

Report: Line Creek Local Aquatic Effects Monitoring Program (LAEMP) Report 2019

Overview: This report presents the 2019 results of the local aquatic effects monitoring program developed for Teck's Line Creek Operations. The report presents data and evaluation of potential effects of the West Line Creek Active Water Treatment Facility on biological productivity and tissue selenium accumulation downstream of the facility.

This report was prepared for Teck by Minnow Environmental Inc.

For More Information

If you have questions regarding this report, please:

- Phone toll-free to 1.855.806.6854
- Email feedbackteckcoal@teck.com

Future studies will be made available at teck.com/elkvalley

Line Creek Local Aquatic Effects Monitoring Program (LAEMP) Report, 2019

Prepared for: **Teck Coal Limited** Sparwood, British Columbia

Prepared by: **Minnow Environmental Inc.** Victoria, British Columbia

April 2020 (Revised July 2020) Line Creek Local Aquatic Effects Monitoring Program (LAEMP) Report, 2019

Katharina Batchelar, M.Sc., R.P. Bio. Project Manager

KBatchelas

Cheryl Wiramanaden, M.Chem., Ph.D. Senior Project Advisor

Wirdmanadero

EXECUTIVE SUMMARY

The Line Creek Local Aquatic Effects Monitoring Program (LAEMP) was primarily designed to evaluate changes related to the commissioning of the West Line Creek (WLC) Active Water Treatment Facility (AWTF) at the Line Creek Operation (LCO). There are three main foci to the monitoring in relation to the operation of the AWTF. Firstly, the fluidized bed reactor technology used at the WLC AWTF for selenium and nitrate removal requires the addition of phosphorus to the treatment process. Although the WLC AWTF is managed to minimize the amount of residual phosphorus in treated effluent, there is potential for phosphorus concentrations to increase in Line Creek downstream from the WLC AWTF discharge and potentially cause increased algal growth and changes to the trophic status and biotic community structure. Secondly, selenium removal from water involves microbial uptake, which deceases total selenium loads to Line Creek, but has the potential to biotransform selenium into reduced and more readily available forms of selenium to biota (i.e., selenite and organoselenium). The third focus of the LAEMP is to monitor other conditions related to active water treatment that could potentially adversely influence the receiving environment, other than those addressed by the first two foci.

Based on the above, the objectives for the Line Creek LAEMP were expressed as the following study questions: (1) Is active water treatment affecting biological productivity downstream in Line Creek? (2) Are tissue selenium concentrations reduced downstream from the WLC AWTF? and (3) Is WLC AWTF operation affecting aquatic biota through thermal effects, effects on dissolved oxygen concentrations, or concentrations of treatment-related constituents other than nutrients or selenium? This report evaluates monitoring data up to the end of the 2019 calendar year.

The WLC AWTF was recommissioned in 2018 with an Advanced Oxidation Process (AOP¹), which is designed to reverse the shift in selenium species in AWTF effluent from chemically-reduced species back to a selenate-dominated condition. This change in treatment process was implemented in response to monitoring in 2016 and 2017 that confirmed elevated aqueous concentrations of chemically-reduced selenium in AWTF effluent (which have greater potential for bioaccumulation selenate) and correspondingly elevated selenium concentrations in benthic invertebrates. Discharge to the receiving environment from the AWTF with AOP began on October 29, 2018 with variable flow, and stabilization of the AWTF with AOP operations began in late December 2018. Stabilization of the AWTF with AOP operations continued until the end of March 2020 (the scope of the present report covers until the end of December 2019), after

¹ AOP refers to the advanced oxidation process and associated AWTF process modifications.

which steady-state operations of the AWTF (consistent treatment flow near the maximum capacity of the facility) began.

Biological productivity downstream in Line Creek was uninfluenced by AWTF with AOP operation in 2019. Periphyton coverage at both mine-exposed and reference areas was moderate in 2019 (based on visual assessment) and showed temporal consistency with results from 2017 and 2018. Benthic invertebrate biomass and density at mine-exposed areas of Line Creek also showed no significant change in 2019 related to operation of the AWTF with AOP. Benthic invertebrate community endpoints, as determined from kick and sweep sample collection, indicated no adverse change in community characteristics related to operation stabilization of the AWTF with AOP in 2019. Rather, an increase in the percentage of sensitive taxa (Ephemeroptera) in 2019 at areas of Line Creek furthest downstream from the AWTF discharge was suggestive of an improvement in benthic invertebrate community structure in lower Line Creek areas. Overall, biological productivity downstream from the WLC AWTF in 2019 (when the AWTF with AOP was in the operations stabilization phase throughout the year) did not change relative to previous years.

Concentrations of non-selenate forms of aqueous selenium and selenium in benthic invertebrate tissues were significantly lower in Line Creek during operation of the AWTF with AOP in 2019 compared to steady-state AWTF operation (without AOP). As a result, mean benthic invertebrate selenium concentrations in 2019 were below the Level 1 Elk Valley Water Quality Plan (EVWQP) benchmark at all areas downstream of the AWTF discharge. Temporal changes in benthic invertebrate selenium concentrations within 2019 (during AWTF with AOP operation) were also consistent with changes in concentrations of aqueous non-selenate species. Comparison of benthic invertebrate selenium concentrations to the selenium bioaccumulation model indicated that selenium bioaccumulation was within the prediction range. Selenium concentrations in tissues of juvenile bull trout and westslope cutthroat trout captured near the AWTF discharge in 2019 were substantially lower than those reported in 2017. Combined, the results from the 2019 LCO LAEMP indicated that the recommissioned AWTF with AOP is functioning as intended to decrease the non-selenate species in AWTF effluent, resulting in selenium accumulation in benthic invertebrates from Line Creek that would be expected based on the selenium bioaccumulation model.

Operation of the AWTF with AOP in 2019 did not result in an obvious change in water temperature or dissolved oxygen concentrations downstream in Line Creek. Evaluation of water quality analytes with early warning triggers also demonstrated no changes in analyte concentrations in 2019 related to operation of the AWTF with AOP. Also, acute and chronic toxicity test data did not reliably indicate greater toxicity in 2019 compared to previous years. Overall, operation of the WLC AWTF with AOP in 2019 functioned as designed to remove aqueous total selenium and nitrate from effluent. Recommissioning of the AWTF with AOP resulted in reduced selenium bioaccumulation downstream in Line Creek relative to AWTF operation without AOP by decreasing the concentrations of non-selenate species in AWTF effluent. In addition, operation of the AWTF with AOP in 2019 did not influence the receiving environment through effects to biological productivity, or through potential effects related to factors other than nutrients or selenium. Results of the LCO LAEMP provide information that supports Teck's Adaptive Management Program and inform adjustments to monitoring. In 2019, additional tissue sampling events were implemented to allow for more detailed evaluation of AWTF performance during operation stabilization with AOP, and results from the 2019 LCO LAEMP were used to inform adjustments to monitoring for 2020 LCO LAEMP study design. The timing of benthic invertebrate selenium monitoring in 2020 has therefore been adapted to focus on biologically relevant times rather than on AWTF operational timing.

0

TABLE OF CONTENTS

EXECUTIVE SUMMARY	I
ACRONYMS AND ABBREVIATIONS	VIII
1 INTRODUCTION. 1.1 Background	1 3 4
2 METHODS	
 2.1 Overview	15 15 18 19 19 21
 2.6.1 Overview	25 26 26 26 29 30
3 PRODUCTIVITY	
 3.1 Overview	36 42 42 48
4 SELENIUM CONCENTRATIONS	-
 4.2 Historical Composite-Taxa Benthic Invertebrate Selenium Concentrations 4.3 2019 Selenium Concentrations in Composite-Taxa Benthic Invertebrate Samples 4.4 Aqueous Selenium and Bioaccumulation	55 60 69 69 73
 4.6 Summary 5 OTHER POTENTIAL INFLUENCES OF THE WLC AWTF 	
 5 OTHER POTENTIAL INFLUENCES OF THE WLC AWTF	79 79 79

5.5	Toxicity Resul	ts	84
6 SL	JMMARY		90
7 RE	EFERENCES		98
APPE	NDIX A	SUPPORTING DATA – PRODUCTIVITY EVALUATION	

APPENDIX B SUPPORTING DATA – SELENIUM MONITORING

- APPENDIX C SUPPORTING DATA OTHER POTENTIAL EFFECTS OF AWTF OPERATION
- APPENDIX D OTHER SUPPORTING INFORMATION

LIST OF FIGURES

Figure 1.1:	Teck's Coal Mine Operations within the Elk River Watershed, Southeast British Columbia	2
Figure 2.1:	Line Creek LAEMP Biological Monitoring Areas and Teck Water Quality Stations, 2019	
Figure 2.2:	Line Creek LAEMP Monitoring Areas and Teck Water Quality Stations in Upper Line Creek, 2019	
Figure 2.3:	Overview of Completed Benthic Invertebrate Tissue Selenium Sampling Events in Relation to Phases of WLC AWTF Operation, 2014 to 2019	
Figure 3.1:	Total Phosphorus Concentrations in Water Collected from the Line Creek Compliance Point (LC_LCDSSLCC), 2014 to 2019	
Figure 3.2:	Time Series Plots for Aqueous Total Phosphorus Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019	
Figure 3.3:	Time Series Plots for Aqueous Orthophosphate Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019	
Figure 3.4:	Total Phosphorus at LC_LC3 During AWTF Operation Relative to Pre-Operational Baseline Concentrations	
Figure 3.5:	Orthophosphate at LC_LC3 During AWTF Operation Relative to Pre-Operational Baseline Concentrations	
Figure 3.6:	Time Series Plots for Aqueous Nitrate (NO3 as N) Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019	
Figure 3.7:	Total Benthic Invertebrate Biomass (Hess Sampling), for RG_LIDSL and RG_LILC3 (Mine-exposed Areas) Relative to RG_SLINE and RG_LI24	
Figure 3.8:	(Reference Areas), 2012 to 2018 Total Benthic Invertebrate Density (Hess Sampling), for RG_LIDSL and RG_LILC3 (Mine-exposed Areas) Relative to RG_SLINE and RG_LI24 (Reference Areas), 2012 to 2018	
Figure 4.1:	Tissue Selenium Concentrations in Benthic Invertebrate Composite-Taxa Samples from Line Creek and Fording River, 2012 to 2019	-
Figure 4.2:	Benthic Invertebrate Selenium Concentrations, for RG_LILC3 and RG_LIDSL (Mine-exposed Areas) Relative to RG_SLINE and RG_LI24 (Reference Areas), 2012 to 2019.	
🥑		

Figure 4.3:	Selenium Concentrations in Composite-Taxa Benthic Invertebrate Samples Collected at Reference (Green) and Mine-exposed (Blue) Areas of Line Creek and Fording River, 2018 to 2019	58
Figure 4.4:	Benthic Invertebrate Selenium Concentrations, for RG_FO23 (Fording River Downstream of Line Creek) Relative to RG_FRUL (Fording River Upstream of Line Creek), 2012 to 2019	
Figure 4.5:	Time Series Plots for Aqueous Total Selenium Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019	
Figure 4.6:	Total Aqueous Selenium Concentrations at LC_LC3 Relative to Total AWTF Influent Flow Rate, 2019	
Figure 4.7:	Aqueous Concentrations of Selenium Species at Mine-exposed (LC_LCUSWLC, LC_WLC, LC_LC3, LC_LCDSSLCC, LC_LC4, LC_LC6, LC_LC5) and Reference (LC_LC1, LC_SLC) Stations in Line Creek and Fording River, January 2017 to December 2019	.63
Figure 4.8:	Aqueous Concentrations of Organoselenium Species at Mine-exposed (LC_LCUSWLC, LC_WLC, LC_LC3, LC_LCDSSLCC, LC_LC4, LC_LC6, LC_LC5) Stations in Line Creek and Fording River, January 2017 to	
Figure 4.9:	December 2019 Selenium Concentrations in Benthic Invertebrate Composite-Taxa Samples from Line Creek and Fording River, 2017 to 2019	
Figure 4.10:	Observed and Modelled Selenium Concentrations in Benthic Invertebrate Composite Samples Relative to Aqueous Selenium Concentrations at Stations Upstream and Downstream of Line Creek Operations, 2012 to 2019	
Figure 4.11:	Observed and Modelleda Selenium Concentrations in Benthic Invertebrate Composite Samples Relative to Aqueous Selenium Concentrations at RG LILC3, Line Creek, 2012 to 2019	
Figure 4.12:	Bull Trout Muscle versus Benthic Invertebrate Selenium Concentrations, Line Creek, 2017 to 2019	
Figure 4.13:	Bull Trout Muscle Selenium Concentrations Compared to Selenium Concentrations in Composite-Taxa Benthic Invertebrate Samples Collected in the Same Area	
Figure 4.14:	Selenium Concentrations in Muscle and Ovaries of Bull Trout Sampled From Line Creek, 2006 to 2019	
Figure 4.15:	Selenium Concentrations in Muscle and Ovaries of Westslope Cutthroat Trout Sampled From Line Creek, 2001 to 2019	
Figure 5.1:	Mean Daily Water Temperature (°C) Recorded by Temperature Data Loggersa, Line Creek LAEMP, 2019	
Figure 5.2:	Water Temperatures at Monitoring Stations in Line Creek in 2019 Relative to BCMOE (2001b) Guidelines for Maximum (Solid Lines) and Minimum (Dotted Lines) Temperatures for Protection of Fish Species Found in Line Creek	
Figure 5.3:	Dissolved Oxygen Concentrations at Sampling Stations in Line Creek in 2019, Relative to the BCMOE (1997) Criteria for the Protection of Fish Life Stages	

LIST OF TABLES

0

- >>

Table 1.1:	Dates Associated with Phases of WLC AWTF Operation	5
	General Approach for the 2019 Line Creek LAEMP, as Presented in the	
	LAEMP Study Design (Minnow 2019)	10
	Monitoring Areas Associated with Line Creek LAEMP, 2019	

0

- >>

Table 2.3:	Temperature Data Logger Locations, 2019	
Table 2.4:	Summary of Water Quality Monitoring for Permit 107517	.16
Table 2.5:	Water Quality Parameters Required Under Permit 107517	.17
Table 2.6:	Primary and Secondary Productivity and Benthic Invertebrate Community Sampling Completed in Line Creek and Fording River in 2019 Compared to the 2019 LAEMP Study Design (Minnow 2019b)	.20
Table 2.7:	Tissue Selenium Sampling Completed in Line Creek and Fording River in 2019 Compared to the 2018 and 2019 LAEMP Study Designs (Minnow 2018b, 2019b)	
Table 2.8:	Selenium Benchmarks for Benthic Invertebrates and Fish Tissues in the Elk Valley	.31
Table 3.1:	Geometric Means of Benthic Invertebrate Density for Hess Sampling in Areas of Line Creek, 2014 to 2019	.47
Table 4.1:	Mean Selenium Concentrations (mg/kg dw) in Benthic Invertebrate Composite-Taxa Samples Collected from Line Creek and Fording River, Line Creek LAEMP, 2006 to 2019	.53
Table 4.2:	Trophic Transfer Factors (TTF) for Fish Muscle or Whole Body Relative to Diet (Presser and Luoma 2010)	
Table 4.3:	Ovary to Muscle Selenium Relationships for Different Fish Species in the Elk Valley and Various Locations in the Literature	
Table 5.1:	Monthly Mean Dissolved Oxygen Concentrations (mg/L) in Line Creek, 2019	
Table 5.2: Table 5.3:	of Acute Toxicity Test Results for Line Creek Monitoring Stations, 2019 Results of Quarterly and Semi-Annual Chronic Toxicity Tests at LC_LCDSSLCC in 2015 to 2019 and LC_LC3 in 2019a (Golder 2016, 2017a,	.85
Table 6.1:	2018a, 2019, 2020) Summary of Measurement Endpoints, Analyses, and Results of Line Creek LAEMP, 2019	.07 .91
Table 6.2:	Summary of Findings, Responses and Adjustments Related to the LCO LAEMP in 2019	-

ACRONYMS AND ABBREVIATIONS

- AMP Adaptive Management Plan
- **ANOVA** Analysis of Variance
- AOP Advanced Oxidation Process
- AWTF Active Water Treatment Facility
- BCWQG British Columbia Water Quality Guideline
- **CABIN** Canadian Aquatic Biomonitoring Network
- CMO Coal Mountain Operation
- **EMC** Environmental Monitoring Committee
- ENV British Columbia Ministry of Environment and Climate Change Strategy
- EPT Ephemeroptera (mayflies), Plecoptera (stoneflies), Trichoptera (caddisflies)
- **EVO** Elkview Operation
- EVWQP Elk Valley Water Quality Plan
- FLNRORD Ministry of Forests, Lands, Natural Resource Operations and Rural Development
- FRO Fording River Operation
- GHO Greenhills Operation
- **GPS** Global Positioning System
- HR-ICP-MS Inductively Coupled Plasma Mass Spectrometry
- K-M Kaplan-Meier Method
- LAEMP Local Aquatic Effects Monitoring Program
- LCO Line Creek Operation
- LPL Lowest Practical Level, referring to taxonomic identification of benthic invertebrates
- **LRL** Laboratory Reporting Limit
- Qx referring to calendar quarters
- QA/QC Quality Assurance / Quality Control
- **RAEMP** Regional Aquatic Effects Monitoring Program
- SPO Site Performance Objective
- SRC Saskatchewan Research Council
- TTF Trophic Transfer Factors
- WLC West Line Creek

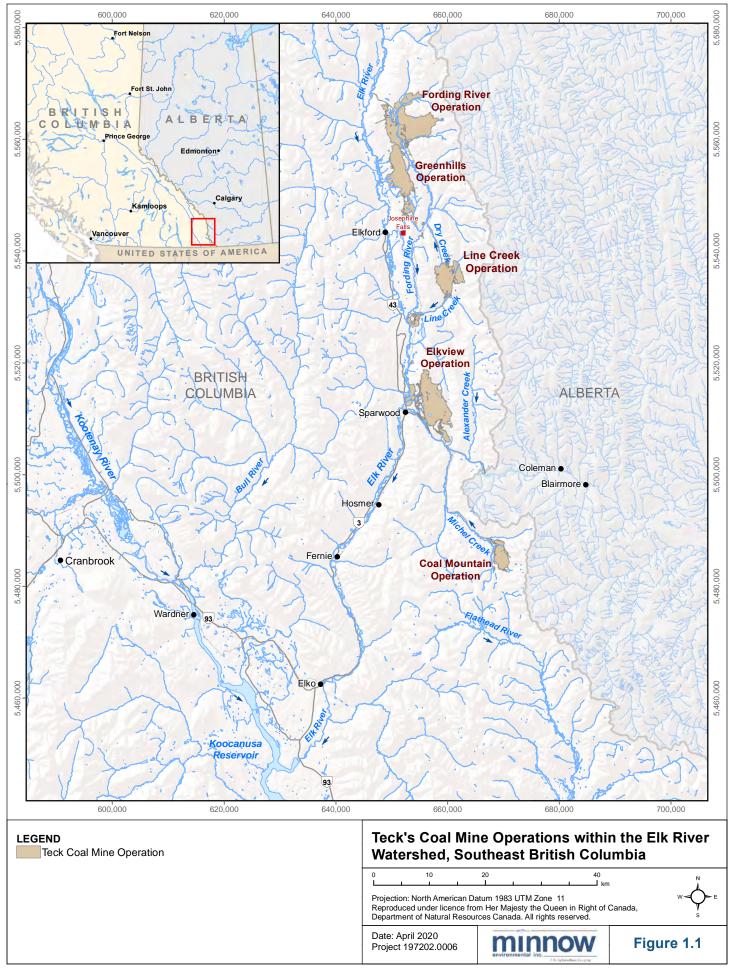
1 INTRODUCTION

1.1 Background

Teck Coal Limited (Teck) operates five steelmaking coal mines in the Elk River watershed, including the Fording River Operation (FRO), Greenhills Operation (GHO), Line Creek Operation (LCO), Elkview Operation (EVO), and Coal Mountain Operation (CMO; Figure 1.1). Discharges from the mines to the Elk River watershed are authorized by the British Columbia Ministry of Environment and Climate Change Strategy (ENV) through permits that are periodically issued under provisions of the *Environmental Management Act*. Permit 107517 specifies the terms and conditions associated with discharges from Teck's five Elk Valley mine operations.

Section 9.3.1 of Permit 107517 (version April 4, 2019) outlines the requirements for the Line Creek Local Aquatic Effects Monitoring Program (LAEMP) as follows:

"The Permittee must develop and implement a Local Aquatic Effects Monitoring program to determine the effects of the Line Creek discharge on the receiving environment. An annual study design for the program must be prepared in consultation with the EMC² and submitted to the Director for approval by May 1 each year."


Also, Section 10.5 of Permit 107517 states:

The LAEMP Annual Reports must be reported on in accordance with generally accepted standards of good scientific practice in a written report and submitted to the Director by April 30 of each year following the data collection calendar year.

In addition to monitoring under the LAEMP, Teck's Regional Aquatic Effects Monitoring Program (RAEMP) is a requirement under Permit 107517, and provides comprehensive routine monitoring and assessment of potential mine-related effects on the aquatic environment downstream from Teck's mines in the Elk Valley (i.e., annual sampling and more comprehensive monitoring every three years, with the next cycle of annual sampling to be completed in September 2020).

Teck conducts a variety of additional programs to monitor, evaluate, and/or manage the aquatic effects of mining operations within the Elk Valley at local and regional scales:

² EMC refers to the Environmental Monitoring Committee, which Teck was required to form under Permit 107517. The EMC consists of representatives from Teck, ENV, the Ministry of Energy and Mines, Environment Canada, the Ktunaxa Nation Council, Interior Health Authority, and an independent scientist. Environment Canada has agreed to provide input on a case-by-case basis when requested by the other members of the EMC but has not yet been called upon to participate. The EMC reviews submissions and provides technical advice to Teck and the ENV Director regarding monitoring programs.

Document Path: S:\Projects\197202\197202.0006 - Teck 2019 Line Creek LAEMP\4 - GIS\Report\19-06 Figure 1.1 Teck Coal Limited Operation.mxd

- Water quality monitoring
- Calcite monitoring
- Fish and fish habitat management
- Chronic Toxicity Testing Program
- Regional Aquatic Effects Monitoring Program
- Tributary Management Plan
- Adaptive Management Plan

The goal of the Line Creek LAEMP is to assess site-specific conditions (e.g., commissioning of active water treatment) on a more frequent and localized basis than the RAEMP, as required until sufficient data have been collected, concerns no longer exist, or relevant monitoring can be incorporated into the RAEMP.

1.2 Study Questions

Although the broader objective of the Line Creek LAEMP is to assess site-specific conditions at LCO, the LAEMP was designed with the primary focus of monitoring aquatic health and evaluating potential effects related to the commissioning of the West Line Creek (WLC) Active Water Treatment Facility (AWTF) at LCO. Monitoring related to the operation of the WLC AWTF includes three main foci for the assessment of potential adverse effects to the receiving environment. These three foci are as follows:

- 1. The potential for changes in productivity, trophic status, and biological community structure downstream of the WLC AWTF. The fluidized bed reactor technology used at the WLC AWTF for selenium and nitrate removal requires the addition of phosphorus to the treatment process. Although the WLC AWTF is managed to minimize the amount of residual phosphorus in treated effluent, there is potential for phosphorus concentrations to increase in Line Creek downstream from the WLC AWTF discharge. Increased phosphorus concentrations in Line Creek could potentially cause increased algal growth and changes to trophic status and biological community structure.
- 2. The potential for a change in the chemical form of selenium released into Line Creek from the WLC AWTF. Selenium in surface waters of the Elk River watershed (including downstream of Teck's mines) is predominantly in the form of selenate, as would be expected in the well-oxygenated, flowing stream habitats that dominate this watershed. At the WLC AWTF, aqueous selenium is removed via uptake into microorganisms within the treatment system where it is transformed to chemically-reduced forms

(e.g., selenite and organoselenium species). In aquatic receiving environments, some reduced selenium species are accumulated into the base of the food web more readily than selenate (Ogle et al. 1988; Riedel et al. 1996; Stewart et al. 2010). In response to increased concentrations of non-selenate selenium species in the receiving environment and increased selenium accumulation in aquatic biota observed during AWTF operation, the WLC was recommissioned with an Advanced Oxidation Process (AOP) to potentially resolve this issue (see Section 1.3 for details).

3. The potential for other conditions related to active water treatment to adversely influence the receiving environment (e.g., an increase in temperature or a decrease in dissolved oxygen concentrations in treated water being released to Line Creek; discharge of treatment-related constituents; or an increase in other aqueous constituents of concern).

Based on the above, the objectives for the Line Creek LAEMP were expressed as the following study questions:

- 1. Is active water treatment affecting biological productivity downstream in Line Creek?
- 2. Are tissue selenium concentrations reduced downstream from the WLC AWTF?
- 3. Is WLC AWTF operation affecting aquatic biota through thermal effects, effects on dissolved oxygen concentrations, or concentrations of treatment-related constituents other than nutrients or selenium?

1.3 Line Creek LAEMP Reporting Relative to AWTF Operation

Sampling for the Line Creek LAEMP began in September 2013 prior to initial commissioning of the WLC AWTF in 2014 (Table 1.1). Interpretive reports of the LAEMP results have been submitted annually beginning in May 2015 (Minnow 2015, 2016a, 2017a, 2018d, 2019b).

The AWTF operated briefly in 2014 (July 24 to October 26) but was shut down due to challenges with the performance of the facility. It was recommissioned in late 2015, with steady state operation commencing at the end of January 2016 (Table 1.1). In late 2016 and early 2017, monitoring data identified elevated aqueous concentrations of chemically-reduced selenium species in Line Creek downstream from the AWTF, along with elevated concentrations of selenium in tissues of aquatic biota (Minnow 2017a). Sampling completed in September 2017 showed that tissue selenium concentrations continued to be elevated (Minnow 2018d). In response to these results, Teck worked with regulators to obtain necessary authorizations to

Table 1.1: Dates Associated with Phases of WLC AWTF Operation

Phase		Start	End	Approximate Flow (m ³ /day)
Initial AWTF Commissioning Pha	ase	24-Jul-14	26-Aug-14	Variable flow
Initial AWTF Discharge		27-Aug-14	16-Oct-14	Variable flow
AWTF Shutdown (no flow)		17-Oct-14	26-Oct-15	0
AWTF Discharge Begins		26-Oct-15	30-Jan-16	Variable flow
AWTF Steady State Operation		31-Jan-16	15-Oct-17	~5,300 to 5,500
AWTF Flow Reduction		16-Oct-17	7-Mar-18	~2,500
AWTF Intakes Closed, System [Dewatered	27-Feb-18	8-Mar-18	Variable flow
AWTF Shutdown (flow ceases)		8-Mar-18	29-Aug-18	0
AWTF/AOP Recommissioning	No Discharge	30-Aug-18	28-Oct-18	0
Phase ^a	Initial Discharge	29-Oct-18	28-Dec-18 ^ª	0 to 5,500
AWTF/AOP Operation Stabilization		29-Dec-18 ^a	~spring 2020	0 to ~7,500
AWTF/AOP Steady State Operation		~spring 2020	indefinitely	~7,500

^a 120 days after recommissioning date.

decrease effluent flow through the AWTF by approximately half³ (starting on October 16, 2017) and subsequently shut down the WLC AWTF temporarily (starting on March 8, 2018; Table 1.1). A monitoring plan was approved by ENV (2018) to support the AWTF flow reduction and shutdown process and augment the monitoring that was proposed in the 2017 Line Creek LAEMP study design (Minnow 2017c). The AWTF remained shut down until recommissioning with an advanced oxidation process (AOP⁴) which was initiated on August 30, 2018 (no discharge to the environment occurred during this initial recommissioning). The AOP is designed to reverse the shift in selenium species in AWTF effluent from chemically-reduced species back to a (chemically-oxidized) selenate-dominated condition. Discharge to the receiving environment from the AWTF with AOP began on October 29, 2018 with variable flow (Table 1.1). Stabilization of AWTF with AOP operations (i.e., variable influent flow rates to the AWTF during optimization of the treatment processes) began in late December 2018 (120 days after the start of recommissioning with AOP)⁵ and continued until late March 2020, after which steady-state operation of the AWTF with AOP began (i.e., consistent influent flow rates to the AWTF at or near the maximum treatment capacity).

1.4 Linkages to Teck's Adaptive Management Plan

As required in Permit 107517 Section 11, Teck has developed an Adaptive Management Plan (AMP). The purpose of the AMP is to support implementation of the Elk Valley Water Quality Plan (EVWQP) to achieve water quality and calcite targets, to be protective of human health and the environment, and where necessary, restorative, and to facilitate continuous improvement of water quality in the Elk Valley (Teck 2018). Following an adaptive management framework, the AMP identifies six Management Questions that will be re-evaluated at regular intervals as part of AMP updates throughout EVWQP implementation. Data from the RAEMP (Minnow 2018c) and the various LAEMPs (including the present monitoring program) will feed into the adaptive management process to address these Management Questions that collectively address the environmental management objectives of the AMP (Teck 2018) and the EVWQP (Teck 2014). The AMP also identifies key uncertainties that need to be reduced to fill gaps in current understanding and support achievement of the EVWQP objectives.

The Line Creek LAEMP was primarily designed to monitor conditions associated with the WLC AWTF operation as well as to answer site-specific questions on an annual basis (Section 1.2). Management actions may be triggered at any time during the course of each annual LAEMP cycle

³ AWTF effluent flow was approximately 5,300 - 5,500 m³/day during steady-state operations, then was reduced to approximately 2,500 m³/day during the flow reduction period.

⁴ AOP refers to the advanced oxidation process and associated AWTF process modifications.

⁵ AWTF effluent flow was 0 to approximately 7,500 m³/day during operation stabilization of AWTF with AOP.

0

(results are reported on April 30th of each year for the preceding calendar year) depending on the answers to site-specific LAEMP questions and on available data. For example, the Line Creek LAEMP Question #2 is: "Are tissue selenium concentrations reduced downstream from the WLC AWTF?". Monitoring in 2016 and 2017 identified that tissue selenium concentrations were elevated in aquatic biota collected downstream from the AWTF despite decreased total selenium loads (Minnow 2017a, 2018d). This prompted Teck to immediately initiate further investigations, which confirmed that the elevated tissue selenium concentrations were the result of elevated concentrations of chemically-reduced forms of aqueous selenium in effluent from Therefore, Teck worked with regulators to obtain necessary authorizations to the AWTF. temporarily shut down the WLC AWTF until a technical solution could be implemented. Benthic invertebrate tissue selenium monitoring was conducted throughout the shutdown period according to the approved shutdown monitoring plan (ENV 2018) to evaluate conditions while the AWTF was offline. Additional investigation and pilot-scale trials initiated by Teck indicated that an AOP would reverse the shift in selenium species in AWTF effluent from chemically-reduced species back to a selenate-dominated condition. The AWTF resumed operation with the newly-commissioned AOP process on October 29, 2018. Benthic invertebrate tissue selenium monitoring was completed as part of the Line Creek LAEMP just prior to the AWTF with AOP operation (in September 2018), and following the initiation of discharge (in December 2018, and January, February, April 2019). Adjustments were made to the timing of sampling events, as required, to accommodate changes in the AWTF with AOP implementation schedule. Finally, additional tissue sampling events in 2019 were also implemented (monthly monitoring between May and August) to allow for more detailed evaluation of AWTF performance during operation stabilization with AOP. Monitoring plans and schedules will continue to adapt to findings in the field and operational needs.

In addition to addressing questions specific to the Line Creek LAEMP on an annual basis, monitoring data from the LAEMP will contribute to the broader data set assessed every three years within the RAEMP. The RAEMP is designed to evaluate AMP Management Question #5 (i.e., "Does monitoring indicate that mine-related changes in aquatic ecosystem conditions are consistent with expectations?"). During the development of the AMP, a number of uncertainties related to Management Question #5 were identified that were summarized as Key Uncertainty 5.1 (i.e., "How will monitoring data be used to identify potentially important mine-related effects on the aquatic ecosystem?"). Teck is working with its consultants and the EMC to develop the methodology that will address Key Uncertainty 5.1 and its underlying uncertainties prior to submission of the next RAEMP report in 2020.

Data from the LAEMPs and RAEMP will also contribute to answering AMP Management Question #2, (i.e., "Will aquatic ecosystem health be protected by meeting the long-term site

performance objectives?). A Key Uncertainty associated with Management Question #2 is "How will the science-based benchmarks be validated and updated?" with underlying uncertainty about how aquatic monitoring data will be used to validate and update the benchmarks. Progress on reducing these uncertainties, and associated learnings, will be described in annual AMP Reports.

The first annual AMP report was submitted in July 2019 and included data from 2018 (Teck 2019c). This report identified a trigger of the AMP response framework for aqueous nitrate concentrations that exceeded the Site Performance Objective (SPO; monthly average and daily maximum) at the Line Creek Compliance Point in 2018. Actions associated with the AMP response to elevated nitrate concentrations are outlined in detail in the 2018 Annual AMP report (Teck 2019c). The investigation of cause identified blasting residue on waste rock as the source of nitrate in Line Creek. Several adjustments were completed as part of the AMP response framework, including operation of the AWTF throughout 2019 (which functions to remove aqueous total selenium and nitrate, and was not fully functional in 2018 due to recommissioning), among others (Teck 2019c). Furthermore, additional mitigation is planned through long-term adjustments outlined in the 2019 Implementation Plan Adjustment (Teck 2019c). Concentrations of aqueous total selenium also exceeded the SPO (monthly average and daily maximum) at the Line Creek Compliance Point in 2018 (Teck 2019c). Selenium monitoring related to the LCO LAEMP is focused on concentrations in biota, and management actions related to this monitoring have been implemented based on changes to the AWTF operational status as well as in response to biological tissue selenium results (see earlier in this section for details). The implementation of these adaptive management actions are not constrained to the AMP or LAEMP annual reporting cycles, but may be (and have been) triggered at any time during the reporting cycle. For example, additional monthly monitoring of benthic invertebrate selenium concentrations was implemented between May and August 2019 (as described above) to support better understanding of the AWTF with AOP performance during this time.

For more information on the adaptive management framework, the Management Questions, the key uncertainties, the Response Framework, Continuous Improvement, linkages between the AMP and other EVWQP programs, and AMP reporting, refer to the AMP (Teck 2018) and the 2018 Annual AMP report (Teck 2019c).

2 METHODS

2.1 Overview

The general approach for the Line Creek LAEMP (see Table 2.1) includes explanation of the collected data and data evaluation in relation to each of the study questions. This report includes data up to the end of the 2019 calendar year for all parameters. Historical data are also presented where appropriate.

Water quality and biological samples were collected from established monitoring areas in Line Creek and the Fording River (Table 2.2, Figure 2.1). These monitoring areas represent the same locations that were sampled for the LAEMP in 2014 and 2015, with the addition of RG_LCUT (LC_LCUSWLC) in 2016, and RG_LISP24 (WL_DCP_SP24) and RG_LIDCOM (LC_LCC) in 2017.⁶ RG_LCUT is situated upstream from the AWTF and mainly reflects water quality influences farther upstream on the main stem of Line Creek (LC_LCUSWLC) when the AWTF is operating. When West Line Creek flows are not being diverted to the AWTF for treatment (i.e., during reduction of effluent flow through the AWTF or during AWTF shutdown) water quality at RG_LCUT also reflects input from West Line Creek. RG_LISP24 and RG_LIDCOM are monitoring areas downstream from the WLC AWTF that were added to the LAEMP to provide additional spatial resolution of the potential influence of the AWTF. Continuous water temperature is also monitored at several locations (Figure 2.2, Table 2.3).

To address the study questions described in Section 1.2, the 2019 Line Creek LAEMP included evaluation of the following components:

- Periphyton visual coverage scores;
- Benthic invertebrate biomass, community, and tissue selenium concentrations (composite-taxa samples);
- Fish tissue selenium concentrations;
- Concentrations of nutrients, total selenium, selenium species, and other analytes (i.e., those listed in Section 2.2.1) in water, based on routine water quality monitoring;
- *In situ* water quality (including temperature and dissolved oxygen) at routine water quality monitoring locations;

⁶ RG_LISP23 (WL_LCUCP_SP23) was also established in 2017 (Minnow 2018d) but monitoring at this location was discontinued in 2018 (Minnow 2018b). Refer to Minnow (2018d) for details of this monitoring area.

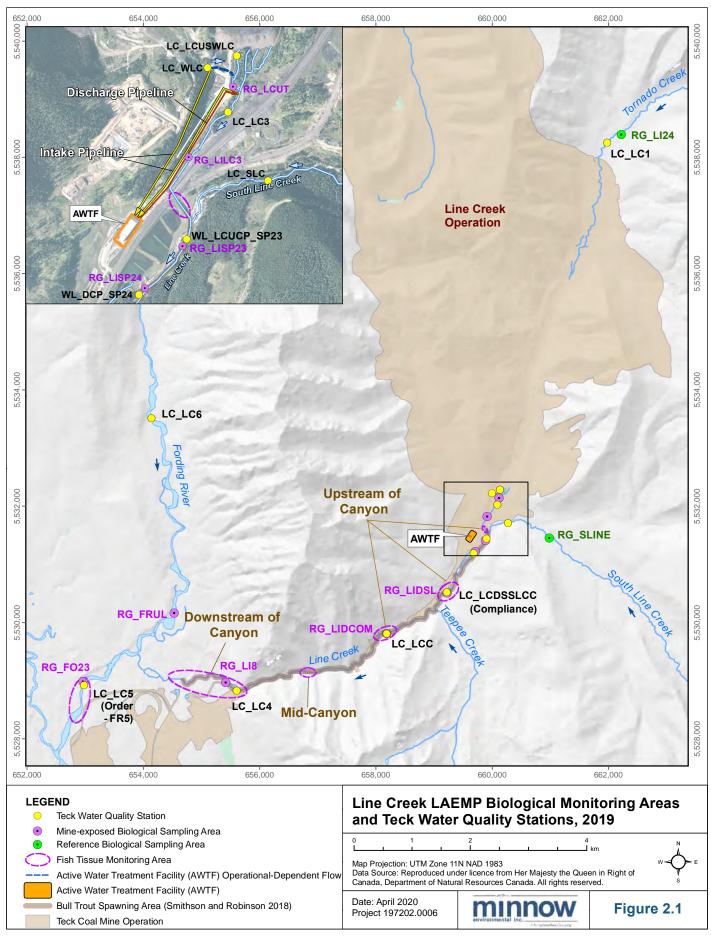
Table 2.1: General Approach for the 2019 Line Creek LAEMP, as Presented in the LAEMP Study Design (Minnow 2019)

Kay Quastiana		Measurement Endpoints						
Key Questions	Assessment Endpoints	Water	Sampling Areas	Biological	Sampling Areas			
Is active water treatment affecting	Biological productivity downstream from the AWTF discharge post- compared to pre-AWTF commissioning, among AWTF operational phases, and relative to productivity observed upstream from the discharge	Nutrient concentrations	LC_LC1, LC_SLC, LC_WLC, LC_LCUSWLC, LC_LC3, WL_DCP_SP24, LC_LCDSSLCC, LC_LCC, LC_LC4, LC_LC6, LC_LC5 (see Table 2.4 for timing)	Periphyton coverage, Benthic invertebrate biomass, Benthic invertebrate community structure	Benthic Invertebrate Biomass - RG_LI24, RG_SLINE, RG_LILC3, RG_LIDSL Periphyton Coverage and Benthic Invertebrate Community - RG_LI24, RG_SLINE, RG_LCUT, RG_LILC3, RG_LISP24, RG_LIDSL, RG_LIDCOM, RG_LI8, RG_FRUL, RG_FO23			
Are tissue selenium concentrations reduced downstream from the	Ŭ Î Î		LC_LC1, LC_SLC, LC_WLC, LC_LCUSWLC, LC_LC3, WL_DCP_SP24, LC_LCDSSLCC, LC_LCC, LC_LC4, LC_LC6, LC_LC5 (see Table 2.4 for timing)	Benthic invertebrate tissue selenium (composite-taxa	Benthic invertebrate -RG_Ll24, RG_SLINE, RG_LCUT, RG_LILC3, RG_LISP24, RG_LIDSL, RG_LIDCOM, RG_Ll8, RG_FRUL, RG_FO23			
AWTF?	operational phases, and relative to concentrations observed upstream from the discharge	Selenium speciation	LC_LC1, LC_SLC, LC_WLC, LC_LCUSWLC, LC_LC3, WL_DCP_SP24, LC_LCDSSLCC, LC_LCC, LC_LC4, LC_LC6, LC_LC5 (see Table 2.4 for timing)	samples) Fish tissue selenium (Westslope cutthroat trout and bull trout)	Fish - Area 1 (upstream from canyon: RG_LILC3 to RG_LIDCOM); Area 2 (downstream from canyon: RG_LI8)			
		Temperature (data loggers)	5 locations in the effluent mixing zone, and 1 location upstream of the AWTF discharge (see Figure 2.2 and Table 2.3)					
Is AWTF operation affecting aquatic biota through thermal effects, effects on dissolved oxygen concentrations or concentrations of treatment- related constituents other than nutrients or selenium?	ts discharge post- compared to pre-	Dissolved oxygen	LC_LC1, LC_SLC, LC_WLC, LC_LCUSWLC, LC_LC3, WL_DCP_SP24, LC_LCDSSLCC, LC_LCC, LC_LC4, LC_LC6, LC_LC5 (see Table 2.4 for timing)		RG_LI24, RG_SLINE, RG_LCUT, RG_LILC3, RG_LISP24, RG_LIDSL, RG_LIDCOM, RG_LI8, RG_FRUL, RG_FO23 (annually)			
		Toxicity	WL_BFWB_OUT_SP21, LC_LCDSSLCC (LIDSL) (see Table 2.4 for timing)					

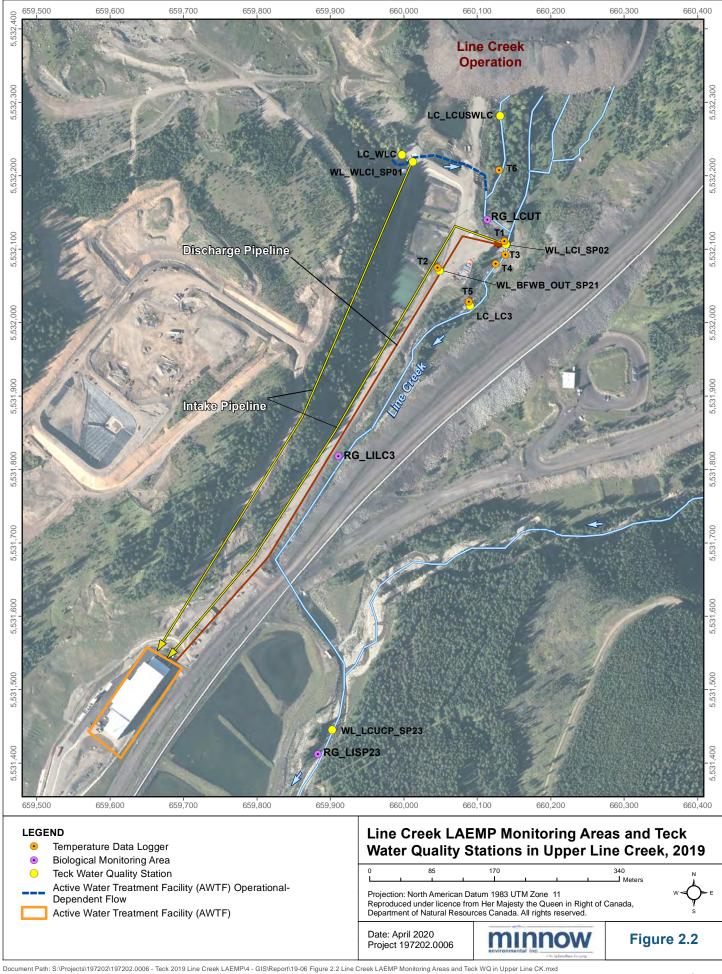
^a Data evaluation approach presented differs slightly from the evaluation criteria in Table 2.1 of the study design. The data evaluation approach displayed herein is integrated for water and biological endpoints, and these were presented separately in the study design.

How Data will be Evaluated to Address Key Question^a

Determine if there is an increase in periphyton coverage, benthic invertebrate biomass, or shift in community structure that has been demonstrated to correspond with changes in AWTF operational status and changes in parameters associated with productivity (e.g., nutrient concentrations)


Determine if there is a change in benthic invertebrate and fish tissue selenium concentrations over time that corresponds to changes in total selenium concentrations or selenium speciation in water. Benthic invertebrate community data being collected for other purposes can be used as supporting evidence of ecosystem health status downstream from the AWTF.

Temperatures that are above/below the guideline, and dissolved oxygen concentrations that are above the threshold for effects to fish outside of the initial mixing zone, and confirmation that the mixing zone is small, will be indicative of effective management of treated water discharge. Benthic invertebrate community data being collected for other purposes can be used as supporting evidence of ecosystem health status downstream from the AWTF.


Determine if there is a change in benthic invertebrate community endpoints away from the reference condition that does not correspond to observed changes in nutrients or selenium concentrations.

			Water Quality Sampling Station				Biological Sampling		
Area	Teck Location Code		ion Codo		(11U)	Station ID	Location Description	UTM (11U)	
		Number		Easting	Northing			Easting	Northing
Reference	LC_LC1	E216142	Line Creek upstream of LCO and MSA North Pit	661979	5538254	RG_LI24	Tornado Creek (south fork of upper Line Creek)	662214	5538393
Refer	LC_SLC	E282149	South Line Creek west side of Main Rock Drain, upstream of Line Creek	660271	5531737	RG_SLINE	South Line Creek upstream of Line Creek and LCO	661122	5531374
	LC_LCUSWLC	E293369	Line Creek downstream of rock drain, upstream of West Line Creek and AWTF outfall	660125	5532281	RG_LCUT	Line Creek downstream of rock drain, downstream of West Line Creek and upstream of AWTF outfall	660114	5532140
x	LC_LC3	0200337	Line Creek downstream of West Line Creek and AWTF outfall	660090	5532023	RG_LILC3	Line Creek downstream of West Line Creek and AWTF outfall	659911	5531818
Mine-exposed Line Creek	WL_DCP_SP24	N/A	Line Creek downstream of LC_WTF_OUT, approximately 50 m downstream of contingency pond discharge	659902	5531445	RG_LISP24	Line Creek downstream of LC_WTF_OUT, approximately 50 m downstream of contingency pond discharge	659674	5531168
ne-expose	LC_LCDSSLCC (compliance)	E297110	Line Creek immediately downstream of South Line Creek confluence	659218	5530522	RG_LIDSL	Line Creek downstream of South Line Creek confluence	659294	5530583
M	LC_LCC	N/A	Line Creek downstream of the compliance point	658184	5529814	RG_LIDCOM	Line Creek downstream of the compliance point	658184	5529814
	LC_LC4	020044	Line Creek canyon, upstream of Process Plant	655604	5528824	RG_LI8	Line Creek downstream of the canyon	655426	5528959
Mine-exposed Fording River	LC_LC6	0200338	Fording River downstream of Grace Creek, upstream of Line Creek	654140	5533513	RG_FRUL	Fording River downstream of Grace Creek, upstream of Line Creek	654530	5530162
Mine-e: Fordinç	LC_LC5 (Order - FR5)	0200028	Fording River downstream of Line Creek	652977	5528919	RG_FO23	Fording River downstream of Line Creek	652808	5528334

Table 2.2: Monitoring Areas Associated with Line Creek LAEMP, 2019

Document Path: S:\Projects\197202\197202.0006 - Teck 2019 Line Creek LAEMP\4 - GIS\Report\19-06 Figure 2.1 LC LAEMP Bio Monitoring Areas and Teck WQ Stations.mxd

	Location Description	UTM (NAD83, 11U)		
Logger ID	Location Description	Easting	Northing	
T1	Temperature upstream of LC Intake	660137	5532111	
T2	Temperature of Buffer Pond outlet box	660046	5532074	
Т3	Temperature in V-Notch Discharge	660140	5532096	
Τ4	Temperature 5m Downstream of Discharge	660130	5532076	
Т5	Temperature at LC3 (100m DS of outfall)	660092	5532030	
Т6	Temperature at LCUT (upstream of LC Intake and T1 data logger)	660130	5532208	

Table 2.3: Temperature Data Logger Locations, 2019

- Water temperature upstream and downstream of the WLC AWTF recorded continuously with data loggers; and
- Toxicity of WLC AWTF effluent and surface water samples collected downstream of the AWTF outfall.

Water quality monitoring results presented in this report include requirements specified under Permit 107517. Acute and chronic water toxicity testing results include the requirements specified under Permit 107517, with chronic toxicity testing following the requirements of Permit 107517 and Permit 106970, which were integrated under an amendment to Permit 107517 on March 4th 2019 (ENV 2019).

Biological sampling in 2019 was completed in accordance with the 2018 and 2019 LCO LAEMP study designs (Minnow 2018b, 2019b). Benthic invertebrate tissue selenium sampling events were completed in February and April 2019 as specified in the 2018 LCO LAEMP study design (Minnow 2018b). These monitoring events were planned with the acknowledgement that the timing may be adjusted if recommissioning of the AWTF was delayed. Due to changes in the AWTF recommissioning schedule, the timing of these sampling events was adjusted slightly to include three sampling events in 2019 (January, February, and April), after discussion with the EMC in October 2018. The 2019 LCO LAEMP study design specified benthic invertebrate tissue selenium sampling events in September and December (Minnow 2019b) and this monitoring was completed as planned. Additional benthic invertebrate tissue selenium sampling was also completed monthly between May and August 2019 at a subset of monitoring areas to further evaluate AWTF with AOP performance during operation stabilization.

2.2 Water Quality

2.2.1 Routine Water Quality

Water quality data assessed as part of the Line Creek LAEMP included data for routine monitoring managed by Teck (Tables 2.4 and 2.5), and water samples collected at the biological monitoring stations concurrently with biological sampling (Table 2.2, Figure 2.1)⁷. Water quality data were downloaded from Teck's EQuIS[™] database, including:

• Nutrient concentrations (i.e., nitrate, nitrite, ammonia, total phosphorus, and orthophosphate);

⁷ The routine water quality monitoring locations and the biological monitoring locations for some areas differ slightly (e.g. LC_LCUSWLC; Figure 2.1).

Table 2.4: Summary of Water Quality Monitoring for Permit 107517

	Task Water Otation Ocale			D83, 11U)		N	Water Quality Samples		
Location Description	Teck Water Station Code (associated Biological Station Code in brackets)	EMS Number	Easting	Northing	Area Type	Field Parameters ^a	All Other Parameters Required Under Mine Permits ^b	Tox Acute ^f	xicity ^e Chronic ^g
Line Creek upstream of LCO	LC_LC1 (RG_Ll24)	E216142	661979	5538254	Reference	М	М	-	-
South Line Creek	LC_SLC (RG_SLINE)	E282149	660271	5531737	Reference	М	М	-	Q/SA
Line Creek upstream of WLC AWTF	LC_LCUSWLC (RG_LCUT)	E293369	660114	5532140	Mine-exposed	М	М	-	-
West Line Creek (WLC)	LC_WLC (RG_LCUT)	E261958	5532227	659998	Mine-exposed	М	М	-	-
Line Creek AWTF Influent	WL_LCI_SP02	E293371	660138	5532109	Mine-exposed	D	М	-	-
West Line Creek AWTF Influent	WL_WLCI_SP01	E293370	660011	5532218	Mine-exposed	D	М	-	-
AWTF Effluent (buffer pond discharge)	WL_BFWB_OUT_SP21	E291569	660050	5532070	Mine-exposed	D	M°	Q	Q
Line Creek ~200 m downstream of the WLC AWTF	LC_LC3 (RG_LILC3)	0200337	660090	5532023	Mine-exposed	W/M	W/M ^h	-	Q/SA
Line Creek	WL_DCP_SP24 (RG_LISP24)	-	659684	5531191	Mine-exposed	S	S	-	-
Line Creek downstream South Line Creek Confluence	LC_LCDSSLCC (RG_LIDSL)	E297110	659218	5530522	Mine-exposed	W/M	W/M ^{d,h}	-	Q/SA
Line Creek downstream of compliance	LC_LCC (RG_LIDCOM)	-	658185	5529820	Mine-exposed	S	S	-	-
Line Creek upstream of the process plant and ~5,550 m downstream of the WLC AWTF	LC_LC4 (RG_LI8)	0200044	655604	5528824	Mine-exposed	W/M	W/M ⁱ	-	-
Fording River upstream Line Creek	LC_LC6 (RG_FRUL)	0200338	654140	5533513	Mine-exposed	S	S	-	-
Fording River downstream Line Creek	LC_LC5 (RG_FO23)	0200028	652977	5528919	Mine-exposed	W/M	W/M	-	Q/SA

Notes: "-" = Sampling will not be completed at this area; D = daily; T = twice monthly; M = monthly; W = weekly; W/M = weekly during freshet (March 15 to July 15); Q = quarterly; S = September (once). September sampling at WL_DCP_SP24, LC_LCC, and LC_LC6 is not included in Permit 107517. Sampling frequency is currently managed through the permit, and after one year of data collection during sustained operation of the AWTF with AOP sampling frequency may be adjusted.

^a Dissolved oxygen, water temperature, specific conductance, pH (see Table 2.5).

^b Parameters consistent with Permit 107517 (see Table 2.5 for details).

^c Three times weekly for total selenium and 5-day Biochemical Oxygen Demand. Selenium speciation, sulphide, bromate, hydrogen peroxide, and ozone measured at frequency shown (in addition ot parameters listed in footnote b). ^d Total phosphorus every two weeks from June 15th to September 30th.

^e Acute and chronic as per Permit 107517 requirements.

^f Q = Quarterly 96-hr rainbow trout LT_{50} ; 48-hr Daphnia spp. LT_{50} .

^g Q = Quarterly 7-day *C. dubia* growth and survival, 72-hr *P. subcapitata* growth tests; SA = Semi-annual 28-day *H. azteca* growth and survival tests in spring and fall, 30-day early life stage rainbow trout tests in spring and fall, 30-day early life stage fathead minnow tests in summer and winter.

^h 5-day Biochemical Oxygen Demand, sulfide, bromate, hydrogen peroxide measured at frequency shown (in addition to parameters listed in footnote b).

ⁱ Bromate and hydrogen peroxide measured at frequency shown (in addition to parameters listed in footnote b).

Table 2.5:	Water Qualit	y Parameters Required Under Permit 107517 ^a
-------------------	--------------	--

Category	Parameter
Field Parameters	water temperature, specific conductance, dissolved oxygen, pH
Conventional Parameters	specific conductance, total dissolved solids, total suspended solids, hardness, alkalinity, dissolved organic carbon, total organic carbon, and turbidity
Major lons	bromide, fluoride, calcium, chloride, magnesium, potassium, sodium, sulphate
Nutrients	ammonia, nitrate, nitrite, total Kjeldahl nitrogen, orthophosphate, total phosphorus
Total and Dissolved Metals	total and dissolved concentrations of: aluminum, antimony, arsenic, barium, beryllium, bismuth, boron, cadmium, chromium, cobalt, copper, iron, lead, lithium, manganese, mercury, molybdenum, nickel, selenium, silver, strontium, thallium, tin, titanium, uranium, vanadium, and zinc

^a Parameters are consistent with those outlined in Table 18 of Permit 107517.

- Selenium concentrations (i.e., total and dissolved selenium concentrations, and selenium speciation results including concentrations of selenate, selenite, dimethylselenoxide, methylseleninic acid, selenocyanate, selenomethionine, selenosulphate, and unknown selenium species);
- Concentrations of analytes with early warning triggers under the AMP [i.e., total dissolved solids, sulphate, total concentrations of antimony, barium, boron, lithium, manganese, molybdenum, nickel, selenium (previously noted above), uranium and zinc, and dissolved concentrations of cadmium and cobalt]; and
- *In situ* water quality data (i.e., temperature, pH, specific conductivity, and dissolved oxygen).

Quality assurance and quality control (QA/QC) associated with routine water quality monitoring were discussed in the annual water quality report for Permit 107517 (Teck 2020). Quality control results associated with water samples collected concurrently with biological samples will be reported in the next RAEMP report (i.e., 2020).

2.2.2 Toxicity Testing

Effluent samples from the WLC AWTF (WL_BFWB_OUT_SP21) were collected for acute toxicity testing, as stipulated in Permit 107517 (Table 2.4). The following acute toxicity tests were performed:

- Single concentration acute toxicity test (96-hour LT₅₀) using rainbow trout (*Oncorhynchus mykiss*); universal method: EPS 1/RM/9 (Environment Canada 2007a); and
- Single concentration acute toxicity test (48-hour LT₅₀) using *Daphnia* spp.; universal method: EPS 1/RM/11 (Environment Canada 1996).

Chronic toxicity tests were also completed on water samples collected quarterly and semi-annually in 2019 at two mine-exposed areas of Line Creek (Compliance Point [LC_LCDSSLCC] and LC_LC3) and at one mine-exposed area of the Fording River (LC_LC5; Table 2.4, Figure 2.1), as per the Permit 107517 and 106970 Chronic Toxicity Program integration amendment (March 4, 2019). Chronic toxicity tests were also completed on water samples from one reference area (LC_SLC) in 2019 to develop a within-watershed reference location for Line Creek. The quarterly and semi-annual tests were completed as follows:

Quarterly tests:

0

• 72-hour growth/inhibition test using a freshwater alga (*Pseudokirchneriella subcapitata*), conducted using method: EPS1/RM/25 (Environment Canada 2007b); and

• 7-day test of reproduction and survival using a cladoceran (*Ceriodaphnia dubia*), conducted using method: EPS1/RM/21 (Environment Canada 2007c).

Semi-annual tests - Q2 and Q4:

- 28-day water-only test of growth and survival using a freshwater amphipod (*Hyalella azteca*), conducted using methods adapted from USEPA (2000); and
- 30-day early life stage toxicity test using rainbow trout, conducted using method: EPS 1/RM/28- 1E (Environment Canada 1998).

Semi-annual tests - Q1 and Q3:

• 30-day early life stage toxicity test using fathead minnow (*Pimephales promelas*), conducted using methods: EPA-712-C-96-121; USEPA 1996; and E1241-05; ASTM 2013.

Toxicity tests and associated QA/QC measures were completed and reported by the biological testing laboratory contracted by Teck. The results were summarized in reports completed in accordance with Permit 107517 (Teck 2020, Golder 2020). Applicable results (i.e., for monitoring stations in Line Creek associated with the LAEMP) are summarized in this report.

2.3 **Primary Productivity**

(0))

Periphyton coverage was visually scored during the September 2019 sampling event at each of the ten sampling areas where benthic invertebrates were collected by kick sampling (Table 2.6), consistent with the 2019 monitoring design (Minnow 2019b). Scores were recorded for five stations located a minimum of 5 m apart in each area, and were based on the categories defined in the Canadian Aquatic Biomonitoring Network (CABIN) sampling method (Environment Canada 2012a):

- 1. Rocks not slippery, no obvious colour (<0.5 mm thick);
- 2. Rocks slightly slippery, yellow-brown to light green colour (0.5 1 mm thick);
- Rocks have noticeable slippery feel, patches of thicker green to brown algae (1 – 5 mm thick);
- 4. Rocks are very slippery, numerous clumps (5 20 mm thick); and
- 5. Rocks mostly obscured by algae mat, may have long strands (>20 mm thick).

2.4 Secondary Productivity and Invertebrate Community Structure (Hess Sampling)

Samples for analysis of benthic invertebrate density, biomass, and community structure were collected in September 2019 from two areas in Line Creek downstream from the WLC AWTF

Table 2.6: Primary and Secondary Productivity and Benthic Invertebrate CommunitySampling Completed in Line Creek and Fording River in 2019 Compared to the 2019LAEMP Study Design (Minnow 2019b)

		Biolog	gical Sampling									
		Periphyton	Benthic Invertebrates									
Area Type	Biological Area Code	Visual Coverage Score	Kick Sampling (Community)	Hess Sampling (Density, Biomass, Community)								
		September	September	September								
Reference	RG_SLINE	n=5 (√)	n=3 (√)	n=5 (√)								
Refei	RG_LI24	n=5 (√)	n=3 (√)	n=5 (√)								
	RG_LCUT	n=5 (√)	n=1 (√)	-								
Creek	RG_LILC3	n=5 (√)	n=3 (√)	n=10 (√)								
Mine-exposed Line Creek	RG_LISP24	n=5 (√)	n=1 (√)	-								
expose	RG_LIDSL	n=5 (√)	n=3 (√)	n=10 (√)								
Mine-	RG_LIDCOM	n=5 (√)	n=1 (√)	-								
	RG_LI8	n=5 (√)	n=3 (√)	-								
Mine-exposed Fording River	RG_FRUL	n=5 (√)	n=1 (√)	-								
Mine-(Fordir	RG_FO23	n=5 (√)	n=1 (√)	-								

Notes: "-" = not sampled; " $\sqrt{}$ " = target sample size was met.

(RG_LILC3 and RG_LIDSL), and at two reference areas (RG_SLINE and RG_LI24). Five samples were collected at each reference area and 10 at each mine-exposed area (Table 2.6, Figure 2.1). The samples were collected using a Hess sampler (0.1 m^2 sampling area) with 500 µm mesh. Stations were located a minimum of 5 m apart to represent the overall area.

A single sample was collected at each station by carefully inserting the base of the Hess sampler into the substrate to a depth of approximately 5 to 10 cm. Gravel or cobble enclosed within the Hess sampler was carefully washed while allowing the current to carry dislodged organisms into the mesh collection net. Organisms collected into the net were rinsed into the bottom of the net, and then into a labelled wide-mouth plastic jar. Samples were preserved to a nominal concentration of 10% buffered formalin in ambient water within approximately 6 hours of collection, so biomass was not lost through predation or decomposition of tissues before the samples were sorted at the laboratory.

Benthic invertebrate biomass samples were sent to ZEAS Inc. (lead taxonomist Danuta Zaranko) in Nobleton, ON, for sorting and taxonomic identification. Preserved organisms in each sample were sorted from the sample debris into groups separated at the family-level of taxonomy for weighing. Each family group of organisms was placed onto a fine cloth to drain excess surface moisture before being weighed to the nearest 0.1 mg. Total and family-level density and biomass were reported for each sample (preserved wet weight; see Appendix A for raw data).

2.5 Benthic Invertebrate Community Structure (Kick Sampling)

Three replicate samples were collected during the September 2019 sampling event from areas downstream from the AWTF outfall that have been monitored consistently over time (RG_LILC3, RG_LIDSL, and RG_LI8) and at each reference area (RG_SLINE, RG_LI24; Table 2.6). Replicates were collected from stations spaced a minimum of 50 m apart, where habitat allowed (i.e., riffle habitat was present) and sampling could be completed safely. Single samples were also collected from riffle habitat at RG_LCUT (located upstream from the AWTF discharge), RG_LISP24, and RG_LIDCOM to provide additional spatial resolution of community characteristics (Table 2.6).

Benthic invertebrate community sampling followed the CABIN protocol, which involved a 3-minute travelling kick to dislodge organisms into a net having a triangular aperture measuring 36 cm per side and mesh having 400 µm openings (Environment Canada 2012a). During sampling, the field technician moved across the stream channel (from bank to bank, depending on stream depth and width) in an upstream direction. With the net being held immediately downstream of the technician's feet, the detritus and invertebrates disturbed from the substrate were passively collected in the kick-net by the stream current.

After three minutes of sampling time, the sampler returned to the stream bank with the sample. The kick-net was rinsed with water to move all debris and invertebrates into the collection cup at the bottom of the net. The collection cup was then removed, and the contents poured into a labelled plastic jar and preserved to a nominal concentration of 10% buffered formalin in ambient water.

Benthic invertebrate community samples were sent to Cordillera Consulting (lead taxonomist Scott Finlayson), in Summerland BC, for sorting and taxonomic identification to the lowest practical level (LPL; typically genus or species). At the beginning of the sorting process, the total number of preserved organisms in each sample was estimated. If the total number was estimated to be greater than 300, then the sample was sub-sampled for sorting and enumeration. A minimum of 5% of each sample was sorted, consistent with requirements specified by Environment Canada (2012b, 2014). Sorting efficiency and sub-sampling accuracy and precision were quantified using methods outlined by Environment Canada (2012b, 2014). Total organism abundance was reported for each sample (see Appendix A for raw data).

2.6 Tissue Selenium Concentrations

2.6.1 Overview

As outlined in Section 2.1, tissue selenium monitoring in 2019 was completed in accordance with the 2018 and 2019 LCO LAEMP study designs (Minnow 2018b, 2019b), with some adjustments and additions to the planned benthic invertebrate tissue selenium monitoring to better align with the AWTF recommissioning schedule. Specifically, the timing of benthic invertebrate tissue sampling events in early 2019 was adjusted slightly (after discussion with the EMC in October 2018) to include three sampling events in early 2019 (January, February, and April) rather than the two sampling events outlined in the 2018 study design (February and April, 2019; Minnow 2018b). This adjustment was due to changes in the AWTF with AOP recommissioning schedule (Minnow 2019a). Additional sampling was also completed monthly between May and August 2019 at a subset of monitoring areas to further evaluate AWTF with AOP performance during operation stabilization (see Table 2.7). The resulting monitoring in 2019 therefore included sampling at all ten monitoring areas in January, February, April, September, and December, and at six of the ten monitoring areas (RG SLINE, RG LI24, RG LCUT, RG LILC3, RG LIDSL, RG LI8) in May, June, July, and August (Figures 2.1 and 2.3, Tables 2.2 and 2.7). All monitoring in 2019 was completed during the stabilization period of AWTF with AOP operations (Figure 2.3, Table 2.7).

WLC AWTF Operational	2014						2015						2016					2017						2018							2019																	
Phase	J F	Μ	AN	ΝJ	J	٩S	01	۱D	J	FΜ	I A	М	ĴĴ	A	S C) N	D,	JFN	MA	λM.	JJ	Α :	S O	NC) J	FΜ	I A	ΜJ	J	٩S	01	۱D	JF	MA	М	JJ	Α	s c	D N	D	JF	M	AM	JJ	A	s o	NC)
Initial AWTF Commissioning and Discharge					•	•																																										
AWTF Shutdown (no flow)															•																																	
AWTF Discharge Begins (AWTF Startup)																																																1
AWTF Steady State Operation																							•			•	•			•																		
AWTF flow reduction																																•																
AWTF Shutdown (flow ceases)																																		•	•													
AWTF/AOP Recommissioning Phase (No discharge)																																						•										
AWTF/AOP Recommissioning Phase (Initial Discharge)																																								•								
AWTF/AOP Operation Stabilization																																								,	• •		• •	00		•		•

• = Tissue selenium analysis sampling event included in LAEMP Study Design or in the Approved AWTF Shutdown Plan. Multiple points in one month (i.e., April 2018) indicate multiple sampling events during the month.

^o = Additional tissue selenium analysis sampling event.

AWTE	Non-Operational
------	-----------------

AWTF Initial Operations

AWTF Steady-State

AWTF Flow Reduction

AWTF with AOP Restart

Figure 2.3: Overview of Completed Benthic Invertebrate Tissue Selenium Sampling Events in Relation to Phases of WLC AWTF **Operation, 2014 to 2019**

AWTF Start up

					AWTF v	ith AOP	• Operat	ion Stab	oilizatio	n			
		Jan 14-17ª	Feb 25-Mar 7	Apr 22-26	Мау 22-24 ^ь	June 17-19 ^b	July 15-23 ^b	Aug 12-13 ^b	(Regu		5-12 EMP Ti	ming)	Dec 2-6
Area Type	Biological Area Code	Benthic Invertebrates	Benthic Invertebrates	Benthic Invertebrates	Benthic Invertebrates	Benthic Invertebrates	Benthic Invertebrates	Benthic Invertebrates	Benthic Invertebrates	Fish Muscle Tissue	Fish Egg Tissue	Fish Muscle Tissue	Benthic Invertebrates
		Composite Taxa	Composite Taxa	Composite Taxa	Composite Taxa	Composite Taxa	Composite Taxa	Composite Taxa	Composite Taxa	Westslope	Cutthroat Trout	Bull Trout	Composite Taxa
		10	10	10	10	10	10	10	10	8	NA	8	10
Reference	RG_SLINE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	\checkmark
Refe	RG_LI24	0 (frozen)	1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	6
	RG_LCUT	9	0 (frozen)	5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				\checkmark
	RG_LILC3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
sed	RG_LISP24	\checkmark	\checkmark	\checkmark	-	-	-	-		8	-	8 ^c	\checkmark
Mine-exposed	RG_LIDSL			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				\checkmark
Min€	RG_LIDCOM	\checkmark	\checkmark	\checkmark	-	-	-	-					\checkmark
	RG_LI8	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	7	1	4	\checkmark
	RG_FRUL	5	\checkmark	\checkmark	-	-	-	-	\checkmark	-	-	-	
	RG_FO23	\checkmark	4	\checkmark	-	-	-	-	\checkmark	-	-	-	\checkmark

Table 2.7: Tissue Selenium Sampling Completed in Line Creek and Fording River in 2019Compared to the 2018 and 2019 LAEMP Study Designs (Minnow 2018b, 2019b)

Notes: " $\sqrt{}$ " = target sample size was met, otherwise the actual number of samples collected is shown; "T" = target sample size; "-" = no data / not recorded.

^a Benthic invertebrate selenium sampling specified in the 2018 Line Creek LAEMP study design included 1 or 2 events before the end of 2018 (depending on when discharge from AWTF/AOP was initiated). Discharge from the AWTF/AOP was initiated on October 29, 2018, therefore sampling timing was adjusted (after obtaining agreement from the EMC) and one sampling event was completed in early December 2018, and one in mid-January 2019.

^b Exceeds sampling specified between May and September in the 2019 Line Creek LAEMP study design. Monthly tissue selenium monitoring was completed between May and August 2019 to evaluate AWTF performance during AOP stabilization.

^c Target sample size of eight fish achieved. Nine individuals sampled in total.

2.6.2 Benthic Invertebrates

Benthic invertebrate tissue samples were collected for selenium analysis using the CABIN kick and sweep sampling method described in Section 2.4, except that sampling was not timed. All sampling events (including additional monitoring completed monthly between May and August 2019) included collection of a composite sample of a variety of benthic invertebrate taxa (composite-taxa samples). These samples are useful for comparison to baseline data, and as an estimate of dietary selenium exposure for consumer organisms (e.g., fish, birds).

Once the kick and sweep sampling method was completed, as many organisms as possible were carefully removed from sample debris using tweezers until about 2 g of wet tissue was obtained. Invertebrate tissue samples were then photographed to document taxa composition, placed into labelled vials, and stored in a cooler with ice packs until transfer to a freezer later in the day. Tissue samples were kept in a freezer until they were transported by courier in coolers with ice packs to the Saskatchewan Research Council (SRC) laboratory in Saskatoon, SK, where they were freeze-dried and subsequently analyzed for selenium using High Resolution Inductively Coupled Plasma Mass Spectrometry (HR-ICP-MS). Results were reported on a dry weight basis along with moisture content to allow conversion to wet weight values, as required.

2.6.3 Fish Tissue

Muscle samples for selenium analysis were collected non-lethally from westslope cutthroat trout (*Oncorhynchus clarkii lewisii*) and bull trout (*Salvelinus confluentus*) captured in Line Creek. Fishing efforts targeted eight individuals of each species from downstream of the WLC AWTF outfall to upstream of the canyon (i.e., between RG_LILC3 and RG_LIDCOM), and downstream of the canyon in the vicinity of RG_LI8 (Table 2.7, Figure 2.1).

Fish collections involved two anglers targeting a diverse range of habitat in the two areas of Line Creek, including deep pools, glides, side channels, and areas with large woody debris. Fish collection and sampling efforts were authorized under Scientific Fish Collection Permit CB19-528076 issued by the Ministry of Forests, Lands, Natural Resource Operations and Rural Development (FLNRORD). Supporting information recorded during each angling effort included duration of sampling effort, Global Positioning System (GPS) coordinates, catch results, number of samples collected, and deformities or abnormalities observed. No fish mortalities occurred during these sampling efforts.

Upon capture, each fish was subjected to length and weight measures and non-lethal tissue sampling prior to release near the site of capture. Body mass (in grams) and fork length (in millimeters) was measured using Pesola[™] spring scales (accurate to 0.3%) and a length board (± 1 mm), respectively. Muscle samples were then collected by inserting a 4 mm biopsy punch

into the dorsal musculature and applying light pressure while turning (twisting) the punch. The tissue sample was removed from the biopsy punch using a clean pair of forceps, and the skin was removed. Light pressure was applied to the abdomen of each fish in the normal course of processing and also to help with sex determination. If eggs were released with minimal pressure during handling, a sample was collected for chemical analysis. Collected tissues were each placed into a labelled vial and stored in a cooler with ice packs until transfer to a freezer later in the day. Tissue samples were kept in a freezer until they were transported by courier in coolers with ice packs to SRC, where they were freeze-dried and subsequently analyzed for metals (including mercury and selenium) using HR-ICP-MS. Results were reported on a dry weight basis along with moisture content to allow conversion to wet weight values, as required.

2.7 Data Analysis

2.7.1 Water Quality

Water quality data were downloaded from Teck's EQuIS database and included both routine monitoring results collected by Teck and samples collected concurrently with biological sampling. Routine water quality results were paired with the closest biological monitoring station (Table 2.2). The location of routine water quality and biological monitoring stations differed slightly for some areas, therefore samples collected concurrently with biological sampling were named according to the biological monitoring location (Table 2.2). For instance, the biological monitoring area RG_LCUT is situated upstream from the AWTF and mainly reflects water quality influences farther upstream on the main stem of Line Creek (LC_LCUSWLC) when the AWTF is operating, but also reflects input from West Line Creek (LC_WLC) when the AWTF is not operational (and flows are not being diverted to the AWTF for treatment; see Section 2.1). Accordingly, water quality data for RG_LCUT in 2019 were associated with routine water quality monitoring data from LC_LCUSWLC for data analysis because the AWTF was operational throughout the year (AWTF with AOP operation stabilization; Table 1.1). Water quality data collected concurrently with biological sampling at other areas were associated with the corresponding routine water quality monitoring station (Table 2.2) for data analysis.

Annual means of water quality data were computed by first taking a mean of results within months and then averaging monthly means. If replicate sample results were available, the Kaplan-Meier (K-M) mean of the replicates was used. Monthly means were also calculated using the K-M method. This method involved transforming the left censored (i.e., < value) dataset to a right censored (i.e., > value) dataset, and then using the K-M estimator (used to estimate the mean survival time in survival analysis) to estimate the mean. The calculation was conducted using the survfit() function in the *survival* package (Therneau 2017) in R software (R Core Team 2019) and

involved calculating the area under the K-M *survival* curve. The K-M method is non-parametric and can accommodate multiple Laboratory Reporting Limits (LRLs).

The method described in Minnow (2017b) was used to visually explore temporal changes in total phosphorus and orthophosphate concentrations during AWTF operation. The method involves two steps. First, the monthly upper limits of total phosphorus and orthophosphate concentrations (97.5th percentile) were computed for the baseline (pre-AWTF operation) period at LC_LC3. Second, the monthly concentrations were plotted as a ratio of the monthly 97.5th percentile of the concentrations (i.e., monthly mean concentration: monthly 97.5th concentration). These trend plots help visualize deviations from the pre-AWTF range. Total phosphorus concentrations at the Compliance Point (LC_LCDSSLCC [RG_LIDSL]) between June 15th and September 30th were also plotted relative to the phosphorus Site Performance Objective (SPO; \leq 0.02 mg/L) outlined in Permit 107517.

Potential effects of the WLC AWTF on nutrients (nitrate, total phosphorus, and orthophosphate) were assessed using a mass-balance analysis in the 2018 Line Creek LAEMP report (Minnow 2019a) in response to input and advice received from the EMC that recommended use of this approach. A similar approach was intended for use in the present report, but an equipment malfunction⁸ resulted in a lack of flow data at LC_LC3 for the majority of 2019 (flow data were available for portions of January, May, and June only; KWL 2020). Furthermore, the flow data available in each of these three months was limited due to damage to the instrumentation that made most of the data unusable (KWL 2020). Flow data at LC_LC3 are central to the mass-balance calculations (see Minnow 2019a). Therefore, the mass-balance analysis of nutrients was excluded from the present report.

A temporal analysis for total selenium at LC_LC1 was conducted on monthly mean concentrations among years using an Analysis of Variance (ANOVA) model with factors *Year* and *Month*. The factor *Month* was included in the model to control for seasonal effects within a year. A log-normal distribution was assumed for all data (i.e., data were log₁₀-transformed prior to analysis). If the *Year* term of the model was identified as statistically significant ($\alpha < 0.05$), the variability within years (controlling for month) was used to test for significant differences among all pairwise comparisons of years. Significance of the pairwise comparisons was assessed using a Tukey's honestly significant difference test with an α of 0.05. Using this method, potential differences in total selenium concentrations between 2019 relative to multiple previous years (2012 to 2018) and relative to 2018 only were assessed. The analysis was completed twice, once

⁸ Damage to the flow measurement unit installed at LC_LC3 resulted in unusable data through most of January to May 2019, and further failure of the flow measurement unit occurred in June 2019. The unit was removed in July for service, after which no flow data were recorded (KWL 2020).

including all data, and once excluding one outlying result from 2012. The magnitude of difference in selenium concentrations for a given year relative to the first year of available data (i.e., 2012) was calculated as:

Magnitude of Difference = $(\bar{x}_i - \bar{x}_{2012})/\bar{x}_{2012} \times 100\%$

where \bar{x}_i is the observed mean for a given year and \bar{x}_{2012} is the observed mean in 2012 (i.e., the base year; the first year with available data).

Routine water quality monitoring results were screened against British Columbia Water Quality Guidelines (BCWQG; BCMOE 2017, BCMOECCS 2019) as part of Teck's Annual Water Quality Monitoring Report under Permit 107517 (Teck 2020). In addition, further screening against BCWQG and water quality benchmarks (Teck 2014, Golder 2017b; see Appendix Table C.1 for screening values) was completed for select analytes during the 2019 calendar year. These analytes included nutrients (i.e., nitrate, nitrite, total phosphorus, and orthophosphate); total and dissolved selenium, and other selected analytes (i.e., those with early warning triggers under the AMP: total dissolved solids, sulphate, total concentrations of antimony, barium, boron, lithium, manganese, molybdenum, nickel, uranium and zinc, and dissolved concentrations of cadmium and cobalt; Section 2.2.1). Plots of these select analytes were prepared using available data from 2012 to 2019 for each monitoring station individually relative to BCWQG and water quality benchmarks (where applicable), and as combined plots to allow for visual comparison among stations. Aqueous selenium speciation results were plotted as monthly mean concentrations for each monitoring area, with results below the LRL excluded from the plots.

Temperature and dissolved oxygen concentrations in Line Creek were also graphically evaluated relative to BCWQG. British Columbia water temperature guidelines for bull trout and westslope cutthroat trout specify a maximum ± 1 °C change from the optimum temperature range for different life stages of these species (spawning, incubation, and rearing; BCMOE 2001). Dissolved oxygen guidelines are also specific to life stage (buried embryo/alevin and all other life stages; BCMOE 1997). Guidelines for both these parameters were applied to periods of the year relevant to the specific life stage of each of the two species, with the time periods approximated from available literature (McPhail and Baxter 1996; McPhail 2007; COSEWIC 2016). Temperature data recorded continuously at locations immediately upstream and downstream of the AWTF discharge (using data loggers) were plotted relative to discrete temperature measurements recorded further upstream at LC_LCUSWLC⁹ (Figure 2.2, Table 2.3).

⁹ A continuous temperature data logger was installed upstream of the AWTF discharge (near LC_LCUSWLC) in September 2019 (Data logger T6; Figure 2.2, Table 2.3). Temperature data from this logger were not available for inclusion in the present report but will be included in the 2020 LCO LAEMP report.

2.7.2 Secondary Productivity Endpoints

Potential effects of AWTF operation on benthic invertebrate biomass and density were analyzed among areas and years using an ANOVA model. The model was used to assess changes in the difference in benthic invertebrate biomass or density between mine-exposed and reference areas among years. Data were included for the two mine-exposed areas (RG_LIDSL and RG_LILC3) and two reference areas (RG_SLINE and RG_LI24) sampled in 2019, and included all available results from 2014 to 2019. As recommended by the EMC, the analyses were completed by separately evaluating changes at each mine-exposed area relative to the two reference areas. Outliers with studentized residuals with magnitude greater than four were removed from the analysis, and one sample from RG_SLINE in 2018 was excluded due to issues with sample preservation identified by the laboratory.

The ANOVA model that was fit to the data for each mine-exposed area (and both reference areas) was:

$$Y = CI + Year + Area(CI) + Year \times CI + Year \times Area(CI) + \epsilon$$

where:

- *Y* = response variable;
- CI = a fixed factor for area type with two levels (control [reference] and impact [mine-exposed]);
- *Year* = a fixed factor for year (2014 to 2019);
- Area(CI) = a fixed factor for area because there are two reference areas (nested in CI because each area can only be assigned to one level of CI);
- $Year \times CI$ = the interaction between Year and CI with a significant effect suggesting the difference between mine-exposed and reference areas varies among years;
- *Year* × *Area*(*CI*) = the interaction between *Year* and *Area* with a significant effect suggesting the difference between mine-exposed and reference results depends on which reference area the mine-exposed area is being compared to; and
- ϵ = the error term.

The ANOVA model was used to test for CI effects (i.e., changes in the difference between mine-exposed and reference areas among years). These changes were assessed by testing the significance of the interaction terms containing the *Year* and *CI* terms. An α of 0.1 was used to test the significance of the interaction terms.

Interpretation of the ANOVA table began by assessing the significance of the interaction between Area(CI) and Year. If the interaction term was significant, then the differences among areas changed over time, but it depended on which years and areas were compared. In that case, separate ANOVA models were run for each reference area with factors for *Area* (one mine-exposed and one reference), *Year* and *Year* × *Area*. If there was a significant interaction, contrasts were conducted (with Bonferroni correction for the number of tests) to test for significant changes between the mine-exposed area and reference area among years.

If the interaction term between *Area*(*CI*) and *Year* was not significant, then the interpretation of the ANOVA table continued by assessing the significance of the interaction between *CI* and *Year*. This term in the model assessed whether the relative differences among area types depended on year. If this interaction term was significant, then contrasts were conducted to determine the changes between the mine-exposed area and the reference areas among years.

Testing the significance of the interaction terms is the key hypothesis of interest in the ANOVA model as it tests for changes in the relative differences among areas over time. If all interaction terms are not significant, then it can be concluded that there are no Year effects that can be compared to AWTF operation schedules. Data were log_{10} -transformed prior to analysis. The ANOVA models and contrasts were conducted in R (R Core Team 2019) using customized scripts. Plots for visualizing the ANOVA results were prepared in Microsoft Excel, and data were presented on log_{10} -transformed y-axes for consistency with the statistical approach.

Temporal differences in benthic invertebrate biomass and density at mine-exposed areas (RG_LILC3 and RG_LIDSL) were also assessed over the same time period (2014 to 2019) using an ANOVA for each area and endpoint. Prior to analysis, data were transformed if required (log₁₀, square root, fourth root) to meet the assumptions of the analysis. The transformation with the highest p-value from a Shapiro-Wilk test for normality that also passed a Levene's test for homogeneity of variances was selected. If assumptions could not be met, data were rank-transformed. When the overall ANOVA was significant ($\alpha < 0.1$), a Tukey's *post hoc* test was conducted for all pairwise comparisons. Graphical plots of the data were prepared using Microsoft Excel, and letters were used to indicate which years differed significantly from one another.

2.7.3 Selenium Tissue Chemistry – Benthic Invertebrates

Selenium concentrations measured in tissues of benthic invertebrates and fish were plotted over time relative to corresponding site-specific effect benchmarks (Table 2.8).

		Benchmark						
Endpoint	Tissue Type	Value (µg/g dw)	Туре	Description	Source			
	Whole body	4 ^a	BC guideline	Interim guideline for aquatic dietary tissue based on weight of evidence of lowest published toxicity thresholds and no uncertainty factor applied	BCMOE (2014)			
	Whole body	13	Site-specific benchmark	Level 1 (~10% effect) benchmark for growth, reproduction and survival of invertebrates	Teck (2014)			
	Whole body	20	Site-specific benchmark	Level 2 (~20% effect) benchmark for growth, reproduction and survival of invertebrates	Teck (2014)			
	Whole body	27	Site-specific benchmark	Level 3 (~50% effect) benchmark for growth, reproduction and survival of invertebrates	Golder (2014)			
Benthic	Whole body	11 ^b	Site-specific benchmark	Level 1 (~10% effect) benchmark for dietary effects to juvenile fish (growth)	Teck (2014)			
Invertebrates	Whole body	18	Site-specific benchmark	Level 2 (~20% effect) benchmark for dietary effects to juvenile fish (growth)	Teck (2014)			
	Whole body	26	Site-specific benchmark	Level 3 (~50% effect) benchmark for dietary effects to juvenile fish (growth)	Golder (2014)			
	Whole body	15	Site-specific benchmark	Level 1 (~10% effect) benchmark for dietary effects to juvenile birds	Teck (2014)			
	Whole body	22	Site-specific benchmark	Level 2 (~20% effect) benchmark for dietary effects to juvenile birds	Teck (2014)			
	Whole body	41	Site-specific benchmark	Level 3 (~50% effect) benchmark for dietary effects to juvenile birds	Golder (2014)			
	Egg/ovary	25	Site-specific benchmark	Level 1 (~10% effect) benchmark for westslope cutthroat trout reproduction	Teck (2014)			
Westslope	Egg/ovary	27	Site-specific benchmark	Level 2 (~20% effect) benchmark for westslope cutthroat trout reproduction	Teck (2014)			
cutthroat trout	Egg/ovary	33	Site-specific benchmark	Level 3 (~50% effect) benchmark for westslope cutthroat trout reproduction	Golder (2014)			
	Muscle/ muscle plug	15.5	Site-specific benchmark	Muscle equivalent to the 25 mg/kg dw ovary benchmark, based on the relationship observed between selenium in muscle and ovary in westslope cutthroat trout	Nautilus Environmental and Interior Reforestation (2011)			
	Egg/ovary	18	Site-specific benchmark	Level 1 (~10% effect) benchmark for reproduction effects to other species than westslope cutthroat trout	Teck (2014)			
	Egg/ovary	22	Site-specific benchmark	Level 2 (~50% effect) benchmark for reproduction effects to other species than westslope cutthroat trout	Teck (2014)			
	Egg/ovary	31	Site-specific benchmark	Level 3 (~50% effect) benchmark for reproduction effects to other species than westslope cutthroat trout	Golder (2014)			
Other Fish	Muscle	18	Site-specific benchmark	Muscle equivalent to the 18 mg/kg dw ovary benchmark, based on the relationship observed between selenium in muscle and ovary in longnose sucker	Minnow (2018a)			
	Egg/ovary	11	BC guideline	Combination of weight of evidence and mean of published effects data with an uncertainty factor of 2 applied	BCMOE (2014)			
	Whole body	4	BC guideline	Combination of weight of evidence and mean of published effects data with an uncertainty factor of 2 applied	BCMOE (2014)			
	Muscle/ muscle plug	4	BC guideline	Whole-body translation to derive muscle benchmark with no additional uncertainty factor	BCMOE (2014)			

Table 2.8: Selenium Benchmarks for Benthic Invertebrates and Fish Tissues in the Elk Valley

^a BC guidelines were not used in assessment of benthic invertebrate and fish tissue selenium concentrations. Assessment was completed relative to site-specific benchmarks only.

^b Site-specific benchmark is not applicable to effects to juvenile westslope cutthroat trout because studies with Yellowstone cutthroat trout have reported no effects at the Level 1 benchmark (see Teck [2014], Annex E, Appendix D [Elk Valley Water Quality Plan – Selenium Toxicity Literature Review]).

Potential effects of AWTF operation on tissue selenium concentrations were evaluated for composite-taxa benthic invertebrate samples from each of the eight mine-exposed sampling areas using an ANOVA model. As recommended by the EMC, the analyses were completed by separately evaluating changes at each mine-exposed area relative to the two reference areas.

The ANOVA model that was fit to the data for each mine-exposed area (and both reference areas¹⁰) was:

 $Y = CI + Period + Time(Period) + Period \times CI + Time(Period) \times CI + \epsilon$

where:

- *Y* = response variable;
- *CI* = a fixed factor for area type with two levels (control [reference] and impact [mine-exposed]);
- Period = a fixed factor for time with up to five levels (Before [September 2012], Initial Operations [August to October 2014], Steady-state [February 2016 to October 2017], Shutdown [October 2014 to October 2015, March to August 2018] ¹¹, and Restart [October to December 2019]) depending on data availability, where each period included between one to ten individual sampling events and reflected the operational status of the WLC AWTF;
- *Period* × CI = the interaction between *Period* and *CI* with a significant effect suggesting the difference between mine-exposed and reference areas varies among periods;
- *Time*(*Period*) × CI = the interaction between *Time*(*Period*) and *CI* with a significant effect suggesting the difference between mine-exposed and reference areas varies among periods, but it depends on which sampling months are being compared; and
- ϵ = the error term.

Only one data-point was collected for a given area in some years (i.e., no replicate sampling). Individual data points were used in the analyses rather than means (where n > 1 at an area), thus

¹⁰ Benthic invertebrate selenium concentration data from both reference areas (RG_LI24 and RG_SLINE) were used in the ANOVA model, if available. If data from both reference areas were not available for a given sampling event, data from a single reference area were used. Results reported for RG_LI24 on May 3, 2018 were excluded from analyses because these were identified as anomalous and likely the result of a field error (see Minnow 2019a).

¹¹ Commissioning-phase discharge from the AWTF began August 27, 2014, and the facility was shut down on October 17, 2014, and recommissioned in October 2015. Composite-taxa benthic invertebrate tissue selenium monitoring was completed in September 2015. Due to the brief period of exposure to less-than-capacity AWTF effluent, benthic invertebrate tissue selenium data from September 2015 are not considered representative of steady-state AWTF operation but also do not represent a no-discharge condition. They were therefore excluded from ANOVA analyses, but are displayed in plots for context.

variation was assumed to be consistent across years. Because replicates within areas were not available for all years, an Area(CI) x Year interaction could not be tested, and this term was excluded from the model.

Interpretation of the ANOVA table began by assessing the significance of the interaction between Time(Period) and *CI*. If the interaction was significant, then the differences among mine-exposed and reference areas varied among periods, but it depended on which sample months were compared. In that case, contrasts were conducted to determine differences between periods for each sampling event using an $\alpha = 0.1$, with a Bonferroni correction for the number of tests. Contrasts were limited to those between the "Restart" period relative to the "Before" and "Steady-state" periods (contrasts to the "Initial Operations" and "Shutdown" periods were excluded), because these are the most relevant contrasts for evaluating changes during the "Restart" period. Differences among sampling events within a given period were not statistically contrasted, with the exception of the "Restart" period. Contrasts among sampling events within the "Restart" period of operation stabilization.

The magnitude of difference for a significant contrast was expressed in terms of the number of standard deviations as follows:

Magnitude of Difference = $\frac{(\bar{X}_1 - \bar{X}_2)}{S_r}$ where:

- \bar{X}_1 = difference between the log₁₀(mean) for the mine-exposed and the log₁₀(mean) for the reference areas in Sampling Event 1;
- \bar{X}_2 = difference between the log₁₀(mean) for the mine-exposed and the log₁₀(mean) for the reference areas in Sampling Event 2, and
- S_r = the standard deviation of the residuals in the ANOVA.

If the interaction term between *Time*(*Period*) and *CI* was not significant, then the interpretation of the ANOVA table continued by assessing the significance of the interaction between *Period* and *CI*. This term in the model assessed whether the relative differences between mine-exposed and reference area depended on period and if significant, contrasts (with Bonferroni correction) were used to compare among all time periods.

The magnitude of difference for a significant contrast was expressed in terms of the number of standard deviations using the equation above, where:

- \bar{X}_1 = difference between the log₁₀(mean) for the mine-exposed and the log₁₀(mean) for the reference areas in Time Period 1;
- \bar{X}_2 = difference between the log₁₀(mean) for the mine-exposed and the log₁₀(mean) for the reference areas in Time Period 2; and
- S_r = the standard deviation of the residuals in the ANOVA.

The ANOVA model outlined above was also used to evaluate changes in the difference of tissue selenium concentrations between sampling areas located upstream (RG_FRUL) and downstream (RG_FO23) of Line Creek on the Fording River.

Similar to the ANOVA model used to assess secondary productivity, testing the significance of the interaction terms is the key hypothesis of interest in these ANOVA models, as it tests for changes in the relative differences between the mine-exposed and reference areas over time. If all interaction terms are not significant, then it can be concluded that there are no period effects that can be attributed to AWTF operation schedules. If the interaction terms are significant, then the contrasts among sampling events within the "Restart" period also present a key tool for the purpose of evaluating AWTF performance during operation stabilization with AOP. Data were log₁₀-transformed prior to analysis using ANOVA. The ANOVA model analysis and contrasts were conducted in R (R Core Team 2019) using customized scripts. Plots for visualizing the ANOVA results were prepared in Microsoft Excel, and data were presented on log₁₀-transformed y-axes for consistency with the statistical approach.

Spatial differences in tissue selenium concentrations among areas during each sampling event during stabilization of AWTF with AOP operations (December 2018 to December 2019) were tested using an ANOVA. Prior to analysis, data were transformed if required (log_{10} , square root, fourth root) to meet the assumptions of the analysis. The transformation with highest p-value from a Shapiro-Wilk test for normality that also passed a Levene's test for homogeneity of variances was selected. If assumptions could not be met, data were rank-transformed. When the overall ANOVA was significant ($\alpha < 0.05$), a Tukey's *post hoc* test was conducted for all pairwise comparisons. The ANOVA models and contrasts were conducted in R (R Core Team 2019) using customized scripts. Graphical plots of the data were prepared using Microsoft Excel, and letters were used to indicate which years differed significantly from one another.

Composite-taxa benthic invertebrate tissue selenium results from September 2012 to December 2019 were plotted relative to total selenium concentrations measured in water samples collected at or near the same time (within approximately three days) as the tissue samples. A line representing the regional one-step water-to-invertebrate selenium bioaccumulation model was

also presented on the plot (Teck 2014). Confidence limits (95% percentile) for the model were calculated using the formula below (as described in Whitmore 1986):

$$\widehat{Y} \pm t_{\frac{\alpha}{2}, n-2} S_r \sqrt{\left(1 + \frac{1}{n} + \frac{(x - \bar{x})^2}{(n-1)S_x^2}\right)}$$

where:

- \hat{Y} = the fitted regression value at *X*
- S_r = the root mean square deviation of the fitted regression model (= 0.220; log₁₀ transformed)
- n = sample size (= 291)
- \overline{X} = mean of the sample X_i values (= 0.488)
- S_x^2 = variance of the sample X_i values (= 0.885).

2.7.4 Benthic Invertebrate Community Data

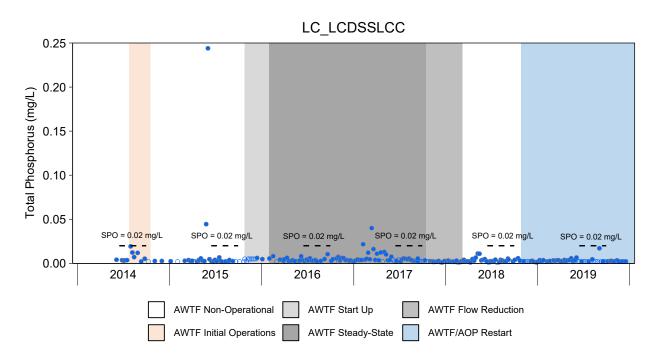
Community endpoints that were evaluated included density (Hess samples) or sample abundance (kick samples), family richness (Hess and kick samples), richness at the Lowest Practical Level of taxonomy (LPL richness; kick samples), and the abundances of major taxonomic groups, including the combined orders of Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies), collectively known as EPT, Ephemeroptera alone, and Chironomidae (midges; absolute and relative abundances for kick samples, and density for Hess samples). Community data for kick samples were plotted to show changes over time relative to normal ranges computed from reference area data in the RAEMP (Minnow 2018a).¹²

¹² Data collected for RAEMP monitoring (where available) were plotted in addition to those collected specifically for the LCO LAEMP as outlined in the monitoring design (Minnow 2018b).

3 **PRODUCTIVITY**

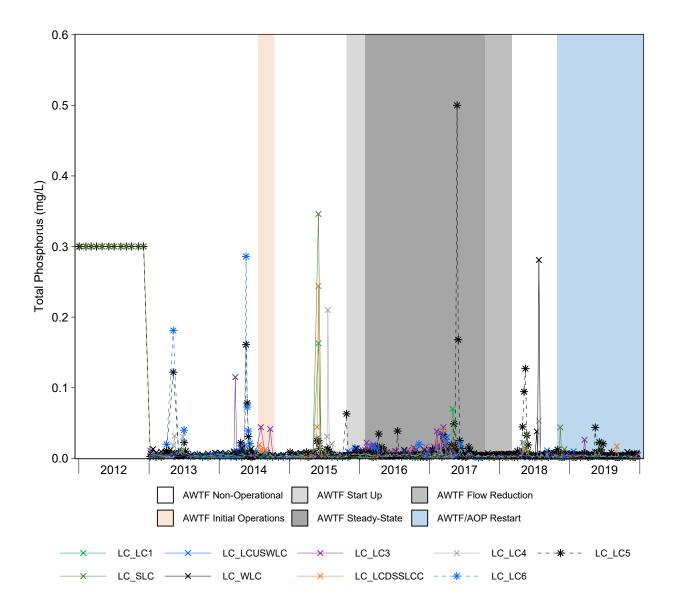
3.1 Overview

Monitoring data were evaluated in this section to address Study Question #1: Is active water treatment affecting biological productivity downstream in Line Creek? To address this study question, primary and secondary productivity monitoring endpoints and concentrations of aqueous nutrients were evaluated in relation to the AWTF operational status. The AWTF with AOP was operational throughout 2019 (in the operation stabilization phase), with discharge to the receiving environment occurring over the entire year.

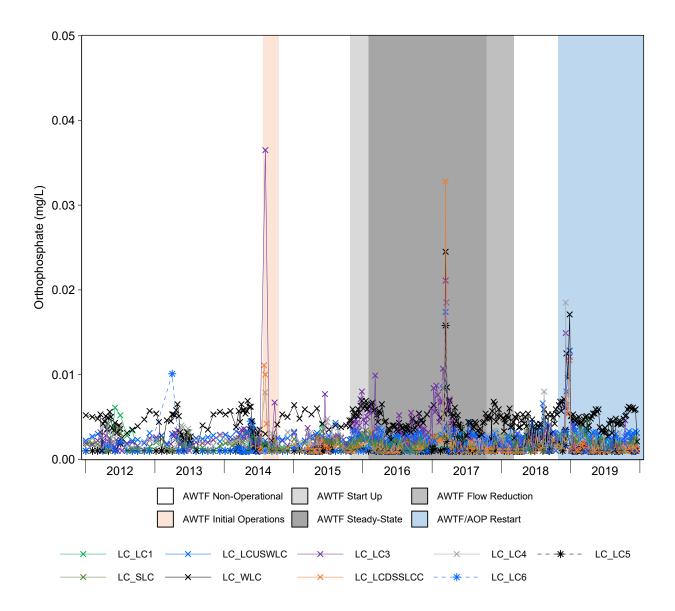

3.2 Site Performance Objectives and Aqueous Nutrient Concentrations

As outlined in Section 1.2, the AWTF treatment process requires the addition of phosphorus, and there is the potential for increased phosphorus concentrations downstream in Line Creek during AWTF operation. In 2019, aqueous total phosphorus concentrations at the Compliance Point were consistently below the SPO of 0.02 mg/L during both the growing season (June 15 to September 30) and the remainder of 2019 (Figure 3.1).

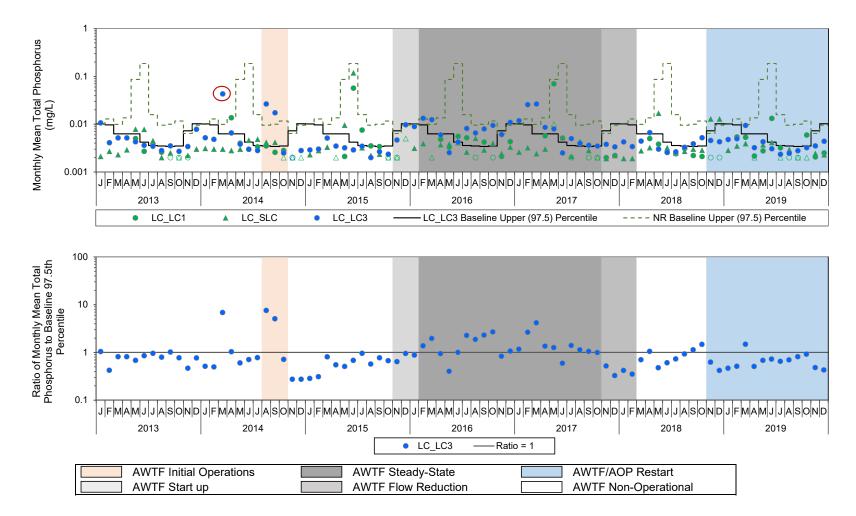
In 2019, aqueous total phosphorus concentrations downstream of the AWTF discharge were within the range of concentrations reported prior to AWTF operation (i.e., 2013 to 2015, excluding initial operations in 2014; Figure 3.2; Appendix Figure A.1). Aqueous orthophosphate concentrations in 2019 were also within the range of results reported prior to AWTF operation (i.e., 2012 to 2015, excluding initial operations in 2014), despite an increase late 2018 when the AWTF was in the early stages of operation stabilization with AOP (Figure 3.3; Appendix Figure A.2).


Total phosphorus and orthophosphate concentrations were further evaluated using an approach recommended in the Proposal to Update the Site Performance Objective for Phosphorus in Line Creek (see Section 2.7.1; Minnow 2017b¹³). The purpose of this approach was to facilitate the early detection of potential changes in concentrations of these aqueous nutrients downstream of the AWTF. The evaluation involves the comparison of monthly mean concentrations of total phosphorus and orthophosphate to the upper range (97.5th percentile) of concentrations observed in each month during the baseline (pre-AWTF) period at LC_LC3 (upper panels in Figures 3.4 and 3.5). Monthly mean concentrations were then expressed as a ratio of the baseline 97.5th percentile for each month (bottom panels in Figures 3.4 and 3.5).

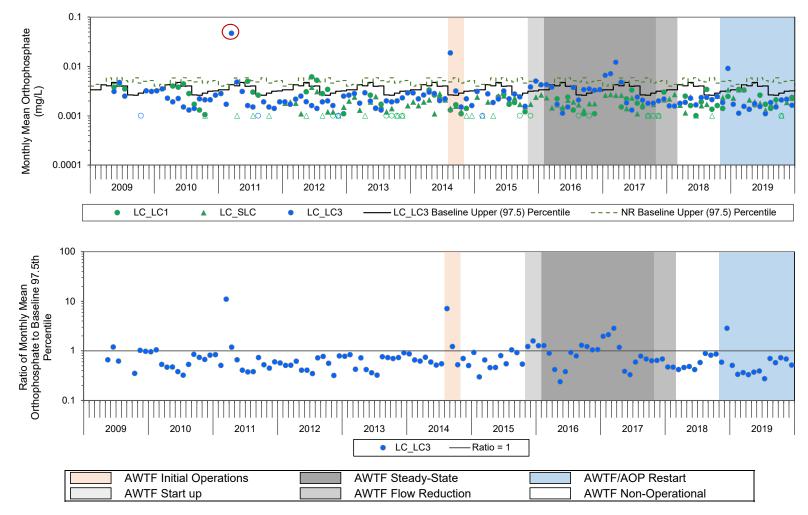
¹³ Included as Appendix C in Minnow (2017b).


Figure 3.1: Total Phosphorus Concentrations in Water Collected from the Line Creek Compliance Point (LC_LCDSSLCC), 2014 to 2019

Notes: SPO = Site Performance Objective (0.02 mg/L), this pertains to the compliance point (LC_LCDSSLCC) only, as a growing season average calculated from measurements collected every two weeks between June 15th and September 30th, annually. If multiple results existed for a given location and day, the Kaplan-Meier mean of the duplicates was presented, hollow symbols represent results below the laboratory reporting limit (LRL).


Figure 3.2: Time Series Plots for Aqueous Total Phosphorus Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted at the LRL (LRLs between 0.0010 and 0.30 mg/L). West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines pertain only to mine-exposed monitoring areas located downstream of the AWTF discharge.


Figure 3.3: Time Series Plots for Aqueous Orthophosphate Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted at the LRL (0.0010 mg/L). West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines pertain only to mine-exposed monitoring areas located downstream of the AWTF discharge.

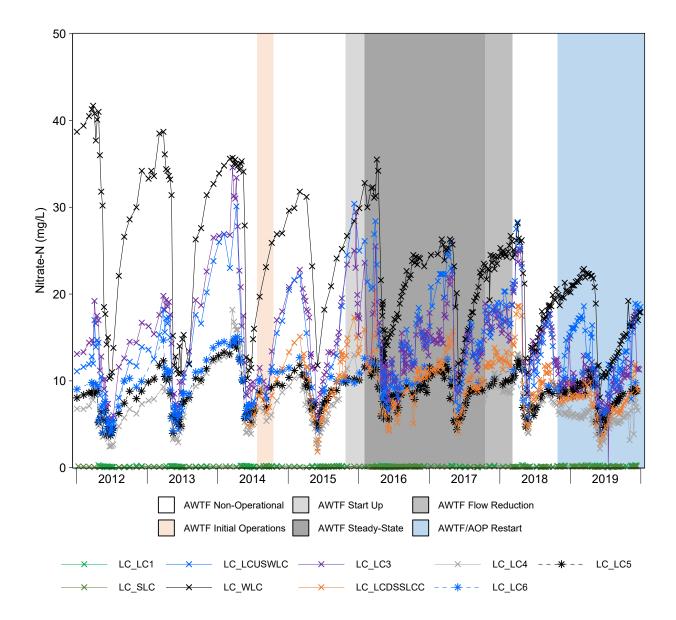
Figure 3.4: Total Phosphorus at LC_LC3 During AWTF Operation Relative to Pre-Operational Baseline Concentrations

Notes: Top panel shows monthly mean concentrations at LC_LC3 and reference stations relative to the monthly percentiles for the baseline period prior to Active Water Treatment Facility (AWTF) operation. The data used to define the baseline 97.5th percentile for each month were concentrations for the specified month. The preceding month and the following month for unshaded months prior to 2018 shown in panels. The normal range (NR) was calculated from the 97.5 percentile in the RAEMP (Minnow, 2018a). Concentrations less than the laboratory reporting limit (LRL) are shown as hollow symbols at the LRL. Red circle indicates outlier excluded from the calculation of baseline percentile. Bottom panel presents the ratio of monthly mean concentrations at LC_LC3 relative to the baseline 97.5th percentile for the corresponding month.

Figure 3.5: Orthophosphate at LC_LC3 During AWTF Operation Relative to Pre-Operational Baseline Concentrations

Notes: Top panel shows monthly mean concentrations at LC_LC3 and reference stations relative to the monthly percentiles for the baseline period prior to Active Water Treatment Facility (AWTF) operation. The data used to define the baseline 97.5th percentile for each month were concentrations for the specified month. The preceding month and the following month for unshaded months prior to 2018 shown in panels. The normal range (NR) was calculated from the 97.5 percentile in the RAEMP (Minnow, 2018a). Concentrations less than the laboratory reporting limit (LRL) are shown as hollow symbols at the LRL. Red circle indicates outlier excluded from the calculation of baseline percentile. Bottom panel presents the ratio of monthly mean concentrations at LC_LC3 relative to the baseline 97.5th percentile for the corresponding month.

Throughout 2019, total phosphorus and orthophosphate concentrations at LC_LC3 were below the baseline 97.5th percentiles, with one exception. Specifically, the mean total phosphorus concentration at LC_LC3 exceeded the baseline 97.5th percentile slightly in March 2019 (Figure 3.4). In contrast, the total phosphorus and orthophosphate concentrations during steady-state operation of the AWTF without AOP (in 2016 and 2017) were frequently greater than the baseline 97.5th percentiles at LC_LC3 (more frequently for total phosphorus than orthophosphate; Figures 3.4 and 3.5). Operation of the AWTF with AOP appears to have been more successful thus far at minimizing phosphorus and orthophosphate contributions to the receiving environment than steady-state operation of the AWTF without AOP (in 2016 and 2017), although flow through the AWTF (and therefore loadings) during the operation stabilization with AOP was more variable.


One function of the AWTF is to decrease nitrate loads to the receiving environment, and the AWTF with AOP removed 29,587 kg of nitrate during operations in 2019 (Teck 2020). Aqueous nitrate concentrations at the Compliance Point in 2019 were below the SPO Daily Maximum Limit of 9 mg/L during the majority of 2019, but exceeded the SPO for 4 days in the spring (March/April) and again in the late fall (November/December; see Teck 2019c, 2020 for details). Despite this, aqueous nitrate concentrations downstream of the AWTF discharge in 2019 were towards the low end of the range of concentrations reported prior to AWTF operation (i.e., 2012 to 2015, excluding initial operations in 2014; Figure 3.6; Appendix Figure A.3). In 2019, as with previous years, nitrate concentrations in samples from mine-exposed monitoring stations upstream and downstream of the AWTF discharge were above the long-term BCWQG (Appendix Figure A.3). Nitrate concentrations also exceeded the EVWQP Level 1 and 2 benchmarks in mine-exposed samples from upstream (LC_LCUSWLC and LC_WLC) and immediately downstream of the AWTF discharge (LC_LC3; Appendix Tables C.1 and C.2; Appendix Figure A.3).

3.3 Primary Productivity Indicators

In 2019, periphyton coverage was moderate at both mine-exposed and reference areas (Appendix Figure A.4, Appendix Table A.1), with the majority (92%) of visual scores between two and three (of a possible range from one [rocks not slippery and no obvious colour] to five [rocks mostly obscured by algae mat]). These results were consistent with periphyton coverage observations in 2017 and 2018 (Minnow 2018d, 2019a), indicating temporal consistency.

3.4 Secondary Productivity Indicators

Analyses of the potential changes in benthic invertebrate biomass and density at mine-exposed areas (RG_LILC3 and RG_LIDSL; sampling areas immediately downstream of the AWTF

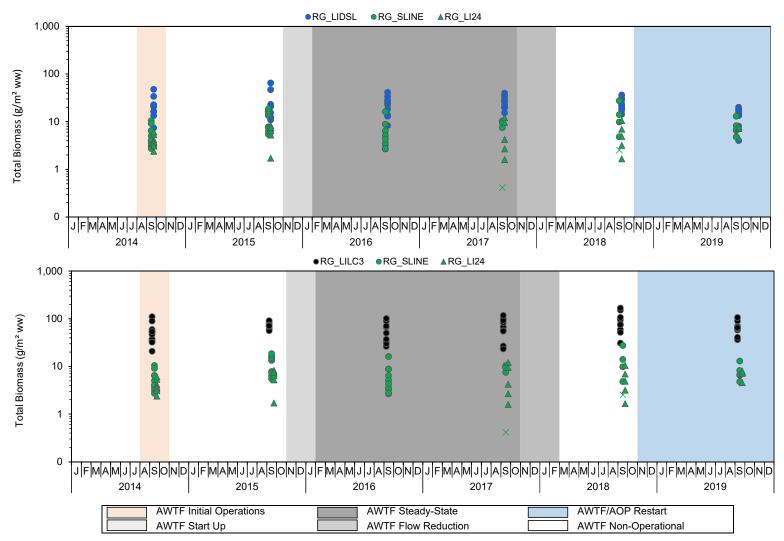
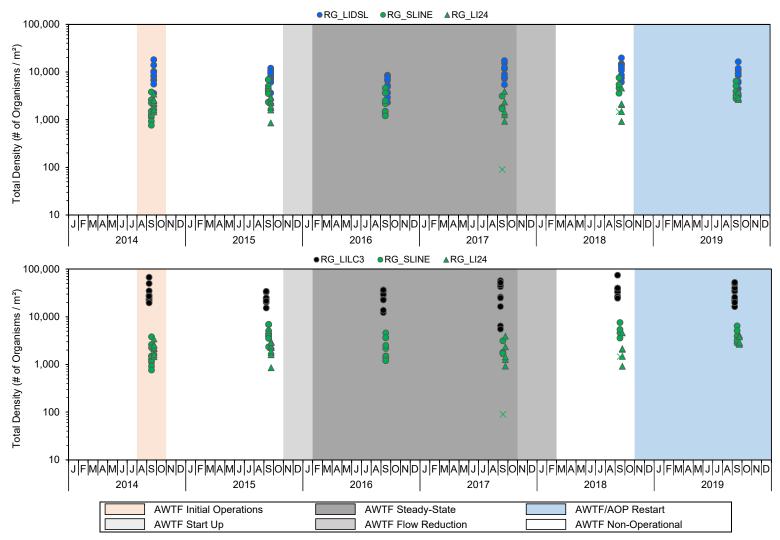


Figure 3.6: Time Series Plots for Aqueous Nitrate (NO $_3$ as N) Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019

Note: West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines pertain only to mine-exposed monitoring areas located downstream of the AWTF discharge.


discharge and the Compliance Point, respectively) relative to changes at the reference areas (RG_LI24 and RG_SLINE) over the same time were performed excluding two outlying values for the reference area RG_SLINE; one in 2017 and one in 2018 (Figures 3.7 and 3.8; see Section 2.7.2 for data ANOVA methods, including outlier removal). Results of these analyses (based on Hess sampling, 2014 to 2019) showed no significant difference in the change in biomass at RG_LILC3 relative to the change at the reference areas among years (Figure 3.7; Appendix Tables A.2 and A.3). At the Compliance Point (RG_LIDSL), the change in biomass among years differed significantly relative to the change at the reference areas. Specifically, benthic invertebrate biomass at RG_LIDSL was more similar to reference in 2019 (i.e., the difference between biomass at RG_LIDSL and reference was smaller in 2019) than in 2014 or 2017 (Figure 3.7; Appendix Table A.2). Combined, the results at RG_LILC3 and RG_LIDSL did not indicate an increase in benthic invertebrate biomass associated with AWTF operation (with AOP) in 2019.

Analyses of benthic invertebrate density indicated that differences in density between the mine-exposed and reference areas were dependent on which of the two reference areas (RG LI24 or RG SLINE) were used for comparison. The difference in organism density between RG LILC3 and reference did not change among years when compared against RG LI24 but changed significantly among years when compared against RG SLINE (Figure 3.8; Appendix Tables A.3 and A.4). The difference in organism density between the Compliance Point and the two reference areas changed significantly among years when either reference area (RG LI24 or RG SLINE) was used for comparison (Figure 3.8; Appendix Table A.4). Specifically, the differences at both mine-exposed areas (RG LILC3 and RG LIDSL) relative to RG SLINE were smaller in 2019 (mean density was 7.2 and 1.9-times higher at RG LILC3 and RG LIDSL than reference, respectively) than in 2014 (mean density was 19.8 and 5.5-times higher at RG LILC3 and RG LIDSL than reference, respectively; Figure 3.8, Table 3.1; Appendix Tables A.3 and A.4). This change appeared to be related to a 2.7-fold increase in mean density at the reference area RG SLINE between 2014 and 2019 rather than a decrease at the mine-exposed areas (Figure 3.8; Table 3.1). Similarly, the difference in density at the Compliance Point relative to RG LI24 was smaller in 2019 (mean density was 2.4-times higher) compared to 2018 (mean density was 5.9-times higher), but this also appeared to be related to an increase in mean density at the reference area (1.6-times increase between 2018 and 2019; Figure 3.8, Table 3.1). Overall, these results indicated that benthic invertebrate biomass and density at the two mine-exposed areas was not influenced by the AWTF with AOP operation in 2019. This was corroborated by the similarity among years in biomass and density at both mine-exposed areas when considered independently from reference results, with the exception of biomass at

Figure 3.7: Total Benthic Invertebrate Biomass (Hess Sampling), for RG_LIDSL and RG_LILC3 (Mine-exposed Areas) Relative to RG_SLINE and RG_LI24 (Reference Areas), 2012 to 2018

Notes: Two outliers from RG_SLINE were removed from the statistical analyses and are plotted with the × symbol. The sampling dates for RG_SLINE and RG_LI24 are shifted slightly to show overlapping points. West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines pertain only to mine-exposed monitoring areas.

Figure 3.8: Total Benthic Invertebrate Density (Hess Sampling), for RG_LIDSL and RG_LILC3 (Mine-exposed Areas) Relative to RG_SLINE and RG_LI24 (Reference Areas), 2012 to 2018

Notes: Two outliers from RG_SLINE were removed from the statistical analyses and are plotted with the × symbol. The sampling dates for RG_SLINE and RG_LI24 are shifted slightly to show overlapping points. West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines pertain only to mine-exposed monitoring areas.

	Benthic Density (# organisms/m ²)											
Area	Brief AWTF Operation	No AWTF Operation	•	State Operation ut AOP)	AWTF Shutdown	AWTF with AOP Restart 2019						
	2014	2015	2016	2017	2018							
RG_LI24	2,120	2,028	-	1,723	1,933	3,182						
RG_SLINE	1,508	4,300	2,072	1,072	5,062	4,067						
RG_SLINE ^a	1,508	4,300	2,072	1,993	3,947	4,067						
RG_LILC3	29,805	24,136	24,564	27,162	34,153	29,481						
RG_LIDSL	8,276	7,690	5,024	9,910	11,452	7,718						

 Table 3.1: Geometric Means of Benthic Invertebrate Density for Hess Sampling in Areas of Line Creek, 2014 to 2019

Note: "-" = no data/not recorded.

^a One outlier removed in 2017 and 2018.

RG_LIDSL which was significantly lower in 2019 relative to 2017 and 2018, but similar to 2014 to 2016 (Appendix Figure A.5; Appendix Tables A.2 and A.4).

Benthic invertebrate abundance in kick and sweep samples from 2019 was above the regional normal range¹⁴ in one or more replicates at mine-exposed areas of Line Creek both upstream and downstream of the AWTF discharge, and in the Fording River downstream of Line Creek (Appendix Figure A.6; Appendix Table A.5). Total sample abundance at most areas downstream of the AWTF discharge was above the range of previous years, with the exception of RG_LILC3 (located immediately downstream of the AWTF discharge; Appendix Figure A.6). At RG_LILC3, total organism abundance at RG_LILC3 was generally in the range of results prior to AWTF operation (2012 to 2015; Appendix Figure A.6). The similarity of organism abundance to previous years at the sampling area located closest to the AWTF discharge (RG_LILC3) indicates that the temporal increase in abundance observed at areas further downstream was not likely related to an influence of AWTF with AOP operation in 2019. This was consistent with the biomass and density results discussed above.

In summary, monitoring data indicated that secondary productivity in Line Creek was not affected by the operational stabilization of the AWTF with AOP in 2019. This is consistent with the similarity in aqueous nutrient concentrations (Section 3.2) and primary productivity results (Section 3.3) in 2019 relative to previous years, including prior to AWTF operation.

3.5 Benthic Invertebrate Community Structure

Endpoints related to benthic invertebrate community structure were evaluated relative to regional normal ranges defined in the RAEMP (Minnow 2018a). Community taxon richness (i.e., number of different taxa identified to lowest practical level of identification) was within or above the normal range at all sampling areas in 2019, with the exception of one replicate at RG_LCUT (upstream of the AWTF discharge) and RG_LILC3 (immediately downstream of the AWTF discharge; Appendix Figure A.7; Appendix Table A.5). Despite the richness of one replicate at RG_LILC3 falling below the normal range in 2019, taxon richness at this area in 2018 and 2019 was more similar to results in 2012 and 2013 (prior to AWTF operation) than in more recent sampling years (2014 to 2017; Appendix Figure A.7). In 2019, richness at RG_LCUT was lower than in previous monitoring years (2016 to 2018), but this area is located upstream of the AWTF discharge and is not influenced by ATWT operations. At RG_LI8, richness was higher than most prior years (with the exception of 2015; Appendix Figure A.7) indicating some temporal improvement at this area located the furthest downstream from the AWTF discharge in Line Creek.

¹⁴ The regional normal range is defined as the 2.5th and 97.5th percentiles of the 2012 and 2015 reference area data from the RAEMP collected by the CABIN kick and sweep method (Minnow 2018a).

Percent Ephemeroptera (mayflies) values in 2019 were lower than the normal range in samples from mine-exposed areas upstream (RG_LCUT) and immediately downstream of the AWTF discharge (RG_LILC3), and in a subset of samples from the Fording River downstream of Line Creek (two replicates at RG_FO23; Appendix Figure A.8). However, Ephemeroptera and EPT (Ephemeroptera [mayflies], Plecoptera [stoneflies], and Trichoptera [caddisflies]) percentages at these areas in 2019 were within the observed ranges from previous years (Appendix Figures A.8 and A.9; Appendix Table A.5). Percent Ephemeroptera at monitoring areas located further downstream from the AWTF discharge was higher in 2019 than previous years (RG_LIDSL, RG_LIDCOM, RG_LI8; Appendix Figure A.8).

Chironomids typically represent 27% or less of benthic invertebrate communities sampled in reference riffle habitats of the Elk Valley but are sometimes found in greater relative abundance in areas that are heavily disturbed by mining or have naturally soft substrates (Minnow 2018a). In 2019, percent chironomids was above the reference normal range at areas immediately upstream (RG_LCUT) and downstream from the AWTF (particularly RG_LILC3, RG_LISP24, RG_LIDSL, and RG_LIDCOM: Appendix Figure A.10; Appendix Table A.5). Percent chironomids at RG_LCUT was slightly higher in 2019 compared to previous years, but this area is located upstream of the AWTF discharge. At the remainder of sampling areas, percent chironomids in 2019 was within the range of previous years (Appendix Figure A.10).

3.6 Summary

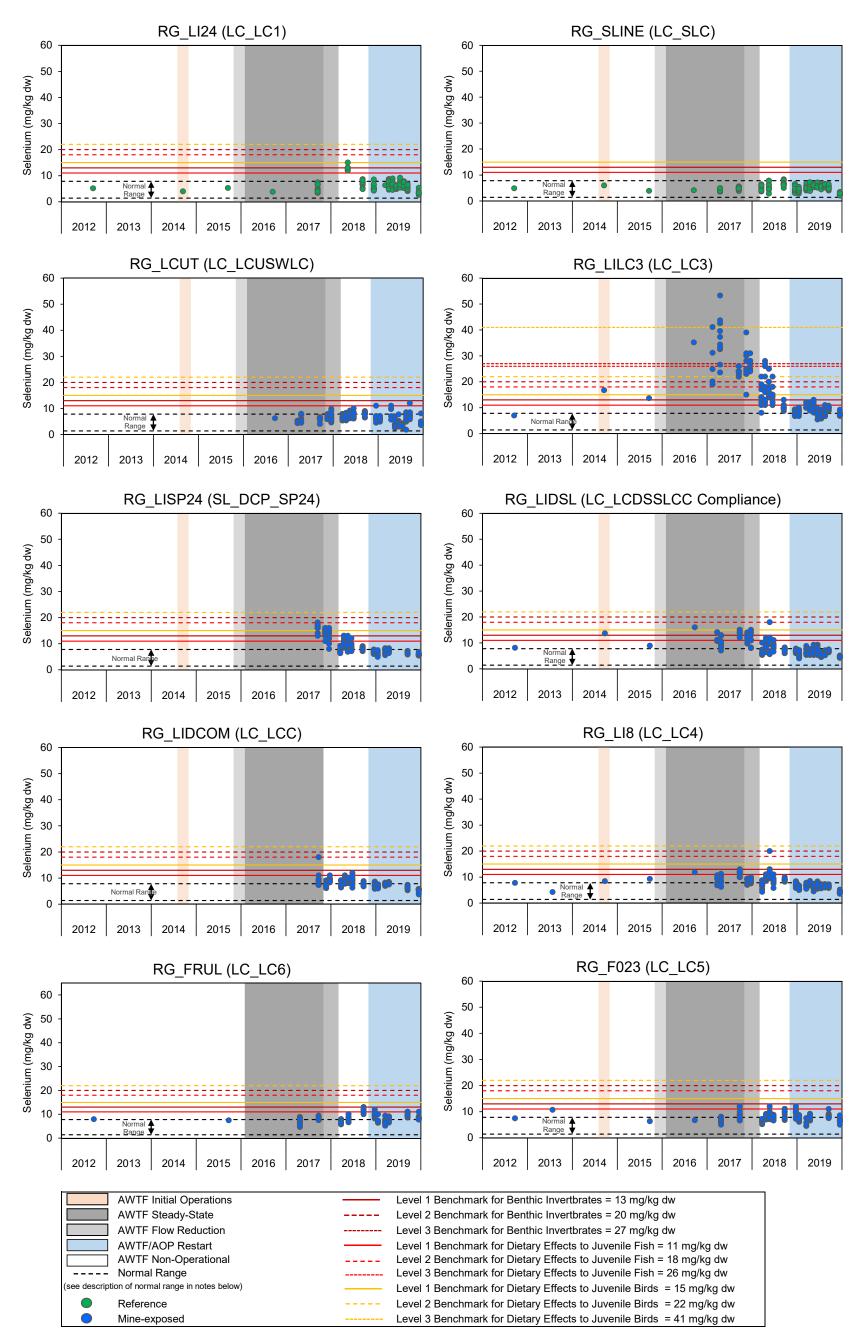
Total phosphorus concentrations at the Compliance Point (LC_LCDSSLCC) were below the SPO of 0.02 mg/L during the 2019 growing season (June 15 to September 30), consistent with previous years. Aqueous nutrient concentrations (total phosphorus, orthophosphate, and nitrate) in 2019 were generally within the range observed prior to AWTF operation. In addition, results suggested that operation of the AWTF with AOP in 2019 was more successful at minimizing phosphorus and orthophosphate contributions to the receiving environment than the period of AWTF steady-state operation without AOP (in 2016 and 2017).

Periphyton coverage at both mine-exposed and reference areas was moderate in 2019 (based on the CABIN visual assessment, see Section 2.3) and was temporally consistent with results from 2017 and 2018. Benthic invertebrate biomass and density at mine-exposed areas of Line Creek also showed no significant change in 2019 that could be related to operation of the AWTF with AOP. Benthic invertebrate total abundance (measured by kick and sweep) was higher in 2019 than previous years at most mine-exposed areas, but the absence of a change closest to the AWTF discharge indicated that this was likely unrelated to AWTF with operation (consistent with the biomass and density results). Benthic invertebrate community endpoints, as determined from kick and sweep sample collection, indicated no adverse change in community

characteristics related to operation stabilization of the AWTF with AOP in 2019. Rather, an increase in the percentage of sensitive taxa (Ephemeroptera) in 2019 at areas of Line Creek furthest downstream from the AWTF discharge was suggestive of an improvement in benthic invertebrate community structure. Overall, biological productivity downstream from the WLC AWTF did not appear to be affected by the operational stabilization of the AWTF with AOP throughout 2019, relative to previous years.

4 SELENIUM CONCENTRATIONS

4.1 Overview


Monitoring data were evaluated in this section to address Study Question #2: Are tissue selenium concentrations reduced downstream from the WLC AWTF? To address this study question, selenium concentrations in benthic invertebrate tissue and fish tissue were evaluated in relation to the AWTF operational status.

4.2 Historical Composite-Taxa Benthic Invertebrate Selenium Concentrations

The WLC AWTF initially operated in 2014 for approximately 3 months, during which time concentrations of selenium in benthic invertebrate composite-taxa samples from downstream of the AWTF increased relative to baseline (2012; Figure 4.1, Table 4.1). An increase in selenium concentrations in benthic invertebrates was noted again after recommissioning of the AWTF in 2015 and resumption of discharge to the receiving environment (i.e., increased benthic invertebrate selenium concentrations at RG_LILC3 in September 2016; Table 1.1, Figure 4.1). Following this, Teck identified challenges in the performance of the WLC AWTF with respect to selenium treatment. Although treatment successfully resulted in lower aqueous total selenium concentrations in Line Creek, aqueous concentrations of chemically-reduced selenium species were elevated in AWTF effluent. These selenium species have greater potential for bioavailability to aquatic biota than selenate, which is the dominant form in the influent and other areas of the watershed (Minnow 2017a).

Continued monitoring in 2016 and 2017 confirmed that selenium concentrations in benthic invertebrates were significantly elevated downstream of the AWTF discharge relative to historical levels (Figure 4.1; Minnow 2018d), and Teck temporarily suspended AWTF operations in response to these results (after receiving appropriate authorization; see Section 1.3; Table 1.1). During the shutdown period, concentrations of chemically-reduced aqueous selenium species decreased substantially, as did selenium concentrations in benthic invertebrate tissues (at RG LILC3 in particular; Figure 4.1; Minnow 2019a).

The AWTF was recommissioned in 2018 with an AOP, to reverse the shift in selenium speciation in AWTF effluent from chemically-reduced species back to a selenate-dominated condition, thereby reducing the bioavailability of selenium in Line Creek (see Section 1.3; Table 1.1). The AWTF with AOP was operational throughout 2019 (in the operation stabilization phase; Table 1.1), with discharge to the receiving environment occurring over the entire year.

Figure 4.1: Tissue Selenium Concentrations in Benthic Invertebrate Composite-Taxa Samples from Line Creek and Fording River, 2012 to 2019

Notes: Results shown in green represent reference stations, and those in blue represent mine-exposed stations. Dashed black lines represent the normal range defined as the 2.5th and 97.5th percentiles of the 2012 and 2015 reference area data from the Regional Aquatic Environmental Monitoring Program (RAEMP). West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines are displayed for each monitoring area to provide context, but pertain only to mine-exposed monitoring areas downstream of the AWTF discharge.

No A Initial AWTF Opera Operation Prior to AWTF Operation (Oct 17) July 24 to Oct to Oct 16, 2014 201 Biological **Teck Water Station** Area **Biological Area Description** 2009 August/ September) Code Area Code 2012 (September) 2013 (July) 2014 (September) 2009 (May/ June) 2010 (May) 2010 (August) 2011 (August) 2006 (August) 2014 (July) 2015 Sample Size (n) 1 1 4 3 3 1 1 1 1 1 1 South fork of upper Line Creek (Tornado Creek) Reference RG_LI24 LC_LC1 1.4 4.4 5.1 4.0 5. -----upstream of LCO and Teck water station LC_LC1 South Line Creek upstream of Line Creek and LCO LC_SLC RG_SLINE 4.8 3. -6.0 -------LC_LCUSWLC/ Line Creek downstream of rock drain, downstream of RG LCUT ---------West Line Creek and upstream of AWTF outfall LC WLC Line Creek downstream of West Line Creek and AWTF Line Creek RG LILC3 LC LC3 7.0 17 -1: ------outfall Line Creek downstream of LC WTF OUT, Mine-exposed WL_DCP_SP24 RG LISP24 approximately 50 m downstream of contingency pond --------discharge LC LCDSSLCC RG LIDSL Line Creek downstream of South Line Creek confluence 8.1 5.6 8. ------14 -(Compliance Point) RG_LIDCOM Line Creek downstream of the compliance point LC_LCC ---------RG_LI8 Line Creek downstream of the canyon LC LC4 7.8 11 9.0 -6.3^d 8.4 7.8 4.3 -8.4 9. Mine-exposed River Fording River downstream of Grace Creek, upstream of RG FRUL LC LC6 7.9 7.5 ---------Line Creek Fording I RG FO23 Fording River downstream of Line Creek LC_LC5 10 5.8 8.83 5.0 5.9 8.8 7.5 11 8.8 6.

Table 4.1: Mean^a Selenium Concentrations (mg/kg dw) in Benthic Invertebrate Composite-Taxa Samples Collected from Line Creek and Fording River, Line Creek LAEMP, 2006 to 2019

Notes: "-" = no data. FRUL=FOUL prior to 2016. Calculation of the mean for RG Lla) in Sept 2018 included results from both RG Ll24 and RG DSLl24, RG DSLl24, RG DSLl24 was sampled in Sept 2018 to investigate anomalous results at RG Ll24 reported in May 2018, but results from both areas were similar in Sept 2018, therefore data were pooled (Minnow 2019a).

^a Means are only presented where the number of samples > 1, all other data are individual values.

^b Sample size n = 9.

^c Sample size n = 5.

^d Sample size n = 1.

^e Sample size n = 4. ^f Sample size n = 6.

WTF ration 7, 2014 ct 26, 15)		VTF Ste Oper Jan 31, Oct 15	AWTF Flow Reduction (Oct 16, 2017 to Mar 7, 2018)					
(September)	(Fe				2017 (November) 3 weeks	2017 (December) 7 weeks		
1	1	5	10	10	10	10		
.3	3.8	-	-	5.2	-	-		
.9	4.1	-	4.1	4.8	-	-		
-	6.2	5.0	6.4	5.9	6.7	6.9		
3	35	27	37	24	26	27		
-	-	-	-	16	14	13		
.9	16	12	10	14	12	11		
-	-	-	-	9.6	7.4	9.4		
.3	12	8.9	8.6	11	8.3	8.9		
.5	-	-	7.0	8.1	-	-		
.4	6.7	-	6.6	8.9	-	-		

				AWTF Operation Suspended (Mar 8, 2018 to Oct 28, 2018)					AWTF/AOP Discharge Begins (Oct 29 to Dec 28, 2018)	AWTF/AOP Operations Stabilization									
Are	Area Biological Area Code	-	Biological Area Description	Teck Water Station Code	2018 (Mar 8 - 11) 0 weeks	2018 (Apr 3 - 5) 4 weeks	2018 (Apr 30 - May 4) 8 weeks	2018 (May 28 - 29) 12 weeks	2018 (September 6 -13) 26 weeks	2018 (December 3-6) 5 weeks	2019 (January 14-17) 11 weeks	2019 (Feb 25 - Mar 7) 17 weeks	2019 (April 22 - 26) 25 weeks	2019 (May 22 - 24) 29 weeks	2019 (June 17 - 19) 33 weeks	2019 (July 15 - 23) 37 weeks	2019 (August 12 - 13) 41 weeks	2019 (September 5 - 12) 44 weeks	2019 (December 2-6) 58 weeks
	Sample Size (n)			10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	
	Reference	RG_LI24	South fork of upper Line Creek (Tornado Creek) upstream of LCO and Teck water station LC_LC1	LC_LC1	(frozen)	-	13	-	7.0	5.6	(frozen)	6.3 ^d	6.8	6.7	5.4	6.6	6.8	5.4	3.7 ^f
		RG_SLINE	South Line Creek upstream of Line Creek and LCO	LC_SLC	5.2	-	5.7	-	6.6	4.3	4.0	4.9	5.9	5.9	6.1	5.7	6.0	5.1	2.7
		RG_LCUT	Line Creek downstream of rock drain, downstream of West Line Creek and upstream of AWTF outfall	LC_LCUSWLC/ LC_WLC	6.3	7.0	7.6	7.5	7.9	6.5	6.1 ^b	(frozen)	8.7 ^c	4.0 ^b	4.2	3.3	5.5	7.8	4.6
Creek		RG_LILC3	Line Creek downstream of West Line Creek and AWTF outfall	LC_LC3	14	19	18	15	10	8.2	8.5	11	11	10	7.8	7.2	8.1	9.7	7.6
Line Creek	Mine-exposed	RG_LISP24	Line Creek downstream of LC_WTF_OUT, approximately 50 m downstream of contingency pond discharge	WL_DCP_SP24	7.4	11	10	8.9	8.2	6.7	6.2	7.1	7.4	-	-	-	-	6.6	5.9
	Mine-e	RG_LIDSL	Line Creek downstream of South Line Creek confluence	LC_LCDSSLCC (Compliance Point)	6.6	9.3	10	9.3	7.2	6.7	5.7	6.6	6.0	7.1	6.8	5.4	6.0	7.0	4.7
		RG_LIDCOM	Line Creek downstream of the compliance point	LC_LCC	7.7	9.3	9.1	9.4	7.7	7.4	7.0	7.7	8.0	-	-	-	-	6.5	5.3
		RG_LI8	Line Creek downstream of the canyon	LC_LC4	6.9	10	12	8.6	9.0	7.2	5.8	6.6	7.4	6.1	6.7	6.4	6.7	6.5	4.2
Fording River	Mine-exposed	RG_FRUL	Fording River downstream of Grace Creek, upstream of Line Creek	LC_LC6	6.9	-	8.1	-	11	10	7.5 [°]	6.9	8.1	-	-	-	-	10	8.5
Fordin	Mine-e	RG_FO23	Fording River downstream of Line Creek	LC_LC5	6.4	7.9	8.7	7.6	9.4	9.8	7.3	5.7 ^e	7.6	-	-	-	-	8.5	6.7

Table 4.1: Mean^a Selenium Concentrations (mg/kg dw) in Benthic Invertebrate Composite-Taxa Samples Collected from Line Creek and Fording Ri

Notes: "-" = no data. FRUL=FOUL prior to 2016. Calculation of the mean for RG_LI24 in Sept 2018 included results from both RG_LI24 and RG_DSLI24, RG_DSLI24 was sampled in Sept 2018 to investigate anomalous results at RG_LI24 reported in May 2018, but results from both areas were similar in Sept 2018, therefore data were pooled (Minnow 2019a).

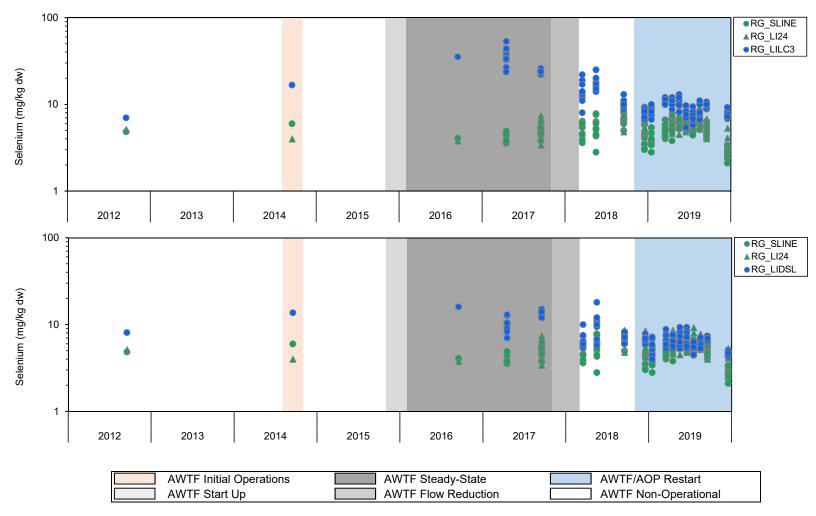
^a Means are only presented where the number of samples > 1, all other data are individual values.

^b Sample size n = 9.

^c Sample size n = 5.

^d Sample size n = 1.

^e Sample size n = 4.

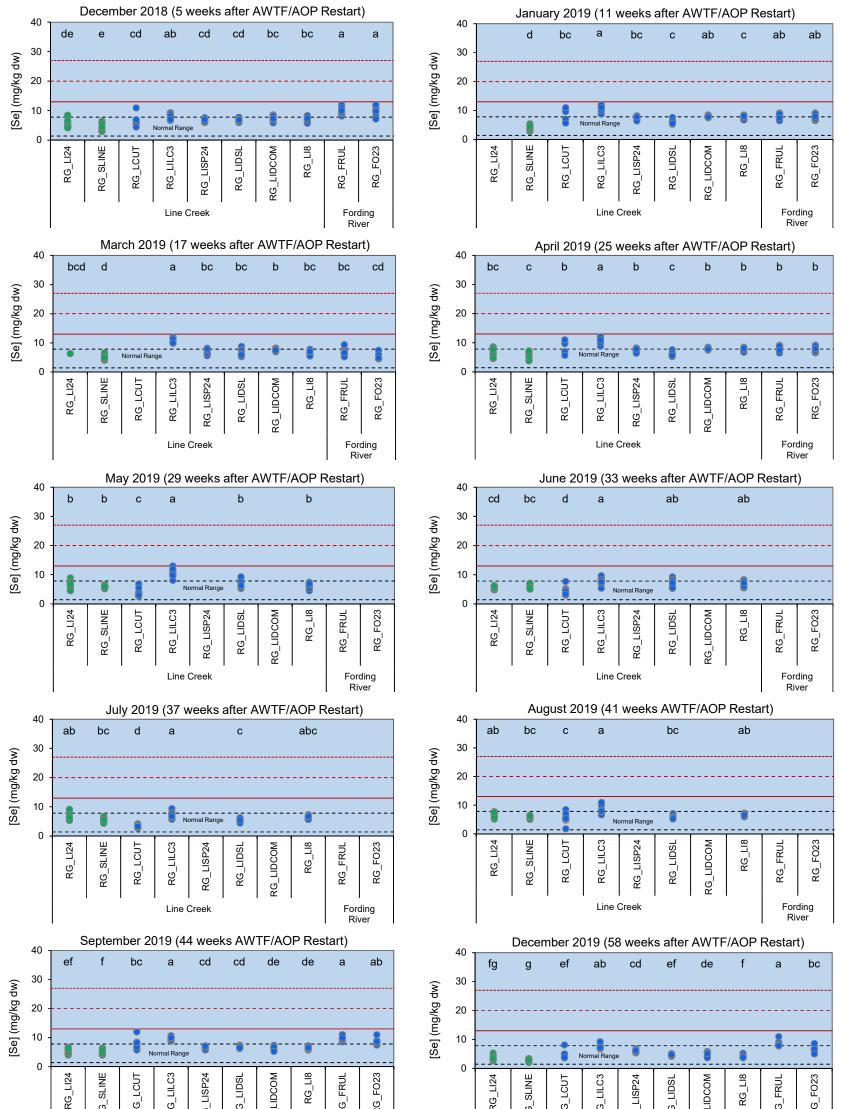

^f Sample size n = 6.

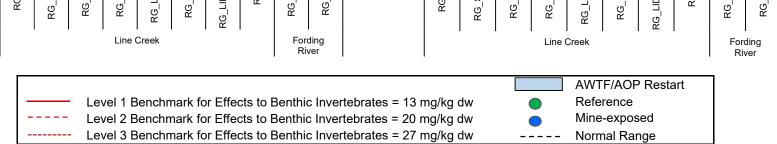
liver,	Line	Creek	LAEMP,	2006	to 2019	
--------	------	-------	--------	------	---------	--

4.3 2019 Selenium Concentrations in Composite-Taxa Benthic Invertebrate Samples

Benthic invertebrate selenium concentrations at mine-exposed areas downstream of the AWTF on Line Creek were significantly lower during the AWTF with AOP restart period than during AWTF steady-state operation (without AOP), when compared to changes at the reference areas over the same time frame (Figure 4.2; Appendix Figures B.1 to B.3; Appendix Tables B.2 to B.8). With the exception of RG_LIDCOM, this significant decrease relative to AWTF steady-state operation was observed for all sampling events during the AWTF with AOP restart period (i.e., for each of the six sampling events between October 2018 and December 2019 for all Line Creek monitoring areas downstream of the AWTF discharge, and for each of the 10 sampling events at a subset of areas [RG_LI24, RG_SLINE, RG_LCUT, RG_LILC3, RG_LIDSL, RG_LI8] over the same period; Table 4.1; Appendix Table B.2). At RG_LIDCOM, benthic invertebrate selenium concentrations in May and September 2019 were significantly lower than in September 2017 (during steady-state without AOP), but were similar to other sampling events (Appendix Figure B.2; Appendix Table B.7). Benthic invertebrate selenium concentrations were also similar to before AWTF operation (2012), where data exist for this comparison (RG_LILC3, RG_LIDSL, RG_LIB; Figure 4.2, Appendix Figure B.2; Appendix Tables B.4, B.6, and B.8).

Within the AWTF with AOP restart period (December 2018 to December 2019), changes in benthic invertebrate selenium concentrations at each mine-exposed area were compared to changes at the reference areas over the same time frame. The purpose of this comparison was to evaluate AWTF performance during operation stabilization with AOP. Results of this analysis indicated that selenium concentrations in benthic invertebrates changed differently at each of the mine-exposed areas than they did at the reference areas during this period (Appendix Tables B.9 to B.14). Some common patterns in the significant changes at the mine-exposed areas relative to reference were observed. Benthic invertebrate tissue selenium concentrations tended to be significantly lower during the middle of the AWTF with AOP restart period (between April and August/September 2019) compared to both earlier (December to April 2019) and later in the restart period (September and/or December 2019; Figure 4.2; Appendix Tables B.9 to B.14; Appendix Figures B.1 and B.2). These changes relative to reference were observed both upstream (RG LCUT) and downstream of the AWTF (RG LIDCOM and RG LI8; Appendix Tables B.9 to B.14), suggesting that the differences may be seasonally-related and not entirely attributable to AWTF with AOP operation. At RG LILC3 and RG LIDCOM, benthic invertebrate tissue selenium concentrations were significantly higher in December 2019 than during most of the earlier sampling events within the AWTF with AOP restart period, compared to the change at reference over the same period (Figure 4.2; Appendix Figure B.2; Appendix Tables B.10 and B.13). However, this difference was related to a decrease in selenium concentrations at the reference areas in December 2019 rather than an increase at the mine-exposed areas.


Figure 4.2: Benthic Invertebrate Selenium Concentrations, for RG_LILC3 and RG_LIDSL (Mine-exposed Areas) Relative to RG_SLINE and RG_LI24 (Reference Areas), 2012 to 2019


Notes: Due to a brief period of exposure to less-than-capacity AWTF effluent in 2014, benthic invertebrate tissue selenium data from September 2015 were not considered representative of steady-state AWTF operation, but also not representative of a no-discharge condition. These data were therefore excluded from analyses, and are displayed in plots for context only. West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines are displayed for each monitoring area to provide context, but pertain only to mine-exposed monitoring areas located downstream of the AWTF discharge.

With the exception of immediately downstream of the AWTF discharge (RG_LILC3), selenium concentrations of benthic invertebrates collected from downstream of the AWTF discharge in Line Creek were similar to reference and/or upstream of the discharge (RG_LCUT) throughout the AWTF with AOP restart period (December 2018 to December 2019; Figure 4.3, Table 4.1; Appendix Table B.2). Selenium concentrations in benthic invertebrate tissue from RG_LILC3 were significantly higher than reference and/or RG_LCUT during most sampling events (except July and August 2019), as was RG_LISP24 in December 2019 (Figure 4.3). This indicates that the spatial extent of elevated benthic invertebrate selenium concentrations had decreased substantially from during AWTF steady-state operation without AOP (e.g., Minnow 2018d), and is limited to immediately downstream of the AWTF.

Mean selenium concentrations in benthic invertebrates were below the EVWQP Level 1 benchmark for effects to invertebrates (13 mg/kg dw) at all mine-exposed areas throughout the AWTF with AOP restart period (Figure 4.3, Table 4.1). This represents a substantial improvement relative to 2016 and 2017 (during AWTF steady-state operation without AOP) when tissue selenium concentrations exceeded the EVWQP Level 2 and Level 3 benchmarks for effects to benthic invertebrates (Figure 4.1, Table 4.1; Minnow 2017a, 2018d). With the exception of RG_LILC3, the majority of benthic invertebrate selenium concentrations reported downstream of the AWTF discharge in 2019 were within the regional normal range in 2019 (Figure 4.1, Table 4.1; Appendix Table B.2).

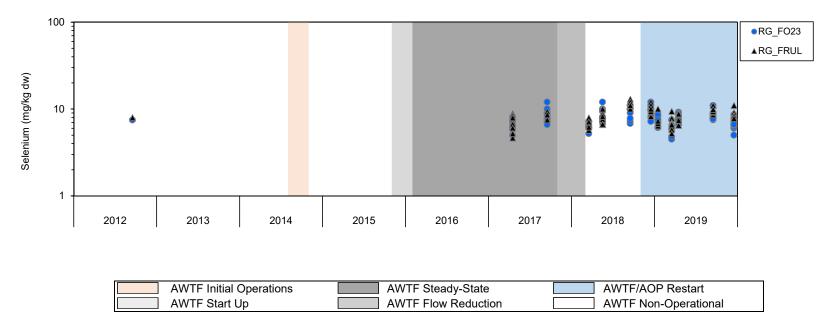

Selenium concentrations in benthic invertebrates collected in the Fording River were similar downstream compared to upstream of Line Creek during sampling events throughout the AWTF with AOP restart period (October 2018 to December 2019) with the exception of December 2019 (Figure 4.4). In December 2019, tissue selenium concentrations upstream of Line Creek on the Fording River (RG FRUL) were higher than those downstream of Line Creek (RG FO23), suggesting an influence unrelated to Line Creek (Figure 4.4, Table 4.1). Selenium concentrations in benthic invertebrates from RG FO23 (downstream of Line Creek) were significantly lower during AWTF with AOP restart (March and April 2019) than during AWTF steady-state operation (without AOP; September 2017), relative to changes at the reference areas over the same time period (Appendix Figure B.3; Appendix Table B.16). However, changes in benthic invertebrate selenium concentrations at RG FO23 (downstream of Line Creek) among AWTF operational phases did not differ from those at RG FRUL (upstream of Line Creek), with the exception of December 2019 described above (i.e., higher tissue selenium concentrations at RG FRUL than RG FO23; Figure 4.4; Appendix Table B.17). Within the AWTF with AOP restart period, changes in selenium concentrations of benthic invertebrates from RG FO23 (downstream of Line Creek) differed from reference, but these were similar to RG FRUL (upstream of Line Creek; Figure 4.4; Appendix Figure B.3; Appendix Tables B.18 to B.20). Overall, these results indicated that benthic

Figure 4.3: Selenium Concentrations in Composite-Taxa Benthic Invertebrate Samples Collected at Reference (Green) and Mine-exposed (Blue) Areas of Line Creek and Fording River, 2018 to 2019

Notes: West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines pertain only to mine-exposed monitoring areas downstream of the AWTF discharge. Dashed black lines represent the normal range defined as the 2.5th and 97.5th percentiles of the 2012 and 2015 reference area data from the Regional Aquatic Environmental Monitoring Program (RAEMP). Areas that do not share a letter (e.g. a,b,c) are significantly different (α = 0.05) in a Tukey's HSD test following a one-way ANOVA by area. The best transformation (log10, square root, fourth root, or none) was chosen as the highest p-value from a Shapiro-Wilk test for normality that also passed a Levene's test for homogeneity of variances. If assumptions could not be met, data were rank-transformed. Transformations were variable, therefore data are shown on untransformed axes.

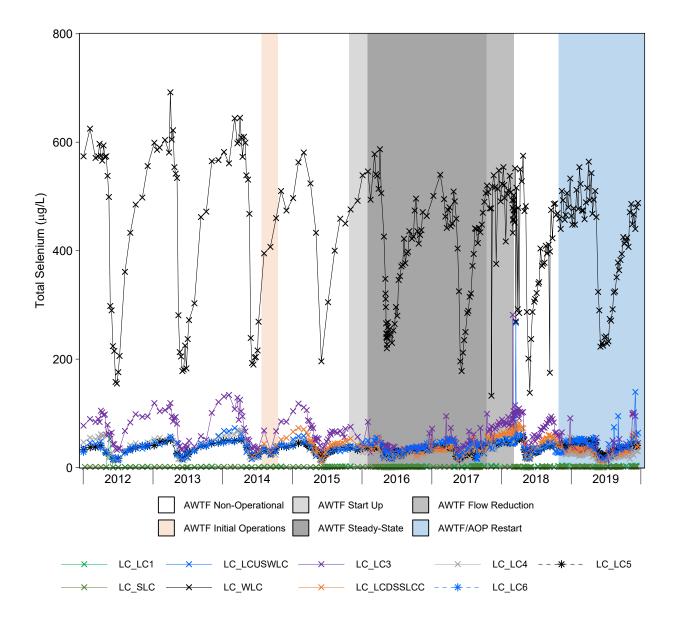
Figure 4.4: Benthic Invertebrate Selenium Concentrations, for RG_FO23 (Fording River Downstream of Line Creek) Relative to RG_FRUL (Fording River Upstream of Line Creek), 2012 to 2019

Notes: Due to a brief period of exposure to less-than-capacity AWTF effluent in 2014, benthic invertebrate tissue selenium data from September 2015 were not considered representative of steady-state AWTF operation, but also not representative of a no-discharge condition. These data were therefore excluded from analyses, and are displayed in plots for context only. West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines are displayed for each monitoring area to provide context, but pertain only to mine-exposed monitoring areas located downstream of the AWTF discharge.

invertebrate selenium concentrations in the Fording River were not influenced by Line Creek in 2019, which is consistent with the decreased tissue selenium results in Line Creek during AWTF with AOP restart relative to AWTF steady-state operation (without AOP), and with previous findings (Minnow 2018d, 2019a).

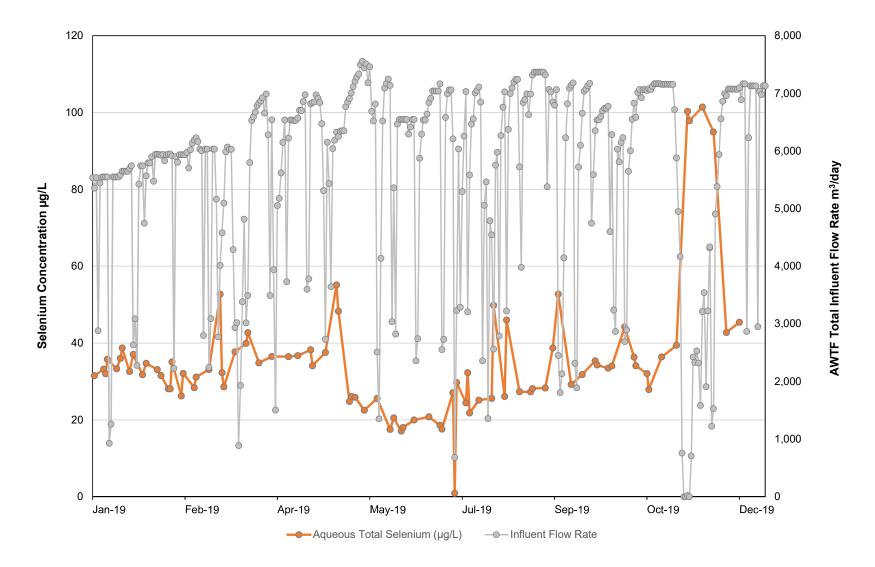
4.4 Aqueous Selenium and Bioaccumulation

When operational, the AWTF with AOP was effective at decreasing the aqueous total selenium concentrations downstream in Line Creek in 2019 (particularly at LC_LC3) compared to when the AWTF was not operational (Figure 4.5; Appendix Figures B.4 to B.6¹⁵). Operation of the AWTF with AOP ceased briefly in November 2019 for scheduled maintenance (the AWTF was in internal circulation from November 15th to 21st, 2019; Teck 2020), and aqueous total selenium in Line Creek (LC_LC3) increased during this time (Figure 4.6).

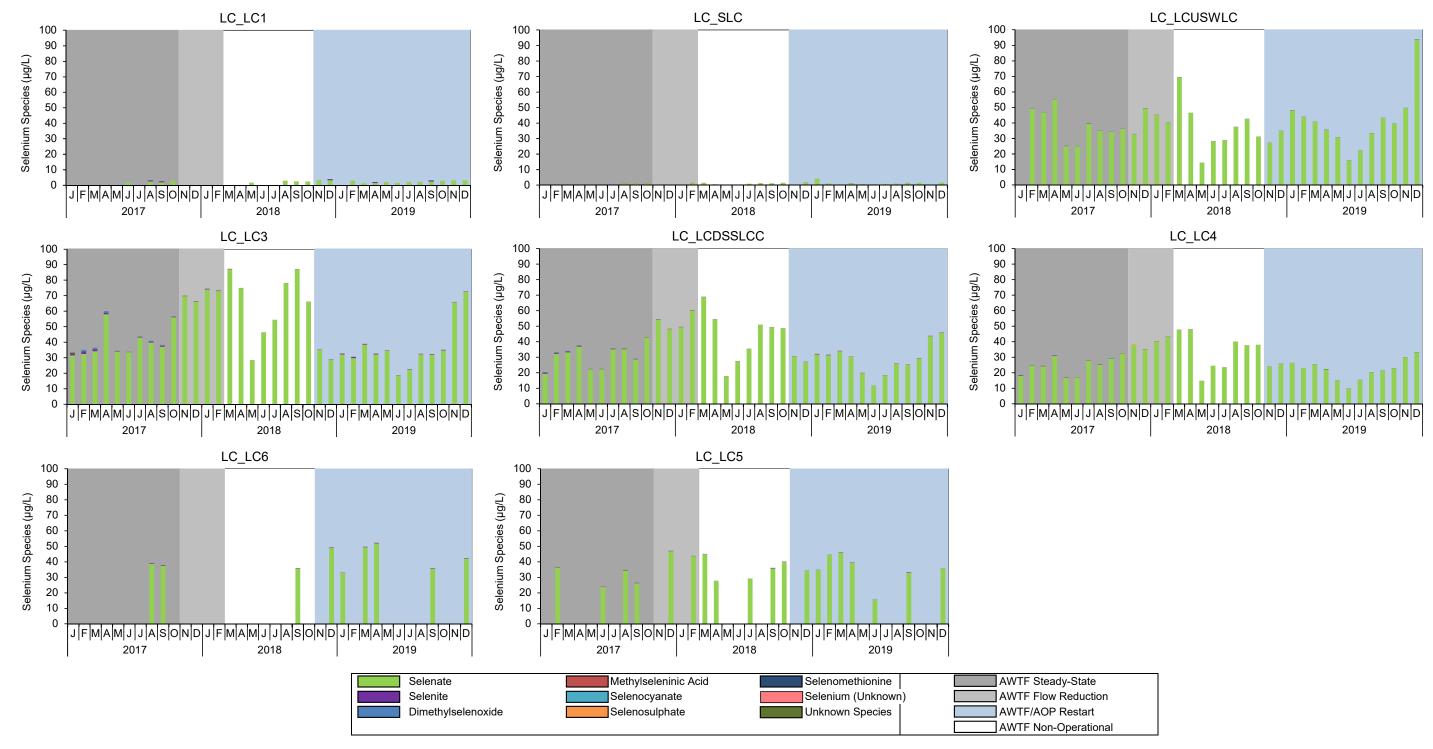

Previous evaluation of aqueous total selenium concentrations at the LC_LC1 (RG_LI24) reference area identified significant increases in aqueous total selenium since 2014 (Minnow 2018d). Further analysis of temporal changes indicated that concentrations in 2018 and 2019 had not changed significantly compared to 2017 but remained higher than concentrations measured in 2012 to 2015¹⁶ (Appendix Table B.21). Routine monitoring at this reference location will continue in 2020, and analysis of potential temporal changes in total selenium will be repeated in 2020 (Minnow 2020).

Aqueous selenium throughout the Elk Valley is primarily in the oxidized form, selenate (Figure 4.7; Appendix Figure B.7; Appendix Table B.1). Aqueous selenium in chemically-reduced forms such as selenite or organoselenium species are present at much lower concentrations than selenate. The combined total of non-selenate selenium species typically represents ~1% of the total aqueous selenium (e.g., LC_LCUSWLC in Appendix Figure B.8¹⁷; Appendix Table B.1). Some of these non-selenate selenium species are known to be more readily accumulated by aquatic biota than selenate (Ogle et al. 1988; Riedel et al. 1996; Stewart et al. 2010). As described in Sections 1.3 and 4.2, in response to increased concentrations of chemically-reduced forms of aqueous selenium in AWTF effluent, the AWTF was recommissioned with an AOP to reverse the shift in selenium species back to a selenate-dominated condition. Concentrations of

¹⁵ Appendix Figure B.4 presents total aqueous selenium results with LC_WLC excluded for greater resolution of results.


¹⁶ Results discussed herein are excluding one outlier from the analysis. No significant differences among years were found with inclusion of the outlier (Appendix Table B.15). Results for the contrast of 2017 vs. 2016 differed slightly in the present report compared to the previous evaluation (Minnow 2018d) due the use of different statistical analyses. The ANOVA model described in Section 2.7.1 is the preferred method for this temporal analysis because it can detect temporal increases or decreases in concentrations. The repeated measures ANOVA used in Minnow (2018d) only has the ability to detect step-wise increases.

¹⁷ Note the differences in the y-axis scales of Figures 4.7 versus Appendix Figure B.8.


Figure 4.5: Time Series Plots for Aqueous Total Selenium Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019

Note: West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines pertain only to mine-exposed monitoring areas located downstream of the AWTF discharge.

Figure 4.6: Total Aqueous Selenium Concentrations at LC_LC3 Relative to Total AWTF Influent Flow Rate, 2019

Note: Influent flow to the AWTF ceased briefly from November 15 to 21, 2019 while the AWTF was in internal circulation for scheduled maintenance (Teck 2020). This brief suspension of AWTF operations resulted in increased concentrations of aqueous total selenium downstream of the AWTF during this time.

Figure 4.7: Aqueous Concentrations of Selenium Species at Mine-exposed (LC_LCUSWLC, LC_LC3, LC_LC3, LC_LC4, LC_LC6, LC_LC5) and Reference (LC_LC1, LC_SLC) Stations in Line Creek and Fording River, January 2017 to December 2019

Notes: Values below the Laboratory Reporting Limit are not included in the concentrations. West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines are displayed for each monitoring area to provide context, but pertain only to mine-exposed monitoring areas located downstream of the AWTF discharge. Results for LC_LC1 and LC_SLC are not evident due to consistent y-axis scaling among plots. Refer to Appendix Figure B.4 for the full set of plots, which include results for LC_WLC. Selenium (unknown) represents an unknown selenium species that elutes at a retention time of ~3.7 and is a product of the oxidation of volatile selenium species.

non-selenate species (including organoselenium species such as dimethylseleneoxide and methylseleninic acid) were substantially lower in Line Creek immediately downstream of the AWTF (at LC_LC3) throughout 2019, when the AWTF with AOP was operational, compared to AWTF steady-state operations without AOP in 2017 (Figure 4.8; Appendix Figure B.8; Appendix Table B.1). These results were corroborated by selenium concentrations in benthic invertebrates from downstream of the AWTF discharge in Line Creek, which were significantly lower during AWTF with AOP operation than during AWTF steady-state operation without AOP, relative to reference (Figure 4.9; see Section 4.3). Within 2019, concentrations of non-selenate selenium species were highest early in the AWTF with AOP restart period (January to April) and lowest between May and August when concentrations were similar to AWTF shutdown in 2018 (Figure 4.8; Appendix Figure B.8; Appendix Table B.1). This pattern in concentrations of non-selenate selenium species (i.e., lowest in the middle of the year) is consistent with the pattern of selenium concentrations in benthic invertebrate tissues in 2019, which were also lowest during the middle of the restart period (see Section 4.3; Figure 4.9).

Benthic invertebrate tissue selenium results from 2012 to 2019 were also plotted relative to the regional one-step water-to-invertebrate selenium accumulation model (Figure 4.10; Teck 2014). The model is based on observed relationships between aqueous and benthic invertebrate tissue selenium values from samples collected previously in Line Creek and in other areas of the Elk River watershed (Teck 2014). Most plotted values were within or below the 95% prediction limits of the model, except for samples collected nearest the AWTF in 2016 and 2017 (e.g., RG_LILC3 in Figure 4.10¹⁸). Samples at RG_LILC3 that plotted above the model 95% prediction limits included those collected during AWTF steady-state and flow reduction phases (in 2016 and 2017), while those collected during AWTF with AOP restart (in late 2018 and throughout 2019) plotted at or just below the model line (Figure 4.11). This supports the conclusion that selenium accumulation in Line Creek during AWTF steady-state operation was related to higher-than-normal concentrations of non-selenate forms of selenium, and that the recommissioning of the AWTF with AOP has been functioning to decrease non-selenate forms and associated accumulation in aquatic biota.

Combined, the decreased concentrations of aqueous non-selenate selenium species, significant decrease in benthic invertebrate selenium concentrations, consistency between seasonal changes in concentrations of aqueous non-selenate species and benthic invertebrate tissue selenium concentrations, and results relative to the selenium bioaccumulation model clearly

¹⁸ Tissue selenium concentrations for RG_LILC3 that were close to model predictions at very high aqueous Se concentrations (>100 μg/L) were collected in March 2018 after the AWTF was shut down (i.e., reflecting combined inputs from West Line Creek [untreated] and Line Creek) and aqueous selenium was predominantly in selenate form.

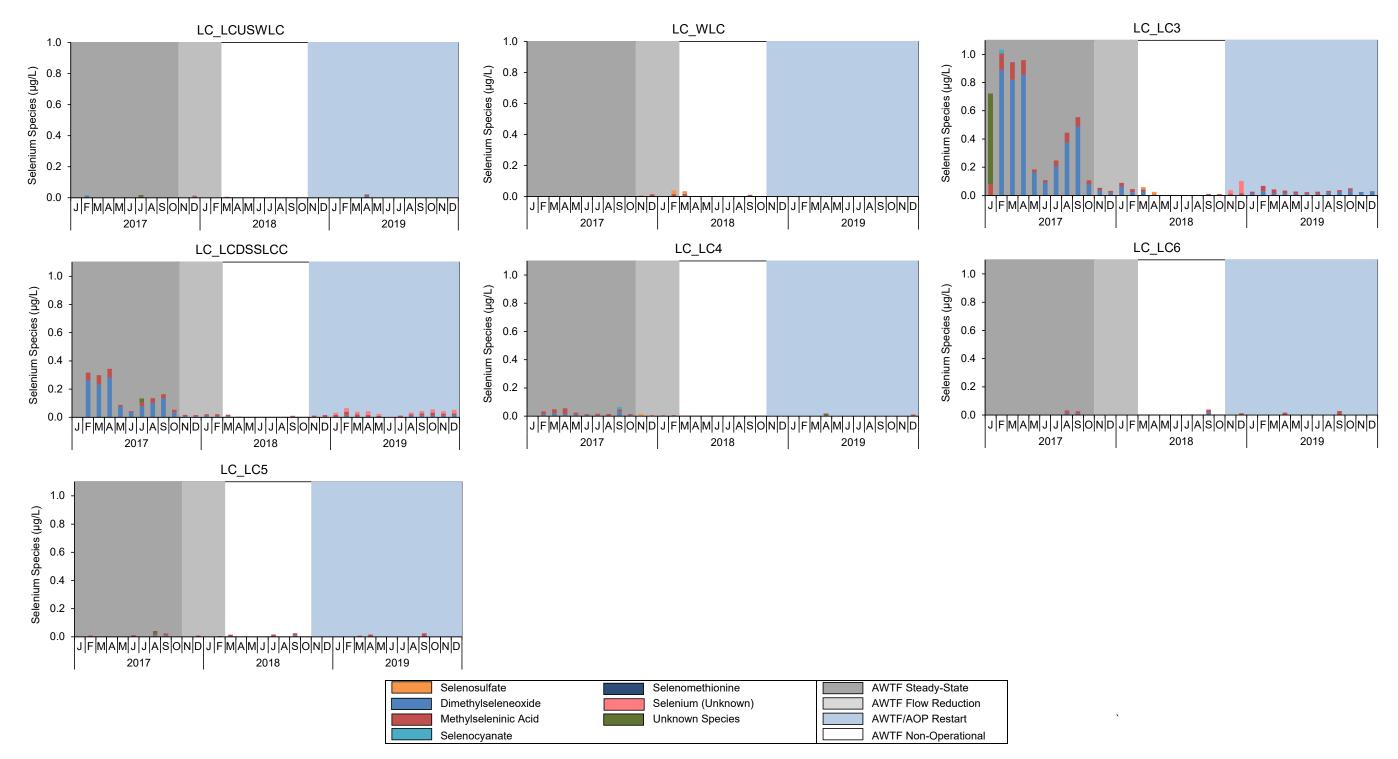


Figure 4.8: Aqueous Concentrations of Organoselenium Species at Mine-exposed (LC_LCUSWLC, LC_WLC, LC_LC3, LC_LC4, LC_LC6, LC_LC5) Stations in Line Creek and Fording River, January 2017 to December 2019

Notes: Values below the Laboratory Reporting Limit are not included in the concentrations. West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines are displayed for each monitoring area to provide context, but pertain only to mine-exposed monitoring areas located downstream of the AWTF discharge. Data are not displayed for reference stations (LC_LC1, LC_SLC) because all results for organoselenium species were below the Laboratory Reporting Limit (LRL). Selenium (unknown) represents an unknown selenium species that elutes at a retention time of ~3.7 and is a product of the oxidation of volatile selenium species.

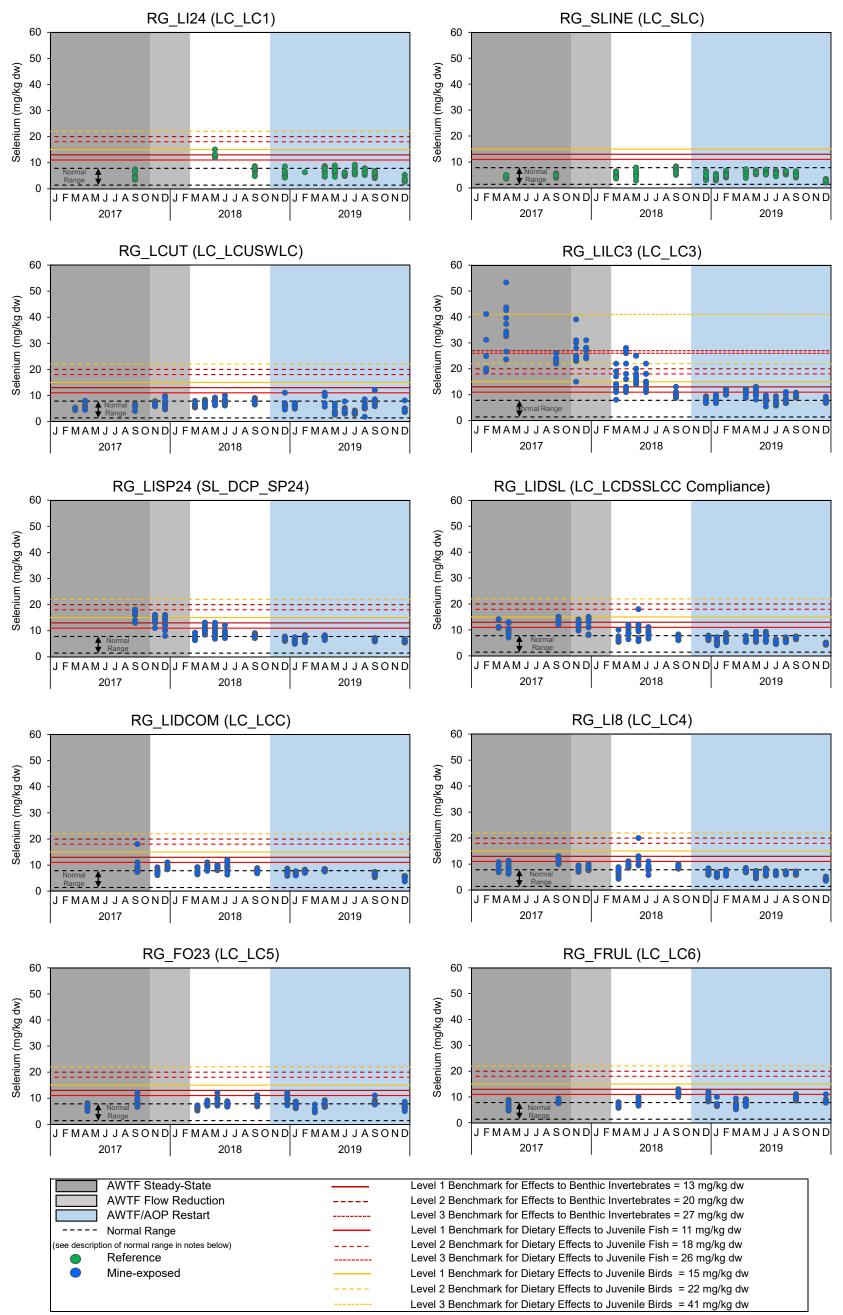
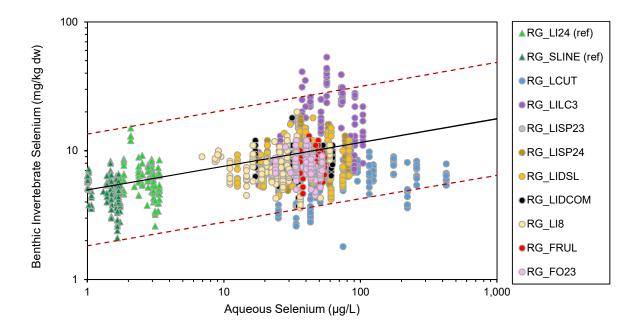



Figure 4.9: Selenium Concentrations in Benthic Invertebrate Composite-Taxa Samples from Line Creek and Fording River, 2017 to 2019

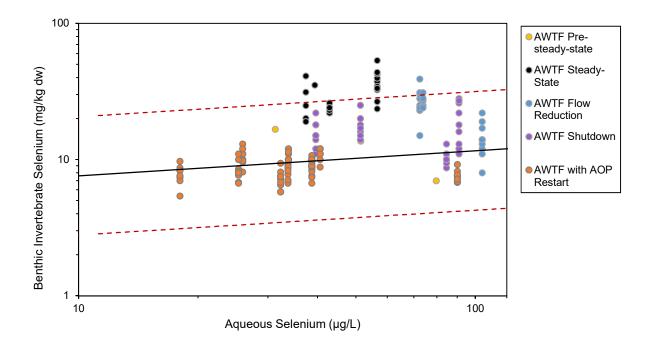

Notes: Results shown in green represent reference stations, and those in blue represent mine-exposed stations. Dashed black lines represent the normal range defined as the 2.5th and 97.5th percentiles of the 2012 and 2015 reference area data from the Regional Aquatic Environmental Monitoring Program (RAEMP). West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines are displayed for each monitoring area to provide context, but pertain only to mine-exposed monitoring areas downstream of the AWTF discharge.

Figure 4.10: Observed and Modelled^a Selenium Concentrations in Benthic Invertebrate Composite Samples Relative to Aqueous Selenium Concentrations at Stations Upstream and Downstream of Line Creek Operations, 2012 to 2019

Notes: One data point for station FO23 on September 16th, 2015 is the average of two duplicate measurements. Triangles indicate reference stations and circles indicate mine-exposed stations.

^a Mean benthic invertebrate selenium concentrations (solid black line) were estimated using a one-step water to benthic invertebrate selenium accumulation model: $\log_{10}[Se]_{benthic invertebrate} = 0.696+0.184 \times \log_{10}[Se]_{aq}$ (Teck 2014). The 95% prediction limits for a single value from the one-step water to benthic invertebrate selenium accumulation model are plotted as dashed red lines.

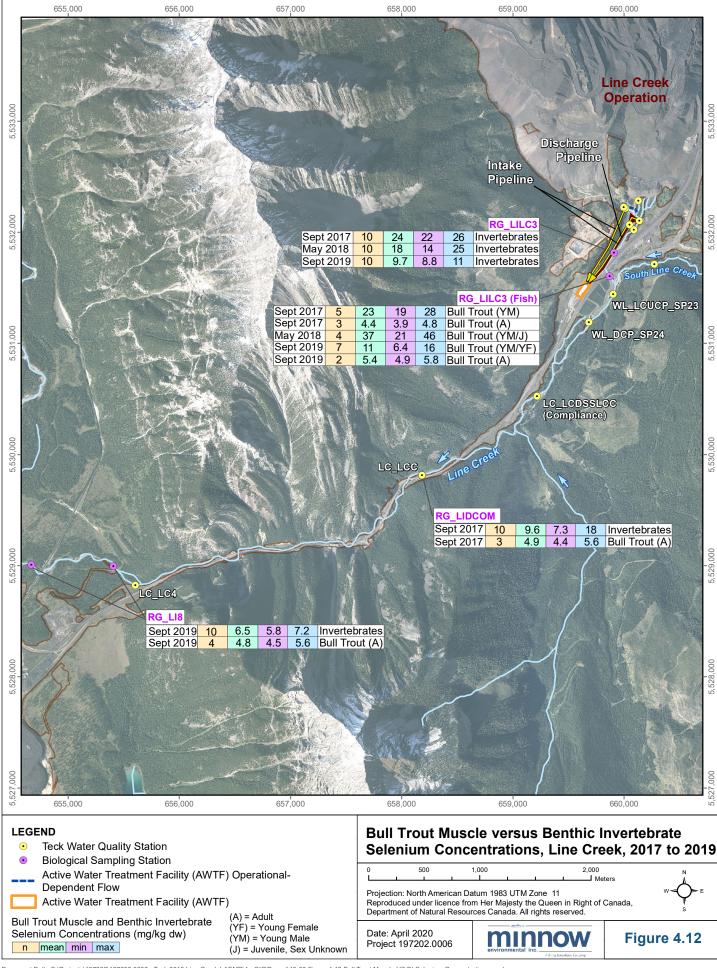
Figure 4.11: Observed and Modelled^a Selenium Concentrations in Benthic Invertebrate Composite Samples Relative to Aqueous Selenium Concentrations at RG_LILC3, Line Creek, 2012 to 2019

^a Mean benthic invertebrate selenium concentrations (solid black line) were estimated using a one-step water to benthic invertebrate selenium accumulation model: $\log_{10}[Se]_{benthic invertebrate}=0.696+0.184 \times \log_{10}[Se]_{aq}$ (Teck 2014). The 95% prediction limits for a single value from the one-step water to benthic invertebrate selenium accumulation model are plotted as dashed red lines.

indicate that the AWTF with AOP functioned as intended throughout 2019 to limit selenium accumulation by aquatic biota.

4.5 Fish Tissue Selenium Concentrations

4.5.1 Muscle


Trophic transfer factors (TTF) represent ratios of consumer to dietary tissue selenium concentrations and are often used to describe selenium transfer in aquatic food webs. Selenium concentrations in fish muscle are usually similar to dietary exposure concentrations, as reflected in TTFs of approximately one for a wide range of small-bodied versus large-bodied and marine versus freshwater fish species (Table 4.2).

Young bull trout (i.e., < 29 cm fork length) captured in Line Creek in September 2019 had muscle selenium concentrations similar to or higher than those in benthic invertebrates collected in the same vicinity (Figures 4.12; Appendix Table B.22). This is consistent with results in previous years (Minnow 2018d, 2019a) and suggests that these bull trout were resident individuals feeding near the capture area. Larger adult bull trout (i.e., > approximately 60 cm fork length) captured in 2019 had muscle selenium concentrations lower than those in benthic invertebrates (particularly near RG_LILC3; Figure 4.12), suggesting non-residency. This is also consistent with previous results observed for adult bull trout in 2017 (Figure 4.12; Minnow 2018d). Line Creek is a regionally important stream for bull trout spawning (Minnow 2016b), with bull trout typically spawning in Line Creek between approximately mid-September until mid-October under base flow conditions (Lotic 2016). Therefore, these larger adult bull trout captured in September 2019 were likely individuals that had recently migrated into Line Creek to spawn.

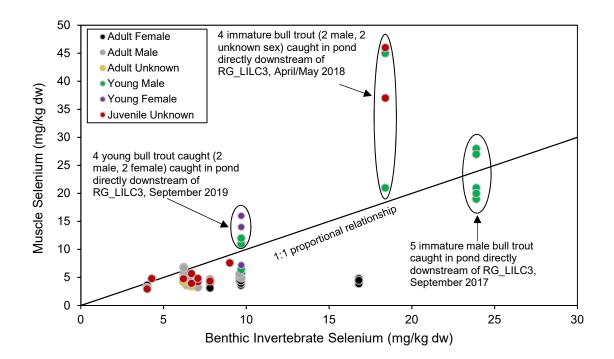

The ratio of muscle selenium concentrations of bull trout to benthic invertebrate selenium concentrations was higher for juveniles captured in September 2019 than for adults (Figure 4.13). The TTF for juvenile bull trout captured in 2019 was slightly above one while it was below one for adult bull trout (Figure 4.13). This further supports that juvenile bull trout are likely residents of Line Creek feeding near the capture area while adults were likely migrating to Line Creek for spawning purposes. The TTFs of juvenile bull trout were much lower than observed in 2018 and more similar to those in September 2017 (Figure 4.13; Minnow 2018d, 2019a). This discrepancy in TTFs relative to 2018 is likely related to the change in AWTF operational status (shutdown) that occurred shortly prior to bull trout sampling in 2018 (8 weeks prior). Given that the primary exposure route of selenium to these fish is dietary, it is anticipated that changes in fish tissue selenium concentrations would be delayed relative changes in selenium concentrations of their diet (i.e., benthic invertebrates). The slower growth rate and lower specific feeding (i.e., feeding per unit mass of consumer) of fish compared to benthic invertebrates may also

 Table 4.2:
 Trophic Transfer Factors (TTF) for Fish Muscle or Whole Body Relative to Diet (Presser and Luoma 2010)

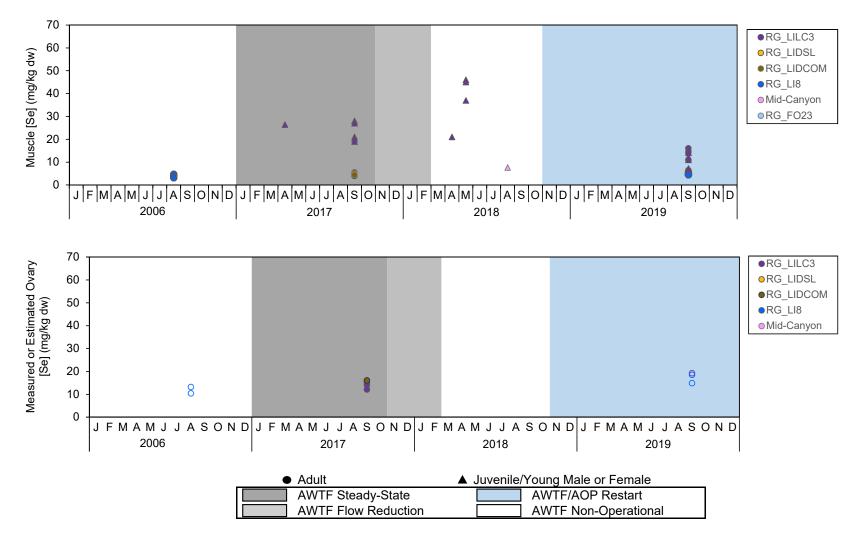
Common Name	Scientific Name	TTF
Chinese mudskipper	Periophthalmus cantonensis	0.84
Striped bass (juvenile)	Morone saxatilis	0.89
Sucker	Catostomus sp.	0.97
Rainbow trout	Oncorhynchus mykiss	0.98
Fathead minnow (larval and adult)	Pimephales promelas	1.0
Largemouth bass	Micropterus salmoides	1.0
Cutthroat trout	Oncorhynchus clarkii	1.0
Bluegill	Lepomis macrochirus	1.1
Mangrove snapper	Lutjanus argentimaculatus	1.1
European sea bass	Dicentrarchus labrax	1.1
Chub	Gila sp.	1.2
Yellowfin goby	Acanthogobius flavimanus	1.2
Western mosquitofish	Gambusia affinis	1.3
White sturgeon	Acipenser transmontanus	1.3
Brown trout	Salmo trutta	1.3
Mountain whitefish	Prosopium williamsoni	1.3
Sailfin molly	Poecilia latipinna	1.4
Mottled sculpin	Cottus bairdi	1.4
Longnose dace	Rhinichthys cataractae	1.5
Redside shiner	Richardsonius balteatus	1.5
Starry flounder	Platichthys stellatus	1.6

Document Path: S:\Projects\197202(197202.0006 - Teck 2019 Line Creek LAEMP\4 - GIS\Report\19-06 Figure 4.12 Bull Trout Muscle VS BI Selenium Concentrations.mxd

Figure 4.13: Bull Trout Muscle Selenium Concentrations Compared to Selenium Concentrations in Composite-Taxa Benthic Invertebrate Samples Collected in the Same Area

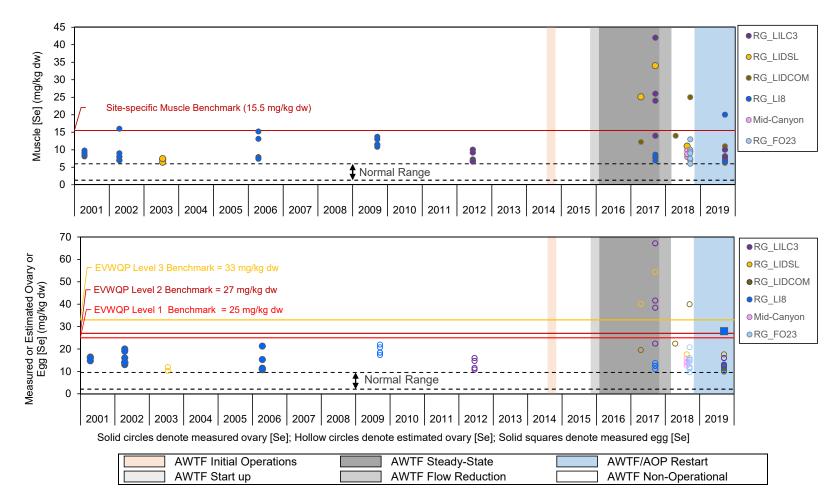
Notes: Data reflect bull trout captured in Line Creek in 2017 LAEMP (Minnow 2018d), 2018 LAEMP (Minnow 2019a), 2019 LAEMP, and in 2006 regional selenium monitoring (Minnow et al. 2007). Muscle selenium concentrations for fish caught downstream of RG_LILC3 were compared to composite benthic invertebrate selenium concentrations measured at RG_LILC3 in September 2017, April/May 2018, and September 2019. Muscle selenium concentrations of fish caught Mid-Canyon were compared to composite benthic invertebrate selenium concentrations measured at RG_LIB in September 2018.

potentially contribute. In 2019, the lower TTFs for selenium in juvenile bull trout are therefore likely attributable to the longer time frame since a change in AWTF operational status (over a year prior to tissue sampling), allowing time for changes in fish tissue selenium concentrations to occur relative to dietary exposure.


Muscle selenium concentrations of juvenile bull trout in 2019 were substantially lower (2.3-times lower on average) than those reported in 2017 during AWTF steady-state operation (without AOP; Figure 4.14; Appendix Table B.22). The substantial decrease in muscle selenium concentrations of these (likely resident) bull trout in 2019 indicates that recommissioning of the AWTF with AOP has been successful at shifting selenium speciation in AWTF effluent from chemically-reduced species back to a selenate-dominated condition, thereby reducing the bioavailability of selenium in Line Creek.

Selenium concentrations in tissues of westslope cutthroat trout have been monitored in Line Creek since 2001 (Golder 2005). In 2019, selenium concentrations in muscle from westslope cutthroat were below the site-specific muscle benchmark of 15.5 mg/kg (Nautilus Environmental and Interior Reforestation 2011), with the exception of one sample. Selenium concentrations were similar in muscle of westslope cutthroat trout captured closest to the AWTF discharge (near RG_LILC3, and at RG_LIDCOM approximately 2.8 km downstream from the AWTF discharge) and approximately 6.1 km downstream from the AWTF discharge (near RG_LI8; Figure 4.15). This differed from results in 2017 when muscle selenium concentrations were 3.5-times higher (on average) in fish captured near RG_LILC3 than those captured near RG_LI8 (Figure 4.15; Appendix Table B.23). This represents a substantial decrease in muscle selenium concentrations of fish captured near RG_LILC3 and/or RG_LIDCOM between 2017 (during AWTF steady-state operation without AOP) and 2019 (during AWTF with AOP operation), with tissue selenium concentrations in 2019 more similar to concentrations observed between 2001 and 2012 (prior to AWTF operation; Figure 4.15).

No external deformities or abnormalities were noted in bull trout or westslope cutthroat trout captured in Line Creek in 2019 (Appendix Tables B.22 and B.23).


4.5.2 Ovaries

Measurement of selenium in eggs or ripening ovaries is the most direct way to evaluate potential effects of selenium on fish reproduction compared to measurement of selenium in water or other tissue types (Janz et al. 2010; Golder 2014; USEPA 2016). For this reason, site-specific benchmarks were derived in the EVWQP based on fish egg/ovary selenium concentrations (Golder 2014). However, it is challenging to align sampling events with when fish are ripe so that eggs can be harvested non-lethally from females (by applying gentle abdominal pressure). If non-lethal expression of eggs is not possible, collection of ovaries requires that fish

Figure 4.14: Selenium Concentrations in Muscle and Ovaries of Bull Trout Sampled From Line Creek, 2006 to 2019

Notes: Ovary concentrations that were estimated from muscle selenium concentrations based on the average ovary-to-muscle concentration relationship of 3.3:1 (Minnow 2018d) are plotted with open circles. Measured ovary selenium concentrations are plotted as solid circles. Ovary selenium was estimated only for adult individuals lacking measured ovary concentrations (if female) or if sex of an adult individual was unknown.

Figure 4.15: Selenium Concentrations in Muscle and Ovaries of Westslope Cutthroat Trout Sampled From Line Creek, 2001 to 2019

Notes: Measured muscle and ovary selenium concentrations are plotted as solid circles. Selenium was measured in ripe eggs collected non-lethally from one adult female in 2019, and this is plotted as a solid square. Ovary concentrations that were estimated from muscle selenium concentrations (based on the ovary-to-muscle concentration relationship of 1.6:1 presented by Nautilus and Interior Reforestation 2011) are plotted with open circles. Ovary selenium was estimated only for individuals lacking measured egg/ovary concentrations (if female). Dashed black lines represent the muscle normal range defined as the 2.5th and 97.5th percentiles of the 1998 to 2015 reference area muscle data from the Regional Aquatic Environmental Monitoring Program (RAEMP). Ovary normal range was estimated from the muscle values multiplied by the 1.6:1 conversion presented by Nautilus and Interior Reforestation 2011.

be sacrificed. Therefore, monitoring of selenium in fish has often involved non-lethal collection of muscle plugs for selenium analysis. Selenium concentrations in fish eggs/ovaries can be estimated from muscle for fish species that exhibit a strong muscle-to-ovary selenium relationship, as an indirect means of evaluating potential effects of selenium on fish reproduction. Such relationships have been described for a variety of fish species from data in the scientific literature (USEPA 2016) and based on studies in the Elk Valley (Table 4.3). Ovary-to-muscle selenium ratios are typically <3:1 but can range up to 7:1 for some species.

A strong ovary-to-muscle relationship for selenium concentrations has been characterized for westslope cutthroat trout, which indicates that egg/ovary selenium concentrations are typically about 1.6-times the concentrations in muscle of the same fish (Nautilus and Interior Reforestation 2011). Estimated ovary selenium concentrations for westslope cutthroat trout in Line Creek in 2019 were below the EVWQP Level 1 benchmark of 25 mg/kg dw (Golder 2014). Estimated ovary selenium concentrations from fish collected near the AWTF discharge (near RG_LILC3) were substantially lower in 2019 than 2017 (when the AWTF was in steady-state operation), and were more similar to concentrations in 2001 to 2012 (prior to AWTF operation) which were all below the EVWQP Level 1 benchmark (Figure 4.15).

A single egg sample was collected from a female westslope cutthroat trout during fishing efforts in September 2019 by applying minimal pressure to the abdomen of the fish (consistent with usual handing during non-lethal sample collection). Selenium concentrations in this egg sample exceeded the EVWQP Level 1 and 2 benchmarks (Figure 4.15; Appendix Table B.23; Golder 2014). Westslope cutthroat trout spawn in the spring, and based on literature (Scott and Crossman 1998; McPhail 2007; GOC 2016) and field observations in the East Kootenay Region (Cope 2019, pers. Comm.), the likelihood of westslope cutthroat trout in Line Creek with a fall-spawning life history is very low. Therefore, the incidental collection of eggs in September likely represents an anomaly observed in this single individual.

Selenium monitoring data in the Elk Valley are more limited for bull trout than for westslope cutthroat trout. Available tissue selenium concentration data indicated an ovary-to-muscle ratio of approximately 3.3 (Minnow 2018d). Ovary selenium concentrations were estimated for three adult female bull trout sampled non-lethally in 2019¹⁹ (Figure 4.14; Appendix Table B.22), and

¹⁹ Sex of adult fish was determined based on non-lethal evaluation of physical characteristics.

Table 4.3: Ovary to Muscle Selenium Relationships for Different Fish Species in the Elk Valley and Various Locations in the Literature

Location	Source	Common Name	Scientific Name		-	to Mu ation I	scle Ratios ^ª	Regres	sion ^b
				n	Min	Мах	Median	р	r ²
		Kokanee	Oncorhynchus nerka	16	1.6	3.1	2.1	0.61	-
		Largescale Sucker	Catostomus macrocheilus	17	0.78	2.5	1.4	< 0.001	0.89
	Kasasausa	Northern Pikeminnow	Ptychocheilus oregonensis	64	2.0	10	3.6	<0.001	0.55
	Koocanusa Reservoir	Peamouth Chub	Mylocheilus caurinus	90	1.1	7.8	3.3	<0.001	0.43
Elk	i tesei voii	Rainbow Trout	Oncorhynchus mykiss	9	3.2	12	4.3	0.81	-
Valley		Redside Shiner	Richardsonius balteatus	51	2.8	15	7.3	<0.001	0.42
, and)		Yellow Perch	Perca flavescens	54	1.1	1.5	1.2	<0.001	0.78
	RAEMP	Longnose Sucker	Catostomus catostomus	19	0.64	2.1	1.1	<0.001	0.96
	(Minnow 2018a)	Mountain Whitefish	Prosopium williamsoni	106	1.8	16	6.5	<0.001	0.52
	Nautilus and IR (2011)	Westslope Cutthroat Trout	Oncorhynchus clarki lewisi	>100	0.5 ^c	6 ^c	1.6 ^c	<0.001	0.82
		Black Bullhead	Ameiurus melas	10	3.4	19	6.8	0.25	-
		Bluegill	Lepomis macrochirus	29	0.14	2.4	1.4	<0.001	0.65
		Bluehead Sucker	Catostomus discobolus	7	0.94	1.8	1.5	<0.001	0.91
		Brook Trout	Salvelinus fontinalis	17	0.54	2.3	1.1	<0.001	0.91
		Brown Trout	Salmo trutta	4	0.38	11	7.0	0.71	-
		Channel Catfish	Ictaluris punctatus	4	3.7	8.7	5.8	0.67	-
		Common Carp	Cyprinus carpio	6	0.39	1.5	1.1	0.007	0.84
		Cutthroat Trout	Oncorhynchus clarkii	69	1.0	11	1.8	<0.001	0.82
		Dolly Varden	Salvelinus malma	17	0.71	3.6	1.3	<0.001	0.90
Various	USEPA (2016)	Flannelmouth Sucker	Catostomus latipinnis	7	0.85	1.4	1.1	0.036	0.58
vanous	03LFA (2010)	Green Sunfish	Lepomis cyanellus	38	0.79	1.8	1.2	<0.001	0.89
		Largemouth Bass	Micropterus salmoides	13	0.77	1.8	1.1	0.22	-
		Mountain Whitefish	Prosopium williamsoni	27	3.5	8.2	5.8	<0.001	0.33
		Northern Pike	Esox lucius	14	1.0	3.9	1.9	<0.001	0.83
		Rainbow Trout	Oncorhynchus mykiss	47	0.04	4.4	1.9	<0.001	0.96
		Razorback Sucker	Xyrauchen texanus	34	1.1	5.2	2.3	<0.001	0.80
		Roundtail Chub	Gila robusta	7	1.5	2.5	2.0	0.026	0.62
		Smallmouth Bass	Micropterus dolomieu	6	0.94	1.6	1.2	0.006	0.85
		White Sturgeon	Acipenser transmontanus	6	1.6	21	1.3	0.006	0.86
		White Sucker	Catostomus commersonii	40	0.47	2.1	1.0	<0.001	0.59

Note: "-" = no data/not recorded.

^a Ratio of ovary to muscle for individual fish as listed by USEPA (2016), augmented by data from Elk Valley studies.

 b r² presented for significant relationships (p<0.05).

^c Estimated from a figure in Nautilus and IR (2011).

these exceeded the EVWQP Level 1 Benchmark of 18 mg/kg dw²⁰ (Golder 2014) but were well below the EC₁₀ for Dolly Varden of 56.2 mg/kg dw²¹ (USEPA 2016).

4.6 Summary

Concentrations of non-selenate forms of selenium in Line Creek water were decreased during operation of the AWTF with AOP in 2019. Benthic invertebrate tissue monitoring in Line Creek identified substantially lower selenium concentrations in 2019 during operation stabilization of AWTF with AOP compared to concentrations that were observed during steady-state operation of the AWTF. In 2019, mean benthic invertebrate selenium concentrations were below the EVWQP Level 1 benchmark at all areas downstream of the AWTF discharge. Temporal changes in benthic invertebrate selenium concentrations during AWTF with AOP operation in 2019 were consistent with changes in concentrations of aqueous non-selenate species, and comparison of benthic invertebrate selenium concentrations throughout 2019 to the selenium bioaccumulation model indicated that selenium bioaccumulation was as expected. Selenium concentrations of tissues of juvenile bull trout and westslope cutthroat trout captured near the AWTF discharge in 2019 were substantially lower than those reported in 2017 for fish from a similar area. Furthermore, selenium concentrations in westslope cutthroat tissues in 2019 were below the EVWQP Level 1 benchmark (except a single sample). Combined, the aqueous selenium speciation, benthic invertebrate tissue selenium, and fish tissue selenium monitoring results all indicated that the recommissioned AWTF with AOP is functioning as intended to shift selenium speciation in AWTF effluent from chemically-reduced species back to a selenate-dominated condition, thereby reducing the bioavailability of selenium in Line Creek.

²⁰ Benchmark applies to fish species other than westslope cutthroat trout.

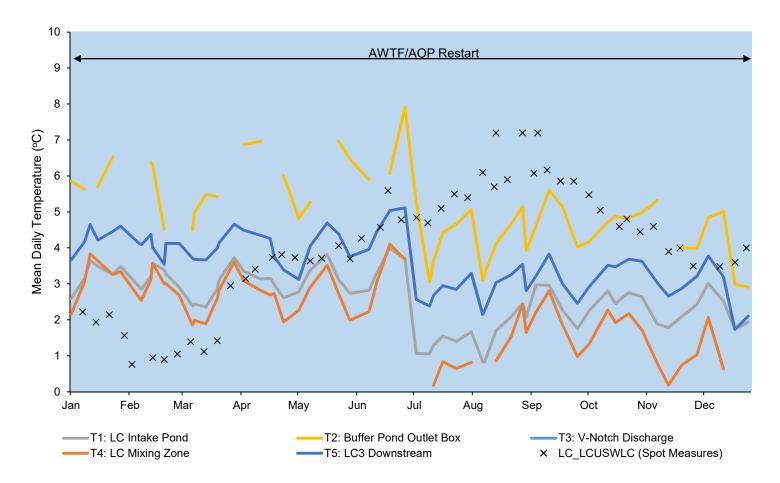
²¹ The Effect Concentration (EC₁₀) screening value of 56.2 mg/kg dw identified for Dolly Varden was applied to bull trout ovary selenium concentrations. Bull trout (*Salvelinus confluentus*) belong to a relatively tolerant genus. McDonald et al. (2010) reported an EC10 of 54 mg/kg dw in eggs for Dolly Varden (*Salvelinus malma*), later recalculated as 56.2 mg/kg dw in eggs by USEPA (2016). Holm et al. (2005) reported no effects to brook trout (*Salvelinus fontinalis*) across a wide range of egg selenium concentrations. USEPA (2016) concluded that "the effect threshold [for brook trout] appears to be substantially higher [than the reported no-effect concentration] based on the absence of any consistent concentration-response relationship up to the maximum observed egg concentration of 18.9 mg Se/kg ww or 48.7 mg Se/kg dw". As such, the selected screening value of 56.2 mg/kg dw in ovary tissue would be a conservative basis for evaluating potential risk to members of the genus *Salvelinus*, including bull trout.

5 OTHER POTENTIAL INFLUENCES OF THE WLC AWTF

5.1 Overview

Monitoring data were evaluated in this section to address Study Question #3: Is WLC AWTF operation affecting aquatic biota through thermal effects, effects on dissolved oxygen concentrations, or concentrations of treatment-related constituents other than nutrients or selenium? To address this study question, water temperature and dissolved oxygen results in 2019 were evaluated upstream and downstream of the AWTF, and water quality and toxicity testing results were evaluated in relation to changes in AWTF operational status. The AWTF with AOP was operational throughout 2019 (in the operation stabilization phase), with discharge to the receiving environment occurring over the entire year.

5.2 Temperature


Water temperatures measured by continuous loggers in Line Creek upstream (LC Intake Pond [Data logger T1]) and downstream (LC Mixing Zone Discharge [Data logger T4] and LC3 Downstream [Data logger T5]) of the AWTF were generally similar to each other (Figure 5.1). These temperatures were also relatively similar to discrete temperature measurements collected further upstream during routine monitoring (LC_LCUSWLC) between January and July, but were lower than those measured further upstream (at LC_LCUSWLC) in summer (July to October; Figure 5.1) indicating no temperature increase associated with the AWTF operation.

British Columbia guidelines for water temperature are defined as a maximum \pm 1° C change from the optimum temperature range for different fish life stages (BCMOE 2001). Line Creek water temperatures throughout 2019 were within, or lower than, the optimum temperature ranges specified for different life stages of bull trout and westslope cutthroat trout (Figure 5.2).

5.3 Dissolved Oxygen

- .

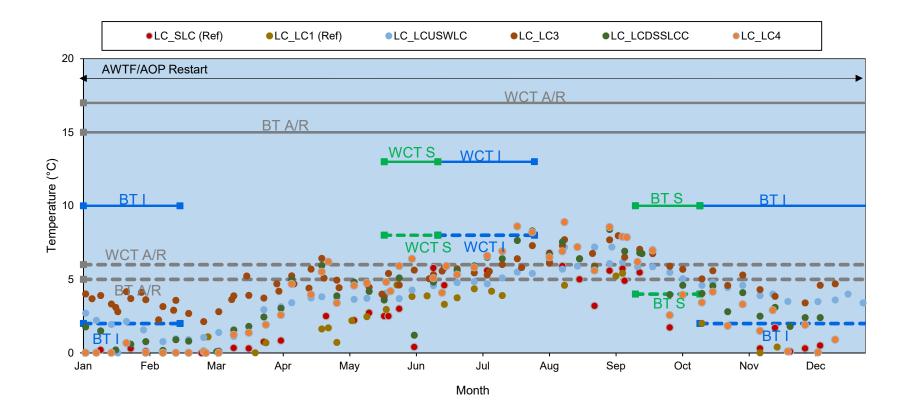
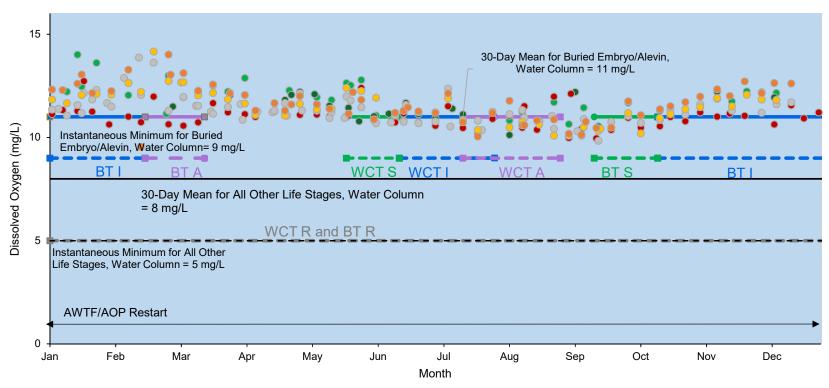

Dissolved oxygen concentrations measured in 2019 upstream and downstream of the AWTF discharge were above the instantaneous minimum criterion for the protection of the most sensitive fish (embryo/alevin) life stages (9 mg/L; BCMOE 1997) and the 30-day mean for all other fish life stages (8 mg/L; Figure 5.3). However, monthly mean concentrations of dissolved oxygen were below the 30-day mean criterion of 11 mg/L for the most sensitive fish life stages (buried embryo/alevin) at all stations in at least one month (between June and October). Concentrations were below the criterion in more than one month both upstream (LC_LCUSWLC; 4 months) and downstream of the AWTF (LC_LC3 and LC_LCDSSLCC [3 months] and LC_LC4 [2 months]; Table 5.1). The pattern of average dissolved oxygen

Figure 5.1: Mean Daily Water Temperature (°C) Recorded by Temperature Data Loggers^a, Line Creek LAEMP, 2019


Notes: Due to equipment malfunction, several measurements recorded by temperature data loggers were excluded from the plot and are shown as gaps in the plotted data. These include: the majority of Buffer Pond Outlet temperature measures reported prior to July; the majority of V Notch Weir temperature measures reported prior to April, temperatures below zero reported for the LC Mixing Zone, and several temperatures for LC_LCUSWLC.

^a Temperatures displayed for LC_LCUSWLC are based on single discrete measures recorded during spot sampling. These are shown to provide context of water temperatures upstream.

Figure 5.2: Water Temperatures at Monitoring Stations in Line Creek in 2019 Relative to BCMOE (2001b) Guidelines for Maximum (Solid Lines) and Minimum (Dotted Lines) Temperatures for Protection of Fish Species Found in Line Creek

Notes: BT = bull trout; WCT = westslope cutthroat trout; S = spawning; I = incubation; A/R = alevin/rearing. The timing of fish life history stages was approximated from COSEWIC (2016), McPhail and Baxter (1996), and McPhail (2007).

●LC_SLC (Ref) ●LC_LC1 (Ref) ●LC_LCUSWLC ●LC_LC3 ●LC_LCDSSLCC ●LC_LC4

١

Figure 5.3: Dissolved Oxygen Concentrations at Sampling Stations in Line Creek in 2019, Relative to the BCMOE (1997) Criteria for the Protection of Fish Life Stages

Notes: BT = bull trout; WCT = westslope cutthroat trout; S = spawning; I = incubation; A/R = alevin/rearing. The timing of fish life history stages was approximated from COSEWIC (2016), McPhail and Baxter (1996), and McPhail (2007). Spawning, incubation, and alevin stages were included in application of buried embryo/alevin guideline values.

Month	LC_LC1	LC_SLC	LC_LCUSWLC	LC_WLC	LC_LC3	LC_LCDSSLCC	LC_LCC	LC_LC4
January	-	12.9	11.4	11.3	11.6	12.0	13.2	12.4
February	11.5	12.1	11.1	11.6	12.7	12.9	13.4	13.2
March	14.3	12.2	11.0	11.5	11.5	12.3	-	12.5
April	12.0	12.6	11.1	11.3	11.4	11.4	12.7	11.7
May	11.5	12.3	11.4	11.5	11.4	11.9	-	11.6
June	11.2	11.2	10.9	11.2	10.9	11.4	-	11.2
July	11.2	11.9	10.7	11.6	11.0	11.1	-	11.1
August	10.8	11.1	11.1	11.2	10.9	10.5	-	10.9
September	11.3	10.8	10.5	10.8	10.5 ^a	10.4	10.7	10.4
October	11.3	11.7	10.8	11.0	11.0	11.0	-	11.5
November	12.2	12.1	11.1	11.2	11.6	11.7	-	12.3
December	11.9	12.2	11.1	11.3	11.5	11.8	-	12.5

Table 5.1: Monthly Mean Dissolved Oxygen Concentrations (mg/L) in Line Creek, 2019

Less than 30-day water column mean criterion of 11 mg/L for buried embryo/alevin life stages (guideline was applied to all months except April, see notes for details). Notes: "-" = no data/not recorded. Spawning, incubation, and alevin stages for bull trout and westslope cutthroat trout were included in the application of buried embryo/alevin guideline values, and were applicable to at least some portion of each month except April. The timing of life history stages for these species was approximated from COSEWIC (2016), McPhail and Baxter (1996), and McPhail (2007). See Figure 5.3 for graphical diplay of these life history stages.

^a Average was calculated excluding one anomalous value recorded on September 3, 2019 (546 mg/L).

concentrations below the 30-day criterion both upstream and downstream of the AWTF discharge suggests the decreased dissolved oxygen concentrations were not related to AWTF operation.

5.4 Water Quality Analytes with Early Warning Triggers

Evaluation of analytes with early warning triggers under the AMP relative to BCWQG (see Sections 2.2.1 and 2.7.1) indicated that concentrations of nitrate, ammonia, sulphate, total mercury and selenium, and dissolved cadmium and copper were above the long-term BCWQG in samples from stations in Line Creek upstream (and at reference for total mercury and selenium and dissolved copper) and downstream of the AWTF discharge in 2019 (Appendix Tables C.1 and C.2; Appendix Figures C.1 to C.28). The short-term BCWQG was also exceeded in 2019 for dissolved cadmium (at LC_WLC only, 14% of samples) and ammonia (at LC_LCUSWLC and LC_WLC in 4% of samples, and at LC_LC3 in 20% of samples; Appendix Table C.2).

Total dissolved solids, sulphate and dissolved cadmium concentrations were above the EVWQP Level 1 benchmark, and nitrate and total selenium concentrations were above both the EVWQP Level 1 and 2 benchmarks in samples from upstream and downstream of the AWTF discharge. Total nickel concentrations were above the Level 1 interim screening value in samples from upstream and downstream of the AWTF discharge, the Level 2 interim screening value in samples from LC_LCUSWLC, and both the Level 2 and Level 3 interim screening values in samples from LC_WLC (Appendix Table C.2; Appendix Figures C.1 to C.28).

Visual inspection of results from 2012 to 2019 indicated no obvious temporal increases in analyte concentrations at monitoring stations downstream of the AWTF discharge in 2019 (Appendix Figures C.1 to C.28). The lack of temporal change in analyte concentrations in 2019 relative to previous years indicates that AWTF with AOP operation did not influence downstream concentrations of these analytes.

5.5 Toxicity Results

Effluent samples from WL_BFWB_OUT_SP21 were collected for acute toxicity testing. Of the 54 samples collected for acute testing of the water flea *Daphnia magna*, or the 54 samples collected for acute testing of rainbow trout in 2019, none caused >50% mortality to either organism (Table 5.2; Appendix Table C.3). On October 7, 2019, Teck and ENV each collected an effluent sample. The Teck sample exhibited ten percent mortality to rainbow trout and no effect to *D. magna*, and the ENV sample exhibited no effect to rainbow trout and 100% mortality to *D. magna*. Teck has initiated discussion with ENV to understand the implications of these conflicting results (Teck 2020).

Chronic toxicity testing is performed quarterly on samples collected at LC_LC3 and the Compliance Point (LC_LCDSSLCC) to evaluate potential effects to *Ceriodaphnia dubia* and

Table 5.2: Summary of Acute Toxicity Test Results for Line Creek Monitoring Stations,2019

Water	Station	Water (Daphnia)		Rainbow Trout (Oncorhynchus mykiss)		
Teck Code Description		# Tests > 50% Mortality	Total # tests		Total # tests	
WL_BFWB_OUT_SP21	West Line Creek AWTF effluent outfall	0	54	0	54	

Acute toxicity test failure(s) (> 50% test mortality).

Pseudokirchneriella subcapitata. C. dubia reproduction was significantly decreased at LC_LC3 in Q4 of 2019 (in protocol-specified length tests and 8-day tests)²² relative to results from the Elk River and Michel River reference areas, respectively (Table 5.3; Golder 2019). Due to the low effect-size relative to reference (13%) and results falling within the local and normal range, this difference was categorized as no adverse response according to decision criteria (Golder 2020). No effects to *C. dubia* were observed in samples collected in the remaining quarters (Q1 to Q3; Table 5.3). Testing completed between 2015 and 2017 also resulted in decreased *C. dubia* reproduction in one quarterly sample relative to one or more Elk Valley reference samples in each year, and two quarterly samples in 2018 relative to all four reference station samples (Table 5.3).

P. subcapitata cell-yield at LC_LC3 and LC_LCDSSLCC was significantly decreased in Q3 of 2019 compared to all four reference samples (Table 5.3). Mean cell-yield for the Q3 tests were below the local normal range of responses, indicating a likely adverse response to the test water (Golder 2020). Cell-yield in Q3 reference samples was lower than the negative laboratory control, despite being within the requirements for test validity. In addition, a low cell yield for a high number of Elk Valley test samples (relative to reference) was also observed in Q3. The combined observation of a high number of likely adverse responses across Elk Valley test samples and unusually low reference water cell yield raises questions about the reliability of the findings for Q3 *P. subcapitata tests* (Golder 2020). Testing completed in 2015, 2016, 2017, and 2018 also resulted in reduced algal growth relative to one or more reference samples in one of the quarterly samples (Table 5.3).

Chronic toxicity testing is performed semi-annually to evaluate potential effects to *Hyalella azteca*, rainbow trout, and fathead minnow at LC_LC3 and at the Compliance Point. The dry weight of *H. azteca* at LC_LC3 and LC_LCDSSLCC was significantly decreased in Q3²³ of 2019 compared to one or more Elk Valley reference samples (Table 5.3). *H. Azteca* survival was also significantly decreased in Q3 at LC_LC3 (relative to the South Line Creek reference sample) and at both LC_LCDSSLCC and LC_LC3 in Q4, relative to two or more Elk Valley reference samples (Table 5.3). According to decision criteria, the effect on dry weight in Q3 was categorized as a possible adverse response, and the effect on survival in Q3 and Q4 as a likely adverse response

²² Two toxicity test lengths were used to evaluate potential effects on the timing and quantity of *Ceriodaphnia dubia* reproduction in 2019. This was in accordance with advice provided by EMC members (Golder 2020). These included: 1) a protocol-specified test length (i.e., reproduction was measured when ≥60 % of controls produced three or more broods; as per Environment Canada [2007c]); and 2) an 8-day test duration (Golder 2020). These two test lengths were to evaluate potential brood effect. Prior to 2019, the protocol-specified test length was used.

²³ Although *H. azteca* chronic toxicity testing is required in the spring (Q2) and fall (Q4) under the Permit 107517 and 106970 Chronic Toxicity Program integration amendment, the amendment approval was issued (March 4, 2019) after testing in early 2019 was initiated. Testing in 2019 was therefore completed in Q3 and Q4 according to the previous permit requirements (Permit 107517; see Golder 2020 for details).

	Area Quarter		Water Flea (Ceriodaphnia dubia) ^b			Ampl (Hyalella	•	Green Alga (Pseudokirchneriella subcapitata)	Rainbow Trout (<i>Oncorhynchus mykiss</i>)			Fathead Minnow (<i>Pimephales promelas</i>) ^d					
Area			Survival (% control- normalized)	Reproduction (% control- normalized; Protocol- specified)	Reproduction (% control- normalized; 8-day)	Survival (% control- normalized)	Dry Weight (% control- normalized)	Cell Yield (x10 ⁴ cells/ml)	Survival (% control- normalized)	Viability (% control- normalized)	Length (% control- normalized)	Wet Weight (% control- normalized)	Hatch (% control- normalized)	Survival (% control- normalized)	Biomass (% control- normalized)	Length (% control- normalized)	Normal Development (% control- normalized)
		Q1	100 ± 0	98 ± 14	-	-	-	117 ± 2.2	-	-	-	-	-	-	-	-	-
	2015	Q2	100 ± 0	<u>82 ± 12</u>	-	-	-	<u>69.2 ± 5.7</u>	102 ± 3	101 ± 6	101 ± 4	101 ± 5	-	-	-	-	-
		Q3	100 ± 0	107 ± 20	-	-	-	83 ± 21	-	-	-	-	-	-	-	-	-
		Q4	100 ± 0	80 ± 24	-	-	-	94 ± 18	88 ± 9	87 ± 9	98 ± 4	103 ± 4	-	-	-	-	-
		Q1	100 ± 0	109 ± 16	-	-	-	129.5 ± 5.3	-	-	-	-	-	-	-	-	-
	2016	Q2	100 ± 0	67 ± 39	-	-	-	<u>91.0 ± 4.8</u>	<u>78 ± 6</u>	<u>88 ± 16</u>	104 ± 2	97 ± 12	-	-	-	-	-
	2010	Q3	100 ± 0	83 ± 21	-	-	-	119.5 ± 5.5	-	-	-	-	-	-	-	-	-
0		Q4	100 ± 0	94 ± 18	-	-	-	156.0 ± 4.5	<u>70 ± 10</u>	<u>69 ± 8</u>	104 ± 1	116 ± 11	-	-	-	-	-
LC_LCDSSLCC		Q1	100 ± 0	92 ± 38	-	-	-	211.8 ± 15.4	-	-	-	-	-	-	-	-	-
SSC	2017	Q2	100 ± 0	124 ± 11	-	-	-	<u>134.0 ± 4.2</u>	99 ± 8	93 ± 18	107 ± 6	125 ± 10	-	-	-	-	-
LCI	2017	Q3	100 ± 0	104 ± 25	-	-	-	146.8 ± 10.1	-	-	-	-	-	-	-	-	-
ပု		Q4	100 ± 0	127 ± 15	-	-	-	103.5 ± 4.4	<u>41 ± 44</u>	<u>41 ± 44</u>	109 ± 3	119 ± 5	-	-	-	-	-
_		Q1	100 ± 0	75 ± 19	-	-	-	164.3 ± 10.3	-	-	-	-	-	-	-	-	-
	2018	Q2	100 ± 0	<u>40 ± 12</u>	-	96 ± 15	108 ± 35	147.5 ± 4.8	102 ± 3	103 ± 2	104 ± 5	109 ± 16	-	-	-	-	-
	2010	Q3	100 ± 0	106 ± 18	-	109 ± 10	150 ± 30	97.0 ± 12.2	-	-	-	-	-	-	-	-	-
		Q4	100 ± 35	<u>63 ± 23</u>	-	74 ± 30	<u>35 ± 20</u>	<u>87.7 ± 8.2</u>	100 ± 9	103 ± 11	106 ± 1	110 ± 4	-	-	-	-	-
		Q1	100 ± 0	92 ± 21	92 ± 21	-	-	81.5 ± 4.5	-	-	-	-	100 ± 0	89 ± 14	87 ± 6	<u>90 ± 3</u>	98 ± 5
	2019	Q2	100 ± 0	81 ± 6	81 ± 6	-	-	110.8 ± 2.6	101 ± 11	101 ± 15	104 ± 3	115 ± 5	-	-	-	-	-
	2019	Q3	80 ± 42	92 ± 23	86 ± 19	90 ± 17	51 ± 26	<u>29.8 ± 3.3</u>	-	-	-	-	100 ± 0	64 ± 12	71 ± 8	104 ± 5	96 ± 7
		Q4	100 ± 0	88 ± 17	90 ± 21	<u>73 ± 35</u>	84 ± 51	104.0 ± 10.0	90 ± 6	86 ± 4	103 ± 2	107 ± 3	-	-	-	-	-
		Q1	100 ± 0	86 ± 12	86 ± 12	-	-	79.5 ± 8.0	-	-	-	-	100 ± 0	86 ± 4	89 ± 4	96 ± 1	100 ± 0
ГСЗ	2019	Q2	100 ± 0	85 ± 12	85 ± 12	-	-	113.8 ± 11.4	92 ± 14	94 ± 13	104 ± 2	118 ± 8	-	-	-	-	-
гс_гсз	2019	Q3	100 ± 0	105 ± 20	89 ± 17	75 ± 17	67 ± 26	<u>27.0 ± 3.6</u>	-	-	-	-	100 ± 0	95 ± 13	92 ± 5	105 ± 2	100 ± 0
-		Q4	90 ± 32	<u>76 ± 22</u>	73 ± 21	<u>67 ± 45</u>	153 ± 25	122.8 ± 8.5	90 ± 5	83 ± 17	101 ± 3	104 ± 10	-	-	-	-	-

Table 5.3: Results of Quarterly and Semi-Annual Chronic Toxicity Tests at LC_LCDSSLCC in 2015 to 2019and LC_LC3 in 2019^a (Golder 2016, 2017a, 2018a, 2019, 2020)

Bold result significantly lower than Fording River reference (FR_UFR1).

<u>Underline</u> result significantly lower than Elk River reference (GH_ER2).

Italic result significantly lower than Michel Creek reference (CM_MC1).

result significantly lower than South Line Creek reference (LC_SLC).

Note: Q_x = Calendar year quarters.

^a Results presented as percent survival or endpoint ± standard deviation. Chronic toxicity testing at LC_LC3 was initiated in 2019.

^b Two test lengths were used to evaluate potential effects *on Ceriodaphnia dubia* reproduction in 2019. These included: 1) a protocol-specified test length (i.e., reproduction was measured when ≥60 % of controls produced three or more broods; as per Environment Canada [2007c]); and 2) an 8-day test duration (Golder 2020). These two test lengths were used in 2019 to evaluate potential brood effect. Prior to 2019, the protocol-specified test length was used.

^c Based on the Permit 107517 and 106970 Chronic Toxicity Program integration amendment (March 4, 2019), chronic toxicity testing of *Hyalella azteca* (28-day test) is required on a semi-annual basis (spring and fall; see Section 2.2.2). Collection of toxicity test samples in early 2019 (Q1) began before the amendment was issued. Therefore, toxicity testing of *H. azteca* in Q1 was completed according to the previous requirements (Permit 107517). *H. azteca* testing was completed in Q3 and Q4 in 2019.

^d Fathead minnow chronic toxicity testing (30-day early life stage test) at LC_LCDSSLC and LC_LC3 was initiated in 2019.

to test water (Golder 2020). However, inconsistency among test replicates of the same site water were noted in 2019 in both exposed and reference samples, especially in Q4. This variability indicates higher uncertainty in 2019 than for previous years of testing. Testing completed in 2018 also resulted in significantly decreased dry weight in Q4 (after restart of the AWTF with AOP) but survival did not differ from reference throughout 2018 (Table 5.3). Effects to survival of *H. azteca* were therefore comparatively greater in 2019 (during AWTF with AOP restart) than in 2018 (when the AWTF was only operational for 4 months), but the test variability was also higher in 2019.

Fathead minnow chronic toxicity testing was initiated in 2019 at both the Compliance Point (LC_LCDSSLCC) and LC_LC3. Fathead minnow length was significantly reduced at the Compliance Point in Q1 of 2019 relative to all reference samples except South Line Creek (RG_SLC; Table 5.3), and this difference was categorized as no adverse response (Golder 2020). In Q3, decreased survival and biomass were also observed at the Compliance Point relative to two of the four reference samples (Table 5.3) and these effects were categorized as possible adverse responses (Golder 2020). The absence of effects at LC_LC3 (which is located closer to the AWTF discharge than the Compliance Point; Table 5.3) suggests that the observed effects at the Compliance Point may not be related to AWTF operation.

No effects to the early-life-stage survival and viability of rainbow trout were observed in either of the two semi-annual tests conducted in Q2 (spring) and Q4 (fall) at LC_LCDSSLC and LC_LC3 (Table 5.3; Golder 2020). Tests conducted in 2015 at LC_LCDSSLCC (when the AWTF was not operational) also resulted in no significant effects on rainbow trout test endpoints relative to Elk Valley reference samples. Semi-annual tests completed in 2016 (during steady-state AWTF operation) and in 2017 (Q4 only, during AWTF steady-state operation/flow reduction) demonstrated effects in two of four endpoints (Tables 1.1 and 5.3). No effects to rainbow trout were observed 2019 (during AWTF with AOP stabilization), indicating lower toxicity compared to previous time periods when the AWTF was operational.

Overall, acute toxicity testing of AWTF effluent showed no test failures in 2019. Chronic toxicity testing at LC_LC3 and the Compliance Point (LC_LCDSSLCC) indicated that results in 2019 were similar to or showed less toxicity than in prior years (e.g., 2015, 2016, 2017, and 2018) with the exception of *H. azteca*. Greater effects to *H. azteca* survival were observed in 2019 than previous, but test variability was also higher than in previous years. Effects to fathead minnow were observed in 2019 at the Compliance Point, but the spatial pattern of effects (no significant effects at LC_LC3 which is closest to the AWTF discharge) suggested these were not related to AWTF operation. These results were also generally consistent with findings of benthic invertebrate community monitoring over the same time period that indicated no obvious adverse change in community characteristics associated with the AWTF with AOP operation in 2019, but

rather an increase in sensitive taxa (Ephemeroptera) at areas furthest downstream from the AWTF discharge which is suggestive of an improvement in benthic invertebrate community structure in 2019.

5.6 Summary

Operation of the AWTF with AOP in 2019 did not significantly change water temperature or dissolved oxygen concentrations downstream in Line Creek. Evaluation of water quality analytes with early warning triggers also demonstrated no increases in analyte concentrations in 2019 during AWTF with AOP operation relative to previous years. Also, toxicity test data did not reliably indicate greater toxicity in 2019 compared to previous years. Overall, there did not appear to be influences on aquatic biota associated with the WLC AWTF with AOP operations in 2019 that were not already being addressed through monitoring related to Study Questions #1 (productivity) and #2 (tissue selenium accumulation).

6 SUMMARY

Potential effects to the aquatic environment related to the commissioning of the WLC AWTF were evaluated by addressing three study questions which focus on: 1) potential effects to biological productivity; 2) selenium concentrations in biota; and 3) potential effects related to factors other than nutrients or selenium.

Evaluation of Study Question #1 (potential influences on biological productivity) indicated that aqueous total phosphorus concentrations at the Compliance Point (LC_LCDSSLCC) were consistently below the SPO of 0.02 mg/L during the 2019 growing season. In 2019, concentrations of nutrients (total phosphorus, orthophosphate, and nitrate) were generally in the ranges of concentrations observed in previous years (Table 6.1). In addition, results suggested that operation of the AWTF with AOP in 2019 was more successful at minimizing phosphorus and orthophosphate contributions to the receiving environment than operation of the AWTF without AOP (in 2016 and 2017).

Periphyton coverage at both mine-exposed and reference areas was moderate in 2019 (based on visual assessment) and was temporally consistent with results from 2017 and 2018. Benthic invertebrate biomass and density at mine-exposed areas of Line Creek also showed no significant change in 2019 related to operation of the AWTF with AOP. Benthic invertebrate total abundance (measured by kick and sweep) was higher in 2019 than previous years at most mine-exposed areas, but the absence of a change closest to the AWTF discharge indicated that this was likely unrelated to AWTF with AOP operation (consistent with the biomass and density results). Benthic invertebrate community endpoints, as determined from kick and sweep sample collection, indicated no adverse change in community characteristics related to operation stabilization of the AWTF with AOP in 2019. Rather, an increase in the percentage of sensitive taxa (Ephemeroptera) in 2019 at areas of Line Creek furthest downstream from the AWTF discharge was suggestive of an improvement in benthic invertebrate community structure (Table 6.1).

Overall, assessment of Study Question #1 indicated that biological productivity downstream from the WLC AWTF was not affected by the operational stabilization of the AWTF with AOP throughout 2019, relative to previous years.

Evaluation of Study Question #2 (assessment of selenium concentrations) focused on aqueous selenium concentrations and selenium concentrations in biota. Aqueous selenium throughout the Elk Valley is primarily in the oxidized form, selenate, and chemically-reduced forms of aqueous selenium (such as selenite or organoselenium species) are present at much lower concentrations (typically ~1% of the total aqueous selenium). Although the WLC AWTF without AOP successfully

Table 6.1: Summary of Measurement Endpoints, Analyses, and Results of Line Creek LAEMP, 2019

			Water				Biolog	ical
Study Question	Measurement Endpoint	Indicator	Analysis/Evaluation	Result	Measurement Endpoint	Indicator	Analysis/Evaluation	
					Periphyton productivity	Visual Coverage Scores	Coverage scored according to CABIN guidance (Environment Canada 2012)	Coverage scored a reference stations
			1) Comparison to SPO	 Nitrate in 2019 was below the SPO except for 4 days in March/April and 4 days in November/December. Concentrations > BCWQG at all exposed areas. Concentrations > Level 1 and Level 2 benchmarks at exposed areas of Line Creek upstream and immediately downstream of the AWTF discharge. 		Biomass	ANOVA analysis among years = 2014 to 2019 Areas: Ref = RG_SLINE, RG_LI24; Exp = RG_LILC3, RG_LIDSL	No adverse effect Significant decrea (relative to referer change towards g
Is active water		Nitrate	2) Comparison to BCWQG and Water Quality Benchmarks		Benthic invertebrate productivity	Density	ANOVA analysis among years = 2014 to 2019 Areas: Ref = RG_SLINE, RG_LI24; Exp = RG_LILC3, RG_LIDSL	No adverse effect Significant decrea RG_SLINE referent in 2019 compared over the same time related to an incre deceased density
treatment affecting biological productivity downstream in Line Creek?	Nutrient concentrations	Total Phosphorus		 Phosphorus did not exceed SPO in 2019. Concentrations in 2019 below the LC_LC3 baseline with the exception of March. 		Abundance	Comparison to past observations and reference normal range (NR)	No evidence of ad with AWTF with A areas within or hig increase from prio increase immediat increase is likely n
		Pnospnorus			Benthic invertebrate community structure	Richness	Comparison to past observations and reference normal range (NR)	No evidence of ad operation in 2019. replicate at RG_L0 was more similar t results not indicati
		Orthophospha te	Comparison to the LC_LC3 baseline 97.5th percentile	Concentrations in 2019 below the LC_LC3 baseline.		%EPT, %Ephemeropte ra (%E), %Chironomidae (%C)	Comparison to past observations and reference normal range (NR)	No evidence of ad operation in 2019. downstream of the %E in 2019 increa (RG_LIDSL, RG_I AWTF discharge

Notes: Ref = Reference sampling station/area; Exp = Mine-exposed sampling station/area; SPO = Site Performance Objective; BCWQG = British Columbia Water Quality Guideline; NR = Regional normal range of reference area data from the RAEMP (see Minnow 2018a for details); BT = Bull trout; WCT = Westslope cutthroat trout. Water quality benchmarks are those outlined in Teck (2014).

Result

d as moderate at mine-exposed and mild-moderate at ns, similar to previous years.

ct associated with AWTF with AOP operation in 2019. ease in 2019 compared to 2014 and 2017 at RG_LIDSL ence over the same time period), but this represents a greater similarity with reference.

ct associated with AWTF with AOP operation in 2019. ease in 2019 compared to 2014 at Exp areas, relative to rence over the same time period. Significant decrease ed to 2018 at RG_LIDSL, relative to RG_LI24 reference ime period. Significant differences relative to Ref areas crease in density at the Ref areas in 2019 rather than ty at the Exp areas.

adverse effect on secondary productivity associated AOP operation in 2019. Organism abundance at Exp nigher than NR in 2019, and showed a temporal rior years except at RG_LILC3. Absence of temporal iately downstream of AWTF discharge indicates y not related to AWTF operation.

adverse effect associated with AWTF with AOP 9. Majority of results within or above NR, except one LCUT and RG_LILC3. Richness at RG_LILC3 in 2019 Ir to before AWTF operation (2012 and 2013), therefore ative of an adverse effect of AWTF operation.

adverse effect associated with AWTF with AOP 9. %E and % EPT below NR (particularly immediately the AWTF discharge) but within range of previous years. eased further downstream from AWTF discharge 6_LIDCOM, RG_LI8) and within NR. %C downstream of e within range of previous years.

Table 6.1: Summary of Measurement Endpoints, Analyses, and Results of Line Creek LAEMP, 2019

			Water				Biolog	jical
Study Question	Measurement Endpoint	Indicator	Analysis/Evaluation	Result	Measurement Endpoint	Indicator	Analysis/Evaluation	Result
	Total and dissolved selenium concentrations		 ANOVA analysis: 2012 to 2019 for total Se at LC_LC1 Visual inspection of data 	 Significant increases in total Se in 2014, 2015, and 2017. No change between 2017 and 2019. General decrease in total [Se] downstream of the AWTF discharge during AWTF with AOP operation in 2019, except November 2019 when AWTF was in scheduled maintenance for 7 days. 			 ANOVA analysis: Before = 2012; Initial Operations = 2014; Steady-state without AOP = 2016 to 2017; Shutdowr = Mar to Aug 2018; AWTF with AOP Restart = Oct 2018 to Dec 2019; Post- hoc contrasts limited to AWTF with AOP restart vs. Steady-state and Before, and within AWTF with AOP restart period. 	the AWTF, relative to change at reference over the same period. Tissue
Are tissue selenium concentrations reduced downstream from the AWTF?	Selenium speciation		Comparison downstream relative to upstream from the AWTF, and of Line Creek input to Fording River	Lower concentrations of selenite and other non- selenate species in Line Creek downstream of the AWTF discharge during AWTF with AOP restart relative to concentrations during steady-state without AOP. Concentrations of non-selenate concentrations in 2019 highest early in the AWTF with AOP restart period (Jan to Apr 2019) and lowest during summer (May to August).	Tissue Selenium	Composite-taxa samples Fish (WCT and BT)	 RG_LISP24, RG_LIDSL, RG_LIDCOM RG_LI8, RG_FRUL, RG_FO23 2) Spatial analysis using ANOVA during each sampling event (Dec 2018 to Dec 2019) 3) Comparison to reference normal range (NR) 4) Comparison to site-specific benchmarks 	2) Tissue [Se] in Line Creek downstream of AWTF discharge similar to reference and/or upstream of AWTF (RG_LCUT) throughout AWTF with AOP restart period, except RG_LILC3. Spatial extent of elevated tissue [Se] limited to immediately downstream of AWTF discharge.
	Selenium bioaccumulation			All tissue selenium concentrations reported during the	Benthic invertebrate	Abundance	Comparison to past observations and reference normal range (NR) Comparison to past observations and	No evidence of adverse effect on secondary productivity associated with AWTF with AOP operation in 2019. Organism abundance at Exp areas within or higher than NR in 2019, and showed a temporal increase from prior years except at RG_LILC3. Absence of temporal increase immediately downstream of AWTF discharge indicates increase is likely not related to AWTF operation. No evidence of adverse effect associated with AWTF with AOP operation in 2019. Majority of results within or above NR, except one replicate at RG_LCUT and RG_LILC3. Richness at RG_LILC3 in 2019
	mod		benthic tissue selenium results to one-step water-to-invertebrate model	AWTF with AOP restart period fall within the model prediction intervals.	community structure		Comparison to past observations and reference normal range (NR)	 No evidence of adverse effect associated with AWTF operation. No evidence of adverse effect associated with AWTF with AOP operation in 2019. %E and % EPT below NR (particularly immediately downstream of the AWTF discharge) but within range of previous years. %E in 2019 increased further downstream from AWTF discharge (RG_LIDSL, RG_LIDCOM, RG_LI8) and within NR. %C downstream of AWTF discharge of previous years.

Notes: Ref = Reference sampling station/area; Exp = Mine-exposed sampling station/area; SPO = Site Performance Objective; BCWQG = British Columbia Water Quality Guideline; NR = Regional normal range of reference area data from the RAEMP (see Minnow 2018a for details); BT = Bull trout; WCT = Westslope cutthroat trout. Water quality benchmarks are those outlined in Teck (2014).

Table 6.1: Summary of Measurement Endpoints, Analyses, and Results of Line Creek LAEMP, 2019

			Water				Biolog	jical
Study Question	Measurement Endpoint	Indicator	Analysis/Evaluation	Result	Measurement Endpoint	Indicator	Analysis/Evaluation	
	Temperature	Data loggers	Comparison downstream relative to upstream of the AWTF	No evidence that AWTF with AOP operation increased downstream temperature in 2019 when compared to upstream data logger and discrete temperature measures.		Abundance	Comparison to past observations and reference normal range (NR)	No evidence of ad with AWTF with A areas within or hig increase from prio
		Routine monitoring	Comparison to BCWQG	Temperatures within or below guideline temperature ranges for both bull trout and westslope cutthroat trout.				increase immediate increase is likely n
	Dissolved	d oxygen	Comparison to BCWQG	DO concentrations in 2019 > instantaneous minimum criterion and > 30-day average for all other life stages but < 30-day criterion for sensitive life stages. Mean DO < BCWQG both upstream and downstream of AWTF in 2019, suggesting this was not due to AWTF with AOP operation.				
Is AWTF operation affecting aquatic biota through thermal effects, effects on dissolved oxygen concentrations or concentrations of treatment-related constituents other than nutrients or selenium?	Analytes with Early Warning Triggers		 No obvious temporal increases in analyte concentrations associated with AWTF with AOP operation in 2019. Long-term BCWQG exceeded in 2019 by [NO: [NH₃], [SO₄], total [Se] and [Hg], dissolved [Cd] and [Cu] upstream and downstream of AWTF dischar Short-term BCWQG exceeded by [NH₄] and dissolved 		Benthic invertebrate community structure	Richness	Comparison to past observations and reference normal range (NR)	No evidence of ad operation in 2019. replicate at RG_LC was more similar t results not indicati
			Comparison of acute and chronic toxicity test results to reference, and past results	All acute toxicity testing met criterion (< 50% mortality). Majority of chronic toxicity testing results at Compliance Point similar to or showed less toxicity than past years (2015 to 2018) except <i>H. azteca</i> . Chronic effects to fathead minnow were not spatially consistent with an AWTF-related effect. Overall, results do not reliably suggest greater toxicity in 2019 associated with AWTF with AOP operation. Chronic toxicity testing was initiated at LC_LC3 in 2019.		%EPT, %E, %C	Comparison to past observations and reference normal range (NR)	No evidence of ad operation in 2019. downstream of the %E in 2019 increa (RG_LIDSL, RG_L AWTF discharge v

Notes: Ref = Reference sampling station/area; Exp = Mine-exposed sampling station/area; SPO = Site Performance Objective; BCWQG = British Columbia Water Quality Guideline; NR = Regional normal range of reference area data from the RAEMP (see Minnow 2018a for details); BT = Bull trout; WCT = Westslope cutthroat trout. Water quality benchmarks are those outlined in Teck (2014).

Result
adverse effect on secondary productivity associated AOP operation in 2019. Organism abundance at Exp higher than NR in 2019, and showed a temporal ior years except at RG_LILC3. Absence of temporal iately downstream of AWTF discharge indicates o not related to AWTF operation.
adverse effect associated with AWTF with AOP 9. Majority of results within or above NR, except one LCUT and RG_LILC3. Richness at RG_LILC3 in 2019 r to before AWTF operation (2012 and 2013), therefore ative of an adverse effect of AWTF operation.
adverse effect associated with AWTF with AOP 9. %E and % EPT below NR (particularly immediately he AWTF discharge) but within range of previous years. eased further downstream from AWTF discharge _LIDCOM, RG_LI8) and within NR. %C downstream of a within range of previous years.

decreased concentrations of total selenium in Line Creek, the effluent contained higher proportions of chemically-reduced selenium species, some of which are known to be more readily accumulated than selenate by aquatic biota. The AWTF was recommissioned in 2018 with an AOP, which is designed to reverse the shift in selenium species in AWTF effluent from chemically-reduced species back to a selenate-dominated condition, thereby reducing the bioavailability of selenium in Line Creek.

Benthic invertebrate tissue monitoring in Line Creek identified substantially lower selenium concentrations in 2019, during operation stabilization of AWTF with AOP, compared to concentrations during steady-state operation of the AWTF without AOP. In 2019, mean benthic invertebrate selenium concentrations were below the EVWQP Level 1 benchmark at all areas downstream of the AWTF discharge. Temporal changes in benthic invertebrate selenium concentrations of aqueous non-selenate species, and comparison of benthic invertebrate selenium concentrations throughout 2019 to the selenium bioaccumulation model indicated that selenium bioaccumulation was "as expected". Selenium concentrations in juvenile bull trout and westslope cutthroat trout captured near the AWTF discharge in 2019 were substantially lower than those reported in 2017 (Table 6.1). Furthermore, selenium concentrations in westslope cutthroat tissues in 2019 were below the EVWQP Level 1 benchmark, with the exception of a single sample.

Overall, assessment of Study Question #2 in 2019 indicated that aqueous selenium speciation, benthic invertebrate tissue selenium, and fish tissue selenium monitoring results support the conclusion that the recommissioned AWTF with AOP is functioning as intended to decrease the concentrations of non-selenate species in AWTF effluent, and reduce selenium bioaccumulation in Line Creek. Further monitoring during the transition of the AWTF with AOP from operation stabilization to full operations (i.e., steady-state operation) will be useful in confirming these results.

Evaluation of Study Question #3 (potential effects related to factors other than nutrients or selenium). Operation of the AWTF with AOP in 2019 did not significantly change water temperature or dissolved oxygen concentrations downstream in Line Creek. Evaluation of water quality analytes with early warning triggers also demonstrated no changes in analyte concentrations in 2019 related to operation of the AWTF with AOP. Also, toxicity test data did not reliably indicate greater toxicity in 2019 compared to previous years. Overall, there did not appear to be influences on aquatic biota associated with the WLC AWTF with AOP operations in 2019 that were not already being addressed through monitoring related to Study Questions #1 (productivity) and #2 (tissue selenium accumulation; Table 6.1).

The results from the Line Creek LAEMP provide information that supports Teck's Adaptive Management Program (Teck 2018) and Table 6.2 summarizes material presented in this report that is relevant to the AMP. The AWTF entered into the steady-state phase of operation (with AOP) in late March 2020, and operational changes in 2020 are not anticipated. As such, benthic invertebrate selenium monitoring requirements will not be driven by the AWTF operational timeline in 2020, but will focus on aligning with long term monitoring cycles and adapting the timing of monitoring to be more biologically relevant (i.e., before and after westslope cutthroat trout spawning in the spring; Minnow 2020).

Key Question(s)	Data Evaluation Process	Outcome(s)	Responses & Adjustments in 2019	EMC Engagement
Is active water treatment affecting biological productivity downstream in Line Creek?	 Determine if there is an increase in benthic invertebrate biomass, or shift in community structure that has been demonstrated to correspond with changes in AWTF operational status and changes in parameters associated with productivity (e.g., nutrient concentrations) Determine if there is a change in benthic 	No evidence of effect on productivity associated with WLC AWTF with AOP operation in 2019.	None - WLC AWTF was re-commissioned in August	 -Proposed 2019 study design discussed at in-person meeting March 5, 2019. -2019 Study Design submitted to ENV/EMC May 1, 2019. -Draft data package of subset of 2019 results submitted to EMC October 25,
concentrations reduced downstream from the WLC AWTF?	invertebrate and fish tissue selenium concentrations over time that corresponds to changes in total selenium concentrations or selenium speciation in water. Benthic invertebrate community data being collected for other purposes can be used as supporting evidence of ecosystem health status downstream from the AWTF.	an AOP in late 2018 in response to significantly increased concentrations of chemically-reduced aqueous selenium species and increase selenium concentrations in tissues of aquatic biota downstream of the AWTF outfall in Line Creek in 2016 and 2017. Monitoring results from 2019 indicated the recommissioned AWTF with AOP is functioning as intended to decrease aqueous concentrations of non- selenate species in AWTF effluent and reduce selenium bioaccumulation in Line Creek.	 2018 with AOP to modify chemically reduced selenium species in effluent back to a selenate-dominated condition having lower selenium bioavailability. The AWTF with AOP operated in a stabilization phase throughout 2019 Adjustment of timing of benthic invertebrate tissue selenium sampling in early 2019 to better align with changes in the AWTF recommissioning schedule (sampling was completed in January and February). Addition of monthly benthic invertebrate tissue selenium sampling between May and August 2019 to further evaluate AWTF with AOP performance during operation stabilization. This monthly sampling was beyond the scope of the 2019 LCO LAEMP study design. Adjustment of benthic invertebrate tissue selenium sampling events for the 2020 LCO LAEMP study design to focus on biologically 	 2019. -Written input from EMC on November draft data package received November 29, 2019 -Draft data package of 2019 results and outline of proposed 2020 Study Design submitted to EMC February 12, 2020 and discussed by tele-conference February 18, 2020. - Written input from EMC on February draft data package and proposed 2020 Study Design received March 11, 2020

Key Question(s)	Data Evaluation Process	Outcome(s)	Responses & Adjustments in 2019	EMC Engagement
Are tissue selenium concentrations reduced downstream from the WLC AWTF?			relevant times (e.g., before and after westslope cutthroat trout spawning) rather than AWTF operational timelines.	
Is AWTF operation affecting aquatic biota through thermal effects, effects on dissolved oxygen concentrations or concentrations of treatment- related constituents other than nutrients or selenium?	 3a. Temperatures that are above/below the guideline, and dissolved oxygen concentrations that are above the threshold for effects to fish outside of the initial mixing zone, and confirmation that the mixing zone is small, will be indicative of effective management of treated water discharge. Benthic invertebrate community data being collected for other purposes can be used as supporting evidence of ecosystem health status downstream from the AWTF. 3b. Determine if there is a change in benthic invertebrate community endpoints away from the reference condition that does not correspond to observed changes in nutrients or selenium concentrations. 3c. Determine if there is a change in acute or chronic toxicity testing results that corresponds with a change in WLC AWTF operational status. 	AWTF operations did not significantly influence water temperature or dissolved oxygen concentrations. Evaluation of water quality parameters, including treatment- related constituents, demonstrated no obvious increases in concentrations during AWTF with AOP operation. Acute and chronic toxicity test data did not reliably indicate greater toxicity in 2019 compared to previous years.	None	

WLC = West Line Creek; ATWF = Active Water Treatment Facility; LAEMP = Local Aquatic Effects Monitoring Program; AOP = Advanced Oxidation Process.

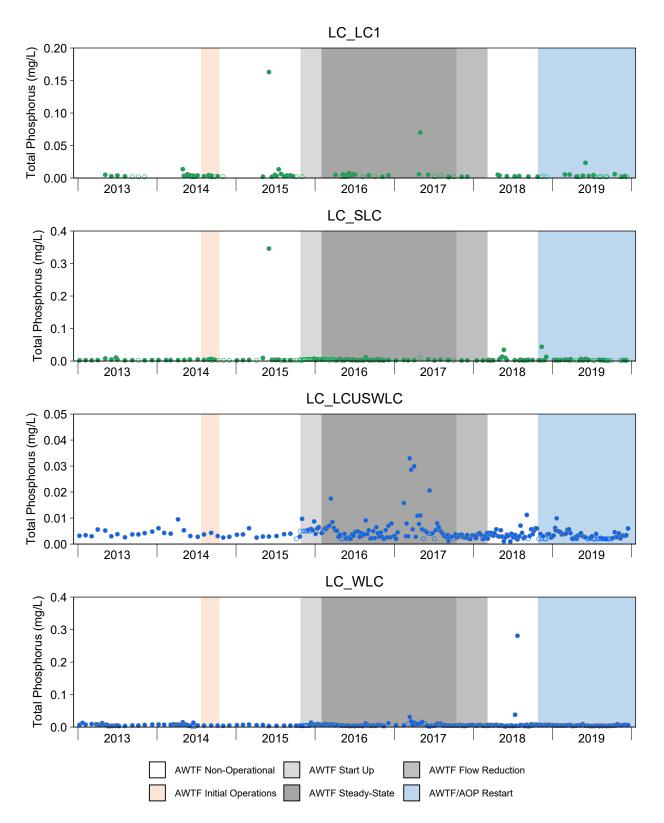
7 **REFERENCES**

0

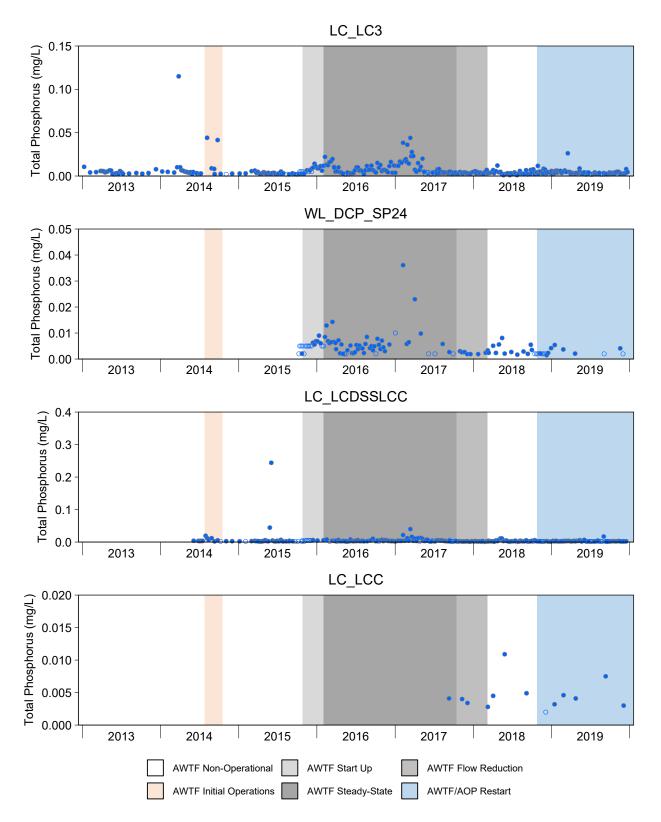
- ASTM (American Society for Testing and Materials). 2013. Standard Guide for Conducting Early Life-Stage Toxicity Tests with Fishes. E1241-05, 29 p.
- BCMOE (British Columbia Ministry of Environment). 1997. Ambient Water Quality Criteria for Dissolved Oxygen. February 1997.
- BCMOE. 2001. Water Quality Guidelines for Temperature. August 2001.
- BCMOE. 2014. Ambient Water Quality Guidelines for Selenium Technical Report Update. Prepared by: J.M Beatty and G.A. Russo, Environmental Protection Division, Victoria, British Columbia. April 2014
- BCMOE. 2017. Working Water Quality Guidelines for British Columbia. Updated June 2017.
- BCMOECCS (British Columbia Ministry of Environment and Climate Change Strategy). 2019. British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture – Summary Report. Updated August 2019.
- Cope, S. 2019. Proprietor, Westslope Fisheries Ltd. Email conversation with Cait Good (Teck). January 7, 2020.
- COSEWIC (Committee on the Status of Endangered Wildlife in Canada). 2016. COSEWIC assessment and update status report on the westslope cutthroat trout *Oncorhynchus clarkii lewisii* (British Columbia population and Alberta population) in Canada. COSEWIC, Ottawa. Available: www.cosewic.gc.ca/. March 2018).
- Environment Canada. 1996. Biological Test Method: Acute Lethality Test Using Daphnia Species. Environmental Protections Series. Method Development And Applications Section. Environmental Technology Centre. July 1990 (with May 1996 Amendments).
- Environment Canada. 1998. Biological Test Method: Toxicity Tests Using Early Life Stages of Salmonid Fish (Rainbow Trout). Environmental Technology Centre, Ottawa, Ontario. Environmental Protection Series. Report 1/RM/28. July 1998.
- Environment Canada. 2007a. Biological Test Method: Acute Lethality Test Using Rainbow Trout. Environmental Protections Series. Method Development And Applications Section. Environmental Technology Centre. May 2007.
- Environment Canada. 2007b. Biological Test Method: Growth Inhibition Test Using a Freshwater Alga. Environmental Technology Centre, Ottawa, Ontario. Environmental Protection Series. Report 1/RM/25. Second Edition. March 2007.
- Environment Canada. 2007c. Biological Test Method: Test of Reproduction and Survival Using the Cladoceran *Ceriodaphnia dubia*. Environmental Technology Centre, Ottawa, Ontario. Environmental Protection Series. Report EPS 1/RM/21. Second Edition. February 2007.
- Environment Canada. 2012a. Field Manual: Wadeable Streams. Canadian Aquatic Biomonitoring Network (CABIN). Government of Canada.
- Environment Canada. 2012b. Metal Mining Technical Guidance for Environmental Effects Monitoring.
- Environment Canada. 2014. Laboratory Methods: Processing, Taxonomy, and Quality Control of Benthic Macroinvertebrate Samples. Canadian Aquatic Biomonitoring Network (CABIN). May.

- ENV (British Columbia Ministry of Environment and Climate Change Strategy). 2018. Re: West Line Creek Active Water Treatment Facility – Bypass Approval (Corrected). February 26, 2018.
- ENV. 2019. Re: Approval of the Request to Integrate the Chronic Toxicity Test Requirements of Permit 107517 Section 9.8 (ii) and Permit 106970. March 4, 2019.
- GOC (Government of Canada). 2016. Management Plan for the Westslope Cutthroat Trout (*Oncorhynchus clarkii lewisi*), British Columbia Population, in Canada. Available from: <u>https://www.registrelep-sararegistry.gc.ca/default.asp?lang=En&n=94218677-</u> 1&pedisable=true [accessed 16 April 2020].
- Golder (Golder Associates Ltd.). 2005. Elk Valley Selenium Lotic Monitoring Study (2001-2003). Submitted to the Elk Valley Mines Environmental Management Committee. April.
- Golder. 2014. Benchmark Derivation Report for Selenium. Annex E of the Elk Valley Water Quality Plan. Prepared for Teck Coal Limited. July.
- Golder. 2016. 2015 Chronic Toxicity Testing Program Interpretive Report. Submitted to Teck Coal Ltd. March.
- Golder. 2017a. 2016 Chronic Toxicity Testing Program Elk Valley Testing to Satisfy Permit Requirements; Interpretive Report. Submitted to Teck Coal Ltd. March.
- Golder 2017b. Coal Mountain Operations Aquatic Health Assessment Report. Submitted to Teck Coal Ltd. December.
- Golder. 2018a. 2017 Chronic Toxicity Program Elk Valley Testing to Satisfy Permit Requirements; Interpretive Report. Submitted to Teck Coal Ltd. April.Golder. 2019. 2018 Chronic Toxicity Program – Elk Valley Testing to Satisfy Permit Requirements; Interpretive Report. Submitted to Teck Coal Ltd. April.
- Golder. 2020. 2019 Chronic Toxicity Program Elk Valley Testing to Satisfy Permit Requirements; Interpretive Report. Submitted to Teck Coal Ltd. April.
- Holm J, Palace VP, Siwik P, Sterling G, Evans R, Baron C, Werner J, Wautier K. 2005. Developmental Effects of Bioaccumulated Selenium in Eggs and Larvae of two Salmonid species. Environ. Toxicol. Chem. 24: 2373-2381.
- Janz, D.M., D.K. Deforest, J.L. Brooks, P.M. Chapman, G. Gilron, D. Hoff, A. Hopkins, D.O. McIntyre, C.A. Mebane, V.P. Palace, J.P. Skorupa, and M. Wayland. 2010. Selenium Toxicity to Aquatic Organisms. In: p. 141-231, P.M. Chapman et al. (Eds.), Ecological Assessment of Selenium in the Aquatic Environment. CRC Press, Boca Raton, London, New York.
- Lotic (Lotic Environmental Ltd.). 2016. Line Creek Aquatic Monitoring Program, 2015. Report Prepared for Teck Coal Limited. June.
- KWL (Kerr Wood Leidal). 2020. 2019 LCO Hydrometric Monitoring Program. Report Prepared for Teck Coal Limited. March.
- McDonald BG, de Bruyn AM, Elphick JR, Davies M, Bustard D, Chapman PM. 2010. Developmental Toxicity of selenium to Dolly Varden char (*Salvelinus malma*). Environ. Toxicol. Chem., 29: 2800-2805.
- McPhail, J.D. 2007. The Freshwater Fishes of British Columbia, University of Alberta Press, Edmonton, AB.

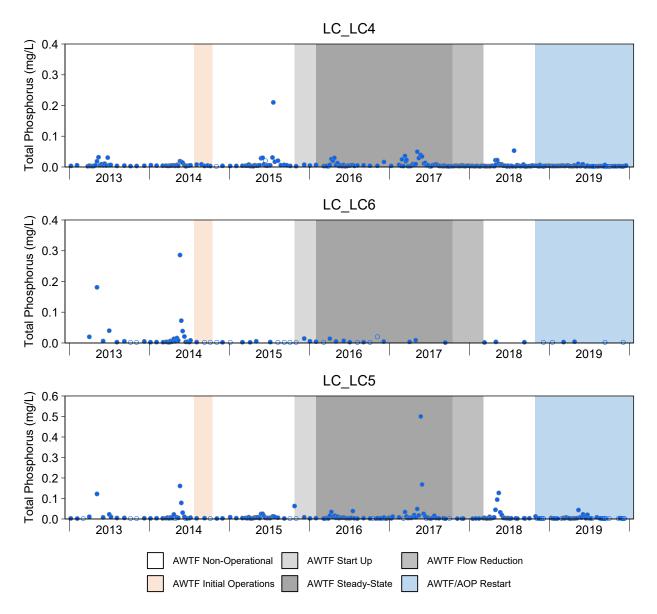
- - -


- McPhail, J. D., and J. S. Baxter. 1996. A Review of Bull Trout (*Salvelinus confluentus*) Life-History and Habitat Use in Relation to Compensation and Improvement Opportunities. Fisheries Management Report No. 104, 35 p.
- Minnow (Minnow Environmental Inc.). 2004. Selenium Uptake in Biota Inhabiting Lentic and Lotic Areas of the Elk River Watershed Technical Memorandum Prepared for Elk Valley Selenium Task Force. November 2004. Project 2073.
- Minnow Environmental Inc., Interior Reforestation Co. Ltd., and Paine, Ledge and Associates. 2007. Selenium Monitoring in the Elk River Watershed, BC (2006). Report Prepared for Elk Valley Selenium Task Force. December 2007. Project 2160.
- Minnow Environmental Inc., Interior Reforestation Co. Ltd., and Paine, Ledge, and Associates. 2011. Selenium monitoring in the Elk River Watershed, BC (2009). Report Elk Valley Selenium Task Force, Elk Valley, British Columbia, Canada. February 2011. Project 2275.
- Minnow. 2014. 2012 Biological Monitoring Program for Coal Mines in the Elk River Valley, B.C. Report Prepared for Teck Coal Limited. March. Project 2456.
- Minnow. 2015. Line Creek Local Aquatic Effects Monitoring Program (LAEMP), 2014. Report Prepared for Teck Coal Limited. May. Project 2516.
- Minnow. 2016a. Line Creek Local Aquatic Effects Monitoring Program (LAEMP), 2015. Report Prepared for Teck Resources Limited. May. Project 2578.
- Minnow. 2016b. Data Report for the Tributary Evaluation Program. Report Prepared for Teck Resources Limited. June. Project 2563.
- Minnow. 2017a. Line Creek Local Aquatic Effects Monitoring Program (LAEMP) Report, 2016. Prepared for Teck Coal Limited, Sparwood, BC. May. Project 167202.0074.
- Minnow. 2017b. Proposal to Update the Site Performance Objectives for Phosphorus Management in Line Creek. Prepared for Teck Coal Limited, Sparwood, BC. May. Project 167202.0074.
- Minnow. 2017c. Study Design for the 2017 Line Creek Local Aquatic Effects Monitoring Program (LAEMP). May. Project 167202.0074.
- Minnow. 2018a. Elk River Watershed Regional Aquatic Effects Monitoring Program (RAEMP) Report, 2015-2016. Prepared for Teck Coal Limited, Sparwood, BC. January. Project 2561.
- Minnow. 2018b. Study Design for Line Creek Local Aquatic Effects Monitoring Program (LAEMP), 2018. Prepared for Teck Coal Limited, Sparwood, BC. May. Project 177202.0023.
- Minnow. 2018c. Study Design for the Regional Aquatic Effects Monitoring Program, 2018 to 2020. Prepared for Teck Coal Limited, Sparwood, BC. March. Project 187202.0020.
- Minnow. 2018d. Line Creek Local Aquatic Effects Monitoring Program (LAEMP) Report, 2017. Prepared for Teck Coal Limited, Sparwood, BC. May. Project 17202.0023.
- Minnow. 2019a. Line Creek Local Aquatic Effects Monitoring Program (LAEMP) Report, 2018. Prepared for Teck Coal Limited, Sparwood, BC. April. Project 187202.0026.
- Minnow. 2019b. Study Design for Line Creek Local Aquatic Effects Monitoring Program (LAEMP), 2019. Prepared for Teck Coal Limited, Sparwood, BC. May. Project 197202.0006

- _


- Minnow. 2020. Study Design for Line Creek Local Aquatic Effects Monitoring Program (LAEMP), 2020. Prepared for Teck Coal Limited, Sparwood, BC. May. Project 207202.0015
- Nautilus and Interior Reforestation. 2011. Evaluation of the Effects of Selenium on Early Life Stage Development of Westslope Cutthroat Trout from the Elk Valley, BC. Prepared for the Elk Valley Selenium Task Force. November 2011.
- Ogle, R.S., K.J. Maier, P. Kiffney, M.J. Williams, A. Brasher, L.A. Melton, and A.W. Knight. 1988. Bioaccumulation of selenium in aquatic ecosystems. Lake Reservoir Manage. 4: 165-173.
- Presser, T.S. and S.N. Luoma. 2010. A Methodology for Ecosystem-Scale Modeling of Selenium. Integr. Environ. Assess. Manag., 16: 1551-3793.
- R Core Team. 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org
- Riedel, G.F., Sanders, J.G., Gilmour, C.C. 1996. Uptake, Transformation, and Impact of Selenium in Freshwater Phytoplankton and Bacterioplankton Communities. Aquat. Microbial. Ecol., 11: 43-51.
- Scott, W.B. and E.J. Crossman. 1998. Freshwater Fishes of Canada. Galt House Publications Ltd, Oakville, Ontario.
- Smithson, J. and M.D. Robinson (Lotic Environmental). 2018. Line Creek Aquatic Monitoring Program (2017) Draft Report. Prepared for Teck Coal Ltd, Sparwood, BC.
- Stewart, R., M. Grosell, D. Buchwalter, N. Fisher, S. Luoma, T. Mathews, P. Orr, and W.-X. Wang. 2010. Bioaccumulation and Trophic Transfer of Selenium. In: P.M. Chapman et al. (Eds.), pp. 93-139, Ecological Assessment of Selenium in the Aquatic Environment. CRC Press, Boca Raton, London, New York.
- Teck (Teck Coal Limited). 2014. Elk Valley Water Quality Plan. Submitted to the British Columbia Minister of Environment for approval on July 22, 2014.
- Teck. 2018. Water Quality Adaptive Management Plan for Teck Coal Operations in the Elk Valley. December
- Teck. 2019a. Permit 107517 Annual Water Quality Monitoring Report. Submitted to ENV on March 29, 2019.
- Teck. 2019b. Permit 106970 Line Creek Operations Annual Report. Submitted to BCMOE on March 31, 2019.
- Teck. 2019c. Water Quality Adaptive Management Plan for Teck Coal Operations in the Elk Valley 2018 Annual Report. Prepared by Teck Coal Limited. July 31, 2019.
- Teck. 2020. Permit 107517 Annual Water Quality Monitoring Report. Submitted to ENV on March 31, 2020.
- Therneau, T.M. 2017. Survival analysis. Package "survival" for R. April 4, 2017. <u>https://cran.r-project.org/web/packages/survival/survival.pdf</u>
- USEPA (United States Environmental Protection Agency). 1996. Ecological Effects Test Guidelines. OPPTS 850.1400 Fish Early-Life Stage Toxicity Test. EPA-712-C-96-121, Public Draft.
- USEPA. 2000. Methods for Measuring the Toxicity and Bioaccumulation of Sediment-Associated Contaminants with Freshwater Invertebrates. 2nd Edition. EPA/600/R-99/064. Office of Water, Washington, DC, USA.

- USEPA. 2016. Aquatic Life Ambient Water Quality Criterion for Selenium –Freshwater 2016. EPA 822-R-16-006. United States
- Whitmore, G.A. 1986. Prediction Limits for a Univariate Normal Observation. The American Statistician, 40: 141-143.


APPENDIX A SUPPORTING DATA – PRODUCTIVITY EVALUATION

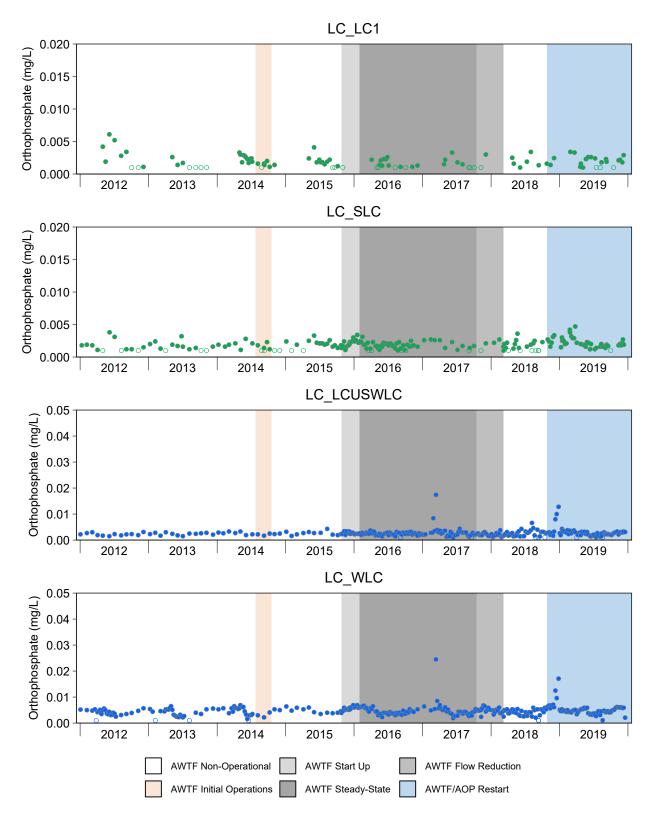
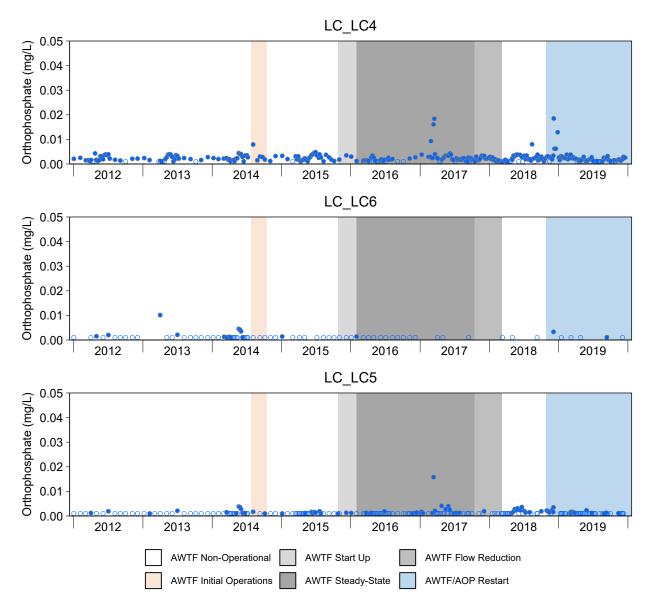

Figure A.1: Time Series Plots for Aqueous Total Phosphorus Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019

Figure A.1: Time Series Plots for Aqueous Total Phosphorus Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019


Figure A.1: Time Series Plots for Aqueous Total Phosphorus Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019

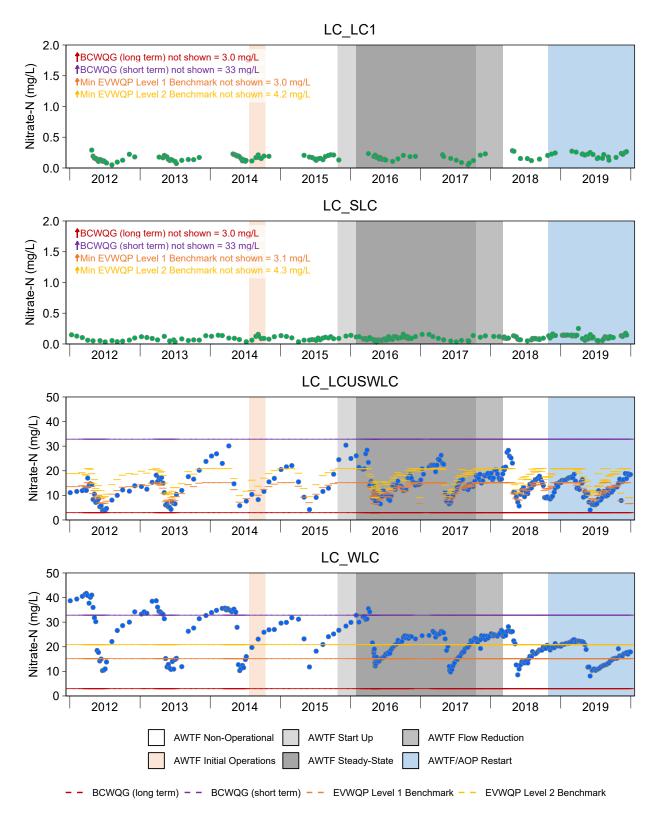

Figure A.2: Time Series Plots for Aqueous Orthophosphate Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019

Figure A.2: Time Series Plots for Aqueous Orthophosphate Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019

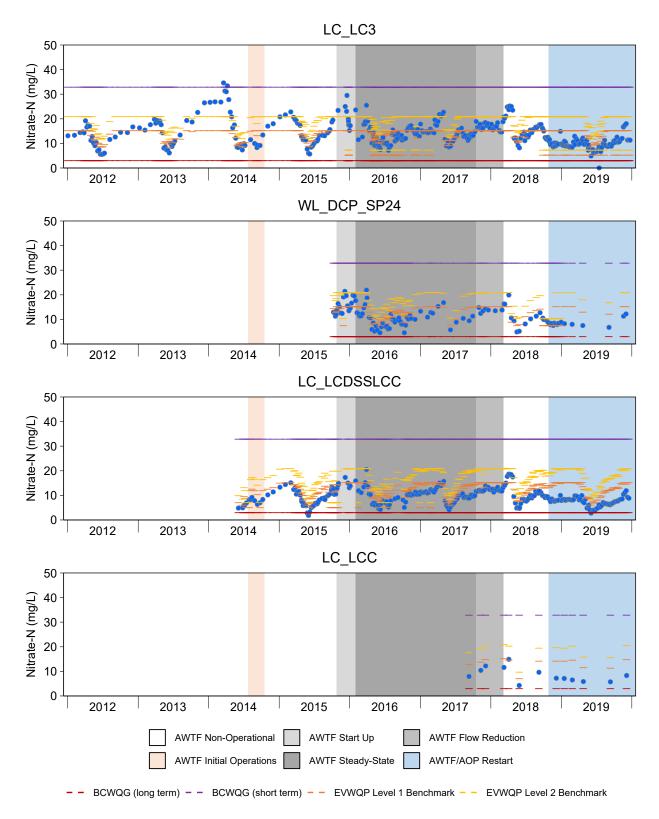
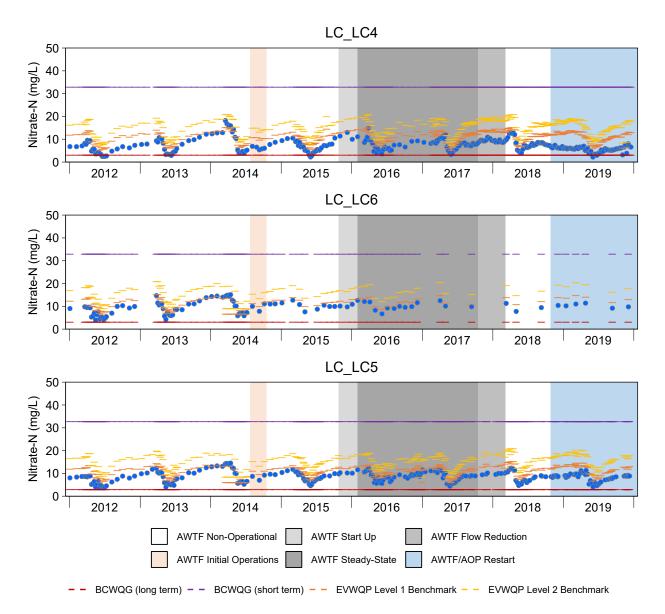


Figure A.2: Time Series Plots for Aqueous Orthophosphate Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019


Figure A.3: Time Series Plots for Aqueous Total Nitrate (NO₃ as N) Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019

Notes: BCWQG = British Columbia Water Quality Guidelines; EVWQP = Elk Valley Water Quality Plan. Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Benchmark values are dependent on water hardness. West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines are displayed for each monitoring area to provide context, but pertain only to mineexposed monitoring areas downstream of the AWTF discharge.

Figure A.3: Time Series Plots for Aqueous Total Nitrate (NO3 as N) Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019

Notes: BCWQG = British Columbia Water Quality Guidelines; EVWQP = Elk Valley Water Quality Plan. Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Benchmark values are dependent on water hardness. West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines are displayed for each monitoring area to provide context, but pertain only to mine-exposed monitoring areas downstream of the AWTF discharge.



Figure A.3: Time Series Plots for Aqueous Total Nitrate (NO3 as N) Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019

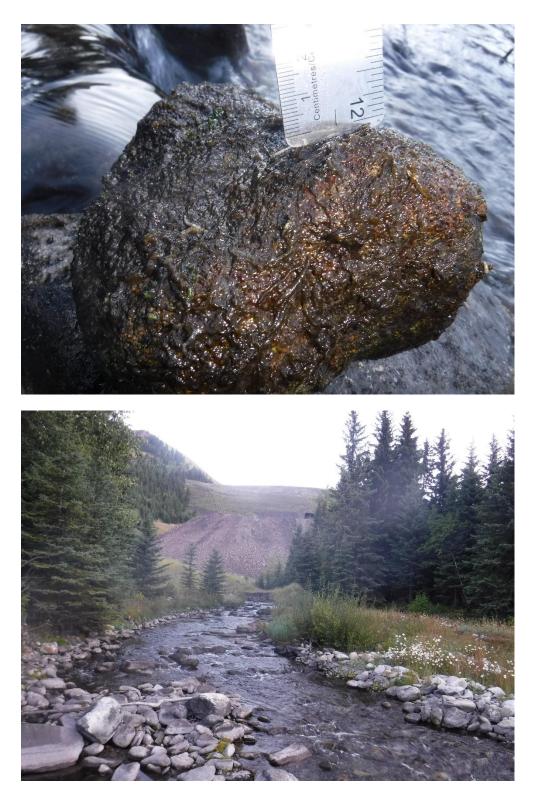

Notes: BCWQG = British Columbia Water Quality Guidelines: EVWQP = Elk Valley Water Quality Plan. Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Benchmark values are dependent on water hardness. West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines are displayed for each monitoring area to provide context, but pertain only to mineexposed monitoring areas downstream of the AWTF discharge.

Figure A.4: Periphyton Coverage and Site Photograph at Station RG_LI24 (Reference), September 2019

Figure A.4: Periphyton Coverage and Site Photograph at RG_SLINE (Reference), September 2019

Figure A.4: Periphyton Coverage and Site Photograph at RG_LCUT (Exposed), September 2019

Figure A.4: Periphyton Coverage and Site Photograph at RG_LILC3 (Exposed), September 2019

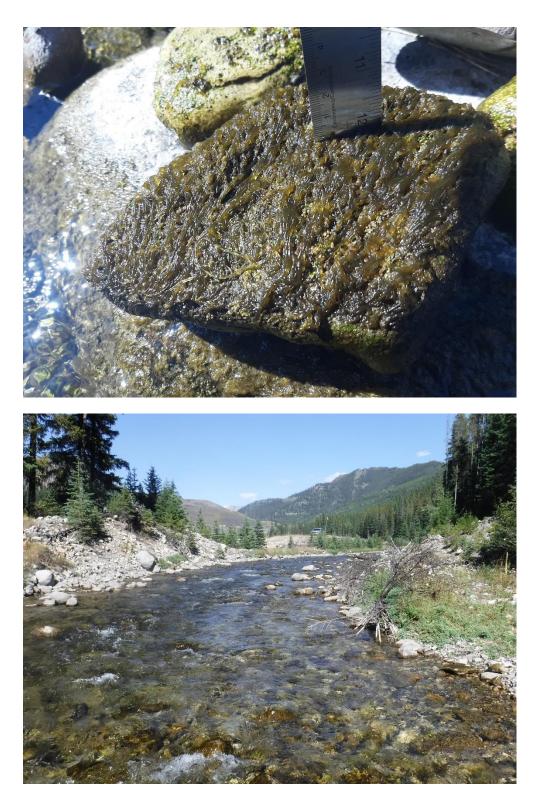
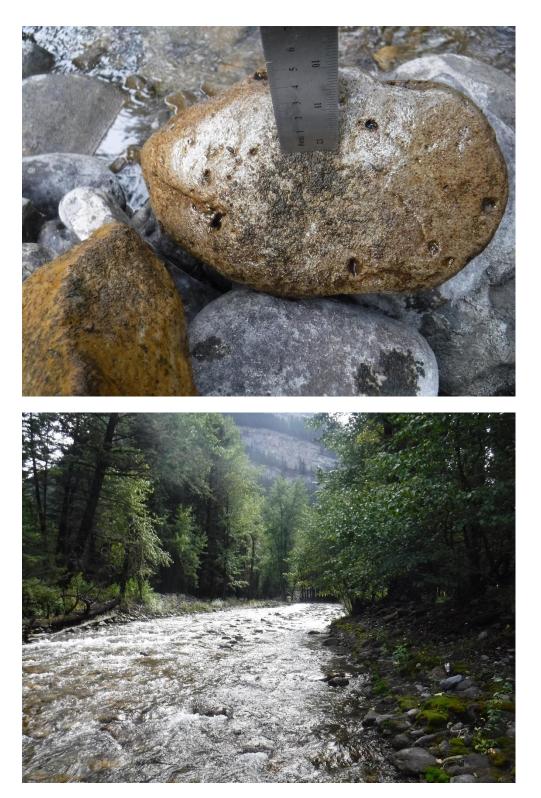
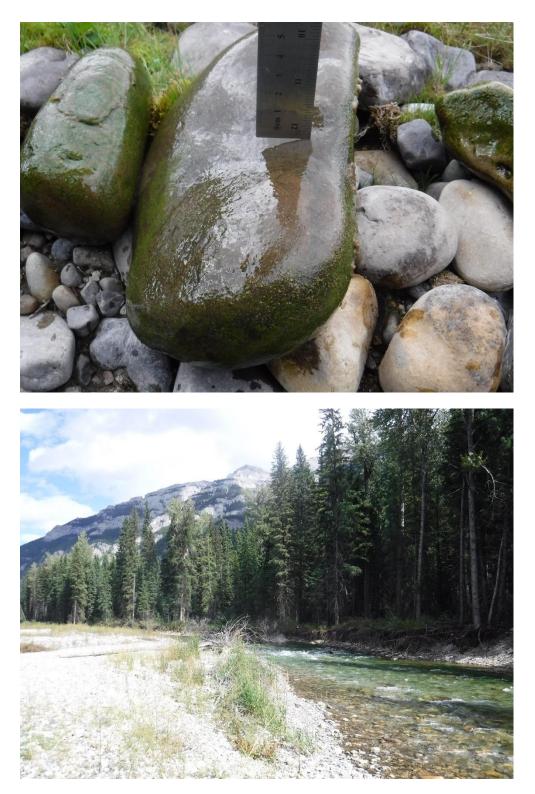


Figure A.4: Periphyton Coverage and Site Photograph at RG_LISP24 (Exposed), September 2019

Figure A.4: Periphyton Coverage and Site Photograph at RG_LIDSL (Exposed), September 2019

Figure A.4: Periphyton Coverage and Site Photograph at RG_LIDCOM (Exposed), September 2019

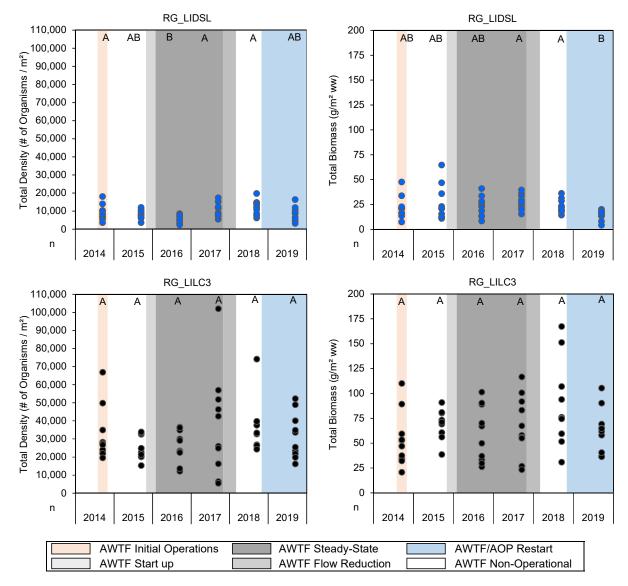

Figure A.4: Periphyton Coverage and Site Photograph at RG_LI8 (Exposed), September 2019

Figure A.4: Periphyton Coverage and Site Photograph at RG_FRUL (Exposed), September 2019

Figure A.4: Periphyton Coverage and Site Photograph at RG_FO23 (Exposed), September 2019

Figure A.5: Total Benthic Invertebrate Density and Biomass (Hess Sampling), for RG_LIDSL and RG_LILC3 Over Time, 2014 to 2019

Notes: Years that share a letter (e.g., A,B) are not significantly different (α =0.1). Letters assigned such that the year with the highest mean value is assigned the letter A.

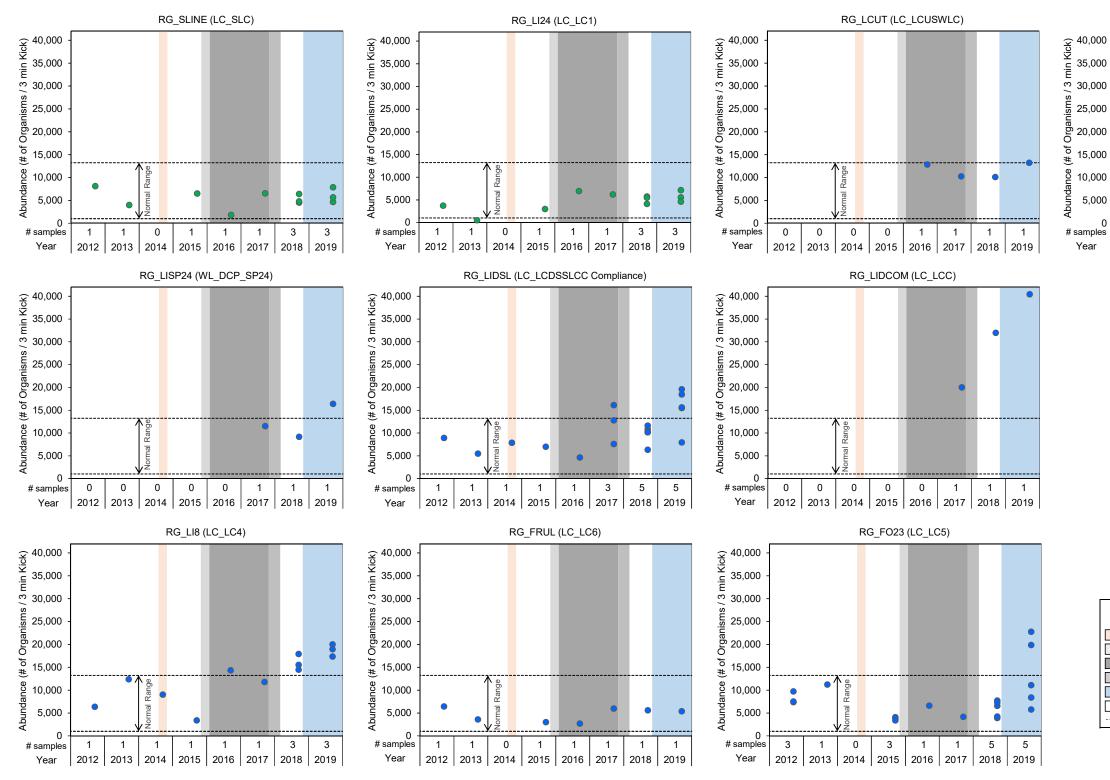
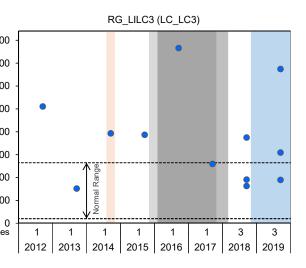
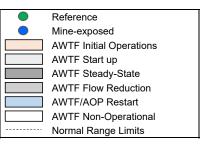




Figure A.6: Benthic Invertebrate Community Abundance (3-Minute Kick and Sweep Sampling), Line Creek and Fording River, 2012 to 2019

Notes: Horizontal dashed lines represent the upper and lower limits of the normal range defined as the 2.5th and 97.5th percentiles of the 2012 and 2015 reference area data from the Regional Aquatic Environmental Monitoring Program (RAEMP). West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines are displayed for each monitoring area to provide context, but pertain only to mine-exposed monitoring areas located downstream of the AWTF discharge.

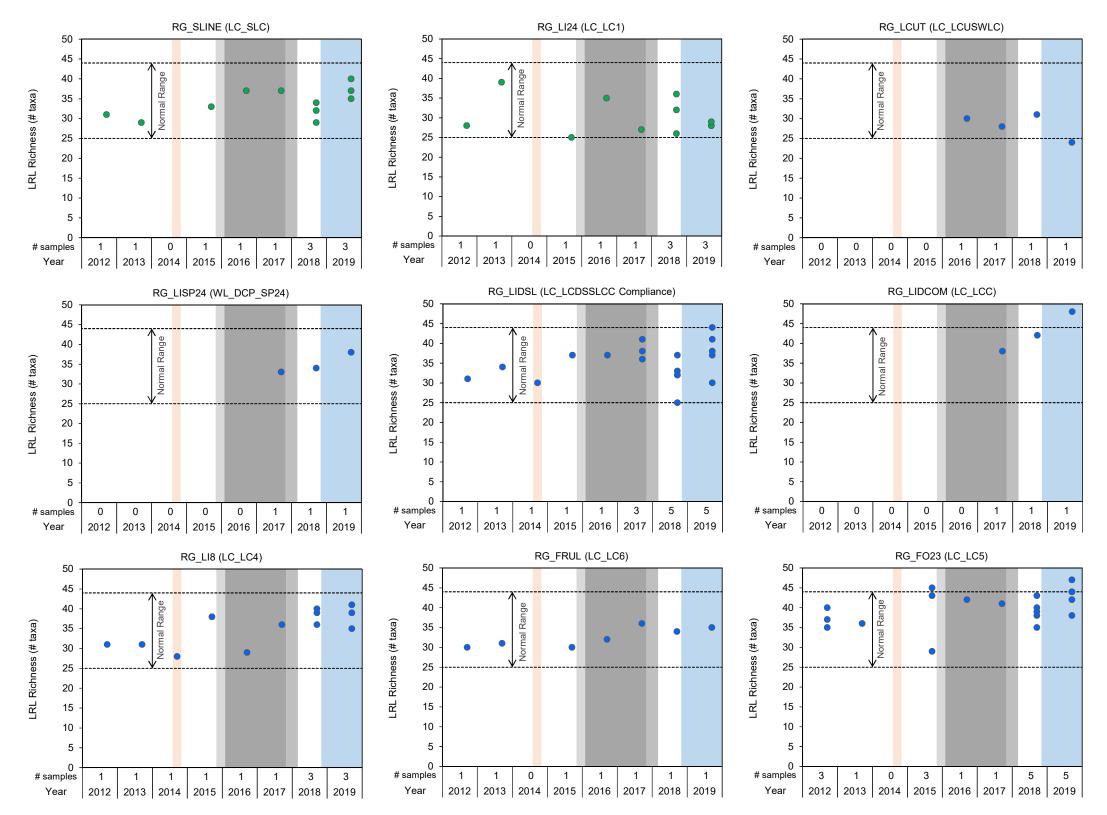
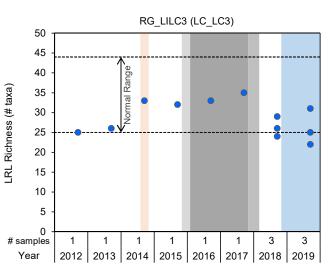



Figure A.7: Benthic Invertebrate Community Richness (Lowest Practical Level; 3-Minute Kick and Sweep Sampling), Line Creek and Fording River, 2012 to 2019

Notes: Horizontal dashed lines represent the upper and lower limits of the normal range defined as the 2.5th and 97.5th percentiles of the 2012 and 2015 reference area data from the Regional Aquatic Environmental Monitoring Program (RAEMP). West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines are displayed for each monitoring area to provide context, but pertain only to mine-exposed monitoring areas located downstream of the AWTF discharge.

	Reference
•	Mine-exposed
	AWTF Initial Operations
	AWTF Start up
	AWTF Steady-State
	AWTF Flow Reduction
	AWTF/AOP Restart
	AWTF Non-Operational
	Normal Range Limits

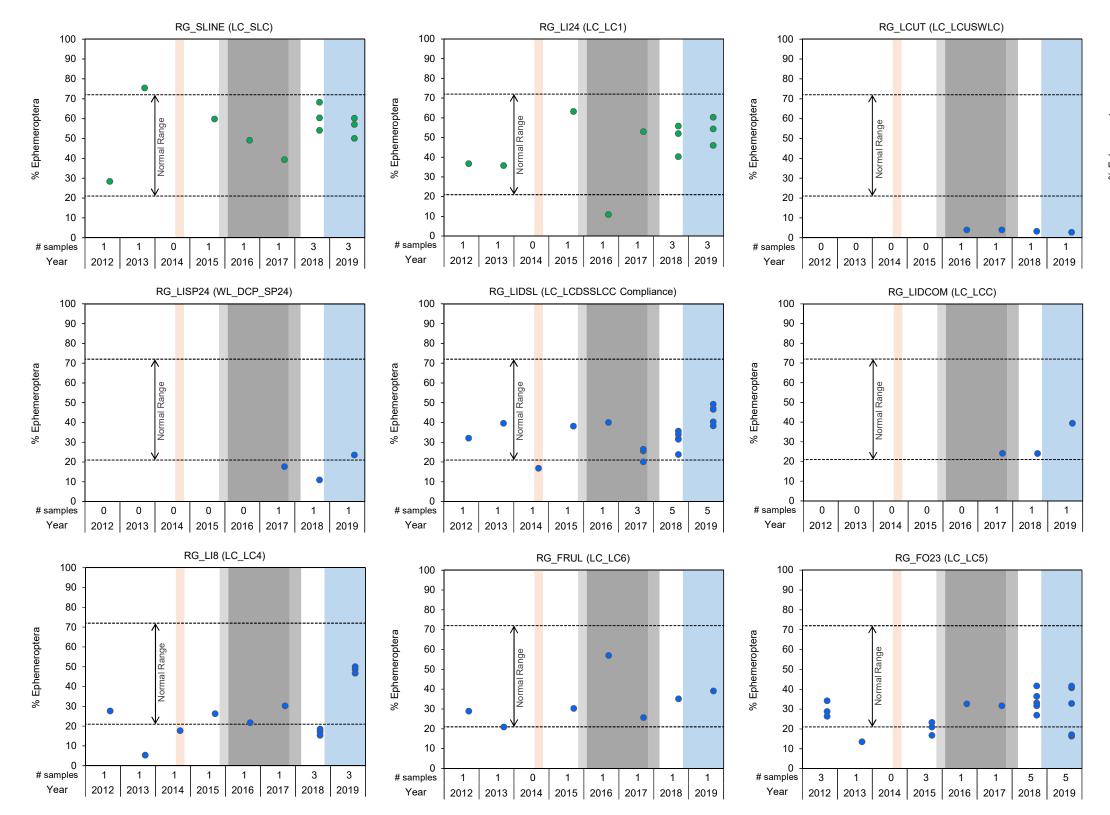
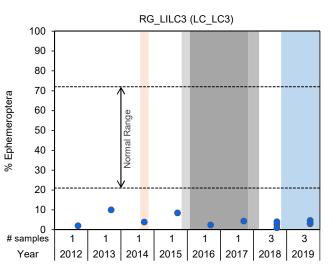



Figure A.8: Benthic Invertebrate Community Relative Ephemeroptera Abundance (E%; 3-Minute Kick and Sweep Sampling), Line Creek and Fording River, 2012 to 2019

Notes: Horizontal dashed lines represent the upper and lower limits of the normal range defined as the 2.5th and 97.5th percentiles of the 2012 and 2015 reference area data from the Regional Aquatic Environmental Monitoring Program (RAEMP). West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines are displayed for each monitoring area to provide context, but pertain only to mine-exposed monitoring areas located downstream of the AWTF discharge.

	Reference
•	Mine-exposed
	AWTF Initial Operations
	AWTF Start up
	AWTF Steady-State
	AWTF Flow Reduction
	AWTF/AOP Restart
	AWTF Non-Operational
	Normal Range Limits

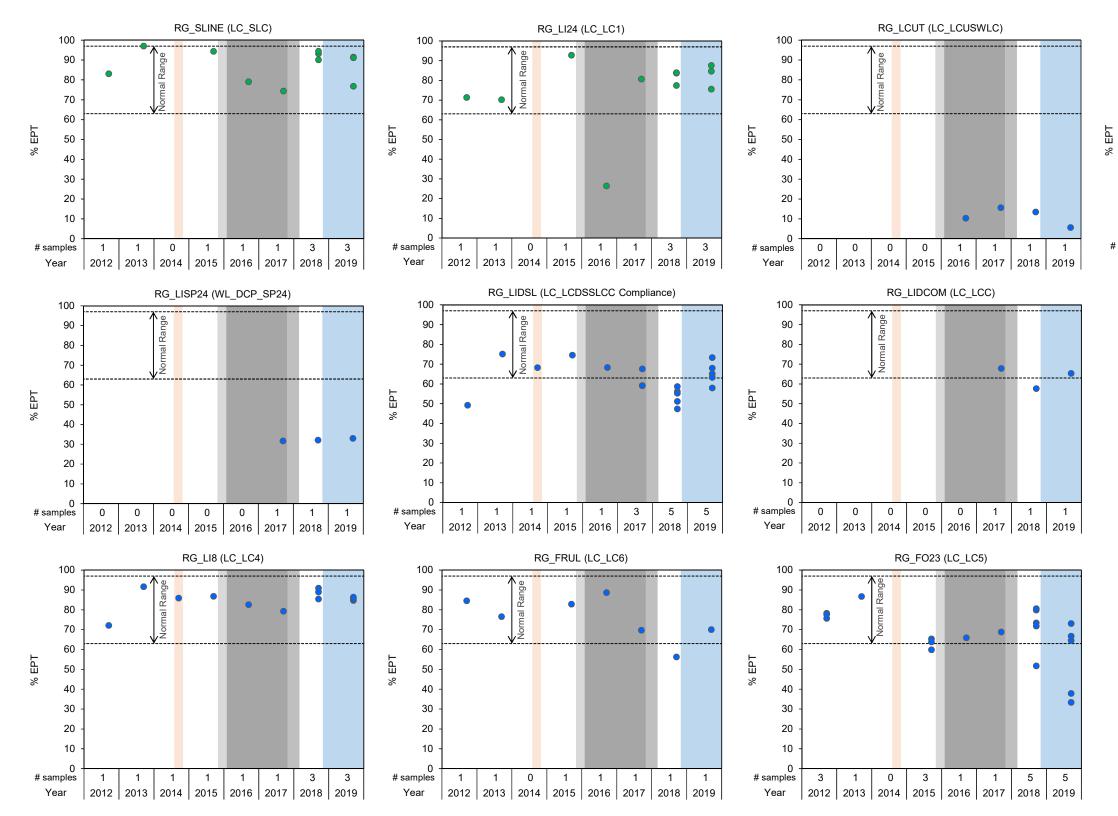
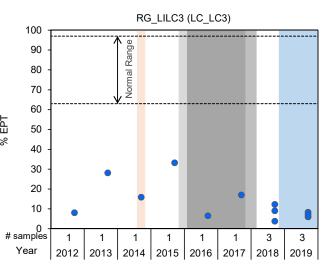



Figure A.9: Benthic Invertebrate Community Relative Ephemeroptera, Plecoptera, and Trichoptera Abundance (EPT%; 3-Minute Kick and Sweep Sampling), Line Creek and Fording River, 2012 to 2019

Notes: Horizontal dashed lines represent the upper and lower limits of the normal range defined as the 2.5th and 97.5th percentiles of the 2012 and 2015 reference area data from the Regional Aquatic Environmental Monitoring Program (RAEMP). West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines are displayed for each monitoring area to provide context, but pertain only to mine-exposed monitoring areas located downstream of the AWTF discharge.

	Reference
\bigcirc	Mine-exposed
	AWTF Initial Operations
	AWTF Start up
	AWTF Steady-State
	AWTF Flow Reduction
	AWTF/AOP Restart
	AWTF Non-Operational
	Normal Range Limits

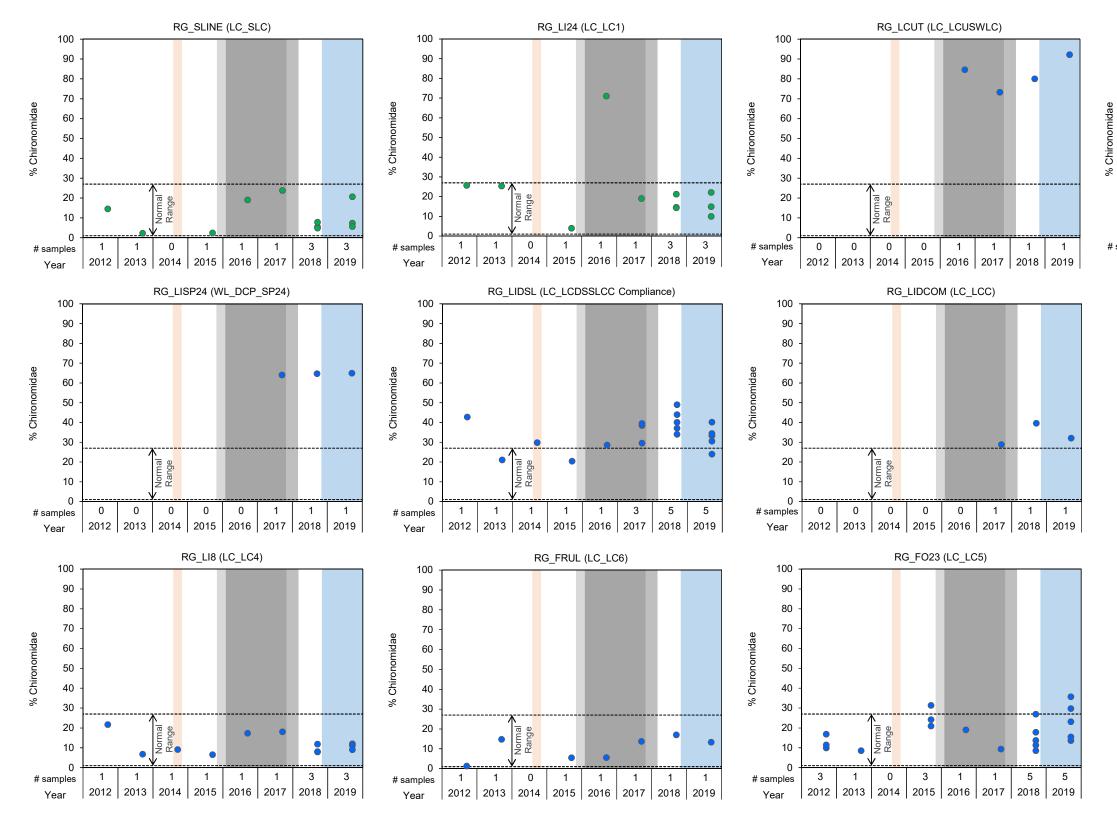
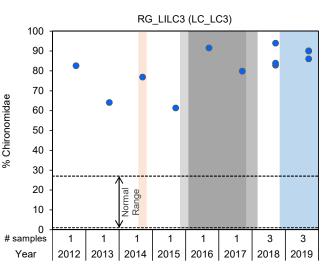



Figure A.10: Benthic Invertebrate Community Relative Chironomidae Abundance (%Chiron; 3-Minute Kick and Sweep Sampling), Line Creek and Fording River, 2012 to 2019

Notes: Horizontal dashed lines represent the upper and lower limits of the normal range defined as the 2.5th and 97.5th percentiles of the 2012 and 2015 reference area data from the Regional Aquatic Environmental Monitoring Program (RAEMP). West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines are displayed for each monitoring area to provide context, but pertain only to mine-exposed monitoring areas located downstream of the AWTF discharge.

	Reference
•	Mine-exposed
	AWTF Initial Operations
	AWTF Start up
	AWTF Steady-State
	AWTF Flow Reduction
	AWTF/AOP Restart
	AWTF Non-Operational
	Normal Range Limits

Area		Biological			Replicate			Mean	Standard
		Area Code	Α	В	С	D	E	Mean	Deviation
	Reference	RG_LI24	2	2	2	3	2	2	0.4
	Refer	RG_SLINE	2	2	2	2	2	2	0
		RG_LCUT	3	3	3	3	3	3	0
Line Creek		RG_LILC3	3	3	4	3	4	3	0.5
Line	Mine-exposed	RG_LISP24	3	3	3	2	2	3	0.5
	Mine-e	RG_LIDSL	2	3	3	3	3	3	0.4
		RG_LIDCOM	3	3	3	4	4	3	0.5
		RG_LI8	2	2	2	2	2	2	0
Fording River	Mine-exposed	RG_FRUL	2	3	3	2	2	2	0.5
Fordinę	Mine-e:	RG_FO23	2	2	2	2	3	3	0.4

Table A.1: Visual Periphyton Coverage Scores from Line Creek and Fording River, September 2019

Periphyton Coverage Scores (Environment Canada, 2012):

1 = Rocks not slippery, no obvious colour (<0.5mm thick)

2 = Rocks slightly slippery, yellow-brown to light green colour (0.5-1mm thick)

3 = Rocks have noticeable slippery feel, patches of thicker green to brown algae (1-5mm thick)

4 = Rocks are very slippery, numerous clumps (5-20mm thick)

5 = Rocks mostly obscured by algae mat, may have long strands (>20mm thick)

Table A.2: Statistical Comparisons of Total Benthic Invertebreate Biomass (Hess Samples) Over Time and Relative to Reference (RG_SLINE and RG_LI24) for RG_LIDSL and RG_LILC3, 2014 to 2019

	• •	_	DF	F-Statistic		Comparisons Among Years					
Area	Comparison	Term	DF		P-value	2014	2015	2016	2017	2018	2019
	RG_LIDSL over time	Year	5	2.58	0.037	AB	AB	AB	Α	Α	В
		CI	1	201	<0.001						
	RG LIDSL vs	Year	5	3.61	0.004						
RG_LIDSL	RG_LIDSL VS	Area(CI)	1	16.55	<0.001						
	RG_3LINE and RG_LI24 over time	Cl×Year	5	3.00	0.014	Α	AB	AB	Α	AB	В
		Area(CI)×Year	4	1.47	0.215						
		Error	121								
	RG_LILC3 over time	Year	5	1.549	0.190	Α	Α	Α	Α	Α	Α
		CI	1	746	<0.001						
	RG LILC3 vs	Year	5	5.08	<0.001						
RG_LILC3	RG_LILCS VS	Area(CI)	1	16.80	<0.001						
	RG_LI24 over time	Cl×Year	5	0.64	0.669	Α	А	Α	Α	Α	Α
		Area(CI)×Year	4	1.50	0.208						
		Error	121			-					

Area×Year p-value < 0.1.

Area(CI)×Year p-value < 0.1. Analysis was then conducted separately by reference area.

Notes: Years that share a letter (e.g., A,B) are not significantly different (α =0.1). Letters assigned such that the year with the highest mean value (for the Year term) or highest difference between mine-exposed and reference (for the Area×Year term) is assigned the letter A. The p-value used to determine differences were adjusted using Tukey's honestly significant differences method (for the Year term) and Bonferroni method (for the Area(CI)×Year term).

Area	Biological Area	Sample Code	Total Density	Biomass	EPT Density	Ephemeroptera	Chironomidae
Area	Code	Sample Code	(org/m ²) ^a	(g/m² ww) ^a	(org/m ²)	Density (org/m ²)	Density (org/m ²)
		RG_LI24-01	4,080	7.36	2,400	1,360	180
		RG_LI24-02	2,780	4.56	1,530	800	107
	RG_LI24	RG_LI24-03	2,630	7.16	2,100	1,550	50
e		RG_LI24-04	3,770	7.95	2,200	1,390	100
en		RG_LI24-05	2,900	7.62	2,540	1,460	150
Reference		RG_SLINE-01	3,890	8.18	2,970	1,690	290
Re		RG_SLINE-02	6,420	12.9	3,840	2,240	634
	RG_SLINE	RG_SLINE-03	5,060	6.52	4,040	2,520	420
		RG_SLINE-04	2,760	4.76	2,100	1,260	230
		RG_SLINE-05	3,190	6.68	2,170	1,290	180
		RG_LILC3-01	23,310	58.0	2,350	1,160	15,000
		RG_LILC3-02	16,160	36.5	1,400	640	11,360
	RG_LILC3	RG_LILC3-03	21,850	69.1	1,210	480	14,200
		RG_LILC3-04	33,630	65.0	1,710	960	17,760
		RG_LILC3-05	34,800	36.3	960	160	23,680
		RG_LILC3-06	25,450	61.9	1,890	800	14,480
		RG_LILC3-07	40,040	40.5	1,200	760	21,680
σ		RG_LILC3-08	48,920	90.1	1,960	480	32,240
se		RG_LILC3-09	19,770	64.6	1,650	400	13,720
Mine-exposed		RG_LILC3-10	52,240	105	3,600	800	37,440
- e		RG_LIDSL-01	6,290	13.4	3,510	2,450	2,150
line		RG_LIDSL-02	16,280	19.9	7,690	5,870	6,580
≥		RG_LIDSL-03	4,430	8.01	2,110	1,450	1,690
		RG_LIDSL-04	8,400	17.0	4,330	2,830	3,000
	RG_LIDSL	RG_LIDSL-05	10,660	18.2	5,730	3,500	3,700
	KG_LIDSL	RG_LIDSL-06	9,210	15.6	5,120	3,120	2,580
		RG_LIDSL-07	5,980	14.5	3,300	2,530	1,430
		RG_LIDSL-08	3,090	4.00	1,350	600	1,170
		RG_LIDSL-09	11,870	17.5	6,810	5,430	3,540
		RG_LIDSL-10	9,140	13.3	4,210	3,390	3,779

 Table A.3: Summary Metrics for Benthic Invertebrate Endpoints Collected by Hess Sampler at Line Creek,

 September 2019

Notes: org = organims; ww = wet weight; EPT = Ephemeroptera, Plecoptera, Trichoptera

^a Total density and biomass are reported for all organisms in the sample.

 Table A.4:
 Statistical Comparisons of Total Benthic Invertebrate Density (Hess Samples)

 Over Time and Relative to Reference (RG_SLINE and RG_LI24) for RG_LIDSL and

 RG_LILC3, 2014 to 2019

Area	Comparison	Term	DE	F-Statistic	P-value	С	ompa	risons	Amon	g Year	rs
Area	Companson	Term	DF	r-Statistic	F-value	2014	2015	2016	2017	2018	2019
	RG_LIDSL over time	Year	5	4.63	0.001	Α	AB	В	Α	Α	AB
		CI	1	281	<0.001						
	RG LIDSL vs	Year	5	7.99	<0.001						
	RG SLINE and	Area(CI)	1	9.30	0.003						
	RG LI24 over time	Cl×Year	5	3.97	0.002						
		Area(CI)×Year	4	6.16	<0.001	CI	<year e<="" td=""><td>effect d</td><td>lepend</td><td>s on Ai</td><td>rea</td></year>	effect d	lepend	s on Ai	rea
		Error	121								
RG_LIDSL		Area	1	151	<0.001						
	RG_LIDSL vs	Year	5	9.4	<0.001						
	RG_SLINE over time	Area×Year	5	5.79	<0.001	Α	С	BC	AB	ABC	BC
		Error	91								
		Area	1	242	<0.001						
	RG_LIDSL vs	Year	5	3.95	0.003						
	RG_LI24 over time	Area×Year	4	2.73	0.035	AB	AB	-	AB	Α	В
		Error	84								
	RG_LILC3 over time	Year	5	0.673	0.646	Α	Α	Α	Α	Α	A
		CI	1	951	<0.001						
	RG LILC3 vs	Year	5	4.11	0.002						
	RG SLINE and	Area(CI)	1	7.57	0.007						
	RG LI24 over time	Cl×Year	5	2.62	0.028						
		Area(CI)×Year	4	5.01	0.001	Cl>	<year e<="" td=""><td>effect d</td><td>lepend</td><td>s on Ai</td><td>rea</td></year>	effect d	lepend	s on Ai	rea
		Error	121								
RG_LILC3		Area	1	576	<0.001						
	RG_LILC3 vs	Year	5	4.25	0.002						
	RG_SLINE over time	Area×Year	5	4.68	0.001	Α	В	AB	AB	В	В
		Error	91								
		Area	1	611	<0.001						
	RG_LILC3 vs	Year	5	0.989	0.429						
	RG_LI24 over time	Area×Year	4	0.999	0.413	Α	Α	-	Α	A	A
		Error	84								

Area×Year p-value < 0.1.

Area(CI)×Year p-value < 0.1. Analysis was then conducted separately by reference area.

Notes: Years that share a letter (e.g., A,B) are not significantly different (α =0.1). Letters assigned such that the year with the highest mean value (for the Year term) or highest difference between mine-exposed and reference (for the Area×Year term) is assigned the letter A. The p-value used to determine differences were adjusted using Tukey's honestly significant differences method (for the Year term) and Bonferroni method (for the Area(CI)×Year term).

			Abundanaa	Abundance LPL		EF	РТ	Epheme	eroptera	Chiron	omidae
Area	Biological	Sample Code	(# org/ 3-	Pichnoss	Family	Abundance	Relative	Abundance	Relative	Abundance	Relative
Alea	Area Code		(# org/ o⊧ min kick)	(# of taxa)	Richness	(# org/ 3-	Abundance	(# org/ 3-	Abundance	(# org/ 3-	Abundance
			min kickj			min kick)	(%)	min kick)	(%)	min kick)	(%)
		RG_LI24-01	7,140	28	15	6,040	84.6	3,880	54.3	1,060	14.8
e	RG_LI24	RG_LI24-02	5,583	28	16	4,217	75.5	2,567	46.0	1,233	22.1
ren		RG_LI24-03	4,600	29	16	4,029	87.6	2,771	60.2	457	9.94
Reference		RG_SLINE-01	4,670	35	17	4,270	91.4	2,810	60.2	340	7.28
Å	RG_SLINE	RG_SLINE-02	5,667	37	19	4,350	76.8	2,833	50.0	1,167	20.6
		RG_SLINE-03	7,860	40	22	7,160	91.1	4,480	57.0	440	5.60
		RG_LILC3-01	15,480	25	13	1,280	8.27	720	4.65	13,320	86.0
	RG_LILC3	RG_LILC3-02	9,480	22	10	560	5.91	280	2.95	8,540	90.1
		RG_LILC3-03	33,720	31	16	2,420	7.18	1,120	3.32	30,340	90.0
		RG_LIDSL-01	15,480	38	18	10,520	68.0	7,260	46.9	4,720	30.5
		RG_LIDSL-02	15,620	37	20	11,440	73.2	7,680	49.2	3,740	23.9
	RG_LIDSL	RG_LIDSL-03	7,940	30	15	5,160	65.0	3,700	46.6	2,640	33.2
		RG_LIDSL-04	19,580	44	25	12,380	63.2	7,880	40.2	6,720	34.3
σ		RG_LIDSL-05	18,460	41	21	10,680	57.9	7,060	38.2	7,400	40.1
se	RG_LIDCOM	RG_LIDCOM-01	40,420	48	25	26,380	65.3	15,900	39.3	12,940	32.0
Mine-exposed	RG_LCUT	RG_LCUT-01	13,240	24	12	740	5.59	360	2.72	12,200	92.1
ê		RG_LI8-01	20,000	41	20	16,940	84.7	9,340	46.7	2,400	12.0
line	RG_LI8	RG_LI8-02	17,340	35	17	14,800	85.4	8,440	48.7	1,920	11.1
≥		RG_LI8-03	18,960	39	19	16,380	86.4	9,480	50.0	1,700	8.97
	RG_LISP24	RG_LISP24-01	16,400	38	20	5,400	32.9	3,860	23.5	10,640	64.9
		RG_F023-01	22,760	47	27	7,580	33.3	3,720	16.3	8,120	35.7
		RG_F023-02	11,100	38	26	7,160	64.5	3,640	32.8	2,560	23.1
	RG_FO23	RG_F023-03	8,400	42	22	6,140	73.1	3,420	40.7	1,140	13.6
		RG_F023-04	5,770	44	26	3,850	66.7	2,400	41.6	890	15.4
		RG_F023-05	19,880	44	25	7,520	37.8	3,400	17.1	5,900	29.7
	RG_FRUL	RG_FRUL-01	5,383	35	23	3,767	70.0	2,100	39.0	717	13.3

 Table A.5:
 Summary of Benthic Invertebrate Endpoints Collected by 3-Minute Kick and Sweep Sampling at Line Creek

 and Fording River, September 2019

Notes: LPL= Lowest Practical Level; EPT= Ephemeroptera, Plecoptera, and Trichoptera.

Table A.6: Benthic Invertebrate Community Quality Control Results, 2019

A) Organism	Recovery
-------------	----------

Sample ID	Laboratory ID	aboratory ID Number of Organisms Organis Recovered Re-s		Percent Recovery
RG_LILC3_BIC-1	CC201031	774	27	96.5%
RG_LCUT_BIC	CC201039	662	25	96.2%
RG_LISP24_BIC	CC201040	820	18	97.8%
			Average Recovery	96.8%

B) Subsampling Accuracy and Precision

Samp	le Name	RG_F023_BIC-4	RG_SLINE_BIC-1	RG_LIDSL_BIC-3	
		572	482	405	
		566	465	435	
		517	435	433	
		639	484	415	
		643	461	414	
		588	441	372	
		571	438	408	
		554	512	429	
		556	435	431	
Number of Organ	isms in Subsample	553	529	423	
Number of Organ		-	-	380	
		-	-	404	
		-	-	415	
		-	-	371	
		-	-	400	
		-	-	445	
		-	-	398	
		-	-	464	
		-	-	397	
		-	-	436	
Sorte	r Initials	SQ	KC	CJ	
Time	Time Sorted		665	1,140	
Actua	al Total	5,759	4,682	8,275	
	Min (%)	0.175	0	0	
Precision Error	Precision Error Max (%)		17.8	20.0	
	Min (%)	0.677	0.683	0.0604	
Accuracy Error	Max (%)	11.7	13.0	12.1	

Note: "-" indicates no data available.

C) Taxonomic Quality Control^a

Sample ID	Laboratory ID	Laboratory Count	Quality Control Audit Count	TIR (%)	PDE (%)	PTD (%)	BCDI
RG_LILC3_BIC-1	CC201031	774	774	0	0.0	0.388	0.00388
RG_SLINE_BIC-1	CC201041	467	469	0	0.214	1.07	0.00855
RG_LIDSL_BIC-2	CC201050	781	778	0	0.192	0.768	0.00577

Values did not meet the data quality objective of < 5% for TIR.

Notes: TIR = Total Identification Error Rate; PDE = Percent Difference in Enumeration; PTD = Percent Taxonomic Disagreement; BCDI = Bray Curtis Dissimilarity

Index to quantify differences in identifications.

^aFor error rationale and calculations, refer to Cordillera report (Appendix G).

Cordillera Consulting	Project: Teck Lin	e Creek LAEMP 2	019 (197202.0006	6) - Kick Sampling	Taxonomist:	Scott Finlayson scottfinlayson@cord	250-494-7553 illeraconsulting.ca
Site:	2019	2019	2019	2019	2019	2019	2019
	RG_LILC3_BIC-1					RG_FO23_BIC-3	RG_FO23_BIC-4
Sample Collection Date:			07-Sep-19	08-Sep-19	08-Sep-19		08-Sep-19
CC#: Phylum: Arthropoda	CC201031	CC201032	CC201033	CC201034	CC201035	CC201036	CC201037
Subphylum: Hexapoda	0	0	0	0	0	0	0
Class: Insecta	0	0	0	0	0	0	0
Order: Ephemeroptera	0	0	0	0	0	0	0
Family: Ameletidae Ameletus	0	0	0	0 20	0	0	0
Family: Baetidae	0	0	20	1.060	0	0	10
Acentrella	20	20	0	20	0	0	20
Baetis	160	80	500	1,280	1,420	1,080	770
Baetis rhodani group Family: Ephemerellidae	120 20	80 0	40 80	260 180	1,060 80	660 160	480 20
Drunella	60	0	0	20	0	0	10
Drunella coloradensis	0	0	0	0	0	0	0
<u>Drunella doddsii</u>	40	0	60	40	160	160	140
<u>Drunella spinifera</u>	0 300	0 100	0 420	40 800	0 840	20 1,300	0 850
Family: Heptageniidae	0	0	0	0	0	0	0
<u>Epeorus</u>	0	0	0	0	40	20	10
Rhithrogena	0	0	0	0	40	20	90
Family: Leptophlebiidae	0	0	0	0	0	0	0
<u>Neoleptophlebia</u>	0	0	0	U	0	U	0
Order: Plecoptera	0	0	0	0	0	0	0
Family: Capniidae	40	0	0	380	180	280	50
<u>Utacapnia</u>	0	0	0	0	0	220	50
Family: Chloroperlidae Suwallia	20 20	0	20 0	<u>40</u>	<u>100</u>	<u>160</u>	<u>180</u> 0
Sweltsa	0	0	80	40	100	100	50
Family: Leuctridae	0	0	0	60	200	0	50
<u>Paraleuctra</u>	0	0	0	0	0	40	30
Family: Nemouridae Visoka cataractae	60 0	20 0	60 0	<u>400</u>	80 0	0	0
Zapada	0	0	280	1.420	660	360	200
Zapada oregonensis group	200	60	360	0	0	0	10
Zapada cinctipes	0	0	0	80	480	240	30
Zapada columbiana Family: Peltoperlidae	0	20 0	60 0	0	20 20	0	0
Yoraperla	0	0	0	0	0	0	0
Family: Perlidae	0	0	0	540	220	260	30
<u>Hesperoperla</u>	0	0	0	20	220	160	60
Family: Perlodidae Kogotus	0 40	0	0 100	0 60	0 120	20 20	0 30
<u>Nogolus</u> Megarcys	<u> </u>	20	0	0	0	0	0
<u>Setvena</u>	0	0	0	0	0	0	0
Family: Taeniopterygidae	0	0	0	140	800	560	370
<u>Taenionema</u>	0	0	0	0	0	0	90
Order: Trichoptera	20	0	0	40	20	20	0
Family: Apataniidae	0	0	0	0	0	0	0
<u>Apatania</u>	0	0	0	0	0	0	0
Family: Brachycentridae Brachycentrus	0	0	0	240 140	200 0	180 0	90 0
Brachycentrus americanus	0	0	0	0	0	40	0
Micrasema	0	0	0	20	0	0	0
Family: Glossosomatidae	0	0	0	0	20	0	20
<u>Glossosoma</u> Family: Hydropsychidae	0 20	0 40	0 60	0	0 20	20 0	0
Parapsyche	40	20	80	0	0	0	0
Parapsyche elsis	100	80	140	0	0	0	0
Family: Hydroptilidae	0	0	0	0	0	0	0
<u>Hydroptila</u> Family: Limnephilidae	0	0	0 20	80 0	0	0	0
Family: Rhyacophilidae	0	0	0	0	0	0	0
<u>Rhyacophila</u>	0	20	40	60	60	20	110
Rhyacophila betteni group	0	0	0	0	0	20	0
<u>Rhyacophila brunnea/vemna group</u> Rhyacophila hyalinata group	0	0	0	100 0	0	0	0
Rhyacophila vofixa group	0	0	0	0	0	0	0
Rhyacophila narvae	0	0	0	0	0	0	0
Family: Uenoidae	0	0	0	0	0	0	0
<u>Neothremma</u>	0	0	0	0	0	0	0
Order: Coleoptera	0	0	0	0	0	0	0
Family: Elmidae	0	0	0	0	0	40	10
<u>Heterlimnius</u>	0	0	0	0	0	0	20
<u>Narpus</u>	0	0	0	0	0	0	0
Order: Diptera	0	0	0	0	0	0	0
Family: Athericidae	0	0	0	0	0	0	0
Atherix	0	0	0	0	0	0	0
Family: Ceratopogonidae	0	0	0	0	0	0	0
Mallochohelea	0	0	0	20	0	0	10

Page 1 of 8

Site:							
			RG_LILC3_BIC-3				
Sample Collection Date: CC#	07-Sep-19 CC201031	07-Sep-19 CC201032	07-Sep-19 CC201033	08-Sep-19 CC201034	08-Sep-19 CC201035	08-Sep-19 CC201036	08-Sep-19 CC201037
Family: Chironomidae	2,180	1,080	3,020	300	200	120	110
Subfamily: Chironominae Tribe: Chironomini	0	0	0	0	0	0	0
Polypedilum	0	0	0	0	0	60	0
Tribe: Tanytarsini /icropsectra	40	60	0 60	260 160	60 120	0 80	20 30
<u>Stempellinella</u> Subfamily: Diamesinae	0	0	0	0	0	0	0
Tribe: Diamesini	0	0	0	0	0	0	0
<u>Diamesa</u> Pagastia	960 960	660 520	<u>560</u> 1,840	0 500	0	0 20	0 50
<u>seudodiamesa</u>	0	0	40	0	0	0	0
Subfamily: Orthocladiinae	0	0	0	0	0	0	20 0
Corynoneura	20	20	60	0	0	0	20
<u> Pricotopus (Nostococladius)</u> Eukiefferiella	0	0 1,000	0	0 960	0 840	0 280	0 70
lydrobaenus	60	60	540	460	0	0	0
<u>írenosmittia</u> imnophyes	0	0	0	<u>40</u> 0	0	0 20	0
lanocladius	0	0	0	20	0	0	10
Orthocladius complex Parametriocnemus	<u>5,420</u> 0	<u>4,380</u> 0	<u>11,580</u> 0	4,620 20	<u>180</u> 0	180 0	<u>480</u> 0
Parorthocladius	0	0	100	480	0	0	0
<u>Rheocricotopus</u> hienemanniella	1,560 0	420 0	5,080 0	160 0	<u>180</u> 0	80 0	40
vetenia	1,020	340	5,720	Ö	980	300	40
Subfamily: Tanypodinae Tribe: Pentaneurini	0	0	0	0	0	0	0
hienemannimyia group	0	0	0	140	0	0	0
Family: Empididae	0	0	100 60	260 120	120 0	120 20	<u>40</u>
leoplasta	0	0	0	100	0	80	70
<u>)reogeton</u> Family: Pelecorhynchidae	0	0	0	0	0	0	0
Glutops	0	0	0	0	0	0	0
Family: Psychodidae Pericoma/Telmatoscopus	0	0	0	0 680	0 200	0 300	0 240
Family: Simuliidae	0	0	0	0	80	0	0
P <u>rosimulium</u> Prosimulium/Helodon	0	0	0	0	0	0	0
Simulium	0	0	0	Ö	80	0	10
Family: Stratiomyidae Family: Tipulidae	0	0	0	0 180	0 20	0	10 20
ntocha	0	0	0	0	0	0	10
Dicranota Gonomyodes	0	0	0	0	0	0	0
lexatoma	0	0	0	20	40	80	10
imnophila	0	0	0	0	0	0	0
Order: Hemiptera	0	0	0	0	0	0	0
Family: Corixidae Callicorixa	0	0	0	0	0	0	0
			-				
ubphylum: Chelicerata Class: Arachnida	0	0	0	0	0	0	0
Order: Trombidiformes	20	0	20	140	0	20	0
Family: Aturidae turus	0 60	0	0 40	0 800	0 80	0	0
Family: Feltriidae	0	0	0	0	0	0	0
<u>eltria</u> Family: Hydryphantidae	<u>360</u> 0	120 0	220 0	120 0	20 0	0	0
Protzia	0	0	0	Ö	0	0	0
Family: Hygrobatidae tractides	0	0	0	0	0	0	0
Family: Lebertiidae	0	0	0	0	0	0	0
<u>ebertia</u> Family: Mideopsidae	140 0	60 0	160 0	520 0	<u>40</u> 0	120 0	170 0
lideopsis	0	0	0	20	0	0	0
Family: Sperchontidae	0 300	0 200	0 340	0 60	0	0 20	0 30
Family: Torrenticolidae	0	0	0	0	0	0	0
<u>estudacarus</u> orrenticola	0	0	0	160 0	<u>40</u> 0	20 0	10 0
uborder: Prostigmata Family: Stygothrombidiidae	0	0	0	0	0	0	0
tygothrombium	0	0	0	40	0	0	0
Order: Sarcoptiformes	0	0	0	0	0	0	0
Order: Oribatida	0	0	0	0	20	0	0
Family: Hydrozetidae	0	0	0	0	0	0	0
hylum: Annelida	0	0	0	0	0	0	0
ubphylum: Clitellata Class: Oligochaeta	0	0	0	0	0	0	0
Order: Lumbriculida	0	0	0	Ő	0	0	0
Family: Lumbriculidae	0	0	0 20	0	0	0	0 40
Order: Tubificida Family: Naididae	0	0	0	0 1,720	0	0	0 110
lais	0	0	0	2,100	460	260	220
Subfamily: Tubificinae without Totals:	0 15,480	0 9,480	0 33,720	0 22,760	180 11,100	40 8,400	0 5,770
		0,100		,: 00	,		0,110
axa present but not included: hylum: Arthropoda	0	0	0	0	0	0	0
ubphylum: Crustacea	0	0	0	0	0	0	0
Class: Ostracoda Class: Maxillipoda	20 0	20 0	20 0	20 0	20 0	20 0	10 0
Class: Copepoda	0	0	0	20	0	0	0
hylum: Nemata	20	20	20	20	20	20	10
hylum: Platyhelminthes	0	0	0	0	0	0	0
Class: Turbellaria	0	0	20	20	0	20	0

Cordillera Consulting	Project: Teck Lin	ne Creek LAEMF	P 2019 (197202.00	006) - Kick Sampling	Taxonomist:	Scott Finlayson scottfinlayson@cord	250-494-7553 Ileraconsulting.ca
Site:	2019	2019	2019	2019	2019	2019	2019
				RG SLINE BIC-1			
Sample Collection Date:		04-Sep-19	05-Sep-19	09-Sep-19	09-Sep-19	09-Sep-19	06-Sep-19
	CC201038	CC201039	CC201040	CC201041	CC201042	CC201043	CC201044
Phylum: Arthropoda	0	0	0	0	0	0	0
Subphylum: Hexapoda	0	0	0	0	0	0	0
Class: Insecta	0	0	0	0	0	0	0
Order: Ephemeroptera	0	0	0	0	0	0	0
Family: Ameletidae Ameletus	20	0	80	140	283	120	60
Family: Baetidae	780	20	80	30	0	0	0
Acentrella	0	0	0	0	0	0	0
Baetis	1,180	20	420	50	33	20	20
<u>Baetis rhodani group</u>	320	40	980	70	0	40	20
Family: Ephemerellidae	80	0	260	450	700	1,100	300
Drunella Drunella coloredonoia	0	0	20 0	90	133	80 40	40
<u>Drunella coloradensis</u> Drunella doddsii	0	0	140	0 10	0	80	0
Drunella spinifera	0	0	0	0	0	0	0
Family: Heptageniidae	940	280	1.760	1.790	1,500	2,580	3.040
Cinygmula	0	0	0	10	17	40	380
<u>Epeorus</u>	20	0	120	160	83	140	0
Rhithrogena	40	0	0	10	67	240	20
Family: Leptophlebiidae	0	0	0	0	0	0	0
<u>Neoleptophlebia</u>	20	0	0	0	0	0	0
Order: Plecoptera	0	0	0	0	0	0	0
Family: Capniidae	220	100	60	0	0	0	0
Utacapnia	0	80	0	0	0	0	0
Family: Chloroperlidae	20	0	20	340	33	380	100
Suwallia	0	0	40	150	17	140	20
Sweltsa	0	0	40	40	50	80	40
Family: Leuctridae	0	0	20	30	67	40	0
<u>Paraleuctra</u> Family: Nemouridae	0 560	0 20	0 120	0	0 67	0 120	0 40
Visoka cataractae	0	20	0	0	0	20	40
Zapada	1.640	20	0	30	17	20	120
Zapada oregonensis group	0	0	500	60	183	100	40
Zapada cinctipes	340	Ő	0	0	0	0	0
Zapada columbiana	0	20	260	210	217	260	1,320
Family: Peltoperlidae	0	0	0	20	0	40	0
Yoraperla	0	0	0	10	0	0	20
Family: Perlidae	820	0	0	0	0	0	0
<u>Hesperoperla</u> Family: Perlodidae	<u>120</u>	0 40	0 40	0 60	0	0 120	0 20
Kogotus	100	40	40	0	17	0	0
<u>Megarcys</u>	0	0	0	70	100	340	80
Setvena	0	20	0	0	0	0	0
Family: Taeniopterygidae	40	0	140	40	83	80	280
Taenionema	0	0	0	0	0	0	0
	10					0.40	
Order: Trichoptera	40	0	20	90	67	240	0
Family: Apataniidae	0	0	0	0	0	0	0
<u>Apatania</u> Family: Brachycentridae	180	0	0	0	0	0	0
Brachycentrus	0	0	0	0	0	0	0
Brachycentrus americanus	0	0	0	0	0	0	0
Micrasema	0	0	0	0	0	0	0
Family: Glossosomatidae	20	0	0	30	33	40	0
<u>Glossosoma</u>	0	0	0	40	33	40	0
Family: Hydropsychidae Parapsyche	0	20 0	60 0	30 0	0	0	0
Parapsyche elsis	0	0	80	20	33	20	20
Family: Hydroptilidae	0	0	0	0	0	0	0
Hydroptila	0	0	0	0	0	0	0
Family: Limnephilidae	0	0	0	0	17	240	40
Family: Rhyacophilidae	0	0	0	0	0	0	0
Rhyacophila Rhyacophila hottoni group	20	60	60	120	283	220	0
Rhyacophila betteni group	0	0	0	10	0	0	0
Rhyacophila brunnea/vemna group Rhyacophila hyalinata group	0	0	0 40	<u>40</u> 0	0	<u>40</u> 0	0
<u>Rhyacophila nyaimata group</u> Rhyacophila vofixa group	0	0	40	20	83	80	0
Rhyacophila narvae	0	0	0	0	0	0	0
Family: Uenoidae	0	0	0	0	0	0	0
Neothremma	0	0	0	Ő	Ö	20	20
			-				
Order: Coleoptera	0	0	0	0	0	0	0
Family: Elmidae	0	0	0	0	0	0	0
<u>Heterlimnius</u> Narpus	0	0	0	0	0	0	0
ναιμυσ	U	0	U	0	U	0	U
Order: Diptera	0	0	0	0	0	0	0
Family: Athericidae	0	0	0	0	0	0	0
<u>Atherix</u>	20	0	0	0	0	0	0
Family: Ceratopogonidae	0	0	0	0	0	0	0
Mallochohelea	0	0	0	0	0	0	0

Page 3 of 8

Site:	2019 DC 5022 DIC 5						
Sample: Sample Collection Date:		RG_LCUT_BIC 04-Sep-19	RG_LISP24_BIC 05-Sep-19	RG_SLINE_BIC-1 09-Sep-19	RG_SLINE_BIC-2 09-Sep-19	RG_SLINE_BIC- 09-Sep-19	3 RG_LI24_BIC 06-Sep-19
CC#:	CC201038	CC201039	CC201040		CC201042	CC201043	CC201044
Family: Chironomidae Subfamily: Chironominae	<u>360</u>	1,840 0	2,100 0	60 0	<u> </u>	<u>180</u>	80
Tribe: Chironomini	0	0	0	0	0	0	Ő
olypedilum Tribe: Tanytarsini	0	0	0	0	0	0	0
icropsectra	100	0	20	0	0	0	0
tempellinella Subfamily: Diamesinae	20 0	0	0	0	0	0	0
Tribe: Diamesini	0	0	0	0	0	0	0
iamesa agastia	0 400	580 1.040	240 560	0	33 33	0	0
seudodiamesa	20	0	0	0	0	0	0
Subfamily: Orthocladiinae	0	0	0	0 10	0	0	0
orynoneura	100 0	0	0	0 0	0	0	20
ricotopus (Nostococladius) ukiefferiella	940	1,560	1,440	20	200	40	0
ydrobaenus renosmittia	80 0	320 0	180 0	0	<u>17</u> 0	20 0	0
mnophyes	20	0	0	0	0	0	0
anocladius rthocladius complex	20 2,920	0 4,740	20 3,760	0 30	0 317	0 20	0
arametriocnemus	0	0	0	0	0	0	0
arorthocladius heocricotopus	0 80	60 280	0	10 170	<u> </u>	40 100	40
hienemanniella	0	60	20	0	0	0	0
<u>/etenia</u> Subfamily: Tanypodinae	700 140	1,720 0	1,200 0	<u>40</u> 0	<u>133</u> 0	<u>40</u> 0	240 0
Tribe: Pentaneurini	0	0	0	0	0	0	0
<u>hienemannimyia group</u> Family: Empididae	0 320	0	0	0	0 17	0	0
linocera	40	0	20	0	17	0	Ő
eoplasta reogeton	20 0	0	0	0	0 33	0 120	0
Family: Pelecorhynchidae	0	0	Ö	0	0	0	Ő
lutops Family: Psychodidae	0	0	0	0	0	0	0
ericoma/Telmatoscopus	360	0	0	0	0	0	20
Family: Simuliidae	0	0	0 20	0	0	0	0
rosimulium/Helodon	0	0	40	0	0	Ő	0
<u>mulium</u> Family: Stratiomyidae	0	0	20 0	0	0	0	0
Family: Tipulidae	100	0	0	0	17	20	0
ntocha icranota	0	0	0	0	0	0	0
onomyodes	0	0	Ő	0	0	0	0
<u>exatoma</u> mnophila	20 20	20 0	0	0	0	0	0
					-	U	
Order: Hemiptera Family: Corixidae	0	0	0	0	0	0	0
allicorixa	0	0	0	0	0	0	0
ubphylum: Chelicerata	0	0	0	0	0	0	0
Class: Arachnida	0	0	0	0	0	0	0
Order: Trombidiformes Family: Aturidae	<u> </u>	0	0	0	0	0	0
turus	300	0	20	0	0	0	Ő
Family: Feltriidae	0 120	0 40	0 80	0	0	0	0
Family: Hydryphantidae	0	0	0	0	0	0	Ő
<u>rotzia</u> Family: Hygrobatidae	0	0	0	0	0	0	0
tractides	0	0	0	0	33	0	0
Family: Lebertiidae	0 520	0 140	0 20	0 30	0 17	0 20	0 20
Family: Mideopsidae	0	0	0	0	0	0	0
ideopsis Family: Sperchontidae	0	0	0	0	0	0	0
perchon	80	100	120	10	17	20	Ő
Family: Torrenticolidae	40 220	0	0	0	0	0	0
prrenticola	0	0	0	0	0	0	0
uborder: Prostigmata	0	0	0	0	0	0	0
Family: Stygothrombidiidae	0	0	0	0	0	0	0
tygothrombium	0	0	0	0	0	0	0
Order: Sarcoptiformes	0	0	0	0	0	0	0
Order: Oribatida Family: Hydrozetidae	0	0	0	0	0	0 20	0
	-			-	-		
hylum: Annelida ubphylum: Clitellata	0	0	0	0	0	0	0
Class: Oligochaeta	0	0	0	0	0	0	0
Order: Lumbriculida Family: Lumbriculidae	0	0	0	0 20	0	0	0
hynchelmis	0	0	0	0	0	60	0
Order: Tubificida	0	0	0	0	0	0	0
Family: Naididae	1,540	0	0	0	0	0	0
ais Subfamily: Tubificinae without	2,640 0	0	20 0	0	0	0	0
Totals:	19,880	13,240	16,400	4,670	5,667	7,860	7,140
axa present but not included:							
nylum: Arthropoda	0	0	0	0	0	0	0
ubphylum: Crustacea Class: Ostracoda	0 20	0 20	0 20	0 10	0 17	0 20	0 20
Class: Maxillipoda	0	0	0	0	0	0	0
Class: Copepoda	20	0	0	0	0	0	0
						0	0
hylum: Nemata hylum: Platyhelminthes	20 0	20 0	20 0	10 0	17 0	0	0

Sample Collection bit Set IPL CR0 IPC 3R L 102 RC IPL 3R C IPL Set IPC 3R L 102 RC IPC 3R L 103 RC IPC 3R R 103 RC IPC 3R L 103 RC IPC 3R R 103 RC IPC	Cordillera Consulting	Project: Teck Li	ine Creek LAEM	IP 2019 (197202.0	006) - Kick Sampling	Taxonomist:	,	250-494-7553 dilleraconsulting.ca
Sample Collection Date: 08-89-19 02-89-19 T2-89-19 T2-89-19 T0-89-19 T0-99-19 T0-99-19 T0-99-19 T0-99-19 T0-99-19 T0-99-19 T0-99-19 T0-99-19 T0-99-19 T0-99-								
OCCP CC201046 CC201047 CC201048 CC201049 CC201049 CC201040 CC201040 <thcc201040< th=""> <thcc201040< th=""> <thcc< th=""><th></th><th></th><th></th><th></th><th>RG_FRUL_BIC</th><th></th><th></th><th></th></thcc<></thcc201040<></thcc201040<>					RG_FRUL_BIC			
Phylink Arthropola 0								
Subphytim: Heasoda 0								
Chess function D <thd< th=""> D <thd< th=""> <t< td=""><td></td><td>0</td><td></td><td></td><td></td><td>· ·</td><td></td><td>-</td></t<></thd<></thd<>		0				· ·		-
Family Longetting 0 0 0 0 0 0 0 Printed Longetting 33 14 0 1 130 10 0 Sends 0 1 1560 171 5201 460 100 Sends 33 0 2,480 200 900 400 100 Sends 0 0 0 0 0 200 0 400 Drunche Contragetting 0 0 0 0 200 0 200 0 200 0 200 0 200 0		-				-		-
Ampless 33 29 220 0 3320 140 100 600 Family Editionation 33 10 2480 717 500 460 160 Selfs Ancian accus 33 0 2480 717 500 460 160 Selfs Ancian accus 33 0 2480 720 600 160 920 Selfs Ancian accus 33 43 740 50 720 400 920 Conside solutions 0 20 190 600 200 400 200 Conside solutions 00 20 190 200 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td>						-		-
Family: Baetidae 33 140 120 40 Scattering 0 1.580 717 2.20 40 Seade inclusion group 33 0 2.480 240 900 400 Seade inclusion group 33 0 2.480 20 900 400 20 400 <td></td> <td></td> <td>÷</td> <td>-</td> <td></td> <td>~</td> <td>-</td> <td>~</td>			÷	-		~	-	~
Acadabia 0<								
Sacta 0 0 1,560 717 520 460 160 Family control control control 133 40 240 620 900 100 900 100 900 100 900 100 900 100 900 100 900 100 900 100<								
Bases: Ancident group 33 0 24.80 250 900 1,080 980 Channels: Address: 50 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 20 0 20 20 0 20 <								
Druneis 60 29 240 0 20 0 20 0 20 0 <	Baetis rhodani group	33	0					
Danality colorities 0 0 0 0 20 40 Landity colorities 1917 2.27 8.460 950 4.690 5.140 2.0 40 Landity colorities 1917 2.27 8.460 950 4.690 5.140 2.0 0 2.0 0 2.0 0								
Drune observer Drune observer <thdrune observer<="" th=""> Drune ob</thdrune>					-			
Oranela spatiatica O O O O O O O O O Charley Hogtspenide 207 227 8.440 650 4.480 6.140 2.160 Charley Hogtspenide 0								
Family. Hopisgenildae 1,917 2,271 8,440 950 4,480 5,140 2,100 0 Exercise 30 22 22 0 20 0		-						
Chrogenig Chrogenig Carlot 20 <td></td> <td></td> <td></td> <td></td> <td></td> <td>~</td> <td></td> <td>~</td>						~		~
Chalthogang 117 86 0			243	20				
Family: Leptophibilide 0	<u>Epeorus</u>	50	29	220		20	100	
VecketApplication 0								-
Andrease Image: Capital Science (Construction) Image: Capital Sc								
Tamily: Capinidae 33 14 20 50 20	νευτεριορπιερία	0	0	0	U	0	0	0
Tamily: Capinidae 33 14 20 50 20	Order: Plecoptera	0	0	0	0	0	0	0
Utccoping 0			14	20	50	20	20	
Suvalia 33 43 40 0 20 20 0 Family, Leucridae 17 0 120 167 20 0 0 Family, Vencuridae 0 0 167 20 0 0 0 Panily, Vencuridae 0 0 1380 183 500 20 0 0 0 Zapada 0 0 1,340 0 620 1,140 380 200 320 100 0 200 200 60 200 200 60 200 200 1100 0 0 0 0 200 1100 0	<u>Utacapnia</u>					~		·
Sixelsa 0 71 80 33 200 120 160 Parally: Loutridae 0								
Family: Louciridae 17 0 120 167 20 0 0 Family: Nemouridae 0 57 920 17 0 120 100 Family: Nemouridae 0 57 920 17 0 120 100 Zanada 00 0								
Parally: Newoundae 0							-	
Family: Nonouridae 0 57 920 17 0 120 100 Zapada 50 0 1,380 183 500 280 60 Zapada cryptersis group 50 0 1,340 0 620 1,44 380 0 0 280 60 Zapada cryptersis group 50 0 1,340 0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></t<>								-
Visoka cataractae 0 14 0 0 0 0 20 Zapada oregonansis group 50 0 1,340 0 620 1,140 380 Zapada oregonansis group 50 0 1,340 0 620 1,140 380 Zapada oregonansis group 667 70 650 0 200 320 180 Zapada ocumbiana 667 70 650 0 <t< td=""><td></td><td>0</td><td>57</td><td>920</td><td>17</td><td>0</td><td>120</td><td></td></t<>		0	57	920	17	0	120	
Zapada circigonensis aroup 50 0 1.340 0 620 1.140 380 Zapada columbiana 867 700 590 0 200 320 180 Family: Pottoperiidae 0 14 0 <t< td=""><td>Visoka cataractae</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Visoka cataractae							
Zapeda cuinclipes 0 40 183 0 0 0 Family: Poltoperlidae 0 14 0								
Zapada columbiana 867 700 580 0 200 320 180 Varageria 0 14 0								
Family: Peloperidae 0 14 0 0 0 0 0 Family: Portidae 0		-	÷			~		\$
Yorageria 0 0 0 0 0 0 0 Family. Periodidae 0 0 0 233 0 0 0 Family. Periodidae 167 43 60 0 200 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Hesperoperia 0 0 0 233 0 0 40 Kogotus 0 0 200 50 200 260 100 Kogotus 0	Yoraperla	0				0		0
Feriodidae 167 43 60 0 0 40 20 Kogatus 0 0 200 50 200 200 100 Megarys 200 71 240 0 40 0 60 Femily: Taeniopterygidae 217 129 3,160 217 160 440 180 Taenionema 0 0 0 0 0 0 0 0 0 Order: Trichoptera 0								
Kogotus 0 0 200 50 200 260 100 Bearcus 0		•				~	-	\$
Megarys 200 71 240 0 40 0 60 I Family: Taeniopterygidae 217 129 3,160 217 160 440 180 Taeniomeria 0<						~		
Setvana 0 </td <td></td> <td></td> <td></td> <td></td> <td><u></u></td> <td>10</td> <td></td> <td></td>					<u></u>	10		
Taenionema 0					0			
Corder: Trichoptera 0 340 33 620 340 100 Pamily: Apatanilidae 0	Family: Taeniopterygidae	217		3,160		160		180
Family: Apatanilage 0 0 0 0 0 0 0 Apatania 0 </td <td>Taenionema</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	Taenionema	0	0	0	0	0	0	0
Family: Apatanilage 0 0 0 0 0 0 0 Apatania 0 </td <td>L Ouden Trickentere</td> <td>0</td> <td>0</td> <td>240</td> <td>22</td> <td>000</td> <td>240</td> <td>100</td>	L Ouden Trickentere	0	0	240	22	000	240	100
Apatania 0 0 80 0 80 0 0 Family: Brachycentrus 0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
Family: Brachycentridae 0								
Brachveentrus americanus 0 0 133 0 0 0 Micrasema 0					0		0	
Micrasema 0	Brachycentrus		0	0	133		0	0
I Family: Glossosomatidae 0 40 0 0 40 0<		-						
Glossosoma 0								
Family: Hydropsychidae 0 0 780 0 200 360 120 Parapsyche 0		-				-		-
Parapsyche 0		-						
Parapsyche elsis 0 0 40 0 20 20 0 Family: Hydroptilidae 0	Parapsyche	0	0	0	0	0	0	0
Hydroptia 0	Parapsyche elsis							
Family: Linnephilidae 0 40 0								
Family: Rhyacophilidae 0								
Rhvacophila 0 720 150 20 60 0 Rhvacophila betteni group 0 0 60 0 40 0 0 0 Rhvacophila brunnea/vemna group 0 0 20 0 80 100 20 Rhvacophila hyalinata group 0 0 20 0 80 100 20 Rhvacophila hyalinata group 0 0 0 0 0 0 0 0 0 Rhvacophila hyalinata group 0								
Rhyacophila betteni group 0 60 0 40 0 0 Rhyacophila brunnea/verna group 0 0 20 0 80 100 20 Rhyacophila hyalinata group 17 0 60 0 0 0 0 Rhyacophila hyalinata group 0								
Rhyacophila brunnea/verma group 0 0 20 0 80 100 20 Rhyacophila hyalinata group 17 0 60 0 </td <td>Rhyacophila betteni group</td> <td>0</td> <td>0</td> <td>60</td> <td>0</td> <td>40</td> <td>0</td> <td>0</td>	Rhyacophila betteni group	0	0	60	0	40	0	0
Rhvacophila vofixa group 0 <td>Rhyacophila brunnea/vemna group</td> <td></td> <td></td> <td>20</td> <td></td> <td>80</td> <td></td> <td></td>	Rhyacophila brunnea/vemna group			20		80		
Rhyacophila narvae 0 0 0 0 0 20 0 Family: Uenoidae 0	Rhyacophila hyalinata group							
Family: Uenoidae 0		-						
Neothremma 0 0 20 0 0 0 0 Order: Coleoptera 0<	Family: Uenoidae							
Order: Coleoptera O								
Family: Elmidae 0		-	~		~		Ŭ	
Family: Elmidae 0								
Narpus 0 0 0 17 0 0 0 Varpus 0 0 0 17 0 0 0 Order: Diptera 0 </td <td>Family: Elmidae</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Family: Elmidae	-						
Order: Diptera 0			-					
Family: Athericidae 0	<u>ivarpus</u>	0	U	0	17	0	U	0
Family: Athericidae 0	Order: Diptera	0	0	0	0	0	0	0
Atherix 0 0 0 17 0 0 0								
	Atherix	-	0	0	17	0	0	0
Family: Ceratopogonidae 0	Family: Ceratopogonidae	0	0	0	0	0	0	0

Page 5 of 8

Site:	2019 PG 1124 BIC 1		2019 RG LIDCOM BIC		2019 RG LIDSL BIC-1		
Sample: Sample Collection Date:		2 RG_LI24_BIC-3 06-Sep-19	RG_LIDCOM_BIC 12-Sep-19	<u>RG_FRUL_BIC</u> 12-Sep-19	10-Sep-19	RG_LIDSL_BIC- 10-Sep-19	-2 RG_LIDSL_BIC 10-Sep-19
CC#:	CC201045	CC201046	CC201047	CC201048	CC201049	CC201050	CC201051
Family: Chironomidae Subfamily: Chironominae	<u> </u>	29	2,340	<u>150</u> 0	1,220	1,200 0	640
Tribe: Chironomini	0	0	0	0	0	0	0
olypedilum Tribe: Tanytarsini	0	0	0	<u>33</u> 0	0	0	0
<u>licropsectra</u>	0	29	80	100	140	0	0
<u>tempellinella</u> Subfamily: Diamesinae	0	0	0	0	0	0	0
Tribe: Diamesini	0	0	0	0	0	0	0
liamesa lagastia	<u>267</u> 17	29 0	2,520 320	<u>33</u> 0	40 520	40 480	40 240
seudodiamesa	0	0	0	0	0	0	0
Subfamily: Orthocladiinae rillia	0	0	0	0	0	0	0
ricotopus (Nostococladius)	0	0	0 20	17 0	20 0	0	0
ukiefferiella	467	57	1,300	0	280	240	300
l <u>ydrobaenus</u> irenosmittia	0	0	660 0	0	740	160 0	<u>140</u> 0
imnophyes	0	0	0	0	0	0	0
lanocladius orthocladius complex	<u> </u>	0 43	0 3,360	0 200	0 660	0 760	0 620
arametriocnemus	0	0	0	0	0	0	0
arorthocladius Pheocricotopus	0 67	14 214	0 840	0 33	0 760	0 560	0 300
hienemanniella	0	0	0	0	0	0	0
<u>vetenia</u> Subfamily: Tanypodinae	67 0	<u>43</u> 0	1,500	<u>150</u> 0	340	300	360
Tribe: Pentaneurini	0	0	0	0	0	0	0
hienemannimyia group Family: Empididae	0	0	0 20	0 33	0	0 60	0 20
linocera	0	0	0	0	0	0	0
leoplasta Dreogeton	0	0	0	<u> </u>	0	0	20
Family: Pelecorhynchidae	0	0	0	0	0	0	0
ilutops Family: Psychodidae	0	0	20	0	0	0	0
ericoma/Telmatoscopus	0	0	180	483	20	80	Ő
Family: Simuliidae	0	0	120	0	0	20 0	0
rosimulium/Helodon	0	14	40	0	0	0	0
<u>imulium</u> Family: Stratiomyidae	0	0	120 0	33 0	0	60 0	0
Family: Tipulidae	17	0	60	0	0	40	0
<u>ntocha</u> vicranota	0	0	0	0 17	0	0	0
onomyodes	0	14	0	0	0	0	0
l <u>exatoma</u> imnophila	0	0	40 0	33 0	0	20 0	0
				*			
Order: Hemiptera Family: Corixidae	0	0	0	0	0	0	0
allicorixa	17	0	0	0	0	0	Ö
ubphylum: Chelicerata	0	0	0	0	0	0	0
Class: Arachnida	0	0	0	0	0	0	0
Order: Trombidiformes Family: Aturidae	<u>17</u> 0	0	100 0	0	0	0	0
turus	0	0	60	0	0	0	0
Family: Feltriidae	0	0	0 120	0	0	0 20	0
Family: Hydryphantidae	0	0	0	0	0	0	0
<u>rotzia</u> Family: Hygrobatidae	0	0	0	0	0	0	0
tractides Family: Lebertiidae	0	14 0	0	0	0	0	0
ebertia	33	43	0	83	80	100	80
Family: Mideopsidae	0	0	0	0	0	0	0
Family: Sperchontidae	0	0	0	0	0	0	0
perchon Family: Torrenticolidae	50 0	29 0	220 0	0	120 0	40 0	20 0
estudacarus	0	0	0	0	0	0	0
orrenticola	0	0	0	17	0	0	0
uborder: Prostigmata	0	0	0	0	0	0	0
Family: Stygothrombidiidae	0	0	0	0	0	0	0
					0		
Order: Sarcoptiformes Order: Oribatida	0	0	0	0	0	0	0
Family: Hydrozetidae	0	0	0	0	0	0	0
hylum: Annelida	0	0	0	0	0	0	0
ubphylum: Clitellata	0	0	0	0	0	0	0
Class: Oligochaeta Order: Lumbriculida	0	0	0	0	0	0	0
Family: Lumbriculidae	0	0	0	33	20	0	Ő
<u>hynchelmis</u>	0	0	0	0	0	0	0
Order: Tubificida	0	0	0	0	0	0	0
Family: Naididae lais	0	0	0	0 100	0	0	0
Subfamily: Tubificinae without Totals:	0 5,586	0 4,601	0 40,420	0 5,382	0 15,480	0 15,620	0 7,940
axa present but not included:							
hylum: Arthropoda ubphylum: Crustacea	0	0	0	0	0	0	0
Class: Ostracoda	17	14	20	17	20	20	20
Class: Maxillipoda Class: Copepoda	0	0	0 0	0	0	0	0
hylum: Nemata hylum: Platyhelminthes	17 0	14 0	20 0	0	0	20 0	20 0
		U		11	U	U	U

Cordillera Consulting	Project: Teck Line	Creek LAEMP 201	9 (197202.0006) - K	Kick Sampling	Taxonomist:	Scott Finlayson 250-494-7553 scottfinlayson@cordilleraconsult
Site:	2019					ð
	RG_LIDSL_BIC-4	RG_LIDSL_BIC-5	RG_LI8_BIC-1	RG_LI8_BIC-2	RG_LI8_BIC-3	
Sample Collection Date:	10-Sep-19		11-Sep-19	11-Sep-19	11-Sep-19	1
	CC201052	CC201053	CC201054	CC201055	CC201056	1
hylum: Arthropoda	0	0	0	0	0	
ubphylum: Hexapoda	0	0	0	0	0	_
Class: Insecta	0	0	0	0	0	_
Order: Ephemeroptera	0	0	0	0	0	_
Family: Ameletidae	0	0	0	0	0	_
<u>meletus</u>	320	280	20	300	200	_
Family: Baetidae	40	0	300	0	120	_
<u>centrella</u>	0	0	0	0	20	-
<u>aetis</u>	560	660	460	1,260	540	-
aetis rhodani group	1,320	1,400	1,460	1,380	1,440	-
Family: Ephemerellidae	540 0	600	420 20	860	140 0	-
<u>runella</u> runella coloradensi <u>s</u>	0	0	0	0	0	-
runella doddsii	160	160	620	0	560	-
runella spinifera	0	0	020	0	0	-
Family: Heptageniidae	4,500	3,740	5,560	4,400	5,080	-
inygmula	4,500	0	0	0	0	-
peorus	420	220	300	200	980	-1
peorus hithrogena	20	0	180	40	400	-1
Family: Leptophlebiidae	0	0	0	0	400	-1
eoleptophlebia	0	0	0	0	0	-1
	U	0	U	0	0	-1
Order: Plecoptera	0	0	0	0	0	-1
Family: Capniidae	0	60	0	0	0	-1
tacapnia	0	0	0	0	0	-1
Family: Chloroperlidae	40	0	40	0	0	-1
uwallia	40	20	0	0	0	1
weltsa	140	120	0	0	0	1
Family: Leuctridae	0	0	120	40	0	1
araleuctra	0	0	0	0	0	1
Family: Nemouridae	640	380	220	820	640	-
isoka cataractae	0	0	0	0	0	-
apada	260	360	1,420	1,620	1,620	1
apada oregonensis group	820	600	680	240	760	-
apada cinctipes	0	0	0	0	0	1
apada columbiana	160	260	500	100	220	-
Family: Peltoperlidae	0	0	0	0	0	-
oraperla	0	0	0	0	0	-
Family: Perlidae	0	0	0	0	0	-
lesperoperla	0	0	0	0	0	-
Family: Perlodidae	0	20	20	0	0	
ogotus	280	80	240	160	200	
legarcys	80	60	300	180	200	
<u>etvena</u>	0	0	0	0	0	
Family: Taeniopterygidae	600	260	2,420	1,900	1,760	
aenionema	0	0	0	0	0	
Order: Trichoptera	600	400	360	420	640	
Family: Apataniidae	0	0	0	0	0	_
patania	0	60	0	0	0	4
Family: Brachycentridae	0	0	0	0	0	4
rachycentrus	0	0	0	0	0	4
rachycentrus americanus	0	0	0	0	0	4
<u>licrasema</u>	0	0	0	0	0	-1
Family: Glossosomatidae	40	0	0	0	0	4
ilossosoma Somilur Hudropovahidaa	0	20	0	0	0	4
Family: Hydropsychidae	160	420	360	200	200	4
arapsyche	0	0	0	0	0	4
arapsyche elsis	220	240	40	0	0	4
Family: Hydroptilidae	0	0	0	0	0	4
<u>ydroptila</u> Eamily: Limpophilidae	0 20	0 20	0	0	0	-1
Family: Limnephilidae	20	20	0	0	0	-1
Family: Rhyacophilidae	40	100	440	300	240	-1
<u>nyacopniia</u> hyacophila betteni <u>group</u>	40	20	20	60	80	-1
hyacophila betteni group hyacophila brunnea/vemna group	140	100	400	300	280	4
hyacophila brunnea/vernna group hyacophila hyalinata group	80	20	20	20	60	-1
nyacophila nyalinata group hyacophila vofixa group	0	0	0	0	0	1
<u>hyacophila vofixa group</u> hyacophila narvae	100	0	0	0	0	1
Family: Uenoidae	0	0	0	0	0	-1
eothremma	0	0	0	0	0	4
<u>eounennna</u>	U	0	U	0	U	4
Order: Coleoptera	0	0	0	0	0	4
Family: Elmidae	0	0	0	0	0	-1
	20	0	0	0	20	-1
<u>eterlimnius</u>	20	0	0	0	20	-1
arpus	U	U	U	0	U	-1
Ordori Dintoro	0	0	0	0	0	4
Order: Diptera	0	0	0	0	0	4
Family: Athericidae			0		0	-1
theriv						-
therix Family: Ceratopogonidae	0	0	0	0	0	-

Page 7 of 8

Cordillera Consulting	Project: Teck Line	Creek LAEMP 201	9 (197202.0006) - K	ick Sampling	Taxonomist:	Scott Finlayson 250-494-7553 scottfinlayson@cordilleraconsu
Sample Collection Date:	RG LIDSL BIC-4			RG_LI8_BIC-2 11-Sep-19	2019 RG_LI8_BIC-3 11-Sep-19 CC201056	
Family: Chironomidae	2,200	1,640	1,100	840	700	
Subfamily: Chironominae Tribe: Chironomini	0	0	0	0	0	1
<u>Polypedilum</u> Tribe: Tanytarsini	0	0	0	0	0	-
<u> Aicropsectra</u>	60	20	20	60	0	-
<u>Stempellinella</u> Subfamily: Diamesinae	0	0	0	0	<u>20</u> 0	-
Tribe: Diamesini Diamesa	0	0 40	0 20	0	0	-
Pagastia	660	660	0	0	0	
<u>Seudodiamesa</u> Subfamily: Orthocladiinae	0	0	0	0	<u>20</u> 0	-
Brillia	0	0	0	20	0	-
<u> Corynoneura</u> Cricotopus (Nostococladius <u>)</u>	0	0	0	20 0	20 20	-
ukiefferiella Ivdrobaenus	520 380	560 420	160 180	120 200	60 120	-
renosmittia	0	0	0	0	0	
<u>imnophyes</u> Ianocladius	0	0	<u>40</u>	0	0	-
Drthocladius complex	2,040	3,100	60	80	140	-
Parametriocnemus Parorthocladius	0	0	0	0	0	-
Rheocricotopus Thienemanniella	420 0	380 20	740 0	560 0	460 0	-
vetenia	440	560	80	20	140	1
Subfamily: Tanypodinae Tribe: Pentaneurini	0	0	0	0	0	-
hienemannimyia group	0	0	0	0	0	1
Family: Empididae	20 0	0	40 0	0	20 0	1
leoplasta Dreogeton	0	0	0	20 0	60 0	-
Family: Pelecorhynchidae	0	0	0	0	0	1
<u>Glutops</u> Family: Psychodidae	20 0	0	0	0	0	-
Pericoma/Telmatoscopus Family: Simuliidae	20 20	60 80	60 140	160 80	100 20	1
Prosimulium	0	0	0	0	0	-
Prosimulium/Helodon Simulium	0 40	0 40	100 40	20 40	<u>20</u>	-
Family: Stratiomyidae	0	0	0	0	0	-
Family: Tipulidae	0	0	0	0	0	-
<u>Dicranota</u> Gonomyodes	0	0	0	0	0	-
lexatoma	20	0	20	0	20	
<u>imnophila</u>	0	0	0	0	0	-
Order: Hemiptera	0	0	0	0	0	-
Family: Corixidae Callicorixa	0	0	0	0	0	-
Subphylum: Chelicerata	0	0	0	0	0	-
Class: Arachnida	0	0	0	0	0	
Order: Trombidiformes Family: Aturidae	60 0	0	0	0	0	-
<u>Aturus</u>	0	0	0	0	0	
Family: Feltriidae	0 20	0 60	0 20	0	0	-
Family: Hydryphantidae	0	0	0	0 20	0 20	-
P <u>rotzia</u> Family: Hygrobatidae	0	0	0	0	0	-
<u>tractides</u> Family: Lebertiidae	0	0	0	0	0	-
ebertia_	80	40	60	0	20	-
Family: Mideopsidae //ideopsis	0	0	0	0	0	-
Family: Sperchontidae	0 60	0 80	0 80	0 60	0 60	-
Sperchon Family: Torrenticolidae	0	0	0	0	0	1
<u>estudacarus</u> orrenticola	60 0	0	0	0	0	4
					-	1
uborder: Prostigmata Family: Stygothrombidiidae	0	0	0	0	0	1
tygothrombium	0	0	0	0	0	-
Order: Sarcoptiformes	0	0	0	0	0	1
Order: Oribatida Family: Hydrozetidae	20 0	0	0	0	0	-
						1
hylum: Annelida subphylum: Clitellata	0	0	0	0 0	0	1
Class: Oligochaeta Order: Lumbriculida	0	0	0	0	0	-
Family: Lumbriculidae	20	0	80	200	260	1
<u>Rhynchelmis</u>	0	20	20	20	260	4
Order: Tubificida	0	0	0	0	0	1
Family: Naididae lais	0	0	0	0	0	1
Subfamily: Tubificinae without Totals:	0 19,580	0 18,460	0 20,000	0 17,340	0 18,960	-
	10,000	10,400	20,000	17,340	10,300	1
axa present but not included: hylum: Arthropoda	0	0	0	0	0	1
ubphylum: Crustacea Class: Ostracoda	0 20	0 20	0 20	0 20	0 20	-
Class: Maxillipoda	0	0	0	0	0	1
Class: Copepoda	0	0	0	0	0	-
Phylum: Nemata	20	20	20	20	20	1
Phylum: Platyhelminthes Class: Turbellaria	0 20	0 20	0 20	0 20	0 20	1
Totals:	60	60	60	60	60	•

 Table A.8: Benthic Macroinvertebrates Collected Through Hess Sampling (Sampling Area = 0.1m²) from Teck Line Creek, 2019 (Densities Expressed per Sampled Area)

Station																				
	1		2		3		4		5		6		7		8		9		10	
ROUNDWORMS P. Nemata	204	0.0212	88	0.0084	148	0.0180	184	0.0192	184	0.0224	176	0.0140	312	0.0200	552	0.0376	152	0.0188	72	0.010
FLATWORMS P. Platyhelminthes																				
Cl. Turbellaria																				
F. Planariidae	8	0.1056	36	0.0440	20	0.0628	32	0.2448	24	0.1256	36	0.1420	48	0.1176	8	0.1032	100	0.1684	80	0.350
<u>ANNELIDS</u> P. Annelida																				
WORMS																				
Cl. Oligochaeta																				
F. Enchytraeidae	_	_	_	_	_	_	_	_	40	0.0016	4	0.0004	12	0.0012	_	_	_	_	_	_
F. Lumbricidae	4	0.0208	-	-	-	-	-	-	8	0.0416	-	-	-	-	_	-	-	-	-	-
F. Lumbriculidae	-	-	4	0.0040	4	0.0096	8	0.0352	-	-	-	-	16	0.0976	-	-	-	-	16	0.098
ARTHROPODS MITES																				
Cl. Arachnida																				
Subcl. Acari	-	-	-	-	-	-	-	-	-	-	-	-	4	0.0004	-	-	-	-	-	-
F. Hydryphantidae	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
F. Lebertiidae	12	0.0040	8	0.0048	32	0.0220	72	0.0384	56	0.0232	24	0.0108	12	0.0076	24	0.0192	16	0.0072	32	0.008
F. Sperchonidae	68	0.0404	80	0.0312	60	0.0392	112	0.0656	72	0.0392	68	0.0300	52	0.0208	40	0.0272	4	0.0008	32	0.011
SEED SHRIMPS																				
Cl. Ostracoda	276	0.0684	120	0.0288	364	0.0920	968	0.2440	624	0.1480	588	0.1368	1,240	0.3152	768	0.1960	140	0.0356	840	0.197
NSECTS																				
Cl. Insecta																				
BEETLES																				
O. Coleoptera																				
F. Elmidae	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	8	0.01
MAYFLIES																				
O. Ephemeroptera																				
F. Ameletidae	4	0.0012	-	-	4	0.0008	-	-	-	-	-	-	-	-	-	-	-	-	-	-
F. Baetidae	8	0.0316	4	0.0188	8	0.0024	24	0.0744	-	-	12	0.0044	8	0.0436	24	0.1264	4	0.0024	8	0.005
F. Ephemerellidae	8	0.0016	-	-	8	0.0064	8	0.0056	-	-	12	0.0044	4	0.0156	-	-	16	0.0036	8	0.00
F. Heptageniidae	96	0.0280	60	0.0176	28	0.0112	64	0.0200	16	0.0936	56	0.0160	64	0.0148	24	0.0088	20	0.0068	64	0.023
STONEFLIES																				
O. Plecoptera																				
F. Capniidae	-	-	-	-	-	-	-	-	-	-	-	-	4	0.0164	-	-	4	0.0108	-	-
F. Chloroperlidae	24	0.0712	8	0.0168	-	-	-	-	40	0.1072	28	0.0668	4	0.0100	8	0.0192	12	0.0184	176	0.67
F. Leuctridae	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	8	0.00
F. Nemouridae	28	0.1368	32	0.1652	20	0.1848	16	0.1296	16	0.0976	24	0.1516	16	0.0764	40	0.2888	28	0.1644	24	0.23
F. Perlodidae	20	0.2928	8	0.0848	4	0.0004	8	0.1248	8	0.0032	-	-	8	0.1288	8	0.0056	4	0.0520	-	-
F. Peltoperlidae	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
F. Taeniopterygidae	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CADDISFLIES																				
O. Trichoptera immature *	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
F. Apataniidae	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
F. Brachycentridae	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
F. Glossosomatidae	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
F. Hydropsychidae	19	1.1802	8	0.9816	13	1.4294	3	0.3121	-	-	13	1.2316	-	-	28	1.7202	25	1.6956	16	0.85
F. Hydroptilidae	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
F. Limnephilidae	-	-	4	0.0004	-	-	8	0.0024	-	-	4	0.0008	8	0.0020	8	0.0016	-	-	-	-
F. Rhyacophilidae	28	1.8776	16	0.7384	36	2.6128	40	2.6312	16	0.6576	40	2.0168	4	0.7204	56	2.6800	52	2.8628	56	4.198
F. Uenoidae	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
IRUE FLIES O. Diptera																				
indeterminate	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
pupae	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
F. Ceratopogonidae	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
F. Chironomidae	1,500	1.8660	1,136	1.5016	1,420	2.3800	1,776	2.4984	2,368	2.2552	1,448	2.3260	2,168	2.3356	3,224	3.3824	1,372	1.3516	3,744	3.76
F. Empididae	24	0.0528	4	0.0080	16	0.0364	32	0.0584	8	0.0136	12	0.0360	16	0.0336	64	0.1432	20	0.0452	40	0.07
F. Ephydridae	-	-	-	-	-	-	8	0.0008	-	-	-	-	-	-	-	-	-	-	-	-
F. Muscidae	-	-	-	-	-	-	-	-	-	-	-	-	4	0.0708	-	-	4	0.0088	-	-
F. Pelecorhyncidae	-	-	-	-	-	-	-	-	-	-	-	-	-	-	8	0.2304	-	-	-	-
F. Psychodidae	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
F. Simuliidae	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
F. Tipulidae	-	-	-	-	-	-	-	-	-	-	-	-	-	-	8	0.0248	4	0.0068	-	-
OTAL NUMBER OF	2,331		1,616		2,185		3,363		3,480		2,545		4,004		4,892		1,977		5,224	
ORGANISMS PER SAMPLE OTAL NUMBER OF TAXA ^a																				
OTAL NUMBER OF TAXA	17	5.8002	16	3.6544	16	6.9082	17	6.5049	14	3.6296	16	6.1884	20	4.0484	17	9.0146	18	6.4600	17	10.53
		0.0002		0.0044		0.0002		0.0040		0.0230		0.1004		7.0404		0.0140		0.4000		10.0

^a Bold entries excluded from taxa count

*Immature Trichoptera excluded from taxa count if Uenoidae were also present in sample

 Table A.8: Benthic Macroinvertebrates Collected Through Hess Sampling (Sampling Area = 0.1m²) from Teck Line Creek, 2019 (Densities Expressed per Sampled Area)

Station										LID	SL									
	1		2		3		4		5		6		7		8		9		10	
ROUNDWORMS P. Nemata	1	0.0001	26	0.0076	14	0.0014	7	0.0003	4	0.0004	16	0.0012	2	0.0010	4	0.0002	8	0.0004	8	0.001
		0.0001	20	0.0070	14	0.0014	,	0.0000	-	0.0004	10	0.0012	2	0.0010	-	0.0002	0	0.0004	0	0.001
FLATWORMS P. Platyhelminthes																				
Cl. Turbellaria F. Planariidae	19	0.0462	14	0.0374	1	0.0005	16	0.0485	46	0.1300	22	0.0560	15	0.0297	9	0.0160	29	0.1090	10	0.013
	15	0.0402	14	0.0374		0.0005	10	0.0400	40	0.1500	22	0.0000	15	0.0237	5	0.0100	23	0.1030	10	0.013
<u>ANNELIDS</u> P. Annelida																				
WORMS																				
Cl. Oligochaeta																				
F. Enchytraeidae	-	-	4	0.0010	-	-	-	-	-	-	2	0.0004	-	-	-	-	2	0.0002	-	-
F. Lumbricidae	-	-	-	-	-	-	-	-	2	0.0068	-	-	-	-	1	0.0040	-	-	-	-
F. Lumbriculidae	-	-	14	0.0606	3	0.0090	3	0.0050	9	0.0377	4	0.0216	3	0.0080	-	-	24	0.0994	13	0.06
ARTHROPODS																				
MITES																				
Cl. Arachnida																				
Subcl. Acari	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
F. Hydryphantidae	-	-	2	0.0002	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
F. Lebertiidae	4	0.0015	18	0.0066	1	0.0005	5 1	0.0017	2 1	0.0008	4	0.0018	6 1	0.0016	1	0.0001	-	-	8 3	0.00
F. Sperchonidae SEED SHRIMPS	-	-	8	0.0020	-	-	I	0.0006	1	0.0004	6	0.0024	I	0.0007	-	-	-	-	3	0.00
Cl. Ostracoda	21	0.0035	42	0.0096	11	0.0025	18	0.0043	46	0.0106	34	0.0070	71	0.0158	14	0.0045	56	0.0132	48	0.01
ol. oolidoodd	21	0.0000	12	0.0000		0.0020	10	0.0010	10	0.0100	01	0.0070		0.0100		0.0010	00	0.0102	10	0.01
NSECTS																				
Cl. Insecta																				
BEETLES																				
O. Coleoptera															_					
F. Elmidae	-	-	-	-	1	0.0004	1	0.0005	-	-	-	-	-	-	7	0.0095	-	-	1	0.00
MAYFLIES																				
O. Ephemeroptera																				
F. Ameletidae	16	0.0032	20	0.0060	4	0.0014	17	0.0040	20	0.0149	14	0.0042	11	0.0143	-	-	16	0.0048	13	0.00
F. Baetidae	18	0.0480	42	0.1642	6	0.0190	10	0.0266	3	0.0306	20	0.0774	13	0.0565	-	-	18	0.0644	17	0.06
F. Ephemerellidae	16	0.0054	91	0.0585	30	0.0074	15	0.0050	14 212	0.0073	28	0.0100	25	0.0628	10 50	0.0088	49	0.0672	42	0.05
F. Heptageniidae STONEFLIES	195	0.0814	434	0.2252	105	0.0305	241	0.0721	313	0.1723	250	0.2178	204	0.1066	50	0.0316	460	0.1524	267	0.15
O. Plecoptera																				
F. Capniidae	1	0.0002	-	-	-	-	1	0.0006	3	0.0064	2	0.0020	1	0.0006	-	-	4	0.0038	1	0.00
F. Chloroperlidae	19	0.0460	22	0.0414	7	0.0131	54	0.1339	102	0.1380	42	0.0792	16	0.0274	9	0.0087	58	0.2098	38	0.08
F. Leuctridae	2	0.0041	20	0.0178	6	0.0056	2	0.0031	2	0.0007	-	-	2	0.0004	3	0.0020	6	0.0084	7	0.00
F. Nemouridae	49	0.2083	78	0.4084	38	0.1730	57	0.2211	72	0.2151	72	0.3632	30	0.1952	19	0.0753	24	0.1466	8	0.04
F. Perlodidae	8	0.1283	8	0.0592	3	0.0195	6	0.0368	17	0.2419	10	0.1482	7	0.0759	5	0.0438	8	0.0630	5	0.02
F. Peltoperlidae	1	0.0083	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
F. Taeniopterygidae	-	-	2	0.0004	-	-	3	0.0006	-	-	-	-	-	-	3	0.0007	14	0.0022	2	0.00
CADDISFLIES																				
O. Trichoptera																				
immature *	-	-	14	0.0008	2	0.0001	-	-	-	-	38	0.0026	3	0.0001	2	0.0002	4	0.0002	6	0.00
F. Apataniidae	2	0.0001	26	0.0070	1	0.0007	-	-	-	-	4	0.0016	2	0.0006	-	-	4	0.0006	4	0.00
F. Brachycentridae	-	-	-	-	-	-	1	0.0002	-	-	-	-	-	-	-	-	-	-	-	-
F. Glossosomatidae	1	0.0026	-	-	-	-	-	-	-	-	-	-	2	0.0050	1	0.0150	-	-	-	-
F. Hydropsychidae	3	0.1980	2	0.0002	3	0.1166	6	0.4899	4	0.0796	4	0.0004	2	0.0778	-	-	4	0.1983	-	-
F. Hydroptilidae F. Limpephilidae	1	0.0017	-	-	-	-	1	0.0015	-	-	-	-	- 5	- 0.0014	-	-	-	-	- 3	- 0.00
F. Limnephilidae F. Rhyacophilidae	- 19	- 0.3612	- 10	- 0.0758	- 6	- 0.0290	- 19	- 0.2924	- 23	- 0.2715	- 28	- 0.2594	5 7	0.0014	- 32	- 0.0995	- 12	- 0.1624	3 8	0.00
F. Uenoidae	-	-	-	-	-	-	-	-	-	-	-	-	-	J.2 1 34 -	32 1	0.00995	-	-	-	J.28 -
RUE FLIES																				
O. Diptera																				
indeterminate	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	0.00
pupae E Caratonogonidae	-	-	-	- 0.0036	-	-	- 3	- 0.0018	1 3	0.0074 0.0043	-	-	- 3	- 0.0029	-	-	- 4	- 0.0046	- 4	- 0.00
F. Ceratopogonidae F. Chironomidae	- 215	- 0.1681	4 658	0.0036	- 169	- 0.2005	3 300	0.2360	3 369	0.0043	- 258	- 0.1838	3 143	0.0029	- 117	- 0.0714	4 354	0.0046	4 377	0.00
F. Empididae	215	0.0141	30	0.0572	109	0.2003	9	0.2300	5	0.3028	20	0.0334	7	0.0100	1	0.0017	20	0.2942	12	0.40
F. Ephydridae	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5.04
F. Muscidae	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
F. Pelecorhyncidae	1	0.0113	12	0.0678	1	0.1309	5	0.0100	1	0.0012	27	0.0884	11	0.0114	9	0.0053	2	0.0060	-	-
F. Psychodidae	9	0.0004	26	0.0078	12	0.0022	31	0.0050	1	0.0002	16	0.0018	4	0.0005	11	0.0015	6	0.0012	7	0.00
F. Simuliidae	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
F. Tipulidae	-	-	1	0.1106	1	0.0015	8	0.0825	3	0.0679	-	-	2	0.3281	-	-	1	0.1049	1	0.00
OTAL NUMBER OF DRGANISMS PER SAMPLE	629		1,628		443		840		1,066		921		598		309		1,187		914	
OTAL NUMBER OF TAXA ^a	23		27		23		27		25		23		27		20		25		27	
OTAL BIOMASS (g)		1.3420		1.9943		0.8005		1.6997		1.8187		1.5638		1.4519		0.4000		1.7548		1.32

^a Bold entries excluded from taxa count

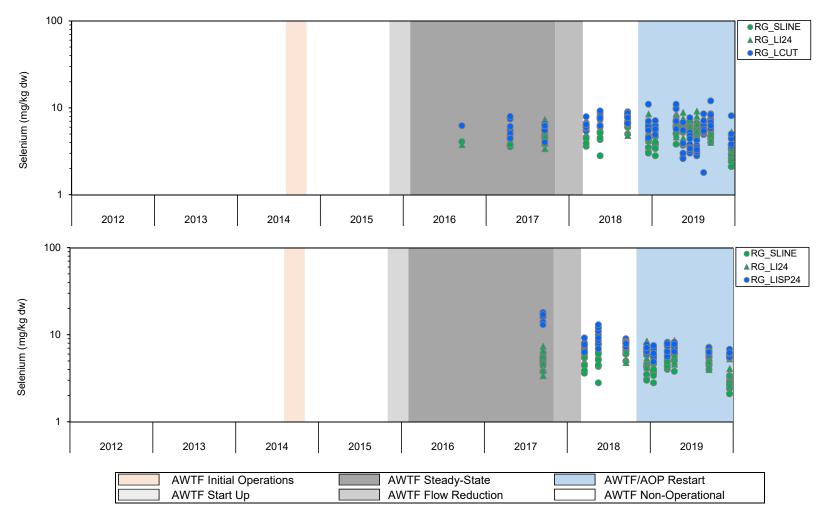
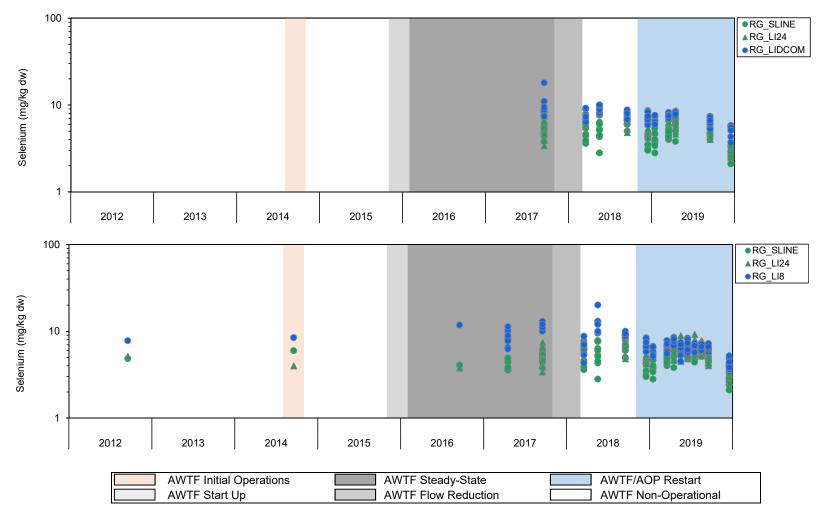
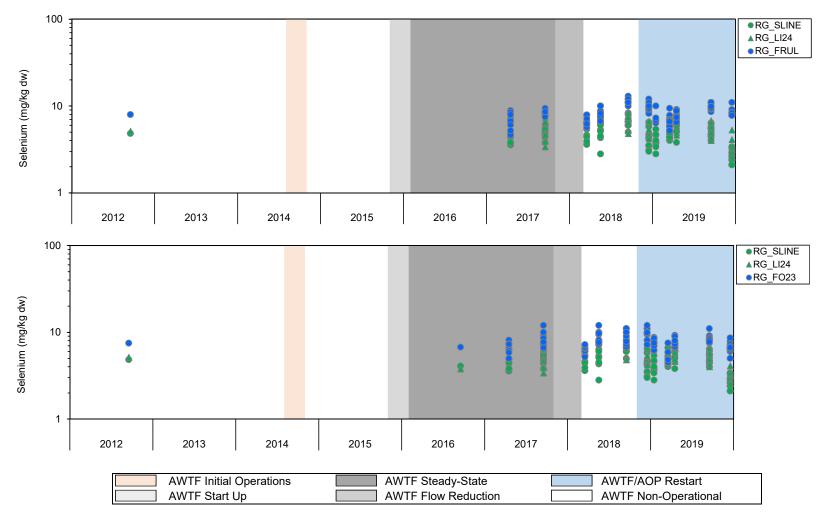

*Immature Trichoptera excluded from taxa count if Uenoidae were also present in sample

 Table A.8: Benthic Macroinvertebrates Collected Through Hess Sampling (Sampling Area = 0.1m²) from Teck Line Creek, 2019 (Densities Expressed per Sampled Area)

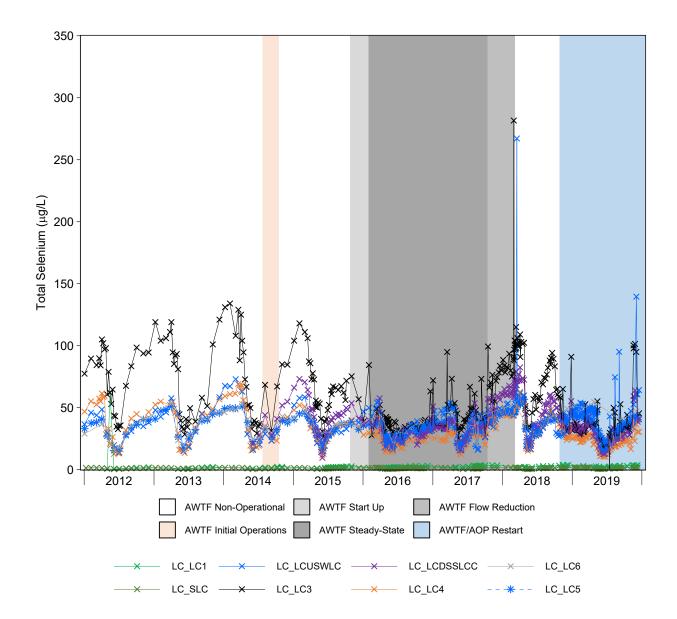
Station					L	.124									SL	INE				
	1		2		3		4		5		1		2		3		4		5	
ROUNDWORMS P. Nemata	2	0.0016	2	0.0024	1	0.0001	1	0.0001	-	-	1	0.0004	4	0.0034	4	0.0032	1	0.0001	1	0.000
FLATWORMS P. Platyhelminthes																				
Cl. Turbellaria F. Planariidae	-	-	-	-	-	-		-	-	-	-	-	-	-	4	0.0036	2	0.0023	1	0.000
<u>ANNELIDS</u> P. Annelida WORMS																				
Cl. Oligochaeta																				
F. Enchytraeidae	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
F. Lumbricidae	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
F. Lumbriculidae	2	0.0040	1	0.0148	1	0.0038	-	-	-	-	24	0.0796	14	0.0394	14	0.0374	-	-	7	0.02
<u>ARTHROPODS</u> MITES																				
Cl. Arachnida Subcl. Acari																			1	0.00
F. Hydryphantidae	-	-	-	-	-	-	-	-	- 1	- 0.0002	- 1	- 0.0003	-	-	- 4	- 8000.0	-	-	-	0.000
F. Lebertiidae	2	0.0002	1	0.0011	1	0.0005	2	0.0007	3	0.0016	-	-	2	0.0010	-	-	-	-	-	-
F. Sperchonidae	-	-	1	0.0014	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	0.00
SEED SHRIMPS Cl. Ostracoda	118	0.0316	104	0.0271	42	0.0103	141	0.0336	15	0.0028	18	0.0058	150	0.0366	8	0.0038	31	0.0077	57	0.01
NSECTS																				
Cl. Insecta BEETLES																				
O. Coleoptera																				
F. Elmidae	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MAYFLIES O. Ephemeroptera																				
F. Ameletidae	12	0.0246	9	0.0094	6	0.0066	8	0.0113	5	0.0104	3	0.0244	26	0.0974	2	0.0100	3	0.0159	7	0.03
F. Baetidae	2	0.0064	1	0.0052	1	0.0027	1	0.0025	2	0.0115	1	0.0067	3	0.0125	2	0.0036	-	-	1	0.00
F. Ephemerellidae	2	0.0002	-	-	7	0.0316	2	0.0061	1	0.0005	46	0.1265	19	0.0654	112	0.0810	12	0.0781	18	0.04
F. Heptageniidae	120	0.4322	70	0.1913	141	0.3090	128	0.3442	138	0.2801	119	0.1444	176	0.2578	136	0.1046	111	0.1173	103	0.17
STONEFLIES O. Plecoptera																				
F. Capniidae	2	0.0020	3	0.0009	2	0.0017	6	0.0059	3	0.0025	-	-	-	-	-	-	-	-	2	0.00
F. Chloroperlidae	16	0.0368	50	0.1050	26	0.2586	28	0.0918	36	0.1208	79	0.1133	60	0.1360	36	0.0404	35	0.0618	51	0.08
F. Leuctridae	6	0.0084	2	0.0028	4	0.0082	3	0.0040	12	0.0193	6	0.0058	4	0.0090	8	0.0086	10	0.0046	3	0.00
F. Nemouridae F. Perlodidae	72 2	0.0816 0.0456	11 4	0.0090 0.0692	11 6	0.0118 0.0620	30 7	0.0370 0.0827	36 11	0.0439 0.1352	4 2	0.0094 0.0626	10 3	0.0084 0.0687	8 4	0.0144 0.0132	15 4	0.0304 0.0529	7 8	0.01 0.16
F. Peltoperlidae	-	-	-	-	-	-	-	-	-	-	1	0.0020	-	-	6	0.0132	1	0.0029	-	
F. Taeniopterygidae CADDISFLIES	2	0.0006	-	-	3	0.0008	3	0.0006	-	-	2	0.0008	2	0.0002	4	0.0004	-	-	-	-
O. Trichoptera																				
immature * F. Apataniidae	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
F. Brachycentridae	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_
F. Glossosomatidae	-	-	-	-	-	-	-	-	-	-	28	0.0617	48	0.1308	60	0.0926	11	0.0379	5	0.02
F. Hydropsychidae	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
F. Hydroptilidae F. Limnephilidae	- 2	- 0.0048	- 1	- 0.0003	- 2	- 0.0007	- 2	- 0.1618	- 7	- 0.1194	- 1	- 0.0003	- 16	- 0.0092	-	-	- 1	- 0.0003	- 5	- 0.00
F. Rhyacophilidae	-	-	-	-	-	-	-	-	-	-	5	0.0848	17	0.3032	- 26	- 0.1564	6	0.0003	5 7	0.00
F. Uenoidae	2	0.0008	2	0.0029	1	0.0006	2	0.0004	3	0.0015	-	-	-	-	-	-	1	0.0005	-	-
RUE FLIES																				
O. Diptera indeterminate	-	-	1	0.0007	-	-	-	-	-	-	-	-	2	0.0146	-	-	-	-	-	-
pupae	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
F. Ceratopogonidae	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
F. Chironomidae	18	0.0068	10	0.0057	5	0.0026	10	0.0042	15	0.0043	29	0.0100	62	0.0266	42	0.0196	23	0.0082	18	0.00
F. Empididae F. Ephydridae	10 -	0.0158 -	4	0.0063	3	0.0040	1	0.0021	1	0.0027	16 -	0.0183	10 -	0.0222	22	0.0272	7	0.0227	12 -	0.02
F. Muscidae	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
F. Pelecorhyncidae	-	-	-	-	-	-	-	-	-	-	2	0.0005	4	0.0066	4	0.0082	1	0.0135	4	0.0
F. Psychodidae	-	-	1	0.0005	-	-	-	-	-	-	-	-	2	0.0008	-	-	-	-	-	-
F. Simuliidae F. Tipulidae	2 14	0.0078 0.0242	-	-	-	-	1 1	0.0058 0.0003	1	0.0049	- 1	- 0.0546	2 6	0.0002 0.0382	-	-	- 1	- 0.0017	-	-
F. Tipulidae	14	0.0242	-	-	-	-	I	0.0003	-	-	1	0.0040	U	0.0382	-	-	1	0.0017	-	-
	408		278		263		377		290		389		642		506		276		319	
ORGANISMS PER SAMPLE TOTAL NUMBER OF TAXA ^a	20		19		18		19		17		21		23		20		19		20	
	20		10		10		1.0													


^a Bold entries excluded from taxa count

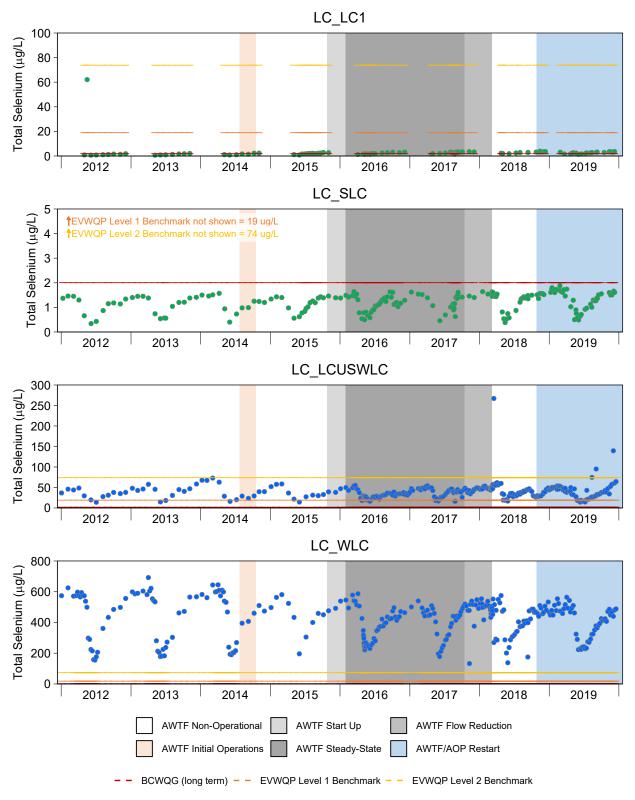
*Immature Trichoptera excluded from taxa count if Uenoidae were also present in sample APPENDIX B SUPPORTING DATA – SELENIUM MONITORING


Figure B.1: Benthic Invertebrate Selenium Concentrations, for RG_LCUT and RG_LISP24 (Mine-exposed Areas) Relative to RG_SLINE and RG_LI24 (Reference Areas), 2012 to 2019

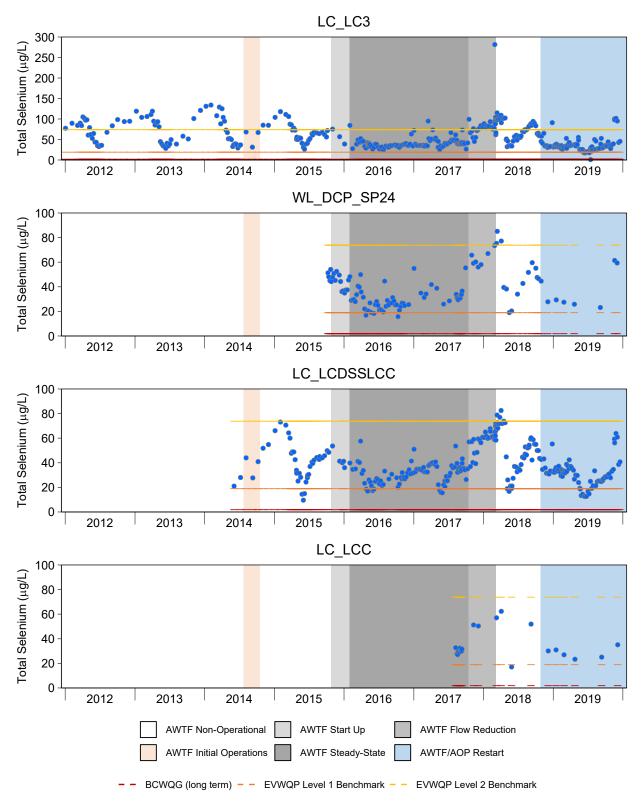
Notes: Due to a brief period of exposure to less-than-capacity AWTF effluent in 2014, benthic invertebrate tissue selenium data from September 2015 were not considered representative of steady-state AWTF operation, but also not representative of a no-discharge condition, these data were therefore excluded from analyses, and are displayed in plots for context only, West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines are displayed for each monitoring area to provide context, but pertain only to mine-exposed monitoring areas located downstream of the AWTF discharge.


Figure B.2: Benthic Invertebrate Selenium Concentrations, for RG_LIDCOM and RG_LI8 (Mine-exposed Areas) Relative to RG_SLINE and RG_LI24 (Reference Areas), 2012 to 2019

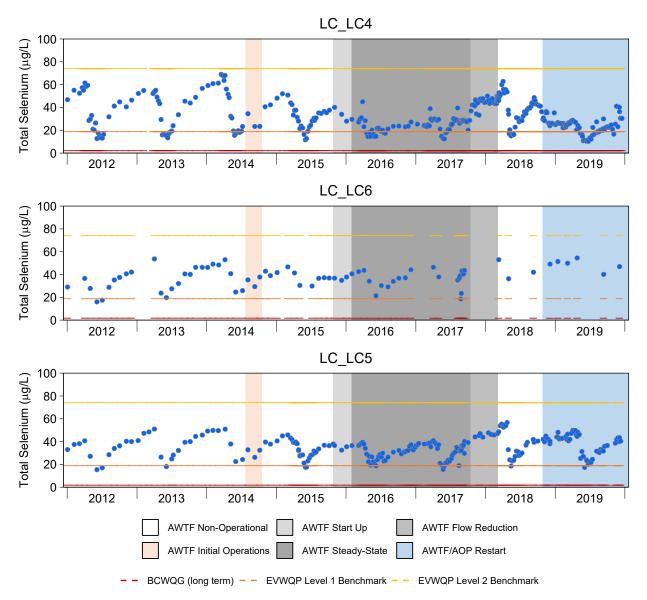
Notes: Due to a brief period of exposure to less-than-capacity AWTF effluent in 2014, benthic invertebrate tissue selenium data from September 2015 were not considered representative of steady-state AWTF operation, but also not representative of a no-discharge condition. These data were therefore excluded from analyses, and are displayed in plots for context only. West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines are displayed for each monitoring area to provide context, but pertain only to mine-exposed monitoring areas located downstream of the AWTF discharge.


Figure B.3: Benthic Invertebrate Selenium Concentrations, for RG_FRUL and RG_FO23 (Mine-exposed Areas) Relative to RG_SLINE and RG_LI24 (Reference Areas), 2012 to 2019

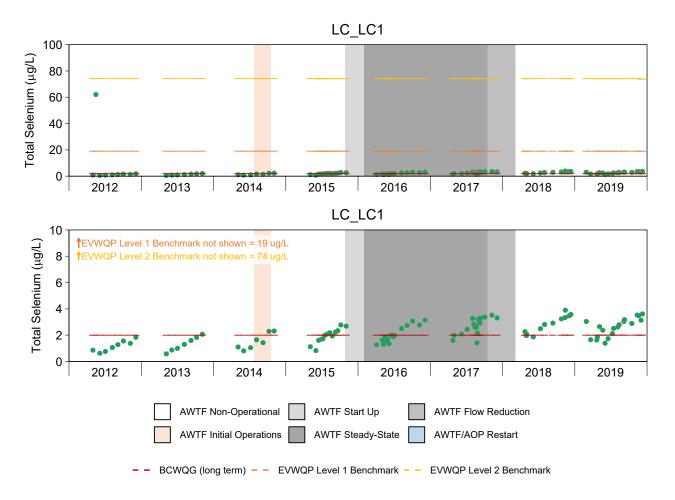
Notes: Due to a brief period of exposure to less-than-capacity AWTF effluent in 2014, benthic invertebrate tissue selenium data from September 2015 were not considered representative of steady-state AWTF operation, but also not representative of a no-discharge condition. These data were therefore excluded from analyses, and are displayed in plots for context only. West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines are displayed for each monitoring area to provide context, but pertain only to mine-exposed monitoring areas located downstream of the AWTF discharge.


Figure B.4: Time Series Plots for Aqueous Total Selenium Concentrations from the Line Creek LAEMP Sampling Stations (Excluding LC_WLC), 2012 to 2019

Note: West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines pertain only to mine-exposed monitoring areas located downstream of the AWTF discharge.


Figure B.5: Time Series Plots for Aqueous Total Selenium Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019

Active Water Treatment Facility ()


Figure B.5: Time Series Plots for Aqueous Total Selenium Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019

Notes: EVWQP = Elk Valley Water Quality Plan. West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines are displayed for each monitoring area to provide context, but pertain only to mine-exposed monitoring areas downstream of the AWTF discharge.

Figure B.5: Time Series Plots for Aqueous Total Selenium Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019

Notes: EVWQP = Elk Valley Water Quality Plan. West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines are displayed for each monitoring area to provide context, but pertain only to mine-exposed monitoring areas downstream of the AWTF discharge.

Figure B.6: Time Series Plots for Aqueous Total Selenium Concentrations from the Line Creek LAEMP Sampling Station LC_LC1, With (Upper Panel) and Without (Lower Panel) an Outlier, 2012 to 2019

Note :

Concentrations

reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL.

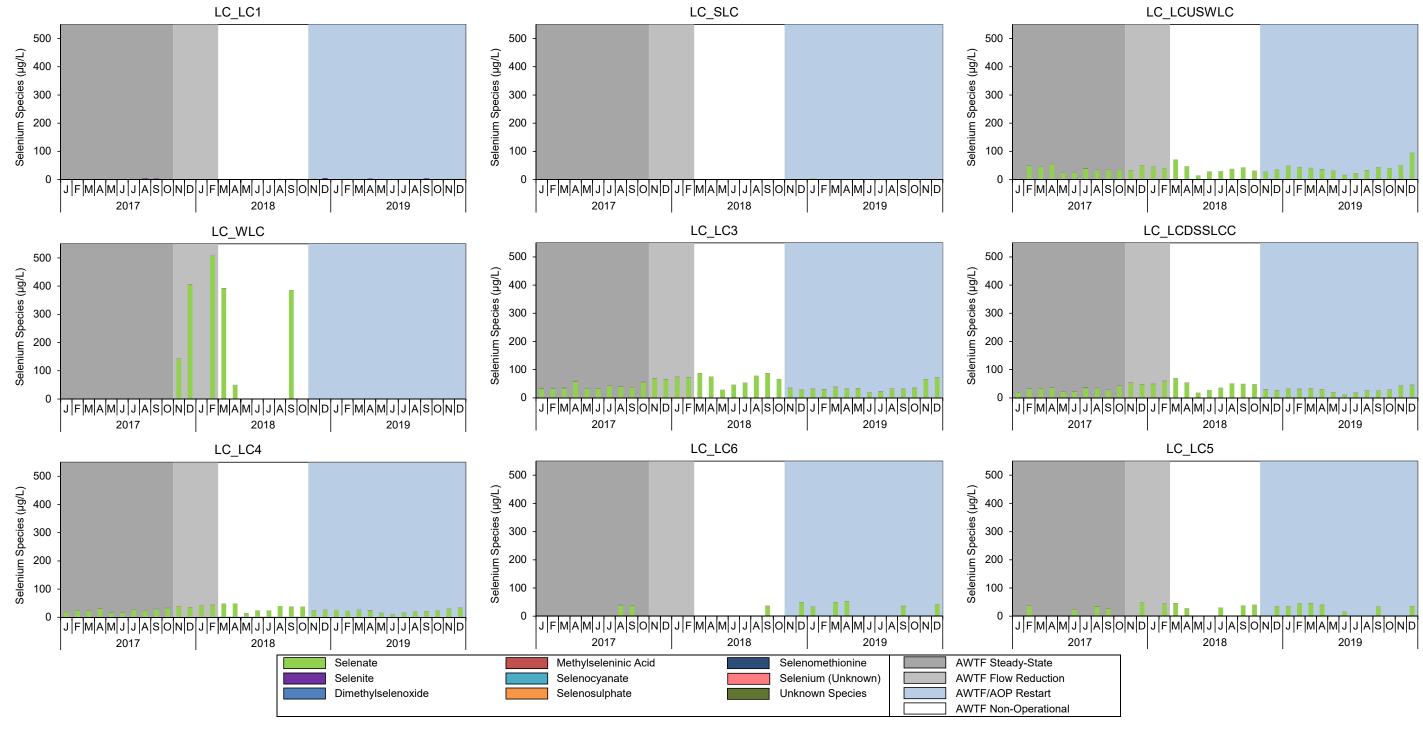


Figure B.7: Aqueous Concentrations of Selenium Species at Mine-exposed (LC_LCUSWLC, LC_LC3, LC_LC3, LC_LC4, LC_LC6, LC_LC5) and Reference (LC_LC1, LC_SLC) Stations in Line Creek and Fording River, January 2017 to December 2019

Notes: Values below the Laboratory Reporting Limit are not included in the concentrations. West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines are displayed for each monitoring area to provide context, but pertain only to mine-exposed monitoring areas located downstream of the AWTF discharge. Results for LC_LC1 and LC_SLC are not evident due to consistent y-axis scaling among plots. Refer to Figure 4.7 for greater resolution of these data (Figure 4.7 excludes results for LC_WLC). Selenium (unknown) represents an unknown selenium species that elutes at a retention time of ~3.7 and is a product of the oxidation of volatile selenium species.

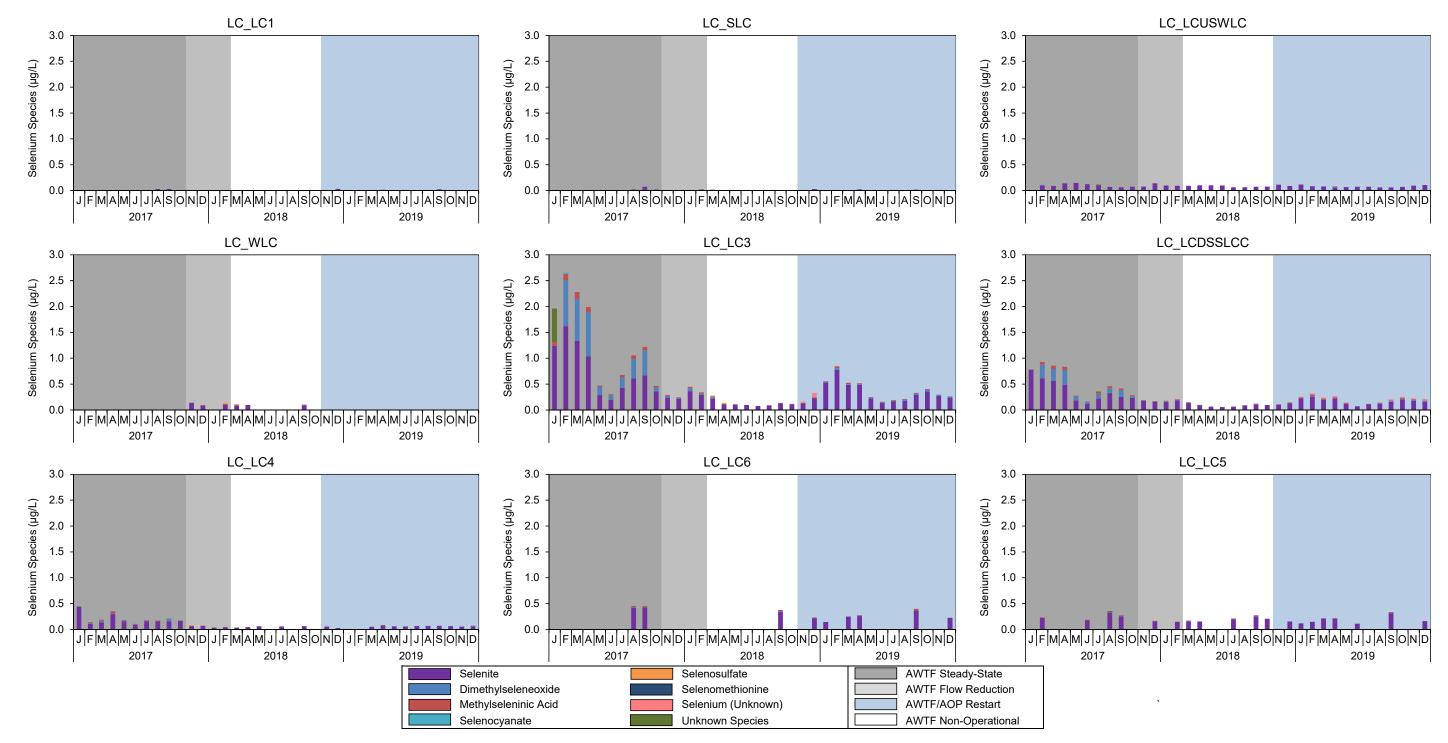


Figure B.8: Aqueous Concentrations of Non-Selenate Selenium Species at Mine-exposed (LC_LCUSWLC, LC_LC3, LC_LC3, LC_LC4, LC_LC6, LC_LC5) and Reference (LC_LC1, LC_SLC) Stations in Line Creek and Fording River, January 2017 to December 2019

Notes: Values below the Laboratory Reporting Limit are not included in the concentrations. West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines are displayed for each monitoring area to provide context, but pertain only to mine-exposed monitoring areas located downstream of the AWTF discharge. Selenium (unknown) represents an unknown selenium species that elutes at a retention time of ~3.7 and is a product of the oxidation of volatile selenium species.

						5	Selenium Sp	ecies (µg/L)		1		
Waterbody	Teck Water Station Code	Sample Date	Selenate	Selenite	Dimethylselenoxide	Methylseleninic Acid	Selenocyanate	Selenomethionine	Selenosulphate	Selenium (Unknown)	Unknown Species	Sum of Species
Reference	LC_LC1 (RG_LI24)	28-Feb-19 22-Mar-19 22-Apr-19 25-Apr-19 22-May-19 18-Jun-19 10-Jul-19 16-Jul-19 13-Aug-19 6-Sep-19 16-Oct-19 12-Nov-19 2-Dec-19 9-Dec-19 14-Jan-19	3.0 1.3 1.6 1.8 2.2 1.5 2.2 2.3 2.3 2.3 2.8 2.9 3.2 3.2 3.2 4.2	<0.050 <0.050 0.015 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010	<0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010	<0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040	<0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010	<0.060 <0.060 - <0.060 <0.060 <0.060 <0.060 - <0.060 - <0.060 <0.060 <0.060 <0.060 <0.060 <0.060	<0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010	<0.060 <0.060 <0.060 <0.060 <0.060 <0.060 <0.060 <0.060 <0.060 <0.060 <0.060 <0.060 <0.060 <0.060 <0.060	3.0 1.3 1.6 1.8 2.2 1.5 2.2 2.3 2.3 2.8 2.9 3.2 3.2 3.2 3.2 4.2
	LC_SLC (RG_SLINE)	25-Feb-19 3-Apr-19 24-Apr-19 23-May-19 18-Jun-19 8-Jul-19 16-Jul-19 12-Aug-19 9-Sep-19 1-Oct-19 5-Dec-19 2-Jan-19	1.1 1.4 0.95 0.67 0.56 0.73 0.83 0.98 1.3 1.5 1.6 48	<0.050 <0.050 <0.024 <0.050 <0.050 <0.050 <0.050 <0.050 0.018 <0.050 <0.050 <0.050 <0.050	<0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010	<0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010	<0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040 <0.040	<0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010	<0.060 <0.060 - <0.060 <0.060 <0.060 <0.060 - - <0.060 <0.060 <0.060 <0.060	<0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010	<0.060 <0.060 <0.060 <0.060 <0.060 <0.060 <0.060 <0.060 <0.060 <0.060 <0.060 <0.060	1.1 1.4 0.97 0.67 0.56 0.73 0.83 0.98 1.3 1.5 1.6 48
Line Creek Mine-exposed	LC_LCUSWLC (RG_LCUT)	7-Jan-19 14-Jan-19 17-Jan-19 21-Jan-19 29-Jan-19 7-Feb-19 13-Feb-19 19-Feb-19 26-Feb-19 5-Mar-19 13-Mar-19 19-Feb-19 26-Feb-19 5-Mar-19 13-Mar-19 19-Mar-19 22-Apr-19 24-Apr-19 29-Apr-19 22-Apr-19 24-Apr-19 29-Apr-19 7-May-19 13-May-19 22-May-19 24-Apr-19 29-Apr-19 7-May-19 22-May-19 24-Apr-19 22-May-19 3-Jun-19 13-Jun-19 22-Jul-19 2-Jul-19 2-Jul-19 2-Jul-19 2-Jul-19 2-Jul-19 2-Jul-19 2-Jul-19 2-Jul-19 2-Jul-19 3-Sep-19 1-Cct-19	48 50 46 51 46 51 51 51 23 49 44 39 31 28 41 34 31 48 26 18 17 16 15 21 41 20 26 23 63 29 25 32 38 40 39 40 39 40 39 40 39 40 39 40 39 40 31 32 38 40 39 40 41 45 49	0.086 0.089 0.24 0.085 0.11 0.076 0.12 0.084 <0.050	<0.010	<0.010	<0.040	<0.010	<0.060	<0.010	<0.060	18 48 50 46 51 46 51 51 51 23 49 44 39 31 28 41 34 31 48 26 18 17 16 15 21 41 21 20 26 23 63 29 25 32 38 40 39 40 41 45 49 50 54 133 55

Notes: The sum of species was calculated using zero for values reported as < LRL. Effluent from West Line Creek was diverted to the AWTF during AWTF/AOP restart (Oct 29th 2018 to present), therefore water quality measured routinely upstream of West Line Creek (LC_LCUSWLC) was most representative of water quality slightly further downstream at RG_LCUT. Water quality results from LC_LCUSWLC and RG_LCUT were combined during this period for data interpretation. "-" indicates no data available.

Vetebody Teck Water Station Code Sample Date ng ng ng ng ng ng ng ng ng ng ng ng ng n								Selenium Sp	ecies (µg/L))	1		
Part of the second se	Waterbod	V	Sample Date	Selenate	Selenite	Dimethylselenoxide	Methylseleninic Acid	Selenocyanate	Selenomethionine	Selenosulphate	Selenium (Unknown)	Unknown Species	Sum of Species
No. Sum 10 Sum 10 <th></th> <th>37</th>													37
Proj Proj<													34 34
Part The Jan-10 33 0.41 <0.013 0.021 0.000 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>34</td></t<>													34
Part Part <th< td=""><td></td><td></td><td></td><td>33</td><td>0.41</td><td><0.010</td><td><0.010</td><td><0.040</td><td><0.010</td><td><0.060</td><td>0.13</td><td><0.060</td><td>34</td></th<>				33	0.41	<0.010	<0.010	<0.040	<0.010	<0.060	0.13	<0.060	34
Part L <thl< th=""> <thl< th=""> <thl< th=""> <thl< th=""></thl<></thl<></thl<></thl<>													28 35
Product Earlier of the state o													35
Program 5-Feb-19 32 1.1 0.040 0.12 -0.040 -0.010 -0.080 0.16 -0.060 12-Feb-19 31 0.76 0.028 0.024 -0.040 -0.010 -0.080 0.23 -0.060 12-Feb-19 31 0.74 0.038 0.011 -0.040 -0.010 -0.080 0.28 -0.060 12-Feb-19 32 0.026 0.024 0.011 -0.040 -0.000 0.024 -0.000 1.014 -0.000 0.000 0.016 -0.000 1.134m-19 20 0.75 -0.000 -0.000 0.000 0.011 -0.000 1.13 -0.000 1.13 -0.000 1.13 -0.000 1.13 -0.000 1.13 -0.000 1.14 -0.000 1.14 -0.000 1.14 -0.000 1.14 -0.000 1.14 -0.000 1.14 -0.000 1.14 -0.000 1.14 -0.000 1.14 -0.000 1.14 -0.000 1.14 -0.000			28-Jan-19	31	0.74	0.023	<0.010	<0.040	<0.010	<0.060	0.19	<0.060	32
Pre-lag 31 0.79 0.023 0.012 -0.016 0.024 -0.006 0.22 -0.006 13-Feb-19 29 0.78 0.034 0.011 -0.040 -0.080 0.28 -0.060 13-Feb-19 29 0.78 0.034 0.011 -0.040 -0.010 -0.080 0.28 -0.060 28-Feb-19 22 0.024 0.014 -0.020 -0.024 -0.014 -0.020 -0.024 -0.010 -0.020 -0.11 -0.020 -0.11 -0.020 -0.11 -0.020 -0.11 -0.020 -0.024 -0.021 -0.020 -0.024 -0.020 -0.024 -0.020 -0.024 -0.020 -0.024 -0.020 -0.024 -0.020 -0.024 -0.020 -0.024 -0.020 -0.024 -0.020 -0.024 -0.020 -0.024 -0.020 -0.024 -0.020 -0.024 -0.020 -0.024 -0.020 -0.024 -0.020 -0.024 -0.020 -0.024 -0.020 -0.02													24 34
													34
Process Process <t< td=""><td></td><td></td><td>12-Feb-19</td><td>31</td><td>0.94</td><td>0.035</td><td>0.015</td><td><0.040</td><td><0.010</td><td><0.060</td><td>0.26</td><td><0.060</td><td>32</td></t<>			12-Feb-19	31	0.94	0.035	0.015	<0.040	<0.010	<0.060	0.26	<0.060	32
Pg Lc_LC3 (R6_LLIC5) 22 0.49 0.018 0.024 -0.010 -0.004 -0.010 -0.004 -0.000 0.114 -0.000 11-Mar-19 56 0.44 -0.010 -0.004 -0.010 -0.000 -0.060 0.112 -0.060 13-Mar-19 56 0.41 -0.010 -0.004 -0.010 -0.060 0.011 -0.060 0.11 -0.060 0.11 -0.060 0.11 -0.060 0.11 -0.060 0.11 -0.060 0.11 -0.060 0.11 -0.060 0.11 -0.060 0.011 -0.060 0.011 -0.060 0.010 -0.060 0.010 -0.060 0.010 -0.060 0.010 -0.060 0.010 -0.060 0.010 -0.060 0.010 -0.060 0.010 -0.060 0.010 -0.060 0.021 -0.060 0.021 -0.060 0.021 -0.060 0.021 -0.060 0.021 -0.060 0.021 -0.060 0.021 -0.060 0.021													30 34
Pg 5-Mar-19 31 0.42 0.011 <0.003 <0.040 <0.010 <0.060 0.112 <0.060 13-Mar-19 28 0.75 0.033 <0.013													23
			5-Mar-19	31	0.42	0.011	<0.010	<0.040	<0.010	<0.060	0.15	<0.060	32
P 19.Mar-10 35 0.41 <0.010													56 30
													35
Proj Bab 0.63 0.019 0.019 0.010 0.000 0.16 0.000 17-Apri19 27 0.44 0.017 0.028 0.010 0.000 <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.014</td> <td>0.025</td> <td></td> <td><0.010</td> <td></td> <td>0.11</td> <td></td> <td>42</td>						0.014	0.025		<0.010		0.11		42
													37 36
Provide 22-Agr-19 32 0.47 0.017 0.028 -0.040 -0.010 -0.080 -0.010 -0.080 -0.010 -0.080 -0.010 -0.080 -0.012 -0.080 -0.012 -0.080 -0.12 -0.080 -0.12 -0.080 -0.12 -0.080 -0.12 -0.080 -0.12 -0.080 -0.12 -0.080 -0.12 -0.080 -0.12 -0.080 -0.12 -0.080 -0.12 -0.080 -0.12 -0.080 -0.010 -0.010 -0.010 -0.010 -0.010 -0.010 -0.010 -0.010 -0.000 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>27</td></t<>													27
Pic Bic Scheme				32									32
Proof Provide													33
P 9 9 0.011 -0.040 -0.010 -0.040 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>31 33</td></td<>													31 33
P P													60
No No Second			14-May-19										52
P P													26 25
Pg Pg<													25
P P 11-Jun-19 17 0.15 0.014 0.013 <0.040 <0.010 <0.060 0.026 <0.060 13-Jun-19 18 0.13 <0.010													22
24-Jun-19 20 0.18 <0.010 0.015 <0.040 <0.010 <0.060 <0.010 <0.060 2-Jul-19 19 0.18 <0.010	ek sed												24 18
24-Jun-19 20 0.18 <0.010 0.015 <0.040 <0.010 <0.060 <0.010 <0.060 2-Jul-19 19 0.18 <0.010	Cre	LC LC3 (RG LILC3)											18
24-Jun-19 20 0.18 <0.010 0.015 <0.040 <0.010 <0.060 <0.010 <0.060 2-Jul-19 19 0.18 <0.010	ine ne-e	2	17-Jun-19	15	0.13	0.011	0.012	<0.040	<0.010	<0.060	0.016	<0.060	16
2-Jul-19 19 0.18 <0.010 <0.040 <0.010 <0.060 0.016 <0.060 8-Jul-19 19 0.18 0.016 <0.010	Δi Γ												17
8-Jul-19 19 0.18 0.016 <0.040 <0.040 <0.010 <0.060 0.019 <0.060 9-Jul-19 19 0.19 <0.010													20 19
15-Jul-19 24 0.18 0.011 <0.010 <0.010 <0.010 <0.060 0.031 <0.060 17-Jul-19 24 0.17 0.011 0.017 <0.040				19	0.18								19
17.Jul-19 29 0.089 <0.010 <0.010 <0.040 <0.010 <0.060 <0.010 <0.060 22.Jul-19 24 0.17 0.011 0.013 <0.040													20
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$													24 29
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$													25
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$													23
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$													22 28
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$													52
20-Aug-19 29 0.24 0.025 0.012 <0.040 <0.010 <0.060 0.050 <0.060 26-Aug-19 26 0.22 0.025 <0.010													24
26-Aug-19 26 0.22 0.025 <0.010 <0.040 <0.010 <0.060 0.051 <0.060 27-Aug-19 25 0.21 0.022 <0.010													44 29
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$													29
7-Sep-19 35 0.24 <0.010 0.018 <0.040 <0.010 - 0.038 <0.060 10-Sep-19 30 0.37 0.024 <0.010			27-Aug-19	25	0.21	0.022	<0.010	<0.040		<0.060	0.044	<0.060	26
10-Sep-19 30 0.37 0.024 <0.010 <0.040 <0.010 <0.060 0.12 <0.060 17-Sep-19 35 0.34 0.029 0.013 <0.040													28
17-Sep-19 35 0.34 0.029 0.013 <0.040 <0.010 <0.060 0.12 <0.060 23-Sep-19 30 0.26 0.028 0.013 <0.040													35 30
30-Sep-19 35 0.29 0.025 0.020 <0.040 <0.010 <0.060 0.085 <0.060 1-Oct-19 34 0.35 0.024 0.023 <0.040			17-Sep-19	35	0.34	0.029	0.013	<0.040	<0.010	<0.060	0.12	<0.060	35
1-Oct-19 34 0.35 0.024 0.023 <0.040 <0.010 <0.060 0.080 <0.060 7-Oct-19 37 0.45 0.057 <0.010													30 35
7-Oct-19 37 0.45 0.057 <0.010 <0.040 <0.010 <0.060 0.12 <0.060 9-Oct-19 33 0.39 0.023 0.054 <0.040													35
16-Oct-19 47 0.17 0.025 <0.010 <0.040 <0.010 <0.060 <0.010 <0.060 <0.010 <0.060 <0.010 <0.060 <0.010 <0.060 <0.010 <0.060 <0.010 <0.060 <0.010 <0.060 <0.010 <0.060 0.12 <0.060 <0.060 <0.012 <0.060 <0.010 <0.060 0.12 <0.060 <0.060 <0.02 <0.010 <0.040 <0.010 <0.060 0.12 <0.060 <0.02 <0.010 <0.040 <0.010 <0.060 0.12 <0.060 <0.02 <0.010 <0.040 <0.010 <0.060 0.012 <0.060 <0.02 <0.010 <0.040 <0.010 <0.060 0.012 <0.060 <0.014 <0.060 <0.014 <0.060 <0.014 <0.060 <0.014 <0.060 <0.014 <0.060 <0.012 <0.060 <0.012 <0.060 <0.012 <0.060 <0.012 <0.060 <0.012 <0.060 <0.012 <0.060 <0.012 <			7-Oct-19	37	0.45	0.057	<0.010	<0.040	<0.010	<0.060	0.12	<0.060	38
21-Oct-19 34 0.38 0.040 <0.010 <0.040 <0.010 <0.060 0.12 <0.060 22-Oct-19 34 0.40 0.053 0.014 <0.040													33
22-Oct-19 34 0.40 0.053 0.014 <0.040 <0.010 <0.060 0.12 <0.060 28-Oct-19 21 0.22 0.020 <0.010													47 35
29-Oct-19 38 0.50 0.025 <0.010 <0.040 <0.060 0.14 <0.060 4-Nov-19 36 0.43 0.036 <0.010			22-Oct-19	34	0.40	0.053	0.014	<0.040	<0.010	<0.060	0.12	<0.060	34
4-Nov-19 36 0.43 0.036 <0.010 <0.040 <0.010 <0.060 0.12 <0.060 12-Nov-19 36 0.38 0.042 <0.010													21
12-Nov-19 36 0.38 0.042 <0.010 <0.040 <0.010 <0.060 0.12 <0.060													38 37
			12-Nov-19	36	0.38	0.042	<0.010	<0.040	<0.010	<0.060	0.12	<0.060	37
18-Nov-19 92 0.14 <0.010 <0.040 <0.010 <0.060 <0.010 <0.060 26-Nov-19 98 0.14 <0.010			18-Nov-19	92	0.14	< 0.010	< 0.010	< 0.040	< 0.010	< 0.060	< 0.010	<0.060	92 98

Notes: The sum of species was calculated using zero for values reported as < LRL. Effluent from West Line Creek was diverted to the AWTF during AWTF/AOP restart (Oct 29th 2018 to present), therefore water quality measured routinely upstream of West Line Creek (LC_LCUSWLC) was most representative of water quality slightly further downstream at RG_LCUT. Water quality results from LC_LCUSWLC and RG_LCUT were combined during this period for data interpretation. "-" indicates no data available.

						1	Ş	Selenium Sp	ecies (µg/L)		1		
Waterbo	ody	Teck Water Station Code	Sample Date	Selenate	Selenite	Dimethylselenoxide	Methylseleninic Acid	Selenocyanate	Selenomethionine	Selenosulphate	Selenium (Unknown)	Unknown Species	Sum of Species
		LC_LC3 (RG_LILC3)	3-Dec-19	108	0.13	< 0.010	<0.010	<0.040	<0.010	<0.060	<0.010	<0.060	108
	-	_ (_ /	10-Dec-19 17-Jan-19	38 22	0.34 0.36	0.052 <0.010	<0.010 0.022	<0.040 <0.040	<0.010 <0.010	<0.060 <0.060	0.19 0.023	<0.060 <0.060	38 23
		WL_DCP_SP24	26-Feb-19	17	0.33	0.011	0.034	<0.040	<0.010	<0.060	0.059	<0.060	17
		(RG_LISP24)	22-Apr-19 5-Sep-19	24 21	0.25	0.0070	0.026	<0.040 <0.040	<0.010 <0.010	<0.060	<0.010 0.023	<0.060 <0.060	24 21
			2-Dec-19	65	0.20	<0.010	<0.017	<0.040	<0.010	<0.060	<0.023	<0.060	66
			2-Jan-19	21	0.15	< 0.010	0.011	< 0.040	< 0.010	< 0.060	< 0.010	< 0.060	22
			7-Jan-19 16-Jan-19	34 34	0.25	<0.010 <0.010	0.022 0.019	<0.040 <0.040	<0.010 <0.010	<0.060 <0.060	0.018	<0.060 <0.060	35 35
			23-Jan-19	34	0.26	<0.010	0.016	<0.040	<0.010	<0.060	0.018	<0.060	34
			30-Jan-19 7-Feb-19	35 35	0.26	<0.010 <0.010	0.019 0.023	<0.040 <0.040	<0.010 <0.010	<0.060 <0.060	0.016 0.021	<0.060 <0.060	35 35
			13-Feb-19	33	0.29	0.010	0.023	<0.040	<0.010	<0.060	0.021	<0.060	33
			19-Feb-19	31	0.25	<0.010	0.047	< 0.040	<0.010	< 0.060	0.032	< 0.060	32
			26-Feb-19 5-Mar-19	26 30	0.21	<0.010 <0.010	0.023	<0.040 <0.040	<0.010 <0.010	<0.060 <0.060	0.016	<0.060 <0.060	27 30
			13-Mar-19	34	0.21	< 0.010	0.030	<0.040	<0.010	< 0.060	0.016	< 0.060	34
			19-Mar-19 26-Mar-19	31	0.18	<0.010	0.012	<0.040	<0.010 <0.010	<0.060	<0.010	<0.060	31 41
			26-Mar-19 3-Apr-19	41 37	0.19 0.28	<0.010 <0.010	0.022 0.016	<0.040 <0.040	<0.010	<0.060 <0.060	0.020	<0.060 <0.060	41 37
			8-Apr-19	35	0.26	<0.010	0.020	<0.040	<0.010	<0.060	0.028	<0.060	36
			17-Apr-19 22-Apr-19	28 24	0.21	<0.010 <0.010	0.017 0.017	<0.040 <0.040	<0.010 <0.010	<0.060 <0.060	0.029	<0.060 <0.060	29 24
			22-Apr-19 29-Apr-19	24	0.21	<0.010	0.017	<0.040	<0.010	< 0.060	0.024	<0.060	24
			7-May-19	25	0.20	<0.010	<0.010	< 0.040	<0.010	< 0.060	<0.010	<0.060	25
			14-May-19 21-May-19	25 19	0.10	<0.010 <0.010	<0.010 <0.010	<0.040 <0.040	<0.010 <0.010	<0.060 <0.060	<0.010 0.016	<0.060 <0.060	25 19
			23-May-19	18	0.11	<0.010	0.013	<0.040	<0.010	<0.060	0.020	<0.060	18
			28-May-19	13	0.084	< 0.010	0.012	< 0.040	< 0.010	< 0.060	0.011	< 0.060	13
		LC LCDSSLCC	4-Jun-19 13-Jun-19	14 8.1	0.076 0.058	<0.010 <0.010	<0.010 <0.010	<0.040 <0.040	<0.010 <0.010	<0.060 <0.060	<0.010 <0.010	<0.060 <0.060	14 8.2
		(Compliance)	17-Jun-19	11	0.079	<0.010	<0.010	<0.040	<0.010	<0.060	<0.010	<0.060	11
		(RG_LIDSL)	24-Jun-19	13	0.074	<0.010	<0.010	<0.040	<0.010 <0.010	<0.060 <0.060	<0.010 <0.010	<0.060	13 15
			2-Jul-19 8-Jul-19	15 15	0.11 0.13	<0.010 <0.010	0.011 0.014	<0.040 <0.040	<0.010	<0.060	< 0.010	<0.060 <0.060	15
			15-Jul-19	25	0.075	<0.010	<0.010	<0.040	<0.010	<0.060	<0.010	<0.060	25
			22-Jul-19 29-Jul-19	18 19	0.12	<0.010 <0.010	0.017 <0.010	<0.040 <0.040	<0.010 <0.010	<0.060 <0.060	<0.010 <0.010	<0.060 <0.060	19 19
×	eq		6-Aug-19	36	0.088	<0.010	<0.010	<0.040	<0.010	<0.060	<0.010	<0.000	36
Cree	sody		12-Aug-19	20	0.12	< 0.010	0.012	< 0.040	< 0.010	< 0.060	0.012	<0.060	20
Line Creek	Mine-exposed		20-Aug-19 27-Aug-19	26 22	0.14 0.13	0.011 0.011	0.014 0.013	<0.040 <0.040	<0.010 <0.010	<0.060 <0.060	<0.010 <0.010	<0.060 <0.060	26 22
Ē	Min		3-Sep-19	27	0.10	0.013	0.016	<0.040	<0.010	<0.060	0.015	< 0.060	27
			10-Sep-19	24	0.17	< 0.010	0.017	< 0.040	< 0.010	< 0.060	0.020	<0.060	24
			17-Sep-19 23-Sep-19	24 26	0.16	0.017	0.018 0.013	<0.040 <0.040	<0.010 <0.010	<0.060 <0.060	0.020	<0.060 <0.060	25 26
			1-Oct-19	28	0.18	<0.010	0.022	<0.040	<0.010	<0.060	0.020	<0.060	28
			7-Oct-19 16-Oct-19	31 29	0.21 0.17	0.016	0.025 0.017	<0.040 <0.040	<0.010 <0.010	<0.060 <0.060	0.018 0.024	<0.060 <0.060	31 29
			21-Oct-19	30	0.22	0.010	0.017	<0.040	<0.010	<0.060	0.024	<0.000	30
			28-Oct-19	29	0.24	0.017	0.018	< 0.040	< 0.010	< 0.060	0.029	< 0.060	29
			4-Nov-19 12-Nov-19	31 31	0.24	0.015 0.015	0.023	<0.040 <0.040	<0.010 <0.010	<0.060 <0.060	0.025 0.019	<0.060 <0.060	31 32
			18-Nov-19	55	0.12	< 0.010	0.012	< 0.040	< 0.010	< 0.060	< 0.010	< 0.060	55
			26-Nov-19	57	0.13	< 0.010	< 0.010	< 0.040	< 0.010	<0.11	< 0.010	< 0.060	57
			3-Dec-19 10-Dec-19	62 30	0.12 0.20	<0.010 0.024	<0.010 0.012	<0.040 <0.040	<0.010 <0.010	<0.060 <0.060	<0.010 0.029	<0.060 <0.060	62 30
			16-Jan-19	33	0.14	<0.010	0.011	<0.040	<0.010	<0.060	<0.010	<0.060	33
		LC_LCC	27-Feb-19 25-Apr-19	23 22	0.10	<0.010 <0.010	<0.010 0.013	<0.040 <0.040	<0.010 <0.010	<0.060	<0.010 <0.010	<0.060 0.010	23 22
		(RG_LIDCOM)	12-Sep-19	22	0.14	<0.010	<0.013	<0.040	<0.010	-	<0.010	< 0.060	22
	_		5-Dec-19	34	0.12	<0.010	0.015	< 0.040	< 0.010	< 0.060	< 0.010	<0.060	34
			2-Jan-19 7-Jan-19	26 27	<0.050 <0.050	<0.010 <0.010	<0.010 <0.010	<0.040 <0.040	<0.010 <0.010	<0.060 <0.060	<0.010 <0.010	<0.060 <0.060	26 27
			14-Jan-19	29	<0.050	<0.010	<0.010	<0.040	<0.010	<0.060	<0.010	<0.060	29
			16-Jan-19	24	< 0.050	< 0.010	< 0.010	< 0.040	< 0.010	< 0.060	< 0.010	< 0.060	24
			21-Jan-19 30-Jan-19	27 27	<0.050 <0.050	<0.010 <0.010	<0.010 <0.010	<0.040 <0.040	<0.010 <0.010	<0.060 <0.060	<0.010 <0.010	<0.060 <0.060	27 27
			7-Feb-19	26	<0.050	<0.010	<0.010	<0.040	<0.010	<0.060	<0.010	<0.060	26
			13-Feb-19	25	<0.050	<0.010	<0.010	<0.040	<0.010	<0.060	<0.010	<0.060	25
			19-Feb-19 26-Feb-19	24 25	<0.050 <0.050	<0.010 <0.010	<0.010 <0.010	<0.040 <0.040	<0.010 <0.010	<0.060 <0.060	<0.010 <0.010	<0.060 <0.060	24 25
		LC_LC4 (RG_LI8)	27-Feb-19	15	<0.050	<0.010	<0.010	<0.040	<0.010	<0.060	<0.010	<0.060	15
			5-Mar-19 13-Mar-19	22 25	<0.050 <0.050	<0.010 <0.010	<0.010 <0.010	<0.040 <0.040	<0.010 <0.010	<0.060 <0.060	<0.010 <0.010	<0.060 <0.060	22 25
			13-Mar-19 19-Mar-19	25	<0.050	<0.010	<0.010	<0.040	<0.010	<0.060	<0.010	<0.060	25
			27-Mar-19	32	<0.050	<0.010	<0.010	<0.040	<0.010	<0.060	<0.010	<0.060	32
			3-Apr-19 8-Apr-19	27 28	0.063 0.070	<0.010 <0.010	<0.010 <0.010	<0.040 <0.040	<0.010 <0.010	<0.060 <0.060	<0.010 <0.010	<0.060 <0.060	27 28
			17-Apr-19	20	0.070	<0.010	<0.010	<0.040	<0.010	<0.060	0.059	<0.060	20
			22-Apr-19	18	0.069	<0.010	<0.010	<0.040	< 0.010	<0.060	0.012	<0.060	18
			25-Apr-19	19	0.097	<0.010	0.011	<0.040	<0.010	-	<0.010	0.0080	19

Notes: The sum of species was calculated using zero for values reported as < LRL. Effluent from West Line Creek was diverted to the AWTF during AWTF/AOP restart (Oct 29th 2018 to present), therefore water quality measured routinely upstream of West Line Creek (LC_LCUSWLC) was most representative of water quality slightly further downstream at RG_LCUT. Water quality results from LC_LCUSWLC and RG_LCUT were combined during this period for data interpretation. "-" indicates no data available.

							5	Selenium Sp	ecies (µg/L)				
Water	body	Teck Water Station Code	Sample Date	Selenate	Selenite	Dimethylselenoxide	Methylseleninic Acid	Selenocyanate	Selenomethionine	Selenosulphate	Selenium (Unknown)	Unknown Species	Sum of Species
			29-Apr-19	22	<0.050	<0.010	<0.010	<0.040	<0.010	<0.060	<0.010	<0.060	22
			7-May-19	19	< 0.050	<0.010	<0.010	< 0.040	<0.010	<0.060	<0.010	<0.060	19
			13-May-19	17	0.058	<0.010	<0.010	<0.040	<0.010	<0.060	<0.010	<0.060	17
			22-May-19	15	0.065	<0.010	<0.010	<0.040	<0.010	<0.060	0.013	<0.060	15
			24-May-19	14	0.055	<0.010	<0.010	<0.040	<0.010	<0.060	<0.010	<0.060	14
			28-May-19	10	0.078	< 0.010	< 0.010	< 0.040	< 0.010	< 0.060	< 0.010	< 0.060	10
			3-Jun-19	11	0.063	< 0.010	< 0.010	< 0.040	< 0.010	< 0.060	< 0.010	< 0.060	11
			13-Jun-19	9.4 9.8	0.054 0.065	<0.010	<0.010 <0.010	<0.040 <0.040	<0.010 <0.010	<0.060	<0.010 <0.010	<0.060 <0.060	9.5 9.9
			17-Jun-19 19-Jun-19	9.8	0.065	<0.010 <0.010	<0.010	<0.040	<0.010	<0.060 <0.060	<0.010	<0.060	9.9
			24-Jun-19	10	0.052	<0.010	<0.010	<0.040	<0.010	<0.060	<0.010	<0.060	10
			2-Jul-19	12	0.061	< 0.010	< 0.010	< 0.040	< 0.010	< 0.060	< 0.010	< 0.060	10
			8-Jul-19	13	0.078	< 0.010	< 0.010	< 0.040	< 0.010	< 0.060	< 0.010	< 0.060	13
			15-Jul-19	16	0.053	<0.010	<0.010	<0.040	<0.010	<0.060	<0.010	<0.060	16
			17-Jul-19	21	< 0.050	<0.010	<0.010	< 0.040	<0.010	<0.060	< 0.010	<0.060	21
			22-Jul-19	15	0.075	<0.010	<0.010	<0.040	<0.010	<0.060	<0.010	<0.060	15
			29-Jul-19	16	0.082	<0.010	<0.010	<0.040	<0.010	<0.060	<0.010	<0.060	16
×			6-Aug-19	28	0.056	<0.010	<0.010	<0.040	<0.010	<0.060	<0.010	<0.060	28
Cree			12-Aug-19	16	0.074	< 0.010	< 0.010	< 0.040	< 0.010	< 0.060	< 0.010	< 0.060	16
Line Creek		LC_LC4 (RG_LI8)	13-Aug-19	16	0.085	< 0.010	< 0.010	< 0.040	< 0.010	< 0.060	< 0.010	< 0.060	16
Li			19-Aug-19 27-Aug-19	25 18	0.064 <0.050	<0.010 <0.010	<0.010 <0.010	<0.040 <0.040	<0.010 <0.010	<0.060 <0.060	<0.010 <0.010	<0.060 <0.060	25 18
			3-Sep-19	21	0.14	<0.010	<0.010	<0.040	<0.010	<0.060	<0.010	<0.060	21
			9-Sep-19	20	0.051	< 0.010	< 0.010	<0.040	<0.010	< 0.060	< 0.010	< 0.060	20
	eq		11-Sep-19	26	0.054	< 0.010	< 0.010	< 0.040	< 0.010	-	< 0.010	< 0.060	26
	Mine-exposed		16-Sep-19	20	< 0.050	<0.010	<0.010	< 0.040	<0.010	<0.060	<0.010	<0.060	20
	éxp		23-Sep-19	20	0.053	<0.010	<0.010	<0.040	<0.010	<0.060	<0.010	<0.060	20
	ne-		1-Oct-19	23	0.051	<0.010	<0.010	<0.040	<0.010	<0.060	<0.010	<0.060	23
	Μ		7-Oct-19	24	0.051	<0.010	<0.010	<0.040	<0.010	<0.060	<0.010	<0.060	24
			16-Oct-19	23	< 0.050	<0.010	< 0.010	< 0.040	<0.010	< 0.060	0.011	< 0.060	23
			21-Oct-19	23	0.068	< 0.010	< 0.010	<0.040	< 0.010	< 0.060	< 0.010	< 0.060	23
			28-Oct-19	22	0.10	<0.010	<0.010	<0.040	<0.010	<0.060	<0.010	<0.060	22
			4-Nov-19 12-Nov-19	24 24	<0.050 0.059	<0.010 <0.010	<0.010 <0.010	<0.040 <0.040	<0.010 <0.010	<0.060 <0.060	0.013	<0.060 <0.060	24 24
			18-Nov-19	39	< 0.055	<0.010	<0.010	<0.040	<0.010	<0.000	<0.010	<0.060	39
			25-Nov-19	33	0.057	< 0.010	< 0.010	< 0.040	< 0.010	<0.11	< 0.010	< 0.060	33
			3-Dec-19	40	< 0.050	<0.010	<0.010	< 0.040	<0.010	<0.060	< 0.010	<0.060	40
			4-Dec-19	33	0.083	<0.010	0.014	< 0.040	<0.010	<0.060	<0.010	<0.060	33
	ļļ		9-Dec-19	27	<0.050	<0.010	<0.010	<0.040	<0.010	<0.060	<0.010	<0.060	27
			15-Jan-19	35	0.12	<0.010	<0.010	< 0.040	<0.010	<0.060	< 0.010	<0.060	35
			7-Feb-19	45	0.15	< 0.010	< 0.010	< 0.040	< 0.010	< 0.060	< 0.010	< 0.060	45
			7-Mar-19	46	0.21	<0.010	0.0080	<0.040	< 0.010	<0.060	<0.010	<0.060	46
		LC_LC5 (RG_FO23)	26-Apr-19 4-Jun-19	39 16	0.20	<0.010 <0.010	0.016 <0.010	<0.040 <0.040	<0.010 <0.010	<0.060 <0.060	<0.010 <0.010	<0.060 <0.060	40 16
ver		LO_LOJ (NG_FO23)	4-Jun-19 3-Sep-19	35	0.11	<0.010	0.022	<0.040	<0.010	<0.060	<0.010	<0.060	35
Ri			8-Sep-19	31	0.31	<0.010	0.022	<0.040	<0.010	<0.060	<0.010	<0.000	31
Fording River			3-Dec-19	32	0.01	< 0.010	< 0.020	<0.040	<0.010	< 0.060	< 0.010	< 0.060	33
ord			4-Dec-19	39	0.18	< 0.010	< 0.010	< 0.040	<0.010	< 0.060	< 0.010	<0.060	39
			15-Jan-19	33	0.14	<0.010	<0.010	<0.040	<0.010	<0.060	<0.010	<0.060	33
			7-Mar-19	49	0.25	<0.010	<0.010	<0.040	<0.010	-	<0.010	<0.060	50
		LC_LC6 (RG_FRUL)	26-Apr-19	52	0.26	<0.010	0.017	<0.040	<0.010	-	<0.010	<0.060	52
			12-Sep-19	35	0.37	<0.010	0.028	< 0.040	<0.010	-	< 0.010	<0.060	36
			4-Dec-19	42	0.23	<0.010	<0.010	<0.040	<0.010	<0.060	<0.010	<0.060	42

Notes: The sum of species was calculated using zero for values reported as < LRL. Effluent from West Line Creek was diverted to the AWTF during AWTF/AOP restart (Oct 29th 2018 to present), therefore water quality measured routinely upstream of West Line Creek (LC_LCUSWLC) was most representative of water quality slightly further downstream at RG_LCUT. Water quality results from LC_LCUSWLC and RG_LCUT were combined during this period for data interpretation. "-" indicates no data available.

Page 4 of 4

		Biological	Sample				Selenium Cor	centration (m	g/kg dw)	
Wate	erbody	Area Code	Code	Sample Date	Sample	Area Median	Area Minimum	Area Maximum	Area Mean	Area Standard Deviation
			RG_LI24-1_INV	28-Feb-19	6.3	6.3	6.3	6.3	6.3	-
			RG_LI24-1_INV	25-Apr-19	4.6	_				
			RG_LI24-2_INV	25-Apr-19	8.6 6.6	_				
			RG_LI24-3_INV RG_LI24-4_INV	25-Apr-19 25-Apr-19	6.5	_				
			RG_LI24-5_INV	25-Apr-19	6.5	6.6	4.6	0.0	6.0	4.4
			RG_LI24-6_INV	25-Apr-19	8.6	6.6	4.0	8.6	6.8	1.4
			RG_LI24-7_INV	25-Apr-19	5.9	_				
			RG_LI24-8_INV RG_LI24-9_INV	25-Apr-19 25-Apr-19	4.9 8.2	_				
			RG LI24-10 INV	25-Apr-19 25-Apr-19	7.7	-				
			RG_LI24-1_INV	22-May-19	8.9					
			RG_LI24-2_INV	22-May-19	7.1					
			RG_LI24-3_INV	22-May-19	7.1	-				
			RG_LI24-4_INV RG_LI24-5_INV	22-May-19 22-May-19	6.0 7.6	-				
			RG LI24-6 INV	22-May-19	6.7	6.8	4.5	8.9	6.7	1.2
			RG_LI24-7_INV	22-May-19	6.4	-				
			RG_LI24-8_INV	22-May-19	5.7					
			RG_LI24-9_INV	22-May-19	6.8	_				
			RG_LI24-10_INV	22-May-19	4.5					
			RG_LI24-1_INV RG_LI24-2_INV	18-Jun-19 18-Jun-19	5.1 5.5					
			RG_LI24-3_INV	18-Jun-19	5.5	-				
			RG_LI24-4_INV	18-Jun-19	4.8	-				
			RG_LI24-5_INV	18-Jun-19	5.4	5.4	4.8	6.3	5.4	0.5
			RG_LI24-6_INV	18-Jun-19 18-Jun-19	5.0 6.3	-				
			RG_LI24-7_INV RG LI24-8 INV	18-Jun-19	5.4	_				
			RG_LI24-9_INV	18-Jun-19	5.3	_				
		(RG_LI24-10_INV	18-Jun-19	6.1					
		RG_LI24 (LC_LC1)	RG_LI24-1_INV	16-Jul-19	5.4	-				
		(FC	RG_LI24-2_INV RG_LI24-3_INV	16-Jul-19 16-Jul-19	6.6 8.0	-				
		124	RG_LI24-3_INV	16-Jul-19	6.5	-				
		لد ق	RG_LI24-5_INV	16-Jul-19	5.6	6.5	E 4	0.0	6.6	1.0
×	0	R	RG_LI24-6_INV	16-Jul-19	5.4	6.5	5.4	9.2	6.6	1.2
reel	Reference		RG_LI24-7_INV	16-Jul-19	9.2	-				
Line Creek	efere		RG_LI24-8_INV RG_LI24-9_INV	16-Jul-19 16-Jul-19	6.6 6.5	_				
. <u>.</u> .	Ř		RG_LI24-10_INV	16-Jul-19	6.5	_				
			 RG_LI24-1_INV	13-Aug-19	5.8					
			RG_LI24-2_INV	13-Aug-19	7.8	-				
			RG_LI24-3_INV	13-Aug-19	7.6	-				
			RG_LI24-4_INV RG_LI24-5_INV	13-Aug-19 13-Aug-19	7.0 5.2	_				
			RG_LI24-6_INV	13-Aug-19	6.9	7.0	5.2	7.8	6.8	0.9
			RG_LI24-7_INV	13-Aug-19	6.1	-				
			RG_LI24-8_INV	13-Aug-19	6.0					
			RG_LI24-9_INV	13-Aug-19	7.7	-				
			RG_LI24-10_INV RG_LI24_INV-1	13-Aug-19 6-Sep-19	7.5 4.7					
			RG_LI24_INV-1	6-Sep-19	4.0	-				
			RG_LI24_INV-3	6-Sep-19	4.3					
			RG_LI24_INV-4	6-Sep-19	5.5					
			RG_LI24_INV-5	6-Sep-19	5.4	5.5	4.0	6.8	5.4	0.9
			RG_LI24_INV-6 RG_LI24_INV-7	6-Sep-19 6-Sep-19	6.0 4.9					
			RG_LI24_INV-8	6-Sep-19	6.8	-				
			RG_LI24_INV-9	6-Sep-19	5.8	-				
			RG_LI24_INV-10	6-Sep-19	6.5					
			RG_LI24_INV-1	2-Dec-19	3.2	_				
			RG_LI24_INV-2 RG_LI24_INV-3	2-Dec-19 2-Dec-19	2.6 3.3					
			RG_LI24_INV-4	2-Dec-19 2-Dec-19	5.3	3.4	2.6	5.3	3.7	0.9
			RG_LI24_INV-5	2-Dec-19	4.1					
			RG_LI24_INV-6	2-Dec-19	3.4					
			RG_SLINE1_INV	14-Jan-19	4.6					
		<u>í</u>	RG_SLINE2_INV	14-Jan-19	5.4	-				
		้ะร	RG_SLINE3_INV RG SLINE4 INV	14-Jan-19 14-Jan-19	3.7 3.8	-				
		(LC	RG_SLINE5_INV	14-Jan-19	3.7			- ·	4.0	<u> </u>
		Ш Z	RG_SLINE6_INV	14-Jan-19	3.9	3.9	2.8	5.4	4.0	0.7
		RG_SLINE (LC_SLC)	RG_SLINE7_INV	14-Jan-19	2.8					
		ອື່	RG_SLINE8_INV	14-Jan-19	3.4					
		LL_	RG_SLINE9_INV	14-Jan-19	4.0					

		Biological	Sample				Selenium Cor	ncentration (m	g/kg dw)	
Wat	erbody	Area Code	Code	Sample Date	Sample	Area Median	Area Minimum	Area Maximum	Area Mean	Area Standard Deviation
			RG_SLINE1_INV	25-Feb-19	4.7					
			RG_SLINE2_INV	25-Feb-19	5.8					
			RG_SLINE3_INV	25-Feb-19	4.0	-				
			RG_SLINE4_INV	25-Feb-19	4.4	-				
			RG_SLINE5_INV	25-Feb-19	4.2 4.4	4.8	4.0	6.6	4.9	0.8
			RG_SLINE6_INV RG_SLINE7_INV	25-Feb-19 25-Feb-19	5.0	-				
			RG_SLINE8_INV	25-Feb-19	6.6	-				
			RG_SLINE9_INV	25-Feb-19	5.3	-				
			RG_SLINE10_INV	25-Feb-19	4.9	-				
			RG_SLINE1_INV	24-Apr-19	5.0	-				
			RG_SLINE2_INV RG SLINE3 INV	24-Apr-19 24-Apr-19	3.8 6.0	-				
			RG_SLINE4_INV	24-Apr-19	6.2	-				
			RG_SLINE5_INV	24-Apr-19	6.8			7.0		4.0
			RG_SLINE6_INV	24-Apr-19	5.9	6.1	3.8	7.2	5.9	1.0
			RG_SLINE7_INV	24-Apr-19	5.1					
			RG_SLINE8_INV	24-Apr-19	6.9	-				
			RG_SLINE9_INV	24-Apr-19	6.3	-				
			RG_SLINE10_INV RG_SLINE1_INV	24-Apr-19 23-May-19	7.2 5.4					
			RG_SLINE2_INV	23-May-19	5.2	-				
			RG_SLINE3_INV	23-May-19	5.7	-				
			RG_SLINE4_INV	23-May-19	5.3	-				
1			RG_SLINE5_INV	23-May-19	6.0	6.0	5.2	6.6	5.9	0.5
1			RG_SLINE6_INV	23-May-19	6.5		J.L	0.0	0.0	5.0
1			RG_SLINE7_INV	23-May-19	6.1					
			RG_SLINE8_INV RG_SLINE9_INV	23-May-19 23-May-19	6.1 6.6	-				
			RG_SLINE10_INV	23-May-19	6.0	-				
			RG_SLINE1_INV	18-Jun-19	5.5					
			RG_SLINE2_INV	18-Jun-19	7.0	-				
			RG_SLINE3_INV	18-Jun-19	6.2					
			RG_SLINE4_INV	18-Jun-19	6.8	-				
			RG_SLINE5_INV	18-Jun-19	6.2	6.0	5.1	7.1	6.1	0.7
			RG_SLINE6_INV RG_SLINE7_INV	18-Jun-19 18-Jun-19	5.6 5.1	-				
		Ω Ω	RG_SLINE8_INV	18-Jun-19	7.1	-				
*	D.	_sL	RG_SLINE9_INV	18-Jun-19	5.8	-				
Line Creek	Reference	RG_SLINE (LC_SLC)	RG_SLINE10_INV	18-Jun-19	5.2	-				
Je C	efere	ШN	RG_SLINE1_INV	16-Jul-19	6.2					
Ē	Ř	ิร	RG_SLINE2_INV	16-Jul-19	6.1	-				
		່ອ້	RG_SLINE3_INV	16-Jul-19	4.8	-				
		-	RG_SLINE4_INV	16-Jul-19 16-Jul-19	5.1 5.7	-				
			RG_SLINE5_INV RG_SLINE6_INV	16-Jul-19	6.3	5.8	4.4	6.7	5.7	0.7
			RG_SLINE7_INV	16-Jul-19	4.4	-				
			RG_SLINE8_INV	16-Jul-19	6.7	-				
			RG_SLINE9_INV	16-Jul-19	5.9					
			RG_SLINE10_INV	16-Jul-19	5.6					
			RG_SLINE1_INV	12-Aug-19	6.5	-				
			RG_SLINE2_INV	12-Aug-19	6.1 6.5	-				
1			RG_SLINE3_INV RG_SLINE4_INV	12-Aug-19 12-Aug-19	6.5 5.7					
			RG_SLINE5_INV	12-Aug-19	6.4		E A	6.5	6.0	0.5
1			RG_SLINE6_INV	12-Aug-19	5.2	6.0	5.1	6.5	6.0	0.5
1			RG_SLINE7_INV	12-Aug-19	5.1	-				
1			RG_SLINE8_INV	12-Aug-19	5.8	-				
			RG_SLINE9_INV	12-Aug-19	5.9 6.4					
1			RG_SLINE10_INV RG SLINE INV-1	12-Aug-19 9-Sep-19	6.4 5.5					
			RG_SLINE_INV-2	9-Sep-19	5.5					
1			RG_SLINE_INV-3	9-Sep-19	5.7					
1			RG_SLINE_INV-4	9-Sep-19	4.7					
1			RG_SLINE_INV-5	9-Sep-19	5.4	5.1	4.0	6.4	5.1	0.7
1			RG_SLINE_INV-6	9-Sep-19	4.0					5.1
1			RG_SLINE_INV-7	9-Sep-19	4.4	-				
1			RG_SLINE_INV-8 RG_SLINE_INV-9	9-Sep-19 9-Sep-19	4.7 6.4					
1			RG_SLINE_INV-9	9-Sep-19 9-Sep-19	4.7					
			RG_SLINE_INV-1	5-Dec-19	2.4					
			RG_SLINE_INV-2	5-Dec-19	2.4					
			RG_SLINE_INV-3	5-Dec-19	2.7					
1			RG_SLINE_INV-4	5-Dec-19	3.3					
1			RG_SLINE_INV-5	5-Dec-19	3.4	2.7	2.1	3.4	2.7	0.5
1			RG_SLINE_INV-6	5-Dec-19	2.1	-				
1	1	1	RG_SLINE_INV-7	5-Dec-19	2.6					
1			RG SLINE INIV .	5-Dec 10	20					
			RG_SLINE_INV-8 RG_SLINE_INV-9	5-Dec-19 5-Dec-19	2.9 2.1	-				

	Biological	Sample				Selenium Cor	ncentration (m	g/kg dw)	
Waterbody	Area Code	Code	Sample Date	Sample	Area Median	Area Minimum	Area Maximum	Area Mean	Area Standard Deviation
		RG_LCUT1-INV	17-Jan-19	6.3	_				
		RG_LCUT2-INV	17-Jan-19	5.5	_				
		RG_LCUT3-INV RG_LCUT4-INV	17-Jan-19 17-Jan-19	7.1 5.9	-				
		RG_LCUT5-INV	17-Jan-19	5.8	5.9	4.9	7.1	6.1	0.7
		RG_LCUT6-INV	17-Jan-19	4.9					•
		RG_LCUT7-INV	17-Jan-19	6.3					
		RG_LCUT8-INV	17-Jan-19	5.7					
		RG_LCUT9-INV	17-Jan-19	7.1					
		RG_LCUT1_INV	24-Apr-19	7.0	_				
		RG_LCUT2_INV RG_LCUT3_INV	24-Apr-19 24-Apr-19	10 5.7	9.7	5.7	11	8.7	2.2
		RG_LCUT4_INV	24-Apr-19	9.7	5.7	0.1		0.7	2.2
		RG_LCUT5_INV	24-Apr-19	11	_				
		RG_LCUT1-INV	22-May-19	3.8					
		RG_LCUT2-INV	22-May-19	3.7	_				
		RG_LCUT3-INV	22-May-19	3.8	_				
		RG_LCUT4-INV RG_LCUT5-INV	22-May-19 22-May-19	2.7 3.9	3.8	2.6	6.8	4.0	1.4
		RG LCUT6-INV	22-May-19	2.6	3.0	2.0	0.0	4.0	1.4
		RG LCUT7-INV	22-May-19	6.8	_				
		RG_LCUT8-INV	22-May-19	5.5					
		RG_LCUT9-INV	22-May-19	3.0					
		RG_LCUT1_INV	17-Jun-19	3.4	_				
		RG_LCUT2_INV	17-Jun-19	5.2	_				
		RG_LCUT3_INV RG_LCUT4_INV	17-Jun-19 17-Jun-19	3.0 4.8	_				
		RG_LCUT5_INV	17-Jun-19	7.7	-				
		RG_LCUT6_INV	17-Jun-19	3.8	3.7	3.0	7.7	4.2	1.4
		RG_LCUT7_INV	17-Jun-19	3.5					
		RG_LCUT8_INV	17-Jun-19	4.4					
		RG_LCUT9_INV	17-Jun-19	3.2	_				
	(C)	RG_LCUT10_INV	17-Jun-19	3.4					
-	N_	RG_LCUT1_INV RG_LCUT2_INV	17-Jul-19 17-Jul-19	3.0 4.2	_				
ek		RG_LCUT3_INV	17-Jul-19	3.0	-				
Line Creek Mine-exposed	(LC_LCUSWLC / LC_MLC)	RG_LCUT4_INV	17-Jul-19	3.7					
ine ne-e	Sw	RG_LCUT5_INV	17-Jul-19	2.8	2.0	2.0	4.2	3.3	0.4
Mi	LCL F	RG_LCUT6_INV	17-Jul-19	2.8	3.2	2.8	4.2	3.3	0.4
	C_L	RG_LCUT7_INV	17-Jul-19	3.2	_				
	(L	RG_LCUT8_INV	17-Jul-19	3.1	_				
		RG_LCUT9_INV RG_LCUT10_INV	17-Jul-19 17-Jul-19	3.5 3.3	_				
		RG_LCUT1_INV	13-Aug-19	8.5					
		RG_LCUT2_INV	13-Aug-19	4.9	_				
		RG_LCUT3_INV	13-Aug-19	6.2					
		RG_LCUT4_INV	13-Aug-19	5.7					
		RG_LCUT5_INV	13-Aug-19	5.2	5.3	1.8	8.5	5.5	1.7
		RG_LCUT6_INV	13-Aug-19	5.1					
		RG_LCUT7_INV RG_LCUT8_INV	13-Aug-19 13-Aug-19	7.1 1.8					
		RG_LCUT9_INV	13-Aug-19	5.2					
		RG_LCUT10_INV	13-Aug-19	5.4	1				
		RG_LCUT_INV-1	5-Sep-19	7.5					
		RG_LCUT_INV-2	5-Sep-19	8.3					
		RG_LCUT_INV-3	5-Sep-19	8.5					
		RG_LCUT_INV-4	5-Sep-19	7.3 7.1	_				
		RG_LCUT_INV-5 RG_LCUT_INV-6	5-Sep-19 5-Sep-19	5.8	7.4	5.8	12	7.8	1.7
		RG_LCUT_INV-7	5-Sep-19	6.8					
		RG_LCUT_INV-8	5-Sep-19	8.3					
		RG_LCUT_INV-9	5-Sep-19	12]				
		RG_LCUT_INV-10	5-Sep-19	6.2					
		RG_LCUT_INV-1	3-Dec-19	3.8					
		RG_LCUT_INV-2	3-Dec-19	5.0					
		RG_LCUT_INV-3 RG_LCUT_INV-4	3-Dec-19 3-Dec-19	8.1 3.7					
		RG_LCUT_INV-4 RG_LCUT_INV-5	3-Dec-19 3-Dec-19	3.7					
		RG_LCUT_INV-6	3-Dec-19	4.8	4.1	3.6	8.1	4.6	1.3
		RG_LCUT_INV-7	3-Dec-19	3.8					
		RG_LCUT_INV-8	3-Dec-19	4.4]				
		RG_LCUT_INV-9	3-Dec-19	5.0					
		RG_LCUT_INV-10	3-Dec-19	3.8					

		Biological	Sample				Selenium Cor	ncentration (m	g/kg dw)	
Wate	erbody	Area Code	Code	Sample Date	Sample	Area Median	Area Minimum	Area Maximum	Area Mean	Area Standard Deviation
 			RG_LILC3-1-INV	17-Jan-19	8.8					
			RG_LILC3-2-INV	17-Jan-19	7.6	-				
			RG_LILC3-3-INV RG_LILC3-4-INV	17-Jan-19	9.6 9.2	-				
			RG_LILC3-4-INV	17-Jan-19 17-Jan-19	9.2	-				
			RG LILC3-6-INV	17-Jan-19	7.4	8.7	6.7	10.0	8.5	1.0
			RG_LILC3-7-INV	17-Jan-19	8.5	-				
			RG_LILC3-8-INV	17-Jan-19	8.2					
			RG_LILC3-9-INV	17-Jan-19	6.7	-				
			RG_LILC3-10-INV RG_LILC3-1-INV	17-Jan-19 26-Feb-19	10.0 11					
			RG LILC3-2-INV	26-Feb-19	12	-				
			RG_LILC3-3-INV	26-Feb-19	10					
			RG_LILC3-4-INV	26-Feb-19	9.9	-				
			RG_LILC3-5-INV RG_LILC3-6-INV	26-Feb-19 26-Feb-19	10 10	10	9.9	12	11	0.9
			RG_LILC3-0-INV	26-Feb-19	10	-				
			RG_LILC3-8-INV	26-Feb-19	12	-				
			RG_LILC3-9-INV	26-Feb-19	11					
			RG_LILC3-10-INV	26-Feb-19	10					
			RG_LILC3-1_INV RG_LILC3-2_INV	22-Apr-19 22-Apr-19	11 12	-				
			RG_LILC3-2_INV RG_LILC3-3_INV	22-Apr-19 22-Apr-19	12	-				
1			RG_LILC3-4_INV	22-Apr-19	12	-				
			RG_LILC3-5_INV	22-Apr-19	8.8	11	8.8	12	11	1.0
			RG_LILC3-6_INV	22-Apr-19	11	-	0.0	12		1.0
			RG_LILC3-7_INV	22-Apr-19	11	-				
			RG_LILC3-8_INV RG_LILC3-9_INV	22-Apr-19 22-Apr-19	10 12	-				
			RG_LILC3-10_INV	22-Apr-19	11	_				
			RG_LILC3-1_INV	23-May-19	11					
			RG_LILC3-2_INV	23-May-19	9.7					
			RG_LILC3-3_INV	23-May-19	13	-				
			RG_LILC3-4_INV RG_LILC3-5_INV	23-May-19 23-May-19	9.6 10	-				
			RG_LILC3-6_INV	23-May-19	10	10	8.1	13	10	1.4
			RG_LILC3-7_INV	23-May-19	11					
	σ	LC3	RG_LILC3-8_INV	23-May-19	8.1	-				
eek	Mine-exposed	נכ [_] רוכ3 (רכ	RG_LILC3-9_INV RG_LILC3-10_INV	23-May-19 23-May-19	12 9.8	-				
Line Creek	-exp	C3 (I	RG_LILC3-1_INV	18-Jun-19	5.4					
Lin	Aine	רורס	RG_LILC3-2_INV	18-Jun-19	7.5	-				
	2	g	RG_LILC3-3_INV	18-Jun-19	8.7					
		_	RG_LILC3-4_INV	18-Jun-19	9.7	-				
			RG_LILC3-5_INV RG_LILC3-6_INV	18-Jun-19 18-Jun-19	8.3 7.4	7.6	5.4	9.7	7.8	1.1
			RG_LILC3-7_INV	18-Jun-19	8.3	-				
			RG_LILC3-8_INV	18-Jun-19	7.6	-				
			RG_LILC3-9_INV	18-Jun-19	7.0	-				
			RG_LILC3-10_INV	18-Jun-19	7.6					
			RG_LILC3-1_INV RG_LILC3-2_INV	23-Jul-19 23-Jul-19	5.8 7.2	-				
			RG_LILC3-3_INV	23-Jul-19	9.4	-				
			RG_LILC3-4_INV	23-Jul-19	7.6	-				
			RG_LILC3-5_INV	23-Jul-19	7.5	7.4	5.8	9.4	7.2	1.1
			RG_LILC3-6_INV	23-Jul-19	8.1		0.0			
			RG_LILC3-7_INV RG_LILC3-8_INV	23-Jul-19 23-Jul-19	7.5 5.8	-				
			RG_LILC3-8_INV RG_LILC3-9_INV	23-Jul-19 23-Jul-19	6.5	-				
			RG_LILC3-10_INV	23-Jul-19	6.8	-				
			RG_LILC3-1_INV	12-Aug-19	6.8					
			RG_LILC3-2_INV	12-Aug-19	7.7	-				
			RG_LILC3-3_INV RG_LILC3-4_INV	12-Aug-19 12-Aug-19	6.8 8.5	-				
			RG_LILC3-4_INV RG_LILC3-5_INV	12-Aug-19 12-Aug-19	8.5 10	-	_		_	
			RG_LILC3-6_INV	12-Aug-19	8.2	7.9	6.7	11	8.1	1.4
			RG_LILC3-7_INV	12-Aug-19	6.7					
			RG_LILC3-8_INV	12-Aug-19	7.7	-				
			RG_LILC3-9_INV	12-Aug-19	8.0	-				
			RG_LILC3-10_INV RG_LILC3_INV-1	12-Aug-19 7-Sep-19	11 10					
			RG_LILC3_INV-2	7-Sep-19	10	-				
			RG_LILC3_INV-3	7-Sep-19	9.8					
			RG_LILC3_INV-4	7-Sep-19	9.0	-				
			RG_LILC3_INV-5	7-Sep-19	10	9.9	8.8	11	9.7	0.6
			RG_LILC3_INV-6 RG_LILC3_INV-7	7-Sep-19 7-Sep-19	8.8 9.0	-				
1			RG_LILC3_INV-8	7-Sep-19 7-Sep-19	9.9	-				
			RG_LILC3_INV-9	7-Sep-19	9.7	-				
			RG_LILC3_INV-10	7-Sep-19	10	1				

		Biological	Sample				Selenium Con	centration (m	g/kg dw)	
Wate	rbody	Area Code	Code	Sample Date	Sample	Area Median	Area Minimum	Area Maximum	Area Mean	Area Standard Deviation
			RG_LILC3_INV-1	3-Dec-19	7.4					
		3)	RG_LILC3_INV-2	3-Dec-19	7.7	-				
		ĽC	RG_LILC3_INV-3 RG_LILC3_INV-4	3-Dec-19 3-Dec-19	6.8 6.9	-				
		- (LC_	RG_LILC3_INV-4	3-Dec-19	8.2					
		C3	RG_LILC3_INV-6	3-Dec-19	7.6	7.7	6.8	9.2	7.6	0.7
		K6_LILC3 (LC_LC3)	RG_LILC3_INV-7	3-Dec-19	7.7					
		RG	RG_LILC3_INV-8	3-Dec-19	7.7	-				
			RG_LILC3_INV-9	3-Dec-19	9.2	-				
			RG_LILC3_INV-10 RG_LISP24-1-INV	3-Dec-19 17-Jan-19	7.2 7.2					
			RG_LISP24-2-INV	17-Jan-19	5.6	-				
			RG_LISP24-3-INV	17-Jan-19	5.4					
			RG_LISP24-4-INV	17-Jan-19	6.6	-				
			RG_LISP24-5-INV RG_LISP24-6-INV	17-Jan-19 17-Jan-19	7.0 5.9	6.0	4.9	7.5	6.2	0.9
			RG LISP24-7-INV	17-Jan-19	5.7	-				
			RG_LISP24-8-INV	17-Jan-19	6.1	-				
			RG_LISP24-9-INV	17-Jan-19	7.5					
			RG_LISP24-10-INV	17-Jan-19	4.9					
			RG_LISP24-1-INV RG_LISP24-2-INV	26-Feb-19 26-Feb-19	7.6 6.5	-				
			RG_LISP24-2-INV RG_LISP24-3-INV	26-Feb-19	6.2	-				
			RG_LISP24-4-INV	26-Feb-19	7.8	-				
			RG_LISP24-5-INV	26-Feb-19	5.6	7.5	5.6	8.2	7.1	0.9
			RG_LISP24-6-INV	26-Feb-19	6.4	1.5	5.0	0.2	7.1	0.5
			RG_LISP24-7-INV	26-Feb-19	7.5	-				
			RG_LISP24-8-INV RG_LISP24-9-INV	26-Feb-19 26-Feb-19	8.2 7.4	-				
			RG LISP24-10-INV	26-Feb-19	7.9	_				
		(4)	 RG_LISP24-1_INV	22-Apr-19	7.7					
		P_SP24)	RG_LISP24-2_INV	22-Apr-19	7.0	-				
		E C	RG_LISP24-3_INV	22-Apr-19	8.1	-				
		RG_LISP24 (WL_DC	RG_LISP24-4_INV RG_LISP24-5_INV	22-Apr-19 22-Apr-19	8.0 7.0	-				
		(WL	RG LISP24-6 INV	22-Apr-19	7.0	7.4	6.4	8.2	7.4	0.6
		224	RG_LISP24-7_INV	22-Apr-19	7.1	-				
	q	LISI	RG_LISP24-8_INV	22-Apr-19	8.2	-				
eek	Mine-exposed	g	RG_LISP24-9_INV	22-Apr-19	6.4	-				
Line Creek	-exp	ш	RG_LISP24-10_INV	22-Apr-19	7.8 7.0					
Line	1ine-		RG_LISP24_INV-1 RG_LISP24_INV-2	5-Sep-19 5-Sep-19	5.8	-				
	2		RG_LISP24_INV-3	5-Sep-19	6.6	-				
			RG_LISP24_INV-4	5-Sep-19	7.2					
			RG_LISP24_INV-5	5-Sep-19	6.5	6.5	5.8	7.2	6.6	0.4
			RG_LISP24_INV-6 RG_LISP24_INV-7	5-Sep-19 5-Sep-19	7.1 6.5	-				
			RG_LISP24_INV-8	5-Sep-19	6.1	_				
			RG_LISP24_INV-9	5-Sep-19	6.4					
			RG_LISP24_INV-10	5-Sep-19	6.3					
			RG_LISP24_INV-1	2-Dec-19	5.4 6.1	-				
			RG_LISP24_INV-2 RG_LISP24_INV-3	2-Dec-19 2-Dec-19	5.7	-				
			RG_LISP24_INV-4	2-Dec-19	5.5	_				
			RG_LISP24_INV-5	2-Dec-19	6.0	5.9	5.4	6.8	5.9	0.4
			RG_LISP24_INV-6	2-Dec-19	5.6	0.0	0.4	0.0	0.0	v. 1
			RG_LISP24_INV-7	2-Dec-19	5.5	-				
			RG_LISP24_INV-8 RG_LISP24_INV-9	2-Dec-19 2-Dec-19	6.8 6.0					
			RG_LISP24_INV-10	2-Dec-19	6.2	-				
			RG_LIDSL1-INV	16-Jan-19	4.9					
			RG_LIDSL2-INV	16-Jan-19	5.8	-				
			RG_LIDSL3-INV	16-Jan-19	5.2	-				
			RG_LIDSL4-INV RG_LIDSL5-INV	16-Jan-19 16-Jan-19	4.4 7.2					
			RG_LIDSL6-INV	16-Jan-19	6.8	5.8	4.0	7.2	5.7	1.1
		RG_LIDSL (LC_LCDSSLCC) Compliance	RG_LIDSL7-INV	16-Jan-19	4.0					
		ISSI	RG_LIDSL8-INV	16-Jan-19	5.7	-				
		LCD	RG_LIDSL9-INV	16-Jan-19	5.9	-				
		-C_I plia	RG_LIDSL10-INV	16-Jan-19 26-Eeb-19	7.1 8.8					
		Com Som	RG_LIDSL1-INV RG_LIDSL2-INV	26-Feb-19 26-Feb-19	8.8					
		SOL	RG_LIDSL3-INV	26-Feb-19	5.3	-				
		G_L	RG_LIDSL4-INV	26-Feb-19	7.4					
		R	RG_LIDSL5-INV	26-Feb-19	6.1	6.1	5.3	8.8	6.6	1.1
			RG_LIDSL6-INV	26-Feb-19	6.1		0.0	0.0	0.0	
I			RG_LIDSL7-INV	26-Feb-19	5.9	-				
	1		RG_LIDSL8-INV	26-Feb-19	6.5	-				
			RG_LIDSL9-INV	26-Feb-19	6.0					

	Biological	Sample		Selenium Concentration (mg/kg dw)						
Waterbody	Area Code	Code	Sample Date	Sample	Area Median	Area Minimum	Area Maximum	Area Mean	Area Standard Deviation	
		RG_LIDSL1_INV	22-Apr-19	5.7						
		RG_LIDSL2_INV	22-Apr-19	7.6	-					
		RG_LIDSL3_INV RG_LIDSL4_INV	22-Apr-19 22-Apr-19	5.6 6.0	-					
		RG_LIDSL5_INV	22-Apr-19 22-Apr-19	5.8	-					
		RG_LIDSL6_INV	22-Apr-19	5.3	5.8	5.3	7.6	6.0	0.6	
		RG LIDSL7 INV	22-Apr-19	5.7	-					
		RG_LIDSL8_INV	22-Apr-19	6.1	-					
		RG_LIDSL9_INV	22-Apr-19	6.4						
		RG_LIDSL10_INV	22-Apr-19	5.6						
		RG_LIDSL1_INV	23-May-19	7.6	-					
		RG_LIDSL2_INV	23-May-19	5.3	-					
		RG_LIDSL3_INV RG_LIDSL4_INV	23-May-19 23-May-19	6.6 8.2	-					
		RG_LIDSL5_INV	23-May-19	9.3	-					
		RG_LIDSL6_INV	23-May-19	7.4	7.3	5.3	9.3	7.1	1.2	
		RG_LIDSL7_INV	23-May-19	7.1	-					
		RG_LIDSL8_INV	23-May-19	5.8						
		RG_LIDSL9_INV	23-May-19	7.4	_					
		RG_LIDSL10_INV	23-May-19	6.3						
		RG_LIDSL1_INV	17-Jun-19	6.1	-					
		RG_LIDSL2_INV	17-Jun-19 17-Jun-19	5.6						
		RG_LIDSL3_INV RG_LIDSL4_INV	17-Jun-19 17-Jun-19	9.3 6.1	-				1.4	
		RG_LIDSL5_INV	17-Jun-19	5.3				_		
		RG_LIDSL6_INV	17-Jun-19	8.5	6.1	5.3	9.3	6.8		
		RG_LIDSL7_INV	17-Jun-19	8.0	-					
		RG_LIDSL8_INV	17-Jun-19	6.0						
		RG_LIDSL9_INV	17-Jun-19	5.6						
		RG_LIDSL10_INV	17-Jun-19	7.2					<u> </u>	
	Ô	RG_LIDSL1_INV	15-Jul-19	5.7	5.6	4.5	6.3	5.4		
	ISSLCC)	RG_LIDSL2_INV RG_LIDSL3_INV	15-Jul-19 15-Jul-19	5.6 5.2					0.5	
	SOS	RG_LIDSL4_INV	15-Jul-19	5.3						
	Ľ	RG_LIDSL5_INV	15-Jul-19	4.6						
	(LC	RG_LIDSL6_INV	15-Jul-19	4.5						
	SL	RG_LIDSL7_INV	15-Jul-19	5.6						
σ	RG_LIDSL (LC_LCD	RG_LIDSL8_INV	15-Jul-19	5.6						
Mine-exposed		RG_LIDSL9_INV	15-Jul-19	6.3	-					
Line Creek	_	RG_LIDSL10_INV	15-Jul-19	5.5 6.2	-	5.2	7.1	6.0	0.6	
ine-		RG_LIDSL1_INV RG_LIDSL2_INV	12-Aug-19 12-Aug-19	6.4						
Σ		RG_LIDSL3_INV	12-Aug-19	5.7						
		RG_LIDSL4_INV	12-Aug-19	6.7						
		RG_LIDSL5_INV	12-Aug-19	5.5	6.0					
		RG_LIDSL6_INV	12-Aug-19	5.2	6.0					
		RG_LIDSL7_INV	12-Aug-19	7.1						
		RG_LIDSL8_INV	12-Aug-19	6.1						
		RG_LIDSL9_INV	12-Aug-19	5.8 5.3						
		RG_LIDSL10_INV RG_LIDSL_INV-1	12-Aug-19 10-Sep-19	5.3 7.4						
		RG_LIDSL_INV-1	10-Sep-19 10-Sep-19	7.4		6.3	7.4	7.0	0.4	
		RG_LIDSL_INV-3	10-Sep-19	6.6	7.0					
		RG_LIDSL_INV-4	10-Sep-19	6.3						
		RG_LIDSL_INV-5	10-Sep-19	7.0						
		RG_LIDSL_INV-6	10-Sep-19	6.5						
		RG_LIDSL_INV-7	10-Sep-19	7.4	-					
		RG_LIDSL_INV-8	10-Sep-19	7.4 7.0	_					
		RG_LIDSL_INV-9 RG_LIDSL_INV-10	10-Sep-19 10-Sep-19	6.9						
		RG_LIDSL_INV-1	3-Dec-19	5.1						
		RG_LIDSL_INV-2	3-Dec-19	4.9						
		RG_LIDSL_INV-3	3-Dec-19	4.3						
		RG_LIDSL_INV-4	3-Dec-19	4.4	- 4.7	4.2	5.1			
		RG_LIDSL_INV-5	3-Dec-19	4.6				4.7	0.3	
		RG_LIDSL_INV-6	3-Dec-19	4.9						
		RG_LIDSL_INV-7 RG_LIDSL_INV-8	3-Dec-19 3-Dec-19	5.0 4.2	-					
		RG_LIDSL_INV-9	3-Dec-19 3-Dec-19	4.2						
		RG_LIDSL_INV-10	3-Dec-19	4.7						
		RG_LIDCOM1-INV	16-Jan-19	7.5						
	Û	RG_LIDCOM2-INV	16-Jan-19	7.3						
	RG_LIDCOM (LC_LCC)	RG_LIDCOM3-INV	16-Jan-19	6.6						
		RG_LIDCOM4-INV	16-Jan-19	7.4						
	Ū M	RG_LIDCOM5-INV	16-Jan-19	7.5	7.4	6.0	7.6	7.0	0.6	
	0 Q	RG_LIDCOM6-INV	16-Jan-19	6.6		0.0			0.0	
	LLD	RG_LIDCOM7-INV	16-Jan-19	7.4	-					
	ڻ ک	RG_LIDCOM8-INV	16-Jan-19	7.6						
	L L	RG_LIDCOM9-INV	16-Jan-19	6.4	4					

Selenium Concentration (mg/kg dw) Biological Sample Waterbody Sample Date Area Code Area Area Area Standard Code Sample Area Median Area Mean Minimum Maximum Deviation RG_LIDCOM1-INV 27-Feb-19 7.3 RG_LIDCOM2-INV 27-Feb-19 7.7 RG_LIDCOM3-INV 27-Feb-19 7.0 RG_LIDCOM4-INV 27-Feb-19 7.6 RG_LIDCOM5-INV 27-Feb-19 7.9 7.0 7.7 0.4 7.7 8.2 RG_LIDCOM6-INV 27-Feb-19 8.2 RG_LIDCOM7-INV 27-Feb-19 7.8 RG_LIDCOM8-INV 27-Feb-19 8.2 RG_LIDCOM9-INV 27-Feb-19 7.7 RG_LIDCOM10-INV 27-Feb-19 7.5 RG_LIDCOM1_INV 25-Apr-19 8.5 RG_LIDCOM2_INV 25-Apr-19 8.4 RG_LIDCOM3_INV 25-Apr-19 8.0 RG_LIDCOM4_INV 25-Apr-19 7.6 RG_LIDCOM5_INV 25-Apr-19 7.9 8.0 0.3 8.0 7.5 8.5 RG_LIDCOM6_INV 25-Apr-19 7.9 RG_LIDCOM7_INV 25-Apr-19 8.0 RG_LIDCOM (LC_LCC) RG_LIDCOM8_INV 25-Apr-19 8.3 RG_LIDCOM9_INV 25-Apr-19 7.5 RG_LIDCOM10_INV 25-Apr-19 7.8 RG_LIDCOM_INV-1 12-Sep-19 7.4 RG_LIDCOM_INV-2 12-Sep-19 6.3 RG_LIDCOM_INV-3 12-Sep-19 6.8 RG_LIDCOM_INV-4 12-Sep-19 5.3 RG_LIDCOM_INV-5 12-Sep-19 6.6 7.4 0.6 6.5 5.3 6.5 RG_LIDCOM_INV-6 12-Sep-19 6.0 RG_LIDCOM_INV-7 12-Sep-19 6.4 RG_LIDCOM_INV-8 12-Sep-19 6.2 RG_LIDCOM_INV-9 12-Sep-19 7.2 RG_LIDCOM_INV-10 12-Sep-19 6.6 RG_LIDCOM_INV-1 5-Dec-19 5.8 RG_LIDCOM_INV-2 5-Dec-19 5.8 RG_LIDCOM_INV-3 5-Dec-19 5.5 RG_LIDCOM_INV-4 5-Dec-19 4.3 RG_LIDCOM_INV-5 5-Dec-19 5.7 5.6 3.7 5.8 5.3 0.7 RG_LIDCOM_INV-6 5-Dec-19 3.7 RG_LIDCOM_INV-7 5-Dec-19 5.8 RG_LIDCOM_INV-8 5-Dec-19 5.6 Mine-exposed RG_LIDCOM_INV-9 5-Dec-19 5.5 Line Creek RG_LIDCOM_INV-10 5-Dec-19 5.1 RG_LI8-1-INV 16-Jan-19 6.4 RG_LI8-2-INV 16-Jan-19 5.1 16-Jan-19 RG_LI8-3-INV 5.7 16-Jan-19 RG_LI8-4-INV 6.7 16-Jan-19 RG_LI8-5-INV 5.0 5.8 0.6 5.7 5.0 6.7 16-Jan-19 RG_LI8-6-INV 5.6 16-Jan-19 RG_LI8-7-INV 5.8 16-Jan-19 RG_LI8-8-INV 5.4 16-Jan-19 RG_LI8-9-INV 6.6 RG_LI8-10-INV 16-Jan-19 5.2 RG_LI8-1-INV 6.6 27-Feb-19 27-Feb-19 RG_LI8-2-INV 6.6 RG_LI8-3-INV 27-Feb-19 6.1 RG LI8-4-INV 27-Feb-19 6.7 RG LI8-5-INV 27-Feb-19 5.8 0.7 6.7 5.5 7.8 6.6 RG_LI8-6-INV 27-Feb-19 5.5 RG LI8-7-INV 27-Feb-19 7.1 RG LI8-8-INV 27-Feb-19 6.9 G_LI8 (LC_LC4) RG_LI8-9-INV 27-Feb-19 7.8 RG_LI8-10-INV 27-Feb-19 7.1 RG_LI8-1_INV 25-Apr-19 7.2 RG_LI8-2_INV 25-Apr-19 8.5

μ μ	RG_LI8-3_INV	25-Apr-19	7.4						
		RG_LI8-4_INV	25-Apr-19	7.2					
	RG_LI8-5_INV	25-Apr-19	7.4	7.3	6.8	8.5	7.4	0.6	
	RG_LI8-6_INV	25-Apr-19	6.9						
		RG_LI8-7_INV	25-Apr-19	6.8					
		RG_LI8-8_INV	25-Apr-19	6.8					
		RG_LI8-9_INV	25-Apr-19	7.6					
	RG_LI8-10_INV	25-Apr-19	8.1						
		RG_LI8-1_INV	24-May-19	4.5					
		RG_LI8-2_INV	24-May-19	6.2					
	RG_LI8-3_INV	24-May-19	5.9						
		RG_LI8-4_INV	24-May-19	6.3	6.2	4.5	7.4	6.1	0.8
		RG_LI8-5_INV	24-May-19	6.0					
		RG_LI8-6_INV	24-May-19	7.4	6.3				
	RG_LI8-7_INV	24-May-19	5.3						
	RG_LI8-8_INV	24-May-19	6.3						
		RG_LI8-9_INV	24-May-19	6.4					
		RG_LI8-10_INV	24-May-19	7.0	1				

Selenium Concentration (mg/kg dw) Biological Sample Waterbody Sample Date Area Area Area Standard Area Code Code Area Mean Sample Area Median Minimum Maximum Deviation RG_LI8-1_INV 19-Jun-19 5.6 RG_LI8-2_INV 19-Jun-19 5.8 19-Jun-19 RG_LI8-3_INV 5.5 19-Jun-19 RG_LI8-4_INV 6.4 19-Jun-19 RG_LI8-5_INV 5.7 6.3 5.5 8.3 6.7 1.1 RG_LI8-6_INV 19-Jun-19 8.1 19-Jun-19 RG_LI8-7_INV 8.3 19-Jun-19 RG_LI8-8_INV 8.0 19-Jun-19 RG_LI8-9_INV 6.1 RG_LI8-10_INV 19-Jun-19 7.3 RG_LI8-1_INV 17-Jul-19 6.3 RG_LI8-2_INV 17-Jul-19 5.9 RG_LI8-3_INV 17-Jul-19 7.3 17-Jul-19 RG_LI8-4_INV 6.6 17-Jul-19 RG_LI8-5_INV 5.9 0.5 6.5 5.7 7.3 6.4 RG_LI8-6_INV 17-Jul-19 5.8 RG_LI8-7_INV 17-Jul-19 6.8 RG_LI8-8_INV 17-Jul-19 5.7 RG_LI8-9_INV 17-Jul-19 6.6 RG_LI8-10_INV 17-Jul-19 6.8 RG_LI8-1_INV 13-Aug-19 6.9 RG_LI8-2_INV 13-Aug-19 6.6 RG_LI8-3_INV 6.2 13-Aug-19 RG_LI8 (LC_LC4) Mine-exposed Line Creek RG_LI8-4_INV 13-Aug-19 7.3 RG_LI8-5_INV 13-Aug-19 6.9 0.4 6.8 6.0 7.3 6.7 RG_LI8-6_INV 13-Aug-19 6.0 RG_LI8-7_INV 13-Aug-19 7.2 RG_LI8-8_INV 13-Aug-19 6.6 RG_LI8-9_INV 13-Aug-19 7.1 RG_LI8-10_INV 13-Aug-19 6.6 RG_LI8_INV-1 5.8 11-Sep-19 RG_LI8_INV-2 11-Sep-19 6.2 RG_LI8_INV-3 11-Sep-19 6.7 RG_LI8_INV-4 11-Sep-19 6.2 RG_LI8_INV-5 11-Sep-19 7.1 7.2 0.4 6.4 5.8 6.5 RG_LI8_INV-6 11-Sep-19 6.4 RG_LI8_INV-7 11-Sep-19 6.2 11-Sep-19 RG_LI8_INV-8 7.2 RG_LI8_INV-9 11-Sep-19 6.4 RG_LI8_INV-10 11-Sep-19 6.6 RG_LI8_INV-1 4-Dec-19 4.0 RG_LI8_INV-2 4-Dec-19 4.8 RG_LI8_INV-3 4-Dec-19 4.2 RG_LI8_INV-4 4-Dec-19 3.6 RG_LI8_INV-5 4-Dec-19 5.2 0.5 4.2 3.6 5.2 4.2 RG_LI8_INV-6 4-Dec-19 4.1 RG_LI8_INV-7 4-Dec-19 4.0 RG_LI8_INV-8 4-Dec-19 4.2 RG_LI8_INV-9 4-Dec-19 4.4 RG_LI8_INV-10 4-Dec-19 3.8 RG_FRUL1-INV 15-Jan-19 10.0 RG_FRUL2-INV 15-Jan-19 6.4 RG_FRUL3-INV 10.0 15-Jan-19 7.5 6.9 6.9 6.4 1.44 RG_FRUL4-INV 15-Jan-19 6.8 RG_FRUL5-INV 15-Jan-19 7.3 RG_FRUL1-INV 7-Mar-19 7.2 RG_FRUL2-INV 7-Mar-19 7.8 RG_FRUL3-INV 7-Mar-19 6.0 RG_FRUL4-INV 7-Mar-19 7.0 RG_FRUL5-INV (LC_LC6) 7-Mar-19 6.4 6.7 5.2 9.4 1.2 6.8 xposed RG_FRUL6-INV ng River 7-Mar-19 6.8 RG_FRUL7-INV 7-Mar-19 5.8

lin	Ψ	Б	RG_FRUL8-INV	7-Mar-19	5.2					
Fordin	Mine	E.	RG_FRUL9-INV	7-Mar-19	6.6					
	2	RG	RG_FRUL10-INV	7-Mar-19	9.4					
		ĽĽ.	RG_FRUL1_INV	26-Apr-19	6.5					
			RG_FRUL2_INV	26-Apr-19	7.5					
			RG_FRUL3_INV	26-Apr-19	6.5					
			RG_FRUL4_INV	26-Apr-19	9.1					
			RG_FRUL5_INV	26-Apr-19	9.1	8.3	6.5	9.1	8.1	1.0
			RG_FRUL6_INV	26-Apr-19	7.9	0.5	0.5	5.1	0.1	1.0
			RG_FRUL7_INV	26-Apr-19	8.6					
			RG_FRUL8_INV	26-Apr-19	9.1					
			RG_FRUL9_INV	26-Apr-19	8.8					
			RG_FRUL10_INV	26-Apr-19	7.4					

		Biological Area Code	Sample Code Samı			Selenium Concentration (mg/kg dw)						
Wate	rbody			Sample Date	Sample	Area Median	Area Minimum	Area Maximum	Area Mean	Area Standard Deviation		
			RG_FRUL_INV-1	12-Sep-19	11							
		-	RG_FRUL_INV-2	12-Sep-19	11	_						
			RG_FRUL_INV-3 RG_FRUL_INV-4	12-Sep-19	8.6 9.2	-						
			RG_FRUL_INV-4	12-Sep-19 12-Sep-19	9.2	-						
		RG_FRUL (LC_LC6)	RG_FRUL_INV-6	12-Sep-19	9.5	9.9	8.6	11	10	0.8		
			RG_FRUL_INV-7	12-Sep-19	10	-						
			RG_FRUL_INV-8	12-Sep-19	9.4							
			RG_FRUL_INV-9	12-Sep-19	11							
		- (FC	RG_FRUL_INV-10	12-Sep-19	9.9							
		รกเ	RG_FRUL_INV-1	4-Dec-19	8	-						
		臣	RG_FRUL_INV-2 RG FRUL INV-3	4-Dec-19 4-Dec-19	9 8.1	-						
		RG	RG_FRUL_INV-4	4-Dec-19 4-Dec-19	0.1 11	-						
			RG_FRUL_INV-5	4-Dec-19	8.4							
		-	RG_FRUL_INV-6	4-Dec-19	8.3	8.3	7.8	11	8.5	1.0		
			RG_FRUL_INV-7	4-Dec-19	8							
			RG_FRUL_INV-8	4-Dec-19	7.8							
			RG_FRUL_INV-9	4-Dec-19	8	_						
			RG_FRUL_INV-10	4-Dec-19	7.8							
		-	RG_F023-1-INV	15-Jan-19	6.1					0.9		
			RG_F023-2-INV	15-Jan-19	6.9	7.3	6.1	8.7	7.3			
		-	RG_F023-3-INV	15-Jan-19	8.7							
			RG_F023-4-INV	15-Jan-19	7.5							
			RG_F023-5-INV	15-Jan-19	7.0							
			RG_F023-6-INV RG_F023-7-INV	15-Jan-19 15-Jan-19	8.0 8.5							
			RG_F023-8-INV	15-Jan-19	6.2							
			RG F023-9-INV	15-Jan-19	7.0							
			RG_F023-10-INV	15-Jan-19	7.5							
ъ	ð		RG_F023-1-INV	7-Mar-19	7.5	5.4	4.5	7.5 9.2	5.7 7.6 8.5	1.4		
Fording River	Mine-exposed		RG F023-2-INV	7-Mar-19	4.5							
ng l				7-Mar-19	5.9							
ordi			RG_F023-4-INV	7-Mar-19	4.8							
щ	Σ		RG_FO23-1_INV	26-Apr-19	6.6	_						
		-	RG_FO23-2_INV	26-Apr-19	7.4	_						
		RG_F023 (LC_LC5)	RG_FO23-3_INV	26-Apr-19	6.6							
			RG_FO23-4_INV	26-Apr-19	9.2	_						
			RG_FO23-5_INV	26-Apr-19	6.8	7.4	6.6					
			RG_FO23-6_INV	26-Apr-19	7.5							
			RG_FO23-7_INV	26-Apr-19	7.4							
			RG_F023-8_INV RG_F023-9_INV	26-Apr-19 26-Apr-19	8.9 7.3							
			RG_F023-9_INV RG_F023-10_INV	26-Apr-19	8.0							
			RG_F023_INV-1	8-Sep-19	8.0							
			RG_F023_INV-2	8-Sep-19	7.5							
			RG_F023_INV-3	8-Sep-19	9.1	-						
			 RG_FO23_INV-4	8-Sep-19	11	_						
			RG_F023_INV-5	8-Sep-19	8.2	0.0	7.5					
			RG_FO23_INV-6	8-Sep-19	8.7	8.2	7.5	11				
			RG_FO23_INV-7	8-Sep-19	8.4	-						
			RG_FO23_INV-8	8-Sep-19	8.0							
			RG_FO23_INV-9	8-Sep-19	8.1							
			RG_F023_INV-10	8-Sep-19	7.7							
			RG_FO23_INV-1	4-Dec-19	6.4	4						
			RG_FO23_INV-2	4-Dec-19	7.8	-						
			RG_FO23_INV-3	4-Dec-19	7.2	-						
			RG_FO23_INV-4 RG_FO23_INV-5	4-Dec-19	6.8 6.0							
			RG_F023_INV-5 RG_F023_INV-6	4-Dec-19 4-Dec-19	6.0	6.6	5.0	8.6	6.7	1.0		
			RG_F023_INV-6 RG_F023_INV-7	4-Dec-19 4-Dec-19	8.6	-						
			RG_F023_INV-8	4-Dec-19 4-Dec-19	6.5	-						
			RG_F023_INV-9	4-Dec-19	6.6							
			RG_F023_INV-10	4-Dec-19	5.0	-						

Page 9 of 9

Table B.3: ANOVA Table for the Asymmetric BACI Model Comparing BenthicInvertebrate Selenium Concentrations at RG_LCUT During the Steady State (SS),Shutdown (SD), and Restart (RS) Periods Relative to the Reference Areas (RG_LI24and RG_SLINE)

		ANOV	A Model			
Term		DF	SS ^a	MS ^b	F-Ratio	P-Value
Period		2	0.54	0.27	35	<0.001
	CI	1	0.10	0.10	13	<0.001
	iod×Cl	2	0.26	0.13	16	<0.001
	(Period)	12	1.5	0.12	16	<0.001
•	eriod)×CI	12	1.7	0.146	19	<0.001
E	rror	345			-	
	Contrasts (P-v	value and	Magnitu	de of Diffe	erence)	
Period 1		eriod 2	- J		P-value	MOD ^c
	RS(2	2018_12)			-	-
		2019_1)			-	-
		2019_4)			-	-
	RS(2019_5)			<0.001	-4.7 SD
SS (2016_9)		2019_6)	0.002	-3.9 SD		
	RS(2019_7)	<0.001	-5.4 SD		
	RS(2019_8)	-	-		
	RS(2019_9)		-	-	
	RS(2	2019_12)	-	-		
	•	2018_12)	-	-		
		2019_1)	-	-		
		2019_4)	-	-		
		2019_5)	<0.001	-4.6 SD		
SS (2017_4)		2019_6)	<0.001	-3.8 SD		
		2019_7)	<0.001	-5.2 SD		
		2019_8)	<0.001	-3.1 SD		
		2019_9)	-	-		
		2019_12)	-	-		
		2018_12)	-	-		
		2019_1)	-	-		
		2019_4)		-	-	
		2019_5)	<0.001	-3.3 SD		
SS (2017_9)		2019_6)		<0.001	-2.6 SD	
		2019_7)			<0.001	-4.0 SD
		2019_8)			<0.001	-1.9 SD
		2019_9)			-	-
	RS(2	2019_12)			-	-

p-value for $Period \times CI$ or $Time(Period) \times CI$ factors < 0.1

Contrast p-value < 0.1/27 and in an increasing direction

Contrast p-value < 0.1/27 and in a decreasing direction

Notes: "-" = no data. Selenium results from RG_LI24 collected on May 3rd, 2018 were excluded from the analyses because these were identified as anomalous, and likely the result of a field error.

^a SS = sum of squares of ANOVA model.

^b MS = mean sum of squares of ANOVA model.

Table B.4: ANOVA Table for the Asymmetric BACI Model Comparing Benthic Invertebrate Selenium Concentrations at RG_LILC3 During the Before (B), Initial Operations (IO), Steady State (SS), Shutdown (SD), and Restart (RS) Periods Relative to the Reference Areas (RG_LI24 and RG_SLINE)

	ANOVA M	odel				
	Term	DF	SS ^a	MS ^b	F-Ratio	P-Value
	Period 4		1.7	0.42	70	<0.001
	CI	1	10	10	1700	<0.001
Р	eriod×CI	4	3.5	0.88	147	<0.001
	ne(Period)	13	1.5	0.11	19	< 0.001
	(Period)×Cl	13	1.2	0.095	16	< 0.001
	Error	373	1.2	0.000	-	0.001
	Contrast	s (P-value and	Magnitude	of Difference		
Period 1		Period 2	magintado		P-value	MOD ^c
		RS(2018_12)			-	-
		RS(2019_1)			-	-
		RS(2019_3)			-	-
		RS(2019_4)			-	-
5		RS(2019_5)			-	-
В		RS(2019_6)			-	-
		RS(2019_7)			-	-
		RS(2019_8)			-	-
		RS(2019_9)			-	-
		RS(2019_12)			-	-
		RS(2018_12)			<0.001	-9.3 SD
		RS(2019_1)			<0.001	-8.0 SD
		RS(2019_3)			<0.001	-8.1 SD
		RS(2019_4)			<0.001	-9.1 SD
SS (2016 0)		RS(2019_5)			<0.001	-9.5 SD
SS (2016_9)		RS(2019_6)			<0.001	-10.7 SD
		RS(2019_7)			<0.001	-11.4 SD
		RS(2019_8)			<0.001	-11 SD
		RS(2019_9)			<0.001	-8.8 SD
		RS(2019_12)			<0.001	-7.0 SD
		RS(2018_12)			<0.001	-9.2 SD
		RS(2019_1)			<0.001	-8.0 SD
		RS(2019_3)			<0.001	-8.0 SD
		RS(2019_4)			<0.001	-9.0 SD
SS (2017_4)		RS(2019_5)			<0.001	-9.4 SD
		RS(2019_6)			<0.001	-10.6 SD
		RS(2019_7)			<0.001	-11.3 SD
		RS(2019_8)			<0.001	-10.9 SD
		RS(2019_9)			<0.001	-8.7 SD
		RS(2019_12)			< 0.001	-6.9 SD
		RS(2018_12)			< 0.001	-5.9 SD
		RS(2019_1)			< 0.001	-4.6 SD
		RS(2019_3)			<0.001	-4.7 SD
		RS(2019_4)			< 0.001	-5.7 SD
SS (2017_9)		RS(2019_5)			<0.001	-6.1 SD
		RS(2019_6)			< 0.001	-7.3 SD
		RS(2019_7)			< 0.001	-8.0 SD
		RS(2019_8)			< 0.001	-7.6 SD
		RS(2019_9)			< 0.001	-5.4 SD
		RS(2019_12)			<0.001	-3.6 SD

p-value for Period×CI or Time(Period)×CI factors < 0.1

Contrast p-value < 0.1/40 and in an increasing direction

Contrast p-value < 0.1/40 and in a decreasing direction

Notes: "-" = no data. Selenium results from RG_LI24 collected on May 3rd, 2018 were excluded from the analyses because these were identified as anomalous, and likely the result of a field error.

^a SS = sum of squares of ANOVA model.

^b MS = mean sum of squares of ANOVA model.

Table B.5: ANOVA Table for the Asymmetric BACI Model Comparing BenthicInvertebrate Selenium Concentrations at RG_LISP24 During the Steady State (SS),Shutdown (SD), and Restart (RS) Periods Relative to the Reference Areas (RG_LI24 andRG_SLINE)

	ANO	VA Model			
Term	DF	SS ^a	MS⁵	F-Ratio	P-Value
Period	2	0.91	0.46	72	<0.001
CI	1	2.3	2.3	370	<0.001
Period×CI	2	0.78	0.39	61	<0.001
Time(Period)	7	1.0	0.15	24	<0.001
Time(Period)×Cl	7	0.29	0.041	6.5	<0.001
Error	240			-	

Contrasts (P-value and Magnitude of Difference)					
Period 1	Period 2	P-value	MOD ^c		
	RS(2018_12)	<0.001	-4.7 SD		
	RS(2019_1)	<0.001	-4.1 SD		
SS (2017 9)	RS(2019_3)	<0.001	-4.6 SD		
33 (2017_9)	RS(2019_4)	<0.001	-5.6 SD		
	RS(2019_9)	<0.001	-5.3 SD		
	RS(2019_12)	<0.001	-2.8 SD		

p-value for Period×CI or Time(Period)×CI factors < 0.1

Contrast p-value < 0.1/6 and in an increasing direction

Contrast p-value < 0.1/6 and in a decreasing direction

Notes: Selenium results from RG_LI24 collected on May 3rd, 2018 were excluded from the analyses because these were identified as anomalous, and likely the result of a field error.

^a SS = sum of squares of ANOVA model.

^b MS = mean sum of squares of ANOVA model.

 Table B.6: ANOVA Table for the Asymmetric BACI Model Comparing Benthic Invertebrate Selenium Concentrations at
 RG_LIDSL During the Before (B), Initial Operations (IO), Steady State (SS), Shutdown (SD), and Restart (RS) Periods Relative to the Reference Areas (RG_LI24 and RG_SLINE)

		ANOV	A Model		
Term	DF	SS ^a	MS ^b	F-Ratio	P-Value
Period	4	0.48	0.12	20	<0.001
CI	1	1.6	1.6	258	<0.001
Period×C	4	1.4	0.36	58	<0.001
Time(Perio		1.8	0.14	22	<0.001
Time(Period	· ·	0.6	0.045	7.2	<0.001
Error	373			-	
	Contrasts /P	-valuo and	Magnitude of	(Difforanca)	
Period 1	Period 2	-value allu	wayintuue ol	P-value	MOD ^c
	RS(2018_12)		-	-
				-	
				_	
				-	-
В				_	-
				-	
				-	
	RS(2019_9)			-	
				<0.001	-5.9 SD
	RS(2019_1)			<0.001	-5.8 SD
				<0.001	-6.3 SD
				<0.001	-8.0 SD
				<0.001	-7.1 SD
SS (2016_9)	RS(2019_6)			<0.001	-6.9 SD
				<0.001	-8.4 SD
				<0.001	-8.1 SD
	RS(2019_9)			<0.001	-6.2 SD
				<0.001	-5.3 SD
				<0.001	-3.2 SD
	RS(2019_1)			<0.001	-3.2 SD
	RS(2019_3)			<0.001	-3.6 SD
	RS(2019_4)			<0.001	-5.4 SD
	RS(2019_5)			<0.001	-4.4 SD
SS (2017_4)	RS(2019_6)			<0.001	-4.3 SD
				<0.001	-5.8 SD
				<0.001	-5.4 SD
	RS(2019_9)			<0.001	-3.5 SD
	RS(2019_12			<0.001	-2.6 SD
	RS(2018_12			<0.001	-3.7 SD
				<0.001	-3.7 SD
	RS(2019_3)			<0.001	-4.2 SD
	RS(2019_4)			<0.001	-5.9 SD
SS (2047 0)	RS(2019_5)			<0.001	-5.0 SD
SS (2017_9)	RS(2019_6)			<0.001	-4.8 SD
	RS(2019_7)			<0.001	-6.3 SD
				<0.001	-6.0 SD
	RS(2019_9)			<0.001	-4.0 SD
	RS(2019_12			<0.001	-3.2 SD

p-value for **Period×CI** or **Time(Period)×CI** factors < 0.1

Contrast p-value < 0.1/40 and in an increasing direction

Contrast p-value < 0.1/40 and in a decreasing direction

Notes: "-" = no data. Selenium results from RG_LI24 collected on May 3rd, 2018 were excluded from the analyses because these were identified as anomalous, and likely the result of a field error.

^a SS = sum of squares of ANOVA model.

^b MS = mean sum of squares of ANOVA model.

Table B.7: ANOVA Table for the Asymmetric BACI Model Comparing BenthicInvertebrate Selenium Concentrations at RG_LIDCOM During the Steady State (SS),Shutdown (SD), and Restart (RS) Periods Relative to the Reference Areas (RG_LI24 andRG_SLINE)

ANOVA Model					
Term	DF	SS ^a	MS⁵	F-Ratio	P-Value
Period	2	0.47	0.24	36	<0.001
CI	1	1.9	1.9	284	<0.001
Period×CI	2	0.10	0.048	7.2	<0.001
Time(Period)	7	1.2	0.17	26	<0.001
Time(Period)×CI	7	0.23	0.032	4.9	<0.001
Error	240			-	

	Contrasts (P-value and Magnitude of Difference	e)	
Period 1	Period 2	P-value	MOD ^c
	RS(2018_12)	-	-
	RS(2019_1)	-	-
SS (2017_9)	RS(2019_3)	-	-
33 (2017_9)	RS(2019_4)	<0.001	-2.1 SD
	RS(2019_9)	<0.001	-2.3 SD
	RS(2019_12)	-	-

p-value for Period×CI or Time(Period)×CI factors < 0.1

Contrast p-value < 0.1/6 and in an increasing direction

Contrast p-value < 0.1/6 and in a decreasing direction

Notes: "-" = no data. Selenium results from RG_LI24 collected on May 3rd, 2018 were excluded from the analyses because these were identified as anomalous, and likely the result of a field error.

^a SS = sum of squares of ANOVA model.

^b MS = mean sum of squares of ANOVA model.

Table B.8: ANOVA Table for the Asymmetric BACI Model Comparing Benthic InvertebrateSelenium Concentrations at RG_LI8 During the Before (B), Initial Operations (IO), Steady State(SS), Shutdown (SD), and Restart (RS) Periods Relative to the Reference Areas (RG_LI24 andRG_SLINE)

		ANOV	A Model			
Т	erm	DF	SS ^a	MS ^b	F-Ratio	P-Value
P	eriod	4	0.56	0.14	25	<0.001
CI		1	1.8	1.8	331	<0.001
Per	iod×Cl	4	0.80	0.20	36	<0.001
	(Period)	13	2.2	0.17	31	< 0.001
	Period)×Cl	13	0.41	0.031	5.6	<0.001
	Error	373	0.41	0.001	-	NO.001
	Contrasts (P-v		Magnitu		arance)	
Period 1		eriod 2	Magintu		P-value	MOD ^c
		2018_12)			-	-
		2019_1)			_	-
		2019_3)			_	-
		2019_4)			_	-
		2019_5)			_	-
В		2019_6)			_	-
	-	2019_7)			_	-
		2019 8)			-	-
	1	2019 9)				-
		2019_12)			_	-
	· · · · · · · · · · · · · · · · · · ·	2018_12)			0.002	-4.0 SD
		RS(2019_1)				-4.2 SD
		2019_3)	0.001 <0.001	-4.8 SD		
		2019_4)		<0.001	-5.4 SD	
		2019_5)	<0.001	-6.5 SD		
SS (2016_9)		2019_6)	<0.001	-5.6 SD		
		2019_7)	<0.001	-6.1 SD		
		2019_8)			<0.001	-6.0 SD
	-	2019_9)	<0.001	-5.1 SD		
	RS(2	2019_12)	<0.001	-4.4 SD		
	RS(2	2018_12)	0.001	-1.9 SD		
	RS(2019_1)	<0.001	-2.1 SD		
		2019_3)	<0.001	-2.7 SD		
	RS(2019_4)			<0.001	-3.3 SD
SS (2017_4)	RS(2019_5)			<0.001	-4.4 SD
33 (2017_4)	RS(2019_6)			<0.001	-3.4 SD
	RS(2019_7)			<0.001	-4.0 SD
	RS(2019_8)			<0.001	-3.9 SD
	RS(2019_9)			<0.001	-3.0 SD
	RS(2	2019_12)			<0.001	-2.2 SD
	-	2018_12)			<0.001	-2.5 SD
		2019_1)			<0.001	-2.8 SD
		2019_3)			<0.001	-3.3 SD
		2019_4)			<0.001	-3.9 SD
SS (2017_9)		2019_5)			<0.001	-5.1 SD
		2019_6)			<0.001	-4.1 SD
		2019_7)			<0.001	-4.7 SD
		2019_8)			<0.001	-4.5 SD
		2019_9)			<0.001	-3.6 SD
	RS(2	2019_12)			<0.001	-2.9 SD

p-value for **Period×CI** or **Time(Period)×CI** factors < 0.1

Contrast p-value < 0.1/40 and in an increasing direction

Contrast p-value < 0.1/40 and in a decreasing direction

Notes: "-" = no data. Selenium results from RG_LI24 collected on May 3rd, 2018 were excluded from the analyses because

these were identified as anomalous, and likely the result of a field error.

^a SS = sum of squares of ANOVA model.

^b MS = mean sum of squares of ANOVA model.

Table B.9: ANOVA Table for the Asymmetric BACI Model Comparing Benthic Invertebrate Selenium Concentrations at RG_LCUT Within the Restart Period Relative to the Reference Areas (RG_LI24 and RG_SLINE)

		ANC	VA Model			
	Term	DF	SS ^a	MS [♭]	F-Ratio	P-Value
	Period	2	0.54	0.27	35	<0.001
	CI	1	0.10	0.10	13	< 0.001
	Period×CI	2	0.26	0.13	16	< 0.001
Ti	me(Period)	12	1.5	0.12	16	< 0.001
Tim	e(Period)×CI	12	1.7	0.15	19	<0.001
	Error	345			-	
	Within Restart	Contrasts (P-	value and Ma	anitude of Dif	ference)	
Period 1		Period 2		gintade of Di	P-value	MOD ^c
		2019_1			-	-
		2019_4			-	-
		2019 5			<0.001	-3.8 SD
0040 40		2019_6			< 0.001	-3.1 SD
2018_12		2019 7			< 0.001	-4.5 SD
		2019 8			< 0.001	-2.4 SD
		2019_9			-	-
		2019 12			-	-
		2019_4			-	-
		2019_5				
		2019_6				
2019_1		2019_7 2019_8			<0.001	-5.2 SD
		<0.001	-3.0 SD			
		2019_9	-	-		
		2019_12			-	-
		2019_5			<0.001 <0.001	-3.9 SD
		2019_6				-3.1 SD
2019 4		2019_7	<0.001	-4.6 SD		
2010_1		2019_8 2019_9	<0.001	-2.4 SD		
		-	-			
		2019_12	-	-		
		2019_6		-	-	
2010 5		2019_7 2019_8			-	-
2019_5		2019_8 2019_9			-	-
		2019_9 2019_12			< 0.001	4.3 SD
		2019_12 2019_7			<0.001	4.4 SD
		2019_7			-	-
2019_6		2019_8			<0.001	3.6 SD
		2019_12		<0.001	3.7 SD	
		2019_12			<0.001	2.1 SD
2019_7		2019_8			<0.001	5.0 SD
2010_1		2019_12			<0.001	5.1 SD
	1	2019_9			<0.001	2.9 SD
2019_8		2019 12			<0.001	3.0 SD
2019_9		2019_12			-	-

P-value for **Period×CI** or **Time(Period)×CI** factors < 0.1 Contrast P-value < 0.1/36 and in an increasing direction

Contrast P-value < 0.1/36 and in a decreasing direction

Notes: "-" = no data. Selenium results from RG_LI24 collected on May 3rd, 2018 were excluded from the analyses because these were identified as anomalous, and likely the result of a field error.

^a SS = sum of squares of ANOVA model.

^b MS = mean sum of squares of ANOVA model.

 Table B.10: ANOVA Table for the Asymmetric BACI Model Comparing Benthic Invertebrate Selenium Concentrations at

 RG_LILC3 Within the Restart Period Relative to the Reference Areas (RG_LI24 and RG_SLINE)

		Α	NOVA Model			
Т	erm	DF	SS ^a	MS⁵	F-Ratio	P-Value
Р	Period 4 1.7 0.42		0.42	70	<0.001	
	CI	1	10	10	1700	<0.001
Per	iod×Cl	4	3.5	0.88	147	<0.001
Time	(Period)	13	1.5	0.11	19	<0.001
Time(F	Period)×Cl	13	1.2	0.095	16	<0.001
E	Error	373			-	
	Within Res	tart Contrasts (I	P-value and l	Magnitude of D	lifference)	
Period 1	Within Res	Period 2			P-value	MOD ^c
		2019_1			-	-
-		2019_3			-	-
-		2019_4			-	-
-		2019_5			-	-
2018_12		2019_6			-	-
		2019_7			<0.001	-2.1 SD
-		2019_8			-	-
-		2019_9			-	-
-		2019_12			<0.001	2.3 SD
		2019_3			-	-
-		2019_4			-	-
_	2019_4				-	-
_	2019_6				<0.001	-2.6 SD
2019_1		2019_7			<0.001	-3.4 SD
_		2019_8			<0.001	-2.9 SD
=		2019_9			-	-
-	2019_12				-	_
		2019_4			-	-
-		2019_5			-	-
-		2019_6			<0.001	-2.6 SD
2019_3		2019_7			<0.001	-3.3 SD
		2019_8			<0.001	-2.9 SD
=		2019_9			-	
=		2019_12			-	-
		2019_5			-	-
-					-	-
		2019_7			<0.001	-2.3 SD
2019_4		2019_8			<0.001	-1.8 SD
F		2019_9			-	-
-		2019_12			<0.001	2.1 SD
		2019_6			-	_
=		2019_7			<0.001	-1.9 SD
2019_5		2019_8			-	-
-		2019_9			-	-
		2019_12			<0.001	2.5 SD
		2019_7			-	-
2019_6		2019_8			-	-
2013_0		2019_9			<0.001	1.9 SD
		2019_12			<0.001	3.7 SD
		2019_8			-	-
2019_7		2019_9			<0.001	2.6 SD
		2019_12			<0.001	4.4 SD
2019_8		2019_9			<0.001	2.2 SD
2010_0		2019_12		T	<0.001	4.0 SD

	2010_12	·0.001	4.0 00
2019_9	2019_12	0.001	1.8 SD

p-value for **Period×CI** or **Time(Period)×CI** factors < 0.1

Contrast p-value < 0.1/45 and in an increasing direction

Contrast p-value < 0.1/45 and in a decreasing direction

Notes: "-" = no data. Selenium results from RG_LI24 collected on May 3rd, 2018 were excluded from the analyses because these were identified as anomalous, and likely the result of a field error.

^a SS = sum of squares of ANOVA model.

^b MS = mean sum of squares of ANOVA model.

Table B.11: ANOVA Table for the Asymmetric BACI Model Comparing Benthic
Invertebrate Selenium Concentrations at RG_LISP24 Within the Restart Period Relative
to the Reference Areas (RG_LI24 and RG_SLINE)

ANOVA Model									
	Term	DF	SS ^a	MS⁵	F-Ratio	P-Value			
F	Period	2	0.91	0.46	72	<0.001			
	CI	1	2.3	2.3	370	<0.001			
Pe	riod×Cl	2	0.78	0.39	61	<0.001			
Tim	e(Period)	7	1.0	0.15	24	<0.001			
Time(Period)×CI	7	0.29	0.041	6.5	<0.001			
	Error	240			-				
	Within Restart Contras	ts (P-val	ue and M	agnitude	of Difference)				
Period 1	Pe	eriod 2			P-value	MOD ^c			
		019_1			-	-			
		019_3			-	-			
2018_12		019_4			-	-			
		019_9			-	-			
		19_12			<0.001	1.9 SD			
		019_3			-	-			
2019_1		019_4			-	-			
2010_1		019_9			-	-			
		19_12			-	-			
		019_4			-	-			
2019_3		019_9			-	-			
		19_12			0.002	1.8 SD			
2019_4		019_9			-	-			
2019_4		19_12			<0.001	2.8 SD			
2019_9	20	19_12			<0.001	2.5 SD			

p-value for Period×CI or Time(Period)×CI factors < 0.1

Contrast p-value < 0.1/15 and in an increasing direction

Contrast p-value < 0.1/15 and in a decreasing direction

Note: "-" = no data. Selenium results from RG_LI24 collected on May 3rd, 2018 were excluded from the analyses because these were identified as anomalous, and likely the result of a field error.

^a SS = sum of squares of ANOVA model.

^b MS = mean sum of squares of ANOVA model.

 Table B.12: ANOVA Table for the Asymmetric BACI Model Comparing Benthic Invertebrate Selenium Concentrations
 at RG_LIDSL Within the Restart Period Relative to the Reference Areas (RG_LI24 and RG_SLINE)

ANOVA Model											
	Term	DF	SS ^a	MS ^b	F-Ratio	P-Value					
L.	Period	4	0.48	0.12	20	<0.001					
	CI	1	1.6	1.6	258	<0.001					
Pe	riod×CI	4	1.4	0.36	58	<0.001					
Tim	e(Period)	13	1.8	0.14	22	<0.001					
Time(Period)×CI	13	0.6	0.045	7.2	<0.001					
	Error	373			-						
	Within Restart Contrasts (P-value and Magnitude of Difference)										
Period 1		Period 2			P-value	MOD ^c					
		2019_1			-	-					
		2019_3			-	-					
		2019_4			<0.001	-2.2 SD					
		2019_5			-	-					
2018_12		2019_6			-	-					
		2019_7			<0.001	-2.6 SD					
		2019_8			<0.001	-2.2 SD					
		2019_9			-	-					
		2019_12			-	-					
		2019_3			-	-					
		2019_4			<0.001	-2.2 SD					
		2019_5			-	-					
2019_1		2019_6 2019_7			- <0.001	-2.6 SD					
		2019_7			<0.001	-2.0 SD -2.2 SD					
		2019_9			-	-2.2 00					
		2019_12			-	-					
		2019_4			-	-					
		2019_5			-	-					
		2019_6			-	-					
2019_3		2019_7			<0.001	-2.1 SD					
		2019_8			-	-					
		2019_9			-	-					
		2019_12			-	-					
		2019_5			-	-					
		2019_6			-	-					
2019_4		2019_7 2019_8			-	-					
		2019_8			<0.001	- 1.9 SD					
		2019_12			<0.001	2.7 SD					
		2010_12			-	-					
		2019_7			-	-					
2019_5		2019_8			-	-					
		2019_9			-	-					
		2019_12			0.001	1.8 SD					
		2019_7			-	-					
2019_6		2019_8			-	-					
_		2019_9			-	-					
		2019_12			-	-					
0040 7		2019_8			-	-					
2019_7		2019_9			< 0.001	2.3 SD					
		2019_12			<0.001 <0.001	3.2 SD					
2019_8		2019_9 2019_12			<0.001	1.9 SD 2.8 SD					
2019_9		2019_12			-	-					
2010_0	1	_,. _ . _				1					

Contrast p-value < 0.1/45 and in an increasing direction

Contrast p-value < 0.1/45 and in a decreasing direction Notes: "-" = no data. Selenium results from RG_LI24 collected on May 3rd, 2018 were excluded from the analyses because these were identified as anomalous, and likely the result of a field error.

^a SS = sum of squares of ANOVA model.

^b MS = mean sum of squares of ANOVA model.

Table B.13: ANOVA Table for the Asymmetric BACI Model Comparing Benthic
Invertebrate Selenium Concentrations at RG_LIDCOM Within the Restart Period
Relative to the Reference Areas (RG_LI24 and RG_SLINE)

	ANOVA Model								
1	Ferm	DF	SS ^a	MS ^b	F-Ratio	P-Value			
F	Period	2	0.47	0.24	36	<0.001			
	CI	1	1.9	1.9	284	<0.001			
Pei	riod×CI	2	0.10	0.05	7.2	<0.001			
Time	e(Period)	7	1.2	0.17	26	<0.001			
Time(I	Period)×CI	7	0.23	0.032	4.9	<0.001			
I	Error	240			-				
w	ithin Restart Contrasts	(P-value a	and Magni	tude of Dif	fference)				
Period 1		Period 2			P-value	MOD ^c			
		2019_1				-			
		-	-						
2018_12		2019_4			- lifference)	-			
		2019_9			-	-			
		2019_12			-	-			
		2019_3			-	-			
2019_1		2019_4			36 284 7.2 26 4.9 - ference) P-value - - - - - - - - - - - 0.003	-1.8 SD			
2013_1		2019_9			0.001	-1.9 SD			
		2019_12			-	-			
		2019_4			-	-			
2019_3		2019_9			-	-			
		2019_12			-	-			
2019_4		2019_9			-	-			
2013_4		2019_12			36 284 7.2 26 4.9 - Difference) P-value - 0.003 0.003 0.001 -	1.7 SD			
2019_9		2019_12			<0.001	1.9 SD			

p-value for Period×CI or Time(Period)×CI factors < 0.1

Contrast p-value < 0.1/15 and in an increasing direction

Contrast p-value < 0.1/15 and in a decreasing direction

Notes: "-" = no data. Selenium results from RG_LI24 collected on May 3rd, 2018 were excluded from the analyses because these were identified as anomalous, and likely the result of a field error.

^a SS = sum of squares of ANOVA model.

^b MS = mean sum of squares of ANOVA model.

 Table B.14: ANOVA Table for the Asymmetric BACI Model Comparing Benthic Invertebrate

 Selenium Concentrations at RG_LI8 Within the Restart Period Relative to the Reference Areas

 (RG_LI24 and RG_SLINE)

ANOVA Model							
Г	erm	DF	SS ^a	MS ^b	F-Ratio	P-Value	
Р	eriod	4	0.56	0.14	25	<0.001	
	CI	1	1.8	1.8	331	<0.001	
Per	iod×Cl	4	0.80	0.20		<0.001	
	(Period)	13	2.2	0.17		<0.001	
	Period)×CI	13	0.41	0.031		< 0.001	
	Error	373	0.11	0.001		0.001	
	Within Restart Contra	-	lue and M	lagnitude			
Period 1		eriod 2			P-value	MOD ^c	
		019_1			-	-	
		019_3			-	-	
		019_4			_	-	
0040 40		019_5			<0.001	-2.5 SD	
2018_12		019_6			-	-	
		019_7				-2.1 SD	
		019_8 019_9				-2.0 SD	
		019_9 019_12				-	
		019_12				-	
		019 <u>3</u> 019_4			-	-	
		019_5			<0.001	-2.3 SD	
		019_0 019_6			-	-	
2019_1		019_7			0.001	-1.9 SD	
		019_8		-			
		019_9		-			
		19_12	_	-			
		2019_4				-	
		019_5		-	-		
	20	019_6			-	-	
2019_3	20	019_7			-	-	
	20	019_8			-	-	
		019_9			-	-	
		19_12			-	-	
		019_5			-	-	
		019_6			-	-	
2019_4		019_7			25 331 36 31 5.6 - of Difference) P-value - - - - - - - - - - - - -	-	
_		019_8				-	
		019_9			-	-	
		19_12			-	-	
		019_6			-	-	
2019_5		019_7 019_8			-	-	
2019_0		019_8 019_9			-	-	
		19_12			- <0.001	2.2 SD	
		019_12 019_7			-		
		019_7 019_8				_	
2019_6		019_9				-	
		19_12			-	-	
		019_8			-	-	
2019_7		019_9			-	-	
_		19_12			0.001	1.8 SD	
0040.0		019_9			-	-	
2019_8		19_12			-	-	
2019_9		19_12			-	-	
·		-				1	

p-value for **Period×CI** or **Time**(**Period**)**×CI** factors < 0.1

Contrast p-value < 0.1/45 and in an increasing direction

Contrast p-value < 0.1/45 and in a decreasing direction

Notes: "-" = no data. Selenium results from RG_LI24 collected on May 3rd, 2018 were excluded from the analyses because these were identified as anomalous, and likely the result of a field error.

^a SS = sum of squares of ANOVA model.

^b MS = mean sum of squares of ANOVA model.

Table B.15: ANOVA Table for the Asymmetric BACI Model Comparing BenthicInvertebrate Selenium Concentrations at RG_FRUL During the Before (B), SteadyState (SS), Shutdown (SD), and Restart (RS) Periods Relative to the Reference Areas(RG_LI24 and RG_SLINE)

ANOVA Model									
Term			SS ^a	MS⁵	F-Ratio	P-Value			
Pe	eriod	3	0.34	0.11	17	<0.001			
	CI	1	3.4	3.4	530	<0.001			
Peri	iod×CI	3	0.084	0.028	4.3	0.005			
Time	(Period)	8	1.2	0.15	23	<0.001			
Time(P	eriod)×Cl	8	0.53	0.066	10	<0.001			
E	Fror	254			-				
	Contrasts (P-value	and Ma	anitude o	of Differe	nce)				
Period 1		eriod 2	9		P-value	MOD ^c			
	RS(2	2018_12)			-	-			
	RS(2019_1)			-	-			
В	RS(-	-						
D	RS(-	-						
	-	RS(2019_9)							
	-	S(2019_9) - - (2019_12) - -							
	-	2018_12)			-	-			
		2019_1)			-	-			
SS (2017_4)	-	2019_3)				-			
		2019_4)			-	-			
		2019_9)			-	-			
		2019_12)			<0.001	2.8 SD			
		2018_12)			-	-			
	-	RS(2019_1)							
SS (2017_9)	RS(-	-						
00 (2017_9)		2019_4)			-	-			
		2019_9)			-	-			
	RS(2	2019_12)			<0.001	2.9 SD			

p-value for Period×CI or Time(Period)×CI factors < 0.1

Contrast p-value < 0.1/18 and in an increasing direction

Contrast p-value < 0.1/18 and in a decreasing direction

Notes: "-" = no data. Selenium results from RG_LI24 collected on May 3rd, 2018 were excluded from the analyses because these were identified as anomalous, and likely the result of a field error.

^a SS = sum of squares of ANOVA model.

^b MS = mean sum of squares of ANOVA model.

Table B.16: ANOVA Table for the Asymmetric BACI Model Comparing BenthicInvertebrate Selenium Concentrations at RG_FO23 During the Before (B), SteadyState (SS), Shutdown (SD), and Restart (RS) Periods Relative to the ReferenceAreas (RG_LI24 and RG_SLINE)

		ANOVA	Model				
Т	erm	DF	SS ^a	MS⁵	F-Ratio	P-Value	
Pe	eriod	3	0.32	0.11	16	<0.001	
	CI	1	2.7	2.7	391	<0.001	
Peri	od×Cl	3	0.1	0.032	4.7	0.003	
Time	(Period)	9	1.3	0.14	21	<0.001	
Time(P	eriod)×Cl	9	0.42	0.047	6.9 <0.001		
E	rror	254			-		
	Contrasts (P-va	lue and M	lagnitude	of Differen	ce)		
Period 1		Period 2	0		P-value	MOD ^c	
	R	S(2018_12)		-	-	
	R	S(2019_1)			-	-	
в		· = /			-	-	
Б		· _ /			-	-	
		-	-				
		<u> </u>	,		-	-	
			-				
						-	
SS (2016_9)		, _ ,				-	
B RS(2019_3) RS(2019_4) RS(2019_9) RS(2019_12) RS(2018_12) RS(2019_1) RS(2019_3) RS(2019_3) RS(2019_4) RS(2019_9) RS(2019_12) RS(2019_12)			-				
		· — /			16 391 4.7 21 6.9 - P-value - - - - - - - - - - - - -	-	
		S(2018_12	/		_	_	
		S(2019_1)			-	-	
SS (2017_4)	R	S(2019_3)			16 391 2 4.7 21 7 7 6.9 - - rence) - - - <td>-</td>	-	
33 (2017_4)		S(2019_4)				-	
		S(2019_9)			-	-	
		S(2019_12	,		-	-	
		RS(2018_12)					
		S(2019_1)				-	
SS (2017_9)		S(2019_3)				-2.5 SD	
/		S(2019_4)				-2.1 SD	
		S(2019_9) S(2019_12			0.11 16 2.7 391 0.032 4.7 0.14 21 0.047 6.9 - Difference) P-value - - - - - - - - - - - - -	-	
		512013_12	/		-	-	

p-value for **Period×CI** or **Time(Period)×CI** factors < 0.1

Contrast p-value < 0.1/24 and in an increasing direction

Contrast p-value < 0.1/24 and in a decreasing direction

Notes: "-" = no data. Selenium results from RG_LI24 collected on May 3rd, 2018 were excluded from the analyses because these were identified as anomalous, and likely the result of a field error.

^a SS = sum of squares of ANOVA model,

^b MS = mean sum of squares of ANOVA model.

Table B.17: ANOVA Table for the Asymmetric BACI Model Comparing BenthicInvertebrate Selenium Concentrations at RG_FO23 (Downstream of Line Creek) Duringthe Before (B), Steady State (SS), Shutdown (SD), and Restart (RS) Periods Relative toRG_FRUL (Upstream of Line Creek)

	A	NOVA M	odel			
Т	erm	DF	SS	MS	F-Ratio	P-Value
Р	eriod	3	0.038	0.013	3.4	0.019
	CI 1 0.052 0.052 14			<0.001		
Per	iod×CI	3	0.022	0.0073	2.0	0.123
Time	(Period)	8	0.87	0.11	29	<0.001
Time(F	Period)×CI	8	0.084	0.010	2.8	0.006
E	Error	187			-	
	Contrasts (P-value	and Mag	nitude of	Difference		
Period 1		Period 2			P-value	MOD
	RS	(2018_12)			-	-
		S(2019_1)			-	-
В	R	-	-			
D		RS(2019_4)				
		S(2019_9)			-	-
		(2019_12)			-	-
		(2018_12)			-	-
		6(2019_1)			-	-
SS (2017_4)		6(2019_3)			3.4 14 2.0 29 2.8 - P-value - - - - - - - - - - - - -	-
		6(2019_4)				-
		<u>S(2019_9)</u>			-	-
		(2019_12) (2018_12)			-	-
		-	-			
		S(2019_1)			-	-
SS (2017_9)		S(2019_3)			-	-
· _ /		$S(2019_4)$			-	-
		$S(2019_9)$			-	-
	R5	(2019_12)			<0.001	-2.2 SD

p-value for **Period×CI** or **Time(Period)×CI** factors < 0.1

Contrast p-value < 0.1/15 and in an increasing direction

Contrast p-value < 0.1/15 and in a decreasing direction

Note: "-" indicates no data.

Table B.18: ANOVA Table for the Asymmetric BACI Model Comparing Benthic Invertebrate Selenium Concentrations at RG_FRUL Within the Restart Period Relative to the Reference Areas (RG LI24 and RG SLINE)

ANOVA Model									
Т	erm	DF	SS ^a	MS⁵	F-Ratio	P-Value			
Р	eriod	3	0.3	0.11	17	<0.001			
	CI	1	3.4	3.4	530	<0.001			
Per	iod×Cl	3	0.08	0.028	4.3	0.005			
Time	(Period)	8	1.2	0.15	23	<0.001			
Time(F	eriod)×Cl	8	0.5	0.066	10	<0.001			
E	Error	254			-				
Wit	hin Restart Contrasts	(P-value	and Mag	nitude of	Difference)				
Period 1	Pe	eriod 2			P-value	MOD ^c			
	20	019_1			-	-			
		019_3			<0.001	-2.2 SD			
2018_12	20	019_4	<0.001	-2.5 SD					
	20	019_9	-	-					
	20)19_12			0.001	1.8 SD			
		019_3			-	-			
2019_1	2	019_4			0.002	-2.1 SD			
2013_1	2	019_9			-	-			
	20	19_12			<0.001	2.3 SD			
	20	019_4			-	-			
2019_3	20	019_9			0.001	1.9 SD			
	20)19_12	DF SS ^a MS ^b F-Ratio 3 0.3 0.11 17 1 3.4 3.4 530 3 0.08 0.028 4.3 8 1.2 0.15 23 8 0.5 0.066 10 254 - - value and Magnitude of Difference) P-value 9_{-1} - - 9_{-3} <0.001 - 9_{-3} <0.001 - 9_{-4} 0.002 - 9_{-4} 0.001 - 9_{-4} 0.002 - 9_{-4} 0.002 - 9_{-9} - - 9_{-9} $-$ - 9_{-9} $-$ - 9_{-9} 0.001 - 9_{-9} 0.001 - 9_{-9} 0.001 - 9_{-9} 0.001 -	4.0 SD					
2019_4	20	019_9			<0.001	2.2 SD			
2019_4	20)19_12			<0.001	4.3 SD			
2019_9	20)19_12			<0.001	2.2 SD			

p-value for **Period×CI** or **Time(Period)×CI** factors < 0.1

Contrast p-value < 0.1/15 and in an increasing direction

Contrast p-value < 0.1/15 and in a decreasing direction

Notes: "-" = no data. Selenium results from RG_LI24 collected on May 3rd, 2018 were excluded from the analyses because these were identified as anomalous, and likely the result of a field error.

^a SS = sum of squares of ANOVA model.

^bMS = mean sum of squares of ANOVA model.

Table B.19: ANOVA Table for the Asymmetric BACI Model Comparing Benthic Invertebrate Selenium Concentrations at RG_FO23 Within the Restart Period Relative to the Reference Areas (RG_LI24 and RG_SLINE)

ANOVA Model								
Т	erm	DF	SS ^a	MS ^b	F-Ratio	P-Value		
P	eriod	3	0.32	0.11	16	<0.001		
	CI	1	2.7	2.7	391	<0.001		
Per	iod×Cl	3	0.10	0.032	4.7	0		
Time	(Period)	9	1.3	0.14	21	<0.001		
Time(P	eriod)×Cl	9	0.42	0.047	6.9	<0.001		
E	Frror	254			-			
With	in Restart Contrasts (F	P-value ar	d Magnit	ude of Dif	ference)			
Period 1					P-value	MOD ^c		
		2019_1			-	-		
		<0.001	-3.2 SD					
2018_12		2019_4			16 391 4.7 21 6.9 - Difference) P-value - <0.001	-2.8 SD		
	Error 254 - Within Restart Contrasts (P-value and Magnitude of Difference) Period 2 P-value od 1 Period 2 P-value 2019_1 - - 2019_3 <0.001	-	-					
	2	019_12			-	-		
		2019_3			<0.001	-2.7 SD		
2019_1		2019_4			<0.001	-2.3 SD		
2019_1		2019_9			-	-		
	2	019_12			-	-		
		2019_4			-	-		
2019_3	2	d)91.30.1421 $\square \times CI$ 90.420.0476.9 254 254 $-$ start Contrasts (P-value and Magnitude of Difference)Period 2P-value 2019_1 - 2019_3 <0.001	2.0 SD					
	2	019_12			<0.001	3.7 SD		
2019_4		2019_9			0.005	1.6 SD		
2019_4	2	019_12			<0.001	3.3 SD		
2019_9	2	019_12			0.002	1.7 SD		

p-value for **Period×CI** or **Time(Period)×CI** factors < 0.1

Contrast p-value < 0.1/19 and in an increasing direction

Contrast p-value < 0.1/19 and in a decreasing direction

Notes: "-" = no data. Selenium results from RG_LI24 collected on May 3rd, 2018 were excluded from the analyses because these were identified as anomalous, and likely the result of a field error.

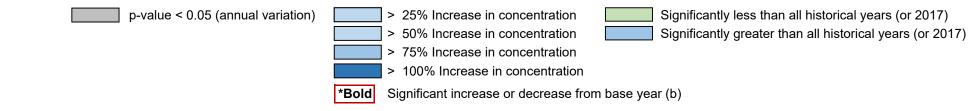
^a SS = sum of squares of ANOVA model,

^b MS = mean sum of squares of ANOVA model.

Table B.20: ANOVA Table for the Asymmetric BACI Model Comparing BenthicInvertebrate Selenium Concentrations at RG_FO23 (Downstream of Line Creek) Withinthe Restart Period Relative to the RG_FRUL (Upstream of Line Creek)

ANOVA Model									
Т	erm	DF	SS	MS	F-Ratio	P-Value			
P	eriod	3	0.038	0.013	3.4	0.019			
	CI	1	0.052	0.052	14	<0.001			
Per	iod×CI	3	0.022	0.0073	2.0	0.123			
Time	(Period)	8	0.87	0.11	29	<0.001			
Time(P	eriod)×Cl	8	0.084	0.010	2.8	0.006			
E	Error	187			-				
Wi	thin Restart Contrasts	(P-value a	and Magni	tude of Dif	ference)				
Period 1		Period 2			P-value	MOD			
		2019_1			-	-			
		-	-						
2018_12		2019_4			13 3.4 52 14 073 2.0 11 29 10 2.8 - of Difference) P-value -	-			
		2019_9				-			
		2019_12			-	-			
		2019_3			-	-			
2019_1	2019_1				-	-			
		2019_9			-	-			
		2019_12			-	-			
		2019_4			-	-			
2019_3		2019_9			-	-			
		2019_12			-	-			
2019_4		2019_9			-	-			
2010_7		2019_12			3.4 14 2.0 29 2.8 - ifference) P-value - - - - - - - - - - - - -	-			
2019_9		2019_12			-	-			

p-value for Period×CI or Time(Period)×CI factors < 0.1


Contrast p-value < 0.1/15 and in an increasing direction

Contrast p-value < 0.1/15 and in a decreasing direction

Note: "-" indicates no data.

Table B.21: Temporal Changes in Water Chemistry Analytes at Stations in the Line Creek LAEMP, 2012 to 2019

Parameter	Status	Station	Annual Variation ^a		Q1. Is there a positive or negative change in concentrations since the base year (b) of monitoring? Magnitude of Difference (MOD) ^b and Significance (bolded) from Base Year (b) ^c								Q2. Is the 2019 annual mean greater or less than all annual historical means (2012 to 2018) and the previous year (2019)? ^c											
			DF	P-Value	2012	2013	2014	2015	2016	2017	2018	2019	2012	2013	2014	2015	2016	2017	2018	2019	2019 vs. 2012-2018	2019 vs. 2018		
Total	Reference	LC_LC1 no outlier ^d	7	<0.001	b	7.4	15	32	40	49	52	48	D	CD	С	В	AB	А	А	А	-	-		
Selenium		LC_LC1 with outlier	7	0.017	b	-13	-7.1	6	14	22	23	21	А	А	А	А	А	А	А	А	-	-		

Note: "-" = not available.

^a The presence of annual variation was determined by a significant Year term (α = 0.05) using an ANOVA with factors Year and Month.

^b Magnitude of Difference (MOD) was calculated as the concentrations in each year minus the concentration in the first year divided by the concentration in the fist year × 100.

^c Significance between each year determined using all pairwise comparisons with Tukey correction.

^d One outlier with a value of 0.031 mg/L in May 2012 was removed from the analysis.

AWTF			Capture Lo	cation UTM 3, 11U)		Processing	Fish ID	Total Length	Fork Length	Body Weight		Life		Tiss		nium Concentra ng/kg dw)	tion	Recorded Deformities
Operation Phase	Area	Year	Easting	Northing	Study	Date	Fish ID	(cm)	(cm)	(g)	Sex ^a	Stage⁵	Age	Muscle	Ovary	Ovary (Estimated ^c)	Liver	(DELT) ^d
	RG_LI8	2006	656892	5529139		23-Aug-06	LI8101	-	74.0	4,309	М	А	-	4.7	-	-	-	-
Prior to AWTF	RG_LI8	2006	656892	5529139	Minnow et al.	23-Aug-06	LI8102	-	63.3	2,948	F	А	-	4.0	-	13	-	-
Operation	RG_LI8	2006	656892	5529139	2007	23-Aug-06	LI8103	-	63.5	2,722	F	А	-	3.1	-	10	-	-
operation	RG_LI8	2006	656892	5529139		23-Aug-06	LI8104	-	23.3	162	U	J	-	4.4	I	-	-	-
	RG_LILC3	2017	659887	5531590		27-Apr-17	LILC3-BT-01	40.0	38.5	550	-	J	-	26	I	-	-	none
	RG_LIDCOM	2017	658185	5529820		10-Sep-17	LIDCOM-BT-07	77.6	75.2	4,220	М	А	10	5.6	-	-	30	none
	RG_LIDCOM	2017	658185	5529820		11-Sep-17	LIDCOM-BT-11	65.9	63.2	2,660	F	А	-	4.8	16	-	-	none
	RG_LIDCOM	2017	658185	5529820		11-Sep-17	LIDCOM-BT-12	73.6	68.5	3,160	F	А	-	4.4	16	-	-	cut on tail due to tagging
	RG_LILC3	2017	659892	5531560	2017 LCO	10-Sep-17	LILC3-BT-06	63.1	60.5	2,260	F	А	8	4.8	12	-	16	none
AWTF Steady State	RG_LILC3	2017	659892	5531560	LAEMP	11-Sep-17	LILC3-BT-08	61.8	60.0	2,080	F	А	-	3.9	14	-	-	none
Operation	RG_LILC3	2017	659892	5531560	(Minnow	11-Sep-17	LILC3-BT-10	63.2	61.9	1,840	F	А	-	4.5	15	-	-	none
oporation	RG_LILC3	2017	659892	5531560	2018d)	8-Sep-17	LILC3-BT-01	25.5	24.2	146	М	YM	3	21	-	-	58	none
	RG_LILC3	2017	659892	5531560		8-Sep-17	LILC3-BT-02	27.9	26.6	210	М	YM	3	19	-	-	65	none
	RG_LILC3	2017	659892	5531560	-	8-Sep-17	LILC3-BT-03	27.8	26.1	199	М	YM	3	28	-	-	61	abrasion on back
	RG_LILC3	2017	659892	5531560		8-Sep-17	LILC3-BT-04	28.0	26.6	209	М	YM	3	20	-	-	63	none
	RG_LILC3	2017	659892	5531560		8-Sep-17	LILC3-BT-05	32.3	30.9	342	М	YM	4	27	-	-	100	none
	RG_LILC3	2018	659880	5531582	2018 LCO LAEMP (Minnow	30-Apr-18	LILC3-BT-01	45.9	44.1	800	М	YM	-	21	-	-	-	none
	RG_LILC3	2018	659880	5531582		2-May-18	LILC3-BT-02	44.0	42.0	939	М	YM	-	45	-	-	-	none
AWTF Shutdown	RG_LILC3	2018	659880	5531582		2-May-18	LILC3-BT-03	26.6	25.5	155	U	J	-	37	-	-	-	none
Shataowii	RG_LILC3	2018	659880	5531582	2019a)	3-May-18	LILC3-BT-04	39.3	37.7	669	U	J	-	46	-	-	-	none
	Mid-Canyon	2018	656825	5529140	,	21-Aug-18	RG_LI8_BT-1-M_20180821	-	20.2	87	U	J	-	7.6	-	-	-	none
	RG_LILC3	2019	659870	5531576		4-Sep-19	LILC3_BT-01	28.5	27.1	245	F	YF	-	14	-	-	-	none
	RG_LILC3	2019	659870	5531576		4-Sep-19	LILC3_BT-02	27.7	26.4	210	F	YF	-	16	-	-	-	none
	RG_LILC3	2019	659870	5531576		4-Sep-19	LILC3_BT-03	26.0	24.4	160	М	YM	-	6.4	-	-	-	none
	RG_LILC3	2019	659870	5531576		5-Sep-19	LILC3_BT-04	27.8	26.5	112	М	YM	-	11	-	-	-	none
	RG_LILC3	2019	659870	5531576		5-Sep-19	LILC3_BT-05	28.6	27.4	205	F	YF	-	7.2	-	-	-	none
After	RG_LILC3	2019	659870	5531576	0040100	5-Sep-19	LILC3_BT-06	68.7	66.6	3,150	F	А	-	5.8	-	19	-	none
AWTF/AOP Operations	RG_LILC3	2019	659870	5531576	2019 LCO LAEMP	5-Sep-19	LILC3_BT-07	26.9	25.5	164	М	YM	-	11	-	-	-	none
Stabilize	RG_LILC3	2019	659870	5531576		5-Sep-19	LILC3_BT-08	25.7	24.3	142	М	YM	-	12	-	-	-	none
	RG_LILC3	2019	659870	5531576		5-Sep-19	LILC3_BT-09	59.2	57.0	1,900	М	А	-	4.9	I	-	-	none
	RG_LI8	2019	655378	5529048		6-Sep-19	LI8_BT-01	75.0	72.5	3,950	F	А	-	5.6	-	18	-	none
	RG_LI8	2019	655378	5529048	-	6-Sep-19	LI8_BT-02	65.5	63.3	2,460	М	А	-	4.5	I	-	-	none
	RG_LI8	2019	654671	5529013		7-Sep-19	LI8_BT-03	70.6	67.5	3,200	М	А	-	4.7	I	-	-	none
	RG_LI8	2019	654671	5529013		7-Sep-19	LI8_BT-04	72.2	69.3	3,350	F	А	-	4.5	-	15	-	none

 Table B.22: Physical Measures and Tissue Selenium Concentrations for Bull Trout Sampled from Line Creek, 2006 to 2019

Ovary selenium concentration exceeding the Level 1 site-specific benchmark for "other fish" of 18 mg/kg dw (Elk Valley Water Quality Plan; Teck 2014).

Ovary selenium concentration exceeding the US EPA Effect Concentration (EC10) of 56.2 mg/kg dw for Dolly Varden trout (USEPA 2016).

Notes: "-" = no data recorded; AWTF = Active Water Treatment Facility; LCO = Line Creek Operations; LAEMP = Local Aquatic Effects Monitoring Program; AOP = Advanced Oxidation Process.

^a F = female; M = male; U = unknown (sex of fish could not be determined, either because fish was not sufficiently mature or samples were collected non-lethally and sex could not be determined based on non-lethal evaluation of physical characteristics). ^b A = adult; J = juvenile; YM = young male; YF = young female.

^c Ovary concentrations were estimated from muscle selenium concentrations based on the average ovary-to-muscle concentration relationship of 3.3:1 (Minnow 2018d). Ovary selenium was estimated only for adult individuals lacking measured ovary concentrations (if female) or if sex of an adult individual was unknown.

^d DELT = Deformities, erosions, lesions, tumors. DELT observations were initiated in 2017 following the start of AWTF operation.

Table B.23: Physical Measures and Tissue Selenium Concentrations for Westslope Cutthroat Trout Sampled from Line Creek, 2001 to 2019

AWTF Operation Phase	Waterbody	Area	Year	U	Location ſM 3, 11U)	Study	Processing Date	ng	Total Length	Fork Length	Body Weight	Sexª	Age			Seleniu /kg dw)	m	Recorded Deformities (DELT) ^d
					Northing		Date		(cm)	(cm)	(g)			Muscle	Ovary	Egg ^b	Estimated Ovary ^c	
		RG_LI8	2001	654480	5529034		Apr-2001	L1-1	-	34.0	530	М	5	9.2	-	-	-	-
		RG_LI8	2001	654480	5529034	_	Apr-2001	L1-2	-	32.0	475	М	3	8.1	-	-	-	-
		RG_LI8	2001	654480	5529034		Apr-2001	L1-4	-	34.6	680	М	4	8.5	-	-	-	-
		RG_LI8	2001	654480	5529034		Apr-2001	L1-3	-	36.1	725	F	4	8.4	15	-	-	-
		RG_LI8	2001	654480	5529034		Apr-2001	L1-5	-	32.9	550	F	4	9.8	16	-	-	-
		RG_LI8	2001	654480	5529034		Apr-2001	L1-6	-	32.5	500	F	5	8.5	16	-	-	-
	Line Creek	RG_LI8	2002	654480	5529034	Golder 2005	Apr-2002	LN-1	-	38.5	780	М	7	8.0	-	-	-	-
		RG_LI8	2002	654480	5529034		Apr-2002	LN-2	-	39.0	750	F	7	16	20	-	-	-
		RG_LI8	2002	654480	5529034		Apr-2002	LN-3	-	34.7	615	F	5	7.0	14	-	-	-
		RG_LI8	2002	654480	5529034		Apr-2002	LN-4	-	32.5	480	F	6	8.0	19	-	-	-
		RG_LI8	2002	654480	5529034		Apr-2002	LN-5	-	34.5	550	F	7	7.0	14	-	-	-
Prior to AWTF		RG_LI8	2002	654480	5529034		Apr-2002	LN-6	-	37.8	785	F	6	7.0	14	-	-	-
Operation		RG_LI8	2002	654480	5529034		Apr-2002	LN-7	-	38.5	850	F	7	9.0	16	-	-	-
-		RG_LI8	2002	654480	5529034		Apr-2002	LN-8	-	33.6	525	F	6	7.0	13	-	-	-
		RG_LI8	2002	654480	5529034		Apr-2002	LN-9	-	30.1	400	F	5	7.0	14	-	-	-
		RG_LI8	2002	654480	5529034		Apr-2002	LN-10	-	37.8	675	F	6	8.0	14	-	-	-
		RG_LIDSL	2003	659281	5530548		Jul-2003	LC-CT1	-	39.1	800	М	6	7.2	-	-	-	-
		RG_LIDSL	2003	659281	5530548	Minnow 2004	Jul-2003	LC-CT2	-	34.8	700	F	4	6.4	-	-	10	-
		RG_LIDSL	2003	659281	5530548		Jul-2003	LC-CT3	-	31.5	470	F	4	7.4	-	-	12	-
		RG_LI8	2006	657406	5529218		Apr-2006	LI8001	-	30.6	435	F	5	7.9	11	-	-	-
		RG_LI8	2006	657406	5529218	Minney et -	Apr-2006	LI8002	-	31.7	427	F	5	7.7	11	-	-	-
		RG_LI8	2006	657406	5529218	Minnow et al. 2007	Apr-2006	LI8003	-	27.4	288	F	5	7.4	21	-	-	-
		RG_LI8	2006	657406	5529218		Apr-2006	LI8004	-	21.4	132	F	6	15	11	-	-	-
		RG_LI8	2006	657406	5529218		Apr-2006	LI8005	-	20.5	117	F	5	13	15	-	-	-

Muscle selenium concentration exceeding the site-specific benchmark for WCT of 15.5 mg/kg dw (Nautilus and Interior Reforestation 2011).

Ovary selenium concentration exceeding the Level 1 site-specific benchmark (equivalent of EC10) for WCT of 25 mg/kg dw (Elk Valley Water Quality Plan; Golder 2014).

Ovary selenium concentration exceeding the Level 2 site-specific benchmark (equivalent of EC20) for WCT of 27 mg/kg dw (Elk Valley Water Quality Plan; Golder 2014).

Ovary selenium concentration exceeding the Level 3 site-specific benchmark (equivalent of EC50) for WCT of 33 mg/kg dw (Elk Valley Water Quality Plan; Golder 2014).

Notes: "-" = no data recorded; AWTF = Active Water Treatment Facility; LCO = Line Creek Operations; LAEMP = Local Aquatic Effects Monitoring Program; AOP = Advanced Oxidation Process.

^a F = female; M = male; U = unknown (sex of fish could not be determined, either because fish was not sufficiently mature or samples were collected non-lethally and sex could not be determined based on non-lethal evaluation of physical characteristics). ^b Ripe egg tissue was collected from one individual sampled non-lethally in 2019. Although westslope cutthroat trout spawn in the spring, this female released ripe eggs with minimal abdominal pressure during the collection of physical measures (length and weight). ^c Ovary concentrations were estimated from muscle selenium concentrations based on the average ovary-to-muscle concentration relationship of 1.6:1 presented by Nautilus and Interior Reforestation (2011). Ovary selenium was estimated only for individuals lacking measured egg/ovary concentrations (if female) or if sex was unknown.

^d DELT = Deformities, erosions, lesions, tumors. - = DELT observations were not recorded. DELT observations were initiated in 2017 following the start of AWTF operation.

AWTF Operation Phase	Waterbody	Area	Year	Capture Lo UTM (NAD83,	ГМ	Study	Processing	Fish ID L	Total Length	Fork Length	Body Weight	Sex ^a	Age	Tissue Seleniu (mg/kg dw)			m	Recorded Deformities
					Northing	-	Date		(cm)	(cm)	(g)	-		Muscle	Ovary	Egg ^b	Estimated Ovary ^c	(DELT) ^d
		RG_LI8	2009	657406	5529218		Sep-2009	Ll8a	-	30.5	435	F	5	12	-	-	18	-
		RG_LI8	2009	657406	5529218		Sep-2009	LI8b	-	28.8	327	F	6	11	-	-	17	-
		RG_LI8	2009	657406	5529218	Minnow et al. 2011	Sep-2009	LI8c	-	22.1	184	F	6	11	-	-	18	-
		RG_LI8	2009	657406	5529218	2011 _	Sep-2009	LI8d	-	21.2	112	F	4	14	-	-	22	-
Prior to AWTF	Line Creek	RG_LI8	2009	657406	5529218		Sep-2009	Ll8e	-	21.3	132	F	4	13	-	-	21	-
Operation	Line Creek	RG_LILC3	2012	660085	5532021	Minnow 2014	24-May-12	LILC3-WCT1	-	21.1	135	F	-	10	-	-	16	-
		RG_LILC3	2012	660085	5532021		24-May-12	LILC3-WCT2	-	18.2	63	U	-	7.2	-	-	12	-
		RG_LILC3	2012	660085	5532021		24-May-12	LILC3-WCT3	-	18.0	58	U	-	9.2	-	-	15	-
		RG_LILC3	2012	660085	5532021		24-May-12	LILC3-WCT4	-	17.7	57	U	-	6.8	-	-	11	-
		RG_LILC3	2012	660085	5532021		1-Jun-12	LILC3-WCT5	-	20.0	79	М	-	6.6	-	-	-	-
		RG_LI8	2017	655320	5529059		7-Sep-17	LI8-WCT-01	36.7	35.1	645	U	-	6.9	-	-	11	none
		RG_LI8	2017	655320	5529059		7-Sep-17	LI8-WCT-02	44.6	42.8	1,005	U	-	7.8	-	-	12	slight jaw malformation
		RG_LI8	2017	655320	5529059		7-Sep-17	LI8-WCT-03	32.1	30.4	382	U	-	7.8	-	-	12	none
		RG_LI8	2017	655320	5529059		8-Sep-17	LI8-WCT-04	40.1	38.7	750	U	-	7.8	-	-	12	bite on stomach from another fish
AWTF		RG_LI8	2017	655320	5529059	2017 LCO	8-Sep-17	LI8-WCT-05	31.7	30.5	355	U	-	8.6	-	-	14	none
Steady	Line Creek	RG_LIDCOM	2017	658185	5529820	LAEMP	28-Apr-17	LIDCOM-WCT-01	36.5	35.5	570	U	-	12	-	-	20	none
State	Line Creek	RG_LIDSL	2017	659293	5530590	(Minnow	26-Apr-17	LIDSL-WCT-01	27.0	26.5	220	U	-	25	-	-	40	none
Operation		RG_LIDSL	2017	659293	5530590	2018d)	8-Sep-17	LIDSL-WCT-01	41.4	39.8	885	U	-	34	-	-	54	none
		RG_LILC3	2017	659892	5531560		8-Sep-17	LILC3-WCT-02	30.7	29.4	345	U	-	26	-	-	42	bite marks from another fish
		RG_LILC3	2017	659892	5531560		8-Sep-17	LILC3-WCT-03	26.2	25.3	230	U	-	14	-	-	22	none
		RG_LILC3	2017	659892	5531560		8-Sep-17	LILC3-WCT-04	27.4	26.2	230	U	-	24	-	-	38	none
		RG_LILC3	2017	659892	5531560		8-Sep-17	LILC3-WCT-05	23.4	22.2	122	U	-	42	-	-	67	none

Muscle selenium concentration exceeding the site-specific benchmark for WCT of 15.5 mg/kg dw (Nautilus and Interior Reforestation 2011).

Ovary selenium concentration exceeding the Level 1 site-specific benchmark (equivalent of EC10) for WCT of 25 mg/kg dw (Elk Valley Water Quality Plan; Golder 2014).

Ovary selenium concentration exceeding the Level 2 site-specific benchmark (equivalent of EC₂₀) for WCT of 27 mg/kg dw (Elk Valley Water Quality Plan; Golder 2014).

Ovary selenium concentration exceeding the Level 3 site-specific benchmark (equivalent of EC₅₀) for WCT of 33 mg/kg dw (Elk Valley Water Quality Plan; Golder 2014).

Notes: "-" = no data recorded; AWTF = Active Water Treatment Facility; LCO = Line Creek Operations; LAEMP = Local Aquatic Effects Monitoring Program; AOP = Advanced Oxidation Process.

^a F = female; M = male; U = unknown (sex of fish could not be determined, either because fish was not sufficiently mature or samples were collected non-lethally and sex could not be determined based on non-lethal evaluation of physical characteristics). ^b Ripe egg tissue was collected from one individual sampled non-lethally in 2019. Although westslope cutthroat trout spawn in the spring, this female released ripe eggs with minimal abdominal pressure during the collection of physical measures (length and weight). ^c Ovary concentrations were estimated from muscle selenium concentrations based on the average ovary-to-muscle concentration relationship of 1.6:1 presented by Nautilus and Interior Reforestation (2011). Ovary selenium was estimated only for individuals lacking measured egg/ovary concentrations (if female) or if sex was unknown.

^d DELT = Deformities, erosions, lesions, tumors. - = DELT observations were not recorded. DELT observations were initiated in 2017 following the start of AWTF operation.

 Table B.23: Physical Measures and Tissue Selenium Concentrations for Westslope Cutthroat Trout Sampled from Line Creek, 2001 to 2019

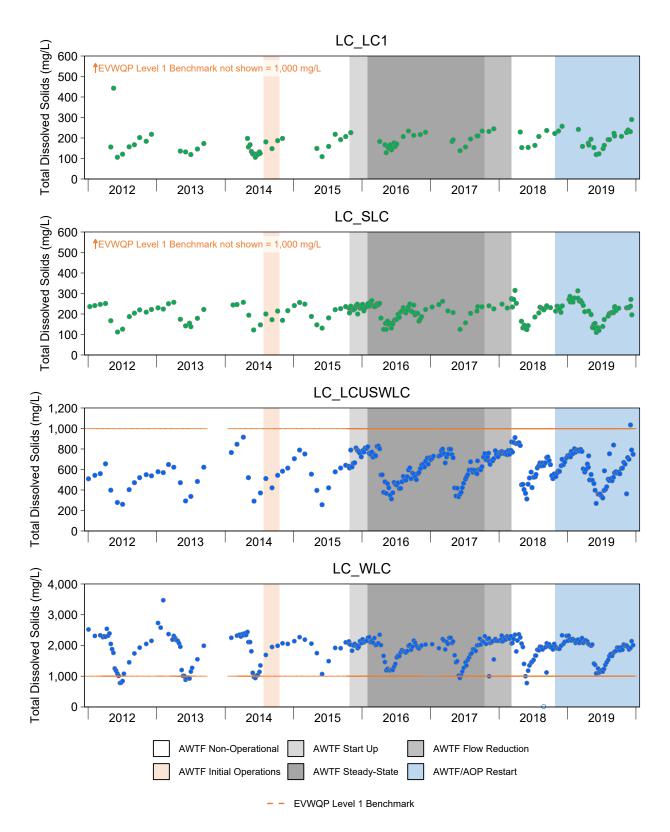
AWTF Operation	Waterbody	Area	Year	יט .	Location ſM 3, 11U)	Study	Processing Date	Fish ID	Total Length	Fork Length	Body Weight	Sex ^a	Age		Tissue Selenium (mg/kg dw)			Recorded Deformities (DELT) ^d
Phase					Northing		Date		(cm)	(cm)	(g)			Muscle	Ovary	Egg ^b	Estimated Ovary ^c	stimated
		RG_LIDCOM	2018	658135	5529841		30-Apr-18	LIDCOM-WCT-01	35.2	34.6	450	U	-	14	-	-	22	-
		RG_LIDSL	2018	659232	5530500		20-Aug-18	RG_LIDSL_WCT-2-M_20180820	-	17.8	83	U	-	11	-	-	18	none
		Mid-Canyon	2018	656825	5529140		21-Aug-18	RG_LI8_WCT-2-M_20180821	-	19.5	99	U	-	7.9	-	-	13	none
	Line Onesh	Mid-Canyon	2018	656825	5529140		21-Aug-18	RG_LI8_WCT-3-M_20180821	-	30.3	315	U	-	8.7	-	-	14	none
	Line Creek	Mid-Canyon	2018	656825	5529140		21-Aug-18	RG_LI8_WCT-4-M_20180821	-	32.0	414	U	-	9.8	-	-	16	none
		Mid-Canyon	2018	656825	5529140		21-Aug-18	RG_LI8_WCT-5-M_20180821	-	24.6	182	U	-	8.8	-	-	14	none
		RG_LIDCOM	2018	658185	5529798	2018 LCO	12-Sep-18	RG_LIDCOM_WCT-1-M_20180912	30.4	29.1	345	U	-	25	-	-	40	none
AWTF		RG_LI8	2018	654584	5529020	LAEMP	12-Sep-18	RG_LI8_WCT-1-M_20180912	26.2	24.9	210	U	-	9.5	-	-	15	none
Shutdown	Fording River	RG_FO23	2018	652956	5528903	(Minnow	05-Sep-18	RG_FO23_WCT-1-M_20180905	40.0	38.5	710	U	-	10	-	-	16	none
		RG_FO23	2018	652956	5528903	2019a)	05-Sep-18	RG_FO23_WCT-2-M_20180905	41.4	38.8	730	U	-	7.2	-	-	12	angling scarring around mouth
		RG_FO23	2018	652956	5528903		05-Sep-18	RG_FO23_WCT-3-M_20180905	34.9	33.4	455	U	-	7.0	-	-	11	none
		RG_FO23	2018	652956	5528903		05-Sep-18	RG_FO23_WCT-4-M_20180905	32.4	30.3	310	U	-	9.5	-	-	15	none
		RG_FO23	2018	652956	5528903		05-Sep-18	RG_FO23_WCT-5-M_20180905	22.7	21.5	121	U	-	7.5	-	-	12	none
		RG_FO23	2018	652874	5528402		05-Sep-18	RG_FO23_WCT-6-M_20180905	42.0	40.2	750	U	-	9.0	-	-	14	none
		RG_FO23	2018	652874	5528402		05-Sep-18	RG_FO23_WCT-7-M_20180905	33.2	31.4	385	U	-	6.0	-	-	10	scarring around mouth
		RG_FO23	2018	652874	5528402		05-Sep-18	RG_FO23_WCT-8-M_20180905	30.8	29.2	315	U	-	13	-	-	21	none
		RG_LILC3	2019	659870	5531576		05-Sep-19	RG_LILC3_WCT-01	20.7	19.7	98	F	SA	7.9	-	-	13	none
		RG_LILC3	2019	659870	5531576		06-Sep-19	RG_LILC3_WCT-04	41.7	39.2	945	М	Α	10	-	-	16	none
		RG_LIDCOM	2019	658185	5529820		05-Sep-19	RG_LIDCOM_WCT-02	37.5	35.5	625	F	Α	11	-	-	18	none
		RG_LIDCOM	2019	658185	5529820		05-Sep-19	RG_LIDCOM_WCT-03	40.7	39.0	840	М	Α	6.2	-	-	10	none
		RG_LIDCOM	2019	658185	5529820		06-Sep-19	RG_LIDCOM_WCT-05	32.2	30.7	420	М	Α	7.6	-	-	12	none
		RG_LIDCOM	2019	658185	5529820		06-Sep-19	RG_LIDCOM_WCT-06	38.1	36.5	840	Μ	Α	7.4	-	-	12	none
After		RG_LIDCOM	2019	658185	5529820	0040100	06-Sep-19	RG_LIDCOM_WCT-07	34.3	32.9	545	Μ	Α	7.9	-	-	13	none
AWTF/AOP Operations	Line Creek	RG_LIDCOM	2019	658185	5529820	2019 LCO LAEMP	06-Sep-19	RG_LIDCOM_WCT-08	29.9	28.7	360	F	Α	10	-	-	16	none
Stabilize		RG_LI8	2019	655378	5529048		06-Sep-19	RG_LI8_WCT-01	48.5	46.8	1,140	М	Α	7.7	-	-	12	none
		RG_LI8	2019	655378	5529048		06-Sep-19	RG_LI8_WCT-02	33.2	32.0	410	F	Α	7.2	-	-	12	none
		RG_LI8	2019	654671	5529013		07-Sep-19	RG_LI8_WCT-03	36.3	35.0	515	F	Α	8.1	-	-	13	none
		RG_LI8	2019	654671	5529013		07-Sep-19	RG_LI8_WCT-04	25.6	24.5	195	М	Α	6.5	-	-	10	none
		RG_LI8	2019	654671	5529013		07-Sep-19	RG_LI8_WCT-05	44.7	43.3	900	F	Α	20	-	28	-	none
		RG_LI8	2019	655378	5529048		07-Sep-19	RG_LI8_WCT-06	45.2	43.4	980	F	Α	8.2	-	-	13	none
		RG_LI8	2019	655378	5529048		07-Sep-19	RG_LI8_WCT-07	40.6	39	760	М	Α	7.0	-	-	11	none

Muscle selenium concentration exceeding the site-specific benchmark for WCT of 15.5 mg/kg dw (Nautilus and Interior Reforestation 2011).

Ovary selenium concentration exceeding the Level 1 site-specific benchmark (equivalent of EC₁₀) for WCT of 25 mg/kg dw (Elk Valley Water Quality Plan; Golder 2014).

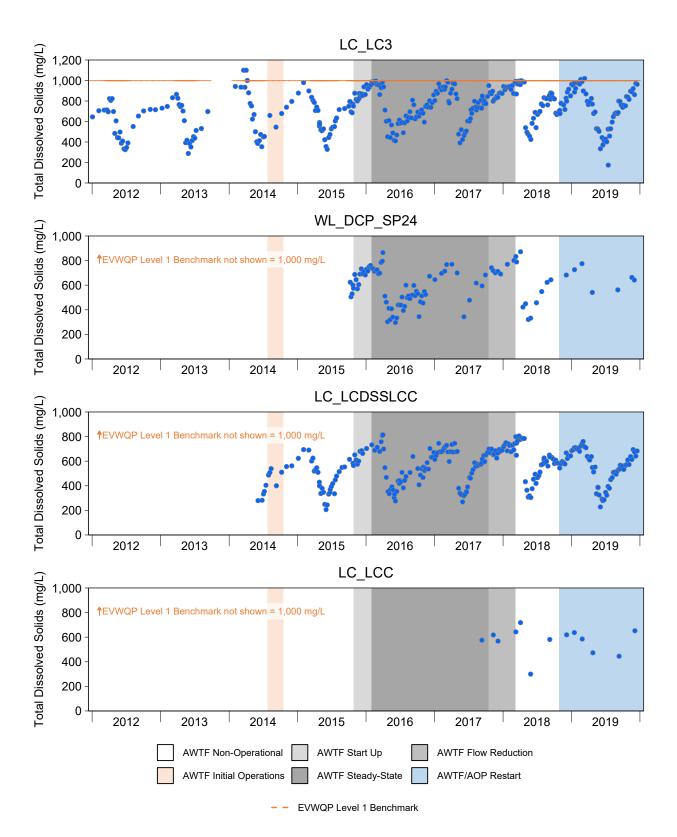
Ovary selenium concentration exceeding the Level 2 site-specific benchmark (equivalent of EC₂₀) for WCT of 27 mg/kg dw (Elk Valley Water Quality Plan; Golder 2014).

Ovary selenium concentration exceeding the Level 3 site-specific benchmark (equivalent of EC₅₀) for WCT of 33 mg/kg dw (Elk Valley Water Quality Plan; Golder 2014).

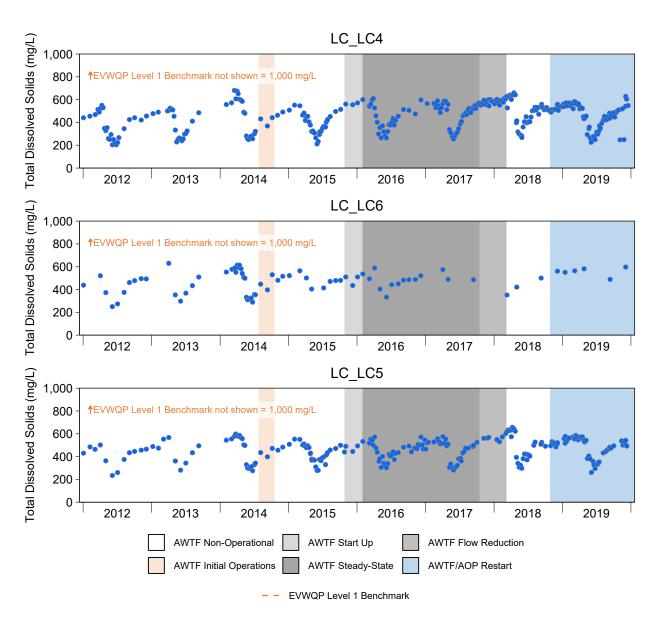

Notes: "-" = no data recorded; AWTF = Active Water Treatment Facility; LCO = Line Creek Operations; LAEMP = Local Aquatic Effects Monitoring Program; AOP = Advanced Oxidation Process.

^a F = female; M = male; U = unknown (sex of fish could not be determined, either because fish was not sufficiently mature or samples were collected non-lethally and sex could not be determined based on non-lethal evaluation of physical characteristics).

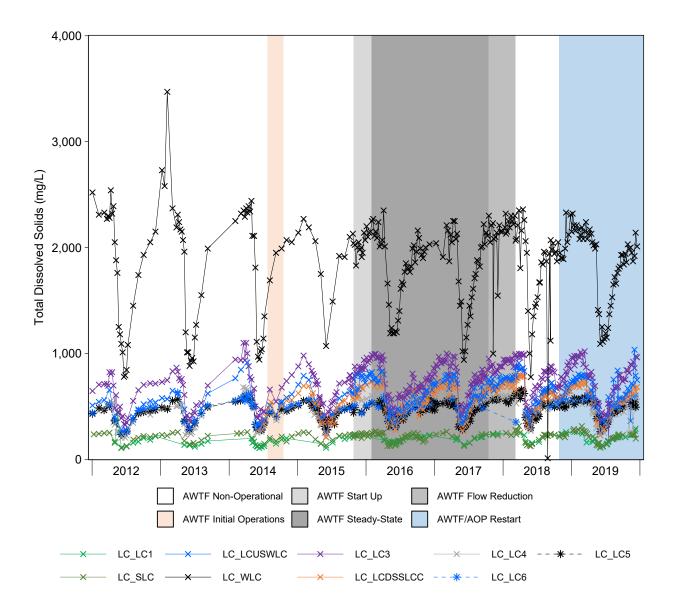
^b Ripe egg tissue was collected from one individual sampled non-lethally in 2019. Although westslope cutthroat trout spawn in the spring, this female released ripe eggs with minimal abdominal pressure during the collection of physical measures (length and weight). ^c Ovary concentrations were estimated from muscle selenium concentrations based on the average ovary-to-muscle concentration relationship of 1.6:1 presented by Nautilus and Interior Reforestation (2011). Ovary selenium was estimated only for individuals lacking measured egg/ovary concentrations (if female) or if sex was unknown.


^d DELT = Deformities, erosions, lesions, tumors. - = DELT observations were not recorded. DELT observations were initiated in 2017 following the start of AWTF operation.

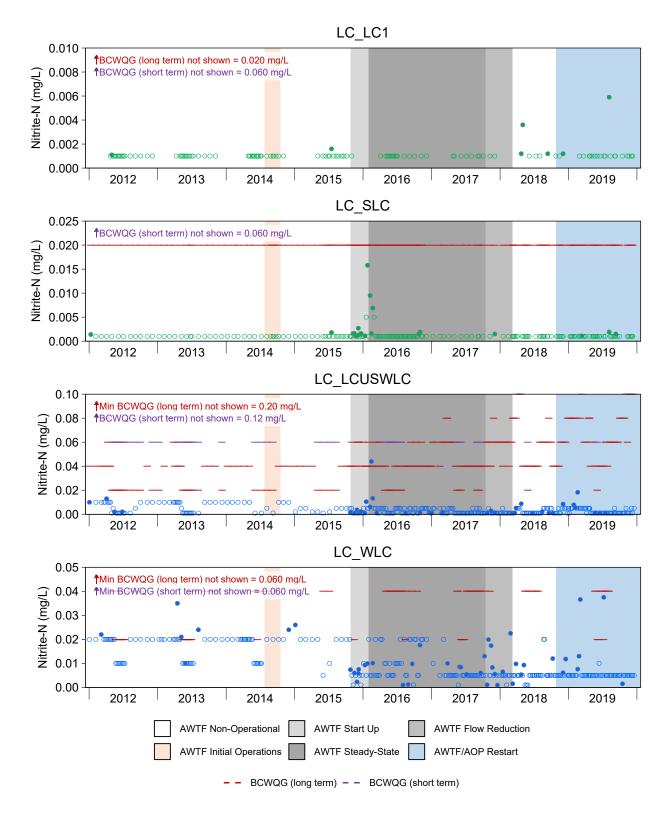
APPENDIX C SUPPORTING DATA – OTHER POTENTIAL EFFECTS OF AWTF OPERATION


Figure C.1: Time Series Plots for Aqueous Total Dissolved Solids Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019

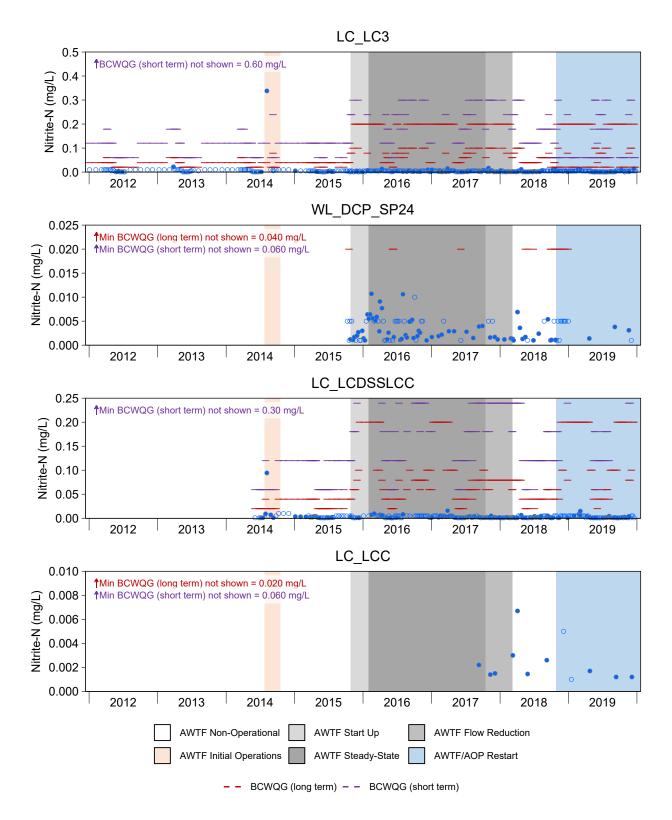
Notes: EVWQP = Elk Valley Water Quality Plan. Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines are displayed for each monitoring area to provide context, but pertain only to mine-exposed monitoring areas downstream of the AWTF discharge.


Figure C.1: Time Series Plots for Aqueous Total Dissolved Solids Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019

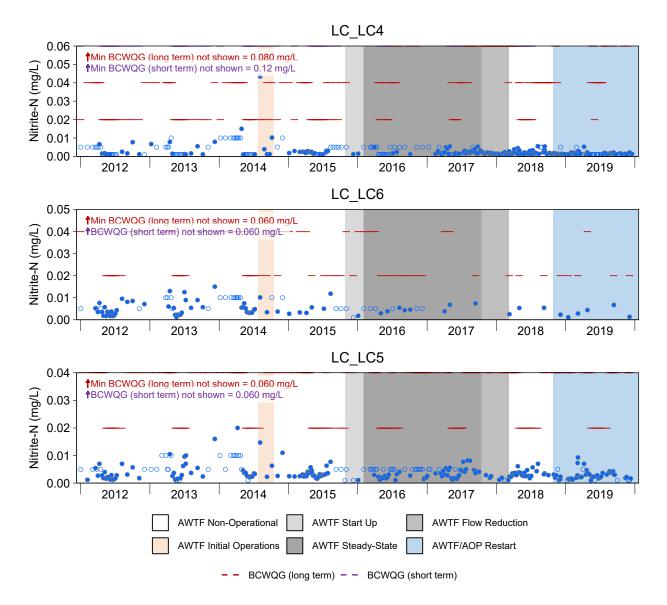
Notes: EVWQP = Elk Valley Water Quality Plan. Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines are displayed for each monitoring area to provide context, but pertain only to mine-exposed monitoring areas downstream of the AWTF discharge.


Figure C.1: Time Series Plots for Aqueous Total Dissolved Solids Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019

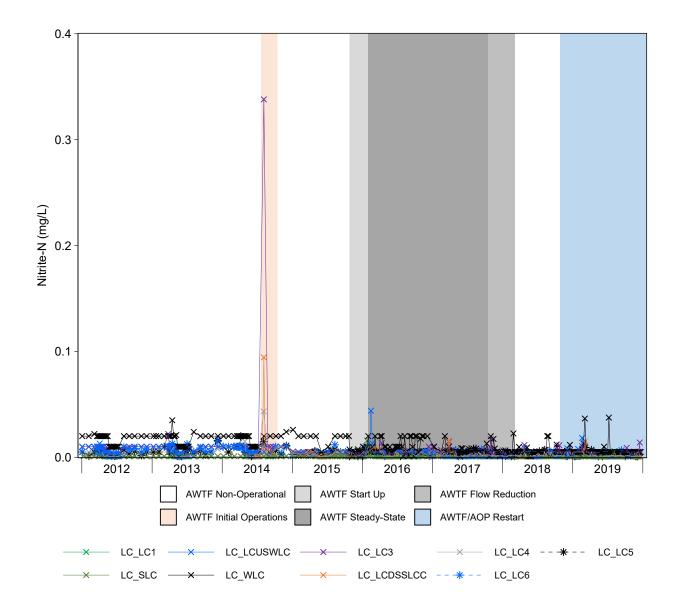
Notes: EVWQP = Elk Valley Water Quality Plan. Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines are displayed for each monitoring area to provide context, but pertain only to mine-exposed monitoring areas downstream of the AWTF discharge.


Figure C.2: Time Series Plots for Aqueous Total Dissolved Solids Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted at the LRL (LRLs between 10 and 10 mg/L). West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines pertain only to mine-exposed monitoring areas located downstream of the AWTF discharge.


Figure C.3: Time Series Plots for Aqueous Nitrite-N Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019

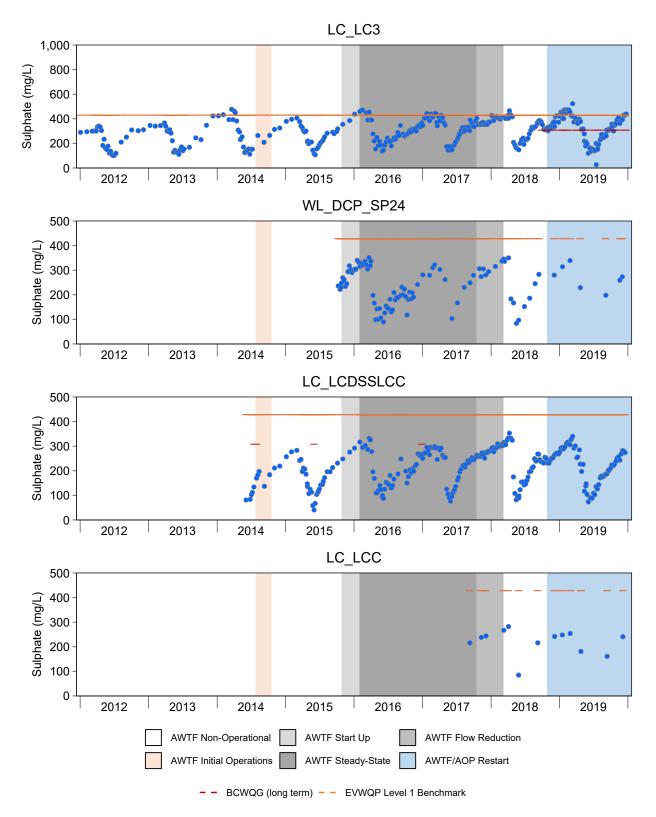
BCWQG = British Columbia Water Quality Guidelines. Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Guidelines are dependent on water chloride concen rations and the varying are shown as coloured dashes. Where guideline values exceed the rage of the y-axis, the minimum value of the guidelines that exceeds the range of the y-axis is listed. West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines are displayed for each monitoring area to provide context, but pertain only to mine-exposed monitoring areas downstream of the AWTF discharge.


Figure C.3: Time Series Plots for Aqueous Nitrite-N Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019

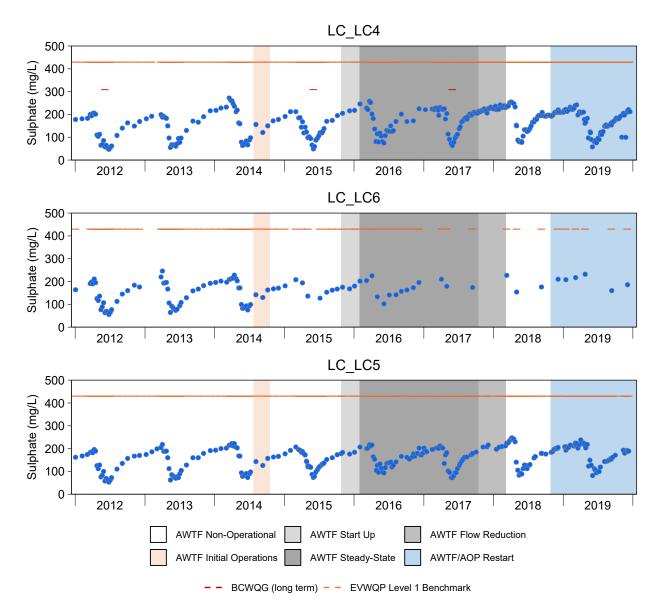
Notes: BCWQG = British Columbia Water Quality Guidelines. Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Guidelines are dependent on water chloride concentrations and the varying guidelines are shown as coloured dashes. Where guideline values exceed the rage of the y-axis, the minimum value of the guidelines that exceeds the range of the y-axis is listed. West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines are displayed for each monitoring area to provide context, but pertain only to mine-exposed monitoring areas downstream of the AWTF discharge.

Figure C.3: Time Series Plots for Aqueous Nitrite-N Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019

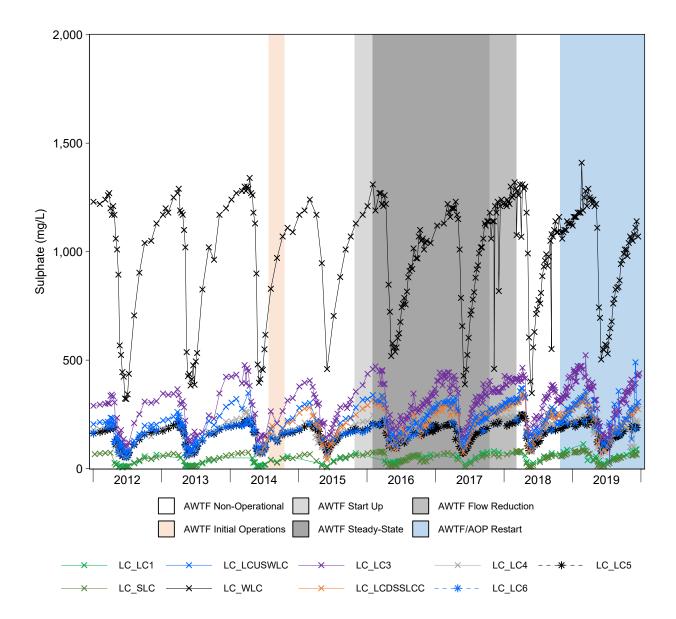
Notes: BCWQG = British Columbia Water Quality Guidelines. Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Guidelines are dependent on water chloride concentrations and the varying guidelines are shown as coloured dashes. Where guideline values exceed the rage of the y-axis, the minimum value of the guidelines that exceeds the range of the y-axis is listed. West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines are displayed for each monitoring area to provide context, but pertain only to mine-exposed monitoring areas downstream of the AWTF discharge.


Figure C.4: Time Series Plots for Aqueous Nitrite-N Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019

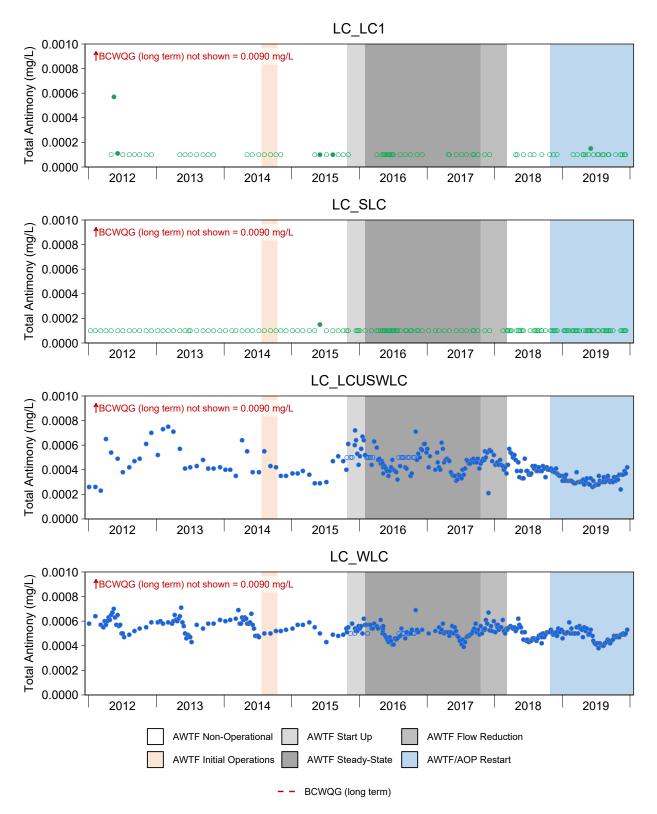
Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted at the LRL (LRLs between 0.0010 and 0.020 mg/L). West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines pertain only to mine-exposed monitoring areas located downstream of the AWTF discharge.


Figure C.5: Time Series Plots for Aqueous Sulphate Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019

Notes: EVWQP = Elk Valley Water Quality Plan; BCWQG = British Columbia Water Quality Guidelines. Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. The EVWQP Level 1 Benchmark is shown in plots where the EVWQP Level 1 Benchmark and the BCWQG are equal. West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines are displayed for each monitoring area to provide context, but pertain only to mine-exposed monitoring areas downstream of the AWTF discharge.


Figure C.5: Time Series Plots for Aqueous Sulphate Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019

Notes: EVWQP = Elk Valley Water Quality Plan; BCWQG = British Columbia Water Quality Guidelines. Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. The EVWQP Level 1 Benchmark is shown in plots where the EVWQP Level 1 Benchmark and the BCWQG are equal. West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines are displayed for each monitoring area to provide context, but pertain only to mine-exposed monitoring areas downstream of the AWTF discharge.


Figure C.5: Time Series Plots for Aqueous Sulphate Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019

Notes: EVWQP = Elk Valley Water Quality Plan; BCWQG = British Columbia Water Quality Guidelines. Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. The EVWQP Level 1 Benchmark is shown in plots where the EVWQP Level 1 Benchmark and the BCWQG are equal. West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines are displayed for each monitoring area to provide context, but pertain only to mine-exposed monitoring areas downstream of the AWTF discharge.

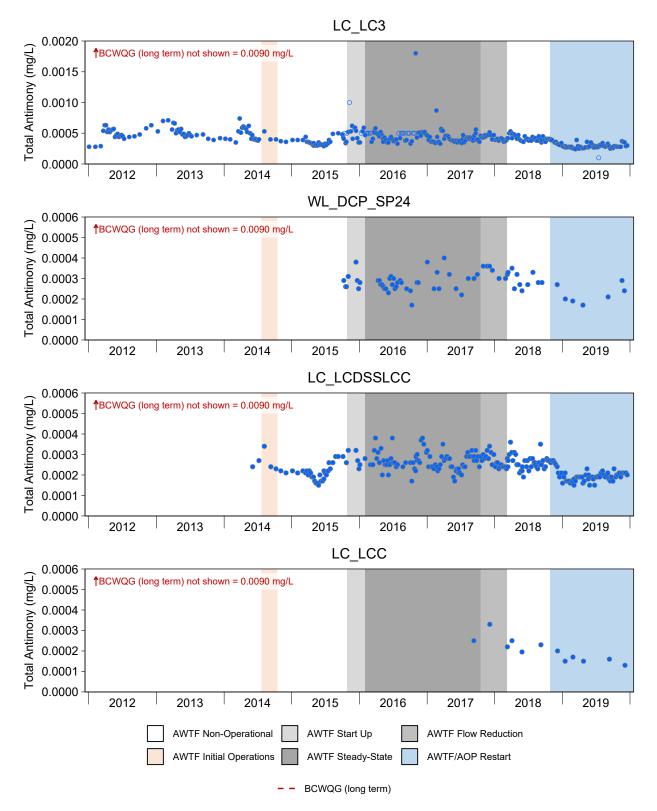
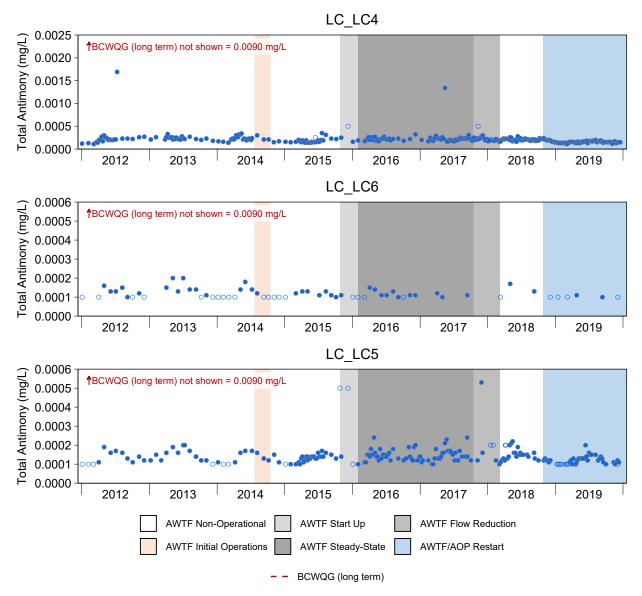


Figure C.6: Time Series Plots for Aqueous Sulphate Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019


Note: West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines pertain only to mineexposed monitoring areas located downstream of the AWTF discharge.

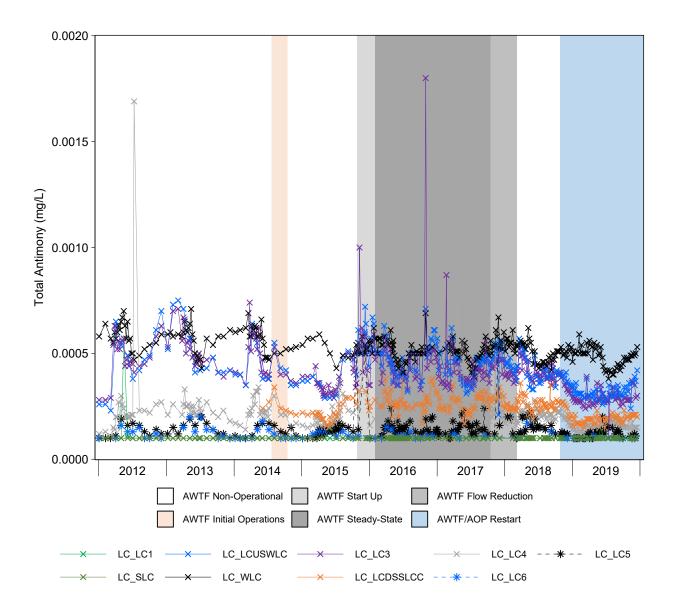

Figure C.7: Time Series Plots for Aqueous Total Antimony Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019

Figure C.7: Time Series Plots for Aqueous Total Antimony Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019

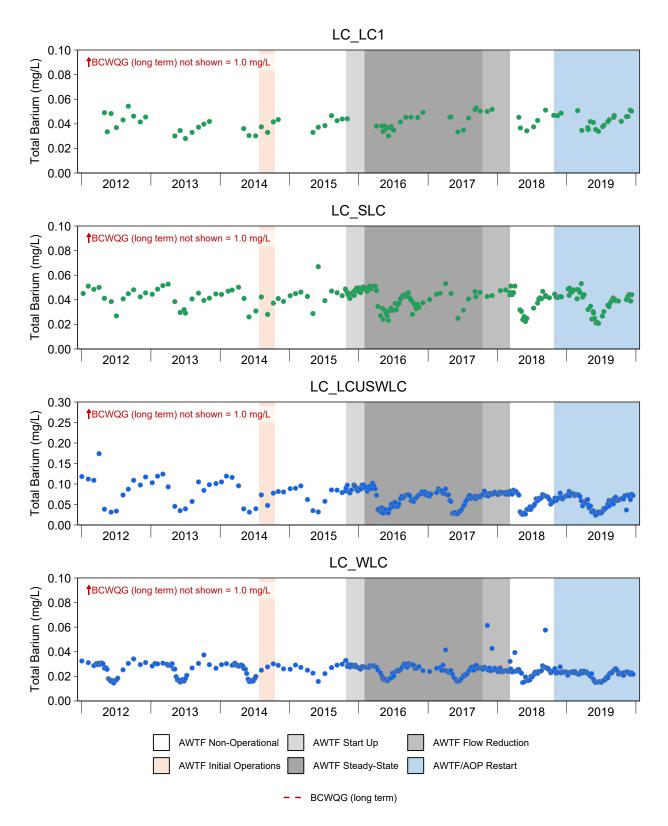


Figure C.7: Time Series Plots for Aqueous Total Antimony Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019

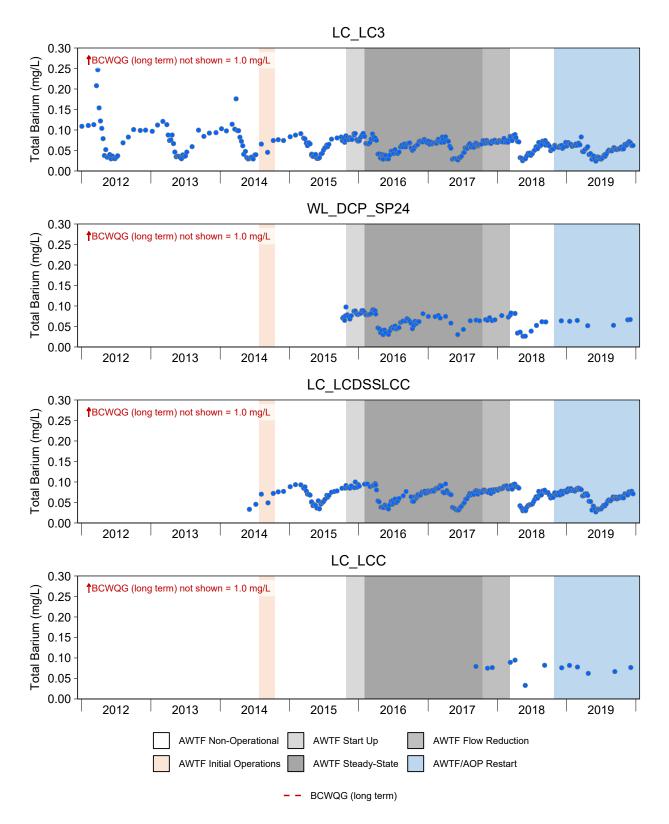
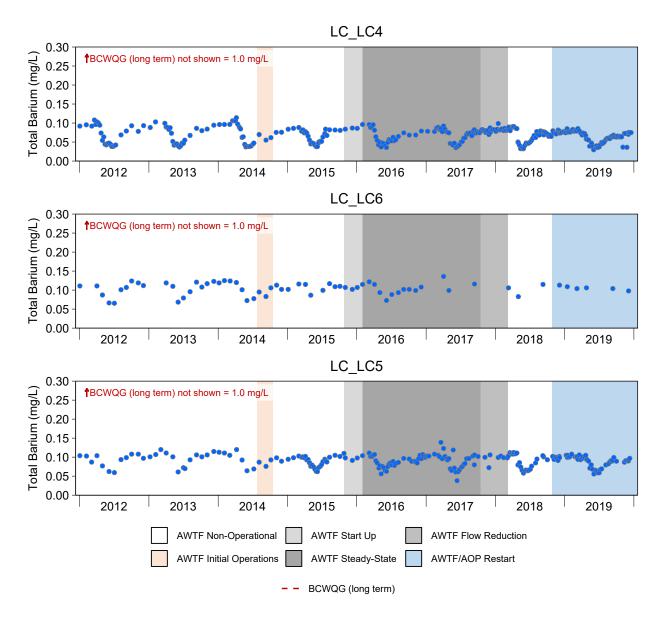


Figure C.8: Time Series Plots for Aqueous Total Antimony Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019


Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted at the LRL (0.0010 mg/L). West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines pertain only to mine-exposed monitoring areas located downstream of the AWTF discharge.

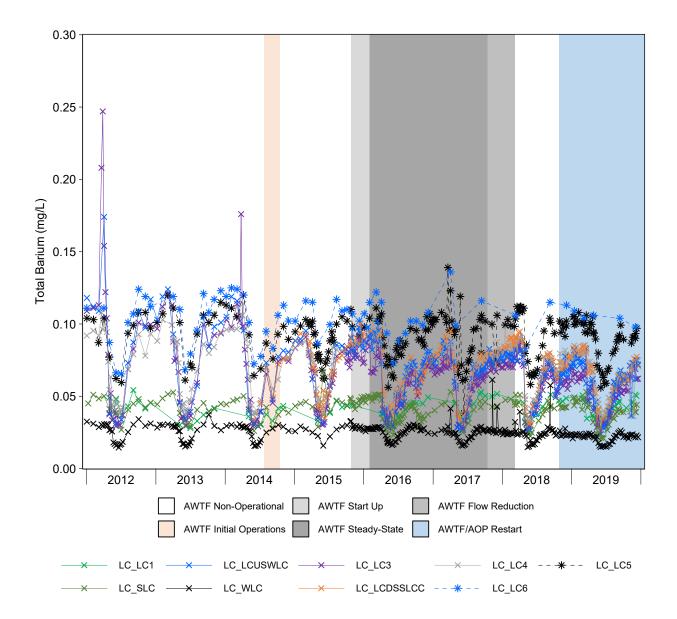

Figure C.9: Time Series Plots for Aqueous Total Barium Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019

Figure C.9: Time Series Plots for Aqueous Total Barium Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019

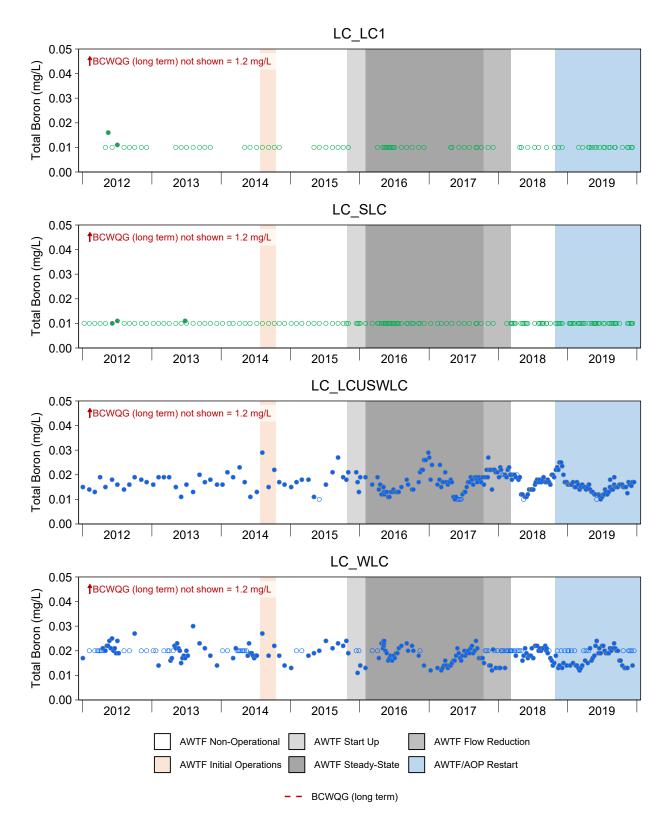


Figure C.9: Time Series Plots for Aqueous Total Barium Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019

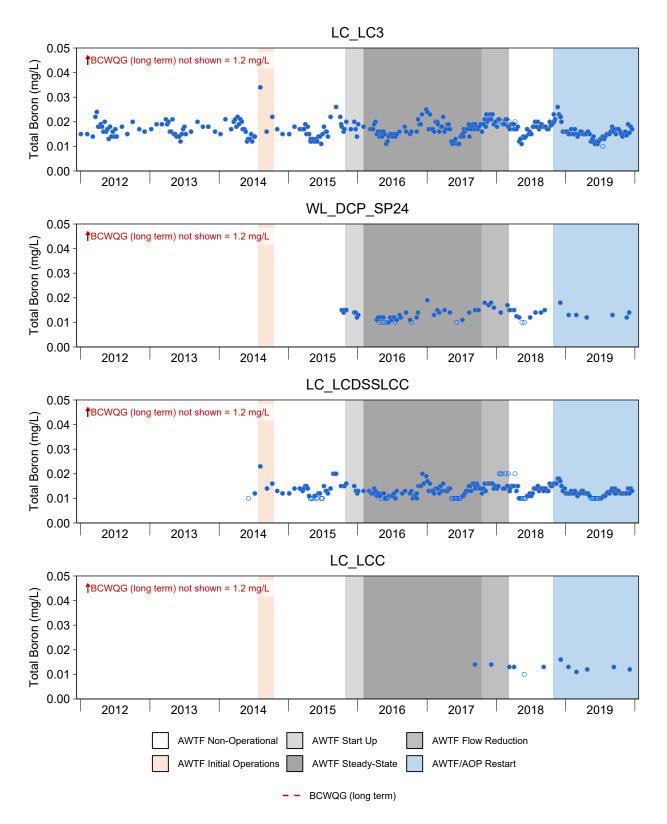
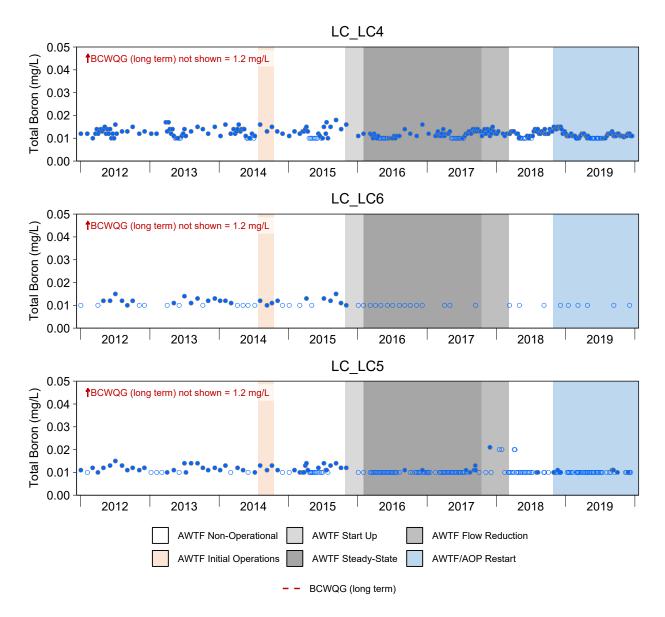


Figure C.10: Time Series Plots for Aqueous Total Barium Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019


Note: West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines pertain only to mine-exposed monitoring areas located downstream of the AWTF discharge.

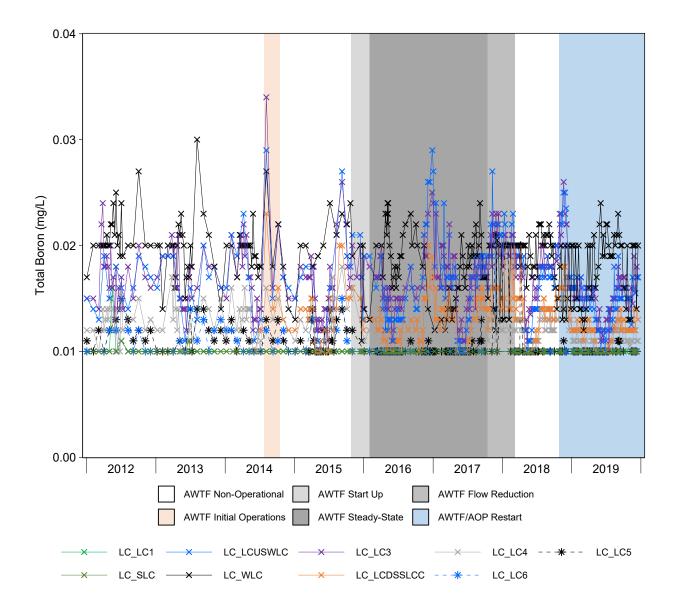

Figure C.11: Time Series Plots for Aqueous Total Boron Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019

Figure C.11: Time Series Plots for Aqueous Total Boron Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019

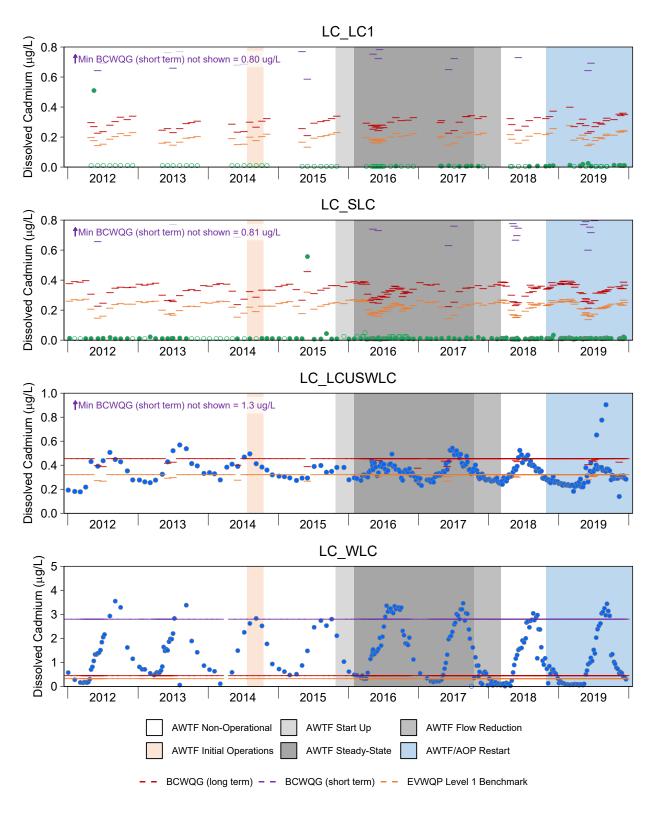


Figure C.11: Time Series Plots for Aqueous Total Boron Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019

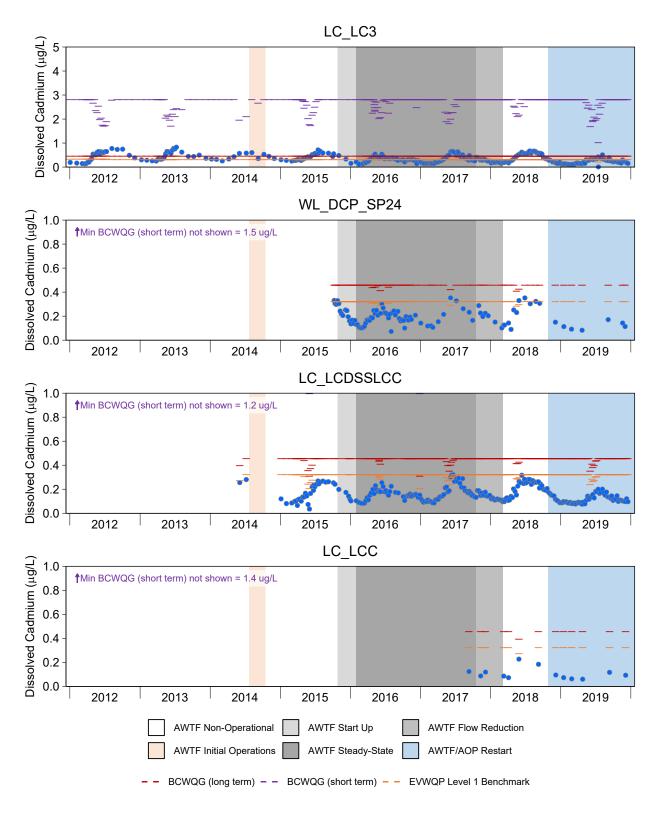
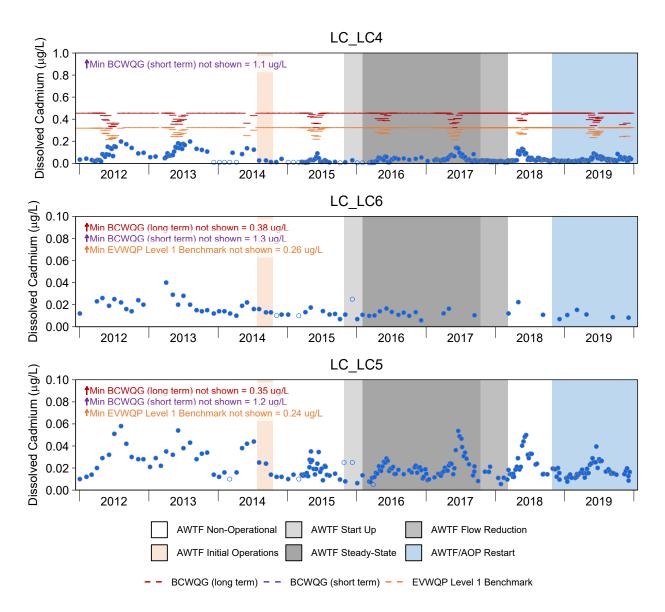


Figure C.12: Time Series Plots for Aqueous Total Boron Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019


Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted at the LRL (LRLs between 0.010 and 0.020 mg/L). West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines pertain only to mine-exposed monitoring areas located downstream of the AWTF discharge.

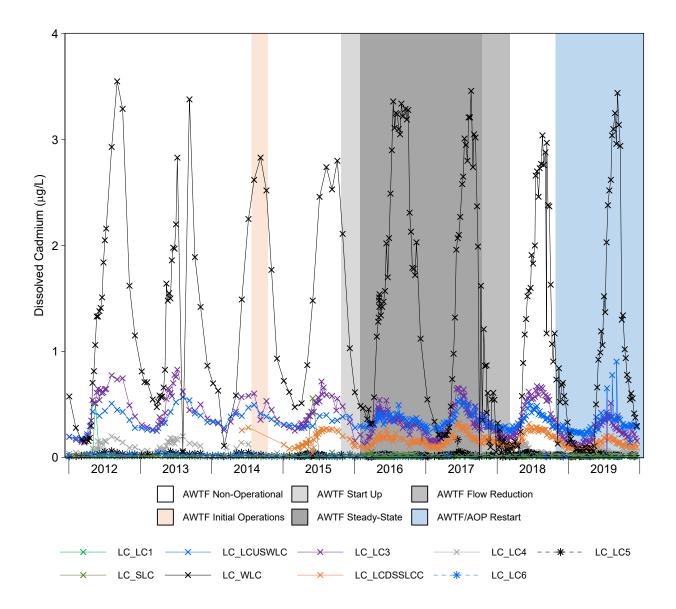

Figure C.13: Time Series Plots for Aqueous Dissolved Cadmium Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019

Figure C.13: Time Series Plots for Aqueous Dissolved Cadmium Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019

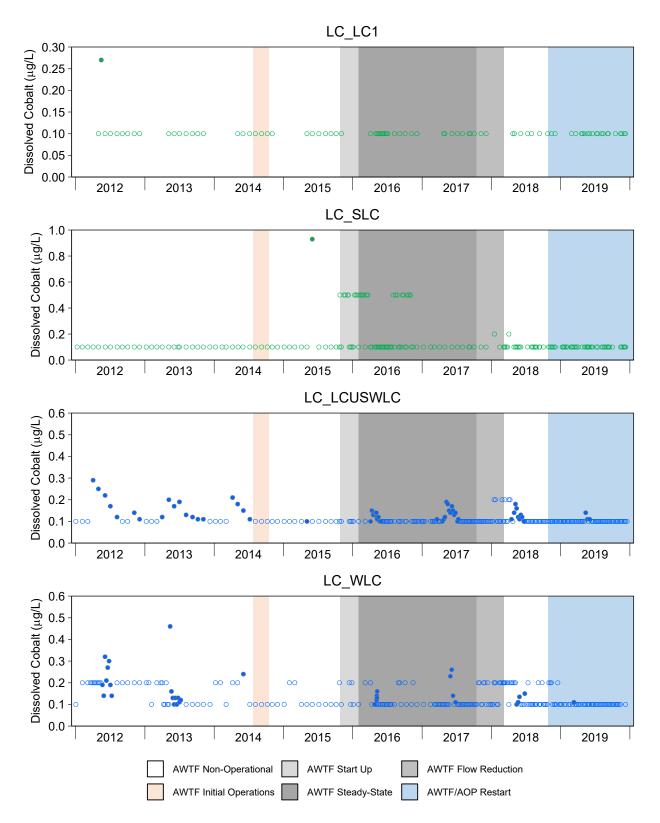


Figure C.13: Time Series Plots for Aqueous Dissolved Cadmium Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019

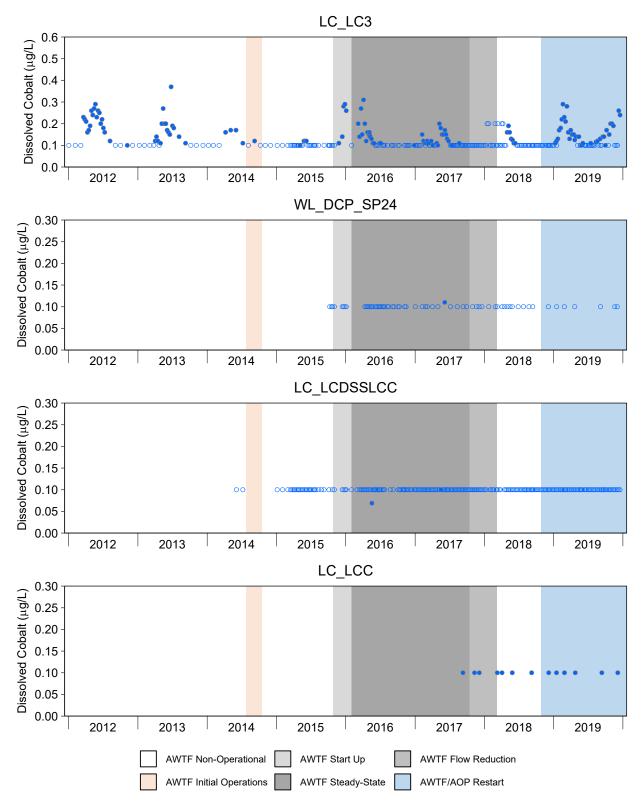
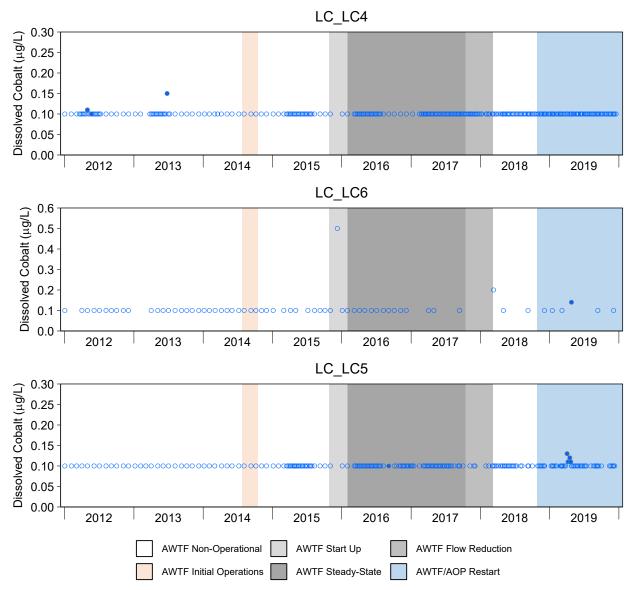


Figure C.14: Time Series Plots for Aqueous Dissolved Cadmium Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019


Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted at the LRL (0.050 mg/L). West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines pertain only to mine-exposed monitoring areas located downstream of the AWTF discharge.

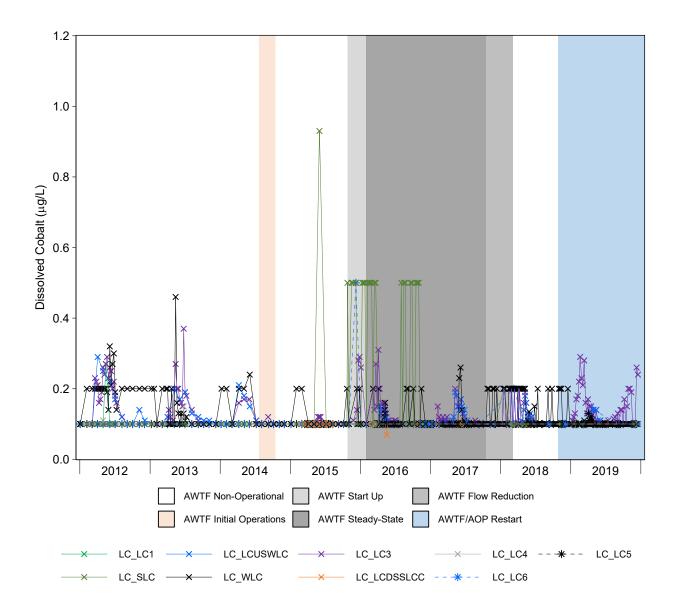

Figure C.15: Time Series Plots for Aqueous Dissolved Cobalt Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019

Figure C.15: Time Series Plots for Aqueous Dissolved Cobalt Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019

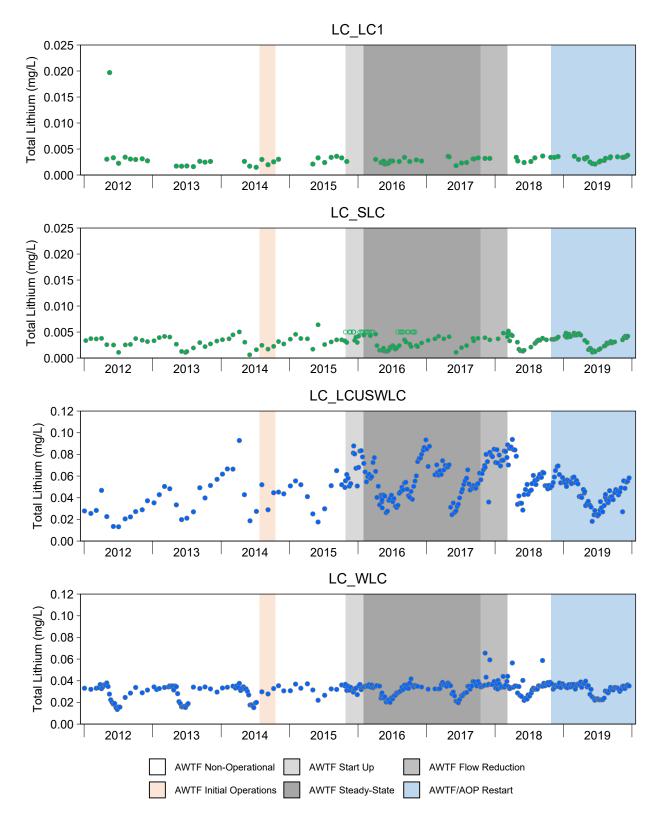


Figure C.15: Time Series Plots for Aqueous Dissolved Cobalt Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019

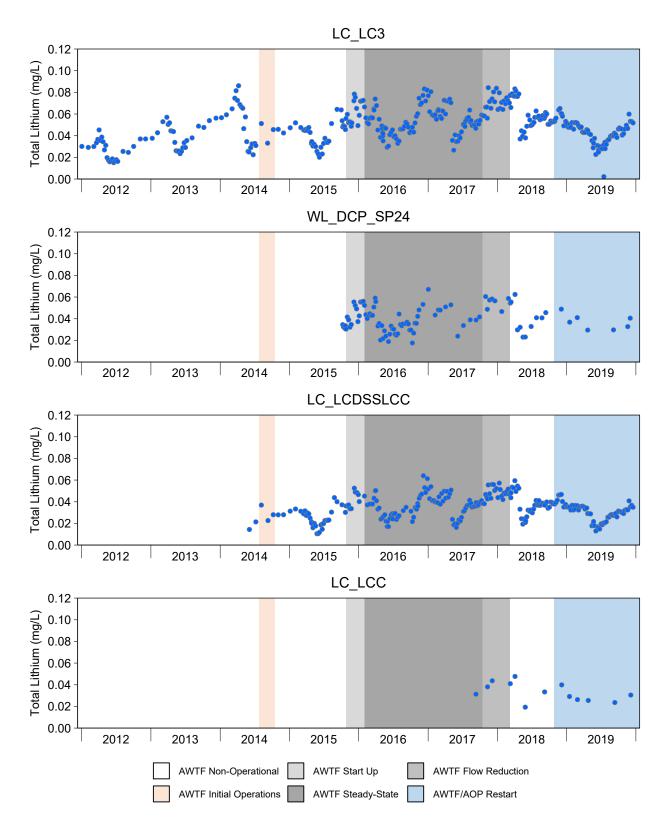
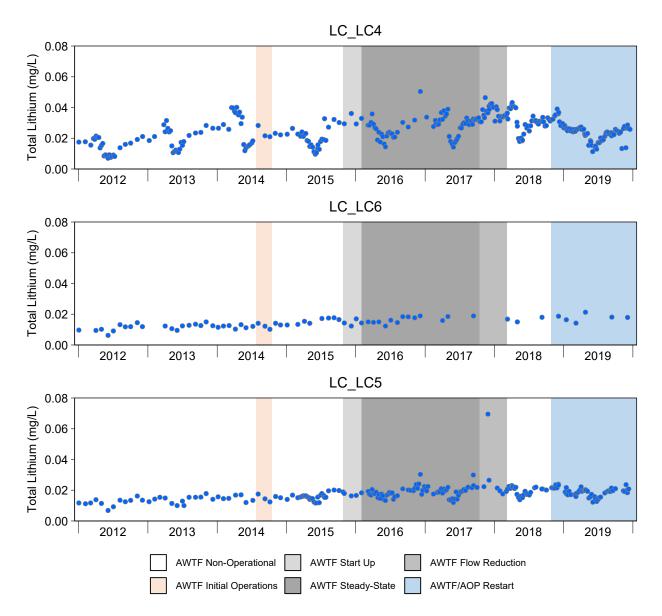


Figure C.16: Time Series Plots for Aqueous Dissolved Cobalt Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019


Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted at the LRL (LRLs between 0.10 and 0.50 mg/L). West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines pertain only to mine-exposed monitoring areas located downstream of the AWTF discharge.

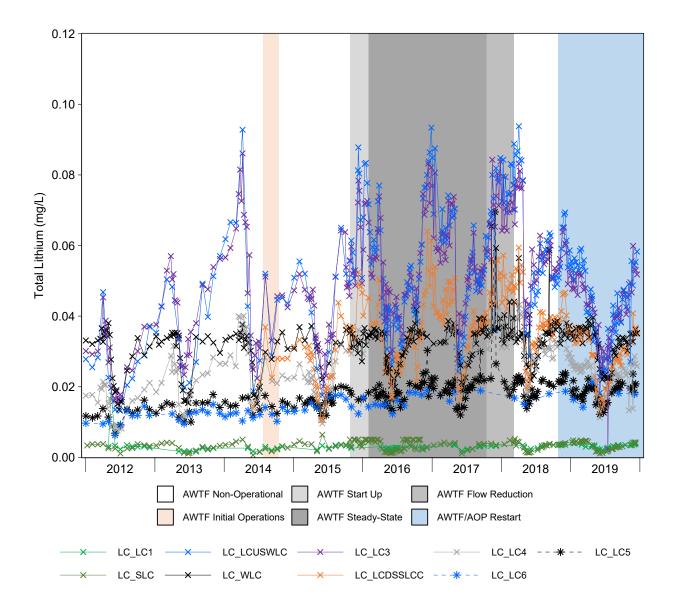

Figure C.17: Time Series Plots for Aqueous Total Lithium Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019

Figure C.17: Time Series Plots for Aqueous Total Lithium Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019

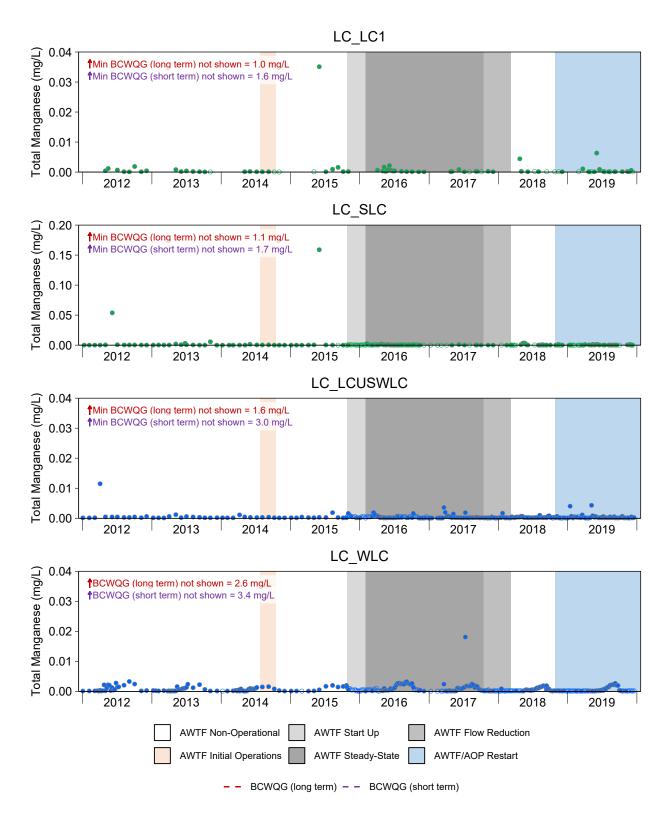


Figure C.17: Time Series Plots for Aqueous Total Lithium Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019

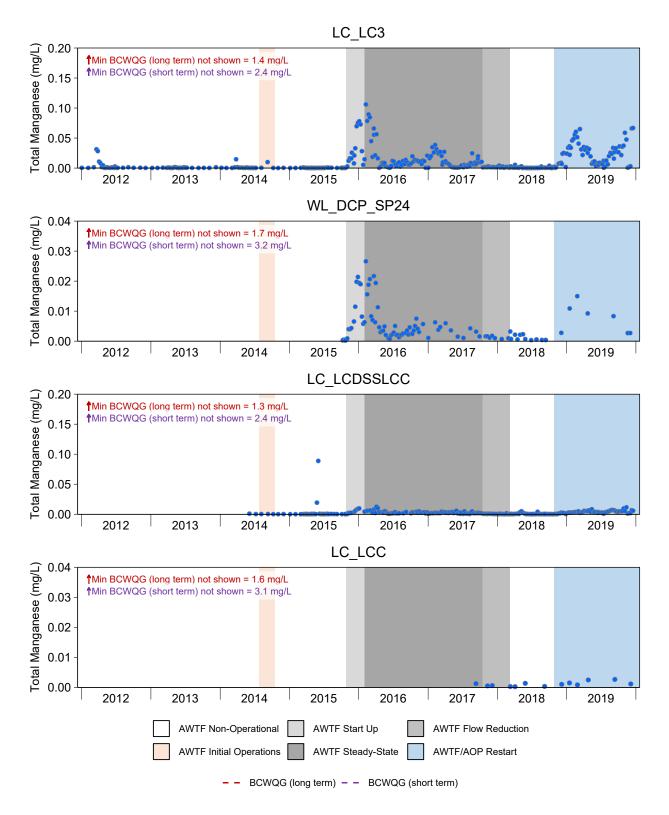
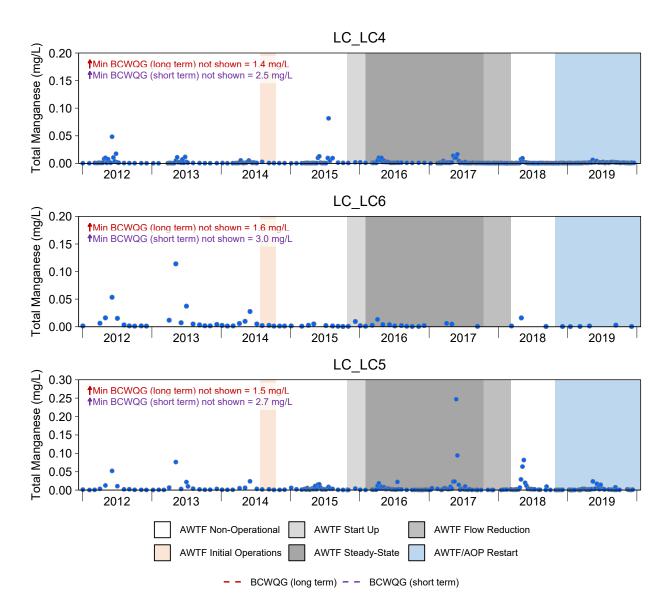


Figure C.18: Time Series Plots for Aqueous Total Lithium Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019


Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted at the LRL (0.0050 mg/L). West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines pertain only to mine-exposed monitoring areas located downstream of the AWTF discharge.

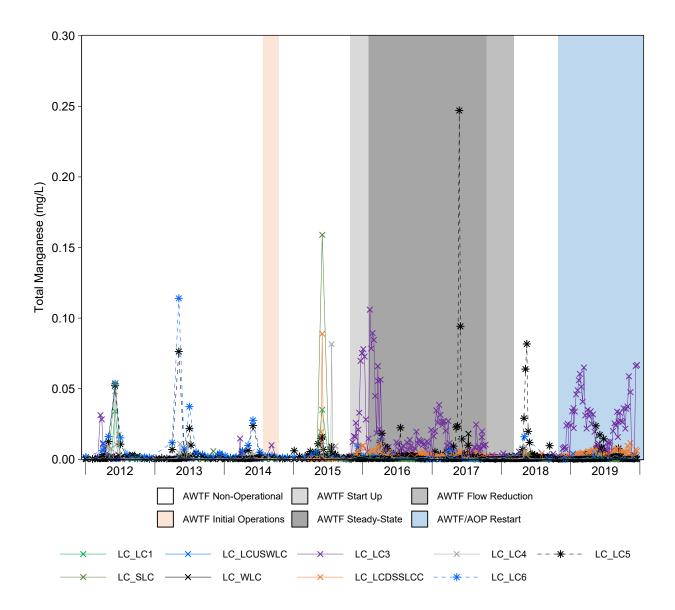

Figure C.19: Time Series Plots for Aqueous Total Manganese Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019

Figure C.19: Time Series Plots for Aqueous Total Manganese Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019

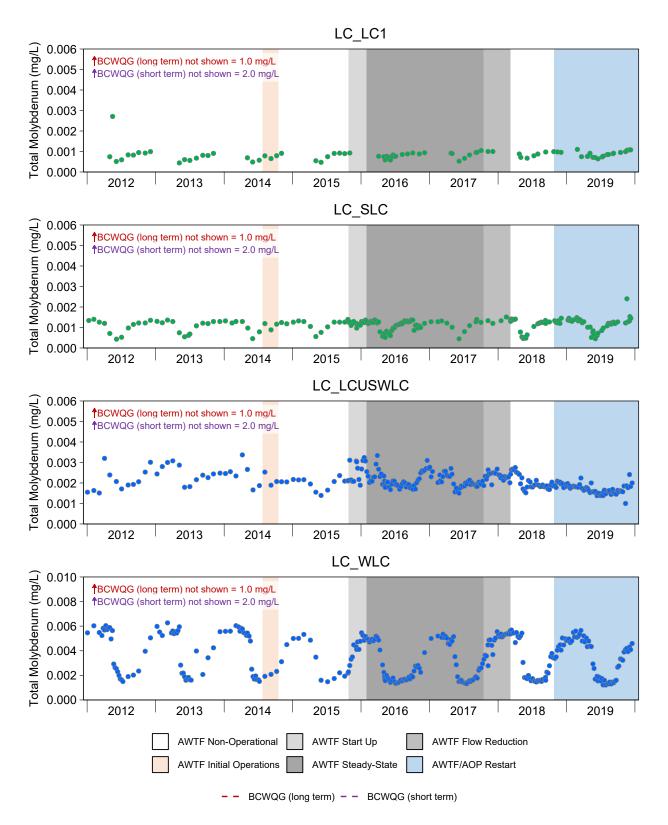


Figure C.19: Time Series Plots for Aqueous Total Manganese Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019

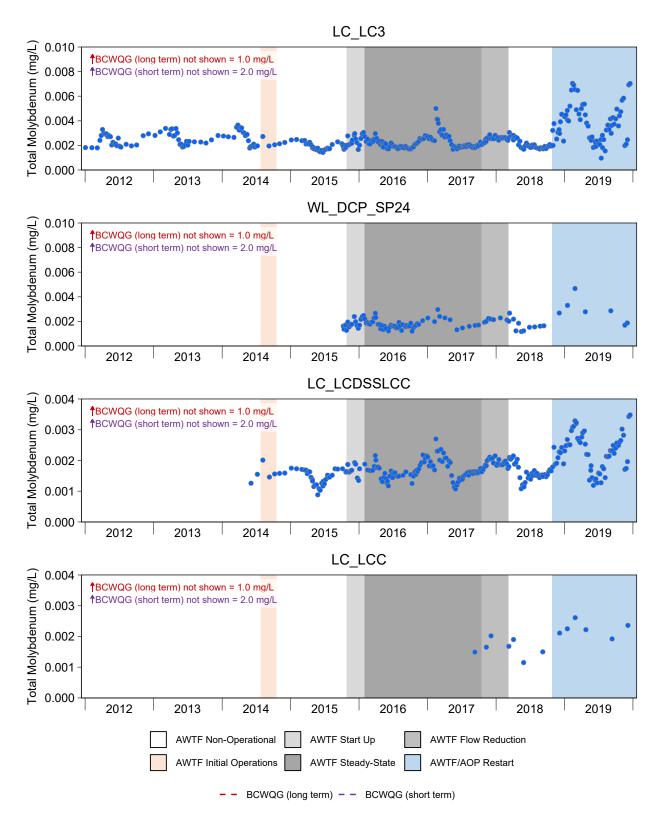
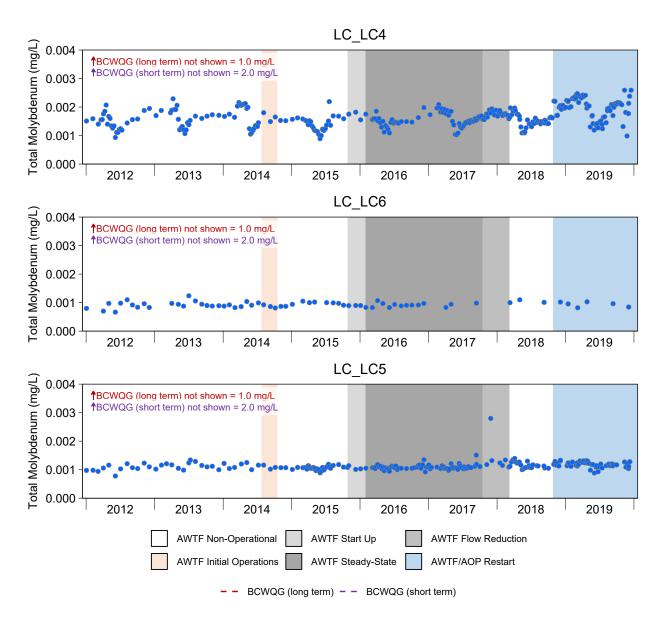


Figure C.20: Time Series Plots for Aqueous Total Manganese Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019


Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted at the LRL (LRLs between 0.000050 and 0.0010 mg/L). West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines pertain only to mine-exposed monitoring areas located downstream of the AWTF discharge.

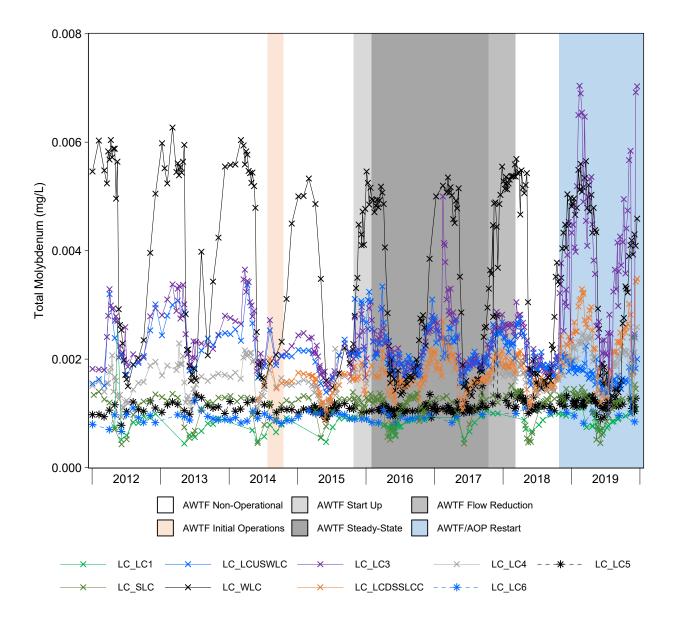

Figure C.21: Time Series Plots for Aqueous Total Molybdenum Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019

Figure C.21: Time Series Plots for Aqueous Total Molybdenum Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019

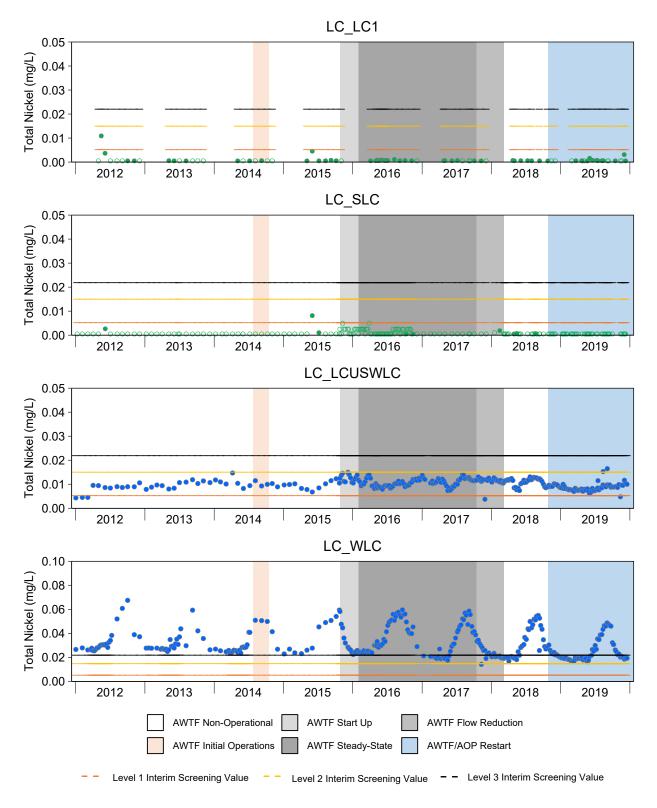


Figure C.21: Time Series Plots for Aqueous Total Molybdenum Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019

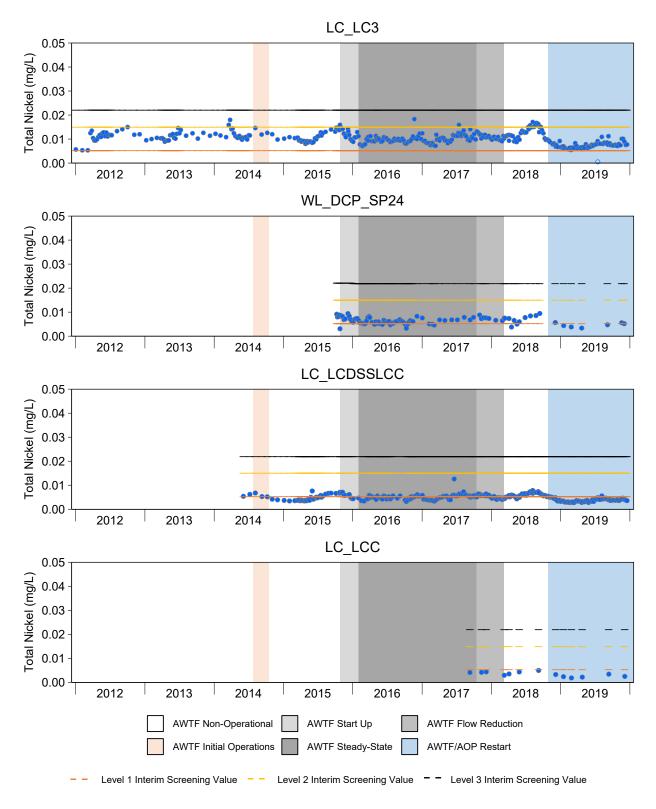
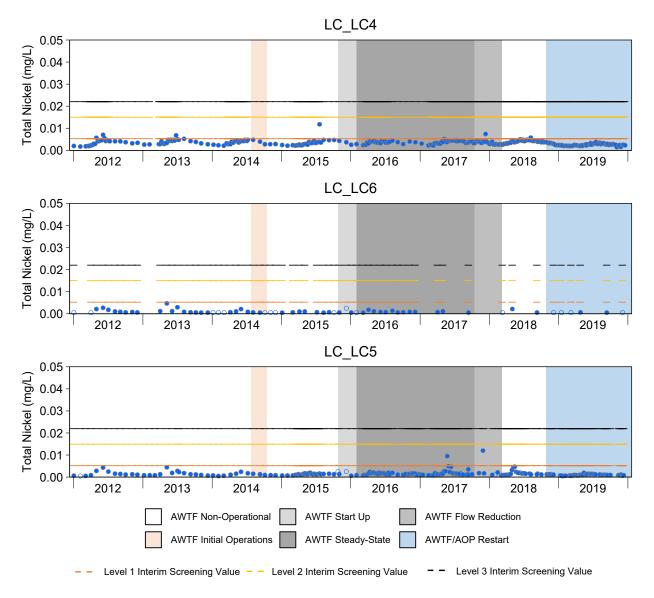


Figure C.22: Time Series Plots for Aqueous Total Molybdenum Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019


Note: West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines pertain only to mine-exposed monitoring areas located downstream of the AWTF discharge.

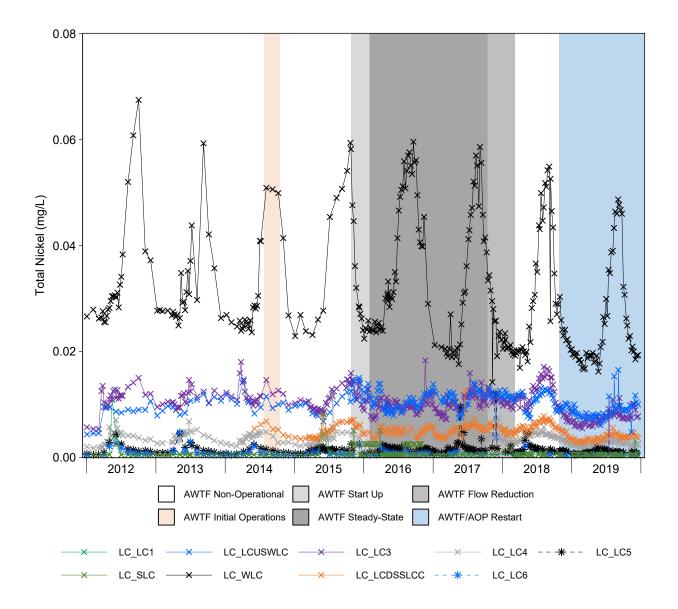

Figure C.23: Time Series Plots for Aqueous Total Nickel Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019

Figure C.23: Time Series Plots for Aqueous Total Nickel Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019

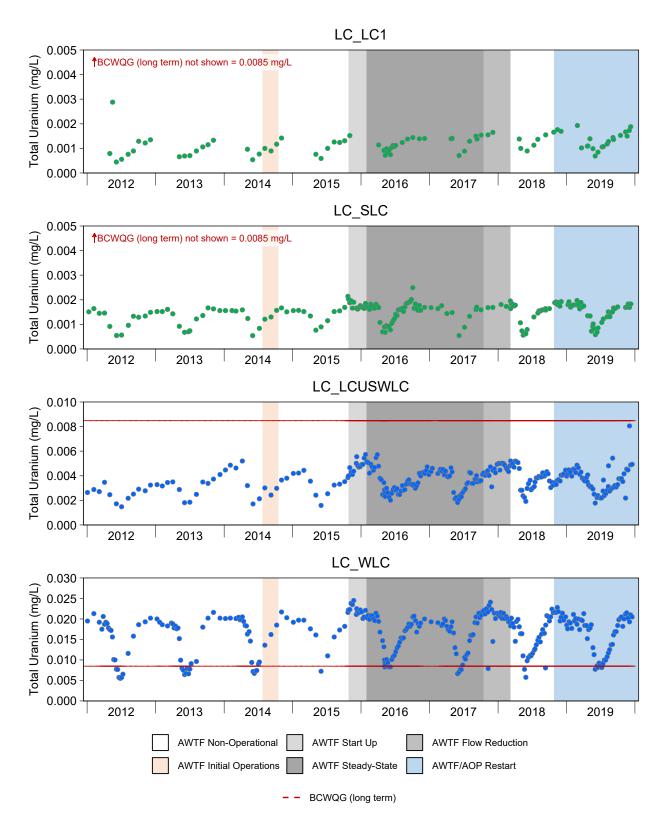
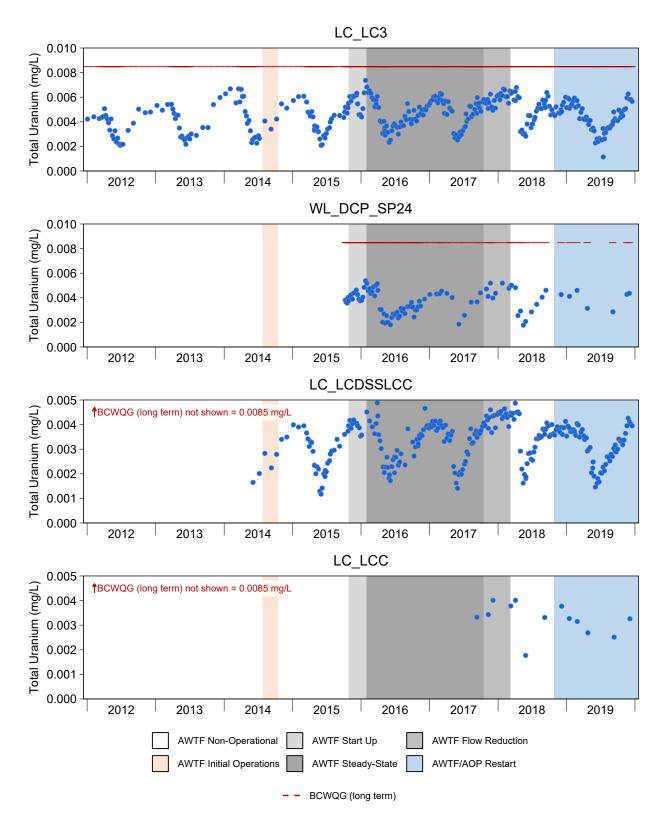
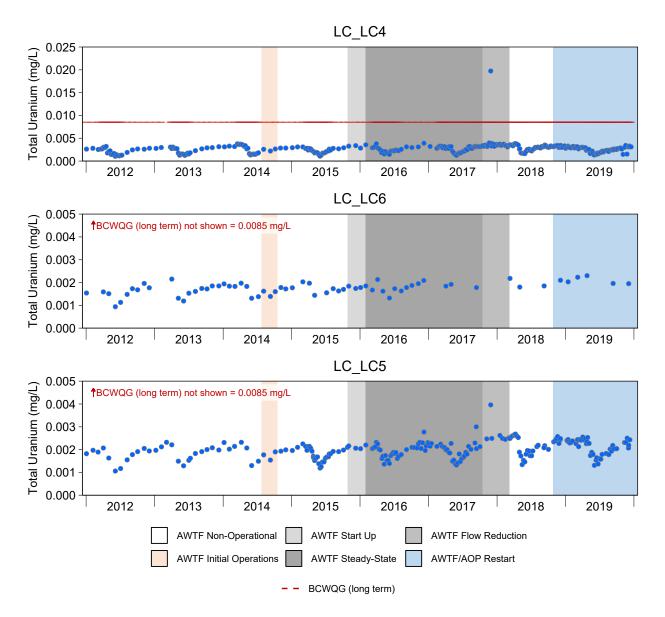


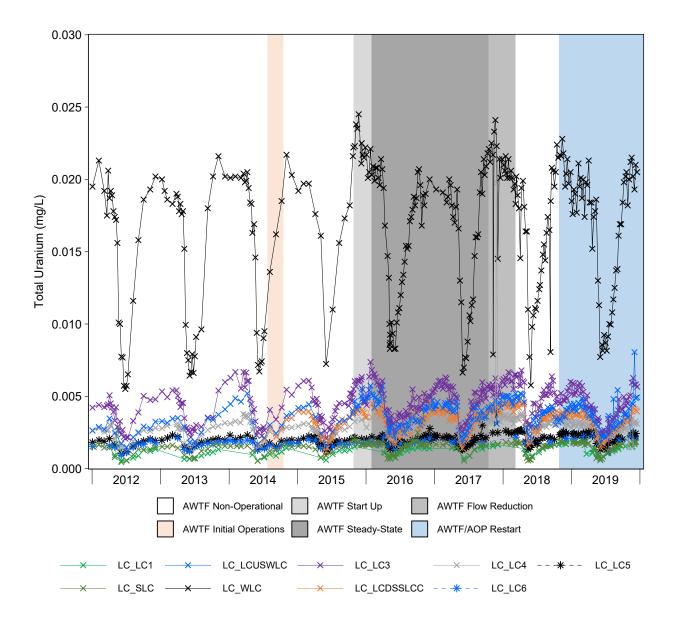
Figure C.23: Time Series Plots for Aqueous Total Nickel Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019


Figure C.24: Time Series Plots for Aqueous Total Nickel Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019

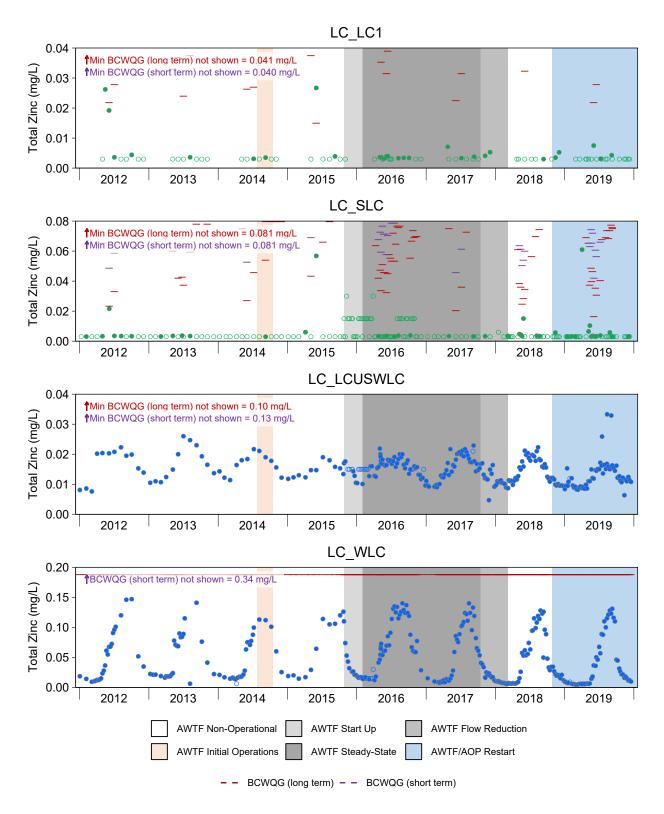
Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted at the LRL (0.0050 mg/L). West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines pertain only to mine-exposed monitoring areas located downstream of the AWTF discharge.


Figure C.25: Time Series Plots for Aqueous Total Uranium Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019

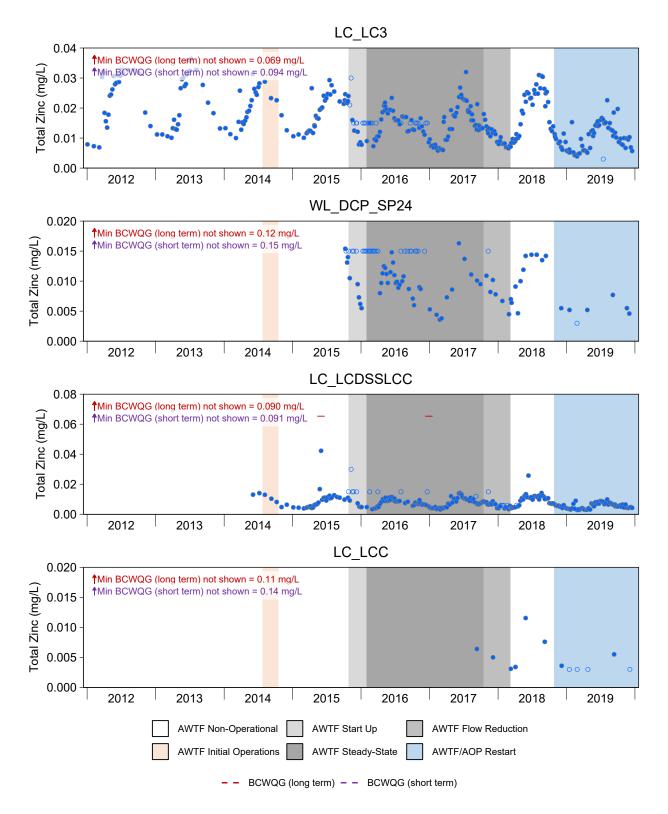
Notes: BCWQG = British Columbia Water Quality Guidelines. Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines are displayed for each monitoring area to provide context, but pertain only to mine-exposed monitoring areas downstream of the AWTF discharge.


Figure C.25: Time Series Plots for Aqueous Total Uranium Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019

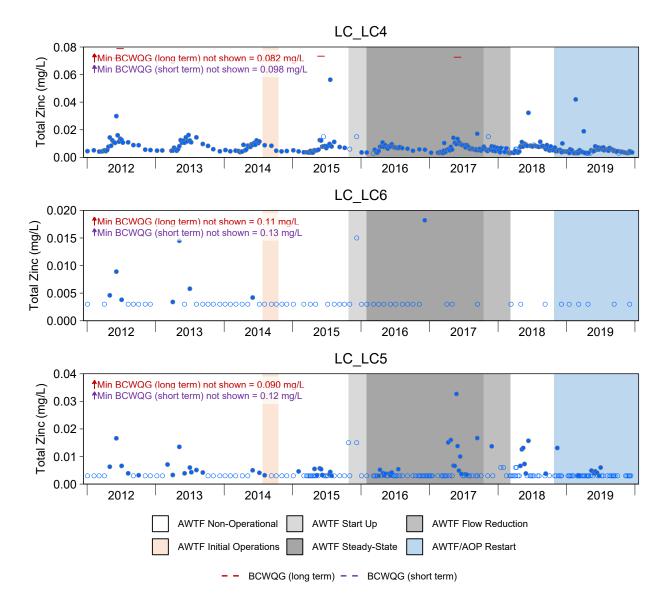
Notes: BCWQG = British Columbia Water Quality Guidelines. Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines are displayed for each monitoring area to provide context, but pertain only to mine-exposed monitoring areas downstream of the AWTF discharge.


Figure C.25: Time Series Plots for Aqueous Total Uranium Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019

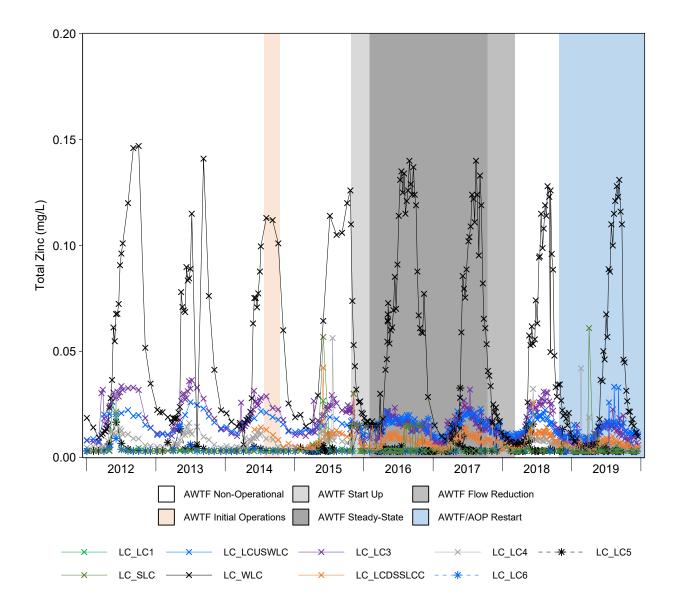
Notes: BCWQG = British Columbia Water Quality Guidelines. Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines are displayed for each monitoring area to provide context, but pertain only to mine-exposed monitoring areas downstream of the AWTF discharge.


Figure C.26: Time Series Plots for Aqueous Total Uranium Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019

Note: West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines pertain only to mine-exposed monitoring areas located downstream of the AWTF discharge.


Figure C.27: Time Series Plots for Aqueous Total Zinc Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019

Notes: BCWQG = British Columbia Water Quality Guidelines; AWTF = Active Water Treatment Facility. Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. BCWQG values are dependent on water hardness.


Figure C.27: Time Series Plots for Aqueous Total Zinc Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019

Notes: BCWQG = British Columbia Water Quality Guidelines; AWTF = Active Water Treatment Facility. Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. BCWQG values are dependent on water hardness.

Figure C.27: Time Series Plots for Aqueous Total Zinc Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019

Notes: BCWQG = British Columbia Water Quality Guidelines; AWTF = Active Water Treatment Facility. Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. BCWQG values are dependent on water hardness.

Figure C.28: Time Series Plots for Aqueous Total Zinc Concentrations from the Line Creek LAEMP Sampling Stations, 2012 to 2019

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted at the LRL (LRLs between 0.0030 and 0.030 mg/L). West Line Creek (WLC) Active Water Treatment Facility (AWTF) operational timelines pertain only to mine-exposed monitoring areas located downstream of the AWTF discharge.

Table C.1: British Columbia Water Quality Guidelines (BCWQG), Site-Specific Elk Valley Water Quality Plan (EVWQP) Benchmarks, and Interim Screening Values for Parameters Assessed in Line Creek LAEMP, 2019

			Britich Columbia	Nater Quality Guidelines ^a			
	Variable	Units	Long-term Average	Short-term Maximum	Year	Status	Site-Specific Benchmark ^b
	Total Alkalinity	mg/L	For dissolved calcium = < 4mg/L, BCWQG = <10 For dissolved calcium = 4 to 8 mg/L, BCWQG = 10 to 20 For dissolved calcium = > 8 mg/L, BCWQG = > 20	-	2015		-
	Unionized Ammonia ^c	mg/L	pH and Temperature dependent (tabular)	pH and Temperature dependent (tabular)	2009	Approved	-
	Chloride	mg/L	150	600	2003	Approved	-
	Fluoride	mg/L	-	For hardness ≤ 10 mg/L, BCWQG = 0.4 For hardness > 10 mg/L, BCWQG = [-51.73 + 92.57 × log10(hardness)]×0.01 Maximum applicable hardness = 385 mg/L	1990	Approved	-
Non-Metals	Nitrate-N	mg/L	3	33	2009	Approved	Level 1 EVWQP benchmark= 10 ^{1.0003[log(hardness)]-1.52} Maximum applicable hardness = 500 mg/L Level 2 EVWQP benchmark= 10 ^{1.0003[log(hardness)]-1.38} Maximum applicable hardness = 500 mg/L
	Nitrite-N ^d Dissolved oxygen ^e	mg/L mg/L	0.02 to 0.20 For buried embryo/alevin life stages, BCWQG (water column) = 11 BCWQG (interstitial) = 8	0.06 to 0.60 For buried embryo/alevin life stages, BCWQG (water column) = 9 BCWQG (interstitial) = 6		Approved Approved	
	oxygon		For other life stages, BCWQG (water column) = 8	For other life stages, BCWQG (water column) = 5			
	pH ^f	pН	BCWQG (water column) = 8	6.5 - 9.0	1991	Approved	_
	-	units "	128 to 429				Level 1 EVWQP
	Sulphate ^g	mg/L	Maximum applicable hardness = 250 mg/L	-	2013	Approved	Benchmark = BCWQG = 429
	Total Dissolved Solids	mg/L	-	-	-	-	Level 1 EVWQP Benchmark = 1000
	Antimony (III)	mg/L	0.009	-	2015	0	-
	Arsenic Barium	mg/L mg/L	- 1	0.005	2002 2015	Approved Working	-
	Beryllium	mg/L	0.00013	-	2015	Working	-
	Boron	mg/L	1.2 For Cr(VI), BCWQG = 0.001	-		Approved	-
	Chromium ^h	mg/L	For Cr(III), BCWQG = 0.0017 For Cr(III), BCWQG = 0.0089	-	2015	Working	-
	Cobalt Iron	mg/L mg/L	0.004	0.11	2004	Approved Approved	
	Lead ⁹	mg/L	For hardness ≤ 8 mg/L, none proposed For hardness 8 to 360 mg/L, BCWQG = 0.001×{3.31+ exp[1.273 × ln(hardness) - 4.704]}	' For hardness ≤ 8 mg/L, BCWQG ≤ 0.003 For hardness 8 to 360 mg/L, BCWQG = 0.001×{exp[1.273 × In(hardness) - 1.460]} Maximum applicable hardness = 360 mg/L	1087	Approved	
	Manganese ^g	mg/L	For hardness 37 to 450 mg/L, BCWQG ≤ 0.004 × hardness + 0.605 Maximum applicable hardness = 450 mg/L	For hardness 25 to 259 mg/L, BCWQG ≤ 0.01102 × hardness + 0.54 Maximum applicable hardness = 259 mg/L	2001	Approved	-
talloids Total	Mercury ⁱ	mg/L	$\label{eq:metric} \begin{array}{l} \mbox{MeHg} \leq 0.5\% \mbox{ of THg, BCWQG} = 0.00002 \\ \mbox{Else, BCWQG} = [0.0001/(MeHg/THg)] \mbox{ OR} \\ \mbox{When MeHg} = 0.5\% \mbox{ of THg, BCWQG} = 0.00002 \\ \mbox{When MeHg} = 1.0\% \mbox{ of THg, BCWQG} = 0.00001 \\ \mbox{When MeHg} = 8.0\% \mbox{ of THg, BCWQG} = 0.0000125 \\ \end{array}$	-	2001	Approved	-
d Me	Molybdenum	mg/L	1	2	1986	Approved	
Metals and Metalloids	Nickel ^g	mg/L	-	-	-	-	Level 1 Interim Screening Value = 0.0053 Level 2 Interim Screening Value = 0.015 Level 3 Interim Screening Value = 0.022
Σ	Selenium	µg/L	2	-	2014	Approved	Level 1 EVWQP Benchmark = 19 Level 2 EVWQP Benchmark = 74
	Silver ^f	mg/L	For hardness ≤ 100 mg/L, BCWQG = 0.00005 For hardness > 100 mg/L, BCWQG = 0.0015	For hardness ≤ 100 mg/L, BCWQG = 0.0001 For hardness > 100 mg/L, BCWQG = 0.003		Approved	-
	Thallium Uranium	mg/L mg/L	0.0008		1997 2011	Working Working	-
	Zinc ^g	mg/L	For hardness ≤ 90 mg/L, BCWQG = 0.0075 For hardness 90 to 330 mg/L, BCWQG = [7.5 + 0.75 (hardness - 90)]×0.001; Maximum applicable hardness = 330 mg/L	For hardness ≤ 90 mg/L, BCWQG = 0.033 For hardness 90 to 500 mg/L, BCWQG = [33 + 0.75 (hardness - 90)]×0.001; Maximum applicable hardness = 500 mg/L		Approved	-
	Aluminum	mg/L	When pH ≥ 6.5, BCWQG = 0.05 When pH < 6.5, BCWQG = exp[1.6 - 3.327(median pH)+ 0.402(median pH)2]	When pH ≥ 6.5, BCWQG = 0.1 When pH < 6.5, BCWQG = exp[1.209 - 2.426(pH)+ 0.286 (pH)2]	2001	Approved	-
Discolu	Cadmium ^g	µg/L	For hardness = 3.4 to 285 mg/L, BCWQG = {exp[0.736×In(hardness) - 4.943]} Maximum applicable hardness = 285 mg/L	For hardness = 7 to 455 mg/L, BCWQG = {exp[1.03×In(hardness)-5.274]} Maximum applicable hardness = 455 mg/L		Approved	Maximum applicable hardness = 285 mg/L
	Copper Iron	mg/L mg/L	Biotic Ligand Model -	Biotic Ligand Model BCWQG = 0.35 mg/L		Approved Approved	

Note: "-" = no data available.

^a British Columbia Working (BCMOE 2017) or Accepted (BCMOECCS 2019) Water Quality Guidelines for the Protection of Aquatic Life. For guidelines dependent on other analytes (e.g., hardness), guidelines were screened

using concurrent values. ^b When appropriate, site-specific Elk Valley Water Quality Plan Benchmarks (EVWQP; Teck 2014) or interim screening values were applied in addition to or instead of BC water quality guidelines. Interim screening values are displayed for nickel (Golder 2017b).

^c Temperature and pH dependent; range of minimum and maximum values.

^d Dependent on concurrent chloride, range of values reported (BCMOECCS 2019)

^e Dissolved oxygen guidelines represent a minimum value, and so exceedances were quantified below this guideline.

^f Unrestricted change permitted within this pH range.

^g For hardness-based guidelines, concurrent hardness values were used for calculating guidelines. If hardness values exceeding the maximum applicable hardness, then guidelines were determined using the maximum applicable hardness. If hardness values is lower than the minimum hardness, then guidelines were determined using the minimum hardness. ^h Chromium(VI) is the dominant oxidation state in oxygenated environments, and so its guideline was applied. ⁱ The most conservative guideline (0.00000125 mg/L) was applied.

Station	Summary Statistic	Total Dissolved Solids (mg/L)	Lab pH	Field pH	Dissolved Oxygen (mg/L)	Alkalinity (mg/L)	Nitrate-N (mg/L)	Nitrite-N (mg/L)	Ammonia (mg/L)	Sulphate (mg/L)	Total Chloride (mg/L)	Total Fluoride (mg/L)	Total Antimony (mg/L)	Total Arsenic (mg/L)	Total Barium (mg/L)	Total Beryllium (mg/L)	Total Boron (mg/L)	Total Chromium (mg/L)	Total Cobalt (mg/L)
	n	19	15	26	25	19	19	19	19	19	19	19	19	19	19	19	19	19	19
	Annual Minimum	119	8.07	6.83	10.1	94.1	0.126	<0.0010	<0.0050	18.6	<0.500	0.252	<0.00010	0.000140	0.0339	<0.000020	<0.0100	0.000160	<0.00010
	Annual Maximum	290	8.38	8.43	16.5	169	0.273	0.00590	0.0237	113	0.600	0.474	0.000150	0.000390	0.0511	<0.000020	<0.0100	0.00640	<0.00010
	Annual Mean	192	8.23	7.99	11.6	121	0.213	0.00126	0.00969	55.0	0.505	0.366	0.000103	0.000181	0.0420	<0.000020	<0.0100	0.000558	<0.00010
	Annual Median	192	8.27	8.07	11.5	120	0.222	<0.0010	0.00620	49.9	<0.500	0.361	<0.00010	0.000160	0.0418	<0.000020	<0.0100	0.000200	<0.00010
LC_LC1	% < LRL	0%	0%	0%	0%	0%	0%	95%	42%	0%	95%	0%	95%	0%	0%	100%	100%	0%	100%
	% > BCWQG ^a	-	0%	0%	0%	0%	0%	0%	0%	0%	0%	-	0%	-	0%	0%	0%	5%	0%
	% > BCWQG ^b	-	-	-	0%	-	0%	0%	0%	-	0%	0%	-	0%	-	-	-	-	0%
	% > Level 1 Benchmark	0%	-	-	-	-	0%	-	-	0%	-	-	-	-	-	-	-	-	-
	% > Level 2 Benchmark	-	-	-	-	-	0%	-	-	-	-	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	n	39	35	37	37	39	39	39	39	39	39	39	39	39	39	39	39	39	39
	Annual Minimum	110	7.94	7.00	10.4	104	0.0524	<0.0010	<0.0050	8.59	<0.500	0.195	<0.00010	<0.00010	0.0208	<0.000020	<0.0100	0.000120	<0.00010
	Annual Maximum	313	8.39	8.57	14.0	181	0.252	0.00190	0.0630	89.4	0.830	0.448	<0.00010	0.000180	0.0531	<0.000020	<0.0100	0.000450	<0.00010
	Annual Mean	216	8.23	8.05	11.9	139	0.120	0.00104	0.0124	53.0	0.559	0.323	<0.00010	0.000126	0.0384	<0.000020	<0.0100	0.000183	<0.00010
	Annual Median	228	8.24	8.14	12.0	140	0.122	<0.0010	0.00720	56.0	<0.500	0.332	<0.00010	0.000120	0.0401	<0.000020	<0.0100	0.000170	<0.00010
LC_SLC	% < LRL	0%	0%	0%	0%	0%	0%	92%	36%	0%	59%	0%	100%	10%	0%	100%	100%	3%	100%
	% > BCWQG ^a	-	0%	0%	0%	0%	0%	0%	0%	0%	0%	-	0%	-	0%	0%	0%	0%	0%
	% > BCWQG ^b	-	-	-	0%	-	0%	0%	0%	-	0%	0%	-	0%	-	-	-	-	0%
	% > Level 1 Benchmark	0%	-	-	-	-	0%	-	-	0%	-	-	-	-	-	-	-	-	-
	% > Level 2 Benchmark	-	-	-	-	-	0%	-	-	-	-	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	n	56	54	55	55	56	58	56	56	56	56	56	56	56	56	56	56	56	56
	Annual Minimum	269	6.77	6.68	9.96	46.8	4.06	<0.0010	<0.0050	86.8	1.29	0.0830	0.000240	0.000110	0.0237	<0.000020	<0.0100	0.000115	<0.00010
	Annual Maximum	1,030	8.42	8.64	12.7	257	18.9	0.0183	0.0407	490	22.8	0.266	0.000420	0.000270	0.0820	<0.000020	0.0190	0.000500	0.000350
	Annual Mean	604	8.15	7.85	11.0	193	12.8	0.00151	0.00846	234	6.17	0.214	0.000316	0.000147	0.0562	<0.000020	0.0146	0.000189	0.000111
	Annual Median	602	8.18	7.86	11.0	198	13.0	<0.0010	<0.0050	232	5.73	0.228	0.000310	0.000140	0.0604	<0.000020	0.0150	0.000170	<0.00010
LC_LCUSWLC	% < LRL	0%	0%	0%	0%	0%	0.0%	89%	55%	0%	0%	0%	0%	0%	0%	100%	2%	0%	88%
	% > BCWQG ^a	-	0%	0%	0%	0%	100%	0%	4%	2%	0%	-	0%	-	0%	0%	0%	0%	0%
	% > BCWQG ^b	-	-	-	0%	-	0%	0%	4%	-	0%	0%	-	0%	-	-	-	-	0%
	% > Level 1 Benchmark	2%	-	-	-	-	43%	-	-	2%	-	-	-	-	-	-	-	-	-
	% > Level 2 Benchmark	-	-	-	-	-	3%	-	-	-	-	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	n	51	51	53	53	51	53	51	51	51	51	51	51	51	51	51	51	51	51
	Annual Minimum	1,090	8.03	7.30	10.5	280	8.09	0.00150	< 0.0050	503	<2.50	<0.100	0.000380	0.000140	0.0150	<0.000020	0.0120	<0.00010	<0.00010
	Annual Maximum	2,320	8.39	9.09	13.2	414	22.9	0.0375	0.0573	1,410	6.80	0.280	0.000590	0.000430	0.0263	<0.000040	0.0240	0.000660	<0.00020
	Annual Mean	1,840	8.23	7.88	11.3	347	16.8	0.00324	0.0106	987	4.82	0.189	0.000480	0.000252	0.0213	<0.000020	0.0170	0.000156	<0.00010
	Annual Median	1,950	8.23	7.93	11.2	344	17.0	0.00150	< 0.0050	1,060	5.10	0.180	0.000490	0.000250	0.0222	<0.000020	0.0160	0.000130	<0.00010
LC_WLC	% < LRL	0%	0%	0%	0%	0%	0.0%	90%	55%	0%	6%	4%	0%	0%	0%	100%	24%	27%	100%
	% > BCWQG ^a	-	0%	2%	0%	0%	100%	2%	4%	100%	0%	-	0%	-	0%	0%	0%	0%	0%
	% > BCWQG ^b	-	-	-	0%	-	0%	0%	4%	-	0%	0%	-	0%	-	-	-	-	0%
	% > Level 1 Benchmark	100%	-	-	-	-	62%	-	-	100%	-	-	-	-	-	-	-	-	-
	% > Level 2 Benchmark	-	-	-	-	-	32%	-	-	-	-	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Table C.2: Summary of Water Chemistry Data for Key Parameters for the Line Creek LAEMP Monitoring Stations, 2019

> 5% of samples exceed the guideline or benchmark.

> 50% of samples exceed the guideline or benchmark.
 > 95% of samples exceed the guideline or benchmark.

Notes: "LRL" = laboratory reporting limit, "BCWQG" = British Columbia Working or Accepted Water Quality Guideline

^a Long-term average BCQWG for the Protection of Aquatic Life.

Station	Summary Statistic	Total Dissolved Solids (mg/L)	Lab pH	Field pH	Dissolved Oxygen (mg/L)	Alkalinity (mg/L)	Nitrate-N (mg/L)	Nitrite-N (mg/L)	Ammonia (mg/L)	Sulphate (mg/L)	Total Chloride (mg/L)	Total Fluoride (mg/L)	Total Antimony (mg/L)	Total Arsenic (mg/L)	Total Barium (mg/L)	Total Beryllium (mg/L)	Total Boron (mg/L)	Total Chromium (mg/L)	Total Cobalt (mg/L)
	n	57	55	74	74	81	81	81	81	81	57	57	57	57	57	57	57	57	57
	Annual Minimum	174	7.34	6.08	9.85	134	0.0256	<0.0010	<0.0050	26.8	<0.500	<0.100	<0.00010	<0.00010	0.0239	<0.000020	<0.0100	<0.00010	<0.00010
	Annual Maximum	1,020	8.47	8.24	546	284	18.0	0.0140	0.283	523	50.4	0.279	0.000390	0.000210	0.0830	0.0000200	0.0190	0.000880	0.000390
	Annual Mean	725	8.19	7.74	18.6	207	9.79	0.00172	0.0175	324	19.3	0.216	0.000286	0.000128	0.0515	0.0000200	0.0148	0.000189	0.000161
	Annual Median	765	8.18	7.83	11.3	211	9.64	<0.0010	0.00700	356	20.9	0.222	0.000280	0.000120	0.0536	<0.000020	0.0150	0.000165	0.000140
LC_LC3	% < LRL	0%	0%	0%	0%	0%	0%	83%	32%	0%	2%	2%	2%	25%	0%	98%	2%	7%	14%
	% > BCWQG ^a	-	0%	1%	0%	0%	99%	0%	20%	35%	0%	-	0%	-	0%	0%	0%	0%	0%
	% > BCWQG ^b	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	% > Level 1 Benchmark	4%	-	-	-	-	33%	-	-	21%	-	-	-	-	-	-	-	-	-
	% > Level 2 Benchmark	-	-	-	-	-	27%	-	-	-	-	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	n	6	2	4	4	6	6	4	6	6	6	6	6	6	6	6	6	6	6
	Annual Minimum	541	8.37	7.67	10.1	192	6.75	<0.0010	< 0.0050	198	5.87	0.208	0.000170	<0.00010 0.000170	0.0519	<0.000020	0.0120	0.000140	< 0.00010
	Annual Maximum	775 652	8.40 8.38	8.35 8.08	12.6 11.6	231 203	12.2 8.99	0.00380	0.0114 0.00885	339 269	22.9	0.276	0.000290	0.000170	0.0668	<0.000020 <0.000020	0.0140	0.000200	<0.00010 <0.00010
	Annual Mean Annual Median	652	8.38	8.08	11.6	203	8.99	0.00232	0.00885	269	12.7 11.6	0.241	0.000217	0.000130	0.0608	<0.000020	0.0128	0.000167	<0.00010
	% < LRL	0%	0.30	0.14	0%	0%	0.12	25%	17%	200	0%	0.237	0.000205	33%	0.0637	100%	0.0130	0.000160	100%
WL_DCP_SP24		-	0%	0%	0%	0%	100%		0%	0%	0%	-			0%	0%	0%	0%	0%
	% > BCWQG ^a			-	_	-		0%	-			-	0%	-	-	-		-	-
	% > BCWQG ^b	-	-	-	0%	-	0%	0%	0%	-	0%	0%	-	0%	-	-	-	-	0%
	% > Level 1 Benchmark % > Level 2 Benchmark	0%	-	-	-	-	0% 0%	-	-	0%	-	-	-	-	-	-	-	-	-
	% > Level 2 Benchmark	-		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-
	/o > Level 5 Benchmark	- 54	- 54	- 52	52	- 54	- 54	- 54	- 54	- 54	- 54	- 54	- 54	- 54	- 54	54	- 54	- 54	- 54
	Annual Minimum	228	6.65	7.49	10.1	100	2.77	<0.0010	<0.0050	73.5	1.72	<0.100	0.000150	<0.00010	0.0269	<0.000020	<0.0100	<0.00010	<0.00010
	Annual Maximum	760	8.50	8.47	14.2	224	11.9	0.0150	0.0499	340	23.4	0.272	0.000230	0.000190	0.0200	<0.000020	0.0140	0.000640	0.000160
	Annual Mean	552	8.25	8.13	11.5	186	7.34	0.00203	0.0127	219	10.9	0.222	0.000188	0.000121	0.0616	<0.000020	0.0118	0.000191	0.000101
	Annual Median	566	8.27	8.16	11.5	191	7.67	0.00100	0.00690	226	10.4	0.230	0.000190	0.000120	0.0638	<0.000020	0.0120	0.000170	< 0.00010
LC LCDSSLCC	% < LRL	0%	0%	0%	0%	0%	0.0%	57%	39%	0%	0%	2%	0%	28%	0%	100%	17%	4%	98%
	% > BCWQG ^a	-	0%	0%	0%	0%	98%	0%	0%	0%	0%	_	0%	-	0%	0%	0%	0%	0%
	% > BCWQG ^b	-	-	-	0%	-	0%	0%	0%	-	0%	0%	-	0%	-	-	-	-	0%
	% > Level 1 Benchmark	0%	-	-	-	-	0%	-	-	0%	-	-	_	-	_	_	_	-	-
	% > Level 2 Benchmark	-	-	-	-	-	0%	-	-	-	-	-	_	-	-	-	-	-	-
	% > Level 3 Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	n	5	2	4	4	5	5	4	5	5	5	5	5	5	5	5	5	5	5
	Annual Minimum	445	8.29	7.60	10.7	183	5.74	<0.0010	< 0.0050	161	7.62	0.149	0.000130	0.000110	0.0624	<0.000020	0.0110	0.000120	<0.00010
	Annual Maximum	652	8.34	8.12	13.4	225	8.30	0.00170	0.00940	254	15.1	0.249	0.000170	0.000160	0.0818	<0.000020	0.0130	0.000180	< 0.00010
	Annual Mean	558	8.32	7.94	12.5	197	6.70	0.00127	0.00608	217	11.4	0.220	0.000152	0.000126	0.0731	<0.000020	0.0122	0.000144	<0.00010
	Annual Median	585	8.32	8.02	13.0	189	6.51	0.00120	0.00510	241	12.4	0.234	0.000150	0.000120	0.0766	<0.000020	0.0120	0.000140	<0.00010
LC_LCC	% < LRL	0%	0%	0%	0%	0%	0.0%	25%	20%	0%	0%	0%	0%	0%	0%	100%	0%	0%	100%
	% > BCWQG ^a	-	0%	0%	0%	0%	100%	0%	0%	0%	0%	-	0%	-	0%	0%	0%	0%	0%
	% > BCWQG ^b	-	-	-	0%	-	0%	0%	0%	-	0%	0%	-	0%	-	-	-	-	0%
	% > Level 1 Benchmark	0%	-	-	-	-	0%	-	-	0%	-	-	-	-	-	-	-	-	-
	% > Level 2 Benchmark	-	-	-	-	-	0%	-	-	-	-	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Table C.2: Summary of Water Chemistry Data for Key Parameters for the Line Creek LAEMP Monitoring Stations, 2019

> 5% of samples exceed the guideline or benchmark.

> 50% of samples exceed the guideline or benchmark.
 > 95% of samples exceed the guideline or benchmark.

Notes: "LRL" = laboratory reporting limit, "BCWQG" = British Columbia Working or Accepted Water Quality Guideline

^a Long-term average BCQWG for the Protection of Aquatic Life.

Station	Summary Statistic	Total Dissolved Solids (mg/L)	Lab pH	Field pH	Dissolved Oxygen (mg/L)	Alkalinity (mg/L)	Nitrate-N (mg/L)	Nitrite-N (mg/L)	Ammonia (mg/L)	Sulphate (mg/L)	Total Chloride (mg/L)	Total Fluoride (mg/L)	Total Antimony (mg/L)	Total Arsenic (mg/L)	Total Barium (mg/L)	Total Beryllium (mg/L)	Total Boron (mg/L)	Total Chromium (mg/L)	Total Cobalt (mg/L)
	n	60	56	57	58	60	60	60	60	60	60	60	60	60	60	60	60	60	60
	Annual Minimum	226	6.83	7.64	9.55	85.5	2.18	<0.0010	< 0.0050	57.9	1.51	0.111	0.000110	<0.00010	0.0297	< 0.000020	<0.0100	0.000130	<0.00010
	Annual Maximum	628	8.53	8.65	16.1	248	8.09	0.00520	0.116	242	15.6	0.332	0.000200	0.000240	0.0854	<0.000020	0.0130	0.000610	<0.00010
	Annual Mean	451	8.29	8.29	11.7	173	5.44	0.00137	0.0119	167	7.98	0.269	0.000152	0.000133	0.0619	<0.000020	0.0109	0.000202	<0.00010
	Annual Median	466	8.33	8.30	11.7	178	5.72	0.00100	0.00580	178	8.32	0.282	0.000150	0.000130	0.0640	<0.000020	0.0110	0.000180	<0.00010
LC_LC4	% < LRL	0%	0%	0%	0%	0%	0.0%	45%	37%	0%	0%	0%	0%	8%	0%	100%	23%	0%	100%
	% > BCWQG ^a	-	0%	0%	0%	0%	97%	0%	0%	0%	0%	-	0%	-	0%	0%	0%	0%	0%
	% > BCWQG ^b	-	-	-	0%	-	0%	0%	0%	-	0%	0%	-	0%	-	-	-	-	0%
	% > Level 1 Benchmark	0%	-	-	-	-	0%	-	-	0%	-	-	-	-	-	-	-	-	-
	% > Level 2 Benchmark	-	-	-	-	-	0%	-	-	-	-	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	n	5	2	4	4	5	5	5	5	5	5	5	5	5	5	5	5	5	5
	Annual Minimum	489	8.35	7.10	10.7	197	9.18	0.00110	<0.0050	160	1.33	0.150	<0.00010	<0.00010	0.0979	<0.000020	<0.0100	0.000110	<0.00010
	Annual Maximum	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Annual Mean	557	8.36	7.84	12.9	216	10.3	0.00326	0.0211	201	1.82	0.168	0.000102	0.000112	0.104	<0.000020	<0.0100	0.000124	0.000108
	Annual Median	564	8.36	8.00	12.7	204	10.2	0.00280	0.00830	208	1.80	0.163	<0.00010	0.000100	0.104	<0.000020	<0.0100	0.000130	<0.00010
LC_LC6	% < LRL	0%	0%	0%	0%	0%	0.0%	0%	20%	0%	0%	0%	60%	40%	0%	100%	100%	0%	80%
	% > BCWQG ^a	-	0%	0%	0%	0%	100%	0%	0%	0%	0%	-	0%	-	0%	0%	0%	0%	0%
	% > BCWQG ^b	-	-	-	0%	-	0%	0%	0%	-	0%	0%	-	0%	-	-	-	-	0%
	% > Level 1 Benchmark	0%	-	-	-	-	0%	-	-	0%	-	-	-	-	-	-	-	-	-
	% > Level 2 Benchmark	-	-	-	-	-	0%	-	-	-	-	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	n	44	41	42	43	44	44	44	44	44	44	44	44	44	44	44	44	44	44
	Annual Minimum	261	6.88	7.21	9.37	140	4.04	<0.0010	<0.0050	81.7	0.990	0.123	<0.00010	<0.00010	0.0559	<0.000020	<0.0100	<0.00010	<0.00010
	Annual Maximum	586	8.51	8.43	15.4	257	11.3	0.00930	0.0480	238	4.90	0.241	0.000200	0.000250	0.108	<0.000020	0.0110	0.000440	0.000240
	Annual Mean	486	8.28	8.18	11.8	192	8.27	0.00276	0.0131	176	3.30	0.200	0.000119	0.000124	0.0890	<0.000020	0.0101	0.000177	0.000110
	Annual Median	520	8.31	8.24	11.9	191	8.76	0.00230	0.00710	192	3.76	0.208	0.000110	0.000110	0.0928	<0.000020	<0.0100	0.000170	<0.00010
LC_LC5	% < LRL	0%	0%	0%	0%	0%	0.0%	16%	36%	0%	0%	0%	30%	39%	0%	100%	89%	5%	70%
	% > BCWQG ^a	-	0%	0%	0%	0%	100%	0%	0%	0%	0%	-	0%	-	0%	0%	0%	0%	0%
	% > BCWQG ^b	-	-	-	0%	-	0%	0%	0%	-	0%	0%	-	0%	-	-	-	-	0%
	% > Level 1 Benchmark	0%	-	-	-	-	0%	-	-	0%	-	-	-	-	-	-	-	-	-
	% > Level 2 Benchmark	-	-	-	-	-	0%	-	-	-	-	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Table C.2: Summary of Water Chemistry Data for Key Parameters for the Line Creek LAEMP Monitoring Stations, 2019

> 5% of samples exceed the guideline or benchmark.> 50% of samples exceed the guideline or benchmark.

> 95% of samples exceed the guideline or benchmark.

Notes: "LRL" = laboratory reporting limit, "BCWQG" = British Columbia Working or Accepted Water Quality Guideline

^a Long-term average BCQWG for the Protection of Aquatic Life.

Table C.2: Summary of Water Chemistry Data for Key Parameters for the Line Creek LAEMP Monitoring Stations, 2019

Station	Summary Statistic	Total Iron (mg/L)	Total Lead (mg/L)	Total Lithium (mg/L)	Total Manganese (mg/L)	Total Mercury (mg/L)	Total Molybdenum (mg/L)	Total Nickel (mg/L)	Total Selenium (mg/L)	Total Silver (mg/L)	Total Thallium (mg/L)	Total Uranium (mg/L)	Total Zinc (mg/L)	Dissolved Aluminum (mg/L)	Dissolved Cadmium (mg/L)	Dissolved Copper (mg/L)	Dissolved Iron (mg/L)
	n	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19
	Annual Minimum	<0.0100	< 0.000050	0.00210	<0.00010	< 0.0000050	0.000642	< 0.00050	0.00139	< 0.000010	< 0.000010	0.000689	< 0.0030	< 0.0030	< 0.0000050	< 0.00020	< 0.0100
	Annual Maximum	0.240	0.000333	0.00380	0.00634	0.00000232	0.00110	0.00311	0.00362	0.0000110	0.0000210	0.00193	0.00750	0.00340	0.0000248	< 0.00050	< 0.0100
	Annual Mean	0.0236	0.0000649	0.00309	0.000569	0.00000603	0.000870	0.000746	0.00259	0.0000101	0.0000106	0.00130	0.00331	0.00305	0.00000914	<0.00020	< 0.0100
	Annual Median	<0.0100	< 0.000050	0.00320	0.000130	<0.0000050	0.000853	0.000530	0.00265	< 0.000010	< 0.000010	0.00128	< 0.0030	< 0.0030	0.00000740	<0.00050	< 0.0100
LC_LC1	% < LRL	79%	95%	0%	32%	79%	0%	32%	0%	95%	95%	0%	84%	79%	42%	100%	100%
_	% > BCWQG ^a	-	0%	-	0%	5%	0%	-	74%	0%	0%	0%	0%	0%	0%	53%	-
	% > BCWQG ^b	0%	0%	-	0%	-	0%	-	-	0%	-	-	0%	0%	0%	0%	0%
	% > Level 1 Benchmark	-	-	-	-	-	-	0%	0%	-	-	-	-	-	0%	-	-
	% > Level 2 Benchmark	-	-	-	-	-	-	0%	0%	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark	-	-	-	-	-	-	0%	-	-	-	-	-	-	-	-	-
	n	39	39	39	39	39	39	39	39	39	39	39	39	39	39	39	39
	Annual Minimum	<0.0100	<0.000050	0.00110	<0.00010	<0.0000050	0.000452	<0.00050	0.000488	<0.000010	<0.000010	0.000581	< 0.0030	< 0.0030	0.00000640	<0.00020	<0.0100
	Annual Maximum	0.0310	0.0000810	0.00480	0.00140	0.00000115	0.00240	<0.00050	0.00188	0.0000110	<0.000010	0.00197	0.0610	0.00400	0.0000226	<0.00050	0.0160
	Annual Mean	0.0116	0.0000508	0.00327	0.000335	0.00000566	0.00118	<0.00050	0.00133	0.0000100	<0.000010	0.00149	0.00492	0.00303	0.0000118	0.000267	0.0102
	Annual Median	<0.0100	<0.000050	0.00340	0.000170	<0.0000050	0.00124	<0.00050	0.00150	<0.000010	<0.000010	0.00167	<0.0030	<0.0030	0.0000118	0.000220	<0.0100
LC_SLC	% < LRL	79%	97%	0%	28%	74%	0%	100%	0%	97%	100%	0%	64%	95%	0%	90%	97%
	% > BCWQG ^a	-	0%	-	0%	0%	0%	-	0%	0%	0%	0%	0%	0%	0%	41%	-
	% > BCWQG ^b	0%	0%	-	0%	-	0%	-	-	0%	-	-	0%	0%	0%	0%	0%
	% > Level 1 Benchmark	-	-	-	-	-	-	0%	0%	-	-	-	-	-	0%	-	-
	% > Level 2 Benchmark	-	-	-	-	-	-	0%	0%	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark	-	-	-	-	-	-	0%	-	-	-	-	-	-	-	-	-
	n	56	56	56	56	56	56	56	61	56	56	56	56	56	56	56	56
	Annual Minimum	<0.0100	<0.000050	0.0182	<0.00010	<0.0000050	0.00100	0.00478	0.0142	<0.000010	<0.000010	0.00178	0.00635	<0.0030	0.000140	0.000230	<0.0100
	Annual Maximum	0.145	0.000216	0.0591	0.00432	0.00000207	0.00241	0.0165	0.140	<0.000010	0.0000220	0.00806	0.0333	0.00950	0.000904	0.000790	<0.0100
	Annual Mean	0.0149	0.0000541	0.0424	0.000420	0.000000559	0.00168	0.00869	0.0418	<0.000010	0.0000129	0.00363	0.0131	0.00312	0.000318	0.000349	<0.0100
	Annual Median	< 0.0100	< 0.000050	0.0428	0.000200	<0.0000050	0.00164	0.00838	0.0408	<0.000010	0.0000130	0.00366	0.0120	<0.0030	0.000292	0.000320	<0.0100
LC_LCUSWLC	% < LRL	82%	93%	0%	7%	84%	0%	0%	0%	100%	9%	0%	2%	98%	0%	73%	100%
	% > BCWQG ^a	-	0%	-	0%	2%	0%	-	100%	0%	0%	0%	0%	0%	5%	70%	-
	% > BCWQG ^b	0%	0%	-	0%	-	0%	-	-	0%	-	-	0%	0%	0%	0%	0%
	% > Level 1 Benchmark	-	-	-	-	-	-	98%	89%	-	-	-	-	-	36%	-	-
	% > Level 2 Benchmark	-	-	-	-	-	-	4%	5%	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark	-	-	-	-	-	-	0%	-	-	-	-	-	-	-	-	-
	n	39	51	51	51	51	51	51	51	51	51	51	51	51	51	51	43
	Annual Minimum	< 0.0100	< 0.000050	0.0220	< 0.00010	0.00000820	0.00121	0.0162	0.223	< 0.000010	0.0000210	0.00772	0.00440	< 0.0030	0.0000513	0.000530	< 0.0100
	Annual Maximum	0.0140	0.000129	0.0396	0.00267	0.00000124	0.00565	0.0487	0.564	< 0.000020	0.0000330	0.0215	0.131	0.00430	0.00344	0.00182	0.0150
	Annual Mean	0.0105	0.0000515	0.0320	0.000512	0.00000108	0.00343	0.0257	0.408	< 0.000010	0.0000259	0.0163	0.0383	0.00303	0.000990	0.000852	0.0101
	Annual Median	< 0.0100	<0.000050	0.0336	0.000130	0.00000111	0.00393	0.0202	0.448	< 0.000010	0.0000260	0.0182	0.0159	< 0.0030	0.000557	0.000830	<0.0100
LC_WLC	% < LRL	67%	98%	0%	45%	0%	0%	0%	0%	100%	0%	0%	6%	98%	0%	0%	95%
	% > BCWQG ^a	-	0%	-	0%	0%	0%	-	100%	0%	0%	94%	0%	0%	55%	57%	-
	% > BCWQG ^b	0%	0%	-	0%	-	0%	-	-	0%	-	-	0%	0%	14%	0%	0%
	% > Level 1 Benchmark	-	-	-	-	-	-	100%	100%	-	-	-	-	-	59%	-	-
	% > Level 2 Benchmark	-	-	-	-	-	-	100%	100%	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark	-	-	-	-	-	-	41%	-	-	-	-	-	-	-	-	-

> 5% of samples exceed the guideline or benchmark.

> 50% of samples exceed the guideline or benchmark.> 95% of samples exceed the guideline or benchmark.

Notes: "LRL" = laboratory reporting limit; "BCWQG" = British Columbia Working or Accepted Water Quality Guideline.

^a Long-term average BCQWG for the Protection of Aquatic Life.

Table C.2: Summary of Water Chemistry Data for Key Parameters for the Line Creek LAEMP Monitoring Stations, 2019

Station	Summary Statistic	Total Iron (mg/L)	Total Lead (mg/L)	Total Lithium (mg/L)	Total Manganese (mg/L)	Total Mercury (mg/L)	Total Molybdenum (mg/L)	Total Nickel (mg/L)	Total Selenium (mg/L)	Total Silver (mg/L)	Total Thallium (mg/L)	Total Uranium (mg/L)	Total Zinc (mg/L)	Dissolved Aluminum (mg/L)	Dissolved Cadmium (mg/L)	Dissolved Copper (mg/L)	Dissolved Iron (mg/L)
	n	57	57	57	57	57	57	57	85	57	57	57	57	57	57	57	57
	Annual Minimum	<0.0100	< 0.000050	0.00220	0.000550	< 0.00000050	0.000963	< 0.00050	0.000892	< 0.000010	< 0.000010	0.00114	< 0.0030	<0.0010	0.00000900	0.000230	< 0.0100
	Annual Maximum	0.334	0.000303	0.0599	0.0668	0.00000236	0.00704	0.0112	0.101	<0.000010	0.0000250	0.00627	0.0226	0.00320	0.000511	0.000680	0.132
	Annual Mean	0.0904	0.0000553	0.0410	0.0261	0.000000561	0.00388	0.00732	0.0352	< 0.000010	0.0000113	0.00423	0.0103	0.00104	0.000232	0.000330	0.0122
	Annual Median	0.0680	< 0.000050	0.0423	0.0251	< 0.0000050	0.00382	0.00735	0.0326	< 0.000010	0.0000100	0.00423	0.0100	< 0.0030	0.000218	0.000320	< 0.0100
LC_LC3	% < LRL	4%	95%	0%	0%	89%	0%	2%	0%	100%	46%	0%	2%	98%	0%	77%	96%
-	% > BCWQG ^a	-	0%	-	0%	2%	0%	-	99%	0%	0%	0%	0%	0%	2%	67%	-
	% > BCWQG ^b	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	% > Level 1 Benchmark	-	-	-	-	-	-	98%	93%	-	-	-	-	-	23%	-	-
	% > Level 2 Benchmark	-	-	-	-	-	-	0%	5%	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark	-	-	-	-	-	-	0%	-	-	-	-	-	-	-	-	-
	n	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
	Annual Minimum	<0.0100	<0.000050	0.0295	0.00271	<0.0000050	0.00169	0.00337	0.0232	<0.000010	<0.000010	0.00286	<0.0030	0.00160	0.0000830	<0.00020	<0.0100
	Annual Maximum	0.0610	<0.000050	0.0410	0.0150	<0.0000050	0.00467	0.00560	0.0614	<0.000010	0.0000110	0.00460	0.00770	<0.0030	0.000171	0.000850	<0.0100
	Annual Mean	0.0273	<0.000050	0.0350	0.00815	<0.0000050	0.00286	0.00452	0.0378	<0.000010	0.0000102	0.00389	0.00520	0.00160	0.000119	0.000308	<0.0100
	Annual Median	0.0230	<0.000050	0.0348	0.00880	<0.0000050	0.00282	0.00457	0.0284	<0.000010	<0.000010	0.00420	0.00520	0.00160	0.000114	<0.00050	<0.0100
WL_DCP_SP24	% < LRL	17%	100%	0%	0%	100%	0%	0%	0%	100%	83%	0%	17%	83%	0%	83%	100%
	% > BCWQG ^a	-	0%	-	0%	0%	0%	-	100%	0%	0%	0%	0%	0%	0%	33%	-
	% > BCWQG ^b	0%	0%	-	0%	-	0%	-	-	0%	-	-	0%	0%	0%	0%	0%
	% > Level 1 Benchmark	-	-	-	-	-	-	17%	100%	-	-	-	-	-	0%	-	-
	% > Level 2 Benchmark	-	-	-	-	-	-	0%	0%	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark	-	-	-	-	-	-	0%	-	-	-	-	-	-	-	-	-
	n	54	54	54	54	54	54	54	62	54	54	54	54	54	54	54	54
	Annual Minimum	<0.0100	<0.000050	0.0130	0.00102	<0.0000050	0.00119	0.00278	0.0126	<0.000010	<0.000010	0.00146	<0.0030	<0.0030	0.0000756	<0.00020	<0.0100
	Annual Maximum	0.0730	0.0000520	0.0408	0.0116	0.00000123	0.00348	0.00559	0.0638	<0.000010	<0.000010	0.00426	0.00990	<0.0030	0.000201	0.000680	<0.0100
	Annual Mean	0.0183	0.0000500	0.0288	0.00446	0.00000538	0.00231	0.00366	0.0306	<0.000010	<0.000010	0.00310	0.00550	<0.0030	0.000118	0.000297	<0.0100
	Annual Median	0.0150	<0.000050	0.0302	0.00408	<0.0000050	0.00236	0.00363	0.0314	<0.000010	<0.000010	0.00325	0.00530	<0.0030	0.000108	0.000240	<0.0100
LC_LCDSSLCC	% < LRL	20%	98%	0%	0%	87%	0%	0%	0%	100%	100%	0%	6%	100%	0%	83%	100%
	% > BCWQG ^a	-	0%	-	0%	0%	0%	-	100%	0%	0%	0%	0%	0%	0%	28%	-
	% > BCWQG ^b	0%	0%	-	0%	-	0%	-	-	0%	-	-	0%	0%	0%	0%	0%
	% > Level 1 Benchmark	-	-	-	-	-	-	2%	87%	-	-	-	-	-	0%	-	-
	% > Level 2 Benchmark	-	-	-	-	-	-	0%	0%	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark	-	-	-	-	-	-	0%	-	-	-	-	-	-	-	-	-
	n	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
	Annual Minimum	< 0.0100	< 0.000050	0.0236	0.000850	< 0.0000050	0.00192	0.00187	0.0234	< 0.000010	< 0.000010	0.00251	< 0.0030	< 0.0030	0.0000600	< 0.00020	< 0.0100
	Annual Maximum	0.0180	< 0.000050	0.0305	0.00266	0.00000550	0.00261	0.00343	0.0351	< 0.000010	< 0.000010	0.00327	0.00550	< 0.0030	0.000117	< 0.00050	< 0.0100
	Annual Mean	0.0130	< 0.000050	0.0270	0.00173	0.00000510	0.00227	0.00247	0.0283	< 0.000010	< 0.000010	0.00298	0.00350	< 0.0030	0.0000812	< 0.00020	< 0.0100
	Annual Median	<0.0100	< 0.000050	0.0263	0.00149	<0.0000050	0.00225	0.00239	0.0270	< 0.000010	< 0.000010	0.00315	< 0.0030	< 0.0030	0.0000731	< 0.00050	< 0.0100
LC_LCC	% < LRL	60%	100%	0%	0%	80%	0%	0%	0%	100%	100%	0%	80%	100%	0%	100%	100%
	% > BCWQG ^a	-	0%	-	0%	0%	0%	-	100%	0%	0%	0%	0%	0%	0%	60%	-
	% > BCWQG ^b	0%	0%	-	0%	-	0%	-	-	0%	-	-	0%	0%	0%	0%	0%
	% > Level 1 Benchmark	-	-	-	-	-	-	0%	100%	-	-	-	-	-	0%	-	-
	% > Level 2 Benchmark	-	-	-	-	-	-	0%	0%	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark	-	-	-	-	-	-	0%	-	-	-	-	-	-	-	-	-

> 5% of samples exceed the guideline or benchmark.
> 50% of samples exceed the guideline or benchmark.
> 95% of samples exceed the guideline or benchmark.

Notes: "LRL" = laboratory reporting limit; "BCWQG" = British Columbia Working or Accepted Water Quality Guideline.

^a Long-term average BCQWG for the Protection of Aquatic Life.

Station	Summary Statistic	Total Iron (mg/L)	Total Lead (mg/L)	Total Lithium (mg/L)	Total Manganese (mg/L)	Total Mercury (mg/L)	Total Molybdenum (mg/L)	Total Nickel (mg/L)	Total Selenium (mg/L)	Total Silver (mg/L)	Total Thallium (mg/L)	Total Uranium (mg/L)	Total Zinc (mg/L)	Dissolved Aluminum (mg/L)	Dissolved Cadmium (mg/L)	Dissolved Copper (mg/L)	Dissolved Iron (mg/L)
	n	60	60	60	60	60	60	60	64	60	60	60	60	60	60	60	60
	Annual Minimum	<0.0100	<0.000050	0.0113	0.000335	<0.0000050	0.000985	0.00142	0.0103	<0.000010	<0.000010	0.00132	<0.0030	< 0.0030	0.0000135	<0.00020	<0.0100
	Annual Maximum	0.102	0.000108	0.0286	0.00632	0.00000129	0.00259	0.00379	0.0411	<0.000010	<0.000010	0.00343	0.0420	0.00320	0.0000895	<0.00050	<0.0100
	Annual Mean	0.0132	0.0000515	0.0223	0.00132	0.00000530	0.00193	0.00252	0.0224	<0.000010	<0.000010	0.00252	0.00543	0.00300	0.0000363	0.000228	<0.0100
	Annual Median	<0.0100	<0.000050	0.0236	0.00122	<0.0000050	0.00202	0.00247	0.0230	<0.000010	<0.000010	0.00260	0.00450	<0.0030	0.0000310	<0.00020	<0.0100
LC_LC4	% < LRL	70%	95%	0%	2%	88%	0%	0%	0%	100%	100%	0%	8%	98%	0%	90%	100%
	% > BCWQG ^a	-	0%	-	0%	2%	0%	-	100%	0%	0%	0%	0%	0%	0%	23%	-
	% > BCWQG ^b	0%	0%	-	0%	-	0%	-	-	0%	-	-	0%	0%	0%	0%	0%
	% > Level 1 Benchmark	-	-	-	-	-	-	0%	72%	-	-	-	-	-	0%	-	-
	% > Level 2 Benchmark	-	-	-	-	-	-	0%	0%	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark	-	-	-	-	-	-	0%	-	-	-	-	-	-	-	-	-
	n	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
	Annual Minimum	<0.0100	<0.000050	0.0142	0.000270	<0.0000050	0.000819	<0.00050	0.0401	<0.000010	<0.000010	0.00195	<0.0030	<0.0030	0.00000820	<0.00020	<0.0100
	Annual Maximum	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Annual Mean	0.0100	<0.000050	0.0176	0.00111	<0.0000050	0.000922	0.000532	0.0486	<0.000010	<0.000010	0.00209	<0.0030	<0.0030	0.0000108	<0.00020	<0.0100
	Annual Median	<0.0100	<0.000050	0.0179	0.000540	<0.0000050	0.000955	<0.00050	0.0499	<0.000010	<0.000010	0.00203	<0.0030	<0.0030	0.0000106	<0.00050	<0.0100
LC_LC6	% < LRL	60%	100%	0%	0%	100%	0%	60%	0%	100%	100%	0%	100%	100%	0%	100%	100%
	% > BCWQG ^a	-	0%	-	0%	0%	0%	-	100%	0%	0%	0%	0%	0%	0%	40%	-
	% > BCWQG ^b	0%	0%	-	0%	-	0%	-	-	0%	-	-	0%	0%	0%	0%	0%
	% > Level 1 Benchmark	-	-	-	-	-	-	0%	100%	-	-	-	-	-	0%	-	-
	% > Level 2 Benchmark	-	-	-	-	-	-	0%	0%	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark	-	-	-	-	-	-	0%	-	-	-	-	-	-	-	-	-
	n	44	44	44	44	44	44	44	44	44	44	44	44	44	44	44	44
	Annual Minimum	<0.0100	<0.000050	0.0122	0.000270	<0.0000050	0.000885	<0.00050	0.0174	<0.000010	<0.000010	0.00131	<0.0030	<0.0030	0.00000770	<0.00020	<0.0100
	Annual Maximum	0.264	0.000273	0.0236	0.0237	0.00000210	0.00132	0.00192	0.0499	0.0000110	0.0000100	0.00255	0.00600	0.00530	0.0000395	<0.00050	<0.0100
	Annual Mean	0.0342	0.0000638	0.0183	0.00293	0.000000595	0.00117	0.000956	0.0375	0.0000100	0.0000100	0.00212	0.00320	0.00305	0.0000172	0.000269	<0.0100
	Annual Median	0.0115	<0.000050	0.0190	0.00125	<0.0000050	0.00119	0.000905	0.0412	<0.000010	<0.000010	0.00226	< 0.0030	<0.0030	0.0000155	0.000250	<0.0100
LC_LC5	% < LRL	41%	82%	0%	0%	86%	0%	2%	0%	98%	95%	0%	84%	98%	0%	91%	100%
	% > BCWQG ^a	-	0%	-	0%	7%	0%	-	100%	0%	0%	0%	0%	0%	0%	16%	-
	% > BCWQG ^b	0%	0%	-	0%	-	0%	-	-	0%	-	-	0%	0%	0%	0%	0%
	% > Level 1 Benchmark	-	-	-	-	-	-	0%	98%	-	-	-	-	-	0%	-	-
	% > Level 2 Benchmark	-	-	-	-	-	-	0%	0%	-	-	-	-	-	-	-	-
	% > Level 3 Benchmark	-	-	-	-	-	-	0%	-	-	-	-	-	-	-	-	-

Table C.2: Summary of Water Chemistry Data for Key Parameters for the Line Creek LAEMP Monitoring Stations, 2019

> 5% of samples exceed the guideline or benchmark.> 50% of samples exceed the guideline or benchmark.

> 95% of samples exceed the guideline or benchmark.

Notes: "LRL" = laboratory reporting limit; "BCWQG" = British Columbia Working or Accepted Water Quality Guideline.

^a Long-term average BCQWG for the Protection of Aquatic Life.

Water	Station	Daphnia	a magna	Oncorhyncl	hus mykiss
Teck Code	Description	Date	Percent Mortality	Date	Percent Mortality
		7-Jan-19	0%	7-Jan-19	0%
		14-Jan-19	0%	14-Jan-19	0%
		21-Jan-19	0%	21-Jan-19	0%
		28-Jan-19	0%	28-Jan-19	0%
		4-Feb-19	0%	4-Feb-19	0%
		11-Feb-19	0%	11-Feb-19	0%
		19-Feb-19	0%	19-Feb-19	0%
		25-Feb-19	0%	25-Feb-19	10%
		4-Mar-19	0%	4-Mar-19	0%
		11-Mar-19	0%	11-Mar-19	0%
		18-Mar-19	0%	18-Mar-19	0%
		25-Mar-19	0%	25-Mar-19	0%
		1-Apr-19	0%	1-Apr-19	0%
		8-Apr-19	0%	8-Apr-19	0%
		15-Apr-19	0%	15-Apr-19	0%
		15-Apr-19	0%	15-Apr-19	0%
		23-Apr-19	0%	23-Apr-19	0%
		29-Apr-19	0%	29-Apr-19	0%
		6-May-19	0%	6-May-19	0%
		13-May-19	0%	13-May-19	0%
		20-May-19	0%	20-May-19	0%
		27-May-19	0%	27-May-19	0%
		3-Jun-19	0%	3-Jun-19	0%
		10-Jun-19	0%	10-Jun-19	0%
		17-Jun-19	3%	17-Jun-19	0%
		24-Jun-19	0%	24-Jun-19	0%
	West Line Creek AWTF	2-Jul-19	0%	2-Jul-19	0%
WL_BFWB_OUT_SP21	effluent outfall	8-Jul-19	0%	8-Jul-19	0%
		15-Jul-19	0%	15-Jul-19	0%
		22-Jul-19	0%	22-Jul-19	0%
		29-Jul-19	0%	29-Jul-19	0%
		6-Aug-19	0%	6-Aug-19	0%
		12-Aug-19	0%	12-Aug-19	0%
		19-Aug-19	0%	19-Aug-19	0%
		26-Aug-19	0%	26-Aug-19	0%
		3-Sep-19	0%	3-Sep-19	0%
		9-Sep-19	0%	9-Sep-19	0%
		16-Sep-19	0%	16-Sep-19	0%
		18-Sep-19	0%	18-Sep-19	0%
		23-Sep-19	0%	23-Sep-19	0%
		30-Sep-19	0%	30-Sep-19	0%
		7-Oct-19	0%	7-Oct-19	10%
		14-Oct-19	0%	14-Oct-19	0%
		21-Oct-19	0%	21-Oct-19	0%
		28-Oct-19	0%	28-Oct-19	0%
		4-Nov-19	0%	4-Nov-19	0%
		11-Nov-19	0%	11-Nov-19	0%
		21-Nov-19	0%	21-Nov-19	0%
		25-Nov-19	0%	25-Nov-19	0%
		4-Dec-19	0%	4-Dec-19	0%
		9-Dec-19	0%	9-Dec-19	0%
		16-Dec-19	0%	16-Dec-19	0%
		23-Dec-19	0%	23-Dec-19	0%
		30-Dec-19	0%	30-Dec-19	0%

Table C.3: Acute Toxicity Results for Line Creek Operations, 2019

APPENDIX D OTHER SUPPORTING INFORMATION

Table D.1: In Situ Water Quality Meas	ures Collected for the Line Creek LAEMP, 2019
---------------------------------------	---

Exposure	Area	Station ID	Easting	Northing	Sampling Date	Temperature	Dissolved Oxygen	Dissolved Oxygen	Specific Conductivity	рН	ORP
		-	662214	5538393	14-Jan-19	°C -	mg/L -	%	μS/cm -	pH units -	mV -
		-	662214	5538393	28-Feb-19	1.1	11.50	81.5	501	6.83	261.0
		-	662214 662214	5538393	25-Apr-19	1.7 2.9	12.07	86.1	288	7.94 8.27	110.6 52.7
		-	662214	5538393 5538393	22-May-19 18-Jun-19	3.3	11.85 11.67	87.8 87.5	269 231	7.98	52.7 204.1
	RG_LI24	-	662214	5538393	16-Jul-19	4.1	11.92	91.4	295	8.17	-
		-	662214	5538393	13-Aug-19	4.6	11.52	89.4	256	7.61	-
		Station 1	662165	5538411	6-Sep-16	5.0	12.32	116.6	323.9	7.96	-
0		Station 2	662214	5538393	6-Sep-16	5.3	12.17	116.2	322.7	8.07	-
Reference		Station 3	662221 662214	5538429 5538393	6-Sep-16 2-Dec-19	5.4 0.0	12.12 14.28	116.4 91.5	322.3 374	8.00 7.30	-
fere		-	661122	5531374	14-Jan-19	-0.1	14.01	95.8	609	7.00	72.8
Re		-	661122	5531374	25-Feb-19	0.0	11.15	76.9	432	7.73	187.4
		-	661122	5531374	24-Apr-19	2.5	12.28	89.3	314	7.93	141.6
		-	661122	5531374	23-May-19	2.5	12.53	92.0	259	8.19	27.7
	RG_SLINE	-	661122 661122	5531374 5531374	18-Jun-19 16-Jul-19	4.6 5.8	11.68 11.49	90.6 91.8	226 297	8.27 8.39	200.1
	NO_OLINE	-	661122	5531374	12-Aug-19	5.9	11.49	91.0	268	7.83	-
		Station 1	661071	5531404	9-Sep-19	5.6	10.28	98.2	338.1	7.94	-
		Station 2	661135	5531366	9-Sep-19	5.8	10.68	102.5	337.4	7.96	-
		Station 3	661184	5531324	9-Sep-19	5.8	10.30	98.5	334.7	7.98	-
		-	661122	5531374	3-Dec-19	1.0	12.86	90.1	360	7.82	104.3
		-	660114	5532140	17-Jan-19	0.0	12.73	87.6	1,366	6.68	43.2
		-	660114 660114	5532140 5532140	28-Feb-19 24-Apr-19	- 5.2	- 12.17	- 96.2	- 978	- 7.92	- 141.4
		-	660114	5532140	22-May-19	4.3	12.17	90.2 87.8	762	7.83	70.0
	RG_LCUT	-	660114	5532140	17-Jun-19	5.6	11.32	90.2	661	7.74	136.6
		-	660114	5532140	17-Jul-19	5.8	11.69	93.7	866	7.74	-
		-	660114	5532140	13-Aug-19	7.2	11.52	95.3	828	7.60	-
		Station 1	660113	5532143	4-Sep-16	7.2	12.12	119.1	1,011	7.26	-
		-	660114 659911	5532140	3-Dec-19	3.6 2.8	12.26 12.16	93.6 90.3	1,528	8.36 7.32	218.8 68.1
		-	659911	5531818 5531818	17-Jan-19 26-Feb-19	3.0	9.82	90.3 73.5	1,607 1,252	8.09	166.8
		-	659911	5531818	22-Apr-19	6.5	11.83	96.5	1,041	8.11	160.2
		-	659911	5531818	23-May-19	5.4	11.79	93.7	756	7.99	75.1
		-	659911	5531818	18-Jun-19	5.8	11.58	93.0	616	8.05	229.6
	RG_LILC3	-	659911	5531818	23-Jul-19	6.6	11.80	96.4	585	8.02	-
		-	659911	5531818	12-Aug-19	7.8	11.66	98.7	721	7.69	-
		Station 1 Station 2	659869 659898	5531744 5531781	7-Sep-19 7-Sep-19	7.0 8.0	10.42 10.24	101.5 102.8	909 900	7.81 7.73	-
		Station 2	659933	5531833	7-Sep-19 7-Sep-19	8.9	10.24	102.0	904	7.50	_
		-	659911	5531818	3-Dec-19	3.4	11.88	89.0	1,087	8.02	217.1
		-	659674	5531168	17-Jan-19	1.9	12.63	91.4	1,340	7.67	61.0
		-	659674	5531168	26-Feb-19	0.8	10.08	71.0	1,078	8.14	163.3
	RG_LISP24	- Station 1	659674 659673	5531168 5531169	22-Apr-19 5-Sep-19	5.0 9.0	11.67	87.0 121.4	787 720	8.07 8.35	150.6 -
k)		Station 1 -	659673	5531169	2-Dec-19	2.3	11.93 11.86	86.7	880	8.25	- 167.6
pos		-	659294	5530583	16-Jan-19	0.1	13.27	91.3	1,201	7.40	55.9
e C e		-	659294	5530583	26-Feb-19	0.1	10.38	71.5	1,018	8.11	130.1
Mine-exposed (Line Creek)		-	659294	5530583	23-May-19	4.9	11.86	92.7	594	8.24	59.6
2		-	659294	5530583	17-Jun-19	5.7	11.47	91.6	473	8.23	125.6
	RG_LIDSL	- Station 1	659294 659262	5530583 5530538	15-Jul-19 10-Sep-19	6.9 6.8	11.55 10.34	94.8 100.2	639 731	8.24 7.95	-
	NO_LIDOL	Station 1	659288	5530577	10-Sep-19	7.1	10.34	100.2	745	7.99	-
		Station 3	659316	5530615	10-Sep-19	7.7	10.24	101.4	741	8.11	-
		Station 4	659345	5530663	10-Sep-19	7.6	10.32	101.8	734	8.08	-
		Station 5	659365	5530726	10-Sep-19	6.2	11.16	105.9	705	8.07	-
		-	659294 658184	5530583 5529814	3-Dec-19	2.3 -0.1	12.37 13.17	90.6 90.6	8 1,093	865.90 7.60	204.6 71.5
		-	658184 658184	5529814	16-Jan-19 27-Feb-19	-0.1	13.17	90.6	964	7.60 8.01	145.3
	RG_LIDCOM	-	658184	5529814	25-Apr-19	4.0	12.73	97.6	702	8.12	153.5
		Station 1	658183	5529815	12-Sep-19	5.9	10.71	100.3	640	8.03	-
		-	658184	5529814	5-Dec-19	1.7	12.41	89.2	798	8.29	118.6
		-	655426	5528959	16-Jan-19	-0.1	13.05	89.6	985	7.64	85.2
		-	655426 655426	5528959 5528959	27-Feb-19 25-Apr-19	0.0 6.2	13.04 11.60	89.5 93.9	879 641	8.16 8.32	153.0 140.7
		-	655426	5528959	23-Apr-19 24-May-19	4.2	12.20	93.6	521	8.37	140.7
		-	655426	5528959	19-Jun-19	5.9	11.46	91.8	455	8.41	217.0
	RG_LI8	-	655426	5528959	17-Jul-19	6.1	11.65	94.0	590	8.41	-
		-	655426	5528959	13-Aug-19	8.9	10.60	92.1	526	8.44	-
		Station 1	655450 655402	5528950	11-Sep-19	7.1	11.06	105.8	631	8.26	-
		Station 2 Station 3	655492 655570	5528892 5528837	11-Sep-19 11-Sep-19	7.9 8.6	10.91 10.32	106.7 102.6	627 627	8.24 8.26	-
		Station 5	655426	5528959	4-Dec-19	2.8	12.35	91.1	721	8.36	- 120.8
		-	654530	5530162	15-Jan-19	-0.1	15.39	101.1	1,207	7.10	47.1
		-	654530	5530162	7-Mar-19	0.0	13.06	89.7	837	8.08	149.7
	RG_FRUL	-	654530	5530162	26-Apr-19	3.6	12.34	93.9	843	8.26	130.9
		Station 1	654549	5530169	12-Sep-19	10.8	10.70	111.7	651	7.92	-
			654530	5530162	_	0.5	13.06 15.41	91.4 102.1	694 1 168	7.85	130.1
ed er)		-	650000	PP-10-1-14	15-Jan-19	-0.1	15.41	102.1	1,168	7.21	65.0
posed River)		-	652808 652808	5528334 5528334	7-Mar-10	0.0	12 40		815	7.99	177 u
⊦exposed ing River)		- - -	652808	5528334	7-Mar-19 26-Apr-19	0.0	12.90 12.08	88.5 93.0	815 784	7.99 8.32	177.9 149.0
line-exposed ording River)					7-Mar-19 26-Apr-19 8-Sep-19	0.0 4.2 8.8	12.90 12.08 10.74	93.0 107.3	784 661.7	7.99 8.32 7.99	177.9 149.0 -
Mine-exposed (Fording River)	RG_FO23	- - Station 1 Station 2	652808 652808 652769 652856	5528334 5528334 5528294 5528378	26-Apr-19 8-Sep-19 8-Sep-19	4.2 8.8 9.2	12.08 10.74 10.47	93.0 107.3 105.7	784 661.7 661.4	8.32 7.99 8.10	
Mine-exposed (Fording River)	RG_FO23	- Station 1 Station 2 Station 3	652808 652808 652769 652856 652950	5528334 5528334 5528294 5528378 5528537	26-Apr-19 8-Sep-19 8-Sep-19 8-Sep-19	4.2 8.8 9.2 10.3	12.08 10.74 10.47 10.39	93.0 107.3 105.7 107.8	784 661.7 661.4 660.4	8.32 7.99 8.10 8.10	149.0 -
Mine-exposed (Fording River)	RG_FO23	- - Station 1 Station 2	652808 652808 652769 652856	5528334 5528334 5528294 5528378	26-Apr-19 8-Sep-19 8-Sep-19	4.2 8.8 9.2	12.08 10.74 10.47	93.0 107.3 105.7	784 661.7 661.4	8.32 7.99 8.10	149.0 -

Note: "-" indicates no data.

		RG_LI24_BIC	<u>.</u>				RG_LI24_BIC		
Rock	Concreted	Calcite	Intermediate	Embeddedness	Rock	Concreted	Calcite	Intermediate	Embeddednes
	Status	Presence	Axis (cm)			Status	Presence	Axis (cm)	
1 2	0	0	3.4 5.1	-	1 2	0	0	8.7 7.0	-
3	0	0	7.1	-	3	0	0	5.3	-
4	0	0	3.8	-	4	0	0	7.1	-
5	0	0	2.9	-	5	0	0	9.1	-
6	0	0	8.3	-	6	0	0	16.6	-
7	0	0	5.4	-	7	0	0	41.5	-
8 9	0	0	4.2 8.8	-	8	0	0	8.1 12.6	-
10	0	0	9.6	25%	10	0	0	4.0	0%
11	0	0	3.6	-	11	0	0	32.2	-
12	0	0	11.7	-	12	0	0	2.4	-
13	0	0	8.4	-	13	0	0	6.3	-
14	0	0	10.3	-	14	0	0	10.0	-
15	0	0	7.8	-	15	0	0	2.5	-
16 17	0	0	9.0	-	16	0	0	10.9	-
18	0	0	9.1 5.6	-	<u>17</u> 18	0	0	16.6 4.9	-
19	0	0	9.1	-	19	0	0	10.6	-
20	0	0	18.6	0%	20	0	0	10.1	0%
21	0	0	9.3	-	21	0	0	7.6	-
22	0	0	7.9	-	22	0	0	18.1	-
23	0	0	4.6	-	23	0	0	8.1	-
24	0	0	13.2	-	24	0	0	7.4	-
25 26	0	0	11.2 9.8		25 26	0	0	11.6 6.2	-
20	0	0	19.4	-	20	0	0	13.4	-
28	0	0	5.0	-	28	0	0	4.6	-
29	0	0	3.2	-	29	0	0	10.7	-
30	0	0	9.5	0%	30	0	0	6.2	25%
31	0	0	14.5	-	31	0	0	12.2	-
32 33	0	0	4.7	-	32 33	0	0	11.9 15.5	-
33	0	0	10.3 6.0	-	33	0	0	11.1	-
35	0	0	17.1	-	35	0	0	4.9	_
36	0	0	34.3	-	36	0	0	6.5	-
37	0	0	5.0	-	37	0	0	5.1	-
38	0	0	8.6	-	38	0	0	7.7	-
39	0	0	16.5	-	39	0	0	17.1	-
40	0	0	14.4	50%	40	0	0	9.3	50%
41 42	0	0	2.9 5.6	-	41 42	0	0	9.1 9.7	-
42	0	0	24.2	-	42	0	0	7.8	-
44	0	0	5.8	-	44	0	0	6.3	-
45	0	0	7.4	-	45	0	0	8.1	-
46	0	0	9.1	-	46	0	0	2.6	-
47	0	0	10.5	-	47	0	0	5.9	-
48	0	0	4.4	-	48	0	0	12.9	-
49 50	0	0	19.3 6.6	- 25%	49 50	0	0	27.0 19.3	- 25%
50 51	0	0	15.7	-	<u> </u>	0	0	5.2	- 25%
52	0	0	13.6	-	52	0	0	4.1	
53	0	0	12.8	-	53	0	0	2.3	-
54	0	0	13.7	-	54	0	0	23.4	-
55	0	0	5.4	-	55	0	0	8.5	-
56	0	0	9.0	-	56	0	0	3.6	-
57 58	0	0	5.3	-	<u>57</u> 58	0	0	8.3 10.6	-
58 59	0	0	4.1 13.8	-	<u>58</u> 59	0	0	10.6	-
60	0	0	16.1	75%	60	0	0	15.5	25%
61	0	0	7.6	-	61	0	0	3.4	-
62	0	0	3.5	-	62	0	0	25.5	-
63	0	0	5.6	-	63	0	0	5.5	-
64	0	0	10.2	-	64	0	0	27.0	-
65 66	0	0	25.2 4.5	-	<u>65</u> 66	0	0	7.2 34.0	-
66 67	0	0	4.5	-	67	0	0	34.0	-
68	0	0	16.6	-	68	0	0	10.7	-
69	0	0	6.5	-	69	0	0	7.4	-
70	0	0	5.8	0%	70	0	0	5.6	25%
71	0	0	7.7	-	71	0	0	9.0	-
72	0	0	5.5	-	72	0	0	18.5	-
73	0	0	20.1	-	73	0	0	29.0	-
74 75	0	0	6.6 6.6	-	74 75	0	0	20.2 6.5	-
76	0	0	5.9	-	75	0	0	8.7	-
77	0	0	6.4	-	77	0	0	39.5	-
78	0	0	17.8	-	78	0	0	4.6	-
79	0	0	3.5	-	79	0	0	24.5	-
80	0	0	19.5	50%	80	0	0	42.8	25%
81	0	0	6.1	-	81	0	0	7.0	-
82	0	0	6.0	-	82	0	0	5.2	-
83	0	0	15.5	-	83	0	0	6.8 23.7	-
04					84			/ 5 /	

Table D.2: Supporting Substrate and Calcite Measures for Sampling Area RG_LI24, Line Creek, 2019

Standard Dev.	0	0	6.47	27.5%	Standard Dev.	0	0	12.7	23.0%
Median	0	0	7.8	12.5%	Median	0	0	8.4	25.0%
Mean	0	0	9.6	22.5%	Mean	0	0	12.4	30.0%
Maximum	0	0	42.5	75.0%	Maximum	0	0	103.0	75.0%
Minimum	0	0	2.9	0%	Minimum	0	0	0.8	0%
100	0	0	3.6	0%	100	0	0	6.5	50%
99	0	0	7.5	-	99	0	0	103.0	-
98	0	0	14.5	-	98	0	0	12.3	-
97	0	0	3.1	-	97	0	0	5.1	-
96	0	0	42.5	-	96	0	0	3.5	-
95	0	0	3.7	-	95	0	0	0.8	-
94	0	0	8.4	-	94	0	0	25.5	-
93	0	0	8.8	-	93	0	0	3.5	-
92	0	0	8.5	-	92	0	0	3.7	-
91	0	0	8.1	-	91	0	0	4.6	-
90	0	0	5.8	0%	90	0	0	13.0	75%
89	0	0	9.8	-	89	0	0	15.2	-
88	0	0	6.3	-	88	0	0	12.8	-
87	0	0	7.2	-	87	0	0	4.9	-
86	0	0	7.1	-	86	0	0	5.6	-
85	0	0	6.7	-	85	0	0	23.0	-
84	0	0	5.5	-	84	0	0	23.7	-
03	0	0	15.5	-	03	0	0	0.0	-

Rock	Concreted Status	RG_LI24_BIC_3 Calcite Presence	Intermediate Axis (cm)	Embeddedness	
1	0	0	4.2 46.0	-	
2 3	0	0	10.6	-	
4	0	0	10.5	-	
5	0	0	5.8 12.1	-	
<u>6</u> 7	0	0	12.1	-	
8	0	0	11.4	-	
9	0	0	11.7	-	
10 11	0	0	14.4 25.2	50%	
12	0	0	5.1	-	
13	0	0	10.8	-	
14	0	0	11.5	-	
<u>15</u> 16	0	0	7.7 14.2	-	
17	0	0	25.6	-	
18	0	0	10.4	-	
19	0	0	39.7	-	
20 21	0	0	5.0 11.4	0%	
22	0	0	7.7	-	
23	0	0	6.4	-	
24	0	0	4.9	-	
25	0	0	9.3	-	
26 27	0	0	2.4 12.4	-	
28	0	0	10.4	-	
29	0	0	4.3	-	
<u>30</u> 31	0	0	7.0	75%	
<u> </u>	0	0	4.8	-	
33	0	0	3.9	-	
34	0	0	4.7	-	
35	0	0	19.8	-	
<u>36</u> 37	0	0	10.5 4.8	-	
38	0	0	13.4	-	
39	0	0	10.0	-	
40	0	0	10.9	25%	
<u>41</u> 42	0	0	10.0 9.5	-	
42	0	0	11.5	-	
44	0	0	42.0	-	
45	0	0	2.0	-	
46 47	0	0	21.7 10.5	-	
47	0	0	35.1	-	
49	0	0	8.6	-	
50	0	0	3.6	75%	
51 52	0	0	5.3 4.1	-	
52	0	0	5.6	-	
54	0	0	6.3	-	
55	0	0	6.9	-	
56 57	0	0	2.5 34.5	-	
58	0	0	6.9	-	
59	0	0	14.5	-	
60	0	0	21.8	25%	
61 62	0	0	13.7 9.3	-	
63	0	0	10.3	-	
64	0	0	2.5	-	
65	0	0	3.0	-	
66 67	0	0	12.0 23.0	-	
68	0	0	10.7	-	
69	0	0	12.8	-	
70	0	0	3.3	25%	
71 72	0	0	8.8 45.5	-	
73	0	0	9.2	-	
74	0	0	28.0	-	
75	0	0	3.1	-	
76 77	0	0	11.5 5.5	-	
78	0	0	2.8	-	
79	0	0	33.5	-	
80	0	0	9.3	75%	
<u>81</u> 82	0	0	10.0 4.4	-	
82 83	0	0	5.5	-	
84	0	0	10.3	-	
85	0	0	5.5	-	
86 87	0	0	6.1 8.2	-	
87	0	0	13.0	-	
89	0	0	7.2	-	
90	0	0	5.5	25%	
91	0	0	6.6	-	
<u>92</u> 93	0	0	5.5 15.3	-	
93	0	0	3.0	-	
95	0	0	12.4	-	
96	0	0	35.7	-	
97	0	0	10.3	-	
<u>98</u> 99	0	0	14.9 5.1	-	
100	0	0	5.4	25%	
Minimum	0	0	2.0	0%	
Maximum	0	0	46.0	75.0%	
Mean Median	0	0	11.7 10.0	<u>40.0%</u> 25.0%	
weuldli	0	0	9.7	<u> </u>	

Table D.2: Supporting Substrate and Calcite Measures for Sampling Area RG_LI24, Line Creek, 2019

		RG_SLINE_BI					RG_SLINE_BIO		
Rock	Concreted	Calcite	Intermediate	Embeddedness	Rock	Concreted	Calcite	Intermediate	Embeddednes
Status	Presence	Axis (cm)	Embeddedness		Status	Presence	Axis (cm)	Embeddediet	
1	0	0	11.9	-	1	0	0	2.9	-
2	0	0	7.3 3.6	-	2 3	0	0	2.8	-
3 4	0	0	17.1	-	4	0	0	2.8 1.4	-
5	0	0	15.1	-	5	0	0	29.0	
6	0	0	13.2	-	6	0	0	32.5	-
7	0	0	17.5	-	7	0	0	3.8	-
8	0	0	10.5	-	8	0	0	32.5	-
9	0	0	21.8	-	9	0	0	3.4	-
10	0	0	10.7	25%	10	0	0	10.5	75%
11	0	0	5.8	-	11	0	0	6.2	-
12	0	0	10.2	-	12	0	0	8.2	-
13	0	0	9.8	-	13	0	0	9.0	-
14	0	0	14.6	-	14	0	0	22.0	-
15	0	0	1.0	-	15	0	0	8.4	-
16 17	0	0	14.0 23.0	-	<u>16</u> 17	0	0	28.0 7.0	-
18	0	0	15.0	-	18	0	0	22.1	-
19	0	0	9.1	-	19	0	0	12.1	-
20	0	0	3.5	75%	20	0	0	12.5	25%
21	0	0	3.5	-	21	0	0	2.2	-
22	0	0	5.1	-	22	0	0	17.6	-
23	0	0	14.5	-	23	0	0	9.0	-
24	0	0	5.3	-	24	0	0	2.2	-
25	0	0	9.5	-	25	0	0	13.0	-
26	0	0	3.5	-	26	0	0	26.0	-
27	0	0	17.5	-	27	0	0	2.6	-
28	0	0	38.8	-	28	0	0	2.2	-
29 30	0	0	5.4 8.1	- 75%	<u>29</u> 30	0	0	10.5 13.3	- 50%
31	0	0	15.5	-	30	0	0	7.5	- 50%
32	0	0	11.0	-	32	0	0	10.9	-
33	0	0	5.5	-	33	0	0	6.5	-
34	0	0	14.5	_	34	0	0	3.5	-
35	0	0	24.5	-	35	0	0	4.7	-
36	0	0	6.2	-	36	0	0	7.4	-
37	0	0	7.0	-	37	0	0	12.5	-
38	0	0	17.5	-	38	0	0	10.6	-
39	0	0	4.8	-	39	0	0	24.5	-
40	0	0	43.5	75%	40	0	0	10.8	75%
41	0	0	41.0	-	41	0	0	7.4	-
42 43	0	0	6.2	-	<u>42</u> 43	0	0	10.6 12.2	-
43	0	0	5.0 13.5	-	43	0	0	12.2	-
44	0	0	9.5	-	44	0	0	32.9	-
46	0	0	19.0	-	46	0	0	40.5	-
47	0	0	46.5	_	47	0	0	15.9	_
48	0	0	14.5	-	48	0	0	19.5	-
49	0	0	9.8	-	49	0	0	10.7	-
50	0	0	4.1	50%	50	0	0	9.6	25%
51	0	0	30.8	-	51	0	0	10.8	-
52	0	0	13.7	-	52	0	0	29.5	-
53	0	0	18.5	-	53	0	0	17.0	-
54	0	0	9.6	-	54	0	0	2.7	-
55	0	0	13.5	-	55	0	0	8.4	-
56 57	0	0	7.0 53.0	-	56 57	0	0	26.8 8.0	-
58	0	0	15.6	-	58	0	0	11.0	-
59	0	0	10.6	-	59	0	0	10.5	-
60	0	0	9.5	50%	60	0	0	10.0	50%
61	0	0	12.5	-	61	0	0	13.1	-
62	0	0	15.0	-	62	0	0	8.7	-
63	0	0	8.5	-	63	0	0	16.3	-
64	0	0	6.3	-	64	0	0	10.9	-
65	0	0	27.5	-	65	0	0	12.0	-
66	0	0	8.4	-	66	0	0	4.5	-
67 68	0	0	15.2 6.4	-	67 68	0	0	9.5 5.2	-
69	0	0	1.1	-	69	0	0	8.4	-
70	0	0	21.2	75%	70	0	0	12.5	50%
71	0	0	37.0	-	71	0	0	6.4	-
72	0	0	10.5	-	72	0	0	5.8	-
73	0	0	10.0	-	73	0	0	3.4	-
74	0	0	52.5	-	74	0	0	6.8	-
75	0	0	54.3	-	75	0	0	0.4	-
76	0	0	16.3	-	76	0	0	6.3	-
77	0	0	13.4	-	77	0	0	4.6	-
78	0	0	12.7	-	78	0	0	9.7	-
79	0	0	2.6	-	79	0	0	5.3	-
80	0	0	23.3	50%	80	0	0	3.2	50%
81	0	0	6.6	-	81	0	0	9.8	-
82	0	0	6.4	-	82	0	0	14.8	-
83 84	0	0	1.2	-	83	0	0	6.5	-
04	1 U		185		84		1 11	5 /	· -

Table D.3: Supporting Substrate and Calcite Measures for Sampling Area RG_SLINE, Line Creek, 2019

03	0	0	1.2	-	03	0	0	0.0	-
84	0	0	18.5	-	84	0	0	3.2	-
85	0	0	1.2	-	85	0	0	6.8	-
86	0	0	1.4	-	86	0	0	8.0	-
87	0	0	23.0	-	87	0	0	8.9	-
88	0	0	5.3	-	88	0	0	11.5	-
89	0	0	5.4	-	89	0	0	11.1	-
90	0	0	11.1	25%	90	0	0	45.5	50%
91	0	0	7.1	-	91	0	0	10.4	-
92	0	0	12.6	-	92	0	0	19.3	-
93	0	0	32.0	-	93	0	0	18.4	-
94	0	0	12.3	-	94	0	0	12.2	-
95	0	0	8.2	-	95	0	0	12.1	-
96	0	0	51.0	-	96	0	0	14.3	-
97	0	0	12.0	-	97	0	0	4.5	-
98	0	0	0.8	-	98	0	0	17.7	-
99	0	0	1.4	-	99	0	0	10.8	-
100	0	0	7.2	50%	100	0	0	7.2	75%
Minimum	0	0	0.8	25.0%	Minimum	0	0	0.4	25.0%
Maximum	0	0	54.3	75.0%	Maximum	0	0	45.5	75.0%
Mean	0	0	14.3	55.0%	Mean	0	0	11.7	52.5%
Median	0	0	10.9	50.0%	Median	0	0	10.3	50.0%
Standard Dev.	0	0	12.17	19.7%	Standard Dev.	0	0	8.6	18.4%

1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 9 0 0 10 0 0 11 0 0 12 0 0 14 0 0 15 0 0 16 0 0 17 0 0 18 0 0 19 0 0 20 0 0 21 0 0 22 0 0 23 0 0 24 0 0 25 0 0 36 0 0 37 0 0 38 0 0 39 0	ence Intermediate Axis (cm)	Embeddedness	
3 0 0 4 0 0 5 0 0 7 0 0 9 0 0 9 0 0 10 0 0 11 0 0 12 0 0 13 0 0 14 0 0 15 0 0 16 0 0 17 0 0 18 0 0 20 0 0 21 0 0 22 0 0 23 0 0 24 0 0 33 0 0 34 0 0 35 0 0 36 0 0 37 0 0 38 0 0 39 0	<u> </u>		
5 0 0 6 0 0 7 0 0 9 0 0 10 0 0 11 0 0 12 0 0 13 0 0 14 0 0 15 0 0 16 0 0 17 0 0 18 0 0 19 0 0 20 0 0 21 0 0 22 0 0 23 0 0 24 0 0 25 0 0 30 0 0 31 0 0 32 0 0 33 0 0 34 0 0 35 0 0 34 0 <td>17.8</td> <td>-</td>	17.8	-	
6 0 0 7 0 0 8 0 0 10 0 0 11 0 0 12 0 0 13 0 0 14 0 0 15 0 0 16 0 0 17 0 0 18 0 0 20 0 0 21 0 0 23 0 0 24 0 0 25 0 0 26 0 0 30 0 0 31 0 0 32 0 0 33 0 0 34 0 0 35 0 0 36 0 0 37 0 0 44 0 <td>11.5</td> <td>-</td>	11.5	-	
7 0 0 8 0 0 9 0 0 11 0 0 12 0 0 13 0 0 14 0 0 15 0 0 16 0 0 17 0 0 18 0 0 20 0 0 21 0 0 22 0 0 23 0 0 24 0 0 25 0 0 30 0 0 31 0 0 33 0 0 34 0 0 35 0 0 36 0 0 37 0 0 38 0 0 39 0 0 41 0 0 42 0 0 44 0	19.5 11.7	-	
9 0 0 10 0 0 11 0 0 12 0 0 13 0 0 14 0 0 15 0 0 16 0 0 17 0 0 18 0 0 20 0 0 21 0 0 22 0 0 23 0 0 24 0 0 25 0 0 26 0 0 30 0 0 31 0 0 32 0 0 33 0 0 34 0 0 35 0 0 36 0 0 37 0 0 38 0 0 46 0<	13.1	-	
10 0 0 11 0 0 12 0 0 13 0 0 14 0 0 15 0 0 16 0 0 17 0 0 18 0 0 20 0 0 21 0 0 22 0 0 23 0 0 24 0 0 25 0 0 26 0 0 30 0 0 31 0 0 33 0 0 34 0 0 35 0 0 36 0 0 37 0 0 38 0 0 44 0 0 45 0 0 46 0	25.0	-	
11 0 0 12 0 0 13 0 0 14 0 0 15 0 0 16 0 0 17 0 0 18 0 0 20 0 0 21 0 0 22 0 0 23 0 0 24 0 0 25 0 0 26 0 0 27 0 0 30 0 0 31 0 0 32 0 0 33 0 0 34 0 0 35 0 0 36 0 0 37 0 0 44 0 0 45 0 0 46 0	9.5	-	
12 0 0 13 0 0 14 0 0 15 0 0 16 0 0 17 0 0 18 0 0 19 0 0 20 0 0 21 0 0 23 0 0 24 0 0 25 0 0 26 0 0 27 0 0 30 0 0 31 0 0 32 0 0 33 0 0 34 0 0 35 0 0 36 0 0 37 0 0 38 0 0 44 0 0 45 0 0 46 0	13.8	25%	
13 0 0 14 0 0 15 0 0 16 0 0 17 0 0 18 0 0 20 0 0 21 0 0 22 0 0 23 0 0 24 0 0 25 0 0 26 0 0 27 0 0 30 0 0 31 0 0 32 0 0 33 0 0 34 0 0 35 0 0 36 0 0 37 0 0 38 0 0 41 0 0 42 0 0 43 0 0 44 0	8.1		
14 0 0 16 0 0 17 0 0 18 0 0 19 0 0 20 0 0 21 0 0 23 0 0 24 0 0 25 0 0 26 0 0 27 0 0 28 0 0 30 0 0 31 0 0 33 0 0 34 0 0 35 0 0 36 0 0 37 0 0 38 0 0 44 0 0 45 0 0 46 0 0 47 0 0 48 0 0 44 0 0 45 0 0 46 0 0 57 0 0 58 0 0 59 0 0 66 0 0 67	13.3	-	
16 0 0 17 0 0 18 0 0 20 0 0 21 0 0 23 0 0 23 0 0 24 0 0 25 0 0 26 0 0 27 0 0 28 0 0 30 0 0 31 0 0 32 0 0 33 0 0 34 0 0 35 0 0 36 0 0 37 0 0 38 0 0 41 0 0 42 0 0 43 0 0 44 0 0 45 0 0 50 0	15.3	-	
17 0 0 18 0 0 20 0 0 21 0 0 22 0 0 23 0 0 24 0 0 25 0 0 26 0 0 27 0 0 28 0 0 30 0 0 31 0 0 32 0 0 34 0 0 35 0 0 36 0 0 37 0 0 38 0 0 40 0 0 41 0 0 42 0 0 43 0 0 44 0 0 45 0 0 46 0 0 53 0 0 54 0 0 55 0	27.4	-	
18 0 0 20 0 0 21 0 0 22 0 0 23 0 0 24 0 0 25 0 0 26 0 0 27 0 0 28 0 0 30 0 0 31 0 0 32 0 0 33 0 0 34 0 0 35 0 0 36 0 0 37 0 0 38 0 0 41 0 0 42 0 0 43 0 0 44 0 0 45 0 0 50 0 0 51 0 0 52 0	8.3 15.0	-	
19 0 0 20 0 0 21 0 0 22 0 0 23 0 0 24 0 0 26 0 0 26 0 0 27 0 0 28 0 0 30 0 0 31 0 0 33 0 0 34 0 0 35 0 0 36 0 0 37 0 0 38 0 0 40 0 0 41 0 0 42 0 0 43 0 0 44 0 0 45 0 0 50 0 0 51 0 0 52 0	40.0	-	
20 0 0 21 0 0 22 0 0 23 0 0 24 0 0 25 0 0 26 0 0 27 0 0 28 0 0 30 0 0 31 0 0 32 0 0 33 0 0 34 0 0 35 0 0 36 0 0 37 0 0 38 0 0 40 0 0 41 0 0 42 0 0 43 0 0 44 0 0 45 0 0 50 0 0 51 0 0 52 0	46.5	-	
22 0 0 23 0 0 25 0 0 26 0 0 27 0 0 28 0 0 29 0 0 30 0 0 31 0 0 33 0 0 34 0 0 35 0 0 36 0 0 37 0 0 38 0 0 40 0 0 41 0 0 44 0 0 45 0 0 46 0 0 47 0 0 48 0 0 51 0 0 52 0 0 53 0 0 54 0 0 55 0 0 56 0 0 57 0	5.5	50%	
23 0 0 24 0 0 25 0 0 26 0 0 27 0 0 29 0 0 30 0 0 31 0 0 33 0 0 34 0 0 35 0 0 36 0 0 37 0 0 38 0 0 39 0 0 44 0 0 45 0 0 44 0 0 45 0 0 46 0 0 47 0 0 48 0 0 50 0 0 51 0 0 52 0 0 53 0 0 54 0 0 55 0 0 66 0	6.0	-	
24 0 0 25 0 0 26 0 0 28 0 0 30 0 0 31 0 0 32 0 0 33 0 0 34 0 0 35 0 0 36 0 0 37 0 0 38 0 0 40 0 0 41 0 0 43 0 0 44 0 0 45 0 0 46 0 0 47 0 0 48 0 0 51 0 0 52 0 0 53 0 0 54 0 0 55 0 0 56 0 0 57 0 0 66 0	<u> </u>	-	
25 0 0 26 0 0 27 0 0 28 0 0 30 0 0 31 0 0 32 0 0 33 0 0 34 0 0 35 0 0 36 0 0 37 0 0 38 0 0 40 0 0 41 0 0 42 0 0 44 0 0 45 0 0 46 0 0 51 0 0 52 0 0 53 0 0 55 0 0 56 0 0 57 0 0 58 0 0 66 0 0 66 0 0 74 0	36.0		
26 0 0 27 0 0 28 0 0 30 0 0 31 0 0 32 0 0 33 0 0 34 0 0 35 0 0 36 0 0 37 0 0 38 0 0 40 0 0 41 0 0 42 0 0 44 0 0 45 0 0 46 0 0 47 0 0 51 0 0 52 0 0 53 0 0 54 0 0 55 0 0 56 0 0 57 0 0 66 0	4.2	-	
28 0 0 30 0 0 31 0 0 32 0 0 33 0 0 34 0 0 35 0 0 36 0 0 37 0 0 38 0 0 40 0 0 41 0 0 43 0 0 44 0 0 45 0 0 46 0 0 47 0 0 48 0 0 50 0 0 51 0 0 52 0 0 53 0 0 54 0 0 55 0 0 56 0 0 66 0 0 67 0 0 68 0 0 66 0	13.3	-	
29 0 0 30 0 0 31 0 0 32 0 0 33 0 0 34 0 0 35 0 0 36 0 0 37 0 0 38 0 0 40 0 0 41 0 0 43 0 0 44 0 0 45 0 0 46 0 0 47 0 0 48 0 0 50 0 0 51 0 0 52 0 0 53 0 0 54 0 0 55 0 0 56 0 0 57 0 0 66 0 0 66 0 0 66 0	11.4	-	
30 0 0 31 0 0 33 0 0 33 0 0 34 0 0 36 0 0 37 0 0 38 0 0 30 0 0 40 0 0 41 0 0 42 0 0 43 0 0 44 0 0 45 0 0 46 0 0 46 0 0 50 0 0 51 0 0 52 0 0 53 0 0 57 0 0 58 0 0 59 0 0 66 0 0 67 0 0	7.1	-	
31 0 0 32 0 0 33 0 0 34 0 0 36 0 0 37 0 0 38 0 0 39 0 0 40 0 0 41 0 0 42 0 0 43 0 0 44 0 0 45 0 0 46 0 0 47 0 0 48 0 0 50 0 0 51 0 0 52 0 0 53 0 0 54 0 0 55 0 0 58 0 0 66 0 0 66 0 0 77 0	11.2	- 25%	
32 0 0 33 0 0 34 0 0 35 0 0 36 0 0 37 0 0 38 0 0 39 0 0 40 0 0 41 0 0 42 0 0 43 0 0 44 0 0 45 0 0 46 0 0 47 0 0 51 0 0 52 0 0 53 0 0 54 0 0 55 0 0 56 0 0 57 0 0 66 0 0 67 0 0 66 0 0 67 0	7.3	-	
34 0 0 36 0 0 37 0 0 39 0 0 40 0 0 41 0 0 42 0 0 43 0 0 44 0 0 45 0 0 46 0 0 47 0 0 50 0 0 51 0 0 52 0 0 53 0 0 54 0 0 55 0 0 56 0 0 57 0 0 66 0 0 67 0 0 68 0 0 66 0 0 65 0 0 66 0 0 74 0	10.0	-	
35 0 0 36 0 0 38 0 0 39 0 0 40 0 0 41 0 0 41 0 0 43 0 0 44 0 0 44 0 0 46 0 0 46 0 0 47 0 0 48 0 0 50 0 0 51 0 0 52 0 0 53 0 0 54 0 0 55 0 0 58 0 0 61 0 0 62 0 0 64 0 0 66 0 0 74 0 0	10.5	-	
36 0 0 37 0 0 38 0 0 39 0 0 40 0 0 41 0 0 42 0 0 44 0 0 44 0 0 44 0 0 45 0 0 46 0 0 47 0 0 46 0 0 50 0 0 51 0 0 52 0 0 53 0 0 56 0 0 56 0 0 57 0 0 58 0 0 61 0 0 62 0 0 64 0 0 66 0 0	2.0 10.6	-	
37 0 0 38 0 0 39 0 0 40 0 0 41 0 0 42 0 0 43 0 0 44 0 0 45 0 0 46 0 0 48 0 0 50 0 0 51 0 0 52 0 0 53 0 0 54 0 0 55 0 0 56 0 0 57 0 0 60 0 0 61 0 0 62 0 0 63 0 0 66 0 0 66 0 0 77 0 0 74 0	10.6	-	
38 0 0 39 0 0 40 0 0 41 0 0 42 0 0 43 0 0 44 0 0 45 0 0 46 0 0 47 0 0 50 0 0 51 0 0 52 0 0 53 0 0 54 0 0 55 0 0 56 0 0 57 0 0 60 0 0 61 0 0 62 0 0 63 0 0 64 0 0 65 0 0 66 0 0 71 0 0 72 0	8.5	-	
40 0 0 41 0 0 43 0 0 44 0 0 45 0 0 46 0 0 47 0 0 48 0 0 49 0 0 50 0 0 51 0 0 52 0 0 53 0 0 55 0 0 56 0 0 57 0 0 58 0 0 61 0 0 62 0 0 63 0 0 64 0 0 65 0 0 68 0 0 69 0 0 71 0 0 72 0 0 74 0	23.8	-	
41 0 0 42 0 0 43 0 0 44 0 0 45 0 0 46 0 0 47 0 0 48 0 0 50 0 0 51 0 0 53 0 0 53 0 0 54 0 0 55 0 0 56 0 0 57 0 0 60 0 0 61 0 0 63 0 0 63 0 0 64 0 0 66 0 0 67 0 0 70 0 0 71 0 0 72 0 0	4.0	-	
42 0 0 43 0 0 44 0 0 46 0 0 47 0 0 48 0 0 49 0 0 51 0 0 51 0 0 52 0 0 54 0 0 55 0 0 56 0 0 57 0 0 58 0 0 60 0 0 61 0 0 62 0 0 64 0 0 64 0 0 67 0 0 68 0 0 67 0 0 70 0 0 71 0 0 72 0 0	<u>5.1</u> 12.1	50%	
43 0 0 44 0 0 45 0 0 46 0 0 47 0 0 48 0 0 49 0 0 50 0 0 51 0 0 52 0 0 53 0 0 55 0 0 56 0 0 57 0 0 58 0 0 60 0 0 61 0 0 62 0 0 63 0 0 64 0 0 65 0 0 66 0 0 71 0 0 72 0 0 73 0 0 74 0 0 75 0	12.1	-	
44 0 0 45 0 0 47 0 0 48 0 0 50 0 0 50 0 0 51 0 0 51 0 0 53 0 0 54 0 0 55 0 0 56 0 0 57 0 0 58 0 0 61 0 0 61 0 0 64 0 0 64 0 0 66 0 0 67 0 0 68 0 0 71 0 0 72 0 0 73 0 0 74 0 0 75 0 0	5.8	-	
46 0 0 47 0 0 48 0 0 50 0 0 51 0 0 52 0 0 53 0 0 54 0 0 56 0 0 56 0 0 57 0 0 58 0 0 60 0 0 61 0 0 63 0 0 63 0 0 64 0 0 67 0 0 66 0 0 70 0 0 71 0 0 72 0 0 74 0 0 77 0 0 73 0 0 74 0 0	6.0	-	
4700 48 00 50 00 51 00 52 00 53 00 54 00 55 00 56 00 57 00 58 00 60 00 61 00 62 00 63 00 64 00 67 00 68 00 67 00 71 00 74 00 75 00 77 00 78 00 79 00 88 00 89 00 90 00 91 00 92 00 93 00 99 00 99 00 99 00 99 00 99 00	14.5	-	
48 0 0 50 0 0 51 0 0 52 0 0 53 0 0 54 0 0 55 0 0 56 0 0 57 0 0 58 0 0 60 0 0 61 0 0 62 0 0 63 0 0 64 0 0 65 0 0 66 0 0 67 0 0 68 0 0 69 0 0 71 0 0 72 0 0 73 0 0 74 0 0 75 0 0 78 0 0 79 <t< td=""><td>8.4</td><td>-</td></t<>	8.4	-	
490050005100520053005400550056005700580060006100630064006700680067006800710072007400770078007900800083009400950099009900990099009900990099009900990099009900990099009000900090009000900090009000900090009000	<u>25.5</u> 4.0	-	
50 0 0 51 0 0 52 0 0 53 0 0 54 0 0 55 0 0 56 0 0 57 0 0 58 0 0 60 0 0 61 0 0 62 0 0 64 0 0 65 0 0 66 0 0 67 0 0 68 0 0 69 0 0 70 0 0 71 0 0 72 0 0 74 0 0 75 0 0 76 0 0 79 0 0 80 0 0 82 <t< td=""><td>12.2</td><td>-</td></t<>	12.2	-	
51 0 0 52 0 0 53 0 0 54 0 0 55 0 0 56 0 0 57 0 0 58 0 0 60 0 0 61 0 0 62 0 0 63 0 0 64 0 0 66 0 0 66 0 0 66 0 0 66 0 0 67 0 0 70 0 0 70 0 0 71 0 0 72 0 0 74 0 0 77 0 0 78 0 0 79 0 0	10.1	50%	
53 0 0 54 0 0 55 0 0 56 0 0 57 0 0 58 0 0 60 0 0 61 0 0 61 0 0 62 0 0 64 0 0 65 0 0 66 0 0 66 0 0 67 0 0 68 0 0 69 0 0 70 0 0 71 0 0 73 0 0 74 0 0 77 0 0 78 0 0 79 0 0 81 0 0 82 0 0	11.5	-	
54 0 0 55 0 0 56 0 0 57 0 0 58 0 0 60 0 0 61 0 0 62 0 0 63 0 0 64 0 0 66 0 0 67 0 0 66 0 0 67 0 0 68 0 0 67 0 0 70 0 0 71 0 0 72 0 0 73 0 0 74 0 0 75 0 0 76 0 0 77 0 0 78 0 0 81 0 0 82 0	10.2	-	
55 0 0 56 0 0 57 0 0 58 0 0 60 0 0 61 0 0 62 0 0 63 0 0 64 0 0 65 0 0 66 0 0 67 0 0 68 0 0 67 0 0 68 0 0 70 0 0 71 0 0 72 0 0 73 0 0 76 0 0 77 0 0 78 0 0 79 0 0 81 0 0 82 0 0 83 0 0 90 0	4.8 35.3	-	
56 0 0 57 0 0 58 0 0 60 0 0 61 0 0 61 0 0 62 0 0 63 0 0 64 0 0 65 0 0 66 0 0 66 0 0 66 0 0 67 0 0 68 0 0 70 0 0 71 0 0 72 0 0 74 0 0 75 0 0 76 0 0 78 0 0 79 0 0 80 0 0 84 0 0 84 0 0	12.5	-	
57 0 0 58 0 0 60 0 0 61 0 0 62 0 0 63 0 0 63 0 0 63 0 0 64 0 0 65 0 0 66 0 0 67 0 0 68 0 0 69 0 0 71 0 0 72 0 0 73 0 0 74 0 0 77 0 0 78 0 0 79 0 0 80 0 0 82 0 0 83 0 0 84 0 0 90 0 0 93 0	14.0	-	
59 0 0 60 0 0 61 0 0 62 0 0 63 0 0 64 0 0 65 0 0 66 0 0 67 0 0 68 0 0 69 0 0 70 0 0 71 0 0 73 0 0 74 0 0 75 0 0 76 0 0 77 0 0 78 0 0 81 0 0 82 0 0 84 0 0 85 0 0 86 0 0 90 0 0 91 0 0 92 0	15.1	-	
60 0 0 61 0 0 62 0 0 63 0 0 64 0 0 65 0 0 66 0 0 66 0 0 67 0 0 67 0 0 69 0 0 70 0 0 70 0 0 71 0 0 72 0 0 73 0 0 74 0 0 75 0 0 76 0 0 78 0 0 78 0 0 78 0 0 80 0 0 81 0 0 82 0 0 84 0 0	17.8 3.2	-	
61 0 0 62 0 0 63 0 0 64 0 0 65 0 0 66 0 0 66 0 0 67 0 0 68 0 0 69 0 0 70 0 0 71 0 0 72 0 0 73 0 0 74 0 0 75 0 0 76 0 0 79 0 0 79 0 0 80 0 0 81 0 0 82 0 0 84 0 0 84 0 0 90 0 0 91 0 0	8.5	- 50%	
62 0 0 63 0 0 64 0 0 65 0 0 66 0 0 67 0 0 68 0 0 69 0 0 70 0 0 71 0 0 73 0 0 74 0 0 76 0 0 77 0 0 78 0 0 79 0 0 80 0 0 81 0 0 82 0 0 84 0 0 86 0 0 90 0 0 91 0 0 92 0 0 94 0 0 94 0 0	2.5	- 50%	
64 0 0 65 0 0 66 0 0 67 0 0 68 0 0 69 0 0 70 0 0 71 0 0 73 0 0 74 0 0 75 0 0 76 0 0 77 0 0 78 0 0 79 0 0 80 0 0 81 0 0 82 0 0 84 0 0 85 0 0 84 0 0 90 0 0 91 0 0 92 0 0 93 0 0 94 0 0 95 0	9.2	-	
6500 66 00 67 00 68 00 69 00 70 00 71 00 72 00 73 00 74 00 75 00 76 00 77 00 78 00 79 00 80 00 81 00 84 00 86 00 87 00 89 00 91 00 92 00 93 00 94 00 99 00 99 00 99 00 99 00 99 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 92 00 93 00 94 00 91 00 92 00 93 00 91 00 92	9.3	-	
66 0 0 67 0 0 68 0 0 69 0 0 70 0 0 71 0 0 72 0 0 73 0 0 75 0 0 76 0 0 77 0 0 78 0 0 79 0 0 80 0 0 81 0 0 82 0 0 83 0 0 84 0 0 85 0 0 90 0 0 91 0 0 92 0 0 93 0 0 94 0 0 95 0 0 94 0 0 97 0	23.5	-	
6700 68 00 69 00 70 00 71 00 72 00 73 00 74 00 75 00 76 00 78 00 79 00 80 00 81 00 83 00 84 00 85 00 86 00 90 00 91 00 93 00 94 00 97 00 98 00 99 00 99 00 99 00 99 00 99 00 99 00 99 00 99 00	<u>5.2</u> 8.5	-	
68 0 0 70 0 0 71 0 0 72 0 0 73 0 0 73 0 0 74 0 0 75 0 0 76 0 0 77 0 0 78 0 0 79 0 0 80 0 0 81 0 0 82 0 0 83 0 0 84 0 0 85 0 0 86 0 0 90 0 0 91 0 0 92 0 0 94 0 0 95 0 0 96 0 0 97 0 0	14.3	-	
69007000710072007300740075007600770078007900800081008300840085008800900091009200930094009700980099009900990099009000910090009100920094009500960097009800990010000	15.4	-	
7100 72 00 73 00 74 00 75 00 76 00 77 00 78 00 79 00 80 00 81 00 83 00 84 00 85 00 86 00 87 00 89 00 91 00 92 00 94 00 97 00 98 00 99 00 99 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 91 00 92 00 93 00 94 00 94 00 94 00 94 00 94 00 94 00 94 00 94 00 94 00 94	1.7	-	
72 0 0 73 0 0 74 0 0 75 0 0 76 0 0 76 0 0 77 0 0 78 0 0 79 0 0 80 0 0 81 0 0 82 0 0 83 0 0 84 0 0 85 0 0 86 0 0 87 0 0 90 0 0 91 0 0 92 0 0 93 0 0 94 0 0 97 0 0 98 0 0 99 0 0	15.0	25%	
7300 74 00 75 00 76 00 77 00 78 00 79 00 80 00 81 00 82 00 83 00 84 00 85 00 86 00 87 00 89 00 90 00 91 00 92 00 94 00 97 00 98 00 99 00 99 00 910 0 910 00 <td< td=""><td>9.0 11.7</td><td>-</td></td<>	9.0 11.7	-	
7400 75 00 76 00 77 00 78 00 79 00 80 00 81 00 82 00 83 00 84 00 85 00 86 00 87 00 89 00 91 00 92 00 94 00 97 00 98 00 99 00 99 00 910 00	3.9	-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8.6	-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13.1	-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11.5	-	
$\begin{array}{c cccccc} 79 & 0 & 0 \\ 80 & 0 & 0 \\ 81 & 0 & 0 \\ 81 & 0 & 0 \\ 82 & 0 & 0 \\ 82 & 0 & 0 \\ 83 & 0 & 0 \\ 83 & 0 & 0 \\ 84 & 0 & 0 \\ 85 & 0 & 0 \\ 85 & 0 & 0 \\ 85 & 0 & 0 \\ 86 & 0 & 0 \\ 86 & 0 & 0 \\ 88 & 0 & 0 \\ 88 & 0 & 0 \\ 88 & 0 & 0 \\ 88 & 0 & 0 \\ 90 & 0 & 0 \\ 90 & 0 & 0 \\ 91 & 0 & 0 \\ 90 & 0 & 0 \\ 91 & 0 & 0 \\ 92 & 0 & 0 \\ 91 & 0 & 0 \\ 92 & 0 & 0 \\ 91 & 0 & 0 \\ 93 & 0 & 0 \\ 93 & 0 & 0 \\ 94 & 0 & 0 \\ 95 & 0 & 0 \\ 95 & 0 & 0 \\ 96 & 0 & 0 \\ 97 & 0 & 0 \\ 99 & 0 & 0 \\ 99 & 0 & 0 \\ 100 & 0 & 0 \\ \end{array}$	7.2 6.3		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.2		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	62.5	25%	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10.3	-	
84 0 0 85 0 0 86 0 0 87 0 0 88 0 0 89 0 0 90 0 0 91 0 0 92 0 0 93 0 0 94 0 0 95 0 0 97 0 0 98 0 0 99 0 0	5.8	-	
85 0 0 86 0 0 87 0 0 88 0 0 89 0 0 90 0 0 91 0 0 92 0 0 93 0 0 94 0 0 95 0 0 97 0 0 98 0 0 99 0 0	<u>26.2</u> 11.4	-	
86 0 0 87 0 0 88 0 0 89 0 0 90 0 0 91 0 0 92 0 0 93 0 0 95 0 0 96 0 0 97 0 0 98 0 0 99 0 0	21.2	-	
88 0 0 89 0 0 90 0 0 91 0 0 92 0 0 93 0 0 94 0 0 95 0 0 96 0 0 97 0 0 98 0 0 99 0 0	17.5	-	
89 0 0 90 0 0 91 0 0 92 0 0 93 0 0 94 0 0 95 0 0 96 0 0 97 0 0 98 0 0 99 0 0	18.5	-	
90 0 0 91 0 0 92 0 0 93 0 0 93 0 0 94 0 0 95 0 0 96 0 0 97 0 0 98 0 0 99 0 0 100 0 0	15.8	-	
91 0 0 92 0 0 93 0 0 94 0 0 95 0 0 96 0 0 97 0 0 98 0 0 99 0 0 100 0 0	18.3 6.4	- 75%	
92 0 0 93 0 0 94 0 0 95 0 0 96 0 0 97 0 0 98 0 0 99 0 0 100 0 0	6.7	-	
93 0 0 94 0 0 95 0 0 96 0 0 97 0 0 98 0 0 99 0 0 100 0 0	13.9	-	
95 0 0 96 0 0 97 0 0 98 0 0 99 0 0 100 0 0	34.1	-	
96 0 0 97 0 0 98 0 0 99 0 0 100 0 0	37.3	-	
97 0 0 98 0 0 99 0 0 100 0 0	<u>6.1</u> 15.5		
98 0 0 99 0 0 100 0 0	25.3	-	
99 0 0 100 0 0	15.7	-	
	8.7	-	
	7.5	50%	
Minimum00Maximum00	1.7 62.5	25.0% 75.0%	
Maximum 0 0 Mean 0 0	13.4	42.5%	
Median00Standard Dev.00	11.4	50.0%	

Table D.3: Supporting Substrate and Calcite Measures for Sampling Area RG_SLINE, Line Creek, 2019

Rock	Concreted Status	RG_LCUT Calcite Presence	Intermediate Axis (cm)	Embeddedness	
1 2	0	0	<u>11.7</u> 2.0	-	
3	0	1	11.0	-	
4	0	1	12.8	-	
5 6	0	<u> </u>	20.6 6.5		
7	0	0	2.0	-	
8	0	1	14.2	-	
9 10	0	0	1.2	- 0%	
10	0	1	19.5	-	
12	0	0	8.5	-	
13	0	0	8.9	-	
14 15	0	0	6.7 11.5	-	
16	0	1	32.1	-	
17	0	0	1.1	-	
18 19	0	0	1.0 2.4	-	
20	0	1	8.2	25%	
21	0	0	3.1	-	
22	0	0	3.4	-	
23 24	0	1	17.2 6.5	-	
25	0	0	3.6	-	
26	0	0	5.3	-	
27	0	1	6.7	-	
28 29	0	0	5.4 7.5	-	
30	0	1	17.5	- 0%	
31	0	1	13.2	-	
32	0	1	9.8	-	
33	0	1	29.5	-	
34 35	0	1	14.1 16.3	-	
36	0	0	11.5	-	
37	0	1	10.1	-	
38	0	0	2.0	-	
39 40	0	1	31.2 7.5	- 50%	
41	0	1	15.4	- 50%	
42	0	1	7.7	-	
43 44	0	0	11.4 12.4	-	
44 45	0	1	4.9	-	
46	0	1	2.7	-	
47	0	1	8.4	-	
48	0	0	1.5	-	
49 50	0	1	7.1 9.1	- 25%	
51	0	1	8.6	-	
52	0	1	8.3	-	
53	0	1	7.5	-	
54 55	0	<u> </u>	8.3 2.2	-	
56	0	1	8.4	-	
57	0	1	7.9	-	
58	0	1	8.5	-	
59 60	0	1	7.9 5.1	- 50%	
61	0	1	6.6	-	
62	0	1	7.1	-	
63	0	0	2.5	-	
64 65	0	0	0.6 15.1	-	
66	0	1	13.0	-	
67	0	1	8.7	-	
68	0	1	9.0	-	
69 70	0	0	5.6 0.5	- 100%	
71	0	1	6.5	-	
72	0	1	14.5	-	
73 74	0	1	5.6 17.9	-	
74 75	0	1	6.8	-	
76	0	1	9.6	-	
77	0	0	3.5	-	
78 79	0	1	18.5	-	
<u> </u>	0	1	10.9 31.2	- 25%	
81	0	1	5.5	-	
82	0	1	20.5	-	
83 84	0	1	7.1 2.2	-	
<u> </u>	0	1	3.5	-	
86	0	1	15.5	-	
87	0	1	10.4	-	
88	0	1	12.4	-	
89 90	0	1 0	10.1 3.6	- 0%	
90	0	1	20.6	- 0%	
92	0	1	44.3	-	
93	1	1	7.4	-	
94	0	1	10.4	-	
95 96	0	1	4.4 25.0	-	
97	0	1	19.6	-	
98	1	1	8.5	-	
00	0	1	10.6	-	
99			18.5	50%	
99 100	1	1			
99	1 0 1	0 1	0.5	0% 100%	
99 100 Minimum	0	0	0.5	0%	

Table D.4: Supporting Substrate and Calcite Measures for Sampling Area RG_LCUT, Line Creek, 2019

		RG_LILC3_BIC	2_1				RG_LILC3_BIC		
Rock	Concreted	Calcite	Intermediate	Embeddedness	Rock	Concreted	Calcite	Intermediate	Embeddedness
RUCK	Status	Presence	Axis (cm)	Embeddedness	ROCK	Status	Presence	Axis (cm)	Empeddedness
1	0	1	18.6	-	1	0	1	13.5	-
2 3	0	1	8.5 12.9	-	2 3	0	1	17.8 11.1	-
4	0	1	16.2	-	4	0	1	12.2	-
5	0	1	10.2	-	5	0	1	21.1	-
6	0	1	8.1	-	6	0	0	8.5	-
7	0	1	7.5	-	7	0	1	25.5	-
<u> </u>	0	1	10.4	-	8	0	1	12.9	-
10	0	0	14.5 8.7	- 50%	10	0	1	17.6 10.9	- 25%
11	0	1	36.5	-	11	0	1	13.9	-
12	0	1	7.7	-	12	0	1	32.5	-
13	0	1	12.1	-	13	0	1	18.2	-
<u>14</u> 15	0	1	26.7 7.3	-	<u>14</u> 15	0	1	16.5 13.0	-
15	0	1	14.4		16	0	1	7.2	-
17	0	1	12.2	-	17	0	1	7.0	-
18	0	1	9.0	-	18	0	0	2.7	-
19	0	1	28.0	-	19	0	1	29.5	-
20	0	1	8.5	50%	20	0	1	4.7	50%
21 22	0	1	3.5 16.1		21 22	0	0	3.5 23.3	-
22	0	1	17.0	-	22	0	1	13.6	-
24	0	1	21.5	-	24	0	1	5.5	-
25	0	1	13.4	-	25	0	1	19.9	-
26	0	1	16.2	-	26	0	0	14.2	-
27 28	0	1	15.5 15.5	-	27 28	0	1	34.5 11.6	-
29	0	1	9.4	-	29	0	1	17.9	-
30	1	1	21.5	50%	30	0	1	5.7	75%
31	0	1	4.8	-	31	0	1	19.2	-
32	0	1	10.6	-	32	0	1	30.5	-
33 34	0	1	6.7 12.6		<u>33</u> 34	0	1	15.1 19.2	-
35	0	1	13.8	-	35	0	1	20.5	-
36	0	1	9.4	-	36	0	1	14.7	-
37	0	1	14.2	-	37	0	1	10.4	-
38	0	1	6.0	-	38	0	1	14.5	-
39 40	0	1	7.8 5.7	- 0%	<u>39</u> 40	0	1	11.0 13.6	- 0%
40	0	1	14.5	-	40	0	1	20.3	-
42	0	1	6.4	-	42	0	1	13.5	-
43	0	1	9.8	-	43	0	1	19.7	-
44	0	1	11.0	-	44	0	1	11.3	-
45 46	0	1	10.0 9.4	-	45 46	0	1	26.5 22.8	-
40	0	1	8.5	-	40	0	1	40.5	-
48	0	1	22.7	-	48	0	1	18.5	-
49	0	1	22.0	-	49	0	1	9.6	-
50	0	1	8.6	25%	50	0	1	14.8	25%
51 52	0	1	40.0 16.7		51 52	0	1	19.3 8.9	-
53	0	1	29.5	-	53	0	1	26.5	-
54	0	1	6.4	-	54	0	1	16.5	-
55	0	0	6.0	-	55	0	1	27.5	-
56	0	1	13.0	-	56	0	1	15.1	-
57 58	0	1	15.0 9.3		57 58	0	1	10.5 9.8	-
58 59	0	1	20.8	-	59	0	1	19.0	-
60	0	1	10.7	25%	60	0	1	11.1	25%
61	0	1	4.1	-	61	0	1	4.5	-
62	0	1	17.5	-	62	0	1	31.8	-
63 64	0	1	20.2 5.2		63 64	0	1	8.6 24.5	-
<u>64</u> 65	0	1	5.2	-	65	0	1	7.5	-
66	0	1	8.7	-	66	0	1	23.0	-
67	0	1	30.0	-	67	0	1	16.0	-
68	0	1	12.5	-	68	0	1	18.5	-
69 70	0	1 0	9.4	- 100%	<u>69</u> 70	0	1	24.5 14.5	- 50%
70	0	1	2.3 10.7	-	70	0	1	20.0	- 50%
72	0	0	2.8	-	72	0	1	17.2	-
73	0	0	2.2	-	73	0	1	15.5	-
74	0	1	34.5	-	74	0	1	13.8	-
75	0	1	18.5	-	75	0	1	39.5	-
76 77	0	0	2.9 2.6		76 77	0	0	3.0 6.5	-
78	0	1	2.0	-	78	0	1	21.5	-
79	0	1	7.6	-	79	0	1	13.1	-
80	0	1	11.5	75%	80	0	1	11.6	25%
81	0	1	5.0	-	81	0	1	18.5	-
82	0	1	15.2	-	82	0	1	9.2	-

Table D.5: Supporting Substrate and Calcite Measures for Sampling Area RG_LILC3, Line Creek, 2019

Median Standard Dev.	0	1	10.9 10.04	50.0% 31.3%	Median Standard Dev.	0	1 0	14.5 8.1	37.5% 21.2%
Mean	0	1	13.7	42.5%	Mean	0	1	15.8	37.5%
Maximum	1	1	69.5	100%	Maximum	1	1	40.5	75.0%
Minimum	0	0	1.4	0%	Minimum	0	0	2.7	0%
100	0	1	22.1	0%	100	0	1	6.5	50%
99	0	1	10.1	-	99	0	0	16.5	-
98	0	1	10.6	-	98	0	0	10.6	-
97	0	1	7.0	-	97	0	1	9.9	-
96	0	1	14.0	-	96	0	1	8.4	-
95	0	1	23.5	-	95	0	1	5.8	-
94	0	0	3.7	-	94	0	1	8.4	-
93	0	1	17.5	-	93	1	1	13.9	-
92	0	1	13.5	-	92	0	1	32.1	-
91	0	1	9.8	-	91	0	1	15.4	-
90	0	1	25.8	50%	90	0	1	5.9	50%
89	0	1	5.0	-	89	0	1	3.2	-
88	0	1	12.5	-	88	0	1	11.3	-
87	0	1	32.0	-	87	0	1	20.2	-
86	0	1	4.9	-	86	0	1	19.5	-
85	0	1	69.5	-	85	0	1	29.5	-
84	0	0	1.4	-	84	0	1	8.3	-
83	0	0	38.0	-	83	0	1	13.1	-

Notes: "-" indicates data not collected; embeddedness was only measured for every 10th (n=10) particle; Calcite Concreted Status: 0 = not concreted, 1 = partially concreted, 2 = fully concreted; Calcite Presence: 0 = calcite absent, 1 = calcite present.

Table D.5: Supporting Substrate and Calcite Measures for Sampling Area RG_LILC3, Line
Creek, 2019

RG_LILC3_BIC_3										
Rock	Concreted Status	Calcite Presence	Intermediate Axis	Embeddedness						
1	0	1	(cm) 17.3							
2	0	1	16.8	-						
3 4	0	1	7.0	-						
5	0	1	6.0 9.9	-						
6	0	1	7.1	-						
7 8	0	1	5.4 4.1	-						
9	0	1	0.5	-						
10	0	1	8.9	25%						
<u> </u>	0	1	14.1 6.3	-						
13	0	1	12.1	-						
14	0	1	3.9	-						
<u> </u>	0	1	11.8 12.4	-						
17	0	1	4.7	-						
<u>18</u>	0	1	4.9 3.1	-						
20	0	1	15.0	50%						
21	0	1	8.5	-						
<u> 22</u> 23	0	1	10.5 4.6	-						
24	0	1	7.7	-						
25	0	1	18.5	-						
<u>26</u> 27	0	1	6.5 13.7	-						
28	0	1	5.3							
29	0	1	11.6	-						
<u> </u>	0	1	<u>13.4</u> 10.7	- 25%						
32	0	1	18.4	-						
33	0	1	12.5	-						
<u> </u>	0	1	66.5 2.4	-						
36	0	1	3.3	-						
37 38	0	1	3.2 3.4	-						
38	0	1	3.4 9.8							
40	0	1	3.5	0%						
41 42	0	1	5.2 4.7	-						
43	0	1	6.3	-						
44	0	1	9.9	-						
45 46	0	1	6.0 5.6	-						
40	0	1	8.0	-						
48	0	1	9.3	-						
49 50	0	0	2.2 14.5	- 50%						
51	0	1	17.0	-						
52	0	1	7.3	-						
53 54	0	1	9.5 12.0	-						
55	0	0	9.3	-						
56 57	0	1 0	27.5 8.0	-						
58	0	1	25.5	-						
59	0	1	17.0	-						
<u>60</u> 61	0	1	6.7 9.6	- 25%						
62	0	1	5.6	-						
63	0	1	14.4	-						
64 65	0	1	6.9 5.3	-						
66	0	1	7.1	-						
67	0	1	3.9 4.2	-						
68 69	0	1	4.2	-						
70	0	1	10.1	75%						
71 72	0	0	2.1 11.9	-						
73	0	1	11.7	-						
74	0	1	10.5	-						
75 76	0	1	8.9 10.9	-						
77	0	1	14.4	-						
78	0	1	8.6	-						
79 80	0	1	5.4 5.7	- 0%						
81	0	1	8.0	-						
82 83	0	1	12.9 13.6	-						
84	0	1	4.2	-						
85	0	1	11.2	-						
86 87	0	1	11.3 3.5	-						
88	0	1	12.2	-						
89	0	1	13.8	-						
90 91	0	1	8.1 10.1	0%						
92	0	1	12.9	-						
93 94	0	1	3.4 5.6	-						
94 95	0	1	4.2	-						
96	0	1	1.9	-						
97 98	0	1	4.6	-						
98	0	1	6.1	-						
100	-	1	6.2	25%						
Minimum Maximum	0	0	0.5 66.5	<u>0%</u> 75.0%						
Mean	0	1	9.4	27.5%						
Median	0	1	8.0	25.0%						
Standard Dev.	0	0	7.6	24.9%						

Table D.6: Supporting Substrate and Calcite Measures for Sampling Area RG_LISP24, Line Creek,2019

Rock	Concreted Status	RG_LISP24 Calcite Presence	Intermediate Axis (cm)	Embeddedness
1	0	0	3.6	-
2 3	0	<u> </u>	47.5 4.8	-
4	0	1	8.1	-
5	0	1	11.8	-
6 7	0	1	6.6	-
8	0	0	6.8 5.6	-
9	0	1	7.4	-
10	0	1	11.8	0%
11 12	0	1	19.3 11.1	-
13	0	1	17.8	-
14	0	0	3.2	-
<u>15</u> 16	0	1 0	<u>21.2</u> 8.4	-
17	0	1	20.5	-
18	0	1	10.9	-
19	0	1	8.4	-
<u>20</u> 21	0	1	8.2 18.4	- 0%
22	0	1	27.0	-
23	0	1	9.3	-
24 25	0	1	14.0 30.5	-
25	0	1	23.6	-
27	0	1	13.0	-
28	0	1	12.0	-
29 30	0	1	15.0 8.5	- 25%
31	0	1	8.5	-
32	0	1	10.3	-
33	0	0	10.0	-
<u>34</u> 35	0	1 0	1.5 5.5	-
36	0	0	7.5	-
37	0	0	10.0	-
<u>38</u> 39	0	0	3.6 8.4	-
40	0	0	0.9	- 0%
41	0	1	20.2	-
42 43	0	1	13.0	-
43	0	1	5.1	
45	0	1	6.7	-
46	0	1	17.5	-
47 48	0	0	10.4 26.4	-
49	0	1	71.0	-
50	0	1	4.0	50%
51 52	0	1	32.6 8.5	-
52	0	1	13.0	-
54	0	1	16.2	-
55	0	1	7.2	-
<u>56</u> 57	0	0	4.6 36.5	
58	0	1	19.6	-
59	0	1	37.0	-
<u>60</u> 61	0	1	15.5 13.9	25%
62	0	1	13.9	-
63	0	1	16.0	-
64	0	1	17.2	-
65 66	0	1	12.7 35.5	-
67	0	1	13.1	-
68	0	1	29.5	-
69 70	0	0	7.0	-
70 71	0	0	6.4 6.7	0%
72	0	1	15.8	
73	0	0	8.7	-
<u>74</u> 75	0	1	12.5 10.3	-
76	0	1	17.7	-
77	0	1	6.7	-
78 79	0	1	13.7 27.2	
80	0	1	12.0	25%
81	0	1	11.6	-
82	0	0	4.7	-
<u>83</u> 84	0 0	1	11.6 15.6	-
85	0	1	34.5	-
86	0	1	28.5	-
87 88	0	1	70.5 10.5	<u> </u>
<u> </u>	0	1	10.5	-
90	0	1	10.5	50%
91	0	1	9.5	-
<u>92</u> 93	0	1	18.6 13.5	-
93	0	1	5.9	-
95	0	1	8.5	-
96	0	1	29.8	-
97 98	0	<u> </u>	4.5 3.9	-
98	0	1	13.8	-
100	0	1	12.7	25%
Minimum	0	0	0.9	0%
Maximum Mean	0	1	71.0 14.9	50.0% 20.0%
Median	0	1	11.8	25.0%
Standard Dev.	0	0	11.97	19.7%

		RG_LIDSL_BI				RG_LIDSL_BIC_2			
Rock	Concreted Status	Calcite Presence	Intermediate Axis (cm)	Embeddedness	Rock	Concreted Status	Calcite Presence	Intermediate Axis (cm)	Embeddednes
1	0	1	13.5	-	1	0	1 Presence	6.5	-
2	0	1	7.6	_	2	0	1	5.5	-
3	0	1	8.5	-	3	0	1	14.8	-
4	0	1	12.6	-	4	0	1	13.0	-
5	0	1	18.8	-	5	0	0	3.1	-
6	0	1	11.5	-	6	0	1	11.1	-
7	0	1	7.5	-	7	0	1	21.8	-
8	0	0	4.2	-	8	0	0	3.1	-
9 10	0	1	11.7	- 25%	10	0	1	16.4 16.8	- 25%
11	0	1	25.7	-	10	0	1	6.7	-
12	0	1	21.2	-	12	0	1	6.1	-
13	0	1	8.8	-	13	0	0	6.3	-
14	0	0	8.4	-	14	0	1	30.4	-
15	0	1	9.1	-	15	0	1	17.5	-
16	0	0	7.5	-	16	0	0	5.4	-
17 18	0	0	8.0 13.2	-	<u>17</u> 18	0	1	17.5 9.2	-
10	0	1	16.4		10	0	0	8.6	-
20	0	1	8.5	0%	20	0	1	18.5	50%
21	0	1	9.4	-	21	0	0	5.4	-
22	0	0	6.4	-	22	0	0	8.7	-
23	0	0	2.4	-	23	0	1	16.8	-
24	0	1	11.5	-	24	0	0	12.5	-
25	0	0	7.4	-	25	0	0	9.5	-
26	0	1	14.0	-	26	0	0	2.3	-
27 28	0	1	5.2 9.5	-	27 28	0	1	31.0 11.0	-
20	0	0	8.1	-	28	0	1	10.4	-
30	0	1	13.2	25%	30	0	0	5.8	0%
31	0	0	12.5	-	31	0	1	10.4	-
32	0	1	6.7	-	32	0	1	10.4	-
33	0	1	6.8	-	33	0	1	5.9	-
34	0	0	4.2	-	34	0	1	7.3	-
35	0	1	16.5	-	35	0	1	21.5	-
36 37	0	1	7.6	-	36 37	0	1	2.4 14.7	-
37	0	1	12.9 7.4	-	37	0	1	26.6	-
39	0	0	8.0	-	39	0	1	22.5	-
40	0	0	4.9	50%	40	0	1	9.4	50%
41	0	0	5.4	-	41	0	1	35.5	-
42	0	0	8.9	-	42	0	1	15.8	-
43	0	1	13.3	-	43	0	1	39.5	-
44	0	1	10.7	-	44	0	1	3.2	-
45	0	0	5.2	-	45	0	1	13.8	-
46 47	0	0	9.2 22.0		46 47	0	1 0	4.7 6.3	-
48	0	1	37.5	-	47	0	1	10.6	-
49	0	1	8.7	-	49	0	0	2.2	_
50	0	0	6.4	0%	50	0	1	16.5	25%
51	0	1	23.5	-	51	0	1	15.3	-
52	0	1	12.1	-	52	0	0	9.9	-
53	0	1	11.5	-	53	0	1	7.5	-
54	0	1	7.7	-	54	0	0	8.1	-
55 56	0	1	8.3 15.2	-	55 56	0	1	4.9 9.6	-
50	0	1	7.5	-	50	0	0	4.2	-
58	0	0	4.9	-	58	0	1	10.8	-
59	0	0	6.8	-	59	0	1	4.9	-
60	0	0	10.5	50%	60	0	1	5.9	25%
61	0	1	12.2	-	61	0	1	16.1	-
62	0	1	8.3	-	62	0	1	14.5	-
63	0	1	8.2	-	63	0	1	18.5	-
64 65	0	1 0	20.0	-	64 65	0	1	9.6 4.5	-
66	0	0	12.4	-	66	0	0	5.6	-
67	0	1	8.0	-	67	0	0	7.8	
68	0	1	18.2	-	68	0	0	9.9	-
69	0	1	28.6	-	69	0	1	8.3	-
70	0	0	5.4	0%	70	0	1	28.0	50%
71	0	0	6.1	-	71	0	0	6.5	-
72	0	1	13.6	-	72	0	1	6.4	-
73	0	1	7.8	-	73	0	1	24.0	-
74 75	0	1	19.9 7.0	-	74 75	0	0	6.4 7.5	-
75	0	0	3.4	-	75	0	0	3.5	-
77	0	0	7.9	-	70	0	0	5.3	-
78	0	1	7.7	-	78	0	1	10.5	-
79	0	1	14.5	-	79	0	0	10.9	-
80	0	1	22.0	25%	80	0	0	5.3	50%
81	0	1	13.3	-	81	0	1	24.5	-
82	0	1	18.7	-	82	0	1	8.8	-
83	0	1	31.2	-	83	0	1	22.0	-
84	0	0	77	-	84	0	1	12.4	-

Table D.7: Supporting Substrate and Calcite Measures for Sampling Area RG_LIDSL, Line Creek, 2019

03	0		31.2	-	03	0	<u> </u>	22.0	-
84	0	0	7.7	-	84	0	1	12.4	-
85	0	1	32.3	-	85	0	0	3.4	-
86	0	0	7.6	-	86	0	0	4.7	-
87	0	1	10.9	-	87	0	1	4.5	-
88	0	1	8.8	-	88	0	1	6.5	-
89	0	0	16.8	-	89	0	1	12.8	-
90	0	0	6.3	75%	90	0	1	13.5	50%
91	0	0	19.1	-	91	0	1	8.9	-
92	0	1	18.1	-	92	0	0	10.0	-
93	0	0	5.7	-	93	0	1	9.5	-
94	0	0	13.5	-	94	0	1	12.5	-
95	0	1	8.8	-	95	0	1	9.7	-
96	0	0	4.8	-	96	0	1	12.0	-
97	0	1	13.4	-	97	0	1	7.6	-
98	0	1	10.0	-	98	0	1	27.5	-
99	0	1	14.1	-	99	0	1	12.1	-
100	0	1	9.7	50%	100	0	0	3.4	25%
Minimum	0	0	2.4	0%	Minimum	0	0	2.2	0%
Maximum	0	1	37.5	75.0%	Maximum	0	1	39.5	50.0%
Mean	0	1	11.5	30.0%	Mean	0	1	11.5	35.0%
Median	0	1	9.2	25.0%	Median	0	1	9.6	37.5%
Standard Dev.	0	0	6.47	25.8%	Standard Dev.	0	0	7.6	17.5%

		RG_LIDSL_BI				-	RG_LIDSL_BIC		
Rock	Concreted Status	Calcite Presence	Intermediate Axis (cm)	Embeddedness	Rock	Concreted Status	Calcite Presence	Intermediate Axis (cm)	Embeddednes
1	0	0	5.6	-	1	0	1	7.0	-
2	0	0	6.4	-	2	0	1	22.0	-
3	0	1	6.1	-	3	0	0	7.2	-
4 5	0	0	4.0	-	<u>4</u> 5	0	1 0	20.2 10.5	-
6	0	0	9.5	-	6	0	1	12.6	-
7	0	0	5.4	-	7	0	1	18.2	-
8	0	1	15.4	-	8	0	0	9.3	-
9	0	1	11.5	-	9	0	1	23.0	-
10	0	1	9.0	25%	10	0	1	5.5	50%
11	0	0	4.3	-	11	0	0	10.2	-
12	0	1	11.7	-	12	0	1	34.3	-
13 14	0	1	14.0 25.0	-	13 14	0	0	9.1 8.4	-
14	0	1	19.4	-	14	0	0	10.9	-
16	0	1	14.5	_	16	0	0	6.5	-
17	0	1	15.7	-	17	0	0	5.0	-
18	0	0	8.2	-	18	0	1	15.4	-
19	0	1	17.0	-	19	0	0	2.9	-
20	0	1	11.0	50%	20	0	1	12.9	50%
21	0	1	22.2	-	21	0	1	6.5	-
22 23	0	0	3.0 6.6	-	22 23	0	0	12.7	-
23	0	1	16.3	-	23	0	0	8.4 5.8	-
24	0	1	6.7	-	24	0	1	8.5	-
26	0	0	3.4	-	26	0	0	21.0	-
27	0	1	26.0	-	27	0	1	18.5	-
28	0	1	16.4	-	28	0	1	12.5	-
29	0	0	2.9	-	29	0	1	9.3	-
30	0	0	9.2	25%	30	0	1	27.5	25%
31 32	0	1	9.3 18.5	-	31 32	0	0	18.1 6.0	-
33	0	1	19.1	-	33	0	0	10.0	-
34	0	1	22.3	_	34	0	1	8.8	_
35	0	1	15.4	-	35	0	0	1.0	-
36	0	1	22.8	-	36	0	1	14.0	-
37	0	0	10.3	-	37	0	1	16.3	-
38	0	1	22.3	-	38	0	1	9.4	-
39	0	1	3.9	-	39	0	1	15.4	-
40 41	0	1	2.8 4.3	- 0%	<u>40</u> 41	0	1	11.7 36.5	75%
41	0	0	5.6	-	41	0	1	7.8	-
43	0	1	11.7	-	43	0	1	7.2	-
44	0	1	5.7	-	44	0	1	11.3	-
45	0	1	11.5	-	45	0	1	19.5	-
46	0	1	20.8	-	46	0	0	8.2	-
47	0	1	16.0	-	47	0	1	7.6	-
48	0	1	18.7	-	48	0	1	6.1	-
49 50	0	0	6.5 15.0	- 50%	<u>49</u> 50	0	1	23.0 18.2	- 25%
51	0	0	6.8	-	<u> </u>	0	1	13.2	- 23%
52	0	0	20.5	_	52	0	0	8.8	
53	0	1	19.5	-	53	0	0	7.2	-
54	0	0	8.9	-	54	0	1	18.0	-
55	0	0	4.4	-	55	0	0	8.8	-
56	0	1	11.4	-	56	0	0	5.3	-
57	0	1	13.5	-	57	0	1	10.0	-
58 59	0	1	12.2 12.0	-	58 59	0	0	9.5 8.3	-
60	0	0	7.0	- 0%	<u> </u>	0	0	4.2	- 0%
61	0	1	8.4	-	61	0	0	3.5	-
62	0	1	7.8	-	62	0	0	3.4	-
63	0	0	14.4	-	63	0	1	14.8	-
64	0	1	18.1	-	64	0	1	14.5	-
65	0	1	9.8	-	65	0	0	13.2	-
66	0	1	11.0	-	66	0	0	4.3	-
67 68	0	1 0	10.5 4.0	-	67 68	0	1	6.4 11.3	-
68 69	0	1	4.0	-	<u>68</u> 69	0	0	9.2	-
70	0	0	4.4	0%	70	0	0	4.6	25%
71	0	0	10.4	-	71	0	1	10.0	-
72	0	1	26.5	-	72	0	1	22.1	-
73	0	1	5.5	-	73	0	0	13.9	-
74	0	0	8.2	-	74	0	1	13.2	-
75	0	0	5.5	-	75	0	1	11.4	-
76	0	0	7.0	-	76	0	0	8.8	-
77	0	0	3.9	-	77	0	1	6.8	-
78 79	0	0	4.2	-	78 79	0	0	5.8 33.7	-
80	0	0	5.8	25%	80	0	0	5.5	- 50%
81	0	1	8.0	-	81	0	1	28.0	
82	0	0	5.0	-	82	0	0	5.5	-
83	0	0	5.7	-	83	0	1	20.0	-
84	0	1	7.5		84	0	0	7.0	

Table D.7: Supporting Substrate and Calcite Measures for Sampling Area RG_LIDSL, Line Creek, 2019

03	0	0	5.7	-	03	0	1	20.0	-
84	0	1	7.5	-	84	0	0	7.0	-
85	0	0	12.2	-	85	0	0	4.0	-
86	0	1	11.5	-	86	0	1	42.5	-
87	0	0	5.3	-	87	0	0	7.6	-
88	0	0	11.6	-	88	0	0	12.0	-
89	0	0	6.6	-	89	0	1	14.5	-
90	0	0	4.4	0%	90	0	1	18.1	75%
91	0	0	5.7	-	91	0	1	9.8	-
92	0	1	46.0	-	92	0	0	14.5	-
93	0	0	4.6	-	93	0	1	22.0	-
94	0	1	9.7	-	94	0	0	8.8	-
95	0	1	7.5	-	95	0	1	17.0	-
96	0	0	10.4	-	96	0	1	17.8	-
97	0	1	6.8	-	97	0	1	13.2	-
98	0	0	2.3	-	98	0	1	25.0	-
99	0	1	9.0	-	99	0	1	8.1	-
100	0	1	7.0	0%	100	0	0	10.9	50%
Minimum	0	0	2.3	0%	Minimum	0	0	1.0	0%
Maximum	0	1	46.0	50.0%	Maximum	0	1	42.5	75.0%
Mean	0	1	10.9	17.5%	Mean	0	1	12.5	42.5%
Median	0	1	9.3	12.5%	Median	0	1	10.1	50.0%
Standard Dev.	0	0	6.9	20.6%	Standard Dev.	0	0	7.6	23.7%

Rock	Concreted Status	Calcite Presence	Intermediate Axis (cm)	Embeddedness	
1	0	1	20.5		
2	0	1	8.6	-	
3	0	0	5.0	-	
4 5	0	1 0	13.2 6.5	-	
6	0	0	7.3	-	
7	0	1	10.1	-	
8 9	0	1	7.9 28.8	-	
10	0	1	14.6	75%	
11	0	1	38.5	-	
12 13	0	1	<u>11.4</u> 35.5	-	
14	0	0	10.5	-	
15	0	1	16.3	-	
16	0	1	16.5 13.4	-	
<u>17</u> 18	0	1	32.8		
19	0	1	10.3	-	
20	0	1	39.5	25%	
21 22	0	0	6.6 19.5	-	
23	0	1	11.6	-	
24	0	1	9.0	-	
25 26	0	1 0	9.9 3.8		
26	0	1	<u> </u>		
28	0	1	22.0	-	
29	0	1	7.6	-	
30 31	0	1	9.5 22.5	- 25%	
32	0	1	27.0	-	
33	0	1	12.1	-	
34 35	0	1 0	13.6 6.1		
35	0	0	2.1	-	
37	0	1	28.5	-	
38	0	0	6.1	-	
<u>39</u> 40	0	0	12.0 11.2	- 50%	
41	0	0	30.0	-	
42	0	0	5.5	-	
<u>43</u> 44	0	1 0	10.9 5.3		
45	0	0	5.4		
46	0	1	14.3	-	
47 48	0	0	3.6 4.8	-	
<u>48</u> 49	0	0	4.8	-	
50	0	0	5.2	75%	
51	0	1	16.0	-	
52 53	0	0	9.6 9.2	-	
54	0	0	4.0	-	
55	0	1	15.9	-	
56 57	0	1 0	13.8 7.8	-	
58	0	1	37.3		
59	0	1	7.2	-	
60 61	0	0	11.5	75%	
61 62	0	1	14.3 13.3	-	
63	0	1	23.3	-	
64	0	1	7.4	-	
65 66	0	1	25.2 14.6	-	
67	0	1	21.2	-	
68	0	1	35.5	-	
69	0	1	22.3	-	
70 71	0	1	11.3 14.5	- 25%	
72	0	1	18.4		
73	0	1	10.6	-	
74 75	0	1 0	15.2 6.4		
76	0	1	12.1	-	
77	0	1	6.5	-	
78 79	0	1	23.2		
	0	0	12.2 8.5	- 75%	
81	0	0	9.0	-	
82	0	1	8.6	-	
83 84	0	0	13.2 10.4	-	
85	0	0	9.6	-	
86	0	0	6.6	-	
87 88	0	0	18.3 25.0	-	
<u> </u>	0	1	12.2	-	
90	0	0	7.8	50%	
91	0	1	18.3	-	
<u>92</u> 93	0	1 0	8.7 3.0	-	
93 94	0	0	7.5	-	
95	0	0	4.0	-	
96	0	0	17.2	-	
<u>97</u> 98	0	0	11.6 8.8	-	
98	0	1	9.3	-	
100	0	1	10.4	75%	
Minimum Maximum	0	0	2.1	25.0% 75.0%	
Maximum	0	0.64	39.5 13.6	75.0% 55.0%	
Mean		V.VT		00.0/0	

Table D.7: Supporting Substrate and Calcite Measures for Sampling Area RG_LIDSL, Line Creek, 2019

Rock	Concreted Status	RG_LIDCOM Calcite Presence	Intermediate Axis (cm)	Embeddedness
1	0	0	1.4	-
2	0	0 0	4.8	-
3 4	0	0	3.6 4.2	-
5	0	1	14.9	-
6	0	0	28.3	-
7	0	0	16.6	-
8	0	0	11.7	-
9 10	0	0 0	13.6 8.8	- 50%
10	0	0	7.8	-
12	0	1	5.8	-
13	0	0	9.0	-
14	0	1	12.6	-
15 16	0	0 0	8.1 10.2	-
17	0	0	5.8	-
18	0	1	14.6	-
19	0	0	9.9	-
20	0	0	5.8	50%
21	0	0	6.8	-
22 23	0	0	13.9 14.5	-
23	0	0	6.0	-
25	0	1	20.7	-
26	0	0	14.9	-
27	0	0	7.3	-
28	0	1	11.4	-
29 30	0	1	18.4 5.5	- 50%
<u> </u>	0	0	5.5	- 50%
32	0	1	14.7	-
33	0	0	15.0	-
34	0	1	17.4	-
35	0	0	10.3	-
36	0	1	20.1	-
37	0	0	10.7	-
38 39	0	0 0	8.2 6.4	-
40	0	0	5.4	50%
41	0	0	3.8	-
42	0	0	10.0	-
43	0	0	3.4	-
44	0	0	3.5	-
45	0	0	3.8	-
46 47	0	<u> </u>	17.7 4.6	-
48	0	0	4.0	-
49	0	0	3.3	-
50	0	0	5.5	25%
51	0	1	23.3	-
52	0	0	7.4	-
53	0	0	11.5	-
54 55	0	0	6.2 16.6	-
55 56	0	1	24.1	-
57	0	1	19.0	-
58	0	1	7.5	-
59	0	1	8.6	-
60	0	1	15.0 2.0	25%
61 62	0	0	11.6	-
63	0	0	6.1	
64	0	1	38.0	-
65	0	0	3.8	-
66	0	1	35.4	-
67	0	0	14.9	-
68	0	0	11.2 5.6	-
69 70	0	0	4.8	- 50%
70	0	1	31.5	50%
72	0	0	7.5	-
73	0	0	5.5	-
74	0	0	8.3	-
75	0	0	13.5	-
76 77	0	0	10.8 6.0	-
78	0	0	4.1	-
78	0	1	20.2	-
80	0	0	8.2	50%
81	0	0	10.2	•
82	0	0	9.5	-
83	0	1	43.5	-
84 85	- 0	- 0	Bedrock 7.2	-
85	0	0	15.7	-
87	-	-	Bedrock	-
88	0	0	6.0	-
89	0	1	30.0	-
90	0	1	20.6	50%
91	0	0	6.7	-
92	0	0	12.3	-
93	0	1	11.2	-
94	0	0	5.9	-
95 96	0	0	6.2 5.4	-
96 97	0	1	5.4 7.9	-
98	0	0	6.5	-
99	0	0	6.5	-
100	0	0	5.1	50%
Minimum	0	0	1.4	25.0%
Maximum	0	1	43.5	50.0%
Mean Median	0	0	11.3	45.0%
	0	0	8.7	50.0%

Table D.8: Supporting Substrate and Calcite Measures for Sampling Area RG_LIDCOM, Line Creek, 2019

		RG_L18_BIC					RG_L18_BIC	_2	
Rock	Concreted	Calcite	Intermediate	Embeddedness	Rock	Concreted	Calcite	Intermediate	Embeddednes
	Status	Presence	Axis (cm)	Linbeddedness		Status	Presence	Axis (cm)	Linbeddediles
1	0	1	11.5	-	1	0	1	33.2	-
2 3	0	0	10.2 26.5	-	23	0	1 0	22.1 8.4	-
4	0	0	11.2	_	4	0	1	10.4	-
5	0	1	33.5	-	5	0	0	7.3	-
6	0	0	6.4	-	6	0	1	29.3	-
7	0	1	13.9	-	7	0	0	10.0	-
8	0	1	17.6	-	8	0	1	15.7	-
9	0	1	11.0	-	9	0	0	5.6	-
10 11	0	0	12.1 36.0	75%	10 11	0	0	9.2 34.4	50%
12	0	0	13.5	-	12	0	1	34.4	-
13	0	0	4.7	_	13	0	0	13.5	-
14	0	0	8.3	-	14	0	0	9.0	-
15	0	0	7.0	-	15	0	0	6.7	-
16	0	0	10.5	-	16	0	0	13.5	-
17	0	0	4.4	-	17	0	1	20.5	-
18	0	0	19.5	-	18	0	0	6.0	-
19	0	0	8.8	- 0%	19 20	0	1	13.8 15.0	- 50%
20 21	0	0	4.2	-	20	0	0	12.4	- 50%
22	0	1	23.3	_	22	0	1	15.2	-
23	0	1	16.3	-	23	0	0	7.8	-
24	0	0	15.3	-	24	0	1	23.0	-
25	0	0	10.5	-	25	0	0	15.5	-
26	0	0	17.5	-	26	0	0	6.7	-
27	0	0	19.8	-	27	0	1	51.3	-
28 29	0	1	15.7 26.0	-	28 29	0	0	8.8 13.5	-
30	0	1	15.3	75%	30	0	0	5.9	25%
31	0	0	9.2	-	31	0	0	2.7	-
32	0	0	8.8	-	32	0	1	10.5	-
33	0	1	15.4	-	33	0	0	3.0	-
34	0	0	4.3	-	34	0	0	4.2	-
35	0	0	16.5	-	35	0	0	9.0	-
36	0	0	2.2	-	36	0	0	17.5	-
37 38	0	1 0	34.0 9.6	-	37 38	0	0	2.6 9.3	-
39	0	1	48.5	-	39	0	0	8.7	-
40	0	1	20.4	75%	40	0	0	3.8	75%
41	0	0	10.3	-	41	0	1	24.5	-
42	0	0	8.5	-	42	0	0	8.4	-
43	0	0	7.1	-	43	0	0	10.8	-
44	0	1	16.1	-	44	0	1	12.7	-
45	0	0	2.6	-	45	0	0	1.8	-
46 47	0	0	7.3 17.5	-	46 47	0	0	9.4 13.5	-
48	0	0	2.8	-	48	0	0	9.8	-
49	0	0	20.5	-	49	0	0	10.8	-
50	0	1	23.3	50%	50	0	1	8.2	75%
51	0	0	14.7	-	51	0	0	10.6	-
52	0	1	18.7	-	52	0	0	13.7	-
53	0	1	17.2	-	53	0	1	24.8	-
54 55	0	0	12.5	-	54	0	0	15.3	-
55 56	0	0	13.0 45.0	-	55 56	0	0	13.8 13.2	-
50	0	0	10.3	-	57	0	1	18.5	
58	0	0	11.8	-	58	0	0	23.5	-
59	0	0	1.7	-	59	0	1	25.6	-
60	0	1	9.5	50%	60	0	0	5.9	50%
61	0	0	3.7	-	61	0	0	17.7	-
62	0	0	5.8	-	62	0	0	7.2	-
63 64	0	1	9.0	-	63	0	1	22.3	-
64 65	0	0	10.0 10.3	-	64 65	0	0	10.8 10.8	-
66	0	1	16.9	_	66	0	1	13.8	-
67	0	0	8.6	-	67	0	0	10.0	-
68	0	1	15.6	-	68	0	1	25.5	-
69	0	0	4.6	-	69	0	1	18.5	-
70	0	1	45.0	25%	70	0	0	6.0	50%
71	0	0	5.2	-	71	0	0	6.1	-
72	0	1	18.1	-	72	0	1	15.4	-
73 74	0	0	8.8	-	73 74	0	1	9.6	-
74 75	0	0	11.5 6.2	-	74 75	0	1	21.6 13.2	-
75	0	1	6.2 13.5	-	75	0	1	13.2	-
77	0	1	15.0	-	70	0	0	4.6	-
78	0	0	16.3	-	78	0	0	7.8	-
79	0	0	5.0	-	79	0	1	29.8	-
80	0	0	3.6	25%	80	0	1	10.3	75%
81	0	0	4.1	-	81	0	0	8.8	-
82	0	1	16.2	-	82	0	1	21.3	-
83	0	0	5.6	-	83	0	0	1.7	-
0/	0	0	61	1	01	0	1	115	1

Table D.9: Supporting Substrate and Calcite Measures for Sampling Area RG_LI8, Line Creek, 2019

83	0	0	5.6	-	83	0	0	1.7	-
84	0	0	6.1	-	84	0	1	44.5	-
85	0	1	18.0	-	85	0	0	6.3	-
86	0	0	6.6	-	86	0	0	5.5	-
87	0	1	20.3	-	87	0	0	9.3	-
88	0	0	6.5	-	88	0	0	14.5	-
89	0	1	3.0	-	89	0	0	3.8	-
90	0	0	18.2	75%	90	0	1	14.7	50%
91	0	0	10.8	-	91	0	0	6.2	-
92	0	1	11.3	-	92	0	1	42.3	-
93	0	1	16.7	-	93	0	0	7.3	-
94	0	0	3.2	-	94	0	0	6.8	-
95	0	0	7.5	-	95	0	1	16.0	-
96	0	1	27.8	-	96	0	0	15.5	-
97	0	0	10.0	-	97	0	0	46.0	-
98	0	0	20.1	-	98	0	0	5.1	-
99	0	0	13.8	-	99	0	1	13.4	-
100	0	1	15.8	75%	100	0	1	10.2	75%
Minimum	0	0	1.7	0%	Minimum	0	0	1.7	25.0%
Maximum	0	1	48.5	75.0%	Maximum	0	1	51.3	75.0%
Mean	0	0	13.6	52.5%	Mean	0	0	14.0	57.5%
Median	0	0	11.5	62.5%	Median	0	0	10.8	50.0%
Standard Dev.	0	0	9.09	27.5%	Standard Dev.	0	0	9.9	16.9%

		RG_L18_BIC_3			
Rock	Concreted Status	Calcite Presence	Intermediate Axis (cm)	Embeddedness	
1	0	1	13.2	-	
2	0	1	12.1	-	
3 4	0	1	28.0 7.8	-	
5	0	1	18.5	-	
6	0	1	13.5	-	
7	0	0	13.2	-	
<u> </u>	0	1	13.0 17.2	-	
10	0	1	12.4	50%	
11	0	0	6.8	-	
12	0	1	23.0	-	
13	0	0	3.8	-	
14 15	0	1	21.5 8.4	-	
16	0	0	16.0	-	
17	0	0	7.3	-	
18	0	0	4.8	-	
19	0	0	9.2	-	
20 21	0	<u> </u>	6.3 6.7	50%	
21	0	0	7.6	-	
23	0	0	7.0	-	
24	0	0	8.3	-	
25	0	0	12.5	-	
26 27	0	0	14.8 6.0	-	
27 28	0	0	6.0	-	
20	0	0	8.2	-	
30	0	1	13.5	50%	
31	0	0	1.0	-	
32	0	0	6.8	-	
33 34	0	0	8.0 5.0	-	
34 35	0	0	5.0	-	
36	0	0	10.5	-	
37	0	0	4.0	-	
38	0	1	28.8	-	
39	0	0	11.5	-	
40 41	0	<u> </u>	12.4 12.8	50% -	
41 42	0	1	35.5		
43	0	0	6.7	-	
44	0	1	24.2	-	
45	0	0	6.0	-	
46 47	0	1	13.3 7.8	-	
47 48	0	0	26.5	-	
49	0	0	6.3	-	
50	0	0	9.1	25%	
51	0	0	6.5	-	
52	0	1	7.8	-	
53 54	0	1	19.5 11.8		
55	0	1	13.9	-	
56	0	1	16.7	-	
57	0	0	9.6	-	
58	0	0	10.0 12.5	-	
59 60	0	<u> </u>	12.5 7.6	- 50%	
<u> </u>	0	0	13.1	- 50%	
62	0	0	8.5		
63	0	0	6.6 12.3	-	
64	0	1	12.3	-	
65 66	0	0	6.8 10.5	-	
<u> </u>	0	1	23.3		
68	0	0	23.3 9.7		
69	0	1	10.5	-	
70	0	1	15.2	50%	
71	0	1	11.4	-	
72 73	0	<u> </u>	6.8 4.3		
73	0	1	4.3	-	
75	0	0	4.9	-	
76	0	0	16.0 5.9	-	
77	0	0	5.9	-	
78	0	0	19.8	-	
79 80	0	0	12.2 13.0	- 50%	
<u> </u>	0	0	8.8	- 50%	
82	0	0	8.8 15.5	-	
83	0	1	41.5 13.2	-	
84	0	0	13.2	-	
85 86	0	0	5.6 25.5	-	
86 87	0	<u> </u>	25.5	-	
88	0	0	22.0	-	
89	0	1	22.8	-	
90	0	0	14.0	25%	
91	0	0	13.9	-	
92	0	1	28.5	-	
93	0	0	7.8	-	
94 95	0	<u> </u>	32.0 12.3	-	
<u> </u>	0	0	7.0	-	
97	0	0	3.2	-	
98	0	0	6.1	-	
99	0	0	8.2	-	
100 Minimum	0	0	7.1	25%	
Minimum Maximum	0	0	1.0 41.5	25.0% 50.0%	
Mean	0	0	41.5	<u> </u>	
Median	0	0	11.5	50.0%	
Standard Dev.	0	0	7.4	12.1%	

Table D.9: Supporting Substrate and Calcite Measures for Sampling Area RG_LI8, Line Creek, 2019

		RG_FRUL		
Rock	Concreted Status	Calcite Presence	Intermediate Axis (cm)	Embeddedness
1	0	0	2.9	-
2	0	0	7.5	-
3	0	0	6.5	-
4	0	0	6.3	-
5	0	0	18.0	-
6	0	0	11.8	-
7	0	0	4.3	-
8	0	0	4.2	-
9	0	0	7.4	-
10	0	0	7.2	50%
11	0	0	11.8	-
12	0	0	3.4	-
13	0	0	5.5	-
14 15	0	0	7.2	-
	0	0	6.6	-
16 17	0	0	13.2 20.3	-
	0	0	20.3	-
18	0	0	4.8	-
19	0	0	11.5	-
20	0	0	4.6	25%
21	0	0	9.2	-
22	0	0	7.8	-
23	0	0	4.6	-
24	0	0	9.6	-
25	0	0	15.5	-
26	0	0	10.2	-
27	0	0	3.7	-
28	0	0	8.8	-
29	0	0	9.4	-
30	0	0	10.0	25%
31	0	0	6.4	-
32	0	0	6.2	-
33	0	0	15.4	-
34	0	0	9.5	-
35	0	0	12.4	-
36	0	0	21.8	-
37	0	0	5.2	-
38	0	0	13.6	-
39	0	0	20.5	-
40	0	0	6.8	25%
41	0	0	26.5	-
42	0	0	11.8	-
43	0	0	14.5	-
44	0	0	5.4	-
45	0	0	7.8	-
46 47	0	0	17.4 15.2	-
47 48		0	15.2	-
40 49	0	0	9.5 4.6	-
50	0	0	11.6	 0%
51	0	0	4.9	-
52	0	0	3.6	-
53	0	0	20.7	-
54	0	0	15.2	-
55	0	0	6.4	-
56	0	0	5.6	-
57	0	0	1.7	-
58	0	0	4.4	-
59	0	0	10.3	-
60	0	0	4.1	25%
61	0	0	11.4	-
62	0	0	6.2	-
63	0	0	10.3	-
64	0	0	5.3	-
65	0	0	10.0	-
66	0	0	13.3	-
67	0	0	5.6	-
68	0	0	4.9	-
69	0	0	3.4	-
70	0	0	8.0	25%
71	0	0	27.0	-
72	0	0	11.3	-
73	0	0	4.5	-
74	0	0	12.2	-
75	0	0	5.2	-
76	0	0	7.8	-
77	0	0	10.3	-
78	0	0	6.5	-
79	0	0	21.5	-
80	0	0	4.5	0%
81	0	0	5.1	-
82				
02	0	0	4.0 0.0	
82 83	0	0	4.5 2.2	-

Table D.10: Supporting Substrate and Calcite Measures for Sampling Area RG_FRUL, Line Creek,2019

83	0	0	2.2	-
84	0	0	7.8	-
85	0	0	8.3	-
86	0	0	4.6	-
87	0	0	3.5	-
88	0	0	9.6	-
89	0	0	26.5	-
90	0	0	6.5	0%
91	0	0	6.3	-
92	0	0	15.5	-
93	0	0	14.2	-
94	0	0	4.8	-
95	0	0	14.9	-
96	0	0	10.5	-
97	0	0	6.4	-
98	0	0	7.0	-
99	0	0	30.5	-
100	0	0	11.5	25%
Minimum	0	0	1.7	0%
Maximum	0	0	30.5	50.0%
Mean	0	0	9.6	20.0%
Median	0	0	7.8	25.0%
Standard Dev.	0	0	5.9	15.8%

	. <u></u>	RG_FO23_BIC				RG_FO23_BIC_2					
Rock	Concreted	Calcite	Intermediate	Embeddedness	Rock	Concreted	Calcite	Intermediate	Embeddedne		
OCK	Status	Presence	Axis (cm)	Embeddedness	ROCK	Status	Presence		Empeddedne		
1	0	1	25.5	-	1	0	0	5.2	-		
2	0	1	19.5	-	2	0	0	6.7	-		
3 4	0	1	6.4 7.6	-	3 4	0	1 0	12.3 8.9	-		
5	0	1	21.4	-	5	0	1	7.5	-		
6	0	1	27.2	-	6	0	0	10.2	-		
7	0	1	4.2	-	7	0	1	18.9	-		
8	0	1	14.7	-	8	0	0	8.6	-		
9 10	0	0	2.3 46.0	- 50%	<u>9</u> 10	0	1 0	18.6	- 25%		
11	0	1	7.5	- 50%	10	0	0	7.4	-		
12	0	1	6.2	-	12	0	0	4.5	-		
13	0	1	29.9	-	13	0	0	14.6	-		
14	0	1	9.7	-	14	0	0	9.2	-		
15 16	0	1	6.4 38.5	-	15 16	0	0	<u>6.1</u> 14.7	-		
10	0	1	31.5	-	17	0	1	0.6	-		
18	0	1	9.5	_	18	0	0	16.0	-		
19	0	1	17.5	-	19	0	0	5.1	-		
20	0	1	11.5	50%	20	0	0	8.0	25%		
21	0	1	11.0	-	21	0	0	8.5	-		
22	0	1	14.5	-	22	0	0	11.6	-		
23 24	0	1	6.0 15.5	-	23 24	0	1	10.5 10.2	-		
24 25	0	1	15.5	-	24 25	0	0	13.2	-		
26	0	1	51.5	-	26	0	0	15.6	-		
27	0	1	12.5	-	27	0	0	3.5	-		
28	0	1	5.5	-	28	0	0	9.9	-		
29	0	1	29.0 10.6	- 25%	<u>29</u> 30	0	0	5.0	- 50%		
30 31	0	1	10.6	- 25%	30	0	0	6.6 5.8	50%		
32	0	1	11.2	-	32	0	0	13.2	-		
33	0	1	11.0	-	33	0	1	10.2	-		
34	0	1	32.5	-	34	0	0	4.2	-		
35	0	1	35.5	-	35	0	1	12.2	-		
36	0	1	21.5	-	36	0	1	10.4	-		
37 38	0	1	6.5 49.0	-	<u> </u>	0	0	15.3 4.6	-		
39	0	1	12.0	-	39	0	1	7.9	-		
40	0	0	7.1	0%	40	0	0	6.8	50%		
41	0	1	9.2	-	41	0	0	6.8	-		
42	0	1	7.0	-	42	0	1	14.2	-		
43	0	1	11.2	-	43	0	0	6.5	-		
44	0	0	5.4	-	44	0	1	13.5	-		
45 46	0	0	10.3 9.2	-	45 46	0	1	13.6 9.5	-		
40	0	1	24.0	_	40	0	0	7.8	-		
48	0	0	4.0	-	48	0	1	20.2	-		
49	0	0	2.0	-	49	0	0	11.3	-		
50	0	0	5.2	0%	50	0	0	9.5	50%		
51	0	1	22.7	-	51	0	0	9.1	-		
52 53	0	0	5.9 3.8	-	52 53	0	0	10.5 5.2	-		
54	0	0	19.2	-	54	0	1	23.5	-		
55	0	0	3.4	-	55	0	0	6.2	-		
56	0	0	12.5	-	56	0	1	26.5	-		
57	0	0	5.4	-	57	0	0	10.4	-		
58	0	1	27.5	-	58	0	0	8.2	-		
59 60	0	0	21.6 4.0	- 0%	59 60	0	0	6.0 10.9	- 25%		
60	0	0	4.0 8.0	- 0%	<u> </u>	0	0	6.3	- 25%		
62	0	1	34.5	-	62	0	0	5.3	-		
63	0	0	7.5	-	63	0	1	18.2	-		
64	0	0	15.5	-	64	0	1	14.3	-		
65	0	0	2.2	-	65	0	0	13.0	-		
66 67	0	0	9.2 4.7	-	66 67	0	1	8.2 10.4	-		
68	0	0	4.7	-	68	0	1	10.4	-		
69	0	0	36.5	-	69	0	0	9.7	-		
70	0	0	8.5	50%	70	0	0	6.6	25%		
71	0	0	4.6	-	71	0	0	17.0	-		
72	0	0	1.5	-	72	0	0	2.3	-		
73	0	0	4.1	-	73	0	0	6.6	-		
74 75	0	0	9.0 10.0	-	74 75	0	1 0	8.6 8.0	-		
76	0	0	16.4	-	75	0	0	3.8	-		
77	0	0	3.6	-	77	0	0	13.0	-		
78	0	0	4.5	-	78	0	0	3.5	-		
79	0	0	8.6	-	79	0	0	10.0	-		
80	0	0	15.5	25%	80	0	0	5.5	75%		
81	0	0	8.2	-	81	0	0	14.2	-		
82 83	0	0	9.4 3.2	-	82 83	0	0	2.2 13.5	-		
84	0	0	30.5	-	84	0	0	7.4	-		
85	0	0	5.2	_	85	0	0	3.4	-		
86	0	0	4.2	-	86	0	1	21.2	-		

Table D.11: Supporting Substrate and Calcite Measures for Sampling Area RG_FO23, Line Creek, 2019

Standard Dev.	0	1	10.91	23.0%	Standard Dev.	0	0	4.8	16.9%
Median	0	0	9.3	12.5%	Median	0	0	9.0	50.0%
Mean	0	0	13.1	20.0%	Mean	0	0	9.7	42.5%
Maximum	0	1	51.5	50.0%	Maximum	0	1	26.5	75.0%
Minimum	0	0	1.2	0%	Minimum	0	0	0.6	25.0%
100	0	0	4.8	0%	100	0	1	9.0	50%
99	0	0	1.2	-	99	0	0	4.5	-
98	0	0	11.9	-	98	0	0	9.2	-
97	0	0	8.2	-	97	0	0	6.6	-
96	0	0	16.8	-	96	0	0	9.2	-
95	0	0	9.5	-	95	0	0	8.0	-
94	0	0	6.4	-	94	0	0	6.5	-
93	0	0	15.5	-	93	0	1	10.5	-
92	0	0	13.5	-	92	0	0	8.5	-
91	0	0	4.4	-	91	0	0	18.0	-
90	0	0	7.8	0%	90	0	0	10.5	50%
89	0	0	5.5	-	89	0	0	8.8	-
88	0	0	6.2	-	88	0	0	4.8	-
87	0	0	7.2	-	87	0	0	7.6	-
86	0	0	4.2	-	86	0	1	21.2	-
00	0	0	0.2		00	0	•	0.4	

		RG_FO23_BIC_	3				RG_FO23_BIC	_4	
Rock	Concreted Status	Calcite Presence	Intermediate Axis (cm)	Embeddedness	Rock	Concreted Status	Calcite Presence	Intermediate Axis (cm)	Embeddedne
1	0	0	19.5	-	1	0	0	3.2	-
2	0	0	24.0	-	2	0	0	11.2	-
3 4	0	0	10.4 15.5	-	3 4	0	0	10.2 13.0	-
5	0	0	6.0	-	5	0	0	7.3	-
6	0	0	20.5	-	6	0	0	8.0	-
7	0	0	5.4	-	7	0	0	12.5	-
8 9	0	0	7.9 4.3	-	8	0	0	6.1 4.2	-
10	0	0	23.5	50%	10	0	0	5.6	50%
11	0	0	3.2	-	11	0	0	30.4	-
12	0	1	8.9	-	12	0	0	8.6	-
13 14	0	0	4.4 6.5	-	13 14	0	0	22.0	-
15	0	0	2.0	-	15	0	0	6.5	-
16	0	0	6.8	-	16	0	0	4.5	-
17	0	0	8.1	-	17	0	0	7.5	-
18 19	0	0	10.7 13.5	-	18 19	0	0	36.5 8.0	-
20	0	0	5.1	0%	20	0	0	7.5	25%
21	0	0	11.2	-	21	0	0	15.5	-
22	0	0	2.6	-	22	0	0	13.7	-
23 24	0	0	3.6 11.1	-	23 24	0	0	18.5 6.2	-
25	0	0	4.7	_	25	0	0	27.0	-
26	0	0	3.4	-	26	0	0	8.2	-
27	0	0	10.2	-	27	0	0	26.5	-
28 29	0	0	7.7 3.1	-	28 29	0	0	8.6 8.1	-
30	0	0	5.5	0%	30	0	0	5.1	0%
31	0	0	15.6	-	31	0	0	6.2	-
32	0	0	4.6	-	32	0	0	6.7	-
33 34	0	0	12.3 4.9	-	33 34	0	0	11.5 18.5	-
35	0	0	5.8	-	35	0	0	5.2	-
36	0	0	6.0	-	36	0	0	13.4	-
37	0	0	0.5	-	37	0	0	14.1	-
38 39	0	0	12.2 22.5	-	38 39	0	0	31.5 36.0	-
40	0	0	9.6	25%	40	0	0	5.5	75%
41	0	0	15.8	-	41	0	0	27.0	-
42	0	0	12.9	-	42	0	0	6.0	-
43 44	0	0	9.6 2.0	-	43 44	0	0	2.7	-
45	0	0	12.9	_	45	0	0	10.3	-
46	0	0	15.6	-	46	0	0	12.5	-
47	0	0	7.4	-	47	0	0	36.5	-
48 49	0	0	6.2 2.5	-	48 49	0	0	6.4 4.7	-
50	0	0	7.5	50%	50	0	0	14.2	25%
51	0	0	7.7	-	51	0	0	2.3	-
52	0	0	6.1	-	52	0	0	15.6	-
53 54	0	0	7.8 15.0	-	53 54	0	0	19.0 36.0	-
55	0	0	3.0	-	55	0	1	32.5	-
56	0	0	2.5	-	56	0	0	10.6	-
57	0	0	10.4	-	57	0	0	4.3	-
58 59	0	0	7.7 5.3	-	<u>58</u> 59	0	0	9.6 24.0	-
<u> </u>	0	1	26.0	0%	<u> </u>	0	0	1.2	- 100%
61	0	0	12.5	-	61	0	0	6.2	-
62	0	0	11.4	-	62	0	0	18.1	-
63 64	0	0	0.8 9.2	-	63 64	0	0	19.2 33.0	-
65	0	0	9.5	-	65	0	0	19.5	-
66	0	0	15.2	-	66	0	0	13.2	-
67	0	0	7.2	-	67	0	0	6.5	-
68 69	0	0	7.5 22.5	-	<u>68</u> 69	0	0	18.0 26.0	-
70	0	1	22.5	25%	70	0	0	18.0	75%
71	0	0	9.5	-	71	0	0	5.2	-
72	0	1	12.1	-	72	0	0	10.5	-
73 74	0	0	13.9 40.5	-	73 74	0	0	29.5 13.0	-
75	0	1	11.8	-	74	0	0	9.0	-
76	0	1	13.2	-	76	0	0	8.6	-
77	0	1	17.5	-	77	0	0	26.0	-
78 79	0	0	10.5 11.8	-	78 79	0	0	2.1	-
80	0	0	6.6	25%	80	0	0	5.5	- 25%
81	0	1	17.4	-	81	0	0	20.2	-
82	0	1	1.5	-	82	0	0	25.0	-
83 84	0	1	15.5 15.5	-	83 84	0	0	<u> </u>	-
84 85	0	1 0	15.5 9.2	-	84 85	0	0	6.1 3.6	-
1.1.1				-	0.1			0.0	. –

Table D.11: Supporting Substrate and Calcite Measures for Sampling Area RG_FO23, Line Creek, 2019

84	0	1	15.5	-	84	0	0	6.1	-
85	0	0	9.2	-	85	0	0	3.6	-
86	0	1	14.3	-	86	0	0	4.5	-
87	0	1	19.5	-	87	0	0	9.1	-
88	0	0	6.4	-	88	0	0	16.5	-
89	0	0	10.4	-	89	0	0	6.4	-
90	0	0	11.4	25%	90	0	1	20.4	25%
91	0	0	13.5	-	91	0	1	25.5	-
92	0	0	16.0	-	92	0	0	17.7	-
93	0	0	23.5	-	93	0	0	9.8	-
94	0	0	6.0	-	94	0	0	20.0	-
95	0	1	15.0	-	95	0	1	25.0	-
96	0	0	7.5	-	96	0	0	9.3	-
97	0	0	2.8	-	97	0	0	7.3	-
98	0	0	8.4	-	98	0	0	20.4	-
99	0	0	27.3	-	99	0	1	43.5	-
100	0	0	7.9	50%	100	0	0	17.5	50%
Minimum	0	0	0.5	0%	Minimum	0	0	1.2	0%
Maximum	0	1	40.5	50.0%	Maximum	0	1	43.5	100%
Mean	0	0	10.6	25.0%	Mean	0	0	14.2	45.0%
Median	0	0	9.5	25.0%	Median	0	0	10.9	37.5%
Standard Dev.	0	0	6.8	20.4%	Standard Dev.	0	0	9.6	30.7%

1 0 0 7.5 - 3 0 0 83 - 6 0 1 83 - 6 0 1 83 - 6 0 1 83 - 7 0 0 75 - 8 0 0 14.4 266 11 0 0 14.4 266 13 0 0 15.5 - 14 0 0 2.2 - 15 0 0 1.43 2.2 - 16 0 0 2.2 - - 17 0 1 13.0 - - 16 0 0 1.53 - - 17 0 1 13.0 - - 18 0 0 1.53 - - 190 0	Rock	Concreted Status	RG_FO23_BIC_5 Calcite Presence	Intermediate Axis (cm)	Embeddedness
3 0 0 8.3 . 6 0 1 6.5 . 7 0 0 7.5 . 8 0 0 7.7 . 9 0 0 7.7 . 10 0 0 7.7 . 11 0 0 . . 12 0 0 . . 14 0 0 . . . 15 0 0 16 0 1 20 0 0 1 . . . 21 0 1 22 0 1 24 0 0 1 . . . 24 0 0 <th></th> <th></th> <th></th> <th>6.2</th> <th></th>				6.2	
4 0 0 85 - 6 0 0 8.5 - 7 0 0 0.57 - 8 0 0 5.7 - 8 0 0 0.11 - 10 0 0 1.1 - 11 0 0 1.1 - 12 0 0 1.1 - 13 0 1 1.45 - 14 0 0 2.3 - 16 0 0 2.3 - 17 0 1 1.53 - 18 0 0 1.453 - 20 0 1 1.53 - 21 0 1 1.53 - 22 0 0 1 1.53 - 23 0 0 1 1.53 -					
6 0 1 5.9 - 7 0 0 15 - 10 0 0 14.4 288 11 0 0 14.4 288 11 0 0 15 - 12 0 0 14.5 - 14 0 0 4.9 - 16 0 0 4.9 - 16 0 1 14.5 - 17 0 1 14.5 - 18 0 1 14.5 - 20 0 0 13.5 - 21 0 1 10.5 - 22 0 1 10.5 - 23 0 0 13.7 28.5 - 24 0 0 15.7 - - 33 0 0 15.7 -	4	0		8.5	
7 0 0 7.5 - 0 0 0.7 - 0 0 0.7 - 11 0 0 6.4 29%. 112 0 0 7.1 - 14 0 1 6.4 - 14 0 0 2.3 - 14 0 1 4.9 - 16 0 0 2.3 - 17 0 1 4.9 - 18 0 0 1.4 4.9 - 21 0 0 1.4 1.90 - 22 0 1 1.30 - - 24 0 0 1.37 - - 25 0 1 1.23 - - 26 0 0 1.57 2.5 - 30 0 0 1.57<	5			4.6	
8 0 0 5.7 . 0 0 10.1 22% 11 0 0 16.3 22% 12 0 0 16.3 . 13 0 1 5.8 . 14 0 0 2.8 . 14 0 0 2.8 . 14 0 0 1.4.5 . 16 0 1.4.5 . . 17 0 1 16.3 . . 18 0 0 1.4.5 . . 21 0 1 18.3 . . 22 0 1 18.5 . . 23 0 1 10.8 . . 24 0 0 1.5.5 . . 33 0 1 10.8 . . 34 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
10 0 0 14.4 25% 11 0 0 1.44 25% 15 0 0 1.78 15 0 0 4.0 16 0 1.145 16 0 1.145 20 0 1.145 21 0 1.145 22 0 1.145 24 0 0 1.145 24 0 0 1.149 25 0 1 1.109 26 0 1 1.109 31 0 0 0 5.5 32 0 1 1.109 33 0 0 1.55 .	8		-	5.7	
11 0 0 6.9 . 12 0 1 7.1 . 14 0 1 5.8 . 15 0 0 4.0 . 16 0 1 4.5.7 . 17 0 1 4.5.7 . 19 0 0 4.9.3 . 20 0 1 8.9 . 21 0 1 13.0 . 22 0 1 13.0 . 24 0 0 1.1 13.0 . 24 0 0 1.1 13.5 . 25 0 1 14.5 . . 26 0 1 14.5 . . 31 0 0 1.5.5 . . 34 0 0 1.5.5 . . 34 <			-		
12 0 0 7.1 - 13 0 1 5.8 - 16 0 0 2.0 - 17 0 1 9.2 - 18 0 0 3.2 - 19 0 1 9.2 - 19 0 1 16.3 50% 21 0 0 16.3 50% 22 0 1 13.0 - 23 0 0 10.0 - 24 0 0 12.4 - 23 0 0 12.4 - 24 0 0 10.8 - 27 0 1 10.9 - 31 0 0 5.7 28% 31 0 0 5.8 - 33 0 0 5.3 - 34 0 1 16.2 - 35 0 0 5.6 - </td <td>10</td> <td></td> <td></td> <td></td> <td></td>	10				
13 0 1 5.8 14 0 0 4.8 16 0 0 4.9 18 0 0 3.2 19 0 1 16.3 20 0 1 0.0 4.9 90% 21 0 1 0.0 4.9 90% 22 0 1 0.0 23 0 0 1.1 10.9 24 0 0 1.1 10.9 25 0 1 10.9 30 0 0 1.1 10.9 31 0 0 1.1 10.9 34 0 0 1.5 34 0 0 1.5 35 0<	12		-	7.1	
15 0 0 4.0 - 16 0 1 14.5 - 19 0 1 9.2 - 20 0 1 9.2 - 21 0 1 8.9 - 21 0 1 13.0 - 23 0 1 13.0 - 24 0 0 1.1 13.0 - 25 0 1 13.0 - - 26 0 0 3.7 - - 27 0 1 10.8 - - 30 0 0 1.55 - 28 31 0 0 1.55 - - 32 0 1 185 - - 34 0 0 1.53 - - 34 0 0 1.54 - - <td></td> <td></td> <td></td> <td>5.8</td> <td></td>				5.8	
16 0 1 14.5 - 17 0 1 9.2 - 19 0 0 3.3 - 20 0 1 8.9 - 21 0 1 13.0 - 22 0 1 13.0 - 22 0 1 13.0 - 24 0 0 10.0 - 24 0 0 12.2 - 26 0 1 12.2 - 27 0 1 10.8 - 27 0 1 10.8 - 33 0 0 5.5 - 34 0 1 10.6 - 34 0 0 5.3 - 39 0 1 16.2 - 40 0 0 6.5 50% 41				2.8	
17 0 1 92 18 0 0 1 163 50% 21 0 1 163 50% 22 0 1 153 23 0 0 100 24 0 0 124 23 0 0 124 24 0 0 124 25 0 1 127 26 0 1 109 28 0 1 109 29 0 1 109 30 0 0 77 34 0 1 155 35 0 0 77 36 0 0 85 37 0 1 154 39 0 0 155 41 0 0 155 42 0 0 155 44 0 0 155 44 0				14.5	
19 0 1 18.3	17	0	1	9.2	-
20 0 4.9 59% 21 0 1 8.9 . 22 0 1 10.9 . 21 0 0 10.9 . 22 0 1 5.8 . 27 0 1 12.2 . 28 0 0 10.83 . 28 0 0 10.85 . 23 0 1 15.5 . 31 0 0 5.8 . 32 0 0 7.7 . 33 0 0 7.5 . 34 0 0 5.5 . 44 0 0 6.5 . 44 0 0 6.5 . 44 0 0 6.5 . 44 0 0 6.5 . <				3.2	
21 0 1 8.9 - 22 0 1 13.0 - 23 0 0 10.1 - 24 0 0 13.7 - 28 0 1 12.2 - 28 0 0 16.8 - 29 0 1 10.9 - 30 0 0 8.7 - 31 0 0 16.5 - 32 0 0 16.5 - 33 0 0 16.5 - 34 0 0 16.5 - 35 0 0 15.5 - 41 0 0 15.5 - 42 0 0 15.5 - 44 0 1 10.9 0% 44 0 1 10.9 0% 44 <				4.9	
23 0 0 10.0 - 24 0 0 124 - 25 0 1 5.8 - 27 0 0 10.8 - 28 0 10.8 - - 29 0 1 10.8 - 30 0 0 5.7 28% 31 0 0 15.5 - 33 0 1 10.8 - 34 0 0 15.5 - 35 0 0 7.7 - 36 0 0 8.6 - 37 0 1 15.4 - 38 0 0 6.5 20% 41 0 0 15.5 - 42 0 0 15.5 - 43 0 0 14.7 - 44 <td< td=""><td>21</td><td>0</td><td></td><td>8.9</td><td></td></td<>	21	0		8.9	
24 0 0 12.4 - 26 0 0 3.7 - 29 0 1 10.2 - 30 0 0 5.7 - 31 0 0 5.8 - 32 0 1 18.5 - 33 0 0 5.8 - 33 0 0 7 - 34 0 1 10.7 - 35 0 0 7.7 - 36 0 15.5 - - 37 0 1 15.4 - 38 0 0 5.5 50% 40 0 0 6.5 - 41 0 1 15.5 - 42 0 0 1.55 - 44 0 1 15.5 - 45 0 <td></td> <td></td> <td></td> <td>13.0</td> <td></td>				13.0	
25 0 1 5.8 - 27 0 1 12.2 - 29 0 0 10.9 - 29 0 0 10.9 - 20 0 0 15.5 - 31 0 0 15.5 - 32 0 1 18.5 - 33 0 0 7.7 - 34 0 1 10.6 - 35 0 0 7.7 - 35 0 0 7.7 - 36 0 0 7.5 - 37 0 1 16.2 - 40 0 0 5.5 50% 41 0 0 15.5 - 43 0 0 15.5 - 44 0 1 10.5 - 44 0			-		
27 0 1 122 . 29 0 1 109 . 30 0 0 57 $25%$ 31 0 0 155 . 32 0 0 155 . 33 0 0 155 . 33 0 0 155 . 34 0 0 153 . 35 0 0 53 . 37 0 1 162 . 39 0 1 162 . 40 0 0 53 . 44 0 1 162 . 44 0 1 165 . 44 0 1 165 . 44 0 1 165 . 44 0 1 165 .<	25			5.8	
28 0 0 108 - 30 0 0 57 25% 31 0 1 109 - 32 0 1 105 - 33 0 1 155 - 34 0 1 165 - 35 0 0 77 - 36 0 0 8.6 - 37 0 1 15.4 - 39 0 0 5.6 50% 44 0 0 5.6 - 43 0 0 5.6 - 44 0 1 13.5 - 43 0 0 4.5 - 44 0 1 16.5 - 44 0 1 16.5 - 55 0 1 116.5 - 56 0	26			3.7	-
28 0 1 10.9 - 30 0 0 15.7 25% 31 0 0 15.5 - 32 0 1 18.5 - 33 0 0 5.6 - 35 0 0 7.7 - 36 0 0 5.3 - 37 0 1 15.4 - 38 0 0 5.5 50% 411 0 0 6.5 - 42 0 0 15.5 - 44 0 1 16.5 - 44 0 1 16.5 - 44 0 1 16.5 - 44 0 0 2.5 - 44 0 0 2.5 - 46 0 1 14.7 - 50 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
30 0 0 5.7 25% 31 0 1 185 - 32 0 1 185 - 33 0 0 5.8 - 34 0 1 106 - 37 0 0 7.6 - 38 0 0 5.3 - 39 0 1 16.2 - 40 0 0 5.5 50% 41 0 0 15.5 - 42 0 0 16.5 - 44 0 1 13.5 - 44 0 1 14.7 - 46 0 0 1 14.7 - 50 0 1 14.7 - - 51 0 0 1.30 - - 52 0 0 3.6 75%				10.0	
31 0 0 15.5 - 32 0 1 185. - 33 0 0 5.8 - 34 0 1 10.6 - 35 0 0 7.6 - 36 0 0 8.4 - 37 0 1 16.2 - 39 0 1 5.5 50% 41 0 0 5.6 - 42 0 0 5.6 - 44 0 1 18.5 - 44 0 1 16.5 - 46 0 0 4.5 - 46 0 0 2.5 - 47 0 0 2.6 - 46 0 0 13.0 - 51 0 0 13.0 - 52 0 </td <td>30</td> <td>0</td> <td>0</td> <td>5.7</td> <td></td>	30	0	0	5.7	
33 0 0 5.8 - 34 0 1 10.6 - 35 0 0 7.7 - 36 0 0 8.6 - 37 0 1 15.4 - 38 0 0 6.5 - 38 0 0 6.5 - 41 0 0 16.5 - 42 0 0 15.5 - 43 0 0 5.8 - 44 0 1 13.5 - 44 0 1 14.5 - 46 0 0 2.6 - 48 0 0 2.6 - 53 0 0 13.0 - 54 0 0 3.5 - 55 0 1 14.3 - 56 0					
34 0 1 10.6 \cdot 35 0 0 7.7 \cdot 36 0 1 16.4 \cdot 38 0 0 5.3 \cdot 40 0 0 5.5 50% 41 0 0 6.5 \cdot 42 0 0 6.5 \cdot 44 0 1 15.5 \cdot 44 0 1 15.5 \cdot 44 0 1 15.5 \cdot 45 0 0 4.5 \cdot 46 0 1 14.7 \cdot 48 0 0 2.5 \cdot 49 0 1 14.7 \cdot 50 0 1 14.3 \cdot 51 0 0 3.5 \cdot 54 0 0 3.5 \cdot				18.5 5.8	
35 0 0 7.7 - 36 0 0 8.6 - 37 0 1 16.4 - 38 0 0 5.3 - 40 0 0 6.5 - 41 0 0 6.5 - 42 0 0 15.5 - 44 0 0 15.5 - 44 0 0 16.5 - 44 0 0 16.5 - 47 0 0 14.5 - 48 0 0 14.7 - 50 0 1 14.5 - 51 0 0 7.5 - 52 0 0 3.5 - 53 0 0 3.5 - 56 0 1 14.3 - 56 0 <td>34</td> <td>0</td> <td>1</td> <td>10.6</td> <td></td>	34	0	1	10.6	
37 0 1 $15,4$ - 39 0 1 $16,2$ - 40 0 0 5.5 $50%$ 41 0 0 6.5 - 42 0 0 $16,5$ - 44 0 1 $13,5$ - 44 0 1 $13,5$ - 46 0 0 $16,5$ - 47 0 1 $14,7$ - 46 0 1 $14,7$ - 49 0 1 $14,7$ - 49 0 1 $14,3$ - 50 0 1 $14,3$ - 51 0 0 $35,7$ - 52 0 0 $35,7$ - 55 0 1 $14,3,7$ - 56 0 0 $35,7$ - 59 0 1 $14,5,7$ -	35		-	7.7	
33 0 1 16.2 . 40 0 0 5.5 $50%$ 41 0 0 6.5 . 42 0 0 15.5 . 43 0 0 5.6 . 44 0 1 13.5 . 44 0 1 16.5 . 46 0 1 16.5 . 47 0 0 4.7 0.6 . 46 0 1 14.7 0.6 . 47 0 0 4.7 0.6 . 40 0 1 14.7 0.6 . 51 0 1 14.5 . . 55 0 1 14.5 . . 56 0 0 3.6 $75%$. 57 0 0 3.6				8.6 15.4	
39 0 1 16.2 - 40 0 0 5.5 50% 41 0 0 6.5 - 42 0 0 15.5 - 43 0 0 6.6 - 44 0 1 13.5 - 46 0 1 16.5 - 47 0 0 4.5 - 48 0 0 2.5 - 49 0 1 14.7 - 50 0 1 10.9 0% 51 0 0 7.5 - 52 0 0 13.5 - 53 0 1 14.3 - 56 0 1 14.5 - 59 0 1 14.5 - 61 0 0 5.5 7.5% 61 <	38	0		5.3	
41 0 0 6.5 - 42 0 0 15.5 - 43 0 1 13.5 - 44 0 1 13.5 - 45 0 0 8.8 - 46 0 1 16.5 - 47 0 0 2.5 - 48 0 0 2.5 - 49 0 1 14.7 - 50 0 1 10.9 0% 51 0 0 7.5 - 52 0 0 6.5 - 53 0 1 13.0 - 56 0 1 13.5 - 56 0 0 3.6 75% 61 0 0 3.6 75% 62 0 0 9.2 - 63 0 1 14.0 - 64 0 0 9.3 - <td></td> <td></td> <td></td> <td>16.2</td> <td></td>				16.2	
42 0 0 15.5 - 44 0 1 13.5 - 45 0 0 6.8 - 46 0 1 16.5 - 47 0 0 4.5 - 48 0 0 2.5 - 49 0 1 14.7 - 50 0 1 10.9 0% 51 0 0 7.5 - 52 0 0 13.0 - 54 0 0 3.6 - 56 0 1 14.3 - 57 0 0 3.6 - 58 0 0 3.6 - 61 0 0 5.6 - 62 0 0 14.40 - 63 0 1 14.0 - 64 0 0 8.0 - - 65 0 0 14.10 <td>40 <u>4</u>1</td> <td></td> <td></td> <td>5.5</td> <td></td>	40 <u>4</u> 1			5.5	
43 0 0 5.6 - 44 0 1 13.5 - 45 0 1 16.5 - 47 0 0 4.5 - 48 0 0 2.5 - 49 0 1 14.7 - 50 0 1 10.9 0% 51 0 0 7.5 - 52 0 0 5.9 - 53 0 0 6.5 - 54 0 0 3.5 - 55 0 1 14.3 - 56 0 1 14.5 - 58 0 0 3.5 - 58 0 0 9.2 - 61 0 0 9.2 - 62 0 0 9.3 - 64 0 0 9.3 - 65 0 0 7.5 -					
46 0 1 16.5 - 47 0 0 4.5 - 48 0 0 2.5 - 49 0 1 14.7 - 50 0 1 10.9 0% 51 0 0 7.5 - 52 0 0 5.9 - 53 0 0 6.5 - 54 0 0 3.5 - 55 0 1 13.5 - 56 0 1 13.5 - 57 0 0 3.7 - 60 0 0 3.6 75% 61 0 0 9.2 - 63 0 1 14.0 - 64 0 0 8.0 - 66 0 0 7.5 - 67 0 <td>43</td> <td></td> <td></td> <td>5.6</td> <td>-</td>	43			5.6	-
46 0 1 16.5 - 47 0 0 4.5 - 48 0 0 2.5 - 49 0 1 14.7 - 50 0 1 10.9 0% 51 0 0 7.5 - 52 0 0 13.0 - 54 0 0 8.5 - 56 0 1 14.3 - 57 0 0 3.5 - 58 0 0 3.5 - 60 0 0 3.5 - 61 0 0 5.5 - 62 0 0 9.2 - 63 0 1 14.0 - 64 0 0 9.3 - 66 0 0 7.5 - 66 0		-			
47 0 0 4.5 - 49 0 1 14.7 - 50 0 1 10.9 0% 51 0 0 7.5 - 52 0 0 5.9 - 53 0 0 6.5 - 54 0 0 3.5 - 56 0 1 13.5 - 56 0 1 14.5 - 57 0 0 3.6 - 58 0 0 3.5 - 61 0 0 3.5 - 62 0 0 9.2 - 63 0 1 14.0 - 64 0 0 8.0 - 66 0 0 9.3 - 67 0 0 7.5 - 68 0	45			16.5	
49 0 1 14.7 - 50 0 1 10.9 0% 51 0 0 7.5 - 52 0 0 13.0 - 53 0 0 6.5 - 56 0 1 13.5 - 56 0 1 13.5 - 57 0 0 3.6 - 59 0 1 14.5 - 60 0 3.7 - - 61 0 0 3.6 75% 61 0 0 3.6 - 62 0 0 9.2 - 63 0 1 14.0 - 64 0 0 8.0 - 66 0 0 14.1 - 70 0 0 7.5 - 69 0<	47	0	0	4.5	
50 0 1 10.9 $0%$ 51 0 0 5.9 - 52 0 0 13.0 - 54 0 0 13.0 - 56 0 1 14.3 - 56 0 1 14.3 - 57 0 0 3.5 - 58 0 0 3.6 $75%$ 60 0 3.6 $75%$ - 61 0 0 3.6 $75%$ 61 0 0 9.2 - 63 0 1 14.0 - 66 0 0 9.3 - 67 0 0 7.5 - 68 0 0 7.5 - 70 0 0 7.5 - 74 0 1 14.1			-	2.5	
51 0 0 7.5 - 52 0 0 13.0 - 53 0 0 13.0 - 54 0 0 6.5 - 56 0 1 13.5 - 56 0 1 14.3 - 57 0 0 3.7 - 58 0 0 3.5 - 60 0 0 3.5 - 61 0 0 3.6 75% 62 0 0 9.2 - 63 0 1 14.0 - 64 0 0 9.3 - 66 0 0 19.5 - 67 0 0 7.5 - 70 0 0 7.5 - 71 0 0 7.5 - 74 0 <td>49</td> <td></td> <td></td> <td>14.7</td> <td></td>	49			14.7	
52 0 0 5.9 - 53 0 0 13.0 - 54 0 1 14.3 - 56 0 1 14.3 - 57 0 0 3.5 - 58 0 0 3.7 - 60 0 0 3.6 75% 61 0 0 9.2 - 63 0 1 14.0 - 64 0 0 9.2 - 63 0 1 14.0 - 64 0 0 9.3 - 65 0 0 9.3 - 66 0 0 7.5 - 67 0 0 7.5 - 68 0 0 7.5 - 70 0 0 7.5 - 74 0	51			7.5	
54 0 0 6.5 - 55 0 1 14.3 - 56 0 1 13.5 - 57 0 0 3.7 - 58 0 0 3.7 - 60 0 0 3.6 75% 61 0 0 9.2 - 63 0 1 14.0 - 64 0 0 9.2 - 63 0 1 14.0 - 64 0 0 9.2 - 65 0 0 19.5 - 66 0 0 9.3 - 67 0 0 7.5 - 68 0 0 7.5 - 70 0 0 7.5 - 71 0 1 14.1 - 72 0 <td>52</td> <td></td> <td></td> <td>5.9</td> <td>-</td>	52			5.9	-
55 0 1 14.3 - 57 0 0 3.7 - 58 0 0 3.7 - 60 0 0 3.7 - 60 0 0 3.6 $75%$ 61 0 0 5.5 - 62 0 0 9.2 - 63 0 1 14.0 - 64 0 0 8.0 - 66 0 0 9.3 - 67 0 0 6.5 - 68 0 0 7.5 - 70 0 0 7.5 - 71 0 1 14.1 - 72 0 0 7.5 - 73 0 0 7.5 - 74 0 1 15.5	53			13.0	
56 0 1 13.5 - 57 0 0 3.5 - 58 0 0 3.5 - 60 0 0 3.6 $75%$ 61 0 0 9.2 - 63 0 1 14.0 - 64 0 0 9.2 - 63 0 1 14.0 - 66 0 0 9.3 - 66 0 0 9.3 - 66 0 0 7.5 - 67 0 0 7.5 - 68 0 0 7.5 - 70 0 0 7.5 - 71 0 1 14.1 - 72 0 0 7.5 - 73 0 0 7.5	55			14.3	
58 0 0 3.7 - 59 0 1 14.5 - 60 0 0 3.6 75% 61 0 0 5.5 - 62 0 0 9.2 - 63 0 1 14.0 - 64 0 0 8.0 - 65 0 0 19.5 - 66 0 0 9.3 - 67 0 0 6.5 - 69 0 0 14.0 - 70 0 0 7.5 - 73 0 0 7.5 - 73 0 0 7.2 - 76 0 1 15.5 - 76 0 0 7.2 - 76 0 0 15.9 -	56			13.5	
59 0 1 14.5 $$ 60 0 0 3.6 $75%$ 61 0 0 5.5 $$ 62 0 0 9.2 $$ 63 0 1 14.0 $$ 64 0 0 8.0 $$ 66 0 0 9.3 $$ 66 0 0 9.3 $$ 67 0 0 6.5 $$ 68 0 0 7.5 $$ 70 0 0 7.5 $$ 70 0 0 7.5 $$ 71 0 1 14.1 $$ 72 0 0 7.2 $$ 74 0 1 19.4 $$ 76 0 0 7.2 $$ 76	57			3.5	
60 0 0 3.6 75% 61 0 0 5.5 - 62 0 0 9.2 - 63 0 1 14.0 - 64 0 0 9.2 - 66 0 0 9.2 - 66 0 0 14.0 - 66 0 0 9.3 - 67 0 0 6.5 - 67 0 0 7.5 - 69 0 0 14.0 - 70 0 0 7.5 - 71 0 0 7.5 - 74 0 1 9.4 - 75 0 1 15.5 - 76 0 0 7.2 - 76 0 0 18.0 -	59		-	14.5	
62 0 1 14.0 - 64 0 0 8.0 - 65 0 0 19.5 - 66 0 0 9.3 - 67 0 0 6.5 - 68 0 0 7.5 - 69 0 0 14.0 - 70 0 0 5.0 0% 71 0 1 14.1 - 72 0 0 7.5 - 73 0 0 9.5 - 74 0 1 9.4 - 75 0 1 15.5 - 76 0 0 7.2 - 78 0 1 20.5 - 79 0 0 15.9 - 80 0 1 15.5 -	60	0		3.6	
63 0 1 14.0 . 64 0 0 80 . 65 0 0 9.3 . 67 0 0 9.3 . 67 0 0 65.5 . 68 0 0 7.5 . 69 0 0 14.0 . 70 0 0 $0.65.5$. 70 0 0 7.5 . 71 0 1 14.1 . 72 0 0 $9.5.5$. 74 0 1 9.4 . 75 0 1 15.5 . 76 0 0 7.2 . 78 0 1 20.5 . 79 0 0 15.9 . 82 0 1 25.5	61			5.5	
64 0 0 8.0 - 65 0 0 19.5 - 66 0 0 9.3 - 67 0 0 6.5 - 68 0 0 7.5 - 69 0 0 14.0 - 70 0 0 0 5.0 0% 71 0 1 14.1 - - 73 0 0 9.5 - - 74 0 1 9.4 - - 76 0 0 7.8 - - 76 0 0 7.8 - - 78 0 1 20.5 - - 79 0 0 15.9 - - 80 0 1 19.2 - - 81 0 0 9.8 -	62			9.2	
66 0 0 9.3 - 67 0 0 6.5 - 68 0 0 7.5 - 69 0 0 14.0 - 70 0 0 0 5.0 0% 71 0 1 14.1 - - 72 0 0 9.5 - - 73 0 0 9.5 - - 74 0 1 9.4 - - 75 0 1 15.5 - - 76 0 0 7.2 - - 78 0 1 20.5 - - 79 0 0 18.0 - - 80 0 1 15.5 - - 81 0 0 11.2 - - 83 0 1	64			8.0	
69 0 0 14.0 - 70 0 0 5.0 0% 71 0 1 14.1 - 72 0 0 7.5 - 73 0 0 9.5 - 74 0 1 9.4 - 75 0 1 15.5 - 76 0 0 7.2 - 78 0 1 20.5 - 79 0 0 6.5 50% 81 0 0 15.9 - 82 0 1 15.5 - 83 0 0 11.2 - 84 0 0 9.8 - 85 0 1 19.2 - 84 0 0 5.9 - 86 0 1 23.0 - 99 <td< td=""><td>65</td><td></td><td></td><td>19.5</td><td></td></td<>	65			19.5	
69 0 0 14.0 - 70 0 0 5.0 0% 71 0 1 14.1 - 72 0 0 7.5 - 73 0 0 9.5 - 74 0 1 9.4 - 75 0 1 15.5 - 76 0 0 7.2 - 78 0 1 20.5 - 79 0 0 6.5 50% 81 0 0 15.9 - 82 0 1 15.5 - 83 0 0 11.2 - 84 0 0 9.8 - 85 0 1 19.2 - 84 0 0 5.9 - 86 0 1 23.0 - 99 <td< td=""><td>66</td><td></td><td></td><td>9.3</td><td></td></td<>	66			9.3	
69 0 0 14.0 - 70 0 0 5.0 0% 71 0 1 14.1 - 72 0 0 7.5 - 73 0 0 9.5 - 74 0 1 9.4 - 75 0 1 15.5 - 76 0 0 7.2 - 78 0 1 20.5 - 79 0 0 6.5 50% 81 0 0 15.9 - 82 0 1 15.5 - 83 0 0 11.2 - 84 0 0 9.8 - 85 0 1 19.2 - 84 0 0 5.9 - 86 0 1 23.0 - 99 <td< td=""><td></td><td></td><td></td><td>7.5</td><td></td></td<>				7.5	
71 0 1 14.1 - 72 0 0 7.5 - 73 0 0 9.5 - 74 0 1 9.4 - 75 0 1 15.5 - 76 0 0 7.8 - 77 0 0 7.2 - 78 0 1 20.5 - 79 0 0 18.0 - 80 0 0 15.9 - 81 0 0 11.2 - 82 0 1 15.5 - 83 0 0 9.8 - 84 0 0 9.8 - 86 0 1 19.2 - 87 0 0 5.9 - 89 0 1 8.4 25%	69	0	0	14.0	-
72007.5. 73 009.5. 74 019.4. 75 0115.5. 76 007.8. 77 007.2. 78 0120.5. 79 0018.0. 80 006.550% 81 0115.5. 83 0011.2. 84 009.8. 85 0119.2. 86 0119.2. 87 005.9. 89 0123.0. 90 0123.0. 91 007.0. 92 003.3. 94 016.4. 95 017.9. 96 005.8. 99 005.8. 99 005.5. 99 005.5. 99 005.5. 99 007.525% 99 0007.525% 99 0007.525% 99 0007.525% 99 0007.525% </td <td>70</td> <td></td> <td></td> <td>5.0</td> <td></td>	70			5.0	
73009.5- 74 019.4- 75 0115.5- 76 007.8- 77 007.2- 78 0120.5- 79 0018.0- 80 006.550% 81 0015.5- 82 0115.5- 83 0011.2- 84 009.8- 85 0119.2- 86 0119.2- 87 005.9- 89 0123.0- 90 018.425% 91 007.0- 92 005.6- 93 0014.5- 94 016.4- 98 005.8- 99 0015.5- 99 005.8- 99 0007.525% 99 0007.525% $Maximum$ 0125.575.0%	72			7.5	
7501 15.5 - 76 00 7.8 - 77 007.2- 78 01 20.5 - 79 0018.0- 80 006.5 $50%$ 81 0015.9- 82 0115.5- 83 0011.2- 84 009.8- 85 0119.2- 86 0119.2- 87 005.9- 89 0123.0- 90 018.4 $25%$ 91 007.0- 92 0014.5- 93 01 6.4 - 94 01 6.4 - 98 005.8- 99 0015.5- 90 01 6.4 - 94 01 6.4 - 98 00 5.8 - 99 00 0 5.8 - 99 00 0 7.5 $25%$ $Minimum$ 00 2.5 $0%$	73	0	0	9.5	
76 0 0 7.8 - 77 0 0 7.2 - 78 0 1 20.5 - 79 0 0 18.0 - 80 0 0 6.5 $50%$ 81 0 0 15.9 - 82 0 1 15.5 - 83 0 0 11.2 - 84 0 0 9.8 - 85 0 1 19.2 - 86 0 1 19.2 - 87 0 0 5.9 - 86 0 1 19.2 - 87 0 0 5.9 - 89 0 1 8.4 $25%$ 91 0 0 7.0 - 92 0 0 14.5 <td>74</td> <td></td> <td></td> <td>9.4</td> <td></td>	74			9.4	
77007.2- 78 01 20.5 - 79 0018.0- 80 00 6.5 $50%$ 81 0015.9- 82 0115.5- 83 0011.2- 84 009.8- 85 0125.5- 86 0119.2- 86 0116.8- 89 0123.0- 90 018.425%91005.6-930014.5-940116.4-95016.4-98005.8-990015.5-100002.50%Minimum0125.575.0%	<u>75</u> 76			15.5 7.8	
78 0 1 20.5 - 79 0 0 18.0 - 80 0 0 6.5 50% 81 0 0 15.9 - 82 0 1 15.5 - 83 0 0 11.2 - 84 0 0 9.8 - 85 0 1 19.2 - 86 0 1 19.2 - 87 0 0 5.9 - 88 0 1 16.8 - 90 0 1 23.0 - 91 0 0 7.0 - 92 0 0 7.0 - 93 0 0 14.5 - 94 0 1 7.9 - 96 0 0 9.3 - 98 0<	77	0	0	7.2	
80 0 0 6.5 50% 81 0 0 15.9 - 82 0 1 15.5 - 83 0 0 11.2 - 84 0 0 9.8 - 85 0 1 25.5 - 86 0 1 19.2 - 87 0 0 5.9 - 88 0 1 16.8 - 90 0 1 23.0 - 90 0 1 8.4 25% 91 0 0 7.0 - 92 0 0 14.5 - 93 0 0 14.5 - 95 0 1 7.9 - 96 0 0 9.3 - 97 0 1 6.4 - 98 0	78	0	1	20.5	
82 0 1 15.5 - 83 0 0 11.2 - 84 0 0 9.8 - 85 0 1 25.5 - 86 0 1 19.2 - 87 0 0 5.9 - 88 0 1 16.8 - 89 0 1 23.0 - 90 0 1 8.4 25% 91 0 0 7.0 - 92 0 0 14.5 - 93 0 0 14.5 - 94 0 1 16.4 - 95 0 1 7.9 - 96 0 0 9.3 - 97 0 1 6.4 - 98 0 0 7.5 25% 100				18.0	
82 0 1 15.5 - 83 0 0 11.2 - 84 0 0 9.8 - 85 0 1 25.5 - 86 0 1 19.2 - 87 0 0 5.9 - 88 0 1 16.8 - 89 0 1 23.0 - 90 0 1 8.4 25% 91 0 0 7.0 - 92 0 0 14.5 - 93 0 0 14.5 - 94 0 1 16.4 - 95 0 1 7.9 - 96 0 0 9.3 - 97 0 1 6.4 - 98 0 0 7.5 25% 100	81			15.9	
84 0 0 9.8 - 85 0 1 25.5 - 86 0 1 19.2 - 87 0 0 5.9 - 88 0 1 16.8 - 89 0 1 23.0 - 90 0 1 8.4 25% 91 0 0 7.0 - 92 0 0 5.6 - 93 0 0 14.5 - 94 0 1 16.4 - 95 0 1 7.9 - 96 0 0 9.3 - 97 0 1 6.4 - 98 0 0 15.5 - 100 0 0 7.5 25% Minimum 0 0 2.5 0%	82	0	1	15.5	-
85 0 1 25.5 - 86 0 1 19.2 - 87 0 0 5.9 - 88 0 1 16.8 - 89 0 1 23.0 - 90 0 1 8.4 25% 91 0 0 7.0 - 92 0 0 5.6 - 93 0 0 14.5 - 94 0 1 16.4 - 95 0 1 7.9 - 96 0 0 9.3 - 97 0 1 6.4 - 98 0 0 15.5 - 100 0 0 7.5 25% Minimum 0 0 2.5 0%				11.2	
86 0 1 19.2 - 87 0 0 5.9 - 88 0 1 16.8 - 89 0 1 23.0 - 90 0 1 8.4 25% 91 0 0 7.0 - 92 0 0 5.6 - 93 0 0 14.5 - 93 0 0 14.5 - 94 0 1 16.4 - 95 0 1 7.9 - 96 0 0 9.3 - 97 0 1 6.4 - 98 0 0 15.5 - 100 0 0 7.5 25% Minimum 0 0 2.5 0%	85		-	9.8	
87 0 0 5.9 - 88 0 1 16.8 - 89 0 1 23.0 - 90 0 1 8.4 25% 91 0 0 7.0 - 92 0 0 5.6 - 93 0 0 14.5 - 93 0 0 14.5 - 94 0 1 16.4 - 95 0 1 7.9 - 96 0 0 9.3 - 97 0 1 6.4 - 98 0 0 15.5 - 100 0 0 7.5 25% Minimum 0 0 2.5 0%	86			19.2	
89 0 1 23.0 - 90 0 1 8.4 25% 91 0 0 7.0 - 92 0 0 5.6 - 93 0 0 14.5 - 94 0 1 16.4 - 95 0 1 7.9 - 96 0 0 9.3 - 97 0 1 6.4 - 98 0 0 15.5 - 99 0 0 7.5 25% Minimum 0 0 2.5 0%	87	0	0	5.9	-
90 0 1 8.4 25% 91 0 0 7.0 - 92 0 0 5.6 - 93 0 0 14.5 - 94 0 1 16.4 - 95 0 1 7.9 - 96 0 0 9.3 - 97 0 1 6.4 - 98 0 0 5.8 - 99 0 0 15.5 - 100 0 0 7.5 25% Minimum 0 0 2.5 0%	88			16.8	
91 0 0 7.0 - 92 0 0 5.6 - 93 0 0 14.5 - 94 0 1 16.4 - 95 0 1 7.9 - 96 0 0 9.3 - 97 0 1 6.4 - 98 0 0 5.8 - 99 0 0 15.5 - 100 0 0 7.5 25% Minimum 0 0 2.5 0%				∠3.0 8.4	
93 0 0 14.5 - 94 0 1 16.4 - 95 0 1 7.9 - 96 0 0 9.3 - 97 0 1 6.4 - 98 0 0 5.8 - 99 0 0 15.5 - 100 0 0 7.5 25% Minimum 0 0 2.5 0% Maximum 0 1 25.5 75.0%	91	0	0	7.0	
94 0 1 16.4 95 0 1 7.9 - 96 0 0 9.3 - 97 0 1 6.4 - 98 0 0 5.8 - 99 0 0 15.5 - 100 0 0 7.5 25% Minimum 0 0 2.5 0% Maximum 0 1 25.5 75.0%	92	0		5.6	
95 0 1 7.9 - 96 0 0 9.3 - 97 0 1 6.4 - 98 0 0 5.8 - 99 0 0 15.5 - 100 0 0 7.5 25% Minimum 0 0 2.5 0% Maximum 0 1 25.5 75.0%				14.5	
96 0 9.3 - 97 0 1 6.4 - 98 0 0 5.8 - 99 0 0 15.5 - 100 0 0 7.5 25% Minimum 0 0 1 25.5 75.0%	95			7.9	
98 0 0 5.8 - 99 0 0 15.5 - 100 0 0 7.5 25% Minimum 0 0 2.5 0% Maximum 0 1 25.5 75.0%	96	0	0	9.3	
99 0 0 15.5 - 100 0 0 7.5 25% Minimum 0 0 2.5 0% Maximum 0 1 25.5 75.0%				6.4	
100 0 7.5 25% Minimum 0 0 2.5 0% Maximum 0 1 25.5 75.0%			-		
Minimum 0 0 2.5 0% Maximum 0 1 25.5 75.0%	100			7.5	25%
Maximum 0 1 25.5 75.0% Mean 0 0 10.0 32.5%	Minimum	0	0	2.5	0%
weatt V V 10.0 32.5%					75.0%
Median 0 0 8.6 25.0%				10.0	

Table D.11: Supporting Substrate and Calcite Measures for Sampling Area RG_FO23, Line Creek, 2019

	F	Replicate		1	2	3	4	5	6	7	8	9	10
		Date		6-Sep-19	6-Sep-19	6-Sep-19	6-Sep-19	6-Sep-19	-	-	-	-	-
	4	Time		10:15	10:43	11:39	13:10	13:33	-	-	-	-	-
		UTM	Easting	662168	662179	662207	662224	662223	-	-	-	-	-
	RG_LI24	UTW	Northing	5538395	5538396	5538386	5538421	5538429	-	-	-	-	-
8	2	Depth (c	m)	21	17	17	20	17	-	-	-	-	-
Reference		Velocity	(m/s)	0.309	0.248	0.266	0.364	0.315	-	-	-	-	-
fer		Date		9-Sep-19	9-Sep-19	9-Sep-19	9-Sep-19	9-Sep-19	-	-	-	-	-
Re	۳	Time		9:45	10:09	12:14	12:41	14:24	-	-	-	-	-
	Ï	Time UTM	Easting	661065	661063	661129	661140	661187	-	-	-	-	-
			Northing	5531412	5531417	5531390	5531370	5531342	-	-	-	-	-
	В. В	Depth (cm)		25	17	15	16	16	-	-	-	-	-
		Velocity	Velocity (m/s)		0.306	0.377	0.306	0.255	-	-	-	-	-
		Date		7-Sep-19									
	ГІГСЗ	Time		8:47	9:09	9:30	11:23	11:40	12:40	13:41	14:06	14:45	15:07
	=	υтм	Easting	659866	659875	659871	659897	659899	659904	659934	659935	659940	659935
þé		0110	Northing	5531742	5531746	5531751	5531773	5531777	5531787	5531832	5531837	5531842	5531844
ose	RG	Depth (c	m)	18	19	17	23	20	23	16	17	15	21
Mine-Exposed		Velocity	(m/s)	0.282	0.268	0.315	0.311	0.248	0.333	0.295	0.313	0.341	0.219
ų		Date		10-Sep-19	11-Sep-19	11-Sep-19							
ine	LIDSL	Time		8:16	9:07	10:35	11:00	12:38	13:14	14:32	15:21	8:41	9:33
Σ	<u>₽</u>	υтм	Easting	659257	659267	659293	659290	659316	659317	659343	659340	659365	659367
		-	Northing	5530524	5530546	5530753	5530584	5530620	5530614	5530662	5530679	5530728	5530730
	В. С	Depth (c	m)	15	19	15	17	15	21	17	15	17	19
		Velocity	(m/s)	0.329	0.271	0.288	0.362	0.214	0.274	0.189	0.360	0.247	0.260

 Table D.12:
 Supporting Measures Associated with Hess Benthic Invertebrate Community Sampling at Line Creek and

 Fording River, September 2019
 September 2019

Note: "-" = data not collected/not available.

Table D.13: Supporting Measures Associated with 3-Minute Kick and Sweep Benthic Invertebrate Community Sampling at
Line Creek and Fording River, September 2019

Waterbody Biological Area Code Sample ID: RG		
Date 6-Sep-19 Time 9:09	ReplicateDepth (cm)113.0	Velocity (m/s) 0.523
Easting 662165	2 14.0	0.523
UTM Northing 5538411	3 16.0	0.727
Total Kick Distance (m) 7	4 13.0	0.152
Sampling Time (min) 3	5 16.0	0.678
Full Transect? Yes		
# Transects 5 Sample ID: RG	i L124 2 BIC	
Date 6-Sep-19	Replicate Depth (cm)	Velocity (m/s)
Time 12:05	1 15.0	0.424
UTM Easting 662214	2 18.0	0.238
RG_LI24 Northing 5538393 Total Kick Distance (m) 6	3 16.0 4 22.0	0.845 0.550
Sampling Time (min) 3	<u> </u>	0.550
Full Transect? Yes		
# Transects 5		
Date Sample ID: RG		Voloaity (m/a)
Time 14:08	ReplicateDepth (cm)118.5	Velocity (m/s) 0.168
UTM Easting 662221	2 18.0	1.003
Northing 5538429	3 15.0	0.413
Total Kick Distance (m) 8	4 12.0	0.659
Sampling Time (min) 3 Full Transect? Yes	5 13.0	0.444
#Transects 6		
Reference Sample ID: RG		
Date 9-Sep-19	Replicate Depth (cm)	Velocity (m/s)
Time 10:55 Easting 661071	<u>1</u> 26.0 2 27.0	0.341
UTM Easting 661071 Northing 5531404	2 27.0 3 23.0	0.324 0.613
Total Kick Distance (m) 15	4 25.0	0.299
Sampling Time (min) 3	5 14.0	0.283
Full Transect? Yes		
# Transects 5 Sample ID: RG	SLINE 2 BIC	
Date 9-Sep-19	SLINE_2_BIC Replicate Depth (cm)	Velocity (m/s)
Time 13:22	1 21.0	0.385
UTM Easting 661135	2 29.0	0.375
RG_SLINE Northing 5531366	3 22.0	0.260
Total Kick Distance (m) 12 Sampling Time (min) 3	4 10.0 5 16.0	0.334 0.296
Full Transect? Yes	· 10.0	0.200
# Transects 2.5		
Sample ID: RG		
Date 9-Sep-19 Time 15:10	ReplicateDepth (cm)120.0	Velocity (m/s) 0.189
Easting 661184	2 20.0	0.435
UTM Northing 5531324	3 22.0	0.345
Total Kick Distance (m) 11	4 22.0	0.202
Sampling Time (min) 3 Full Transect? Yes	5 29.0	0.444
#Transects 3.5		
Sampling ID: RC		
Date 4-Sep-19	Replicate Depth (cm)	Velocity (m/s)
Time 14:57 LITM Easting 660113	1 14.0 2 22.0	0.489 0.246
RG_LCUT UTM Lasung 600113 Northing 5532141	3 26.0	0.246
Total Kick Distance (m) 11	4 24.0	0.545
Sampling Time (min) 3	5 16.0	0.237
Full Transect? Yes		
# Transects 6 Sample ID: L	ILC3 1 BIC	
Date 7-Sep-19	Replicate Depth (cm)	Velocity (m/s)
Time 9:37	1 22.0	0.459
UTM Easting 659869	2 25.0	0.312
Orim Northing 5531744 Total Kick Distance (m) 8	3 44.0 4 29.0	1.082 0.741
Sampling Time (min) 3	<u> </u>	0.629
Full Transect? Yes		
Mine-exposed RG_LILC3 # Transects 5.5		
(Line Creek) Sample ID: L Date 7-Sep-19	ILC3_2_BIC Replicate Depth (cm)	Velocity (m/s)
Time 12:00	ReplicateDepth (cm)117.0	0.256
UTM Easting 659898	2 28.0	0.499
Northing 5531781	3 34.0	0.377
Total Kick Distance (m) 9	4 32.0	0.670
Sampling Time (min) 3 Full Transect? Yes	5 24.0	0.233
# Transects 6		
Sample ID: L		
Date 7-Sep-19	Replicate Depth (cm)	Velocity (m/s)
Time 14:30	1 17.0	0.768
Easting 659933 RG_LILC3 UTM Northing 5531833	2 23.0 3 19.0	1.059 1.333
		0.661
	4 13.0	0.001
Sampling Time (min) 3	4 13.0 5 20.0	0.419

 Table D.13:
 Supporting Measures Associated with 3-Minute Kick and Sweep Benthic Invertebrate Community Sampling at

 Line Creek and Fording River, September 2019

Waterbody E	Biological Area Code			RG_LISP24_1_BIC		
		Date Time	5-Sep-19 13:34	Replicate 1	Depth (cm)	Velocity (m/s
		Fasting	13:34 659673	2	17.0 27.0	0.290
		UTM Northing	5531169	3	34.5	0.358
	RG_LISP24	Total Kick Distance (m)	6	4	33.0	0.229
		Sampling Time (min)	3	5	23.0	0.475
		Full Transect?	Yes	5	23.0	0.475
		# Transects	2			
				RG_LIDSL_1_BIC		
		Date	10-Sep-19	Replicate	Depth (cm)	Velocity (m/s
		Time	9:12	1	19.0	0.303
		UTM Easting	659262	2	27.0	0.518
	RG_LIDSL	Total Kick Distance (m)	5530538 30	3 4	29.0 19.0	0.725
		Sampling Time (min)	3	5	35.0	0.304
		Full Transect?	Yes	Ŭ	00.0	0.001
		# Transects	5			
		Data		RG_LIDSL_2_BIC		
		Date Time	10-Sep-19 11:13	Replicate 1	Depth (cm) 9.0	Velocity (m/s 0.506
		Easting	659288	2	24.0	0.506
		UTM Northing	5530577	3	35.0	0.433
		Total Kick Distance (m)	20	4	22.0	0.247
		Sampling Time (min)	3	5	15.0	0.568
		Full Transect?	Yes		-	
		# Transects	2			
		D -1-		RG_LIDSL_3_BIC		M-1- 10 / /
		Date Time	10-Sep-19 13:24	Replicate	Depth (cm) 22.0	Velocity (m/s 0.388
		Easting	659316	1 2	22.0	0.388
		UTM Northing	5530615	3	39.0	0.309
		Total Kick Distance (m)	16	4	37.0	0.570
		Sampling Time (min)	3	5	29.0	0.470
		Full Transect?	Yes	1		-
	RG_LIDSL	# Transects	3.5			
				RG_LIDSL_4_BIC		
		Date	10-Sep-19	Replicate	Depth (cm)	Velocity (m/s
		Time	14:58	1	28.0	0.541
		UTM Easting Northing	659345 5530663	2 3	25.0 32.0	0.773
		Total Kick Distance (m)	15	4	27.0	0.037
		Sampling Time (min)	3	5	11.0	0.395
		Full Transect?	Yes	Ŭ	11.0	0.000
ne-exposed		# Transects	2.5			
ine Creek)				RG_LIDSL_5_BIC		
		Date	10-Sep-19	Replicate	Depth (cm)	Velocity (m/s
		Time	10:09 659365	1 2	19.0	0.504 0.275
		UTM Easting Northing	5530726	3	17.0 33.0	0.275
		Total Kick Distance (m)	15	4	30.0	0.657
		Sampling Time (min)	3	5	38.0	0.272
		Full Transect?	Yes			
_		# Transects	2.5			
		Date	12-Sep-19	RG_LIDCOM_1_B Replicate	Depth (cm)	Velocity (m/s
		Time	9:34	1	31.0	0.148
		Easting	658183	2	32.0	0.140
	RG_LIDCOM	UTM Northing	5529815	3	16.0	0.374
					20.0	0.678
		Total Kick Distance (m)	18	4		
		Sampling Time (min)	3	4 5	49.0	0.644
		Sampling Time (min) Full Transect?	3 Yes			
-		Sampling Time (min)	3 Yes 3	5		
-		Sampling Time (min) Full Transect?	3 Yes 3 Sample ID	5 : RG_LI8_1_BIC	49.0	0.644
_		Sampling Time (min) Full Transect? # Transects	3 Yes 3	5		0.644
		Sampling Time (min) Full Transect? # Transects Date Time	3 Yes 3 Sample ID 11-Sep-19 12:10 655450	5 : RG_LI8_1_BIC Replicate 1 2	49.0 Depth (cm) 28.0 31.0	0.644 Velocity (m/s
_	RG_LI8	Sampling Time (min) Full Transect? # Transects Date Time UTM Easting Northing	3 Yes 3 Sample ID 11-Sep-19 12:10 655450 5528950	5 RG_LI8_1_BIC Replicate 1 2 3	49.0 Depth (cm) 28.0 31.0 16.0	0.644 Velocity (m/s 0.366 1.132 0.596
	RG_LI8	Sampling Time (min) Full Transect? # Transects Date Time UTM Easting Northing Total Kick Distance (m)	3 Yes 3 Sample ID 11-Sep-19 12:10 655450 5528950 18	5 RG_LI8_1_BIC Replicate 1 2 3 4	49.0 Depth (cm) 28.0 31.0 16.0 21.0	0.644 Velocity (m/s 0.366 1.132 0.596 0.697
	RG_LI8	Sampling Time (min) Full Transect? # Transects Date Time UTM Easting Northing Total Kick Distance (m) Sampling Time (min)	3 Yes 3 Sample ID 11-Sep-19 12:10 655450 5528950 18 3	5 RG_LI8_1_BIC Replicate 1 2 3	49.0 Depth (cm) 28.0 31.0 16.0	0.644 Velocity (m/s 0.366 1.132 0.596
	RG_LI8	Sampling Time (min) Full Transect? # Transects Date Time UTM Easting Northing Total Kick Distance (m) Sampling Time (min) Full Transect?	3 Yes 3 Sample ID 11-Sep-19 12:10 655450 5528950 18 3 Yes	5 RG_LI8_1_BIC Replicate 1 2 3 4	49.0 Depth (cm) 28.0 31.0 16.0 21.0	0.644 Velocity (m/s 0.366 1.132 0.596 0.697
	RG_LI8	Sampling Time (min) Full Transect? # Transects Date Time UTM Easting Northing Total Kick Distance (m) Sampling Time (min)	3 Yes 3 Sample ID 11-Sep-19 12:10 655450 5528950 18 3 Yes 2	5 RG_LI8_1_BIC Replicate 1 2 3 4	49.0 Depth (cm) 28.0 31.0 16.0 21.0	0.644 Velocity (m/s 0.366 1.132 0.596 0.697
	RG_LI8	Sampling Time (min) Full Transect? # Transects Date Time UTM Easting Northing Total Kick Distance (m) Sampling Time (min) Full Transect? # Transects Date	3 Yes 3 Sample ID 11-Sep-19 12:10 655450 5528950 18 3 Yes 2 Sample ID 11-Sep-19	5 RG_LI8_1_BIC Replicate 1 2 3 4 5	49.0 Depth (cm) 28.0 31.0 16.0 21.0	0.644 Velocity (m/s 0.366 1.132 0.596 0.697 0.460 Velocity (m/s
	RG_LI8	Sampling Time (min) Full Transect? # Transects Date Time UTM Easting Northing Total Kick Distance (m) Sampling Time (min) Full Transect? # Transects Date Time	3 Yes 3 Sample ID 11-Sep-19 12:10 655450 5528950 18 3 Yes 2 Sample ID 11-Sep-19 13:39	5 RG_LI8_1_BIC Replicate 1 2 3 4 5 RG_LI8_2_BIC Replicate 1	49.0 Depth (cm) 28.0 31.0 16.0 21.0 33.0 Depth (cm) 27.5	0.644 Velocity (m/s 0.366 1.132 0.596 0.697 0.460 Velocity (m/s 0.177
	RG_LI8	Sampling Time (min) Full Transect? # Transects Date Time UTM Easting Northing Total Kick Distance (m) Sampling Time (min) Full Transect? # Transects Date Time LITM Easting	3 Yes 3 Sample ID 11-Sep-19 12:10 655450 5528950 18 3 Yes 2 Sample ID 11-Sep-19 13:39 655492	5 RG_LI8_1_BIC Replicate 1 2 3 4 5 RG_LI8_2_BIC Replicate 1 2	49.0 Depth (cm) 28.0 31.0 16.0 21.0 33.0 Depth (cm) 27.5 24.0	0.644 Velocity (m/s 0.366 1.132 0.596 0.697 0.460 Velocity (m/s 0.177 0.398
	RG_LI8	Sampling Time (min) Full Transect? # Transects Date Time UTM Easting Northing Total Kick Distance (m) Sampling Time (min) Full Transect? # Transects Date Time UTM Easting Northing	3 Yes 3 Sample ID 11-Sep-19 12:10 655450 5528950 18 3 Yes 2 Sample ID 11-Sep-19 13:39 655492 5528892	5 RG_LI8_1_BIC Replicate 1 2 3 4 5 RG_LI8_2_BIC Replicate 1 2 3 3	49.0 Depth (cm) 28.0 31.0 16.0 21.0 33.0 Depth (cm) 27.5 24.0 26.0	0.644 Velocity (m/s 0.366 1.132 0.596 0.697 0.460 Velocity (m/s 0.177 0.398 0.516
	RG_LI8	Sampling Time (min) Full Transect? # Transects Date Time UTM Easting Northing Total Kick Distance (m) Sampling Time (min) Full Transect? # Transects Date Time UTM Easting Northing Total Kick Distance (m)	3 Yes 3 Sample ID 11-Sep-19 12:10 655450 5528950 18 3 Yes 2 Sample ID 11-Sep-19 13:39 655492 5528892 22	5 RG_LI8_1_BIC Replicate 1 2 3 4 5 RG_LI8_2_BIC Replicate 1 2 3 4 4 5 RG_LI8_2_BIC Replicate 1 2 3 4 4 5 REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE	49.0 Depth (cm) 28.0 31.0 16.0 21.0 33.0 Depth (cm) 27.5 24.0 26.0 40.0	0.644 Velocity (m/s 0.366 1.132 0.596 0.697 0.460 Velocity (m/s 0.177 0.398 0.516 0.475
	RG_LI8	Sampling Time (min) Full Transect? # Transects Date Time UTM Easting Northing Total Kick Distance (m) Sampling Time (min) Full Transect? # Transects Date Time UTM Easting Northing Total Kick Distance (m) Sampling Time (min)	3 Yes 3 Sample ID 11-Sep-19 12:10 655450 5528950 18 3 Yes 2 Sample ID 11-Sep-19 13:39 655492 5528892 22 3	5 RG_LI8_1_BIC Replicate 1 2 3 4 5 RG_LI8_2_BIC Replicate 1 2 3 3	49.0 Depth (cm) 28.0 31.0 16.0 21.0 33.0 Depth (cm) 27.5 24.0 26.0	0.644 Velocity (m/s 0.366 1.132 0.596 0.697 0.460 Velocity (m/s 0.177 0.398 0.516
		Sampling Time (min) Full Transect? # Transects Date Time UTM Easting Northing Total Kick Distance (m) Sampling Time (min) Full Transect? # Transects Date Time UTM Easting Northing Total Kick Distance (m) Sampling Time (min) Full Transect?	3 Yes 3 Sample ID 11-Sep-19 12:10 655450 5528950 18 3 Yes 2 Sample ID 11-Sep-19 13:39 655492 5528892 22 3 Yes	5 RG_LI8_1_BIC Replicate 1 2 3 4 5 RG_LI8_2_BIC Replicate 1 2 3 4 4 5 RG_LI8_2_BIC Replicate 1 2 3 4 4 5 REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE REPLICATE	49.0 Depth (cm) 28.0 31.0 16.0 21.0 33.0 Depth (cm) 27.5 24.0 26.0 40.0	0.644 Velocity (m/s 0.366 1.132 0.596 0.697 0.460 Velocity (m/s 0.177 0.398 0.516 0.475
	RG_LI8 RG_LI8	Sampling Time (min) Full Transect? # Transects Date Time UTM Easting Northing Total Kick Distance (m) Sampling Time (min) Full Transect? # Transects Date Time UTM Easting Northing Total Kick Distance (m) Sampling Time (min)	3 Yes 3 Sample ID 11-Sep-19 12:10 655450 5528950 18 3 Yes 2 Sample ID 11-Sep-19 13:39 655492 5528892 22 3 Yes 22 3	5 RG_LI8_1_BIC Replicate 1 2 3 4 5 RG_LI8_2_BIC Replicate 1 2 3 4 5 5	49.0 Depth (cm) 28.0 31.0 16.0 21.0 33.0 Depth (cm) 27.5 24.0 26.0 40.0	0.644 Velocity (m/s 0.366 1.132 0.596 0.697 0.460 Velocity (m/s 0.177 0.398 0.516 0.475
		Sampling Time (min) Full Transect? # Transects Date Time UTM Easting Northing Total Kick Distance (m) Sampling Time (min) Full Transect? # Transects Date Time UTM Easting Northing Total Kick Distance (m) Sampling Time (min) Full Transect?	3 Yes 3 Sample ID 11-Sep-19 12:10 655450 5528950 18 3 Yes 2 Sample ID 11-Sep-19 13:39 655492 5528892 22 3 Yes 22 3	5 RG_LI8_1_BIC Replicate 1 2 3 4 5 RG_LI8_2_BIC Replicate 1 2 3 4 5 RG_LI8_2_BIC Replicate 1 2 3 4 5 RG_LI8_2_BIC RG_LI8_2_BIC RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED R	49.0 Depth (cm) 28.0 31.0 16.0 21.0 33.0 Depth (cm) 27.5 24.0 26.0 40.0	0.644 Velocity (m/s 0.366 1.132 0.596 0.697 0.460 Velocity (m/s 0.177 0.398 0.516 0.475 0.956
		Sampling Time (min) Full Transect? # Transects Date Time UTM Easting Northing Total Kick Distance (m) Sampling Time (min) Full Transect? # Transects Date Time UTM Easting Northing Total Kick Distance (m) Sampling Time (min) Full Transect? # Transect? # Transect?	3 Yes 3 Sample ID 11-Sep-19 12:10 655450 5528950 18 3 Yes 2 Sample ID 11-Sep-19 13:39 655492 5528892 22 3 Yes 22 3 Yes 22 3 655492 5528892 22 3 Yes 2.25 Sample ID	5 RG_LI8_1_BIC Replicate 1 2 3 4 5 RG_LI8_2_BIC Replicate 1 2 3 4 5 5	49.0 Depth (cm) 28.0 31.0 16.0 21.0 33.0 Depth (cm) 27.5 24.0 26.0 40.0 22.0	0.644 Velocity (m/s 0.366 1.132 0.596 0.697 0.460 Velocity (m/s 0.177 0.398 0.516 0.475 0.956
		Sampling Time (min) Full Transect? # Transects Date Time UTM Easting Northing Total Kick Distance (m) Sampling Time (min) Full Transect? # Transects Date Time UTM Easting Northing Total Kick Distance (m) Sampling Time (min) Full Transect? # Transects Date Time UTM Easting Northing	3 Yes 3 Sample ID 11-Sep-19 12:10 655450 5528950 18 3 Yes 2 Sample ID 11-Sep-19 13:39 655492 5528892 22 3 Yes 22 3 Yes 22 3 Yes 22 3 Yes 2.25 Sample ID 11-Sep-19	5 RG_LI8_1_BIC Replicate 1 2 3 4 5 RG_LI8_2_BIC Replicate 1 2 3 4 5 RG_LI8_3_BIC Replicate	49.0 Depth (cm) 28.0 31.0 16.0 21.0 33.0 Depth (cm) 27.5 24.0 26.0 40.0 22.0 Depth (cm)	0.644 Velocity (m/s 0.366 1.132 0.596 0.697 0.460 Velocity (m/s 0.177 0.398 0.516 0.475 0.956 Velocity (m/s
		Sampling Time (min) Full Transect? # Transects Date Time UTM Easting Northing Total Kick Distance (m) Sampling Time (min) Full Transect? # Transects Date Time UTM Easting Northing Total Kick Distance (m) Sampling Time UTM Easting Northing Total Kick Distance (m) Sampling Time (min) Full Transect? # Transects Date Time Date Time UTM Easting Northing	3 Yes 3 Sample ID 11-Sep-19 12:10 655450 5528950 18 3 Yes 2 Sample ID 11-Sep-19 13:39 655492 5528892 22 3 Yes 22 Sample ID 11-Sep-19 13:39 655492 5528892 22 3 Yes 2.25 Sample ID 11-Sep-19 15:20 655570 5528837	5 RG_LI8_1_BIC Replicate 1 2 3 4 5 RG_LI8_2_BIC Replicate 1 2 3 4 5 RG_LI8_3_BIC Replicate 1 2 3 4 5 RG_LI8_3_BIC Replicate 1 2 3 4 5 RG_LI8_3_BIC Replicate 3 4 5 RG_LI8_3_BIC Replicate 3 4 5 RG_LI8_3_BIC RED RG_LI8_3_BIC RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED	49.0 Depth (cm) 28.0 31.0 16.0 21.0 33.0 Depth (cm) 27.5 24.0 26.0 40.0 22.0 Depth (cm) 31.0 27.0 22.0	0.644 Velocity (m/s 0.366 1.132 0.596 0.697 0.460 Velocity (m/s 0.177 0.398 0.516 0.475 0.956 Velocity (m/s 0.770 0.732 0.540
		Sampling Time (min) Full Transect? # Transects Date Time UTM Easting Northing Total Kick Distance (m) Sampling Time (min) Full Transect? # Transects Date Time UTM Easting Northing Total Kick Distance (m) Sampling Time (min) Full Transect? # Transects Date Time UTM Easting Northing Total Kick Distance (m) Sampling Time (min) Full Transect? # Transects	3 Yes 3 Sample ID 11-Sep-19 12:10 655450 5528950 18 3 Yes 2 Sample ID 11-Sep-19 13:39 655492 5528892 22 3 Yes 22 3 Yes 22.5 Sample ID 11-Sep-19 15:20 655570 5528837 18	5 RG_LI8_1_BIC Replicate 1 2 3 4 5 RG_LI8_2_BIC Replicate 1 2 3 4 5 RG_LI8_3_BIC Replicate 1 2 3 4 5 RG_LI8_3_BIC Replicate 1 2 3 4 5 RG_LI8_3_BIC Replicate 1 2 3 4 5 RG_LI8_3_BIC Replicate 1 2 3 4 5 RG_LI8_3_BIC Replicate 1 2 3 4 5 RG_LI8_3_BIC RG_LI8_3_BIC RED RED RG_LI8_3_BIC RED RG_LI8_3_BIC RED RG_LI8_3_BIC RED RG_LI8_3_BIC RED RG_LI8_3_BIC RED RG_LI8_3_BIC RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED	49.0 Depth (cm) 28.0 31.0 16.0 21.0 33.0 Depth (cm) 27.5 24.0 26.0 40.0 22.0 Depth (cm) 31.0 27.0 22.0 24.0	0.644 Velocity (m/s 0.366 1.132 0.596 0.697 0.460 Velocity (m/s 0.177 0.398 0.516 0.475 0.956 Velocity (m/s 0.770 0.732 0.540 0.485
		Sampling Time (min) Full Transect? # Transects Date Time UTM Easting Northing Total Kick Distance (m) Sampling Time (min) Full Transect? # Transects Date Time UTM Easting Northing Total Kick Distance (m) Sampling Time UTM Easting Northing Total Kick Distance (m) Sampling Time (min) Full Transect? # Transects Date Time Date Time UTM Easting Northing	3 Yes 3 Sample ID 11-Sep-19 12:10 655450 5528950 18 3 Yes 2 Sample ID 11-Sep-19 13:39 655492 5528892 22 3 Yes 22 Sample ID 11-Sep-19 13:39 655492 5528892 22 3 Yes 2.25 Sample ID 11-Sep-19 15:20 655570 5528837	5 RG_LI8_1_BIC Replicate 1 2 3 4 5 RG_LI8_2_BIC Replicate 1 2 3 4 5 RG_LI8_3_BIC Replicate 1 2 3 4 5 RG_LI8_3_BIC Replicate 1 2 3 4 5 RG_LI8_3_BIC Replicate 3 4 5 RG_LI8_3_BIC Replicate 3 4 5 RG_LI8_3_BIC RED RG_LI8_3_BIC RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED RED	49.0 Depth (cm) 28.0 31.0 16.0 21.0 33.0 Depth (cm) 27.5 24.0 26.0 40.0 22.0 Depth (cm) 31.0 27.0 22.0	0.644 Velocity (m/s 0.366 1.132 0.596 0.697 0.460 Velocity (m/s 0.177 0.398 0.516 0.475 0.956 Velocity (m/s 0.770 0.732 0.540

 Table D.13:
 Supporting Measures Associated with 3-Minute Kick and Sweep Benthic Invertebrate Community Sampling at

 Line Creek and Fording River, September 2019

Waterbody	Biological Area Code			Sampling ID:	RG_FRUL_1_BI	С			
		[Date	12-Sep-19	Replicate	Depth (cm)	Velocity (m/s)		
			ime	14:52	1	11.0	0.744		
			Easting	654549	2	37.0	0.587		
		UTM	Northing	5530169	3	47.0	0.820		
	RG_FRUL	Total Kick	Distance (m)	21	4	32.0	0.463		
			Time (min)	3	5	43.0	0.830		
			ransect?	No	-				
		# Tra	ansects	3					
				Sampling ID:	RG_F023_1_BI	С			
		[Date	8-Sep-19	Replicate	Depth (cm)	Velocity (m/s)		
		Т	ime	9:01	1	15.0	0.282		
			Easting	652769	2	26.0	0.569		
		UTM	Northing	5528294	3	32.0	0.657		
		Total Kick	Distance (m)	15	4	46.0	0.657		
		Sampling	Time (min)	3	5	37.0	0.540		
	-		ransect?	No					
		# Tra	ansects	0.75					
				Sampling ID:	RG_FO23_2_BI	С			
			Date	8-Sep-19	Replicate	Depth (cm)	Velocity (m/s)		
		Т	ime	10:36	1	22.0	0.367		
		UTM	Easting	652856	2	27.0	0.718		
			Northing	5528378	3	35.0	1.001		
			Distance (m)	12	4	36.0	0.763		
			g Time (min)	3	5	31.0	0.836		
			ransect?	No					
Mine-exposed		# Tra	ansects	3					
(Fording River)): RG_F023_3_BIC				
(Date	8-Sep-19	Replicate	Depth (cm)	Velocity (m/s)		
		Т	ime	13:11	1	38.0	0.341		
		UTM	Easting	652950	2	32.0	0.632		
	RG_FO23		Northing	5528537	3	17.0	0.680		
			Distance (m)	15	4	35.0	0.697		
			Time (min)	3	5	36.0	1.019		
	-		ransect?	No					
	-	# 1 ra	ansects	0.75		<u>^</u>			
	-	Г	Date	8-Sep-19	RG_FO23_4_BI Replicate	Depth (cm)	Volocity (m/c)		
			ime	14:39	1	31.0	Velocity (m/s) 0.455		
		I	Easting	652929	2	38.0	0.433		
		UTM	Northing	5528648	3	56.0	0.517		
	-	Total Kick	Distance (m)	20	4	36.0	0.782		
	-		Time (min)	3	5	38.0	0.468		
	-		ransect?	No	0	00.0	0.400		
	-		ansects	3.5					
	-	,			RG_FO23_5_BI	С			
		[Date	8-Sep-19	Replicate	Depth (cm)	Velocity (m/s)		
			ime	16:14	1	39.0	0.554		
			Easting	652933	2	26.0	0.549		
		UTM	Northing	5528766	3	19.0	0.700		
	1 –	Total Kiek	Distance (m)	20	4	22.0	0.455		
		I ULAI MICK							
	-								
		Sampling	Time (min) ransect?	3 No	5	35.0	0.655		

Page 3 of 3

Table D.14: Habitat Information Associated with Benthic Invertebrate Community Sampling at Mine-Exposed and Reference Areas at Line Creek, September 2019

	Station ID	Refe	rence		Mine-exposed Line Creek						
	Station ID	RG_LI24	RG_SLINE	RG_LCUT	RG_LILC3	RG_LISP24	RG_LIDSL				
Waterbody		Line Creek	South Line Creek	Line Creek	Line Creek	Line Creek	Line Creek				
Date Sampled		6-Sep-19	9-Sep-19	5-Sep-19	7-Sep-19	5-Sep-19	10-Sep-19				
UTM	Easting	662221	661135	660113	659898	659673	659262				
(NAD83, 11U)) Northing	5538429	5531366	5532141	5531781	5531169	5530538				
Elevation		1,658	1,493	1,442	1,438	1,422	-				
Habitat Chara	cteristics			<u>.</u>							
Surrounding La	and Use	Forest, Mining	Forest	Mining	Mining	Forest, Mining	Mining				
Anthropogenic Influences		Mine access road downstream and adjacent mine activities (blasting).	Bridge downstream.	Mining operations upstream. Site downstream of WLC input.	AWTF discharge upstream. Surrounding mine influence and WLC discharge.	Upstream mining influence. Site downstream of contingency pond.	Upstream AWTF discharge. Adjacent road with side channel input downstream of K+S-5.				
Length of Read	ch Assessed (m)	50	50	50	50	50	100				
	% Bedrock	0	0	0	0	0	0				
	% Boulder	15	40	5	15	5	45				
	% Cobble	50	35	50	55	40	30				
Substrate	% Gravel	30	20	30	25	50	20				
	% Sand/Finer	5	5	10	5	5	5				
	% Fines	0	0	5	0	0	0				
Canopy Covera		1 to 25	1 to 25	1 to 25	0	0	0				
Macrophyte Co		0	0	0	0	0	0				
Streamside Ve		Shrubs, coniferous trees	-	Ferns/grasses	Ferns/grasses, shrubs	Ferns/grasses, shrubs, coniferous trees	Shrubs, coniferous trees				
Periphyton Cov	verage	Rocks slightly slippery, yellow- brown to light green colour (0.5 to 1mm thick)	Rocks slightly slippery, yellow- brown to light green colour (0.5 to 1mm thick)	brown algae (1 to 5mm)	Rocks have noticeable slippery feel, patches of thicker green to brown algae (1 to 5mm)	brown algae (1 to 5mm)	Rocks slightly slippery, yellow- brown to light green colour (0.5 to 1mm thick)				
Bank Stability		Unstable, substantial erosion	Unstable, substantial erosion	Stable, no erosion	Moderate	Unstable, substantial erosion	Unstable, substantial erosion				
Water Colour &	,	Colourless, clear	Colourless, clear	Colourless, clear	Colourless, clear	Colourless, clear	Colourless, clear				
Channel	Bankfull Width (m)	6.5	14.8	8.6	5.6	18.7	13.4				
Measurements	s Wetted Width (m) Bankfull-Wetted Depth (cm)	3.8 39	9.2	6.4 42	4.7 31	12.4	12.1 12.5				
Comments/Not		Water collected at K+S-1	Water collected before sampling at K+S-1. Habitat assessed at K+S-2. Bank erosion evident throughout sampling area. Braided channel at assessed station.		Water sample collected at K+S- 3 before any sampling.	Bank erosion along right upstream bank. Water samples collected before any other measures. Cobble/gravel mid bars present. Riparian mostly grasses with initial spruce growth. No mature spruce >10m from stream.	Water collected at K+S-1. Sediment replicate 4 taken in small side channel between K+S- 4 and K+S-5. Side channel borders road at points. Sediment 5 collected on 11-Sept-19, including DLP at 9:59. Two				

Notes: "-" = no data/not recorded; WLC = West Line Creek; AWTF = Active Water Treatment Facility; K+S = Kick and Sweep; DUP = field duplicate.

Table D.14: Habitat Information Associated with Benthic Invertebrate Community Sampling at Mine-Exposed and Reference Areas at Line Creek, September 2019

	Station ID	Mine-expose	d Line Creek	Mine-exposed	Fording River	
	Station ID	RG_LIDCOM	RG_LI8	RG_FRUL	RG_FO23	
Waterbody		Line Creek	Line Creek	Fording River	Fording River	
Date Sampled		12-Sep-19	11-Sep-19	12-Sep-19	8-Sep-19	
UTM	Easting	658183	655450	654529	652856	
(NAD83, 11U)	Northing	5529815	5528950	5530163	5528378	
Elevation		1,385	1,286	1,245	1,228	
Habitat Charac	teristics					
Surrounding La	nd Use	Forest, Mining	Forest, Mining	Forest, Mining	Forest, Mining	
Anthropogenic Influences		Upstream AWTF discharge, adjacent coal conveyor station just upstream bridge.	-	Teck mining facilities upstream. No immediate anthropogenic impacts.	Upstream mining influence. Adjacent road and bridge upstream.	
Length of Reac	h Assessed (m)	50	50	100	100	
	% Bedrock	5	0	0	0	
	% Boulder	20	25	10	25	
Out strate	% Cobble	30	50	50	35	
Substrate	% Gravel	35	20	30	30	
	% Sand/Finer	5	5	5	5	
	% Fines	5	0	5	5	
Canopy Covera	ge (%)	1 to 25	26 to 50	0	0	
Macrophyte Co	verage (%):	0	0	0	0	
Streamside Veg	getation	Ferns/grasses, coniferous trees	Deciduous and coniferous trees	Ferns/grasses, deciduous and coniferous trees	Shrubs	
Periphyton Cov	erage	Rocks have noticeable slippery feel, patches of thicker green to brown algae (1 to 5mm)	Rocks have noticeable slippery feel, patches of thicker green to brown algae (1 to 5mm)	Rocks have noticeable slippery feel, patches of thicker green to brown algae (1 to 5mm)	Rocks slightly slippery, yellow- brown to light green colour (0.5 to 1mm thick)	
Bank Stability		Stable, no erosion	Moderate	Unstable, substantial erosion	Unstable, substantial erosion	
Water Colour &	,	Colourless, clear	Colourless, clear	Colourless, clear	Colourless, clear	
Channel	Bankfull Width (m)	9.9	12.4	21.9	31.5	
Measurements	Wetted Width (m)	8.8	10.7	13.8	22.1	
-	Bankfull-Wetted Depth (cm)	47	18	23	52	
Comments/Note	es	Water sample collected before any sampling completed. Thick algae growth in places.	Water sample collected before K+S work at station.	Water sample collected downstream of kick location but before all sampling.	Water collected at K+S-1 before K+S sampling completed. Habitat evaluated at K+S transect 2. Substantial bank erosion on both banks.	

Notes: "-" = no data/not recorded; WLC = West Line C|Notes: "-" = no data/not recorded; WLC = West Line Creek; AWTF = Active Water Treatment Facility; K+S = Kick and Sweep; DUP = field duplicate.

	-	TM Zone 11U)				Angling		Effort		Bull Trout		Westslope Cutthroat Trout		
Area	Easting	Northing	Set Date	Start Time	End Time	Hours (hrs)	No. of Lines	(angler days)	Catch	Mortalities	CPUEª	Catch	Mortalities	CPUE ^a
	659870	5531576	04-Sep-19	13:40	16:10	2.50	2	0.21	3	0	14.4	2	0	9.6
	659870	5531576	05-Sep-19	7:30	12:05	4.58	2	0.38	6	0	15.7	2	0	5.2
RG_LILC3	659281	5530548	05-Sep-19	12:30	13:30	1.00	2	0.08	0	0	0.0	1	0	12.0
	659870	5531576	06-Sep-19	7:30	9:50	2.33	2	0.19	1	0	5.1	1	0	5.1
RG LIDCOM	658185	5529820	05-Sep-19	13:45	15:30	1.75	2	0.15	0	0	0.0	2	0	13.7
KG_LIDCOW	658185	5529820	06-Sep-19	10:10	12:30	2.33	2	0.19	0	0	0.0	4	0	20.6
	655378	5529048	06-Sep-19	13:00	16:00	3.00	2	0.25	2	0	8.0	2	0	8.0
RG_LI8	654671	5529013	07-Sep-19	8:00	11:40	3.67	2	0.31	2	0	6.5	3	0	9.8
	655378	5529048	07-Sep-19	12:00	15:45	3.75	2	0.31	0	0	0.0	2	0	6.4
							Total	2.1	14	0	6.7	19	0	9.2

Table D.15: Angling Records for Fish Tissue Sampling in Line Creek in September, 2019

Notes: UTM = Universal Transverse Mercator; NAD = North American Datum; CPUE = catch-per-unit-effort.

^a CPUE is calculated as the number of fish captured per angler day.