-Q3 N	2022-07-06	1120	< 0.0030	0.00021	0.0003	0.0504	< 0.020	< 0.000050	0.012	< 0.0050	211	0.00018	< 0.10	< 0.00050	< 0.010	< 0.000050 < 0.000050
EV_EC1	EV EC1 WS 2022-07-06 N-SRF	2022-07-06	< 0.50	< 0.0030	< 0.00010	< 0.00010	< 0.00010	< 0.020	< 0.000050	< 0.010	< 0.0050	< 0.050	< 0.00010	< 0.10	< 0.00050	< 0.010	< 0.000050
EV_EC1 EV_EC1	EV EC1 WS 2022-07-07 N-SRF EV EC1 WS 2022-07-08 N-SRF	2022-07-07	-	-	-	- :		-	-	-	-	-	-		-	-	
EV EC1	EV EC1 WS 2022-07-08 N-SRF EV EC1 WS 2022-07-09 N-SRF	2022-07-08			<u> </u>	<u> </u>			-		- -		- -	-		-	-
EV EC1	EV EC1 WS 2022-07-09 N-SRF	2022-07-10			- :				- :		- : -			-	<u> </u>		-
EV EC1	EV EC1 WS 2022-07-10 N-SRF	2022-07-10		-	-		-		-	-				-	-		-
EV EC1	EV EC1 WS 2022-07-12 N-SRF	2022-07-12	1130	< 0.0030	0.00022	0.00025	0.0501	< 0.020	< 0.000050	0.013	0.0000059	222	0.00018	< 0.10	< 0.00050	< 0.010	< 0.000050
EV EC1	EV EC1 WS 2022-07-13 N-SRF	2022-07-13	-		-				-					-	-		-
EV_EC1	EV EC1 WS 2022-07 WEK29 N	2022-07-13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-07-14_N-SRF	2022-07-14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-07-15_N-SRF	2022-07-15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-07-16_N-SRF	2022-07-16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV EC1 WS 2022-07-17 N-SRF	2022-07-17	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-07-18_N-SRF	2022-07-18	L -	-	-	<u> </u>			-	<u> </u>							

Denotes concentration less than indicated detection limit
 Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

^d Guideline varies with pH

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

										Total Metals							
					E	9		_									
			SS	_	Magnesium	l se		5	E		_ ا	⊑	E		E	*=	
			l ª	<u>5</u>	l e	a G	*	SS	enium	Le Control	5	1 =	.≣			raniur	
Camula	Pamula	Cample Date	Harc	≣	lag	Jan	Nickel	l g	9	Silver	Sodium	Strontium	Thalliu	E	Titanium	<u> </u>	Zi Zi
Sample Location	Sample ID	Sample Date (mm/dd/yyyy)		ma/l		mg/L	mg/L	mg/L	μg/L	mg/L	- 0,	၂ တ L mg/l		⊢ mg/L	⊢ mg/L	mg/L	mg/L
Location	10	(IIIII/dd/yyyy)	mg/L	g/L	mg/L			mg/L			ilig,	4g/ t	IIIg/L	mg/L	mg/L		
						ronic	onic		ronic	o lie						ronic	δ life σ
						Acute	į .		Ė	Acute						ਤਿੰ	j j
BC WQG FWAL			n/a	n/a	n/a	0.001-0.03 ^a 0.0009-0.01 ^a	_	n/a	2	0.0001-0.003° 0.00005-0.0015°	n/a	n/a	n/a	n/a	n/a	0.0085	0.033-2ª 0.0075-2ª
Elkview Operation			111/4	1	1	0.000 0.000	0.020 0.10			0.000 0.000	1	1		1	100	0.0000	0.0002
EV EC1	EV EC1 WS 2022-06-09 N-SRF	2022-06-09	1180	0.029	134	0.00028	0.00293	2.64	158	< 0.000010	3.2	1 0.21	< 0.000010	< 0.00010	< 0.00030	0.00735	< 0.0030
EV_EC1	EV_EC1_WS_2022-06-10_N-SRF	2022-06-10	-	-	-	-	-	-	170	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-06-10_N	2022-06-10	-	-	-		-	-	176	-	-		-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-06-11_N	2022-06-11	1160			0.00036	0.00305	2.81	168	< 0.000010		2 0.21	< 0.000010	< 0.00010	< 0.00030	0.00755	< 0.0030
EV_EC1 EV EC1	EV_EC1_WS_2022-06-11_N-SRF_1 EV_EC1_WS_2022-06-12_N	2022-06-11	1180	0.027	139	0.00028	0.00319	2.83	168 179	< 0.000010	3.27	7 0.21	< 0.000010	< 0.00010	< 0.00030	0.00786	< 0.0030
EV_EC1	EV EC1 WS 2022-06-12 N-SRF 1	2022-06-12	1250	_		0.00032	0.00326	3.08	179	< 0.00010	_	1 0.23		< 0.00010	< 0.00030	0.00778	< 0.0030
EV_EC1	EV EC1 WS 2022-06-12 N-SRF 1	2022-06-12	1230	0.027	- 100	- 0.00002	0.00326	3.00	185	-	3.6		0.000012	- 0.00010	- 0.00030	- 0.00776	
EV EC1	EV EC1 WS 2022-06-14 N	2022-06-14		0.027		0.00052	0.00282	2.79	169	< 0.000010		1 0.22		< 0.00010	< 0.00030	0.00785	< 0.0030
EV EC1	EV EC1 WS 2022-06-15 N	2022-06-15	1020	0.023	134	0.00042	0.00269	2.77	144	< 0.000010	3.25	5 0.2	0.000011	< 0.00010	< 0.00030	0.0066	< 0.0030
EV_EC1	EV EC1 WS 2022-06 WEK25 N	2022-06-15	1110	0.023	139	0.00039	0.00288	2.69	157	< 0.000010	3.23	3 0.21	0.000013	< 0.00010	< 0.00030	0.0075	< 0.0030
EV_EC1	EV_EC1_WS_2022-06-16_N-SRF	2022-06-16	-	-	-	-	-	-	-	-	<u> </u>		-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-06-17_N-SRF	2022-06-17	1090		_	0.00038	0.00268	2.97	166	< 0.000010	_	0.23		< 0.00010	< 0.00030	0.00774	0.0072
EV_EC1	EV_EC1_WS_2022-06-18_N-SRF	2022-06-18	-	-	-	-	- :	-	147		-	_	-	-	-	- :	-
EV_EC1 EV EC1	EV EC1 WS 2022-06-19 N-SRF EV EC1 WS 2022-06-20 N-SRF	2022-06-19	-	-	1	-	-	-	149 156	 	1	_	-	-	- :		- :
EV EC1	EV EC1 WS 2022-06-20 N-SRF	2022-06-22	1140	_	_	0.00029	0.0027	2.74	169	< 0.000010		7 0.22	< 0.000010	< 0.00010	< 0.00030	0.00836	< 0.0030
EV EC1	EV EC1 WS 2022-06-21 N-SRF	2022-06-22		- 0.020	17.	-	- 0.0027	2.17	174	-	-		- 0.000010	- 0.00010	- 0.00000	-	-
EV_EC1	EV_EC1_WS_2022-06_WEK26_N	2022-06-23	-	-	-	-	-	-	88.2	-	-	-	-	-	-	-	-
EV_EC1	EV EC1 WS 2022-06-23 N-SRF	2022-06-23	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV EC1 WS 2022-06-24 N-SRF	2022-06-24	-	-	-	-	-	-	156	-	-	-	-	-	-	-	-
EV_EC1	EV EC1 WS 2022-06-25 N-SRF	2022-06-25	-	-	-		-	-	147	<u> </u>	-	-	-	-	-	-	-
EV_EC1 EV EC1	EV EC1_WS_2022-06-26_N-SRF EV EC1_WS_2022-06-27_N-SRF	2022-06-26	<u> </u>	<u> </u>	<u> </u>	-	-	-	177 175	-	<u> </u>	+ :	-	-	-	-	•
EV EC1	EV ECT WS 2022-06-27 N-SRF EV ECT WS 2022-06-28 N-SRF	2022-06-28	1180	0.023	140	0.00021	0.00212	2.61	156	< 0.00010	3	0.21	< 0.000010	< 0.00010	< 0.00030	0.00759	< 0.0030
EV EC1	EV EC1 WS 2022-06-29 N-SRF	2022-06-29	-	0.023	-	-	0.00212	2.01	153	-	-	_	- 0.000010	- 0.00010	- 0.00030	- 0.00739	-
EV EC1	EV EC1 WS 2022-06 WEK27 N	2022-06-29	-	-	-	-	-	-	176	-	-	-	-	-	-	-	-
EV_EC1	EV EC1 WS 2022-06-30 N-SRF	2022-06-30	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-07-01_N-SRF	2022-07-01	-	-	-	-	-	-	163	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-07-02_N-SRF	2022-07-02	-	-	-	-	-	-	166	-	ļ -	-	-	-	-	-	-
EV EC1 EV EC1	EV EC1 WS 2022-07-03 N-SRF EV EC1 WS 2022-07-04 N-SRF	2022-07-03	-	-	-	-	-	-	153 149		+-	1	-	-	-	-	-
EV_EC1	EV EC1 WS 2022-07-04 N-SRF EV EC1 WS 2022-07-05 N-SRF	2022-07-04	1200			0.00023	0.00211	2.69	171	< 0.00010	3 16	0.21	< 0.000010	< 0.00010	< 0.00030	0.00809	< 0.0030
EV EC1	EV EC1 WS 2022-07-03 N-SKI	2022-07-06	-	0.021	-	-	0.00211	2.05	156	-	3.10		- 0.000010	- 0.00010	- 0.00030	-	-
EV EC1	EV MC5 WS 2022-Q3 N	2022-07-06	1120			0.00019	0.00192	2.54	156	< 0.000010		7 0.21		< 0.00010	< 0.00030	0.0077	< 0.0030
EV_EC1	EV MC7 WS 2022-Q3 N	2022-07-06	1120	0.023	128	0.00026	0.00196	2.5	158	< 0.000010		0.21	< 0.000010	< 0.00010	< 0.00030	0.00765	< 0.0030
EV_EC1	EV_EC1_WS2022-07-06_N-SRF	2022-07-06	< 0.50	¢ 0.001	¢ 0.005		< 0.00050	< 0.050	< 0.050	< 0.000010		50.000	< 0.000010	< 0.00010	< 0.00030	< 0.000010	< 0.0030
EV_EC1	EV EC1 WS 2022-07-07 N-SRF	2022-07-07	-	-	-	-	-	-	147	-	-	_	-	-	-	-	-
EV EC1	EV EC1 WS 2022-07-08 N-SRF	2022-07-08	-	-	+ :	<u> </u>	-	-	151 175	- :	+ -	-	-	-	-	- :	
EV_EC1 EV EC1	EV_EC1_WS_2022-07-09_N-SRF EV_EC1_WS_2022-07-10_N-SRF	2022-07-09 2022-07-10	+ -	1	+ :	- :			153	 	H	+:			- :	- :	- :
EV_ECT	EV ECT WS 2022-07-10 N-SRF EV ECT WS 2022-07-11 N-SRF	2022-07-10	-	-	1	-	-	-	161	1 -	1	1	-			- :	-
EV EC1	EV EC1 WS 2022-07-12 N-SRF	2022-07-12		0.026		0.00015	0.002	2.52	163	< 0.000010	3.15	0.21	< 0.000010	< 0.00010	< 0.00030	0.0076	< 0.0030
EV EC1	EV EC1 WS 2022-07-13 N-SRF	2022-07-13	-	-	-	-	-	-	179	-	-		-	-	-		-
EV_EC1	EV_EC1_WS_2022-07_WEK29_N	2022-07-13	-	-	-	-	-	-	157	-	-	-	-	-	-		-
EV_EC1	EV_EC1_WS_2022-07-14_N-SRF	2022-07-14	-	-	-	-	-	-	-	-	ļ -	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-07-15_N-SRF	2022-07-15	+ -	-	1		-	-	152	-	+-	-	-	-		- :	-
EV_EC1 EV EC1	EV EC1 WS 2022-07-16 N-SRF EV EC1 WS 2022-07-17 N-SRF	2022-07-16 2022-07-17	+-	-	-	-	-	-	161 158	 	+ -	+ -	-	-	- :	- :	- :

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

											Total Metals						
													_				
			SS	Ē	_ ≥			<u>*</u>	ے ا		E	_					
			l e	듵	rt o	l ë	Ē	≝	a a	<u> </u>	ਵ	alcium	hromiur	ä	<u> </u>		_
0	0	0	ard	틀	崔	138	i.	erylli	<u>.ss</u>	5	Cadı	ac	≝	Sob	Soppe	5	ead
Sample Location	Sample ID	Sample Date (mm/dd/yyyy)	Ξ mα/l	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	ග් mg/L	mg/L	mg/L	mg	_=_	mg/L
Location	1.0	(IIIIII/GG/yyyy)	mg/L	mg/L	mg/L	mg/L	. <u>o</u>	U U	mg/L		mg/L	mg/L	IIIg/L		mg		
						a	ğ.	i i		i i				g g		2	ro nic
						و	<u>`</u>	ا ق		Chronic				Acute		5	ਜ਼ੋ ਫੂ
BC WQG FWAL			n/a	n/a	n/a	0.005	1	0.00013	n/a	1.2	n/a	n/a	n/a	0.11 0.004	n/a	1	0.003-5.5° 3.3-3.5°
Elkview Operation			11/4	11/4	1174	0.000		0.00010	100	1.2	1174	100	100	0.11 0.004	100		0.000-0.0 0.0-0.0
EV EC1	EV EC1 WS 2022-07-19 N-SRF	2022-07-19	1120	< 0.0030	0.00022	0.00028	0.052	< 0.020	< 0.000050	0.011	< 0.0050	235	0.0002	< 0.10	< 0.00050	< 0.010	< 0.000050
EV_EC1	EV_EC1_WS_2022-07-20_N-SRF	2022-07-20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-07-21_N-SRF	2022-07-21	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-07-22_N-SRF	2022-07-22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-07-23_N-SRF	2022-07-23	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1 EV EC1	EV_EC1_WS_2022-07-24_N-SRF EV_EC1_WS_2022-07-25_N-SRF	2022-07-24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV EC1	EV EC1 WS 2022-07-25 N-SRF EV EC1 WS 2022-07-26 N-SRF	2022-07-26	-	-	-	- :	-	-	-	-	-	-		-	- :	-	-
EV EC1	EV EC1 WS 2022-07-27 N-SRF	2022-07-27	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV EC1 WS 2022-07-28 N-SRF	2022-07-28		-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV EC1 WS 2022-07-29 N-SRF	2022-07-29	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-07-30_N-SRF	2022-07-30	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-07-31_N-SRF	2022-07-31	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1 EV EC1	EV EC1 WS 2022-08-01 N-SRF EV EC1 WS 2022-08-02 N-SRF	2022-08-01	1080	< 0.0030	0.00022	0.00019	0.0458	< 0.020	< 0.000050	0.012	0.0000098	220	0.0002	< 0.10	< 0.00050	< 0.010	< 0.000050
EV EC1	EV EC1 WS 2022-06-02 N-SRF	2022-08-03	1000	< 0.0030	0.00022	0.00019	0.0436	V 0.020	< 0.000050	0.012	0.0000096	220	0.0002	-	< 0.00050	V 0.010	-
EV EC1	EV EC1 WS 2022-08-04 N-SRF	2022-08-04	-	-				<u> </u>	-		-		-	-			-
EV EC1	EV EC1 WS 2022-08-05 N-SRF	2022-08-05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-08-06_N-SRF	2022-08-06	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-08-07_N-SRF	2022-08-07	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-08-08_N-SRF	2022-08-08	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1 EV EC1	EV EC1 WS 2022-08 MON N EV EC1 WS 2022-08-09 N-SRF	2022-08-09	1040	< 0.0030	0.00022	0.00034	0.0481	< 0.020	< 0.000050	0.014	0.0000072	205	0.00021	< 0.10	< 0.00050	< 0.010	< 0.000050
EV EC1	EV EC1 WS 2022-08-10 N-SRF	2022-08-10	1040	< 0.0030	0.00022	0.00034	0.0461	V 0.020	< 0.000050	0.014	0.0000072	203	0.00021		< 0.00050	< 0.010	- 0.000000
EV EC1	EV EC1 WS 2022-08-11 N-SRF	2022-08-11	-	-	-				-		-		-	-		-	-
EV_EC1	EV_EC1_WS_2022-08-12_N-SRF	2022-08-12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV EC1 WS 2022-08-13 N-SRF	2022-08-13		-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-08-14_N-SRF	2022-08-14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV EC1 WS 2022-08-15 N-SRF	2022-08-15	-			-	-	-	-	-				< 0.10		-	< 0.000050
EV_EC1 EV EC1	EV EC1 WS 2022-08-16 N-SRF EV EC1 WS 2022-08-17 N-SRF	2022-08-16 2022-08-17	1100	0.0043	0.00022	0.00024	0.0442	< 0.020	< 0.000050	0.013	0.0000078	203	0.00026	- 0.10	< 0.00050	< 0.010	- 0.000050
EV EC1	EV EC1 WS 2022-08-17 N-SRF EV EC1 WS 2022-08-18 N-SRF	2022-08-17	-	-	-	-	-	-	-	-	-	-	-	-		-	-
EV EC1	EV EC1 WS 2022-08-19 N SRF	2022-08-19	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV EC1 WS 2022-08-20 N-SRF	2022-08-20	-	-	-		-	-	-	-	-	-		-	-		-
EV_EC1	EV EC1 WS 2022-08-21 N-SRF	2022-08-21	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV EC1 WS 2022-08-22 N-SRF	2022-08-22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV EC1 WS 2022-08-23 N-SRF	2022-08-23	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1 EV EC1	EV EC1 WS 2022-08-24 N-SRF EV EC1 WS 2022-08-25 N-SRF	2022-08-24 2022-08-25	-	-	-	- :	- :	<u> </u>		-	- :	- :	-	-	-	-	-
EV EC1	EV EC1 WS 2022-08-25 N-SRF EV EC1 WS 2022-08-26 N-SRF	2022-08-26			-				-	-	-		-	-			-
EV EC1	EV EC1 WS 2022-08-27 N-SRF	2022-08-27	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV EC1 WS 2022-08-28 N-SRF	2022-08-28	-		-	-	-	-	-	-	-	-		-	-	-	-
EV_EC1	EV EC1 WS 2022-08-29 N-SRF	2022-08-29	-	-	-	-	-	-	-	-	-	-		-	-	-	-
EV_EC1	EV EC1_WS_2022-08-30_N_SRF	2022-08-30	1240	0.0164	0.00022	0.00029	0.0444	< 0.020	< 0.000050	0.014	< 0.0050	235	0.00027	< 0.10	< 0.00050	< 0.010	< 0.000050
EV_EC1	EV_EC1_WS_2022-08-31_N_SRF	2022-08-31	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1 EV EC1	EV EC1 WS 2022-09-01 N-SRF	2022-09-01	+-	-	-		-		-	<u> </u>		-	-	-	-	<u> </u>	-
EV_EC1	EV_EC1_WS_2022-09-02_N-SRF EV_EC1_WS_2022-09-03_N-SRF	2022-09-02			-			-	-	-				-			-
EV EC1	EV EC1 WS 2022-09-04 N-SRF	2022-09-04	-	-	-		-	-	-	-	-	-		-			-
EV EC1	EV EC1 WS 2022-09-05 N-SRF	2022-09-05			-									-			-
									•					•			

Denotes concentration less than indicated detection limit
 Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

^d Guideline varies with pH

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

										Total Metals							
					Ę	98		Ε	_			ا ۽ ا					
			es	E	Magnesium	<u>a</u>	*_	l is	enium	_	١ౖ	Strontium	Ē		Titanium	Ē	
			늍	를	l ē	ng ng	Nickel	tas	e	Silver	Sodium	[E	Thalliu	_	ja j	ranin	2
Sample	Sample	Sample Date	표	£		M B		8	တိ					Ę			Ñ
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L		mg/L	mg/L	μg/L	mg/L	mg/l	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
						ronic	onic		ronic	o ii						ronic	nd nd
						Acute	Ę		Ę.	Acute						£	g k
BC WQG FWAL			n/a	n/a	n/a		_	n/a	2	0.0001-0.003° 0.00005-0.0015°	n/a	n/a	n/a	n/a	n/a	0.0085	0.033-2ª 0.0075-2ª
Elkview Operation										1	1						1
EV_EC1	EV_EC1_WS_2022-07-19_N-SRF	2022-07-19	1120	0.024	154		0.00235	2.71	159	< 0.000010		0.21	< 0.000010	< 0.00010	< 0.00030	0.00786	< 0.0030
EV_EC1	EV_EC1_WS_2022-07-20_N-SRF	2022-07-20	-	-	-	-	-	-	149	-	-		-	-	-	-	-
EV_EC1 EV EC1	EV_EC1_WS_2022-07-21_N-SRF EV_EC1_WS_2022-07-22_N-SRF	2022-07-21	-	-	-	<u> </u>	-	-	150 158	-	-			-	-	-	- :
EV_EC1	EV EC1 WS 2022-07-22 N-SRF EV EC1 WS 2022-07-23 N-SRF	2022-07-23	1	-	-	-	-		158	-	1	-		-		-	
EV EC1	EV EC1 WS 2022-07-23 N-SRF	2022-07-24	-	-	+ -	-	-	-	146	-	H	1			-	-	
EV_EC1	EV EC1 WS 2022-07-25 N-SRF	2022-07-25	-	-	-	-	-	-	148	-	1 -	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-07-26_N-SRF	2022-07-26	-	-	-	-	-	-	147	-	-		-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-07-27_N-SRF	2022-07-27	-	-	-	-	-	-	141	-	<u> </u>	_	-	-	-	-	-
EV_EC1 EV_EC1	EV EC1 WS 2022-07-28 N-SRF EV EC1 WS 2022-07-29 N-SRF	2022-07-28	-	-	-	-	-	-	160 161	-	-	-		-		-	-
EV_EC1	EV EC1 WS 2022-07-29 N-SRF	2022-07-29	-	-			-	-	165		H				- :		-
EV EC1	EV EC1 WS 2022-07-30 N-SRF	2022-07-31	-	-	-	-	-	-	153	-	1	1 -	-	-	-	-	-
EV EC1	EV EC1 WS 2022-08-01 N-SRF	2022-08-01	-	-	-	-	-	-	153	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-08-02_N-SRF	2022-08-02	1080			0.00133	0.0022	2.44	149	< 0.000010		0.21	< 0.000010	< 0.00010	< 0.00030	0.00782	< 0.0030
EV_EC1	EV_EC1_WS_2022-08-03_N-SRF	2022-08-03	-	-	-	-	-	-	161	-	<u> </u>	-	-	-	-	-	-
EV_EC1	EV EC1 WS 2022-08-04 N-SRF	2022-08-04	-	-	-	-	-	-	162	-	-	_		-	-	-	- :
EV_EC1 EV_EC1	EV_EC1_WS_2022-08-05_N-SRF EV_EC1_WS_2022-08-06_N-SRF	2022-08-05	-	-	1	- :	- :	-	155 150	-	1	-		-			
EV EC1	EV EC1 WS 2022-08-07 N-SRF	2022-08-07		-	-	-	-	-	166	-	1	1 -	-	-	-	-	-
EV EC1	EV EC1 WS 2022-08-08 N-SRF	2022-08-08	-	-	-	-	-	-	169	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-08_MON_N	2022-08-09	-	-	-	-	-	-	130	-	-		-	-	-	-	-
EV_EC1	EV_EC1_WS_ 2022-08-09_N-SRF	2022-08-09	1040	0.026		0.00016	0.00211	2.65	160	< 0.000010	3.19	0.21	< 0.000010	< 0.00010	< 0.00030	0.00772	< 0.0030
EV EC1 EV EC1	EV EC1 WS 2022-08-10 N-SRF	2022-08-10 2022-08-11	-	-	-	-	-	-	138 138	-	H			-	-	-	-
EV EC1	EV EC1 WS 2022-08-11 N-SRF EV EC1 WS 2022-08-12 N-SRF	2022-08-11			1	-	-		183		H	_			-	- :	-
EV EC1	EV EC1 WS 2022-08-13 N-SRF	2022-08-13	-	-	-	-	-	-	145	-	١.	-	-	-	-	-	
EV EC1	EV EC1 WS 2022-08-14 N-SRF	2022-08-14	-	-	-	-	-	-	153	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-08-15_N-SRF	2022-08-15	-	-	-	-	-	-	151	-	-	-	-	-	-	-	-
EV_EC1	EV EC1 WS 2022-08-16 N-SRF	2022-08-16	1100	0.026		0.00017	0.00207	2.47	142	< 0.000010		0.2	< 0.000010	< 0.00010	< 0.00030	0.00766	< 0.0030
EV EC1 EV EC1	EV EC1 WS 2022-08-17 N-SRF EV EC1 WS 2022-08-18 N-SRF	2022-08-17 2022-08-18	-	-	-		-	-	150 130	-	1	-		-	-		
EV EC1	EV EC1 WS 2022-06-16 N-SRF EV EC1 WS 2022-08-19 N SRF	2022-08-19	-		+ :	1	-		156	-	H						- :
EV EC1	EV EC1 WS 2022-08-20 N-SRF	2022-08-20	-	-	-	-	-	-	156	-	-	_	-	-	-	-	-
EV_EC1	EV EC1 WS 2022-08-21 N-SRF	2022-08-21	-	-	-	-	-	-	145	-	-	-	-	-	-	-	-
EV_EC1	EV EC1 WS 2022-08-22 N-SRF	2022-08-22	-	-	-	-	-	-	139	-	-	-	-	-	-	-	
EV_EC1	EV EC1 WS 2022-08-23 N-SRF	2022-08-23	-	-	-	-	-	-	149	-	 -	-	-	-	-	-	-
EV_EC1 EV EC1	EV_EC1_WS_2022-08-24_N-SRF EV_EC1_WS_2022-08-25_N-SRF	2022-08-24 2022-08-25	-	-	-	-	-	-	155 153	-	+-	-		-	-	-	-
EV EC1	EV EC1 WS 2022-08-25 N-SRF EV EC1 WS 2022-08-26 N-SRF	2022-08-25	1		-	 	-		136	-	1			-		-	
EV EC1	EV EC1 WS 2022-08-27 N-SRF	2022-08-27		-	-	-	-	-	155	-	1 -	1 - 1	-	-	-	-	-
EV_EC1	EV EC1 WS 2022-08-28 N-SRF	2022-08-28	-	-	-	-	-	-	144	-	-	-	-	-	-	-	-
EV_EC1	EV EC1 WS 2022-08-29 N-SRF	2022-08-29	-	-	-	-	-	-	149	-	-	-	-	-	-	-	
EV_EC1	EV EC1_WS_2022-08-30_N_SRF	2022-08-30	1240	0.029		0.0002	0.00198	2.54	163	< 0.000010	3.12	0.22	< 0.000010	< 0.00010	< 0.00030	0.00795	< 0.0030
EV_EC1	EV EC1 WS 2022-08-31 N SRF	2022-08-31	-	-	-	-	-	-	151	-	 -	+ -		-	-	-	+
EV_EC1 EV_EC1	EV_EC1_WS_2022-09-01_N-SRF EV_EC1_WS_2022-09-02_N-SRF	2022-09-01	+-	<u> </u>	+	-	-	- -	150 168	1 - 1	+-	+		-	-	-	-
EV_EC1	EV EC1 WS 2022-09-02 N-SRF EV EC1 WS 2022-09-03 N-SRF	2022-09-02			1		-		159	-	1	1:1					
EV EC1	EV EC1 WS 2022-09-04 N-SRF	2022-09-04	-	-		-	-		151	-	<u> </u>		-				-
EV EC1	EV EC1 WS 2022-09-05 N-SRF	2022-09-05	-	-	Ι -	-	-	-	170	-		-			-	-	

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

											Total Metals						
Sample Location	Sample ID	Sample Date (mm/dd/yyyy)	bardness	mg/L	mg/L	mg/L	c Barium*	c da PBeryllium*	Bismuth mg/L	mg/L	Cadmium Cadmium Mg/L	Calcin m J/gm	D/S Chromium	tie copair	Copper	u <u>o.</u> /L	mg/L
						Acute	Chronic	Chronic		Chronic				Acute Chronic		Acute	Acute
BC WQG FWAL			n/a	n/a	n/a	0.005	1	0.00013	n/a	1.2	n/a	n/a	n/a	0.11 0.004	n/a	1	0.003-5.5 ^a 3.3-3.5 ^a
Elkview Operation																	
EV_EC1	EV_EC1_WS_2022-09-06_N-SRF	2022-09-06	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-09-07_N-SRF	2022-09-07	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-09_MON_N	2022-09-08	-	-	-	-	- 0.0455	-		-	-	-	-	< 0.10		-	< 0.000050
EV_EC1	EV_EC1_WS_2022-09-08_N-SRF	2022-09-08	1160	0.0055	0.00019	0.00026	0.0455	< 0.020	< 0.000050	0.014	0.0000056	213	0.00018	< 0.10	< 0.00050	< 0.010	< 0.000030
EV_EC1 EV EC1	EV_EC1_WS_2022-09-09_N-SRF	2022-09-09	-	-	-	-		-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-09-10_N-SRF EV_EC1_WS_2022-09-11_N-SRF	2022-09-10	+-	-	-	-		-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-09-11_N-SRF EV_EC1_WS_2022-09-12_N-SRF	2022-09-11	-	-	-	-	-		-	-	-	-		-	-	-	-
EV_EC1	EV EC1 WS 2022-09-12 N-SRF EV EC1 WS 2022-09-13 N-SRF	2022-09-12	995	0.0034	0.0002	0.00034	0.047	< 0.020	< 0.000050	0.015	0.0000074	213	0.0002	< 0.10	< 0.00050	< 0.010	< 0.000050
EV EC1	EV EC1 WS 2022-09-13 N-SRF	2022-09-13	333	0.0034	0.0002	0.00034	0.047	- 0.020	- 0.000030	0.013	0.0000074		0.0002	-	~ 0.00030	- 0.010	-
EV EC1	EV EC1 WS 2022-09-15 N-SRF	2022-09-15	 -		-			-			-	-		-	-		-
EV EC1	EV EC1 WS 2022-09-16 N-SRF	2022-09-16	-	-	-	-	-	-	-	-	-	-	-	-	-		-
EV EC1	EV EC1 WS 2022-09-17 N-SRF	2022-09-17	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
EV EC1	EV EC1 WS 2022-09-18 N-SRF	2022-09-18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV EC1	EV EC1 WS 2022-09-19 N-SRF	2022-09-19	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-09-20_N-SRF	2022-09-20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV EC1	EV EC1 WS 2022-09-21 N SRF	2022-09-21	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-09-22_N-SRF	2022-09-22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-09-23_N-SRF	2022-09-23	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV EC1 WS 2022-09-24 N-SRF	2022-09-24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV EC1 WS 2022-09-25 N-SRF	2022-09-25	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV EC1 WS 2022-09-26 N-SRF	2022-09-26	1180	0.0079	0.00023	0.00027	0.0481	< 0.020	< 0.000050	0.013	0.0000098	209	0.00019	< 0.10	< 0.00050	0.013	0.000102
EV_EC1	EV_EC1_WS_2022-09-27_N-SRF	2022-09-27	1180		0.00023	0.00027	0.0481	< 0.020	< 0.000050	0.013	0.0000098	209	0.00019	- 0.10	< 0.00050	0.013	0.000102
EV EC1 EV EC1	EV EC1 WS 2022-09-28 N-SRF EV EC1 WS 2022-09-29 N-SRF	2022-09-28	-	-	-		-	-	- :	-				-	-	-	
EV EC1	EV EC1 WS 2022-09-29 N-SRF EV EC1 WS 2022-09-30 N-SRF	2022-09-30	-		-				-	-	-		-	-	-		
EV EC1	EV EC1 WS 2022-10-01 N-SRF	2022-10-01	-	-:-	-			-		-	- :	-	-	-	-	<u> </u>	
EV EC1	EV EC1 WS 2022-10-01 N-SRF	2022-10-01	<u> </u>		- :		-:-			-:-	- :	- :	-	-		- :	-
EV EC1	EV EC1 WS 2022-10-03 N-SRF	2022-10-03	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV EC1	EV EC1 WS 2022-10-04 N-SRF	2022-10-04	1140	0.0063	0.0002	0.00024	0.0456	< 0.020	< 0.000050	0.013	0.0000073	241	0.00022	< 0.10	< 0.00050	< 0.010	< 0.000050
EV EC1	EV EC1 WS 2022-Q4 N	2022-10-05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV EC1	EV EC1 WS 2022-10-06 N-SRF	2022-10-06	1240	0.0038	0.00021	0.0003	0.0487	< 0.020	< 0.000050	0.021	< 0.0050	252	0.00014	0.00014	< 0.00050	< 0.010	< 0.000050
EV_EC1	EV EC1 WS 2022-10-17 N-SRF	2022-10-17	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_EC1	EV EC1_WS_2022-10-31_N-SRF	2022-10-31	1190	< 0.0030	0.00023	0.0003	0.0392	< 0.020	< 0.000050	0.023	0.000013	266	0.00032	0.00069	0.00067	0.01	< 0.000050
EV_EC1	EV_EC1_WS_2022-11-14_N-SRF	2022-11-14	1260	0.0071	0.00021	0.00029	0.0363	< 0.040	< 0.000100	0.024	0.0000106	260	< 0.00020	0.0008	< 0.00100	< 0.020	< 0.000100
EV_EC1	EV EC1 WS 2022-11 MON N	2022-11-15	1240	< 0.0030	0.0002	0.0003	0.0333	< 0.020	< 0.000050	0.023	0.0000094	217	0.0001	0.00098	< 0.00050	< 0.010	< 0.000050 < 0.000050
EV_EC1	EV_EC1_WS_2022-11-21_N-SRF	2022-11-21	1250	< 0.0030	0.00023	0.00029	0.0325	< 0.020	< 0.000050	0.025	0.0000142	239	0.00011	0.00106	< 0.00050	< 0.010	< 0.000050
EV_ER4	EV ER4 WS 2022-Q1 N	2022-01-10	-		-							-	-	< 0.10		-	< 0.000050
EV ER4	EV ER4 WS 2022-02 MON N	2022-02-15	256	0.0232	< 0.00010	0.00022	0.0691	< 0.020	< 0.000050	< 0.010	0.0000153	68.1	0.0003	< 0.10	< 0.00050	0.031	< 0.000050
EV_ER4	EV ER4 WS 2022-03 MON N	2022-03-15	301	0.0033	< 0.00010	0.00021	0.0758	< 0.020	< 0.000050	< 0.010	0.0000128	78.2 77.6	0.00024	< 0.10	< 0.00050	< 0.010 0.021	< 0.000050
EV_ER4 EV_ER4	EV ER4 WS 2022-03 WEK13 N EV ER4 WS 2022-03 WEK14 N	2022-03-21 2022-03-28	314 289	0.0172 0.0102	< 0.00010 < 0.00010	0.00025	0.0784 0.0823	< 0.020 < 0.020	< 0.000050 < 0.000050	< 0.010 < 0.010	0.000025 0.000011	77.6	0.00026 0.00032	< 0.10	< 0.00050 0.00074	0.021	< 0.000050
EV_ER4	EV ER4 WS 2022-03 WEK14 N EV ER4 WS 2022-04 WEK15 N	2022-03-28	292	0.0102	< 0.00010	0.00025	0.0823	< 0.020	< 0.000050	< 0.010	0.000011	76.4	0.00032	< 0.10	< 0.00074	0.013	< 0.000050
EV ER4	EV ER4 WS 2022-04 WENTS N EV ER4 WS 2022-Q2 N	2022-04-04	319	0.053	< 0.00010	0.00029	0.0779	< 0.020	< 0.000050	< 0.010	0.0000216	77.4	0.00032	< 0.10	< 0.00050	0.109	0.000097
EV ER4	EV ER4 WS 2022-Q2 N EV ER4 WS 2022-04 WEK17 N	2022-04-11	312	0.037	< 0.00010	0.00025	0.0778	< 0.020	< 0.000050	< 0.010	0.0000307	74.6	0.00034	< 0.10	< 0.00050	0.109	< 0.000050
EV ER4	EV ER4 WS 2022-04 WEK17 N	2022-04-15	307	0.0141	< 0.00010	0.0002	0.0771	< 0.020	< 0.000050	< 0.010	0.0000156	81.1	0.00021	< 0.10	< 0.00050	0.034	< 0.000050
EV ER4	EV ER4 WS 2022-05 MON N	2022-05-02	301	0.0141	< 0.00010	0.00017	0.0763	< 0.020	< 0.000050	< 0.010	0.0000135	79.5	0.0002	< 0.10	< 0.00050	0.024	< 0.000050
EV ER4	EV ER4 WS 2022-05 WEK20 N	2022-05-10	292	0.0761	< 0.00010	0.00017	0.0743	< 0.020	< 0.000050	< 0.010	0.0000214	74.2	0.0002	< 0.10	< 0.00050	0.024	0.000071
EV ER4	EV ER4 WS 2022-05 WEK21 N	2022-05-16	231	0.234	< 0.00010	0.00032	0.0647	< 0.020	< 0.000050	< 0.010	0.0000461	62.8	0.00062	0.00013	0.0005	0.28	0.000181
EV ER4	EV ER4 WS 2022-05 WEK22 N	2022-05-24	258	0.0512	< 0.00010	0.00019	0.0668	< 0.020		< 0.010	0.0000309	68.8	0.00029	< 0.10	0.0006	0.074	0.000067

Denotes concentration less than indicated detection limit
 Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

^d Guideline varies with pH

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

										Total Metals							
					_												
·			s		틀	980		E	_			lε	_		_		
			l se	Ε	esi	<u>e</u>	*_	iš	.≣	_	lε	Strontium	Ę		Titanium		
			힏	를	Magn	g a	icke	tas	le ni	Silver	Sodium	<u>5</u>	alliu	_ ا	a a	ranin	ဥ
Sample	Sample	Sample Date	Ε	Lit	Ma	Ma	ž	8	Se	 	ြတ္တ	Str	ц	Ë		n	Zir
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	mg/L	mg/l	L mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
						ute ro n ic	흕		끝	, i						ronic	6 일
						Acute	2		o d	Acute						<u> </u>	cute
						₹ 0	5		5	_ `						ร็	4 0
BC WQG FWAL			n/a	n/a	n/a	0.001-0.03 ^a 0.0009-0.01 ^a	0.025-0.15 ^a	n/a	2	0.0001-0.003 ^a 0.00005-0.0015 ^a	n/a	n/a	n/a	n/a	n/a	0.0085	0.033-2 ^a 0.0075-2 ^a
Elkview Operation	51/ 504 WO 0000 00 00 N 005								400		_	_					
EV_EC1 EV EC1	EV EC1 WS 2022-09-06 N-SRF EV EC1 WS 2022-09-07 N-SRF	2022-09-06	-	-	-	-	- :	-	166 166	-	ŀ٠	-	-	-	-	-	-
EV_EC1	EV EC1 WS 2022-09 MON N	2022-09-07	-	-	-	-		-	159		H÷.	1	-	-	-		-
EV EC1	EV EC1 WS 2022-09-08 N-SRF	2022-09-08	1160	0.021	156	0.00012	0.00212	2.52	172	< 0.000010	3.39	9 0.2	< 0.000010	< 0.00010	< 0.00030	0.00782	< 0.0030
EV EC1	EV EC1 WS 2022-09-09 N-SRF	2022-09-09	-	-	-	-	-	-	163	-	-	_	-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-09-10_N-SRF	2022-09-10	-	-	-	-	-	-	164	-	-	-	-	-	-	-	-
EV_EC1	EV EC1 WS 2022-09-11 N-SRF	2022-09-11	-		-	-	-	-	160	-	I -		-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-09-12_N-SRF	2022-09-12	-	-	-		-	-	159	-	-		-	-			
EV_EC1	EV_EC1_WS_2022-09-13_N-SRF	2022-09-13	995	0.026		0.00054	0.00192	2.67	156	< 0.000010		3 0.22	< 0.000010	< 0.00010	< 0.00030	0.00703	< 0.0030
EV_EC1	EV EC1 WS 2022-09-14 N-SRF	2022-09-14	-	-	-	-	-	-	157 145	-	١.	_	-	-	-	-	-
EV_EC1 EV EC1	EV EC1 WS 2022-09-15 N-SRF EV EC1 WS 2022-09-16 N-SRF	2022-09-15 2022-09-16	-	-	-	-	-	-	160	<u> </u>	-	-	-	-	-	- :	
EV EC1	EV EC1 WS 2022-09-16 N-SRF	2022-09-16	-		-	-		-	162	-	l i	+ :	-		-	-:-	-
EV EC1	EV EC1 WS 2022-09-18 N-SRF	2022-09-18	-			-	-		154	-	+ -	1		-	-		-
EV EC1	EV EC1 WS 2022-09-19 N-SRF	2022-09-19	-	-	-	-	-	-	164	-	-	-	-	-	-	-	
EV_EC1	EV EC1_WS_2022-09-20_N-SRF	2022-09-20	-	-	-	-	-	-	152	-	-	-	-	-	-	-	-
EV_EC1	EV EC1 WS 2022-09-21 N SRF	2022-09-21	-	-	-	-	-	-	146	-	-	-	-	-	-	-	-
EV EC1	EV EC1 WS 2022-09-22 N-SRF	2022-09-22	-	-	-	-	-	-	162	-	-		-	-	-	-	-
EV_EC1	EV_EC1_WS_2022-09-23_N-SRF	2022-09-23	-	-	-	-	-	-	161	-	٠.		-	-	-	-	-
EV EC1	EV EC1 WS 2022-09-24 N-SRF EV EC1 WS 2022-09-25 N-SRF	2022-09-24	-	-	-	-	-	-	152	-	<u> </u>	-	-	-	-	-	-
EV EC1 EV EC1	EV ECT WS 2022-09-25 N-SRF EV ECT WS 2022-09-26 N-SRF	2022-09-25	-	-	-	-	-	-	142 145		+-	+-	-	-	-	-	-
EV EC1	EV EC1 WS 2022-09-20 N-SRF	2022-09-27	1180	0.026		0.00054	0.002	2.71	157	< 0.000010	3.31	1 0.21	< 0.000010	< 0.00010	< 0.00030	0.00712	< 0.0030
EV EC1	EV EC1 WS 2022-09-28 N-SRF	2022-09-28	-	-	-	-	-	-	149	-	-		-	-	-	-	-
EV EC1	EV EC1 WS 2022-09-29 N-SRF	2022-09-29	-	-	-	-	-	-	156	-	-	-		-	-	-	
EV_EC1	EV_EC1_WS_2022-09-30_N-SRF	2022-09-30	-	-	-	-	-	-	154	-	-	-	-	-	-	-	
EV_EC1	EV_EC1_WS_2022-10-01_N-SRF	2022-10-01	-	-	-	-	-	-	154	-	-	_	-	-	-	-	-
EV EC1	EV EC1 WS 2022-10-02 N-SRF	2022-10-02	-	-	-	-	-	-	157	-	-	-	-	-	-	-	-
EV EC1	EV EC1 WS 2022-10-03 N-SRF	2022-10-03	-	- 0.004	157	- 0.0000	0.0018	2.79	158 177	- 0.000040	-	0.22	0.00001	< 0.00010	< 0.00030	0.00749	0.0065
EV_EC1 EV EC1	EV EC1 WS 2022-10-04 N-SRF EV EC1 WS 2022-Q4 N	2022-10-04 2022-10-05	1140	0.031	157	0.00036	0.0018	2.79	167	< 0.000010	3.4		0.00001	< 0.00010	< 0.00030	0.00749	0.0005
EV EC1	EV EC1 WS 2022-Q4 N EV EC1 WS 2022-10-06 N-SRF	2022-10-05	1240			0.0008	0.00406	3.28	122	< 0.000010		0.29	0.000015	< 0.00010	< 0.00030	0.00852	< 0.0030
EV EC1	EV EC1 WS 2022-10-17 N-SRF	2022-10-17	-	-	-	-	-	-	153	-	-		-	-	-	-	
EV EC1	EV EC1 WS 2022-10-31 N-SRF	2022-10-31		0.071		0.012	0.0121	3.7	123	< 0.000010	6.64	1 0.32	0.000028	< 0.00010	< 0.00030	0.00945	< 0.0030
EV_EC1	EV EC1_WS_2022-11-14_N-SRF	2022-11-14		0.074		0.0145	0.0122	3.62	97.1	< 0.000020		3 0.32	0.000035	< 0.00020	< 0.00060	0.00976	0.0086
EV_EC1	EV EC1 WS 2022-11 MON N	2022-11-15		0.062		0.018	0.0139	3.56	95.5	< 0.000010		0.31	0.00003	< 0.00010	< 0.00030	0.00888	< 0.0030
EV_EC1	EV_EC1_WS_2022-11-21_N-SRF	2022-11-21	1250		155	0.0188	0.0144	3.56	95.8	< 0.000010	7.52	2 0.32	0.000036	< 0.00010	< 0.00030	0.0103	< 0.0030
EV_ER4 EV ER4	EV ER4 WS 2022-Q1 N EV ER4 WS 2022-02 MON N	2022-01-10 2022-02-15	256	0.013	25.2	0.00266	< 0.00050	0.72	16.7	< 0.000010	2 22	3 0.26	< 0.000010	< 0.00010	< 0.00060	0.00142	< 0.0030
EV ER4		2022-02-15	301		27.8	0.00266	< 0.00050	0.72	20.8	< 0.000010		9 0.27		< 0.00010	< 0.00080	0.00142	< 0.0030
EV_ER4 EV ER4	EV ER4 WS 2022-03 MON N EV ER4 WS 2022-03 WEK13 N	2022-03-15	314	0.013		0.00136	< 0.00050	0.736	19.6	< 0.000010		5 0.26	< 0.000010	< 0.00010	< 0.00060	0.00142	< 0.0030
EV ER4	EV ER4 WS 2022-03 WEK13 N	2022-03-21	289	0.014		0.00207	0.00054	1.17	18.8	< 0.000010		2 0.27	< 0.000010	< 0.00010	< 0.00030	0.00151	0.0044
EV ER4	EV ER4 WS 2022-04 WEK15 N	2022-04-04		0.014		0.00514	< 0.00050	0.892	18.3	< 0.000010	3.78	0.26	< 0.000010	< 0.00010	0.00122	0.00153	< 0.0030
EV_ER4	EV_ER4_WS_2022-Q2_N	2022-04-11		0.015		0.0101	0.0006	0.922	21.7	< 0.000010		0.26		< 0.00010	0.00071	0.00165	< 0.0030
EV_ER4	EV_ER4_WS_2022-04_WEK17_N	2022-04-18	312		29.9	0.00359	0.00055	0.872	22.6	< 0.000010		1 0.25	< 0.000010	< 0.00010	< 0.00030	0.00165	< 0.0030
EV_ER4	EV ER4 WS 2022-04 WEK18 N	2022-04-25		0.016		0.00215	0.00067	0.847	24.6	< 0.000010		1 0.25	< 0.000010	< 0.00010	< 0.00030	0.0016	< 0.0030
EV_ER4	EV_ER4_WS_2022-05_MON_N	2022-05-02	301	0.016		0.00269	0.00073	0.862	22.7	< 0.000010		0.25	< 0.000010	< 0.00010	< 0.00030	0.00178	< 0.0030
EV_ER4 EV ER4	EV ER4 WS 2022-05 WEK20 N EV ER4 WS 2022-05 WEK21 N	2022-05-10 2022-05-16	292 231	0.014	28.8	0.00658 0.0133	0.00092 0.0012	0.823	20 15.5	< 0.000010 < 0.000010		0.23	< 0.000010 0.000011	< 0.00010 < 0.00010	0.00093 < 0.00540	0.0017 0.00139	< 0.0030 0.0031
EV_ER4 EV ER4	EV ER4 WS 2022-05 WEK21 N EV ER4 WS 2022-05 WEK22 N	2022-05-16	258	0.011		0.0133	0.0012	0.801	15.3	< 0.000010		9 0.23	< 0.000011	< 0.00010	0.00071	0.00139	< 0.0031

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

			Ī								Total Metals						
				_	_			*_			_		۽				
			ess	Ē	je je	ပ္	*=	5	₽		5	Ε	hromiur		-		
			ģ	Ē	, E	e ii	Ē	erylli	a a	, ē	Ē	cium	6	palt	Coppe	_ ا	ead
Sample	Sample	Sample Date	훈	₹	₹	Ars	Bar	l ä	is is	Bor	Cadı	Ca Ca	ਤੋਂ	Sob	Š	<u> </u>	
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg	/L	mg/L
						_	ie Si	은		은						_	ronic ronic
						C de	و	<u>و</u>		Chronic				Acute Chronic		c de	
						< <	5	์ 5								٩.	8 5
BC WQG FWAL			n/a	n/a	n/a	0.005	1	0.00013	n/a	1.2	n/a	n/a	n/a	0.11 0.004	n/a	1	0.003-5.5 ^a 3.3-3.5 ^a
Elkview Operation EV ER4	EV ER4 WS 2022-05 WEK23 N	2022-05-30	260	0.0726	< 0.00010	0.00024	0.065	< 0.020	< 0.000050	< 0.010	0.000044	68.6	0.00036	< 0.10	< 0.00050	0.099	0.00013
EV_ER4	EV ER4 WS 2022-05 WER25 N	2022-06-07	217	0.0726	0.00010	0.00024	0.0606	0.000035	< 0.000050	< 0.010	0.0000992	56.3	0.00036	0.00034	0.00106	0.099	0.000489
EV ER4	EV_ER4_WS_2022-06_WEK25_N	2022-06-14	185	1.13	0.00016	0.00115	0.0727	0.00011	< 0.000050	< 0.010	0.000244	64.5	0.00265	0.00084	0.00252	1.99	0.0013
EV_ER4	EV_ER4_WS_2022-06_WEK26_N	2022-06-20	171	1.29	0.00018	0.00143	0.0693	0.000117	< 0.000050	< 0.010	0.00021	55.3	0.00304	0.00095	0.00266	2.21	0.00137
EV_ER4	EV_ER4_WS_2022-06_WEK27_N	2022-06-27	170	2.41	0.00025	0.00242	0.0995	0.000224	< 0.000050	0.01	0.000427	75.1	0.00575	0.0018	0.00488	4.27	0.00272
EV_ER4	EV_ER4_WS_2022-Q3_N	2022-07-04	188	0.56	0.00013	0.00071	0.0598	0.00005	< 0.000050	< 0.010	0.00012	57.8	0.00144	0.00046	0.00137	0.986	0.00065
EV_ER4	EV_ER4_WS_2022-07_WEK29_N	2022-07-11	175	0.406	0.0001	0.0005	0.0532	0.000042	< 0.000050	< 0.010	0.0000848	49.8	0.00098	0.0003 0.00016	0.00093	0.678	0.000479 0.000255
EV_ER4 EV ER4	EV_ER4_WS_2022-08_MON_N EV_ER4_WS_2022-09_MON_N	2022-08-08	176 212	0.253	< 0.00010 < 0.00010	0.00035	0.0491	< 0.00023	< 0.000050 < 0.000050	< 0.010 < 0.010	0.0000603	50.9 57.7	0.00075 0.0004	< 0.10	0.00068 < 0.00050	0.4	0.000255
EV_ER4	EV ER4 WS 2022-09 MON N EV ER4 WS 2022-Q4 N	2022-10-03	243	0.0011	< 0.00010	0.00022	0.0622	< 0.020	< 0.000050	< 0.010	0.0000283	56.4	0.0004	< 0.10	< 0.00050	0.121	< 0.000050
EV ER4	EV ER4 WS 2022-04 N	2022-10-03	258	0.007	< 0.00010	0.00022	0.0697	< 0.020	< 0.000050	< 0.010	0.0000167	70.6	0.00024	< 0.10	< 0.00050	< 0.010	< 0.000050
EV_GC2	EV_GC2_WS_2022-01-02_N	2022-01-02	282	0.0072	< 0.00010	0.00017	0.0745	< 0.020	< 0.000050	< 0.010	0.000013	71	0.00024	< 0.10	< 0.00050	< 0.010	< 0.000050
EV_GC2	EV_GC2_WS_2022-01-04_N	2022-01-04	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV GC2 WS 2022-Q1 N	2022-01-05	-	-	-	-	-	-	-	-	-	-	-	0.00016	-	-	0.000216
EV_GC2	EV GC2 WS 2022-01-06 N 0915	2022-01-06	643	0.238	0.00114	0.00022	0.118	0.000022	< 0.000050	0.025	0.000102	140	0.00037	0.00016	0.00074	0.103	0.000216
EV_GC2 EV GC2	EV GC2 WS 2022-01-06 N 1209	2022-01-06	-		-	-	-	1	-	-	-		-		-	-	
EV GC2	EV GC2 WS 2022-01-07 N EV GC2 WS 2022-01-08 N	2022-01-07	-		-	-			-	-		-	-	-	-	-	-
EV GC2	EV GC2 WS 2022-01-09 N	2022-01-09	-		-	-	-		-	-	-	-	-	-	-		-
EV GC2	EV GC2 WS 2022-01-14 N	2022-01-14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV GC2 WS 2022-01-22 N	2022-01-22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV GC2 WS 2022-01-23 N 1306	2022-01-23	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-01-23_N_1628	2022-01-23	-		-	-	-	-	-	-	-	-	-		-	-	-
EV GC2 EV GC2	EV GC2 WS 2022-01-24 N EV GC2 WS 2022-01-25 N	2022-01-24 2022-01-25	-		-	- :	-	+ :	- :	-	-	-	-	-	- :		-
EV GC2	EV GC2 WS 2022-01-25 N	2022-01-23	-	_:_		- :	- :	-		-				-			-
EV GC2	EV GC2 WS 2022-01-28 N 0816	2022-01-28	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV GC2	EV GC2 WS 2022-01-29 N	2022-01-29	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-01-30_N	2022-01-30	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV GC2 WS 2022-01-31 N 1332	2022-01-31	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV GC2 EV GC2	EV GC2 WS 2022-01-31 N 1434 EV GC2 WS 2022-01-31 N 1509	2022-01-31 2022-01-31	-		- :	-		-	-	-		-	-	-	-	-	-
EV GC2	EV GC2 WS 2022-01-31 N 1509 EV GC2 WS 2022-01-31 N 1539	2022-01-31	-		- :	- :		<u> </u>	- :	-	-		- :	-	- :	-	-
EV GC2	EV GC2 WS 2022-01-31 N 1627	2022-01-31	-				-		-		<u> </u>	-	-	-		-	-
EV GC2	EV GC2 WS 2022-01-31 N 1645	2022-01-31						-	-	-	-	-	-	-	-		-
EV GC2	EV GC2 WS 2022-01-31 N 0858	2022-01-31	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-01-31_N_1208	2022-01-31	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV GC2 WS 2022-01-31 N 1231	2022-01-31	-		-	-	-	 - -	-		-	-	-	- :	-	-	-
EV_GC2 EV GC2	EV GC2 WS 2022-02-01 N 1304 EV GC2 WS 2022-02-01 N 1405	2022-02-01	-		-	-	-	 -	-	-		-	-	-	-	-	-
EV_GC2	EV GC2 WS 2022-02-01 N 1506	2022-02-01			-	-		<u> </u>	-	-	-	-	-	-			-
EV GC2	EV GC2 WS 2022-02-01 N 1538	2022-02-01								-				-	-		-
EV_GC2	EV GC2 WS 2022-02-01 N 0744	2022-02-01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-02-01_N_0843	2022-02-01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV GC2 WS 2022-02-01 N 0933	2022-02-01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV GC2 WS 2022-02-01 N 1047	2022-02-01	-		-	-	-	-	-	-	-	-	-		-	-	-
EV_GC2 EV GC2	EV GC2 WS 2022-02-01 N 1204 EV GC2 WS 2022-02-02 N 1508	2022-02-01					-	 		-	— :—	-	-	-	-	-	-
EV GC2	EV GC2 WS 2022-02-02 N 1605	2022-02-02	-					<u> </u>	-	-	-	-		-	-		-
EV GC2	EV GC2 WS 2022-02-02 N 0759	2022-02-02												-			-
	2. 002 110 2022-02-02 14 0109	. 2022-02-02															

Denotes concentration less than indicated detection limit
 Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

^d Guideline varies with pH

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

										Total Metals								
										Total Motals		1						
					_													
			s,		nesium	8		ΙĘ	E			E	E		_	*-		
			ĕ	ΙĘ	Jes	gan	*e	l ig		_	₹	₫			Ē.	.5		
			ard	‡	Magr	auc	Š	ä	eni	Silver	Sodium	Strontium	allin	٤	Titanium	raniu		2
Sample	Sample	Sample Date				Σ	Ž.	ı ĕ	<u>й</u>				Ė,					<u> </u>
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L		mg/L	mg/L	μg/L	mg/L	mg/	L mg/l	mg/L	mg/L	mg/L	mg/L		ng/L
						rg nic σ	onic		onic	Pa o						ronic	g.	o ii
						Acute	, A		ਵੱ	Acute						, a	ļ j	¥
DO WOO FINAL						0.001-0.03 ^a 0.0009-0.01 ^a	0.025-0.15 ^a			0.0001-0.003 ^a 0.00005-0.0015 ^a						0.0085	0.033-2 ^a	0.0075-2ª
BC WQG FWAL Elkview Operation			n/a	n/a	n/a	0.001-0.03 0.0009-0.01	0.025-0.15	n/a	2	0.0001-0.003 0.00005-0.0015	n/a	n/a	n/a	n/a	n/a	0.0085	0.033-2	0.0075-2
EV ER4	EV ER4 WS 2022-05 WEK23 N	2022-05-30	260	0.011	22.8	0.00875	0.00094	0.708	14.2	< 0.000010	2 4	5 0.22	< 0.000010	< 0.00010	0.00099	0.00133	1 0	0.003
EV ER4	EV ER4 WS 2022-06 MON N	2022-06-07	217			0.0362	0.00034	0.793	10	0.000012		2 0.19		< 0.00010	0.00487	0.00116		.0064
EV_ER4	EV ER4 WS 2022-06 WEK25 N	2022-06-14	185	0.008		0.111	0.00435	1.02	8.48	0.000032		4 0.19		< 0.00010	0.00678	0.00117	0.	.0161
EV_ER4	EV_ER4_WS_2022-06_WEK26_N	2022-06-20	171				0.00437	1.04	7.71	0.000039		0.18		0.00014	0.00857	0.00111		0.018
EV_ER4	EV_ER4_WS_2022-06_WEK27_N	2022-06-27	170			0.246	0.0081	1.67	6.86	0.000061		3 0.18		0.00011	0.0141	0.00128		0.033
EV_ER4	EV_ER4_WS_2022-Q3_N	2022-07-04	188			0.0577 0.0328	0.0026	0.861	8.64	0.000016 0.000013		2 0.17		< 0.00010	0.00408	0.00108		.0089
EV ER4 EV ER4	EV_ER4_WS_2022-07_WEK29_N EV_ER4_WS_2022-08_MON_N	2022-07-11	175 176			0.0328	0.00174 0.00138	0.73	7.89 6.88	< 0.000013		0.17		< 0.00010 < 0.00010	0.00332 < 0.00240	0.00101 0.000948		.0058
EV_ER4 EV ER4	EV ER4 WS 2022-08 MON N EV ER4 WS 2022-09 MON N	2022-08-08	212			0.0022	0.00138	0.621	9.96	< 0.000010		3 0.22		< 0.00010	0.00240	0.000948		0.0030
EV ER4	EV ER4 WS 2022-Q4 N	2022-10-03	243			0.00368	0.00052	0.592	10.6	< 0.000010		0.21		< 0.00010	< 0.00070	0.0012		0.0030
EV ER4	EV ER4 WS 2022-11 MON N	2022-11-07	258			0.00211	< 0.00050	0.724	15	< 0.000010	2.8	1 0.26	< 0.000010	< 0.00010	< 0.00030	0.00129	< 0	0.0030
EV_GC2	EV_GC2_WS_2022-01-02_N	2022-01-02	282	0.012	24	0.00206	< 0.00050	0.687	13.6	< 0.000010	3.14	4 0.26	< 0.000010	< 0.00010	< 0.00030	0.00131	< 0	0.0030
EV_GC2	EV_GC2_WS_2022-01-04_N	2022-01-04	-	-	-	-	-	-	-	-	-	+	-	-	-	-		-
EV_GC2	EV_GC2_WS_2022-Q1_N	2022-01-05	-	-	-	0.0101	-	-	-	< 0.000010	-	_	-	-	-	-		.0038
EV_GC2 EV GC2	EV GC2 WS 2022-01-06 N 0915 EV GC2 WS 2022-01-06 N 1209	2022-01-06 2022-01-06	643	0.03	77.6	0.0101	0.00167	2.07	92.7	< 0.000010	8.03	0.41	0.000012	0.00013	< 0.00390	0.0041	0.	.0038
EV_GC2	EV GC2 WS 2022-01-06 N 1209	2022-01-06	+-	1	1			-	-:-	- :	1	+	-		-			-
EV GC2	EV GC2 WS 2022-01-07 N	2022-01-08				-			-	-	1	_	-	-	-	-		-
EV_GC2	EV_GC2_WS_2022-01-09_N	2022-01-09	-	-	-	-		-	-	-	-	-	-	-	-	-		-
EV_GC2	EV GC2 WS 2022-01-14 N	2022-01-14	-	-	-	-	-	-	-	-	-	_	-	-	-	-		-
EV_GC2	EV GC2 WS 2022-01-22 N	2022-01-22	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
EV GC2 EV GC2	EV GC2 WS 2022-01-23 N 1306 EV GC2 WS 2022-01-23 N 1628	2022-01-23	-	-	-	-	-	-	-	-	-	_	-	-	-	-		-
EV_GC2	EV GC2 WS 2022-01-23 N 1628 EV GC2 WS 2022-01-24 N	2022-01-23	<u> </u>	+ -	1	- :		-	-		۱÷	+:	-	-	-	-		· ·
EV GC2	EV GC2 WS 2022-01-24 N	2022-01-25	1	1		-	- :		- :	-	H	_	- :		-:-			-
EV GC2	EV GC2 WS 2022-01-28 N 1448	2022-01-28	-	-	-	-	-	-	-	-	١.	-	-	-	-	-		-
EV GC2	EV GC2 WS 2022-01-28 N 0816	2022-01-28	-	-	-	-		-	-	-	-	-	-	-	-	-		-
EV_GC2	EV GC2 WS 2022-01-29 N	2022-01-29	-	-	-	-		-	-	-	-	+	-	-	-	-		-
EV GC2	EV GC2 WS 2022-01-30 N	2022-01-30	-	-	-	-	-	-	-	-	-	_	-	-	-	-		-
EV_GC2 EV_GC2	EV GC2 WS 2022-01-31 N 1332 EV GC2 WS 2022-01-31 N 1434	2022-01-31 2022-01-31	-	-	-	-	-	-	-	-	1	+	-	-	<u> </u>	-		-
EV GC2	EV GC2 WS 2022-01-31 N 1434 EV GC2 WS 2022-01-31 N 1509	2022-01-31	-	-	-	-		H :	-	-	1	-	-	-	-			:
EV GC2	EV GC2 WS 2022-01-31 N 1539	2022-01-31	1	-	1	-				-	1:		-	-		-		-
EV GC2	EV GC2 WS 2022-01-31 N 1627	2022-01-31	_	-	-	-	-		-	-	_	_	-	-		-		-
EV_GC2	EV GC2 WS 2022-01-31 N 1645	2022-01-31	-	-	-	-		-	-	-	-	-	-	-	-	-		-
EV_GC2	EV GC2 WS 2022-01-31 N 0858	2022-01-31	-	-	-	-	-	-	-	-	١-	-	-	-	-	-		
EV_GC2	EV GC2 WS 2022-01-31 N 1208	2022-01-31	-	-	-	-	-	-	-	-	-	+-	-	-	-	-		-
EV_GC2 EV_GC2	EV_GC2_WS_2022-01-31_N_1231 EV_GC2_WS_2022-02-01_N_1304	2022-01-31	-	-	1	-	-	-	- :	-	+-	+:	-	-	-	-		:
EV GC2	EV GC2 WS 2022-02-01 N 1304 EV GC2 WS 2022-02-01 N 1405	2022-02-01	+-	-	1				-	<u> </u>	 	-	-	- :				-
EV GC2	EV GC2 WS 2022-02-01 N 1506	2022-02-01	-	-	-	-	-	-	-	-	١.	١.	-	-	-	-		-
EV GC2	EV GC2 WS 2022-02-01 N 1538	2022-02-01	-	-	-	-	-	-	-	-	-		-	-		-		-
EV GC2	EV GC2 WS 2022-02-01 N 0744	2022-02-01	-	-	-	-	-	-	-	-	-	+	-	-	-	-		-
EV_GC2	EV_GC2_WS_2022-02-01_N_0843	2022-02-01	-	-	-	-	-	-	-	-	١.	-	-	-	-	-		-
EV_GC2	EV GC2 WS 2022-02-01 N 0933	2022-02-01	-	-	-	-	-	-	-	-	1 -	+ -	-	-	-	-		-
EV GC2 EV GC2	EV GC2 WS 2022-02-01 N 1047	2022-02-01	+-	+-	-	-	-	- -	<u> </u>	-	+-	+-	-		-	-		
EV_GC2 EV_GC2	EV GC2 WS 2022-02-01 N 1204 EV GC2 WS 2022-02-02 N 1508	2022-02-01	+ :	+ :	1	-	-			-	1:	+:		-	-	-		-
EV GC2	EV GC2 WS 2022-02-02 N 1605	2022-02-02			-	-	-		-	-	1:	1 -	-	-	-			-
EV GC2	EV GC2 WS 2022-02-02 N 0759	2022-02-02	-	_			-			-	-	_				-		-

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

			1								Total Metals						
Sample	Sample	Sample Date	Hardness	Aluminum	Antimony	Arsenic	Barium*	Beryllium*	Bismuth	Boron	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg	/L	mg/L
						Acute	Chronic	Chronic		Chronic				Acute Chronic		Acute	Acute Chronic
BC WQG FWAL			n/a	n/a	n/a	0.005	1	0.00013	n/a	1.2	n/a	n/a	n/a	0.11 0.004	n/a	1	0.003-5.5 ^a 3.3-3.5 ^a
Elkview Operation																	
EV_GC2	EV_GC2_WS_2022-02-02_N_1135	2022-02-02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2 EV GC2	EV_GC2_WS_2022-02-02_N_1250	2022-02-02	-		-	-	-	-	-	-	-	-	- :	-	-	-	-
EV_GC2	EV_GC2_WS_2022-02-03_N_1334 EV_GC2_WS_2022-02-03_N_1434	2022-02-03	-		-	- :	-	1		-	- :	-	- :			-	-
EV_GC2	EV GC2 WS 2022-02-03 N 1557	2022-02-03	Hill					-	-	-	-		- : -	-	-		-
EV GC2	EV GC2 WS 2022-02-03 N 0725	2022-02-03			-			-	-	-	-	-	-:-	-	-	-	-
EV GC2	EV GC2 WS 2022-02-03 N 0840	2022-02-03	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV GC2 WS 2022-02-03 N 1000	2022-02-03	-	-	-	-	-	-	-	-	-			-	-	-	-
EV_GC2	EV_GC2_WS_2022-02-03_N_1101	2022-02-03	-	-	-	-	-	-	-	-	-		-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-02-04_N_1336	2022-02-04	-	-	-	-	-	-	-	-	-		-	-	-	-	-
EV_GC2	EV GC2 WS 2022-02-04 N 1421	2022-02-04	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-02-04_N_0757	2022-02-04	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-02-04_N_1054	2022-02-04	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2 EV GC2	EV GC2 WS 2022-02-04 N 1236	2022-02-04	-	-	-	- :	-	-	-	-		-	- :		-	-	-
EV GC2	EV GC2 WS 2022-02-05 N EV GC2 WS 2022-02 MON N	2022-02-05	-		-	- :	-	 	-	-	-	-	-	-	-	-	-
EV GC2	EV GC2 WS 2022-02 WON N	2022-02-07	606	0.0674	0.00068	0.00021	0.115	< 0.020	< 0.000050	0.026	0.0000575	129	0.00018	0.00021	< 0.00050	0.062	0.000101
EV GC2	EV GC2 WS 2022-02-09 N	2022-02-09	620	0.228	0.00082	0.00024	0.114	< 0.020	< 0.000050	0.026	0.0000373	130	0.00018	0.0002	< 0.00050	0.061	0.000115
EV GC2	EV GC2 WS 2022-02-10 N 1330	2022-02-10	608	0.0771	0.00077	0.0002	0.106	< 0.020	< 0.000050	0.027	0.0000401	139	0.00015	0.00017	< 0.00050	0.044	0.000075
EV GC2	EV GC2 WS 2022-02-10 N 1722	2022-02-10	596	0.384	0.00068	0.00034	0.126	0.000024	< 0.000050	0.028	0.0000854	127	0.00053	0.00038	0.00091	0.237	0.000292
EV GC2	EV GC2 WS 2022-02-10 N 0925	2022-02-10	-	-	-	-	-	-	-	-	-		-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-02-10_N_1005	2022-02-10	-	-	-	-	-	-	-	-	-		-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-02-11_N	2022-02-11	607	0.27	0.00068	0.0003	0.119	0.00002	< 0.000050	0.029	0.0000737	128	0.00039	0.00038	0.00077	0.194	0.000273
EV_GC2	EV GC2 WS 2022-02-13 N	2022-02-13	542	0.086	0.00066	0.00023	0.105	< 0.020	< 0.000050	0.029	0.000071	116	0.00017	0.00033 0.00021	0.0006	0.072	0.000146 0.000059
EV_GC2 EV GC2	EV GC2 WS 2022-02-14 N 1522 EV GC2 WS 2022-02-14 N 1210	2022-02-14	545 547	0.047	0.00056 0.00056	0.00025	0.107 0.11	< 0.020 < 0.020	< 0.000050 < 0.000050	0.028	0.0000702 0.0000758	115 115	0.00024	0.00021	< 0.00050 < 0.00050	0.028	0.000039
EV_GC2	EV GC2 WS 2022-02-14 N 1210 EV GC2 WS 2022-02-15 N 1403	2022-02-14	547	0.0705	0.00056	0.00026	0.11	< 0.020	< 0.000050	0.028	0.0000758	115	0.00019	0.0002	< 0.00050	0.045	0.000077
EV GC2	EV GC2 WS 2022-02-15 N 1403 EV GC2 WS 2022-02-15 N 0759	2022-02-15	-										- :	-	- :	-	-
EV GC2	EV GC2 WS 2022-02-16 N 1330	2022-02-16	-	-	-		-		-	-	-		-	-	-	-	-
EV GC2	EV GC2 WS 2022-02-16 N 0750	2022-02-16	-	-	-	-	-	-	-	-	-		-	-	-	-	-
EV_GC2	EV GC2 WS 2022-02-17 N 0820	2022-02-17	-	-	-	-	-	-	-	-	-			-	-	-	-
EV_GC2	EV GC2 WS 2022-02-17 N 1222	2022-02-17	-	-	-	-	-	-	-	-	-			-	-	-	-
EV_GC2	EV_GC2_WS_2022-02-18_N_1354	2022-02-18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV GC2 WS 2022-02-18 N 0745	2022-02-18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV GC2 WS 2022-02-19 N	2022-02-19			-	- :	-	-	-	-	- :	-		-	-	-	-
EV GC2 EV GC2	EV GC2 WS 2022-02-20 N 1509	2022-02-20	-	-	-	- -	-	- -	-	-		-	-		-	<u> </u>	
EV_GC2	EV GC2 WS 2022-02-20 N 0900 EV GC2 WS 2022-02-22 N 1338	2022-02-20					-	 :	- :		- :		 	-	 	-	-
EV GC2	EV GC2 WS 2022-02-22 N 0738	2022-02-22			-				-		-			-		- :	-
EV GC2	EV GC2 WS 2022-02-23 N 0724	2022-02-23	-	-	-	-	-	-	-	-	-		-	-	-	-	-
EV GC2	EV GC2 WS 2022-02-23 N 1207	2022-02-23		-	-				-		-			-			-
EV_GC2	EV GC2 WS 2022-02-24 N 1325	2022-02-24	-	-	-		-		-	-	-		-	-	-	-	-
EV_GC2	EV GC2 WS 2022-02-24 N 0726	2022-02-24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-02-25_N_1435	2022-02-25	-	-	-	-	-	<u> </u>	-	-	-	-	-	-	-	-	-
EV_GC2	EV GC2 WS 2022-02-25 N 0740	2022-02-25	-	-	-	-	-		-	-	-	-	-		-	-	
EV_GC2	EV GC2 WS 2022-02-26 N 1457	2022-02-26		-	-	- -	-	-	-	-	-			-		-	-
EV_GC2 EV GC2	EV GC2 WS 2022-02-26 N 0803 EV GC2 WS 2022-02-27 N 1421	2022-02-26	-	-	- -	<u> </u>	-		-	-	-	-	-		-	-	-
EV_GC2	EV GC2 WS 2022-02-27 N 1421 EV GC2 WS 2022-02-27 N 0932	2022-02-27			-			 			<u> </u>	-:-	- : -	-	1 :		-
EV GC2	EV GC2 WS 2022-02-27 N 0932 EV GC2 WS 2022-02-28 N 1412	2022-02-28			-				-					-			-
	. 2. 002 110 2022-02-20 11 1412								-								

Denotes concentration less than indicated detection limit
 Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

^d Guideline varies with pH

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

Sample Location	Sample									Total Metals							
	Samole		_														
	Sample				nesium	989		Ę	£			ε	_		_	Ł	
	Sample		rdnes	hium	gnesi	ıngan	ckel*	tassiı	eniur	Silver	E E	Strontium	allium	_	Titanium	ranium	2
Location		Sample Date	Ξ	5	Magr	Ma	ž	2	Š		Sodi		£	Ę			ī
	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
						Acute	Chronic		Chronic	Acute						Chronic	Acute
BC WQG FWAL			n/a	n/a	n/a	0.001-0.03 ^a 0.0009-0.01 ^a	0.025-0.15 ^a	n/a	2	0.0001-0.003 ^a 0.00005-0.0015 ^a	n/a	n/a	n/a	n/a	n/a	0.0085	0.033-2 ^a 0.0075-2 ^a
Elkview Operation																	
EV_GC2	EV_GC2_WS_2022-02-02_N_1135	2022-02-02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-02-02_N_1250	2022-02-02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2 EV GC2	EV GC2 WS 2022-02-03 N 1334 EV GC2 WS 2022-02-03 N 1434	2022-02-03	-	-	-	-	-	-	-	-	1	-	-	-	-		-
EV_GC2	EV GC2 WS 2022-02-03 N 1557	2022-02-03	-	-	-	-		-	-	-	l :			-		_:	-
EV GC2	EV GC2 WS 2022-02-03 N 0725	2022-02-03	-	-	-	-	-	-	-	-	1 -	-		-	-	-	-
EV GC2	EV GC2 WS 2022-02-03 N 0840	2022-02-03	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV GC2 WS 2022-02-03 N 1000	2022-02-03	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-02-03_N_1101	2022-02-03	-	-	-	-	-	-	-	-	-		-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-02-04_N_1336	2022-02-04	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2 EV GC2	EV GC2 WS 2022-02-04 N 1421 EV_GC2 WS 2022-02-04 N 0757	2022-02-04	-	-	-	-	-	-	-	:	-	-		-			-
EV_GC2	EV GC2 WS 2022-02-04 N 0757 EV GC2 WS 2022-02-04 N 1054	2022-02-04	-	-		-		-	-:-		+ :			-			
EV GC2	EV GC2 WS 2022-02-04 N 1236	2022-02-04	-	-		-	-			-	 	- 1		-	-		-
EV GC2	EV GC2 WS 2022-02-05 N	2022-02-05	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-	
EV_GC2	EV_GC2_WS_2022-02_MON_N	2022-02-07	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV GC2	EV GC2 WS 2022-02-08 N	2022-02-08	606	0.031		0.0116	0.00144	2.02	79.4	< 0.000010		0.47	< 0.000010	< 0.00010	0.00059	0.0038	< 0.0030
EV GC2	EV GC2 WS 2022-02-09 N	2022-02-09	620			0.0157	0.00144	1.89	74.5	< 0.000010		0.46	0.000012	< 0.00010	0.00536	0.00369	< 0.0030
EV_GC2	EV_GC2_WS_2022-02-10_N_1330	2022-02-10	608		71.9 68.9	0.0139 0.0154	0.00127	1.89	83.2	< 0.000010 < 0.000010		0.47	< 0.000010	< 0.00010 < 0.00010	< 0.00120 < 0.00900	0.00347	< 0.0030 0.0045
EV GC2 EV GC2	EV GC2 WS 2022-02-10 N 1722 EV GC2 WS 2022-02-10 N 0925	2022-02-10 2022-02-10	596	0.031	68.9	0.0154	0.00198	2.1	75.1	< 0.000010	9.74	0.46	0.000016	< 0.00010	< 0.00900	0.00346	0.0045
EV GC2	EV GC2 WS 2022-02-10 N 10925 EV GC2 WS 2022-02-10 N 1005	2022-02-10				-			-:-		+ :			-			-
EV GC2	EV GC2 WS 2022-02-11 N	2022-02-11	607	0.034	69	0.0156	0.00196	2.1	74	< 0.000010	9.7	0.45	0.000014	< 0.00010	< 0.00570	0.00356	0.0048
EV GC2	EV GC2 WS 2022-02-13 N	2022-02-13	542	0.03		0.0143	0.00175	2.02	63.9	< 0.000010		0.46	< 0.000010	< 0.00010	< 0.00150	0.00306	< 0.0030
EV GC2	EV GC2 WS 2022-02-14 N 1522	2022-02-14	545	0.028	59.5	0.0111	0.00153	1.91	65.5	< 0.000010	10.2	0.46	< 0.000010	< 0.00010	0.00064	0.00301	< 0.0030
EV_GC2	EV_GC2_WS_2022-02-14_N_1210	2022-02-14	547	0.027	60.6	0.0114	0.00158	1.9	62.8	< 0.000010	9.97	0.45	< 0.000010	< 0.00010	< 0.00120	0.00299	< 0.0030
EV_GC2	EV GC2 WS 2022-02-15 N 1403	2022-02-15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV GC2	EV GC2 WS 2022-02-15 N 0759	2022-02-15	-	-	-	-	-	-	-	-	1	-		-	-		-
EV_GC2 EV GC2	EV GC2 WS 2022-02-16 N 1330 EV GC2 WS 2022-02-16 N 0750	2022-02-16 2022-02-16	-			-	-	-	-	-	1	-		-	-		-
EV GC2	EV GC2 WS 2022-02-16 N 0750 EV GC2 WS 2022-02-17 N 0820	2022-02-16	-	-	-	-	- :	-			 			-		_:	-
EV GC2	EV GC2 WS 2022-02-17 N 10020	2022-02-17	-	-	-	-	-	-	-	-	1	-	-	-	-		-
EV GC2	EV GC2 WS 2022-02-18 N 1354	2022-02-18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
EV_GC2	EV GC2 WS 2022-02-18 N 0745	2022-02-18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV GC2	EV GC2 WS 2022-02-19 N	2022-02-19	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV GC2	EV GC2 WS 2022-02-20 N 1509	2022-02-20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2 EV GC2	EV GC2 WS 2022-02-20 N 0900 EV GC2 WS 2022-02-22 N 1338	2022-02-20	-	-	-	-	-	<u> </u>	-	-	+-	-		-			-
EV_GC2	EV GC2 WS 2022-02-22 N 1338 EV GC2 WS 2022-02-22 N 0738	2022-02-22		1	1	-			- :		H:			-			
EV GC2	EV GC2 WS 2022-02-22 N 0736	2022-02-22		-					-	-	Ė						
EV GC2	EV GC2 WS 2022-02-23 N 1207	2022-02-23	-		-		-		-		_		-	-		-	-
EV GC2	EV GC2 WS 2022-02-24 N 1325	2022-02-24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV GC2	EV GC2 WS 2022-02-24 N 0726	2022-02-24	-	-	-	-	-	-	-	-	-	-	-	-	-		-
EV_GC2	EV_GC2_WS_2022-02-25_N_1435	2022-02-25	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV GC2 WS 2022-02-25 N 0740	2022-02-25	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2 EV GC2	EV GC2 WS 2022-02-26 N 1457	2022-02-26	-	-	-	-	-	<u> </u>	<u> </u>	-	+-			-	-		-
EV_GC2 EV_GC2	EV GC2 WS 2022-02-26 N 0803 EV GC2 WS 2022-02-27 N 1421	2022-02-26 2022-02-27	-	-			-		-:-	-	H:			-			-
EV_GC2	EV GC2 WS 2022-02-27 N 0932	2022-02-27			-	-	- :		- :		H						
EV GC2	EV GC2 WS 2022-02-28 N 1412	2022-02-28	-	-	-	-	-	-	-	-	-	- 1	-	-	_		-

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

											Total Metals						
Sample	Sample	Sample Date	Hardness	Aluminum	Antimony	Arsenic	Barium*	Beryllium*	Bismuth	Boron	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg	/L	mg/L
						Acute	Chronic	Chronic		Chronic				Acute Chronic		Acute	Acute Chronic
BC WQG FWAL			n/a	n/a	n/a	0.005	1	0.00013	n/a	1.2	n/a	n/a	n/a	0.11 0.004	n/a	1	0.003-5.5 ^a 3.3-3.5 ^a
Elkview Operation																	
EV_GC2	EV_GC2_WS_2022-02-28_N_0740	2022-02-28	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-03-01_N_1413	2022-03-01	-	-	-	-	-	-	-	-	-	-	-		-	-	-
EV_GC2	EV_GC2_WS_2022-03-01_N_1750	2022-03-01	-	-	-	-	-	-	-	-		-	-	-	-	-	-
EV_GC2	EV GC2 WS 2022-03-01 N 0723		-		_	-	-					-	-	-	-	-	-
EV_GC2 EV GC2	EV GC2 WS 2022-03-02 N 1310 EV GC2 WS 2022-03-02 N 0830	2022-03-02	-	-	-	-		-	-	-	-	-	-	-	-	-	
EV_GC2	EV GC2 WS 2022-03-02 N 0830 EV GC2 WS 2022-03-03 N 1310	2022-03-02	-		-	- :	- :	- :	-	-	-	-	-	-	-	-	
EV GC2	EV GC2 WS 2022-03-03 N 0735	2022-03-03	-			- :			-	-	-	-	-	-	-	-	-
EV_GC2	EV GC2 WS 2022-03-03 N 0735 EV GC2 WS 2022-03-04 N 1316	2022-03-03	-		- :	-:-	- 1	-:-	-		-	- :		-	- :		-
EV GC2	EV GC2 WS 2022-03-04 N 0751	2022-03-04		-:-	-				-	-	-		-	-	-		-
EV GC2	EV GC2 WS 2022-03-04 N 0751	2022-03-04			- :				-	-	-		1 -	-			-
EV GC2	EV_GC2_WS_2022-03-05_N_0755	2022-03-05	-	-	-	-	-	<u> </u>	-	-	-	-	-	-	-		-
EV GC2	EV GC2 WS 2022-03-06 N 1437	2022-03-06	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
EV GC2	EV GC2 WS 2022-03-06 N 0725	2022-03-06	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV GC2	EV GC2 WS 2022-03-07 N 0735	2022-03-07	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV GC2	EV GC2 WS 2022-03-11 N	2022-03-11	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV GC2	EV GC2 WS 2022-03-16 N	2022-03-16	586	0.0301	0.00052	0.0002	0.104	< 0.020	< 0.000050	0.03	0.0000785	129	0.00014	0.00015	< 0.00050	0.024	0.000051
EV GC2	EV GC2 WS 2022-03-16 N 0005	2022-03-16	493	0.217	0.00054	0.00026	0.103	< 0.020	< 0.000050	0.03	0.000084	109	0.0003	0.00036	0.00082	0.155	0.000201
EV_GC2	EV_GC2_WS_2022-03_MON_N	2022-03-17	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV GC2	EV MC6 WS 2022-03 MON N	2022-03-17	483	0.047	0.00046	0.0002	0.111	< 0.020	< 0.000050	0.031	0.0000754	118	0.00016	0.00022	< 0.00050	0.038	0.000078
EV_GC2	EV_MC8_WS_2022-03_MON_N	2022-03-17	497	0.0489	0.00047	0.00021	0.111	< 0.020	< 0.000050	0.03	0.0000764	117	< 0.00010	0.00021	< 0.00050	0.041	0.000083
EV_GC2	EV_GC2_WS_2022-03_WEK13_N	2022-03-21	< 0.50	< 0.0030	< 0.00010	< 0.00010	< 0.00010	< 0.020	< 0.000050	< 0.010	< 0.0050	< 0.050	< 0.00010	< 0.10	< 0.00050	< 0.010	< 0.000050
EV_GC2	EV_GC2_WS_2022-03-24_N_0634	2022-03-24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV GC2 WS 2022-03-24 N 1115	2022-03-24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV GC2	EV GC2 WS 2022-03-24 N 1251	2022-03-24	-	-	-	-	-	-	-	-	-	-	-		-	-	
EV_GC2	EV_GC2_WS_2022-03-25_N_0645	2022-03-25	-	-	-	-	-	-	-	-	-	-	-		-	-	-
EV GC2 EV GC2	EV GC2 WS 2022-03-26 N 1401	2022-03-26 2022-03-26	-	-	-	- :		- :	-	-		-	-	-	-	-	-
EV GC2	EV GC2 WS 2022-03-26 N 1557 EV GC2 WS 2022-03-26 N 0752	2022-03-26	-		-	-	-	-	-	-		-		-		-	-
EV GC2	EV GC2 WS 2022-03-26 N 0752	2022-03-27	-		-	-		-			-	-		-	-	-	-
EV_GC2	EV GC2 WS 2022-03-27 N EV GC2 WS 2022-03 WEK14 N	2022-03-27		-	-	- :	-	- :	-	-	- :	-	-	-	-	-	-
EV GC2	EV GC2 WS 2022-03 WEN14 N EV GC2 WS 2022-03-28 N 0707	2022-03-28	-		- :	-:-	- :	-:-		-	- :	- :	-	-	- :		-
EV GC2	EV GC2 WS 2022-03-28 N 0707	2022-03-29			-				-	-	- :		1	-			-
EV GC2	EV GC2 WS 2022-03-29 N 0750	2022-03-29	-	-	-		-		_		-		-	-	-		-
EV GC2	EV GC2 WS 2022-03-23 N 0730	2022-03-30	-	-	-		-		-	-	-	-	-	-	-	-	-
EV GC2	EV GC2 WS 2022-03-30 N 0728	2022-03-30	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV GC2	EV GC2 WS 2022-03-31 N 1357	2022-03-31	-	-	-	-	-		-	-	-	-	-	-	-	-	-
EV GC2	EV GC2 WS 2022-03-31 N 0754	2022-03-31	_	-	-	-		-	-	-	-	-		-		-	-
EV GC2	EV GC2 WS 2022-03-31 N 1210	2022-03-31	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV GC2 WS 2022-04-01 N 1457	2022-04-01	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-
EV_GC2	EV GC2 WS 2022-04-01 N 1556	2022-04-01	-	-	-	-	-		-	-	-	-	-	-	-	-	-
EV_GC2	EV GC2 WS 2022-04-01 N 0743	2022-04-01	-	-	-	-	-	-	-	-		-	-	-	-	-	-
EV GC2	EV GC2 WS 2022-04-02 N 1554	2022-04-02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-04-02_N_0807	2022-04-02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-04_WEK15_N	2022-04-04	-	-	-	-	-		-	-		-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-Q2_N	2022-04-12	-			·	-	- :				-		0.00015			0.000132
EV_GC2	EV GC2 WS 2022-04 WEK17 N	2022-04-18	461	0.0628	0.00039	0.00026	0.146	< 0.020	< 0.000050	0.029	0.0000875	115	0.00015	0.00015	0.00078	0.077	0.000132
EV_GC2	EV GC2 WS 2022-04 WEK18 N	2022-04-25	-	-	-	<u> </u>	-	<u> </u>	-	-	- -	-	-		-	-	
EV GC2	EV GC2 WS 2022-04-25 N 0757	2022-04-25	 -	-	-	<u> </u>	-	<u> </u>	-	- -		<u> </u>		-	-	<u> </u>	
EV_GC2	EV_GC2_WS_2022-05_MON_N	2022-05-05				-		-									

Denotes concentration less than indicated detection limit
 Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

^d Guideline varies with pH

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

										Total Metals							
										Total metals	Т	Т					
					_ ا												
			so.		nesium) se		Ę	۽			Ε	_		_		
			l se	트	es	gan	*	1 .5	∄	_	⊑	Strontium	<u> </u>		Titanium	<u> </u>	
			Ē	ΙĒ	Magr) un	ckel	ğ	leni	Silver	Sodium	5	alliu	_	l E	anin	2
Sample	Sample	Sample Date		5		Ë	Ž	<u> </u>	ı,				E	Ę			Ñ
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	mg/L	mg/l	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
						onic /	je		ronic	δ hr fe						onic	onic
						Acute	9 th		e	Chro						8 8	hro cuft
			.		.					_ `	١.	-		_	ļ .		4 0
BC WQG FWAL			n/a	n/a	n/a	0.001-0.03 ^a 0.0009-0.01 ^a	0.025-0.15 ^a	n/a	2	0.0001-0.003ª 0.00005-0.0015ª	n/a	n/a	n/a	n/a	n/a	0.0085	0.033-2 ^a 0.0075-2 ^a
Elkview Operation EV GC2	EV GC2 WS 2022-02-28 N 0740	2022-02-28	Τ.	Τ.	Τ.		-	-	-		Τ.	١.		-		-	
EV GC2	EV GC2 WS 2022-02-28 N 0740 EV GC2 WS 2022-03-01 N 1413	2022-02-26	+:	-	+ -	-	-		-	-	H	H	-			-:-	-
EV GC2	EV GC2 WS 2022-03-01 N 1750	2022-03-01	- -	-	+ -	-	-	-	-	-	H	-	-		-		-
EV GC2	EV GC2 WS 2022-03-01 N 0723	2022-03-01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
EV_GC2	EV_GC2_WS_2022-03-02_N_1310	2022-03-02	-	-	-	-	-	-	-		-	-	-	-	-	-	-
EV_GC2	EV GC2 WS 2022-03-02 N 0830	2022-03-02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-03-03_N_1310	2022-03-03	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV GC2 WS 2022-03-03 N 0735	2022-03-03	-	-	-	•	-	-	-	-	<u> </u>		-	-	-	-	-
EV_GC2 EV GC2	EV GC2 WS 2022-03-04 N 1316 EV GC2 WS 2022-03-04 N 0751	2022-03-04	-	-	-		-	-	-	-	-	-	-	-	-		
EV GC2	EV GC2 WS 2022-03-04 N 0751 EV GC2 WS 2022-03-05 N 1357	2022-03-04	+ :	-	+ :	-	-	1	-:-	-	H	H	-		- :	-:-	
EV GC2	EV_GC2_WS_2022-03-05_N_0755	2022-03-05				-	-		-	-	1	-	-	-			
EV GC2	EV GC2 WS 2022-03-06 N 1437	2022-03-06	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
EV GC2	EV GC2 WS 2022-03-06 N 0725	2022-03-06	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-03-07_N_0735	2022-03-07		-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-03-11_N	2022-03-11	-	-	-	-	-	-	-	-	-		-	-	-	-	-
EV GC2	EV GC2 WS 2022-03-16 N	2022-03-16	586			0.0111 0.0166	0.00141	1.98	64.6	< 0.000010 < 0.000010		0.53	< 0.000010	< 0.00010	0.00044	0.00313	< 0.0030 < 0.0030
EV GC2 EV GC2	EV GC2 WS 2022-03-16 N 0005 EV GC2 WS 2022-03 MON N	2022-03-16 2022-03-17	493	0.029	52	0.0766	0.00174	2.23	48.8	< 0.000010	11.2	0.48	0.00001	< 0.00010	< 0.00360	0.00251	- 0.0030
EV GC2	EV MC6 WS 2022-03 MON N	2022-03-17	483			0.0144	0.00146	2.02	51.2	< 0.000010		0.51	< 0.000010	< 0.00010	< 0.00060	0.00258	< 0.0030
EV GC2	EV MC8 WS 2022-03 MON N	2022-03-17	497			0.0143	0.00144	1.98	52.3	< 0.000010		0.51	< 0.000010	< 0.00010	< 0.00060	0.00279	< 0.0030
EV GC2	EV GC2 WS 2022-03 WEK13 N	2022-03-21			0.007	< 0.00010	< 0.00050	< 0.050	< 0.050	< 0.000010	0.05	0.000		< 0.00010	< 0.00030	< 0.000010	< 0.0030
EV_GC2	EV_GC2_WS_2022-03-24_N_0634	2022-03-24		-	-	-	-	-	-	-	-	-	-	-	-	-	
EV_GC2	EV GC2 WS 2022-03-24 N 1115	2022-03-24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV GC2	EV GC2 WS 2022-03-24 N 1251	2022-03-24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2 EV GC2	EV_GC2_WS_2022-03-25_N_0645 EV_GC2_WS_2022-03-26_N_1401	2022-03-25	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-
EV GC2	EV GC2 WS 2022-03-26 N 1401 EV GC2 WS 2022-03-26 N 1557	2022-03-26 2022-03-26	-	-	+	-		-			H	H	-			-:-	- :
EV GC2	EV GC2 WS 2022-03-26 N 0752	2022-03-26	1	-	-	-	-	-	-	-	-	-	-	-	-	-	
EV GC2	EV GC2 WS 2022-03-27 N	2022-03-27	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
EV GC2	EV GC2 WS 2022-03 WEK14 N	2022-03-28	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV GC2 WS 2022-03-28 N 0707	2022-03-28	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
EV_GC2	EV GC2 WS 2022-03-29 N 1543	2022-03-29	-	-	-	-	-	-	-	-	ļ -	-	-	-	-	-	-
EV GC2 EV GC2	EV GC2 WS 2022-03-29 N 0750	2022-03-29	-	-	-	-		 -	-	:	1	-	-	-	-	-	- :
EV GC2	EV GC2 WS 2022-03-30 N 1602 EV GC2 WS 2022-03-30 N 0728	2022-03-30 2022-03-30	1	-	+ -	-	-	-	-	-	+ -	-	-	-	-	- :	-
EV GC2	EV GC2 WS 2022-03-30 N 0726 EV GC2 WS 2022-03-31 N 1357	2022-03-30	+-	+:-	1	-	-			-	T-	H	-			-:-	-
EV GC2	EV GC2 WS 2022-03-31 N 0754	2022-03-31	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV GC2 WS 2022-03-31 N 1210	2022-03-31	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-04-01_N_1457	2022-04-01	-	-	-	-	-	-	-	-	-	-	-	-	-		
EV_GC2	EV GC2 WS 2022-04-01 N 1556	2022-04-01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2 EV_GC2	EV GC2 WS 2022-04-01 N 0743 EV GC2 WS 2022-04-02 N 1554	2022-04-01	-	-	-	-	-	 -	-	-	-	<u> </u>	-	-	-	-	-
EV GC2	EV GC2 WS 2022-04-02 N 1554 EV GC2 WS 2022-04-02 N 0807	2022-04-02	-	+ :	-	-	-		-		+:	_	-		- :	- :	-
EV_GC2	EV GC2 WS 2022-04-02 N 0807 EV GC2 WS 2022-04 WEK15 N	2022-04-02	1	-	1	-	-			-	1	-	-			- :	-
EV GC2	EV GC2 WS 2022-04 WERTS N	2022-04-04		-	-		-	-	-	-	-	-	-	-	-		-
EV GC2	EV GC2 WS 2022-04 WEK17 N	2022-04-18	461	0.025	54.6	0.0106	0.00146	2	51.1	< 0.000010	9.33	0.5	< 0.000010	< 0.00010	0.00054	0.00245	< 0.0030
EV_GC2	EV GC2 WS 2022-04 WEK18 N	2022-04-25	-	-	-	-	-	-	-	-	-	-	-	-	-		-
EV_GC2	EV GC2 WS 2022-04-25 N 0757	2022-04-25	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-05_MON_N	2022-05-05	-	L -	-	-	-	-	-	-	-	-	-	-	-	-	-

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

											Total Metals						
			dness	minum	mony	enic	,mm,	yllium*	muth	uo	mium	cium	mnimo.	Cobalt	opper	_	
Sample	Sample	Sample Date	Har	Ē	5	l š	3ari	Je J	Bis	ğ	, E	Salc	퉁	l Š	8	<u> </u>	ead
Location	ID	(mm/dd/yyyy)		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg	<u> </u>	mg/L
		(je 	5		g.					,		ronic ute
						Acute	Chro	Chro		Chronic				Acute Chronic		Acute	ਨੂੰ ਹੁ
BC WQG FWAL			n/a	n/a	n/a	0.005	1	0.00013	n/a	1.2	n/a	n/a	n/a	0.11 0.004	n/a	1	0.003-5.5 ^a 3.3-3.5 ^a
Elkview Operation														0.00044			0.000400
EV_GC2	EV_MC6_WS_2022-05_MON_N	2022-05-05	435	0.0994	0.00039	0.00025	0.14	< 0.020	< 0.000050	0.024	0.0000488	107	0.00016	0.00011 0.00013	0.00071	0.08	0.000109 0.000107
EV_GC2 EV GC2	EV MC8 WS 2022-05 MON N EV GC2 WS 2022-05-07 N 1832	2022-05-05	432 < 0.50	0.108 < 0.0030	0.00039 < 0.00010	0.00031	0.144	< 0.020 < 0.020	< 0.000050 < 0.000050	0.025 < 0.010	0.0000551 < 0.0050	108 < 0.050	0.00016 < 0.00010	< 0.10	0.00084 < 0.00050	0.081 < 0.010	< 0.000107
EV_GC2	EV GC2 WS 2022-05-07 N 0655	2022-05-07	< 0.50	< 0.0030	< 0.00010	< 0.00010	< 0.00010	< 0.020	< 0.000050	< 0.010	< 0.0050	< 0.050	< 0.00010	- 0.10	< 0.00050	< 0.010	< 0.000030
EV GC2	EV GC2 WS 2022-05-07 N 0033	2022-05-08	1		-					-		-:-		-	-	-	-
EV GC2	EV GC2 WS 2022-05-08 N 0700	2022-05-08	+-	- :	-					-	-	-	-:-	-	-	-	-
EV GC2	EV GC2 WS 2022-05-09 N 0655	2022-05-09	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-05_WEK20_N	2022-05-10	-	-	-	-	-	-	-	-	-	-		-	-	-	-
EV_GC2	EV GC2 WS 2022-05-10 N 1846	2022-05-10	-	-	-	-	-	-	-	-	-	-		-	-	-	-
EV_GC2	EV GC2 WS 2022-05-10 N 0650	2022-05-10	-	-	-	-	-	-	-	-	-		-	-	-	-	-
EV_GC2	EV GC2 WS 2022-05-11 N 0800	2022-05-11	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-05_WEK21_N	2022-05-16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-05_WEK22_N	2022-05-24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2 EV GC2	EV GC2 WS 2022-05 WEK23 N EV GC2 WS 2022-06 MON N	2022-05-30	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV GC2	EV GC2 WS 2022-06 MON N EV GC2 WS 2022-06-13 N 1742	2022-06-08	561	0.0508	0.00039	0.00027	0.117	< 0.020	< 0.000050	0.024	0.0000231	112	< 0.00010	0.00011	< 0.00050	0.028	< 0.000050
EV_GC2	EV GC2 WS 2022-06-13 N 1742 EV GC2 WS 2022-06 WEK25 N	2022-06-13	361	0.0000	0.00039	0.00027	0.117	V 0.020	- 0.000050	0.024	0.0000231	- 112	< 0.00010		< 0.00030	0.026	- 0.000000
EV GC2	EV GC2 WS 2022-06 WER25 N	2022-06-14	-		- :						- :		- :	-	-		
EV GC2	EV GC2 WS 2022-06-14 N 2106	2022-06-14	-	-	-	-	-	-	-	-	-	-	-	-	-		-
EV GC2	EV GC2 WS 2022-06-15 N 1553	2022-06-15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV GC2	EV GC2 WS 2022-06-15 N 0840	2022-06-15	-	-	-	-	-	-	-	-	-		-	-	-	-	-
EV_GC2	EV GC2 WS 2022-06-16 N 0800	2022-06-16	-	-	-	-	-	-	-	-	-		-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-06-18_N_0810	2022-06-18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV GC2	EV GC2 WS 2022-06-19 N 1825	2022-06-19	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV GC2	EV GC2 WS 2022-06-19 N 0735	2022-06-19	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_GC2 EV GC2	EV_GC2_WS_2022-06-20_N_1550 EV_GC2_WS_2022-06-20_N_0730	2022-06-20	464	0.18	0.00041	0.00039	0.162	< 0.020	< 0.000050	0.029	0.0000584	104	0.00041	0.00023	0.00099	0.164	0.000166
EV GC2	EV GC2 WS 2022-06-20 N 0730	2022-06-20 2022-06-21	464	0.18	0.00041	0.00039	0.162	< 0.020	< 0.000050	0.029	0.0000584	104	0.00041	-	0.00099	0.164	0.000100
EV GC2	EV GC2 WS 2022-00-21 N	2022-06-22	487	0.114	0.00045	0.00038	0.166	< 0.020	< 0.000050	0.025	0.0000457	111	0.00031	0.00019	0.00092	0.076	0.000107
EV GC2	EV GC2 WS 2022-06 WEK27 N	2022-06-27	-	0.0547	0.00037	0.00034	0.144	< 0.000020	< 0.000050	0.025	0.0000415	109	< 0.00050	0.00016	0.00067	0.042	0.000075
EV_GC2	EV_GC2_WS_2022-07-05_N	2022-07-05	-	-	-	-	-		-	-	-	-	-	-	-	-	-
EV_GC2	EV_GC2_WS_2022-Q3_N	2022-07-06	497	0.179	0.00045	0.0004	0.163	< 0.020	< 0.000050	0.027	0.0000759	104	0.00026	0.00031	0.00088	0.203	0.000259
EV_GC2	EV_GC2_WS_2022-07_WEK29_N	2022-07-11	548	0.0529	0.00041	0.00035	0.142	< 0.020	< 0.000050	0.024	0.0000469	116	< 0.00010	0.00016	< 0.00050	0.026	0.000056
EV_GC2	EV_GC2_WS_2022-08_MON_N	2022-08-10	ļ -		-			-			-			-	-	-	- 0.000050
EV_GC2	EV_GC2_WS_2022-09_MON_N	2022-09-07	620	0.0553	0.00039	0.00024	0.0933	< 0.020	< 0.000050	0.023	0.0000137	122	0.0001	0.00012	< 0.00050	0.018	< 0.000050
EV_GC2	EV_GC2_WS_2022-Q4_N	2022-10-05	625	0.0342	0.00034	0.00024	0.112	< 0.020 < 0.020	< 0.000050	0.022	0.000006	120	0.0001	< 0.10 < 0.10	< 0.00050	< 0.010	< 0.000050 < 0.000050
EV GC2 EV GC2	EV GC2 WS 2022-11 MON N EV GC2 WS 2022-11-15 N	2022-11-09 2022-11-15	653 629	0.0254	0.00037 0.00027	0.00018	0.096 0.0895	< 0.020	< 0.000050 < 0.000050	0.028	0.0000077	139 134	< 0.00010 0.00011	0.00014	< 0.00050 < 0.00050	0.049	0.000064
EV_GC2	EV GC2 WS 2022-11-15 N EV GC2 WS 2022-11-17 N	2022-11-15	647	0.0352	0.00027	0.00021	0.0893	< 0.020	< 0.000050	0.027	0.0000371	145	0.00011	0.00014	< 0.00050	0.049	0.000059
EV GC2	EV GC2 WS 2022-11-17 N	2022-11-19	662	0.0378	0.00024	0.00015	0.0027	< 0.020	< 0.000050	0.024	0.0000391	130	0.00012	0.00011	0.00059	0.042	0.000063
EV LC1	EV LC1 WS 2022-Q1 N	2022-01-14	649	0.0275	0.00025	0.00018	0.0737	< 0.020	< 0.000050	0.028	0.0000286	136	< 0.00010	0.00011	< 0.00050	0.031	< 0.000050
EV_LC1	EV_LC1_WS_2022-02_MON_N	2022-02-07	449	0.387	0.00024	0.00024	0.162	0.00002	< 0.000050	0.04	0.000181	82.3	0.00052	0.00057	0.00108	0.172	0.000268
EV_LC1	EV_LC1_WS_2022-03_MON_N	2022-03-16	486	0.115	0.00023	0.00021	0.164	< 0.020	< 0.000050	0.041	0.0000749	89.3	0.00018	0.00027	0.00084	0.215	0.000218
EV_LC1	EV_LC1_WS_2022-Q2_N	2022-04-11	490	0.227	0.00028	0.00031	0.182	0.000023	< 0.000050	0.037	0.000132	94.9	0.0003	0.00038	0.00129	0.227	0.000316
EV_LC1	EV_LC1_WS_2022-04-15_N	2022-04-15	546	0.0171	0.00024	0.00023	0.163	< 0.020	< 0.000050	0.043	0.0000207	96.1	< 0.00010	< 0.10	0.00054	0.181	0.000054
EV_LC1	EV_LC1_WS_2022-05_MON_N	2022-05-05	548	0.0137	0.00022	0.00024	0.161	< 0.020	< 0.000050	0.042	0.000017	97.1	< 0.00010	< 0.10	< 0.00050	0.127	< 0.000050
EV LC1	EV LC1 WS 2022-06 MON N	2022-06-08	521	0.015	0.00024	0.00022	0.175	< 0.020	< 0.000050	0.049	0.0000296	104	< 0.00010	< 0.10 < 0.10	0.00058	0.15	< 0.000050 < 0.000050
EV_LC1 EV_LC1	EV LC1 WS 2022-Q3 N EV LC1 WS 2022-08 MON N	2022-07-06 2022-08-08	624 648	0.006 0.0334	0.0002 0.00022	0.00022	0.173 0.199	< 0.020 < 0.020	< 0.000050 < 0.000050	0.045 0.044	0.0000122 0.0000563	106 117	< 0.00010 < 0.00010	0.00011	< 0.00050 0.00051	0.094	< 0.000050
EV_LC1	EV LC1 WS 2022-08 MON N EV LC1 WS SESMP 2022 08 N	2022-08-08	636	0.0064	0.00022	0.00022	0.199	< 0.020	< 0.000050	0.044	0.0000563	117	< 0.00010	< 0.10	< 0.00050	0.048	< 0.000050
		2022-00-12	000	0.000-	0.00010	3.00021	0.102	1 0.020	. 0.000000	0.043	0.0000221	110	. 0.00010		70.00000	0.073	. 0.00000

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

^d Guideline varies with pH

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

										Total Metals								
					I					Total Motals	T	T						
					_	_												
			o o		5	98		E	_			٦	_		_	*		
			es	Ε	is	ä	*_	sin	<u>.</u>		⊑	Strontium	<u> </u>		Titanium	[
			臣	∄	- E	B L	ckel	tas	e e	Silver	Sodium	5	≣	l _] <u>=</u>	anin		ဥ
Sample	Sample	Sample Date	표	3	Magr	Na Na	ž	<u> </u>	Se	 	l §	St	l ë	Ę	≇	5		Ä
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	mg/L	mg/	L mg/L	mg/L	mg/L	mg/L	mg/L	m	ng/L
						ute onic	nic		ji.	ronic						ronic		je
							ē		5	e 5						2	를 보다 [2
						G Ac	ວ		ਤੌ	Chr Act						5	Acı	້
BC WQG FWAL			n/a	n/a	n/a	0.001-0.03 ^a 0.0009-0.01 ^a	0.025-0.15 ^a	n/a	2	0.0001-0.003ª 0.00005-0.0015ª	n/a	n/a	n/a	n/a	n/a	0.0085	0.033-2ª	0.0075-2ª
Elkview Operation																		
EV_GC2	EV_MC6_WS_2022-05_MON_N	2022-05-05		0.021		0.00857	0.00126	1.77	48.5	< 0.000010		0.41		< 0.00010	0.00148	0.00233		0.0030
EV_GC2	EV_MC8_WS_2022-05_MON_N	2022-05-05			52.9	0.0089	0.00124	1.8	49.2	0.000014		0.41		< 0.00010	0.00154	0.00233		0.0030
EV_GC2	EV_GC2_WS_2022-05-07_N_1832	2022-05-07			< 0.005		< 0.00050	< 0.050	< 0.050	< 0.000010		50.000	< 0.000010	< 0.00010	< 0.00030	< 0.000010		0.0030
EV_GC2	EV_GC2_WS_2022-05-07_N_0655	2022-05-07	-	-	-	-	-	-	-	-	-		-	-	-	-		-
EV_GC2 EV_GC2	EV GC2 WS 2022-05-08 N 1837 EV GC2 WS 2022-05-08 N 0700	2022-05-08	-	-	-		-	<u> </u>	-	-	<u></u>	+-	-	-	-	-		-
EV_GC2	EV GC2 WS 2022-05-08 N 0700 EV GC2 WS 2022-05-09 N 0655	2022-05-09	-	-	-	-		-			+:	H		-		-		-
EV_GC2	EV GC2 WS 2022-05-09 N 0655 EV GC2 WS 2022-05 WEK20 N	2022-05-09	-		-	-	-			-	H	_		-				-
EV GC2	EV GC2 WS 2022-05-10 N 1846	2022-05-10	-	-	-	-	-	-	-	-	1 -		-	-	-	-		-
EV GC2	EV GC2 WS 2022-05-10 N 0650	2022-05-10	-	-	-	-	-	-	-	-	1 -		-	-	-	-		-
EV_GC2	EV GC2 WS 2022-05-11 N 0800	2022-05-11	-	-	-	-	,	-	-	-	-	-	-	-	-	-		-
EV_GC2	EV_GC2_WS_2022-05_WEK21_N	2022-05-16	-	-	-	-		-	-	-	-		-	-	-	-		-
EV_GC2	EV_GC2_WS_2022-05_WEK22_N	2022-05-24	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
EV_GC2	EV_GC2_WS_2022-05_WEK23_N	2022-05-30	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
EV_GC2	EV GC2 WS 2022-06 MON N	2022-06-08	-	- 0.005	- 04.4	- 0.0000	0.00113	1.9	- 07.4	< 0.00010	7.47	0.39	< 0.000010	< 0.00010	< 0.00030	0.00298		0.0030
EV_GC2	EV GC2 WS 2022-06-13 N 1742 EV GC2 WS 2022-06 WEK25 N	2022-06-13 2022-06-14	561	0.025	61.1	0.00892	0.00113	1.9	67.4	< 0.000010	7.17	0.39	< 0.000010		< 0.00030	0.00298		-
EV GC2 EV GC2	EV GC2 WS 2022-06 WER25 N EV GC2 WS 2022-06-14 N 0740	2022-06-14				-		-	-	-	H	+:	-	-		-		-
EV GC2	EV GC2 WS 2022-06-14 N 2106	2022-06-14		-		-		-	-	-	1	1		-	-	-		-
EV GC2	EV GC2 WS 2022-06-15 N 1553	2022-06-15	-	-	-	-		-	-	-	-	-	-	-	-	-		-
EV_GC2	EV GC2 WS 2022-06-15 N 0840	2022-06-15	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
EV_GC2	EV GC2 WS 2022-06-16 N 0800	2022-06-16	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
EV_GC2	EV_GC2_WS_2022-06-18_N_0810	2022-06-18	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
EV GC2 EV GC2	EV GC2 WS 2022-06-19 N 1825 EV GC2 WS 2022-06-19 N 0735	2022-06-19	-	-	-	-	-	-	-	-	H	H:	-	-	-	-		-
EV GC2	EV GC2 WS 2022-06-19 N 0735 EV GC2 WS 2022-06-20 N 1550	2022-06-19				-			-	1	H:	_	-	-		- :		-
EV GC2	EV GC2 WS 2022-06-20 N 0730	2022-06-20	_	0.023		0.0148	0.00169	2.22	48.5	< 0.00010		0.39	0.000014	< 0.00010	< 0.00450	0.00258		0.0030
EV GC2	EV GC2 WS 2022-06-21 N	2022-06-21	-	-	-	-	-	-	-	-	-	-	-	-	-	-	,	-
EV GC2	EV GC2 WS 2022-06 NP	2022-06-22	487	0.023	52.1	0.0134	0.00157	1.99	48.6	< 0.000010	7.34	0.43	0.000011	< 0.00010	0.00375	0.00261	< 0.	0.0030
EV_GC2	EV_GC2_WS_2022-06_WEK27_N	2022-06-27	-	0.023	54.2	0.0131	0.00124	1.95	53.5	< 0.000010	7.56	0.4	< 0.000010	< 0.00010	0.0006	0.00258	< 0.	0.0030
EV_GC2	EV GC2 WS 2022-07-05 N	2022-07-05	-	-	-	-	-	-	-	-	-		-	-	-	-		-
EV_GC2	EV GC2 WS 2022-Q3 N	2022-07-06		0.026		0.0169	0.00173	2.32	66.3	0.000011		0.39		< 0.00010	< 0.00210	0.00313		0.0030
EV_GC2 EV GC2	EV GC2 WS 2022-07 WEK29 N EV GC2 WS 2022-08 MON N	2022-07-11	548	0.025	58.5	0.0107	0.0012	2.04	73.6	< 0.000010	6.9	0.4	< 0.000010	< 0.00010	< 0.00060	0.00329	< 0.	0.0030
EV GC2	EV GC2 WS 2022-08 MON N EV GC2 WS 2022-09 MON N	2022-08-10	620	0.029	82.2	0.00449	0.0013	2.1	97.6	< 0.00010	7 21	0.36	0.000013	< 0.00010	0.00046	0.00439	< 0	0.0030
EV GC2	EV GC2 WS 2022-Q4 N	2022-10-05	625			0.00386	0.00134	1.97	90.4	< 0.000010		0.39		< 0.00010	< 0.00030	0.00358		0.0030
EV GC2	EV GC2 WS 2022-11 MON N	2022-11-09	653		86.4	0.00735	0.00143	2.06	84	< 0.000010	8.72	0.43		< 0.00010	0.00039	0.00368	< 0.	0.0030
EV_GC2	EV GC2 WS 2022-11-15 N	2022-11-15	629		71.8	0.0102	0.00145	2.07	71.4	< 0.000010		0.47		< 0.00010	0.00057	0.00309		.0034
EV_GC2	EV_GC2_WS_2022-11-17_N	2022-11-17	647		78.4	0.00977	0.00145	2.09	70.5	< 0.000010		0.49		< 0.00010	0.00054	0.00372		0.0030
EV_GC2	EV_GC2_WS_2022-11-19_N	2022-11-19	662		69.4	0.00945	0.00147	2.02	73.7	< 0.000010		0.45		< 0.00010	0.00047	0.00316		0.0030
EV_LC1 EV_LC1	EV LC1 WS 2022-Q1 N EV LC1 WS 2022-02 MON N	2022-01-14	649 449		77.1 58.1	0.00881 0.0269	0.00131 0.00271	1.97 3.93	74.2 3.34	< 0.000010 0.000014		0.46		< 0.00010 < 0.00010	0.00082 0.0108	0.00344 0.00273		.0030
EV_LC1	EV LC1 WS 2022-02 MON N EV LC1 WS 2022-03 MON N	2022-02-07	486			0.0269	0.00271	4.55	3.34	< 0.000014		0.41		< 0.00010	< 0.0108	0.00273		.0035
EV LC1	EV LC1 WS 2022-03 MON N	2022-03-10		0.052		0.0272	0.00199	3.78	4.42	0.000010		0.45		< 0.00010	0.00337	0.00296		.0061
EV LC1	EV LC1 WS 2022-04-15 N	2022-04-15		0.062		0.012	0.00148	4.6	5.48	< 0.000010		0.51		< 0.00010	< 0.00030	0.0035		0.0030
EV_LC1	EV LC1 WS 2022-05 MON N	2022-05-05		0.063		0.0123	0.00168	4.22	5.31	< 0.000010		0.5	< 0.000010	< 0.00010	< 0.00030	0.00361		0.0030
EV_LC1	EV_LC1_WS_2022-06_MON_N	2022-06-08	521	0.076		0.0121	0.00182	4.9	4.87	< 0.000010		0.55	0.00001	< 0.00010	< 0.00030	0.00354		0.0030
EV_LC1	EV_LC1_WS_2022-Q3_N	2022-07-06		0.066		0.00719	0.00152	4.5	4.02	< 0.000010		0.53		< 0.00010	< 0.00030	0.00319		0.0030
EV_LC1	EV_LC1_WS_2022-08_MON_N	2022-08-08		0.061		0.00919	0.00196	4.33	4.02	< 0.000010		0.53	0.00001	< 0.00010	0.00081	0.00287		0.0030
EV_LC1	EV_LC1_WS_SESMP_2022_08_N	2022-08-12	636	0.064	72.5	0.00294	0.00181	4.02	1.51	< 0.000010	17.36	0.51	< 0.000010	< 0.00010	< 0.00030	0.00284	< 0.	0.0030

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

			1								Total Metals							
																		,
													_					,
			SS	Ē	È			<u>*</u>	ے		 <u>€</u>	ء ا	<u> </u>					
			ᆲ	듵	<u><u>ë</u></u>	Ĕ	§	≝	į	5	l É	Cir.	nim o	ä	<u>a</u>			,
Comple	Comple	Sample Date	a a	늘	Ę	l Se	i i	, è	isi	or or	Cad	S		8	eddo;	e e	ead	
Sample Location	Sample ID	(mm/dd/yyyy)	ma/l	∢ mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg.		mg/L	
Location	ID ID	(IIIII) dd/yyyy)	mg/L	mg/L	mg/L	mg/L	g/L	U U	mg/L		mg/L	mg/L	IIIg/L		mg		llig/L	
						멸	, ii	<u>=</u>		l i				g g		a	a a	onic
						و	ह	ह		Chronic				Acute Chronic		و	10	, į
BC WQG FWAL			n/a	n/a	n/a	0.005	1	0.00013	n/a	1.2	n/a	n/a	n/a	0.11 0.004	n/a	1	0.003-5.5°	3.3-3.5ª
Elkview Operation			11/4	11/4	11/4	0.000		0.00010	104	1.2	1174	11/4	11/4	0.11 0.004	100	•	0.000-0.0	0.0-0.0
EV LC1	EV LC1 WS 2022-09 MON N	2022-09-07	634	0.0055	0.00016	0.00014	0.173	< 0.020	< 0.000050	0.038	0.0000277	121	< 0.00010	< 0.10	< 0.00050	0.076	< 0.000	J050
EV_LC1	EV_LC1_WS_2022-Q4_N	2022-10-03	627	0.0052	0.00012	0.00019	0.209	< 0.020	< 0.000050	0.044	0.000027	141	< 0.00010	< 0.10	< 0.00050	0.048	< 0.000	
EV_LC1	EV_ER5_WS_2022-Q4_N	2022-10-03	636	0.005	0.00014	0.00015	0.195	< 0.020	< 0.000050	0.043	0.0000232	136	< 0.00010	< 0.10	< 0.00050	0.059	< 0.000	
EV_LC1	EV_ER7_WS_2022-Q4_N	2022-10-03	636	0.0055	0.00013	0.00014	0.187	< 0.020	< 0.000050	0.042	0.0000319	140	< 0.00010	< 0.10	< 0.00050	0.06	< 0.000 < 0.000	
EV_LC1	EV_LC1_WS_2022-11_MON_N	2022-11-09	< 0.50 540	< 0.0030	< 0.00010 0.00016	< 0.00010	< 0.00010	< 0.020	< 0.000050	< 0.010	< 0.0050	< 0.050	< 0.00010	< 0.10 < 0.10	< 0.00050 < 0.00050	< 0.010	< 0.000	
EV_MC2 EV MC2	EV_MC2_WS_2022-01-06_N-SRF EV_MC2_WS_2022-01-17_N-SRF	2022-01-06	296	0.0115	0.00016	0.00013	0.163 0.104	< 0.020 < 0.020	< 0.000050 < 0.000050	0.041	0.00002 0.0000278	108 75.7	0.0003	0.00014	< 0.00050	0.081	< 0.000	
EV_MC2 EV_MC2	EV MC2 WS 2022-01-17 N-SRF EV MC2 WS 2022 Q1 N	2022-01-17	273	0.0125	< 0.0001	0.00016	0.104	< 0.020	< 0.000050	0.013	0.0000278	66.9	0.00025	0.00017	< 0.00050	0.018	0.0000	
EV MC2	EV MC2 WS 2022-01-31 N-SRF	2022-01-10	292	0.0211	< 0.00010	0.00021	0.107	< 0.020	< 0.000050	0.012	0.0000333	76.2	0.00016	0.00016	< 0.00050	0.027	< 0.000	J050
EV MC2	EV MC2 WS 2022 Q1 WK0 N	2022-02-01	278	0.0262	< 0.00010	0.00017	0.099	< 0.020	< 0.000050	0.012	0.0000358	74	0.00018	0.00016	< 0.00050	0.037	< 0.000	
EV_MC2	EV MC2 WS 2022-02 MON N	2022-02-08	325	0.01	0.0001	0.00015	0.103	< 0.020	< 0.000050	0.014	0.0000304	80.2	0.0002	0.00016	< 0.00050	0.016	< 0.000	
EV_MC2	EV_MC2_WS_2022-02-14_N-SRF	2022-02-14	326	0.0157	0.00011	0.0002	0.112	< 0.020	< 0.000050	0.012	0.0000278	72.3	0.00021	0.00014	< 0.00050	0.025	< 0.000	
EV_MC2	EV_MC2_WS_2022_Q1_WK1_N	2022-02-15	299	0.0077	0.00013	0.00017	0.114	< 0.020	< 0.000050	0.014	0.0000284	76.6	0.00014	0.00013 0.00011	< 0.00050	0.012	< 0.000 < 0.000	
EV MC2 EV MC2	EV MC2 WS 2022 Q1 WK2 N EV MC2 WS 2022-02-28 N-SRF	2022-02-22	347 434	0.0101	0.00014 0.00013	0.00016	0.105 0.131	< 0.020 < 0.020	< 0.000050 < 0.000050	0.014	0.0000357	85.2 107	0.00019	0.00011	< 0.00050 < 0.00050	0.016	< 0.000	
EV_MC2	EV MC2 WS 2022-02-26 N-SRF EV MC2 WS 2022 Q1 WK3 N	2022-03-01	332	0.0084	0.00013	0.00021	0.131	< 0.020	< 0.000050	0.019	0.0000434	72.1	0.00027	0.00015	< 0.00050	0.017	< 0.000	
EV MC2	EV MC2 WS 2022 Q1 WK4 N	2022-03-08	307	0.0428	0.00012	0.00027	0.104	< 0.020	< 0.000050	0.014	0.0000233	80.2	0.00036	0.00017	< 0.00050	0.036	0.0000	
EV MC2	EV MC2 WS 2022-03-14 N-SRF	2022-03-14	321	0.0079	0.00011	0.00015	0.102	< 0.020	< 0.000050	0.012	0.0000322	72.9	0.00015	0.00012	< 0.00050	< 0.010	< 0.000	
EV_MC2	EV_MC2_WS_2022_Q1_WK5_N	2022-03-15	286	0.0094	0.00011	0.00016	0.115	< 0.020	< 0.000050	0.012	0.0000264	78.5	0.00016	0.00012	< 0.00050	0.012	< 0.000	
EV_MC2	EV_MC2_WS_2022-03_MON_N	2022-03-16	316	0.0143	0.00011	0.00017	0.1	< 0.020	< 0.000050	0.01	0.0000274	63.6	0.00016	0.00011	< 0.00050	0.018	< 0.000	
EV_MC2	EV MC5 WS 2022-03 MON N	2022-03-16	331	0.0132	0.00011	0.00017	0.106	< 0.020	< 0.000050	0.013	0.0000336	81.9	0.00012	0.00012 0.00011	< 0.00050	0.015	< 0.000 < 0.000	
EV_MC2 EV MC2	EV MC2 WS 2022-03-21 N-SRF EV MC2 WS 2022-03 WEK13 N	2022-03-21	324 321	0.0171	0.00011 0.0001	0.0002	0.11 0.108	< 0.020 < 0.020	< 0.000050 < 0.000050	0.013 0.014	0.0000313	76.2 75.9	0.00019 0.00015	0.00011	< 0.00050 < 0.00050	0.018	0.0000	
EV_MC2	EV MC5 WS 2022-03 WEK13 N	2022-03-22	320	0.0104	0.00015	0.00017	0.108	< 0.020	< 0.000050	0.014	0.0000378	77.5	0.00013	0.00012	0.00030	0.019	0.0002	
EV MC2	EV MC2 WS 2022-03-28 N-SRF	2022-03-28	315	0.0269	0.00013	0.00015	0.11	< 0.020	< 0.000050	0.014	0.0000318	77.8	0.00022	0.00013	< 0.00050	0.024	< 0.000	0050
EV MC2	EV MC2 WS 2022-03-28 N-SRF 1	2022-03-28	268	0.0871	0.00011	0.00022	0.118	< 0.020	< 0.000050	0.012	0.0000406	68.2	0.00036	< 0.10	< 0.00050	0.08	0.0000	074
EV_MC2	EV MC2 WS 2022-03 WEK14 N	2022-03-29	308	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
EV_MC2	EV MC5 WS 2022-03 WEK14 N	2022-03-29	265	0.206	0.00014	0.00025	0.102	< 0.020	< 0.000050	0.012	0.0000583	66	0.00055	0.00014	0.00091	0.178	0.000	
EV_MC2	EV MC2 WS 2022-04-04 N-SRF	2022-04-04	275	0.234	0.00012	0.00024	0.104	< 0.020	< 0.000050	0.012	0.000056	64.6	0.00046	0.00011 < 0.10	0.00062	0.183	0.0001	
EV_MC2 EV_MC2	EV MC2 WS 2022-04 WEK15 N EV MC5 WS 2022-04 WEK15 N	2022-04-05 2022-04-05	262 284	0.0665	0.00011 0.00011	0.00019	0.113 0.106	< 0.020 < 0.020	< 0.000050 < 0.000050	0.011	0.0000393 0.000051	61.6 73.9	0.00025 0.00026	0.00012	< 0.00050 < 0.00050	0.055 0.133	0.0001	
EV MC2	EV MC2 WS 2022-04-10 N-SRF	2022-04-05	300	0.0476	0.00011	0.00021	0.108	< 0.020	< 0.000050	0.014	0.000031	73.6	0.00026	< 0.10	< 0.00050	0.133	< 0.000	
EV MC2	EV MC2 WS 2022-04-11 N-SRF	2022-04-11	272	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV MC2 WS 2022-04-11 N-SRF 1	2022-04-11	287	0.0341	0.00011	0.0002	0.11	< 0.020	< 0.000050	0.012	0.0000294	65.9	< 0.00030	< 0.10	< 0.00050	0.038	< 0.000	
EV_MC2	EV MC2 WS 2022-Q2 N	2022-04-12	273		-	-	-	-	-	-	-	-	-	-	-	-	-	
EV_MC2	EV MC2 WS 2022-04-12 N-SRF	2022-04-12	278	0.0208	0.00012	0.00017	0.117	< 0.020	< 0.000050	0.013	0.0000327	73.4	0.00016	< 0.10	< 0.00050	0.026	< 0.000	
EV_MC2	EV MC2 WS 2022-04-13 N-SRF	2022-04-13	292		-				-	-	-	-	-	-	-	-	-	
EV_MC2 EV MC2	EV MC2 WS 2022-04-14 N-SRF EV MC2 WS 2022-04-15 N-SRF	2022-04-14 2022-04-15	296 292		-	- :		-		-	-	-	-	-		- :	-	
EV MC2	EV MC2 WS 2022-04-13 N-SRF EV MC2 WS 2022-04-16 N-SRF	2022-04-15	292		-		<u> </u>		-		-		-	-	-		-	
EV MC2	EV MC2 WS 2022-04-17 N-SRF	2022-04-17	287	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV MC2	EV MC2 WS 2022-04-18 N-SRF	2022-04-18	276		-	-	-	-	-	-	-	-		-	-	-	-	
EV_MC2	EV MC2 WS 2022-04-18 N-SRF 1	2022-04-18	302	0.0277	0.00011	0.00017	0.114	< 0.020	< 0.000050	0.012	0.0000326	71.4	0.00018	< 0.10	< 0.00050	0.028	< 0.000	
EV_MC2	EV_MC2_WS_2022-04_WEK17_N	2022-04-19						<u> </u>		-				-	-		- 0.000	
EV_MC2	EV MC5 WS 2022-04 WEK17 N	2022-04-19	288	0.0322	0.00012	0.0002	0.121	< 0.020	< 0.000050	0.012	0.0000372	71.8	0.00022	< 0.10 < 0.10	< 0.00050	0.039	< 0.000 < 0.000	
EV MC2 EV MC2	EV MC2 WS 2022-04-19 N-SRF	2022-04-19	294 306	0.0366	0.00011	0.00019	0.12	< 0.020	< 0.000050	0.013	0.0000389	72	0.00023	< 0.10	< 0.00050	0.039	\ 0.000	JUJU
EV_MC2	EV_MC2_WS_2022-04-20_N-SRF EV_MC2_WS_2022-04-21_N-SRF	2022-04-20	327		-		<u> </u>		-		-		<u> </u>	-			-	$\overline{}$
EV MC2	EV MC2 WS 2022-04-21 N-SRF	2022-04-21	291		-		-		-	-	-	-		-			-	
EV MC2	EV MC2 WS 2022-04-23 N-SRF	2022-04-23	289			1		1	1				_	-			-	$\overline{}$

Denotes concentration less than indicated detection limit
 Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

^d Guideline varies with pH

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

										Total Metals								
Sample	Sample	Sample Date	Hardness	Lithium	Magnesium	Manganese	Nickel*	Potassium	Selenium	Silver	Sodium	Strontium	Thallium	E	Titanium	Uranium*		Zinc
Location	ID	(mm/dd/yyyy)		mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	mg/L	mg/l	mg/L	mg/L	mg/L	mg/L	mg/L	m	ng/L
						Acute	Chronic		Chronic	Acute						Chronic	Acute	Chronic
BC WQG FWAL			n/a	n/a	n/a	0.001-0.03ª 0.0009-0.01ª	0.025-0.15 ^a	n/a	2	0.0001-0.003 ^a 0.00005-0.0015 ^t	n/a	n/a	n/a	n/a	n/a	0.0085	0.033-2 ^a	0.0075-2 ^a
Elkview Operation		_																
EV_LC1	EV_LC1_WS_2022-09_MON_N	2022-09-07		0.058		0.00421	0.00203	4.3	1.5	< 0.000010		0.48		< 0.00010	< 0.00030	0.00274		0.0030
EV_LC1 EV LC1	EV_LC1_WS_2022-Q4_N EV_ER5_WS_2022-Q4_N	2022-10-03	636	0.074	79.8	0.00197 0.00708	0.00199 0.00211	4.13 4.48	1.21	< 0.000010 < 0.000010		0.6		< 0.00010 < 0.00010	< 0.00030 < 0.00030	0.00285 0.00291		0.0030
EV_LC1	EV ER3 W3 2022-Q4 N EV ER7 WS 2022-Q4 N	2022-10-03		0.067		0.00708	0.00211	4.48	1.57	< 0.000010		0.54		< 0.00010	< 0.00030	0.00291		0.0030
EV LC1	EV LC1 WS 2022-04-10	2022-10-09			0.005		< 0.00050	< 0.050	< 0.050	< 0.000010		0.000		< 0.00010	< 0.00030	< 0.000010		0.0030
EV MC2	EV MC2 WS 2022-01-06 N-SRF	2022-01-06	540			0.0042	0.00183	4.45	2.51	< 0.000010		0.46	< 0.000010	< 0.00010	< 0.00030	0.00273		0.0030
EV MC2	EV MC2 WS 2022-01-17 N-SRF	2022-01-17	296			0.00411	0.00192	0.909	8.32	< 0.000010		0.19		< 0.00010	< 0.00030	0.00124	< 0	0.0030
EV_MC2	EV_MC2_WS_2022_Q1_N	2022-01-18	273	0.011	25.1	0.00579	0.00188	0.848	7.47	< 0.000010		0.18	< 0.000010	< 0.00010	0.0004	0.00137		0.0030
EV_MC2	EV_MC2_WS_2022-01-31_N-SRF	2022-01-31	292			0.0043	0.00196	0.953	9.58	< 0.000010		0.2	< 0.000010	< 0.00010	< 0.00030	0.0015		0.0030
EV_MC2	EV MC2 WS 2022 Q1 WK0 N	2022-02-01	278		27.8	0.00432	0.00194	0.93	8.54	< 0.000010		0.2	< 0.000010	< 0.00010	0.00033	0.00139		0.0030
EV_MC2	EV MC2 WS 2022-02 MON N	2022-02-08	325		30.6	0.00396	0.00207	1	15.4	< 0.000010		0.21		< 0.00010	< 0.00030	0.00149		0.0030
EV_MC2	EV_MC2_WS_2022-02-14_N-SRF	2022-02-14	326		29.7	0.00366	0.00214	1.01	9.3	< 0.000010		0.19		0.00012	< 0.00030	0.00151		0.0030
EV_MC2 EV MC2	EV_MC2_WS_2022_Q1_WK1_N	2022-02-15	299 347		33.6	0.00268 0.00303	0.00246	1.04	11.3	< 0.000010 < 0.000010		0.2	< 0.000010	< 0.00010	< 0.00030	0.00178		0.0030
EV_MC2	EV MC2 WS 2022 Q1 WK2 N EV MC2 WS 2022-02-28 N-SRF	2022-02-22 2022-03-01	434			0.00613	0.00254 0.0035	1.11	15.7 18.6	< 0.000010		0.21	< 0.000010 0.00001	0.00017 0.00032	< 0.00030 < 0.00030	0.00163 0.00231		0.0030
EV MC2	EV MC2 WS 2022-02-28 N-SRF EV MC2 WS 2022 Q1 WK3 N	2022-03-01		0.025		0.00304	0.0035	1.11	9.14	< 0.000010		0.23		< 0.00032	< 0.00030	0.00231		0.0030
EV MC2	EV MC2 WS 2022 Q1 WK3 N	2022-03-01	307			0.00368	0.00223	1.11	10.6	< 0.000010		0.19		< 0.00010	< 0.00030	0.00164		0.0030
EV MC2	EV MC2 WS 2022-03-14 N-SRF	2022-03-14	321			0.00253	0.00222	0.965	8.49	< 0.000010		0.19		< 0.00010	< 0.00030	0.00154		0.0030
EV MC2	EV MC2 WS 2022 Q1 WK5 N	2022-03-15	286		34.6	0.00264	0.00236	1.11	15	< 0.000010		0.2	< 0.000010	< 0.00010	< 0.00030	0.0017	< 0	0.0030
EV MC2	EV MC2 WS 2022-03 MON N	2022-03-16	316	0.012	27.2	0.00279	0.00231	0.963	10.2	< 0.000010	4.85	0.18	0.000012	< 0.00010	< 0.00030	0.00145	< 0	0.0030
EV MC2	EV MC5 WS 2022-03 MON N	2022-03-16	331	0.015	30	0.00285	0.00192	1.04	10.1	< 0.000010	5	0.2	< 0.000010	< 0.00010	0.00032	0.00154	< 0	0.0030
EV_MC2	EV_MC2_WS_2022-03-21_N-SRF	2022-03-21	324			0.00303	0.00216	1.08	10.1	< 0.000010		0.19	< 0.000010	< 0.00010	< 0.00030	0.00156		0.0030
EV_MC2	EV_MC2_WS_2022-03_WEK13_N	2022-03-22	321			0.00298	0.00207	1.07	11.3	< 0.000010		0.19	< 0.000010	< 0.00010	< 0.00030	0.00159		0.0030
EV MC2	EV MC5 WS 2022-03 WEK13 N	2022-03-22	320			0.00609	0.00228	1.19	11.6	< 0.000010		0.2	< 0.000010	< 0.00010	0.00122	0.00168		.0049
EV MC2	EV MC2 WS 2022-03-28 N-SRF	2022-03-28	315			0.00303	0.00202	1.14	11.1	< 0.000010		0.2	< 0.000010	< 0.00010	0.00067	0.00165		0.0030
EV_MC2	EV_MC2_WS_2022-03-28_N-SRF_1	2022-03-28	268		26.2	0.00331	0.00151	1 -	13.1 13.6	< 0.000010	4.57	0.17	< 0.000010	< 0.00010	< 0.00150	0.00119		0.005
EV MC2 EV MC2	EV MC2 WS 2022-03 WEK14 N	2022-03-29	308	0.011		0.00682	0.00166	1.07	12.1	< 0.000010		0.18	0.000014	< 0.00010	0.00373	0.00114	1	.0682
EV MC2	EV MC5 WS 2022-03 WEK14 N EV MC2 WS 2022-04-04 N-SRF	2022-03-29	275		24.8	0.00477	0.00152	1.01	12.1	< 0.000010		0.18		< 0.00010	0.00373	0.00114		0.0030
EV MC2	EV MC2 WS 2022-04-04 N-SK1	2022-04-05	262		27.9	0.00293	0.00132	0.932	10.6	< 0.000010		0.18		< 0.00010	0.00436	0.00112		0.0030
EV MC2	EV MC5 WS 2022-04 WEK15 N	2022-04-05	284			0.00413	0.00159	1.07	15.2	< 0.000010		0.19	0.000010	< 0.00010	0.00098	0.00132		.0041
EV MC2	EV MC2 WS 2022-04-10 N-SRF	2022-04-10	300			0.00277	0.00152	1.02	13.9	< 0.000010		0.2	< 0.000010	< 0.00010	0.0005	0.00126		0.0030
EV_MC2	EV MC2 WS 2022-04-11 N-SRF	2022-04-11	272	-	-	-	-	-	13.2	-	-	_	-	-	-	-		-
EV_MC2	EV_MC2_WS_2022-04-11_N-SRF_1	2022-04-11	287		26	0.00224	0.00158	0.952	14.3	< 0.000010	4.39	0.18	< 0.000010	< 0.00010	0.00054	0.00124	< 0	0.0030
EV_MC2	EV_MC2_WS_2022-Q2_N	2022-04-12	273		-	-	-	-	13.7		1 -	-	-	-	-	-		-
EV_MC2	EV MC2 WS 2022-04-12 N-SRF	2022-04-12	278			0.00225	0.00146	1.04	17.3	< 0.000010		0.2	< 0.000010	< 0.00010	< 0.00030	0.00143	< 0	0.0030
EV_MC2	EV MC2 WS 2022-04-13 N-SRF	2022-04-13	292		-	-	-	-	14.7	-	+-	-	-	-	-	-		-
EV_MC2 EV MC2	EV_MC2_WS_2022-04-14_N-SRF	2022-04-14	296		1	-	-	-	15.5 14.4	-	+ -	<u> </u>	-	-	-	-		-
EV_MC2 EV_MC2	EV MC2 WS 2022-04-15 N-SRF EV MC2 WS 2022-04-16 N-SRF	2022-04-15	292		-	-	-	-	13.4	1 - 1	+:	-	-	-	- :			-
EV MC2	EV_MC2_WS_2022-04-16_N-SRF EV_MC2_WS_2022-04-17_N-SRF	2022-04-16	287		1	-			14.8		T:	t i		<u> </u>		- :		-
EV MC2	EV MC2 WS 2022-04-17 N-SRF	2022-04-18	276		-	-	-	-	13	-	1 -	-	-	-	-	-		-
EV MC2	EV MC2 WS 2022-04-18 N-SRF 1	2022-04-18	302			0.00216	0.00146	0.956	16.6	< 0.000010	4.62	0.18	< 0.000010	< 0.00010	0.00036	0.0014	< 0	0.0030
EV_MC2	EV MC2 WS 2022-04 WEK17 N	2022-04-19	-	-	-	-	-	-	15.2	-	-	-	-	-	-	-		-
EV_MC2	EV_MC5_WS_2022-04_WEK17_N	2022-04-19	288		31.8	0.0024	0.00137	1.06	17.8	< 0.000010		0.21		< 0.00010	0.00046	0.00151		0.0030
EV_MC2	EV MC2 WS 2022-04-19 N-SRF	2022-04-19	294	0.012		0.00245	0.00129	1.01	16.7	< 0.000010	5.02	0.2	< 0.000010	< 0.00010	0.00048	0.00148	< 0	0.0030
EV_MC2	EV_MC2_WS_2022-04-20_N-SRF	2022-04-20	306		-	-	-	-	18.2	-	+-	-	-	-	-	-		-
EV_MC2	EV_MC2_WS_2022-04-21_N-SRF	2022-04-21	327		<u> </u>	-	-	-	17.2	-	+-	-	-	-	-	-		-
EV MC2	EV MC2 WS 2022-04-22 N-SRF	2022-04-22	291	1 -	-	-	-	1 -	14.1	-	1 -	1 -		-		-	1	-
EV MC2	EV MC2 WS 2022-04-23 N-SRF	2022-04-23	289						13.6									

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

			[Total Metals						
Sample	Sample	Sample Date	Hardness	Aluminum	Antimony	Arsenic	Barium*	Beryllium*	Bismuth	Boron	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	peer
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg	/L	mg/L
		•				Acute	Chronic	Chronic		Chronic				Acute Chronic		Acute	Acute Chronic
BC WQG FWAL			n/a	n/a	n/a	0.005	1	0.00013	n/a	1.2	n/a	n/a	n/a	0.11 0.004	n/a	1	0.003-5.5 ^a 3.3-3.5 ^a
Elkview Operation																	
EV_MC2	EV_MC2_WS_2022-04-24_N-SRF	2022-04-24	311	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-04-25_N-SRF_1	2022-04-25	350	-	-	-	-	-	-	-	-	-	-	-	-	-	
EV_MC2 EV MC2	EV_MC2_WS_2022-04-25_N-SRF EV_MC2_WS_2022-04-26_N-SRF	2022-04-25	272	0.0612	0.00012	0.00019	0.104	< 0.020	< 0.000050	0.012	0.000037	68.8	0.00017	< 0.10	< 0.00050	0.058	< 0.000050
EV_MC2	EV MC2 WS 2022-04-26 N-SRF P	2022-04-26	260	0.0612	0.00012	0.00019	0.104	- 0.020	- 0.000050	0.012	0.000037	- 00.0	0.00017	- 0.10	- 0.00050	0.036	- 0.000000
EV_MC2	EV MC2 WS 2022-04-26 N-SRF P	2022-04-26	- 200		-			-:-	-		-			-	-	-	-
EV MC2	EV MC2 WS 2022-04 WEK18 N	2022-04-26				-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC5_WS_2022-04_WEK18_N	2022-04-26	259	0.0821	0.00013	0.00019	0.104	< 0.020	< 0.000050	0.012	0.0000298	59.2	0.0002	< 0.10	< 0.00050	0.061	< 0.000050
EV_MC2	EV_MC2_WS_2022-04-27_N-SRF	2022-04-27	245	0.145	0.00012	0.00024	0.103	< 0.020	< 0.000050	0.012	0.0000437	59	0.0003	0.0001	< 0.00050	0.138	0.000108
EV_MC2	EV_MC2_WS_2022-04-27_N-SRF_P	2022-04-27	220	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-04-27_N-SRF_UP	2022-04-27	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-04-28_N-SRF	2022-04-28	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-04-29_N-SRF	2022-04-29	228	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV MC2 WS 2022-04-30 N-SRF	2022-04-30	257		-	-	-	- :	-	-	-	-	-	-	-	-	-
EV_MC2 EV MC2	EV_MC2_WS_2022-05-01_N-SRF EV_MC2_WS_2022-05-01_N-SRF_P	2022-05-01	261 268		-	-			- :	-	-	-		-	-	-	-
EV_MC2	EV MC2 WS 2022-05-01 N-SRF UP	2022-05-01	208		-	-			-	-				- :			
EV MC2	EV MC2 WS 2022-05-01 N-SRF 0F	2022-05-02	-						-		-			-	-		
EV MC2	EV MC2 WS 2022-05-02 N-SRF 1	2022-05-02	205	0.146	0.0001	0.00026	0.101	< 0.020	< 0.000050	0.011	0.0000392	53.7	0.00031	< 0.10	0.00051	0.134	0.000098
EV MC2	EV MC2 WS 2022-05-03 N-SRF	2022-05-03	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV MC2	EV MC2 WS 2022-05 MON N	2022-05-03	214	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV MC2 WS 2022-05-04 N-SRF	2022-05-04	198	0.307	0.00011	0.00029	0.0945	0.000022	< 0.000050	0.011	0.0000696	51	0.00052	0.0002	0.00072	0.264	0.000228
EV_MC2	EV_MC2_WS_2022-05-05_N-SRF	2022-05-05	171	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV MC2 WS 2022-05-06 N-SRF	2022-05-06	184	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV MC2 WS 2022-05-07 N-SRF	2022-05-07	113	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-05-08_N-SRF	2022-05-08	149	-	-	-	-	-	-	-	-	-	-		-	-	-
EV MC2 EV MC2	EV MC2 WS 2022-05-09 N-SRF EV MC2 WS 2022-05-10 N-SRF	2022-05-09 2022-05-10	166 162	0.31	0.00012	0.00031	0.0758	< 0.020	< 0.000050	< 0.010	0.0000556	42.7	0.00057	0.0002	0.00075	0.29	0.000208
EV_MC2	EV MC2 WS 2022-05-10 N-SRF EV MC2 WS 2022-05-11 N-SRF	2022-05-10	194	- 0.31	0.00012	0.00031	0.0758	< 0.020	< 0.000050	< 0.010	0.0000556	42.7	0.00057	0.0002	0.00075	0.29	0.000200
EV MC2	EV MC2 WS 2022-05 WEK20 N	2022-05-11	-		- 1							- :		-	-		-
EV MC2	EV MC5 WS 2022-05 WEK20 N	2022-05-11	179	0.212	0.00011	0.00025	0.0791	< 0.020	< 0.000050	0.01	0.0000423	45	0.00041	0.00015	0.00057	0.188	0.000125
EV MC2	EV MC2 WS 2022-05-12 N-SRF	2022-05-12	179	0.214	0.00011	0.00027	0.0788	< 0.020	< 0.000050	0.011	0.0000423	44.1	0.00041	0.00014	0.00057	0.186	0.000132
EV_MC2	EV_MC10_WS_2022-05-12_N-SRF	2022-05-12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV MC2 WS 2022-05-13 N-SRF	2022-05-13	-		-	-		-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC10_WS_2022-05-13_N-SRF	2022-05-13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV MC2 WS 2022-05-14 N-SRF	2022-05-14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV MC10 WS 2022-05-14 N-SRF	2022-05-14	-	-	-	-	-		-	-		-	-	-	-	-	-
EV_MC2 EV MC2	EV MC2 WS 2022-05-15 N-SRF EV MC10 WS 2022-05-15 N-SRF	2022-05-15 2022-05-15	-		- :	-		-	-	-	-	-	-		-	-	-
EV_MC2	EV MC10 WS 2022-05-15 N-SRF EV MC2 WS 2022-05-16 N-SRF	2022-05-15			- -	<u> </u>	-	<u> </u>	- -			<u> </u>	- -	-		<u> </u>	-
EV_MC2	EV_MC2_WS_2022-05-16_N-SRF 1	2022-05-16	171	0.105	< 0.00010	0.00023	0.0821	< 0.020	< 0.000050	0.01	0.0000423	42.9	0.00028	0.00012	< 0.00050	0.101	0.000088
EV MC2	EV MC10 WS 2022-05-16 N-SRF	2022-05-16	- '	-	- 0.00010		- 0.0021	- 0.020	-	-	-	-	-	-	- 0.00000		-
EV MC2	EV MC2 WS 2022-05 WEK21 N	2022-05-17	175	0.124	0.0001	0.00024	0.0803	< 0.020	< 0.000050	0.011	0.0000397	45.3	0.00037	0.00013	< 0.00050	0.114	0.000097
EV MC2	EV MC5 WS 2022-05 WEK21 N	2022-05-17	151	0.233	< 0.00010	0.00031	0.082	0.000024	< 0.000050	< 0.010	0.00011	44.3	0.00041	0.00035	0.00092	0.226	0.000335
EV_MC2	EV MC2 WS 2022-05-17 N-SRF	2022-05-17	149	0.511	0.00012	0.00041	0.0734	0.000027	< 0.000050	< 0.010	0.000108	42.6	0.00092	0.00042	0.00117	0.52	0.000447
EV_MC2	EV MC10 WS 2022-05-17 N-SRF	2022-05-17	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-05-18_N-SRF	2022-05-18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC10_WS_2022-05-18_N-SRF	2022-05-18	-	-	-	-	-		-	-	-	-	-	-	-	-	-
EV_MC2	EV MC2 WS 2022-05-19 N-SRF	2022-05-19	-		-	-	-	-	-	-		-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-05-20_N-SRF	2022-05-20			-												

Denotes concentration less than indicated detection limit
 Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

^d Guideline varies with pH

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

										Total Metals							
			Π							Total Metals	Т	Т					
					E	9		_									
			rdness	mjr	gnesiu	ngane	*ke	tassiun	enium	Silver	Sodium	Strontium	allium	_	Titanium	ranium*	2
Sample	Sample	Sample Date	표	=	Magr	Ma	Nicl	P ₀	S		ြတ္တ	Str	£	늗	l ≓	ຼ່	Ϊ́
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	mg/L	mg/l	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
						Acute	Chronic		Chronic	Acute						Chronic	Acute
BC WQG FWAL			n/a	n/a	n/a	0.001-0.03 ^a 0.0009-0.01 ^a	0.025-0.15 ^a	n/a	2	0.0001-0.003 ^a 0.00005-0.0015 ^a	n/a	n/a	n/a	n/a	n/a	0.0085	0.033-2 ^a 0.0075-2 ^a
Elkview Operation																	
EV_MC2	EV_MC2_WS_2022-04-24_N-SRF	2022-04-24	311	-	-	-		-	16.8	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-04-25_N-SRF_1	2022-04-25	350	-	-	-	-	-	22.2	-	٠.	-	-	-	-	-	-
EV_MC2 EV MC2	EV_MC2_WS_2022-04-25_N-SRF	2022-04-25	- 070	-	27.2	-	- 0.00440	- 0.004	12.4		-	0.18	- 0.000040	- 0.00040	- 0.00404	- 0.00447	
EV_MC2 EV MC2	EV_MC2_WS_2022-04-26_N-SRF EV_MC2_WS_2022-04-26_N-SRF_P	2022-04-26 2022-04-26	272 260	0.011	27.2	0.00229	0.00113	0.891	12.1 11.5	< 0.000010	4.45	-	< 0.000010	< 0.00010	0.00104	0.00117	< 0.0030
EV_MC2	EV_MC2_WS_2022-04-26_N-SRF_P EV_MC2_WS_2022-04-26_N-SRF_UP	2022-04-26	200	+ -	-	-			14.2	1 :	H÷.	+:	-	-	-	-	-
EV_MC2	EV MC2 WS 2022-04-20 N-SKI OF	2022-04-26		-	-	-	-		14.9	-	H	T i	-				-
EV MC2	EV MC5 WS 2022-04 WEK18 N	2022-04-26	259	0.01	23.2	0.00132	0.00114	0.898	11.5	< 0.000010	4.39	0.17	< 0.000010	< 0.00010	< 0.00180	0.00112	< 0.0030
EV_MC2	EV_MC2_WS_2022-04-27_N-SRF	2022-04-27	245		22.7	0.00463	0.00133	0.876	10.7	< 0.000010		0.16		< 0.00010	0.00232	0.00111	< 0.0030
EV MC2	EV MC2 WS 2022-04-27 N-SRF P	2022-04-27	220	-	-	-	-	-	8.08	-	-	-	-	-	-	-	
EV_MC2	EV_MC2_WS_2022-04-27_N-SRF_UP	2022-04-27	-	-	-	-		-	8.98	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-04-28_N-SRF	2022-04-28		-	-	-	-	-	8.68	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-04-29_N-SRF	2022-04-29	228	-	-	-	-	-	8.69	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-04-30_N-SRF	2022-04-30	257	-	-	-	-	-	12.5	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-05-01_N-SRF	2022-05-01	261	-	-	-	-	-	11.4	-	٠.	-	-	-	-	-	
EV_MC2	EV_MC2_WS_2022-05-01_N-SRF_P	2022-05-01	268	-	-	-	-	-	9.12	-	٠-	-	-	-	-	-	-
EV_MC2 EV_MC2	EV MC2 WS 2022-05-01 N-SRF UP	2022-05-01	-	-	-	-	-	-	9.71	<u> </u>	-	1	-	-	-	-	
EV_MC2	EV MC2 WS 2022-05-02 N-SRF EV MC2 WS 2022-05-02 N-SRF 1	2022-05-02	205	- 0.000	20.5	0.00423	0.00128	0.793	7.37	< 0.000010	4.04	0.15	< 0.000010	< 0.00010	0.00238	0.000951	< 0.0030
EV_MC2	EV MC2 WS 2022-05-02 N-SRF 1	2022-05-02	203	0.006	20.5	0.00423	0.00126	0.793	7.79	< 0.000010	4.0	0.13	- 0.000010	< 0.00010	0.00236	0.000931	- 0.0030
EV MC2	EV MC2 WS 2022-05 MON N	2022-05-03	214		-	_			8.79	-	+ -	t i				-	
EV MC2	EV MC2 WS 2022-05-04 N-SRF	2022-05-04	198	0.008		0.0101	0.00165	0.826	6.76	< 0.000010	3.7	0.15	0.000014	< 0.00010	0.00622	0.000871	< 0.0030
EV MC2	EV MC2 WS 2022-05-05 N-SRF	2022-05-05	171	-	-	-	-	-	4.76	-	-	_	-	-	-	-	-
EV MC2	EV MC2 WS 2022-05-06 N-SRF	2022-05-06	184	-	-	-	-	-	9.03	-	-	-	-	-	-	-	-
EV_MC2	EV MC2 WS 2022-05-07 N-SRF	2022-05-07	113	-	-	-		-	2.21	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-05-08_N-SRF	2022-05-08	149	-	-	-	-	-	4.54	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-05-09_N-SRF	2022-05-09	166	-	-	-	-	-	3.8	-	-		-	-	-	-	
EV_MC2	EV_MC2_WS_2022-05-10_N-SRF	2022-05-10	162			0.0078	0.00172	0.781	5.69	0.000012		0.12	0.000016	0.00011	0.0046	0.000627	0.0042
EV_MC2	EV MC2 WS 2022-05-11 N-SRF	2022-05-11	194	-	-	-	-	-	6.9	-	-	_	-	-	-	-	-
EV_MC2 EV MC2	EV MC2 WS 2022-05 WEK20 N EV MC5 WS 2022-05 WEK20 N	2022-05-11 2022-05-11	179	0.007	15.1	0.00535	0.00156	0.736	9.97 5.44	< 0.000010		0.12	0.000012	< 0.00010	0.0035	0.000695	< 0.0030
EV MC2	EV MC3 WS 2022-05 WER20 N EV MC2 WS 2022-05-12 N-SRF	2022-05-11	179			0.00559	0.00156	0.735	5.44	< 0.000010		0.12	0.000012	< 0.00010	< 0.0035	0.000702	< 0.0030
EV MC2	EV MC10 WS 2022-05-12 N-SRF	2022-05-12		-	-	-	- 0.00147	- 0.700	5.22	-	-		-	- 0.00010	- 0.00420	- 0.000702	- 0.0000
EV MC2	EV MC2 WS 2022-05-13 N-SRF	2022-05-13	١.	-	-	-	-	-	5.32	-	١.	١.	-	-	-	-	
EV MC2	EV MC10 WS 2022-05-13 N-SRF	2022-05-13	_	_		-	-		5.43	-	1 -	_	-			-	-
EV_MC2	EV MC2 WS 2022-05-14 N-SRF	2022-05-14	-	-	-	-	-	-	5.26	-	-	-	-	-	-	-	
EV_MC2	EV_MC10_WS_2022-05-14_N-SRF	2022-05-14	-	-	-	-	-	-	5.5	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-05-15_N-SRF	2022-05-15	-	-	-	-	-	-	5.54	-	١.	-	-	-			-
EV_MC2	EV MC10 WS 2022-05-15 N-SRF	2022-05-15	-		-	-	-	-	5.68	-	+-	! -	-				-
EV_MC2	EV_MC2_WS_2022-05-16_N-SRF	2022-05-16		-	- 10.0	-			5.98		-				-		-
EV_MC2 EV MC2	EV MC2 WS 2022-05-16 N-SRF 1 EV MC10 WS 2022-05-16 N-SRF	2022-05-16 2022-05-16	171	0.006	16.8	0.00418	0.00156	0.704	5.87 5.44	< 0.000010	3.78	0.13	< 0.000010	< 0.00010	0.00142	0.000677	0.0124
EV_MC2	EV MC10 WS 2022-05-16 N-SRF EV MC2 WS 2022-05 WEK21 N	2022-05-16	175			0.00403	0.00156	0.725	5.485	< 0.000010		0.14		< 0.00010	0.00174	0.000691	0.0074
EV MC2	EV MC5 WS 2022-05 WEK21 N	2022-05-17	151		15.3	0.0166	0.00206	0.644	4.26	< 0.000010		0.12		< 0.00010	0.00279	0.00056	0.0041
EV MC2	EV MC2 WS 2022-05-17 N-SRF	2022-05-17	149		13.6	0.0192	0.00246	0.736	4.28	0.000019		0.12	0.000012	< 0.00010	0.00537	0.000603	0.0052
EV MC2	EV MC10 WS 2022-05-17 N-SRF	2022-05-17		-	-	-	-	-	3.54	-	<u> </u>	<u> </u>	-	-	-	-	-
EV MC2	EV MC2 WS 2022-05-18 N-SRF	2022-05-18	-	-	-	-	-		3.56	-	_	-	-			-	-
EV_MC2	EV MC10 WS 2022-05-18 N-SRF	2022-05-18	-	-	-	-	-	-	3.58	-	-	-	-	-	-	-	
EV_MC2	EV_MC2_WS_2022-05-19_N-SRF	2022-05-19	-	-	-	-		-	3.62	-	ļ -	-	-	-	-	-	-
EV MC2	EV MC2 WS 2022-05-20 N-SRF	2022-05-20	- 1	l -	I -	-	_	-	4.78	-	1 -	l -	-	-	-	-	

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

			Γ								Total Metals						
			s	ε	>			* <u></u>			ء		Ε				
			Seu	i E	5	ခု	* E	in in in	smuth	_	Cadmium	Ę	romium	=	- E		
			ard	5	늍	Arsenic	ari E	erylli		oro	뷻	Calciu	≗	Cobalt	obbei	5	ead
Sample Location	Sample ID	Sample Date (mm/dd/yyyy)	ma/l	∢ mg/L	Mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	O mg	_=_	mg/L
Location	10	(IIIII) dayyyy)	mg/L	mg/L	mg/L	mg/L	.e	ilg/L	mg/L		mg/L	mg/L	mg/L		g	<u> </u>	
						Acute	5	ΙĒΙ		ronic				Acute		Acute	Acute
						Ac	Chror	ភ		5				S S		Ψc	
BC WQG FWAL			n/a	n/a	n/a	0.005	1	0.00013	n/a	1.2	n/a	n/a	n/a	0.11 0.004	n/a	1	0.003-5.5 ^a 3.3-3.5 ^a
Elkview Operation	514 MOD WO 0000 00 04 M 0D5	0000 05 04								1				1	1		ı
EV_MC2 EV_MC2	EV MC2 WS 2022-02-21 N-SRF EV MC2 WS 2022-05-22 N-SRF	2022-05-21 2022-05-22			-	-		-	-	-	-	-	-		-	-	-
EV MC2	EV MC2 WS 2022-05-22 N-SRF	2022-05-23	-		-	-		-	-	-			-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-05_WEK22_N	2022-05-24	184	0.103	0.0001	0.00022	0.0823	< 0.020	< 0.000050	0.011	0.0000356	48.5	0.00026	0.00011	< 0.00050	0.087	0.000052
EV_MC2	EV MC5 WS 2022-05 WEK22 N	2022-05-24	180	0.126	0.00011	0.00024	0.0748	< 0.020	< 0.000050	< 0.010	0.0000397	45.4	0.00031	0.00012	< 0.00050	0.102	0.000067
EV_MC2	EV_MC2_WS_2022-05-24_N-SRF	2022-05-24	194	0.124	0.00011	0.00027	0.0712	< 0.020	< 0.000050	< 0.010	0.0000466	46.5	0.0003	0.00013	0.00052	0.115	0.000095
EV_MC2 EV MC2	EV MC2 WS 2022-05-25 N-SRF EV MC2 WS 2022-05-26 N-SRF	2022-05-25 2022-05-26		-	-	-	-	-	-	-	-	-	-		-	-	-
EV_MC2	EV MC2 WS 2022-05-20 N-SRF	2022-05-26			-				-	-	-			-		-	-
EV_MC2	EV MC2 WS 2022-05-28 N-SRF	2022-05-28	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV MC2 WS 2022-05-29 N-SRF	2022-05-29	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-05-30_N-SRF	2022-05-30	- 407		-			-			-	- 40.0		0.00023		- 0.070	0.000242
EV_MC2 EV MC2	EV_MC2_WS_2022-05-30_N-SRF_1 EV_MC2_WS_2022-05_WEK23_N	2022-05-30	137	0.317	0.0001	0.00029	0.0672	0.000022	< 0.000050	< 0.010	0.0000538	42.3	0.00037	0.00023	0.00078	0.278	0.000242
EV_MC2	EV MC5 WS 2022-05 WER23 N	2022-05-31	153	0.342	0.00011	0.00034	0.0675	0.000025	< 0.000050	< 0.010	0.0000707	39.3	0.00052	0.00024	0.00076	0.354	0.000255
EV MC2	EV MC2 WS 2022-05-31 N-SRF	2022-05-31	150	0.364	0.0001	0.00034	0.0658	< 0.020	< 0.000050	< 0.010	0.0000767	39	0.00071	0.00025	0.00077	0.357	0.000242
EV MC2	EV MC2 WS 2022-06-01 N-SRF	2022-06-01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV MC2	EV MC2 WS 2022-06-02 N-SRF	2022-06-02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-06-03_N-SRF	2022-06-03	-		-	-		-	-	-	-	-	-	-	-	-	-
EV MC2 EV MC2	EV MC2 WS 2022-06-04 N-SRF EV MC2 WS 2022-06-05 N-SRF	2022-06-04 2022-06-05			-	-		-	-	-	- :			-	-	-	-
EV MC2	EV MC2 WS 2022-06-06 N-SRF	2022-06-06	-	-	-	-		-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-06_MON_N	2022-06-06	112	0.956	0.00014	0.00078	0.0693	0.000063	< 0.000050	< 0.010	0.000167	31.9	0.0014	0.00076	0.00232	1.32	0.000884
EV MC2	EV MC5 WS 2022-06 MON N	2022-06-06	122	0.685	0.00011	0.00049	0.0697	0.00005	< 0.000050	< 0.010	0.000147	33.4	0.00128	0.00061	0.00128	0.676	0.000671 0.000803
EV MC2 EV MC2	EV MC2 WS 2022 Q2 WK4 N EV MC2 WS 2022-06-07 N-SRF	2022-06-07	120 128	0.939 1.03	0.00013 0.00017	0.00064	0.0724	0.000063	< 0.000050 < 0.000050	< 0.010 < 0.010	0.000152 0.000207	31.9 37.5	0.00148	0.00071 0.00089	0.00164 0.00219	1.02	0.000803
EV_MC2	EV MC2 WS 2022-06-07 N-SRF	2022-06-07	120	1.03	0.00017	0.00000	0.0751	0.000003	- 0.000050	< 0.010	0.000207	37.3	0.00264	-	0.00219	1.30	- 0.0011
EV MC2	EV MC2 WS 2022-00-08 N-SRF	2022-06-09			-	-				-	-	-		-	-		-
EV MC2	EV MC2 WS 2022-06-10 N-SRF	2022-06-10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-06-11_N-SRF	2022-06-11	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV MC2 EV MC2	EV MC2 WS 2022-06-12 N-SRF EV MC2 WS 2022-06-13 N-SRF	2022-06-12 2022-06-13	-	-	-	-	-	-	-	-	-	-	-		-	-	-
EV MC2	EV MC2 WS 2022-06-13 N-SRF EV MC2 WS 2022-06 WEK25 N	2022-06-13	112	0.499	0.00011	0.00061	0.0754	0.000059	< 0.000050	< 0.010	0.000226	33.9	0.00086	0.00074	0.00161	0.718	0.000983
EV MC2	EV MC5 WS 2022-06 WEK25 N	2022-06-13	112	1.2	0.00017	0.00096	0.0779	0.000000	< 0.000050	< 0.010	0.000220	34.8	0.00211	0.00098	0.00274	1.79	0.00131
EV MC2	EV MC2 WS 2022 Q2 WK5 N	2022-06-14	109	1.14	0.00017	0.00095	0.077	0.000109	< 0.000050	< 0.010	0.00023	35.7	0.00189	0.00098	0.00267	1.77	0.00129
EV_MC2	EV MC2 WS 2022-06-14 N-SRF	2022-06-14	120	0.785	0.00016	0.00071	0.069	0.000066	< 0.000050	< 0.010	0.000157	31.4	0.00129	0.00065	0.00165	1.12	0.000757
EV_MC2	EV_MC2_WS_2022-06-15_N-SRF	2022-06-15	-		-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2 EV MC2	EV MC2 WS 2022-06-16 N-SRF EV MC2 WS 2022-06-17 N-SRF	2022-06-16 2022-06-17	-		-	-		-	-	-	-		-	-	-	-	-
EV MC2	EV MC2 WS 2022-06-17 N-SRF	2022-06-17			-									-			-
EV_MC2	EV MC2 WS 2022-06-19 N-SRF	2022-06-19	-	-	-	-	-	-		-	-	-	-	-	-	-	-
EV_MC2	EV MC2 WS 2022-06-20 N-SRF	2022-06-20	- 1											- 0.00044			- 0.000504
EV MC2	EV MC2 WS 2022-06-21 N-SRF	2022-06-21	131	0.567	0.00011	0.00053	0.0622	0.000039	< 0.000050	< 0.010	0.0000867	34.3	0.00098	0.00041	0.00109	0.79	0.000504
EV_MC2 EV MC2	EV MC2 WS 2022-06 WEK26 N EV MC5 WS 2022-06 WEK26 N	2022-06-21 2022-06-21	133	0.429	< 0.00010	0.00045	0.0611	0.000028	< 0.000050	< 0.010	0.0000675	35.7	0.00074	0.0003	0.00096	0.49	0.000364
EV MC2	EV MC2 WS 2022-06-22 N-SRF	2022-06-21	135	0.429	< 0.00010	0.00048	0.0616	0.000028	< 0.000050	< 0.010	0.000075	36.6	0.00074	0.00029	0.00096	0.49	0.000343
EV MC2	EV MC2 WS 2022-06-23 N-SRF	2022-06-23	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-06-24_N-SRF	2022-06-24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-06-25_N-SRF	2022-06-25	-		-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-06-26_N-SRF	2022-06-26	-	-	-		_	-	-			-	-	-	-		-

Denotes concentration less than indicated detection limit
 Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

^d Guideline varies with pH

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

Sample S	
Sample S	
Contained ID	Zinc
BCWGG PWAL No No No No No No No N	
BWGG FWAL	mg/L
Elviword Petword Pet	Acute
EV MC2	0.033-2 ^a 0.0075-2 ^a
EV MC2	
EV MC2	-
EV MC2	-
EV MC2	0.0048
EV MC2	< 0.0030
EV MC2	< 0.0030
EV MC2 EV MC2 WS 2022-05-28 N-SRF 2022-05-26	-
EV MC2 EV MC2 WS 2022-05-20 N-SRF 2022-05-20	-
EV MC2 EV MC2 WS 2022-05-20 N-SRF 2022-05-20	-
EV. MC2	-
EV MC2	
EV MC2	
EV MC2	0.0035
EV MC2	0.0034
EV MC2	0.0034
EV MC2	- 0.0000
EV MC2	
EV MC2	-
EV MC2	
EV MC2	-
EV MC2	-
EV MC2 EV MC2 WS 2022 Q2 WK4 N 2022-06-07 120 0.005 10.8 0.035 0.00327 0.822 2.74 0.000022 1.58 0.08 0.0004 < 0.0010 0.0138 0.00526 EV MC2 EV MC2 WS 2022-06-07 N-SRF 2022-06-07 128 0.005 12.1 0.0453 0.0038 0.877 3.28 0.000034 1.65 0.09 0.00005 < 0.00010 0.0138 0.00526 EV MC2 EV MC2 WS 2022-06-08 N-SRF 2022-06-08 3.77	0.0107
EV MC2	0.007 0.0092
EV MC2	0.0092
EV MC2	0.0124
EV MC2	
EV MC2 EV MC2 WS 2022-06-12 N-SRF 2022-06-12	-
EV MC2 EV MC2 WS 2022-06-13 N-SRF 2022-06-13	
EV MC2 EV MC2 WS 2022-06 WEK25 N 2022-06-13 112 0.004 10.4 0.0539 0.00294 0.623 2.76 0.000011 2.64 0.08 0.00025 < 0.00010 0.00532 0.000508 EV MC2 EV MC5 WS 2022-06 WEK25 N 2022-06-13 112 0.005 10.3 0.0497 0.00452 0.968 2.91 0.00004 1.46 0.08 0.000062 < 0.00010 0.00879 0.006524 EV MC2 WS 2022 0.2 WK5 N 2022-06-14 109 0.005 10.4 0.0508 0.00068 0.00442 0.928 2.85 0.000041 1.45 0.08 0.00062 < 0.00010 0.00879 0.000524 EV MC2 WS 2022-06-14 N-SRF 2022-06-14 120 0.005 10 0.00533 0.00311 0.763 2.7 0.000026 1.6 0.09 0.00004 < 0.0010 0.00567 0.00046	-
EV MC2 EV MC5 WS 2022-06 WEK25 N 2022-06-13 112 0.005 10.3 0.0497 0.00452 0.968 2.91 0.00004 1.46 0.08 0.000062 < 0.00010 0.00879 0.000524 EV MC2 EV MC2 WS 2022 Q2 WK5 N 2022-06-14 109 0.005 10.4 0.0508 0.00442 0.928 2.85 0.000041 1.45 0.08 0.000062 < 0.00010 0.00879 0.000524 EV MC2 WS 2022-06-14 N-SRF 2022-06-14 109 0.005 10 0.00530 0.0011 0.753 2.7 0.000026 1.6 0.09 0.00004 < 0.00010 0.00567 0.00046	
EV MC2 WS 2022 Q2 WK5 N 2022-06-14 109 0.005 10.4 0.0508 0.00442 0.928 2.85 0.000041 1.45 0.08 0.00062 < 0.0010 0.00802 0.000531 EV MC2 WS 2022-06-14 N-SRF 2022-06-14 120 0.005 10 0.0353 0.00311 0.753 2.7 0.000026 1.6 0.09 0.00004 < 0.0010 0.00567 0.00046	0.19
EV MC2	0.015 0.0147
	0.0147
EV MC2	0.003
EV MC2 EV MC2 WS 2022-06-16 N-SRF 2022-06-16	-
EV MC2	
EV MC2	-
EV MC2	-
EV MC2 EV MC2 WS 2022-06-20 N-SRF 2022-06-20 2.98	
EV MC2 EV MC2 WS 2022-08-21 N-SRF 2022-08-21 131 0.005 11.2 0.0217 0.00248 0.766 3.47 0.000016 1.75 0.09 0.000028 < 0.00010 0.0066 0.000493	0.0064
EV MC2 FV MC2 WS 2022-06 WEK26 N 2022-06-21 13 0.005 11.6 0.00551 0.00187 0.69 3.75 < 0.000010 1.8 0.1 0.0002 < 0.00010 < 0.00690 0.000584	0.0048
EV MC2 EV MC3 WS 2022-05-22 NSFE 2022-05-22 1 33 0.005 11.6 0.0757 0.00187 0.09 3.75 < 0.000010 1.85 0.01 0.00002 < 0.00010 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.0048
EV MC2	0.0044
EV MC2 EV MC2 WS 2022-00-24 N-SRF 2022-00-24 2.96	-
EV MC2	-
EV MC2	

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

			1								Total Metals						
				E	_			<u>*</u>			_		E				
			ess	Ē	ony.	<u>.</u>	* <u></u>	<u>5</u>	£	_	<u>5</u>	E	hromiur		-		
			臣	Ē	ţi	l e	Ē	≣	sm.	oron	Ë	Cium	- 5	balt	eddo	_	ead
Sample	Sample	Sample Date	На	٩Ľ	Αñ	Ars	Ва	Be	Bis	Во	Cadı	Cal	5	Cob	ပိ	Iron	ڐ
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg	/L	mg/L
							nic	皇		je j				onic a		•	onic onic
						j j	ort:	l å		Chronic				Acute Chronic		cut	Shro Shro
BC WQG FWAL			n/a	n/a	n/a	0.005	1	0.00013	n/a	1.2	n/a	n/a	n/a	0.11 0.004	n/a	1	0.003-5.5° 3.3-3.5°
Elkview Operation			n/a	n/a	l n/a	0.005	1	0.00013	n/a	1.2	n/a	n/a	l n/a	0.11 0.004	n/a	1	0.003-5.5 3.3-3.5
EV MC2	EV MC2 WS 2022-06-27 N-SRF	2022-06-27	- 1		-	-	-		-		-			-	-	-	-
EV MC2	EV MC2 WS 2022-06-28 N-SRF	2022-06-28	186	0.115	< 0.00010	0.00029	0.0555	< 0.020	< 0.000050	< 0.010	0.0000423	45.2	0.0003	0.00013	< 0.00050	0.125	0.000108
EV_MC2	EV_MC2_WS_2022-06_WEK27_N	2022-06-28	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC5_WS_2022-06_WEK27_N	2022-06-28	163	0.266	0.00011	0.0004	0.0691	0.000035		< 0.010	0.000116	47.9	0.00054	0.00034	0.00094	0.427	0.000574
EV_MC2	EV_MC2_WS_2022-06-29_N-SRF	2022-06-29	165	0.182	< 0.00010	0.00028	0.0638	< 0.020	< 0.000050	< 0.010	0.0000422	43.5	0.00037	0.00016	< 0.00050	0.191	0.000112
EV_MC2	EV_MC2_WS_2022-06-30_N-SRF	2022-06-30	-	-	-	-	-	-	-	-	-	-	-		-	-	-
EV_MC2 EV MC2	EV MC2 WS 2022-07-01 N-SRF EV MC2 WS 2022-07-02 N-SRF	2022-07-01	-		-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2 EV_MC2	EV_MC2_WS_2022-07-02_N-SRF EV_MC2_WS_2022-07-03_N-SRF	2022-07-02	-		- :	-		-	-	-	-	-	-	-	-	-	-
EV MC2	EV MC2 WS 2022-07-03 N-SRF	2022-07-03		_:				-	-	-	-			-	1	-	-
EV MC2	EV MC2 WS 2022 Q3 N	2022-07-05	187	0.0487	< 0.00010	0.00021	0.061	< 0.020	< 0.000050	< 0.010	0.0000295	44.8	0.0002	< 0.10	< 0.00050	0.057	0.000064
EV_MC2	EV_MC2_WS_2022-07-05_N-SRF	2022-07-05	161	0.0624	< 0.00010	0.00025	0.059	< 0.020	< 0.000050	< 0.010	0.0000302	42	0.00024	0.00011	< 0.00050	0.065	0.000082
EV_MC2	EV_MC2_WS_2022-07-06_N-SRF	2022-07-06	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-07-07_N-SRF	2022-07-07	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-07-08_N-SRF	2022-07-08	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-07-09_N-SRF	2022-07-09	-		-	-	-	-	-	-	-	-	-		-	-	-
EV MC2 EV MC2	EV MC2 WS 2022-07-10 N-SRF EV MC2 WS 2022-07-11 N-SRF	2022-07-10	-		- :	-		-	-	-	-	-	-	-	-	-	-
EV MC2	EV MC2 WS 2022-07-11 N-SRF EV MC2 WS 2022-07 WEK29 N	2022-07-11	225	0.0235	< 0.00010	0.00023	0.0677	< 0.020	< 0.000050	0.011	0.0000391	54.6	0.00017	< 0.10	< 0.00050	0.033	< 0.000050
EV MC2	EV MC5 WS 2022-07 WEK29 N	2022-07-12	202	0.0282	< 0.00010	0.00023	0.0698	< 0.020	< 0.000050	< 0.011	0.0000351	47.4	0.00017	< 0.10	< 0.00050	0.035	0.000056
EV MC2	EV MC2 WS 2022-07-12 N-SRF	2022-07-12	197	0.0262	< 0.00010	0.00021	0.07	< 0.020	< 0.000050	0.011	0.0000245	44.7	0.00023	< 0.10	< 0.00050	0.033	< 0.000050
EV_MC2	EV_MC2_WS_2022-07-13_N-SRF	2022-07-13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-07-14_N-SRF	2022-07-14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV MC2 WS 2022-07-15 N-SRF	2022-07-15	-	-	-	-	-	-	-	-	-	-	-		-	-	-
EV MC2 EV MC2	EV MC2 WS 2022-07-16 N-SRF EV MC2 WS 2022-07-17 N-SRF	2022-07-16	-		- :	-	-	-	-	-			-	-	-	-	-
EV_MC2	EV MC2 WS 2022-07-17 N-SRF	2022-07-17			-	-	-		-	-	-	-	-	-	-		-
EV MC2	EV MC2 WS 2022-07-18 N-SRF	2022-07-19	233	0.0149	< 0.00010	0.00021	0.0806	< 0.020	< 0.000050	0.011	0.0000242	61	0.00019	< 0.10	< 0.00050	0.018	< 0.000050
EV MC2	EV MC2 WS 2022-07-20 N-SRF	2022-07-20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV MC2	EV MC2 WS 2022-07-21 N-SRF	2022-07-21	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV MC2 WS 2022-07-22 N-SRF	2022-07-22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV MC2 WS 2022-07-23 N-SRF	2022-07-23	- 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV MC2 WS 2022-07-24 N-SRF	2022-07-24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV MC2	EV MC2 WS 2022-07-25 N-SRF	2022-07-25	-		-	-	-	- -	-			-	-	-	-	-	-
EV MC2 EV MC2	EV MC2 WS 2022-07-26 N-SRF EV MC2 WS 2022-07-27 N-SRF	2022-07-26 2022-07-27	Hill		-	-		-	-	-		-	-	-		-	-
EV MC2	EV MC2 WS 2022-07-27 N-SRF	2022-07-28			1 1				-	-	-			-	-	-	-
EV MC2	EV MC2 WS 2022-07-29 N-SRF	2022-07-29	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV MC2 WS 2022-07-30 N-SRF	2022-07-30	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-07-31_N-SRF	2022-07-31	- 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV MC2 WS 2022-08-01 N-SRF	2022-08-01	-					 						- 0.10			< 0.000050
EV_MC2	EV MC2 WS 2022-08-02 N-SRF	2022-08-02	237	0.0066	< 0.00010	0.00016	0.0863	< 0.020	< 0.000050	0.012	0.0000233	62.3	0.00018	< 0.10	< 0.00050	0.012	< 0.000050
EV MC2 EV MC2	EV MC2 WS 2022-08-03 N-SRF	2022-08-03			-	-	-		-	-	- -	-	-	-	-	-	
EV_MC2	EV_MC2_WS_2022-08-04_N-SRF EV_MC2_WS_2022-08-05_N-SRF	2022-08-04				-	-	1	-	-	-	-	-	-	-		-
EV MC2	EV MC2 WS 2022-08-05 N-SRF	2022-08-06			-	-	-	-	-	-	-	-		-	-	-	-
EV MC2	EV MC2 WS 2022-08-07 N-SRF	2022-08-07		-	-	-	-		-	-		-	-	-	-	-	-
EV_MC2	EV MC2 WS 2022-08-08 N-SRF	2022-08-08	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-08-09_N-SRF	2022-08-09	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-08-10_N-SRF	2022-08-10			-	-	-	L-	-	L -				-	-	-	-

Denotes concentration less than indicated detection limit
 Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

^d Guideline varies with pH

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

										Total Metals								
										Total installs	Ι							
					_													
			ug.		nesium	80		Ę	ءا			Ε	_		_	<u> </u>		1
			l se	ΙĘ	es	gan	*	1 .5	₫	_	⊑	Strontium	<u> </u>		Titanium	<u> </u>		1
			Ē	ΙĒ	Magr) in	ckel	ğ	en	Silver	Sodium	5	alliu	_	i i	anin	2	<u> </u>
Sample	Sample	Sample Date	Ξ̈	15		Ë	Ž	<u> </u>	ı ő				E	Ę			į į	
Location	ID	(mm/dd/yyyy)	mg/L	. mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	mg/L	mg/l	mg/L	mg/L	mg/L	mg/L	mg/L	mg	//L
						λ rte δ nic	nic		l onic	δ nic						onic	g l	Ë
						Shro	Chro		E	Chro						%	5	Ę
				H .		` .				_ `	١.	-					< −	<u> </u>
BC WQG FWAL			n/a	n/a	n/a	0.001-0.03 ^a 0.0009-0.01 ^a	0.025-0.15 ^a	n/a	2	0.0001-0.003ª 0.00005-0.0015ª	n/a	n/a	n/a	n/a	n/a	0.0085	0.033-2 ^a	0.0075-2ª
Elkview Operation EV MC2	EV MC2 WS 2022-06-27 N-SRF	2022-06-27	Π.		Τ.			- I	5.39		Ι.	_						
EV_MC2	EV_MC2_WS_2022-06-27_N-SRF EV_MC2_WS_2022-06-28_N-SRF	2022-06-28	186	_	_	0.00586	0.00138	0.66	6.41	< 0.00010		0.11		< 0.00010	0.00157	0.000664	< 0.0	
EV MC2	EV_MC2_WS_2022-06_WEK27_N	2022-06-28	-	0.007	-	-	0.00136	- 0.00	4.53		2.7	-	- 0.000010	- 0.00010	- 0.00137	0.000004	10.0	-
EV MC2	EV MC5 WS 2022-06 WEK27 N	2022-06-28	163	0.008	16.4	0.0205	0.00211	0.703	6.48	< 0.000010	2.73	0.12	0.000015	< 0.00010	0.00806	0.000723	0.00	056
EV_MC2	EV_MC2_WS_ 2022-06-29_N-SRF	2022-06-29	165	0.007	15.8	0.00639	0.00154	0.677	5.82	< 0.000010	2.6	0.12	0.000011	< 0.00010	0.00296	0.000666	< 0.0	030
EV_MC2	EV_MC2_WS_2022-06-30_N-SRF	2022-06-30	-	-	-	-	-	-	4.91	-	-	-	-	-	-	-		-
EV_MC2	EV_MC2_WS_2022-07-01_N-SRF	2022-07-01	-	-	-	-		-	5.26	-	-		-	-	-	-		
EV_MC2	EV_MC2_WS_2022-07-02_N-SRF	2022-07-02	-	-	-	-	-	-	5.6	-	-		-	-	-	-		-
EV_MC2	EV_MC2_WS_2022-07-03_N-SRF	2022-07-03	-	-	-	-		-	5.54	-	-	-		-		-		-
EV_MC2 EV_MC2	EV MC2 WS 2022-07-04 N-SRF EV MC2 WS 2022 Q3 N	2022-07-04	187			0.00328	0.00133	0.644	5.17 6.22	< 0.00010		0.11		< 0.00010	0.00075	0.000737	< 0.0	
EV_MC2	EV MC2 WS 2022 Q3 N EV MC2 WS 2022-07-05 N-SRF	2022-07-05	161	0.007		0.00320	0.00137	0.63	5.33	< 0.000010		0.11		< 0.00010	0.00075	0.000737	< 0.0	
EV MC2	EV MC2 WS 2022-07-06 N-SRF	2022-07-06	-	- 0.000	-	-	0.00107	- 0.00	4.73	-	-	-	- 0.000010	- 0.00010	-	- 0.000701		
EV MC2	EV MC2 WS 2022-07-07 N-SRF	2022-07-07	-	-	-	-	-	-	5.54	-	-	-	-	-	-	-		-
EV MC2	EV MC2 WS 2022-07-08 N-SRF	2022-07-08	-	-	-	-		-	5.83	-	-	-	-	-	-	-		-
EV_MC2	EV_MC2_WS_2022-07-09_N-SRF	2022-07-09	-	-	-	-	-	-	6.33	-	-	-	-	-	-	-		-
EV_MC2	EV_MC2_WS_2022-07-10_N-SRF	2022-07-10	-	-	-	-	-	-	7.04	-	-	-	-	-	-	-		-
EV_MC2	EV MC2 WS 2022-07-11 N-SRF	2022-07-11	-	-	-	-	-		7.7		-		-	-	-	-	0.00	
EV_MC2 EV MC2	EV_MC2_WS_2022-07_WEK29_N	2022-07-12	225			0.0025 0.00249	0.00144 0.00144	0.733	9.39 7.87	< 0.000010 < 0.000010		0.14		< 0.00010	0.00036 0.00052	0.000842	< 0.0	
EV MC2	EV MC5 WS 2022-07 WEK29 N EV MC2 WS 2022-07-12 N-SRF	2022-07-12 2022-07-12	202 197		17.6	0.00249	0.00144	0.692	7.42	< 0.000010		0.12		< 0.0003	0.00032	0.000864	< 0.0	
EV MC2	EV MC2 WS 2022-07-12 N-SRF	2022-07-13	131	0.01	- 17.0	-	0.00133	0.032	8.11		2.54	0.12	- 0.000010	- 0.00010	0.00039	0.000004		-
EV MC2	EV MC2 WS 2022-07-14 N-SRF	2022-07-14	-	-	-	-	-	-	7.22	-	-	-	-	-	-	-		-
EV MC2	EV MC2 WS 2022-07-15 N-SRF	2022-07-15	-	-	-	-		-	7.59	-	-	-	-	-	-	-		-
EV MC2	EV MC2 WS 2022-07-16 N-SRF	2022-07-16	-	-	-	-		-	10.3	-	-	-	-	-	-	-		-
EV_MC2	EV_MC2_WS_2022-07-17_N-SRF	2022-07-17	-	-	-	-	-	-	8.52	-	-	-	-	-	-	-		-
EV_MC2	EV_MC2_WS_2022-07-18_N-SRF	2022-07-18	-	-	-	-	-	-	10.8	-	-	-	-	-	-	-		
EV_MC2	EV MC2 WS 2022-07-19 N-SRF	2022-07-19	233			0.00209	0.00166	0.832	9.61	< 0.000010		0.15	< 0.000010	< 0.00010	0.00048	0.00102	0.00	064
EV MC2	EV MC2 WS 2022-07-20 N-SRF	2022-07-20	-	-	-	-		-	9.13 9.71	-	1	-	-	-				-
EV_MC2 EV MC2	EV MC2 WS 2022-07-21 N-SRF EV MC2 WS 2022-07-22 N-SRF	2022-07-21 2022-07-22	-	1	1	-	-	<u> </u>	8.87	-	H	_	-	-				
EV MC2	EV MC2 WS 2022-07-22 N-SRF EV MC2 WS 2022-07-23 N-SRF	2022-07-23	t i	1	-	-			10.3	-	H	1	-					-
EV MC2	EV MC2 WS 2022-07-24 N-SRF	2022-07-24	-	-	-	-	-	-	10.2	-	-	-	-	-	-	-		-
EV_MC2	EV MC2 WS 2022-07-25 N-SRF	2022-07-25	-	-	-	-	-	-	10.6	-	١.	-	-	-	-			-
EV_MC2	EV MC2 WS 2022-07-26 N-SRF	2022-07-26	-	-	_	-	-	-	15.4	-	-	-	-	-	-	-		
EV_MC2	EV MC2 WS 2022-07-27 N-SRF	2022-07-27	-	-	-	-	-	-	12.2	-	-	-	-	-	-	-		
EV_MC2	EV MC2 WS 2022-07-28 N-SRF	2022-07-28	-	-		-	-	-	15	-	+-	-	-	-	-	-		
EV_MC2 EV MC2	EV MC2 WS 2022-07-29 N-SRF EV MC2 WS 2022-07-30 N-SRF	2022-07-29 2022-07-30	-	-	-	-	-	-	11.8 11.4	-	-	1	-	-	-	- :		
EV MC2	EV MC2 WS 2022-07-30 N-SRF EV MC2 WS 2022-07-31 N-SRF	2022-07-30	-	1	-	-	-	-	11.8	-	H	-	-	-	- :			
EV MC2	EV MC2 WS 2022-07-31 N-SRF	2022-07-31				-			12.6	-								
EV MC2	EV MC2 WS 2022-08-02 N-SRF	2022-08-02	237	0.009	23.8	0.00209	0.00107	0.774	11.1	< 0.000010	3.21	0.15	< 0.000010	< 0.00010	< 0.00030	0.0011	0.00	044
EV MC2	EV MC2 WS 2022-08-03 N-SRF	2022-08-03	-	-	-				12	-	-		-	-	-			
EV_MC2	EV_MC2_WS_2022-08-04_N-SRF	2022-08-04	-	-	-	-	-	-	12.6	-	-	-	-	-	-	-		
EV_MC2	EV_MC2_WS_2022-08-05_N-SRF	2022-08-05	-	-	-	-	-	-	16.4	-	ļ -	-	-	-	-	-		-
EV_MC2	EV_MC2_WS_2022-08-06_N-SRF	2022-08-06	-	-	-	-	-	-	15.7	-	 -	<u> </u>	-	-	-	-	<u> </u>	
EV_MC2	EV_MC2_WS_2022-08-07_N-SRF	2022-08-07	-	+		-	-		17.4	-	+-	-	-		-		<u> </u>	
EV_MC2 EV MC2	EV MC2 WS 2022-08-08 N-SRF EV MC2 WS 2022-08-09 N-SRF	2022-08-08 2022-08-09	-	-	-	-		<u> </u>	15 15.2	-	1	-		-	- :	-		-
EV_MC2	EV MC2 WS 2022-08-09 N-SRF EV MC2 WS 2022-08-10 N-SRF	2022-08-09		1	+ :				14.4	 	t i	1						
EV_IVIU2	LV_WCZ_WS_ZUZZ-U0-1U_N-SRF	2022-00-10	-			-			14.4	-	-	-						

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

			[Total Metals						
Sample	Sample	Sample Date	Hardness	Aluminum	Antimony	Arsenic	Barium*	Beryllium*	Bismuth	Boron	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg	/L	mg/L
						Acute	Chronic	Chronic		Chronic				Acute Chronic		Acute	Acute Chronic
BC WQG FWAL			n/a	n/a	n/a	0.005	1	0.00013	n/a	1.2	n/a	n/a	n/a	0.11 0.004	n/a	1	0.003-5.5 ^a 3.3-3.5 ^a
Elkview Operation																	
EV_MC2	EV_MC2_WS_2022-08_MON_N	2022-08-10	-		-	-	-	-	-	-	-	-		< 0.10	-	-	< 0.000050
EV_MC2	EV_MC2_WS_2022-08-11_N-SRF	2022-08-11	361	0.0065	< 0.00010	0.00022	0.0905	< 0.020	< 0.000050	0.014	0.0000341	77.4	0.00018		< 0.00050	0.011	< 0.000050
EV_MC2 EV MC2	EV_MC2_WS_2022-08-12_N-SRF EV_MC2_WS_2022-08-13_N-SRF	2022-08-12	-	<u> </u>	-	-	-	-	-	-	- :	-		-	-	-	-
EV_MC2 EV MC2			-		-	-		-		-				- :		-	
EV_MC2	EV MC2 WS 2022-08-14 N-SRF EV MC2 WS 2022-08-15 N-SRF	2022-08-14 2022-08-15	-		-	-	-	-		-		-	-	-		-	-
EV_MC2	EV MC2 WS 2022-08-15 N-SRF	2022-08-16	311	0.0081	0.00012	0.00019	0.104	< 0.020	< 0.000050	0.014	0.0000292	74.3	0.00019	< 0.10	< 0.00050	0.013	< 0.000050
EV_MC2	EV MC2 WS 2022-08-16 N-SRF EV MC2 WS 2022 Q3 WK1 N	2022-08-16	311	0.0061	0.00012	0.00019	0.104	V 0.020	< 0.000050	0.014	0.0000292	74.3	0.00019	- 0.10	< 0.00050	0.013	- 0.000000
EV MC2	EV MC2 WS 2022-Q3 WKT N	2022-08-17	358	0.0071	< 0.00010	0.00019	0.104	< 0.020	< 0.000050	0.015	0.0000311	85.2	0.0002	< 0.10	< 0.00050	< 0.010	< 0.000050
EV MC2	EV MC2 WS 2022-08-18 N-SRF	2022-08-18	- 550	- 0.0071	- 0.00010	- 0.00013	-	- 0.020	- 0.000000	- 0.010	- 0.0000311		- 0.0002	-	- 0.00000	- 0.010	-
EV MC2	EV MC2 WS 2022-08-19 N SRF	2022-08-19			-	-		-			-	-	-	-	-		-
EV MC2	EV MC2 WS 2022-08-20 N-SRF	2022-08-20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV MC2	EV MC2 WS 2022-08-21 N-SRF	2022-08-21	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
EV MC2	EV MC2 WS 2022-08-22 N-SRF	2022-08-22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV MC2	EV MC2 WS 2022-08-23 N-SRF	2022-08-23	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV MC2	EV MC2 WS 2022 Q3 WK2 N	2022-08-23	-	-	-	-	-	-		-	-	-	-	-	-	-	-
EV MC2	EV MC2 WS 2022-08-24 N-SRF	2022-08-24	363	0.004	0.00013	0.00018	0.106	< 0.020	< 0.000050	0.016	0.0000313	87.1	0.00018	< 0.10	< 0.00050	< 0.010	< 0.000050
EV MC2	EV MC2 WS 2022-08-25 N-SRF	2022-08-25	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-08-26_N-SRF	2022-08-26	-	-	-	-		-		-	-	-	-	-	-		-
EV_MC2	EV MC2 WS 2022-08-27 N-SRF	2022-08-27	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-08-28_N-SRF	2022-08-28	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-08-29_N-SRF	2022-08-29	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-08-30_N_SRF	2022-08-30	348	0.0066	0.00012	0.00024	0.133	< 0.020	< 0.000050	0.015	0.0000296	83.3	0.00017	< 0.10	< 0.00050	0.01	< 0.000050
EV_MC2	EV MC2 WS 2022 Q3 WK3 N	2022-08-30	-		-		-	-		-				< 0.10		-	< 0.000050
EV MC2	EV MC2 WS 2022-08-31 N SRF	2022-08-31	331	0.0048	0.00011	0.00023	0.123	< 0.020	< 0.000050	0.015	0.0000298	80.1	0.00017	- 0.10	< 0.00050	0.011	- 0.000050
EV_MC2	EV_MC2_WS_2022-09-01_N-SRF	2022-09-01	-	-	-	-	-	-	-	-	-	-	-		-	-	
EV MC2 EV MC2	EV MC2 WS 2022-09-02 N-SRF EV MC2 WS 2022-09-03 N-SRF	2022-09-02	-		-	-		-	-	-		-	-	-	- :	-	-
EV_MC2	EV MC2 WS 2022-09-03 N-SRF EV MC2 WS 2022-09-04 N-SRF	2022-09-03	-		-		-	-		-	-	-	-	-	-	-	-
EV MC2	EV MC2 WS 2022-09-04 N-SRF	2022-09-04			-	-		-		-	-	-	-	-	-	-	
EV_MC2	EV MC2 WS 2022-09-05 N-SRF EV MC2 WS 2022-09-06 N-SRF	2022-09-06			-	-	-	-	-	-	-	-	-	-	-	-	-
EV MC2	EV MC2 WS 2022-09-00 N-SRF	2022-09-06	-		- :					-	- : -		- :	-			-
EV MC2	EV MC5 WS 2022-09 MON N	2022-09-06	366	0.0119	0.00011	0.00022	0.126	< 0.020	< 0.000050	0.018	0.0000244	83.3	0.00014	< 0.10	< 0.00050	0.011	< 0.000050
EV MC2	EV MC2 WS 2022-09-07 N-SRF	2022-09-07	360	0.0061	0.00011	0.00024	0.127	< 0.020	< 0.000050	0.017	0.0000244	86.1	0.00014	< 0.10	< 0.00050	0.01	< 0.000050
EV MC2	EV MC2 WS SEPT-2022 N	2022-09-08	-	-	-	-	-		-	-	-	-	-	-	-		-
EV MC2	EV MC2 WS 2022-09-08 N-SRF	2022-09-08	328	0.0062	0.00014	0.00032	0.123	< 0.020	< 0.000050	0.015	0.0000239	74.9	0.00016	< 0.10	< 0.00050	0.011	< 0.000050
EV MC2	EV MC2 WS 2022-09-09 N-SRF	2022-09-09	_	-	-	-	- 1		-		-	-	-	-	-		-
EV MC2	EV MC2 WS 2022-09-09 N	2022-09-09			-							-		-	-		-
EV MC2	EV MC2 WS 2022-09-10 N-SRF	2022-09-10	363	0.0038	0.00011	0.00025	0.108	< 0.020	< 0.000050	0.017	0.0000223	78.2	0.00016	< 0.10	< 0.00050	< 0.010	< 0.000050
EV_MC2	EV_MC2_WS_2022-09-11_N-SRF	2022-09-11	-	-	-		-		-	_	-	-	_	-	-	-	-
EV_MC2	EV MC2 WS 2022-09-12 N-SRF	2022-09-12	- 1	-	-	-	-		-	_	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-09-13_N-SRF	2022-09-13	290	0.0038	0.00011	0.00026	0.134	< 0.020	< 0.000050	0.015	0.0000254	82.5	0.00018	< 0.10	< 0.00050	< 0.010	< 0.000050
EV_MC2	EV MC2 WS 2022 Q3 WK5 N	2022-09-13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-09-14_N-SRF	2022-09-14	412	0.0054	0.00011	0.00016	0.122	< 0.020	< 0.000050	0.016	0.000036	89.3	0.00017	< 0.10	< 0.00050	< 0.010	< 0.000050
EV_MC2	EV_MC2_WS_2022-09-15_N-SRF	2022-09-15	-	-	-	-	-	-	-	-		-	-	-	-	-	-
EV_MC2	EV MC2 WS 2022-09-16 N-SRF	2022-09-16	-	-	-	-	-	-	-	-		-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-09-17_N-SRF	2022-09-17	-	-	-	-	-	-	-	-	-	-		- :	-	-	-
EV_MC2	EV MC2 WS 2022-09-18 N-SRF	2022-09-18	-		-		-		-	-	-	-	-		-	-	-
EV_MC2	EV_MC2_WS_2022-09-19_N-SRF	2022-09-19	-		-	-	-	-	-	-	- -	-	-	 	-	-	-
EV_MC2	EV_MC2_WS_2022-09-20_N-SRF	2022-09-20					-	-	-						-		

Denotes concentration less than indicated detection limit
 Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

^d Guideline varies with pH

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

										Total Metals							
										1	П	Т					
Sample	Sample	Sample Date	Hardness	Lithium	Magnesium	Manganese	Nickel*	Potassium	Selenium	Silver	Sodium	Strontium		Tin	Titanium	Uranium*	Zinc
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L		mg/L	mg/	'L mg	/L mg/L	mg/L	mg/L	mg/L	mg/L
						Acute Chronic	Chronic		Chronic	Acute						Chronic	Acute
BC WQG FWAL			n/a	n/a	n/a	0.001-0.03 ^a 0.0009-0.01 ^a	0.025-0.15 ^a	n/a	2	0.0001-0.003ª 0.00005-0.0015ª	n/a	n/a	a n/a	n/a	n/a	0.0085	0.033-2 ^a 0.0075-2 ^a
Elkview Operation		T										_					
EV_MC2	EV_MC2_WS_2022-08_MON_N	2022-08-10	-	-	-	- 0.00045	-		14.3		-		-			-	
EV_MC2	EV_MC2_WS_2022-08-11_N-SRF	2022-08-11	361		34.1	0.00215	0.00236	1.13	17.6	< 0.000010		8 0.1	9 < 0.000010	< 0.00010	< 0.00030	0.00141	< 0.0030
EV_MC2	EV_MC2_WS_2022-08-12_N-SRF	2022-08-12	-	-	1	-	-	-	14.7	-	-	+-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-08-13_N-SRF	2022-08-13	-	- -	1	-	-		14.8	-	Η-	+ -	-	-	-	-	-
EV_MC2 EV_MC2	EV_MC2_WS_2022-08-14_N-SRF EV_MC2_WS_2022-08-15_N-SRF	2022-08-14 2022-08-15	+-	-	+ :	-	-	-	16 15.7	-	+-	+:	_	-	-	-	
EV_MC2	EV MC2 WS 2022-08-16 N-SRF	2022-08-15	311		31.2	0.00208	0.00163	0.984	15.7	< 0.000010	20	4 0.1	_	< 0.00010	< 0.00030	0.0016	< 0.0030
EV_MC2	EV MC2 WS 2022-06-16 N-SRF	2022-08-16	311	0.014	31.2	0.00200	0.00163	0.964	15.7	< 0.000010	3.0		16 < 0.000010	< 0.00010	- 0.00030	0.0016	< 0.0030
EV_MC2	EV MC2 WS 2022 Q3 WKT N EV MC2 WS 2022-08-17 N-SRF	2022-08-17	358		40.1	0.00212	0.00142	1.09	17.7	< 0.000010		3 0.:	2 < 0.000010	< 0.00010	< 0.00030	0.00144	< 0.0030
EV MC2	EV MC2 WS 2022-08-17 N-SRF	2022-08-17	330	0.010	40.1	0.00212	0.00142	1.05	14.4	- 0.000010	4.0	_	2 < 0.000010	- 0.00010	- 0.00030	0.00144	- 0.0000
EV MC2	EV MC2 WS 2022-08-19 N SRF	2022-08-19	1			-	-	-	15.2	-	1	+ -	-	-			-
EV MC2	EV MC2 WS 2022-08-20 N-SRF	2022-08-20				_			17.4	-	T.	+:				-	-
EV MC2	EV MC2 WS 2022-08-21 N-SRF	2022-08-21	-	-	-	-	-	-	16.8		١.	-	-	-		-	
EV MC2	EV MC2 WS 2022-08-22 N-SRF	2022-08-22	٠.	-	.	-	-	-	17.2	-	٠.	٠.	-	-	-	-	-
EV MC2	EV MC2 WS 2022-08-23 N-SRF	2022-08-23	-	-	-	-	-	-	17.3	-	-	١.	-	-	-	-	-
EV MC2	EV MC2 WS 2022 Q3 WK2 N	2022-08-23	-	-	-	_	-	-	17.3	_	-	٠.	-	-	-	-	-
EV MC2	EV MC2 WS 2022-08-24 N-SRF	2022-08-24	363	0.018	37.6	0.00209	0.00124	1.14	18.8	< 0.000010	4.8	3 0.	2 < 0.000010	< 0.00010	< 0.00030	0.00151	< 0.0030
EV MC2	EV MC2 WS 2022-08-25 N-SRF	2022-08-25	-	-	-	-	-	-	16.7	-	-	-	-	-	-	-	-
EV MC2	EV MC2 WS 2022-08-26 N-SRF	2022-08-26	-	-	-	-	-	-	16.6	-	-	-	-	-	-	-	-
EV MC2	EV MC2 WS 2022-08-27 N-SRF	2022-08-27	-	-	-	-	-	-	17.4	-	-	-	-	-	-	-	-
EV MC2	EV MC2 WS 2022-08-28 N-SRF	2022-08-28	-	-	-	-	-	-	15.4	-	-	-	-	-	-	-	-
EV_MC2	EV MC2 WS 2022-08-29 N-SRF	2022-08-29	-	-	-	-		-	16.9	-	-	-		-	-	-	-
EV_MC2	EV_MC2_WS_2022-08-30_N_SRF	2022-08-30	348	0.016	33.6	0.00191	0.00138	0.931	14.9	< 0.000010	4.1	7 0.:	2 < 0.000010	< 0.00010	< 0.00030	0.00136	< 0.0030
EV_MC2	EV_MC2_WS_2022_Q3_WK3_N	2022-08-30	-	-	-	-	-	-	18	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-08-31_N_SRF	2022-08-31	331	0.014	35.8	0.00214	0.0014	1.07	16	< 0.000010	4.7	2 0.1	9 < 0.000010	< 0.00010	< 0.00030	0.00149	< 0.0030
EV_MC2	EV_MC2_WS_2022-09-01_N-SRF	2022-09-01	-	-	-	-	-	-	17.4	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-09-02_N-SRF	2022-09-02	-	-	-	-	-	-	17.5	-	٠.	+-	-	-	-	-	-
EV_MC2	EV MC2 WS 2022-09-03 N-SRF	2022-09-03	-	-	-	-	-	-	19.1	-	-	+ -	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-09-04_N-SRF	2022-09-04	-	-	-	-	-	-	18.8	-	-	-	-	-	-	-	-
EV_MC2	EV MC2 WS 2022-09-05 N-SRF	2022-09-05	-	-	-	-	-	-	18.2	-	-	+-	-	-	-	-	-
EV MC2	EV MC2 WS 2022-09-06 N-SRF	2022-09-06	+-	- -	+ -	-	-	-	20.1	-	+-	+-	+ -	-	-	-	-
EV MC2 EV MC2	EV MC2 WS 2022-09 MON N EV MC5 WS 2022-09 MON N	2022-09-06	366	0.017	34.7	0.00215	0.00133	1.01	23.3 17.5	< 0.000010	142	3 0.1	18 < 0.000010	< 0.00010	< 0.00030	0.00165	< 0.0030
EV_MC2	EV MC3 WS 2022-09 MON N EV MC2 WS 2022-09-07 N-SRF	2022-09-06	360		34.7	0.00215	0.00133	0.996	17.3	< 0.000010		0.1		< 0.00010	< 0.00030	0.00165	< 0.0030
EV_MC2	EV MC2 WS 2022-09-07 N-SRF EV MC2 WS SEPT-2022 N	2022-09-07	300	0.016	34.2	0.00193	0.00129	0.990	19.9	~ 0.000010	4.2		0.000010	~ 0.00010	~ 0.00030	0.00173	- 0.0030
EV_MC2	EV MC2 WS SEPT-2022 N EV MC2 WS 2022-09-08 N-SRF	2022-09-08	329	0.015	34.9	0.00216	0.00128	1.1	17.1	< 0.000010		8 0.1	9 < 0.000010	< 0.00010	< 0.00030	0.00156	< 0.0030
EV MC2	EV MC2 WS 2022-09-06 N-SRF	2022-09-09	320	0.013	34.9	0.00216	0.00120	1.1	21.5	~ 0.0000 TO	4.1	0.1	- 0.000010	V 0.00010	- 0.00030	0.00130	- 0.0030
EV MC2	EV MC2 WS 2022-09-09 N	2022-09-09	+:	 	1			<u> </u>	20	<u> </u>	t i	+:	 	 	1 : 1	- :	
EV MC2	EV MC2 WS 2022-09-10 N-SRF	2022-09-10	363	0.015	34	0.00121	0.00135	1.06	18.7	< 0.000010	4.1	1 0.1	19 < 0.000010	< 0.00010	< 0.00030	0.00156	< 0.0030
EV MC2	EV MC2 WS 2022-09-11 N-SRF	2022-09-11	-	-	-	-	-	-	18.6	-	T -	1 -	-	-	-	-	-
EV MC2	EV MC2 WS 2022-09-12 N-SRF	2022-09-12	-	-	-	-	-	-	18.8	-	-	-	-	-	-	-	-
EV MC2	EV MC2 WS 2022-09-13 N-SRF	2022-09-13	290	0.016	36.8	0.00185	0.00131	1.12	19.3	< 0.000010	4.9	8 0.2	21 < 0.000010	< 0.00010	< 0.00030	0.00155	< 0.0030
EV MC2	EV MC2 WS 2022 Q3 WK5 N	2022-09-13	-	_	_	-			20.5	-	L-		-		-		-
EV MC2	EV MC2 WS 2022-09-14 N-SRF	2022-09-14	412	0.016	39.6	0.00234	0.00154	1.14	20.1	< 0.000010	4.7	2 0.2	21 < 0.000010	< 0.00010	< 0.00030	0.00173	< 0.0030
EV_MC2	EV MC2 WS 2022-09-15 N-SRF	2022-09-15	-	-	-	-	-	-	21	-	-	-	-	-	-	-	-
EV_MC2	EV MC2 WS 2022-09-16 N-SRF	2022-09-16	-	-	-	-	-	-	19	-	1 -	1 -	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-09-17_N-SRF	2022-09-17	-	ļ -	-	-	-	-	18.6	-	-	-	-	-	-		-
EV_MC2	EV_MC2_WS_2022-09-18_N-SRF	2022-09-18	-	-	-	-	-	-	17.1	-	-	╽-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-09-19_N-SRF	2022-09-19	-	-	-	-	-	-	19.2	-	١.	1 -	-	- -	-	-	
EV_MC2	EV_MC2_WS_2022-09-20_N-SRF	2022-09-20	-	L -	-	-	-		18.5	-	١.	<u></u> -	-		-	-	

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

			Γ								Total Metals						
Sample	Sample	Sample Date	Hardness	Aluminum	Antimony	Arsenic	Barium*	Beryllium*	Bismuth	Boron	Cadmium	Calcium	Chromium	Cobalt	Copper	uol	Lead
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg	/L	mg/L
						Acute	Chronic	Chronic		Chronic				Acute Chronic		Acute	Acute
BC WQG FWAL			n/a	n/a	n/a	0.005	1	0.00013	n/a	1.2	n/a	n/a	n/a	0.11 0.004	n/a	1	0.003-5.5ª 3.3-3.5ª
Elkview Operation																	
EV_MC2	EV_MC2_WS_2022-09-21_N_SRF	2022-09-21	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-09-22_N-SRF	2022-09-22	-		-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-09-23_N-SRF	2022-09-23	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2 EV MC2	EV_MC2_WS_2022-09-24_N-SRF	2022-09-24		-	-	-	-	-	-	-	-	-	-	- :	-	-	
EV_MC2 EV MC2	EV MC2 WS 2022-09-25 N-SRF EV MC2 WS 2022-09-26 N-SRF	2022-09-25 2022-09-26				- :	-	-	-	-	- :		-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-09-26_N-SRF EV_MC2_WS_2022-09-27_N-SRF	2022-09-26	364	0.0066	0.00013	0.0002	0.125	< 0.020	< 0.000050	0.015	0.0000258	84.5	0.00016	< 0.10	< 0.00050	0.011	< 0.000050
EV_MC2	EV MC2 WS 2022-09-27 N-SRF EV MC2 WS 2022-09-28 N-SRF	2022-09-28	304	- 0.0000	0.00013	0.0002	0.125	~ U.U2U		0.013	0.0000258	84.5	0.00016		~ 0.00050	0.011	- 0.00000
EV_MC2	EV MC2 WS 2022-09-29 N-SRF	2022-09-29	H 🗀 🖯			-:-			-		-:-		-	-	-	-	-
EV MC2	EV MC2 WS 2022-09-30 N-SRF	2022-09-30		_:	-				-				-	-	-		-
EV MC2	EV MC2 WS 2022-10-01 N-SRF	2022-10-01	- 1		-		-	-	-	-	-	-	-	-	-	-	-
EV MC2	EV MC2 WS 2022-10-02 N-SRF	2022-10-02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV MC2	EV MC2 WS 2022-10-03 N-SRF	2022-10-03	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV MC2	EV MC2 WS 2022-10-04 N-SRF	2022-10-04	387	0.0051	0.00011	0.00016	0.115	< 0.020	< 0.000050	0.013	0.0000215	90.1	0.00016	< 0.10	< 0.00050	< 0.010	< 0.000050
EV_MC2	EV MC2 WS 2022-10-06 N-SRF	2022-10-06	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_MC2	EV_MC2_WS_2022-Q4_N	2022-10-06	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV MC2	EV_MC5 WS 2022-Q4 N	2022-10-06	377	0.0058	0.00011	0.00019	0.122	< 0.020	< 0.000050	0.014	0.0000294	92.5	0.00014	< 0.10	< 0.00050	0.011	< 0.000050
EV_MC2	EV_MC2_WS_2022_Q4_WK1_N	2022-10-11	383	0.0054	0.00011	0.00021	0.12	< 0.020	< 0.000050	0.014	0.0000344	94.9	0.00016	< 0.10	< 0.00050	0.01	< 0.000050
EV_MC2	EV_MC2_WS_2022-10-12_N-SRF	2022-10-12	375	0.0036	0.00012	0.00016	0.125	< 0.020	< 0.000050	0.014	0.0000254	81	0.00015	< 0.10	< 0.00050	0.014	< 0.000050
EV_MC2	EV MC2 WS 2022-10-14 N-SRF	2022-10-14	-	0.0072	< 0.00010	0.00018	0.107	< 0.020	< 0.000050	0.013	0.0000184	81.2	0.00017	< 0.10	< 0.00050	0.027	< 0.000050
EV_MC2	EV_MC2_WS_2022-10-17_N-SRF	2022-10-17	-	0.012	< 0.00010	0.0002	0.127	< 0.020	< 0.000050	0.016	0.0000314	99.2	0.0002	< 0.10	< 0.00050	0.033	< 0.000050 < 0.000050
EV_MC2	EV_MC2_WS_2022_Q4_WK2_N	2022-10-18	342	0.0034	0.00011	0.00013	0.113	< 0.020	< 0.000050	0.014	0.000033	86.5	0.00015	< 0.10	< 0.00050	0.01	< 0.000050
EV_MC2	EV_MC2_WS_2022-10-19_N-SRF	2022-10-19	392	< 0.0030	< 0.00010	0.00011	0.105	< 0.020	< 0.000050	0.014	0.000017	83.1	0.00017	< 0.10 < 0.10	< 0.00050	< 0.010	0.000050
EV MC2	EV MC2 WS 2022-10-24 N-SRF	2022-10-24	-	0.0034	< 0.00010	0.00021	0.111	< 0.020	< 0.000050	0.014	0.0000373	86.6	0.00011	< 0.10	0.0007	0.012	< 0.000104
EV MC2 EV MC2	EV MC2 WS 2022 Q4 WK3 N EV MC2 WS 2022-10-26 N-SRF	2022-10-25	330	0.0055	< 0.00010 < 0.00010	0.0002	0.106 0.12	< 0.020 < 0.020	< 0.000050 < 0.000050	0.014	0.0000202 0.0000149	84.1 83	0.00016	< 0.10	< 0.00050 < 0.00050	0.019 < 0.010	< 0.000050
EV_MC2	EV MC2 WS 2022-10-26 N-SRF EV MC2 WS 2022-10-28 N SRF	2022-10-26 2022-10-28	330	0.0041	< 0.00010	0.00015	0.12	< 0.020	< 0.000050	0.013	0.0000149	73.4	0.00019	< 0.10	< 0.00050	0.017	< 0.000050
EV MC2	EV MC2 WS 2022-10-28 N SRF EV MC2 WS 2022-10-31 N-SRF	2022-10-28	-	0.0058	< 0.00010	0.00012	0.107	< 0.020	< 0.000050	0.013	0.0000225	90.2	0.00015	< 0.10	< 0.00050	0.017	0.000064
EV MC2	EV MC2 WS 2022-10-31 N-SRF	2022-10-31	316	0.0056	< 0.00010	0.00013	0.107	< 0.020	< 0.000050	0.014	0.0000259	76.3	0.00019	< 0.10	< 0.00050	0.021	< 0.000050
EV MC2	EV MC2 WS 2022 Q4 WK4 N	2022-11-01	242	0.0203	0.00010	0.0002	0.102	< 0.020	< 0.000050	0.013	0.0000233	59.9	0.00017	0.00012	0.00058	0.022	0.000122
EV_MC2	EV MC2 WS 2022 Q4 WK5 N	2022-11-06	355	0.0041	0.00012	0.00023	0.109	< 0.020	< 0.000050	0.012	0.0000421	86	0.00032	< 0.10	< 0.00050	0.012	< 0.000050
EV MC2	EV MC2 WS 2022-11-14 N-SKI	2022-11-14	352	0.0041	0.00011	0.00016	0.117	< 0.020	< 0.000050	0.013	0.000022	83	0.00017	< 0.10	< 0.00050	< 0.012	< 0.000050
EV MC2	EV MC5 WS 2022-11 MON N	2022-11-14	369	0.0042	0.00011	0.00017	0.112	< 0.020	< 0.000050	0.015	0.0000312	86	0.0002	< 0.10	< 0.00050	< 0.010	< 0.000050
EV MC2	EV MC2 WS 2022-11-28 N-SRF	2022-11-28	368	0.0044	0.0001	0.00014	0.114	< 0.020	< 0.000050	0.015	0.0000249	88	0.00014	< 0.10	< 0.00050	< 0.010	< 0.000050
EV MC2	EV MC2 WS 2022-12 MON N	2022-12-06	371	0.0036	< 0.00010	0.00019	0.106	< 0.020	< 0.000050	0.014	0.0000263	86	0.00017	< 0.10	< 0.00050	0.011	< 0.000050
EV MC2	EV MC2 WS 2022-12-12 N-SRF	2022-12-12	398	0.007	< 0.00010	0.00015	0.112	< 0.020	< 0.000050	0.015	0.000028	88.2	0.00014	< 0.10	< 0.00050	0.01	< 0.000050
EV_MC2	EV MC2 WS 2022-12-27 N-SRF	2022-12-27	363	0.0068	0.0001	0.00016	0.12	< 0.020	< 0.000050	0.014	0.0000258	91.3	0.00017	< 0.10	< 0.00050	< 0.010	< 0.000050
EV_OC1	EV_OC1_WS_2022-Q1_N	2022-01-05	365	0.0088	0.0001	0.00019	0.114	< 0.020	< 0.000050	0.014	0.0000336	80.4	0.00019	< 0.10	< 0.00050	0.011	< 0.000050
EV OC1	EV_OC1_WS_2022-02_MON_N	2022-02-07	406	0.0284	0.00011	0.00058	0.42	< 0.020	< 0.000050	0.066	0.0000114	98.3	0.0001	0.00021	0.00064	0.351	0.000051
EV_OC1	EV_OC1_WS_2022-03_MON_N	2022-03-16	417	0.0099	< 0.00010	0.00048	0.464	< 0.020	< 0.000050	0.075	0.0000076	105	0.00028	0.00018	< 0.00050	0.211	< 0.000050
EV_OC1	EV_OC1_WS_2022-03_WEK13_N	2022-03-21	328	0.12	0.00014	0.00059	0.24	< 0.020	< 0.000050	0.06	0.0000414	76.3	0.00017	0.00027	0.00056	0.494	0.000119
EV_OC1	EV_OC1_WS_2022-03_WEK14_N	2022-03-28	-		-	-	-	-	-	-	-	-	-	-	-	-	-
EV_OC1	EV_OC1_WS_2022-04_WEK15_N	2022-04-04	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_OC1	EV_OC1_WS_2022-Q2_N	2022-04-12			-		-			-		-		- 0.00040		-	- 0.000050
EV_OC1	EV_OC1_WS_2022-04_WEK17_N	2022-04-18	382	0.0135	0.00018	0.00055	0.295	< 0.020	< 0.000050	0.073	0.0000166	107	< 0.00010	0.00018	< 0.00050	0.405	< 0.000050
EV_OC1	EV OC1 WS 2022-04 WEK18 N	2022-04-26	-		-	- -	-	-	-	-	-	-	-	- :	-	-	
EV OC1	EV OC1 WS 2022-05 MON N	2022-05-03			0.00047	0.00070	0.004		- 0.000050	0.070		97	< 0.00010	0.00017	- 0.00050	0.543	0.000052
EV_OC1 EV_OC1	EV OC1 WS 2022-05 WEK20 N	2022-05-11	385	0.0538	0.00017	0.00072	0.364	< 0.020	< 0.000050	0.072	0.000014	9/	< 0.00010	0.00017	< 0.00050	0.543	0.000032
EV_OC1	EV_OC1_WS_2022-05_WEK21_N	2022-05-16 2022-05-24	-		-	<u> </u>	-	-	-	-	-	<u> </u>		 	-	<u> </u>	
EV_UC1	EV_OC1_WS_2022-05_WEK22_N	2022-05-24			-		-	-	-	-				-	-		

Denotes concentration less than indicated detection limit
 Denotes analysis not conducted

n/a denotes no applicable standard

^a Guideline varies with hardness

^b Guideline varies with pH and water temperature

^c Guideline varies with chloride

^d Guideline varies with pH

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

Sample S											Total Metals							
Lecation D (mmiddly)/mg/l, mg/l, mg/											Total metals	Т	П					
Localism D																		
Lection D						l _												
Localism D				s		5	88		E	_			lε	_		_	*	
Localism D				Sec	E	esi	<u>ä</u>	*_	is:	.≣	_	١≝	∄			<u> </u>		
Localism D				Į	∄	l g	But 0	l &	tas	le le	<u> </u>	₹	<u>5</u>	≡	_ ا	a a	<u> </u>	ဥ
85 WO FINAL P. W.C. P. W.C. W.S. 202-06-21 N. SPE 202-06-22	Sample	Sample	Sample Date	Ξ	Ĕ	Ma	× ×	ž	Po	Se	₩	ြတ္တ	Str	£	Ė	Į	์ ว	Zi
CWG FWAL	Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L			mg/L		mg/L	mg/l	mg/L	mg/L	mg/L	mg/L		mg/L
CWG FWAL							, i			읃	. 그						:을	
BOX CORP C							g Qu			2	1 2							cut
Eliver Department Eliv							₹ 0					<u> </u>						4 0
EV MC2				n/a	n/a	n/a	0.001-0.03 ^a 0.0009-0.01 ^a	0.025-0.15 ^a	n/a	2	0.0001-0.003 ^a 0.00005-0.0015 ^a	n/a	n/a	n/a	n/a	n/a	0.0085	0.033-2 ^a 0.0075-2 ^a
EV MC2		F1/ MOS 11/2 0000 00 04 N 0PF	0000 00 04	_						40.5		_	_	1				
EV MC2 EV MC2 WS 2020-69.4 NSFF 2022-09.2				-		_			_			-	-					-
EV MC2 EV MC2 WS 2020-968 NSFF 2022-962				-	_		-		-			-	_					- :
EV MC2 EV MC2 WS 2022-95 NSRF 2							-		-			1	_					
EV MC2 EV MC2 WS 2022-09-27 SHSFF 2022-09-27 SHSFF 2022-09-28 NSFF 2022-09-28				_	_	_			-			1 -	_		 			-
EV MC2		EV_MC2_WS_2022-09-26_N-SRF	2022-09-26	-			-		-			_	-	-	-		-	-
EV MC2				364					1.16					< 0.000010	< 0.00010			< 0.0030
EV MC2				-					-					-	-			-
EV MC2 EV MC2 WS 2022-10Q NSRF 3022-10Q S				-	_				_									-
EV MC2				-		_		-	-			_	_					
EV MC2 EV MC2 WS 2022-10-04 N-SRF 2022-10-04 SP 2021-10-04 SP 2022-10-06 N-SF				-	+ -			-	-			H	_	-	-			
EV MC2				1	1	_	-	-	-		-	1	1	-		-	-	
EV MC2				387	0.015		0.00164	0.00099	1.11		< 0.000010	4.46	0.2	< 0.000010	< 0.00010	< 0.00030	0.00172	< 0.0030
EV MC2				-	-				-			-	-	-	-	-		-
EV MC2	EV_MC2	EV_MC2_WS_2022-Q4_N	2022-10-06	-	-	-		-	-	24.9	-			-	-	-	-	-
EV MC2																		< 0.0030
EV MC2 EV MC2 WS 2022-10-14 N-SRF 2022-10-14 - 0.014 33.9 0.00211 0.00116 1.02 13.9 < 0.000010 3.81 0.19 < 0.000011 < 0.00030 0.0017 <																		< 0.0030
EV MC2 EV MC2 WS 2022-10-18 NSRF 2022-10-19 342 0.019 387 0.0021 0.0049 1.18 17.7 < 0.000010 4.7 0.22 < 0.000010 < 0.00030 0.0018																		< 0.0030 < 0.0030
EV MC2																		< 0.0030
EV MC2																		< 0.0030
EV MC2																		< 0.0030
EV MC2 EV MC2 WS 2022-10-28 N-SRF 2022-10-28 3 0.0 0.014 3.9 9.00216 0.00138 1.06 13.6 0.000010 4.50 0.09 0.00010 0.000030 0.00155 0.000010 0.000030 0.00155 0.000010 0.000030 0.00155 0.0000010 0.000030 0.00155 0.000010 0.000030 0.00155 0.000010 0.000030 0.00155 0.000010 0.000030 0.00155 0.000010 0.000030 0.00155 0.0000010 0.000030 0.00155 0.000010 0.000030 0.00157 0.000010 0.000030 0.00157 0.000010 0.000030 0.00157 0.000010 0.000030 0.00157 0.000010 0.000030 0.00137 0.000010 0.000030 0.00137 0.000010 0.000030 0.00137 0.000010 0.000030 0.00137 0.000010 0.000030 0.00137 0.000010 0.000030 0.00137 0.000010 0.000030 0.00137 0.000010 0.000030 0.00137 0.000010 0.000030 0.00137 0.000010 0.000030 0.00137 0.000010 0.000030 0.00137 0.000010 0.000030 0.00137 0.000010 0.000030 0.00137 0.000010 0.000030 0.00137 0.000010 0.000030 0.00137 0.000010 0.000030 0.00137 0.000010 0.000030 0.00137 0.000000010 0.000030 0.00137 0.000010 0.000030 0.000010 0.000030 0.00137 0.000010 0.000030 0.0000010 0.000030 0.0000010 0.000030 0.00																		< 0.0030
EV MC2 EV MC2 WS 2022-10-28 N-SRF 2022-10-28 330 0.014 35.9 0.00216 0.00138 1.06 13.6 < 0.000010 4.38 0.19 < 0.000010 < 0.00010 < 0.00010 < 0.00030 0.00155 < 0.00031 < 0.00031 < 0.00031 < 0.00031 < 0.00031 < 0.00031 < 0.00031 < 0.00031 < 0.00031 < 0.00031 < 0.00031 < 0.00031 < 0.00031 < 0.00031 < 0.00033 < 0.00137 < 0.00031 < 0.00031 < 0.00031 < 0.00033 < 0.00137 < 0.00031 < 0.00031 < 0.00031 < 0.00031 < 0.00031 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 < 0.00033 <	EV MC2			-	0.015	34.4	0.00224	0.00133	1.02	14.7	< 0.000010	4.62	0.2	< 0.000010		< 0.00030	0.00153	< 0.0030
EV MC2			2022-10-26	330					1.06							< 0.00030		< 0.0030
EV MC2 WS 2022 Q4 WK4 N 2022-11-08 242 (0.00031 0.0013 1.1 0.00211 0.00138 0.96 11.1 <0.000010 3.70 0.18 < 0.000010 0.				-														< 0.0030
EV MC2				-														< 0.0030
EV MC2																		0.0033 < 0.0030
EV MC2																		< 0.0030
EV MC2																		0.0039
EV MC2																		< 0.0030
EV MC2																		< 0.0030
EV MC2 WS 2022-12-27 N-SRF 2022-12-27 383 0.019 41.6 0.00221 0.00286 1.2 14 < 0.000010 5.01 6.12 0.200010 < 0.00010 < 0.00030 0.00209 < 0.00000 < 0.00010 < 0.00030 0.00209 < 0.00000 < 0.00000 < 0.00000 < 0.000000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.00000 < 0.000000 < 0.00000 < 0.00000 < 0.00000 < 0.000000		EV MC2 WS 2022-12 MON N																< 0.0030
EV OC1																		< 0.0030
EV OC1		EV MC2 WS 2022-12-27 N-SRF																< 0.0030
EV OC1 FV OC1 WS 2022-03 MON N 2022-03-16 417 0.06 41 0.16 0.00159 2.75 0.716 < 0.000010 30.9 0.8 < 0.000010 < 0.00010 < 0.00030 0.000541 < 0.00010		EV_OC1_WS_2022-Q1_N																0.0438 < 0.0030
EV OC1 EV OC1 WS 2022-03 WEK13 N 2022-03-28 20.041 30.6 0.0908 0.00128 2.14 1.97 <0.000010 23.2 0.71 <0.000010 <0.00010 0.00234 0.000566 <- EV OC1 EV OC1 WS 2022-04 WEK15 N 2022-03-28																		< 0.0030
EV OC1 EV OC1 WS 2022-03 WEK14 N 2022-04-04																		< 0.0030
EV OC1 EV OC1 WS 2022-04 WEK15 N 2022-04-04									-					-	- 0.00010			-
EV OC1				-	-	-	-	-	-	-	-	_	-	-	-	-	-	-
EV OC1				-	-	-		-	-	-	-		_	-	-		-	-
				382	0.049	41.1	0.0684	0.00163	2.64	2.06	< 0.000010	25.7	0.84	< 0.000010	< 0.00010	< 0.00030	0.000877	< 0.0030
				-			-	-	-	-	-	 -	 -	-	-		-	-
EV OC1							0.0044	- 0.0044	- 0.46		- 0.000010	-	-	- 0.000010	- 0.00010		0.000700	< 0.0030
EV OC1				385	0.047			0.0014	2.48	1.31		24.4	0.81	< 0.000010	< 0.00010	< 0.00150	0.000/38	< 0.0030
EV OC1				+ -	 	+ :				-		t i	+ :					

< Denotes concentration less than indicated detection limit

⁻ Denotes analysis not conducted

n/a denotes no applicable standard

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

			Г								Total Metals						
											. Crui mouris		1	I		l	
Sample	Sample	Sample Date	Hardness	Aluminum	Antimony	Arsenic	Barium*	Beryllium*	Bismuth	Boron	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg	/L	mg/L
						Acute	Chronic	Chronic		Chronic				Acute Chronic		Acute	Acute Chronic
BC WQG FWAL			n/a	n/a	n/a	0.005	1	0.00013	n/a	1.2	n/a	n/a	n/a	0.11 0.004	n/a	1	0.003-5.5 ^a 3.3-3.5 ^a
Elkview Operation																	
EV_OC1	EV_OC1_WS_2022-05_WEK23_N	2022-05-30	-	-	-	-	-	-	-	-			-	-	-	-	-
EV_OC1	EV_OC1_WS_2022-06_MON_N	2022-06-07	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_OC1	EV_OC1_WS_2022-06_WEK25_N	2022-06-13	360	0.0252	0.00013	0.00061	0.362	< 0.020	< 0.000050	0.072	0.0000073	93.2	< 0.00010	0.00011	0.00052	0.488	< 0.000050
EV_OC1	EV_OC1_WS_2022-06_WEK26_N	2022-06-21	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_OC1	EV_OC1_WS_2022-06_WEK27_N	2022-06-27	-		-	-	-	-	-	-	-	-	-	-	-	-	-
EV_OC1	EV_OC1_WS_2022-Q3_N	2022-07-06	-	-	-	-	-	-	-	-	-	-	-		-	-	
EV_OC1	EV_OC1_WS_2022-07_WEK29_N	2022-07-11	354	0.0223	0.00011	0.0007	0.314	< 0.020	< 0.000050	0.063	0.0000053	84.2	< 0.00010	0.00011	< 0.00050	0.362	< 0.000050
EV_OC1	EV_OC1_WS_2022-08_MON_N	2022-08-10	-		-	-	-					-		0.00026		-	0.000214
EV_OC1	EV_OC1_WS_2022-09_MON_N	2022-09-07	306	0.0851	< 0.00010	0.00122	0.34	0.000026	< 0.000050	0.063	0.0000285	59.5	0.0002		< 0.00050	1.1	
EV_OC1	EV_OC1_WS_2022-Q4_N	2022-10-07	295	0.0232	< 0.00010	0.00089	0.414	< 0.020	< 0.000050	0.059	0.0000086	67.4	< 0.00010	< 0.10 < 0.10	< 0.00050	0.592	< 0.000050 < 0.000050
EV_OC1 EV SP1	EV OC1 WS 2022-11 MON N EV SP1 WS 2022-Q1 N	2022-11-09	316 364	0.0094	< 0.00010 < 0.00010	0.00062	0.41	< 0.020 < 0.020	< 0.000050 < 0.000050	0.057	< 0.0050 0.00006	69.9 87.7	< 0.00010 < 0.00010	< 0.10	< 0.00050 < 0.00050	0.56 0.378	< 0.000050
EV SP1	EV SP1 WS 2022-Q1 N EV SP1 WS 2022-02 MON N	2022-01-17	956	< 0.0047	0.00063	0.00041	0.486	< 0.020	< 0.000050	0.056	0.000006	178	< 0.00010	< 0.10	< 0.00050	< 0.010	< 0.000050
EV_SP1	EV SP1 WS 2022-02 MON N	2022-02-16	978	< 0.0030	0.00069	0.00012	0.0108	< 0.020	< 0.000050	0.041	0.0001	198	0.00011	< 0.10	< 0.00050	< 0.010	< 0.000050
EV_SP1	EV SP1 WS 2022-03 WEK13 N	2022-03-17	983	0.0045	0.00065	< 0.00023	0.0112	< 0.020	< 0.000050	0.048	0.000965	186	< 0.00011	< 0.10	< 0.00050	< 0.010	< 0.000050
EV SP1	EV SP1 WS 2022-03 WEK13 N	2022-03-22	303	0.0043	0.00003	- 0.00010	- 0.0107	- 0.020	- 0.000030	0.043	0.000904	-	- 0.00010		- 0.00030	- 0.010	- 0.000000
EV SP1	EV SP1 WS 2022-03 WEK15 N	2022-04-06	-		-		-:-						-	-		-	-
EV SP1	EV SP1 WS 2022-Q2 N	2022-04-13											-	-			-
EV SP1	EV SP1 WS 2022-04 WEK17 N	2022-04-20	823	0.0048	0.00067	0.00012	0.0122	< 0.020	< 0.000050	0.045	0.00078	173	< 0.00010	< 0.10	< 0.00050	< 0.010	< 0.000050
EV SP1	EV SP1 WS 2022-04 WEK18 N	2022-04-27	- 020	-	-	0.00012	0.0122	- 0.020	- 0.000000	0.010	-	-	- 0.00010	-	- 0.00000	- 0.010	-
EV SP1	EV SP1 WS 2022-05-MON N	2022-05-04	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
EV SP1	EV SP1 WS 2022-05 WEK20 N	2022-05-10	948	< 0.0030	0.00064	< 0.00010	0.0114	< 0.020	< 0.000050	0.043	0.00102	192	< 0.00010	< 0.10	< 0.00050	< 0.010	< 0.000050
EV SP1	EV SP1 WS 2022-05 WEK21 N	2022-05-18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV SP1	EV SP1 WS 2022-05 WEK22 N	2022-05-25	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV SP1	EV SP1 WS 2022-05 WEK23 N	2022-05-31	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_SP1	EV_SP1_WS_2022-06_MON_N	2022-06-06	-	-	-	-		-	-	-	-	-	-	-	-	-	-
EV_SP1	EV SP1 WS 2022-06 WEK25 N	2022-06-15	983	< 0.0030	0.00062	< 0.00010	0.0103	< 0.020	< 0.000050	0.045	0.00103	179	< 0.00010	< 0.10	< 0.00050	< 0.010	< 0.000050
EV_SP1	EV SP1_WS_2022-06_WEK26_N	2022-06-23	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV SP1	EV SP1 WS 2022-06 WEK27 N	2022-06-29	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_SP1	EV_SP1_WS_2022-Q3_N	2022-07-06	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_SP1	EV SP1 WS 2022-07 WEK29 N	2022-07-13	904	0.0072	0.00064	0.00013	0.0105	< 0.020	< 0.000050	0.048	0.000969	170	< 0.00010	< 0.10	< 0.00050	< 0.010	< 0.000050
EV_SP1	EV SP1 WS 2022-08 MON N	2022-08-09	-	-	-		- 0.0445	-	-		-	-				-	
EV_SP1	EV SP1 WS SESMP 2022 08 N	2022-08-15	974	0.0036	0.00074	0.00019	0.0117	< 0.020	< 0.000050	0.066	0.00116	187	0.00014	< 0.10	< 0.00050	< 0.010	< 0.000050
EV_SP1	EV SP1 WS 2022-09 MON NP	2022-09-08	984	0.0059	0.00068	0.00011	0.0114	< 0.020	< 0.000050	0.057	0.00118	192	< 0.00010	< 0.10	< 0.00050	< 0.010	< 0.000050
EV_SP1	EV SP1 WS 2022-Q4 N	2022-10-04	1080	0.0156	0.00069	0.00012	0.014	< 0.020	< 0.000050	0.064	0.00128	206	< 0.00010	< 0.10	< 0.00050	< 0.010	< 0.000050
EV SP1	EV SP1 WS 2022-11 MON N	2022-11-15	1020	0.0043	0.00077	< 0.00010	0.0125	< 0.020	< 0.000050	0.077	0.00102	214	< 0.00010	< 0.10 < 0.20	< 0.00050	< 0.010	< 0.000050 < 0.000100
EV_TC1	EV TC1 WS 2022-03 MON N	2022-03-29	1120	< 0.0060	0.00073	< 0.00020	0.0129	< 0.040	< 0.000100	< 0.063	0.00142	214	< 0.00020	< 0.20	< 0.00100	< 0.020 0.013	< 0.000100 < 0.000050
EV_TC1 EV TC1	EV TC1 WS 2022-Q2 N	2022-04-13	232	0.0195 0.007	0.00039	0.00028	0.062	< 0.020 < 0.020	< 0.000050 < 0.000050	< 0.010	0.0000946 0.0000883	56 56.6	< 0.00010	< 0.10	0.00072	< 0.013	< 0.000050
EV_TC1	EV TC1 WS 2022-05 MON N EV TC1 WS 2022-06 MON N	2022-05-03	192	0.007	0.00033	0.00028	0.0638	< 0.020	< 0.000050	< 0.010	0.0000883	48	< 0.00010	< 0.10	0.00056	0.016	< 0.000050
EV_TC1	EV TC1 WS 2022-06 MON N EV TC1 WS 2022 Q3 N	2022-06-06	227	0.0212	0.00028	0.00025	0.0487	< 0.020	< 0.000050	< 0.010	0.000126	48.4	< 0.00010	< 0.10	0.00066	< 0.016	< 0.000050
EV_ICI	EV_1C1_WS_2022_Q3_N	2022-07-05	221	0.0078	0.00033	0.00023	0.0639	<u> </u>	<u> </u>	<u> </u>	0.000118	46.4	<u> </u>	> 0.10	0.0005	<u> ~ 0.010</u>	, ~ 0.000050

Denotes concentration less than indicated detection limit
 Denotes analysis not conducted
 n/a denotes no applicable standard

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

										Total Metals							
		T	Ι		T			I		Total Wetals	_	т -	1	I			
Sample	Sample	Sample Date	Hardness	Lithium	Magnesium	Manganese	Nickel*	Potassium	Selenium	Siver	Sodium	Strontium	Thallium	E	Titanium	Uranium*	Zinc
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	mg/L	mg/	Lmg	/L mg/L	mg/L	mg/L	mg/L	mg/L
				J		Acute	Chronic		Chronic	Acute						Chronic	Acute Chronic
BC WQG FWAL			n/a	n/a	n/a	0.001-0.03 ^a 0.0009-0.01 ^a	0.025-0.15 ^a	n/a	2	0.0001-0.003 ^a 0.00005-0.0015 ^a	n/a	n/a	n/a	n/a	n/a	0.0085	0.033-2 ^a 0.0075-2 ^a
Elkview Operation																	
EV_OC1	EV_OC1_WS_2022-05_WEK23_N	2022-05-30	-	-	-	1	-	-	-	-	-	-	-	-	-	-	
EV_OC1	EV_OC1_WS_2022-06_MON_N	2022-06-07	-	-	-	-	-	-	-	-	-	-		-	-	-	•
EV_OC1	EV_OC1_WS_2022-06_WEK25_N	2022-06-13	360	0.044	39.7	0.0607	0.00096	2.29	0.804	< 0.000010	19.8	8 0.7	2 0.00001	< 0.00010	0.00032	0.000586	< 0.0030
EV_OC1	EV_OC1_WS_2022-06_WEK26_N	2022-06-21	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EV_OC1	EV_OC1_WS_2022-06_WEK27_N	2022-06-27	-	-	-	-	-	-	-	-	-	-		-	-	-	•
EV_OC1	EV_OC1_WS_2022-Q3_N	2022-07-06	-	-	-	-	-	-	-	-	-	-	_	-	-	-	
EV_OC1	EV_OC1_WS_2022-07_WEK29_N	2022-07-11	354	0.037	34.5	0.053	0.00118	1.72	0.749	< 0.000010	17.5	5 0.6	1 < 0.000010	< 0.00010	0.00041	0.000499	< 0.0030
EV_OC1	EV_OC1_WS_2022-08_MON_N	2022-08-10	-	-	-	-	-	-	-		-	<u> </u>	-	-	-	-	
EV_OC1	EV_OC1_WS_2022-09_MON_N	2022-09-07		0.034	37	0.18	0.00221	1.92	0.441	< 0.000010		1 0.5		< 0.00010	0.00107	0.000418	0.0035
EV_OC1	EV_OC1_WS_2022-Q4_N	2022-10-07		0.037	40.6	0.0576	0.00115	2.17	0.368	< 0.000010		7 0.5		< 0.00010	< 0.00030	0.000352	< 0.0030
EV_OC1	EV_OC1_WS_2022-11_MON_N	2022-11-09	316		34.1	0.0338	0.00093	2.77	0.296	< 0.000010		0.5		< 0.00010	< 0.00030	0.000343	< 0.0030
EV_SP1	EV_SP1_WS_2022-Q1_N	2022-01-17		0.036	38	0.0512	0.00118	3.35	0.626	< 0.000010		6 0.6		< 0.00010	< 0.00030	0.000442	< 0.0030
EV_SP1	EV_SP1_WS_2022-02_MON_N	2022-02-16	956		125	0.00036	0.0192	3.94	139	< 0.000010		2 0.1		< 0.00010	< 0.00030	0.0097	0.0285
EV_SP1	EV_SP1_WS_2022-03_MON_N	2022-03-17		0.042	140	0.00024	0.0207	4.21	156	< 0.000010		2 0.1		< 0.00010	< 0.00030	0.0104	0.0288
EV_SP1	EV_SP1_WS_2022-03_WEK13_N	2022-03-22	983	0.041	132	0.00062	0.018	3.98	146	< 0.000010		4 0.1		< 0.00010	< 0.00030	0.00991	0.0269
EV_SP1	EV_SP1_WS_2022-03_WEK14_N	2022-03-30	-	-	-	-	-	-	-	-	<u> </u>	-	-	-	-		
EV_SP1	EV SP1 WS 2022-04 WEK15 N	2022-04-06	-	-	-	-	-	-	-	- :	-	-		-	-		-
EV_SP1	EV SP1 WS 2022-Q2 N	2022-04-13	-	- 0.044	- 445	0.00051	- 0.0470	_	- 470	< 0.000010	_	_	_	- 0.00040	- 0.00000	0.00005	0.029
EV_SP1	EV_SP1_WS_2022-04_WEK17_N	2022-04-20	823	0.041	115	0.00051	0.0172	3.59	179	< 0.000010	1.13	3 0.1	2 0.000117	< 0.00010	< 0.00030	0.00825	0.029
EV_SP1 EV_SP1	EV SP1 WS 2022-04 WEK18 N EV SP1 WS 2022-05-MON N	2022-04-27	-	-	<u> </u>	-	-	-	<u> </u>	 	-	+-	_	-	-		- :
EV SP1	EV SP1 WS 2022-05-MON N EV SP1 WS 2022-05 WEK20 N	2022-05-04	948	0.042	135	0.00036	0.0216	4.06	174	< 0.000010	1 20	9 0.1	2 0.000126	< 0.00010	< 0.00030	0.00981	0.0354
EV SP1	EV SP1 WS 2022-05 WEK20 N EV SP1 WS 2022-05 WEK21 N	2022-05-10	946	0.042	135	0.00036	0.0216	4.06	1/4	< 0.000010	1.2	0.1	2 0.000126	< 0.00010	< 0.00030	0.00981	0.0554
EV_SP1	EV SP1 WS 2022-05 WEK21 N	2022-05-16	-		+-	-	-	-	- :-	 	Ť	+:		-:-			-
EV SP1	EV SP1 WS 2022-05 WEK22 N	2022-05-25			+ -	-		-		 	1	+	-	- :	-		- :
EV SP1	EV SP1 WS 2022-05 WER23 N EV SP1 WS 2022-06 MON N	2022-06-06		-	+ :			-		 	H.	+:		- :			-
EV SP1	EV SP1 WS 2022-06 WEK25 N	2022-06-05	983	0.041	130	0.00031	0.0221	3.8	143	< 0.000010	1 16	6 0.1		< 0.00010	< 0.00030	0.00981	0.0365
EV SP1	EV SP1 WS 2022-06 WEK25 N	2022-06-13	903	0.041	130	0.00031	0.0221	3.0	- 143	- 0.000010	1.10	U. I	2. 0.000122	< 0.00010	- 0.00030	-	0.0303
EV SP1	EV SP1 WS 2022-06 WEK27 N	2022-06-29			+ :-	-	-			-	ΤŤ	1	T -				
EV SP1	EV SP1 WS 2022-Q3 N	2022-07-06	-	-	-	-	-	-		-	-	1 -	T -	-	-		-
EV SP1	EV SP1 WS 2022-07 WEK29 N	2022-07-00	904	0.039	110	0.00052	0.0208	3.82	140	< 0.000010	1.11	1 0.1	1 0.000127	< 0.00010	< 0.00030	0.0083	0.0328
EV SP1	EV SP1 WS 2022-08 MON N	2022-08-09	-	-	-	-	-	-	-	-	-			-	-	-	-
EV SP1	EV SP1 WS SESMP 2022 08 N	2022-08-15	974	0.044	131	0.00069	0.0261	4.6	138	< 0.000010	1.26	6 0.1	2 0.000188	< 0.00010	< 0.00030	0.00978	0.0383
EV SP1	EV SP1 WS 2022-09 MON NP	2022-09-08		0.04	132	0.00089	0.0252	4.51	128	< 0.000010		8 0.1		< 0.00010	< 0.00030	0.00919	0.0335
EV SP1	EV SP1 WS 2022-Q4 N	2022-10-04		0.043	149	0.00051	0.0264	4.54		< 0.000010	1.3	1 0.1	3 0.000171	< 0.00010	< 0.00030	0.0104	0.0308
EV SP1	EV SP1 WS 2022-11 MON N	2022-11-15	1020	0.046	149	0.00079	0.0258	4.83	157	< 0.000010	1.39	9 0.1	4 0.000172	< 0.00010	< 0.00030	0.0101	0.0282
EV_TC1	EV TC1 WS 2022-03 MON N	2022-03-29	1120		150	0.00075	0.0246	4.84	138	< 0.000020		2 0.1		< 0.00020	< 0.00060	0.0107	0.0377
EV_TC1	EV_TC1_WS_2022-Q2_N	2022-04-13	232	0.001	26.4	0.00037	0.0031	0.84	9.7		0.8	1 0.0	5 0.000012	< 0.00010	0.00044	0.000818	< 0.0030
EV_TC1	EV TC1 WS 2022-05 MON N	2022-05-03		0.002	24.5	0.00019	0.00286	0.791	11.2			1 0.0		< 0.00010	< 0.00030	0.00088	< 0.0030
EV_TC1	EV TC1 WS 2022-06 MON N	2022-06-06		0.001	21	0.00058	0.00344	0.688	9.16			1 0.0		< 0.00010	0.00054	0.000833	< 0.0030
EV TC1	EV TC1 WS 2022 Q3 N	2022-07-05	227	0.001	24.1	0.00026	0.00327	0.876	8.11	< 0.000010	0.72	2 0.0	5 < 0.000010	< 0.00010	< 0.00030	0.000826	< 0.0030

Denotes concentration less than indicated detection limit
 Denotes analysis not conducted
 n/a denotes no applicable standard

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

											Total Metals						
				_									_				
			SS	Ē	Ē		*_	È	£		Ę	=	5		_		
			l ë	듩	<u>e</u>	l ĕ	Ē	€	smuth	5	E E	Cirm	nim o	풀	e e		
Sample	Sample	Sample Date	arc	į	Į į	l se	ari	l Ĕ	Bisn	ŏ	Cadı	alc	Ĕ	8	Coppe	<u>و</u>	ead
Location	ID	(mm/dd/yyyy)	ma/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg	/L =	mg/L
		(i,	<u></u>	g				g		9	Ī	
						l e	ē.	5		, E				Acute		욕	onic and
						Acı	ਤੌ	š		Chronic				Acute Chronic		Act	ਲੋ ਲੌ
BC WQG FWAL			n/a	n/a	n/a	0.005	1	0.00013	n/a	1.2	n/a	n/a	n/a	0.11 0.004	n/a	1	0.003-5.5 ^a 3.3-3.5 ^a
Fording River Operation																	
FR_CC1	FR_CC1_2022-01-04_N	2022-01-04	-	-	-				-	-	-	-	-	- 0.00004	-		- 0.000400
FR_CC1 FR_CC1	FR_CC1_2022-01-06_N FR_CC1_2022-01-12_N	2022-01-06	1560 1510	< 0.0060 < 0.0060	0.00079	< 0.00020 < 0.00020	0.0305	< 0.040 < 0.040	< 0.000100 < 0.000100	0.034	0.000698	325 324	< 0.00020 < 0.00020	0.00021 0.0002	< 0.00100 < 0.00100	< 0.020 < 0.020	< 0.000100 < 0.000100
FR CC1	FR CC1 2022-01-12 N	2022-01-12	1450	< 0.0060	0.00081	< 0.00020	0.0308	< 0.040	< 0.000100	0.033	0.000709	355	< 0.00020	0.00028	< 0.00100	< 0.020	< 0.000100
FR CC1	FR CC1 2022-01-17 N	2022-01-17	1500	< 0.0060	0.00073	< 0.00020	0.0308	< 0.040	< 0.000100	0.032	0.00067	330	< 0.00020	< 0.20	< 0.00100	< 0.020	< 0.000100
FR_CC1	FR_CC1_2022-01-31_N	2022-01-31	1480	< 0.0060	0.00079	< 0.00020	0.0292	< 0.040	< 0.000100	0.034	0.000673	313	< 0.00020	< 0.20	< 0.00100	< 0.020	< 0.000100
FR_CC1	FR_CC1_2022-02-07_N	2022-02-07	1470	< 0.0060	0.00076	< 0.00020	0.0329	< 0.040	< 0.000100	0.034	0.00072	339	< 0.00020	0.00022	< 0.00100	< 0.020	< 0.000100
FR_CC1	FR_CC1_2022-02-14_N	2022-02-14	1450	< 0.0060	0.00075	< 0.00020	0.0303	< 0.040	< 0.000100	0.033	0.000636	322	< 0.00020	< 0.20	< 0.00100	< 0.020	< 0.000100
FR_CC1	FR_CC1_2022-02-21_N	2022-02-21	1460	0.0094	0.00071	< 0.00020	0.0295	< 0.040	< 0.000100	0.031	0.000653	310	< 0.00020 < 0.00010	< 0.20	< 0.00100	< 0.020 < 0.010	< 0.000100 < 0.000050
FR CC1 FR CC1	FR CC1 2022-03-01 N FR CC1 2022-03-07 N	2022-03-01	1520 1600	0.008 < 0.0060	0.00074	0.00013	0.0301	< 0.020 < 0.040	< 0.000050 < 0.000100	0.036	0.000667	333 348	< 0.00010	< 0.20	< 0.00050 < 0.00100	< 0.010	< 0.000050
FR CC1	FR_CC1_2022-03-07_N	2022-03-14	1510	0.0043	0.00083	< 0.00020	0.0296	< 0.020	< 0.000100	0.034	0.000624	320	0.00014	0.00018	< 0.00050	< 0.020	< 0.000100
FR CC1	FR CC1 2022-03-21 N	2022-03-21	1320	0.0063	0.00085	< 0.00020	0.0324	< 0.040	< 0.000100	0.036	0.000716	356	< 0.00020	< 0.20	< 0.00100	< 0.020	< 0.000100
FR_CC1	FR_CC1_2022-03-28_N	2022-03-28	1440	0.0276	0.00074	< 0.00020	0.0312	< 0.040	< 0.000100	0.033	0.000728	307	< 0.00020	0.00021	< 0.00100	0.026	0.000102
FR_CC1	FR_CC1_2022_04_06_N	2022-04-06	1460	0.0363	0.00073	0.00015	0.0288	< 0.020	< 0.000050	0.033	0.000604	334	< 0.00010	0.00023	< 0.00050	0.03	0.00006
FR_CC1	FR_CC1_2022-04-11_N	2022-04-11	750	0.0066	0.00046	0.00011	0.013	< 0.020	< 0.000050	0.021	0.0003675	156.525	< 0.00010	0.000185	< 0.00050	< 0.010	< 0.000050
FR CC1 FR CC1	FR CC1 2022-04-13 N FR CC1 2022-04-18 N	2022-04-13	1460 1460	0.009	0.0008	0.0002	0.0227	< 0.020 < 0.020	< 0.000050 < 0.000050	0.034	0.000812	302 302	0.0001	0.00036 0.00036	< 0.00050 < 0.00050	0.016 0.016	< 0.000050 < 0.000050
FR CC1	FR_CC1_2022-04-18_N FR_CC1_2022-04-25_N	2022-04-18	1310	0.009	0.0008	0.0002	0.0227	< 0.020	< 0.000050	0.034	0.000812	302	< 0.0001	0.00036	< 0.00050	< 0.016	< 0.000050
FR CC1	FR CC1 2022-05-02 N	2022-05-02	1260	0.0058	0.00085	0.00013	0.0207	< 0.020	< 0.000050	0.032	0.000671	268	0.00010	0.00037	< 0.00050	< 0.010	< 0.000050
FR CC1	FR CC1 2022-05-06 N	2022-05-06	1270	0.0074	0.00089	0.00021	0.0199	< 0.020	< 0.000050	0.034	0.000611	268	0.00011	0.00025	< 0.00050	< 0.010	< 0.000050
FR_CC1	FR_CC1_2022-05-07_N	2022-05-07	1240	0.0092	0.00087	0.00015	0.0206	< 0.020	< 0.000050	0.035	0.00064	254	< 0.00010	0.00033	0.00058	0.013	< 0.000050
FR_CC1	FR_CC1_2022-05-08_N	2022-05-08	1140	0.0056	0.0008	< 0.00010	0.0198	< 0.020	< 0.000050	0.034	0.000597	241	0.00029	0.00033	< 0.00050	< 0.010	< 0.000050
FR CC1	FR CC1 2022-05-09 N	2022-05-09	1150	0.007	0.00079	0.00011	0.0183	< 0.020	< 0.000050	0.033	0.000561	234	< 0.00010	0.0003	< 0.00050	< 0.010	< 0.000050
FR_CC1 FR_CC1	FR CC1 2022-05-10 N FR CC1 2022-05-11 N	2022-05-10 2022-05-11	1280 1160	0.0078 0.0045	0.00082 0.00084	0.00017	0.0194	< 0.020 < 0.020	< 0.000050 < 0.000050	0.032	0.000641 0.000685	240 242	< 0.00010 < 0.00010	0.00035 0.00034	< 0.00050 0.00051	< 0.010 < 0.010	< 0.000050 < 0.000050
FR CC1	FR CC1 2022-05-11 N	2022-05-11	1150	0.0043	0.00088	0.0001	0.0194	< 0.020	< 0.000050	0.035	0.000652	243	< 0.00010	0.00037	0.00051	< 0.010	< 0.000050
FR CC1	FR CC1 2022-05-13 N	2022-05-13	1140	0.0043	0.00089	0.00013	0.0185	< 0.020	< 0.000050	0.035	0.000655	244	< 0.00020	0.00036	0.00054	< 0.010	< 0.000050
FR_CC1	FR_CC1_2022-05-14_N	2022-05-14	1210	0.0047	0.00082	0.00014	0.0217	< 0.020	< 0.000050	0.034	0.00065	268	< 0.00010	0.00034	< 0.00050	< 0.010	< 0.000050
FR_CC1	FR_CC1_2022-05-16_N	2022-05-16	1160	0.0058	0.00085	0.00012	0.0192	< 0.020	< 0.000050	0.034	0.000675	273	< 0.00010	0.00035	0.00059	< 0.010	< 0.000050
FR CC1	FR CC1 2022-05-25 N	2022-05-25	1060	0.0123	0.00086	0.00013	0.0208	< 0.020	< 0.000050	0.031	0.000665	270	< 0.00010	0.00032	< 0.00050	0.012	< 0.000050
FR CC1 FR CC1	FR CC1 2022-05-30 N FR CC1 2022-06-13 N	2022-05-30	994 1000	0.0057 0.0164	0.00094 0.00085	0.00017	0.0182	< 0.020	< 0.000050 < 0.000050	0.033	0.000534	214 182	< 0.00010 < 0.00010	0.00026	< 0.00050 < 0.00050	< 0.010 0.024	< 0.000050 < 0.000050
FR CC1	FR CC1 2022-06-13 N	2022-06-13	912	0.0164	0.00065	0.00011	0.0216	< 0.020	< 0.000050	0.03	0.000449	193	< 0.00010	0.00023	< 0.00050	0.024	< 0.000050
FR CC1	FR CC1 2022-07-18 N	2022-07-18	870	0.0054	0.00071	< 0.00012	0.0295	< 0.020	< 0.000050	0.024	0.000567	177	< 0.00010	0.00027	< 0.00050	< 0.010	< 0.000050
FR_CC1	FR CC1 2022-07-25 N	2022-07-25	824	0.0066	0.00073	0.0001	0.0333	< 0.020	< 0.000050	0.026	0.000497	153	< 0.00010	0.00026	< 0.00050	< 0.010	< 0.000050
FR_CC1	FR_CC1_2022-08-02_N	2022-08-02	868	0.0065	0.00071	0.00013	0.036	< 0.020	< 0.000050	0.026	0.000499	186	< 0.00010	0.00019	< 0.00050	< 0.010	< 0.000050
FR CC1	FR CC1 2022-08-08 N	2022-08-08	918	0.0101	0.00074	0.00013	0.0432	< 0.020	< 0.000050	0.027	0.000561	186	< 0.00010	0.0002	< 0.00050	< 0.010	< 0.000050
FR CC1 FR CC1	FR CC1 2022-08-15 N FR CC1 WS SESMP 2022-08 N	2022-08-15	961 979	0.005	0.00065 0.00064	0.00011	0.0377	< 0.020	< 0.000050 < 0.000050	0.028	0.000469 0.000497	210 199	< 0.00010 < 0.00010	0.00018	0.00051 < 0.00050	< 0.010	< 0.000050 < 0.000050
FR CC1	FR CC1_WS_SESMP_2022-08_N FR CC1_2022-08-22_N	2022-08-19	1050	0.008	0.00064	0.00012	0.0413	< 0.020	< 0.000050	0.025	0.000497	204	0.00010	0.00017	< 0.00050	< 0.010	< 0.000050
FR CC1	FR CC1 2022-08-22 N	2022-08-29	969	0.0069	0.00063	0.0002	0.0414	< 0.020	< 0.000050	0.032	0.000455	227	< 0.00010	0.00017	< 0.00050	< 0.010	< 0.000050
FR CC1	FR CC1 RD WS 2022-08-30 NP	2022-08-30	1130	0.012	0.00066	0.00018	0.0386	< 0.020	< 0.000050	0.024	0.000514	247	< 0.00010	0.00018	< 0.00050	0.011	< 0.000050
FR_CC1	FR_CC1_WS_SEPT-2022_N	2022-09-07	1190	< 0.0165	0.00066	0.00027	0.0392	< 0.020	< 0.000050	0.033	0.000516	246	0.00016	0.0002	< 0.00050	0.01	< 0.000050
FR_CC1	FR_CC1_2022-09-07_N	2022-09-07	1080	< 0.0030	0.0007	< 0.00010	0.0367	< 0.020	< 0.000050	0.028	0.000386	228	< 0.00010	0.00017	< 0.00050	< 0.010	< 0.000050
FR_CC1	FR_CC1_CC1A_2022-09-12_N	2022-09-12	1100	0.0071	0.00068	0.0002	0.0357	< 0.020	< 0.000050	0.031	0.000444	249	< 0.00010	0.00018 0.0002	< 0.00050	0.01	< 0.000050 0.000072
FR_CC1 FR_CC1	FR_CC1_CC1A_2022-09-17_N FR_CC1_CC1A_2022-09-18_N	2022-09-17 2022-09-18	1240 1260	0.016 0.0201	0.0007	0.00054 < 0.00020	0.0334	< 0.020 < 0.040	< 0.000050 < 0.000100	0.036	0.000408 0.000528	264 275	0.00015 < 0.00020	0.0002	0.00065 0.0029	0.016 < 0.020	0.000072
FR CC1	FR CC1 CC1A 2022-09-18 N	2022-09-18	1220	0.0201	0.0008	0.00013	0.0336	< 0.040	< 0.000100	0.037	0.000326	253	< 0.00020	0.00022	0.0029	0.035	< 0.000050
FR CC1	FR DC1 2022-09-19 N	2022-09-19	1420	0.0182	0.00072	0.00016	0.0302	< 0.020	< 0.000050	0.020	0.000370	324	0.00029	0.00027	0.00811	0.066	0.000867
111_001	110 001 2022-00-10 14	, 2022-00-19	1720	0.0102	. 0.0000	. 0.00010	0.0002	, -0.020	, , 0.000000	. 0.072	. 3.000-04	. 027	. 0.00025	. 0.00021	. 0.00011	0.000	0.00000

Denotes concentration less than indicated detection limit
 Denotes analysis not conducted
 n/a denotes no applicable standard

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

										Total Metals								
										1	Τ							
					_ ا													
			u)		nesium	980		Ē	E			lε	_		_	*_		
			l se	E	esi	<u>a</u>	*_	1 .5	_≛	_	⊑	Strontium	<u> </u>		Titanium	5		
			臣	∄	Magn	gue	ickel	tas	eni	Silver	Sodium	5	allin	_	, E	raniu		2
Sample	Sample	Sample Date	Ξ	5		× ×	z	2	Se				£	Ę				Ñ
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	mg/L	mg/	mg/L	mg/L	mg/L	mg/L	mg/L	m	ng/L
						ro nic	je Si		흗							onic	_	을
						l sute	٥		non.	Acute						2	cute	ρ
						Act Chr	Сh		-F	_ `	<u> </u>					ร็	٩	5
BC WQG FWAL			n/a	n/a	n/a	0.001-0.03 ^a 0.0009-0.01 ^a	0.025-0.15 ^a	n/a	2	0.0001-0.003° 0.00005-0.0015°	n/a	n/a	n/a	n/a	n/a	0.0085	0.033-2 ^a	0.0075-2ª
Fording River Operation		1									_							
FR_CC1	FR_CC1_2022-01-04_N	2022-01-04	4500	- 0.407	474	- 0.00004	0.0007	7.75	-		-		- 0.000050	< 0.00020	< 0.00060	- 0.0470		.0309
FR_CC1 FR_CC1	FR_CC1_2022-01-06_N	2022-01-06 2022-01-12	1560	0.497		0.00234 0.00221	0.0637 0.0624	7.75 7.92	186 174	< 0.000020 < 0.000020		0.53	0.000053 0.000057	< 0.00020	< 0.00060	0.0172 0.0171		.0309
FR_CC1	FR_CC1_2022-01-12_N FR_CC1_2022-01-17_N	2022-01-12	1450		176	0.00221	0.0624	7.92	174	< 0.000020		0.57	0.000057	< 0.00020	< 0.00060	0.0171		.0336
FR CC1	FR CC1 2022-01-17 N FR CC1 2022-01-24 N	2022-01-17	1500			0.00262	0.0605	7.42	188	< 0.000020		0.54		< 0.00020	< 0.00060	0.0162		.0328
FR CC1	FR CC1 2022-01-24 N	2022-01-24	1480			0.00230	0.0594	7.16	182	< 0.000020		0.53	0.000052	< 0.00020	0.00063	0.0176		.0316
FR CC1	FR CC1 2022-07-07 N	2022-01-01		0.474		0.00232	0.0637	7.72	195	< 0.000020		0.54	0.00005	< 0.00020	< 0.00060	0.0170		.0341
FR CC1	FR CC1 2022-02-14 N	2022-02-01	1450			0.0021	0.0585	7.5	189	< 0.000020		0.52	0.000055	< 0.00020	< 0.00060	0.0162		.0301
FR_CC1	FR_CC1_2022-02-21_N	2022-02-21		0.423		0.00228	0.0594	7.26	187	< 0.000020		0.52	0.00005	< 0.00020	< 0.00060	0.0155	0.	.0301
FR CC1	FR CC1 2022-03-01 N	2022-03-01	1520	0.46	180	0.00238	0.061	7.18	209	< 0.000010	12.5	0.53	0.00005	< 0.00010	< 0.00030	0.0152		.0332
FR_CC1	FR_CC1_2022-03-07_N	2022-03-07	1600	0.533	173	0.00202	0.0647	8.59	211	< 0.000020		0.63	0.000056	< 0.00020	< 0.00060	0.0186	0.	.0311
FR_CC1	FR_CC1_2022-03-14_N	2022-03-14	1510			0.00212	0.0577	7.33	208	< 0.000010		0.54	0.000052	< 0.00010	< 0.00030	0.0158		.0315
FR_CC1	FR_CC1_2022-03-21_N	2022-03-21	1320			0.00219	0.0637	8.04	216	< 0.000020		0.64	0.000064	< 0.00020	< 0.00060	0.0176		.0322
FR_CC1	FR_CC1_2022-03-28_N	2022-03-28	1440			0.00313	0.0576	7.48	195	< 0.000020		0.51	0.000054	< 0.00020	< 0.00120	0.0155		.0345
FR_CC1	FR_CC1_2022_04_06_N	2022-04-06	1460			0.00378	0.0573	7.31	186	< 0.000010		0.53	0.000049	< 0.00010	< 0.00120	0.0162		0.03
FR_CC1	FR_CC1_2022-04-11_N	2022-04-11		0.228		0.00125	0.02755	4.125	105.025	< 0.000010		0.28	0.0000295	< 0.00010	< 0.00030	0.007805		.0188
FR CC1 FR CC1	FR CC1 2022-04-13 N	2022-04-13	1460	0.374		0.00227 0.00227	0.052 0.052	6.93	235 235	< 0.000010 < 0.000010		0.48	0.00005 0.00005	< 0.00010 < 0.00010	0.0003	0.0164		0.037
FR CC1	FR CC1 2022-04-18 N FR CC1 2022-04-25 N	2022-04-18 2022-04-25		0.374		0.00227	0.052	7.31	255	< 0.000010		0.48		< 0.00010	< 0.0003	0.0164 0.0148		.0374
FR CC1	FR CC1 2022-04-25 N	2022-04-25	1260			0.00145	0.0453	6.83	207	< 0.000010		0.40	0.000049	< 0.00010	< 0.00030	0.0146		.0324
FR CC1	FR CC1 2022-05-02 N	2022-05-06	1270			0.00149	0.0439	7	206	< 0.000010		0.42	0.000047	< 0.00010	0.00048	0.0135		.0284
FR CC1	FR CC1 2022-05-07 N	2022-05-07	1240			0.00188	0.0435	7.25	224	< 0.000010		0.40	0.000047	< 0.00010	< 0.00030	0.0134		.0363
FR CC1	FR_CC1_2022-05-08_N	2022-05-08	1140			0.00176	0.0426	7.26	213	< 0.000010	10.3	0.38	0.00004	< 0.00010	< 0.00030	0.0135		.0318
FR CC1	FR CC1 2022-05-09 N	2022-05-09	1150	0.308	133	0.00176	0.0396	6.87	204	< 0.000010	9.57	0.36	0.000041	< 0.00010	< 0.00030	0.0129	0.	.0319
FR_CC1	FR_CC1_2022-05-10_N	2022-05-10	1280			0.00163	0.041	7.01	208	< 0.000010		0.38	0.000043	< 0.00010	< 0.00030	0.0137		.0313
FR_CC1	FR_CC1_2022-05-11_N	2022-05-11		0.306		0.00147	0.0438	6.63	192	< 0.000010		0.38	0.000046	< 0.00010	< 0.00030	0.0119		.0335
FR_CC1	FR_CC1_2022-05-12_N	2022-05-12		0.347		0.0015	0.0401	6.89	204	< 0.000010		0.37		< 0.00010	< 0.00030	0.0144		.0358
FR_CC1	FR CC1 2022-05-13 N	2022-05-13	1140			0.00142	0.0396	6.91	202	< 0.000010		0.36	0.000046	< 0.00010	< 0.00030	0.0142		.0339
FR_CC1	FR_CC1_2022-05-14_N	2022-05-14		0.347		0.00122	0.0382	6.98	195	< 0.000010		0.37	0.000042	< 0.00010	< 0.00030	0.0121		.0328
FR_CC1	FR_CC1_2022-05-16_N	2022-05-16	1160			0.0013	0.0392	7.13	193	< 0.000010		0.38	0.000046	0.00019	< 0.00030	0.0122		.0345
FR CC1 FR CC1	FR CC1 2022-05-25 N FR CC1 2022-05-30 N	2022-05-25 2022-05-30	1060 994			0.00134 0.00131	0.0363 0.0347	7.18 6.14	178 171	< 0.000010 < 0.000010		0.39	0.000044 0.000043	< 0.00010 < 0.00010	< 0.00030 < 0.00030	0.0118 0.0113		0.026
FR CC1	FR CC1 2022-05-30 N FR CC1 2022-06-13 N	2022-05-30	1000			0.00131	0.0347	5.52	154	< 0.000010		0.34	0.000043	< 0.00010	0.00041	0.0113		.0216
FR CC1	FR CC1 2022-06-13 N	2022-06-27	912	0.243		0.00202	0.0303	5.89	133	< 0.000010		0.33	0.000035	< 0.00010	0.00041	0.00934		.0243
FR CC1	FR CC1 2022-00-27 N	2022-00-27	870			0.00277	0.0313	4.68	128	< 0.000010		0.29	0.000036	< 0.00010	< 0.00030	0.0102		.0262
FR CC1	FR CC1 2022-07-25 N	2022-07-25	824		94.7	0.00117	0.0288	5.52	130	< 0.000010		0.26		< 0.00010	< 0.00030	0.00866		.0258
FR CC1	FR CC1 2022-08-02 N	2022-08-02	868			0.0009	0.0302	5.31	128	< 0.000010	9.24	0.28	0.000034	< 0.00010	< 0.00030	0.00929	0.	.0292
FR_CC1	FR CC1 2022-08-08 N	2022-08-08	918	0.269	105	0.00112	0.0327	5.32	129	< 0.000010		0.3	0.000036	< 0.00010	0.00036	0.0103		.0272
FR_CC1	FR_CC1_2022-08-15_N	2022-08-15	961	0.311		0.00084	0.033	5.46	123	< 0.000010		0.33	0.000033	< 0.00010	< 0.00030	0.00984		.0225
FR_CC1	FR_CC1_WS_SESMP_2022-08_N	2022-08-19	979			0.00096	0.0381	5.4	126	< 0.000010		0.31	0.000034	< 0.00010	< 0.00030	0.0109		.0254
FR_CC1	FR_CC1_2022-08-22_N	2022-08-22	1050			0.00086	0.0361	5.22	127	< 0.000010		0.33	0.000036	< 0.00010	< 0.00030	0.011		.0232
FR CC1	FR CC1 2022-08-29 N	2022-08-29		0.305		0.00092	0.0373	5.26	122	< 0.000010		0.34	0.000038	< 0.00010	< 0.00030	0.0108		.0238
FR CC1 FR CC1	FR CC1 ND WS 2022-08-30 NP	2022-08-30	1130	0.246		0.00127 0.00118	0.0447 0.0392	5.35 5.5	140	< 0.000010 < 0.000010		0.42		< 0.00010 < 0.00010	< 0.00030 < 0.00030	0.0148		.0272
FR_CC1	FR CC1 WS SEPT-2022 N FR CC1 2022-09-07 N	2022-09-07 2022-09-07	1080			0.0005	0.0392	5.5	138 172	< 0.000010		0.39	0.000037 0.000032	< 0.00010	< 0.00030	0.0119 0.0132		.0239
FR CC1	FR CC1 2022-09-07 N FR CC1 CC1A 2022-09-12 N	2022-09-07	1100			0.0005	0.05	5.61	1/2	< 0.000010		0.39		< 0.00010	< 0.00030	0.0132		.0236
FR CC1	FR CC1 CC1A 2022-09-12 N	2022-09-17	1240			0.00101	0.0476	5.65	148	< 0.000010		0.36	0.000038	0.00013	0.00031	0.0119		.0248
FR CC1	FR CC1 CC1A 2022-09-18 N	2022-09-18	1260			0.00112	0.0576	6.49	160	< 0.000020		0.44	0.000051	< 0.00010	< 0.00060	0.0153		.0424
FR CC1	FR CC1 CC1A 2022-09-19 N	2022-09-19	1220			0.0022	0.0538	6.88	134	< 0.000010		0.43		< 0.00010	0.00048	0.015		0.024
FR CC1	FR DC1 2022-09-19 N	2022-09-19		0.486		0.00266	0.0645	6.87	188	< 0.000010		0.47		< 0.00010	0.0004	0.0154		0.105

Denotes concentration less than indicated detection limit
 Denotes analysis not conducted
 n/a denotes no applicable standard

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

											Total Metals						
			dness	minum	mony	Arsenic	*Wn	yllium*	smuth	no	Sadmium	cium	romium	Cobalt	Copper		7
Sample	Sample	Sample Date	<u>ă</u>	Ę	1 1	l ss	3ari	Ĕ	3isr	30r	8	Salc	통	8	8	, ē	ead
Location	Sample	(mm/dd/yyyy)	ma/l	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg		mg/L
20041011		(g/.	9/2	g/ L	9.=		- ing-1	g/_		9.2		9.2		9	<u> </u>	
						Acute	Chronic	Chroni		Chronic				Acute Chronic		Acute	Acute
BC WQG FWAL			n/a	n/a	n/a	0.005	1	0.00013	n/a	1.2	n/a	n/a	n/a	0.11 0.004	n/a	1	0.003-5.5° 3.3-3.5°
Fording River Operation																	
FR_CC1	FR_FLD1_2022-09-19_N	2022-09-19	1340	0.0116	0.00072	0.00014	0.0296	< 0.020	< 0.000050	0.037	0.000456	292	< 0.00010	0.00023	0.00053	0.01	< 0.000050
FR_CC1	FR_CC1_CC1A_2022-09-20_N FR_CC1_CC1A_2022-09-21_N	2022-09-20	< 0.50 1400	< 0.0030 0.0125	< 0.00010 0.00081	< 0.00010	< 0.00010 0.0321	< 0.020 < 0.020	< 0.000050 < 0.000050	< 0.010 0.043	< 0.0050 0.00034	< 0.050 316	< 0.00010 < 0.00010	< 0.10 0.00024	< 0.00050 0.00058	< 0.010	< 0.000050 < 0.000050
FR CC1	FR CC1 CC1A 2022-09-21 N FR CC1 CC1A 2022-09-22 N	2022-09-21	1400	0.0123	0.00081	< 0.00010	0.0321	< 0.020	< 0.000030	0.043	0.00034	290	< 0.00010	0.00024	< 0.00036	< 0.019	0.000152
FR CC1	FR CC1 RD-WS 2022-09-01 NP	2022-09-22	1330	0.0194	0.00073	0.00018	0.0343	< 0.020	< 0.000100	0.035	0.000202	266	0.00011	0.00024	< 0.00050	0.015	< 0.000132
FR_CC1	FR_CC1_CC1A_2022-09-23_N	2022-09-23	1340	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FR_CC1	FR_CC1_CC1A_2022-09-24_N	2022-09-24	1300	0.0151	0.00076	0.00099	0.0367	0.000776	< 0.000100	0.039	0.00106	286	0.00099	0.00103	0.00165	< 0.020	0.000776
FR_CC1	FR_CC1_CC1A_2022-09-25_N	2022-09-25	1170	0.0135	0.00068	0.00018	0.0555	< 0.020	< 0.000050	0.033	0.00038	259	< 0.00010	0.0002	0.00078	0.017	0.000191
FR_CC1	FR_CC1_CC1A_2022-09-26_N	2022-09-26	1260	0.0121	0.00064	0.00015	0.0362	< 0.020	< 0.000050	0.016	0.000308	287	< 0.00010	0.0002	< 0.00050	< 0.010	< 0.000050
FR CC1	FR_CC1_CC1A_2022-10-03_N	2022-10-03	1360	0.0134	0.00066	0.00013	0.045	< 0.020	< 0.000050	0.034	0.000444	258	< 0.00010	0.00025	0.00059	0.015	< 0.000050
FR_CC1	FR_CC1_CC1A_2022-10-11_N	2022-10-11	1310	0.0225	0.00063	0.00019	0.0443	< 0.020	< 0.000050	0.038	0.000721	245	0.00017	0.00016	< 0.00050	0.02	< 0.000050
FR_CC1 FR_CC1	FR_CC1_CC1A_2022-10-17_N FR_CC1_2022-10-24_N	2022-10-17	1050	0.0246	0.00056 0.00056	0.00017	0.0545 0.0553	< 0.020 < 0.020	< 0.000050 < 0.000050	0.026	0.000594 0.000586	204 258	0.00011 < 0.00010	0.00022	< 0.00050 < 0.00050	0.024	< 0.000050 < 0.000050
FR CC1	FR CC1 2022-10-24 N	2022-10-24	1170	0.0335	0.00058	0.00013	0.0553	< 0.020	< 0.000030	0.031	0.000566	252	< 0.00010	< 0.20	< 0.00030	0.025	< 0.000050
FR CC1	FR CC1 2022-10-07 N	2022-10-31	1060	0.0343	0.0005	0.00022	0.0564	< 0.020	< 0.000100	0.03	0.000476	239	0.00016	0.00021	0.00051	0.056	0.000052
FR CC1	FR CC1 2022-11-14 N	2022-11-14	1080	0.014	0.00056	< 0.00020	0.056	< 0.040	< 0.000100	0.028	0.00051	257	< 0.00020	< 0.20	< 0.00100	< 0.020	< 0.000100
FR CC1	FR CC1 2022-11-21 N	2022-11-21	1250	0.0084	0.00064	< 0.00010	0.0384	< 0.020	< 0.000050	0.037	0.000555	270	< 0.00010	0.00019	< 0.00050	< 0.010	< 0.000050
FR_EC1	FR_EC1_MON_2022-01-01_N	2022-03-23	1460	0.0054	0.00069	0.0001	0.0328	< 0.020	< 0.000050	0.028	0.000602	306	< 0.00010	0.00017	< 0.00050	< 0.010	< 0.000050
FR_EC1	FR_EC1_MON_2022-03-01_N	2022-03-28	706	0.129	0.00115	0.00046	0.101	< 0.020	< 0.000050	0.025	0.000161	128	0.00026	0.00108	0.00089	0.237	0.000318
FR_EC1	FR EC1 MON 2022-04-01 N	2022-04-04	455	1.25	0.00091	0.00081	0.121	0.000076	< 0.000050	0.028	0.000174	94.6	0.00178	0.00138	0.00258	1.08	0.000979
FR_EC1	FR EC1 WEK 2022-04-11 N	2022-04-14	1210	0.102	0.00091	0.00036	0.0644	< 0.020	< 0.000050	0.032	0.000222	229	0.00019	0.00083	0.00074	0.158	0.000199
FR_EC1 FR_EC1	FR_EC1_WEK_2022-04-18_N FR_EC1_WEK_2022-04-25_N	2022-04-19 2022-04-28	1280	0.0225	0.00079	0.00024	0.047	< 0.040	< 0.000100	0.029	0.000212	255	< 0.00020	0.00052	< 0.00100	0.04	< 0.000100
FR EC1	FR EC1 WER 2022-04-25 N FR EC1 MON 2022-05-01 N	2022-04-28	- 1		-	<u> </u>		-	-	-	-	-	-	-	-	<u> </u>	-
FR EC1	FR EC1 WEK 2022-05-01 N	2022-05-12	1690	0.0098	0.00064	0.00031	0.0292	< 0.040	< 0.000100	0.038	0.0000211	293	< 0.00020	0.00037	< 0.00100	< 0.020	< 0.000100
FR EC1	FR EC1 WEK 2022-05-16 N	2022-05-16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FR EC1	FR EC1 WEK 2022-05-23 N	2022-05-23	-	-				-	-	-	-	-	-	-	-	-	-
FR EC1	FR EC1 WEK 2022-05-30 N	2022-06-01	-	-		-		-	-	-	-	-	-	-	-	-	-
FR_EC1	FR_EC1_MON_2022-06-01_N	2022-06-08	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FR_EC1	FR_EC1_WEK_2022-06-13_N	2022-06-13	2030	0.0091	0.0006	0.00024	0.0182	< 0.040	< 0.000100	0.037	0.0000134	334	< 0.00020	< 0.20	< 0.00100	< 0.020	< 0.000100
FR EC1	FR EC1 WEK 2022-06-20 N	2022-06-20	-			-	-	-	-	-	-	-		-	-	-	-
FR EC1	FR EC1 WEK 2022-06-27 N FR EC1 MON 2022-07-01 N	2022-06-29	-	-	-	-	-	-	-	-	-	-	-	-	-		-
FR EC1	FR EC1 WEK 2022-07-01 N	2022-07-04	1730	0.0823	0.00082	0.00033	0.036	< 0.040	< 0.000100	0.039	0.000104	256	< 0.00020	0.00046	0.00105	0.052	< 0.000100
FR FR1	FR FR1 WEK 2022-07-11 N	2022-07-12	-	-	- 0.00002	-	-	- 0.0-0	- 0.000100	-		-		-	-		- 0.000.00
FR FR1	FR FR1 MON 2022-04-01 N	2022-04-04	217	0.704	0.00014	0.00023	0.0558	< 0.020	< 0.000050	< 0.010	0.0000508	59	0.00213	0.00012	0.00068	0.214	0.000162
FR_FR1	FR FR1 WEK 2022-04-11 N	2022-04-11	317	0.0701	< 0.00010	0.00014	0.058	< 0.020	< 0.000050	< 0.010	0.0000306	82.2	0.00022	< 0.10	< 0.00050	0.06	< 0.000050
FR_FR1	FR FR1 WEK 2022-04-18 NP	2022-04-20	329	0.104	< 0.00010	0.00017	0.051	< 0.020	< 0.000050	< 0.010	0.0000345	74.9	0.00029	< 0.10	< 0.00050	0.069	0.000059
FR FR1	FR FR1 WS 2022-04-25 NP	2022-04-25	259	0.118	< 0.00010	0.00016	0.0518	< 0.020	< 0.000050	< 0.010	0.0000285	67.2	0.0003	< 0.10	< 0.00050	0.075	< 0.000050
FR_FR1	FR FR1 WS 2022-04-26 NP	2022-04-26	154	1.05	0.00016	0.00064	0.0601	0.000085	< 0.000050	< 0.010	0.000276	37.8	0.00183	0.00088	0.00247	1.03	0.000995
FR_FR1	FR FR1 WEK 2022-04-25 NP	2022-04-26	100	0.199	- 0.00040	0.00010	0.047	- 0.020	- 0.000050	- 0.010	0.0000740		0.00044	0.00001	0.00070	0.120	0.00012
FR FR1	FR FR1 MON 2022-05-02 NP FR FR1 WEK 2022-05-09 NP	2022-05-03 2022-05-10	198 232	0.199	< 0.00010 < 0.00010	0.00019 0.00014	0.047 0.0428	< 0.020 < 0.020	< 0.000050 < 0.000050	< 0.010 < 0.010	0.0000746 0.0000312	52 58.9	0.00044 0.00028	0.00021 < 0.10	0.00076 < 0.00050	0.138	0.00012 < 0.000050
FR FR1	FR FR1 WEK 2022-05-09 NP FR FR1 WEK 2022-05-16 NP	2022-05-10	232	0.0563	< 0.00010	0.00014	0.0428	< 0.020	< 0.000050	< 0.010	0.0000312	52.3	0.00028	< 0.10	< 0.00050	0.041	< 0.000050
FR FR1	FR FR1 WEK 2022-05-16 NP	2022-05-17	223	0.0306	< 0.00010	0.00016	0.0362	< 0.020	< 0.000050	< 0.010	0.0000272	54.6	< 0.00013	< 0.10	< 0.00050	0.038	< 0.000050
FR FR1	FR FR1 WEK 2022-05-30 NP	2022-05-31	197	0.0385	< 0.00010	< 0.00014	0.0362	< 0.020	< 0.000050	< 0.010	0.0000220	50.4	0.00011	< 0.10	< 0.00050	0.016	< 0.000050
FR FR1	FR FR1 MON 2022-06-06 NP	2022-06-07	158	0.0355	< 0.00010	0.00014	0.0343	< 0.020	< 0.000050	< 0.010	0.0000169	42.3	0.00024	< 0.10	< 0.00050	0.03	< 0.000050
FR FR1	FR FR1 WEK 2022-06-13 NP	2022-06-14	250	0.0574	0.00015	0.00018	0.0406	< 0.020	< 0.000050	< 0.010	0.000068	61.1	0.00015	0.00014	< 0.00050	0.087	0.000084
FR_FR1	FR_DC1_WEK_2022-06-20_NP	2022-06-21	136	0.0488	< 0.00010	0.00013	0.0273	< 0.020	< 0.000050	< 0.010	0.0000243	34.8	0.00016	< 0.10	< 0.00050	0.043	0.000054
FR_FR1	FR_FR1_WEK_2022-06-27_NP	2022-06-28	97.2	0.04343333	< 0.00010	0.000127	0.0173	< 0.020	< 0.000050	< 0.010	1.43333E-05	24.15	0.00018	< 0.10	< 0.00050	0.051333	5.93333E-05

Denotes concentration less than indicated detection limit
 Denotes analysis not conducted
 n/a denotes no applicable standard

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

										Total Metals								
										1	Т	Т						
					l _													
			s		nesium	98		E	_			lε	_		_			
			Sec	E	esi	<u>ä</u>	*_	is:	.≣	_	١ౖ	Strontium	E E		Titanium			
			호	∄	E	g .	ckel	tas	eni	Silver	Sodium	5	allin	_	l Ë	ranin		ဥ
Sample	Sample	Sample Date	표	1 5	Magr	Na Sa	ž	<u> </u>	Se l	 	Š	l st	l ë	Ę	#	5		Ϊ́
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	mg/L	mg/	L mg/L	mg/L	mg/L	mg/L	mg/L	n	ng/L
						ute	ronic		ji.	i i						ronic		i
						cute			5	Acute						2	울	5
						Chi Act	5		ਤਿੰ	% 5						ਤਿੰ	Acı	ຮ
BC WQG FWAL			n/a	n/a	n/a	0.001-0.03 ^a 0.0009-0.01 ^a	0.025-0.15 ^a	n/a	2	0.0001-0.003° 0.00005-0.0015°	n/a	n/a	n/a	n/a	n/a	0.0085	0.033-2ª	0.0075-2ª
Fording River Operation														•		•		
FR_CC1	FR_FLD1_2022-09-19_N	2022-09-19		0.429		0.00119	0.0616	6.77	181	< 0.000010		1 0.43		< 0.00010		0.014		.0298
FR_CC1	FR_CC1_CC1A_2022-09-20_N	2022-09-20			< 0.005		< 0.00050	< 0.050	< 0.050	< 0.000010		50.000		< 0.00010		< 0.000010		0.0030
FR_CC1	FR_CC1_CC1A_2022-09-21_N	2022-09-21		0.466		0.00212	0.0689	7.06	185	< 0.000010		0.48		< 0.00010	< 0.00030	0.0169		.0221
FR_CC1	FR_CC1_CC1A_2022-09-22_N	2022-09-22		0.418		0.00176	0.0581	6.14	162	< 0.000020		0.43	0.000044	< 0.00020	0.00087	0.0158		.0207
FR_CC1 FR_CC1	FR_CC1_RD-WS_2022-09-01_NP FR_CC1_CC1A_2022-09-23_N	2022-09-22	1330		159	0.0014	0.0564	6.96	166	< 0.000010	12.5	0.47	0.000038	< 0.00010	0.00073	0.0151		.0151
FR_CC1	FR_CC1_CC1A_2022-09-23_N FR_CC1_CC1A_2022-09-24_N	2022-09-23		0.344		0.0021	0.0602	6.56	169	< 0.000020		2 0.46	0.000806	< 0.00020	< 0.00060	0.0172		.0191
FR CC1	FR CC1 CC1A 2022-09-24 N FR CC1 CC1A 2022-09-25 N	2022-09-25		0.344		0.0021	0.0505	5.65	169	< 0.000020		5 0.41	0.000806	< 0.00020	0.00035	0.0172		.0274
FR CC1	FR CC1 CC1A 2022-09-25 N	2022-09-26		0.347		0.0014	0.0534	5.8	151	< 0.000010		3 0.42	0.000036	< 0.00010	< 0.00033	0.0127		.0183
FR CC1	FR CC1 CC1A 2022-10-03 N	2022-10-03	1360			0.00146	0.0519	5.79	164	< 0.000010		1 0.4	0.000036	< 0.00010	< 0.00030	0.0127		.0272
FR CC1	FR CC1 CC1A 2022-10-11 N	2022-10-11		0.303		0.00438	0.0449	5.25	154	< 0.000010	9.50	3 0.39	0.000039	< 0.00010	0.00052	0.0116		.0396
FR_CC1	FR_CC1_CC1A_2022-10-17_N	2022-10-17	1050	0.259		0.0028	0.0428	4.92	126	< 0.000010		1 0.33	0.000035	< 0.00010	0.00046	0.00935		.0305
FR_CC1	FR_CC1_2022-10-24_N	2022-10-24	1090	0.323	129	0.00317	0.0462	5.5	142	< 0.000010		1 0.38	0.000038	< 0.00010	0.00039	0.0114		.0292
FR_CC1	FR_CC1A_2022-10-31_N	2022-10-31	1170			0.00254	0.0431	4.88	138	< 0.000020		0.38	0.000038	< 0.00020	0.00071	0.0128		.0318
FR_CC1	FR_CC1_2022-11-07_N	2022-11-07		0.222		0.00311	0.0413	5.19	138	< 0.000010		0.37		< 0.00010	0.00105	0.0115		.0219
FR_CC1	FR_CC1_2022-11-14_N	2022-11-14	1080			0.00142	0.0433	5.16	136	< 0.000020		0.38	0.000028	< 0.00020	< 0.00060	0.0115		.0261
FR CC1 FR EC1	FR CC1 2022-11-21 N	2022-11-21	1250	0.405		0.00122 0.00116	0.0528 0.057	6.03	181 183	< 0.000010 < 0.000010		0.43	0.000044 0.000045	< 0.00010 < 0.00010	< 0.00030	0.0136 0.0164		.0294
FR EC1	FR_EC1_MON_2022-01-01_N FR_EC1_MON_2022-03-01_N	2022-03-28		0.043		0.00116	0.057	4.25	116	< 0.000010		0.49	0.000045	< 0.00010	0.00088	0.0764		.0071
FR FC1	FR EC1 MON 2022-03-01 N	2022-03-28	455			0.0232	0.008	3.92	67.4	0.000010		1 0.27		< 0.00010	< 0.0330	0.00769		.0121
FR EC1	FR EC1 WEK 2022-04-01 N	2022-04-04	1210			0.0231	0.0154	5.22	233	< 0.000010		2 0.3	0.00003	< 0.00010	0.00107	0.0142		.0097
FR EC1	FR EC1 WEK 2022-04-18 N	2022-04-19	1280			0.0167	0.014	4.41	232	< 0.000020		2 0.34	0.000025	< 0.00020	< 0.00060	0.0141		.0087
FR EC1	FR EC1 WEK 2022-04-25 N	2022-04-28	-	-	-	-	-	-		-	-		-	-	-	-	 	-
FR EC1	FR EC1 MON 2022-05-01 N	2022-05-02	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
FR_EC1	FR_EC1_WEK_2022-05-09_N	2022-05-12	1690	0.119		0.00446	0.0163	5.15	285	< 0.000020		0.39	0.000025	< 0.00020	< 0.00060	0.0189	< 0	0.0060
FR_EC1	FR_EC1_WEK_2022-05-16_N	2022-05-16	-	-	-	-	-	-	-	-	-	_	-	-	-	-		-
FR_EC1	FR_EC1_WEK_2022-05-23_N	2022-05-23	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
FR EC1	FR EC1 WEK 2022-05-30 N	2022-06-01	-	-	-	-	-	-	-	-	1	_	-	-	-	-	1	-
	FR_EC1_MON_2022-06-01_N		2030	0.139		0.00283	0.0168	5.14	328	< 0.000020		7 0.39	0.00003	< 0.00020	< 0.00060	0.0192		0.0060
FR_EC1 FR_EC1	FR EC1 WEK 2022-06-13 N FR EC1 WEK 2022-06-20 N	2022-06-13 2022-06-20	2030	0.139	297	0.00283	0.0168	5.14	328	< 0.000020	10.	0.39	0.00003	< 0.00020	< 0.00060	0.0192	1 · · ·	-
FR EC1	FR EC1 WEK 2022-06-20 N	2022-06-29	-	-	-	-	-		-	1	t÷	+:	-					-
FR EC1	FR EC1 MON 2022-07-01 N	2022-07-04	-	-	-		-	-	-	-	1 -	1 -	-	-	-	-		-
FR EC1	FR EC1 WEK 2022-07-11 N	2022-07-12	1730	0.122	222	0.00836	0.0153	5.64	285	< 0.000020	13.9	0.39	0.000035	< 0.00020	0.00255	0.0166	0.	.0074
FR FR1	FR FR1 WEK 2022-03-28 N	2022-03-30	-	-	-	-	-	-	-	-	-		-	-	-	-		-
FR_FR1	FR_FR1_MON_2022-04-01_N	2022-04-04		0.006		0.00757	0.00126	0.793	14.5	0.000029		0.09		< 0.00010	0.026	0.000844		.0039
FR_FR1	FR FR1 WEK 2022-04-11 N	2022-04-11	317			0.00297	0.00111	0.969	34	< 0.000010		0.14		< 0.00010	0.00102	0.00142		0.0030
FR FR1	FR FR1 WEK 2022-04-18 NP	2022-04-20	329		33.9	0.00309	0.00092	0.94	35.2	< 0.000010		0.13	< 0.000010	< 0.00010	0.00264	0.00139		0.0030
FR FR1	FR FR1 WS 2022-04-25 NP	2022-04-25	259		27.9 13.8	0.00202 0.0444	0.001 0.00408	0.773 0.851	24.2	< 0.000010 0.00008		0.11		< 0.00010 < 0.00010	0.00261	0.00113		.0036
FR_FR1 FR_FR1	FR FR1 WS 2022-04-26 NP FR FR1 WEK 2022-04-25 NP	2022-04-26 2022-04-26	154	0.005	13.8	0.0444	0.00408	0.851	9.93	0.00008	10.5	0.06	0.000078	< 0.00010	0.0137	0.000748	-	.0167
FR FR1	FR FR1 WER 2022-04-25 NP FR FR1 MON 2022-05-02 NP	2022-04-26	198	0.007	18.8	0.0172	0.00113	0.659	13.7	0.000012	0.66	0.09	0.000013	< 0.00010	< 0.00450	0.00076		.0043
FR FR1	FR FR1 WEK 2022-05-09 NP	2022-05-10	232		23.7	0.00387	0.00085	0.651	16.8	< 0.000012		1 0.09	< 0.000010	< 0.00010	0.00122	0.000925		0.0030
FR FR1	FR FR1 WEK 2022-05-16 NP	2022-05-17	221			0.00305	0.00082	0.592	14.6	< 0.000010		3 0.09		< 0.00010	0.00096	0.000838		0.0030
FR_FR1	FR FR1 WEK 2022-05-23 NP	2022-05-25	223		19.9	0.00291	0.00054	0.569	11.7	< 0.000010		0.09		< 0.00010	0.00036	0.000875	< (0.0030
FR_FR1	FR FR1 WEK 2022-05-30 NP	2022-05-31	197	0.006		0.00168	0.00058	0.542	10.9	< 0.000010		4 0.1	< 0.000010	< 0.00010	0.00031	0.000818		0.0030
FR_FR1	FR_FR1_MON_2022-06-06_NP	2022-06-07	158	0.003		0.00197	0.00054	0.451	5.68	< 0.000010		0.08	< 0.000010	< 0.00010	0.00062	0.000614		0.0030
FR_FR1	FR_FR1_WEK_2022-06-13_NP	2022-06-14	250			0.00944	0.00277	1.02	26.1	< 0.000010		0.09	< 0.000010	< 0.00010	0.00096	0.00163		.0034
FR_FR1	FR_DC1_WEK_2022-06-20_NP	2022-06-21	136		11.6	0.00378	< 0.00050	0.449	4.81	< 0.000010		0.07	< 0.000010	< 0.00010	0.0009	0.00051		0.0030
FR_FR1	FR_FR1_WEK_2022-06-27_NP	2022-06-28	97.2	0.003	7.402	0.003523333	0.000586667	0.2983	3.35333	< 0.000010	10.3	1 0.05	< 0.000010	< 0.00010	0.0008967	0.00036433	i	0.0030

Denotes concentration less than indicated detection limit
 Denotes analysis not conducted
 n/a denotes no applicable standard

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

Sample S	Acute	mg/L mg/L 0003-5.5° 3.3-3.5° <0.000050 <0.000050 <0.000050
Sample S	1 0.02 0.02 0.03 < 0.010 < 0.010 < 0.010	mg/L gg gg 0.0003-5.5° 3.3-3.5° < 0.000050 < 0.000050 < 0.000050
Sample S	1 0.02 0.02 0.03 < 0.010 < 0.010 < 0.010	mg/L gg gg 0.0003-5.5° 3.3-3.5° < 0.000050 < 0.000050 < 0.000050
Sample S	1 0.02 0.02 0.03 < 0.010 < 0.010 < 0.010	mg/L gg gg 0.0003-5.5° 3.3-3.5° < 0.000050 < 0.000050 < 0.000050
Sample S	1 0.02 0.02 0.03 < 0.010 < 0.010 < 0.010	mg/L gg gg 0.0003-5.5° 3.3-3.5° < 0.000050 < 0.000050 < 0.000050
Sample S	1 0.02 0.02 0.03 < 0.010 < 0.010 < 0.010	mg/L gg gg 0.0003-5.5° 3.3-3.5° < 0.000050 < 0.000050 < 0.000050
Location ID (mm/dd/yyyy) mg/L	1 0.02 0.02 0.03 < 0.010 < 0.010 < 0.010	mg/L gg gg 0.0003-5.5° 3.3-3.5° < 0.000050 < 0.000050 < 0.000050
BC WGG FWAL Fording River Operation FR FR1	0.02 0.03 0.010 0.010 0.010 0.010	9 1.003-5.5° 3.3-3.5° < 0.000050 < 0.000050 < 0.000050
BCWGF FWAL N/a N/a N/a N/a 0.005 1 0.00013 N/a 1.2 N/a N/a N/a 0.11 0.004 N/a	1 0.02 0.03 < 0.010 < 0.010 < 0.010	3.3-3.5° 3.3-3.5°
BCWGF FWAL N/a N/a N/a N/a 0.005 1 0.00013 N/a 1.2 N/a N/a N/a 0.11 0.004 N/a	1 0.02 0.03 < 0.010 < 0.010 < 0.010	3.3-3.5° 3.3-3.5°
BCWGF FWAL N/a N/a N/a N/a 0.005 1 0.00013 N/a 1.2 N/a N/a N/a 0.11 0.004 N/a	1 0.02 0.03 < 0.010 < 0.010 < 0.010	3.3-3.5° 3.3-3.5°
Fording River Operation FR FR CTR C022-07-04 NP 2022-07-05 133 0.0233 < 0.00010 0.00011 0.0228 < 0.020 < 0.000050 < 0.010 0.0000137 34.8 0.00014 < 0.10 < 0.00050	0.02 0.03 < 0.010 < 0.010 < 0.010	< 0.000050 < 0.000050 < 0.000050
FR FR1 FR FR1 WK 2022-07-11 NP 2022-07-03 135 0.044 < 0.00010 0.00012 0.0232 < 0.020 < 0.000050 < 0.010 0.000127 36.1 0.00017 < 0.10 < 0.0050 FR FR1 FR1 MON 2022-08-09 132 0.009 < 0.00010 < 0.00010 0.00012 < 0.00050 < 0.010 0.0000127 36.1 0.00011 < 0.00050 FR FR1 FR1 MON 2022-08-09 132 0.009 < 0.00010 < 0.00010 0.00010 0.018 < 0.020 < 0.000050 < 0.010 0.0000112 36.1 0.00011 < 0.00050 FR FR1 FR1 FR1 MON 2022-09-05 NP 2022-09-13 223 0.0067 < 0.00010 0.00012 0.0343 < 0.020 < 0.00050 < 0.010 0.000176 53.3 0.00042 < 0.10 < 0.0050 FR FR1 FR1 FR1 GN 2022-10-03 NP 2022-10-12 281 0.0101 < 0.00010 0.00013 0.0416 < 0.020 < 0.00050 < 0.010 0.0000176 53.3 0.00042 < 0.10 < 0.0050 FR FR1 FR1 MON 2022-10-03 NP 2022-11-03 296 0.0047 < 0.00010 0.00012 0.0441 < 0.020 < 0.00050 < 0.010 0.000017 69.9 0.00017 < 0.10 < 0.00550 FR FR2 FR FR2 MON 2022-10-14 N 2022-01-08 286 0.0054 < 0.00010 0.00012 0.0441 < 0.020 < 0.00050 < 0.010 0.000017 4 75.2 0.00010 < 0.00019 < 0.00050 FR FR2 MON 2022-01-04 N 2022-01-08 286 0.0056 0.00024 < 0.00010 0.0394 < 0.020 < 0.000050 0.012 0.0000974 575.2 0.00019 < 0.00050 FR FR2 MON 2022-01-01 N 2022-01-08 286 0.0056 0.00024 < 0.00010 0.0394 < 0.020 < 0.000050 0.012 0.0000976 152 < 0.00010 0.00011 < 0.000017 < 0.00050 FR FR2 MON 2022-01-01 N 2022-01-08 286 0.0056 0.00024 < 0.00010 0.00014 < 0.00010 0.0014 < 0.00050 0.012 0.000050 0.012 0.0000976 0.012 0.0000976 0.012 0.0000976 0.012 0.0000976 0.000000 0.00000000000000000000000000	0.03 < 0.010 < 0.010 < 0.010	< 0.000050 < 0.000050
FR FR1 FR FR1 MON 2022-08-01 NP 2022-08-09 132 0.009 < 0.00010 < 0.00010 0.0218 < 0.020 < 0.000050 < 0.010 0.0000112 36.1 0.00011 < 0.10 < 0.00050 FR FR1 FR1 FR1 MON 2022-09-08 NP 2022-09-13 223 0.0067 < 0.00010 0.00012 0.0343 < 0.020 < 0.000050 < 0.010 0.000112 36.1 0.00011 < 0.10 < 0.00050 FR FR1 FR1 FR1 GTR 2022-10-32 NP 2022-10-12 281 0.0101 < 0.00010 0.00013 0.0416 < 0.020 < 0.000050 0.010 0.0000176 53.3 0.00042 < 0.10 < 0.00050 FR FR1 GTR 2022-10-32 NP 2022-10-12 281 0.0101 < 0.00010 0.00013 0.0416 < 0.020 < 0.000050 0.010 0.000021 69.9 0.00017 < 0.10 < 0.00050 FR FR1 FR FR1 MON 2022-11-07 NP 2022-11-03 296 0.0047 < 0.00010 0.00012 0.0411 < 0.020 < 0.000050 < 0.010 0.000017 76.6 < 0.00010 < 0.00050 FR FR2 FR2 MON 2022-01-04 N 2022-01-08 286 0.0054 < 0.00010 < 0.00010 0.00010 0.0396 < 0.020 < 0.000050 0.010 0.000017 776.6 < 0.00010 < 0.00050 FR FR2 FR FR2 MON 2022-02-01 N 2022-01-08 286 0.0056 0.00024 < 0.00010 0.0094 < 0.020 < 0.000050 0.010 0.000017 776.6 < 0.00010 < 0.00050 0.000010 0.00017 776.6 < 0.00010 0.000017 776.6 < 0.00010 0.00011 0.00011 776.6 < 0.00010 0.00011 0.00011 776.6 < 0.00010 0.00011 0.00011 776.6 < 0.00010 0.00011 0.00011 776.6 < 0.00010 0.00011 0.00011 776.6 < 0.00010 0.00011 0.00011 776.6 < 0.00010 0.00011 0.00011 776.6 < 0.00010 0.00011	< 0.010 < 0.010 < 0.010	< 0.000050
FR FR1 FR FR1 MON 2022-09-05 NP 2022-09-13 223 0.0067 < 0.00010 0.00012 0.0343 < 0.020 < 0.000050 < 0.010 0.0000176 53.3 0.00042 < 0.10 < 0.00050 FR FR1 FR FR1 QTR 2022-10-03 NP 2022-10-12 261 0.0101 < 0.00010 0.00013 0.0416 < 0.020 < 0.000050 < 0.010 0.000017 69.9 0.00017 < 0.10 < 0.00050 FR FR1 FR1 FR FR1 MON 2022-11-07 NP 2022-11-03 296 0.0047 < 0.00010 0.00012 0.0441 < 0.020 < 0.000050 < 0.010 0.000017 76.6 < 0.00010 < 0.0019 < 0.00019 FR FR2 FR2 MON 2022-01-04 N 2022-01-08 266 0.0054 < 0.00010 0.00916 < 0.020 < 0.00010 0.0096 < 0.010 0.000017 75.2 0.00019 < 0.00050 FR FR2 FR2 MON 2022-01-01 N 2022-01-08 266 0.0056 0.00056 < 0.00010 0.00017 0.00017 75.2 0.00019 < 0.00050 FR FR2 FR2 FR2 FR2 MON 2022-01-01 N 2022-01-08 266 0.0056 0.00056 0.00010 0.0984 < 0.020 < 0.000050 0.012 0.0000916 152 < 0.00010 0.00017 < 0.00050	< 0.010 < 0.010	
FR_FR1 FR_FR1_QTR_2022-10-03 NP 2022-10-12 261 0.0101 < 0.00010 0.00013 0.0416 < 0.020 < 0.000050 < 0.010 0.000021 69.9 0.00017 < 0.10 < 0.00050 FR_FR1 FR1 MON_2022-11-07 NP 2022-11-03 296 0.0047 < 0.00010 0.00012 0.0441 < 0.020 < 0.000050 < 0.010 0.000017 76.6 < 0.00010 < 0.010 0.000219 FR_FR2 FR2 MON_2022-01-04 N 2022-01-08 286 0.0054 < 0.00010 < 0.00010 0.0396 < 0.020 < 0.000050 0.010 0.00017 75.2 0.00010 < 0.00050 FR_FR2 FR_FR2 MON_2022-02-01 N 2022-02-99 660 0.0056 0.00024 < 0.00010 0.0394 < 0.020 < 0.00050 0.012 0.000056 152 < 0.00010 0.0001 < 0.00050	< 0.010	
FR_FR1 FR_FR1_MON_2022-11-07 NP 2022-11-03 296 0.0047 < 0.00010 0.00012 0.0441 < 0.020 < 0.000050 < 0.010 0.00017 76.6 < 0.00010 < 0.0010 0.000219 FR_FR2 FR2_MON_2022-01-04 N 2022-01-08 286 0.0054 < 0.00010 0.00010 0.0396 0.020 < 0.000050 0.010 0.000017 75.2 0.00019 < 0.10 0.00050 FR_FR2_MON_2022-02-01 N 2022-02-09 660 0.0056 0.00024 < 0.00010 0.0934 < 0.020 < 0.000050 0.012 0.0000956 152 0.00010 0.00011 0.00051		< 0.000050 < 0.000050
FR FR2 FR FR2 MON 2022-01-04 N 2022-01-08 286 0.0054 <0.00010 <0.00010 0.0396 <0.020 <0.000050 <0.010 0.0000174 75.2 0.00019 <0.10 <0.00050 FR FR2 FR FR2 MON 2022-02-01 N 2022-02-09 660 0.0056 0.00024 <0.00010 0.0034 <0.020 <0.000050 0.012 0.000056 152 <0.00010 0.0001 <0.00050		< 0.000050
	< 0.010	< 0.000050
	0.032	< 0.000050
FR FR2 FR FR2 WS 2022-02-28 N 2022-02-28 727 0.0041 0.00024 0.00012 0.0996 < 0.020 < 0.000050 0.013 0.0000853 154 0.00028 < 0.10 < 0.00050	0.039	< 0.000050
FR FR2	0.047	< 0.000050
FR FR2 FR FR2 WEK 2022-03-14 N 2022-03-15 769 0.0327 0.00022 <0.00011 0.096 <0.020 <0.000050 0.013 0.000764 165 0.00016 <0.10 <0.00050 FR FR2 WEK 2022-03-15 PP 2022-03-15 759 0.0327 0.00025 0.00011 0.096 <0.020 <0.000050 0.013 0.0000867 162 <0.00025 0.00013 0.000760 0.013 0.000867 162 <0.00025 0.00013 0.000760 0.00013 0.000867 162 <0.00025 0.00013 0.00013 0.000760 0.013 0.000867 162 <0.00025 0.00013 0.000760 0.00013 0.000760 0.013 0.000867 162 <0.00025 0.00013 0.000760 0.00013 0.000760 0.013 0.000867 162 <0.00025 0.00013 0.000760 0.00013 0.000760 0.013 0.000760 0.00013 0.000760	0.053 0.111	< 0.000050 0.000058
FR FR2 FR FR2 WS 2022-03-16 NP 2022-03-16 688 0.0723 0.00025 0.00014 0.102 < 0.020 < 0.000050 0.012 0.0000093 155 0.00021 0.00014 < 0.00050	0.111	0.000038
FR FR2 FR FR2 WEK 2022-03-16 NP 2022-03-16 630 0.0973 0.00026 0.00019 0.0972 < 0.020 < 0.000050 0.012 0.000096 154 0.0003 0.0002 < 0.00050	0.174	0.000156
FR_FR2	0.121	0.000105
FR FR2 FR FR2 WEK 2022-03-17 NP 2022-03-17 713 0.256 0.00031 0.00028 0.11 < 0.020 < 0.000050 0.013 0.00018 151 0.00049 0.00037 0.00083	0.354	0.000381
FR FR2 FR FR2 2 WS 2022-03-18 NP 2022-03-18 618 0.0782 0.00028 0.00016 0.0996 < 0.020 < 0.000050 0.011 0.000107 137 0.00026 0.00017 < 0.00050	0.194	0.000144
FR FR2 FR FR2 WEK 2022-18 NP 2022-03-19 681 0.0643 0.0003 0.00026 0.104 < 0.020 < 0.000050 0.013 0.00016 177 0.00025 0.00022 < 0.00050 FR FR2 WS 2022-03-19 NP 2022-03-19 680 0.113 0.00031 0.00017 0.103 < 0.020 < 0.000050 0.014 0.000102 162 0.00028 0.00019 < 0.00050 0.014 0.000102 162 0.00028 0.00019 < 0.00050 0.014 0.000102 162 0.00028 0.00019 < 0.00050 0.014 0.000102 0	0.144 0.17	0.000128 0.000148
FR FR2 FR FR2 WS 2022-03-20 NP 2022-03-20 666 0.031 0.00012 0.0943 < 0.020 < 0.000050 0.013 0.000014 < 0.00016 0.00014 < 0.000016 0.00014 < 0.000050	0.116	0.000148
FR FR2 FR FR2 2 WS 2022-03-21 NP 2022-03-21 645 0.0047 0.0003 0.00016 0.0948 < 0.020 < 0.000050 0.014 0.000102 153 0.0002 0.00019 < 0.00050	0.162	0.000124
FR FR2 FR FR2 2 WS 2022-03-22 NP 2022-03-22 646 0.0279 0.0003 0.00012 0.0944 < 0.020 < 0.000050 0.013 0.000094 149 0.00015 0.00016 < 0.00050	0.091	0.000056
FR FR2 FR FR2 2 WS 2022-03-23 NP 2022-03-23 648 0.037 0.00032 0.00015 0.0957 < 0.020 < 0.000050 0.012 0.00010 150 0.00025 0.00017 0.00061	0.085	0.000073
FR FR2 FR DC1 WEK 2022-03-28 N 2022-03-30 656 0.0403 0.00035 0.00022 0.0968 < 0.020 < 0.000050 0.014 0.0000952 152 0.00017 0.00021 < 0.00050	0.097	< 0.000050
FR FR2 FR FR2 MON 2022-04-01 N 2022-04-05 594 0.1205 0.000795 0.00026 0.129 <0.020 <0.000050 0.0125 0.000149 142.5 0.000285 0.00062 0.00061 FR FR2 FR FR2 WEK 2022-04-11 N 2022-04-12 602 0.0313 0.00081 0.00081 0.00018 0.107 <0.020 <0.000050 0.013 0.000147 135 0.00018 0.00088 <0.00050	0.1275 0.065	0.0001215 < 0.000050
FR FR2 FR DC1 WEK 2022-04-18 N 2022-04-18 0.0026 0.00069 0.00014 0.0999 < 0.020 < 0.000050 0.014 0.000198 149 0.00013 0.00015 4 < 0.00050	0.054	< 0.000050
FR FRZ FR FLD WEK 2022-04-18 N 2022-04-19 635 0.01485 0.00033 0.00013 0.08905 < 0.020 < 0.000050 0.013 0.000175 157.5 < 0.00010 0.00021 < 0.00050	0.0455	< 0.000050
FR FR2 FR FLD WEK 2022-04-25 N 2022-04-27 < 0.50 < 0.0030 < 0.00010 < 0.00010 < 0.00010 < 0.00050 < 0.010 < 0.0050 < 0.010 < 0.0050 < 0.050 < 0.0010 < 0.0010 < 0.0050	< 0.010	< 0.000050
FR FR2 FR FR2 MON 2022-05-01 N 2022-05-04 < 0.50 < 0.0030 < 0.00010 < 0.00010 < 0.00010 < 0.00010 < 0.00000 < 0.0000 < 0.0000 < 0.000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.	< 0.010	< 0.000050
FR FR2 FR FR2 WEK 2022-05-19 N 2022-05-10 442 0.111 0.00024 0.00016 0.0696 < 0.020 < 0.000050 < 0.010 0.000182 97.3 0.00025 0.000041 0.000181 FR FR2 WEK 2022-05-10 N 2022-05-19 434 0.0751 0.00027 0.00027 0.00027 0.00050 < 0.0010 0.000182 97.3 0.00025 0.00005 0.0010 0.00018 97.3 0.00025 0.00018	0.156	0.000115 0.00029
FR FR2 FR FR2 WEK 2022-05-16 N 2022-05-26 380 0.039 0.00027 0.00027 0.00021 0.000050 0.0010 0.000281 106 0.00026 0.00082 0.00077 FR FR2 FR FLD WEK 2022-05-26 N 2022-05-26 380 0.039 0.0002 0.00014 0.051 0.0026 0.000050 0.0010 0.00012 0.00 1.00012 0.000050 0.0010 0.0012 0.00050 0.0010 0.0012 0.00050 0.0010 0.0012 0.00050 0.0010 0.0012 0.00050 0.0010 0.0012 0.00050 0.0010 0.0012 0.00050 0.0010 0.0012 0.00050 0.0010 0.0012 0.00050 0.0010 0.0012 0.00050 0.0010 0.0012 0.00050 0.0010 0.0012 0.00050 0.0010 0.0010 0.0012 0.00050 0.0010 0	0.298	0.00029
FR FRZ WS 2022-05-27 NP 2022-05-27 (-0.50 < 0.0003 0.00014 0.0011 < 0.00010 < 0.00001 < 0.00000 < 0.011 0.00012 30.0 0.0016 0.00016 0.000010 < 0.00000 0.0110 0.00050 0.010 0.0050 0.050 0.050 0.050 0.05010 0.05010 0.00010 0.000010	< 0.010	< 0.000050
FR FR2 FR FR2 WEK 2022-05-30 N 2022-06-01 286 0.0426 0.00016 0.00014 0.0494 < 0.020 < 0.000050 < 0.010 0.000059 67.2 0.00023 0.0016 < 0.00050	0.104	0.000101
FR FR2 FR DC3 MON 2022-06-01 N 2022-06-08 250 0.0249 0.00019 0.00012 0.041 < 0.020 < 0.000050 < 0.010 0.0000528 62.2 0.00014 < 0.10 < 0.00050	0.039	< 0.000050
FR FR2	0.3105	0.000301
FR FR2 FR DC1 WEK 2022-06-13 N 2022-06-13	0.1135	0.000104
FR FR2 FR D1 WEK 2022-06-20 N 2022-06-21 183 0.0095 0.000115 0.000150 0.03245 < 0.0020 < 0.000050 < 0.010 0.0000549 45.1 0.000245 < 0.000051 FR FR2 FR D1 WEK 2022-06-20 N 2022-06-21 186 0.194 0.00013 0.00013 0.00021 0.0362 < 0.020 < 0.000050 < 0.010 0.0000725 49 0.000044 0.00018 0.00056	0.1135	0.000104
FR FR2 FR DC1 WEK 2022-06-27 N 2022-06-28 186 0.212 0.00013 0.0002 0.0369 < 0.020 < 0.000050 < 0.010 0.0000756 51.4 0.00043 0.00019 0.0006	0.269	0.000176
FR FR2 FR FR2 MON 2022-07-01 N 2022-07-04 207 0.0385 0.000125 0.000155 0.0323 < 0.020 < 0.000050 < 0.010 0.0000625 53.05 0.00018 < 0.10 < 0.00050	0.062	0.0000595
FR FR2 FR FR2 WEK 2022-07-05 N 2022-07-05 227 0.0147 0.00013 0.00013 0.0341 < 0.020 < 0.000050 < 0.010 0.0000504 56.8 0.00015 < 0.10 < 0.00050	0.02	< 0.000050
FR FR2 FR FR2 WEK 2022-07-06 N 2022-07-06 223 0.0473 0.00013 0.00014 0.0316 < 0.020 < 0.000050 < 0.010 0.000062 52.4 0.00021 < 0.00050	0.059	0.000066
FR_FR2 FR_DC1_WEK_2022-07-07 N 2022-07-07 238 0.0235 0.00013 0.00013 0.0322 < 0.020 < 0.000050 < 0.010 0.0000571 54.2 0.00014 < 0.10 < 0.00050 FR_FR2 FR_FR3_WEK_2022-07-07 N 2022-07-07 229 0.017 0.00013 0.00012 0.0344 < 0.020 < 0.000050 < 0.010 0.000057 53.2 0.00014 < 0.10 < 0.00050	0.028	< 0.000050 < 0.000050
FR_FR2 FR_FR3_WEK_2022-07-07 N 2022-07-08 229 0.017 0.00013 0.00012 0.0344 < 0.020 < 0.000050 < 0.010 0.0000627 53.2 0.00014 < 0.10 < 0.00050 FR_FR2 FR_2 DC_WEK_2022-07-08 N 2022-07-08 229 0.0225 0.00014 0.001 0.0344 < 0.020 < 0.000050 < 0.010 0.0000598 55.6 0.00013 < 0.010 0.00159	0.024	0.000050
FR FR2 FR FR3 WEK 2022-07-08 N 2022-07-08 12 0.0004 0.00010 0.0008 < 0.020 < 0.000050 < 0.010 0.0000502 5.07 < 0.00010 < 0.010 < 0.00018	< 0.010	< 0.000007
FR FR2 FR FR2 WS 2022-07-09 N 2022-07-09 214 0.0166 0.00015 0.00011 0.0322 < 0.020 < 0.000050 < 0.010 0.000554 52.3 0.00011 < 0.10 < 0.00050	0.018	< 0.000050
FR_FR2 FR_FR2_WEK_2022-07-11_N 2022-07-12_2310.01730.000140.000120.0357<0.020<0.000050<0.0100.000060656.40.00013<0.10<0.00050	0.021	< 0.000050

Denotes concentration less than indicated detection limit
 Denotes analysis not conducted
 n/a denotes no applicable standard

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

										Total Metals								
					۽	Φ												
			SSS	=	Magnesium	seur		l E	Ę		ء	1 €	E		E	*E		
			Ě	1	gue	ng.	Nickel	tass	lenium	Silver	Sodium	Strontium	i	_	Titanium	ranin	. ا	ဍ
Sample	Sample	Sample Date	Ē	=		N W		P _O	Se				Ĕ	Ę				7
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L		mg/L	mg/L	μg/L	mg/L	mg/	L mg/	L mg/L	mg/L	mg/L	mg/L	m	g/L
						Acute	Chronic		Chronic	Acute						Chronic	Acute	Chronic
BC WQG FWAL			n/a	n/a	n/a	0.001-0.03 ^a 0.0009-0.01 ^a	0.025-0.15 ^a	n/a	2	0.0001-0.003° 0.00005-0.0015°	n/a	n/a	n/a	n/a	n/a	0.0085	0.033-2 ^a	0.0075-2ª
Fording River Operation			1		1		0.020 0.10	1		,	1	1				0.0000		
FR_FR1	FR_FR1_QTR_2022-07-04_NP	2022-07-05		0.003		0.00263	< 0.00050	0.386	4.62	< 0.000010		0.07		< 0.00010		0.000529		.0030
FR_FR1 FR_FR1	FR_FR1_WEK_2022-07-11_NP FR_FR1_MON_2022-08-01_NP	2022-07-13	135	0.003		0.00279 0.00115	< 0.00050 < 0.00050	0.412	4.63 5.4	< 0.000010 < 0.000010		0.07		< 0.00010 < 0.00010	0.00073 < 0.00030	0.000552 0.000572		.0030
FR FR1	FR FR1 MON 2022-08-01 NP	2022-08-09	223	0.003		0.0016	< 0.00050	0.403	14.8	< 0.000010		0.00	< 0.000010	< 0.00010	< 0.00030	0.000372		.0030
FR_FR1	FR_FR1_QTR_2022-10-03_NP	2022-10-12	261	0.008		0.00148	0.00057	0.74	18.3	< 0.000010		0.12		< 0.00010	< 0.00030	0.00109	< 0.	.0030
FR_FR1	FR_FR1_MON_2022-11-07_NP	2022-11-03	296	0.011		0.00078	0.00228	0.821	23.8	< 0.000010		0.12		< 0.00010	< 0.00030	0.00113		.0030
FR_FR2	FR_FR2_MON_2022-01-04_N	2022-01-08	286	0.009		0.00078 0.0156	0.00062	0.728	25.4	< 0.000010		0.13		< 0.00010	< 0.00030	0.00115		.0030
FR_FR2 FR_FR2	FR_FR2_MON_2022-02-01_N FR_FR2_WS_2022-02-28_N	2022-02-09	660 727	0.084	67.4 71.9	0.0156	0.00652 0.00542	2.28	75.5 82.5	< 0.000010 < 0.000010		0.23		< 0.00010 < 0.00010	< 0.00030	0.00469		0035
FR FR2	FR FR2 MON 2022-03-01 N	2022-03-03	714			0.0175	0.00643	2.29	89.4	< 0.000010		0.23		< 0.00010	< 0.00030	0.00489		0037
FR_FR2	FR_FR2_WEK_2022-03-14_N	2022-03-14	702	0.086		0.0172	0.00531	2.28	78.7	< 0.000010		0.23		< 0.00010	< 0.00030	0.00487	0.0	003
FR_FR2	FR_ FR2_WEK_2022-03-15_NP	2022-03-15	759	0.094		0.0231	0.00574	2.55	86.8	< 0.000010		1 0.24		< 0.00010	0.00057	0.00506		0048
FR_FR2	FR_FR2_WS_2022-03-16_NP	2022-03-16	668	0.081		0.0242 0.0218	0.0059	2.4	79.9	< 0.000010		0.23		< 0.00010	0.00188	0.0051		0054
FR FR2 FR FR2	FR FR2 WEK 2022-03-16 NP FR FR2 2 WS 2022-03-17 NP	2022-03-16 2022-03-17	630 676	0.084		0.0218	0.00554 0.00606	2.4	79 92.5	< 0.000010 < 0.000010		0.22		< 0.00010 < 0.00010	< 0.00180	0.00459		0042
FR FR2	FR FR2 WEK 2022-03-17 NP	2022-03-17	713		76.1	0.0272	0.00619	2.55	80.7	0.000010		0.24		< 0.00010	0.00545	0.00467		0067
FR FR2	FR FR2 2 WS 2022-03-18 NP	2022-03-18	618	0.074		0.0217	0.00584	2.34	86.7	< 0.000010	3.86	0.23		< 0.00010	0.00152	0.00508		0053
FR_FR2	FR_FR2_WEK_2022-18_NP	2022-03-18	681	0.091		0.0226	0.00584	2.46	88.4	< 0.000010		0.26		< 0.00010	0.00141	0.00492		0035
FR_FR2	FR_FR2_WS_2022-03-19_NP	2022-03-19	680	0.091		0.0237	0.00615	2.6	89.2	< 0.000010		0.24		< 0.00010	< 0.00240	0.00511		0053
FR FR2 FR FR2	FR FR2 WS 2022-03-20 NP FR FR2 2 WS 2022-03-21 NP	2022-03-20	666 645	0.087		0.0204 0.0212	0.0056 0.00613	2.43	81.5 81	< 0.000010 < 0.000010		0.23		< 0.00010 < 0.00010	0.00077 < 0.00060	0.00503 0.00488		0035
FR FR2	FR FR2 2 WS 2022-03-21 NP	2022-03-21	646			0.0192	0.00593	2.46	80.5	< 0.000010		1 0.22		< 0.00010	< 0.00060	0.00481		0045
FR FR2	FR FR2 2 WS 2022-03-23 NP	2022-03-23	648		74.8	0.0191	0.00638	2.39	81.4	< 0.000010		1 0.23		< 0.00010	0.00054	0.00508		0064
FR FR2	FR_DC1_WEK_2022-03-28_N	2022-03-30	656	0.08		0.0192	0.00702	2.41	85.8	< 0.000010		0.22		0.00013	0.00084	0.00424		0041
FR_FR2	FR FR2 MON 2022-04-01 N	2022-04-05	594	0.06		0.0157	0.0106	2.555	78.35	< 0.000010		0.22		< 0.00010	0.003185	0.00376		0097
FR_FR2 FR_FR2	FR_FR2_WEK_2022-04-11_N FR_DC1_WEK_2022-04-18_N	2022-04-12 2022-04-18	602 634	0.074		0.0131 0.0127	0.0139 0.0136	2.55 2.66	90 96.5	< 0.000010 < 0.000010		0.25		< 0.00010 < 0.00010	0.00049	0.00403 0.00505		0079
FR FR2	FR FLD WEK 2022-04-18 N	2022-04-18	635		73.65	0.0117	0.0136	2.50	109.5	< 0.000010		0.22		< 0.00010	< 0.00037	0.00303		0795
FR FR2	FR FLD WEK 2022-04-25 N	2022-04-27			< 0.005		< 0.00050	< 0.050	< 0.050			50.000		< 0.00010	< 0.00030	< 0.000010	< 0.	.0030
FR_FR2	FR FR2 MON 2022-05-01 N	2022-05-04			< 0.005		< 0.00050	< 0.050	< 0.050			50.000		< 0.00010	< 0.00030	< 0.000010		.0030
FR_FR2	FR FR2 WEK 2022-05-09 N	2022-05-10	442			0.014 0.0408	0.00846	1.66	58.7	< 0.000010		0.14		< 0.00010	0.00132	0.00267		0089
FR FR2 FR FR2	FR FR2 WEK 2022-05-16 N FR FLD WEK 2022-05-23 N	2022-05-19 2022-05-26	434 380	0.039	47.4 37.9	0.0408	0.0103 0.00607	1.82 1.55	61.5 56	< 0.000010 < 0.000010		0.13		< 0.00010 < 0.00010	0.00111 0.00047	0.00283 0.00242		0132
FR FR2	FR FR2 WS 2022-05-27 NP	2022-05-27			0.005		< 0.00050	< 0.050	< 0.050			50.000		< 0.00010	< 0.00030	< 0.00242		.0030
FR FR2	FR FR2 WEK 2022-05-30 N	2022-06-01	286	0.022		0.00795	0.00386	1.12	34.2	< 0.000010		0.11		< 0.00010	< 0.00180	0.00168	0.0	0056
FR_FR2	FR_DC3_MON_2022-06-01_N	2022-06-08	250		25.2	0.00454	0.00285	0.926	24	< 0.000010		0.09		< 0.00010	0.0005	0.00138		0039
FR_FR2	FR FR2 MON 2022-06-01 N	2022-06-08	212	0.014	20.05	0.02435	0.00331	0.885	16.05	< 0.000010		0.08		< 0.00010	0.001525	0.00108		0075
FR FR2 FR FR2	FR DC1 WEK 2022-06-13 N FR FR2 WEK 2022-06-20 N	2022-06-13	183	0.013	16.4	0.00991	0.00214	0.7205	13.1	< 0.000010	- 0.8	- 0.08	3 < 0.000010	< 0.00010	0.001065	0.0009655		.0030
FR FR2	FR DC1 WEK 2022-06-20 N	2022-06-21	186	0.013		0.0141	0.00214	0.83	16.8	< 0.000010		0.08		< 0.00010	< 0.00300	0.0003033		0061
FR FR2	FR DC1 WEK 2022-06-27 N	2022-06-28	186	0.013	18.4	0.0134	0.00305	0.83	16.1	< 0.000010	0.79	0.08	0.000011	< 0.00010	0.00357	0.00107	0.0	0047
FR FR2	FR FR2 MON 2022-07-01 N	2022-07-04	207			0.006135	0.002605	0.829	17.75	< 0.000010		0.09		< 0.00010	0.0006	0.00113		0385
FR FR2	FR FR2 WEK 2022-07-05 N	2022-07-05	227		21.8	0.0036 0.00501	0.00254	0.94	23.7	< 0.000010 < 0.000010		0.09		< 0.00010	< 0.00030	0.00137		0030
FR_FR2 FR_FR2	FR FR2 WEK 2022-07-06 N FR DC1 WEK 2022-07-07 N	2022-07-06	223	0.018	20.1	0.00501	0.00262 0.00259	0.864	19.6 20.5	< 0.000010		0.08		< 0.00010	0.00061	0.0012 0.00128		0036
FR FR2	FR FR3 WEK 2022-07-07 N	2022-07-07	238	0.019		0.00394	0.00287	0.004	22.7	< 0.000010		0.00		< 0.00010	0.00038	0.00128		.0030
FR FR2	FR DC1 WEK 2022-07-08 N	2022-07-08	229	0.02	22.2	0.00281	0.00265	0.917	24	< 0.000010	1.08	0.09	9 < 0.000010	< 0.00010	< 0.00030	0.0013	0.0	0049
FR_FR2	FR FR3 WEK 2022-07-08 N	2022-07-08	215	0.017		0.00207	0.00234	0.825	20.4	< 0.000010		0.08		< 0.00010	< 0.00030	0.00125		0044
FR_FR2	FR FR2 WS 2022-07-09 N	2022-07-09	214	0.018		0.00259	0.00236 0.00288	0.87	21 24.7	< 0.000010		0.08		< 0.00010	< 0.00030	0.00118		0038
FR_FR2	FR_FR2_WEK_2022-07-11_N	2022-07-12	231	0.021	22	0.00367	0.00288	0.981	24.1	< 0.000010	1.1.1	10.05	9 < 0.000010	< 0.00010	0.00034	0.00138	1 0.0	1030

Denotes concentration less than indicated detection limit
 Denotes analysis not conducted
 n/a denotes no applicable standard

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

			Г								Total Metals						
Sample	Sample	Sample Date	Hardness	Aluminum	Antimony	Arsenic	Barium*	Beryllium*	Bismuth	Boron	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg	j/L	mg/L
						Acute	Chronic	Chronic		Chronic				Acute Chronic		Acute	Acute
BC WQG FWAL			n/a	n/a	n/a	0.005	1	0.00013	n/a	1.2	n/a	n/a	n/a	0.11 0.004	n/a	1	0.003-5.5° 3.3-3.5°
Fording River Operation	ED DOO MON 2000 00 04 N	0000 00 40	075	0.00005	0.00047		0.0000		- 0 000050	- 0 040	0.0000704	00.0	- 0.00040	< 0.10	- 0 00050	0.007	< 0.000050
FR_FR2 FR_FR2	FR DC2 MON 2022-08-01 N FR FR2 MON 2022-08-01 N	2022-08-10	275 453	0.02295	0.00017 0.000205	< 0.00010 0.00016	0.0396	< 0.020 < 0.020	< 0.000050 < 0.000050	< 0.010 0.013	0.0000781	66.6 103	< 0.00010 0.000125	< 0.10	< 0.00050 < 0.00050	0.037	< 0.000050
FR_FR2	FR FR2 WS SEPT-2022 N	2022-09-06	400	0.0075	0.000205	0.00016	0.06625	< 0.020	< 0.000030	0.013	0.0000069	103	0.000125	- 0.10	< 0.00030	0.022	V 0.000030
FR FR2	FR DC1 WS SEPT-2022 N	2022-09-06	546	0.0054	0.00024	0.00015	0.0702	< 0.020	< 0.000050	0.013	0.000033	121	0.00013	< 0.10	< 0.00050	0.01	< 0.000050
FR FR2	FR FLD1 WS SEPT-2022 N	2022-09-06	534	0.005	0.00024	0.00015	0.0702	< 0.020	< 0.000050	0.013	0.0000225	120	0.00013	< 0.10	< 0.00050	0.013	< 0.000050
FR_FR2	FR_FR2_MON_2022-09-01_N		< 0.50	< 0.0030	< 0.00010	< 0.00010	< 0.00010	< 0.020	< 0.000050	< 0.010	< 0.0050	< 0.050	< 0.00011	< 0.10	< 0.00050	< 0.010	< 0.000050
FR_FR2	FR_FR2_MON_2022-10-01_N	2022-10-04	536	0.011	0.00022	0.00016	0.0773	< 0.020	< 0.000050	0.013	0.0000736	130	0.00013	< 0.10	< 0.00050	0.028	< 0.000050
FR_LMP1	FR_LMP1_MON_2022-01-04_N	2022-01-07	606	0.0119	0.00025	0.0001	0.0917	< 0.020	< 0.000050	0.014	0.000087	147	< 0.00010	< 0.10	< 0.00050	0.039	< 0.000050
FR_LMP1	FR_LMP1_WS_2022-01-15_NP	2022-01-15	1040	0.0095	0.00095	0.0005	0.0962	< 0.020	< 0.000050	0.019	0.000344	223	< 0.00010	0.0011	0.00058	0.044	< 0.000050
FR_LMP1	FR_LMP1_WS_2022-01-20_NP	2022-01-20	1010	0.0123	0.00107	0.00064	0.0937	< 0.020	< 0.000050	0.019	0.000361	224	< 0.00010	0.00119	0.00064	0.049	< 0.000050
FR_LMP1	FR_LMP1_WS_2022-01-27_NP	2022-01-27	998	0.0221	0.00102	0.00066	0.0987	< 0.020	< 0.000050	0.021	0.000389	235	< 0.00010	0.001	0.00078	0.064	0.000082
FR_LMP1	FR_LMP1_WS_2022-02-04_NP		1020	0.0309	0.0013	0.00072	0.103	< 0.020	< 0.000050	0.02	0.000398	240	0.00018	0.00135	0.00071	0.09	0.000067
FR_LMP1	FR_LMP1_WS_2022-02-10_NP	2022-02-10	1090	0.0218	0.00111	0.00072	0.0998	< 0.020	< 0.000050	0.017	0.00037	234	0.00028	0.00099	0.001	0.084	0.000081
FR_LMP1 FR_LMP1	FR LMP1 WS 2022-02-17 NP FR LMP1 WS 2022-02-24 NP	2022-02-17	1090 1020	0.0368	0.00098	0.00072	0.117 0.105	< 0.020 < 0.020	< 0.000050 < 0.000050	0.022	0.000399	263 239	0.00012 0.00011	0.00083 0.00158	0.00113	0.09	0.000073 0.000081
FR_LMP1	FR LMP1 WS 2022-02-24 NP FR LMP1 WS 2022-03-03 NP	2022-02-24	1020	0.0294	0.00136	0.00081	0.105	< 0.020	< 0.000050	0.025	0.000369	239	0.00011	0.00158	0.00071	0.102	0.000081
FR_LMP1	FR LMP1 WS 2022-03-09 NP	2022-03-03	1120	0.163	0.00139	0.00068	0.0973	< 0.020	< 0.000050	0.021	0.000339	261	0.00078	0.00166	0.0007	0.069	0.000121
FR LMP1	FR LMP1 WS 2022-03-05 NP	2022-03-09	1070	0.103	0.00145	0.00069	0.0921	< 0.020	< 0.000050	0.019	0.000408	244	0.00078	0.00149	0.000113	0.214	0.000172
FR LMP1	FR LMP1 WEK 2022-03-10 N	2022-03-10	961	0.0364	0.00099	0.00066	0.0973	< 0.020	< 0.000050	0.02	0.000338	261	0.00012	0.00078	0.00077	0.093	0.000092
FR LMP1	FR FLD WEK 2022-03-21 N	2022-03-22	-	-	-	-	-	-	-	-	-		-	-	-	-	-
FR LMP1	FR LMP1 WS 2022-03-24 NP	2022-03-24	< 0.50	< 0.0030	< 0.00010	< 0.00010	< 0.00010	< 0.020	< 0.000050	< 0.010	< 0.0050	< 0.050	< 0.00010	< 0.10	< 0.00050	< 0.010	< 0.000050
FR_LMP1	FR_LMP1_WS_2022-03-30_NP	2022-03-30	858	0.0396	0.00215	0.00059	0.11	< 0.020	< 0.000050	0.022	0.000324	225	0.0002	0.00257	0.00074	0.144	0.000184
FR_LMP1	FR_LMP1_MON_2022-04-01_N	2022-04-01	907	0.0892	0.00509	0.00097	0.364	< 0.020	< 0.000050	0.024	0.000358	217	0.00022	0.00507	0.00105	0.131	0.000138
FR_LMP1	FR_LMP1_WS_2022-04-05_NP	2022-04-05	819	0.154	0.00574	0.00086	0.5	< 0.020	< 0.000050	0.024	0.000318	188	0.00029	0.00885	0.00095	0.162	0.000126
FR_LMP1	FR_LMP1_WS_2022-04-12_NP	2022-04-12	820	0.0193	0.00546	0.00076	0.112	< 0.020	< 0.000050	0.024	0.000315	183	< 0.00010	0.00936	0.00083	0.082	0.000054
FR_LMP1	FR_LMP1_WEK_2022-04-18_N	2022-04-20	924	0.03	0.00399	0.00058	0.187	< 0.020	< 0.000050	0.022	0.000332	225	0.00014	0.00355	0.00075	0.088	0.000052
FR_LMP1	FR LMP1 WS 2022-04-28 NP	2022-04-28	978	0.0031	0.00089	0.0003	0.0615	< 0.020	< 0.000050	0.015	0.000342	218	< 0.00010	0.00056 0.00046	0.00063	< 0.010	< 0.000050 0.000056
FR LMP1 FR LMP1	FR_LMP1_WEK_2022-04-25_N FR_LMP1_MON_2022-05-01_N	2022-04-28	748	0.0222	0.00066	0.00028	0.0584	< 0.020	< 0.000050	0.014	0.000369	178	0.0001	0.00046	0.00086	0.051	0.000036
FR LMP1	FR LMP1 WS 2022-05-01 NP	2022-05-05	705	0.0228	0.00069	0.0003	0.0529	< 0.020	< 0.000050	0.014	0.000506	169	0.00011	0.00066	0.00113	0.044	0.000052
FR LMP1	FR LMP1 WEK 2022-05-10 N	2022-05-10	608	0.0264	0.00051	0.0003	0.0323	< 0.020	< 0.000050	0.014	0.000388	127	0.00042	0.0004	0.00113	0.029	0.000225
FR LMP1	FR LMP1 WEK 2022-05-05 N	2022-05-16	-	-	-	-	-		- 0.000000	-	-	-	- 0.00042	-	-	-	-
FR LMP1	FR LMP1 WS 2022-05-23 NP	2022-05-23		-	-	-	-	-	-	-	-	-	-	-	-	-	-
FR LMP1	FR LMP1 WEK 2022-05-30 N	2022-06-01	624	0.014	0.00048	0.0002	0.0402	< 0.020	< 0.000050	0.01	0.000369	136	0.00029	0.00021	0.00099	0.024	< 0.000050
FR_LMP1	FR LMP1 WS 2022-06-08 NP	2022-06-08	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FR_LMP1	FR_LMP1_WEK_2022-06-13_N	2022-06-14	440	0.0156	0.00044	0.00022	0.0398	< 0.020	< 0.000050	< 0.010	0.000286	97.3	< 0.00010	0.00016	0.00108	0.024	< 0.000050
FR_LMP1	FR_LMP1_WS_2022-06-22_NP	2022-06-22	-				L		-	-							
FR_LMP1	FR LMP1 WEK 2022-06-27 N	2022-06-30	393	0.0278	0.00063	0.00024	0.0386	< 0.020	< 0.000050	0.01	0.000385	88.8	0.00014	0.00052	0.00141	0.036	< 0.000050
FR_LMP1	FR LMP1 WS 2022-07-05 NP	2022-07-05	-	- 0.0400	- 0.00040	0.00001	0.0405		- 0.000050	- 0.04	- 0.000442	404	0.00045	0.00024	0.00405	- 0.000	0.000096
FR_LMP1 FR_LMP1	FR_LMP1_WEK_2022-07-11_N FR_LMP1_WS_2022-07-19_NP	2022-07-13 2022-07-19	535	0.0408	0.00043	0.00021	0.0405	< 0.020	< 0.000050	0.01	0.000412	124	0.00015	0.00024	0.00125	0.068	0.000090
FR LMP1	FR LMP1 WS 2022-07-19 NP FR LMP1 MON 2022-08-01 N	2022-07-19	668	0.0144	0.0005	0.00019	0.046	< 0.020	< 0.000050	0.01	0.000478	165	0.00013	0.00021	0.00094	0.021	< 0.000050
FR LMP1	FR LMP1 WS 2022-08-17 NP	2022-08-17	992	0.0134	0.00056	0.00018	0.059	< 0.020	< 0.000050	0.012	0.000478	219	< 0.00010	0.00021	0.00085	0.021	< 0.000050
FR LMP1	FR LMP1 WS WS SESMP 2022-08 N	2022-08-22	1120	0.0173	0.00061	0.0002	0.0558	< 0.020	< 0.000050	0.012	0.0005	249	< 0.00010	0.00035	0.00078	0.014	< 0.000050
FR LMP1	FR LMP1 WS 2022-09-01 NP		1100	0.0178	0.0006	0.00036	0.065	< 0.020	< 0.000050	0.012	0.000502	239	0.00012	0.00041	0.00076	0.051	0.000065
FR LMP1	FR LMP1 WS SEPT-2022 N	2022-09-07	1170	0.0073	0.0006	< 0.00050	0.0573	< 0.020	< 0.000050	0.015	0.00029	277	< 0.00010	0.00029	0.0007	< 0.010	< 0.000050
FR LMP1	FR LMP1 WS 2022-09-13 NP		1120	< 0.0030	0.00068	0.00019	0.0601	< 0.020	< 0.000050	0.013	0.000431	248	< 0.00010	0.00028	0.00075	< 0.010	< 0.000050
FR_LMP1	FR LMD MON 2022-10-01 N	2022-10-13	1340	0.0149	0.0006	0.00037	0.0597	< 0.020	< 0.000050	0.015	0.000446	271	0.00019	0.00028	0.00074	0.017	< 0.000050
FR_LMP1	FR_LMD_WS_2022-11-15_NP	2022-11-15	1220	0.0071	0.00059	0.0002	0.0597	< 0.020	< 0.000050	0.014	0.00055	285	< 0.00010	0.00022	0.00072	< 0.010	< 0.000050
FR_LP1	FR_LP1_WS_2022-05-22_N	2022-05-22	1470	0.0103	0.00066	0.00024	0.0538	< 0.020	< 0.000050	0.014	0.000398	299	< 0.00010	0.00026	0.00068	0.014	< 0.000050

Denotes concentration less than indicated detection limit
 Denotes analysis not conducted
 n/a denotes no applicable standard

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

										Total Metals								\neg
			ardness	Lithium	agnesium	Manganese	ickel*	otassium	elenium	Sliver	Sodium	Strontium	hallium	<u> </u>	Itanium	ranium*	Zinc	
Sample	Sample ID	Sample Date	Ι		Σ			<u>a</u>	Ø.					F	F			
Location	U	(mm/dd/yyyy)	mg/L	. mg/L	mg/L		mg/L	mg/L	μg/L		mg/	Lmg	/L mg/L	mg/L	mg/L	mg/L	mg/L	
						Acute	Chronic		Chronic	Acute						Chronic	§ d	Chronic
BC WQG FWAL			n/a	n/a	n/a	0.001-0.03 ^a 0.0009-0.01 ^a	0.025-0.15 ^a	n/a	2	0.0001-0.003 ^a 0.00005-0.0015 ^a	n/a	n/a	n/a	n/a	n/a	0.0085	0.033-2ª 0.007	75-2ª
Fording River Operation												_						
FR_FR2	FR_DC2_MON_2022-08-01_N	2022-08-10		0.027		0.00408	0.003165	1.195		< 0.000010		3 0.		< 0.00010	< 0.00030	0.001875	0.0044	
FR_FR2	FR_FR2_MON_2022-08-01_N	2022-08-10		0.051		0.009235	0.00578	1.85	51.4	< 0.000010	_	8 0.1	5 < 0.000010	< 0.00010	< 0.00030	0.002945	0.00415	
FR_FR2	FR_FR2_WS_SEPT-2022_N	2022-09-06	-	-	-	-		-	-	< 0.000010	-							
FR_FR2	FR_DC1_WS_SEPT-2022_N	2022-09-06	546		55.9	0.0075 0.0067	0.00693	1.94	67.2	< 0.000010		1 0.1		< 0.00010	< 0.00030	0.00324	< 0.0030 < 0.0030	
FR_FR2	FR_FLD1_WS_SEPT-2022_N	2022-09-06	534		55.7		0.00697	1.94	66.8	< 0.000010		0.1		< 0.00010 < 0.00010	< 0.00030 < 0.00030	0.00324	< 0.0030	
FR_FR2	FR_FR2_MON_2022-09-01_N FR_FR2_MON_2022-10-01_N	2022-09-07		0.061	58.7	0.00932	< 0.00050 0.0067	< 0.050	< 0.050 67.4	< 0.000010		50.00 1 0.2		< 0.00010	< 0.00030	< 0.000010 0.0034	0.0030	
FR_FR2 FR_LMP1					71.4	0.00932				< 0.000010		3 0.2		< 0.00010	< 0.00030		0.0041	
FR_LMP1	FR_LMP1_MON_2022-01-04_N FR_LMP1_WS_2022-01-15_NP	2022-01-07 2022-01-15	606	0.078	101	0.0146	0.00802 0.0227	2.39 4.48	77.1 193	< 0.000010		0.2		< 0.00010	< 0.00030	0.00484	0.004	
FR_LMP1	FR LMP1 WS 2022-01-13 NP FR LMP1 WS 2022-01-20 NP	2022-01-13		0.034	109	0.0195	0.0227	4.46	212	< 0.000010		7 0.2		< 0.00010	< 0.00030	0.00574	0.010	-
FR LMP1	FR LMP1 WS 2022-01-20 NP	2022-01-27	998		112	0.0188	0.0245	4.64	230	< 0.000010		0.2		0.00011	0.00064	0.0061	0.0194	
FR LMP1	FR LMP1 WS 2022-01-27 NP	2022-01-27	1020		107	0.0176	0.026	4.47	223	< 0.000010		2 0.2		0.00045	0.0005	0.00561	0.016	$\overline{}$
FR LMP1	FR LMP1 WS 2022-02-10 NP	2022-02-04	1090		112	0.0133	0.024	4.23	209	0.000017		2 0.2		< 0.00010	< 0.00060	0.0059	0.02	
FR LMP1	FR LMP1 WS 2022-02-17 NP	2022-02-17	1090		121	0.0134	0.0238	4.7	236	< 0.00010		0.2		< 0.00010	< 0.00060	0.00637	0.0171	
FR LMP1	FR_LMP1_WS_2022-02-24_NP	2022-02-24		0.044	111	0.018	0.0257	5.84	206	< 0.00010		5 0.2		< 0.00010	< 0.00090	0.00576	0.0158	
FR LMP1	FR LMP1 WS 2022-03-03 NP	2022-03-03	1050		105	0.016	0.0257	4.98	209	< 0.00010		0.2		< 0.00010	< 0.00060	0.00574	0.0174	
FR LMP1	FR LMP1 WS 2022-03-09 NP	2022-03-09	1120	0.035	122	0.02	0.0289	5.15	256	0.000011	1.46	3 0.2	5 0.000075	< 0.00010	< 0.00570	0.00683	0.0198	
FR_LMP1	FR LMP1 WS 2022-03-16 NP	2022-03-16	1070	0.038	106	0.0192	0.0275	5.08	222	< 0.000010	1.46	0.2	4 0.000072	< 0.00010	0.00114	0.00665	0.0153	
FR_LMP1	FR_LMP1_WEK_2022-03-21_N	2022-03-22	961	0.04	127	0.0128	0.0238	4.81	237	< 0.000010	1.45	5 0.2	3 0.000052	< 0.00010	0.00076	0.006	0.0317	
FR_LMP1	FR FLD WEK 2022-03-21 N	2022-03-22	-	-	-	-	-	-	-	-	-		-	-	-	-	-	
FR_LMP1	FR_LMP1_WS_2022-03-24_NP	2022-03-24		0.001	C 0.005		< 0.00050	< 0.050	< 0.050	< 0.000010		50.00		< 0.00010	< 0.00030	< 0.000010	< 0.0030	
FR_LMP1	FR_LMP1_WS_2022-03-30_NP	2022-03-30	858		110	0.0198	0.0312	5.94	199	< 0.000010		3 0.2		< 0.00010	0.00062	0.00547	0.0194	
FR_LMP1	FR_LMP1_MON_2022-04-01_N	2022-04-01		0.049	107	0.0296	0.0422	6.46	184	< 0.000010		0.4		< 0.00010	0.00217	0.00594	0.0164	
FR_LMP1	FR LMP1 WS 2022-04-05 NP	2022-04-05		0.057	92.7	0.0336	0.0601	6.51	163	< 0.000010		1 0.6		< 0.00010	< 0.00690	0.0054	0.0145	
FR_LMP1	FR_LMP1_WS_2022-04-12_NP	2022-04-12		0.062	92.6	0.0323	0.0615	6.31	162	< 0.000010		0.6		< 0.00010	< 0.00030	0.00514	0.0148	
FR_LMP1	FR_LMP1_WEK_2022-04-18_N	2022-04-20		0.053	99 109	0.0181 0.00393	0.0344 0.0216	5.81	180	< 0.000010 < 0.000010		7 0.4		< 0.00010	0.0005	0.00536	0.0152 0.0157	
FR_LMP1 FR_LMP1	FR LMP1 WS 2022-04-28 NP	2022-04-28	978 748		85.8	0.00393	0.0216	3.62	224 188			5 0.1		< 0.00010	< 0.00030	0.00588	0.0199	-
FR LMP1	FR LMP1 WEK 2022-04-25 N FR LMP1 MON 2022-05-01 N	2022-04-28 2022-05-05	748	0.010	00.0	0.00488	0.0104	3.42	100	V 0.0000 10	0.90		4 0.000031	< 0.00010	< 0.00000	0.00471	0.0199	
FR_LMP1	FR LMP1 WS 2022-05-01 NP	2022-05-05	705	0.018	79.8	0.00482	0.025	3.49	190	< 0.000010		5 0.1	3 0.000038	< 0.00010	0.00037	0.00432	0.028	_
FR LMP1	FR LMP1 WS 2022-05-10 NP	2022-05-10	608			0.00378	0.0194	2.68	134	< 0.000010		0.1		< 0.00010	0.00037	0.00302	0.0226	
FR LMP1	FR LMP1 WEK 2022-05-16 N	2022-05-16	-	0.010		-	0.0101	2.00		-	-	-	0.000020	- 0.00010	0.00002	0.00002	- 0.0220	_
FR LMP1	FR LMP1 WS 2022-05-23 NP	2022-05-23	-	-	-	-	-	-	-	-	-	1 -	-	-	-	-	-	$\overline{}$
FR LMP1	FR LMP1 WEK 2022-05-30 N	2022-06-01	624	0.013	67	0.00232	0.0155	2.63	158	< 0.000010	0.79	0.1	1 0.000025	0.00082	< 0.00030	0.00331	0.0203	
FR LMP1	FR LMP1 WS 2022-06-08 NP	2022-06-08	-	-	-	-	-	-	-	-	-		-	-	-	-	-	
FR_LMP1	FR_LMP1_WEK_2022-06-13_N	2022-06-14	440	0.009	45.4	0.00225	0.0119	2.18	91.4	< 0.000010	0.61	1 0.0	8 0.000019	< 0.00010	0.00043	0.00218	0.0171	
FR_LMP1	FR_LMP1_WS_2022-06-22_NP	2022-06-22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
FR_LMP1	FR_LMP1_WEK_2022-06-27_N	2022-06-30	393	0.011	42.6	0.00306	0.0212	2.33	80.1	< 0.000010	0.7	0.0	9 0.000023	< 0.00010	0.00049	0.00219	0.023	
FR_LMP1	FR LMP1_WS 2022-07-05 NP	2022-07-05	-	-	1 -	-	-	-	-	-	-	1 -		<u> </u>		-	-	
FR_LMP1	FR_LMP1_WEK_2022-07-11_N	2022-07-13	535		54.6	0.00498	0.0167	2.3	115	0.000016		3 0.0	9 0.000027	< 0.00010	0.00059	0.00277	0.0226	-
FR_LMP1	FR LMP1 WS 2022-07-19 NP	2022-07-19	-	-	-		-	- 0.50		- 0.000040	-	_					0.0070	
FR_LMP1	FR LMP1 MON 2022-08-01 N	2022-08-04	668		71	0.00395 0.00434	0.0221	2.58	173	< 0.000010 < 0.000010		0.1		< 0.00010	0.00043	0.00388	0.0279 0.0324	
FR_LMP1	FR LMP1 WS 2022-08-17 NP	2022-08-17		0.017	106 115	0.00434	0.0306 0.0377	3.46	262 264			3 0.1 3 0.1		< 0.00010	0.00032 < 0.00030	0.00567	0.0324	
FR_LMP1 FR_LMP1	FR LMP1 WS WS SESMP 2022-08 N FR LMP1 WS 2022-09-01 NP	2022-08-22 2022-09-01	1120		115	0.00495	0.0377	3.4	264			5 0.1		< 0.00010	0.00030	0.00672	0.029	
FR_LMP1			1170		129	0.0003	0.0392	3.37	300	< 0.000010		0.1		< 0.00010	< 0.00037	0.00679	0.0315	
FR_LMP1 FR_LMP1	FR_LMP1_WS_SEPT-2022_N FR_LMP1_WS_2022-09-13_NP	2022-09-07	11/0		129	0.00373	0.0386	3.4	347	< 0.000010		9 0.2		< 0.00010	< 0.00030	0.00664	0.0213	-
FR_LMP1	FR LMP1 WS 2022-09-13 NP FR LMD MON 2022-10-01 N	2022-09-13	1340		136	0.00250	0.0364	3.71	287	< 0.000010		3 0.2		< 0.00010	< 0.00030	0.00751	0.0231	-
FR LMP1	FR LMD WS 2022-10-01 N	2022-10-15	1220		135	0.00446	0.0404	3.76	281			1 0.2		< 0.00010	< 0.00030	0.00721	0.0271	-
FR LP1	FR LP1 WS 2022-05-22 N	2022-05-22		0.025		0.00475	0.0436	3.87	332			7 0.2		< 0.00010			0.024	
		2022-00-22	17/0	., 0.020	,		0.0.00	, 0.0.			,	, 0.2		, . 0.00010		, 5.000.1		

Denotes concentration less than indicated detection limit
 Denotes analysis not conducted
 n/a denotes no applicable standard

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

											Total Metals						
													_				
			SS	Ē	≥			*_	_		E	_			_		
			e e	듣	<u>ë</u>	ě	Ē	≝	a f	<u> </u>	i	Cir.	nim o	#	Je.		_
0	0	0	ard	틀	電	l S	ar.	e G	.00) è	Cad	ac	I .E	8	eddo	E	ead
Sample Location	Sample ID	Sample Date (mm/dd/yyyy)	ma/l	∢ mg/L	Mg/L	Mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	U mg		mg/L
Location	ID .	(IIIII/dd/yyyy)	IIIg/L	IIIg/L	IIIg/L	IIIg/L	.ug/L	U U	IIIg/L		IIIg/L	IIIg/L	mg/L		ilig	, L	
						ع	oni O	=		<u> </u>				g t		2	o nic
						7	Ę	ξ		Chronic				Acute		l n	के है
BC WQG FWAL			n/a	n/a	n/a	0.005	1	0.00013	n/a	1.2	n/a	n/a	n/a	0.11 0.004	n/a	1	0.003-5.5° 3.3-3.5°
Fording River Operation			IIIa	II/a	II/a	0.000		0.00013	II/a	1.2	11/a	II/a	l II/a	0.11 0.004	IIIa	<u> </u>	0.003-0.0 3.3-3.3
FR LP1	FR LP1 WS 2022-05-23 N	2022-05-23	501	0.0743	0.00063	0.00031	0.0792	< 0.020	< 0.000050	0.016	0.0000898	90.8	0.00021	0.0004	0.00076	0.066	0.000087
FR_LP1	FR_LP1_WS_2022-05-24_N	2022-05-24	494	0.105	0.00056	0.00028	0.0708	< 0.020	< 0.000050	0.015	0.0000929	89.7	0.0002	0.0003	0.0008	0.064	0.000086
FR_LP1	FR_LP1_WS_2022-05-25_N	2022-05-25	494	0.0818	0.00059	0.00026	0.0704	< 0.020	< 0.000050	0.02	0.0000936	96.1	0.00027	0.00033	0.00082	0.064	0.000082
FR_LP1	FR_LP1_WS_2022-05-26_N	2022-05-26	494	0.0829	0.00061	0.00027	0.072	< 0.020	< 0.000050	0.016	0.0000851	92.8	0.0002	0.00036	0.00087	0.055	0.000085
FR_LP1	FR_LP1_WS_2022-05-27_N	2022-05-27	480	0.0862	0.00058	0.00028	0.0719	< 0.020	< 0.000050	0.018	0.0000932	91.8	0.00018	0.00032	0.00076	0.053	0.000078
FR_LP1 FR_LP1	FR_LP1_WS_2022-05-28_N FR_LP1_WS_2022-05-29_N	2022-05-28	456 443	0.0788	0.00053 0.0005	0.00031	0.0893	< 0.020 < 0.020	< 0.000050 < 0.000050	0.02	0.0000956	88.1 85.5	0.00021	0.00034 0.00029	0.00079	0.05	0.000075 0.000074
FR_LP1	FR LP1 WS 2022-05-29 N FR LP1 WS 2022-05-30 N	2022-05-29	443	0.0853	0.0005	0.00028	0.0805	< 0.020	< 0.000050	0.018	0.0000937	85.5 84.9	0.00023	0.00029	0.00072	0.053	0.000074
FR LP1	FR LP1 WS 2022-06-07 NP	2022-06-07	438	0.103	0.00053	0.00026	0.0802	< 0.020	< 0.000050	0.017	0.0000874	82.6	0.0002	0.00032	0.00079	0.074	0.00008
FR LP1	FR LP1 WS 2022-06-08 NP	2022-06-08	460	0.069	0.00065	0.00024	0.0728	< 0.020	< 0.000050	0.018	0.0000824	87	0.00016	0.00047	0.00074	0.042	0.000054
FR_LP1	FR_LP1_MON_2022-06-01_NP	2022-06-09	513	0.0843	0.00068	0.00026	0.0656	< 0.020	< 0.000050	0.02	0.000103	96.2	0.00024	0.00047	0.00086	0.07	0.000076
FR_LP1	FR_LP1_WS_2022-06-10_NP	2022-06-10	517	0.0547	0.00048	0.00021	0.0644	< 0.020	< 0.000050	0.018	0.0000877	86.8	0.00014	0.0003	0.0007	0.041	0.000064
FR_LP1	FR_LP1_WS_2022-06-11_NP	2022-06-11	444	0.0602	0.00052	0.00023	0.0739	< 0.020	< 0.000050	0.016	0.0000967	79.5	0.00018	0.00035	0.00092	0.052	0.00007
FR_LP1	FR_LP1_WS_2022-06-12_NP	2022-06-12	432	0.0717	0.00047	0.0002	0.0746	< 0.020	< 0.000050	0.016	0.0000945	77.3	0.00016	0.00026	0.00076	0.052	0.000058
FR_LP1 FR_LP1	FR_LP1_MON_2022-06-13_NP	2022-06-13	424	0.031	0.00058	0.00021	0.069 0.0763	< 0.020 < 0.020	< 0.000050 < 0.000050	0.016	0.000065	77.4 81.1	0.00012	0.0002 0.00034	0.00066	0.02	< 0.000050 0.000085
FR_LP1	FR_LP1_WS_2022-06-20_NP FR_LP1_WS_2022-06-28_NP	2022-06-28	382	0.0499	0.00057	0.00021	0.0763	0.000021		0.017	0.0000835	77.1	0.00021	0.00034	0.00088	0.046	0.00024
FR LP1	FR LP1 WS 2022-00-25 NP	2022-07-05	436	0.0698	0.00055	0.00033	0.0623	< 0.020	< 0.000050	0.023	0.0000653	80.9	0.00038	0.0003	0.00402	0.056	0.000095
FR LP1	FR LP1 WS 2022-07-12 N	2022-07-12	485	0.0507	0.00052	0.00027	0.0684	< 0.020	< 0.000050	0.029	0.0000663	94.3	0.00016	0.00044	0.00195	0.065	0.000093
FR LP1	FR LP1 WEK 2022-07-11 N	2022-07-12	540	0.0378	0.00056	0.00029	0.0698	< 0.020	< 0.000050	0.027	0.0000746	98	0.00022	0.00028	0.0019	0.827	0.000054
FR_LP1	FR_LP1_WS_2022-08-18_N	2022-08-18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FR_LP1	FR_LP1_WS_2022-08-24_N	2022-08-24	680	0.0236	0.00098	0.00083	0.0581	< 0.020	< 0.000050	0.029	0.0000203	113	0.00019	0.00027	0.0011	0.018	< 0.000050
FR_LP1	FR_LP1_WS_2022-09-01_N	2022-09-01	752	0.025	0.00075	0.00043	0.0538	< 0.020	< 0.000050	0.029	0.0000178	129	0.00011	0.0002	0.00085	0.018	< 0.000050
FR LP1	FR LP1 WS 2022-09-05 N FR LP1 WS SEPT-2022 N	2022-09-05 2022-09-06	733 800	0.0132 0.015	0.00073 0.00067	0.00053	0.0534	< 0.020 < 0.020	< 0.000050 < 0.000050	0.034	0.0000068	132 121	0.0001 < 0.00010	0.00012 0.00013	0.0007 0.00061	< 0.010	< 0.000050 < 0.000050
FR LP1	FR_LP1_MON_2022-10-01_N	2022-10-12	772	0.0095	0.0007	0.00043	0.0336	< 0.020	< 0.000050	0.03	< 0.0050	122	< 0.00010	< 0.10	0.00051	< 0.010	< 0.000050
FR LP1	FR LP1 MON 2022-11-01 N	2022-10-12	886	0.0124	0.00067	0.00042	0.0436	0.000026		0.026	0.0000092	133	0.00014	0.00016	0.00051	< 0.010	0.000068
FR PP1	FR PP1 MON 2022-01-04 N	2022-01-07	877	0.0116	0.00066	0.00027	0.0438	< 0.020	< 0.000050	0.031	0.0000194	158	0.00016	0.00021	0.00057	0.011	< 0.000050
FR_PP1	FR_PP1_MON_2022-02-01_N	2022-02-06	1400	< 0.0060	0.00064	0.00028	0.0612	< 0.040	< 0.000100	< 0.020	0.000962	344	< 0.00020	0.00041	0.00122	< 0.020	< 0.000100
FR_PP1	FR_PP1_WS_MON_2022-03-01_N	2022-03-08	1630	0.0071	0.00066	0.00032	0.0654	< 0.040	< 0.000100	< 0.020	0.00103	390	0.0002	0.00035	0.00135	< 0.020	< 0.000100
FR PP1	FR PP1 WEK 2022-03-14 N	2022-03-14	1560	0.0078	0.00065	0.00032	0.0619	< 0.040	< 0.000100	< 0.020	0.000972	366	< 0.00020	0.00036	0.00122	< 0.020	< 0.000100
FR PP1 FR PP1	FR PP1 WEK 2022-03-21 N FR DC WEK 2022-03-28 N	2022-03-21	1450		-		-	-	-	-	- :	-	-	-	-	-	-
FR PP1	FR DC WEK 2022-03-28 N FR PP1 MON 2022-04-01 N	2022-03-28	-	-		1	-	 	1 -	-	 	1	1	 	-	-	-
FR PP1	FR PP1 MON 2022-04-01 N FR PP1 WEK 2022-04-11 N	2022-04-04	672	0.358	0.00082	0.00052	0.0576	0.000035	< 0.000050	0.012	0.00129	180	0.00084	0.00238	0.00331	0.353	0.000398
FR PP1	FR DC2 WEK 2022-04-18 N	2022-04-19	-	-	-	-	-	-	- 0.000000		-	-	- 0.00004	-	-	-	-
FR PP1	FR PP1 WEK 2022-04-25 N	2022-04-28	-	-	-	-	-		-	-	-	-	-	-	-	-	-
FR_PP1	FR PP1 MON 2022-05-01 N	2022-05-05	-		-	-	-	-	-	-	-	-	-	-	-	-	-
FR_PP1	FR PP1 WEK 2022-05-09 N	2022-05-11	744	0.087	0.00079	0.00031	0.0471	< 0.020	< 0.000050	0.017	0.00189	194	0.00025	0.00486	0.00241	0.088	0.000269
FR_PP1	FR PP1 WEK 2022-05-16 N	2022-05-18	-	-	-	-	-		-	-	-	-	-	-	-		-
FR_PP1 FR_PP1	FR DC2 WEK 2022-05-23 N FR PP1 WEK 2022-05-30 N	2022-05-23 2022-06-01	-		-	- :	-	 :	-	-	- :	-	-	- :	-	-	-
FR PP1	FR DC2 MON 2022-06-01 N	2022-06-07			-		-	 			1			1 -	-	-	
FR PP1	FR DC2 WEK 2022-06-13 N	2022-06-15	1040	0.03785	0.000575	0.000285	0.0527	< 0.020	< 0.000050	0.011	0.001185	259.5	0.00015	0.000965	0.002045	0.061	< 0.000050
FR PP1	FR PP1 WEK 2022-06-20 N	2022-06-20	-	-	-	-	-	-	-	-	-	-	-		-	-	-
FR_PP1	FR PP1 WEK 2022-06-27 N	2022-06-28	-		-	-	-		-	-	_	-	-	-	-	-	-
FR_PP1	FR DC2 MON 2022-07-01 N	2022-07-04	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FR_PP1	FR_PP1_WEK_2022-07-11_N	2022-07-12	1170	0.02315	0.000655	0.00027	0.0543	< 0.020	< 0.000050	0.015	0.00119	260.5	0.00011	0.00094	0.001725	0.036	< 0.000050
FR_PP1	FR_DC1_MON_2022-08-01_N	2022-08-02	454-							- 0.05		-		0.0000			- 0.000400
FR_PP1	FR_PP1_WS_SEPT-2022_N	2022-09-07	1510	0.0167	0.000715	0.000295	0.0633	< 0.040	< 0.000100	< 0.020	0.00103	377	< 0.00020	0.0006	0.001505	0.037	< 0.000100

Denotes concentration less than indicated detection limit
 Denotes analysis not conducted
 n/a denotes no applicable standard

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

										Total Metals								
										1	Т	T						
					l _													
			v		nesium	98		E	_			lε	_		_	*		
			Sec	E	esi	<u>ä</u>	*_	ig	enium	_	١٤	Strontium	E		Titanium	5		
			호	∄	l 6	g .	ickel	l as	l e	Silver	Sodium	5	allin	_	j j	raniu		ဥ
Sample	Sample	Sample Date	표	=	Magr	Na Sa	ž	<u> </u>	Se	 	Š	l st	l ĕ	Ę	#	5	1	Ϊ́
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	mg/L	mg/	L mg/l	mg/L	mg/L	mg/L	mg/L	m	ng/L
						ute	ronic		iÈ	i						ronic		i
						cute	2		5	Acute						2	a a	5
						Chr Act	5		ਤਿੰ	% 5						ਤੌ	Acı	5
BC WQG FWAL			n/a	n/a	n/a	0.001-0.03 ^a 0.0009-0.01 ^a	0.025-0.15 ^a	n/a	2	0.0001-0.003ª 0.00005-0.0015ª	n/a	n/a	n/a	n/a	n/a	0.0085	0.033-2ª	0.0075-2ª
Fording River Operation					'													
FR_LP1	FR_LP1_WS_2022-05-23_N	2022-05-23			61.5	0.0157	0.00289	2.61	56.7	< 0.000010		1 0.11		< 0.00010	0.00197	0.002		.0115
FR_LP1	FR_LP1_WS_2022-05-24_N	2022-05-24	494			0.0116	0.0026	2.61	56.6	< 0.000010		3 0.11		< 0.00010	0.00323	0.00197		.0133
FR_LP1	FR_LP1_WS_2022-05-25_N	2022-05-25		0.028		0.0123	0.0029	2.59	55.3	< 0.000010		7 0.1	0.000017	< 0.00010	0.00247	0.00199		.0123
FR_LP1	FR_LP1_WS_2022-05-26_N	2022-05-26	494			0.013	0.00296	2.48	53	< 0.000010		6 0.1	0.000016	< 0.00010	0.00244	0.00191		.0113
FR_LP1 FR_LP1	FR_LP1_WS_2022-05-27_N FR_LP1_WS_2022-05-28_N	2022-05-27	480 456		62.4	0.0107 0.0119	0.00276 0.00262	2.43	52.7 52.2	< 0.000010 < 0.000010		7 0.1 2 0.1	0.000016	< 0.00010 < 0.00010	0.00207	0.00187 0.00176		.0102
FR_LP1	FR_LP1_WS_2022-05-28_N FR_LP1_WS_2022-05-29_N	2022-05-29		0.024		0.0119	0.00262	2.58	52.2	< 0.000010		2 0.1	0.000012	< 0.00010	0.00244	0.00176		.0106
FR LP1	FR LP1 WS 2022-05-29 N FR LP1 WS 2022-05-30 N	2022-05-29	443			0.0102	0.00249	2.48	50.1	< 0.000010		8 0.1	0.000013	< 0.00010	0.00265	0.00174		.0108
FR LP1	FR LP1 WS 2022-06-07 NP	2022-05-30	438			0.0132	0.00281	2.46	48.1	< 0.000010		3 0.1	0.000017	< 0.00010	< 0.00330	0.00162		.0111
FR LP1	FR LP1 WS 2022-06-08 NP	2022-06-08	460			0.0089	0.00454	2.35	52.1	< 0.000010		5 0.1	0.000017	< 0.00010	0.0018	0.00196		.0137
FR LP1	FR LP1 MON 2022-06-01 NP	2022-06-09	513		71.4	0.0122	0.00515	2.79	66.7	0.00001		7 0.11		< 0.00010	0.00243	0.00214	0.	.0226
FR_LP1	FR_LP1_WS_2022-06-10_NP	2022-06-10	517			0.01	0.00244	2.47	53	< 0.000010		3 0.1	0.000014	< 0.00010	0.00148	0.00173	0.	.0108
FR_LP1	FR_LP1_WS_2022-06-11_NP	2022-06-11	444		54.8	0.0111	0.00246	2.42	48.2	< 0.000010		6 0.09		< 0.00010	0.0017	0.00157		.0115
FR_LP1	FR_LP1_WS_2022-06-12_NP	2022-06-12	432			0.00936	0.00231	2.42	47.6	< 0.000010		2 0.09		< 0.00010	0.002	0.00156		.0102
FR_LP1	FR_LP1_MON_2022-06-13_NP	2022-06-13	424			0.00499	0.00273	2.42	45.8	< 0.000010		2 0.09		< 0.00010	< 0.00120	0.00152		.0068
FR_LP1	FR_LP1_WS_2022-06-20_NP	2022-06-20	434			0.00894	0.00253	2.37	47.6	0.000032		4 0.09		< 0.00010	< 0.00150	0.0016		0.024
FR LP1 FR LP1	FR LP1 WS 2022-06-28 NP	2022-06-28	382 436			0.0265 0.00858	0.0034	2.5	39.2 43.5	0.00002 0.000013		4 0.09		< 0.00010 < 0.00010	0.0034	0.00153 0.00158		.0267
FR LP1	FR LP1 WS 2022-07-05 NP FR LP1 WS 2022-07-12 N	2022-07-05 2022-07-12	485			0.00056	0.00239 0.00334	2.62	51.3	< 0.000013		4 0.08	0.000017	< 0.00010	0.00108	0.00158		.0163
FR LP1	FR LP1 WEK 2022-07-12 N	2022-07-12	540			0.00919	0.00334	2.93	51.2	< 0.000010		6 0.11		0.00026	< 0.00100	0.00200		.0229
FR LP1	FR LP1 WS 2022-08-18 N	2022-08-18	-	- 0.020		-	- 0.00012	-	-	-	-		-	- 0.00020	- 0.00120	- 0.00203	, .	-
FR LP1	FR LP1 WS 2022-08-24 N	2022-08-24	680	0.037	102	0.00491	0.00426	4.42	64	< 0.000010	2.9	В 0.14	0.000028	< 0.00010	< 0.00030	0.00336	0.	.0252
FR_LP1	FR_LP1_WS_2022-09-01_N	2022-09-01	752	0.038	104	0.00232	0.0048	3.67	68.9	< 0.000010	3.0	6 0.14	0.000033	< 0.00010	0.00053	0.0029		.0107
FR LP1	FR LP1 WS 2022-09-05 N	2022-09-05	733			0.00147	0.00366	3.43	78	< 0.000010		0.14		< 0.00010	< 0.00030	0.00283		.0061
FR_LP1	FR_LP1_WS_SEPT-2022_N	2022-09-06	800			0.00102	0.00374	3.36	74.4	< 0.000010		0.14		< 0.00010	< 0.00030	0.00279		.0059
FR_LP1	FR_LP1_MON_2022-10-01_N	2022-10-12	772			0.00035	0.00365	3.69	74.8	< 0.000010		4 0.14		< 0.00010	< 0.00030	0.00289		0.0030
FR_LP1	FR LP1 MON 2022-11-01 N	2022-11-03	886			0.00118 0.00321	0.00368	3.5	80.2	< 0.000010 < 0.000010		0.15		< 0.00010	< 0.00030	0.00348		.0034
FR PP1 FR PP1	FR PP1 MON 2022-01-04 N FR PP1 MON 2022-02-01 N	2022-01-07	877 1400			0.00321	0.00549	3.71 4.11	101 241	< 0.000010		2 0.17		< 0.00010 < 0.00020	< 0.00030 < 0.00060	0.00355 0.01		.0494
FR_PP1	FR PP1 WS MON 2022-03-01 N	2022-02-08	1630			0.0167	0.0569	4.11	278	< 0.000020		0.28		< 0.00020	< 0.00060	0.0105		.0521
FR PP1	FR PP1 WEK 2022-03-01 N	2022-03-14	1560			0.0161	0.0525	3.95	272	< 0.000020		8 0.27		< 0.00020	< 0.00060	0.0105		.0536
FR PP1	FR PP1 WEK 2022-03-14 N	2022-03-14	1450		-	-	-	-	-	-	- 1.4	_	-	- 0.00020		-	T	-
FR_PP1	FR DC WEK 2022-03-28 N	2022-03-28	_	_	-	-	-	-	-	-	-	Ŀ	-	-	-	-		-
FR_PP1	FR_PP1_MON_2022-04-01_N	2022-04-04	-	-	-	-	-	-	-	-	-		-	-	-	-		-
FR_PP1	FR PP1 WEK 2022-04-11 N	2022-04-11	672		_	0.0371	0.0575	3.16	151	0.00003		3 0.15	0.000065	< 0.00010	0.00557	0.00453	0.	.0813
FR_PP1	FR_DC2_WEK_2022-04-18_N	2022-04-19	-	-	-	-	-	-	-	-	<u> </u>	+-	-	-	-	-		-
FR_PP1	FR PP1 WEK 2022-04-25 N	2022-04-28	-	-	-	-	-	-	-	-	+ :	+-	-	-	-	-	-	-
FR PP1 FR PP1	FR PP1 MON 2022-05-01 N FR PP1 WEK 2022-05-09 N	2022-05-05 2022-05-11	744	0.018		0.09	0.0809	3.32	171	< 0.000010		6 0.15	0.000061	< 0.00010	0.00183	0.00493	-	.0892
FR PP1	FR PP1 WEK 2022-05-09 N FR PP1 WEK 2022-05-16 N	2022-05-11	144	0.018	/5	0.09	0.0809	3.32	- ///	< 0.000010	1.0	0.15	0.000001	< 0.00010	0.00183	0.00493	0.	.0892
FR PP1	FR DC2 WEK 2022-05-16 N	2022-05-18	T i		+ -	-	-			-	T:	+:						-
FR PP1	FR PP1 WEK 2022-05-30 N	2022-06-01	-	-	-		-	-	-	-	1 -	1 -	-		-	-		-
FR_PP1	FR DC2 MON 2022-06-01 N	2022-06-07	-	-	-	-	-	-	-	-	-		-	-	-	-		-
FR_PP1	FR_DC2_WEK_2022-06-13_N	2022-06-15	1040	0.017	93.7	0.0287	0.06395	3.035	209	< 0.000010	1.1	3 0.18	0.000052	< 0.00010	< 0.00120	0.00679	0.0	06005
FR_PP1	FR_PP1_WEK_2022-06-20_N	2022-06-20	-	-	-	-	-	-	-	-	١-	+-	-	-	-	-		-
FR_PP1	FR_PP1_WEK_2022-06-27_N	2022-06-28	-	! -	+-	-	-	-		-	1 -	+-	-	-	-	-		-
FR_PP1	FR_DC2_MON_2022-07-01_N	2022-07-04	4470		401	0.00005	- 0.0044	0.70	240.7	- 0.000010	1 -			- 0.00010	0.00055	0.007015	-	0613
FR_PP1 FR_PP1	FR PP1 WEK 2022-07-11 N	2022-07-12	1170	0.023	104	0.02905	0.0641	3.73	246.5	< 0.000010	1.3	2 0.19	0.0000545	< 0.00010	0.00055	0.007845	0.	.0613
FR_PP1	FR_DC1_MON_2022-08-01_N FR_PP1_WS_SEPT-2022_N	2022-08-02	1510	0.029		0.0145	0.0688	4.56	358.5	0.0004635		8 0.25	0.0000675	< 0.00020	< 0.00060	0.0116	n	0.058
117_EE1		2022-05-07	1010	. 0.029	14/	0.0170	0.0000	4.50	330.3	0.0004000	11.3	0, 0.20	0.0000073	. 0.00020	- 0.00000	0.0110		.000

Denotes concentration less than indicated detection limit
 Denotes analysis not conducted
 n/a denotes no applicable standard

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

											Total Metals						
				_				*					_				
			ess	5	Ē	ပ	*_		₽			Ε	air.		-		
			Ė	Ē	Ě	e ii	.≣	≣		ē	Sadmium	ci.		Cobalt	Coppe	_	모
Sample	Sample	Sample Date	표	₹	¥	Ars	Ba	Bery	Bis	Bot	Cac	Sa	5	3	S	<u>ē</u>	Lead
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg	/L	mg/L
							흗	을		ronic				" 등			ronic life
						cute	Ch 7	Chro		Chro				Acute Chronic		Cut	Acut
BC WQG FWAL			n/a	n/a	n/a	0.005	1	0.00013	n/a	1.2	n/a	nla	n/o	0.11 0.004	nla	1	0.003-5.5° 3.3-3.5°
Fording River Operation			II/a	II/a	n/a	0.005		0.00013	II/a	1.2	n/a	n/a	n/a	0.11 0.004	n/a		0.003-5.5 3.3-3.5
FR_PP1	FR_PP1_MON_2022-10-25_NP	2022-10-24	1870	< 0.0060	0.0007	0.00026	0.0592	< 0.040	< 0.000100	< 0.020	0.000596	398	< 0.00020	0.0003	< 0.00100	< 0.020	< 0.000100
FR_PP1	FR_PP1_MON_2022-11-01_N	2022-11-02	1660	0.0101	0.0006	0.00032	0.0596	< 0.020	< 0.000050	0.014	0.00111	485	< 0.00010	0.00051	0.00107	0.013	< 0.000050
FR_SCOUT	FR_SCOUT_WS_2022-1-06_N_0900	2022-01-06	1700	0.0477	0.00065	0.00025	0.0556	< 0.040	< 0.000100	< 0.020	0.00096	432	< 0.00020	0.00042 0.00032	0.00103	0.026	< 0.000100 < 0.000100
FR_SCOUT FR_SCOUT	FR SCOUT WS 2022-01-13 N FR SCOUT WS 2022-02-10 N 0900	2022-01-13	2050	0.008 0.0171	0.0007	0.00024	0.0286	< 0.040 < 0.040	< 0.000100 < 0.000100	< 0.020 < 0.020	0.000374	413 408	< 0.00020 < 0.00020	0.00032	< 0.00100 < 0.00100	0.04	< 0.000100
FR_SCOUT	FR_SCOUT_WS_2022-02-10_N 0900	2022-02-16	2070	< 0.0171	0.00075	< 0.00025	0.0286	< 0.100	< 0.000100	< 0.050	0.000444	400	< 0.00050	< 0.50	< 0.00100	< 0.050	< 0.000100
FR_SCOUT	FR SCOUT WS 2022-03-10 N	2022-03-10	891	0.0072	0.00032	0.00013	0.0874	< 0.020	< 0.000050	0.013	0.000125	175	0.0002	0.00012	< 0.00050	0.038	< 0.000050
FR_SCOUT	FR_SCOUT_2022-03-10_N_0900	2022-03-10	2180									-		-			-
FR_SCOUT FR_SCOUT	FR_SCOUT_2022-04-07_N_0900 FR_SCOUT_WS_2022-04-07_N	2022-04-07	1800	< 0.0060 0.0153	0.00044 0.00046	< 0.00020	0.0168 0.0275	< 0.000040		< 0.020 < 0.020	0.0001 0.000342	403 329	< 0.00020 < 0.00020	< 0.00020 0.00031	< 0.00100 < 0.00100	0.049	< 0.000100 < 0.000100
FR_SCOUT	FR_SCOUT_WS_2022-04-07_N FR_SCOUT_2022-05-05_N_0900	2022-04-07	1000	0.0153	0.00046	0.00021	0.02/5	- 0.000040	- 0.000100	< 0.020	0.000342	329	< 0.00020	0.00031	< 0.00100	0.068	- 0.000100
FR SCOUT	FR SCOUT 2022-06-02 N 0900	2022-06-02	528	0.128	0.00029	0.00029	0.0398	< 0.000020	< 0.000050	< 0.010	0.000276	96.6	0.00031	0.00022	0.00083	0.086	0.000073
FR_SCOUT	FR_SCOUT_WS_2022-06-04_N	2022-06-04	251	0.0654	0.0002	0.0003	0.0312	< 0.020	< 0.000050	< 0.010	0.000162	48.5	0.00015	< 0.10	< 0.00050	0.03	< 0.000050
FR_SCOUT	FR_SCOUT_2022-07-14_N_0900	2022-07-14	257	0.0481	0.00013	0.00016	0.041	< 0.020	< 0.000050	< 0.010	0.0000589	55.5	0.00017	0.00013	< 0.00050	0.075	0.000069
FR SCOUT FR SCOUT	FR FRSCOUT WS 2022 07 25 N FR SCOUT 2022-08-11 N 0900	2022-07-25	902 392	0.0137 0.0082	0.00039	0.00024	0.0405 0.0458	< 0.020 < 0.020	< 0.000050 < 0.000050	< 0.010 < 0.010	0.000552 0.000115	151 86.2	< 0.00010 0.00014	0.00046 < 0.10	< 0.00050 < 0.00050	0.012	< 0.000050 < 0.000050
FR SCOUT	FR SCOUT 2022-06-11 N 0900 FR SCOUT 2022-09-08 N 0900	2022-09-08	1660	0.0062	0.00019	0.00012	0.0438	< 0.020	< 0.000100	< 0.010	0.00113	298	< 0.00014	0.00076	< 0.00000	< 0.022	< 0.000030
FR SCOUT	FR SCOUT 2022-10-06 N 0900	2022-10-06	2150	0.0102	0.00071	< 0.00020	0.0347	< 0.040	< 0.000100	< 0.020	0.0013	390	0.00024	0.00084	< 0.00100	< 0.020	< 0.000100
FR_SCOUT	FR_SCOUT_2022-11-03_N_0900	2022-11-03	2170	0.0099	0.00065	0.00025	0.0462	< 0.040	< 0.000100	0.08	0.00128	447	< 0.00020	0.0007	< 0.00100	< 0.020	< 0.000100
FR_SCOUT	FR_SCOUT_2022-12-01_N_0900_CALC	2022-12-01	2380	0.0199	0.00066	0.00025	0.0319	< 0.040	< 0.000100	< 0.020	0.00125	428	< 0.00020	0.00064	< 0.00100	< 0.020	< 0.000100 < 0.000100
FR SCOUT FR SCOUT	FR SCOUT 2022-12-22 N 0900 FR SCOUT 2022-12-29 N 0900	2022-12-22	2560 2620	< 0.0060 < 0.0060	0.00066 0.00069	< 0.00020	0.0285	< 0.040	< 0.000100 < 0.000100	< 0.020 < 0.020	0.000883	414 455	< 0.00020 < 0.00010	0.00039	0.00174 < 0.00100	< 0.020 < 0.020	< 0.000100
FR SP1	FR SP1 MON 2022-01-04 N	2022-01-08	2550	0.0089	0.00066	< 0.00020	0.0201	< 0.040	< 0.000100	< 0.020	0.000758	444	< 0.00010	0.00034	0.00117	< 0.020	< 0.000100
FR_SP1	FR_SP1_MON_2022-02-01_N	2022-02-06	672	< 0.0030	0.00016	< 0.00010	0.0219	< 0.020	< 0.000050	0.019	0.000159	142	< 0.00010	0.00013	< 0.00050	< 0.010	< 0.000050
FR_SP1	FR_SP1_MON_2022-03-01_N	2022-03-04	1640	0.0071	0.00066	0.00032	0.0654	< 0.040	< 0.000100	< 0.020	0.00103	390	0.0002	0.00035	0.00135	< 0.020	< 0.000100
FR_SP1 FR_SP1	FR_SP1_WEK_2022-03-14_N FR_SP1_WEK_2022-03-21_N	2022-03-19	674	0.0062	0.00019	< 0.00010	0.0248	< 0.020	< 0.000050	0.022	0.000144	159	< 0.00010	0.00011	< 0.00050	0.01	< 0.000050
FR SP1	FR SP1_WEK_2022-03-21_N FR SP1_WEK_2022-03-28_N	2022-03-23	-	-	-	-	- :	+ :-	-	-		-			-	-	
FR SP1	FR SP1 MON 2022-04-01 N	2022-04-05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FR_SP1	FR_SP1_WEK_2022-04-11_N	2022-04-14	729	0.012	0.00018	< 0.00010	0.0264	< 0.020	< 0.000050	0.019	0.000148	146	< 0.00010	0.00022	< 0.00050	0.021	< 0.000050
FR_SP1	FR_SP1_WEK_2022-04-18_N	2022-04-19	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FR SP1 FR SP1	FR DC2 WEK 2022-04-25 N FR DC2 MON 2022-05-01 N	2022-04-28 2022-05-02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FR SP1	FR SP1 WEK 2022-05-01 N	2022-05-12	739	0.0031	0.000195	0.000135	0.02405	< 0.020	< 0.000050	0.021	0.000119	164.5	< 0.00010	0.000165	< 0.00050	< 0.010	< 0.000050
FR_SP1	FR_SP1_WEK_2022-05-16_N	2022-05-16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FR_SP1	FR SP1 WEK 2022-05-23 N	2022-05-23	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FR_SP1 FR_SP1	FR SP1 WEK 2022-05-30 N	2022-06-01	-	-	-	-	-		-	-	-	-	-	-	-	-	-
FR_SP1	FR_SP1_MON_2022-06-01_N FR_FLD1_2022-06-13_N	2022-06-08	703	0.0033	0.0002	< 0.00010	0.0223	< 0.020	< 0.000050	0.019	0.000123	154	< 0.00010	< 0.10	< 0.00050	< 0.010	< 0.000050
FR SP1	FR SP1 WEK 2022-06-13 N	2022-06-13	< 0.50		< 0.0002	< 0.00010	< 0.0021	< 0.020	< 0.000050	< 0.019	< 0.0050	< 0.050	< 0.00010	< 0.10	< 0.00050	< 0.010	< 0.000050
FR_SP1	FR SP1 WEK 2022-06-20 N	2022-06-20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FR SP1	FR SP1 WEK 2022-06-27 N	2022-06-29	-	-	-	-	-	-	-	-	-	-	-	-	-		-
FR SP1	FR SP1 MON 2022-07-01 N	2022-07-04	- 601	- 0.0030	0.00021	< 0.00010	- 0.02	- 0.020	< 0.000050	0.02	0.000125	126	- 0.00010	< 0.10	- 0.00050	< 0.010	< 0.000050
FR SP1 FR SP1	FR SP1 WEK 2022-07-11 N FR SP1 MON 2022-08-01 N	2022-07-12 2022-08-02	691	< 0.0030	0.00021	<u> </u>	0.02	< 0.020	<u> </u>	0.02	0.000135	136	< 0.00010	× 0.10	< 0.00050	< 0.010	V 0.000050
FR SP1	FR DC2 MON 2022-09-01 NP	2022-09-08	632	0.0098	0.00025	< 0.00010	0.0223	< 0.020	< 0.000050	0.018	0.00011	128	< 0.00010	< 0.10	< 0.00050	0.025	< 0.000050
FR SP1	FR SP1 WS 2022-09-30 NP	2022-09-30	719	0.0071	0.000215	0.000105	0.0226	< 0.020	< 0.000050	0.019	0.0000836	162	< 0.00010	0.00012	< 0.00050	< 0.010	< 0.000050
FR_SP1	FR_SP1_MON_2022-10-01_N	2022-10-19	767	0.0092	0.00022	< 0.00010	0.0251	< 0.020	< 0.000050	0.02	0.0000881	154	< 0.00010	0.00013	< 0.00050	0.013	< 0.000050
FR_SP1	FR SP1 MON 2022-11-01 N	2022-11-03	798	0.0089	0.0002	< 0.00010	0.0215	< 0.020	< 0.000050	0.018	0.000123	166	< 0.00010	0.00014	< 0.00050	0.019	< 0.000050

Page 53 of 68

Denotes concentration less than indicated detection limit
 Denotes analysis not conducted
 n/a denotes no applicable standard

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

										Total Metals								
Sample	Sample ID	Sample Date	Hardness	Lithium	Magnesium	Manganese	Nickel*	Potassium	Selenium	Silver	Sodium	Strontium	Thallium	E	Ttanium	Uranium*		Zinc
Location	U U	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	mg/L	mg/i	mg/L	mg/L	mg/L	mg/L	mg/L	m	ıg/L
						Acute	Chronic		Chronic	Acute						Chronic	Acute	Chronic
BC WQG FWAL			n/a	n/a	n/a	0.001-0.03 ^a 0.0009-0.01 ^a	0.025-0.15 ^a	n/a	2	0.0001-0.003 ^a 0.00005-0.0015 ^a	n/a	n/a	n/a	n/a	n/a	0.0085	0.033-2 ^a	0.0075-2 ^a
Fording River Operation FR PP1	FR PP1 MON 2022-10-25 NP	2022-10-24	1970	0.034	180	0.00772	0.0711	4.48	468	< 0.000020	1 60	0.3	0.00006	< 0.00020	< 0.00060	0.0134	0.0	0365
FR PP1	FR PP1 MON 2022-10-25 NP	2022-10-24	1660			0.0144	0.0711	4.46	434	< 0.000020		0.31	0.00006	< 0.00020	< 0.00030	0.0134		064
FR SCOUT	FR SCOUT WS 2022-1-06 N 0900	2022-01-06	1700			0.0141	0.0685	4.53	375	< 0.000020		0.28	0.000062	< 0.00020	0.00108	0.0136	0.	049
FR SCOUT	FR SCOUT WS 2022-01-13 N	2022-01-13	2050	0.077	335	0.00378	0.0401	5.17	530	< 0.000020	8.1	0.24	0.000044	< 0.00020	< 0.00060	0.017		0227
FR_SCOUT	FR_SCOUT_WS_2022-02-10_N_0900	2022-02-10	2220			0.00448	0.0452	4.7	555	< 0.000020		0.25	0.000055	< 0.00020	< 0.00060	0.0174		031
FR_SCOUT	FR_SCOUT _WS_20220216_N	2022-02-16	2070			0.00586	0.047	4.73	508	< 0.000050		0.24	< 0.000050	< 0.00050	< 0.00150	0.0175		0321
FR_SCOUT	FR_SCOUT_WS_2022-03-10_N	2022-03-10	891	0.083		0.014	0.0097	2.78	127	< 0.000010		0.23	0.000014	< 0.00010	< 0.00030	0.00577		0546
FR_SCOUT	FR_SCOUT_2022-03-10_N_0900	2022-03-10	2180	-	-	0.0129	-	-	-	< 0.000020	-		-	-	-	-		- 0084
FR_SCOUT FR_SCOUT	FR_SCOUT_2022-04-07_N_0900 FR_SCOUT_WS_2022-04-07_N	2022-04-07	1800	0.106		0.0129	0.0156 0.0257	6.67 4.2	168 262	< 0.000020		0.26	< 0.000020 < 0.000020	< 0.00020 < 0.00020	< 0.0100 < 0.0200	0.0176 0.0135		0195
FR SCOUT	FR SCOUT WS 2022-04-07 N FR SCOUT 2022-05-05 N 0900	2022-04-07	1800	0.091	- 231	-	0.0257	4.2	202	- 0.000020	9.50		< 0.000020	< 0.00020	< 0.0200	0.0135	0.0	-
FR SCOUT	FR SCOUT 2022-03-03 N 0900	2022-06-02	528		71.2	0.00342	0.0117	1.6	120	0.00001		0.07	0.000024	< 0.00010	< 0.0100	0.00365	0.	015
FR_SCOUT	FR_SCOUT_WS_2022-06-04_N	2022-06-04	251	0.008		0.00122	0.00516	0.805	43.7	< 0.000010		0.04	0.000013	< 0.00010	0.00193	0.00145	0.0	0106
FR SCOUT	FR SCOUT 2022-07-14 N 0900	2022-07-14	257	0.015	25.7	0.00743	0.00255	0.976	19.4	< 0.000010	1.46	0.09	< 0.000010	< 0.00010	0.00072	0.00143		0056
FR_SCOUT	FR_FRSCOUT_WS_2022_07_25_N	2022-07-25	902	0.025	115	0.00422	0.0213	2.12	191	< 0.000010	1.17	0.1	0.000024	< 0.00010	0.00043	0.00598		0286
FR_SCOUT	FR_SCOUT_2022-08-11_N_0900	2022-08-11	392			0.00479	0.0051	1.49	51.1	< 0.000010		0.12	< 0.000010	< 0.00010	< 0.00030	0.00244		0051
FR SCOUT	FR SCOUT 2022-09-08 N 0900	2022-09-08	1660			0.0077	0.0448	3.87	365	< 0.000020		0.18	0.000042	< 0.00020	< 0.00060	0.0132		0518
FR_SCOUT	FR_SCOUT_2022-10-06_N_0900	2022-10-06	2150			0.00783 0.00571	0.0607	5.01	483	< 0.000020 < 0.000020	3.32	0.2	0.000054	< 0.00020	< 0.00060	0.0146		0703 071
FR_SCOUT FR_SCOUT	FR_SCOUT_2022-11-03_N_0900 FR_SCOUT_2022-12-01_N_0900_CALC	2022-11-03	2170			0.00571	0.0577 0.0586	4.6 4.91	477 504	< 0.000020		0.26	0.000059	< 0.00020 < 0.00020	< 0.00060 0.00071	0.0171 0.0171		0733
FR SCOUT	FR SCOUT 2022-12-01 N 0900 CALC FR SCOUT 2022-12-22 N 0900	2022-12-01	2560			0.00746	0.0586	5.14	559	< 0.000020		0.23	0.000062	< 0.00020	< 0.00071	0.0171		.14
FR SCOUT	FR SCOUT 2022-12-22 N 0900	2022-12-22	2620			0.00472	0.0554	4.96	615	< 0.000020		0.26	0.000055	< 0.00020	< 0.00060	0.0199		0572
FR SP1	FR SP1 MON 2022-01-04 N	2022-01-08	2550			0.00475	0.0521	4.62	610	< 0.000020		0.26	0.000056	< 0.00020	< 0.00060	0.0183		0459
FR SP1	FR SP1 MON 2022-02-01 N	2022-02-06	672	0.053		0.00069	0.00198	3.71	31.3	< 0.000010		0.17	0.000014	< 0.00010	< 0.00030	0.00454		.0030
FR_SP1	FR_SP1_MON_2022-03-01_N	2022-03-04	1640			0.0167	0.0569	4.2	278	< 0.000020		0.28	0.000057	< 0.00020	< 0.00060	0.0105		0521
FR_SP1	FR_SP1_WEK_2022-03-14_N	2022-03-19	674	0.064	80.8	0.00086	0.00221	4.05	27.6	< 0.000010	1.89	0.18	0.000018	< 0.00010	< 0.00030	0.00478	< 0.	.0030
FR_SP1	FR_SP1_WEK_2022-03-21_N	2022-03-23	-	-	-	-	-	-	-	-	-	<u> </u>	-	-	-	-		-
FR SP1	FR SP1 WEK 2022-03-28 N	2022-03-31	-	-	-	-	-	-	-	-	-		-	-	-	-		-
FR_SP1	FR_SP1_MON_2022-04-01_N	2022-04-05	- 700	- 0.000	400	0.00276	- 0.0005	- 000	- 00.4	< 0.000010	-	0.18	0.000040	- 0.00040	- 0 00000	- 0.00400		.0030
FR SP1 FR SP1	FR SP1 WEK 2022-04-11 N FR SP1 WEK 2022-04-18 N	2022-04-14 2022-04-19	729	0.062	102	0.00270	0.0025	3.93	82.4	- 0.000010	3.4		0.000016	< 0.00010	< 0.00030	0.00482		-
FR SP1	FR DC2 WEK 2022-04-16 N	2022-04-19	Ħ	T:	1	-	-		-	-	H	t i	-			-:-		-
FR SP1	FR DC2 MON 2022-05-01 N	2022-05-02	-	-	1	-	-	-	-	-	-	-	-	-	-	-		-
FR_SP1	FR SP1 WEK 2022-05-09 N	2022-05-12	739	0.06	95.45	0.00065	0.00234	3.86	46.9	< 0.000010	2.5	0.2	0.000019	< 0.00010	< 0.00030	0.00559	< 0.	.0030
FR_SP1	FR SP1 WEK 2022-05-16 N	2022-05-16	-	-	-	-	-	-	-	-	-		-	-	-			-
FR_SP1	FR_SP1_WEK_2022-05-23_N	2022-05-23	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
FR_SP1	FR SP1 WEK 2022-05-30 N	2022-06-01	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
FR SP1 FR SP1	FR SP1 MON 2022-06-01 N FR FLD1 2022-06-13 N	2022-06-08 2022-06-13	703	0.055	79.8	0.00045	0.00219	3.43	61.3	< 0.000010	1.70	0.16	0.000018	< 0.00010	< 0.00030	0.00407		.0030
FR SP1	FR SP1 WEK 2022-06-13 N	2022-06-13			¢ 0.005		< 0.00219	< 0.050	< 0.050	< 0.000010		0.000	< 0.000018	< 0.00010	< 0.00030	< 0.00407		.0030
FR SP1	FR SP1 WEK 2022-06-13 N	2022-06-13	- 0.30	- 0.001	-	-	- 0.00000	-	- 0.000	-	-	-	- 0.000010	- 0.00010	- 0.00000	- 0.000010		-
FR SP1	FR SP1 WEK 2022-06-27 N	2022-06-29	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
FR_SP1	FR SP1 MON 2022-07-01 N	2022-07-04	-	-	-	-	-	-	-	-	-		-	-	-	-		-
FR SP1	FR SP1 WEK 2022-07-11 N	2022-07-12	691	0.06	73.2	0.00035	0.00187	3.73	75.2	< 0.000010	1.79	0.16	0.00002	< 0.00010	< 0.00030	0.00394	< 0.	.0030
FR_SP1	FR_SP1_MON_2022-08-01_N	2022-08-02	-	-			-	-			-	-	-	-				-
FR_SP1	FR_DC2_MON_2022-09-01_NP	2022-09-08	632			0.00088	0.0019	3.66	51.6	0.000348		0.15	0.000019	0.00011	< 0.00030	0.00417		.0030
FR_SP1	FR SP1 WS 2022-09-30 NP	2022-09-30	719	0.059		0.00055 0.00098	0.00206	3.4	43.35	< 0.000010 < 0.000010		0.17	0.000019	< 0.00010	< 0.00030	0.004575		.0030
FR SP1	FR_SP1_MON_2022-10-01_N	2022-10-19	767 798	0.059	90.2 96.3	0.00098	0.00226 0.00229	3.89	40.5 31.3	< 0.000010		0.18	0.000018 0.000021	< 0.00010	< 0.00030 < 0.00030	0.00483		0043
FR_SP1	FR_SP1_MON_2022-11-01_N	2022-11-03	798	0.030	1 30.3	0.00102	0.00223	0.0	31.3	1 0.000010	12.00	10.17	J.00002 I	- 0.00010	- 0.00030	0.00009	0.0	

Denotes concentration less than indicated detection limit
 Denotes analysis not conducted
 n/a denotes no applicable standard

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

											Total Metals							
Sample	Sample	Sample Date	Hardness	Aluminum	Antimony	Arsenic	Barium*	Beryllium*	Bismuth	Boron	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	3
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg	/L	mg	
						Acute	Chronic	Chronic		Chronic				Acute Chronic		Acute	Acute	Chronic
BC WQG FWAL			n/a	n/a	n/a	0.005	1	0.00013	n/a	1.2	n/a	n/a	n/a	0.11 0.004	n/a	1	0.003-5.5°	3.3-3.5 ^a
Greenhills Operation	OU FOL WO 0000 04 00 ND	0000 04 40																
GH_FC1 GH_FC1	GH_FC1_WS_2022-01-03_NP GH_FC1_WS_2022-02-07_NP	2022-01-10 2022-02-07	332	0.102	< 0.00010	0.00034	0.0672	< 0.020	< 0.000050	< 0.010	0.0000131	85.6	< 0.00010	1E-04	< 0.00050	0.356	0.000071	
GH FC1	GH_FC1_WS_2022-03-07_N	2022-02-07	313	0.0075	< 0.00010	0.00034	0.0072	< 0.020	< 0.000050	< 0.010	< 0.0050	81.6	0.00023	< 0.10	0.00074	0.039	0.000071	
GH FC1	GH FC1 WS 2022-03-14 NP	2022-03-17	299	0.0045	< 0.00010	0.00017	0.0627	< 0.020	< 0.000050	< 0.010	< 0.0050	79.2	< 0.00010	< 0.10	< 0.00050	0.03	< 0.000050	1
GH_FC1	GH_FC1_WS_2022-03-20_NP	2022-03-20	288	0.0177	< 0.00010	0.00019	0.0755	< 0.020	< 0.000050	< 0.010	< 0.0050	84.8	< 0.00010	< 0.10	< 0.00050	0.078	< 0.000050	
GH_FC1	GH_FC1_WS_2022-03-21_NP	2022-03-22	321	0.107	< 0.00010	0.00024	0.0745	< 0.020	< 0.000050	< 0.010	0.0000154	74	0.00019	1E-04	< 0.00050	0.283	0.000141	
GH_FC1	GH_FC1_WS_2022-03-28_NP	2022-03-29	263	0.0129	< 0.00010	0.00017	0.0548	< 0.020	< 0.000050	< 0.010	< 0.0050	70.8	< 0.00010	< 0.10	< 0.00050	0.057	< 0.000050	
GH_FC1	GH_FC1_WS_2022-04-04_NP	2022-04-06	267	0.0895	< 0.00010	0.00025	0.0465	< 0.020	< 0.000050	< 0.010	0.0000189	62.2	< 0.00010	< 0.10	< 0.00050	0.233	0.000087	
GH_FC1 GH_FC1	GH_FC1_WS_2022-04-11_NP GH_FC1_WS_2022-04-18_NP	2022-04-13 2022-04-21	248 255	0.0066	< 0.00010 < 0.00010	0.00013	0.0497 0.0532	< 0.020 < 0.020	< 0.000050 < 0.000050	< 0.010 < 0.010	< 0.0050 < 0.0050	64.2 68.5	< 0.00010 < 0.00010	< 0.10	< 0.00050 < 0.00050	0.023	< 0.000050 < 0.000050	
GH_FC1	GH FC1 WS 2022-04-18 NP GH FC1 WS 2022-04-25 NP	2022-04-27	266	0.0106	< 0.00010	0.00024	0.0532	< 0.020	< 0.000050	< 0.010	< 0.0050	66.6	< 0.00010	< 0.10	< 0.00050	0.034	< 0.000050	
GH FC1	GH FC1 WS 2022-05-02 NP	2022-05-04	259	0.0061	< 0.00010	0.00013	0.0509	< 0.020	< 0.000050	< 0.010	< 0.0050	66.4	0.00049	< 0.10	< 0.00050	0.024	< 0.000050	
GH FC1	GH FC1 WS 2022-05-09 NP	2022-05-11	262	0.0067	< 0.00010	0.00019	0.0566	< 0.020	< 0.000050	< 0.010	< 0.0050	66	< 0.00010	< 0.10	< 0.00050	0.027	< 0.000050	
GH_FC1	GH_FC1_WS_2022-05-16_NP	2022-05-18	257	0.0122	< 0.00010	0.00017	0.052	< 0.020	< 0.000050	< 0.010	< 0.0050	62.3	< 0.00010	< 0.10	< 0.00050	0.026	< 0.000050	
GH_FC1	GH_FC1_WS_2022-05-23_NP	2022-05-27	264	0.0124	< 0.00010	0.00018	0.0586	< 0.020	< 0.000050	< 0.010	< 0.0050	67.7	< 0.00010	< 0.10	< 0.00050	0.032	< 0.000050	
GH_FC1	GH_FC1_WS_2022-05-30_NP	2022-06-01	287	0.0079	< 0.00010	0.00018	0.0615	< 0.020	< 0.000050	< 0.010	< 0.0050	68.4	< 0.00010	< 0.10	< 0.00050	0.038	< 0.000050	
GH_FC1	GH FC1 WS 2022-06-06 NP	2022-06-08	270	0.009	< 0.00010	0.0002	0.0562	< 0.020	< 0.000050	< 0.010	< 0.0050	68.3	< 0.00010	< 0.10	< 0.00050	0.029	< 0.000050	
GH_FC1 GH_FC1	GH_FC1_WS_2022-06-13_NP GH_FC1_WS_2022-06-20_NP	2022-06-15 2022-06-22	266 255	0.0096	< 0.00010 < 0.00010	0.00021	0.0691 0.0491	< 0.020 < 0.020	< 0.000050 < 0.000050	0.011 < 0.010	< 0.0050 0.0000053	69.7 58.4	< 0.00010 < 0.00010		< 0.00050 < 0.00050	0.037	< 0.000050 < 0.000050	
GH FC1	GH FC1 WS 2022-06-27 NP	2022-06-29	314	0.0069	< 0.00010	0.00017	0.0491	< 0.020	< 0.000050	0.012	< 0.0050	80.8	< 0.00010	< 0.10	< 0.00050	0.043	< 0.000050	
GH FC1	GH FC1 WS 2022-00-27 NF	2022-07-06	281	0.0008	< 0.00010	0.00016	0.0624	< 0.020	< 0.000050	0.012	< 0.0050	71.6	< 0.00010	< 0.10	< 0.00050	0.028	< 0.000050	
GH FC1	GH FC1 WS 2022-07-11 NP	2022-07-13	281	0.0084	< 0.00010	0.00022	0.0591	< 0.020	< 0.000050	0.01	< 0.0050	65.2	< 0.00010	< 0.10	< 0.00050	0.039	< 0.000050	
GH_FC1	GH_FC1_WS_2022-08-01_NP	2022-08-04	284	0.0067	< 0.00010	0.00024	0.0653	< 0.020	< 0.000050	0.012	< 0.0050	70.4	< 0.00010	< 0.10	< 0.00050	0.039	< 0.000050	
GH_FC1	GH_FC1_WS_2022-09-05_NP	2022-09-08	302	0.0054	< 0.00010	0.00024	0.0726	< 0.020	< 0.000050	0.011	< 0.0050	77	< 0.00010	< 0.10	< 0.00050	0.058	< 0.000050)
GH_FC1	GH_FC1_WS_2022-10-03_NP	2022-10-05	-		-	-	-	-		-			-	-	-	-	-	
GH_FC1	GH_FC1_WS_2022-11-07_NP	2022-11-09	316	0.0055	< 0.00010	0.00022	0.067	< 0.020	< 0.000050	< 0.010	< 0.0050	81.2	< 0.00010	< 0.10	< 0.00050	0.077	< 0.000050	
GH GH1 GH GH1	GH GH1 WS 2022-01-03 N GH GH1 WS 2022-02-07 N	2022-01-04 2022-02-04	263 951	0.004	< 0.00010 0.00043	0.00018	0.0577 0.0439	< 0.020 < 0.020	< 0.000050 < 0.000050	< 0.010 0.011	< 0.0050 0.0000058	71.8 193	< 0.00010 0.00015	< 0.10	< 0.00050 < 0.00050	< 0.094	< 0.000050 < 0.000050	
GH GH1	GH GH1 WS 2022-02-07 N GH GH1 WS 2022-02-19 N		1000	0.0047	0.00043	0.00022	0.0439	< 0.020	< 0.000050	0.011	0.000006	200	0.00016	< 0.10	< 0.00050	< 0.010	< 0.000050	
GH GH1	GH GH1 WS 2022-02-10 NP	2022-02-10	1000	0.0056	0.00038	0.00022	0.0428	< 0.020	< 0.000050	0.01	0.000005	188	0.00010	< 0.10	< 0.00050	< 0.010	< 0.000050	
GH GH1	GH GH1 WS 2022-02-21 N	2022-02-21	1030	0.0030	0.00039	0.00022	0.0443	< 0.020	< 0.000050	0.01	0.0000064	192	0.00012	< 0.10	< 0.00050	< 0.010	< 0.000050	
GH_GH1	GH GH1 WS 2022-03-07 N	2022-03-04	963	0.0058	0.0004	0.00022	0.0446	< 0.020	< 0.000050	0.01	0.0000076	195	0.00018	< 0.10	< 0.00050	< 0.010	< 0.000050)
GH_GH1	GH_GH1_WS_2022-03-14_N	2022-03-15	1040	< 0.0120	0.00036	0.00016	0.046	< 0.020	< 0.000050	0.01	0.0000102	201	0.00013	< 0.10	< 0.00050	< 0.010	< 0.000050	
GH_GH1	GH GH1 WS 2022-03-21 N	2022-03-21	-	-	-	-	-		-	-	-	-	-	-	-	-	-	
GH GH1 GH GH1	GH GH1 WS 2022-03-28 N	2022-03-28 2022-04-04	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
GH_GH1	GH_FOX3_WS_2022-04-04_N GH_GH1_WS_2022-04-04_N	2022-04-04	614	0.0517	0.00035	0.00025	0.04375	< 0.020	< 0.000050	< 0.010	0.0000316	122.5	0.00016	< 0.10	< 0.00050	0.0495	0.0000525	
GH_GH1	GH GH1 WS 2022-04-04 N GH GH1 WS 2022-04-11 N	2022-04-04	- 0 14	0.0517	- 0.00035	0.00025	0.04373	- 0.020	- 0.000050	- 0.010	- 0.0000316	- 122.3	- 0.00016	- 0.10	- 0.00030	0.0495	- 0.0000323	
GH GH1	GH GH1 WS 2022-04-11 N	2022-04-19	- 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
GH GH1	GH GH1 WS 2022-04-25 N	2022-04-26	_		-	-			-			-	-	-	-	-		
GH GH1	GH_GH1_WS_2022-05-09_N	2022-05-10	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	
GH_GH1	GH GH1 WS 2022-05-16 N	2022-05-17	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
GH GH1	GH GH1 WS 2022-05-23 N	2022-05-23	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
GH_GH1 GH_GH1	GH GH1 WS 2022-05-30 N GH GH1 WS 2022-06-06 N	2022-05-30 2022-06-06	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GH GH1	GH GH1 WS 2022-06-06 N GH GH1 WS 2022-06-13 N	2022-06-06	575	0.0161	0.00034	0.00019	0.0462	< 0.020	< 0.000050	0.011	0.000106	109	0.00015	< 0.10	< 0.00050	0.017	< 0.000050	,
GH_GH1	GH GH1 WS 2022-06-13 N GH GH1 WS 2022-06-17 N	2022-06-17	-	0.0101	- 0.00034		- 0.0402	- 0.020	- 0.000050	- 0.011	- 3.000108	- 105	0.00013	- 0.10	- 0.00030	- 0.017	- 0.000030	
GH GH1	GH GH1 WS 2022-06-18 N	2022-06-18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
GH_GH1	GH GH1 WS 2022-06-19 N	2022-06-19	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
GH_GH1	GH GH1 WS 2022-06-20 N	2022-06-20	- 1		-				-		-	-	-	-	-	-	-	

Denotes concentration less than indicated detection limit
 Denotes analysis not conducted
 n/a denotes no applicable standard

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

										Total Metals								
Sample	Sample	Sample Date	Hardness	Lithium	Magnesium	Manganese	Nickel*	Potassium	Selenium	Silver	Sodium	Strontium	Thallium	Tin	Titanium	Uranium*		Zinc
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L		mg/L	mg/L	μg/L	mg/L	mg/	L mg/	L mg/L	mg/L	mg/L	mg/L	m	ıg/L
						Acute	Chronic		Chronic	Acute						Chronic	Acute	Chronic
BC WQG FWAL			n/a	n/a	n/a	0.001-0.03 ^a 0.0009-0.0	a 0.025-0.15a	n/a	2	0.0001-0.003ª 0.00005-0.0015	" n/a	n/a	n/a	n/a	n/a	0.0085	0.033-2 ^a	0.0075-2ª
Greenhills Operation	OH FO4 WO 2000 04 00 ND	2022-01-10	_	_	1			1		T	_	_						
GH_FC1 GH_FC1	GH_FC1_WS_2022-01-03_NP GH_FC1_WS_2022-02-07_NP	2022-01-10	332	0.004	31.4	0.0688	< 0.00050	0.767	0.157	< 0.000010	27	0.1	< 0.000010	< 0.00010	0.00206	0.000429	< 0.0030	
GH FC1	GH FC1 WS 2022-03-07 N	2022-02-07	313				< 0.00050	0.786	0.107	< 0.000010		1 0.09		0.00035	< 0.00200	0.000429	0.0034	
GH FC1	GH FC1 WS 2022-03-14 NP	2022-03-17	299			0.0089	< 0.00050	1.04	0.1	< 0.000010		0.09		< 0.00010	< 0.00030	0.000364	< 0.0030	
GH FC1	GH FC1 WS 2022-03-20 NP	2022-03-20	288				< 0.00050	1.03	0.244	< 0.000010		0.14		< 0.00010	0.00037	0.000297	< 0.0030	
GH_FC1	GH_FC1_WS_2022-03-21_NP	2022-03-22	321				< 0.00050	1.07	0.185	< 0.000010		0.12		< 0.00010	0.0019	0.000314	0.0244	
GH_FC1	GH_FC1_WS_2022-03-28_NP	2022-03-29	263			0.0122	< 0.00050	1.25	0.102	< 0.000010		0.09		< 0.00010	0.00034	0.000277	< 0.0030	
GH_FC1	GH_FC1_WS_2022-04-04_NP	2022-04-06	267			0.0508	< 0.00050	1.43	0.16	< 0.000010		0.07		< 0.00010	< 0.00210	0.000289	< 0.0030	
GH_FC1	GH_FC1_WS_2022-04-11_NP	2022-04-13	248				< 0.00050	1.26	0.118	< 0.000010		0.07		< 0.00010	< 0.00030	0.00032	< 0.0030	
GH FC1 GH FC1	GH FC1 WS 2022-04-18 NP	2022-04-21 2022-04-27	255				< 0.00050	1.41	0.125 0.117	< 0.000010		30.0 30.0		< 0.00010	< 0.00030	0.000382	< 0.0030	
GH_FC1	GH_FC1_WS_2022-04-25_NP GH_FC1_WS_2022-05-02_NP	2022-04-27	266 259			0.00754 0.00437	< 0.00050 < 0.00050	1.13	< 0.050	< 0.000010 < 0.000010		3 0.08		< 0.00010 < 0.00010	< 0.00060	0.00038	< 0.0030 < 0.0030	
GH FC1	GH FC1 WS 2022-05-02 NP	2022-05-04	262			0.00571	< 0.00050	1.13	0.099	< 0.000010		0.08		< 0.00010	< 0.00030	0.000304	< 0.0030	
GH FC1	GH FC1 WS 2022-05-16 NP	2022-05-11	257				< 0.00050	1.23	0.072	< 0.000010		1 0.07		< 0.00010	0.00032	0.000303	< 0.0030	
GH FC1	GH FC1 WS 2022-05-23 NP	2022-05-27	264		25.7		< 0.00050	1.2	0.081	< 0.000010		1 0.08		< 0.00010	< 0.00030	0.000328	< 0.0030	
GH FC1	GH FC1 WS 2022-05-30 NP	2022-06-01	287		26.7		< 0.00050	1.2	0.086	< 0.000010		0.09		< 0.00010	< 0.00030	0.000293	< 0.0030	
GH FC1	GH FC1 WS 2022-06-06 NP	2022-06-08	270	0.004	26.7	0.00792	< 0.00050	1.08	0.15	< 0.000010	2.39	0.09	< 0.000010	< 0.00010	< 0.00030	0.000299	< 0.0030	
GH_FC1	GH_FC1_WS_2022-06-13_NP	2022-06-15	266	0.004	28.9	0.00955	< 0.00050	1.23	0.107	< 0.000010	2.67	0.09	< 0.000010	< 0.00010	< 0.00030	0.000278	< 0.0030	
GH_FC1	GH_FC1_WS_2022-06-20_NP	2022-06-22	255				< 0.00050	0.888	0.113	< 0.000010		7 0.07		< 0.00010	0.00034	0.000289	< 0.0030	
GH_FC1	GH_FC1_WS_2022-06-27_NP	2022-06-29	314			0.00826	< 0.00050	0.784	0.121	< 0.000010		0.09		< 0.00010	< 0.00030	0.000282	< 0.0030	
GH_FC1	GH_FC1_WS_2022-07-04_NP	2022-07-06	281			0.00917	< 0.00050	0.608	0.062	< 0.000010		1 0.08		< 0.00010	< 0.00030	0.00026	< 0.0030	
GH_FC1	GH_FC1_WS_2022-07-11_NP	2022-07-13	281				< 0.00050	0.689	0.092	< 0.000010		0.09		< 0.00010	< 0.00030	0.000252	< 0.0030	
GH_FC1	GH_FC1_WS_2022-08-01_NP	2022-08-04	284			0.0129	< 0.00050	0.642	0.082	< 0.000010		0.09		< 0.00010	< 0.00030	0.000269	< 0.0030	
GH FC1 GH FC1	GH FC1 WS 2022-09-05 NP	2022-09-08	302	0.005	31.1	0.0219	< 0.00050	0.752	0.116	< 0.000010	2.63	0.1	< 0.000010	< 0.00010	< 0.00030	0.000235	< 0.0030	
GH_FC1	GH FC1 WS 2022-10-03 NP GH FC1 WS 2022-11-07 NP	2022-10-05 2022-11-09	316		31.3	0.047	< 0.00050	1.09	0.057	< 0.000010		2 0.1	< 0.000010	< 0.00010	< 0.00030	0.000168	< 0.0030	
GH GH1	GH GH1 WS 2022-01-03 N	2022-11-09	263				< 0.00050	0.929	0.037	< 0.000010		1 0.08		< 0.00010	< 0.00030	0.000166	< 0.0030	
GH GH1	GH GH1 WS 2022-01-03 N	2022-01-04	951			0.00187	0.00813	2.17	132	< 0.000010		0.00		< 0.00010	< 0.00030	0.00021	0.0036	
GH GH1	GH GH1 WS 2022-02-07 N	2022-02-04	1000			0.00107	0.00817	2.41	142	< 0.000010		1 0.23		< 0.00010	< 0.00030	0.00769	< 0.0030	
GH GH1	GH GH1 WS 2022-02-20 NP	2022-02-20	1000			0.0018	0.00816	2.27	146	< 0.000010		0.2		< 0.00010	< 0.00030	0.0081	< 0.0030	
GH GH1	GH GH1 WS 2022-02-21 N	2022-02-21	1030			0.00164	0.00807	2.33	153	< 0.000010		5 0.21		< 0.00010	< 0.00030	0.00817	< 0.0030	
GH_GH1	GH GH1 WS 2022-03-07 N	2022-03-04	963	0.017		0.00156	0.00823	2.34	149	< 0.000010		0.21		< 0.00010	< 0.00030	0.00853	< 0.0030	
GH_GH1	GH_GH1_WS_2022-03-14_N	2022-03-15	1040	0.017	148	0.00323	0.00855	2.38	149	< 0.000010	2.92	0.22	< 0.000010	< 0.00010	< 0.00030	0.00788	< 0.0030	
GH_GH1	GH GH1 WS 2022-03-21 N	2022-03-21	-	-	-	-	-	-	-	-	+-	-	-	-	-	-	-	
GH_GH1	GH GH1 WS 2022-03-28 N	2022-03-28	-	<u> </u>	-	-	-	-	-	-	-	+-	-	-	-	-	-	
GH_GH1	GH_FOX3_WS_2022-04-04_N	2022-04-04	-	-			0.005465	4.70	70.05	- 0.000040	100	-		- 0.00010	0.004505	- 0.00400		
GH_GH1 GH_GH1	GH GH1 WS 2022-04-04 N GH GH1 WS 2022-04-11 N	2022-04-04 2022-04-11	614	0.01	83.45	0.00347	0.005465	1.73	73.95	< 0.000010	12.83	0.16	< 0.000010	< 0.00010	0.001505	0.00483	< 0.0030	
GH GH1	GH GH1 WS 2022-04-11 N GH GH1 WS 2022-04-18 N	2022-04-11	-	-	-		-	+ :-	-		+:	+:	-	-	-	- :	-	
GH GH1	GH GH1 WS 2022-04-16 N	2022-04-19		1	+ :	 	+ :	1 :		 	+:	+:			-:-			
GH GH1	GH GH1 WS 2022-04-25 N	2022-05-10	-		1 -	-	-			1 -	T É	T-	-					
GH GH1	GH GH1 WS 2022-05-16 N	2022-05-17	-	-	-		-	-	-	-	-	-	-	-	-	-	-	
GH_GH1	GH GH1 WS 2022-05-23 N	2022-05-23	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
GH_GH1	GH GH1 WS 2022-05-30 N	2022-05-30	-	-	-	-	-	-	-	-	-	-	-	-			-	
GH_GH1	GH GH1 WS 2022-06-06 N	2022-06-06	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
GH_GH1	GH_GH1_WS_2022-06-13_N	2022-06-14	575	0.011	67	0.00146	0.00679	1.48	65.5	< 0.000010	2.1	0.14	< 0.000010	< 0.00010	0.00067	0.00406	0.006	
GH_GH1	GH_GH1_WS_2022-06-17_N	2022-06-17	-	! -		-	-	-	-	-	+-	+ -	-	-	-		-	
GH_GH1	GH_GH1_WS_2022-06-18_N	2022-06-18	-	-	+-	-	-	-	-	-	+-	+ -	-	-	-	-	-	
GH_GH1	GH_GH1_WS_2022-06-19_N	2022-06-19	-	+ -	-	-	-	- -	-	-	+-	+-	-	-	- -	- -		
GH_GH1	GH_GH1_WS_2022-06-20_N	2022-06-20	-			-		-		-	1 -	-						

Denotes concentration less than indicated detection limit
 Denotes analysis not conducted
 n/a denotes no applicable standard

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

											Total Metals							
																		ļ
				ء	_			*_			_		ء ا					
			ess	1 2	ony	್ರ	* <u></u>	<u> </u>	€	_	<u>5</u>	E	nim o		-			
			臣	Ē	timo	l e	. E	₹	Sm.	l or	ad mi	Cium	E	balt	eddo	_	ead	
Sample	Sample	Sample Date	На	Ar	Aņ	Ars	Baı	Be	Bis	Во	Ca	Cal	5	Cob	ပိ	lon	Ë	
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg	J/L	mg/L	
							흗	을		- in the second								onic
						5	8	a		Chronic				Acute		ğ	5	SH.
						_ ∢										< −	<	
BC WQG FWAL Greenhills Operation			n/a	n/a	n/a	0.005	1	0.00013	n/a	1.2	n/a	n/a	n/a	0.11 0.004	n/a	1	0.003-5.5°	3.3-3.5 ^a
GH GH1	GH GH1 WS 2022-06-21 N	2022-06-21		-	-			T -	-		-		-	-	-		-	\neg
GH_GH1	GH_GH1_WS_2022-06-22_N	2022-06-22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
GH_GH1	GH_GH1_WS_2022-06-27_N	2022-06-27	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
GH_GH1	GH_GH1_WS_2022-07-04_N	2022-07-04	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
GH_GH1 GH_GH1	GH_FOX3_WS_2022-07-04_N GH_GH1_WS_2022-07-11_N	2022-07-04	356	0.02903333	0.000263333	0.000213	0.0368333	3 < 0.020	< 0.000050	0.011333	0.000084	71.016667	0.00015667	- ' < 0.10	0.00055667	0.026333	< 0.000050	
GH_GH1	GH_GHI_WS_2022-07-11_N GH_GH1_WS_2022-08-01_N	2022-07-11	330	0.02903333	0.000203333	0.000213	0.0300333	- 0.020	~ 0.000050	0.011333	0.000084	7 1.0 10007	0.00013007	~ 0.10	0.00000007	0.020333	~ 0.000000	
GH GH1	GH GH1 WS 2022-09-05 N	2022-09-06	937	0.0059	0.00048	0.00019	0.053	< 0.020	< 0.000050	0.012	0.000013	162	0.0001	< 0.10	< 0.00050	< 0.010	< 0.000050	
GH_GH1	GH_GH1_WS_2022-10-03_N	2022-10-03	1020	0.00405	0.000445	0.000235	0.0431	< 0.020	< 0.000050	0.0105	< 0.0050	156	< 0.00010	< 0.10	< 0.00050	< 0.010	< 0.000050	
GH_GH1	GH GH1 WS 2022-11-07 N	2022-11-03	1130	0.0111	0.00043	0.00022	0.0467	< 0.020	< 0.000050	0.01	0.0000076	193	0.00011	< 0.10	< 0.00050	< 0.010	< 0.000050	
GH_GH1	GH_GH1_WS_2022-11-07_N_CALC	2022-11-07	1080	0.0117	0.00041	0.0002	0.0425	< 0.020	< 0.000050	< 0.010	0.0000099	183	0.00014	< 0.10	< 0.00050	0.011	< 0.000050	
GH_GH1	GH_GH1_WS_2022-11-10_N	2022-11-10	1130	0.0119	0.00036	0.00017	0.0489	< 0.020	< 0.000050	0.01	< 0.0050	188	0.00012	< 0.10	< 0.00050	< 0.010	< 0.000050	
GH_GH1 GH_LC1	GH_FOX1_WS_2022-11-17_FD	2022-11-17	970 714	0.0078	0.00039	0.00022	0.045	< 0.020 ' < 0.020	< 0.000050 < 0.000050	0.011	0.0000066 < 0.0050	186	0.00013	< 0.10 < 0.10	< 0.00050 < 0.00050	< 0.010	< 0.000050 < 0.000050	
GH LC1	GH LC1 WS 2022-06 06 N GH LC1 WS 2022-06-20 N	2022-06-19	387	0.00596667	0.0003	0.000173	0.0299007	< 0.020	< 0.000050	0.010667	0.0000733	132.35 93.3	0.00011667	3E-04	0.00103	0.364	0.00036	
GH PC1	GH PC1 WS 2022-08-01 N	2022-08-08	291	0.0877	0.00035	0.00037	0.0729	< 0.020	< 0.000050	0.019	0.0000733	72.8	0.00038	2E-04	0.00082	0.126	0.000233	-
GH PC1	GH PC1 WS SESMP 2022-08 N	2022-08-17	609	0.0118	< 0.00010	0.00025	0.0832	< 0.020	< 0.000050	< 0.010	0.0000312	108	0.00076	< 0.10	< 0.00050	0.02	< 0.000050	
GH_PC1	GH_PC1_DS_WS_2022-08-24_NP	2022-08-24	592	0.0092	< 0.00010	0.00037	0.0846	< 0.020	< 0.000050	< 0.010	0.0000299	105	0.00038	< 0.10	< 0.00050	< 0.010	< 0.000050	
GH_PC1	GH_PC1_DS_WS_2022-08-25_NP	2022-08-25	596	0.0105	< 0.00010	0.00026	0.0817	< 0.020	< 0.000050	< 0.010	0.0000237	104	0.00037	< 0.10	< 0.00050	< 0.010	< 0.000050	
GH_PC1	GH PC1 DS WS 2022-08-26 NP	2022-08-26	565	0.011	< 0.00010	0.00021	0.0808	< 0.020	< 0.000050	< 0.010	0.0000309	102	0.00027	< 0.10	< 0.00050	< 0.010	< 0.000050	
GH PC1 GH PC1	GH PC1 DS WS 2022-08-27 NP GH PC1 DS WS 2022-08-28 NP	2022-08-27 2022-08-28	595 537	0.0069 0.0106	0.00012 < 0.00010	0.00025	0.0858	< 0.020	< 0.000050 < 0.000050	< 0.010	0.0000255	116 109	0.00032	< 0.10	< 0.00050 < 0.00050	< 0.010	< 0.000050 < 0.000050	
GH TC2	GH TC2 WS 2022-08-28 NP	2022-06-26	524	0.0106	< 0.00010	0.00032	0.0924	< 0.020	< 0.000050	< 0.010	0.000023	115	0.0003	< 0.10	< 0.00050	< 0.012	< 0.000050	
GH TC2	GH TC2 WS 2022-02-07 N	2022-02-08	1080	0.0107	0.00019	0.00016	0.0633	< 0.020	< 0.000050	0.023	0.0000238	217	< 0.00010	< 0.10	< 0.00050	0.015	< 0.000050	
GH_TC2	GH TC2 WS 2022-03-07 N	2022-03-08	1090	0.0083	0.0002	0.00016	0.0617	< 0.020	< 0.000050	0.023	0.0000247	244	< 0.00010	< 0.10	< 0.00050	0.015	< 0.000050	
GH_TC2	GH_TC2_WS_2022-03-14_N	2022-03-17	1110	0.0202	0.00017	0.00019	0.0646	< 0.020	< 0.000050	0.023	0.0000249	250	< 0.00010	< 0.10	< 0.00050	0.027	< 0.000050	
GH_TC2	GH_TC2_WS_2022-03-20_N	2022-03-20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
GH TC2 GH TC2	GH TC2 WS 2022-03-21 N	2022-03-23	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
GH_TC2	GH_TC2_WS_2022-03-28_N GH_TC2_WS_2022-04-04_N	2022-03-31	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
GH TC2	GH TC2 WS 2022-04-04 N GH TC2 WS 2022-04-11 N	2022-04-06	685	0.0389	0.00015	0.00016	0.0703	< 0.020	< 0.000050	0.019	0.0000286	138	0.00011	< 0.10	0.00051	0.068	< 0.000050	
GH_TC2	GH TC2 WS 2022-04-11 N	2022-04-21	-	-	-	-	-		-	-	-	-	-	-	-	-	-	
GH_TC2	GH_TC2_WS_2022-04-25_N	2022-04-27	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
GH_TC2	GH TC2 WS 2022-05-02 N	2022-05-04	-					-										
GH TC2	GH TC2 WS 2022-05-09 N	2022-05-11	468	0.088	0.00013	0.00021	0.0639	< 0.020	< 0.000050	0.02	0.0000379	103	0.00015	1E-04	0.00061	0.119	0.000104	
GH_TC2 GH_TC2	GH_TC2_WS_2022-05-16_N GH_TC2_WS_2022-05-23_N	2022-05-18 2022-05-27	-	-	-	- :	-	-	- :	-	-	-	-	-	-	- :	-	
GH TC2	GH TC2 WS 2022-05-23 N GH TC2 WS 2022-05-30 N	2022-05-27	1		-	- :		 						-		- :	-	
GH TC2	GH TC2 WS 2022-06-06 N	2022-06-08	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
GH_TC2	GH TC2 WS 2022-06-13 N	2022-06-15	606	0.0077	0.00018	0.00022	0.0767	< 0.020	< 0.000050	0.026	0.0000202	133	< 0.00010	< 0.10	< 0.00050	0.016	< 0.000050	
GH_TC2	GH_TC2_WS_2022-06-20_N	2022-06-22	-	-	-	-	-		-	-	-	-	-	-	-	-	-	
GH TC2	GH TC2 WS 2022-06-27 N	2022-06-29	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
GH TC2 GH TC2	GH TC2 WS 2022-07-04 N	2022-07-06 2022-07-13	640	0.063	0.00016	0.00025	0.0744	< 0.020	< 0.000050	0.028	0.0000274	116	0.00013	< 0.10	0.0005	0.08	< 0.000050	
GH_TC2	GH_TC2_WS_2022-07-11_N GH_TC2_WS_2022-08-01_N	2022-07-13	- 040	0.063	0.00016	0.00025	0.0744	< 0.020	< 0.000050	0.028	0.0000274	- 110	0.00013	< 0.10	0.0005	0.08	~ 0.000000	
GH TC2	GH TC2 WS 2022-08-01 N GH TC2 WS SESMP 2022-08 N	2022-08-22	907	0.0124	0.00027	0.00033	0.0715	< 0.020	< 0.000050	0.036	0.0000162	199	< 0.00010	< 0.10	< 0.00050	0.023	< 0.000050	
GH TC2	GH TC2 WS 2022-09-05 N	2022-09-08	1350	0.0301	0.0003	0.00036	0.0641	< 0.020	< 0.000050	0.03	0.000026	217	< 0.00010	< 0.10	< 0.00050	0.123	0.000062	
GH_TC2	GH_TC2_WS_2022-09-14_N	2022-09-14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
GH_TC2	GH_TC2_WS_2022-09-21_N	2022-09-21	1420	0.0055	0.00031	0.00026	0.0637	< 0.020	< 0.000050	0.03	0.0000062	264	< 0.00010	< 0.10	< 0.00050	< 0.010	< 0.000050	
GH_TC2	GH_TC2_WS_2022-09-22_N	2022-09-22	1310	0.0195	0.00026	0.00025	0.0595	< 0.020	< 0.000050	0.023	0.0000116	211	< 0.00010	< 0.10	< 0.00050	0.041	< 0.000050	

Denotes concentration less than indicated detection limit
 Denotes analysis not conducted
 n/a denotes no applicable standard

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

GH GH1 GH GH GH GH GH1 GH GH1 GH GH1 GH GH1 GH GH GH1 GH	Sample ID H. GH1 WS 2022-06-21 N H. GH1 WS 2022-06-22 N H. GH1 WS 2022-06-27 N H. GH1 WS 2022-07-04 N H. FOX3 WS 2022-07-04 N H. FOX3 WS 2022-07-01 N H. GH1 WS 2022-09-01 N H. GH1 WS 2022-09-01 N H. GH1 WS 2022-09-03 N H. GH1 WS 2022-11-07 N H. GH1 WS 2022-11-07 N H. GH1 WS 2022-11-07 N FORT WS 2022-11-10 N FORT WS 2022-11-10 N FOX WS 2022-11-10 N	Sample Date (mm/dd/yyyy) 2022-06-21 2022-06-22 2022-07-04 2022-07-04 2022-09-06 2022-10-03 2022-11-03	mg/L n/a	n/a 0.007	n/a		mg/L	mg/L	s Chronic ^{信有} Selenium	Total Metals \$\frac{3}{26}\$		n/a strontium	Enille E E mg/L n/a	E mg/L n/a	n/a mg/L -	Chronic Chroni		0.0075-2°
Location	H. GH1 WS 2022-06-21 N H. GH1 WS 2022-06-22 N H. GH1 WS 2022-06-27 N H. GH1 WS 2022-07-04 N H. FDX3 WS 2022-07-04 N H. GH1 WS 2022-07-11 N H. GH1 WS 2022-09-01 N H. GH1 WS 2022-09-05 N H. GH1 WS 2022-10-03 N H. GH1 WS 2022-11-07 N SH1 WS 2022-11-07 N H. GH1 WS 2022-11-07 N	(mm/dd/yyyy) 2022-06-21 2022-06-22 2022-07-04 2022-07-04 2022-07-04 2022-09-08 2022-10-03 2022-11-03	n/a 356 - 937	n/a 0.007	mg/L n/a	mg/L VCnte O.001-0.03* 0.0009-0.01	mg/L .2 .2 .3 .4 .0.025-0.15°	n/a	Chronic Chronic -	Acute Chronic	mg/L	mg/L	mg/L	mg/L n/a	mg/L n/a	mg/L 2 2 2 0 0.0085	950 W 0.033-2 ^a	g/L Shoric Chronic
Location	H. GH1 WS 2022-06-21 N H. GH1 WS 2022-06-22 N H. GH1 WS 2022-06-27 N H. GH1 WS 2022-07-04 N H. FDX3 WS 2022-07-04 N H. GH1 WS 2022-07-11 N H. GH1 WS 2022-09-01 N H. GH1 WS 2022-09-05 N H. GH1 WS 2022-10-03 N H. GH1 WS 2022-11-07 N SH1 WS 2022-11-07 N H. GH1 WS 2022-11-07 N	(mm/dd/yyyy) 2022-06-21 2022-06-22 2022-07-04 2022-07-04 2022-07-04 2022-09-08 2022-10-03 2022-11-03	n/a 356 - 937	n/a 0.007	mg/L n/a	mg/L VCnte O.001-0.03* 0.0009-0.01	mg/L .2 .2 .3 .4 .0.025-0.15°	n/a	Chronic Chronic	Acute Chronic	mg/L	mg/L	mg/L	mg/L n/a	mg/L n/a	mg/L 2 2 2 0 0.0085	950 W 0.033-2 ^a	g/L Shoric Chronic
Location	H. GH1 WS 2022-06-21 N H. GH1 WS 2022-06-22 N H. GH1 WS 2022-06-27 N H. GH1 WS 2022-07-04 N H. FDX3 WS 2022-07-04 N H. GH1 WS 2022-07-11 N H. GH1 WS 2022-09-01 N H. GH1 WS 2022-09-05 N H. GH1 WS 2022-10-03 N H. GH1 WS 2022-11-07 N SH1 WS 2022-11-07 N H. GH1 WS 2022-11-07 N	(mm/dd/yyyy) 2022-06-21 2022-06-22 2022-07-04 2022-07-04 2022-07-04 2022-09-08 2022-10-03 2022-11-03	n/a 356 - 937	n/a 0.007	mg/L n/a	mg/L VCnte O.001-0.03* 0.0009-0.01	mg/L .2 .2 .3 .4 .0.025-0.15°	n/a	Chronic Chronic	Acute Chronic	mg/L	mg/L	mg/L	mg/L n/a	mg/L n/a	mg/L 2 2 2 0 0.0085	950 W 0.033-2 ^a	g/L chronic
Location	H. GH1 WS 2022-06-21 N H. GH1 WS 2022-06-22 N H. GH1 WS 2022-06-27 N H. GH1 WS 2022-07-04 N H. FDX3 WS 2022-07-04 N H. GH1 WS 2022-07-11 N H. GH1 WS 2022-09-01 N H. GH1 WS 2022-09-05 N H. GH1 WS 2022-10-03 N H. GH1 WS 2022-11-07 N SH1 WS 2022-11-07 N H. GH1 WS 2022-11-07 N	(mm/dd/yyyy) 2022-06-21 2022-06-22 2022-07-04 2022-07-04 2022-07-04 2022-09-08 2022-10-03 2022-11-03	n/a 356 - 937	n/a 0.007	mg/L n/a	mg/L VCnte O.001-0.03* 0.0009-0.01	mg/L .2 .2 .3 .4 .0.025-0.15°	n/a	Chronic Chronic	Acute Chronic	mg/L	mg/L	mg/L	mg/L n/a	mg/L n/a	mg/L 2 2 2 0 0.0085	950 W 0.033-2 ^a	g/L chronic
Location	H. GH1 WS 2022-06-21 N H. GH1 WS 2022-06-22 N H. GH1 WS 2022-06-27 N H. GH1 WS 2022-07-04 N H. FDX3 WS 2022-07-04 N H. GH1 WS 2022-07-11 N H. GH1 WS 2022-09-01 N H. GH1 WS 2022-09-05 N H. GH1 WS 2022-10-03 N H. GH1 WS 2022-11-07 N SH1 WS 2022-11-07 N H. GH1 WS 2022-11-07 N	(mm/dd/yyyy) 2022-06-21 2022-06-22 2022-07-04 2022-07-04 2022-07-04 2022-09-08 2022-10-03 2022-11-03	n/a 356 - 937	n/a 0.007	mg/L n/a	mg/L VCnte O.001-0.03* 0.0009-0.01	mg/L .2 .2 .3 .4 .0.025-0.15°	n/a	Chronic Chronic	Acute Chronic	mg/L	mg/L	₽ mg/L n/a	mg/L n/a	mg/L n/a	mg/L 2 2 2 0 0.0085	950 W 0.033-2 ^a	g/L chronic
Location	H. GH1 WS 2022-06-21 N H. GH1 WS 2022-06-22 N H. GH1 WS 2022-06-27 N H. GH1 WS 2022-07-04 N H. FDX3 WS 2022-07-04 N H. GH1 WS 2022-07-11 N H. GH1 WS 2022-09-01 N H. GH1 WS 2022-09-05 N H. GH1 WS 2022-10-03 N H. GH1 WS 2022-11-07 N SH1 WS 2022-11-07 N H. GH1 WS 2022-11-07 N	(mm/dd/yyyy) 2022-06-21 2022-06-22 2022-07-04 2022-07-04 2022-07-04 2022-09-08 2022-10-03 2022-11-03	n/a 356 - 937	n/a 0.007	n/a	CH C	mg/L .2 .2 .3 .4 .0.025-0.15°	n/a	c Chronic	Acute Chronic	mg/L	mg/L	n/a -	mg/L n/a	mg/L n/a	mg/L 2 2 2 0 0.0085	950 W 0.033-2 ^a	g/L chronic
BC WQG FWAL Greenhills Operation GH GH1 GH	H GH1 WS 2022-06-21 N H GH1 WS 2022-06-22 N H GH1 WS 2022-06-27 N H GH1 WS 2022-07-04 N H GH1 WS 2022-07-04 N H GH1 WS 2022-07-11 N H GH1 WS 2022-08-01 N H GH1 WS 2022-08-05 N H GH1 WS 2022-08-05 N H GH1 WS 2022-11-07 N SH1 WS 2022-11-07 N H GH1 WS 2022-11-07 N H GH1 WS 2022-11-07 N	2022-06-21 2022-06-22 2022-06-27 2022-07-04 2022-07-04 2022-07-10 2022-08-04 2022-10-03 2022-11-03	n/a 356 - 937	n/a 0.007	n/a	CH C	0.025-0.15 ^a	n/a	c Chronic	Acute	n/a		n/a -	n/a -	n/a -	0.0085	9 0.033-2 ^a	Chronic
Greenhills Operation	H GH1 WS 2022-06-22 N H GH1 WS 2022-06-27 N H GH1 WS 2022-07-04 N I FOX3 WS 2022-07-04 N I FOX3 WS 2022-07-14 N H GH1 WS 2022-08-01 N H GH1 WS 2022-08-01 N H GH1 WS 2022-08-01 N H GH1 WS 2022-10-03 N H GH1 WS 2022-11-07 N SH1 WS 2022-11-07 N CALC H GH1 WS 2022-11-07 N CALC H GH1 WS 2022-11-07 N	2022-06-22 2022-06-27 2022-07-04 2022-07-04 2022-07-01 2022-08-04 2022-09-06 2022-10-03 2022-11-03	- - - - 356 - 937	- - - - 0.007		0.001-0.03° 0.0009-0.01	0.025-0.15 ^a	-	2 Chron			n/a	-	-	-	5 0.0085	0.033-2°	ร็
Greenhills Operation GH GH1 GH	H GH1 WS 2022-06-22 N H GH1 WS 2022-06-27 N H GH1 WS 2022-07-04 N I FOX3 WS 2022-07-04 N I FOX3 WS 2022-07-14 N H GH1 WS 2022-08-01 N H GH1 WS 2022-08-01 N H GH1 WS 2022-08-01 N H GH1 WS 2022-10-03 N H GH1 WS 2022-11-07 N SH1 WS 2022-11-07 N CALC H GH1 WS 2022-11-07 N CALC H GH1 WS 2022-11-07 N	2022-06-22 2022-06-27 2022-07-04 2022-07-04 2022-07-01 2022-08-04 2022-09-06 2022-10-03 2022-11-03	- - - - 356 - 937	- - - - 0.007		0.001-0.03° 0.0009-0.01	5 0.025-0.15°	-	<u>පි</u> 2			n/a	-	-	-	5 0.0085	0.033-2°	ร็
Greenhills Operation GH GH1 GH	H GH1 WS 2022-06-22 N H GH1 WS 2022-06-27 N H GH1 WS 2022-07-04 N I FOX3 WS 2022-07-04 N I FOX3 WS 2022-07-14 N H GH1 WS 2022-08-01 N H GH1 WS 2022-08-01 N H GH1 WS 2022-08-01 N H GH1 WS 2022-10-03 N H GH1 WS 2022-11-07 N SH1 WS 2022-11-07 N CALC H GH1 WS 2022-11-07 N CALC H GH1 WS 2022-11-07 N	2022-06-22 2022-06-27 2022-07-04 2022-07-04 2022-07-01 2022-08-04 2022-09-06 2022-10-03 2022-11-03	- - - - 356 - 937	- - - - 0.007		0.001-0.03 ^a 0.0009-0.01	0.025-0.15 ^a	-	2			n/a	-	-	-	0.0085	0.033-2ª	0.0075-2ª
Greenhills Operation GH GH1 GH	H GH1 WS 2022-06-22 N H GH1 WS 2022-06-27 N H GH1 WS 2022-07-04 N I FOX3 WS 2022-07-04 N I FOX3 WS 2022-07-14 N H GH1 WS 2022-08-01 N H GH1 WS 2022-08-01 N H GH1 WS 2022-08-01 N H GH1 WS 2022-10-03 N H GH1 WS 2022-11-07 N SH1 WS 2022-11-07 N CALC H GH1 WS 2022-11-07 N CALC H GH1 WS 2022-11-07 N	2022-06-22 2022-06-27 2022-07-04 2022-07-04 2022-07-01 2022-08-04 2022-09-06 2022-10-03 2022-11-03	- - - - 356 - 937	- - - - 0.007		-	-	-	-	0.0001-0.003° 0.00005-0.0015°		n/a	-	-	-		-	0.0075-2°
GH GH1 GH GH GH GH1 GH GH	H GH1 WS 2022-06-22 N H GH1 WS 2022-06-27 N H GH1 WS 2022-07-04 N I FOX3 WS 2022-07-04 N I FOX3 WS 2022-07-14 N H GH1 WS 2022-08-01 N H GH1 WS 2022-08-01 N H GH1 WS 2022-08-01 N H GH1 WS 2022-10-03 N H GH1 WS 2022-11-07 N SH1 WS 2022-11-07 N CALC H GH1 WS 2022-11-07 N CALC H GH1 WS 2022-11-07 N	2022-06-22 2022-06-27 2022-07-04 2022-07-04 2022-07-11 2022-08-04 2022-09-06 2022-10-03 2022-11-03	- - - 356 - 937	- - - 0.007	-	-	-	-		-	-	-				-		
GH GH1 GH	H GH1 WS 2022-06-22 N H GH1 WS 2022-06-27 N H GH1 WS 2022-07-04 N I FOX3 WS 2022-07-04 N I FOX3 WS 2022-07-14 N H GH1 WS 2022-08-01 N H GH1 WS 2022-08-01 N H GH1 WS 2022-08-01 N H GH1 WS 2022-10-03 N H GH1 WS 2022-11-07 N SH1 WS 2022-11-07 N CALC H GH1 WS 2022-11-07 N CALC H GH1 WS 2022-11-07 N	2022-06-22 2022-06-27 2022-07-04 2022-07-04 2022-07-11 2022-08-04 2022-09-06 2022-10-03 2022-11-03	- - - 356 - 937	- - - 0.007	-	-	-	-			<u> </u>							
GH GH1 GH GH GH GH1 GH GH	H GH1 WS 2022-06-27 N H GH1 WS 2022-07-04 N H FDX3 WS 2022-07-04 N H GH1 WS 2022-07-01 N H GH1 WS 2022-09-01 N H GH1 WS 2022-09-05 N H GH1 WS 2022-10-03 N H GH1 WS 2022-11-07 N H1 WS 2022-11-07 N H1 H GH1 WS 2022-11-07 N	2022-06-27 2022-07-04 2022-07-04 2022-07-11 2022-08-04 2022-09-06 2022-10-03 2022-11-03	356 - 937	0.007	-	-		_		_								
GH GH1 GH	H GH1 WS 2022-07-04 N H FOXS WS 2022-07-04 N H GH1 WS 2022-07-11 N H GH1 WS 2022-08-01 N H GH1 WS 2022-09-05 N H GH1 WS 2022-10-03 N H GH1 WS 2022-11-07 N SH1 WS 2022-11-07 N GH1 WS 2022-11-07 N GH1 WS 2022-11-07 N H GH1 WS 2022-11-07 N	2022-07-04 2022-07-04 2022-07-11 2022-08-04 2022-09-06 2022-10-03 2022-11-03	356 - 937	0.007	-	-		-	-	-	1	- 1		-	-		-	
GH GH1 GH GH GH1 GH GH GH1 GH GH GH1 GH GH GH1 GH GH GH1 GH GH GH1 GH GH GH GH1 GH GH1	H GH1 WS 2022-07-11 N H GH1 WS 2022-08-01 N H GH1 WS 2022-09-05 N H GH1 WS 2022-10-03 N H GH1 WS 2022-11-07 N SH1 WS 2022-11-07 N GH1 WS 2022-11-10 N	2022-07-11 2022-08-04 2022-09-06 2022-10-03 2022-11-03	356 - 937	0.007			-	-	-	-	-	- 1	-	-	-	-	-	
GH GH1 GH GH GH1 GH GH GH1 GH GH GH1 GH GH GH GH1 GH GH GH GH GH GH1 GH	H GH1 WS 2022-08-01 N H GH1 WS 2022-09-05 N H GH1 WS 2022-10-03 N H GH1 WS 2022-11-07 N SH1 WS 2022-11-07 N CALC H GH1 WS 2022-11-10 N	2022-08-04 2022-09-06 2022-10-03 2022-11-03	937	-	43.57	-	-	-	-	-	-	-	-	-	-	-	-	
GH GH1 GH GH GH1 GH GH GH1 GH GH GH1 GH G GH GH1 GH	H GH1 WS 2022-09-05 N H GH1 WS 2022-10-03 N H GH1 WS 2022-11-07 N SH1 WS 2022-11-07 N CALC H GH1 WS 2022-11-10 N	2022-09-06 2022-10-03 2022-11-03		-	70.01	0.00225667	0.005106667	1.0333	42.25	< 0.000010	1.4	0.09	< 0.000010	< 0.00010	0.0010133	0.00262	0.0051667	
GH GH1 GH GH GH1 GH GH GH1 GH G GH GH1 GH	H GH1 WS 2022-10-03 N H GH1 WS 2022-11-07 N GH1 WS 2022-11-07 N CALC H GH1 WS 2022-11-10 N	2022-10-03 2022-11-03			1.5	-	-		-	-	1 -	-			-			
GH GH1 GH GH GH1 GH G GH_GH1 GH	H GH1 WS 2022-11-07 N GH1 WS 2022-11-07 N CALC H GH1 WS 2022-11-10 N	2022-11-03				0.00188	0.0103	2.18	113	< 0.000010		0.18	< 0.000010	< 0.00010	< 0.00030	0.00768	< 0.0030	
GH_GH1	GH1_WS_2022-11-07_N_CALC H_GH1_WS_2022-11-10_N		1130			0.000885 0.00176	0.00855 0.00914	2.385	145 167	< 0.000010 < 0.000010		0.17	< 0.000010 < 0.000010	< 0.00010 < 0.00010	< 0.00030 < 0.00030	0.00767	< 0.0030 < 0.0030	
GH_GH1 GH	H_GH1_WS_2022-11-10_N		1080			0.00176	0.00914	2.6	167	< 0.000010 < 0.000010		0.21	< 0.000010	< 0.00010	< 0.00030	0.00861 0.00826	< 0.0030	
		2022-11-07	1130			0.00107	0.00778	2.48	156	< 0.000010		0.2	< 0.000010	< 0.00010	< 0.00030	0.00020	< 0.0030	
		2022-11-17	970			0.0011	0.00829	2.58	188	< 0.000010		0.2	< 0.000010	< 0.00010	< 0.00030	0.00848	< 0.0030	
GH LC1 GF	H LC1 WS 2022-06 06 N	2022-06-19	714	0.015	118.3	0.000656667	0.0058	1.75	116.683	< 0.000010	1.88	0.14	< 0.000010	< 0.00010	< 0.00030	0.00609333	< 0.0030	
GH_LC1 GI	H_LC1_WS_2022-06-20_N	2022-06-20	387	0.047	45.2	0.0189	0.0126	1.98	52.5	0.00001	10.9	0.3	0.000012	< 0.00010	0.00447	0.00327	0.0038	
	H_PC1_WS_2022-08-01_N	2022-08-08	291			0.015	0.00667	1.55	25.9	< 0.000010		0.23	< 0.000010	< 0.00010	0.00129	0.00189	< 0.0030	
	PC1 WS SESMP 2022-08 N	2022-08-17	609			0.00094	0.0014	1.1	63	< 0.000010		0.13	0.000012	< 0.00010	< 0.00030	0.00538	0.007	
	PC1_DS_WS_2022-08-24_NP	2022-08-24	592			0.00084 0.00089	0.00134	1.11	68.2	< 0.000010		0.14	0.000019	< 0.00010	< 0.00030	0.00529	0.0068	
	PC1_DS_WS_2022-08-25_NP PC1_DS_WS_2022-08-26_NP	2022-08-25 2022-08-26	596 565			0.00089	0.00127	1.1	59 65.4	< 0.000010 < 0.000010		0.13	< 0.000010	< 0.00010	< 0.00030	0.00504	0.0059	
	PC1 DS WS 2022-06-26 NP	2022-08-27	595	0.007		0.00096	0.00128	1.13	67.7	< 0.000010		0.13	0.000012	< 0.00010	< 0.00030	0.00486	0.0059	
	PC1 DS WS 2022-08-28 NP	2022-08-28	537			0.00124	0.00134	1.06	72.6	< 0.000010		0.15	< 0.000012	< 0.00010	< 0.00030	0.00517	0.0033	
	H TC2 WS 2022-01-03 N	2022-01-12	524			0.00088	0.00133	1.09	81.5	< 0.000010	0.84	0.16	< 0.000010	< 0.00010	< 0.00030	0.00563	0.0067	
GH TC2 GI	H TC2 WS 2022-02-07 N	2022-02-08	1080	0.029	134	0.00503	0.00406	1.91	144	< 0.000010	10.5	0.59	< 0.000010	< 0.00010	< 0.00030	0.00631	< 0.0030	
	H_TC2_WS_2022-03-07_N	2022-03-08	1090			0.00625	0.00345	1.87	149	< 0.000010		0.62	< 0.000010	< 0.00010	< 0.00030	0.00614	< 0.0030	
	H_TC2_WS_2022-03-14_N	2022-03-17	1110	0.033	152	0.00795	0.0042	2.02	154	< 0.000010		0.6	< 0.000010	< 0.00010	0.00047	0.00566	< 0.0030	
	H TC2 WS 2022-03-20 N	2022-03-20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	H_TC2_WS_2022-03-21_N H_TC2_WS_2022-03-28_N	2022-03-23	-	-	-	-	-	-	-	-	-	-		-	-		-	
	H TC2 WS 2022-03-28 N H TC2 WS 2022-04-04 N	2022-03-31	-	-	-	-	-	-	-	-	<u> </u>	- 1		-	-		-	
	H TC2 WS 2022-04-04 N H TC2 WS 2022-04-11 N	2022-04-06	685	0.017	70.3	0.00816	0.0025	1.41	66.1	< 0.000010	6.62	0.37	< 0.000010	< 0.00010	0.00052	0.00279	< 0.0030	
	H TC2 WS 2022-04-11 N	2022-04-12	-	- 0.017	-	-	- 0.0023	1.71	-	- 0.000010	- 0.02	-		- 0.00010	- 0.00032	-	- 0.0030	
	H TC2 WS 2022-04-25 N	2022-04-27	-	-	-	-	-	-	-	-	-	_	-		-	-	-	
	H TC2 WS 2022-05-02 N	2022-05-04	-	-	-	-	-	-	-	-	-	-	-		-		-	
	H TC2 WS 2022-05-09 N	2022-05-11	468			0.00986	0.00238	1.35	51.4	< 0.000010		0.3	< 0.000010	< 0.00010	0.00181	0.00211	< 0.0030	
	H_TC2_WS_2022-05-16_N	2022-05-18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	H TC2 WS 2022-05-23 N	2022-05-27	-	-	-	-	-	-	-	-	+ -	-	-	-	-	-	-	
	H TC2 WS 2022-05-30 N H TC2 WS 2022-06-06 N	2022-06-01 2022-06-08	-	-	-	-	-	-	-	-	+-	-		-	-		-	
	H TC2 WS 2022-06-06 N H TC2 WS 2022-06-13 N	2022-06-08	606	0.022	87	0.00271	0.00407	1.79	92.5	< 0.000010	9.07	0.43	< 0.000010	< 0.00010	< 0.00030	0.00337	< 0.0030	
	H TC2 WS 2022-06-13 N	2022-06-13	-	- 0.022	-	- 0.00271	0.00407	1.19	-	- 0.000010	- 0.07	-	- 0.000010	- 0.00010	- 0.00030	J.UUJJ1 -	- 0.0030	
	H TC2 WS 2022-06-27 N	2022-06-29	-	-	-		-	-	-	-	١.	- 1	-		-	-		
GH_TC2 GI	H TC2 WS 2022-07-04 N	2022-07-06	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	H_TC2_WS_2022-07-11_N	2022-07-13	640			0.00637	0.00415	1.58	66.3	< 0.000010		0.38	< 0.000010	< 0.00010	0.00195	0.0032	< 0.0030	
	H TC2 WS 2022-08-01 N	2022-08-03	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
GH_TC2 GH_T	TC2 WS SESMP 2022-08 N	2022-08-22	907	0.04		0.00545	0.00695	2.3	169	< 0.000010		0.56	0.000011	< 0.00010	< 0.00030	0.0072	< 0.0030	
GH_TC2 GI	H TC2 WS 2022-09-05 N	2022-09-08	1350	0.046	174	0.0172	0.00733	2.47	145	< 0.000010	9.2	0.56	0.000013	< 0.00600	0.00036	0.00742	< 0.0030	
	H_TC2_WS_2022-09-14_N H_TC2_WS_2022-09-21_N	2022-09-14	1420	0.044	205	0.00095	0.0084	2.81	191	< 0.000010	10.7	0.63	< 0.000010	< 0.00010	< 0.00030	0.00903	< 0.0030	
	H_TC2_WS_2022-09-21_N H_TC2_WS_2022-09-22_N	2022-09-21			162	0.00095	0.00734	2.38	194	< 0.000010		0.63	< 0.000010	< 0.00010	0.00030	0.00903	< 0.0030	

Denotes concentration less than indicated detection limit
 Denotes analysis not conducted
 n/a denotes no applicable standard

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

			1								Total Metals							
		1	1		1				1		TOTAL MICIAIS			1	1		1	
Sample	Sample ID	Sample Date	Hardness	Aluminum	Antimony	Arsenic	Barium*	Beryllium*	Bismuth	Boron	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	
Location	טו	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg	/L	mg/L	
						Acute	Chronic	Chronic		Chronic				Acute		Acute	Acute	Chronic
BC WQG FWAL			n/a	n/a	n/a	0.005	1	0.00013	n/a	1.2	n/a	n/a	n/a	0.11 0.004	n/a	1	0.003-5.5°	3.3-3.5 ^a
Greenhills Operation																		
GH_TC2	GH_TC2_WS_2022-09-23_N	2022-09-23	1310	0.0096	0.00027	0.00025	0.0572	< 0.020	< 0.000050	0.025	0.0000089	212	< 0.00010		< 0.00050	0.014	0.00006	
GH_TC2	GH_TC2_WS_2022-09-24_N	2022-09-24	1280	0.0104	0.0003	0.00034	0.0617	< 0.020	< 0.000050	0.028	0.0000067	230	< 0.00010		< 0.00050	0.013	< 0.000050	
GH_TC2	GH_TC2_WS_2022-09-25_N	2022-09-25	1200	0.0062	0.00018	0.00024	0.0594	< 0.020	< 0.000050	0.026	0.0000082	232	< 0.00010		< 0.00050	< 0.010	< 0.000050	
GH_TC2	GH_TC2_WS_2022-09-26_N	2022-09-26	1310	0.008	0.00112	0.00021	0.0603	< 0.020	< 0.000050	0.025	0.000009	242	< 0.00010		< 0.00050	< 0.010	< 0.000050	
GH_TC2	GH_TC2_WS_2022-09-27_N	2022-09-27	1260	0.0106	0.0002	0.00021	0.0613	< 0.020	< 0.000050	0.026	0.0000081	243	< 0.00010		< 0.00050	0.012	< 0.000050	
GH_TC2	GH_TC2_WS_2022-10-03_N	2022-10-05	1430	0.006	0.00032	0.00022	0.0579	< 0.020	< 0.000050	0.021	0.0000088	211	< 0.00010		< 0.00050	< 0.010	< 0.000050	
GH_TC2	GH_TC2_WS_2022-11-07_N	2022-11-09	1350	0.0092	0.00024	0.0002	0.0662	< 0.020	< 0.000050	0.026	0.0000096	251	< 0.00010		< 0.00050	0.014	< 0.000050	
GH_WC1	GH_FOX1_WS_2022-01-03_N	2022-01-11	1300	0.0102	0.00024	< 0.00020	0.0634	< 0.040	< 0.000100	0.024	0.000021	235	< 0.00020	< 0.20	< 0.00100	< 0.020	< 0.000100	
GH_WC1	GH_FOX2_WS_2022-02-07_N	2022-02-07	1114	< 0.0060	0.000766667	0.000183	0.0401	< 0.040	< 0.000100	0.020333	2.40333E-05	203.35	< 0.00020		< 0.00100	< 0.020	< 0.000100	
GH WC1	GH FOX2 WS 2022-03-07 N	2022-03-09	1087	< 0.0060	0.000773333	0.00018	0.0392333	< 0.040	< 0.000100	0.019667	0.0000206	195.35	< 0.00020	< 0.20	< 0.00100	< 0.020	< 0.000100	
GH_WC1	GH_WC1_WS_2022-03-14_N	2022-03-16	1074	< 0.0060	0.00076	0.000177	0.0419333	< 0.040	< 0.000100	0.020667	0.0000222	208.01667	< 0.00020		< 0.00100	< 0.020	< 0.000100	
GH_WC1 GH_WC1	GH_WC1_WS_2022-03-21_N	2022-03-23	1500 1400	0.0064	0.00091	0.00021	0.0633 0.064	< 0.040 < 0.040	< 0.000100 < 0.000100	0.026 0.025	0.0000322	316 266	< 0.00020 < 0.00020		< 0.00100 < 0.00100	< 0.020 < 0.020	< 0.000100 < 0.000100	
	GH_WC1_WS_2022-03-28_N	2022-03-30	792		0.0009		0.064	< 0.040			0.0000328	177		2E-04				
GH_WC1 GH_WC1	GH_WC1_WS_2022-04-04_N	2022-04-05	792 891	0.0664	0.00067	0.00024		< 0.020	< 0.000050 < 0.000050	0.019	0.0000456 0.0000436	182	0.00031 < 0.00010		0.00055	0.046	< 0.000050 < 0.000050	
GH_WC1	GH WC1 WS 2022-04-11 N GH WC1 WS 2022-04-18 N	2022-04-13	1060	0.0194	0.00078	0.0002	0.0669 0.0706	< 0.020	< 0.000050	0.02	0.0000436	203	< 0.00010		0.00056	0.023	< 0.000050	
GH_WC1	GH_WC1_WS_2022-04-16_N GH_WC1_WS_2022-04-25_N	2022-04-20	1200	0.0117	0.00088	0.0003	0.0706	< 0.020	< 0.000050	0.022	0.0000433	232	< 0.00010		0.00057	< 0.013	< 0.000050	
GH_WC1	GH WC1 WS 2022-04-25 N GH WC1 WS 2022-05-02 N	2022-04-26	11200	0.0045	0.00088	0.00022	0.0671	< 0.020	< 0.000050	0.021	0.0000536	232	< 0.00010		0.00057	0.010	< 0.000050	
GH WC1	GH WC1 WS 2022-05-02 N GH WC1 WS 2022-05-09 N	2022-05-03	1260	< 0.0209	0.0009	0.00024	0.0732	< 0.020	< 0.000050	0.022	0.0000336	267	< 0.00010		< 0.00052	0.031	< 0.000050	
GH_WC1	GH WC1 WS 2022-05-09 N GH WC1 WS 2022-05-16 N	2022-05-10	1280	0.0131	0.0001	0.0002	0.0704	< 0.020	< 0.000050	0.023	0.0000337	244	< 0.00010		0.00056	0.011	< 0.000050	
GH WC1	GH WC1 WS 2022-05-16 N GH WC1 WS 2022-05-23 N	2022-05-17	1620	0.0131	0.00092	0.00028	0.0735	< 0.020	< 0.000050	0.022	0.0000348	296	< 0.00010		< 0.00100	< 0.013	< 0.000050	
GH WC1	GH WC1 WS 2022-05-25 N GH WC1 WS 2022-05-30 N	2022-05-25	1660	0.0076	0.00106	0.00022	0.0748	< 0.020	< 0.000100	0.027	0.0000408	310	< 0.00020		< 0.00100	< 0.020	< 0.000100	
GH WC1	GH WC1 WS 2022-05-30 N	2022-06-07	1720	0.0062	0.00110	0.00025	0.0677	< 0.020	< 0.000050	0.020	0.0000322	346	< 0.00010		0.00052	< 0.010	< 0.000050	
GH WC1	GH WC1 WS 2022-00-00 N	2022-06-14	1770	0.0103	0.00131	0.00027	0.0744	< 0.040	< 0.000030	0.027	0.0000200	331	< 0.00010		< 0.00032	< 0.010	< 0.000100	
GH WC1	GH WC1 WS 2022-00-13 N	2022-06-14	1450	0.0357	0.00097	0.00027	0.0687	< 0.020	< 0.000100	0.023	0.0000372	253	0.00020	2E-04	< 0.00100	0.034	< 0.000100	
GH WC1	GH WC1 WS 2022-00-20 N	2022-06-29	1230	0.0067	0.0009	0.0003	0.0037	< 0.040	< 0.000030	0.023	0.0000372	255	< 0.00022		< 0.00030	< 0.034	< 0.000100	
GH WC1	GH FOX2 WS 2022-07-04 N	2022-07-05	1570	0.0007	0.00112	0.00023	0.0696	< 0.020	< 0.000100	0.029	0.0000482	293	< 0.00020		0.00057	< 0.020	< 0.000050	
GH WC1	GH WC1 WS 2022-07-04 N	2022-07-12	954	0.13433333		0.00024	0.0497567	< 0.040	< 0.000100	0.023	0.0000435	168.35	0.00023	3E-04	< 0.00100	0.160333		
GH WC1	GH WC1 WS 2022-08-01 N	2022-08-03	1630	< 0.0150	0.00128	< 0.00050	0.0671	< 0.100	< 0.000100	< 0.050	0.00003	293	< 0.00050		< 0.00250	< 0.050	< 0.0001407	
GH WC1	GH FOX2 WS 2022-09-05 N	2022-09-07	1950	0.0071	0.00178	0.00032	0.0654	< 0.040	< 0.000100	0.04	0.0000238	410	< 0.00020		< 0.00100	< 0.020		
GH WC1	GH WC1 WS 2022-09-12 N		1437	< 0.0060	0.001	0.00032	0.00034	< 0.040	< 0.000100	0.024667	8.46667E-06		0.00033667		< 0.00100	< 0.020	< 0.000100	
GH WC1	GH WC1 WS 2022-10-03 N		2170	0.0051	0.00149	0.000137	0.0303207	< 0.020	< 0.000050	0.024007	0.0000076	364	< 0.00010		< 0.00050	< 0.020	< 0.000050	
GH WC1	GH FOX2 WS 2022-11-07 N	2022-11-08	2340	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020		< 0.00100	< 0.020		

Denotes concentration less than indicated detection limit
 Denotes analysis not conducted

n/a denotes no applicable standard

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

												Total Metals								Ti Ti
Sample	Sample ID	Sample Date	Hardness	Lithium	Magnesium		Manganese	Nickel*	Potassium	Selenium		Silver	Sodium	Strontium	Thallium	E	Titanium	Uranium*		Zinc
Location	טו	(mm/dd/yyyy)	mg/L	mg/L	mg/L	m	ng/L	mg/L	mg/L			mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	l n	ng/L
						Acute	Chronic	Chronic		Chronic	Acute	Chronic						Chronic	Acute	Chronic
BC WQG FWAL			n/a	n/a	n/a	0.001-0.03 ^a	0.0009-0.01 ^a	0.025-0.15 ^a	n/a	2	0.0001-0.003 ^a	0.00005-0.0015 ^a	n/a	n/a	n/a	n/a	n/a	0.0085	0.033-2ª	0.0075-2ª
Greenhills Operation																				
GH_TC2	GH_TC2_WS_2022-09-23_N	2022-09-23		0.043		0.00171		0.00732	2.5	176	< 0.000010				< 0.000010	< 0.00010	< 0.00030		< 0.0030	
GH_TC2	GH_TC2_WS_2022-09-24_N	2022-09-24		0.046	171	0.00131		0.00746	2.66	189	< 0.000010				< 0.000010	< 0.00010	< 0.00030		< 0.0030	
GH_TC2	GH_TC2_WS_2022-09-25_N	2022-09-25		0.042	172	0.00127		0.00814	2.59	162	< 0.000010				< 0.000010	< 0.00010	< 0.00030	0.008	< 0.0030	
GH_TC2	GH_TC2_WS_2022-09-26_N	2022-09-26		0.042	169	0.00144		0.00806	2.48	160	< 0.000010				< 0.000010	0.0009	0.00105	0.00796	< 0.0030	
GH_TC2	GH_TC2_WS_2022-09-27_N	2022-09-27		0.043	178	0.00203		0.00903	2.62	167	< 0.000010				< 0.000010	< 0.00010	0.00042	0.00825	< 0.0030	
GH_TC2	GH_TC2_WS_2022-10-03_N	2022-10-05		0.037	170	0.00105		0.00755	2.43	173	< 0.000010				< 0.000010	< 0.00010	< 0.00030	0.00753	< 0.0030	
GH_TC2	GH_TC2_WS_2022-11-07_N	2022-11-09		0.044	194	0.006		0.00818	2.74	176	< 0.000010				< 0.000010	< 0.00010	< 0.00030	0.00746	< 0.0030	
GH_WC1	GH_FOX1_WS_2022-01-03_N	2022-01-11		0.042	165	0.00353		0.00874	2.3	165	< 0.000020				< 0.000020	< 0.00020	< 0.00060		< 0.0060	
GH_WC1	GH_FOX2_WS_2022-02-07_N	2022-02-07		0.088			3	0.0401		182.017	< 0.000020				< 0.000020	< 0.00020	< 0.00060		< 0.0060	
GH_WC1	GH_FOX2_WS_2022-03-07_N	2022-03-09		0.087	138.3			0.039533333		165.017	< 0.000020				< 0.000020	< 0.00020	< 0.00060	0.0092033	< 0.0060	
GH_WC1	GH_WC1_WS_2022-03-14_N	2022-03-16		0.088	136.7		<u>'</u>	0.039266667	3.26	162.683	< 0.000020				< 0.000020	< 0.00020	< 0.00060	0.0101033	< 0.0060	
GH_WC1	GH_WC1_WS_2022-03-21_N	2022-03-23		0.122	208	0.00057		0.0543	4.65	232	< 0.000020				< 0.000020	< 0.00020	< 0.00060	0.0131	< 0.0060	
GH_WC1	GH_WC1_WS_2022-03-28_N	2022-03-30		0.109		0.00074		0.0483	4.4	205	< 0.000020				< 0.000020	< 0.00020	0.00066	0.0118	< 0.0060	
GH_WC1	GH_WC1_WS_2022-04-04_N	2022-04-05		0.068	104	0.00187		0.0222	3.09	121	< 0.000010			0.53	0.000011	< 0.00010	0.0018	0.0058	< 0.0030	
GH_WC1	GH_WC1_WS_2022-04-11_N	2022-04-13	891	0.082	112	0.00091		0.0268	3.2	162	< 0.000010			0.58	0.000011	0.00012	0.00042	0.00749	< 0.0030	
GH_WC1	GH_WC1_WS_2022-04-18_N	2022-04-20		0.094	125	0.00074		0.0331	3.69	186	< 0.000010			0.64	0.000012	< 0.00010	< 0.00030	0.00888	< 0.0030	
GH_WC1	GH_WC1_WS_2022-04-25_N	2022-04-26	1200		158	0.00051		0.0416	3.69	228	< 0.000010			0.7	0.000011	< 0.00010	< 0.00030	0.0103	< 0.0030	
GH_WC1	GH_WC1_WS_2022-05-02_N	2022-05-03	1120		146	0.00195		0.0419	3.82	208	< 0.000010			0.69	0.000014	< 0.00010	0.00039	0.00989	< 0.0030	
GH_WC1	GH_WC1_WS_2022-05-09_N	2022-05-10	1260		167	0.00072		0.0488	4.14	267	< 0.000010			0.73	0.000013	< 0.00010	< 0.00030	0.012	< 0.0030	
GH_WC1	GH_WC1_WS_2022-05-16_N	2022-05-17	1280		167	0.00088		0.0504	4.34	223	< 0.000010			0.69	0.000016	< 0.00010	< 0.00060	0.011	< 0.0030	
GH_WC1	GH_WC1_WS_2022-05-23_N	2022-05-25	1620		196	0.00086		0.0657	5.04	285	< 0.000020				< 0.000020	< 0.00020	< 0.00060	0.0135	< 0.0060	
GH_WC1	GH_WC1_WS_2022-05-30_N	2022-05-31	1660		220	0.00096		0.0744	5	306	< 0.000010			0.8	0.00002	< 0.00010	< 0.00030	0.0148	< 0.0030	
GH_WC1	GH_WC1_WS_2022-06-06_N	2022-06-07	1720		255	0.00091		0.0817	5.59	348	< 0.000010			0.92	0.000021	< 0.00010	< 0.00030	0.0173	< 0.0030	
GH_WC1	GH_WC1_WS_2022-06-13_N	2022-06-14		0.172	236	0.00108		0.082	5.61	340	< 0.000020				< 0.000020	< 0.00020	< 0.00060	0.0169	< 0.0060	
GH_WC1	GH_WC1_WS_2022-06-20_N	2022-06-22		0.125	180	0.00187		0.0586	4.47	256	< 0.000010			0.72	0.000022	< 0.00010	0.00099	0.0136	< 0.0030	
GH_WC1	GH_WC1_WS_2022-06-27_N	2022-06-29		0.111	160	0.00085		0.0474	4	191	< 0.000020				< 0.000020	< 0.00020	< 0.00060	0.0106	< 0.0060	
GH_WC1	GH_FOX2_WS_2022-07-04_N	2022-07-05	1570		210	0.00093		0.0647	5.03	259	< 0.000010			0.74	0.000018	< 0.00010	0.00031	0.0134	< 0.0030	
GH_WC1	GH_WC1_WS_2022-07-11_N	2022-07-12		0.087	118.3		,	0.0383	2.99		< 0.000020				1.93333E-05	< 0.00020	0.0030267		< 0.0060	
GH_WC1	GH_WC1_WS_2022-08-01_N	2022-08-03		0.167	231	0.00115		0.0796	5.78	293	< 0.000050				< 0.000050	< 0.00050	< 0.00150		< 0.0150	
GH_WC1	GH_FOX2_WS_2022-09-05_N	2022-09-07		0.234	300	0.00156		0.106	7.03	420	< 0.000020		30.2		0.000061	< 0.00020	< 0.00060	0.0239	< 0.0060	
GH_WC1	GH_WC1_WS_2022-09-12_N	2022-09-12		0.132	229.3		,	0.072833333		280.683	< 0.000020				2.26667E-05	< 0.00020	< 0.00060		< 0.0060	
GH_WC1	GH_WC1_WS_2022-10-03_N	2022-10-04		0.201	296	0.00105		0.105	7.04	459	< 0.000010			0.96	0.000032	< 0.00010	< 0.00030	0.0239	< 0.0030	
GH_WC1	GH_FOX2_WS_2022-11-07_N	2022-11-08	2340	0.192	315	0.00105		0.0989	6.88	396	< 0.000020		29.3	1	0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	

Denotes concentration less than indicated detection limit
 Denotes analysis not conducted

n/a denotes no applicable standard

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

											Total Metals							
			s	Ę	>			*E	_		E	_	트					
			l se	Ĭ.		늘	<u>*</u>		<u> </u>	_	E E	Cirm	l É	Ħ	ē			
			뒫	Ę	rtimo	Ser	를	_ ₹	ismuth	or or	Cadm	5	hromiur	Coba	Coppe	5	2	5
Sample	Sample	Sample Date	Ŧ	Alı	¥	۲	Ва	Be	ä	Bo	င်ဒ	င်ဒ	៦	ပိ	ပိ	<u> 2</u>	4	í
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg	j/L	mg	
						_	nic.	읃		Chronic				Acute Chronic				ronic
						🐇	ē	2		₽				Acute		cute	¥	2
						ΡĊ	ริ	5		ភ				¥ 5		¥	δ	5
BC WQG FWAL			n/a	n/a	n/a	0.005	1	0.00013	n/a	1.2	n/a	n/a	n/a	0.11 0.00	4 n/a	1	0.003-5.5°	3.3-3.5 ^a
Line Creek Operation																		
LC_DCDS	LC_DCDS_WS_Q1-2022_N	2022-01-05	-	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC_DCDS	LC_DCDS_WS_2022-01-10_N	2022-01-12	513	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC_DCDS LC_DCDS	LC_DCDS_WS_2022-01-17_N LC_DCDS_WS_2022-01-24_N	2022-01-19	499 557	< 0.0060 < 0.0060	0.0014 0.0014	0.00022	0.0522	< 0.040	< 0.000100 < 0.000100	0.03	< 0.0100 < 0.0100	401 401	< 0.00020 < 0.00020	2E-04 2E-04	< 0.00100 < 0.00100	< 0.020	< 0.000100	
LC DCDS	LC DCDS WS 2022-01-24 N LC DCDS WS 2022-01-31 N	2022-01-26	516	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04 2E-04	< 0.00100	< 0.020	< 0.000100	
LC DCDS	LC DCDS MNT 2022-01-31 N	2022-02-01	552	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC DCDS	LC DCDS WS 2022-02-14 N	2022-02-15	598	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC_DCDS	LC_DCDS_WS_2022-02-21_N	2022-02-22	551	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC_DCDS	LC_DCDS_WS_2022-02-28_N	2022-03-01	568	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	j
LC_DCDS	LC_DCDS_WS_2022-03-07_N	2022-03-08	527	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC_DCDS	LC_DCDS_WS_2022-03-14_N	2022-03-15	552	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC_DCDS	LC_DCDS_WS_2022-03-21_N	2022-03-23	541	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC_DCDS LC_DCDS	LC_DCDS_WS_2022-03-28_N LC_DCDS_WS_Q2-2022_N	2022-03-30	605 143	< 0.0060 < 0.0060	0.0014 0.0014	0.00022	0.0522	< 0.040	< 0.000100 < 0.000100	0.03	< 0.0100 < 0.0100	401 401	< 0.00020 < 0.00020	2E-04 2E-04	< 0.00100 < 0.00100	< 0.020	< 0.000100	
LC_DCDS	LC DCDS WS Q2-2022 N LC DCDS WS 2022-04-11 N	2022-04-06	301	< 0.0060	0.0014	0.00022	0.0522 0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC DCDS	LC DCDS WS 2022-04-11 N	2022-04-17	263	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC DCDS	LC DCDS WS 2022-04-25 N	2022-04-24	324	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC_DCDS	LC_DCDS_MNT_2022-05-03_N	2022-05-03	306	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC_DCDS	LC_DCDS_WS_2022-05-09_N	2022-05-11	268	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC DCDS	LC CC3 WS 2022-05-16 N	2022-05-17	291	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC_DCDS	LC DCDS WS 2022-05-23 N	2022-05-24	204	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC_DCDS LC_DCDS	LC CC3 WS 2022-05-30 N LC DCDS MNT 2022-06-07 N	2022-05-31	298 278	< 0.0060 < 0.0060	0.0014 0.0014	0.00022	0.0522 0.0522	< 0.040 < 0.040	< 0.000100 < 0.000100	0.03	< 0.0100 < 0.0100	401 401	< 0.00020 < 0.00020	2E-04 2E-04	< 0.00100 < 0.00100	< 0.020	< 0.000100	
LC DCDS	LC DCDS WS 2022-06-13 N	2022-06-14	296	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC DCDS	LC DCDS WS 2022-06-17 N	2022-06-17	326	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC_DCDS	LC DCDS WS 2022-06-17 NP1	2022-06-17	-	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC_DCDS	LC DCDS WS 2022-06-19 N	2022-06-19	-	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	j
LC DCDS	LC CC3 WS 2022-06-20 N	2022-06-21	-	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC_DCDS	LC_DCDS_WS_2022-06-27_N	2022-06-28	234	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC DCDS LC DCDS	LC DCDS WS Q3-2022 N LC CC3 WS 2022-07-11 N	2022-07-07	278 338	< 0.0060 < 0.0060	0.0014 0.0014	0.00022	0.0522	< 0.040	< 0.000100 < 0.000100	0.03	< 0.0100	401 401	< 0.00020 < 0.00020	2E-04 2E-04	< 0.00100 < 0.00100	< 0.020 < 0.020	< 0.000100	
LC DCDS	LC DCDS WS 2022-07-11 N	2022-07-12	368	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04 2E-04	< 0.00100	< 0.020	< 0.000100	
LC DCDS	LC DCDS WS 2022-07-16 N	2022-07-10	399	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC DCDS	LC CC3 MNT 2022-08-02 N	2022-08-02	406	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC DCDS	LC DCDS WS 2022-08-08 N	2022-08-09	419	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC_DCDS	LC_DCDS_WS_SESMP_2022-08_N	2022-08-18	469	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC_DCDS	LC_DCDS_WS_2022-08-22_N	2022-08-23	509	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC DCDS LC DCDS	LC DCDS WS 2022-08-29 N	2022-08-30	257 261	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401 401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC DCDS	LC DCDS MNT 2022-09-06 N LC DCDS WS 2022-09-12 N	2022-09-06	566	< 0.0060 < 0.0060	0.0014 0.0014	0.00022	0.0522	< 0.040	< 0.000100 < 0.000100	0.03	< 0.0100 < 0.0100	401	< 0.00020 < 0.00020	2E-04 2E-04	< 0.00100 < 0.00100	< 0.020 < 0.020	< 0.000100	
LC DCDS	LC DCDS WS 2022-09-12 N	2022-09-20	557	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC DCDS	LC DCDS WS 2022-09-26 N	2022-09-27	559	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC DCDS	MORTALITY PKG 8	2022-10-04	306	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100)
LC_DCDS	LC_DCDS_MORTALITY_2022-10-05_N	2022-10-05	570	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC_DCDS	LC DCDS MORTALITY 2022-10-06 N	2022-10-06	585	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC_DCDS	LC_DCDS_MORTALITY_2022-10-07_N	2022-10-07	581	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC_DCDS	LC DCDS WS 2022-10-10 N	2022-10-11	564	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100 < 0.0100	401 401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC_DCDS LC_DCDS	LC CC3 WS 2022-10-17 N LC DCDS WS 2022-10-24 N	2022-10-18	606 625	< 0.0060 < 0.0060	0.0014 0.0014	0.00022	0.0522	< 0.040	< 0.000100 < 0.000100	0.03	< 0.0100	401	< 0.00020 < 0.00020	2E-04 2E-04	< 0.00100 < 0.00100	< 0.020 < 0.020	< 0.000100	
LC_DCDS LC_DCDS	LC DCDS_WS_2022-10-24_N LC SPDC_WS_2022-10-31_N	2022-10-25	621	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020		< 0.00100	< 0.020	< 0.000100	
		. 2022-11-01	021	- 0.0000	0.0017	. 0.00022	0.0022	0.040		. 0.00	0.0100		0.00020		0.00100	0.020	0.000 100	

Denotes concentration less than indicated detection limit
 Denotes analysis not conducted
 n/a denotes no applicable standard

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

										Total Metals								
Sample Location	Sample ID	Sample Date (mm/dd/yyyy)	Hardness	E mg/L	Magnesium		Nickel*	Mg/Potassium	ъg/L Selenium	Jaovis mg/L	wg/l	Strontium	mg/L	Ę mg/L	mg/L	mg/L		o N ng/L
						Acute	Chronic		Chronic	Acute						Chronic	Acute	Chronic
BC WQG FWAL			n/a	n/a	n/a	0.001-0.03 ^a 0.0009-0.01 ^a	0.025-0.15 ^a	n/a	2	0.0001-0.003ª 0.00005-0.0015	a n/a	n/a	n/a	n/a	n/a	0.0085	0.033-2ª	0.0075-2ª
Line Creek Operation																		
LC_DCDS	LC_DCDS_WS_Q1-2022_N	2022-01-05	-			0.00105	0.0989	6.88	396	< 0.000020	29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC_DCDS LC_DCDS	LC_DCDS_WS_2022-01-10_N LC_DCDS_WS_2022-01-17_N	2022-01-12	513 499			0.00105 0.00105	0.0989	6.88	396 396	< 0.000020 < 0.000020	29.3		0.000026	< 0.00020 < 0.00020	< 0.00060 < 0.00060	0.0203 0.0203	< 0.0060 < 0.0060	
LC_DCDS	LC DCDS_WS_2022-01-17_N LC DCDS WS_2022-01-24_N	2022-01-19	557			0.00105	0.0989	6.88	396	< 0.000020	29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC DCDS	LC DCDS WS 2022-01-24 N	2022-01-20	516			0.00105	0.0989	6.88	396	< 0.000020	29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC_DCDS	LC_DCDS_MNT_2022-02-08_N	2022-02-09	552			0.00105	0.0989	6.88	396	< 0.000020	29.3	1	0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC_DCDS	LC_DCDS_WS_2022-02-14_N	2022-02-15	598			0.00105	0.0989	6.88	396	< 0.000020	29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC_DCDS	LC_DCDS_WS_2022-02-21_N	2022-02-22	551			0.00105	0.0989	6.88	396	< 0.000020	29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC_DCDS	LC_DCDS_WS_2022-02-28_N	2022-03-01	568 527			0.00105 0.00105	0.0989	6.88	396 396	< 0.000020 < 0.000020	29.3		0.000026	< 0.00020 < 0.00020	< 0.00060 < 0.00060	0.0203	< 0.0060	
LC DCDS LC DCDS	LC DCDS WS 2022-03-07 N LC DCDS WS 2022-03-14 N	2022-03-08 2022-03-15	552			0.00105	0.0989	6.88	396	< 0.000020	29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC DCDS	LC DCDS WS 2022-03-14 N	2022-03-13	541			0.00105	0.0989	6.88	396	< 0.000020	29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC DCDS	LC DCDS WS 2022-03-28 N	2022-03-30	605			0.00105	0.0989	6.88	396	< 0.000020	29.3			< 0.00020	< 0.00060	0.0203	< 0.0060	
LC_DCDS	LC DCDS WS Q2-2022 N	2022-04-06	143	0.192	315	0.00105	0.0989	6.88	396	< 0.000020	29.3	1	0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC_DCDS	LC_DCDS_WS_2022-04-11_N	2022-04-12	301			0.00105	0.0989	6.88	396	< 0.000020	29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC_DCDS	LC_DCDS_WS_2022-04-18_N	2022-04-17	263			0.00105	0.0989	6.88	396	< 0.000020	29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC_DCDS	LC DCDS WS 2022-04-25 N	2022-04-24	324			0.00105	0.0989	6.88	396	< 0.000020	29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC_DCDS LC_DCDS	LC DCDS MNT_2022-05-03 N LC DCDS WS 2022-05-09 N	2022-05-03	306 268			0.00105 0.00105	0.0989	6.88	396 396	< 0.000020 < 0.000020	29.3		0.000026 0.000026	< 0.00020 < 0.00020	< 0.00060 < 0.00060	0.0203 0.0203	< 0.0060 < 0.0060	
LC DCDS	LC CC3 WS 2022-05-09 N	2022-05-17	291			0.00105	0.0989	6.88	396	< 0.000020	29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC DCDS	LC DCDS WS 2022-05-10 N	2022-05-24	204			0.00105	0.0989	6.88	396	< 0.000020	29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC DCDS	LC CC3 WS 2022-05-30 N	2022-05-31	298				0.0989	6.88	396	< 0.000020	29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC_DCDS	LC_DCDS_MNT_2022-06-07_N	2022-06-07	278	0.192	315	0.00105	0.0989	6.88	396	< 0.000020	29.3	1	0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC_DCDS	LC DCDS WS 2022-06-13 N	2022-06-14	296			0.00105	0.0989	6.88	396	< 0.000020	29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC_DCDS	LC_DCDS_WS_2022-06-17_N	2022-06-17	326			0.00105	0.0989	6.88	396	< 0.000020	29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC_DCDS	LC_DCDS_WS_2022-06-17_NP1	2022-06-17	-	0.192			0.0989	6.88	396	< 0.000020	29.3			< 0.00020	< 0.00060	0.0203	< 0.0060	
LC DCDS LC DCDS	LC DCDS WS 2022-06-19 N LC CC3 WS 2022-06-20 N	2022-06-19	-	0.192		0.00105 0.00105	0.0989	6.88	396 396	< 0.000020 < 0.000020	29.3		0.000026	< 0.00020 < 0.00020	< 0.00060 < 0.00060	0.0203 0.0203	< 0.0060 < 0.0060	
LC DCDS	LC DCDS WS 2022-06-20 N	2022-06-21	234			0.00105	0.0989	6.88	396	< 0.000020	29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC DCDS	LC DCDS WS Q3-2022 N	2022-07-07	278				0.0989	6.88	396	< 0.000020	29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC DCDS	LC CC3 WS 2022-07-11 N	2022-07-12	338			0.00105	0.0989	6.88	396	< 0.000020	29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC_DCDS	LC DCDS WS 2022-07-18 N	2022-07-18	368	0.192		0.00105	0.0989	6.88	396	< 0.000020	29.3	1	0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC_DCDS	LC_DCDS_WS_2022-07-25_N	2022-07-25	399			0.00105	0.0989	6.88	396	< 0.000020	29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC_DCDS	LC CC3 MNT 2022-08-02 N	2022-08-02	406				0.0989	6.88	396	< 0.000020	29.3			< 0.00020	< 0.00060	0.0203	< 0.0060	
LC DCDS LC DCDS	LC DCDS WS 2022-08-08 N LC DCDS WS SESMP 2022-08 N	2022-08-09	419 469			0.00105 0.00105	0.0989	6.88	396	< 0.000020	29.3		0.000026	< 0.00020 < 0.00020	< 0.00060	0.0203 0.0203	< 0.0060	
LC DCDS	LC DCDS WS SESMP 2022-08 N LC DCDS WS 2022-08-22 N	2022-08-18	509			0.00105	0.0989	6.88	396 396	< 0.000020 < 0.000020	29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060 < 0.0060	
LC DCDS	LC DCDS WS 2022-08-29 N	2022-08-23	257			0.00105	0.0989	6.88	396	< 0.000020	29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC DCDS	LC DCDS MNT 2022-09-06 N	2022-09-06	261			0.00105	0.0989	6.88	396	< 0.000020	29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC_DCDS	LC_DCDS_WS_2022-09-12_N	2022-09-13	566			0.00105	0.0989	6.88	396	< 0.000020	29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC_DCDS	LC DCDS WS 2022-09-19 N	2022-09-20	557			0.00105	0.0989	6.88	396	< 0.000020	29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC DCDS	LC DCDS WS 2022-09-26 N	2022-09-27	559			0.00105	0.0989	6.88	396	< 0.000020	29.3			< 0.00020	< 0.00060	0.0203	< 0.0060	
LC DCDS LC DCDS	MORTALITY PKG 8 LC DCDS MORTALITY 2022-10-05 N	2022-10-04	306 570			0.00105 0.00105	0.0989	6.88	396 396	< 0.000020 < 0.000020	29.3		0.000026	< 0.00020 < 0.00020	< 0.00060 < 0.00060	0.0203 0.0203	< 0.0060 < 0.0060	
LC_DCDS	LC DCDS MORTALITY 2022-10-05 N	2022-10-05	585			0.00105	0.0989	6.88	396	< 0.000020	29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC DCDS	LC DCDS MORTALITY 2022-10-00 N	2022-10-07	581			0.00105	0.0989	6.88	396	< 0.000020	29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC DCDS	LC DCDS WS 2022-10-10 N	2022-10-11	564				0.0989	6.88	396	< 0.000020	29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC_DCDS	LC_CC3_WS_2022-10-17_N	2022-10-18	606	0.192		0.00105	0.0989	6.88	396	< 0.000020	29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC_DCDS	LC_DCDS_WS_2022-10-24_N	2022-10-25	625			0.00105	0.0989	6.88	396	< 0.000020	29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC DCDS	LC SPDC WS 2022-10-31 N	2022-11-01	621	0.192	315	0.00105	0.0989	6.88	396	< 0.000020	29.3	1_1	0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	

Denotes concentration less than indicated detection limit
 Denotes analysis not conducted
 n/a denotes no applicable standard

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

											Total Metals							
			s,	Ę	_ ≥		_	*E	_ ا		Ε	_	[
			nes	į.	<u> </u>	을	<u>*</u>		1 1	=	를	Cium	o min	=	, e		1 _	_
			ar a	5	rtimo	Se	ari i	<u></u>	Smuth	<u>د</u>	E	<u> </u>	I .E	Copi	obbe	5	2	š l
Sample	Sample	Sample Date	Ť.	_ ₹	₹	₹	ă.	ı ă	m	ă,	Ö	ű	<u> </u>				_	
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg	3/L	mg	
						يو ا	onic	ਵ		Ĕ				e j		يو ا		onic
						2	, P	¥		Chronic				Acute Chronic		2	1 5	¥
BC WQG FWAL			1-			0.005	-	0.00013		1.2	1			0.11 0.00	4	4	0.000.5.5	
Line Creek Operation			n/a	n/a	n/a	0.005	1	0.00013	n/a	1.2	n/a	n/a	n/a	0.11 0.00	4 n/a	1	0.003-5.5°	3.3-3.5
LC DCDS	LC_CC3_WS_2022-10-31_N	2022-11-01	610	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	1
LC DCDS	LC DCDS MNT 2022-11-08 N	2022-11-08	589	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC_DCDS	LC_DCDS_WS_2022-11-14_N	2022-11-15	610	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100)
LC_DCDS	LC_DCDS_WS_2022-11-21_N	2022-11-22	674	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC_LC12	LC_LC12_MNT_2022-05-03_N	2022-05-02	658	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC_LC12	LC_LC12_WS_2022-05-09_N	2022-05-09	504	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC_LC12 LC_LC12	LC LC12 WS 2022-05-16 N LC LC12 WS 2022-05-23 N	2022-05-18 2022-05-24	-	< 0.0060 < 0.0060	0.0014 0.0014	0.00022	0.0522	< 0.040 < 0.040	< 0.000100 < 0.000100	0.03	< 0.0100 < 0.0100	401 401	< 0.00020 < 0.00020	2E-04 2E-04	< 0.00100 < 0.00100	< 0.020 < 0.020	< 0.000100	
LC_LC12	LC LC12 WS 2022-05-23 N LC LC12 WS 2022-05-30 N	2022-05-30	H	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04 2E-04	< 0.00100	< 0.020	< 0.000100	
LC LC12	LC LC12 MNT 2022-06-07 N	2022-06-06	-	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC_LC12	LC_LC12_WS_2022-06-13_N	2022-06-13	284	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC_LC12	LC_LC12_WS_2022-06-20_N	2022-06-20	-	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC_LC12	LC_LC12_WS_2022-06-27_N	2022-06-27	-	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC_LC12	LC LC12 WS Q3-2022 N	2022-07-05	-	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC_LC12 LC LCDSSLCC	LC_LC12_WS_2022-07-11_N LC_LCDSSLCC_WS_Q1-2022_N	2022-07-13	266	< 0.0060 < 0.0060	0.0014 0.0014	0.00022	0.0522	< 0.040 < 0.040	< 0.000100 < 0.000100	0.03	< 0.0100 < 0.0100	401 401	< 0.00020 < 0.00020	2E-04 2E-04	< 0.00100 < 0.00100	< 0.020 < 0.020	< 0.000100	
LC LCDSSLCC	LC LCDSSLCC WS Q1-2022 N LC LCDSSLCC WS 2022-01-10 N	2022-01-04	536	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04 2E-04	< 0.00100	< 0.020	< 0.000100	
LC LCDSSLCC	LC LCDSSLCC WS 2022-01-17 N	2022-01-10	527	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC_LCDSSLCC	LC LCDSSLCC WS 2022-01-24 N	2022-01-25	536	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC_LCDSSLCC	LC LCDSSLCC WS 2021-01-31 N	2022-02-01	552	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100)
LC LCDSSLCC	LC LCDSSLCC MNT 2021-02-08 N	2022-02-08	572	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC_LCDSSLCC	LC_LCDSSLCC_WS_2021-02-14_N	2022-02-15	554	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC_LCDSSLCC LC_LCDSSLCC	LC LCDSSLCC WC 2022-02-18 N LC LCDSSLCC WS 2022-02-21 N	2022-02-18	562 613	< 0.0060 < 0.0060	0.0014 0.0014	0.00022	0.0522 0.0522	< 0.040	< 0.000100 < 0.000100	0.03	< 0.0100 < 0.0100	401 401	< 0.00020 < 0.00020	2E-04 2E-04	< 0.00100	< 0.020	< 0.000100	
LC LCDSSLCC	LC CC1 WS 2022-02-21 N	2022-02-22	632	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04 2E-04	< 0.00100	< 0.020	< 0.000100	
LC LCDSSLCC	LC LCDSSLCC WS 2022-02-28 N	2022-03-01	627	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC LCDSSLCC	LC LCDSSLCC MNT 2021-03-07 N	2022-03-08	-	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC_LCDSSLCC	LC LCDSSLCC WS 2022-03-14 N	2022-03-15	577	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-03-21_N	2022-03-22	569	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC_LCDSSLCC	LC LCDSSLCC WS 2022-03-28 N	2022-03-28	588	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC LCDSSLCC LC LCDSSLCC	LC LCDSSLCC WS Q2-2022 N LC LCDSSLCC WS 2022-04-11 N	2022-04-07 2022-04-11	666 566	< 0.0060 < 0.0060	0.0014 0.0014	0.00022	0.0522	< 0.040 < 0.040	< 0.000100 < 0.000100	0.03	< 0.0100 < 0.0100	401 401	< 0.00020 < 0.00020	2E-04 2E-04	< 0.00100 < 0.00100	< 0.020 < 0.020	< 0.000100	
LC LCDSSLCC	LC LCDSSLCC WS 2022-04-11 N	2022-04-11	589	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04 2E-04	< 0.00100	< 0.020	< 0.000100	
LC LCDSSLCC	LC LCDSSLCC WS 2022-04-25 N	2022-04-25	527	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC LCDSSLCC	LC LCDSSLCC MNT 2022-05-03 N	2022-05-04	528	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	0
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-05-09_N	2022-05-09	465	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC_LCDSSLCC	LC LCDSSLCC WS 2022-05-16 N	2022-05-17	341	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC LCDSSLCC LC LCDSSLCC	LC LCDSSLCC WS 2022-05-23 N LC LCDSSLCC WS 2022-05-30 N	2022-05-24	368 387	< 0.0060 < 0.0060	0.0014 0.0014	0.00022	0.0522 0.0522	< 0.040 < 0.040	< 0.000100 < 0.000100	0.03	< 0.0100 < 0.0100	401 401	< 0.00020 < 0.00020	2E-04 2E-04	< 0.00100 < 0.00100	< 0.020	< 0.000100	
LC LCDSSLCC	LC LCDSSLCC WS 2022-05-30 N	2022-05-31	271	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04 2E-04	< 0.00100	< 0.020	< 0.000100	
LC LCDSSLCC	LC LCDSSLCC WN1 2022-06-07 N	2022-06-14	236	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC LCDSSLCC	LC LCUSWLC WS 2022-06-20 N	2022-06-22	215	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC LCDSSLCC	LC LCDSSLCC WS 2022-06-27 N	2022-06-27	265	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC_LCDSSLCC	LC_LCDSSLCC_WS_Q3-2022_N	2022-07-05	252	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-07-11_N	2022-07-11	239	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC_LCDSSLCC	LC LCDSSLCC WS 2022-07-18 N	2022-07-19	280 330	< 0.0060	0.0014	0.00022	0.0522 0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020 < 0.00020	2E-04 2E-04	< 0.00100	< 0.020	< 0.000100	
LC_LCDSSLCC LC_LCDSSLCC	LC LCDSSLCC WS 2022-07-25 N LC LCDSSLCC MNT 2022-08-02 N	2022-07-26	374	< 0.0060 < 0.0060	0.0014 0.0014	0.00022 0.00022	0.0522	< 0.040	< 0.000100 < 0.000100	0.03	< 0.0100 < 0.0100	401 401	< 0.00020	2E-04 2E-04	< 0.00100 < 0.00100	< 0.020	< 0.000100	
LC LCDSSLCC	LC LCDSSLCC WIN1 2022-06-02 N	2022-08-09	393	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04 2E-04	< 0.00100	< 0.020	< 0.000100	
LC LCDSSLCC	LC LCDSSLCC WS 2022-08-15 N	2022-08-16		< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020		< 0.00100	< 0.020		

Denotes concentration less than indicated detection limit
 Denotes analysis not conducted
 n/a denotes no applicable standard

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

										Total Metals								$\overline{}$
		1								Total motalo								
					l _													
			v		5	98		E	_			lε	_		_	*_		
			Sec	E	esi	Ē.	*_	is:	.≣	_	⊑	Strontium	E E		Titanium	5		
			힏	∄	Magn	Ď u	ckel	tas	e i	Silver	Sodium	<u>5</u>	allin	_ ا	a a	raniu		ဥ
Sample	Sample	Sample Date	Ξ	ı	Wa	W _S	ž	Po	Se	lis lis	ြတ္တ	Str	£	Ë	Į	์ ร		Ϊ́
Location	ID	(mm/dd/yyyy)	mg/L	mg/L	mg/L		mg/L	mg/L	μg/L	mg/L	mg/	L mg/L	mg/L	mg/L	mg/L	mg/L	n	ng/L
						ng rite β	읃		을	, E						ronic		을
						cute	욛		5	Acute						일 일	\cute	וסיר
						∢ ∪	5		5	_ `	_					ะ์		5
BC WQG FWAL			n/a	n/a	n/a	0.001-0.03 ^a 0.0009-0.01 ^a	0.025-0.15 ^a	n/a	2	0.0001-0.003 ^a 0.00005-0.0015 ^s	¹ n/a	n/a	n/a	n/a	n/a	0.0085	0.033-2ª	0.0075-2ª
Line Creek Operation	10.000 110.0000 10.01 11	0000 11 01	040	10.400	1 045						Too d							
LC_DCDS LC_DCDS	LC_CC3_WS_2022-10-31_N LC_DCDS_MNT_2022-11-08_N	2022-11-01	610 589			0.00105 0.00105	0.0989	6.88	396 396	< 0.000020 < 0.000020	29.3		0.000026 0.000026	< 0.00020 < 0.00020	< 0.00060 < 0.00060	0.0203 0.0203	< 0.0060 < 0.0060	
LC_DCDS	LC_DCDS_MN1_2022-11-08_N LC_DCDS_WS_2022-11-14_N	2022-11-08	610			0.00105	0.0989	6.88	396	< 0.000020	29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC DCDS	LC DCDS WS 2022-11-12 N	2022-11-13	674			0.00105	0.0989	6.88	396	< 0.000020	29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC LC12	LC LC12 MNT 2022-05-03 N	2022-05-02	658			0.00105	0.0989	6.88	396	< 0.000020	29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC_LC12	LC LC12 WS 2022-05-09 N	2022-05-09	504			0.00105	0.0989	6.88	396	< 0.000020	29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC_LC12	LC LC12 WS 2022-05-16 N	2022-05-18	-	0.192		0.00105	0.0989	6.88	396	< 0.000020	29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC_LC12	LC_LC12_WS_2022-05-23_N	2022-05-24	-	0.192		0.00105	0.0989	6.88	396	< 0.000020	29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC_LC12	LC_LC12_WS_2022-05-30_N	2022-05-30	-	0.192		0.00105	0.0989	6.88	396	< 0.000020	29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC_LC12	LC LC12 MNT 2022-06-07 N	2022-06-06	-	0.192		0.00105	0.0989	6.88	396	< 0.000020	29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC_LC12	LC_LC12_WS_2022-06-13_N	2022-06-13	284			0.00105	0.0989	6.88	396	< 0.000020	29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC_LC12 LC_LC12	LC LC12 WS 2022-06-20 N LC LC12 WS 2022-06-27 N	2022-06-20	-	0.192		0.00105 0.00105	0.0989	6.88	396 396	< 0.000020 < 0.000020	29.3		0.000026 0.000026	< 0.00020 < 0.00020	< 0.00060	0.0203 0.0203	< 0.0060	
LC_LC12	LC LC12 WS 2022-06-27 N	2022-06-27	-	0.192		0.00105	0.0989	6.88	396	< 0.000020	29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC LC12	LC LC12 WS 2022-07-11 N	2022-07-03	266			0.00105	0.0989	6.88	396	< 0.000020	29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC LCDSSLCC	LC LCDSSLCC WS Q1-2022 N	2022-01-04	-	0.192		0.00105	0.0989	6.88	396	< 0.000020	29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC LCDSSLCC	LC LCDSSLCC WS 2022-01-10 N	2022-01-10	536	0.192		0.00105	0.0989	6.88	396	< 0.000020	29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC_LCDSSLCC	LC LCDSSLCC_WS_2022-01-17_N	2022-01-17	527	0.192		0.00105	0.0989	6.88	396	< 0.000020	29.3	3 1	0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-01-24_N	2022-01-25	536			0.00105	0.0989	6.88	396	< 0.000020	29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC_LCDSSLCC	LC LCDSSLCC WS 2021-01-31 N	2022-02-01	552			0.00105	0.0989	6.88	396	< 0.000020	29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC LCDSSLCC	LC LCDSSLCC MNT 2021-02-08 N	2022-02-08	572	0.192		0.00105	0.0989	6.88	396	< 0.000020	29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC_LCDSSLCC	LC_LCDSSLCC_WS_2021-02-14_N	2022-02-15	554			0.00105	0.0989	6.88	396	< 0.000020	29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC_LCDSSLCC	LC_LCDSSLCC_WC_2022-02-18_N	2022-02-18	562			0.00105	0.0989	6.88	396	< 0.000020	29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC LCDSSLCC LC LCDSSLCC	LC LCDSSLCC WS 2022-02-21 N LC CC1 WS 2022-02-28 N	2022-02-22	613 632			0.00105 0.00105	0.0989	6.88	396 396	< 0.000020 < 0.000020	29.3		0.000026 0.000026	< 0.00020 < 0.00020	< 0.00060 < 0.00060	0.0203 0.0203	< 0.0060	
LC_LCDSSLCC	LC LCDSSLCC WS 2022-02-28 N	2022-03-01	627			0.00105	0.0989	6.88	396	< 0.000020	29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC LCDSSLCC	LC LCDSSLCC MNT 2021-03-07 N	2022-03-01	- 021	0.192		0.00105	0.0989	6.88	396	< 0.000020	29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC LCDSSLCC	LC LCDSSLCC WS 2022-03-14 N	2022-03-15	577			0.00105	0.0989	6.88	396	< 0.000020	29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC_LCDSSLCC	LC LCDSSLCC WS 2022-03-21 N	2022-03-22	569	0.192	315	0.00105	0.0989	6.88	396	< 0.000020	29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC LCDSSLCC	LC LCDSSLCC WS 2022-03-28 N	2022-03-28	588	0.192	315	0.00105	0.0989	6.88	396	< 0.000020	29.3	3 1	0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC LCDSSLCC	LC LCDSSLCC WS Q2-2022 N	2022-04-07	666				0.0989	6.88	396	< 0.000020	29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC LCDSSLCC	LC LCDSSLCC WS 2022-04-11 N	2022-04-11	566	0.192		0.00105	0.0989	6.88	396	< 0.000020	29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-04-18_N	2022-04-19	589			0.00105	0.0989	6.88	396	< 0.000020	29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC_LCDSSLCC	LC LCDSSLCC WS 2022-04-25 N	2022-04-25	527			0.00105	0.0989	6.88	396	< 0.000020	29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC LCDSSLCC LC LCDSSLCC	LC LCDSSLCC MNT 2022-05-03 N LC LCDSSLCC WS 2022-05-09 N	2022-05-04	528 465			0.00105 0.00105	0.0989	6.88	396	< 0.000020 < 0.000020	29.3		0.000026 0.000026	< 0.00020 < 0.00020	< 0.00060	0.0203	< 0.0060	
LC LCDSSLCC	LC LCDSSLCC WS 2022-05-09 N LC LCDSSLCC WS 2022-05-16 N	2022-05-09	341			0.00105	0.0989	6.88	396 396	< 0.000020 < 0.000020	29.3		0.000026	< 0.00020	< 0.00060 < 0.00060	0.0203 0.0203	< 0.0060	
LC LCDSSLCC	LC LCDSSLCC WS 2022-05-16 N	2022-05-17	368			0.00105	0.0989	6.88	396	< 0.000020	29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC LCDSSLCC	LC LCDSSLCC WS 2022-05-30 N	2022-05-31	387			0.00105	0.0989	6.88	396	< 0.000020	29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC LCDSSLCC	LC LCDSSLCC MNT 2022-06-07 N	2022-06-06	271				0.0989	6.88	396	< 0.000020	29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC_LCDSSLCC	LC LCDSSLCC WS 2022-06-13 N	2022-06-14	236			0.00105	0.0989	6.88	396	< 0.000020	29.3	3 1	0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC LCDSSLCC	LC LCUSWLC WS 2022-06-20 N	2022-06-22	215			0.00105	0.0989	6.88	396	< 0.000020	29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC_LCDSSLCC	LC LCDSSLCC WS 2022-06-27 N	2022-06-27	265	0.192		0.00105	0.0989	6.88	396	< 0.000020	29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC_LCDSSLCC	LC LCDSSLCC WS Q3-2022 N	2022-07-05	252			0.00105	0.0989	6.88	396	< 0.000020	29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC_LCDSSLCC	LC LCDSSLCC WS 2022-07-11 N	2022-07-11	239			0.00105	0.0989	6.88	396	< 0.000020	29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC_LCDSSLCC LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-07-18_N	2022-07-19	280 330	0.192		0.00105 0.00105	0.0989	6.88	396	< 0.000020	29.3		0.000026 0.000026	< 0.00020 < 0.00020	< 0.00060	0.0203	< 0.0060	
LC_LCDSSLCC LC_LCDSSLCC	LC LCDSSLCC WS 2022-07-25 N LC LCDSSLCC MNT 2022-08-02 N	2022-07-26	374			0.00105	0.0989	6.88	396 396	< 0.000020 < 0.000020	29.3		0.000026	< 0.00020	< 0.00060	0.0203 0.0203	< 0.0060	
LC_LCDSSLCC LC_LCDSSLCC	LC LCDSSLCC WIN1 2022-08-02 N	2022-08-09	393			0.00105	0.0989	6.88	396	< 0.000020	29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC LCDSSLCC	LC LCDSSLCC WS 2022-08-08 N	2022-08-09		0.192			0.0989	6.88	396	< 0.000020	29.3		0.000026	< 0.00020	< 0.00060		< 0.0060	
							0.0000	. 0.00										

Denotes concentration less than indicated detection limit
 Denotes analysis not conducted
 n/a denotes no applicable standard

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

											Total Metals							
			ss	m	è			,mm,	_		E	_	E					
0	O-mark-	Committee Bode	ardne	Aluminum	ntimony	Arsenic	arium'	erylliu	ismuth	oron	Cadmium	Calcium	Chromium	Cobalt	Copper	Ę.	ead	i
Sample Location	Sample ID	Sample Date (mm/dd/yyyy)	ma/l	mg/L	∢ mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg		mg	
20041011		(9/2	9.2	g			.i.g. 2	g/_		9.2	9.2	9.2		9	Ī	9	
						Acute	Chronic	Chroni		Chronic				Acute		Acute	Acute	Chronic
BC WQG FWAL			n/a	n/a	n/a	0.005	1	0.00013	n/a	1.2	n/a	n/a	n/a	0.11 0.004	n/a	1	0.003-5.5°	3.3-3.5ª
Line Creek Operation																		
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-08-22_N	2022-08-23	438	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020		< 0.00100	< 0.020	< 0.000100	
LC_LCDSSLCC	LC_CC1_WS_2022-08-22_N	2022-08-23	-	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-08-29_N	2022-08-30	456	< 0.0060 < 0.0060	0.0014	0.00022	0.0522	< 0.040 < 0.040	< 0.000100	0.03	< 0.0100 < 0.0100	401 401	< 0.00020 < 0.00020	2E-04	< 0.00100 < 0.00100	< 0.020	< 0.000100 < 0.000100	
LC_LCDSSLCC LC_LCDSSLCC	LC LCDSSLCC MNT 2022-09-06 N LC LCDSSLCC WS 2022-09-12 N	2022-09-06 2022-09-13	425 479	< 0.0060	0.0014	0.00022	0.0522 0.0522	< 0.040	< 0.000100 < 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04 2E-04	< 0.00100	< 0.020	< 0.000100	
LC LCDSSLCC	LC_LCDSSLCC_WS_2022-09-12_N	2022-09-19	469	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC LCDSSLCC	LC CC1 WS 2022-09-19 N	2022-09-19	-	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-09-26_N	2022-09-29	470	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100)
LC_LCDSSLCC	LC_CC2_WS_Q4-2022_N	2022-10-03	474	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC LCDSSLCC	LC LCDSSLCC WS 2022-10-10 N	2022-10-11	472	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC_LCDSSLCC	LC_CC1_WS_2022-10-10_N	2022-10-11	-	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC_LCDSSLCC LC_LCDSSLCC	LC LCDSSLCC WS 2022-10-17 N LC LCDSSLCC WS 2022-10-24 N	2022-10-18 2022-10-25	486 465	< 0.0060 < 0.0060	0.0014 0.0014	0.00022	0.0522 0.0522	< 0.040 < 0.040	< 0.000100 < 0.000100	0.03	< 0.0100 < 0.0100	401 401	< 0.00020 < 0.00020	2E-04 2E-04	< 0.00100 < 0.00100	< 0.020 < 0.020	< 0.000100 < 0.000100	
LC_LCDSSLCC	LC LCDSSLCC WS 2022-10-24 N	2022-10-25	510	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04 2E-04	< 0.00100	< 0.020	< 0.000100	
LC LCDSSLCC	LC_LCDSSLCC_MNT_2022-11-08_N	2022-11-01	556	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC LCDSSLCC	LC LCDSSLCC WS 2022-11-14 N	2022-11-14	522	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC LCDSSLCC	LC LCDSSLCC WS 2022-11-21 N	2022-11-21	534	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	j
LC_LCDSSLCC	LC_CC1_WS_2022-11-21_N	2022-11-21	-	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020		< 0.00100	< 0.020	< 0.000100	
LC_LCDSSLCC	LC_LCDSSLCC_WS_2022-11-28_N	2022-11-28	508	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020		< 0.00100	< 0.020	< 0.000100	
LC LCDSSLCC	LC LCDSSLCC MNT 2022-12-05 N	2022-12-05	563	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC_LCDSSLCC	LC LCDSSLCC WS 2022-12-12 N	2022-12-12	518	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC_LCDSSLCC LC_LCDSSLCC	LC_CC1_WS_2022-12-19_N LC_LCDSSLCC_WS_2022-12-19_N	2022-12-19	561 544	< 0.0060 < 0.0060	0.0014 0.0014	0.00022	0.0522 0.0522	< 0.040 < 0.040	< 0.000100 < 0.000100	0.03	< 0.0100 < 0.0100	401 401	< 0.00020 < 0.00020	2E-04 2E-04	< 0.00100 < 0.00100	< 0.020	< 0.000100 < 0.000100	
LC LCDSSLCC	LC LCDSSLCC WS 2022-12-19 N	2022-12-19	344	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04 2E-04	< 0.00100	< 0.020	< 0.000100	
LC_WLC	LC WLC WS Q1-2022 N	2022-01-04	569	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC WLC	LC WLC WS 2022-01-10 N	2022-01-10	1510	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC WLC	LC MT1 WS 2022-01-17 N	2022-01-17	1420	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	,
LC_WLC	LC CC1 WS 2022-01-17 N	2022-01-17	< 0.50	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC_WLC	LC_WLC_WS_2022-01-24_N	2022-01-25	1440	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC_WLC	LC WLC WS 2022-01-31 N	2022-01-31	1440	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC WLC	LC MT2 MNT 2021-02-08 N	2022-02-08	1590	< 0.0060	0.0014 0.0014	0.00022	0.0522	< 0.040 < 0.040	< 0.000100 < 0.000100	0.03	< 0.0100 < 0.0100	401 401	< 0.00020 < 0.00020	2E-04	< 0.00100 < 0.00100	< 0.020	< 0.000100 < 0.000100	
LC WLC	LC CC1 WS 2022-02-14 N LC MT1 WS 2022-02-21 N	2022-02-14 2022-02-23	< 0.50 1465	< 0.0060 < 0.0060	0.0014	0.00022	0.0522 0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04 2E-04	< 0.00100	< 0.020	< 0.000100	
LC WLC	LC WLC WS 2022-02-21 N	2022-02-23	< 0.50	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04 2E-04	< 0.00100	< 0.020	< 0.000100	
LC WLC	LC MT1 MNT 2021-03-07 N	2022-03-01	1620	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC_WLC	LC WLC WS 2022-03-14 N	2022-03-14	< 0.50	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC_WLC	LC WLC WS 2022-03-21 N	2022-03-22	1410	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC_WLC	LC WLC WS 2022-03-28 N	2022-03-28	1560	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC_WLC	LC WLC WS Q2-2022 N	2022-04-05	1520	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC_WLC	LC_WLC_WS_2022-04-11_N	2022-04-11	1560	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC_WLC LC_WLC	LC CC1 WS 2022-04-18 N LC CC1 WS 2022-04-25 N	2022-04-18 2022-04-25	1490 1480	< 0.0060 < 0.0060	0.0014 0.0014	0.00022 0.00022	0.0522 0.0522	< 0.040 < 0.040	< 0.000100 < 0.000100	0.03	< 0.0100 < 0.0100	401 401	< 0.00020 < 0.00020	2E-04 2E-04	< 0.00100 < 0.00100	< 0.020 < 0.020	< 0.000100 < 0.000100	
LC WLC	LC CC1 WS 2022-04-25 N LC WLC MNT 2022-05-03 N	2022-04-25	1480	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04 2E-04	< 0.00100	< 0.020	< 0.000100	
LC WLC	LC WLC WN 2022-03-03 N	2022-05-09	1430	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC WLC	LC WLC WS 2022-05-16 N	2022-05-16	1380	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC WLC	LC WLC WS 2022-05-23 N	2022-05-24	1360	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC_WLC	LC MT1 WS 2022-05-30 N	2022-05-30	1320	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100)
LC_WLC	LC_MT2_MNT_2022-06-07_N	2022-06-06	< 0.50	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC_WLC	LC_CC1_WS_2022-06-13_N	2022-06-13	< 0.50	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC_WLC	LC_WLC_WS_2022-06-20_N	2022-06-22	703	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	

Denotes concentration less than indicated detection limit
 Denotes analysis not conducted
 n/a denotes no applicable standard

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

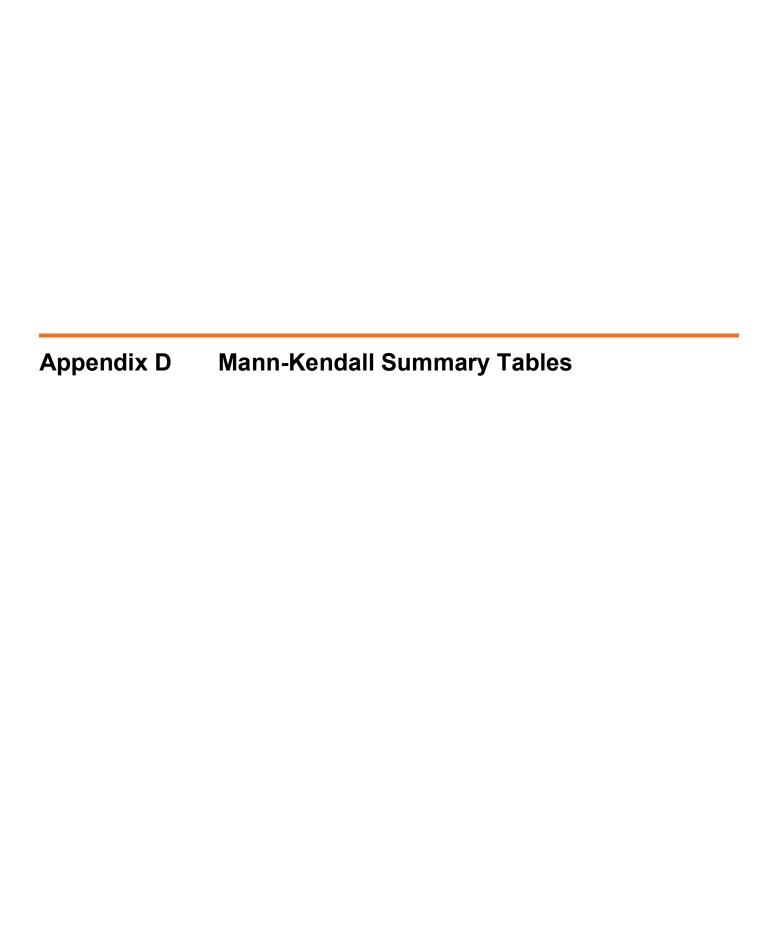
Lic Corest Operation										Total Metals												
Commonweight Comm	Zinc		anium*	anium	_	allium	rontium		dium	Ver		lenium	fassium	ckel*	anganese		ıgnesium	hium	rdness			
BC WGG FWAL			້	Ĕ	Ē	<u> </u>		3 3	ြတိ			Se	Po-	ž			Ř	5	ен			Sample
Inc	mg/L			mg/L	mg/L	mg/L	ng/L m	/L m	mg/l				mg/L	mg/L	g/L	m	mg/L	mg/L	mg/L	nm/dd/yyyy)	ID (I	Location
Le CESSICC LC CCT WS 2022-08-22 N 2022-08-23 48 0.192 315 0.00105 0.0989 6.88 396 < 0.000020 23.3 1 0.00026 < 0.00060 0.0203 < 1	Acute	_								5	_ `	Chronic		Chror	5	Aci						
LC_CLOSSLCC LC_CC_WS_2022-08-22 N 2022-08-22 - 0.192 315 0.00105 0.0989 6.88 396 < 0.000002	33-2 ^a 0.0075-2 ^a	0.033-2 ⁸	0.0085	n/a	n/a	n/a	n/a r	a n	n/a	3ª 0.00005-0.0015ª	0.0001-0.003	2	n/a	0.025-0.15 ^a	0.0009-0.01 ^a	0.001-0.03 ^a	n/a	n/a	n/a			
LC_LCDSSLCC LC_COSSLCC NSS_2022-08-29 N 2022-09-50 456 1092 315 0.00105 0.0689 6.88 396 < 0.000020 23.31 0.000026 < 0.00020 0.00000 0.0203 <																						
LC LCDSSLCC LC LCDSSLCC WS 2022-08-29 N 2022-08-09 456 0.192 315 0.00105 0.0989 6.88 396 < 0.000020 29.3 1 0.000026 < 0.00020 < 0.00000 0.0003 <		< 0.0060																				
LC_LCDSSLCC LC_CDSSLCC WS_2022-09-12 N 2022-09-13 479 0.00006 0.0203 **C. LC_CDSSLCC WS_2022-09-19 N 2022-09-19 N 2022-09-29 N 2022-09-19 N 2022-09-29 N 2022-09-		< 0.0060																				
LC_LCDSSLCC LC_LCDSSLCC WS_2022-09-19 N 2022-09-19 doi: 0.00006 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.0000 0.00000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.00000 0		< 0.0060																				
LC LCDSSLCC LC CDSSLCC WS 2022-09-19 N 2022-09-29 470 0.192 315 0.00105 0.0989 6.88 396 <0.000020 29.3 1 0.000026 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.0203 <0.00000 0.000000		< 0.0060																				
LC LCDSSLCC LC CC1 WS 2022-09-19 N 2022-09-19 P 19 15 0.0105 0.0989 6.88 398 < 0.000020 293 1 0.000026 < 0.00000 0.0203 < C LC LCDSSLCC LC LCC2 WS 04-2022 N 2022-09-29 470 0.192 315 0.0105 0.0989 6.88 398 < 0.000020 293 1 0.000026 < 0.00000 0.0203 < C LC LCDSSLCC LC CC2 WS 04-2022 N 2022-10-10 N 2022-10-11 P 192 315 0.0105 0.0989 6.88 398 < 0.000020 293 1 0.000026 < 0.00000 0.0203 < C LC LCDSSLCC LC LCCS WS 04-2022 N 2022-10-10 N 2022-10-11 P 192 315 0.0105 0.0989 6.88 398 < 0.000020 293 1 0.000026 < 0.00000 0.0203 < C LC LCDSSLCC LC CC1 WS 2022-10-10 N 2022-10-11 P 0.192 315 0.0105 0.0989 6.88 398 < 0.000020 293 1 0.000026 < 0.00000 0.0203 < C LC LCDSSLCC LC CC1 WS 2022-10-10 N 2022-10-11 P 0.192 315 0.0105 0.0989 6.88 398 < 0.000020 293 1 0.000026 < 0.00000 0.0203 < C LC LCDSSLCC LC LCDSSLCC WS 2022-10-24 N 2022-10-18 P 192 15 0.0105 0.0989 6.88 398 < 0.000020 293 1 0.000026 < 0.00002 < 0.0000 0.0203 < C LC LCDSSLCC LC LCDSSLCC WS 2022-10-24 N 2022-10-18 P 10 0.192 315 0.0105 0.0989 6.88 398 < 0.000020 293 1 0.000026 < 0.00002 < 0.0000 0.0203 < C LC LCDSSLCC LC LCDSSLCC WS 2022-10-24 N 2022-11-10 F 10 192 315 0.0105 0.0989 6.88 398 < 0.000020 293 1 0.000026 < 0.00002 < 0.0000 0.0203 < C LC LCDSSLCC LC LCDSSLCC WS 2022-10-14 N 2022-11-10 F 10 192 315 0.0105 0.0989 6.88 398 < 0.000020 293 1 0.000026 < 0.00002 < 0.00000 0.0203 < C LC LCDSSLCC LC LCDSSLCC WS 2022-11-14 N 2022-11-10 F 10 192 315 0.0105 0.0989 6.88 398 < 0.000020 293 1 0.000026 < 0.00002 < 0.0000 0.0203 < C LC LCDSSLCC LC LCDSSLCC WS 2022-11-14 N 2022-11-12 S 40 192 315 0.0105 0.0989 6.88 398 < 0.000020 293 1 0.000026 < 0.00002 < 0.0000 0.0203 < C LC LCDSSLCC LC LCDSSLCC WM 2022-11-12 N 2022-11-12 S 40 192 315 0.0105 0.0989 6.88 398 < 0.000020 293 1 0.000026 < 0.00002 < 0.00000 0.0203 < C LC LCDSSLCC LC CCT WS 2022-11-12 N 2022-11-12 S 40 192 315 0.0105 0.0989 6.88 398 < 0.000020 293 1 0.000026 < 0.00002 < 0.00000 0.0203 < C LC LCDSSLCC LC CLDSSLCC WM 2022-11-12 N 2022-11-12 S 40 192 315 0.0105 0.0989 6.88 398 < 0.000020 293 1 0.000026 < 0.00002 <		< 0.0060																				
LC LCDSSLCC LC CCSSLCC WS 04-2022 N 2022-09-28 470 0.192 315 0.00105 0.0988 6.88 396 < 0.000020 29.3 1 1 0.000026 < 0.00020 < 0.00060 0.2023 < C LC LCDSSLCC LC CCS WS 04-2022 N 2022-10-10 N 2022-10-11 472 0.192 315 0.00105 0.0988 6.88 396 < 0.000020 29.3 1 1 0.000026 < 0.00020 < 0.00060 0.2023 < C LC LCDSSLCC LC LCDSSLCC WS 2022-10-10 N 2022-10-11 472 0.192 315 0.00105 0.0988 6.88 396 < 0.000020 29.3 1 1 0.000026 < 0.00020 < 0.00060 0.2023 < C LC LCDSSLCC LC LCDSSLCC WS 2022-10-17 N 2022-10-11 472 0.192 315 0.00105 0.0988 6.88 396 < 0.000020 29.3 1 1 0.000026 < 0.00000 0.2023 < C LC LCDSSLCC LC LCDSSLCC WS 2022-10-17 N 2022-10-18 486 0.192 315 0.00105 0.0988 6.88 396 < 0.000020 29.3 1 1 0.000026 < 0.00000 0.2023 < C LC LCDSSLCC WS 2022-10-17 N 2022-10-18 486 0.192 315 0.00105 0.0988 6.88 396 < 0.000020 29.3 1 1 0.000026 < 0.00000 0.2023 < C LC LCDSSLCC WS 2022-10-14 N 2022-10-15 N 0.00105 0.0988 6.88 396 < 0.000020 29.3 1 1 0.000026 < 0.00000 0.00000 0.2023 < C LC LCDSSLCC WS 2022-10-31 N 2022-11-15 N 0.00105 0.0988 6.88 396 < 0.000020 29.3 1 1 0.000026 < 0.00000 0.0000 0.2023 < C LC LCDSSLCC WS 2022-11-18 N 2022-11-15 N 0.00105 0.0989 6.88 396 < 0.000020 29.3 1 1 0.000026 < 0.00000 0.0000 0.2023 < C LC LCDSSLCC WS 2022-11-14 N 2022-11-15 N 0.00105 0.0989 6.88 396 < 0.000020 29.3 1 1 0.000026 < 0.00000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.00000 0.0000 0.00000 0.00000 0.00000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0		< 0.0060																	400			
LC LCDSSLCC LC LCDSSLCC W2 2022-10-10 N 2022-10-11 + 72 0.192 315 0.00105 0.0989 6.88 396 < 0.000020 29.3 1 0.000026 < 0.00020 < 0.00006 0.0203 < C LC LCDSSLCC LC LCDSSLCC W2 2022-10-10 N 2022-10-11 - 0.192 315 0.00105 0.0989 6.88 396 < 0.000020 29.3 1 0.000026 < 0.00020 < 0.00006 0.0203 < C LC LCDSSLCC LC LCDSSLCC W3 2022-10-17 N 2022-10-18 486 0.192 315 0.00105 0.0989 6.88 396 < 0.000020 29.3 1 0.000026 < 0.00020 < 0.00006 0.0203 < C LC LCDSSLCC W2 2022-10-17 N 2022-10-18 486 0.192 315 0.00105 0.0989 6.88 396 < 0.000020 29.3 1 0.000026 < 0.00020 < 0.00006 0.0203 < C LC LCDSSLCC W2 2022-10-24 N 2022-10-25 465 0.192 315 0.00105 0.0989 6.88 396 < 0.000020 29.3 1 0.000026 < 0.00020 < 0.00006 0.0203 < C LC LCDSSLCC W2 2022-10-31 N 2022-11-10 N 2022-11-12 N 2022-11-		< 0.0060																	470			
LC LCDSSLCC		< 0.0060																				
LC LCDSSLCC LC CCT WS 2022-10-10 N 2022-10-11 - 0.192 315 0.00105 0.0989 6.88 396 < 0.000020 29.3 1 0.000026 < 0.00020 < 0.00060 0.0203 < 0.0020		< 0.0060																				
LC LCDSSLCC LC LCDSSLCC WS 2022-10-74 N 2022-10-26 466 0.192 315 0.00105 0.0989 6.88 396 < 0.000020 29.3 1 0.000026 < 0.00000 0.0203 < 0.00006 0.0203 < 0.00006 0.0203 < 0.00006 0.0203 < 0.00006 0.0203 < 0.00006 0.0203 < 0.00006 0.0203 < 0.00006 0.0203 < 0.00006 0.0203 < 0.00006 0.0203 < 0.00006 0.0203 < 0.00006 0.0203 < 0.00006 0.0203 < 0.00006 0.0203 < 0.00006 0.0203 < 0.00006 0.0203 < 0.00006 0.0203 < 0.00006 0.0203 < 0.00006 0.0203 < 0.00006 0.0203 < 0.00006 0.0203 < 0.00006 0.0203 < 0.00006 0.0203 < 0.00006 0.0203 < 0.00006 0.0203 < 0.00006 0.0203 < 0.00006 0.0203 < 0.00006 0.0203 < 0.00006 0.0203 < 0.00006 0.0203 < 0.00006 0.0203 < 0.00006 0.0203 < 0.00006 0.0203 < 0.00006 0.0203 < 0.00006 0.0203 < 0.00006 0.0203 < 0.00006 0.0203 < 0.00006 0.0203 < 0.00006 0.0203 < 0.00006 0.0203 < 0.00006 0.0203 < 0.00006 0.0203 < 0.00006 0.0203 < 0.00006 0.0203 < 0.00006 0.0203 < 0.00006 0.0203 < 0.00006 0.0203 < 0.00006 0.00006 0.0203 < 0.00006 0.00000 0.00006 0.00000 0.00006 0.000000		< 0.0060																	-			
LC LCDSSLCC LC LCDSSLCC WS 2022-10-31 N 2022-11-08 50 0.192 315 0.00105 0.0989 6.88 396 < 0.000020 29.3 1 0.000026 < 0.00020 < 0.00080 0.0203 <		< 0.0060						.3	29.3								315	0.192	486			
LC LCDSSLCC LC LCDSSLCC MNT 2022-11-48 N 2022-11-14 S22 0.192 315 0.00105 0.0989 6.88 396 < 0.000020 29.3 1 0.000026 < 0.00020 < 0.00060 0.0203 <	.0060	< 0.0060	0.0203	< 0.00060	< 0.00020	0.000026	1 0.00	.3	29.3		< 0.000020	396	6.88	0.0989		0.00105	315	0.192	465	2022-10-25	LC_LCDSSLCC_WS_2022-10-24_N	LC_LCDSSLCC
LC LCDSSLCC LC LCDSSLCC WS 2022-11-14 N 2022-11-21 S34 0.192 315 0.00105 0.0989 6.88 396 < 0.000020 29.3 1 0.000026 < 0.00020 < 0.00080 0.0203 <	.0060	< 0.0060	0.0203	< 0.00060	< 0.00020	0.000026	1 0.00	.3	29.3		< 0.000020	396	6.88	0.0989		0.00105	315	0.192	510	2022-11-01	LC LCDSSLCC WS 2022-10-31 N	LC LCDSSLCC
LC LCDSSLCC LC COT WS 2022-11-21 N 2022-11-21 S 4 1.092 315 0.00105 0.0989 6.88 396 < 0.000020 29.3 1 0.000026 < 0.00020 < 0.00080 0.0203 < 0.00080 0.0203 < 0.00080 0.0203 < 0.00080		< 0.0060	0.0203								< 0.000020	396		0.0989		0.00105	315			2022-11-08		
LC LCDSSLCC LC CC1 WS 2022-11-21 N 2022-11-28 N 2022-11-28 S08 0.192 315 0.00105 0.0989 6.88 396 < 0.000020 29.3 1 0.000026 < 0.00020 < 0.00060 0.0203 <	.0060	< 0.0060	0.0203	< 0.00060	< 0.00020	0.000026	1 0.00				< 0.000020	396	6.88	0.0989		0.00105	315	0.192	522	2022-11-14	LC_LCDSSLCC_WS_2022-11-14_N	LC_LCDSSLCC
LC LCDSSLCC LC LCDSSLCC WS 2022-11-28 N 2022-12-95 N 2022-12-10 N 2022-11-10 N 2022-01-10 N 2022		< 0.0060																				
LC LCDSSLCC LC LCDSSLCC MNT 2022-12-05 N 2022-12-12 N 2022-12-12 S8 0.192 315 0.00105 0.0989 6.88 396 < 0.000020 29.3 1 0.000026 < 0.00020 < 0.00080 0.0203 <		< 0.0060																				
LC LCDSSLCC LC COSSLCC WS 2022-12-12 N 2022-12-19 5t8 0.192 315 0.00105 0.0989 6.88 396 < 0.000020 29.3 1 0.000026 < 0.00020 < 0.00060 0.0203 <		< 0.0060																				
LC LCDSSLCC LC CC1 WS 2022-12-19 N 2022-12-19 561 0.192 315 0.00105 0.0989 6.88 396 < 0.000020 29.3 1 0.000026 < 0.00020 < 0.00060 0.0203 <		< 0.0060																				
LC LCDSSLCC LC LCDSSLCC WS 2022-12-19 N 2022-12-8 +4 0.192 315 0.00105 0.0989 6.88 396 < 0.000020 29.3 1 0.000026 < 0.00020 < 0.00060 0.0203 < <		< 0.0060																				
LC LCDSSLCC LC LCDSSLCC WS 2022-12-26 N 2022-12-26 N 2022-12-28 - 0.192 315 0.00105 0.0989 6.88 396 < 0.000020 29.3 1 0.000026 < 0.00020 < 0.00080 0.0203 <		< 0.0060																				
LC WLC LC WLC WS 01:2022 N 2022-01:40 1510 0.192 315 0.00105 0.0989 6.88 396 < 0.000020 29.3 1 0.000026 < 0.00020 < 0.00060 0.0203 < <																			544			
LC WLC LC WLC WS 2022-01-10 N 2022-01-10 1510 0.192 315 0.00105 0.0989 6.88 396 < 0.000020 29.3 1 0.000026 < 0.00002 < 0.00006 0.0203 < (LC WLC LC MT1 WS 2022-01-17 N 2022-01-17 1420 0.192 315 0.00105 0.0989 6.88 396 < 0.000020 29.3 1 0.000026 < 0.00002 < 0.00006 0.0203 < (LC WLC LC WLC WS 2022-01-17 N 2022-01-17 < 0.00105 0.0989 6.88 396 < 0.000020 29.3 1 0.000026 < 0.00006 0.0203 < (LC WLC LC WLC WS 2022-01-14 N 2022-01-25 1440 0.192 315 0.00105 0.0989 6.88 396 < 0.000020 29.3 1 0.000026 < 0.00006 0.0003 < (LC WLC LC WLC WS 2022-01-31 N 2022-01-25 1440 0.192 315 0.00105 0.0989 6.88 396 < 0.000020 29.3 1 0.000026 < 0.00006 0.0003 < (LC WLC LC WLC WS 2022-01-31 N 2022-01-31 1440 0.192 315 0.00105 0.0989 6.88 396 < 0.000020 29.3 1 0.000026 < 0.000026 < 0.00006 0.0203 < (LC WLC LC WLC WS 2022-01-31 N 2022-01-31 1440 0.192 315 0.00105 0.0989 6.88 396 < 0.000020 29.3 1 0.000026 < 0.000026 < 0.00006 0.0203 < (LC WLC LC WLC WS 2022-01-31 N 2022-01-31 1440 0.192 315 0.00105 0.0989 6.88 396 < 0.000020 29.3 1 0.000026 < 0.000020 < 0.00006 0.0203 < (LC WLC LC CT WS 2022-01-41 N 2022-02-81 1590 0.192 315 0.00105 0.0989 6.88 396 < 0.000020 29.3 1 0.000026 < 0.00006 0.0203 < (LC WLC LC CT WS 2022-02-14 N 2022-02-14 N 2022-02-14 0.50 0.192 315 0.00105 0.0989 6.88 396 < 0.000020 29.3 1 0.000026 < 0.00006 0.0203 < (LC WLC LC WLC WS 2022-02-14 N 2022-02-14 N 2022-02-14 0.50 0.192 315 0.00105 0.0989 6.88 396 < 0.000020 29.3 1 0.000026 < 0.00006 0.0203 < (LC WLC LC WLC WS 2022-02-18 N 2022-02-21 N 2022-02-21 N 2022-02-21 N 2022-02-22 N 2022-02-21 1465 0.192 315 0.00105 0.0989 6.88 396 < 0.000020 29.3 1 0.000026 < 0.00006 0.0203 < (LC WLC LC WLC WS 2022-02-28 N 2022-02-21 N 2022-02-21 N 2022-02-21 N 2022-02-22 N 2022-02-21 N 2022-02-21 N 2022-02-22 N 2022-02-21 N 2022-02-22 N 2022-02-21 N 2022-02-22 N 2022-02-2		< 0.0060																	-			
LC WLC LC MT1 WS 2022-01-17 N 2022-01-17 420 0.192 315 0.00105 0.0989 6.88 396 < 0.000020 29.3 1 0.000026 < 0.00020 < 0.00080 0.0203 <		< 0.0060																				
LC WLC LC CC1 WS 2022-01-17 N 2022-01-17 N 2022-01-17 N 2022-01-17 N 2022-01-18 1440 1.92 315 0.00105 0.0989 6.88 396 < 0.000020 29.3 1 0.000026 < 0.00020 < 0.00060 0.0203 < <		< 0.0060																				
LC WLC LC WLC WS 2022-01-24 N 2022-01-25 1440 0.192 315 0.00105 0.0989 6.88 396 < 0.000020 29.3 1 0.00026 < 0.00020 < 0.00060 0.0203 < (LC WLC LC WLC WS 2022-01-31 N 2022-01-31 1440 0.192 315 0.00105 0.0989 6.88 396 < 0.000020 29.3 1 0.000026 < 0.00020 < 0.00060 0.0203 < (LC WLC LC MT2 MNT 2021-02-08 N 2022-02-08 1590 0.192 315 0.00105 0.0989 6.88 396 < 0.000020 29.3 1 0.000026 < 0.00020 < 0.00060 0.0203 < (LC WLC LC C1 WS 2022-02-14 N 2022-02-14 N 2022-02-14 N 2022-02-14 N 2022-02-14 N 2022-02-15 0.00105 0.0989 6.88 396 < 0.000020 29.3 1 0.000026 < 0.00020 < 0.00060 0.0203 < (LC WLC LC MT1 WS 2022-02-14 N 2022-02-14 N 2022-02-14 N 2022-02-14 N 2022-02-15 0.00105 0.0989 6.88 396 < 0.000020 29.3 1 0.000026 < 0.00020 < 0.00060 0.0203 < (LC WLC LC WLC WS 2022-02-18 N 2022-02-24 N 2022-02-25 N 2022-02-20 1465 0.192 315 0.00105 0.0989 6.88 396 < 0.000020 29.3 1 0.000026 < 0.00020 < 0.00060 0.0203 < (LC WLC LC WLC WS 2022-02-28 N 2022-02-20-1 < 0.00105 0.0989 6.88 396 < 0.000020 29.3 1 0.000026 < 0.00020 < 0.00060 0.0203 < (LC WLC LC WLC WS 2022-02-28 N 2022-02-20-1 < 0.00060 0.0105 0.0989 6.88 396 < 0.000020 29.3 1 0.000026 < 0.000060 0.0203 < (LC WLC LC WLC WS 2022-02-28 N 2022-02-20-1 < 0.00060 0.0105 0.0989 6.88 396 < 0.000020 29.3 1 0.000026 < 0.00060 0.0203 < (LC WLC LC WLC WS 2022-02-28 N 2022-02-20-1 < 0.00060 0.0105 0.0989 6.88 396 < 0.000020 29.3 1 0.000026 < 0.00060 0.0203 < (LC WLC WS 2022-02-28 N 2022-02-20-1 < 0.00060 0.0105 0.0989 6.88 396 < 0.000020 29.3 1 0.000026 < 0.00060 0.0203 < (LC WLC WS 2022-02-28 N 2022-02-20-1 < 0.00060 0.0105 0.0989 6.88 396 < 0.000020 29.3 1 0.000026 < 0.00060 0.0203 < (LC WLC WS 2020-02-28 N 2022-02-28 N 2022-02-20-20 0.00060 0.00060 0.0203 < (LC WLC WS 2020-02-28 N 2022-02-28 N		< 0.0060																				
LC WLC UC WLC WS 2022-01-31 N 2022-01-31 1440 0.192 315 0.00105 0.0989 6.88 396 < 0.000020 29.3 1 0.000026 < 0.00020 < 0.00060 0.0203 < <		< 0.0060																				
LC WLC LC MT2 MNT 2021-02-08 N 2022-02-08 1590 0.192 315 0.00105 0.0989 6.88 396 < 0.000020 29.3 1 0.00026 < 0.00020 < 0.00060 0.0203 < (LC WLC LC CC1 WS 2022-02-14 N 2022-02-14 N 2022-02-14 N 2022-02-14 N 2022-02-14 N 2022-02-15 0.00105 0.0989 6.88 396 < 0.000020 29.3 1 0.000026 < 0.00020 < 0.00060 0.0203 < (LC WLC LC MT1 WS 2022-02-21 N 2022-02-23 1465 0.192 315 0.00105 0.0989 6.88 396 < 0.000020 29.3 1 0.000026 < 0.00020 < 0.00060 0.0203 < (LC WLC LC WLC WS 2022-02-28 N 2022-03-01 < 0.00060 0.0105 0.0989 6.88 396 < 0.000020 29.3 1 0.000026 < 0.000060 0.0203 < (LC WLC LC WLC WS 2022-02-28 N 2022-03-01 < 0.00060 0.0105 0.0989 6.88 396 < 0.000020 29.3 1 0.000026 < 0.000060 0.0203 < (LC WLC WS 2022-03-28 N 2022-03-01 < 0.00060 0.0105 0.0989 6.88 396 < 0.000020 29.3 1 0.000026 < 0.000060 0.0203 < (LC WLC WS 2022-03-28 N 2022-03-01 < 0.00060 0.0105 0.0989 6.88 396 < 0.000020 29.3 1 0.000026 < 0.00060 0.0203 < (LC WLC WS 2022-03-28 N 2022-03-28 N 2022-03-01 < 0.00060 0.0105 0.0989 6.88 396 < 0.000020 29.3 1 0.000026 < 0.00060 0.0203 < (LC WLC WS 2022-03-28 N 2022-03-28 N 2022-03-01 < 0.00060 0.000		< 0.0060																				
LC WLC LC CC1 WS 2022-02-14 N 2022-02-14 N 2022-02-23 14 0.050 0.192 315 0.00105 0.0989 6.88 396 < 0.000020 29.3 1 0.000026 < 0.00020 < 0.00060 0.0203 < <		< 0.0060																				
LC WLC LC MT1 WS 2022-02-21 N 2022-02-23 1465 0.192 315 0.00105 0.0989 6.88 396 < 0.000020 29.3 1 0.00026 < 0.00020 < 0.00000 0.0203 < 0.00000 LC WLC WLC WS 2022-02-28 N 2022-03-01 < 0.05 0.192 315 0.00105 0.0989 6.88 396 < 0.000020 29.3 1 0.00026 < 0.00026 < 0.00020 < 0.00000 0.0203 < 0.00000 0.0203 < 0.00000 0.0203 < 0.00000 0.0203 < 0.00000 0.0203 < 0.00000 0.0203 < 0.00000 0.00000 0.0203 < 0.00000 0.00000 0.0203 < 0.00000 0.00000 0.0203 < 0.000000 0.0203 < 0.00000 0.00000 0.0203 < 0.00000 0.00000 0.0203 < 0.000000 0.0203 < 0.00000 0.00000 0.0203 < 0.00000 0.00000 0.0203 < 0.000000 0.000000		< 0.0060																				
LC WLC	.0060	< 0.0060	0.0203	< 0.00060	< 0.00020	0.000026	1 0.00	.3	29.3		< 0.000020	396	6.88	0.0989		0.00105	315					LC_WLC
		< 0.0060	0.0203			0.000026	1 0.00				< 0.000020	396	6.88	0.0989		0.00105		0.192	< 0.50	2022-03-01		LC_WLC
		< 0.0060																				
		< 0.0060																				
		< 0.0060																				
		< 0.0060																				
		< 0.0060																				
		< 0.0060																				
		< 0.0060																				
		< 0.0060																				
		< 0.0060																				
LC WLC LC WLC W3 2022-95-18 2022-95-98 1-30 0.192 315 0.00105 0.0999 0.88 396 0.000020 23.3 0.000020 0.000020 0.000020 0.000030 0.0003		< 0.0060																			I.C. WI.C. WS 2022-05-05 N	
		< 0.0060																				
		< 0.0060																				
		< 0.0060																				
		< 0.0060																				
		< 0.0060			< 0.00020																	

Denotes concentration less than indicated detection limit
 Denotes analysis not conducted
 n/a denotes no applicable standard

APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

											Total Metals							
Sample Location	Sample ID	Sample Date (mm/dd/yyyy)	g Hardness	Mg/L	mg/L	mg/L	c Barium*	c Maryllium*	Bismuth mg/L	mg/L	mg/L	Calcinm Mg/L	mg/L	mg/L	Copper	u <u>oi</u> /L	peg mg/	/L
						Acute	Chron	Chron		Chron				Acut		Acute	Acute	Chron
BC WQG FWAL			n/a	n/a	n/a	0.005	1	0.00013	n/a	1.2	n/a	n/a	n/a	0.11 0.004	n/a	1	0.003-5.5°	3.3-3.5
Line Creek Operation	10.1410.1410.0000.00.07.11		070	0.0000	0.0044		0.0500	1		0.00		101		T 05 04				
LC_WLC	LC_WLC_WS_2022-06-27_N	2022-06-27	672	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020		< 0.00100	< 0.020		
LC_WLC	LC_WLC_WS_Q3-2022_N	2022-07-05	744	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401			< 0.00100	< 0.020	< 0.000100	
LC_WLC	LC_CC1_WS_2022-07-11_N	2022-07-11	824	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020		< 0.00100	< 0.020	< 0.000100	
LC_WLC	LC_WLC_WS_2022-07-18_N	2022-07-19	938	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401			< 0.00100	< 0.020	< 0.000100	
LC_WLC	LC_MT1_WS_2022-07-25_N	2022-07-26	1020	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC_WLC	LC_WLC_MNT_2022-08-02_N		< 0.50		0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401			< 0.00100	< 0.020	< 0.000100	
LC_WLC	LC_WLC_WS_2022-08-08_N	2022-08-08	1110	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401		2E-04	< 0.00100	< 0.020	< 0.000100	
LC_WLC	LC_MT1_WS_2022-08-15_N	2022-08-15	1250	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401		2E-04	< 0.00100	< 0.020	< 0.000100	
LC_WLC	LC WLC WS 2022-08-22 N		< 0.50		0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	
LC_WLC	LC_WLC_WS_2022-08-29_N	2022-08-29	1260	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401			< 0.00100	< 0.020	< 0.000100	
LC_WLC	LC_WLC_MNT_2022-09-06_N	2022-09-06	1460	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401			< 0.00100	< 0.020	< 0.000100	
LC_WLC	LC_WLC_WS_2022-09-12_N	2022-09-13	1320	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401			< 0.00100	< 0.020	< 0.000100	
LC_WLC	LC_WLC_WS_2022-09-19_N	2022-09-19	1470	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401			< 0.00100	< 0.020	< 0.000100	
LC_WLC	LC_WLC_WS_2022-09-29_N	2022-09-29	1470	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020		< 0.00100	< 0.020	< 0.000100	
LC_WLC	LC WLC WS Q4-2022 N	2022-10-03	1530	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020		< 0.00100	< 0.020	< 0.000100	
LC_WLC	LC WLC WS 2022-10-10 N	2022-10-12	1560		0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020		< 0.00100	< 0.020	< 0.000100	
LC_WLC	LC_WLC_WS_2022-10-17_N	2022-10-17	1620	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401			< 0.00100	< 0.020	< 0.000100	
LC_WLC	LC_CC1_WS_2022-10-24_N	2022-10-24	1680	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020		< 0.00100	< 0.020	< 0.000100	
LC_WLC	LC WLC WS 2022-10-31 N	2022-10-31	1164	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401			< 0.00100	< 0.020	< 0.000100	
LC_WLC	LC_WLC_MNT_2022-11-08_N	2022-11-07	1550	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401			< 0.00100	< 0.020	< 0.000100	
LC_WLC	LC_MT1_WS_2022-11-14_N	2022-11-14	1540	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401		2E-04	< 0.00100	< 0.020	< 0.000100	
LC WLC	LC WLC WS 2022-11-21 N	2022-11-21	< 0.50	< 0.0060	0.0014	0.00022	0.0522	< 0.040	< 0.000100	0.03	< 0.0100	401	< 0.00020	2E-04	< 0.00100	< 0.020	< 0.000100	,

Denotes concentration less than indicated detection limit
 Denotes analysis not conducted


n/a denotes no applicable standard

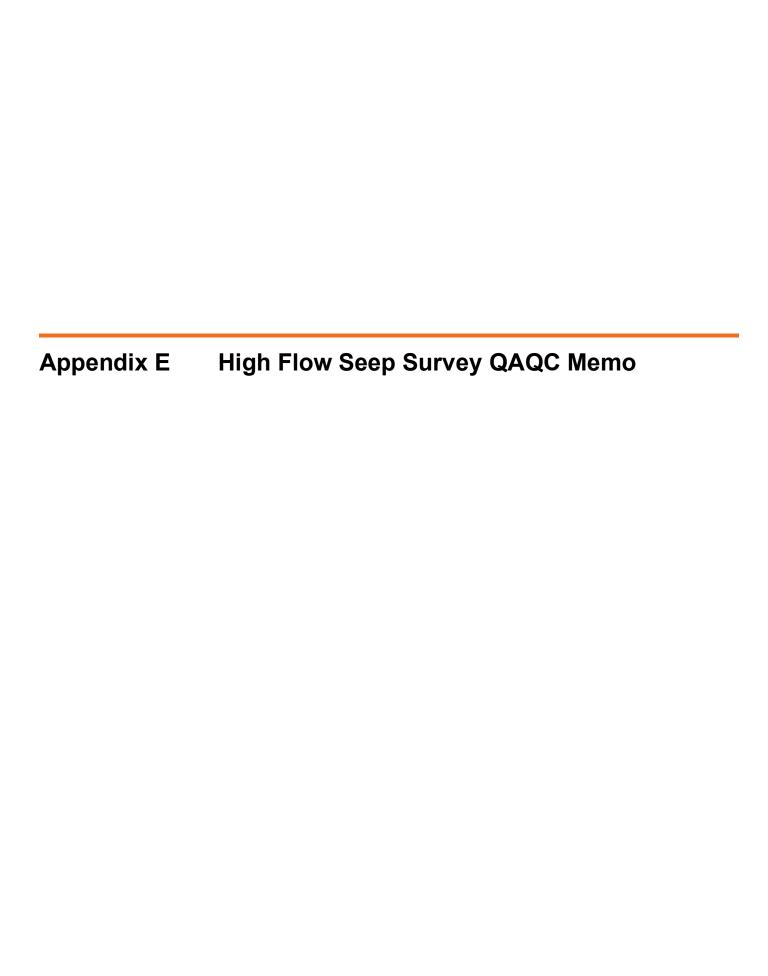
APPENDIX C - TABLE 3: Summary of Analytical Results for Total Metals

			1									Total Metals								
Sample Location	Sample ID	Sample Date	Hardness	Lithium	Magnesium	;	Manganese	MCKel*	Mg/L	Zelenium		Silver Ma/L	Sodium	l/gm Strontium	mg/L mallinm	Ë mg/L	mg/L	mg/L		c Z IZ
	-	(Acute	Chronic	Chronic		Chronic	Acute	Chronic					g	Chronic	Acute	Chronic
BC WQG FWAL			n/a	n/a	n/a	0.001-0.03 ^a	0.0009-0.01 ^a	0.025-0.15 ^a	n/a	2	0.0001-0.003°	0.00005-0.0015°	n/a	n/a	n/a	n/a	n/a	0.0085	0.033-2ª	0.0075-2ª
Line Creek Operation																				
LC_WLC	LC_WLC_WS_2022-06-27_N	2022-06-27		0.192		0.00105		0.0989	6.88	396	< 0.000020		29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC_WLC	LC_WLC_WS_Q3-2022_N	2022-07-05		0.192	315	0.00105		0.0989	6.88	396	< 0.000020		29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC_WLC	LC_CC1_WS_2022-07-11_N	2022-07-11		0.192		0.00105		0.0989	6.88	396	< 0.000020		29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC_WLC	LC_WLC_WS_2022-07-18_N	2022-07-19		0.192	315	0.00105		0.0989	6.88	396	< 0.000020		29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC_WLC	LC_MT1_WS_2022-07-25_N	2022-07-26		0.192	315	0.00105		0.0989	6.88	396	< 0.000020		29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC_WLC	LC_WLC_MNT_2022-08-02_N			0.192	315	0.00105		0.0989	6.88	396	< 0.000020		29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC_WLC	LC_WLC_WS_2022-08-08_N	2022-08-08		0.192	315	0.00105		0.0989	6.88	396	< 0.000020		29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC_WLC	LC_MT1_WS_2022-08-15_N	2022-08-15		0.192	315	0.00105		0.0989	6.88	396	< 0.000020		29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC_WLC	LC_WLC_WS_2022-08-22_N			0.192	315	0.00105		0.0989	6.88	396	< 0.000020		29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC_WLC	LC_WLC_WS_2022-08-29_N	2022-08-29		0.192	315	0.00105		0.0989	6.88	396	< 0.000020		29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC_WLC	LC_WLC_MNT_2022-09-06_N	2022-09-06		0.192		0.00105		0.0989	6.88	396	< 0.000020		29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC_WLC	LC_WLC_WS_2022-09-12_N	2022-09-13		0.192		0.00105		0.0989	6.88	396	< 0.000020		29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC_WLC	LC_WLC_WS_2022-09-19_N	2022-09-19		0.192		0.00105		0.0989	6.88	396	< 0.000020		29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC_WLC	LC_WLC_WS_2022-09-29_N	2022-09-29		0.192		0.00105		0.0989	6.88	396	< 0.000020		29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC_WLC	LC_WLC_WS_Q4-2022_N	2022-10-03		0.192	315	0.00105		0.0989	6.88	396	< 0.000020		29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC_WLC	LC_WLC_WS_2022-10-10_N	2022-10-12		0.192	315	0.00105		0.0989	6.88	396	< 0.000020		29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC_WLC	LC_WLC_WS_2022-10-17_N	2022-10-17		0.192	315	0.00105		0.0989	6.88	396	< 0.000020		29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC_WLC	LC_CC1_WS_2022-10-24_N	2022-10-24		0.192		0.00105		0.0989	6.88	396	< 0.000020		29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC_WLC	LC_WLC_WS_2022-10-31_N	2022-10-31		0.192	315	0.00105		0.0989	6.88	396	< 0.000020		29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC_WLC	LC_WLC_MNT_2022-11-08_N	2022-11-07		0.192	315	0.00105		0.0989	6.88	396	< 0.000020	·	29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC_WLC	LC_MT1_WS_2022-11-14_N	2022-11-14		0.192		0.00105		0.0989	6.88	396	< 0.000020		29.3		0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	
LC WLC	LC WLC WS 2022-11-21 N	2022-11-21	< 0.50	0.192	315	0.00105		0.0989	6.88	396	< 0.000020		29.3	1	0.000026	< 0.00020	< 0.00060	0.0203	< 0.0060	

Denotes concentration less than indicated detection limit
 Denotes analysis not conducted

n/a denotes no applicable standard

Parameter	Dissolved Cadmium	Nitrate-N	Dissolved Selenium	Sulfate	Field pH	Dissolved Antimony	Dissolved Cobalt	Dissolved Nickel	Nitrite-N	Dissolved Uranium	TDS
Site ID						,					
FR_HENSEEP3	Stable	Stable	Decreasing	No Trend	No Trend	Stable	-	Decreasing	Stable	No Trend	Stable
FR_HENSSEEP1	-	Increasing	No Trend	Prob. Increasing	-	Stable	-	Stable	-	Prob. Increasing	Prob. Increasing
FR_TURNSEEP1	Decreasing	Stable	No Trend	No Trend	-	Decreasing	-	Decreasing	Prob. Decreasing	Stable	Stable
FR_TBWSEEP1	Decreasing	Stable	Prob. Increasing	Increasing	No Trend	Stable	-	Decreasing	-	Prob. Increasing	No Trend
FR_TURNSEEP2	No Trend	Stable	Increasing	Increasing	Prob. Decreasing	Decreasing	-	Stable	-	Prob. Increasing	No Trend
FR_FCSEEP2	No Trend	Stable	Stable	Stable	Stable	-	-	-	-	No Trend	No Trend
FR_CCSEEPE1	No Trend	Increasing	Increasing	Increasing	Prob. Increasing	Stable	Increasing	Increasing	-	Increasing	Increasing
FR_CCSEEPSE1	Stable	Stable	Decreasing	Prob. Decreasing	Decreasing	Stable	No Trend	No Trend	-	No Trend	Stable
FR_LMCWSEEP5	Prob. Increasing	No Trend	No Trend	No Trend	Decreasing	No Trend	-	Prob. Increasing	-	No Trend	No Trend
FR_EAGLENORTH	No Trend	No Trend	Decreasing	Stable	Prob. Decreasing	Stable	-	Decreasing	-	Stable	Prob. Decreasing
FR_ASPSEEP1	No Trend	Prob. Decreasing	Decreasing	No Trend	No Trend	Decreasing	-	No Trend	-	Prob. Decreasing	No Trend
FR_DOKASEEP1	-	-	-	-	-	-	-	-	-	-	-
FR_FSEAMSEEP7	Stable	Decreasing	Decreasing	Stable	-	Stable	Prob. Decreasing	Stable	-	Stable	Stable
FR_SPRWSEEP1	Stable	No Trend	No Trend	Decreasing	No Trend	Stable	-	Decreasing	-	Stable	Prob. Decreasing
FR_BLAKESEEP1	-	No Trend	No Trend	No Trend	No Trend	Decreasing	Stable	No Trend	-	Stable	No Trend
FR_FRVWSEEP3	Prob. Increasing	No Trend	Increasing	Stable	Stable	Prob. Increasing	-	Stable	-	Stable	Stable
FR_STPNSEEP	Decreasing	Stable	No Trend	Stable	No Trend	Stable	-	-	-	Stable	Stable
FR_BLAINESEEP1	Prob. Increasing	Prob. Decreasing	Stable	Stable	No Trend	Stable	-	Decreasing	-	Stable	Decreasing
FR_STPWSEEP	Decreasing	No Trend	No Trend	Decreasing	No Trend	-	Decreasing	Decreasing	-	Decreasing	Decreasing
FR_STPSWSEEP	Decreasing	No Trend	No Trend	Decreasing	Stable	-	Decreasing	Decreasing		Stable	Decreasing
FR_BLAINESEEP5	Stable	Stable	No Trend	Prob. Decreasing	No Trend	No Trend	-	Stable	Stable	Stable	Decreasing
FR_SCRDSEEP1	Increasing	Increasing	Prob. Increasing	Increasing	No Trend	Increasing	Increasing	Increasing	Increasing	Increasing	Increasing


Parameter Site ID	Dissolved Cadmium	Nitrate-N	Dissolved Selenium	Sulfate	Field pH	Dissolved Antimony	Dissolved Cobalt	Dissolved Nickel	Nitrite-N	Dissolved Uranium	TDS
GH_SEEP_12	Stable	-	Stable	Stable	Prob. Decreasing	-	-	No Trend	-	Stable	-
GH_SEEP_76	No Trend	Decreasing	No Trend	Increasing	No Trend	Prob. Decreasing	Stable	No Trend	Decreasing	Increasing	Decreasing
GH_SEEP_77	Prob. Decreasing	Stable	Stable	Stable	No Trend	Stable	Stable	No Trend	Stable	Prob. Decreasing	Stable
GH_SEEP_50	-	-	-	-	-	-	-	-	-	-	-
GH_SEEP_5	No Trend	Increasing	Increasing	Increasing	-	Stable	Decreasing	Stable	-	No Trend	Prob. Increasing
GH_SEEP_46	-	-	-	-	-	-	-	-	-	-	-
GH_SEEP_60	-	-	-	-	-	-	-	-	-	-	-
GH_SEEP_79	-	Stable	Stable	No Trend	Stable	Stable	-	-	-	No Trend	Prob. Increasing
GH_SEEP_15	-	-	-	-	-	-	-	-	-	-	-
GH_SEEP_30	-	-	-	-	-	-	-	-	-	-	-
GH_WTDS	Decreasing	Prob. Decreasing	Stable	Decreasing	Stable	Stable	Decreasing	Decreasing	-	Decreasing	Decreasing
GH_SEEP_16	-	-	Decreasing	Stable	-	Stable	-	Stable	-	Decreasing	Prob. Decreasing
GH_SEEP_21	Stable	Stable	Decreasing	Stable	No Trend	-	-	Stable	-	Stable	No Trend
GH_SEEP_22	Decreasing	Stable	Decreasing	Stable	Stable	-	-	No Trend	-	Decreasing	Stable
GH_E3	Stable	Stable	Decreasing	No Trend	Prob. Decreasing	Decreasing	Stable	No Trend	-	Stable	Prob. Increasing
GH_W-SEEP	-	-	No Trend	Prob. Decreasing	No Trend	-	-	-	-	Decreasing	Prob. Decreasing
GH_SEEP_26	-	-	-	-	-	-	-	-	-	-	-
GH_E1	Prob. Increasing	No Trend	No Trend	Stable	Stable	Stable	Decreasing	Decreasing	-	Prob. Increasing	Prob. Decreasing
GH_SEEP_98	-	-	-	-	-	-	-	-	-	-	-
RG_ERSP3	-	-	-	-	-	-	-	-	-	-	-

Site ID	rameter	Dissolved Cadmium	Nitrate-N	Dissolved Selenium	Sulfate	Field pH	Dissolved Antimony	Dissolved Cobalt	Dissolved Nickel	Nitrite-N	Dissolved Uranium	TDS
LC_UDHP		No Trend	No Trend	No Trend	No Trend	Stable	Increasing	-	Prob. Increasing	-	Increasing	Prob. Increasing
LC_UDP1		Stable	No Trend	Stable	Stable	Stable	No Trend	-	-	-	Stable	Prob. Increasing
LC_SEEP8		No Trend	-	Stable	-	-	Stable	-	No Trend	-	Stable	No Trend
LC_SEEP19		No Trend	Stable	No Trend	No Trend	Stable	No Trend	-	Stable	-	No Trend	No Trend
LC_3KM		Decreasing	Prob. Decreasing	Decreasing	Stable	No Trend	Stable	-	Decreasing	Stable	Increasing	Stable
LC_SEEP1		-	-	Decreasing	Stable	No Trend	Stable	-	No Trend	-	Increasing	No Trend
LC_WLC_LOT	2	Stable	Prob. Decreasing	Stable	Prob. Increasing	-	-	-	Stable	-	No Trend	Prob. Increasing
LC_SEEP2		No Trend	No Trend	Stable	Stable	Stable	-	-	-	-	No Trend	No Trend
LC_SEEP15		-	Decreasing	Decreasing	Stable	Stable	-	-	-	-	Stable	Stable
LC_SEEP14		Decreasing	-	No Trend	No Trend	-	Stable	-	-	-	No Trend	No Trend
LC_SEEP10		Prob. Decreasing	No Trend	Stable	No Trend	Prob. Decreasing	-	Stable	No Trend	-	Prob. Increasing	No Trend
LC_SEEP11		No Trend	Stable	No Trend	No Trend	Decreasing	-	-	-	-	Stable	Prob. Decreasing

Param Site ID	Dissolved Cadmium	Nitrate-N	Dissolved Selenium	Sulfate	Field pH	Dissolved Antimony	Dissolved Cobalt	Dissolved Nickel	Nitrite-N	Dissolved Uranium	TDS
EV SEEP ERICKSON1	1 No Trend	-	-	Prob. Increasing	Stable	-	No Trend	No Trend	-	No Trend	No Trend
EV_SEEP_ERICKSON2	2 Stable	Prob. Decreasing	No Trend	Stable	No Trend	No Trend	-	Decreasing	-	Prob. Decreasing	Decreasing
EV_SEEP_SOUTHPITE	6 No Trend	No Trend	Decreasing	No Trend	Stable	Stable	-	Stable	-	Stable	Stable
EV_SEEP_SOUTHPIT3	3 Stable	-	Decreasing	No Trend	No Trend	No Trend	-	No Trend	-	Stable	No Trend
EV_SEEP_SOUTHPIT4	4 -	-	No Trend	No Trend	Stable	-	-	-	-	Prob. Decreasing	No Trend
EV_SEEP_HOPPER2	No Trend	Stable	No Trend	No Trend	Prob. Decreasing	Stable	Stable	Decreasing	Stable	No Trend	Stable
EV_SEEP_TURCON1		No Trend	No Trend	Stable	No Trend	-	-	-	-	Prob. Increasing	Stable
EV_SEEP_PLANT10	-	-	No Trend	No Trend	Stable	-	-	-	-	No Trend	Stable
EV_SEEP_PLANT1	No Trend	-	No Trend	Stable	Prob. Increasing	-	-	-	-	No Trend	Stable
EV_SEEP_PLANT11	No Trend	-	Stable	No Trend	No Trend	-	-	Stable	-	Stable	Stable
EV_SEEP_BREAKERLA	KE Stable	Stable	Stable	No Trend	Stable	Stable	No Trend	Stable	No Trend	No Trend	Stable
EV_SEEP_PLANT23	Stable	No Trend	No Trend	Stable	Prob. Increasing	No Trend	-	Prob. Decreasing	-	No Trend	Stable
EV_WLAGC	-	Prob. Increasing	-	Stable	No Trend	-	No Trend	Stable	-	No Trend	Stable
EV_CN1	No Trend	Stable	Increasing	No Trend	Stable	Stable	-	No Trend	-	Increasing	No Trend
EV_SEEP_10MILE5	No Trend	Stable	No Trend	Stable	Stable	-	-	Stable	-	Increasing	Decreasing
EV_SEEP_10MILE9	Prob. Increasing	No Trend	No Trend	Increasing	Stable	-	No Trend	No Trend	-	Increasing	No Trend
EV_SEEP_CFI1	-	No Trend	Stable	-	No Trend	•	No Trend	Stable	-	Stable	Stable
EV_SEEP_CFI2	-	-	-	-	-	-	-	-	-	-	-
EV_SEEP_CFI3	-	-	-	-	-	-	-	-	-	-	-
EV_SPR1B	No Trend	No Trend	No Trend	Stable	No Trend	Stable	-	Decreasing	-	Stable	Stable

Parameter Site ID	Dissolved Cadmium	Nitrate-N	Dissolved Selenium	Sulfate	Field pH	Dissolved Antimony	Dissolved Cobalt	Dissolved Nickel	Nitrite-N	Dissolved Uranium	TDS
CM_CS1	Prob. Increasing	No Trend	No Trend	No Trend	Stable	-	-	Stable	-	Stable	No Trend
CM_CCDS	-	-	-	-	-	-	-	-	-	-	-
CM_37PIT-SEEP-E	Stable	Stable	No Trend	Decreasing	Prob. Increasing	-	Decreasing	Decreasing	-	Decreasing	Decreasing
CM_37PIT-SEEP-W	Decreasing	No Trend	No Trend	Decreasing	Increasing	-	Decreasing	Decreasing	-	Decreasing	Decreasing
CM_WD4	No Trend	Stable	Stable	No Trend	Stable	Stable	-	Prob. Decreasing	-	Decreasing	Stable
CM_WD7	Stable	No Trend	Stable	No Trend	No Trend	Stable	-	Stable	-	No Trend	No Trend
CM_WD15	Prob. Decreasing	Decreasing	Prob. Decreasing	No Trend	Stable	-	-	Prob. Decreasing	-	Stable	No Trend
CM_WD15-SOURCE	-	-	-	-	-	-	-	-	-	-	-
CM_WD18	No Trend	No Trend	Stable	Stable	No Trend	-	-	Stable	-	No Trend	No Trend
CM_WD19	Stable	Stable	Stable	No Trend	No Trend	-	Stable	Decreasing	-	No Trend	No Trend
CM_PLANT-SEEP1	-	-	Stable	Decreasing	No Trend	-	Stable	Stable	-	No Trend	Stable
CM_MM-SEEP1	Prob. Increasing	Stable	Stable	Stable	No Trend	Stable	-	Stable	-	No Trend	No Trend
CM_NS4	Stable	Stable	Prob. Decreasing	Stable	Stable	Stable	-	Prob. Decreasing	-	Prob. Increasing	Stable
CM_NS7	Stable	No Trend	No Trend	No Trend	No Trend	Stable	No Trend	Stable	-	Stable	Stable
CM_NS1	Decreasing	No Trend	No Trend	No Trend	No Trend	Decreasing	-	Decreasing	-	Stable	Stable
CM_MM-SEEP3	-	-	Stable	Stable	No Trend	-	Stable	Decreasing	-	Stable	Stable
CM MM-SEEP5	-	-	-	-	_	-	_		-	_	-

Page 5 of 5

1

www.srk.com

DRAFT

Memo

 To
 Cam Jaeger
 Project
 CAPR002058

 From
 Anne Day
 Reg. No.
 EGBC 1003655

 Cc
 Shauna Litke (SRK)
 Date
 August 26, 2022

Stephen Day (SRK)

Nathaniel Barnes (Teck)

Client Teck Coal Limited

Subject Elk Valley Regional Seep Monitoring: 2022 High Flow Sampling QAQC Review Results

1 Introduction

This memo discusses the results of the 2022 high flow seep sampling Quality Assurance and Quality Control (QA/QC) review for Teck's Elk Valley Regional Seep Monitoring Program (RSMP).

2 Summary

- The target number of QA/QC samples was attained during 2022 high flow seep sampling.
- All field blank and trip blank samples passed QA/QC.
- Field duplicate pairs from FRO seep sites indicate field heterogeneity, most likely related to suspended sediment. A review of potential sources of this heterogeneity should be conducted.
- The following lab re-checks should be conducted:
 - Dissolved and total copper concentrations reported for sample FR_FSEAMSEEP7_SEEP_2022-04-11_NP
 - Dissolved and total cadmium and iron concentrations reported for sample FR_STPSWSEEP_SEEP_2022-04-11_NP
 - Total kjeldahl nitrogen (TKN) concentration reported for sample GH_SEEP_98_WS_2022-06 NP
 - Dissolved sulfur concentration reported for sample FR_ASPSEEP1_WS_2022-06-03_NP

3 Methods

3.1 Teck Data Quality Objectives

The RSMP includes the following data quality objectives (DQOs) for screening duplicate samples:

- Category 1 relative percent difference (RPD) less than 20%, or RPD greater than 20% and results less than five times the detection limit. Samples pass screening with no further action required.
- Category 2 RPD greater than 20% and less than 50% with results greater than five times the
 detection limit. Analyte should be monitored in future RPD analysis to determine trend of variance.
 If variance of 20 to 50% persists, a follow-up with the lab should be conducted.
- Category 3 RPD greater than 50% with results greater than five times the detection limit. The sample fails screening and is not suitable for quantitative use. If variance greater than 50% continues, follow-up with the lab is required to investigate.

3.2 SRK QA/QC Procedures

In addition to the QA/QC procedures established in the Plan, SRK applied the following QA/QC procedures, which were used to evaluate data quality:

- Differences between field and lab pH corresponding values should be within one pH unit.
- Difference between field and lab conductivity samples should have an RPD of less than 30%.
- Difference between total and dissolved metals for parameters greater than ten times the detection limit, RPD should be ±30%.
- Ion balances for electrical conductivity (EC) greater than 100 micro siemens per centimetre (μS/cm), the percent difference should be ±10%.

4 Results

QAQC compliance sampling was achieved during 2022 high flow sampling. During high flow sampling, there were ten paired field duplicates and eight field blank samples, representing 21% of all samples collected compared to the 10% target. A summary of the QA/QC samples collected during the 2022 RSMP high flow surveys is provided in Table 1.

Table 1: QA/QC sample summary by operation

Operation ¹	Total Samples	Field D	Ouplicates	Field	Blanks
		Number	% of Samples	Number	% of Samples
FRO	22	3	14	1	5
GHO	15	2	13	2	13
LCO	12	1	8	1	8
EVO	18	2	11	2	11
CMm	17	2	12	2	12
Total	84	10	12	8	10

Sources:

https://srk.sharepoint.com/sites/NACAPR002058/Internal/!020_Project_Data/020_Client/CAPR002058_SeepSampleAccount_r0_amd.xlsx

A summary of the QAQC results is provided in Table 2, Table 3, and Table 4.

¹ FRO = Fording River Operation, GHO = Greenhills Creek Operation, LCO = Line Creek Operation, EVO = Elkveiw Operation, CMm = Coal Mountain Mine

Table 2: Summary of 2022 Field Blanks and Duplicates QA/QC Review

QC Test	n	QC Criteria	Parameters	Results
Fording River Operation (FR	O)	•		
Field Blank	1	<5x DL	Physical Parameters, Major Anions and Nutrients, Organic Carbon, Dissolved Metals	All passed.
Paired Field Duplicates	3	For samples >X10DL, <30% RPD	Physical Parameters, Major Anions and Nutrients, Organic Carbon, Dissolved Metals	1 sample pair failed for Mo-T, TSS, and total kjedahl nitrogen 1 sample pair failed for T-Al, T-As, T-Be, T-Cd, C-Cr, T-Co, T-Cu, D-Cu, T-Fe, T-Pb, T-Mn, T-Hg, T-Ni, Ammonia-N, T-P, T-Ag, T-Ti, TOC, TSS, Turbidity, T-V, and T-Zn. 1 sample pair failed for T- and D-Cd, T- and D-Fe, T-Mn, and Nitrate-N All parent samples accepted, see Section 4.2 below.
Greenhills Operation (GHO)				
Field Blank	2	<5x DL	Physical Parameters, Major Anions and Nutrients, Organic Carbon, Dissolved Metals	All passed.
Paired Field Duplicates	2	For samples >X10DL, <30% RPD	Physical Parameters, Major Anions and Nutrients, Organic Carbon, Dissolved Metals	1 sample pair failed for total kjeldahl nitrogen. Parent sample accepted, see Section 4.2 below.
Line Creek Operation (LCO)				
Field Blank	1	<5x DL	Physical Parameters, Major Anions and Nutrients, Organic Carbon, Dissolved Metals	All passed.
Paired Field Duplicates	1	For samples >X10DL, <30% RPD	Physical Parameters, Major Anions and Nutrients, Organic Carbon, Dissolved Metals	All passed.
Elkview Operation (EVO)		·		
Field Blank	2	<5x DL	Physical Parameters, Major Anions and Nutrients, Organic Carbon, Dissolved Metals	All passed.
Paired Field Duplicates	2	For samples >X10DL, <30% RPD	Physical Parameters, Major Anions and Nutrients, Organic Carbon, Dissolved Metals	1 sample pair failed for D-Al and ortho-phosphate. Parent sample not accepted, see Section 4.2 below. 1 sample pair failed for DOC. Parent sample accepted, see Section 4.2 below.
Coal Mountain Mine (CMm)				
Field Blank	2	<5x DL	Physical Parameters, Major Anions and Nutrients, Organic Carbon, Dissolved Metals	All passed.
Paired Field Duplicates	2	For samples >X10DL, <30% RPD	Physical Parameters, Major Anions and Nutrients, Organic Carbon, Dissolved Metals	All passed.
Sources: https://srk.sharepoint.com/si	tes/NA0	CAPR002058/Internal/Task%20	100%20-%20QAQC/CAPR002058_SeepsWQ_HF2022_QAC	QC_amd.xlsx

4.1 Field Blank and Trip Blanks

All field blank and trip blank samples passed QA/QC.

4.2 Field Duplicates

Six of ten paired field duplicate samples failed reproducibility for at least one parameter.

Three paired duplicates at FRO failed:

- FR_EAGLENORTH sampled on May 16, 2022, for Mo-T, TSS, and total kjedahl nitrogen (TKN).
 - The failed reproducibility for TSS may indicate heterogeneity in suspended sediments at the sampling location. Results were accepted as all dissolved metal concentrations passed QA/QC. TKN result not accepted, duplicate sample is significantly higher compared to parent sample which reported TKN at below the detection limit (0.05 mg/L).
- FR_FSEAMSEEP7 sampled on May 16, 2022, for Al-T, As-T, Be-T, Cd-T, Cr-T, Co-T, Cu-T and -D, Fe-T, Pb-T, Mn-T, Hg-T, Ni-T, ammonia-N, P-T, Ag-T, Ti-T, TOC, TSS, Turbidity, V-T, and Zn-T.
 - The failed reproducibility for TSS and turbidity may indicate heterogeneity in suspended sediments at this sampling location. Results were accepted as all dissolved metal concentrations (except copper) passed QA/QC. The copper concentrations are not accepted and should be re-checked with the lab.
- FR_STPSWSEEP sampled on May 19, 2022, for Cd-T and -D, Fe-T and -D, Mn-T, and nitrate-N.
 All dissolved metal concentrations passed for this sample. This may indicate heterogeneity in suspended sediments at these seeps. However, the iron and cadmium concentrations have not

The failed reproducibility of samples at FRO generally seems to be related to suspended sediment heterogeneity. Dissolved metal concentration results were generally consistent with previous results and interpretation is not expected to be affected.

been accepted should be re-checked with the lab. All other results were accepted.

One paired duplicate at GHO failed:

GH SEEP 98 sampled on June 29, 2022, for total kjeldahl nitrogen (TKN)

Without a total nitrogen lab result, it is not possible to verify the sample's nitrogen balance. In 2021, TKN at this seep was reported to be 0.374 mg/L on June 6, 2021, and 0.329 mg/L on July 6, 2021. The parent sample in 2022 reported TKN at 0.321 mg/L and the duplicate at 0.865 mg/L. The parent sample data is accepted and will be used in future analyses. Confirmation with the lab should be completed regarding the duplicate sample.

Two paired duplicates at EVO failed:

EV_SEEP_SOUTHPIT3 was sampled on July 13, 2022, for Al-D and ortho-phosphate.

Al-D has historically been reported below the detection limit (DL = 0.001 mg/L),in 2021 0.0014 mg/L of Al-D was reported at this seep. The 2022 parent sample reported Al-D at 0.0052 mg/L, and the duplicate sample at below the 0.001 mg/L detection limit. Ortho-phosphate has historically been reported between 0.0112 and 0.0173 mg/L. The 2022 parent sample reported ortho-phosphate at 0.0175 mg/L and the duplicate sample at 0.0094 mg/L. Due to the discrepancy between the parent sample and duplicate sample for these two parameters, the parent sample data should not be accepted and should be removed from the EQuIS database.

EV_SEEP_TURCON1 was sampled on July 8, 2022, for dissolved organic carbon (DOC).
DOC has historically been reported between 0.5 and 1.2 mg/L. The 2022 parent sample reported DOC at 1.65 mg/L and the duplicate at 36.5 mg/L. No other parameters are showing similar discrepancies and the elevated DOC of the duplicate may be due to contamination. The parent sample data is accepted and will be used in future analyses.

Table 3: Summary of 2022 Samples Results QA/QC Review

QC Test	n	QC Criteria	Parameters	Results	Data Accepted
FRO					
Lab vs. Field pH	122	Difference should not be greater than 1 pH unit	рН	3 failed.	Samples not accepted. See Section 4.3.
Lab vs. Field Conductivity	88	<30% RPD	Conductivity	4 failed.	See Section 4.4
Total vs. Dissolved Metals	157	For >10XDL, <30% RPD	Total and Dissolved Metals	1 sample failed for Cu-D 3 samples failed for Mo-D 2 samples failed for Se-D 1 sample failed for S-D	See Section 4.5.
Ion Balance	157	For EC>100 µS/cm, within ±10%	Cations and Anions	All passed.	Yes.
GHO					
Lab vs. Field pH	33	Difference should not be greater than 1 pH unit	рН	All passed.	Yes.
Lab vs. Field Conductivity	33	<30% RPD	Conductivity	All passed.	Yes.
Total vs. Dissolved Metals	33	For >10XDL, <30% RPD	Total and Dissolved Metals	2 samples failed for Se-D	See Section 4.5.
Ion Balance	33	For EC>100 µS/cm, within ±10%	Cations and Anions	All passed.	Yes.
LCO		·			
Lab vs. Field pH	12	Difference should not be greater than 1 pH unit	рН	2 failed.	1 sample accepted, 1 sample not accepted. See Section 4.3.
Lab vs. Field Conductivity	12	<30% RPD	Conductivity	All passed.	Yes.
Total vs. Dissolved Metals	12	For >10XDL, <30% RPD	Total and Dissolved Metals	All passed.	Yes.
Ion Balance	12	For EC>100 µS/cm, within ±10%	Cations and Anions	All passed.	Yes.
EVO					
Lab vs. Field pH	26	Difference should not be greater than 1 pH unit	рН	2 failed.	1 sample accepted, 1 sample not accepted. See Section 4.3.
Lab vs. Field Conductivity	26	<30% RPD	Conductivity	1 failed.	See Section 4.4
Total vs. Dissolved Metals	26	For >10XDL, <30% RPD	Total and Dissolved Metals	1 sample failed for Se-D	See Section 4.5.

QC Test	n	QC Criteria	Parameters	Results	Data Accepted
Ion Balance	26	For EC>100 μS/cm, within ±10%	Cations and Anions	All passed.	Yes.
CMm					
Lab vs. Field pH	17	Difference should not be greater than 1 pH unit	рН	All passed.	Yes.
Lab vs. Field Conductivity	17	<30% RPD	Conductivity	All passed.	Yes.
Total vs. Dissolved Metals	17	For >10XDL, <30% RPD	Total and Dissolved Metals	All passed.	Yes.
Ion Balance	17	For EC>100 μS/cm, within ±10%	Cations and Anions	All passed.	Yes.

Sources: https://srk.sharepoint.com/sites/NACAPR002058/Internal/Task%20100%20-%20QAQC/CAPR002058_SeepsWQ_HF2022_QAQC_amd.xlsx

4.3 Field vs. Lab pH

Due to short hold times, field pH is generally considered more reliable than laboratory pH and some degree of difference between the two measurements is expected. Seven of 211 samples reviewed had a difference between field and laboratory pH greater than 1 pH unit. Two of these samples reported laboratory pH measurements between 1.0 and 1.2 pH units higher than the field measurements. This could be due to the off-gassing of CO₂ during travel and these results were considered acceptable.

- **EV_SEEP_10MILE9** (Field pH has ranged from 5.9 to 7.9 with an average of 6.7 from 2018 to 2021. Laboratory pH has ranged from 6.8 to 8.3 with an average of 7.6 from 2018 to 2021):
 - Sampled on June 29, 2022. Field pH: 6.4, Lab pH: 7.8. Sample accepted, field and lab pH both within the historical range.
 - Sampled on July 14, 2022. Field pH: 6.5, Lab pH: 8.4. Sample accepted, field and lab pH within or close to the historical range.
- **FR_ASPSEEP1** (Field pH has ranged from 6.8 to 7.6 with an average of 7.3 from 2018 to 2021. Laboratory pH has ranged from 7.3 to 8.5 with an average of 7.9 from 2018 to 2021):
 - Sampled on February 1, 2022. Field pH: 10.4, Lab pH: 7.9. Sample not accepted.
 - Sampled on March 1, 2022. Field pH: 6.2, Lab pH: 7.9. Sample not accepted.
 - Sampled on May 18, 2022. Field pH: 9.2, Lab pH: 7.6. Sample not accepted.
- **LC_SEEP1** (Field pH has ranged from 7.9 to 8.2 with an average of 8.0 from 2018 to 2021. Laboratory pH has ranged from 5.8 to 8.6 with an average of 8.1 from 2018 to 2021):
 - Sampled on July 8, 2022. Field pH: 6.8, Lab pH: 7.9. Sample not accepted.
- **LC_SEEP11** (Field pH has ranged from 7.0 to 8.0 with an average of 7.4 from 2018 to 2021. Laboratory pH has ranged from 8.0 to 8.3 with an average of 8.1 from 2018 to 2021):
 - Sampled on July 8, 2022. Field pH: 7.0, Lab pH: 8.1. Sample accepted, field and lab pH both within the historical range.

4.4 Field vs. Lab Conductivity

Five of 177 samples reviewed had a difference between laboratory and field conductivity greater than 30% RPD.

- One sample at EV_SEEP_10MILE9 on July 14, 2022 (RPD of 34%). Field conductivity: 553 μS/cm. Lab conductivity: 783 μS/cm. Historically lab conductivity has ranged between 273 to 542 μS/cm, and field conductivity has ranged between 218 and 564 μS/cm. The field conductivity is accepted, and the lab conductivity is not accepted.
- Three samples at FR_ASPSEEP1. Field conductivity historically ranged between 1,039 and 1,929 μS/cm. Lab conductivity historically ranged between 1,120 and 1,920 μS/cm.

- May 22, 2022 (RPD of 190 %). Field conductivity: 36.1 μS/cm. Lab conductivity: 1,380 μS/cm,
- May 31, 2022 (RPD of 69%). Field conductivity: 647 μS/cm. Lab conductivity: 1,330 μS/cm,
- June 27, 2022 (RPD of 66%). Field conductivity: 582 μS/cm. Lab conductivity: 1,160 μS/cm

Field conductivity measurements are not accepted due to low values. Lab conductivity values accepted.

One sample at FR_STPNSEEP on July 15, 2022 (RPD of 58%). Field conductivity: 951 μS/cm. Lab conductivity: 523 μS/cm. Field conductivity at this location has previously ranged from 460 to 820 mg/L with an average of 650 mg/L between 2018 an 2021. The field conductivity measurement is not accepted due to a higher-than-average value. The lab conductivity value is accepted.

4.5 Total vs. Dissolved Metals

Thirteen out of 354 samples had an RPD greater than 30% for the difference between dissolved and total metal concentrations for parameters greater than ten times the detection limit where the dissolved concentration was reported as higher than the total concentration. This could indicate potential contamination during field filtration for field filtered samples. Potentially anomalous dissolved metal concentrations identified are summarized in Table 4.

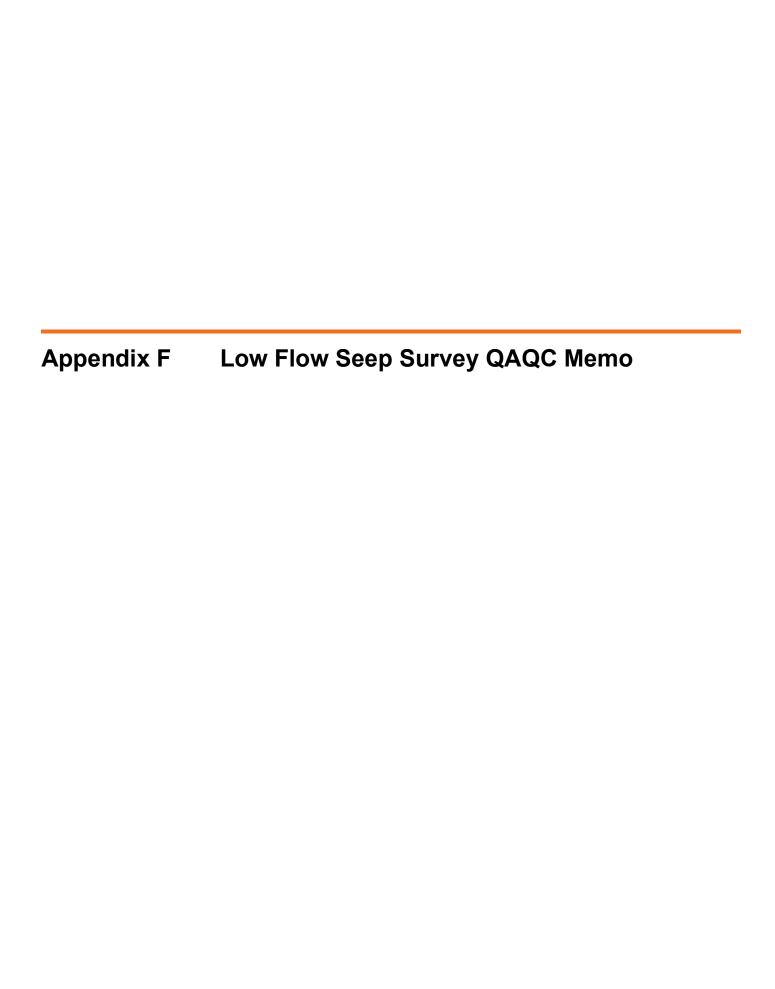
Table 4: Potentially Anomalous Dissolved Metal Concentrations Identified

Seep ID	Sample Date	Parameter	Dissolved Concentration (mg/L)	Total Concentration (mg/L)	Comment
EV_SEEP_TURCON1	2022-07-08	Selenium	0.00292	0.00165	Possible
FR_ASPSEEP1	2022-08-03	Copper	0.00428	0.00096	contamination. Use total
FR_ASPSEEP1	2022-02-10	Molybdenum	0.00587	0.0025	concentration
FR_ASPSEEP1	2022-02-28	Molybdenum	0.00535	0.00197	— for dissolved
FR_ASPSEEP1	2022-03-31	Selenium	0.00137	0.00101	_
FR_ASPSEEP1	2022-05-05	Selenium	0.00182	0.00132	_
FR_ASPSEEP1	2022-06-03	Sulfur	1020	174	Dissolved concentration no accepted
FR_FSEAMSEEP7	2022-05-16	Molybdenum	0.0128	0.0077	Possible
GH_E3	2022-01-24	Selenium	0.00554	0.00219	contamination. Use total
GH_E3	2022-07-08	Selenium	0.0019	0.00131	concentration for dissolved

Sources:https://srk.sharepoint.com/sites/NACAPR002058/Internal/Task%20100%20-%20QAQC/CAPR002058_SeepsWQ_HF2022_QAQC_amd.xlsx

The sulfate concentration reported for the FR_ASPSEEP1 June 3, 2022 sample is 469 mg/L. Therefore, the total sulfur concentration reported is more likely to be correct and should be accepted. The dissolved sulfur concentration report should be re-checked with the lab.

4.6 Ion Balance


All samples with EC greater than 100 μS/cm had a	a percent difference of ±10% and passed.
Regards,	
SRK Consulting (Canada) Inc.	
22.55	22.5
DRAFT	DRAFT

Anne Day, GIT, MLWS
Consultant, Surface Water Resources

Shauna Litke Senior Consultant, Geochemistry

SRK Consulting (Canada) Inc. has prepared this document for Teck Coal Limited, our client. Any use or decisions by which a third party makes of this document are the responsibility of such third parties. In no circumstance does SRK accept any consequential liability arising from commercial decisions or actions resulting from the use of this report by a third party.

The opinions expressed in this document have been based on the information available to SRK at the time of preparation. SRK has exercised all due care in reviewing information supplied by others for use on this project. While SRK has compared key supplied data with expected values, the accuracy of the results and conclusions from the review are entirely reliant on the accuracy and completeness of the supplied data. SRK does not accept responsibility for any errors or omissions in the supplied information, except to the extent that SRK was hired to verify the data.

1

www.srk.com

DRAFT

Memo

ToCam JaegerProjectCAPR002058FromAnne DayReg. No.EGBC 1003655CcShauna Litke (SRK)DateOctober 31, 2022

Stephen Day (SRK)

Nathaniel Barnes (Teck)

Client Teck Coal Limited

Subject Elk Valley Regional Seep Monitoring: 2022 Low Flow Sampling QAQC Review Results

1 Introduction

This memo discusses the results of the 2022 low flow seep sampling Quality Assurance and Quality Control (QA/QC) review for Teck's Elk Valley Regional Seep Monitoring Program (RSMP).

2 Summary

- The target number of QA/QC samples was attained during 2022 low flow seep sampling.
- All field blank and trip blank samples passed QA/QC.
- The following lab re-checks should be conducted:
 - Total kjeldahl nitrogen (TKN) report for sample FR_LMCWSEEP5_SEEP_2022-09-22_NP
 - Dissolved and total manganese concentrations reported for sample GH_SEEP_12_WS_2022-09-06_NP
 - Dissolved and total aluminum concentrations reported for sample CM_CS1_WS_2022-09-02_NP
 - Dissolved and total aluminum concentrations reported for sample CM_WD4_WS_2022-09-02_NP

3 Methods

3.1 Teck Data Quality Objectives

The RSMP includes the following data quality objectives (DQOs) for screening duplicate samples:

- Category 1 relative percent difference (RPD) less than 20%, or RPD greater than 20% and results less than five times the detection limit. Samples pass screening with no further action required.
- Category 2 RPD greater than 20% and less than 50% with results greater than five times the
 detection limit. Analyte should be monitored in future RPD analysis to determine trend of variance.
 If variance of 20 to 50% persists, a follow-up with the lab should be conducted.
- Category 3 RPD greater than 50% with results greater than five times the detection limit. The sample fails screening and is not suitable for quantitative use. If variance greater than 50% continues, follow-up with the lab is required to investigate.

3.2 SRK QA/QC Procedures

In addition to the QA/QC procedures established in the Plan, SRK applied the following QA/QC procedures, which were used to evaluate data quality:

- Differences between field and lab pH corresponding values should be within one pH unit.
- Difference between field and lab conductivity samples should have an RPD of less than 30%.
- Difference between total and dissolved metals for parameters greater than ten times the detection limit, RPD should be ±30%.
- Ion balances for electrical conductivity (EC) greater than 100 micro siemens per centimetre (μS/cm), the percent difference should be ±10%.
- Field duplicates corresponding values greater than 10 times the detection limit should have RPD <30%.
- Field blanks and Trip blanks minimum criterion is less than 2 times detection limit, will accept less than 5 times detection limit.

4 Results

4.1 Overview

QAQC compliance sampling was achieved during 2022 low flow sampling. During high flow sampling, there were eight paired field duplicates and six field blank samples, representing 19% of all samples collected compared to the 10% target. A summary of the QA/QC samples collected during the 2022 RSMP low flow surveys is provided in Table 1.

Table 1: QA/QC sample summary by mine site

Mine Site ¹	Total Samples	Field Duplicates		Field	Blanks
		Number	% of Samples	Number	% of Samples
FRO	18	3	17%	1	6%
GHO	13	1	8%	1	8%
LCO	11	1	9%	1	9%
EVO	17	1	6%	1	6%
CMm	16	2	13%	2	13%
Total	75	8	11%	6	8%

Sources: https://srk.sharepoint.com/sites/NACAPR002058/Internal/!020_Project_Data/020_Client/CAPR002058_SeepSampleAccount_r0_amd.xlsx

A summary of the QAQC results are described in the following subsections.

4.2 Field Blank and Trip Blanks

All field blank and trip blank samples passed QA/QC (Table 2).

4.3 Field Duplicates

Six of ten paired field duplicate samples failed reproducibility for at least one parameter (Table 2).

Three paired duplicates at FRO failed:

FR BLAINESEEP5 sampled on September 26, 2022, for dissolved organic carbon (DOC).

DOC and total organic carbon (TOC) in the duplicate sample was reported at 6.37 mg/L and 13.2 mg/L, respectively. DOC and TOC in the parent sample was reported at 2.36 mg/L and 12.4 mg/L, respectively. Historical DOC concentrations range from 2.32 to 11 mg/L, averaging 4.44 mg/L. Historical TOC concentrations range from 2.47 to 59.8 mg/L, averaging 12.7 mg/L. The duplicate DOC was not accepted because it is significantly higher compared to the parent sample and above the historically observed DOC range.

¹ FRO = Fording River Operation, GHO = Greenhills Creek Operation, LCO = Line Creek Operation, EVO = Elkveiw Operation, CMm = Coal Mountain Mine

 FR_LMCWSEEP5 sampled on September 22, 2022, for total phosphorus and total kjeldahl nitrogen (TKN).

Without a total nitrogen lab result, it is not possible to verify the sample's nitrogen balance. The parent sample reported TKN at 0.409 mg/L and the duplicate at 0.074 mg/L. Historical TKN values at FR_LMCWSEEP5 have ranged from 0.05 (DL) to 0.365 mg/L, averaging 0.19 mg/L. Both samples have been accepted. Confirmation with the lab should be completed regarding both samples.

 FR_SCRDSEEP1 sampled on September 21, 2022, for Mn-D, Se-D, ortho-phosphate, phosphorus, TKN, total suspended solids (TSS), and turbidity.

The failed reproducibility for TSS and turbidity may indicate heterogeneity in suspended sediments at this sampling location. Due to the discrepancy between the parent sample and duplicate sample for these two parameters, the parent sample data should not be accepted and should be removed from the EQuIS database.

One paired duplicate at GHO failed:

 GH_SEEP_12 sampled on September 20, 2022, for Al-T, Cd-T, Chloride, Fe-T, Mn-T, Mn-D, and Zn-T.

All results except manganese were accepted as their respective dissolved metal concentrations passed QA/QC. The manganese concentrations are not accepted and should be re-checked with the lab.

One paired duplicate at LCO failed:

LC_SEEP10 was sampled on September 16, 2022, for DOC and TSS.

The failed reproducibility for TSS may indicate heterogeneity in suspended sediments at this sampling location. DOC and TOC in the duplicate sample was reported at 1.57 mg/L and 1.61 mg/L, respectively. DOC and TOC in the parent sample was reported at 2.98 mg/L and 1.83 mg/L, respectively. Historical DOC concentrations range from 0.5 (DL) to 2.6 mg/L, averaging 1.5 mg/L. Historical TOC concentrations range from 0.5 (DL) to 2.69 mg/L, averaging 1.7 mg/L. The parent DOC was not accepted because it is higher compared to the duplicate sample and above the historically observed DOC range.

One paired duplicate at EVO failed:

EV SEEP CFI1 was sampled on September 26, 2022, for TSS.

The failed reproducibility for TSS may indicate heterogeneity in suspended sediments at this sampling location. As no other parameters failed reproducibility, the results have been accepted.

Two paired duplicates at CMm failed:

CM_CS1 was sampled on September 15, 2022, for Al-D and -T, Fe-T, and Mn-T.

All results except aluminum were accepted as their respective dissolved metal concentrations (except aluminum) passed QA/QC. The aluminum concentrations are not accepted and should be re-checked with the lab.

CM_WD4 was sampled on September 14, 2022, for Al-D.

Al-D has historically been reported between 0.0019 and 0.006 mg/L, averaging 0.004 mg/L. The 2022 low flow parent sample reported Al-D at 0.0657 mg/L, and the duplicate sample at 0.002 mg/L. The dissolved aluminum concentrations are not accepted and should be re-checked with the lab. The remaining results for this sample have been accepted.

Table 2: Summary of 2022 Field Blanks and Duplicates QA/QC Review

QC Test	n	QC Criteria	Parameters	Results
			Fording River Operation (FRO)	
Field Blank	1	<5x DL	Physical Parameters, Major Anions and Nutrients, Organic Carbon, Dissolved Metals	All passed.
Paired Field Duplicates	3	For samples >X10DL, <30% RPD	Physical Parameters, Major Anions and Nutrients, Organic Carbon, Dissolved Metals	1 sample pair failed for DOC 1 sample pair failed for total phosphorus and TKN 1 sample pair failed for Mn-D, ortho-phosphate, total phosphorus, Se-D, TKN, TSS, and turbidity. FR_SCRDSEEP1 parent sample not accepted, see Section 4.3 below.
			Greenhills Operation (GHO)	
Field Blank	2	<5x DL	Physical Parameters, Major Anions and Nutrients, Organic Carbon, Dissolved Metals	All passed.
Paired Field Duplicates	2	For samples >X10DL, <30% RPD	Physical Parameters, Major Anions and Nutrients, Organic Carbon, Dissolved Metals	1 sample pair failed for Al-T, Cd-T, chloride, Fe-T, Mn-D and -T, Zn-T. Parent sample accepted except for Mn-D, see Section 4.3 below.
			Line Creek Operation (LCO)	
Field Blank	1	<5x DL	Physical Parameters, Major Anions and Nutrients, Organic Carbon, Dissolved Metals	All passed.
Paired Field Duplicates	1	For samples >X10DL, <30% RPD	Physical Parameters, Major Anions and Nutrients, Organic Carbon, Dissolved Metals	1 sample pair failed for DOC and TSS. Parent sample accepted except for DOC, see Section 4.3 below.
	•		Elkview Operation (EVO)	
Field Blank	2	<5x DL	Physical Parameters, Major Anions and Nutrients, Organic Carbon, Dissolved Metals	All passed.
Paired Field Duplicates	2	For samples >X10DL, <30% RPD	Physical Parameters, Major Anions and Nutrients, Organic Carbon, Dissolved Metals	1 sample pair failed for TSS. Parent sample not accepted, see Section 4.3 below.
			Coal Mountain Mine (CMm)	
Field Blank	2	<5x DL	Physical Parameters, Major Anions and Nutrients, Organic Carbon, Dissolved Metals	All passed.
Paired Field Duplicates	2	For samples >X10DL, <30% RPD	Physical Parameters, Major Anions and Nutrients, Organic Carbon, Dissolved Metals	1 sample pair failed for Al-D and -T, Fe-T, and Mn-T 1 sample pair failed for Al-D. Parent samples accepted except for Al-D, see Section 4.3 below.

Sources: https://srk.sharepoint.com/sites/NACAPR002058/Internal/Task%20100%20-%20QAQC/CAPR002058_SeepsWQ_HF2022_QAQC_amd.xlsx

4.4 Field vs. Lab pH

Due to short hold times, field pH is generally considered more reliable than laboratory pH and some degree of difference between the two measurements is expected. Five of 63 samples reviewed had a difference between field and laboratory pH greater than 1 pH unit (Table 4). Four of these samples reported laboratory pH measurements between 1.0 and 1.2 pH units higher than the field measurements. This could be due to the off-gassing of CO₂ during travel and these results were considered acceptable.

- **LC_3KM** (Field pH has ranged from 7.7 to 8.5 with an average of 8.2 from 2018 to Spring 2022. Laboratory pH has ranged from 8.3 to 8.6 with an average of 8.5 from 2018 to Spring 2022):
 - Sampled on September 26, 2022. Field pH: 6.6, Lab pH: 8.5. Field pH reading not accepted.

4.5 Field vs. Lab Conductivity

No samples reviewed had a difference between laboratory and field conductivity greater than 30% RPD (Table 4).

4.6 Total vs. Dissolved Metals

Nineteen out of 99 samples had an RPD greater than 30% for the difference between dissolved and total metal concentrations for parameters greater than ten times the detection limit where the dissolved concentration was reported as higher than the total concentration (Table 4). This could indicate potential contamination during field filtration for field filtered samples. Potentially anomalous dissolved metal concentrations identified are summarized in Table 3.

Table 3: Potentially Anomalous Dissolved Metal Concentrations Identified

Seep ID	Sample Date	Parameter	Dissolved Concentration (mg/L)	Total Concentration (mg/L)	Comment
CM_CS1	2022-09-15	Selenium	5.15	3.6	
CM_MM-SEEP1	2022-09-15	Selenium	2.49	1.67	_
CM_WD4	2022-09-14	Aluminum	0.0657	0.0104	_
CM_WD4	2022-09-14	Zinc	0.0109	0.008	_
EV_SEEP_SOUTHPIT3	2022-09-30	Potassium	0.675	0.365	_
EV_SEEP_SOUTHPIT3	2022-09-30	Cadmium	0.000105	0.000028	_
EV_SEEP_TURCON1	2022-09-29	Selenium	7.09	0.142	Possible
GH_SEEP_16	2022-09-20	Manganese	0.0286	0.00316	contamination.
GH_SEEP_22	2022-09-20	Selenium	0.00428	0.00286	 Use total concentration
GH_SEEP_79	2022-09-27	Molybdenum	0.00351	0.00205	for dissolved Dissolved
GH_SEEP_98	2022-09-28	Manganese	0.00826	0.00485	concentration
GH_WTDS	2022-09-20	Selenium	0.00866	0.00628	no accepted.
GH_WTDS	2022-09-20	Manganese	0.00266	0.00189	_
GH_WTDS	2022-09-20	Zinc	0.0102	0.0034	_
GH_WTDS	2022-09-20	Cadmium	0.00024	0.000057	
LC_SEEP8	2022-09-20	Molbydenum	0.00987	0.00596	_
LC_UDHP	2022-09-26	Selenium	0.105	0.0772	_
LC_UDP1	2022-09-26	Selenium	0.0032	0.00227	

 $Sources: https://srk.sharepoint.com/sites/NACAPR002058/Internal/Task\%20100\%20-\%20QAQC/CAPR002058_SeepsWQ_HF2022_QAQC_amd.xlsx$

4.7 Ion Balance

All samples with EC greater than 100 μ S/cm had a percent difference of less than ±10% and passed (Table 4).

Table 4: Summary of 2022 Samples Results QA/QC Review

QC Test	n	QC Criteria	Parameters	Results	Data Accepted			
			FRO					
Lab vs. Field pH	122	Difference should not be greater than 1 pH unit	рН	All passed.	Samples not accepted. See Section 4.4.			
Lab vs. Field Conductivity	88	<30% RPD	Conductivity	All passed.	See Section 4.5			
Total vs. Dissolved Metals	157	For >10XDL, <30% RPD	Total and Dissolved Metals	All passed.	See Section 4.6.			
Ion Balance	157	For EC>100 µS/cm, within ±10%	Cations and Anions	All passed.	Yes.			
	GHO							
Lab vs. Field pH	33	Difference should not be greater than 1 pH unit	рН	All passed.	Yes.			
Lab vs. Field Conductivity	33	<30% RPD	Conductivity	All passed.	Yes.			
Total vs. Dissolved Metals	33	For >10XDL, <30% RPD	Total and Dissolved Metals	3 samples failed for Mn-D 2 samples failed for Se-D 1 sample failed for Mo-D 1 sample failed for Zn-D 1 sampled failed for Cd-D	See Section 4.6.			
Ion Balance	33	For EC>100 µS/cm, within ±10%	Cations and Anions	All passed.	Yes.			
LCO								
Lab vs. Field pH	12	Difference should not be greater than 1 pH unit	рН	1 failed.	1 sample accepted, 1 sample not accepted. See Section 4.4.			
Lab vs. Field Conductivity	12	<30% RPD	Conductivity	All passed.	Yes.			
Total vs. Dissolved Metals	12	For >10XDL, <30% RPD	Total and Dissolved Metals	2 samples failed for Se-D 1 sample failed for Mo-D	Yes.			
Ion Balance	12	For EC>100 µS/cm, within ±10%	Cations and Anions	All passed.	Yes.			
			EVO					
Lab vs. Field pH	26	Difference should not be greater than 1 pH unit	рН	All passed.	1 sample accepted, 1 sample not accepted. See Section 4.4.			
Lab vs. Field Conductivity	26	<30% RPD	Conductivity	All passed.	See Section 4.5			
Total vs. Dissolved Metals	26	For >10XDL, <30% RPD	Total and Dissolved Metals	1 sample failed for K-D 1 sample failed for Cd-D 1 sample failed for Se-D	See Section 4.6.			
Ion Balance	26	For EC>100 µS/cm, within ±10%	Cations and Anions	All passed.	Yes.			
			CMm					
Lab vs. Field pH	17	Difference should not be greater than 1 pH unit	рН	All passed.	Yes.			
Lab vs. Field Conductivity	17	<30% RPD	Conductivity	All passed.	Yes.			
Total vs. Dissolved Metals	17	For >10XDL, <30% RPD	Total and Dissolved Metals	2 samples failed for Se-D 1 sample failed for Zn-D 1 sample failed for Al-D	Yes.			
Ion Balance	17	For EC>100 µS/cm, within ±10%	Cations and Anions	All passed.	Yes.			

Sources: https://srk.sharepoint.com/sites/NACAPR002058/Internal/Task%20100%20-%20QAQC/CAPR002058_SeepsWQ_HF2022_QAQC_amd.xlsx

Regards,	
SRK Consulting (Canada) Inc.	
DRAFT	DRAFT
Anne Day, GIT, MLWS	Shauna Litke
Consultant, Surface Water Resources	Senior Consultant, Geochemistry

SRK Consulting (Canada) Inc. has prepared this document for Teck Coal Limited, our client. Any use or decisions by which a third party makes of this document are the responsibility of such third parties. In no circumstance does SRK accept any consequential liability arising from commercial decisions or actions resulting from the use of this report by a third party.

The opinions expressed in this document have been based on the information available to SRK at the time of preparation. SRK has exercised all due care in reviewing information supplied by others for use on this project. While SRK has compared key supplied data with expected values, the accuracy of the results and conclusions from the review are entirely reliant on the accuracy and completeness of the supplied data. SRK does not accept responsibility for any errors or omissions in the supplied information, except to the extent that SRK was hired to verify the data.