

Report: 2020 Greenhills Operation Local Aquatic Effects Monitoring Program (LAEMP) Report

Overview: This report presents the 2020 results of the local aquatic effects monitoring program developed for Teck's Greenhill Operations. The 2020 program was designed to address questions associated with potential aquatic effects at a localized area downstream of the west spoil development and Cougar Pit extension.

This report was prepared for Teck by Minnow Environmental Inc.

For More Information

If you have questions regarding this report, please:

- Phone toll-free to 1.855.806.6854
- Email feedbackteckcoal@teck.com

Future studies will be made available at teck.com/elkvalley

2020 Greenhills Operation Local Aquatic Effects Monitoring Program (LAEMP) Report

Prepared for: **Teck Coal Limited** Sparwood, British Columbia

Prepared by: **Minnow Environmental Inc.** Georgetown, Ontario

May 2021

2020 Greenhills Operation Local Aquatic Effects Monitoring Program (LAEMP) Report

EXECUTIVE SUMMARY

The 2020 Greenhills Operations (GHO) Local Aquatic Effects Monitoring Program (LAEMP) is designed to address questions associated with potential aquatic effects at a localized area downstream of the west spoil development and Cougar Pit extension at GHO. The GHO LAEMP focused on the Elk River (upstream and downstream of GHO), Elk River tributaries on the west side of Greenhills Ridge, as well as a side channel of the Elk River that receives flows, via surface water and/or groundwater, from the mine-influenced west-side tributaries (e.g., Thompson, Wolfram, and Leask creeks). The Elk River side channel is located between the Elk River and the west side of Greenhills Ridge. It branches off from the Elk River just south of Leask Creek, flows south over the Elk River floodplain, and converges back with the Elk River roughly 1.2 km downstream of Thompson Creek. The Elk River side channel receives overland flows from Thompson Creek at Reach 2. Four main study questions (discussed in detail in the paragraphs that follow) address concerns related to the local study area. The study questions focused on amphibian habitat quality/availability, surface water quality, the interaction between surface water and groundwater, and benthic invertebrate community structure and tissue chemistry.

Over thirty multi-day field visits were completed within the side channel and its floodplain complex in all seasons from 2017 to 2019 to identify and document habitat and occurrences of aquatic dependent biota. In 2020, three additional amphibian surveys were conducted in May, June, and July. These data were used to answer study question #2 (What is the seasonal habitat availability for amphibians in Reach 2^1 of the Elk River side channel?). The results were generally consistent over the four study years. Seasonal changes in flow affected habitat availability (e.g., lentic habitat was only observed in fall and winter in Reach 2). From freshet to late summer (three to four months of each study year), Reach 2 received flow from both the Elk River (via the upper side channel) and from Thompson Creek. Flows were relatively swift during this time, and not suitable for amphibian breeding. Although Reach 2 was swiftly flowing in the spring and early summer, breeding habitat may be present elsewhere in the area. From fall to early spring, Reach 2 remained wetted due to surface flows from Thompson Creek; during this time, the upper side channel is dry and disconnected from the main stem Elk River. Three amphibian species (Columbia spotted frog, western toad, long-toed salamander) were observed throughout the side channel in late spring and summer. Study question #2 has been answered through four years of investigation, and therefore it is recommended that no more work be done to address this study question.

¹ Reach 2 is located at the Elk River side channel at the confluence of Thompson Creek.

-

Water quality data were assessed for stations in the west-side tributaries, Elk River side channel, and the main stem Elk River to address study question #3 (What is the influence of the GHO discharges from the west-side tributaries on water quality in the Elk River and Elk River side channel?). Water quality at side channel stations GH ER1A and GH ERSC2 was influenced by Wolfram and Thompson creeks. Concentrations of most constituents were lower at the side channel station GH ERSC4, located upstream of Wolfram and Thompson creeks, compared to the two downstream stations. Within the side channel and main stem Elk River, the highest concentrations of constituents generally occurred in Reach 2 (RG GH-SCW3), which receives flow directly from Thompson Creek. Discharges from the west-side tributaries contributed to higher concentrations of some mine-related constituents in the main stem Elk River downstream of GHO (GH ERC) relative to the upstream reference station (GH ER2); however, with the exception of total selenium, concentrations measured at GH ERC were typically below benchmarks, screening values, and/or British Columbia Water Quality Guidelines (BCWQG), or were comparable to the upstream reference station. For the west-side tributaries, total selenium, sulphate, and TDS have been increasing in Leask and Wolfram creeks, while total nickel has been increasing in Leask Creek. In Thompson Creek, sulphate has increased in recent years, whereas total nickel has decreased. At the Reach 2 outlet, total nickel was higher in 2019 and 2020 compared to 2018. At the downstream main stem Elk River station (GH ERC), total selenium concentrations were higher in 2018, 2019, and 2020 relative to previous years, and nitrate concentrations were higher in 2019 and 2020 relative to previous years.

To answer study question #4 (What is the interaction between surface water and groundwater in the Elk River side channel?), a hydrogeological review and analysis of available groundwater and surface water data from the west side of GHO along the Elk River side channel. Side channel surface water predominantly infiltrated to ground and recharged groundwater. Localized areas of groundwater discharge occurred near the confluence with Wolfram Creek as well as downstream of Thompson Creek, but these discharge areas did not result in sustained flows within the side channel. Gaps and uncertainties were previously identified in the 2018 GHO LAEMP Report and have been partly addressed through work conducted in 2019 and 2020. Some uncertainties remain related to study question #4 remain. Additional work is planned for 2021 as part of the MBI to address remaining gaps, including installing new monitoring wells, collecting additional groundwater data, seep reconnaissance and sampling in the Elk River Side Channel, conducting flow and load accretion studies, and conducting geophysical surveys to determine depth to bedrock.

Benthic invertebrate community data collected annually in September from 2017 to 2020 contributed to the understanding of study question #5 (What are the benthic invertebrate community structures and tissue chemistry in the Elk River side channel and the main stem Elk

-

River upstream and downstream of the side channel, and are they changing over time?). Benthic invertebrate community endpoints did not differ greatly between perennially-wetted main stem Elk River stations (GH_ER2 and GH_ERC) and Elk River side channel stations (GH_ERSC4, GH_ER1A, and RG_ERSC5). In 2020 at main stem Elk River and Elk River side channel areas, total abundance, richness, % EPT (relative abundance of Ephemeroptera, Plecoptera, and Trichoptera), % Ephemeroptera, % Plecoptera, and % Trichoptera were within or above the regional normal range, except for % Trichoptera at GH_ER1A, RG_ERSC5, and GH_ERC in one sample each. The relative proportion of Trichoptera has been similarly low at the upstream reference area (GH_ER2); therefore, samples with % Trichoptera less than the regional normal range are likely related to local habitat characteristics rather than mine influence. At all main stem Elk River and Elk River side channel stations, % Chironomidae, % Diptera, and % Oligochaeta were within or below the regional normal range, except for % Oligochaeta at RG_ERSC5 in one of three samples. Overall, benthic invertebrate communities in the main stem Elk River and the Elk River side channel did not appear to be adversely affected by mine discharges.

Benthic invertebrate tissue chemistry data (selenium concentrations) were also collected annually in September of 2017 to 2020, and further addressed study question #5. Selenium concentrations in benthic invertebrate tissue were highest in Thompson Creek. Selenium concentrations. Concentrations in the side channel increased from upstream to downstream, from area GH_ERSC4 (upstream of Wolfram Creek) to GH_ER1A and GH_ERSC5 (both downstream of Wolfram Creek) to Reach 2 (RG_GH-SCW2 and RG_GH-SCW3), which is downstream of Thompson Creek. Although areas GH_ERSC2 and RG_SCDTC are both downstream of Thompson Creek and had similar aqueous concentrations of selenium, GH_ERSC2 had higher concentrations of selenium in benthic invertebrate tissue samples collected from Thompson Creek and downstream likely resulted from the presence of aqueous selenium in more bioavailable forms.

Benthic invertebrate community structure and tissue chemistry were similar at the downstream main stem station (GH_ERC) and the upstream main stem reference station (GH_ER2), suggesting minimal influence of GHO and the west-side tributaries on benthic invertebrate community endpoints and tissue chemistry in the main stem Elk River.

In further support of study question #5 to better understand potential mine-related effects on benthic invertebrate communities and tissue chemistry, sediment quality was assessed in the main stem Elk River upstream and downstream of the side channel, and in Reach 2 of the

side channel. Except for chrysene in one of five samples, 2-methylnaphthalene in two of five samples, phenanthrene in three of five samples, and pyrene in two of five samples collected at Reach 2, concentrations of constituents were within the normal range in sediment samples collected in 2020. Concentrations of constituents were below the upper sediment quality guideline (SQG; or only SQG only in the case of selenium) in all samples from 2020, except for selenium, 2-methylnaphthalene, and phenanthrene in Reach 2. In general, sediment quality data indicated limited influence of mine-related discharges on sediment chemistry in the main stem Elk River downstream of the side channel.

Teck has fulfilled the Permit 107517 Section 8.3.4 requirement for a LAEMP to be conducted from 2017 to 2020, focussing on the local area of the upper Elk River, the Elk River side channel, and tributaries located on the west side of Greenhills Ridge. Where concerns remain, the GHO LAEMP monitoring is incorporated into existing monitoring programs, such that these residual concerns continue to be addressed.

TABLE OF CONTENTS

EXE	CUTIVE SUMMARY	I
ACR	ONYMS AND ABBREVIATIONS	IX
1 II 1.1 1.2 1.3 1.4 1.5	NTRODUCTION	1 5 8 8 8
2 N	METHODS	. 12
2.1		12
2.2	Amphibians (Question #2)	12
2	2.2.1 Overview	.12
2	2.2.2 Trabilat Assessment	12
2.3	Water Quality (Questions #3 and #4)	
2	2.3.1 Overview	
2	2.3.2 Sample and Data Collection	17
2	2.3.3 Laboratory Analysis	19
2	2.3.4 Screening and Plotting of Water Quality Constituents	19
2	2.3.5 Statistical Analyses	23
2.4	Surface Water and Groundwater Interaction (Question #4)	25
2.5	Benthic Invertebrate Community (Question #5)	26
2	2.5.1 Overview	26
2	2.5.2 Sample Collection	26
2	2.5.3 Laboratory Analysis	28
2	2.5.4 Data Analysis	29
2.6	Benthic Invertebrate Tissue Chemistry (Question #5)	29
2	2.6.1 Overview	
2	2.6.2 Sample Collection	
2	2.0.3 Laboratory Analysis	
27	2.0.4 Data Analysis	31
2.1	2 7 1 Habitat	31
2	272 Calcite	.31
2	2.7.3 Sediment Quality	.32
3 F	RESULTS: STUDY QUESTION #2	35
4 5		20
4 1	Cuentiew	
4.1	Verview	
4.Z	Side Channel Monitoring Stations	
4.5 1 1	Main Stem Elk River Downstream versus Unstream of the West-Side Tributaries	
4.5	Summary	43
с. г	CECHITELETION #4	A E
9 H	XEOULID: SIUDI QUESIIUN #4	. 45
6 F	RESULTS: STUDY QUESTION #5	47
6.1	Overview	47

 6.2 Benthic Inverta 6.3 Concentration 6.4 Supporting Inf 6.4.1 Habitat 6.4.2 Calcite 6.4.3 Sediment 6 6.5 Summary 	ebrate Community Composition	7 5 0 3 3
7 INTEGRATED SU	JMMARY AND RECOMMENDATIONS7	3
7.1 Summary		3
7.2 Recommenda	tions	6
7.3 Statement of I	ntent	5
8 REFERENCES		6
APPENDIX A APPENDIX B	STUDY DESIGN AMENDMENT FOR THE 2020 GHO LAEMP DATA QUALITY REVIEW	
APPENDIX C	REACH 2 AMPHIBIAN HABITAT	
APPENDIX D	SURFACE WATER QUALITY	
APPENDIX E	GROUNDWATER-SURFACE WATER INTERACTIONS	
APPENDIX F	BENTHIC INVERTEBRATE COMMUNITY COMPOSITION	
APPENDIX G	BENTHIC INVERTEBRATE TISSUE CHEMISTRY	
APPENDIX H	DATA COLLECTED CONCURRENT WITH SEPTEMBER BIOLOGICAL SAMPLES	L
APPENDIX I	BIOLOGICAL TRIGGERS	

LIST OF FIGURES

0))

€

Figure 1.1:	Teck's Coal Mine Operations within the Elk River Watershed, Southeast British Columbia	2
Figure 1.2:	Teck's Greenhills Operation	3
Figure 1.3:	Conceptual Site Model for Potential Mine-Related Effects on the Aquatic Ecosystem, 2020 GHO LAEMP.	6
Figure 2.1:	Surface Water and Groundwater Quality Monitoring Stations, 2020 GHO LAEMP	. 18
Figure 2.2:	Data Logger, Benthic Invertebrate Community, and Benthic Invertebrate Tissue Chemistry, and Sediment Mine-exposed Reference Quality Sampling Stations, 2020 GHO LAEMP	.27
Figure 3.1: Figure 4.1:	Amphibian Observations in Reach 2, GHO LAEMP, May 2017 to July 2020 Surface Water Quality Monitoring Stations, 2020 GHO LAEMP	.36 .39

Figure 6.1:	Data Logger, Benthic Invertebrate Community, and Benthic Invertebrate Tissue Chemistry, and Sediment Mine-exposed Reference Quality Sampling	
	Stations, 2020 GHO LAEMP	48
Figure 6.2:	Benthic Invertebrate Community Composition, GHO LAEMP, September 2020	49
Figure 6.3:	Benthic Invertebrate Community Abundance and LPL Richness, GHO LAEMP, September 2020	50
Figure 6.4:	Benthic Invertebrate Community % EPT and % Ephemeroptera, GHO LAEMP. September 2020	51
Figure 6.5:	Benthic Invertebrate Community % Plecoptera and % Trichoptera, GHO LAEMP, September 2020	.52
Figure 6.6:	Benthic Invertebrate % Chironomidae and % Diptera Abundance, GHO LAEMP, September 2020	53
Figure 6.7:	Benthic Invertebrate % Oligochaeta Abundance, GHO LAEMP, September 2020	54
Figure 6.8:	Selenium Concentrations in Benthic Invertebrate Composite Tissue Samples, GHO LAEMP, 2017 to 2020	56
Figure 6.9:	Concentrations of Selenium Species Measured in Water Samples Collected Concurrent with Benthic Invertebrate Tissue Samples, and Concentrations of Selenium Measured in Benthic Invertebrate Tissue, GHO LAEMP, September 2020	59
Figure 6.10:	Observed (Markers) and Modelled (Lines) Selenium Concentrations in Benthic Invertebrate Composite Tissue Samples Relative to Aqueous Selenium Concentrations, GHO LAEMP, 2017 to 2020	61
Figure 6.11:	Observed (Markers) and Modelled (Lines) Selenium Concentrations in Benthic Invertebrate Composite Tissue Samples, GHO LAEMP, September 2020	62
Figure 6.12:	Mean Particle Size (%) and Total Organic Carbon Content (%) in Sediments, GHO LAEMP, September 2017, 2018, 2019, and 2020	65
Figure 6.13:	Sediment Metal and Polycyclic Aromatic Hydrocarbons (PAH) Concentrations Relative to BC Sediment Quality Guidelines (SQG) and Normal Ranges, GHO LAEMP, September 2017 to 2020	66

LIST OF TABLES

0

< -

Table 1.1:	Summary of Receptors, Assessment Endpoints, Measurement Endpoints, and Evaluation Criteria for the GHO LAEMP, 2020	7
Table 2.1:	Summary of Amphibian Surveys and Surface Water Quality, Groundwater Quality, Benthic Invertebrate, and Sediment Quality Sampling Conducted for the 2020 GHO LAEMP	13
Table 2.2:	West-side Tributary Water Quality Monitoring Stations in the GHO LAEMP, 2020	14
Table 2.3:	Groundwater Monitoring Stations in the 2020 GHO LAEMP	15
Table 2.4:	Water Sample Analyses	20
Table 2.5:	Analytical Methods for Water Samples	21
Table 2.6:	Analytical Methods for Sediment Samples	34
Table 6.1:	Calcite Index Measured at Benthic Invertebrate Monitoring Areas in Riffles, GHO LAEMP, September 2017 to 2020	64
Table 7.1:	Summary of Findings, Responses, and Adjustments Related to the GHO LAEMP in 2020	77

0

<.

Table 7.2:	Summary of Biological Trigger Analysis for Percent EPT and Concentration of Selenium in Benthic Invertebrate Tissue. Thopmson Creek and Elk River.	
	2020	78
Table 7.3:	Primary Monitoring Programs for 2021 and Onward Incorporating Data that	
	have been Reported under the 2020 GHO LAEMP Report	80

ACRONYMS AND ABBREVIATIONS

- ADIT Aquatic Data Integration Tool
- **ANOVA** Analysis of Variance
- **AMP** Adaptive Management Plan
- BCMOE Ministry of Environment
- BCWQG British Columbia Water Guideline
- **CABIN** Canadian Aquatic Biomonitoring Network
- CI Calcite Index
- CMO Coal Mountain Operation
- CPP Cougar Pit Phase 5 and 7-2 Project
- **CSM** Conceptual Site Model
- DO Dissolved Oxygen
- **DQR** Data Quality Review
- dw Dry Weight
- **EMC** Environmental Monitoring Committee
- ENV British Columbia Ministry of Environment and Climate Change Strategy (formerly BCMOE)
- EPT Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies)
- **EVO** Elkview Operation
- EVWQP Elk Valley Water Quality Plan
- EWT Early Warning Trigger
- FRO Fording River Operation
- GHO Greenhills Operation
- HSD Honestly Significant Difference
- K-M Kaplan-Meier
- **KNC** Ktunaxa Nation Council
- LA-ICP-MS Laser Ablation Inductively Coupled Plasma Mass Spectrometry
- LAEMP Local Aquatic Effects Monitoring Program
- LPL Lowest Practical Level
- LRL Laboratory Reporting Limit
- LCO Line Creek Operation
- **MBI** Mass Balance Investigation
- MCT Measure of Central Tendency
- **MOD** Magnitude of Difference
- PAH Polycyclic Aromatic Hydrocarbon
- PEL Probable Effect Level

0))

- QA/QC Quality Assurance and Quality Control
- **RAEMP** Regional Aquatic Effects Monitoring Program
- **RGMP** Regional Groundwater Monitoring Program
- **RWQM** Regional Water Quality Model
- **SEL** Severe Effect Level
- SEV Scale of the Severity
- SQG Sediment Quality Guideline
- SSGMP Site-Specific GHO Groundwater Monitoring Program
- **TDS** Total Dissolved Solids
- **TOC** Total Organic Carbon
- TrichAnalytics Inc. Trich
- **TSS** Total Suspended Solids

1 INTRODUCTION

1.1 Background

Teck Coal Limited (Teck) operates four steelmaking coal mines in the Elk River watershed, which are the Fording River Operation (FRO), Greenhills Operation (GHO), Line Creek Operation (LCO), and Elkview Operation (EVO; Figure 1.1). A fifth mine, Coal Mountain Mine (CMm), is also owned by Teck and located in the Elk River watershed; however, it is no longer in operation and has been moved into the care and maintenance designation. Discharges from the mines to the Elk River watershed are authorized by the British Columbia Ministry of Environment and Climate Change Strategy (ENV; formerly Ministry of Environment [BCMOE]) through permits that are issued under provisions of the *Environmental Management Act*. Permit 107517, issued November 19, 2014, and amended as required, specifies the terms and conditions associated with discharges from the five mine operations.

Through issuance of Permit 107517, ENV required that Teck develop a Local Aquatic Effects Monitoring Program (LAEMP) related to GHO (Figure 1.2) for 2017 to 2020. Section 8.3.4 of Permit 107517 outlines the LAEMP requirements as follows:

"The permittee must complete to the satisfaction of the director a study design for a LAEMP which will focus on the upper Elk River and the Elk River side channel and tributaries located on the west side of Greenhills Operation between EMS sites 0200389 [GH_ER2] and E3000090 [GH_ERC]² for 2017-2020 by June 1, 2017³. The study design must be reviewed by the EMC⁴ and be designed to an appropriate temporal scale to capture short term, local effects to the immediate receiving environment. Any changes to the approved study design must be reported in the annual LAEMP report."

Also, Section 9.5 of Permit 107517 states:

"The LAEMP Annual Reports must be reported on in accordance with generally accepted standards of good scientific practice in a written report and submitted to

⋞.

-

² Herein referred to as the west-side tributaries.

³ A study design for the 2017 LAEMP was submitted on May 31, 2017.

⁴ EMC refers to the Environmental Monitoring Committee, which Teck was required to form under Permit 107517. The EMC consists of representatives from Teck, ENV, the Ministry of Energy and Mines, the Ktunaxa Nation Council (KNC), Interior Health Authority, and an Independent Scientist. Environment and Climate Change Canada (ECCC) has also agreed to provide its perspectives on matters related to Permit 107517 and the Committee's activities, on a case-by-case basis when requested by the Committee. To date, the Committee has not called on ECCC to participate. The EMC reviews submissions and provides technical advice to Teck and the ENV Director regarding monitoring programs as stipulated in Section 12.2 of Permit 107517.

Document Path: C:\Users\MLaPalme\Trinity Consultants, Inc\Teck - 207202.0022 - GHO LAEMP\4 - GIS\Report\20-22 Figure 1.1 Teck Coal Limited Operation.mxd

Document Path: C:\Users\MLaPalme\Trinity Consultants, Inc\Teck - 207202.0022 - GHO LAEMP\4 - GIS\Report\20-22 Figure 1.2 Teck GHO.mxd

the director of each year following the data collection calendar year on the following dates [...] GHO LAEMP: May 31."

In addition to monitoring under the LAEMP, Teck conducts the Regional Aquatic Effects Monitoring Program (RAEMP) under Permit 107517. The RAEMP provides comprehensive routine monitoring and assessment of potential mine-related effects on the aquatic environment downstream from Teck's mines in the Elk Valley. Annual sampling and more comprehensive monitoring every three years is completed under the RAEMP, with the most recent cycle of sampling completed in December 2019, and report submitted in November 2020 (Minnow 2020). The next cycle of RAEMP sampling is to be completed by December 2022. Teck conducts a variety of additional programs to monitor, evaluate, and/or manage the aquatic effects of mining operations within the Elk Valley at local and regional scales, including:

- water quality monitoring;
- calcite monitoring;
- chronic toxicity testing;
- fish and fish habitat management and monitoring;
- RAEMP;
- tributary management (through the Tributary Management Plan); and
- various supporting studies.

Following discussion with and advice from the Environmental Monitoring Committee (EMC), a phased approach to the GHO LAEMP study design was approved by ENV. A study design (Minnow and Lotic 2017) was submitted on May 31st, 2017, and preliminary reconnaissance work was conducted from May 2017 to April 2018. An updated study design was submitted on May 31st, 2018 that covered the 2018 to 2020 period (Minnow and Lotic 2018a). The 2018 to 2020 GHO LAEMP was designed to address questions associated with potential aquatic effects at a localized area downstream of the west spoil development and Cougar Pit extension at GHO. The study questions focused on furthering the understanding of hydrology, habitat use by biota, water quality, surface water/groundwater interactions, benthic invertebrate communities, benthic invertebrate tissue chemistry, and investigating whether biota in Reach 2 (formerly referred to as the "side channel wetland") are influenced by mining activities. As with LAEMPs for other Teck Operations, the GHO LAEMP was designed to assess relevant site-specific issues, as required, until sufficient data have been collected, concerns no longer exist, or monitoring can be incorporated into other existing monitoring programs. In consideration of potential existing and future mine-related influences at GHO, as well as data collected from 2017 to 2019 (Minnow and

Lotic 2018b, 2019, 2020), a modified scope was recommended in an Updated Sampling Design for the 2020 GHO LAEMP (Minnow 2020a), which was submitted to ENV on June 1, 2020 (Appendix A). The updated study design was approved on July 28, 2020 (ENV 2020; Appendix A). The results of the data that were collected from January to December 2020 following the updated study design are described herein.

1.2 Conceptual Site Model

A conceptual site model (CSM) is a written and/or illustrative depiction of relationships between human activities that disturb the environment and the ways such disturbances can alter the ecosystem and affect biological receptors. Figure 1.3 presents a CSM for potential effects on aquatic receptors related to the Elk River, Elk River side channel, and the west-side tributaries associated with GHO. As illustrated by the CSM, mining may affect aquatic receptors through physical and/or chemical processes; these general processes are explained in-depth in the RAEMP Study Design (Minnow 2018). With respect to this LAEMP, mine-related physical and chemical stressors in the west-side tributaries, upper Elk River, and Elk River side channel arise from:

- landscape restructuring, potentially occurring due to re-location of soils and rock material (e.g., waste rock piles), re-sloping of the topography, and diversion of water;
- sediment transport in streams, potentially occurring as a combination of:
 - \circ bedload (the coarsest transported material, moving along the bottom),
 - suspended load (materials lifted above the bed by the flow and transported in the water column), and
 - washload (the finest-grained fraction of the suspension; Polzin 1998);
- increases or decreases to base flow and surface water flows, potentially occurring due to pit seepage and pit water pumped to tributaries; and
- increased concentrations of mine-related constituents in water and sediment, potentially originating from the West spoil, pit seepage, and pit water pumped to tributaries.

The CSM identified potential influences of mining activities on aquatic receptors (Figure 1.3), which were used to develop study questions (Section 1.3) and assessment endpoints based on potential responses (Table 1.1). As illustrated in the CSM (Figure 1.3), potential mining effects on receptors may manifest as changes in abundance of sensitive receptors, which also results in changes to relative community structure. Therefore, the GHO LAEMP study questions focus on assessing potential mine-related effects on focal species or population groups (Table 1.1),

Table 1.1: Summary of Receptors, Assessment Endpoints, Measurement Endpoints, and Evaluation Criteria for the GHO LAEMP, 2020

Receptor Group	Assessment Endpoint	Measurement Endpoint ^a	Evaluation Criteria ^{a,b}	Endpoint Type ^c			
	Population	Surface water chemistry	Concentrations of constituents relative to effect benchmarks, guidelines, and past observations (SQ #1, #3, and #4)	Indirect			
Fish	abundance or resilience	Sediment chemistry	Concentrations of constituents relative to guidelines, reference areas, and past observations (SQ #5 and 6)	Indirect			
	Fish population effects related to selenium	Benthic invertebrate tissue selenium concentrations	Concentrations relative to effect benchmarks (SQ #5)	Indirect			
		Abundance					
		Richness	Comparison to reference areas and past	Direct			
		% EPT	(SQ #5)	Direct			
		% Ephemeroptera					
	Benthic invertebrate	Tissue selenium concentrations	Concentrations relative to effect benchmarks and past observations (SQ #5)	Indirect			
	abundance and assemblage (lotic habitats)	Surface water chemistry	Concentrations of constituents relative to effect benchmarks and past observations (SQ #1, #3, and #4)	Indirect			
		Calcite	Calcite index relative to known or suspected effect levels and past observations (SQ #5)	Indirect			
Benthic Invertebrates					Sediment chemistry	Concentrations of constituents relative to guidelines, reference areas, and past observations (SO #5 and #6)	Indirect
	Benthic invertebrate	Tissue selenium concentrations	Concentrations relative to effect benchmarks and past observations (SQ #5)	Direct			
		Benthic invertebrate	Benthic invertebrate	Benthic invertebrate	Benthic invertebrate	Surface water chemistry	Concentrations of constituents relative to effect benchmarks, guidelines, and past observations (SQ #1, #3, and #4)
	abundance and assemblage	Calcite	Calcite index relative to known or suspected effect levels and past observations (SQ #5)	Indirect			
	(lentic habitats)	Sediment chemistry	Concentrations of constituents relative to guidelines, reference areas, and past observations (SQ #5 and #6)	Indirect			
Amphibians	Amphibian population effects	Surface water chemistry	Concentrations of constituents relative to effect benchmarks, guidelines, and past observations (SQ #1, #3, and #4)	Indirect			
·	selenium	Benthic invertebrate tissue selenium concentrations	Concentrations relative to effect benchmarks (SQ #5)	Indirect			
Birds	Bird population effects related to	Surface water chemistry	Concentrations of constituents relative to effect benchmarks, guidelines, and past observations (SQ #1, #3, and #4)	Indirect			
	selenium	Benthic invertebrate tissue selenium concentrations	Concentrations relative to effect benchmarks (SQ #5)	Indirect			

^a Some endpoints/criteria apply to only selected habitats or sampling areas. See text for details.

^b (SQ #) indicates the study question(s) that are addressed (directly or indirectly) by the listed evaluation criteria.

^c Measurement endpoints are identified as either direct or indirect. Direct indicators are biological measurements that relate directly to the populations or communities. Indirect indicators are abiotic endpoints measuring mine-related physical and chemical stressors, and act as corroborating or explanatory evidence of observed effects or lack of effects on receptors. See the Study Design for the RAEMP 2018 to 2020 (Minnow 2018c) for further detail.

while also allowing for collection of relevant background information (i.e., aquatic-dependent biota distributions; Section 1.3).

1.3 Study Questions

To focus the scope of the 2018 to 2020 study design, six study questions were developed in consultation with the EMC. The 2020 work was conducted based on an updated study design (approved on July 28, 2020; Appendix A), in which two of these study questions (#1 and #6) and one sub-question (#3d) were discontinued, and one study question (#2) was narrowed in scope. The remaining study questions and associated sub-questions for the 2020 GHO LAEMP are:

- 2. What is the seasonal habitat availability for amphibians in Reach 2 of the Elk River side channel?
- 3. What is the influence of the GHO discharges from the west-side tributaries on water quality in the Elk River and Elk River side channel?
 - a. What is the water quality in the west-side tributaries, and how is it changing over time?
 - b. What is the water quality at monitoring stations in the Elk River side channel, is it changing over time, and how does it compare to water quality in the main stem Elk River?
 - c. What is the water quality at monitoring stations in the Elk River downstream versus upstream of the west-side tributaries, and is it changing over time?
- 4. What is the interaction between surface water and groundwater in the Elk River side channel?
- 5. What are the benthic invertebrate community structures and tissue chemistry in the Elk River side channel and the main stem Elk River upstream and downstream of the side channel, and are they changing over time?

This report describes the approach, methods, and results used to address the study questions associated with the 2020 data collection.

1.4 Summary of the GHO LAEMPs from 2017 to 2019

€.

A side channel of the Elk River and its adjacent floodplain complex were identified as the local study area because they receive flows, either via surface water or groundwater, from the mine-influenced west-side tributaries (e.g., Thompson Creek, Wolfram Creek, Leask Creek, and likely also Mickelson Creek; Figure 1.2). The study also addressed the west-side tributaries and

the main stem Elk River upstream and downstream of the side channel. Located between the Elk River and the west side of the Greenhills Ridge, the Elk River side channel branches off from the Elk River just south of Leask Creek, flows south, and converges back with the Elk River roughly 1.2 km downstream from Thompson Creek. The Elk River side channel was observed to undergo seasonal flooding and braiding, with variable flow throughout the year. In addition to mine-related influences, the area has also been subject to logging and is used as rangeland for cattle.

The GHO LAEMP results from 2017 to 2019 indicated that the west-side tributaries had no effect on biota in the main stem Elk River, and minimal effects on biota within the Elk River side channel and isolated pools (Minnow and Lotic 2018b, 2019, 2020). The area most likely to experience mine-related effects was Reach 2 (the side channel area at the confluence with Thompson Creek), based on its lentic nature during part of the year⁵. Data collected to date indicate this area is perennially-wetted, and, relative to other reaches within the side channel, has elevated concentrations of one or more mine-related constituents in water, sediment, and benthic invertebrate tissue (Minnow and Lotic 2018b, 2019, 2020).

Based on the GHO LAEMP results from 2017 to 2019, recommendations were made and accepted to modify the study design for 2020. Based on the updated study design, work was discontinued for study question #1 (What is the relationship between flows in the main stem Elk River and flows in the Elk River side channel?) and study question #3d (What is the water quality in isolated pools in the Elk River side channel that provide potential aquatic habitat for aquatic and/or aquatic-dependent vertebrates?). Study question #6 (Is the mine-related influence on Reach 2 having an effect on aquatic dependent biota?) was removed to reduce redundancy in reporting, while for the 2020 GHO LAEMP the data that previously fell under study question #6 is reported under study questions #2, #3, #4 and #5. Study question #2 (What is the seasonal habitat availability for aquatic dependent biota in the Elk River side channel?) was reworded. The new study question #2 (What is the seasonal habitat availability for amphibians in Reach 2 of the Elk River side channel?) narrowed the focus to habitat availability for amphibians in Reach 2.

⁵ Reach 2 displays characteristics of both lotic and lentic systems, depending on the season. Lotic ecosystems are flowing freshwater systems with unidirectional water movement along a slope in response to gravity. In contrast, lentic ecosystems are differentiated by still water. In 2018 to 2020, Reach 2 was documented as swiftly flowing from freshet until early summer (i.e., lotic), had moderate channelization with slow flow from late summer until fall, and, once the area became isolated in late fall through winter, water pooled at the mouth of Thompson Creek (i.e., lentic).

0

€.

1.5 Linkages to the Adaptive Management Plan for Teck Coal in the Elk Valley

As required in Permit 107517 Section 10, Teck has developed an Adaptive Management Plan (AMP). The purpose of the AMP is to support implementation of the Elk Valley Water Quality Plan (EVWQP) to achieve water quality and calcite targets, to be protective of human health and the environment, and where necessary, restorative, and to facilitate continuous improvement of water quality in the Elk Valley (Teck 2018). Following an adaptive management framework, the AMP identifies six Management Questions that will be re-evaluated at regular intervals as part of AMP updates throughout EVWQP implementation. Data from the RAEMP (Minnow 2020) and the various LAEMPs (including the present monitoring program) will feed into the adaptive management process to address these Management Questions that collectively address the environmental management objectives of the AMP (Teck 2018) and the EVWQP (Teck 2014).

Monitoring data from the LAEMP has contributed to the broader data set assessed every three years within the RAEMP, in addition to having addressed questions specific to the GHO LAEMP on an annual basis. The RAEMP is designed to evaluate multiple management related questions, such as Management Question #5 (i.e., "Does monitoring indicate that mine-related changes in aquatic ecosystem conditions are consistent with expectations?") and Management Question #2, (i.e., "Will aquatic ecosystem health be protected by meeting the long-term site performance objectives?). Additionally, for each Management Question a "Key Uncertainty" framework has been also developed to identify data gaps and direct future work (as described in annual AMP Reports). Information acquired from the GHO LAEMP will be used in conjunction with studies in the Elk Valley area (including other LAEMPs) to reduce these uncertainties and provide additional context to the ecological conditions of the Elk Valley area as a whole.

The evaluation of biological triggers for potential monitoring and/or management actions is incorporated as part of Management Question #5 of the AMP (Teck 2018). Generally, triggers are intended as a simple way to flag potential unexpected monitoring results that may require management action. In the 2020 GHO LAEMP (herein), percent EPT (Ephemeroptera [mayflies], Plecoptera [stoneflies], and Trichoptera [caddisflies]) and selenium concentrations in composite-taxa benthic invertebrate tissue were assessed against their respective biological triggers (additional information and methods pertaining to this analysis can be found in Appendix I).

The second annual AMP report was submitted on July 31, 2020, and included data from 2019 (Teck 2020b). That report indicated that biological monitoring results collected downstream of sedimentation/buffer ponds were not as expected for Thompson Creek, which is monitored under the GHO LAEMP and the RAEMP. Specifically, concentrations of selenium in benthic

invertebrate tissue were higher than expected (given the measured water quality concentrations) at Thompson Creek. In response to this, AMP response actions in 2019 focused on initiating further investigations, which are outlined in detail in the 2019 Annual AMP report (Teck 2020b). The investigations of cause have tested or will test the current hypothesis that suggests the elevated selenium in benthic invertebrate tissue may be caused by increased aqueous concentrations of reduced selenium species, which are more bioavailable than selenate The reduced species of selenium may be produced in the upstream (Teck 2020b). sedimentation ponds (water management structures), where the where conditions may be conducive to the reduction of selenate (least bioavailable) to selenite (more bioavailable) or to organoselenide (most bioavailable). Furthermore, the increased hydraulic residency of these sedimentation ponds creates lentic-like conditions, potentially leading to greater selenium accumulation in organic detritus and organic-rich sediments (Young et al. 2010). Several investigations have been conducted, including an interlaboratory tissue analysis validation study and updates to the selenium bioaccumulation model and tool. Under the GHO LAEMP, supplementary selenium speciation water quality sampling was conducted in September 2020 at the GHO LAEMP areas concurrent with benthic invertebrate tissue chemistry sampling, which is investigated herein (see Sections 2.3 and 6.3). In addition, a selenium speciation monitoring program is currently being designed to investigate selenium speciation in sedimentation ponds throughout the region. Concurrent with these investigations of cause, Teck is advancing several possible adjustments, which may include habitat management and/or pond management modifications (Teck 2020b). Teck plans to implement fish-relocation projects within the Thompson sedimentation pond systems to reduce the potential risk to fish (Teck 2020b).

The implementation of adaptive management actions is not constrained to the AMP or LAEMP annual reporting cycles, but may be (and has been) initiated at any time during the course of each annual LAEMP cycle (results are reported on May 31 of each year for the preceding calendar year) depending on the answers to site-specific LAEMP questions and on available data. Monitoring plans and schedules will continue to adapt to findings in the field and operational needs. For more information on the adaptive management framework, the Management Questions, the Key Uncertainties, the Response Framework, Continuous Improvement, linkages between the AMP and other EVWQP programs, and AMP reporting, refer to the AMP (Teck 2018) and the 2019 Annual AMP report (Teck 2020b).

2 METHODS

2.1 Overview

Monitoring of the upper Elk River, the Elk River side channel, and west-side tributaries is currently conducted at various frequencies and timing under several programs (Tables 2.1 to 2.3), including the GHO LAEMP, regional and site-specific groundwater monitoring programs, and the RAEMP. Amphibian surveys were conducted in May, June, and July 2020 by Vast Resource Solutions (Vast 2020; Sections 2.2 and 3). Routine water quality and flow data are also monitored weekly/monthly⁶ by Teck in the west-side tributaries, Elk River side channel, and Elk River (water guality only) as required under Permit 107517 and Permit 6428 (Sections 2.3, 2.4, 4, and 5). Under the annual Site-Specific GHO Groundwater Monitoring Program (SSGMP) and the Regional Groundwater Monitoring Program (RGMP), groundwater guality and interactions with surface water continue to be monitored (Section 5). Under the RAEMP and the GHO LAEMP, in September 2020, benthic invertebrate community composition (Sections 2.5 and 6), benthic invertebrate tissue chemistry (Sections 2.6 and 6), and supporting data were collected (Sections 2.7 and 6.4). All relevant monitoring data collected in 2020 are compiled herein (Tables 2.1 to 2.3), and compared to previous data where appropriate, to address the study questions (Section 1.3).

2.2 Amphibians (Question #2)

2.2.1 Overview

In 2020, habitat characteristics and observations of amphibians in Reach 2 were documented to address study question #2 (What is the seasonal habitat availability for amphibians in Reach 2 of the Elk River side channel?). Work was completed in 2020 by Vast Resource Solutions (Vast 2020, Appendix C) and results from previous GHO LAEMP reporting (Minnow and Lotic 2018b, 2019, 2020) were also incorporated to address study question #2.

2.2.2 Habitat Assessment

0

-0

Spring and summer were selected to perform visual surveys in 2020 to provide additional information about presence of each amphibian life stage. Habitat parameters observed at target locations throughout the breeding period were recorded on field tablets (Apple[™] iPad mini 4; Vast 2020; Appendix C). Two trained personnel surveyed each area by completing a walking assessment and documented specific habitat characteristics and habitat features, including

⁶ Sampling is done on a monthly basis (August to March) and/or weekly/monthly basis (March 15 to July 15), as required by Permit 107517 and Permit 6428.

Table 2.1: Summary of Amphibian Surveys and Surface Water Quality, Groundwater Quality, Benthic Invertebrate, and Sediment Quality Sampling Conducted for the 2020 GHO LAEMP

ЭС	a								Biological		UTM for Distance						Question #3, also supporting #4 and #5	Que	stion #4		Quest	ion #5	
TyF	ype			Area Code			or Biological rea Code		Amphibians	Surface Water ^b	Hydrology	Groundwater ^c	Benthic Inv	vertebrates	Subs	trate							
Exposure	Stream T	Stream Name	Water Station Code	or Staff Gauge Location Code	Number Area Description	(N/	1083, 11U)	Status	Survey	hemistry	tter Level, low, and mperatur Ionitoring	hemistry	mmunity ndpoints	Tissue hemistry omposite Taxa)	Calcite Index	ediment hysical- hemical ttributes							
						Easti	ng Northing			Ū	e T E S	Ö	ы С Ш	ΰΰ		N L O A							
rence	М	Elk River	GH_ER2	RG_ELUGH	200389 u/s Branch Cr. and GHO	64673	9 5557609	Core RAEMP Reference	-	monthly ^e , concurrently ^e	-	-	3 Annually	3 Annually	3 Annually	3 Annually							
Refe	М	Elk River	-	ERUS	- Elk River u/s side channel	6481 ⁻	4 5552674	GHO LAEMP	-	-	monthly/ continuous	-	-	-	-	-							
	s	Elk River Side Channel	GH_ERSC4	GH_ERSC4	E305878 Elk River side channel u/s of Wolfram Creek	6481 ⁻	1 5552522	GHO LAEMP / RAEMP	-	monthly ^e , concurrently ^e	monthly/ continuous	_ ^d	3 Annually	3 Annually	3 Annually	-							
	s	Elk River Side Channel	GH_ER1A	GH_ER1A	E305876 Elk River side channel d/s of Wolfram Creek, u/s of wetland	64837	9 5551653	GHO LAEMP / RAEMP	-	monthly ^e , concurrently ^e	monthly/ continuous	_ ^d	3 Annually	3 Annually	3 Annually	-							
	s	Elk River Side Channel	RG_ERSC5	RG_ERSC5	Elk River side channel d/s of Wolfram Creek, u/s of wetland	64827	5 5550608	GHO LAEMP	-	concurrently ^e	-	_ ^d	3 Annually	3 Annually	3 Annually	-							
	т	Mickelson Creek	GH_MC1	GH_MC1	0200388 Mickelson Creek at LRP Road	64820	9 5553862	GHO LAEMP	-	monthly ^e	-	_ ^d	-	-	-	-							
	Т	Leask Creek	GH_LC1	GH_LC1	E257796 Leask Creek Sed. Pond Decar	t 6481	5552859	GHO LAEMP	-	monthly ^e	-	- ^d	-	-	-	-							
	Т	Wolfram Creek	GH_WC1	GH_WC1	E257795 Wolfram Creek Sed. Pond Dec	ant 64822	5552086	GHO LAEMP	-	monthly ^e	-	_ ^d	-	-	-	-							
-exposed	т	Thompson Creek	GH_TC2	THCK	E207436 Lower Thompson Creek	64859	6 5550237	RAEMP	-	monthly ^e , concurrently ^e	-	_ ^d	1 (2018) 3 (2019, 2020) Annually	1 (2018) 3 (2019, 2020) Annually	1 (2018) 3 (2019, 2020) Annually	-							
Mine	Le	Elk River Side Channel Reach 2	RG_GH-SCW1	RG_GH-SCW1	- Inlet of Reach 2 in the Elk Rive - side channel upstream of Thompson Creek	- 6483 ⁻	7 5550334	GHO LAEMP	-	monthly ^f	-	_d	-	-	-	-							
	Le	Elk River Side Channel Reach 2	RG_GH-SCW3	RG_GH-SCW3	Outlet of Reach 2 in the Elk Riv - side channel downstream of Thompson Creek	er 64833	2 5550166	GHO LAEMP / RAEMP	May, June, July 2020	monthly ^f , concurrently ^e	-	_d	-	3 Annually	3 Annually	5 Annually							
	s	Elk River Side Channel	GH_ERSC2	GH_ERSC2	E305877 Elk River side channel d/s of Thompson Creek	64834	1 5549812	GHO LAEMP	-	monthly ^e , concurrently ^e	monthly/ continuous	_d	3 Annually ^{g,h}	3 Annually ^{g,h}	3 Annually ^g	-							
	S	Elk River Side Channel	-	RG_SCDTC	Elk River side channel d/s of Thompson Creek	64822	6 5549603	GHO LAEMP / RAEMP	-	concurrently ^e	-	_d	3 Annually ^h	3 Annually ^h	3 Annually	-							
	s	Elk River Side Channel	-	RG_ERSCDS	- Elk River u/s side channel	64877	1 5549103	GHO LAEMP	-	-	monthly/ continuous	_d	-	-	-	-							
	М	Elk River	GH_ERC (Compliance)	RG_EL20	E300090 d/s Thompson Cr. and GHO	64914	6 5548514	Core RAEMP Mine-exposed	-	monthly/weekly ^e , concurrently ^e	monthly/ continuous	_d	5 Annually	5 Annually	5 Annually	5 Annually							

Sampling conducted for, and reported under, the GHO LAEMP.

Sampling conducted for, and reported under, the RAEMP. Data also reported and interpreted under the GHO LAEMP.

Sampling conducted for, and reported under, the GHO Site-Specific Groundwater Monitoring Program. See Table 2.3 for groundwater monitoring wells.

Note: "-" indicates no work conducted, as per approved study design.

^a M-main stem (lotic); S-side channel (lotic); Le - side channel (semi-lentic); T-tributary (lotic).

^b See Table 2.2 for additional surface water stations for the west-side tributaries.

^c See Table 2.3 for ground water quality stations from the GHO Site-Specific Groundwater Monitoring Program that were assessed for the 2020 GHO LAEMF

^d The GHO Site-Specific Groundwater Monitoring Program will be updated to address GHO LAEMP data needs

^e Concurrently - water chemistry sampling will be conducted concurrent with biological sampling. Weekly/monthly - water chemistry sampling and flow monitoring are conducted weekly or monthly through Permit 107517 and Permit 642 ^f Collected monthly concurrent with monthly hydrology surveys

⁹ Was not wetted during September 2018 and therefore could not be sampled. In September 2019, this station was depositional and therefore could be sampled for benthic invertebrate tissue chemistry, but not benthic invertebrate communit

^h In September 2020, this station was depositional and therefore could be sampled for benthic invertebrate tissue chemistry, but not benthic invertebrate community

Exposure Type	Tributary Name	Water Station Code	ENV EMS Number	Area Description	UTM (NAD83, 11U)		
					Easting	Northing	
Reference	Branch F Creek	GH_BR_F	E287437	Branch F at LRP Road	647423	5557155	
	Walf Crook	GH_WOLF	_ a	Wolf Creek	647490	5556959	
	Woll Cleek	GH_WOLF_SP1	E305855	Wolf Creek Sediment Pond Decant	647392	5556916	
		GH_WILLOW	_ a	Willow Creek at LRP Road	647654	5556061	
	Willow Creek	GH_WILLOW_S ^b	_a _	Willow South Creek at LRP Road	647663	5556006	
		GH_WILLOW_SP1	E305854	Willow Sediment Pond Decant	647604	5556029	
	Wade Creek	GH_WADE	E287433	Wade Creek at LRP Road	647723	5555707	
	Cougar Creek	GH_COUGAR	E287432	Cougar Creek at LRP Road	647765	5555457	
Mine exposed	No Name Creek	GH_NNC	E305875	No Name Creek	648055	5554967	
Mille-exposed	Branch D	GH_BR_D	_a	Branch D Creek	648062	5554869	
	Mickelson Creek	GH_MC1	0200388	Mickelson Creek at LRP Road	648209	5553862	
	Loosk Crook	GH_LC2	_a _	Leask Creek upstream of Sediment Pond	648297	5553064	
	Leask Cleek	GH_LC1	E257796	Leask Creek Sediment Pond Decant	648153	5552859	
	Wolfram Crook	GH_WC2	_a	Wolfram Creek upstream of Sediment Pond	648347	5552251	
		GH_WC1	E257795	Wolfram Creek Sediment Pond Decant	648222	5552086	
	Thompson Crock	GH_TC2	E207436	Thompson Creek Sediment Pond Decant	648596	5550237	
	mompson creek	GH_TC1	E102714	Thompson Creek at LRP Road	648550	5550221	

Table 2.2: West-side Tributary Water Quality Monitoring Stations in the GHO LAEMP, 2020

Note: The west-side tributaries are listed from upstream to downstream. The side channel branches off from the main stem Elk River downstream of Leask Creek and upstream of Wolfram Creek (delineated in this table by the double line; see Figure 2.1).

^a No ENV EMS number.

^b Sampling has not occurred at GH_WILLOW_S since 2017. All flow reports to station GH_WILLOW then through ponds to station GH_WILLOW_SP1.

Exposure Type	Nearest Groundwater Surface Monitoring Station Water Code		Area Description	UTM (NAD83, 11U)	
				Easting	Northing
	Leask Creek	GH_MW_LC3A/B/C	South of Leask Pond	648182	5552734
	Wolfram Creek	RG_MW_LCWC1	East of Wolfram Pond, north of Wolfram Creek	648362	5552403
	Side Channel	GH_MW_WC1-A/B/C	Side channel west of Wolfram Pond	647987	5552217
Mine-exposed	Wolfram Creek	GH_GA-MW-2	East of Wolfram Pond	648283	5552107
or	Wolfram Creek	RG_MW_WC2A/B	West of Wolfram Pond	648195	5552081
potentially	Thompson Creek GH_GA-MW-3		North of Thompson Creek	648580	5550305
mine-exposed	Side Channel	RG_MW_ER3A/B	Side channel near confluence with Thompson Creek	648290	5550075
	Side Channel	RG_MW_ER6A/B	Side channel south of confluence with Thompson Creek	648589	5549350
	Side Channel	RG_MW_ER4A/B	Side channel south of confluence with Thompson Creek	648304	5549323
	Side Channel	RG_MW_ER5A/B	Side channel near southern confluence with Elk River	648690	5549134

Table 2.3: Groundwater Monitoring Stations in the 2020 GHO LAEMP

Note: The groundwater stations are listed from north to south.

substrate, shoreline vegetation, aquatic macrophytes (submergent and emergent), and other aquatic species present (Appendix Table C.1; Vast 2020). Surrounding land use, anthropogenic influence, and connectivity between other aquatic and terrestrial habitats were also recorded (Appendix Table C.1; Vast 2020). *In situ* water quality was measured using a YSI Professional Plus[™] water quality meter during each assessment, including water temperature, dissolved oxygen (DO), specific conductivity, conductivity, and pH (Appendix Tables C.2 and C.3; Vast 2020). The probes were calibrated weekly for conductivity, daily for pH, and before each site visit for DO (Vast 2020; Appendix C).

2.2.3 Amphibian Surveys

In 2020, surveys were conducted on May 13, June 23, and July 24 to determine presence or absence of endemic amphibian species at their various life stages, targeting egg masses (early-late May), larval stage (mid-late June), and metamorph/sub-adult/adult stages (mid-late July; Vast 2020; Appendix C). Two experienced surveyors assessed the entire perimeter of the target area using the Double Independent Observer Method (Vast 2020; Appendix C). This method puts each observer on opposite sides of the waterbody, where they walk on the edge of the water around half of the area perimeter and meet in the middle (Vast 2020; Appendix C). Egg masses and larval stage amphibians were visually surveyed when walking through the riparian area, taking care to search through aquatic vegetation with little disturbance. Adults were scared to land by walking, as well as carefully searched for throughout vegetation (Vast 2020; Appendix C). Adults were identified and enumerated visually, by auditory observations, or by capture using a D-net (Vast 2020; Appendix C; Photos C.1 to C.11). Polarized sunglasses were used to enhance visibility through the water column. Data, including photos, incidental species or life stage detection, and general notes, were recorded using field tablets (Apple[™] iPad mini 4; Vast 2020; Appendix C).

2.3 Water Quality (Questions #3 and #4)

2.3.1 Overview

In this 2020 GHO LAEMP report, water quality data were used to address two study questions (Section 1.3):

- What is the influence of GHO discharges from the west-side tributaries on water quality in the Elk River and Elk River side channel? (study question #3 and its sub-questions); and
- What is the interaction between surface water and groundwater in the Elk River side channel? (study question #4).

Data from Teck's surface water quality monitoring under Permit 107517 and Permit 6428 as well as supplementary sampling conducted concurrent with GHO LAEMP field sampling were evaluated (Tables 2.1 to 2.3).

2.3.2 Sample and Data Collection

€.

Water quality samples were collected weekly/monthly⁷ by Teck as part of the permitted water quality sampling program. Water quality data were downloaded from Teck's EQuIS[™] database for the water quality stations located in the west-side tributaries, the upper Elk River, and the Elk River side channel (Figure 2.1). Additional water quality samples were collected specifically for the GHO LAEMP. Between January 2020 and December 2020, grab samples were collected monthly at the inlet (RG-GHSCW1) and outlet (RG_GHSCW3) of Reach 2 to support the assessment of water quality in the side channel (study question #2.b). Water quality samples were also collected concurrent with benthic invertebrate community and tissue chemistry samples in September 2020 (Section 2.6 and 2.7).

Water samples were collected into clean, pre-labelled containers provided by the analytical laboratory. Samples were preserved immediately as required, and once re-capped, bottles were inverted two or three times to mix the preservative with the water sample. Water samples were kept cold and shipped to the analytical laboratory. Concurrent with water quality sampling, *in situ* measurements of temperature, DO, pH, and specific conductance were collected using a multi-probe water quality meter.

As open-pit mining progresses at GHO, water collects in the pits due to surface water runoff and groundwater infiltration as operations extend below the groundwater table. To dewater the GHO pits, water has been pumped and discharged into Mickelson, Leask, and Wolfram creeks. Pit pumping discharge data were reviewed with the GHO water management team. Mickelson Creek received pit pumping discharge in 2015 only, Leask Creek received discharge from 2016 to present, and Wolfram Creek received discharge from 2011 to present. The other west-side tributaries (including Thompson Creek) have not received pit pumping discharge (Teck 2020a). Prior to 2018, typical discharge rates were 3,000 to 5,000 m³/day during most of the year and up to 15,000 m³/day in peak freshet. Detailed documentation of discharge began in 2018 and will be ongoing (Appendix Table D.1; Minnow and Lotic 2020). These pit pumping discharge data were assessed to determine how water management may have influenced water quality.

⁷ Sampling is conducted on a monthly basis (August to March) and/or weekly/monthly basis (March 15 to July 15), as required by Permit 107517 and Permit 6428.

Document Path: C:\Users\MLaPalme\Trinity Consultants, Inc\Teck - 207202.0022 - GHO LAEMP\4 - GIS\Report\20-22 Figure 2.1 Surface WQ.mxd

2.3.3 Laboratory Analysis

0

Water samples were analyzed by ALS Environmental (Calgary, Alberta) for parameters consistent with Permit 107517 (i.e., conventional parameters, major ions, nutrients, and total and dissolved metals, Table 2.4) using standard methods (Table 2.5). Water samples collected concurrent with biological monitoring were also analyzed by Brooks Applied Labs (Bothell, Washington) for selenium concentrations (i.e., total and dissolved selenium concentrations, and selenium speciation results including concentrations of selenate, selenite, dimethylselenoxide, methylseleninic acid, selenocyanate, selenomethionine, methaneselenonic acid, selenosulphate, and unknown selenium species).

Quality assurance and quality control (QA/QC) associated with routine water quality monitoring were discussed in the annual water quality report for Permit 107517 (Teck 2021). Quality control results are discussed in greater detail in the Data Quality Review (DQR) in Appendix B for water samples collected concurrent with biological samples (see Appendix H for applicable laboratory reports).

2.3.4 Screening and Plotting of Water Quality Constituents

Water quality assessment focused on constituents that were identified as mine-related in the Adaptive Management Plan and had early warning triggers (EWTs) defined (Azimuth 2018; i.e., dissolved cadmium, nitrate, total selenium, sulphate, total antimony, total barium, total boron, dissolved cobalt, total lithium, total manganese, total molybdenum, total nickel, nitrite, total dissolved solids [TDS], total uranium, and total zinc). For this 2020 GHO LAEMP report, dissolved nickel, phosphorus, orthophosphate, and total suspended solids (TSS) were also assessed based on EMC input. Dissolved nickel, which is more bioavailable than total nickel, was presented in the report to determine whether dissolved nickel is above interim screening values. Phosphorus and orthophosphate were presented because environmental assessments completed as part of the Cougar Pit extension predicted elevated concentrations of phosphorus in Wolf, Willow, and Wolfram creeks. Total suspended solids was added to assess the potential effects of total suspended solids on fish habitat and use.

These constituents were compared to British Columbia Water Guidelines (BCWQG) and/or EVWQP benchmarks, as well as interim screening values for nickel, as applicable, for the 2020 calendar year (Appendix Table D.2). Within the GHO LAEMP, the most conservative (i.e., lowest) EVWQP Level 1 and Level 2 benchmarks were used for screening. The Level 1 benchmark for cadmium is hardness-based and is based on reproductive toxicity to the water flea *Daphnia magna* (HDR 2014). For nitrate, the Level 1 and Level 2 benchmarks are based on reproductive toxicity to the water flea *Ceriodaphnia dubia* (Golder 2014a). For total selenium, the

Table 2.4: Water Sample Analyses

Category	Parameters (as per Permit 107517, Appendix 3, Table 24)
Field Parameters	temperature, specific conductance, dissolved oxygen (DO), pH
Conventional Parameters	specific conductance, total dissolved solids (TDS), total suspended solids (TSS), hardness, alkalinity, dissolved organic carbon (DOC), total organic carbon (TOC), turbidity
Major lons	bromide, fluoride, calcium, chloride, magnesium, potassium, sodium, sulphate
Nutrients	ammonia, nitrate, nitrite, total Kjeldahl nitrogen (TKN), orthophosphate, total phosphorus
Total and Dissolved Metals	aluminum, antimony, arsenic, barium, beryllium, bismuth, boron, cadmium, chromium, cobalt, copper, iron, lead, lithium, manganese, mercury, molybdenum, nickel, selenium, silver, strontium, thallium, tin, titanium, uranium, vanadium, zinc

Analyte	Units	Method	Reference
Turbidity	NTU	Nephelometric	APHA 2130 Turbidity
Hardness (as $CaCO_3$)	mg/L	Calculation	APHA 2340B
Total Suspended Solids	mg/L	Gravimetric	APHA 2540 D
Total Dissolved Solids	mg/L	Gravimetric	APHA 2540 C
Alkalinity	mg/L	Potentiometric Titration	APHA 2320
Ammonia (as N)	mg/L	Fluorescence	J. ENVIRON. MONIT., 2005, 7, 37-42, RSC
Bromide (Br)	mg/L	Ion Chromatography	APHA 4110 B
Chloride (Cl)	mg/L	Ion Chromatography	APHA 4110 B
Fluoride (F)	mg/L	Ion Chromatography	APHA 4110 B
Total Kjeldahl Nitrogen	mg/L	Fluorescence	APHA 4500-NORG D.
Nitrate (as N)	mg/L	Ion Chromatography	EPA 300.0
Nitrite (as N)	mg/L	Ion Chromatography	EPA 300.0
Phosphorus (P)-Total	mg/L	Colourimetrically	APHA 4500-P Phosphorous
Orthophosphate	ma/l	Colourimetrically	APHA 4500-P Phosphorous
Ormophoephate	····g/ ⊏	Colournitectiouity	(Filter through 0.45 um filter)
Sulphate (SO ₄)	mg/L	Ion Chromatography	APHA 4110 B
Dissolved Organic Carbon	mg/L	Combustion	APHA 5310 TOTAL ORGANIC CARBON (Filter through 0.45 um membrane filter)
Total Organic Carbon	mg/L	Combustion	APHA 5310 TOC
Total & Dissolved	ma/l	CRC ICPMS (collision cell inductively coupled plasma - mass spectrometry)	APHA 3030 B&E / EPA SW-846 6020A EPA 3005A/6010B
Metals	mg/L	ICPOES (inductively coupled plasma - optical emission spectrophotometry)	Dissolved metals filtered through a 0.45 um filter

Table 2.5: Analytical Methods for Water Samples

Level 1 and Level 2 benchmarks are based on reproductive toxicity to sensitive fish species (Golder 2014b). The Level 1 and Level 2 benchmarks for sulphate are hardness-based, and are based on toxicity to rainbow trout early life-stage survival and development (Golder 2014a). Per an EMC request in July 2019, concentrations of TSS were assessed using the Newcombe and Jensen 1996 model to determine the potential for effects on fish habitat availability and use in the Elk River side channel (Appendix Table D.3). The model uses a severity scale produced from a dose-response relationship based on TSS concentrations and exposure time. Concentrations of TSS were compared to the model Scale of the Severity (SEV) 7, which is the level where moderate habitat degradation and impaired homing are predicted (Appendix Table D.3; Newcombe and Jensen 1996). The TSS concentration for each SEV level (including SEV 7) was calculated using the model assuming one week of exposure to juvenile and adult salmonids, with TSS particle sizes 0.5 to 250 µm (i.e., Group 1 from Newcombe and Jensen 1996). be conservative, Expose duration was selected to based on water sampling Salmonids fish species type (as opposed to weekly/monthly frequency (Section 2.3.2). non-salmonids species type) was selected due to the presence of salmonids in the side channel (Minnow and Lotic 2020). It is assumed that all life stages could be present in the side channel, and both fry and adults have been observed in the side channel (Minnow and Lotic 2020). Particle size selection was conservative by assuming presence of both fine and coarse sediments, which, respectively can impact fish via passing through gill membranes into interlamellar spaces of gill tissues and via mechanical abrasion of gills. The following model was used:

$$z = a + b(\log_e x) + c(\log_e y)$$

Where z is the severity of ill effect, x is duration of exposure (hours), and y is concentration of suspended sediment (mg SS/L). In this model, the intercept (a) and slope coefficients (b and c) were determined by the model group, which was for Group 1 for this project, where a = 1.0642, b = 0.6068, and c = 0.7384 (Newcombe and Jensen 1996).

Plots of constituent concentrations from 2012 to 2020 (for the west-side tributaries and the main stem Elk River stations) or from 2014 to 2020 (for the Elk River side channel stations) were prepared individually for each monitoring station relative to BCWQG, EVWQP benchmarks, and/or interim screening values (where applicable), and also as combined plots to allow for visual comparison among stations. Plots were qualitatively assessed for seasonal and temporal patterns. Water quality data were assessed for:

• the west-side tributaries (study question #3a);

0

 the Elk River side channel stations (GH_ERSC4, GH_ER1A, GH_ERSC2) and Reach 2 (RG_GH-SW1, RG_GH-SCW3) (study question #3b); and • the main stem Elk River downstream (GH_ERC) and upstream (GH_ER2) of the west-side tributaries (study question #3c).

2.3.5 Statistical Analyses

2.3.5.1 Monthly Means

Statistical analyses of water quality constituents were conducted using monthly means. Monthly mean concentrations were calculated using the Kaplan-Meier (K-M) method. The method involves transforming the left censored (i.e., < value) dataset to a right censored (i.e., > value) dataset, and then using the K-M estimator (used to estimate the mean survival time in survival analysis) to calculate the mean. The calculation was conducted using the survfit() function in the survival package (Therneau 2017) in R (R Core Team 2020) and involves calculating the area under the K-M survival curve. The K-M method is non-parametric and can accommodate multiple laboratory reporting limits (LRLs). The method of calculating the mean is equivalent to using the distribution of detectable values below the LRL to represent values that are < LRL. For example, the mean of the data set $\{1, 2, <4, 5\}$ is estimated as the mean of 1, 2, $[\frac{1}{2} \times 1 + \frac{1}{2} \times 2]$, and 5 which is 2.375. The value <4 is replaced by the distribution of values below 4 (i.e., 1 and 2 with equal weight of $\frac{1}{2}$). Similarly, the mean of the data set {1, 1.6, 2, 2.1, <4, 5} is estimated as the mean of 1, 1.6, 2, 2.1, [¹/₄×1 + ¹/₄×1.6 + ¹/₄×2 + ¹/₄×2.1], and 5 which is 2.229. Again, the value <4 is replaced by the distribution of values below 4 (i.e., 1, 1.6, 2, and 2.1 with equal weight of $\frac{1}{4}$). If there is only one LRL and no detected values below the LRL, then the K-M estimate of the mean is equivalent to replacing the value below the LRL with the LRL (i.e., the best estimate for the values < LRL is the LRL).

2.3.5.2 Temporal Trends

Temporal changes in monthly mean water concentrations were evaluated for each station (reference and mine-exposed) from 2012 to 2020 (west-side tributaries and the main stem Elk River stations) or from 2015 to 2020 (Elk River side channel stations). Data analysis included only years with at least six months of data and included only stations with at least three years of data. Due to the presence of LRLs for most parameters, a censored regression Analysis of Variance (ANOVA) model with factors *Year* and *Month* and assuming a log-normal distribution of the response variable was fit with maximum likelihood estimation for each station. The significance of each term in the model was assessed using likelihood-ratio tests to determine if there was a significant change in log-likelihood with the addition of the term in the model. This tested for an overall difference among years and including the *Month* term in the model controlled for seasonal effects within a year. If the year term was significant ($\alpha = 0.05$), post-hoc contrasts were conducted to test for all pairwise differences among years with an
α = 0.05 in a Tukey's Honestly Significant Difference test (HSD) which corrects for the number of comparisons.

For each year, for statistically significant differences, a percent magnitude of difference (MOD) from the base year (i.e., first year with minimum number of months) was calculated as:

$$\frac{Year_i - Base Year}{Base Year} \times 100 \%$$

and the significant difference between 2020 and all other years and between 2020 and 2019 was assessed. All statistics were conducted in R (R Core Team 2020).

2.3.5.3 Main Stem Elk River versus the Side Channel (Question #3b)

Statistical comparisons of water quality between the lotic side channel stations (GH_ERSC2, GH_ER1A, GH_ERSC4) and the Elk River upstream (GH_ER2) and downstream (GH_ERC) stations were conducted to assess differences among years (from 2016 to 2020) and among stations. Statistical analysis of water quality data focussed on monthly mean concentrations of constituents with EWTs and total suspended solids. The statistical comparisons were conducted on the mathematical differences (side channel – downstream, and side channel –-upstream) in log₁₀ monthly mean concentrations to remove the influence of season. The differences in log₁₀ monthly mean concentrations between areas were tested using a two-way ANOVA with factors Year, Area (the three side channel stations), and the Area x Year interaction.

The side channel versus upstream and side channel versus downstream comparisons were conducted by testing whether differences in log_{10} monthly mean concentrations between stations were different from zero using a one-sample t-test by testing the hypothesis (H₀₁):

H_{01} : $\mu d = 0$

where μ d represented the difference in monthly means between side channel stations and upstream or downstream stations. The tests for H₀₁ were conducted by: (1) pooling five years of data and stations when the Area x Year interaction and Area factors were not significant (P-value > 0.05); (2) pooling five years of data, but separately by side channel station when the Area x Year interaction was not significant, but Area was significant; or (3) separately by station and year when the Area x Year interaction term was significant.

When the differences in monthly mean concentrations between the side channel and upstream or downstream stations were significant, the MOD was calculated as:

$$MOD = \frac{(MCT_{SC} - MCT_{US})}{MCT_{US}} \times 100\%$$

or

$$MOD = \frac{(MCT_{SC} - MCT_{DS})}{MCT_{DS}} \times 100\%$$

where MCT_{SC} , MCT_{US} and MCT_{DS} were the geometric mean measure of central tendency (MCT) for the side channel, downstream, and upstream stations, respectfully.

2.3.5.4 Main Stem Elk River Downstream versus Upstream of the West-Side Tributaries (Question #3c)

Concentrations at the Elk River downstream station (GH_ERC) were compared to upstream (GH_ER2) using the difference in log₁₀ monthly mean concentrations between stations. Potential changes over time at the downstream station compared to upstream were tested using an ANOVA on the differences in log₁₀ monthly mean concentrations between stations, with Year as a co-variate. When the Year term was not significant, the difference between the upstream and downstream stations was tested using a using a one sample t-test (see section 2.4.5.3). When Year was significant, it suggested that the difference between the upstream and downstream stations varied by year, and a t-test was run separately for each year. When the difference in monthly mean concentrations between the upstream and downstream stations was tested using between the upstream and significant overall, or for an individual year, the MOD was calculated as:

$$MOD = \frac{(MCT_{DS} - MCT_{US})}{MCT_{US}} \times 100\%$$

where MCT_{DS} , and MCT_{US} were the geometric means for the downstream and upstream stations, respectively.

2.4 Surface Water and Groundwater Interaction (Question #4)

0

SNC-Lavalin (2021) completed a report describing the updated understanding of groundwater-surface water interaction along the Elk River side channel to support study question #4 (What is the interaction between surface water and groundwater in the Elk River side channel?).

To assess this, available groundwater data and surface water data were compiled. Groundwater data were collected in 2020 as part of other on-going programs such as the GHO Site-Specific Groundwater Monitoring Program (SSGMP), the Regional Groundwater Monitoring Program (RGMP), the Cougar Pit Phase 5 and 7-2 Project (CPP), and the Mass Balance Investigation (MBI). Instantaneous flow and water quality data were collected by Teck as part of on-going surface water monitoring programs at GHO (Section 2.3.2). Specifically, for the GHO LAEMP, surface water level data were collected by water level and temperature loggers

(Onset Hobo U 20 Level loggers) that were installed at RG_ERUS, GH_ERSC4, GH_ER1A, RG_ERSCDS and (Figure 2.2). Water level and temperature data were used to confirm dry periods. A barometric logger was at GH_ER1A was used to correct submerged water level loggers for changes in atmospheric pressure. Data were downloaded routinely from the loggers to avoid data loss. A detailed description of data collected in support of study question #4 is provided in Appendix E.

The assessment included:

- spatial and temporal comparison of groundwater elevations in monitoring wells to surface water levels in the adjacent side channel and tributaries (including sedimentation ponds) and the Elk River; and,
- spatial and temporal comparison of groundwater chemistry (including mine-related constituents and major ions) from monitoring wells to surface water chemistry data from tributaries, the Elk River side channel, and the main stem Elk River.

2.5 Benthic Invertebrate Community (Question #5)

2.5.1 Overview

Benthic invertebrate community structure data were assessed to address study question #5 (What are the benthic invertebrate community structures and tissue chemistry in the Elk River side channel and the main stem Elk River upstream and downstream of the side channel, and are they changing over time?).

2.5.2 Sample Collection

Benthic invertebrate community samples were collected from three areas in the side channel connected to the Elk River (GH_ERSC4, GH_ER1A, and RG_ERSC5⁸; Figure 2.2). Samples were also collected from two stations in the main stem Elk River: downstream of the west-side tributaries (GH_ERC) and upstream of mine influence (GH_ER2; Figure 2.2). Based on power analysis in the RAEMP study design (Minnow 2018), it was determined that five samples would be collected at core RAEMP monitoring areas (i.e., Compliance and Order stations; GH_ERC) and three samples would be collected at core RAEMP

⁸ The study design proposed benthic invertebrate tissue chemistry sampling areas at GH_ERSC4, GH_ER1A, RG_ERSC5, and GH_ERSC2; however, GH_ERSC2 was dry at the time of sampling in 2018 and depositional (all fines) in 2019 and 2020, and therefore a new station downstream of the confluence with Thompson Creek (RG_SCDTC) was sampled in 2018 and 2019. In 2020, water levels at station RG_SCDTC were too low to conduct benthic invertebrate community sampling.

Document Path: C:\Users\MLaPalme\Trinity Consultants, Inc\Teck - 207202.0022 - GHO LAEMP\4 - GIS\Report\20-22 Figure 2.2 Biological Locations.mxd

(i.e., GH_ER2). At some GHO LAEMP stations in 2017 and/or 2018, a single sample was collected based on the RAEMP study design. To provide greater power to detect changes over time, additional replicates (three samples rather than one) were added to support the GHO LAEMP at side channel stations GH_ERSC4, GH_ER1A, and RG_ERSC5 in 2018, 2019, and 2020, as well as in 2019 at side channel station RG_SCDTC, and in 2019 and 2020 at tributary station RG_THCK. Samples were collected using the Canadian Aquatic Biomonitoring Network (CABIN) protocol for the kick and sweep method (Environment Canada 2012a, 2014). The field technician conducted a 3-minute travelling kick into a kick net with a triangular aperture measuring 36 cm per side and mesh having 400 µm openings. During sampling, the technician moved across the stream channel (from bank to bank, depending on stream depth and width) in an upstream direction. With the kick net held immediately downstream of the technician's feet, the detritus and invertebrates disturbed from the substrate were passively collected in the kick-net by the stream current. After three minutes of sampling time, the sampler returned to the stream bank with the sample.

Organisms collected into the kick net were carefully rinsed into a labelled wide-mouth plastic jar. Internal labels were used to confirm the correct identity of each sample. Samples were preserved to a level of 10% buffered formalin in ambient water within approximately six hours of collection to ensure that organisms were not lost through predation or decomposition.

Supporting information was collected concurrent with, and at the same locations as, benthic invertebrate community samples, including habitat characteristics (Section 2.7.1), calcite coverage (Section 2.7.2), water quality samples (Section 2.3.2), and sediment quality samples (Section 2.7.3).

2.5.3 Laboratory Analysis

Benthic invertebrate community samples were sent to Cordillera Consulting (lead taxonomist Scott Finlayson), in Summerland BC, for sorting and taxonomic identification to the lowest practical level (LPL; typically genus or species). At the beginning of the sorting process, the total number of preserved organisms in each sample was estimated. If the total number was estimated to be greater than 300, then the sample was sub-sampled for sorting and enumeration. A minimum of 5% of each sample was sorted, consistent with requirements specified by Environment Canada (2012b, 2014). Sorting efficiency and sub-sampling accuracy and precision were quantified using methods outlined by Environment Canada (2012b, 2014). Total organism abundance was reported for each sample (see Appendix F for laboratory reports). Based on the results provided for QA/QC samples, the benthic invertebrate community data collected for the GHO LAEMP were judged to be of acceptable quality (Appendix B).

2.5.4 Data Analysis

For benthic invertebrate community samples, total abundance, LPL richness, % EPT, % Ephemeroptera, % Plecoptera, % Trichoptera, and relative abundance of major taxonomic groups were determined and compared within and among areas. Community endpoints were also compared to normal ranges⁹ defined in the RAEMP based on samples collected from regional reference areas from 2012 to 2019 (Minnow 2020b; Appendix Table F.1), as well as to the upstream main stem Elk River reference station (GH ER2). Site-specific normal ranges were calculated as prediction intervals from the final habitat model for main stem Elk River stations (GH ER2. GH ERC) and Thompson Creek (RG THCK; Appendix Table F.2). Ninety-fifth percentile prediction intervals were calculated from linear mixed-effects models using simulations (n = 100,000) to generate residual variation in random-effects terms. For Ephemeroptera and EPT abundance endpoints, the prediction intervals from the % Ephemeroptera and % EPT models were multiplied by the prediction intervals from the taxa-specific endpoint abundance predictions. abundance model to generate the Prediction intervals were calculated using the predictInterval() function in the merTools R package (Knowles and Frederick, 2019). To evaluate changes over time, benthic invertebrate community endpoints from 2012 to 2020 were visually compared, where data were available.

The % EPT endpoint was also assessed against biological triggers as part of Teck's AMP (Teck 2018) for GHO LAEMP monitoring areas with available water quality projections (i.e., mine-exposed areas RG_THCK and GH_ERC; see Appendix I for details).

2.6 Benthic Invertebrate Tissue Chemistry (Question #5)

2.6.1 Overview

In 2020, benthic invertebrate tissue chemistry data were assessed to address study question #5 (What are the benthic invertebrate community structures and tissue chemistry in the Elk River side channel and the main stem Elk River upstream and downstream of the side channel, and are they changing over time?).

2.6.2 Sample Collection

Benthic invertebrate tissue samples were collected in September 2020 from four riffle areas in the side channel (GH_ERSC4, GH_ER1A, RG_ERSC5, and RG_SCDTC), from two depositional areas in the side channel (i.e., substrate was predominantly fines-sized particles rather than a habitat of riffle and cobble; GH_ERSC2 and Reach 2 at RG_GH-SCW3), and from the main stem

⁹ The reference area normal range was defined as the 2.5th to 97.5th percentiles of the distribution of reference area data (pooled 2012 to 2019 data) reported in the RAEMP (Minnow 2020).

Elk River stations (GH_ERC and GH_ER2; Figure 2.2). Samples were taxa-composites (representative of the benthic invertebrate taxa present in each sampling area) collected in triplicate at each area using the kick and sweep method. The taxa present in the samples were documented. Benthic invertebrates were picked free of debris in the field, placed into a sterile labelled cryovial, and stored in a cooler with ice packs until transfer to a freezer later in the day.

Data collected previously has suggested that Annelids exhibit higher concentrations of selenium compared to other benthic organisms, even at reference areas (Minnow 2016; Minnow and Lotic 2020; Luoma 2021). Therefore, the benthic invertebrate tissue chemistry sampling protocol for Annelids in 2020 was to either a) collect them into the composite sample at a proportion that was representative of the community, or b) if there was one or two Annelids that would have made up a much greater proportion of the tissue sample by biomass than what was representative of the community were to be excluded from the composite taxa sample and instead be collected for a separate tissue sample. In 2020, Annelids were not observed in the field when picking organisms for the composite benthic invertebrate tissue chemistry samples, so this protocol was not applied.

Supporting information was collected concurrent with, and at the same locations as, benthic invertebrate tissue samples, including habitat characteristics (Section 2.7.1), calcite coverage (Section 2.7.2), water quality samples (Section 2.3.2), and sediment quality samples (Section 2.7.3).

2.6.3 Laboratory Analysis

Benthic invertebrate tissue samples were kept in a freezer until they were shipped in coolers to the TrichAnalytics Inc. (Trich) laboratory in Saanichton, British Columbia. At the laboratory, the samples were freeze-dried, homogenized, and then analyzed for metals using Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS). Results were reported on a dry weight (dw) basis, along with moisture content (based on the difference between wet and freeze-dried sample weights).

The QA/QC procedures for benthic invertebrate tissue samples included the assessment of laboratory duplicates, and quality control reference materials and standards. Based on the results provided for QA/QC samples, the benthic invertebrate tissue data collected for the GHO LAEMP were judged to be of acceptable quality (Appendix G).

2.6.4 Data Analysis

Benthic invertebrate tissue selenium concentrations were compared to EVWQP Level 1, Level 2, and Level 3 benchmarks as well as normal ranges¹⁰ defined in the RAEMP (Minnow 2020b; Appendix Table G.1). Tissue selenium concentrations were also plotted and spatially compared within and among areas and were compared to predictions made by the selenium bioaccumulation model (Golder 2018, 2020) and the selenium speciation bioaccumulation tool (b-tool; de Bruyn and Luoma 2021).

The endpoint of selenium concentrations in benthic invertebrate tissue was also assessed against biological triggers that were established as part of Teck's AMP (Teck 2018) for GHO LAEMP monitoring areas with available water quality projections (i.e., mine-exposed areas RG_THCK and GH_ERC; see Appendix I for details).

2.7 Supporting Information

2.7.1 Habitat

Habitat characteristics were documented (notes and photo-documentation), and included channel depth and velocity (measured using a Hach FH950 flow meter, 15 cm above the substrate), substrate characteristics (i.e., 100 pebble count, consistent with CABIN protocol), surrounding land use, anthropogenic activity, bank stability, bankfull width, and wetted width.

2.7.2 Calcite

Calcite coverage was assessed as part of the pebble counts at the two main stem stations (GH_ER2 and GH_ERC), the four side channel stations (GH_ERSC4, GH_ER1A, RG_ERSC5, and RG_SCDTC), and Thompson Creek (RG_THCK) in September 2020. Pebble counts were not conducted at the side channel stations GH_ERSC2 and RG_GH-SCW3, as the substrates at these areas were predominantly fines and sand, with no calcification or concretion. Field measurements were consistent with calcite monitoring conducted for the RAEMP (Minnow 2020b) and followed a modified 100-particle pebble count method developed for Teck's Calcite Monitoring Program (Robinson and Atherton 2016, Teck 2016). For this modified approach, calcite was measured only in riffle habitats on undisturbed substrate in the immediate vicinity of where benthic invertebrate community samples were collected (e.g., no more than roughly 10 m distance). One hundred streambed particles were randomly selected over the study area and were measured for calcite presence/absence and concretion. The presence (score = 1) or absence (score = 0) of calcite was recorded for each of the 100 particles. The degree of

¹⁰ The reference area normal range for composite benthic invertebrate tissue samples is defined as the 2.5th to 97.5th percentiles of the distribution of reference area data (pooled 1996 to 2019 data) reported in the RAEMP (Minnow 2020).

concretion was also assessed by determining if the particle was removed with negligible resistance (not concreted; score = 0), noticeable resistance but removable (partially concreted; score = 1), or immovable (fully concreted; score = 2). 100-particles were measured for each Calcite Index (CI) determination. Consistent with the RAEMP, CI was determined for each benthic invertebrate community sampling location, and therefore was collected in triplicate for most GHO LAEMP stations, except GH_ERC, where five CI counts were conducted.

The results for the 100 particles surveyed for calcite were expressed as a CI based on the following equation:

$$CI = C_p + C_c$$

Where:

$$\begin{split} & \textit{CI} = \textit{Calcite Index} \\ & \textit{C}_p = \textit{Calcite Presence Score} = \frac{\textit{Number of particles with calcite}}{\textit{Number of particles counted}} \\ & \textit{C}_c = \textit{Calcite Concretion Score} = \frac{\textit{Sum of particle concretion scores}}{\textit{Number of particles counted}} \end{split}$$

2.7.3 Sediment Quality

2.7.3.1 Sample Collection

Sediment quality samples were collected concurrent with benthic invertebrate samples at the two main stem Elk River areas (GH_ER2 and GH_ERC) and at Reach 2 (RG_GH-SCW3), the depositional area of the side channel at the confluence with Thompson Creek (Figure 2.1). Five samples were collected at each of the mine-exposed areas (RG_GH-SCW3 and GH_ERC), while three samples were collected at the GH_ER2 reference area. Sediment samples were collected using a stainless-steel spoon and were transferred into glass jars for analysis of polycyclic aromatic hydrocarbons (PAHs), and into polyethylene bags for all other analyses (see Section 2.7.3.2). Samplers took care to only remove the top 1 to 2 cm of sediment and continued to collect sediment until sufficient sample volume was retrieved. For QA/QC purposes, duplicate (split) samples were collected at a frequency of approximately 10% of the total number of samples to assess field precision (i.e., two sets of field duplicate samples). Following collection, samples were placed in a refrigerator at approximately 4°C until submission to the analytical laboratory.

2.7.3.2 Laboratory Analysis

0

Sediment samples for chemical analysis were sent to ALS Environmental (Calgary, Alberta). The laboratory was instructed to thoroughly homogenize each sediment sample (according to standard laboratory protocols) to ensure that aliquots taken for analysis were representative and comparable. Sediment samples were analyzed for metals, mercury, total organic carbon (TOC), PAHs, particle size distribution, and moisture content using standard methods (Table 2.6). In addition to collection of field duplicate samples, QA/QC included assessment of laboratory duplicates, spike recoveries, and certified reference materials (Appendices B and H). Based on the QA/QC results provided, the sediment data were judged to be of acceptable quality (Appendices B and H).

2.7.3.3 Data Analysis

Sediment quality data were evaluated relative to BC working sediment quality guidelines (SQG) and, where applicable, the reference area normal range (i.e., the 2.5th to 97.5th percentiles of 2013 and 2019 reference area data reported in the LAEMP for lentic stations; Minnow 2020b). Two levels of guideline are typically defined: a lower SQG and an upper SQG. The lower SQG represents concentrations below which adverse biological effects would not be expected to occur. In contrast, the upper SQGs (i.e., probable effect level [PEL] or severe effect level [SEL]) represent concentrations above which effects may be frequently observed. The SQGs are not based on cause-effect studies, but rather on levels of toxic substances found in the sediment where biological effects have been measured (ENV 2021), such that the exceedance of individual SQGs cannot be interpreted as strong evidence for biological response.

Sediment normal ranges were calculated using 76 data points collected from nine reference areas over four years (2017 to 2020; Appendix Table H.8). Because values reported for a few parameters were <LRL, normal range percentiles were calculated using Kaplan-Meier (K-M) percentiles, based on the methods described by Helsel (2012), as described in Section 2.3.5.1.

Analyte	Units	Method	Reference
Metals	mg/kg	Collision Reaction Cell Inductively Coupled Plasma Mass Spectrometry (CRC ICP-MS)	EPA 200.2/6020A (mod)
Mercury	mg/kg	Cold Vapor-Atomic Absorption (CVAAS)	EPA 200.2/1631E (mod)
Total Organic Carbon (TOC)	%	TOC is calculated by the difference between total carbon and total inorganic carbon	CSSS (2008) 21.2
Polycyclic Aromatic Hydrocarbons (PAHs)	mg/kg %	Rotary extraction using hexane/acetone followed by capillary column gas chromatography with mass spectrometric detection (GC/MS)	EPA 3570/8270
Particle Size Distribution	%	Dry sieving (coarse particles), wet sieving (sand), and the pipette sedimentation method (fine particles)	SSIR-51 METHOD 3.2.1
Moisture Content	%	Determined gravimetrically by drying the sample at 105 °C	CCME for PHC in Soil - Tier 1 (mod)

Table 2.6: Analytical Methods for Sediment Samples

3 **RESULTS: STUDY QUESTION #2**

Habitat characterization and amphibian presence data were evaluated to address study question #2 (What is the seasonal habitat availability for amphibians in Reach 2 of the Elk River side channel?). These data provide information about seasonal habitat availability for amphibians in the side channel, which gives context for understanding potential exposure pathways. Habitat surveys and aquatic-dependent biota surveys were conducted monthly from May 2017 to July 2020 (Minnow and Lotic 2018a, 2020), as well as additional amphibian-targeted surveys conducted in May, June, and July 2020 (Appendix C; Vast 2020).

Habitat characterization of Reach 2 was consistent from 2017 to 2020, with the availability and attributes of wetted habitat varying greatly throughout each year (Minnow and Lotic 2020; Appendix Photos C.1 to C.11). Reach 2 remained wetted throughout four years of the study. From freshet to fall (three to four months of each study year), Reach 2 received flow from both the Elk River (via the upper side channel) and Thompson Creek. Flows were relatively swift during this time and therefore the Reach 2 habitat was not suitable for amphibian breeding and use by early life stages, although breeding habitat may be present elsewhere in the area. From fall to early spring, Reach 2 remained wetted due to surface flows from Thompson Creek. but during this time the upper side channel disconnected from the main stem Elk River and was dry. Sparse emergent macrophytes were present in May 2020 when the channel overflowed its banks and braided through the side channel complex, however vegetation was absent during subsequent visits when stream wetted width was narrower (Appendix Table C.1; Appendix Photos C.6 to C.10). As in previous years, fish were observed in the side channel (Appendix Table C.1; Minnow and Lotic 2020); due to the risk of predation on amphibian eggs and larvae, the presence of fish can be a major deterrent for breeding habitat and may further explain the absence of evidence of amphibian breeding (Monello and Wright 1999; Vast 2020). Both the inlet and outlet of Reach 2 remined well oxygenated (i.e., DO > 5 mg/L), pH remained within the BCWQG acceptable range (6.5 < pH < 9.0), and temperature remained below the BCWQG maximum (19 °C; Appendix Tables C.2 and C.3). Ultimately, there are no barriers to the use of Reach 2 by amphibians, and therefore, despite habitat being unsuitable for amphibian breeding, it is expected that the area is used by a variety of amphibians.

During surveys conducted from 2017 to 2020, three amphibians species (adult and subadult Columbia spotted frog, adult western toads, and subadult/larval long-toed salamanders) were observed in Reach 2 from June to September (Figure 3.1; Appendix Table C.4). Western toads were the most common amphibian species, with adults observed on ten occasions during the four years of the GHO LAEMP study (Appendix Table C.4). Most amphibians observed

Document Path: C:\Users\MLaPalme\Trinity Consultants, Inc\Teck - 207202.0022 - GHO LAEMP\4 - GIS\Report\20-22 Figure 3.1 Amphibian Observations.mxd

were adults, except for one subadult Columbia spotted frog and all the long-toed salamanders (Appendix Table C.4)

The surveys from 2017 to 2020 confirmed the seasonal availability of amphibian habitat in Reach 2 and confirmed the use of Reach 2 by three species of amphibians of larval to adult life stages, which answered study question #2 (What is the seasonal habitat availability for amphibians in Reach 2 of the Elk River side channel?).

4 **RESULTS: STUDY QUESTION #3**

4.1 Overview

Data evaluated in this section are related to study question #3:

What is the influence of the GHO discharges from the west-side tributaries on water quality in the Elk River and Elk River side channel?

- a. What is the water quality in the west-side tributaries, and how is it changing over time?
- b. What is the water quality at monitoring stations in the Elk River side channel, is it changing over time, and how does it compare to water quality in the main stem Elk River?
- c. What is the water quality at monitoring stations in the Elk River downstream versus upstream of the west-side tributaries, and is it changing over time?

Evaluation of water quality included assessment of constituents with EWTs (i.e., dissolved cadmium, nitrate, total selenium, sulphate, total antimony, total barium, total boron, dissolved cobalt, total lithium, total manganese, total molybdenum, total nickel, nitrite, TDS, total uranium, and total zinc), as well as dissolved nickel, phosphorus, orthophosphate, and TSS.

4.2 West-side Tributaries

When flowing, Branch F, Wolf, Willow, Wade, Cougar, No Name creeks and (northern west-side tributaries) enter the Elk River upstream from the Elk River side channel (Figure 4.1, Table 2.2). The downstream ends of Mickelson and Leask creeks are sedimentation ponds, which have overflow channels that may connect to the Elk River when water levels are high (Figure 4.1) and may also influence water quality in the main stem Elk River and/or side channel via groundwater flow paths. Wolfram Creek (downstream of the sedimentation pond) connected to the side channel via surface flows during May 2018, June to July 2019, and June to July 2020 only (Minnow and Lotic 2019, 2020), and likely also influenced water quality through groundwater flow paths (SNC-Lavalin 2020, 2021). Mickelson Creek received pit pumping discharge in 2015 only, Leask Creek received discharge from 2016 to present, and Wolfram Creek received discharge from 2011 to present (Minnow and Lotic 2020, Appendix Table D.1). Consistently throughout all study years, Thompson Creek flowed into Reach 2 of the Elk River side channel, which is downstream of side channel station GH ER1A and upstream of GH ERSC2 (Figure 4.1, Table 2.2). Pit pumping discharge may have impacted water quality in Mickelson, Leask, and Wolfram creeks.

Document Path: C:\Users\MLaPalme\Trinity Consultants, Inc\Teck - 207202.0022 - GHO LAEMP\4 - GIS\Report\20-22 Figure 4.1 Surface WQ.mxd

Water guality data collected in 2020 from the west-side tributaries were compared to applicable BCWQG, EVWQP benchmarks, and/or interim screening values (Appendix Table D.2; Appendix Figures D.1 to D.19 and D.39 to D.57). In more northern west-side tributaries (Branch F, Wolf, Willow, Wade, Cougar, No Name, Branch D, and Mickelson creeks), concentrations were typically below applicable BCWQG and EVWQP benchmarks for most constituents (Appendix Table D.5). Water quality in the three southern-most west-side tributaries, Leask (GH LC1, GH LC2), Wolfram (GH WC1, GH WC2), and Thompson (GH TC1, GH TC2) creeks, indicated mine influence based on concentrations of nitrate, sulphate, TDS, total nickel, total selenium, and/or total uranium, which were frequently (greater than 50% of samples) above BCWQG, applicable EVWQP benchmarks, and/or interim screening values (Appendix Table D.5; Appendix Figures D.1 to D.19). In 2020, total nickel concentrations were above the Level 3 interim screening value and total uranium concentrations were above the BCWQG in Leask and Wolfram creeks, but not Thompson Creek (Appendix Table D.5, Appendix Figures D.16 and D.18). Nitrate concentrations were also frequently or always above the BCWQG and equivalent EVWQP Level 1 benchmark, sulphate and TDS were frequently or always above the Level 1 EVWQP benchmarks, and total selenium concentrations were frequently above the Level 2 EVWQP benchmark in Leask, Wolfram, and Thompson creeks in 2020 (Appendix Table D.5, Appendix Figures D.1, D.5, D.6, and D.17). Ammonia concentrations were occasionally above BCWQG in Thompson Creek (19% of samples; Appendix Table D.5). Selenium speciation data for Thompson Creek indicated detectable concentrations of organoselenium species that could affect localized patterns of bioaccumulation (Appendix Table D.4; Section 6.3).

In Mickelson Creek, the influence of pit pumping was evident in 2015 and 2016, when the concentrations of nitrate, sulphate, TDS, total selenium, and total uranium were significantly higher than other years, including 2020 (Appendix Table D.6, Appendix Figures D.1, D.6, D.6, D.17, and D.18). In Leask Creek, concentrations of total selenium were higher in 2018, 2019, and 2020 compared to previous years, whereas nitrate concentrations were higher in 2018 compared to other years (Appendix Table D.6, Appendix Figures D.1 and D.17). Also in Leask Creek, sulphate, TDS, total nickel, and total uranium concentrations increased from 2012 to 2015, and then remained elevated into 2020 (Appendix Table D.6, Appendix Figures D.5, D.6, D.16, and D.18). In Wolfram Creek, nitrate and total selenium concentrations were significantly higher in 2017, 2018, 2019, and 2020 compared to previous years (Appendix Table D.6, Appendix Figures D.1, and D.17). Concentrations of sulphate, TDS, and uranium were elevated in Wolfram Creek in 2015, 2016, and 2017 compared to previous years, and were further elevated in 2018 to 2020 compared to previous years (Appendix Figures D.5, D.6, and D.18). Total nickel concentrations were relatively stable from 2012 to 2017, and then increased in 2018

and remained elevated (Appendix Table D.6, Appendix Figure D.16). In Thompson Creek, sulphate increased in 2018, 2019, and 2020 compared to previous years, whereas total nickel increased in 2013 and 2014 compared to 2012, then decreased from 2014 to 2016 and decreased further from 2017 to 2020 (Appendix Table D.6, Appendix Figures D.5 and D.16). In the west-side tributaries overall, total selenium, sulphate, and TDS appear to be increasing in Leask and Wolfram creeks, while total nickel is also increasing in Leask Creek (Appendix Table D.6). In Thompson Creek, sulphate has increased in recent years, whereas total nickel has decreased.

4.3 Side Channel Monitoring Stations

€.

2020. water quality constituents the side channel monitoring In at stations (i.e., GH ERSC4, GH ER1A, GH ERSC2, and the Reach 2 stations RG GH-SCW1 and RG GH-SCW3; Figure 4.1) were typically lower than BCWQG, EVWQP benchmarks, and/or interim screening values, except for total selenium at GH ERSC2, and for nitrate, sulphate, and total selenium, at the outlet of Reach 2 (RG GH-SCW3; Appendix Table D.7, Appendix Figures D.20 to D.57). Concentrations of nitrate, sulphate, TDS, dissolved cadmium, total lithium, and total selenium generally increased from GH ERSC4 to GH ER1A to RG GH-SCW3 (i.e., from upstream to downstream), likely associated with the influence of Wolfram and Thompson creeks (Appendix Table D.7, Appendix Figures D.20 to D.38). Further downstream, concentrations of mine-related constituents at GH ERSC2 were typically higher than at GH ER1A, but lower than RG GH-SCW3. Total nickel concentrations were higher in Reach 2 in 2019 and 2020 compared to 2018, but otherwise there were no apparent temporal trends in water quality at these stations (Appendix Table D.8, Appendix Figures D.20 to D.38). Selenium speciation data for the Elk River side channel stations indicated detectable concentrations of organoselenium species in stations downstream of Thompson Creek (RG GH-SCW3, GH ERSC2, RG SCDTC) that could affect localized patterns of bioaccumulation (Appendix Table D.4; Section 6.3).

Input from the EMC indicated a desire to understand how land-use activities are influencing habitat availability, specifically how TSS concentrations in the Elk River side channel influence fish habitat and use. The EMC discussion also indicated that the high turbidity events were likely a result of logging operations that occurred in the winter 2017/2018 and spring 2018, as documented by the study team. Concentrations of TSS were compared to the Newcombe and Jensen 1996 model SEV 7, which is the level where moderate habitat degradation and impaired homing are predicted (Appendix Table D.3). Concentrations of TSS in the side channel were typically below SEV 7, except during spring (Appendix Figure D.26), suggesting that fish use may be affected at that time. Concentrations of TSS also peaked above SEV 7 during freshet at the upstream main stem Elk River reference station (GH ER2; Appendix Figure D.58),

0

suggesting that these increases are in part natural. Concentrations of TSS in the side channel were higher than at the reference station (MOD of 56%; Appendix Table D.9) but were not different from concentrations in the downstream main stem Elk River station (GH_ERC; Appendix Table D.10). Elevated concentrations of TSS in the side channel and downstream Elk River relative to reference were likely due to runoff travelling through cutblocks in the riparian areas. Cutblocks in the riparian areas have resulted in reduced vegetative buffer (see satellite imagery around the side channel in Figure 4.1; Minnow and Lotic 2020), likely causing reduced bank stability and soil retention, as well as increased amounts of soil carried into the streams by runoff, which would result in increased TSS.

Water quality at the side channel stations was compared to the main stem stations upstream (GH ER2) and downstream (GH ERC) of the side channel, using data from 2016 to 2020 (Appendix Tables D.9 and D.10, Appendix Figures D.39 to D.57). Constituent concentrations were typically higher in the side channel compared to the upstream main stem reference station (GH ER2), with nitrate, sulphate, total lithium, and total selenium having the greatest magnitude of difference (Appendix Table D.9). At the most upstream side channel station (GH ERSC4, which is upstream of the influence of Wolfram and Thompson creeks), nitrate, sulphate, dissolved cadmium, total barium, total lithium, and total selenium were significantly lower than concentrations at the downstream main stem station (GH ERC; Appendix Table D.10). Water quality at station GH ER1A was not significantly different from GH ERC for most constituents, except for higher concentrations of nitrite, total molybdenum, and total uranium (Appendix Table D.10). At the most downstream side channel station (GH ERSC2), nitrate, nitrite, sulphate, TDS, dissolved cadmium, total lithium, total manganese, total molybdenum, total nickel, total selenium, and total uranium were significantly greater than GH ERC (Appendix Table D.10). This is likely a result of GH ERSC2 being more directly influenced by surface water flows from Thompson Creek, as well as possibly through groundwater flow paths (Section 5; SNC-Lavalin 2021).

4.4 Main Stem Elk River Downstream versus Upstream of the West-Side Tributaries

Data from 2012 to 2020 for the monitoring stations in the main stem Elk River downstream of the west side tributaries (GH_ERC) was compared to the Elk River station upstream of mine influence (GH_ER2) to assess the overall influence of GHO on water quality in the upper Elk River (Figure 4.1, Appendix Figure D.58). In 2020, constituent concentrations were typically below applicable BCWQG, EVWQP benchmarks, and/or interim screening values except for ammonia, total chromium, total iron, and total selenium (Appendix Table D.11, Appendix Figure D.58). Total chromium, and total iron concentrations were greater than BCWQG at both the downstream and upstream stations, and ammonia concentrations were greater than BCWQG at the upstream

station only, suggesting these parameters are naturally elevated (Appendix Table D.11, Appendix Figure D.58). In 2020, total selenium concentrations at the downstream station (GH ERC) exceeded the BCWQG in 43% of samples, but all were below the EVWQP Benchmarks (Appendix Table D.11). Both selenate (oxidized selenium species) and selenite (reduced selenium species) were present at the downstream station, and organoselenium species methylseleninic acid and dimethylselenoxide were not detected (Appendix Table D.4; Section 6.3). Conversely, aqueous selenium at the Elk River reference station (GH ER2) was entirely in the oxidized form (selenate), with no detectable organoselenium (Appendix Table D.4; Section 6.3). This suggested that selenite in the downstream Elk River (GH ERC) may be from Thompson Creek inputs (Section 4.3), but that the most bioavailable forms are consumed within Thompson Creek and the side channel, which are upstream from the Elk River. However, selenite is more bioavailable than selenate, and therefore could affect localized patterns of bioaccumulation at station GH ERC. Total selenium concentrations were higher in 2018, 2019, and 2020 compared to previous years at the downstream main stem station (GH ERC), whereas at the main stem reference station (GH ER2) total selenium increased in 2016 compared to previous years, and then remained elevated into 2020 (Appendix Table D.12, Appendix Figure D.58). Similarly, nitrate concentrations were higher in 2019 and 2020 compared to previous years at GH ERC, whereas at the reference station nitrate concentrations increased in 2014 compared to previous years and then remained elevated into 2020 (Appendix Table D.12, Appendix Figure D.58).

Concentrations of nitrate, sulphate, TDS, TSS, total barium, total lithium, total molybdenum, total nickel, total selenium, and total uranium at the downstream station (GH_ERC) were significantly greater than at the reference station (GH_ER2; Appendix Table D.13), due to the influence of GHO via the west-side tributaries. The greatest difference between the mine-exposed (downstream) and reference (upstream) main stem Elk River stations was for nitrate (i.e., MOD 566%; Appendix Table D.13). Concentrations of total manganese were lower at the downstream station compared to reference (Appendix Table D.13).

4.5 Summary

0

Water quality in the more northern west-side tributaries (i.e., Branch F, Wolf Creek, Willow Creek, Wade Creek, Cougar Creek, No Name Creek, and Mickelson Creek) was typically below BCWQG, EVWQP benchmarks, and/or interim screening values. Water quality in Leask, Wolfram, and Thompson creeks showed evidence of mine influence based on concentrations of total nickel, nitrate, total selenium, sulphate, TDS, and total uranium, which were frequently above applicable BCWQG, EVWQP benchmarks, and/or interim screening values. Total selenium, sulphate, and TDS appear to be increasing in Leask and Wolfram creeks, while total nickel is

increasing in Leask Creek. In Thompson Creek, sulphate has increased in recent years, whereas total nickel has decreased.

Water quality at side channel stations GH_ER1A and GH_ERSC2 was influenced by Wolfram and Thompson creeks, showing occasional concentrations of nitrate, ammonia, total chromium, and total selenium that were greater than BCWQG and/or applicable EVWQP benchmarks (Level 2 for total selenium, Level 1 for other constituents). The highest concentrations of mine-related constituents occurred in Reach 2 at the confluence of Thompson Creek and the Elk River side channel. At the Reach 2 outlet, total nickel was higher in 2019 and 2020 compared to 2018. Water quality at side channel station GH_ER1A was comparable to the downstream main stem Elk River station, whereas at the furthest downstream side channel station (GH_ERSC2), concentrations of nitrate, nitrite, sulphate, TDS, dissolved cadmium, total lithium, total manganese, total molybdenum, total nickel, total selenium, and total uranium were higher than the downstream main stem Elk River station (due to the influence of Thompson Creek).

Water quality at the main stem Elk River station downstream of the side channel (GH_ERC) had higher concentrations of nitrate, sulphate, TDS, TSS, total barium, total lithium, total molybdenum, total nickel, total selenium, and total uranium relative to the main stem upstream reference station (GH_ER2). However, concentrations of constituents in the downstream main stem Elk River station (GH_ERC) were typically below applicable BCWQG, EVWQP benchmarks, and/or interim screening values, except for total chromium and total iron (which were also elevated in the reference station), and total selenium. At the downstream main stem station (GH_ERC), total selenium concentrations were higher in 2018 to 2020 compared to previous years, and nitrate concentrations were higher in 2019 and 2020 as compared to previous years.

5 RESULTS: STUDY QUESTION #4

Data evaluated in this section address study question #4 (What is the interaction between surface water and groundwater in the Elk River side channel?). A hydrogeological review and analysis of available groundwater and surface water data for the west side of GHO was conducted for data collected in 2020 (SNC-Lavalin 2021). Detailed interpretation and conclusions are provided in a report in Appendix E (SNC-Lavalin 2021), and a summary is provided herein. This summary was authored by Emma Canham, M.Sc., and reviewed by Stefan Humphries, M.Sc., P.Geo., who takes professional responsibility for the report.

Like in 2018 and 2019, hydrographs, vertical gradients, and water quality data from 2020 continued to support the conceptual model that the side channel predominantly infiltrated to ground and recharges groundwater. Seasonal flow in the side channel infiltrated to ground across most of the channel, with receding flows leading to the development of isolated pools in fall, winter, and early spring (SNC-Lavalin 2020; Minnow and Lotic 2020). Four isolated pools were identified as likely being groundwater-fed; however, these pools did not appear to produce sustained flows in the side channel (SNC-Lavalin 2020; Minnow and Lotic 2020). A review of seeps from the Regional Seep Monitoring Program indicated no relevant seeps in the GHO LAEMP study area (SNC-Lavalin 2021, SRK 2021).

Like previous years, in 2020 concentrations of surface water order constituents (i.e., nitrate, sulphate, and dissolved selenium) generally increased along the side channel flow path, likely due to loading of surface water order constituents from mine-influenced tributaries on the west side of GHO (Section 4.2). In the side channel upstream of the confluence with Wolfram Creek (GH ERSC4), surface water quality was generally similar to the upstream Elk River (GH ER2) and groundwater did not appear to influence water guality or guantity, except for the water quality of one sample which indicated the influence of Leask Creek. Downstream of the confluence with Wolfram Creek but upstream of Reach 2, water quality in the side channel varied seasonally, with highest concentrations of order constituents at station GH ER1A occurring from April to June. Higher concentrations likely occurred due to increased flows from snow melt in spring that infiltrated to a shallow groundwater flow path, as well as due to the surface flow connection from Wolfram Pond to the side channel during June and July 2020. At Reach 2 of the side channel, Thompson Creek appeared to be the main influence on water quality, particularly in late fall through early spring when Thompson Creek was the only surface water source and the upstream Elk River side channel was not wetted. In Reach 2, groundwater did not appear to be influencing water quality or quantity. In the side channel downstream of Reach 2, an area between Reach 2 and downstream station GH ERSC2 appeared to receive groundwater

flow in spring and summer, whereas side channel flows infiltrated to ground during the fall. This area of the side channel was predominantly dry during the winter.

Gaps and uncertainties were previously identified in the 2018 GHO LAEMP Report and have been partly addressed through work conducted in 2019 and 2020. Some uncertainties remain related to study question #4 remain. Additional work is planned for 2021 as part of the MBI to address remaining gaps, including installing new monitoring wells, collecting additional groundwater data, seep reconnaissance and sampling in the Elk River Side Channel, conducting flow and load accretion studies, and conducting geophysical surveys to determine depth to bedrock. See Section 7.2 and Appendix E for detailed recommendations to address these remaining uncertainties.

6 **RESULTS: STUDY QUESTION #5**

6.1 Overview

Data evaluated in this section for Elk River side channel and main stem Elk River stations pertain to study question #5 (What are the benthic invertebrate community structures and tissue chemistry in the Elk River side channel and the main stem Elk River upstream and downstream of the side channel, and are they changing over time?). Thompson Creek was also evaluated, per EMC discussions.

6.2 Benthic Invertebrate Community Composition

Benthic invertebrate community samples collected in September were compared among and within stations in the main stem Elk and Elk River side channel (Figure 6.1; Appendix Tables E.1 to E.4 and H.1). Consistent with previous years, community endpoints generally did not differ greatly between perennially-wetted main stem stations (GH_ER2 and GH_ERC) and side channel stations (GH_ERSC4, GH_ER1A, and RG_ERSC5), except for Coleoptera, which were present in the side channel, but largely absent from the main stem stations (Figure 6.2). Compared to the main stem and side channel stations, the samples collected from Thompson Creek (RG_THCK) had greater proportions of Coleoptera and Diptera, and a lower proportion of Ephemeroptera (Figure 6.2); differences between main stem Elk River samples and samples from a mine-exposed tributary are expected due to habitat differences (e.g., Thompson Creek is narrower, steeper, and calcified). Water quality differences, such as differences in selenium speciation (Section 4.2) may also play a role.

Site-specific normal ranges were calculated for total abundance, LPL richness, % EPT, and % Ephemeroptera endpoints for the main stem Elk River areas. These endpoints were within or above the site-specific normal ranges, except for LPL richness at GH_ERC in one of five samples. At all main stem Elk River and all Elk River side channel stations, total abundance, LPL richness, % EPT, % Ephemeroptera, % Plecoptera, and % Trichoptera were within or above the regional normal range, except for % Trichoptera at GH_ER1A, RG_ERSC5, and GH_ERC in one sample each (Figures 6.3 to 6.5). The relative proportion of Trichoptera has been similarly low at the upstream reference aera (GH_ER2), with the single 2016 sample also being below the regional normal range. Therefore, samples with % Trichoptera less than the regional normal range are likely related to habitat rather than to mine influence (Appendix Figure F.6). At all main stem Elk River and Elk River side channel stations, % Chironomidae, % Diptera, and % Oligochaeta were within or below the regional normal range, except for % Oligochaeta at RG_ERSC5, which was above the regional normal range in one of three samples (Figures 6.6 and 6.7).

Document Path: C:\Users\MLaPalme\Trinity Consultants, Inc\Teck - 207202.0022 - GHO LAEMP\4 - GIS\Report\20-22 Figure 6.1 Biological Locations.mxd

Figure 6.2: Benthic Invertebrate Community Composition, GHO LAEMP, September 2020

Figure 6.3: Benthic Invertebrate Community Abundance and LPL Richness, GHO LAEMP, September 2020

Notes: Site specific normal ranges using regression models shown with grey shading (when available). Regional normal ranges using percentiles of reference areas from 2012 to 2019 from the Regional Aquatic Environmental Monitoring Program (RAEMP; Minnow 2020) shown as dashed horizontal lines. LPL = taxa identified to the lowest practical level.

Figure 6.4: Benthic Invertebrate Community % EPT and % Ephemeroptera, GHO LAEMP, September 2020

Notes: Site specific normal ranges using regression models shown with grey shading (when available). Regional normal ranges using percentiles of reference areas from 2012 to 2019 from the Regional Aquatic Environmental Monitoring Program (RAEMP; Minnow 2020) shown as dashed horizontal lines. ETP = Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies).

Figure 6.5: Benthic Invertebrate Community % Plecoptera and % Trichoptera, GHO LAEMP, September 2020

Notes: Site specific normal ranges using regression models shown with grey shading (when available). Regional normal ranges using percentiles of reference areas from 2012 to 2019 from the Regional Aquatic Environmental Monitoring Program (RAEMP; Minnow 2020) shown as dashed horizontal lines.

Figure 6.6: Benthic Invertebrate % Chironomidae and % Diptera Abundance, GHO LAEMP, September 2020

Notes: Site specific normal ranges using regression models shown with grey shading (when available). Regional normal ranges using percentiles of reference areas from 2012 to 2019 from the Regional Aquatic Environmental Monitoring Program (RAEMP; Minnow 2020) shown as dashed horizontal lines.

Figure 6.7: Benthic Invertebrate % Oligochaeta Abundance, GHO LAEMP, September 2020

Notes: Site specific normal ranges using regression models shown with grey shading (when available). Regional normal ranges using percentiles of reference areas from 2012 to 2019 from the Regional Aquatic Environmental Monitoring Program (RAEMP; Minnow 2020) shown as dashed horizontal lineses, with the minimum value = 0%.

At Thompson Creek (RG_THCK), abundance, LPL richness, % Plecoptera, % Trichoptera, and % Chironomidae were within the regional normal range, whereas % EPT and % Ephemeroptera were below the regional normal range in all samples and % Diptera and % Oligochaeta were each above the regional normal range in one of three samples (Figures 6.3 to 6.7). In addition to regional normal ranges, site-specific normal ranges were calculated for total abundance, LPL richness, % EPT, and % Ephemeroptera endpoints for RG_THCK (Figures 6.3 and 6.4). Abundance, % EPT, and % Ephemeroptera were below the site-specific normal ranges for three of three samples, and LPL richness was below the site-specific normal range for two of three samples (Figures 6.3 and 6.4).

There were no apparent temporal patterns in benthic invertebrate community endpoints from 2012 to 2020, except at the downstream main stem station GH_ERC, where there was an apparent decrease in % Plecoptera from 2015 to 2019, but then an increase in 2020 (Appendix Figures F.1 to F.9). Single samples were collected each year from 2015 to 2017, so the apparent trend may simply be natural variation (as demonstrated by the within station variability measured in 2018, 2019, and 2020 at reference station GH_ER2). Despite the possible downward trend from 2015 to 2019, % Plecoptera at GH_ERC remained within the regional normal range as well as within the range observed at the upstream main stem reference station (GH_ER2), except for one of three samples collected in 2019.

Percent EPT was also assessed against the biological trigger established for this endpoint (information pertaining to the determination of the biological trigger value can be found in Appendix I). This was completed for GHO LAEMP monitoring areas with available water quality predictions (i.e., the two mine-exposed areas RG_THCK and GH_ERC; see Appendix I for details). Neither mine-exposed area (RG_THCK with three replicates and GH_ERC with five replicates) had replicates that reached the biological trigger (i.e., % EPT was always above the biological trigger), and therefore no action is required. Further information regarding the % EPT biological trigger as it pertains to the GHO LAEMP can be found in Appendix I.

Overall, benthic invertebrate communities in the side channel and at the main stem location downstream of the side channel are not adversely affected by mine-related discharges.

6.3 Concentrations of Selenium in Benthic Invertebrate Tissue

Selenium concentrations in benthic invertebrate tissue samples collected annually in September from 2017 to 2020 from the main stem Elk River (upstream reference station GH_ER2 and mine-exposed station GH_ERC) and from the two most-upstream side channel stations (GH_ERSC4 and GH_ER1A) were below all EVWQP benchmarks, except for one of three samples in 2020 at GH_ERC and one of three samples in 2018 at GH_ER1A (Figure 6.8;

Figure 6.8: Selenium Concentrations in Benthic Invertebrate Composite Tissue Samples, GHO LAEMP, 2017 to 2020

Notes: Gray shading represents the reference area normal range defined as the 2.5th and 97.5th percentiles of the distribution of reference area data (pooled 1996 to 2019 data) reported in the RAEMP (Minnow 2020). Reference areas are shown in green and mine-exposed areas are shown in blue. Solid line = Level 1 Benchmark. Long hashed line = Level 2 benchmark. Short hashed line = Level 3 benchmark. All samples collected in September.

Appendix Tables G1 and G.2). In 2020, the highest selenium concentrations were measured in samples collected from Thompson Creek (RG_THCK; Figure 6.8). Of the three samples collected from Thompson Creek, one was higher than EVWQP Level 3 benchmarks for benthic invertebrates and dietary effects to fish and birds; one was higher than EVWQP Level 2 benchmarks for benthic invertebrates and dietary effects to fish and birds; and one was higher than EVWQP Level 1 benchmarks for benthic invertebrates and dietary effects to fish and birds; and one was higher than EVWQP Level 1 benchmarks for benthic invertebrates and dietary effects to fish and birds; (Figure 6.8; Appendix Table G.2). However, average selenium concentrations in samples from Thompson Creek were lower in 2020 than in 2019, possibly due to the presence of Annelids in 2019 (see below; Figure 6.8). Downstream of Thompson Creek, selenium concentrations in benthic invertebrate tissue samples collected in the side channel (areas RG_GH-SCW3, GH_ERSC2, and RG_SCDTC) were higher compared to side channel areas upstream of Thompson Creek (Figure 6.8). In 2020, mine-exposed main stem Elk River area GH_ERC had concentrations of selenium in benthic invertebrate tissues that were higher than the upstream reference area (GH_ER2) and the regional normal range in four of five samples, and higher than the EVWQP Level 1 fish benchmark in one of five samples (Figure 6.8).

Selenium concentrations in benthic invertebrate tissue was also assessed against the biological trigger established for this endpoint (information pertaining to the determination of the biological trigger value can be found in Appendix I). Similar to the biological trigger evaluation for % EPT, this was completed for each replicate from GHO LAEMP monitoring areas with available water quality predictions (i.e., the two mine-exposed areas RG THCK and GH ERC; see Appendix I for details). In Thompson Creek (RG THCK), all three replicates exceeded the biological trigger, with concentrations of selenium in tissue ranging from 17 to 59 mg/kg dw. This is consistent with previous findings that biological monitoring results collected downstream of the Thompson Creek sedimentation/buffer ponds were not as expected (Teck 2020b). This issue is currently being tracked through the AMP response framework (Section 1.5; Teck 2020b). In the main stem Elk River station downstream of GHO (GH ERC), one of five replicates exceeded the biological trigger, with concentrations of selenium in tissue of 13 mg/kg dw. Given that only one of the four replicates marginally exceed the biological trigger (exceeded the upper 95% prediction limit of the biological trigger by only 10.8%), this result likely does not warrant further investigation for GH ERC at this time. If replicates exceed this biological trigger again in 2021, benthic invertebrate tissue at this area should be considered for tracking under the AMP. Further information regarding the selenium concentrations in benthic invertebrate tissue biological trigger as it pertains to the GHO LAEMP are provided in Appendix I.

0

Concentrations of selenium in benthic invertebrate tissues were variable within stations; however, they were generally similar between years for most stations, although greater variability was shown for RG_THCK, RG_GH-SCW3, GH_ERSC2, and GH_ERC (Figure 6.8). There were no apparent increases or decreases in concentrations from 2017 to 2020, except for higher concentrations in 2020 compared to previous years at areas GH_ERSC2 and GH_ERC (Figure 6.8). Aqueous total selenium was higher in 2019 and 2020 at GH_ERC compared to previous years (Section 4.4), which may have caused the increase in concentrations of selenium in benthic invertebrate tissue in 2020. This water quality trend was not observed at GH_ERSC2 (Section 4.3).

Higher concentrations of selenium in benthic invertebrate tissue samples likely result from the presence of aqueous selenium in more bioavailable forms (e.g., organoselenium species methylseleninic acid [MeSe(IV)] and dimethylselenoxide [DMSeO] at Thompson Creek and side channel stations, as well as selenite at Thompson Creek and all stations downstream of Thompson Creek). Within the GHO LAEMP study areas in 2020, concentrations of organoselenium species were highest in Thompson Creek (RG THCK; Figure 6.9, Appendix Table D.4). Concentrations of organoselenium species decreased downstream in the side channel (Reach 2, RG ERSC2, RG SCDTC)) and further decreased in the downstream main stem Elk River (area GH ERC; Figure 6.9). Selenium species selenite, methylseleninic acid, and dimethylselenoxide were not detectable at the LRL at the Elk River reference area (GH ER2) and upstream side channel areas (GH ERSC4, GH ER1A, RG ERSC5; Figure 6.9), indicating Thompson Creek as a source of these selenium species. Aqueous selenium speciation data collected concurrent with biological monitoring began in 2020, therefore temporal assessments could not be made. These concentrations of organoselenium species could affect localized patterns of bioaccumulation within Thompson Creek and downstream (Figure 6.9).

For some samples collected in previous study years, higher concentrations of selenium in benthic invertebrate tissues may have also been due to the presence of Annelids (segmented worms) in the sample (i.e., two of three samples from RG_ERSC5 in 2017, all three samples from RG_THCK in 2019, and one out of three samples from RG_GH-SCW3 in 2019; Minnow and Lotic 2020). In 2020, a study was conducted to investigate selenium bioaccumulation in Annelids from various locations in the Elk River watershed (Luoma 2021). This study indicated that Annelids had higher concentrations of selenium compared to other benthic organisms (i.e., Annelid tissue samples from the same area that were benthic invertebrate community composites; Luoma 2021). When Annelids are collected in samples, they typically contribute a large amount of biomass relative to the overall number of organisms present in the sample (i.e., one or two worms often provides sufficient biomass for a tissue sample),

Figure 6.9: Concentrations of Selenium Species Measured in Water Samples Collected Concurrent with Benthic Invertebrate Tissue Samples, and Concentrations of Selenium Measured in Benthic Invertebrate Tissue, GHO LAEMP, September 2020

Notes: MeSe(IV) = methylseleninic acid. DMSeO = dimethylselenoxide. Samples at the laboratory reporting limit (LRL) are plotted with an open symbol.
and therefore could have a substantial influence on concentrations. This may have contributed to variability within areas and among years (Figure 6.8).

Selenium concentrations in 2020 were within the 95% prediction limits of the selenium bioaccumulation model for the Elk River reference area (GH ER2) and two upper-most side channel areas (GH ERSC4 and GH ER1A; Figure 6.10; Teck 2014; Golder 2020). Most of data for all years were above (rather than around) the model line (Figure 6.10), indicating that the model underpredicts bioaccumulation for benthic invertebrates in the GHO LAEMP study areas. As stated in previous reports and above (Minnow and Lotic 2018b, 2019, 2020), the higher concentrations in tissue were likely due to the speciation of aqueous selenium at these stations and, possibly also due to the presence of Annelids (segmented worms) in the samples. Although annelids were present in some samples collected in previous years (Minnow and Lotic 2020), none were present in the 2020 samples. Underprediction may have occurred for stations in Reach 2 (RG GH-SCW2 and RG GH-SCW3) and area GH ERSC2, as the selenium bioaccumulation model was created based on a data set from lotic stations, and these three stations are depositional, with lentic characteristics in the fall. Because the bioaccumulation model underpredicted bioaccumulation for most GHO LAEMP study areas and because organoselenium species have been measured in those areas, the selenium speciation bioaccumulation tool (referred to as the b-tool) was expected to provide more accurate predictions of bioaccumulation (Golder 2018; de Bruyn and Luoma 2021). The b-tool provided more accurate predictions than the selenium bioaccumulation model; however, the b-tool still underpredicted concentrations for areas GH ER1A, RG ERSC5, GH ERSC2, and GH ERC (Figure 6.11; Appendix Table G.3). This may have been resulted from several possible (but unconfirmed) factors, including seasonal variability in the speciation of aqueous selenium, higher discharge from Thompson Creek sedimentation ponds during freshet, seasonally variable groundwater seepage, the seasonal drying of most sections of the side channel, and/or the taxa composition of the benthic invertebrate tissue samples. The Selenium Speciation Monitoring Program, which is currently being designed, may address some of these uncertainties. Thompson Creek is being considered for inclusion into this program.

6.4 Supporting Information

6.4.1 Habitat

The mine-exposed and reference main stem Elk River stations were well matched, with similar sized channels and cobble-dominated substrates (Appendix Tables H.2 and H.3). Compared to the main stem stations, side channel stations had much narrower wetted widths and a greater proportion of sand and fines (Appendix Tables H.2 and H.3). Reach 2 and GH_ERSC2 were predominantly fines (Appendix Table H.2). Thompson Creek was steeper and narrower than

Figure 6.10: Observed (Markers) and Modelled (Lines) Selenium Concentrations in Benthic Invertebrate Composite Tissue Samples Relative to Aqueous Selenium Concentrations, GHO LAEMP, 2017 to 2020

Notes: Mean benthic invertebrate selenium concentrations (solid black line) were estimated using a one-step water to benthic invertebrate selenium bioaccumulation model: log10[Se]benthicinvertebrate=0.717+0.072xlog10[Se]_{aq} (Golder 2020). The 95% prediction limits for a single value from the one-step water to benthic invertebrate selenium bioaccumulation model are plotted as dashed red lines. All samples collected in September.

Figure 6.11: Observed (Markers) and Modelled (Lines) Selenium Concentrations in Benthic Invertebrate Composite Tissue Samples, GHO LAEMP, September 2020

Notes: Green represents reference stations and blue represents mine-exposed stations. The purple line shows the mean estimated from the selenium bioaccumulation model, which used a one-step water to benthic invertebrate selenium bioaccumulation model: log10[Se]benthicinvertebrate=0.717+0.072xlog10[Se]aq (Golder 2020). The yellow line shows the mean estimated from the selenium speciation bioaccumulation tool (b-tool; de Bruyn and Luoma 2021).

main stem and side channel stations, with cobble-dominated substrate. *In situ* water quality was similar among stations at the time of benthic invertebrate sampling (Appendix Table H.4), with all stations being well-oxygenated. Water in the side channel and main stem Elk River was cooler than water in Thompson Creek (Appendix Table H.4). Specific conductance was highest in Thompson Creek (Appendix Table H.4).

6.4.2 Calcite

Calcite indices measured in biological sampling areas at the downstream main stem Elk River station (GH_ERC) and Elk River side channel stations (GH_ERSC4, GH_ER1A, RG_ERSC5, RG_SCDTC) annually in September of 2017 to 2020 ranged from 0 to 0.46 (Table 6.1; Appendix Table H.6), which was within the reference condition of less than 1.0 (97.5th percentile upper limit of the reference normal range; Minnow 2020b). In 2020, the calcite index measured at the Thompson Creek tributary (RG_THCK; average CI = 0.8, ranging from 0.37 to 1.09) was higher than at the main stem Elk River and side channel stations; however, the substrate at RG_THCK was not fully concreted (C_c scores ranged from 0 to 0.29), and the average calcite index was within the reference condition of 0 to 1.0 (Minnow 2020b; Table 6.1; Appendix Table H.6).

6.4.3 Sediment Quality

Sediment quality samples were collected in the main stem Elk River upstream (GH_ER2) and downstream of the west side tributaries (GH_ERC), as well as Reach 2 (RG_GH-SCW3; Figures 6.1 and 6.12). Sediment TOC and particle size distributions were consistent with previous years (Figure 6.12). Sediment TOC and particle size were generally similar among Elk River stations (GH_ERC and GH_ER2). Reach 2 (RG_SCW3), which was depositional habitat, typically had higher concentration of TOC, a greater proportion of silt, and a smaller proportion of sand as compared to the lotic main stem Elk River stations (GH_ERC and GH_ER2; Figure 6.12).

In 2020, within Reach 2 (RG_GH-SCW3), concentrations of parameters with SQGs exceeded the lower SQG for cadmium (all five samples), nickel (all five samples), selenium (one of five samples exceeded the only SQG), benz(a)anthracene (two of five samples), chrysene (three of five samples, with two samples below the LRL but about the lower SQG), dibenz(a,h)anthracene (three of five samples), fluorene (four of five samples), 2–methylnaphthalene (all five samples), naphthalene (all five samples), phenanthrene (all five samples), and pyrene (two of five samples) (Figure 6.13, Appendix Table H.7). However, all concentrations were lower than the upper SQGs, except for 2–methylnaphthalene in all five samples from Reach 2 and phenanthrene in three of five samples from Reach 2 (Figure 6.13, Appendix Table H.7). Additionally, all concentrations

		20)17		2018			2019				2020				
Area ID	Minimum	Maximum	c	Average Calcite Index	Minimum	Maximum	c	Average Calcite Index	Minimum	Maximum	c	Average Calcite Index	Minimum	Maximum	c	Average Calcite Index
GH_ER2 / RG_ELUGH	0	0	1	0	0	0	3	0	0	0	3	0	0	0	3	0
GH_ERSC4	0	0	1	0	0	0	3	0	0.10	0.63	3	0.34	0	0	3	0
GH_ER1A	0	0	1	0	0	0	3	0	0.33	0.48	3	0.43	0.01	0.06	3	0.04
RG_ERSC5	0	0	1	0	0	0	3	0	0	0	3	0	0	0.12	3	0.04
GH_TC2 / RG_THCK ^a	-	-	-	-	0.80	0.80	1	0.80	0.30	0.50	3	0.39	0.37	1.1	3	0.80
RG_SCDTC [♭]	-	-	-	-	0	0	1	0	0.40	0.57	3	0.46	0	0	3	0
GH_ERC / RG_EL20	0	0	1	0	0	0.04	5	0.014	0.060	0.62	5	0.39	0	0	5	0

 Table 6.1: Calcite Index Measured at Benthic Invertebrate Monitoring Areas in Riffles, GHO LAEMP, September 2017 to

 2020

Note: "-" indicates area not sampled in 2017, as per study design (Minnow and Lotic 2017).

^a THCK was not included in the 2017 GHO LAEMP study design.

^b RG_SCDTC was dry in 2017.

Figure 6.12: Mean Particle Size (%) and Total Organic Carbon Content (%) in Sediments, GHO LAEMP, September 2017, 2018, 2019, and 2020

Figure 6.13: Sediment Metal and Polycyclic Aromatic Hydrocarbons (PAH) Concentrations Relative to BC Sediment Quality Guidelines (SQG) and Normal Ranges, GHO LAEMP, September 2017 to 2020

Figure 6.13: Sediment Metal and Polycyclic Aromatic Hydrocarbons (PAH) Concentrations Relative to BC Sediment Quality Guidelines (SQG) and Normal Ranges, GHO LAEMP, September 2017 to 2020

Figure 6.13: Sediment Metal and Polycyclic Aromatic Hydrocarbons (PAH) Concentrations Relative to BC Sediment Quality Guidelines (SQG) and Normal Ranges, GHO LAEMP, September 2017 to 2020

Figure 6.13: Sediment Metal and Polycyclic Aromatic Hydrocarbons (PAH) Concentrations Relative to BC Sediment Quality Guidelines (SQG) and Normal Ranges, GHO LAEMP, September 2017 to 2020

Figure 6.13: Sediment Metal and Polycyclic Aromatic Hydrocarbons (PAH) Concentrations Relative to BC Sediment Quality Guidelines (SQG) and Normal Ranges, GHO LAEMP, September 2017 to 2020

were within the regional normal range, except for 2-methylnaphthalene, phenanthrene, and pyrene in two of five samples from Reach 2 (Figure 6.13, Appendix Table H.7).

Although sediment quality in Reach 2 exhibited influence from the west-side tributaries, sediment quality was similar in the main stem Elk River downstream (GH_ERC) and upstream (GH_ER2) of the west side tributaries (Figure 6.13). Within the Elk River stations (GH_ERC and GH_ER2), in 2020 the lower SQG was only exceeded for cadmium and nickel (two of three samples from GH_ER2 reference area), and for phenanthrene (all three GH_ER2 samples and one of five GH_ERC samples), indicating elevated concentrations in the Elk River were not mine-related. Data collected from 2017 to 2020 indicated no temporal patterns, except for a possible decrease in concentrations of chromium and 2-methylnaphthalene from 2017 to 2020 at the main stem Elk River downstream (GH_ERC; Figure 6.13).

Overall, sediment quality in the main stem Elk River downstream of the side channel (GH_ERC) was not adversely affected by mine-related discharges. However, sediment quality in Reach 2 exhibits influence from the west-side tributaries (particularly Thompson Creek), having higher concentrations of selenium and some PAHs relative to Elk River stations (though typically still within the normal range).

6.5 Summary

Data collected from 2017 to 2020 furthered the understanding of study question #5 (What are the benthic invertebrate community structures and tissue chemistry in the Elk River side channel and the main stem Elk River upstream and downstream of the side channel, and are they changing over time?).

Benthic invertebrate community endpoints did not differ greatly between perennially-wetted main stem stations (GH_ER2 and GH_ERC), and side channel stations (GH_ERSC4, GH_ER1A, RG_ERSC5, and RG_SCDTC). Abundance, richness, % EPT, % Ephemeroptera, % Plecoptera, and % Trichoptera, % Chironomidae, and % Diptera were within or above the site-specific normal ranges (where applicable) and regional normal ranges for main stem Elk River and side channel stations, with few exceptions. The community of Thompson Creek was different than the main stem Elk River and Elk River side channel stations, likely due to a combination of habitat and water quality differences.

Selenium concentrations in benthic invertebrate tissue were highest in Thompson Creek. Selenium concentrations in benthic invertebrate tissue from side channel stations were higher than main stem stations. Concentrations in the side channel increased from upstream to downstream, from area GH_ERSC4 (upstream of Wolfram Creek) to GH_ER1A and GH_ERSC5 (both downstream of Wolfram Creek) to Reach 2 (RG GH-SCW2 and RG GH-SCW3) and RG_SCDTC, which are downstream of Thompson Creek. Area GH_ERSC2, which is also downstream of Thompson Creek, had higher concentrations relative to Reach 2 and RG_SCDTC, likely due to the more depositional nature of the area, although aqueous selenium speciation data collected in September 2020 had similar results for Reach 2, GH_ERSC2, and RG_SCDTC. Higher concentrations of selenium in in benthic invertebrate tissue samples collected from Thompson Creek and downstream likely result from the presence of aqueous selenium in more bioavailable forms.

Benthic invertebrate community structure and tissue chemistry were similar at the downstream main stem station (GH_ERC) and the upstream main stem reference station (GH_ER2), suggesting minimal influence of GHO and the west-side tributaries on benthic invertebrate community endpoints and tissue chemistry in the main stem Elk River.

0

-

7 INTEGRATED SUMMARY AND RECOMMENDATIONS

7.1 Summary

The 2020 GHO LAEMP investigated five study questions designed to address localized concerns downstream of the west spoil development and Cougar Pit extension at GHO. The GHO LAEMP targeted the Elk River (upstream and downstream of GHO), tributaries on the west-side of the Greenhills Ridge, as well as a side channel of the Elk River that receives flows, via surface water and/or groundwater, from the mine influenced west-side tributaries (e.g., Thompson, Wolfram, and Leask creeks). The study questions focused on characterization and understanding of habitat quality/availability, water quality, benthic invertebrate community structure, and benthic invertebrate tissue chemistry.

Within the side channel and its floodplain complex, over thirty multi-day field visits were completed in all seasons from 2017 to 2019 to identify and document habitat and occurrences of aquatic-dependent biota. In 2020, three additional amphibian surveys were conducted in May, June, and July. Data were used to answer study question #2 (What is the seasonal habitat availability for amphibians in Reach 2 of the Elk River side channel?). The results were generally consistent over the four study years. Seasonal changes in flow affected habitat availability (e.g., lentic habitat was only observed in fall and winter in Reach 2). From freshet to late summer (three to four months of each study year), Reach 2 received flow from both the Elk River (via the upper side channel) and Thompson Creek. Flows were relatively swift during this time. From fall to early spring, Reach 2 remained wetted due to overland flows from Thompson Creek, but the upper side channel disconnected from the main stem Elk River and was dry. Reach 2 was swiftly flowing in the spring and early summer, and therefore was not suitable breeding habitat. Three amphibian species (Columbia spotted frog, western toad, long-toed salamander) were observed throughout the side channel in late spring and summer.

Water quality data were assessed for stations in the west-side tributaries, Elk River side channel and the main stem Elk River to address study question #3 (What is the influence of the GHO discharges from the west-side tributaries on water quality in the Elk River and Elk River side channel?) and its sub-questions. Water quality at side channel stations GH_ER1A and GH_ERSC2 was influenced by Wolfram and Thompson creeks, and concentrations at these stations were typically higher than at the upstream side channel station GH_ERSC4. Within the side channel and main stem Elk River, the highest concentrations of constituents generally occurred in Reach 2 (RG_GH-SCW3), which receives flow directly from Thompson Creek. Discharges from the west-side tributaries contributed to higher concentrations of some mine-related constituents in the main stem Elk River (GH ERC) downstream of GHO relative to

-

the upstream reference; however, concentrations measured at GH ERC were typically below benchmarks, screening values, and/or BCWQG, or were comparable to the upstream reference, except for total selenium (frequently above the long term BCWQG, but below all EVWQP benchmarks) and total nickel (occasionally above the Level 1 Interim Screening Value). These general water quality results were consistent over the GHO LAEMP study (from 2017 to 2020). At the west-side tributaries, sulphate, TDS, and total selenium have been increasing in Leask and Wolfram creeks, while total nickel has been increasing in Leask Creek. In Leask and Wolfram creeks, sulphate and TDS concentrations typically exceed the EVWQP Level 1 benchmarks, total selenium typically exceeds the EVWQP Level 2 benchmark. In Leask Creek, total nickel concentrations exceeded the Level 3 Interim Screening Value since 2016. In Thompson Creek, sulphate has increased in recent years, with concentrations typically above the EVWQP Level 1 benchmark. Total nickel has decreased in recent years at Thompson Creek. At the Reach 2 outlet, total nickel was higher in 2019 and 2020 compared to 2018. At the downstream main stem Elk River station (GH ERC), total selenium concentrations were higher in 2018 to 2020 compared to previous years, with concentrations frequently above the long term BCWQG, but well below all EVWQP benchmarks. Also, at station GH ERC, nitrate concentrations were higher in 2019 to 2020, as compared to previous years, but remained well below the BCWQG.

To answer study question #4 (What is the interaction between surface water and groundwater in the Elk River side channel?), a hydrogeological review and analysis of available groundwater and surface water data from the west side of GHO along the Elk River side channel. The data review indicated that side channel surface water predominantly infiltrated to ground and recharged groundwater. Localized areas of groundwater discharge occurred near the confluence with Wolfram Creek as well as downstream of Thompson Creek, but these discharge areas did not result in sustained flows within the side channel. Gaps and uncertainties were identified.

Benthic invertebrate community data collected annually in September from 2017 to 2020 furthered the understanding of study question #5 (What are the benthic invertebrate community structures and tissue chemistry in the Elk River side channel and the main stem Elk River upstream and downstream of the side channel, and are they changing over time?). Benthic invertebrate community endpoints did not differ greatly between perennially-wetted main stem stations (GH_ER2 and GH_ERC) and side channel stations (GH_ERSC4, GH_ER1A, and RG_ERSC5). In 2020 at main stem Elk River and Elk River side channel areas, total abundance, LPL richness, % EPT, % Ephemeroptera, % Plecoptera, and % Trichoptera were within or above the regional normal range, except for % Trichoptera at GH_ER1A, RG_ERSC5, and GH_ERC in one sample each. The relative proportion of Trichoptera has been similarly low at the upstream reference aera (GH_ER2); therefore, samples with % Trichoptera less than the regional normal

range are likely related to habitat rather than mine influence. At all main stem Elk River and Elk River side channel stations, % Chironomidae, % Diptera, and % Oligochaeta were within or below the regional normal range, except for % Oligochaeta at RG_ERSC5 in one of three samples. Compared to the main stem and side channel stations, the samples collected from Thompson Creek (RG_THCK) had greater proportions of Coleoptera and Diptera, a lower proportion of Ephemeroptera, and more community endpoints that differed from the normal range, likely due to habitat differences (e.g., Thompson Creek is narrower, steeper, and calcified) or water quality differences. Overall, benthic invertebrate communities in the main stem Elk River and the Elk River side channel did not appear to be adversely affected by mine related discharges.

Benthic invertebrate tissue chemistry (selenium) data were also collected annually in September of 2017 to 2020, and furthered the understanding of study question #5. Selenium concentrations in benthic invertebrate tissue were highest in Thompson Creek. Selenium concentrations in benthic invertebrate tissue from side channel stations were higher than main stem stations. Concentrations in the side channel increased from upstream to downstream, from area GH_ERSC4 (upstream of Wolfram Creek) to GH_ER1A and GH_ERSC5 (both downstream of Wolfram Creek) to Reach 2 (RG_GH-SCW2 and RG_GH-SCW3), which is downstream of Thompson Creek. Although areas GH_ERSC2 and RG_SCDTC are both downstream of Thompson Creek, GH_ERSC2 had higher concentrations of selenium in tissue relative to Reach 2 and RG_SCDTC despite similar concentrations of aqueous selenite and organoselenium species, likely due to the more depositional nature of the area. Higher concentrations of selenium in benthic invertebrate tissue samples collected from Thompson Creek and downstream likely result from the presence of aqueous selenium in more bioavailable forms. At area GH_ERC, average concentrations were higher in 2020 compared to previous years.

Benthic invertebrate community structure and tissue chemistry were similar at the downstream main stem station (GH_ERC) and the upstream main stem reference station (GH_ER2), suggesting minimal influence of GHO and the west-side tributaries on benthic invertebrate community endpoints and tissue chemistry in the main stem Elk River.

In support of study question #5 and to better understand potential mine-related effects on benthic invertebrate communities and tissue chemistry, sediment quality was assessed in the main stem Elk River upstream and downstream of the side channel, and in Reach 2 of the side channel. Except for chrysene in one of five samples, 2–methylnaphthalene in two of five samples, phenanthrene in three of five samples, and pyrene in two of five samples collected at Reach 2, concentrations of constituents were within the normal range in samples collected in 2020. Concentrations of constituents were below the upper (or only in the case of selenium) SQG in all

samples from 2020, except for selenium, 2-methylnaphthalene, and phenanthrene in Reach 2. Data collected from 2017 to 2020 indicated no temporal patterns, except for a possible decrease in concentrations of chromium and 2-methylnaphthalene from 2017 to 2020 at the main stem Elk River downstream (GH_ERC). In general, sediment quality data indicated limited influence of mine-related discharges on sediment chemistry in the main stem Elk River downstream of the side channel.

The results from the 2020 GHO LAEMP provide information that supports Teck's Adaptive Management Program (Teck 2018). Table 7.1 summarizes material presented in this report that is relevant to the AMP. The results from this study also supported the evaluation of biological triggers, which are intended to identify unexpected monitoring results that may lead to responses under the AMP response framework. Biological trigger results indicated that neither of the two mine-exposed areas evaluated (RG THCK and GH ERC) reached the % EPT biological trigger (Table 7.2). This trigger will continue to be monitored as part of the RAEMP. Additionally, efforts are also currently underway (i.e., predictive modeling) to resolve uncertainty around effects of mine-related stressors on benthic invertebrate community endpoints (further information regarding the response for these biological triggers can be found in Appendix I). All replicates for RG THCK (Thompson Creek) reached the biological trigger for the evaluation of selenium in benthic invertebrate tissues (Table 7.2), likely related to high concentrations of non-selenate species in water (Section 6.3). This issue is already being tracked through the AMP response framework (Section 1.5; Teck 2020b). One out of five replicates for GH ERC also marginally reached the the biological trigger for the evaluation of selenium in benthic invertebrate tissues (Table 7.2). This biological trigger exceedance does not warrant further investigation at this time since this was an isolated event (one of five replicates) and showed a low magnitude of exceedance (Appendix I). If replicates exceed this biological trigger again in 2021, this issue should be considered for tracking under the AMP. Monitoring of the benthic invertebrate selenium biological trigger at RG THCK and GH ERC will continue under the RAEMP. Overall, results of the biological trigger evaluation were consistent with the findings of the integrated assessment conducted under the 2020 GHO LAEMP. Given that current biological triggers were sufficient to identify monitoring areas where biological responses are occurring, no additional triggers are recommended at this time.

7.2 Recommendations

0

-

Teck has fulfilled the Permit 107517 (Section 8.3.4) requirement of conducting a LAEMP from 2017 to 2020, focusing on the upper Elk River, the Elk River side channel, and tributaries located on the west side of GHO. Where concerns remain over specific components of the GHO LAEMP,

Key Question(s)	Data Evaluation Process	Outcome(s)	Responses & Adjustments in 2020	EMC Engagement	
#2. What is the seasonal habitat availability for amphibians in Reach 2 of the Elk River side channel?	Conducted amphibian surveys in May, June, and July 2020.	The seasonal habitat availability and use by amphibians has been demonstrated. Surveys of amphibians from 2017 to 2020 determined that the side channel was being used by three species of amphibians.	Additional years of surveys would not further the understanding of how mine related discharges might affect seasonal habitat availability for amphibians. Do no further work on this study question.	An updated sampling design for 2020 was submitted to ENV June 1, 2020. The updated study design was	
#3. What is the influence of the GHO discharges from the west-side tributaries on water quality in the Elk River and Elk River side channel?	Assessed water quality at west-side tributary, side channel, and Elk River stations. Compared constituent concentrations to BCWQG, EVWQP benchmarks, and/or interim screening values. Assessed for temporal trends.	Mine influence indicated in the southern-most tributaries.	None. Monitoring to continue under Teck's Annual Water Quality Report and the MBI.	A meeting was held to discuss discontinuing GHO LAEMP after 2020 while continuing monitoring under other programs. The draft data package	
#4. What is the interaction between surface water and groundwater in the Elk River side channel?	Conducted a hydrogeological review and analysis of available groundwater and surface water data for the west side of GHO.	Within the side channel, surface water predominantly infiltrated to ground, recharging groundwater. Localized areas of groundwater discharge occurred in the side channel near Wolfram Creek and downstream of Thompson Creek, but these did not result in sustained flows within the side channel.	Work is planned for 2021 under the GHO SSGMP, RGMP, MBI, and/or CPP: • seep reconnaissance and sampling; • installation of monitoring wells; • groundwater sampling; • flow and load accretion studies; and • geophysical surveys.	of 2020 results and outline of monitoring to be addressed in other programs in 2021 was submitted to EMC March 31, 2021 and discussed by tele-	
#5. What are the BIC structures and BIT chemistry in the Elk River side channel and the main stem Elk River upstream and downstream of the side channel, and are they changing over time?	Assessed BIC structures relative to normal ranges and the upstream reference area. Assess BIT chemistry relative to EVWQP benchmarks and the upstream reference area. Assessed for temporal trends.	The BIC and BIT chemistry were similar among the Elk River stations downstream and upstream of mine influence. Percent EPT was low in Thompson Creek compared to the normal range. Selenium in BIT was elevated in Thompson Creek and in the side channel downstream of Thompson Creek compared to EVWQP benchmarks.	Selenium concentrations in BIT replicates at Thompson Creek reached an AMP biological trigger, and are being addressed through the AMP response framework (Section 1.5; Teck 2020b).	Written input from EMC on March draft data package received April 26, 2021.	

Table 7.1: Summary of Findings, Responses, and Adjustments Related to the GHO LAEMP in 2020

Notes: GHO = Greenhills Operation; LAEMP = Local Aquatic Effects Monitoring Program; BCWQG = British Columbia Water Quality Guideline; EVWQP = Elk Valley Water Quality Plan; MBI = Mass Balance Investigation; GHO SSGMP = Greenhills Operation Site-Specific Groundwater Monitoring Program; RGMP = Regional Groundwater Monitoring Program; CPP = Cougar Pit Phase 5 and 7-2 Project; BIC = benthic invertebrate community; BIT = benthic invertebrate tissue; % EPT = Percent Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies); AMP = Adaptive Management Plan.

Table 7.2: Summary of Biological Trigger Analysis for Percent EPT andConcentration of Selenium in Benthic Invertebrate Tissue, Thopmson Creek and ElkRiver, 2020

				% EPT ^a	Selenium BIT ^b			
Waterbody	Are	a	Number Replicates Evaluated	Number of Replicates Reaching Biological Trigger ^c	Number Replicates Evaluated	Number of Replicates Reaching Biological Trigger ^d		
Thompson Creek	RG_THCK	Mine- exposed	3	0	3	3		
Elk River	GH_ERC	Mine- exposed	5	0	5	1		

^a % EPT = % EPT = Percent Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies). Biological Trigger analysis for % EPT was for the September 2020 sampling event.

^b Selenium BIT = Selenium concentrations in benthic invertebrate tissue (mg/kg dw). Biological Trigger analysis for Selenium BIT was for the September 2020 sampling event.

^c Number of Replicates Reaching Biological Trigger for % EPT refers to those replicates which were below both triggering steps (i.e., below the lower 2.5th percentile of the habitat-adjusted normal range and expectations, as based on predicted Aquatic Data Integration Tool [ADIT] Scores). See Appendix Section I.2.2 for more details.

^d Number of Replicates Reaching Biological Trigger for Selenium BIT refers to those replicates which were above both triggering steps (i.e., above the upper 97.5th percentile prediction limit of the regional normal range and expectations, as based on the predicted 95% percentile from the water to benthic invertebrate selenium bioaccumulation model). See Appendix Section I.2.3 for more details.

0

€.

monitoring that addresses those concerns is already conducted and reported under existing monitoring programs, or will be added to existing monitoring programs, such that these concerns continue to be addressed. In order to assure the continued evaluation of the potential effects of mine influence on the immediate receiving environment, the following recommendations are made for the 2020 GHO LAEMP study questions (Table 7.3).

Study question #2: What is the seasonal habitat availability for amphibians in Reach 2 of the Elk River side channel?

Recommendation: Discontinue the investigation into habitat availability for amphibians in Reach 2 of the Elk River side channel.

Rationale: The habitat of the Elk River side channel and observations of biota in the side channel were documented over four years, during over 40 field visits that occurred in all seasons. The seasonal habitat availability and use by amphibians has been demonstrated. Amphibian breeding habitat was not present in Reach 2. Surveys of amphibians from 2017 to 2020 determined that the side channel was being used by three species of amphibians (Columbia spotted frog, western toad, and long-toed salamander). Additional surveys would not further the understanding of how mine-related discharges might affect seasonal habitat availability for amphibians.

Study question #3: What is the influence of the GHO discharges from the west-side tributaries on water quality in the Elk River and Elk River side channel?

Continue to monitor water quality in the west-side tributaries Recommendation: GH WOLF SP1, GH WILLOW SP1, GH WADE, (stations GH BR F, GH COUGAR, GH NNC, GH MC1, GH LC2, GH LC1, GH WC2, GH WC1, GH TC2, and GH TC1), Elk River side channel (stations GH ERSC4, GH ER1A, and GH ERSC2) and the main stem Elk River (stations GH ER2 and GH ERC), and continue to report the water quality results under Teck's Annual Water Quality Report. West-side tributary stations GH WOLF, GH WILLOW, and GH BR D are not required under Permit 107517; instead, they are being monitored for baseline data for Phase 5 and Phase 7-2 mine extensions. Sampling at GH WILLOW S has not occurred since 2017 at this location; all flow reports to station GH WILLOW then through ponds to station GH WILLOW SP1, and therefore this station will no longer be reported. These water quality data collected for Phase 5 and Phase 7-2 mine extensions will be included in project applications and reviews in the future. Reach 2 inlet (RG GH-SW1) and outlet (RH GH-SCW3) stations within the side channel will continue to be monitored monthly and reported in the MBI program.

Rationale: The Annual Water Quality Report evaluates compliance for order constituents, compares water quality to BCWQG, compares water quality to early warning triggers for

Table 7.3: Primary Monitoring Programs for 2021 and Onward Incorporating Data that have been Reported under the 2020 GHO LAEMP Report

	_			Biological			Question #2	Question #3 and #4, and supporting #5	Question #4		Qu	estion #5	
ype	/pe [°]		Wator	Area Code	ENV	Primary	Amphibians	Surface Water and Groundwater	Hydrology	Benthio	c Invertebrates	Subs	strate
Station T	Stream T	Stream Name	Station Code	or Staff Gauge Location Code	EMS Number	Monitoring Program	Survey	Chemistry	Water Level and/or Flow Monitoring	Community Endpoints	Tissue Chemistry (Composite Taxa)	Calcite Index	Sediment Physical- chemical Attributes
eference	М	Elk River	GH_ER2	RG_ELUGH	200389	Annual Water Quality Report, RAEMP	-	Monthly ^b samples collected primarily for Permit 107517 and Teck's Annual Water Quality Report, and is also reported in the RAEMP. Sample also collected concurrent ^b with biological monitoring for the RAEMP.	-	Three replicates collected annually for the RAEMP.	Three replicates collected annually for the RAEMP.	Determined for three reaches concurrent with biological monitoring.	Three replicates collected annually for the RAEMP concurrent with biological monitoring.
Я	Т	Branch F Creek	GH_BR_F	-	E287437	Annual Water Quality Report	-	Monthly ^b samples collected primarily for Permit 107517 and Teck's Annual Water Quality Report.	-	-	-	-	-
	т	Wolf Creek	GH_WOLF	-	-	-	-	Baseline data collected for Phase 5 and/or Phase 7-2 mine extensions, to be included in future project applications and reviews. Sampling frequency will not change. GH_WOLF is upstream of GH_WOLF_SP1, therefore this station is not needed to understand constituent loadings to the Elk River.	-	-	-	-	-
			GH_WOLF_SP1	-	E305855	Annual Water Quality Report	-	Monthly ^b samples collected primarily for Permit 107517 and Teck's Annual Water Quality Report.	-	-	-	-	-
le-exposed		Willow Creek	GH_WILLOW	-	-	-	-	Baseline data collected for Phase 5 and/or Phase 7-2 mine extensions, to be included in future project applications and reviews. Sampling frequency will not change. GH_WILLOW and is upstream of GH_WILLOW_SP1, therefore this station is not needed to understand constituent loadings to the Elk River.	-	-	-	-	-
ntially Mir	Т		GH_WILLOW_S	-	-	-	-	Sampling has not occurred at GH_WILLOW_S since 2017. All flow reports to station GH_WILLOW then through ponds to station GH_WILLOW_SP1.	-	-	-	-	-
or Poter			GH_WILLOW_SP1	-	E305854	Annual Water Quality Report	-	Monthly ^b samples collected primarily for Permit 107517 and Teck's Annual Water Quality Report.	-	-	-	-	-
o pəsoq o	Т	Wade Creek	GH_WADE	-	E287433	Annual Water Quality Report	-	Monthly ^b samples collected primarily for Permit 107517 and Teck's Annual Water Quality Report.	-	-	-	-	-
line-ex	Т	Cougar Creek	GH_COUGAR	-	E287432	Annual Water Quality Report	-	Monthly ^b samples collected primarily for Permit 107517 and Teck's Annual Water Quality Report.	-	-	-	-	-
Z	Т	No Name Creek	GH_NNC	-	E305875	Annual Water Quality Report	-	Monthly ^b samples collected primarily for Permit 107517 and Teck's Annual Water Quality Report.	-	-	-	-	-
	Т	Branch D	GH_BR_D	-	-	-	-	Baseline data collected for Phase 5 and/or Phase 7-2 mine extensions, to be included in future project application and review. Sampling frequency will not change.	-	-	-	-	-
	Т	Mickelson Creek	GH_MC1	GH_MC1	0200388	Annual Water Quality Report, RAEMP	-	Monthly ^b samples collected primarily for Permit 107517 and Teck's Annual Water Quality Report, and is also reported in the RAEMP.	-	-	-	-	-
	Т	Leask Creek	GH_LC1	GH_LC1	E257796	Annual Water Quality Report	-	Monthly ^b samples collected primarily for Permit 107517 and Teck's Annual Water Quality Report.	-	-	-	-	-

No change to monitoring frequency, but in 2021 and onward data will be reported and interpreted in a report other than the GHO LAEMP.

Sampling and/or reporting will be discontinued, or sampling frequency will be different than in the 2020 GHO LAEMP Study Design.

Notes: "-" indicates no work conducted, as per approved 2020 GHO LAEMP study design. RAEMP = Regional Aquatic Effects Monitoring Program. GHO SSGMP = Greenhills Operation Site Specific Groundwater Monitoring Program. MBI = Mass Balance Investigation. CPP = Cougar Pit Phase 5 and 7-2 Project. ^a M - main stem (lotic); T - tributary (lotic); GW - groundwater; S - side channel (lotic); De - depositional side channel (semi-lentic).

^b Weekly/monthly - water chemistry sampling and flow monitoring are conducted weekly or monthly through Permit 107517 and Permit 6428. Concurrently - water chemistry sampling will be conducted concurrent with biological sampling.

^c The monitoring of benthic invertebrate tissue chemistry area GH_ERSC2 will be discontinued, as the habitat does not meet the criteria for inclusion in to the RAEMP study design (i.e., depositional, semi lentic, and dry from late fall until late spring) and because this area is less than 350 m away from areas RG_GH-SCW3 and RG_SCDTC with no contributing tributaries between the areas (i.e., spatial coverage is adequate without area GH_ERSC2).

Table 7.3: Primary Monitoring Programs for 2021 and Onward Incorporating Data that have been Reported under the 2020 GHO LAEMP Report

				Biologiaal			Question #2	Question #3 and #4, and supporting #5	Question #4		Qu	estion #5	
ype	pe ^a		14/- 4	Area Code	E ND/	Deiman	Amphibians	Surface Water and Groundwater	Hydrology	Benthi	c Invertebrates	Subs	trate
Station T	Stream Ty	Stream Name	Station Code	or Staff Gauge Location Code	ENV EMS Number	Primary Monitoring Program	Survey	Chemistry	Water Level and/or Flow Monitoring	Community Endpoints	Tissue Chemistry (Composite Taxa)	Calcite Index	Sediment Physical- chemical Attributes
	GW	Near Leask Creek	GH_MW_LC3A/B/C	-	-	MBI	-	Currently monitored for the MBI and to be considered for potential inclusion into the SSGMP during the 2021 to 2024 SSGMP process.	-	-	-	-	-
	м	Elk River	-	ERUS	-	GHO SSGMP	-	-	Water level logger data only. Currently reported in the MBI. Data are recommended for potential inclusion in the GHO SSGMP as appropriate.	-	-	-	-
	s	Elk River Side Channel	GH_ERSC4	GH_ERSC4	E305878	Annual Water Quality Report, RAEMP, GHO SSGMP	-	Monthly ^b samples collected primarily for Permit 107517 and Teck's Annual Water Quality Report, and is also reported in the RAEMP. Sample also collected concurrent ^b with biological monitoring for the RAEMP.	Currently reported in the MBI. Data are recommended for potential inclusion in the GHO SSGMP as appropriate	Three replicates collected annually for the RAEMP.	Three replicates collected annually for the RAEMP.	Determined for three reaches concurrent with biological monitoring.	-
osed	GW	Near Side Channel	GH_MW_WC1- A/B/C	-	-	MBI	-	Currently monitored for the MBI and to be considered for potential inclusion into the SSGMP during the 2021 to 2024 SSGMP process.	-	-	-	-	-
Mine-exp	Т	Wolfram Creek	GH_WC1	GH_WC1	E257795	Annual Water Quality Report	-	Monthly ^b samples collected primarily for Permit 107517 and Teck's Annual Water Quality Report, and is also reported in the RAEMP.	-	-	-	-	-
			RG_MW_LCWC1	-	-	-	-	Currently monitored for the MBI and to be considered for potential inclusion into the SSGMP during the 2021 to 2024 SSGMP process.	-	-	-	-	-
	GW	Near Wolfram	GH_GA-MW-2	-	-	GHO SSGMP	-	Currently monitored in the GHO SSGMP.	-	-	-	-	-
		Crook	RG_MW_WC2A/B	-	-	MBI	-	Currently monitored for the MBI and to be considered for potential inclusion into the SSGMP during the 2021 to 2024 SSGMP process.	-	-	-	-	-
	S	Elk River Side Channel Downstream of	GH_ER1A	GH_ER1A	E305876	Annual Water Quality Report, RAEMP, GHO SSGMP	-	Monthly ^b samples collected primarily for Permit 107517 and Teck's Annual Water Quality Report, and is also reported in the RAEMP. Sample also collected concurrent ^b with biological monitoring for the RAEMP.	Currently reported in the MBI. Data are recommended for potential inclusion in the GHO SSGMP as appropriate.	Three replicates collected annually for the RAEMP.	Three replicates collected annually for the RAEMP.	Determined for three reaches concurrent with biological monitoring.	-
		vvoitram	RG_ERSC5	RG_ERSC5	-	RAEMP	-	Sample collected concurrent ^b with biological monitoring for the RAEMP.	-	Three replicates collected annually for the RAEMP.	Three replicates collected annually for the RAEMP.	Determined for three reaches concurrent with biological monitoring.	-
	De	Elk River Side Channel Reach 2 Inlet	RG_GH-SCW1	RG_GH-SCW1	-	MBI	-	Monthly ^b samples collected for the MBI.	-	-	-	-	-

No change to monitoring frequency, but in 2021 and onward data will be reported and interpreted in a report other than the GHO LAEMP.

Sampling and/or reporting will be discontinued, or sampling frequency will be different than in the 2020 GHO LAEMP Study Design.

Notes: "-" indicates no work conducted, as per approved 2020 GHO LAEMP study design. RAEMP = Regional Aquatic Effects Monitoring Program. GHO SSGMP = Greenhills Operation Site Specific Groundwater Monitoring Program. MBI = Mass Balance Investigation. CPP = Cougar Pit Phase 5 and 7-2 Project. ^a M - main stem (lotic); T - tributary (lotic); GW - groundwater; S - side channel (lotic); De - depositional side channel (semi-lentic).

^b Weekly/monthly - water chemistry sampling and flow monitoring are conducted weekly or monthly through Permit 107517 and Permit 6428. Concurrently - water chemistry sampling will be conducted concurrent with biological sampling.

^c The monitoring of benthic invertebrate tissue chemistry area GH_ERSC2 will be discontinued, as the habitat does not meet the criteria for inclusion in to the RAEMP study design (i.e., depositional, semi lentic, and dry from late fall until late spring) and because this area is less than 350 m away from areas RG_GH-SCW3 and RG_SCDTC with no contributing tributaries between the areas (i.e., spatial coverage is adequate without area GH_ERSC2).

 Table 7.3: Primary Monitoring Programs for 2021 and Onward Incorporating Data that have been Reported under the 2020 GHO LAEMP Report

				Piological			Question #2	Question #3 and #4, and supporting #5	Question #4		Qu	estion #5	
ype	pe ^a	1	Matan	Area Code		Drive erre	Amphibians	Surface Water and Groundwater	Hydrology	Benthic	: Invertebrates	Subs	strate
Station T	Stream Ty	Stream Name	Water Station Code	or Staff Gauge Location Code	ENV EMS Number	Primary Monitoring Program	Survey	Chemistry	Water Level and/or Flow Monitoring	Community Endpoints	Tissue Chemistry (Composite Taxa)	Calcite Index	Sediment Physical- chemical Attributes
	т	Thompson Creek	GH_TC2	тнск	E207436	E207436	-	Monthly ^b samples collected primarily for Permit 107517 and Teck's Annual Water Quality Report, and is also reported in the RAEMP. Sample also collected concurrent ^b with biological monitoring.	-	Three replicates collected annually for the RAEMP.	Three replicates collected annually for the RAEMP.	Determined for three reaches concurrent with biological monitoring.	-
	GW	Near Thompson Creek	GH_GA-MW-3	-		GHO SSGMP	-	Currently monitored in the GHO SSGMP.	-	-	-	-	-
	De	Elk River Side Channel Reach 2 Outlet	RG_GH-SCW3	RG_GH-SCW3	-	MBI, RAEMP	No further monitoring in 2021, as study question #2 has been answered.	Monthly ^b samples collected for the MBI. No change to monitoring frequency in 2021. Sample also collected concurrent ^b with biological monitoring for the lentic program of the RAEMP.	-	-	Sampling frequency reduced from annually to every three years, consistent with the study design for the lentic program of the RAEMP.	Determined for three reaches concurrent with biological monitoring, every three years for the lentic program of the RAEMP.	Five replicates collected concurrent with biological sampling, every three years for the lentic program of the RAEMP.
			GH_ERSC2	GH_ERSC2	E305877	Annual Water Quality Report	-	Monthly ^b samples collected primarily for Permit 107517 and Teck's Annual Water Quality Report.			Sampling to be discontinued after 2020 ^c .	Sampling to be discontinued after 2020 ^c .	-
		Elk River Side	-	RG_SCDTC	-	RAEMP	-	Sample collected concurrent ^b with biological monitoring.	-	Three replicates collected annually for the RAEMP.	Three replicates collected annually for the RAEMP.	Determined for three reaches concurrent with biological monitoring.	-
Mine-exposed	S	Channel Downstream of Reach 2	-	RG_ERSCDS	-	-	-	-	Water level and flow data are currently reported in the MBI. Data are recommended for potential inclusion in the GHO SSGMP as appropriate	-	-	-	-
			RG_MW_ER3A/B	-	-	MBI	-	Currently monitored in the MBI and to be considered for potential inclusion into the SSGMP during the 2021 to 2024 SSGMP process.	-	-	-	-	-
	CW	Near Side Channel	RG_MW_ER6A/B	-	-	MBI	-	Currently monitored in the MBI and to be considered for potential inclusion into the SSGMP during the 2021 to 2024 SSGMP process.	-	-	-	-	-
	Gw	Downstream of Reach 2	RG_MW_ER4A/B	-	-	MBI	-	Currently monitored in the MBI and to be considered for potential inclusion into the SSGMP during the 2021 to 2024 SSGMP process.	-	-	-	-	-
			RG_MW_ER5A/B	-	-	MBI	-	Currently monitored in the MBI and to be considered for potential inclusion into the SSGMP during the 2021 to 2024 SSGMP process.	-	-	-	-	-
	м	Elk River	GH_ERC (Compliance)	RG_EL20	E300090	Annual Water Quality Report, RAEMP, GHO SSGMP	-	Monthly/weekly ^b samples collected primarily for Permit 107517 and Teck's Annual Water Quality Report, and is also reported in the RAEMP. Sample also collected concurrent ^b with biological monitoring for the RAEMP.	Currently reported in the MBI. Data are recommended for potential inclusion in the GHO SSGMP as appropriate.	Five replicates collected annually for the RAEMP.	Five replicates collected annually for the RAEMP.	Determined for five reaches concurrent with biological monitoring.	Five replicates collected annually for the RAEMP concurrent with biological monitoring.

No change to monitoring frequency, but in 2021 and onward data will be reported and interpreted in a report other than the GHO LAEMP.

Sampling and/or reporting will be discontinued, or sampling frequency will be different than in the 2020 GHO LAEMP Study Design.

Notes: "-" indicates no work conducted, as per approved 2020 GHO LAEMP study design. RAEMP = Regional Aquatic Effects Monitoring Program. GHO SSGMP = Greenhills Operation Site Specific Groundwater Monitoring Program. MBI = Mass Balance Investigation. CPP = Cougar Pit Phase 5 and 7-2 Project. ^a M - main stem (lotic); T - tributary (lotic); GW - groundwater; S - side channel (lotic); De - depositional side channel (semi-lentic).

^b Weekly/monthly - water chemistry sampling and flow monitoring are conducted weekly or monthly through Permit 107517 and Permit 6428. Concurrently - water chemistry sampling will be conducted concurrent with biological sampling.

^c The monitoring of benthic invertebrate tissue chemistry area GH_ERSC2 will be discontinued, as the habitat does not meet the criteria for inclusion in to the RAEMP study design (i.e., depositional, semi-lentic, and often dry from late fall until late spring) and because this area is less than 350 m away from areas RG_GH-SCW3 and RG_SCDTC with no contributing tributaries between the areas (i.e., spatial coverage is adequate without area GH_ERSC2).

mine-related constituents, and evaluates general patterns and trends for order and non-order constituents. Ongoing monitoring of surface water quality will help to assess the potential for risks to the receiving environment. The MBI is designed support Teck's Regional Water Quality Model (RWQM) by assessing the nitrate and selenium load sinks in the Elk River, Fording River, and Michel Creek valleys, aiming to account for the discrepancy between measured and modelled concentrations of selenium and nitrate (parameters indicative of mine-influence) in the RWQM. The MBI will continue to collect flow and surface water data at stations relevant to the MBI investigation. When the MBI concludes, the MBI stations will be evaluated for inclusion in ongoing programs (SSGMP, RGMP, and/or surface water flow monitoring program), as appropriate and applicable. Station GH_WOLF is upstream of GH_WOLF_SP1, and station GH_WILLOW is upstream of GH_WILLOW_SP1, therefore these upstream stations are not needed to understand constituent loadings to the Elk River.

Recommendation: Continue to collect selenium speciation water quality samples concurrent with September benthic invertebrate tissue samples at Elk River, Elk River side channel, and Thompson Creek stations, and report the results in the RAEMP. Consider including Thompson Creek stations (upstream and downstream of the sedimentation ponds) in the Selenium Speciation Monitoring Program (study design to be determined).

Rationale: The concentrations of selenium in benthic invertebrate tissue were higher than EVWQP benchmarks at some stations (highest in Thompson Creek), and concentrations were typically above the concentrations predicted by the selenium bioaccumulation model based on total aqueous selenium concentrations. Sampling in September 2020 indicated the presence of organoselenium species in Thompson Creek and all downstream side channel stations. Selenium speciation water quality samples will continue to support the interpretation of selenium bioavailability and assist in understanding possible causes of these elevated concentrations.

Study question #4: What is the interaction between surface water and groundwater in the Elk River side channel?

Recommendation: To further the understand of surface water and groundwater interactions in the Elk River side channel, the following additional work is planned for 2021 under the GHO SSGMP, RGMP, MBI, and/or CPP:

- seep reconnaissance and sampling in the Elk River side channel;
- installation of additional monitoring wells;
- groundwater sampling;
- flow and load accretion studies; and

• geophysical surveys to determine depth to bedrock.

Monitor, report, and interpret these data under the GHO SSGMP, RGMP, MBI, and/or CPP. These data will be integrated into future iterations of the GHO SSGMP and the conceptual site model (CSM). New findings relating to surface water and groundwater interactions in the Elk River side channel area will also be presented in the Annual Elk Valley Combined Groundwater Report. Water level and flow at surface water quality stations ERUS, GH_ERSC4, GH_ER1A, RG_ERSCDS, RG_ERC, and GH_ERC have been monitored for the GHO LAEMP from 2018 to 2020, and are also incorporated into the MBI. The MBI will continue to collect flow and surface water data at stations relevant to the MBI investigation. When the MBI concludes, these stations will be evaluated for inclusion in ongoing programs (SSGMP, RGMP, and/or surface water flow monitoring program), as appropriate and applicable.

Rationale: The current data have provided a high-level characterization of the interaction between surface water and ground water in the side channel, indicating that the side channel surface water predominantly infiltrated to ground and recharged groundwater. Localized areas of groundwater discharge occurred near the confluence with Wolfram Creek as well as downstream of Thompson Creek, creating four of the isolated pools that persisted when the side channel was otherwise dry. The objective of study question #4 was to address data gaps and uncertainties associated with groundwater–surface water interaction along the Elk River side channel. The interaction has been generally characterized. Some gaps remain in understanding this relationship in greater detail. Preliminary investigation into the shallow groundwater conditions between Wolfram Pond and the side channel (GH_ER1A) were conducted after monitoring wells were installed in 2020, but further years of data will increase the understanding of groundwater quality in this area over time. The remaining gaps will be addressed in detail as part of other on-going programs: the GHO SSGMP, RGMP, MBI, and CPP.

Study question #5: What are the benthic invertebrate community structures and tissue chemistry in the Elk River side channel and the main stem Elk River upstream and downstream of the side channel, and are they changing over time?

Recommendation: Continue to monitor benthic invertebrate community (areas GH_ER2, GH_ERSC4, GH_ER1A, GH_ERSC5, RG_THCK, RG_SCDTC, and GH_ERC), benthic invertebrate tissue chemistry areas (areas GH_ER2, GH_ERSC4, GH_ER1A, GH_ERSC5, RG_THCK, RG_GH-SCW3, RG_SCDTC, and GH_ERC), and supporting data (i.e., habitat data and calcite index for all community and tissue areas, and sediment quality for GH_ER2, RG_GH-SCW3, and GH_ERC). Present these data to the EMC annually under the RAEMP data package, and report the results every three years under the RAEMP Report. Under this reporting system, benthic invertebrate communities will continue to be assessed using

community metrics (i.e., abundance, richness, and proportion of major taxonomic groups), and continue to be compared to site-specific and/or regional normal ranges. Biological triggers (Appendix I) will be assessed annually as part of the RAEMP. Under this reporting system, concentrations of selenium in benthic invertebrate tissue will continue to be assessed relative to EVWQP benchmarks. This recommended approach will differ from monitoring under the 2020 GHO LAEMP study design in two ways: (1) monitoring of area RG_GH-SCW3 will be reduced from annually under the GHO LAEMP to every three years under the lentic area program of the RAEMP; and (2) monitoring of benthic invertebrate tissue chemistry area GH_ERSC2 will be discontinued.

Rationale: The evaluation of benthic invertebrate community characteristics and tissue chemistry are important components for assessing potential mine-related effects on the aquatic ecosystem. The frequency of benthic invertebrate tissue chemistry monitoring at area RG_GH-SCW3 (Reach 2) will be reduced from annually to every three years to be consistent with the lentic area program study design, as this area is depositional. Annual monitoring will still occur at lotic stations, including Thompson Creek (RG_THCK), which is upstream from Reach 2 and has higher concentrations of aqueous bioavailable selenium. The monitoring of benthic invertebrate tissue chemistry at area GH_ERSC2 will be discontinued, as the habitat does not meet the criteria for inclusion in to the RAEMP study design (i.e., depositional, semi-lentic, and dry from late fall until late spring) and because this area is less than 350 m away from areas RG_GH-SCW3 and RG_SCDTC with no contributing tributaries between the areas (i.e., spatial coverage is adequate without area GH_ERSC2).

7.3 Statement of Intent

0

As noted in the study design (Minnow and Lotic 2017, 2018a, Minnow 2020a) and previous reports (Minnow and Lotic 2018b, 2019, 2020), the GHO LAEMP will continue to assess relevant site-specific issues, as required, until sufficient data have been collected, concerns no longer exist, or monitoring can be incorporated into the RAEMP, GHO SSGMP, and/or other existing monitoring programs, as appropriate. Teck has fulfilled the Permit 107517 Section 8.3.4 requirement for a LAEMP to be conducted from 2017 to 2020, focusing on the local area of the upper Elk River, the Elk River side channel, and tributaries located on the west side of Greenhills Ridge. Where concerns remain, the GHO LAEMP monitoring is incorporated into existing monitoring programs, such that these residual concerns continue to be addressed. In consideration of these factors, a statement of intent to discontinue the GHO LAEMP was provided to ENV on May 31, 2021. Field monitoring is currently being conducted in accordance with the Updated 2020 GHO LAEMP study design, and changes recommended above will not be implemented until written confirmation has been received from ENV.

8 **REFERENCES**

0))

€.

- Azimuth (Azimuth Consulting Group Partnership). 2018. Proposed Water Quality Triggers for the Elk Valley Adaptive Management Plan. Prepared for Teck Resources Limited, Vancouver, BC. June.
- de Bruyn, A. and S.N. Luoma. 2021. Selenium Species Bioaccumulation Tool Draft Version 2.0. Prepared for Mariah Arnold, Teck Coal Limited, Sparwood, BC. February. Project 19133414/MQ2 Task 4.
- Environment Canada. 2012a. Field Manual: Wadeable Streams. Canadian Aquatic Biomonitoring Network (CABIN).
- Environment Canada. 2012b. Metal Mining Environmental Effects Monitoring (EEM) Technical Guidance Document. National EEM Office, Environment Canada, Ottawa, ON.
- Environment Canada. 2014. Laboratory Methods: Processing, Taxonomy, and Quality Control of Benthic Macroinvertebrate Samples. Canadian Aquatic Biomonitoring Network (CABIN). May.
- ENV (British Columbia Ministry of Environment and Climate Change Strategy). 2019. British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture – Summary Report. Updated August 2019.
- ENV. 2020. Acceptance of changes to the 2018-2020 Study Design for the Greenhills Operation Local Aquatic Effects Monitoring Program (LAEMP). Letter sent to Carla Fraser, Manager of Regional Water Monitoring, Teck Coal, Sparwood, BC. July. Authorization number: 107517.
- ENV. 2021. Working Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture. Water Quality Guideline Series, WQG-08. Prov. B.C., Victoria B.C. Updated February 2021.
- Golder (Golder Associates Ltd.). 2014b. Elk Valley Water Quality Plan: Benchmark Derivation Report for Selenium. Prepared for Teck Coal Ltd., Sparwood, BC. July. Project 13-1349-0006.
- Golder. 2014a. Elk Valley Water Quality Plan: Benchmark Derivation Report for Nitrate and Sulphate. Prepared for Teck Coal Ltd., Sparwood, BC. July. Project 13-1349-0006.
- Golder. 2018. Selenium Species Bioaccumulation Tool Version 1.1. Prepared for Teck Coal Limited. May.
- Golder. 2020. Updates to the Lotic and Lentic Statistical Bioaccumulation Models for Selenium in the Elk Valley. Prepared for Teck Coal Limited. November.
- Helsel, D.R. 2012. Statistics for censored environmental data using Minitab and R, 2nd edition. John Wiley and Sons, New York. 344 pp.
- HDR (HDR Inc.). 2014. Evaluation of Potential Ecological Effects Associated with Cadmium in the Elk and Fording Rivers. Prepared for Teck Coal Limited, Sparwood, British Columbia. June.
- Knowles, J.E. and C. Frederick. 2019. merTools: Tools for Analyzing Mixed Effect Regression Models. R package version 0.5.0. <u>https://CRAN.R-project.org/package=merTools</u>
- Luoma, S. 2021. Selenium Bioaccumulation in Annelids collected from the Fording and Elk Rivers. Prepared For: Teck - Mariah Arnold, Adrian de Bruyn, Christine Deynaka. January.

000

- Minnow (Minnow Environmental Inc.). 2016. Evaluation of Selenium Sensitivity of Spotted Sandpipers Breeding in the Elk River Watershed of Southeastern British Columbia. Prepared For: Teck Resources Limited, Sparwood, BC. February. Project 2488.
- Minnow. 2018. Study Design for the Regional Aquatic Effects Monitoring Program (RAEMP), 2018 to 2020. Prepared for Teck Coal Limited, Sparwood, British Columbia. March. Project 177202.0053.
- Minnow. 2020. Elk River Watershed Regional Aquatic Effects Monitoring Program (RAEMP) Report, 2017 to 2019. Prepared for Teck Coal Limited, Sparwood, British Columbia. November. Project 187202.0011.
- Minnow and Lotic (Minnow Environmental Inc. and Lotic Environmental). 2017. Study Design (2017) for Local Aquatic Effects Monitoring Program (LAEMP) at Teck's Greenhills Operation. Report Prepared for Teck Coal Limited, Sparwood, BC. May. Project 167202.0092.
- Minnow and Lotic. 2018b. 2017 Greenhills Operation Local Aquatic Effects Monitoring Program (LAEMP) Report. Report Prepared for Teck Coal Limited, Sparwood, BC. May. Project 177202.0024.
- Minnow and Lotic. 2018a. 2018 to 2020 Greenhills Operation Local Aquatic Effects Monitoring Program (LAEMP) Study Design. Report Prepared for Teck Coal Limited, Sparwood, BC. May. Project 177202.0024.
- Minnow and Lotic. 2019. 2018 Greenhills Operation Local Aquatic Effects Monitoring Program (LAEMP) Report. Report Prepared for Teck Coal Limited, Sparwood, BC. May. Project 187202.0018.
- Minnow and Lotic. 2020. 2019 Greenhills Operation Local Aquatic Effects Monitoring Program (LAEMP) Report. Report Prepared for Teck Coal Limited, Sparwood, BC. May. Project 197202.0011.
- Monello, R.J. and R.G. Wright. 1999. Amphibian habitat preferences among artificial ponds in the Palouse Region of Northern Idaho. Journal of Herpetology 33(2): 298-303.
- Newcombe, C.P. and J.O.T. Jensen. 1996. Channel Suspended Sediment and Fisheries: A Synthesis for Quantitative Assessment of Risk and Impact. North American Journal of Fisheries Management. 16(4), 693–727
- Polzin, M.L. 1998. River and Riparian Dynamics and Black Cottonwoods in the Kootenay River Basin, British Columbia and Montana. Unpublished Master of Science thesis. University of Lethbridge, Alberta. August.
- R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL <u>https://www.R-project.org</u>.
- Riedel G.F., J.G Sanders, and C.C. Gilmour. 1996. Uptake, transformation, and impact of selenium in freshwater phytoplankton and bacterioplankton communities. Aquat Microb Ecol 11:43-51.
- Robinson, M.D. and K. Atherton. 2016. Teck Coal Ltd 2016-2018 Calcite Monitoring Program. Prepared by Lotic Environmental Ltd. and Teck Coal Ltd. 10 pp + appendices.
- SNC-Lavalin. 2020. Assessment of Groundwater Surface Water Interactions in Support of the GHO LAEMP. Report Prepared for Teck Coal Limited, Sparwood, BC. May. Project 655483.

- SNC-Lavalin. 2021. Assessment of Groundwater Surface Water Interactions in Support of the GHO LAEMP. Report Prepared for Teck Coal Limited, Sparwood, BC. May. Project 655483.
- SRK (SRK Consulting). 2021. Elk Valley Regional Seep Monitoring Program: 2020 Annual Report. Prepared for Teck Coal Limited. March.
- Teck (Teck Coal Limited). 2014. Elk Valley Water Quality Plan. Submitted to the British Columbia Minister of Environment for approval on July 22, 2014.
- Teck (Teck Coal Limited). 2016. Measurement of the Calcite Index. Standard Practices and Procedures TC-CI-01.
- Teck (Teck Resources Limited). 2018. Water Quality Adaptive Management Plan (AMP) for Teck Coal Operations in the Elk Valley. December.
- Teck (Teck Coal Limited). 2020a. Greenhills Operations Pit Water Management Plan. Teck Coal Limited. June.
- Teck (Teck Coal Limited). 2020b. Water Quality Adaptive Management Plan for Teck Coal Operations in the Elk Valley 2019 Annual Report. July 31, 2020.
- Teck (Teck Coal Limited). 2021. Permit 107517 Annual Water Quality Monitoring Report. Submitted to ENV on March 31, 2021.
- Therneau, T.M. 2017. Survival analysis. Package "survival" for R. April 4, 2017. URL https://cran.r-project.org/web/packages/survival/survival.pdf.
- Vast (Vast Resource Solutions). 2020. Amphibian Occurrence and Distribution Study in the Elk River Watershed. Report Prepared for Teck Coal Limited, Sparwood, BC. August. Project 20.0062.
- Young T.F., K. Finley, W. Adams, J. Besser, W.A. Hopkins, D. Jolley, E. McNaughton, T.S. Presser, D. Patrick, and J. Unrine. 2010. What you need to know about selenium. In Chapman PM, Adams WJ, Brooks ML, Delos CG, Luoma SN, Maher WA, Ohlendorf HM, Presser TS, Shaw DP, eds, Ecological Assessment of Selenium in the Aquatic Environment. CRC, Boca Raton, FL, USA, pp 7–45.

APPENDIX A STUDY DESIGN AMENDMENT FOR THE 2020 GHO LAEMP APPENDIX A UPDATED SAMPLING DESIGN FOR 2020 GHO LAEMP (MINNOW, JUNE 2020)

2 2 Lamb Street Georgetown, Ontario L7G 3M9 Tel: (905) 873-3371 Fax: (905) 873-6370

June 1, 2020

Ms. Carla Fraser Manager, Regional Water Monitoring Teck Coal Limited PO Box 1777 Sparwood, BC, V0B 2G0

Re: Updated Sampling Design for 2020 GHO LAEMP

Dear Carla,

This letter has been prepared in response to discussions with the Environmental Monitoring Committee (EMC) in March regarding updates to the 2020 Greenhills Operation (GHO) Local Aquatic Effects Monitoring Program (LAEMP) sampling design based on findings from the 2017, 2018, and 2019 programs. Annual GHO LAEMP reports have been submitted for 2017, 2018, and 2019; the 2019 annual report was submitted to the Director on May 29, 2020.

Following discussion with the Environmental Monitoring Committee (EMC) and the provision of advice by the EMC, a phased approach to the GHO LAEMP study design was approved by the British Columbia Ministry of Environment and Climate Change Strategy (ENV) on August 18, 2017. A study design (Minnow and Lotic 2017) was submitted on May 31, 2017 in accordance with the requirements of Permit 107517. The design was accepted by ENV on August 24, 2018 and preliminary reconnaissance work was conducted from May 2017 to April 2018. An updated study design was submitted on May 31, 2018 that covered the 2018 to 2020 period (Minnow and Lotic 2018). The 2018 to 2020 LAEMP was designed to address questions associated with potential aquatic effects at a localized area downstream of the west spoil development and Cougar Pit extension at GHO. As with LAEMPs for other Teck Operations, the GHO LAEMP is also designed to assess relevant site-specific issues, as required, until sufficient data have been collected, concerns no longer exist, or monitoring can be incorporated into other existing monitoring programs (e.g., Site-Specific Groundwater Monitoring Program [SSGMP] and Regional Groundwater Monitoring Program [RGMP], Mass Balance Investigations [MBI] and the Regional Aquatic Effects Monitoring Program [RAEMP]). In consideration of potential existing

and future mine-related influences at GHO, the following key questions were developed in consultation with the EMC to guide study design development:

- 1. What is the relationship between flows in the main stem Elk River and flows (including connectivity, intermittence, and pools) in the Elk River side channel?
- 2. What is the seasonal habitat availability for aquatic-dependent biota (i.e., fish, amphibians, and aquatic-feeding birds) in the Elk River side channel?
- 3. What is the influence of the GHO discharges from the west-side tributaries on water quality in the Elk River and Elk River side channel?
 - a. What is the water quality in the west-side tributaries, and how is it changing over time?
 - b. What is the water quality at monitoring stations in the Elk River side channel, is it changing over time, and how does it compare to water quality in the main stem Elk River?
 - c. What is the water quality at monitoring stations in the Elk River downstream versus upstream of the west-side tributaries, and is it changing over time?
 - d. What is the water quality in isolated pools in the Elk River side channel that provide potential aquatic habitat for aquatic and/or aquatic-dependent vertebrates (i.e., fish, amphibians, and aquatic-feeding birds)?
- 4. What is the interaction between surface water and groundwater in the Elk River side channel?
- 5. What are the benthic invertebrate community structures and tissue chemistry in the Elk River side channel and the main stem Elk River upstream and downstream of the side channel, and are they changing over time?
- 6. Is the mine-related influence on Reach 2¹ having an effect on aquatic-dependent biota (benthic invertebrates, fish, amphibians, and aquatic-feeding birds)?

The original study design was intended to cover the 2018 to 2020 time period; however, based on the results from the 2017, 2018, and 2019 programs, changes are being proposed for the 2018 to 2020 GHO LAEMP study design (to be implemented for the 2020 GHO LAEMP field season). A draft data package of 2019 GHO LAEMP results was submitted to the EMC on March 8, 2020. Results and proposed study design modifications were discussed during a

¹ The area that has previously been referred to as the "side channel wetland" is herein called Reach 2, as it is not a true wetland (Minnow and Lotic 2019).

teleconference on March 9, 2020. Based on the findings from previous GHO LAEMP reports and feedback from the EMC, the following study design changes are proposed:

Do no further work on study question #1 (What is the relationship between flows in the main stem Elk River and flows (including connectivity, intermittence, and pools) in the Elk River side channel?).

To address study question #1, hydrology data were collected and assessed in 2017, 2018, and 2019, including: water levels (measured continuously in the side channel and main stem Elk River), monthly flow measurements in the side channel, and monthly characterization of side channel hydrology features (i.e., dry sections, braids, isolated pools, and tributary surface connectivity). The Elk River side channel was observed to undergo seasonal flooding and braiding, with variable flow throughout the year, which was generally consistent from 2017 to 2019. Flows in the main stem Elk River and flows in the Elk River side channel were strongly correlated. Water from the main stem Elk River flowed overland into the side channel from freshet until winter when stream flow decreased both in the main stem Elk River and at the three side channel stations. The side channel was fully wetted for three to four months of each study year. Stream flow was lowest in the main stem Elk River from winter until freshet; at this time, the side channel became disconnected from the main stem Elk River and Reaches 1 and 3 slowly dried. Isolated pools were documented as areas dried, but typically persisted for less than three months. Water quality data suggested that, while most pools were stagnant water resulting from dewatering of the side channel, a few pools likely received groundwater contributions. Reach 2 at the confluence of the side channel and Thompson Creek remained wetted throughout the year due to receiving flows from Thompson Creek. The recommendation was been made to do no further work on study question #1, as the relationship between flows in the main stem Elk River and flows in the Elk River side channel is now sufficiently understood the side channel flow is predominantly influenced by the Elk River itself, rather than the tributaries, except for Reach 2 at the mouth of Thompson Creek.

Adjust study question #2 (What is the seasonal habitat availability for aquatic-dependent biota [i.e., fish, amphibians, and aquatic-feeding birds] in the Elk River side channel?) to focus on amphibian use in the Elk River side channel habitat. It is recommended that study question #2 is reworded to "What is the seasonal habitat availability for amphibians in Reach 2 of the Elk River side channel?".

Within the side channel and its floodplain complex, over thirty field visits were completed in all seasons from 2017 to 2019 to identify and document habitat and occurrences of aquatic-dependent biota. Monthly surveys documented side channel morphology/hydrology, wetted areas, overwintering habitat, and *in situ* water quality of isolated pools and level logger

stations. A Fish Habitat Assessment Procedure (FHAP) survey was completed in 2017 to categorize the quality of fish habitat, which remained consistent from 2017 to 2019. During monthly surveys, the side channel was traversed to document aquatic or aquatic-dependant species utilizing the side channel. This included observations of fish (including eggs, fry, young-of-the-year, juveniles, and adults, as well as spawning fish and redds during spring and fall surveys), visual and/or auditory detections of amphibians (including eggs, tadpoles, and adults), and visual and/or auditory detections of aquatic-dependent birds (including nests, eggs, chicks, and adults).

Abundant wetted area was available to aquatic-dependent biota from spring to summer when the side channel was flowing and connected to the main stem Elk River. In the fall, aquatic habitat became more limited as the side channel began to dry. Later in the fall, the side channel sections downstream and upstream of Reach 2 were dry and remained dry throughout the winter. Reach 2 remained wetted throughout the three years of the study and consistently received flows from Thompson Creek, providing some lentic habitat in the fall and winter. Additional sparse/patchy habitat was provided by ephemeral isolated pools that remained as the side channel dried. However, isolated pools typically persisted for less than a month, were shallow, and covered a relatively small surface area.

Reach 2 was generally not considered suitable breeding habitat for amphibians, as much of the side channel and floodplain complex were flooded and swiftly flowing in the spring and early summer. However, breeding habitat may be present elsewhere in the area, and several amphibians (Columbia spotted frog and western toad adults, and larval long-toed salamander) were observed throughout the side channel in late spring and summer. Suitable habitat was available for all life stages of fish and aquatic-dependent birds in the side channel and floodplain complex from spring through fall, as well as in Reach 2 during winter. Ultimately, there are no barriers to use of the side channel complex by aquatic biota (with the exception of dry reaches in late fall/winter, which are barriers to fish passage at that time of year), and therefore it is expected that the area is used by a variety of fish, amphibians, and aquatic-dependent birds. This was confirmed by observations of aquatic-biota throughout the three years of study.

Overall, the three years of study have well-documented the habitat availability and have therefore largely addressed study question #2 (What is the seasonal habitat availability for aquatic-dependent biota [i.e., fish, amphibians, and aquatic-feeding birds] in the Elk River side channel). Additional years of surveys would not further the understanding of how mine related discharges might affect aquatic-dependent biota. Based on discussions with the EMC, Teck is proposing to complete additional work under an adjusted study question #2 to reduce remaining uncertainties around the potential for amphibian use in Reach 2 of the side channel. Amphibian

occurrence and critical habitats have been be documented on the west side of the Greenhills ridge through four studies:

- (1) the CPX Baseline Wildlife surveys (Matrix Solutions 2015),
- (2) the Lentic Area Supporting Study report and the accompanying Amphibian Occurrence and Distribution Study report (in draft),
- (3) the Greenhills Operations (GHO) Cougar Pit Extension Phase 2 (CPX2) and Fording River Operations Castle: Terrestrial Wildlife Baseline Report (i.e., the GHO CPX2 Terrestrial Baseline; Hemmera 2020 in draft), and
- (4) the GHO LAEMP work (Minnow and Lotic 2018, 2019, 2020).

These programs demonstrated that a variety of amphibians (Columbia spotted frog, long-toed salamander, western toad, and wood frog) were present on the west side of Greenhills ridge, despite waterbodies being predominantly high-gradient and lotic. Additional years of surveys would not appreciably further this understanding of which amphibian species occur in this region.

Based on data collected from 2017 to 2019, the GHO LAEMP identified Reach 2 as the area of the side channel with the greatest potential for localized adverse effects to biota based on water quality, sediment quality, and selenium concentrations in benthic invertebrate tissue. Uncertainties regarding amphibian use of Reach 2 have been identified, as larval long-toed salamanders were found in a dry 'finger' of the side channel in this area in 2018, suggesting the area may have amphibian breeding habitat that has been previously undiscovered, perhaps due to accessibility issues. To reflect these findings and uncertainties, it is recommended that study question #2 is reworded to: "What is the seasonal habitat availability for amphibians in Reach 2 of the Elk River side channel?". Additional amphibian surveys will be conducted in 2020, consistent with the methods used in the amphibian distribution and occurrence study (VAST 2019), timed to target three life stages (egg, larval, and adult) from May through August and to target amphibians species found in the Elk Valley (Table 1, Figure 1).

Continue to monitor water quality in the west-side tributaries, Elk River side channel (including Reach 2), and the main stem Elk River, in support of study questions #3a (What is the water quality in the west-side tributaries, and how is it changing over time?), #3b (What is the water quality at monitoring stations in the Elk River side channel, is it changing over time, and how does it compare to water quality in the main stem Elk River?), and #3c (What is the water quality at monitoring stations in the Elk River downstream versus upstream of the west-side tributaries, and is it changing over time?).

Surface water quality samples are collected weekly/monthly at lotic side channel stations. Additional water quality samples are collected concurrent with benthic invertebrate community
and tissue sampling. Monitoring results from 2017 to 2019 have indicated that water quality in the Elk River side channel is influenced by Wolfram and Thompson creeks. Reach 2 of the Elk River side channel, which receives flow directly from Thompson Creek, typically showed the highest concentrations of constituents. Continued monitoring of water quality in the west-side tributaries, Elk River side channel (including Reach 2), and the main stem Elk River is recommended for 2020 (Tables 1 and 2, Figure 2).

Do no further work on study question #3d (What is the water quality in isolated pools in the Elk River side channel that provide potential aquatic habitat for aquatic and/or aquatic-dependent vertebrates [i.e., fish, amphibians, and aquatic-feeding birds]?).

Water quality in isolated pools was highly dependent on location, with the highest concentrations of constituents generally occurring in pools downstream of Reach 2. Three years of study have determined that isolated pools provide relatively limited habitat, as pools typically persisted for less than a month, had small surface areas, and were shallow (please see Minnow 2020 for additional discussion of the pools and representative photos). The water guality of most isolated pools was influenced by side channel water guality because isolated pools were formed by water that persisted as the side channel dried. Pools located upstream of Reach 2 had water quality comparable to GH_ERSC4 and GH_ER1A, whereas pools downstream of Reach 2 exhibited influence from Thompson Creek. Side channel water quality will continue to be monitored under study question #3b. Water quality data indicated that a few of the isolated pools were localized areas of groundwater discharge, occurring near the confluence with Wolfram Creek (SC3-P13) and downstream of Thompson Creek (SC2-P3, SC2-P1 and SC2-P2). Groundwater quality will continue to be monitored under groundwater programs outside of the GHO LAEMP and evaluation of the groundwater-surface water interactions in the Elk River side channel will also continue under the GHO LAEMP in 2020 (see study question #4).

Continue evaluation of groundwater-surface water interactions in the Elk River side channel in 2020 to support study question #4 (What is the interaction between surface water and groundwater in the Elk River side channel?).

To answer study question #4, a hydrogeological review and analysis of available groundwater and surface water data was conducted by SNC-Lavalin in 2020 using data from the west side of GHO along the Elk River side channel. The data review indicated that side channel surface water predominantly infiltrated to ground and recharged groundwater. Localized areas of groundwater discharge appeared to occur near the mean the mouth of Wolfram Creek at the side channel as well as downstream of Thompson Creek, creating a few of the isolated pools that persisted when the side channel was otherwise dry (see Table D of SNC-Lavalin 2020). These discharge areas did not result in sustained flows within the side channel. The isolated pools were shallow, and either had small surface areas or only persisted for two months.

Data gaps and uncertainties associated with groundwater–surface water interaction along the Elk River side channel were identified in the 2020 assessment (SNC-Lavalin 2020). Remaining gaps will be addressed by improving the monitoring well network with new well installations in 2020 and collection of additional groundwater data. This will occur as part of other on-going programs, including the SSGMP, RGMP, CPX2, and MBI Program. Data from these projects and the GHO LAEMP will be used to address study question #4 in an updated hydrogeological review and analysis of available groundwater and surface water data to be reported in the 2021 GHO LAEMP report (Table 1).

Continue monitoring to support study question #5 (What are the benthic invertebrate community structures and tissue chemistry in the Elk River side channel and the main stem Elk River upstream and downstream of the side channel, and are they changing over time?).

Benthic invertebrate community and tissue samples have been collected at Elk River main stem and side channel stations since 2017. Concurrent with benthic invertebrate sampling, the following supporting information was documented or collected: habitat, calcite index, water quality samples, and sediment quality samples. Benthic invertebrate community structure and tissue chemistry were similar at the downstream main stem station and the upstream main stem reference station, suggesting minimal influence of GHO and the west-side tributaries on benthic invertebrate community endpoints and tissue chemistry in the main stem Elk River and side channel. Evaluation of benthic invertebrate community characteristics and tissue chemistry are important components for assessing potential mine-related effects on the aquatic ecosystem, and assessment of these endpoints will continue in 2020 (Table 1, Figure 1).

Discontinue the evaluation of Reach 2 locations under study question #6 (Is the minerelated influence on the side channel wetland having an effect on aquatic dependent biota [benthic invertebrates, fish, amphibians, and aquatic-feeding birds]?). Instead, continue to monitor presence of amphibians, Reach 2 water quality (monthly), Reach 2 sediment quality (September), and Reach 2 benthic invertebrate tissue chemistry (September), under study questions #2, #3b, #4, and #5.

Data collected from 2017 to 2019 confirmed that Reach 2 of the side channel provides habitat for fish, amphibians, and aquatic-dependent birds, but is not expected to provide optimal habitat for breeding amphibians. In 2019, aqueous concentrations of TDS and sulphate were frequently above the BCWQG and/or EVWQP Level 1 benchmarks, while aqueous concentrations of nitrate and total selenium were frequently above the EVWQP Level 2

benchmarks. However, most other water constituents with EWT were typically below BCWQG and/or EVWQP Level 1 benchmarks. In 2019, concentrations of metals and PAHs in sediment were below the upper SQG except for selenium in one of three samples was above the only SQG. Selenium concentrations in sediment were either similar to the upstream reference or were within the normal range. In 2019, benthic invertebrate tissue selenium concentrations varied greatly, with two samples below Level 1 benchmarks and within the normal range, and one sample that was higher than EVWQP Level 3 benchmarks for benthic invertebrates and dietary effects to birds and juvenile fish. Based on comparison of selenium concentrations in benthic invertebrate tissue to the EVWQP benchmarks, there is potential for localized adverse effects to fish, benthic invertebrates, and aquatic-dependent birds due to the mine related influence on Reach 2.

Within the 2018 GHO LAEMP and this current 2019 GHO LAEMP, reporting of Reach 2 data has been repetitive, with results first presented under study questions #2, #3, and #5, and then the same results summarized again under study question #6 (Table 1, Figures 1 and 2). To reduce the redundancy, it is recommended that study question #6 is removed, with Reach 2 data assessed within the context of the rest of the side channel, as follows:

- Water quality of Reach 2 will continue to be assessed under study question #3b (What is the water quality at monitoring stations in the Elk River side channel, is it changing over time, and how does it compare to water quality in the main stem Elk River?) and study question #4 (What is the interaction between surface water and groundwater in the Elk River side channel?).
- Sediment quality and benthic invertebrate tissue chemistry of Reach 2 will continue to be assessed under study question #5 (What are the benthic invertebrate community structures and tissue chemistry in the Elk River side channel and the main stem Elk River upstream and downstream of the side channel, and are they changing over time?).
- An integrated summary of the results of all study questions that will continue to provide an understanding of the overall conditions in the GHO LAEMP study area, including Reach 2.

Summary

The GHO LAEMP is designed to assess relevant site-specific issues, as required, until sufficient data have been collected, concerns no longer exist, or monitoring can be incorporated into other existing monitoring programs. Sufficient data have been collected to address study question #1 and #3d, and therefore it is recommended that no further work be conducted on these questions. Sufficient data have been collected to narrow the scope of study question #2,

therefore it is recommended that the question be reworded to reflect this new focus (Table 1, Figure 1). Data collected for study question #6 have been summarized under study question #6, but also under study questions #2, #3, and #5 (Table 1, Figures 1 and 2). Therefore, to reduce redundancy in reporting, it is recommended that Reach 2 data are no longer assessed under study question #6. No study design changes are recommended for study questions #3a, #3b, #3c, #4, and #5 (Tables 1 and 2, Figures 1 and 2). An extensive review of the study questions and proposed changes are in the 2019 GHO LAEMP report, as requested by EMC. If you have any questions or comments, please do not hesitate to contact me.

Sincerely,

Minnow Environmental Inc.

lest.

Jess Tester, B.Sc., R.P.Bio.

Aquatic Scientist

cc: Pierre Stecko, M.Sc., EP, R.P. Bio., Senior Aquatic Scientist

References

- Matrix Solutions (Matrix Solutions Inc). 2015. Wildlife Baseline Report: Greenhills Operations Cougar Pit Extension Project. Report Prepared for Teck Coal Limited, Greenhills Operations. July. Project 17793-510.
- Minnow and Lotic (Minnow Environmental Inc. and Lotic Environmental). 2017. Study Design (2017) for Local Aquatic Effects Monitoring Program (LAEMP) at Teck's Greenhills Operation. Report Prepared for Teck Coal Limited, Sparwood, BC. May. Project 167202.0092.
- Minnow and Lotic. 2018. 2018 to 2020 Greenhills Operation Local Aquatic Effects Monitoring Program (LAEMP) Study Design. Report Prepared for Teck Coal Limited, Sparwood, BC. May. Project 177202.0024.
- Minnow and Lotic. 2019. 2018 Greenhills Operation Local Aquatic Effects Monitoring Program (LAEMP) Report. Report Prepared for Teck Coal Limited, Sparwood, BC. May. Project 187202.0018.
- Minnow and Lotic. 2020. 2019 Greenhills Operation Local Aquatic Effects Monitoring Program (LAEMP) Report. Report Prepared for Teck Coal Limited, Sparwood, BC. May. Project 197202.0011.
- SNC-Lavalin. 2020. Assessment of Groundwater Surface Water Interactions in Support of the GHO LAEMP. Report Prepared for Teck Coal Limited, Sparwood, BC. May. Project 655483.
- VAST Resource Solutions (VAST). 2019. Characterizing Amphibian Occurrence and Distribution in the Elk Valley.

Document Path: S:\Projects\197202.197202.0011 - Teck GHO LAEMP 2019\4 - GIS\Study Design Amendment\19-11 Figure 1 Proposed BI, Tissue, Sediment and Amphibian Locations.mxd

Document Path: S:\Projects\197202\197202.0011 - Teck GHO LAEMP 2019\4 - GIS\Study Design Amendment\19-11 Figure 2 Proposed Surface WQ.mxd

				Pielegiaal			UTM for Biological Area Code Area Description (NAD83, 11U) S			Groundwater Surface Water		Substrate		Benthic Invertebrates		Amphibians
Exposure Type	Stream Type	Stream Name	Water Station Code	Area Code or Staff Gauge Location Code	ENV EMS Number	Area Description			Status	Chemistry	Chemistry	alcite Index	Sediment sical-chemical Attributes	Community Endpoints	sue Chemistry mposite taxa)	Survey
							Easting	Northing				С	Phy	Ŭ	Tiss (Co	
Reference	Main stem	Elk River	GH_ER2	RG_ELUGH	200389	u/s Branch Cr. and GHO	646739	5557609	Core RAEMP Reference		monthly ^c , concurrently ^c	3	3	3	3	-
	Tributary	Mickelson Creek	GH_MC1	GH_MC1	0200388	Mickelson Creek at LRP Road	648209	5553862	GHO LAEMP		monthly ^c	-	-	-	-	-
	Tributary	Leask Creek	GH_LC1	GH_LC1	E257796	Leask Creek Sed. Pond Decant	648153	5552859	GHO LAEMP		monthly ^c	-	-	-	-	-
	Side channel	Elk River Side Channel	GH_ERSC4	GH_ERSC4	E305878	Elk River side channel u/s of Wolfram Creek	648111	5552522	GHO LAEMP		monthly ^c , concurrently ^c	3	-	3	3	-
	tributary	Wolfram Creek	GH_WC1	GH_WC1	E257795	Wolfram Creek Sed. Pond Decant	648222	5552086	GHO LAEMP		monthly ^c	-	-	-	-	-
	Side channel	Elk River Side Channel	GH_ER1A	GH_ER1A	E305876	Elk River side channel d/s of Wolfram Creek, u/s of wetland	648379	5551653	GHO LAEMP		monthly ^c , concurrently ^c	3	-	3	3	-
Mino	Side channel	Elk River Side Channel	RG_ERSC5	RG_ERSC5	-	Elk River side channel d/s of Wolfram Creek, u/s of wetland	648275	5550608	GHO LAEMP	regular monitoring	concurrently ^c	3	-	3	3	-
exposed	Tributary	Thompson Creek	GH_TC2	ТНСК	E207436	Lower Thompson Creek	648596	5550237	RAEMP		monthly ^c , concurrently ^c	3	-	3	3	-
	Side channel	Elk River Side Channel Wetland	RG_GH-SCW1	RG_GH-SCW1	-	Inlet of Reach 2 in the Elk River side channel downstream of Thompson Creek	648317	5550334	GHO LAEMP		monthly ^c	-	-	-	-	-
	Side channel	Elk River Side Channel Wetland	RG_GH-SCW3	RG_GH-SCW3	-	Outlet of Reach 2 in the Elk River side channel downstream of Thompson Creek	648332	5550166	GHO LAEMP		monthly ^c , concurrently ^c	3	5	-	3	May through August
	Side channel	Elk River Side Channel	GH_ERSC2	GH_ERSC2	E305877	Elk River side channel d/s of Thompson Creek	648341	5549812	GHO LAEMP		monthly ^c , concurrently ^c	3	-	3	3	
	Side channel	Elk River Side Channel	-	RG_SCDTC	-	Elk River side channel d/s of Thompson Creek	648226	5549603	GHO LAEMP		concurrently ^c	3	-	3	3	
	Main stem	Elk River	GH_ERC (Compliance)	RG_EL20	E300090	d/s Thompson Cr. and GHO	649146	5548514	Core RAEMP Mine-exposed		monthly/weekly ^c , concurrently ^c	5	5	5	5	-

Table 1: Summary of Water and Sediment Quality Sampling, Biological Sampling, and Biota Surveys Proposed for the GHO LAEMP 2020

Sampling conducted for, and reported under, the 2020 GHO LAEMP.

Sampling conducted for, and reported under, the Regional Aquatic Effects Monitoring Program (RAEMP). Data will also be reported and interpreted under the 2020 GHO LAEMP.

Sampling conducted for, and reported under, the Site-Specific Groundwater Monitoring Program [SSGMP], the Regional Groundwater Monitoring Program [RGMP], Mass Balance Investigations [MBI], and Cougar Pit Extension Phase 2 (CPX2) monitoring. Data will also be reported and interpreted under the 2020 GHO LAEMP. New groundwater monitoring wells will be added in 2020, with locations to be determined.

Notes: "-" indicates no work conducted.

^b The site-specific GHO groundwater program will be updated to address GHO LAEMP data needs.

^c Concurrently - water chemistry sampling will be conducted concurrent with sediment and biological sampling. Weekly/monthly - water chemistry sampling and flow monitoring are conducted weekly or monthly through Permit 107517 and Permit 6428.

Exposure Type	Tributary Name	Water Station Code	ENV EMS Number	Area Description	UTM (NAD83, 11U)		
					Easting	Northing	
Reference	Branch F Creek	GH_BR_F	E287437	Branch F at LRP Road	647423	5557155	
	Wolf Creek	GH_WOLF	E305855	Wolf Creek Sed. Pond Decant	647490	5556959	
		GH_WILLOW	a	Willow Creek at LRP Road	647654	5556061	
	Willow Creek	GH_WILLOW_SP1	E305854	Willow Sediment Pond Decant	647604	5556029	
		GH_WILLOW_S	a	Willow South Creek at LRP Road	647663	5556006	
	Wade Creek	GH_WADE	E287433	Wade Creek at LRP Road	647723	5555707	
	Cougar Creek	GH_COUGAR	E287432	Cougar Creek at LRP Road	647765	5555457	
	No Name Creek	GH_NNC	E305875	No Name Creek	648055	5554967	
Mine-exposed	Branch D	GH_BR_D	a	Branch D Creek	648062	5554869	
	Mickelson Creek	GH_MC1	0200388	Mickelson Creek at LRP Road	648209	5553862	
	Loosk Crook	GH_LC2	a	Leask Creek upstream of Sed. Pond	648297	5553064	
	Leask Cleek	GH_LC1	E257796	Leask Creek Sed. Pond Decant	648153	5552859	
	Walfram Crook	GH_WC2	a	Wolfram Creek upstream of Sed. Pond	648347	5552251	
	Wolliam Creek	GH_WC1	E257795	Wolfram Creek Sed. Pond Decant	648222	5552086	
	Thompson Crock	GH_TC2	E207436	Thompson Creek Sed. Pond Decant	648596	5550237	
	Thompson Creek	GH_TC1	E102714	Thompson Creek at LRP Road	648550	5550221	

 Table 2: West-side Tributary Monthly Water Quality Monitoring Stations in the GHO LAEMP, 2020 (No Changes Proposed)

Note: The west-side tributaries are listed from upstream to downstream. The side channel branches off from the main stem Elk River downstream of Leask Creek and upstream of Wolfram Creek (delineated in this table by the double line; see Figure 1). Water chemistry sampling is conducted monthly through Permit 107517 and Permit 6428.

^a No ENV EMS number.

APPENDIX A ACCEPTANCE OF CHANGES TO THE 2018 TO 2020 STUDY DESIGN FOR THE GHO LAEMP (ENV, JULY 2020)

July 28, 2020

Authorization Number: 107517

VIA EMAIL: Carla.Fraser@teck.com

Dear Carla Fraser:

<u>Re: Acceptance of changes to the 2018-2020 Study Design for the Greenhills Operation</u> <u>Local Aquatic Effects Monitoring Program (LAEMP)</u>

The Ministry of Environment and Climate Change Strategy is in receipt of the "Updated Sampling Design for 2020 GHO LAEMP" letter dated June 1, 2020 prepared by Minnow Environmental Inc. and submitted by Teck Coal Ltd. The proposed changes to the study design were submitted for approval as required by Section 9.3.4 of Permit 107517.

In preparation of this letter the Ministry has reviewed advice made by the independent scientist and Ktunaxa Nation Council (KNC) to the Environmental Monitoring Committee (EMC), and has reviewed Teck's responses to this advice which were provided to the EMC on June 1, 2020.

The Updated Sampling Design for 2020 GHO LAEMP dated June 1, 2020 is accepted.

This amendment doesn't exclude additional LAEMP questions that may arise and be required to be addressed.

If you have any questions, please contact Kara Przeczek (kara.przeczek@gov.bc.ca).

Yours truly,

Lana Miller, PhD. for Director, *Environmental Management Act*

Ec: Kara Przeczek, Environmental Protection Regional Operations Branch Heather McMahon, Ktunaxa Nation Council EMPR Permitting and Reclamation APPENDIX B DATA QUALITY REVIEW

0

- >

APPENDIX B DATA QUALITY REVIEW

B1 B1.1 B1.2 B1.3	INTRODUCTION Background Laboratory Reporting Limits Quality Control Samples	1 1 1 2
B2 B2.1 B2.2 B2.3 B2.4	WATER QUALITY	- 4 4 4 6
B3 B3.1 B3.2 B3.3 B3.2	SEDIMENT QUALITY Laboratory Reporting Limits Laboratory Blanks Data Accuracy and Precision Data Quality Statement	7 7 7 8
B4 B4.1 B4.2 B4.3 B4.4	BENTHIC INVERTEBRATE COMMUNITY Benthic Invertebrate Sub Sampling Accuracy Organism Sorting Efficiency Taxonomic Identification Accuracy Data Quality Statement	9 9 9 9
B5 B5.1 B5.2 B5.3	BENTHIC INVERTEBRATE TISSUE CHEMISTRY 1 Laboratory Reporting Limits 1 Data Accuracy and Precision 1 Data Quality Statement 1	1 1 1
B6	DATA QUALITY SUMMARY 1	2
B7	REFERENCES	3

B1 INTRODUCTION

B1.1 Background

A variety of factors can influence the physical, chemical, and biological measurements made in an environmental study, and thus affect the accuracy and/or precision of the data. The magnitude of inaccuracy and/or imprecision have the potential to affect the reliability of conclusions made from the data. Therefore, it is important to ensure that programs incorporate appropriate steps to control the non-natural sources of data variability (i.e., minimize variability that does not reflect natural spatial and/or temporal variability in the environment).

Data quality, as a concept, is meaningful only when it relates to the intended use of the data. That is, one must know the context in which the data will be interpreted to establish a relevant basis for judging whether the data set is adequate. A Data Quality Review (DQR) involves comparisons of field and laboratory measurement performance to Data Quality Objectives (DQOs) established for a particular study, such as evaluation of Laboratory Reporting Limits (LRLs), blank sample data, data precision (based on field and laboratory duplicate samples), and data accuracy (based on matrix spike recoveries and/or analysis of standards or certified reference materials [CRMs]).

Samples for chemical analyses were sent to laboratories accredited by the Canadian Association of Laboratory Accreditation (CALA) or the National Environmental Laboratory Accreditation Program (NELAP). Data were reviewed to determine if DQOs set by the laboratory (Table B.1) were met. Programs involving many samples and analytes often yield some results that exceed DQOs. This is particularly so for multi-element scans because the analytical conditions are not necessarily optimal for every element included in the scan.

The following DQR was conducted on laboratory data reported in 2020 for samples collected in support of the GHO LAEMP. The objective of this DQR was to define the overall quality of the data, and, by extension, the confidence with which the data can be used to derive conclusions. The intent of a DQR is not to reject measurements that did not meet a laboratory's DQO, but to ensure that questionable data received more scrutiny to determine what effects, if any, were had on interpretation of results within the context of the project.

B1.2 Laboratory Reporting Limits

€.

020

A Laboratory Reporting Limit (LRL) is the lowest concentration of an analyte that can be reported with a reasonable degree of accuracy and precision and is ideally synonymous with the lower limit of quantitation (LLOQ). The LLOQ is the lowest concentration of an analyte that can be reliably measured within specific limits of precision and accuracy during routine

	Quality			Study Component		
Quality Control	Control Sample	Water Chemistry	Selenium Speciation	Sediment Chemistry	Benthic Invertebrate Community	Benthic Invertebrate Tissue Chemistry
weasure	Type/Check	ALS	Brooks	ALS	Cordillera	TrichAnalytics
Analytical Laboratory LRLs	Comparison of actual LRL versus target LRL	LRL for each parameter should be at least as low as applicable guidelines, benchmarks, and screening values	LRL for each parameter should be at least as low as applicable guidelines, benchmarks, and screening values	LRL for each parameter should be at least as low as applicable guidelines, benchmarks, and screening values	-	LRL for each parameter should be at least as low as applicable guidelines and benchmarks
Blank Analysis	Field or Laboratory Blank	Concentrations measured in blank samples should be < LRL	Concentrations measured in blank samples should be < LRL	-	-	-
Field Precision	Field Duplicates	≤30% RPD	-	≤30% RPD	-	-
Laboratory Precision	Laboratory Duplicates	≤10% RPD (conductivity) ≤15% RPD (ORP, turbidity) ≤20% RPD (all remaining analytes)	≤20% RPD (total selenium) ≤25% RPD (selenium species)	<5% RPD (particle size) ≤20% RPD (moisture) ≤30% RPD (all remaining analytes) ≤40% RPD (aluminum, barium, lead, mercury, molybdenum, potassium, silver, sodium, strontium, tin, titanium) ≤50% RPD (PAHs) Within 2-times the LRL (pH)	-	≤60% RPD (calcium and strontium) ≤40% RPD (all remaining analytes)
	Recovery of Blank Spike	6.9 to 7.1 (pH) 60 to 140% (total silicon) 75 to 125% (TKN) 80 to 120% (orthophosphate, phosphorus, TOC, DOC, total and dissolved metals) 85 to 115% (alkalinity, ammonia, bromide, TSS, TDS, turbidity) 90 to 110% (conductivity, chloride, fluoride, nitrate, nitrite, sulfate)	75 to 125% (methylseleninic acid, selenate, selenite, selenocyanate, selenomethionine, total selenium)	50 to 130% (naphthalene) 50 to 150% (Acridine, Benzo(e)pyrene, 1-Methylnaphthalene, Perylene, Quinoline) 60 to 130% (all remaining PAHs) 80 to 120% (inorganic carbon, metals) 90 to 110% (moisture, TOC)	-	-
	Recovery of Matrix Spike	70 to 130% (DOC, orthophosphate, total phosphorus, TKN, TOC, total and dissolved metals) 75 to 125% (ammonia, bromide, chloride, fluoride, nitrate, nitrite, sulfate)	75 to 125% (selenate, selenite, selenocyanate, selenomethionine, total selenium)	50 to 150% (PAHs)	-	-
	Matrix Spike Duplicate	-	75 to 125% (selenate, selenite, selenocyanate, selenomethionine, total selenium)	-	-	-
Laboratory Accuracy	Recovery of Certified Reference Material	80 to 120% (orthophosphate, total phosphorus) 85 to 115% (alkalinity, turbidity) 90 to 110% (conductivity) 210 to 230% (ORP) 6.9 to 7.1 (pH)	75 to 125% (total selenium)	70 to 130% (metals)	-	60 to 140% (antimony, barium, boron, silver, titanium, tin) 70 to 130% (all remaining analytes) 90 to 110% (selenium)
	Internal Reference Material	-	-	60 to 130% (PAHs) 80 to 120% (inorganic carbon, total carbon) 7.4 to 8 (pH 1:2 soil:water)	-	-
	Laboratory Control Sample	6.9 to 7.1 (pH) 75 to 125% (TKN) 80 to 120% (ORP, DOC, TOC, total phosphorus, all metals) 85 to 115% (all remaining analytes) 90 to 110% (conductivity, fluoride, nitrate, nitrite, sulfate)	-	60 to 130% (PAHs) 80 to 120% (metals) 90 to 110% (inorganic carbon, total carbon) 90 to 110% (moisture) 6.8 to 7.2 (pH 1:2 soil:water)	-	-
	Organism Recovery	-	-	-	≥90% recovery	-
	Organism Sub-Sampling Accuracy	-	-	-	≤20% difference between sub- samples; minimum of 5% of each sample must be analyzed; TIR < 5%	-

Table B.1: Laboratory Data Quality Objectives (DQO) for the GHO LAEMP, 2020

Notes: "-" indicates quality control method was not applied; ALS = ALS Environmental; Brooks = Brooks Applied Laboratory; SRC = Saskatchewan Research Council; LRL = Laboratory Reporting Limit; RPD = Relative Percent Difference; DQO = Data Quality Objectives; ORP = oxidation-reduction potential; PAHs = polycyclic aromatic hydrocarbons; TKN = Total Kjeldahl Nitrogen; TOC = total organic carbon; DOC = dissolved organic carbon; TSS = total suspended solids; TIR = total identification error rate.

operating conditions, which in most cases is the lowest concentration on the calibration curve. This differs from the lowest concentration that can be detected (i.e., reliably distinguished from a blank sample) which is known as the method detection limit (MDL). The LRL is typically three to ten times the method detection limit (MDL); however, some guidelines are so low the LRL is equal to the MDL to meet the guideline. Achieving satisfactory LRLs is important when comparing concentrations to guidelines for that medium. If the LRL is above the guideline, the data cannot be accurately interpreted. Consistency is also important for LRLs when taking consecutive samples. Changes in LRLs between laboratory reports can affect summary calculations and introduce confounding factors when assessing trends. For the present study, LRLs were screened against guidelines including British Columbia Water Quality Guidelines for the protection of Aquatic Life (BCWQG; ENV 2019, 2021), Elk Valley Water Quality Plan (EVWQP) benchmarks (Teck 2014), and site-specific screening values, as appropriate.

B1.3 Quality Control Samples

Typically, a DQR involves the examination of analytical results associated with several types of Quality Control (QC) samples collected (or prepared) in the field and laboratory. Quality control samples collected for this project, and a description of each QC sample type, are as follows:

- **Blanks** are samples of de-ionized water and/or appropriate reagent(s) that are handled and analyzed in the same way as regular samples. These samples reflect contamination of samples occurring in the field (in the case of field or travel blanks) or in the laboratory (in the case of laboratory or method blanks). Concentrations of analytes should be below the LRL.
- Laboratory duplicates are replicate sub-samples created in the laboratory from randomly selected field samples which are sub-sampled and then analyzed independently using identical analytical methods. The laboratory duplicate sample results reflect variability introduced during laboratory sample handling and analysis, and thus provide a measure of laboratory precision.
- **Field duplicates** are samples collected from a randomly selected field station that are homogenized to the greatest extent possible in the field, split, and analyzed separately in the laboratory. The duplicate samples are handled and analyzed in an identical manner in the laboratory. These samples reflect variability introduced during the handling of samples (e.g., during collection and homogenization), both in the field and laboratory precision.

- Spike recovery samples are created in the laboratory by adding a known amount/concentration of a given analyte (or mixture of analytes) to a randomly selected test sample previously divided to create two sub-samples. The spiked and regular sub-samples are then analyzed in an identical manner. The spike recovery represents the difference between the measured spike amount (total amount in the spiked sample minus the amount in the original sample) relative to the known spike amount (as a percentage). Two types of spike recovery samples are commonly analyzed. Spiked blanks (or blank spikes, BS) are created using laboratory control materials whereas matrix spikes (MS) are created using field-collected samples. The analysis of spiked samples provides an indication of the accuracy of analytical results.
- **CRM** or **IRM** are commercially or internally prepared or homogenized reference materials containing known chemical concentrations that are processed and analyzed along with batches of environmental samples. The sample results are then compared to target results to provide a measure of analytical accuracy. The results are reported as the percent of the known concentration that was recovered in the analysis.
- LCS are laboratory control samples created in the laboratory to have a known analyte concentration in a matrix free of interferences, such as deionized water or reference sand. The sample results are compared to the target results to confirm that the analytical method is accurate in a purified reference sample. The results are reported as the percent of the known concentration that was recovered in the analysis.
- Organism recovery checks for benthic invertebrate community samples involve the reprocessing of previously sorted material from a randomly selected sample to determine the number of invertebrates that were not recovered during the original sample processing. The reprocessing is conducted by an analyst not involved in the original processing to reduce bias. This check allows for the determination of accuracy through assessment of recovery efficiency.
- Sub-sampling error is assessed for studies in which benthic invertebrate community samples require sub-sampling (due to excessive sample volume and/or high invertebrate density). By comparing the numbers of benthic invertebrates recovered between at least two sub-samples, this measure provides an evaluation of how effective the sub-sampling method was in evenly dividing the original sample. Therefore, sub-sampling error provides a measure of analytical accuracy and precision. The processing of entire benthic invertebrate community samples in representative sample fractions also allows an evaluation of sub-sampling accuracy.

B2 WATER QUALITY

B2.1 Laboratory Reporting Limited

The analytical reports for water chemistry from ALS Environmental and Brooks Applied Labs (BAL; see Appendix H for laboratory reports L2499489, L2502324, L2503391, L2504022, and L2505298) were examined to assess LRLs relative to applicable guidelines (Tables B.2 and B.3). The LRLs for water quality analytes were assessed relative to British Columbia Water Quality Guidelines (BCWQG; ENV 2019, 2021) for the protection of freshwater aquatic life, EVWQP Level 1 Benchmarks for water quality (Teck 2014), and relevant site-specific benchmarks. Several analytes were entirely reported below the LRL (i.e., in 100% of samples; Table B.2 and B.3). For those analytes with one or more result(s) below the LRL, achieved LRLs were consistently lower than the BCWQG and EVWQP Level 1 Benchmarks for water quality (Teck 2014). Therefore, the achieved LRLs were appropriate for this study.

B2.2 Field and Laboratory Blanks

One field blank sample and three trip blank samples were submitted to ALS Environmental for water chemistry analyses to assess the potential for field sampling contamination (Table B.4). The same DQOs that were used for laboratory blanks were also used for field blanks (i.e., concentrations should be < LRL). Of the 292 analyte results for field and trip blanks, only 7 (2.40%) had concentrations greater than the LRL (Table B.4). For analytes with reported concentrations greater than the LRL, only two had concentrations greater than 5-times the LRL (ammonia and Total Kjeldahl Nitrogen; Appendix H).

A total of 105 method blank samples were assessed for water chemistry (not including those for selenium speciation) were analyzed by ALS Environmental (Appendix H). These blank samples consisted of 523 individual analyte results. All concentrations were below the LRL.

Overall, the number of detectable concentrations was relatively low among trip, field, and laboratory blank samples, and the majority of detectable concentrations were within 5-times the LRL. Therefore, these results are expected to have a negligible impact on data interpretability in this study.

B2.3 Data Accuracy and Precision

Data accuracy for water chemistry analyses completed by ALS Environmental (excluding selenium speciation) was evaluated based on results for 6 certified reference materials (CRM) samples, 129 laboratory control samples (LCS), and 19

Table B.2: Laboratory Reporting Limit (LRL) Evaluation for Water Chemistry Analyses

		BC WQG ^a		EVWQP Level 1 Benchmarks/		No. LRLs >	No. Sample Results	
Parameter	Units	Short-term	Long-term	Relevant Screening Values ^b	Range of LRLs	Guideline ^c	< LRL	
Physical Tests	I	<u> </u>	-	<u>.</u>			-	
Conductivity	µS/cm	-	-	-	2	-	0	
pH	mg/∟ bH	-	-	-	0.5	-	0	
ORP	mV	-	-	-	-1000	-	0	
Total Suspended Solids Total Dissolved Solids	mg/L mg/l	-	-	- 1 000	1 20	- 0	5 (62.5%)	
Turbidity	NTU	-	-	-	0.1	-	0	
Anions and Nutrients			1	Γ	4		0 (400%)	
Alkalinity, Bicarbonate (as CaCO ₃)	mg/L mg/L	-	-	-	1	-	1 (12.5%)	
Alkalinity, Carbonate (as CaCO ₃)	mg/L	-	-	-	1	-	3 (37.5%)	
Alkalinity, Hydroxide (as $CaCO_3$) Alkalinity, Total (as $CaCO_2$)	mg/L mg/l	-	-	-	1	-	7 (87.5%)	
Bromide (Br)	mg/L	-	-	-	0.05 to 0.25	-	8 (100%)	
Chloride (Cl)	mg/L	600	150	-	0.1 to 0.5	0	0	
Ammonia Total (as N) ^d	mg/L mg/L	0.752	- 0.102		0.02 to 0.1	0	5 (62.5%)	
Nitrate (as N)	mg/L	32.8	3.00	4.75	0.005 to 0.025	0	0	
Nitrite (as N) ^e Total Kieldahl Nitrogen	mg/L mg/l	0.0600	0.0200		0.001 to 0.005	0	6 (75.0%)	
Orthophosphate - Dissolved	mg/L	-	-	-	0.001	-	7 (87.5%)	
Phosphorus (P) - Total	mg/L	-	- 200	- 420	0.002	-	5 (62.5%)	
Anion Sum	meg/L	-		- 429	0.3 10 1.5	-	0	
Cation Sum	meq/L	-	-	-	0	-	0	
Organic / Inorganic Carbon	ma/l	-	-	-	0.5	-	5 (62 5%)	
Total Organic Carbon	mg/L	-	-		0.5		<u>5 (62.5%)</u> <u>5 (62.5</u> %)	
Total Metals		1			0.000			
Antimony	mg/L ma/L	-	- 0.00900		0.003	- 0	7 (87.5%)	
Arsenic	mg/L	0.00500	-	-	0.0001	0	1 (12.5%)	
Barium Benyllium	mg/L	-	1.00	-	0.0001	0	0 8 (100%)	
Bismuth	mg/L	-	-	-	0.00005	-	8 (100%)	
Boron	mg/L	-	1.20	-	0.01	0	7 (87.5%)	
Cadmium Calcium	ma/L	-	-	-	0.005	-	0	
Chromium ^g	mg/L	-	0.00100	-	0.0001	0	1 (12.5%)	
Copper	µg/L mg/l	110	4.00	-	0.1	0	8 (100%)	
Iron	mg/L	1.00	-	-	0.000	0	2 (25.0%)	
Lead	mg/L	0.145	0.00897	-	0.00005	0	7 (87.5%)	
Magnesium	mg/L mg/L	-	-		0.001	-	0	
Manganese	mg/L	2.27	1.30	-	0.0001	-	0	
Mercury ⁿ Molybdenum	µg/L mg/l	- 2 00	0.00125	-	0.0005	0	7 (87.5%)	
Nickel ^f	mg/L	-	0.135	0.00530	0.0005	0	3 (37.5%)	
Potassium	mg/L	-	-	-	0.05	-	0	
Silicon	ma/L	-	2.00	- 19.0	0.05	-	0	
Silver	mg/L	0.00300	0.00150	-	0.00001	0	8 (100%)	
Sodium Strontium	mg/L mg/l	-	-	-	0.05	-	0	
Thallium	mg/L	-	0.000800	-	0.00001	0	7 (87.5%)	
Tin Titonium	mg/L	-	-	-	0.0001	-	8 (100%)	
Uranium	mg/L	-	0.00850	-	0.00001	0	0	
Vanadium	mg/L	-	-	-	0.0005	-	8 (100%)	
Zinc ' Dissolved Metals	mg/L	0.0832	0.0578	-	0.003	0	8 (100%)	
Aluminum	mg/L	0.100	0.0500	-	0.003	0	8 (100%)	
Antimony	mg/L	-	-	-	0.0001	-	7 (87.5%)	
Barium	mg/L	-	-	-	0.0001	-	0	
Beryllium	µg/L	-	-	-	0.02	-	8 (100%)	
Bismuth	mg/L mg/L	-	-	-	0.00005	-	7 (87,5%)	
Cadmium ^f	μg/L	0.936	0.295	0.196	0.005	-	0	
Calcium	mg/L mg/l	-	-	-	0.05	-	0	
Cobalt	μg/L	-	-	-	0.1	-	8 (100%)	
Copper	mg/L	0.200	0.200	-	0.0002	0	7 (87.5%)	
Lead ^f	mg/L	-	-	-	0.00005	-	8 (100%)	
Lithium	mg/L	-	-	-	0.001	-	0	
Magnesium Manganese	mg/L mg/l	-	-	-	0.1	-	0	
Mercury ^h	μg/L	-	-	-	0.000005	-	8 (100%)	
Molybdenum	mg/L	-	-	-	0.0005	-	0 3 (37 5%)	
Potassium	mg/L	-	-	-	0.05	-	0	
Selenium	µg/L	-	-	-	0.05	-	0	
Silicon Silver [†]	mg/L mg/l	-	-		0.05	-	0 8 (100%)	
Sodium	mg/L	-	-	-	0.05	-	0	
Strontium Thallium	mg/L	-	-	-	0.0002	-	0 8 (100%)	
Tin	mg/L	-	-	-	0.0001	-	8 (100%)	
Titanium	mg/L	-	-	-	0.01	-	8 (100%)	
Uranium Vanadium	mg/L mg/l	-	-		0.00001	-	0 8 (100%)	
Zinc ^f	mg/L	-	-	-	0.001	-	7 (87.5%)	

Notes: The total number of samples (n) was 8. EVWQP = Elk Valley Water Quality Plan; LRL = Laboratory Reporting Limit, "-" indicates where no applicable guideline exists.

^a British Columbia Water Quality Guidelines for the protection of Aquatic Life (ENV 2019 and 2020).

^b Where more than one EVWQP Level 1 Benchmark or screening value was applicable, the most conservative (lowest) value was used.

^c The LRLs for all analytes were consistently less than the applicable EVWQP Level 1 benchmarks (Teck 2014) or screening values (Golder 2014; Teck 2020)

 $^{\rm d}$ Based on most conservative guideline using highest temperature (20) and pH (9).

^e Minimum water quality guidelines for Nitrite (as N) reported in ENV (2020) for chloride concentrations < 2 mg/L.

^f Hardness-based guidelines calculated using the minimum hardness observed for all samples (139 mg/L).

⁹ Guideline for Chromium VI (0.001 mg/L) was selected, as this is the principal species found in surface waters.

 $^{\rm h}$ The most conservative guideline (0.00125 $\mu g/L)$ was applied.

Table B.3: Laboratory Reporting Limit (LRL) Evaluation for Selenium Speciation Analyses

Parameter	Unito	BC WQG ^a		EVWQP Level 1 Benchmarks/ Belevant	Range of	No. LRLs >	No. Sample
Farameter		Short-term	Long-term	Screening Values	LRLs	Guideline	< LRL
Selenium (Se)-Total	µg/L	-	2.00	19.0	0.192	0	0
Selenium (Se)-Dissolved	µg/L	-	-	-	0.192	-	0
Dimethylselenoxide-Dissolved	µg/L	-	-	-	0.01	-	6 (66.7%)
MeSe(IV) - methylseleninic acid CH ₃ SeO ₂ H-Dissolved	µg/L	-	-	-	0.01	-	5 (55.6%)
Selenium Unknown - Dissolved	µg/L	-	-	-	0.01	-	9 (100%)
Se(IV) - selenite SeO ₃ ⁽⁻²⁾ -Dissolved	µg/L	-	-	-	0.05	-	4 (44.4%)
Se(VI) - selenate SeO ₄ ⁽⁻²⁾ -Dissolved	µg/L	-	-	-	0.06	-	0
SeCN - selenocyanate SeCN ⁽⁻¹⁾ - Dissolved	µg/L	-	-	-	0.04	-	9 (100%)
SeMe - selenomethionine $CH_3SeCH_2CH_2CH(NH_2)CO_2H$ -Dissolved	µg/L	-	-	-	0.01	-	9 (100%)
Selenosulfate-Dissolved	µg/L	-	-	-	0.06	-	9 (100%)
Unknown Selenium Species-Dissolved	µg/L	-	-	-	0.06	-	9 (100%)

Notes: The total number of samples (n) was 9. EVWQP = Elk Valley Water Quality Plan; LRL = Laboratory Reporting Limit. "-" indicates that no applicable guideline exists for that analyte.

^a British Columbia Water Quality Guidelines for the protection of Aquatic Life (ENV 2019 and 2020)

^b Where more than one EVWQP Level 1 Benchmark or screening value was applicable, the most conservative (lowest) value was used.

Table B.4: Field Blank and Trip Blank Evaluation for Water Chemistry Analyses

		BC WQG ^a		EVWQP Level 1 Benchmarks/		No. LRLs >	No. Sample	
Parameter	Units	Short-term	Long-term	Relevant Screening Values ^b	Range of LRLs	Guideline ^c	Results < LRL	
Physical Tests								
Conductivity (@ 25°C) Hardness (as CaCO ₂)	µS/cm	-	-	-	2	-	4 (100%)	
pH	pH	-	-	-	0.1	-	-	
ORP	mV	-	-	-	-1000	-	-	
Total Suspended Solids	mg/L mg/L	-	-	- 1.000	10	- 0	4 (100%)	
Turbidity	NTU	-	-	-	0.1	-	4 (100%)	
Anions and Nutrients	ma/l	_	_	-	1	_	1 (25.0%)	
Alkalinity, Bicarbonate (as CaCO ₃)	mg/L	-	-	-	1	-	4 (100%)	
Alkalinity, Carbonate (as $CaCO_3$)	mg/L	-	-	-	1	-	4 (100%)	
Alkalinity, Total (as $CaCO_3$)	mg/L	-	-	-	1	-	4 (100%)	
Bromide (Br)	mg/L	-	-	-	0.05	-	4 (100%)	
Chioride (CI) Fluoride	mg/L mg/L	1.52	- 150		0.1	0	4 (100%)	
Ammonia, Total (as N) ^d	mg/L	0.752	0.102	-	0.005	0	3 (75.0%)	
Nitrate (as N) Nitrite (as N) ^e	mg/L mg/l	32.8	3.00	4.75	0.005	0	4 (100%)	
Total Kjeldahl Nitrogen	mg/L	-	-	-	0.05	-	4 (100%)	
Orthophosphate - Dissolved	mg/L	-	-	-	0.001	-	4 (100%)	
Sulfate ^f	mg/L	-	309	- 429	0.002	- 0	4 (100%)	
Anion Sum	meq/L	-	-	-	0.1	-	4 (100%)	
Cation Sum	meq/L	-	-	-	0.1	-	4 (100%)	
Dissolved Organic Carbon	mg/L	-	-	•	0.5	-	2 (100%)	
Total Organic Carbon	mg/L	-	-		0.5	-	4 (100%)	
Aluminum	mg/L	-	-	-	0.003	-	4 (100%)	
Antimony	mg/L	-	0.00900	-	0.0001	0	4 (100%)	
Arsenic Barium	mg/L mg/L	0.00500	- 1.00	-	0.0001	0	4 (100%) 3 (75.0%)	
Beryllium	µg/L	-	0.130	-	0.02	0	4 (100%)	
Bismuth Boron	mg/L mg/l	-	- 1 20		0.00005	- 0	4 (100%)	
Cadmium	µg/L	-	-	-	0.005	-	4 (100%)	
	mg/L	-	-	-	0.05	-	4 (100%)	
Chromium ^s Cobalt	µg/L	- 110	4.00	-	0.0001	0	4 (100%)	
Copper	mg/L	0.200	0.200	-	0.0005	0	4 (100%)	
Iron	mg/L mg/l	1.00	- 0.00897	-	0.01	0	4 (100%)	
Lithium	mg/L	-	-	-	0.001	-	4 (100%)	
Magnesium Mangapese	mg/L	- 2 27	-	-	0.1	- 0	4 (100%)	
Manganese Mercury ^h	µg/L	-	0.00125	-	0.0005	0	4 (100%)	
Molybdenum	mg/L	2.00	1.00	-	0.00005	0	4 (100%)	
Nickel Potassium	mg/L mg/L	-	-	-	0.0005	-	4 (100%)	
Selenium	µg/L	-	2.00	19.0	0.05	0	4 (100%)	
Silicon Silver ^f	mg/L mg/L	- 0.00300	- 0.00150	-	0.1	- 0	4 (100%)	
Sodium	mg/L	-	-	-	0.05	-	3 (75.0%)	
Strontium Thallium	mg/L mg/l	-	- 0.00800	-	0.0002	- 0	4 (100%)	
Tin	mg/L	-	-	-	0.0001	-	3 (75.0%)	
Titanium	mg/L	-	-	-	0.01	-	4 (100%)	
Vanadium	mg/L	-	-		0.0005	-	4 (100%)	
	mg/L	0.0832	0.0578	-	0.003	0	4 (100%)	
Aluminum	mg/L	0.100	0.0500	-	0.003	0	2 (100%)	
Antimony	mg/L	-	-	-	0.0001	-	2 (100%)	
Arsenic Barium	mg/L mg/l	-	-	-	0.0001	-	2 (100%)	
Beryllium	μg/L	-	-	-	0.02	-	2 (100%)	
Bismuth Boron	mg/L mg/l	-	-		0.00005	-	2 (100%)	
Cadmium ^f	µg/L	0.936	0.295	0.196	0.005	0	2 (100%)	
Calcium	mg/L	-	-	-	0.05	-	4 (100%)	
Cobalt	µg/L	-	-	-	0.0001		2 (100%)	
Copper	mg/L	0.200	0.200	-	0.0002	0	2 (100%)	
Iron Lead [†]	mg/L mg/l	0.350	-	-	0.01	-	2 (100%)	
Lithium	mg/L	-	-	-	0.001	-	2 (100%)	
Magnesium	mg/L	-	-	-	0.005 to 0.1	-	4 (100%)	
Mercury ^h	μg/L		-		0.005	-	2 (100%)	
Molybdenum	mg/L	-	-	-	0.00005	-	2 (100%)	
Potassium	mg/L mg/L	-	-	-	0.0005	-	<u>∠ (100%)</u> 4 (100%)	
Selenium	µg/L	-	-	-	0.05	-	2 (100%)	
Silicon Silver ^f	mg/L mg/l	-	-	-	0.05	-	2 (100%)	
Sodium	mg/L	-	-	-	0.05	-	4 (100%)	
Strontium	mg/L	-	-	-	0.0002	-	2 (100%)	
Tin	mg/L	-	-		0.0001		2 (100%)	
Titanium	mg/L	-	-	-	0.01	-	2 (100%)	
oranium Vanadium	mg/L ma/l	-	-	-	0.0001	-	2 (100%) 2 (100%)	
Zinc ^f	mg/L	-	-	-	0.001	-	2 (100%)	

Indicates at least one field or trip blank sample had a detectable concentration above the LRL.

Notes: One field blank and three trip blank samples were analyzed. In two trip blank samples, only Ca, Mg, K and Na were analyzed for dissolved metals. EVWQP = Elk Valley Water Quality Plan; LRL = Laboratory Reporting Limit, "-" indicates where no applicable guideline exists.

^a British Columbia Water Quality Guidelines for the protection of Aquatic Life (ENV 2019 and 2020)

^b Where more than one EVWQP Level 1 Benchmark or screening value was applicable, the most conservative (lowest) value was used.

^c The LRLs for all analytes were consistently less than the applicable EVWQP Level 1 benchmarks (Teck 2014) or screening values (Golder 2014; Teck 2020)

 $^{\rm d}$ Based on most conservative guideline using highest temperature (20) and pH (9).

^e Minimum water quality guidelines for Nitrite (as N) reported in ENV (2020) for chloride concentrations < 2 mg/L.

^fHardness-based guidelines calculated using the minimum hardness observed for all samples (139 mg/L).

^g Guideline for Chromium VI (0.001 mg/L) was selected, as this is the principal species found in surface waters.

 $^{\text{h}}$ The most conservative guideline (0.00125 $\mu\text{g/L})$ was applied.

matrix spike (MS) samples (Appendix H). Results of CRM, LCS, and MS sample analyses generally met the laboratory DQO (Table B.1), with the following exceptions:

- total antimony in one LCS sample;
- total beryllium in one LCS sample;
- total lithium in one LCS sample;
- total barium in one MS sample;
- total calcium in one MS sample;
- magnesium in one MS sample;
- total sulphate in one MS sample;
- total strontium in two MS samples;

For the LCS samples that did not meet the laboratory DQO, the DQO was exceeded by less than 10%, which is considered acceptable as per CCME (see laboratory report L2504022 in Appendix H). For the MS results which did not meet the laboratory DQO, analyte concentrations were high in the background sample (i.e., the field sample used as the base for the MS sample) and the analytical laboratory was unable to accurately calculate the recovery of the spiked material (see laboratory reports L2499489 and L2503391 in Appendix H). Otherwise, accuracy for all analytes in CRM, LCS, and MS samples were within the laboratory DQO. Therefore, the overall accuracy achieved by the laboratory was considered good.

Data accuracy for selenium speciation analyses completed by BAL was evaluated based on the results for eight CRM samples, eight blank spike (BS) samples, three MS samples, and three matrix spike duplicate (MSD) samples (Appendix H). All CRM, BS, MS, and MSD samples met the laboratory DQO. Therefore, the overall accuracy achieved by the laboratory was considered excellent.

Two sets of field duplicate samples were collected to assess field sampling precision of water chemistry measured by ALS Environmental (excluding selenium speciation; Table B.5). Relative percent differences (RPDs) between field duplicate samples for most analytes (> 90% of detected analytes) were below 30%, with the exceptions of:

- oxidation-reduction potential (ORP) in one set of samples (RPD = 32.4%);
- acidity in one set of samples (RPD = 46.2%);

Table B.5: Field Duplicate Results for Water Chemistry Analyses

Parameter	Units	RG_EL20_WS_2020- 09-15_1430	RG_RIVER_WS_202 0-09-15_1430	RPD1	RG_ERSC5_WS_202 0-09-10_1645	RG_RIVER1_WS_20 20-09-10_1645	RPD2
Physical Tests		000	007	0.000	005	000	0.000
Lonductivity (@ 25°C) Hardness (as CaCO ₂)	µS/cm	298	297	0.336	295	296	0.338
pH	pH	8.32	8.18	1.70	8.3	8.3	0
ORP	mV	419	329	24.1	375	520	32.4
Total Suspended Solids	mg/L	<1	<1	-	<1	<1	-
Total Dissolved Solids	mg/L	190	183	3.75	187	186	0.536
Anions and Nutrients	NIU	0.5	0.11	128	0.69	0.77	11.0
Acidity (as CaCO ₃)	ma/L	<1	1.6	46.2	<1	<1	-
Alkalinity, Bicarbonate (as CaCO ₃)	mg/L	<1	149	197	145	140	3.51
Alkalinity, Carbonate (as CaCO ₃)	mg/L	<1	<1	-	<1	<1	-
Alkalinity, Hydroxide (as $CaCO_3$)	mg/L	150	<1	197	<1	<1	-
Alkalinity, Total (as $CaCO_3$) Bromido (Br)	mg/L	150	149	0.669	145	140	3.51
Chloride (Cl)	mg/L	0.32	0.31	3.17	0.32	0.32	- 0
Fluoride	mg/L	0.15	0.146	2.70	0.164	0.162	1.23
Ammonia, Total (as N)	mg/L	0.0095	0.0056	51.7	0.0086	<0.005	52.9
Nitrate (as N)	mg/L	0.398	0.393	1.26	0.342	0.342	0
Nitrite (as N) Total Kieldahl Nitrogon	mg/L	<0.001	< 0.001	-	<0.001	<0.001	- 20.6
Orthophosphate-Dissolved	mg/L	0.0013	<0.03	26.1	<0.001	<0.001	- 29.0
Phosphorus (P)-Total	mg/L	< 0.002	< 0.002	-	<0.002	< 0.002	-
Sulfate	mg/L	27.3	27	1.10	26.1	26.1	0
Anion Sum	meq/L	3.61	3.59	0.556	3.48	3.39	2.62
Cation Sum	meq/L	3.47	3.36	3.22	3.39	3.49	2.91
Dissolved Organic Carbon	ma/l	<0.5	<0.5	-	<0 5	<0.5	_
Total Organic Carbon	ma/L	<0.5	<0.5	-	<0.5	<0.5	-
Total Metals			-				
Aluminum	mg/L	0.0056	0.0066	16.4	0.0082	0.0141	52.9
Antimony	mg/L	< 0.0001	< 0.0001	-	< 0.0001	< 0.0001	-
Barium	ma/L	0.0001	0.00018	3.21	0.00012	0.00014	10.4
Bervllium	ug/L	<0.02	<0.02	-	<0.02	<0.02	-
Bismuth	mg/L	<0.00005	<0.00005	-	<0.00005	<0.00005	-
Boron	mg/L	<0.01	<0.01	-	<0.01	<0.01	-
Cadmium	µg/L	0.0087	0.0071	20.3	0.009	0.0099	9.52
Chromium	mg/L mg/l	50.1	47.4	5.54	46.8	46.8	0
Cobalt	ug/L	<0.1	<0.1	4.20	<0.1	<0.1	- 4.00
Copper	mg/L	<0.0005	<0.0005	-	<0.0005	< 0.0005	-
Iron	mg/L	<0.01	<0.01	-	0.011	0.019	53.3
Lead	mg/L	< 0.00005	< 0.00005	-	< 0.00005	< 0.00005	-
Lithium Magnosium	mg/L	0.003	0.0028	6.90	0.0029	0.003	3.39
Manganese	mg/L	0.00115	0.00116	0.866	0.00169	0.00211	22.1
Mercury	µg/L	<0.0005	< 0.0005	-	<0.0005	< 0.0005	-
Molybdenum	mg/L	0.00124	0.0011	12.0	0.00122	0.00107	13.1
Nickel	mg/L	< 0.0005	< 0.0005	-	0.00107	0.00107	0
Potassium	mg/L	0.418	0.43	2.83	0.425	0.421	0.946
Silicon	mg/L	1.03	2.06	346	1.30	1.42	0.560
Silver	mg/L	< 0.00001	<0.00001	-	<0.00001	<0.00001	-
Sodium	mg/L	0.948	0.928	2.13	0.827	0.846	2.27
Strontium	mg/L	0.209	0.216	3.29	0.213	0.213	0
Tin	mg/L	<0.00001	<0.00001	-	<0.00001	<0.00001	-
Titanium	mg/L	<0.0001	<0.0001	-	<0.0001	<0.001	-
Uranium	mg/L	0.000711	0.000785	9.89	0.0008	0.000822	2.71
Vanadium	mg/L	<0.0005	0.00069	31.9	<0.0005	<0.0005	-
Zinc	mg/L	< 0.003	<0.003	-	<0.003	<0.003	-
Dissolved Metals	m~/l	~0.002	~0.000		~0.002	~0.000	
Antimony	ma/l	<0.003	<0.003	-	<0.003	<0.003 <0.0001	-
Arsenic	mg/L	< 0.0001	<0.0001	-	< 0.0001	<0.0001	-
Barium	mg/L	0.0554	0.056	1.08	0.0468	0.048	2.53
Beryllium	µg/L	<0.02	<0.02	-	<0.02	<0.02	-
Bismuth	mg/L	<0.00005	<0.0005	-	<0.00005	<0.0005	-
Cadmium	ua/l	0.01	0.01	- 4 26	0.01	0.01	- 1 21
Calcium	mg/L	48.9	46.5	5.03	48.3	49.6	2.66
Chromium	mg/L	0.00022	0.00022	0	0.00023	0.0002	14.0
Cobalt	µg/L	<0.1	<0.1	-	<0.1	<0.1	-
Copper	mg/L	< 0.0002	< 0.0002	-	<0.0002	< 0.0002	-
l ead	mg/L	<0.01	<0.01	-		<0.01	-
Lithium	mg/L	0.0031	0.0027	13.8	0.0031	0.0031	0
Magnesium	mg/L	11.8	12	1.68	11.3	11.7	3.48
Manganese	mg/L	0.00069	0.0007	1.44	0.00085	0.00092	7.91
Mercury	µg/L	< 0.005	< 0.005	-	< 0.005	< 0.005	-
Nickel	mg/L		<0.00107	9./ð -	0.00101	0.001	1 74
Potassium	mg/L	0.432	0.421	2.58	0.422	0.446	5.53
Selenium	μg/L	1.8	1.72	4.55	1.4	1.38	1.44
Silicon	mg/L	1.93	1.92	0.519	1.75	1.76	0.570
Silver	mg/L	< 0.00001	< 0.00001	-	<0.00001	< 0.00001	-
Sodium Strontium	mg/L mg/l	0.998	0.91	9.22	0.815	0.847	<u>3.85</u> 2.02
Thallium	mg/L	<0.0001	<0.200	1.43 -	<0.202	<0.200	2.93 -
Tin	mg/L	< 0.0001	<0.0001	-	< 0.0001	< 0.0001	-
Titanium	mg/L	<0.01	<0.01	-	<0.01	<0.01	-
Uranium	mg/L	0.000762	0.000775	1.69	0.000786	0.000807	2.64
vanadium Zinc	mg/L mg/l	<0.0005	<0.0005 <0.001	- 120	<0.0005	<0.0005 <0.001	-

RPD >30%. Notes: The RPD was calculated using < LRL results at the LRL if one result in a duplicate pair was below the LRL. The RPD was not calculated if both results were <LRL. RPD = relative percent difference; "-"= no data/not calculated; LRL = Laboratory Reporting Limit.

- total ammonia in two sets of samples (RPD = 5.17 to 52.9%);
- total aluminum in one set of samples (RPD = 52.9%);
- total arsenic in one set of samples (RPD = 57.1%);
- total vanadium in one set of samples (RPD = 31.9%); and
- dissolved zinc in one set of samples (RPD = 120%).

For all results listed above, the higher RPDs between paired results is due to at least one of these concentrations being detected close to (within 3-times for aluminum and within 1.5-times for all other pairs) or below the LRL, where greater variability among paired results is anticipated. Overall, as few analytes in field duplicates (less than 5%) had RPDs exceeding 30%, field sampling precision for water chemistry was considered acceptable for the purposes of this study.

Recommended hold times for oxidation-reduction potential (ORP) and pH were exceeded for all water chemistry samples prior to receipt of samples by the laboratory (Appendix H). The hold times for these analyses is 0.25 h, which is not feasible to meet while working in the field. All other recommended hold times were met for all GHO LAEMP samples.

B2.4 Data Quality Statement

Water chemistry data collected for the present study were of acceptable quality as characterized by good detectability, concentrations below LRLs in all method blank samples, good laboratory precision and accuracy, and good field sampling precision. Therefore, the associated data are considered acceptable for this study.

B3 SEDIMENT QUALITY

B3.1 Laboratory Reporting Limits

The analytical reports for sediment chemistry from ALS (see Appendix H for laboratory report) were examined to assess LRLs relative to applicable guidelines (Table B.6). The LRLs for these analytes were assessed relative to existing British Columbia Working Sediment Quality Guidelines (SQG; ENV 2021). Several analytes were entirely reported below the LRL (i.e., in 100% of samples; Table B.6). For all metals and several polycyclic aromatic hydrocarbons (PAHs) with one or more result below the LRL, achieved LRLs were consistently lower than applicable guidelines for sediment quality (Teck 2014; ENV 2021). However, LRLs for acenaphthene, chrysene, and dibenz(a,h)anthracene exceeded the lower SQG (i.e., Interim Sediment Quality Guideline) in 53.8 to 100% of samples. The reason for these high LRLs was due to a combination of chromatographic interference due to PAH co-elution effects. Overall, the LRLs for most analytes, with the exception of a few PAHs as noted above, were considered appropriate for this study.

B3.2 Laboratory Blanks

(0))

A total of 8 method blank samples for sediment chemistry were analyzed by ALS (Appendix H), consisting of 126 individual analyte results. All reported method blank results were within the laboratory DQO (Table B.1). Thus, the method blank results for this study indicated no inadvertent contamination of sediment samples within the laboratory during analysis.

B3.3 Data Accuracy and Precision

Data accuracy for sediment chemistry analyses completed by ALS was evaluated based on the analysis of two CRM samples, 10 Internal Reference Material (IRM) samples, and 11 LCS samples. All CRM, IRM, and LCS results met the laboratory DQO (Table B.1). Therefore, the accuracy achieved by the laboratory was considered excellent.

One set of laboratory duplicate samples were assessed to determine the laboratory precision (Appendix H). All laboratory duplicate results met the laboratory DQO (Table B.1). Therefore, the accuracy achieved by the laboratory was considered excellent.

Two sets of field duplicate samples were collected to assess the precision of field sampling of sediment chemistry (Table B.7). Samples were collected as split samples (i.e., a larger sample was homogenized and then split into two duplicate sub-samples), and as such some variability was expected based on the inherent heterogeneity of sediments. The RPDs between field duplicate samples for most metals (> 90%) were below 30% with the exceptions of:

Table B.6: Laboratory Reporting Limit (LRL) Evaluation for Sediment Chemistry Samples Relative to Sediment Criteria

Paramotor	Unite	BC SQGs		Pango of I PI s	No. LRLs	No. LRLs	No. Sample	
rarameter	Onits	ISQG	PEL	Range of ERES	> ISQG	> PEL	Results < LRL	
Physical Tests	0/			0.05				
% Moisture pH (1·2 soil:water)	% pH	-	-	0.25	-	-	0	
Particle Size	pri	L		0.1			Ŭ	
% Gravel (>2mm)	%	-	-	1	-	-	12 (92.3%)	
% Sand (2.00mm - 1.00mm)	%	-	-	1	-	-	8 (61.5%)	
% Sand (1.00mm - 0.50mm)	%	-	-	1	-	-	5 (38.5%)	
% Sand (0.50mm - 0.25mm) % Sand (0.25mm - 0.125mm)	%	-	-	1	-	-	4 (30.8%)	
% Sand (0.125mm - 0.063mm)	%	-	-	1	-	-	0	
% Silt (0.063mm - 0.0312mm)	%	-	-	1	-	-	0	
% Silt (0.0312mm - 0.004mm)	%	-	-	1	-	-	0	
% Clay (<4um)	%	-	-	1	-	-	0	
Organic Carbon	0/			0.051.0.07				
Notal Organic Carbon	%	-	-	0.05 to 0.97	-	-	U	
Aluminum	mg/kg	-	-	50	-	-	0	
Antimony	mg/kg	-	-	0.1	-	-	0	
Arsenic	mg/kg	5.90	17.0	0.1	0	0	0	
Barium	mg/kg	-	-	0.5	-	-	0	
Beryllium	mg/kg	-	-	0.1	-	-	0	
Boron	mg/kg	-	-	0.2	-	-	13 (100%)	
Cadmium	mg/ka	0.600	3.50	0.02	0	0	0	
Calcium	mg/kg	-	-	50	-	-	0	
Chromium	mg/kg	37.3	90.0	0.5	0	0	0	
Cobalt	mg/kg	-	-	0.1	-	-	0	
	mg/kg	35.7	197	0.5	-	-	0	
Iron	mg/kg	21,200	43,766 91 3	50	0	0	0	
Lithium	mg/kg	-	-	2	-	-	0	
Magnesium	mg/kg	-	-	20	-	-	0	
Manganese	mg/kg	460	1,100	1	0	0	0	
Mercury	mg/kg	0.170	0.486	0.005	0	0	0	
Molybdenum	mg/kg	-	-	0.1	-	-	0	
Phosphorus	mg/kg	- 10.0	75.0	0.5	-	-	0	
Potassium	mg/kg	-	-	100	-	-	0	
Selenium	mg/kg	2.00	-	0.2	0	-	0	
Silver	mg/kg	0.500	-	0.1	0	-	6 (46.2%)	
Sodium	mg/kg	-	-	50	-	-	0	
Strontium	mg/kg	-	-	0.5	-	-	0	
Thallium	mg/kg	-	-	0.05	-	-	0	
Tin	mg/kg	-	-	2	-	-	13 (100%)	
Titanium	mg/kg	-	-	1	-	-	0	
Tungsten	mg/kg	-	-	0.5	-	-	13 (100%)	
Uranium	mg/kg	-	-	0.05	-	-	0	
	mg/kg	-	-	0.2	-	-	0	
Zirconium	ma/ka	-	-	1	-	-	12 (92.3%)	
Polycyclic Aromatic Hydrocarbo	ons							
Acenaphthene	mg/kg	0.00671	0.0889	0.005 to 0.051	5 (38.5%)	0	13 (100%)	
Acenaphthylene	mg/kg	0.00587	0.128	0.005	0	0	13 (100%)	
Acridine	mg/kg	-	-	0.001 to 0.05	-	-	11 (84.6%)	
Antifiacene Benz(a)anthracene	mg/kg	0.0469	0.245	0.004	0	0	8 (61 5%)	
Benzo(a)pyrene	mg/kg	0.0319	0.782	0.01	0	0	10 (76.9%)	
Benzo(b&j)fluoranthene	mg/kg	-	-	0.01	-	-	5 (38.5%)	
Benzo(b+j+k)fluoranthene	mg/kg	-	-	0.015	-	-	7 (53.8%)	
Benzo(g,h,i)perylene	mg/kg	0.170	0.320	0.01	0	0	8 (61.5%)	
Benzo(k)fluoranthene	mg/kg	0.240	13.4	0.01	0	0	13 (100%)	
Chrysene	ma/ka	- 0.0571	- 0.862	0.01 to 0.24	- 2 (28.6%)	- 0	7 (53.8%)	
Dibenz(a,h)anthracene	mg/kg	0.00622	0.135	0.005 to 0.007	1 (10.0%)	0	10 (76.9%)	
Fluoranthene	mg/kg	0.111	2.36	0.01	0	0	7 (53.8%)	
Fluorene	mg/kg	0.0212	0.144	0.01	0	0	8 (61.5%)	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.200	3.20	0.01	0	0	11 (84.6%)	
1-Methylnaphthalene	mg/kg	-	-	0.05	-	-	7 (53.8%)	
∠-ivietnyinaphtnalene	mg/kg	0.0202	0.201	0.01	0	0	U 3 (23 1%)	
Pervlene	ma/ka	-	-	0.01	-	-	6 (46.2%)	
Phenanthrene	mg/kg	0.0419	0.515	0.01	0	0	0	
Pyrene	mg/kg	0.0530	0.875	0.01	0	0	7 (53.8%)	
Quinoline	mg/kg	-	-	0.05	-	-	13 (100%)	

Shading indicates an LRL greater than the lowest BC WSQG (i.e., the ISQG). Notes: the total number of samples (n) was 13. BC SQGs = British Columbia Working Sediment Quality Guidelines; LRL = Laboratory Reporting Limit; ISQG = Interim Sediment Quality Guideline; PEL = Probable Effects Level; % = percent; > = greater than; mm = millimetres; < = less than; µm = micrometres; - = no data/not applicable; mg/kg = milligrams per kilogram; BCMOECCS = British Columbia Ministry of Environment and Climate Change Strategy.

Table B.7: Field Duplicate Results for Sediment Samples

		RG_EL20	/ GH_ERC		RG_ELUGI		
Parameter	Unit	RG_EL20_SE- 1_2020-09- 15_1244	RG_RIVER_SE- 5_2020-09- 15_1244	RPD (%)	RG_ELUGH_SE- 2_2020-09- 17_1040	RG_RIVER_SE- 5_2020-09- 17_1040	RPD (%)
Physical Tests	1						
% Moisture	%	26.3	35.5	29.8	43.8	39.7	9.82
pH (1:2 soil:water)	рН	8.42	8.25	2.04	8.24	8.29	0.605
Particle Size	0/	0.5	7.4	74.0		4.0	40.0
% Gravel (>2mm) % Sand (2.00mm _ 1.00mm)	%	3.5	1.4	/1.6	<1	1.6	46.2
% Sand (2.00mm - 1.00mm)	% %	4	4.7	2 74	1.5	3.8	1.60
% Sand (0.50mm - 0.25mm)	70 %	12.9	12.2	5.58	13.7	15.1	9.72
% Sand (0.25mm - 0.125mm)	%	17.3	15.9	8.43	28.1	17	49.2
% Sand (0.125mm - 0.063mm)	%	16.3	14.5	11.7	19.4	13.8	33.7
% Silt (0.063mm - 0.0312mm)	%	16.9	16.7	1.19	13.4	18.2	30.4
% Silt (0.0312mm - 0.004mm)	%	18	17.7	1.68	13.8	20.4	38.6
% Clay (<4um)	%	3.8	3.5	8.22	3.3	3.8	14.1
Organic Carbon	I •/				1		
Total Organic Carbon	%	3.11	2.85	8.72	2.61	3.12	17.8
	ma/ka	4 320	5 520	24.4	7 340	7 500	2.16
Antimony	mg/kg	4,320	0.38	8 22	0.54	0.51	5.71
Arsenic	ma/ka	4.41	4.93	11.1	5.64	5.67	0.531
Barium	mg/kg	81.1	108	28.5	146	151	3.37
Beryllium	mg/kg	0.36	0.44	20.0	0.56	0.53	5.50
Bismuth	mg/kg	<0.2	<0.2		<0.2	<0.2	
Boron	mg/kg	6.3	8.1	25.0	7.8	10	24.7
Cadmium	mg/kg	0.559	0.644	14.1	0.758	0.727	4.18
Calcium	mg/kg	90,100	69,800	25.4	56,800	58,500	2.95
Chromium	mg/kg	13.9	14.6	4.91	17.7	18.2	2.79
Cobalt	mg/kg	2.74	3.26	17.3	4.26	4.23	0.707
Licop	mg/kg	6.58 8.020	9.12	32.4	10.5	10.8	2.82
Lead	mg/kg	3.96	4 97	22.6	6.64	69	3.84
Lithium	ma/ka	6.6	7.1	7.30	10	10.2	1.98
Magnesium	mg/kg	14,200	11,600	20.2	12,700	13,200	3.86
Manganese	mg/kg	385	370	3.97	449	399	11.8
Mercury	mg/kg	0.0166	0.0259	43.8	0.0419	0.0385	8.46
Molybdenum	mg/kg	1.24	1.2	3.28	1.3	1.29	0.772
Nickel	mg/kg	13.5	14.2	5.05	18	18	0
Phosphorus	mg/kg	1090	1100	0.913	1150	1230	6.72
	mg/kg	1120	1430	24.3	1930	1960	1.54
Silver	mg/kg	0.48	0.64	28.0	1.05	0.74	<u> </u>
Sodium	mg/kg	<0.1 106	0.12	14.1	102	110	7 55
Strontium	ma/ka	124	95.7	25.8	94.1	94.7	0.636
Sulfur	mg/kg	<1,000	<1,000	-	<1,000	<1,000	-
Thallium	mg/kg	0.153	0.177	14.5	0.194	0.194	0
Tin	mg/kg	<2	<2	-	<2	<2	-
Titanium	mg/kg	18.7	16.8	10.7	20.3	20	1.49
Tungsten	mg/kg	<0.5	<0.5	-	<0.5	<0.5	-
Uranium	mg/kg	1.02	1.03	0.976	1.01	0.985	2.51
Vanadium	mg/kg	21.7	26.3	19.2	34.8	35	0.573
	mg/kg	49.3	58.4	16.9	//.3	85.5	10.1
Zirconium Polycyclic Aromatic Hydrocarbon	mg/kg	<]	<1	-	1	<1	0
Acenanhthene	s ma/ka	<0.005	<0.005	_	<0.005	<0.005	-
Acenaphthvlene	ma/ka	<0.005	<0.005	-	<0.005	<0.005	-
Acridine	mg/kg	< 0.01	< 0.01	-	< 0.01	< 0.01	-
Anthracene	mg/kg	< 0.004	<0.004	-	<0.004	<0.004	-
Benz(a)anthracene	mg/kg	<0.01	<0.01	-	<0.01	<0.01	-
Benzo(a)pyrene	mg/kg	<0.01	<0.01	-	<0.01	<0.01	-
Benzo(b&j)fluoranthene	mg/kg	<0.01	0.011	9.52	0.022	0.016	31.6
Benzo(b+j+k)fluoranthene	mg/kg	<0.015	<0.015	-	0.022	0.016	31.6
Benzo(g,h,i)perylene	mg/kg	< 0.01	<0.01	-	< 0.01	<0.01	-
Benzo(k)fluoranthene	mg/kg	< 0.01	<0.01	-	< 0.01	< 0.01	-
	mg/kg	<0.01	0.01	0	0.019	0.022	30.3
Dibenz(a h)anthracene	mg/kg	<0.025	<0.03	-	<0.044	<0.032	
Fluoranthene	ma/ka	<0.003	<0.003	-	0.011	<0.000	9.52
Fluorene	ma/ka	<0.01	<0.01	-	<0.01	<0.01	-
Indeno(1,2,3-c,d)pyrene	mg/ka	<0.01	<0.01	-	<0.01	<0.01	-
1-Methylnaphthalene	mg/kg	< 0.05	0.071	34.7	0.054	<0.05	7.69
2-Methylnaphthalene	mg/kg	0.055	0.115	70.6	0.06	0.05	18.2
Naphthalene	mg/kg	0.03	0.054	57.1	0.031	0.026	17.5
Perylene	mg/kg	<0.01	<0.01	-	0.019	0.015	23.5
Phenanthrene	mg/kg	0.051	0.08	44.3	0.103	0.087	16.8
Pyrene	mg/kg	< 0.01	<0.01	-	0.014	< 0.01	33.3
Quinoline	mg/kg	<0.05	<0.05	-	<0.05	<0.05	-

RPD >30%. Notes: The RPD was calculated using <LRL results at the LRL if one result in a duplicate pair was below the LRL. The RPD was not calculated if both results were <LRL. RPD = relative percent difference; LRL = Laboratory Reporting Limit.

- copper in one set of samples (RPD = 32.4%);
- selenium in one set of samples (RPD = 34.6%);

For the selenium result listed above, the higher RPD between paired results is due to at least one of these concentrations being within 2-times the LRL, where greater variability among paired results is anticipated.

Variability among paired results was greater for PAHs than for metals and, due several results below the LRL for PAHs, only 17 RPD values could be calculated out of 46 paired results. Of these, several PAHs had RPD values greater than 30% including:

- benzo(b&j)fluoranthene in one set of samples (RPD = 31.6%);
- benzo(b+j+k)fluoranthene in one set of samples (RPD = 31.6%);
- benzo(e)pyrene in one set of samples (RPD = 30.3%);
- chrysene in one set of samples (RPD = 31.6%);
- 1-methylnaphthalene in one set of samples (RPD = 34.7%);
- 2-methylnaphthalene in one set of samples (RPD = 70.6%);
- napthalene in one set of samples (RPD = 57.1%); and
- phenanthrene in one set of samples (RPD = 44.3%).

Of result listed above, the higher RPD between paired results is due to at least one of these concentrations being within 3-times (for five of the results listed) or 5-times (for two of the results listed) the LRL, where greater variability among paired results is anticipated.

Overall, as only 8.6% of RPDs for metals and PAHs exceeded 30%, field precision and reproducibility were considered adequate. The greater variability observed for PAHs is likely attributed to residual heterogeneity in the samples. Subtle differences in the distribution of fine particulate matter and associated PAHs amongst split samples may exist even after homogenization in the field. Additionally, the transfer of sample material from one container (i.e., the bin in which the samples were homogenized) to another (i.e., the sample jar or bag) may introduce variability (Weiner 2013).

B3.2 Data Quality Statement

Sediment chemistry data collected for the present study were of acceptable quality as characterized by good detectability (with the exception of a few PAHs), negligible analyte concentrations in method blanks, good laboratory precision and accuracy, and good field sampling precision. Overall, the associated data were considered acceptable for this study.

B4 BENTHIC INVERTEBRATE COMMUNITY

B4.1 Benthic Invertebrate Sub Sampling Accuracy

The analytical reports from Cordillera Consulting Inc. were examined to assess subsampling accuracy. For all samples, Canadian Aquatic Biomonitoring Network (CABIN) protocols were followed for sub-sampling (i.e., identification of a minimum 300 invertebrates), with a minimum of 5% of a sample being assessed Table B.8. All benthic invertebrate community structure samples (n = 20) were subject to sub-sampling (Table B.8). Sub-sampling efficiency was assessed by comparing the numbers of benthic invertebrates recovered between at least two sub-samples. Both the precision and accuracy of sub-sampling efficiency assessments in 2020 met the respective DQO in all cases (\leq 20%; Table B.9). Thus, the precision and accuracy for sub-sampling of benthic invertebrate community samples was considered acceptable for this study.

B4.2 Organism Sorting Efficiency

To measure the effectiveness of the sorters, at least 10% of samples were selected at random for resorting analysis by a different sorter; three samples were assessed for this project. Sorting efficiency (i.e., percent recovery) of benthic invertebrate samples was excellent, achieving an average of 98.7% for the three community structure samples (Table B.10). Recovery in quality control samples was above the laboratories' DQO (Cordillera: \geq 95%), so organism sorting efficiency was considered excellent.

B4.3 Taxonomic Identification Accuracy

Cordillera Consulting Inc. performed an internal audit of taxonomic identification for at least 10% of all community structure samples (n = 2; Table B.11). The analysts reported a total identification error rate (TIR) of 0%, a percent difference in enumeration (PDE) of 0.101 to 0.148%, a percent taxonomic disagreement (PTD) of 0.590 to 0.806%, and Bray Curtis Dissimilarity Index (BCDI, a measure of the differences in identifications between different analysts) of 0.00443 to 0.00706). The laboratory DQO was based on TIR as per CABIN laboratory methods (< 5% TIR; Environment Canada 2014). As TIR was below 5% for all samples examined, the taxonomic accuracy of the analysis was considered good.

B4.4 Data Quality Statement

0))

Benthic invertebrate community data collected for the present study were of excellent quality as characterized by good sorting efficiency, subsampling precision and accuracy, and

000

excellent taxonomic identification accuracy. Therefore, the associated data can be used with a high level of confidence in the derivation.

Sample ID	Date	Laboratory ID	% Sampled	# Invertebrates
RG_ELUGH_BIC-1_2020-09-17	17-Sep-20	CC210922	5%	423
RG_ELUGH_BIC-2_2020-09-17	17-Sep-20	CC210923	5%	496
RG_ELUGH_BIC-3_2020-09-17	17-Sep-20	CC210924	5%	330
GH_ERSC4_BIC-1_2020-09-12	12-Sep-20	CC210925	10%	391
GH_ERSC4_BIC-2_2020-09-12	12-Sep-20	CC210926	7%	337
GH_ERSC4_BIC-3_2020-09-12	12-Sep-20	CC210927	9%	355
GH_ER1A_BIC-1_2020-09-11	11-Sep-20	CC210928	20%	419
GH_ER1A_BIC-2_2020-09-11	11-Sep-20	CC210929	6%	338
GH_ER1A_BIC-3_2020-09-12	12-Sep-20	CC210930	5%	372
RG_ERSC5_BIC-1_2020-09-11	11-Sep-20	CC210931	14%	327
RG_ERSC5_BIC-2_2020-09-11	11-Sep-20	CC210932	7%	373
RG_ERSC5_BIC-3_2020-09-11	11-Sep-20	CC210933	13%	358
RG_THCK_BIC-1_2020-09-10	10-Sep-20	CC210934	6%	339
RG_THCK_BIC-2_2020-09-10	10-Sep-20	CC210935	5%	408
RG_THCK_BIC-3_2020-09-10	10-Sep-20	CC210936	5%	525
RG_EL20_BIC-1_2020-09-15	15-Sep-20	CC210937	5%	565
RG_EL20_BIC-2_2020-09-16	16-Sep-20	CC210938	9%	359
RG_EL20_BIC-3_2020-09-16	16-Sep-20	CC210939	10%	475
RG_EL20_BIC-4_2020-09-16	16-Sep-20	CC210940	6%	368
RG_EL20_BIC-5_2020-09-16	16-Sep-20	CC210941	5%	393

Table B.8: Sub-Sampling Percentages, Benthic Invertebrate Community Samples

Table B.9:	Summary	of Subsamp	oling Efficiency
------------	---------	------------	------------------

Laboratory ID	Sample ID	# of Organisms in Subsample						Total # of Organisms	Precision		Accuracy					
	Subsample #	1	2	3	4	5	6	7	8	9	10	Total	Min (%)	Max (%)	Min (%)	Max (%)
CC210928	GH_ER1A_BIC- 1_2020-09-11	418	452	402	479	446	-	-	-	-	-	2197	1.33	16.1	1.50	9.01
CC210939	RG_EL20_BIC- 3_2020-09-16	468	393	409	411	433	456	427	413	448	422	4280	0.48	16.0	0.23	9.35

Sample ID	Laboratory ID	Taxon	Organisms Missed	Total Organisms Found	% Efficiency
GH_ER1A_BIC-3_2020-09-12	CC210930	No invertebrates found	0	372	100
		Diptera	1		
	00210022	Chironomidae	1		
RG_ER3C3_DIC-3_2020-09-11	00210933	Trichoptera	1		
		Total	3	358	99
		Chironomidae	1		
	CC210940	Baetidae	1		
		Ephemerellidae	2		
NG_EE20_DIC-4_2020-09-10		Heptageniidae	5		
		Trichoptera	1		
		Total	10	368	97
	98.7				

Table B.10: Summary of Sorting Efficiency for Benthic Invertebrate Community Samples

Notes: As sorting progressed, 10% of samples were randomly chosen by senior members of the sorting team for resorting. All sorters working on a project had at least one sample resorted by another sorter. An efficiency of 90% was expected. If 90/95% efficiency was not met, samples from that sorter were re-sorted. To calculate sorting efficiency the following formula was used: (# organisms missed / total organisms found) X 100.

Table B.11: Percent Benthic Invertebrate Community Organism Recovery

Sample ID	Laboratory ID	Taxa Identified	TIR	PDE	PTD	BCDI
RG_ELUGH_BIC-2_2020-09-17	CC210923	495	0.00	0.101	0.806	0.00706
RG_THCK_BIC-1_2020-09-10	CC210934	338	0.00	0.148	0.590	0.00443

Notes: TIR = Total Identification Error Rate, PDE = Percent Difference in Enumeration, PTD = Percent Taxonomic Disagreement, BCDI = Bray Curtis Dissimilarity Index to quantify differences in identifications.

B5 BENTHIC INVERTEBRATE TISSUE CHEMISTRY

B5.1 Laboratory Reporting Limits

Analytical report of benthic invertebrate tissue metal concentrations from TrichAnalytics (see Appendix G for laboratory report) was examined to provide an inventory of analyte results below the LRL and to compare the LRLs for these analytes to available benchmarks (Table B.12).

The sole focus of interpretation of benthic invertebrate tissue chemistry results for the GHO LAEMP was selenium. The achieved LRL was below the LRL. Selenium was detectable (i.e., > LRL) in all benthic invertebrate samples, therefore comparison of the selenium LRL to the applicable benchmark (i.e., Elk Valley Water Quality Plan Level 1 benchmark for effects to invertebrates [13 mg/kg dry weight]; Teck 2014) was not necessary to assess whether adequate detectability was achieved. Overall, the detectability of selenium in all samples (i.e., > LRL) indicates that the achieved LRLs were suitable for the study.

B5.2 Data Accuracy and Precision

Data accuracy was evaluated based on the analysis of 2 CRM samples consisting of 60 individual analyte results (Appendix G). The CRM analyses results met the laboratory DQO (Appendix G). Accuracy achieved by the laboratory in this study can therefore be considered excellent.

Laboratory precision was evaluated based on duplicate analysis of benthic invertebrate tissue samples. Laboratory duplicate results for benthic invertebrate tissue were within the DQO set by TrichAnalytics for all samples and analyses, including selenium (Appendix G). The laboratory analytical precision can be considered excellent for this study.

B5.3 Data Quality Statement

Benthic invertebrate tissue data collected for the present study were of good quality as characterized by good detectability, appropriate LRLs, and good laboratory precision and accuracy. Therefore, the associated data can be used with a good level of confidence in the derivation of conclusions for this study.

Table B.12: Laboratory Reporting Limit (LRL) Evaluation for Benthic Invertebrate Tissue Chemistry Analyses

Parameter	Units	EVWQP Level 1 Benchmarks/ Relevant Screening Values	Range of LRLs	No. LRLs > Guideline	No. Sample Results < LRL
Aluminum	ppm	-	0.004	-	0
Antimony	ppm	-	0.092	-	0
Arsenic	ppm	-	3.1	-	0
Barium	ppm	-	0.049	-	0
Beryllium	ppm	-	0.04	-	0
Boron	ppm	-	79	-	0
Cadmium	ppm	-	11	-	0
Calcium	ppm	-	20	-	0
Chromium	ppm	-	0.27	-	0
Cobalt	ppm	-	0.047	-	0
Copper	ppm	-	0.646	-	0
Iron	ppm	-	0.009	-	0
Lead	ppm	-	4.1	-	0
Lithium	ppm	-	0.004	-	0
Magnesium	ppm	-	0.015	-	0
Manganese	ppm	-	0.008	-	0
Mercury	ppm	-	0.783	-	0
Molybdenum	ppm	-	0.392	-	0
Nickel	ppm	-	0.348	-	0
Phosphorus	ppm	-	0.001	-	0
Potassium	ppm	-	0.026	-	0
Selenium	ppm	13	0.001	0	0
Silver	ppm	-	0.076	-	0
Sodium	ppm	-	0.021	-	0
Strontium	ppm	-	0.006	-	0
Thallium	ppm	-	0.001	-	0
Tin	ppm	-	0.028	-	1 (3.03%)
Titanium	ppm	-	0.001	-	0
Uranium	ppm	-	0.001	-	0
Vanadium	ppm	-	0.001	-	0
Zinc	ppm	-	0.358 to 5	-	0

Notes: The total number of samples analyzed (n) was 90. EVWQP = Elk Valley Water Quality Plan; LRL = Laboratory Reporting Limit. "-" indicates where no applicable guideline exists.
0)

B6 DATA QUALITY SUMMARY

Overall, the quality of the data collected for this project was considered acceptable for the derivation of conclusions associated with the objectives of the 2020 GHO LAEMP.

B7 REFERENCES

- ENV (British Columbia Ministry of Environment and Climate Change Strategy). 2019. British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture – Summary Report. Updated August 2019.
- ENV. 2021. Working Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture. Water Quality Guideline Series, WQG-08. Prov. B.C., Victoria B.C. Updated February 2021.
- Environment Canada. 2014. CABIN (Canadian Aquatic Biomonitoring Network) Laboratory Methods: Processing, Taxonomy, and Quality Control of Benthic Macroinvertebrate Samples. Environment Canada. May 2014.
- Teck (Teck Coal Limited). 2014. Elk Valley Water Quality Plan. Submitted to the British Columbia Minister of Environment for approval on July 22, 2014.
- Weiner, E.R. 2013. Applications of Environmental Aquatic Chemistry: A Practical Guide, Third Edition. CRC Press, Boca Raton, FL.

APPENDIX C REACH 2 AMPHIBIAN HABITAT

Photo C.1: RG_GH-SCW3 (Reach 2), September 2017

Photo C.2: RG_GH-SCW3 (Reach 2), September 2018

Photo C.3: RG_GH-SCW3 (Reach 2), September 2018

Photo C.4: RG_GH-SCW3 (Reach 2), September 2018

Photo C.5: RG_GH-SCW3 (Reach 2), September 2019

Photo C.6: RG_GH-SCW3 (Reach 2), May 2020 (photo from Vast 2 2)

Photo C.7: RG_GH-SCW3 (Reach 2) Flooded Grasslands, June 2020, (photo from ast 2 2)

Photo C.8: RG_GH-SCW3 (Reach 2), May to July 2020 (left to right; photo from ast 2 2)

Photo C.9: RG_GH-SCW3 (Reach 2), September 2020

Photo C.10: RG_GH-SCW3 (Reach 2), September 2020

Photo C.11: Columbia spotted frog (left) and western toad (right), RG_GH-SCW3, June and July 2020 (photo from ast 2 2)

Habitat Paran	neter	13-May-20	23-Jun-20	24-Jul-20		
Agustia Magraphytag	Emergent	S	S A			
Aquatic macrophytes	Submergent	А	А	А		
Number of Fish Observed		0	5	12		
Adjacent Land Use		forestry and recreation; forest service road adjacent				
Adjacent Terrestrial Habitat		undisturbed forest				
Habitat Connectivity		yes				
Water Level		shallow margin sections present				
Shoreline Aquatic Vegetation		grass and willow				
Other Comments		flowing creek with slower side channels and stagnant pools; no signs of beaver activity				

Table C.1: Habitat Characteristics of Reach 2, May to July 2020 ast 2 2

Notes: Data presented was collected by Vast Resource Solutions in 2020. S = sporadic. A = abundant.

Table C.2: In Situ Water Quality Measurements for the Inlet of Reach 2 (Station SCW1), 2018 to 2020

Year Date		Temperature	Dissolve	d Oxygen	Specific Conductivity	рН
		(°C)	(% Sat.)	(mg/L)	(µs/cm)	pH Units
BC WQG Maximum		-	-	5	-	6.5
BC WQG Minimum		19	-	-	-	9.0
2	24-May-18	6.5	100.0	12.37	301	8.08
	14-Jun-18	6.5	94.1	11.56	293	8.10
2018	18-Jul-18	10	94.6	10.68	277	8.18
2010	14-Aug-18	11.9	82.2	8.81	260	8.30
	12-Sep-18	7.5	96.7	11.56	310	8.07
	11-Oct-18	2.4	80.8	10.98	293	7.91
	12-Jun-19	7.4	90.7	10.91	263	8.10
	5-Jul-19	7.0	85.9	10.36	230	7.87
2019	7-Aug-19	10.9	86.8	9.58	270	8.18
	20-Sep-19	8.8	81.9	9.52	381	8.09
	9-Oct-19	0.7	90.7	12.97	375	7.54
	5-May-20	5.6	76.5	9.62	229	7.97
	12-Jun-20	6.5	86.6	10.25	658	8.47
2020	21-Jul-20	8.6	89.6	10.45	264	8.17
2020	17-Aug-20	13.5	79.1	8.23	254	8.25
	4-Sep-20	10.2	96.4	10.82	300	8.25
	19-Oct-20	0.8	80.1	11.45	237	7.41

Value less than the BCWQG minimum or greater than the BCWQG maximum.

Notes: WQG = water quality guideline. " - " indicates no WQG. Station SCW1 was dry from January 2018 to April 2018, from November 2018 to May 2019, from November 2019 to April 2020, and from November 2020 to December 2020.

Table C.3: In Situ Water Quality Measurements for the Outlet of Reach 2 (Station SCW3), 2018 to 2020

Year Date		Temperature	Dissolve	d Oxygen	Specific Conductivity	рН
		(°C)	(% Sat.)	(mg/L)	(µs/cm)	pH Units
BC WQG N	laximum	-	-	5	-	6.5
BC WQG N	<i>l</i> inimum	19	-	-	-	9.0
	24-Jan-18	0.3	86.8	12.5	1,709	7.71
	15-Feb-18	-0.1	78.9	11.4	1,912	8.09
	15-Mar-18	0.4	61.9	8.75	1,636	8.32
	16-Apr-18	0.3	71.2	10.3	1,322	7.02
	24-May-18	7.5	98.6	11.8	400	8.20
2019	14-Jun-18	6.5	94.0	11.6	294	7.90
2010	18-Jul-18	10.3	92.6	10.4	315	8.20
	14-Aug-18	13	83.3	8.76	484	8.39
	12-Sep-18	7.9	96.5	11.4	561	8.18
	11-Oct-18	2.4	84.7	11.6	1,046	8.36
	21-Nov-18	-0.1	68.5	9.86	1,986	7.05
	4-Dec-18	-0.01	93.6	13.6	2,007	8.00
	15-Jan-19	0	96.2	13.96	1,936	8.11
	17-Apr-19	6.3	82.6	10.25	1,233	8.81
	8-May-19	8.4	83.2	9.72	1,130	8.40
	12-Jun-19	7.9	92.8	11	260	8.15
2010	5-Jul-19	7.2	86.1	10.4	230	7.93
2019	7-Aug-19	11.0	87.8	9.69	272	7.92
	20-Sep-19	9.1	84.5	9.72	558	8.17
	9-Oct-19	1.4	92.4	12.92	1,943	8
	6-Nov-19	0	92.7	13.45	1,468	7.52
	4-Dec-19	0.1	62.2	9.04	1,589	8.17
	17-Jan-20	-0.1	83.3	12.13	1,217	7.27
	12-Feb-20	0.4	72.4	10.49	1,289	7.52
	12-Mar-20	0.1	88.2	12.69	1,470	7.73
	07-Apr-20	0.6	82.8	11.83	1,354	7.66
	05-May-20	5.5	76.2	9.6	289	8.15
2020	12-Jun-20	6.2	85.1	10.54	259	7.97
2020	21-Jul-20	8.5	88.0	10.26	267	7.83
	17-Aug-20	13.6	79.8	8.27	310	8.09
	04-Sep-20	10.9	95.1	10.5	547	8.16
	19-Oct-20	1.6	81.2	11.31	1,050	7.72
	10-Nov-20	0.1	79.8	11.40	1,930	8.69
	10-Dec-20	0	79	11.42	2,087	7.53

Value less than the BC WQG minimum or greater than the BC WQG maximum. Notes: WQG = water quality guideline. " - " indicates no WQG.

Species	Life Stage	Number	Year	Month	Location	Easting	Northing
western toad	adult	1	2017	July	Reach 2	-	-
Columbia spotted frog	adult	1	2017	August	Reach 3	-	-
Columbia spotted frog	adult	1	2018	June	Reach 2	648373	5550161
western toad	adult	1	2018	July	Reach 1/2 break	648257	5549933
western toad	adult	1	2018	July	Reach 2	648325	5550044
western toad	adult	1	2018	July	Reach 2 (2nd finger)	648112	5550281
western toad	adult	1	2018	July	Reach 2	648167	5550274
western toad	adult	1	2018	August	Reach 2 (2nd finger)	647955	5550282
long-toed salamander ^a	subadult / larva	10	2018	September	Reach 2 (2nd finger)	648090	5550244
Columbia spotted frog	adult	1	2020	June	Reach 2 (outlet)	648377	5550209
Columbia spotted frog	subadult	1	2020	June	Reach 2	648376	5550231
western toad ^b	adult	1	2020	June	Reach 2	648379	5550214
western toad	adult	1	2020	June	Reach 2	648380	5550204
western toad	adult	1	2020	July	Reach 2	648347	5550229
western toad	adult	1	2020	July	Reach 2	648391	5550201

Table C.4: GHO LAEMP Amphibian Observations within Reach 2, May 2017 to July 2020

Note: "-" indicates UTM not recorded.

^a The 10 salamanders were found deceased in the naturally dewatering area off of Reach 2. ^b Identified by call.

APPENDIX C MEMO: AMPHIBIAN OCCURRENCE AND DISTRIBUTION STUDY IN THE ELK RIVER WATERSHED (VAST 2020)

August 30, 2020

Project/Reference Number: 20.0062

Teck Coal Limited

421 Pine Avenue Sparwood, BC VOB 2G0

Attention: Cait Good

Re: Amphibian Occurrence and Distribution Study in the Elk River Watershed

Teck Coal Limited (Teck) retained VAST Resource Solutions Inc. (VAST) in 2020 to complete amphibian surveys at several lentic areas as part of the Amphibian Occurrence and Distribution Study. The data will be used to inform Teck's Local Aquatic Effects Monitoring Programs (LAEMP) and toxicology study. This letter outlines the surveys that took place and the results.

1 Background

1.1 Introduction

The Amphibian Occurrence and Distribution Study (this study) is a component of the Lentic Area Supporting Study, a supporting study under the Regional Aquatic Effects Monitoring Program (RAEMP). Additional supporting studies being completed under the RAEMP include Local Aquatic Effects Monitoring Programs (LAEMP) and a Columbia spotted frog toxicity study. Together, these studies are expected to inform the implementation of the Elk Valley Water Quality Plan.

The objectives of this study were to document the occurrence of amphibian species at each life stage (i.e., egg, larval, metamorph/subadult/adult), determine the distribution of amphibians, and characterize the population structure of amphibians in MU's 1-6. To satisfy these objectives, surveys were completed during the breeding season (April to August) in 2018 and 2019 at reference and mine-exposed lentic areas within the Elk, Flathead, and Kootenay River watersheds. Surveys targeted the following species: Columbia spotted frog (*Rana lutieventris*), western toad (*Anaxys boreas*), long-toed salamander (*Ambysotma macrodactylum*), wood frog (*Lithobates sylvaticus*), and Pacific chorus frog (*Pseudacris regilla*).

In 2020, additional amphibian surveys and habitat assessments were completed to satisfy two goals:

- 1. Provide amphibian occurrence and habitat data to Teck Greenhills Operations LAEMP;
- 2. Provide amphibian occurrence and distribution and habitat data at mine-exposed sites to inform Teck's Columbia spotted frog toxicity study.

1.2 Amphibian Ecology

Amphibians belong to the vertebrate class Amphibia and are characterized by a two-stage life cycle: an aquatic larval form that metamorphosize into a terrestrial adult form (Wells, 2010). Amphibians are ectothermic and rely on the environment to heat their body and complete physiological processes. As

such, the timing of amphibian life history stages and the duration of development is largely dependent on ambient (i.e., air or water) temperatures. Generally, amphibians make use of and move between aquatic and terrestrial habitats (Pilliod et al., 2002; Regosin et al., 2003; Bull, 2006). In temperate environments, adult amphibians leave terrestrial or aquatic over-wintering sites in the spring (typically April-May) and move to aquatic breeding habitats. At this time, male frogs and toads call to attract females (Hammerson, 1999). Females lay eggs over the course of a few days to weeks (Waldman, 1981; Bull and Shepherd, 2003) and following this, adults either return to terrestrial habitats (e.g., western toad, long-toed salamander, wood frog, Pacific chorus frog) or remain close to aquatic habitats (e.g., Columbia spotted frog) (Kleeberger and Werner, 1983; Regosin et al., 2002; COSEWIC, 2012; BC CDC, 2016; Pilliod et al., 2002). Eggs develop into larvae (i.e., tadpoles) over the course of a few days to three weeks. Larvae absorb oxygen through gills (internal or external) in the water (Dodd, 2010). The duration of the larval form can vary considerably, but typically metamorphosis occurs by fall of the same year, at which time most larvae metamorphose into adults that can live on land and breathe air (Wilbur and Collins, 1973).

Aquatic breeding habitats typically include shallow areas of wetlands, lakes, and ponds where submergent and emergent vegetation occur (Stebbins, 2003). Western toad typically lay eggs in silty or sandy shallow margins (Bull, 2006; COSEWIC, 2012), while Columbia spotted frog, wood frog, and long-toed salamander depisit eggs on emerged or submerged vegetation (e.g., willow branches; sedges, grasses; Waldman, 1981; Hawkes and Tuttle, 2013). The aquatic life cycle depends on sufficient water levels at lentic areas to prevent egg masses and larvae from desiccation; therefore, ephemeral waterbodies typically don't make suitable long-term breeding habitat (Forester and Lykens, 1987; Graham and Powell, 1999; Bull, 2005). Additionally, the presence of fish can be a major deterrent for breeding habitat selection due to potential predation on eggs and larvae (Monello & Wright, 1999).

Terrestrial habitats may be used as movement corridors, foraging, and over-wintering and may include forests, streams, and grasslands that contain coarse woody debris and/or vegetation (e.g., horsetail, moss) for cover and moisture (Kleeberger and Werner, 1983; Regosin et al., 2002; COSEWIC, 2012; Bull, 2006; Schmetterling and Young, 2008). Moist conditions are essential for adult amphibians occupying terrestrial habitat to avoid desiccation. Movements among habitat types is typically not far (a few to several hundred meters); however, western toad in some regions (e.g., Montana) travel up to 13km (Schmetterling and Young, 2008; Bull, 2006). Rivers and roads can be a barrier to amphibian movement (Emel and Storfer, 2012), but possibly to a lesser extent for western toad that are capable swimmers and often use streams and roads as movement corridors (Schmetterling and Young, 2008; South Coast Conservation Program, 2017).

All native (i.e., endemic) amphibian species are protected in British Columbia (BC) under the *Wildlife Act*. Five species occur in the Elk River watershed: Columbia spotted frog, western toad, long-toed salamander, wood frog, and Pacific chorus frog. The Elk Valley is at the eastern extent of the range of Pacific chorus frog, therefore it is less likely to occur in this region (BC CDC, 2016e). Populations of amphibians in southeastern BC are considered stable and are yellow-listed: however, declines of western toad have been noted and an expert threat assessment is needed for all species (BC CDC, 2016a-e). Western toad is federally listed as a Species of Special Concern (*Species at Risk Act*, Schedule 1). Threats to local amphibian populations include habitat degradation, road mortality, and pollution/toxicity (COSEWIC, 2012; BC CDC, 2016a-e). Land use adjacent to lentic areas (e.g., forestry, roads, agriculture, mine works) can affect habitat quality and, therefore, survival of amphibians (COSEWIC, 2012; Pilliod and Scherer, 2015). Additionally, noise from surrounding land use can influence reproductive success, as it can prevent female conspecifics from hearing the breeding calls of males

(Nelson et al., 2016). Globally, the fungal disease chytridiomycosis has caused widespread declines in amphibian populations; however, to date this disease is not known to have caused mortality in BC (Govindarajulu et al. 2013). It is not known if climate change is affecting amphibians in the Elk River watershed; however, changes in precipitation and temperatures are linked to direct and indirect mortality in amphibians (review in Li et al., 2012).

1.3 Methods

1.3.1 Amphibian Surveys

The occurrence (i.e., presence/non-detection) of amphibians was determined at three survey stages: egg mass (early-late May), larval (mid-late June), and metamorph/subadult/adult (late July). Visual encounter surveys were used to determine occurrence during egg mass and metamorph/subadult/adult surveys, while aquatic funnel trapping was used during larval surveys. Visual encounter surveys involved two observers, each on the opposing sides of a lentic area, walking along the edge of the water. Each surveyor walked the entire perimeter (double independent observer method) for egg mass surveys, while each surveyor walked opposing halves of the perimeter (meeting in the middle) for metamorph/subadult/adult surveys, as surveyors are likely to flush amphibians on land. Observers were previously trained and had experience identifying amphibian species. Photographs and data were recorded on field tablets (Apple[™] iPad mini 4). Incidental detections of species and life stages were recorded and included in overall observations.

Two sites surveyed in 2019 (RG_GHWC and RG_GLMS) in which amphibian egg masses and larvae were previously detected were visited on the same date to ensure surveying occurred during peak egg-laying and development. No egg masses were detected at RG_GHWC during the first egg mass survey (likely due to below average spring temperatures); therefore, a second survey was completed later in May. Wood frog tadpoles were captured in aquatic funnel traps at RG_GLMS, indicating larval surveys occurred during the appropriate larval development period.

1.3.2 Habitat Assessment

Habitat parameters recorded included features that generally remain constant and those that may fluctuate throughout the breeding period. Constant features included the presence of a pond liner, dominant sediment type, adjacent land use, presence of adjacent undisturbed terrestrial habitat, adjacent road type, and connectivity between the lentic area (aquatic habitat) and terrestrial habitat. Features that may fluctuate included presence of shallow margins, dominant shoreline vegetation, emergent and submergent vegetation amount, number of fish observed, and signs of beaver activity. Shallow margins were defined as depths up to 30 cm. Photographs and data were recorded on field tablets (Apple[™] iPad mini 4).

In situ water quality measurements were collected at each site during each assessment. A water quality meter (YSI Professional Plus TM, YSI, Inc.) was used to measure water temperature (°C), dissolved oxygen (DO; mg/L and %), specific conductance (μ S/cm), conductivity (μ S/cm), pH, and the oxidation reduction potential (ORP; mV). The conductivity probes were calibrated weekly and pH probes were calibrated daily, prior to surveying (YSI, 2017). Dissolved oxygen was calibrated at the site to account for differences in oxygen levels due to changes in elevation.

2 Part 1: Amphibian Occurrence and Habitat Assessment for Greenhills Operations LAEMP

2.1 Objectives

The first goal was completed at one site, GH_SCW3 (648370 m E, 5550233 m N), within MU3 and on Greenhills Operations (GHO). Results of this survey will contribute to GHO's LAEMP. As such, the objectives for part 1 were:

- Determine amphibian presence/non-detection of each life stage (egg mass, larval, metamorph/subadult/adult); and,
- Evaluate habitat features and determine how it changes throughout the breeding period.

2.2 Results

Two species were observed at GH_SCW3: Columbia spotted frog and western toad (**Figure 1**). Only the subadult and adult life stages were observed. Observations were made during larval and metamorph surveys.

GH_SCW3 was a mixture of lotic and lentic areas as it was comprised of a flowing creek with adjacent stagnant pools (**Table 1**; **Figure 2**). Sediment was predominantly silt-clay. The site is adjacent to previously logged areas that are currently being used for recreation (e.g., camping, ATV's). Most of the lentic area was surrounded by forest with good connectivity between aquatic and terrestrial habitats. The nearest road was a forest service road approximately 280 m from the lotic portion of the site.

Shallow margins were present at GH_SCW3 throughout the breeding period (

Table 2): however, water levels changed drastically between each survey visit (**Figure 3**). Water levels were highest during larval surveys, in which there were no slow-moving side channels, but stagnant water present in nearby grasslands (**Figure 4**). These grasslands had dried up by the timing of metamorph surveys when water levels were lowest. Dominant shoreline vegetation remained consistent and was comprised of willows and grasses. The amount of emergent vegetation increased over the breeding period, while submergent vegetation generally remained consistent. Groups of minnows were observed in slow-moving side channels. There were no signs of beaver activity detected throughout the breeding period.

Water quality parameters recorded at GH_SCW3 can be found in Appendix B.

Table 1. Habitat parameters of each site surveyed in 2020.

Habitat Parameter	Observation
Pond Liner Present	No
Dominant Sediment Type	Silt-clay
Adjacent Land Use	Forestry; Recreation
Adjacent Undisturbed Terrestrial Habitat	Forest
Adjacent Road	Forest Service Road
Habitat Connectivity (Aquatic to Terrestrial)	Intact
Comments	Flowing creek with slower side channels and stagnant pools

Table 2. Habitat parameters recorded at each site during egg mass, larval, and metamorph surveys in2020.

Habitat Daramatar	Date					
nabilal Parameter	13-May	23-Jun	24-Jul			
Shallow Margins Present	Sections	Sections	Sections			
Dominant Shoreline Vegetation	Grass; Willow	Grass; Willow	Grass; Willow			
Emergent Vegetation Amount	Sporadic	Abundant	Abundant			
Submergent Vegetation Amount	Abundant	Abundant	Abundant			
Number of Fish Observed	0	5	12			
Signs of Beaver Activity	None	None	None			

Figure 1. Columbia spotted frog (left) and western toad (right) observed at GH_SCW3 during larval and metamorph surveys in 2020.

Figure 2. Flowing water (left) and stagnant pools (right) at GH_SCW3 in May 2020.

Figure 3. Water levels during egg mass, larval, and metamorph surveys (left to right) at GH_SCW3.

Figure 4. Flooded grassland at GH_SCW3 during larval surveys in June 2020.

2.3 Discussion

The presence of adult Columbia spotted frog and western toad during larval and metamorph surveys at GH_SCW3 suggests this is important habitat for amphibians; however, the absence of breeding evidence and ephemerality of stagnant water indicate this site is not likely suitable breeding habitat. The abundance of emergent vegetation, intact forest, and flooded terrestrial sections provide suitable habitat for amphibian movement corridors (Schmetterling and Young, 2008), likely explaining the occurrence of adults after the egg-laying period. Additionally, the presence of fish at GH_SCW3 may partially explain the absence of evidence of amphibian breeding, as fish can predate on eggs and larvae (Monello & Wright, 1999). Despite this, small fish pose no threat to adult amphibians.

2.4 Summary and Conclusion

- Columbia spotted frog and western toad were detected at GH_SCW3;
- No evidence of breeding (i.e., egg masses, tadpoles, or metamorphs) was observed;
- Water levels changed drastically throughout the breeding period, with the larval period having the highest levels and metamorph the lowest;
- The site had good connectivity between aquatic and terrestrial habitats;
- In conclusion, GH_SCW3 is likely not suitable amphibian breeding habitat but is suitable as a movement corridor and/or for foraging.

3 Part 2: Amphibian Occurrence and Distribution and Habitat Assessment for Toxicity Study

3.1 Objectives

The second goal was completed at seven sites within MUs 1-4. (**Table 3**). These results will inform Teck's toxicity study and future analyses identifying habitat features that best explain amphibian occurrence. As such, the objectives for part 2 were:

- Determine amphibian presence/non-detection at each life stage (egg mass, larval, metamorph/subadult/adult) at six of the seven sites (**Table 3**); and,
- Evaluate habitat features at each site.

Management	Sita ID	UTM			
Unit	Site iD	Easting	Northing		
MU1	Clode	650927	5564396		
	Greenhills Pond	653408	5546081		
MU2	LCCPU	659883	5531526		
MU3	THPD*	648953	5550417		
MU4	Harmer Pond	657080	5522152		
	Goddard Finger Ponds	653187	5514093		
	Gate Pond	655856	5509074		

Table 3. Sites surveyed in 2020.

*Site not surveyed for amphibians in 2020: only a habitat assessment and water quality parameters were recorded

3.2 Results

Observations of amphibians were recorded at three sites in MU's 1-3, in which two amphibian species were detected: Columbia spotted frog and western toad. Western toad was detected at Clode and LCCPU. LCCPU was the only site with breeding evidence where all life stages (i.e., egg mass, larval, metamorph, adult) of western toad were detected (**Figure 5**). Columbia spotted frog was also detected at LCCPU; however, only the adult life stage was observed (**Figure 6**). No incidental amphibians were observed at THPD while completing the habitat assessments.

Sites surveyed were lentic areas located either on mine sites (five sites) or nearby in previously-logged areas currently used for recreation (two sites; **Table 4**; **Figure 7**). Three of the sites adjacent to mine operations (Clode, Greenhills Pond, and Goddard Finger Ponds) did not have undisturbed terrestrial habitat adjacent to the lentic area or connectivity between aquatic and terrestrial habitats. Two other sites adjacent to mine operations (LCCPU and Gate Pond) had portions of the lentic area surrounded by forest and some degree of connectivity between aquatic and terrestrial habitats, but, the degree of connectivity was not ideal (i.e., a river divided the lentic area and adjacent terrestrial habitats). The two sites adjacent to previously logged areas (THPD and Harmer Pond) had portions or most of the lentic area surrounded by forest and sustained connectivity between aquatic and terrestrial habitats. All sites

had a road immediately adjacent to the lentic area that were either mine works or forest service roads. The dominant sediment type at most sites was comprised of or included silt-clay suitable for western toad egg-laying, while one site (Gate Pond) was predominantly gravel. Considerable noise from mine works (e.g., vehicles, conveyor belts, explosives) was noted at four sites (Clode, Greenhills Pond, LCCPU, and Goddard Finger Ponds). None of the sites had pond liners.

The presence of shallow margins did not change throughout the breeding period for all sites except Gate Pond, which had none present in the spring but some shallow sections later in summer as water levels dropped (**Table 5**). LCCPU had the shallowest margins (about 5 cm) where silt-clay and emergent grass occurred (**Figure 8**). Shoreline vegetation at all sites predominantly included grass and remained consistent throughout the breeding period at all sites except Gate Pond, where grass was dominant in spring and was succeeded by a mixture of grass and weeds later in summer. The amount of emergent vegetation increased across the breeding period at three sites (Clode, THPD, and Harmer Pond) and remained consistent at all other sites. THPD and Harmer Pond had the most abundant emergent vegetation overall. The amount of submergent vegetation generally remained consistent at most sites; however, it increased over the breeding period at two sites (Harmer Pond and Gate Pond). Submergent vegetation was most abundant at Gate Pond; however, the majority of submergent vegetation at this site was algae which became very abundant in July. Fish were only observed at Goddard Finger Ponds in aquatic funnel traps during larval surveys. Signs of beaver were observed at one site, Harmer Pond, during egg mass and larval surveys.

Water quality parameters for all sites and all visits can be found in Appendix B.

Figure 5. Western toad egg masses, larvae, metamorphs, and adult (top to bottom; left to right) observed at LCCPU in 2020.

Figure 6. Columbia spotted frog adult observed at LCCPU in 2020.

Table 4. Habitat parameters of each site surveyed in 2020.

	Managem	ent Unit 1	Management Unit 2 Management Unit 3		Management Unit 4			
Habitat Parameter	Clode	Greenhills Pond	LCCPU	THPD	Harmer Pond	Goddard Finger Ponds	Gate Pond	
Pond Liner Present	No	No	No	No	No	No	No	
Dominant Sediment Type	Silt-clay; Cobbles; Riprap	Silt-clay; Cobbles	Silt-Clay; Cobbles; Riprap	Silt-clay	Silt-clay	Silt-clay	Gravel	
Adjacent Land Use	Mining	Mining	Mining	Forestry; Recreation	Forestry; Recreation	Mining	Mining	
Adjacent Undisturbed Terrestrial Habitat	None	None	Forest	Forest	Forest	None	Forest	
Adjacent Road	Mine Works	Mine Works	Mine Works	Forest Service Road	Forest Service Road	Mine Works	Mine Works; Highway	
Habitat Connectivity (Aquatic to Terrestrial)	None	None	River between pond and terrestrial habitat	Intact	Intact	None	River between pond and terrestrial habitat	
Comments	Noise from mine operations	Noise from mine operations	Noise from mine operations; very shallow section comprised of silt and emergent grass	Campers and ATV's nearby	Campers and ATV's nearby	Murky water-poor visibility; Noise from mine operations	Abundant algae; grew exponentially in July	

Table 5. Habitat parameters recorded at each site during egg mass, larval, and metamorph surveys in 2020.

11.1.1.1.1.1	Management Unit 1							
Habitat		Clode		Greenhills Pond				
Farameter	13-May	B-May 23-Jun 24		13-May 22-Jun		24-Jul		
Shallow								
Margins	Sections	Sections	Sections	Sections	Sections	Sections		
Present								
Dominant				Grass;	Grass;	Grass;		
Shoreline	Grass	Grass	Grass	Shrubs-	Shrubs-	Shrubs-		
Vegetation				Willow	Willow	Willow		
Emergent								
Vegetation	Nil	Sporadic	Sporadic	Sporadic	Sporadic	Sporadic		
Amount								
Submergent								
Vegetation	Sporadic	poradic Sporadic		Sporadic	Sporadic	Sporadic		
Amount								
Number of Fish	0	0	0	0	0	0		
Observed	0		Ŭ	Ŭ		Ū		
Signs of Beaver	None	None	None	None	None	None		
Activity	None	None	None	None	None	None		
Ushitat	Ma	nagement Un	nit 2	Management Unit 3				
Barameter		LCCPU		THPD				
Farameter	05-May	22-Jun	23-Jul	13-May	23-Jun	24-Jul		
Shallow								
Margins	Sections	Sections	Sections	Sections	Sections	Sections		
Present								
Dominant								
Shoreline	Grass	Grass	Grass	Grass	ass Grass	Grass		
Vegetation								

Emergent Vegetation Amount	Sporadic	Sporadic	Sporadic	Sporadic	Abundant	Abundant			
Submergent Vegetation Amount	Sporadic	Sporadic	Sporadic	Sporadic	Sporadic	Sporadic			
Number of Fish Observed	0	0	0	0	0	0			
Signs of Beaver Activity	None	None	None	None	None	None			
Habitat				Manag	ement Unit	4	1		
Parameter		Harmer Pond		Gode	dard Finger F	Ponds	Gate Pond		
	05-May	15-Jun	23-Jul	11-May	15-Jun	23-Jul	11-May	15-Jun	23-Jul
Shallow Margins Present	Sections	Sections	Sections	Sections	Sections	Sections	None	None	Sections
Dominant Shoreline Vegetation	Grass; Trees	Grass; Trees	Grass; Trees	Grass	Grass	Grass	Grass	Grass	Grass; Weeds
Emergent Vegetation Amount	Sporadic	Sporadic	Abundant	Sporadic	Sporadic	Sporadic	Sporadic	Sporadic	Sporadic
Submergent Vegetation Amount	Nil	Nil	Sporadic	Sporadic	Sporadic	Sporadic	Sporadic	Sporadic	Abundant
Number of Fish Observed	0	0	0	0	4	0	0	0	0
Signs of Beaver Activity	Yes- chewed stumps	Yes-beaver in water	None	None	None	None	None	None	None

Figure 7. Habitat photos of Clode, Greenhills Pond, LCCPU, THPD, Harmer Pond, Goddard Finger Ponds, and Gate Pond (top to bottom; left to right) in July 2020.

Figure 8. Shallow margins with silt-clay and emergent grass at LCCPU.

3.3 Discussion

Overall, amphibian occurrence was low at these sites, with observations occurring at two of the six sites surveyed (33%). Only two species were observed: Columbia spotted frog and western toad, with breeding evidence observed only for western toad. LCCPU had the highest number of detections, including adults of both species and egg masses, larvae, and metamorphs of western toad.

Habitat at LCCPU included sections of shallow margins where silt-clay and emergent grass occur, which is ideal egg-laying habitat for western toad (Bull, 2006; COSEWIC, 2012); therefore, it is unsurprising that western toad was found breeding at this site. The observation of adult Columbia spotted frog at LCCPU suggests this species may use this lentic area as foraging grounds and/or as a movement corridor, although habitat features at this site may not be suitable for breeding for this species. The amount of emergent and submergent vegetation in shallow areas at LCCPU may not have been sufficient for breeding Columbia spotted frog. While the river on the eastern perimeter and road on the western perimeter at LCCPU may not inhibit western toad or Columbia spotted frog movement, it may prove problematic for other amphibian species.

Habitat at Clode is likely unsuitable for amphibian breeding. The observation of western toad at this site suggests it may be important as foraging grounds and/or as a movement corridor. Clode had one section of shallow margins with silt-clay and emergent grass, although it was small and the majority of the lentic area had steep banks with little to no emergent and submergent vegetation or connectivity to adjacent terrestrial habitat. Despite the presence of suitable habitat features, the scarcity of such habitats and the presence of steeply-eroded banks may explain why western toad were present but not breeding at this site.

Habitat quality was poor at Greenhills Pond, Goddard Finger Ponds, and Gate due to steep banks, gravel sediment, fish presence, lack of or poor connectivity between aquatic and terrestrial habitats, and little to no adjacent terrestrial habitats. These factors may explain (either individually or cumulatively) why amphibians were not detected at these sites.

Additional factors that may influence amphibian occurrence at lentic areas on mine sites include poor water quality and anthropogenic noise. Water at Goddard Finger Ponds was saturated with coal particles and appeared black and murky, the presence and abundance of algae at Gate Pond may affect amphibian reproductive success (Bold and Wynne, 1985; Lin and Bishop, 2015), and specific conductance was high (>1000 μ S /cm; Appendix B) at Clode, Greenhills Pond, Goddard Finger Ponds, and Gate Pond. Anthropogenic noise at lentic areas on mine sites may additionally influence occurrence of some amphibian species by disrupting male calling during breeding in the spring, particularly for quiet calling species such as Columbia spotted frog (Government of BC, 2002). Western toad was found breeding at LCCPU despite the noise: however, it may be an additional explanation for why Columbia spotted frog, a quieter calling species, was not found breeding at this site or others with nearby noise. Further analysis examining the effect and extent to which water quality parameters and anthropogenic noise influence amphibian occurrence should be completed.

Harmer Pond had good breeding habitat for amphibians that included emergent vegetation, silt-clay sediment, and adjacent terrestrial habitat with connectivity: it is surprising that no amphibians were found at this location. One potential explanation may be the presence of fish which can predate

amphibian eggs and larvae (Monello & Wright, 1999). While fish were not detected at this site, it likely does not reflect true absence given these surveys did not target fish. Additionally, amphibians may require more extensive portions of the lentic area to be comprised of shallow sections and most sections at Harmer Pond were deep.

THPD also had good habitat, but there were no incidental amphibians detected during habitat assessments. Western toad and long-toed salamander were observed at this site in 2019, with breeding evidence for long-toed salamander. Potential presence of fish, insufficient deep sections, and high specific conductance may be factors influencing the species present and breeding at this site.

It is likely the combination of habitat features, rather than the features independently, that make a lentic area suitable for breeding amphibians. Additionally, suitable habitat is different for each species (Waldman, 1981; Bull, 2006; Hawkes and Tuttle, 2013) and some may be less affected by anthropogenic disturbance and barriers to movement (Schmetterling and Young, 2008; Emel and Storfer, 2012; Nelson et al., 2016). This likely explains why western toad breed at LCCPU, but not other species and why amphibians occurred and breed at this site over other sites.

3.4 Summary and Conclusion

- Western toad adults were observed at Clode;
- Columbia spotted frog adults were observed at LCCPU;
- Western toad at all life stages (egg masses, larvae, and metamorphs/adults) were observed at LCCPU;
- Generally, a lack of connectivity between aquatic and terrestrial habitats, steep banks and deep water, fish presence, and gravel sediment coincided with the absence of amphibians and/or breeding evidence;
- Additional factors that may influence amphibian occurrence include anthropogenic noise and water quality;
- In conclusion, suitable habitats for breeding likely include a combination of features and may vary for each species; therefore, focused, species-specific research projects identifying and quantifying the effect of various factors on distribution and occurrence of each species would be necessary to determine what may influence occurrence and distribution.

4 Limitations and Closure

The Client and all readers of this report are hereby advised of the following:

- The work performed in this report was carried out in accordance with the terms and conditions specified in our signed Project Work Agreement (PWA) and/or Authorization to Proceed with the Client. The conclusions presented herein are based solely upon the scope of services and time and budgetary limitations described in this report and/or the PWA. Since site conditions may change over time, the report is intended for immediate use only.
- This report is intended to provide information to the Client to assist it in making business decisions. VAST is not a party to the various considerations underlying the business decisions and does not make recommendations regarding such. In providing this report, VAST accepts no liability or responsibility in respect of the site described in this report or for any business decisions relating to the site, including decisions in respect of the purchase, sale or investment in the site.
- The information presented in this report was acquired, compiled and interpreted exclusively for the Client for the purposes described in this report. VAST Resource Solutions does not accept any responsibility for the use of this report, in whole or in part, for any purpose other than intended or to any third-party for use whatsoever.
- Services provided by VAST Resource Solutions for this report have been conducted in a manner consistent with the level of skill, care and competence ordinarily exercised by members of the profession currently practicing under similar conditions and like circumstances in the same jurisdiction in which the services were provided. Professional judgment has been applied to developing the conclusions in this report. No warranties, expressed or implied, are made as to the professional services provided under the terms of the PWA and included in this report.
- The report is based on and limited by circumstances and conditions referred to throughout the report and on information available at the time of the site investigation. The conclusions of this report are based in part on information provided by others. Unless specifically indicated in this report, VAST has not independently verified the accuracy or completeness of the information provided by third-party sources. The accuracy of this report is therefore subject to any errors or omissions in the information provided.
- VAST is not responsible for the documentation of environmental conditions at the site that were not apparent from readily available sources. Future assessments may reveal conditions not apparent at the time of this report.
- The findings, conclusions and recommendations presented by VAST in this report reflect VAST's best judgment based on the site conditions at the time of the site inspection on the date(s) set out in this report and on information available at the time of preparation of this report. The findings cannot be extended to previous or future site conditions or to portions of the Site which were unavailable for direct observation.
- The conclusions and recommendations in this report do not relieve the Client, their agents or representatives of the responsibility to comply with applicable acts, regulations, bylaws and/or decisions of any authorities that have jurisdiction under an enactment.

- This report must be read and interpreted as a whole, as sections taken out of context may be misleading.
- If discrepancies occur between any preliminary (draft) version and the final, signed version of this report, it is the final, signed version that takes precedence. Digital copies of this report may be available upon request. If discrepancies occur between the paper version and the digital copy, the final, signed paper version takes precedence.
- Nothing in this report is intended to constitute or provide a legal opinion.
- The author reserves the right to amend this report if additional information becomes available.

Prepared by:

1 Bish

Nicole Besler, MSc, RPBio Intermediate Wildlife Biologist VAST Resource Solutions Inc. Nicole.Besler@vastresource.com

Reviewed by:

Cody R. Fonts

Cody Fouts, MSc, RPBio Intermediate Wildlife Biologist VAST Resource Solutions Inc. Cody.Fouts@vastresource.com

References

- Bold, H. C., and Wynne, M.J. (1985). Introduction to the algae. 2d ed. Prentice-Hall, Inc. Englewood Cliffs, NJ.
- British Columbia Conservation Data Centre (BC CDC). (2016a). Conservation Status Report: *Rana luteiventris*. B.C. Minist. of Environment. Available: <u>http://a100.gov.bc.ca/pub/eswp/</u> (accessed Jan 30, 2020).
- British Columbia Conservation Data Centre. (2016b). Conservation Status Report: *Anaxyrus boreas*. B.C. Minist. of Environment. Available: <u>http://a100.gov.bc.ca/pub/eswp/</u> (accessed Feb 4, 2020).
- British Columbia Conservation Data Centre (BC CDC). (2016c). Conservation Status Report: *Lithobates sylvaticus*. B.C. Minist. of Environment. Available: <u>http://a100.gov.bc.ca/pub/eswp/</u> (accessed Feb 6, 2020).
- British Columbia Conservation Data Centre (BC CDC). (2016d). Conservation Status Report: *Pseudacris regilla*. B.C. Minist. of Environment. Available: <u>http://a100.gov.bc.ca/pub/eswp/</u> (accessed Feb 6, 2020).
- British Columbia Conservation Data Centre (BC CDC). (2016e). Conservation Status Report: Ambystoma macrodactylum. B.C. Minist. of Environment. Available: http://a100.gov.bc.ca/pub/eswp/ (accessed Feb 5, 2020).
- Bull, E.L. and Shepherd, J.F. (2003). Water temperature at oviposition sites of *Rana luteiventris* in northeastern Oregon. *Western North American Naturalist 63*: 108–113.
- Bull, E.L. (2005). *Ecology of the Columbia spotted frog in northeastern Oregon* (Vol. 640). US Department of Agriculture, Forest Service, Pacific Northwest Research Station.
- Bull, E.L. (2006). Sexual differences in the ecology and habitat selection of western toads (*Bufo boreas*) in northeastern Oregon. *Herpetological Conservation and Biology* 1(1): 27-38.
- COSEWIC. (2012). COSEWIC assessment and status report on the Western Toad Anaxyrus boreas in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xiv + 71 pp. (www.registrelep-sararegistry.gc.ca/default_e.cfm).
- Dodd, C.K, ed. (2010). Amphibian ecology and conservation: a handbook of techniques. Oxford University Press. Oxford, UK. Xxvii + 505 pp.
- Emel, S.L. and Storfer, A. (2012). A decade of amphibian population genetic studies: synthesis and recommendations. *Conservation Genetics*, *13*(6), pp.1685-1689.
- Etkin, W. (1964). Metamorphosis. Pages 427-468, in J. Moore, ed. Physiology of the amphibian. Academic Press, New York.
- Forester, D., C., and Lykens, D. V. (1987). The ability of wood frog eggs to withstand prolonged terrestrial stranding: an empirical study. *Canadian Journal of Zoology 66*: 1733-1735.
- Government of British Columbia (BC). (2002). Columbia Spotted Frog. B.C. Ministry of Water, Land and Air Protection. Biodiv. Branch. 2pp.
- Graham, K.L., and Powell, G. L. (1999). Status of the long-toed salamander (*Ambystoma macrodactylum*) in Alberta. Alberta Wildlife Status Report No. 22. Fisheries and Wildlife Management Division, Resource Status and Assessment Branch.

- Kleeberger, S.R. and Werner, J.K. (1983). Post-breeding migration and summer movement of *Ambystoma maculatum. Journal of Herpetology* 17(2): 176-177.
- Li, Y., Cohen, J. M., and Rohr, J. R. (2013). Review and synthesis of the effects of climate change on amphibians. *Integrative Zoology*, 8(2), 145-161.
- Lin, Y. and Bishop, C.D. (2015). Identification of free-living *Oophila amblystomatis* (Chlorophyceae) from Yellow Spotted Salamander and Wood Frog breeding habitat. *Phycologia* 54:2: 183-191.
- Minnow Environmental Inc. (2018). Study Design for the Lentic Area Supporting Study, 2018 to 2020. Prepared for Teck Coal Ltd., Sparwood, British Columbia. Minnow Project #17-53.
- Monello, R.J. and Wright, R.G. (1999). Amphibian habitat preferences among artificial ponds in the Palouse Region of Northern Idaho. *Journal of Herpetology 33*(2): 298-303.
- Pilliod, D.S., Peterson, C.R., and Ritson, P.I. (2002). Seasonal migration of Columbia spotted frogs (*Rana luteiventris*) among complementary resources in a high mountain basin. *Canadian Journal of Zoology 80*(11): 1849–1862.
- Regosin, J.V., Windmiller, B.S. and Reed, J.M. (2003). Terrestrial habitat use and winter densities of the Wood Frog (*Rana sylvatica*). *Journal of Herpetology 37*: 390–394.
- Schmetterling, D.A. and Young, M.K. (2008). Summer movements of Boreal Toads (Bufo boreas boreas) in two western Montana basins. *Journal of herpetology*, *42*(1), pp.111-123.
- South Coast Conservation Program. (2017). Western toad. Available at: <u>http://www.sccp.ca/species-habitat/western-toad</u>
- Stebbins R.C. (2003). A Field Guide to Western Reptiles and Amphibians (Peterson Field Guide Series) (3rd ed.). Boston: Houghton Mifflin. ISBN 978-0-395-98272-3.
- Waldman, B. (1982). Adaptive significance of communal oviposition in wood frogs (*Rana sylvatica*). *Behavioral Ecology and Sociobiology* 169-174.
- Wells, K. (2010). The ecology and behaviour of amphibians. University of Chicago Press. Chicago, UK. Xi + 1,148 pp.
- Wilbur, H. M. and Collins, J. P. (1973). Ecological aspects of amphibian metamorphosis. *Science* 182:1305-1314.
- YSI. (2017). YSI Professional Plus calibration tips. Available at: <u>https://www.ysi.com/File%20Library/Documents/Tips/YSI-Professional-Plus-Calibration-Tips.pdf</u>

Appendix A

Overview map of sites surveyed and the location of amphibian species observed in 2020.

Appendix B

Water quality measurements recorded at each site during egg mass, larval, and metamorph surveys in 2020. ORP = oxidation reduction potential.

	Units										
Field			Clo	ode			Greenh	ills Pond			
Parameter		13-	29-			13-	29-			1	
		May	May	23-Jun	24-Jul	May	May	22-Jun	24-Jul		
Water Temperature	(°C)	11.7	11.2	12.2	14.7	7.7	12.4	14.8	17.7		
Dissolved	(%)	80.0	91.4	87.9	68.4	93.0	99.1	67.2	99.9		
Oxygen	(Mg/L)	8.6	9.9	9.4	6.9	11.0	10.5	6.8	9.4		
Conductivity	(µS/cm)	1354.0	979.0	1219.0	1314.0	489.8	682.0	887.0	1269.0		
Specific Conductance	(µS/cm)	1817.0	1341.0	1611.0	1634.0	728.4	896.0	1099.0	1474.0		
рН	pH Units	8.1	8.1		8.0	8.0	8.5		8.4		
ORP	(mV)	194.4	129.2	119.7	120.4	198.3	102.3	136.4	104.8		
Field Parameter	Units	ſ	Managem	ent Unit	2		I	3			
			LCC	CPU			GH_S	ТН	THPD		
		05-	28-			13-	29-			13-	
		May	May	22-Jun	23-Jul	May	May	23-Jun	24-Jul	May	24-Ju
Water Temperature	(°C)	2.6	7.6	7.6	11.8	7.0	8.6	10.3	10.4	8.4	19.8
Dissolved	(%)	71.4	116.0	78.2	104.1	87.0	72.7	87.4	72.8	94.0	129.9
Oxygen	(Mg/L)	9.7	13.7	9.1	11.3	10.6	8.5	9.8	8.1	11.0	11.8
Conductivity	(µS/cm)		406.2	429.4	489.1	215.4	232.0	199.6	189.1	673.0	1462.0
Specific Conductance	(µS/cm)		599.3	644.6	656.7	327.8	337.3	277.8	262.1	1004.0	1631.0

рН	pH Units	8.2	7.6		7.7	8.3	8.0		8.4	8.5	8.3			
ORP	(mV)	193.7	121.3	89.7	103.8	176.4	81.6	44.5	75.9	181.5	128.0			
	Units	Management Unit 4												
Field Parameter			Harme	r Pond		Goddard Finger Ponds				Gate Pond				
		05-	27-			11-	27-			11-	27-			
		May	May	15-Jun	23-Jul	May	May	15-Jun	23-Jul	May	May	15-Jun	23-Jul	
Water Temperature	(°C)	4.9	7.3	6.4	12.1	6.2	12.9	11.4	19.2	7.6	8.9	9.3	16.0	
Dissolved	(%)	94.6	91.0	69.3	95.1	105.0	80.1	60.8	83.4	96.0	74.6	62.1	198.0	
Oxygen	(Mg/L)	11.8	11.0	8.5	10.1	13.2	8.7	6.6	7.72	11.2	8.7	7.1	19.1	
Conductivity	(µS/cm)		301.0	271.5	4619.0		784.0	701.0	659.1		1201.0	1199.0	1860.0	
Specific Conductance	(µS/cm)		456.7	419.2	622.1		1048.0	948.0	1071		1735.0	1711.0	2252.0	
рН	pH Units	8.1	8.4	8.4	8.1	7.9	8.0	8.4	8.07	8.1	8.2	8.4	8.6	
ORP	(mV)	201.1	110.2	88.3	105.5	265.9	109.7	127.2	113.3	286.5	131.6	146.5	137.2	

Dissolved oxygen and pH were cross-checked with the BC surface water quality guidelines (WQG; BC MOE, 2019) for the short-term and long-term protection of aquatic life. The short-term acute (i.e., maximum) WQG for dissolved oxygen is 5-9 mg/L, depending on life stage (i.e., embryo vs adult).

The long-term chronic (i.e., average) WQG for dissolved oxygen is 8-11 mg/L, depending on life stage (i.e., embryo vs adult).

The short-term maximum and long-term average were the same for pH (i.e., 6.5-9.0). Note, may change based on site specific ambient levels.

= Concentration exceeds the BC surface water quality guidelines for the long-term protection of aquatic life (BC MOE, 2019)

= Concentration exceeds the BC surface water quality guidelines for the short- and long-term protection of aquatic life (BC MOE, 2019)

Note:

"." = parameter not measured due to YSI dysfunction

Reference: BC Ministry of Environment (MOE). (2019). British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture. Ministry of Environment & Climate Change Strategy.

APPENDIX D WATER QUALITY

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Guidelines are dependent on water chloride concentrations. Nitrite–N was plotted because it was identified as a mine-related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

GH_WILLOW_S

Figure D.2: Concentrations of Nitrite–N in Samples Collected from the West-Side Tributaries (2012 to 2020) and Monthly Average Rate of Pit Pumping Discharged to Leask Creek and Wolfram Creek (2018 to 2020)

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Guidelines are dependent on water chloride concentrations. Nitrite–N was plotted because it was identified as a mine-related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Guidelines are dependent on water chloride concentrations. Nitrite–N was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). Pit pumping volume shown as grey bars. See information regarding pit pumping discharge records in Section 2.3.2.

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Guidelines are dependent on water chloride concentrations. Nitrite–N was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). Pit pumping volume shown as grey bars. See information regarding pit pumping discharge records in Section 2.3.2.

Note: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Orthophosphate was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

Note: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Orthophosphate was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

Note: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Orthophosphate was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). Pit pumping volume shown as grey bars. See information regarding pit pumping discharge records in Section 2.3.2.

Note: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Orthophosphate was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). Pit pumping volume shown as grey bars. See information regarding pit pumping discharge records in Section 2.3.2.

Note: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Total Phosphorus was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

Note: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Total Phosphorus was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

Note: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Total Phosphorus was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). Pit pumping volume shown as grey bars. See information regarding pit pumping discharge records in Section 2.3.2.

Note: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Total Phosphorus was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). Pit pumping volume shown as grey bars. See information regarding pit pumping discharge records in Section 2.3.2.

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Guidelines are dependent on water hardness. Sulphate was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Guidelines are dependent on water hardness. Sulphate was plotted because it was identified as a mine –related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018)

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Guidelines are dependent on water hardness. Sulphate was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). Pit pumping volume shown as grey bars. See information regarding pit pumping discharge records in Section 2.3.2.

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Guidelines are dependent on water hardness. Sulphate was plotted because it was identified as a mine-related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). Pit pumping volume shown as grey bars. See information regarding pit pumping discharge records in Section 2.3.2.

Note: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Total Dissolved Solids was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

Note: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Total Dissolved Solids was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

Note: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Total Dissolved Solids was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). Pit pumping volume shown as grey bars. See information regarding pit pumping discharge records in Section 2.3.2.

Note: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Total Dissolved Solids was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). Pit pumping volume shown as grey bars. See information regarding pit pumping discharge records in Section 2.3.2.

Note: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. TSS was plotted because it was identified as a mine-related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

Note: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. TSS was plotted because it was identified as a mine-related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

Figure D.7: Concentrations of Total Suspended Solids in Samples Collected from the West-Side Tributaries (2012 to 2020) and Monthly Average Rate of Pit Pumping Discharged to Leask Creek and Wolfram Creek (2018 to 2020)

Note: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. TSS was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). Pit pumping volume shown as grey bars. See information regarding pit pumping discharge records in Section 2.3.2.

Figure D.7: Concentrations of Total Suspended Solids in Samples Collected from the West-Side Tributaries (2012 to 2020) and Monthly Average Rate of Pit Pumping Discharged to Leask Creek and Wolfram Creek (2018 to 2020)

Note: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. TSS was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). Pit pumping volume shown as grey bars. See information regarding pit pumping discharge records in Section 2.3.2.

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Guidelines are dependent on water hardness. Dissolved Cadmium was plotted because it was identified as a mine-related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Guidelines are dependent on water hardness. Dissolved Cadmium was plotted because it was identified as a mine-related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Guidelines are dependent on water hardness. Dissolved Cadmium was plotted because it was identified as a mine-related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). Pit pumping volume shown as grey bars. See information regarding pit pumping discharge records in Section 2.3.2.

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Guidelines are dependent on water hardness. Dissolved Cadmium was plotted because it was identified as a mine-related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). Pit pumping volume shown as grey bars. See information regarding pit pumping discharge records in Section 2.3.2.

Note: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Dissolved Cobalt was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

GH_WILLOW_S

Figure D.9: Concentrations of Dissolved Cobalt in Samples Collected from the West-Side Tributaries (2012 to 2020) and Monthly Average Rate of Pit Pumping Discharged to Leask Creek and Wolfram Creek (2018 to 2020)

Note: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Dissolved Cobalt was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

Note: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Dissolved Cobalt was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). Pit pumping volume shown as grey bars. See information regarding pit pumping discharge records in Section 2.3.2.

Note: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Dissolved Cobalt was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). Pit pumping volume shown as grey bars. See information regarding pit pumping discharge records in Section 2.3.2.

Note: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Total Antimony was plotted because it was identified as a mine-related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

Note: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Total Antimony was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

Note: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Total Antimony was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). Pit pumping volume shown as grey bars. See information regarding pit pumping discharge records in Section 2.3.2.

Note: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Total Antimony was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). Pit pumping volume shown as grey bars. See information regarding pit pumping discharge records in Section 2.3.2.

Note: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Total Barium was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

Note: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Total Barium was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

Note: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Total Barium was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). Pit pumping volume shown as grey bars. See information regarding pit pumping discharge records in Section 2.3.2.

Note: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Total Barium was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). Pit pumping volume shown as grey bars. See information regarding pit pumping discharge records in Section 2.3.2.

Note: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Total Boron was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

Note: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Total Boron was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

Note: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Total Boron was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). Pit pumping volume shown as grey bars. See information regarding pit pumping discharge records in Section 2.3.2.

Note: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Total Boron was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). Pit pumping volume shown as grey bars. See information regarding pit pumping discharge records in Section 2.3.2.

Note: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Total Lithium was plotted because it was identified as a mine-related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

Note: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Total Lithium was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

Note: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Total Lithium was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). Pit pumping volume shown as grey bars. See information regarding pit pumping discharge records in Section 2.3.2.

Note: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Total Lithium was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). Pit pumping volume shown as grey bars. See information regarding pit pumping discharge records in Section 2.3.2.

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Guidelines are dependent on water hardness. Total Manganese was plotted because it was identified as a mine –related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Guidelines are dependent on water hardness. Total Manganese was plotted because it was identified as a mine –related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Guidelines are dependent on water hardness. Total Manganese was plotted because it was identified as a mine-related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). Pit pumping volume shown as grey bars. See information regarding pit pumping discharge records in Section 2.3.2.

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Guidelines are dependent on water hardness. Total Manganese was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). Pit pumping volume shown as grey bars. See information regarding pit pumping discharge records in Section 2.3.2.

Note: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Total Molybdenum was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

Note: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Total Molybdenum was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

Note: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Total Molybdenum was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). Pit pumping volume shown as grey bars. See information regarding pit pumping discharge records in Section 2.3.2.

Note: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Total Molybdenum was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). Pit pumping volume shown as grey bars. See information regarding pit pumping discharge records in Section 2.3.2.

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Guidelines are dependent on water hardness. Total Nickel was plotted because it was identified as a mine –related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). Dissolved nickel is also provided for context on bioavailability. The nickel guidelines presented apply to total nickel only.

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Guidelines are dependent on water hardness. Total Nickel was plotted because it was identified as a mine –related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). Dissolved nickel is also provided for context on bioavailability. The nickel guidelines presented apply to total nickel only.

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Guidelines are dependent on water hardness. Total Nickel was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). Dissolved nickel is also provided for context on bioavailability. The nickel guidelines presented apply to total nickel only. Pit pumping volume shown as grey bars. See information regarding pit pumping discharge records in Section 2.3.2.

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Guidelines are dependent on water hardness. Total Nickel was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). Dissolved nickel is also provided for context on bioavailability. The nickel guidelines presented apply to total nickel only. Pit pumping volume shown as grey bars. See information regarding pit pumping discharge records in Section 2.3.2.

Note: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Total Selenium was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

Note: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Total Selenium was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

Note: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Total Selenium was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). Pit pumping volume shown as grey bars. See information regarding pit pumping discharge records in Section 2.3.2.

Note: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Total Selenium was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). Pit pumping volume shown as grey bars. See information regarding pit pumping discharge records in Section 2.3.2.

Note: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Total Uranium was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

Note: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Total Uranium was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

Note: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Total Uranium was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). Pit pumping volume shown as grey bars. See information regarding pit pumping discharge records in Section 2.3.2.

Note: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Total Uranium was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). Pit pumping volume shown as grey bars. See information regarding pit pumping discharge records in Section 2.3.2.

GH_BR_F (Reference)

Figure D.19: Concentrations of Total Zinc in Samples Collected from the West-Side Tributaries (2012 to 2020) and Monthly Average Rate of Pit Pumping Discharged to Leask Creek and Wolfram Creek (2018 to 2020)

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Guidelines are dependent on water hardness. Total Zinc was plotted because it was identified as a mine –related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Guidelines are dependent on water hardness. Total Zinc was plotted because it was identified as a mine –related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Guidelines are dependent on water hardness. Total Zinc was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). Pit pumping volume shown as grey bars. See information regarding pit pumping discharge records in Section 2.3.2.

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Guidelines are dependent on water hardness. Total Zinc was plotted because it was identified as a mine-related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). Pit pumping volume shown as grey bars. See information regarding pit pumping discharge records in Section 2.3.2.

Figure 2 : Concentrations of Nitrate–N in Samples from the Elk River Side Channel Monitoring Stations, 2014 to 2020

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Guidelines are dependent on water hardness. Nitrate–N was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). Nitrate EVWQP Level 1 Benchmark not shown because it is the same as the long term BCWQG.

- - BCWQG (long term) - - BCWQG (short term)

Figure 2 : Concentrations of Nitrate–N in Samples from the Elk River Side Channel Monitoring Stations, 2014 to 2020

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Guidelines are dependent on water hardness. Nitrate–N was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). Nitrate EVWQP Level 1 Benchmark not shown because it is the same as the long term BCWQG.

Figure 21: Concentrations of Nitrite–N in Samples from the Elk River Side Channel Monitoring Stations, 2014 to 2020

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Guidelines are dependent on water chloride concentrations. Nitrite–N was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

- - BCWQG (long term) - - BCWQG (short term)

Figure 21: Concentrations of Nitrite–N in Samples from the Elk River Side Channel Monitoring Stations, 2014 to 2020

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Guidelines are dependent on water chloride concentrations. Nitrite–N was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

Figure 22: Concentrations of Orthophosphate in Samples from the Elk River Side Channel Monitoring Stations, 2014 to 2020

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Orthophosphate was plotted based on EMC input, because this constituent was assessed in the GHO Cougar Pit Extension Joint Application.

Figure 22: Concentrations of Orthophosphate in Samples from the Elk River Side Channel Monitoring Stations, 2014 to 2020

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Orthophosphate was plotted based on EMC input, because this constituent was assessed in the GHO Cougar Pit Extension Joint Application.

Figure 2: Concentrations of Total Phosphorus in Samples from the Elk River Side Channel Monitoring Stations, 2014 to 2020

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Phosphorus was plotted based on EMC input, because this constituent was assessed in the GHO Cougar Pit Extension Joint Application.

Figure 2: Concentrations of Total Phosphorus in Samples from the Elk River Side Channel Monitoring Stations, 2014 to 2020

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Phosphorus was plotted based on EMC input, because this constituent was assessed in the GHO Cougar Pit Extension Joint Application.

Figure 24: Concentrations of Sulphate in Samples from the Elk River Side Channel Monitoring Stations, 2014 to 2020

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Guidelines are dependent on water hardness. Sulphate was plotted because it was identified as a mine-related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

- - BCWQG (long term) - - EVWQP Level 1 Benchmark

Figure 24: Concentrations of Sulphate in Samples from the Elk River Side Channel Monitoring Stations, 2014 to 2020

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Guidelines are dependent on water hardness. Sulphate was plotted because it was identified as a mine-related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

Figure25: Concentrations of Total Dissolved SolidsS in Samples from the ElkRiver Side Channel Monitoring Stations, 2014 to 2020

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Total dissolved solids was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

- - EVWQP Level 1 Benchmark

Figure25: Concentrations of Total Dissolved SolidsS in Samples from the ElkRiver Side Channel Monitoring Stations, 2014 to 2020

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Total dissolved solids was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

Figure 26: Concentrations of Total Suspended Solids SS in Samples from the Elk River Side Channel Monitoring Stations, 2014 to 2020

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Concentrations of TSS were plotted based on EMC input, aiming to assess the potential effects of total suspended solids on fish use and habitat availability. The TSS benchmark at severity of ill effect (SEV) level 7 (TSS = 46 mg/L) is associated with moderate habitat degradation and impaired homing (based on modeling by Newcombe and Jensen (1996), assuming one week of exposure to juvenile and adult salmonids, with TSS particle sizes $0.5-250 \mu m$; see Appendix Table D.3).

- - SEV 7

Figure 26: Concentrations of Total Suspended Solids SS in Samples from the Elk River Side Channel Monitoring Stations, 2014 to 2020

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Concentrations of TSS were plotted based on EMC input, aiming to assess the potential effects of total suspended solids on fish use and habitat availability. The TSS benchmark at severity of ill effect (SEV) level 7 (TSS = 46 mg/L) is associated with moderate habitat degradation and impaired homing (based on modeling by Newcombe and Jensen (1996), assuming one week of exposure to juvenile and adult salmonids, with TSS particle sizes $0.5-250 \mu m$; see Appendix Table D.3).

Figure 2 : Concentrations of Dissolved Cadmium in Samples from the Elk River Side Channel Monitoring Stations, 2014 to 2020

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Guidelines are dependent on water hardness. Dissolved cadmium was plotted because it was identified as a mine – related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

- - BCWQG (long term) - - BCWQG (short term) - - EVWQP Level 1 Benchmark

Figure 2 : Concentrations of Dissolved Cadmium in Samples from the Elk River Side Channel Monitoring Stations, 2014 to 2020

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Guidelines are dependent on water hardness. Dissolved cadmium was plotted because it was identified as a mine – related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

Figure 2 : Concentrations of Dissolved Cobalt in Samples from the Elk River Side Channel Monitoring Stations, 2014 to 2020

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Dissolved cobalt was plotted because it was identified as a mine-related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). No BCWQG or EVWQP benchmarks exist for dissolved cobalt. Long-term average BCWQG for total cobalt is 4 µg/L.

Figure 2: Concentrations of Dissolved Cobalt in Samples from the Elk River Side Channel Monitoring Stations, 2014 to 2020

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Dissolved cobalt was plotted because it was identified as a mine-related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). No BCWQG or EVWQP benchmarks exist for dissolved cobalt. Long-term average BCWQG for total cobalt is 4 µg/L.

Figure 29: Concentrations of Total Antimony in Samples from the Elk River Side Channel Monitoring Stations, 2014 to 2020

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Total antimony was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

- - BCWQG (long term)

Figure 29: Concentrations of Total Antimony in Samples from the Elk River Side Channel Monitoring Stations, 2014 to 2020

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Total antimony was plotted because it was identified as a mine-related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

Figure : Concentrations of Total Barium in Samples from the Elk River Side Channel Monitoring Stations, 2014 to 2020

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Total barium was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

- - BCWQG (long term)

Figure : Concentrations of Total Barium in Samples from the Elk River Side Channel Monitoring Stations, 2014 to 2020

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Total barium was plotted because it was identified as a mine-related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

Figure 1: Concentrations of Total Boron in Samples from the Elk River Side Channel Monitoring Stations, 2014 to 2020

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Total boron was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

GH_ERSC2

- - BCWQG (long term)

Figure 1: Concentrations of Total Boron in Samples from the Elk River Side Channel Monitoring Stations, 2014 to 2020

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Total boron was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

Figure 2: Concentrations of Total Lithium in Samples from the Elk River Side Channel Monitoring Stations, 2014 to 2020

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Total lithium was plotted because it was identified as a mine-related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

Figure 2: Concentrations of Total Lithium in Samples from the Elk River Side Channel Monitoring Stations, 2014 to 2020

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Total lithium was plotted because it was identified as a mine-related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

Figure : Concentrations of Total Manganese in Samples from the Elk River Side Channel Monitoring Stations, 2014 to 2020

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Guidelines are dependent on water hardness. Total manganese was plotted because it was identified as a mine-related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

- - BCWQG (long term) - - BCWQG (short term)

Figure : Concentrations of Total Manganese in Samples from the Elk River Side Channel Monitoring Stations, 2014 to 2020

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Guidelines are dependent on water hardness. Total manganese was plotted because it was identified as a mine-related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

Figure 4: Concentrations of Total Molybdenum in Samples from the Elk River Side Channel Monitoring Stations, 2014 to 2020

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Total molybdenum was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

- - BCWQG (long term) - - BCWQG (short term)

Figure 4: Concentrations of Total Molybdenum in Samples from the Elk River Side Channel Monitoring Stations, 2014 to 2020

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Total Molybdenum was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

Figure 5: Concentrations of Total Nickel in Samples from the from the Elk River Side Channel Monitoring Stations, 2014 to 2020

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Guidelines are dependent on water hardness. Total Nickel was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). Dissolved nickel is also provided for context on bioavailability. The nickel guidelines presented apply to total nickel only.

- - Level 1 Fish Screening Value - - Level 1 Interim Screening Value - - Level 2 Interim Screening Value - - Level 3 Interim Screening Value

▲ Dissolved ● Total

Figure 5: Concentrations of Total Nickel in Samples from the from the Elk River Side Channel Monitoring Stations, 2014 to 2020

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Guidelines are dependent on water hardness. Total Nickel was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). Dissolved nickel is also provided for context on bioavailability. The nickel guidelines presented apply to total nickel only.

Figure 6: Concentrations of Total Selenium in Samples from the Elk River Side Channel Monitoring Stations, 2014 to 2020

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Total selenium was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

- - BCWQG (long term) - - EVWQP Level 1 Benchmark - - EVWQP Level 2 Benchmark

Figure 6: Concentrations of Total Selenium in Samples from the Elk River Side Channel Monitoring Stations, 2014 to 2020

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Total selenium was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

Figure : Concentrations of Total Uranium in Samples from the Elk River Side Channel Monitoring Stations, 2014 to 2020

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Total uranium was plotted because it was identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

- - BCWQG (long term)

Figure : Concentrations of Total Uranium in Samples from the Elk River Side Channel Monitoring Stations, 2014 to 2020

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Total uranium was plotted because it was identified as a mine-related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

Figure : Concentrations of Total Zinc in Samples from the Elk River Side Channel Monitoring Stations, 2014 to 2020

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Guidelines are dependent on water hardness. Total zinc was plotted because it was identified as a mine –related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

- - BCWQG (long term) - - BCWQG (short term)

Figure : Concentrations of Total Zinc in Samples from the Elk River Side Channel Monitoring Stations, 2014 to 2020

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Guidelines are dependent on water hardness. Total zinc was plotted because it was identified as a mine –related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted at the LRL (LRLs between 0.0050 and 0.0050 mg/L). Nitrate-N was plotted because it was identified as a mine-related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted at the LRL (LRLs between 0.0010 and 0.10 mg/L). Nitrite-N was plotted because it was identified as a mine-related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

in utaries and Side anne Onitorni Stations 2 12 to 2 2

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted at the LRL (LRLs between 0.0010 and 0.0010 mg/L). Orthophosphate was plotted based on EMC input, because this constituent was assessed in the GHO Cougar Pit Extension Joint Application.

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted at the LRL (LRLs between 0.0010 and 0.30 mg/L). Total phosphorus was plotted based on EMC input, because this constituent was assessed in the GHO Cougar Pit Extension Joint Application.

Notes: No values below the laboratory reporting limit (LRL). Sulphate was plotted because it was identified as a mine-related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

Notes: No values below the laboratory reporting limit (LRL). TDS was plotted because it was identified as a mine-related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted at the LRL (LRLs between 1.0 and 5.0 mg/L). TSS was plotted based on EMC input, aiming to assess the potential effects of total suspended solids on fish use and habitat availability.

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted at the LRL (LRLs between 0.0050 and 0.050 mg/L). Dissolved cadmium was plotted because it was identified as a mine-related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

Figure 4 : oncentrations of isso ed o a t in Sam es o ected from West side ri utaries and Side anne onitorin Stations 2 12 to 2 2

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted at the LRL (LRLs between 0.10 and 0.50 mg/L). Dissolved cobalt was plotted because it was identified as a mine-related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

ri utaries and Side anne onitorin Stations 2 12 to 2 2

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted at the LRL (LRLs between 0.00010 and 0.00050 mg/L). Total antimony was plotted because it was identified as a mine-related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

fota arium in Sames o ected from West side onitorin Stations 2 12 to 2 2 ri utaries and Side anne

Notes: No values below the laboratory reporting limit (LRL). Total barium was plotted because it was identified as a mine-related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

Figure 5 : Time Series Plots for Total Boron Concentrations from West–side Tributaries and Side Channel Monitoring Stations, 2012 to 2020

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted at the LRL (LRLs between 0.010 and 0.050 mg/L). Total boron was plotted because it was identified as a mine-related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

ri utaries and Side anne onitorin Stations 2 12 to 2 2

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted at the LRL (LRLs between 0.0030 and 0.0030 mg/L). Total lithium was plotted because it was identified as a mine-related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

ri utaries and Side anne onitorin Stations 2 12 to 2 2

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted at the LRL (LRLs between 0.00010 and 0.00070 mg/L). Total manganese was plotted because it was identified as a mine-related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

Figure 5 : oncentrations of ota o denum in Sam es o ected from West side ri utaries and Side anne onitorin Stations 2 12 to 2 2

Notes: No values below the laboratory reporting limit (LRL). Total molybdenum was plotted because it was identified as a mine-related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

Figure D.54: Time Series Plots for Total Nickel Concentrations from West–side Tributaries and Side Channel Monitoring Stations, 2012 to 2020

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted at the LRL (LRLs between 0.50 and 2.5 μ g/L). Total nickel was plotted because it was identified as a mine-related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

Figure 55: oncentrations of ota Se enium in Sam es o ected from West side ri utaries and Side anne onitorin Stations 2 12 to 2 2

Notes: No values below the laboratory reporting limit (LRL). Total selenium was plotted because it was identified as a mine-related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

Figure 56: oncentrations of ota ranium in Sam es o ected from West side ri utaries and Side anne onitorin Stations 2 12 to 2 2

Notes: No values below the laboratory reporting limit (LRL). Total uranium was plotted because it was identified as a mine-related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

ri utaries and Side anne onitorin Stations 2 12 to 2 2

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted at the LRL (LRLs between 0.0030 and 0.018 mg/L). Total zinc was plotted because it was identified as a mine-related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018).

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Total suspended solids (TSS) was plotted based on EMC input, aiming to assess the potential effects of total suspended solids on fish use and habitat availability. Orthophosphate and phosphorus were also plotted based on EMC input, because these constituents were assessed in the GHO Cougar Pit Extension Joint Application. Dissolved nickel is provided for bioavailability context. All other constituents were plotted because they were identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). No BCWQG or EVWQP benchmarks exist for dissolved cobalt. Long–term average BCWQG for total cobalt is 4 µg/L. TSS effect level benchmarks based on modeling by Newcombe and Jensen (1996), see Section 2.3. Nitrate EVWQP Level 1 Benchmark not shown because it is the same as the long term BCWQG.

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Total suspended solids (TSS) was plotted based on EMC input, aiming to assess the potential effects of total suspended solids on fish use and habitat availability. Orthophosphate and phosphorus were also plotted based on EMC input, because these constituents were assessed in the GHO Cougar Pit Extension Joint Application. Dissolved nickel is provided for bioavailability context. All other constituents were plotted because they were identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). No BCWQG or EVWQP benchmarks exist for dissolved cobalt. Long–term average BCWQG for total cobalt is 4 μ g/L. TSS effect level benchmarks based on modeling by Newcombe and Jensen (1996), see Section 2.3.

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Total suspended solids (TSS) was plotted based on EMC input, aiming to assess the potential effects of total suspended solids on fish use and habitat availability. Orthophosphate and phosphorus were also plotted based on EMC input, because these constituents were assessed in the GHO Cougar Pit Extension Joint Application. Dissolved nickel is provided for bioavailability context. All other constituents were plotted because they were identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). No BCWQG or EVWQP benchmarks exist for dissolved cobalt. Long–term average BCWQG for total cobalt is 4 μ g/L. TSS effect level benchmarks based on modeling by Newcombe and Jensen (1996), see Section 2.3.

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Total suspended solids (TSS) was plotted based on EMC input, aiming to assess the potential effects of total suspended solids on fish use and habitat availability. Orthophosphate and phosphorus were also plotted based on EMC input, because these constituents were assessed in the GHO Cougar Pit Extension Joint Application. Dissolved nickel is provided for bioavailability context. All other constituents were plotted because they were identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). No BCWQG or EVWQP benchmarks exist for dissolved cobalt. Long–term average BCWQG for total cobalt is 4 μ g/L. TSS effect level benchmarks based on modeling by Newcombe and Jensen (1996), see Section 2.3.

Figure D.58: Concentrations of Constituents in Samples Collected from Main Stem Elk River Stations Downstream (Mine–Exposed, GH_ERC) and Upstream (Reference, GH_ER2) of Mine Influence, 2012 to 2020

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Total suspended solids (TSS) was plotted based on EMC input, aiming to assess the potential effects of total suspended solids on fish use and habitat availability. Orthophosphate and phosphorus were also plotted based on EMC input, because these constituents were assessed in the GHO Cougar Pit Extension Joint Application. Dissolved nickel is provided for bioavailability context. All other constituents were plotted because they were identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). No BCWQG or EVWQP benchmarks exist for dissolved cobalt. Long–term average BCWQG for total cobalt is 4 μ g/L. TSS effect level benchmarks based on modeling by Newcombe and Jensen (1996), see Section 2.3.

Figure D.58: Concentrations of Constituents in Samples Collected from Main Stem Elk River Stations Downstream (Mine–Exposed, GH_ERC) and Upstream (Reference, GH_ER2) of Mine Influence, 2012 to 2020

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Total suspended solids (TSS) was plotted based on EMC input, aiming to assess the potential effects of total suspended solids on fish use and habitat availability. Orthophosphate and phosphorus were also plotted based on EMC input, because these constituents were assessed in the GHO Cougar Pit Extension Joint Application. Dissolved nickel is provided for bioavailability context. All other constituents were plotted because they were identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). No BCWQG or EVWQP benchmarks exist for dissolved cobalt. Long–term average BCWQG for total cobalt is 4 μ g/L. TSS effect level benchmarks based on modeling by Newcombe and Jensen (1996), see Section 2.3.

BCWQG (long term) - BCWQG (short term)

Figure D.58: Concentrations of Constituents in Samples Collected from Main Stem Elk River Stations Downstream (Mine–Exposed, GH_ERC) and Upstream (Reference, GH_ER2) of Mine Influence, 2012 to 2020

Notes: Concentrations reported below the laboratory reporting limit (LRL) are plotted as open symbols at the LRL. Total suspended solids (TSS) was plotted based on EMC input, aiming to assess the potential effects of total suspended solids on fish use and habitat availability. Orthophosphate and phosphorus were also plotted based on EMC input, because these constituents were assessed in the GHO Cougar Pit Extension Joint Application. Dissolved nickel is provided for bioavailability context. All other constituents were plotted because they were identified as a mine–related constituent in the Adaptive Management Plan and an early warning trigger was defined (Azimuth 2018). No BCWQG or EVWQP benchmarks exist for dissolved cobalt. Long–term average BCWQG for total cobalt is 4 μ g/L. TSS effect level benchmarks based on modeling by Newcombe and Jensen (1996), see Section 2.3.

Month	Date	Phase 3 to Wolfram (gpm)	Phase 6 To Leask (gpm)
	1-Jan-20	0	0
	2-Jan-20	0	0
	3-Jan-20	0	0
	4-Jan-20	0	0
	5-Jan-20	0	0
	6-Jan-20	0	0
	7-Jan-20	0	0
	8-Jan-20	0	0
	9-Jan-20	0	0
	10-Jan-20	0	0
	11-Jan-20	0	0
	12-Jan-20	0	0
	13-Jan-20	0	0
	14-Jan-20	0	0
	15-Jan-20	0	0
Janurary	16-Jan-20	0	0
	17-Jan-20	0	0
	18-Jan-20	0	0
	19-Jan-20	0	0
	20-Jan-20	0	0
	21-Jan-20	0	0
	22-Jan-20	0	0
	23-Jan-20	0	0
	24-Jan-20	0	0
	25-Jan-20	0	0
	26-Jan-20	0	0
	27-Jan-20	0	0
	28-Jan-20	0	0
	29-Jan-20	0	0
	30-Jan-20	0	0
	31-Jan-20	0	0
	1-Feb-20	0	0
	2-Feb-20	0	0
	3-Feb-20	0	0
February	4-Feb-20	0	0
i cuiuaiy	5-Feb-20	0	0
	6-Feb-20	0	0
	7-Feb-20	0	0
	8-Feb-20	0	0

Month	Date	Phase 3 to Wolfram (gpm)	Phase 6 To Leask (gpm)
	9-Feb-20	0	0
	10-Feb-20	0	0
	11-Feb-20	0	0
	12-Feb-20	0	0
	13-Feb-20	0	0
	14-Feb-20	0	0
	15-Feb-20	0	0
	16-Feb-20	0	0
	17-Feb-20	0	0
	18-Feb-20	0	0
February	19-Feb-20	0	0
	20-Feb-20	0	0
	21-Feb-20	0	0
	22-Feb-20	0	0
	23-Feb-20	0	0
	24-Feb-20	0	0
	25-Feb-20	0	0
	26-Feb-20	0	0
	27-Feb-20	0	0
	28-Feb-20	0	0
	29-Feb-20	0	0
	1-Mar-20	0	0
	2-Mar-20	0	0
	3-Mar-20	0	0
	4-Mar-20	0	0
	5-Mar-20	0	0
	6-Mar-20	0	0
	7-Mar-20	0	0
	8-Mar-20	0	0
Marah	9-Mar-20	0	0
Warch	10-Mar-20	0	0
	11-Mar-20	0	0
	12-Mar-20	0	0
	13-Mar-20	0	0
	14-Mar-20	0	0
	15-Mar-20	0	0
	16-Mar-20	0	0
	17-Mar-20	0	0
	18-Mar-20	0	0

Month	Date	Phase 3 to Wolfram (gpm)	Phase 6 To Leask (gpm)
	19-Mar-20	0	0
	20-Mar-20	0	0
	21-Mar-20	0	0
	22-Mar-20	0	0
	23-Mar-20	0	0
	24-Mar-20	0	0
March	25-Mar-20	0	0
	26-Mar-20	0	0
	27-Mar-20	0	0
	28-Mar-20	0	0
	29-Mar-20	0	0
	30-Mar-20	0	0
	31-Mar-20	0	0
	1-Apr-20	0	0
	2-Apr-20	0	0
	3-Apr-20	0	0
	4-Apr-20	0	0
	5-Apr-20	0	0
	6-Apr-20	0	0
	7-Apr-20	0	0
	8-Apr-20	0	0
	9-Apr-20	0	0
	10-Apr-20	0	0
	11-Apr-20	0	0
	12-Apr-20	0	0
A	13-Apr-20	0	0
April	14-Apr-20	0	0
	15-Apr-20	0	0
	16-Apr-20	0	0
	17-Apr-20	0	0
	18-Apr-20	0	0
	19-Apr-20	0	0
	20-Apr-20	0	0
	21-Apr-20	0	0
	22-Apr-20	0	0
	23-Apr-20	0	0
	24-Apr-20	0	0
	25-Apr-20	0	0
	26-Apr-20	0	0

Month	Date	Phase 3 to Wolfram (gpm)	Phase 6 To Leask (gpm)
	27-Apr-20	0	0
April	28-Apr-20	0	0
Арпі	29-Apr-20	0	0
	30-Apr-20	0	0
	1-May-20	0	0
	2-May-20	0	0
	3-May-20	0	0
	4-May-20	0	0
	5-May-20	0	0
	6-May-20	0	0
	7-May-20	0	0
	8-May-20	0	0
	9-May-20	0	0
	10-May-20	0	0
	11-May-20	0	0
	12-May-20	0	0
	13-May-20	0	0
	14-May-20	0	0
	15-May-20	0	0
May	16-May-20	1,500	0
	17-May-20	1,500	0
	18-May-20	1,500	0
	19-May-20	1,500	0
	20-May-20	1,500	0
	21-May-20	1,500	0
	22-May-20	1,500	0
	23-May-20	1,500	0
	24-May-20	1,500	0
	25-May-20	1,500	0
	26-May-20	1,500	0
	27-May-20	1,500	0
	28-May-20	1,500	0
	29-May-20	1,500	0
	30-May-20	1,500	0
	31-May-20	1,500	0
	1-Jun-20	1,500	0
June	2-Jun-20	1,500	0
Udilo	3-Jun-20	1,500	0
	4-Jun-20	1,500	0

Month	Date	Phase 3 to Wolfram (gpm)	Phase 6 To Leask (gpm)
	5-Jun-20	1,500	0
	6-Jun-20	1,500	0
	7-Jun-20	1,500	0
	8-Jun-20	1,500	0
	9-Jun-20	1,500	0
	10-Jun-20	1,500	0
	11-Jun-20	1,500	0
	12-Jun-20	1,500	0
	13-Jun-20	1,500	0
	14-Jun-20	1,500	0
	15-Jun-20	1,500	0
	16-Jun-20	1,500	0
luno	17-Jun-20	1,500	0
June	18-Jun-20	1,500	0
	19-Jun-20	1,500	0
	20-Jun-20	1,500	0
	21-Jun-20	1,500	0
	22-Jun-20	1,500	0
	23-Jun-20	1,500	0
	24-Jun-20	1,500	0
	25-Jun-20	1,500	0
	26-Jun-20	1,500	0
	27-Jun-20	1,500	0
	28-Jun-20	1,500	0
	29-Jun-20	1,500	0
	30-Jun-20	1,500	0
	1-Jul-20	1,500	0
	2-Jul-20	1,500	0
	3-Jul-20	1,500	0
	4-Jul-20	2,000	0
	5-Jul-20	2,000	0
	6-Jul-20	2,000	0
July	7-Jul-20	2,000	0
	8-Jul-20	2,000	0
	9-Jul-20	2,000	0
	10-Jul-20	2,000	0
	11-Jul-20	2,000	0
	12-Jul-20	2,000	0
	13-Jul-20	2,000	0

Table D.1: Daily Pit Pumping Rates, Discharged to Leask and WolframCreeks, 2020

Month	Date	Phase 3 to Wolfram (gpm)	Phase 6 To Leask (gpm)
	14-Jul-20	2,000	0
	15-Jul-20	2,000	0
	16-Jul-20	2,000	0
	17-Jul-20	2,000	0
	18-Jul-20	2,000	0
	19-Jul-20	2,000	0
	20-Jul-20	2,000	0
	21-Jul-20	2,000	0
luk.	22-Jul-20	2,000	0
July	23-Jul-20	2,000	0
	24-Jul-20	2,000	0
	25-Jul-20	2,000	0
	26-Jul-20	2,000	0
	27-Jul-20	2,000	0
	28-Jul-20	2,000	0
	29-Jul-20	2,000	0
	30-Jul-20	2,000	0
	31-Jul-20	2,000	0
	1-Aug-20	2,000	1,000
	2-Aug-20	2,000	1,000
	3-Aug-20	2,000	1,000
	4-Aug-20	2,000	1,000
	5-Aug-20	700	1,000
	6-Aug-20	700	1,000
	7-Aug-20	700	1,000
	8-Aug-20	700	1,000
	9-Aug-20	700	1,000
	10-Aug-20	700	1,000
August	11-Aug-20	700	1,000
	12-Aug-20	700	1,000
	13-Aug-20	700	1,000
	14-Aug-20	700	1,000
	15-Aug-20	700	1,000
	16-Aug-20	700	1,000
	17-Aug-20	700	1,000
	18-Aug-20	700	1,000
	19-Aug-20	700	1,000
	20-Aug-20	700	1,000

 Table D.1: Daily Pit Pumping Rates, Discharged to Leask and Wolfram

 Creeks, 2020

700

1,000

21-Aug-20

Month	Date	Phase 3 to Wolfram (gpm)	Phase 6 To Leask (gpm)
	22-Aug-20	700	1,000
	23-Aug-20	700	1,000
	24-Aug-20	700	1,000
	25-Aug-20	700	1,000
August	26-Aug-20	700	1,000
August	27-Aug-20	700	1,000
	28-Aug-20	700	1,000
	29-Aug-20	700	1,000
	30-Aug-20	700	1,000
	31-Aug-20	700	1,000
	1-Sep-20	700	1,000
	2-Sep-20	700	1,000
	3-Sep-20	700	1,000
	4-Sep-20	700	1,000
	5-Sep-20	700	1,000
	6-Sep-20	700	1,000
	7-Sep-20	700	1,000
	8-Sep-20	700	1,000
	9-Sep-20	700	1,000
	10-Sep-20	700	1,000
	11-Sep-20	700	1,000
	12-Sep-20	700	1,000
	13-Sep-20	700	1,000
	14-Sep-20	700	1,000
September	15-Sep-20	700	1,000
	16-Sep-20	700	1,000
	17-Sep-20	700	1,000
	18-Sep-20	700	1,000
	19-Sep-20	700	1,000
	20-Sep-20	700	1,000
	21-Sep-20	700	1,000
	22-Sep-20	700	1,000
	23-Sep-20	700	1,000
	24-Sep-20	700	1,000
	25-Sep-20	700	1,000
	26-Sep-20	700	1,000
	27-Sep-20	700	1,000
	28-Sep-20	700	1,000
	29-Sep-20	0	1,000

 Table D.1: Daily Pit Pumping Rates, Discharged to Leask and Wolfram

 Creeks, 2020

Month	Date	Phase 3 to Wolfram (gpm)	Phase 6 To Leask (gpm)	
Sentember	30-Sen-20	(9 p)	(9µ)	
Ceptenber	1-Oct-20	0	1,000	
	2-Oct-20	2-Oct-20 0		
	3-Oct-20	0	1,000	
	4-Oct-20	0	1,000	
	5-Oct-20	0	1,000	
	6-Oct-20	0	1.000	
	7-Oct-20	0	1,000	
	8-Oct-20	0	1 000	
	9-Oct-20	0	1,000	
	10-Oct-20	0	1,000	
	11-Oct-20	0	1.000	
	12-Oct-20	0	1,000	
	13-Oct-20	0	1,000	
	14-Oct-20	0	1.000	
	15-Oct-20	0	1.000	
October	16-Oct-20	0	1.000	
	17-Oct-20	0	1.000	
	18-Oct-20	0	1.000	
	19-Oct-20	0	1.000	
	20-Oct-20	0	1,000	
	21-Oct-20	0	1,000	
	22-Oct-20	0	1,000	
	23-Oct-20	0	1,000	
	24-Oct-20	0	1,000	
	25-Oct-20	0	1,000	
	26-Oct-20	0	0	
	27-Oct-20	0	0	
	28-Oct-20	0	0	
	29-Oct-20	0	0	
	30-Oct-20	0	0	
	31-Oct-20	0	0	
	1-Nov-20	0	0	
	2-Nov-20	0	0	
	3-Nov-20	0	0	
November	4-Nov-20	0	0	
	5-Nov-20	0	0	
	6-Nov-20	0	0	
	7-Nov-20	0	0	

Month	Date	Phase 3 to Wolfram (gpm)	Phase 6 To Leask (gpm)	
	8-Nov-20	0	0	
	9-Nov-20	0	0	
	10-Nov-20	0	0	
	11-Nov-20	0	0	
	12-Nov-20	0	1,000	
	13-Nov-20	0	1,000	
	14-Nov-20	0	1,000	
	15-Nov-20	0	1,000	
	16-Nov-20	0	1,000	
	17-Nov-20	0	1,000	
	18-Nov-20	0	1,000	
November	19-Nov-20	0	1,000	
November	20-Nov-20	0	1,000	
	21-Nov-20	0	1,000	
	22-Nov-20	0	1,000	
	23-Nov-20	0	1,000	
	24-Nov-20	0	1,000	
	25-Nov-20	0	1,000	
	26-Nov-20	0	1,000	
	27-Nov-20	0	1,000	
	28-Nov-20	0	1,000	
	29-Nov-20	0	1,000	
	30-Nov-20	0	1,000	
	1-Dec-20	0	1,000	
	2-Dec-20	0	1,000	
	3-Dec-20	0	1,000	
	4-Dec-20	0	1,000	
	5-Dec-20	0	1,000	
	6-Dec-20	0	700	
	7-Dec-20	0	700	
December	8-Dec-20	0	700	
December	9-Dec-20	0	700	
	10-Dec-20	0	700	
	11-Dec-20	0	700	
	12-Dec-20	0	700	
	13-Dec-20	0	700	
	14-Dec-20	0	700	
	15-Dec-20	0	700	
	16-Dec-20	0	700	

Month	Date	Phase 3 to Wolfram (gpm)	Phase 6 To Leask (gpm)
	17-Dec-20	0	700
	18-Dec-20	0	700
	19-Dec-20	0	700
	20-Dec-20	0	700
	21-Dec-20	0	700
	22-Dec-20	0	700
	23-Dec-20	0	700
December	24-Dec-20	0	700
	25-Dec-20	0	700
	26-Dec-20	0	700
	27-Dec-20	0	700
	28-Dec-20	0	700
	29-Dec-20	0	700
	30-Dec-20	0	700
	31-Dec-20	0	700

Note: gpm = gallon per minute.

 Table D.2:
 British Columbia Water Quality Guidelines, Site-Specific Elk Valley Water Quality Plan (EVWWQP) Benchmarks, and

 Interim Screening Values for Parameters Assessed in the GHO LAEMP, 2020

	Variable		Units	British Colum	bia Water Quality Guidelines ^a			Sita Spacific Banchmark ^b
Variable		51115	Long-term Average	Short-term Maximum	Year	Status	Site-opecinic Denchinark	
		Total Alkalinity	mg/L	For dissolved calcium = < 4mg/L, WQG = <10 For dissolved calcium = 4 to 8 mg/L, WQG = 10 to 20 For dissolved calcium = > 8 mg/L, WQG = > 20	-	2015	Working	-
		Unionized Ammonia ^c	mg/L	pH and Temperature dependent (tabular)	pH and Temperature dependent (tabular)	2009	Approved	-
	ĺ	Chloride	mg/L	150	600	2003	Approved	-
	•	Fluoride	mg/L	-	For hardness ≤ 10 mg/L, WQG = 0.4 For hardness > 10 mg/L, WQG = [-51.73 + 92.57 × log ₁₀ (hardness)]×0.01 Maximum applicable hardness = 385 mg/L	1990	Approved	-
on-Metal:		Nitrate-N	mg/L	3	33	2009	Approved	EVWQP benchmark = BCWQG = 3 mg/L
2	2	Nitrite-N ^d	mg/L	0.02 to 0.20	0.06 to 0.60	2009	Approved	-
		Dissolved oxygen ^e	mg/L	For buried embryo/alevin life stages, WQG (water column) = 11 WQG (interstitial) = 8 For other life stages,	For buried embryo/alevin life stages, WQG (water column) = 9 WQG (interstitial) = 6 For other life stages,	1997	Approved	-
		pH ^f	pH	wQG (water column) = 8	6.5 - 9.0	1991	Approved	-
			uriilis	128 to 429		00/0	A	Level 1 EVWOP
		Sulphate ^g	mg/L	Maximum applicable hardness = 250 mg/L	-	2013	Approved	Benchmark = BCWQG = 429 mg/L
		Dissolved Solids	mg/L	-	-	-	-	Level 1 EVWQP Benchmark = 1,000 mg/L
		Antimony (III)	mg/L	0.009	-	2015	Working	-
		Arsenic	mg/L	-	0.005	2002	Approved	-
		Barium	mg/L	0.00013	-	2015	Working	-
		Boron	ma/L	1.2	-	2003	Approved	-
		Ohmensium ^h	mg/l	For Cr(VI), WQG = 0.001		2015	Working	
		Chromium	IIIg/L	For Cr(III), WQG = 0.0089	-	2013	WORKING	-
		Iron	mg/L	-	1	2008	Approved	-
		Lead ^g	mg/L	For hardness § 8 mg/L, none proposed For hardness 8 to 360 mg/L, WQG = 0.001×{3.31+ exp[1.273 × ln(hardness) - 4.704]} No more than 20% of samples in a 30-d period should be >1.5X the guideline. Maximum applicable hardness = 360 mg/L	For hardness ≤ 8 mg/L, WQG ≤ 0.003 For hardness 8 to 360 mg/L, WQG = 0.001×{exp[1.273 × In(hardness) - 1.460]} Maximum applicable hardness = 360 mg/L	1987	Approved	-
		Manganese ^g	mg/L	For hardness 37 to 450 mg/L, WQG ≤ 0.004 × hardness + 0.605 Maximum applicable hardness = 450 mg/L	For hardness 25 to 259 mg/L, WQG ≤ 0.01102 × hardness + 0.54 Maximum applicable hardness = 259 mg/L	2001	Approved	-
alloids	Total	Mercury ⁱ	mg/L	$\label{eq:metric} \begin{array}{l} \mbox{MeHg} \leq 0.5\% \mbox{ of THg}, \mbox{WQG} = 0.00002 \\ \mbox{Else}, \mbox{WQG} = [0.0001/(\mbox{MeHg}/\mbox{THg})] \mbox{ OR} \\ \mbox{When MeHg} = 0.5\% \mbox{ of THg}, \mbox{WQG} = 0.00002 \\ \mbox{When MeHg} = 1.0\% \mbox{ of THg}, \mbox{WQG} = 0.000011 \\ \mbox{When MeHg} = 8.0\% \mbox{ of THg}, \mbox{WQG} = 0.0000125 \\ \end{array}$	-	2001	Approved	-
Vletč	[Molybdenum	mg/L	1	2	1986	Approved	-
tals and I		Nickel ^g	mg/L	-	-	-	-	Level 1 Interim Screening Value = 0.0053 Level 2 Interim Screening Value = 0.015 Level 3 Interim Screening Value = 0.022
Me		Selenium	µg/L	2	-	2014	Approved	Level 1 EVWQP Benchmark = 19 Level 2 EVWQP Benchmark = 74
		Silver ^f	mg/L	For hardness ≤ 100 mg/L, WQG = 0.00005 For hardness > 100 mg/L, WQG = 0.0015	For hardness ≤ 100 mg/L, WQG = 0.0001 For hardness > 100 mg/L, WQG = 0.003	1996	Approved	-
		Thallium Uranium	mg/L mg/L	0.0008 0.0085	-	1997 2011	Working Working	-
		Zinc ^g	mg/L	For hardness ≤ 90 mg/L, WQG = 0.0075 For hardness 90 to 330 mg/L, WQG = [7.5 + 0.75 (hardness - 90)]×0.001; Maximum applicable hardness = 330 mg/L	For hardness ≤ 90 mg/L, WQG = 0.033 For hardness 90 to 500 mg/L, WQG = [33 + 0.75 (hardness - 90)]×0.001; Maximum applicable hardness = 500 mg/L	1999	Approved	-
	ed	Aluminum	mg/L	When pH ≥ 6.5, WQG = 0.05 When pH < 6.5, WQG = exp[1.6 - 3.327(median pH)+ 0.402 (median pH) ²]	When pH ≥ 6.5, WQG = 0.1 When pH < 6.5, WQG = exp[1.209 - 2.426(pH)+ 0.286 (pH) ²]	2001	Approved	-
	Dissolv	Cadmium ^g	µg/L	For hardness = 3.4 to 285 mg/L, WQG = {exp[0.736×ln(hardness) - 4.943]} Maximum applicable hardness = 285 mg/L	For hardness = 7 to 455 mg/L, WQG = {exp[1.03×ln(hardness)-5.274]} Maximum applicable hardness = 455 mg/L	2015	Approved	Level 1 EVWQP Benchmark = 10 ^{0.83(log(hardness))-2.53} Maximum applicable hardness = 285 mg/L
		Copper	mg/L	Biotic Ligand Model	Biotic Ligand Model	2019	Approved	-
		Iron	mg/L	-	WQG = 0.35 mg/L	2008	Approved	-

^a British Columbia Water Quality Guidelines for the protection of Aquatic Life (BCMOECCS 2019 and 2020). For guidelines dependent on other analytes (e.g., hardness), guidelines were screened using concurrent values.

^b When appropriate, site-specific Elk Valley Water Quality Plan Benchmarks (EVWQP; Teck 2014) or interim screening values were applied in addition to or instead of BC water quality guidelines. Interim screening values are displayed for nickel (Golder 2017; Coal Mountain Operations Aquatic Health Assessment Report).

^c Temperature and pH dependent; range of minimum and maximum values.

^d Dependent on concurrent chloride, range of values reported (BCMOECCS 2019)

^e Dissolved oxygen guidelines represent a minimum value, and so exceedances were quantified below this guideline.

^f Unrestricted change permitted within this pH range.

⁹ For hardness-based guidelines, concurrent hardness values were used for calculating guidelines. If hardness values exceeding the maximum applicable hardness, then guidelines were determined using the maximum applicable hardness. If hardness values is lower than the minimum hardness, then guidelines were determined using the minimum hardness.

^j Chromium(VI) is the dominant oxidation state in oxygenated environments, and so its guideline was applied.

ⁱ The most conservative guideline (0.00000125 mg/L) was applied.

Table D.3:Scale of the Severity (SEV) of III Effects associated with Excess SuspendedSediment (Newcombe and Jensen 1996), and Calculated Total Suspended Solids (TSS)Concentrations for Each SEV

SEV	Description of Effect				
Nil Effe	Nil Effect				
0	No behavioral effects	0.004			
Behavio	oral Effects				
1	Alarm reaction	0.01			
2	Abandonment of cover	0.05			
3	Avoidance response	0.2			
Subleth	al Effects				
4	Short-term reduction in feeding rates; short-term reduction in feeding success	0.8			
5	Minor physiological stress: increase in rate of coughing; increased respiration rate	3			
6	Moderate physiological stress	12			
7	Moderate habitat degradation; impaired homing	46			
8	Indications of major physiological stress: long-term reduction in feeding rate; long- term reduction in feeding success; poor condition	178			
Lethal a	nd Paralethal Effects				
9	Reduced growth rate: delayed hatching: reduced fish density	690			
10	0-20% mortality; increased predation; moderate to severe habitat degradation	2,673			
11	>20-40% mortality	10,354			
12	>40-60% mortality	40,110			
13	>60-80% mortality	155,384			
14	>80-I00% mortality	601,953			

^a Calculated TSS concentration at each effect level using model by Newcombe and Jensen (1996). The benchmarks provided assume one week of exposure to juvenile and adult salmonids, with TSS particle sizes 0.5 to 250 μ m (Group 1 from Newcombe and Jensen 1996).

Table D.4: Concentrations of Selenium Species Measured in Water Samples Collected Concurrent with Benthic Invertebrate Tissue Samples, September 2020

Exposure	Location	Station	Date	Benthic Invertebrate Tissue Selenium (μg/g d.w.)	Total Selenium (µg/L)	Dissolved Selenium (µg/L)	Dimethylselenoxide (µg/L)	Methylseleninic Acid (µg/L)	Selenite (µg/L)	Selenate (µg/L)	Selenocyanate (µg/L)	Selenomethionine (µg/L)	Selenosulfate (µg/L)	Selenium - Unknown ^a (µg/L)	Unknown Selenium Species ^b (µg/L)	Dimethylselenoxide + Methylseleninic Acid (µg/L)
Reference	Main Stem Elk River	GH_ER2 / RG_ELUGH	17-Sep-20	6.7 8.3 3.8	0.696	0.737	<0.010	<0.010	<0.050	0.689	<0.040	<0.010	<0.060	<0.010	<0.060	<0.020
		GH_ERSC4	12-Sep-20	8.6 5.3 6.9	0.744	0.846	<0.010	<0.010	<0.050	0.645	<0.040	<0.010	<0.060	<0.010	<0.060	<0.020
	Elk River Side Channel	GH_ER1A	11-Sep-20	6.3 9.1 6.3	1.56	1.54	<0.010	<0.010	<0.050	1.35	<0.040	<0.010	<0.060	<0.010	<0.060	<0.020
		RG_ERSC5	11-Sep-20	12 11 6.6	1.24	1.15	<0.010	<0.010	<0.050	1.14	<0.040	<0.010	<0.060	<0.010	<0.060	<0.020
	Tributary	GH_TC2 / RG_THCK	10-Sep-20	59 59 59	125	125	0.183	0.246	5.79	120	<0.040	<0.010	<0.060	<0.010	<0.060	0.429
Mine-Exposed		RG_GH-SCW3	13-Sep-20	6.9 9.1 14	11.4	12.2	0.015	0.018	0.452	11.3	<0.040	<0.010	<0.060	<0.010	<0.060	0.033
	Elk River Side Channel	GH_ERSC2	13-Sep-20	14 28 17	12.3	11.4	<0.010	0.019	0.442	11.4	<0.040	<0.010	<0.060	<0.010	<0.060	0.019
		RG_SCDTC	13-Sep-20	8.0 11 13	12.4	13.6	0.022	0.024	0.543	12.4	<0.040	<0.010	<0.060	<0.010	<0.060	0.046
	Main Stem Elk River	GH_ERC / RG_EL20	17-Sep-20	9.5 13 8.8 9.7 7.3	1.71	1.62	<0.010	<0.010	0.085	1.56	<0.040	<0.010	<0.060	<0.010	<0.060	<0.020

^a An unknown selenium species eluting between MeSe(IV) and SeMet is also reported [Se Unk A]. Research at Brooks Applied Labs (BAL) has indicated that [Se Unk A] is a product of the oxidation of volatile selenium species present in some client samples. ^b The total concentration of any remaining unidentified selenium-containing species detected in each sample has also been reported as [Unk Se Sp].

		Total			Dissolved	Alkalinity	Nitrato-N	Nitrito-N	Ammonia	Sulphato	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total Iron	Total Load
Station	Summary Statistic	Dissolved	Lab pH	Field pH	Oxvaen	Aikaiiiity	INITIALE-IN	initi ite-in	Amnonia	Sulphate	Chloride	Fluoride	Antimony	Arsenic	Barium	Bervllium	Boron	Chromium	Cobalt		Total Leau
	·····	Solids (mg/L)			(ma/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(ma/L)	(mg/L)	(ma/l)	(ma/L)	(ma/l)	(ma/L)	(ma/l.)	(ma/l.)	(mg/L)	(mg/L)	(mg/L)
		oonus (mg/L)			(119/12)						(iiig/L)	(ing/L)	(ing/L)	(119/2)	(ing/L)	(ing/L)	(119/1)	(ing/L)	(119/12)		
	n	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17
	Annual Minimum	121	7.66	7.99	10.0	129	0.0379	< 0.001	< 0.005	3.87	< 0.5	0.0620	< 0.0001	0.000180	0.196	< 0.00002	< 0.01	< 0.0001	< 0.0001	0.0120	< 0.00005
	Annual Maximum	235	8 55	8 74	13 1	225	0.348	0.00110	0.0326	11 1	<0.5	0 137	0.000130	0 000240	0.362	<0.00002	0 0100	0 000490	0.000130	0 193	0.000135
	Annual Mean	175	0.00	9.46	11.1	169	0.129	0.00101	0.0101	5.99	<0.5	0.105	0.000110	0.000214	0.002	<0.00002	0.0100	0.000190	0.000105	0.0951	0.0000796
	Annual Mean	175	0.30	0.40	11.1	100	0.120	0.00101	0.0101	5.66	<0.5	0.105	0.000110	0.000214	0.275	<0.00002	0.0100	0.000100	0.000105	0.0001	0.0000780
	Annual Median	1/5	8.38	8.50	10.8	161	0.0903	< 0.001	0.00760	5.51	<0.5	0.108	0.000110	0.000210	0.260	< 0.00002	< 0.01	0.000130	< 0.0001	0.0790	0.0000630
GH BR F	% < LRL	0%	0%	0%	0%	0%	0%	94%	24%	0%	100%	0%	18%	0%	0%	100%	88%	41%	65%	0%	47%
	% > BCWQG ^a	-	0%	0%	0%	0%	0%	0%	0%	0%	0%	-	0%	-	0%	0%	0%	0%	0%	-	0%
	20 Dorrach				00/		00/	00/	00/		00/	00/		00/					00/		00/
	% > BCWQG*	-	-	-	0%	-	0%	0%	0%	-	0%	0%	-	0%	-	-	-	-	0%	0%	0%
	% > Level 1 EVWQP Benchmark	0%	-	-	-	-	-	-	-	0%	-	-	-	-	-	-	-	-	-	-	-
	% > Level 2 EVWQP Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	% > Level 3 EVWOP Benchmark	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_		
	2010 Etting Bonomian	21	21	21	01	21	01	21	21	01	21	21	01	21	01	21	01	21	01	21	21
	<u> </u>	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21
	Annual Minimum	167	7.62	8.20	9.60	153	0.00990	<0.001	<0.005	6.16	0.190	0.0820	<0.0001	0.000150	0.0888	<0.00002	0.0140	<0.0001	<0.0001	< 0.01	<0.00005
	Annual Maximum	279	8.61	8.62	12.8	235	1.20	0.00160	0.153	26.8	< 0.5	0.140	<0.0001	0.000290	0.162	0.0000230	0.0440	0.000540	0.000230	0.443	0.000309
	Annual Mean	214	8.41	8.42	11.2	192	0.358	0.00104	0.0188	12.8	0.250	0.113	< 0.0001	0.000189	0.117	0.0000201	0.0212	0.000160	0.000110	0.106	0.0000811
	Annual Median	208	8 4 5	8 4 3	10 9	188	0.266	<0.001	0.00750	11 7	0.260	0 114	<0.0001	0.000180	0 113	<0.00002	0.0180	0.000110	<0.0001	0.0640	<0.00005
		00/	0.40	0.40	00/	00/	0.200	960/	5.00700 E0/	00/	0.200	0.114	1000/	0.000100	0.110	0.00002	0.0100	120/	760/	E0/	670/
GH_WOLF	70 N LKL	U%	0%	0%	0%	0%	0%	00%	5%	0%	80%	0%	100%	U%	0%	90%	0%	43%	/0%	5%	0/%
	% > BCWQG ^a		0%	0%	0%	0%	0%	0%	0%	0%	0%	-	0%	-	0%	0%	0%	0%	0%	-	0%
	% > BCWQG ^b	-	-	-	0%	-	0%	0%	0%	-	0%	0%	-	0%	_	-	-	-	0%	0%	0%
	% > Lovel 1 EVWOR Bonchmark	0%							• • •	0%											
		0 /0	-	-	-	-	-	-	-	0 /0	-	-	-	-	-	-	-	-	-		-
	% > Level 2 EVWQP Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	% > Level 3 EVWQP Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	n	20	20	21	21	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20
	Annual Minimum	188	8.02	7.55	7.60	180	< 0.005	< 0.001	< 0.005	6.78	0.330	0.0890	< 0.0001	0.000190	0.136	< 0.00002	0.0110	< 0.0001	< 0.0001	0.0120	< 0.00005
	Annual Maximum	289	8 64	8 32	12.3	280	0.841	0.00230	0 158	15.3	0 770	0 167	<0.0001	0.000260	0.268	<0.00002	0.0200	0.000220	0.000105	0 163	0.000127
	Annual Mean	200	0.01	0.02	10.5	200	0.240	0.00109	0.0176	10.0	0.294	0.107	<0.0001	0.000200	0.200	<0.00002	0.0151	0.000114	0.000100	0.0525	0.0000602
		230	0.42	0.12	10.5	224	0.249	10.00100	0.0170	10.0	0.044	0.123	<0.0001	0.000221	0.204	<0.00002	0.0131	0.000114	10.000100	0.0333	0.0000000
	Annual Median	228	8.44	8.17	10.3	224	0.189	<0.001	0.00835	9.50	0.340	0.123	<0.0001	0.000220	0.206	<0.00002	0.0140	<0.0001	<0.0001	0.0430	<0.00005
GH_WILLOW	% < LRL	0%	0%	0%	0%	0%	5.0%	90%	20%	0%	75%	0%	100%	0%	0%	100%	0%	65%	95%	0%	75%
	% > BCWQG ^a	-	0%	0%	5%	0%	0%	0%	0%	0%	0%	-	0%	-	0%	0%	0%	0%	0%	-	0%
					5%		0%	0%	0%		0%	0%		0%					0%	0%	0%
		-	-	-	570	-	070	070	070	-	070	070	-	070		-	_	_	070	070	070
	% > Level 1 EVWQP Benchmark	0%	-	-	-	-	-	-	-	0%	-	-	-	-	-	-	-	-	-		-
	% > Level 2 EVWQP Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	% > Level 3 EVWQP Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	n	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13
	Annual Minimum	185	7 83	7 56	3 14	173	<0.005	<0.001	<0.005	6.62	<0.5	0.0860	<0.0001	0.000160	0 1 1 4	<0.00002	0 0130	<0.0001	<0 0001	0.0170	<0.00005
	Annual Maximum	227	9.54	9.65	12.6	222	0.212	0.00120	0.221	12.4	<0.5	0.121	0.000190	0.000070	0.206	0.0000200	0.0160	0.000200	0.000220	0.602	0.000228
		207	0.04	0.00	12.0	200	0.313	0.00120	0.000	0.47	<0.5	0.131	0.000100	0.000970	0.200	0.0000290	0.0100	0.000300	0.000330	0.002	0.000220
	Annuai Mean	205	8.41	8.33	9.99	197	0.136	0.00102	0.0390	8.47	<0.5	0.113	0.000108	0.000265	0.157	0.0000207	0.0143	0.000145	0.000118	0.0986	0.0000782
	Annual Median	203	8.47	8.37	10.3	197	0.119	< 0.001	0.0101	8.26	<0.5	0.118	<0.0001	0.000200	0.149	<0.00002	0.0140	0.000120	< 0.0001	0.0520	< 0.00005
	% < LRL	0%	0%	0%	0%	0%	8%	92%	8%	0%	100%	0%	77%	0%	0%	92%	0%	46%	85%	0%	54%
P1	$\% > BCWQG^{a}$	-	0%	0%	8%	0%	0%	0%	0%	0%	0%	-	0%	-	0%	0%	0%	0%	0%	-	0%
	N POWOOD				00/	-	00/	00/	00/		00/	00/		00/	-	-	-	-	00/	00/	
	% > BCWQG	-	-	-	070	-	0%	0%	0%	-	0%	0%	-	0%	-	-	-	-	0%	0%	0%
	% > Level 1 EVWQP Benchmark	0%	-	-	-	-	-	-	-	0%	-	-	-	-	-	-	-	-	-	-	-
	% > Level 2 EVWQP Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	% > Level 3 EVWQP Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	n	19	19	21	21	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19
	Annual Minimum	208	7.08	8.18	0.60	182	0 118	<0.001	<0.005	10.1	<0.5	0.0870	0.000140	0.000210	0 107	<0.00002	0.0360	<0.0001	<0.0001	<0.01	<0.00005
		200	7.90	0.10	9.00	102	0.110	<0.001 0.00140	<0.005	10.1	<0.J	0.0070	0.000140	10.000210	0.107	<0.00002	0.0500	<0.0001	<0.0001	<u> </u>	<0.00005
		340	0.59	0.00	12.9	295	1.18	0.00140	0.0185	43.7	0.730	0.142	0.000180	<0.0005	0.154	0.0000240	0.0590	0.000600	0.000290	0.510	0.000335
	Annual Mean	274	8.46	8.47	11.0	236	0.557	0.00102	0.00932	28.6	0.528	0.125	0.000157	0.000279	0.126	0.0000206	0.0461	0.000191	0.000135	0.110	0.000105
	Annual Median	270	8.51	8.51	10.9	243	0.523	< 0.001	0.00840	28.8	<0.5	0.127	0.000160	0.000275	0.131	< 0.00002	0.0450	0.000110	<0.0001	0.0350	<0.00005
GH WADE	% < LRL	0%	0%	0%	0%	0%	0.0%	95%	26%	0%	79%	0%	0%	5%	0%	84%	0%	47%	74%	32%	58%
			0%	0%	0%	0%	0%	0%	0%	0%	0%	_	0%		0%	0%	0%	0%	0%	T	0%
		-	070	070	070	070	070	070	070	070	070	-	070		070	070	0.70	0.10	070		0.0
	% > BCWQG [®]	-	-	-	0%	-	0%	0%	0%	-	0%	0%	-	0%	-	-	-	-	0%	0%	0%
	% > Level 1 EVWQP Benchmark	0%	-	-	-	-	-	-	-	0%	-	-	-	-	-	-	-	-	-	-	-
	% > Level 2 EVWQP Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	% > Level 3 EVWOP Bonchmark	1							1		1		-							+	+
	/ - Level - Level - Level - Deliciillaik			-		-	-		1 -	-	1 -		1 -	-	-		-		-		

>5% of samples exceed the guideline or benchmark.

> 50% of samples exceed the guideline or benchmark.

 > 95% of samples exceed the guideline or benchmark.
 Notes: "LRL" = laboratory reporting limit. "BCWQG" = British Columbia Working or Accepted Water Quality Guideline. For guidelines dependent on other analytes (e.g., hardness or chloride), guidelines were screened using concurrent concentrations. When concurrent hardness or chloride concentrations were not measured, the most conservative concentration observed for that station was used to estimate the guidelines or benchmark. All summary statistics are reported to 3 significant figures.

^a Long-term average BCQWG for the Protection of Aquatic Life. ^b Short-term maximum BCQWG for the Protection of Aquatic Life.

		Tadal			Discoluted		1				Tetel	Tatal	Tatal	Tetel	Tatal	Tatal	Tatal	Tatal	Tatal		
		lotal			Dissolved	Alkalinity	Nitrate-N	Nitrite-N	Ammonia	Sulphate	Iotal	lotal	Iotal	lotal	lotal	Iotal	lotal	l otal	l otal	Total Iron	Total Lead
Station	Summary Statistic	Dissolved	Lab pH	Field pH	Oxygen	(ma/L)	(ma/L)	(ma/L)	(mg/l.)	(mg/L)	Chloride	Fluoride	Antimony	Arsenic	Barium	Beryllium	Boron	Chromium	Cobalt	(mg/L)	(mg/L)
		Solids (mg/L)			(mg/L)	(ing/L)	(ing/L)	(iiig/L)	(iiig/L)	(ing/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(ing/L)	(iiig/L)
	n	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12
	Annual Minimum	174	7.05	8 13	10.1	165	0.0277	<0.001	<0.005	10.4	<0.5	0.0660	<0.0001	0.000230	0.0014	<0.00002	0.0120	<0.0001	<0.0001	<0.01	<0.00005
	Annual Maximum	040	7.95	0.15	10.1	100	0.0211	<0.001 0.00110	<0.000	07.4	~0.0	0.0000	<0.0001	0.000230	0.0914	<0.00002	0.0120	<0.0001 0.000210	<0.0001	<0.01 0.250	<0.00003
		248	8.52	8.59	12.8	222	0.415	0.00110	0.0163	27.4	0.800	0.138	0.000120	0.000370	0.132	<0.00002	0.0190	0.000310	0.000210	0.358	0.000271
	Annual Mean	216	8.41	8.38	11.3	197	0.178	0.00101	0.00918	14.0	0.543	0.0937	0.000105	0.000260	0.111	< 0.00002	0.0149	0.000125	0.000111	0.0704	0.0000758
	Annual Median	228	8.43	8.44	11.0	198	0.186	<0.001	0.00870	12.8	<0.5	0.0945	0.000100	0.000250	0.112	< 0.00002	0.0145	<0.0001	<0.0001	0.0385	< 0.00005
GH_COUGAR	% < LRL	0%	0%	0%	0%	0%	0.0%	92%	8%	0%	75%	0%	50%	0%	0%	100%	0%	75%	83%	8%	75%
	% > BCWQG ^a	-	0%	0%	0%	0%	0%	0%	0%	0%	0%	-	0%	-	0%	0%	0%	0%	0%	-	0%
	% > BCWQG ^b	-	-	-	0%	-	0%	0%	0%	-	0%	0%	-	0%	-	-	-	-	0%	0%	0%
	% > Level 1 EVWOP Benchmark	0%	-	-	-	_	-	-	-	0%	-	-	-	-	-	-	-	-	-	-	
	% > Lovel 2 EV/WOP Bonchmark	070								070											
	% > Level 2 EV/WQF Benchmark	_	_	-	_	-	_	_	_	_	-	_	-	_		-	_	-	_	_	
	% > Level 3 EvvvQF Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	n	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20
	Annual Minimum	196	8.00	7.63	8.26	184	0.00700	<0.001	< 0.005	8.18	0.190	0.0650	<0.0001	0.000120	0.0778	< 0.00002	0.0180	< 0.0001	<0.0001	0.0170	<0.00005
	Annual Maximum	310	8.58	8.25	11.9	273	0.750	0.00170	0.449	15.7	0.590	0.131	0.000120	0.000710	0.170	<0.00002	0.0370	0.00792	0.000320	0.257	0.0000910
	Annual Mean	265	8.38	8.00	10.0	238	0.335	0.00105	0.0296	10.8	0.253	0.101	0.000101	0.000225	0.117	<0.00002	0.0255	0.000411	0.000114	0.0625	0.0000549
	Annual Median	270	8.45	8.00	9.88	238	0.273	<0.001	0.0105	10.0	0.200	0.106	<0.0001	0.000170	0.111	< 0.00002	0.0250	< 0.0001	<0.0001	0.0380	< 0.00005
GH_NNC	% < LRL	0%	0%	0%	0%	0%	0.0%	81%	19%	0%	85%	0%	92%	0%	0%	100%	0%	69%	85%	0%	73%
I -	% > BCWQG ^a	-	0%	0%	0%	0%	0%	0%	0%	0%	0%	-	0%	-	0%	0%	0%	4%	0%	-	0%
	% > BCWOG ^b	_		_	0%	_	0%	0%	0%	_	0%	0%	_	0%	_	_	_		0%	0%	0%
		- 09/	-	-	070	-	0 /0	070	070	-	070	070	-	070	-	-	-	-	070	0 /0	070
	% > Level 1 EvwyQP Benchmark	0%	-	-	-	-	-	-	-	0%	-	-	-	-	-	-	-	-	-	-	-
	% > Level 2 EVWQP Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	% > Level 3 EVWQP Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	n	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20
	Annual Minimum	193	7.87	7.88	8.40	164	<0.005	<0.001	<0.005	1.94	<0.5	0.0660	<0.0001	0.000180	0.0881	< 0.00002	<0.01	<0.0001	<0.0001	<0.01	< 0.00005
	Annual Maximum	314	8.61	8.29	12.9	286	0.108	0.00130	0.0325	5.96	<0.5	0.113	0.000240	0.00116	0.177	0.000114	0.0210	0.00269	0.000540	1.85	0.000955
	Annual Mean	250	8.38	8.07	10.6	225	0.0226	0.00102	0.0111	4.42	<0.5	0.0880	0.000130	0.000308	0.124	0.0000247	0.0134	0.000238	0.000122	0.131	0.0000977
	Annual Median	256	8.38	8.09	10.2	222	0.00885	< 0.001	0.00910	4.52	<0.5	0.0890	0.000110	0.000255	0.119	< 0.00002	0.0120	< 0.0001	< 0.0001	0.0355	< 0.00005
GH BR D	% < LRL	0%	0%	0%	0%	0%	25.0%	95%	25%	0%	100%	0%	35%	0%	0%	95%	35%	65%	95%	5%	80%
	% > BCWOG ^a	_	0%	0%	0%	0%	0%	0%	0%	0%	0%	-	0%	_	0%	0%	0%	5%	0%	-	0%
			0.0	0.0	00/	0,0	00/	00/	00/	0,0	00/	00/	0,0	00/	0,0	0.0	0,10	0.0	00/	E0/	00/
	% > BCWQG	-	-	-	0%	-	0%	0%	0%	-	0%	0%	-	0%	-	-	-	-	0%	5%	0%
	% > Level 1 EVWQP Benchmark	0%	-	-	-	-	-	-	-	0%	-	-	-	-	-	-	-	-	-	-	-
	% > Level 2 EVWQP Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	% > Level 3 EVWQP Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	n	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22
	Annual Minimum	229	7.83	8.23	8.30	201	0.00710	<0.001	<0.005	51.6	0.680	0.121	0.000190	0.000200	0.0612	< 0.00002	0.0250	<0.0001	<0.0001	<0.01	<0.00005
	Annual Maximum	429	8.61	8.85	13.1	286	1.21	0.00220	0.0875	107	4.24	0.202	0.000440	0.000390	0.0903	0.0000240	0.0520	0.000460	0.000440	0.490	0.000329
	Annual Mean	345	8.49	8.52	10.9	242	0.287	0.00111	0.0165	75.6	1.62	0.165	0.000264	0.000261	0.0774	0.0000202	0.0355	0.000156	0.000128	0.0747	0.0000886
	Annual Median	350	8.52	8.55	11.0	244	0.0918	<0.001	0.00955	74.4	1.14	0.168	0.000250	0.000255	0.0780	< 0.00002	0.0325	0.000100	< 0.0001	0.0510	0.0000510
GH MC1	% < LRL	0%	0%	0%	0%	0%	0.0%	73%	23%	0%	0%	0%	0%	0%	0%	95%	0%	45%	64%	14%	50%
	% > BCWQG ^a	-	0%	0%	0%	0%	0%	0%	0%	0%	0%	-	0%	-	0%	0%	0%	0%	0%	-	0%
			- / 0	2.0	0%	2.0	0%	0%	0%		0%	0%		0%	- / 0				0%	0%	004
		-	-	-	070	-	070	070	070	-	070	070	-	070	-		-	-	070	070	0%
	% > Level 1 EvwQP Benchmark	0%	-	-	-	-	-	-	-	0%	-	-	-	-	-	-	-	-	-	-	-
	% > Level 2 EVWQP Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	% > Level 3 EVWQP Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	n	29	29	29	29	29	29	29	29	29	29	29	29	29	29	29	29	29	29	29	29
	Annual Minimum	874	7.76	8.07	9.47	227	17.0	<0.005	< 0.005	677	2.77	<0.1	0.00207	0.000260	0.0259	< 0.00002	0.0160	< 0.0001	0.000250	<0.01	< 0.00005
	Annual Maximum	2,450	8.46	8.92	14.8	324	78.5	0.0230	0.169	1,080	7.00	0.230	0.00385	0.000510	0.0543	< 0.00004	0.0360	< 0.0002	0.00106	0.0320	< 0.0001
	Annual Mean	1,943	8.25	8.38	11.3	271	63.1	0.00597	0.0168	906.2	4.76	0.156	0.00253	0.000417	0.0448	< 0.00002	0.0289	<0.0001	0.000500	0.0115	<0.00005
	Annual Median	2,030	8.26	8.33	11.1	272	66.1	< 0.005	0.00880	940	4.61	0.140	0.00240	0.000410	0.0465	< 0.00002	0.0290	< 0.0001	0.000480	< 0.01	< 0.00005
GH LC2	% < LRL	0%	0%	0%	0%	0%	0.0%	72%	24%	0%	0%	14%	0%	0%	0%	100%	0%	100%	0%	90%	100%
0.1_202	% > BCWOG ^a	_	0%	0%	0%	0%	100%	0%	.3%	100%	0%	_	0%	_	0%	0%	0%	0%	0%	-	0%
		+	070	570	0%	0,0	000/	00/	00/	10070	0.00	00/	0.0	00/	0.0		0,0	0,0	00/	00/	
	% > BCWQG	-	-	-	0%	-	93%	0%	0%	-	0%	0%	-	0%	-		-	-	0%	0%	0%
	% > Level 1 EVWQP Benchmark	97%	-	-	-	-	-	-	-	100%	-	-	-	-	-	-	-	-	-	-	
	% > Level 2 EVWQP Benchmark	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	-	-	-
	% > Level 3 EVWQP Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-

>5% of samples exceed the guideline or benchmark.

> 50% of samples exceed the guideline or benchmark.

 > 95% of samples exceed the guideline or benchmark.
 Notes: "LRL" = laboratory reporting limit. "BCWQG" = British Columbia Working or Accepted Water Quality Guideline. For guidelines dependent on other analytes (e.g., hardness or chloride), guidelines were screened using concurrent concentrations. When concurrent hardness or chloride concentrations were not measured, the most conservative concentration observed for that station was used to estimate the guidelines or benchmark. All summary statistics are reported to 3 significant figures.

^a Long-term average BCQWG for the Protection of Aquatic Life.

		Total			Dissolvod						Total	Total	Total	Total	Total	Total	Total	Total	Total		
Station	Summany Statistic	Dissolved		Field pH	Ovygon	Alkalinity	Nitrate-N	Nitrite-N	Ammonia	Sulphate	Chlorido	Eluorido	Antimony	Arconio	Porium	Bondlium	Boron	Chromium	Cobalt	Total Iron	Total Lead
Station	Summary Statistic	Solide (mg/l.)	сар рп	Field pri	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)		(mg/l)		(mg/l)	(mg/L)	(mg/L)	(mg/L)
		Solids (Ilig/L)		<u> </u>	(ing/L)						(mg/L)	(IIIg/L)	(mg/L)	(IIIg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)		<u> </u>
	n	1	1	2	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Annual Minimum	298	8.25	8.11	7.79	164	2.39	0.00320	0.0126	42.3	0.550	0.124	0.000440	0.00270	0.103	0.000258	0.0120	0.00664	0.00205	5.46	0.00302
	Annual Maximum	298	8.25	8.12	10.8	164	2.39	0.00320	0.0126	42.3	0.550	0.124	0.000440	0.00270	0.103	0.000258	0.0120	0.00664	0.00205	5.46	0.00302
	Annual Mean	298	8.25	8.11	9.31	164	2.39	0.00320	0.0126	42.3	0.550	0.124	0.000440	0.00270	0.103	0.000258	0.0120	0.00664	0.00205	5.46	0.00302
	Annual Median	298	8.25	8.11	9.31	164	2.39	0.00320	0.0126	42.3	0.550	0.124	0.000440	0.00270	0.103	0.000258	0.0120	0.00664	0.00205	5.46	0.00302
GH_LC1	% < LRL	0%	0%	0%	0%	0%	0.0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
	% > BCWQG ^a	-	0%	0%	50%	0%	0%	0%	0%	0%	0%	-	0%	-	0%	100%	0%	100%	0%	-	0%
	% > BCWQG ^b	-	-	-	50%	-	0%	0%	0%	-	0%	0%	-	0%	-	-	-	-	0%	100%	0%
	% > Level 1 EVWQP Benchmark	0%	-	-	-	-	0%	-	-	0%	-	-	-	-	-	-	-	-	-	-	-
	% > Level 2 EVWQP Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	% > Level 3 EVWQP Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	n	25	25	26	26	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25
	Annual Minimum	1,110	8.13	8.20	9.47	230	24.3	< 0.005	< 0.005	487	<2.5	<0.1	0.000910	0.000190	0.0435	< 0.00002	0.0210	< 0.0001	0.000190	< 0.01	< 0.00005
	Annual Maximum	2.420	8.48	8.63	15.3	318	56.6	0.00780	0.0212	1.250	4.90	0.140	0.00210	0.000400	0.0701	< 0.00004	0.0350	0.000230	0.000640	0.124	< 0.0001
	Annual Mean	1,948	8.29	8.47	11.4	265	42.9	0.00521	0.00898	994.5	3.96	0.104	0.00161	0.000232	0.0580	< 0.00002	0.0282	0.000109	0.000405	0.0233	< 0.00005
	Annual Median	2,080	8.28	8.51	11.2	260	43.6	< 0.005	0.00710	1,070	4.10	<0.1	0.00161	0.000220	0.0577	< 0.00002	0.0280	< 0.0001	0.000380	< 0.01	< 0.00005
GH WC2	% < LRL	0%	0%	0%	0%	0%	0.0%	88%	36%	0%	4%	80%	0%	12%	0%	100%	0%	88%	0%	60%	100%
0.1_1102	% > BCWOG ^a	-	0%	0%	0%	0%	100%	0%	0%	100%	0%	-	0%	-	0%	0%	0%	0%	0%	-	0%
		1	570	570	0%		880/	0%	0%		0%	0%		0%	0.0	570	0,0		0%	00/-	0%
		4000/	-	-	0%	-	00%	0%	0%	-	0%	0%	-	0%	-	-	-	-	0%	0%	0%
	% > Level 1 EVWQP Benchmark	100%	-	-	-	-	100%	-	-	100%	-	-	-	-	-	-	-	-	-	-	-
	% > Level 2 EVWQP Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	% > Level 3 EVWQP Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	n Annual Minimum	25	25	26	26	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25
	Annual Minimum	983	8.08	8.15	9.05	214	19.4	< 0.005	< 0.005	402	<2.5	<0.1	0.000760	0.000180	0.0425	<0.00002	0.0210	<0.0001	0.000180	<0.01	<0.00005
		2,480	8.46	8.63	14.1	313	55.7	0.0295	0.524	1,260	5.10	0.160	0.00209	0.000400	0.0775	<0.00004	0.0370	0.000480	0.000650	0.239	0.000140
	Annual Mean	1,875	8.29	8.42	11.0	260	40.4	0.0122	0.0365	956.3	3.82	0.105	0.00157	0.000246	0.0582	<0.00002	0.0284	0.000123	0.000387	0.0416	0.0000539
	Annual Median	2,040	8.28	8.41	10.5	263	43.0	0.00720	0.0110	1,070	4.00	<0.1	0.00157	0.000230	0.0566	<0.00002	0.0280	<0.0001	0.000330	0.0240	<0.00005
GH_WC1	% < LRL	0%	0%	0%	0%	0%	0.0%	36%	20%	0%	8%	80%	0%	4%	0%	100%	0%	84%	0%	28%	92%
	% > BCWQG*	-	0%	0%	0%	0%	100%	0%	0%	96%	0%	-	0%	-	0%	0%	0%	0%	0%	-	0%
	% > BCWQG ^b	-	-	-	0%	-	80%	0%	0%	-	0%	0%	-	0%	-	-	-	-	0%	0%	0%
	% > Level 1 EVWQP Benchmark	96%	-	-	-	-	100%	-	-	96%	-	-	-	-	-	-	-	-	-	-	-
	% > Level 2 EVWQP Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	% > Level 3 EVWQP Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	n	21	21	32	33	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21
	Annual Minimum	646	8.17	8.01	9.30	172	3.99	0.00450	0.00740	314	8.50	0.0700	0.000110	0.000170	0.0646	< 0.00002	0.0170	< 0.0001	<0.0001	< 0.01	< 0.00005
	Annual Maximum	1,870	8.52	8.81	16.3	261	16.5	0.118	0.256	1,060	17.1	0.140	0.000200	0.000360	0.0757	<0.00002	0.0320	0.000380	0.000140	0.186	0.000145
	Annual Mean	1,255	8.35	8.34	12.5	209	9.53	0.0235	0.0452	672	11.4	0.0855	0.000160	0.000232	0.0689	<0.00002	0.0249	0.000130	0.000103	0.0430	0.0000591
	Annual Median	1,250	8.36	8.32	12.5	203	8.89	0.0155	0.0202	672	9.60	0.0700	0.000160	0.000220	0.0686	< 0.00002	0.0260	< 0.0001	< 0.0001	0.0290	< 0.00005
GH_TC2	% < LRL	0%	0%	0%	0%	0%	0.0%	10%	0%	0%	0%	62%	0%	0%	0%	100%	0%	67%	90%	5%	86%
_	% > BCWQG ^a	-	0%	0%	0%	0%	100%	0%	19%	95%	0%	-	0%	-	0%	0%	0%	0%	0%	-	0%
	% > BCWQG ^b	-	-	-	0%	-	0%	0%	19%	-	0%	0%	-	0%	-	-	-	-	0%	0%	0%
	% > Level 1 EVWOP Benchmark	67%	-	-	_	-	100%	-	-	95%	-	-	-	_	-	-	_	-	-	-	-
	% > Level 2 FVWQP Benchmark	-	_	_	-	_	-	_	-	-	_	-	_	_	_	-	_	-	_	_	-
	% > Level 3 EVWOP Benchmark	_	_	_	-	_	_	-	-	-	_	-	_	_	_	-	_	-	_	_	-
	n	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32
	Annual Minimum	666	8.21	8 20	7 90	171	3.72	0.00220	<0.005	273	6.67	0.0750	0.000100	0.000150	0.0596	<0.00002	0.0150	<0.0001	<0.0001	<0.01	<0.00005
	Annual Maximum	1 760	8.53	8.67	13.7	263	16.0	0.0399	0.0476	1 040	17.2	0 140	0.000200	0.000470	0.0786	0.0000560	0.0330	0.00160	0.000360	0 776	0.000439
	Annual Mean	1,150	8 40	8 41	10.4	210	8.58	0.0122	0.0179	604	11.3	0.0985	0.000153	0.000240	0.0684	0.0000214	0.0233	0.000197	0.000120	0.0944	0.0000849
	Annual Median	1,100	8.43	8.41	9.58	206	7 30	0.00985	0.0163	546	9.60	0.0980	0.000160	0.000235	0.0676	<0.0000211	0.0235	0.000105	<0.000120	0.0650	<0.00005
	% < I RI	0%	0%	0%	0%	0%	0.0%	13%	3%	0%	0%	53%	0%	0%	0%	94%	0%	50%	78%	16%	59%
			0%	0%	6%	0%	100%	0%	6%	78%	0%	-	0%	<u>,</u>	0%	0%	0%	3%	0%	-	0%
		-	070	070	070 C04	070	00/	070	070	1070	0.0	-	0,0	-	0 /0	070	070	070	070	-	070
	% > BCWQG	-	-	-	6%	-	0%	0%	6%	-	0%	0%	-	U%	-	-	-	-	0%	0%	0%
	% > Level 1 EVWQP Benchmark	63%	-	-	-	-	100%	-	-	78%	-	-	-	-	-	-	-	-	-	-	
	% > Level 2 EVWQP Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	% > Level 3 EVWQP Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	

>5% of samples exceed the guideline or benchmark.

> 50% of samples exceed the guideline or benchmark.

 > 95% of samples exceed the guideline or benchmark.
 Notes: "LRL" = laboratory reporting limit. "BCWQG" = British Columbia Working or Accepted Water Quality Guideline. For guidelines dependent on other analytes (e.g., hardness or chloride), guidelines were screened using concurrent concentrations. When concurrent hardness or chloride concentrations were not measured, the most conservative concentration observed for that station was used to estimate the guidelines or benchmark. All summary statistics are reported to 3 significant figures.

^a Long-term average BCQWG for the Protection of Aquatic Life.

		Tadal	Tatal	T-4-1	Tadal	Tatal		Tadal	Tatal	1	Discologi	Discoluted	Discolution	
		lotal	Iotal	Iotal	lotal	lotal	Total Sliver	Iotal	Iotal	Total Zinc	Dissolved	Dissolved	Dissolved	Dissolved
Station	Summary Statistic	Lithium	Manganese	Molybdenum	Nickel	Selenium	(ma/L)	Thallium	Uranium	(mg/L)	Aluminum	Cadmium	Copper	Iron (mg/L)
		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(iiig/L)	(mg/L)	(mg/L)	(119/2)	(mg/L)	(mg/L)	(mg/L)	non (ing/L)
	n	17	17	17	17	17	17	17	17	17	17	17	17	17
	Annual Minimum	0.00770	0.000230	0.000328	< 0.0005	0.000445	< 0.00001	< 0.00001	0.000295	< 0.003	< 0.003	0.00000790	0.000530	<0.01
	Annual Maximum	0.0163	0.00705	0.000520	0.00142	0.000725	0.0000130	< 0.00001	0.000984	0.00520	0.0806	0.0000676	0.00117	0.0730
	Annual Mean	0.0118	0.00229	0.000436	0.000921	0.000599	0.0000105	<0.00001	0.000628	0.00315	0.00998	0 0000175	0.000737	0.0159
	Annual Median	0.0116	0.00225	0.000458	0.000840	0.000614	<0.00001	<0.00001	0.000632	<0.003	0.00570	0.0000138	0.000690	<0.01
	% < I RI	0%	0%	0%	6%	0%	76%	100%	0%	88%	18%	0%	0%	65%
GU_DK_L		070	0%	0%	0%	0%	00/	00/	0%	00/0	69/	0%	0%	0070
	% > BCWQG	-	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	-
	% > BCWQG⁰	-	0%	0%	-	-	0%	-	-	0%	0%	0%	0%	0%
	% > Level 1 EVWQP Benchmark	-	-	-	0%	0%	-	-	-	-	-	0%	-	-
	% > Level 2 EVWQP Benchmark	-	-	-	0%	0%	-	-	-	-	-	-	-	-
	% > Level 3 EVWQP Benchmark	-	-	-	0%	-	-	-	-	-	-	-	-	-
	n	21	21	21	21	21	21	21	21	21	21	21	21	21
	Annual Minimum	0.00670	0.000470	0.000285	< 0.0005	0.000393	< 0.00001	< 0.00001	0.000182	< 0.003	< 0.003	0.00000570	0.000310	< 0.01
	Annual Maximum	0.0181	0.00852	0.000550	0.00103	0.000870	0.0000140	0.0000100	0.000466	< 0.003	0.0109	0.0000158	0.000740	0.0190
	Annual Mean	0.00974	0.00247	0.000395	0.000618	0.000640	0.0000102	0.0000100	0.000307	< 0.003	0.00420	0.00000983	0.000510	0.0104
	Annual Median	0.00840	0.00153	0.000383	0.000570	0.000622	< 0.00001	< 0.00001	0.000288	< 0.003	0.00350	0.00000940	0.000520	<0.01
	% < LRL	0%	0%	0%	38%	0%	95%	95%	0%	100%	43%	0%	0%	95%
		-	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	
		_	070	070	070	070	070	070	070	070	070	0%	070	-
	% > BCWQG ^o	-	0%	0%	-	-	0%	-	-	0%	0%	0%	0%	0%
	% > Level 1 EVWQP Benchmark	-	-	-	0%	0%	-	-	-	-	-	0%	-	-
	% > Level 2 EVWQP Benchmark	-	-	-	0%	0%	-	-	-	-	-	-	-	-
	% > Level 3 EVWQP Benchmark	-	-	-	0%	-	-	-	-	-	-	-	-	-
	n	20	20	20	20	20	20	20	20	20	20	20	20	20
	Annual Minimum	0.00710	0.000620	0.000348	<0.0005	0.000279	<0.00001	<0.00001	0.000305	< 0.003	< 0.003	0.00000720	0.000240	<0.01
	Annual Maximum	0.0163	0.00373	0.000701	0.000670	0.000942	< 0.00001	<0.00001	0.000766	< 0.003	0.00455	0.0000141	0.000495	0.0110
	Annual Mean	0.0117	0.00149	0.000495	0.000534	0.000641	< 0.00001	<0.00001	0.000465	< 0.003	0.00332	0.0000110	0.000374	0.0100
	Annual Median	0.0116	0.00130	0.000460	< 0.0005	0.000666	<0.00001	<0.00001	0.000404	< 0.003	< 0.003	0.0000114	0.000370	<0.01
GH WILLOW	% < LRL	0%	0%	0%	60%	0%	100%	100%	0%	100%	65%	0%	0%	95%
-	% > BCWQG ^a	-	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	-
	% > BCWOG ^b	-	0%	0%	_	-	0%	-	-	0%	0%	0%	0%	0%
	% > Lovel 1 EV/WOB Benchmark		0,0	0,0	0%	0%	0,0			070	0,0	0%	0,0	0,0
	% > Level 2 EV/WOP Benchmark	-	-	-	0%	0%	-	-	-	-	-	070	-	-
	% > Level 2 EVWQP Benchmark	-	-	-	0%	0 70	-	-	-	-	-	-	-	-
	% > Level 3 EVWQP Benchmark	-	-	-	0%	-	-	-	-	-	-	-	-	-
	II Auroral Minimum	13	13	13	13	13	13	13	13	13	13	13	13	13
	Annual Minimum	0.00500	0.000430	0.000365	<0.0005	0.000438	<0.00001	<0.00001	0.000297	<0.003	<0.003	0.00000660	0.000310	<0.01
	Annual Maximum	0.0117	0.131	0.00138	0.00101	0.00106	< 0.00001	0.0000110	0.000704	0.0141	0.0145	0.0000149	0.000590	0.106
	Annual Mean	0.00841	0.0128	0.000512	0.000590	0.000688	< 0.00001	0.0000101	0.000380	0.00412	0.00492	0.00000983	0.000451	0.0178
GH WILLOW S	Annual Median	0.00840	0.00230	0.000429	0.000550	0.000683	<0.00001	<0.00001	0.000349	<0.003	0.00440	0.0000920	0.000450	<0.01
P1	% < LRL	0%	0%	0%	38%	0%	100%	92%	0%	85%	23%	0%	0%	85%
	% > BCWQG ^a	-	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	-
	% > BCWQG ^b	-	0%	0%	-	-	0%	-	-	0%	0%	0%	0%	0%
	% > Level 1 EVWQP Benchmark	-	-	-	0%	0%	-	-	-	-	-	0%	-	-
	% > Level 2 EVWQP Benchmark	-	-	-	0%	0%	-	-	-	-	-	-	-	-
	% > Level 3 EVWQP Benchmark	-	-	-	0%	-	-	-	-	-	-	- 1	-	-
	n	19	19	19	19	19	19	19	19	19	19	19	19	19
	Annual Minimum	0.0150	0.000170	0.000885	< 0.0005	0.00163	<0.00001	< 0.00001	0.000570	< 0.003	< 0.003	0.00000700	0.000350	<0.01
	Annual Maximum	0.0251	0.0166	0.00145	0.00163	0.00667	0.0000170	0.0000220	0.00105	0.0170	0.0210	0.0000268	0.000750	0.0160
	Annual Mean	0.0204	0.00387	0.00116	0.000847	0.00301	0.0000106	0.0000116	0.000797	0.00419	0.00522	0.0000167	0.000522	0.0106
	Annual Median	0.0212	0.00175	0.00117	0.000720	0.00238	<0.00001	<0.00001	0.000795	<0.003	0.00340	0.0000171	0.000520	<0.01
	% < I RI	0%	0%	0%	5%	0%	79%	79%	0%	63%	47%	0%	0%	79%
GR_WADE		0.70	0%	0%	0%	62%	∩0⁄_	nº/	0%	00%	-1/0	0%	0%	1370
	% > BCWQG	-	070	070	070	00%	070	070	070	070	070	070	070	-
	% > BCWQG ^o	-	0%	0%	-	-	0%	-	-	0%	0%	0%	0%	0%
	% > Level 1 EVWQP Benchmark	-	-	-	0%	0%	-	-	-	-	-	0%	-	-
	% > Level 2 EVWQP Benchmark	-	-	-	0%	0%	-	-	-	-	-	-	-	-
	% > Level 3 EVWQP Benchmark	-	-	-	0%	-	-	-	-	-	-	-	-	-

> 5% of samples exceed the guideline or benchmark. > 50% of samples exceed the guideline or benchmark.

 > 95% of samples exceed the guideline or benchmark.
 Notes: "LRL" = laboratory reporting limit. "BCWQG" = British Columbia Working or Accepted Water Quality Guideline. For guidelines dependent on other analytes (e.g., hardness or chloride), guidelines were screened using concurrent concentrations. When concurrent hardness or chloride concentrations were not measured, the most conservative concentration observed for that station was used to estimate the guidelines or benchmark. All summary statistics are reported to 3 significant figures.

^a Long-term average BCQWG for the Protection of Aquatic Life.

		Total	Total	Total	Total	Total		Total	Total		Discolvod	Dissolvod	Dissolvod	
Station	Summary Statistic	lithium	Manganoso	Molyhdonum	Nickol	Solonium	Total Sliver	Thallium	Uranium	Total Zinc	Aluminum	Cadmium	Coppor	Dissolved
Station	Summary Statistic		(mg/l)	(mg/l)			(mg/L)	(ma/L)	(mg/L)	(mg/L)	(mg/l)	(mg/l)	(mg/l)	Iron (mg/L)
		(IIIg/L)	(mg/L)	(mg/L)	(IIIg/L)	(mg/L)	10	(IIIg/L)	(mg/L)	10	(mg/L)	(mg/L)	(mg/L)	10
	n	12	12	12	12	12	12	12	12	12	12	12	12	12
	Annual Minimum	0.00370	0.000570	0.000614	< 0.0005	0.000490	< 0.00001	<0.00001	0.000201	< 0.003	< 0.003	0.0000224	0.000450	<0.01
	Annual Maximum	0.00640	0.00802	0.00109	0.00134	0.000631	0.0000130	0.0000340	0.000428	0.00590	0.0493	0.0000636	0.00114	0.0430
	Annual Mean	0.00475	0.00203	0.000774	0.000731	0.000560	0.0000103	0.0000136	0.000295	0.00324	0.00758	0.0000329	0.000610	0.0128
	Annual Median	0.00450	0.00101	0.000759	0.000665	0.000574	<0.00001	0.0000105	0.000274	< 0.003	0.00325	0.0000292	0.000565	<0.01
GH_COUGAR	% < LRL	0%	0%	0%	8%	0%	92%	42%	0%	92%	50%	0%	0%	75%
	% > BCWQG ^ª	-	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	-
	% > BCWQG ^b	-	0%	0%	-	-	0%	-	-	0%	0%	0%	0%	0%
	% > Level 1 EVWQP Benchmark	-	-	-	0%	0%	-	-	-	-	-	0%	-	-
	% > Level 2 EVWQP Benchmark	-	-	-	0%	0%	-	-	-	-	-	-	-	-
	% > Level 3 EVWQP Benchmark	-	-	-	0%	-	-	-	-	-	-	-	-	-
	n	26	26	26	26	26	26	26	26	26	26	26	26	26
	Annual Minimum	0.00500	0.000630	0.000591	< 0.0005	0.000105	< 0.00001	< 0.00001	0.000209	< 0.003	< 0.003	0.0000870	0.000270	<0.01
	Annual Maximum	0.0109	0.183	0.00187	0.00129	0.000405	< 0.00001	0.0000210	0.000421	0.00350	0.00910	0.0000195	0.000560	0.0660
	Annual Mean	0.00729	0.0196	0.000989	0.000568	0.000241	< 0.00001	0.0000111	0.000324	0.00302	0.00358	0.0000124	0.000394	0.0175
	Annual Median	0.00725	0.00407	0.000922	< 0.0005	0.000220	< 0.00001	< 0.00001	0.000332	< 0.003	< 0.003	0.0000119	0.000385	< 0.01
GH NNC	% < LRL	0%	0%	0%	77%	0%	100%	88%	0%	96%	58%	4%	0%	65%
	% > BCWOG ^a	-	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	-
			0%	0%	0.00	0,0	00/	0,0	0,0	0%	0%	0%	00/	0.0/
		-	0%	0%	-	-	0%	-	-	0%	0%	0%	0%	0%
	% > Level 1 EVWQP Benchmark	-	-	-	0%	0%	-	-	-	-	-	0%	-	-
	% > Level 2 EVWQP Benchmark	-	-	-	0%	0%	-	-	-	-	-	-	-	-
	% > Level 3 EVWQP Benchmark	-	-	-	0%	-	-	-	-	-	-	-	-	-
	II Ammunal Minimuum	20	20	20	20	20	20	20	20	20	20	20	20	20
	Annual Minimum	0.00170	0.000150	0.000686	<0.0005	0.000103	<0.00001	<0.00001	0.000204	<0.003	<0.003	0.0000138	0.000510	<0.01
		0.00410	0.0295	0.00185	0.00337	0.000303	0.0000320	0.000107	0.000674	0.0153	0.0156	0.0000253	0.00116	0.0130
	Annual Median	0.00296	0.00360	0.00110	0.000616	0.000162	0.0000111	0.0000150	0.000304	0.00369	0.00400	0.0000196	0.000745	0.0102
		0.00290	0.00179	0.000924	0.000635	0.000149	<0.00001	<0.00001	0.000309	<0.003	0.00400	0.0000181	0.000670	<0.01
GH_BR_D	% < LRL	0%	0%	0%	20%	0%	95%	80%	0%	90%	20%	0%	0%	95%
	% > BCWQG"	-	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	-
	% > BCWQG ^D	-	0%	0%	-	-	0%	-	-	0%	0%	0%	0%	0%
	% > Level 1 EVWQP Benchmark	-	-	-	0%	0%	-	-	-	-	-	0%	-	-
	% > Level 2 EVWQP Benchmark	-	-	-	0%	0%	-	-	-	-	-	-	-	-
	% > Level 3 EVWQP Benchmark	-	-	-	0%	-	-	-	-	-	-	-	-	-
	n	22	22	22	22	22	22	22	22	22	22	22	22	22
	Annual Minimum	0.0199	0.000190	0.00128	0.00124	0.00130	<0.00001	<0.00001	0.000830	< 0.003	< 0.003	0.0000166	0.000340	<0.01
	Annual Maximum	0.0414	0.0142	0.00304	0.00641	0.0107	0.0000140	0.0000300	0.00220	0.0486	0.0383	0.0000425	0.00154	0.0420
	Annual Mean	0.0306	0.00289	0.00195	0.00198	0.00401	0.0000102	0.0000115	0.00144	0.00739	0.00530	0.0000265	0.000601	0.0115
	Annual Median	0.0311	0.00185	0.00185	0.00166	0.00235	<0.00001	<0.00001	0.00140	< 0.003	< 0.003	0.0000252	0.000550	<0.01
GH_MC1	% < LRL	0%	0%	0%	0%	0%	95%	73%	0%	68%	73%	0%	0%	95%
	% > BCWQG ^a	-	0%	0%	0%	73%	0%	0%	0%	0%	0%	0%	0%	-
	% > BCWQG ^b		0%	0%		-	0%	-		0%	0%	0%	0%	0%
	% > Level 1 EVWQP Benchmark	-	-	-	5%	0%	-	-	-	-	-	0%	-	-
	% > Level 2 EVWQP Benchmark	-	-	-	0%	0%	-	-	-	-	-	-	-	-
	% > Level 3 EVWQP Benchmark	-	-	-	0%	-	-	-	-	-	-	-	-	-
	n	29	29	29	29	29	29	29	29	29	29	29	29	29
	Annual Minimum	0.129	0.000480	0.0131	0.0572	0.0485	< 0.00001	0.0000270	0.00904	< 0.003	< 0.003	0.0000930	0.000410	<0.01
	Annual Maximum	0.285	0.00428	0.0233	0.0956	0.395	< 0.00002	0.0000510	0.0163	0.0227	0.00930	0.000242	0.00121	< 0.02
	Annual Mean	0.221	0.000933	0.0162	0.0773	0.272	<0.00001	0.0000387	0.0129	0.00604	0.00326	0.0000583	0.000926	0.0101
	Annual Median	0.232	0.000780	0.0157	0.0809	0.311	< 0.00001	0.0000390	0.0134	0.00300	< 0.003	0.0000340	0.000950	<0.01
GH LC2	% < LRL	0%	0%	0%	0%	0%	100%	0%	0%	55%	93%	21%	0%	97%
	% > BCWQG ^a	-	0%	0%	0%	100%	0%	0%	100%	0%	0%	0%	0%	-
	% > BCWOG ^b	_	0%	0%	-	_	0%	_	_	0%	0%	0%	0%	0%
	% > Level 1 EVWOP Benchmark	-	070	0,0	100%	100%	0,0	-	-	0.0	070	0%	0.10	070
	% > Level 1 EVWQF Denchmark	-	-	-	100%	07%	-	-	-	-	-	070	-	
		-	-	-	100%	9170	-	-	-	-	+ -	-	-	+ -
L	/0 - Level 3 EV WQP Delicimark	-		-	100%	-	-	-	-	-	<u> </u>	-	-	

> 5% of samples exceed the guideline or benchmark. > 50% of samples exceed the guideline or benchmark.

 > 95% of samples exceed the guideline or benchmark.
 Notes: "LRL" = laboratory reporting limit. "BCWQG" = British Columbia Working or Accepted Water Quality Guideline. For guidelines dependent on other analytes (e.g., hardness or chloride), guidelines were screened using concurrent concentrations. When concurrent hardness or chloride concentrations were not measured, the most conservative concentration observed for that station was used to estimate the guidelines or benchmark. All summary statistics are reported to 3 significant figures.

^a Long-term average BCQWG for the Protection of Aquatic Life. ^b Short-term maximum BCQWG for the Protection of Aquatic Life.

		Total	Total	Total	Total	Total	Total Oliver	Total	Total	Total Zina	Dissolved	Dissolved	Dissolved	Disselved
Station	Summary Statistic	Lithium	Manganese	Molybdenum	Nickel	Selenium	(mg/L)	Thallium	Uranium	I otal Zinc	Aluminum	Cadmium	Copper	Dissolved
		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(IIIg/L)	(mg/L)	(mg/L)	(IIIg/L)	(mg/L)	(mg/L)	(mg/L)	non (ing/L)
	n	1	1	1	1	1	1	1	1	1	1	1	1	1
	Annual Minimum	0.0153	0.258	0.00221	0.0127	0.0112	0.0000970	0.000181	0.00166	0.0449	0.00450	0.0000151	0.000310	<0.01
	Annual Maximum	0.0153	0.258	0.00221	0.0127	0.0112	0.0000970	0.000181	0.00166	0.0449	0.00450	0.0000151	0.000310	<0.01
	Annual Mean	0.0153	0.258	0.00221	0.0127	0.0112	0.0000970	0.000181	0.00166	0.0449	0.00450	0.0000151	0.000310	<0.01
	Annual Median	0.0153	0.258	0.00221	0.0127	0.0112	0.0000970	0.000181	0.00166	0.0449	0.00450	0.0000151	0.000310	< 0.01
GH_LC1	% < LRL	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%
	% > BCWQG"	-	0%	0%	0%	100%	0%	0%	0%	0%	0%	0%	0%	-
	% > BCWQG ^b	-	0%	0%	-	-	0%	-	-	0%	0%	0%	0%	0%
	% > Level 1 EVWQP Benchmark	-	-	-	100%	0%	-	-	-	-	-	0%	-	-
	% > Level 2 EVWQP Benchmark	-	-	-	0%	0%	-	-	-	-	-	-	-	-
	% > Level 3 EVWQP Benchmark	-	-	-	0%	-	-	-	-	-	-	-	-	-
	Appual Minimum	0.0734	2.5	0.00581	23	0.0637	<0.00001	25	25	<0.003	<0.003	<0.00001	0.000270	<0.01
	Annual Maximum	0.0734	0.00775	0.00301	0.0401	0.0007	<0.00001	0.0000130	0.00074	0.00950	0.000	0.0000375	0.000270	<0.01
	Annual Mean	0.138	0.00167	0.00707	0.100	0.114	0.0000100	0.0000196	0.0141	0.00339	0.00350	0.0000259	0.000389	<0.01
	Annual Median	0.148	0.00151	0.00707	0.0870	0.104	< 0.00001	0.0000170	0.0155	< 0.003	< 0.003	0.0000269	0.000350	< 0.01
GH WC2	% < LRL	0%	0%	0%	0%	0%	96%	12%	0%	88%	96%	8%	28%	100%
	% > BCWQG ^a	-	0%	0%	0%	100%	0%	0%	92%	0%	0%	0%	0%	-
	% > BCWQG ^b	-	0%	0%	-	-	0%	-	-	0%	0%	0%	0%	0%
	% > Level 1 EVWQP Benchmark	-	-	-	100%	100%	-	-	-	-	-	0%	-	-
	% > Level 2 EVWQP Benchmark	_	_	-	100%	92%	-	-	-	-	-	-	-	_
	% > Level 3 EVWQP Benchmark	-	-	-	100%	-	-	-	-	-	-	-	-	-
	n	25	25	25	25	25	25	25	25	25	25	25	25	25
	Annual Minimum	0.0605	0.00104	0.00530	0.0325	0.0645	< 0.00001	0.0000110	0.00568	< 0.003	< 0.003	< 0.000005	0.000220	<0.01
	Annual Maximum	0.191	0.00622	0.00768	0.168	0.164	< 0.00002	0.0000310	0.0195	<0.006	0.0145	0.0000437	0.00128	0.0250
	Annual Mean	0.135	0.00215	0.00685	0.0965	0.103	<0.00001	0.0000203	0.0135	0.00317	0.00418	0.0000214	0.000404	0.0106
	Annual Median	0.148	0.00191	0.00685	0.0862	0.0931	<0.00001	0.0000180	0.0155	< 0.003	< 0.003	0.0000235	0.000340	<0.01
GH_WC1	% < LRL	0%	0%	0%	0%	0%	100%	12%	0%	96%	80%	20%	16%	96%
	% > BCWQG ^a	-	0%	0%	0%	100%	0%	0%	80%	0%	0%	0%	0%	-
	% > BCWQG ^b	-	0%	0%	-	-	0%	-	-	0%	0%	0%	0%	0%
	% > Level 1 EVWQP Benchmark	-	-	-	100%	100%	-	-	-	-	-	0%	-	-
	% > Level 2 EVWQP Benchmark	-	-	-	100%	84%	-	-	-	-	-	-	-	-
	% > Level 3 EVWQP Benchmark	-	-	-	100%	-	-	-	-	-	-	-	-	-
	n Annual Minimum	21	21	21	21	21	21	21	21	21	21	21	21	21
	Annual Minimum	0.0134	0.00204	0.000984	0.000920	0.0581	<0.00001	<0.00001	0.00179	<0.003	<0.003	<0.000005	<0.0002	<0.01
		0.0302	0.0122	0.00103	0.00171	0.102	<0.00001	0.0000130	0.00040	0.00390	0.00310	0.0000303	0.000390	0.02
	Annual Median	0.0225	0.00010	0.00137	0.00121	0.100	<0.00001	<0.0000104	0.00395	<0.003	<0.003	0.0000150	0.000330	<0.0101
GH TC2	% < LRL	0%	0%	0%	0%	0%	100%	86%	0%	90%	90%	5%	14%	90%
	% > BCWQG ^a	-	0%	0%	0%	100%	0%	0%	0%	0%	0%	0%	0%	-
		<u> </u>	0%	0%	-	_	0%	-	-	0%	0%	0%	0%	0%
	% > Level 1 EVWOP Benchmark	-	-	-	0%	100%	-	-	-	-	-	0%	-	-
	% > Level 2 EVWQP Benchmark	-	-	-	0%	90%	-	-	-	-	-	-	-	-
	% > Level 3 EVWQP Benchmark	-	-	-	0%	-	-	-	-	-	-	-	-	-
	n	32	32	32	32	32	32	32	32	32	32	32	32	32
	Annual Minimum	0.0106	0.00103	0.00101	0.000830	0.0484	<0.00001	<0.00001	0.00193	<0.003	< 0.003	0.0000131	<0.0002	<0.01
	Annual Maximum	0.0321	0.0284	0.00164	0.00231	0.157	0.0000200	0.0000340	0.00624	0.0122	0.00940	0.0000220	0.000940	0.0170
	Annual Mean	0.0204	0.00647	0.00130	0.00128	0.0945	0.0000105	0.0000118	0.00368	0.00345	0.00340	0.0000172	0.000383	0.0106
	Annual Median	0.0202	0.00528	0.00130	0.00122	0.0895	<0.00001	<0.00001	0.00350	< 0.003	<0.003	0.0000172	0.000375	<0.01
GH_TC1	% < LRL	0%	0%	0%	0%	0%	91%	66%	0%	81%	78%	0%	6%	84%
	% > BCWQG ^a	-	0%	0%	0%	100%	0%	0%	0%	0%	0%	0%	0%	-
	% > BCWQG ^b	-	0%	0%	-	-	0%	-	-	0%	0%	0%	0%	0%
	% > Level 1 EVWQP Benchmark	-	-	-	0%	100%	-	-	-	-	-	0%	-	-
	% > Level 2 EVWQP Benchmark	-	-	-	0%	78%	-	-	-	-	-	-	-	-
	% > Level 3 EVWQP Benchmark	-	-	-	0%	-	-	-	-	-	-	-	-	-

> 5% of samples exceed the guideline or benchmark. > 50% of samples exceed the guideline or benchmark.

 > 95% of samples exceed the guideline or benchmark.
 Notes: "LRL" = laboratory reporting limit. "BCWQG" = British Columbia Working or Accepted Water Quality Guideline. For guidelines dependent on other analytes (e.g., hardness or chloride), guidelines were screened using concurrent concentrations. When concurrent hardness or chloride concentrations were not measured, the most conservative concentration observed for that station was used to estimate the guidelines or benchmark. All summary statistics are reported to 3 significant figures.

^a Long-term average BCQWG for the Protection of Aquatic Life.

			Ar	nnual	Q1. Is	there a po	sitive or ne	gative cha r	inge in cor nonitoring	ncentratior ?	is since th	e base yea	r (b) of	Q2. Is t	the 2020 a	nnual meai	n greater c	or less thar	n all annua	l historical	means (20	012 to 201	9) and the prev	vious year
Parameter	Status	Station	vari	auon	Ma	agnitude of	Difference	e (MOD) ^b ai	nd Signific	ance (bold	ed) from E	Base Year (b) ^c						(2019)	f				
			DF	P-Value	2012	2013	2014	2015	2016	2017	2018	2019	2020	2012	2013	2014	2015	2016	2017	2018	2019	2020	2020 vs. 2012 to 2019	2020 vs. 2019
	Reference	GH_BR_F	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		GH_WOLF	5	<0.001	b	-10	-	-	-19	-	-13	-22	-26	А	AB	-	-	BCD	-	ABC	CD	D	ns	ns
		GH_WILLOW	7	< 0.001	b	39	60	60	109	-	-7.2	15	-41	BC	ABC	AB	AB	Α	-	CD	BC	D	ns	\downarrow
		GH_WILLOW_SP1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		GH_WILLOW_S	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		GH_WADE	6	<0.001	b	-27	-0.030	-29	-25	13	-	-	39	AB	В	AB	В	В	AB	-	-	А	ns	-
		GH_COUGAR	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total		GH_NNC	6	<0.001	-	-	b	-12	24	8.1	25	55	3.9	-	-	BC	С	AB	BC	AB	Α	BC	ns	\downarrow
Selenium	Mine-exposed	GH_BR_D	1	0.072	-	-	-	b	-	-	-	-	ns	-	-	-	ns	-	-	-	-	ns	ns	-
		GH_MC1	8	<0.001	b	4.4	4.8	286	136	125	91	103	130	D	BCD	CD	Α	Α	AB	ABCD	ABC	A	ns	ns
		GH_LC2	8	<0.001	b	48	87	100	20	75	347	241	448	С	С	BC	BC	С	BC	Α	AB	A	ns	ns
		GH_LC1	3	<0.001	-	-	-	-	b	52	282	84	-	-	-	-	-	В	В	A	AB	-	-	-
		GH_WC2	8	<0.001	b	1.7	53	21	11	186	193	291	178	В	В	В	В	В	A	A	A	A	ns	ns
		GH_WC1	3	<0.001	-	-	-	-	b	-	139	261	145	-	-	-	-	С	-	В	Α	В	ns	\downarrow
		GH_TC2	8	<0.001	b	9.5	12	-16	-10	5.7	32	12	19	BCD	ABC	ABC	D	CD	ABC	A	ABC	AB	ns	ns
		GH_TC1	8	<0.001	b	6.5	4.9	-20	-13	-0.010	28	12	8.5	BC	ABC	ABC	D	CD	BC	A	AB	AB	ns	ns
	Reference	GH_BR_F	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		GH_WOLF	5	0.003	b	71	-	-	39	-	-42	25	24	AB	Α	-	-	A	-	В	A	A	ns	ns
		GH_WILLOW	7	<0.001	b	68	29	68	34	-	-50	62	20	AB	A	А	А	A	-	В	A	A	ns	ns
		GH_WILLOW_SP1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		GH_WILLOW_S	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		GH_WADE	6	<0.001	b	-40	-36	-70	-73	-64	-	-	-74	A	ABC	AB	CD	D	BCD	-	-	CD	ns	-
		GH_COUGAR	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nitrate-N		GH_NNC	6	<0.001	-	-	b	166	524	3,556	3,536	4,557	908	-	-	D	CD	BC	A	A	A	В	ns	\downarrow
	Mine-exposed	GH_BR_D	1	<0.001	-	-	-	b	-	-	-	-	-95	-	-	-	А	-	-	-	-	В	\downarrow	-
		GH_MC1	8	<0.001	b	-7.9	-53	1,702	859	-7.0	-61	-64	-34	В	В	В	А	A	В	В	В	В	ns	ns
		GH_LC2	8	<0.001	b	53	32	-0.67	-11	31	135	65	98	CD	ABCD	ABCD	CD	D	BCD	A	ABC	AB	ns	ns
		GH_LC1	3	<0.001	-	-	-	-	b	69	147	20	-	-	-	-	-	С	AB	A	BC	-	-	-
		GH_WC2	8	<0.001	b	9.5	61	31	34	189	184	217	141	С	BC	В	BC	BC	A	A	A	A	ns	ns
		GH_WC1	3	<0.001	-	-	-	-	b	-	107	159	89	-	-	-	-	С	-	AB	A	В	ns	\downarrow
		GH_TC2	8	<0.001	b	-1.8	-7.7	-30	-28	-23	-3.7	-9.4	-16	A	AB	AB	D	CD	BCD	AB	ABC	ABCD	ns	ns
		GH_TC1	8	< 0.001	b	-9.4	-18	-36	-31	-27	-5.8	-16	-24	А	ABC	ABCD	E	DE	CDE	AB	ABCD	BCDE	ns	ns

Table D.6: Temporal Changes in Water Chemistry Analytes at West-side Tributary Stations, GHO LAEMP, 2012 to 2020

P-value < 0.05.

> 20% Decrease in concentration.

> 33% Decrease in concentration. > 43% Decrease in concentration.

> 25% Increase in concentration. > 50% Increase in concentration.

> 100% Increase in concentration.

> 75% Increase in concentration.

Significantly < than all historical years (or 2018).

Significantly > than all historical years (or 2018).

Notes: "ns" = not significant. "-" = insufficient data.

^a Year p-value from an ANOVA with factors Year and Month.

^b Magnitude of Difference (MOD) = [Mean_{given year} - Mean_{year b}] /Mean_{year b} × 100%.

^c Significance among year determined using all pairwise comparisons using Tukey's honestly significant differences method. Years that share a letter are not significantly different. Letters assigned such that the mean with highest magnitude is assigned "A".

			Ar	inual	Q1. Is	there a po	sitive or ne	gative cha n	inge in con nonitoring	ncentration ?	ns since th	e base yea	r (b) of	Q2. Is t	the 2020 a	nnual mea	n greater c	or less thar	n all annua	l historica	l means (2	012 to 201	9) and the prev	vious year
Parameter	Status	Station	vari	ation	Ma	agnitude of	Difference	e (MOD) ^b ar	nd Signific	ance (bolc	led) from B	ase Year (b) ^c						(2019)) {				
			DF	P-Value	2012	2013	2014	2015	2016	2017	2018	2019	2020	2012	2013	2014	2015	2016	2017	2018	2019	2020	2020 vs. 2012 to 2019	2020 vs. 2019
	Reference	GH_BR_F	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		GH_WOLF	5	0.423	b	ns	-	-	ns	-	ns	ns	ns	ns	ns	-	-	ns	-	ns	ns	ns	ns	ns
		GH_WILLOW	7	<0.001	b	22	45	37	28	-	30	5.6	-40	С	ABC	Α	AB	ABC	-	ABC	BC	D	↓	Ļ
		GH_WILLOW_SP1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		GH_WILLOW_S	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		GH_WADE	6	<0.001	b	-4.8	31	23	63	53	-	-	49	D	D	BC	С	Α	AB	-	-	ABC	ns	-
		GH_COUGAR	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sulphate		GH_NNC	6	<0.001	-	-	b	31	38	5.3	-8.8	5.9	-7.0	-	-	С	AB	A	BC	С	BC	С	ns	ns
Gaiphate	Mine-exposed	GH_BR_D	1	<0.001	-	-	-	b	-	-	-	-	-30	-	-	-	A	-	-	-	-	В	\downarrow	-
		GH_MC1	8	<0.001	b	-18	-3.3	405	439	44	35	27	23	В	В	В	A	A	В	В	В	В	ns	ns
	-	GH_LC2	8	<0.001	b	43	161	283	269	305	324	319	360	С	С	В	A	AB	A	A	A	A	ns	ns
	-	GH_LC1	3	0.812	-	-	-	-	b	ns	ns	ns	-	-	-	-	-	ns	ns	ns	ns	-	-	-
	-	GH_WC2	8	<0.001	b	4.2	8.0	51	78	84	143	204	192	E	E	DE	CD	С	BC	AB	A	A	ns	ns
		GH_WC1	3	<0.001	-	-	-	-	b	-	48	81	72	-	-	-	-	С	-	В	A	AB	ns	ns
		GH_TC2	8	<0.001	b	7.7	19	4.0	11	21	38	36	43	В	В	AB	В	В	AB	A	A	A	ns	ns
		GH_TC1	8	<0.001	b	3.1	13	0.73	11	19	39	35	38	С	С	BC	С	С	ABC	A	AB	AB	ns	ns
	Reference	GH_BR_F	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	_	GH_WOLF	5	< 0.001	b	3.5	-	-	14	-	16	12	15	С	BC	-	-	A	-	A	AB	A	ns	ns
	_	GH_WILLOW	7	0.011	b	2.9	11	11	6.9	-	9.9	0.77	8.0	A	A	A	A	A	-	A	A	A	ns	ns
	_	GH_WILLOW_SP1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	_	GH_WILLOW_S	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Total	GH_WADE	6	<0.001	b	3.6	16	22	24	17	-	-	18	С	BC	AB	A	A	AB	-	-	AB	ns	-
Total		GH_COUGAR	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dissolved	_	GH_NNC	6	<0.001	-	-	b	12	11	13	8.6	1.6	10	-	-	В	A	A	A	AB	В	A	ns	1
Solids	Total issolved Solids Mine-exposed	GH_BR_D	1	0.642	-	-	-	b	-	-	-	-	ns	-	-	-	ns	-	-	-	-	ns	ns	-
		GH_MC1	8	<0.001	b	0.030	5.3	166	159	15	16	8.9	13	В	В	В	A	A	В	В	В	В	ns	ns
		GH_LC2	8	<0.001	b	40	86	130	126	150	177	158	182	D	С	В	AB	AB	A	A	A	A	ns	ns
		GH_LC1	3	0.279	-	-	-	-	b	ns	ns	ns	-	-	-	-	-	ns	ns	ns	ns	-	-	-
		GH_WC2	8	<0.001	b	5.4	13	33	56	78	103	152	134	G	G	FG	EF	DE	CD	BC	A	AB	ns	ns
		GH_WC1	3	<0.001	-	-	-	-	b	-	42	72	55	-	-	-	-	С	-	В	A	AB	ns	ns
		GH_TC2	8	0.037	b	87	96	76	87	98	117	113	132	В	AB	AB	AB	AB	AB	A	A	A	ns	ns
		GH_TC1	8	< 0.001	b	2.9	10	-0.91	6.3	14	27	22	26	С	С	ABC	С	BC	ABC	A	AB	A	ns	ns

Table D.6: Temporal Changes in Water Chemistry Analytes at West-side Tributary Stations, GHO LAEMP, 2012 to 2020

P-value < 0.05.

bold

> 20% Decrease in concentration.

> 33% Decrease in concentration.

> 43% Decrease in concentration.

> 50% Decrease in concentration.

Significant increase or decrease from base year (b). Significantly < than all historical years (or 2018).

Significantly > than all historical years (or 2018).

Notes: "ns" = not significant. "-" = insufficient data.

^a Year p-value from an ANOVA with factors Year and Month.

^b Magnitude of Difference (MOD) = [Mean_{given year} - Mean_{year b}] /Mean_{year b} × 100%.

^c Significance among year determined using all pairwise comparisons using Tukey's honestly significant differences method. Years that share a letter are not significantly different. Letters assigned such that the mean with highest magnitude is assigned "A".

> 25% Increase in concentration.

> 50% Increase in concentration.

> 75% Increase in concentration.

> 100% Increase in concentration.

			An	inual	Q1. Is	there a pos	sitive or ne	egative cha r	inge in coi nonitoring	ncentratior ?	ns since the	e base yea	r (b) of	Q2. Is t	the 2020 a	nnual mea	n greater o	or less thar	n all annua	l historica	l means (20	012 to 2019	9) and the prev	vious year
Parameter	Status	Station	Vari	ation "	Ма	agnitude of	Difference	e (MOD) ^b aı	nd Signific	ance (bold	led) from B	ase Year (b) ^c						(2019))?"				
			DF	P-Value	2012	2013	2014	2015	2016	2017	2018	2019	2020	2012	2013	2014	2015	2016	2017	2018	2019	2020	2020 vs. 2012 to 2019	2020 vs. 2019
	Reference	GH_BR_F	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		GH_WOLF	5	0.041	b	12	-	-	-41	-	-4.2	-31	-35	А	А	-	-	А	-	А	А	Α	ns	ns
		GH_WILLOW	7	0.788	b	ns	ns	ns	ns	-	ns	ns	ns	ns	ns	ns	ns	ns	-	ns	ns	ns	ns	ns
		GH_WILLOW_SP1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		GH_WILLOW_S	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		GH_WADE	6	0.049	b	21	13	16	-16	-23	-	-	-35	Α	Α	А	Α	Α	Α	-	-	Α	ns	-
		GH_COUGAR	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total Nickel		GH_NNC	6	0.001	-	-	b	4.2	19	23	89	-5.6	22	-	-	В	В	AB	AB	A	В	AB	ns	ns
	Mine-exposed	GH_BR_D	1	0.272	-	-	-	b	-	-	-	-	ns	-	-	-	ns	-	-	-	-	ns	ns	-
		GH_MC1	8	<0.001	b	22	-3.6	1,308	1,463	170	129	54	79	В	В	В	A	A	В	В	В	В	-	-
		GH_LC2	8	<0.001	b	47	188	405	372	481	417	512	550	С	С	В	A	AB	A	A	А	Α	-	-
		GH_LC1	3	0.083	-	-	-	-	b	ns	ns	ns	-	-	-	-	-	ns	ns	ns	ns	-	-	-
		GH_WC2	8	<0.001	b	-28	-28	-6.8	11	-9.3	53	37	40	ABCD	D	CD	BCD	ABC	BCD	A	AB	AB	-	-
		GH_WC1	3	0.001	-	-	-	-	b	-	61	24	35	-	-	-	-	В	-	A	AB	Α	-	-
		GH_TC2	8	<0.001	b	107	77	-32	1.7	-49	-66	-73	-73	В	A	А	BC	В	CD	DE	E	E	-	-
		GH_TC1	8	<0.001	b	81	49	-42	-24	-54	-69	-74	-73	BC	A	AB	DE	CD	EF	FG	G	G	-	-
	Reference	GH_BR_F	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		GH_WOLF	5	<0.001	b	8.1	-	-	28	-	23	58	30	D	CD	-	-	BC	-	BCD	A	В	ns	\downarrow
		GH_WILLOW	7	0.016	b	4.9	22	-1.2	-13	-	3.8	2.6	4.0	AB	AB	A	AB	В	-	AB	AB	AB	ns	ns
		GH_WILLOW_SP1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		GH_WILLOW_S	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		GH_WADE	6	<0.001	b	13	62	56	47	16	-	-	12	В	В	A	A	A	В	-	-	В	ns	-
		GH_COUGAR	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Uranium		GH_NNC	6	0.029	-	-	b	25	23	4.3	8.3	4.7	4.9	-	-	A	A	A	A	A	A	A	ns	ns
C. C. I.	Mine-exposed	GH_BR_D	1	0.077	-	-	-	b	-	-	-	-	ns	-	-	-	ns	-	-	-	-	ns	ns	-
		GH_MC1	8	<0.001	b	2.5	9.6	580	701	177	154	138	94	С	С	С	A	A	В	В	В	BC	ns	ns
		GH_LC2	8	<0.001	b	29	95	279	306	324	294	296	332	С	С	В	A	A	A	A	A	A	ns	ns
		GH_LC1	3	0.002	-	-	-	-	b	-2.1	-24	-24	-	-	-	-	-	A	AB	С	BC	-	-	-
		GH_WC2	8	< 0.001	b	3.0	21	50	89	82	119	190	154	F	F	EF	DE	BCD	CD	ABC	A	AB	ns	ns
		GH_WC1	3	<0.001	-	-	-	-	b	-	20	60	34	-	-	-	-	С	-	BC	A	В	ns	\downarrow
		GH_TC2	8	<0.001	b	25	31	-8.8	2.0	-6.4	14	12	20	BCD	AB	А	D	BCD	CD	ABCD	ABCD	ABC	ns	ns
		GH_TC1	8	<0.001	b	19	19	-14	-2.7	-8.5	11	8.2	13	ABC	A	А	С	ABC	BC	AB	AB	AB	ns	ns

Table D.6: Temporal Changes in Water Chemistry Analytes at West-side Tributary Stations, GHO LAEMP, 2012 to 2020

P-value < 0.05.

bold

> 20% Decrease in concentration.

> 33% Decrease in concentration.

> 43% Decrease in concentration.

> 50% Decrease in concentration.

Significant increase or decrease from base year (b).

Significantly < than all historical years (or 2018). Significantly > than all historical years (or 2018).

Notes: "ns" = not significant. "-" = insufficient data.

^a Year p-value from an ANOVA with factors Year and Month.

^b Magnitude of Difference (MOD) = [Mean_{given year} - Mean_{year b}] /Mean_{year b} × 100%.

^c Significance among year determined using all pairwise comparisons using Tukey's honestly significant differences method. Years that share a letter are not significantly different. Letters assigned such that the mean with highest magnitude is assigned "A".

> 25% Increase in concentration.

> 50% Increase in concentration.

> 75% Increase in concentration.

> 100% Increase in concentration.

Table D.7: Summary of Water Chemistry Data for Key Parameters for the Side Channel Stations of the GHO LAEMP, 2020

					Dissolved						Total	Total	Total	Total		Total		Total
Station	Summary Statistic	Total Dissolved	Lab pH	Field pH	Oxvaen	Alkalinity	Nitrate-N	Nitrite-N	Ammonia	Sulphate	Chloride	Fluoride	Antimony	Arsenic	I otal Barium	BervIlium	I otal Boron	Chromium
	,	Solids (mg/L)			(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(ma/l.)	(mg/L)	(ma/L)	(ma/L)	(mg/L)	(ma/L)	(mg/L)	(mg/L)
	n	19	19	18	18	19	19	19	19	19	19	19	19	19	19	19	19	19
	Annual Minimum	143	8.21	7.35	8 50	128	0.0282	<0.001	<0.005	11.3	0 230	0.0980	<0.0001	<0.0001	0.0355	<0.00002	<0.01	0.000230
	Annual Maximum	613	8.44	8.42	12.5	120	3.60	0.00280	0.000	263	6 55	0.0000	0.000240	0.00249	0.0000	0.00002	0.0150	0.00701
	Annual Mean	200	8.36	8.22	10.6	146	0.00	0.00200	0.0000	200	0.632	0.135	0.000240	0.00240	0.0509	0.0000240	0.0103	0.00111
	Annual Median	178	8 35	8.27	10.0	140	0.0748	<0.00120	0.00750	15.7	0.002	0.100	<0.000112	0.000410	0.0000	<0.0000404	<0.01	0.000380
GH FRSC4	% < I RI	0%	0.00	0%	0%	0%	0.0740	79%	26%	0%	63%	0.100	70%	5%	0%	74%	95%	0%
		-	0%	0%	0%	0%	5%	0%	0%	0%	0%	-	0%	-	0%	5%	0%	26%
		_	-	-	0%	-	0%	0%	0%	-	0%	0%	0,0	0%	-	070	-	2070
	% > Level 1 EVWOP Benchmark	0%			-		-	-	-	0%	-			-				-
	% > Level 2 EVWOP Benchmark	-	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_
	% > Level 3 EVWQP Benchmark	_	_	-	-	_	_	-	_	_	-	_	_	-	_	-	-	-
	n	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17
	Annual Minimum	136	8.26	7.81	9.12	129	0.0227	<0.001	<0.005	17.9	0.280	0.0860	<0.0001	0.000120	0.0366	<0.00002	<0.01	0.000100
	Annual Maximum	342	8.47	8.38	12.3	233	1 48	<0.001	0.000	59.3	<2.5	0.175	0.000280	0.00240	0.0000	0.000215	0.0100	0.00686
	Annual Mean	197	8 38	8.23	10.5	148	0.568	0.00109	0.0186	27.0	0 397	0.170	0.000128	0.000459	0.0518	0.0000402	0.0100	0.00116
	Annual Median	181	8.39	8 24	10.6	143	0.530	<0.001	0.0104	22.9	0.330	0.145	<0.000120	0.000250	0.0010	<0.0000402	<0.01	0.000650
GH ER1A	% < I RI	0%	0%	0%	0%	0%	0%	82%	29%	0%	59%	0%	71%	0%	0%	71%	94%	0%
<u>-</u>		-	0%	0%	0%	0%	0%	0%	0%	0%	0%	-	0%	-	0%	6%	0%	29%
	% > BCWOG ^b	-	-	-	0%	-	0%	0%	0%	-	0%	0%	-	0%	-	-	-	-
	% > Level 1 EVWOP Benchmark	0%	-	-	-	-	0%	-	-	0%	-	-	-	-	-	-	-	-
	% > Level 2 EVWQP Benchmark	-	_	-	-	_	-	-	_	-	-	_	_	-	_	-	-	-
	% > Level 3 EVWOP Benchmark	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
	n	6	6	5	5	6	6	6	6	6	6	6	6	6	6	6	6	6
	Annual Minimum	153	8 24	7.97	8 23	130	0.0287	<0.001	0.00750	16.2	0.310	0 124	<0.0001	0.000150	0.0390	<0.00002	<0.01	0.000180
	Annual Maximum	218	843	8 47	10.8	158	0.620	0.00120	0 120	25.9	<0.5	0.121	<0.0001	0.000480	0.0527	0.0000415	<0.01	0.00140
	Annual Mean	179	8.34	8.22	9.92	143	0.229	0.00103	0.0413	20.0	0.350	0.155	<0.0001	0.000222	0.0467	0.0000236	<0.01	0.000476
	Annual Median	174	8.34	8.25	10.4	142	0.192	< 0.001	0.0127	19.4	0.350	0.154	< 0.0001	0.000173	0.0473	< 0.00002	< 0.01	0.000295
RG GH-SCW1	% < LRL	0%	0%	0%	0%	0%	0.0%	83%	0%	0%	67%	0%	100%	0%	0%	83%	100%	0%
	% > BCWQG ^a	-	0%	0%	0%	0%	0%	0%	0%	0%	0%	-	0%	-	0%	0%	0%	17%
	% > BCWQG ^b	-	_	-	0%	-	0%	0%	0%	-	0%	0%	_	0%	-	-	-	-
	% > Level 1 EVWQP Benchmark	0%	_	-	-	-	-	-	-	0%	-	-	-	-	_	-	-	-
	% > Level 2 EVWQP Benchmark	-	_	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-
	% > Level 3 EVWQP Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	n	13	13	10	10	13	13	13	13	13	13	13	13	13	13	13	13	13
	Annual Minimum	175	8.18	7.27	8.27	133	0.219	< 0.001	0.00595	17.1	<0.5	<0.1	< 0.0001	0.000150	0.0406	< 0.00002	<0.01	< 0.0001
	Annual Maximum	1,710	8.41	8.44	12.7	260	16.6	0.0143	0.0654	1,000	16.8	0.160	0.000160	0.000600	0.0789	0.0000460	0.0220	0.00155
	Annual Mean	865	8.32	7.88	10.5	193	7.29	0.00322	0.0192	445	8.33	0.126	0.000115	0.000277	0.0586	0.0000236	0.0152	0.000396
	Annual Median	808	8.34	7.90	10.5	171	6.36	<0.005	0.0195	425	7.15	0.120	< 0.0001	0.000240	0.0544	<0.00002	0.0130	0.000200
RG_GH-SCW3	% < LRL	0%	0%	0%	0%	0%	0.0%	77%	0%	0%	15%	38%	54%	0%	0%	85%	46%	15%
	% > BCWQG ^a	-	0%	0%	0%	0%	54%	0%	0%	46%	0%	-	0%	-	0%	0%	0%	15%
	% > BCWQG ^b	_	-	-	0%	-	0%	0%	0%	-	0%	0%	-	0%	-	-	-	-
	% > Level 1 EVWQP Benchmark	46%	-	-	-	-	54%	-	-	46%	-	-	-	-	-	-	-	-
	% > Level 2 EVWQP Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	% > Level 3 EVWQP Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	n	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16
	Annual Minimum	178	8.30	8.08	8.73	128	0.107	< 0.001	< 0.005	19.3	<0.5	0.0970	< 0.0001	0.000130	0.0400	< 0.00002	<0.01	0.000200
	Annual Maximum	694	8.46	8.51	12.5	173	3.91	0.00460	0.682	282	8.25	0.149	0.000200	0.00105	0.0736	0.0000870	0.0190	0.00460
	Annual Mean	275	8.39	8.32	10.3	149	1.01	0.00162	0.0509	73.1	1.51	0.132	0.000117	0.000391	0.0516	0.0000337	0.0106	0.00142
	Annual Median	244	8.40	8.30	10.0	147	0.785	0.00105	0.00640	49.8	0.850	0.136	< 0.0001	0.000285	0.0496	< 0.00002	<0.01	0.000975
GH_ERSC2	% < LRL	0%	0%	0%	0%	0%	0%	50%	44%	0%	13%	0%	69%	0%	0%	56%	88%	0%
	% > BCWQG ^a	-	0%	0%	0%	0%	6%	0%	6%	0%	0%	-	0%	-	0%	0%	0%	50%
	% > BCWQG ^b	-	-	-	0%	-	0%	0%	0%	-	0%	0%	-	0%	-	-	-	-
	% > Level 1 EVWQP Benchmark	0%	-	-	-	-	6%	-	-	0%	-	-	-	-	-	-	-	-
	% > Level 2 EVWQP Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	% > Level 3 EVWQP Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

> 5% of samples exceed the guideline or benchmark.

> 50% of samples exceed the guideline or benchmark.

> 95% of samples exceed the guideline or benchmark.

Notes: "LRL" = laboratory reporting limit. "BCWQG" = British Columbia Working or Accepted Water Quality Guideline. For guidelines dependent on other analytes (e.g., hardness or chloride), guidelines were screened using concurrent concentrations. When concurrent hardness or chloride concentrations were not measured, the most conservative concentration observed for that station was used to estimate the guidelines or benchmark. All summary statistics are reported to 3 significant figures.

^a Long-term average BCQWG for the Protection of Aquatic Life.

Table D.7: Summary of Water Chemistry Data for Key Parameters for the Side Channel Stations of the GHO LAEMP, 2020

					Total	Total	Total		Total		Total	Total		Dissolved	Dissolved	Dissolved	
Station	Summary Statistic	Total Cobalt	Total Iron	Total Lead	Lithium	Manganoso	Molybdonu	Total Nickel	Solonium	Total Sliver	Thallium	Uranium	Total Zinc	Aluminum	Codmium	Connor	Dissolved
Station	Summary Statistic	(mg/L)	(mg/L)	(mg/L)	Liunum	Manganese	worybaena	(mg/L)	Selenium	(mg/L)	manium	Uranium	(mg/L)	Aluminum	Caumum	Copper	Iron (mg/L)
					(mg/L)	(mg/L)	m (mg/L)	,	(mg/L)		(mg/L)	(mg/L)	,	(mg/L)	(mg/L)	(mg/L)	
	n	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19
	Annual Minimum	< 0.0001	<0.01	< 0.00005	0.00130	0.000960	0.000830	< 0.0005	0.000663	<0.00001	<0.00001	0.000638	< 0.003	< 0.003	< 0.000005	0.295	<0.01
	Annual Maximum	0.00197	5.03	0.00317	0.0104	0.307	0.00115	0.00911	0.0530	0.0000970	0.000156	0.00189	0.0391	0.00430	0.0000197	1.33	< 0.01
	Annual Mean	0.000283	0.616	0.000390	0.00266	0.0343	0.00100	0.00141	0.00360	0.0000169	0.0000235	0.000832	0.00639	0.00326	0.00000840	0.403	< 0.01
	Annual Median	< 0.0001	0.133	0.000115	0.00200	0.00973	0.000988	< 0.0005	0.000798	< 0.00001	< 0.00001	0.000763	< 0.003	< 0.003	0.00000730	0.351	< 0.01
GH ERSC4	% < LRL	58%	11%	32%	0%	0%	0%	58%	0%	74%	63%	0%	68%	74%	11%	84%	100%
<u>-</u>		0%	-	0%	-	0%	0%	0%	5%	0%	0%	0%	0%	0%	0%	0%	
		0%	160/	0%	_	0%	0%	070	070	0%	070	070	0%	0%	0%	0%	00/
		0 70	1070	0 /0	-	0 70	0 70	- E0/	-	0 /0	-	-	0 70	0 70	0 /6	0 /0	0 70
	% > Level 1 EVWQF Benchmark	-	-	-	-	-	-	570 00/	<u> </u>	-	-	-	-	-	070	-	-
	% > Level 2 EVWQP Benchmark	-	-	-	-	-	-	0%	0%	-	-	-	-	-	-	-	-
	% > Level 3 EVWQP Benchmark	-	-	-	-	-	-	0%	-	-	-	-	-	-	-	-	-
	n	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17
	Annual Minimum	< 0.0001	0.0100	< 0.00005	0.00170	0.00132	0.000806	< 0.0005	0.000779	<0.00001	<0.00001	0.000675	< 0.003	< 0.003	< 0.000005	0.320	<0.01
	Annual Maximum	0.00173	4.85	0.00267	0.0137	0.247	0.00186	0.00912	0.00494	0.0000880	0.000132	0.00191	0.0367	0.00360	0.0000531	1.28	< 0.01
	Annual Mean	0.000292	0.680	0.000414	0.00431	0.0345	0.00109	0.00173	0.00225	0.0000173	0.0000235	0.000918	0.00700	0.00305	0.0000109	0.467	< 0.01
	Annual Median	0.000120	0.253	0.000172	0.00330	0.0112	0.00101	0.000770	0.00191	< 0.00001	< 0.00001	0.000823	<0.003	< 0.003	0.00000760	0.401	<0.01
GH ER1A	% < LRL	41%	0%	29%	0%	0%	0%	18%	0%	76%	59%	0%	53%	88%	6%	71%	100%
		0%	-	0%	-	0%	0%	0%	47%	0%	0%	0%	0%	0%	0%	0%	-
		0%	18%	0%		0%	0%	070	4770	0%	070	070	0%	0%	0%	0%	0%
		070	1070	0 /0	-	070	0 /0	60/	- 00/	0 /0	-	-	070	070	0%	070	0 70
	% > Level 1 EVWQP Benchmark	-	-	-	-	-	-	070	0%	-	-	-	-	-	070	-	-
	% > Level 2 EVWQP Benchmark	-	-	-	-	-	-	0%	0%	-	-	-	-	-	-	-	-
	% > Level 3 EVWQP Benchmark	-	-	-	-	-	-	0%	-	-	-	-	-	-	-	-	-
	n	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
	Annual Minimum	<0.0001	<0.01	<0.00005	0.00185	0.00104	0.000773	<0.0005	0.000774	<0.00001	<0.00001	0.000660	< 0.003	< 0.003	0.00000500	0.352	<0.01
	Annual Maximum	0.000335	0.794	0.000509	0.00350	0.0530	0.00107	0.00168	0.00250	0.0000125	0.0000235	0.000843	0.00635	0.00310	0.00000885	0.436	<0.01
	Annual Mean	0.000139	0.174	0.000143	0.00266	0.0127	0.000950	0.000702	0.00132	0.0000104	0.0000122	0.000759	0.00367	0.00302	0.00000727	0.384	< 0.01
	Annual Median	< 0.0001	0.0550	0.0000685	0.00260	0.00548	0.000991	< 0.0005	0.00116	< 0.00001	< 0.00001	0.000771	< 0.003	< 0.003	0.00000745	0.374	< 0.01
RG GH-SCW1	% < LRL	83%	17%	50%	0%	0%	0%	67%	0%	83%	83%	0%	67%	83%	0%	67%	100%
	% > BCWOG ^a	0%	-	0%	-	0%	0%	0%	17%	0%	0%	0%	0%	0%	0%	0%	-
		0%	0%	0%	_	0%	0%	-	-	0%	-	-	0%	0%	0%	0%	0%
	% > Level 1 EVWOP Benchmark	070	070	070	_	070	070	0%	0%	070	_	_	070	070	0%	070	070
	% > Lovel 2 EV/WQP Benchmark	-	-	-	-	-	-	0%	0%	-	-		-	-	070		-
		-	-	-	-	-	-	0 /6	0 70	-	-	-	-	-	-	-	-
	% > Level 3 EVWQP Benchmark	-	-	-	-	-	-	0%	-	-	-	-	-	-	-	-	-
	n	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13
	Annual Minimum	<0.0001	0.0110	<0.00005	0.00240	0.000880	0.000834	< 0.0005	0.00142	<0.00001	< 0.00001	0.000708	< 0.003	< 0.003	0.00000760	0.391	<0.01
	Annual Maximum	0.000420	0.970	0.000669	0.0274	0.0487	0.00133	0.00269	0.159	0.0000170	0.0000270	0.00614	0.00730	0.00710	0.0000258	2.14	0.0180
	Annual Mean	0.000143	0.182	0.000152	0.0133	0.00941	0.00108	0.00108	0.0696	0.0000108	0.0000125	0.00302	0.00362	0.00362	0.0000148	1.15	0.0112
	Annual Median	<0.0001	0.0570	0.0000640	0.0135	0.00330	0.00113	0.000860	0.0626	<0.00001	<0.00001	0.00292	< 0.003	< 0.003	0.0000149	1.15	<0.01
RG_GH-SCW3	% < LRL	77%	0%	46%	0%	0%	0%	8%	0%	85%	85%	0%	85%	85%	0%	31%	85%
	% > BCWQG ^a	0%	-	0%	-	0%	0%	0%	85%	0%	0%	0%	0%	0%	0%	0%	-
	% > BCWQG ^b	0%	0%	0%	-	0%	0%	-	-	0%	-	-	0%	0%	0%	0%	0%
	% > Level 1 EVWQP Benchmark	-	-	-	-	-	-	0%	62%	-	-	-	-	-	0%	-	-
	% > Level 2 EVWQP Benchmark	-	-	-	-	-	-	0%	46%	-	-	-	-	-	-	-	-
	% > Level 3 EVWOP Benchmark	_	-		-	-	-	0%	-	-	-	-	_	-	_	-	-
	/0 > Level 5 LVVVqr Delicilliark	- 16	- 16	- 16	- 16	- 16	- 16	16	- 16	- 16	- 16	- 16	- 16	16	- 16	- 16	- 16
			0 0100		0.00240	0.00120	0.00020		0.00125			0.00762				0 200	-0.01
		<u> <u> </u> <u></u></u>	0.0100	C00000	0.00210	0.00129	0.000679	NU.00000	0.00135	<u>\0.00001</u>		0.000762	<u>\0.003</u>	<u> \0.003</u>	<u>\0.000003</u>	0.360	<u> </u>
		0.000730	2.00	0.00108	0.0132	0.0982	0.00148	0.00420	0.0499	0.0000360	0.0000590	0.00206	0.0530	0.00460	0.0000177	0.500	0.0170
	Annual Mean	0.000241	0.549	0.000329	0.00522	0.0256	0.00106	0.00161	0.0105	0.0000144	0.0000200	0.00106	0.0108	0.00329	0.0000101	0.568	0.0104
	Annual Median	0.000125	0.259	0.000174	0.00405	0.0149	0.00103	0.000920	0.00634	<0.00001	<0.00001	0.000961	0.00730	< 0.003	0.0000104	0.471	<0.01
GH_ERSC2	% < LRL	31%	0%	13%	0%	0%	0%	19%	0%	63%	56%	0%	31%	69%	13%	75%	94%
	% > BCWQG ^a	0%	-	0%	-	0%	0%	0%	94%	0%	0%	0%	0%	0%	0%	0%	-
	% > BCWQG ^b	0%	19%	0%	-	0%	0%	-	-	0%	-	-	0%	0%	0%	0%	0%
	% > Level 1 EVWQP Benchmark	-	-	-	-	-	-	0%	13%	-	-	-	-	-	0%	-	-
	% > Level 2 EVWQP Benchmark	-	-	-	-	-	-	0%	0%	-	-	-	-	-	-	-	-
	% > Level 3 EVWQP Benchmark	-	-	-	-	-	-	0%	-	-	-	-	-	-	-	-	-

> 5% of samples exceed the guideline or benchmark.

> 50% of samples exceed the guideline or benchmark.

> 95% of samples exceed the guideline or benchmark.

Notes: "LRL" = laboratory reporting limit. "BCWQG" = British Columbia Working or Accepted Water Quality Guideline. For guidelines dependent on other analytes (e.g., hardness or chloride), guidelines were screened using concurrent concentrations. When concurrent hardness or chloride concentrations were not measured, the most conservative concentration observed for that station was used to estimate the guidelines or benchmark. All summary statistics are reported to 3 significant figures.

^a Long-term average BCQWG for the Protection of Aquatic Life.

			An	nual	Q1. Is ther	e a positive o	r negative cha year (b) of ı	ange in conce monitoring?	entrations sind	ce the base	Q2. Is the	2020 annual ı	storical me	rical means (2015 to 2019) and the				
Parameter	Status	Station	Valle		Magnitude o	of Difference (I	MOD) ^b and Sig	gnificance (bo	olded) from B	ase Year (b) ^c				previous	year (2019)?			
			DF	P-Value	2015	2016	2017	2018	2019	2020	2015	2016	2017	2018	2019	2020	2020 vs. 2015 to 2019	2020 vs. 2019
		GH_ERSC4	4	0.373	-	b	ns	ns	ns	ns	-	ns	ns	ns	ns	ns	ns	ns
Total Solonium	Mino ovposod	GH_ER1A	5	0.250	b	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
	wine-exposed	RG_GH-SCW3	2	0.297	-	-	-	b	ns	ns	-	-	-	greater or less than all annual historical means (20 previous year (2019)? ^c 2172018201920202020 tons<	ns	ns		
		GH_ERSC2	1	0.850	-	-	-	b	-	ns	-	-	-	ns	-	ns	ns	-
		GH_ERSC4	4	0.329	-	b	ns	ns	ns	ns	-	ns	ns	ns	ns	ns	ns	ns
Nitrate-N	Mine-exposed	GH_ER1A	5	0.745	b	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
Nillalo-IN	wine-exposed	RG_GH-SCW3	2	0.652	-	-	-	b	ns	ns	-	-	-	ns	ns	ns	ns	ns
		GH_ERSC2	1	0.856	-	-	-	b	-	ns	-	-	-	ns	-	ns	ns	-
		GH_ERSC4	4	0.744	-	b	ns	ns	ns	ns	-	ns	ns	ns	ns	ns	ns	ns
Sulphate	Mine-exposed	GH_ER1A	5	0.860	b	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	
Guipilate	wine-exposed	RG_GH-SCW3	2	0.958	-	-	-	b	ns	ns	-	-	-	ns	ns	ns	ns	ns
		GH_ERSC2	1	0.488	-	-	-	b	-	ns	-	-	-	ns	-	ns	ns	-
		GH_ERSC4	4	0.103	-	b	ns	ns	ns	ns	-	ns	ns	ns	ns	ns	ns	ns
Total Dissolved	Mine-exposed	GH_ER1A	5	0.923	b	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
Solids	willie-exposed	RG_GH-SCW3	2	0.897	-	-	-	b	ns	ns	-	-	-	ns	ns	ns	ns	ns
		GH_ERSC2	1	0.197	-	-	-	b	-	ns	-	-	-	ns	-	ns	ns	-
		GH_ERSC4	4	0.299	-	b	ns	ns	ns	ns	-	ns	ns	ns	ns	ns	ns	ns
Total Nickol	Mino ovposod	GH_ER1A	5	0.565	b	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
TOTALINICKEI	wine-exposed	RG_GH-SCW3	2	0.040	-	-	-	b	-32	-25	-	-	-	A	В	AB	ns	ns
		GH_ERSC2	1	0.090	-	-	-	b	-	ns	-	-	-	ns	-	ns	ns	-
		GH_ERSC4	4	0.677	-	b	ns	ns	ns	ns	-	ns	ns	ns	ns	ns	ns	ns
Uronium	Mina avpaced	GH_ER1A	5	0.827	b	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
Uranium	wine-exposed	RG_GH-SCW3	2	0.945	-	-	-	b	ns	ns	-	-	-	ns	ns	ns	ns	ns
		GH_ERSC2	1	0.892	-	-	-	b	-	ns	-	-	-	ns	-	ns	ns	-

Table D.8: Temporal Changes in Water Chemistry Analytes at Elk River Side Channel Stations, GHO LAEMP, 2015 to 2020

P-value < 0.05.

- > 20% Decrease in concentration.
- > 33% Decrease in concentration.
- > 43% Decrease in concentration.
- > 50% Decrease in concentration.
- > 25% Increase in concentration.
- > 50% Increase in concentration.
- > 75% Increase in concentration.
- > 100% Increase in concentration.
- **bold** Significant increase or decrease from base year (b).
 - Significantly < than all historical years (or 2018).
 - Significantly > than all historical years (or 2018).

Notes: "ns" = not significant. "-" = insufficient data.

^a Year p-value from an ANOVA with factors Year and Month.

^b Magnitude of Difference (MOD) = [Mean_{given year} – Mean_{year b}] /Mean_{year b} × 100%.

^c Significance among year determined using all pairwise comparisons using Tukey's honestly significant differences method. Years that share a letter are not significantly different. Letters assigned such that the mean with highest magnitude is assigned "A".

 Table D.9:
 Statistical Comparisons of Differences in Monthly Mean Concentrations of Water Quality Parameters Between

 GHO LAEMP Side Channel Stations (GH_ERSC4, GH_ER1A, GH_ERSC2) and the Elk River Main Stem Station Upstream of

 Mine Operations (GH_ER2), 2016 to 2020

					Post-hoc C	ontrasts w	Magnitude	T-Test fo	or Overall							
	ANOVA	Model ^a			CH E	PSC2	uner	ence								
Davamatar	Madal Tawa	DE	-	D Value		NOD				KOC2	P-Value	MOD				
Parameter			F	P-Value	P-value	MOD	P-value	MOD	P-value	MOD						
	Station	4	0.14 42	<0.969	- 0.006	- 31%	<0.001	- 351%	<0.001	- 1462%						
Nitrate-N	Year x Station	8	0.73	0.669	-	-	-	-	-	-	-	-				
	Error	99		-	-	-	-	-	-	-						
	Year	4	0.94	0.454	_											
Nitrite-N	Station	2	0.69	0.512	_	<0.001	77%									
	Frror	8 25	0.9	0.516												
	Year	4	4	0.898												
Orthophosphata	Station	2	2	0.169		0.075	ne									
Onnophosphate	Year x Station	8	8	0.926		0.075	115									
	Error	95		-							·					
	Year	4	4	0.470												
Total Phosphorus	Year x Station	2	2	0.037	-			-			0.062	ns				
	Error	95	Ŭ	-	-											
	Year	4	0.27	0.897	-	-	-	-	-	-						
Sulphate	Station	2	37	<0.001	0.032	13%	<0.001	63%	<0.001	295%	_	_				
Guiphato	Year x Station	8	0.88	0.539	-	-	-	-	-	-						
	Error	99	0.07	-	-	-	-	-	-	-						
Total Dissolved	Year Station	4	0.27	0.899	- 0.130	-	-	-	-	-						
Solids	Year x Station	8	0.88	0.535	-	-	-	-	-0.001		-	-				
	Error	99	0.00	-	-	-										
	Year	4	2.76	0.033												
Total Suspended	Station	2	0	0.613				_			<0.001	56%				
Solids (mg/L)	Year x Station	8	0.12	0.998	_							0070				
	Error	86	2 0 0 0	-												
Cadmium	Station	4	3.088	0.020												
(Dissolved)	Year x Station	8	0.61	0.764				-			0.015	17%				
× ,	Error	89		-												
	Year	Year														
Cobalt	Station	Con	centration	s < LRL			Concentrat	tions < LRL			-	-				
(Dissolved)	Year x Station															
	Error	1	0.37	0.827												
	Station	4	2	0.027	_											
Antimony (Total)	Year x Station	8	0.1	0.996	-	-										
	Error	21		-												
	Year	4	1.27	0.286	_											
Barium (Total)	Station	2	1.3	0.285	_			-			<0.001	10%				
	Frror	8	0.7	0.688	_											
	Year	55														
Doron (Total)	Station	Can	contration				Concentrat	tiona d DI								
Boron (Total)	Year x Station	Con	centration	S < LKL			Concentrat	lions < LRL			-	-				
	Error		1				1		1							
	Year	4	0.12	0.976	-	-	-	-	-	-						
Lithium (Total)	Vear x Station	2	14	< 0.001	0.005	15%	< 0.001	97%	<0.001	150%	-	-				
	Error	96	0.0	-	_	-	-	-	-	-						
	Year	4	0.49	0.744												
Manganese	Station	2	0	0.838				_			0 118	ns				
(Total)	Year x Station	8	0.6	0.752	_											
	Error	99	0.20	- 0.020												
Molybdenum	Station	4	0.20	0.939	0.027	- 4%	0.002	- 21%	<0.001	- 12%						
(Total)	Year x Station	8	0.5	0.857	-	- 70	-	-	-	-	-	-				
	Error	99		-	-	-	-	-	-	-						
	Year	4	1.01	0.408												
Nickel (Total)	Station	2	0	0.732				-			<0.001	51%				
	Year X Station	8 53	0.1	0.998	-											
	Year	- 55 - 4	0.72	- 0.578			-	-	-	_						
	Station	2	59	< 0.001	0.068	ns	< 0.001	109%	< 0.001	920%						
Selenium (Total)	Year x Station	8	0.9	0.506	-	-	-	-	-	-	-	-				
	Error	99		-	-	-	-	-	-	-						
	Year	4	0.04	0.997	-	-	-	-	-	-						
Uranium (Total)	Station	2	6	0.003	0.004	7%	0.002	29%	<0.001	40%	-	-				
	Fror	0 99	0.7	U.004 -	-	-	-	-	-	-						
	Year	4	2.75	0.044			1	1	1	I						
Zina (Tatal)	Station	2	0	0.629				_			0.045	220/				
Zinc (Total)	Year x Station	7	0.9	0.493			-	-			0.045	22%				
	Error	34		-												

P-value < 0.05.

Positive MOD (higher concentration of analyte at side-channel station relative to GH_ER2).

Negative MOD (lower concentration of analyte at side-channel station relative to GH_ER2).

Note: "-" indicates analysis not applicable. "ns" indicates not significant. "LRL" indicates laboratory reporting limit.

^a Analysis of Variance (ANOVA) conducted on the relative differences between areas, calculated as log₁₀(Side Channel) – log₁₀(GH_ER2) with Year, Station and Year x Station as model terms. Values less than the laboratory reporting limit (LRL) were replaced with the LRL when only one of the two paired samples was < LRL. No difference was calculated when both paired samples were < LRL. Only comparisons with more than three difference values for all time periods were included

^b Post-hoc calculated as a one-sample t-test on the relative differences between each station [log₁₀(Side Channel) – log₁₀(GH_ER2)] for parameters with a significant station term in the ANOVA model.

^c Magnitude of difference (MOD) calculated as the side channel concentration (10^{[log₁₀}(side-channel)]) minus the upstream concentration (10^{[log₁₀}(GH_ER2)]) divided by the downstream concentration (10^{[log₁₀}(GH_ER2)]) and multiplied by 100 to represent the percent difference between the side channel station and upstream, relative to upstream.

 Table D.10:
 Statistical Comparisons of Differences in Monthly Mean Concentrations of Water Quality Parameters Between

 GHO LAEMP Side Channel Stations (GH_ERSC4, GH_E1A, GH_ERSC2) and the Main Stem Station Downstream of Mine

 Operations (GH_ERC), 2016 to 2020

					Post-he	T-Test for Overall						
	ANOVA I	Model								PSC2	une	
Deveryoter	Madal Taura	DE	F	D Value		K304				MOD	P-Value	MOD
Parameter	Model Term	DF	F	P-Value	P-Value	MOD	P-Value	MOD	P-Value	MOD		
	Station	4	40	<0.960	- <0.001	-76%	- 0 534	- ns	- <0 001	- 190%		
Nitrate-N	Year x Station	8	0.64	0.746	-	-	-	-	-	-	-	-
	Error	99		-	-	-	-	-	-	-		
	Year	4	0.67	0.617	-							
Nitrite-N	Year x Station	7	0.8	0.555	-		-				0.002	47%
	Error	35		-					-			
	Year	4	0.49	0.743	-	-	-	-	-	-		
Sulphate	Station	2	45	<0.001	<0.001	-25%	0.539	ns	<0.001	161%	-	-
	Error	99	0.90	- 0.455	-	-	-	-	-	-		
	Year	4	0.52	0.720	-	-	-	-	-	-		
Total Dissolved	Station	2	16	<0.001	0.071	ns	0.136	ns	<0.001	46%	-	-
Solids	Year x Station	8	0.91	0.512	-	-	-	-	-	-		
	Error Year	99 4	0.58	- 0.678	-	-	-	-	-	-		
Total Suspended	Station	2	0.34	0.715	-						0.004	
Solids (mg/L)	Year x Station	8	0.35	0.943			-				0.301	ns
	Error	88		-			1		1	1		
Codmium	Year	4	0.688	0.602	-	-	-	-	-	-		
(Dissolved)	Year x Station	2	0.87	0.001	- 0.045	-0.000	- 0.214	-	-	0.359	-	-
(2.000.000)	Error	99	0.07	-	-	-	-	-	-	-		
	Year											
Cobalt	Station	Con	centrations	s < LRL				-	-			
(Dissolved)	Year x Station											
	Year	4	0.34	0.847								
Antimony (Total)	Station	2	2	0.108							0 101	20
Anumony (Total)	Year x Station	8	0.3	0.973	-		-				0.101	115
	Error	24	0.62	-								
	Station	4	2.3	0.644								
Barium (Total)	Year x Station	8	0.8	0.577	-		-				<0.001	-8%
	Error	99		-								
	Year											
Boron (Total)	Station Vear x Station	Con	centrations	s < LRL			-	-				
	Error											
	Year	4	0.58	0.680	-	-	-	-	-	-		
Lithium (Total)	Station	2	16	<0.001	<0.001	-27%	0.122	ns	<0.001	69%	_	-
()	Year x Station	8	0.5	0.837	-	-	-	-	-	-	-	
	Year	99 4	0.59	- 0.671	-	-	-	-	-	-		
Manganese	Station	2	2	0.178	-						0.044	000/
(Total)	Year x Station	8	0.3	0.969			-				0.014	28%
	Error	99	0.04	-			I					
Molybdenum	Year	4	0.31	0.869	-	- ne	-	-	-	-		
(Total)	Year x Station	8	0.4	0.895	-	-	-	-	-	-	-	-
	Error	99		-	-	-	-	-	-	-		
	Year	4	0.96	0.436	-							
Nickel (Total)	Station	2	0	0.611	-		-				<0.001	33%
	Frror	8 55	0.1	- 0.997								
	Year	4	0.38	0.821	-	-	-	-	-	-		
Selenium (Total)	Station	2	66	<0.001	<0.001	-41%	0.674	ns	<0.001	396%	_	_
ocienium (rotal)	Year x Station	8	0.9	0.535	-	-	-	-	-	-	-	_
	Error	99 4	0.21	-	-	-	-	-	-	-		
	Station	2	6	0.931	- 0.395	- ns	0.033	- 17%	< 0.001	- 26%		
Uranium (Total)	Year x Station	8	0.7	0.657	-	-	-	-	-	-	-	-
	Error	99		-	-	-	-	-	-	-	1	
	Year	4	1.42	0.245	-							
Zinc (Total)	Station Year x Station	2	U 1 3	0.930	-		-				0.667	ns
	Error	40	1.5	-	-							

P-value < 0.05.

Positive MOD (higher concentration of analyte at side-channel station relative to GH_ERC).

Negative MOD (lower concentration of analyte at side-channel station relative to GH_ERC).

Note: "-" indicates analysis not applicable; "ns" indicates not significant; "LRL" indicates laboratory reporting limit.

^a Analysis of Variance (ANOVA) conducted on the relative differences between areas, calculated as log_{10} (Side Channel) – log_{10} (GH_ERC) with Year, Station and Year x Station as model terms. Values less than the laboratory reporting limit (LRL) were replaced with the LRL when only one of the two paired samples was < LRL. No difference was calculated when both paired samples were < LRL. Only comparisons with more than three difference values for all time periods were included.

^b Post-hoc calculated as a one-sample t-test on the relative differences between each station [log₁₀(Side Channel) – log₁₀(GH_ERC)] for parameters with a significant station term in the ANOVA model.

^c Magnitude of difference (MOD) calculated as the side channel concentration (10^{[log₁₀}(side-channel)]) minus the downstream concentration (10^{[log₁₀}(GH_ERC)]) divided by the downstream concentration (10^{[log₁₀}(GH_ERC)]) and multiplied by 100 to represent the percent difference between the side channel station and downstream, relative to downstream.

Table D.11: Summary of Water Chemistry Data for Key Parameters for the Side Channel Stations of the GHO LAEMP, 2020

Station	Summary Statistic	Total Dissolved Solids (mg/L)	Lab pH	Field pH	Dissolved Oxygen (mg/L)	Alkalinity (mg/L)	Nitrate-N (mg/L)	Nitrite-N (mg/L)	Ammonia (mg/L)	Sulphate (mg/L)	Total Chloride (mg/L)	Total Fluoride (mg/L)	Total Antimony (mg/L)	Total Arsenic (mg/L)	Total Barium (mg/L)	Total Beryllium (mg/L)	Total Boron (mg/L)	Total Chromium (mg/L)
	n	43	43	41	41	43	43	43	43	43	43	43	43	43	43	43	43	43
	Annual Minimum	139	7.94	7.86	8.90	122	0.0238	<0.001	<0.005	10.4	0.230	0.0880	< 0.0001	< 0.0001	0.0331	< 0.00002	< 0.01	0.000190
	Annual Maximum	206	8.51	9.12	12.6	156	0.119	0.00170	0.428	25.4	0.910	0.200	0.000210	0.00317	0.0901	0.000210	<0.01	0.00486
	Annual Mean	178	8.31	8.25	10.8	145	0.0738	0.00102	0.0261	18.9	0.320	0.142	0.000106	0.000279	0.0479	0.0000299	<0.01	0.000599
	Annual Median	176	8.32	8.18	10.5	148	0.0856	<0.001	0.00760	18.3	0.300	0.144	<0.0001	0.000120	0.0467	< 0.00002	<0.01	0.000290
GH_ER2	% < LRL	0%	0%	0%	0%	0%	0%	98%	19%	0%	65%	0%	91%	26%	0%	88%	100%	0%
_	% > BCWQG ^a	-	0%	2%	0%	0%	0%	0%	9%	0%	0%	-	0%	-	0%	5%	0%	12%
	% > BCWQG ^b	-	-	-	0%	-	0%	0%	9%	-	0%	0%	-	0%	-	-	-	-
	% > Level 1 EVWQP Benchmark	0%	-	-	-	-	0%	-	-	0%	-	-	-	-	-	-	-	-
	% > Level 2 EVWQP Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	% > Level 3 EVWQP Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	n	42	42	41	41	42	42	42	42	42	42	42	42	42	42	42	42	42
	Annual Minimum	146	8.05	7.50	8.74	127	0.133	<0.001	<0.005	15.9	0.290	0.0760	<0.0001	<0.0001	0.0429	< 0.00002	<0.01	0.000190
	Annual Maximum	259	8.53	9.09	11.9	164	2.88	<0.005	0.124	192	2.90	0.780	0.000250	0.00247	0.101	0.000252	<0.01	0.00628
	Annual Mean	198	8.29	8.15	10.5	150	0.532	0.00102	0.0140	33.8	0.446	0.153	0.000106	0.000252	0.0563	0.0000288	<0.01	0.000618
	Annual Median	195	8.30	8.15	10.5	152	0.434	<0.001	0.00765	29.7	0.355	0.140	< 0.0001	0.000125	0.0562	< 0.00002	<0.01	0.000275
GH_ERC	% < LRL	0%	0%	0%	0%	0%	0%	93%	36%	0%	60%	0%	93%	26%	0%	88%	100%	0%
_	% > BCWQG ^a	-	0%	2%	0%	0%	0%	0%	5%	0%	0%	-	0%	-	0%	2%	0%	12%
	% > BCWQG ^b	-	-	-	0%	-	0%	0%	5%	-	0%	0%	-	0%	-	-	-	-
	% > Level 1 EVWQP Benchmark	0%	-	-	-	-	0%	-	-	0%	-	-	-	-	-	-	-	-
	% > Level 2 EVWQP Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	% > Level 3 EVWQP Benchmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

> 5% of samples exceed the guideline or benchmark.

> 50% of samples exceed the guideline or benchmark.

> 95% of samples exceed the guideline or benchmark.
 Notes: "LRL" = laboratory reporting limit. "BCWQG" = British Columbia Working or Accepted Water Quality Guideline. For guidelines dependent on other analytes (e.g., hardness or chloride), guidelines were screened using concurrent concentrations. When concurrent hardness or chloride concentrations were not measured, the most conservative concentration observed for that station was used to estimate the guidelines or benchmark. All summary statistics are reported to 3 significant figures.

^a Long-term average BCQWG for the Protection of Aquatic Life.

Table D.11: Summary of Water Chemistry Data for Key Parameters for the Side Channel Stations of the GHO LAEMP, 2020

Station	Summary Statistic	Total Cobalt (mg/L)	Total Iron (mg/L)	Total Lead (mg/L)	Total Lithium (mg/L)	Total Manganese (mg/L)	Total Molybdenu m (mg/L)	Total Nickel (mg/L)	Total Selenium (mg/L)	Total Sliver (mg/L)	Total Thallium (mg/L)	Total Uranium (mg/L)	Total Zinc (mg/L)	Dissolved Aluminum (mg/L)	Dissolved Cadmium (mg/L)	Dissolved Copper (mg/L)	Dissolved Iron (mg/L)
	n	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43
	Annual Minimum	<0.0001	<0.01	< 0.00005	0.00140	0.000560	0.000796	< 0.0005	0.000596	<0.00001	<0.00001	0.000591	< 0.003	< 0.003	< 0.000005	0.289	<0.01
	Annual Maximum	0.00169	3.30	0.00250	0.00460	0.288	0.00112	0.00713	0.00124	0.0000610	0.0000990	0.00104	0.0285	0.0603	0.000502	0.415	0.0680
	Annual Mean	0.000182	0.245	0.000189	0.00200	0.0163	0.000996	0.000869	0.000896	0.0000127	0.0000155	0.000744	0.00438	0.00486	0.0000191	0.356	0.0115
	Annual Median	<0.0001	0.0210	< 0.00005	0.00180	0.00272	0.00101	< 0.0005	0.000877	< 0.00001	<0.00001	0.000744	< 0.003	< 0.003	0.00000720	0.361	<0.01
GH_ER2	% < LRL	88%	26%	72%	0%	0%	0%	86%	0%	88%	86%	0%	88%	79%	16%	79%	91%
_	% > BCWQG ^a	0%	-	0%	-	0%	0%	0%	0%	0%	0%	0%	0%	2%	2%	2%	-
	% > BCWQG ^b	0%	9%	0%	-	0%	0%	-	-	0%	-	-	0%	0%	0%	0%	0%
	% > Level 1 EVWQP Benchmark	-	-	-	-	-	-	2%	0%	-	-	-	-	-	2%	-	-
	% > Level 2 EVWQP Benchmark	-	-	-	-	-	-	0%	0%	-	-	-	-	-	-	-	-
	% > Level 3 EVWQP Benchmark	-	-	-	-	-	-	0%	-	-	-	-	-	-	-	-	-
	n	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42
	Annual Minimum	<0.0001	<0.01	< 0.00005	0.00200	0.000130	0.000889	<0.0005	0.00105	< 0.00001	<0.00001	0.000659	< 0.003	< 0.003	< 0.000005	0.332	<0.01
	Annual Maximum	0.00194	4.72	0.00299	0.00720	0.296	0.00124	0.00866	0.00424	0.0000860	0.000148	0.00118	0.0360	0.0366	0.0000619	0.694	0.0340
	Annual Mean	0.000179	0.269	0.000194	0.00306	0.0157	0.00103	0.000870	0.00214	0.0000134	0.0000157	0.000830	0.00460	0.00431	0.0000866	0.404	0.0108
	Annual Median	<0.0001	0.0120	< 0.00005	0.00295	0.00159	0.00103	< 0.0005	0.00198	< 0.00001	<0.00001	0.000818	< 0.003	< 0.003	0.00000710	0.392	<0.01
GH_ERC	% < LRL	79%	45%	67%	0%	0%	0%	76%	0%	88%	86%	0%	74%	81%	17%	86%	93%
_	% > BCWQG ^a	0%	-	0%	-	0%	0%	0%	43%	0%	0%	0%	0%	0%	0%	5%	-
	% > BCWQG ^b	0%	7%	0%	-	0%	0%	-	-	0%	-	-	0%	0%	0%	0%	0%
	% > Level 1 EVWQP Benchmark	-	-	-	-	-	-	2%	0%	-	-	-	-	-	0%	-	-
	% > Level 2 EVWQP Benchmark	-	-	-	-	-	-	0%	0%	-	-	-	-	-	-	-	-
	% > Level 3 EVWQP Benchmark	-	-	-	-	-	-	0%	-	-	-	-	-	-	-	-	-

> 5% of samples exceed the guideline or benchmark.

> 50% of samples exceed the guideline or benchmark.

> 95% of samples exceed the guideline or benchmark.
 Notes: "LRL" = laboratory reporting limit. "BCWQG" = British Columbia Working or Accepted Water Quality Guideline. For guidelines dependent on other analytes (e.g., hardness or chloride), guidelines were screened using concurrent concentrations. When concurrent hardness or chloride concentrations were not measured, the most conservative concentration observed for that station was used to estimate the guidelines or benchmark. All summary statistics are reported to 3 significant figures.

^a Long-term average BCQWG for the Protection of Aquatic Life.

Table D.12: Temporal Changes in Water Chemistry Analytes at Main Stem Elk River Stations Downstream (GH_ERC) and Upstream (GH_ER2) of Mine Influence, GHO LAEMP, 2012 to 2020

Parameter	Status	Station	A Var	nnual iation ^a	Q1. Is Magn	there a l	bositive ba Differend	or negat ase year ce (MOD	ive char (b) of m) ^b and Si	nge in co onitoring gnifican	oncentra g? ce (bold	tions sin ed) from	Base	Q2. Is the 2020 annual mean greater or less than all annual historical means (2012 to 2019) and th previous year (2019)? ^c										and the	
		Reference (DF	P-Value	2012	2013	2014	2015	2016	2017	2018	2019	2020	2012	2013	2014	2015	2016	2017	2018	2019	2020	2020 vs. 2012 to 2019	2020 vs. 2019
Total Solonium	Reference	GH_ER2	8	<0.001	b	-5.5	-2.1	3.6	12	10	13	22	17	D	D	D	CD	BC	BC	AB	Α	AB	ns	ns	
Total Selenium	Mine-exposed	GH_ERC	5	<0.001	-	-	-	b	1.7	-1.5	19	31	34	-	-	-	С	BC	С	AB	Α	А	ns	ns	
Nitroto N	Reference	GH_ER2	8	<0.001	b	13	88	105	98	102	88	95	91	В	В	А	А	Α	А	Α	Α	Α	ns	ns	
INITIALE-IN	Mine-exposed	GH_ERC	5	<0.001	-	-	-	b	17	-1.3	15	38	44	-	-	-	В	AB	В	AB	Α	Α	ns	ns	
Sulphata	Reference	GH_ER2	8	<0.001	b	4.5	11	20	29	19	21	28	19	D	CD	BC	AB	Α	AB	AB	Α	AB	ns	ns	
Supriate	Mine-exposed	GH_ERC	5	<0.001	-	-	-	b	35	-0.35	-4.2	5.4	12	-	-	-	В	Α	В	В	В	AB	ns	ns	
Total Dissolved	Reference	GH_ER2	8	<0.001	b	7.4	4.4	10	12	9.6	7.5	5.7	12	С	AB	BC	AB	А	AB	AB	ABC	А	ns	ns	
Solids	Mine-exposed	GH_ERC	5	<0.001	-	-	-	b	10	-0.34	-2.9	-2.0	1.2	-	-	-	В	Α	В	В	В	В	ns	ns	
Total Nickel	Reference	GH_ER2	8	0.155	b	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	-	-	
Total Nickel	Mine-exposed	GH_ERC	5	0.277	-	-	-	b	ns	ns	ns	ns	ns	-	-	-	ns	ns	ns	ns	ns	ns	-	-	
Uranium –	Reference	GH_ER2	8	0.026	b	2.7	2.9	3.5	7.0	1.7	4.8	5.1	3.6	В	AB	AB	AB	A	AB	AB	AB	AB	ns	ns	
	Mine-exposed	GH_ERC	5	0.393	-	-	-	b	ns	ns	ns	ns	ns	-	-	-	ns								

P-value < 0.05.

> 20% Decrease in concentration.

> 33% Decrease in concentration.

> 43% Decrease in concentration.

> 50% Decrease in concentration.

> 25% Increase in concentration.

> 50% Increase in concentration.

> 75% Increase in concentration.

> 100% Increase in concentration.

bold Significant increase or decrease from base year (b).

Significantly < than all historical years (or 2018).

Significantly > than all historical years (or 2018).

Notes: "ns" = not significant. "-" = insufficient data.

^a Year p-value from an ANOVA with factors Year and Month.

^b Magnitude of Difference (MOD) = [Mean_{given year} – Mean_{year b}] /Mean_{year b} × 100%.

^c Significance among year determined using all pairwise comparisons using Tukey's honestly significant differences method. Years that share a letter are not significantly different. Letters assigned such that the mean with highest magnitude is assigned "A".

 Table D.13:
 Difference in Monthly Mean Concentrations of Water Quality Parameters Between Stations Downstream

 (GH_ERC) and Upstream (GH_GH2) of Mining Operations, GHO LAEMP, 2016 to 2020

ANOVA Model To (Down:	esting for Relati stream − Upstre	ive Differei am) Amon	nce Betwee g Years ^a	en Areas	Post-hoc Contrasts ^b (Downstream vs. Upstream) and Magnitude of Difference (MOD ^c) (Downstream Relative to Upstream)										
		-	-				P-value (MOD)								
Parameter	Model Term	DF	F	P-value	2016	2017	2018	2019	2020						
Nitrate-N	Year	4	2.75	0.037	<0.001 (420%)	<0.001 (330%)	<0.001 (440%)	<0.001 (525%)	<0.001 (566%)						
	Error	55	-	-											
Nitrito_N	Year	Conc	entrations -	< I RI		Co	ncentrations < 1	RI							
INITING-IN	Error	Cond													
Orthophosphate	Year	4	0.09	0.984			0 375 (4%)								
Orthophosphate	Error	42	-	-			0.375 (4%)								
Total Phosphorus	Year	4	0.59	0.668			0 361 (8%)								
rotari nospriorus	Error	50	-	-			0.301 (070)								
Sulphate	Year	4	4.34	0.004	<0.001 (84%)	<0.001 (47%)	<0.001 (39%)	<0.001 (11%)	<0.001 (65%)						
Odipilate	Error	55	-	-	<0.001 (0470)	<0.001 (4770)	<0.001 (3970)	<0.001 (44 70)	<0.001 (0370)						
Total Dissolved	Year	4	2.83	0.033	<0.001 (20%)	<0.001 (10%)	<0.001 (0%)	<0.001 (12%)	<0.001 (10%)						
Solids	Error	55	-	-	<0.001 (2078)	<0.001 (1078)	<0.001 (978)	<0.001 (1270)	<0.001 (1078)						
Total Suspended	Year	4	2.76	0.039	0.015 (44%)	0.020 (46%)	0.020 (130%)	0 533 (16%)	0.608 (7%)						
Solids (mg/L)	Error	45	-	-	0.013 (44%)	0.020 (40%)	0.020 (130%)	0.555 (10%)	0.098 (-7 %)						
Cadmium	Year	ear 4 1.41 0.244													
(Dissolved)	Error	53	-	-			0.140 (9%)	0.140 (9%)							
Cabalt (Dissaluad)	Year	Con	ontrationa			6.	noontrationa d	Ы							
Cobait (Dissolved)	Error	Cond	entrations	< LKL			incentrations < L	KL							
Antimony (Total)	Year	Con	ontrationa			0.0	noontrationa d	DI							
Antimony (Total)	Error	Cond	centrations	< LRL		Co	ncentrations < L	KL							
Derium (Total)	Year	4	1.69	0.165			<0.001 (220/)								
Banum (Total)	Error	55	-	-			<0.001 (22%)								
Doron (Total)	Year	Con	ontrationa			6.	noontrationa d	Ы							
Boron (Total)	Error	Cond	entrations	< LKL			incentrations < L	KL							
Lithium (Total)	Year	4	2.53	0.051			<0.001 (E90/)								
Lithium (Total)	Error	54	-	-			<0.001 (58%)								
Manganaga (Tatal)	Year	4	1.43	0.237			0.002 (200/)								
Manganese (10tal)	Error	55	-	-			0.003 (-30%)								
Methylmercury	Year	Con	ontrationa			Ca	noontrationa < 1	DI							
(Total)	Error	Cond	entrations	< LKL			ncentrations < L	KL							
Malukadanum (Tatal)	Year	4	5.98	<0.001	0.407 (49()	0.025 (5%)	0.001 (00()	0.002 (5%)	0.068.(20/.)						
wolybdenum (Total)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							0.068 (3%)							
Niekel (Tetel)	Year	4	0.76	0.566			0.004 (45%)								
NICKEI (TOTAI)	Error	16	-	-			0.024 (15%)								
O a la minuna (T a t a l)	Year	4	3.64	0.011	10.004 (000()	-0.004 (70%)	-0.004 (4449()	-0.004 (4450())	-0.004 (4000()						
Selenium (Total)	Error	55	-	-	<0.001 (82%)	<0.001 (78%)	<0.001 (111%)	<0.001 (115%)	<0.001 (128%)						
	Year	4	1.12	0.355			40.004 (400()								
Uranium (Total)	Error	55	-	-			<0.001 (10%)								
	Year	4	0.60	0.667	67										
∠ınc (Total)	Error	19	-	-	0.061 (17%)										

P-value < 0.05.

Positive MOD (higher concentration of analyte at the Downstream station relative to Upstream).

Negative MOD (lower concentration of analyte at Downstream station relative to Upstream).

^a One way Analysis of Variance (ANOVA) conducted on the relative differences between areas, calculated as $log_{10}(downstream) - log_{10}(upstream)$ with year. Values less than the laboratory reporting limit (LRL) were replaced with the LRL when only one of the two paired samples was < LRL. No difference was calculated when both paired samples were < LRL. Only comparisons with more than three difference values for all time periods were included.

^b Post-hoc calculated as a one-sample t-test on the relative differences between stations [log₁₀(downstream) – log₁₀(upstream)]. Conducted separately by year when there was a significant year term in the ANOVA model.

^c Magnitude of difference (MOD) calculated as the downstream concentration 10[^](Mean_{GH_ERC}] minus the upstream concentration 10[^](Mean_{GH_GH2}) divided by the

upstream concentration 10[^](Mean_{GH_GH2}) and multplied by 100% (Mean_{GH_XXX} is in log₁₀ units) to represent the percent difference between the downstream and upstream stations, relative to upstream.

APPENDIX D WATER QUALITY SELENIUM SPECIATION LAB REPORTS

October 19, 2020

Teck Resources Limited - Vancouver Cait Good 421 Pine Avenue Sparwood, B.C. CANADA V0B2G0 Cait.Good@Teck.com

Re: REP

Ms. Good,

On October 1, 2020, Brooks Applied Labs (BAL) received ten (10) aqueous samples.

Sample fractions for $RG_UCWER_WS_LAEMP_GHO_2020-09_NAL$ were received with the sample shipment, even though this sample was not described on the chain-of-custody (COC) form. Total recoverable Se, dissolved Se, and Se speciation fractions for this sample were logged in under laboratory IDs 2040047-28, 2040047-29, and 2040047-30, respectively. The client was notified, and BAL was instructed to dispose of the samples. Consequently, no results are reported for $RG_UCWER_WS_LAEMP_GHO_2020-09_NAL$ (laboratory IDs = 2040047-28, 2040047-29, and 2040047-30).

The samples were logged-in for total recoverable selenium [Se], dissolved Se [Se], and Se speciation analyses, according to the chain-of-custody (COC) form. The sample fractions logged in for Se speciation and dissolved Se had been field-filtered prior to receipt at BAL; sample fractions for total recoverable and dissolved Se had also been preserved by the client prior to receipt. All samples were stored according to BAL SOPs.

Total Recoverable and Dissolved Se

Each aqueous sample fraction for total recoverable or dissolved Se was digested in a closed vessel (bomb) with nitric and hydrochloric acids. The resulting digests were analyzed for Se content via inductively coupled plasma triple quadrupole mass spectrometry (ICP-QQQ-MS). The ICP-QQQ-MS instrumentation uses advanced interference removal techniques to ensure accuracy of the sample results. For more information, please visit the *Interference Reduction Technology* section on our website, <u>brooksapplied.com</u>.

Selenium Speciation

Each aqueous sample was analyzed for selenium speciation using ion chromatography inductively coupled plasma collision reaction cell mass spectrometry (IC-ICP-CRC-MS). Selenium species are chromatographically separated on an ion exchange column and then quantified using inductively coupled plasma collision reaction cell mass spectrometry (ICP-CRC-MS); for more information on this determinative technique, please visit the Interference Reduction Technology section on our website. The chromatographic method applied for the analyses provides greater retention of methylseleninic acid and selenomethionine, allowing for more definitive quantitation of these species.
In accordance with the quotation issued for this project, selenium speciation was defined as dissolved selenite [Se(IV)], selenate [Se(VI)], selenocyanate [SeCN], methylseleninic acid [MeSe(IV)], selenomethionine [SeMet], selenosulfate $[SeSO_3]$, and dimethylselenoxide [DMSeO]. An unknown selenium species eluting between MeSe(IV) and SeMet is also reported [Se Unk A]. Research at BAL has indicated that [Se Unk A] is a product of the oxidation of volatile selenium species present in some client samples. The total concentration of any remaining unidentified selenium-containing species detected in each sample has also been reported as [Unk Se Sp].

DMSeO elutes early in the chromatographic run due to the nature of the molecule and the applied chromatographic separation method. Since this species elutes near the dead volume, additional selenium species may coelute. Alternate methods can be applied, upon client request, to increase the separation of DMSeO from potentially co-eluting selenium species.

Chromatographic interference, as indicated by an elevated baseline or co-eluting peak, was observed for selenosulfate in sample 2040047-24. Due to potential bias in the obtained result, the affected data point has been qualified as estimated (**J-1**). Upon client request, Brooks Applied Labs can apply a higher dilution to these samples to potentially mitigate the chromatographic interference, but a higher dilution would elevate the detection limit for SeMet above the client's requested limit of $0.010 \mu g/L$.

The results were not method blank corrected, as described in the calculations section of the relevant BAL SOPs and were evaluated using reporting limits adjusted to account for sample aliquot size. Please refer to the *Sample Results* page for sample-specific MDLs, MRLs, and other details.

In instances where a matrix spike/matrix spike duplicate (MS/MSD) set was spiked at a level less than the native sample concentration, the recoveries and the relative percent difference (RPD) are not considered valid indicators of data quality. In such instances, the recoveries of the laboratory fortified blanks (BS) and/or standard reference materials (SRM) demonstrate the accuracy of the applied methods. When the spiking level was less than 25% of the native sample concentration, the spike recovery was not reported (NR) and the relative percent difference (RPD) of the MS/MSD set was not calculated (N/C).

Except for the item noted above, all data were reported without qualification (aside from concentration qualifiers). All associated quality control sample results met the acceptance criteria.

BAL, an accredited laboratory, certifies that the reported results of all analyses for which BAL is NELAP accredited meet all NELAP requirements. For more information please see the *Report Information* page.

Please feel free to contact us if you have any questions regarding this report.

Sincerely,

Jeremy Maute Senior Project Manager Jeremy@brooksapplied.com

www.brooksapplied.com

Laboratory Accreditation

BAL is accredited by the *National Environmental Laboratory Accreditation Program* (NELAP) through the State of Florida Department of Health, Bureau of Laboratories (E87982) and is certified to perform many environmental analyses. BAL is also certified by many other states to perform environmental analyses. For a current list of our accreditations/certifications, please visit our website at <<u>http://www.brooksapplied.com/resources/certificates-permits/></u> or review Tables 1 and 2 in our Accreditation Information. Results reported relate only to the samples listed in the report.

Field Quality Control Samples

Please be notified that certain EPA methods require the collection of field quality control samples of an appropriate type and frequency; failure to do so is considered a deviation from some methods and for compliance purposes should only be done with the approval of regulatory authorities. Please see the specific EPA methods for details regarding required field quality control samples.

Common Abbreviations

AR	as received	MS	matrix spike
BAL	Brooks Applied Labs	MSD	matrix spike duplicate
BLK	method blank	ND	non-detect
BS	blank spike	NR	non-reportable
CAL	calibration standard	N/C	not calculated
ССВ	continuing calibration blank	PS	post preparation spike
CCV	continuing calibration verification	REC	percent recovery
COC	chain of custody record	RPD	relative percent difference
D	dissolved fraction	SCV	secondary calibration verification
DUP	duplicate	SOP	standard operating procedure
IBL	instrument blank	SRM	reference material
ICV	initial calibration verification	T	total fraction
MDL	method detection limit	TR	total recoverable fraction
MRL	method reporting limit		

Definition of Data Qualifiers

(Effective 3/23/2020)

- **E** An estimated value due to the presence of interferences. A full explanation is presented in the narrative.
- **H** Holding time and/or preservation requirements not met. Please see narrative for explanation.
- J Detected by the instrument, the result is > the MDL but \leq the MRL. Result is reported and considered an estimate.
- J-1 Estimated value. A full explanation is presented in the narrative.
- M Duplicate precision (RPD) was not within acceptance criteria. Please see narrative for explanation.
- N Spike recovery was not within acceptance criteria. Please see narrative for explanation.
- **R** Rejected, unusable value. A full explanation is presented in the narrative.
- U Result is ≤ the MDL or client requested reporting limit (CRRL). Result reported as the MDL or CRRL.
- **X** Result is not BLK-corrected and is within 10x the absolute value of the highest detectable BLK in the batch. Result is estimated.
- **Z** Holding time and/or preservation requirements not established for this method; however, BAL recommendations for holding time were not followed. Please see narrative for explanation.

These qualifiers are based on those previously utilized by Brooks Applied Labs, those found in the EPA <u>SOW ILM03.0</u>, Exhibit B, Section III, pg. B-18, and the <u>USEPA Contract Laboratory Program National Functional Guidelines for Inorganic</u> <u>Superfund Data Review; USEPA; January 2010</u>. These supersede all previous qualifiers ever employed by BAL.

Accreditation Information

Table 1. Accredited method/matrix/analytes for TNIIssued by: State of Florida Dept. of Health (The NELAC Institute 2016 Standard)Issued on: July 27, 2020; Valid to: June 30, 2021

Certificate Number: E87982-35

Method	Matrix	TNI Accredited Analyte(s)					
EPA 1638	Non-Potable Waters	Ag, Cd, Cu, Ni, Pb, Sb, Se, Tl, Zn					
EPA 200.8	Non-Potable Waters	Ag, Al, As, Ba, Be, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Se, TI, U, V, Zn					
	Non-Potable Waters	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Tl, U, V, Zn					
EPA 6020	Solids/Chemicals & Biological	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Tl, V, Zn					
	Non-Potable Waters	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, U, V, Zn, Hardness					
BAL-5000	Solids/Chemicals	Ag, As, B, Be, Cd, Co, Cr, Cu, Pb, Mo, Ni, Sb, Se, Sn, Sr, Tl, V, Zn					
	Biological	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Tl, V, Zn					
EPA 1640	Non-Potable Waters	Ag, As, Cd, Cu, Pb, Ni, Zn					
EPA 1631E	Non-Potable Waters, Solids/Chemicals & Biological	Total Mercury					
EPA 1630	Non-Potable Waters	Methyl Mercury					
BAL-3200	Solids/Chemicals & Biological	Methyl Mercury					
BAL-4100	Non-Potable Waters	As(III), As(V), DMAs, MMAs					
BAL-4200	Non-Potable Waters	Se(IV), Se(VI)					
BAL-4201	Non-Potable Waters	Se(IV), Se(VI)					
BAL-4300	Non-Potable Waters Solid/Chemicals	Cr(VI)					
SM2340B	Non-Potable Waters	Hardness					

Accreditation Information

Table 2. Accredited method/matrix/analytes for ISO (1), Non-Governmental TNI (2),

and DoD/DOE (3)

Issued by: ANAB

Issued on: January 10, 2020; Valid to: March 30, 2022

Method	Matrix	ISO and Non-Gov. TNI Accredited Analyte(s)	DoD/DOE Accredited Analytes
EPA 1638 Mod EPA 200.8 Mod	Non-Potable Waters	Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, TI, U, V, Zn	Ag, Al, As, Ba, Ca, Cd, Cr, Cu, Fe, Pb, Mg, Mn, Ni, Sb, Se, V, Zn
EPA 6020 Mod BAL-5000	Solids/Chemicals & Biological	Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, TI, V, Zn	Ag, As, Cd, Cr, Cu, Pb, Ni, Se, Zn
EPA 1640 Mod	Non-Potable Waters	Ag, As, Be, Cd, Cr, Co, Cu, Pb, Ni, Se, Tl, V, Zn	Not Accredited
EPA 1631E Mod BAL-3100 (waters) BAL-3101 (solids)	Non-Potable Waters, Solids/Chemicals & Biological/Food	Total Mercury	Total Mercury
EPA 1630 Mod BAL-3200	Non-Potable Waters, Solids/Chemicals Biological	Methyl Mercury	Methyl Mercury (excluding Solids/Chemicals)
EPA 1632A Mod	Non-Potable Waters Solids/Chemicals	Inorganic Arsenic, As(III)	Inorganic Arsenic. As(III) for waters only.
BAL-3300	Biological/Food	Inorganic Arsenic	Inorganic Arsenic (excluding Food)
AOAC 2015.01 Mod BAL-5000 by BAL-5040	Food	As, Cd, Hg, Pb	Not Accredited
	Non-Potable Waters	As(III), As(V), DMAs, MMAs	Not Accredited
BAL-4100	Biological by BAL-4115	Inorganic Arsenic, DMAs, MMAs	Not Accredited
BAL-4101	Food by BAL-4116	Inorganic Arsenic, DMAs, MMAs	Not Accredited
BAL-4200	Non-Potable Waters	Se(IV), Se(VI), SeCN	Not Accredited
BAL-4201	Non-Potable Waters	Se(IV), Se(VI), SeCN, SeMet	Not Accredited
BAL-4300	Non-Potable Waters, Solid/Chemicals	Cr(VI)	Cr(VI)
SM 3500-Fe BAL-4500	Non-Potable Waters	Fe, Fe(II)	Not Accredited
SM2340B	Non-Potable Waters	Hardness	Hardness
SM 2540G EPA 160.3 BAL-0501	Solids/Chemicals & Biological	% Dry Weight	% Dry Weight

(1) ISO/IEC 17025:2017 – Certificate Number ADE-1447.2

(2) Non-Governmental NELAC Institute 2016 Standard – Certificate Number ADE-1447.1

(3) Department of Defense/Energy Consolidated Quality Systems Manual v. 5.3 – Certificate Numbers ADE-1447 for DoD, ADE-1447.3 for DOE.

Sample Information

Sample	Lab ID	Report Matrix	Туре	Sampled	Received
RG_ELUGH_WS_LAEMP_GHO_202 0-09_NAL	2040047-01	WS	Sample	09/17/2020	10/01/2020
RG_ELUGH_WS_LAEMP_GHO_202 0-09_NAL	2040047-02	WS	Sample	09/17/2020	10/01/2020
RG_ELUGH_WS_LAEMP_GHO_202 0-09_NAL	2040047-03	WS	Sample	09/17/2020	10/01/2020
GH_ERSC4_WS_LAEMP_GHO_202 0-09_NAL	2040047-04	WS	Sample	09/12/2020	10/01/2020
GH_ERSC4_WS_LAEMP_GHO_202 0-09_NAL	2040047-05	WS	Sample	09/12/2020	10/01/2020
GH_ERSC4_WS_LAEMP_GHO_202 0-09 NAL	2040047-06	WS	Sample	09/12/2020	10/01/2020
GH_ER1A_WS_LAEMP_GHO_2020- 09_NAL	2040047-07	WS	Sample	09/11/2020	10/01/2020
GH_ER1A_WS_LAEMP_GHO_2020- 09 NAL	2040047-08	WS	Sample	09/11/2020	10/01/2020
_ GH_ER1A_WS_LAEMP_GHO_2020- 09 NAL	2040047-09	WS	Sample	09/11/2020	10/01/2020
RG_ERSC5_WS_LAEMP_GHO_202 0-09 NAL	2040047-10	WS	Sample	09/10/2020	10/01/2020
RG_ERSC5_WS_LAEMP_GHO_202 0-09 NAL	2040047-11	WS	Sample	09/10/2020	10/01/2020
RG_ERSC5_WS_LAEMP_GHO_202 0-09 NAL	2040047-12	WS	Sample	09/10/2020	10/01/2020
RG_GH-SCW3_WS_LAEMP_GHO_2 020-09 NAL	2040047-13	WS	Sample	09/13/2020	10/01/2020
RG_GH-SCW3_WS_LAEMP_GHO_2 020-09_NAL	2040047-14	WS	Sample	09/13/2020	10/01/2020
RG_GH-SCW3_WS_LAEMP_GHO_2 020-09 NAL	2040047-15	WS	Sample	09/13/2020	10/01/2020
GH_ERSC2_WS_LAEMP_GHO_202 0-09 NAL	2040047-16	WS	Sample	09/13/2020	10/01/2020
GH_ERSC2_WS_LAEMP_GHO_202 0-09 NAL	2040047-17	WS	Sample	09/13/2020	10/01/2020
GH_ERSC2_WS_LAEMP_GHO_202 0-09 NAL	2040047-18	WS	Sample	09/13/2020	10/01/2020
RG_SCDTC_WS_LAEMP_GHO_202 0-09 NAL	2040047-19	WS	Sample	09/13/2020	10/01/2020
RG_SCDTC_WS_LAEMP_GHO_202 0-09 NAL	2040047-20	WS	Sample	09/13/2020	10/01/2020
RG_SCDTC_WS_LAEMP_GHO_202 0-09_NAL	2040047-21	WS	Sample	09/13/2020	10/01/2020

Sample Information

Sample	Lab ID	Report Matrix	Туре	Sampled	Received
RG_THCK_WS_LAEMP_GHO_2020- 09_NAL	2040047-22	WS	Sample	09/10/2020	10/01/2020
RG_THCK_WS_LAEMP_GHO_2020- 09_NAL	2040047-23	WS	Sample	09/10/2020	10/01/2020
RG_THCK_WS_LAEMP_GHO_2020- 09_NAL	2040047-24	WS	Sample	09/10/2020	10/01/2020
RG_EL20_WS_LAEMP_GHO_2020- 09_NAL	2040047-25	WS	Sample	09/15/2020	10/01/2020
RG_EL20_WS_LAEMP_GHO_2020- 09 NAL	2040047-26	WS	Sample	09/15/2020	10/01/2020
RG_EL20_WS_LAEMP_GHO_2020- 09 NAL	2040047-27	WS	Sample	09/15/2020	10/01/2020
RG_UCWER_WS_LAEMP_GHO_20 20-09 NAL	2040047-28	WS	Sample	09/15/2020	10/01/2020
RG_UCWER_WS_LAEMP_GHO_20 20-09 NAL	2040047-29	WS	Sample	09/15/2020	10/01/2020
RG_UCWER_WS_LAEMP_GHO_20 20-09_NAL	2040047-30	WS	Sample	09/15/2020	10/01/2020

Batch Summary

Analyte	Lab Matrix	Method	Prepared	Analyzed	Batch	Sequence
DMSeO	Water	SOP BAL-4201	10/02/2020	10/03/2020	B202664	2001191
MeSe(IV)	Water	SOP BAL-4201	10/02/2020	10/03/2020	B202664	2001191
Se	Water	EPA 1638 Mod	10/01/2020	10/03/2020	B202657	2001198
Se Unk A	Water	SOP BAL-4201	10/02/2020	10/03/2020	B202664	2001191
Se(IV)	Water	SOP BAL-4201	10/02/2020	10/03/2020	B202664	2001191
Se(VI)	Water	SOP BAL-4201	10/02/2020	10/03/2020	B202664	2001191
SeCN	Water	SOP BAL-4201	10/02/2020	10/03/2020	B202664	2001191
SeMet	Water	SOP BAL-4201	10/02/2020	10/03/2020	B202664	2001191
SeSO3	Water	SOP BAL-4201	10/02/2020	10/03/2020	B202664	2001191
Unk Se Sp	Water	SOP BAL-4201	10/02/2020	10/03/2020	B202664	2001191

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
RG ELUGH V	VS LAEMP GH	10 2020-09 NAL								
2040047-01	Se	WS	TR	0.696		0.192	0.528	µg/L	B202657	2001198
RG_ELUGH_V	VS_LAEMP_GF	10_2020-09_NAL								
2040047-02	Se	WS	D	0.737		0.192	0.528	µg/L	B202657	2001198
RG_ELUGH_V	VS_LAEMP_GH	10_2020-09_NAL								
2040047-03	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	µg/L	B202664	2001191
2040047-03	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	µg/L	B202664	2001191
2040047-03	Se Unk A	WS	D	≤ 0.010	U	0.010	0.025	µg/L	B202664	2001191
2040047-03	Se(IV)	WS	D	≤ 0.050	U	0.050	0.125	µg/L	B202664	2001191
2040047-03	Se(VI)	WS	D	0.689		0.060	0.125	µg/L	B202664	2001191
2040047-03	SeCN	WS	D	≤ 0.040	U	0.040	0.125	µg/L	B202664	2001191
2040047-03	SeMet	WS	D	≤ 0.010	U	0.010	0.025	µg/L	B202664	2001191
2040047-03	SeSO3	WS	D	≤ 0.060	U	0.060	0.125	µg/L	B202664	2001191
2040047-03	Unk Se Sp	WS	D	≤ 0.060	U	0.060	0.125	µg/L	B202664	2001191
GH_ERSC4_W	/S_LAEMP_GH	IO_2020-09_NAL								
2040047-04	Se	WS	TR	0.744		0.192	0.528	µg/L	B202657	2001198
GH ERSC4 W	/S LAEMP GH	IO 2020-09 NAL								
2040047-05	 Se	- ws	D	0.846		0.192	0.528	µg/L	B202657	2001198
GH ERSC4 W	/S LAEMP GH	IO 2020-09 NAL								
2040047-06	DMSeO	- ws	D	≤ 0.010	U	0.010	0.025	µg/L	B202664	2001191
2040047-06	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	µg/L	B202664	2001191
2040047-06	Se Unk A	WS	D	≤ 0.010	U	0.010	0.025	µg/L	B202664	2001191
2040047-06	Se(IV)	WS	D	≤ 0.050	U	0.050	0.125	µg/L	B202664	2001191
2040047-06	Se(VI)	WS	D	0.645		0.060	0.125	µg/L	B202664	2001191
2040047-06	SeCN	WS	D	≤ 0.040	U	0.040	0.125	µg/L	B202664	2001191
2040047-06	SeMet	WS	D	≤ 0.010	U	0.010	0.025	µg/L	B202664	2001191
2040047-06	SeSO3	WS	D	≤ 0.060	U	0.060	0.125	µg/L	B202664	2001191
2040047-06	Unk Se Sp	WS	D	≤ 0.060	U	0.060	0.125	µg/L	B202664	2001191
GH ER1A WS	S LAEMP GHO) 2020-09 NAL								
2040047-07	Se	WS	TR	1.56		0.192	0.528	µg/L	B202657	2001198
GH ER1A WS	S LAEMP GHO) 2020-09 NAL								
2040047-08	Se	ws	D	1.54		0.192	0.528	µg/L	B202657	2001198

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
GH ER1A WS	S LAEMP GHO	2020-09 NAL								
2040047-09	DMSeO	ws	D	≤ 0.010	U	0.010	0.025	µg/L	B202664	2001191
2040047-09	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	µg/L	B202664	2001191
2040047-09	Se Unk A	WS	D	≤ 0.010	U	0.010	0.025	µg/L	B202664	2001191
2040047-09	Se(IV)	WS	D	≤ 0.050	U	0.050	0.125	µg/L	B202664	2001191
2040047-09	Se(VI)	WS	D	1.35		0.060	0.125	µg/L	B202664	2001191
2040047-09	SeCN	WS	D	≤ 0.040	U	0.040	0.125	µg/L	B202664	2001191
2040047-09	SeMet	WS	D	≤ 0.010	U	0.010	0.025	µg/L	B202664	2001191
2040047-09	SeSO3	WS	D	≤ 0.060	U	0.060	0.125	µg/L	B202664	2001191
2040047-09	Unk Se Sp	WS	D	≤ 0.060	U	0.060	0.125	µg/L	B202664	2001191
RG_ERSC5_W	/S_LAEMP_GH	O_2020-09_NAL								
2040047-10	Se	WS	TR	1.24		0.192	0.528	µg/L	B202657	2001198
RG_ERSC5_W	/S_LAEMP_GH	O_2020-09_NAL								
2040047-11	Se	WS	D	1.15		0.192	0.528	µg/L	B202657	2001198
RG_ERSC5_W	/S_LAEMP_GH	O_2020-09_NAL								
2040047-12	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	µg/L	B202664	2001191
2040047-12	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	µg/L	B202664	2001191
2040047-12	Se Unk A	WS	D	≤ 0.010	U	0.010	0.025	µg/L	B202664	2001191
2040047-12	Se(IV)	WS	D	≤ 0.050	U	0.050	0.125	µg/L	B202664	2001191
2040047-12	Se(VI)	WS	D	1.14		0.060	0.125	µg/L	B202664	2001191
2040047-12	SeCN	WS	D	≤ 0.040	U	0.040	0.125	µg/L	B202664	2001191
2040047-12	SeMet	WS	D	≤ 0.010	U	0.010	0.025	µg/L	B202664	2001191
2040047-12	SeSO3	WS	D	≤ 0.060	U	0.060	0.125	µg/L	B202664	2001191
2040047-12	Unk Se Sp	WS	D	≤ 0.060	U	0.060	0.125	µg/L	B202664	2001191
RG_GH-SCW3	_WS_LAEMP_	GHO_2020-09_NA	L							
2040047-13	Se	WS	TR	11.4		0.192	0.528	µg/L	B202657	2001198
RG_GH-SCW3	_WS_LAEMP_	GHO_2020-09_NA	L							
2040047-14	Se	WS	D	12.2		0.192	0.528	µg/L	B202657	2001198

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
RG_GH-SCW3	_WS_LAEMP_	GHO_2020-09_NA	L							
2040047-15	DMSeO	WS	D	0.015	J	0.010	0.025	µg/L	B202664	2001191
2040047-15	MeSe(IV)	WS	D	0.018	J	0.010	0.025	µg/L	B202664	2001191
2040047-15	Se Unk A	WS	D	≤ 0.010	U	0.010	0.025	µg/L	B202664	2001191
2040047-15	Se(IV)	WS	D	0.452		0.050	0.125	µg/L	B202664	2001191
2040047-15	Se(VI)	WS	D	11.3		0.060	0.125	µg/L	B202664	2001191
2040047-15	SeCN	WS	D	≤ 0.040	U	0.040	0.125	µg/L	B202664	2001191
2040047-15	SeMet	WS	D	≤ 0.010	U	0.010	0.025	µg/L	B202664	2001191
2040047-15	SeSO3	WS	D	≤ 0.060	U	0.060	0.125	µg/L	B202664	2001191
2040047-15	Unk Se Sp	WS	D	≤ 0.060	U	0.060	0.125	µg/L	B202664	2001191
GH ERSC2 W	/S LAEMP GH	O 2020-09 NAL								
2040047-16	Se	WS	TR	12.3		0.192	0.528	µg/L	B202657	2001198
GH_ERSC2_W	/S_LAEMP_GH	O_2020-09_NAL								
2040047-17	Se	WS	D	11.4		0.192	0.528	µg/L	B202657	2001198
GH_ERSC2_W	/S_LAEMP_GH	O_2020-09_NAL								
2040047-18	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	µg/L	B202664	2001191
2040047-18	MeSe(IV)	WS	D	0.019	J	0.010	0.025	µg/L	B202664	2001191
2040047-18	Se Unk A	WS	D	≤ 0.010	U	0.010	0.025	µg/L	B202664	2001191
2040047-18	Se(IV)	WS	D	0.442		0.050	0.125	µg/L	B202664	2001191
2040047-18	Se(VI)	WS	D	11.4		0.060	0.125	µg/L	B202664	2001191
2040047-18	SeCN	WS	D	≤ 0.040	U	0.040	0.125	µg/L	B202664	2001191
2040047-18	SeMet	WS	D	≤ 0.010	U	0.010	0.025	µg/L	B202664	2001191
2040047-18	SeSO3	WS	D	≤ 0.060	U	0.060	0.125	µg/L	B202664	2001191
2040047-18	Unk Se Sp	WS	D	≤ 0.060	U	0.060	0.125	µg/L	B202664	2001191
RG_SCDTC_M	VS_LAEMP_GH	IO_2020-09_NAL								
2040047-19	Se	WS	TR	12.4		0.192	0.528	µg/L	B202657	2001198
RG_SCDTC_N	VS_LAEMP_GH	IO_2020-09_NAL								
2040047-20	Se	WS	D	13.6		0.192	0.528	µg/L	B202657	2001198

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
RG_SCDTC_V	VS_LAEMP_GH	IO_2020-09_NAL								
2040047-21	DMSeO	WS	D	0.022	J	0.010	0.025	µg/L	B202664	2001191
2040047-21	MeSe(IV)	WS	D	0.024	J	0.010	0.025	µg/L	B202664	2001191
2040047-21	Se Unk A	WS	D	≤ 0.010	U	0.010	0.025	µg/L	B202664	2001191
2040047-21	Se(IV)	WS	D	0.543		0.050	0.125	µg/L	B202664	2001191
2040047-21	Se(VI)	WS	D	12.4		0.060	0.125	µg/L	B202664	2001191
2040047-21	SeCN	WS	D	≤ 0.040	U	0.040	0.125	µg/L	B202664	2001191
2040047-21	SeMet	WS	D	≤ 0.010	U	0.010	0.025	µg/L	B202664	2001191
2040047-21	SeSO3	WS	D	≤ 0.060	U	0.060	0.125	µg/L	B202664	2001191
2040047-21	Unk Se Sp	WS	D	≤ 0.060	U	0.060	0.125	µg/L	B202664	2001191
RG THCK WS	S LAEMP GHO) 2020-09 NAL								
2040047-22	 Se	ws	TR	125		0.192	0.528	µg/L	B202657	2001198
RG_THCK_WS	S_LAEMP_GHC	_2020-09_NAL								
2040047-23	Se	WS	D	125		0.192	0.528	µg/L	B202657	2001198
RG_THCK_WS	S_LAEMP_GHO	_2020-09_NAL								
2040047-24	DMSeO	WS	D	0.183		0.010	0.025	µg/L	B202664	2001191
2040047-24	MeSe(IV)	WS	D	0.246		0.010	0.025	µg/L	B202664	2001191
2040047-24	Se Unk A	WS	D	≤ 0.010	U	0.010	0.025	µg/L	B202664	2001191
2040047-24	Se(IV)	WS	D	5.79		0.050	0.125	µg/L	B202664	2001191
2040047-24	Se(VI)	WS	D	120		0.060	0.125	µg/L	B202664	2001191
2040047-24	SeCN	WS	D	≤ 0.040	U	0.040	0.125	µg/L	B202664	2001191
2040047-24	SeMet	WS	D	≤ 0.010	U	0.010	0.025	µg/L	B202664	2001191
2040047-24	SeSO3	WS	D	≤ 0.060	J-1 U	0.060	0.125	µg/L	B202664	2001191
2040047-24	Unk Se Sp	WS	D	≤ 0.060	U	0.060	0.125	µg/L	B202664	2001191
RG_EL20_WS	LAEMP_GHO	_2020-09_NAL								
2040047-25	Se	WS	TR	1.71		0.192	0.528	µg/L	B202657	2001198
RG_EL20_WS	_LAEMP_GHO	_2020-09_NAL								
2040047-26	Se	WS	D	1.62		0.192	0.528	µg/L	B202657	2001198

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
RG_EL20_WS_	LAEMP_GHO	_2020-09_NAL								
2040047-27	DMSeO	WS	D	≤ 0.010	U	0.010	0.025	µg/L	B202664	2001191
2040047-27	MeSe(IV)	WS	D	≤ 0.010	U	0.010	0.025	µg/L	B202664	2001191
2040047-27	Se Unk A	WS	D	≤ 0.010	U	0.010	0.025	µg/L	B202664	2001191
2040047-27	Se(IV)	WS	D	0.085	J	0.050	0.125	µg/L	B202664	2001191
2040047-27	Se(VI)	WS	D	1.56		0.060	0.125	µg/L	B202664	2001191
2040047-27	SeCN	WS	D	≤ 0.040	U	0.040	0.125	µg/L	B202664	2001191
2040047-27	SeMet	WS	D	≤ 0.010	U	0.010	0.025	µg/L	B202664	2001191
2040047-27	SeSO3	WS	D	≤ 0.060	U	0.060	0.125	µg/L	B202664	2001191
2040047-27	Unk Se Sp	WS	D	≤ 0.060	U	0.060	0.125	µg/L	B202664	2001191

Accuracy & Precision Summary

Batch: B202657 Lab Matrix: Water Method: EPA 1638 Mod

Sample	Analyte	Native	Spike	Result	Units	REC & Limits	RPD & Limits
B202657-B51	Se		200.0	186.5	µg/L	93% 75-125	
B202657-BS2	Blank Spike, (2035012) Se		200.0	185.8	µg/L	93% 75-125	
B202657-BS3	Blank Spike, (2035012) Se		200.0	184.7	µg/L	92% 75-125	
B202657-BS4	Blank Spike, (2035012) Se		200.0	185.9	µg/L	93% 75-125	
B202657-BS5	Blank Spike, (2035012) Se		200.0	181.8	µg/L	91% 75-125	
B202657-BS6	Blank Spike, (2035012) Se		200.0	181.4	µg/L	91% 75-125	
B202657-BS7	Blank Spike, (2035012) Se		200.0	182.7	µg/L	91% 75-125	
B202657-BS8	Blank Spike, (2035012) Se		200.0	181.2	µg/L	91% 75-125	
B202657-SRM1	Reference Material (20330) Se	07, T221)	3.800	3.462	µg/L	91% 75-125	
B202657-SRM2	Reference Material (20330) Se	07, T221)	3.800	3.423	µg/L	90% 75-125	
B202657-SRM3	Reference Material (20330) Se	07, T221)	3.800	3.730	µg/L	98% 75-125	

Accuracy & Precision Summary

Batch: B202657 Lab Matrix: Water Method: EPA 1638 Mod

Sample	Analyte	Native	Spike	Result	Units	REC & Limits	RPD & Limi	its
B202657-SRM4	Se	J7, 1221)	3.800	3.612	µg/L	95% 75-125		
B202657-SRM5	Reference Material (20330) Se	07, T221)	3.800	3.430	µg/L	90% 75-125		
B202657-SRM6	Reference Material (20330) Se	07, T221)	3.800	3.530	µg/L	93% 75-125		
B202657-SRM7	Reference Material (20330) Se	07, T221)	3.800	3.338	µg/L	88% 75-125		
B202657-SRM8	Reference Material (20330) Se	07, T221)	3.800	3.256	µg/L	86% 75-125		
B202657-DUPB	Duplicate, (2040047-04) Se	0.744		0.723	µg/L		3% 2	20
B202657-MSB	Matrix Spike, (2040047-04) Se) 0.744	220.0	205.4	µg/L	93% 75-125		
B202657-MSDB	Matrix Spike Duplicate, (2 Se	040047-04) 0.744	220.0	208.3	µg/L	94% 75-125	1% 2	20
B202657-DUPC	Duplicate, (2040047-13) Se	11.40		11.53	µg/L		1% 2	20
B202657-MSC	Matrix Spike, (2040047-13) Se) 11.40	220.0	219.8	µg/L	95% 75-125		
B202657-MSDC	Matrix Spike Duplicate, (2 Se	040047-13) 11.40	220.0	219.5	µg/L	95% 75-125	0.2% 2	20

Accuracy & Precision Summary

Batch: B202657 Lab Matrix: Water Method: EPA 1638 Mod

Sample B202657-DUPD	Analyte Duplicate, (2040047-25)	Native	Spike	Result	Units	REC & Limits	RPD & Limits
	Se	1.707		1.422	µg/L		18% 20
B202657-MSD	Matrix Spike, (2040047-25 Se) 1.707	220.0	208.5	µg/L	94% 75-125	
B202657-MSDD	Matrix Spike Duplicate, (2 Se	040047-25 1.707) 220.0	210.4	µg/L	95% 75-125	0.9% 20

Accuracy & Precision Summary

Batch: B202664 Lab Matrix: Water Method: SOP BAL-4201

Sample	Analyte	Native	Spike	Result	Units	REC 8	Limits	RPD & Li	mits
B202664-BS1	Blank Spike, (1923027)								
	MeSe(IV)		5.095	5.632	µg/L	111%	75-125		
	Se(IV)		5.000	4.915	µg/L	98%	75-125		
	Se(VI)		5.000	4.792	µg/L	96%	75-125		
	SeCN		5.015	4.805	µg/L	96%	75-125		
	SeMet		4.932	4.895	µg/L	99%	75-125		
B202664-DUP3	Duplicate, (2040046-21)								
	DMSeO	0.068		0.062	µg/L			8%	25
	MeSe(IV)	0.082		0.082	µg/L			0.6%	25
	Se Unk A	ND		ND	µg/L			N/C	25
	Se(IV)	2.943		2.953	µg/L			0.3%	25
	Se(VI)	107.6		106.7	µg/L			0.9%	25
	SeCN	ND		ND	µg/L			N/C	25
	SeMet	ND		ND	µg/L			N/C	25
	SeSO3	ND		ND	µg/L			N/C	25
	Unk Se Sp	ND		ND	µg/L			N/C	25
B202664-MS3	Matrix Spike, (2040046-2	1)							
	Se(IV)	2.943	4.900	7.456	µg/L	92%	75-125		
	Se(VI)	107.6	5.100	110.0	µg/L	NR	75-125		
	SeCN	ND	4.905	4.552	µg/L	93%	75-125		
	SeMet	ND	0.9885	0.995	µg/L	101%	75-125		
B202664-MSD3	Matrix Spike Duplicate, (2040046-21)						
	Se(IV)	2.943	4.900	7.537	µg/L	94%	75-125	1%	25
	Se(VI)	107.6	5.100	109.5	µg/L	NR	75-125	N/C	25
	SeCN	ND	4.905	4.621	µg/L	94%	75-125	1%	25
	SeMet	ND	0.9885	0.981	µg/L	99%	75-125	1%	25

BAL Final Report 2040047 Client PM: Cait Good Client Project: REP

Method Blanks & Reporting Limits

Batch: B202657
Matrix: Water
Method: EPA 1638 Mod
Analyte: Se

Sample	Result	Units
B202657-BLK1	0.090	μg/L
B202657-BLK2	0.106	µg/L
B202657-BLK3	0.020	µg/L
B202657-BLK4	0.071	µg/L
B202657-BLK5	0.086	µg/L
B202657-BLK6	0.073	µg/L
B202657-BLK7	0.011	µg/L
B202657-BLK8	0.091	µg/L
	Average: 0.068	
	Limit: 0.480	

MDL: 0.175 MRL: 0.480

Method Blanks & Reporting Limits

Batch: B202664			
Matrix: Water	1		
Method: SUP BAL-420	I		
Analyte: DMSeO			
Sample	Result	Units	
B202664-BLK1	0.00	µg/L	
B202664-BLK2	0.00	µg/L	
B202664-BLK3	0.00	µg/L	
B202664-BLK4	0.00	µg/L	
	Average: 0.000		
	Limit: 0.005		
Analyte: MeSe(IV)			
Sample	Result	Units	
B202664-BLK1	0.00	µg/L	
B202664-BI K2	0.00	ua/l	

B202664-BLK2	0.00	µg/L
B202664-BLK3	0.00	µg/L
B202664-BLK4	0.00	µg/L
	Average: 0.000	
	Limit: 0.005	

Analyte: Se Unk A			
Sample	Result	Units	
B202664-BLK1	0.00	µg/L	
B202664-BLK2	0.00	µg/L	
B202664-BLK3	0.00	µg/L	
B202664-BLK4	0.00	µg/L	
	Average: 0.000		
	Limit: 0.005		

MDL: 0.002 MRL: 0.005

MDL: 0.002 MRL: 0.005

MDL: 0.002 MRL: 0.005

Method Blanks & Reporting Limits

Analyte: Se(IV)			
Sample	Result	Units	
B202664-BLK1	0.001	µg/L	
B202664-BLK2	0.001	µg/L	
B202664-BLK3	0.001	µg/L	
B202664-BLK4	0.00	µg/L	
	Average: 0.001		MDL: 0.010
	Limit: 0.025		MRL: 0.025
Analyte: Se(VI)			
Sample	Result	Units	
B202664-BLK1	0.00	µg/L	
B202664-BLK2	0.00	µg/L	
B202664-BLK3	0.00	µg/L	
B202664-BLK4	0.00	µg/L	
	Average: 0.000		MDL: 0.012 MRI: 0.025
Analyte: SeCN			
Sample	Result	Units	
B202664-BLK1	0.00	µg/L	
B202664-BLK2	0.00	µg/L	
B202664-BLK3	0.00	µg/L	
B202664-BLK4	0.00	µg/L	
	Average: 0.000		MDL: 0.008
	Limit: 0.025		MRL: 0.025
Analyte: SeMet			
Sample	Result	Units	
B202664-BLK1	0.00	µg/L	
B202664-BLK2	0.00	µg/L	
B202664-BLK3	0.00	µg/L	
B202664-BLK4	0.00	µg/L	
	Average: 0.000		MDL: 0.002
	Limit: 0.005		MRL: 0.005

Method Blanks & Reporting Limits

MDL: 0.012 MRL: 0.025

Analyte: SeSO3

Sample	Result	Units		
B202664-BLK1	0.00	µg/L		
B202664-BLK2	0.00	µg/L		
B202664-BLK3	0.00	µg/L		
B202664-BLK4	0.00	µg/L		
	Average: 0.000		MDL: 0.0)12
	Limit: 0.025		MRL: 0.0)25

Analyte: Unk Se Sp

Sample	Result	Units
B202664-BLK1	0.00	µg/L
B202664-BLK2	0.00	µg/L
B202664-BLK3	0.00	µg/L
B202664-BLK4	0.00	µg/L
	Average: 0.000 Limit: 0.025	

18804 North Creek Parkway, Suite 100, Bothell, WA 98011 + P(206) 632-6206 + F(206) 632-6017 + info@brooksapplied.com + www.brooksapplied.com

BAL Final Report 2040047 Client PM: Cait Good Client Project: REP

2040047

Lab ID: 2040047-01 Sample: RG ELUGH WS LAEMP GHO 2020-09 NAL				Report Matrix: WS Sample Type: Sample + Sum	Collected: 09/17/2020 Received: 10/01/2020		
Des A	Container Client-Provided - TM	Size 120 mL	Lot na	Preservation 10% HNO3 (BAL)	P-Lot 1950008	рН <2	Ship. Cont. Styrofoam Cooler #7 - 2040047
Lab I Sam RG_I	D: 2040047-02 ple: ELUGH_WS_LAEMP_GHO_	2020-09_NAL		Report Matrix: WS Sample Type: Sample + Sum		Collec Recei	ted: 09/17/2020 ved: 10/01/2020
Des A	Container Client-Provided - TM	Size 120 mL	Lot na	Preservation 10% HNO3 (BAL)	P-Lot 1950008	рН <2	Ship. Cont. Styrofoam Cooler #7 - 2040047
Lab I Sam	D: 2040047-03 ple: Elligh WS LAEMP GHO	2020-09 NAI		Report Matrix: WS Sample Type: Sample + Sum		Collec Recei	ted: 09/17/2020 ved: 10/01/2020
Des	Container	Size	Lot	Preservation	P-Lot	рH	Ship. Cont.
A	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Styrofoam Cooler #7 - 2040047
В	XTRA_VOL	15 mL	na	none	na	na	Styrofoam Cooler #7 - 2040047
С	XTRA_VOL	120 mL	na	none	na	na	Styrofoam Cooler #7 - 2040047
Lab I Sam GH_I	D: 2040047-04 ple: ERSC4_WS_LAEMP_GHO_2	2020-09_NAL		Report Matrix: WS Sample Type: Sample + Sum		Collec Recei	ted: 09/12/2020 ved: 10/01/2020
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
A	Client-Provided - TM	120 mL	na	10% HNO3 (BAL)	1950008	<2	Styrofoam Cooler #7 -

BAL Final Report 2040047 Client PM: Cait Good Client Project: REP

2040047

Lab ID: 2040047-05 Sample: GH ERSC4 WS LAEMP GHO 2020-09 NAL			Report Matrix: WS Sample Type: Sample + Sum	Collec Recei	Collected: 09/12/2020 Received: 10/01/2020		
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
A	Client-Provided - TM	120 mL	na	10% HNO3 (BAL)	1950008	<2	Styrofoam Cooler #7 - 2040047
Lab ID: 2040047-06				Report Matrix: WS Sample Type: Sample + Sum		Collec	ted: 09/12/2020
GH	ERSC4 WS LAEMP GHO 2	020-09 NAL		Cample Type: Cample + Cam		10001	101010101101011010110110110110110111011101111111111111
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
A	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Styrofoam Cooler #7 - 2040047
В	XTRA_VOL	15 mL	na	none	na	na	Styrofoam Cooler #7 - 2040047
С	XTRA_VOL	120 mL	na	none	na	na	Styrofoam Cooler #7 - 2040047
Lab I	D: 2040047-07			Report Matrix: WS		Collec	ted: 09/11/2020
Sam				Sample Type: Sample + Sum		Receiv	ved: 10/01/2020
Des	Container	Size	Lot	Preservation	P-I of	nН	Shin, Cont.
A	Client-Provided - TM	120 mL	na	10% HNO3 (BAL)	1950008	<2	Styrofoam Cooler #7 - 2040047
Lab ID: 2040047-08 Sample:			Report Matrix: WS Sample Type: Sample + Sum		Collected: 09/11/2020 Received: 10/01/2020		
GH_I	ER1A_WS_LAEMP_GHO_202	20-09_NAL					
Des ^			Lot		P-Lot	рН	Ship. Cont.
А		120 ML	na	10% HNO3 (BAL)	1920008	<2	Styrotoam Cooler #7 -

BAL Final Report 2040047 Client PM: Cait Good Client Project: REP

Lab ID: 2040047-09 Sample: GH ER1A WS LAEMP GHO 2020-09 NAL			Report Matrix: WS Sample Type: Sample + Sum	Collec Recei	Collected: 09/11/2020 Received: 10/01/2020			
Des	Container	Size	Lot	Preservation	P-Lot	pH	Ship. Cont.	
A	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Styrofoam Cooler #7 - 2040047	
В	XTRA_VOL	15 mL	na	none	na	na	Styrofoam Cooler #7 - 2040047	
С	XTRA_VOL	120 mL	na	none	na	na	Styrofoam Cooler #7 - 2040047	
Lab I	D: 2040047-10			Report Matrix: WS		Collec	ted: 09/10/2020	
Sam RG_I	ole: ERSC5_WS_LAEMP_GHO_2	2020-09_NAL		Sample Type: Sample + Sum		Recei	ved: 10/01/2020	
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.	
A	Client-Provided - TM	120 mL	na	10% HNO3 (BAL)	1950008	<2	Styrofoam Cooler #7 - 2040047	
Lab I	D: 2040047-11			Report Matrix: WS		Collec	ted: 09/10/2020	
Sam RG I	<mark>de:</mark> ERSC5 WS LAEMP GHO 2	2020-09 NAL		Sample Type: Sample + Sum		Recei	ved: 10/01/2020	
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.	
A	Client-Provided - TM	120 mL	na	10% HNO3 (BAL)	1950008	<2	Styrofoam Cooler #7 - 2040047	
Lab I Sami	D: 2040047-12			Report Matrix: WS Sample Type: Sample + Sum		Collected: 09/10/2020		
RG I	ERSC5 WS LAEMP GHO 2	2020-09 NAL		Cample Type. Cample + Cum		Record	veu. 10/01/2020	
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.	
A	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Styrofoam Cooler #7 - 2040047	
В	XTRA_VOL	15 mL	na	none	na	na	Styrofoam Cooler #7 - 2040047	
С	XTRA_VOL	120 mL	na	none	na	na	Styrofoam Cooler #7 - 2040047	

BAL Final Report 2040047 Client PM: Cait Good Client Project: REP

2040047

Lab ID: 2040047-13 Sample: RG_GH-SCW3_WS_LAEMP_GHO_2020-09_NAL			Report Matrix: WS Sample Type: Sample + Sum	Collected: 09/13/2020 Received: 10/01/2020			
Des A	Container Client-Provided - TM	Size 120 mL	Lot na	Preservation 10% HNO3 (BAL)	P-Lot 1950008	рН <2	Ship. Cont. Styrofoam Cooler #7 - 2040047
Lab I Sam RG_(ID: 2040047-14 ple: GH-SCW3_WS_LAEMP_GH0	0_2020-09_NAL		Report Matrix: WS Sample Type: Sample + Sum		Collec Recei	ted: 09/13/2020 ved: 10/01/2020
Des A	Container Client-Provided - TM	Size 120 mL	Lot na	Preservation 10% HNO3 (BAL)	P-Lot 1950008	рН <2	Ship. Cont. Styrofoam Cooler #7 - 2040047
Lab I Sam	D: 2040047-15 ple: GH-SCW3 WS LAEMP GH() 2020-09 NAI		Report Matrix: WS Sample Type: Sample + Sum		Collec Recei	ted: 09/13/2020 ved: 10/01/2020
Des	Container	Size	Lot	Preservation	P-Lot	рH	Ship. Cont.
A	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Styrofoam Cooler #7 - 2040047
В	XTRA_VOL	15 mL	na	none	na	na	Styrofoam Cooler #7 - 2040047
С	XTRA_VOL	120 mL	na	none	na	na	Styrofoam Cooler #7 - 2040047
Lab ID: 2040047-16 Sample: GH ERSC2 WS LAEMP GHO 2020-09 NAL			Report Matrix: WS Sample Type: Sample + Sum		Collected: 09/13/2020 Received: 10/01/2020		
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
A	Client-Provided - TM	120 mL	na	10% HNO3 (BAL)	1950008	<2	Styrofoam Cooler #7 -

BAL Final Report 2040047 Client PM: Cait Good Client Project: REP

2040047

Lab ID: 2040047-17 Sample: GH_ERSC2_WS_LAEMP_GHO_2020-09_NAL			Report Matrix: WS Sample Type: Sample + Sum	Collec Recei	ted: 09/13/2020 ved: 10/01/2020		
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
A	Client-Provided - TM	120 mL	na	10% HNO3 (BAL)	1950008	<2	Styrofoam Cooler #9 - 2040047
Lab ID: 2040047-18				Report Matrix: WS		Collec	ted: 09/13/2020
Sam GH	ple: ERSC2 WS LAEMP GHO 2	020-09 NAL		Sample Type: Sample + Sum		Receiv	ved: 10/01/2020
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
A	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Styrofoam Cooler #7 - 2040047
В	XTRA_VOL	15 mL	na	none	na	na	Styrofoam Cooler #7 - 2040047
С	XTRA_VOL	120 mL	na	none	na	na	Styrofoam Cooler #7 - 2040047
Lab I	D : 2040047-19			Report Matrix: WS		Collec	ted: 09/13/2020
Sam	ple:	000 00 1141		Sample Type: Sample + Sum		Receiv	ved: 10/01/2020
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship, Cont.
A	Client-Provided - TM	120 mL	na	10% HNO3 (BAL)	1950008	<2	Styrofoam Cooler #9 - 2040047
Lab ID: 2040047-20 Sample:			Report Matrix: WS Sample Type: Sample + Sum		Collec Recei	ted: 09/13/2020 ved: 10/01/2020	
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
A	Client-Provided - TM	120 mL	na	10% HNO3 (BAL)	1950008	<2	Styrofoam Cooler #9 -

BAL Final Report 2040047 Client PM: Cait Good Client Project: REP

Lab ID: 2040047-21 Sample:			Report Matrix: WS Sample Type: Sample + Sum	Collected: 09/13/2020 Received: 10/01/2020			
RG_S	SCDTC_WS_LAEMP_GHO_3	2020-09_NAL	1.4	Descenter	Dist		
Des	Container	Size	Lot	Preservation	P-Lot	рн	Ship. Cont.
A	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Styrofoam Cooler #7 - 2040047
В	XTRA_VOL	15 mL	na	none	na	na	Styrofoam Cooler #7 - 2040047
С	XTRA_VOL	120 mL	na	none	na	na	Styrofoam Cooler #7 - 2040047
Lab I	D : 2040047-22			Report Matrix: WS		Collec	ted: 09/10/2020
Sam RG	ble: FHCK WS LAEMP GHO 20	020-09 NAL		Sample Type: Sample + Sum		Recei	ved: 10/01/2020
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
A	Client-Provided - TM	120 mL	na	10% HNO3 (BAL)	1950008	<2	Styrofoam Cooler #9 - 2040047
Lab I	D : 2040047-23			Report Matrix: WS		Collec	ted: 09/10/2020
Sam	DIE: THCK WS LAEMP GHO 20)20-09 NAI		Sample Type: Sample + Sum		Recei	ved: 10/01/2020
Des	Container	Size	Lot	Preservation	P-Lot	рH	Ship. Cont.
A	Client-Provided - TM	120 mL	na	10% HNO3 (BAL)	1950008	<2	Styrofoam Cooler #9 - 2040047
Lab I	D : 2040047-24			Report Matrix: WS		Collec	ted: 09/10/2020
Sam	ole:			Sample Type: Sample + Sum		Recei	ved: 10/01/2020
RG_	Container	J20-09_NAL	Let	Broconvotion	D L of	ъЦ	Shin Cont
Des	Container	Size	LOU	Preservation	P-LOI	рп	Ship. Cont.
A	Cent Tube TomL Se-Sp	15 ML	na	none	па	na	Cooler #7 - 2040047
В	XTRA_VOL	15 mL	na	none	na	na	Styrofoam Cooler #7 - 2040047
С	XTRA_VOL	120 mL	na	none	na	na	Styrofoam Cooler #7 - 2040047

BAL Final Report 2040047 Client PM: Cait Good Client Project: REP

2040047

Lab ID: 2040047-25 Sample: RG_EL20_WS_LAEMP_GHO_2020-09_NAL			l S	Report Matrix: WS Sample Type: Sample + Sum	Collected: 09/15/2020 Received: 10/01/2020				
Des A	Container Client-Provided - TM	Size 120 mL	Lot na	Preservation 10% HNO3 (BAL)	P-Lot 1950008	рН <2	Ship. Cont. Styrofoam Cooler #9 - 2040047		
Lab ID: 2040047-26 Sample: RG EL20 WS LAEMP GHO 2020-09 NAL				Report Matrix: WS Sample Type: Sample + Sum	Collected: 09/15/2020 Received: 10/01/2020				
Des A	Container Client-Provided - TM	Size 120 mL	Lot na	Preservation 10% HNO3 (BAL)	P-Lot 1950008	рН <2	Ship. Cont. Styrofoam Cooler #9 - 2040047		
Lab I Sam	D: 2040047-27 ple: EL 20 WS LAEMP GHO 20	20-09 NAI	l	Report Matrix: WS Sample Type: Sample + Sum		Collec Recei	cted: 09/15/2020 ived: 10/01/2020		
Des	Container	Size	Lot	Preservation	P-Lot	рH	Ship, Cont.		
A	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Styrofoam Cooler #7 - 2040047		
В	XTRA_VOL	15 mL	na	none	na	na	Styrofoam Cooler #7 - 2040047		
С	XTRA_VOL	120 mL	na	none	na	na	Styrofoam Cooler #7 - 2040047		
Lab ID: 2040047-28 Sample: RG UCWER WS LAEMP GHO 2020-09 NAL			1	Report Matrix: WS Sample Type: Sample + Sum			Collected: 09/15/2020 Received: 10/01/2020		
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.		
A	Client-Provided - TM	120 mL	na	10% HNO3 (BAL)	1950008	<2	Styrofoam Cooler #9 -		

BAL Final Report 2040047 Client PM: Cait Good Client Project: REP

Sample Containers

Lab ID: 2040047-29 Sample: RG_UCWER_WS_LAEMP_GHO_2020-09_NAL				Report Matrix: WS Sample Type: Sample + Sum	Collected: 09/15/2020 Received: 10/01/2020			
Des A	Client-Provided - TM	Size	Lot	Preservation	P-Lot	pH ≤2	Ship. Cont.	
~			Па	1070 HINOS (DAL)	1930000	~2	Cooler #9 - 2040047	
Lab Sam	ID: 2040047-30		F	Report Matrix: WS		Collected: 09/15/2020		
RG	UCWER WS LAEMP GHO	2020-09 NAL	2	Sample Type. Sample + Sum		Nece	iveu. 10/01/2020	
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.	
A	Cent Tube 15mL Se-Sp	15 mL	na	none	na	na	Styrofoam Cooler #7 - 2040047	
В	XTRA_VOL	15 mL	na	none	na	na	Styrofoam Cooler #7 - 2040047	
С	XTRA_VOL	120 mL	na	none	na	na	Styrofoam Cooler #7 - 2040047	

Shipping Containers

Styrofoam Cooler #7 - 2040047

Received: October 1, 2020 7:00 Tracking No: 81528 via Courier Coolant Type: Ice Temperature: 0.3 °C

Styrofoam Cooler #9 - 2040047

Received: October 1, 2020 7:00 Tracking No: 81528 via Courier Coolant Type: Ice Temperature: 7.3 °C Description: Styrofoam Cooler #7 Damaged in transit? No Returned to client? No Comments: IR #21

Description: Styrofoam Cooler #9 Damaged in transit? No Returned to client? No Comments: IR #21 Custody seals present? No Custody seals intact? No COC present? Yes

Custody seals present? No Custody seals intact? No COC present? Yes

Teels							Page	e iofi												
Confidential							1				-						BAL	Final R	eport	204004
	COC ID:	GHO LA	EMP Ser	pt 202	0 (20-22)		TURN	AROUN	ID 1	TIME:										
Facility Name	REP	PROJECT/CLIENT INFO				1.00		ab Nama	. Dr	LABOR	ATORY			N.F.		12.0.2			1000	Tean
Project Manager	Cait Good						Lak	au Name	t Re	w Woznie	aled Labs					[]		Excel	PDF	EDD
Email	cait.good@teck.c	om						Email	1 bei	n@brooks	applied.coi	m				cart.good@te	eck.com	<u>×</u>	*	- x
Address	421 Pine Avenue							Address	5 18	804 North	n Creek Pa	arkway		-		teckcoal@eq	uisonline com	1.	1	x
									1							itester@min	now.ca	v	x	*
City		Sparwood			Province BC			City	Bo	thell		Province	WA	1		ings@minne	W.CB	. In	x	x
Postal Code		V0B 2G0			Country Can	ada	Pos	stal Code	98	011		Country	USA							
Phone Number	250-425-8202						Phone	e Number	r 20	6-632-620	06									
		SAMPLE DETAIL	LS								AN	ALYSIS RE	QUESTE	D		TOKALD -	Flitered -	'i blold. L: Lal	, FL: Field	& Lab, N: Non
									\$Bft	HNO3	HNO3		1.2			1.1.1				
									SERV	р	F/P	F	10.10							1
				(oN/s					PRA											
				dous Material (Ye					ANALYSIS	Selenium	ved Selenium	um Speciation								
			Field	tzar		Time	G=Grab	# Of	12	tal	sol	enit								
Sample ID		Sample Location	Matrix	Ĥ	Date	(24hr)	C=Comp	Cont.		T.0	Di	Sel								
RG_ELUGH_WS_LAEMP_GHO_2020-09_NAL		RG_ELUGH	WS	No	9/17/2020	13:20	G	3		X	X	X	_			_				_
GH_ERSC4_WS_LAEMP_GHO_2020-09_NAL		ON_ERSC4	WS	No	9/12/2020	13:00	G	3	10	X	X	X								
GR_ER1A_WS_LAEMP_GHO_2020-09_NAL		GH ERIA	WS	No	9/11/2020	14:00	G	3	20	X	X	Х								
RG_ERSC5_WS_LAEMP_GHO_2020-09_NAL		RG ERSC5	WS	No	9/10/2020	16:45	G	3	1	x	X	x			1					
RG_CH-SCW3_WS_LAEMP_GHO_2020-09_NAL		RG_OH-SCW3	WS	No	9/13/2020	14:45	G	3	10	x	X	X								
GH_ERSC2_WS_LAEMP_GIIO_2020-09_NAL		OH_ERSC2	WS	No	9/13/2020	14:00	G	3		X	x	X					e P			
RG_SCDTC_WS_LAEMP_GHO_2020-09_NAL		RG_SCDTC	WS	No	9/13/2020	12:20	G	3	100	X	x	x			[
RG_THCK_WS_LAEMP_GUO_2020-09_NAL		ROTHER	WS	No	9/10/2020	15:45	G	3		X	x	x				1				
RG_EL20_WS_LAEMP_GHO_2020-09_NAL		RG_EL20	WS	No	9/15/2020	14:30	G	3	100	X	x	x					1			
									100									1		
	Custored Str								133		-		1			1		1	-	
				-					12											
				150	1															
			1						12				-		1	1	1.			
				1				l	13				1							
ADDITIONAL	COMMENTS/SP	ECIAL INSTRUCTIONS		Depts	RELINQUISH	D BY/AFE	LIATION		DA	TE/TIM	E	AC	CEPTED	BY/AFI	TLIATIO	N	1			- 01
Purchase Order Number - VPO00 Samples for total selenium have be filtered and preserved. Speciation	0690100. een preserved in 1 samples have be	he field. Dissolved selenium hav en filtered and frozen.	ve been		Jennifer	r Ings/Min	now			9/24/20	9:00	ben	w	91	SAC.	-	Ø	120	70	9 9 9
NR OF B	OTTLES DETUD	FBRESCHIPTION		CALL IN COL		No.	The second second	100000	5200		A 2.0%	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	S - 8.04	Chull	- 13	-	Contract New York		STORES.	
AB OF B	UI LUEO AB LUKI	Regular	(default) x				1		-		and the second second		1		1	- 5	The Party of the P	2		12445-14-
Priority (2-3 business days) - 50% surcharge			te Sampler's Name Jennifer In			mifer In	gs	Mobile # 519-500-3444												
Emergency (1 Business Day) - 100% surcharge For Emergency <1 Day, ASAP or Weekend - Contact ALS			Sampler's Signat	Sampler's Signature						Date	Date/Time 9/24/20 9:00									

			24 Hour Hot	Shot Servin	ce	at the MT
<u>.</u>	Sparwood, BC Kamloops, BC Ferrace, BC	Vancouver, BC Prince George, BC Tumbler Ridge, BC	Elkford, BC Calgary, AB Edmonton, AB	Ft. McMurray Hinton, AB Red Deer, AB	r, AB Mont Gille Spok	real, QC Shelby, MT tte, WY ane, WA
VOICE TO		1	Sec. Sec.			DATE Sept 3012
L OF LADING	#	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1. A.	PURCHASE ORDER N	UMBER	a fill a state
IPPER (FROM	Teck (bit too		CONSIGNEE (TO)	oks Ap	plied Labs
REET	st line	CLERV. TE	ationst	STREET	ANG	PEK PORKWOU
TY/PROVINCE	moort	PC	OSTAL CODE	CITY/PROVINCE	ell MA	
ECIAL INSTRU	ICTIONS				,	FREIGHT CHARGES
ACKAGES	245	DESCRIPTION OF ARTICLE	S AND SPECIAL MARKS		WEIGHT	
10	Coder	s - Water	Sampl	is in	400 Le	If not indicated, shipping will automatically move of
						FEE
	ALC: Description					
land the	La sur a sur a sur a sur	and the state		1 ²		WAITING
				<u>x</u> ¹		XPU
DAG)cu	D1. (1)	10151)0		
PA	S#	RWH	18152	28	4:	WAITING XPU CHARGES
PA	5#	RWH	18152	28	4 -	WAITING
PA	S#	RWH	18152 DECLARED VALU Bability of carrier is \$2	200 per lb (56 41 per	* *	WAITING XPU CHARGES FSC SUS
	5#	RWHV	DECLARED VALU Hability of cartier is \$2 Kilogram) unless dec otherwise.	JATION: Maximum 200 per ib. (\$4.41 per fared valuation states	\$	WAITING
PAQ T#	S#	PICK UP TIME	DECLARED VALU Hability of cartler is \$2 kilogram unless dec otherwise. DRIVER'S SIGNATUR	JATION: Maximum 2.00 per ib. (\$4.41 per dared valuation states RE - DELIVERY BY	\$	WAITING
PAC T.# VER'S SIGNA	TURE - PICK UP BY	PICK UP TIME	DECLARED VALU Hability of carrier is \$ kilogram) unless dec otherwise. DRIVER'S SIGNATUR	ATION: Maximum 2.00 per ib. (\$4.41 per fared valuation states RE - DELIVERY BY	\$	WAITING XPU CHARGES FSC US US SUB TOTAL GST
PAC T#	TURE - PICK UP BY	PICK UP TIME	DECLARED VALU fability of carrier is \$2 kilogram) unless dec otherwise. DRIVER'S SIGNATUL DRIVER'S SIGNATUL	JATION: Maximum 200 per ib. (84.41 per fared valuation states RE - DELIVERY BY A of the paid regim bin Corr of the paid regim bin	S FINISH TIME	WAITING XPU CHARGES FSC SUB TOTAL SUB TOTAL GST GST TOTRAL \$
PACTOR SIGNA	TURE - PICK UP BY	PICK UP TIME	DECLARED VALU Hability of cartier is \$2 kilogram) unless dec otherwise. DRIVER'S SIGNATUL BRIVER'S SIGNATUL	JATION: Maximum 2.00 per ib. (\$4.41 per fared valuation states RE - DELIVERY BY among destination and due of the rest of	S FINISH TIME FINISH TIME state of parkage of the sectorated are readed by the sectorated are readed by the sectorated are stated by the sectorated by of Ladorg such conditions.	WAITING XPU CHARGES FSC US SUB TOTAL SUB TOTAL GST TOTAL \$ TOTAL \$ FAT OWNER'S RUSK, WRITE ORD HERE
PAGE T# VER'S SIGNA PEOP CLAASE (a) AN A final selection of much as final s	TURE - PICK UP BY	PICK UP TIME PICK UP TIME PI	DECLARED VALU Hability of carrier is S kilogram unless dec otherwise. DRIVER'S SIGNATUL DRIVER'S SIGNATUL de another the bevery of the cook of a short of the state of the result of a state of the state of the state of the state of states and the state of the states of states and the states of the states of states of states of states and the states of the s	ATION: Maximum 2.00 per ib. (\$4.41 per fared valuation states RE - DELIVERY BY And the destination and the of diagram of the archiver of the of the of the of the period of the of the of the of the of the of the period of the of the of the of the of the of the of the period of the of the of the of the of the of the of the period of the of the of the of the of the of the of the period of the of the of the of the of the of the of the period of the of the of the of the of the of the of the period of the of the of the of the of the of the of the period of the of the of the of the of the of the of the of the of the of the of the of the of the of the of	FINISH TIME for a first control of an and the sectorated are read to a sectorated are read of parsing under your are and the sectorated are read of parsing under your are and the sectorated are readed by the second and Bit of Ladrage such conditions.	WAITING XPU CHARGES FSC SUB TOTAL SUB TOTAL GST GST TOTAL \$ TOTAL \$ PAT OWNER'S RUSK, WRITE ORD MERE DATE
PACTOR SIGNAL For County of the potential Provide and the potential Prov	TURE - PICK UP BY	PICK UP TIME PICK UP TIME Marking control of the determined on the determined and the operation of the other of the determined on the other of the state of any and the other of the determined on the other of the state of any and the other of the determined on the other of the state of any and the other of the determined on the other of the state of any and the other of the determined on the other of the state of any and the other of the determined on the other of the other of the determined on the other of the state of the other of the determined on the other of the state of the other of the determined on the other of the state of the other of the determined on the other of the state of the other of the determined on the other of the state of the other of the determined on the other of the state of the other of the determined on the other of the state of the other of the determined on the other of the state of the other of the determined on the other of the state of the other of the determined on the other of the state of the other of the determined on the other of the state of the other of the determined on the other of the state of the other of the determined on the other of the other of the state of the other of the determined on the other of the state of the other of the determined on the other of the state of the other of the determined on the other of the state of the other of the determined on the other of the state of the other of the determined on the other of the state of the other of the determined on the other of the state of the other of the determined on the other of the other of the state of the other of the determined on the other of the other of the other of the other of the state of the other of	DECLARED VALU Hability of carrier is \$2 kliogram) unless dec otherwise. DRIVER'S SIGNATUL DRIVER'S SIGNATUL CONSIGNEE PRINT, CONSIGNEE SIGN	ATION: Maximum 2000 per ib. (\$4.41 per daned valuation states RE - DELIVERY BY	S FINISH TIME At a division of the appointed are prior of the appointer the data and a division of the data which at a stable by the attached Bill of Ladorg such conditions.	WAITING XPU CHARGES FSC SUB TOTAL SUB TOTAL GST TOTAL \$ PATE DATE DATE

Cooler ID: Styne 7	#7	0) Те	mperatur	re: 🔿 J	S		IR:	U
Coolant Type:	Blue Ice	Ambié	ent [:]					- C 10 Marine 10	16	
Notes:		\$			_ ;			1		
Sampling Locations:	4	4	44	5	45		47		48	
Sample Types:	T/D	SP.	T/D	: SP	T/D	SP	² T/D	SP	T/D	SP
Container Types:	ie	120	1700	no	120	120	120	120	iro	no
Opened By: DJ1L		D	ate: L	21:12	0					
				;						
				æ						

Effective 7/29/20

Revision 004

Δ

9

. . .

ł

ł

STRAIGHT BILL OF LADING Confidential NOT NEGOTIABLE

/ HUI SHUI SERUICE INC. 250-425-7447 B

÷

		2	4 Hour Hot	Skot Ser	vice		111. 1111		
	Sparwood, BC Kamloops, BC Terrace, BC	Vancouver, BC Prince George, BC Tumbler Ridge, BC	Elkford, BC Calgary, AB Edmonton, AB	Ft. McMur Hinton, Al Red Deer,	ray, AB B AB	Montreal, Gillette, V Spokane,	QC VY WA	Shelby, M	т
NVOICE TO		à				DA	ATE .	17	e:
LL OF LADING	G#			PURCHASE ORDE	RNUMBER				
IIPPER (FRO	M)			CONSIGNEE (TO)		10			
REET .				STREET		× :		<u></u>	1
TY/PROVINCI	<u>11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 </u>	PO	STAL CODE	CITY/PROVINCE	÷			POS	TAL CODE
ECIAL INSTR	NUCTIONS								1.1
ACKAGES	T					cy.	FR	EIGHT CH	ARGES
		DESCRIPTION OF ARTICLES	AND SPECIAL MARKS		(Subjec	WEIGHT t to Correction)	SHIPP	ER TO CHEC	ж
*					6		Li not indic	EPAID ated, shipping will aut	COLLECT
							FEE		
				1	-		-		
				1				<u>ا</u>	
110		D. 111.	AIPA				XPU		
A		KIATHN	XIN.	22	1 2 -		CHARG	ES	
		TANTA	U JE	0		-			
*						E.	FSC		
			DECLARED VALUA	ATION: Maximum			US	<u> </u>	
	¥		kilogram) unless deck otherwise.	ared valuation states	\$		SUB TO	TAL	
ER'S SIGNA	TURE - PICK UP BY	PICK UP TIME	DRIVER'S SIGNATUR	E - DELIVERY BY	FINISH TIME				
CE OF CLAUM: (a) N	o carrier is lable for fees, decrease as delay				Car In		GST		
ici of such loss, dama be final statemes EIVED at the point of ned as indicated	apo or delay is given in writing to the cright if of the claim must be filled with origin on the date sportfield from the const below, which the carrier agrees	(a any goods uncar the Ball of Lading unless no sing carrier or the delivering carner within skey (thin nine (9) months from the date of good monitoried hereit, the property large date of good monitoried hereit, the property large date (5) Carry and the deliver (6) for consider	the therefor setting out pertoculars of the 50) days after the delivery of the goods, (of shipment logather with a c reput, in apparent poor order, except as i	onun, destination and date of si an the case of fature to make de oby of the paid freight i neted (contents and condition of	ipment of the goods and th slively within nine (8) month bill.	e estimated embinit ctalmo s from the date of shipmen	TOTAL		
conditions clanderd date of issuing, ontract for the carms	Bill of Lading, in power at the data of issue which are hereby agreed by the ge of the goods listed in the Billipf Lading r	r all or any portion of the route to destination, and 19, which are harmin agreed by the consignor and a consignor and accepted for himself a governed by regulation or force in the twendicture	and the same desiriation, subju- as to each party of any time interested and incorpied for himself and his assigns. Pr and his "assigne, and his "assigne, and his assigne, and at the time and rears of shipment and	In the rates and class meet or any of the goods, that ever when or written, including condition	Elfication in stillect on by service to be performed one set aside by the standa	the date of shipment herounder shall be subject d B# of Lading, in power a			
PER T		•	CONSIGNEE" PRINTS	d sonlact to the contribute set	but in such conditions.	31	DATE	K'S RISK, WRITE ORE	
PER		<u></u>	CONSIGNEE				Ex.s	:	(.
			SIGN	1	:		TIME		1
WH	ITE: Office YELLOW: C	Carrier PINK: Consignee	GOLDENROAD: Shippe	GST	# 864540398RT00	01	NUMBER OF	PIECES RECEIV	ED
4.10		-	•		9			8	
Coole	er iD:	1	COC (V/NI)	Tanan t	ે ગ		39.0		2
-		and the second sec		lemperat	ure:	÷.		IR:	ŧ
Coola	ant Type: Ice	Blue Ice Ar	nbient					***	
Note	S:						20 V		
Samp	ling Locations:	1 Illy		68					*
Samp	ole Types:	T/D SP	T/D	SP T/D	SP	T/D	SP	T/D	SP
Conta	ainer Types:	111 111							
Open	ed By: (75)	1 <u>1</u> [4	Date: C.J.		1			1	
			,	× .					
Effecti	ve 7/29/20							Dauta	

Revision 004

4

Report Information

Laboratory Accreditation

BAL is accredited by the National Environmental Laboratory Accreditation Program (NELAP) through the State of Florida Department of Health, Bureau of Laboratories (E87982) and is certified to perform many environmental analyses. BAL is also certified by many other states to perform environmental analyses. For a current list of our accreditations/certifications, please visit our website at <htp://www.brooksapplied.com/resources/certificates-permits/> or review Tables 1 and 2 in our Accreditation Information. Results reported relate only to the samples listed in the report.

Field Quality Control Samples

Please be notified that certain EPA methods require the collection of field quality control samples of an appropriate type and frequency; failure to do so is considered a deviation from some methods and for compliance purposes should only be done with the approval of regulatory authorities. Please see the specific EPA methods for details regarding required field quality control samples.

Common Abbreviations

AR	as received	MS	matrix spike
BAL	Brooks Applied Labs	MSD	matrix spike duplicate
BLK	method blank	ND	non-detect
BS	blank spike	NR	non-reportable
CAL	calibration standard	N/C	not calculated
ССВ	continuing calibration blank	PS	post preparation spike
CCV	continuing calibration verification	REC	percent recovery
COC	chain of custody record	RPD	relative percent difference
D	dissolved fraction	SCV	secondary calibration verification
DUP	duplicate	SOP	standard operating procedure
IBL	instrument blank	SRM	reference material
ICV	initial calibration verification	т	total fraction
MDL	method detection limit	TR	total recoverable fraction
MRL	method reporting limit		

Definition of Data Qualifiers

(Effective 3/23/2020)

- **E** An estimated value due to the presence of interferences. A full explanation is presented in the narrative.
- H Holding time and/or preservation requirements not met. Please see narrative for explanation.
- J Detected by the instrument, the result is > the MDL but ≤ the MRL. Result is reported and considered an estimate.
- J-1 Estimated value. A full explanation is presented in the narrative.
- M Duplicate precision (RPD) was not within acceptance criteria. Please see narrative for explanation.
- N Spike recovery was not within acceptance criteria. Please see narrative for explanation.
- **R** Rejected, unusable value. A full explanation is presented in the narrative.
- U Result is ≤ the MDL or client requested reporting limit (CRRL). Result reported as the MDL or CRRL.
- **X** Result is not BLK-corrected and is within 10x the absolute value of the highest detectable BLK in the batch. Result is estimated.
- **Z** Holding time and/or preservation requirements not established for this method; however, BAL recommendations for holding time were not followed. Please see narrative for explanation.

These qualifiers are based on those previously utilized by Brooks Applied Labs, those found in the EPA <u>SOW ILM03.0</u>, Exhibit B, Section III, pg. B-18, and the <u>USEPA Contract Laboratory Program National Functional Guidelines for Inorganic</u> <u>Superfund Data Review; USEPA; January 2010</u>. These supersede all previous qualifiers ever employed by BAL.

Accreditation Information

Table 1. Accredited method/matrix/analytes for TNIIssued by: State of Florida Dept. of Health (The NELAC Institute 2016 Standard)Issued on: July 27, 2020; Valid to: June 30, 2021

Certificate Number: E87982-35

Method	Matrix	TNI Accredited Analyte(s)	
EPA 1638	Non-Potable Waters	Ag, Cd, Cu, Ni, Pb, Sb, Se, Tl, Zn	
EPA 200.8	Non-Potable Waters	Ag, Al, As, Ba, Be, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Se, TI, U, V, Zn	
	Non-Potable Waters	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Tl, U, V, Zn	
EPA 6020	Solids/Chemicals & Biological	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Tl, V, Zn	
	Non-Potable Waters	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, U, V, Zn, Hardness	
BAL-5000	Solids/Chemicals	Ag, As, B, Be, Cd, Co, Cr, Cu, Pb, Mo, Ni, Sb, Se, Sn, Sr, Tl, V, Zn	
	Biological	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Tl, V, Zn	
EPA 1640	Non-Potable Waters	Ag, As, Cd, Cu, Pb, Ni, Zn	
EPA 1631E	Non-Potable Waters, Solids/Chemicals & Biological	Total Mercury	
EPA 1630	Non-Potable Waters	Methyl Mercury	
BAL-3200	Solids/Chemicals & Biological	Methyl Mercury	
BAL-4100	Non-Potable Waters	As(III), As(V), DMAs, MMAs	
BAL-4200	Non-Potable Waters	Se(IV), Se(VI)	
BAL-4201	Non-Potable Waters	Se(IV), Se(VI)	
BAL-4300	Non-Potable Waters Solid/Chemicals	Cr(VI)	
SM2340B	Non-Potable Waters	Hardness	

Accreditation Information

Table 2. Accredited method/matrix/analytes for ISO (1), Non-Governmental TNI (2),

and DoD/DOE (3)

Issued by: ANAB

Issued on: January 10, 2020; Valid to: March 30, 2022

Method	Matrix	ISO and Non-Gov. TNI Accredited Analyte(s)	DoD/DOE Accredited Analytes
EPA 1638 Mod EPA 200.8 Mod	Non-Potable Waters	Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, TI, U, V, Zn	Ag, Al, As, Ba, Ca, Cd, Cr, Cu, Fe, Pb, Mg, Mn, Ni, Sb, Se, V, Zn
EPA 6020 Mod BAL-5000	Solids/Chemicals & Biological	Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, TI, V, Zn	Ag, As, Cd, Cr, Cu, Pb, Ni, Se, Zn
EPA 1640 Mod	Non-Potable Waters	Ag, As, Be, Cd, Cr, Co, Cu, Pb, Ni, Se, Tl, V, Zn	Not Accredited
EPA 1631E Mod BAL-3100 (waters) BAL-3101 (solids)	Non-Potable Waters, Solids/Chemicals & Biological/Food	Total Mercury	Total Mercury
EPA 1630 Mod BAL-3200	Non-Potable Waters, Solids/Chemicals Biological	Methyl Mercury	Methyl Mercury (excluding Solids/Chemicals)
EPA 1632A Mod	Non-Potable Waters Solids/Chemicals	Inorganic Arsenic, As(III)	Inorganic Arsenic. As(III) for waters only.
BAL-3300	Biological/Food	Inorganic Arsenic	Inorganic Arsenic (excluding Food)
AOAC 2015.01 Mod BAL-5000 by BAL-5040	Food	As, Cd, Hg, Pb	Not Accredited
	Non-Potable Waters	As(III), As(V), DMAs, MMAs	Not Accredited
BAL-4100	Biological by BAL-4115	Pb, Ni, Se, Tl, V, Zn Total Mercury Methyl Mercury Inorganic Arsenic, As(III) Inorganic Arsenic As, Cd, Hg, Pb As(III), As(V), DMAs, MMAs Inorganic Arsenic, DMAs, MMAs Inorganic Arsenic, DMAs, MMAs Se(IV), Se(VI), SeCN Se(IV), Se(VI), SeCN, SeMet	Not Accredited
BAL-4101	Food by BAL-4116	Inorganic Arsenic, DMAs, MMAs	Not Accredited
BAL-4200	Non-Potable Waters	Se(IV), Se(VI), SeCN	Not Accredited
BAL-4201	Non-Potable Waters	Se(IV), Se(VI), SeCN, SeMet	Not Accredited
BAL-4300	Non-Potable Waters, Solid/Chemicals	Cr(VI)	Cr(VI)
SM 3500-Fe BAL-4500	Non-Potable Waters	Fe, Fe(II)	Not Accredited
SM2340B	Non-Potable Waters	Hardness	Hardness
SM 2540G EPA 160.3 BAL-0501	Solids/Chemicals & Biological	% Dry Weight	% Dry Weight

(1) ISO/IEC 17025:2017 - Certificate Number ADE-1447.2

(2) Non-Governmental NELAC Institute 2016 Standard – Certificate Number ADE-1447.1

(3) Department of Defense/Energy Consolidated Quality Systems Manual v. 5.3 – Certificate Numbers ADE-1447 for DoD, ADE-1447.3 for DOE.

Sample Information

Sample	Lab ID	Report Matrix	Туре	Sampled	Received
RG_ELUGH_WS_LAEMP_GHO_202 0-09_NAL	2040047-01	WS	Sample	09/17/2020	10/01/2020
RG_ELUGH_WS_LAEMP_GHO_202 0-09_NAL	2040047-02	WS	Sample	09/17/2020	10/01/2020
RG_ELUGH_WS_LAEMP_GHO_202 0-09_NAL	2040047-03	WS	Sample	09/17/2020	10/01/2020
GH_ERSC4_WS_LAEMP_GHO_202 0-09_NAL	2040047-04	WS	Sample	09/12/2020	10/01/2020
GH_ERSC4_WS_LAEMP_GHO_202 0-09_NAL	2040047-05	WS	Sample	09/12/2020	10/01/2020
GH_ERSC4_WS_LAEMP_GHO_202 0-09_NAL	2040047-06	WS	Sample	09/12/2020	10/01/2020
GH_ER1A_WS_LAEMP_GHO_2020- 09_NAL	2040047-07	WS	Sample	09/11/2020	10/01/2020
GH_ER1A_WS_LAEMP_GHO_2020- 09_NAL	2040047-08	WS	Sample	09/11/2020	10/01/2020
GH_ER1A_WS_LAEMP_GHO_2020- 09_NAL	2040047-09	ws	Sample	09/11/2020	10/01/2020
RG_ERSC5_WS_LAEMP_GHO_202 0-09_NAL	2040047-10	WS	Sample	09/10/2020	10/01/2020
RG_ERSC5_WS_LAEMP_GHO_202 0-09_NAL	2040047-11	WS	Sample	09/10/2020	10/01/2020
RG_ERSC5_WS_LAEMP_GHO_202 0-09_NAL	2040047-12	WS	Sample	09/10/2020	10/01/2020
RG_GH-SCW3_WS_LAEMP_GHO_2 020-09_NAL	2040047-13	WS	Sample	09/13/2020	10/01/2020
RG_GH-SCW3_WS_LAEMP_GHO_2 020-09_NAL	2040047-14	WS	Sample	09/13/2020	10/01/2020
RG_GH-SCW3_WS_LAEMP_GHO_2 020-09_NAL	2040047-15	WS	Sample	09/13/2020	10/01/2020
GH_ERSC2_WS_LAEMP_GHO_202 0-09_NAL	2040047-16	WS	Sample	09/13/2020	10/01/2020
GH_ERSC2_WS_LAEMP_GHO_202 0-09_NAL	2040047-17	WS	Sample	09/13/2020	10/01/2020
GH_ERSC2_WS_LAEMP_GHO_202 0-09_NAL	2040047-18	WS	Sample	09/13/2020	10/01/2020
RG_SCDTC_WS_LAEMP_GHO_202 0-09_NAL	2040047-19	WS	Sample	09/13/2020	10/01/2020
RG_SCDTC_WS_LAEMP_GHO_202 0-09_NAL	2040047-20	WS	Sample	09/13/2020	10/01/2020
RG_SCDTC_WS_LAEMP_GHO_202 0-09_NAL	2040047-21	WS	Sample	09/13/2020	10/01/2020

Sample Information

Sample	Lab ID	Report Matrix	Туре	Sampled	Received
RG_THCK_WS_LAEMP_GHO_2020- 09_NAL	2040047-22	WS	Sample	09/10/2020	10/01/2020
RG_THCK_WS_LAEMP_GHO_2020- 09_NAL	2040047-23	WS	Sample	09/10/2020	10/01/2020
RG_THCK_WS_LAEMP_GHO_2020- 09_NAL	2040047-24	WS	Sample	09/10/2020	10/01/2020
RG_EL20_WS_LAEMP_GHO_2020- 09_NAL	2040047-25	WS	Sample	09/15/2020	10/01/2020
RG_EL20_WS_LAEMP_GHO_2020- 09_NAL	2040047-26	ws	Sample	09/15/2020	10/01/2020
RG_EL20_WS_LAEMP_GHO_2020- 09_NAL	2040047-27	WS	Sample	09/15/2020	10/01/2020
RG_UCWER_WS_LAEMP_GHO_20 20-09_NAL	2040047-28	WS	Sample	09/15/2020	10/01/2020
RG_UCWER_WS_LAEMP_GHO_20 20-09_NAL	2040047-29	WS	Sample	09/15/2020	10/01/2020
RG_UCWER_WS_LAEMP_GHO_20 20-09_NAL	2040047-30	ws	Sample	09/15/2020	10/01/2020
G	onfirm				

Batch Summary

Analyte	Lab Matrix	Method	Pr
DMSeO	Water	SOP BAL-4201	10/
DMSeO	Water	SOP BAL-4201	10/
MeSe(IV)	Water	SOP BAL-4201	10/
MeSe(IV)	Water	SOP BAL-4201	10/
Se Unk A	Water	SOP BAL-4201	10/
Se Unk A	Water	SOP BAL-4201	10/
Se(IV)	Water	SOP BAL-4201	10/
Se(IV)	Water	SOP BAL-4201	10/
Se(VI)	Water	SOP BAL-4201	10/
Se(VI)	Water	SOP BAL-4201	10/
SeCN	Water	SOP BAL-4201	10/
SeCN	Water	SOP BAL-4201	10/
SeMet	Water	SOP BAL-4201	10/
SeMet	Water	SOP BAL-4201	10/
SeSO3	Water	SOP BAL-4201	10/
SeSO3	Water	SOP BAL-4201	10/
Unk Se Sp	Water	SOP BAL-4201	10/
Unk Se Sp	Water	SOP BAL-4201	10/
	C	ontill	

Prepared	Analyzed	Batch	Sequence
10/02/2020	10/03/2020	B202664	2001191
10/22/2020	10/24/2020	B202887	2001271
10/02/2020	10/03/2020	B202664	2001191
10/22/2020	10/24/2020	B202887	2001271
10/02/2020	10/03/2020	B202664	2001191
10/22/2020	10/24/2020	B202887	2001271
10/02/2020	10/03/2020	B202664	2001191
10/22/2020	10/24/2020	B202887	2001271
10/02/2020	10/03/2020	B202664	2001191
10/22/2020	10/24/2020	B202887	2001271
10/02/2020	10/03/2020	B202664	2001191
10/22/2020	10/24/2020	B202887	2001271
10/02/2020	10/03/2020	B202664	2001191
10/22/2020	10/24/2020	B202887	2001271
10/02/2020	10/03/2020	B202664	2001191
10/22/2020	10/24/2020	B202887	2001271
10/02/2020	10/03/2020	B202664	2001191
10/22/2020	10/24/2020	B202887	2001271
10/22/2020	10/24/2020	D202007	200121
Confidential **Project ID:** TRL-VC1701 **PM:** Jeremy Maute

Sample Results

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
RG_THCK_WS	LAEMP_GHC	_2020-09_NAL								
2040047-24	DMSeO	WS	D	0.183		0.010	0.025	µg/L	B202664	2001191
2040047-24	DMSeO	WS	D	0.851		0.040	0.100	µg/L	B202887	2001271
2040047-24	DMSeO	WS	D	0.638		0.040	0.100	µg/L	B202887	2001271
2040047-24	MeSe(IV)	WS	D	0.246		0.010	0.025	µg/L	B202664	2001191
2040047-24	MeSe(IV)	WS	D	0.274		0.040	0.100	µg/L	B202887	2001271
2040047-24	MeSe(IV)	WS	D	0.270		0.040	0.100	µg/L	B202887	2001271
2040047-24	Se Unk A	WS	D	≤ 0.010	U	0.010	0.025	µg/L	B202664	2001191
2040047-24	Se Unk A	WS	D	≤ 0.040	U	0.040	0.100	µg/L	B202887	2001271
2040047-24	Se Unk A	WS	D	≤ 0.040	U	0.040	0.100	µg/L	B202887	2001271
2040047-24	Se(IV)	WS	D	5.79		0.050	0.125	µg/L	B202664	2001191
2040047-24	Se(IV)	WS	D	6.46		0.200	0.500	µg/L	B202887	2001271
2040047-24	Se(IV)	WS	D	6.33		0.200	0.500	µg/L	B202887	2001271
2040047-24	Se(VI)	WS	D	120		0.060	0.125	µg/L	B202664	2001191
2040047-24	Se(VI)	WS	D	133		0.240	0.500	µg/L	B202887	2001271
2040047-24	Se(VI)	WS	D	128		0.240	0.500	µg/L	B202887	2001271
2040047-24	SeCN	WS	D	≤ 0.040	U	0.040	0.125	µg/L	B202664	2001191
2040047-24	SeCN	WS	D	≤ 0.160	U	0.160	0.500	µg/L	B202887	2001271
2040047-24	SeCN	WS	D	≤ 0.160	U	0.160	0.500	µg/L	B202887	2001271
2040047-24	SeMet	WS	D	≤ 0.010	U	0.010	0.025	µg/L	B202664	2001191
2040047-24	SeMet	WS	D	≤ 0.040	U	0.040	0.100	µg/L	B202887	2001271
2040047-24	SeMet	WS	D	≤ 0.040	U	0.040	0.100	µg/L	B202887	2001271
2040047-24	SeSO3	WS	D	≤ 0.060	J-1 U	0.060	0.125	µg/L	B202664	2001191
2040047-24	SeSO3	WS	D	≤ 0.240	U	0.240	0.500	µg/L	B202887	2001271
2040047-24	SeSO3	WS	D	≤ 0.240	U	0.240	0.500	µg/L	B202887	2001271
2040047-24	Unk Se Sp	WS	D	≤ 0.060	U	0.060	0.125	µg/L	B202664	2001191
2040047-24	Unk Se Sp	WS	D	≤ 0.240	U	0.240	0.500	µg/L	B202887	2001271
2040047-24	Unk Se Sp	WS	D	≤ 0.240	U	0.240	0.500	µg/L	B202887	2001271

Results in Sequence 2001191 = Original results reported in **2040047_Final Report**. Results in Sequence 2001271 = Confirmation results subsequent to initial reporting. APPENDIX E Assessment of Groundwater – Surface Water Interactions (SNC-LAVALIN 2021)

SNC-Lavalin Inc. 8648 Commerce Court Burnaby, British Columbia, Canada V5A 4N6 604.515.5151 4604.515.5150 snclavalin.com

May 28, 2021

Teck Coal Limited 124B Aspen Drive Sparwood, BC V0B 2G0

ATTENTION: Allie Ferguson, Lead Regional Water Monitoring

REFERENCE: Assessment of Groundwater – Surface Water Interactions in Support of the GHO LAEMP

1 Introduction

SNC-Lavalin Inc. (SNC-Lavalin) has evaluated groundwater and surface water interactions proximal to the Elk River side channel in support of the Greenhills Operations (GHO) Local Aquatic Effects Monitoring Program (LAEMP); herein referred to as "the Project". An understanding of local aquatic effects of the west side tributaries of GHO to immediate receiving environments is required in Section 8.3.4 of Permit 107517¹ as outlined below:

* "The permittee must complete to the satisfaction of the director a study design for a LAEMP which will focus on the upper Elk River and the Elk River side channel and tributaries located on the west side of Greenhills Operation between EMS sites 0200389 and E3000090 for 2017-2020 by June 1, 2017. The study design must be reviewed by the EMC and be designed to an appropriate temporal scale to capture short term, local effects to the immediate receiving environment. Any changes to the approved study design must be reported in the annual LAEMP report."

This report provides an update to the groundwater and surface water assessments, incorporating 2020 data (SNC-Lavalin, 2019; 2020).

1.1 Background

GHO is one of Teck's five coal mines in the Elk Valley. The Elk River side channel is located between the Elk River and the western flank of the Greenhills Ridge at GHO and flows from directly south of Leask Creek to south of Thompson Creek, where it converges with the Elk River (Drawing 1). The area shown in Drawing 1 is referred to as the study area for this purpose of this report.

Since 2017, Minnow Environmental Inc. (Minnow) and Lotic Environmental Ltd. (Lotic) have completed and implemented a Study Design and monitoring program for the GHO LAEMP (Minnow and Lotic, 2017; 2018a; 2018b; 2019; 2020). In support of the LAEMP, SNC-Lavalin reviewed and compiled groundwater and surface water information available within and proximal to the Elk River side channel (SNC-Lavalin, 2019;

¹ Permit 107517, amended March 11, 2021.

Teck Coal Limited – Page 2 of 21 May 28, 2021

2020). The SNC-Lavalin reports presented summaries of groundwater and surface water data, assessments of the potential groundwater–surface water interactions, and identified gaps in knowledge. Table A summarizes the data gaps identified in the initial assessment conducted in support of the 2018 LAEMP (SNC-Lavalin, 2019).

Area	Data Gap/Uncertainty	Recommendations			
Side Channel and Associated Tributaries	Surface water stations are not surveyed to a common datum.	 Survey surface water stations to a datum common with groundwater monitoring wells. 			
Wolfram Creek	Shallow groundwater conditions between Wolfram Pond and the side channel (GH_ER1A) are unknown.	 Install a groundwater monitoring network upgradient of GH_ER1A. Collect groundwater level and quality data from newly installed wells. Review results from seep survey conducted at GHO. 			
Thompson Creek	Groundwater conditions in the vicinity of Thompson Creek confluence and further south in the side channel are unknown.	 Install a groundwater monitoring network in the vicinity of the confluence with Thompson Creek and further to the south where pooled areas have been mapped and sampled and an influence from Thompson Creek suspected. Review results from seep survey conducted at GHO. 			
Pools and Permanently Wetted Area	There is increasing mine-influence in pools and the permanently wetted area in the side channel noted in 2018 as compared to 2017, which is identified as an uncertainty.	 Field mapping, as well as analytical data associated with additional pools included in the 2019 program. Comparison of results to surface water and groundwater trends. 			
Downgradient of the Side Channel (GH_MW-ERSC-1)	The origin of periodic mine-influenced water in monitoring well GH_MW-ERSC-1 is not well understood.	 Improve the groundwater monitoring network in the vicinity of this well. Review results from seep survey conducted at GHO. 			

Table A: Data Gaps Identified in 2018

Since the initial assessment, groundwater investigations near the Elk River side channel have been ongoing as part of other programs including the GHO Site-Specific Groundwater Monitoring Program (SSGMP), Regional Groundwater Monitoring Program (RGMP), Cougar Pit Phase 5 and 7-2 Project (CPP), and the Mass Balance Investigation (MBI). Significant overlap between the groundwater components of the LAEMP and these programs exist, and many of the gaps identified in Table A are being filled as part of these programs and discussed further in sections below.

Teck Coal Limited – Page 3 of 21 May 28, 2021

1.2 Objective

The objective of this study is to use 2020 data to provide an update on the current understanding of groundwater-surface water interaction along the Elk River side channel to support Key Question #4 in the LAEMP:

What is the interaction between surface water and groundwater in the Elk River side channel?

As a supplement to the 2020 GHO LAEMP Report, this report assists Teck in meeting their commitments to the Environmental Monitoring Committee (EMC) to consider groundwater as part of the LAEMP.

2 Updated Groundwater-Surface Water Assessment

2.1 Overview

Groundwater data were collected in 2020 as part of the on-going GHO SSGMP, RGMP, CPP, and MBI programs as shown in Table B. Monitoring well and relevant surface water locations are shown on Drawing 2. Borehole logs are included as Attachment A. For this report and consistent with the LAEMP, results for the Project are discussed from north to south and split into: Reach 3 (Upstream and Downstream of GH_ER1A), Reach 2 and Reach 1 (West and East/Middle). Reach 3 Upstream of GH_ER1A is further subdivided into Upstream of the Side Channel and Upstream of Wolfram Creek, and Downstream of the Confluence with Wolfram Creek.

Well ID	Water Level Data	Chemistry Data	Source				
Reach 3 (Upstream of GH	Reach 3 (Upstream of GH_ER1A)						
Upstream of Side Channel	l and Upstream of Wolfram (Creek					
RG_MW_LC3A	Y (M and C)	Y	MBI				
RG_MW_LC3B	Y (M and C)	Y	MBI				
RG_MW_LC3C	N (Dry)	N (Dry)	MBI				
GH_MW_WC1-A	Y (M and C)	Y	SSGMP/CPP				
GH_MW_WC1-B	Y (M and C)	Y	SSGMP/CPP				
GH_MW_WC1-C	Y (M and C)	Y	SSGMP/CPP				
Downstream of Confluence	e with Wolfram Creek						
RG_MW_LCWC1	Y (M and C)	Y	MBI				
GH_GA-MW-2	Y (M and C)	Y	SSGMP/RGMP				
RG_MW_WC2A	Y (M and C)	Y	MBI				
RG_MW_WC2B	Y (M and C)	Y	MBI				
Reach 3 (Downstream of	Reach 3 (Downstream of GH_ER1A)						
No wells	NA	NA	NA				

Table B: Summary of Relevant 2020 Groundwater Data

Ref: 655483

Ref: 655483

Table B ((Cont'd)	: Summar	v of Relevant	2020	Groundwater	Data
TUDIC D		. Ourmun	y of iterevalue	LOLO	oroundutor	Dutu

Well ID	Water Level Data	Chemistry Data	Source				
Reach 2							
GH_GA-MW-3	Y (M and C)	Y	SSGMP/RGMP				
RG_MW_ER3A	Y*	Y	MBI				
RG_MW_ER3B	Y*	Y	MBI				
Reach 1 – East/Middle							
RG_MW_ER6A	Y*	Y	MBI				
RG_MW_ER6A	Y*	Y	MBI				
Reach 1 – West	Reach 1 – West						
RG_MW_ER4A	Y*	Y	MBI				
RG_MW_ER4B	Y*	Y	MBI				
RG_MW_ER5A	Y*	Y	MBI				
RG_MW_ER5B	Y*	Y	MBI				

Notes: 'Y' - data are available; 'Y*' - data collected but not processed or available for use; M - Manual water levels available; C - continuous/pressure transducer water levels available.

The 2019 Assessment of Groundwater – Surface Water Interaction in Support of the GHO LAEMP report included an assessment of groundwater related to the Wolfram and Thompson drainages (SNC-Lavalin, 2020a). The groundwater quality in the Leask drainage, upgradient of the side channel, was not included in the 2019 assessment as it was described in detail in the 2018 groundwater-surface water interaction assessment (SNC-Lavalin, 2019). Although the Leask drainage was not inferred to influence surface water quality in the side channel, recent water quality data assessed as part of the MBI indicates that groundwater south of Leask Sedimentation Pond (Leask Pond) is mine-impacted (RG_MW_LC3A/B/C). This monitoring location has been included in this assessment to further confirm or refute any potential mine-influence from groundwater to the side channel. Since 2020, additional monitoring wells upstream of the side channel and in Reaches 1 through 3 have been installed as part of the MBI and have been included in the assessment.

Groundwater elevations and analytical chemistry results from monitoring wells sampled in 2020 as part of the SSGMP and RGMP have been reported and summarized in the 2020 Annual Report: Elk Valley Regional and Site-Specific Groundwater Monitoring Programs; herein referred to as the "2020 Annual Report" (SNC-Lavalin, 2021a) and the 2020 RGMP Update (SNC-Lavalin, 2020c). Groundwater elevations and analytical results for the MBI have been reported and summarized in the Phase 1 Drilling Report, Mass Balance Investigation (SNC-Lavalin, 2021b). Groundwater elevations and analytical results from 2019 for monitoring wells GH_MW-WC1-A/B/C sampled as part of the CPP are presented in the 2019 Hydrogeology Field Program Results, Greenhills Operations report (SNC-Lavalin, 2021c).

Surface water results including water levels, and analytical chemistry data for select stations have been provided by Teck and Minnow. Relevant surface water stations and wetted areas are shown on Drawing 2 as well as groundwater fed isolated pools previously identified in 2018 and 2019 (SNC-Lavalin, 2020a).

Ref: 655483

Teck Coal Limited – Page 5 of 21 May 28, 2021

A bedrock ridge exists near the ground surface near Wolfram, Leask and Thompson Creek. New hydrometric stations (GH_LC3, GH_WC4, GH_TC3) were installed in 2020 as part of the MBI program on the exposed bedrock ridge inn the creeks at locations where the flow and load are inferred to be constrained at surface. Staff gauge measurements were taken three times in 2020 and results were presented in the MBI Phase 1 Drilling Report (SNC-Lavalin, 2020b).

Groundwater and surface water results were compared to the *Contaminated Sites Regulation*² (CSR) Standards (ENV, 2019) and the *BC Water Quality Guidelines*³ (BCWQG) (ENV, 2018); these are the primary screening criteria utilized for the SSGMP and RGMP, as outlined in the 2020 Annual Report (SNC-Lavalin, 2021a). To understand potential groundwater pathways of mine-related constituents, Piper plots, dissolved selenium to sulphate (as sulphur [S]) ratios and time series graphs for available groundwater and surface water order constituents (OC), as defined in Teck's Environmental Management Act⁴ (EMA) Permit, that have historically exceeded applicable criteria (nitrate-N, sulphate, and dissolved selenium) are shown in Figures 2 to 6 and 8 to 22. Some data points for locations GH_ER2, GH_ERC, GH_ERSC2, GH_ERSC4, GH_LC2, GH_TC1 and GH_TC2 were not plotted on the Piper diagrams due to lab error resulting in incorrect bicarbonate results. This does not alter the interpretation of the results.

2.2 Reach 3 and Upstream of Side Channel

The discussion below is divided based on the surface water flow path as follows: side channel upstream of the confluence with Wolfram Creek which is seasonally connected to the Elk River; Wolfram Creek situated in the valley bottom (i.e., Wolfram Pond discharge); and side channel downstream of GH_ER1A after the confluence with Wolfram Creek.

2.2.1 Upstream of Side Channel and Upstream of Confluence with Wolfram Creek

Table C presents a summary of 2020 water level and water quality results for the area upstream of the side channel and upstream of the confluence with Wolfram Creek.

² Contaminated Sites Regulation (CSR), B.C. Reg. 375/96, includes amendments up to B.C. Reg. 161/2020, February 1, 2021.

³ British Columbia Approved Water Quality Guidelines, includes Working Water Quality Guidelines for BC (BCWQG). British Columbia Ministry of Environment & Climate Change Strategy, updated July 2020.

⁴ Environmental Management Act (EMA), B.C. Reg. 161/2020 / effective February 1, 2021.

Teck Coal Limited – Page 6 of 21 May 28, 2021

Table C: Summary of 2020 Groundwater and Surface Water Monitoring and Sampling Results Upstream of Side Channel and Upstream of Confluence with Wolfram Creek

Groundwater	and Surface Water Information	Description	Reference
Monitoring	Relevant Monitoring Wells	GH_GA-MW-2, GH_MW_WC1-A/B/C, RG_MW_LC3A/B/C, RG_MW_LCWC1, RG_MW_WC2A/B	
Locations	Relevant Surface Water Monitoring Stations	evant Surface Water Monitoring tions GH_ERSC4, GH_ER2, GH_LC1, GH_LC2, GH_LC3, GH_WC1, GH_WC2, GH_WC4 Dr.	
Water Levels	Groundwater and Surface Water Levels	 Continuous surface water levels are available for GH_ERSC4 from January 1 to August 4, 2020; river levels were below the bottom of the staff gauge from January 1 to April 29, 2020 and starting again August 4, 2020. A review of the hydrograph indicates surface water levels peaked at GH_ERSC4 in June 2020 due to the spring freshet. At GH_GA-MW-2, GH_MW-WC1-A/B/C, RG_MW_LC3A/B groundwater levels generally fluctuate like GH_ERSC4, peaking in the spring freshet and subsequently declining. Monitoring well RG_MW_LC3C has been dry since installation. 	Drawing 3 Figure 1
	Hydraulic Gradients	 Vertical hydraulic gradients at shallow/intermediate well pairs RG_MW_LC3A/B and GH_MW_WC1-B/C were downward in June (data are only available for wells GH_MW_WC1-B/C, wells RG_MW_LC3A/B were not yet installed), August and September. This is the first year of data for RG_MW_LC3A/B. Vertical gradients at GH_MW_WC1-B/C were like previous years. 	
		 Vertical hydraulic gradients at intermediate/deep well pair (GH_MW_WC1-A/B) were upward in June, August and September. This is like previous years. 	
	Water Type and Sulphate (as S) to	GH_ER2, 5 km upstream of Leask Creek, is a calcium-bicarbonate water type and is natural non-contact water based on the sulphate (as S) to dissolved selenium ratios. The water type at GH_ERSC4 was mostly calcium-bicarbonate but in one sample in April shifted to a calcium-sulphate water type due to the increased influence of mine-influenced water from Leask Creek during spring freshet. A plot of the sulphate (as S) to dissolved selenium ratios for GH_ERSC4 indicates the water is generally natural non-contact water except for the sample collected April 28, 2020 which was influenced by Leask Creek.	
	Dissolved Selenium Ratios	> The water type at GH_MW_WC1-A/B/C is calcium-bicarbonate. Dissolved selenium to sulphate (as S) ratios indicates water in this area is not mine influenced.	
Water Quality		> The water types at RG_MW_LC3-A/B were calcium-bicarbonate in June and August when mixing was occurring more with the Elk River, and calcium- sulphate in October and December when there was less mixing with the Elk River and greater mixing from Leask Creek. Sulphate (as S) to dissolved selenium ratios indicate a mixture between the mine-influenced water originating from Leask Creek and natural non-contact water.	Figures 2A, 2B, 3, 4, 5, 6
	OC Concentrations	Concentrations of OC at GH_ERSC4 have historically been less than the applicable criteria and like concentrations farther upstream in the Elk River (GH_ER2). An exception to this is the April 28, 2020 sample where the OC were higher than at GH_ER2. This is interpreted to be due to influence from Leask Creek as the water type shifted to be like the pond for this sample. Groundwater concentrations of OC at shallow well GH_MW_WC1-C, were like surface water upstream and downstream in the side channel (GH_ERSC4 and GH_ER1A), respectively.	

Engineering, Design & Project Management

Ref: 655483

Teck Coal Limited – Page 7 of 21 May 28, 2021

The downward vertical gradients in the shallow/intermediate well nests, along with the water quality results, support previous years conclusions that the side channel in this area infiltrates (i.e., loses) to ground and that groundwater is not influencing water quality or quantity in the side channel. Surface water quality at ERSC-4 in the side channel was generally like the Elk River at GH_ER2; however, there was one sample collected April 28, 2020 that indicated mine-influence from Leask Creek which could be related to the spring snow melt.

Additional hydrometric stations were installed in Leask Creek (GH_LC3) and Wolfram Creek (GH_WC4) in 2020 as part of the MBI program; results will be analyzed and reported on as part of the MBI program.

2.2.2 Downstream of Confluence with Wolfram Creek

Table D presents a summary of 2020 water level and water quality results for the area downstream of the confluence with Wolfram Creek.

Teck Coal Limited – Page 8 of 21 May 28, 2021

Table D: Summary of 2020 Groundwater and Surface Water Monitoring and Sampling Results Downstream of Confluence with Wolfram Creek

and Surface Water Information	Description	Reference
Relevant Monitoring Wells	GH_GA-MW-2, RG_MW_LCWC1, RG_MW_WC2A/B	
Relevant Surface Water Monitoring GH_WC1, GH_WC2		Drawing 2
Groundwater and Surface Water Levels	 Like 2019, surface water flow in the channel near the outlet of Wolfram Pond in 2020 was only present in June and July; no overland flow had been observed in 2017 or 2018. This indicates most of the surface water in Wolfram Creek infiltrates to ground near the ponds, like previous years interpretations. Groundwater fed pool SC3-P13, located near the side channel south of Wolfram Pond, is in this area (SNC-Lavalin, 2020a) however pools were not monitored in 2020, as per the 2020 GHO LAEMP study design. Groundwater elevations in 2020 at GH_GA-MW-2 were like those observed in previous years. Groundwater elevations for new monitoring wells RG_MW_LCWC1 and RG_MW_WC2A/B are limited to August to October 2020, therefore interpretations are not possible regarding seasonal fluctuations. However, seasonal trends were like the other nearby monitoring locations. 	
Hydraulic Gradients	> Vertical hydraulic gradients at shallow/intermediate well nest RG_MW_WC2A/B were downward in June, August and September.	
Water Type and Sulphate (as S) to Dissolved Selenium Ratios	 Wolfram Pond was a calcium-sulphate water type and monitoring wells GH_GW-MW-2, RG_MW_WC2A/B, and RG_MW_LCWC1 were all calcium-sulphate water type like Wolfram Pond. Dissolved selenium to sulphate (as S) ratios indicates GH_GA-MW-2, RG_MW_LCWC1 and RG_MW_WC2A/B are mine-influenced. Until 2017, groundwater at GH_GA-MW-2 had been predominantly calcium-bicarbonate type water (like the Elk River monitoring location GH_ER2), suggesting that infiltration of surface water in the side channel occurs (SNC-Lavalin, 2020a). However, increases in sulphate concentrations over time have shifted the water type to predominantly calcium-sulphate-bicarbonate. This shift, along with higher concentrations of other constituents of interest OC, suggest that groundwater in the area over time is more influenced by mine-influenced surface water from Wolfram Pond/Creek. 	
OC Concentrations	 Like previous years, concentrations of OC in surface water from Wolfram Creek and Ponds (GH_WC1 and GH_WC2) in 2020 were greater than the applicable screening criteria. Deep monitoring well GH_GA-MW-2 (near GH_WC1) has had measurable concentrations of OC above the primary screening criteria, but they are lower than in Wolfram Creek (GH_WC1 and GH_WC2). OC concentrations at RG_MW_LCWC1 and RG_MW_WC2A/B are in the same range as GH_GA-MW-2. Dissolved selenium concentrations at RG_MW_WC2B increased in Q3 and Q4 which corresponds to an increase in surface water (GH_WC1, GH_WC2). Surface water station GH_ER1A is in the side channel downstream of Wolfram Creek. Concentrations of OC that seasonally (i.e. during spring freshet) exceed the primary screening criteria and that are higher relative to concentrations upstream at GH_ERSC4 have been measured at this surface water station since 2017. Seasonal (April to June) changes of up to one order of magnitude in concentrations in OC at this location are interpreted to be due to the snow melt in the Wolfram drainage, the existence of a shallow groundwater flow path from mine-influenced Wolfram Creek, and a seasonal groundwater contribution to the side channel. This is supported by the presence of groundwater flow path from mine-influenced with the side channel (SNC-Lavalin, 2020a); in April 2019 this groundwater fed pool had OC concentrations like GH_ER1A decreased and were closer to concentrations at upstream GH_ERSC4 indicating mixing with the Elk River water flod pool water of OC at GH_ER1A decreased. 	Figures 4, 5, 6
	and Surface Water Information Relevant Monitoring Wells Relevant Surface Water Monitoring Stations Groundwater and Surface Water Levels Hydraulic Gradients Water Type and Sulphate (as S) to Dissolved Selenium Ratios OC Concentrations	and Burface Water Information Description Relevant Monitoring Wells GH_GA-MW-2, RG_MW_LCWC1, RG_MW_WC2VB GH_WC1, GH_WC2 Relevant Surface Water Monitoring GH_WC1, GH_WC2 GH_WC1, GH_WC2 Stations J. Like 2019, surface water flow in the channel near the ouller of Wolfram Pond in 2020 was only present in June and July; no overland flow had been observed in 2017 or 2018. This indicates, mean of the surface water in Wolfram Creak (Filtrates to ground near the poulded), the previous years interpretations. Groundwater feel pool SG2-P13, located near the side channel south of Wolfram Pond, is in this area (SNC-Lavalin, 2020s) however pools were not monitored in 2020, as per the 2020 GHO LAEMP study design. Croundwater elevations in 2020 at CH_GA-MW-2 were like those observed in previous years. Groundwater elevations for new monitoring locations. However, seasonal rends were like the other neatry monitoring locations. However, seasonal rends were like the other neatry monitoring locations. Hydraulic Gradients > Vertical hydraulic gradients at shallow/intermediate well nest RG_MW_WC2AB were downward in June, August and September. Water Type and Sulphate (as S) to Dissolved Selenium Tos discussed Selenium Ratios > Vertical hydraulic gradients at shallow/intermediate well ress (SNC-Lavalin, 2020a), However, increases in sulphate concentrations of other constituents of interestOC, suggesting that infiltration of surface water trans were (SNC-Lavalin, 2020a). However, fincerester (SNC-Lavalin, 2020a), However, Increases in sulphate concentrations of other constituents of interestOC, suggesting that infiltration of surface water in the side channel countrinin,

Engineering, Design & Project Management

Teck Coal Limited – Page 9 of 21 May 28, 2021

Downward vertical hydraulic gradients at and water quality shallow/intermediate well nest RG_MW_WC2A/B along with the surface water groundwater quality results in 2020 support previous years conclusions that surface water is generally losing to ground in Reach 3 downstream of the confluence with Wolfram Creek. Water quality in the side channel varies seasonally due to differences in flows throughout the year. From April to June, due to snow melt in the Wolfram drainage, the existence of a shallow groundwater flow path and groundwater contributions to the side channel during this time, OC concentrations at GH_ER1A increase. Once Reach 3 is fully wet, typically in May/June, the Elk River is the main influence at GH_ER1A and OC concentrations decrease.

2.2.3 Downstream of GH_ER1A

Surface water elevations at GH_ER1A have fluctuated by approximately 1.5 m since 2017. Measurable (i.e., non-zero) surface water elevations at GH_ER1A only commence in the spring (late-April to July) compared to the more continuous hydrograph for GH_ERSC4. This suggests that infiltration occurs along the upper portion of Reach 3 (Figure 1) and no groundwater base flow was present. This is also supported by the fact there are no groundwater fed pools/wetted areas in this area (SNC-Lavalin, 2020a).

2.3 Reach 2 (Wetted Area)

A permanently wetted area (Reach 2) is located at the confluence of Thompson Creek and the side channel. A greater mean surface flow through the winter months at Thompson Creek contributes to continued wetness in this area (Teck, 2017). No pit pumping has been directed to Thompson Creek since 2017. Table E presents a summary of 2020 water level and water quality results for Reach 2.

Teck Coal Limited – Page 10 of 21 May 28, 2021

Table E: Summary of 2020 Groundwater and Surface Water Monitoring and Sampling Results Reach 2 (Wetted Area)

Groundwate	er and Surface Water Information	Description	Reference
Monitoring	Relevant Monitoring Wells	GH_GA-MW-3, RG_MW_ER3A/B	
Locations	Relevant Surface Water Monitoring Stations	GH_TC1, GH_TC2, GH_ERSC2, RG_GH-SCW1, RG_GH-SCW2, RG_GH–SCW3	
Water Levels	Groundwater and Surface Water Elevations	> Seasonal fluctuations in groundwater levels at GH_GA-MW-3 suggest this well is predominantly influenced by snow melt in the upper catchment rather than from the side channel with peak elevations occurring between April and May; groundwater levels fluctuated similarly in 2020 as historically.	Drawing 3 Figure 7
	Hydraulic Gradients	> The vertical hydraulic gradient at shallow/intermediate well nest RG_MW_ER3A/B was 0.012 m/m downward in September 2020.	
Water Quality	Water Type and Sulphate (as S) to Dissolved Selenium Ratios	 GH_ERSC2 is generally a calcium-bicarbonate water type with one calcium-sulphate water type result in April. RG_GH–SCW3 water type is calcium-bicarbonate which is like the side channel when the side channel is wet (i.e. spring freshet) and shifts to calcium-sulphate which is more like Thompson Creek when the side channel is dry (fall and winter). Dissolved selenium to sulphate (as S) ratios indicates a similar shift where water in these locations is less influenced by mine-influenced water from Thompson Creek when mixing with water in the side channel and more influenced by Thompson Creek when the side channel is dry. Water type at monitoring well GH_GA-MW-3 also varies throughout the year, shifting to be like Thompson Creek in June and November 2020. Dissolved selenium to sulphate as S ratios indicates a similar shift to being more mine-influenced in June and November due to increased influence from Thompson Creek. Only two samples are available for monitoring wells RG_MW_ER3A/B however they have similar ratios and water types as GH_GA-MW-3. 	Figures 8, 9
	OC Concentrations	 Monitoring well GH_GA-MW-3 has historically had elevated concentrations of OC relative to the primary screening criteria, however they are less than concentrations in surface water from the Thompson Creek. In the wetted area (RG_GH–SCW3) and the side channel (GH_ERSC2), OC concentrations fluctuate depending on the amount of water in the side channel i.e., concentrations are lower from approximately April to October and higher from October to March. 	Figures 10, 11, 12

Engineering, Design & Project Management

Teck Coal Limited – Page 11 of 21 May 28, 2021

Ref: 655483

Of the side channel surface water locations, samples were only collected in 2020 from RG_GH-SCW3 located at the outlet for Reach 2. An additional hydrometric station was also installed in Thompson Creek in 2020 as part of the MBI program (GH_TC3); results will be analyzed and reported on as part of the MBI program.

The downward vertical hydraulic gradient at shallow/intermediate well nest RG_MW_ER3A/B, along with the water quality results for surface and groundwater monitoring locations in Reach 2 for 2020 support previous conclusions that surface water is losing to ground in Reach 2. Thompson Creek appears to be the main influence on water quality in the side channel in Reach 2 and this influence is greater when the side channel is dry and less when it is wet.

2.4 Reach 1 (West and East/Middle)

Table F presents a summary of 2020 water level and water quality results for Reach 1.

<u>. @ 10</u>

Teck Coal Limited – Page 12 of 21 May 28, 2021

Table F: Summary of 2020 Groundwater and Surface Water Monitoring and Sampling Results Reach 1 (West and East/Middle)

Groundwater a	and Surface Water Information	Description	Reference		
Monitoring Locations	Relevant Monitoring Wells	RG_MW_ER4A/B, RG_MW_ER5A/B, RG_MW_ER6A/B			
	Relevant Surface Water Monitoring Stations and Groundwater Fed Pools	Surface Water: GH_ERSC2, ERSCDS, GH_ERC Groundwater Fed Pools: SC2-P1, SC2-P2 and SC2-P3 (SNC-Lavalin, 2020a)	Drawing 2		
Water Levels	Groundwater and Surface Water Elevations The side channel is interpreted to receive flow from the groundwater-fed wetted area between Reach 2 and station GH_ERCS2 in the spring and summer, and then in the fall flows are inferred to infiltrate to ground in this area. Surface water levels at ERSCDS, located near the southern confluence between the side channel and the Elk River, historically have fluctuated by approximately 1 m, with the greatest levels measured between late-April and late-July. In 2020 the staff gauge was lost in the freshet in early May.		Drawing 3 Figure 7		
	lydraulic Gradients Vertical hydraulic gradients at RG_MW_ER4A/B, RG_MW_ER5A/B, and RG_MW_ER6A/B were all downward in September 2020				
		The water types at the groundwater monitoring wells were:			
		Calcium-bicarbonate at RG_MW_ER4A/B.	Figures 13A, 13B, 14, 15, 16, 17		
		Calcium-sodium-bicarbonate at RG_MW_ER5A.			
Water Quality	2020 Relevant Water Quality Results	Calcium-sulphate at RG_MW_ER5B and RG_MW_ER6B.			
		> Sodium-bicarbonate at RG_MW_ER6A.			
		Dissolved selenium to sulphate (as S) ratios indicates the groundwater monitoring wells are non-contact water except for shallow wells RG_MW_ER5B and RG_MW_ER6B which are mine-influenced. Water type in the groundwater fed pools is calcium-sulphate and ratios indicate they are mine-influenced (SNC-Lavalin, 2020a). The groundwater pathway for mine influenced water to these wells is still being evaluated in the MBI.			

Engineering, Design & Project Management

Ref: 655483

Teck Coal Limited – Page 13 of 21 May 28, 2021

As discussed in the 2019 report (SNC-Lavalin, 2020a), and confirmed by sampling and observations in 2020, pools SC2-P1, SC2-P2 and SC2-P3 have been present generally year-round since they were first observed in 2017 and 2018, indicating they are groundwater fed. The groundwater pathway to these pools is being evaluated in the MBI.

Limited groundwater data were available for Reach 1 given monitoring wells were installed in 2020, however, based on previous years data the side channel was interpreted to receive flow from the groundwater-fed wetted area between Reach 2 and station GH_ERCS2 in the spring and summer, and then in the fall flows are inferred to infiltrate to ground in this area. Additional data and analysis are required to determine the source of the mine-influenced water at RG_MW_ER5B and RG_MW_ER6B and the groundwater pathway leading to the groundwater fed pools (SC2-P1, SC2-P2, SC2-P3). This will be conducted through the MBI in 2021.

2.5 Seep Monitoring Data

Since 2018, SRK Consulting has conducted the Elk Valley Regional Seep Monitoring Program (SRK Consulting, 2021). In 2020 seeps were visited at least twice; during high flows (between March 15, 2020 and July 15, 2020) and during low flow (outside high flow window, generally between September and November). Review of the locations visited indicate there were no seeps in the Regional Seep Monitoring Program that were useful in the understanding of the Elk River side channel as shown in Figure A

Teck Coal Limited – Page 14 of 21 May 28, 2021

Ref: 655483

.<u>e</u>10

Teck Coal Limited – Page 15 of 21 May 28, 2021 Ref: 655483

3 Conclusions

The Elk River side channel undergoes seasonal flooding and braiding with variable flow throughout the year. The surficial deposits underlying the side channel generally comprise fluvial and glaciofluvial sand and gravels (SNC-Lavalin, 2019).

Updated hydrographs, vertical gradients, and water quality data continue to support the conceptual model that the side channel predominantly infiltrates to ground and recharges groundwater. A review of the mapping performed by Minnow and Lotic since 2017 suggests that the seasonal flow in the side channel infiltrates to ground across most of the channel and develops isolated pools in seasons outside of freshet, except at Pools SC3-P13 (near the confluence with Wolfram Creek), and SC2-P3, SC2-P1, and SC2-P2 (downstream of Thompson Creek) which are groundwater fed (SNC-Lavalin, 2020a). However, these pools are not interpreted to produce sustained flows in the side channel given that SC3-P13 is not persistent on a year over year basis and the other three pools are relatively small (maximum size approximately 15 m by 3 m; SNC-Lavalin, 2020a).

Like previous years, concentrations of OC generally increase along the side channel flow path, which is inferred to result from loading of OC from mine-influenced tributaries on the west side of GHO. In Reach 3, upstream of the confluence with Wolfram Creek, surface water quality in the side channel (ERSC-4) was generally like the Elk River at GH_ER2; however, there is periodic influence from Leask Creek. In Reach 3 downstream of the confluence with Wolfram Creek, water quality in the side channel varies seasonally. From April to June OC concentrations at GH_ER1A increase due to snow melt in the Wolfram drainage and the existence of a shallow groundwater flow path and groundwater contributions to the side channel during this time. Once Reach 3 is fully wet, typically in July, the Elk River is the main influence at GH_ER1A and OC concentrations decrease. In Reach 2, Thompson Creek appears to be the main influence on water quality in the side channel and this influence is greater when the side channel is dry and less when it is wet.

The 2018 LAEMP recommended to fill data gaps/uncertainties associated with groundwater–surface water interaction along the Elk River side channel. Several of the gaps have been addressed by work conducted in 2020 and remaining gaps are planned to be addressed by new monitoring well installations in 2021 and collection of additional groundwater data in support of on-going programs such as the GHO SSGMP, RGMP, MBI, and CPP. Table G presents a summary of the data gaps and recommendations established in the 2018 LAEMP, and the status of the gaps as of the end of 2020.

Teck Coal Limited – Page 16 of 21 May 28, 2021

Table G: Status of Data Gaps After 2020 Work

Area	Data Gap/Uncertainty	Recommendations	Status
Side Channel and Associated Tributaries	Surface water stations are not surveyed to a common datum.	 Survey surface water stations to a common with groundwater monitoring wells. 	 Surface water stations ERSCDS, ER1-A and ERSC4 have been surveyed and tied into the current groundwater monitoring network. The data gap/uncertainty has been addressed.
Wolfram Creek	Shallow groundwater conditions between Wolfram Pond and the side channel (GH_ER1A) are unknown.	 Install a groundwater monitoring network upgradient of GH_ER1A. Collect groundwater level and quality data from newly installed wells. Review results from seep survey conducted at GHO. 	 A review of seeps from the Regional Seep Monitoring Program indicated no relevant seeps. Six monitoring wells were installed in three locations in 2020 near Leask and Wolfram Creeks as part of the MBI (RG_MW_LC3A/B/C, RG_MW_LCWC1, RG_MW_WC2A/B). These wells will continue to be monitored in 2021 and results for the new monitoring wells will be evaluated as part of the MBI. Additional work planned for 2021 as part of the MBI that would be relevant to the understanding of groundwater and surface water interaction are: additional seep reconnaissance and sampling in the Elk River Side Channel (seeps were identified in the MBI that were not identified in the Regional Seep Monitoring Program; the seep reconnaissance will be covering areas not covered in the Regional Seep Monitoring Program); flow and load accretion studies; geophysical surveys to determine depth to bedrock; install additional monitoring wells; and groundwater sampling.

Teck Coal Limited – Page 17 of 21 May 28, 2021

Table G (Cont'd): Status of Data Gaps After 2020 Work

Area	Data Gap/Uncertainty	Recommendations	Status
Thompson Creek	Groundwater conditions in the vicinity of Thompson Creek confluence and further south in the side channel are unknown.	Install a groundwater monitoring network in the vicinity of the confluence with Thompson Creek and further to the south where pooled areas have been mapped and sampled and an influence from Thompson Creek suspected. Review results from seep survey conducted at GHO.	Twelve monitoring wells were installed in six locations in 2020 as part of the MBI (RG_MW_ER3A/B to RG_MW_ER6A/B). As above, no relevant seeps identified from Regional Seep Monitoring Program, but additional studies are planned to investigate groundwater surface water interaction as part of the MBI as outlined above.
Downgradient of the Side Channel (GH_MW-ERSC-1)	The origin of periodic mine- influenced water in monitoring well GH_MW-ERSC-1 is not well understood.	 Improve the groundwater monitoring network in the vicinity of this well. Review results from seep survey conducted at GHO. 	 This area is not considered to be relevant to interactions in the side channel as they related to the LAEMP; therefore, this gap should be considered through the MBI and GHO SSGMP. Three monitoring wells were installed in two locations in 2020 as part of the MBI (RG_MW_ER7A/B and RG_MW_ER8). As above, no relevant seeps identified from Regional Seep Monitoring Program, but further investigation is planned as part of the MBI.

Teck Coal Limited – Page 18 of 21 May 28, 2021 Ref: 655483

4 Recommendations for Future Monitoring

Teck has fulfilled the Permit 107517 Section 8.3.4 requirement for a LAEMP to be conducted from 2017 to 2020, focussing on the local area of the upper Elk River, the Elk River side channel, and tributaries located on the west side of Greenhills Ridge. Where concerns remain, the GHO LAEMP monitoring will be incorporated into existing monitoring programs through established program update frameworks, as appropriate, such that these residual concerns continue to be addressed. Therefore, monitoring locations relevant to study question #4 of the LAEMP that are currently monitored under the MBI and GHO LAEMP only (Table B) are to be incorporated into the SSGMP. Table H summarizes the status of the monitoring locations that have historically been included in the LAEMP and their status relative to their inclusion or future inclusion in the SSGMP. Locations that are recommended to be assessed for potential inclusion in the SSGMP were identified based on results assessed to date, their historic utility in the LAEMP and future utility in continuing to understand groundwater-surface water interactions in the side channel. "Locations to be reviewed in 2022" would be reviewed in early 2022 during preparation of the 2021 SSGMP annual report to determine whether these locations should be added to the SSGMP. Similarly, "MBI locations installed in 2021" will be reviewed in early 2023 during preparation of the 2022 SSGMP annual report to determine whether they will be added to the SSGMP.

Monitoring Location Type	Locations Currently Being Monitored in SSGMP	Locations Recommended to be Assessed for Potential Inclusion in SSGMP in 2021	Locations to be Reviewed in 2022 for Potential Inclusion in SSGMP	MBI Locations to be Installed in 2021 and Reviewed in 2023 for Potential Inclusion in SSGMP
Surface Water	GH_ER1A, GH_ERC, GH_ERSC2, GH_ERSC4, GH_LC1, GH_LC2, GH_MC1, GH_TC1, GH_TC2, GH_WC1, GH_WC2*	GH_ER2, GH_ERUS, ERSCDS, GH_SCW1, GH_SCW3	GH_LC3, GH_WC3, GH_WC4, GH_TC3	
Groundwater- fed Isolated Pools		SC2-P1, SC2-P2, SC2-P3, SC3-P13	NA	NA
Groundwater	GH_GA-MW-2, GH_GA-MW-3	RG_MW_LC3A/B/C, GH_MW_WC1-A/B/C RG_MW_WC2A/B, RG_MW_ER3A/B RG_MW_ER4A/B,	GH_MW_LC1-A/B, GH_MW_LC2-A/B, RG_MW_LCWC1, RG_MW_ER5A/B, RG_MW_ER6A/B;	RG_MW_ER9A/B, RG_MW_ER10A/B, RG_MW_ER11A/B

Table H: Future Monitoring Locations

Notes: NA - not applicable, * Data is currently being reviewed under RGMP and SSGMP where applicable.

Teck Coal Limited – Page 19 of 21 May 28, 2021 Ref: 655483

5 References

- British Columbia Ministry of Environment and Climate Change Strategy (ENV), 2018. British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture. Summary Report. March 2018.
- British Columbia Ministry of Environment and Climate Change Strategy (ENV), 2019. *Contaminated Sites Regulation* (CSR), B.C. Reg. 375/96, includes amendments up to B.C. Reg. 161/2020, February 1, 2021.
- Minnow Environmental Inc. and Lotic Environmental, 2017. Study Design (2017) for Local Aquatic Effects Monitoring Program (LAEMP) at Teck's Greenhills Operation. Prepared for Teck Coal Limited, dated May 2017.
- Minnow Environmental Inc. and Lotic Environmental, 2018a. 2017 Greenhills Operation Local Aquatic Effects Monitoring Program (LAEMP) Report. Prepared for Teck Coal Limited, dated May 2018.
- Minnow Environmental Inc. and Lotic Environmental, 2018b. 2018 to 2020 Greenhills Operation Local Aquatic Effects Monitoring Program (LAEMP) Study Design. Prepared for Teck Coal Limited, dated May 2018.
- Minnow Environmental Inc. and Lotic Environmental, 2019. 2018 Greenhills Operation Local Aquatic Effects Monitoring Program (LAEMP) Report. Prepared for Teck Coal Limited, dated May 2019.
- Minnow Environmental Inc. and Lotic Environmental, 2020. 2019 Greenhills Operation Local Aquatic Effects Monitoring Program (LAEMP) Report. Prepared for Teck Coal Limited, dated May 2020.
- SNC-Lavalin Inc., 2019. Assessment of Groundwater Surface Water Interaction for LAEMP West Side of GHO. Prepared for Teck Coal Limited, dated May 30, 2019.
- SNC-Lavalin Inc., 2020a. Assessment of Groundwater Surface Water Interaction in Support of the GHO LAEMP. Prepared for Teck Coal Limited, dated May 29, 2020.
- SNC-Lavalin, 2020b. Calculated Loading of Constituents of Interest in the Elk River and Greenhills Operations (GHO) West Side Tributaries – October 2019. Prepared for Teck Coal Limited, dated December 9, 2020.
- SNC-Lavalin, 2020c. 2020 Regional Groundwater Monitoring Program Update. Prepared for Teck Coal Limited, dated December 4, 2020.
- SNC-Lavalin Inc., 2021a. 2020 Annual Report: Elk Valley Regional and Site-Specific Groundwater Monitoring Programs, Fording River Operations, Greenhills Operations, Line Creek Operations, Elkview Operations, Coal Mountain Mine, Regional Groundwater Monitoring Program. Prepared for Teck Coal Limited. Dated March 31, 2021.
- SNC-Lavalin Inc., 2021b. Phase 1 Drilling Report, Mass Balance Investigation. Prepared for Teck Coal Limited, dated January 28, 2021.
- SNC-Lavalin Inc., 2021a. 2019 Hydrogeology Field Program Results, Greenhills Operations. Draft prepared for Teck Coal Limited, dated January 28, 2021.

Teck Coal Limited – Page 20 of 21 May 28, 2021

- SRK Consulting, 2021. Elk Valley Regional Seep Monitoring Program: 2020 Annual Report. Prepared for Teck Coal Limited, dated March 2021.
- Teck Coal Ltd., 2017. 2017 Elk Valley Regional Water Quality Model Update Overview Report (with Annexes), dated October 2017.

Ref: 655483

PROVINCE

C# HULIPHRIES

#31909 BHITISH

SCIEN

A

Ŵ

Teck Coal Limited - Page 21 of 21 May 28, 2021

6 Closure

We trust this report meets your current requirements and greatly appreciate the opportunity to assist Teck with this project. If you have any questions, please contact Stefan Humphries in our Nelson office at 250.354.1664. FESSIO

Emma Canham, MSc Project Hydrogeologist Environment & Geoscience Engineering, Design & Project Management

Stefan Humphries, MSc, P.Geo. Senior Hydrogeologist Environment & Geoscience Engineering, Design & Project Management

EC/tr/jrs P:\CP\TECK COAL LTD\GHO\655483 - GHO_GW_SW_INTERACTION\50_DEL\55_OTH_20210528_655483_LRPT_GHO_LAEMP_FINAL.DOCX enc.

Figures

- Hydrograph for Reach 3 and Precipitation Data 1:
- Piper Diagram for Upstream and Reach 3 Groundwater Wells 2A:
- 2B: Piper Diagram for Upstream and Reach 3 Surface Water
- Upstream and Reach 3 Se:SO4 (S) Ratios 3.
- Nitrate-N Concentrations Upstream and Reach 3 4:
- 5: Sulphate Concentrations Upstream and Reach 3
- Dissolved Selenium Concentrations Upstream and Reach 3 6:
- Hydrograph for Reaches 2 and 1 and Precipitation Data 7:
- Piper Diagram for Reach 2 Groundwater Wells and Surface Water 8:
- 9 Reach 2 - Se:SO4 (S) Ratios
- 10: Nitrate-N Concentrations in Reach 2
- 11: Sulphate Concentrations in Reach 2
- 12: Dissolved Selenium Concentrations in Reach 2
- 13A: Piper Diagram for Reach 1 Groundwater Wells
- 13B: Piper Diagram for Reach 1 Surface Water
- 14: Reach 1 Se:SO4 (S) Ratios
- Nitrate-N Concentrations in Reach 1 15:
- 16: Sulphate Concentrations in Reach 1
- 17: Dissolved Selenium Concentrations in Reach 1

Drawings

- 1: Site Location Plan
- GHO Elk River Side Channel Site Plan 2:
- Groundwater Elevation and Inferred Groundwater Flow Direction Elk Valley 3:

Attachment

Borehole Logs A

Engineering, Design & Project Management

Figures

- 1: Hydrograph for Reach 3 and Precipitation Data
- 2A: Piper Diagram for Upstream and Reach 3 Groundwater Wells
- 2B: Piper Diagram for Upstream and Reach 3 Surface Water
- 3: Upstream and Reach 3 Se:SO4 (S) Ratios
- 4: Nitrate-N Concentrations Upstream and Reach 3
- 5: Sulphate Concentrations Upstream and Reach 3
- 6: Dissolved Selenium Concentrations Upstream and Reach 3
- 7: Hydrograph for Reaches 2 and 1 and Precipitation Data
- 8: Piper Diagram for Reach 2 Groundwater Wells and Surface Water
- 9: Reach 2 Se:SO4 (S) Ratios
- 10: Nitrate-N Concentrations in Reach 2
- 11: Sulphate Concentrations in Reach 2
- 12: Dissolved Selenium Concentrations in Reach 2
- 13A: Piper Diagram for Reach 1 Groundwater Wells
- 13B: Piper Diagram for Reach 1 Surface Water
- 14: Reach 1 Se:SO4 (S) Ratios
- 15: Nitrate-N Concentrations in Reach 1
- 16: Sulphate Concentrations in Reach 1
- 17: Dissolved Selenium Concentrations in Reach 1

Note: Surface water elevations normalized based on available survey data

Figure 3: Upstream and Reach 3 - Se:SO₄ (S) Ratios

Dissolved Selenium Concentration (mg/L)

Note: Only groundwater fed pools are presented.

For concentrations measured below the analytical detection limit, the detection limit (0.005 mg/L) was utilized for plotting purposes. Logarithmic scale has been applied based on distribution of concentrations relative to applicable screening criteria.

Figure 05: Upstream and Reach 3 - Dissolved Selenium

Note: Only groundwater fed pools are presented. No data collected for SC3-P13 in 2020. For concentrations measured below the analytical detection limit, the detection limit (0.05 μg/L) was utilized for plotting purposes. Logarithmic scale has been applied based on distribution of concentrations relative to applicable screening criteria.

Figure 06: Upstream and Reach 3 - Sulphate Concentrations

Logarithmic scale has been applied based on distribution of concentrations relative to applicable screening criteria.

Note: Only groundwater fed pools are presented.

Figure 07: Hydrograph for Reach 2 and 1

Note: Surface water elevations normalized based on available survey data.

Figure 10: Reach 2 - Nitrate-N Concentrations

Note: Surface water location RG_GHSCW2 (permanently wetted area) was not sampled in 2019 and was therefore not included in the time-series graph. For concentrations measured below the analytical detection limit, the detection limit (0.005 mg/L) was utilized for plotting purposes. Logarithmic scale has been applied based on distribution of concentrations relative to applicable screening criteria.

GH TC1 (Thompson Creek Downstream of Pond SW) GH TC2 (Decant at Lower Thompson Pond SW) -0-GH ERC (Elk River) GH ERSC2 (Side Channel SW) . - 11 0 GH GA-MW-3 (GW) igodolRG MW ER3A RG_GH-SCW3 (Permanently Wetted Area) RG_MW_ER3B 0 •••••• CSR DW (500 mg/L) •••••• CSR AW (1,280 mg/L) •••••• CSR LW (1,000 mg/L) •••••• BCWQG AW (128 mg/L) 10000 1000 Sulphate (mg/L) \bigcirc 100 \bigcirc 10 Oct 2020 Jul 2019 Jan 2017 APr 2017 Jul 2017 Oct 2017 Jan 2018 Apr 2018 Jul 2018 Oct 2018 Jan 2019 APr 2019 Oct 2019 Jan 2020 AP1 2020 Jul 2020 Jan 2021

Note: Surface water location RG GHSCW2 (permanently wetted area) was not sampled in 2019 and was therefore not included in the time-series graph. Logarithmic scale has been applied based on distribution of concentrations relative to applicable screening criteria.

Figure 11: Reach 2 - Sulphate Concentrations

Note: Surface water location RG_GHSCW2 (permanently wetted area) was not sampled in 2019 and was therefore not included in the time-series graph. For concentrations measured below the analytical detection limit, the detection limit (0.10 μg/L) was utilized for plotting purposes. Logarithmic scale has been applied based on distribution of concentrations relative to applicable screening criteria.

Figure 15: Reach 1 - Nitrate-N Concentrations

Note: Only results for isolated pools obersved in 2019 are presented along with historical data for these pools. For concentrations measured below the analytical detection limit, the detection limit (0.005 mg/L) was utilized for plotting purposes. Logarithmic scale has been applied based on distribution of concentrations relative to applicable screening criteria.

Figure 16: Reach 1 - Sulphate Concentrations

Note: Only results for isolated pools obersved in 2019 are presented along with historical data for these pools. Logarithmic scale has been applied based on distribution of concentrations relative to applicable screening criteria.

Figure 17: Reach 1 - Dissolved Selenium Concentrations

Note: Only results for groundwater fed pools are presented.

Logarithmic scale has been applied based on distribution of concentrations relative to applicable screening criteria.

Drawings

- 1: Site Location Plan
- 2: GHO Elk River Side Channel Site Plan
- 3: Groundwater Elevation and Inferred Groundwater Flow Direction Elk Valley

Project Path: P:\Current Projects\Teck Coal Ltd\GIS\Exports\655483_GHO

Project Path: \\Sli2606\projects\Current Projects\Teck Coal Ltd\GISCAD\GIS\Map Series\655483_GHO\

Project Path: \\Sli2606\projects\Current Projects\Teck Coal Ltd\GISCAD\Exports\666653\MBI Drilling Report_2020

Attachment A

Borehole Logs

State Description State State	4	00	SOIL PROFILE			SA	MPL	ES	DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, T		PIEZÓMETE
0 Decent Series 1900 1900 1900 10000 1000	METRES	BORING METH	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	20 40 60 80 SHEAR STRENGTH Cu, kPa nat V. + 0 - • 20 40 60 80 20 40 60 80	10 ⁴ 10 ⁴ 10 ⁴ 10 ³ L WATER CONTENT PERCENT Wp 1 OW 10 10 10 20 30 40	ADDITTONAL LAB, TESTING	STANDPIF INSTALLATI Stick-up
-3 -3	0 1 2		Ground Serface (SP) SAND, coarse-grained, trace fine gravel, angular, pcorfy-graded, grey		<u>1310.00</u> 9.00							= 1.02 m
- 7 (CI) SILTY CLAY, some fine gravel, brown, cohesive, water content is close: to plastic limit, very soft 3 (SRA6	3. 4 5	Barber Rig – Air Rotary Tervita	(GP) GRAVEL, coarse-grained, sub-rounded, brown		1305.08 5.00	2.1	SRAE					19 Sep 2012 文 Bentonite Pellets
	· 7 · 8		(CI) SILTY CLAY, some fine gravel, brown, cohesive, water content is close to plastic limit, very soft		<u>1303.00</u> 7.00	3	SRAE					

1	9	SOIL PROFILE			SAM	IPLES	DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s		PIEZOMETE
METRES	BORING METH	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE BLOWS/0.3m	20 40 60 80 10 ⁶ 10 ⁴ 10 ⁴ 10 ³ 1 SHEAR STRENGTH Cu, kPa nal V. + 0 Ø rem V. 69 WATER CONTENT PERCENT WATER CONTENT PERCENT 20 40 60 80 10 20 30 40	ADDITIONAL LAB. TESTING	STANDPIPI
10 11 12 13 14	er Reg – Aur Redary Tervita	(GW) GRAVEL, coarse-grained, sub-angular, well graded, grey (CI) SILTY CLAY, with some fine gravel, brown, cohesive, very soft, w-PL		10.00 1298.50 11.50	4 0 5 6	RAB			Bentonite Pellets
16 17 18 19	Barb	(SP) SAND, coarse-grained, some fine gravel, angular, poorty-graded, dark grey (GW) GRAVEL, coarse-grained, sub-angular, well graded, grey		1292.8(17.20 17.21 17.21 17.21	6 c	HAE.			

SIALE	THO	SOIL PROFILE	15	-	SA	MPLE	S	RESISTANCE,	BLOWS	0N /0.3m	2	HYDRAUI k,	LIG CONE cm/s	I	RE	PIEZOME OR STANDE
DEPTHSO	BORING ME	DESCRIPTION	STRATA PLC	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3r	SHEAR STREE Cu, kPa	40 (10 (nat V. + rem V. ⊕	Q- U-O	WAT WP H	ER CONT	CENT -1 WI 40	ADDITION/ LAB. TESTI	INSTALLA
- 20		(GW) GRAVEL, coarse-grained, sub-angular, well graded, grey (continued)														Bentonite Pellets
- 22			BABBBBB		7	GRAB										10/20 Sand
- 23		(ML) SILT, some fine gravel, trace coarse gravel, dark grey, non-cohesive, dry	HERE BE	1287.00 23.00	8	GRAE										
- 24	Rig – Air Rolary Tervita	(SP) SAND, coarse-grained, some fine gravel, angular, poorly-graded, dark grey		1286.00 24,00)											
- 25	Barber															Slotted Section 10/20 Sand
- 27			AN AN AN AN AN		9	GRAB										
- 28		- Betrock at 28.5 m	an an an an an													
- 29		NOTES: Encountered BEDROCK at 28.5 m. Standpipe installed to 29.0 m. Groundwater level measured at 11.0 mGL on September 19, 2012. (SP) SAND, coarse-grained, coarse	STATISTICS AND	1280.5	0	GRAF										Bentonite Pellets

ES	ETHOD	SOIL PROFILE	10	1	SA	MPL	ES	DYNAMI RESISTA	C PENE NCE, BI	TRATI	ON /0,3m 60 8	2	HYDR/	NULIC Co k, cm/s		IVITY, 1 ⁴ 10	" I	AL
METR	BORING M	DESCRIPTION	STRATA PL	ELEV, DEPTH (m)	NUMBER	TYPE	BLOWS/0.3	SHEAR S Cu, kPa 20	STRENG	лн	nat V. + rem V. ⊕	0-0 0-0	W. Wp	ATER CO		PERCEN	IT VI D	ADDITION
0 1 2 3 4 5	patiber ngi-ner ruary Tervita	Ground Surface (SP) SAND, coarse-grained, sub-angular, poorly-graded, dark grey, homogenous, moist (SP) GRAVELY SAND, coarse-grained, fine gravel, poorly-graded, sub-angular, grey	s (2000,000,000,000,000,000,000,000,000,00	1289.50 0.00		SRAF		20	40		60 <u></u> £	0		0 2	0 3			
6 7 8					2	GRA!	B											

Golder

RECORD OF MONITORING WELL: GA-MW-3S

SHEET 1 OF 2

UTM Zone 11 (Nad 83)

PIEZOMETER OR STANDPIPE INSTALLATION

Bentonite Pellets

10/20 Sand

23 Sep 2012

Slotted Section 10/20 Sand

LOGGED: TG

CHECKED: JW

V: IPG

BOREHOLE

DEPTH SCALE

1:50

-		N: 5550296 E: 648578		1	100 000			-	PIEZOMET
METHES	BORING METHOD	SOIL PROFILE	STRATA PLOT (m) (m)	NUMBER	BLOWS/0.3m	20 40 60 80 SHEAR STRENGTH nat V. + Q ● Cu, kPa remV. ⊕ U O 20 40 60 80 SHEAR STRENGTH nat V. + Q ● O	Water content of 10 ⁴ 10 ³ 10 ³ WATER CONTENT PERCENT WP I WW 0 20 30 40	ADDITIONAL LAB. TESTING	STANDPIE INSTALLAT
10 11 12	Barber Rig – Air Rolary Tawita	(SP) GRAVELY SAND, coarse-grained, fine gravel, poorly-graded, sub-angular, gray (continued)		3	SRAD				Slotted Section 10/20 Sand
14		End of MONITORING WELL. NOTES: Encountered BEDROCK at 14.4 m	0 0 0 2 0 1279.6 14.4	4 4 0	GRAB				Bentonite Pellets
16									
18									
19									
20									

		TTAT	т	(eck C	Client oal Lin	nited			Borehole	No. : GH_BH_WC1-A/B
>))	JINC + LAVA		Gre	Lo enhil	ocation Is Ope	rations				PAGE 1 OF 9
Drilling Drilling Boreho Pipe/S	Contractor Owen's Drilling Method Dual Rotary Je Dia. (m) 0.15 lotted Pipe Dia. (m) 0.05/0.05		Date Monitored Ground Surface Ele Top of Casing Elev Northing: 5552217.	ev. (m) r. (m) 211	2019 1309 1300 Eas	9 10 28 5.901 5.761 130 ting: 6479	6.775 987.23	0	Project Number: Borehole Logged Date Drilled: Log Typed By:	658004 d By: AH 2019 10 01 VL
Depth in Metres	Drilling Legend Sample Interval Air Rotary	Water/NA Water Le Water Le NAPL NAPL	PL Levels vel 1 vel 2	tratigraphy Plot	ample Interval ore Run	ample Number	Blow Count	6 Recovery	 Reading within indicated scale Reading outside indicated scale Soil Vapour (ppm) 	Solid PVC Slotted PVC Well Name 1: GH_MW_WC1-A Well Name 2: GH_MW_WC1-B
	Soil Des	cription		5 5	ဟိပိ	й		°1	0 ¹ 10 ² 10 ³ 10	
$\begin{array}{c} 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	SILTY SAND, fine grained sand, SAND and GRAVEL, fine graine rounded to subrounded, some s At 2.4 m - less silt. At 3.7 m - increased gravel, sub At 4.3 m - damp. SAND and GRAVEL, fine to coa coarse gravel, subrounded, dam At 6.7 m - increased fine grained At 7.6 m - increase in coarse gravel	d sand, fine to ilt, loose, dry. rounded. rrse grained sa p. d sand. ained sand, ro	, dry.							
214 CC. NO 2020				NOT	res					

SINC * LAYALLIN Location Generalize Operators PAGE 3 OF 9 Diffuse Matter Berefox Da mm 018 Party 018 OF 10 000 Party 1000 Berefox Damp 10 000 Party 1000 Berefox Damp 10 000 Party 1000 Berefox Damp 10 000 Party 1000 Damp 1000 Party 1000 Party 10000 Damp 1000 Party 1000 Party 1000 Party 1000 Party 1000 P			-	Te	(eck C	Client oal Lin	nited			Borehole	No. : GH_BH_WC1-A/B
Difficiency Contractor: Over the Uniting Derivation from the Contractor over the Uniting Derivation from the Uniting Derivation from the Uniting Derivation from the Uniting Derivation from the Uniting Derivation from the Unit Weill America Contractor over the Uniting Derivation from the Unit Weill America Contractor over the Unit Weill America Contend America Contractor over the Unit Weill Am	 ~))	SINC + LAVA		Gre	Lo enhil	ocation Is Oper	ations				PAGE 3 OF 9
Image: Legend with provide the state of	Drilling Drilling Boreho Pipe/S	Contractor Owen's Drilling Method Dual Rotary ole Dia. (m) 0.15 lotted Pipe Dia. (m) 0.05/0.05		Date Monitored Ground Surface Ele Top of Casing Elev. Northing: 5552217.2	ev. (m) . (m) 211	2019 1309 1309 East	9 10 28 5.901 5.761 130 ing: 6479	6.775)87.23	30	Project Number: Borehole Logged Date Drilled: Log Typed By:	658004 I By: AH 2019 10 01 VL
Coll Soil Description R <thr< th=""> R</thr<>	epth in Metres	Drilling Legend Sample Interval Air Rotary	Water/NA 및 Water Le 및 Water Le MAPL △ NAPL	PL Levels vel 1 vel 2	atigraphy Plot	mple Interval e Run	nple Number	ow Count	Recovery	Reading within indicated scale Reading outside indicated scale Soil Vapour (ppm)	Solid PVC Slotted PVC Well Name 1: GH_MW_WC1-A Well Name 2: GH_MW_WC1-B
20 SAND fine grained, some silt, trace gravel, fine, brown, loose, wet. (continued) 21 At 21.9 m - dark brown, small pieces of black shale in sand. 23 At 21.9 m - dark brown, small pieces, loose, wet. 24 At 23.4 m - silty, dark gray, loose, loose, wet. 24 Image: state state gravel, fine, brown, loose, loose, wet. 24 Image: state state state gravel, fine, brown, loose, loose, wet. 24 Image: state state state state state state state in sand. 24 Image: state sta	Ō	Soil Des	cription		Stra	Sar Cor	Sar	B	* 10 ¹	10 ² 10 ³ 10 ⁴	
	20 21 21 22 23 24 24 25 26 26 26 27 28 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	SAND, fine grained, some silt, trawet. (continued) At 21.9 m - dark brown, small pie	ace gravel, fir eces of black a, loose, wet.	shale in sand.							
	MC: KC 20					0					

		TTRI	Т	(eck C	Client oal Lin	nited				Borehole	No. : (GH_BH	_WC1-A/B
>)	5INC+LAVA		Gre	Lo enhil	ocation I s Ope i	rations					PAGE	6 OF 9)
Drilling Drilling Boreho Pipe/S	Contractor Owen's Drilling Method Dual Rotary ole Dia. (m) 0.15 lotted Pipe Dia. (m) 0.05/0.05		Date Monitored Ground Surface Ele Top of Casing Elev Northing: 5552217.	ev. (m) . (m) 211	2019 1309 1309 East	9 10 28 5.901 6.761 130 ting: 6479	6.775 187.23	30		Project Number: Borehole Logged Date Drilled: Log Typed By:	By:	658004 AH 2019 10 0 VL	1
epth in Metres	Drilling Legend Sample Interval Vir Rotary	Water/NA ▼ Water Lee V Water Lee NAPL NAPL NAPL	PL Levels rel 1 rel 2	itigraphy Plot	ıple Interval e Run	nple Number	w Count	lecovery	● F ii F ii	Reading within ndicated scale Reading outside ndicated scale Soil Vapour (ppm)	Well I	Solid PVC Slotted PVC Name 1: GH Name 2: GH	W_WC1-A WW_WC1-B
ŏ	Soil Desc	cription		Stre	San Cor	San	Blc	۲ %	0 ¹	10 ² 10 ³ 10 ⁴			
- 50	SILTY SAND, coarse grained sat coarse, subrounded, loose, wet.	nd, some grav (continued)	vel, fine to						· · · · · · · · · · · · · · · · · · ·				
	At 51.5 m - some clay.		ty.						•				
52-													
53	At 52.4 m - medium dense.								· · · · · · · · · · · · · · · · · · ·				
54	SAND and GRAVEL, coarse grai gravel, subrounded, trace silt, me	ined sand, fin edium dense,	e to coarse wet.	0		1			· · · · · · ·				
55									· · · · · · · ·				BENTONITE
56	SILTY SAND, fine to coarse grain subrounded, loose, wet.	ned sand, trad	ce gravel,						· · · · · · · · · · · · · · · · · · ·				
57-	At 57.0 m - less gravel.												
	SILTY SAND, fine grained sand, wet.	trace gravel,	brown, loose,										
60-										[/]	×///	
				NOT	TES								

		TTRI	т	(eck C	Client oal Lin	nited				Borehole	No. : (GH_BH_	WC1-A/B
♥) SINC + LAVA		Gre	Lc enhill	cation s Ope i	rations					PAGE	7 OF 9	
Drilling Drilling Boreh Pipe/S	g Contractor Owen's Drilling g Method Dual Rotary ole Dia. (m) 0.15 Slotted Pipe Dia. (m) 0.05/0.05		Date Monitored Ground Surface Ele Top of Casing Elev Northing: 5552217.	ev. (m) . (m) 211	2019 1309 1309 East	9 10 28 5.901 6.761 130 ting: 6479	6.775 187.23	30		Project Number: Borehole Logged Date Drilled: Log Typed By:	By:	658004 AH 2019 10 01 VL	
pth in Metres	Drilling Legend Sample Interval TTT	Water/NA ▼ Water Lew V Water Lew NAPL NAPL NAPL	PL Levels rel 1 rel 2	tigraphy Plot	ple Interval e Run	ple Number	w Count	ecovery	•	Reading within indicated scale Reading outside indicated scale Soil Vapour (ppm)	Well M	Solid PVC Slotted PVC Name 1: GH_ Name 2: GH_	MW_WC1-A MW_WC1-B
De	Soil Desc	cription		Stra	Sam Core	Sam	Blo	2 %	0 ¹	10 ² 10 ³ 10 ⁴			
$60 \\ 61 \\ 62 \\ 63 \\ 64 \\ 65 \\ 66 \\ 66 \\ 66 \\ 66 \\ 66 \\ 66$	SILTY SAND, fine grained sand, wet. (<i>continued</i>) At 61.0 m - increase coarse grain SAND and GRAVEL, coarse grai gravel, subrounded to subangular	trace gravel, ned sand. ined sand, fin r, grey-black,	e to coarse wet.										— BENTONITE
68 68 70 70	At 68.6 m - less gravel, increased	d sand.			TES								

NUME Lacetion formalized PAGE 8 OF 9 Image contrast Over Deling Deling Contrast			TTRI	т	(eck C	Client oal Lir	nited			Borehole	No. : GH_BH_WC1-A/B
Dilling Chrank T. Overt Delling Bornson Delta Userson Bornson Problem Bornson P	~))	5INC + LAVA		Gre	Lo enhil	ocation Is Ope	rations				PAGE 8 OF 9
upper dependence Water/NAPL Levels Image: space of the space	Drilling Drilling Boreho Pipe/S	Contractor Owen's Drilling Method Dual Rotary ole Dia. (m) 0.15 lotted Pipe Dia. (m) 0.05/0.05		Date Monitored Ground Surface Elev Top of Casing Elev Northing: 5552217.	ev. (m) /. (m) .211	201 130 130 Eas	9 10 28 5.901 6.761 130 ting: 6479	6.775 987.23	30	Project Number: Borehole Logged Date Drilled: Log Typed By:	658004 By: AH 2019 10 01 VL
8 Soil Description 8 8 8 8 9 9 10' 10	pth in Metres	Drilling Legend Sample Interval TTTT Air Rotary	Water/NA ▼ Water Le ▼ Water Le ◆ NAPL ◇ NAPL	VPL Levels vel 1 vel 2	igraphy Plot	ple Interval Run	ple Number	w Count	scovery	Reading within indicated scale Reading outside indicated scale Soil Vapour (ppm)	Solid PVC Slotted PVC Well Name 1: GH_MW_WC1-A Well Name 2: GH_MW_WC1-B
70 SAND and GRAVEL, coarse grained sand, fine to coarse gravel, subrounded to subangular, ight brown to black. 80	De	Soil Des	cription		Strat	Sam Core	Sam	Blo	ัษ 10 ¹	10 ² 10 ³ 10 ⁴	
At 76.5 m - wet. SAND and GRAVEL, coarse grained sand, fine to coarse gravel, subrounded, light brown-black. At 77.7 m - some gravel, coarse, rounded to subrounded. At 79.2 m - subrounded to subangular, light grey to black, wet. NOTES	70 71 72 73 73 73 73	SAND and GRAVEL, coarse gra gravel, subrounded to subangula At 71.6 m - some gravel, fine, su At 73.8 m - decreased moisture SAND and GRAVEL, coarse gra gravel, subrounded to subangula	ained sand, fin ar, grey-black, ubangular, ligh ubangular, ligh ained sand, fin ar, some silt, g	e to coarse wet. <i>(continued)</i> It brown to black.							BENTONITE
NOTES	77-78-79-79-80-	At 76.5 m - wet. SAND and GRAVEL, coarse gra gravel, subrounded, light brown- At 77.7 m - some gravel, coarse At 79.2 m - subrounded to subar	ained sand, fin black. e, rounded to s ngular, light gr	e to coarse ubrounded. rey to black, wet.							GH_MW_WC1-A
					NOT	res					

		TTRI	т	(eck C	Client oal Lin	nited			Borehole	No. : GH_BH_WC1-A/B
>)	SINC + LAVA		Gre	Lo enhill	cation s Ope	rations				PAGE 9 OF 9
Drilling Drilling Boreho Pipe/S	Contractor Owen's Drilling Method Dual Rotary Je Dia. (m) 0.15 Jotted Pipe Dia. (m) 0.05/0.05		Date Monitored Ground Surface Ele Top of Casing Elev Northing: 5552217.	ev. (m) . (m) 211	2019 1309 1300 Eas	9 10 28 5.901 6.761 130 ting: 6479	6.775)87.23	30	Project Number: Borehole Logged Date Drilled: Log Typed By:	658004 By: AH 2019 10 01 VL
Depth in Metres	Drilling Legend Sample Interval Air Rotary Soil Desc	Water/NA Water Lee Water Lee NAPL NAPL NAPL Cription	PL Levels vel 1 vel 2	Stratigraphy Plot	Sample Interval Core Run	Sample Number	Blow Count	% Recovery	 Reading within indicated scale Reading outside indicated scale Soil Vapour (ppm) 10² 10³ 10⁴ 	Solid PVC Slotted PVC Well Name 1: GH_MW_WC1-A Well Name 2: GH_MW_WC1-B
80 81 82 83 84 84 85 86 86 87 88 87 88 87 88 88 88 87 88 87 88 88	SAND and GRAVEL, coarse grai gravel, subrounded, light brown-b At 80.0 m - abundant water.	ined sand, fin plack. (contine r, some clay,	e to coarse ued)							GH_MW_WC1-A
QA/QC: KC 20										

		гът	(Teck C	Client oal Lin	nited			Borehole	e No. : GH_BH_WC1-C
>)	SINC + LAVAL		Lo Greenhill	cation s Ope i	rations				PAGE 2 OF 2
Drilling Drilling Boreho Pipe/S	Contractor Owen's Drilling Method Dual Rotary ole Dia. (m) 0.15 lotted Pipe Dia. (m) 0.05/0.05	Date Monitor Ground Surfa Top of Casing Northing: 555	ed ace Elev. (m) g Elev. (m) 52218.134	2019 1309 1309 East	9 10 28 5.826 6.676 ting: 6479	85.34	8	Project Number: Borehole Logged Date Drilled: Log Typed By:	658004 I By: AH 2019 10 01 VL
epth in Metres	Drilling Legend Wa Sample Interval V V Air Rotary V Sample Interval V Sample Interva	ater/NAPL Levels Water Level 1 Water Level 2 NAPL NAPL	ttigraphy Plot	nple Interval e Run	nple Number	ow Count	tecovery	 Reading within indicated scale Reading outside indicated scale Soil Vapour (ppm) 	Solid PVC Slotted PVC Well Name 1: GH_MW_WC1-C
ă	Soil Descript	ion	Stra	San Cor	San	BIG	۲۲ ۱۵ ۱۵	¹ 10 ² 10 ³ 10 ¹	
10-	SAND and GRAVEL, fine to coarse gr coarse gravel, subrounded, damp. (co	ained sand, fine to <i>ntinued)</i>							GH_MW_WC1-C SAND BENTONITE
11-	Bottom of hole at 10.7 m.								
13									
2020201			NOT	ËS					

		T TN T	Client Teck Coal Limited							Borehole No. : RG_BH_ER3A			
	SINC + LAVA	Location Groundwater Monitoring						PAGE 2 OF 3					
Drilling Drilling Boreh Pipe/S	g Contractor Mud Bay Drilling Co. Ltd. g Method Vibratory Sonic ole Dia. (m) 0.15 Slotted Pipe Dia. (m) 0.05/0.05		Date Monitored 2020 09 30 Ground Surface Elev. (m) 1291.504 Top of Casing Elev. (m) 1292.483 Northing: 5550079.667 Easting: 648288.173							Project Number: 631283 Borehole Logged By: GG Date Drilled: 2020 09 12 Log Typed By: VL			
pth in Metres	Drilling Legend Sample Interval Vibrasonic Water I ∑ Water I ∑ Water I \$ NAPL \$ NAPL		PL Levels ^{vel 1}	tigraphy Plot	graphy Plot ole Interval Run	ple Number	w Count	ecovery	•	Reading within indicated scale Reading outside indicated scale Soil Vapour (ppm)	Solid PVC Slotted PVC Well Name 1: RG_MW_ER3A		
De	Soil Des	cription		Stra	San Core	Sam	Blo	% R	10 ¹	10 ² 10 ³ 10 ⁴			
10 11 12 12 13 13 14 14 15 16 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	SAND, fine grained, some silt, b At 12.8 m - lense of silt and clay SAND, fine to medium grained, SILT and CLAY, dark grey, very interlayed fine grained sand. Below 18.0 m - soft, brown-grey medium plasticity.	rown, loose, w r (150 mm), bro dark grey, med soft, low plast	ret. (continued)			ER3A-05		80			BENTONITE		
LLH 2020				NO Bolo	TES ded sa	imple de	enot	es sa	amp	ole analyzed.			
UA/UC:													

		TTNT	т	(eck C	Client oal Lir	nited		Borehol	Borehole No. : RG_BH_ER3A				
>	5INC+LAVA	Lo Grour	cation	er Monito	oring		PAGE 3 OF 3						
Drilling Drilling Boreho Pipe/S	Contractor Mud Bay Drilling Co. Ltd Method Vibratory Sonic ole Dia. (m) 0.15 lotted Pipe Dia. (m) 0.05/0.05	Date Monitored 2020 09 30 Ground Surface Elev. (m) 1291.504 Top of Casing Elev. (m) 1292.483 Northing: 5550079.667 Easting: 648288.173						Project Number: Borehole Logged Date Drilled: Log Typed By:	Project Number: 631283 Borehole Logged By: GG Date Drilled: 2020 09 12 Log Typed By: VL				
oth in Metres	Drilling Legend Sample Interval Vibrasonic	Water/NA ▼ Water Lev ✓ Water Lev ◆ NAPL ◇ NAPL	PL Levels ^{vel 1}	graphy Plot	ble Interval Run	ole Number	v Count	scovery	 Reading within indicated scale Reading outside indicated scale Soil Vapour (ppm) 	Solid PVC Slotted PVC Well Name 1: RG_MW_ER3A			
Dep	Soil Des	Soil Description			Strat Sam		Blow	9 <u>7</u> % Re	0 ¹ 10 ² 10 ³ 10	4			
20-	SILT and CLAY, dark grey, very interlayed fine grained sand. (cc	soft, low plast ntinued)	icity, wet,			ER3A-06		50		BENTONITE			
22-	SAND, fine to medium grained,	n dense, wet.			ER3A-07		· · · · ·						
23	SAND and GRAVEL, fine to coa coarse gravel, subangular to rou cobbles, brown, loose, wet.	arse grained sa inded, trace si	nd, fine to t, containing					60		RG_MW_ER3A			
25	SAND and SILT (TILL), fine grai coarse, subangular, dark grey, of BEDROCK shale dark grey of	ned sand, son lense, wet.	ne gravel, fine to			ER3A-08				BENTONITE			
	Bottom of hole at 26.5 m.									SLOUGH			
- 27-													
zn-zi-nzi-													
10 ZU Prim Date:													
JA/QC: LLH ZUZU				NOT Bold	led sa	imple de	enote	es sa	mple analyzed.				

		TTAT	т	(eck C	Client oal Lir	nited		Borehole No. : RG_BH_ER4A					
	5INC+LAVA	Location Regional Groundwater Monitoring						PAGE 1 OF 3					
Drilling Contractor Mud Bay Drilling Co. Ltd. Drilling Method Vibratory Sonic Borehole Dia. (m) 0.15 Pipe/Slotted Pipe Dia. (m) 0.05/0.05			Date Monitored 2020 09 30 Ground Surface Elev. (m) 1288.706 Top of Casing Elev. (m) 1289.470 Northing: 5549329.563 Easting: 648300.186						Project Number: Borehole Logged Date Drilled: Log Typed By:	Project Number: 631283 Borehole Logged By: GG Date Drilled: 2020 09 13 Log Typed By: VL			
epth in Metres	Drilling Legend Water/NA Sample Interval Water Lev Vibrasonic Water Lev Water Lev Water Lev NAPL		APL Levels svel 1 to A svel 2 A fdf fdf fdf fdf fdf fdf fdf fd		tigraphy Plot ple Interval e Run	nple Number	w Count	tecovery	 Reading within indicated scale Reading outside indicated scale Soil Vapour (ppm) 	Solid PVC Slotted PVC Well Name 1: RG_MW_ER4A			
ă	Soil Des	Soil Description			San Cor	San	BIG	۲ ۱0	¹ 10 ² 10 ³ 10				
0- 1- 2-	SAND, fine grained, some silt, d damp, organics (roots). GRAVELLY SAND, fine to coars gravel, subangular to rounded, b SAND and GRAVEL, fine to coa coarse gravel, subangular to rou cobbles, brown, loose, damp.	lark brown, me se grained san prown, loose, d arse grained sa unded, trace sil	edium dense, d, fine to coarse lamp. and, fine to lt, containing			ER4A-01		50		SAND			
4-	At 2.7 m - wet. Between 2.7 m and 5.8 m - limit	ed recovery.	nose wet					30		BENTONITE			
- 6- - 7- - 7-	SAND and GRAVEL, fine to coa coarse gravel, subangular to rou cobbles, brown, loose, wet.	arse grained sa inded, trace si	and, fine to It, containing			ER4A-02		40					
-8 -10 2020 10 20 20 20 20 20 20 20 20 20 20 20 20 20	Below 9.1 m - subangular to sub subrounded cobbles.	prounded grave	el, subangular to	NOTBOIC	TES ded sa	ample de	enot	60 es sar	nple analyzed.				

	CNIC. I ATA	TTNT	т	C eck C	Client oal Lin	nited		Borehole No. : RG_BH_ER4A				
>)	5INC * LAVA	Lo Grour	cation ndwate	r Monito	oring		PAGE 3 OF 3					
Drilling Drilling Boreho Pipe/S	Contractor Mud Bay Drilling Co. Ltd. Method Vibratory Sonic ole Dia. (m) 0.15 lotted Pipe Dia. (m) 0.05/0.05		Date Monitored Ground Surface Ele Top of Casing Elev Northing: 5549329.	ev. (m) . (m) 563	2020 1288 1289 East) 09 30 3.706 9.470 ing: 6483	300.18	6	Project Boreho Date D Log Tyj	Number: le Logged rilled: ped By:	631283 By: GG 2020 09 13 VL	
epth in Metres	Drilling Legend Sample Interval Vibrasonic	Water/NA Water Lev Water Lev NAPL NAPL	PL Levels rel 1 rel 2	tigraphy Plot	nple Interval e Run	nple Number	w Count	ecovery •	Reading indicated Reading indicated Soil Va (ppm	within scale outside scale pour 1)	Solid PVC Slotted PVC Well Name 1: RG_MW_ER4A	
De	Soil Des	cription		Stra	Sam Core	San	Blo	22 %101	10 ²	10 ³ 10 ⁴		
20	BEDROCK, siltstone, black, frac	ctured, very so	ft. (continued)								BENTONITE	
22-	Bottom of hole at 21.0 m.				<u> </u>		· I					
23												
24												
25												
26												
27-												
28 28 70-71-1												
20 Prim Uate: 2020												
- 2020 10				NOT Bold	T ES led sa	mple de	enote	es sam	ple anal	lyzed.		

		TTNT	Client Teck Coal Limited							Borehole No. : RG_BH_ER4B					
)	5INC+LAVA	Location Regional Groundwater Monitoring							PAGE 1 OF 1						
Drilling Drilling Boreho Pipe/S	g Contractor Mud Bay Drilling Co. Ltd g Method Vibratory Sonic ole Dia. (m) 0.18 Slotted Pipe Dia. (m) 0.05/0.05		Date Monitored 2020 09 30 Ground Surface Elev. (m) 1288.688 Top of Casing Elev. (m) 1289.455 Northing: 5549328.936 Easting: 648299.824						Projec Boreh Date Log T	Project Number: 631283 Borehole Logged By: GG Date Drilled: 2020 09 13 Log Typed By: VL					
Jepth in Metres	Drilling Legend Sample Interval Vibrasonic	Water/NA ▼ Water Lee ▼ Water Lee ▲ NAPL ↓ NAPL	PL Levels vel 1 vel 2	ratigraphy Plot	ample Interval ore Run	ample Number	slow Count	Recovery	 Reading indicate Reading indicate Soil V (pp) 	g within ed scale g outside ed scale apour m)	Well Na	hid PVC btted PVC me 1: RG_MW_ER4B			
	Soil Des	cription		5	й Ö	ŭ	ш	%1	0 ¹ 10 ²	10 ³ 10	1				
	SAND, fine grained, trace silt, b (roots). GRAVELLY SAND, fine to coars gravel, subrounded to rounded,	rown, loose, dr se grained san brown, loose,	y, organics d, fine to coarse dry.					100				SAND			
2	SAND and GRAVEL, fine to coa coarse gravel, subangular to rou cobbles, brown, loose. Below 2.1 m - moist.	arse grained sa unded, trace si	and, fine to It, containing					50				BENTONITE			
3	At 2.7 m - wet.							40				SAND			
- 6- 	SANDY GRAVEL, fine to coarse rounded, fine to coarse grained cobbles, brown, loose, wet.	e gravel, subar sand, trace sil	ngular to t, containing									BENTONITE			
r Date: 2020-12-02	Bottom of hole at 8.8 m.														
			[NOT	ES										
CC: LLH															
A)															
			Client Teck Coal Limited						Borehol	Borehole No. : RG_BH_ER5A					
--	---	--	--	------------------------------	---	-------------------------------	------------	--	--	---------------------------------	---------------------------------------	----------	--		
>)	SINC+LAVA	LLIN	Regional	Lo Grou	ocation ndwate	er Monito	oring			PAGE	1 OF 2				
Drilling Drilling Boreho Pipe/S	Contractor Mud Bay Drilling Co. Ltd. Method Vibratory Sonic ble Dia. (m) 0.10 lotted Pipe Dia. (m) 0.05/0.05	Date Monitored Ground Surface Elev Top of Casing Elev Northing: 5549073.	ev. (m) r. (m) .673	2020 1280 1283 Easi	0 09 30 6.308 7.035 ting: 6486	92.07	78	Project Number: Borehole Logged Date Drilled: Log Typed By:	By:	631283 GG 2020 09 1 VL	4				
Depth in Metres	Drilling Legend Sample Interval Vibrasonic	Water/NA	PL Levels vel 1 vel 2	Stratigraphy Plot	Sample Interval Core Run	Sample Number	Blow Count	% Recovery	 Reading within indicated scale Reading outside indicated scale Soil Vapour (ppm) 10² 10³ 10 	Well N	Solid PVC Slotted PVC ame 1: RG	_MW_ER5A			
	SAND, fine grained, some silt, datamp, organics (roots). SAND and GRAVEL, fine to coarcoarse gravel, subangular to rou cobbles, brown, loose, dry. Below 2.1 m - moist. Between 2.4 m and 3.0 m - log/w SILTY SAND, fine to medium gravet. SAND and GRAVEL, fine to coarcoarse gravel, subangular to rou cobbles, brown, loose, dry.	vood debris. ained sand, br rse grained sa nded, trace sil vood debris. ained sand, br rse grained sa nded, trace sil	and, fine to tt, containing rown, very loose, and, fine to tt, containing ar to rounded, wet. or fractures, soft.			ER5A-01 ER5A-02 ER5A-03		50 50 100				SAND			
			NOTES Bolded sample denotes sample analyzed.												

		* ***	г	(Feck C	Client oal Lin	nited			Borehole No. : RG_BH_ER5B			
)	SNC+LAVA	LIN	Regional	Lo I Grou r	ocation ndwate	r Monito	oring		PAGE 1	I OF 1		
Drilling Drilling Boreho Pipe/S	Contractor Mud Bay Drilling Co. Ltd. Method Vibratory Sonic ole Dia. (m) 0.18 lotted Pipe Dia. (m) 0.05/0.05		Date Monitored Ground Surface El Top of Casing Elev Northing: 5549074	lev. (m) v. (m) ⊦.166	2020 1286 1287 East	0 09 30 5.366 7.042 ing: 6486	691.34	8	Project Number: Borehole Logged Date Drilled: Log Typed By:	By: 0	631283 GG 2020 09 14 /L	
epth in Metres	Drilling Legend Sample Interval Vibrasonic	Water/NA ▼ Water Lev ⊽ Water Lev ♠ NAPL ♦ NAPL	PL Levels vel 1 vel 2	atigraphy Plot	mple Interval re Run	mple Number	low Count	Recovery	 Reading within indicated scale Reading outside indicated scale Soil Vapour (ppm) 	Well Na	olid PVC otted PVC me 1: RG_MW_ER5B	
	Soil Des	cription		ß	ပိုလ	Sa	B	×10	¹ 10 ² 10 ³ 10 ⁴		7	
	SAND, fine grained, some silt, d dry. SAND and GRAVEL, fine to coa coarse gravel, subangular to rou cobbles, brown, loose, dry.	lark brown, me arse grained sa anded, trace sil	dium dense, and, fine to It, containing					100			SAND	
2-	At 2.7 m - wet. Between 2.9 m and 3.4 m - woo	d debris/log.						20		¥	BENTONITE	
4											RG_MW_ER5B	
6	Bottom of hole at 6.2 m.											
- 7-												
12-02 1111111111111111111111111111111111												
0 Print Date:2020-												
				NOT	TES							
QAVQC												

•))	SNC+LAVA	LIN	Client Teck Coal Limited Greenhills Well 9						Boreho	Borehole No. : RG_BH_ER6A			
			Regional	Grour	ndwate	er Monito	oring	(SHEPOTV09				
Drilling Drilling Boreho Pipe/S	Contractor Mud Bay Drilling Co. Ltd. Method Vibratory Sonic ole Dia. (m) 0.10 lotted Pipe Dia. (m) 0.05/0.05		Date Monitored Ground Surface Elev Top of Casing Elev Northing: 5549333.	ev. (m) 7. (m) .683	2020 128 1288 Easi	0 09 30 7.641 3.292 ting: 6485	579.60	17	Project Number: Borehole Logged Date Drilled: Log Typed By:	631283 I By: GG 2020 09 14 VL			
epth in Metres	Drilling Legend Sample Interval Vibrasonic	Water/NA Water Lev Water Lev NAPL NAPL	PL Levels el 1 el 2	atigraphy Plot	nple Interval e Run	nple Number	ow Count	secovery	 Reading within indicated scale Reading outside indicated scale Soil Vapour (ppm) 	Solid PVC Slotted PVC Well Name 1: RG_MW_ER6A			
ă	Soil Des	cription		Stra	Sar Cor	Sar	B	8 10	¹ 10 ² 10 ³ 10				
	SAND and GRAVEL, fine to coa coarse gravel, subangular to rou dry. SAND, medium grained, some g rounded, brown, loose, damp. SAND and GRAVEL, fine to coa coarse gravel, subangular to rou dry. Below 1.2 m - moist.	rse grained sa inded, trace sil gravel, fine, sul rse grained sa inded, trace sil	nd, fine to t, brown, loose, prounded to nd, fine to t, brown, loose,			ER6A-01		56		SAND			
4-	At 2.4 m - wet.							20		ENTONITE			
	GRAVELLY SILT (TILL), fine to clay, black, firm, wet. BEDROCK, shale, black, compe	coarse gravel,	angular, some r fractures, soft.			ER6A-02		100					
10				NOT	TES led sa	mple de	enote	es san	nple analyzed.				

	SNIC AT ANIA	TINI	T	(eck C	Client oal Lin	nited			Borehole No. : RG_BH_ER6A				
~))	JINC · LAVA		Regional	Greenhills Wcatton 10 Regional Groundwater Monitoring							PAGE 2 OF 2		
Drilling Drilling Boreho Pipe/Sl	Contractor Mud Bay Drilling Co. Ltd. Method Vibratory Sonic le Dia. (m) 0.10 otted Pipe Dia. (m) 0.05/0.05		Date Monitored Ground Surface El Top of Casing Elev Northing: 5549333	ev. (m) /. (m) .683	2020 1287 1288 East	0 09 30 7.641 3.292 ting: 648	579.60)7		Project Number: Borehole Logged Date Drilled: Log Typed By:	631283GH_POTW By: GG 2020 09 14 VL		
pth in Metres	Drilling Legend Sample Interval Vibrasonic	Water/NA ▼ Water Lev ⊽ Water Lev ▲ NAPL ◇ NAPL	PL Levels rel 1 rel 2	tigraphy Plot	iple Interval è Run	ple Number	w Count	ecovery	•	Reading within indicated scale Reading outside indicated scale Soil Vapour (ppm)	Solid PVC Slotted PVC Well Name 1: RG_MW_ER6A		
De	Soil Des	cription		Strat	Sam Core	Sam	Blo	Ъ % 1	0 ¹	10 ² 10 ³ 10 ⁴			
10 11 12 13 14 15 16 17 18 19 19 19	BEDROCK, shale, black, comper (continued)	etent with mino	r fractures, soft.					90			BENTONITE BENTONITE BENTONITE BENTONITE BENTONITE BENTONITE BENTONITE BENTONITE BENTONITE BENTONITE BENTONITE BENTONITE		
				NOT Bold	r ES led sa	mple d	enote	es sa	mp	ble analyzed.			

		TTNT	Client Teck Coal Limited						Borehole No. : RG_BH_ER6B			
>	5INC + LAVA		Regional	Lo Groui	ndwate	er Monito	oring	PAGE 1 OF 1				
Drilling Drilling Boreho Pipe/S	g Contractor Mud Bay Drilling Co. Ltd g Method Vibratory Sonic ole Dia. (m) 0.15 lotted Pipe Dia. (m) 0.05/0.05		Date Monitored Ground Surface El Top of Casing Elev Northing: 5549333	lev. (m) v. (m) 5.222	2020 128 128 Eas	0 09 30 7.620 3.332 ting: 6485	580.06	61	Project Number:631283Borehole Logged By:GGDate Drilled:2020 09 15Log Typed By:VL			
Depth in Metres	Drilling Legend Sample Interval Vibrasonic Soil Des	Water/NA Water Lev Water Lev NAPL NAPL Cription	PL Levels rel 1 rel 2	Stratigraphy Plot	Sample Interval Core Run	Sample Number	Blow Count	% Recovery	 Reading within indicated scale Reading outside indicated scale Solid PVC Slotted PVC Slotted PVC Well Name 1: RG_MW_ER6B 			
	SAND and GRAVEL, fine to coacoarse gravel, subangular to rot cobbles, brown, loose, dry. SAND, medium grained, some brown, loose, damp. SAND and GRAVEL, fine to coa coarse gravel, subangular to rot cobbles, brown, loose, dry. Below 1.5 m - moist. At 2.1 m - wet.	arse grained sa unded, trace si gravel, fine, su arse grained sa unded, trace si	Ind, fine to t, containing brounded, Ind, fine to t, containing					30	SAND BENTONTE BENTONTE BENTONTE BENTONTE BENTONTE BENTONTE BENTONTE BENTONTE BENTONTE BENTONTE BENTONTE			
QA/QC: LLH 2020 1				NOT	TES							

			т	(eck C	Client oal Lin	nited				Borehol	e No.	: RG_B	H_LC3A	
>)	SNC+LAVA	LIN	Greenhills Regional	Grou	Sation ndwate	5 er Monito	oring				PAGE	1 OF 3	•	
Drilling Drilling Boreho Pipe/S	o Contractor Mud Bay Drilling Co. Ltd. Method Vibratory Sonic ble Dia. (m) 0.15 Notted Pipe Dia. (m) 0.05/0.05		Date Monitored Ground Surface Elev Top of Casing Elev Northing: 5552736.	ev. (m) r. (m) .051	2020 1318 1319 Eas	0 06 16 3.325 9.040 ting: 6481	81.84	19		Project Number: Borehole Logged Date Drilled: Log Typed By:	By:	631283 AH 2020 06 0 VL	GH_PO⊺ ₅	ΓW
Depth in Metres	Drilling Legend Sample Interval Vibrasonic	Water/NA	PL Levels vel 1 vel 2	Stratigraphy Plot	Sample Interval Core Run	Sample Number	Blow Count	% Recovery	•	Reading within indicated scale Reading outside indicated scale Soil Vapour (ppm)	Well	Solid PVC Slotted PVC Name 1: RG	: _MW_LC3A	
0	3011 Des	cription		0,	0,0			1	0 ¹	10 ² 10 ³ 10 ⁴				
	SILTY CLAY (TOPSOIL), some to subrounded, medium plastic, of SILTY CLAY, trace gravel, fine, r grey-brown, mottled, high plastic	coarse, rounded ss. brounded,			06-05-202	0-01	60							
2-	SILTY GRAVEL, some clay, grey damp.	ed, low plastic,			06-05-202	0-02								
3-	At 2. 7 m - increased gravel, fine	e, rounded to s	subrounded.			06-05-202	0-03	70						
4	SANDY CLAY, fine grained sance rounded to subrounded, high pla	d, some silt, tra stic, damp.	ace gravel, fine,			06-05-202	0-04							
5	SILTY GRAVEL, fine to coarse g some sand, coarse grained, som	ravel, rounde ne clay, wet.	d to subrounded,			06-05-202	0-05						BENTONITE	
6						06-06-202 06-05-202	0-12 0-06							
- 7	CLAYEY GRAVEL, fine to coars subangular, containing cobbles, grained, mottling, dense.	e gravel, subr trace silt, trac	ounded to e sand, coarse			06-05-202	0-07							
9						06-05-202	0-08	60						
10-	At 9.5 m - becomes loose, damp).				06-05-202	0-09							
				NOT Bold	TES ded sa	mple de	enot	es sa	Imp	le analyzed.				

		T T NT	г	(eck C	Client oal Lir	nited		Borehole No. : RG_BH_LC3A			
>	SNC+LAVA	LIN	Regional	Lo Grou	ocation ndwate	er Monito	oring	I		PAGE 2 OF 3	
Drilling Drilling Boreho Pipe/S	Contractor Mud Bay Drilling Co. Ltd. Method Vibratory Sonic ole Dia. (m) 0.15 lotted Pipe Dia. (m) 0.05/0.05		Date Monitored Ground Surface El Top of Casing Elev Northing: 5552736	ev. (m) /. (m) .051	2020 1310 1319 Eas	0 06 16 3.325 9.040 ting: 6481	81.84	49	Project Number: Borehole Logged Date Drilled: Log Typed By:	631283 I By: AH 2020 06 05 VL	
in Metres	Drilling Legend Sample Interval Vibrasonic	Water/NA Vater Lev Vater Lev Annel	PL Levels vel 1 vel 2	phy Plot	Interval n	Number	ount	very	 Reading within indicated scale Reading outside indicated scale Soil Vapour 	Solid PVC Slotted PVC Well Name 1: RG_MW_LC3A	
Depth	Soil Des			Stratigra	Sample Core Ru	Sample	Blow C	% Reco	(ppm)		
- 10-	0011 DC3	cription						⁻	0' 10 ² 10 ³ 10		
	CLAYEY GRAVEL, fine to coars subangular, containing cobbles, grained, mottling, dense. <i>(contin</i> At 11.3 m - dry.	ounded to e sand, coarse			06-05-2020 06-05-2020	0-10 0-11					
12	GRAVEL, fine to coarse, rounde sand, fine to coarse grained, trac	ed, containing o ce silt, wet.	cobbles, some			06-05-2020	0-12	60			
14	SAND and GRAVEL, fine to coa coarse gravel, rounded to subrou trace silt, trace clay, wet.	ind, fine to ing cobbles,			06-05-2020	0-13 0-14 0-15	120		BENTONITE		
16	CLAY and GRAVEL, fine to coal subrounded, brown, very dense. At 15.8 m - grey.	rse gravel, rou	nded to			06-05-202	0-16				
17-	At 16.5 m - increased coarse gra	avel.				06-05-2020 06-05-2020	D-17 D-18				
	SAND and GRAVEL, coarse gra subrounded, fine gravel, trace of subrounded, some silt, brown, lo	ained sand, rou barse gravel, r bose, wet.	unded to ounded to			06-06-2020 06-06-2020	0-02	110		Image: Constraint of the second sec	
	SAND, fine to medium grained, subrounded, trace clay, brown, lo	some silt, traco oose, wet.	e gravel, fine,			06-06-202	0-03			BENTONITE	
				NO Bolo	r ES led sa	mple de	enot	es sa	mple analyzed.		

		TTNT	Client Teck Coal Limited							Borehole No. : RG_BH_LC3A			
>)	SINC + LAVA		Location Regional Groundwater Monitoring Date Monitored Eine (1) 2020 06 16 Eine (2) 2020 06 16								PAGE 3 OF 3		
Drilling Drilling Boreho Pipe/S	Contractor Mud Bay Drilling Co. Ltd. Method Vibratory Sonic Je Dia. (m) 0.15 otted Pipe Dia. (m) 0.05/0.05		Date Monitored Ground Surface Ele Top of Casing Elev Northing: 5552736.	ev. (m) . (m) 051	202) 131 131 Eas	0 06 16 3.325 9.040 ting: 6481	81.84	19		Project Numbe Borehole Logg Date Drilled: Log Typed By:	r: 631283 ed By: AH 2020 06 05 VL		
Depth in Metres	Drilling Legend Sample Interval Vibrasonic	Water/NA ▼ Water Lee ▼ Water Lee ▲ NAPL ◇ NAPL	PL Levels vel 1 vel 2	ratigraphy Plot	ample Interval ore Run	ample Number	slow Count	Recovery	○ R ir • R ir	Reading within ndicated scale Reading outside ndicated scale Soil Vapour (ppm)	Solid PVC Slotted PVC Well Name 1: RG_MW_LC3A		
	Soil Des	cription		S	ů ů	Ň	ш	%	01	10 ² 10 ³ 1	10		
20-	SAND, fine to medium grained, s subrounded, trace clay, brown, lo At 20.1 m - increased fine graine	some silt, trac oose, wet. <i>(co</i> ed sand, increa	e gravel, fine, <i>ntinued)</i> ased silt.			06-06-202()-04	130					
22	SILTY SAND, fine grained sand, rounded to subrounded, dense, v	, some clay, tra wet.	ace gravel, fine,			06-06-2020	0-05		· · · · · · · · · · · · · · · · · · ·				
23-	At 23.5 m - increased fine grave	I.				06-06-202(06-06-202()-06)-07	100			BENTONITE		
25	SILTY SAND, fine grained sand, dense, damp.	, some clay, tr	ace gravel, fine,			06-06-2020 06-06-2020	0-08		· • • • • • • • • • • • • • • • • • • •				
26-	SILTY CLAY, some sand, mediu plasticity, damp.	im grained, de	ense, high			06-06-2020	0-10		· · · · · · · · · · · · · · · · · · ·				
27-	SIL I Y SAND, tine to medium gra plasticity, moist.	ained sand, so	ome clay, high					100	• • • • • • • •				
28-	Bottom of hole at 27.4 m.												
29													
				NO Bole	TES ded sa	mple de	enote	es sa	ampl	e analyzed.			

		TTNT	т	(eck C	Client oal Lin	nited		Borehol	e No. : RG_BH_LC3B	
>)	JINC * LAVA		Regional	ndwate	r Monite	oring			PAGE 1 OF 2	
Drilling Drilling Boreho Pipe/S	Contractor Mud Bay Drilling Co. Ltd Method Vibratory Sonic Dle Dia. (m) 0.15 Iotted Pipe Dia. (m) 0.05/0.05		Date Monitored Ground Surface Ele Top of Casing Elev Northing: 5552736.	ev. (m) . (m) 874	2020 1318 1319 Easi) 06 16 3.281 9.075 ing: 6481	181.72	28	Project Number: Borehole Logged Date Drilled: Log Typed By:	631283 By: AH 2020 06 06 VL
pth in Metres	Drilling Legend Sample Interval Vibrasonic	Water/NA ▼ Water Lev ⊽ Water Lev ◆ NAPL ◇ NAPL	PL Levels vel 1 vel 2	tigraphy Plot	iple Interval Run	ple Number	w Count	ecovery	 Reading within indicated scale Reading outside indicated scale Soil Vapour (ppm) 	Solid PVC Slotted PVC Well Name 1: RG_MW_LC3B
De	Soil Des	scription		Stra	Sam Core	San	Blo	2 % 1(-	0 ¹ 10 ² 10 ³ 10 ⁴	
	SILTY CLAY, trace gravel, fine, high plasticity, damp. SILTY GRAVEL, fine to coarse some sand, coarse grained, sor moist.	ILTY CLAY, trace gravel, fine, trace sand, fine grained, grey, igh plasticity, damp. ILTY GRAVEL, fine to coarse gravel, rounded to subrounded ome sand, coarse grained, some clay, mottled, high plasticity ioist. RAVEL, fine to coarse, rounded to subrounded, containing obbles, some clay, loose, moist.						40 40		
	CLAYEY SAND, fine grained sa coarse, rounded to subrounded	el, fine to								
	CLAYEY SAND, fine grained sand, some gravel, fine to coarse, rounded to subrounded, dense, damp.							- 0		
⊢ 10–			NOT Bold	res Jed sa	mple de	enote	es sai	mple analyzed.	1 1/ / 1 1/ / 1	

		-	Client Teck Coal Limited							Borehole No. : RG_BH_LC3B			
>)	SINC + LAVA	LLIN	Regional	Lo Grou r	cation ndwate	er Monito	oring				PAGE 2 OI	= 2	
Drilling Drilling Boreho Pipe/S	g Contractor Mud Bay Drilling Co. Ltd 9 Method Vibratory Sonic ole Dia. (m) 0.15 lotted Pipe Dia. (m) 0.05/0.05		Date Monitored Ground Surface Ele Top of Casing Elev Northing: 5552736.	ev. (m) . (m) 874	202 131 131 Eas	0 06 16 3.281 9.075 ting: 6481	81.72	28		Project Number: Borehole Logged Date Drilled: Log Typed By:	63128 By: AH 2020 VL	33 06 06	
oth in Metres	Drilling Legend Sample Interval Vibrasonic	Water/NA ▼ Water Lev ⊽ Water Lev ◆ NAPL ◇ NAPL	PL Levels ^{vel 1} vel 2	graphy Plot	ole Interval Run	ole Number	v Count	scovery	° R in ● R in	eading within dicated scale eading outside dicated scale soil Vapour (ppm)	Solid P Slotted Well Name 1	VC PVC RG_MW_LC3B	
Dep	Soil Des	scription		Strati	Sam	Sam	Blov	% Re	10 ¹	10 ² 10 ³ 10			
	CLAYEY GRAVEL, fine to coars subrounded, containing cobbles (continued)	ded to se, wet.					50	· · · · · · · · · · · · · · · · · · ·			BENTONITE		
	some sand, coarse grained, sub	e silt, loose, wet.									RG_MW_LC3B		
	SAND and GRAVEL, fine to coa coarse gravel, rounded, some s	arse grained sa ilt, trace clay, c	and, fine to lense, moist.						•			BENTONITE	
	Bottom of hole at 14.9 m.												
QA/QC: LLH 2020			NOT Bold	T ES led sa	mple de	enote	es sa	ample	e analyzed.				

		-	т	eck C	Client oal Lir	nited		Borehole No. : RG_BH_LC3C			
>)	SNC+LAVA	LIN	Regional	Lo Grou	ocation ndwate	er Monite	oring			PAGE 1 OF 1	
Drilling Drilling Boreho Pipe/S	Contractor Mud Bay Drilling Co. Ltd Method Vibratory Sonic ole Dia. (m) 0.15 lotted Pipe Dia. (m) 0.05/0.05		Date Monitored Ground Surface Ele Top of Casing Elev Northing: 5552738.	ev. (m) . (m) 075	n/a 131 131 Eas	3.255 9.112 ting: 648°	181.42	24	Project Number: Borehole Logged Date Drilled: Log Typed By:	631283 By: AH 2020 06 06 VL	
Depth in Metres	Drilling Legend Sample Interval Vibrasonic Soil Des	Water/NA Water Lev Water Lev NAPL NAPL Scription	PL Levels rel 1 rel 2	Stratigraphy Plot	Sample Interval Core Run	Sample Number	Blow Count	% Recovery	 Reading within indicated scale Reading outside indicated scale Soil Vapour (ppm) 	Solid PVC Slotted PVC Well Name 1: RG_MW_LC3C	
	SILTY CLAY, some gravel, fine grey-brown, loose, dry.	rounded,					50				
	SILTY GRAVEL, fine to coarse cobbles, some clay, loose, dry. At 3.0 m - damp	nded, containing							BENTONITE		
	SANDY CLAY, fine grained san dense, high plastic, damp.	ace gravel, fine,							RG_MW_LC3C		
	SILTY GRAVEL, fine to coarse some sand, coarse grained, trac	SILTY GRAVEL, fine to coarse gravel, rounded to subrounded some sand, coarse grained, trace clay, trace silt, loose, wet.								SAND	
	CLAYEY GRAVEL, fine to coars subangular, containing cobbles, damp.	se gravel, subr trace silt, den	ounded to se, high plastic,							BENTONITE	
	Bottom of hole at 9.1 m.			87A		<u> </u>	I] [////]	
				NO Bolo	TES ded sa	mple d	enot	es sar	nple analyzed.		

	CNIC . T ANTA	TTNT	Te	(eck C	Client oal Lin	nited		Borehole No. : RG_BH_LCWC1			
>)	5INC+LAVA	LLIN	Regional	Lo Grour	cation Idwate	er Monito		PAGE 2 OF 2			
Drilling Drilling Boreho Pipe/S	Contractor Mud Bay Drilling Co. Ltd. Method Vibratory Sonic ole Dia. (m) 0.15 lotted Pipe Dia. (m) 0.05/0.05		Date Monitored Ground Surface Ele Top of Casing Elev. Northing: 5552399.	v. (m) (m) 910	2020 1310 1317 East) 06 16).453 1.258 ting: 6483	56.10)1	Project Number: Borehole Logged Date Drilled: Log Typed By:	631283 By: AH 2020 06 07 VL	
Metres	Drilling Legend Sample Interval Vibrasonic	Water/NA	PL Levels vel 1 vel 2	ly Plot	erval	umber	nt	ہ ک	Reading within indicated scale Reading outside indicated scale	Solid PVC Slotted PVC	
Jepth in		NAPL △ NAPL		ratigraph	ample Int ore Run	ample Nu	slow Cou	Recover	Soil Vapour (ppm)	Well Name 1: RG_MW_LCWC1	
- 10-	Soil Desc	cription		ଅ	တိပိ	ő	ш	[%] 10 ¹	10 ² 10 ³ 10 ⁴		
	SILTY SAND, fine grained sand, loose to medium dense, damp. (a At 10.5 m - increased density.	some clay, tra continued)	ace gravel, fine,			06-07-2020	-08			BENTONITE	
						06-07-2020	-09	· · ·			
	Bollom of hole at 11.9 m.										
15											
16											
17-											
18											
20-			г								
				NOT Bold	TES led sa	mple de	note	es sam	nple analyzed.		

			т	(eck C	Client coal Lin	nited			Borehole No. : RG_BH_WC2A							
>)	SINC+LAVA	LLIN	Regional	Lo Grou	ocation ndwate	er Monito	oring		PAGE 2 OF 4							
Drilling Drilling Boreho Pipe/S	Contractor Mud Bay Drilling Co. Ltd. Method Vibratory Sonic ole Dia. (m) 0.15 lotted Pipe Dia. (m) 0.05/0.05		Date Monitored Ground Surface Ele Top of Casing Elev Northing: 5552079.	ev. (m) . (m) 286	2020 1304 1304 Easi	0 06 16 4.009 4.868 ting: 6481	95.93	37	Project Number: Borehole Logged Date Drilled: Log Typed By:	631283 By: AH 2020 06 08 VL						
pth in Metres	Drilling Legend Sample Interval Vibrasonic	Water/NA ▼ Water Lev V Water Lev ▲ NAPL ◇ NAPL	PL Levels vel 1 vel 2	tigraphy Plot	iple Interval è Run	ple Number	w Count	ecovery	Reading within indicated scale Reading outside indicated scale Soil Vapour (ppm)	Solid PVC Slotted PVC Well Name 1: RG_MW_WC2A						
De	Soil Des	cription		Strai	Sam Core	Sam	Blo	2 % 10 ¹	10 ² 10 ³ 10 ⁴							
	GRAVEL and COBBLES, rounde graded, clean, wet. (continued) SAND, fine to medium grained, s loose, wet. At 13.1 m - increased sand, fine inclusions. At 13.4 m - medium to coarse gr SILTY SAND, fine to medium gra brown-grey, loose, medium plast At 17.1 m - decreased clay, incre SAND, fine to coarse grained, sc loose, low plasticity, wet.	ad to subround some silt, trace grained, incre ained sand. ained sand, sc icity, moist.	e gravel, fine, ased silt, black ome clay,			06-07-2021 06-07-2021 06-07-2021 06-07-2021 06-08-2021 06-08-2021 06-08-2021 06-08-2021)-09)-10)-11)-12)-12)-12)-01)-02)-04)-03	90								
- U2 - 10 				NOTES Bolded sample denotes sample analyzed.												
QA/QC																

		TTNT	r	(Feck C	Client cal Lir	nited			Borehole No. : RG_BH_WC2A						
	5INC+LAVA	LIIN	Regional	Lo Grou	ocation ndwate	er Monito	oring			PAGE 3 OF 4					
Drillin Drillin Boreh Pipe/S	g Contractor Mud Bay Drilling Co. Ltd g Method Vibratory Sonic ole Dia. (m) 0.15 Slotted Pipe Dia. (m) 0.05/0.05		Date Monitored Ground Surface El Top of Casing Elev Northing: 5552079	lev. (m) v. (m) v.286	2020 06 16 ev. (m) 1304.009 /. (m) 1304.868 .286 Easting: 648195			37	P B D Lo	roject Number: orehole Logge ate Drilled: og Typed By:	631283 d By: AH 2020 06 08 VL				
Depth in Metres	Drilling Legend Sample Interval Vibrasonic Soil Des	Water/NA Water Lee Water Lee NAPL NAPL Scription	PL Levels vel 1 vel 2	Stratigraphy Plot	Sample Interval Core Run	Sample Number	Blow Count	% Recovery	 Rea indi Rea indi So 10¹ 	ading within cated scale ading outside cated scale il Vapour (ppm)) ² 10 ³ 10	Solid PVC Slotted PVC Well Name 1: RG_MW_WC2A				
20- 21- 22- 23- 24- 24- 25- 26- 26- 26- 27- 27- 27- 27- 27- 28- 27- 27- 27- 27- 27- 27- 27- 27- 27- 27	SAND, fine to coarse grained, s loose, low plasticity, wet. (contin At 20.1 m - trace silt. SAND and GRAVEL, coarse gra gravel, rounded, some silt, conti loose, wet. At 22.7 m - increased fine grained SILT, trace sand, fine grained, g CLAY and GRAVEL (TILL), fine some silt, dense, medium plasti	ained sand, fin aining cobbles ed sand. grey, hard, low	raded, brown, e to coarse , subrounded, plasticity, dry. /el, subrounded,			06-08-2021 06-08-2021 06-08-2021 06-08-2021 06-08-2021 06-08-2021 06-08-2021 06-08-2021	D-06 D-07 D-08 D-09 D-10 D-11 D-112 D-12 D-13 D-14 D-15	70			BENTONITE RG_MW_WC2A SAND BENTONITE BENTONITE				
DAVQC: LLH 20				Bold	ded sa	mple de	enot	es sa	ample	analyzed.					

 	JINC · LAVA							Borehole No. : RG_BH_WC2A						
			Regional	Lo Grour	cation Idwate	er Monito	oring			PAGE 4 OF 4				
Drilling Drilling Boreh Pipe/S	g Contractor Mud Bay Drilling Co. Ltd. g Method Vibratory Sonic ole Dia. (m) 0.15 Slotted Pipe Dia. (m) 0.05/0.05		Date Monitored Ground Surface Elev Top of Casing Elev Northing: 5552079.	2020 06 16 lev. (m) 1304.009 v. (m) 1304.868 0.286 Easting: 648			195.93	7	Project Number: Borehole Logged Date Drilled: Log Typed By:	631283 I By: AH 2020 06 08 VL				
epth in Metres	Drilling Legend Sample Interval Vibrasonic	Water/NA Water Lev Water Lev NAPL NAPL	PL Levels ^{vel 1}	atigraphy Plot	mple Interval re Run	mple Number	ow Count	Recovery	Reading within indicated scale Reading outside indicated scale Soil Vapour (ppm)	Solid PVC Slotted PVC Well Name 1: RG_MW_WC2A				
	Soil Des	cription		Str	Sar Coi	Sar	ā	% 10 ¹	10 ² 10 ³ 10	4				
30-	CLAY and GRAVEL (TILL), fine some silt, dense, medium plastic	to coarse grav city, dry. <i>(conti</i>	vel, subrounded, inued)							BENTONITE				
$31 \\ 32 \\ 33 \\ 34 \\ 35 \\ 36 \\ 37 \\ 38 \\ 39 \\ 39 \\ 40 \\ 40 \\ 40 \\ 39 \\ 40 \\ 39 \\ 40 \\ 39 \\ 40 \\ 39 \\ 40 \\ 39 \\ 40 \\ 39 \\ 40 \\ 39 \\ 40 \\ 39 \\ 40 \\ 39 \\ 40 \\ 39 \\ 40 \\ 39 \\ 40 \\ 39 \\ 40 \\ 39 \\ 40 \\ 40 \\ 40 \\ 40 \\ 40 \\ 40 \\ 40 \\ 4$				NOT	ES ed sa	mple de	enote	es sam	ple analyzed.					

		TINT	т	(eck C	Client oal Lir	nited			Borehole No. : RG_BH_WC2B						
>	5INC * LAVA		Regional	Lo Groui	ndwate	er Monito	oring		PAGE 1 OF 1						
Drilling Drilling Boreho Pipe/S	y Contractor Mud Bay Drilling Co. Ltd. y Method Vibratory Sonic ole Dia. (m) 0.15 lotted Pipe Dia. (m) 0.05/0.05		Date Monitored Ground Surface Elev Top of Casing Elev Northing: 5552078.	ev. (m) v. (m) .858	2020 130- 130- Eas	0 06 16 4.038 4.795 ting: 6481	197.17	72	Project Number: 631283 Borehole Logged By: AH Date Drilled: 2020 06 08 Log Typed By: VL						
Depth in Metres	Drilling Legend Sample Interval Vibrasonic	Water/NA ▼ Water Le ⊽ Water Le ◆ NAPL ◇ NAPL	PL Levels rel 1 rel 2	I tratigraphy Plot	ample Interval ore Run	ample Number	slow Count	Recovery	 Reading within indicated scale Reading outside indicated scale Soil Vapour (ppm) 	Solid PVC Slotted PVC Well Name 1: RG_MW_WC2B					
	Soil Des	scription		5 5	တိပိ	ů	ш	% 10	¹ 10 ² 10 ³ 10						
	SILTY SAND, fine to medium gr graded, grey-brown, loose, low p At 1.8 m - mottling. SAND and GRAVEL, fine to coa coarse gravel, rounded, containi wet.	ained sand, tra blasticity.	ace clay, poorly and, fine to ace silt, loose,					40		BENTONITE					
	CLAY, trace silt, grey, medium c	dense, high pla	istic, moist.							BENTONITE					
	SAND and GRAVEL, coarse gra rounded, trace silt, wet.	ained sand, fin	e gravel,	0											
8	Bottom of hole at 7.6 m.														
9															
				NOTES Bolded sample denotes sample analyzed.											

Declaration of Competency

The Ministry of Environment and Climate Change Strategy relies on the work, advice, recommendations and in some cases decision making of qualified professionals¹, under government's professional reliance regime. With this comes an assumption that professionals who undertake work in relation to ministry legislation, regulations and codes of practice have the knowledge, experience and objectivity necessary to fulfill this role.

1.	Name of Qualified Professional Stan Humphries
	Title Senior Hydrogeologist
2.	Are you a registered member of a professional association in B.C.?
	Name of Association: <u>EGBC</u> Registration # <u>31909</u>
3.	Brief description of professional services:
	Series realize of a realized features the

This declaration of competency is collected under section 26(c) of the *Freedom of Information and Protection of Privacy Act* for the purposes of increasing government transparency and ensuring professional ethics and accountability. By signing and submitting this statement you consent to its publication and its disclosure outside of Canada. This consent is valid from the date submitted and cannot be revoked. If you have any questions about the collection, use or disclosure of your personal information please contact the Ministry of Environment and Climate Change Strategy Headquarters Office at 1-800-663-7867.

Declaration

I am a qualified professional with the knowledge, skills and experience to provide expert information, advice and/or recommendations in relation to the specific work described above.

Signature:	
x M/S	-
Print Name: Stefa Humphall	
Date signed: May 28/21	

Witnessed by:

¹Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

- a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and
- b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

July 2019

Conflict of Interest Disclosure Statement

A qualified professional ¹ providing services to either the Ministry of Environment and Climate Change Strategy ("ministry"), or to a regulated person for the purpose of obtaining an authorization from the ministry, or pursuant to a requirement imposed under the *Environmental Management Act*, the *Integrated Pest Management Act* or the *Park Act* has a real or perceived conflict of interest when the qualified professional, or their relatives, close associates or personal friends have a financial or other interest in the outcome of the work being performed.

A real or perceived conflict of interest occurs when a qualified professional has

- a) an ownership interest in the regulated person's business;
- an opportunity to influence a decision that leads to financial benefits from the regulated person or their business other than a standard fee for service (e.g. bonuses, stock options, other profit sharing arrangements);
- c) a personal or professional interest in a specific outcome;
- d) the promise of a long term or ongoing business relationship with the regulated person, that is contingent upon a specific outcome of work;
- e) a spouse or other family member who will benefit from a specific outcome; or
- f) any other interest that could be perceived as a threat to the independence or objectivity of the qualified professional in performing a duty or function.

Qualified professionals who work under ministry legislation must take care in the conduct of their work that potential conflicts of interest within their control are avoided or mitigated. Precise rules in conflict of interest are not possible and professionals must rely on guidance of their professional associations, their common sense, conscience and sense of personal integrity.

Declaration

, as a member of

declare

Select one of the following:

Absence from conflict of interest

Other than the standard fee I will receive for my professional services, I have no financial or
other interest in the outcome of this Sparway lication preject/w/pk/stand water Report
I further declare that should a conflict of interest arise in the future during the course of this
work, I will fully disclose the circumstances in writing and without delay to
, erring on the side of caution.

□ Real or perceived conflict of interest

Description and nature of conflict(s):

I will maintain my objectivity, conducting my work in accordance with my Code of Ethics and standards of practice.

In addition, I will take the following steps to mitigate the real or perceived conflict(s) I have disclosed, to ensure the public interest remains paramount:

Further, I acknowledge that this disclosure may be interpreted as a threat to my independence and will be considered by the statutory decision maker accordingly.

This conflict of interest disclosure statement is collected under section 26(c) of the *Freedom of Information and Protection of Privacy Act* for the purposes of increasing government transparency and ensuring professional ethics and accountability. By signing and submitting this statement you consent to its publication and its disclosure outside of Canada. This consent is valid from the date submitted and cannot be revoked. If you have any questions about the collection, use or disclosure of your personal information please contact the Ministry of Environment and Climate Change Strategy Headquarters Office at 1-800-663-7867.

Signature: Print name: Date

Witnessed by:

Print name:

¹Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

- a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and
- b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

APPENDIX F BENTHIC INVERTEBRATE COMMUNITY COMPOSITION

Figure 1: ent ic In erte rate ommunit A undance G September 2 12 to 2 2 Α

Notes: Site specific normal ranges using regression models shown with grey shading (when available). Regional normal ranges using percentiles of reference areas from 2012 to 2019 from the Regional Aquatic Environmental Monitoring Program (RAEMP; Minnow 2020) shown as dashed horizontal lines.

Figure .2: ent ic In erte rate ommunit September 2 12 to 2 2 ic ness G Α

Notes: Site specific normal ranges using regression models shown with grey shading (when available). Regional normal ranges using percentiles of reference areas from 2012 to 2019 from the Regional Aquatic Environmental Monitoring Program (RAEMP; Minnow 2020) shown as dashed horizontal lines.

Notes: Site specific normal ranges using regression models shown with grey shading (when available). Regional normal ranges using percentiles of reference areas from 2012 to 2019 from the Regional Aquatic Environmental Monitoring Program (RAEMP; Minnow 2020) shown as dashed horizontal lines. EPT = Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies).

Notes: Site specific normal ranges using regression models shown with grey shading (when available). Regional normal ranges using percentiles of reference areas from 2012 to 2019 from the Regional Aquatic Environmental Monitoring Program (RAEMP; Minnow 2020) shown as dashed horizontal lines.

Notes: Site specific normal ranges using regression models shown with grey shading (when available). Regional normal ranges using percentiles of reference areas from 2012 to 2019 from the Regional Aquatic Environmental Monitoring Program (RAEMP; Minnow 2020) shown as dashed horizontal lines.

Notes: Site specific normal ranges using regression models shown with grey shading (when available). Regional normal ranges using percentiles of reference areas from 2012 to 2019 from the Regional Aquatic Environmental Monitoring Program (RAEMP; Minnow 2020) shown as dashed horizontal lines.

Notes: Site specific normal ranges using regression models shown with grey shading (when available). Regional normal ranges using percentiles of reference areas from 2012 to 2019 from the Regional Aquatic Environmental Monitoring Program (RAEMP; Minnow 2020) shown as dashed horizontal lines.

September 2 12 to 2020 Figure .8: ent ic In erte rate ommunit i tera G Α

Notes: Site specific normal ranges using regression models shown with grey shading (when available). Regional normal ranges using percentiles of reference areas from 2012 to 2019 from the Regional Aquatic Environmental Monitoring Program (RAEMP; Minnow 2020) shown as dashed horizontal lines.

Notes: Site specific normal ranges using regression models shown with grey shading (when available). Regional normal ranges using percentiles of reference areas from 2012 to 2019 from the Regional Aquatic Environmental Monitoring Program (RAEMP; Minnow 2020) shown as dashed horizontal lines, with the minimum value = 0%.

Table F.1: Regional Normal Ranges for Benthic InvertebrateEndpoints, GHO LAEMP, September 2020

Endnoint	Regional Normal Range									
Endpoint	Minimum	Maximum								
Abundance (# org/ 3-min kick)	1,805	26,927								
LPL Richness (# of taxa)	25.0	48.3								
EPT (%)	48.8	97.3								
Ephemeroptera (%)	21.0	81.8								
Trichoptera (%)	0.87	33.4								
Plecoptera (%)	6.56	50.9								
Chironomidae (%)	1.35	42.6								
Diptera (%)	2.21	48.1								
Oligochaeta (%)	0	2.66								

Note: EPT = Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies). Regional normal ranges were calculated using percentiles of reference areas from 2012 to 2019 from the Regional Aquatic Environmental Monitoring Program

Area			Abun (# org/3-	dance min kick)	LPL Ri (# of	chness taxa)	El (9	РТ %)	Ephemeroptera (%)		
	Location	Area Code	Minimum	Maximum	Minimum	Maximum	Minimum	Maximum	Minimum	Maximum	
Reference	Main stem	RG_ELUGH / GH_ER2	1,351	10,180	28.7	43.7	72	95	30	65	
Mine- exposed	Tributary	RG_THCK / GH_TC2	17,983 1,118,071		31.3	48.1	66	91	13	50	
	Main stem	RG_EL20 / GH_ERC	1,431	15,969	28.1	44.6	72	95	29	64	

Table F.2: Site-Specific Ranges for Benthic Invertebrate Endpoints, GHO LAEMP, September 2020

Note: EPT = Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies). Site specific normal ranges were calculated using multiple regression models (RAEMP 2020). Site-specific normal ranges could not be calculated for side channel stations.

Table F.3: Benthic Invertebrate Community Data, GHO LAEMP, 2020

Area Type		Reference									N	line-expose	d							
Station	GH_	ER2 / RG_EL	UGH		GH_ERSC4			GH_ER1A			RG_ERSC5	•		RG_THCK		GH_ERC / EL20				
Sample ID	RG_ELUG	RG_ELUG	RG_ELUG	GH_ERSC4	GH_ERSC4	GH_ERSC4	GH_ER1A_	GH_ER1A_	GH_ER1A_	RG_ERSC5	RG_ERSC5	RG_ERSC5	RG_THCK_	RG_THCK_	RG_THCK_	RG_EL20_	RG_EL20_	RG_EL20_	RG_EL20_	RG_EL20_
	H_BIC-1	H_BIC-2	H_BIC-3	_BIC-1	_BIC-2	_BIC-3	BIC-1	BIC-2	BIC-3	_BIC-1	_BIC-2	_BIC-3	BIC-1	BIC-2	BIC-3	BIC-1	BIC-2	BIC-3	BIC-4	BIC-5
Sample Date	17-Sep-20	17-Sep-20	17-Sep-20	12-Sep-20	12-Sep-20	12-Sep-20	11-Sep-20	11-Sep-20	12-Sep-20	11-Sep-20	11-Sep-20	11-Sep-20	10-Sep-20	10-Sep-20	10-Sep-20	15-Sep-20	16-Sep-20	16-Sep-20	16-Sep-20	16-Sep-20
Phylum: Arthropoda	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
L Class: Insocta	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Order: Enhemerontera	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Family: Ameletidae	20	0	0	20	14	11	5	0	20	0	0	0	0	0	0	0	0	0	0	100
Ameletus	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Family: Baetidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<u>Acentrella</u>	0	25	0	0	0	0	0	53	0	0	0	0	0	0	0	32	42	0	88	0
<u>Acentrella</u>	27	74	211	113	242	111	209	474	398	239	233	113	33	68	0	284	104	185	236	496
<u>Baetis fuscatus gr.</u>	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Baelis modani group	326	542	329	210	504	356	346	921	682	447	1,038	203	33	272	120	945	354	475	559	1,204
I Family: Ephemerellidae	280	240	480	140	273	67	85	433	140	114	171	62	0	0	0	260	356	330	183	280
Caudatella	0	0	0	0	14	0	0	0	0	7	14	0	0	0	0	0	0	0	0	0
Drunella	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Drunella grandis group	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	20
Drunella coloradensis	0	0	0	0	0	0	0	17	0	0	14	8	0	0	0	20	0	0	0	0
<u>Drunella doddsii</u>	180	460	360	10	129	167	55	33	320	36	171	123	0	20	0	560	300	400	383	140
<u>Ephemerella</u>	0	0	0	0	0	0	0	17	0	7	0	0	0	0	0	0	0	0	0	0
Family: Heptageniidae	1,620	1,880	1,560	1,360	1,335	833	560	1,400	2,500	457	843	154	0	20	0	2,880	789	//0	1,000	1,760
Epeorus	20	20	200	0	29	67	35	67	140	29 71	43	10	0	0	0	360	122	40	117	80
Rhithrogena	920	840	320	660	531	667	240	167	460	100	343	77	17	0	0	2 060	311	500	933	1 940
Order: Plecoptera	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Family: Capniidae	265	60	40	60	29	22	0	33	0	29	100	77	0	0	0	500	111	180	167	520
Family: Chloroperlidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<u>Sweltsa</u>	0	64	0	15	14	22	10	0	20	0	14	8	0	0	0	87	11	10	44	80
Family: Leuctridae	61	40	0	0	0	0	0	0	0	0	0	0	0	0	0	20	0	0	0	0
Paraleuctra	122	60	0	0	14	0	0	0	0	0	0	0	0	0	0	20	0	0	17	0
Alenka	0	0	0	0	0	0	0	0	0	0	0	0	0 18	64	23	0	0	0	0	0
Zapada	25	120	80	10	120	39	11	50	20	30	125	35	0	107	0	96	22	60	17	40
Zapada oregonensis group	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Zapada cinctipes	76	120	80	10	137	117	29	67	100	98	375	35	1,049	1,008	1,577	24	11	20	0	20
Zapada columbiana	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Family: Perlidae	0	0	60	20	0	11	20	0	0	0	0	0	0	0	0	0	0	10	17	0
<u>Hesperoperla</u>	61	220	220	30	57	89	10	33	360	0	14	8	0	0	0	40	33	30	150	0
Family: Periodidae	0	40	80	30	14	0	5	0	20	43	43	31	0	0	0	260	111	60	50	80
Kogotus	20	0	20	0	0	0	5	17	20	0	14	<u> </u>	0	0	0	100	11	10	17	0
Megarcys	<u> </u>	40	20	0	0	0	0	0	20	0	0	0	0	0	0	20	0	0	0	0
Skwala	0	0	0	0	0	11	0	0	0	0	14	0	0	0	0	0	0	0	0	0
Family: Pteronarcyidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pteronarcella	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Family: Taeniopterygidae	2,524	1,920	860	320	543	311	140	533	580	207	957	431	50	0	0	1,120	444	580	883	540
Order: Trichoptera	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Family: Apataniidae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Apatania Pedomoecus sierra	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	20
I Family: Brachycentridae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Brachycentrus	40	140	160	75	100	62	25	33	40	0	65	0	0	0	0	180	100	60	150	0
Brachycentrus americanus	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<u>Micrasema</u>	0	0	0	0	0	0	0	0	0	7	0	0	0	0	21	0	0	0	0	0
Family: Glossosomatidae	0	0	20	11	0	12	10	33	0	7	0	0	0	0	0	20	22	0	0	40
<u>Glossosoma</u>	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Family: Hydropsychidae	0	160	60	0	0	12	0	0	0	0	0	0	0	21	0	320	67	40	50	0
Arctopsyche	80	120	100	U	U	12	10	U	U	U	16	U	U	U	U	80	22	40	17	U

Table F.3: Benthic Invertebrate Community Data, GHO LAEMP, 2020

	Area Type		Reference	eference Mine-exposed																	
	Station	GH_	ER2 / RG_EI	LUGH		GH_ERSC4			GH_ER1A			RG_ERSC5	-		RG_THCK		GH_ERC / EL20				
	Sample ID	RG_ELUG	RG_ELUG	RG_ELUG	GH_ERSC4	GH_ERSC4	GH_ERSC4	GH_ER1A_	GH_ER1A_	GH_ER1A_	RG_ERSC5	RG_ERSC5	RG_ERSC5	RG_THCK_	RG_THCK_	RG_THCK_	RG_EL20_	RG_EL20_	RG_EL20_	RG_EL20_	RG_EL20_
	Sample ID	H_BIC-1	H_BIC-2	H_BIC-3	_BIC-1	_BIC-2	_BIC-3	BIC-1	BIC-2	BIC-3	_BIC-1	_BIC-2	_BIC-3	BIC-1	BIC-2	BIC-3	BIC-1	BIC-2	BIC-3	BIC-4	BIC-5
	Sample Date	17-Sep-20	17-Sep-20	17-Sep-20	12-Sep-20	12-Sep-20	12-Sep-20	11-Sep-20	11-Sep-20	12-Sep-20	11-Sep-20	11-Sep-20	11-Sep-20	10-Sep-20	10-Sep-20	10-Sep-20	15-Sep-20	16-Sep-20	16-Sep-20	16-Sep-20	16-Sep-20
Hydropsyche		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Parapsyche		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Family: Hydroptilidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<u>Hydroptila</u>		0	0	0	0	0	0	0	0	0	0	0	0	0	41	42	0	0	0	0	0
Family: Lepidostomatidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<u>Lepidostoma</u>		0	0	0	0	0	0	0	0	0	0	0	0	0	41	146	20	0	0	0	0
Family: Limnephilidae		0	0	0	0	14	12	0	0	0	0	0	0	17	0	0	0	0	0	0	0
Family: Rhyacophilidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Rhyacophila		0	40	60	0	0	0	10	0	0	7	0	8	183	472	229	20	22	20	17	0
Rhyacophila betteni group		0	0	0	0	0	0	0	0	0	0	0	0	0	0	42	0	0	0	0	0
Rhyacophila brunnea/vemna group	2	20	60	20	32	0	0	5	17	0	0	0	0	183	144	229	0	0	0	17	0
Rhyacophila atrata complex		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Rhyacophila narvae		0	0	0	22	0	0	0	0	0	0	0	0	0	0	21	0	0	0	0	0
Order: Coleoptera		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Family: Curculionidae		0	0	0	0	0	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0
Family: Dytiscidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Subtamily: Hydroporinae		U	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	U	0	0	0
Family: Elmidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Heteriimnius		20	0	0	60	43	44	5	17	20	1	14	0	1,200	1,572	1,114	0	0	0	0	0
<u>Narpus</u>		0	0	0	0	0	0	0	0	0	0	0	0	0	28	26	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
L Order: Diptora		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Eamily: Coratopogonidao		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Perzia/ Palnomvia		0	0	0	0	0	0	0	0	0	0	0	0	0	0	20	0	0	0	0	0
Mallochobelea		40	140	60	10	0	22	0	0	20	0	0	0	17	40	0	0	22	0	0	20
L Family: Chironomidae			0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0
Subfamily: Chironominae		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Tribe: Chironomini		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Polvpedilum		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Tribe: Tanytarsini		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Constempellina sp. C		20	22	0	0	0	0	0	0	0	0	0	12	0	0	0	0	14	0	22	0
Corynocera		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Micropsectra		0	22	0	0	0	13	0	0	0	0	0	12	30	165	74	23	0	12	0	0
<u>Stempellinella</u>		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Subfamily: Diamesinae		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Tribe: Diamesini		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<u>Diamesa</u>		0	22	0	0	0	0	0	0	0	0	21	0	0	0	0	0	28	12	0	0
<u>Pagastia</u>		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Potthastia gaedii group		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	23	0	0
Subfamily: Orthocladiinae		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<u>Brillia</u>		0	0	0	0	0	0	0	0	0	0	21	0	0	0	0	0	0	12	0	0
<u>Corynoneura</u>		0	0	0	0	0	0	0	0	0	0	0	0	276	328	1,109	0	0	0	0	0
		60	198	213	40	0	0	28	17	60	57	64	24	55	187	139	187	120	220	108	0
<u>Hydrobaenus</u>		0	0	0	0	0	0	0	0	20	0	0	0	0	0	0	0	0	12	0	0
<u>Limnophyes</u> Orthoolodius complex		0	22	0	0	0	13	0	0	0	10	0	0	0	0	0	0	0	12	22	20
Orthogladius lignicala		0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	23	30	93	60	80
Parorthocladius		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Rheocricotopus		0	22	0	0	2/	13	0	0	0	0	0	26	0	0	0	23	15	12	0	0
Thienemanniella		0	<u> </u>	0	0	17	0	0	0	0	0	0	0	0	0	0	23	0	12	0	0
Tvetenia		0	41	27	0	2/	27	28	100	80	10	107	0	55	23/	130	23	15	12	0	0
I Subfamily: Tanynodinae		0	-++ - 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
I Tribe: Pentaneurini		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pentaneura		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Family: Dixidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Dixa		0	0	0	0	0	0	0	0	0	0	0	0	117	0	80	0	0	0	0	0
i and i a		-	, v				- -	, v		v			ÿ		· · ·			~			~
Table F.3: Benthic Invertebrate Community Data, GHO LAEMP, 2020

	Area Type		Reference										Mine-expose	ed							
	Station	GH	ER2 / RG_EL	LUGH		GH_ERSC4			GH_ER1A			RG_ERSC5	5		RG_THCK			G	H_ERC / EL	20	
	Sample ID	RG_ELUG	RG_ELUG	RG_ELUG	GH_ERSC4	GH_ERSC4	GH_ERSC4	GH_ER1A_	GH_ER1A_	GH_ER1A_	RG_ERSC5	RG_ERSC5	RG_ERSC5	RG_THCK_	RG_THCK_	RG_THCK_	RG_EL20_	RG_EL20_	RG_EL20_	RG_EL20_	RG_EL20_
	Sample Date	17-Sep-20	17-Sep-20	17-Sen-20	12-Sep-20	2 12_Sep_20	12-Sen-20	11-Sen-20	11-Sen-20	12-Sen-20	11_Sen_20	2	010=0	10-Sen-20	10-Sen-20	10-Sep-20	15-Sen-20	16-Sep-20	16-Sen-20	16-Sen-20	16-Sep-20
L Family: Dolichopodidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Family: Empididae		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Chelifera/ Metachela		0	0	20	0	14	0	0	0	20	0	0	0	17	0	0	0	44	10	33	0
Clinocera		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<u>Neoplasta</u>		0	40	0	30	43	11	10	33	60	14	0	0	117	60	540	0	44	20	117	0
Family: Psychodidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<u>Pericoma/Telmatoscopus</u>		1,080	1,280	740	300	386	667	140	733	1,080	50	114	400	83	220	60	260	189	330	500	140
Family: Simuliidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Prosimulium/Helodon		0	24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<u>Simulum</u>		0	96	0	50	43	44	25	0	60	14	14	15	1,600	1,740	3,780	160	0	10	0	20
Family: Tanyderidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	10	17	0
Antocha		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Dicranota		0	0	0	10	14	0	5	17	40	14	14	0	150	100	200	0	0	0	0	0
Hexatoma		40	0	0	10	0	0	0	0	20	0	0	0	0	0	0	Ŭ Û	0	0	0	0
Rhabdomastix		0	20	0	0	0	0	0	0	0	0	0	0	0	20	0	0	0	0	0	0
Order: Thysanoptera		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Subphylum: Chelicerata		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Class: Arachnida		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Order: Trombidiformes		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Family: Feltriidae		0	0	0	0	0	0	0	0	0	0	0	0	33	20	20	0	0	0	0	0
<u>Feitria</u>		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Atrostidoo		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<u>Atractides</u> Hydrobates		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Family: Lebertiidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
l ebertia		80	40	60	40	0	33	25	50	20	7	29	54	0	0	0	0	22	30	33	20
Family: Sperchontidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<u>Sperchon</u>		0	0	20	0	0	0	0	0	0	0	0	0	0	20	20	0	0	0	0	0
Family: Torrenticolidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<u>Testudacarus</u>		0	40	60	20	0	0	0	0	0	0	0	0	0	0	0	20	0	0	17	0
Order: Sarcoptiformes		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Order: Oribatida		0	0	0	0	0	0	0	17	0	0	14	0	17	0	0	20	0	0	0	20
Family: Hydrozetidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Class: Malacostraca		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Family: Gammaridae		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gammarus		0	0	0	0	0	0	0	0	0	0	0	0	17	860	180	0	0	0	0	0
Phylum: Mollusca		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Class: Bivalvia		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Order: Veneroida		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Family: Pisidiidae		0	0	0	0	0	0	0	0	0	0	0	0	17	40	140	0	0	0	0	0
<u>Pisidium</u>		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Class: Gastropoda		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Order: Basommatophora		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Family: Planorbidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Eamily: Hydrobiidao		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Phylum: Annelida		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Subphylum: Clitellata		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Class: Oligochaeta		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Order: Lumbriculida		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Family: Lumbriculidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	11	0	0	0
Order: Tubificida		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Family: Naididae		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Subfamily: Tubificinae with	hair chaetae	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Т	otals:	8,169	9,784	6,600	3,719	4,743	3,911	2,095	5,514	7,420	2,129	5,167	2,670	5,383	7,912	10,089	11,067	3,967	4,697	6,044	7,800

			Abundance	LPL	EI	РТ	Ephemeroptera		Trichoptera		Plecoptera		Chironomidae		Diptera		Oligochaeta	
Area	Area Code	Station	(# org/ 3-min kick)	Richness (# of taxa)	Abundance (# org/ 3-min kick)	Relative Abundance (%)												
nce		RG_ELUGH_1	8,460	32	7,080	84	3,520	42	140	1.7	3,420	40	80	0.9	1,260	15	20	0.24
ferei	GH ER2	RG_ELUGH_2	9,920	44	7,760	78	4,460	45	520	5.2	2,780	28	440	4.4	2,040	21	20	0.20
Re		RG_ELUGH_3	6,600	30	5,400	82	3,540	54	420	6.4	1,440	22	240	3.6	1,060	16	0	0
		GH_ERSC4_1	3,910	33	3,330	85	2,560	65	140	3.6	630	16	40	1.0	450	12	10	0.26
	GH_ERSC4	GH_ERSC4_2	4,814	30	4,129	86	3,086	64	114	2.4	929	19	86	1.8	586	12	57	1.19
		GH_ERSC4_3	3,944	34	3,033	77	2,278	58	111	2.8	644	16	67	1.7	822	21	11	0.28
		GH_ER1A_1	2,095	30	1,825	87	1,535	73	60	2.9	230	11	55	2.6	235	11	0	0
	GH_ERA1	GH_ER1A_2	5,633	31	4,633	82	3,817	68	83	1.5	733	13	117	2.1	917	16	0	0
		GH_ER1A_3	7,440	30	5,940	80	4,780	64	40	0.5	1,120	15	160	2.2	1,460	20	0	0
σ		RG_ERSC5_1	2,336	30	1,957	84	1,529	65	21	0.9	407	17	86	3.7	186	8.0	179	7.65
ose	RG_ERSC5	RG_ERSC5_2	5,329	34	4,786	90	3,000	56	114	2.1	1,671	31	214	4.0	357	6.7	129	2.41
-exp		RG_ERSC5_3	2,754	28	2,177	79	1,538	56	8	0.3	631	23	85	3.1	500	18	23	0.84
line		RG_THCK_1	5,633	28	1,600	28	83	1.5	400	7.1	1,117	20	417	7.4	2,517	45	217	3.85
2	GH TC2	RG_THCK_2	8,160	34	2,340	29	380	4.7	780	9.6	1,180	14	960	12	3,140	38	100	1.23
		RG_THCK_3	10,480	28	2,720	26	120	1.1	1,000	9.5	1,600	15	1,460	14	6,140	59	120	1.15
		RG_EL20_1	11,300	36	10,560	93	7,400	65	640	5.7	2,520	22	280	2.5	700	6.2	0	0
		RG_EL20_2	3,989	36	3,411	86	2,411	60	233	5.8	767	19	222	5.6	522	13	33	0.84
	RG_EL20/ GH_ERC	RG_EL20_3	4,750	40	3,870	81	2,750	58	160	3.4	960	20	440	9.3	820	17	30	0.63
		RG_EL20_4	6,133	34	5,133	84	3,500	57	250	4.1	1,383	23	217	3.5	883	14	67	1.09
		RG_EL20_5	7,860	27	7,520	96	6,140	78	60	0.8	1,320	17	100	1.3	280	3.6	20	0.25

 Table F.4:
 Summary of Benthic Invertebrate Endpoints Collected by 3-Minute Kick and Sweep Sampling, GHO LAEMP, September 2020

Note: EPT = Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies).

APPENDIX F BENTHIC INVERTEBRATE COMMUNITY LAB REPORT

Methods and QC Report 2020

Project ID: GHO LAEMP (20-22)

Client: Minnow Environmental

Prepared by: Cordillera Consulting Inc. Summerland, BC © 2020

Unit 1, 13216 Henry Ave B1202 Summerland, BC, V0H 1Z0 www.cordilleraconsulting.ca P: 250.494.7553 F: 250.494.7562

Table of Contents

Sample Reception	3
Sample Sorting	
Sorting Quality Control - Sorting Efficiency	5
Sorting Quality Control - Sub-Sampling QC	6
Taxonomic Effort	
Taxonomists	
Taxonomic QC	9
Error Summary	
Error Rationale	
References	
Taxonomic Keys	

Sample Reception

On September 29, 2020, Cordillera Consulting received 20 benthic samples from Minnow Environmental. When samples arrived to Cordillera Consulting, exterior packaging was initially inspected for damage or wet spots that would have indicated damage to the interior containers.

Samples were logged into a proprietary software database (INSTAR1) where the clients assigned sample name was recorded along with a Cordillera Consulting (CC) number for cross-reference. Each sample was checked to ensure that all sites and replicates recorded on field sheets or packing lists were delivered intact and with adequate preservative. Any missing, mislabelled or extra samples were reported to the client immediately to confirm the total numbers and correct names on the sample jars. The client representative was notified of the arrival of the shipment and provided a sample inventory once intake was completed.

See table below for sample inventory:

Sampla	CC#	Data	Sizo	# of lars
			5120	
RG_ELUGH_BIC-1_2020-09-17	CC210922	9/17/2020	400μΜ	1
RG_ELUGH_BIC-2_2020-09-17	CC210923	9/17/2020	400µM	1
RG_ELUGH_BIC-3_2020-09-17	CC210924	9/17/2020	400µM	1
GH_ERSC4_BIC-1_2020-09-12	CC210925	9/12/2020	400µM	1
GH_ERSC4_BIC-2_2020-09-12	CC210926	9/12/2020	400µM	1
GH_ERSC4_BIC-3_2020-09-12	CC210927	9/12/2020	400µM	1
GH_ER1A_BIC-1_2020-09-11	CC210928	9/11/2020	400µM	1
GH_ER1A_BIC-2_2020-09-11	CC210929	9/11/2020	400µM	1
GH_ER1A_BIC-3_2020-09-12	CC210930	9/12/2020	400µM	1
RG_ERSC5_BIC-1_2020-09-11	CC210931	9/11/2020	400µM	1
RG_ERSC5_BIC-2_2020-09-11	CC210932	9/11/2020	400µM	1
RG_ERSC5_BIC-3_2020-09-11	CC210933	9/11/2020	400µM	1
RG_THCK_BIC-1_2020-09-10	CC210934	9/10/2020	400µM	1
RG_THCK_BIC-2_2020-09-10	CC210935	9/10/2020	400µM	1
RG_THCK_BIC-3_2020-09-10	CC210936	9/10/2020	400µM	2
RG_EL20_BIC-1_2020-09-15	CC210937	9/15/2020	400µM	1
RG_EL20_BIC-2_2020-09-16	CC210938	9/16/2020	400µM	1
RG_EL20_BIC-3_2020-09-16	CC210939	9/16/2020	400µM	1
RG_EL20_BIC-4_2020-09-16	CC210940	9/16/2020	400µM	1
RG EL20 BIC-5 2020-09-16	CC210941	9/16/2020	400µM	1

Table 1: Summary of sample information including Cordillera Consulting (CC) number

Sample Sorting

- Using a gridded Petri dish, fine forceps and a low power stereo-microscope (Olympus, Nikon, Leica) the sorting technicians removed the invertebrates and sorted them into family/orders.
- The sorting technician kept a running tally of total numbers excluding organisms from Porifera, Nemata, Platyhelminthes, Ostracoda, Copepoda, Cladocera and terrestrial drop-ins such as aphids. These organisms were marked for their presence (given a value of 1) only and left in the sample. They were not included towards the 300-organism subsample count.
- Where specimens are broken or damaged, only heads were counted.
- Subsampling was conducted with the use of a Marchant Box.
- When using the Marchant box, cells were extracted at the same time in the order indicated by a random number table. If the 300th organism was found part way into sorting a cell then the balance of that cell was sorted. If the organism count had not reached 300 by the 50th cell then the entire sample was sorted.
- The total number of cells sorted and the number of organisms removed were recorded manually on a bench sheet and then recorded into INSTAR1
- Organisms were stored in vials containing 80% ethanol and an interior label indicating the site names, date of sampling, site code numbers and portion subsampled. This information was also recorded on the laboratory bench sheet and on INSTAR1.
- The sorted portion of the debris was preserved and labeled separately from the unsorted portion and was tested for sorting efficiency (Sorting Quality Control – Sorting Efficiency). The unsorted portion was also labeled and preserved in separate jars.

Percent sub-sampled and total countable invertebrates pulled from the samples were summarized in the table below.

			400 micron	
Sample	Date	CC#	fraction	
			% Sampled	# Invertebrates
RG_ELUGH_BIC-1_2020-09-17	17-Sep-20	CC210922	5%	423
RG_ELUGH_BIC-2_2020-09-17	17-Sep-20	CC210923	5%	496
RG_ELUGH_BIC-3_2020-09-17	17-Sep-20	CC210924	5%	330
GH_ERSC4_BIC-1_2020-09-12	12-Sep-20	CC210925	10%	391
GH_ERSC4_BIC-2_2020-09-12	12-Sep-20	CC210926	7%	337
GH_ERSC4_BIC-3_2020-09-12	12-Sep-20	CC210927	9%	355
GH_ER1A_BIC-1_2020-09-11	11-Sep-20	CC210928	20%	419
GH_ER1A_BIC-2_2020-09-11	11-Sep-20	CC210929	6%	338
GH_ER1A_BIC-3_2020-09-12	12-Sep-20	CC210930	5%	372
RG_ERSC5_BIC-1_2020-09-11	11-Sep-20	CC210931	14%	327
RG_ERSC5_BIC-2_2020-09-11	11-Sep-20	CC210932	7%	373
RG_ERSC5_BIC-3_2020-09-11	11-Sep-20	CC210933	13%	358

Table 2: Percent sub-sample and invertebrate count for each sample

RG_THCK_BIC-1_2020-09-10	10-Sep-20	CC210934	6%	408
RG_THCK_BIC-2_2020-09-10	10-Sep-20	CC210935	5%	408
RG_THCK_BIC-3_2020-09-10	10-Sep-20	CC210936	5%	525
RG_EL20_BIC-1_2020-09-15	15-Sep-20	CC210937	5%	565
RG_EL20_BIC-2_2020-09-16	16-Sep-20	CC210938	9%	359
RG_EL20_BIC-3_2020-09-16	16-Sep-20	CC210939	10%	475
RG_EL20_BIC-4_2020-09-16	16-Sep-20	CC210940	6%	368
RG_EL20_BIC-5_2020-09-16	16-Sep-20	CC210941	5%	393

Sorting Quality Control - Sorting Efficiency

As a part of Cordillera's laboratory policy, all projects undergo sorting efficiency checks.

- As sorting progresses, 10% of samples were randomly chosen by senior members of the sorting team for resorting.
- All sorters working on a project had at least 1 sample resorted by another sorter.
- An efficiency of 90 % was expected (95% for CABIN samples).
- If 90/95% efficiency was not met, samples from that sorter were resorted.
- To calculated sorting efficiency the following formula was used:

 $\frac{\# Organisms Missed}{Total Organisms Found} * 100 = \% OM$

Table 3 Summary of sorting efficiency

			Total from Sample	Percent Efficiency
Site - QC, Sample - QC1, CC# - CC210930, Pe	ercent			
Sampled = 5%, Sieve Size = 400		0		
No Invertebrates Found	Tatalı	0	272	100%
		·		
Site - QC, Sample - QC2, CC# - CC210933, Pe	ercent			
sampled = 13%, Sieve size = 400				
Diptera		1		
Chironomidae		1		
Trichoptera		1		

	Total:	3	358	99%
Site - QC, Sample - QC3, CC# - CC210940, P sampled = 6%, Sieve size = 400	ercent			
Chironomidae		1	_	
Baetidae		1		
Ephemerellidae		2		
Heptageniidae		5		
Trichoptera		1		
	Total:	10	368	97%

Sorting Quality Control - Sub-Sampling QC

Certain Provincial and Mining projects require additional sorting checks in the form of sub-sampling QC, (Environmental Effects Monitoring (EEM) protocol). This ensured that any fraction of the total sample that was examined was actually an accurate representation of the number of total organisms. Organisms from the additional sub-samples were not identified; rather total organism count only was compared.

Sub-Sampling efficiency was measured on 10% of the number of sub-sampled samples in the project. Ex. In a project where 50 of 100 total samples were processed through subsampling using a Marchant box, then 10% of 50; or 5 samples were used for sub sampling efficiency.

Sub-Sampling efficiency was performed by fractioning the entire sample into subsample percentages. On each sub-sampled portion, a total organism count was recorded and compared to the rest of the sub-samples. In order to pass, all fractions were required to be within 20% of total organism count.

Example: If 300 organisms are found in 10% of the sample, the sorter will continue to sample in 10% fractions until the entire sample is separated. They will then count the total number of organisms in each of the 10 fractions of 10% and compare the organism count.

When divergence is >20% the sorting manager examines for the source of the problem and takes steps to correct it. With the Marchant box, the problem typically rested with how the box is flipped back to the upright position. For this reason, subsampling was performed by experienced employees only. Another common source of error would be the type of debris in the sample. Samples with algae or heavy with periphyton have a higher incident of failure due to clumping than clear samples.

Table 4 Summary of Sub Sample efficiency

9	Station ID								Organ	nicme in	Subcar	mole						Sc	orter		Pre	cision	Accuracy	
66 #	Comple Nome								Orgai	1151115 111	Subsai	iihid	5					- D./	Time	Actual Total	Doroo	at Danca	Min	Max
CC# Sam	Sample Name	1	2	3	4	5	6	7	8	9	10							БУ	Time		Percer	it Kange	IVIIII	IVIAX
210928	GH_ERIA_BIC-1	418	452	402	479	446												ΤV	260	2197	1.33	16.08	1.50	9.01
210939	RG_EC20_BIC-3	468	393	409	411	433	456	427	413	448	422							AR	600	4280	0.48	16.03	0.23	9.35

Taxonomic Effort

The next procedure was the identification to genus-species level where possible of all the organisms in the sample.

- Identifications were made at the genus/species level for all insect organisms found including Chironomidae (Based on CABIN protocol).
- Non-insect organisms (except those not included in CABIN count) were identified to genus/species where possible and to a minimum of family level with intact and mature specimens.
- The Standard Taxonomic Effort lists compiled by the CABIN manual¹, SAFIT², and PNAMP³ were used as a guide line for what level of identification to achieve where the condition and maturity of the organism enabled.
- Organisms from the same families/order were kept in separate vials with 80% ethanol and an interior label of printed laser paper.
- Chironomidae was identified to genus/species level where possible and was aided by slide mounts. CMC-10 was used to clear and mount the slide.
- Oligochaetes was identified to family/genus level with the aid of slide mounts. CMC-10 was used to clear and mount the slide.
- Other Annelida (leeches, polychaetes) were identified to the family/genus/species level with undamaged, mature specimens.
- Mollusca was identified to family and genus/species where possible
- Decapoda, Amphipoda and Isopoda were identified at family/genus/species level where possible.
- Bryozoans and Nemata remained at the phylum level
- Hydrachnidae and Cnidaria were identified at the family/genus level where possible.
- When requested, reference collections were made containing at least one individual from each taxa listed. Organisms represented will have been identified to the lowest practical level.
- Reference collection specimens were stored in 55 mm glass vials with screw-cap lids with polyseal inserts (museum quality). They were labeled with taxa name, site code, date identified and taxonomist name. The same information was applied to labels on the slide mounts.

Taxonomists

The taxonomists for this project were certified by the Society of Freshwater Science (SFS) Taxonomic Certification Program at level 2 which is the required certification for CABIN projects:

Scott Finlayson: Group 1 General Arthropods (East/West); Group 2 EPT (East/West); Group 3 Chironomidae (East/West); Group 4 Oligochaeta Adam Bliss: Group 1 General Arthropods (East/West); Group 2 EPT (East/West); Group 3 Chironomidae

Rita Avery: Group 1 General Arthropods (East/West); Group 2 EPT (East/West)

Taxonomic QC

Taxonomic QC was performed in house by someone other than the original taxonomist.

- Quality control protocol involved complete, blind re-identification and reenumeration of at least 10% of samples by a second SFS-certified taxonomist.
- Samples for taxonomic quality control were randomly selected and quality control procedures were conducted as the project progresses through the laboratories.
- The second (QC) taxonomist will calculate and record four types of errors:
 - 1. Misidentification error
 - 2. Enumeration error
 - 3. Questionable taxonomic resolution error
 - 4. Insufficient taxonomic resolution error

The QC coordinator then calculates the following estimates of taxonomic precision.

1. The percent total identification error rate is calculated as:

 $\frac{Sum of incorrect identifications}{total organisms counted in audit} * (100)$

The average total identification error rate of audited samples did not exceed 5%. All samples that exceed a 5% error rate were re-evaluated to determine whether repeated errors or patterns in error contributed.

2. The percent difference in enumeration (PDE) to quantify the consistency of specimen counts.

$$PDE = \frac{|n_1 - n_2|}{n_1 + n_2} x100$$

3. The percent taxonomic disagreement (PTD) to quantify the shared precision between two sets of identifications.

$$PTD = \left(1 - \left[\frac{a}{N}\right]\right) x100$$

4. Bray Curtis dissimilarity Index to quantify the differences in identifications.

$$BC_{ij} = 1 - \frac{2C_{ij}}{S_j + S_i}$$

Error Summary

All samples report errors within the acceptable limits for CABIN Laboratory methods (less than 5% error).

Table 5 Summary of taxonomic error following QC

Site	Taxa Identified	% Error	PDE	PTD	Bray - Curtis Dissimilarity index
Site - 2020, Sample - RG_ELUGH_BIC-2_2020-					
09-17, CC# - CC210923, Percent sampled = 5%,					
Sieve size = 400	495	0.00	0.10090817	0.80645161	0.00706357
Site - 2020, Sample - RG_THCK_BIC-1_2020-09-					
10, CC# - CC210934, Percent sampled = 6%,					
Sieve size = 400	338	0.00	0.14771049	0.5899705	0.00443131

There will always be disagreements between taxonomists regarding the degree of taxonomic resolution in immature specimens and when laboratories make use of different keys for certain groups (Mollusks is an especially disputed group). It is always possible that some taxa found by the original taxonomist were overlooked in QC.

All of the Taxonomic QC samples that were observed passed testing according to the CABIN misidentification protocols. See the tables below for results from taxonomic QC audit.

Error Rationale

Site - 2020, Sample - RG_ELUGH_BIC-2_2020-09- 17, CC# - CC210923, Percent sampled = 5%, Sieve size = 400	Laboratory Count	QC Audit Count	Agreement	Misidentification	Questionable Taxonomic Resolution	Enumeration	Insufficient Taxonomic Resolution	Comments
Acentrella	1	1						
Arctopsyche	6	6						
Baetidae	6	7	No			Х		
Baetis	3	2	No			Х		
Baetis rhodani group	22	22						
Brachycentrus	2	2						

Brachycentrus americanus	5	5				
Capniidae	3	3				
Chironomidae	2	2				
Chloroperlidae	3	3				
Cinygmula	1	1				
Constempellina sp. C	1	1				
Diamesa	1	1				
Drunella doddsii	23	23				
Enchytraeus	1	1				
Epeorus	19	19				
Ephemerellidae	12	12				
Eukiefferiella	9	8	No		Х	
Haploperla	2	2				
Heptageniidae	94	93	No		Х	
Hesperoperla	11	11				
Hydropsychidae	8	8				
Lebertia	2	2				
Leuctridae	2	2				
Limnophyes	1	1				
Mallochohelea	7	7				
Megarcys	2	2				
Micropsectra	1	1				
Nemouridae	2	3	No		Х	
Neoplasta	2	2				
Orthocladius complex	4	4				
Paraleuctra	3	3				
Paraperla	1	1				
Pericoma/Telmatoscopus	64	64				
Perlodidae	2	2				
Prosimulium/Helodon	1	1				
Rhabdomastix	1	1				
Rheocricotopus	1	1				
Rhithrogena	42	41	No		Х	
Rhyacophila	2	2				
Rhyacophila						
brunnea/vemna group	3	3				
Simuliidae	1	1				
Simulium	4	4				
Stygothrombium	1	1				
Sweltsa	2	2				
Taeniopterygidae	96	97	No		Х	
Testudacarus	2	2				
Tvetenia	2	2				

Zapada	5	5						
Zapada cinctipes	5	5						
Total:	496	495						
					0	7	0	
% Total Misidentification Rate	misidentifications	x100	0.00	Pass				
=	total number	=						
Site - 2020, Sample - RG_THCK_BIC-1_2020-09- 10, CC# - CC210934, Percent sampled = 6%, Sieve size = 400	Laboratory Count	QC Audit Count	Agreement	Misidentification	Questionable Taxonomic Resolution	Enumeration	Insufficient Taxonomic Resolution	Comments
Baetidae	2	2						
Baetis	1	1						
Baetis rhodani group	1	1						
Chelifera/ Metachela	1	1						
Chironomidae	10	10						
Chironomidae	1	1						
Corynoneura	5	5						
Dicranota	9	9						
Dixa	7	7						
Elmidae	26	27	No			Х		
Enchytraeus	13	13						
Eukiefferiella	1	1						
Feltria	2	2						
Gammarus	1	1						
Gastropoda	1	1						
Heterlimnius	42	42						
Heterlimnius	4	4						
Hydrozetidae	1	1						
Hymenoptera	1	1						
Limnephilidae	1	1						
Malenka	1	1						
Mallochohelea	1	1						
Micropsectra	1	1						
Nemouridae	1	1						
Nemouridae	3	3						
Neoplasta	7	7						
Orthocladiinae	6	5	No			Х		
Parapsyche almota	1	1						

Pericoma/Telmatoscopus	5	5						
Pisidium	1	1						
Rhithrogena	1	1						
Rhyacophila	11	11						
Rhyacophila								
brunnea/vemna group	11	11						
Simuliidae	1	1						
Simulium	95	95						
Taeniopterygidae	3	3						
Tvetenia	1	1						
Zapada cinctipes	59	58	No			Х		
Total:	339	338						
					0	3	0	
% Total Misidentification Rate	misidentifications	x100	0.00	Pass				
=	total number	=						

References

¹ McDermott, H., Paull, T., Strachan, S. (May 2014). Laboratory Methods: Processing, Taxonomy, and Quality Control of Benthic Macroinvertebrate Samples, Environment Canada. ISBN: 978-1-100-25417-3

² Southwest Association of Freshwater Invertebrate Taxonomists. (2015). www.safit.org

³ Pacific Northwest Aquatic Monitoring Partnership (Accessed 2015). www.pnamp.org

Taxonomic Keys

Below is a reference list of taxonomic keys utilized by taxonomists at Cordillera Consulting. Cordillera taxonomists routinely seek out new literature to ensure the most accurate identification keys are being utilized. This is not reflective of the exhaustive list of resources that we use for identification. A more complete list of taxonomic resources can be found at Southwest Association of Freshwater Invertebrate Taxonomists. (2015).

http://www.safit.org/Docs/SAFIT_Taxonomic_Literature_Database_1_March_2011.enl

Brook, Arthur R. and Leonard A. Kelton. 1967. Aquatic and semiaquatic Heteroptera of Alberta, Saskatchewan and Manitoba (Hemiptera) Memoirs of the Entomological Society of Canada. No. 51.

Brown HP & White DS (1978) Notes on Seperation and Identification of North American Riffle Beetles (Coleoptera: Dryopidea: Elmidae).Entomological News 89 (1&2): 1-13

Clifford, Hugh F. 1991. Aquatic Invertebrates of Alberta. University of Alberta Press Edmonton, Alberta.

Epler, John. 2001 The Larval Chironomids of North and South Carolina. http://home.earthlink.net/~johnepler/

Epler, John. Identification Manual for the Water Beetles of Florida. http://home.earthlink.net/~johnepler/

Epler, John. Identification Manual for the Aquatic and Semi-aquatic Heteroptera of Florida. http://home.earthlink.net/~johnepler/

Trond Andersen, Peter S. Cranston & John H. Epler (Eds) (2013) Chironomidae of the Holarctic Region: Keys and Dlagnoses. Part 1. Larvae. *Insect Systematics and Evolution Supplements* 66: 1-571.

Jacobus, Luke and Pat Randolph. 2005. Northwest Ephemeroptera Nymphs. Manual from Northwest Biological Assessment Working Group. Moscow Idaho 2005. Not Published.

Jacobus LM, McCafferty WP (2004) Revisionary Contributions to the Genus Drunella (Ephemeroptera : Ephemerellidae). Journal of the New York Entomological Society 112: 127-147

Jacobus LM, McCafferty WP (2003) Revisionary Contributions to North American Ephemerella and Serratella (Ephemeroptera : Ephemerellidae). Journal of the New York Entomological Society 111 (4): 174-193.

Kathman, R.D., R.O. Brinkhurst. 1999. Guide to the Freshwater Oligochaetes of North America. Aquatic Resources Center, College Grove, Tennessee.

Larson, D.J., Y. Alarie, R.E. Roughly.2005. Predaceous Diving Beetles (Coleoptera: Dytiscidae) of the Neararctic Region. NRC-CNRC Research Press. Ottawa.

Merritt, R.W., K.W. Cummins, M. B. Berg. (eds.). 2007. An introduction to the aquatic insects of North America, 4th. Kendall/Hunt, Dubuque, IA

Morihara DK, McCafferty WP (1979) The Baetis Larvae of North American (Ephemeroptera: Baetidae). Transactions of the American Entomological Society 105: 139-221.

Needham, James, M. May, M. Westfall Jr. 2000. Dragonflies of North America. Scientific Publishers. Gainsville FL.

Prescott David, R.C.and Medea M. Curteanu.2004. Survey of Aquatic Gastropods of Alberta. Species at Risk Report No. 104. ISSN: 1496-7146 (Online Edition)

Needham, K. 1996. An Identification Guide to the Nymphal Mayflies of British Columbia. Publication #046 Resource Inventory Committee, Government of British Columbia.

Oliver, Donald R. and Mary E. Roussel. 1983. The Insects and Arachnids of Canada Part 11. The Genera of larval midges of Canada. Biosystematics Research Institute. Ottawa, Ontario. Research Branch, Agriculture Canada. Publication 1746.

Proctor, H. The 'Top 18' Water Mite Families in Alberta. Zoology 351. University of Alberta, Edmonton, Alberta.

Rogers, D.C. and M. Hill, 2008. Key to the Freshwater Malacostraca (Crustacea) of the mid-Atlantic Region. EPA-230-R-08-017. US Environmental Protection Agency, Office of Environmental Information, Washington, DC.

Stewart, Kenneth W. and Bill Stark. 2002. The Nymphs of North American Stonefly Genera (Plecoptera). The Caddis Press. Columbus Ohio.

Stewart, Kenneth W. and Mark W. Oswood. 2006 The Stoneflies (Plecoptera) of Alaska and Western Canada. The Caddis Press.

Stonedahl, Gary and John D. Lattin. 1986. The Corixidae of Oregon and Washington (Hemiptera: Heteroptera). Technical Bulletin 150. Oregon State University, Corvalis Oregon.

Thorpe, J. H. and A. P. Covich [Eds.] 1991. Ecology and classification of North American freshwater invertebrates. Academic Press, San Diego.

Tinerella, Paul P. and Ralph W. Gunderson.2005. The Waterboatmen (Insecta: Heteroptera: Corixidae) of Minisota. Publication No.23 Dept. Of Entomology, North Dakota State University, Fargo, North Dakota, USA.

Weiderholm, Torgny (Ed.) 1983. The larvae of Chironomidae (Diptera) of the Holartic region. Entomologica Scaninavica. Supplement No. 19.

Westfall, Minter J. Jr. and May, Michael L. 1996. Damselflies of North America. Scientific Publishers, Gainesville, FL.

Wiggins, Glenn B. 1998. Larvae of the North American Caddisfly Genera (Tricoptera) 2nd ed. University of Toronto Press. Toronto Ontario.

APPENDIX G BENTHIC INVERTEBRATE TISSUE CHEMISTRY

				Benchmark	
Endpoint	Tissue Type	Selenium Value (µg/g dw)	Туре	Description	Source
	Whole body	4 ^a	BC guideline	Interim guideline for aquatic dietary tissue based on weight of evidence of lowest published toxicity thresholds and no uncertainty factor applied	BCMOE (2014)
	Whole body	13	Site-specific benchmark	Level 1 (~10% effect) benchmark for growth, reproduction and survival of invertebrates	Golder (2014a)
-	Whole body	20	Site-specific benchmark	Level 2 (~20% effect) benchmark for growth, reproduction and survival of invertebrates	Golder (2014a)
	Whole body	27 Site-specific benchmark		Level 3 (~50% effect) benchmark for growth, reproduction and survival of invertebrates	Golder (2014a)
Benthic Invertebrates	Whole body	11	Site-specific benchmark	Level 1 (~10% effect) benchmark for dietary effects to juvenile fish (growth)	Golder (2014a)
	Whole body	18 ^b	Site-specific benchmark	Level 2 (~20% effect) benchmark for dietary effects to juvenile fish (growth)	Golder (2014a)
	Whole body	26	Site-specific benchmark	Level 3 (~50% effect) benchmark for dietary effects to juvenile fish (growth)	Golder (2014a)
	Whole body	15	Site-specific benchmark	Level 1 (~10% effect) benchmark for dietary effects to juvenile birds	Golder (2014a)
	Whole body	22	Site-specific benchmark	Level 2 (~20% effect) benchmark for dietary effects to juvenile birds	Golder (2014a)
	Whole body	41	Site-specific benchmark	Level 3 (~50% effect) benchmark for dietary effects to juvenile birds	Golder (2014a)

Table G.1: Selenium Benchmarks for Benthic Invertebrates Tissue in the Elk Valley

^a BC guidelines were not used in assessment of benthic invertebrate tissue selenium concentrations. Assessment was completed relative to site-specific benchmarks only. ^b Site-specific benchmark not applicable to dietary effects to juvenile westslope cutthroat trout for reasons outlined in

Golder 2014a.

 Table G.2: Metal Concentrations in Composite Benthic Invertebrate Tissue Samples, September 2020

					Reference							Mine-e	xposed					
				GH	_ER2 / RG_EL	JGH		GH_ERSC4			GH_ER1A			RG_ERSC5		GF	I_TC2 / RG_TH	іск
	Analyte		Units	RG_ELUGH_ INV-1_2020- 09-17	RG_ELUGH_ INV-2_2020- 09-17	RG_ELUGH_ INV-3_2020- 09-17	RG_ERSC4_ INV-1_2020- 09-12	RG_ERSC4_ INV-2_2020- 09-12	RG_ERSC4_ INV-3_2020- 09-12	RG_ER1A_ INV-1_2020- 09-11	RG_ER1A_ INV-2_2020- 09-12	RG_ER1A_ INV-3_2020- 09-12	RG_ERSC5_ INV-1_2020- 09-11	RG_ERSC5_ INV-2_2020- 09-11	RG_ERSC5_ INV-3_2020- 09-11	RG_THCK_ INV-1_2020- 09-10	RG_THCK_ INV-2-2020- 09-10	RG_THCK_ INV-3_2020- 09-10
				17-Sep-20	17-Sep-20	17-Sep-20	12-Sep-20	12-Sep-20	12-Sep-20	11-Sep-20	12-Sep-20	12-Sep-20	11-Sep-20	11-Sep-20	11-Sep-20	10-Sep-20	10-Sep-20	10-Sep-20
Physical Tests	Moisture		%	67.6	70.2	79.8	79.5	76.7	79.8	72.5	78.9	79.6	63.9	73.5	79.6	78.1	83.2	82.8
	Lithium	7Li	µg/g dw	0.501	0.511	0.889	0.501	0.184	0.327	0.379	1.3	0.337	3.1	1.3	6.3	1.3	3.7	4.3
	Boron	11B	µg/g dw	1.3	1.2	0.608	1.3	0.440	0.741	0.718	3.1	0.845	7.6	4.1	16	3.5	3.7	5.0
	Sodium	23Na	µg/g dw	3,009	3,317	5,813	4,431	2,969	2,926	3,969	5,094	2,648	4,800	3,726	10,589	5,415	8,014	6,999
	Magnesium	24Mg	µg/g dw	1,331	1,300	1,181	1,905	1,318	1,332	1,713	1,805	1,317	2,338	1,887	3,086	1,772	4,363	5,072
	Aluminium	27AI	µg/g dw	756	720	282	894	214	485	423	2,334	479	7,028	2,732	13,156	1,239	665	1,278
	Phosphorous	31P	µg/g dw	10,016	11,196	11,077	13,337	7,953	10,749	11,867	12,154	9,016	13,154	10,107	10,029	10,975	12,925	13,413
	Potassium	39K	µg/g dw	10,587	11,209	12,191	13,326	7,777	8,312	11,556	14,851	9,311	16,084	10,923	16,706	13,362	13,530	14,391
	Calcium	44Ca	µg/g dw	1,700	2,139	1,192	2,888	1,605	1,937	2,008	3,982	1,937	5,162	2,782	6,400	14,039	99,733	123,336
	Titanium	49Ti	µg/g dw	60	39	29	61	14	35	26	223	35	578	235	959	96	56	112
	Vanadium	51V	µg/g dw	1.6	1.5	0.797	1.6	0.520	0.945	0.962	4.5	1.2	13	6.1	22	2.5	1.4	2.3
	Chromium	52Cr	µg/g dw	4.7	6.5	6.2	4.8	3.3	2.9	4.5	8.2	3.6	57	31	84	13	3.6	6.9
	Manganese	55Mn	µg/g dw	62	58	23	187	51	165	64	162	62	132	117	259	51	27	36
	Iron	57Fe	µg/g dw	459	544	278	710	231	395	339	1,233	320	3,352	1,508	6,142	773	635	908
	Cobalt	59Co	µg/g dw	0.724	1.0	0.827	2.4	0.768	0.879	0.816	3.4	1.0	7.5	4.9	7.2	0.996	0.429	0.773
Matala	Nickel	60Ni	µg/g dw	9.6	14	15	13	6.3	5.7	14	33	10	117	66	174	30	8.5	20
wetais	Copper	63Cu	µg/g dw	17	14	14	32	22	21	21	23	19	35	28	36	27	65	63
	Zinc	66Zn	µg/g dw	363	214	175	411	294	217	333	247	280	296	325	247	250	71	66
	Arsenic	75As	µg/g dw	1.0	1.3	0.667	1.6	0.679	1.1	0.605	3.0	0.889	3.6	1.4	3.2	0.671	3.2	3.6
	Selenium	77Se	µg/g dw	6.7	8.3	3.8	8.6	5.3	6.9	6.3	9.1	6.3	12	11	6.6	59	17	25
	Strontium	88Sr	µg/g dw	7.9	9.0	3.8	11	5.7	7.4	7.9	13	7.1	20	11	23	43	232	279
	Molybdenum	95Mo	µg/g dw	0.381	0.511	0.207	0.935	0.359	0.571	0.277	0.848	0.370	1.6	0.957	2.6	0.443	0.488	0.580
	Silver	107Ag	µg/g dw	0.172	0.127	0.185	0.296	0.139	0.154	0.175	0.124	0.127	0.127	0.121	0.318	0.183	0.820	0.677
	Cadmium	111Cd	µg/g dw	1.4	1.6	1.2	8.9	2.0	3.1	1.2	8.8	2.9	14	9.8	4.0	0.759	0.686	0.686
	Tim	118Sn	µg/g dw	0.099	0.214	0.110	0.422	0.214	0.224	0.082	0.718	0.340	1.2	0.279	0.767	0.453	0.650	1.9
	Antimony	121Sb	µg/g dw	0.052	0.103	0.029	0.091	0.025	0.050	0.045	0.155	0.066	0.272	0.198	0.409	0.041	0.028	0.033
	Barium	137Ba	µg/g dw	34	28	9.6	46	20	41	29	59	31	126	62	263	100	259	273
	Mercury	202Hg	µg/g dw	0.097	0.075	0.075	0.112	0.097	0.097	0.112	0.060	0.090	0.067	0.067	0.112	0.098	<0.028	0.029
	Thallium	205TI	µg/g dw	0.020	0.031	0.021	0.039	0.014	0.020	0.018	0.057	0.021	0.115	0.064	0.281	0.097	0.211	0.198
	Lead	208Pb	µg/g dw	0.206	0.205	0.117	0.313	0.072	0.165	0.165	0.644	0.150	1.6	0.536	3.0	0.365	0.160	0.252
	Uranium	238U	µg/g dw	0.059	0.057	0.024	0.088	0.031	0.063	0.054	0.139	0.052	0.311	0.174	0.633	0.215	0.104	0.226

Value > upper limit of normal range of selenium (8.74 μ g/g dw; Minnow 2020).

Value > EVWQP level 1 benchmark of 11 µg/g dw for dietary effects of selenium to fish. (Level 1 benchmark for effects to invertebrates is 13 µg/g dw dw.)

Value > EVWQP level 2 benchmark of 18 µg/g dw for dietary effects of selenium to fish.

Value > EVWQP level 3 benchmark of 26 µg/g dw for dietary effects of selenium to fish. (41 µg/g dw is the level 3 benchmark for dietary effects of selenium to birds.)

Note: For each level, the lowest benchmark is shown (i.e, most conservative benchmark of effects to benthic invertebrates, dietary effects to fish, and dietary effects to birds).

										Mine-e	xposed						
					RG_GH_SCW	3		GH_ERSC2			RG_SCDTC			Gł	I_ERC / RG_E	L20	
	Analyte		Units	RG_GH- SCW3_INV- 1_2020-09-13	RG_GH- SCW3_INV- 2_2020-09-13	RG_GH- SCW3_INV- 3_2020-09-13	GH_ERSC2_I NV-1_2020- 09-13	GH_ERSC2_ NV-2_2020- 09-13	I GH_ERSC2_I NV-3_2020- 09-13	RG_SCDTC_ INV-1_2020- 09-13	RG_SCDTC_ INV-2_2020- 09-13	RG_SCDTC_ INV-3_2020- 09-13	RG_EL20_IN V-1_2020-09- 15	RG_EL20_IN V-2_2020-09- 16	RG_EL20_IN V-3_2020-09- 16	RG_EL20_IN V-4_2020-09- 16	RG_EL20_IN V-5_2020-09- 16
				13-Sep-20	13-Sep-20	13-Sep-20	13-Sep-20	13-Sep-20	13-Sep-20	13-Sep-20	13-Sep-20	13-Sep-20	15-Sep-20	16-Sep-20	16-Sep-20	16-Sep-20	16-Sep-20
Physical Tests	Moisture		%	75.6	89.0	76.0	74.4	65.8	72.7	75.9	80.3	79.9	73.2	76.8	70.7	77.5	62.5
	Lithium	7Li	µg/g dw	5.3	3.3	1.6	2.0	2.7	1.4	1.3	1.7	2.3	0.305	0.528	0.616	0.363	1.5
	Boron	11B	µg/g dw	14	13	3.7	5.6	7.4	3.9	3.1	4.6	7.4	0.773	1.3	1.4	0.988	2.4
	Sodium	23Na	µg/g dw	8,614	17,952	10,193	3,488	2,917	2,819	3,003	3,678	4,427	2,743	3,706	2,913	3,120	2,952
	Magnesium	24Mg	µg/g dw	2,159	2,367	4,324	2,162	2,142	2,193	1,763	2,466	2,946	1,510	1,962	1,634	1,698	1,909
	Aluminium	27AI	µg/g dw	9,792	4,648	2,970	4,720	6,006	3,135	2,850	4,583	5,773	496	1,053	1,046	614	2,145
	Phosphorous	31P	µg/g dw	9,991	8,923	13,301	11,317	10,207	9,427	10,047	12,130	11,232	11,139	12,913	11,339	11,918	10,147
	Potassium	39K	µg/g dw	18,767	25,380	11,500	14,287	16,231	11,930	9,815	11,517	16,771	11,367	11,816	11,361	11,132	9,505
	Calcium	44Ca	µg/g dw	3,775	4,425	4,920	2,684	3,185	1,805	2,466	3,648	3,779	2,203	3,369	2,488	2,663	5,052
	Titanium	49Ti	µg/g dw	652	370	211	390	501	251	241	416	407	39	70	85	51	196
	Vanadium	51V	µg/g dw	15	9.2	6.1	7.6	11	6.0	5.4	11	11	2.2	2.4	2.3	1.4	6.3
	Chromium	52Cr	µg/g dw	13	24	24	12	11	8.5	23	19	19	34	9.1	19	6.4	80
	Manganese	55Mn	µg/g dw	106	63	92	173	162	75	36	46	255	94	80	80	62	164
	Iron	57Fe	µg/g dw	3,207	2,269	1,794	1,875	2,688	1,478	1,572	2,136	2,963	1,050	962	1,092	581	2,710
	Cobalt	59Co	µg/g dw	2.3	3.7	2.3	3.2	3.2	2.0	3.0	5.1	3.6	2.9	3.2	2.3	2.1	7.8
N.4 - 4 - 1 -	Nickel	60Ni	µg/g dw	47	71	56	35	39	26	48	49	54	69	21	45	14	163
wetais	Copper	63Cu	µg/g dw	18	14	26	38	24	19	22	23	31	16	21	19	18	25
	Zinc	66Zn	µg/g dw	169	103	254	320	382	302	254	273	356	233	181	147	178	186
	Arsenic	75As	µg/g dw	2.1	1.5	0.926	1.6	2.7	1.1	1.3	1.8	2.2	1.7	2.1	2.5	2.3	2.1
	Selenium	77Se	µg/g dw	6.9	9.1	14	14	28	17	8.0	11	13	9.5	13	8.8	9.7	7.3
	Strontium	88Sr	µg/g dw	13	23	19	10	14	7.6	11	15	17	7.6	16	11	9.4	12
	Molybdenum	95Mo	µg/g dw	3.0	1.4	0.511	1.4	1.6	0.946	0.519	0.603	1.1	0.763	0.786	0.885	0.672	0.824
	Silver	107Ag	µg/g dw	0.106	0.067	0.200	0.154	0.214	0.176	0.109	0.097	0.210	0.084	0.080	0.139	0.084	0.160
	Cadmium	111Cd	µg/g dw	0.942	0.915	3.0	4.8	7.4	2.1	7.3	12	6.1	2.6	4.1	2.6	2.7	2.1
	Tim	118Sn	µg/g dw	0.356	0.194	0.323	0.340	0.467	0.255	0.810	0.672	0.464	0.467	0.957	0.281	0.515	0.124
	Antimony	121Sb	µg/g dw	0.235	0.206	0.070	0.136	0.182	0.121	0.066	0.116	0.314	0.088	0.209	0.171	0.094	0.121
	Barium	137Ba	µg/g dw	200	96	79	129	189	106	55	100	334	55	49	40	34	118
	Mercury	202Hg	µg/g dw	0.097	0.060	0.120	0.135	0.410	0.166	0.088	0.083	0.127	0.068	0.049	0.059	0.039	0.049
	Thallium	205TI	µg/g dw	0.168	0.094	0.066	0.080	0.146	0.077	0.074	0.112	0.132	0.040	0.064	0.055	0.043	0.210
	Lead	208Pb	µg/g dw	2.4	1.1	1.0	1.6	2.7	1.3	0.642	1.1	3.2	0.191	0.316	0.329	0.194	1.3
	Uranium	238U	µg/g dw	0.507	0.670	0.114	0.308	0.431	0.242	0.111	0.169	0.604	0.085	0.091	0.104	0.072	0.179

Value > upper limit of normal range of selenium (8.74 µg/g dw; Minnow 2020).

Value > EVWQP level 1 benchmark of 11 µg/g dw for dietary effects of selenium to fish. (Level 1 benchmark for effects to invertebrates is 13 µg/g dw dw.)

Value > EVWQP level 2 benchmark of 18 μ g/g dw for dietary effects of selenium to fish.

Value > EVWQP level 3 benchmark of 26 µg/g dw for dietary effects of selenium to fish. (41 µg/g dw is the level 3 benchmark for dietary effects of selenium to birds.)

Note: For each level, the lowest benchmark is shown (i.e, most conservative benchmark of effects to benthic invertebrates, dietary effects to fish, and dietary effects to birds).

 Table G.3:
 Concentrations of Selenium Species Measured in Benthic Invertebrate

 Tissue Samples and Concentrations Predicted Using the B-Tool, September 2020

Exposure	Location	Station	Date	Measured Benthic Invertebrate Tissue Selenium (µg/g d.w.)	Average Measured Benthic Invertebrate Tissue Selenium (µg/g d.w.)	Predicted Benthic Invertebrate Tissue Selenium using the B-Tool (μg/g d.w.)
Reference	Main Stem Elk River	GH_ER2 / RG_ELUGH	17-Sep-20	6.7 8.3 3.8	6.27	6.27
		GH_ERSC4	12-Sep-20	8.6 5.3 6.9	6.93	6.08
	Elk River Side Channel	GH_ER1A	11-Sep-20	6.3 9.1 6.3	7.23	5.97
		RG_ERSC5	11-Sep-20	12 11 6.6	9.87	6.03
	Tributary	GH_TC2 / RG_THCK	10-Sep-20	59 17 25	33.67	45.40
Mine- Exposed		RG_GH-SCW3	13-Sep-20	6.9 9.1 14	10.00	9.64
	Elk River Side Channel	GH_ERSC2	13-Sep-20	14 28 17	19.67	8.54
		RG_SCDTC	13-Sep-20	8.0 11 13	10.67	10.72
	Main Stem Elk River	GH_ERC / RG_EL20	17-Sep-20	9.5 13 8.8 9.7 7.3	9.66	6.45

Notes: The b-tool is a predictive selenium bioaccumulation tool that accounts for selenium speciation (Bruyn and Luoma 2021). d.w. = dry weight.

APPENDIX G BENTHIC INVERTEBRATE TISSUE CHEMISTRY LAB REPORT

Trich Analytics Inc.

Tissue Microchemistry Analysis Report

Client: Jess Tester		Date Receiv	ved: 29 Sep 2020
Aquatic Scie	entist	Date of Ana	alysis: 06 Oct 2020
Minnow En	vironmental	Final Repor	t Date: 07 Oct 2020
Phone: (250) 595-1	627	Project No.	: 2020-151
Email: jtester@mir	nnow.ca	Method No).: MET-002.04
Client Project: Te	eck Coal/Minnow Environmental GHO LAEM	IP (20-22)	
Analytical Request:	Benthic Invertebrate Tissue Microchemistry (tot	al metals and moisture) – 29 sa	mples.
	See chain of custody form provided for sample	identification numbers.	
Notes:			
Analytical results are ex	pressed in part per million (ppm) dry weight.		
Samples quantified usir	ng DORM-4, NIST-1566b, and NIST-2976 certified	l reference standards.	
Aluminum concentratio	ons above 1,000 ppm are outside linear range of	he calibration curve.	
CoC transcription error	r noted for five samples were corrected as per Cli	ent confirmation.	
Client specific DQO for	^r Selenium accuracy is 90 - 110% of the certified v	alue; (average achieved 103%; r	ange 98 - 108%).
RPD values calculated	according to the British Columbia Environmental	Laboratory Manual (2020) criter	ia.
This report provides th	e analytical results only for tissue samples noted	above as received from the Clie	nt.
Sai	\bigcirc		
ÆV.	usensen	07 Oct 2020	
Reviewed and Approve	ed by Jennie Christensen, PhD, RPBio	Date	
[The analytical report s	hall not be reproduced except in full under the e	pressed written consent of Tric	hAnalytics Inc.]
TrichAnalytics Inc.			
207-1753 Sean Heigh	nts		א ואר
Saanichton, BC V8M	0B3		
www.trichanalytics.co	<u>om</u>	Accr	Testing reditation No. A4196

TrichAnalytics Inc.

		1	RG_ELUGH_INV-	RG_ELUGH_INV-	RG_ELUGH_INV-	RG_ERSC4_INV-	RG_ERSC4_INV-
		Client ID	1_2020-09-17	2_2020-09-17	3_2020-09-17	1_2020-09-12	2_2020-09-12
		Lab ID	100	101	102	103	104
	W	et Weight (g)	0.2163	0.0998	0.1771	0.3399	0.6730
	D	ry Weight (g)	0.0701	0.0297	0.0357	0.0696	0.1568
		Moisture (%)	67.6	70.2	79.8	79.5	76.7
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.004	0.013	0.501	0.511	0.889	0.501	0.184
11B	0.092	0.307	1.3	1.2	0.608	1.3	0.440
23Na	3.1	10	3,009	3,317	5,813	4,431	2,969
24Mg	0.049	0.163	1,331	1,300	1,181	1,905	1,318
27AI	0.040	0.133	756	720	282	894	214
31P	79	263	10,016	11,196	11,077	13,337	7,953
39K	11	37	10,587	11,209	12,191	13,326	7,777
44Ca	20	67	1,700	2,139	1,192	2,888	1,605
49Ti	0.270	0.900	60	39	29	61	14
51V	0.047	0.157	1.6	1.5	0.797	1.6	0.520
52Cr	0.646	2.2	4.7	6.5	6.2	4.8	3.3
55Mn	0.009	0.030	62	58	23	187	51
57Fe	4.1	14	459	544	278	710	231
59Co	0.004	0.013	0.724	1.0	0.827	2.4	0.768
60Ni	0.015	0.050	9.6	14	15	13	6.3
63Cu	0.008	0.027	17	14	14	32	22
66Zn	0.783	2.6	363	214	175	411	294
75As	0.392	1.3	1.0	1.3	0.667	1.6	0.679
77Se	0.348	1.2	6.7	8.3	3.8	8.6	5.3
88Sr	0.001	0.003	7.9	9.0	3.8	11	5.7
95Mo	0.026	0.087	0.381	0.511	0.207	0.935	0.359
107Ag	0.001	0.003	0.172	0.127	0.185	0.296	0.139
111Cd	0.076	0.253	1.4	1.6	1.2	8.9	2.0
118Sn	0.021	0.070	0.099	0.214	0.110	0.422	0.214
121Sb	0.006	0.020	0.052	0.103	0.029	0.091	0.025
137Ba	0.001	0.003	34	28	9.6	46	20
202Hg	0.028	0.093	0.097	0.075	0.075	0.112	0.097
205TI	0.001	0.003	0.020	0.031	0.021	0.039	0.014
208Pb	0.001	0.003	0.206	0.205	0.117	0.313	0.072
238U	0.001	0.003	0.059	0.057	0.024	0.088	0.031

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

			RG_ERSC4_INV-	RG_ER1A_INV-	RG_ER1A_INV-	RG_ER1A_INV-	RG_ERSC5_INV-
		Client ID	3_2020-09-12	1_2020-09-11	2_2020-09-12	3_2020-09-12	1_2020-09-11
			105	100	107	100	100
			105	106	107		109
	VVe	et weight (g)	0.3962	0.3846	0.3161	0.5152	0.0673
	DI	ry weight (g)	0.0802	0.1058	0.0667	0.1052	0.0243
Demonstern		Moisture (%)	79.8	12.5	78.9	79.0	63.9
			(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
/LI 11D	0.004	0.013	0.327	0.379	1.3 2.1	0.337	3.1
TIR	0.092	0.307	0.741	0.718	3.1	0.845	7.6
23INa	3.1	10	2,926	3,969	5,094	2,648	4,800
24Mg	0.049	0.163	1,332	1,713	1,805	1,317	2,338
27AI	0.040	0.133	485	423	2,334	479	7,028
3 IP	79 11	263	10,749	11,867	12,154	9,016	13,154
39K	11	37	8,312	11,556	14,851	9,311	16,084
44Ca	20	67	1,937	2,008	3,982	1,937	5,162
4911	0.270	0.900	35	26	223	35	578
510	0.047	0.157	0.945	0.962	4.5	1.2	13
52Cr	0.646	2.2	2.9	4.5	8.2	3.6	57
55Mn	0.009	0.030	165	64	162	62	132
57Fe	4.1	14	395	339	1,233	320	3,352
5900	0.004	0.013	0.879	0.816	3.4	1.0	7.5
60Ni	0.015	0.050	5.7	14	33	10	117
63Cu	0.008	0.027	21	21	23	19	35
66Zn	0.783	2.6	217	333	247	280	296
75As	0.392	1.3	1.1	0.605	3.0	0.889	3.6
77Se	0.348	1.2	6.9	6.3	9.1	6.3	12
885r	0.001	0.003	7.4	7.9	13	/.	20
95MO	0.026	0.087	0.571	0.277	0.848	0.370	1.6
107 Ag	0.001	0.003	0.154	0.175	0.124	0.127	0.127
1100-	0.076	0.253	3.1	1.2	8.8	2.9	14
118Sn	0.021	0.070	0.224	0.082	0.718	0.340	1.2
12700	0.006	0.020	0.050	0.045	U.155	0.066	0.272
137B9	0.001	0.003	41	29	59	31	126
202Hg	0.028	0.093	0.097	0.112	0.060	0.090	0.067
20511	0.001	0.003	0.020	0.018	0.057	0.021	0.115
20820	0.001	0.003	0.165	U.165	0.044	0.150	1.6
238U	0.001	0.003	0.063	0.054	0.139	0.052	0.311

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

			RG_ERSC5_INV-	RG_ERSC5_INV-	RG_GH-	RG_GH-	RG_GH-
		Client ID	2_2020-09-11	3_2020-09-11	SCW3_INV-	SCW3_INV-	SCW3_INV-
					1_2020-09-13	2_2020-09-13	3_2020-09-13
		Lab ID	110	111	112	113	114
	W	et Weight (g)	0.2997	0.2047	0.2049	0.8008	0.1260
	D	ry Weight (g)	0.0793	0.0417	0.0499	0.0877	0.0302
		Moisture (%)	73.5	79.6	75.6	89.0	76.0
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.004	0.013	1.3	6.3	5.3	3.3	1.6
11B	0.092	0.307	4.1	16	14	13	3.7
23Na	3.1	10	3,726	10,589	8,614	17,952	10,193
24Mg	0.049	0.163	1,887	3,086	2,159	2,367	4,324
27AI	0.040	0.133	2,732	13,156	9,792	4,648	2,970
31P	79	263	10,107	10,029	9,991	8,923	13,301
39K	11	37	10,923	16,706	18,767	25,380	11,500
44Ca	20	67	2,782	6,400	3,775	4,425	4,920
49Ti	0.270	0.900	235	959	652	370	211
51V	0.047	0.157	6.1	22	15	9.2	6.1
52Cr	0.646	2.2	31	84	13	24	24
55Mn	0.009	0.030	117	259	106	63	92
57Fe	4.1	14	1,508	6,142	3,207	2,269	1,794
59Co	0.004	0.013	4.9	7.2	2.3	3.7	2.3
60Ni	0.015	0.050	66	174	47	71	56
63Cu	0.008	0.027	28	36	18	14	26
66Zn	0.783	2.6	325	247	169	103	254
75As	0.392	1.3	1.4	3.2	2.1	1.5	0.926
77Se	0.348	1.2	11	6.6	6.9	9.1	14
88Sr	0.001	0.003	11	23	13	23	19
95Mo	0.026	0.087	0.957	2.6	3.0	1.4	0.511
107Ag	0.001	0.003	0.121	0.318	0.106	0.067	0.200
111Cd	0.076	0.253	9.8	4.0	0.942	0.915	3.0
118Sn	0.021	0.070	0.279	0.767	0.356	0.194	0.323
121Sb	0.006	0.020	0.198	0.409	0.235	0.206	0.070
137Ba	0.001	0.003	62	263	200	96	79
202Hg	0.028	0.093	0.067	0.112	0.097	0.060	0.120
205TI	0.001	0.003	0.064	0.281	0.168	0.094	0.066
208Pb	0.001	0.003	0.536	3.0	2.4	1.1	1.0
238U	0.001	0.003	0.174	0.633	0.507	0.670	0.114

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

			GH_ERSC2_INV-	GH_ERSC2_INV-	GH_ERSC2_INV-	RG_SCDTC_INV-	RG_SCDTC_INV-
		Client ID	1_2020-09-13	2_2020-09-13	3_2020-09-13	1_2020-09-13	2_2020-09-13
		Lab ID	115	116	117	118	119
	We	et Weight (g)	0.4977	0.2072	0.4334	0.2289	0.3085
	Di	ry Weight (g)	0.1272	0.0709	0.1182	0.0552	0.0608
		Moisture (%)	74.4	65.8	72.7	75.9	80.3
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.004	0.013	2.0	2.7	1.4	1.3	1.7
11B	0.092	0.307	5.6	7.4	3.9	3.1	4.6
23Na	3.1	10	3,488	2,917	2,819	3,003	3,678
24Mg	0.049	0.163	2,162	2,142	2,193	1,763	2,466
27AI	0.040	0.133	4,720	6,006	3,135	2,850	4,583
31P	79	263	11,317	10,207	9,427	10,047	12,130
39K	11	37	14,287	16,231	11,930	9,815	11,517
44Ca	20	67	2,684	3,185	1,805	2,466	3,648
49Ti	0.270	0.900	390	501	251	241	416
51V	0.047	0.157	7.6	11	6.0	5.4	11
52Cr	0.646	2.2	12	11	8.5	23	19
55Mn	0.009	0.030	173	162	75	36	46
57Fe	4.1	14	1,875	2,688	1,478	1,572	2,136
59Co	0.004	0.013	3.2	3.2	2.0	3.0	5.1
60Ni	0.015	0.050	35	39	26	48	49
63Cu	0.008	0.027	38	24	19	22	23
66Zn	0.783	2.6	320	382	302	254	273
75As	0.392	1.3	1.6	2.7	1.1	1.3	1.8
77Se	0.348	1.2	14	28	17	8.0	11
88Sr	0.001	0.003	10	14	7.6	11	15
95Mo	0.026	0.087	1.4	1.6	0.946	0.519	0.603
107Ag	0.001	0.003	0.154	0.214	0.176	0.109	0.097
111Cd	0.076	0.253	4.8	7.4	2.1	7.3	12
118Sn	0.021	0.070	0.340	0.467	0.255	0.810	0.672
121Sb	0.006	0.020	0.136	0.182	0.121	0.066	0.116
137Ba	0.001	0.003	129	189	106	55	100
202Hg	0.028	0.093	0.135	0.410	0.166	0.088	0.083
205TI	0.001	0.003	0.080	0.146	0.077	0.074	0.112
208Pb	0.001	0.003	1.6	2.7	1.3	0.642	1.1
238U	0.001	0.003	0.308	0.431	0.242	0.111	0.169

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

RG_SCD			RG_SCDTC_INV-	RG_THCK_INV-	RG_THCK_INV-2-	RG_THCK_INV-	RG_EL20_INV-
		Client ID	3_2020-09-13	1_2020-09-10	2020-09-10	3_2020-09-10	1_2020-09-15
		Lab ID	120	121	122	123	124
	We	et Weight (g)	0.3435	0.2625	1.7626	0.3068	0.1683
	Di	ry Weight (g)	0.0692	0.0576	0.2969	0.0529	0.0451
		Moisture (%)	79.9	78.1	83.2	82.8	73.2
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.004	0.013	2.3	1.3	3.7	4.3	0.305
11B	0.092	0.307	7.4	3.5	3.7	5.0	0.773
23Na	3.1	10	4,427	5,415	8,014	6,999	2,743
24Mg	0.049	0.163	2,946	1,772	4,363	5,072	1,510
27AI	0.040	0.133	5,773	1,239	665	1,278	496
31P	79	263	11,232	10,975	12,925	13,413	11,139
39K	11	37	16,771	13,362	13,530	14,391	11,367
44Ca	20	67	3,779	14,039	99,733	123,336	2,203
49Ti	0.270	0.900	407	96	56	112	39
51V	0.047	0.157	11	2.5	1.4	2.3	2.2
52Cr	0.646	2.2	19	13	3.6	6.9	34
55Mn	0.009	0.030	255	51	27	36	94
57Fe	4.1	14	2,963	773	635	908	1,050
59Co	0.004	0.013	3.6	0.996	0.429	0.773	2.9
60Ni	0.015	0.050	54	30	8.5	20	69
63Cu	0.008	0.027	31	27	65	63	16
66Zn	0.783	2.6	356	250	71	66	233
75As	0.392	1.3	2.2	0.671	3.2	3.6	1.7
77Se	0.348	1.2	13	59	17	25	9.5
88Sr	0.001	0.003	17	43	232	279	7.6
95Mo	0.026	0.087	1.1	0.443	0.488	0.580	0.763
107Ag	0.001	0.003	0.210	0.183	0.820	0.677	0.084
111Cd	0.076	0.253	6.1	0.759	0.686	0.686	2.6
118Sn	0.021	0.070	0.464	0.453	0.650	1.9	0.467
121Sb	0.006	0.020	0.314	0.041	0.028	0.033	0.088
137Ba	0.001	0.003	334	100	259	273	55
202Hg	0.028	0.093	0.127	0.098	<0.028	0.029	0.068
205TI	0.001	0.003	0.132	0.097	0.211	0.198	0.040
208Pb	0.001	0.003	3.2	0.365	0.160	0.252	0.191
238U	0.001	0.003	0.604	0.215	0.104	0.226	0.085

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

			RG_EL20_INV-	RG_EL20_INV-	RG_EL20_INV-	RG_EL20_INV-
Client ID			2_2020-09-16	3_2020-09-16	4_2020-09-16	5_2020-09-15
		Lab ID	125	126	127	128
	W	et Weight (g)	0.2372	0.1993	0.3443	0.2298
	D	ry Weight (g)	0.0550	0.0583	0.0773	0.0861
Moisture (%)			76.8	70.7	77.5	62.5
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.004	0.013	0.528	0.616	0.363	1.5
11B	0.092	0.307	1.3	1.4	0.988	2.4
23Na	3.1	10	3,706	2,913	3,120	2,952
24Mg	0.049	0.163	1,962	1,634	1,698	1,909
27AI	0.040	0.133	1,053	1,046	614	2,145
31P	79	263	12,913	11,339	11,918	10,147
39K	11	37	11,816	11,361	11,132	9,505
44Ca	20	67	3,369	2,488	2,663	5,052
49Ti	0.270	0.900	70	85	51	196
51V	0.047	0.157	2.4	2.3	1.4	6.3
52Cr	0.646	2.2	9.1	19	6.4	80
55Mn	0.009	0.030	80	80	62	164
57Fe	4.1	14	962	1,092	581	2,710
59Co	0.004	0.013	3.2	2.3	2.1	7.8
60Ni	0.015	0.050	21	45	14	163
63Cu	0.008	0.027	21	19	18	25
66Zn	0.783	2.6	181	147	178	186
75As	0.392	1.3	2.1	2.5	2.3	2.1
77Se	0.348	1.2	13	8.8	9.7	7.3
88Sr	0.001	0.003	16	11	9.4	12
95Mo	0.026	0.087	0.786	0.885	0.672	0.824
107Ag	0.001	0.003	0.080	0.139	0.084	0.160
111Cd	0.076	0.253	4.1	2.6	2.7	2.1
118Sn	0.021	0.070	0.957	0.281	0.515	0.124
121Sb	0.006	0.020	0.209	0.171	0.094	0.121
137Ba	0.001	0.003	49	40	34	118
202Hg	0.028	0.093	0.049	0.059	0.039	0.049
205TI	0.001	0.003	0.064	0.055	0.043	0.210
208Pb	0.001	0.003	0.316	0.329	0.194	1.3
238U	0.001	0.003	0.091	0.104	0.072	0.179

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

Teck Coal Limited Tissue QA/QC Relative Percent Difference Results

Client ID		GH_ERSC2_INV-1_2020-09-13			RG_THCK_INV-2-2020-09-10			RG_EL20_INV-3_2020-09-16		
	Lab ID	115		122			126			
Parameter	DL (ppm)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)
7Li	0.004	2.0	1.6	22.2	3.7	3.6	2.7	0.616	0.556	10.2
11B	0.092	5.6	4.5	21.8	3.7	4.4	17.3	1.4	1.3	7.4
23Na	3.1	3,488	3,730	6.7	8,014	8,669	7.9	2,913	2,866	1.6
24Mg	0.049	2,162	2,414	11.0	4,363	4,739	8.3	1,634	1,618	1.0
27AI	0.040	4,720	3,550	28.3	665	772	14.9	1,046	1,065	1.8
31P	79	11,317	13,165	15.1	12,925	14,365	10.6	11,339	11,761	3.7
39K	11	14,287	16,015	11.4	13,530	15,960	16.5	11,361	10,713	5.9
44Ca	20	2,684	2,826	5.2	99,733	89,022	11.3	2,488	2,574	3.4
49Ti	0.270	390	320	19.7	56	63	11.8	85	78	8.6
51V	0.047	7.6	6.5	15.6	1.4	1.4	0.0	2.3	2.4	4.3
52Cr	0.646	12	12	0.0	3.6	3.9	-	19	26	31.1
55Mn	0.009	173	187	7.8	27	28	3.6	80	80	0.0
57Fe	4.1	1,875	1,682	10.9	635	572	10.4	1,092	1,210	10.3
59Co	0.004	3.2	3.3	3.1	0.429	0.443	3.2	2.3	2.4	4.3
60Ni	0.015	35	33	5.9	8.5	9.7	13.2	45	62	31.8
63Cu	0.008	38	49	25.3	65	71	8.8	19	18	5.4
66Zn	0.783	320	432	29.8	71	73	2.8	147	168	13.3
75As	0.392	1.6	1.7	-	3.2	2.8	-	2.5	2.2	-
77Se	0.348	14	15	6.9	17	19	11.1	8.8	8.8	0.0
88Sr	0.001	10	11	9.5	232	225	3.1	11	11	0.0
95Mo	0.026	1.4	1.4	0.0	0.488	0.458	6.3	0.885	0.862	2.6
107Ag	0.001	0.154	0.154	0.0	0.820	0.672	19.8	0.139	0.126	9.8
111Cd	0.076	4.8	6.0	22.2	0.686	0.686	-	2.6	2.4	8.0
118Sn	0.021	0.340	0.348	2.3	0.650	0.577	11.9	0.281	0.285	1.4
121Sb	0.006	0.136	0.132	3.0	0.028	0.022	-	0.171	0.138	21.4
137Ba	0.001	129	148	13.7	259	209	21.4	40	40	0.0
202Hg	0.028	0.135	0.153	-	<0.028	0.029	-	0.059	0.039	-
205TI	0.001	0.080	0.070	13.3	0.211	0.197	6.9	0.040	0.050	22.2
208Pb	0.001	1.6	1.5	6.5	0.160	0.162	1.2	0.329	0.306	7.2
238U	0.001	0.308	0.280	9.5	0.104	0.114	9.2	0.104	0.075	32.4

Notes:

ppm = parts per million

RPD = relative percent difference

DL = detection limit

< = less than detection limit

% = percent

Data Quality Objectives:

Laboratory Duplicates - RPD \leq 40% for all elements, except Ca and Sr, which are \leq 60% Minimum DQOs apply to individual samples at concentrations above 10x DL

Teck Coal Limited Tissue QA/QC Accuracy and Precision Results

Sample Group ID				01		02		
Parameter	DL (ppm)	Certified Conc. (ppm)	Mean Estimated Conc. (ppm)	Accuracy (%)	Precision RSD (%)	Mean Estimated Conc. (ppm)	Accuracy (%)	Precision RSD (%)
7Li	0.004	1.21	1.2	101	5.7	1.2	99	10.6
11B	0.092	4.5	5.9	131	2.4	5.0	112	6.0
23Na	3.1	14,000	15,046	108	7.1	14,525	104	5.9
24Mg	0.049	910	939	103	7.5	982	108	5.2
27AI	0.040	197.2	209	106	4.4	196	100	7.0
31P	79	8,000	7,746	97	7.8	8,759	110	2.9
39K	11	15,500	15,919	103	6.6	16,299	105	4.0
44Ca	20	2,360	2,285	97	6.6	2,520	107	3.4
49Ti	0.270	12.24	15	122	7.9	12	102	7.1
51V	0.047	1.57	1.6	100	12.5	1.8	114	6.9
52Cr	0.646	1.87	2.0	106	8.1	2.0	104	2.2
55Mn	0.009	3.17	3.3	103	8.1	3.4	108	2.0
57Fe	4.1	343	382	111	6.8	390	114	4.5
59Co	0.004	0.25	0.281	112	7.9	0.268	107	3.2
60Ni	0.015	1.34	1.5	109	9.0	1.4	106	3.1
63Cu	0.008	15.7	17	110	6.2	17	111	6.3
66Zn	0.783	51.6	56	108	2.9	55	108	3.1
75As	0.392	6.87	6.8	99	4.7	7.3	106	4.6
77Se	0.348	3.45	3.4	98	2.7	3.7	108	4.8
88Sr	0.001	10.1	11	107	6.7	11	112	2.8
95Mo	0.026	0.29	0.296	102	11.2	0.322	111	6.4
107Ag	0.001	0.0252	0.030	120	17.0	0.029	117	14.3
111Cd	0.076	0.299	0.359	120	5.0	0.367	123	6.6
118Sn	0.021	0.061	0.061	100	8.7	0.073	120	14.4
121Sb	0.006	0.011	0.012	105	16.0	0.011	100	0.0
137Ba	0.001	8.6	10	120	5.4	9.1	105	6.4
202Hg	0.028	0.412	0.437	106	8.2	0.486	118	5.2
205TI	0.001	0.0013	-	-	-	-	-	-
208Pb	0.001	0.404	0.415	103	15.0	0.474	117	5.3
238U	0.001	0.05	0.050	100	14.6	0.055	110	9.3

Notes:

ppm = parts per million; % = percent; DL = detection limit; RSD = relative standard deviation

Data Quality Objectives:

Accuracy: DQO of 60 - 140% of the certified values for B, Ti, Ag, Sn, Sb, and Ba.

Accuracy: DQO of 90 - 110% of the certified values for Se.

Accuracy: DQO of 70 - 130% of the certified values for all other elements provided.

Precision: DQO of \leq 20% for all elements.

DORM-4 used for all parameters except B, Ti, Sb, Ba, and Al where NIST-1566b was used.

TI certified concentration from NIST-2976.

Accuracy and precision for TI are not reported as the certified concentration is too close to the reportable detection limit.

QA-QC Accuracy and Precision COM-013.04 TrichAnalytics Inc.

Teck Coal Limited Sample Group Information

Sample Group ID	Client ID	Lab ID	Date of Analysis
01	RG_ELUGH_INV-1_2020-09-17	100	06 Oct 2020
	RG_ELUGH_INV-2_2020-09-17	101	
	RG_ELUGH_INV-3_2020-09-17	102	
	RG_ERSC4_INV-1_2020-09-12	103	
	RG_ERSC4_INV-2_2020-09-12	104	
	RG_ERSC4_INV-3_2020-09-12	105	
	RG_ER1A_INV-1_2020-09-11	106	
	RG_ER1A_INV-2_2020-09-12	107	
	RG_ER1A_INV-3_2020-09-12	108	
	RG_ERSC5_INV-1_2020-09-11	109	
	RG_ERSC5_INV-2_2020-09-11	110	
	RG_ERSC5_INV-3_2020-09-11	111	
	RG_GH-SCW3_INV-1_2020-09-13	112	
	RG_GH-SCW3_INV-2_2020-09-13	113	
	RG_GH-SCW3_INV-3_2020-09-13	114	
	GH_ERSC2_INV-1_2020-09-13	115	
02	GH_ERSC2_INV-2_2020-09-13	116	06 Oct 2020
	GH_ERSC2_INV-3_2020-09-13	117	
	RG_SCDTC_INV-1_2020-09-13	118	
	RG_SCDTC_INV-2_2020-09-13	119	
	RG_SCDTC_INV-3_2020-09-13	120	
	RG_THCK_INV-1_2020-09-10	121	
	RG_THCK_INV-2-2020-09-10	122	
	RG_THCK_INV-3_2020-09-10	123	
	RG_EL20_INV-1_2020-09-15	124	
	RG_EL20_INV-2_2020-09-16	125	
	RG_EL20_INV-3_2020-09-16	126	
	RG_EL20_INV-4_2020-09-16	127	
	RG_EL20_INV-5_2020-09-15	128	
	KG_EL2U_IINV-5_2U2U-U9-15	128	

Т г і с 207-1753 Sea Р	h A n a lytics lnc. an Heights, Saanichton, BC, V8M 0B3 th: (250) 532-1084		Chain of Custody (COC) for LA-ICP-MS Analysis				
	Invoicing		Reporting (if different from Invoicing)				
Project Numbe	er: GHO LAEMP (20-22) (PO	707822)					
Company Name:	Teck Coal Limited	Company Na	me: Minnow Environmental				
Contact Name:	Cait Good	Contact Nam	e: Jess Tester				
Address:	421 Pine Avenue	Address:	2 Lamb Street				
City, Province:	Sparwood, BC	City, Province	e: Georgetown, ON				
Postal Code:	VOB 2G0	Postal Code:	L7G 2G7				
Phone:	250-425-8202	Phone:	250-595-1627				
Email	cait.goog@teck.com	Email:	jtester@minnow.ca				
		Sample Analy	rsis Requested				
12	C 1.1.1		Sample Type:				
Trich Sample	Sample Identification:	Specie	s Sample type				
100	1 RG_ELUGH_INV-1_2020-09-17	/ -	Composite-taxa benthic invertebrate tissue samples				
101	2 RG_ELUGH_INV-2_2020-09-17	V 1	Composite-taxa benthic invertebrate tissue samples				
102	3 RG_ELUGH_INV-3_2020-09-17	1	Composite-taxa benthic invertebrate tissue samples				
103	4 RG_ERSC4_INV-1_2020-09-12	v dk	Composite-taxa benthic invertebrate tissue samples				
104	5 RG_ERSC4_INV-2_2020-09-12	~ ou	Composite-taxa benthic invertebrate tissue samples				
105	6 RG_ERSC4_INV-3_2020-09-12	× 04	Composite-taxa benthic invertebrate tissue samples				
106	7 RG_ER1A_INV-1_2020-09-11	1 de	Composite-taxa benthic invertebrate tissue samples				
107	8 RG_ER1A_INV-2_2020-09-7 2	v	Composite-taxa benthic invertebrate tissue samples				
108	9 RG_ER1A_INV-3_2020-09-72 * 4	v	Composite-taxa benthic invertebrate tissue samples				
109	0 RG_ERSC5_INV-1_2020-09-11	1	Composite-taxa benthic invertebrate tissue samples				
110	11 RG_ERSC5_INV-2_2020-09-11	v .	Composite-taxa benthic invertebrate tissue samples				
111	2 RG_ERSC5_INV-3_2020-09-11	1	Composite-taxa benthic invertebrate tissue samples				
112	13 RG_GH-SCW3_INV+1_2020-09-13	v .	Composite-taxa benthic invertebrate tissue samples				
113	I4 RG_GH-SCW3_INV-2_2020-09-13	1 -	Composite-taxa benthic invertebrate tissue samples				
114	15 RG_GH-SCW3_INV-3_2020-09-13	1	Composite-taxa benthic invertebrate tissue samples				
115	16 GH_ERSC2_INV-1_2020-09-13	J -	Composite-taxa benthic invertebrate tissue samples				
116	17 GH_ERSC2_INV-2_2020-09-13	¥ -	Composite-taxa benthic invertebrate tissue samples				
117	IB GH_ERSC2_INV-3_2020-09-13	v .	Composite-taxa benthic invertebrate tissue samples				
118	19 RG_SCDTC_INV-1_2020-09-13	v	Composite-taxa benthic invertebrate tissue samples				
119	20 RG_SCDTC_INV-2_2020-09-13	v -	Composite-taxa benthic invertebrate tissue samples				
Sample(s) Releas	sed By: Jennifer Ings	Sample(s) R	eceived By: GERIENE LABINE				
Signature:		Signature:	Signature: Guinning LB				
Date Sent:		Date Receiv	Date Received: 30 Sepanar (Prover #: 2020-151)				
Sample(s) Return	ned to Client By:	Shipping Co	Shipping Conditions:				
		Shipping Co	ontainer:				
Signature:		Date Sent:	Date Sent:				

* Sample container reads "2020-09-12". GOL 30 Sep 2020. Corrections splied as per Clint A Sample container reads "GHL". GOL 30 Sep 2020. Page _1_ of _2_ amail 30 sep 2020. OTS

Тгіс 207-1753 Se ғ	h A n a lytics ln c. an Heights, Saanichton, BC, V8M 0B3 ² h: (250) 532-1084	Chain of Custody (COC) for LA-ICP-MS Analysis					
	Invoicing	Reporting (if different from Invoicing)					
Project Numbe	er: GHO LAEMP (20-22) (PO 70)7822)					
Company Name:	Teck Coal Limited	Company Name:	Minnow Environmental				
Contact Name:	Cait Good	Contact Name:	Jess Tester				
Address:	421 Pine Avenue	Address:	2 Lamb Street				
City, Province:	Sparwood, BC	City, Province:	Georgetown, ON				
Postal Code:	V0B 2G0	Postal Code:	L7G 2G7				
Phone:	250-425-8202	Phone:	250-595-1627				
Email:	cait.goog@teck.com	Email:	jtester@minnow.ca				
Contractor II		Sample Analysis Re	equested				
	Sample Identification:		Sample Type:				
	sample identification.	Species	Sample type				
120	21 RG_SCDTC_INV-3_2020-09-13	1.5	Composite-taxa benthic invertebrate tissue samples				
121 2	22 RG_THCK_INV-1_2020-09-10		Composite-taxa benthic invertebrate tissue samples				
122 2	23 RG_THCK_INV-2-2020-09-10	-	Composite-taxa benthic invertebrate tissue samples				
123 2	24 RG_THCK_INV-3_2020-09-10	1	Composite-taxa benthic invertebrate tissue samples				
124 2	25 RG_EL20_INV-1_2020-09-15		Composite-taxa benthic invertebrate tissue samples				
125	RG_EL20_INV-2_2020-09-116 **	-	Composite-taxa benthic invertebrate tissue samples				
126 2	27 RG_EL20_INV-3_2020-09-1/4 ¥ ¥ ✓	-	Composite-taxa benthic invertebrate tissue samples				
127 2	RG_EL20_INV-4_2020-09-1/6 1/6 ★ ★ ✓	-	Composite-taxa benthic invertebrate tissue samples				
128 2	29 RG_EL20_INV-5_2020-09-15	-	Composite-taxa benthic invertebrate tissue samples				
13	30						
	31						
3	32						
13	33						
3	34						
3	35						
13	36						
3	37						
3	38						
3	39						
4	0						
Sample(s) Releas	sed By: Jennifer Ings	Sample(s) Receive	BY: GERIENE LABINE				
Signature:		Signature: Ger	Signature: Concerner LA				
Date Sent:		Date Received: 30 SEP 2020 (Provect #: 2020-151)					
Sample(s) Return	ned to Client By:	Shipping Conditio	Shipping Conditions:				
		Shipping Container:					
Signature:		Date Sent:					

** Sample container reads "2020-09-16." Gor 305-p2020. Corrections applied as per client chail. 30 Sep 2020 KJS
APPENDIX H DATA COLLECTED CONCURRENT WITH SEPTEMBER BIOLOGICAL SAMPLES

durin t e A innow 2 2 from 2 1 to 2 2 sed to a cu ate orma an es

Notes: Solid line indicates the lower SQG. Hashed line indicates the Upper SQG. Shading represents the normal range (2.5th to 97.5th percentiles of 2017 and 2020 reference area data collected in the RAEMP, Minnow 2018). Values below the LRL limit are shown with open symbols. PAH= Polycyclic Aromatic Hydrocarbons. RAEMP= Regional Aquatic Environmental Monitoring Program. MU= Management Unit.

durin t e A innow 2 2 from 2 1 to 2 2 sed to a cu ate orma an es

durin t e A innow 2 2 from 2 1 to 2 2 sed to a cu ate orma an es

Notes: Solid line indicates the lower SQG. Hashed line indicates the Upper SQG. Shading represents the normal range (2.5th to 97.5th percentiles of 2017 and 2020 reference area data collected in the RAEMP, Minnow 2018). Values below the LRL limit are shown with open symbols. PAH= Polycyclic Aromatic Hydrocarbons. RAEMP= Regional Aquatic Environmental Monitoring Program. MU= Management Unit.

durin t e A innow 2 2 from 2 1 to 2 2 sed to a cu ate orma an es

durin t e A innow 2 2 from 2 1 to 2 2 sed to a cu ate orma an es

Figure 1: Sediment eta and A oncentrations from eference otic Areas Sam ed durin t e A innow 2 2 from 2 1 to 2 2 sed to a cu ate orma an es

durin t e A innow 2 2 from 2 1 to 2 2 sed to a cu ate orma an es

◆ 2017 ● 2018 ■ 2019 ▲ 2020

Figure1: Sedimenteta andAoncentrations fromeferenceotic Areas SameddurinteAinnow 22from 21to 2sed toa cu ateormaanes

durin t e A innow 2 2 from 2 1 to 2 2 sed to a cu ate orma an es

Figure 1: Sediment eta and A oncentrations from eference otic Areas Sam ed durin t e A innow 2 2 from 2 1 to 2 2 sed to a cu ate orma an es

Figure 1: Sediment eta and A oncentrations from eference otic Areas Sam ed durin t e A innow 2 2 from 2 1 to 2 2 sed to a cu ate orma an es

durin t e A innow 2 2 from 2 1 to 2 2 sed to a cu ate orma an es

durin t e A innow 2 2 from 2 1 to 2 2 sed to a cu ate orma an es

durin t e A innow 2 2 from 2 1 to 2 2 sed to a cu ate orma an es

durin t e A innow 2 2 from 2 1 to 2 2 sed to a cu ate orma an es

Notes: Solid line indicates the lower SQG. Hashed line indicates the Upper SQG. Shading represents the normal range (2.5th to 97.5th percentiles of 2017 and 2020 reference area data collected in the RAEMP, Minnow 2018). Values below the LRL limit are shown with open symbols. PAH= Polycyclic Aromatic Hydrocarbons. RAEMP= Regional Aquatic Environmental Monitoring Program. MU= Management Unit.

durin t e A innow 2 2 from 2 1 to 2 2 sed to a cu ate orma an es

durin t e A innow 2 2 from 2 1 to 2 2 sed to a cu ate orma an es

durin t e A innow 2 2 from 2 1 to 2 2 sed to a cu ate orma an es

durin t e A innow 2 2 from 2 1 to 2 2 sed to a cu ate orma an es

Notes: Solid line indicates the lower SQG. Hashed line indicates the Upper SQG. Shading represents the normal range (2.5th to 97.5th percentiles of 2017 and 2020 reference area data collected in the RAEMP, Minnow 2018). Values below the LRL limit are shown with open symbols. PAH= Polycyclic Aromatic Hydrocarbons. RAEMP= Regional Aquatic Environmental Monitoring Program. MU= Management Unit.

Figure 1: Sediment eta and A oncentrations from eference otic Areas Sam ed durin t e A innow 2 2 from 2 1 to 2 2 sed to a cu ate orma an es

durin t e A innow 2 2 from 2 1 to 2 2 sed to a cu ate orma an es

durin t e A innow 2 2 from 2 1 to 2 2 sed to a cu ate orma an es

durin t e A innow 2 2 from 2 1 to 2 2 sed to a cu ate orma an es

▶ 2017 ● 2018 ■ 2019 ▲ 2020

Figure 1: Sediment eta and A oncentrations from eference otic Areas Sam ed durin t e A innow 2 2 from 2 1 to 2 2 sed to a cu ate orma an es

Station Devenuetors		Reference	Mine-exposed				
	Station Parameters	RG_ELUGH	RG_ERSC4	RG_ER1A	RG_ERSC5	RG_THCK	RG_EL20
Station 1	Easting	646601	648090	648356	648271	648506	649144
	Northing	5557456	5552562	5551269	5550620	5550236	5548516
	Date	17-Sep-20	12-Sep-20	11-Sep-20	11-Sep-20	10-Sep-20	15-Sep-20
	Samplers' Initials	JT	JT	JT	JT	JT	JT
	Number of Jars	1	1	1	1	1	1
	Total Kick Distance (m)	8	12	7	7	6	9
	Full Transect (Yes / No)	no	no	yes	yes	yes	no
	Number of Transects	NA	NA	3.5	3	5	NA
Station 2	Easting	649104	648099	648382	648258	648561	649104
	Northing	5548590	5552596	5551376	5550653	5550221	5548590
	Date	16-Sep-20	12-Sep-20	11-Sep-20	11-Sep-20	10-Sep-20	16-Sep-20
	Samplers' Initials	JT	JT	JT	JT	JT	JT
	Number of Jars	1	1	1	1	1	1
	Total Kick Distance (m)	8	9	8	11	9	8
	Full Transect (Yes / No)	no	no	no	no	yes	no
	Number of Transects	NA	NA	NA	2.5	9	NA
Station 3	Easting	649064	648390	648390	648275	648592	649064
	Northing	5548639	5551411	5551411	5550696	5550242	5548639
	Date	16-Sep-20	12-Sep-20	12-Sep-20	11-Sep-20	10-Sep-20	16-Sep-20
	Samplers' Initials	JT	JT	JT	JT	JT	JT
	Number of Jars	1	1	1	1	2	1
	Total Kick Distance (m)	9	7.5	7.5	7	8	9
	Full Transect (Yes / No)	no	no	no	yes	yes	no
	Number of Transects	too swift	NA	NA	3.5	6	too swift
Station 4	Easting	648892	-	-	-	-	648892
	Northing	5548811	-	-	-	-	5548811
	Date	16-Sep-20	-	-	-	-	16-Sep-20
	Samplers' Initials	JT	-	-	-	-	JT
	Number of Jars	1	-	-	-	-	1
	Total Kick Distance (m)	10	-	-	-	-	10
	Full Transect (Yes / No)	no	-	-	-	-	no
	Number of Transects	NA	-	-	-	-	NA
Station 5	Easting	648892	-	-	-	-	648892
	Northing	5548824	-	-	-	-	5548824
	Date	16-Sep-20	-	-	-	-	16-Sep-20
	Samplers' Initials	JT	-	-	-	-	JT
	Number of Jars	1	-	-	-	-	1
	Total Kick Distance (m)	12	-	-	-	-	12
	Full Transect (Yes / No)	no	-	-	-	-	no
	Number of Transects	NA	-	-	-	-	NA

Table H.1: Kick and Sweep Locations at Mine-exposed and Reference Areas, GHO LAEMP, September 2020

Note: "-" = not applicable as fewer than five stations were sampled. NA = number of transects not applicable, as there were no full transects.
		Reference				Mine-e	exposed			
Station ID		RG_ELUGH	RG_ERSC4	RG_ER1A	RG_ERSC5	RG_THCK	RG_GHSCW3	RG_ERSC2	RG_SCDTC	RG_EL20
Station ID Waterbody Date Sampled Weather Air Temperature (°C) Zone 11 UTMs - E Zone 11 UTMs - N Samplers' Initials Surrounding Land Use Length of Reach Assessed 9		Elk River	Elk River Side Channel	Elk River Side Channel	Elk River Side Channel	Thompson Creek	Elk River Side Channel	Elk River Side Channel	Elk River Side Channel	Elk River Side Channel
Date Sampled		17-Sep-20	12-Sep-20	11-Sep-20	11-Sep-20	10-Sep-20	13-Sep-20	13-Sep-20	13-Sep-20	15-Sep-20
Weather		smoky	smoky	sunny	sunny	sunny	smoky	smoky	very smoky	smoky, light breeze
Air Temperature (°C)		10	-	20	7	7	10	10	7	15
Zone 11 UTMs - E		646601	648090	648356	648274	648595	648331	648340	648221	649144
Zone 11 UTMs - N		5557456	5552562	5551269	5550609	5550238	5550167	5549813	5549577	5548516
Samplers' Initials		JT, AS	JT, EH	JT, AS	JT, AS	JT, AS	JT, EH	JT, EH	JT, EH	JT, AS
Surrounding Land Use		livestock	livestock, mining	livestock, mining	livestock, mining	logging, livestock, mining	mining	livestock, mining	logging, mining	livestock, mining, campers
Length of Reach Assess	ed (m)	100	100	100	100	100	50	50	50	100
	% Bedrock	0	0	0	0	0	0	0	0	0
	% Boulder	0	0	0	0	0	0	0	0	5
Substrate	% Cobble	85	20	80	50	70	0	5	60	70
Substrate	% Gravel	10	55	20	35	15	20	5	20	15
	% Sand	5	20	0	10	15	20	10	10	10
	% Fines	0	5	0	5	0	60	80	10	0
Water Clarity		clear	clear	clear	clear	clear	clear	clear	clear	clear
Water Colour		colourless	colourless	colourless	colourless	colourless	colourless	colourless	colourless	colourless
Canopy Coverage (%)		1-25	76-100	26-50	26-50	51-75	1-25	1-25	1-25	1-25
Vegetation		ferns and grasses, shrubs	ferns and grasses, shrubs, deciduous trees	ferns and grasses, shrubs, deciduous trees	ferns and grasses, shrubs, deciduous trees	ferns and grasses, shrubs, deciduous trees	ferns and grasses, shrubs, deciduous trees	ferns and grasses, shrubs	ferns and grasses, shrubs, deciduous trees	ferns and grasses, shrubs, deciduous trees
Dominant Vegetation		shrubs	coniferous trees	coniferous trees	coniferous trees	shrubs	ferns/grass	ferns/grass	ferns/grass	coniferous trees
Macrophyte Coverage (%)	0	0	0	0	0	0	0	0	0
Dominant Macrophyte		na	na	na	na	na	na	na	na	na
Periphyton Cover (1-5)		2 - Rocks slightly slippery, yellow- brown to light green colour, (0.5-1 mm thick)	2 - Rocks slightly slippery, yellow- brown to light green colour, (0.5-1 mm thick)	2 - Rocks slightly slippery, yellow- brown to light green colour, (0.5-1 mm thick)	3 - Rocks have noticeable slippery feel, patches of thicker green to brown algae (1-5 mm thick)	4 - Rocks are very slippery, numerous clumps (5-20 mm thick)	1 - Rocks not slippery, no obvious colour (<0.5 mm thick)	1 - Rocks not slippery, no obvious colour (<0.5 mm thick)	2 - Rocks slightly slippery, yellow- brown to light green colour, (0.5-1 mm thick)	2 - Rocks slightly slippery, yellow- brown to light green colour, (0.5-1 mm thick)

Table H.2: Habitat Information Associated with Mine-exposed and Reference Areas Sampled during the Benthic Invertebrate Survey, GHO LAEMP, September 2020

Notes: "-" indicates no data available. na = not applicable.

		Repli	icate			Station			Mean
				1	2	3	4	5	
			Depth (cm) Velocity (m/s)	14 0.267	31 0.416	38	21	27	26.0 0.370
		1	Bankfull Width (m)	0.201	0.410	84.00	0.000	0.104	-
			Wetted Width (m)			27.00			-
			Bankfull-Wetted Depth (cm)	24	28	100	24	24	- 26.0
ence			Velocity (m/s)	0.45	0.664	1.333	1.129	1.101	0.894
fere	RG_ELUGH	2	Bankfull Width (m)			92.00			-
Re			Bankfull-Wetted Depth (cm)			100			-
			Depth (cm)	20	24	28	22	27	23.5
		2	Velocity (m/s)	0.252	0.403	0.548	0.536	0.57	0.435
		5	Wetted Width (m)			25.00			-
			Bankfull-Wetted Depth (cm)			100			-
			Depth (cm)	18	25	29	22	24	23.5
		1	Velocity (m/s) Bankfull Width (m)	0.443	0.316	0.200	0.09	0.705	0.404
			Wetted Width (m)			8.40			-
			Bankfull-Wetted Depth (cm)			63			-
			Depth (cm)	24	28	28	24	24	26.0
			Velocity (m/s)	0.45	0.664	1.333	1.129	1.101	0.894
	RG_ERSC4	2	Bankfull Width (m)			92.00			-
			Wetted Width (m)			41.00			-
			Denth (cm)	20	24	28	22	27	- 23.5
			Velocity (m/s)	0.252	0.403	0.548	0.536	0.57	0.435
		3	Bankfull Width (m)			105.00			-
			Wetted Width (m)			25.00			-
			Bankfull-Wetted Depth (cm)			100			-
			Depth (cm)	14	14.5	21	18	24	16.9 0.252
		1	Bankfull Width (m)	0.197	0.432	7.87	0.450	0.412	0.355
			Wetted Width (m)			6.18			
			Bankfull-Wetted Depth (cm)			63			-
			Depth (cm)	22	17	20	28	28	21.8
			Velocity (m/s)	0.197	0.292	0.318	0.2	0.188	0.252
	RG_ER1A	2	Bankfull Width (m)			10.80			-
			Wetted Width (m)			8.15			-
			Denth (cm)	16	10.5	13	14	13.5	- 13.4
			Velocity (m/s)	0.591	0.365	0.193	0.352	0.825	0.375
		3	Bankfull Width (m)			7.55			-
ose			Wetted Width (m)			5.40			-
exbo			Bankfull-Wetted Depth (cm)	47	40	73	45	0.5	-
ne-			Deptn (cm)	0.258	0.656	0.368	0.456	8.5 0.196	14.3 0.435
M		1	Bankfull Width (m)	0.200	0.000	7.57	0.100	0.100	-
			Wetted Width (m)			6.53			-
			Bankfull-Wetted Depth (cm)			62			-
			Depth (cm)	17	10	8	9	10	11.0
		^	Velocity (m/s)	0.389	0.421	0.661	0.198	0.429	0.417
	RG_ERSC5		Dankiuli Width (m)			5 20			-
			Bankfull-Wetted Depth (cm)			64			-
			Depth (cm)	21	16.5	17	27	30	20.4
			Velocity (m/s)	0.711	0.182	0.192	0.313	0.36	0.350
		3	Bankfull Width (m)			7.02			-
			Wetted Width (m)			3.81			-
			Bankfull-Wetted Depth (cm)	10	14	00 12	5	14	- 10.3
			Velocity (m/s)	0.42	0.202	0.54	0.21	0.218	0.343
		1	Bankfull Width (m)			4.70			-
			Wetted Width (m)			2.66			-
			Bankfull-Wetted Depth (cm)	4-	0.5	86		40 5	-
			Depth (cm)	15	8.5	9	7	12.5	9.9
	RG_THCK	2	Rankfull Width (m)	0.474	0.341	8.24	0.000	0.299	U.430 -
			Wetted Width (m)			2.29			-
		L	Bankfull-Wetted Depth (cm)			41			-
			Depth (cm)	13	8	7	14	11.5	10.5
			Velocity (m/s)	0.352	0.235	0.294	0.354	0.409	0.309
		3	Bankfull Width (m)			3.83			-
			Bankfull-Wetted Depth (cm)			2.39 48			-
L		I		I					

Table H.3: Channel Measurements, GHO LAEMP, September 2020

		Popl	icato			Station			Moon
		Kepi	icate	1	2	3	4	5	Weall
			Depth (cm)	9	14	9	11	13	10.8
			Velocity (m/s)	0.026	0.014	0.011	0.021	0.012	0.018
		1	Bankfull Width (m)			4.15			-
			Wetted Width (m)			2.90			-
			Bankfull-Wetted Depth (cm)			106			-
			Depth (cm)	8.5	9	10	8	6	8.9
			Velocity (m/s)	0.024	0.016	0.016	0.019	0.032	0.019
	RG_SCDTC	2	Bankfull Width (m)			5.25			-
			Wetted Width (m)			2.90			-
			Bankfull-Wetted Depth (cm)			800			-
			Depth (cm)	6	7	5	5	6	5.8
			Velocity (m/s)	0.013	0.072	0.055	0.14	0.046	0.070
		3	Bankfull Width (m)			5.02			-
			Wetted Width (m)			2.05			-
			Bankfull-Wetted Depth (cm)			104			-
			Depth (cm)	25	16	12	14	16	16.8
			Velocity (m/s)	0.86	0.808	0.945	1.07	0.993	0.921
		1	Bankfull Width (m)			140.00			-
sed			Wetted Width (m)			38.00			-
őd			Bankfull-Wetted Depth (cm)			300			-
ê			Depth (cm)	36	47	47	34	23	41.0
line			Velocity (m/s)	0.495	0.669	0.878	0.829	0.803	0.718
2		2	Bankfull Width (m)			136.00			-
			Wetted Width (m)			24.00			-
			Bankfull-Wetted Depth (cm)			300			-
			Depth (cm)	33	41	39	30	41	35.8
			Velocity (m/s)	0.718	0.84	0.783	0.532	0.842	0.718
	RG_EL20	3	Bankfull Width (m)			120.00			-
			Wetted Width (m)			18.00			-
			Bankfull-Wetted Depth (cm)			300			-
			Depth (cm)	22	26	24	22	32	23.5
			Velocity (m/s)	0.714	0.808	0.913	0.622	0.676	0.764
		4	Bankfull Width (m)			100.00			-
			Wetted Width (m)			34.00			-
			Bankfull-Wetted Depth (cm)			300			-
			Depth (cm)	11	17	20	12	24	15.0
			Velocity (m/s)	0.331	0.257	0.253	0.551	0.401	0.348
		5	Bankfull Width (m)			85.00			-
			Wetted Width (m)			22.00			-
			Bankfull-Wetted Depth (cm)			250			-

 Table H.3:
 Channel Measurements, GHO LAEMP, September 2020

Notes: Velocity measurements were taken at five randomly chosen locations throughout the kick sample area. Velocity was measured at the bottom of the water column. "-" = mean not applicable.

Page 2 of 2

		Reference				Mine-e	xposed			
	Field Parameters	GH_ER2 / RG ELUGH	RG_ERSC4	RG_ER1A	RG_ERSC5	RG_THCK	RG_GHSCW3	RG_ERSC2	RG_SCDTC	GH_ERC / RG_EL20
	Date	17-Sep-20	12-Sep-20	11-Sep-20	11-Sep-20	10-Sep-20	13-Sep-20	13-Sep-20	13-Sep-20	15-Sep-20
_	Temperature (°C)	10.1	8.50	9.90	7.60	14.8	10.2	9.70	8.70	8.90
Ę	Dissolved Oxygen (mg/L)	9.63	8.51	10.6	10.6	9.80	8.30	8.73	7.81	9.45
tio	Dissolved Oxygen (%)	85.9	72.0	93.1	89.2	99.1	74.0	76.7	67.1	81.4
Sta	Conductivity (µS/cm)	203	200	229	207	1,581	347	342	344	223
0,	Specific Conductivity (µS/cm)	284	292	321	311	1,961	483	484	499	323
	pH	8.30	8.11	8.34	8.25	8.51	8.44	8.40	8.28	8.03
	Date	17-Sep-20	12-Sep-20	11-Sep-20	11-Sep-20	10-Sep-20	-	-	13-Sep-20	16-Sep-20
~	Temperature (°C)	9.80	9.20	10.4	15.0	14.1	-	-	9.00	7.70
	Dissolved Oxygen (mg/L)	9.62	8.78	9.03	11.1	9.84	-	-	8.49	8.99
tio	Dissolved Oxygen (%)	84.9	76.3	81.0	93.0	96.4	-	-	73.5	75.5
Sta	Conductivity (µS/cm)	201	203	232	208	1,555	-	-	248	217
0,	Specific Conductivity (µS/cm)	284	291	321	312	1,962	-	-	501	323
	pH	8.33	8.17	8.32	8.25	8.30	-	-	8.31	7.96
	Date	17-Sep-20	12-Sep-20	12-Sep-20	11-Sep-20	10-Sep-20	-	-	13-Sep-20	16-Sep-20
~	Temperature (°C)	9.70	10.1	8.00	7.70	14.8	-	-	8.80	8.20
2	Dissolved Oxygen (mg/L)	9.52	8.50	9.37	9.85	9.83	-	-	8.33	8.94
tio	Dissolved Oxygen (%)	8.38	75.7	79.2	82.5	99.2	-	-	71.7	75.8
Sta	Conductivity (µS/cm)	201	208	215	208	1,555	-	-	351	220
0,	Specific Conductivity (µS/cm)	284	290	319	311	1,963	-	-	508	324
	pH	8.30	8.21	7.98	8.23	8.31	-	-	8.31	7.96
	Date	-	-	-	-	-	-	-	-	16-Sep-20
	Temperature (°C)	-	-	-	-	-	-	-	-	9.40
L L	Dissolved Oxygen (mg/L)	-	-	-	-	-	-	-	-	9.63
tio	Dissolved Oxygen (%)	-	-	-	-	-	-	-	-	84.2
Sta	Conductivity (µS/cm)	-	-	-	-	-	-	-	-	224
0,	Specific Conductivity (µS/cm)	-	-	-	-	-	-	-	-	319
	рН	-	-	-	-	-	-	-	-	8.07
	Date	-	-	-	-	-	-	-	-	16-Sep-20
10	Temperature (°C)	-	-	-	-	-	-	-	-	8.70
ů	Dissolved Oxygen (mg/L)	-	-	-	-	-	-	-	-	8.73
tio	Dissolved Oxygen (%)	-	-	-	-	-	-	-	-	76.3
Sta	Conductivity (µS/cm)	-	-	-	-	-	-	-	-	216
0,	Specific Conductivity (µS/cm)	-	-	-	-	-	-	-	-	313
	pH	-	-	-	-	-	-	-	-	8.04

Table H.4: In Situ Water Quality Measured at Biological Monitoring Areas, GHO LAEMP, September 2020

Note: '-' = not applicable as fewer than five stations were sampled.

 Table H.5:
 Chemistry of Water Samples Collected Concurrent with Biological Samples, GHO LAEMP, September 2020

				BC V	Vater	Reference				Mine-	exposed			
	Analyte	Units	LRL	Quality G	uidelines	GH_ER2 / RG_ELUGH	GH_ERSC4	GH_ER1A	RG_ERSC5	GH_TC2 / RG_THCK	RG_GH_SCW3	GH_ERSC2	RG_SCDTC	GH_ERC / RG_EL20
				30-Day Average	Short-term Maximum	17-Sep-20	13-Sep-20	10-Sep-20	10-Sep-20	10-Sep-20	13-Sep-20	13-Sep-20	13-Sep-20	15-Sep-20
	Conductivity (@ 25°C)	µS/cm	2.0	-	-	281	278	307	295	1,860	463	459	494	298
sts	Hardness (as CaCO ₃)	mg/L	0.50	-	-	157	160	173	167	1,270	267	257	282	171
Це	рН	pН	0.10	6.5	- 9.0	8.25	8.32	8.31	8.30	8.31	8.32	8.36	8.33	8.32
cal	ORP	mV	-1,000	-	-	302	454	516	375	446	474	463	469	419
ysi	Total Suspended Solids	mg/L	1.0	-	-	<1.0	1.60	<1.0	<1.0	4.90	1.70	<1.0	2.30	<1.0
Ч	Total Dissolved Solids	mg/L	20	-	-	146	166	200	187	1,740	319	329	347	190
	Turbidity	NTU	0.10	-	-	0.530	0.640	0.620	0.690	1.28	1.20	0.950	3.07	0.500
	Acidity (as CaCO ₃)	mg/L	1.0	-	-	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	Alkalinity, Bicarbonate (as CaCO ₃)	mg/L	1.0	-	-	140	146	144	145	183	144	148	150	148
	Alkalinity, Carbonate (as CaCO ₃)	mg/L	1.0	-	-	<1.0	1.20	1.60	<1.0	1.20	1.20	2.80	2.40	1.60
	Alkalinity, Hydroxide (as CaCO ₃)	mg/L	1.0	-	-	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	Alkalinity, Total (as CaCO ₃)	mg/L	1.0	10 - 20 ו	minimum	140	147	146	145	184	146	151	153	150
	Ammonia as N	mg/L	0.0050	2.4 - 8.3	0.46 - 1.6	<0.0050	<0.0050	<0.0050	0.00860	0.0231	0.00780	<0.0050	<0.0050	0.00950
onts	Bromide (Br)	mg/L	0.050	-	-	<0.050	<0.050	<0.050	<0.050	<0.25	<0.050	<0.050	<0.050	<0.050
trie	Chloride (CI)	mg/L	0.50	150	600	0.330	0.260	0.330	0.320	12.9	1.27	1.28	1.39	0.320
ⁿ Z	Fluoride (F)	mg/L	0.020	-	1.5 - 1.9 ^a	0.146	0.159	0.162	0.164	<0.10	0.148	0.149	0.146	0.150
р	Ion Balance	%	-100	-	-	100	97.1	97.6	97.4	97.4	101	95.3	98.2	96.2
<u>a</u>	Nitrate (as N)	mg/L	0.0050	3.0	32.8	0.0225	0.0282	0.486	0.342	14.1	1.47	1.46	1.76	0.398
ŝuo	Nitrite (as N)	mg/L	0.0010	0.02 - 0.2	0.06 - 0.6	<0.0010	<0.0010	<0.0010	<0.0010	0.0132	<0.0010	<0.0010	0.00120	<0.0010
, Pui	Total Kjeldahl Nitrogen	mg/L	0.050	-	-	<0.050	<0.050	0.161	0.194	<0.050	0.251	0.231	0.235	<0.050
	Orthophosphate-Dissolved (as P)	mg/L	0.0010	-	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.00130
	Phosphorus (P)-Total	mg/L	0.0020	-	-	<0.0020	0.00360	<0.0020	<0.0020	0.00360	0.00210	<0.0020	0.00410	<0.0020
	Sulphate (SO ₄)	mg/L	0.30	309 - 429 ^a	-	16.6	17.6	30.2	26.1	1,030	111	111	125	27.3
	Anion Sum	meq/L	-	-	-	3.15	3.32	3.60	3.48	26.6	5.37	5.47	5.83	3.61
	Cation Sum	meq/L	-	-	-	3.17	3.23	3.51	3.39	25.9	5.42	5.22	5.73	3.47
	Cation - Anion Balance	%	-	-	-	0.200	-1.40	-1.20	-1.30	-1.30	0.500	-2.40	-0.900	-2.00
anic / janic bon	Dissolved Organic Carbon	mg/L	0.50	-	-	<0.50	<0.50	<0.50	<0.50	2.30	<0.50	1.17	0.570	<0.50
Orga Inorg Car	Total Organic Carbon	mg/L	0.50	-	-	<0.50	<0.50	<0.50	<0.50	2.45	0.570	1.26	0.650	<0.50
	Aluminum (Al)	mg/L	0.0030	-	-	0.00490	0.0147	0.00850	0.00820	0.0140	0.0163	0.0103	0.0247	0.00560
	Antimony (Sb)	mg/L	0.00010	0.009	-	<0.00010	<0.00010	<0.00010	<0.00010	0.000180	<0.00010	<0.00010	<0.00010	<0.00010
	Arsenic (As)	mg/L	0.00010	-	0.005	0.000100	0.000140	0.000120	0.000120	0.000260	0.000150	0.000140	0.000170	<0.00010
	Barium (Ba)	mg/L	0.00010	1.0	-	0.0457	0.0488	0.0477	0.0475	0.0718	0.0520	0.0488	0.0546	0.0570
	Beryllium (Be)	µg/L	0.020	0.13	-	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
	Bismuth (Bi)	mg/L	0.00005	-	-	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Boron (B)	mg/L	0.010	1.2	-	<0.010	<0.010	<0.010	<0.010	0.0290	<0.010	<0.010	<0.010	<0.010
<u>s</u>	Cadmium (Cd)	μg/L	0.0050	-	-	0.00850	0.00970	0.0105	0.00900	0.0157	0.0125	0.0103	0.0225	0.00870
leta	Calcium (Ca)	mg/L	0.050	-	-	43.1	43.3	48.8	46.8	249	60.7	59.5	64.1	50.1
≥	Chromium (Cr)	mg/L	0.00010	-	-	0.000240	0.000240	0.000200	0.000210	<0.00010	0.000200	0.000220	0.000230	0.000240
ota	Cobalt (Co)	μg/L	0.10	4.0	110	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Ē	Copper (Cu)	mg/L	0.00050	0.006 - 0.01 ^a	0.016 - 0.04 ^a	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Iron (Fe)	mg/L	0.010	-	1.0	<0.010	0.0210	0.0130	0.0110	0.0260	0.0210	0.0180	0.0320	<0.010
	Lead (Pb)	mg/L	0.000050	0.009 - 0.02 ^a	0.13 - 0.42 ^a	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	0.0000510	<0.000050
	Lithium (Li)	mg/L	0.0010	-	-	0.00220	0.00170	0.00360	0.00290	0.0308	0.00520	0.00470	0.00600	0.00300
	Magnesium (Mg)	mg/L	0.10	-	-	9.68	10.3	12.6	12.1	165	23.1	22.6	25.1	11.3
	Manganese (Mn)	mg/L	0.00010	1.3 - 2.6 ^a	2.2 - 3.4 ^a	0.00153	0.00309	0.00182	0.00169	0.00262	0.00173	0.00129	0.00201	0.00115
	Mercury (Hg)	µg/L	0.00050	-	-	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	0.000590	<0.00050
	Molybdenum (Mo)	mg/L	0.000050	0.073	-	0.00104	0.00103	0.00124	0.00122	0.00171	0.00116	0.00107	0.00112	0.00124

Value > 30-day average chronic guideline. Value > short-term maximum guideline. Notes: "-" indicates no guideline. LRL = laboratory reporting limit.

Table H.5: Chemistry of Water Samples Collected Concurrent with Biological Samples, GHO LAEMP, September 2020

				BC V	Vater	Reference				Mine-	exposed			
	Analyte	Units	LRL	Quality G	Guidelines	GH_ER2 / RG_ELUGH	GH_ERSC4	GH_ER1A	RG_ERSC5	GH_TC2 / RG_THCK	RG_GH_SCW3	GH_ERSC2	RG_SCDTC	GH_ERC / RG_EL20
				30-Day Average	Short-term Maximum	17-Sep-20	13-Sep-20	10-Sep-20	10-Sep-20	10-Sep-20	13-Sep-20	13-Sep-20	13-Sep-20	15-Sep-20
	Nickel (Ni)	mg/L	0.00050	0.13 - 0.15 ^ª	-	<0.00050	<0.00050	0.00147	0.00107	0.00132	0.000860	0.000740	0.000840	<0.00050
	Potassium (K)	mg/L	0.050	-	-	0.363	0.362	0.433	0.425	2.40	0.575	0.532	0.633	0.418
	Selenium (Se)	µg/L	0.050	-	2.0	0.778	0.726	1.68	1.36	153	13.4	13.3	14.3	2.03
	Silicon (Si)	mg/L	0.10	-	-	1.77	1.93	1.81	1.78	2.97	2.08	1.94	1.99	1.99
<u>0</u>	Silver (Ag)	mg/L	0.000010	0.0015	0.003	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
eta	Sodium (Na)	mg/L	0.050	-	-	0.639	0.634	0.882	0.827	12.4	1.68	1.62	1.89	0.948
Š	Strontium (Sr)	mg/L	0.00020	-	-	0.223	0.200	0.218	0.213	0.638	0.241	0.241	0.258	0.209
otal	Thallium (TI)	mg/L	0.000010	0.0008	-	< 0.000010	<0.000010	<0.000010	<0.000010	0.0000110	<0.000010	<0.000010	<0.000010	<0.000010
Ĕ	Tin (Sn)	mg/L	0.00010	-	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Titanium (Ti)	mg/L	0.010	-	-	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
	Uranium (U)	mg/L	0.000010	0.0085	-	0.000689	0.000692	0.000855	0.000800	0.00643	0.00127	0.00126	0.00139	0.000711
	Vanadium (V)	mg/L	0.00050	-	-	< 0.00050	<0.00050	<0.00050	<0.00050	<0.00050	< 0.00050	<0.00050	<0.00050	<0.00050
	Zinc (Zn)	mg/L	0.0030	0.05 - 0.19 ^a	0.08 - 0.34 ^a	< 0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030
	Aluminum (Al)	mg/L	0.0030	0.05	0.10	< 0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030
	Antimony (Sb)	mg/L	0.00010	-	-	<0.00010	<0.00010	<0.00010	<0.00010	0.000180	<0.00010	<0.00010	<0.00010	<0.00010
	Arsenic (As)	mg/L	0.0001	-	-	0.000110	<0.00010	0.000120	<0.00010	0.000270	0.000110	0.000110	0.000130	<0.00010
	Barium (Ba)	mg/L	0.000100	-	-	0.0486	0.0479	0.0465	0.0468	0.0720	0.0493	0.0475	0.0544	0.0554
	Beryllium (Be)	µg/L	0.020	-	-	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
	Bismuth (Bi)	mg/L	0.000050	-	-	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Boron (B)	mg/L	0.010	-	-	<0.010	<0.010	<0.010	<0.010	0.0270	<0.010	<0.010	<0.010	<0.010
	Cadmium (Cd)	µg/L	0.0050	0.28 - 0.46 ^a	0.9 - 2.8 ^a	0.00510	0.00600	0.00640	0.00830	0.0165	0.00940	0.0117	0.00930	0.00720
	Calcium (Ca)	mg/L	0.050	-	-	46.3	47.3	49.1	48.3	256	68.0	64.9	69.9	48.9
	Chromium (Cr)	mg/L	0.00010	-	-	0.000220	0.000180	0.000210	0.000230	<0.00010	0.000170	0.000190	0.000180	0.000220
	Cobalt (Co)	µg/L	0.10	-	-	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
	Copper (Cu)	mg/L	0.00050	-	-	<0.00020	<0.00020	<0.00020	<0.00020	0.000210	<0.00020	<0.00020	<0.00020	<0.00020
	Iron (Fe)	mg/L	0.010	-	0.35	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
als	Lead (Pb)	mg/L	0.000050	-	-	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Jet	Lithium (Li)	mg/L	0.0010	-	-	0.00190	0.00180	0.00370	0.00310	0.0329	0.00550	0.00530	0.00640	0.00310
2 2	Magnesium (Mg)	mg/L	0.10	-	-	10.0	10.1	12.3	11.3	152	23.6	23.0	26.1	11.8
ke	Manganese (Mn)	mg/L	0.00010	-	-	0.00115	0.00178	0.000990	0.000850	0.000320	0.000580	0.000530	0.000460	0.000690
ssc	Mercury (Hg)	mg/L	0.0000050	-	-	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.0000050	<0.0000050	<0.000050
ä	Molybdenum (Mo)	mg/L	0.000050	-	-	0.00109	0.00102	0.00105	0.00101	0.00153	0.00113	0.00135	0.00122	0.00118
	Nickel (Ni)	mg/L	0.00050	-	-	<0.00050	<0.00050	0.000900	0.000580	0.000680	0.000650	0.000570	0.000640	<0.00050
	Potassium (K)	mg/L	0.050	-	-	0.380	0.346	0.446	0.422	2.44	0.540	0.534	0.615	0.432
	Selenium (Se)	µg/L	0.050	-	-	0.862	0.707	1.58	1.40	147	14.2	14.1	15.2	1.80
	Silicon (Si)	mg/L	0.050	-	-	1.74	1.78	1.81	1.75	2.84	1.80	1.78	1.82	1.93
	Silver (Ag)	mg/L	0.000010	-	-	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Sodium (Na)	mg/L	0.050	-	-	0.665	0.641	0.904	0.815	12.0	1.72	1.68	1.95	1.00
	Strontium (Sr)	mg/L	0.00020	-	-	0.228	0.213	0.206	0.202	0.616	0.259	0.252	0.276	0.211
	Thallium (TI)	mg/L	0.000010	-	-	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Tin (Sn)	mg/L	0.00010	-	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Titanium (Ti)	mg/L	0.010	-	-	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
	Uranium (U)	mg/L	0.000010	-	-	0.000649	0.000667	0.000869	0.000786	0.00622	0.00124	0.00124	0.00133	0.000762
	Vanadium (V)	mg/L	0.00050	-	-	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Zinc (Zn)	mg/L	0.0010	-	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.00400

Value > 30-day average chronic guideline. Value > short-term maximum guideline. Notes: "-" indicates no guideline. LRL = laboratory reporting limit.

	RG	ELUGH-1				RG_	ELUGH-2				RG	ELUGH	-3	
	17	'-Sep-20				17	-Sep-20				17	'-Sep-20		
Pebble	Concreted Status	Calcite Presence	o Intermediate Axis (cm)	Embeddedness (%)	Pebble	Concreted Status	o Calcite Presence	b Intermediate Axis (cm)	Embeddedness (%)	Pebble	Concreted Status	 Calcite Presence 	Intermediate Axis (cm)	Embeddedness (%)
2	0	0	6.5	-	2	0	0	10.4	-	2	0	0	5.0	-
3 4	0	0	7.5 5.8	-	3 4	0	0	6.6 5.4	-	3 4	0	0	6.2	-
5	0	0	5.1 5.8	-	5	0	0	5.3 6.2	-	5	0	0	6.6 12.0	
7	0	0	11.6	-	7	0	0	10.8	-	7	0	0	9.1	-
9	0	0	5.5 5.1	-	9	0	0	7.1	-	8 9	0	0	5.5 9.7	-
10 11	0	0	8.2 9.8	0.25	10 11	0	0	10.5 12.1	0.5	10 11	0	0	6.3 7.2	0.25
12	0	0	10.5	-	12	0	0	8.4	-	12	0	0	7.4	-
14	0	0	5.5	-	14	0	0	3.8	-	14	0	0	7.1	-
15	0	0	3.8	-	15	0	0	11.0	-	15	0	0	9.8	-
17 18	0	0	6.5 5.7		17 18	0	0	7.2 5.4		17 18	0	0	8.1 10.0	-
19 20	0	0	4.8	-	19	0	0	6.3	-	19	0	0	11.2	-
20	0	0	10.2	-	20	0	0	9.6	-	21	0	0	8.5	-
22 23	0	0	6.4 7.6	-	22 23	0	0	14.2 7.1	-	22	0	0	7.3 8.8	-
24 25	0	0	7.0 4.8		24 25	0	0	6.1 4.4		24 25	0	0	12.0 5.0	-
26	0	0	12.7	-	26	0	0	3.6	-	26	0	0	10.2	-
27	0	0	5.4	-	27	0	0	3.8	-	27	0	0	7.2	-
29 30	0	0	4.8 3.8	- 0	29 30	0	0	11.5 13.2	- 0.5	29 30	0	0	5.5 5.2	- 0.25
31 32	0	0	7.4	-	31 32	0	0	8.2 5.1	-	31 32	0	0	8.2	-
33	0	0	7.5	-	33	0	0	7.6	-	33	0	0	13.5	-
34 35	0	0	3.8	-	34 35	0	0	3.5	-	34 35	0	0	9.5 6.0	-
36 37	0	0	5.7 7.6		36 37	0	0	9.6 11.4		36 37	0	0	7.0	-
38 39	0	0	5.1	-	38 39	0	0	4.1	-	38 39	0	0	4.9	-
40	0	0	5.2	0.5	40	0	0	9.2	0.5	40	0	0	8.4	0.25
41 42	0	0	9.0	-	41 42	0	0	8.6 6.8	-	41 42	0	0	5.2 6.7	-
43 44	0	0	4.3 6.5		43 44	0	0	13.0 7.4		43 44	0	0	15.5 12.5	
45 46	0	0	5.0 4.7	-	45 46	0	0	9.1 10.2	-	45 46	0	0	8.2	-
47	0	0	5.3	-	47	0	0	5.5	-	47	0	0	6.6	-
40	0	0	7.4	-	40	0	0	7.6	-	40	0	0	6.5	-
50 51	0	0	6.3 6.5	0.25	50 51	0	0	7.6 8.0	0.25	50 51	0	0	9.8 8.2	0.25 -
52 53	0	0	5.8 7.8		52 53	0	0	6.8 4.2		52 53	0	0	5.0	-
54 55	0	0	9.4 9.4	-	54 55	0	0	12.5 11 1	-	54 55	0	0	7.2	-
56	0	0	6.7	-	56	0	0	6.2	-	56	0	0	6.6	-
58	0	0	6.3	-	58	0	0	9.1 8.2	-	58	0	0	6.8	-
59 60	0	0	2.8 6.8	- 0.75	59 60	0	0	9.3 10.2	0.5	59 60	0	0	7.0	0.5
61 62	0	0	10.5 9.1		61 62	0	0	7.6 13.5		61 62	0	0	6.7 7.0	-
63 64	0	0	9.2	-	63 64	0	0	5.5 8.1	-	63 64	0	0	5.1	-
65	0	0	7.1	-	65	0	0	5.9	-	65	0	0	6.2	-
67	0	0	4.6	-	67	0	0	4.2	-	67	0	0	9.1 6.0	-
68 69	0	0	7.8	-	68 69	0	0	6.7 4.6		68 69	0	0	7.0	-
70 71	0	0	9.2 12.3	0.5	70 71	0	0	11.2 5.8	0.25	70 71	0	0	9.7 11.0	0.75
72 73	0	0	7.0	-	72 73	0	0	7.5	-	72	0	0	7.8	-
74	0	0	8.9	-	74	0	0	3.5	-	74	0	0	9.4	-
75 76	0	0	5.1	-	75 76	0	0	9.6 12.5	-	75 76	0	0	4.1	-
77 78	0	0	5.4 12.5		77 78	0	0	11.9 12.2		77 78	0	0	12.0 6.1	-
79 80	0	0	9.5 5.5	- 0.5	79 80	0	0	6.8 7.5	0.25	79 80	0	0	4.9 6.0	0.25
81	0	0	5.7	-	81	0	0	3.9	-	81	0	0	6.7	-
83	0	0	6.7	-	83	0	0	6.2	-	83	0	0	8.9	-
84 85	0	0	7.5 6.8		84 85	0	0	12.1 11.4		84 85	0	0	6.2 12.5	-
86 87	0	0	9.2 7.2	-	86 87	0	0	3.7 8.3	-	86 87	0	0	8.2 11.5	-
88 89	0	0	4.6		88 89	0	0	8.5 9.5		88 89	0	0	5.5	-
90	0	0	4.2	0.25	90	0	0	5.6	0.25	90	0	0	9.6	0.25
92	0	0	7.5	-	92	0	0	5.9	-	92	0	0	8.7	-
93 94	0	0	5.5 7.0	-	93 94	0	0	9.1	-	93 94	0	0	6.3 11.8	-
95 96	0	0	5.5 7.1		95 96	0	0	4.4		95 96	0	0	5.5 10.2	-
97 98	0	0	10.0 4 0	-	97 98	0	0	4.3 10.2	-	97 98	0	0	8.0 4.6	-
99	0	0	6.1	-	99	0	0	8.1	- 0 F	99	0	0	6.2	-
Average C _c , C _p and Embed. =	0	0	-	0.23	Average C _c , C _p and Embed. =	0	0	-	0.3	Average C _c , C _p and Embed. =	0	0	-	0.25
Calcite In	dex (CI) =		0.00		Calcite In	ndex (CI) =		0.00		Calcite In	idex (CI) =		0.00	

	RG_	RG_ERSC4-1 12-Sep-20				RG_	ERSC4-2				RG_	ERSC4-3		
	12	-Sep-20				12	-Sep-20				12-	-Sep-20		
Pebble	Concreted Status	 Calcite Presence 	Intermediate Axis (cm)	Embeddedness (%)	Pebble	Concreted Status	Calcite Presence	, Intermediate Axis (cm)	Embeddedness (%)	Pebble	Concreted Status	Calcite Presence	Intermediate Axis (cm)	Embeddedness (%)
2	0	0	1.8	-	1 2	0	0	2.9	-	2	0	0	6.2 4.3	-
3	0	0	3.3	-	3	0	0	4.6	-	3	0	0	4.1	-
5	0	0	3.2	-	5	0	0	4.0	-	5	0	0	4.9	-
6 7	0	0	3.1	-	6 7	0	0	4.8 2.6	-	6 7	0	0	4.2	-
8 9	0	0	2.1		8	0	0	1.9 2.3	-	8	0	0	4.3 8.4	-
10	0	0	2.2	0.25	10	0	0	2.7	0	10	0	0	6.8	0.25
12	0	0	2.2	-	12	0	0	2.9	-	12	0	0	4.4 5.1	-
13 14	0	0	2.7		13 14	0	0	5.7 6.2	-	13 14	0	0	5.9 6.5	-
15 16	0	0	2.0		15 16	0	0	2.7 5.6	-	15 16	0	0	4.4 3.2	-
17	0	0	2.4	-	17	0	0	5.0	-	17	0	0	12.2	-
19	0	0	3.0	-	19	0	0	3.1	-	19	0	0	7.4	-
20 21	0	0	2.5 2.8	0.5	20 21	0	0	4.3 2.7	0.25	20 21	0	0	5.0 9.3	0.25
22 23	0	0	2.4	-	22 23	0	0	4.1 2.4	-	22 23	0	0	2.5 4.6	-
24	0	0	0.8	-	24	0	0	3.1	-	24	0	0	3.2	-
26	0	0	2.1	-	26	0	0	5.1	-	26	0	0	5.1	-
27 28	0	0	2.0	-	27 28	0	0	8.0 4.9	-	27 28	0	0	7.2 8.9	-
29 30	0	0	3.0 1.5	- 0.25	29 30	0	0 0	3.9 6.5	- 0	29 30	0	0	7.5 8.1	0.25
31 32	0	0	2.2	-	31 32	0	0	4.7	-	31 32	0	0	13.2 3.6	-
33	0	0	1.5	-	33	0	0	4.1	-	33	0	0	5.4	-
35	0	0	2.5	-	35	0	0	6.4	-	35	0	0	11.9	-
36 37	0	0	2.1	-	36 37	0	0	2.0	-	36 37	0	0	2.5 10.0	-
38 39	0	0	2.2 2.3		38 39	0	0	4.7 7.2	-	38 39	0	0	3.5 10.9	-
40 41	0	0	1.9 2.5	0.5	40 41	0	0	3.7 5.2	0	40 41	0	0	6.2 9.4	0.25
42	0	0	2.8	-	42	0	0	2.4	-	42	0	0	2.4	-
44	0	0	2.4	-	44	0	0	6.4	-	44	0	0	11.2	-
45	0	0	2.4	-	45 46	0	0	4.9	-	45	0	0	6.4 6.4	-
47 48	0	0	2.8	-	47 48	0	0	4.6 3.5	-	47 48	0	0	7.8 8.4	-
49 50	0	0	1.7 2.6	- 0.5	49 50	0	0	3.9 3.5	- 0.5	49 50	0	0	4.4 13.4	- 0.25
51 52	0	0	3.2 1.5		51 52	0	0	4.5 4.6	-	51 52	0	0	4.6 5.4	-
53	0	0	2.6	-	53	0	0	3.6	-	53	0	0	9.3	-
55	0	0	1.7	-	55	0	0	2.8	-	55	0	0	15.2	-
56	0	0	2.1	-	56	0	0	4.0 3.7	-	57	0	0	9.0	-
58 59	0	0	2.3	-	58 59	0	0	3.2 4.3	-	58 59	0	0	5.0 5.7	-
60 61	0	0	3.4	0.5 -	60 61	0	0	7.4 4.7	0.25 -	60 61	0	0	2.4 4.4	0.5 -
62 63	0	0	1.9 3.0		62 63	0	0	7.4 4.6		62 63	0	0	4.7 4.5	
64 65	0	0	2.5	-	64 65	0	0	4.6	-	64 65	0	0	5.1 8.3	-
66 67	0	0	3.5	-	66 67	0	0	5.7	-	66	0	0	12.2	-
68	0	0	1.7	-	68	0	0	2.2	-	68	0	0	11.4	-
69 70	0	0	2.6	- 0.5	69 70	0	0	6.4 5.9	0.75	69 70	0	0	5.5 6.1	0.5
71 72	0	0	3.4		71 72	0	0	3.9 4.4	-	71 72	0	0	6.9 5.9	
73 74	0	0	2.4 2.2	-	7 <u>3</u> 74	0	0	3.9 5.5		7 <u>3</u> 74	0	0	8.8 6.5	
75 76	0	0	3.0 2 4	-	75 76	0	0	5.5 1 7		75 76	0	0	6.5 4 2	
77 79	0	0	2.4	-	77	0	0	- 2 Q	-	77	0	0	6.8	-
79	0	0	1.8	- -	79	0	0	3.4	-	79	0	0	12.7	-
81	0	0	1.3	-	81	0	0	2.2	-	81	0	0	7.0	-
82 83	0	0	2.4	-	82 83	0	0	6.2 2.7	-	82 83	0	0	18.0 12.5	-
84 85	0	0	2.3 1.3	-	84 85	0	0	8.7 5.7	-	84 85	0	0	4.2 10.9	
86 87	0	0	1.5 1.5		86 87	0	0	3.6 4.1	-	86 87	0	0 0	8.6 11.1	-
88 89	0	0	2.8 1.2	-	88 89	0	0	3.7 6.1		88 89	0	0	5.3 16.2	
90	0	0	2.3	0.25	90 91	0	0	4.6	0.75	90 91	0	0	7.3	0.25
92	0	0	1.9	-	92	0	0	6.3	-	92	0	0	6.1	-
93	0	0	1.3	-	93 94	0	0	4.0	-	94	0	0	5.3	-
95	0	0	1.2 2.3	-	95 96	0	0	2.4	-	95	0	0	2.2	-
97 98	0	0	2.9 1.6	-	97 98	0	0	2.7 2.7	-	97 98	0	0	5.6 7.5	-
99 100	0	0	2.2 2.3	- 0.5	99 100	0	0 0	1.4 2.7	- 0	99 100	0	0	5.4 7.5	- 0.25
Average C _c , C _p and Embed. =	0	0	-	0.43	Average C _c , C _p and Embed. =	0	0	-	0.25	Average C _c , C _p and Embed. =	0	0	-	0.33
Calcite In	dex (CI) =		0.00	.	Calcite In	dex (CI) =		0.00		Calcite In	ndex (CI) =		0.00	

	RG	_ER1A-1				RG	ER1A-2				RG	ER1A-3		
	11	– -Sep-20				11	– I-Sep-20				12	 2-Sep-20		
Pebble	Concreted Status	Calcite Presence	Intermediate Axis (cm)	Embeddedness (%)	Pebble	Concreted Status	Calcite Presence	Intermediate Axis (cm)	Embeddedness (%)	Pebble	Concreted Status	Calcite Presence	Intermediate Axis (cm)	Embeddedness (%)
1	0	0	12.5	-	1	0	0	4.1	-	1	0	0	4.3	-
2	0	0	9.3	-	2	0	0	4.2	-	2	0	0	5.5 5.2	
4	0	0	7.8	-	4	0	0	3.5	-	4	0	0	4.9	-
5	0	0	9.1	-	5	0	0	3.6	-	5	0	0	2.9	-
6 7	0	1	10.2	-	6	0	0	5.8	-	6	0	0	4.4	
8	0	0	8.0	-	8	0	0	3.4	-	8	0	1	4.2	-
9	0	0	9.8	-	9	0	0	3.4	-	9	0	0	3.1	-
10	0	0	7.8	0.25	10	0	0	3.0	0.25	10	0	0	4.2	0
12	0	0	7.9	-	12	0	Ő	3.5	-	12	0	0 0	1.8	-
13	0	0	7.2	-	13	0	0	2.5	-	13	0	0	5.4	-
14 15	0	0	6.0 9.5	-	14	0	0	2.6	-	14	0	0	7.8	-
16	0	0	7.2	-	16	0	Ő	3.0	-	16	0	0 0	2.8	-
17	0	0	11.3	-	17	0	0	4.1	-	17	0	0	4.9	-
18	0	0	6.1	-	18	0	0	4.4	-	18	0	0	5.0	-
20	0	0	9.6	0	20	0	0	4.2	0.25	20	0	0	6.0	0
21	0	0	7.5	-	21	0	0	3.1	-	21	0	0	4.1	-
22	0	0	11.6	-	22	0	0	-	-	22	0	0	3.2	-
23	0	0	5.0	-	23	0	0	2.8	-	23	0	0	12.1	
25	0	0	5.6	-	25	0	0	4.2	-	25	0	0	3.6	-
26	0	0	11.3	-	26	0	0	2.9	-	26	0	0	7.2	-
27	0	0	7.6	-	27	0	0	4.9	-	27	0	0	2.8	
29	0	0	11.5	-	29	0	0	4.5	-	29	0	0	7.1	-
30	0	0	10.4	0.25	30	0	0	3.5	0.5	30	0	0	6.0	0.25
31	0	0	11.0	-	31	0	0	4.6	-	31	0	0	0.0 4.7	
33	0	0	10.5	-	33	0	0	3.4	-	33	0	0	8.5	-
34	0	1	13.5	-	34	0	0	3.3	-	34	0	0	4.7	-
35	0	0	9.2	-	35	0	0	3.2	-	35	0	0	8.6	-
37	0	0	-	-	37	0	0 0	4.4	-	37	0	0	4.4	-
38	0	0	6.0	-	38	0	0	5.4	-	38	0	0	3.5	-
39	0	0	10.0	- 0.25	39	0	0	5.8	-	39	0	0	2.1	-
41	0	0	9.0	-	41	0	0 0	6.2	-	41	0	0	3.6	-
42	0	0	10.0	-	42	0	0	5.8	-	42	0	0	3.2	-
43	0	0	10.0	-	43	0	0	4.3	-	43	0	0	3.7	-
45	0	0	8.0	-	45	0	0 0	3.1	-	45	0	0	4.6	-
46	0	0	6.0	-	46	0	0	4.3	-	46	0	0	4.7	-
47	0	0	19.0	-	47	0	0	4.4	-	47	0	0	3.0 5.3	
49	0	0	6.5	-	49	0	0 0	4.2	-	49	0	1	4.4	-
50	0	0	4.6	0	50	0	0	3.8	0.25	50	0	0	5.6	0.5
51 52	0	0	6.3 8.4	-	51	0	0	4.6	-	51	0	0	2.9	
53	0	0 0	10.3	-	53	0	Õ	3.8	-	53	Ő	0	2.7	
54	0	1	6.2	-	54	0	0	4.5	-	54	0	0	1.8	
55	0	0	9.2	-	55	0	0	3.4	-	55	0	0	0.0 4.6	
57	0	0	3.1	-	57	0	0	4.4	-	57	0	0	3.1	<u> </u>
58	0	0	7.0	-	58	0	0	4.9	-	58	0	0	3.3	-
60	0	0	9.1	0.25	60	0	0	3.1	0.5	60	0	0	4.4	0.25
61	0	0	7.8	-	61	0	1	3.5	-	61	0	0	-	-
62	0	0	9.5	-	62	0	0	3.9	-	62	0	0	3.2	-
64	0	1	8.2	-	64	0	0	3.3	-	64	0	1	4.2	
65	0	0	9.2	-	65	0	0	5.1	-	65	0	0	7.4	
66 67	0	0	9.4	-	66 67	0	0	6.0	-	66 67	0	0	4.6	-
68	0	0	11.3	-	68	0	0	4.2	-	68	0	0	5.1	
69	0	0	11.8	-	69	0	0	3.3	-	69	0	0	4.0	-
70	0	0	11.2	0.25	70	0	0	5.4 4 6	0.5	70	0	0	5.1	0
72	0	0	8.2	-	72	0	0	-+.0	-	72	0	0	4.7	
73	0	0	5.3	-	73	0	0	4.0	-	73	0	0	2.5	
74	0	0 1	8.1	-	74	0	0	5.9	-	74	0	0	4.0	
76	0	0	13.2	-	76	0	0	4.2	-	76	0	0	3.7	
77	0	0	9.5	-	77	0	0	2.4	-	77	0	0	7.5	-
/8 79	0	0	8.5 6.7	-	/8 79	0	0	4.3	-	/8 79	0	0	3.9 6.2	-
80	0	0	5.2	0	80	0 0	Ő	3.1	0.25	80	0	0	8.2	0.5
81	0	0	5.0	-	81	0	0	2.5	-	81	0	0	5.0	-

82	0	0	6.5	-	82	0	0	4.1	-	82	0	0	2.1	-
83	0	U	10.5	-	83	U	0	3.8	-	83	0	U	/.1	-
84	0	0	6.7	-	84	0	0	4.3	-	84	0	1	7.5	-
85	0	0	7.1	-	85	0	0	5.9	-	85	0	0	5.0	-
86	0	0	12.0	-	86	0	0	4.5	-	86	0	0	7.2	-
87	0	0	5.7	-	87	0	0	5.6	-	87	0	0	3.4	-
88	0	0	8.0	-	88	0	0	5.5	-	88	0	0	5.4	-
89	0	0	5.7	-	89	0	0	4.6	-	89	0	0	6.1	-
90	0	0	9.6	0.25	90	0	0	5.2	0.5	90	0	0	4.6	0
91	0	0	-	-	91	0	0	6.8	-	91	0	0	9.0	-
92	0	0	11.0	-	92	0	0	4.6	-	92	0	0	6.2	-
93	0	0	7.0	-	93	0	0	5.0	-	93	0	0	6.9	-
94	0	0	11.7	-	94	0	0	4.5	-	94	0	0	7.2	-
95	0	0	7.1	-	95	0	0	3.5	-	95	0	0	2.5	-
96	0	0	5.1	-	96	0	0	4.1	-	96	0	0	9.4	-
97	0	0	3.5	-	97	0	0	5.5	-	97	0	0	3.6	-
98	0	0	8.4	-	98	0	0	6.3	-	98	0	0	5.9	-
99	0	0	3.9	-	99	0	0	4.5	-	99	0	0	6.8	-
100	0	0	3.0	0.5	100	0	0	4.8	0.5	100	0	0	7.2	0
Average C _c , C _p and Embed. =	0	0.06	-	0.20	Average C _c , C _p and Embed. =	0	0.01	-	0.35	Average C _c , C _p and Embed. =	0	0.05	-	0.15
Calcite In	dex (CI) =		0.06		Calcite In	dex (CI) =		0.01		Calcite In	dex (CI) =		0.05	

	RG_ERSC5-1 11-Sep-20					RG	ERSC5-2				RG	ERSC5-3		
	11	-Sep-20				11	-Sep-20				11	-Sep-20		
Pebble	Concreted Status	Calcite Presence	Intermediate Axis (cm)	Embeddedness (%)	Pebble	Concreted Status	Calcite Presence	Intermediate Axis (cm)	Embeddedness (%)	Pebble	Concreted Status	Calcite Presence	Intermediate Axis (cm)	Embeddedness (%)
1 2	0	0	7.9	-	1 2	0	0	9.7 5.8	-	1 2	0	0	6.5 3.3	-
3 4	0	0	2.2 1.2	-	3 4	0	0	9.4 9.2	-	3 4	0	0	9.4 4.6	-
5	0	0	4.8	-	5	0	0	9.9	-	5	0	0	7.0	-
7	0	0	1.8	-	7	0	0	8.7	-	7	0	0	9.5	-
9	0	0	-	-	9	0	0	5.2	-	9	0	1	5.1	-
10 11	0	0	15.2	0.5	10 11	0	0	4.8 8.2	-	10 11	0	0	4.3 3.4	0.5
12 13	0	0	2.4 3.0	-	12 13	0	0	10.4 5.7		12 13	0	0	2.9 11.9	-
14 15	0	0	5.3 4.2		14 15	0	0	2.2 5.3		14 15	0	0	5.1 3.2	-
16 17	0	0	-	-	16 17	0	1	4.0	-	16 17	0	0	4.4	-
18	0	0	3.5	-	18	0	0	6.6	-	18	0	0	4.4	-
20	0	0	2.0	0.5	20	0	0	4.8	0	20	0	0	4.8	0.25
21 22	0	0	3.7 2.3	-	21 22	0	0	2.6	-	21 22	0	0	4.5 4.2	-
23 24	0	0	2.3		23 24	0	0	2.0 6.5		23 24	0	0	3.1 3.5	-
25 26	0	0	2.3 4.3	-	25 26	0	0	6.6 6.2	-	25 26	0	0	4.6 11.5	-
27	0	0	5.1	-	27	0	0	5.5	-	27	0	0	4.0	-
29	0	0	10.6	-	29	0	0	6.9	-	29	0	0	3.4	-
30 31	0	0	3.5	0.25 -	30 31	0	0	7.5	-	30 31	0	0	0.0 4.7	U.5 -
32 33	0	0	6.4 2.0	-	32 33	0	0	8.5 1.0	-	32	0	0	8.8 4.0	-
34 35	0	0	2.5 5.7	-	34 35	0	0	5.1 7.4		34 35	0	1 0	4.6 5.6	-
36 37	0	0	3.7 2.3	-	36 37	0	0	8.0 6.1	-	36 37	0	0	4.2	-
38	0	0	3.3	-	38	0	0	6.2	-	38	0	0	3.9	-
40	0	0	5.0	0.75	40	0	0	9.0	0.25	40	0	0	4.2	0.25
41 42	0	0	4.5	-	41 42	0	0	4.2 5.6	-	41 42	0	0	2.1 7.3	-
43 44	0	0	3.8 6.0		43 44	0	0	2.0 3.2		43 44	0	1	5.5 12.6	-
45 46	0	0	6.6 3.9	-	45 46	0	0	4.4		45 46	0	0	5.4 2.8	-
47	0	0	2.1	-	47	0	0	6.9	-	47	0	1	7.2	-
40	0	0	4.0	-	40	0	0	3.0	-	40	0	0	-	-
50	0	0	2.1	-	50	0	0	8.2	- 0.25	50	0	0	5.3	-
52 53	0	0	2.3	-	52 53	0	0	7.6 9.6	-	52 53	0	0	2.3 4.3	-
54 55	0	0	1.6 3.2		54 55	0	0	8.4 6.4		54 55	0	0	4.4 3.1	-
56 57	0	0	3.1 4.1		56 57	0	0	6.5 6.5		56 57	0	0	5.0 7.2	
58 59	0	0	3.9 2.4	-	58 59	0	0	11.3 8.0	-	58 59	0	0	7.9	-
60	0	0	2.4	0.5	60	0	0	6.0	0	60	0	0	3.9	0.25
62	0	0	3.4	-	62	0	0	7.9	-	62	0	0	5.5	-
63 64	0	0	4.4	-	63 64	0	0	5.0 9.5	-	63 64	0	0	7.1 3.9	-
65 66	0	0	1.1 2.4	-	65 66	0	0	7.5		65 66	0	0	4.3 4.0	-
67 68	0	0	1.4 2.1		67 68	0	0	7.6 5.4		67 68	0	0	9.8 4.4	-
69 70	0	0	2.1 2.6	- 0.5	69 70	0	0	19.0 10.4	- 0.25	69 70	0	0	6.9 4.2	- 0.25
71 72	0	0	4.8	-	71 72	0	0	6.8 8.1	-	71 72	0	0	6.5 4.5	-
73	0	0	2.9	-	73	0	0	7.2	-	73	0	0	5.6	-
75	0	0	3.3	-	75	0	0	7.0	-	75	0	0	10.9	-
70	0	0	1.6	-	70 77	0	0	6.5	-	77	0	0	0.5 5.1	-
78 79	0	0	5.1	-	78 79	0	0	2.3	-	78 79	0	0	3.5 4.2	-
80 81	0	0	3.9 3.3	0.75	80 81	0	0	7. <u>6</u> 9.4	0.25	80 81	0	0	6.4 8.3	0.5
82 83	0	0	1.2 17.1	-	82 83	0	0	3.2 14.0	-	82 83	0	0	4.5 7.5	-
84 85	0	0	4.3 2.8		84 85	0	0	8.2 8.0	-	84 85	0	0	4.8 3.2	
86	0	0	2.4	-	86	0	0	5.5	-	86	0	0	16.5	-
88	0	0	2.5	-	88	0	0	8.2	-	88	0	0	3.4	-
90 89	0	0	4.0	0.5	90 89	0	0	5.9 8.5	0	90 89	0	0	5.6 11.2	0.25
91 92	0	0	2.1 5.3		91 92	0	0	9.2 10.5		91 92	0	0	4.8 4.4	
93 94	0	0	3.3 2.4		93 94	0	0	9.4 6.6		93 94	0	0	4.4 4.8	-
95 96	0	0	- 4 1		95 96	0	0	4.0		95 96	0	0	4.1	-
97	0	0	3.6	-	97	0	0	8.3	-	97	0	0	3.4	-
99	0	0	6.2	- -	99	0	0	8.0	-	99	0	0	+.+ - -	-
Average C _c , C _p and Embed. =	0	0	-	0.5	Average C _c , C _p and Embed. =	0	0.01	-	0.25 0.13	Average C _c , C _p and Embed. =	0	0.12	-	0.33
Calcite In	dex (CI) =		0.00		Calcite In	dex (CI) =		0.01		Calcite In	dex (CI) =		0.12	

	RG	_THCK-1				RG	_THCK-2				RG	_THCK-3		
	1()-Sep-20				10	-Sep-20				10	-Sep-20		
Pebble	Concreted Status	Calcite Presence	Intermediate Axis (cm)	Embeddedness (%)	Pebble	Concreted Status	Calcite Presence	Intermediate Axis (cm)	Embeddedness (%)	Pebble	Concreted Status	Calcite Presence	Intermediate Axis (cm)	Embeddedness (%)
1	0	1	10.2	-	1	0	0	4.1	-	1	0	1	7.5	-
3	0	1	9.5	-	3	0	0	6.7	-	3	0	0	7.0	-
4 5	0	0	10.5 4.9	-	4	0	0	4.8	-	4 5	0	0	2.9	
6	0	1	3.0	-	6	0	1	7.2	-	6	0	1	11.0	-
7	0	1	2.5	-	7	0	0	9.1	-	7 8	0	1	10.5	-
9	0	1	4.2	-	9	0	1	4.9	-	9	0	1	9.2	-
10	0	1	4.3	0.25	10	0	0	6.0	0.5	10	1	1	12.1	0.75
12	0	1	5.2	-	12	0	0	3.2	-	12	0	1	6.4	-
13	2	1	10.2	-	13	0	1	4.1	-	13	0	0	9.2	-
14 15	0	1	6.9 sand	-	14	0	0	6.5	-	14	0	1	8.9 9.5	-
16	0	1	11.7	-	16	0	0	5.2	-	16	0	1	10.4	-
17	0	0	2.0	-	17	0	1	3.8	-	17	0	1	7.1	-
19	0	1	7.5	-	19	0	1	3.4	-	19	0	1	5.6	-
20	0	0	8.5	0.5	20	0	0	6.3	0.25	20	0	1	3.9	0.25
21	0	0	7.0	-	21	0	1	4.3	-	21	0	1	2.1	-
23	1	1	4.6	-	23	0	0	4.8	-	23	0	0	1.4	-
24	0	1	3.5	-	24	0	0	5.Z 3.7	-	24	0	1	6.5	-
26	1	1	6.4	-	26	0	1	5.8	-	26	0	1	3.2	-
27	1	1	12.5	-	27	0	0	3.5	-	27	0	1	4.3	-
29	1	1	11.0	-	29	0	1	5.9	-	29	1	1	11.0	-
30	0	1	9.0	0	30	0	0	6.4	0.25	30	1	1	6.6	0.25
31	1	1	5.5	-	31	0	1	6.5	-	31	0	1	4.0	-
33	1	1	14.0	-	33	0	0	4.0	-	33	1	1	5.2	-
34 35	0	1	5.0	-	34	0	0	4.0	-	34	0	1	4.1	-
36	0	1	9.3	-	36	0	1	6.3	-	36	0	1	3.0	-
37	0	0	-	-	37	0	1	4.1	-	37	0	1	2.9	-
39	1	1	6.5	-	39	0	0	3.4	-	39	0	1	2.9	-
40	1	1	11.0	0.25	40	0	0	3.1	0	40	0	0	2.6	0
41	0	1	4.0 9.5	-	41	0	1	3.5 8.3	-	41	0	1	4.0	-
43	0	1	7.5	-	43	0	0	2.3	-	43	1	1	4.0	-
44	1	1	8.1	-	44	0	0	2.9	-	44	0	0	- 15.1	-
46	0	1	sand	-	46	0	1	5.4	-	46	0	0	-	-
47	0	1	9.8	-	47	0	1	4.1	-	47	0	1	2.6	-
49	0	1	6.1	-	49	0	0	6.0	-	49	0	1	10.6	-
50	0	0	2.1	0.5	50	0	0	2.0	0.25	50	0	1	1.9	0
52	0	0	2.2	-	52	0	1	4.7	-	52	0	0	-	-
53	0	1	14.5	-	53	0	0	2.5	-	53	0	1	3.7	-
54 55	0	0	-	-	54 55	0	0	3.5	-	55	1	1	3.2	-
56	0	0	1.2	-	56	0	0	2.5	-	56	1	1	4.2	-
57 58	0	1	1.5 6.7	-	57 58	0	1	2.4 4.6	-	57 58	0	1	4.6	-
59	1	1	9.0	-	59	0	0	3.2	-	59	0	0	3.6	-
60	0	1	12.2	0.5	60	0	0	1.1	-	60	0	1	5.0	-
62	1	1	13.6	-	62	0	0	6.4	-	62	0	1	3.0	-
63 64	0	1	sand 9.5	-	63 64	0	0	5.9	-	63 64	0	1	2.8	-
65	0	0	3.0	-	65	0	0	4.7	-	65	0	1	4.1	-
66 67	0	1	6.3	-	66 67	0	0	15.2	-	66 67	0	1	7.0	-
68	0	1	7.8	-	68	0	0	1.6	-	68	2	1	16.5	-
69	1	1	8.2	-	69	0	0	3.4	-	69	0	1	5.0	-
70	0	0	3.0	0.5	70	0	1	4.8 4.7	-	70 71	0	1	6.9 4.5	0.25
72	0	0	sand	-	72	0	0	-	-	72	0	1	5.4	-
73 74	0	0	- 77	-	73 74	0	1	9.1 2.6	-	73 74	0	1	13.0	-
75	2	1	12.0	-	75	0	Ő	2.3	-	75	0	1	-	-
76	1	1	12.2	-	76	0	1	4.2	-	76	0	1	-	-
78	0	1	9.6	-	78	0	0	sand	-	78	0	1	5.6	_
79 80	0	1	1.2	-	79 80	0	0	6.1	- 0.25	79 80	0	1	1.4	-
81	0	1	11.4	-	81	0	1	2.1	-	81	0	1	9.0	-

82	0	1	7.5	-	82	0	0	1.9	-	82	1	1	9.5	-
83	0	0	2.4	-	83	0	1	8.5	-	83	0	1	10.7	-
84	0	1	6.0	-	84	0	1	5.9	-	84	0	1	10.0	-
85	0	1	1.8	-	85	0	1	3.2	-	85	0	1	-	-
86	0	0	1.0	-	86	0	0	4.0	-	86	0	0	-	-
87	0	1	8.0	-	87	0	1	5.3	-	87	0	0	1.8	-
88	0	1	1.4	-	88	0	0	3.1	-	88	0	1	7.4	-
89	0	1	sand	-	89	0	1	4.8	-	89	0	1	-	-
90	1	1	5.5	0.25	90	0	0	3.6	0	90	0	1	9.0	0
91	0	0	sand	-	91	0	1	10.8	-	91	0	1	10.0	-
92	0	1	7.5	-	92	0	0	-	-	92	0	0	-	-
93	1	1	12.3	-	93	0	0	6.3	-	93	0	1	4.6	-
94	1	1	1.7	-	94	0	1	5.2	-	94	0	0	-	-
95	0	0	sand	-	95	0	0	3.2	-	95	0	1	10.4	-
96	1	1	10.2	-	96	0	0	1.4	-	96	0	1	1.2	-
97	0	1	sand	-	97	0	0	3.6	-	97	0	1	-	-
98	1	1	6.1	-	98	0	1	3.5	-	98	1	1	9.5	-
99	0	0	1.7	-	99	0	1	3.5	-	99	0	0	15.5	-
100	0	1	6.6	0	100	0	0	3.7	0.25	100	0	1	5.5	0.25
Average C _c , C _p and Embed. =	0.29	0.80	-	0.33	Average C _c , C _p and Embed. =	0	0.37	-	0.18	Average C _c , C _p and Embed. =	0.12	0.83	-	0.18
Calcite In	dex (CI) =		1.09		Calcite In	dex (CI) =		0.37		Calcite In	dex (CI) =		0.95	

	RG_	SCDTC-1				RG_	SCDTC-2			RG_SCDTC-3				
	13	-Sep-20				13	-Sep-20				13-	-Sep-20		
Pebble	Concreted Status	 Calcite Presence 	Intermediate Axis (cm)	Embeddedness (%)	Pebble	Concreted Status	Calcite Presence	Intermediate Axis (cm)	Embeddedness (%)	Pebble	Concreted Status	Calcite Presence	Intermediate Axis (cm)	Embeddedness (%)
1 2	0	0	4.5	-	2	0	0	4.8	-	2	0	0	5.5	-
3	0	0	5.6 3.4	-	3	0	0	4.7	-	3	0	0	5.0 5.2	-
5	0	0	3.5	-	5	0	0	4.7	-	5	0	0	9.4	-
6 7	0	0	6.5 4.0	-	6 7	0	0	4.8	-	6 7	0	0	5.5	-
8	0	0	3.2 8.5	-	8	0	0	6.2 3.3	-	8	0	0	7.7	-
10	0	0	5.3	0	10	0	0	5.2	0.25	10	0	0	6.4	0
12	0	0	5.0	-	12	0	0	5.6	-	12	0	0	6.6	-
13 14	0	0	4.6		13 14	0	0	2.2 4.7	-	13 14	0	0	4.4	-
15 16	0	0	10.4 8.9		15 16	0	0	5.0 7.9	-	15 16	0	0	11.5 5.3	-
17	0	0	4.3	-	17	0	0	16.0	-	17	0	0	7.3	-
19	0	0	6.8	-	19	0	0	7.1	-	19	0	0	8.4	-
20 21	0	0	6.9 6.3	0.25	20 21	0	0	4.2	0.25	20 21	0	0	5.6 8.6	0.5
22 23	0	0	6.4 5.4	-	22 23	0	0	2.4 13.0	-	22 23	0	0	11.0 3.4	-
24	0	0	2.6	-	24	0	0	5.1	-	24	0	0	7.5	-
26	0	0	3.9	-	26	0	0	9.8	-	26	0	0	5.4	-
27 28	0	0	7.4 -	-	27 28	0	0	10.5 8.6	-	27 28	0	0	3.4 1.8	-
29 30	0	0	13.0 3.8	- 0.25	29 30	0	0	4.6 6.6	- 0.75	29 30	0	0	5.7 7.0	0.25
31 32	0	0	9.4 4 1	-	31 32	0	0	- 44	-	31 32	0	0	- 62	-
33	0	0	7.4	-	33	0	0	2.9	-	33	0	0	4.8	-
35	0	0	8.3	-	35	0	0	2.6	-	35	0	0	5.3	-
36 37	0	0	7.9 6.2	-	36 37	0	0	5.2	-	36	0	0	3.4 7.7	-
38 39	0	0	7.8 5.0		38 39	0	0	5.6 4.1	-	38 39	0	0	2.9 5.8	
40 41	0	0	4.1 4.1	0.25	40 41	0	0	3.9 5.7	0	40 41	0	0	4.6 8.8	0.25
42	0	0	4.2	-	42	0	0	3.1	-	42	0	0	5.2	-
43	0	0	3.8	-	43	0	0	3.4	-	43	0	0	4.0	-
45 46	0	0	4.5 3.3	-	45 46	0	0	6.5 2.7	-	45 46	0	0	8.4 6.4	-
47 48	0	0	1.9 4.0		47 48	0	0	4.5 6.3	-	47 48	0	0	3.1 4.8	-
49 50	0	0	5.3 6.0	- 0.5	49 50	0	0	7.1	- 0.75	49 50	0	0	4.5 4.3	- 0.25
51 52	0	0	4.2	-	51 52	0	0	4.4	-	51 52	0	0	- 3.6	-
53	0	0	7.4	-	53	0	0	6.3	-	53	0	0	8.1	-
54 55	0	0	2.5	-	55 55	0	0	4.4 5.4	-	55	0	0	2.5	-
56 57	0	0	4.8 8.6	-	56 57	0	0	5.7 6.0	-	56 57	0	0	2.6	-
58 59	0	0	4.1 5.5		58 59	0	0	7.8 5.0	-	58 59	0	0	- 6.8	
60 61	0	0	6.6 8.7	0.25	60 61	0	0	7.5 3.4	0.75	60 61	0	0	2.8 3.0	0
62 63	0	0	5.2	-	62 63	0	0	5.7	-	62 63	0	0	3.4	-
64	0	0	6.7	-	64	0	0	6.4	-	64	0	0	-	-
66	0	0	4.1	-	66	0	0	3.7	-	66	0	0	4.3	-
67 68	0	0	15.5 4.3	-	67 68	0	0	4.4 4.5	-	67 68	0	0	3.4 9.2	-
69 70	0	0	4.8 4.8	- 0.25	69 70	0	0	4.7	- 0	69 70	0	0	7.2	- 0.75
71 72	0	0	3.2 2.8	-	71 72	0	0	4.9 3.6	-	71 72	0	0	5.1 8.6	
73	0	0	4.4	-	73 74	0	0	5.0	-	73	0	0	3.2	-
75	0	0	2.2	-	75	0	0	4.4	-	75	0	0	4.0	-
76	0	0	4.2 5.9	-	76 77	0	0	3.4	-	76 77	0	0	9.8 4.8	-
78 79	0	0	10.6 3.7	-	78 79	0	0	5.3 15.0		78 79	0	0	5.7 6.2	-
80 81	0	0	3.3 9.6	0	80 81	0	0	3.6 8.0	0-	80 81	0	0	2.8 13.0	0-
82 83	0	0	5.5 3.2	-	82 83	0	0	12.4 4.7	-	82 83	0	0 0	4.7 6.2	-
84 85	0	0	6.9	-	84 85	0	0	4.9	-	84 85	0	0	5.6	-
86	0	0	3.4	-	86	0	0	3.8	-	86	0	0	4.3	-
88	0	0	3.8	-	88	0	0	5.7	-	88	0	0	2.4 5.1	-
89 90	0	0	5.6 4.3	0.5	89 90	0	0	8.4 13.0	0.75	89 90	0	0	5.5 4.8	0.25
91 92	0	0	3.3	-	91 92	0	0	2.9 4.3	-	91 92	0	0	2.9 6.7	
93 94	0	0	5.4 3.5	-	93 94	0	0	6.5 6.4	-	93 94	0	0	- 5.0	
95 96	0	0	6.1 4.2		95 96	0	0	3.5 7.8	-	95 96	0	0	13.0 7.5	
97	0	0	3.6	-	97	0	0	4.6	-	97	0	0	5.5	-
99	0	0	5.5	-	99	0	0	3.2	-	99	0	0	4.5	-
Average C _c , C _p and Embed. =	0	0	-	0.25	Average C _c , C _p and Embed. =	0	0	-	0.5	Average C _c , C _p and Embed. =	0	0	- 0.U	0.23
Calcite In	dex (CI) =		0.00		Calcite In	idex (CI) =		0.00	•	Calcite In	idex (CI) =		0.00	•

RG_EL20-1 15-Sep-20						RG	_EL20-2				RG	RG_EL20-3					
	15	-Sep-20				16	-Sep-20				16	-Sep-20					
Pebble	Concreted Status	Calcite Presence	Intermediate Axis (cm)	Embeddedness (%)	Pebble	Concreted Status	Calcite Presence	Intermediate Axis (cm)	Embeddedness (%)	Pebble	Concreted Status	Calcite Presence	Intermediate Axis (cm)	Embeddedness (%)			
1	0	0	7.2	-	1	0	0	9.0	-	1	0	0	4.2	-			
3	0	0	5.6	-	3	0	0	9.4	-	3	0	0	5.3 8.1	-			
4	0	0	3.8	-	4	0	0	7.5	-	4	0	0	12.2	-			
5	0	0	5.2 8.3	-	5	0	0	8.5	-	5	0	0	4.5	-			
7	0	0	7.2	-	7	0	0	5.4	-	7	0	0 0	9.9	-			
8	0	0	3.8	-	8	0	0	12.6	-	8	0	0	5.5	-			
10	0	0	6.5	0.25	10	0	0	5.2	0.25	10	0	0	5.5	0.5			
11	0	0	6.4	-	11	0	0	11.5	-	11	0	0	9.5	-			
12	0	0	9.9	-	12	0	0	11.5	-	12	0	0	15.0	-			
14	0	0	4.9	-	14	0	0	11.1	-	14	0	0	-	-			
15	0	0	3.8	-	15	0	0	7.2	-	15	0	0	5.1	-			
16	0	0	5.8	-	16	0	0	10.9	-	10	0	0	6.5	-			
18	0	0	4.7	-	18	0	0	11.2	-	18	0	0	9.5	-			
19	0	0	2.9	-	19	0	0	10.1	-	19	0	0	19.6	-			
20	0	0	4.0	-	20	0	0	9.4	-	20	0	0	14.0	-			
22	0	0	5.9	-	22	0	0	8.0	-	22	0	0	5.4	-			
23	0	0	6.6 4.6	-	23	0	0	6.6	-	23	0	0	4.8	-			
25	0	0	7.2	-	25	0	0	8.2	-	25	0	0	5.9	-			
26	0	0	7.8	-	26	0	0	7.4	-	26	0	0	11.4	-			
27	0	0	8.9	-	27	0	0	5.3	-	28	0	0	7.6	-			
29	0	0	4.1	-	29	0	0	7.2	-	29	0	0	7.4	-			
30 31	0	0	6.4	0.5	30	0	0	5.8	0.5	30	0	0	9.3	0.25			
32	0	0	5.6	-	32	0	0	6.2	-	32	0	0	10.3	-			
33	0	0	5.7	-	33	0	0	9.1	-	33	0	0	5.6	-			
34 35	0	0	4.8	-	34	0	0	7.6	-	34	0	0	14.2	-			
36	0	0	6.9	-	36	0	0	7.0	-	36	0	0	9.7	-			
37	0	0	7.1	-	37	0	0	5.5	-	37	0	0	5.6	-			
38	0	0	4.7	-	38	0	0	0.5 5.5	-	38	0	0	6.2	-			
40	0	0	7.9	0.25	40	0	0	3.0	0	40	0	0	6.4	0.5			
41	0	0	7.9	-	41	0	0	4.0	-	41	0	0	12.2	-			
42	0	0	2.8	-	42	0	0	10.0	-	42	0	0	5.0	-			
44	0	0	5.4	-	44	0	0	8.4	-	44	0	0	13.2	-			
45 46	0	0	3.0	-	45	0	0	9.3	-	45	0	0	4.4	-			
40	0	0	5.2	-	47	0	0	6.4	-	40	0	0	12.2	-			
48	0	0	2.5	-	48	0	0	13.0	-	48	0	0	8.5	-			
49 50	0	0	5.8	- 0.25	49 50	0	0	9.5	- 0.5	49 50	0	0	9.5	- 0.75			
51	0	0	5.1	-	51	0	0	15.5	-	51	0	0	16.0	-			
52 53	0	0	5.3	-	52 53	0	0	8.5	-	52 53	0	0	8.6	-			
54	0	0	3.5	-	54	0	0	7.6	-	54	0	0	7.9	-			
55	0	0	3.4	-	55	0	0	6.3	-	55	0	0	10.8	-			
56	0	0	5.6	-	56	0	0	7.1	-	56	0	0	8.4	-			
58	0	0	7.1	-	58	0	0	6.6	-	58	0	0	8.6	-			
59 60	0	0	5.2	-	59 60	0	0	3.8	-	<u>59</u> 60	0	0	6.5 2.5	- 0.25			
61	0	0	4.3	-	61	0	0	5.7	-	61	0	0	11.4	-			
62	0	0	7.0	-	62	0	0	7.2	-	62	0	0	10.5	-			
64	0	0	0.0 7.4	-	64	0	0	9.0	-	64	0	0	0.2	-			
65	0	0	5.9	-	65	0	0	9.5	-	65	0	0	10.2	-			
66 67	0	0	3.4	-	66 67	0	0	11.4	-	66	0	0	11.3	-			
68	0	0	5.2	-	68	0	0	9.2	-	68	0	0	4.4	-			
69	0	0	2.3	-	69	0	0	6.0	-	69	0	0	8.6	-			
70 71	0	0	2.7	0	70	0	0	10.8	0.25	70	0	0	8.6	0.5			
72	0	0	3.1	-	72	0	0	5.7	-	72	0	0	12.4	-			
73	0	0	-	-	73	0	0	-	-	73	0	0	7.5	-			
74 75	0	0	8.2 5.4	-	/4 75	0	0	5.1 5.2	-	75	0	0	0.2 4.1	-			
76	0	Ő	4.9	-	76	0	0 0	8.5	-	76	0	0 0	7.8	-			
77	0	0	4.2	-	77	0	0	11.5	-	77	0	0	6.8	-			
78 79	0	0	3.8 3.8	-	78 79	0	0	10.2	-	78 79	0	0	0.9	-			
80	0	0	8.2	0	80	0	0	7.9	0.25	80	0	0	4.2	0.25			
81	0	0	8.5	-	81	0	0	6.0	-	81	0	0	5.6	-			

82	0	0	6.5	-	82	0	0	2.5	-	82	0	0	4.8	-
83	0	0	3.6	-	83	0	0	10.5	-	83	0	0	11.9	-
84	0	0	7.5	-	84	0	0	9.8	-	84	0	0	5.6	-
85	0	0	5.0	-	85	0	0	10.4	-	85	0	0	9.8	-
86	0	0	7.4	-	86	0	0	11.5	-	86	0	0	4.5	-
87	0	0	11.0	-	87	0	0	7.7	-	87	0	0	5.2	-
88	0	0	7.9	-	88	0	0	9.1	-	88	0	0	6.8	-
89	0	0	2.8	-	89	0	0	15.4	-	89	0	0	4.6	-
90	0	0	6.5	0.25	90	0	0	8.5	0.25	90	0	0	9.0	0.5
91	0	0	5.5	-	91	0	0	6.0	-	91	0	0	8.6	-
92	0	0	9.5	-	92	0	0	9.2	-	92	0	0	12.0	-
93	0	0	7.4	-	93	0	0	7.5	-	93	0	0	9.1	-
94	0	0	-	-	94	0	0	6.3	-	94	0	0	5.1	-
95	0	0	10.2	-	95	0	0	8.5	-	95	0	0	15.2	-
96	0	0	6.9	-	96	0	0	7.3	-	96	0	0	13.3	-
97	0	0	10.5	-	97	0	0	5.0	-	97	0	0	7.5	-
98	0	0	6.4	-	98	0	0	6.2	-	98	0	0	11.9	-
99	0	0	4.0	-	99	0	0	5.4	-	99	0	0	8.5	-
100	0	0	8.1	0.25	100	0	0	5.0	0.5	100	0	0	10.0	0.75
Average C _c , C _p and Embed. =	0	0	-	0.25	Average C _c , C _p and Embed. =	0	0	-	0.33	Average C _c , C _p and Embed. =	0	0	-	0.48
Calcite In	dex (CI) =		0.00		Calcite In	dex (CI) =		0.00		Calcite In	dex (CI) =		0.00	

Table H.b. Peddie Counts and Calcite Measurements at Benthic Invertebrate Sampling Locations, GHO LAEMP, September
--

	RG 16	_EL20-4 -Sep-20			RG_EL20-5 16-Sep-20						
Pebble	Concreted Status	Calcite Presence	Intermediate Axis (cm)	Embeddedness (%)	Pebble	Concreted Status	Calcite Presence	Intermediate Axis (cm)	Embeddedness (%)		
1	0	0	5.0 6.5	-	1	0	0	- 2.5	-		
3	0	0	9.2	-	3	0	0	-	-		
5	0	0	7.3	-	5	0	0	-	-		
6 7	0	0	4.7 9.1	-	6 7	0	0	10.8 3.2	-		
8	0	0	6.4 5.3	-	8	0	0	10.0 2.8	-		
10 11	0	0	7.3 8.0	0.25	10 11	0	0	4.4	0.25		
12 13	0	0	-	-	12 13	0	0	4.5	-		
14	0	0	9.2	-	14	0	0	4.2	-		
16	0	0	5.3	-	15	0	0	6.0 3.9	-		
17 18	0	0	5.5 5.6	-	17 18	0	0	4.2 3.8	-		
19 20	0	0	9.4 6.2	- 0.5	19 20	0	0	10.6 3.8	- 0.25		
21 22	0	0	9.0 5.4	-	21 22	0	0	11.2	-		
23	0	0	2.8	-	23	0	0	-	-		
24	0	0	10.4	-	24	0	0	- -	-		
26 27	0	0	8.6 5.7	-	26 27	0	0	6.3 2.7	-		
28 29	0	0	8.7 7.0	-	28 29	0	0	7.0 3.4	-		
30 31	0	0	6.2 4.8	0.25	30 31	0	0 0	3.9 2.9	0.5		
32 33	0	0	10.3 7 2	-	32 33	0	0	4.0	-		
34	0	0	3.6	-	34	0	0	2.7	-		
35	0	0	7.3	-	35	0	0	8.8 4.8	-		
37 38	0	0	7.2 8.4	-	37 38	0	0	3.6 10.2	-		
39 40	0	0	6.7 6.3	- 0.5	39 40	0	0	6.0 5.5	- 0.25		
41 42	0	0	6.3 6.5	-	41 42	0	0	7.0	-		
43	0	0	10.5	-	43	0	0	2.3	-		
44 45	0	0	9.1 4.6	-	44 45	0	0	3.2 4.4	-		
46 47	0	0	- 5.6	-	46 47	0	0	6.8 3.5	-		
48 49	0	0	8.9 8.9		48 49	0	0	1.9 3.8	-		
50 51	0	0	3.8 9.2	0.25	50 51	0	0	5.0 -	0		
52 53	0	0	5.5	-	52 53	0	0	8.3	-		
54	0	0	7.2	-	54	0	0	3.5	-		
56	0	0	7.9	-	56	0	0	14.5	-		
57 58	0	0	6.5 8.5	-	57	0	0	9.5 6.0	-		
59 60	0	0	6.5 9.4	- 0.5	59 60	0	0	5.0 3.5	- 0		
61 62	0	0	7.3 8.2	-	61 62	0	0	6.0 6.0	-		
63 64	0	0	8.2 9.4	-	63 64	0	0	4.6 6.2	-		
65 66	0	0	7.1	-	65	0	0	4.5	-		
67	0	0	8.3	-	67	0	0	4.2	-		
69	0	0	4.1 6.5	-	69	0	0	4.0	-		
70 71	0	0	7.6 6.4	0.25	70 71	0	0	11.5 4.5	0.5 -		
72 73	0	0	5.0 3.2	-	72 73	0	0	8.5 3.5			
74 75	0	0	7.1 6.2	-	74 75	0	0	5.7 12.0	-		
76 77	0	0	6.4 6.0	-	76 77	0	0 0	2.0 8.5	-		
78 79	0	0	5.5 4 8	-	78 79	0	0	8.5 3.4	-		
80	0	0	11.5	0.5	80	0	0	6.2	0.25		
82	0	0	4.2	-	82	0	0	5.0	-		
83 84	0	0	4.0 11.5	-	83 84	0	0		-		
85 86	0	0	4.9 9.5	-	85 86	0	0	6.1 2.5	-		
87 88	0	0	7.2 5.3	-	87 88	0	0	3.5	-		
89 90	0	0	10.0 3.8	- 0.25	89 90	0	0 0	8.6 4.7	- 0		
91 92	0	0	9.3	-	91 92	0	0	5.5 4 0	-		
93	0	0	9.1	-	93	0	0	7.5	-		
94	0	0	0.8 14.0	-	94 95	0	0	2.8 6.0	-		
96 97	0	0	11.2 9.1	-	96 97	0	0	6.6 7.2	-		
98 99	0	0	10.7 6.5	-	98 99	0	0	8.1 6.0	-		
100	0	0	8.9	0.5	100	0	0	4.0	0.25		
Average C _c , C _p and Embed. =	0	0	-	0.38	Average C _c , C _p and Embed. =	0	0	-	0.23		
Calcite In	ndex (CI) =		0.00		Calcite In	idex (CI) =		0.00			

Table H.7: Chemistry of Sediment Samples Collected Concurrent with Biological Samples, September 2020

				BC Se	diment			R	eference				
				Qua	ality			GH FR		н			
	Analuta	Unito	1.01	Guide	elines								
	Analyte	Units	LKL	Lower	Upper	RG_	RG_	RG_					Standard
				SQG	SQG	ELUGH-1	ELUGH-2	ELUGH-5	Minimum	Median	Maximum	Mean	Deviation
						17-Sep-20	17-Sep-20	17-Sep-20					
Physical	Moisture	%	0.25	-	-	44.3	43.8	36.9	36.9	43.8	44.3	41.7	4.14
Tests	pH(1:2 Soil:Water)	pН	0.10	-	-	8.23	8.24	8.30	8.23	8.24	8.30	8.26	0.0379
	% Gravel (>2 mm)	%	1.0	-	-	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	-
	% Sand (2.00 mm - 1.00 mm)	%	1.0	-	-	<1.00	1.50	<1.00	<1.00	<1.00	1.50	1.17	-
	% Sand (1.00 mm - 0.50 mm)	%	1.0	-	-	8.10	6.20	1.50	1.50	6.20	8.10	5.27	3.40
ize	% Sand (0.50 mm - 0.25 mm)	%	1.0	-	-	17.8	13.7	15.7	13.7	15.7	17.8	15.7	2.05
see S	% Sand (0.25 mm - 0.125 mm)	%	1.0	-	-	21.1	28.1	31.6	21.1	28.1	31.6	26.9	5.35
artic	% Sand (0.125 mm - 0.063 mm)	%	1.0	-	-	15.2	19.4	20.7	15.2	19.4	20.7	18.4	2.87
<u>م</u>	% Silt (0.063 mm - 0.0312 mm)	%	1.0	-	-	16.4	13.4	13.2	13.2	13.4	16.4	14.3	1.79
	% Silt (0.0312 mm - 0.004 mm)	%	1.0	-	-	17.2	13.8	13.4	13.4	13.8	17.2	14.8	2.09
	% Clay (<4 μm) 	%	1.0	-	-	3.40	3.30	3.50	3.30	3.40	3.50	3.40	0.100
	Texture	-	-	-	-	Sandy loam	Loamy sand	Loamy sand	0.01	0.74	0.74	0.00	0.0577
		%	0.050	-	-	2.71	2.01	2.71	2.01	2.71	2.71	2.08	0.0577
	Autimony (Sh)	mg/kg	50 0.10	-	-	7,780	7,340	4,400	4,460	7,340	7,760	0,000	0.101
	Anumony (Sb)	mg/kg	0.10	50	- 17	5.48	5.64	3.99	3 00	5.48	5.64	5.04	0.101
	Barium (Ba)	mg/kg	0.10	5.5	-	139	146	91.9	0.99 Q1 Q	130	146	126	29.4
	Bervllium (Be)	ma/ka	0.00	-	-	0.560	0.560	0.320	0.320	0.560	0.560	0.480	0 139
	Bismuth (Bi)	ma/ka	0.20	-	-	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	-
1	Boron (B)	mg/ka	5.0	-	-	8.20	7.80	7.50	7.50	7.80	8.20	7.83	0.351
1	Cadmium (Cd)	mg/kg	0.020	0.60	3.5	0.684	0.758	0.403	0.403	0.684	0.758	0.615	0.187
1	Calcium (Ca)	mg/kg	50	-	-	66,700	56,800	49,500	49,500	56,800	66,700	57,700	8,630
1	Chromium (Cr)	mg/kg	0.50	37	90	17.6	17.7	11.4	11.4	17.6	17.7	15.6	3.61
	Cobalt (Co)	mg/kg	0.10	-	-	4.06	4.26	2.61	2.61	4.06	4.26	3.64	0.900
	Copper (Cu)	mg/kg	0.50	36	197	10.3	10.5	5.63	5.63	10.3	10.5	8.81	2.76
	Iron (Fe)	mg/kg	50	21,200	43,766	12,100	12,100	8,140	8,140	12,100	12,100	10,800	2,290
	Lead (Pb)	mg/kg	0.50	35	91	6.17	6.64	4.27	4.27	6.17	6.64	5.69	1.25
	Lithium (Li)	mg/kg	2.0	-	-	9.90	10.0	5.80	5.80	9.90	10.0	8.57	2.40
	Magnesium (Mg)	mg/kg	20	-	-	12,900	12,700	12,900	12,700	12,900	12,900	12,800	115
<u>s</u>	Manganese (Mn)	mg/kg	1.0	460	1,100	365	449	206	206	365	449	340	123
/leta	Mercury (Hg)	mg/kg	0.0050	0.17	0.49	0.0347	0.0419	0.0212	0.0212	0.0347	0.0419	0.0326	0.0105
2	Molybdenum (Mo)	mg/kg	0.10	25	23000	1.25	1.30	0.820	0.820	1.25	1.30	1.12	0.264
	Nickel (Ni)	mg/kg	0.50	16	75	17.2	18.0	10.8	10.8	17.2	18.0	15.3	3.95
	Phosphorus (P)	mg/kg	50	-	-	1,180	1,150	1,150	1,150	1,150	1,180	1,160	17.3
	Potassium (K)	mg/kg	100	-	-	2,110	1,930	1,120	1,120	1,930	2,110	1,720	527
	Selenium (Se)	mg/kg	0.20	2.0	-	0.790	1.05	0.440	0.440	0.790	1.05	0.760	0.306
	Silver (Ag)	mg/kg	0.10	0.50	-	0.150	0.160	<0.100	<0.100	0.150	0.160	0.137	0.00667
	Sodium (Na)	mg/kg	50	-	-	106	102	82.0	82.0	102	106	96.7	12.9
	Strontium (Sr)	mg/kg	0.50	-	-	102	94.1	68.9	68.9	94.1	102	88.3	17.3
	Sulfur (S)	mg/kg	1,000	-	-	<1,000	<1,000	<1,000	-	-	-	-	-
	Thallium (TI)	mg/kg	0.050	-	-	0.191	0.194	0.118	0.118	0.191	0.194	0.168	0.0430
	Tin (Sn)	mg/kg	2.0	-	-	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	-
		mg/kg	1.0	-	-	12.1	20.3	13.9	12.1	13.9	20.3	10.4	4.31
		mg/kg	0.50	-	-	<0.500	< 0.500	<0.500	<0.500 0.860	<0.000	1.01	0.054	-
	Vanadium (V)	mg/kg	0.000	-	-	35.5	34.8	22.1	22.1	34.8	35.5	30.8	7 54
	Zinc (Zn)	ma/ka	2.0	123	315	74.9	77.3	48.5	48.5	74.9	77.3	66.9	16.0
	Zirconium (Zr)	ma/ka	1.0	-	-	<1.00	1.00	<1.00	<1.00	<1.00	1.00	1.00	-
	Acenaphthene	ma/ka	0.0050	0.0067	0.089	<0.00500	<0.00500	<0.00500	< 0.00500	<0.00500	<0.00500	<0.00500	-
	Acenaphthylene	mg/kg	0.0050	0.0059	0.13	<0.00500	<0.00500	<0.00500	< 0.00500	<0.00500	< 0.00500	<0.00500	-
	Acridine	mg/kg	0.010	-	-	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	-
	Anthracene	mg/kg	0.0040	0.047	0.25	<0.00400	<0.00400	<0.00400	<0.00400	<0.00400	<0.00400	<0.00400	-
	Benz(a)anthracene	mg/kg	0.010	0.032	0.39	<0.0100	<0.0100	<0.0100	<0.0100	< 0.0100	<0.0100	<0.0100	-
	Benzo(a)pyrene	mg/kg	0.010	0.032	0.78	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	-
	Benzo(b&j)fluoranthene	mg/kg	0.010	-	-	0.0150	0.0220	0.0130	0.0130	0.0150	0.0220	0.0167	0.00473
	Benzo(b+j+k)fluoranthene	mg/kg	0.015	-	-	<0.0150	0.0220	<0.0150	<0.0150	<0.0150	0.0220	0.0173	-
	Benzo(e)pyrene	mg/kg	0.010	-	-	0.0140	0.0190	0.0110	0.0110	0.0140	0.0190	0.0147	0.00404
	Benzo(g,h,i)perylene	mg/kg	0.010	0.17	3.2	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	-
suoc	Benzo(k)fluoranthene	mg/kg	0.010	0.24	13	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	-
cart	Chrysene	mg/kg	0.010	0.057	0.86	0.0350	0.0440	0.0270	0.0270	0.0350	0.0440	0.0353	0.00850
ydrc	Dibenz(a,h)anthracene	mg/kg	0.0050	0.0062	0.14	<0.00500	<0.00700	<0.00500	<0.00500	<0.00500	<0.00700	<0.00500	-
ii H		mg/kg	0.010	0.11	2.4	< 0.0100	0.0110	<0.0100	<0.0100	<0.0100	0.0110	0.0103	-
mat		mg/kg	0.010	0.021	0.14	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	< 0.0100	<0.0100	-
; Arc	Indeno(1,2,3-c,d)pyrene	mg/kg	0.010	0.20	3.2	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	-
yclic		mg/kg	0.010	-	-	<0.0500	0.0540	<0.0500	<0.0500	<0.0500	0.0540	0.0513	-
olyc		ing/kg	0.010	0.020	0.20	0.0380	0.0000	0.0280	0.0280	0.0380	0.0000	0.0420	0.00000
٩	Pervlene	mg/kg	0.010	0.035	0.39	0.0210	0.0310	<0.0100	<0.0100	0.0210	0.0310	0.0223	0.00000
	Phenanthrene	ma/ka	0.010	-	-	0.0120	0.0190	0.0100	0.0100	0.0120	0.0190	0.0137	0.00407
	Pyrene	ma/ka	0.010	0.042	0.02	<0.0700	0.103	<0.0000	<0.0000	<0.0700	0.103	0.0790	0.0200
1	Quinoline	ma/ka	0.010	-	-	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	-
	d10-Acenaphthene	%	-	-	-	103	116	109	103	109	116	109	6.31
1	d12-Chrysene	%	-	-	-	116	124	120	116	120	124	120	4.30
1	d8-Naphthalene	%	-	-	-	97.3	108	104	97.3	104	108	103	5.37
1	d10-Phenanthrene	%	-	-	-	105	115	112	105	112	115	111	5.34
1	B(a)P Total Potency Equivalent	mg/kg	0.020	-	-	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	-
	IACR (CCME)	mg/kg	0.15	-	-	0.180	0.230	0.170	0.170	0.180	0.230	0.193	0.0321

Value > Lower SQG. Value > Upper SQG.

Γ

Notes: All summary stats calculated to 3 significant figures.

Table H.7: Chemistry of Sediment Samples Collected Concurrent with Biological Samples, September 2020

				BC Se	diment					Mine-ex	posed				
				Qua	ality					RG GH	-SCW3				
	Analyte	Units	LRL	Guid											
				Lower	Upper	SCW3-1	SCW3-2	SCW3-3	SCW3-4	SCW3-5	Minimum	Median	Maximum	Mean	Standard
				SQG	SQG	13-Sen-20	13-Sen-20	13-Sen-20	16-Sep-20	16-Sen-20		moulan	maximum	moun	Deviation
	Mariation	%	0.25	_		13-3ep-20	51 0	13-3ep-20	10-3ep-20	10-Sep-20	11 3	47.8	51.0	47.5	2.65
Physical Tests	Moisture	70	0.23	-	-	40.9	0.45	47.0	40.0	9.04	9.40	47.0	0.04	47.5	2.05
10313		pΠ	0.10	-	-	0.17	0.10	0.12	0.10	0.24	0.12	0.17	0.24	0.17	0.0444
	% Gravel (>2 mm)	%	1.0	-	-	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	-
	% Sand (2.00 mm - 1.00 mm)	%	1.0	-	-	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	-
Φ	% Sand (1.00 mm - 0.30 mm)	%	1.0	-	-	<1.00	<1.00	<1.00	1 10	<1.00	<1.00	<1.00	1 10	1.00	-
Siz	% Sand (0.25 mm - 0.125 mm)	%	1.0	-	-	7.20	5.60	6.80	5.70	9.00	5.60	6.80	9.00	6.86	1.38
rticle	% Sand (0.125 mm - 0.063 mm)	%	1.0	-	-	22.1	20.2	19.2	17.6	18.1	17.6	19.2	22.1	19.4	1.80
Ра	% Silt (0.063 mm - 0.0312 mm)	%	1.0	-	-	29.0	31.3	30.6	31.0	32.1	29.0	31.0	32.1	30.8	1.15
	% Silt (0.0312 mm - 0.004 mm)	%	1.0	-	-	34.4	36.7	36.1	37.4	34.4	34.4	36.1	37.4	35.8	1.36
	% Clay (<4 µm)	%	1.0	-	-	6.30	5.50	6.40	7.00	5.10	5.10	6.30	7.00	6.06	0.757
	Texture	-	-	-	-	Silt loam	'Silt loam	'Silt loam	'Silt loam	'Silt loam					
	Total Organic Carbon	%	0.050	-	-	5.50	5.25	5.33	6.22	5.00	5.00	5.33	6.22	5.46	0.461
		mg/kg	50	-	-	9,460	8,920	9,460	8,300	0,320	0,320	8,920	9,460	8,490	1,300
	Arsenic (As)	ma/ka	0.10	5.9	- 17	5.22	5 17	5 47	5.01	4 93	4.93	5 17	5 47	5 16	0.0072
	Barium (Ba)	mg/kg	0.50	-	-	164	164	171	136	113	113	164	171	150	24.5
	Beryllium (Be)	mg/kg	0.10	-	-	0.630	0.620	0.660	0.610	0.470	0.470	0.620	0.660	0.598	0.0740
	Bismuth (Bi)	mg/kg	0.20	-	-	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	-
	Boron (B)	mg/kg	5.0	-	-	12.2	11.2	11.7	11.3	8.10	8.10	11.3	12.2	10.9	1.61
	Cadmium (Cd)	mg/kg	0.020	0.60	3.5	0.917	0.914	1.00	0.936	0.694	0.694	0.917	1.00	0.892	0.116
	Calcium (Ca)	mg/kg	50	-	-	37,800	34,700	34,700	45,100	49,300	34,700	37,800	49,300	40,300	6,580
	Chromium (Cr)	mg/kg	0.50	37	90	18.9	18.2	19.2	19.5	16.8	16.8	18.9	19.5	18.5	1.08
	Copper (Cu)	mg/kg	0.10	- 36	- 107	5.02	4.90	5.22	4.05	4.02	4.02	4.90	5.22	4.70	0.463
	Iron (Fe)	ma/ka	50	21.200	43.766	13.200	13.000	13.600	12.300	11.200	11.200	13.000	13.600	12,700	942
	Lead (Pb)	mg/kg	0.50	35	91	7.78	7.83	8.29	7.07	6.22	6.22	7.78	8.29	7.44	0.809
	Lithium (Li)	mg/kg	2.0	-	-	12.5	11.6	12.8	11.4	8.80	8.80	11.6	12.8	11.4	1.58
	Magnesium (Mg)	mg/kg	20	-	-	12,100	11,100	11,300	12,900	13,600	11,100	12,100	13,600	12,200	1,060
<u></u>	Manganese (Mn)	mg/kg	1.0	460	1,100	378	360	384	387	338	338	378	387	369	20.4
Meta	Mercury (Hg)	mg/kg	0.0050	0.17	0.49	0.0543	0.0598	0.0621	0.0572	0.0431	0.0431	0.0572	0.0621	0.0553	0.00742
_	Molybdenum (Mo)	mg/kg	0.10	25	23000	1.23	1.28	1.31	1.21	1.26	1.21	1.26	1.31	1.26	0.0396
	Nickel (Ni)	mg/kg	0.50	16	75	21.1	20.6	22.5	20.8	18.0	18.0	20.8	22.5	20.6	1.63
	Priosphorus (P) Potassium (K)	mg/kg	100	-	-	2 310	2 140	2 250	2 150	1,100	1,120	2 150	2 310	2 080	42.4
	Selenium (Se)	ma/ka	0.20	20	-	1 72	1 59	1 81	2,130	1,330	1,330	1 72	2,310	1 73	0.333
	Silver (Ag)	mg/kg	0.10	0.50	-	0.210	0.190	0.220	0.210	0.160	0.160	0.210	0.220	0.198	0.0239
	Sodium (Na)	mg/kg	50	-	-	98.0	94.0	94.0	97.0	92.0	92.0	94.0	98.0	95.0	2.45
	Strontium (Sr)	mg/kg	0.50	-	-	73.1	68.2	73.4	78.6	75.0	68.2	73.4	78.6	73.7	3.75
	Sulfur (S)	mg/kg	1,000	-	-	<1,000	<1,000	<1,000	<1,000	<1,000	-	-	-	-	-
	Thallium (TI)	mg/kg	0.050	-	-	0.236	0.243	0.253	0.236	0.187	0.187	0.236	0.253	0.231	0.0256
	Tin (Sn)	mg/kg	2.0	-	-	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	-
		mg/kg	1.0	-	-	11.7	14.2	13.5	18.8	19.7	11.7	14.2	19.7	15.6	3.49
		mg/kg	0.50	-	-	<0.500 0.995	<0.500 0.963	<0.500 0.986	1.05	<0.500	<0.500 0.963	<0.000 0.986	<0.500	<0.500	-
	Vanadium (V)	ma/ka	0.20	-	_	36.7	34.7	36.5	34.7	28.2	28.2	34.7	36.7	34.2	3.47
	Zinc (Zn)	mg/kg	2.0	123	315	84.1	81.4	86.3	80.5	72.6	72.6	81.4	86.3	81.0	5.21
L	Zirconium (Zr)	mg/kg	1.0	-	-	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	-
	Acenaphthene	mg/kg	0.0050	0.0067	0.089	<0.0410	<0.0510	<0.0400	<0.0200	<0.0160	<0.0160	<0.0400	<0.0510	<0.0160	-
	Acenaphthylene	mg/kg	0.0050	0.0059	0.13	<0.00500	<0.00500	<0.00500	<0.00500	<0.00500	<0.00500	<0.00500	<0.00500	<0.00500	-
	Acridine	mg/kg	0.010	-	-	0.0610	0.0520	<0.0500	<0.0250	<0.0200	<0.0200	<0.0500	0.0610	0.0346	0.00509
	Anthracene	mg/kg	0.0040	0.047	0.25	< 0.00400	< 0.00400	< 0.00400	< 0.00400	< 0.00400	< 0.00400	< 0.00400	< 0.00400	< 0.00400	-
		mg/kg	0.010	0.032	0.39	0.0330	0.0340	0.0270	0.0130	<0.0130	0.0130	0.0270	0.0340	0.0240	0.0104
	Benzo(b&i)fluoranthene	mg/kg	0.010	-	-	0.0940	0.0980	0.0800	0.0380	0.0320	0.0320	0.0800	0.0130	0.0684	0.00130
	Benzo(b+j+k)fluoranthene	mg/kg	0.015	-	-	0.0940	0.0980	0.0800	0.0380	0.0320	0.0320	0.0800	0.0980	0.0684	0.0313
	Benzo(e)pyrene	mg/kg	0.010	-	-	0.0890	0.0940	0.0800	0.0360	0.0310	0.0310	0.0800	0.0940	0.0660	0.0301
	Benzo(g,h,i)perylene	mg/kg	0.010	0.17	3.2	0.0260	0.0270	0.0250	0.0130	0.0110	0.0110	0.0250	0.0270	0.0204	0.00773
suo	Benzo(k)fluoranthene	mg/kg	0.010	0.24	13	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	-
carb	Chrysene	mg/kg	0.010	0.057	0.86	<0.220	<0.240	0.191	0.0900	0.0800	0.0800	0.0900	0.191	0.120	0.0614
ydro	Dibenz(a,h)anthracene	mg/kg	0.0050	0.0062	0.14	0.0166	0.0153	0.0121	<0.00500	<0.00600	<0.00500	0.0121	0.0166	0.0108	0.00236
tic H		mg/kg	0.010	0.11	2.4	0.0370	0.0300	0.0260	0.0120	0.0120	0.0120	0.0260	0.0370	0.0234	0.0111
oma		mg/kg	0.010	0.021	0.14	0.0470	0.0480	0.0460	0.0220	0.0190	0.0190	0.0460	0.0480	0.0364	0.0146
ic Ar	1-Methylnaphthalene	ma/ka	0.010	-	J.Z	0.588	0.612	0.532	0.256	0.228	0.228	0.532	0.612	0.443	0.186
'cycli	2-Methylnaphthalene	mg/kq	0.010	0.020	0.20	0.944	0.993	0.850	0.437	0.390	0.390	0.850	0.993	0.723	0.287
Poly	Naphthalene	mg/kg	0.010	0.035	0.39	0.226	0.233	0.197	0.127	0.127	0.127	0.197	0.233	0.182	0.0520
	Perylene	mg/kg	0.010	-	-	0.0170	0.0160	0.0120	0.0190	0.0170	0.0120	0.0170	0.0190	0.0162	0.00259
	Phenanthrene	mg/kg	0.010	0.042	0.52	0.687	0.708	0.590	0.273	0.248	0.248	0.590	0.708	0.501	0.224
	Pyrene	mg/kg	0.010	0.053	0.88	0.0580	0.0600	0.0490	0.0240	0.0220	0.0220	0.0490	0.0600	0.0426	0.0184
	Quinoline	mg/kg	0.010	-	-	<0.0500	<0.0500	< 0.0500	<0.0500	< 0.0500	< 0.0500	<0.0500	<0.0500	<0.0500	-
	d10-Acenaphthene	%	-	-	-	114	110	109	105	110	105	110	114	110	3.41
	uiz-Giliysene d8-Nanhthalana	% %	-	-	-	120	113	114	00 5	116	00 5	114	120	115	2.8/
	d10-Phenanthrene	%	-	-	-	113	105	105	104	109	104	106	113	107	3.38
	B(a)P Total Potency Equivalent	mg/kg	0.020	-	-	0.0440	0.0460	0.0370	<0.0200	<0.0200	<0.0200	0.0370	0.0460	0.0334	0.00486
1	IACR (CCME)	mg/kg	0.15	-	-	0.880	0.920	0.790	0.380	0.340	0.340	0.790	0.920	0.662	0.280

Value > Lower SQG. Value > Upper SQG.

Γ

Notes: All summary stats calculated to 3 significant figures.

Table H.7: Chemistry of Sediment Samples Collected Concurrent with Biological Samples, September 2020

				BC Se	diment					Mine-ex	posed				
				Qua	ality					GH ERC /	RG EL20				
	Analyte	Units	I RI	Guiu	ennes										
	Analyte	Onito		Lower	Upper	RG_EL20-1	RG_EL20-2	RG_EL20-3	RG_EL20-4	RG_EL20-5	Minima	Madian	Maximum	Maan	Standard
				SQG	SQG						Minimum	Median	Maximum	Mean	Deviation
	1					15-Sep-20	16-Sep-20	16-Sep-20	16-Sep-20	16-Sep-20					
Physical	Moisture	%	0.25	-	-	26.3	33.7	25.5	31.6	23.8	23.8	26.3	33.7	28.2	4.24
Tests	pH(1:2 Soil:Water)	pН	0.10	-	-	8.42	8.48	8.50	8.54	8.48	8.42	8.48	8.54	8.48	0.0434
	% Gravel (>2 mm)	%	1.0	-	-	3.50	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	3.50	1.50	-
	% Sand (2.00 mm - 1.00 mm)	%	1.0	-	-	4.00	1.80	1.40	<1.00	1.10	<1.00	1.40	4.00	1.86	1.26
	% Sand (1.00 mm - 0.50 mm)	%	1.0	-	-	7.20	3.40	11.1	3.70	20.8	3.40	7.20	20.8	9.24	7.18
ize	% Sand (0.50 mm - 0.25 mm)	%	1.0	-	-	12.9	5.70	29.0	29.9	54.0	5.70	29.0	54.0	26.3	18.7
e N	% Sand (0.25 mm - 0.125 mm)	%	1.0	-	-	17.3	31.6	18.6	31.9	14.3	14.3	18.6	31.9	22.7	8.37
artic	% Sand (0.125 mm - 0.063 mm)	%	1.0	-	-	16.3	31.5	14.2	17.9	3.50	3.50	16.3	31.5	16.7	10.0
<u>с</u>	% Silt (0.063 mm - 0.0312 mm)	%	1.0	-	-	16.9	13.7	11.2	8.40	2.50	2.50	11.2	16.9	10.5	5.48
	% Silt (0.0312 mm - 0.004 mm)	%	1.0	-	-	18.0	9.10	10.8	5.90	2.60	2.60	9.10	18.0	9.28	5.80
	% Clay (<4 μm)	%	1.0	-	-	3.80	2.50	2.90	1.90	1.10	1.10	2.50	3.80	2.44	1.02
	Texture	-	-	-	-	Sandy loam	Loamy sand	Loamy sand	Sand	Sand	1.50	1.66	2.11	1.00	0.660
		% ma/ka	0.050	-	-	3.11 4.220	1.00 5.040	2.01	1.52	1.59 5.200	1.52	1.00 5.200	5.11	1.90 5.210	0.000
	Antimony (Sh)	mg/kg	0.10	-	-	4,320	5,040	0,350	5,540	0,360	4,320	5,300	5,670	5,210	0.0217
	Antimony (SD)	mg/kg	0.10	5.0	- 17	0.330	3.82	4.81	4 30	1 99	3.82	0.330	1 99	0.330	0.0217
	Barium (Ba)	mg/kg	0.10		-	81.1	90.7	95.0	92.2	4.33	81.1	92.2	95.0	90.5	5.46
	Beryllium (Be)	ma/ka	0.10	-	-	0.360	0.350	0.440	0,390	0.420	0,350	0,390	0,440	0.392	0.0383
	Bismuth (Bi)	ma/ka	0.20	-	-	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	-
	Boron (B)	ma/ka	5.0	-	-	6.30	6.60	9.10	7.60	7.20	6.30	7.20	9.10	7.36	1.10
	Cadmium (Cd)	mg/kg	0.020	0.60	3.5	0.559	0.422	0.540	0.488	0.565	0.422	0.540	0.565	0.515	0.0601
	Calcium (Ca)	mg/kg	50	-	-	90,100	47,800	88,000	56,500	83,300	47,800	83,300	90,100	73,100	19,600
	Chromium (Cr)	mg/kg	0.50	37	90	13.9	12.2	15.8	13.5	14.6	12.2	13.9	15.8	14.0	1.33
	Cobalt (Co)	mg/kg	0.10	-	-	2.74	2.76	2.97	3.02	3.09	2.74	2.97	3.09	2.92	0.158
	Copper (Cu)	mg/kg	0.50	36	197	6.58	5.61	6.83	5.96	6.78	5.61	6.58	6.83	6.35	0.540
	Iron (Fe)	mg/kg	50	21,200	43,766	8,920	8,280	9,700	8,980	9,940	8,280	8,980	9,940	9,160	664
	Lead (Pb)	mg/kg	0.50	35	91	3.96	4.14	4.45	4.66	4.34	3.96	4.34	4.66	4.31	0.271
	Lithium (Li)	mg/kg	2.0	-	-	6.60	6.40	7.50	6.60	6.40	6.40	6.60	7.50	6.70	0.458
	Magnesium (Mg)	mg/kg	20	-	-	14,200	12,300	14,500	12,100	11,600	11,600	12,300	14,500	12,900	1,320
<u>s</u>	Manganese (Mn)	mg/kg	1.0	460	1,100	385	260	333	294	372	260	333	385	329	52.4
Meta	Mercury (Hg)	mg/kg	0.0050	0.17	0.49	0.0166	0.0160	0.0161	0.0137	0.0115	0.0115	0.0160	0.0166	0.0148	0.00215
-	Molybdenum (Mo)	mg/kg	0.10	25	23000	1.24	0.880	1.17	0.960	1.18	0.880	1.17	1.24	1.09	0.156
	Nickel (Ni)	mg/kg	0.50	16	75	13.5	11.0	13.1	11.9	13.4	11.0	13.1	13.5	12.6	1.09
	Phosphorus (P)	mg/kg	50	-	-	1,090	1,100	1,280	1,100	1,070	1,070	1,100	1,280	1,130	85.8
	Potassium (K)	mg/kg	100	-	-	1,120	1,310	1,610	1,500	1,460	1,120	1,460	1,610	1,400	190
	Selenium (Se)	mg/kg	0.20	2.0	-	0.480	0.390	0.430	0.360	0.320	0.320	0.390	0.480	0.396	0.0619
	Silver (Ag)	mg/kg	0.10	0.50	-	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	-
	Sodium (Na)	mg/kg	50	-	-	106	85.0	111	89.0	97.0	85.0	97.0	111	97.6	11.0
	Strontium (Sr)	mg/kg	0.50	-	-	124	66.3	~1 000	/8.1	110	00.3	111	124	99.1	25.3
	Sullul (S)	mg/kg	1,000	-	-	<1,000	<1,000	<1,000	<1,000	<1,000	-	- 0.150	-	- 0.151	-
	Tin (Sn)	mg/kg	2.0	-	-	<2.00	<pre>0.142</pre>	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	0.00733
	Titanium (Ti)	mg/kg	1.0	-	-	18.7	16.2	16.7	15.4	14 0	14 0	16.2	18.7	16.2	1 73
	Tunasten (W)	ma/ka	0.50	-	-	<0.500	< 0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	-
	Uranium (U)	mg/kg	0.050	-	-	1.02	0.798	1.03	0.836	0.925	0.798	0.925	1.03	0.922	0.105
	Vanadium (V)	mg/kg	0.20	-	-	21.7	22.9	27.1	26.3	26.3	21.7	26.3	27.1	24.9	2.40
	Zinc (Zn)	mg/kg	2.0	123	315	49.3	48.5	54.8	53.1	55.3	48.5	53.1	55.3	52.2	3.13
	Zirconium (Zr)	mg/kg	1.0	-	-	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	-
	Acenaphthene	mg/kg	0.0050	0.0067	0.089	<0.00500	<0.00500	<0.00500	<0.00500	<0.00500	<0.00500	<0.00500	<0.00500	<0.00500	-
	Acenaphthylene	mg/kg	0.0050	0.0059	0.13	<0.00500	<0.00500	<0.00500	<0.00500	<0.00500	<0.00500	<0.00500	<0.00500	<0.00500	-
	Acridine	mg/kg	0.010	-	-	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	-
	Anthracene	mg/kg	0.0040	0.047	0.25	<0.00400	<0.00400	<0.00400	<0.00400	<0.00400	<0.00400	<0.00400	<0.00400	<0.00400	-
	Benz(a)anthracene	mg/kg	0.010	0.032	0.39	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	-
	Benzo(a)pyrene	mg/kg	0.010	0.032	0.78	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	-
	Benzo(b&j)fluoranthene	mg/kg	0.010	-	-	< 0.0100	<0.0100	< 0.0100	<0.0100	< 0.0100	<0.0100	<0.0100	<0.0100	<0.0100	-
	Benzo(b+j+k)fluoranthene	mg/kg	0.015	-	-	<0.0150	<0.0150	<0.0150	<0.0150	<0.0150	<0.0150	<0.0150	<0.0150	<0.0150	-
		mg/kg	0.010	- 0.17	-	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	-
ñ	Benzo(g,n,i)perylene	mg/kg	0.010	0.17	3.Z	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	-
rbor	Chrysene	mg/kg	0.010	0.24	0.86	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	-
roca	Dibenz(a b)anthracene	mg/kg	0.0050	0.007	0.00	<0.0200	<0.01500	<0.01500	<0.01500	<0.0130	<0.01500	<0.01500	<0.0230	<0.01500	-
Hyd	Fluoranthene	ma/ka	0.010	0.11	2.4	< 0.0100	< 0.0100	< 0.0100	<0.0100	< 0.0100	<0.0100	<0.0100	<0.0100	<0.0100	-
atic	Fluorene	mg/kg	0.010	0.021	0.14	< 0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	-
rom	Indeno(1,2,3-c,d)pyrene	mg/kg	0.010	0.20	3.2	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	-
lic A	1-Methylnaphthalene	mg/kg	0.010	-	-	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	-
/c/c	2-Methylnaphthalene	mg/kg	0.010	0.020	0.20	0.0550	0.0100	0.0150	0.0100	0.0150	0.0100	0.0150	0.0550	0.0210	0.0192
Poly	Naphthalene	mg/kg	0.010	0.035	0.39	0.0300	<0.0100	<0.0100	<0.0100	0.0100	<0.0100	<0.0100	0.0300	0.0140	0.0113
	Perylene	mg/kg	0.010	-	-	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	-
	Phenanthrene	mg/kg	0.010	0.042	0.52	0.0510	0.0200	0.0290	0.0230	0.0290	0.0200	0.0290	0.0510	0.0304	0.0122
	Pyrene	mg/kg	0.010	0.053	0.88	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	-
	Quinoline	mg/kg	0.010	-	-	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	-
	d10-Acenaphthene	%	-	-	-	104	108	102	109	111	102	108	111	107	3.79
	d12-Chrysene	%	-	-	-	116	119	111	117	119	111	117	119	116	3.27
	d8-Naphthalene	%	-	-	-	101	103	97.5	102	104	97.5	102	104	102	2.65
	d10-Phenanthrene	%	-	-	-	106	109	104	108	109	104	108	109	107	2.47
	B(a)P I otal Potency Equivalent	mg/kg	0.020	-	-	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	-
I	IAUR (UUME)	mg/kg	U.15	- 1	- 1	<0.150	<0.150	<0.150	<0.150	<0.150	<0.150	<0.150	<0.150	<0.150	- 1

Value > Lower SQG. Value > Upper SQG.

Notes: All summary stats calculated to 3 significant figures.

Table H.8: Summary Statistics for Analyte Concentrations in Sediment from Lotic Reference Areas, Used to Calculate Normal Range Values, 2017 to 2020 (Minnow 2020)

		Da	ta Collected	l from 2017 to	2020 (Minn	ow 2020)	
Parameter	n	Percent Censored (%)	Minimum	Maximum	Mean	2.5th Percentile	97.5th percentile
Moisture	76	0	20.8	96.0	55.8	24.6	94.6
pH 1:9	4	0	7.04	7.38	7.23	7.04	7.38
рп (1:2) Total Organic Carbon	09 75	0	1.10	0.79	7.92 5.06	1.12	0.70
Aluminum (mg/kg)	76	0	1.43	28 200	7 423	1.45	22 200
Antimony (ma/kg)	76	6.58	<0.1	1.61	0.537	<0.1	1.57
Arsenic (mg/kg)	76	0	1.03	16.6	5.75	1.14	14.7
Barium (mg/kg)	76	0	12.7	313	141	13.0	306
Beryllium (mg/kg)	76	2.63	<0.1	1.66	0.539	<0.11	1.30
Bismuth (mg/kg)	76	89.5	<0.2	0.370	0.207	<0.2	0.310
Boron (mg/kg)	76	22.4	<5	26.9	8.48	<5	23.0
Calcium (mg/kg)	76	0	4 940	2.51	90.210	0.250	2.03
Chromium (mg/kg)	76	0	5.02	71 1	16.4	5 15	59.7
Cobalt (mg/kg)	76	0	0.850	14.7	4.78	0.880	11.2
Copper (mg/kg)	76	0	1.17	39.1	12.3	1.23	35.2
Iron (mg/kg)	76	0	2,350	42,300	13,151	2,480	33,000
Lead (mg/kg)	76	0	1.37	25.5	8.45	1.48	25.0
Lithium (mg/kg)	76	1.32	<2	40.1	11.6	4.60	30.8
Magnesium (mg/kg)	76	0	2,090	59,900	17,479	2,130	57,200
Manganese (mg/kg)	76	0	94.5	1,060	365	95.4	887
Mercury (mg/kg) Melyhdenum (mg/kg)	76	1.32	<0.005	6.00	1.0072	0.00030	6.88
Nickel (mg/kg)	76	0	5.67	55.2	21.5	6.12	43.6
Phosphorus (mg/kg)	76	0	281	1.890	1.094	302	1.710
Potassium (mg/kg)	76	0	390	5,890	1,734	400	4,610
Selenium (mg/kg)	76	0	0.220	6.11	1.16	0.240	3.79
Silver (mg/kg)	76	15.8	<0.1	0.310	0.154	<0.1	0.270
Sodium (mg/kg)	76	9.21	<50	199	107	<50	197
Strontium (mg/kg)	76	0	39.2	307	90.6	39.7	229
Suphur (mg/kg) Thallium (mg/kg)	76	90.1	< 1000	1,400	0.303	< 1000	1,100
Tin (mg/kg)	76	100	<0.00	<2	<2	<2	<2
Titanium (mg/kg)	76	0	6.40	85.6	22.6	7.10	68.0
Tungsten (mg/kg)	76	100	<0.5	<0.5	<0.5	<0.5	<0.5
Uranium (mg/kg)	76	0	0.389	4.84	1.03	0.411	1.80
Vanadium (mg/kg)	76	0	4.74	58.8	26.8	5.02	55.3
Zinc (mg/kg)	76	0	31.9	211	106	35.1	194
Zirconium (mg/kg)	76	72.4	<1	2.80	1.09	<0.005	1.80
Acenaphthylene (mg/kg)	76	100	<0.005	<0.0597	<0.00373	<0.005	<0.038
Acridine (mg/kg)	76	98.7	< 0.01	0.0240	0.0102	< 0.01	< 0.024
Anthracene (mg/kg)	76	96.1	< 0.004	0.0107	0.00412	< 0.004	0.00500
Benz(a)anthracene (mg/kg)	76	93.4	<0.01	0.0260	0.0108	<0.01	0.0240
Benzo(a)pyrene (mg/kg)	76	97.4	< 0.01	0.0270	0.0103	<0.01	0.0100
Benzo(b+j)fluoranthene (mg/kg)	76	43.4	< 0.01	0.0630	0.0189	< 0.01	0.0460
Benzo€pyrene (mg/kg) Bonzo(b±i±k)fluoranthono (mg/kg)	76	48.7	<0.01	0.0640	0.0180	<0.01	0.0520
Benzo(g h i)pervlene (mg/kg)	76	85.5	<0.013	0.0070	0.0210	<0.013	0.0490
Benzo(k)fluoranthene (mg/kg)	76	98.7	< 0.01	0.0130	0.0101	< 0.01	< 0.013
Chrysene (mg/kg)	76	26.3	< 0.01	0.169	0.0410	< 0.01	0.156
Dibenz(a,h)anthracene (mg/kg)	76	98.7	< 0.005	0.00510	0.00500	<0.005	<0.005
Fluoranthene (mg/kg)	76	77.6	<0.01	0.0460	0.0124	<0.01	0.0420
Fluorene (mg/kg)	76	55.3	< 0.01	0.144	0.0230	< 0.01	0.108
Indeno(1,2,3-c,d)pyrene (mg/kg)	76	98.7	< 0.01	0.0160	0.0101	< 0.01	< 0.016
2-Methylnaphthalene (mg/kg)	76	22.4 11.8	<0.01	0.002	0.105	<0.01	0.493
Naphthalene (mg/kg)	76	26.3	<0.01	0 344	0.0562	<0.01	0.000
Perylene (mg/kg)	76	82.9	< 0.01	0.0590	0.0131	< 0.01	0.0380
Phenanthrene (mg/kg)	76	5.26	<0.01	0.755	0.132	0.0120	0.621
Pyrene (mg/kg)	76	59.2	<0.01	0.0530	0.0156	<0.01	0.0520
Quinoline (mg/kg)	76	100	< 0.01	< 0.12	< 0.01	<0.01	< 0.09
d10.Acenaphthene (mg/kg)	76	0	62.5	116	86.7	64.2	114
d12.Chrysene (mg/kg)	/6	0	/6.2 E4.0	126	102	81.3	126
uo.wapntnaiene (mg/kg)	70	0	04.U	110	02.9 02.4	58./ 76./	110
B a P Total Potency Fourivalent (mo/kg)	76	82.9	<0.02	0.0870	0 0226	<0.4	0 0400
IACR CCME (ma/ka)	51	29.4	<0.15	0.710	0.248	<0.15	0.550
	-			-	-		-

Percent Censoring > 75%.

Notes: No normal ranges were used for analytes with greater than 75 % censoring.

APPENDIX H WATER QUALITY LAB REPORTS

Teck Coal Ltd. ATTN: Cait Good 421 Pine Avenue Sparwood BC VOB 2G0 Date Received: 05-SEP-20 Report Date: 19-JAN-21 13:37 (MT) Version: FINAL REV. 2

Client Phone: 250-425-8202

Certificate of Analysis

Lab Work Order #: L2499489

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: VPO00689999 REGIONAL EFFECTS PROGRAM REP-GHO-2020-09-04

Comments: 19-JAN-2021 Alkalinity (Species) result revised on L2499489-1 to -5.

Lyudmyla Shvets, B.Sc. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 2559 29 Street NE, Calgary, AB T1Y 7B5 Canada | Phone: +1 403 291 9897 | Fax: +1 403 291 0298 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🔊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

ALS ENVIRONMENTAL ANALYTICAL REPORT

L2499489 CONTD.... PAGE 2 of 8 19-JAN-21 13:37 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L2499489-1 WS 04-SEP-20 12:45 RG_GH- SCW3_WS_2020- 09-04-1245	L2499489-2 WS 04-SEP-20 13:15 RG_GH- SCW1_WS_2020- 09-04-1315	L2499489-3 WS 04-SEP-20 10:00 RG_RIVER_WS_2 020-09-04-1000	L2499489-4 WS 04-SEP-20 12:15 RG_FBLANK_WS_ 2020-09-04-1215	L2499489-5 WS 04-SEP-20 14:00 RG_TRIP_WS_202 0-09-04-1400
Grouping	Analyte					
WATER						
Physical Tests	Conductivity (@ 25C) (uS/cm)	526	275	281	<2.0	<2.0
	Hardness (as CaCO3) (mg/L)	353	167	166	<0.50	нтс <0.50
	рН (рН)	8.30	8.31	8.29	5.71	5.57
	ORP (mV)	439	475	409	411	477
	Total Suspended Solids (mg/L)	2.4	<1.0	<1.0	<1.0	<1.0
	Total Dissolved Solids (mg/L)	338 DLHC	DLHC 153	DLHC 152	<10	<10
	Turbidity (NTU)	1.46	0.69	0.61	<0.10	<0.10
Anions and	Acidity (as CaCO3) (mg/L)	<1.0	<1.0	<1.0	1.7	1.7
Nutrients	Alkalinity Bicarbonate (as CaCO3) (mg/l)					
	Alkalinity, Carbonate (as CaCC3) (mg/L)	148	139	132	<1.0	<1.0
	Alkalinity, Budrovide (as CaCC3) (mg/L)	1.6	2.2	1.4	<1.0	<1.0
	Alkalinity, Total (as $CaCO3$) (mg/L)	<1.0	<1.0	<1.0	<1.0	<1.0
	Ammonia as N (mg/L)	150	142	133	<1.0 RRV	<1.0 RRV
	Bromide (Br) (mg/L)	0.0216	0.0096	<0.0050	0.0150	0.201
	Chloride (Cl) (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
		1.94	0.31	0.31	<0.10	<0.10
		0.155	0.171	0.170	<0.020	<0.020
	Nitrate (as N) (mg/L)	111	102	106	0.0	0.0
		2.02	0.182	0.181	<0.0050	<0.0050
	Total Kieldebl Nitrogen (mg/L)	<0.0010 тклі	<0.0010	<0.0010	<0.0010	<0.0010 RRV
	Orthophophoto Dissolved (as B) (mg/L)	<0.050	<0.050	<0.050	<0.050	0.151
	Dheepherus (D) Total (mg/L)	0.0018	0.0014	0.0014	<0.0010	<0.0010
		0.0033	<0.0020	<0.0020	<0.0020	<0.0020
	Suirate (SO4) (mg/L)	158	21.9	22.4	<0.30	<0.30
	Anion Sum (meq/L)	6.49	3.32	3.16	<0.10	<0.10
	Cation Sum (meq/L)	7.18	3.38	3.36	<0.10	<0.10
	Cation - Anion Balance (%)	5.0	0.9	3.1	0.0	0.0
Inorganic /	Total Organic Carbon (mg/L)	0.82	<0.50	<0.50	<0.50	
Total Motals	Aluminum (Al)-Total (mg/L)	0.67	<0.50	<0.50	<0.50	<0.50
Total Metals	Antimony (Sh)-Total (mg/L)	0.0603	0.0125	0.0120	<0.0030	<0.0030
	Arrania (Ap) Total (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Arsenic (AS)-Total (mg/L)	0.00017	0.00015	0.00013	<0.00010	<0.00010
	Bandin (Ba)-10tal (Ing/L)	0.0502	0.0485	0.0478	<0.00010	<0.00010
	Bismuth (Bi) Total (mg/L)	<0.020	<0.020	<0.020	<0.020	<0.020
		<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
		<0.010	<0.010	<0.010	<0.010	<0.010
	Caomium (Co)-Total (ug/L)	0.0165	0.0096	0.0119	<0.0050	<0.0050

* Please refer to the Reference Information section for an explanation of any qualifiers detected.

ALS ENVIRONMENTAL ANALYTICAL REPORT

L2499489 CONTD.... PAGE 3 of 8 19-JAN-21 13:37 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L2499489-1 WS 04-SEP-20 12:45 RG_GH- SCW3_WS_2020- 09-04-1245	L2499489-2 WS 04-SEP-20 13:15 RG_GH- SCW1_WS_2020- 09-04-1315	L2499489-3 WS 04-SEP-20 10:00 RG_RIVER_WS_2 020-09-04-1000	L2499489-4 WS 04-SEP-20 12:15 RG_FBLANK_WS_ 2020-09-04-1215	L2499489-5 WS 04-SEP-20 14:00 RG_TRIP_WS_202 0-09-04-1400
Grouping	Analyte					
WATER						
Total Metals	Calcium (Ca)-Total (mg/L)	82.0	49.2	49.1	<0.050	<0.050
	Chromium (Cr)-Total (mg/L)	0.00026	0.00018	0.00020	<0.00010	<0.00010
	Cobalt (Co)-Total (ug/L)	<0.10	<0.10	<0.10	<0.10	<0.10
	Copper (Cu)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Iron (Fe)-Total (mg/L)	0.065	0.018	0.016	<0.010	<0.010
	Lead (Pb)-Total (mg/L)	0.000064	<0.000050	<0.000050	<0.000050	<0.000050
	Lithium (Li)-Total (mg/L)	0.0072	0.0035	0.0023	<0.0010	<0.0010
	Magnesium (Mg)-Total (mg/L)	38.4	12.2	12.1	<0.10	<0.10
	Manganese (Mn)-Total (mg/L)	0.00372	0.00187	0.00183	<0.00010	<0.00010
	Mercury (Hg)-Total (ug/L)	0.00056	<0.00050	<0.00050	<0.00050	<0.00050
	Molybdenum (Mo)-Total (mg/L)	0.00113	0.00107	0.00110	<0.000050	<0.000050
	Nickel (Ni)-Total (mg/L)	0.00065	<0.00050	0.00054	<0.00050	<0.00050
	Potassium (K)-Total (mg/L)	0.700	0.390	0.371	<0.050	<0.050
	Selenium (Se)-Total (ug/L)	26.1	1.20	1.07	<0.050	<0.050
	Silicon (Si)-Total (mg/L)	2.14	1.95	1.89	<0.10	<0.10
	Silver (Ag)-Total (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Sodium (Na)-Total (mg/L)	2.74	0.722	0.716	<0.050	<0.050
	Strontium (Sr)-Total (mg/L)	0.286	0.217	0.224	<0.00020	<0.00020
	Thallium (TI)-Total (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Tin (Sn)-Total (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Titanium (Ti)-Total (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Uranium (U)-Total (mg/L)	0.00170	0.000777	0.000748	<0.000010	<0.000010
	Vanadium (V)-Total (mg/L)	0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Zinc (Zn)-Total (mg/L)	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030
Dissolved Metals	Dissolved Mercury Filtration Location	FIELD	FIELD	FIELD	FIELD	
	Dissolved Metals Filtration Location	FIELD	FIELD	FIELD	FIELD	LAB
	Aluminum (Al)-Dissolved (mg/L)	<0.0030	<0.0030	<0.0030	<0.0030	
	Antimony (Sb)-Dissolved (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	
	Arsenic (As)-Dissolved (mg/L)	0.00014	0.00014	<0.00010	<0.00010	
	Barium (Ba)-Dissolved (mg/L)	0.0522	0.0457	0.0466	<0.00010	
	Beryllium (Be)-Dissolved (ug/L)	<0.020	<0.020	<0.020	<0.020	
	Bismuth (Bi)-Dissolved (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	
	Boron (B)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	
	Cadmium (Cd)-Dissolved (ug/L)	0.0149	0.0067	0.0088	<0.0050	
	Calcium (Ca)-Dissolved (mg/L)	82.0	47.9	47.5	<0.050	<0.050
	Chromium (Cr)-Dissolved (mg/L)	0.00018	0.00022	0.00019	<0.00010	
	Cobalt (Co)-Dissolved (ug/L)	<0.10	<0.10	<0.10	<0.10	

* Please refer to the Reference Information section for an explanation of any qualifiers detected.

ALS ENVIRONMENTAL ANALYTICAL REPORT

L2499489 CONTD.... PAGE 4 of 8 19-JAN-21 13:37 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L2499489-1 WS 04-SEP-20 12:45 RG_GH- SCW3_WS_2020- 09-04-1245	L2499489-2 WS 04-SEP-20 13:15 RG_GH- SCW1_WS_2020- 09-04-1315	L2499489-3 WS 04-SEP-20 10:00 RG_RIVER_WS_2 020-09-04-1000	L2499489-4 WS 04-SEP-20 12:15 RG_FBLANK_WS_ 2020-09-04-1215	L2499489-5 WS 04-SEP-20 14:00 RG_TRIP_WS_202 0-09-04-1400
	Analyte					
Disseland Matels						
Dissolved metals	Licon (Eq) Dissolved (mg/L)	<0.00020	<0.00020	<0.00020	<0.00020	
	lion (Fe)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	
	Lead (PD)-Dissolved (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	
	Lithium (Li)-Dissolved (mg/L)	0.0078	0.0028	0.0027	<0.0010	
	Magnesium (Mg)-Dissolved (mg/L)	35.9	11.4	11.5	<0.10	<0.0050
	Manganese (Mn)-Dissolved (mg/L)	0.00096	0.00074	0.00082	<0.00010	
	Mercury (Hg)-Dissolved (mg/L)	<0.000050	<0.000050	<0.0000050	<0.0000050	
	Molybdenum (Mo)-Dissolved (mg/L)	0.00111	0.00108	0.00105	<0.000050	
	Nickel (Ni)-Dissolved (mg/L)	0.00057	<0.00050	<0.00050	<0.00050	
	Potassium (K)-Dissolved (mg/L)	0.711	0.400	0.412	<0.050	<0.050
	Selenium (Se)-Dissolved (ug/L)	24.4	1.07	1.08	<0.050	
	Silicon (Si)-Dissolved (mg/L)	1.90	1.70	1.74	<0.050	
	Silver (Ag)-Dissolved (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	
	Sodium (Na)-Dissolved (mg/L)	2.68	0.735	0.753	<0.050	<0.050
	Strontium (Sr)-Dissolved (mg/L)	0.301	0.232	0.223	<0.00020	
	Thallium (TI)-Dissolved (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	
	Tin (Sn)-Dissolved (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	
	Titanium (Ti)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	
	Uranium (U)-Dissolved (mg/L)	0.00162	0.000726	0.000704	<0.000010	
	Vanadium (V)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	
	Zinc (Zn)-Dissolved (mg/L)	<0.0010	0.0016	0.0010	<0.0010	

* Please refer to the Reference Information section for an explanation of any qualifiers detected.

QC Samples with Qualifiers & Comments:

QC Type Description	Parameter	Qualifier	Applies to Sample Number(s)
Method Blank	Nickel (Ni)-Total	MB-LOR	L2499489-4, -5
Laboratory Control Sample	Bismuth (Bi)-Total	MES	L2499489-1, -2, -3, -5
Matrix Spike	Calcium (Ca)-Dissolved	MS-B	L2499489-5
Matrix Spike	Magnesium (Mg)-Dissolved	MS-B	L2499489-5
Matrix Spike	Sodium (Na)-Dissolved	MS-B	L2499489-5
Matrix Spike	Barium (Ba)-Total	MS-B	L2499489-1, -2, -3, -4, -5
Matrix Spike	Barium (Ba)-Total	MS-B	L2499489-1, -2, -3, -5
Matrix Spike	Calcium (Ca)-Total	MS-B	L2499489-1, -2, -3, -4, -5
Matrix Spike	Calcium (Ca)-Total	MS-B	L2499489-1, -2, -3, -5
Matrix Spike	Magnesium (Mg)-Total	MS-B	L2499489-1, -2, -3, -4, -5
Matrix Spike	Magnesium (Mg)-Total	MS-B	L2499489-1, -2, -3, -5
Matrix Spike	Strontium (Sr)-Total	MS-B	L2499489-1, -2, -3, -4, -5
Matrix Spike	Strontium (Sr)-Total	MS-B	L2499489-1, -2, -3, -5

Qualifiers for Individual Parameters Listed:

Qualifier	Description
DLHC	Detection Limit Raised: Dilution required due to high concentration of test analyte(s).
HTC	Hardness was calculated from Total Ca and/or Mg concentrations and may be biased high (dissolved Ca/Mg results unavailable).
MB-LOR	Method Blank exceeds ALS DQO. Limits of Reporting have been adjusted for samples with positive hits below 5x blank level.
MES	Data Quality Objective was marginally exceeded (by < 10% absolute) for < 10% of analytes in a Multi-Element Scan / Multi-Parameter Scan (considered acceptable as per OMOE & CCME).
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RRV	Reported Result Verified By Repeat Analysis
TKNI	TKN result may be biased low due to Nitrate interference. Nitrate-N is > 10x TKN.

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**					
ACIDITY-PCT-CL	Water	Acidity by Automatic Titration	APHA 2310 Acidity					
This analysis is carried out endpoint.	using proced	ures adapted from APHA Method 2310 "Acidity". Acidity	y is determined by potentiometric titration to a specified					
ALK-MAN-CL	Water	Alkalinity (Species) by Manual Titration	APHA 2320 ALKALINITY					
This analysis is carried out pH 4.5 endpoint. Bicarbona	using proced ite, carbonate	ures adapted from APHA Method 2320 "Alkalinity". Tota and hydroxide alkalinity are calculated from phenolpht	al alkalinity is determined by potentiometric titration to a halein alkalinity and total alkalinity values.					
BE-D-L-CCMS-VA	Water	Diss. Be (low) in Water by CRC ICPMS	APHA 3030B/6020A (mod)					
Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by CRC ICPMS.								
BE-T-L-CCMS-VA	Water	Total Be (Low) in Water by CRC ICPMS	EPA 200.2/6020A (mod)					
Water samples are digeste	d with nitric a	nd hydrochloric acids, and analyzed by CRC ICPMS.						
BR-L-IC-N-CL	Water	Bromide in Water by IC (Low Level)	EPA 300.1 (mod)					
Inorganic anions are analyz	zed by Ion Ch	romatography with conductivity and/or UV detection.						
C-DIS-ORG-LOW-CL	Water	Dissolved Organic Carbon	APHA 5310 B-Instrumental					
This method is applicable to pretreatment: Unfiltered sau carrier gas containing the c halogen scrubber into a sau and dissolved inorganic cau dioxide.	This method is applicable to the analysis of ground water, wastewater, and surface water samples. The form detected depends upon sample pretreatment: Unfiltered sample = TC, 0.45um filtered = TDC. Samples are injected into a combustion tube containing an oxidation catalyst. The carrier gas containing the combustion product from the combustion tube flows through an inorganic carbon reactor vessel and is then sent through a halogen scrubber into a sample cell set in a non-dispersive infrared gas analyzer (NDIR) where carbon dioxide is detected. For total inorganic carbon and dissolved inorganic carbon, the sample is injected into an IC reactor vessel where only the IC component is decomposed to become carbon dioxide.							
The peak area generated b subtracting the TIC from the	y the NDIR in e TC.	dicates the TC/TDC or TIC/DIC as applicable. The tota	l organic carbon content of the sample is calculated by					

TOC = TC-TIC, DOC = TDC-DIC, Particulate = Total - Dissolved.

C-TOT-ORG-LOW-CL Water Total Organic Carbon

This method is applicable to the analysis of ground water, wastewater, and surface water samples. The form detected depends upon sample

pretreatment: Unfiltered sample = TC, 0.45um filtered = TDC. Samples are injected into a combustion tube containing an oxidation catalyst. The carrier gas containing the combustion product from the combustion tube flows through an inorganic carbon reactor vessel and is then sent through a halogen scrubber into a sample cell set in a non-dispersive infrared gas analyzer (NDIR) where carbon dioxide is detected. For total inorganic carbon and dissolved inorganic carbon, the sample is injected into an IC reactor vessel where only the IC component is decomposed to become carbon dioxide. The peak area generated by the NDIR indicates the TC/TDC or TIC/DIC as applicable. The total organic carbon content of the sample is calculated by subtracting the TIC from the TC. TOC = TC-TIC, DOC = TDC-DIC, Particulate = Total - Dissolved. CL-L-IC-N-CL Water Chloride in Water by IC EPA 300.1 (mod) Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. APHA 2510B EC-L-PCT-CL Water Electrical Conductivity (EC) Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water sample. Conductivity measurements are temperature-compensated to 25C. Water Fluoride in Water by IC EPA 300.1 (mod) Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. HARDNESS-CALC-VA Water Hardness APHA 2340B Hardness (also known as Total Hardness) is calculated from the sum of Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. Dissolved Calcium and Magnesium concentrations are preferentially used for the hardness calculation. HG-D-CVAA-VA Water Diss. Mercury in Water by CVAAS or CVAFS APHA 3030B/EPA 1631E (mod)

Water samples are filtered (0.45 um), preserved with hydrochloric acid, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS or CVAFS.

This analysis is carried out using procedures adapted from Method 1631 Rev. E. by the United States Environmental Protection Agency (EPA). The procedure involves a cold-oxidation of the acidified sample using bromine monochloride prior to a purge and trap concentration step and final reduction of the sample with stannous chloride. Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry.

IONBAL ANCE-BC-CL Water Ion Balance Calculation

Water

Cation Sum, Anion Sum, and Ion Balance (as % difference) are calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis). Because all aqueous solutions are electrically neutral, the calculated ion balance (% difference of cations minus anions) should be near-zero.

Cation and Anion Sums are the total meg/L concentration of major cations and anions. Dissolved species are used where available. Minor ions are included where data is present. Ion Balance is calculated as:

Ion Balance (%) = [Cation Sum-Anion Sum] / [Cation Sum+Anion Sum]

Dissolved Metals in Water by CRC ICPMS MET-D-CCMS-CL Water APHA 3030B/6020A (mod)

Total Mercury in Water by CVAFS (Ultra)

Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by CRC ICPMS.

Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

MET-D-CCMS-VA Water Dissolved Metals in Water by CRC ICPMS APHA 3030B/6020A (mod)

Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by CRC ICPMS.

Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

MET-T-CCMS-VA Total Metals in Water by CRC ICPMS Water EPA 200.2/6020A (mod) Water samples are digested with nitric and hydrochloric acids, and analyzed by CRC ICPMS.

Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

NH3-L-F-CL Water Ammonia, Total (as N) J. ENVIRON. MONIT., 2005, 7, 37-42, RSC

This analysis is carried out, on sulfuric acid preserved samples, using procedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Roslyn J. Waston et al

Water NO2-L-IC-N-CL Nitrite in Water by IC (Low Level)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

NO3-L-IC-N-CL

HG-T-U-CVAF-VA

EPA 300.1 (mod)

EPA 300.1 (mod)

EPA 1631 REV. E

APHA 1030F

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

ORP-CL	Water	Oxidation redution potential by elect.	ASIM D1498					
I his analysis is carried out published by the American metal-reference electrode e	In accordance Society for ⁻ Employed, in	ce with the procedure described in the "ASTM" method I Testing and Materials (ASTM). Results are reported as a mV.	D1498 "Oxidation-Reduction Potential of Water" observed oxidation-reduction potential of the platinum					
It is recommended that this	analysis be	conducted in the field.						
P-T-L-COL-CL	Water	Phosphorus (P)-Total	APHA 4500-P PHOSPHORUS					
This analysis is carried out after persulphate digestion	using proce of the samp	dures adapted from APHA Method 4500-P "Phosphorus le.	". Total Phosphorus is determined colourimetrically					
PH-CL	Water	рН	APHA 4500 H-Electrode					
pH is determined in the labor hold time from time of samp	oratory using pling (field a	g a pH electrode. All samples analyzed by this method for nalysis is recommended for pH where highly accurate re	or pH will have exceeded the 15 minute recommended sults are needed)					
PO4-DO-L-COL-CL	Water	Orthophosphate-Dissolved (as P)	APHA 4500-P PHOSPHORUS					
This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". Dissolved Orthophosphate is determined colourimetrically on a sample that has been lab or field filtered through a 0.45 micron membrane filter.								
SO4-IC-N-CL	Water	Sulfate in Water by IC	EPA 300.1 (mod)					
Inorganic anions are analyz	ed by Ion C	hromatography with conductivity and/or UV detection.						
SOLIDS-TDS-CL	Water	Total Dissolved Solids	APHA 2540 C					
A well-mixed sample is filter The increase in vial weight	red through represents t	a glass fibre filter paper. The filtrate is then evaporated the total dissolved solids (TDS).	to dryness in a pre-weighed vial and dried at $180 - 2$ °C.					
TECKCOAL-IONBAL-CL	Water	Ion Balance Calculation	APHA 1030E					
Cation Sum, Anion Sum, ar Correctness of Analysis). E should be near-zero. Cation and Anion Sums are	Cation Sum, Anion Sum, and Ion Balance (as % difference) are calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis). Because all aqueous solutions are electrically neutral, the calculated ion balance (% difference of cations minus anions) should be near-zero. Cation and Anion Sums are the total meq/L concentration of major cations and anions. Dissolved species are used where available. Minor ions are							
Included where data is pres	ent. Ion Ba Sum-Anion S	lance is calculated as: Sum] / [Cation Sum+Anion Sum]						
TKN-L-F-CL	Water	Total Kjeldahl Nitrogen	APHA 4500-NORG (TKN)					
This analysis is carried out Nitrogen is determined usin	using proce g block dige	dures adapted from APHA Method 4500-Norg D. "Block	Digestion and Flow Injection Analysis". Total Kjeldahl ce detection.					
TSS-L-CL	Water	Total Suspended Solids	APHA 2540 D-Gravimetric					
This analysis is carried out (TSS) are determined by filt	using proce tering a sam	dures adapted from APHA Method 2540 "Solids". Solids ple through a glass fibre filter, and by drying the filter at	are determined gravimetrically. Total suspended solids 104 deg. C.					
TURBIDITY-CL	Water	Turbidity	APHA 2130 B-Nephelometer					
This analysis is carried out	using proce	dures adapted from APHA Method 2130 "Turbidity". Turl	bidity is determined by the nephelometric method.					
** ALS test methods may inco	rporate mod	difications from specified reference methods to improve p	performance.					
The last two letters of the abo	ove test coo	le(s) indicate the laboratory that performed analytical and	alysis for that test. Refer to the list below:					
Laboratory Definition Code	Labora	atory Location						
CL	ALS EI	NVIRONMENTAL - CALGARY, ALBERTA, CANADA						
VA	ALS EI	NVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA	A, CANADA					
Chain of Custody Numbers:								
REP-GHO-2020-09-04								

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

			Workorder:	L2499489) F	Report Date:	19-JAN-21	Pa	ge 1 of 18
Client:	Teck Coal 421 Pine A Sparwood Cait Good	Ltd. venue BC V0B 2G0							
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
	1	Water							
Batch	⊾ R5223334	Water							
WG3403953- Acidity (as C	11 LCS aCO3)			91.3		%		85-115	12-SEP-20
WG3403953- Acidity (as C	10 MB aCO3)			1.4		mg/L		2	12-SEP-20
ALK-MAN-CL		Water							
Batch	R5223321								
WG3403880- Alkalinity, To	14 LCS otal (as CaCO	3)		99.7		%		85-115	12-SEP-20
WG3403880- Alkalinity, To	13 MB otal (as CaCO	3)		<1.0		mg/L		1	12-SEP-20
BE-D-L-CCMS-\	/A	Water							
Batch	R5223224								
Beryllium (Be	e)-Dissolved			97.5		%		80-120	12-SEP-20
WG3402812- Beryllium (Be	•1 MB e)-Dissolved		NP	<0.000020		mg/L		0.00002	12-SEP-20
BE-T-L-CCMS-V	/A	Water							
Batch	R5222495								
WG3401906- Beryllium (Be	3 DUP e)-Total		L2499489-1 <0.000020	<0.000020	RPD-NA	, mg/L	N/A	20	11-SEP-20
WG3401906- Beryllium (Be	2 LCS e)-Total			101.5		%		80-120	11-SEP-20
WG3401906- Beryllium (Be	•1 MB e)-Total			<0.000020		mg/L		0.00002	11-SEP-20
Beryllium (Be	• 4 MS e)-Total		L2499489-2	101.2		%		70-130	11-SEP-20
BR-L-IC-N-CL		Water							
Batch	R5216116		1 2400490 5						
Bromide (Br))		<0.050	<0.050	RPD-NA	. mg/L	N/A	20	06-SEP-20
WG3400344- Bromide (Br)	10 LCS			102.3		%		85-115	06-SEP-20
WG3400344- Bromide (Br)	6 LCS			106.4		%		85-115	06-SEP-20
WG3400344- Bromide (Br)	5 MB			<0.050		mg/L		0.05	06-SEP-20
WG3400344-	9 MB								

		Workorder: L2499489		9	Report Date: 19-JAN-21		Page 2 of 18	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
BR-L-IC-N-CL Batch R5216116	Water							
WG3400344-9 MB Bromide (Br)			<0.050		mg/L		0.05	06-SEP-20
WG3400344-8 MS Bromide (Br)		L2499489-5	101.9		%		75-125	06-SEP-20
C-DIS-ORG-LOW-CL	Water							
Batch R5222037 WG3402501-2 LCS Dissolved Organic Carb	on		104.3		%		80-120	10-SEP-20
WG3402501-1 MB Dissolved Organic Carb	on		<0.50		mg/L		0.5	10-SEP-20
Batch R5222076 WG3402559-2 LCS Dissolved Organic Carb	on		96.8		%		80-120	10-SEP-20
WG3402559-1 MB Dissolved Organic Carb	on		<0.50		mg/L		0.5	10-SEP-20
C-TOT-ORG-LOW-CL	Water							
Batch R5222037 WG3402501-2 LCS Total Organic Carbon			104.5		%		80-120	10-SEP-20
WG3402501-1 MB Total Organic Carbon			<0.50		mg/L		0.5	10-SEP-20
Batch R5222076 WG3402559-2 LCS			08.1		9/		00.400	
WG3402559-1 MB Total Organic Carbon			<0.50		mg/L		0.5	10-SEP-20
CL-L-IC-N-CL	Water							
Batch R5216116 WG3400344-7 DUP Chloride (Cl)		L2499489-5 <0.10	<0.10	RPD-N	A ma/L	N/A	20	06-SEP-20
WG3400344-10 LCS Chloride (Cl)		-	106.0	14	%		85-115	06-SEP-20
WG3400344-6 LCS Chloride (Cl)			106.6		%		85-115	06-SEP-20
WG3400344-5 MB Chloride (Cl)			<0.10		mg/L		0.1	06-SEP-20
WG3400344-9 MB Chloride (Cl)			<0.10		mg/L		0.1	06-SEP-20

		Workorder:	L2499489	Rep	oort Date: 19-JA	N-21	Pag	e 3 of 18
Test	Matrix	Reference	Result 0	Qualifier	Units	RPD	Limit	Analyzed
CL-L-IC-N-CL Batch R5216116 WG3400344-8 MS Chloride (Cl)	Water	L2499489-5	102.7		%		75-125	06-SEP-20
EC-L-PCT-CL	Water							
Batch R5223321 WG3403880-14 LCS Conductivity (@ 25C)			96.9		%		90-110	12-SEP-20
WG3403880-13 MB Conductivity (@ 25C)			<2.0		uS/cm		2	12-SEP-20
F-IC-N-CL	Water							
Batch R5216116 WG3400344-7 DUP Fluoride (F) Fluoride (F)		L2499489-5 <0.020	<0.020	RPD-NA	mg/L	N/A	20	06-SEP-20
WG3400344-10 LCS Fluoride (F)			107.1		%		90-110	06-SEP-20
WG3400344-6 LCS Fluoride (F)			105.4		%		90-110	06-SEP-20
WG3400344-5 MB Fluoride (F)			<0.020		mg/L		0.02	06-SEP-20
WG3400344-9 MB Fluoride (F)			<0.020		mg/L		0.02	06-SEP-20
WG3400344-8 MS Fluoride (F)		L2499489-5	101.6		%		75-125	06-SEP-20
HG-D-CVAA-VA	Water							
Batch R5221867 WG3402401-11 DUP Mercury (Hg)-Dissolved		L2499489-1 <0.0000050	<0.0000050	RPD-NA	mg/L	N/A	20	11-SEP-20
WG3402401-10 LCS Mercury (Hg)-Dissolved			92.9		%		80-120	11-SEP-20
WG3402401-9 MB Mercury (Hg)-Dissolved		NP	<0.0000050		mg/L		0.000005	11-SEP-20
HG-T-U-CVAF-VA	Water							
Batch R5222623 WG3403303-2 LCS Mercury (Hg)-Total			111.6		%		80-120	12-SEP-20
WG3403303-1 MB Mercury (Hg)-Total			<0.00050		ug/L		0.0005	12-SEP-20

Water

	Workorder: L2499489 Report Date: 19-JAN-21		Page 4 of 18					
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-CCMS-CL	Water							
Batch R52240	03							
WG3404942-2 LC	S	TMRM						
Calcium (Ca)-Dissol	ved		101.8		%		80-120	15-SEP-20
Magnesium (Mg)-Dis	ssolved		103.6		%		80-120	15-SEP-20
Potassium (K)-Disso	lved		99.1		%		80-120	15-SEP-20
Sodium (Na)-Dissolv	red		101.3		%		80-120	15-SEP-20
WG3404942-1 MB Calcium (Ca)-Dissolv	s ved		<0.050		mg/L		0.05	15-SEP-20
Magnesium (Mg)-Dis	solved		<0.0050		mg/L		0.005	15-SEP-20
Potassium (K)-Disso	lved		<0.050		mg/L		0.05	15-SEP-20
Sodium (Na)-Dissolv	red		<0.050		mg/L		0.05	15-SEP-20
	Water				-			
MET-D-CCMS-VA	Water							
WG3402812-2 LC	24 S							
Aluminum (Al)-Disso	lved		100.9		%		80-120	12-SEP-20
Antimony (Sb)-Disso	lved		101.2		%		80-120	12-SEP-20
Arsenic (As)-Dissolv	ed		100.4		%		80-120	12-SEP-20
Barium (Ba)-Dissolve	ed		100.2		%		80-120	12-SEP-20
Bismuth (Bi)-Dissolv	ed		115.8		%		80-120	12-SEP-20
Boron (B)-Dissolved			102.9		%		80-120	12-SEP-20
Cadmium (Cd)-Disso	olved		99.8		%		80-120	12-SEP-20
Calcium (Ca)-Dissol	ved		103.4		%		80-120	12-SEP-20
Chromium (Cr)-Disse	olved		97.7		%		80-120	12-SEP-20
Cobalt (Co)-Dissolve	ed		100.9		%		80-120	12-SEP-20
Copper (Cu)-Dissolv	ed		98.2		%		80-120	12-SEP-20
Iron (Fe)-Dissolved			94.4		%		80-120	12-SEP-20
Lead (Pb)-Dissolved			99.2		%		80-120	12-SEP-20
Lithium (Li)-Dissolve	d		102.5		%		80-120	12-SEP-20
Magnesium (Mg)-Dis	solved		99.0		%		80-120	12-SEP-20
Manganese (Mn)-Dis	ssolved		103.9		%		80-120	12-SEP-20
Molybdenum (Mo)-D	issolved		102.7		%		80-120	12-SEP-20
Nickel (Ni)-Dissolved	1		102.3		%		80-120	12-SEP-20
Potassium (K)-Disso	lved		100.5		%		80-120	12-SEP-20
Selenium (Se)-Disso	lved		99.1		%		80-120	12-SEP-20
Silicon (Si)-Dissolved	d		100.4		%		60-140	12-SEP-20
Silver (Ag)-Dissolved	ł		103.7		%		80-120	12-SEP-20

	Workorder: L2499489 Report Date: 19-JAN-21		Page 5 of 18					
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-CCMS-VA	Water							
Batch R5223	224							
WG3402812-2 LC	s							
Sodium (Na)-Dissol	ved		107.2		%		80-120	12-SEP-20
Strontium (Sr)-Disso	olved		107.1		%		80-120	12-SEP-20
Thallium (TI)-Dissol	ved		98.8		%		80-120	12-SEP-20
Tin (Sn)-Dissolved			101.1		%		80-120	12-SEP-20
Titanium (Ti)-Dissol	ved		100.1		%		80-120	12-SEP-20
Uranium (U)-Dissolv	ved		103.7		%		80-120	12-SEP-20
Vanadium (V)-Disso	blved		98.3		%		80-120	12-SEP-20
Zinc (Zn)-Dissolved			96.2		%		80-120	12-SEP-20
WG3402812-1 ME Aluminum (Al)-Disso	B olved	NP	<0.0010		ma/l		0.001	12-SEP-20
Antimony (Sb)-Disso	olved		<0.00010)	mg/L		0.0001	12-SEP-20
Arsenic (As)-Dissolv	/ed		<0.00010)	mg/L		0.0001	12-SEP-20
Barium (Ba)-Dissolv	ved		<0.00010)	mg/L		0.0001	12-SEP-20
Bismuth (Bi)-Dissolv	/ed		<0.00005	50	mg/L		0.00005	12-SEP-20
Boron (B)-Dissolved	1		<0.010	-	mg/L		0.01	12-SEP-20
Cadmium (Cd)-Diss	olved		<0.00000)5(ma/L		0.000005	12-SEP-20
Calcium (Ca)-Disso	lved		< 0.050		mg/L		0.05	12-SEP-20
Chromium (Cr)-Diss	solved		<0.00010)	mg/L		0.0001	12-SEP-20
Cobalt (Co)-Dissolv	ed		<0.00010)	mg/L		0.0001	12-SEP-20
Copper (Cu)-Dissol	ved		<0.00020)	mg/l		0.0001	12-SEP-20
Iron (Fe)-Dissolved			<0.010		mg/l		0.0002	12-SEP-20
Lead (Pb)-Dissolved	ł		<0.0000	50	mg/l		0.0005	12-SEP-20
Lithium (Li)-Dissolve	ed		<0.0010		mg/l		0.00000	12-SEP-20
Magnesium (Mg)-Di	ssolved		< 0.0050		mg/L		0.005	12-SEP-20
Manganese (Mn)-Di	issolved		<0.00010)	mg/L		0.0001	12-SEP-20
Molvbdenum (Mo)-E	Dissolved		<0.00005	50	mg/L		0.0001	12-SEP-20
Nickel (Ni)-Dissolve	d		<0.00050)	mg/l		0.0005	12-SEP-20
Potassium (K)-Diss	olved		<0.050		mg/l		0.05	12-SEP-20
Selenium (Se)-Diss	olved		<0.0000	50	mg/l		0.000	12-SEP-20
Silicon (Si)-Dissolve	d		<0.050		ma/l		0.05	12-SEP-20
Silver (Aa)-Dissolve	d		<0.00001	10	ma/l		0.0001	12-SEP-20
Sodium (Na)-Dissol	ved		<0.050	-	ma/l		0.05	12-SEP-20
Strontium (Sr)-Disso	blved		<0.00020)	ma/l		0.0002	12-SEP-20
Thallium (TI)-Dissol	ved		<0.00001	10	mg/L		0.00001	12-SEP-20
					3		0.00001	12 021 20

		Workorder: L2499489			eport Date:	19-JAN-21	Page 6 of 18		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
MET-D-CCMS-VA	Water								
Batch R5223224									
WG3402812-1 MB		NP							
Tin (Sn)-Dissolved			<0.00010		mg/L		0.0001	12-SEP-20	
Litanium (Li)-Dissolved			<0.00030		mg/L		0.0003	12-SEP-20	
Uranium (U)-Dissolved			<0.000010		mg/L		0.00001	12-SEP-20	
Vanadium (V)-Dissolved	3		<0.00050		mg/L		0.0005	12-SEP-20	
Zinc (Zn)-Dissolved			<0.0010		mg/L		0.001	12-SEP-20	
MET-T-CCMS-VA	Water								
Batch R5222495									
WG3401906-3 DUP Aluminum (Al)-Total		L2499489-1 0.0603	0.0536		ma/l	12	20	11-SEP-20	
Antimony (Sb)-Total		<0.00010	<0.00010	RPD-NA	ma/L	N/A	20	11-SEP-20	
Arsenic (As)-Total		0.00017	0.00018		ma/L	3.1	20	11-SEP-20	
Barium (Ba)-Total		0.0502	0.0502		mg/L	0.0	20	11-SEP-20	
Bismuth (Bi)-Total		<0.000050	<0.000050	RPD-NA	mg/L	N/A	20	11-SEP-20	
Boron (B)-Total		<0.010	<0.010	RPD-NA	mg/L	N/A	20	11-SEP-20	
Cadmium (Cd)-Total		0.0000165	0.0000188		mg/L	13	20	11-SEP-20	
Calcium (Ca)-Total		82.0	83.5		mg/L	1.7	20	11-SEP-20	
Chromium (Cr)-Total		0.00026	0.00021	J	mg/L	0.00005	0.0002	11-SEP-20	
Cobalt (Co)-Total		<0.00010	<0.00010	RPD-NA	mg/L	N/A	20	11-SEP-20	
Copper (Cu)-Total		<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	11-SEP-20	
Iron (Fe)-Total		0.065	0.066		mg/L	0.9	20	11-SEP-20	
Lead (Pb)-Total		0.000064	0.000063		mg/L	0.7	20	11-SEP-20	
Lithium (Li)-Total		0.0072	0.0072		mg/L	0.5	20	11-SEP-20	
Magnesium (Mg)-Total		38.4	37.9		mg/L	1.2	20	11-SEP-20	
Manganese (Mn)-Total		0.00372	0.00357		mg/L	4.0	20	11-SEP-20	
Molybdenum (Mo)-Tota	ļ	0.00113	0.00113		mg/L	0.2	20	11-SEP-20	
Potassium (K)-Total		0.700	0.676		mg/L	3.4	20	11-SEP-20	
Selenium (Se)-Total		0.0261	0.0270		mg/L	3.2	20	11-SEP-20	
Silicon (Si)-Total		2.14	2.12		mg/L	1.1	20	11-SEP-20	
Silver (Ag)-Total		<0.000010	<0.000010	RPD-NA	mg/L	N/A	20	11-SEP-20	
Sodium (Na)-Total		2.74	2.65		mg/L	3.5	20	11-SEP-20	
Strontium (Sr)-Total		0.286	0.289		mg/L	1.2	20	11-SEP-20	
Thallium (TI)-Total		<0.000010	<0.000010	RPD-NA	mg/L	N/A	20	11-SEP-20	
Tin (Sn)-Total		<0.00010	<0.00010	RPD-NA	mg/L	N/A	20	11-SEP-20	
Titanium (Ti)-Total		<0.010	<0.010	RPD-NA	mg/L	N/A	20	11-SEP-20	

		Workorder: L2499489			Report Date: 19-JAN-21			Page 7 of 18		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed		
MET-T-CCMS-VA	Water									
Batch R5222495										
WG3401906-3 DUP		L2499489-1	0.00400			4.0				
Venedium (U)-Total		0.00170	0.00166		mg/L	1.9	20	11-SEP-20		
Zing (Zn) Total		0.00050	<0.00050	RPD-NA	mg/L ∞α/l	N/A	20	11-SEP-20		
		<0.0030	<0.0030	RPD-NA	mg/∟	N/A	20	11-SEP-20		
Aluminum (Al)-Total			100.7		%		80-120	11-SEP-20		
Antimony (Sb)-Total			101.8		%		80-120	11-SEP-20		
Arsenic (As)-Total			97.3		%		80-120	11-SEP-20		
Barium (Ba)-Total			98.8		%		80-120	11-SEP-20		
Bismuth (Bi)-Total			101.3		%		80-120	11-SEP-20		
Boron (B)-Total			105.8		%		80-120	11-SEP-20		
Cadmium (Cd)-Total			101.1		%		80-120	11-SEP-20		
Calcium (Ca)-Total			99.6		%		80-120	11-SEP-20		
Chromium (Cr)-Total			99.5		%		80-120	11-SEP-20		
Cobalt (Co)-Total			97.9		%		80-120	11-SEP-20		
Copper (Cu)-Total			97.2		%		80-120	11-SEP-20		
Iron (Fe)-Total			96.5		%		80-120	11-SEP-20		
Lead (Pb)-Total			97.4		%		80-120	11-SEP-20		
Lithium (Li)-Total			100.5		%		80-120	11-SEP-20		
Magnesium (Mg)-Total			101.8		%		80-120	11-SEP-20		
Manganese (Mn)-Total			99.6		%		80-120	11-SEP-20		
Molybdenum (Mo)-Total			98.4		%		80-120	11-SEP-20		
Nickel (Ni)-Total			98.9		%		80-120	11-SEP-20		
Potassium (K)-Total			97.3		%		80-120	11-SEP-20		
Selenium (Se)-Total			101.5		%		80-120	11-SEP-20		
Silicon (Si)-Total			102.4		%		80-120	11-SEP-20		
Silver (Ag)-Total			96.5		%		80-120	11-SEP-20		
Sodium (Na)-Total			103.9		%		80-120	11-SEP-20		
Strontium (Sr)-Total			103.9		%		80-120	11-SEP-20		
Thallium (TI)-Total			98.4		%		80-120	11-SEP-20		
Tin (Sn)-Total			98.2		%		80-120	11-SEP-20		
Titanium (Ti)-Total			96.2		%		80-120	11-SEP-20		
Uranium (U)-Total			96.9		%		80-120	11-SEP-20		
Vanadium (V)-Total			100.5		%		80-120	11-SEP-20		
Zinc (Zn)-Total			101.5		%		80-120	11-SEP-20		

WG3401906-1 MB

	Matrix	Workorder: L2499489			Report Date: 19-JAN-21		Page 8 of 18	
Test		Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-VA	Water							
Batch R5222495	5							
WG3401906-1 MB								
Aluminum (Al)- I otal			<0.0030		mg/L		0.003	11-SEP-20
Antimony (Sb)-Total			<0.00010		mg/L		0.0001	11-SEP-20
Arsenic (As)-Total			<0.00010		mg/L		0.0001	11-SEP-20
Barium (Ba)-Total			<0.00010		mg/L		0.0001	11-SEP-20
Bismuth (Bi)-Total			<0.000050)	mg/L		0.00005	11-SEP-20
Boron (B)-Total			<0.010		mg/L		0.01	11-SEP-20
Cadmium (Cd)-Total			<0.00005	50	mg/L		0.000005	11-SEP-20
Calcium (Ca)-Total			<0.050		mg/L		0.05	11-SEP-20
Chromium (Cr)-Total			<0.00010		mg/L		0.0001	11-SEP-20
Cobalt (Co)-Total			<0.00010		mg/L		0.0001	11-SEP-20
Copper (Cu)-Total			<0.00050		mg/L		0.0005	11-SEP-20
Iron (Fe)-Total			<0.010		mg/L		0.01	11-SEP-20
Lead (Pb)-Total			<0.000050)	mg/L		0.00005	11-SEP-20
Lithium (Li)-Total			<0.0010		mg/L		0.001	11-SEP-20
Magnesium (Mg)-Total			<0.0050		mg/L		0.005	11-SEP-20
Manganese (Mn)-Total	l		<0.00010		mg/L		0.0001	11-SEP-20
Molybdenum (Mo)-Tota	al		<0.000050	0	mg/L		0.00005	11-SEP-20
Nickel (Ni)-Total			0.00053	MB-LC	DR mg/L		0.0005	11-SEP-20
Potassium (K)-Total			<0.050		mg/L		0.05	11-SEP-20
Selenium (Se)-Total			<0.000050)	mg/L		0.00005	11-SEP-20
Silicon (Si)-Total			<0.10		mg/L		0.1	11-SEP-20
Silver (Ag)-Total			<0.000010)	mg/L		0.00001	11-SEP-20
Sodium (Na)-Total			<0.050		mg/L		0.05	11-SEP-20
Strontium (Sr)-Total			<0.00020		mg/L		0.0002	11-SEP-20
Thallium (TI)-Total			<0.000010)	mg/L		0.00001	11-SEP-20
Tin (Sn)-Total			<0.00010		mg/L		0.0001	11-SEP-20
Titanium (Ti)-Total			<0.00030		mg/L		0.0003	11-SEP-20
Uranium (U)-Total			<0.000010)	mg/L		0.00001	11-SEP-20
Vanadium (V)-Total			<0.00050		mg/L		0.0005	11-SEP-20
Zinc (Zn)-Total			<0.0030		mg/L		0.003	11-SEP-20
WG3401906-4 MS		L2499489-2						
Aluminum (Al)-Total			98.6		%		70-130	11-SEP-20
Antimony (Sb)-Total			98.7		%		70-130	11-SEP-20
Arsenic (As)-Total			99.6		%		70-130	11-SEP-20

	Matrix	Workorder: L2499489			Report Date: 19-JAN-21		Page 9 of 18	
Test		Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-VA	Water							
Batch R5222495								
WG3401906-4 MS		L2499489-2						
Barium (Ba)- I otal			N/A	MS-B	%		-	11-SEP-20
Bismuth (Bi)-Total			94.0		%		70-130	11-SEP-20
Boron (B)-Total			100.4		%		70-130	11-SEP-20
Cadmium (Cd)-Total			103.2		%		70-130	11-SEP-20
Calcium (Ca)-Total			N/A	MS-B	%		-	11-SEP-20
Chromium (Cr)-Total			101.0		%		70-130	11-SEP-20
Cobalt (Co)-Total			98.5		%		70-130	11-SEP-20
Copper (Cu)-Total			97.6		%		70-130	11-SEP-20
Iron (Fe)-Total			98.9		%		70-130	11-SEP-20
Lead (Pb)-Total			95.6		%		70-130	11-SEP-20
Lithium (Li)-Total			101.1		%		70-130	11-SEP-20
Magnesium (Mg)-Total			N/A	MS-B	%		-	11-SEP-20
Manganese (Mn)-Total			97.9		%		70-130	11-SEP-20
Molybdenum (Mo)-Total			97.5		%		70-130	11-SEP-20
Potassium (K)-Total			102.2		%		70-130	11-SEP-20
Selenium (Se)-Total			103.2		%		70-130	11-SEP-20
Silicon (Si)-Total			94.2		%		70-130	11-SEP-20
Silver (Ag)-Total			98.5		%		70-130	11-SEP-20
Sodium (Na)-Total			105.5		%		70-130	11-SEP-20
Strontium (Sr)-Total			N/A	MS-B	%		-	11-SEP-20
Thallium (TI)-Total			91.3		%		70-130	11-SEP-20
Tin (Sn)-Total			100.9		%		70-130	11-SEP-20
Titanium (Ti)-Total			98.4		%		70-130	11-SEP-20
Uranium (U)-Total			95.1		%		70-130	11-SEP-20
Vanadium (V)-Total			103.2		%		70-130	11-SEP-20
Zinc (Zn)-Total			101.7		%		70-130	11-SEP-20
Batch R5223235								
WG3403119-3 DUP		L2499489-1						
Aluminum (Al)-Total		0.0603	0.0807		mg/L	12	20	12-SEP-20
Antimony (Sb)-Total		<0.00010	<0.00010	RPD-N	A mg/L	N/A	20	12-SEP-20
Arsenic (As)-Total		0.00017	0.00021		mg/L	9.6	20	12-SEP-20
Barium (Ba)-Total		0.0502	0.0505		mg/L	1.4	20	12-SEP-20
Bismuth (Bi)-Total		<0.000050	<0.000050	RPD-N	A mg/L	N/A	20	12-SEP-20
Boron (B)-Total		<0.010	<0.010	RPD-N	A mg/L	N/A	20	12-SEP-20

		Workorder:	L2499489 F		port Date:	19-JAN-21	Page 10 of 18		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
MET-T-CCMS-VA	Water								
Batch R52232	35								
WG3403119-3 DU	Р	L2499489-1							
		0.0000165	0.0000147		mg/L	14	20	12-SEP-20	
Calcium (Ca)-Total		82.0	87.5		mg/L	0.7	20	12-SEP-20	
Chromium (Cr)-Total		0.00026	0.00030		mg/L	12	20	12-SEP-20	
Cobalt (Co)- I otal		<0.00010	<0.00010	RPD-NA	mg/L	N/A	20	12-SEP-20	
Copper (Cu)-Total		<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	12-SEP-20	
Iron (Fe)-Total		0.065	0.090		mg/L	7.1	20	12-SEP-20	
Lead (Pb)-Total		0.000064	0.000053		mg/L	0.3	20	12-SEP-20	
Lithium (Li)-Total		0.0072	0.0079		mg/L	0.7	20	12-SEP-20	
Magnesium (Mg)-Tot	al	38.4	36.6		mg/L	1.1	20	12-SEP-20	
Manganese (Mn)-Tot	tal	0.00372	0.00383		mg/L	3.2	20	12-SEP-20	
Molybdenum (Mo)-To	otal	0.00113	0.00116		mg/L	6.9	20	12-SEP-20	
Nickel (Ni)-Total		0.00065	0.00074		mg/L	13	20	12-SEP-20	
Potassium (K)-Total		0.700	0.722		mg/L	0.3	20	12-SEP-20	
Selenium (Se)-Total		0.0261	0.0255		mg/L	2.7	20	12-SEP-20	
Silicon (Si)-Total		2.14	2.14		mg/L	3.3	20	12-SEP-20	
Silver (Ag)-Total		<0.000010	<0.000010	RPD-NA	mg/L	N/A	20	12-SEP-20	
Sodium (Na)-Total		2.74	2.72		mg/L	0.8	20	12-SEP-20	
Strontium (Sr)-Total		0.286	0.344		mg/L	0.2	20	12-SEP-20	
Thallium (TI)-Total		<0.000010	<0.000010	RPD-NA	mg/L	N/A	20	12-SEP-20	
Tin (Sn)-Total		<0.00010	<0.00010	RPD-NA	mg/L	N/A	20	12-SEP-20	
Titanium (Ti)-Total		<0.010	<0.010	RPD-NA	mg/L	N/A	20	12-SEP-20	
Uranium (U)-Total		0.00170	0.00163		mg/L	1.3	20	12-SEP-20	
Vanadium (V)-Total		0.00050	0.00079		mg/L	5.8	20	12-SEP-20	
Zinc (Zn)-Total		<0.0030	<0.0030	RPD-NA	mg/L	N/A	20	12-SEP-20	
WG3403119-2 LCS	S								
Aluminum (Al)-Total			97.8		%		80-120	12-SEP-20	
Antimony (Sb)-Total			108.7		%		80-120	12-SEP-20	
Arsenic (As)-Total			98.0		%		80-120	12-SEP-20	
Barium (Ba)-Total			103.7		%		80-120	12-SEP-20	
Bismuth (Bi)-Total			128.6	MES	%		80-120	12-SEP-20	
Boron (B)-Total			100.8		%		80-120	12-SEP-20	
Cadmium (Cd)-Total			99.9		%		80-120	12-SEP-20	
Calcium (Ca)-Total			103.4		%		80-120	12-SEP-20	
Chromium (Cr)-Total			100.9		%		80-120	12-SEP-20	

		Workorder: L2499489			Report Date: 1	9-JAN-21	Page 11 of 18		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
MET-T-CCMS-VA	Water								
Batch R52232	35								
WG3403119-2 LCS	6								
Cobalt (Co)-Total			99.9		%		80-120	12-SEP-20	
Copper (Cu)-Total			100.2		%		80-120	12-SEP-20	
Iron (Fe)-Total			86.5		%		80-120	12-SEP-20	
Lead (Pb)-Total			99.3		%		80-120	12-SEP-20	
Lithium (Li)-Total			101.5		%		80-120	12-SEP-20	
Magnesium (Mg)-Tot	al		98.3		%		80-120	12-SEP-20	
Manganese (Mn)-Tot	al		99.6		%		80-120	12-SEP-20	
Molybdenum (Mo)-To	otal		109.0		%		80-120	12-SEP-20	
Nickel (Ni)-Total			99.3		%		80-120	12-SEP-20	
Potassium (K)-Total			99.97		%		80-120	12-SEP-20	
Selenium (Se)-Total			99.7		%		80-120	12-SEP-20	
Silicon (Si)-Total			99.5		%		80-120	12-SEP-20	
Silver (Ag)-Total			109.7		%		80-120	12-SEP-20	
Sodium (Na)-Total			109.9		%		80-120	12-SEP-20	
Strontium (Sr)-Total			109.0		%		80-120	12-SEP-20	
Thallium (TI)-Total			99.5		%		80-120	12-SEP-20	
Tin (Sn)-Total			97.7		%		80-120	12-SEP-20	
Titanium (Ti)-Total			97.1		%		80-120	12-SEP-20	
Uranium (U)-Total			102.3		%		80-120	12-SEP-20	
Vanadium (V)-Total			97.6		%		80-120	12-SEP-20	
Zinc (Zn)-Total			94.1		%		80-120	12-SEP-20	
WG3403119-1 MB									
Aluminum (Al)-Total			<0.0030		mg/L		0.003	12-SEP-20	
Antimony (Sb)-Total			<0.00010)	mg/L		0.0001	12-SEP-20	
Arsenic (As)-Total			<0.00010)	mg/L		0.0001	12-SEP-20	
Barium (Ba)-Total			<0.00010)	mg/L		0.0001	12-SEP-20	
Bismuth (Bi)-Total			<0.00005	50	mg/L		0.00005	12-SEP-20	
Boron (B)-Total			<0.010		mg/L		0.01	12-SEP-20	
Cadmium (Cd)-Total			<0.0000	050	mg/L		0.000005	12-SEP-20	
Calcium (Ca)-Total			<0.050		mg/L		0.05	12-SEP-20	
Chromium (Cr)-Total			<0.00010)	mg/L		0.0001	12-SEP-20	
Cobalt (Co)-Total			<0.00010)	mg/L		0.0001	12-SEP-20	
Copper (Cu)-Total			<0.00050)	mg/L		0.0005	12-SEP-20	
Iron (Fe)-Total			<0.010		mg/L		0.01	12-SEP-20	

		Workorder:	er: L2499489		Report Date: 19-JAN-21		Page 12 of 18		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
MET-T-CCMS-VA	Water								
Batch R522323	5								
WG3403119-1 MB			0 000050						
Lead (Pb)-Total			<0.000050)	mg/L		0.00005	12-SEP-20	
Litnium (Li)- I otai			<0.0010		mg/L		0.001	12-SEP-20	
Magnesium (Mg)-Tota	1		<0.0050		mg/∟		0.005	12-SEP-20	
Manganese (Mn)-Tota	-1		<0.00010	`	mg/L		0.0001	12-SEP-20	
	al		<0.000050)	mg/L		0.00005	12-SEP-20	
NICKEI (NI)- I OTAI			<0.00050		mg/L		0.0005	12-SEP-20	
Potassium (K)-Total			<0.050	`	mg/∟		0.05	12-SEP-20	
Selenium (Se)-Total			<0.000050)	mg/L		0.00005	12-SEP-20	
Silicon (Si)-Total			<0.10	`	mg/L		0.1	12-SEP-20	
Silver (Ag)-Total			<0.000010)	mg/∟		0.00001	12-SEP-20	
Sodium (Na)-Total			<0.050		mg/L		0.05	12-SEP-20	
Strontium (Sr)-Total			<0.00020	`	mg/∟		0.0002	12-SEP-20	
Thailium (TI)-Totai			<0.000010)	mg/∟		0.00001	12-SEP-20	
Tin (Sn)-Total			<0.00010		mg/L		0.0001	12-SEP-20	
Litanium (11)-1 otai			<0.00030	`	mg/∟		0.0003	12-SEP-20	
Uranium (U)-Total			<0.000010)	mg/∟		0.00001	12-SEP-20	
Vanadium (V)-Total			<0.00050		mg/∟		0.0005	12-SEP-20	
Zinc (Zn)- i otai			<0.0030		mg/L		0.003	12-SEP-20	
WG3403119-4 MS Aluminum (Al)-Total		L2499489-2	94.2		%		70-130	12-SEP-20	
Antimony (Sb)-Total			102.3		%		70-130	12-SEP-20	
Arsenic (As)-Total			98.1		%		70-130	12-SEP-20	
Barium (Ba)-Total			N/A	MS-B	%		-	12-SEP-20	
Bismuth (Bi)-Total			96.8		%		70-130	12-SEP-20	
Boron (B)-Total			101.3		%		70-130	12-SEP-20	
Cadmium (Cd)-Total			96.5		%		70-130	12-SEP-20	
Calcium (Ca)-Total			N/A	MS-B	%		-	12-SEP-20	
Chromium (Cr)-Total			98.3		%		70-130	12-SEP-20	
Cobalt (Co)-Total			93.8		%		70-130	12-SEP-20	
Copper (Cu)-Total			92.1		%		70-130	12-SEP-20	
Iron (Fe)-Total			98.3		%		70-130	12-SEP-20	
Lead (Pb)-Total			93.8		%		70-130	12-SEP-20	
Lithium (Li)-Total			101.9		%		70-130	12-SEP-20	
Magnesium (Mg)-Tota	I		N/A	MS-B	%		-	12-SEP-20	

		Workorder:	L249948	9	Report Date: 1	9-JAN-21	Pa	ge 13 of 18
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-VA	Water							
Batch R5223235								
WG3403119-4 MS		L2499489-2						
Manganese (Mn)- I otal			96.7		%		70-130	12-SEP-20
Molybdenum (Mo)-Tota			101.4		%		70-130	12-SEP-20
Nickel (Ni)- I otal			93.9		%		70-130	12-SEP-20
Potassium (K)-Total			95.3		%		70-130	12-SEP-20
Selenium (Se)- I otal			99.4		%		70-130	12-SEP-20
Silicon (Si)-Total			90.0		%		70-130	12-SEP-20
Silver (Ag)-Total			102.3		%		70-130	12-SEP-20
Sodium (Na)-Total			106.3		%		70-130	12-SEP-20
Strontium (Sr)-Total			N/A	MS-B	%		-	12-SEP-20
Thallium (TI)-Total			92.3		%		70-130	12-SEP-20
Tin (Sn)-Total			96.9		%		70-130	12-SEP-20
Titanium (Ti)-Total			94.6		%		70-130	12-SEP-20
Uranium (U)-Total			96.7		%		70-130	12-SEP-20
Vanadium (V)-Total			94.9		%		70-130	12-SEP-20
Zinc (Zn)-Total			94.2		%		70-130	12-SEP-20
NH3-L-F-CL	Water							
Batch R5215097								
WG3400120-33 LCS Ammonia as N			106.2		%		85-115	08-SEP-20
WG3400120-32 MB							00 110	
Ammonia as N			<0.0050		mg/L		0.005	08-SEP-20
NO2-L-IC-N-CL	Water							
Batch R5216116								
WG3400344-7 DUP Nitrite (as N)		L2499489-5 <0.0010	<0.0010	RPD-1	NA mg/L	N/A	20	06-SEP-20
WG3400344-10 LCS								
Nitrite (as N)			98.6		%		90-110	06-SEP-20
WG3400344-6 LCS Nitrite (as N)			101.1		%		90-110	06-SEP-20
WG3400344-5 MB Nitrite (as N)			<0.0010		mg/L		0.001	06-SEP-20
WG3400344-9 MB Nitrite (as N)			<0.0010		mg/L		0.001	06-SEP-20
WG3400344-8 MS Nitrite (as N)		L2499489-5	102.3		%		75-125	06-SEP-20

Water

		Workorder:	L249948	9 Re	port Date:	19-JAN-21	Pa	ge 14 of 18
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
NO3-L-IC-N-CL	Water							
Batch R521 WG3400344-7 D Nitrate (as N)	6116 DUP	L2499489-5 <0.0050	<0.0050	RPD-NA	mg/L	N/A	20	06-SEP-20
WG3400344-10 L Nitrate (as N)	.CS		107.1		%		90-110	06-SEP-20
WG3400344-6 L Nitrate (as N)	.CS		107.0		%		90-110	06-SEP-20
WG3400344-5 Nitrate (as N)	ЛВ		<0.0050		mg/L		0.005	06-SEP-20
WG3400344-9 Nitrate (as N)	ЛВ		<0.0050		mg/L		0.005	06-SEP-20
WG3400344-8 N Nitrate (as N)	IS	L2499489-5	103.2		%		75-125	06-SEP-20
ORP-CL	Water							
Batch R521 WG3401255-7 C ORP	9182 CRM	CL-ORP	219		mV		210-230	09-SEP-20
WG3401255-9 C ORP	CRM	CL-ORP	220		mV		210-230	09-SEP-20
WG3401255-8 D ORP	DUP	L2499489-5 477	472	J	mV	5.6	15	09-SEP-20
P-T-L-COL-CL	Water							
Batch R522 WG3401635-30 L	1078 .CS							
Phosphorus (P)-To	otal		98.3		%		80-120	10-SEP-20
Phosphorus (P)-To	otal		<0.0020		mg/L		0.002	10-SEP-20
PH-CL	Water							
Batch R522 WG3403880-14 L pH	.CS		6.99		pН		6.9-7.1	12-SEP-20
PO4-DO-L-COL-CL	Water							
Batch R521 WG3399182-10 L Orthophosphate-D	4796 .CS vissolved (as P)		103.5		%		80-120	05-SEP-20
WG3399182-9 M Orthophosphate-D	//B Vissolved (as P)		<0.0010		mg/L		0.001	05-SEP-20

Water

		Workorder:	L249948	9 Re	eport Date:	19-JAN-21	Pa	ge 15 of 18
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
SO4-IC-N-CL	Water							
Batch R5216116								
WG3400344-7 DUP Sulfate (SO4)		L2499489-5 <0.30	<0.30	RPD-NA	mg/L	N/A	20	06-SEP-20
WG3400344-10 LCS Sulfate (SO4)			105.2		%		90-110	06-SEP-20
WG3400344-6 LCS Sulfate (SO4)			105.5		%		90-110	06-SEP-20
WG3400344-5 MB Sulfate (SO4)			<0.30		mg/L		0.3	06-SEP-20
WG3400344-9 MB Sulfate (SO4)			<0.30		mg/L		0.3	06-SEP-20
WG3400344-8 MS Sulfate (SO4)		L2499489-5	103.2		%		75-125	06-SEP-20
SOLIDS-TDS-CL	Water							
Batch R5222602								
WG3402232-5 LCS Total Dissolved Solids			96.0		%		85-115	11-SEP-20
WG3402232-4 MB Total Dissolved Solids			<10		mg/L		10	11-SEP-20
TKN-L-F-CL	Water							
Batch R5216736								
WG3400602-2 LCS Total Kjeldahl Nitrogen			100.6		%		75-125	09-SEP-20
WG3400602-4 LCS Total Kjeldahl Nitrogen			79.8		%		75-125	09-SEP-20
WG3400602-8 LCS Total Kjeldahl Nitrogen			91.1		%		75-125	09-SEP-20
WG3400602-1 MB Total Kjeldahl Nitrogen			<0.050		mg/L		0.05	09-SEP-20
WG3400602-3 MB Total Kjeldahl Nitrogen			<0.050		mg/L		0.05	09-SEP-20
WG3400602-7 MB Total Kjeldahl Nitrogen			<0.050		mg/L		0.05	09-SEP-20
TSS-L-CL	Water							
Batch R5222451								
WG3402220-4 LCS Total Suspended Solids			86.9		%		85-115	11-SEP-20
WG3402220-3 MB Total Suspended Solids			<1.0		mg/L		1	11-SEP-20

		Workorder	L249948	39	Report Date: 1	9-JAN-21	Pa	ge 16 of 18
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
TURBIDITY-CL	Water							
Batch R52	212646							
WG3399343-5 Turbidity	LCS		97.9		%		85-115	06-SEP-20
WG3399343-4 Turbidity	МВ		<0.10		NTU		0.1	06-SEP-20

Workorder: L2499489

Report Date: 19-JAN-21

Page 17 of 18

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
MB-LOR	Method Blank exceeds ALS DQO. Limits of Reporting have been adjusted for samples with positive hits below 5x blank level.
MES	Data Quality Objective was marginally exceeded (by < 10% absolute) for < 10% of analytes in a Multi-Element Scan / Multi-Parameter Scan (considered acceptable as per OMOE & CCME).
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Workorder: L2499489

Report Date: 19-JAN-21

Page 18 of 18

Hold Time Exceedances:

	Sample						
ALS Product Description	ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier
Physical Tests							
Oxidation redution potential	by elect.						
	1	04-SEP-20 12:45	09-SEP-20 18:45	0.25	126	hours	EHTR-FM
	2	04-SEP-20 13:15	09-SEP-20 18:45	0.25	126	hours	EHTR-FM
	3	04-SEP-20 10:00	09-SEP-20 18:45	0.25	129	hours	EHTR-FM
	4	04-SEP-20 12:15	09-SEP-20 18:45	0.25	126	hours	EHTR-FM
	5	04-SEP-20 14:00	09-SEP-20 18:45	0.25	125	hours	EHTR-FM
рН							
	1	04-SEP-20 12:45	12-SEP-20 12:00	0.25	191	hours	EHTR-FM
	2	04-SEP-20 13:15	12-SEP-20 12:00	0.25	191	hours	EHTR-FM
	3	04-SEP-20 10:00	12-SEP-20 12:00	0.25	194	hours	EHTR-FM
	4	04-SEP-20 12:15	12-SEP-20 12:00	0.25	192	hours	EHTR-FM
	5	04-SEP-20 14:00	12-SEP-20 12:00	0.25	190	hours	EHTR-FM

Legend & Qualifier Definitions:

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended.

EHTR: Exceeded ALS recommended hold time prior to sample receipt.

EHTL: Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L2499489 were received on 05-SEP-20 08:30.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Taela			Page 1 of 1					
Іеск	COC ID: RI	P-CHO-2020-09-04	TURNAROUN	D TIME:				
	PROJECT/CLIENT INFO			LABORATORY				
Facility Name / Job# I	Regional Effects Program		Lab Contact	Lyudmyla Shyets		cait good@teck.com	Excel PDF	EDD
Project Manager	cait good@teck.com		S Email	l lyudmyla.shvets@aisgloba	al.com	teckcoal@egulsonline.co	im x x	×
Address 4	421 Pine Ave		• Address	2559 29 Street NE		carlie.meyer@teck.com	, <u>z x</u>	r
			5			scott.gordon@lotic.co	, x x	۲
City	Sparwood	Province BC	City	Calgary Prov	vince AB	jtester@minnow.ca	x x [x
Postal Code	V0B 2G0	Country Canada	Postal Code	T1Y 7B5 Cou	ntry Canada	VPC)006899999	
Phone Number	250-425-8202		Phone Number	ANALYS	SIS REQUESTED		Filtered - F: Field, L. Lab, FL: Field & I	ab, N: None
	SAWFLE DETAILS			2				
	,			E X				
·				N N N N N N N N N N N N N N N N N N N	: · ·			
	LA MARA IN FRANK INN IN			IS X	x	X X X		
	LA MARY & LA I AN ANN MAR	s/Nc	1		T)			
				EN I	<u>ŏ</u>			
L2499489-CC		Ital		5 8	N E			
		late						
N				ANAL	C V Kag	AF AF		
				Pac	Pac			
	Field	Time	G=Grab # Of		C-1			
Sample ID	Sample Location Matrix	Date (24hr)	C=Comp Cont.	F × R		H H H H H H H H H H H H H		
6-61-5C43.45-20200904-1215	RG-GH-SC3 WS	NO 20209/04 12:45	G	08	1 ×	5 5 5		
6645411522294-1315	RG-GH-SCZ WS	NO 23069104 13:15	G 7		x x	オオオ		
()11/E? - C Q 2-0-4-10-00	DG BIVER US	N/0 22/09/04 10:00	, 6 7	XX	$\boldsymbol{x} \mid \boldsymbol{x} \mid$	KXX'		
C COLUNI - G O E MIDE	OL FALMIN 1.5	N. 22-1914 11:15	67	X X	XX	x - K		
13-FKLARR -43- 402-30101-20	NOIDLANA 6/3	OI DO JOLUNIO			× ×			
6. TRIP. WS-2220904-1400	KG-IKIP WS	V0 toto/07/04 19:00	<u> </u>			<u>ک</u>		
			1					
1 .			1					
<u> </u>			')					
		-						
				-				
			+					
·								
ADDITIONAL COMMENTS/SPI	ECIAL INSTRUCTIONS	RELINQUISHED BY/AFI	E Same	DATE/TIME	ACCEPTED	SY/AFFILIATION	$-\alpha t$	
	001.00	PLOI Gordon Lote	Env-Caspeny	dads/07/07 19:00	¥/	7/1/		ZQ
GHO LAEMP VPO00692401	TT - TT		<u> </u>			110		
64						<u></u>		
AD OF BOTTI ES DETLIDA	VED/DESCRIPTION		<u></u>					
NB OF BOILLES RETORI	Regular (default) x	Formplay's Name	a H	7 -1	Mahi	10 #	205-010	1
Priorit	ty (2-3 business days) - 50% surcharge		DCOL	120100		180-	20018	5
Emergen	ncy (1 Business Day) - 100% surcharge	Sampler's Signature	200		Date/1	Time 29.1.9	64 4:0	>
For Emergency <1 D	ay, ASAP or weekend - Contact ALS	<u> </u>				(7) + (2) +	- for for the second	
		. `	1				· ·	
		÷	l.				$\cap D$,
			i.				/ / "	(\cdot)
		<i>,</i>		· .			(+	\mathbf{v}

Teck Coal Ltd. ATTN: Cait Good 421 Pine Avenue Sparwood BC VOB 2G0 Date Received:12-SEP-20Report Date:19-SEP-20 12:59 (MT)Version:FINAL

Client Phone: 250-425-8202

Certificate of Analysis

Lab Work Order #: L2502324

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: VPO00689999 REGIONAL EFFECTS PROGRAM GHO LAEMP Sept 2020

Lyudmyla Shvets, B.Sc. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 2559 29 Street NE, Calgary, AB T1Y 7B5 Canada | Phone: +1 403 291 9897 | Fax: +1 403 291 0298 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🔊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L2502324 CONTD.... PAGE 2 of 7 19-SEP-20 12:59 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2502324-1 WS 10-SEP-20 15:45 RG_THCK_WS_LA EMP_GHO_2020- 09_NP	L2502324-2 WS 10-SEP-20 16:45 RG_ERSC5_WS_L AEMP_GHO_2020-	L2502324-3 WS 10-SEP-20 16:45 RG_RIVER1_WS_ LAEMP_GHO_202 0-09_NP	L2502324-4 WS 10-SEP-20 16:45 RG_FBLANK1_WS _LAEMP_GHO_20 20:09_NP	L2502324-6 WS 10-SEP-20 14:00 GH_ER1A_WS_LA EMP_GHO_2020- 09_N
Grouping	Analyte		09_NP			
WATER						
Physical Tests	Conductivity (@ 25C) (uS/cm)	1860	295	296	<2.0	307
	Hardness (as CaCO3) (mg/L)	1270	167	172	<0.50	173
	рН (рН)	8.31	8.30	8.30	4.99	8.31
	ORP (mV)	446	375	520	406	516
	Total Suspended Solids (mg/L)	4.9	<1.0	<1.0	<1.0	<1.0
	Total Dissolved Solids (mg/L)	DLHC 1740	DLHC 187	DLHC 186	<10	DLHC 200
	Turbidity (NTU)	1.28	0.69	0.77	<0.10	0.62
Anions and	Acidity (as CaCO3) (mg/L)	<1.0	<1.0	<1.0	1.5	<1.0
Nutrients						
	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	183	145	140	<1.0	144
	Alkalinity, Carbonate (as CaCO3) (mg/L)	1.2	<1.0	<1.0	<1.0	1.6
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<1.0	<1.0	<1.0	<1.0	<1.0
	Alkalinity, Total (as CaCO3) (mg/L)	184	145	140	<1.0	146
	Ammonia as N (mg/L)	0.0231	0.0086	<0.0050	<0.0050	<0.0050
	Bromide (Br) (mg/L)	<0.25	<0.050	<0.050	<0.050	<0.050
		12.9	0.32	0.32	<0.10	0.33
	Fluoride (F) (mg/L)	<0.10	0.164	0.162	<0.020	0.162
	Ion Balance (%)	97.4	97.4	103	0.0	97.6
	Nitrate (as N) (mg/L)	14.1	0.342	0.342	<0.0050	0.486
	Nitrite (as N) (mg/L)	0.0132	<0.0010	<0.0010	<0.0010	<0.0010
	Total Kjeldahl Nitrogen (mg/L)	<0.050	0.194	0.144	<0.050	0.161
	Orthophosphate-Dissolved (as P) (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Phosphorus (P)-Total (mg/L)	0.0036	<0.0020	<0.0020	<0.0020	<0.0020
	Sulfate (SO4) (mg/L)	1030	26.1	26.1	<0.30	30.2
	Anion Sum (meq/L)	26.6	3.48	3.39	<0.10	3.60
	Cation Sum (meq/L)	25.9	3.39	3.49	<0.10	3.51
	Cation - Anion Balance (%)	-1.3	-1.3	1.5	0.0	-1.2
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	2.30	<0.50	<0.50	<0.50	<0.50
		2.45	<0.50	<0.50	<0.50	<0.50
Total Metals	Aluminum (Al)-Total (mg/L)	0.0140	0.0082	0.0141	<0.0030	0.0085
	Antimony (Sb)-Total (mg/L)	0.00018	<0.00010	<0.00010	<0.00010	<0.00010
	Arsenic (As)-Total (mg/L)	0.00026	0.00012	0.00014	<0.00010 RRV	0.00012
	Barium (Ba)- I otal (mg/L)	0.0718	0.0475	0.0483	0.00021	0.0477
	Beryllium (Be)- Fotal (ug/L)	<0.020	<0.020	<0.020	<0.020	<0.020
	Bismuth (Bi)-Total (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Boron (B)-Total (mg/L)	0.029	<0.010	<0.010	<0.010	<0.010
	Cadmium (Cd)-Total (ug/L)	0.0157	0.0090	0.0099	<0.0050	0.0105

L2502324 CONTD.... PAGE 3 of 7 19-SEP-20 12:59 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2502324-1 WS 10-SEP-20 15:45 RG_THCK_WS_LA EMP_GHO_2020- 09_NP	L2502324-2 WS 10-SEP-20 16:45 RG_ERSC5_WS_L AEMP_GHO_2020-	L2502324-3 WS 10-SEP-20 16:45 RG_RIVER1_WS_ LAEMP_GHO_202 0-09_NP	L2502324-4 WS 10-SEP-20 16:45 RG_FBLANK1_WS _LAEMP_GHO_20 20:09_NP	L2502324-6 WS 10-SEP-20 14:00 GH_ER1A_WS_LA EMP_GHO_2020- 09_N
Grouping	Analyte		09_NP			
WATER						
Total Metals	Calcium (Ca)-Total (mg/L)	249	46.8	46.8	<0.050	48.8
	Chromium (Cr)-Total (mg/L)	<0.00010	0.00021	0.00020	<0.00010	0.00020
	Cobalt (Co)-Total (ug/L)	<0.10	<0.10	<0.10	<0.10	<0.10
	Copper (Cu)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Iron (Fe)-Total (mg/L)	0.026	0.011	0.019	<0.010	0.013
	Lead (Pb)-Total (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Lithium (Li)-Total (mg/L)	0.0308	0.0029	0.0030	<0.0010	0.0036
	Magnesium (Mg)-Total (mg/L)	165	12.1	12.5	<0.10	12.6
	Manganese (Mn)-Total (mg/L)	0.00262	0.00169	0.00211	<0.00010	0.00182
	Mercury (Hg)-Total (ug/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Molybdenum (Mo)-Total (mg/L)	0.00171	0.00122	0.00107	<0.000050	0.00124
	Nickel (Ni)-Total (mg/L)	0.00132	0.00107	0.00107	<0.00050	0.00147
	Potassium (K)-Total (mg/L)	2.40	0.425	0.421	<0.050	0.433
	Selenium (Se)-Total (ug/L)	153	1.36	1.42	<0.050	1.68
	Silicon (Si)-Total (mg/L)	2.97	1.78	1.79	<0.10	1.81
	Silver (Ag)-Total (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Sodium (Na)-Total (mg/L)	12.4	0.827	0.846	0.132	0.882
	Strontium (Sr)-Total (mg/L)	0.638	0.213	0.213	<0.00020	0.218
	Thallium (TI)-Total (mg/L)	0.000011	<0.000010	<0.000010	<0.000010	<0.000010
	Tin (Sn)-Total (mg/L)	<0.00010	<0.00010	<0.00010	0.00013	<0.00010
	Titanium (Ti)-Total (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Uranium (U)-Total (mg/L)	0.00643	0.000800	0.000822	<0.000010	0.000855
	Vanadium (V)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Zinc (Zn)-Total (mg/L)	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030
Dissolved Metals	Dissolved Mercury Filtration Location	FIELD	FIELD	FIELD	FIELD	FIELD
	Dissolved Metals Filtration Location	FIELD	FIELD	FIELD	FIELD	FIELD
	Aluminum (Al)-Dissolved (mg/L)	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030
	Antimony (Sb)-Dissolved (mg/L)	0.00018	<0.00010	<0.00010	<0.00010	<0.00010
	Arsenic (As)-Dissolved (mg/L)	0.00027	<0.00010	<0.00010	<0.00010	0.00012
	Barium (Ba)-Dissolved (mg/L)	0.0720	0.0468	0.0480	<0.00010	0.0465
	Beryllium (Be)-Dissolved (ug/L)	<0.020	<0.020	<0.020	<0.020	<0.020
	Bismuth (Bi)-Dissolved (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Boron (B)-Dissolved (mg/L)	0.027	<0.010	<0.010	<0.010	<0.010
	Cadmium (Cd)-Dissolved (ug/L)	0.0165	0.0083	0.0082	<0.0050	0.0064
	Calcium (Ca)-Dissolved (mg/L)	256	48.3	49.6	<0.050	49.1
	Chromium (Cr)-Dissolved (mg/L)	<0.00010	0.00023	0.00020	<0.00010	0.00021
	Cobalt (Co)-Dissolved (ug/L)	<0.10	<0.10	<0.10	<0.10	<0.10

L2502324 CONTD.... PAGE 4 of 7 19-SEP-20 12:59 (MT) Version: FINAL

	Sample ID Description	L2502324-1 WS	L2502324-2 WS	L2502324-3 WS	L2502324-4 WS	L2502324-6 WS
	Sampled Date Sampled Time Client ID	10-SEP-20 15:45 RG_THCK_WS_LA EMP_GHO_2020-	10-SEP-20 16:45 RG_ERSC5_WS_L	10-SEP-20 16:45 RG_RIVER1_WS_ LAEMP_GHO_202	10-SEP-20 16:45 RG_FBLANK1_WS _LAEMP_GHO_20	10-SEP-20 14:00 GH_ER1A_WS_LA EMP_GHO_2020-
Grouping	Analyte	09_NP	AEMP_GHO_2020- 09_NP	0-09_NP	20-09_NP	09_N
WATER	-					
Dissolved Metals	Copper (Cu)-Dissolved (mg/L)	0.00021	<0.00020	<0.00020	<0.00020	<0.00020
	Iron (Fe)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Lead (Pb)-Dissolved (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	< 0.000050
	Lithium (Li)-Dissolved (mg/L)	0.0329	0.0031	0.0031	<0.0010	0.0037
	Magnesium (Mg)-Dissolved (mg/L)	152	11.3	11.7	<0.10	12.3
	Manganese (Mn)-Dissolved (mg/L)	0.00032	0.00085	0.00092	<0.00010	0.00099
	Mercury (Hg)-Dissolved (mg/L)	<0.000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050
	Molybdenum (Mo)-Dissolved (mg/L)	0.00153	0.00101	0.00100	<0.000050	0.00105
	Nickel (Ni)-Dissolved (mg/L)	0.00068	0.00058	0.00057	<0.00050	0.00090
	Potassium (K)-Dissolved (mg/L)	2.44	0.422	0.446	<0.050	0.446
	Selenium (Se)-Dissolved (ug/L)	147	1.40	1.38	<0.050	1.58
	Silicon (Si)-Dissolved (mg/L)	2.84	1.75	1.76	<0.050	1.81
	Silver (Ag)-Dissolved (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Sodium (Na)-Dissolved (mg/L)	12.0	0.815	0.847	<0.050	0.904
	Strontium (Sr)-Dissolved (mg/L)	0.616	0.202	0.208	<0.00020	0.206
	Thallium (TI)-Dissolved (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Tin (Sn)-Dissolved (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Titanium (Ti)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Uranium (U)-Dissolved (mg/L)	0.00622	0.000786	0.000807	<0.000010	0.000869
	Vanadium (V)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Zinc (Zn)-Dissolved (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010

Reference Information

L2502324 CONTD PAGE 5 of 7 19-SEP-20 12:59 (MT) Version: FINAI

OC Samples with Qualifiers & Comments

QC Type Descri	iption	Parameter	Qualifier	Applies to Sample Number(s)			
Matrix Spike		Barium (Ba)-Dissolved	MS-B	L2502324-1, -2, -3, -4, -6			
Matrix Spike		Calcium (Ca)-Dissolved	MS-B	L2502324-1, -2, -3, -4, -6			
Matrix Spike		Magnesium (Mg)-Dissolved	MS-B	L2502324-1, -2, -3, -4, -6			
Matrix Spike		Sodium (Na)-Dissolved	MS-B	L2502324-1, -2, -3, -4, -6			
Matrix Spike		Strontium (Sr)-Dissolved	MS-B	L2502324-1, -2, -3, -4, -6			
Matrix Spike		Barium (Ba)-Total	MS-B	L2502324-1, -2, -3, -4, -6			
Matrix Spike		Calcium (Ca)-Total	MS-B	L2502324-1, -2, -3, -4, -6			
Matrix Spike		Magnesium (Mg)-Total	MS-B	L2502324-1, -2, -3, -4, -6			
Matrix Spike		Selenium (Se)-Total	MS-B	L2502324-1, -2, -3, -4, -6			
Matrix Spike	rix Spike Sodium (Na)-Total MS-t		MS-B	L2502324-1, -2, -3, -4, -6			
Matrix Spike		Strontium (Sr)-Total	L2502324-1, -2, -3, -4, -6				
Qualifiers for I	ndividual Paramete	rs Listed:					
Qualifier	Description						
DLHC	Detection Limit Rai	sed: Dilution required due to high concer	tration of test and	alyte(s).			
MS-B	Matrix Spike recove	ery could not be accurately calculated du	e to high analyte	background in sample.			
RRV	Reported Result Ve	erified By Repeat Analysis					
TKNI	TKN result may be	biased low due to Nitrate interference.	litrate-N is > 10x	TKN.			
est Method Ro	eferences:						
LS Test Code	Matrix	Test Description		Method Reference**			
CIDITY-PCT-C	L Water	Acidity by Automatic Titration		APHA 2310 Acidity			
This analysis is endpoint.	carried out using pro	ocedures adapted from APHA Method 23	10 "Acidity". Acid	lity is determined by potentiometric titration to a specifie			
ALK-MAN-CL	Water	Alkalinity (Species) by Manual Titra	tion	APHA 2320 ALKALINITY			
This analysis is pH 4.5 endpoin	carried out using prot. Bicarbonate, carbo	ocedures adapted from APHA Method 23 nate and hydroxide alkalinity are calculat	20 "Alkalinity". To ed from phenolph	otal alkalinity is determined by potentiometric titration to nthalein alkalinity and total alkalinity values.			
BE-D-L-CCMS-VA Water Diss. Be (low) in Water by CRC ICPMS			PMS	APHA 3030B/6020A (mod)			
Water samples	are filtered (0.45 um) preserved with nitric acid, and analyzed	hy CRC ICPMS				

Water Total Be (Low) in Water by CRC ICPMS EPA 200.2/6020A (mod) **BE-T-L-CCMS-VA** Water samples are digested with nitric and hydrochloric acids, and analyzed by CRC ICPMS.

Bromide in Water by IC (Low Level) **BR-L-IC-N-CL** Water EPA 300.1 (mod)

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

C-DIS-ORG-LOW-CL Water **Dissolved Organic Carbon**

APHA 5310 B-Instrumental This method is applicable to the analysis of ground water, wastewater, and surface water samples. The form detected depends upon sample pretreatment: Unfiltered sample = TC, 0.45um filtered = TDC. Samples are injected into a combustion tube containing an oxidation catalyst. The carrier gas containing the combustion product from the combustion tube flows through an inorganic carbon reactor vessel and is then sent through a halogen scrubber into a sample cell set in a non-dispersive infrared gas analyzer (NDIR) where carbon dioxide is detected. For total inorganic carbon and dissolved inorganic carbon, the sample is injected into an IC reactor vessel where only the IC component is decomposed to become carbon

dioxide.

The peak area generated by the NDIR indicates the TC/TDC or TIC/DIC as applicable. The total organic carbon content of the sample is calculated by subtracting the TIC from the TC.

TOC = TC-TIC, DOC = TDC-DIC, Particulate = Total - Dissolved.

C-TOT-ORG-LOW-CL Water **Total Organic Carbon** APHA 5310 TOTAL ORGANIC CARBON (TOC)

This method is applicable to the analysis of ground water, wastewater, and surface water samples. The form detected depends upon sample pretreatment: Unfiltered sample = TC, 0.45um filtered = TDC. Samples are injected into a combustion tube containing an oxidation catalyst. The carrier gas containing the combustion product from the combustion tube flows through an inorganic carbon reactor vessel and is then sent through a halogen scrubber into a sample cell set in a non-dispersive infrared gas analyzer (NDIR) where carbon dioxide is detected. For total inorganic carbon and dissolved inorganic carbon, the sample is injected into an IC reactor vessel where only the IC component is decomposed to become carbon dioxide.

The peak area generated by the NDIR indicates the TC/TDC or TIC/DIC as applicable. The total organic carbon content of the sample is calculated by

Reference Information

L2502324 CONTD.... PAGE 6 of 7 19-SEP-20 12:59 (MT) Version: FINAL

subtracting the TIC from th $TOC = TC-TIC$, $DOC = TD$	e TC. C-DIC, Partic	culate = Total - Dissolved.	
CL-L-IC-N-CL	Water	Chloride in Water by IC	EPA 300.1 (mod)
Inorganic anions are analyz	zed by Ion Cł	nromatography with conductivity and/or UV detection.	
EC-L-PCT-CL	Water	Electrical Conductivity (EC)	APHA 2510B
Conductivity, also known a electrodes into a water san	s Electrical C nple. Conduc	conductivity (EC) or Specific Conductance, is measured ctivity measurements are temperature-compensated to a	by immersion of a conductivity cell with platinum 25C.
F-IC-N-CL	Water	Fluoride in Water by IC	EPA 300.1 (mod)
Inorganic anions are analyz	zed by Ion Ch	nromatography with conductivity and/or UV detection.	
HARDNESS-CALC-VA	Water	Hardness	APHA 2340B
Hardness (also known as T Dissolved Calcium and Ma	Fotal Hardnes gnesium con	ss) is calculated from the sum of Calcium and Magnesiu centrations are preferentially used for the hardness calc	Im concentrations, expressed in CaCO3 equivalents. culation.
HG-D-CVAA-VA	Water	Diss. Mercury in Water by CVAAS or CVAFS	APHA 3030B/EPA 1631E (mod)
Water samples are filtered with stannous chloride, and	(0.45 um), pi d analyzed by	reserved with hydrochloric acid, then undergo a cold-oxi / CVAAS or CVAFS.	idation using bromine monochloride prior to reduction
HG-T-U-CVAF-VA	Water	Total Mercury in Water by CVAFS (Ultra)	EPA 1631 REV. E
This analysis is carried out procedure involves a cold-or reduction of the sample wit	using proced oxidation of th h stannous c	dures adapted from Method 1631 Rev. E. by the United ne acidified sample using bromine monochloride prior to hloride. Instrumental analysis is by cold vapour atomic	States Environmental Protection Agency (EPA). The a purge and trap concentration step and final fluorescence spectrophotometry.
IONBALANCE-BC-CL	Water	Ion Balance Calculation	APHA 1030E
Cation Sum, Anion Sum, a Correctness of Analysis). I should be near-zero.	nd Ion Balan Because all a	ce (as % difference) are calculated based on guidance aqueous solutions are electrically neutral, the calculated	from APHA Standard Methods (1030E Checking ion balance (% difference of cations minus anions)
Cation and Anion Sums are included where data is pres	e the total me sent. Ion Bal	eq/L concentration of major cations and anions. Dissolv ance is calculated as:	red species are used where available. Minor ions are
Ion Balance (%) = [Cation \$	Sum-Anion S	um] / [Cation Sum+Anion Sum]	
MET-D-CCMS-VA	Water	Dissolved Metals in Water by CRC ICPMS	APHA 3030B/6020A (mod)
Water samples are filtered	(0.45 um), pi	reserved with nitric acid, and analyzed by CRC ICPMS.	
Method Limitation (re: Sulfu	ur): Sulfide ar	nd volatile sulfur species may not be recovered by this r	nethod.
MET-T-CCMS-VA	Water	Total Metals in Water by CRC ICPMS	EPA 200.2/6020A (mod)
Water samples are digeste	ed with nitric a	and hydrochloric acids, and analyzed by CRC ICPMS.	
Method Limitation (re: Sulfu	ur): Sulfide ar	nd volatile sulfur species may not be recovered by this r	nethod.
NH3-L-F-CL	Water	Ammonia, Total (as N)	J. ENVIRON. MONIT., 2005, 7, 37-42, RSC
This analysis is carried out of Chemistry, "Flow-injectic al.	, on sulfuric a on analysis w	acid preserved samples, using procedures modified from ith fluorescence detection for the determination of trace	n J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society levels of ammonium in seawater", Roslyn J. Waston et
NO2-L-IC-N-CL	Water	Nitrite in Water by IC (Low Level)	EPA 300.1 (mod)
Inorganic anions are analyz	zed by Ion Cł	nromatography with conductivity and/or UV detection.	
NO3-L-IC-N-CL	Water	Nitrate in Water by IC (Low Level)	EPA 300.1 (mod)
Inorganic anions are analyz	zed by Ion Cł	nromatography with conductivity and/or UV detection.	
ORP-CL	Water	Oxidation redution potential by elect.	ASTM D1498
This analysis is carried out published by the American metal-reference electrode e	in accordanc Society for T employed, in	ce with the procedure described in the "ASTM" method l Testing and Materials (ASTM). Results are reported as o mV.	D1498 "Oxidation-Reduction Potential of Water" observed oxidation-reduction potential of the platinum
It is recommended that this	s analysis be	conducted in the field.	
P-T-L-COL-CL	Water	Phosphorus (P)-Total	APHA 4500-P PHOSPHORUS
This analysis is carried out after persulphate digestion	using proced of the sampl	dures adapted from APHA Method 4500-P "Phosphorus e.	". Total Phosphorus is determined colourimetrically

Reference Information

L2502324 CONTD.... PAGE 7 of 7 19-SEP-20 12:59 (MT) Version: FINAL

PH-CL	Water	pН	APHA 4500 H-Electrode							
pH is determined in the labo hold time from time of sam	oratory using pling (field an	a pH electrode. All samples analyzed by this method for alysis is recommended for pH where highly accurate re	or pH will have exceeded the 15 minute recommended esults are needed)							
PO4-DO-L-COL-CL	Water	Orthophosphate-Dissolved (as P)	APHA 4500-P PHOSPHORUS							
This analysis is carried out colourimetrically on a samp	using proced le that has b	lures adapted from APHA Method 4500-P "Phosphorus een lab or field filtered through a 0.45 micron membran	". Dissolved Orthophosphate is determined e filter.							
SO4-IC-N-CL	Water	Sulfate in Water by IC	EPA 300.1 (mod)							
Inorganic anions are analyz	ed by Ion Ch	romatography with conductivity and/or UV detection.								
SOLIDS-TDS-CL	Water	Total Dissolved Solids	APHA 2540 C							
A well-mixed sample is filte The increase in vial weight	A well-mixed sample is filtered through a glass fibre filter paper. The filtrate is then evaporated to dryness in a pre-weighed vial and dried at 180 – 2 °C. The increase in vial weight represents the total dissolved solids (TDS).									
TECKCOAL-IONBAL-CL	Water	Ion Balance Calculation	APHA 1030E							
Cation Sum, Anion Sum, and Ion Balance (as % difference) are calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis). Because all aqueous solutions are electrically neutral, the calculated ion balance (% difference of cations minus anions) should be near-zero.										
Cation and Anion Sums are included where data is pres	Cation and Anion Sums are the total meq/L concentration of major cations and anions. Dissolved species are used where available. Minor ions are included where data is present. Ion Balance is calculated as:									
Ion Balance (%) = [Cation S	Sum-Anion S	um] / [Cation Sum+Anion Sum]								
TKN-L-F-CL	Water	Total Kjeldahl Nitrogen	APHA 4500-NORG (TKN)							
This analysis is carried out Nitrogen is determined usin	using proced g block diges	lures adapted from APHA Method 4500-Norg D. "Block stion followed by Flow-injection analysis with fluorescen	Digestion and Flow Injection Analysis". Total Kjeldahl ce detection.							
TSS-L-CL	Water	Total Suspended Solids	APHA 2540 D-Gravimetric							
This analysis is carried out (TSS) are determined by fil	using proced tering a samp	lures adapted from APHA Method 2540 "Solids". Solids ble through a glass fibre filter, and by drying the filter at	are determined gravimetrically. Total suspended solids 104 deg. C.							
TURBIDITY-CL	Water	Turbidity	APHA 2130 B-Nephelometer							
This analysis is carried out	using proced	lures adapted from APHA Method 2130 "Turbidity". Tur	bidity is determined by the nephelometric method.							
** ALS test methods may inco	rporate modi	fications from specified reference methods to improve	performance.							
The last two letters of the ab	ove test code	e(s) indicate the laboratory that performed analytical an	alysis for that test. Refer to the list below:							
Laboratory Definition Code	Labora	tory Location								
CL	ALS EN	IVIRONMENTAL - CALGARY, ALBERTA, CANADA								
VA	ALS EN	VIRONMENTAL - VANCOUVER, BRITISH COLUMBIA	A, CANADA							

Chain of Custody Numbers:

GHO LAEMP Sept 2020

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

		Workorder:	L2502324	Ļ	Report Date:	19-SEP-20	Paç	ge 1 of 14
Client: Tec 421 Spa Contact: Cait	k Coal Ltd. Pine Avenue rwood BC V0B 2G0 Good							
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ACIDITY-PCT-CL	Water							
Batch R5224 WG3405383-17 L Acidity (as CaCO3	4327 CS)		103.9		%		85-115	15-SEP-20
WG3405383-16 N Acidity (as CaCO3	IB)		1.7		mg/L		2	15-SEP-20
ALK-MAN-CL	Water							
Batch R5220	6926							
WG3406781-11 L Alkalinity, Total (as	CS CaCO3)		99.8		%		85-115	17-SEP-20
WG3406781-14 L Alkalinity, Total (as	CS CaCO3)		103.0		%		85-115	17-SEP-20
WG3406781-10 N Alkalinity, Total (as	I B CaCO3)		<1.0		mg/L		1	17-SEP-20
WG3406781-13 N Alkalinity, Total (as	I B CaCO3)		<1.0		mg/L		1	17-SEP-20
BE-D-L-CCMS-VA	Water							
Batch R5220 WG3405995-2 L Berullium (Be)-Diss	6820 CS		05.4		0/		80.420	
WG3405995-1 N Beryllium (Be)-Dise	IB solved	NP	<0.000020)	mg/L		0.00002	17-SEP-20
BE-T-L-CCMS-VA	Water				5		0.00002	
Batch R5220 WG3405856-2 L	6940 CS							
Beryllium (Be)-Tota	al IB		98.5		%		80-120	17-SEP-20
Beryllium (Be)-Tota	al		<0.000020)	mg/L		0.00002	17-SEP-20
BR-L-IC-N-CL	Water							
Batch R5223 WG3404056-15 D	3278 UP	1 2502324-4						
Bromide (Br)		<0.050	<0.050	RPD-N	IA mg/L	N/A	20	12-SEP-20
WG3404056-14 L Bromide (Br)	CS		104.3		%		85-115	12-SEP-20
WG3404056-13 N Bromide (Br)	IB		<0.050		mg/L		0.05	12-SEP-20
WG3404056-16 N Bromide (Br)	IS	L2502324-4	120.2		%		75-125	12-SEP-20

C-DIS-ORG-LOW-CL Wat

Water

		Workorder:	L250232	4 Re	eport Date:	19-SEP-20	Pa	ge 2 of 14
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
C-DIS-ORG-LOW-CL	Water							
Batch R5226924	4							
WG3406749-2 LCS Dissolved Organic Car	bon		90.7		%		80-120	16-SEP-20
WG3406749-1 MB Dissolved Organic Car	bon		<0.50		mg/L		0.5	16-SEP-20
C-TOT-ORG-LOW-CL	Water							
Batch R5226924	4							
WG3406749-2 LCS Total Organic Carbon			92.2		%		80-120	16-SEP-20
WG3406749-1 MB								
Total Organic Carbon			<0.50		mg/L		0.5	16-SEP-20
CL-L-IC-N-CL	Water							
Batch R5223278	8							
WG3404056-15 DUP Chloride (Cl)		L2502324-4 <0.10	<0.10	RPD-NA	mg/L	N/A	20	12-SEP-20
WG3404056-14 LCS Chloride (Cl)			101.5		%		85-115	12-SEP-20
WG3404056-13 MB Chloride (Cl)			<0.10		mg/L		0.1	12-SEP-20
WG3404056-16 MS Chloride (Cl)		L2502324-4	119.7		%		75-125	12-SEP-20
EC-L-PCT-CL	Water		-				10 120	
Batch 85226026	8							
WG3406781-11 LCS								
Conductivity (@ 25C)			95.1		%		90-110	17-SEP-20
WG3406781-14 LCS Conductivity (@ 25C)			95.4		%		90-110	17-SEP-20
WG3406781-10 MB Conductivity (@ 25C)			<2.0		uS/cm		2	17-SEP-20
WG3406781-13 MB Conductivity (@ 25C)			<2.0		uS/cm		2	17-SEP-20
F-IC-N-CL	Water							
Batch R5223278	В							
WG3404056-15 DUP Fluoride (F)		L2502324-4 <0.020	<0.020	RPD-NA	mg/L	N/A	20	12-SEP-20
WG3404056-14 LCS Fluoride (F)			101.9		%		90-110	12-SEP-20
WG3404056-13 MB			-					

		Workorder: L2502324		Report Date: 19-SEP-20		Page 3 of 14		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
F-IC-N-CL	Water							
Batch R5223278								
WG3404056-13 MB Fluoride (F)			<0.020		mg/L		0.02	12-SEP-20
WG3404056-16 MS		L2502324-4			-			
Fluoride (F)			120.5		%		75-125	12-SEP-20
HG-D-CVAA-VA	Water							
Batch R5228437								
WG3407162-6 LCS			07.2		0/		00.400	
			97.2		70		80-120	18-SEP-20
Mercury (Hg)-Dissolved		NP	<0.00000	5C	mg/L		0.000005	18-SEP-20
WG3407162-8 MS		L2502324-4			-			
Mercury (Hg)-Dissolved			88.1		%		70-130	18-SEP-20
HG-T-U-CVAF-VA	Water							
Batch R5226825								
WG3406751-2 LCS								
Mercury (Hg)-Total			91.8		%		80-120	17-SEP-20
WG3406751-1 MB Mercury (Hg)-Total			<0.00050		ug/L		0.0005	17-SEP-20
WG3406751-8 MS		L2502324-3						
Mercury (Hg)-Total			86.8		%		70-130	17-SEP-20
MET-D-CCMS-VA	Water							
Batch R5226820								
WG3405995-2 LCS Aluminum (Al)-Dissolved			98.8		%		80-120	17-SEP-20
Antimony (Sb)-Dissolved			88.5		%		80-120	17-SEP-20
Arsenic (As)-Dissolved			93.9		%		80-120	17-SEP-20
Barium (Ba)-Dissolved			97.1		%		80-120	17-SEP-20
Bismuth (Bi)-Dissolved			98.4		%		80-120	17-SEP-20
Boron (B)-Dissolved			92.8		%		80-120	17-SEP-20
Cadmium (Cd)-Dissolved	1		94.0		%		80-120	17-SEP-20
Calcium (Ca)-Dissolved			97.7		%		80-120	17-SEP-20
Chromium (Cr)-Dissolved	t		95.1		%		80-120	17-SEP-20
Cobalt (Co)-Dissolved			94.1		%		80-120	17-SEP-20
Copper (Cu)-Dissolved			92.0		%		80-120	17-SEP-20
Iron (Fe)-Dissolved			92.4		%		80-120	17-SEP-20
Lead (Pb)-Dissolved			96.8		%		80-120	17-SEP-20

		Workorder: L2502324			Report Date: 19-SEP-20		Page 4 of 14		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
MET-D-CCMS-VA	Water								
Batch R5226	6820								
WG3405995-2 L	cs								
Lithium (Li)-Dissolv	ved		97.1		%		80-120	17-SEP-20	
Magnesium (Mg)-D	Dissolved		92.0		%		80-120	17-SEP-20	
Manganese (Mn)-L	Dissolved		96.0		%		80-120	17-SEP-20	
Molybdenum (Mo)-	Dissolved		90.9		%		80-120	17-SEP-20	
Nickel (Ni)-Dissolve	ed		95.7		%		80-120	17-SEP-20	
Potassium (K)-Diss	solved		97.1		%		80-120	17-SEP-20	
Selenium (Se)-Diss	solved		91.3		%		80-120	17-SEP-20	
Silicon (Si)-Dissolve	ed		95.5		%		60-140	17-SEP-20	
Silver (Ag)-Dissolve	ed		90.4		%		80-120	17-SEP-20	
Sodium (Na)-Disso	lved		98.3		%		80-120	17-SEP-20	
Strontium (Sr)-Diss	solved		92.9		%		80-120	17-SEP-20	
Thallium (TI)-Disso	lved		95.7		%		80-120	17-SEP-20	
Tin (Sn)-Dissolved			90.6		%		80-120	17-SEP-20	
Titanium (Ti)-Disso	olved		88.3		%		80-120	17-SEP-20	
Uranium (U)-Dissol	lved		96.1		%		80-120	17-SEP-20	
Vanadium (V)-Diss	olved		95.6		%		80-120	17-SEP-20	
Zinc (Zn)-Dissolved	b		94.4		%		80-120	17-SEP-20	
WG3405995-1 M	IB	NP							
Aluminum (Al)-Diss	solved		<0.0010		mg/L		0.001	17-SEP-20	
Antimony (Sb)-Diss	solved		<0.00010)	mg/L		0.0001	17-SEP-20	
Arsenic (As)-Dissol	lved		<0.00010)	mg/L		0.0001	17-SEP-20	
Barium (Ba)-Dissol	lved		<0.00010)	mg/L		0.0001	17-SEP-20	
Bismuth (Bi)-Dissol	lved		<0.0000	50	mg/L		0.00005	17-SEP-20	
Boron (B)-Dissolve	d		<0.010		mg/L		0.01	17-SEP-20	
Cadmium (Cd)-Dis	solved		<0.0000	050	mg/L		0.000005	17-SEP-20	
Calcium (Ca)-Disso	olved		<0.050		mg/L		0.05	17-SEP-20	
Chromium (Cr)-Dis	solved		<0.00010)	mg/L		0.0001	17-SEP-20	
Cobalt (Co)-Dissolv	ved		<0.00010)	mg/L		0.0001	17-SEP-20	
Copper (Cu)-Disso	lved		<0.00020)	mg/L		0.0002	17-SEP-20	
Iron (Fe)-Dissolved	1		<0.010		mg/L		0.01	17-SEP-20	
Lead (Pb)-Dissolve	ed		<0.0000	50	mg/L		0.00005	17-SEP-20	
Lithium (Li)-Dissolv	ved		<0.0010		mg/L		0.001	17-SEP-20	
Magnesium (Mg)-D	Dissolved		<0.0050		mg/L		0.005	17-SEP-20	
Manganese (Mn)-D	Dissolved		<0.00010)	mg/L		0.0001	17-SEP-20	

		Workorder	Workorder: L2502324			Report Date: 19-SEP-20		Page 5 of 14	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
MET-D-CCMS-VA	Water								
Batch R5226820									
WG3405995-1 MB		NP							
Molybdenum (Mo)-Diss	olved		<0.00005	0	mg/L		0.00005	17-SEP-20	
Nickel (Ni)-Dissolved			<0.00050		mg/L		0.0005	17-SEP-20	
Potassium (K)-Dissolve	ed		<0.050		mg/L		0.05	17-SEP-20	
Selenium (Se)-Dissolve	d		<0.00005	0	mg/L		0.00005	17-SEP-20	
Silicon (Si)-Dissolved			<0.050		mg/L		0.05	17-SEP-20	
Silver (Ag)-Dissolved			<0.00001	0	mg/L		0.00001	17-SEP-20	
Sodium (Na)-Dissolved			<0.050		mg/L		0.05	17-SEP-20	
Strontium (Sr)-Dissolve	d		<0.00020		mg/L		0.0002	17-SEP-20	
Thallium (TI)-Dissolved			<0.00001	0	mg/L		0.00001	17-SEP-20	
Tin (Sn)-Dissolved			<0.00010		mg/L		0.0001	17-SEP-20	
Titanium (Ti)-Dissolved			<0.00030		mg/L		0.0003	17-SEP-20	
Uranium (U)-Dissolved			<0.00001	0	mg/L		0.00001	17-SEP-20	
Vanadium (V)-Dissolve	d		<0.00050		mg/L		0.0005	17-SEP-20	
Zinc (Zn)-Dissolved			<0.0010		mg/L		0.001	17-SEP-20	
MET-T-CCMS-VA	Water								
Batch R5226940									
WG3405856-2 LCS			1010		0/				
Aluminum (Al)-Total			104.2		%		80-120	17-SEP-20	
Antimony (Sb)-Total			109.6		%		80-120	17-SEP-20	
Arsenic (As)- I otal			103.0		%		80-120	17-SEP-20	
Barium (Ba)-Total			110.2		%		80-120	17-SEP-20	
Bismuth (Bi)-Total			103.7		%		80-120	17-SEP-20	
Boron (B)-Total			100.8		%		80-120	17-SEP-20	
Cadmium (Cd)-Total			107.3		%		80-120	17-SEP-20	
Calcium (Ca)-Total			101.6		%		80-120	17-SEP-20	
Chromium (Cr)-Total			103.3		%		80-120	17-SEP-20	
Cobalt (Co)-Total			103.1		%		80-120	17-SEP-20	
Copper (Cu)-Total			103.0		%		80-120	17-SEP-20	
Iron (Fe)-Total			102.5		%		80-120	17-SEP-20	
Lead (Pb)-Total			102.2		%		80-120	17-SEP-20	
Lithium (Li)-Total			96.6		%		80-120	17-SEP-20	
Magnesium (Mg)-Total			99.3		%		80-120	17-SEP-20	
Manganese (Mn)-Total			108.1		%		80-120	17-SEP-20	
Molybdenum (Mo)-Tota	l		101.2		%		80-120	17-SEP-20	

		Workorder	Workorder: L2502324			Report Date: 19-SEP-20		Page 6 of 14	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
MET-T-CCMS-VA	Water								
Batch R522694	40								
WG3405856-2 LCS	5								
Nickel (Ni)-Total			104.7		%		80-120	17-SEP-20	
Potassium (K)-Total			106.0		%		80-120	17-SEP-20	
Selenium (Se)-Total			104.9		%		80-120	17-SEP-20	
Silicon (Si)-Total			103.8		%		80-120	17-SEP-20	
Silver (Ag)-Total			107.2		%		80-120	17-SEP-20	
Sodium (Na)-Total			104.5		%		80-120	17-SEP-20	
Strontium (Sr)-Total			103.4		%		80-120	17-SEP-20	
Thallium (TI)-Total			103.6		%		80-120	17-SEP-20	
Tin (Sn)-Total			104.4		%		80-120	17-SEP-20	
Titanium (Ti)-Total			101.0		%		80-120	17-SEP-20	
Uranium (U)-Total			99.5		%		80-120	17-SEP-20	
Vanadium (V)-Total			101.8		%		80-120	17-SEP-20	
Zinc (Zn)-Total			109.3		%		80-120	17-SEP-20	
WG3405856-1 MB									
Aluminum (Al)-Total			<0.0030		mg/L		0.003	17-SEP-20	
Antimony (Sb)-Total			<0.00010)	mg/L		0.0001	17-SEP-20	
Arsenic (As)-Total			<0.00010)	mg/L		0.0001	17-SEP-20	
Barium (Ba)-Total			<0.00010)	mg/L		0.0001	17-SEP-20	
Bismuth (Bi)-Total			<0.0000	50	mg/L		0.00005	17-SEP-20	
Boron (B)-Total			<0.010		mg/L		0.01	17-SEP-20	
Cadmium (Cd)-Total			<0.0000	050	mg/L		0.000005	17-SEP-20	
Calcium (Ca)-Total			<0.050		mg/L		0.05	17-SEP-20	
Chromium (Cr)-Total			<0.00010)	mg/L		0.0001	17-SEP-20	
Cobalt (Co)-Total			<0.00010)	mg/L		0.0001	17-SEP-20	
Copper (Cu)-Total			<0.00050)	mg/L		0.0005	17-SEP-20	
Iron (Fe)-Total			<0.010		mg/L		0.01	17-SEP-20	
Lead (Pb)-Total			<0.0000	50	mg/L		0.00005	17-SEP-20	
Lithium (Li)-Total			<0.0010		mg/L		0.001	17-SEP-20	
Magnesium (Mg)-Tota	al		<0.0050		mg/L		0.005	17-SEP-20	
Manganese (Mn)-Tota	al		<0.00010)	mg/L		0.0001	17-SEP-20	
Molybdenum (Mo)-To	otal		<0.0000	50	mg/L		0.00005	17-SEP-20	
Nickel (Ni)-Total			<0.00050)	mg/L		0.0005	17-SEP-20	
Potassium (K)-Total			<0.050		mg/L		0.05	17-SEP-20	
Selenium (Se)-Total			<0.0000	50	mg/L		0.00005	17-SEP-20	

		Workorder: L2502324			Report Date: 19-SEP-20		Page 7 of 14	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-VA	Water							
Batch R522694	10							
WG3405856-1 MB								
Silicon (Si)-Total			<0.10		mg/L		0.1	17-SEP-20
Silver (Ag)-Total			<0.00001	0	mg/L		0.00001	17-SEP-20
Sodium (Na)-Total			<0.050		mg/L		0.05	17-SEP-20
Strontium (Sr)-Total			<0.00020)	mg/L		0.0002	17-SEP-20
Thallium (TI)-Total			<0.00001	0	mg/L		0.00001	17-SEP-20
Tin (Sn)-Total			<0.00010)	mg/L		0.0001	17-SEP-20
Titanium (Ti)-Total			<0.00030)	mg/L		0.0003	17-SEP-20
Uranium (U)-Total			<0.00001	0	mg/L		0.00001	17-SEP-20
Vanadium (V)-Total			<0.00050)	mg/L		0.0005	17-SEP-20
Zinc (Zn)-Total			<0.0030		mg/L		0.003	17-SEP-20
Batch R523059	96							
WG3407139-2 LCS Aluminum (Al)-Total	;		103.6		%		80-120	18-SEP-20
Antimony (Sb)-Total			115.7		%		80-120	18-SEP-20
Arsenic (As)-Total			105.6		%		80-120	18-SEP-20
Barium (Ba)-Total			108.0		%		80-120	18-SEP-20
Bismuth (Bi)-Total			108.7		%		80-120	18-SEP-20
Boron (B)-Total			102.9		%		80-120	18-SEP-20
Cadmium (Cd)-Total			105.2		%		80-120	18-SEP-20
Calcium (Ca)-Total			103.6		%		80-120	18-SEP-20
Chromium (Cr)-Total			106.7		%		80-120	18-SEP-20
Cobalt (Co)-Total			106.2		%		80-120	18-SEP-20
Copper (Cu)-Total			103.8		%		80-120	18-SEP-20
Iron (Fe)-Total			105.9		%		80-120	18-SEP-20
Lead (Pb)-Total			107.8		%		80-120	18-SEP-20
Lithium (Li)-Total			96.5		%		80-120	18-SEP-20
Magnesium (Mg)-Tota	al		102.1		%		80-120	18-SEP-20
Manganese (Mn)-Tota	al		107.5		%		80-120	18-SEP-20
Molybdenum (Mo)-To	tal		102.7		%		80-120	18-SEP-20
Nickel (Ni)-Total			103.4		%		80-120	18-SEP-20
Potassium (K)-Total			103.2		%		80-120	18-SEP-20
Selenium (Se)-Total			106.6		%		80-120	18-SEP-20
Silicon (Si)-Total			104.2		%		80-120	18-SEP-20
Silver (Ag)-Total			106.1		%		80-120	18-SEP-20

	Workorder: L2502324		Report Date: 1	9-SEP-20	Page 8 of 14			
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-VA	Water							
Batch R5230596	6							
WG3407139-2 LCS								
Sodium (Na)- I otal			109.8		%		80-120	18-SEP-20
Strontium (Sr)-Total			102.7		%		80-120	18-SEP-20
Thallium (TI)-Total			106.1		%		80-120	18-SEP-20
Tin (Sn)-Total			105.7		%		80-120	18-SEP-20
Titanium (Ti)-Total			105.9		%		80-120	18-SEP-20
Uranium (U)-Total			105.0		%		80-120	18-SEP-20
Vanadium (V)-Total			108.4		%		80-120	18-SEP-20
Zinc (Zn)-Total			106.6		%		80-120	18-SEP-20
WG3407139-1 MB Aluminum (Al)-Total			<0.0030		mg/L		0.003	18-SEP-20
Antimony (Sb)-Total			<0.00010	D	mg/L		0.0001	18-SEP-20
Arsenic (As)-Total			<0.00010	D	mg/L		0.0001	18-SEP-20
Barium (Ba)-Total			<0.00010	0	mg/L		0.0001	18-SEP-20
Bismuth (Bi)-Total			<0.0000	50	mg/L		0.00005	18-SEP-20
Boron (B)-Total			<0.010		mg/L		0.01	18-SEP-20
Cadmium (Cd)-Total			<0.0000	050	mg/L		0.000005	18-SEP-20
Calcium (Ca)-Total			<0.050		mg/L		0.05	18-SEP-20
Chromium (Cr)-Total			<0.00010)	mg/L		0.0001	18-SEP-20
Cobalt (Co)-Total			<0.00010	0	mg/L		0.0001	18-SEP-20
Copper (Cu)-Total			<0.00050)	mg/L		0.0005	18-SEP-20
Iron (Fe)-Total			<0.010		mg/L		0.01	18-SEP-20
Lead (Pb)-Total			<0.0000	50	mg/L		0.00005	18-SEP-20
Lithium (Li)-Total			<0.0010		mg/L		0.001	18-SEP-20
Magnesium (Mg)-Total			<0.0050		mg/L		0.005	18-SEP-20
Manganese (Mn)-Total	Į		<0.00010	D	mg/L		0.0001	18-SEP-20
Molybdenum (Mo)-Tota	al		<0.0000	50	mg/L		0.00005	18-SEP-20
Nickel (Ni)-Total			<0.00050)	mg/L		0.0005	18-SEP-20
Potassium (K)-Total			<0.050		mg/L		0.05	18-SEP-20
Selenium (Se)-Total			<0.0000	50	mg/L		0.00005	18-SEP-20
Silicon (Si)-Total			<0.10		mg/L		0.1	18-SEP-20
Silver (Ag)-Total			< 0.0000	10	mg/L		0.00001	18-SEP-20
Sodium (Na)-Total			<0.050		mg/L		0.05	18-SEP-20
Strontium (Sr)-Total			<0.00020)	mg/L		0.0002	18-SEP-20
Thallium (TI)-Total			< 0.0000	10	mg/L		0.00001	18-SEP-20

		Workorder:	L2502324	l Re	port Date:	19-SEP-20	Pa	ge 9 of 14
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-VA	Water							
Batch R5230596	5							
WG3407139-1 MB Tin (Sn)-Total			<0.00010		ma/l		0.0001	18-SEP-20
Titanium (Ti)-Total			<0.00030		mg/l		0.0001	18-SEP-20
Uranium (U)-Total			<0.000010)	mg/L		0.00001	18-SEP-20
Vanadium (V)-Total			<0.00050		ma/l		0.0005	18-SEP-20
Zinc (Zn)-Total			<0.0030		mg/L		0.003	18-SEP-20
NH3-L-F-CL	Water				-			
Batch R5224062)							
WG3404326-19 DUP Ammonia as N		L2502324-6 <0.0050	<0.0050	RPD-NA	mg/L	N/A	20	14-SEP-20
WG3404326-18 LCS Ammonia as N			103.9		%		85-115	15-SEP-20
WG3404326-17 MB Ammonia as N			<0.0050		mg/L		0.005	15-SEP-20
WG3404326-20 MS Ammonia as N		L2502324-6	109.0		%		75-125	14-SEP-20
NO2-L-IC-N-CL	Water							
Batch R5223278	3							
WG3404056-15 DUP Nitrite (as N)		L2502324-4 <0.0010	<0.0010	RPD-NA	mg/L	N/A	20	12-SEP-20
WG3404056-14 LCS Nitrite (as N)			102.2		%		90-110	12-SEP-20
WG3404056-13 MB Nitrite (as N)			<0.0010		mg/L		0.001	12-SEP-20
WG3404056-16 MS Nitrite (as N)		L2502324-4	121.8		%		75-125	12-SEP-20
NO3-L-IC-N-CL	Water							
Batch R5223278	3							
WG3404056-15 DUP Nitrate (as N)		L2502324-4 <0.0050	<0.0050	RPD-NA	mg/L	N/A	20	12-SEP-20
WG3404056-14 LCS Nitrate (as N)			102.8		%		90-110	12-SEP-20
WG3404056-13 MB Nitrate (as N)			<0.0050		mg/L		0.005	12-SEP-20
WG3404056-16 MS Nitrate (as N)		L2502324-4	119.8		%		75-125	12-SEP-20

ORP-CL

Water

		Workorder:	L2502324	4 Re	port Date: 19-S	EP-20	Pag	je 10 of 14
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ORP-CL Batch R5224232 WG3404997-4 CRM ORP	Water	CL-ORP	224		mV		210-230	15-SEP-20
P-T-L-COL-CL	Water							
Batch R5229838 WG3407574-18 LCS Phosphorus (P)-Total			100.3		%		80-120	18-SEP-20
WG3407574-17 MB Phosphorus (P)-Total			<0.0020		mg/L		0.002	18-SEP-20
PH-CL	Water							
Batch R5226926 WG3406781-11 LCS рН			7.00		рН		6.9-7.1	17-SEP-20
WG3406781-14 LCS рН			7.00		рН		6.9-7.1	17-SEP-20
PO4-DO-L-COL-CL	Water							
Batch R5222820 WG3403419-15 DUP Orthophosphate-Dissol	ved (as P)	L2502324-4 <0.0010	<0.0010	RPD-NA	mg/L	N/A	20	12-SEP-20
WG3403419-14 LCS Orthophosphate-Dissol	ved (as P)		99.1		%		80-120	12-SEP-20
WG3403419-13 MB Orthophosphate-Dissol	ved (as P)		<0.0010		mg/L		0.001	12-SEP-20
WG3403419-16 MS Orthophosphate-Dissol	ved (as P)	L2502324-4	97.5		%		70-130	12-SEP-20
SO4-IC-N-CL	Water							
Batch R5223278		10500004 4						
Sulfate (SO4)		L2502324-4 <0.30	<0.30	RPD-NA	mg/L	N/A	20	12-SEP-20
WG3404056-14 LCS Sulfate (SO4)			103.7		%		90-110	12-SEP-20
WG3404056-13 MB Sulfate (SO4)			<0.30		mg/L		0.3	12-SEP-20
WG3404056-16 MS Sulfate (SO4)		L2502324-4	119.7		%		75-125	12-SEP-20
SOLIDS-TDS-CL	Water							

		Workorder:	L2502324	4 Re	port Date:	19-SEP-20	Pa	ge 11 of 14
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
SOLIDS-TDS-CL Batch R5226876	Water							
WG3405388-9 DUP Total Dissolved Solids		L2502324-1 1740	1730		mg/L	0.7	20	16-SEP-20
WG3405388-8 LCS Total Dissolved Solids			101.4		%		85-115	16-SEP-20
WG3405388-7 MB Total Dissolved Solids			<10		mg/L		10	16-SEP-20
TKN-L-F-CL	Water							
Batch R5224612								
WG3405544-9 DUP Total Kjeldahl Nitrogen		L2502324-4 <0.050	<0.050	RPD-NA	mg/L	N/A	20	16-SEP-20
WG3405544-2 LCS Total Kjeldahl Nitrogen			108.2		%		75-125	16-SEP-20
WG3405544-4 LCS Total Kjeldahl Nitrogen			111.8		%		75-125	16-SEP-20
WG3405544-6 LCS Total Kjeldahl Nitrogen			110.4		%		75-125	16-SEP-20
WG3405544-8 LCS Total Kjeldahl Nitrogen			110.5		%		75-125	16-SEP-20
WG3405544-1 MB Total Kjeldahl Nitrogen			<0.050		mg/L		0.05	16-SEP-20
WG3405544-3 MB Total Kjeldahl Nitrogen			<0.050		mg/L		0.05	16-SEP-20
WG3405544-5 MB Total Kjeldahl Nitrogen			<0.050		mg/L		0.05	16-SEP-20
WG3405544-7 MB Total Kjeldahl Nitrogen			<0.050		ma/L		0.05	16-SEP-20
WG3405544-10 MS		L2502324-4	111 3		%		70 120	16 SED 20
TSSICI	Wator		111.0		70		70-130	10-521-20
Batch 85226600	Water							
WG3405393-2 LCS Total Suspended Solids			94.8		%		85-115	16-SEP-20
WG3405393-1 MB Total Suspended Solids			<1.0		mg/L		1	16-SEP-20
TURBIDITY-CL	Water							

		Workorder	: L250232	24	Report Date: 1	9-SEP-20	Pa	ige 12 of 14
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
TURBIDITY-CL	Water							
Batch R52229 WG3403353-11 LC Turbidity	915 S		96.5		%		85-115	12-SEP-20
WG3403353-10 MB Turbidity	3		<0.10		NTU		0.1	12-SEP-20

Workorder: L2502324

Report Date: 19-SEP-20

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Workorder: L2502324

Report Date: 19-SEP-20

Page 14 of 14

Hold Time Exceedances:

	Sample						
ALS Product Description	ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier
Physical Tests							
Oxidation redution potential	by elect.						
	1	10-SEP-20 15:45	15-SEP-20 12:45	0.25	117	hours	EHTR-FM
	2	10-SEP-20 16:45	15-SEP-20 12:45	0.25	116	hours	EHTR-FM
	3	10-SEP-20 16:45	15-SEP-20 12:45	0.25	116	hours	EHTR-FM
	4	10-SEP-20 16:45	15-SEP-20 12:45	0.25	116	hours	EHTR-FM
	6	10-SEP-20 14:00	15-SEP-20 12:45	0.25	119	hours	EHTR-FM
рН							
	1	10-SEP-20 15:45	17-SEP-20 14:00	0.25	166	hours	EHTR-FM
	2	10-SEP-20 16:45	17-SEP-20 14:00	0.25	165	hours	EHTR-FM
	3	10-SEP-20 16:45	17-SEP-20 14:00	0.25	165	hours	EHTR-FM
	4	10-SEP-20 16:45	17-SEP-20 14:00	0.25	165	hours	EHTR-FM
	6	10-SEP-20 14:00	17-SEP-20 14:00	0.25	168	hours	EHTR-FM

Legend & Qualifier Definitions:

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended.

EHTR: Exceeded ALS recommended hold time prior to sample receipt.

EHTL: Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L2502324 were received on 12-SEP-20 09:00.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Teck							Pag	e lof2						· · · · · · · · · · · · · · · · · · ·			<u> </u>		
ICCN	COC ID:	СНОТ		Sent	2020		TURN	AROUN	D TIME:		~	······				T	······,		
ALL TREE ALL TREE TREE		PROJECT/CLIENT INFO		HELL	2020	C.S.S.	E LULIOFIC	16714.5	LAB	ORATORY		682.1399	1.0000	(4829a)	NUTRE AND				and a succ
Facility Name	REP						I	.ab Name	ALS Calga	ſУ				an electronic and a second			Excel	PDF	EDD
Project Manager	Cait Good						La	b Contact	Lyudmyla S	Shvets					calt.good@t	eck.com	x	r	
Email	cait.good@teck.com							Email	lyudmyla.s	shvets@alsglo	bal.com				teckcoal@ec	uisonline.com			r
Address	421 Pine Avenue							Address	2559 29 St	reet NE					Jings@minn	ow.ca	x	x 939.	x
City		Spapprood		·	Province	BC		City	Calcan						cartie.meyer	@teck.com	x	x telle	x
Postal Code					Country	Canada	Po	stal Code	TIY 7B5		Province	AB			heruau	now.ca	x i	x	x
Phone Number	250-425-8202						Phone	Number	1 403 407 1	1794	Country	Callada			POr	umber: 68	9999		
and a company of the company	Hindustration	SAMPLE DETAILS	S. A. BAR		AN LAS		D Rowlet		IN COL	AMARANAI	LYSIS REQU	ESTED)		TRANS.		Filtered Y	Teld, L. Lab	FL: Field &	Lib, Ni None
									12 N							- The second			
					1				E C	a diferalika e	N	N	F	N		a da scincia Program	Fices	de le t	(1)
									RV		Hank						en la di Manag		40.000
81 81 80 80 8			ι ,	6					RESE	H2SO4	H2SO4		HCL	HNO3	HNO3	0			
			:	Ň		·				e la constante de la constante La constante de la constante de			Minter and	NAPAG 2					
			;	(Ke	· ·				INE		စ္			A-	-VA			i I	1
	al 2502324-0	COFC		rial		·			E D	2 2		Υ.		1-1:				i I	
فر ا		*		late					RO	Ă	Ľ,	F-1	VA.	ME	ME			1	
		•	í	N S V					AL-	age 1	age	NA.	AF.	AL	AL			(I	
				qor						Pacl	Pacl		Ş	2	2			1 I	
			Field	azar		Time	G=Grab	# Of	 CK 	S.	S	E.	3	SCK	CK			1 I	
Sample ID	Sar	nple Location	Matrix	Ê	Date	e (24hr)	C=Comp	Cont.	H I	<u> </u>		H	Ĥ	Ē	F				<u> </u>
RG_THCK_WS_LAEMP_GH0_2020-09_NP		RG_THCK	WS	No	9/10/20	20 15:45	G	7		1	1	1	1	1	1			 	
RG_ERSC5_WS_LAEMP_GHO_2020-09_NP		RG_ERSC5	ws	No	9/10/20	20 16:45	G	7		1	1	1	1	1	1			l	
RG_RIVER1_WS_LAEMP_GHO_2020-09_NP		RG_RIVER	ws	No	9/10/20	20 16:45	G	7	1	1	1	1	1	1	1			<u>اا</u>	i – I
RG_FBLANKI_WS_LAEMP_GH0_2020-09_NP		RG_FBLANK	WS	No	9/10/20	20 16:45	G	7	1	1	1	1	1	1	1			ļ	i
RG_TRIPI_WS_LAEMP_GH0_2020-09_NP	RG_	TRIP (Leb pre-filled)	ws	No	9/10/20	20 16:45	G	7	1		1			1				ł	· ·
GH_ERIA_WS_LAEMP_GHO_2020-09_N	· · · ·	GH_ERIA	WS	No	9/11/20	20 14:00	G	7	1	1	1	1	1	1	1			اI	I
				12.1														ļļ	į
									<u> </u>									I	ļ
									10										
·				Maria					学										
				(žž										
				14.45					\$¥.	,									
																			⊢
									S										┝───┤
				124410					M										[]
							+		8										
							+											l	┢────┤
ADDITIONA	COMMENTS/SPEC	TAUINSTRUCTIONS	MARSH SA	enter o	RELINO	TISHED BY/AFT	LIATION		DATE/TIM	FEESSIN AND	ALAAAACC	TEPTED	RVAFFI	LIATIO	N Mathema	No. 18. 194		1278-14	
and a second					X	Jennifer Ings			Septemb	per 11, 2020		1/	$\overline{\mathcal{N}}$	/	~1		,	~	
												- 1	π	- (11	In-	()	10	$\overline{\mathbf{n}}$
													V		71		-	t	-
															1			K	-01
NBOFB	OTTLES RETURNE	D/DESCRIPTION			(j)Q	Steam In.	24. dis	A SALLA	1672 D	a paran			1.000	19 9 0	199	B (90)	A.	22.02	
		Regular (c	lefault) x		Sampler'	s Name		الأنفر الها	Jennifer	Ings	liğini alko	Mob	ile #			519-50	-3444		
	Emeror	nty (2-3 business days) - 50% sur	rcharge				CONSULT CONSULT	n han an an thaile an Chairte an thaile an thaile		Hite Constraints	angi Dangan Sangaran man	 		1	1.1	i di giune	gier a de	bin KURU	بر منطقه في في
	For Emergency <1	Day ASAP or Weekend - Conta	ICT ALS	1	Sampler's	Signature		同じたりに開発		nan nesser	19 6 8 (24)	Date/	Time			September	11, 202)) (CARACH	a talah sa

Teck Coal Ltd. ATTN: Cait Good 421 Pine Avenue Sparwood BC VOB 2G0 Date Received: 15-SEP-20 Report Date: 21-SEP-20 17:28 (MT) Version: FINAL

Client Phone: 250-425-8202

Certificate of Analysis

Lab Work Order #: L2503391

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: VPO00689999 REGIONAL EFFECTS PROGRAM RAEMP Sept 2020

Lyudmyla Shvets, B.Sc. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 2559 29 Street NE, Calgary, AB T1Y 7B5 Canada | Phone: +1 403 291 9897 | Fax: +1 403 291 0298 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🔊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L2503391 CONTD.... PAGE 2 of 14 21-SEP-20 17:28 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2503391-1 WS 13-SEP-20 10:30 RG_EL1_WS_RAE MP_2020-09_NP	L2503391-2 WS 12-SEP-20 08:40 RG_ELDFE_WS_R AEMP_2020- 09 NP	L2503391-3 WS 12-SEP-20 15:15 RG_UCWER_WS_ LAEMP_GHO_202 0-09 NP	L2503391-4 WS 12-SEP-20 09:25 RG_FODGH_WS_ LAEMP_GHO_202 0.09 NP	L2503391-5 WS 13-SEP-20 09:20 RG_GRDS_WS_R AEMP_2020- 09 NP
Grouping	Analyte					
WATER						
Physical Tests	Conductivity (@ 25C) (uS/cm)	439	431	336	743	576
	Hardness (as CaCO3) (mg/L)	240	244	192	449	333
	рН (рН)	8.38	8.39	8.33	8.40	8.45
	ORP (mV)	409	440	416	443	464
	Total Suspended Solids (mg/L)	1.3	2.3	<1.0	<1.0	<1.0
	Total Dissolved Solids (mg/L)	DLHC 294	DLHC 279	DLHC 215	DLHC 557	DLHC 392
	Turbidity (NTU)	0.87	1.23	0.28	0.34	0.51
Anions and	Acidity (as CaCO3) (mg/L)	<1.0	<1.0	<1.0	<1.0	<1.0
Nutrients						
	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	163	169	148	195	181
	Alkalinity, Carbonate (as CaCO3) (mg/L)	3.8	4.6	2.4	6.4	9.6
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<1.0	<1.0	<1.0	<1.0	<1.0
		167	173	150	202	190
	Ammonia as N (mg/L)	0.0128	<0.0050	0.0056	<0.0050	0.0100
	Bromide (Br) (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
		3.20	3.15	0.30	1.54	1.35
	Fluoride (F) (mg/L)	0.198	0.197	0.193	0.169	0.226
	Ion Balance (%)	96.1	96.6	96.8	102	96.0
	Nitrate (as N) (mg/L)	2.03	1.76	0.0810	12.0	0.440
	Nitrite (as N) (mg/L)	<0.0010	0.0021	<0.0010	0.0019	<0.0010
	Total Kjeldahl Nitrogen (mg/L)	0.071	0.102	<0.25	<0.25	0.106
	Orthophosphate-Dissolved (as P) (mg/L)	0.0018	<0.0010	0.0036	0.0012	0.0024
	Phosphorus (P)-Total (mg/L)	0.0056	0.0033	0.0056	<0.0020	0.0041
	Sulfate (SO4) (mg/L)	74.3	72.4	46.8	192	151
	Anion Sum (meq/L)	5.13	5.19	4.01	8.94	7.02
	Cation Sum (meq/L)	4.93	5.02	3.88	9.11	6.74
	Cation - Anion Balance (%)	-2.0	-1.7	-1.6	0.9	-2.0
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	1.45	<0.50	2.01	1.59	1.75
		1.54	<0.50	1.74	1.65	1.46
Total Metals	Aluminum (Al)-Total (mg/L)	0.0082	0.0138	<0.0030	0.0036	0.0070
	Antimony (Sb)-I otal (mg/L)	<0.00010	<0.00010	<0.00010	0.00012	<0.00010
	Arsenic (As)-Total (mg/L)	0.00021	0.00022	0.00022	0.00012	0.00017
	Barium (Ba)-Total (mg/L)	0.0763	0.0800	0.0792	0.110	0.0646
	Beryllium (Be)-Total (ug/L)	<0.020	<0.020	<0.020	<0.020	<0.020
	Bismuth (Bi)-Total (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Boron (B)-Total (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Cadmium (Cd)-Total (ug/L)	0.0148	0.0153	0.0080	0.0235	0.0145

L2503391 CONTD.... PAGE 3 of 14 21-SEP-20 17:28 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2503391-6 WS 13-SEP-20 11:20 RG_BACK_WS_RA EMP_2020-09_NP	L2503391-7 WS 12-SEP-20 12:48 RG_MIDBO_WS_R AEMP_2020- 09 NP	L2503391-8 WS 14-SEP-20 14:00 RG_ELUEL_WS_L AEMP_GHO_2020- 09 NP	L2503391-9 WS 13-SEP-20 12:00 GH_ERSC2_WS_L AEMP_GHO_2020- 09 NP	L2503391-10 WS 13-SEP-20 12:00 GH_ERSC4_WS_L AEMP_GHO_2020- 09 NP
Grouping	Analyte	-				
WATER						
Physical Tests	Conductivity (@ 25C) (uS/cm)	402	523	308	459	278
	Hardness (as CaCO3) (mg/L)	222	297	174	257	160
	рН (рН)	8.46	8.46	8.33	8.36	8.32
	ORP (mV)	440	362	452	463	454
	Total Suspended Solids (mg/L)	7.7	<1.0	<1.0	<1.0	1.6
	Total Dissolved Solids (mg/L)	DLHC 243	DLHC 369	DLHC 216	DLHC 329	DLHC 166
	Turbidity (NTU)	3.27	0.56	0.41	0.95	0.64
Anions and	Acidity (as CaCO3) (mg/L)	<1.0	<1.0	<1.0	<1.0	<1.0
Nutrients						
	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	183	170	147	148	146
	Alkalinity, Carbonate (as CaCO3) (mg/L)	8.2	9.2	2.0	2.8	1.2
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<1.0	<1.0	<1.0	<1.0	<1.0
		191	179	149	151	147
	Ammonia as N (mg/L)	0.0509	0.0202	<0.0050	<0.0050	<0.0050
	Bromide (Br) (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
	Chloride (Cl) (mg/L)	1.25	2.38	0.35	1.28	0.26
	Fluoride (F) (mg/L)	0.157	0.153	0.157	0.149	0.159
	Ion Balance (%)	95.9	99.2	98.1	95.3	97.1
	Nitrate (as N) (mg/L)	0.461	1.34	0.383	1.46	0.0282
	Nitrite (as N) (mg/L)	<0.0010	0.0018	<0.0010	<0.0010	<0.0010
	Total Kjeldahl Nitrogen (mg/L)	0.128	0.317	0.063	0.231	<0.050
	Orthophosphate-Dissolved (as P) (mg/L)	0.0323	<0.0010	0.0011	<0.0010	<0.0010
	Phosphorus (P)-Total (mg/L)	0.0307	0.0026	<0.0020	<0.0020	0.0036
	Sulfate (SO4) (mg/L)	46.7	117	27.3	111	17.6
	Anion Sum (meq/L)	4.87	6.19	3.60	5.47	3.32
	Cation Sum (meq/L)	4.67	6.14	3.53	5.22	3.23
	Cation - Anion Balance (%)	-2.1	-0.4	-0.9	-2.4	-1.4
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	1.34	1.32	0.99	1.17	<0.50
Tatal Matala		1.86	1.32	0.87	1.26	<0.50
lotal Metals	Autominum (Al)-Total (mg/L)	0.124	0.0047	0.0071	0.0103	0.0147
	Antimony (Sb)-Total (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Arsenic (As)-Total (mg/L)	0.00027	0.00020	0.00013	0.00014	0.00014
	Barium (Ba)- I otal (mg/L)	0.113	0.125	0.0577	0.0488	0.0488
	Beryllium (Be)- I otal (ug/L)	<0.020	<0.020	<0.020	<0.020	<0.020
	Bismuth (Bi)- I otal (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Boron (B)-Total (mg/L)	0.016	0.012	<0.010	<0.010	<0.010
	Cadmium (Cd)-Total (ug/L)	0.0356	0.0234	0.0082	0.0103	0.0097

L2503391 CONTD.... PAGE 4 of 14 21-SEP-20 17:28 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2503391-11 WS 13-SEP-20 12:00 RG_GH_SCW3_W S_LAEMP_GHO_2 020-09_NP	L2503391-12 WS 13-SEP-20 12:00 RG_SCDTC_WS_L AEMP_GHO_2020- 09_NP		
Grouping	Analyte				
WATER					
Physical Tests	Conductivity (@ 25C) (uS/cm)	463	494		
	Hardness (as CaCO3) (mg/L)	267	282		
	рН (рН)	8.32	8.33		
	ORP (mV)	474	469		
	Total Suspended Solids (mg/L)	1.7	2.3		
	Total Dissolved Solids (mg/L)	319	347		
	Turbidity (NTU)	1.20	3.07		
Anions and Nutrients	Acidity (as CaCO3) (mg/L)	<1.0	<1.0		
	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	144	150		
	Alkalinity, Carbonate (as CaCO3) (mg/L)	1.2	2.4		
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<1.0	<1.0		
	Alkalinity, Total (as CaCO3) (mg/L)	146	153		
	Ammonia as N (mg/L)	0.0078	<0.0050		
	Bromide (Br) (mg/L)	<0.050	<0.050		
	Chloride (Cl) (mg/L)	1.27	1.39		
	Fluoride (F) (mg/L)	0.148	0.146		
	Ion Balance (%)	101	98.2		
	Nitrate (as N) (mg/L)	1.47	1.76		
	Nitrite (as N) (mg/L)	<0.0010	0.0012		
	Total Kjeldahl Nitrogen (mg/L)	0.251	0.235		
	Orthophosphate-Dissolved (as P) (mg/L)	<0.0010	<0.0010		
	Phosphorus (P)-Total (mg/L)	0.0021	0.0041		
	Sulfate (SO4) (mg/L)	111	125		
	Anion Sum (meq/L)	5.37	5.83		
	Cation Sum (meq/L)	5.42	5.73		
	Cation - Anion Balance (%)	0.5	-0.9		
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	<0.50	0.57		
	Total Organic Carbon (mg/L)	0.57	0.65		
Total Metals	Aluminum (Al)-Total (mg/L)	0.0163	0.0247		
	Antimony (Sb)-Total (mg/L)	<0.00010	<0.00010		
	Arsenic (As)-Total (mg/L)	0.00015	0.00017		
	Barium (Ba)-Total (mg/L)	0.0520	0.0546		
	Beryllium (Be)-Total (ug/L)	<0.020	<0.020		
	Bismuth (Bi)-Total (mg/L)	<0.000050	<0.000050		
	Boron (B)-Total (mg/L)	<0.010	<0.010		
	Cadmium (Cd)-Total (ug/L)	0.0125	0.0225		
L2503391 CONTD.... PAGE 5 of 14 21-SEP-20 17:28 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2503391-1 WS 13-SEP-20 10:30 RG_EL1_WS_RAE MP_2020-09_NP	L2503391-2 WS 12-SEP-20 08:40 RG_ELDFE_WS_R AEMP_2020- 09 NP	L2503391-3 WS 12-SEP-20 15:15 RG_UCWER_WS_ LAEMP_GHO_202 0-09 NP	L2503391-4 WS 12-SEP-20 09:25 RG_FODGH_WS_ LAEMP_GHO_202 0-09 NP	L2503391-5 WS 13-SEP-20 09:20 RG_GRDS_WS_R AEMP_2020- 09 NP
Grouping	Analyte					
WATER						
Total Metals	Calcium (Ca)-Total (mg/L)	58.2	57.9	46.0	93.5	68.0
	Chromium (Cr)-Total (mg/L)	0.00029	0.00027	0.00047	0.00013	0.00017
	Cobalt (Co)-Total (ug/L)	<0.10	<0.10	<0.10	<0.10	<0.10
	Copper (Cu)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Iron (Fe)-Total (mg/L)	0.014	0.021	<0.010	<0.010	0.012
	Lead (Pb)-Total (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Lithium (Li)-Total (mg/L)	0.0065	0.0067	0.0010	0.0179	0.0059
	Magnesium (Mg)-Total (mg/L)	19.1	18.1	14.7	39.9	34.0
	Manganese (Mn)-Total (mg/L)	0.00225	0.00265	0.00074	0.00123	0.00191
	Mercury (Hg)-Total (ug/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Molybdenum (Mo)-Total (mg/L)	0.00120	0.00121	0.00145	0.000969	0.00108
	Nickel (Ni)-Total (mg/L)	<0.00050	<0.00050	<0.00050	0.00062	<0.00050
	Potassium (K)-Total (mg/L)	0.638	0.650	0.380	1.23	0.739
	Selenium (Se)-Total (ug/L)	10.5	9.23	2.81	51.2	25.4
	Silicon (Si)-Total (mg/L)	2.09	2.12	2.25	2.34	2.43
	Silver (Ag)-Total (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Sodium (Na)-Total (mg/L)	2.55	2.70	0.519	2.09	1.60
	Strontium (Sr)-Total (mg/L)	0.217	0.232	0.0558	0.144	0.141
	Thallium (TI)-Total (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Tin (Sn)-Total (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Titanium (Ti)-Total (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Uranium (U)-Total (mg/L)	0.00116	0.00109	0.00177	0.00217	0.00192
	Vanadium (V)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Zinc (Zn)-Total (mg/L)	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030
Dissolved Metals	Dissolved Mercury Filtration Location	FIELD	FIELD	FIELD	FIELD	FIELD
	Dissolved Metals Filtration Location	FIELD	FIELD	FIELD	FIELD	FIELD
	Aluminum (AI)-Dissolved (mg/L)	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030
	Antimony (Sb)-Dissolved (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Arsenic (As)-Dissolved (mg/L)	0.00017	0.00021	0.00019	0.00011	0.00014
	Barium (Ba)-Dissolved (mg/L)	0.0753	0.0779	0.0788	0.113	0.0649
	Beryllium (Be)-Dissolved (ug/L)	<0.020	<0.020	<0.020	<0.020	<0.020
	Bismuth (Bi)-Dissolved (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Boron (B)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Cadmium (Cd)-Dissolved (ug/L)	0.010	0.0087	<0.0050	0.0242	0.0139
	Calcium (Ca)-Dissolved (mg/L)	63.4	65.9	51.5	106	74.4
	Chromium (Cr)-Dissolved (mg/L)	0.00025	0.00022	0.00042	0.00013	0.00014
	Cobalt (Co)-Dissolved (ug/L)	<0.10	<0.10	<0.10	<0.10	<0.10

L2503391 CONTD.... PAGE 6 of 14 21-SEP-20 17:28 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2503391-6 WS 13-SEP-20 11:20 RG_BACK_WS_RA EMP_2020-09_NP	L2503391-7 WS 12-SEP-20 12:48 RG_MIDBO_WS_R AEMP_2020- 09_NP	L2503391-8 WS 14-SEP-20 14:00 RG_ELUEL_WS_L AEMP_GHO_2020- 09_NP	L2503391-9 WS 13-SEP-20 12:00 GH_ERSC2_WS_L AEMP_GHO_2020- 09_NP	L2503391-10 WS 13-SEP-20 12:00 GH_ERSC4_WS_L AEMP_GHO_2020- 09_NP
Grouping	Analyte					
WATER						
Total Metals	Calcium (Ca)-Total (mg/L)	50.1	67.6	47.3	59.5	43.3
	Chromium (Cr)-Total (mg/L)	0.00022	0.00015	0.00025	0.00022	0.00024
	Cobalt (Co)-Total (ug/L)	<0.10	<0.10	<0.10	<0.10	<0.10
	Copper (Cu)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Iron (Fe)-Total (mg/L)	0.135	0.011	<0.010	0.018	0.021
	Lead (Pb)-Total (mg/L)	0.000119	<0.000050	<0.000050	<0.000050	<0.000050
	Lithium (Li)-Total (mg/L)	0.0135	0.0081	0.0026	0.0047	0.0017
	Magnesium (Mg)-Total (mg/L)	19.7	25.8	11.9	22.6	10.3
	Manganese (Mn)-Total (mg/L)	0.0114	0.00210	0.00111	0.00129	0.00309
	Mercury (Hg)-Total (ug/L)	0.00120	<0.00050	<0.00050	<0.00050	<0.00050
	Molybdenum (Mo)-Total (mg/L)	0.000418	0.000864	0.00106	0.00107	0.00103
	Nickel (Ni)-Total (mg/L)	<0.00050	0.00071	<0.00050	0.00074	<0.00050
	Potassium (K)-Total (mg/L)	0.766	0.848	0.410	0.532	0.362
	Selenium (Se)-Total (ug/L)	8.86	12.7	1.64	13.3	0.726
	Silicon (Si)-Total (mg/L)	3.62	2.48	2.09	1.94	1.93
	Silver (Ag)-Total (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Sodium (Na)-Total (mg/L)	4.97	4.24	0.891	1.62	0.634
	Strontium (Sr)-Total (mg/L)	0.155	0.171	0.207	0.241	0.200
	Thallium (TI)-Total (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Tin (Sn)-Total (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Titanium (Ti)-Total (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Uranium (U)-Total (mg/L)	0.000347	0.00127	0.000787	0.00126	0.000692
	Vanadium (V)-Total (mg/L)	0.00072	<0.00050	<0.00050	<0.00050	<0.00050
	Zinc (Zn)-Total (mg/L)	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030
Dissolved Metals	Dissolved Mercury Filtration Location	FIELD	FIELD	FIELD	FIELD	FIELD
	Dissolved Metals Filtration Location	FIELD	FIELD	FIELD	FIELD	FIELD
	Aluminum (AI)-Dissolved (mg/L)	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030
	Antimony (Sb)-Dissolved (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Arsenic (As)-Dissolved (mg/L)	0.00021	0.00018	<0.00010	0.00011	<0.00010
	Barium (Ba)-Dissolved (mg/L)	0.109	0.121	0.0563	0.0475	0.0479
	Beryllium (Be)-Dissolved (ug/L)	<0.020	<0.020	<0.020	<0.020	<0.020
	Bismuth (Bi)-Dissolved (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Boron (B)-Dissolved (mg/L)	0.016	0.012	<0.010	<0.010	<0.010
	Cadmium (Cd)-Dissolved (ug/L)	0.0102	0.0179	<0.0050	0.0117	0.0060
	Calcium (Ca)-Dissolved (mg/L)	55.7	74.0	50.1	64.9	47.3
	Chromium (Cr)-Dissolved (mg/L)	<0.00010	0.00012	0.00021	0.00019	0.00018
	Cobalt (Co)-Dissolved (ug/L)	<0.10	<0.10	<0.10	<0.10	<0.10

L2503391 CONTD.... PAGE 7 of 14 21-SEP-20 17:28 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2503391-11 WS 13-SEP-20 12:00 RG_GH_SCW3_W S_LAEMP_GHO_2 020-09_NP	L2503391-12 WS 13-SEP-20 12:00 RG_SCDTC_WS_L AEMP_GH0_2020- 09_NP		
Grouping	Analyte				
WATER					-
Total Metals	Calcium (Ca)-Total (mg/L)	60.7	64.1		
	Chromium (Cr)-Total (mg/L)	0.00020	0.00023		
	Cobalt (Co)-Total (ug/L)	<0.10	<0.10		
	Copper (Cu)-Total (mg/L)	<0.00050	<0.00050		
	Iron (Fe)-Total (mg/L)	0.021	0.032		
	Lead (Pb)-Total (mg/L)	<0.000050	0.000051		
	Lithium (Li)-Total (mg/L)	0.0052	0.0060		
	Magnesium (Mg)-Total (mg/L)	23.1	25.1		
	Manganese (Mn)-Total (mg/L)	0.00173	0.00201		
	Mercury (Hg)-Total (ug/L)	<0.00050	0.00059		
	Molybdenum (Mo)-Total (mg/L)	0.00116	0.00112		
	Nickel (Ni)-Total (mg/L)	0.00086	0.00084		
	Potassium (K)-Total (mg/L)	0.575	0.633		
	Selenium (Se)-Total (ug/L)	13.4	14.3		
	Silicon (Si)-Total (mg/L)	2.08	1.99		
	Silver (Ag)-Total (mg/L)	<0.000010	<0.000010		
	Sodium (Na)-Total (mg/L)	1.68	1.89		
	Strontium (Sr)-Total (mg/L)	0.241	0.258		
	Thallium (TI)-Total (mg/L)	<0.000010	<0.000010		
	Tin (Sn)-Total (mg/L)	<0.00010	<0.00010		
	Titanium (Ti)-Total (mg/L)	<0.010	<0.010		
	Uranium (U)-Total (mg/L)	0.00127	0.00139		
	Vanadium (V)-Total (mg/L)	<0.00050	<0.00050		
	Zinc (Zn)-Total (mg/L)	<0.0030	<0.0030		
Dissolved Metals	Dissolved Mercury Filtration Location	FIELD	FIELD		
	Dissolved Metals Filtration Location	FIELD	FIELD		
	Aluminum (AI)-Dissolved (mg/L)	<0.0030	<0.0030		
	Antimony (Sb)-Dissolved (mg/L)	<0.00010	<0.00010		
	Arsenic (As)-Dissolved (mg/L)	0.00011	0.00013		
	Barium (Ba)-Dissolved (mg/L)	0.0493	0.0544		
	Beryllium (Be)-Dissolved (ug/L)	<0.020	<0.020		
	Bismuth (Bi)-Dissolved (mg/L)	<0.000050	<0.000050		
	Boron (B)-Dissolved (mg/L)	<0.010	<0.010		
	Cadmium (Cd)-Dissolved (ug/L)	0.0094	0.0093		
	Calcium (Ca)-Dissolved (mg/L)	68.0	69.9		
	Chromium (Cr)-Dissolved (mg/L)	0.00017	0.00018		
	Cobalt (Co)-Dissolved (ug/L)	<0.10	<0.10		

L2503391 CONTD.... PAGE 8 of 14 21-SEP-20 17:28 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2503391-1 WS 13-SEP-20 10:30 RG_EL1_WS_RAE MP_2020-09_NP	L2503391-2 WS 12-SEP-20 08:40 RG_ELDFE_WS_R AEMP_2020- 09 NP	L2503391-3 WS 12-SEP-20 15:15 RG_UCWER_WS_ LAEMP_GHO_202 0-09 NP	L2503391-4 WS 12-SEP-20 09:25 RG_FODGH_WS_ LAEMP_GHO_202 0.09 NP	L2503391-5 WS 13-SEP-20 09:20 RG_GRDS_WS_R AEMP_2020- 09 NP
Grouping	Analyte					
WATER						
Dissolved Metals	Copper (Cu)-Dissolved (mg/L)	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
	Iron (Fe)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Lead (Pb)-Dissolved (mg/L)	0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Lithium (Li)-Dissolved (mg/L)	0.0086	0.0086	0.0013	0.0223	0.0070
	Magnesium (Mg)-Dissolved (mg/L)	19.9	19.3	15.5	44.6	35.7
	Manganese (Mn)-Dissolved (mg/L)	0.00096	0.00090	0.00023	0.00084	0.00060
	Mercury (Hg)-Dissolved (mg/L)	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050
	Molybdenum (Mo)-Dissolved (mg/L)	0.00119	0.00123	0.00149	0.000976	0.00114
	Nickel (Ni)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Potassium (K)-Dissolved (mg/L)	0.640	0.643	0.389	1.31	0.760
	Selenium (Se)-Dissolved (ug/L)	10.7	9.24	2.89	56.4	26.4
	Silicon (Si)-Dissolved (mg/L)	2.04	1.95	2.15	2.30	2.22
	Silver (Ag)-Dissolved (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Sodium (Na)-Dissolved (mg/L)	2.66	2.89	0.555	2.26	1.67
	Strontium (Sr)-Dissolved (mg/L)	0.234	0.246	0.0612	0.156	0.154
	Thallium (TI)-Dissolved (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Tin (Sn)-Dissolved (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Titanium (Ti)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Uranium (U)-Dissolved (mg/L)	0.00116	0.00108	0.00177	0.00219	0.00192
	Vanadium (V)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Zinc (Zn)-Dissolved (mg/L)	<0.0010	<0.0010	<0.0010	0.0013	<0.0010

L2503391 CONTD.... PAGE 9 of 14 21-SEP-20 17:28 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2503391-6 WS 13-SEP-20 11:20 RG_BACK_WS_RA EMP_2020-09_NP	L2503391-7 WS 12-SEP-20 12:48 RG_MIDBO_WS_R AEMP_2020- 00 NP	L2503391-8 WS 14-SEP-20 14:00 RG_ELUEL_WS_L AEMP_GHO_2020- 09 NP	L2503391-9 WS 13-SEP-20 12:00 GH_ERSC2_WS_L AEMP_GHO_2020- 09 NP	L2503391-10 WS 13-SEP-20 12:00 GH_ERSC4_WS_L AEMP_GH0_2020. 0 NP
Grouping	Analyte					00_11
WATER						
Dissolved Metals	Copper (Cu)-Dissolved (mg/L)	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
	Iron (Fe)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Lead (Pb)-Dissolved (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
	Lithium (Li)-Dissolved (mg/L)	0.0159	0.0097	0.0030	0.0053	0.0018
	Magnesium (Mg)-Dissolved (mg/L)	20.0	27.2	12.0	23.0	10.1
	Manganese (Mn)-Dissolved (mg/L)	0.00031	0.00153	0.00062	0.00053	0.00178
	Mercury (Hg)-Dissolved (mg/L)	<0.000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050
	Molybdenum (Mo)-Dissolved (mg/L)	0.000413	0.000872	0.00109	0.00135	0.00102
	Nickel (Ni)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	0.00057	<0.00050
	Potassium (K)-Dissolved (mg/L)	0.734	0.857	0.392	0.534	0.346
	Selenium (Se)-Dissolved (ug/L)	9.04	12.7	1.70	14.1	0.707
	Silicon (Si)-Dissolved (mg/L)	3.19	2.21	1.89	1.78	1.78
	Silver (Ag)-Dissolved (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Sodium (Na)-Dissolved (mg/L)	5.05	4.31	0.901	1.68	0.641
	Strontium (Sr)-Dissolved (mg/L)	0.163	0.187	0.225	0.252	0.213
	Thallium (TI)-Dissolved (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
	Tin (Sn)-Dissolved (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
	Titanium (Ti)-Dissolved (mg/L)	<0.010	<0.010	<0.010	<0.010	<0.010
	Uranium (U)-Dissolved (mg/L)	0.000326	0.00127	0.000739	0.00124	0.000667
	Vanadium (V)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Zinc (Zn)-Dissolved (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010

L2503391 CONTD.... PAGE 10 of 14 21-SEP-20 17:28 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2503391-11 WS 13-SEP-20 12:00 RG_GH_SCW3_W S_LAEMP_GHO_2 _020-09_NP	L2503391-12 WS 13-SEP-20 12:00 RG_SCDTC_WS_L AEMP_GH0_2020- 09 NP		
Grouping	Analyte				
WATER					
Dissolved Metals	Copper (Cu)-Dissolved (mg/L)	<0.00020	<0.00020		
	Iron (Fe)-Dissolved (mg/L)	<0.010	<0.010		
	Lead (Pb)-Dissolved (mg/L)	<0.000050	<0.000050		
	Lithium (Li)-Dissolved (mg/L)	0.0055	0.0064		
	Magnesium (Mg)-Dissolved (mg/L)	23.6	26.1		
	Manganese (Mn)-Dissolved (mg/L)	0.00058	0.00046		
	Mercury (Hg)-Dissolved (mg/L)	<0.0000050	<0.0000050		
	Molybdenum (Mo)-Dissolved (mg/L)	0.00113	0.00122		
	Nickel (Ni)-Dissolved (mg/L)	0.00065	0.00064		
	Potassium (K)-Dissolved (mg/L)	0.540	0.615		
	Selenium (Se)-Dissolved (ug/L)	14.2	15.2		
	Silicon (Si)-Dissolved (mg/L)	1.80	1.82		
	Silver (Ag)-Dissolved (mg/L)	<0.000010	<0.000010		
	Sodium (Na)-Dissolved (mg/L)	1.72	1.95		
	Strontium (Sr)-Dissolved (mg/L)	0.259	0.276		
	Thallium (TI)-Dissolved (mg/L)	<0.000010	<0.000010		
	Tin (Sn)-Dissolved (mg/L)	<0.00010	<0.00010		
	Titanium (Ti)-Dissolved (mg/L)	<0.010	<0.010		
	Uranium (U)-Dissolved (mg/L)	0.00124	0.00133		
	Vanadium (V)-Dissolved (mg/L)	<0.00050	<0.00050		
	Zinc (Zn)-Dissolved (mg/L)	<0.0010	<0.0010		

QC Type Descr	iption	Parameter	Qualifier	Applies to Sample Number(s)
Matrix Spike		Barium (Ba)-Dissolved	MS-B	L2503391-1, -10, -11, -12, -2, -3, -4, -5, -6, -7, -8, -9
Matrix Spike		Calcium (Ca)-Dissolved	MS-B	L2503391-1, -10, -11, -12, -2, -3, -4, -5, -6, -7, -8, -9
Matrix Spike		Magnesium (Mg)-Dissolved	MS-B	L2503391-1, -10, -11, -12, -2, -3, -4, -5, -6, -7, -8, -9
Matrix Spike		Selenium (Se)-Dissolved	MS-B	L2503391-1, -10, -11, -12, -2, -3, -4, -5, -6, -7, -8, -9
Matrix Spike		Sodium (Na)-Dissolved	MS-B	L2503391-1, -10, -11, -12, -2, -3, -4, -5, -6, -7, -8, -9
Matrix Spike		Strontium (Sr)-Dissolved	MS-B	L2503391-1, -10, -11, -12, -2, -3, -4, -5, -6, -7, -8, -9
Matrix Spike		Uranium (U)-Dissolved	MS-B	L2503391-1, -10, -11, -12, -2, -3, -4, -5, -6, -7, -8, -9
Matrix Spike		Barium (Ba)-Total	MS-B	L2503391-1, -10, -11, -12, -2, -3, -4, -5, -6, -7, -8, -9
Matrix Spike		Calcium (Ca)-Total	MS-B	L2503391-1, -10, -11, -12, -2, -3, -4, -5, -6, -7, -8, -9
Matrix Spike		Magnesium (Mg)-Total	MS-B	L2503391-1, -10, -11, -12, -2, -3, -4, -5, -6, -7, -8, -9
Matrix Spike		Potassium (K)-Total	MS-B	L2503391-1, -10, -11, -12, -2, -3, -4, -5, -6, -7, -8, -9
Matrix Spike		Selenium (Se)-Total	MS-B	L2503391-1, -10, -11, -12, -2, -3, -4, -5, -6, -7, -8, -9
Matrix Spike		Sodium (Na)-Total	MS-B	L2503391-1, -10, -11, -12, -2, -3, -4, -5, -6, -7, -8, -9
Matrix Spike		Strontium (Sr)-Total	MS-B	L2503391-1, -10, -11, -12, -2, -3, -4, -5, -6, -7, -8, -9
Matrix Spike		Uranium (U)-Total	MS-B	L2503391-1, -10, -11, -12, -2, -3, -4, -5, -6, -7, -8, -9
Matrix Spike		Phosphorus (P)-Total	MS-B	L2503391-1, -10, -11, -12, -2, -3, -4, -5, -6, -7, -8, -9
Matrix Spike		Sulfate (SO4)	MS-B	L2503391-1, -10, -11, -12, -2, -3, -4, -5, -6, -7, -8, -9
Qualifiers for I	ndividual Parameters	Listed:		
Qualifier	Description			
DLHC	Detection Limit Raise	d: Dilution required due to high concen	tration of test and	alyte(s).
MS-B	Matrix Spike recovery	could not be accurately calculated due	e to high analyte	background in sample.
TKNI	TKN result may be bi	ased low due to Nitrate interference. N	litrate-N is > 10x	TKN.
est Method R	eferences:			
ALS Test Code	Matrix	Test Description		Method Reference**
ACIDITY-PCT-C	L Water	Acidity by Automatic Titration		APHA 2310 Acidity
This analysis is endpoint.	carried out using proce	edures adapted from APHA Method 23	10 "Acidity". Acid	ity is determined by potentiometric titration to a specified
ALK-MAN-CL	Water	Alkalinity (Species) by Manual Titrat	tion	APHA 2320 ALKALINITY
This analysis is pH 4.5 endpoin	carried out using proce t. Bicarbonate, carbona	edures adapted from APHA Method 23. Ite and hydroxide alkalinity are calculat	20 "Alkalinity". To ed from phenolph	otal alkalinity is determined by potentiometric titration to a thalein alkalinity and total alkalinity values.
BE-D-L-CCMS-\	A Water	Diss. Be (low) in Water by CRC ICI	PMS	APHA 3030B/6020A (mod)
Water samples	are filtered (0.45 um),	preserved with nitric acid, and analyzed	by CRC ICPMS	
BE-T-L-CCMS-V	A Water	Total Be (Low) in Water by CRC IC	PMS	EPA 200.2/6020A (mod)
Water samples	are digested with nitric	and hydrochloric acids, and analyzed	by CRC ICPMS.	
BR-L-IC-N-CL	Water	Bromide in Water by IC (Low Level)		EPA 300.1 (mod)

C-DIS-ORG-LOW-CL Water **Dissolved Organic Carbon**

This method is applicable to the analysis of ground water, wastewater, and surface water samples. The form detected depends upon sample pretreatment: Unfiltered sample = TC, 0.45um filtered = TDC. Samples are injected into a combustion tube containing an oxidation catalyst. The carrier gas containing the combustion product from the combustion tube flows through an inorganic carbon reactor vessel and is then sent through a halogen scrubber into a sample cell set in a non-dispersive infrared gas analyzer (NDIR) where carbon dioxide is detected. For total inorganic carbon and dissolved inorganic carbon, the sample is injected into an IC reactor vessel where only the IC component is decomposed to become carbon dioxide.

The peak area generated by the NDIR indicates the TC/TDC or TIC/DIC as applicable. The total organic carbon content of the sample is calculated by subtracting the TIC from the TC.

TOC = TC-TIC, DOC = TDC-DIC, Particulate = Total - Dissolved.

C-TOT-ORG-LOW-CL Water **Total Organic Carbon**

APHA 5310 TOTAL ORGANIC CARBON (TOC)

APHA 5310 B-Instrumental

This method is applicable to the analysis of ground water, wastewater, and surface water samples. The form detected depends upon sample pretreatment: Unfiltered sample = TC, 0.45um filtered = TDC. Samples are injected into a combustion tube containing an oxidation catalyst. The

carrier gas containing the combustion product from the combustion tube flows through an inorganic carbon reactor vessel and is then sent through a halogen scrubber into a sample cell set in a non-dispersive infrared gas analyzer (NDIR) where carbon dioxide is detected. For total inorganic carbon and dissolved inorganic carbon, the sample is injected into an IC reactor vessel where only the IC component is decomposed to become carbon

dioxide

al.

The peak area generated by the NDIR indicates the TC/TDC or TIC/DIC as applicable. The total organic carbon content of the sample is calculated by subtracting the TIC from the TC. TOC = TC-TIC, DOC = TDC-DIC, Particulate = Total - Dissolved. CL-L-IC-N-CL Water Chloride in Water by IC EPA 300.1 (mod) Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. EC-L-PCT-CL APHA 2510B Water Electrical Conductivity (EC) Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water sample. Conductivity measurements are temperature-compensated to 25C. F-IC-N-CL Water Fluoride in Water by IC EPA 300.1 (mod) Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. HARDNESS-CALC-VA Water Hardness APHA 2340B Hardness (also known as Total Hardness) is calculated from the sum of Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. Dissolved Calcium and Magnesium concentrations are preferentially used for the hardness calculation. Diss. Mercury in Water by CVAAS or CVAFS APHA 3030B/EPA 1631E (mod) **HG-D-CVAA-VA** Water Water samples are filtered (0.45 um), preserved with hydrochloric acid, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS or CVAFS. Water Total Mercury in Water by CVAFS (Ultra) EPA 1631 REV. E HG-T-U-CVAF-VA This analysis is carried out using procedures adapted from Method 1631 Rev. E. by the United States Environmental Protection Agency (EPA). The procedure involves a cold-oxidation of the acidified sample using bromine monochloride prior to a purge and trap concentration step and final reduction of the sample with stannous chloride. Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry. IONBALANCE-BC-CL Water Ion Balance Calculation APHA 1030F Cation Sum, Anion Sum, and Ion Balance (as % difference) are calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis). Because all aqueous solutions are electrically neutral, the calculated ion balance (% difference of cations minus anions) should be near-zero. Cation and Anion Sums are the total meg/L concentration of major cations and anions. Dissolved species are used where available. Minor ions are included where data is present. Ion Balance is calculated as: Ion Balance (%) = [Cation Sum-Anion Sum] / [Cation Sum+Anion Sum] MET-D-CCMS-VA Dissolved Metals in Water by CRC ICPMS Water APHA 3030B/6020A (mod) Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by CRC ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method. Total Metals in Water by CRC ICPMS EPA 200.2/6020A (mod) **MET-T-CCMS-VA** Water Water samples are digested with nitric and hydrochloric acids, and analyzed by CRC ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method. Water NH3-L-F-CL J. ENVIRON. MONIT., 2005, 7, 37-42, RSC Ammonia, Total (as N) This analysis is carried out, on sulfuric acid preserved samples, using procedures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society of Chemistry, "Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater", Roslyn J. Waston et NO2-L-IC-N-CL Water Nitrite in Water by IC (Low Level) EPA 300.1 (mod) Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. NO3-L-IC-N-CL Nitrate in Water by IC (Low Level) EPA 300.1 (mod) Water Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. ORP-CI Oxidation redution potential by elect. **ASTM D1498** Water This analysis is carried out in accordance with the procedure described in the "ASTM" method D1498 "Oxidation-Reduction Potential of Water" published by the American Society for Testing and Materials (ASTM). Results are reported as observed oxidation-reduction potential of the platinum metal-reference electrode employed, in mV.

L2503391 CONTD.... PAGE 13 of 14 21-SEP-20 17:28 (MT) Version: FINAL

P-T-L-COL-CL Water Phosphorus (P)-Total **APHA 4500-P PHOSPHORUS** This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". Total Phosphorus is determined colourimetrically after persulphate digestion of the sample. APHA 4500 H-Electrode PH-CI Water pН pH is determined in the laboratory using a pH electrode. All samples analyzed by this method for pH will have exceeded the 15 minute recommended hold time from time of sampling (field analysis is recommended for pH where highly accurate results are needed) PO4-DO-L-COL-CL Water Orthophosphate-Dissolved (as P) APHA 4500-P PHOSPHORUS This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". Dissolved Orthophosphate is determined colourimetrically on a sample that has been lab or field filtered through a 0.45 micron membrane filter. SO4-IC-N-CL Water Sulfate in Water by IC EPA 300.1 (mod) Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. SOLIDS-TDS-CL Water **Total Dissolved Solids** APHA 2540 C A well-mixed sample is filtered through a glass fibre filter paper. The filtrate is then evaporated to dryness in a pre-weighed vial and dried at 180 - 2 °C. The increase in vial weight represents the total dissolved solids (TDS). **TECKCOAL-IONBAL-CL** Water Ion Balance Calculation **APHA 1030E** Cation Sum, Anion Sum, and Ion Balance (as % difference) are calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis). Because all aqueous solutions are electrically neutral, the calculated ion balance (% difference of cations minus anions) should be near-zero. Cation and Anion Sums are the total meg/L concentration of major cations and anions. Dissolved species are used where available. Minor jons are included where data is present. Ion Balance is calculated as: Ion Balance (%) = [Cation Sum-Anion Sum] / [Cation Sum+Anion Sum] **TKN-L-F-CL** Total Kjeldahl Nitrogen APHA 4500-NORG (TKN) Water This analysis is carried out using procedures adapted from APHA Method 4500-Norg D. "Block Digestion and Flow Injection Analysis". Total Kjeldahl Nitrogen is determined using block digestion followed by Flow-injection analysis with fluorescence detection. **TSS-L-CL** Water **Total Suspended Solids** APHA 2540 D-Gravimetric This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total suspended solids (TSS) are determined by filtering a sample through a glass fibre filter, and by drying the filter at 104 deg. C. TURBIDITY-CL Water Turbidity APHA 2130 B-Nephelometer This analysis is carried out using procedures adapted from APHA Method 2130 "Turbidity". Turbidity is determined by the nephelometric method. ** ALS test methods may incorporate modifications from specified reference methods to improve performance. The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below: Laboratory Definition Code Laboratory Location CL ALS ENVIRONMENTAL - CALGARY, ALBERTA, CANADA VA ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA **Chain of Custody Numbers:**

RAEMP Sept 2020

It is recommended that this analysis be conducted in the field.

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. *mg/kg* - *milligrams per kilogram based on dry weight of sample.*

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

			Workorder:	L2503391		Report Date: 2	1-SEP-20	Pa	ge 1 of 13
Client: Contact:	Teck Coa 421 Pine Sparwood Cait Good	l Ltd. Avenue d BC V0B 2G0							
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ACIDITY-PCT-CI	_	Water							
Batch WG3405808-8 Acidity (as Ca	R5224717 B LCS aCO3)			99.2		%		85-115	16-SEP-20
WG3405808-7 Acidity (as Ca	7 MB aCO3)			1.7		mg/L		2	16-SEP-20
ALK-MAN-CL		Water							
Batch	R5226926								
WG3406781-5 Alkalinity, Tot	5 LCS tal (as CaC	O3)		100.2		%		85-115	17-SEP-20
WG3406781-4 Alkalinity, Tot	4 MB tal (as CaC	O3)		<1.0		mg/L		1	17-SEP-20
BE-D-L-CCMS-V	A	Water							
Batch WG3407100-2 Beryllium (Be	R5230167 2 LCS :)-Dissolved	I		95.4		%		80-120	18-SEP-20
WG3407100- Beryllium (Be	I MB)-Dissolved	I	NP	<0.000020)	mg/L		0.00002	18-SEP-20
BE-T-L-CCMS-V	A	Water							
Batch	R5230865								
WG3407524-2 Beryllium (Be	2 LCS e)-Total			95.4		%		80-120	18-SEP-20
WG3407524- Beryllium (Be	I MB e)-Total			<0.000020)	mg/L		0.00002	18-SEP-20
BR-L-IC-N-CL		Water							
Batch	R5226660								
WG3406632-3 Bromide (Br)	3 DUP		L2503391-7 <0.050	<0.050	RPD-N	IA mg/L	N/A	20	16-SEP-20
WG3406632-2 Bromide (Br)	2 LCS			106.1		%		85-115	16-SEP-20
WG3406632- Bromide (Br)	I MB			<0.050		mg/L		0.05	16-SEP-20
WG3406632-4 Bromide (Br)	4 MS		L2503391-7	95.3		%		75-125	16-SEP-20
C-DIS-ORG-LOV	V-CL	Water							
Batch	R5230793								
WG3407917-3 Dissolved Or	B DUP ganic Carbo	on	L2503391-9 1.17	1.26		mg/L	7.4	20	18-SEP-20
WG3407917-2	2 LCS								

		Workorder:	L250339	1	Report Date: 21-	SEP-20	Pa	ge 2 of 13
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
C-DIS-ORG-LOW-CL	Water							
Batch R5230793	3							
WG3407917-2 LCS								
Dissolved Organic Carl	bon		104.8		%		80-120	18-SEP-20
WG3407917-1 MB Dissolved Organic Carl	bon		<0.50		mg/L		0.5	18-SEP-20
WG3407917-4 MS	hon	L2503391-9	9 <i>E 1</i>		0/		70.400	
Dissolved Organic Can	5011		00.4		70		70-130	18-SEP-20
Batch R5230829)							
WG3408067-10 LCS	200		01.4		0/		00.400	
	5011		91.4		70		80-120	18-SEP-20
WG3408067-9 MB Dissolved Organic Carl	bon		<0.50		mg/L		0.5	18-SEP-20
C-TOT-ORG-LOW-CL	Water							
Batch R5230793	5							
WG3407917-3 DUP		L2503391-9						
Total Organic Carbon		1.26	1.27		mg/L	0.5	20	18-SEP-20
WG3407917-2 LCS								
Total Organic Carbon			107.9		%		80-120	18-SEP-20
WG3407917-1 MB			-0.50		~~~~//		o =	
Total Organic Carbon			<0.50		mg/∟		0.5	18-SEP-20
WG3407917-4 MS		L2503391-9	97 1		0/		70.400	
Total Organic Carbon			07.1		70		70-130	10-3EP-20
Batch R5230829								
WG3408067-10 LCS			112 5		0/		90.400	
			115.5		70		60-120	18-SEP-20
Total Organic Carbon			<0.50		ma/l		0.5	18-SEP-20
CI -I -IC-N-CI	Water		10.00				0.0	10-521-20
Batch P5226660								
WG3406632-3 DUP	•	1 2503391-7						
Chloride (Cl)		2.38	2.28		mg/L	4.0	20	16-SEP-20
WG3406632-2 LCS					-	-		
Chloride (Cl)			100.4		%		85-115	16-SEP-20
WG3406632-1 MB Chloride (Cl)			<0.10		ma/l		0 1	16-SEP-20
WG3406622 4 ME		1 2502204 7					0.1	10 021 20
Chloride (Cl)		L23U3391-/	108.7		%		75-125	16-SEP-20
EC-L-PCT-CL	Water							

		Workorder:	L2503391	F	Report Date: 2	I-SEP-20	Pag	ge 3 of 13
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
EC-L-PCT-CL	Water							
Batch R5226926								
WG3406781-5 LCS Conductivity (@ 25C)			94.2		%		90-110	17-SEP-20
WG3406781-4 MB Conductivity (@ 25C)			<2.0		uS/cm		2	17-SEP-20
F-IC-N-CL	Water							
Batch R5226660								
WG3406632-3 DUP Fluoride (F)		L2503391-7 0.153	0.153		mg/L	0.5	20	16-SEP-20
WG3406632-2 LCS Fluoride (F)			96.8		%		90-110	16-SEP-20
WG3406632-1 MB Fluoride (F)			<0.020		mg/L		0.02	16-SEP-20
WG3406632-4 MS Fluoride (F)		L2503391-7	102.3		%		75-125	16-SEP-20
HG-D-CVAA-VA	Water							
Batch R5231716								
WG3408817-7 DUP Mercury (Hg)-Dissolved		L2503391-7 <0.0000050	<0.000005	C RPD-NA	A mg/L	N/A	20	21-SEP-20
WG3408817-2 LCS Mercury (Hg)-Dissolved			98.6		%		80-120	21-SEP-20
WG3408817-6 LCS Mercury (Hg)-Dissolved			98.8		%		80-120	21-SEP-20
WG3408817-1 MB		NP						
Mercury (Hg)-Dissolved			<0.000005	С	mg/L		0.000005	21-SEP-20
WG3408817-5 MB Mercury (Hg)-Dissolved		NP	<0.000005	С	mg/L		0.000005	21-SEP-20
HG-T-U-CVAF-VA	Water							
Batch R5230988								
WG3408258-7 DUP Mercury (Hg)-Total		L2503391-2 <0.00050	<0.00050	RPD-N/	λ ug/L	N/A	20	19-SEP-20
WG3408258-2 LCS Mercury (Hg)-Total			98.4		%		80-120	19-SEP-20
WG3408258-1 MB Mercury (Hg)-Total			<0.00050		ug/L		0.0005	19-SEP-20
WG3408258-8 MS Mercury (Hg)-Total		L2503391-12	97.2		%		70-130	19-SEP-20

MET-D-CCMS-VA

Water

		Workorder: L2503391			Report Date: 21-SEP-20		Page 4 of 13	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-CCMS-VA	Water							
Batch R5230	0167							
WG3407100-2 L	CS				24			
Aluminum (Al)-Diss	solved		98.8		%		80-120	18-SEP-20
Antimony (SD)-Dise	solved		101.0		%		80-120	18-SEP-20
Arsenic (As)-Disso			96.2		%		80-120	18-SEP-20
Barium (Ba)-Dissoi	lved		99.4		%		80-120	18-SEP-20
Bismuth (Bi)-Disso	lved		106.9		%		80-120	18-SEP-20
Boron (B)-Dissolve	ed		91.9		%		80-120	18-SEP-20
Cadmium (Cd)-Dis	solved		99.4		%		80-120	18-SEP-20
Calcium (Ca)-Disso	olved		101.2		%		80-120	18-SEP-20
Chromium (Cr)-Dis	solved		95.7		%		80-120	18-SEP-20
Cobalt (Co)-Dissol	ved		96.4		%		80-120	18-SEP-20
Copper (Cu)-Disso	lved		97.2		%		80-120	18-SEP-20
Iron (Fe)-Dissolvec	1		89.9		%		80-120	18-SEP-20
Lead (Pb)-Dissolve	ed		100.3		%		80-120	18-SEP-20
Lithium (Li)-Dissolv	ved		97.7		%		80-120	18-SEP-20
Magnesium (Mg)-D	Dissolved		95.4		%		80-120	18-SEP-20
Manganese (Mn)-D	Dissolved		95.0		%		80-120	18-SEP-20
Molybdenum (Mo)-	Dissolved		104.4		%		80-120	18-SEP-20
Nickel (Ni)-Dissolve	ed		97.0		%		80-120	18-SEP-20
Potassium (K)-Diss	solved		95.5		%		80-120	18-SEP-20
Selenium (Se)-Diss	solved		103.9		%		80-120	18-SEP-20
Silicon (Si)-Dissolv	ed		97.7		%		60-140	18-SEP-20
Silver (Ag)-Dissolve	ed		105.1		%		80-120	18-SEP-20
Sodium (Na)-Disso	olved		99.6		%		80-120	18-SEP-20
Strontium (Sr)-Diss	solved		103.5		%		80-120	18-SEP-20
Thallium (TI)-Disso	lved		102.2		%		80-120	18-SEP-20
Tin (Sn)-Dissolved			98.1		%		80-120	18-SEP-20
Titanium (Ti)-Disso	blved		92.9		%		80-120	18-SEP-20
Uranium (U)-Disso	lved		100.2		%		80-120	18-SEP-20
Vanadium (V)-Diss	solved		96.6		%		80-120	18-SEP-20
Zinc (Zn)-Dissolved	d		97.2		%		80-120	18-SEP-20
WG3407100-1 M	IB	NP						
Aluminum (Al)-Diss	solved		<0.0010		mg/L		0.001	18-SEP-20
Antimony (Sb)-Diss	solved		<0.00010)	mg/L		0.0001	18-SEP-20
Arsenic (As)-Disso	lved		<0.00010)	mg/L		0.0001	18-SEP-20

		Workorder: L2503391			Report Date: 21-SEP-20		Page 5 of 13	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-CCMS-VA	Water							
Batch R5230	0167							
WG3407100-1 M	В	NP						
Barium (Ba)-Dissol	ved		<0.00010)	mg/L		0.0001	18-SEP-20
Bismuth (Bi)-Dissol	lved		<0.00005	60	mg/L		0.00005	18-SEP-20
Boron (B)-Dissolve	d		<0.010		mg/L		0.01	18-SEP-20
Cadmium (Cd)-Dise	solved		<0.00000	050	mg/L		0.000005	18-SEP-20
Calcium (Ca)-Disso	blved		<0.050		mg/L		0.05	18-SEP-20
Chromium (Cr)-Dis	solved		<0.00010)	mg/L		0.0001	18-SEP-20
Cobalt (Co)-Dissolv	ved		<0.00010)	mg/L		0.0001	18-SEP-20
Copper (Cu)-Dissol	lved		<0.00020)	mg/L		0.0002	18-SEP-20
Iron (Fe)-Dissolved			<0.010		mg/L		0.01	18-SEP-20
Lead (Pb)-Dissolve	d		<0.00005	50	mg/L		0.00005	18-SEP-20
Lithium (Li)-Dissolv	red		<0.0010		mg/L		0.001	18-SEP-20
Magnesium (Mg)-D	lissolved		<0.0050		mg/L		0.005	18-SEP-20
Manganese (Mn)-D	Dissolved		<0.00010)	mg/L		0.0001	18-SEP-20
Molybdenum (Mo)-	Dissolved		<0.00005	50	mg/L		0.00005	18-SEP-20
Nickel (Ni)-Dissolve	ed		<0.00050)	mg/L		0.0005	18-SEP-20
Potassium (K)-Diss	solved		<0.050		mg/L		0.05	18-SEP-20
Selenium (Se)-Diss	solved		<0.00005	50	mg/L		0.00005	18-SEP-20
Silicon (Si)-Dissolve	ed		<0.050		mg/L		0.05	18-SEP-20
Silver (Ag)-Dissolve	ed		<0.00001	0	mg/L		0.00001	18-SEP-20
Sodium (Na)-Disso	lved		<0.050		mg/L		0.05	18-SEP-20
Strontium (Sr)-Diss	olved		<0.00020)	mg/L		0.0002	18-SEP-20
Thallium (TI)-Disso	lved		<0.00001	0	mg/L		0.00001	18-SEP-20
Tin (Sn)-Dissolved			<0.00010)	mg/L		0.0001	18-SEP-20
Titanium (Ti)-Disso	lved		<0.00030)	mg/L		0.0003	18-SEP-20
Uranium (U)-Dissol	lved		<0.00001	0	mg/L		0.00001	18-SEP-20
Vanadium (V)-Diss	olved		<0.00050)	mg/L		0.0005	18-SEP-20
Zinc (Zn)-Dissolved	ł		<0.0010		mg/L		0.001	18-SEP-20
MET-T-CCMS-VA	Water				Ū		0.001	
Batch R5230)865							
WG3407524-2 L	CS							
Aluminum (AI)-Tota	al		99.6		%		80-120	18-SEP-20
Antimony (Sb)-Tota	al		104.3		%		80-120	18-SEP-20
Arsenic (As)-Total			101.7		%		80-120	18-SEP-20
Barium (Ba)-Total			107.9		%		80-120	18-SEP-20

		Workorder	: L250339	91	Report Date: 2	21-SEP-20	Page 6 of 13			
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed		
MET-T-CCMS-VA	Water									
Batch R5230865										
WG3407524-2 LCS										
Bismuth (Bi)- I otal			102.5		%		80-120	18-SEP-20		
Boron (B)-Total			96.1		%		80-120	18-SEP-20		
Cadmium (Cd)- I otal			102.7		%		80-120	18-SEP-20		
Calcium (Ca)-Total			99.7		%		80-120	18-SEP-20		
Chromium (Cr)-Total			103.0		%		80-120	18-SEP-20		
Cobalt (Co)-Total			99.7		%		80-120	18-SEP-20		
Copper (Cu)-Total			99.5		%		80-120	18-SEP-20		
Iron (Fe)-Total			104.9		%		80-120	18-SEP-20		
Lead (Pb)-Total			102.5		%		80-120	18-SEP-20		
Lithium (Li)-Total			97.4		%		80-120	18-SEP-20		
Magnesium (Mg)-Total			99.3		%		80-120	18-SEP-20		
Manganese (Mn)-Total			100.3		%		80-120	18-SEP-20		
Molybdenum (Mo)-Total			102.2		%		80-120	18-SEP-20		
Nickel (Ni)-Total			99.5		%		80-120	18-SEP-20		
Potassium (K)-Total			101.8		%		80-120	18-SEP-20		
Selenium (Se)-Total			101.6		%		80-120	18-SEP-20		
Silicon (Si)-Total			107.5		%		80-120	18-SEP-20		
Silver (Ag)-Total			103.3		%		80-120	18-SEP-20		
Sodium (Na)-Total			101.0		%		80-120	18-SEP-20		
Strontium (Sr)-Total			105.5		%		80-120	18-SEP-20		
Thallium (TI)-Total			102.0		%		80-120	18-SEP-20		
Tin (Sn)-Total			103.1		%		80-120	18-SEP-20		
Titanium (Ti)-Total			95.6		%		80-120	18-SEP-20		
Uranium (U)-Total			102.7		%		80-120	18-SEP-20		
Vanadium (V)-Total			101.8		%		80-120	18-SEP-20		
Zinc (Zn)-Total			97.9		%		80-120	18-SEP-20		
WG3407524-1 MB										
Aluminum (Al)-Total			<0.0030		mg/L		0.003	18-SEP-20		
Antimony (Sb)-Total			<0.00010)	mg/L		0.0001	18-SEP-20		
Arsenic (As)-Total			<0.00010)	mg/L		0.0001	18-SEP-20		
Barium (Ba)-Total			<0.00010)	mg/L		0.0001	18-SEP-20		
Bismuth (Bi)-Total			<0.00005	50	mg/L		0.00005	18-SEP-20		
Boron (B)-Total			<0.010		mg/L		0.01	18-SEP-20		
Cadmium (Cd)-Total			<0.0000	050	mg/L		0.000005	18-SEP-20		

		Workorder: L2503391		Report Date: 2	1-SEP-20	Page 7 of 13			
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
MET-T-CCMS-VA	Water								
Batch R5230865									
WG3407524-1 MB									
Calcium (Ca)-Total			<0.050		mg/L		0.05	18-SEP-20	
Chromium (Cr)- I otal			<0.00010		mg/L		0.0001	18-SEP-20	
Cobalt (Co)-Total			<0.00010		mg/L		0.0001	18-SEP-20	
Copper (Cu)- I otal			<0.00050		mg/L		0.0005	18-SEP-20	
Iron (Fe)-Total			<0.010		mg/L		0.01	18-SEP-20	
Lead (Pb)-Total			<0.000050)	mg/L		0.00005	18-SEP-20	
Lithium (Li)-Total			<0.0010		mg/L		0.001	18-SEP-20	
Magnesium (Mg)-Total			<0.0050		mg/L		0.005	18-SEP-20	
Manganese (Mn)-Total			<0.00010		mg/L		0.0001	18-SEP-20	
Molybdenum (Mo)-Total			<0.000050)	mg/L		0.00005	18-SEP-20	
Nickel (Ni)-Total			<0.00050		mg/L		0.0005	18-SEP-20	
Potassium (K)-Total			<0.050		mg/L		0.05	18-SEP-20	
Selenium (Se)-Total			<0.000050)	mg/L		0.00005	18-SEP-20	
Silicon (Si)-Total			<0.10		mg/L		0.1	18-SEP-20	
Silver (Ag)-Total			<0.000010)	mg/L		0.00001	18-SEP-20	
Sodium (Na)-Total			<0.050		mg/L		0.05	18-SEP-20	
Strontium (Sr)-Total			<0.00020		mg/L		0.0002	18-SEP-20	
Thallium (TI)-Total			<0.000010)	mg/L		0.00001	18-SEP-20	
Tin (Sn)-Total			<0.00010		mg/L		0.0001	18-SEP-20	
Titanium (Ti)-Total			<0.00030		mg/L		0.0003	18-SEP-20	
Uranium (U)-Total			<0.000010)	mg/L		0.00001	18-SEP-20	
Vanadium (V)-Total			<0.00050		mg/L		0.0005	18-SEP-20	
Zinc (Zn)-Total			<0.0030		mg/L		0.003	18-SEP-20	
NH3-L-F-CL	Water								
Batch R5228422									
WG3406742-11 DUP Ammonia as N		L2503391-5 0.0100	0.0102		mg/L	2.0	20	17-SEP-20	
WG3406742-10 LCS Ammonia as N			97.1		%		85-115	17-SEP-20	
WG3406742-9 MB Ammonia as N			<0.0050		mg/L		0.005	17-SEP-20	
WG3406742-12 MS Ammonia as N		L2503391-5	94.7		%		75-125	17-SEP-20	
NO2-L-IC-N-CL	Water								

		Workorder:	L250339	1	Report Date: 27	I-SEP-20	Pa	ge 8 of 13
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
NO2-L-IC-N-CL	Water							
Batch R522666	60							
WG3406632-3 DUF Nitrite (as N))	L2503391-7 0.0018	0.0019		mg/L	5.4	20	16-SEP-20
WG3406632-2 LCS Nitrite (as N)	i		98.3		%		90-110	16-SEP-20
WG3406632-1 MB Nitrite (as N)			<0.0010		mg/L		0.001	16-SEP-20
WG3406632-4 MS Nitrite (as N)		L2503391-7	108.5		%		75-125	16-SEP-20
NO3-L-IC-N-CL	Water							
Batch R522666	60							
WG3406632-3 DUF Nitrate (as N))	L2503391-7 1.34	1.35		mg/L	1.0	20	16-SEP-20
WG3406632-2 LCS Nitrate (as N)	i		98.8		%		90-110	16-SEP-20
WG3406632-1 MB Nitrate (as N)			<0.0050		mg/L		0.005	16-SEP-20
WG3406632-4 MS Nitrate (as N)		L2503391-7	106.0		%		75-125	16-SEP-20
ORP-CL	Water							
Batch R522505	6							
WG3405837-2 CRM ORP	Λ	CL-ORP	220		mV		210-230	16-SEP-20
P-T-L-COL-CL	Water							
Batch R523097	2							
WG3408145-7 DUF Phosphorus (P)-Total)	L2503391-12 0.0041	0.0039		mg/L	5.2	20	19-SEP-20
WG3408145-10 LCS Phosphorus (P)-Total	i		99.5		%		80-120	19-SEP-20
WG3408145-6 LCS Phosphorus (P)-Total	;		97.6		%		80-120	19-SEP-20
WG3408145-5 MB Phosphorus (P)-Total			<0.0020		mg/L		0.002	19-SEP-20
WG3408145-9 MB Phosphorus (P)-Total			<0.0020		mg/L		0.002	19-SEP-20
WG3408145-8 MS Phosphorus (P)-Total		L2503391-12	116.1		%		70-130	19-SEP-20

PH-CL

Water

		Workorder:	L250339	1	Report Date: 27	I-SEP-20	Pa	ge 9 of 13
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PH-CL Batch R5226926 WG3406781-5 LCS pH	Water		7.00		рН		6.9-7.1	17-SEP-20
PO4-DO-L-COL-CL	Water							
Batch R5224224 WG3404933-6 LCS Orthophosphate-Dissolv	ed (as P)		104.8		%		80-120	15-SEP-20
WG3404933-5 MB Orthophosphate-Dissolv	ed (as P)		<0.0010		mg/L		0.001	15-SEP-20
SO4-IC-N-CL	Water							
Batch R5226660 WG3406632-3 DUP Sulfate (SO4)		L2503391-7 117	118		mg/L	0.6	20	16-SEP-20
WG3406632-2 LCS Sulfate (SO4)			100.1		%		90-110	16-SEP-20
WG3406632-1 MB Sulfate (SO4)			<0.30		mg/L		0.3	16-SEP-20
WG3406632-4 MS Sulfate (SO4)		L2503391-7	N/A	MS-B	%		-	16-SEP-20
SOLIDS-TDS-CL	Water							
BatchR5229601WG3406333-11LCSTotal Dissolved Solids			103.9		%		85-115	17-SEP-20
WG3406333-5 LCS Total Dissolved Solids			98.3		%		85-115	17-SEP-20
WG3406333-10 MB Total Dissolved Solids			<10		mg/L		10	17-SEP-20
WG3406333-4 MB Total Dissolved Solids			<10		mg/L		10	17-SEP-20
TKN-L-F-CL	Water							
Batch R5226059 WG3406476-12 LCS Total Kjeldahl Nitrogen			104.7		%		75-125	17-SEP-20
WG3406476-2 LCS Total Kjeldahl Nitrogen			99.6		%		75-125	17-SEP-20
WG3406476-4 LCS Total Kjeldahl Nitrogen			106.0		%		75-125	17-SEP-20
WG3406476-6 LCS								

		Workorder:	L250339	1	Report Date: 21	SEP-20	Page 10 of 13			
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed		
TKN-L-F-CL	Water									
Batch R5226059 WG3406476-6 LCS Total Kjeldahl Nitrogen			103.7		%		75-125	17-SEP-20		
WG3406476-1 MB Total Kjeldahl Nitrogen			<0.050		mg/L		0.05	17-SEP-20		
WG3406476-11 MB Total Kjeldahl Nitrogen			<0.050		mg/L		0.05	17-SEP-20		
WG3406476-3 MB Total Kjeldahl Nitrogen			<0.050		mg/L		0.05	17-SEP-20		
WG3406476-5 MB Total Kjeldahl Nitrogen			<0.050		mg/L		0.05	17-SEP-20		
TSS-L-CL	Water									
Batch R5229505 WG3406130-4 LCS Total Suspended Solids			93.1		%		85-115	17-SEP-20		
WG3406130-8 LCS Total Suspended Solids			113.1		%		85-115	17-SEP-20		
WG3406130-3 MB Total Suspended Solids			<1.0		mg/L		1	17-SEP-20		
WG3406130-7 MB Total Suspended Solids			<1.0		mg/L		1	17-SEP-20		
TURBIDITY-CL	Water									
Batch R5225305										
WG3405584-3 DUP Turbidity		L2503391-1 0.87	0.88		NTU	0.9	15	16-SEP-20		
WG3405584-2 LCS Turbidity			99.0		%		85-115	16-SEP-20		
WG3405584-1 MB Turbidity			<0.10		NTU		0.1	16-SEP-20		

Workorder: L2503391

Report Date: 21-SEP-20

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Workorder: L2503391

Report Date: 21-SEP-20

Page 12 of 13

Hold Time Exceedances:

	Sample						
ALS Product Description	ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier
Physical Tests							
Oxidation redution potentia	l by elect.						
	1	13-SEP-20 10:30	16-SEP-20 12:30	0.25	74	hours	EHTR-FM
	2	12-SEP-20 08:40	16-SEP-20 12:30	0.25	100	hours	EHTR-FM
	3	12-SEP-20 15:15	16-SEP-20 12:30	0.25	93	hours	EHTR-FM
	4	12-SEP-20 09:25	16-SEP-20 12:30	0.25	99	hours	EHTR-FM
	5	13-SEP-20 09:20	16-SEP-20 12:30	0.25	75	hours	EHTR-FM
	6	13-SEP-20 11:20	16-SEP-20 12:30	0.25	73	hours	EHTR-FM
	7	12-SEP-20 12:48	16-SEP-20 12:30	0.25	96	hours	EHTR-FM
	8	14-SEP-20 14:00	16-SEP-20 12:30	0.25	47	hours	EHTR-FM
	9	13-SEP-20 12:00	16-SEP-20 12:30	0.25	72	hours	EHTR-FM
	10	13-SEP-20 12:00	16-SEP-20 12:30	0.25	72	hours	EHTR-FM
	11	13-SEP-20 12:00	16-SEP-20 12:30	0.25	72	hours	EHTR-FM
	12	13-SEP-20 12:00	16-SEP-20 12:30	0.25	72	hours	EHTR-FM
Turbidity							
	2	12-SEP-20 08-40	16-SEP-20.06-45	з	1	dave	EHTR
	2	12-SED-20 00.40	16-SEP-20 06:45	3	4	dave	EHTI
	1	12-SED-20 10:15	16-SEP-20 06:45	3	4	dave	EHTR
	4	12-SEP-20 12:48	16-SEP-20 06:45	3	4	davs	FHTI
	1	12-0L1-20 12. 1 0	10-021-20 00.45	5	-	uays	LIIIL
рн							
	1	13-SEP-20 10:30	17-SEP-20 14:00	0.25	100	hours	EHTR-FM
	2	12-SEP-20 08:40	17-SEP-20 14:00	0.25	125	hours	EHTR-FM
	3	12-SEP-20 15:15	17-SEP-20 14:00	0.25	119	hours	EHTR-FM
	4	12-SEP-20 09:25	17-SEP-20 14:00	0.25	125	hours	EHTR-FM
	5	13-SEP-20 09:20	17-SEP-20 14:00	0.25	101	hours	EHTR-FM
	6	13-SEP-20 11:20	17-SEP-20 14:00	0.25	99	hours	EHTR-FM
	7	12-SEP-20 12:48	17-SEP-20 14:00	0.25	121	hours	EHTR-FM
	8	14-SEP-20 14:00	17-SEP-20 14:00	0.25	72	hours	EHTR-FM
	9	13-SEP-20 12:00	17-SEP-20 14:00	0.25	98	hours	EHTR-FM
	10	13-SEP-20 12:00	17-SEP-20 14:00	0.25	98	hours	EHTR-FM
	11	13-SEP-20 12:00	17-SEP-20 14:00	0.25	98	hours	EHTR-FM
	12	13-SEP-20 12:00	17-SEP-20 14:00	0.25	98	hours	EHTR-FM
Anions and Nutrients							
Nitrate in Water by IC (Low	/ Level)						
	2	12-SEP-20 08:40	16-SEP-20 08:35	3	4	days	EHTR
	3	12-SEP-20 15:15	16-SEP-20 08:35	3	4	days	EHTL
	4	12-SEP-20 09:25	16-SEP-20 08:35	3	4	days	EHTR
	7	12-SEP-20 12:48	16-SEP-20 08:35	3	4	days	EHTL
Nitrite in Water by IC (Low	Level)						
	2	12-SEP-20 08:40	16-SEP-20 08:35	3	4	days	EHTR
	3	12-SEP-20 15:15	16-SEP-20 08:35	3	4	days	EHTL
	4	12-SEP-20 09:25	16-SEP-20 08:35	3	4	davs	EHTR
	7	12-SEP-20 12:48	16-SEP-20 08:35	3	4	davs	EHTL
						,	

Legend & Qualifier Definitions:

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended.
EHTR: Exceeded ALS recommended hold time prior to sample receipt.
EHTL: Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.
EHT: Exceeded ALS recommended hold time prior to analysis.
Rec. HT: ALS recommended hold time (see units).

Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L2503391 were received on 15-SEP-20 10:00.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the

Workorder: L2503391

Report Date: 21-SEP-20

US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Teck							Pag	t 1 of 2			<u> </u>								
IECK	COC ID:	RA	EMP S	ept 202	0		TURN	AROUN	D TIM	IE:									
Ma diser. (12) BRIT WATER		ROJECT/CLIENT INFO	NER A				i Tanta ang			ABORATOR	Y part of the second		e exacted	t in the					No Capit
Facility Name	e REP						La	ab Name	ALS C	Calgary					1833-0719		Excel	PDF	EDD
Froject Managel	l cait.good@teck.com						La	Email	lyudm	nyla.shvets@a	sglobal.com				cait.good@te	eck.com	x	X.	
Address	s 421 Pine Avenue							Address	25592	29 Street NE					Rosemino	w.ca	x	X	x
															carlie.meyer	@teck.com	x	x	x 10.000
City	/	Sparwood			Province BC			City	Calgar	ry	Province	AB	ļ		sweech@mir	now.ca	x	x 0.20	x
Postal Code	250 425 8202	V0B 2G0			Country Can	ada	Po	stal Code	1 402	/B5 407.1794	Country	Canada			PO #	umbar 6	20000		
Phone Number	r[230-423-8202	SAMPLE DETAILS	C D COM		16 M K	4.11.411.1			1 403	407 1794	NAL VEIG PE	MESTED		- 6 6	rui	I Filtered - Fr	Field, L: Lab	FL Find &	Lab. No No
		AND		1.00	and a Residence of the	and the second s								. All en en en	CI COLONI	Range of Bart	in sandrar Maria g	vericum o	
	1 			Yes/No)					KT (PRESERV) (. M	H2S	HESO4		HCL.	N HNO3	F HNO3				
			Field	azardous Material (Time	G=Grab	# Of	ANALYSIS (1)	ACKCOAL-ROULI A LS Package-DOC	LS_Package-TKN/T	G-T-U-CVAF-VA	G-D-CVAF-VA	SCKCOAL-MET-T-	ECKCOAL-MET-D-				
Sample ID	Samp	ple Location	Matrix	Ĥ	Date	(24hr)	C=Comp	Cont.			I	Ĕ	H	Ē	Ē				<u> </u>
RG_EL1_WS_RAEMP_2020-09_NP			ws	No	9/13/2020	10:30	G	7	1981 1998 1				. 1		1		<u> </u>		
RG_ELDFE_WS_RAEMP_2020-09_NP	· · · · · · · · · · · · · · · · · · ·	RG_ELDFE	ws	No	9/12/2020	8:40	G	7	1990			1	1		1				
RG_UCWER_WS_LAEMP_GHO_2020-09_NP	R	RG_UCWER	WS	No	9/12/2020	15:15	G	7		1 1	1	1	1	1	1				-
RG_FODGH_WS_LAEMP_GHO_2020-09_NP		RG_FODGH	WS	No	9/12/2020	9:25	G	7		1 1		1	1		1				
RG_GRDS_WS_RAEMP_202049_NP		NG_GALS	wa	INO	9/13/2020	9:20	6				1				1				
RG_BACK_WS_KAEMP_2020-09_NP			w3	ino	9/13/2020	11:20	6	/		1 1									
RG_MIDBO_WS_RAEMP_2020-09_NP			ws	NO	9/12/2020	12:48	G	- /			1								
					·														
	l								1				-	<u> </u>				<u> </u>	<u> </u>
									- (#)			+					<u> </u>		
				10.4944					1		•								
	P COMPANY AND A PARTY		KOK TABABIKA		DELINATION		THE TATION		DATE	TIME		C LIVE D	DV/A ENT	IL LA TRO	N SAME BO		a a second		2.1996 -20
ADDITIONA	ECOMMENTS/SPECI/	NO INOT NUCLIONS ALL			Jen	nifer Ings	NUS I RUN		Sen	tember 14, 20	20	CORTED	STATE.	anta Lit	1.1 ACTIVITY (978)				
									 			/	1)—			$-\mathcal{C}$	ite)/) 2/
			•									U	2			-1	15	10	Ű-f
NB OF B	OTTLES RETURNED/	DESCRIPTION	default) -	(design	1.11. J. 1.	an Mr	fin territen		l V (CO) N (Alba L	16 20 a 2	MININE T			NA STATE	- M	44444+a	an d	n i ka	1, 1499
	Priorit	y (2-3 business days) - 50% su	rcharge	1	Sampler's Nan	1e	Mar i stillere	Hallista	Jeni	nifer Ings	利神时间	Mo	bile #			519-50	0-3444		
	Emergen For Emergency <1 D	cy (1 Business Day) - 100% sur ay, ASAP or Weekend - Conta	rcharge act ALS	s	Sampler's Signat	ure			- en el el Médica		TT HEFE	Date	2/Time			Septembe	r 14, 202	9)	(inter 1
	<u> </u>						.				<u></u>					6	4		

Teck Coal Ltd. ATTN: Cait Good 421 Pine Avenue Sparwood BC VOB 2G0 Date Received: 16-SEP-20 Report Date: 19-JAN-21 17:13 (MT) Version: FINAL REV. 2

Client Phone: 250-425-8202

Certificate of Analysis

Lab Work Order #: L2504022

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: VPO00689999 REGIONAL EFFECTS PROGRAM GHO LAEMP Sept 2020

Comments:

19-JAN-2021 Alkalinity (Species) result revised on L2504022-1 to -4.

Lyudmyla Shvets, B.Sc. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 2559 29 Street NE, Calgary, AB T1Y 7B5 Canada | Phone: +1 403 291 9897 | Fax: +1 403 291 0298 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L2504022 CONTD.... PAGE 2 of 7 19-JAN-21 17:13 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L2504022-1 WS 15-SEP-20 14:30 RG_EL20_WS_LA EMP_GHO_2020- 09_NP	L2504022-2 WS 15-SEP-20 14:30 RG_RIVER_WS_L AEMP_GHO_2020- 09_NP	L2504022-3 WS 15-SEP-20 14:30 RG_FBLANK2_WS _LAEMP_GHO_20 20-09_NP	L2504022-4 WS 15-SEP-20 14:30 RG_TRIP2 _WS_LAEMP_GH 0_2020-09_NP	
Grouping	Analyte					
WATER						
Physical Tests	Conductivity (@ 25C) (uS/cm)	298	297	<2.0	<2.0	
	Hardness (as CaCO3) (mg/L)	171	165	<0.50		
	рН (рН)	8.32	8.18	5.50	5.54	
	ORP (mV)	419	329	358	391	
	Total Suspended Solids (mg/L)	<1.0	<1.0	<1.0	<1.0	
	Total Dissolved Solids (mg/L)	190	183 DLHC	<10	<10	
	Turbidity (NTU)	0.50	0.11	<0.10	<0.10	
Anions and	Acidity (as CaCO3) (mg/L)	<1.0	1.6	<1.0	1.8	
numents	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	1/8	-10	-10	~1.0	
	Alkalinity, Carbonate (as CaCO3) (mg/L)	16	<1.0	<1.0	<1.0	
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	-1.0	<1.0	<1.0	<1.0	
	Alkalinity, Total (as CaCO3) (mg/L)	150	<1.0	<1.0	<1.0	
	Ammonia as N (mg/L)	0.0095	0.0056	RRV 0 0147	<0.0050	
	Bromide (Br) (mg/L)	<0.050	<0.050	<0.050	<0.050	
	Chloride (Cl) (mg/L)	0.32	0.31	<0.10	<0.10	
	Fluoride (F) (mg/L)	0.150	0.146	<0.020	<0.020	
	Ion Balance (%)	96.2	93.5	0.0	0.0	
	Nitrate (as N) (mg/L)	0.398	0.393	<0.0050	<0.0050	
	Nitrite (as N) (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	
	Total Kjeldahl Nitrogen (mg/L)	<0.050	<0.050	<0.050	<0.050	
	Orthophosphate-Dissolved (as P) (mg/L)	0.0013	<0.0010	<0.0010	<0.0010	
	Phosphorus (P)-Total (mg/L)	<0.0020	<0.0020	<0.0020	<0.0020	
	Sulfate (SO4) (mg/L)	27.3	27.0	<0.30	< 0.30	
	Anion Sum (meq/L)	3.61	3.59	<0.10	<0.10	
	Cation Sum (meq/L)	3.47	3.36	<0.10	<0.10	
	Cation - Anion Balance (%)	-2.0	-3.3	0.0	0.0	
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	<0.50	<0.50	<0.50		
	Total Organic Carbon (mg/L)	<0.50	<0.50	<0.50	<0.50	
Total Metals	Aluminum (Al)-Total (mg/L)	0.0056	0.0066	<0.0030	<0.0030	
	Antimony (Sb)-Total (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	
	Arsenic (As)-Total (mg/L)	<0.00010	0.00018	<0.00010	<0.00010	
	Barium (Ba)-Total (mg/L)	0.0570	0.0552	<0.00010	<0.00010	
	Beryllium (Be)-Total (ug/L)	<0.020	<0.020	<0.020	<0.020	
	Bismuth (Bi)-Total (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	
	Boron (B)-Total (mg/L)	<0.010	<0.010	<0.010	<0.010	
	Cadmium (Cd)-Total (ug/L)	0.0087	0.0071	<0.0050	<0.0050	

L2504022 CONTD.... PAGE 3 of 7 19-JAN-21 17:13 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L2504022-1 WS 15-SEP-20 14:30 RG_EL20_WS_LA EMP_GHO_2020- 09 NP	L2504022-2 WS 15-SEP-20 14:30 RG_RIVER_WS_L AEMP_GH0_2020- 09 NP	L2504022-3 WS 15-SEP-20 14:30 RG_FBLANK2_WS _LAEMP_GHO_20 20-09 NP	L2504022-4 WS 15-SEP-20 14:30 RG_TRIP2 _WS_LAEMP_GH 0 2020-09 NP	
Grouping	Analyte					
WATER						
Total Metals	Calcium (Ca)-Total (mg/L)	50.1	47.4	<0.050	<0.050	
	Chromium (Cr)-Total (mg/L)	0.00024	0.00023	<0.00010	<0.00010	
	Cobalt (Co)-Total (ug/L)	<0.10	<0.10	<0.10	<0.10	
	Copper (Cu)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	
	Iron (Fe)-Total (mg/L)	<0.010	<0.010	<0.010	<0.010	
	Lead (Pb)-Total (mg/L)	<0.000050	<0.000050	<0.000050	<0.000050	
	Lithium (Li)-Total (mg/L)	0.0030	0.0028	<0.0010	<0.0010	
	Magnesium (Mg)-Total (mg/L)	11.3	12.4	<0.10	<0.10	
	Manganese (Mn)-Total (mg/L)	0.00115	0.00116	<0.00010	<0.00010	
	Mercury (Hg)-Total (ug/L)	<0.00050	<0.00050	<0.00050	<0.00050	
	Molybdenum (Mo)-Total (mg/L)	0.00124	0.00110	<0.000050	<0.000050	
	Nickel (Ni)-Total (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	
	Potassium (K)-Total (mg/L)	0.418	0.430	<0.050	<0.050	
	Selenium (Se)-Total (ug/L)	2.03	1.70	<0.050	<0.050	
	Silicon (Si)-Total (mg/L)	1.99	2.06	<0.10	<0.10	
	Silver (Ag)-Total (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	
	Sodium (Na)-Total (mg/L)	0.948	0.928	<0.050	<0.050	
	Strontium (Sr)-Total (mg/L)	0.209	0.216	<0.00020	<0.00020	
	Thallium (TI)-Total (mg/L)	<0.000010	<0.000010	<0.000010	<0.000010	
	Tin (Sn)-Total (mg/L)	<0.00010	<0.00010	<0.00010	<0.00010	
	Titanium (Ti)-Total (mg/L)	<0.010	<0.010	<0.010	<0.010	
	Uranium (U)-Total (mg/L)	0.000711	0.000785	<0.000010	<0.000010	
	Vanadium (V)-Total (mg/L)	<0.00050	0.00069	<0.00050	<0.00050	
	Zinc (Zn)-Total (mg/L)	<0.0030	<0.0030	<0.0030	<0.0030	
Dissolved Metals	Dissolved Mercury Filtration Location	FIELD	FIELD	FIELD		
	Dissolved Metals Filtration Location	FIELD	FIELD	FIELD	LAB	
	Aluminum (Al)-Dissolved (mg/L)	<0.0030	<0.0030	<0.0030		
	Antimony (Sb)-Dissolved (mg/L)	<0.00010	<0.00010	<0.00010		
	Arsenic (As)-Dissolved (mg/L)	<0.00010	<0.00010	<0.00010		
	Barium (Ba)-Dissolved (mg/L)	0.0554	0.0560	<0.00010		
	Beryllium (Be)-Dissolved (ug/L)	<0.020	<0.020	<0.020		
	Bismuth (Bi)-Dissolved (mg/L)	<0.000050	<0.000050	<0.000050		
	Boron (B)-Dissolved (mg/L)	<0.010	<0.010	<0.010		
	Cadmium (Cd)-Dissolved (ug/L)	0.0072	0.0069	<0.0050		
	Calcium (Ca)-Dissolved (mg/L)	48.9	46.5	<0.050	<0.050	
	Chromium (Cr)-Dissolved (mg/L)	0.00022	0.00022	<0.00010		
	Cobalt (Co)-Dissolved (ug/L)	<0.10	<0.10	<0.10		

L2504022 CONTD.... PAGE 4 of 7 19-JAN-21 17:13 (MT) Version: FINAL REV. 2

	Sample ID Description Sampled Date Sampled Time Client ID	L2504022-1 WS 15-SEP-20 14:30 RG_EL20_WS_LA EMP_GH0_2020- 09_NP	L2504022-2 WS 15-SEP-20 14:30 RG_RIVER_WS_L AEMP_GHO_2020- 09_NP	L2504022-3 WS 15-SEP-20 14:30 RG_FBLANK2_WS _LAEMP_GHO_20 20-09_NP	L2504022-4 WS 15-SEP-20 14:30 RG_TRIP2 _WS_LAEMP_GH O_2020-09_NP	
Grouping	Analyte					
WATER						
Dissolved Metals	Copper (Cu)-Dissolved (mg/L)	<0.00020	<0.00020	<0.00020		
	Iron (Fe)-Dissolved (mg/L)	<0.010	<0.010	<0.010		
	Lead (Pb)-Dissolved (mg/L)	<0.000050	<0.000050	<0.000050		
	Lithium (Li)-Dissolved (mg/L)	0.0031	0.0027	<0.0010		
	Magnesium (Mg)-Dissolved (mg/L)	11.8	12.0	<0.10	<0.0050	
	Manganese (Mn)-Dissolved (mg/L)	0.00069	0.00070	<0.00010		
	Mercury (Hg)-Dissolved (mg/L)	<0.000050	<0.000050	<0.0000050		
	Molybdenum (Mo)-Dissolved (mg/L)	0.00118	0.00107	<0.000050		
	Nickel (Ni)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050		
	Potassium (K)-Dissolved (mg/L)	0.432	0.421	<0.050	<0.050	
	Selenium (Se)-Dissolved (ug/L)	1.80	1.72	<0.050		
	Silicon (Si)-Dissolved (mg/L)	1.93	1.92	<0.050		
	Silver (Ag)-Dissolved (mg/L)	<0.000010	<0.000010	<0.000010		
	Sodium (Na)-Dissolved (mg/L)	0.998	0.910	<0.050	<0.050	
	Strontium (Sr)-Dissolved (mg/L)	0.211	0.208	<0.00020		
	Thallium (TI)-Dissolved (mg/L)	<0.000010	<0.000010	<0.000010		
	Tin (Sn)-Dissolved (mg/L)	<0.00010	<0.00010	<0.00010		
	Titanium (Ti)-Dissolved (mg/L)	<0.010	<0.010	<0.010		
	Uranium (U)-Dissolved (mg/L)	0.000762	0.000775	<0.000010		
	Vanadium (V)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050		
	Zinc (Zn)-Dissolved (mg/L)	0.0040	<0.0010	<0.0010		

QC Samples with Qualifiers & Comments:

QC Type Description	Parameter	Qualifier	Applies to Sample Number(s)				
Laboratory Control Sample	Beryllium (Be)-Total	MES	L2504022-2, -3				
Laboratory Control Sample	Antimony (Sb)-Total	MES	L2504022-2, -3				
Laboratory Control Sample	Lithium (Li)-Total	MES	L2504022-2, -3				
Matrix Spike	Barium (Ba)-Total	MS-B	L2504022-1, -4				
Matrix Spike	Calcium (Ca)-Total	MS-B	L2504022-1, -4				
Matrix Spike	Calcium (Ca)-Total	MS-B	L2504022-2, -3				
Matrix Spike	Magnesium (Mg)-Total	MS-B	L2504022-1, -4				
Matrix Spike	Magnesium (Mg)-Total	MS-B	L2504022-2, -3				
Matrix Spike	Sodium (Na)-Total	MS-B	L2504022-2, -3				
Matrix Spike	Strontium (Sr)-Total	MS-B	L2504022-1, -4				
Matrix Spike	Strontium (Sr)-Total	MS-B	L2504022-2, -3				
Qualifiers for Individual Parameter	ers Listed:						
Qualifier Description							
DLHC Detection Limit Ra	Detection Limit Raised: Dilution required due to high concentration of test analyte(s).						

 MES
 Data Quality Objective was marginally exceeded (by < 10% absolute) for < 10% of analytes in a Multi-Element Scan / Multi-Parameter Scan (considered acceptable as per OMOE & CCME).</td>

 MS-B
 Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.

RRV Reported Result Verified By Repeat Analysis

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**					
ACIDITY-PCT-CL	Water	Acidity by Automatic Titration	APHA 2310 Acidity					
This analysis is carried out endpoint.	using proced	dures adapted from APHA Method 2310 "Acidity". Acidit	ty is determined by potentiometric titration to a specified					
ALK-MAN-CL	Water	Alkalinity (Species) by Manual Titration	APHA 2320 ALKALINITY					
This analysis is carried out pH 4.5 endpoint. Bicarbona	using proced ate, carbonate	al alkalinity is determined by potentiometric titration to a thalein alkalinity and total alkalinity values.						
BE-D-L-CCMS-VA	Water	Diss. Be (low) in Water by CRC ICPMS	APHA 3030B/6020A (mod)					
Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by CRC ICPMS.								
BE-T-L-CCMS-VA	Water	Total Be (Low) in Water by CRC ICPMS	EPA 200.2/6020A (mod)					
Water samples are digeste	d with nitric a	and hydrochloric acids, and analyzed by CRC ICPMS.						
BR-L-IC-N-CL	Water	Bromide in Water by IC (Low Level)	EPA 300.1 (mod)					
Inorganic anions are analyz	zed by Ion Cł	nromatography with conductivity and/or UV detection.						
C-DIS-ORG-LOW-CL	Water	Dissolved Organic Carbon	APHA 5310 B-Instrumental					
This method is applicable t pretreatment: Unfiltered sa carrier gas containing the c halogen scrubber into a sa and dissolved inorganic can dioxide.	o the analysi mple = TC, 0 combustion p mple cell set rbon, the san	s of ground water, wastewater, and surface water samp 45um filtered = TDC. Samples are injected into a com roduct from the combustion tube flows through an inorg in a non-dispersive infrared gas analyzer (NDIR) where nple is injected into an IC reactor vessel where only the	bles. The form detected depends upon sample bustion tube containing an oxidation catalyst. The anic carbon reactor vessel and is then sent through a carbon dioxide is detected. For total inorganic carbon IC component is decomposed to become carbon					
The peak area generated b subtracting the TIC from th TOC = TC-TIC, DOC = TD	by the NDIR in e TC. C-DIC, Partic	ndicates the TC/TDC or TIC/DIC as applicable. The tota	al organic carbon content of the sample is calculated by					
C-TOT-ORG-LOW-CL	Water	Total Organic Carbon	APHA 5310 TOTAL ORGANIC CARBON (TOC)					

This method is applicable to the analysis of ground water, wastewater, and surface water samples. The form detected depends upon sample pretreatment: Unfiltered sample = TC, 0.45um filtered = TDC. Samples are injected into a combustion tube containing an oxidation catalyst. The carrier gas containing the combustion product from the combustion tube flows through an inorganic carbon reactor vessel and is then sent through a halogen scrubber into a sample cell set in a non-dispersive infrared gas analyzer (NDIR) where carbon dioxide is detected. For total inorganic carbon and dissolved inorganic carbon, the sample is injected into an IC reactor vessel where only the IC component is decomposed to become carbon dioxide.

The peak area generated by the NDIR indicates the TC/TDC or TIC/DIC as applicable. The total organic carbon content of the sample is calculated by

L2504022 CONTD.... PAGE 6 of 7 19-JAN-21 17:13 (MT) Version: FINAL REV. 2

subtracting the TIC from the TOC = TC-TIC, DOC = TD	e TC. C-DIC, Partic	ulate = Total - Dissolved.	
CL-L-IC-N-CL	Water	Chloride in Water by IC	EPA 300.1 (mod)
Inorganic anions are analyz	zed by Ion Cł	nromatography with conductivity and/or UV detection.	
EC-L-PCT-CL	Water	Electrical Conductivity (EC)	APHA 2510B
Conductivity, also known as electrodes into a water sam	s Electrical C nple. Conduc	conductivity (EC) or Specific Conductance, is measured ctivity measurements are temperature-compensated to	by immersion of a conductivity cell with platinum 25C.
F-IC-N-CL	Water	Fluoride in Water by IC	EPA 300.1 (mod)
Inorganic anions are analyz	zed by Ion Ch	nromatography with conductivity and/or UV detection.	
HARDNESS-CALC-VA	Water	Hardness	APHA 2340B
Hardness (also known as T Dissolved Calcium and Mag	otal Hardnes gnesium con	s) is calculated from the sum of Calcium and Magnesic centrations are preferentially used for the hardness calc	um concentrations, expressed in CaCO3 equivalents. culation.
HG-D-CVAA-VA	Water	Diss. Mercury in Water by CVAAS or CVAFS	APHA 3030B/EPA 1631E (mod)
Water samples are filtered with stannous chloride, and	(0.45 um), pi l analyzed by	reserved with hydrochloric acid, then undergo a cold-ox v CVAAS or CVAFS.	idation using bromine monochloride prior to reduction
HG-T-U-CVAF-VA	Water	Total Mercury in Water by CVAFS (Ultra)	EPA 1631 REV. E
This analysis is carried out procedure involves a cold-c reduction of the sample wit	using proced oxidation of th h stannous c	dures adapted from Method 1631 Rev. E. by the United ne acidified sample using bromine monochloride prior to hloride. Instrumental analysis is by cold vapour atomic	States Environmental Protection Agency (EPA). The o a purge and trap concentration step and final fluorescence spectrophotometry.
IONBALANCE-BC-CL	Water	Ion Balance Calculation	APHA 1030E
Cation Sum, Anion Sum, an Correctness of Analysis). E should be near-zero.	nd Ion Balan Because all a	ce (as % difference) are calculated based on guidance queous solutions are electrically neutral, the calculated	from APHA Standard Methods (1030E Checking I ion balance (% difference of cations minus anions)
Cation and Anion Sums are included where data is pres	e the total me sent. Ion Bal	eq/L concentration of major cations and anions. Dissolv ance is calculated as:	ved species are used where available. Minor ions are
Ion Balance (%) = [Cation S	Sum-Anion S	um] / [Cation Sum+Anion Sum]	
MET-D-CCMS-CL	Water	Dissolved Metals in Water by CRC ICPMS	APHA 3030B/6020A (mod)
Water samples are filtered	(0.45 um), pi	reserved with nitric acid, and analyzed by CRC ICPMS.	
Method Limitation (re: Sulfu	ur): Sulfide ar	nd volatile sulfur species may not be recovered by this	method.
MET-D-CCMS-VA	Water	Dissolved Metals in Water by CRC ICPMS	APHA 3030B/6020A (mod)
Water samples are filtered	(0.45 um), pi	reserved with nitric acid, and analyzed by CRC ICPMS.	
Method Limitation (re: Sulfu	ur): Sulfide ar	nd volatile sulfur species may not be recovered by this	method.
MET-T-CCMS-VA	Water	Total Metals in Water by CRC ICPMS	EPA 200.2/6020A (mod)
Water samples are digeste	d with nitric a	and hydrochloric acids, and analyzed by CRC ICPMS.	
Method Limitation (re: Sulfu	ur): Sulfide ar	nd volatile sulfur species may not be recovered by this	method.
NH3-L-F-CL	Water	Ammonia, Total (as N)	J. ENVIRON. MONIT., 2005, 7, 37-42, RSC
This analysis is carried out, of Chemistry, "Flow-injectic al.	, on sulfuric a on analysis w	acid preserved samples, using procedures modified from ith fluorescence detection for the determination of trace	m J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society e levels of ammonium in seawater", Roslyn J. Waston et
NO2-L-IC-N-CL	Water	Nitrite in Water by IC (Low Level)	EPA 300.1 (mod)
Inorganic anions are analyz	zed by Ion Ch	nromatography with conductivity and/or UV detection.	
NO3-L-IC-N-CL	Water	Nitrate in Water by IC (Low Level)	EPA 300.1 (mod)
Inorganic anions are analyz	zed by Ion Cł	nromatography with conductivity and/or UV detection.	
ORP-CL	Water	Oxidation redution potential by elect.	ASTM D1498
This analysis is carried out published by the American metal-reference electrode e	in accordanc Society for T employed, in	e with the procedure described in the "ASTM" method esting and Materials (ASTM). Results are reported as mV.	D1498 "Oxidation-Reduction Potential of Water" observed oxidation-reduction potential of the platinum

It is recommended that this analysis be conducted in the field.

L2504022 CONTD PAGE 7 of 7 19-JAN-21 17:13 (MT) Version: FINAL REV. 2

P-T-L-COL-CL	Water	Phosphorus (P)-Total	APHA 4500-P PHOSPHORUS
This analysis is carried out after persulphate digestion	using proce of the samp	dures adapted from APHA Method 4500-P "Pl le.	hosphorus". Total Phosphorus is determined colourimetrically
PH-CL	Water	рН	APHA 4500 H-Electrode
pH is determined in the lab hold time from time of sam	oratory using pling (field a	g a pH electrode. All samples analyzed by this nalysis is recommended for pH where highly a	method for pH will have exceeded the 15 minute recommended accurate results are needed)
PO4-DO-L-COL-CL	Water	Orthophosphate-Dissolved (as P)	APHA 4500-P PHOSPHORUS
This analysis is carried out colourimetrically on a samp	using proceo le that has b	dures adapted from APHA Method 4500-P "Pl been lab or field filtered through a 0.45 micron	hosphorus". Dissolved Orthophosphate is determined membrane filter.
SO4-IC-N-CL	Water	Sulfate in Water by IC	EPA 300.1 (mod)
Inorganic anions are analyz	ed by Ion C	hromatography with conductivity and/or UV de	etection.
SOLIDS-TDS-CL	Water	Total Dissolved Solids	APHA 2540 C
A well-mixed sample is filte The increase in vial weight	red through represents t	a glass fibre filter paper. The filtrate is then ev he total dissolved solids (TDS).	vaporated to dryness in a pre-weighed vial and dried at 180 – 2 °C.
TECKCOAL-IONBAL-CL	Water	Ion Balance Calculation	APHA 1030E
Cation Sum, Anion Sum, an Correctness of Analysis). E should be near-zero.	nd Ion Balan Because all a	ce (as % difference) are calculated based on aqueous solutions are electrically neutral, the	guidance from APHA Standard Methods (1030E Checking calculated ion balance (% difference of cations minus anions)
Cation and Anion Sums are included where data is pres	e the total mo ent. Ion Ba	eq/L concentration of major cations and anion lance is calculated as:	s. Dissolved species are used where available. Minor ions are
Ion Balance (%) = [Cation S	Sum-Anion S	Sum] / [Cation Sum+Anion Sum]	
TKN-L-F-CL	Water	Total Kjeldahl Nitrogen	APHA 4500-NORG (TKN)
This analysis is carried out Nitrogen is determined usir	using proce ng block dige	dures adapted from APHA Method 4500-Norg stion followed by Flow-injection analysis with	D. "Block Digestion and Flow Injection Analysis". Total Kjeldahl fluorescence detection.
TSS-L-CL	Water	Total Suspended Solids	APHA 2540 D-Gravimetric
This analysis is carried out (TSS) are determined by fil	using proce tering a sam	dures adapted from APHA Method 2540 "Soli ple through a glass fibre filter, and by drying t	ds". Solids are determined gravimetrically. Total suspended solids he filter at 104 deg. C.
TURBIDITY-CL	Water	Turbidity	APHA 2130 B-Nephelometer
This analysis is carried out	using proce	dures adapted from APHA Method 2130 "Turk	idity". Turbidity is determined by the nephelometric method.
** ALS test methods may inco	rporate mod	lifications from specified reference methods to) improve performance.
The last two letters of the ab	ove test cod	le(s) indicate the laboratory that performed an	alytical analysis for that test. Refer to the list below:
Laboratory Definition Code	e Labora	atory Location	
CL	ALS E	NVIRONMENTAL - CALGARY, ALBERTA, CA	ANADA
VA	ALS E	NVIRONMENTAL - VANCOUVER, BRITISH O	COLUMBIA, CANADA
Chain of Custody Numbers:			
GHO LAEMP Sept 2020			

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample. mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

			Workorder:	L2504022	R	eport Date:	19-JAN-21	Pa	ge 1 of 17
Client:	Teck Coal 421 Pine / Sparwood Cait Good	Ltd. Avenue BC V0B 2G0							
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ACIDITY-PCT-C	CL	Water							
Batch	R5229719								
WG3407723 Acidity (as C	-5 LCS CaCO3)			102.4		%		85-115	18-SEP-20
WG3407723 Acidity (as C	-4 MB CaCO3)			1.7		mg/L		2	18-SEP-20
ALK-MAN-CL		Water							
Batch	R5229761								
WG3407727 Alkalinity, To	-11 LCS otal (as CaCC	03)		101.6		%		85-115	18-SEP-20
WG3407727 Alkalinity, To	-10 MB otal (as CaCO	D3)		<1.0		mg/L		1	18-SEP-20
BE-D-L-CCMS-	VA	Water							
Batch	R5231479								
WG3407962 Beryllium (B	-3 DUP Be)-Dissolved		L2504022-1 <0.000020	<0.000020	RPD-NA	mg/L	N/A	20	19-SEP-20
WG3407962 Beryllium (B	-2 LCS Be)-Dissolved			103.7		%		80-120	19-SEP-20
WG3407962 Beryllium (B	-1 MB Be)-Dissolved		NP	<0.000020		mg/L		0.00002	19-SEP-20
Batch	R5232289								
WG3409357 Beryllium (B	-2 LCS Be)-Dissolved			92.7		%		80-120	22-SEP-20
WG3409357 Beryllium (B	-1 MB Be)-Dissolved		NP	<0.000020		mg/L		0.00002	22-SEP-20
BE-T-L-CCMS-V	VA	Water							
Batch	R5231746								
WG3407895 Beryllium (B	-2 LCS Se)-Total			97.4		%		80-120	21-SEP-20
WG3407895 Beryllium (B	-1 MB Be)-Total			<0.000020		mg/L		0.00002	21-SEP-20
WG3407895 Beryllium (B	-4 MS Be)-Total		L2504022-1	102.2		%		70-130	21-SEP-20
Batch	R5232289								
WG3409293 Beryllium (B	-2 LCS Se)-Total			120.7	MES	%		80-120	22-SEP-20
WG3409293 Beryllium (B	-1 MB Se)-Total			<0.000020		mg/L		0.00002	22-SEP-20

BR-L-IC-N-CL

Water

		Workorder	L250402	2	Report Date: 19	-JAN-21	Pa	ge 2 of 17
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
BR-L-IC-N-CL Batch R5226660	Water							
Bromide (Br)			112.0		%		85-115	16-SEP-20
WG3406632-9 MB Bromide (Br)			<0.050		mg/L		0.05	16-SEP-20
C-DIS-ORG-LOW-CL	Water							
Batch R5231450 WG3408396-2 LCS	n		100 1		9/2		80.120	
WG3408306-1 MB			109.1		70		00-120	19-3EP-20
Dissolved Organic Carbo	on		<0.50		mg/L		0.5	19-SEP-20
C-TOT-ORG-LOW-CL	Water							
BatchR5231450WG3408396-2LCSTotal Organic Carbon			115.6		%		80-120	19-SEP-20
WG3408396-1 MB Total Organic Carbon			<0.50		mg/L		0.5	19-SEP-20
CL-L-IC-N-CL	Water							
Batch R5226660								
WG3406632-10 LCS Chloride (Cl)			100.7		%		85-115	16-SEP-20
WG3406632-9 MB Chloride (Cl)			<0.10		mg/L		0.1	16-SEP-20
EC-L-PCT-CL	Water							
Batch R5229761								
WG3407727-11 LCS Conductivity (@ 25C)			93.7		%		90-110	18-SEP-20
WG3407727-10 MB Conductivity (@ 25C)			<2.0		uS/cm		2	18-SEP-20
F-IC-N-CL	Water							
Batch R5226660								
WG3406632-10 LCS Fluoride (F)			95.7		%		90-110	16-SEP-20
WG3406632-9 MB Fluoride (F)			<0.020		mg/L		0.02	16-SEP-20
HG-D-CVAA-VA	Water							

	Workorder: L2504022			eport Date:	19-JAN-21	Page 3 of 17		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
HG-D-CVAA-VA	Water							
Batch R5231937								
WG3409373-2 LCS								
Mercury (Hg)-Dissolved			98.0		%		80-120	22-SEP-20
WG3409373-1 MB Mercury (Hg)-Dissolved		NP	<0.0000050]	mg/L		0.000005	22-SEP-20
WG3409373-4 MS		L2504022-2						
Mercury (Hg)-Dissolved			97.6		%		70-130	22-SEP-20
HG-T-U-CVAF-VA	Water							
Batch R5231644								
WG3409074-6 DUP Mercury (Hg)-Total		L2504022-2 <0.00050	<0.00050	RPD-NA	ug/L	N/A	20	21-SEP-20
WG3409074-2 LCS Mercury (Hg)-Total			90.4		%		80-120	21-SEP-20
WG3409074-1 MB Mercury (Hg)-Total			<0.00050		ug/L		0.0005	21-SEP-20
MET-D-CCMS-CL	Water							
Batch R5226619								
WG3407012-2 LCS Calcium (Ca)-Dissolved		TMRM	102.1		%		80-120	17-SEP-20
Magnesium (Mg)-Dissol	ved		103.7		%		80-120	17-SEP-20
Potassium (K)-Dissolved	ł		101.9		%		80-120	17-SEP-20
Sodium (Na)-Dissolved			99.96		%		80-120	17-SEP-20
WG3407012-1 MB							00.20	
Calcium (Ca)-Dissolved			<0.050		mg/L		0.05	17-SEP-20
Magnesium (Mg)-Dissol	ved		<0.0050		mg/L		0.005	17-SEP-20
Potassium (K)-Dissolved	1		<0.050		mg/L		0.05	17-SEP-20
Sodium (Na)-Dissolved			<0.050		mg/L		0.05	17-SEP-20
MET-D-CCMS-VA	Water							
Batch R5231479								
WG3407962-3 DUP		L2504022-1	0.0000					
Auminum (AI)-Dissolved	, ,	<0.0030	<0.0030	RPD-NA	mg/L	N/A	20	19-SEP-20
Anumony (Sb)-Dissolved	1	<0.00010	<0.00010	RPD-NA	mg/L	N/A	20	19-SEP-20
Arsenic (AS)-Dissoived			<0.00010	KPD-NA	mg/∟	N/A	20	19-SEP-20
Barium (Ba)-Dissoived		0.0054	0.000050		mg/∟	0.3	20	19-SEP-20
Bismuth (BI)-Dissolved		<0.000050	<0.000050	RPD-NA	mg/∟	N/A	20	19-SEP-20
Boron (B)-Dissolved		<0.010	<0.010	RPD-NA	mg/∟	N/A	20	19-SEP-20
Cadmium (Cd)-Dissolve	d	0.0000072	<0.0000050	RPD-NA	mg/L	N/A	20	19-SEP-20

		Workorder:	Re	Report Date: 19-JAN-21			Page 4 of 17	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-CCMS-VA	Water							
Batch R523	1479							
WG3407962-3 Calcium (Ca)-Diss	DUP olved	L2504022-1 48.9	49.5		mg/L	1.2	20	19-SEP-20
Chromium (Cr)-Dis	ssolved	0.00022	0.00023		mg/L	1.2	20	19-SEP-20
Cobalt (Co)-Dissol	ved	<0.00010	<0.00010	RPD-NA	mg/L	N/A	20	19-SEP-20
Copper (Cu)-Disso	blved	<0.00020	<0.00020	RPD-NA	mg/L	N/A	20	19-SEP-20
Iron (Fe)-Dissolved	d	<0.010	<0.010	RPD-NA	mg/L	N/A	20	19-SEP-20
Lead (Pb)-Dissolve	ed	<0.000050	<0.000050	RPD-NA	mg/L	N/A	20	19-SEP-20
Lithium (Li)-Dissol	ved	0.0031	0.0031		mg/L	0.8	20	19-SEP-20
Magnesium (Mg)-I	Dissolved	11.8	11.6		mg/L	1.7	20	19-SEP-20
Manganese (Mn)-I	Dissolved	0.00069	0.00076		mg/L	11	20	19-SEP-20
Molybdenum (Mo)	-Dissolved	0.00118	0.00117		mg/L	0.3	20	19-SEP-20
Nickel (Ni)-Dissolv	ved	<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	19-SEP-20
Potassium (K)-Dis	solved	0.432	0.418		mg/L	3.4	20	19-SEP-20
Selenium (Se)-Dis	solved	0.00180	0.00175		mg/L	3.1	20	19-SEP-20
Silicon (Si)-Dissolv	ved	1.93	1.90		mg/L	1.2	20	19-SEP-20
Silver (Ag)-Dissolv	red	<0.000010	<0.000010	RPD-NA	mg/L	N/A	20	19-SEP-20
Sodium (Na)-Disso	olved	0.998	0.947		mg/L	5.3	20	19-SEP-20
Strontium (Sr)-Dis	solved	0.211	0.222		mg/L	5.0	20	19-SEP-20
Thallium (TI)-Disso	olved	<0.000010	<0.000010	RPD-NA	mg/L	N/A	20	19-SEP-20
Tin (Sn)-Dissolved	I	<0.00010	<0.00010	RPD-NA	mg/L	N/A	20	19-SEP-20
Titanium (Ti)-Disso	olved	<0.010	<0.010	RPD-NA	mg/L	N/A	20	19-SEP-20
Uranium (U)-Disso	blved	0.000762	0.000732		mg/L	4.1	20	19-SEP-20
Vanadium (V)-Diss	solved	<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	19-SEP-20
Zinc (Zn)-Dissolve	d	0.0040	0.0037		mg/L	6.4	20	19-SEP-20
WG3407962-2 L	.cs							
Aluminum (Al)-Dis	solved		101.4		%		80-120	19-SEP-20
Antimony (Sb)-Dis	solved		104.2		%		80-120	19-SEP-20
Arsenic (As)-Disso	blved		99.6		%		80-120	19-SEP-20
Barium (Ba)-Disso	lved		106.4		%		80-120	19-SEP-20
Bismuth (Bi)-Disso	blved		96.4		%		80-120	19-SEP-20
Boron (B)-Dissolve	ed		105.6		%		80-120	19-SEP-20
Cadmium (Cd)-Dis	solved		98.9		%		80-120	19-SEP-20
Calcium (Ca)-Diss	olved		106.6		%		80-120	19-SEP-20
Chromium (Cr)-Dis	ssolved		103.3		%		80-120	19-SEP-20
Cobalt (Co)-Dissol	ved		98.7		%		80-120	19-SFP-20

		Workorder: L2504022			Report Date: 19-JAN-21		Page 5 of 17	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-CCMS-VA	Water							
Batch R5231	479							
WG3407962-2 L	cs							
Copper (Cu)-Dissol	lved		97.4		%		80-120	19-SEP-20
Iron (Fe)-Dissolved			98.9		%		80-120	19-SEP-20
Lead (Pb)-Dissolve	ed .		100.6		%		80-120	19-SEP-20
Lithium (Li)-Dissolv	red		110.0		%		80-120	19-SEP-20
Magnesium (Mg)-D	lissolved		97.0		%		80-120	19-SEP-20
Manganese (Mn)-D	Dissolved		100.3		%		80-120	19-SEP-20
Molybdenum (Mo)-I	Dissolved		106.3		%		80-120	19-SEP-20
Nickel (Ni)-Dissolve	ed		99.2		%		80-120	19-SEP-20
Potassium (K)-Diss	solved		102.2		%		80-120	19-SEP-20
Selenium (Se)-Diss	solved		97.6		%		80-120	19-SEP-20
Silicon (Si)-Dissolve	ed		103.2		%		60-140	19-SEP-20
Silver (Ag)-Dissolve	ed		108.9		%		80-120	19-SEP-20
Sodium (Na)-Disso	lved		101.8		%		80-120	19-SEP-20
Strontium (Sr)-Diss	olved		117.8		%		80-120	19-SEP-20
Thallium (TI)-Disso	lved		99.5		%		80-120	19-SEP-20
Tin (Sn)-Dissolved			101.8		%		80-120	19-SEP-20
Titanium (Ti)-Disso	lved		92.9		%		80-120	19-SEP-20
Uranium (U)-Dissol	lved		101.6		%		80-120	19-SEP-20
Vanadium (V)-Diss	olved		100.1		%		80-120	19-SEP-20
Zinc (Zn)-Dissolved	Ł		97.9		%		80-120	19-SEP-20
WG3407962-1 M	В	NP						
Aluminum (AI)-Diss	solved		<0.0010		mg/L		0.001	19-SEP-20
Antimony (Sb)-Diss	solved		<0.00010	0	mg/L		0.0001	19-SEP-20
Arsenic (As)-Dissol	lved		<0.00010	0	mg/L		0.0001	19-SEP-20
Barium (Ba)-Dissol	ved		<0.00010	C	mg/L		0.0001	19-SEP-20
Bismuth (Bi)-Dissol	lved		<0.0000	50	mg/L		0.00005	19-SEP-20
Boron (B)-Dissolve	d		<0.010		mg/L		0.01	19-SEP-20
Cadmium (Cd)-Diss	solved		<0.0000	050	mg/L		0.000005	19-SEP-20
Calcium (Ca)-Disso	blved		<0.050		mg/L		0.05	19-SEP-20
Chromium (Cr)-Dis	solved		<0.00010	0	mg/L		0.0001	19-SEP-20
Cobalt (Co)-Dissolv	ved		<0.00010	D	mg/L		0.0001	19-SEP-20
Copper (Cu)-Dissol	lved		<0.00020	D	mg/L		0.0002	19-SEP-20
Iron (Fe)-Dissolved			<0.010		mg/L		0.01	19-SEP-20
Lead (Pb)-Dissolve	d		<0.0000	50	mg/L		0.00005	19-SEP-20

		Workorder	: L2504022	2	Report Date: 19-JAN-21		Page 6 of 17	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-CCMS-VA	Water							
Batch R5231	1479							
WG3407962-1 M	IB	NP	0.0010				0.004	
			<0.0010		mg/L		0.001	19-SEP-20
Magnesium (Mg)-L			<0.0050		mg/L		0.005	19-SEP-20
Malyhdanum (Ma)	Dissolved		<0.00010	`	mg/L		0.0001	19-SEP-20
Nickel (Ni) Dissel			<0.000050	J	mg/L		0.00005	19-SEP-20
NICKEI (NI)-DISSOIV	ed		<0.00050		mg/L		0.0005	19-SEP-20
Potassium (K)-Diss	solved		<0.050	_	mg/L		0.05	19-SEP-20
Selenium (Se)-Diss	solved		<0.000050)	mg/L		0.00005	19-SEP-20
Silicon (Si)-Dissolv	ed		<0.050	_	mg/L		0.05	19-SEP-20
Silver (Ag)-Dissolve	ed		<0.000010	J	mg/L		0.00001	19-SEP-20
Sodium (Na)-Disso	lived		<0.050		mg/L		0.05	19-SEP-20
Strontium (Sr)-Diss	solved		<0.00020	_	mg/L		0.0002	19-SEP-20
Thallium (TI)-Disso	lved		<0.000010)	mg/L		0.00001	19-SEP-20
Tin (Sn)-Dissolved			<0.00010		mg/L		0.0001	19-SEP-20
Titanium (Ti)-Disso	blved		<0.00030		mg/L		0.0003	19-SEP-20
Uranium (U)-Disso	lved		<0.000010)	mg/L		0.00001	19-SEP-20
Vanadium (V)-Diss	olved		<0.00050		mg/L		0.0005	19-SEP-20
Zinc (Zn)-Dissolved	d		<0.0010		mg/L		0.001	19-SEP-20
Batch R5232	2289							
WG3409357-2 L	CS		400.4		04			
	solved		103.1		%		80-120	22-SEP-20
Antimony (Sb)-Dise	solved		103.4		%		80-120	22-SEP-20
Arsenic (As)-Disso	lved		101.9		%		80-120	22-SEP-20
Barium (Ba)-Dissol	lved		103.1		%		80-120	22-SEP-20
Bismuth (Bi)-Disso	lved		106.7		%		80-120	22-SEP-20
Boron (B)-Dissolve	d		91.6		%		80-120	22-SEP-20
Cadmium (Cd)-Dis	solved		101.1		%		80-120	22-SEP-20
Calcium (Ca)-Disso	olved		100.3		%		80-120	22-SEP-20
Chromium (Cr)-Dis	solved		102.0		%		80-120	22-SEP-20
Cobalt (Co)-Dissol	ved		102.7		%		80-120	22-SEP-20
Copper (Cu)-Disso	lved		100.7		%		80-120	22-SEP-20
Iron (Fe)-Dissolved	1		106.1		%		80-120	22-SEP-20
Lead (Pb)-Dissolve	ed		104.2		%		80-120	22-SEP-20
Lithium (Li)-Dissolv	ved		92.9		%		80-120	22-SEP-20
Magnesium (Mg)-D	Dissolved		104.2		%		80-120	22-SEP-20

		Workorder: L2504022			Report Date: 19-JAN-21		Page 7 of 17	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-CCMS-VA	Water							
Batch R5232	289							
WG3409357-2 LC	S		400.0		0 (
Manganese (Mn)-Di	ISSOIVED		102.2		%		80-120	22-SEP-20
Molybdenum (Mo)-L	Jissolved		98.9		%		80-120	22-SEP-20
Nickel (Ni)-Dissolve	d 		99.4		%		80-120	22-SEP-20
Potassium (K)-Disso	olved		105.6		%		80-120	22-SEP-20
Selenium (Se)-Disso	olved		101.9		%		80-120	22-SEP-20
Silicon (Si)-Dissolve	ed		99.3		%		60-140	22-SEP-20
Silver (Ag)-Dissolve	d		104.5		%		80-120	22-SEP-20
Sodium (Na)-Dissol	ved		102.4		%		80-120	22-SEP-20
Strontium (Sr)-Disso	olved		104.9		%		80-120	22-SEP-20
Thallium (TI)-Dissol	ved		104.5		%		80-120	22-SEP-20
Tin (Sn)-Dissolved			100.3		%		80-120	22-SEP-20
Titanium (Ti)-Dissol	ved		101.3		%		80-120	22-SEP-20
Uranium (U)-Dissolv	ved		105.0		%		80-120	22-SEP-20
Vanadium (V)-Disso	blved		103.3		%		80-120	22-SEP-20
Zinc (Zn)-Dissolved			103.6		%		80-120	22-SEP-20
WG3409357-1 MI	В	NP						
Aluminum (Al)-Disso	olved		<0.0010		mg/L		0.001	22-SEP-20
Antimony (Sb)-Disso	olved		<0.00010)	mg/L		0.0001	22-SEP-20
Arsenic (As)-Dissolv	ved		<0.00010)	mg/L		0.0001	22-SEP-20
Barium (Ba)-Dissolv	ved		<0.00010)	mg/L		0.0001	22-SEP-20
Bismuth (Bi)-Dissolv	ved		<0.00005	50	mg/L		0.00005	22-SEP-20
Boron (B)-Dissolved	1		<0.010		mg/L		0.01	22-SEP-20
Cadmium (Cd)-Diss	olved		<0.00000	050	mg/L		0.000005	22-SEP-20
Calcium (Ca)-Disso	lved		<0.050		mg/L		0.05	22-SEP-20
Chromium (Cr)-Diss	solved		<0.00010)	mg/L		0.0001	22-SEP-20
Cobalt (Co)-Dissolve	ed		<0.00010)	mg/L		0.0001	22-SEP-20
Copper (Cu)-Dissolv	ved		<0.00020)	mg/L		0.0002	22-SEP-20
Iron (Fe)-Dissolved			<0.010		mg/L		0.01	22-SEP-20
Lead (Pb)-Dissolved	Ł		<0.00005	50	mg/L		0.00005	22-SEP-20
Lithium (Li)-Dissolve	ed		<0.0010		mg/L		0.001	22-SEP-20
Magnesium (Mg)-Di	ssolved		<0.0050		mg/L		0.005	22-SEP-20
Manganese (Mn)-Di	issolved		<0.00010)	mg/L		0.0001	22-SEP-20
Molybdenum (Mo)-E	Dissolved		<0.00005	50	mg/L		0.00005	22-SEP-20
Nickel (Ni)-Dissolve	d		<0.00050)	mg/L		0.0005	22-SEP-20

	Workorder: L2504022		Report Date: 19-JAN-21		Page 8 of 17			
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-CCMS-VA	Water							
Batch R5232289								
WG3409357-1 MB		NP	0.050					
Potassium (K)-Dissolved			<0.050	•	mg/L		0.05	22-SEP-20
Selenium (Se)-Dissolved			<0.00005	0	mg/L		0.00005	22-SEP-20
Silicon (Si)-Dissolved			<0.050	0	mg/L		0.05	22-SEP-20
Silver (Ag)-Dissolved			<0.00001	0	mg/L		0.00001	22-SEP-20
Sodium (Na)-Dissolved			<0.050		mg/L		0.05	22-SEP-20
Strontium (Sr)-Dissolved	1		<0.00020	, ,	mg/L		0.0002	22-SEP-20
Thailium (TI)-Dissolved			<0.00001	0	mg/L		0.00001	22-SEP-20
Tin (Sn)-Dissolved			<0.00010		mg/L		0.0001	22-SEP-20
Litanium (11)-Dissolved			<0.00030	, ,	mg/L		0.0003	22-SEP-20
Uranium (U)-Dissolved			<0.00001	0	mg/L		0.00001	22-SEP-20
	1		<0.00050		mg/L		0.0005	22-SEP-20
Zinc (Zn)-Dissolved			<0.0010		mg/L		0.001	22-SEP-20
MET-T-CCMS-VA	Water							
Batch R5231746								
WG3407895-2 LCS			100.2		0/_		90 100	24 SED 20
Antimony (Sh) Total			100.2		70 9/		80-120	21-SEP-20
Antimony (Sb)-Total			05.7		70 9/		80-120	21-SEP-20
Barium (Ba)-Total			90.7 102 A		70 9/		00-120	21-SEP-20
Banuth (Ba)-Total			07.6		70		80-120	21-SEP-20
Bisiliu(II (BI)-Total			97.0		70		80-120	21-SEP-20
Codmium (Cd) Total			102 7		70 9/		80-120	21-SEP-20
			103.7		/0		80-120	21-SEP-20
Chromium (Ca)-Total			102.2		70 97		80-120	21-SEP-20
			00.7		70 97		80-120	21-SEP-20
			99.7 07.5		/0		80-120	21-SEP-20
lrop (Eq) Total			97.5		70		80-120	21-SEP-20
Iron (Fe)- I otal			97.3		%		80-120	21-SEP-20
Lead (PD)-Total			96.7		%		80-120	21-SEP-20
			98.8		%		80-120	21-SEP-20
Manganasa (Ma)- i otal			90.7		<i>™</i>		80-120	21-SEP-20
Mahadanese (Mn)-Total			105.7		%		80-120	21-SEP-20
Molybdenum (Mo)-Total			93.0		%		80-120	21-SEP-20
Nickel (Ni)- I otal			99.99		%		80-120	21-SEP-20
Potassium (K)-Total			102.8		%		80-120	21-SEP-20

	Workorder: L2504022		22	Report Date: 1	19-JAN-21	Page 9 of 17		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-VA	Water							
Batch R52317	46							
WG3407895-2 LCS	6							
Selenium (Se)- I otal			100.3		%		80-120	21-SEP-20
Silicon (Si)-Total			97.0		%		80-120	21-SEP-20
Silver (Ag)- I otal			98.1		%		80-120	21-SEP-20
Sodium (Na)-Total			102.3		%		80-120	21-SEP-20
Strontium (Sr)-Total			102.0		%		80-120	21-SEP-20
Thallium (TI)-Total			100.0		%		80-120	21-SEP-20
Tin (Sn)-Total			94.8		%		80-120	21-SEP-20
Titanium (Ti)-Total			98.5		%		80-120	21-SEP-20
Uranium (U)-Total			94.6		%		80-120	21-SEP-20
Vanadium (V)-Total			100.5		%		80-120	21-SEP-20
Zinc (Zn)-Total			101.2		%		80-120	21-SEP-20
WG3407895-1 MB Aluminum (Al)-Total			<0.0030		mg/L		0.003	21-SEP-20
Antimony (Sb)-Total			<0.00010)	ma/L		0.0001	21-SEP-20
Arsenic (As)-Total			<0.00010)	ma/L		0.0001	21-SEP-20
Barium (Ba)-Total			<0.00010)	ma/L		0.0001	21-SEP-20
Bismuth (Bi)-Total			<0.00005	50	ma/L		0.00005	21-SEP-20
Boron (B)-Total			<0.010		mg/L		0.01	21-SEP-20
Cadmium (Cd)-Total			<0.00000	050	ma/L		0.000005	21-SEP-20
Calcium (Ca)-Total			<0.050		mg/l		0.05	21-SEP-20
Chromium (Cr)-Total			<0.00010	า	mg/l		0.0001	21-SEP-20
Cobalt (Co)-Total			<0.00010	-)	mg/L		0.0001	21-SEP-20
Copper (Cu)-Total			<0.00050)	mg/l		0.0005	21-SEP-20
Iron (Fe)-Total			< 0.010	-	mg/l		0.01	21-SEP-20
Lead (Pb)-Total			<0.00005	50	ma/L		0.00005	21-SEP-20
Lithium (Li)-Total			< 0.0010		mg/L		0.00000	21-SEP-20
Magnesium (Mg)-Tot	al		< 0.0050		ma/l		0.005	21-SEP-20
Manganese (Mn)-Tot	al		<0.00010	٦ ١	mg/l		0.0001	21-SEP-20
Molybdenum (Mo)-To	otal			50	mg/l		0.00005	21 SEP 20
Nickel (Ni)-Total			<0.00050)	ma/l		0.0005	21-SEP-20
Potassium (K)-Total			<0.050	~	ma/l		0.0000	21-SEP-20
Selenium (Se)-Total				50			0.00	21-0LF-20
Silicon (Si)-Total			<0.0000		mg/L		0.00005	21-367-20
Silver (Ag) Total			~0.000	10	mg/L		0.0004	21-367-20
Silver (Ag)-Total			<0.0000	10	mg/∟		0.00001	21-5EP-20

		Workorder: L2504022			Report Date: 19-JAN-21		Page 10 of 17	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-VA	Water							
Batch R5231746								
WG3407895-1 MB			0.050					
Sodium (Na)- I otal			<0.050		mg/L		0.05	21-SEP-20
Strontium (Sr)-1 otal			<0.00020	-	mg/L		0.0002	21-SEP-20
Thailium (TI)-Totai			<0.000010	J	mg/L		0.00001	21-SEP-20
Tin (Sn)-Total			<0.00010		mg/L		0.0001	21-SEP-20
l itanium (1i)-1 otal			<0.00030	_	mg/L		0.0003	21-SEP-20
Uranium (U)-Total			<0.000010)	mg/L		0.00001	21-SEP-20
Vanadium (V)-Total			<0.00050		mg/L		0.0005	21-SEP-20
Zinc (Zn)-Total			<0.0030		mg/L		0.003	21-SEP-20
WG3407895-4 MS Aluminum (Al)-Total		L2504022-1	97.3		%		70-130	21-SEP-20
Antimony (Sb)-Total			100.8		%		70-130	21-SEP-20
Arsenic (As)-Total			96.1		%		70-130	21-SEP-20
Barium (Ba)-Total			N/A	MS-B	%		-	21-SEP-20
Bismuth (Bi)-Total			94.0		%		70-130	21-SEP-20
Boron (B)-Total			102.1		%		70-130	21-SEP-20
Cadmium (Cd)-Total			101.0		%		70-130	21-SEP-20
Calcium (Ca)-Total			N/A	MS-B	%		-	21-SEP-20
Chromium (Cr)-Total			98.8		%		70-130	21-SEP-20
Cobalt (Co)-Total			95.0		%		70-130	21-SEP-20
Copper (Cu)-Total			92.5		%		70-130	21-SEP-20
Iron (Fe)-Total			94.4		%		70-130	21-SEP-20
Lead (Pb)-Total			93.3		%		70-130	21-SEP-20
Lithium (Li)-Total			102.2		%		70-130	21-SEP-20
Magnesium (Mg)-Total			N/A	MS-B	%		-	21-SEP-20
Manganese (Mn)-Total			99.7		%		70-130	21-SEP-20
Molybdenum (Mo)-Total			100.9		%		70-130	21-SEP-20
Nickel (Ni)-Total			93.9		%		70-130	21-SEP-20
Potassium (K)-Total			102.8		%		70-130	21-SEP-20
Selenium (Se)-Total			102.1		%		70-130	21-SEP-20
Silicon (Si)-Total			90.3		%		70-130	21-SEP-20
Silver (Ag)-Total			100.9		%		70-130	21-SEP-20
Sodium (Na)-Total			102.4		%		70-130	21-SEP-20
Strontium (Sr)-Total			N/A	MS-B	%		-	21-SEP-20
Thallium (TI)-Total			92.9		%		70-130	21-SEP-20

		Workorder: L2504022			Report Date: 19-JAN-21		Page 11 of 17	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-VA	Water							
Batch R52317	46							
WG3407895-4 MS		L2504022-1						
Tin (Sn)-Total			99.7		%		70-130	21-SEP-20
Titanium (Ti)-Total			99.5		%		70-130	21-SEP-20
Uranium (U)-Total			96.3		%		70-130	21-SEP-20
Vanadium (V)-Total			99.9		%		70-130	21-SEP-20
Zinc (Zn)-Total			97.9		%		70-130	21-SEP-20
Batch R52322	89							
WG3409293-2 LCS	3		100.0		0/		00.400	
Antimony (Sh) Total			100.3	МЕС	%		80-120	22-SEP-20
Anumony (Sb)-Total			120.3	IVIES	%		80-120	22-SEP-20
Arsenic (As)-Total			105.8		%		80-120	22-SEP-20
Barium (Ba)-Total			107.5		%		80-120	22-SEP-20
Bismuth (BI)- I otal			110.7		%		80-120	22-SEP-20
Boron (B)-Total			94.3		%		80-120	22-SEP-20
Cadmium (Cd)-Total			110.9		%		80-120	22-SEP-20
Calcium (Ca)- I otal			107.3		%		80-120	22-SEP-20
Chromium (Cr)-Total			105.9		%		80-120	22-SEP-20
Cobalt (Co)- I otal			104.7		%		80-120	22-SEP-20
Copper (Cu)-Total			104.0		%		80-120	22-SEP-20
Iron (Fe)-Total			103.7		%		80-120	22-SEP-20
Lead (Pb)-Total			112.7		%		80-120	22-SEP-20
Lithium (Li)-Total			120.1	MES	%		80-120	22-SEP-20
Magnesium (Mg)-Tot	al		109.8		%		80-120	22-SEP-20
Manganese (Mn)-Tot	al		105.0		%		80-120	22-SEP-20
Molybdenum (Mo)-To	otal		106.7		%		80-120	22-SEP-20
Nickel (Ni)-Total			102.8		%		80-120	22-SEP-20
Potassium (K)-Total			111.3		%		80-120	22-SEP-20
Selenium (Se)-Total			103.1		%		80-120	22-SEP-20
Silicon (Si)-Total			102.7		%		80-120	22-SEP-20
Silver (Ag)-Total			118.7		%		80-120	22-SEP-20
Sodium (Na)-Total			104.9		%		80-120	22-SEP-20
Strontium (Sr)-Total			114.7		%		80-120	22-SEP-20
Thallium (TI)-Total			113.8		%		80-120	22-SEP-20
Tin (Sn)-Total			108.9		%		80-120	22-SEP-20
Titanium (Ti)-Total			103.3		%		80-120	22-SEP-20

		Workorder	: L250402	22	Report Date: 19-JAN-21		Page 12 of 17	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-VA	Water							
Batch R5232289	9							
WG3409293-2 LCS					24			
Uranium (U)-Totai			112.2		%		80-120	22-SEP-20
Vanadium (V)-Total			106.2		%		80-120	22-SEP-20
Zinc (Zn)-Total			109.5		%		80-120	22-SEP-20
WG3409293-1 MB Aluminum (Al)-Total			<0.0030		ma/l		0.003	22-SEP-20
Antimony (Sb)-Total			<0.00010)	mg/l		0.0001	22-SEP-20
Arsenic (As)-Total			<0.00010)	mg/l		0.0001	22-SEP-20
Barium (Ba)-Total			<0.00010)	ma/L		0.0001	22-SEP-20
Bismuth (Bi)-Total			<0.00005	50	mg/L		0.00005	22-SEP-20
Boron (B)-Total			<0.010		mg/L		0.01	22-SEP-20
Cadmium (Cd)-Total			<0.00000	D5C	mg/L		0.000005	22-SEP-20
Calcium (Ca)-Total			<0.050		mg/L		0.05	22-SEP-20
Chromium (Cr)-Total			<0.00010)	mg/L		0.0001	22-SEP-20
Cobalt (Co)-Total			<0.00010)	mg/L		0.0001	22-SEP-20
Copper (Cu)-Total			<0.00050)	mg/L		0.0005	22-SEP-20
Iron (Fe)-Total			<0.010		mg/L		0.01	22-SEP-20
Lead (Pb)-Total			<0.0005	50	mg/L		0.00005	22-SEP-20
Lithium (Li)-Total			<0.0010		mg/L		0.001	22-SEP-20
Magnesium (Mg)-Total	I		<0.0050		mg/L		0.005	22-SEP-20
Manganese (Mn)-Tota	I		<0.00010)	mg/L		0.0001	22-SEP-20
Molybdenum (Mo)-Tota	al		<0.0005	50	mg/L		0.00005	22-SEP-20
Nickel (Ni)-Total			<0.00050)	mg/L		0.0005	22-SEP-20
Potassium (K)-Total			<0.050		mg/L		0.05	22-SEP-20
Selenium (Se)-Total			<0.00005	50	mg/L		0.00005	22-SEP-20
Silicon (Si)-Total			<0.10		mg/L		0.1	22-SEP-20
Silver (Ag)-Total			<0.00001	10	mg/L		0.00001	22-SEP-20
Sodium (Na)-Total			<0.050		mg/L		0.05	22-SEP-20
Strontium (Sr)-Total			<0.00020)	mg/L		0.0002	22-SEP-20
Thallium (TI)-Total			<0.00001	10	mg/L		0.00001	22-SEP-20
Tin (Sn)-Total			<0.00010)	mg/L		0.0001	22-SEP-20
Titanium (Ti)-Total			<0.00030)	mg/L		0.0003	22-SEP-20
Uranium (U)-Total			<0.00001	10	mg/L		0.00001	22-SEP-20
Zinc (Zn)-Total			<0.0030		mg/L		0.003	22-SEP-20

		Workorder:	L2504022	2	Report Date: 19-	JAN-21	Pag	je 13 of 17
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-VA Batch R5233287 WG3409293-1 MB Vanadium (V)-Total	Water		<0.00050		mg/L		0.0005	23-SEP-20
NH3-L-F-CL	Water							
Batch R5229599 WG3407646-22 LCS Ammonia as N			106.0		%		85-115	18-SEP-20
WG3407646-21 MB Ammonia as N			<0.0050		mg/L		0.005	18-SEP-20
NO2-L-IC-N-CL Batch R5226660 WG3406632-10 LCS	Water		404.0		87			
Nitrite (as N) WG3406632-9 MB Nitrite (as N)			<0.0010		% mg/L		90-110 0.001	16-SEP-20 16-SEP-20
NO3-L-IC-N-CL	Water							
Batch R5226660 WG3406632-10 LCS Nitrate (as N) WG3406632-9 WG3406632-9 MB			99.0		%		90-110	16-SEP-20
Nitrate (as N)			<0.0050		mg/L		0.005	16-SEP-20
ORP-CL Batch R5228156 WG3407057-2 CRM ORP	Water	CL-ORP	222		mV		210-230	17-SEP-20
P-T-L-COL-CL Batch R5230972 WG3408145-19 DUP	Water	1 2504022-4						
Phosphorus (P)-Total		<0.0020	<0.0020	RPD-N	A mg/L	N/A	20	19-SEP-20
WG3408145-18 LCS Phosphorus (P)-Total			98.0		%		80-120	19-SEP-20
WG3408145-17 MB Phosphorus (P)-Total			<0.0020		mg/L		0.002	19-SEP-20
WG3408145-20 MS Phosphorus (P)-Total		L2504022-4	77.3		%		70-130	19-SEP-20

PH-CL

Water

		Workorder:	L250402	2	Report Date: 19	-JAN-21	Pa	ge 14 of 17
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PH-CL Batch R5229761 WG3407727-11 LCS рН	Water		6.98		рН		6.9-7.1	18-SEP-20
PO4-DO-L-COL-CL	Water							
Batch R5226819 WG3405836-6 LCS Orthophosphate-Dissolv	ved (as P)		107.0		%		80-120	16-SEP-20
WG3405836-5 MB Orthophosphate-Dissolv	ved (as P)		<0.0010		mg/L		0.001	16-SEP-20
WG3405836-18 MS Orthophosphate-Dissolv	ved (as P)	L2504022-3	106.1		%		70-130	16-SEP-20
SO4-IC-N-CL Batch R5226660 WG3406632-10 LCS Sulfate (SO4) WG3406632-9 WG3406632-9 MB Sulfate (SO4) Sulfate (SO4)	Water		100.4		% ma/L		90-110 0.3	16-SEP-20
SOLIDS-TDS-CL Batch R5232371	Water						0.0	
WG3408576-2 LCS Total Dissolved Solids			101.3		%		85-115	21-SEP-20
WG3408576-1 MB Total Dissolved Solids			<10		mg/L		10	21-SEP-20
TKN-L-F-CL Batch R5228968 WG3407350-2 LCS Total Kjeldahl Nitrogen	Water		95.1		%		75-125	18-SEP-20
WG3407350-4 LCS Total Kjeldahl Nitrogen			117.8		%		75-125	19-SEP-20
WG3407350-6 LCS Total Kjeldahl Nitrogen			100.4		%		75-125	19-SEP-20
WG3407350-1 MB Total Kjeldahl Nitrogen			<0.050		mg/L		0.05	18-SEP-20
WG3407350-3 MB Total Kjeldahl Nitrogen			<0.050		mg/L		0.05	19-SEP-20
TSS-L-CL	Water							

Quality Control Report Workorder: L2504022 Report Date: 19-JAN-21 Pag

		Workorder: L2504022			Report Date: 19	9-JAN-21	Page 15 of 17	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
TSS-L-CL	Water							
Batch R5231562 WG3408575-2 LCS Total Suspended Solids			90.1		%		85-115	21-SEP-20
WG3408575-1 MB Total Suspended Solids			<1.0		mg/L		1	21-SEP-20
TURBIDITY-CL	Water							
Batch R5228150 WG3406697-3 LCS Turbidity			98.5		%		85-115	17-SEP-20
WG3406697-2 MB Turbidity			<0.10		NTU		0.1	17-SEP-20

Workorder: L2504022

Report Date: 19-JAN-21

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
MES	Data Quality Objective was marginally exceeded (by < 10% absolute) for < 10% of analytes in a Multi-Element Scan / Multi-Parameter Scan (considered acceptable as per OMOE & CCME).
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Workorder: L2504022

Report Date: 19-JAN-21

Page 17 of 17

Hold Time Exceedances:

	Sample						
ALS Product Description	ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier
Physical Tests							
Oxidation redution potential	l by elect.						
	1	15-SEP-20 14:30	17-SEP-20 12:15	0.25	46	hours	EHTR-FM
	2	15-SEP-20 14:30	17-SEP-20 12:15	0.25	46	hours	EHTR-FM
	3	15-SEP-20 14:30	17-SEP-20 12:15	0.25	46	hours	EHTR-FM
	4	15-SEP-20 14:30	17-SEP-20 12:15	0.25	46	hours	EHTR-FM
pН							
	1	15-SEP-20 14:30	18-SEP-20 14:00	0.25	72	hours	EHTR-FM
	2	15-SEP-20 14:30	18-SEP-20 14:00	0.25	72	hours	EHTR-FM
	3	15-SEP-20 14:30	18-SEP-20 14:00	0.25	72	hours	EHTR-FM
	4	15-SEP-20 14:30	18-SEP-20 14:00	0.25	72	hours	EHTR-FM

Legend & Qualifier Definitions:

EHTR-FM:	Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended.
EHTR:	Exceeded ALS recommended hold time prior to sample receipt.
EHTL:	Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.
EHT:	Exceeded ALS recommended hold time prior to analysis.
Rec. HT:	ALS recommended hold time (see units).

Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L2504022 were received on 16-SEP-20 08:50.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

भगः पदाः तमात्रिः ¹⁹⁸	COC ID:	GHO	LAEMI	Sept	2020		TURN	AROUN	D TIME:										
"" Little Little Little	1	RUBOT/CENENDING	1 19 4	11	2 "14 " 14	in It	M	6 1	JUABO	RATORY	1. 24	. 141	1,,,17	117.16	414	14. 19	i anti	11	11
Facility Name	REP						LL	ab Name	ALS Calgar	/							Excel	PDF E	DD
Project Manager	Cait Good						Lai	Contact	Lyudmyla Sl	ivets					calt good@t	eck.com	x	<u>x x</u>	<u> </u>
Email	cait.good@teck.com				·			Email	lyudmyla.sh	vets@alsglo	bal.com				teckcosi@e	uisantine.com			<u>.</u>
Address	421 Pine Avenue							Address	2559 29 Stre	et NE					Hog. Orthon	ow.c9	x	x X	
							· ·								cartie, meyer	@leck.com	x	x x	
City		Sparwood			Province BC			City	Calgary		Province	AB			jtestor Omin	ndw.ca	x	x x	1
Postal Code		V0B 2G0			Country Cana	ada	Po	stal Code	T1Y 7B5		Country	Canada							
Phone Number	250-425-8202						Phone	Number	1 403 407 17	'94					PO 1	umber: 68	39999		
1. 1. n. n. 1	e.u., e., e.,	SAMPLE DETAIL	S TIT		1. (4. (1. j.	1.01	M . 1		21 HIS	II ANA	VSIS REQ	UESTED	, M.,	11, 1	10 1	Fillered · F	Piett, I. Lak.	FL: Field & Lab	, N: None
							1					N		× 1			5 e . /		1
J	I						i			· · · ·				L.Y.,					<u> </u>
		N N N N N N N N N N N													1	<i>i</i>			
		SALENI, FERMENI					i.		ă.	112804	H2504		HCL	IINO3	HN03	1.0	1.1	1.11	СЦ.,
				<u></u>			i .		E .				10.1	18					
				√sc					4 5	2.528 X. 1998				×	<	2 2 20 20 20 20 20 20 20 20 20 20 20 20			~
	2504022-001	·C		Ľ		· ·			Ī		2		· .	1	. 3				- A AR
				ial					i 5	ي ک	l à	×.		È	E				
·	· · · ·			ater					& S	ă	Ě		VA	ME	ME				1
				Ϊ						ġ	ge	X.	4	3	1				
				snc					* 0	icks	cks	12	N N	l õ	ò				
			r. 11	ard			0.01		Y Y	Å.	L L	12	ă	KC	X				
Samala ID	Com	ula Leastian	Field	faz	Data	(24br)	G=Grab	# Of	A EC	ST	T	\$ U *	<u>ن</u>	EC .	EC				
Sample ID	San	PG #170	we	<u></u>	0/15/2020	(24111)	C-Comp	7		1		1	1.						
			••3	140	9/13/2020	14.30			<u>, 1</u>				• •				<u>├</u> ───┦		· · ·
ED WE LATME CHO 2010 M ND		RG_RIVER	ws	No	9/15/2020	14:30	G	7	1	1	1	1	1	1	1				
ANK2 WS LARMP_GHU_2020-09_NP		PC EDI ANK	ws	No	9/15/2020	14.20	G		1	1	1	1	1		1				
AIR1_WS_CAEMF_GRO_2020-09_NP			110	NO S	3/13/2020	14.30			6			,			1		┥───┤		
P2_WS_LAEMP_GHO_2020-09_NP		RG_TRIP	ws	No	9/15/2020	14:30	G	/	1		1]		1		-	[]		
				1					i		<u> </u>						┟───┘		
																·			
									\$:			1					1 1		
		· · · · · · · · ·										1	· .						
							+				·						┢───┤		
												<u> </u>					<u> </u>		
1				16 M										11					
									•					1					
			+				†	t —			<u>↓</u>			1	<u> </u>				
						*					-								
		·		1.0				1					ĺ						
									14							1.1			
					·							· · · ·				- Ni			
							<u> </u>		1	·		N. 1			1.	Bille 4			
			+			<u> </u>			10		1		•		13	7	└─── ┤		
				1/				1	ATE/TIM	78							la series de la constante de l		
ADDITIONAL	COMMENTSAPEC	AL INSTRUCTIONS		11.2	MEANNQUISHE	nifer Inco	HERE'S CON		Septomb	or 14 2020	Sector Contest	<u>erten</u>		UIANO	<u>a 1000</u> 1 6	CI	+++		3
					Jen	anet ings	1		Schremp			<u>. </u>	HA		· • • • • •	+ 11	-1-1-	$- \times$	4
							<u>/</u>				<u> </u>	<u>` </u>	VU	\sim		· V	$\underline{v_{k}}$	()	
				L							ļ					ļ			\sim
															°-1				
NB OF B	DITLES RETURNED	DESCRIPTION	ા હ	1 *1	· · · · · · · · · · · · · · · · · · ·	• • • • · · · · · · · · · · · · · · · ·	14, 14,	11		Т. ⁴⁴	i de l	12,102	11		. j	1 <u>,</u> 12	1.1		11
		Regular	(default) x		Samplar's Now	10	There		Jennife-	ngr		Mal	nile #	<u> </u>		519.50	0-3444		7.
	Prior	ity (2-3 business days) - 50% s	urcharge	+	Samplet s (van				acumet)	~6 °							· J · · · · · · · · · · · · · · · · · ·		a an anna
	Emerge	ncy (1 Business Day) - 100%	urcharge	-	Sampler's Signat	ture			1 . <i>1</i>	1		Date	Time			Septémber	r 1 C 2 02	o / /	~
	For Emergency <1	Day, ASAP or Weekend - Cor	tact ALS	-l			J. Land	0.0610	<u> </u>			L	,				200		<u>Thúi</u>
			,						•	• _		-				-	1		
				•						-						· ·			1

Teck Coal Ltd. ATTN: Cait Good 421 Pine Avenue Sparwood BC VOB 2G0 Date Received: 18-SEP-20 Report Date: 25-SEP-20 10:57 (MT) Version: FINAL

Client Phone: 250-425-8202

Certificate of Analysis

Lab Work Order #: L2505298

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: VPO00689999 REGIONAL EFFECTS PROGRAM GHO LAEMP Sept 2020

Lyudmyla Shvets, B.Sc. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 2559 29 Street NE, Calgary, AB T1Y 7B5 Canada | Phone: +1 403 291 9897 | Fax: +1 403 291 0298 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🔊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L2505298 CONTD.... PAGE 2 of 8 25-SEP-20 10:57 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2505298-1 WS 17-SEP-20 13:20 RG_ELUGH_WS_L AEMP_GHO_2020- 09_NP	L2505298-2 WS 17-SEP-20 13:20 RG_TRIP WS_LAEMP_GH 0_2020-09_NP		
Grouping	Analyte				
WATER					
Physical Tests	Conductivity (@ 25C) (uS/cm)	281	<2.0		
	Hardness (as CaCO3) (mg/L)	157			
	рН (рН)	8.25	5.64		
	ORP (mV)	302	457		
	Total Suspended Solids (mg/L)	<1.0	<1.0		
	Total Dissolved Solids (mg/L)	146	<10		
	Turbidity (NTU)	0.53	<0.10		
Anions and	Acidity (as CaCO3) (mg/L)	<1.0	1.5		
Nutrients	Alkalinity Ricarbonata (as CaCO3) (mg/l)				
	Alkalinity, Dicarbonate (as CaCO3) (mg/L)	140	<1.0		
	Alkalinity, Carbonate (as CaCO3) (mg/L)	<1.0	<1.0		
		<1.0	<1.0		
		140	<1.0		
	Ammonia as N (mg/L)	<0.0050	<0.0050		
	Bromide (Br) (mg/L)	<0.050	<0.050		
		0.33	<0.10		
	Fluoride (F) (mg/L)	0.146	<0.020		
	Ion Balance (%)	100	0.0		
	Nitrate (as N) (mg/L)	0.0225	<0.0050		
	Nitrite (as N) (mg/L)	<0.0010	<0.0010		
	Total Kjeldahl Nitrogen (mg/L)	<0.050	<0.050		
	Orthophosphate-Dissolved (as P) (mg/L)	<0.0010	<0.0010		
	Phosphorus (P)-Total (mg/L)	<0.0020	<0.0020		
	Sulfate (SO4) (mg/L)	16.6	<0.30		
	Anion Sum (meq/L)	3.15	<0.10		
	Cation Sum (meq/L)	3.17	<0.10		
	Cation - Anion Balance (%)	0.2	0.0		
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	<0.50			
		<0.50	<0.50		
Total Metals		0.0049	<0.0030		
	Antimony (Sb)- I otal (mg/L)	<0.00010	<0.00010		
	Arsenic (As)-Iotal (mg/L)	0.00010	<0.00010		
	Barium (Ba)-Total (mg/L)	0.0457	<0.00010		
	Beryllium (Be)-Total (ug/L)	<0.020	<0.020		
	Bismuth (Bi)-Total (mg/L)	<0.000050	<0.000050		
	Boron (B)-Total (mg/L)	<0.010	<0.010		
	Cadmium (Cd)-Total (ug/L)	0.0085	<0.0050		

L2505298 CONTD.... PAGE 3 of 8 25-SEP-20 10:57 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2505298-1 WS 17-SEP-20 13:20 RG_ELUGH_WS_L AEMP_GHO_2020- 09_NP	L2505298-2 WS 17-SEP-20 13:20 RG_TRIP _WS_LAEMP_GH 0_2020-09_NP		
Grouping	Analyte				
WATER					
Total Metals	Calcium (Ca)-Total (mg/L)	43.1	<0.050		
	Chromium (Cr)-Total (mg/L)	0.00024	<0.00010		
	Cobalt (Co)-Total (ug/L)	<0.10	<0.10		
	Copper (Cu)-Total (mg/L)	<0.00050	<0.00050		
	Iron (Fe)-Total (mg/L)	<0.010	<0.010		
	Lead (Pb)-Total (mg/L)	<0.000050	<0.000050		
	Lithium (Li)-Total (mg/L)	0.0022	<0.0010		
	Magnesium (Mg)-Total (mg/L)	9.68	<0.10		
	Manganese (Mn)-Total (mg/L)	0.00153	<0.00010		
	Mercury (Hg)-Total (ug/L)	<0.00050	<0.00050		
	Molybdenum (Mo)-Total (mg/L)	0.00104	<0.000050		
	Nickel (Ni)-Total (mg/L)	<0.00050	<0.00050		
	Potassium (K)-Total (mg/L)	0.363	<0.050		
	Selenium (Se)-Total (ug/L)	0.778	<0.050		
	Silicon (Si)-Total (mg/L)	1.77	<0.10		
	Silver (Ag)-Total (mg/L)	<0.000010	<0.000010		
	Sodium (Na)-Total (mg/L)	0.639	<0.050		
	Strontium (Sr)-Total (mg/L)	0.223	<0.00020		
	Thallium (TI)-Total (mg/L)	<0.000010	<0.000010		
	Tin (Sn)-Total (mg/L)	<0.00010	<0.00010		
	Titanium (Ti)-Total (mg/L)	<0.010	<0.010		
	Uranium (U)-Total (mg/L)	0.000689	<0.000010		
	Vanadium (V)-Total (mg/L)	<0.00050	<0.00050		
	Zinc (Zn)-Total (mg/L)	<0.0030	<0.0030		
Dissolved Metals	Dissolved Mercury Filtration Location	FIELD			
	Dissolved Metals Filtration Location	FIELD	LAB		
	Aluminum (AI)-Dissolved (mg/L)	<0.0030			
	Antimony (Sb)-Dissolved (mg/L)	<0.00010			
	Arsenic (As)-Dissolved (mg/L)	0.00011			
	Barium (Ba)-Dissolved (mg/L)	0.0486			
	Beryllium (Be)-Dissolved (ug/L)	<0.020			
	Bismuth (Bi)-Dissolved (mg/L)	<0.000050			
	Boron (B)-Dissolved (mg/L)	<0.010			
	Cadmium (Cd)-Dissolved (ug/L)	0.0051			
	Calcium (Ca)-Dissolved (mg/L)	46.3	<0.050		
	Chromium (Cr)-Dissolved (mg/L)	0.00022			
	Cobalt (Co)-Dissolved (ug/L)	<0.10			

L2505298 CONTD.... PAGE 4 of 8 25-SEP-20 10:57 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2505298-1 WS 17-SEP-20 13:20 RG_ELUGH_WS_L AEMP_GHO_2020- 09_NP	L2505298-2 WS 17-SEP-20 13:20 RG_TRIP _WS_LAEMP_GH 0_2020-09_NP		
Grouping	Analyte				
WATER					
Dissolved Metals	Copper (Cu)-Dissolved (mg/L)	<0.00020			
	Iron (Fe)-Dissolved (mg/L)	<0.010			
	Lead (Pb)-Dissolved (mg/L)	<0.000050			
	Lithium (Li)-Dissolved (mg/L)	0.0019			
	Magnesium (Mg)-Dissolved (mg/L)	9.98	<0.0050		
	Manganese (Mn)-Dissolved (mg/L)	0.00115			
	Mercury (Hg)-Dissolved (mg/L)	<0.000050			
	Molybdenum (Mo)-Dissolved (mg/L)	0.00109			
	Nickel (Ni)-Dissolved (mg/L)	<0.00050			
	Potassium (K)-Dissolved (mg/L)	0.380	<0.050		
	Selenium (Se)-Dissolved (ug/L)	0.862			
	Silicon (Si)-Dissolved (mg/L)	1.74			
	Silver (Ag)-Dissolved (mg/L)	<0.000010			
	Sodium (Na)-Dissolved (mg/L)	0.665	<0.050		
	Strontium (Sr)-Dissolved (mg/L)	0.228			
	Thallium (TI)-Dissolved (mg/L)	<0.000010			
	Tin (Sn)-Dissolved (mg/L)	<0.00010			
	Titanium (Ti)-Dissolved (mg/L)	<0.010			
	Uranium (U)-Dissolved (mg/L)	0.000649			
	Vanadium (V)-Dissolved (mg/L)	<0.00050			
	Zinc (Zn)-Dissolved (mg/L)	<0.0010			

QC Samples with Qualifiers & Comments:

QC Type Description	Parameter	Qualifier	Applies to Sample Number(s)
Matrix Spike	Barium (Ba)-Dissolved	MS-B	L2505298-1
Matrix Spike	Boron (B)-Dissolved	MS-B	L2505298-1
Matrix Spike	Calcium (Ca)-Dissolved	MS-B	L2505298-1
Matrix Spike	Magnesium (Mg)-Dissolved	MS-B	L2505298-1
Matrix Spike	Manganese (Mn)-Dissolved	MS-B	L2505298-1
Matrix Spike	Sodium (Na)-Dissolved	MS-B	L2505298-1
Matrix Spike	Strontium (Sr)-Dissolved	MS-B	L2505298-1
Matrix Spike	Barium (Ba)-Total	MS-B	L2505298-1, -2
Matrix Spike	Calcium (Ca)-Total	MS-B	L2505298-1, -2
Matrix Spike	Cobalt (Co)-Total	MS-B	L2505298-1, -2
Matrix Spike	Lithium (Li)-Total	MS-B	L2505298-1, -2
Matrix Spike	Magnesium (Mg)-Total	MS-B	L2505298-1, -2
Matrix Spike	Manganese (Mn)-Total	MS-B	L2505298-1, -2
Matrix Spike	Nickel (Ni)-Total	MS-B	L2505298-1, -2
Matrix Spike	Potassium (K)-Total	MS-B	L2505298-1, -2
Matrix Spike	Sodium (Na)-Total	MS-B	L2505298-1, -2
Matrix Spike	Strontium (Sr)-Total	MS-B	L2505298-1, -2
Matrix Spike	Uranium (U)-Total	MS-B	L2505298-1, -2
Matrix Spike	Nitrate (as N)	MS-B	L2505298-1, -2
Matrix Spike	Sulfate (SO4)	MS-B	L2505298-1, -2
Qualifiers for Individual Parameters List	ted:		
Qualifier Description			

DLHC	Detection Limit Raised: Dilution required due to high concentration of test analyte(s).
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.

Test Method References:

	•		
ALS Test Code	Matrix	Test Description	Method Reference**
ACIDITY-PCT-CL	Water	Acidity by Automatic Titration	APHA 2310 Acidity
This analysis is carried out endpoint.	using proced	ures adapted from APHA Method 2310 "Acidity". Acidity	y is determined by potentiometric titration to a specified
ALK-MAN-CL	Water	Alkalinity (Species) by Manual Titration	APHA 2320 ALKALINITY
This analysis is carried out pH 4.5 endpoint. Bicarbona	using proced ate, carbonate	ures adapted from APHA Method 2320 "Alkalinity". Tota and hydroxide alkalinity are calculated from phenolpht	al alkalinity is determined by potentiometric titration to a halein alkalinity and total alkalinity values.
BE-D-L-CCMS-VA	Water	Diss. Be (low) in Water by CRC ICPMS	APHA 3030B/6020A (mod)
Water samples are filtered	(0.45 um), pr	eserved with nitric acid, and analyzed by CRC ICPMS.	
BE-T-L-CCMS-VA	Water	Total Be (Low) in Water by CRC ICPMS	EPA 200.2/6020A (mod)
Water samples are digeste	d with nitric a	nd hydrochloric acids, and analyzed by CRC ICPMS.	
BR-L-IC-N-CL	Water	Bromide in Water by IC (Low Level)	EPA 300.1 (mod)
Inorganic anions are analyz	zed by Ion Ch	romatography with conductivity and/or UV detection.	
C-DIS-ORG-LOW-CL	Water	Dissolved Organic Carbon	APHA 5310 B-Instrumental
This method is applicable t pretreatment: Unfiltered sa carrier gas containing the of halogen scrubber into a sa and dissolved inorganic can dioxide.	o the analysis mple = TC, 0. combustion pr mple cell set i rbon, the sam	of ground water, wastewater, and surface water sampl 45um filtered = TDC. Samples are injected into a comb oduct from the combustion tube flows through an inorga n a non-dispersive infrared gas analyzer (NDIR) where ple is injected into an IC reactor vessel where only the	es. The form detected depends upon sample oustion tube containing an oxidation catalyst. The anic carbon reactor vessel and is then sent through a carbon dioxide is detected. For total inorganic carbon IC component is decomposed to become carbon

The peak area generated by the NDIR indicates the TC/TDC or TIC/DIC as applicable. The total organic carbon content of the sample is calculated by subtracting the TIC from the TC.

TOC = TC-TIC, DOC = TDC-DIC, Particulate = Total - Dissolved.

C-TOT-ORG-LOW-CL	Water	Total Organic Carbon	APHA 5310 TOTAL ORGANIC CARBON (TOC)
This method is applicable to pretreatment: Unfiltered satisfies a carrier gas containing the containing the containing the contained service and dissolved inorganic cardioxide.	o the analysis mple = TC, 0. combustion pro- mple cell set i rbon, the sam	s of ground water, wastewater, and surface water samp 45um filtered = TDC. Samples are injected into a comb oduct from the combustion tube flows through an inorga in a non-dispersive infrared gas analyzer (NDIR) where ple is injected into an IC reactor vessel where only the	les. The form detected depends upon sample bustion tube containing an oxidation catalyst. The anic carbon reactor vessel and is then sent through a carbon dioxide is detected. For total inorganic carbon IC component is decomposed to become carbon
The peak area generated b subtracting the TIC from the TOC = TC-TIC, DOC = TD	ey the NDIR in e TC. C-DIC, Particu	ndicates the TC/TDC or TIC/DIC as applicable. The tota	I organic carbon content of the sample is calculated by
CL-L-IC-N-CL	Water	Chloride in Water by IC	EPA 300.1 (mod)
Inorganic anions are analyz	zed by Ion Ch	romatography with conductivity and/or UV detection.	
EC-L-PCT-CL	Water	Electrical Conductivity (EC)	APHA 2510B
Conductivity, also known as electrodes into a water sam	s Electrical Conple. Conduct	onductivity (EC) or Specific Conductance, is measured tivity measurements are temperature-compensated to 2	by immersion of a conductivity cell with platinum 25C.
F-IC-N-CL	Water	Fluoride in Water by IC	EPA 300.1 (mod)
Inorganic anions are analyz	zed by Ion Ch	romatography with conductivity and/or UV detection.	
HARDNESS-CALC-VA	Water	Hardness	APHA 2340B
Hardness (also known as T Dissolved Calcium and Mag	otal Hardness gnesium conc	s) is calculated from the sum of Calcium and Magnesiu centrations are preferentially used for the hardness calc	m concentrations, expressed in CaCO3 equivalents. sulation.
HG-D-CVAA-VA	Water	Diss. Mercury in Water by CVAAS or CVAFS	APHA 3030B/EPA 1631E (mod)
Water samples are filtered with stannous chloride, and	(0.45 um), pro analyzed by	eserved with hydrochloric acid, then undergo a cold-oxi CVAAS or CVAFS.	dation using bromine monochloride prior to reduction
HG-T-U-CVAF-VA	Water	Total Mercury in Water by CVAFS (Ultra)	EPA 1631 REV. E
This analysis is carried out procedure involves a cold-c reduction of the sample wit	using proced oxidation of th h stannous ch	ures adapted from Method 1631 Rev. E. by the United e acidified sample using bromine monochloride prior to hloride. Instrumental analysis is by cold vapour atomic	States Environmental Protection Agency (EPA). The a purge and trap concentration step and final fluorescence spectrophotometry.
IONBALANCE-BC-CL	Water	Ion Balance Calculation	APHA 1030E
Cation Sum, Anion Sum, au Correctness of Analysis). I should be near-zero.	nd Ion Balanc Because all ac	e (as % difference) are calculated based on guidance f queous solutions are electrically neutral, the calculated	irom APHA Standard Methods (1030E Checking ion balance (% difference of cations minus anions)
Cation and Anion Sums are included where data is pres	e the total me sent. Ion Bala	q/L concentration of major cations and anions. Dissolv ance is calculated as:	ed species are used where available. Minor ions are
Ion Balance (%) = [Cation S	Sum-Anion Su	um] / [Cation Sum+Anion Sum]	
MET-D-CCMS-CL	Water	Dissolved Metals in Water by CRC ICPMS	APHA 3030B/6020A (mod)
Water samples are filtered	(0.45 um), pro	eserved with nitric acid, and analyzed by CRC ICPMS.	
Method Limitation (re: Sulfu	ur): Sulfide an	d volatile sulfur species may not be recovered by this n	nethod.
MET-D-CCMS-VA	Water	Dissolved Metals in Water by CRC ICPMS	APHA 3030B/6020A (mod)
Water samples are filtered	(0.45 um), pro	eserved with nitric acid, and analyzed by CRC ICPMS.	
Method Limitation (re: Sulfu	ur): Sulfide an	d volatile sulfur species may not be recovered by this n	nethod.
MET-T-CCMS-VA	Water	Total Metals in Water by CRC ICPMS	EPA 200.2/6020A (mod)
Water samples are digeste	d with nitric a	nd hydrochloric acids, and analyzed by CRC ICPMS.	
Method Limitation (re: Sulfu	ur): Sulfide an	d volatile sulfur species may not be recovered by this n	nethod.
NH3-L-F-CL	Water	Ammonia, Total (as N)	J. ENVIRON. MONIT., 2005, 7, 37-42, RSC
This analysis is carried out, of Chemistry, "Flow-injectic al.	, on sulfuric a on analysis wit	cid preserved samples, using procedures modified from th fluorescence detection for the determination of trace	n J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society levels of ammonium in seawater", Roslyn J. Waston et
NO2-L-IC-N-CL	Water	Nitrite in Water by IC (Low Level)	EPA 300.1 (mod)
Inorganic anions are analyz	zed by Ion Ch	romatography with conductivity and/or UV detection.	
NO3-L-IC-N-CL	Water	Nitrate in Water by IC (Low Level)	EPA 300.1 (mod)

L2505298 CONTD.... PAGE 7 of 8 25-SEP-20 10:57 (MT) Version: FINAL

Inorganic anions are analyz	ed by Ion Cl	nromatography with conductivity and/or UV detection.	
ORP-CL	Water	Oxidation redution potential by elect.	ASTM D1498
This analysis is carried out published by the American metal-reference electrode e	in accordanc Society for T employed, in	ce with the procedure described in the "ASTM" method Testing and Materials (ASTM). Results are reported as mV.	D1498 "Oxidation-Reduction Potential of Water" observed oxidation-reduction potential of the platinum
It is recommended that this	analysis be	conducted in the field.	
P-T-L-COL-CL	Water	Phosphorus (P)-Total	APHA 4500-P PHOSPHORUS
This analysis is carried out after persulphate digestion	using proced of the sampl	dures adapted from APHA Method 4500-P "Phosphorus e.	". Total Phosphorus is determined colourimetrically
PH-CL	Water	рН	APHA 4500 H-Electrode
pH is determined in the lab hold time from time of sam	oratory using pling (field ar	a pH electrode. All samples analyzed by this method f nalysis is recommended for pH where highly accurate re	or pH will have exceeded the 15 minute recommended esults are needed)
PO4-DO-L-COL-CL	Water	Orthophosphate-Dissolved (as P)	APHA 4500-P PHOSPHORUS
This analysis is carried out colourimetrically on a samp	using proced le that has b	dures adapted from APHA Method 4500-P "Phosphorus een lab or field filtered through a 0.45 micron membrar	". Dissolved Orthophosphate is determined the filter.
SO4-IC-N-CL	Water	Sulfate in Water by IC	EPA 300.1 (mod)
Inorganic anions are analyz	ed by Ion Cl	nromatography with conductivity and/or UV detection.	
SOLIDS-TDS-CL	Water	Total Dissolved Solids	APHA 2540 C
A well-mixed sample is filte The increase in vial weight	red through a represents the	a glass fibre filter paper. The filtrate is then evaporated he total dissolved solids (TDS).	to dryness in a pre-weighed vial and dried at 180 – 2 °C.
TECKCOAL-IONBAL-CL	Water	Ion Balance Calculation	APHA 1030E
Cation Sum, Anion Sum, ar Correctness of Analysis). E should be near-zero.	nd Ion Balan Because all a	ce (as % difference) are calculated based on guidance aqueous solutions are electrically neutral, the calculated	from APHA Standard Methods (1030E Checking lion balance (% difference of cations minus anions)
Cation and Anion Sums are included where data is pres	e the total me sent. Ion Bal	eq/L concentration of major cations and anions. Dissolvance is calculated as:	ved species are used where available. Minor ions are
Ion Balance (%) = [Cation S	Sum-Anion S	um] / [Cation Sum+Anion Sum]	
TKN-L-F-CL	Water	Total Kjeldahl Nitrogen	APHA 4500-NORG (TKN)
This analysis is carried out Nitrogen is determined usin	using proceo ng block dige	dures adapted from APHA Method 4500-Norg D. "Block stion followed by Flow-injection analysis with fluorescer	Digestion and Flow Injection Analysis". Total Kjeldahl nce detection.
TSS-L-CL	Water	Total Suspended Solids	APHA 2540 D-Gravimetric
This analysis is carried out (TSS) are determined by film	using proced tering a sam	dures adapted from APHA Method 2540 "Solids". Solids ple through a glass fibre filter, and by drying the filter at	s are determined gravimetrically. Total suspended solids 104 deg. C.
TURBIDITY-CL	Water	Turbidity	APHA 2130 B-Nephelometer
This analysis is carried out	using proced	dures adapted from APHA Method 2130 "Turbidity". Tur	bidity is determined by the nephelometric method.
** ALS test methods may inco	rporate mod	ifications from specified reference methods to improve	performance.
The last two letters of the ab	ove test cod	e(s) indicate the laboratory that performed analytical an	alysis for that test. Refer to the list below:
Laboratory Definition Code	e Labora	tory Location	
CL	ALS EN	VIRONMENTAL - CALGARY, ALBERTA, CANADA	
VA	ALS EN	VIRONMENTAL - VANCOUVER, BRITISH COLUMBI	A, CANADA
Chain of Custody Numbers:			
GHO LAEMP Sept 2020			

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

		Workorder	L250529	8	Report Date: 2	5-SEP-20	Pa	ge 1 of 11
Client: Te 42 Sp Contact: Ca	eck Coal Ltd. 21 Pine Avenue parwood BC V0B 2G0 ait Good							
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
	Water							
Batch R52	31675							
WG3409068-5 Acidity (as CaCO	LCS (3)		97.4		%		85-115	19-SEP-20
WG3409068-4 Acidity (as CaCO	MB (3)		1.6		mg/L		2	19-SEP-20
ALK-MAN-CL	Water							
Batch R52	31980							
WG3409502-11 Alkalinity, Total (a	LCS as CaCO3)		101.7		%		85-115	21-SEP-20
WG3409502-10 Alkalinity, Total (a	MB as CaCO3)		<1.0		mg/L		1	21-SEP-20
BE-D-L-CCMS-VA	Water							
Batch R52 WG3409290-2 Beryllium (Be)-Di	32851 LCS ssolved		97.1		%		80-120	23-SEP-20
WG3409290-1 Beryllium (Be)-Di	MB ssolved	NP	<0.00002	0	mg/L		0.00002	23-SEP-20
BE-T-L-CCMS-VA	Water							
Batch R52 WG3408361-2 Beryllium (Be)-To	31880 LCS otal		95.9		%		80-120	21-SEP-20
WG3408361-1 Beryllium (Be)-To	MB otal		<0.00002	0	mg/L		0.00002	21-SEP-20
BR-L-IC-N-CL	Water							
Batch R52 WG3408040-6	30801 LCS							
Bromide (Br)			104.0		%		85-115	18-SEP-20
WG3408040-5 Bromide (Br)	MB		<0.050		mg/L		0.05	18-SEP-20
C-DIS-ORG-LOW-CI	Water							
Batch R52 WG3409784-6 Dissolved Organi	32266 LCS ic Carbon		109.2		%		80-120	21-SEP-20
WG3409784-5 Dissolved Organi	MB ic Carbon		<0.50		mg/L		0.5	21-SEP-20
C-TOT-ORG-LOW-C	L Water							

		Workorder: L2505298 F		Report Date: 25-SEP-20		Page 2 of 11		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
C-TOT-ORG-LOW-CL	Water							
Batch R5232266								
WG3409784-6 LCS Total Organic Carbon			102.4		%		80-120	21-SEP-20
WG3409784-5 MB Total Organic Carbon			<0.50		mg/L		0.5	21-SEP-20
CL-L-IC-N-CL	Water							
Batch R5230801								
WG3408040-6 LCS Chloride (Cl)			99.0		%		85-115	18-SEP-20
WG3408040-5 MB								
Chloride (Cl)			<0.10		mg/L		0.1	18-SEP-20
EC-L-PCT-CL	Water							
Batch R5231980								
WG3409502-11 LCS Conductivity (@ 25C)			100.1		%		90-110	21-SEP-20
WG3409502-10 MB Conductivity (@ 25C)			<2.0		uS/cm		2	21-SEP-20
F-IC-N-CL	Water							
Batch R5230801								
WG3408040-6 LCS Fluoride (F)			97.1		%		90-110	18-SEP-20
WG3408040-5 MB								
Fluoride (F)			<0.020		mg/L		0.02	18-SEP-20
HG-D-CVAA-VA	Water							
Batch R5233684								
WG3411190-7 DUP Mercury (Hg)-Dissolved		L2505298-1 <0.0000050	<0.000005	C RPD-N	4 mg/L	N/A	20	24-SEP-20
WG3411190-6 LCS Mercury (Hg)-Dissolved			95.5		%		80-120	24-SEP-20
WG3411190-5 MB Mercury (Hg)-Dissolved		NP	<0.000005	50	mg/L		0.000005	24-SEP-20
HG-T-U-CVAF-VA	Water							
Batch R5233172								
WG3410889-7 DUP Mercury (Hg)-Total		L2505298-1 <0.00050	<0.00050	RPD-N/	A ug/L	N/A	20	23-SEP-20
WG3410889-2 LCS Mercury (Hg)-Total			94.4		%		80-120	23-SEP-20
WG3410889-1 MB								

		Workorder: L2505298			Report Date: 25-SEP-20		Page 3 of 11	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
HG-T-U-CVAF-VA	Water							
Batch R5233	3172							
WG3410889-1 M	В							
Mercury (Hg)-Total			<0.00050	1	ug/L		0.0005	23-SEP-20
MET-D-CCMS-CL	Water							
Batch R5232	2258							
WG3410198-2 L(CS	TMRM	00.0		0/			
	bived		99.6		%		80-120	22-SEP-20
Magnesium (Mg)-D	issolved		106.7		%		80-120	22-SEP-20
Potassium (K)-Diss	solved		104.2		%		80-120	22-SEP-20
Sodium (Na)-Disso	Ived		99.3		%		80-120	22-SEP-20
WG3410198-6 LC Calcium (Ca)-Disso	CS olved	TMRM	92.3		%		80-120	22-SEP-20
Magnesium (Mg)-D	lissolved		101.5		%		80-120	22-SEP-20
Potassium (K)-Diss	solved		102.1		%		80-120	22-SEP-20
Sodium (Na)-Disso	lved		96.6		%		80-120	22-SEP-20
WG3410198-1 M	В						00.20	
Calcium (Ca)-Disso	blved		<0.050		mg/L		0.05	22-SEP-20
Magnesium (Mg)-D	lissolved		<0.0050		mg/L		0.005	22-SEP-20
Potassium (K)-Diss	solved		<0.050		mg/L		0.05	22-SEP-20
Sodium (Na)-Disso	lved		<0.050		mg/L		0.05	22-SEP-20
WG3410198-5 M	В							
Calcium (Ca)-Disso	blved		<0.050		mg/L		0.05	22-SEP-20
Magnesium (Mg)-D	issolved		<0.0050		mg/L		0.005	22-SEP-20
Potassium (K)-Diss	solved		<0.050		mg/L		0.05	22-SEP-20
Sodium (Na)-Disso	lved		<0.050		mg/L		0.05	22-SEP-20
MET-D-CCMS-VA	Water							
Batch R5232	2851							
WG3409290-2 L(CS		00.0		0/		00.400	
Antimony (Sh) Diss			98.8		%		80-120	23-SEP-20
Anumony (Sb)-Diss			102.2		%		80-120	23-SEP-20
Arsenic (As)-Dissoi	ved		100.2		%		80-120	23-SEP-20
Barium (Ba)-Dissol	ved		112.5		%		80-120	23-SEP-20
Bismuth (Bi)-Dissol			96.5		%		80-120	23-SEP-20
Boron (B)-Dissolve	d 		93.5		%		80-120	23-SEP-20
Cadmium (Cd)-Diss	solved		95.6		%		80-120	23-SEP-20
Calcium (Ca)-Disso	olved		100.3		%		80-120	23-SEP-20

		Workorder: L2505298			Report Date: 25-SEP-20		Page 4 of 11	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-CCMS-VA	Water							
Batch R523	2851							
WG3409290-2 L	CS				0 (
	ssolved		99.3		%		80-120	23-SEP-20
Cobalt (Co)-Dissol	vea		96.6		%		80-120	23-SEP-20
Copper (Cu)-Disso	nvea		98.0		%		80-120	23-SEP-20
Iron (Fe)-Dissolved			98.2		%		80-120	23-SEP-20
Lead (Pb)-Dissoive	ea		97.1		%		80-120	23-SEP-20
Lithium (Li)-Dissol			96.7		%		80-120	23-SEP-20
Magnesium (Mg)-L			94.1		%		80-120	23-SEP-20
Manganese (Mn)-L	Dissolved		99.96		%		80-120	23-SEP-20
Molybdenum (Mo)	-Dissolved		102.3		%		80-120	23-SEP-20
Nickel (Ni)-Dissolv	ed		98.5		%		80-120	23-SEP-20
Potassium (K)-Dis	solved		103.6		%		80-120	23-SEP-20
Selenium (Se)-Dis	solved		104.8		%		80-120	23-SEP-20
Silicon (Si)-Dissolv	ved		103.0		%		60-140	23-SEP-20
Silver (Ag)-Dissolv	ed		104.6		%		80-120	23-SEP-20
Sodium (Na)-Disso	blved		98.8		%		80-120	23-SEP-20
Strontium (Sr)-Dise	solved		107.6		%		80-120	23-SEP-20
Thallium (TI)-Disso	blved		100.5		%		80-120	23-SEP-20
Tin (Sn)-Dissolved			98.7		%		80-120	23-SEP-20
Titanium (Ti)-Disso	blved		96.6		%		80-120	23-SEP-20
Uranium (U)-Disso	lved		99.0		%		80-120	23-SEP-20
Vanadium (V)-Diss	solved		101.7		%		80-120	23-SEP-20
Zinc (Zn)-Dissolve	d		104.9		%		80-120	23-SEP-20
WG3409290-1 N	1B	NP						
Aluminum (Al)-Dis	solved		<0.0010		mg/L		0.001	23-SEP-20
Antimony (Sb)-Dis	solved		<0.00010)	mg/L		0.0001	23-SEP-20
Arsenic (As)-Disso	lved		<0.00010)	mg/L		0.0001	23-SEP-20
Barium (Ba)-Disso	lved		<0.00010)	mg/L		0.0001	23-SEP-20
Bismuth (Bi)-Disso	lved		<0.0005	50	mg/L		0.00005	23-SEP-20
Boron (B)-Dissolve	ed		<0.010		mg/L		0.01	23-SEP-20
Cadmium (Cd)-Dis	solved		<0.00000	050	mg/L		0.000005	23-SEP-20
Calcium (Ca)-Diss	olved		<0.050		mg/L		0.05	23-SEP-20
Chromium (Cr)-Dis	ssolved		<0.00010)	mg/L		0.0001	23-SEP-20
Cobalt (Co)-Dissol	ved		<0.00010)	mg/L		0.0001	23-SEP-20
Copper (Cu)-Disso	lved		<0.00020)	mg/L		0.0002	23-SEP-20

V		Workorder	: L2505298	3	Report Date: 25-SEP-20		Page 5 of 11	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-D-CCMS-VA	Water							
Batch R52328	51							
WG3409290-1 MB		NP						
Iron (Fe)-Dissolved			<0.010	_	mg/L		0.01	23-SEP-20
Lead (Pb)-Dissolved	J		<0.000050)	mg/L		0.00005	23-SEP-20
Litnium (LI)-Dissoive			<0.0010		mg/L		0.001	23-SEP-20
Magnesium (Mg)-Dis	solved		<0.0050		mg/L		0.005	23-SEP-20
Manganese (Mn)-Dis	solved		<0.00010	_	mg/L		0.0001	23-SEP-20
Molybdenum (Mo)-D	ISSOIVED		<0.000050	J	mg/L		0.00005	23-SEP-20
NICKEI (NI)-DISSOIVED			<0.00050		mg/L		0.0005	23-SEP-20
Potassium (K)-Disso	lved		<0.050	_	mg/L		0.05	23-SEP-20
Selenium (Se)-Disso	lved		<0.000050)	mg/L		0.00005	23-SEP-20
Silicon (Si)-Dissolved	k		<0.050		mg/L		0.05	23-SEP-20
Silver (Ag)-Dissolved	1		<0.000010)	mg/L		0.00001	23-SEP-20
Sodium (Na)-Dissolv	ed		<0.050		mg/L		0.05	23-SEP-20
Strontium (Sr)-Disso	lved		<0.00020		mg/L		0.0002	23-SEP-20
Thallium (TI)-Dissolv	ed		<0.000010)	mg/L		0.00001	23-SEP-20
Tin (Sn)-Dissolved			<0.00010		mg/L		0.0001	23-SEP-20
Titanium (Ti)-Dissolv	ed		<0.00030		mg/L		0.0003	23-SEP-20
Uranium (U)-Dissolve	ed		<0.000010)	mg/L		0.00001	23-SEP-20
Vanadium (V)-Dissol	ved		<0.00050		mg/L		0.0005	23-SEP-20
Zinc (Zn)-Dissolved			<0.0010		mg/L		0.001	23-SEP-20
MET-T-CCMS-VA	Water							
Batch R52318	80							
WG3408361-2 LC	S		112 5		0/		00.400	
Antimony (Sh) Total			100.4		70 07		80-120	21-SEP-20
Antimony (Sb)-Total			109.4		70 97		80-120	21-SEP-20
Arsenic (As)-Total			116.2		70 07		80-120	21-SEP-20
Banun (Ba)-Total			110.3		%		80-120	21-SEP-20
Bismuth (Bi)-Total			07.7		%		80-120	21-SEP-20
Boron (B)-Total			97.7		%		80-120	21-SEP-20
			112.0		%		80-120	21-SEP-20
Calcium (Ca)-I otal			106.2		%		80-120	21-SEP-20
Chromium (Cr)-Total			116.5		%		80-120	21-SEP-20
Cobalt (Co)-Total			110.2		%		80-120	21-SEP-20
Copper (Cu)-Total			110.0		%		80-120	21-SEP-20
Iron (Fe)-Total			100.1		%		80-120	21-SEP-20

	Workorder		: L250529	98	Report Date: 25-SEP-20		Page 6 of 11	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-VA	Water							
Batch R52318	80							
WG3408361-2 LCS	3				0 (
Lead (Pb)-Total			114.7		%		80-120	21-SEP-20
Litnium (Li)- I otai	- I		114.3		%		80-120	21-SEP-20
Magnesium (Mg)-Tot	al		104.2		%		80-120	21-SEP-20
Manganese (Mn)-1 ot	al		111.1		%		80-120	21-SEP-20
Molybdenum (Mo)-10	DTAI		104.3		%		80-120	21-SEP-20
Nickel (NI)- I otal			108.0		%		80-120	21-SEP-20
Potassium (K)-Total			107.9		%		80-120	21-SEP-20
Selenium (Se)- I otal			105.6		%		80-120	21-SEP-20
Silicon (Si)-Total			110.6		%		80-120	21-SEP-20
Silver (Ag)- I otal			105.3		%		80-120	21-SEP-20
Sodium (Na)-Total			109.7		%		80-120	21-SEP-20
Strontium (Sr)-Total			117.8		%		80-120	21-SEP-20
Thallium (TI)-Total			108.6		%		80-120	21-SEP-20
Tin (Sn)-Total			101.8		%		80-120	21-SEP-20
l itanium (1i)-1 otal			113.4		%		80-120	21-SEP-20
Uranium (U)-Total			110.7		%		80-120	21-SEP-20
Vanadium (V)- I otal			113.9		%		80-120	21-SEP-20
Zinc (Zn)-Total			107.0		%		80-120	21-SEP-20
WG3408361-1 MB			~0.0030		ma/l		0.002	24 SED 20
Antimony (Sh)-Total			<0.0030	h	mg/L		0.003	21-SEP-20
Arcenic (As)-Total				,	mg/L		0.0001	21-SEP-20
Arsenic (As)-Total			<0.00010		mg/L		0.0001	21-SEP-20
Bismuth (Bi) Total				50	mg/L		0.0001	21-SEP-20
Boron (B)-Total			<0.0000		mg/L		0.00005	21-SEP-20
Cadmium (Cd)-Total				50	mg/L		0.01	21-SEP-20
Calaium (Ca) Total				50	mg/L		0.000005	21-SEP-20
Chromium (Cr) Total			<0.000	h	mg/L		0.00	21-SEP-20
					mg/L		0.0001	21-SEP-20
					mg/L		0.0001	21-SEP-20
Iron (Ec) Total				J	mg/L		0.0005	21-SEP-20
I ond (Ph) Tatal			<0.010	50	mg/L		0.01	21-SEP-20
				JU .	mg/L		0.00005	21-SEP-20
	-		<0.0010		mg/L		0.001	21-SEP-20
wagnesium (wg)-1 ot	al		<0.0050		mg/L		0.005	21-SEP-20

		Workorder: L2505298 R		Report Date: 25-SEP-20		Page 7 of 11		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-VA	Water							
Batch R5231880)							
WG3408361-1 MB								
Manganese (Mn)-1 otal			<0.00010	_	mg/L		0.0001	21-SEP-20
Molybdenum (Mo)-Tota	al		<0.00005	J	mg/L		0.00005	21-SEP-20
Nickel (Ni)- I otal			<0.00050		mg/L		0.0005	21-SEP-20
Potassium (K)-Total			<0.050	_	mg/L		0.05	21-SEP-20
Selenium (Se)-Total			<0.00005)	mg/L		0.00005	21-SEP-20
Silicon (Si)-Total			<0.10		mg/L		0.1	21-SEP-20
Silver (Ag)-Total			<0.00001)	mg/L		0.00001	21-SEP-20
Sodium (Na)-Total			<0.050		mg/L		0.05	21-SEP-20
Strontium (Sr)-Total			<0.00020		mg/L		0.0002	21-SEP-20
Thallium (TI)-Total			<0.00001)	mg/L		0.00001	21-SEP-20
Tin (Sn)-Total			<0.00010		mg/L		0.0001	21-SEP-20
Titanium (Ti)-Total			<0.00030		mg/L		0.0003	21-SEP-20
Uranium (U)-Total			<0.00001)	mg/L		0.00001	21-SEP-20
Vanadium (V)-Total			<0.00050		mg/L		0.0005	21-SEP-20
Zinc (Zn)-Total			<0.0030		mg/L		0.003	21-SEP-20
NH3-L-F-CL	Water							
Batch R5232236	i							
WG3409307-22 LCS			07.1		0/		05 445	
			97.1		70		85-115	21-SEP-20
Ammonia as N			<0.0050		mg/L		0.005	21-SEP-20
	Water				U U			
Batch P5230801	Water							
WG3408040-6 LCS								
Nitrite (as N)			100.1		%		90-110	18-SEP-20
WG3408040-5 MB								
Nitrite (as N)			<0.0010		mg/L		0.001	18-SEP-20
NO3-L-IC-N-CL	Water							
Batch R5230801								
WG3408040-6 LCS								
Nitrate (as N)			99.4		%		90-110	18-SEP-20
WG3408040-5 MB			-0.0050		~~ <i>"</i>		0.005	
miliale (as N)			<0.0050		mg/L		0.005	18-SEP-20
ORP-CL	Water							

		Workorder: L2505298		Report Date: 25-SEP-20		Page 8 of 11		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ORP-CL Batch R5231796 WG3409206-2 CRM ORP	Water	CL-ORP	225		mV		210-230	21-SEP-20
P-T-L-COL-CL	Water							
BatchR5234676WG3410736-14LCSPhosphorus (P)-Total			98.5		%		80-120	23-SEP-20
WG3410736-13 MB Phosphorus (P)-Total			<0.0020		mg/L		0.002	23-SEP-20
PH-CL	Water							
Batch R5231980 WG3409502-11 LCS рН			7.00		рН		6.9-7.1	21-SEP-20
PO4-DO-L-COL-CL	Water							
Batch R5230746 WG3407781-6 LCS Orthophosphate-Dissolv	ved (as P)		101.5		%		80-120	18-SEP-20
WG3407781-5 MB Orthophosphate-Dissolv	ved (as P)		<0.0010		mg/L		0.001	18-SEP-20
SO4-IC-N-CL	Water							
Batch R5230801 WG3408040-6 LCS Sulfate (SO4) WG3408040-5			99.4		%		90-110	18-SEP-20
Sulfate (SO4)			<0.30		mg/L		0.3	18-SEP-20
SOLIDS-TDS-CL	Water							
Batch R5233145 WG3409473-17 LCS Total Dissolved Solids			95.9		%		85-115	22-SEP-20
WG3409473-16 MB Total Dissolved Solids			<10		mg/L		10	22-SEP-20
TKN-L-F-CL	Water							
Batch R5231791 WG3409258-12 LCS Total Kjeldahl Nitrogen WG3409258-16 LCS			93.7		%		75-125	21-SEP-20

		Workorder: L2505298		Report Date: 25-SEP-20		Page 9 of 11		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
TKN-L-F-CL	Water							
Batch R5231791								
WG3409258-16 LCS Total Kjeldahl Nitrogen			95.0		%		75-125	21-SEP-20
WG3409258-2 LCS Total Kjeldahl Nitrogen			94.1		%		75-125	21-SEP-20
WG3409258-20 LCS Total Kjeldahl Nitrogen			97.7		%		75-125	21-SEP-20
WG3409258-4 LCS Total Kjeldahl Nitrogen			101.8		%		75-125	21-SEP-20
WG3409258-8 LCS Total Kjeldahl Nitrogen			97.6		%		75-125	21-SEP-20
WG3409258-1 MB Total Kjeldahl Nitrogen			<0.050		mg/L		0.05	21-SEP-20
WG3409258-11 MB Total Kjeldahl Nitrogen			<0.050		mg/L		0.05	21-SEP-20
WG3409258-15 MB Total Kjeldahl Nitrogen			<0.050		mg/L		0.05	21-SEP-20
WG3409258-19 MB Total Kjeldahl Nitrogen			<0.050		mg/L		0.05	21-SEP-20
WG3409258-3 MB Total Kjeldahl Nitrogen			<0.050		mg/L		0.05	21-SEP-20
WG3409258-7 MB Total Kjeldahl Nitrogen			<0.050		mg/L		0.05	21-SEP-20
TSS-L-CL	Water							
Batch R5233042								
WG3409472-6 LCS Total Suspended Solids			89.8		%		85-115	22-SEP-20
WG3409472-5 MB Total Suspended Solids			<1.0		mg/L		1	22-SEP-20
TURBIDITY-CL	Water							
Batch R5230765								
WG3407666-9 LCS Turbidity			98.5		%		85-115	18-SEP-20
WG3407666-8 MB Turbidity			<0.10		NTU		0.1	18-SEP-20

Workorder: L2505298

Report Date: 25-SEP-20

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Workorder: L2505298

Report Date: 25-SEP-20

Hold Time Exceedances:

	Sample						
ALS Product Description	ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier
Physical Tests							
Oxidation redution potential	by elect.						
	1	17-SEP-20 13:20	21-SEP-20 13:15	0.25	96	hours	EHTR-FM
	2	17-SEP-20 13:20	21-SEP-20 13:15	0.25	96	hours	EHTR-FM
рН							
	1	17-SEP-20 13:20	21-SEP-20 14:00	0.25	97	hours	EHTR-FM
	2	17-SEP-20 13:20	21-SEP-20 14:00	0.25	97	hours	EHTR-FM
Levend & Quelifier Definition							

Legend & Qualifier Definitions:

EHTR-FM:	Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended.
EHTR:	Exceeded ALS recommended hold time prior to sample receipt.
EHTL:	Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.
EHT:	Exceeded ALS recommended hold time prior to analysis.
Rec. HT:	ALS recommended hold time (see units).

Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L2505298 were received on 18-SEP-20 09:25.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

	COC ID: GHO LAEMP Sept 2020					TURNAROUND TIME:													
A STORY AND A DESCRIPTION	ALL DATE APRO	DECEMBER		ais Ital	1/11/01/11	1111.0	<u> 299 1</u>	11.6	W LA	BORATORY	11	1471 - 201	1	·*194**	.171	t/*/	4 1	(⁴).	F * 1
Facility Name R	REP		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		·			ab Name	L widmy	lgary					1 Sectors		Excel	PDF	EDD
Project Manager C	Cait Good					Lau	Email lyudmyla shvets						calt.good@t	eck.com	<u>x</u>	*	<u>x</u>		
Address 4	21 Pine Avenue		· · · · · ·				1	Address	2559 29	Street NE					teckcosi@et	pasonine com		<u> </u>	*
13001033		~													carlie mever	Øterk com	2	ļ.	
City		Sparwood			Province BC			City	Calgary		Province	AB			jterster Ømin	now.ca	x	x	.e.
Postal Code		V0B 2G0			Country Can	ada	Pos	tal Code	T1Y 7B	5	Country	Canada							
Phone Number 2	50-425-8202						Phone	Number	1 403 40)7 1794			1		PO 1	umber: 6	89999		
and an a start of	1	I LA SAMPLE DETAIL	S _e r'i	1.0.1		(1, 1)	14 .1	<u></u>	61	J GOLANAS	UVSIS REQ	UESTED	· • · · ·	<u>, 1 .</u>	<u>, 1.1.</u>	Sitered - F	Pietel, L. Pat	eri, peus	kija v.
							1		E N	F	N	N	F	N	F		1.5		
KT K L SE SE K L K))) 0 0 10 10 10 11 11 11 11 1 1 1	I OLL & SE I HINDE DI							7			-	÷		-		-	+	+
) 							ARRA	H2SD4	#2504		нст	IINON	HNO3				1.00
		{ 6]] 6 () 10 0 00 9 (0		(o)		ļ			e .										
	L2505298-CO	FC		es/N							U	-	<u> </u>	V.	ج ۲			-	
1				Σ					Ĩ		1 6			A-1-	1				
	, -			eríal		1				00	KN	VV	•	ET	ET.				
				Mate					P. R	- D	L-3	AF	-Y.	N	N.				
-	•			l su					NAI OAI	ckag	ckaj	Ç	NA.		IVO				
				ardo			0.0.1		КČ Г	Pa	P a	1.5	2	Ϋ́	KČ		1		
Sample ID	Some	la Logation	Field	Jazi	Deta	(24hr)	G=Grab	# Of	EC	V.	TR	6	<u>5</u>	EC	EC				
H WS LAEMP GHO 2020-09 NP	ndunes	G_ELUGH	WS	No	9/17/2020	13:20	G G	7				1		1	- F		<u> </u>		
					0/17/2020	12.20					1						†		1
WS_LAEMP_GHO_2020-09_NP			ws	NO	9/1//2020	13:20	G	4	1 1		1	1		1					
	<u> </u>																		
				1.1.1			L								ļ	 	ļ		
												-							
						_			1.										
									1 4		<u> </u>	1						· ·	
									¥,										
									*										
															1		1		
		<u> </u>							9			1			1				
			_			ļ			N	_									+
							┢	<u>;</u>	(i)		+							<u> </u>	
							+					+							+
·						L						1					<u> </u>		
						<u> </u>			i				L						
Lis" sources	A CONTRACTOR OF THE OWNER	INSTRUCTIONS	1		REGENERATION	D BY/APE	LINA DIONA		DATES	MI O	1.		RA CAL	LIATIO	NI				
- V. J.			پر مسین با ا		Jen	nifer Ings	· · · · · · · · · · · · · · · · · · ·		Septe	mber 17. 2020	\sim	T.				64	712	91	ንና
i and	-										/ /	m_				4			
-													·····						
											+								
			·) .	-		, s ș ș . Mena a v ince	1. <u>1</u> . 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		, <u>r r</u>			, <u>(</u>)	en en engene		A 1, 3, *				<u></u>
		Regular	(default) x		Sampler's Nor			1977.1	0		A PAGE TA	Ma	hile#			\$10.64	0.2444	<u>, Xes</u> i	ð ⁹
	Priority	(2-3 business days) - 50%	surcharge	1	sampier's wan				Jenni	er/ings		IV10	0116 11			319-30	w-3444		
	Emergenc	y (1 Business Day) - 100%	surcharge		Sampler's Signa	ture						Date	/Time			septembe	r 17, 202	01	
		A DOME OF WEEKEDO - UN	ILACE ALS	1			CONTRACTOR OF THE	COLUMN TO A	And and a second		C. ALCONDO.	1		ALC: NOTE: N	7 19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CONCERNS AND	55 15 A A A - C	C. C	PRAINTS IN

APPENDIX H SEDIMENT QUALITY LAB REPORT

Teck Coal Ltd. ATTN: Cait Good 421 Pine Avenue Sparwood BC VOB 2G0 Date Received: 19-SEP-20 Report Date: 30-SEP-20 15:29 (MT) Version: FINAL

Client Phone: 250-425-8202

Certificate of Analysis

Lab Work Order #: L2505807

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: VPO00689999 REGIONAL EFFECTS PROGRAM GHO LAEMP Sept 2020

Lyudmyla Shvets, B.Sc. Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 2559 29 Street NE, Calgary, AB T1Y 7B5 Canada | Phone: +1 403 291 9897 | Fax: +1 403 291 0298 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🔊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L2505807 CONTD.... PAGE 2 of 12 30-SEP-20 15:29 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2505807-1 SE 17-SEP-20 09:11 RG_ELUGH_SE-1- 2020-09-17-0911	L2505807-2 SE 17-SEP-20 10:40 RG_ELUGH_SE-2- 2020-09-17-1040	L2505807-3 SE 17-SEP-20 12:20 RG_ELUGH_SE-3- 2020-09-17-1220	L2505807-4 SE 13-SEP-20 16:10 RG_GH- SCW3_SE-1-2020- 0913-1610	L2505807-5 SE 13-SEP-20 16:20 RG_GH- SCW3_SE-2-2020- 0913-1620
Grouping	Analyte	-				00 10 1020
SOIL						
Physical Tests	Moisture (%)	44.3	43.8	36.9	48.9	51.0
	pH (1:2 soil:water) (pH)	8.23	8.24	8.30	8.17	8.15
Particle Size	% Gravel (>2mm) (%)	<1.0	<1.0	<1.0	<1.0	<1.0
	% Sand (2.00mm - 1.00mm) (%)	<1.0	1.5	<1.0	<1.0	<1.0
	% Sand (1.00mm - 0.50mm) (%)	8.1	6.2	1.5	<1.0	<1.0
	% Sand (0.50mm - 0.25mm) (%)	17.8	13.7	15.7	<1.0	<1.0
	% Sand (0.25mm - 0.125mm) (%)	21.1	28.1	31.6	7.2	5.6
	% Sand (0.125mm - 0.063mm) (%)	15.2	19.4	20.7	22.1	20.2
	% Silt (0.063mm - 0.0312mm) (%)	16.4	13.4	13.2	29.0	31.3
	% Silt (0.0312mm - 0.004mm) (%)	17.2	13.8	13.4	34.4	36.7
	% Clay (<4um) (%)	3.4	3.3	3.5	6.3	5.5
	Texture	Sandy loam	Loamy sand	Loamy sand	Silt loam	Silt loam
Organic / Inorganic Carbon	Total Organic Carbon (%)	2.71	2.61	2.71	5.50	5.25
Metals	Aluminum (Al) (mg/kg)	7780	7340	4480	9460	8920
	Antimony (Sb) (mg/kg)	0.42	0.54	0.34	0.33	0.40
	Arsenic (As) (mg/kg)	5.48	5.64	3.99	5.22	5.17
	Barium (Ba) (mg/kg)	139	146	91.9	164	164
	Beryllium (Be) (mg/kg)	0.56	0.56	0.32	0.63	0.62
	Bismuth (Bi) (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	Boron (B) (mg/kg)	8.2	7.8	7.5	12.2	11.2
	Cadmium (Cd) (mg/kg)	0.684	0.758	0.403	0.917	0.914
	Calcium (Ca) (mg/kg)	66700	56800	49500	37800	34700
	Chromium (Cr) (mg/kg)	17.6	17.7	11.4	18.9	18.2
	Cobalt (Co) (mg/kg)	4.06	4.26	2.61	5.02	4.90
	Copper (Cu) (mg/kg)	10.3	10.5	5.63	13.7	13.3
	Iron (Fe) (mg/kg)	12100	12100	8140	13200	13000
	Lead (Pb) (mg/kg)	6.17	6.64	4.27	7.78	7.83
	Lithium (Li) (mg/kg)	9.9	10.0	5.8	12.5	11.6
	Magnesium (Mg) (mg/kg)	12900	12700	12900	12100	11100
	Manganese (Mn) (mg/kg)	365	449	206	378	360
	Mercury (Hg) (mg/kg)	0.0347	0.0419	0.0212	0.0543	0.0598
	Molybdenum (Mo) (mg/kg)	1.25	1.30	0.82	1.23	1.28
	Nickel (Ni) (mg/kg)	17.2	18.0	10.8	21.1	20.6
	Phosphorus (P) (mg/kg)	1180	1150	1150	1230	1140
	Potassium (K) (mg/kg)	2110	1930	1120	2310	2140
	Selenium (Se) (mg/kg)	0.79	1.05	0.44	1.72	1.59
	Silver (Ag) (mg/kg)	0.15	0.16	<0.10	0.21	0.19
L2505807 CONTD.... PAGE 3 of 12 30-SEP-20 15:29 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2505807-6 SE 13-SEP-20 16:30 RG_GH- SCW3_SE-3-2020- 0913-1630	L2505807-7 SE 16-SEP-20 15:00 RG_GH- SCW3_SE-4-2020- 04-16-1500	L2505807-8 SE 16-SEP-20 15:15 RG_GH- SCW3_SE-5-2020- 00-16:1515	L2505807-9 SE 15-SEP-20 12:44 RG_EL20_SE-1- 2020-09-15-1244	L2505807-10 SE 16-SEP-20 08:55 RG_EL20_SE-2- 2020-09-16-0855
Grouping	Analyte		03-10-1300	03-10-1313		
SOIL						
Physical Tests	Moisture (%)	47.8	45.6	44.3	26.3	33.7
	pH (1:2 soil:water) (pH)	8.12	8.18	8.24	8.42	8.48
Particle Size	% Gravel (>2mm) (%)	<1.0	<1.0	<1.0	3.5	<1.0
	% Sand (2.00mm - 1.00mm) (%)	<1.0	<1.0	<1.0	4.0	1.8
	% Sand (1.00mm - 0.50mm) (%)	<1.0	<1.0	<1.0	7.2	3.4
	% Sand (0.50mm - 0.25mm) (%)	<1.0	1.1	<1.0	12.9	5.7
	% Sand (0.25mm - 0.125mm) (%)	6.8	5.7	9.0	17.3	31.6
	% Sand (0.125mm - 0.063mm) (%)	19.2	17.6	18.1	16.3	31.5
	% Silt (0.063mm - 0.0312mm) (%)	30.6	31.0	32.1	16.9	13.7
	% Silt (0.0312mm - 0.004mm) (%)	36.1	37.4	34.4	18.0	9.1
	% Clay (<4um) (%)	6.4	7.0	5.1	3.8	2.5
	Texture	Silt loam	Silt loam	Silt Ioam	Sandy loam	Loamy sand
Organic / Inorganic Carbon	Total Organic Carbon (%)	5.33	6.22	5.00	3.11	1.66
Metals	Aluminum (Al) (mg/kg)	9460	8300	6320	4320	5040
	Antimony (Sb) (mg/kg)	0.43	0.48	0.45	0.35	0.31
	Arsenic (As) (mg/kg)	5.47	5.01	4.93	4.41	3.82
	Barium (Ba) (mg/kg)	171	136	113	81.1	90.7
	Beryllium (Be) (mg/kg)	0.66	0.61	0.47	0.36	0.35
	Bismuth (Bi) (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	Boron (B) (mg/kg)	11.7	11.3	8.1	6.3	6.6
	Cadmium (Cd) (mg/kg)	1.00	0.936	0.694	0.559	0.422
	Calcium (Ca) (mg/kg)	34700	45100	49300	90100	47800
	Chromium (Cr) (mg/kg)	19.2	19.5	16.8	13.9	12.2
	Cobalt (Co) (mg/kg)	5.22	4.65	4.02	2.74	2.76
	Copper (Cu) (mg/kg)	15.0	12.8	10.3	6.58	5.61
	Iron (Fe) (mg/kg)	13600	12300	11200	8920	8280
	Lead (Pb) (mg/kg)	8.29	7.07	6.22	3.96	4.14
	Lithium (Li) (mg/kg)	12.8	11.4	8.8	6.6	6.4
	Magnesium (Mg) (mg/kg)	11300	12900	13600	14200	12300
	Manganese (Mn) (mg/kg)	384	387	338	385	260
	Mercury (Hg) (mg/kg)	0.0621	0.0572	0.0431	0.0166	0.0160
	Molybdenum (Mo) (mg/kg)	1.31	1.21	1.26	1.24	0.88
	Nickel (Ni) (mg/kg)	22.5	20.8	18.0	13.5	11.0
	Phosphorus (P) (mg/kg)	1180	1120	1180	1090	1100
	Potassium (K) (mg/kg)	2250	2150	1530	1120	1310
	Selenium (Se) (mg/kg)	1.81	2.22	1.31	0.48	0.39
	Silver (Ag) (mg/kg)	0.22	0.21	0.16	<0.10	<0.10

L2505807 CONTD.... PAGE 4 of 12 30-SEP-20 15:29 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2505807-11 SE 16-SEP-20 10:40 RG_EL20_SE-3- 2020-09-16-1040	L2505807-12 SE 16-SEP-20 12:50 RG_EL20_SE-4- 2020-09-16-1250	L2505807-13 SE 16-SEP-20 13:53 RG_EL20_SE-5- 2020-09-16-1353	L2505807-14 SE 15-SEP-20 12:44 RG_RIVER_SE-5- 2020-09-15-1244	L2505807-15 SE 17-SEP-20 10:40 RG_RIVER_SE-5- 2020-09-17-1040
Grouping	Analyte					
SOIL						
Physical Tests	Moisture (%)	25.5	31.6	23.8	35.5	39.7
	pH (1:2 soil:water) (pH)	8.50	8.54	8.48	8.25	8.29
Particle Size	% Gravel (>2mm) (%)	<1.0	<1.0	<1.0	7.4	1.6
	% Sand (2.00mm - 1.00mm) (%)	1.4	<1.0	1.1	4.7	3.8
	% Sand (1.00mm - 0.50mm) (%)	11.1	3.7	20.8	7.4	6.3
	% Sand (0.50mm - 0.25mm) (%)	29.0	29.9	54.0	12.2	15.1
	% Sand (0.25mm - 0.125mm) (%)	18.6	31.9	14.3	15.9	17.0
	% Sand (0.125mm - 0.063mm) (%)	14.2	17.9	3.5	14.5	13.8
	% Silt (0.063mm - 0.0312mm) (%)	11.2	8.4	2.5	16.7	18.2
	% Silt (0.0312mm - 0.004mm) (%)	10.8	5.9	2.6	17.7	20.4
	% Clay (<4um) (%)	2.9	1.9	1.1	3.5	3.8
	Texture	Loamy sand	Sand	Sand	Sandy loam	Sandy loam
Organic / Inorganic Carbon	Total Organic Carbon (%)	2.01	1.52	1.59	2.85	3.12
Metals	Aluminum (Al) (mg/kg)	5870	5540	5300	5520	7500
	Antimony (Sb) (mg/kg)	0.35	0.32	0.36	0.38	0.51
	Arsenic (As) (mg/kg)	4.81	4.30	4.99	4.93	5.67
	Barium (Ba) (mg/kg)	95.0	92.2	93.3	108	151
	Beryllium (Be) (mg/kg)	0.44	0.39	0.42	0.44	0.53
	Bismuth (Bi) (mg/kg)	<0.20	<0.20	<0.20	<0.20	<0.20
	Boron (B) (mg/kg)	9.1	7.6	7.2	8.1	10.0
	Cadmium (Cd) (mg/kg)	0.540	0.488	0.565	0.644	0.727
	Calcium (Ca) (mg/kg)	88000	56500	83300	69800	58500
	Chromium (Cr) (mg/kg)	15.8	13.5	14.6	14.6	18.2
	Cobalt (Co) (mg/kg)	2.97	3.02	3.09	3.26	4.23
	Copper (Cu) (mg/kg)	6.83	5.96	6.78	9.12	10.8
	Iron (Fe) (mg/kg)	9700	8980	9940	10400	12100
	Lead (Pb) (mg/kg)	4.45	4.66	4.34	4.97	6.90
	Lithium (Li) (mg/kg)	7.5	6.6	6.4	7.1	10.2
	Magnesium (Mg) (mg/kg)	14500	12100	11600	11600	13200
	Manganese (Mn) (mg/kg)	333	294	372	370	399
	Mercury (Hg) (mg/kg)	0.0161	0.0137	0.0115	0.0259	0.0385
	Molybdenum (Mo) (mg/kg)	1.17	0.96	1.18	1.20	1.29
	Nickel (Ni) (mg/kg)	13.1	11.9	13.4	14.2	18.0
	Phosphorus (P) (mg/kg)	1280	1100	1070	1100	1230
	Potassium (K) (mg/kg)	1610	1500	1460	1430	1960
	Selenium (Se) (mg/kg)	0.43	0.36	0.32	0.64	0.74
	Silver (Ag) (mg/kg)	<0.10	<0.10	<0.10	0.12	0.15

L2505807 CONTD.... PAGE 5 of 12 30-SEP-20 15:29 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2505807-1 SE 17-SEP-20 09:11 RG_ELUGH_SE-1- 2020-09-17-0911	L2505807-2 SE 17-SEP-20 10:40 RG_ELUGH_SE-2- 2020-09-17-1040	L2505807-3 SE 17-SEP-20 12:20 RG_ELUGH_SE-3- 2020-09-17-1220	L2505807-4 SE 13-SEP-20 16:10 RG_GH- SCW3_SE-1-2020- 09-13-1610	L2505807-5 SE 13-SEP-20 16:20 RG_GH- SCW3_SE-2-2020- 09-13-1620
Grouping	Analyte					
SOIL						
Metals	Sodium (Na) (mg/kg)	106	102	82	98	94
	Strontium (Sr) (mg/kg)	102	94.1	68.9	73.1	68.2
	Sulfur (S) (mg/kg)	<1000	<1000	<1000	<1000	<1000
	Thallium (TI) (mg/kg)	0.191	0.194	0.118	0.236	0.243
	Tin (Sn) (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
	Titanium (Ti) (mg/kg)	12.1	20.3	13.9	11.7	14.2
	Tungsten (W) (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Uranium (U) (mg/kg)	0.993	1.01	0.860	0.995	0.963
	Vanadium (V) (mg/kg)	35.5	34.8	22.1	36.7	34.7
	Zinc (Zn) (mg/kg)	74.9	77.3	48.5	84.1	81.4
	Zirconium (Zr) (mg/kg)	<1.0	1.0	<1.0	<1.0	<1.0
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/kg)	<0.0050	<0.0050	<0.0050	ollci <0.041	olci <0.051
	Acenaphthylene (mg/kg)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Acridine (mg/kg)	<0.010	<0.010	<0.010	0.061	0.052
	Anthracene (mg/kg)	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040
	Benz(a)anthracene (mg/kg)	<0.010	<0.010	<0.010	0.033	0.034
	Benzo(a)pyrene (mg/kg)	<0.010	<0.010	<0.010	0.011	0.015
	Benzo(b&j)fluoranthene (mg/kg)	0.015	0.022	0.013	0.094	0.098
	Benzo(b+j+k)fluoranthene (mg/kg)	<0.015	0.022	<0.015	0.094	0.098
	Benzo(e)pyrene (mg/kg)	0.014	0.019	0.011	0.089	0.094
	Benzo(g,h,i)perylene (mg/kg)	<0.010	<0.010	<0.010	0.026	0.027
	Benzo(k)fluoranthene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Chrysene (mg/kg)	0.035	0.044	0.027	<0.22	<0.24
	Dibenz(a,h)anthracene (mg/kg)	<0.0050	<0.0070	<0.0050	0.0166	0.0153
	Fluoranthene (mg/kg)	<0.010	0.011	<0.010	0.037	0.030
	Fluorene (mg/kg)	<0.010	<0.010	<0.010	0.047	0.048
	Indeno(1,2,3-c,d)pyrene (mg/kg)	<0.010	<0.010	<0.010	0.013	0.014
	1-Methylnaphthalene (mg/kg)	<0.050	0.054	<0.050	0.588	0.612
	2-Methylnaphthalene (mg/kg)	0.038	0.060	0.028	0.944	0.993
	Naphthalene (mg/kg)	0.021	0.031	0.015	0.226	0.233
	Perylene (mg/kg)	0.012	0.019	<0.010	0.017	0.016
	Phenanthrene (mg/kg)	0.078	0.103	0.056	0.687	0.708
	Pyrene (mg/kg)	<0.010	0.014	<0.010	0.058	0.060
	Quinoline (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Surrogate: d10-Acenaphthene (%)	103.0	115.6	108.7	114.4	109.5
	Surrogate: d12-Chrysene (%)	115.9	124.5	120.5	120.2	113.1

L2505807 CONTD.... PAGE 6 of 12 30-SEP-20 15:29 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2505807-6 SE 13-SEP-20 16:30 RG_GH- SCW3_SE-3-2020- 09-13-1630	L2505807-7 SE 16-SEP-20 15:00 RG_GH- SCW3_SE-4-2020- 09-16-1500	L2505807-8 SE 16-SEP-20 15:15 RG_GH- SCW3_SE-5-2020- 09-16-1515	L2505807-9 SE 15-SEP-20 12:44 RG_EL20_SE-1- 2020-09-15-1244	L2505807-10 SE 16-SEP-20 08:55 RG_EL20_SE-2- 2020-09-16-0855
Grouping	Analyte					
SOIL						
Metals	Sodium (Na) (mg/kg)	94	97	92	106	85
	Strontium (Sr) (mg/kg)	73.4	78.6	75.0	124	66.3
	Sulfur (S) (mg/kg)	<1000	<1000	<1000	<1000	<1000
	Thallium (TI) (mg/kg)	0.253	0.236	0.187	0.153	0.142
	Tin (Sn) (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
	Titanium (Ti) (mg/kg)	13.5	18.8	19.7	18.7	16.2
	Tungsten (W) (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Uranium (U) (mg/kg)	0.986	1.05	0.975	1.02	0.798
	Vanadium (V) (mg/kg)	36.5	34.7	28.2	21.7	22.9
	Zinc (Zn) (mg/kg)	86.3	80.5	72.6	49.3	48.5
	Zirconium (Zr) (mg/kg)	<1.0	<1.0	<1.0	<1.0	<1.0
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/kg)	<0.040	<0.020	<0.016	<0.0050	<0.0050
	Acenaphthylene (mg/kg)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Acridine (mg/kg)	OLCI	DLCI <0.025	DLCI <0.020	<0.010	<0.010
	Anthracene (mg/kg)	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040
	Benz(a)anthracene (mg/kg)	0.027	0.013	0.013	<0.010	<0.010
	Benzo(a)pyrene (mg/kg)	0.011	<0.010	<0.010	<0.010	<0.010
	Benzo(b&j)fluoranthene (mg/kg)	0.080	0.038	0.032	<0.010	<0.010
	Benzo(b+j+k)fluoranthene (mg/kg)	0.080	0.038	0.032	<0.015	<0.015
	Benzo(e)pyrene (mg/kg)	0.080	0.036	0.031	<0.010	<0.010
	Benzo(g,h,i)perylene (mg/kg)	0.025	0.013	0.011	<0.010	<0.010
	Benzo(k)fluoranthene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Chrysene (mg/kg)	0.191	0.090	0.080	<0.025	<0.015
	Dibenz(a,h)anthracene (mg/kg)	0.0121	<0.0050	<0.0060	<0.0050	<0.0050
	Fluoranthene (mg/kg)	0.026	0.012	0.012	<0.010	<0.010
	Fluorene (mg/kg)	0.046	0.022	0.019	<0.010	<0.010
	Indeno(1,2,3-c,d)pyrene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	1-Methylnaphthalene (mg/kg)	0.532	0.256	0.228	<0.050	<0.050
	2-Methylnaphthalene (mg/kg)	0.850	0.437	0.390	0.055	0.010
	Naphthalene (mg/kg)	0.197	0.127	0.127	0.030	<0.010
	Perylene (mg/kg)	0.012	0.019	0.017	<0.010	<0.010
	Phenanthrene (mg/kg)	0.590	0.273	0.248	0.051	0.020
	Pyrene (mg/kg)	0.049	0.024	0.022	<0.010	<0.010
	Quinoline (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Surrogate: d10-Acenaphthene (%)	109.4	104.8	110.2	104.4	108.3
	Surrogate: d12-Chrysene (%)	114.1	113.7	115.7	116.1	119.1

L2505807 CONTD.... PAGE 7 of 12 30-SEP-20 15:29 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2505807-11 SE 16-SEP-20 10:40 RG_EL20_SE-3- 2020-09-16-1040	L2505807-12 SE 16-SEP-20 12:50 RG_EL20_SE-4- 2020-09-16-1250	L2505807-13 SE 16-SEP-20 13:53 RG_EL20_SE-5- 2020-09-16-1353	L2505807-14 SE 15-SEP-20 12:44 RG_RIVER_SE-5- 2020-09-15-1244	L2505807-15 SE 17-SEP-20 10:40 RG_RIVER_SE-5- 2020-09-17-1040
Grouping	Analyte					
SOIL						
Metals	Sodium (Na) (mg/kg)	111	89	97	92	110
	Strontium (Sr) (mg/kg)	111	78.1	116	95.7	94.7
	Sulfur (S) (mg/kg)	<1000	<1000	<1000	<1000	<1000
	Thallium (TI) (mg/kg)	0.162	0.148	0.150	0.177	0.194
	Tin (Sn) (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
	Titanium (Ti) (mg/kg)	16.7	15.4	14.0	16.8	20.0
	Tungsten (W) (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Uranium (U) (mg/kg)	1.03	0.836	0.925	1.03	0.985
	Vanadium (V) (mg/kg)	27.1	26.3	26.3	26.3	35.0
	Zinc (Zn) (mg/kg)	54.8	53.1	55.3	58.4	85.5
	Zirconium (Zr) (mg/kg)	<1.0	<1.0	<1.0	<1.0	<1.0
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/kg)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Acenaphthylene (mg/kg)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Acridine (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Anthracene (mg/kg)	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040
	Benz(a)anthracene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Benzo(a)pyrene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Benzo(b&j)fluoranthene (mg/kg)	<0.010	<0.010	<0.010	0.011	0.016
	Benzo(b+j+k)fluoranthene (mg/kg)	<0.015	<0.015	<0.015	<0.015	0.016
	Benzo(e)pyrene (mg/kg)	<0.010	<0.010	<0.010	0.010	0.014
	Benzo(g,h,i)perylene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Benzo(k)fluoranthene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Chrysene (mg/kg)	<0.015	<0.015	<0.015	<0.030	0.032
	Dibenz(a,h)anthracene (mg/kg)	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	Fluoranthene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Fluorene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Indeno(1,2,3-c,d)pyrene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	1-Methylnaphthalene (mg/kg)	<0.050	<0.050	<0.050	0.071	<0.050
	2-Methylnaphthalene (mg/kg)	0.015	0.010	0.015	0.115	0.050
	Naphthalene (mg/kg)	<0.010	<0.010	0.010	0.054	0.026
	Perylene (mg/kg)	<0.010	<0.010	<0.010	<0.010	0.015
	Phenanthrene (mg/kg)	0.029	0.023	0.029	0.080	0.087
	Pyrene (mg/kg)	<0.010	<0.010	<0.010	<0.010	<0.010
	Quinoline (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Surrogate: d10-Acenaphthene (%)	101.8	108.9	111.3	108.7	109.2
	Surrogate: d12-Chrysene (%)	110.9	117.0	118.6	120.1	121.7

L2505807 CONTD.... PAGE 8 of 12 30-SEP-20 15:29 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2505807-1 SE 17-SEP-20 09:11 RG_ELUGH_SE-1- 2020-09-17-0911	L2505807-2 SE 17-SEP-20 10:40 RG_ELUGH_SE-2- 2020-09-17-1040	L2505807-3 SE 17-SEP-20 12:20 RG_ELUGH_SE-3- 2020-09-17-1220	L2505807-4 SE 13-SEP-20 16:10 RG_GH- SCW3_SE-1-2020- 09-13-1610	L2505807-5 SE 13-SEP-20 16:20 RG_GH- SCW3_SE-2-2020- 09-13-1620
Grouping	Analyte					
SOIL						
Polycyclic Aromatic Hydrocarbons	Surrogate: d8-Naphthalene (%)	97.3	108.0	103.5	106.7	101.0
	Surrogate: d10-Phenanthrene (%)	104.8	115.2	112.1	112.6	104.9
	IACR:Coarse	<0.050	<0.050	<0.050	<0.050	<0.050
	IACR:Fine	<0.050	<0.050	<0.050	0.053	0.055
	B(a)P Total Potency Equivalent (mg/kg)	<0.020	<0.020	<0.020	0.044	0.046
	IACR (CCME)	0.18	0.23	0.17	0.88	0.92

L2505807 CONTD.... PAGE 9 of 12 30-SEP-20 15:29 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2505807-6 SE 13-SEP-20 16:30 RG_GH- SCW3_SE-3-2020- 09-13-1630	L2505807-7 SE 16-SEP-20 15:00 RG_GH- SCW3_SE-4-2020- 09-16-1500	L2505807-8 SE 16-SEP-20 15:15 RG_GH- SCW3_SE-5-2020- 09-16-1515	L2505807-9 SE 15-SEP-20 12:44 RG_EL20_SE-1- 2020-09-15-1244	L2505807-10 SE 16-SEP-20 08:55 RG_EL20_SE-2- 2020-09-16-0855
Grouping	Analyte					
SOIL						
Polycyclic Aromatic Hydrocarbons	Surrogate: d8-Naphthalene (%)	102.6	99.5	104.6	100.8	103.3
	Surrogate: d10-Phenanthrene (%)	106.5	104.3	108.8	105.6	109.3
	IACR:Coarse	<0.050	<0.050	<0.050	<0.050	<0.050
	IACR:Fine	<0.050	<0.050	<0.050	<0.050	<0.050
	B(a)P Total Potency Equivalent (mg/kg)	0.037	<0.020	<0.020	<0.020	<0.020
	IACR (CCME)	0.79	0.38	0.34	<0.15	<0.15

L2505807 CONTD.... PAGE 10 of 12 30-SEP-20 15:29 (MT) Version: FINAL

	Sample ID Description Sampled Date Sampled Time Client ID	L2505807-11 SE 16-SEP-20 10:40 RG_EL20_SE-3- 2020-09-16-1040	L2505807-12 SE 16-SEP-20 12:50 RG_EL20_SE-4- 2020-09-16-1250	L2505807-13 SE 16-SEP-20 13:53 RG_EL20_SE-5- 2020-09-16-1353	L2505807-14 SE 15-SEP-20 12:44 RG_RIVER_SE-5- 2020-09-15-1244	L2505807-15 SE 17-SEP-20 10:40 RG_RIVER_SE-5- 2020-09-17-1040
Grouping	Analyte	1				
SOIL						
Polycyclic Aromatic Hydrocarbons	Surrogate: d8-Naphthalene (%)	97.5	101.7	104.4	101.9	104.1
	Surrogate: d10-Phenanthrene (%)	103.5	107.7	109.1	105.8	111.5
	IACR:Coarse	<0.050	<0.050	<0.050	<0.050	<0.050
	IACR:Fine	<0.050	<0.050	<0.050	<0.050	<0.050
	B(a)P Total Potency Equivalent (mg/kg)	<0.020	<0.020	<0.020	<0.020	<0.020
	IACR (CCME)	<0.15	<0.15	<0.15	<0.15	0.19

Reference Information

QC Samples with Qualifiers & Comments: QC Type Description Parameter Qualifier Applies to Sample Number(s) **Qualifiers for Individual Parameters Listed:** Qualifier Description DLCI Detection Limit Raised: Chromatographic Interference due to co-elution. Test Method References: **ALS Test Code** Matrix **Test Description** Method Reference** C-TIC-PCT-SK CSSS (2008) P216-217 Soil Total Inorganic Carbon in Soil A known quantity of acetic acid is consumed by reaction with carbonates in the soil. The pH of the resulting solution is measured and compared against a standard curve relating pH to weight of carbonate. C-TOC-CALC-SK Soil **Total Organic Carbon Calculation** CSSS (2008) 21.2 Total Organic Carbon (TOC) is calculated by the difference between total carbon (TC) and total inorganic carbon. (TIC) Total Carbon by combustion method C-TOT-LECO-SK Soil CSSS (2008) 21.2 The sample is ignited in a combustion analyzer where carbon in the reduced CO2 gas is determined using a thermal conductivity detector. HG-200.2-CVAA-CL Soil Mercury in Soil by CVAAS EPA 200.2/1631E (mod) Soil samples are digested with nitric and hydrochloric acids, followed by analysis by CVAAS. Inorganic Carbon as CaCO3 Equivalent Calculation IC-CACO3-CALC-SK Soil MET-200.2-CCMS-CL EPA 200.2/6020A (mod) Soil Metals in Soil by CRC ICPMS Soil/sediment is dried, disaggregated, and sieved (2 mm). Strong Acid Leachable Metals in the <2mm fraction are solubilized by heated digestion with nitric and hydrochloric acids. Instrumental analysis is by Collision / Reaction Cell ICPMS. Limitations: This method is intended to liberate environmentally available metals. Silicate minerals are not solubilized. Some metals may be only partially recovered (matrix dependent), including AI, Ba, Be, Cr, S, Sr, Ti, TI, V, W, and Zr. Elemental Sulfur may be poorly recovered by this method. Volatile forms of sulfur (e.g. sulfide, H2S) may be excluded if lost during sampling, storage, or digestion. MOISTURE-CL Soil % Moisture CCME PHC in Soil - Tier 1 (mod) This analysis is carried out gravimetrically by drying the sample at 105 C PAH-TMB-H/A-MS-CL Soil PAH Tumbler Extraction (Hexane/Acetone) EPA 3570/8270-GC/MS This analysis is carried out using procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846, Methods 3545 & 8270, published by the United States Environmental Protection Agency (EPA). The procedure uses a mechanical shaking technique to extract a subsample of the sediment/soil with a 1:1 mixture of hexane and acetone. The extract is then solvent exchanged to toluene. The final extract is analysed by capillary column gas chromatography with mass spectrometric detection (GC/MS). Surrogate recoveries may not be reported in cases where interferences from the sample matrix prevent accurate quantitation. Because the two isomers cannot be readily chromatographically separated, benzo(j)fluoranthene is reported as part of the benzo(b)fluoranthene parameter. PH-1:2-CL Soil pH in soil (1:2 Soil:Water Extraction) CSSS Ch. 16 Soil and de-ionized water (by volume) are mixed in a defined ratio. The slurry is allowed to stand, shaken, and then allowed to stand again prior to taking measurements. After equilibration, the pH of the liquid portion of the extract is measured by a pH meter. Field Measurement is recommended where accurate pH measurements are required, due to the 15 minute recommended hold time. Particle size - Sieve and Pipette SSIR-51 METHOD 3.2.1 **PSA-PIPET-DETAIL-SK** Soil Particle size distribution is determined by a combination of techniques. Dry sieving is performed for coarse particles, wet sieving for sand particles and the pipette sedimentation method for clay particles. ** ALS test methods may incorporate modifications from specified reference methods to improve performance. The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below: Laboratory Definition Code Laboratory Location SK ALS ENVIRONMENTAL - SASKATOON, SASKATCHEWAN, CANADA CL ALS ENVIRONMENTAL - CALGARY, ALBERTA, CANADA **Chain of Custody Numbers:**

GHO LAEMP Sept 2020

Reference Information

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. *mg/kg* - *milligrams per kilogram based on dry weight of sample.*

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

		Workorder:	L250580	7	Report Date:	30-SEP-20	Pa	ge 1 of 17
Client: Contact:	Teck Coal Ltd. 421 Pine Avenue Sparwood BC V0B 2G0 Cait Good							
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
C-TIC-PCT-SK	Soil							
Batch I WG3410171-4 Inorganic Car	R5242123 I IRM bon	08-109_SOIL	96.3		%		80-120	29-SEP-20
WG3410171-2 Inorganic Car	2 LCS bon	0.5	97.4		%		90-110	29-SEP-20
WG3410171-3 Inorganic Car	B MB bon		<0.050		%		0.05	29-SEP-20
C-TOT-LECO-SK	Soil							
Batch F	R5239836							
WG3410125-2 Total Carbon	2 IRM by Combustion	08-109_SOIL	93.2		%		80-120	26-SEP-20
WG3410125-4 Total Carbon	LCS by Combustion	SULFADIAZIN	E 101.4		%		90-110	26-SEP-20
WG3410125-3 Total Carbon	B MB by Combustion		<0.05		%		0.05	26-SEP-20
Batch F	R5239839							
WG3410124-1 Total Carbon	DUP by Combustion	L2505807-5 6.76	6.86		%	1.6	20	26-SEP-20
WG3410124-2 Total Carbon	2 IRM by Combustion	08-109_SOIL	99.1		%		80-120	26-SEP-20
WG3410124-4 Total Carbon	by Combustion	SULFADIAZIN	E 99.4		%		90-110	26-SEP-20
WG3410124-3 Total Carbon	MB by Combustion		<0.05		%		0.05	26-SEP-20
HG-200.2-CVAA-	CL Soil							
Batch F	R5238497							
WG3412202-1 Mercury (Hg)	4 CRM	TILL-1	108.0		%		70-130	26-SEP-20
WG3412202-9 Mercury (Hg)	CRM	TILL-1	110.1		%		70-130	26-SEP-20
WG3412202-1 Mercury (Hg)	0 DUP	L2505807-3 0.0212	0.0239		mg/kg	12	40	26-SEP-20
WG3412202-1 Mercury (Hg)	3 LCS		107.0		%		80-120	26-SEP-20
WG3412202-8 Mercury (Hg)	B LCS		106.0		%		80-120	26-SEP-20
WG3412202-1 Mercury (Hg)	1 MB		<0.0050		mg/kg		0.005	26-SEP-20
WG3412202-6	6 MB							

		Workorder: L2505807			Report Date: 30-SEP-20		Page 2 of 17	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
HG-200.2-CVAA-CL	Soil							
Batch R523849	97							
WG3412202-6 MB								
Mercury (Hg)			<0.0050		mg/kg		0.005	26-SEP-20
MET-200.2-CCMS-CL	Soil							
Batch R523714	40							
WG3412202-14 CRM	Λ	TILL-1	110.6		9/		70.420	
Antimony (Sh)			06.2		70 0/		70-130	25-SEP-20
Arsonic (As)			101 7		78 0/		70-130	25-SEP-20
Barium (Ba)			107.7		70 %		70-130	25-SEF-20
Bervllium (Be)			105.2		%		70-130	25-SEP 20
Bismuth (Bi)			101.2		%		70-130	25-SEP-20
Boron (B)			4.0		ma/ka		0-8.2	25-SEP-20
Cadmium (Cd)			102.0		%		0 0.∠ 70-130	25-SEP-20
Calcium (Ca)			113.6		%		70-130	25-SEP-20
Chromium (Cr)			107.3		%		70-130	25-SEP-20
Cobalt (Co)			102.8		%		70-130	25-SEP-20
Copper (Cu)			102.4		%		70-130	25-SEP-20
Iron (Fe)			104.5		%		70-130	25-SEP-20
Lead (Pb)			93.6		%		70-130	25-SEP-20
Lithium (Li)			97.5		%		70-130	25-SEP-20
Magnesium (Mg)			113.2		%		70-130	25-SEP-20
Manganese (Mn)			102.4		%		70-130	25-SEP-20
Molybdenum (Mo)			97.8		%		70-130	25-SEP-20
Nickel (Ni)			102.6		%		70-130	25-SEP-20
Phosphorus (P)			101.4		%		70-130	25-SEP-20
Potassium (K)			111.7		%		70-130	25-SEP-20
Selenium (Se)			0.33		mg/kg		0.11-0.51	25-SEP-20
Silver (Ag)			0.23		mg/kg		0.13-0.33	25-SEP-20
Sodium (Na)			115.3		%		70-130	25-SEP-20
Strontium (Sr)			119.5		%		70-130	25-SEP-20
Thallium (TI)			0.134		mg/kg		0.077-0.18	25-SEP-20
Tin (Sn)			1.0		mg/kg		0-3.1	25-SEP-20
Titanium (Ti)			124.4		%		70-130	25-SEP-20
Tungsten (W)			0.14		mg/kg		0-0.66	25-SEP-20

		Workorder: L2505807			Report Date: 30-SEP-20		Page 3 of 17	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-CL	Soil							
Batch R523714	40							
WG3412202-14 CR	VI	TILL-1						
Uranium (U)			106.6		%		70-130	25-SEP-20
Vanadium (V)			105.2		%		70-130	25-SEP-20
Zinc (Zn)			103.5		%		70-130	25-SEP-20
Zirconium (Zr)			0.7		mg/kg		0-1.8	25-SEP-20
WG3412202-9 CRM Aluminum (Al)	M	TILL-1	112.2		%		70-130	25-SEP-20
Antimony (Sb)			101.7		%		70-130	25-SEP-20
Arsenic (As)			105.6		%		70-130	25-SEP-20
Barium (Ba)			100.8		%		70-130	25-SEP-20
Beryllium (Be)			101.1		%		70-130	25-SEP-20
Bismuth (Bi)			101.9		%		70-130	25-SEP-20
Boron (B)			7.7		mg/kg		0-8.2	25-SEP-20
Cadmium (Cd)			106.0		%		70-130	25-SEP-20
Calcium (Ca)			109.0		%		70-130	25-SEP-20
Chromium (Cr)			109.8		%		70-130	25-SEP-20
Cobalt (Co)			106.7		%		70-130	25-SEP-20
Copper (Cu)			105.7		%		70-130	25-SEP-20
Iron (Fe)			106.3		%		70-130	25-SEP-20
Lead (Pb)			93.2		%		70-130	25-SEP-20
Lithium (Li)			97.7		%		70-130	25-SEP-20
Magnesium (Mg)			115.5		%		70-130	25-SEP-20
Manganese (Mn)			105.4		%		70-130	25-SEP-20
Molybdenum (Mo)			98.7		%		70-130	25-SEP-20
Nickel (Ni)			105.1		%		70-130	25-SEP-20
Phosphorus (P)			102.8		%		70-130	25-SEP-20
Potassium (K)			109.6		%		70-130	25-SEP-20
Selenium (Se)			0.32		mg/kg		0.11-0.51	25-SEP-20
Silver (Ag)			0.24		mg/kg		0.13-0.33	25-SEP-20
Sodium (Na)			114.2		%		70-130	25-SEP-20
Strontium (Sr)			117.4		%		70-130	25-SEP-20
Thallium (TI)			0.129		mg/kg		0.077-0.18	25-SEP-20
Tin (Sn)			1.0		mg/kg		0-3.1	25-SEP-20
Titanium (Ti)			123.4		%		70-130	25-SEP-20
Tungsten (W)			0.15		mg/kg		0-0.66	25-SEP-20

		Workorder: L2505807)7 Re	Report Date: 30-SEP-20		Page 4 of 17	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-CL	Soil							
Batch R52371	40							
WG3412202-9 CR	м	TILL-1						
Uranium (U)			98.7		%		70-130	25-SEP-20
Vanadium (V)			109.1		%		70-130	25-SEP-20
Zinc (Zn)			103.2		%		70-130	25-SEP-20
Zirconium (Zr)			0.7		mg/kg		0-1.8	25-SEP-20
WG3412202-10 DU Aluminum (Al)	Р	L2505807-3 4480	5330		ma/ka	17	40	25-SEP-20
Antimony (Sb)		0.34	0.35		ma/ka	28	40	25-3EF-20
Arsenic (As)		3.99	4 11		ma/ka	2.0	30	25-SEP-20
Barium (Ba)		91.9	96.3		ma/ka	2.1 A 7	40	25-SET -20
Bervllium (Be)		0.32	0.37		ma/ka	13	40 30	25-SEP-20
Bismuth (Bi)		<0.20	<0.20		ma/ka	Ν/Δ	30	25-SEP-20
Boron (B)		7.5	8.2		ma/ka	9.1	30	25-SEP-20
Cadmium (Cd)		0.403	0.432		ma/ka	7.0	30	25-SEP-20
Calcium (Ca)		49500	49000		ma/ka	1.0	30	25-SEP-20
Chromium (Cr)		11.4	12.9		mg/kg	12	30	25-SEP-20
Cobalt (Co)		2.61	2.74		mg/kg	4.9	30	25-SEP-20
Copper (Cu)		5.63	6.01		mg/kg	6.5	30	25-SEP-20
Iron (Fe)		8140	8740		mg/kg	7.0	30	25-SEP-20
Lead (Pb)		4.27	4.52		mg/kg	5.7	40	25-SEP-20
Lithium (Li)		5.8	6.7		mg/kg	14	30	25-SEP-20
Magnesium (Mg)		12900	11700		mg/kg	9.6	30	25-SEP-20
Manganese (Mn)		206	215		mg/kg	4.2	30	25-SEP-20
Molybdenum (Mo)		0.82	0.86		mg/kg	4.0	40	25-SEP-20
Nickel (Ni)		10.8	11.4		mg/kg	5.4	30	25-SEP-20
Phosphorus (P)		1150	1140		mg/kg	1.5	30	25-SEP-20
Potassium (K)		1120	1410		mg/kg	23	40	25-SEP-20
Selenium (Se)		0.44	0.48		mg/kg	8.6	30	25-SEP-20
Silver (Ag)		<0.10	<0.10	RPD-NA	mg/kg	N/A	40	25-SEP-20
Sodium (Na)		82	84		mg/kg	2.1	40	25-SEP-20
Strontium (Sr)		68.9	71.7		mg/kg	3.9	40	25-SEP-20
Sulfur (S)		<1000	<1000	RPD-NA	mg/kg	N/A	30	25-SEP-20
Thallium (Tl)		0.118	0.134		mg/kg	12	30	25-SEP-20
Tin (Sn)		<2.0	<2.0	RPD-NA	mg/kg	N/A	40	25-SEP-20
Titanium (Ti)		13.9	14.0		mg/kg	0.7	40	25-SEP-20

		Workorder: L2505807 R			eport Date: 3	80-SEP-20	Page 5 of 17		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
MET-200.2-CCMS-CL	Soil								
Batch R523714	40								
WG3412202-10 DUF	2	L2505807-3							
Tungsten (W)		<0.50	<0.50	RPD-NA	mg/kg	N/A	30	25-SEP-20	
Uranium (U)		0.860	0.865		mg/kg	0.6	30	25-SEP-20	
Vanadium (V)		22.1	26.0		mg/kg	16	30	25-SEP-20	
Zinc (Zn)		48.5	50.5		mg/kg	3.9	30	25-SEP-20	
Zirconium (Zr)		<1.0	<1.0	RPD-NA	mg/kg	N/A	30	25-SEP-20	
WG3412202-13 LCS Aluminum (Al)	5		101.9		%		80-120	25-SEP-20	
Antimony (Sb)			99.7		%		80-120	25-SEP-20	
Arsenic (As)			100.3		%		80-120	25-SEP-20	
Barium (Ba)			100.9		%		80-120	25-SEP-20	
Beryllium (Be)			98.3		%		80-120	25-SEP-20	
Bismuth (Bi)			104.6		%		80-120	25-SEP-20	
Boron (B)			89.4		%		80-120	25-SEP-20	
Cadmium (Cd)			100.3		%		80-120	25-SEP-20	
Calcium (Ca)			94.9		%		80-120	25-SEP-20	
Chromium (Cr)			100.9		%		80-120	25-SEP-20	
Cobalt (Co)			98.6		%		80-120	25-SEP-20	
Copper (Cu)			97.6		%		80-120	25-SEP-20	
Iron (Fe)			112.7		%		80-120	25-SEP-20	
Lead (Pb)			104.2		%		80-120	25-SEP-20	
Lithium (Li)			95.8		%		80-120	25-SEP-20	
Magnesium (Mg)			106.2		%		80-120	25-SEP-20	
Manganese (Mn)			97.3		%		80-120	25-SEP-20	
Molybdenum (Mo)			93.5		%		80-120	25-SEP-20	
Nickel (Ni)			99.1		%		80-120	25-SEP-20	
Potassium (K)			95.0		%		80-120	25-SEP-20	
Selenium (Se)			99.3		%		80-120	25-SEP-20	
Silver (Ag)			95.7		%		80-120	25-SEP-20	
Sodium (Na)			107.4		%		80-120	25-SEP-20	
Strontium (Sr)			98.3		%		80-120	25-SEP-20	
Sulfur (S)			102.9		%		80-120	25-SEP-20	
Thallium (TI)			98.6		%		80-120	25-SEP-20	
Tin (Sn)			98.5		%		80-120	25-SEP-20	
Titanium (Ti)			96.6		%		80-120	25-SEP-20	

		Workorder: L2505807			Report Date: 30-SEP-20		Page 6 of 17	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-CL	Soil							
Batch R523714	10							
WG3412202-13 LCS	i							
lungsten (W)			88.5		%		80-120	25-SEP-20
Uranium (U)			94.6		%		80-120	25-SEP-20
Vanadium (V)			101.4		%		80-120	25-SEP-20
Zinc (Zn)			95.3		%		80-120	25-SEP-20
Zirconium (Zr)			96.4		%		80-120	25-SEP-20
WG3412202-8 LCS Aluminum (Al)	i		106.1		%		80-120	25-SEP-20
Antimony (Sb)			103.6		%		80-120	25-SEP-20
Arsenic (As)			105.6		%		80-120	25-SEP-20
Barium (Ba)			103.6		%		80-120	25-SEP-20
Beryllium (Be)			100.7		%		80-120	25-SEP-20
Bismuth (Bi)			104.8		%		80-120	25-SEP-20
Boron (B)			98.4		%		80-120	25-SEP-20
Cadmium (Cd)			104.7		%		80-120	25-SEP-20
Calcium (Ca)			97.3		%		80-120	25-SEP-20
Chromium (Cr)			105.7		%		80-120	25-SEP-20
Cobalt (Co)			103.3		%		80-120	25-SEP-20
Copper (Cu)			103.3		%		80-120	25-SEP-20
Iron (Fe)			118.2		%		80-120	25-SEP-20
Lead (Pb)			105.4		%		80-120	25-SEP-20
Lithium (Li)			100.5		%		80-120	25-SEP-20
Magnesium (Mg)			112.0		%		80-120	25-SEP-20
Manganese (Mn)			103.2		%		80-120	25-SEP-20
Molybdenum (Mo)			98.1		%		80-120	25-SEP-20
Nickel (Ni)			103.0		%		80-120	25-SEP-20
Potassium (K)			100.9		%		80-120	25-SEP-20
Selenium (Se)			104.2		%		80-120	25-SEP-20
Silver (Ag)			99.0		%		80-120	25-SEP-20
Sodium (Na)			110.7		%		80-120	25-SEP-20
Strontium (Sr)			105.7		%		80-120	25-SEP-20
Sulfur (S)			105.1		%		80-120	25-SEP-20
Thallium (TI)			99.2		%		80-120	25-SEP-20
Tin (Sn)			100.9		%		80-120	25-SEP-20
Titanium (Ti)			101.0		%		80-120	25-SEP-20

	Workorder: L2505807		Report Date: 3	0-SEP-20	Page 7 of 17			
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-CL	Soil							
Batch R523714	10							
WG3412202-8 LCS	5							
Tungsten (VV)			90.1		%		80-120	25-SEP-20
Uranium (U)			95.2		%		80-120	25-SEP-20
Vanadium (V)			107.5		%		80-120	25-SEP-20
Zinc (Zn)			100.5		%		80-120	25-SEP-20
Zirconium (Zr)			101.0		%		80-120	25-SEP-20
WG3412202-11 MB Aluminum (Al)			<50		ma/ka		50	25-SEP-20
Antimony (Sb)			<0.10		ma/ka		0.1	25-SEP-20
Arsenic (As)			<0.10		ma/ka		0.1	25-SEP-20
Barium (Ba)			<0.50		ma/ka		0.1	25-SEP-20
Bervllium (Be)			<0.10		ma/ka		0.0	25-SEP-20
Bismuth (Bi)			<0.20		ma/ka		0.2	25-SEP-20
Boron (B)			<5.0		ma/ka		5	25-SEP-20
Cadmium (Cd)			<0.020		ma/ka		0.02	25-SEP-20
Calcium (Ca)			<50		mg/kg		50	25-SEP-20
Chromium (Cr)			<0.50		mg/kg		0.5	25-SEP-20
Cobalt (Co)			<0.10		mg/kg		0.1	25-SEP-20
Copper (Cu)			<0.50		mg/kg		0.5	25-SEP-20
Iron (Fe)			<50		mg/kg		50	25-SEP-20
Lead (Pb)			<0.50		mg/kg		0.5	25-SEP-20
Lithium (Li)			<2.0		mg/kg		2	25-SEP-20
Magnesium (Mg)			<20		mg/kg		20	25-SEP-20
Manganese (Mn)			<1.0		mg/kg		1	25-SEP-20
Molybdenum (Mo)			<0.10		mg/kg		0.1	25-SEP-20
Nickel (Ni)			<0.50		mg/kg		0.5	25-SEP-20
Phosphorus (P)			<50		mg/kg		50	25-SEP-20
Potassium (K)			<100		mg/kg		100	25-SEP-20
Selenium (Se)			<0.20		mg/kg		0.2	25-SEP-20
Silver (Ag)			<0.10		mg/kg		0.1	25-SEP-20
Sodium (Na)			<50		mg/kg		50	25-SEP-20
Strontium (Sr)			<0.50		mg/kg		0.5	25-SEP-20
Sulfur (S)			<1000		mg/kg		1000	25-SEP-20
Thallium (TI)			<0.050		mg/kg		0.05	25-SEP-20
Tin (Sn)			<2.0		mg/kg		2	25-SEP-20

		Workorder	: L250580)7	Report Date: 30-SEP-20		Page 8 of 17	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-200.2-CCMS-CL	Soil							
Batch R523714	10							
WG3412202-11 MB								
Titanium (Ti)			<1.0		mg/kg		1	25-SEP-20
Tungsten (W)			<0.50		mg/kg		0.5	25-SEP-20
Uranium (U)			<0.050		mg/kg		0.05	25-SEP-20
Vanadium (V)			<0.20		mg/kg		0.2	25-SEP-20
Zinc (Zn)			<2.0		mg/kg		2	25-SEP-20
Zirconium (Zr)			<1.0		mg/kg		1	25-SEP-20
WG3412202-6 MB								
Aluminum (Al)			<50		mg/kg		50	25-SEP-20
Antimony (Sb)			<0.10		mg/kg		0.1	25-SEP-20
Arsenic (As)			<0.10		mg/kg		0.1	25-SEP-20
Barium (Ba)			<0.50		mg/kg		0.5	25-SEP-20
Beryllium (Be)			<0.10		mg/kg		0.1	25-SEP-20
Bismuth (Bi)			<0.20		mg/kg		0.2	25-SEP-20
Boron (B)			<5.0		mg/kg		5	25-SEP-20
Cadmium (Cd)			<0.020		mg/kg		0.02	25-SEP-20
Calcium (Ca)			<50		mg/kg		50	25-SEP-20
Chromium (Cr)			<0.50		mg/kg		0.5	25-SEP-20
Cobalt (Co)			<0.10		mg/kg		0.1	25-SEP-20
Copper (Cu)			<0.50		mg/kg		0.5	25-SEP-20
Iron (Fe)			<50		mg/kg		50	25-SEP-20
Lead (Pb)			<0.50		mg/kg		0.5	25-SEP-20
Lithium (Li)			<2.0		mg/kg		2	25-SEP-20
Magnesium (Mg)			<20		mg/kg		20	25-SEP-20
Manganese (Mn)			<1.0		mg/kg		1	25-SEP-20
Molybdenum (Mo)			<0.10		mg/kg		0.1	25-SEP-20
Nickel (Ni)			<0.50		mg/kg		0.5	25-SEP-20
Phosphorus (P)			<50		mg/kg		50	25-SEP-20
Potassium (K)			<100		mg/kg		100	25-SEP-20
Selenium (Se)			<0.20		mg/kg		0.2	25-SEP-20
Silver (Ag)			<0.10		mg/kg		0.1	25-SEP-20
Sodium (Na)			<50		mg/kg		50	25-SEP-20
Strontium (Sr)			<0.50		mg/kg		0.5	25-SEP-20
Sulfur (S)			<1000		mg/kg		1000	25-SEP-20
Thallium (TI)			<0.050		mg/kg		0.05	25-SEP-20

Test Matrix Reference Result Qualifier Units RPD Limit Analyzed MET-200.2-CCMS-CL Soil Soil			Workorder: L2505807		7 R	Report Date: 30-SEP-20		Page 9 of 17	
MET-200.2-CCL Soil Batch R5237140 WG3412202-6 MB Tin (Sn) 20.0 mg/kg 2 25-SEP-20 Titanium (Ti)	Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
Batch R5237140 WG3412202-6 MB Tin (Sn <2.0	MET-200.2-CCMS-CL	Soil							
WG3412202-6 MB </th <th>Batch R52371</th> <th>40</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Batch R52371	40							
Tin (Sn) <2.0	WG3412202-6 MB								
Titanium (Ti) <1.0	Tin (Sn)			<2.0		mg/kg		2	25-SEP-20
Tungsten (W) <0.50	Titanium (Ti)			<1.0		mg/kg		1	25-SEP-20
Uranium (U) <0.050	Tungsten (W)			<0.50		mg/kg		0.5	25-SEP-20
Vanadium (V) <0.20	Uranium (U)			<0.050		mg/kg		0.05	25-SEP-20
Zinc (Zn) <2.0	Vanadium (V)			<0.20		mg/kg		0.2	25-SEP-20
Zirconium (Zr) <1.0 mg/kg 1 25-SEP-20 MOISTURE-CL Soil Batch R5238042	Zinc (Zn)			<2.0		mg/kg		2	25-SEP-20
MOISTURE-CL Soil Batch R5238042	Zirconium (Zr)			<1.0		mg/kg		1	25-SEP-20
Batch R5238042	MOISTURE-CL	Soil							
	Batch R52380	42							
WG3411562-3 DUP L2505807-1	WG3411562-3 DU	Р	L2505807-1						
Moisture 44.3 43.8 % 1.2 20 24-SEP-20	Moisture		44.3	43.8		%	1.2	20	24-SEP-20
WG3411562-2 LCS	WG3411562-2 LCS	5		00.0		0/			
Moisture 98.3 % 90-110 24-SEP-20	Moisture			98.3		%		90-110	24-SEP-20
WG3411562-1 MB Moisture <0.25 % 0.25 24-SEP-20	WG3411562-1 MB Moisture			<0.25		%		0.25	24-SEP-20
		Coll		\$0.20		70		0.25	24-3LF-20
	PAR-IND-R/A-M3-CL	3011							
Batch R5238377 WG3413082-2 DUP 12505907-1	Batch R52383	// P	1 2505807-1						
Acenaphthene <0.0050 <0.0050 RPD-NA mg/kg N/A 50 26-SEP-20	Acenaphthene		<0.0050	<0.0050	RPD-NA	mg/kg	N/A	50	26-SEP-20
Acenaphthylene <0.0050 <0.0050 RPD-NA mg/kg N/A 50 26-SEP-20	Acenaphthylene		<0.0050	<0.0050	RPD-NA	mg/kg	N/A	50	26-SEP-20
Anthracene <0.0040 <0.0040 RPD-NA mg/kg N/A 50 26-SEP-20	Anthracene		<0.0040	<0.0040	RPD-NA	mg/kg	N/A	50	26-SEP-20
Acridine <0.010 <0.010 RPD-NA mg/kg N/A 50 26-SEP-20	Acridine		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	26-SEP-20
Benz(a)anthracene <0.010 <0.010 RPD-NA mg/kg N/A 50 26-SEP-20	Benz(a)anthracene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	26-SEP-20
Benzo(a)pyrene <0.010 <0.010 RPD-NA mg/kg N/A 50 26-SEP-20	Benzo(a)pyrene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	26-SEP-20
Benzo(b&j)fluoranthene 0.015 0.020 mg/kg 32 50 26-SEP-20	Benzo(b&j)fluoranthe	ene	0.015	0.020		mg/kg	32	50	26-SEP-20
Benzo(e)pyrene 0.014 0.017 mg/kg 15 50 26-SEP-20	Benzo(e)pyrene		0.014	0.017		mg/kg	15	50	26-SEP-20
Benzo(g,h,i)perylene <0.010 <0.010 RPD-NA mg/kg N/A 50 26-SEP-20	Benzo(g,h,i)perylene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	26-SEP-20
Benzo(k)fluoranthene <0.010 <0.010 RPD-NA mg/kg N/A 50 26-SFP-20	Benzo(k)fluoranthene	Э	<0.010	<0.010	RPD-NA	mg/kg	N/A	50	26-SEP-20
Chrysene 0.035 0.041 mg/kg 16 50 26-SEP-20	Chrysene		0.035	0.041		mg/kg	16	50	26-SEP-20
Dibenz(a,h)anthracene <0.0050 <0.0050 RPD-NA mg/kg N/A 50 26-SEP-20	Dibenz(a,h)anthracer	ne	<0.0050	<0.0050	RPD-NA	mg/kg	N/A	50	26-SEP-20
Fluoranthene <0.010 <0.010 RPD-NA mg/kg N/A 50 26-SEP-20	Fluoranthene		<0.010	<0.010	RPD-NA	mg/ka	N/A	50	26-SEP-20
Fluorene <0.010 <0.010 RPD-NA ma/ka N/A 50 26-SEP-20	Fluorene		<0.010	<0.010	RPD-NA	mg/ka	N/A	50	26-SEP-20
Indeno(1.2,3-c,d)pyrene <<0.010 <0.010 RPD-NA ma/ka N/A 50 26-SEP-20	Indeno(1.2.3-c.d)pvre	ene	<0.010	<0.010	RPD-NA	mg/ka	N/A	50	26-SEP-20
2-Methylnaphthalene 0.038 0.051 mg/kg 28 50 26-SEP-20	2-Methylnaphthalene		0.038	0.051		mg/ka	28	50	26-SEP-20
Naphthalene 0.021 0.026 mg/kg 21 50 26-SEP-20	Naphthalene		0.021	0.026		mg/ka	20	50	26-SEP-20

		Workorder: L2505807 R			eport Date: 3	0-SEP-20	Page 10 of 17	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-H/A-MS-CL	Soil							
Batch R5238377								
WG3413082-2 DUP		L2505807-1						
Perylene		0.012	0.014		mg/kg	15	50	26-SEP-20
Phenanthrene		0.078	0.093		mg/kg	18	50	26-SEP-20
Pyrene		<0.010	<0.010	RPD-NA	mg/kg	N/A	50	26-SEP-20
1-Methylnaphthalene		<0.050	<0.050	RPD-NA	mg/kg	N/A	50	26-SEP-20
Quinoline		<0.050	<0.050	RPD-NA	mg/kg	N/A	50	26-SEP-20
WG3413082-3 IRM Acenaphthene		ALS PAH RM	102.6		%		60-130	26-SEP-20
Acenaphthylene			110.5		%		60-130	26-SEP-20
Anthracene			111.9		%		60-130	26-SEP-20
Acridine			104.0		%		60-130	26-SEP-20
Benz(a)anthracene			99.4		%		60-130	26-SEP-20
Benzo(a)pyrene			95.1		%		60-130	26-SEP-20
Benzo(b&j)fluoranthene			93.6		%		60-130	26-SEP-20
Benzo(e)pyrene			100.5		%		60-130	26-SEP-20
Benzo(g,h,i)perylene			90.7		%		60-130	26-SEP-20
Benzo(k)fluoranthene			82.0		%		60-130	26-SEP-20
Chrysene			98.8		%		60-130	26-SEP-20
Dibenz(a,h)anthracene			92.5		%		60-130	26-SEP-20
Fluoranthene			93.8		%		60-130	26-SEP-20
Fluorene			97.9		%		60-130	26-SEP-20
Indeno(1,2,3-c,d)pyrene			114.6		%		60-130	26-SEP-20
2-Methylnaphthalene			92.2		%		60-130	26-SEP-20
Naphthalene			97.3		%		50-130	26-SEP-20
Perylene			93.2		%		60-130	26-SEP-20
Phenanthrene			96.5		%		60-130	26-SEP-20
Pyrene			95.9		%		60-130	26-SEP-20
1-Methylnaphthalene			91.3		%		60-130	26-SEP-20
WG3413082-5 IRM		ALS PAH RM	2					
Acenaphthene			102.8		%		60-130	26-SEP-20
Acenaphthylene			112.1		%		60-130	26-SEP-20
Anthracene			112.4		%		60-130	26-SEP-20
Acridine			101.8		%		60-130	26-SEP-20
Benz(a)anthracene			99.5		%		60-130	26-SEP-20
Benzo(a)pyrene			93.4		%		60-130	26-SEP-20
Benzo(b&j)fluoranthene			93.3		%		60-130	26-SEP-20

		Workorder: L2505807			Report Date: 30-SEP-20		Page 11 of 17	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-H/A-MS-CL	Soil							
Batch R5238377								
WG3413082-5 IRM		ALS PAH R	/ 12					
Benzo(e)pyrene			99.6		%		60-130	26-SEP-20
Benzo(g,h,i)perylene			88.7		%		60-130	26-SEP-20
Benzo(k)fluoranthene			89.9		%		60-130	26-SEP-20
Chrysene			99.9		%		60-130	26-SEP-20
Dibenz(a,h)anthracene			86.7		%		60-130	26-SEP-20
Fluoranthene			94.7		%		60-130	26-SEP-20
Fluorene			97.0		%		60-130	26-SEP-20
Indeno(1,2,3-c,d)pyrene	9		108.7		%		60-130	26-SEP-20
2-Methylnaphthalene			94.1		%		60-130	26-SEP-20
Naphthalene			101.2		%		50-130	26-SEP-20
Perylene			89.0		%		60-130	26-SEP-20
Phenanthrene			96.6		%		60-130	26-SEP-20
Pyrene			96.2		%		60-130	26-SEP-20
1-Methylnaphthalene			93.0		%		60-130	26-SEP-20
WG3413082-9 IRM		ALS PAH R	//2		0/		CO 400	
Acenaphthelene			09.7 102.0		78		60-130	26-SEP-20
Acenaphthylene			102.9		%		60-130	26-SEP-20
Anthracene			105.1		%		60-130	26-SEP-20
Acriaine			99.5		%		60-130	26-SEP-20
Benz(a)anthracene			92.7		%		60-130	26-SEP-20
Benzo(a)pyrene			89.1		%		60-130	26-SEP-20
Benzo(b&j)fluoranthene			87.4		%		60-130	26-SEP-20
Benzo(e)pyrene			93.7		%		60-130	26-SEP-20
Benzo(g,h,i)perylene			80.0		%		60-130	26-SEP-20
Benzo(k)fluoranthene			69.2		%		60-130	26-SEP-20
Chrysene			89.3		%		60-130	26-SEP-20
Dibenz(a,h)anthracene			77.6		%		60-130	26-SEP-20
Fluoranthene			84.8		%		60-130	26-SEP-20
Fluorene			86.5		%		60-130	26-SEP-20
Indeno(1,2,3-c,d)pyrene	9		105.8		%		60-130	26-SEP-20
2-Methylnaphthalene			83.9		%		60-130	26-SEP-20
Naphthalene			84.9		%		50-130	26-SEP-20
Perylene			95.5		%		60-130	26-SEP-20
Phenanthrene			87.9		%		60-130	26-SEP-20

		Workorder: L2505807			Report Date: 30-SEP-20		Page 12 of 17	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-H/A-MS-CL	Soil							
Batch R5238377								
WG3413082-9 IRM		ALS PAH RI	/12					
Pyrene			86.7		%		60-130	26-SEP-20
1-Methylnaphthalene			80.2		%		60-130	26-SEP-20
WG3413082-10 LCS			100.3		%		60-130	26-SEP-20
Acenaphthylene			91.6		%		60-130	26-SEP-20
Anthracene			90.2		%		60-130	26-SEP-20
Acridine			87.5		%		60-130	26-SEP-20
Benz(a)anthracene			98.6		%		60-130	26-SEP-20
Benzo(a)pyrene			89.5		%		60-130	26-SEP-20
Benzo(b&i)fluoranthene	•		97.8		%		60-130	26-SEP-20
Benzo(e)pyrene			96.5		%		60-130	26-SEP-20
Benzo(a,h,i)pervlene			87.1		%		60-130	26-SEP-20
Benzo(k)fluoranthene			90.2		%		60-130	26-SEP-20
Chrysene			93.2		%		60-130	26-SEP-20
Dibenz(a,h)anthracene			87.2		%		60-130	26-SEP-20
Fluoranthene			93.7		%		60-130	26-SEP-20
Fluorene			92.4		%		60-130	26-SEP-20
Indeno(1,2,3-c,d)pyrene	9		100.6		%		60-130	26-SEP-20
2-Methylnaphthalene			97.4		%		60-130	26-SEP-20
Naphthalene			102.0		%		50-130	26-SEP-20
Perylene			90.5		%		60-130	26-SEP-20
Phenanthrene			99.3		%		60-130	26-SEP-20
Pyrene			97.8		%		60-130	26-SEP-20
1-Methylnaphthalene			95.4		%		60-130	26-SEP-20
Quinoline			90.7		%		60-130	26-SEP-20
WG3413082-4 LCS								
Acenaphthene			105.8		%		60-130	26-SEP-20
Acenaphthylene			102.6		%		60-130	26-SEP-20
Anthracene			102.1		%		60-130	26-SEP-20
Acridine			93.8		%		60-130	26-SEP-20
Benz(a)anthracene			106.1		%		60-130	26-SEP-20
Benzo(a)pyrene			97.2		%		60-130	26-SEP-20
Benzo(b&j)fluoranthene			102.0		%		60-130	26-SEP-20
Benzo(e)pyrene			105.7		%		60-130	26-SEP-20
Benzo(g,h,i)perylene			95.9		%		60-130	26-SEP-20

		Workorder: L2505807			Report Date: 3	30-SEP-20	Page 13 of 17		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
PAH-TMB-H/A-MS-CL	Soil								
Batch R5238377									
WG3413082-4 LCS									
Benzo(k)fluoranthene			102.2		%		60-130	26-SEP-20	
Chrysene			101.8		%		60-130	26-SEP-20	
Dibenz(a,h)anthracene			94.7		%		60-130	26-SEP-20	
Fluoranthene			102.5		%		60-130	26-SEP-20	
Fluorene			100.0		%		60-130	26-SEP-20	
Indeno(1,2,3-c,d)pyrene	e		106.3		%		60-130	26-SEP-20	
2-Methylnaphthalene			103.2		%		60-130	26-SEP-20	
Naphthalene			111.5		%		50-130	26-SEP-20	
Perylene			97.9		%		60-130	26-SEP-20	
Phenanthrene			106.7		%		60-130	26-SEP-20	
Pyrene			105.6		%		60-130	26-SEP-20	
1-Methylnaphthalene			104.4		%		60-130	26-SEP-20	
Quinoline			97.6		%		60-130	26-SEP-20	
WG3413082-6 LCS									
Acenaphthene			125.1		%		60-130	26-SEP-20	
Acenaphthylene			115.0		%		60-130	26-SEP-20	
Anthracene			110.9		%		60-130	26-SEP-20	
Acridine			109.7		%		60-130	26-SEP-20	
Benz(a)anthracene			121.5		%		60-130	26-SEP-20	
Benzo(a)pyrene			110.3		%		60-130	26-SEP-20	
Benzo(b&j)fluoranthene	•		118.8		%		60-130	26-SEP-20	
Benzo(e)pyrene			119.7		%		60-130	26-SEP-20	
Benzo(g,h,i)perylene			108.8		%		60-130	26-SEP-20	
Benzo(k)fluoranthene			113.1		%		60-130	26-SEP-20	
Chrysene			116.3		%		60-130	26-SEP-20	
Dibenz(a,h)anthracene			108.9		%		60-130	26-SEP-20	
Fluoranthene			117.7		%		60-130	26-SEP-20	
Fluorene			115.1		%		60-130	26-SEP-20	
Indeno(1,2,3-c,d)pyrene	e		114.3		%		60-130	26-SEP-20	
2-Methylnaphthalene			120.5		%		60-130	26-SEP-20	
Naphthalene			122.7		%		50-130	26-SEP-20	
Perylene			114.6		%		60-130	26-SEP-20	
Phenanthrene			123.8		%		60-130	26-SEP-20	
Pyrene			121.6		%		60-130	26-SEP-20	

			Workorder: L2505807			Report Date: 30-SEP-20		Page 14 of 17	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed	
PAH-TMB-H/A-MS-CL	Soil								
Batch R52383	77								
WG3413082-6 LC	S								
	•		119.7		%		60-130	26-SEP-20	
Quinoline			113.2		%		60-130	26-SEP-20	
WG3413082-1 MB			~0 0050		ma/ka		0.005	25 SED 20	
Acenaphthylene			<0.0050		mg/kg		0.005	20-3EF-20	
Anthracene			<0.0030		mg/kg		0.005	25-SEP-20	
Acridine			<0.0040		mg/kg		0.004	25-SEP-20	
Renz(a)anthracene			<0.010		mg/kg		0.01	20-3EF-20	
Benzo(a)pyrene			<0.010		mg/kg		0.01	20-3EF-20	
Benzo(b&i)fluoranthe	ne		<0.010		mg/kg		0.01	20-3EF-20	
Benzo(e)pyrene			<0.010		mg/kg		0.01	25-3LF-20	
Benzo(a h i)pervlene			<0.010		mg/kg		0.01	25-3EF-20	
Benzo(k)fluoranthene	<u>a</u>		<0.010		mg/kg		0.01	25-3LF-20	
Chrysene	-		<0.010		mg/kg		0.01	25-SEP-20	
Dibenz(a,h)anthrace	ne		<0.0050		ma/ka		0.005	25-SEP-20	
Fluoranthene			< 0.010		ma/ka		0.01	25-SEP-20	
Fluorene			< 0.010		ma/ka		0.01	25-SEP-20	
Indeno(1.2.3-c.d)pyre	ene		<0.010		ma/ka		0.01	25-SEP-20	
2-Methylnaphthalene	•		<0.010		mg/kg		0.01	25-SEP-20	
Naphthalene			<0.010		mg/kg		0.01	25-SEP-20	
Perylene			<0.010		mg/kg		0.01	25-SEP-20	
Phenanthrene			<0.010		mg/kg		0.01	25-SEP-20	
Pyrene			<0.010		mg/kg		0.01	25-SEP-20	
1-Methylnaphthalene	•		<0.050		mg/kg		0.05	25-SEP-20	
Quinoline			<0.050		mg/kg		0.05	25-SEP-20	
Surrogate: d8-Napht	halene		98.9		%		50-130	25-SEP-20	
Surrogate: d10-Acen	aphthene		101.0		%		60-130	25-SEP-20	
Surrogate: d10-Phen	anthrene		99.0		%		60-130	25-SEP-20	
Surrogate: d12-Chrys	sene		106.6		%		60-130	25-SEP-20	
WG3413082-7 MB									
Acenaphthene			<0.0050		mg/kg		0.005	26-SEP-20	
Acenaphthylene			<0.0050		mg/kg		0.005	26-SEP-20	
Anthracene			<0.0040		mg/kg		0.004	26-SEP-20	
Acridine			<0.010		mg/kg		0.01	26-SEP-20	
Benz(a)anthracene			<0.010		mg/kg		0.01	26-SEP-20	

		Workorder: L2505807			Report Date: 30-SEP-20		Page 15 of 17	
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-H/A-MS-CL	Soil							
Batch R52383	77							
WG3413082-7 MB	•							
Benzo(a)pyrene			<0.010		mg/kg		0.01	26-SEP-20
Benzo(b&j)fluoranthe	ene		<0.010		mg/kg		0.01	26-SEP-20
Benzo(e)pyrene			<0.010		mg/kg		0.01	26-SEP-20
Benzo(g,h,ı)perylene			<0.010		mg/kg		0.01	26-SEP-20
Benzo(k)fluoranthene	e		<0.010		mg/kg		0.01	26-SEP-20
Chrysene			<0.010		mg/kg		0.01	26-SEP-20
Dibenz(a,h)anthracer	ne		<0.0050		mg/kg		0.005	26-SEP-20
Fluoranthene			<0.010		mg/kg		0.01	26-SEP-20
Fluorene			<0.010		mg/kg		0.01	26-SEP-20
Indeno(1,2,3-c,d)pyre	ene		<0.010		mg/kg		0.01	26-SEP-20
2-Methylnaphthalene	•		<0.010		mg/kg		0.01	26-SEP-20
Naphthalene			<0.010		mg/kg		0.01	26-SEP-20
Perylene			<0.010		mg/kg		0.01	26-SEP-20
Phenanthrene			<0.010		mg/kg		0.01	26-SEP-20
Pyrene			<0.010		mg/kg		0.01	26-SEP-20
1-Methylnaphthalene)		<0.050		mg/kg		0.05	26-SEP-20
Quinoline			<0.050		mg/kg		0.05	26-SEP-20
Surrogate: d8-Naphtl	halene		104.4		%		50-130	26-SEP-20
Surrogate: d10-Acen	aphthene		108.2		%		60-130	26-SEP-20
Surrogate: d10-Phen	anthrene		101.6		%		60-130	26-SEP-20
Surrogate: d12-Chrys	sene		110.0		%		60-130	26-SEP-20
PH-1:2-CL	Soil							
Batch R52386	76							
WG3412993-12 DU	Р	L2505807-15 8 29	8.30		На	0.01	0.2	26-SEP-20
WG3412993-11 IRM	Λ	SAL-STD10	0.00	5	p.,	0.01	0.2	20-3LF-20
pH (1:2 soil:water)		0/12 01210	7.73		рН		7.4-8	26-SEP-20
WG3412993-8 IRM pH (1:2 soil:water)	Λ	SAL-STD10	7.70		pН		7.4-8	26-SEP-20
WG3412993-10 LC3 pH (1:2 soil:water)	S		7.00		pH		6.8-7.2	26-SEP-20
WG3412993-7 LC3 pH (1:2 soil:water)	S		7.01		pН		6.8-7.2	26-SEP-20
PSA-PIPET-DETAIL-SK	Soil							

PSA-PIPET-DETAIL-SK

		Workorder:	L250580)7 Re	eport Date: 3	30-SEP-20	Pag	ge 16 of 17
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PSA-PIPET-DETAIL-SP	(Soil							
Batch R52414	413							
WG3412293-1 DL % Gravel (>2mm)	JP	L2505807-13 <1.0	<1.0	RPD-NA	%	N/A	5	28-SEP-20
% Sand (2.00mm - 1	1.00mm)	1.1	1.5	J	%	0.4	5	28-SEP-20
% Sand (1.00mm - (0.50mm)	20.8	23.0	J	%	2.1	5	28-SEP-20
% Sand (0.50mm - (0.25mm)	54.0	53.8	J	%	0.2	5	28-SEP-20
% Sand (0.25mm - (0.125mm)	14.3	12.5	J	%	1.8	5	28-SEP-20
% Sand (0.125mm -	0.063mm)	3.5	3.0	J	%	0.4	5	28-SEP-20
% Silt (0.063mm - 0	.0312mm)	2.5	2.4	J	%	0.1	5	28-SEP-20
% Silt (0.0312mm -	0.004mm)	2.6	2.6	J	%	0.0	5	28-SEP-20
% Clay (<4um)		1.1	1.1	J	%	0.0	5	28-SEP-20
WG3412293-2 IR	M 1.00mm)	2017-PSA	2.7		%		0-7.6	28-SFP-20
% Sand (1.00mm - (0.50mm)		4.1		%		0-8.9	28-SEP-20
% Sand (0.50mm - (0.25mm)		9.8		%		5.3-15.3	28-SEP-20
% Sand (0.25mm - (0.125mm)		13.9		%		10-20	28-SEP-20
% Sand (0.125mm -	- 0.063mm)		12.2		%		7.3-17.3	28-SEP-20
% Silt (0.063mm - 0	.0312mm)		15.9		%		9.9-19.9	28-SEP-20
% Silt (0.0312mm -	0.004mm)		22.8		%		17.6-27.6	28-SEP-20
% Clay (<4um)			18.5		%		13.4-23.4	28-SEP-20
Batch R5242	117							
WG3412291-2 IR	M	2017-PSA						
% Sand (2.00mm - 7	1.00mm)		2.5		%		0-7.6	29-SEP-20
% Sand (1.00mm - 0	0.50mm)		3.8		%		0-8.9	29-SEP-20
% Sand (0.50mm - (0.25mm)		9.9		%		5.3-15.3	29-SEP-20
% Sand (0.25mm - 0	0.125mm)		14.9		%		10-20	29-SEP-20
% Sand (0.125mm -	- 0.063mm)		13.1		%		7.3-17.3	29-SEP-20
% Silt (0.063mm - 0	.0312mm)		14.6		%		9.9-19.9	29-SEP-20
% Silt (0.0312mm -	0.004mm)		22.4		%		17.6-27.6	29-SEP-20
% Clay (<4um)			18.7		%		13.4-23.4	29-SEP-20

Workorder: L2505807

Report Date: 30-SEP-20

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

IECK		0110	LADA	<u> </u>	2020		THEN	ROUNT) TIME.	T						[
	COC ID:	GHO	LAEMP	Sept	2020		TURNA	KOUNI	JIIME:	PATORVA	AREA DOLLAR WARE		CTPL INCH						
The Name	REP	<u> - 1996 51</u>	L	ıb Name	ALS Calga				Sector and				Excel	PDF	EDD				
Facility Name	me KEF							Contact	Lyudmyla S	shvets					calt good@ie	ck.com	x	r	x
Froject Manager	cait.good@teck.g	com						Email	lyudmyla.	hvets@alsglo	bal.com				teckcoal@eq	uisonline.com		1. A.	x
Address	421 Pine Avenue							Address	2559 29 St	eet NE					Jings@minne	w.ca	x, j	x	x.
												-			carlie meyer	Oteck.com	×	x	x
City		Sparwood	Province BC				City	Calgary		Province	AB			jtoster@min	now ca	ix	x	a	
Postal Code		V0B 2G0			Country Can	ada	Pos	tal Code	T1Y 7B5		Country	Canada			DO		20000		
Phone Number	250-425-8202		CR. Manurer allered			made a content	Phone Phone	Number	1 403 407	794	Turne and	UDOTE: N		100 m (200	POR	umber: 6	\$9999		
		SAMPLE DETAI	LSP 14						ALL DESCRIPTION OF	ANA	LYSIS REQU	UESIED/	Canada and			s elimente - F: Shati e Care		C PLC Field &	
				1					ž N	N	N	N	N,		Jane 1				
•										A DECEMBER OF		Easter.			State e	1997 - Salta			
									NONE	NONE	NONE	NONE	NONE	and the second	al La ba	Without		a see ha	49
		i an		<u>_</u>					HE			146.4							14.6
		AL ADI A II I II II A AN AN		No.								×.	699997.32998 L	1.16.000	<u> </u>				
L2	505807-CC	DFC		Ľ					<u>.</u>	ರ		L.S.	ラ						
				rial	1					JLL	~ ~	LAL	MS.			1			
				late		[YEIS	L H	5	DE	-V					ŀ	1
				N N					K K	ME	RE	ET-							
				nop					C-S		TU	PIPI Le S	M						
			Field	Izar		Time	G≃Grab	# Of	Ĩ	ET.	OIS	I-Tic	H'H'					1	
Sample ID		Sample Location	Matrix	Ĥ	Date	(24hr)	C=Comp	Cont.	<u>ు</u>	<u> </u>	<u> XX</u>	<u> </u>	22		<u> </u>		<u> </u>		
G_ELUGH_SE-1-2020-09-17-0911		RG_ELUGH	SE	No	9/17/2020	9:11	G	2	X	X	X	x	<u>x</u>	 		 		 	<u> </u>
ELUGH_SE-2-2020-09-17-1040		RG_ELUGH	SE	No	9/17/2020	10:40	G	2	X	x	X	x	x					<u> </u>	<u> </u>
_ELUGH_SE-3-2020-09-17-1220		RG_ELUGH	SE	No	9/17/2020	12:20	G	2	X	x	х	x	×					-	
G_GH-SCW3_SE-1-2020-09-13-1610	·····	RG_GH-SCW3	SE	No	9/13/2020	16:10	G	2	x	x	x	x	x						<u> </u>
GH-SCW3_SE-2-2020-09-13-1620		RG_GH-SCW3	SE	No	9/13/2020	16:20	G	2	x x	x	x	x	x]	
G_GH-SCW3_SE-3-2020-09-13-1630		RG_GH-SCW3	SE	No	9/13/2020	16:30	G	2	x	x	x	x	х						
GH-SCW3 SE-4-2020-09-16-1500		RG_GH-SCW3	SE	No	9/16/2020	15:00	G	2	x	x	x	x	x						
GH_SCW3_SE_5_2020_09_16_1515		RG GH-SCW3	SE	Nő	9/16/2020	15:15	G	2	x	x	x	x	x				-		
E 1 20 SE 1 2020 09 15 1244		RG EL20	SE	No	9/15/2020	12:44	G	2	x	x	x	x	x		-				
					0/16/2020	0.55	G		t v	v	v	x	x						
j_EL20_SE-2-2020-09-16-0855		KG_612V	36	INU	9/10/2020	8.33	0	2									· · · · · ·	1	
3_EL20_SE-3-2020-09-16-1040		RG_EL20	SE	No	9/16/2020	10:40	G	2	X	X	X		X						
]_EL20_SE-4-2020-09-16-1250		RG_EL20	SE	No	9/16/2020	12:50	G	2		X	X		x						
3_EL20_SE-5-2020-09-16-1353		RG RIVER	SE	No No	9/16/2020	13:55	G	2		X	x	x	x						
RIVER SE-5-2020-09-17-1040		RG_RIVER	SE	No	17-Sep-20	10:40	G	2	$\frac{x}{x}$	x	x	x	x						
				No.	· · · · · · · · · · · · · · · · · · ·												ļ		-
									ſ <u></u>										ļ
				and a					<u></u>										
· · · · ·				and the second s						-		<u> </u>		<u> </u>				<u> </u>	
ADDITIONAL	OMMENTERD	CIAL INSTRUCTIONS			RELINQUISH	D BY/AFF	ILIATION	98 9 7 7	DATE/TIN		GARAAC	CEPTED	BY/AF4	LIATIO		1.0			
The state of the s	SAUGUEAU STOL		and a provide the second s		Jen	nifer Ings			Septem	ber 18, 2020			h.			(2/		ΔI
		·							1	DR		-			110	19 00			
											1								
NROFRO	TIRCOPTION	EDIDESCEDERIZON		att hel		a trach	ar at					il gift i d							
	ALL ALL ALL LOAL	Reonla	r (default) x		Samplar's Nor	10		in the second	Jennifer	Ings		Mol	bile #	Γ		519-50	0-3444		~
			مشترع مشتحدت	7	- sampier's Man	u¢.	1 2000 1 100	1.	SCHIMICI	67	· 潮行 (認知)。	si		1					

- -

APPENDIX I BIOLOGICAL TRIGGERS

0

- >

APPENDIX I BIOLOGICAL TRIGGERS

11	INTRODUCTION	1
11.1	Background	1
12	METHODS	2
I2.1	Overview	2
12.2	Percent EPT	2
12.3	Benthic Invertebrate Tissue Selenium (BIT Se)	3
13	RESULTS	4
13.1	Percent EPT	4
13.2	Benthic Invertebrate Tissue Selenium (BIT Se)	4
14	SUMMARY	5
15	REFERENCES	6

I1 INTRODUCTION

I1.1 Background

Biological triggers for potential monitoring and management action are required as part of Teck's Adaptive Management Plan (AMP; Teck 2018). Generally, triggers are intended as a simple way to identify potential unexpected monitoring results that may require management action. Additionally, information provided from the analysis of biological triggers may lead to responses under the AMP response framework if necessary, and as such would be reported within the annual AMP report. Draft biological triggers were developed in the 2018 AMP (Teck 2018) under Management Question 5 for three measurement endpoints:

- Percent EPT (% EPT; Ephemeroptera, Plecoptera, and Trichoptera) based on travelling kick samples (CABIN protocol), generally three replicates per location per sampling event.
- Benthic invertebrate tissue selenium (BIT Se) generally several replicates collected per location per sampling event, where each replicate is a composite sample of invertebrates.
- Westslope cutthroat trout muscle tissue selenium (WCT Se) generally 8 replicates collected per location per sampling event, where each replicate corresponds to a sample from a single fish.

These three endpoints are evaluated (where data are available) in other sections of the Local Aquatic Effects Monitoring Program (LAEMP) and the Regional Aquatic Effects Monitoring Program (RAEMP) reports, and therefore there is some degree of redundancy in the analysis of biological triggers. Data collected during the RAEMP is incorporated into the aquatic data integration tool (ADIT), which together is used to characterize the state of the aquatic environment. Biological trigger analyses are not identical to the evaluations in the LAEMP, RAEMP and, by extension, the ADIT, and are expected to be complementary to these other analyses. The methods applied for biological trigger analyses in this report reflect refinements made in consultation with the EMC since the draft triggers were developed in the 2018 AMP (Teck 2018). The 2020 GHO LAEMP represents the first time that biological triggers have been evaluated and reported (i.e., implemented) in LAEMP reports. Through future iterative biological trigger evaluations, the process and/or biological triggers may adjust over time.

I2 METHODS

I2.1 Overview

As outlined in Section I1.1, analyses for biological triggers are meant to be complementary to other analyses conducted in the LAEMPs and RAEMP. For the 2020 GHO LAEMP, biological trigger analyses only included two of the three measurement endpoints (% EPT and BIT Se) since fish tissue sampling was not conducted, as per the GHO LAEMP study design.

For the purpose of application of the biological triggers, expectations for the endpoints evaluated (both the % EPT and BIT Se for the 2020 GHO LAEMP) were based on projected water quality, not on measured water quality. Thus, the triggers should detect biological results that were unexpected, regardless of whether those results are due to unexpected water quality or due to unexpected relationships between water quality and biological endpoints. Biological triggers were therefore only applied at locations where water quality projections were available¹. Specifically, two of the mine-exposed areas (RG_THCK and GH_ERC) included in the 2020 GHO LAEMP were evaluated for biological trigger events. Data for other areas studied under the GHO LAEMP (GH_ER2, GH_ERSC4, GH_ER1A, GH_ERSC5, RG_GH-SCW3, GH_ERSC2, and RG_SCDTC) were not available to be evaluated relative to biological triggers but were assessed elsewhere as part of the main 2020 GHO LAEMP report.

Methodological details are discussed for each of the biological trigger metrics below.

I2.2 Percent EPT

Data for percent EPT were compared to:

- Normal range: The lower limit of habitat-adjusted normal range (2.5th percentile).
- Expectations: The % EPT corresponding to the predicted ADIT score. The predicted ADIT scores correspond to potential effects on benthic invertebrate community (BIC) endpoints, based on relationships between water quality projections (for nitrate, sulphate and cadmium)² and invertebrate toxicity endpoints originally developed for the EVWQP (Teck 2014). A predicted ADIT score of 3 corresponds to 50% or greater

¹ Biological triggers have not been developed for lentic habitats, because water quality projections are not generally available for lentic locations. For two of the three endpoints (BIT Se and WCT Se; % EPT not relevant in lentic areas), if projections become available for lentic habitats then triggers could be developed in future, using the available lentic bioaccumulation model from water to invertebrates (updated in 2020), and the invertebrate to fish bioaccumulation model (which should be applicable to both lotic and lentic habitats).

² Notes: (a) Selenium not included because selenium effects on BIC endpoints were not expected. (b) Projections were based on the highest maximum monthly mean across all flow scenarios (low, average, high).

effects to reproduction of the water flea Ceriodaphnia dubia, 2 corresponds to 20 to 50% effects, 1 corresponds to 10 to 20% effects, and 0 corresponds to effect levels of 10% or less. Predicted % EPT values are then converted into a value against which the measured % EPT values can be compared as follows: An ADIT score of 0 corresponds to expected % EPT \geq the 10th percentile of the habitat-adjusted normal range; an ADIT score of 1 corresponds to expected % EPT between the 10th percentile and the 2.5th percentile of the habitat-adjusted normal range (and is therefore identical in application to the lower limit of normal range); an ADIT score of 2 corresponds to expected % EPT between the 2.5th percentile and half of the 2.5th percentile of the habitat-adjusted normal range; finally, an ADIT score of 3 corresponds to expected % EPT \leq half of the 2.5th percentile and \geq 0. Individual replicate habitat-adjusted normal ranges were used at each location for establishing the % EPT limits associated with each ADIT score. In summary, this component of the biological trigger for % EPT asks whether the measured ADIT score --calculated based on measured % EPT relative to normal ranges- is greater than the ADIT score that was predicted based on water quality projections.

Benthic invertebrate community data for % EPT collected in September for the 2020 GHO LAEMP were included in the biological trigger analysis.

I2.3 Benthic Invertebrate Tissue Selenium (BIT Se)

Data for BIT Se were compared to:

- Normal range: The upper limit of regional normal range (97.5th percentile).
- Expectations: The upper limit of the 95% prediction interval based on the water to BIT bioaccumulation model. The model was originally developed in the EVWQP (Golder 2014) was updated (Golder 2020) and the updated best fit relationship is $log_{10}[Se]_{inv} = 0.720 + 0.071 \times log_{10}[Se]_{aq}$. Prediction intervals were estimated for BIT Se for individual replicates, taking into account that the data points for the original model were based on geometric means rather than individual replicates (Azimuth 2021, In Preparation).

Benthic invertebrate tissue selenium data collected in September for the 2020 GHO LAEMP were included in the biological trigger analysis.

Although effects benchmarks are not part of the trigger, they are relevant for interpreting potential significance and responses. Consequently, the EVWQP Level 1, 2, and 3 benchmarks for the most sensitive receptor (juvenile fish via dietary exposure) are included in plots (11, 18, and 26 mg/kg respectively).

I3 RESULTS

I3.1 Percent EPT

Individual replicates for the % EPT endpoint for the two mine-exposed areas (RG_THCK and GH_ERC) were each assessed against their respective biological trigger values for the September sampling period (Appendix Table I.1, Appendix Figure I.1). Neither mine-exposed area (RG_THCK with three replicates and GH_ERC with five replicates) had replicates that reached the biological trigger, and therefore no action is required based on this biological trigger.

I3.2 Benthic Invertebrate Tissue Selenium (BIT Se)

Benthic invertebrate tissue selenium concentrations for the two mine-exposed area (RG_THCK and GH_ERC) were assessed against their respective biological trigger for the September sampling period (Appendix Table I.2, Appendix Figure I.2). In Thompson Creek (RG_THCK), all three replicates exceeded the biological trigger, with concentrations of selenium in tissue ranging from 17 to 59 mg/kg dw. This is consistent with previous findings that biological monitoring results collected downstream of the Thompson Creek sedimentation/buffer ponds were not as expected (Teck 2020b). This issue is currently being addressed through the AMP response framework (Section 1.5; Teck 2020b). In the main stem Elk River station downstream of GHO (GH_ERC), one of five replicates had a selenium concentration in tissue of 13 mg/kg dw, which exceeded the normal range and exceeded the upper 95% prediction limit of the biological trigger (11.7 mg/kg) by 10.8%. Given that only one of the four replicates marginally exceed the biological trigger, this result likely does not warrant further investigation for GH_ERC.

Table I.1: Biological Trigger Analysis for % EPT in Thompson Creek (RG_THCK) and the Elk River (GH_ERC), September 2020

Waterl	body	Area	Stream Type	Replicate	Reported Value	ADIT Value ^a	Lower 2.5th Percentile of the Habitat Adjusted Normal Range	
	Mine- exposed	RG_THCK/ GH_TC2		1	28.4	0	66.1	
Thompson Creek			Т	2	28.7	0	67.4	
							3	26.0
	Mine- exposed	GH_ERC/ RG_EL20		1	93.5	78.62	73.1	
			М	М	2	85.5	77.61	72.5
Elk River					М	3	81.5	77.34
				4	83.7	78.75	73.5	
				5	95.7	81.12	76.3	

Shaded cells signify those individual replicates that reached a biological trigger (i.e. lower than both the ADIT value [as based on predicted water quality] and the lower 2.5th percentile of habitatadjusted normal range).

Notes: % EPT = percent Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies). ADIT = Aquatic Data Integration Tool. T = tributary. M = main stem.

^a Information pertaining to the calculation of the ADIT value is shown in Appendix I.

Notes: EPT = Ephemeroptera, Plecoptera, Trichoptera. Black bars indicate the lower limit of the predicted Aquatic Data Integration Tool (ADIT) score for the location. Black dots represent values that do not exceed the trigger (below 2.5th percentile of NR and below lower limit of predicted ADIT score). Gray shading represents the habitat-adjusted normal range for each replicate.
Table I.2: Biological Trigger Analysis for Selenium Concentrations in Benthic Invertebrate Tissue in Thompson Creek

 (RG_THCK) and the Elk River (GH_ERC), September 2020

Waterbody		Stream Type	Area	Date	Replicate	Predicted Selenium Water Concentration (mg/L)	Benthic Invertebrate Selenium Tissue		
							Upper 95% Prediction Limit (mg/kg dw)	Upper 97.5 th Percentile of Normal Range (mg/kg dw)	Reported Concentration (mg/kg dw)
Thompson Creek	Mine- exposed	т	RG_THCK/ GH_TC2	10-Sep-20	1	189	15.4	8.7	59
		т	RG_THCK/ GH_TC2	10-Sep-20	2	189	15.4	8.7	17
		Т	RG_THCK/ GH_TC2	10-Sep-20	3	189	15.4	8.7	25
Elk River	Mine- exposed	М	GH_ERC/ RG_EL20	15-Sep-20	1	4.30	11.7	8.7	9.5
		М	GH_ERC/ RG_EL20	16-Sep-20	2	4.30	11.7	8.7	13
		М	GH_ERC/ RG_EL20	16-Sep-20	3	4.30	11.7	8.7	8.8
		М	GH_ERC/ RG_EL20	16-Sep-20	4	4.30	11.7	8.7	9.7
		М	GH_ERC/ RG_EL20	15-Sep-20	5	4.30	11.7	8.7	7.3

Shaded cells signify those individual replicates that were associated with a biological trigger (i.e. higher than both the upper 95% prediction limit [as based on predicted water quality] and the upper 97.5th percentile of normal range).

Notes: T = tributary. M = main stem.

Figure I 2:io o icarier Anasis for Se eniumoncentrations inentic Inerterateissue inineosed AreasGom sonreeand GierSetemer2

Notes: mg/kg dw = milligrams per kilogram dry weight. Black bars indicate the upper 95th prediction interval of the bioaccumulation model. Blue dots represent values exceeding the trigger (above the 97.5th percentile of normal range and above upper 95% prediction interval). Black dots represent values that do not exceed the trigger. Dotted lines indicate EVWQP benchmarks (11, 18, and 26 mg/kg, respectively) for juvenile fish. Gray shading represents the reference area normal range, defined as the 2.5th and 97.5th percentiles of the distribution of reference area data (pooled 1996 to 2019 data) reported in the RAEMP (Minnow 2020).

I4 SUMMARY

Neither of the two mine-exposed areas (RG THCK and GH ERC) exceeded the % EPT biological trigger, and therefore did not show "unexpected" benthic invertebrate community conditions in 2020. The biological trigger for benthic invertebrate tissue concentrations of selenium was reached in three of three replicates at area RG THCK and in one of five replicates at area GH ERC. The biological trigger exceedances for the replicates at RG THCK are likely related to concentrations of aqueous non-selenate selenium species (Section 6.3). Aqueous non-selenate species are known to be more readily accumulated by aquatic biota than the oxidized form selenate (i.e., more bioavailable). Higher than expected concentrations of selenium in benthic invertebrate tissue at RG THCK have been identified prior to 2020. In response to this, AMP response actions in 2019 focused on initiating further investigations, which are outlined in detail in the 2019 Annual AMP report (Teck 2020b). Briefly, the Selenium Speciation Monitoring Program will investigate the current hypothesis that suggests the elevated selenium in benthic invertebrate tissue may be caused by increased aqueous concentrations of non-selenate species, which may be produced in upstream sedimentation ponds (Section 1.5; Teck 2020b). Concurrent with that investigation of cause, Teck is advancing several possible adjustments, which may include habitat management and/or pond management modifications (Teck 2020b). Teck plans to implement fish-relocation projects within the Thompson sedimentation pond systems to reduce the potential risk to fish (Teck 2020b).

As discussed in the main report, biological triggers are consistent with the findings of the GHO LAEMP. Current biological triggers were sufficient to identify monitoring areas where biological responses are occurring, based on the integrated assessment conducted in the LAEMP, and no additional triggers are recommended at this time.

I5 REFERENCES

- Azimuth (Azimuth Consulting Group Inc). 2021 (In Prep). Development of biological triggers for the Elk Valley Adaptive Management Plan.
- Golder (Golder Associates). 2014. Benchmark Derivation Report for Selenium. Annex E of the Elk Valley Water Quality Plan. Prepared for Teck Coal Limited. July.
- Golder. 2020. Updates to the lotic and lentic statistical bioaccumulation models for selenium in the Elk Valley. Technical memorandum to Teck Coal Limited, 27 November 2020.
- Teck (Teck Coal Limited). 2014. Elk Valley Water Quality Plan. Submitted to the British Columbia Minister of Environment for approval on July 22, 2014.
- Teck. 2018. Water Quality Adaptive Management Plan for Teck Coal Operations in the Elk Valley. December 21, 2018.